Description
stringlengths
9
105
Link
stringlengths
45
135
Code
stringlengths
10
26.8k
Test_Case
stringlengths
9
202
Merge
stringlengths
63
27k
Calculate the mean of array ignoring the NaN value
https://www.geeksforgeeks.org/python-numpy-nanmean-function/
# Python code to demonstrate the # use of numpy.nanmean import numpy as np # create 2d array with nan value. arr = np.array([[20, 15, 37], [47, 13, np.nan]]) print("Shape of array is", arr.shape) print("Mean of array without using nanmean function:", np.mean(arr)) print("Using nanmean function:", np.nanmean(arr))
#Output : Shape of array is (2, 3)
Calculate the mean of array ignoring the NaN value # Python code to demonstrate the # use of numpy.nanmean import numpy as np # create 2d array with nan value. arr = np.array([[20, 15, 37], [47, 13, np.nan]]) print("Shape of array is", arr.shape) print("Mean of array without using nanmean function:", np.mean(arr)) print("Using nanmean function:", np.nanmean(arr)) #Output : Shape of array is (2, 3) [END]
Calculate the mean of array ignoring the NaN value
https://www.geeksforgeeks.org/python-numpy-nanmean-function/
# Python code to demonstrate the # use of numpy.nanmean # with axis = 0 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 0:", np.mean(arr, axis=0)) print("Using nanmedian function:", np.nanmean(arr, axis=0))
#Output : Shape of array is (2, 3)
Calculate the mean of array ignoring the NaN value # Python code to demonstrate the # use of numpy.nanmean # with axis = 0 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 0:", np.mean(arr, axis=0)) print("Using nanmedian function:", np.nanmean(arr, axis=0)) #Output : Shape of array is (2, 3) [END]
Calculate the mean of array ignoring the NaN value
https://www.geeksforgeeks.org/python-numpy-nanmean-function/
# Python code to demonstrate the # use of numpy.nanmedian # with axis = 1 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 1:", np.mean(arr, axis=1)) print("Using nanmedian function:", np.nanmean(arr, axis=1))
#Output : Shape of array is (2, 3)
Calculate the mean of array ignoring the NaN value # Python code to demonstrate the # use of numpy.nanmedian # with axis = 1 import numpy as np # create 2d matrix with nan value arr = np.array([[32, 20, 24], [47, 63, np.nan], [17, 28, np.nan], [10, 8, 9]]) print("Shape of array is", arr.shape) print("Mean of array with axis = 1:", np.mean(arr, axis=1)) print("Using nanmedian function:", np.nanmean(arr, axis=1)) #Output : Shape of array is (2, 3) [END]
Get the mean value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-mean/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.mean() method geeks = gfg.mean() print(geeks)
#Output :
Get the mean value from given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[64, 1; 12, 3]") # applying matrix.mean() method geeks = gfg.mean() print(geeks) #Output : [END]
Get the mean value from given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-mean/
# import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, 9]") # applying matrix.mean() method geeks = gfg.mean() print(geeks)
#Output :
Get the mean value from given matrix # import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1, 2, 3; 4, 5, 6; 7, 8, 9]") # applying matrix.mean() method geeks = gfg.mean() print(geeks) #Output : [END]
Compute the variance of the NumPy array
https://www.geeksforgeeks.org/numpy-var-in-python/
# Python Program illustrating # numpy.var() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("var of arr : ", np.var(arr)) print("\nvar of arr : ", np.var(arr, dtype=np.float32)) print("\nvar of arr : ", np.var(arr, dtype=np.float64))
#Output :
Compute the variance of the NumPy array # Python Program illustrating # numpy.var() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("var of arr : ", np.var(arr)) print("\nvar of arr : ", np.var(arr, dtype=np.float32)) print("\nvar of arr : ", np.var(arr, dtype=np.float64)) #Output : [END]
Compute the variance of the NumPy array
https://www.geeksforgeeks.org/numpy-var-in-python/
# Python Program illustrating # numpy.var() method import numpy as np # 2D array arr = [ [2, 2, 2, 2, 2], [15, 6, 27, 8, 2], [ 23, 2, 54, 1, 2, ], [11, 44, 34, 7, 2], ] # var of the flattened array print("\nvar of arr, axis = None : ", np.var(arr)) # var along the axis = 0 print("\nvar of arr, axis = 0 : ", np.var(arr, axis=0)) # var along the axis = 1 print("\nvar of arr, axis = 1 : ", np.var(arr, axis=1))
#Output :
Compute the variance of the NumPy array # Python Program illustrating # numpy.var() method import numpy as np # 2D array arr = [ [2, 2, 2, 2, 2], [15, 6, 27, 8, 2], [ 23, 2, 54, 1, 2, ], [11, 44, 34, 7, 2], ] # var of the flattened array print("\nvar of arr, axis = None : ", np.var(arr)) # var along the axis = 0 print("\nvar of arr, axis = 0 : ", np.var(arr, axis=0)) # var along the axis = 1 print("\nvar of arr, axis = 1 : ", np.var(arr, axis=1)) #Output : [END]
Compute the standard deviation of the NumPy array
https://www.geeksforgeeks.org/numpy-std-in-python/
# Python Program illustrating # numpy.std() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("std of arr : ", np.std(arr)) print("\nMore precision with float32") print("std of arr : ", np.std(arr, dtype=np.float32)) print("\nMore accuracy with float64") print("std of arr : ", np.std(arr, dtype=np.float64))
#Output :
Compute the standard deviation of the NumPy array # Python Program illustrating # numpy.std() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("std of arr : ", np.std(arr)) print("\nMore precision with float32") print("std of arr : ", np.std(arr, dtype=np.float32)) print("\nMore accuracy with float64") print("std of arr : ", np.std(arr, dtype=np.float64)) #Output : [END]
Compute the standard deviation of the NumPy array
https://www.geeksforgeeks.org/numpy-std-in-python/
# Python Program illustrating # numpy.std() method import numpy as np # 2D array arr = [ [2, 2, 2, 2, 2], [15, 6, 27, 8, 2], [ 23, 2, 54, 1, 2, ], [11, 44, 34, 7, 2], ] # std of the flattened array print("\nstd of arr, axis = None : ", np.std(arr)) # std along the axis = 0 print("\nstd of arr, axis = 0 : ", np.std(arr, axis=0)) # std along the axis = 1 print("\nstd of arr, axis = 1 : ", np.std(arr, axis=1))
#Output :
Compute the standard deviation of the NumPy array # Python Program illustrating # numpy.std() method import numpy as np # 2D array arr = [ [2, 2, 2, 2, 2], [15, 6, 27, 8, 2], [ 23, 2, 54, 1, 2, ], [11, 44, 34, 7, 2], ] # std of the flattened array print("\nstd of arr, axis = None : ", np.std(arr)) # std along the axis = 0 print("\nstd of arr, axis = 0 : ", np.std(arr, axis=0)) # std along the axis = 1 print("\nstd of arr, axis = 1 : ", np.std(arr, axis=1)) #Output : [END]
Compute pearson product-moment correlementsation coefficients of two given NumPy arrays
https://www.geeksforgeeks.org/compute-pearson-product-moment-correlation-coefficients-of-two-given-numpy-arrays/
# import library import numpy as np # create numpy 1d-array array1 = np.array([0, 1, 2]) array2 = np.array([3, 4, 5]) # pearson product-moment correlation # coefficients of the arrays rslt = np.corrcoef(array1, array2) print(rslt)
#Output :
Compute pearson product-moment correlementsation coefficients of two given NumPy arrays # import library import numpy as np # create numpy 1d-array array1 = np.array([0, 1, 2]) array2 = np.array([3, 4, 5]) # pearson product-moment correlation # coefficients of the arrays rslt = np.corrcoef(array1, array2) print(rslt) #Output : [END]
Compute pearson product-moment correlementsation coefficients of two given NumPy arrays
https://www.geeksforgeeks.org/compute-pearson-product-moment-correlation-coefficients-of-two-given-numpy-arrays/
# import numpy library import numpy as np # create a numpy 1d-array array1 = np.array([2, 4, 8]) array2 = np.array([3, 2, 1]) # pearson product-moment correlation # coefficients of the arrays rslt2 = np.corrcoef(array1, array2) print(rslt2)
#Output :
Compute pearson product-moment correlementsation coefficients of two given NumPy arrays # import numpy library import numpy as np # create a numpy 1d-array array1 = np.array([2, 4, 8]) array2 = np.array([3, 2, 1]) # pearson product-moment correlation # coefficients of the arrays rslt2 = np.corrcoef(array1, array2) print(rslt2) #Output : [END]
Calculate the mean across dimension in a 2D NumPy array
https://www.geeksforgeeks.org/calculate-the-mean-across-dimension-in-a-2d-numpy-array/
# Importing Library import numpy as np # creating 2d array arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Calculating mean across Rows row_mean = np.mean(arr, axis=1) row1_mean = row_mean[0] print("Mean of Row 1 is", row1_mean) row2_mean = row_mean[1] print("Mean of Row 2 is", row2_mean) row3_mean = row_mean[2] print("Mean of Row 3 is", row3_mean) # Calculating mean across Columns column_mean = np.mean(arr, axis=0) column1_mean = column_mean[0] print("Mean of column 1 is", column1_mean) column2_mean = column_mean[1] print("Mean of column 2 is", column2_mean) column3_mean = column_mean[2] print("Mean of column 3 is", column3_mean)
#Output : Mean of Row 1 is 2.0
Calculate the mean across dimension in a 2D NumPy array # Importing Library import numpy as np # creating 2d array arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # Calculating mean across Rows row_mean = np.mean(arr, axis=1) row1_mean = row_mean[0] print("Mean of Row 1 is", row1_mean) row2_mean = row_mean[1] print("Mean of Row 2 is", row2_mean) row3_mean = row_mean[2] print("Mean of Row 3 is", row3_mean) # Calculating mean across Columns column_mean = np.mean(arr, axis=0) column1_mean = column_mean[0] print("Mean of column 1 is", column1_mean) column2_mean = column_mean[1] print("Mean of column 2 is", column2_mean) column3_mean = column_mean[2] print("Mean of column 3 is", column3_mean) #Output : Mean of Row 1 is 2.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get average of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating average using average() print(np.average(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get average of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating average using average() print(np.average(list)) #Output : 5.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get average of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 40, 2, 502, 177, 7, 9] # Calculating average using average() print(np.average(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get average of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 40, 2, 502, 177, 7, 9] # Calculating average using average() print(np.average(list)) #Output : 5.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get variance of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating variance using var() print(np.var(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get variance of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating variance using var() print(np.var(list)) #Output : 5.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get variance of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [212, 231, 234, 564, 235] # Calculating variance using var() print(np.var(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get variance of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [212, 231, 234, 564, 235] # Calculating variance using var() print(np.var(list)) #Output : 5.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get # standard deviation of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating standard # deviation using var() print(np.std(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get # standard deviation of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [2, 4, 4, 4, 5, 5, 7, 9] # Calculating standard # deviation using var() print(np.std(list)) #Output : 5.0 [END]
Calculate the average, variance and standard deviation in Python using NumPy
https://www.geeksforgeeks.org/calculate-the-average-variance-and-standard-deviation-in-python-using-numpy/
# Python program to get # standard deviation of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [290, 124, 127, 899] # Calculating standard # deviation using var() print(np.std(list))
#Output : 5.0
Calculate the average, variance and standard deviation in Python using NumPy # Python program to get # standard deviation of a list # Importing the NumPy module import numpy as np # Taking a list of elements list = [290, 124, 127, 899] # Calculating standard # deviation using var() print(np.std(list)) #Output : 5.0 [END]
Describe a NumPy Array in Python
https://www.geeksforgeeks.org/describe-a-numpy-array-in-python/
import numpy as np # sample array arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) print(arr)
#Output : [4 5 8 5 6 4 9 2 4 3 6]
Describe a NumPy Array in Python import numpy as np # sample array arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) print(arr) #Output : [4 5 8 5 6 4 9 2 4 3 6] [END]
Describe a NumPy Array in Python
https://www.geeksforgeeks.org/describe-a-numpy-array-in-python/
import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of central tendency mean = np.mean(arr) median = np.median(arr) print("Array =", arr) print("Mean =", mean) print("Median =", median)
#Output : [4 5 8 5 6 4 9 2 4 3 6]
Describe a NumPy Array in Python import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of central tendency mean = np.mean(arr) median = np.median(arr) print("Array =", arr) print("Mean =", mean) print("Median =", median) #Output : [4 5 8 5 6 4 9 2 4 3 6] [END]
Describe a NumPy Array in Python
https://www.geeksforgeeks.org/describe-a-numpy-array-in-python/
import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of dispersion min = np.amin(arr) max = np.amax(arr) range = np.ptp(arr) variance = np.var(arr) sd = np.std(arr) print("Array =", arr) print("Measures of Dispersion") print("Minimum =", min) print("Maximum =", max) print("Range =", range) print("Variance =", variance) print("Standard Deviation =", sd)
#Output : [4 5 8 5 6 4 9 2 4 3 6]
Describe a NumPy Array in Python import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of dispersion min = np.amin(arr) max = np.amax(arr) range = np.ptp(arr) variance = np.var(arr) sd = np.std(arr) print("Array =", arr) print("Measures of Dispersion") print("Minimum =", min) print("Maximum =", max) print("Range =", range) print("Variance =", variance) print("Standard Deviation =", sd) #Output : [4 5 8 5 6 4 9 2 4 3 6] [END]
Describe a NumPy Array in Python
https://www.geeksforgeeks.org/describe-a-numpy-array-in-python/
import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of central tendency mean = np.mean(arr) median = np.median(arr) # measures of dispersion min = np.amin(arr) max = np.amax(arr) range = np.ptp(arr) variance = np.var(arr) sd = np.std(arr) print("Descriptive analysis") print("Array =", arr) print("Measures of Central Tendency") print("Mean =", mean) print("Median =", median) print("Measures of Dispersion") print("Minimum =", min) print("Maximum =", max) print("Range =", range) print("Variance =", variance) print("Standard Deviation =", sd)
#Output : [4 5 8 5 6 4 9 2 4 3 6]
Describe a NumPy Array in Python import numpy as np arr = np.array([4, 5, 8, 5, 6, 4, 9, 2, 4, 3, 6]) # measures of central tendency mean = np.mean(arr) median = np.median(arr) # measures of dispersion min = np.amin(arr) max = np.amax(arr) range = np.ptp(arr) variance = np.var(arr) sd = np.std(arr) print("Descriptive analysis") print("Array =", arr) print("Measures of Central Tendency") print("Mean =", mean) print("Median =", median) print("Measures of Dispersion") print("Minimum =", min) print("Maximum =", max) print("Range =", range) print("Variance =", variance) print("Standard Deviation =", sd) #Output : [4 5 8 5 6 4 9 2 4 3 6] [END]
Define a polynomial function
https://www.geeksforgeeks.org/numpy-poly1d-in-python/
# Python code explaining # numpy.poly1d() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) print("P1 : ", p1) print("\n p2 : \n", p2) # Solve for x = 2 print("\n\np1 at x = 2 : ", p1(2)) print("p2 at x = 2 : ", p2(2)) # Finding Roots print("\n\nRoots of P1 : ", p1.r) print("Roots of P2 : ", p2.r) # Finding Coefficients print("\n\nCoefficients of P1 : ", p1.c) print("Coefficients of P2 : ", p2.coeffs) # Finding Order print("\n\nOrder / Degree of P1 : ", p1.o) print("Order / Degree of P2 : ", p2.order)
#Output : P1 :
Define a polynomial function # Python code explaining # numpy.poly1d() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) print("P1 : ", p1) print("\n p2 : \n", p2) # Solve for x = 2 print("\n\np1 at x = 2 : ", p1(2)) print("p2 at x = 2 : ", p2(2)) # Finding Roots print("\n\nRoots of P1 : ", p1.r) print("Roots of P2 : ", p2.r) # Finding Coefficients print("\n\nCoefficients of P1 : ", p1.c) print("Coefficients of P2 : ", p2.coeffs) # Finding Order print("\n\nOrder / Degree of P1 : ", p1.o) print("Order / Degree of P2 : ", p2.order) #Output : P1 : [END]
Define a polynomial function
https://www.geeksforgeeks.org/numpy-poly1d-in-python/
# Python code explaining # numpy.poly1d() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) print("P1 : ", p1) print("\n p2 : \n", p2) print("\n\np1 ^ 2 : \n", p1**2) print("p2 ^ 2 : \n", np.square(p2)) p3 = np.poly1d([1, 2], variable="y") print("\n\np3 : ", p3) print("\n\np1 * p2 : \n", p1 * p2) print("\nMultiplying two polynimials : \n", np.poly1d([1, -1]) * np.poly1d([1, -2]))
#Output : P1 :
Define a polynomial function # Python code explaining # numpy.poly1d() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) print("P1 : ", p1) print("\n p2 : \n", p2) print("\n\np1 ^ 2 : \n", p1**2) print("p2 ^ 2 : \n", np.square(p2)) p3 = np.poly1d([1, 2], variable="y") print("\n\np3 : ", p3) print("\n\np1 * p2 : \n", p1 * p2) print("\nMultiplying two polynimials : \n", np.poly1d([1, -1]) * np.poly1d([1, -2])) #Output : P1 : [END]
How to add one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-add-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to add one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to add one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-add-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to add one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to add one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-add-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to add one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to subtract one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-subtract-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to subtract one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to subtract one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-subtract-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to subtract one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to subtract one polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-subtract-one-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to subtract one polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # subtract the polynomials rx = numpy.polynomial.polynomial.polysub(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to multiply a polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-multiply-a-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to multiply a polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # q(x) = 2(x**2) + (-5)x +2 qx = (2, -5, 2) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to multiply a polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-multiply-a-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to multiply a polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 2.2 px = (0, 0, 2.2) # q(x) = 9.8(x**2) + 4 qx = (9.8, 0, 4) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to multiply a polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-multiply-a-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to multiply a polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = (5/3)x px = (0, 5 / 3, 0) # q(x) = (-7/4)(x**2) + (9/5) qx = (-7 / 4, 0, 9 / 5) # mul the polynomials rx = numpy.polynomial.polynomial.polymul(px, qx) # print the resultant polynomial print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to divide a polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-divide-a-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # g(x) = x +2 gx = (2, 1, 0) # divide the polynomials qx, rx = numpy.polynomial.polynomial.polydiv(px, gx) # print the result # quotient print(qx) # remainder print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to divide a polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = (5, -2, 5) # g(x) = x +2 gx = (2, 1, 0) # divide the polynomials qx, rx = numpy.polynomial.polynomial.polydiv(px, gx) # print the result # quotient print(qx) # remainder print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
How to divide a polynomial to another listr using NumPy in Python?
https://www.geeksforgeeks.org/how-to-divide-a-polynomial-to-another-using-numpy-in-python/
# importing package import numpy # define the polynomials # p(x) = (x**2) + 3x + 2 px = (1, 3, 2) # g(x) = x + 1 gx = (1, 1, 0) # divide the polynomials qx, rx = numpy.polynomial.polynomial.polydiv(px, gx) # print the result # quotient print(qx) # remainder print(rx)
#Output : If p(x) = A3 x2 + A2 x + A1
How to divide a polynomial to another listr using NumPy in Python? # importing package import numpy # define the polynomials # p(x) = (x**2) + 3x + 2 px = (1, 3, 2) # g(x) = x + 1 gx = (1, 1, 0) # divide the polynomials qx, rx = numpy.polynomial.polynomial.polydiv(px, gx) # print the result # quotient print(qx) # remainder print(rx) #Output : If p(x) = A3 x2 + A2 x + A1 [END]
Find the roots of the polynomials using NumPy
https://www.geeksforgeeks.org/find-the-roots-of-the-polynomials-using-numpy/
# import numpy library import numpy as np # Enter the coefficients of the poly in the array coeff = [1, 2, 1] print(np.roots(coeff))
#Output : [-1. -1.]
Find the roots of the polynomials using NumPy # import numpy library import numpy as np # Enter the coefficients of the poly in the array coeff = [1, 2, 1] print(np.roots(coeff)) #Output : [-1. -1.] [END]
Find the roots of the polynomials using NumPy
https://www.geeksforgeeks.org/find-the-roots-of-the-polynomials-using-numpy/
# import numpy library import numpy as np # Enter the coefficients of the poly # in the array coeff = [1, 3, 2, 1] print(np.roots(coeff))
#Output : [-1. -1.]
Find the roots of the polynomials using NumPy # import numpy library import numpy as np # Enter the coefficients of the poly # in the array coeff = [1, 3, 2, 1] print(np.roots(coeff)) #Output : [-1. -1.] [END]
Find the roots of the polynomials using NumPy
https://www.geeksforgeeks.org/find-the-roots-of-the-polynomials-using-numpy/
# import numpy library import numpy as np # enter the coefficients of poly # in the array p = np.poly1d([1, 2, 1]) # multiplying by r(or roots) to # get the roots root_of_poly = p.r print(root_of_poly)
#Output : [-1. -1.]
Find the roots of the polynomials using NumPy # import numpy library import numpy as np # enter the coefficients of poly # in the array p = np.poly1d([1, 2, 1]) # multiplying by r(or roots) to # get the roots root_of_poly = p.r print(root_of_poly) #Output : [-1. -1.] [END]
Find the roots of the polynomials using NumPy
https://www.geeksforgeeks.org/find-the-roots-of-the-polynomials-using-numpy/
# import numpy library import numpy as np # enter the coefficients of poly # in the array p = np.poly1d([1, 3, 2, 1]) # multiplying by r(or roots) to get # the roots root_of_poly = p.r print(root_of_poly)
#Output : [-1. -1.]
Find the roots of the polynomials using NumPy # import numpy library import numpy as np # enter the coefficients of poly # in the array p = np.poly1d([1, 3, 2, 1]) # multiplying by r(or roots) to get # the roots root_of_poly = p.r print(root_of_poly) #Output : [-1. -1.] [END]
Evaluate a 2-D polynomial series on the Cartesian product
https://www.geeksforgeeks.org/python-numpy-np-polygrid2d-method/
# Python program explaining # numpy.polygrid2d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid2d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6]]) # using np.polygrid2d() method ans = polygrid2d([7, 9], [8, 10], c) print(ans)
#Output :
Evaluate a 2-D polynomial series on the Cartesian product # Python program explaining # numpy.polygrid2d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid2d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6]]) # using np.polygrid2d() method ans = polygrid2d([7, 9], [8, 10], c) print(ans) #Output : [END]
Evaluate a 2-D polynomial series on the Cartesian product
https://www.geeksforgeeks.org/python-numpy-np-polygrid2d-method/
# Python program explaining # numpy.polygrid2d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid2d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6]]) # using np.polygrid2d() method ans = polygrid2d(7, 8, c) print(ans)
#Output :
Evaluate a 2-D polynomial series on the Cartesian product # Python program explaining # numpy.polygrid2d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid2d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6]]) # using np.polygrid2d() method ans = polygrid2d(7, 8, c) print(ans) #Output : [END]
Evaluate a 3-D polynomial series on the Cartesian product
https://www.geeksforgeeks.org/python-numpy-np-polygrid3d-method/
# Python program explaining # numpy.polygrid3d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid3d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6], [10, 11, 12]]) # using np.polygrid3d() method ans = polygrid3d([7, 9], [8, 10], [5, 6], c) print(ans)
#Output :
Evaluate a 3-D polynomial series on the Cartesian product # Python program explaining # numpy.polygrid3d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid3d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6], [10, 11, 12]]) # using np.polygrid3d() method ans = polygrid3d([7, 9], [8, 10], [5, 6], c) print(ans) #Output : [END]
Evaluate a 3-D polynomial series on the Cartesian product
https://www.geeksforgeeks.org/python-numpy-np-polygrid3d-method/
# Python program explaining # numpy.polygrid3d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid3d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6], [10, 11, 12]]) # using np.polygrid3d() method ans = polygrid3d(7, 11, 12, c) print(ans)
#Output :
Evaluate a 3-D polynomial series on the Cartesian product # Python program explaining # numpy.polygrid3d() method # importing numpy as np import numpy as np from numpy.polynomial.polynomial import polygrid3d # Input polynomial series coefficients c = np.array([[1, 3, 5], [2, 4, 6], [10, 11, 12]]) # using np.polygrid3d() method ans = polygrid3d(7, 11, 12, c) print(ans) #Output : [END]
Repeat all the elements of a NumPy array of strings
https://www.geeksforgeeks.org/repeat-all-the-elements-of-a-numpy-array-of-strings/
# importing the module import numpy as np # created array of strings arr = np.array(["Akash", "Rohit", "Ayush", "Dhruv", "Radhika"], dtype=np.str) print("Original Array :") print(arr) # with the help of np.char.multiply() # repeating the characters 3 times new_array = np.char.multiply(arr, 3) print("\nNew array :") print(new_array)
#Output : Original Array :
Repeat all the elements of a NumPy array of strings # importing the module import numpy as np # created array of strings arr = np.array(["Akash", "Rohit", "Ayush", "Dhruv", "Radhika"], dtype=np.str) print("Original Array :") print(arr) # with the help of np.char.multiply() # repeating the characters 3 times new_array = np.char.multiply(arr, 3) print("\nNew array :") print(new_array) #Output : Original Array : [END]
Repeat all the elements of a NumPy array of strings
https://www.geeksforgeeks.org/repeat-all-the-elements-of-a-numpy-array-of-strings/
# importing the module import numpy as np # created array of strings arr = np.array(["Geeks", "for", "Geeks"]) print("Original Array :") print(arr) # with the help of np.char.multiply() # repeating the characters 3 times new_array = np.char.multiply(arr, 2) print("\nNew array :") print(new_array)
#Output : Original Array :
Repeat all the elements of a NumPy array of strings # importing the module import numpy as np # created array of strings arr = np.array(["Geeks", "for", "Geeks"]) print("Original Array :") print(arr) # with the help of np.char.multiply() # repeating the characters 3 times new_array = np.char.multiply(arr, 2) print("\nNew array :") print(new_array) #Output : Original Array : [END]
Repeat all the elements of a NumPy array of strings
https://www.geeksforgeeks.org/repeat-all-the-elements-of-a-numpy-array-of-strings/
# importing the module import numpy as np # created array of strings arr = np.array(["Geeks", "for", "Geeks"]) print("Original Array :") print(arr) # using list comprehension to repeat each string in the array n = 2 # number of times to repeat each string new_array = np.array([s * n for s in arr]) print("\nNew array :") print(new_array)
#Output : Original Array :
Repeat all the elements of a NumPy array of strings # importing the module import numpy as np # created array of strings arr = np.array(["Geeks", "for", "Geeks"]) print("Original Array :") print(arr) # using list comprehension to repeat each string in the array n = 2 # number of times to repeat each string new_array = np.array([s * n for s in arr]) print("\nNew array :") print(new_array) #Output : Original Array : [END]
How to split the element of a given NumPy array with spaces?
https://www.geeksforgeeks.org/how-to-split-the-element-of-a-given-numpy-array-with-spaces/
import numpy as np # Original Array array = np.array(["PHP C# Python C Java C++"], dtype=np.str) print(array) # Split the element of the said array with spaces sparr = np.char.split(array) print(sparr)
#Output : ['PHP C# Python C Java C++']
How to split the element of a given NumPy array with spaces? import numpy as np # Original Array array = np.array(["PHP C# Python C Java C++"], dtype=np.str) print(array) # Split the element of the said array with spaces sparr = np.char.split(array) print(sparr) #Output : ['PHP C# Python C Java C++'] [END]
How to split the element of a given NumPy array with spaces?
https://www.geeksforgeeks.org/how-to-split-the-element-of-a-given-numpy-array-with-spaces/
import numpy as np # Original Array array = np.array(["Geeks For Geeks"], dtype=np.str) print(array) # Split the element of the said array # with spaces sparr = np.char.split(array) print(sparr)
#Output : ['PHP C# Python C Java C++']
How to split the element of a given NumPy array with spaces? import numpy as np # Original Array array = np.array(["Geeks For Geeks"], dtype=np.str) print(array) # Split the element of the said array # with spaces sparr = np.char.split(array) print(sparr) #Output : ['PHP C# Python C Java C++'] [END]
How to split the element of a given NumPy array with spaces?
https://www.geeksforgeeks.org/how-to-split-the-element-of-a-given-numpy-array-with-spaces/
import numpy as np # Original Array array = np.array(["DBMS OOPS DS"], dtype=np.str) print(array) # Split the element of the said array # with spaces sparr = np.char.split(array) print(sparr)
#Output : ['PHP C# Python C Java C++']
How to split the element of a given NumPy array with spaces? import numpy as np # Original Array array = np.array(["DBMS OOPS DS"], dtype=np.str) print(array) # Split the element of the said array # with spaces sparr = np.char.split(array) print(sparr) #Output : ['PHP C# Python C Java C++'] [END]
How to insert a space between characters of all the elements of a given NumPy array?
https://www.geeksforgeeks.org/how-to-insert-a-space-between-characters-of-all-the-elements-of-a-given-numpy-array/
# importing numpy as np import numpy as np # creating array of string x = np.array(["geeks", "for", "geeks"], dtype=np.str) print("Printing the Original Array:") print(x) # inserting space using np.char.join() r = np.char.join(" ", x) print( "Printing the array after inserting space\ between the elements" ) print(r)
#Output : Suppose we have an array of string as follows:
How to insert a space between characters of all the elements of a given NumPy array? # importing numpy as np import numpy as np # creating array of string x = np.array(["geeks", "for", "geeks"], dtype=np.str) print("Printing the Original Array:") print(x) # inserting space using np.char.join() r = np.char.join(" ", x) print( "Printing the array after inserting space\ between the elements" ) print(r) #Output : Suppose we have an array of string as follows: [END]
Swap the case of an array of string
https://www.geeksforgeeks.org/numpy-string-operations-swapcase-function/
# Python Program explaining # numpy.char.swapcase() function import numpy as geek in_arr = geek.array(["P4Q R", "4q Rp", "Q Rp4", "rp4q"]) print("input array : ", in_arr) out_arr = geek.char.swapcase(in_arr) print("output swapcased array :", out_arr)
input array : ['P4Q R' '4q Rp' 'Q Rp4' 'rp4q'] output swapcasecased array : ['p4q r' '4Q rP' 'q rP4' 'RP4Q']
Swap the case of an array of string # Python Program explaining # numpy.char.swapcase() function import numpy as geek in_arr = geek.array(["P4Q R", "4q Rp", "Q Rp4", "rp4q"]) print("input array : ", in_arr) out_arr = geek.char.swapcase(in_arr) print("output swapcased array :", out_arr) input array : ['P4Q R' '4q Rp' 'Q Rp4' 'rp4q'] output swapcasecased array : ['p4q r' '4Q rP' 'q rP4' 'RP4Q'] [END]
Swap the case of an array of string
https://www.geeksforgeeks.org/numpy-string-operations-swapcase-function/
# Python Program explaining # numpy.char.swapcase() function import numpy as geek in_arr = geek.array(["Geeks", "For", "Geeks"]) print("input array : ", in_arr) out_arr = geek.char.swapcase(in_arr) print("output swapcasecased array :", out_arr)
input array : ['P4Q R' '4q Rp' 'Q Rp4' 'rp4q'] output swapcasecased array : ['p4q r' '4Q rP' 'q rP4' 'RP4Q']
Swap the case of an array of string # Python Program explaining # numpy.char.swapcase() function import numpy as geek in_arr = geek.array(["Geeks", "For", "Geeks"]) print("input array : ", in_arr) out_arr = geek.char.swapcase(in_arr) print("output swapcasecased array :", out_arr) input array : ['P4Q R' '4q Rp' 'Q Rp4' 'rp4q'] output swapcasecased array : ['p4q r' '4Q rP' 'q rP4' 'RP4Q'] [END]
Change the case to uppercase of elements of an array
https://www.geeksforgeeks.org/numpy-string-operations-upper-function/
# Python Program explaining # numpy.char.upper() function import numpy as geek in_arr = geek.array(["p4q r", "4q rp", "q rp4", "rp4q"]) print("input array : ", in_arr) out_arr = geek.char.upper(in_arr) print("output uppercased array :", out_arr)
input array : ['p4q r' '4q rp' 'q rp4' 'rp4q']
Change the case to uppercase of elements of an array # Python Program explaining # numpy.char.upper() function import numpy as geek in_arr = geek.array(["p4q r", "4q rp", "q rp4", "rp4q"]) print("input array : ", in_arr) out_arr = geek.char.upper(in_arr) print("output uppercased array :", out_arr) input array : ['p4q r' '4q rp' 'q rp4' 'rp4q'] [END]
Change the case to uppercase of elements of an array
https://www.geeksforgeeks.org/numpy-string-operations-upper-function/
# Python Program explaining # numpy.char.upper() function import numpy as geek in_arr = geek.array(["geeks", "for", "geeks"]) print("input array : ", in_arr) out_arr = geek.char.upper(in_arr) print("output uppercased array :", out_arr)
input array : ['p4q r' '4q rp' 'q rp4' 'rp4q']
Change the case to uppercase of elements of an array # Python Program explaining # numpy.char.upper() function import numpy as geek in_arr = geek.array(["geeks", "for", "geeks"]) print("input array : ", in_arr) out_arr = geek.char.upper(in_arr) print("output uppercased array :", out_arr) input array : ['p4q r' '4q rp' 'q rp4' 'rp4q'] [END]
Change the case to lowercase of elements of an array
https://www.geeksforgeeks.org/numpy-string-operations-lower-function/
# Python Program explaining # numpy.char.lower() function import numpy as geek in_arr = geek.array(["P4Q R", "4Q RP", "Q RP4", "RP4Q"]) print("input array : ", in_arr) out_arr = geek.char.lower(in_arr) print("output lowercased array :", out_arr)
input array : ['P4Q R' '4Q RP' 'Q RP4' 'RP4Q']
Change the case to lowercase of elements of an array # Python Program explaining # numpy.char.lower() function import numpy as geek in_arr = geek.array(["P4Q R", "4Q RP", "Q RP4", "RP4Q"]) print("input array : ", in_arr) out_arr = geek.char.lower(in_arr) print("output lowercased array :", out_arr) input array : ['P4Q R' '4Q RP' 'Q RP4' 'RP4Q'] [END]
Change the case to lowercase of elements of an array
https://www.geeksforgeeks.org/numpy-string-operations-lower-function/
# Python Program explaining # numpy.char.lower() function import numpy as geek in_arr = geek.array(["GEEKS", "FOR", "GEEKS"]) print("input array : ", in_arr) out_arr = geek.char.lower(in_arr) print("output lowercased array :", out_arr)
input array : ['P4Q R' '4Q RP' 'Q RP4' 'RP4Q']
Change the case to lowercase of elements of an array # Python Program explaining # numpy.char.lower() function import numpy as geek in_arr = geek.array(["GEEKS", "FOR", "GEEKS"]) print("input array : ", in_arr) out_arr = geek.char.lower(in_arr) print("output lowercased array :", out_arr) input array : ['P4Q R' '4Q RP' 'Q RP4' 'RP4Q'] [END]
Join String List by a separator
https://www.geeksforgeeks.org/numpy-string-operations-join-function/
# Python program explaining # numpy.core.defchararray.join() method # importing numpy import numpy as geek # input array in_arr = geek.array(["Python", "Numpy", "Pandas"]) print("Input original array : ", in_arr) # creating the separator sep = geek.array(["-", "+", "*"]) out_arr = geek.core.defchararray.join(sep, in_arr) print("Output joined array: ", out_arr)
Input original array : ['Python' 'Numpy' 'Pandas']
Join String List by a separator # Python program explaining # numpy.core.defchararray.join() method # importing numpy import numpy as geek # input array in_arr = geek.array(["Python", "Numpy", "Pandas"]) print("Input original array : ", in_arr) # creating the separator sep = geek.array(["-", "+", "*"]) out_arr = geek.core.defchararray.join(sep, in_arr) print("Output joined array: ", out_arr) Input original array : ['Python' 'Numpy' 'Pandas'] [END]
Check if two same shaped string arrayss one by one
https://www.geeksforgeeks.org/numpy-string-operations-not_equal-function/
# Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array("numpy") print("1st Input array : ", in_arr1) in_arr2 = geek.array("numpy") print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr)
#Output : 1st Input array : numpy
Check if two same shaped string arrayss one by one # Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array("numpy") print("1st Input array : ", in_arr1) in_arr2 = geek.array("numpy") print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr) #Output : 1st Input array : numpy [END]
Check if two same shaped string arrayss one by one
https://www.geeksforgeeks.org/numpy-string-operations-not_equal-function/
# Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array(["Geeks", "for", "Geeks"]) print("1st Input array : ", in_arr1) in_arr2 = geek.array(["Geek", "for", "Geek"]) print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr)
#Output : 1st Input array : numpy
Check if two same shaped string arrayss one by one # Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array(["Geeks", "for", "Geeks"]) print("1st Input array : ", in_arr1) in_arr2 = geek.array(["Geek", "for", "Geek"]) print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr) #Output : 1st Input array : numpy [END]
Check if two same shaped string arrayss one by one
https://www.geeksforgeeks.org/numpy-string-operations-not_equal-function/
# Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array(["10", "11", "12"]) print("1st Input array : ", in_arr1) in_arr2 = geek.array(["10", "11", "121"]) print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr)
#Output : 1st Input array : numpy
Check if two same shaped string arrayss one by one # Python program explaining # numpy.char.not_equal() method # importing numpy import numpy as geek # input arrays in_arr1 = geek.array(["10", "11", "12"]) print("1st Input array : ", in_arr1) in_arr2 = geek.array(["10", "11", "121"]) print("2nd Input array : ", in_arr2) # checking if they are not equal out_arr = geek.char.not_equal(in_arr1, in_arr2) print("Output array: ", out_arr) #Output : 1st Input array : numpy [END]
Count the number of substrings in an array
https://www.geeksforgeeks.org/numpy-string-operations-count-function/
# Python program explaining # numpy.char.count() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["Sayantan", " Sayan ", "Sayansubhra"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.count(in_arr, sub="an") print("Output array: ", out_arr)
Input array : ['Sayantan' ' Sayan ' 'Sayansubhra']
Count the number of substrings in an array # Python program explaining # numpy.char.count() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["Sayantan", " Sayan ", "Sayansubhra"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.count(in_arr, sub="an") print("Output array: ", out_arr) Input array : ['Sayantan' ' Sayan ' 'Sayansubhra'] [END]
Count the number of substrings in an array
https://www.geeksforgeeks.org/numpy-string-operations-count-function/
# Python program explaining # numpy.char.count() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["Sayantan", " Sayan ", "Sayansubhra"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.count(in_arr, sub="a", start=1, end=8) print("Output array: ", out_arr)
Input array : ['Sayantan' ' Sayan ' 'Sayansubhra']
Count the number of substrings in an array # Python program explaining # numpy.char.count() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["Sayantan", " Sayan ", "Sayansubhra"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.count(in_arr, sub="a", start=1, end=8) print("Output array: ", out_arr) Input array : ['Sayantan' ' Sayan ' 'Sayansubhra'] [END]
Find the lowest index of the substring in an array
https://www.geeksforgeeks.org/numpy-string-operations-find-function/
# Python program explaining # numpy.char.find() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["aAaAaA", "baA", "abBABba"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.find(in_arr, sub="A") print("Output array: ", out_arr)
Input array : ['aAaAaA' 'baA' 'abBABba']
Find the lowest index of the substring in an array # Python program explaining # numpy.char.find() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["aAaAaA", "baA", "abBABba"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.find(in_arr, sub="A") print("Output array: ", out_arr) Input array : ['aAaAaA' 'baA' 'abBABba'] [END]
Find the lowest index of the substring in an array
https://www.geeksforgeeks.org/numpy-string-operations-find-function/
# Python program explaining # numpy.char.find() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["aAaAaA", "aA", "abBABba"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.find(in_arr, sub="a", start=3, end=7) print("Output array: ", out_arr)
Input array : ['aAaAaA' 'baA' 'abBABba']
Find the lowest index of the substring in an array # Python program explaining # numpy.char.find() method # importing numpy as geek import numpy as geek # input arrays in_arr = geek.array(["aAaAaA", "aA", "abBABba"]) print("Input array : ", in_arr) # output arrays out_arr = geek.char.find(in_arr, sub="a", start=3, end=7) print("Output array: ", out_arr) Input array : ['aAaAaA' 'baA' 'abBABba'] [END]
Different ways to convert a Python dictionary to a NumPy array
https://www.geeksforgeeks.org/different-ways-to-convert-a-python-dictionary-to-a-numpy-array/
# importing required librariess import numpy as np from ast import literal_eval # creating class of string name_list = """{ "column0": {"First_Name": "Akash", "Second_Name": "kumar", "Interest": "Coding"}, "column1": {"First_Name": "Ayush", "Second_Name": "Sharma", "Interest": "Cricket"}, "column2": {"First_Name": "Diksha", "Second_Name": "Sharma","Interest": "Reading"}, "column3": {"First_Name":" Priyanka", "Second_Name": "Kumari", "Interest": "Dancing"} }""" print("Type of name_list created:\n", type(name_list)) # converting string type to dictionary t = literal_eval(name_list) # printing the original dictionary print("\nPrinting the original Name_list dictionary:\n", t) print("Type of original dictionary:\n", type(t)) # converting dictionary to numpy array result_nparra = np.array( [[v[j] for j in ["First_Name", "Second_Name", "Interest"]] for k, v in t.items()] ) print("\nConverted ndarray from the Original dictionary:\n", result_nparra) # printing the type of converted array print("Type:\n", type(result_nparra))
#Output : <class 'dict'>
Different ways to convert a Python dictionary to a NumPy array # importing required librariess import numpy as np from ast import literal_eval # creating class of string name_list = """{ "column0": {"First_Name": "Akash", "Second_Name": "kumar", "Interest": "Coding"}, "column1": {"First_Name": "Ayush", "Second_Name": "Sharma", "Interest": "Cricket"}, "column2": {"First_Name": "Diksha", "Second_Name": "Sharma","Interest": "Reading"}, "column3": {"First_Name":" Priyanka", "Second_Name": "Kumari", "Interest": "Dancing"} }""" print("Type of name_list created:\n", type(name_list)) # converting string type to dictionary t = literal_eval(name_list) # printing the original dictionary print("\nPrinting the original Name_list dictionary:\n", t) print("Type of original dictionary:\n", type(t)) # converting dictionary to numpy array result_nparra = np.array( [[v[j] for j in ["First_Name", "Second_Name", "Interest"]] for k, v in t.items()] ) print("\nConverted ndarray from the Original dictionary:\n", result_nparra) # printing the type of converted array print("Type:\n", type(result_nparra)) #Output : <class 'dict'> [END]
Different ways to convert a Python dictionary to a NumPy array
https://www.geeksforgeeks.org/different-ways-to-convert-a-python-dictionary-to-a-numpy-array/
# importing library import numpy as np # creating dictionary as key as # a number and value as its cube dict_created = {0: 0, 1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216} # printing type of dictionary created print(type(dict_created)) # converting dictionary to # numpy array res_array = np.array(list(dict_created.items())) # printing the converted array print(res_array) # printing type of converted array print(type(res_array))
#Output : <class 'dict'>
Different ways to convert a Python dictionary to a NumPy array # importing library import numpy as np # creating dictionary as key as # a number and value as its cube dict_created = {0: 0, 1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216} # printing type of dictionary created print(type(dict_created)) # converting dictionary to # numpy array res_array = np.array(list(dict_created.items())) # printing the converted array print(res_array) # printing type of converted array print(type(res_array)) #Output : <class 'dict'> [END]
How to convert a list and tuple into NumPy arrays?
https://www.geeksforgeeks.org/how-to-convert-a-list-and-tuple-into-numpy-arrays/
import numpy as np # list list1 = [3, 4, 5, 6] print(type(list1)) print(list1) print() # conversion array1 = np.asarray(list1) print(type(array1)) print(array1) print() # tuple tuple1 = ([8, 4, 6], [1, 2, 3]) print(type(tuple1)) print(tuple1) print() # conversion array2 = np.asarray(tuple1) print(type(array2)) print(array2)
#Output : numpy.asarray( a, type = None, order = None )
How to convert a list and tuple into NumPy arrays? import numpy as np # list list1 = [3, 4, 5, 6] print(type(list1)) print(list1) print() # conversion array1 = np.asarray(list1) print(type(array1)) print(array1) print() # tuple tuple1 = ([8, 4, 6], [1, 2, 3]) print(type(tuple1)) print(tuple1) print() # conversion array2 = np.asarray(tuple1) print(type(array2)) print(array2) #Output : numpy.asarray( a, type = None, order = None ) [END]
How to convert a list and tuple into NumPy arrays?
https://www.geeksforgeeks.org/how-to-convert-a-list-and-tuple-into-numpy-arrays/
import numpy as np # list list1 = [1, 2, 3] print(type(list1)) print(list1) print() # conversion array1 = np.array(list1) print(type(array1)) print(array1) print() # tuple tuple1 = (1, 2, 3) print(type(tuple1)) print(tuple1) print() # conversion array2 = np.array(tuple1) print(type(array2)) print(array2) print() # list, array and tuple array3 = np.array([tuple1, list1, array2]) print(type(array3)) print(array3)
#Output : numpy.asarray( a, type = None, order = None )
How to convert a list and tuple into NumPy arrays? import numpy as np # list list1 = [1, 2, 3] print(type(list1)) print(list1) print() # conversion array1 = np.array(list1) print(type(array1)) print(array1) print() # tuple tuple1 = (1, 2, 3) print(type(tuple1)) print(tuple1) print() # conversion array2 = np.array(tuple1) print(type(array2)) print(array2) print() # list, array and tuple array3 = np.array([tuple1, list1, array2]) print(type(array3)) print(array3) #Output : numpy.asarray( a, type = None, order = None ) [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.astype res = ini_array.astype(np.float) # printing final result print("final array", str(res))
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.astype res = ini_array.astype(np.float) # printing final result print("final array", str(res)) #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
def convert_to_floats(arr): # Use the map function to apply the float function to each element in the input list result = map(float, arr) # Return the resulting iterator as a list return list(result) # Test the function arr = ["1.1", "1.5", "2.7", "8.9"] print(convert_to_floats(arr)) # This code is contributed by Edula Vinay Kumar Reddy
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats def convert_to_floats(arr): # Use the map function to apply the float function to each element in the input list result = map(float, arr) # Return the resulting iterator as a list return list(result) # Test the function arr = ["1.1", "1.5", "2.7", "8.9"] print(convert_to_floats(arr)) # This code is contributed by Edula Vinay Kumar Reddy #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.fromstring ini_array = ", ".join(ini_array) ini_array = np.fromstring(ini_array, dtype=np.float, sep=", ") # printing final result print("final array", str(ini_array))
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.fromstring ini_array = ", ".join(ini_array) ini_array = np.fromstring(ini_array, dtype=np.float, sep=", ") # printing final result print("final array", str(ini_array)) #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.asarray final_array = b = np.asarray(ini_array, dtype=np.float64, order="C") # printing final result print("final array", str(final_array))
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.asarray final_array = b = np.asarray(ini_array, dtype=np.float64, order="C") # printing final result print("final array", str(final_array)) #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.asarray final_array = b = np.asfarray(ini_array, dtype=float) # printing final result print("final array", str(final_array))
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats import numpy as np # initialising array ini_array = np.array(["1.1", "1.5", "2.7", "8.9"]) # printing initial array print("initial array", str(ini_array)) # converting to array of floats # using np.asarray final_array = b = np.asfarray(ini_array, dtype=float) # printing final result print("final array", str(final_array)) #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
Ways to convert array of strings to array of floats
https://www.geeksforgeeks.org/python-ways-to-convert-array-of-strings-to-array-of-floats/
def convert_strings_to_floats(input_array): output_array = [] for element in input_array: converted_float = float(element) output_array.append(converted_float) return output_array input_array = ["1.1", "1.5", "2.7", "8.9"] output_array = convert_strings_to_floats(input_array) print(output_array)
#Output : initial array: ['1.1' '1.5' '2.7' '8.9']
Ways to convert array of strings to array of floats def convert_strings_to_floats(input_array): output_array = [] for element in input_array: converted_float = float(element) output_array.append(converted_float) return output_array input_array = ["1.1", "1.5", "2.7", "8.9"] output_array = convert_strings_to_floats(input_array) print(output_array) #Output : initial array: ['1.1' '1.5' '2.7' '8.9'] [END]
How to Convert an image to NumPy array and save it to CSV file using Python?
https://www.geeksforgeeks.org/how-to-convert-an-image-to-numpy-array-and-saveit-to-csv-file-using-python/
# import required libraries from PIL import Image import numpy as gfg # read an image img = Image.open("geeksforgeeks.jpg") # convert image object into array imageToMatrice = gfg.asarray(img) # printing shape of image print(imageToMatrice.shape)
#Output : (251, 335, 3)
How to Convert an image to NumPy array and save it to CSV file using Python? # import required libraries from PIL import Image import numpy as gfg # read an image img = Image.open("geeksforgeeks.jpg") # convert image object into array imageToMatrice = gfg.asarray(img) # printing shape of image print(imageToMatrice.shape) #Output : (251, 335, 3) [END]
How to Convert an image to NumPy array and save it to CSV file using Python?
https://www.geeksforgeeks.org/how-to-convert-an-image-to-numpy-array-and-saveit-to-csv-file-using-python/
# import library from matplotlib.image import imread # read an image imageToMatrice = imread("geeksforgeeks.jpg") # show shape of the image print(imageToMatrice.shape)
#Output : (251, 335, 3)
How to Convert an image to NumPy array and save it to CSV file using Python? # import library from matplotlib.image import imread # read an image imageToMatrice = imread("geeksforgeeks.jpg") # show shape of the image print(imageToMatrice.shape) #Output : (251, 335, 3) [END]
How to Convert an image to NumPy array and save it to CSV file using Python?
https://www.geeksforgeeks.org/how-to-convert-an-image-to-numpy-array-and-saveit-to-csv-file-using-python/
# import required libraries import numpy as gfg import matplotlib.image as img # read an image imageMat = img.imread("gfg.jpg") print("Image shape:", imageMat.shape) # if image is colored (RGB) if imageMat.shape[2] == 3: # reshape it from 3D matrice to 2D matrice imageMat_reshape = imageMat.reshape(imageMat.shape[0], -1) print("Reshaping to 2D array:", imageMat_reshape.shape) # if image is grayscale else: # remain as it is imageMat_reshape = imageMat # saving matrice to .csv file gfg.savetxt("geek.csv", imageMat_reshape) # retrieving matrice from the .csv file loaded_2D_mat = gfg.loadtxt("geek.csv") # reshaping it to 3D matrice loaded_mat = loaded_2D_mat.reshape( loaded_2D_mat.shape[0], loaded_2D_mat.shape[1] // imageMat.shape[2], imageMat.shape[2], ) print("Image shape of loaded Image:", loaded_mat.shape) # check if both matrice have same shape or not if (imageMat == loaded_mat).all(): print( "\n\nYes", "The loaded matrice from CSV file is same as original image matrice" )
#Output : (251, 335, 3)
How to Convert an image to NumPy array and save it to CSV file using Python? # import required libraries import numpy as gfg import matplotlib.image as img # read an image imageMat = img.imread("gfg.jpg") print("Image shape:", imageMat.shape) # if image is colored (RGB) if imageMat.shape[2] == 3: # reshape it from 3D matrice to 2D matrice imageMat_reshape = imageMat.reshape(imageMat.shape[0], -1) print("Reshaping to 2D array:", imageMat_reshape.shape) # if image is grayscale else: # remain as it is imageMat_reshape = imageMat # saving matrice to .csv file gfg.savetxt("geek.csv", imageMat_reshape) # retrieving matrice from the .csv file loaded_2D_mat = gfg.loadtxt("geek.csv") # reshaping it to 3D matrice loaded_mat = loaded_2D_mat.reshape( loaded_2D_mat.shape[0], loaded_2D_mat.shape[1] // imageMat.shape[2], imageMat.shape[2], ) print("Image shape of loaded Image:", loaded_mat.shape) # check if both matrice have same shape or not if (imageMat == loaded_mat).all(): print( "\n\nYes", "The loaded matrice from CSV file is same as original image matrice" ) #Output : (251, 335, 3) [END]
How to Convert an image to NumPy array and save it to CSV file using Python?
https://www.geeksforgeeks.org/how-to-convert-an-image-to-numpy-array-and-saveit-to-csv-file-using-python/
# import required libraries import numpy as gfg import matplotlib.image as img import pandas as pd # read an image imageMat = img.imread("gfg.jpg") print("Image shape:", imageMat.shape) # if image is colored (RGB) if imageMat.shape[2] == 3: # reshape it from 3D matrice to 2D matrice imageMat_reshape = imageMat.reshape(imageMat.shape[0], -1) print("Reshaping to 2D array:", imageMat_reshape.shape) # if image is grayscale else: # remain as it is imageMat_reshape = imageMat # converting it to dataframe. mat_df = pd.DataFrame(imageMat_reshape) # exporting dataframe to CSV file. mat_df.to_csv("gfgfile.csv", header=None, index=None) # retrieving dataframe from CSV file loaded_df = pd.read_csv("gfgfile.csv", sep=",", header=None) # getting matrice values. loaded_2D_mat = loaded_df.values # reshaping it to 3D matrice loaded_mat = loaded_2D_mat.reshape( loaded_2D_mat.shape[0], loaded_2D_mat.shape[1] // imageMat.shape[2], imageMat.shape[2], ) print("Image shape of loaded Image :", loaded_mat.shape) # check if both matrice have same shape or not if (imageMat == loaded_mat).all(): print( "\n\nYes", "The loaded matrice from CSV file is same as original image matrice" )
#Output : (251, 335, 3)
How to Convert an image to NumPy array and save it to CSV file using Python? # import required libraries import numpy as gfg import matplotlib.image as img import pandas as pd # read an image imageMat = img.imread("gfg.jpg") print("Image shape:", imageMat.shape) # if image is colored (RGB) if imageMat.shape[2] == 3: # reshape it from 3D matrice to 2D matrice imageMat_reshape = imageMat.reshape(imageMat.shape[0], -1) print("Reshaping to 2D array:", imageMat_reshape.shape) # if image is grayscale else: # remain as it is imageMat_reshape = imageMat # converting it to dataframe. mat_df = pd.DataFrame(imageMat_reshape) # exporting dataframe to CSV file. mat_df.to_csv("gfgfile.csv", header=None, index=None) # retrieving dataframe from CSV file loaded_df = pd.read_csv("gfgfile.csv", sep=",", header=None) # getting matrice values. loaded_2D_mat = loaded_df.values # reshaping it to 3D matrice loaded_mat = loaded_2D_mat.reshape( loaded_2D_mat.shape[0], loaded_2D_mat.shape[1] // imageMat.shape[2], imageMat.shape[2], ) print("Image shape of loaded Image :", loaded_mat.shape) # check if both matrice have same shape or not if (imageMat == loaded_mat).all(): print( "\n\nYes", "The loaded matrice from CSV file is same as original image matrice" ) #Output : (251, 335, 3) [END]
How to save a NumPy array to a text file?
https://www.geeksforgeeks.org/how-to-save-a-numpy-array-to-a-text-file/
# Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating an array List = [1, 2, 3, 4, 5] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) file = open("file1.txt", "w+") # Saving the array in a text file content = str(Array) file.write(content) file.close() # Displaying the contents of the text file file = open("file1.txt", "r") content = file.read() print("\nContent in file1.txt:\n", content) file.close()
#Output : Array:
How to save a NumPy array to a text file? # Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating an array List = [1, 2, 3, 4, 5] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) file = open("file1.txt", "w+") # Saving the array in a text file content = str(Array) file.write(content) file.close() # Displaying the contents of the text file file = open("file1.txt", "r") content = file.read() print("\nContent in file1.txt:\n", content) file.close() #Output : Array: [END]
How to save a NumPy array to a text file?
https://www.geeksforgeeks.org/how-to-save-a-numpy-array-to-a-text-file/
# Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating 2D array List = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) file = open("file2.txt", "w+") # Saving the 2D array in a text file content = str(Array) file.write(content) file.close() # Displaying the contents of the text file file = open("file2.txt", "r") content = file.read() print("\nContent in file2.txt:\n", content) file.close()
#Output : Array:
How to save a NumPy array to a text file? # Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating 2D array List = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) file = open("file2.txt", "w+") # Saving the 2D array in a text file content = str(Array) file.write(content) file.close() # Displaying the contents of the text file file = open("file2.txt", "r") content = file.read() print("\nContent in file2.txt:\n", content) file.close() #Output : Array: [END]
How to save a NumPy array to a text file?
https://www.geeksforgeeks.org/how-to-save-a-numpy-array-to-a-text-file/
# Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating an array List = [1, 2, 3, 4, 5] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) # Saving the array in a text file numpy.savetxt("file1.txt", Array) # Displaying the contents of the text file content = numpy.loadtxt("file1.txt") print("\nContent in file1.txt:\n", content)
#Output : Array:
How to save a NumPy array to a text file? # Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating an array List = [1, 2, 3, 4, 5] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) # Saving the array in a text file numpy.savetxt("file1.txt", Array) # Displaying the contents of the text file content = numpy.loadtxt("file1.txt") print("\nContent in file1.txt:\n", content) #Output : Array: [END]
How to save a NumPy array to a text file?
https://www.geeksforgeeks.org/how-to-save-a-numpy-array-to-a-text-file/
# Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating 2D array List = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) # Saving the 2D array in a text file numpy.savetxt("file2.txt", Array) # Displaying the contents of the text file content = numpy.loadtxt("file2.txt") print("\nContent in file2.txt:\n", content)
#Output : Array:
How to save a NumPy array to a text file? # Program to save a NumPy array to a text file # Importing required libraries import numpy # Creating 2D array List = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] Array = numpy.array(List) # Displaying the array print("Array:\n", Array) # Saving the 2D array in a text file numpy.savetxt("file2.txt", Array) # Displaying the contents of the text file content = numpy.loadtxt("file2.txt") print("\nContent in file2.txt:\n", content) #Output : Array: [END]
Load data from a text file
https://www.geeksforgeeks.org/numpy-loadtxt-in-python/
# Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO c = StringIO("0 1 2 \n3 4 5") d = geek.loadtxt(c) print(d)
#Output : [[ 0. 1. 2.]
Load data from a text file # Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO c = StringIO("0 1 2 \n3 4 5") d = geek.loadtxt(c) print(d) #Output : [[ 0. 1. 2.] [END]
Load data from a text file
https://www.geeksforgeeks.org/numpy-loadtxt-in-python/
# Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO c = StringIO("1, 2, 3\n4, 5, 6") x, y, z = geek.loadtxt(c, delimiter=", ", usecols=(0, 1, 2), unpack=True) print("x is: ", x) print("y is: ", y) print("z is: ", z)
#Output : [[ 0. 1. 2.]
Load data from a text file # Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO c = StringIO("1, 2, 3\n4, 5, 6") x, y, z = geek.loadtxt(c, delimiter=", ", usecols=(0, 1, 2), unpack=True) print("x is: ", x) print("y is: ", y) print("z is: ", z) #Output : [[ 0. 1. 2.] [END]
Load data from a text file
https://www.geeksforgeeks.org/numpy-loadtxt-in-python/
# Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO d = StringIO("M 21 72\nF 35 58") e = geek.loadtxt( d, dtype={"names": ("gender", "age", "weight"), "formats": ("S1", "i4", "f4")} ) print(e)
#Output : [[ 0. 1. 2.]
Load data from a text file # Python program explaining # loadtxt() function import numpy as geek # StringIO behaves like a file object from io import StringIO d = StringIO("M 21 72\nF 35 58") e = geek.loadtxt( d, dtype={"names": ("gender", "age", "weight"), "formats": ("S1", "i4", "f4")} ) print(e) #Output : [[ 0. 1. 2.] [END]
Make a Pandas DataFrame with two-dimensional list | Python
https://www.geeksforgeeks.org/make-a-pandas-dataframe-with-two-dimensional-list-python/
# import pandas as pd import pandas as pd # List1 lst = [["Geek", 25], ["is", 30], ["for", 26], ["Geeksforgeeks", 22]] # creating df object with columns specified df = pd.DataFrame(lst, columns=["Tag", "number"]) print(df)
#Output : Tag number
Make a Pandas DataFrame with two-dimensional list | Python # import pandas as pd import pandas as pd # List1 lst = [["Geek", 25], ["is", 30], ["for", 26], ["Geeksforgeeks", 22]] # creating df object with columns specified df = pd.DataFrame(lst, columns=["Tag", "number"]) print(df) #Output : Tag number [END]
Make a Pandas DataFrame with two-dimensional list | Python
https://www.geeksforgeeks.org/make-a-pandas-dataframe-with-two-dimensional-list-python/
import pandas as pd # List1 lst = [ ["tom", "reacher", 25], ["krish", "pete", 30], ["nick", "wilson", 26], ["juli", "williams", 22], ] df = pd.DataFrame(lst, columns=["FName", "LName", "Age"], dtype=float) print(df)
#Output : Tag number
Make a Pandas DataFrame with two-dimensional list | Python import pandas as pd # List1 lst = [ ["tom", "reacher", 25], ["krish", "pete", 30], ["nick", "wilson", 26], ["juli", "williams", 22], ] df = pd.DataFrame(lst, columns=["FName", "LName", "Age"], dtype=float) print(df) #Output : Tag number [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = {"Category": ["Array", "Stack", "Queue"], "Marks": [20, 21, 19]} # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df)
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = {"Category": ["Array", "Stack", "Queue"], "Marks": [20, 21, 19]} # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df) #Output : Category Marks [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Category": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df.transpose())
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Category": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df.transpose()) #Output : Category Marks [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Area": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data, index=["Cat_1", "Cat_2", "Cat_3"]) # Print the output. print(df)
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Area": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data, index=["Cat_1", "Cat_2", "Cat_3"]) # Print the output. print(df) #Output : Category Marks [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = {"Category": ["Array", "Stack", "Queue"], "Marks": [20, 21, 19]} # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df)
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = {"Category": ["Array", "Stack", "Queue"], "Marks": [20, 21, 19]} # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df) #Output : Category Marks [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Category": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df.transpose())
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Category": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data) # Print the output. print(df.transpose()) #Output : Category Marks [END]
Python | Creating DataFrame from dict of narray/lists
https://www.geeksforgeeks.org/python-creating-dataframe-from-dict-of-narray-lists/
# Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Area": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data, index=["Cat_1", "Cat_2", "Cat_3"]) # Print the output. print(df)
#Output : Category Marks
Python | Creating DataFrame from dict of narray/lists # Python code demonstrate creating # DataFrame from dict narray / lists # By default addresses. import pandas as pd # initialise data of lists. data = { "Area": ["Array", "Stack", "Queue"], "Student_1": [20, 21, 19], "Student_2": [15, 20, 14], } # Create DataFrame df = pd.DataFrame(data, index=["Cat_1", "Cat_2", "Cat_3"]) # Print the output. print(df) #Output : Category Marks [END]
Creating Pandas dataframe using list of lists
https://www.geeksforgeeks.org/creating-pandas-dataframe-using-list-of-lists/
# Import pandas library import pandas as pd # initialize list of lists data = [["Geeks", 10], ["for", 15], ["geeks", 20]] # Create the pandas DataFrame df = pd.DataFrame(data, columns=["Name", "Age"]) # print dataframe. print(df)
#Output : Name Age
Creating Pandas dataframe using list of lists # Import pandas library import pandas as pd # initialize list of lists data = [["Geeks", 10], ["for", 15], ["geeks", 20]] # Create the pandas DataFrame df = pd.DataFrame(data, columns=["Name", "Age"]) # print dataframe. print(df) #Output : Name Age [END]
Creating Pandas dataframe using list of lists
https://www.geeksforgeeks.org/creating-pandas-dataframe-using-list-of-lists/
# Import pandas library import pandas as pd # initialize list of lists data = [ ["DS", "Linked_list", 10], ["DS", "Stack", 9], ["DS", "Queue", 7], ["Algo", "Greedy", 8], ["Algo", "DP", 6], ["Algo", "BackTrack", 5], ] # Create the pandas DataFrame df = pd.DataFrame(data, columns=["Category", "Name", "Marks"]) # print dataframe. print(df)
#Output : Name Age
Creating Pandas dataframe using list of lists # Import pandas library import pandas as pd # initialize list of lists data = [ ["DS", "Linked_list", 10], ["DS", "Stack", 9], ["DS", "Queue", 7], ["Algo", "Greedy", 8], ["Algo", "DP", 6], ["Algo", "BackTrack", 5], ] # Create the pandas DataFrame df = pd.DataFrame(data, columns=["Category", "Name", "Marks"]) # print dataframe. print(df) #Output : Name Age [END]
Creating Pandas dataframe using list of lists
https://www.geeksforgeeks.org/creating-pandas-dataframe-using-list-of-lists/
# Import pandas library import pandas as pd # initialize list of lists data = [[1, 5, 10], [2, 6, 9], [3, 7, 8]] # Create the pandas DataFrame df = pd.DataFrame(data) # specifying column names df.columns = ["Col_1", "Col_2", "Col_3"] # print dataframe. print(df, "\n") # transpose of dataframe df = df.transpose() print("Transpose of above dataframe is-\n", df)
#Output : Name Age
Creating Pandas dataframe using list of lists # Import pandas library import pandas as pd # initialize list of lists data = [[1, 5, 10], [2, 6, 9], [3, 7, 8]] # Create the pandas DataFrame df = pd.DataFrame(data) # specifying column names df.columns = ["Col_1", "Col_2", "Col_3"] # print dataframe. print(df, "\n") # transpose of dataframe df = df.transpose() print("Transpose of above dataframe is-\n", df) #Output : Name Age [END]
Create a Pandas DataFrame from List of Dicts
https://www.geeksforgeeks.org/create-a-pandas-dataframe-from-list-of-dicts/
import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.DataFrame.from_records(data, index=["1", "2"]) print(df)
#Output : Geeks For geeks
Create a Pandas DataFrame from List of Dicts import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.DataFrame.from_records(data, index=["1", "2"]) print(df) #Output : Geeks For geeks [END]
Create a Pandas DataFrame from List of Dicts
https://www.geeksforgeeks.org/create-a-pandas-dataframe-from-list-of-dicts/
import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.DataFrame.from_dict(data) print(df)
#Output : Geeks For geeks
Create a Pandas DataFrame from List of Dicts import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.DataFrame.from_dict(data) print(df) #Output : Geeks For geeks [END]
Create a Pandas DataFrame from List of Dicts
https://www.geeksforgeeks.org/create-a-pandas-dataframe-from-list-of-dicts/
import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.json_normalize(data) print(df)
#Output : Geeks For geeks
Create a Pandas DataFrame from List of Dicts import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list"}, {"Geeks": 10, "For": 20, "geeks": 30}, ] df = pd.json_normalize(data) print(df) #Output : Geeks For geeks [END]
Create a Pandas DataFrame from List of Dicts
https://www.geeksforgeeks.org/create-a-pandas-dataframe-from-list-of-dicts/
# Python code demonstrate how to create # Pandas DataFrame by lists of dicts without matching key-value pair import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list", "Portal": 10000}, {"Geeks": 10, "For": 20, "geeks": 30}, ] # Creates DataFrame. df = pd.DataFrame(data) # Print the data df
#Output : Geeks For geeks
Create a Pandas DataFrame from List of Dicts # Python code demonstrate how to create # Pandas DataFrame by lists of dicts without matching key-value pair import pandas as pd # Initialise data to lists. data = [ {"Geeks": "dataframe", "For": "using", "geeks": "list", "Portal": 10000}, {"Geeks": 10, "For": 20, "geeks": 30}, ] # Creates DataFrame. df = pd.DataFrame(data) # Print the data df #Output : Geeks For geeks [END]