Description
stringlengths
9
105
Link
stringlengths
45
135
Code
stringlengths
10
26.8k
Test_Case
stringlengths
9
202
Merge
stringlengths
63
27k
Return the indices of elements where the given condition is satisfied
https://www.geeksforgeeks.org/numpy-where-in-python/
# Python program explaining # where() function import numpy as np # a is an array of integers. a = np.array([[1, 2, 3], [4, 5, 6]]) print(a) print("Indices of elements <4") b = np.where(a < 4) print(b) print("Elements which are <4") print(a[b])
#Output : array([[1, 6],
Return the indices of elements where the given condition is satisfied # Python program explaining # where() function import numpy as np # a is an array of integers. a = np.array([[1, 2, 3], [4, 5, 6]]) print(a) print("Indices of elements <4") b = np.where(a < 4) print(b) print("Elements which are <4") print(a[b]) #Output : array([[1, 6], [END]
Replace NaN values with average of columns
https://www.geeksforgeeks.org/python-replace-nan-values-with-average-of-columns/
# Python code to demonstrate # to replace nan values # with an average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # column mean col_mean = np.nanmean(ini_array, axis=0) # printing column mean print("columns mean", str(col_mean)) # find indices where nan value is present inds = np.where(np.isnan(ini_array)) # replace inds with avg of column ini_array[inds] = np.take(col_mean, inds[1]) # printing final array print("final array", ini_array)
#Output : initial array [[ 1.3 2.5 3.6 nan]
Replace NaN values with average of columns # Python code to demonstrate # to replace nan values # with an average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # column mean col_mean = np.nanmean(ini_array, axis=0) # printing column mean print("columns mean", str(col_mean)) # find indices where nan value is present inds = np.where(np.isnan(ini_array)) # replace inds with avg of column ini_array[inds] = np.take(col_mean, inds[1]) # printing final array print("final array", ini_array) #Output : initial array [[ 1.3 2.5 3.6 nan] [END]
Replace NaN values with average of columns
https://www.geeksforgeeks.org/python-replace-nan-values-with-average-of-columns/
# Python code to demonstrate # to replace nan values # with average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # replace nan with col means res = np.where( np.isnan(ini_array), np.ma.array(ini_array, mask=np.isnan(ini_array)).mean(axis=0), ini_array, ) # printing final array print("final array", res)
#Output : initial array [[ 1.3 2.5 3.6 nan]
Replace NaN values with average of columns # Python code to demonstrate # to replace nan values # with average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # replace nan with col means res = np.where( np.isnan(ini_array), np.ma.array(ini_array, mask=np.isnan(ini_array)).mean(axis=0), ini_array, ) # printing final array print("final array", res) #Output : initial array [[ 1.3 2.5 3.6 nan] [END]
Replace NaN values with average of columns
https://www.geeksforgeeks.org/python-replace-nan-values-with-average-of-columns/
# Python code to demonstrate # to replace nan values # with average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # indices where values is nan in array indices = np.where(np.isnan(ini_array)) # Iterating over numpy array to replace nan with values for row, col in zip(*indices): ini_array[row, col] = np.mean(ini_array[~np.isnan(ini_array[:, col]), col]) # printing final array print("final array", ini_array)
#Output : initial array [[ 1.3 2.5 3.6 nan]
Replace NaN values with average of columns # Python code to demonstrate # to replace nan values # with average of columns import numpy as np # Initialising numpy array ini_array = np.array( [[1.3, 2.5, 3.6, np.nan], [2.6, 3.3, np.nan, 5.5], [2.1, 3.2, 5.4, 6.5]] ) # printing initial array print("initial array", ini_array) # indices where values is nan in array indices = np.where(np.isnan(ini_array)) # Iterating over numpy array to replace nan with values for row, col in zip(*indices): ini_array[row, col] = np.mean(ini_array[~np.isnan(ini_array[:, col]), col]) # printing final array print("final array", ini_array) #Output : initial array [[ 1.3 2.5 3.6 nan] [END]
Replace NaN values with average of columns
https://www.geeksforgeeks.org/python-replace-nan-values-with-average-of-columns/
def replace_nan_with_mean(arr): col_means = [ sum(filter(lambda x: x is not None, col)) / len(list(filter(lambda x: x is not None, col))) for col in zip(*arr) ] for i in range(len(arr)): arr[i] = [col_means[j] if x is None else x for j, x in enumerate(arr[i])] return arr arr = [[1.3, 2.5, 3.6, None], [2.6, 3.3, None, 5.5], [2.1, 3.2, 5.4, 6.5]] print(replace_nan_with_mean(arr))
#Output : initial array [[ 1.3 2.5 3.6 nan]
Replace NaN values with average of columns def replace_nan_with_mean(arr): col_means = [ sum(filter(lambda x: x is not None, col)) / len(list(filter(lambda x: x is not None, col))) for col in zip(*arr) ] for i in range(len(arr)): arr[i] = [col_means[j] if x is None else x for j, x in enumerate(arr[i])] return arr arr = [[1.3, 2.5, 3.6, None], [2.6, 3.3, None, 5.5], [2.1, 3.2, 5.4, 6.5]] print(replace_nan_with_mean(arr)) #Output : initial array [[ 1.3 2.5 3.6 nan] [END]
Replace negative value with zero in numpy array
https://www.geeksforgeeks.org/python-replace-negative-value-with-zero-in-numpy-array/
# Python code to demonstrate # to replace negative value with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 ini_array1[ini_array1 < 0] = 0 # printing result print("New resulting array: ", ini_array1)
#Output : initial array [ 1 2 -3 4 -5 -6]
Replace negative value with zero in numpy array # Python code to demonstrate # to replace negative value with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 ini_array1[ini_array1 < 0] = 0 # printing result print("New resulting array: ", ini_array1) #Output : initial array [ 1 2 -3 4 -5 -6] [END]
Replace negative value with zero in numpy array
https://www.geeksforgeeks.org/python-replace-negative-value-with-zero-in-numpy-array/
# Python code to demonstrate # to replace negative values with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 result = np.where(ini_array1 < 0, 0, ini_array1) # printing result print("New resulting array: ", result)
#Output : initial array [ 1 2 -3 4 -5 -6]
Replace negative value with zero in numpy array # Python code to demonstrate # to replace negative values with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 result = np.where(ini_array1 < 0, 0, ini_array1) # printing result print("New resulting array: ", result) #Output : initial array [ 1 2 -3 4 -5 -6] [END]
Replace negative value with zero in numpy array
https://www.geeksforgeeks.org/python-replace-negative-value-with-zero-in-numpy-array/
# Python code to demonstrate # to replace negative values with 0 import numpy as np # supposing maxx value array can hold maxx = 1000 ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 result = np.clip(ini_array1, 0, 1000) # printing result print("New resulting array: ", result)
#Output : initial array [ 1 2 -3 4 -5 -6]
Replace negative value with zero in numpy array # Python code to demonstrate # to replace negative values with 0 import numpy as np # supposing maxx value array can hold maxx = 1000 ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # code to replace all negative value with 0 result = np.clip(ini_array1, 0, 1000) # printing result print("New resulting array: ", result) #Output : initial array [ 1 2 -3 4 -5 -6] [END]
Replace negative value with zero in numpy array
https://www.geeksforgeeks.org/python-replace-negative-value-with-zero-in-numpy-array/
# Python code to demonstrate # to replace negative values with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # Creating a array of 0 zero_array = np.zeros(ini_array1.shape, dtype=ini_array1.dtype) print("Zero array", zero_array) # code to replace all negative value with 0 ini_array2 = np.maximum(ini_array1, zero_array) # printing result print("New resulting array: ", ini_array2)
#Output : initial array [ 1 2 -3 4 -5 -6]
Replace negative value with zero in numpy array # Python code to demonstrate # to replace negative values with 0 import numpy as np ini_array1 = np.array([1, 2, -3, 4, -5, -6]) # printing initial arrays print("initial array", ini_array1) # Creating a array of 0 zero_array = np.zeros(ini_array1.shape, dtype=ini_array1.dtype) print("Zero array", zero_array) # code to replace all negative value with 0 ini_array2 = np.maximum(ini_array1, zero_array) # printing result print("New resulting array: ", ini_array2) #Output : initial array [ 1 2 -3 4 -5 -6] [END]
Replace negative value with zero in numpy array
https://www.geeksforgeeks.org/python-replace-negative-value-with-zero-in-numpy-array/
import numpy as np # Initialize the array arr = np.array([1, 2, -3, 4, -5, -6]) # Print the initial array print("Initial array:", arr) # Replace negative values with zeros using a lambda function replace_negatives = np.vectorize(lambda x: 0 if x < 0 else x) result = replace_negatives(arr) # Print the resulting array print("Resulting array:", result) # This code is contributed by Edula Vinay Kumar Reddy
#Output : initial array [ 1 2 -3 4 -5 -6]
Replace negative value with zero in numpy array import numpy as np # Initialize the array arr = np.array([1, 2, -3, 4, -5, -6]) # Print the initial array print("Initial array:", arr) # Replace negative values with zeros using a lambda function replace_negatives = np.vectorize(lambda x: 0 if x < 0 else x) result = replace_negatives(arr) # Print the resulting array print("Resulting array:", result) # This code is contributed by Edula Vinay Kumar Reddy #Output : initial array [ 1 2 -3 4 -5 -6] [END]
Find indices of elements equal to zero in a NumPy array
https://www.geeksforgeeks.org/find-indices-of-elements-equal-to-zero-in-a-numpy-array/
# importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5, 6, 7, 5, 0, 8]) print("Original array:") print(n_array) # finding indices of null elements using np.where() print( "\nIndices of elements equal to zero of the \ given 1-D array:" ) res = np.where(n_array == 0)[0] print(res)
#Output : numpy.where(condition[, x, y])
Find indices of elements equal to zero in a NumPy array # importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5, 6, 7, 5, 0, 8]) print("Original array:") print(n_array) # finding indices of null elements using np.where() print( "\nIndices of elements equal to zero of the \ given 1-D array:" ) res = np.where(n_array == 0)[0] print(res) #Output : numpy.where(condition[, x, y]) [END]
Find indices of elements equal to zero in a NumPy array
https://www.geeksforgeeks.org/find-indices-of-elements-equal-to-zero-in-a-numpy-array/
# importing Numpy package import numpy as np # creating a 3-D Numpy array n_array = np.array([[0, 2, 3], [4, 1, 0], [0, 0, 2]]) print("Original array:") print(n_array) # finding indices of null elements # using np.argwhere() print("\nIndices of null elements:") res = np.argwhere(n_array == 0) print(res)
#Output : numpy.where(condition[, x, y])
Find indices of elements equal to zero in a NumPy array # importing Numpy package import numpy as np # creating a 3-D Numpy array n_array = np.array([[0, 2, 3], [4, 1, 0], [0, 0, 2]]) print("Original array:") print(n_array) # finding indices of null elements # using np.argwhere() print("\nIndices of null elements:") res = np.argwhere(n_array == 0) print(res) #Output : numpy.where(condition[, x, y]) [END]
Find indices of elements equal to zero in a NumPy array
https://www.geeksforgeeks.org/find-indices-of-elements-equal-to-zero-in-a-numpy-array/
# importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 10, 2, 0, 3, 9, 0, 5, 0, 7, 5, 0, 0]) print("Original array:") print(n_array) # finding indices of null elements using # np.nonzero() print("\nIndices of null elements:") res = np.nonzero(n_array == 0) print(res)
#Output : numpy.where(condition[, x, y])
Find indices of elements equal to zero in a NumPy array # importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 10, 2, 0, 3, 9, 0, 5, 0, 7, 5, 0, 0]) print("Original array:") print(n_array) # finding indices of null elements using # np.nonzero() print("\nIndices of null elements:") res = np.nonzero(n_array == 0) print(res) #Output : numpy.where(condition[, x, y]) [END]
Find indices of elements equal to zero in a NumPy array
https://www.geeksforgeeks.org/find-indices-of-elements-equal-to-zero-in-a-numpy-array/
# importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5, 6, 7, 5, 0, 8]) print("Original array:") print(n_array) # finding indices of null elements using np.extract() print( "\nIndices of elements equal to zero of the \ given 1-D array:" ) res = np.extract(n_array == 0, np.arange(len(n_array))) print(res)
#Output : numpy.where(condition[, x, y])
Find indices of elements equal to zero in a NumPy array # importing Numpy package import numpy as np # creating a 1-D Numpy array n_array = np.array([1, 0, 2, 0, 3, 0, 0, 5, 6, 7, 5, 0, 8]) print("Original array:") print(n_array) # finding indices of null elements using np.extract() print( "\nIndices of elements equal to zero of the \ given 1-D array:" ) res = np.extract(n_array == 0, np.arange(len(n_array))) print(res) #Output : numpy.where(condition[, x, y]) [END]
Get row numbers of NumPy array having element larger than X
https://www.geeksforgeeks.org/get-row-numbers-of-numpy-array-having-element-larger-than-x/
# importing library import numpy # create numpy array arr = numpy.array( [[1, 2, 3, 4, 5], [10, -3, 30, 4, 5], [3, 2, 5, -4, 5], [9, 7, 3, 6, 5]] ) # declare specified value X = 6 # view array print("Given Array:\n", arr) # finding out the row numbers output = numpy.where(numpy.any(arr > X, axis=1)) # view output print("Result:\n", output)
#Output : Arr = [[1,2,3,4,5],
Get row numbers of NumPy array having element larger than X # importing library import numpy # create numpy array arr = numpy.array( [[1, 2, 3, 4, 5], [10, -3, 30, 4, 5], [3, 2, 5, -4, 5], [9, 7, 3, 6, 5]] ) # declare specified value X = 6 # view array print("Given Array:\n", arr) # finding out the row numbers output = numpy.where(numpy.any(arr > X, axis=1)) # view output print("Result:\n", output) #Output : Arr = [[1,2,3,4,5], [END]
Find a matrix or vector norm using NumPy
https://www.geeksforgeeks.org/find-a-matrix-or-vector-norm-using-numpy/
# import library import numpy as np # initialize vector vec = np.arange(10) # compute norm of vector vec_norm = np.linalg.norm(vec) print("Vector norm:") print(vec_norm)
#Output : Vector norm:
Find a matrix or vector norm using NumPy # import library import numpy as np # initialize vector vec = np.arange(10) # compute norm of vector vec_norm = np.linalg.norm(vec) print("Vector norm:") print(vec_norm) #Output : Vector norm: [END]
Find a matrix or vector norm using NumPy
https://www.geeksforgeeks.org/find-a-matrix-or-vector-norm-using-numpy/
# import library import numpy as np # initialize matrix mat = np.array([[1, 2, 3], [4, 5, 6]]) # compute norm of matrix mat_norm = np.linalg.norm(mat) print("Matrix norm:") print(mat_norm)
#Output : Vector norm:
Find a matrix or vector norm using NumPy # import library import numpy as np # initialize matrix mat = np.array([[1, 2, 3], [4, 5, 6]]) # compute norm of matrix mat_norm = np.linalg.norm(mat) print("Matrix norm:") print(mat_norm) #Output : Vector norm: [END]
Find a matrix or vector norm using NumPy
https://www.geeksforgeeks.org/find-a-matrix-or-vector-norm-using-numpy/
# import library import numpy as np mat = np.array([[1, 2, 3], [4, 5, 6]]) # compute matrix num along axis mat_norm = np.linalg.norm(mat, axis=1) print("Matrix norm along particular axis :") print(mat_norm)
#Output : Vector norm:
Find a matrix or vector norm using NumPy # import library import numpy as np mat = np.array([[1, 2, 3], [4, 5, 6]]) # compute matrix num along axis mat_norm = np.linalg.norm(mat, axis=1) print("Matrix norm along particular axis :") print(mat_norm) #Output : Vector norm: [END]
Find a matrix or vector norm using NumPy
https://www.geeksforgeeks.org/find-a-matrix-or-vector-norm-using-numpy/
# import library import numpy as np # initialize vector vec = np.arange(9) # convert vector into matrix mat = vec.reshape((3, 3)) # compute norm of vector vec_norm = np.linalg.norm(vec) print("Vector norm:") print(vec_norm) # computer norm of matrix mat_norm = np.linalg.norm(mat) print("Matrix norm:") print(mat_norm)
#Output : Vector norm:
Find a matrix or vector norm using NumPy # import library import numpy as np # initialize vector vec = np.arange(9) # convert vector into matrix mat = vec.reshape((3, 3)) # compute norm of vector vec_norm = np.linalg.norm(vec) print("Vector norm:") print(vec_norm) # computer norm of matrix mat_norm = np.linalg.norm(mat) print("Matrix norm:") print(mat_norm) #Output : Vector norm: [END]
Calculate the QR decomposition of a given matrix using NumPy
https://www.geeksforgeeks.org/calculate-the-qr-decomposition-of-a-given-matrix-using-numpy/
import numpy as np # Original matrix matrix1 = np.array([[1, 2, 3], [3, 4, 5]]) print(matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print("\nQ:\n", q) print("\nR:\n", r)
#Output : [[1 2 3]
Calculate the QR decomposition of a given matrix using NumPy import numpy as np # Original matrix matrix1 = np.array([[1, 2, 3], [3, 4, 5]]) print(matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print("\nQ:\n", q) print("\nR:\n", r) #Output : [[1 2 3] [END]
Calculate the QR decomposition of a given matrix using NumPy
https://www.geeksforgeeks.org/calculate-the-qr-decomposition-of-a-given-matrix-using-numpy/
import numpy as np # Original matrix matrix1 = np.array([[1, 0], [2, 4]]) print(matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print("\nQ:\n", q) print("\nR:\n", r)
#Output : [[1 2 3]
Calculate the QR decomposition of a given matrix using NumPy import numpy as np # Original matrix matrix1 = np.array([[1, 0], [2, 4]]) print(matrix1) # Decomposition of the said matrix q, r = np.linalg.qr(matrix1) print("\nQ:\n", q) print("\nR:\n", r) #Output : [[1 2 3] [END]
Calculate the QR decomposition of a given matrix using NumPy
https://www.geeksforgeeks.org/calculate-the-qr-decomposition-of-a-given-matrix-using-numpy/
import numpy as np # Create a numpy array arr = np.array([[5, 11, -15], [12, 34, -51], [-24, -43, 92]], dtype=np.int32) print(arr) # Find the QR factor of array q, r = np.linalg.qr(arr) print("\nQ:\n", q) print("\nR:\n", r)
#Output : [[1 2 3]
Calculate the QR decomposition of a given matrix using NumPy import numpy as np # Create a numpy array arr = np.array([[5, 11, -15], [12, 34, -51], [-24, -43, 92]], dtype=np.int32) print(arr) # Find the QR factor of array q, r = np.linalg.qr(arr) print("\nQ:\n", q) print("\nR:\n", r) #Output : [[1 2 3] [END]
Compute the condition number of a given matrix using NumPy
https://www.geeksforgeeks.org/compute-the-condition-number-of-a-given-matrix-using-numpy/
# Importing library import numpy as np # Creating a 2X2 matrix matrix = np.array([[4, 2], [3, 1]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result)
#Output : numpy.linalg.cond(x, p=None)
Compute the condition number of a given matrix using NumPy # Importing library import numpy as np # Creating a 2X2 matrix matrix = np.array([[4, 2], [3, 1]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result) #Output : numpy.linalg.cond(x, p=None) [END]
Compute the condition number of a given matrix using NumPy
https://www.geeksforgeeks.org/compute-the-condition-number-of-a-given-matrix-using-numpy/
# Importing library import numpy as np # Creating a 3X3 matrix matrix = np.array([[4, 2, 0], [3, 1, 2], [1, 6, 4]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result)
#Output : numpy.linalg.cond(x, p=None)
Compute the condition number of a given matrix using NumPy # Importing library import numpy as np # Creating a 3X3 matrix matrix = np.array([[4, 2, 0], [3, 1, 2], [1, 6, 4]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result) #Output : numpy.linalg.cond(x, p=None) [END]
Compute the condition number of a given matrix using NumPy
https://www.geeksforgeeks.org/compute-the-condition-number-of-a-given-matrix-using-numpy/
# Importing library import numpy as np # Creating a 4X4 matrix matrix = np.array([[4, 1, 4, 2], [3, 1, 2, 0], [3, 5, 7, 1], [0, 6, 8, 4]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result)
#Output : numpy.linalg.cond(x, p=None)
Compute the condition number of a given matrix using NumPy # Importing library import numpy as np # Creating a 4X4 matrix matrix = np.array([[4, 1, 4, 2], [3, 1, 2, 0], [3, 5, 7, 1], [0, 6, 8, 4]]) print("Original matrix:") print(matrix) # Output result = np.linalg.cond(matrix) print("Condition number of the matrix:") print(result) #Output : numpy.linalg.cond(x, p=None) [END]
Compute the eigenvalues and right eigenvectors of a given square array using NumPy?
https://www.geeksforgeeks.org/how-to-compute-the-eigenvalues-and-right-eigenvectors-of-a-given-square-array-using-numpy/
# importing numpy libraryimport numpy as np????????????# create numpy 2d-arraym = np.array([[1, 2],??????????????????????????????????????"Printing the Original square array:\n",????????????????????????????????????m)????????????# finding eigenvalues and eigenvectorsw, v = np.linalg.eig(m)?"Printing the Eigen values of the given square array:\n",????????????????????????????????????w)??????????"Printing Right eigenvectors of the given square array:\n"????????????v)
#Output : Suppose we have a matrix as:???
Compute the eigenvalues and right eigenvectors of a given square array using NumPy? # importing numpy libraryimport numpy as np????????????# create numpy 2d-arraym = np.array([[1, 2],??????????????????????????????????????"Printing the Original square array:\n",????????????????????????????????????m)????????????# finding eigenvalues and eigenvectorsw, v = np.linalg.eig(m)?"Printing the Eigen values of the given square array:\n",????????????????????????????????????w)??????????"Printing Right eigenvectors of the given square array:\n"????????????v) #Output : Suppose we have a matrix as:??? [END]
Compute the eigenvalues and right eigenvectors of a given square array using NumPy?
https://www.geeksforgeeks.org/how-to-compute-the-eigenvalues-and-right-eigenvectors-of-a-given-square-array-using-numpy/
# importing numpy library import numpy as np # create numpy 2d-array m = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]]) print("Printing the Original square array:\n", m) # finding eigenvalues and eigenvectors w, v = np.linalg.eig(m) # printing eigen values print("Printing the Eigen values of the given square array:\n", w) # printing eigen vectors print("Printing Right eigenvectors of the given square array:\n", v)
#Output : Suppose we have a matrix as:???
Compute the eigenvalues and right eigenvectors of a given square array using NumPy? # importing numpy library import numpy as np # create numpy 2d-array m = np.array([[1, 2, 3], [2, 3, 4], [4, 5, 6]]) print("Printing the Original square array:\n", m) # finding eigenvalues and eigenvectors w, v = np.linalg.eig(m) # printing eigen values print("Printing the Eigen values of the given square array:\n", w) # printing eigen vectors print("Printing Right eigenvectors of the given square array:\n", v) #Output : Suppose we have a matrix as:??? [END]
Calculate the Euclidean distance using NumPy
https://www.geeksforgeeks.org/calculate-the-euclidean-distance-using-numpy/
# Python code to find Euclidean distance # using linalg.norm() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # calculating Euclidean distance # using linalg.norm() dist = np.linalg.norm(point1 - point2) # printing Euclidean distance print(dist)
#Output : 2.23606797749979
Calculate the Euclidean distance using NumPy # Python code to find Euclidean distance # using linalg.norm() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # calculating Euclidean distance # using linalg.norm() dist = np.linalg.norm(point1 - point2) # printing Euclidean distance print(dist) #Output : 2.23606797749979 [END]
Calculate the Euclidean distance using NumPy
https://www.geeksforgeeks.org/calculate-the-euclidean-distance-using-numpy/
# Python code to find Euclidean distance # using dot() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # subtracting vector temp = point1 - point2 # doing dot product # for finding # sum of the squares sum_sq = np.dot(temp.T, temp) # Doing squareroot and # printing Euclidean distance print(np.sqrt(sum_sq))
#Output : 2.23606797749979
Calculate the Euclidean distance using NumPy # Python code to find Euclidean distance # using dot() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # subtracting vector temp = point1 - point2 # doing dot product # for finding # sum of the squares sum_sq = np.dot(temp.T, temp) # Doing squareroot and # printing Euclidean distance print(np.sqrt(sum_sq)) #Output : 2.23606797749979 [END]
Calculate the Euclidean distance using NumPy
https://www.geeksforgeeks.org/calculate-the-euclidean-distance-using-numpy/
# Python code to find Euclidean distance # using sum() and square() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # finding sum of squares sum_sq = np.sum(np.square(point1 - point2)) # Doing squareroot and # printing Euclidean distance print(np.sqrt(sum_sq))
#Output : 2.23606797749979
Calculate the Euclidean distance using NumPy # Python code to find Euclidean distance # using sum() and square() import numpy as np # initializing points in # numpy arrays point1 = np.array((1, 2, 3)) point2 = np.array((1, 1, 1)) # finding sum of squares sum_sq = np.sum(np.square(point1 - point2)) # Doing squareroot and # printing Euclidean distance print(np.sqrt(sum_sq)) #Output : 2.23606797749979 [END]
Create a Numpy array with random values
https://www.geeksforgeeks.org/create-a-numpy-array-with-random-values-python/
# Python Program to create numpy array # filled with random values import numpy as geek b = geek.empty(2, dtype=int) print("Matrix b : \n", b) a = geek.empty([2, 2], dtype=int) print("\nMatrix a : \n", a)
#Output : -> shape : Number of rows
Create a Numpy array with random values # Python Program to create numpy array # filled with random values import numpy as geek b = geek.empty(2, dtype=int) print("Matrix b : \n", b) a = geek.empty([2, 2], dtype=int) print("\nMatrix a : \n", a) #Output : -> shape : Number of rows [END]
Create a Numpy array with random values
https://www.geeksforgeeks.org/create-a-numpy-array-with-random-values-python/
# Python Program to create numpy array # filled with random values import numpy as geek # Python Program to create numpy array # filled with random values import numpy as geek c = geek.empty([3, 3]) print("\nMatrix c : \n", c) d = geek.empty([5, 3], dtype=int) print("\nMatrix d : \n", d)
#Output : -> shape : Number of rows
Create a Numpy array with random values # Python Program to create numpy array # filled with random values import numpy as geek # Python Program to create numpy array # filled with random values import numpy as geek c = geek.empty([3, 3]) print("\nMatrix c : \n", c) d = geek.empty([5, 3], dtype=int) print("\nMatrix d : \n", d) #Output : -> shape : Number of rows [END]
How to choose elements from the list with different probability using NumPy?
https://www.geeksforgeeks.org/how-to-choose-elements-from-the-list-with-different-probability-using-numpy/
# import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # uniformly select any element # from the list number = np.random.choice(num_list) print(number)
#Output : 50
How to choose elements from the list with different probability using NumPy? # import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # uniformly select any element # from the list number = np.random.choice(num_list) print(number) #Output : 50 [END]
How to choose elements from the list with different probability using NumPy?
https://www.geeksforgeeks.org/how-to-choose-elements-from-the-list-with-different-probability-using-numpy/
# import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # choose index number-3rd element # with 100% probability and other # elements probability set to 0 # using p parameter of the # choice() method so only # 3rd index element selected # every time in the list size of 3. number_list = np.random.choice(num_list, 3, p=[0, 0, 0, 1, 0]) print(number_list)
#Output : 50
How to choose elements from the list with different probability using NumPy? # import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # choose index number-3rd element # with 100% probability and other # elements probability set to 0 # using p parameter of the # choice() method so only # 3rd index element selected # every time in the list size of 3. number_list = np.random.choice(num_list, 3, p=[0, 0, 0, 1, 0]) print(number_list) #Output : 50 [END]
How to choose elements from the list with different probability using NumPy?
https://www.geeksforgeeks.org/how-to-choose-elements-from-the-list-with-different-probability-using-numpy/
# import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # choose index number 2nd & 3rd element # with 50%-50% probability and other # elements probability set to 0 # using p parameter of the # choice() method so 2nd & # 3rd index elements selected # every time in the list size of 3. number_list = np.random.choice(num_list, 3, p=[0, 0, 0.5, 0.5, 0]) print(number_list)
#Output : 50
How to choose elements from the list with different probability using NumPy? # import numpy library import numpy as np # create a list num_list = [10, 20, 30, 40, 50] # choose index number 2nd & 3rd element # with 50%-50% probability and other # elements probability set to 0 # using p parameter of the # choice() method so 2nd & # 3rd index elements selected # every time in the list size of 3. number_list = np.random.choice(num_list, 3, p=[0, 0, 0.5, 0.5, 0]) print(number_list) #Output : 50 [END]
How to get weighted random choice in Python?
https://www.geeksforgeeks.org/how-to-get-weighted-random-choice-in-python/
import random sampleList = [100, 200, 300, 400, 500] randomList = random.choices(sampleList, weights=(10, 20, 30, 40, 50), k=5) print(randomList)
#Output : [200, 300, 300, 300, 400]
How to get weighted random choice in Python? import random sampleList = [100, 200, 300, 400, 500] randomList = random.choices(sampleList, weights=(10, 20, 30, 40, 50), k=5) print(randomList) #Output : [200, 300, 300, 300, 400] [END]
How to get weighted random choice in Python?
https://www.geeksforgeeks.org/how-to-get-weighted-random-choice-in-python/
import random sampleList = [100, 200, 300, 400, 500] randomList = random.choices(sampleList, cum_weights=(5, 15, 35, 65, 100), k=5) print(randomList)
#Output : [200, 300, 300, 300, 400]
How to get weighted random choice in Python? import random sampleList = [100, 200, 300, 400, 500] randomList = random.choices(sampleList, cum_weights=(5, 15, 35, 65, 100), k=5) print(randomList) #Output : [200, 300, 300, 300, 400] [END]
How to get weighted random choice in Python?
https://www.geeksforgeeks.org/how-to-get-weighted-random-choice-in-python/
from numpy.random import choice sampleList = [100, 200, 300, 400, 500] randomNumberList = choice(sampleList, 5, p=[0.05, 0.1, 0.15, 0.20, 0.5]) print(randomNumberList)
#Output : [200, 300, 300, 300, 400]
How to get weighted random choice in Python? from numpy.random import choice sampleList = [100, 200, 300, 400, 500] randomNumberList = choice(sampleList, 5, p=[0.05, 0.1, 0.15, 0.20, 0.5]) print(randomNumberList) #Output : [200, 300, 300, 300, 400] [END]
Generate Random Numbers From The Uniform Distribution using NumPy
https://www.geeksforgeeks.org/generate-random-numbers-from-the-uniform-distribution-using-numpy/
# importing module import numpy as np # numpy.random.uniform() method r = np.random.uniform(size=4) # printing numbers print(r)
#Output : numpy.random.uniform(low = 0.0, high = 1.0, size = None)
Generate Random Numbers From The Uniform Distribution using NumPy # importing module import numpy as np # numpy.random.uniform() method r = np.random.uniform(size=4) # printing numbers print(r) #Output : numpy.random.uniform(low = 0.0, high = 1.0, size = None) [END]
Generate Random Numbers From The Uniform Distribution using NumPy
https://www.geeksforgeeks.org/generate-random-numbers-from-the-uniform-distribution-using-numpy/
# importing module import numpy as np # numpy.random.uniform() method random_array = np.random.uniform(0.0, 1.0, 5) # printing 1D array with random numbers print("1D Array with random values : \n", random_array)
#Output : numpy.random.uniform(low = 0.0, high = 1.0, size = None)
Generate Random Numbers From The Uniform Distribution using NumPy # importing module import numpy as np # numpy.random.uniform() method random_array = np.random.uniform(0.0, 1.0, 5) # printing 1D array with random numbers print("1D Array with random values : \n", random_array) #Output : numpy.random.uniform(low = 0.0, high = 1.0, size = None) [END]
Return a Matrix Rowix of random values from a uniform distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-rand-function/
# Python program explaining # numpy.matlib.rand() function # importing matrix library from numpy import numpy as geek import numpy.matlib # desired 3 x 4 random output matrix out_mat = geek.matlib.rand((3, 4)) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a uniform distribution # Python program explaining # numpy.matlib.rand() function # importing matrix library from numpy import numpy as geek import numpy.matlib # desired 3 x 4 random output matrix out_mat = geek.matlib.rand((3, 4)) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a uniform distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-rand-function/
# Python program explaining # numpy.matlib.rand() function # importing numpy and matrix library import numpy as geek import numpy.matlib # desired 1 x 5 random output matrix out_mat = geek.matlib.rand(5) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a uniform distribution # Python program explaining # numpy.matlib.rand() function # importing numpy and matrix library import numpy as geek import numpy.matlib # desired 1 x 5 random output matrix out_mat = geek.matlib.rand(5) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a uniform distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-rand-function/
# Python program explaining # numpy.matlib.rand() function # importing numpy and matrix library import numpy as geek import numpy.matlib # more than one argument given out_mat = geek.matlib.rand((5, 3), 4) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a uniform distribution # Python program explaining # numpy.matlib.rand() function # importing numpy and matrix library import numpy as geek import numpy.matlib # more than one argument given out_mat = geek.matlib.rand((5, 3), 4) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a Gaussian distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-randn-function/
# Python program explaining # numpy.matlib.randn() function # importing matrix library from numpy import numpy as geek import numpy.matlib # desired 3 x 4 random output matrix out_mat = geek.matlib.randn((3, 4)) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a Gaussian distribution # Python program explaining # numpy.matlib.randn() function # importing matrix library from numpy import numpy as geek import numpy.matlib # desired 3 x 4 random output matrix out_mat = geek.matlib.randn((3, 4)) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a Gaussian distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-randn-function/
# Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # desired 1 x 5 random output matrix out_mat = geek.matlib.randn(5) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a Gaussian distribution # Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # desired 1 x 5 random output matrix out_mat = geek.matlib.randn(5) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a Gaussian distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-randn-function/
# Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # more than one argument given out_mat = geek.matlib.randn((5, 3), 4) print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a Gaussian distribution # Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # more than one argument given out_mat = geek.matlib.randn((5, 3), 4) print("Output matrix : ", out_mat) #Output : [END]
Return a Matrix Rowix of random values from a Gaussian distribution
https://www.geeksforgeeks.org/numpy-matrix-operations-randn-function/
# Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # So, here mu = 3, sigma = 2 out_mat = 2 * geek.matlib.randn((3, 3)) + 3 print("Output matrix : ", out_mat)
#Output :
Return a Matrix Rowix of random values from a Gaussian distribution # Python program explaining # numpy.matlib.randn() function # importing numpy and matrix library import numpy as geek import numpy.matlib # So, here mu = 3, sigma = 2 out_mat = 2 * geek.matlib.randn((3, 3)) + 3 print("Output matrix : ", out_mat) #Output : [END]
How to get the indices of the sorted array using NumPy in Python?
https://www.geeksforgeeks.org/how-to-get-the-indices-of-the-sorted-array-using-numpy-in-python/
import numpy as np # Original array array = np.array([10, 52, 62, 16, 16, 54, 453]) print(array) # Indices of the sorted elements of a # given array indices = np.argsort(array) print(indices)
#Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????,
How to get the indices of the sorted array using NumPy in Python? import numpy as np # Original array array = np.array([10, 52, 62, 16, 16, 54, 453]) print(array) # Indices of the sorted elements of a # given array indices = np.argsort(array) print(indices) #Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????, [END]
How to get the indices of the sorted array using NumPy in Python?
https://www.geeksforgeeks.org/how-to-get-the-indices-of-the-sorted-array-using-numpy-in-python/
import numpy as np # Original array array = np.array([1, 2, 3, 4, 5]) print(array) # Indices of the sorted elements of # a given array indices = np.argsort(array) print(indices)
#Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????,
How to get the indices of the sorted array using NumPy in Python? import numpy as np # Original array array = np.array([1, 2, 3, 4, 5]) print(array) # Indices of the sorted elements of # a given array indices = np.argsort(array) print(indices) #Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????, [END]
How to get the indices of the sorted array using NumPy in Python?
https://www.geeksforgeeks.org/how-to-get-the-indices-of-the-sorted-array-using-numpy-in-python/
import numpy as np # input 2d array in_arr = np.array([[2, 0, 1], [5, 4, 3]]) print("Input array :\n", in_arr) # output sorted array indices out_arr1 = np.argsort(in_arr, kind="mergesort", axis=0) print("\nOutput sorted array indices along axis 0:\n", out_arr1) out_arr2 = np.argsort(in_arr, kind="heapsort", axis=1) print("\nOutput sorted array indices along axis 1:\n", out_arr2)
#Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????,
How to get the indices of the sorted array using NumPy in Python? import numpy as np # input 2d array in_arr = np.array([[2, 0, 1], [5, 4, 3]]) print("Input array :\n", in_arr) # output sorted array indices out_arr1 = np.argsort(in_arr, kind="mergesort", axis=0) print("\nOutput sorted array indices along axis 0:\n", out_arr1) out_arr2 = np.argsort(in_arr, kind="heapsort", axis=1) print("\nOutput sorted array indices along axis 1:\n", out_arr2) #Output : numpy.argsort(arr, axis=-1, kind=?????????quicksort?????????, [END]
Finding the k smallest values of a NumPy array
https://www.geeksforgeeks.org/finding-the-k-smallest-values-of-a-numpy-array/
# importing the modules import numpy as np # creating the array arr = np.array([23, 12, 1, 3, 4, 5, 6]) print("The Original Array Content") print(arr) # value of k k = 4 # sorting the array arr1 = np.sort(arr) # k smallest number of array print(k, "smallest elements of the array") print(arr1[:k])
Input: [1,3,5,2,4,6] k = 3
Finding the k smallest values of a NumPy array # importing the modules import numpy as np # creating the array arr = np.array([23, 12, 1, 3, 4, 5, 6]) print("The Original Array Content") print(arr) # value of k k = 4 # sorting the array arr1 = np.sort(arr) # k smallest number of array print(k, "smallest elements of the array") print(arr1[:k]) Input: [1,3,5,2,4,6] k = 3 [END]
Finding the k smallest values of a NumPy array
https://www.geeksforgeeks.org/finding-the-k-smallest-values-of-a-numpy-array/
# importing the module import numpy as np # creating the array arr = np.array([23, 12, 1, 3, 4, 5, 6]) print("The Original Array Content") print(arr) # value of k k = 4 # using np.argpartition() result = np.argpartition(arr, k) # k smallest number of array print(k, "smallest elements of the array") print(arr[result[:k]])
Input: [1,3,5,2,4,6] k = 3
Finding the k smallest values of a NumPy array # importing the module import numpy as np # creating the array arr = np.array([23, 12, 1, 3, 4, 5, 6]) print("The Original Array Content") print(arr) # value of k k = 4 # using np.argpartition() result = np.argpartition(arr, k) # k smallest number of array print(k, "smallest elements of the array") print(arr[result[:k]]) Input: [1,3,5,2,4,6] k = 3 [END]
How to get the n-largest values of an array using NumPy?
https://www.geeksforgeeks.org/how-to-get-the-n-largest-values-of-an-array-using-numpy/
# import library import numpy as np # create numpy 1d-array arr = np.array([2, 0, 1, 5, 4, 1, 9]) print("Given array:", arr) # sort an array in # ascending order # np.argsort() return # array of indices for # sorted array sorted_index_array = np.argsort(arr) # sorted array sorted_array = arr[sorted_index_array] print("Sorted array:", sorted_array) # we want 1 largest value n = 1 # we are using negative # indexing concept # take n largest value rslt = sorted_array[-n:] # show the output print("{} largest value:".format(n), rslt[0])
#Output : Given array: [2 0 1 5 4 1 9]
How to get the n-largest values of an array using NumPy? # import library import numpy as np # create numpy 1d-array arr = np.array([2, 0, 1, 5, 4, 1, 9]) print("Given array:", arr) # sort an array in # ascending order # np.argsort() return # array of indices for # sorted array sorted_index_array = np.argsort(arr) # sorted array sorted_array = arr[sorted_index_array] print("Sorted array:", sorted_array) # we want 1 largest value n = 1 # we are using negative # indexing concept # take n largest value rslt = sorted_array[-n:] # show the output print("{} largest value:".format(n), rslt[0]) #Output : Given array: [2 0 1 5 4 1 9] [END]
How to get the n-largest values of an array using NumPy?
https://www.geeksforgeeks.org/how-to-get-the-n-largest-values-of-an-array-using-numpy/
# import library import numpy as np # create numpy 1d-array arr = np.array([2, 0, 1, 5, 4, 1, 9]) print("Given array:", arr) # sort an array in # ascending order # np.argsort() return # array of indices for # sorted array sorted_index_array = np.argsort(arr) # sorted array sorted_array = arr[sorted_index_array] print("Sorted array:", sorted_array) # we want 3 largest value n = 3 # we are using negative # indexing concept # find n largest value rslt = sorted_array[-n:] # show the output print("{} largest value:".format(n), rslt)
#Output : Given array: [2 0 1 5 4 1 9]
How to get the n-largest values of an array using NumPy? # import library import numpy as np # create numpy 1d-array arr = np.array([2, 0, 1, 5, 4, 1, 9]) print("Given array:", arr) # sort an array in # ascending order # np.argsort() return # array of indices for # sorted array sorted_index_array = np.argsort(arr) # sorted array sorted_array = arr[sorted_index_array] print("Sorted array:", sorted_array) # we want 3 largest value n = 3 # we are using negative # indexing concept # find n largest value rslt = sorted_array[-n:] # show the output print("{} largest value:".format(n), rslt) #Output : Given array: [2 0 1 5 4 1 9] [END]
Sort the values in a matrix
https://www.geeksforgeeks.org/python-numpy-matrix-sort/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1; 12, 3]") # applying matrix.sort() method gfg.sort() print(gfg)
#Output :
Sort the values in a matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1; 12, 3]") # applying matrix.sort() method gfg.sort() print(gfg) #Output : [END]
Sort the values in a matrix
https://www.geeksforgeeks.org/python-numpy-matrix-sort/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.sort() method gfg.sort() print(gfg)
#Output :
Sort the values in a matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[4, 1, 9; 12, 3, 1; 4, 5, 6]") # applying matrix.sort() method gfg.sort() print(gfg) #Output : [END]
Find the indices into a sorted array
https://www.geeksforgeeks.org/numpy-searchsorted-in-python/
# Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the number which we want to insert num = 4 print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num) print("Output indices to maintain sorted array : ", out_ind)
Input array : [2, 3, 4, 5, 6]
Find the indices into a sorted array # Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the number which we want to insert num = 4 print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num) print("Output indices to maintain sorted array : ", out_ind) Input array : [2, 3, 4, 5, 6] [END]
Find the indices into a sorted array
https://www.geeksforgeeks.org/numpy-searchsorted-in-python/
# Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the number which we want to insert num = 4 print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num, side="right") print("Output indices to maintain sorted array : ", out_ind)
Input array : [2, 3, 4, 5, 6]
Find the indices into a sorted array # Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the number which we want to insert num = 4 print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num, side="right") print("Output indices to maintain sorted array : ", out_ind) Input array : [2, 3, 4, 5, 6] [END]
Find the indices into a sorted array
https://www.geeksforgeeks.org/numpy-searchsorted-in-python/
# Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the numbers which we want to insert num = [4, 8, 0] print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num) print("Output indices to maintain sorted array : ", out_ind)
Input array : [2, 3, 4, 5, 6]
Find the indices into a sorted array # Python program explaining # searchsorted() function import numpy as geek # input array in_arr = [2, 3, 4, 5, 6] print("Input array : ", in_arr) # the numbers which we want to insert num = [4, 8, 0] print("The number which we want to insert : ", num) out_ind = geek.searchsorted(in_arr, num) print("Output indices to maintain sorted array : ", out_ind) Input array : [2, 3, 4, 5, 6] [END]
How to get element-wise true division of an array using Numpy?
https://www.geeksforgeeks.org/how-to-get-element-wise-true-division-of-an-array-using-numpy/
# import library import numpy as np # create 1d-array x = np.arange(5) print("Original array:", x) # apply true division # on each array element rslt = np.true_divide(x, 4) print("After the element-wise division:", rslt)
#Output : Original array: [0 1 2 3 4]
How to get element-wise true division of an array using Numpy? # import library import numpy as np # create 1d-array x = np.arange(5) print("Original array:", x) # apply true division # on each array element rslt = np.true_divide(x, 4) print("After the element-wise division:", rslt) #Output : Original array: [0 1 2 3 4] [END]
How to get element-wise true division of an array using Numpy?
https://www.geeksforgeeks.org/how-to-get-element-wise-true-division-of-an-array-using-numpy/
# import library import numpy as np # create a 1d-array x = np.arange(10) print("Original array:", x) # apply true division # on each array element rslt = np.true_divide(x, 3) print("After the element-wise division:", rslt)
#Output : Original array: [0 1 2 3 4]
How to get element-wise true division of an array using Numpy? # import library import numpy as np # create a 1d-array x = np.arange(10) print("Original array:", x) # apply true division # on each array element rslt = np.true_divide(x, 3) print("After the element-wise division:", rslt) #Output : Original array: [0 1 2 3 4] [END]
How to calculate the element-wise absolute value of NumPy array?
https://www.geeksforgeeks.org/how-to-calculate-the-element-wise-absolute-value-of-numpy-array/
# import library import numpy as np # create a numpy 1d-array array = np.array([1, -2, 3]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt)
#Output : Given array:
How to calculate the element-wise absolute value of NumPy array? # import library import numpy as np # create a numpy 1d-array array = np.array([1, -2, 3]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt) #Output : Given array: [END]
How to calculate the element-wise absolute value of NumPy array?
https://www.geeksforgeeks.org/how-to-calculate-the-element-wise-absolute-value-of-numpy-array/
# import library import numpy as np # create a numpy 2d-array array = np.array([[1, -2, 3], [-4, 5, -6]]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt)
#Output : Given array:
How to calculate the element-wise absolute value of NumPy array? # import library import numpy as np # create a numpy 2d-array array = np.array([[1, -2, 3], [-4, 5, -6]]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt) #Output : Given array: [END]
How to calculate the element-wise absolute value of NumPy array?
https://www.geeksforgeeks.org/how-to-calculate-the-element-wise-absolute-value-of-numpy-array/
# import library import numpy as np # create a numpy 3d-array array = np.array([[[1, -2, 3], [-4, 5, -6]], [[-7.5, -8.22, 9.0], [10.0, 11.5, -12.5]]]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt)
#Output : Given array:
How to calculate the element-wise absolute value of NumPy array? # import library import numpy as np # create a numpy 3d-array array = np.array([[[1, -2, 3], [-4, 5, -6]], [[-7.5, -8.22, 9.0], [10.0, 11.5, -12.5]]]) print("Given array:\n", array) # find element-wise # absolute value rslt = np.absolute(array) print("Absolute array:\n", rslt) #Output : Given array: [END]
Compute the negative of the NumPy array
https://www.geeksforgeeks.org/numpy-negative-in-python/
# Python program explaining # numpy.negative() function import numpy as geek in_num = 10 print("Input number : ", in_num) out_num = geek.negative(in_num) print("negative of input number : ", out_num)
Input number : 10 negative of input number : -10
Compute the negative of the NumPy array # Python program explaining # numpy.negative() function import numpy as geek in_num = 10 print("Input number : ", in_num) out_num = geek.negative(in_num) print("negative of input number : ", out_num) Input number : 10 negative of input number : -10 [END]
Compute the negative of the NumPy array
https://www.geeksforgeeks.org/numpy-negative-in-python/
# Python program explaining # numpy.negative function import numpy as geek in_arr = geek.array([[2, -7, 5], [-6, 2, 0]]) print("Input array : ", in_arr) out_arr = geek.negative(in_arr) print("negative of array elements: ", out_arr)
Input number : 10 negative of input number : -10
Compute the negative of the NumPy array # Python program explaining # numpy.negative function import numpy as geek in_arr = geek.array([[2, -7, 5], [-6, 2, 0]]) print("Input array : ", in_arr) out_arr = geek.negative(in_arr) print("negative of array elements: ", out_arr) Input number : 10 negative of input number : -10 [END]
Multiply 2d numpy array corresponding to 1d array
https://www.geeksforgeeks.org/python-multiply-2d-numpy-array-corresponding-to-1d-array/
# Python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1 * ini_array2[:, np.newaxis] # printing result print("New resulting array: ", result)
#Output :
Multiply 2d numpy array corresponding to 1d array # Python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1 * ini_array2[:, np.newaxis] # printing result print("New resulting array: ", result) #Output : [END]
Multiply 2d numpy array corresponding to 1d array
https://www.geeksforgeeks.org/python-multiply-2d-numpy-array-corresponding-to-1d-array/
# Python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1 * ini_array2[:, None] # printing result print("New resulting array: ", result)
#Output :
Multiply 2d numpy array corresponding to 1d array # Python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = ini_array1 * ini_array2[:, None] # printing result print("New resulting array: ", result) #Output : [END]
Multiply 2d numpy array corresponding to 1d array
https://www.geeksforgeeks.org/python-multiply-2d-numpy-array-corresponding-to-1d-array/
# python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = (ini_array1.T * ini_array2).T # printing result print("New resulting array: ", result)
#Output :
Multiply 2d numpy array corresponding to 1d array # python code to demonstrate # multiplication of 2d array # with 1d array import numpy as np ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]]) ini_array2 = np.array([0, 2, 3]) # printing initial arrays print("initial array", str(ini_array1)) # Multiplying arrays result = (ini_array1.T * ini_array2).T # printing result print("New resulting array: ", result) #Output : [END]
Computes the inner product of two arrays
https://www.geeksforgeeks.org/numpy-inner-in-python/
# Python Program illustrating # numpy.inner() method import numpy as geek # Scalars product = geek.inner(5, 4) print("inner Product of scalar values : ", product) # 1D array vector_a = 2 + 3j vector_b = 4 + 5j product = geek.inner(vector_a, vector_b) print("inner Product : ", product)
#Output : Parameters :
Computes the inner product of two arrays # Python Program illustrating # numpy.inner() method import numpy as geek # Scalars product = geek.inner(5, 4) print("inner Product of scalar values : ", product) # 1D array vector_a = 2 + 3j vector_b = 4 + 5j product = geek.inner(vector_a, vector_b) print("inner Product : ", product) #Output : Parameters : [END]
Computes the inner product of two arrays
https://www.geeksforgeeks.org/numpy-inner-in-python/
# Python Program illustrating # numpy.inner() method import numpy as geek # 1D array vector_a = geek.array([[1, 4], [5, 6]]) vector_b = geek.array([[2, 4], [5, 2]]) product = geek.inner(vector_a, vector_b) print("inner Product : \n", product) product = geek.inner(vector_b, vector_a) print("\ninner Product : \n", product)
#Output : Parameters :
Computes the inner product of two arrays # Python Program illustrating # numpy.inner() method import numpy as geek # 1D array vector_a = geek.array([[1, 4], [5, 6]]) vector_b = geek.array([[2, 4], [5, 2]]) product = geek.inner(vector_a, vector_b) print("inner Product : \n", product) product = geek.inner(vector_b, vector_a) print("\ninner Product : \n", product) #Output : Parameters : [END]
Compute the nth percentile of the NumPy array
https://www.geeksforgeeks.org/numpy-percentile-in-python/
# Python Program illustrating # numpy.percentile() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("50th percentile of arr : ", np.percentile(arr, 50)) print("25th percentile of arr : ", np.percentile(arr, 25)) print("75th percentile of arr : ", np.percentile(arr, 75))
#Output : arr : [20, 2, 7, 1, 34]
Compute the nth percentile of the NumPy array # Python Program illustrating # numpy.percentile() method import numpy as np # 1D array arr = [20, 2, 7, 1, 34] print("arr : ", arr) print("50th percentile of arr : ", np.percentile(arr, 50)) print("25th percentile of arr : ", np.percentile(arr, 25)) print("75th percentile of arr : ", np.percentile(arr, 75)) #Output : arr : [20, 2, 7, 1, 34] [END]
Compute the nth percentile of the NumPy array
https://www.geeksforgeeks.org/numpy-percentile-in-python/
# Python Program illustrating # numpy.percentile() method import numpy as np # 2D array arr = [ [14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [ 23, 2, 54, 1, 4, ], ] print("\narr : \n", arr) # Percentile of the flattened array print("\n50th Percentile of arr, axis = None : ", np.percentile(arr, 50)) print("0th Percentile of arr, axis = None : ", np.percentile(arr, 0)) # Percentile along the axis = 0 print("\n50th Percentile of arr, axis = 0 : ", np.percentile(arr, 50, axis=0)) print("0th Percentile of arr, axis = 0 : ", np.percentile(arr, 0, axis=0))
#Output : arr : [20, 2, 7, 1, 34]
Compute the nth percentile of the NumPy array # Python Program illustrating # numpy.percentile() method import numpy as np # 2D array arr = [ [14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [ 23, 2, 54, 1, 4, ], ] print("\narr : \n", arr) # Percentile of the flattened array print("\n50th Percentile of arr, axis = None : ", np.percentile(arr, 50)) print("0th Percentile of arr, axis = None : ", np.percentile(arr, 0)) # Percentile along the axis = 0 print("\n50th Percentile of arr, axis = 0 : ", np.percentile(arr, 50, axis=0)) print("0th Percentile of arr, axis = 0 : ", np.percentile(arr, 0, axis=0)) #Output : arr : [20, 2, 7, 1, 34] [END]
Compute the nth percentile of the NumPy array
https://www.geeksforgeeks.org/numpy-percentile-in-python/
# Python Program illustrating # numpy.percentile() method import numpy as np # 2D array arr = [ [14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [ 23, 2, 54, 1, 4, ], ] print("\narr : \n", arr) # Percentile along the axis = 1 print("\n50th Percentile of arr, axis = 1 : ", np.percentile(arr, 50, axis=1)) print("0th Percentile of arr, axis = 1 : ", np.percentile(arr, 0, axis=1)) print( "\n0th Percentile of arr, axis = 1 : \n", np.percentile(arr, 50, axis=1, keepdims=True), ) print( "\n0th Percentile of arr, axis = 1 : \n", np.percentile(arr, 0, axis=1, keepdims=True), )
#Output : arr : [20, 2, 7, 1, 34]
Compute the nth percentile of the NumPy array # Python Program illustrating # numpy.percentile() method import numpy as np # 2D array arr = [ [14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [ 23, 2, 54, 1, 4, ], ] print("\narr : \n", arr) # Percentile along the axis = 1 print("\n50th Percentile of arr, axis = 1 : ", np.percentile(arr, 50, axis=1)) print("0th Percentile of arr, axis = 1 : ", np.percentile(arr, 0, axis=1)) print( "\n0th Percentile of arr, axis = 1 : \n", np.percentile(arr, 50, axis=1, keepdims=True), ) print( "\n0th Percentile of arr, axis = 1 : \n", np.percentile(arr, 0, axis=1, keepdims=True), ) #Output : arr : [20, 2, 7, 1, 34] [END]
Calculate the n-th order discrete difference along the given axis
https://www.geeksforgeeks.org/numpy-diff-in-python/
# Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([1, 3, 4, 7, 9]) print("Input array : ", arr) print("First order difference : ", geek.diff(arr)) print("Second order difference : ", geek.diff(arr, n=2)) print("Third order difference : ", geek.diff(arr, n=3))
Input array : [1 3 4 7 9] First order difference : [2 1 3 2]
Calculate the n-th order discrete difference along the given axis # Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([1, 3, 4, 7, 9]) print("Input array : ", arr) print("First order difference : ", geek.diff(arr)) print("Second order difference : ", geek.diff(arr, n=2)) print("Third order difference : ", geek.diff(arr, n=3)) Input array : [1 3 4 7 9] First order difference : [2 1 3 2] [END]
Calculate the n-th order discrete difference along the given axis
https://www.geeksforgeeks.org/numpy-diff-in-python/
# Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([[1, 2, 3, 5], [4, 6, 7, 9]]) print("Input array : ", arr) print("Difference when axis is 0 : ", geek.diff(arr, axis=0)) print("Difference when axis is 1 : ", geek.diff(arr, axis=1))
Input array : [1 3 4 7 9] First order difference : [2 1 3 2]
Calculate the n-th order discrete difference along the given axis # Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([[1, 2, 3, 5], [4, 6, 7, 9]]) print("Input array : ", arr) print("Difference when axis is 0 : ", geek.diff(arr, axis=0)) print("Difference when axis is 1 : ", geek.diff(arr, axis=1)) Input array : [1 3 4 7 9] First order difference : [2 1 3 2] [END]
Calculate the sum of all columns in a 2D NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-all-columns-in-a-2d-numpy-array/
# importing required libraries import numpy # explicit function to compute column wise sum def colsum(arr, n, m): for i in range(n): su = 0 for j in range(m): su += arr[j][i] print(su, end=" ") # creating the 2D Array TwoDList = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") colsum(TwoDArray, len(TwoDArray[0]), len(TwoDArray))
#Output : 2D Array:
Calculate the sum of all columns in a 2D NumPy array # importing required libraries import numpy # explicit function to compute column wise sum def colsum(arr, n, m): for i in range(n): su = 0 for j in range(m): su += arr[j][i] print(su, end=" ") # creating the 2D Array TwoDList = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") colsum(TwoDArray, len(TwoDArray[0]), len(TwoDArray)) #Output : 2D Array: [END]
Calculate the sum of all columns in a 2D NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-all-columns-in-a-2d-numpy-array/
# importing required libraries import numpy # explicit function to compute column wise sum def colsum(arr, n, m): for i in range(n): su = 0 for j in range(m): su += arr[j][i] print(su, end=" ") # creating the 2D Array TwoDList = [[1.2, 2.3], [3.4, 4.5]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") colsum(TwoDArray, len(TwoDArray[0]), len(TwoDArray))
#Output : 2D Array:
Calculate the sum of all columns in a 2D NumPy array # importing required libraries import numpy # explicit function to compute column wise sum def colsum(arr, n, m): for i in range(n): su = 0 for j in range(m): su += arr[j][i] print(su, end=" ") # creating the 2D Array TwoDList = [[1.2, 2.3], [3.4, 4.5]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") colsum(TwoDArray, len(TwoDArray[0]), len(TwoDArray)) #Output : 2D Array: [END]
Calculate the sum of all columns in a 2D NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-all-columns-in-a-2d-numpy-array/
# importing required libraries import numpy # creating the 2D Array TwoDList = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") print(numpy.sum(TwoDArray, axis=0))
#Output : 2D Array:
Calculate the sum of all columns in a 2D NumPy array # importing required libraries import numpy # creating the 2D Array TwoDList = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") print(numpy.sum(TwoDArray, axis=0)) #Output : 2D Array: [END]
Calculate the sum of all columns in a 2D NumPy array
https://www.geeksforgeeks.org/calculate-the-sum-of-all-columns-in-a-2d-numpy-array/
# importing required libraries import numpy # creating the 2D Array TwoDList = [[1.2, 2.3], [3.4, 4.5]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") print(*numpy.sum(TwoDArray, axis=0))
#Output : 2D Array:
Calculate the sum of all columns in a 2D NumPy array # importing required libraries import numpy # creating the 2D Array TwoDList = [[1.2, 2.3], [3.4, 4.5]] TwoDArray = numpy.array(TwoDList) # displaying the 2D Array print("2D Array:") print(TwoDArray) # printing the sum of each column print("\nColumn-wise Sum:") print(*numpy.sum(TwoDArray, axis=0)) #Output : 2D Array: [END]
Calculate average values of two given NumPy arrays
https://www.geeksforgeeks.org/calculate-average-values-of-two-given-numpy-arrays/
# import library import numpy as np # create a numpy 1d-arrays arr1 = np.array([3, 4]) arr2 = np.array([1, 0]) # find average of NumPy arrays avg = (arr1 + arr2) / 2 print("Average of NumPy arrays:\n", avg)
#Output : Average of NumPy arrays:
Calculate average values of two given NumPy arrays # import library import numpy as np # create a numpy 1d-arrays arr1 = np.array([3, 4]) arr2 = np.array([1, 0]) # find average of NumPy arrays avg = (arr1 + arr2) / 2 print("Average of NumPy arrays:\n", avg) #Output : Average of NumPy arrays: [END]
Calculate average values of two given NumPy arrays
https://www.geeksforgeeks.org/calculate-average-values-of-two-given-numpy-arrays/
# import library import numpy as np # create a numpy 2d-arrays arr1 = np.array([[3, 4], [8, 2]]) arr2 = np.array([[1, 0], [6, 6]]) # find average of NumPy arrays avg = (arr1 + arr2) / 2 print("Average of NumPy arrays:\n", avg)
#Output : Average of NumPy arrays:
Calculate average values of two given NumPy arrays # import library import numpy as np # create a numpy 2d-arrays arr1 = np.array([[3, 4], [8, 2]]) arr2 = np.array([[1, 0], [6, 6]]) # find average of NumPy arrays avg = (arr1 + arr2) / 2 print("Average of NumPy arrays:\n", avg) #Output : Average of NumPy arrays: [END]
How to compute numerical negative value for all elements in a given NumPy array?
https://www.geeksforgeeks.org/how-to-compute-numerical-negative-value-for-all-elements-in-a-given-numpy-array/
# importing library import numpy as np # creating a array x = np.array([-1, -2, -3, 1, 2, 3, 0]) print("Printing the Original array:", x) # converting array elements to # its corresponding negative value r1 = np.negative(x) print("Printing the negative value of the given array:", r1)
#Output : A = [1,2,3,-1,-2,-3,0]
How to compute numerical negative value for all elements in a given NumPy array? # importing library import numpy as np # creating a array x = np.array([-1, -2, -3, 1, 2, 3, 0]) print("Printing the Original array:", x) # converting array elements to # its corresponding negative value r1 = np.negative(x) print("Printing the negative value of the given array:", r1) #Output : A = [1,2,3,-1,-2,-3,0] [END]
How to compute numerical negative value for all elements in a given NumPy array?
https://www.geeksforgeeks.org/how-to-compute-numerical-negative-value-for-all-elements-in-a-given-numpy-array/
# importing library import numpy as np # creating a numpy 2D array x = np.array([[1, 2], [2, 3]]) print("Printing the Original array Content:\n", x) # converting array elements to # its corresponding negative value r1 = np.negative(x) print("Printing the negative value of the given array:\n", r1)
#Output : A = [1,2,3,-1,-2,-3,0]
How to compute numerical negative value for all elements in a given NumPy array? # importing library import numpy as np # creating a numpy 2D array x = np.array([[1, 2], [2, 3]]) print("Printing the Original array Content:\n", x) # converting array elements to # its corresponding negative value r1 = np.negative(x) print("Printing the negative value of the given array:\n", r1) #Output : A = [1,2,3,-1,-2,-3,0] [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
# Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get floor value a = np.floor(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? # Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get floor value a = np.floor(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.floor(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.floor(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
# Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get ceil value a = np.ceil(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? # Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get ceil value a = np.ceil(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.ceil(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.ceil(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
# Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get truncate value a = np.trunc(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? # Import the numpy library import numpy as np # Initialize numpy array a = np.array([1.2]) # Get truncate value a = np.trunc(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.trunc(a) print(a)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? import numpy as np a = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) a = np.trunc(a) print(a) #Output : import numpy as np [END]
How to get the floor, ceiling and truncated values of the elements of a numpy array?
https://www.geeksforgeeks.org/how-to-get-the-floor-ceiling-and-truncated-values-of-the-elements-of-a-numpy-array/
import numpy as np input_arr = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) print(input_arr) floor_values = np.floor(input_arr) print("\nFloor values : \n", floor_values) ceil_values = np.ceil(input_arr) print("\nCeil values : \n", ceil_values) trunc_values = np.trunc(input_arr) print("\nTruncated values : \n", trunc_values)
#Output : import numpy as np
How to get the floor, ceiling and truncated values of the elements of a numpy array? import numpy as np input_arr = np.array([-1.8, -1.6, -0.5, 0.5, 1.6, 1.8, 3.0]) print(input_arr) floor_values = np.floor(input_arr) print("\nFloor values : \n", floor_values) ceil_values = np.ceil(input_arr) print("\nCeil values : \n", ceil_values) trunc_values = np.trunc(input_arr) print("\nTruncated values : \n", trunc_values) #Output : import numpy as np [END]
Find the round off the values of the given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-round/
# import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[6.4, 1.3; 12.7, 32.3]") # applying matrix.round() method geeks = gfg.round() print(geeks)
#Output :
Find the round off the values of the given matrix # import the important module in python import numpy as np # make matrix with numpy gfg = np.matrix("[6.4, 1.3; 12.7, 32.3]") # applying matrix.round() method geeks = gfg.round() print(geeks) #Output : [END]
Find the round off the values of the given matrix
https://www.geeksforgeeks.org/python-numpy-matrix-round/
# import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1.2, 2.3; 4.7, 5.5; 7.2, 8.9]") # applying matrix.round() method geeks = gfg.round() print(geeks)
#Output :
Find the round off the values of the given matrix # import the important module in python import numpy as np # make a matrix with numpy gfg = np.matrix("[1.2, 2.3; 4.7, 5.5; 7.2, 8.9]") # applying matrix.round() method geeks = gfg.round() print(geeks) #Output : [END]
Evaluate Einsteins summation convention of two multidimensional NumPy
https://www.geeksforgeeks.org/evaluate-einsteins-summation-convention-of-two-multidimensional-numpy-arrays/
# Importing library import numpy as np # Creating two 2X2 matrix matrix1 = np.array([[1, 2], [0, 2]]) matrix2 = np.array([[0, 1], [3, 4]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result)
#Output : Original matrix:
Evaluate Einsteins summation convention of two multidimensional NumPy # Importing library import numpy as np # Creating two 2X2 matrix matrix1 = np.array([[1, 2], [0, 2]]) matrix2 = np.array([[0, 1], [3, 4]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result) #Output : Original matrix: [END]
Evaluate Einsteins summation convention of two multidimensional NumPy
https://www.geeksforgeeks.org/evaluate-einsteins-summation-convention-of-two-multidimensional-numpy-arrays/
# Importing library import numpy as np # Creating two 3X3 matrix matrix1 = np.array([[2, 3, 5], [4, 0, 2], [0, 6, 8]]) matrix2 = np.array([[0, 1, 5], [3, 4, 4], [8, 3, 0]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result)
#Output : Original matrix:
Evaluate Einsteins summation convention of two multidimensional NumPy # Importing library import numpy as np # Creating two 3X3 matrix matrix1 = np.array([[2, 3, 5], [4, 0, 2], [0, 6, 8]]) matrix2 = np.array([[0, 1, 5], [3, 4, 4], [8, 3, 0]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result) #Output : Original matrix: [END]
Evaluate Einsteins summation convention of two multidimensional NumPy
https://www.geeksforgeeks.org/evaluate-einsteins-summation-convention-of-two-multidimensional-numpy-arrays/
# Importing library import numpy as np # Creating two 4X4 matrix matrix1 = np.array([[1, 2, 3, 5], [4, 4, 0, 2], [0, 1, 6, 8], [0, 5, 6, 9]]) matrix2 = np.array([[0, 1, 9, 2], [3, 3, 4, 4], [1, 8, 3, 0], [5, 2, 1, 6]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result)
#Output : Original matrix:
Evaluate Einsteins summation convention of two multidimensional NumPy # Importing library import numpy as np # Creating two 4X4 matrix matrix1 = np.array([[1, 2, 3, 5], [4, 4, 0, 2], [0, 1, 6, 8], [0, 5, 6, 9]]) matrix2 = np.array([[0, 1, 9, 2], [3, 3, 4, 4], [1, 8, 3, 0], [5, 2, 1, 6]]) print("Original matrix:") print(matrix1) print(matrix2) # Output result = np.einsum("mk,kn", matrix1, matrix2) print("Einstein?????????s summation convention of the two m") print(result) #Output : Original matrix: [END]
Compute the median of the flattened NumPy array
https://www.geeksforgeeks.org/compute-the-median-of-the-flattened-numpy-array/
# importing numpy as library import numpy as np # creating 1 D array with odd no of # elements x_odd = np.array([1, 2, 3, 4, 5, 6, 7]) print("\nPrinting the Original array:") print(x_odd) # calculating median med_odd = np.median(x_odd) print( "\nMedian of the array that contains \ odd no of elements:" ) print(med_odd)
#Output : numpy.median(arr, axis = None)
Compute the median of the flattened NumPy array # importing numpy as library import numpy as np # creating 1 D array with odd no of # elements x_odd = np.array([1, 2, 3, 4, 5, 6, 7]) print("\nPrinting the Original array:") print(x_odd) # calculating median med_odd = np.median(x_odd) print( "\nMedian of the array that contains \ odd no of elements:" ) print(med_odd) #Output : numpy.median(arr, axis = None) [END]
Compute the median of the flattened NumPy array
https://www.geeksforgeeks.org/compute-the-median-of-the-flattened-numpy-array/
# importing numpy as library import numpy as np # creating 1 D array with even no of # elements x_even = np.array([1, 2, 3, 4, 5, 6, 7, 8]) print("\nPrinting the Original array:") print(x_even) # calculating median med_even = np.median(x_even) print( "\nMedian of the array that contains \ even no of elements:" ) print(med_even)
#Output : numpy.median(arr, axis = None)
Compute the median of the flattened NumPy array # importing numpy as library import numpy as np # creating 1 D array with even no of # elements x_even = np.array([1, 2, 3, 4, 5, 6, 7, 8]) print("\nPrinting the Original array:") print(x_even) # calculating median med_even = np.median(x_even) print( "\nMedian of the array that contains \ even no of elements:" ) print(med_even) #Output : numpy.median(arr, axis = None) [END]
Find Mean of a List of Numpy Array
https://www.geeksforgeeks.org/python-find-mean-of-a-list-of-numpy-array/
# Python code to find mean of every numpy array in list # Importing module import numpy as np # List Initialization Input = [np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])] # Output list initialization Output = [] # using np.mean() for i in range(len(Input)): Output.append(np.mean(Input[i])) # Printing output print(Output)
#Output :
Find Mean of a List of Numpy Array # Python code to find mean of every numpy array in list # Importing module import numpy as np # List Initialization Input = [np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])] # Output list initialization Output = [] # using np.mean() for i in range(len(Input)): Output.append(np.mean(Input[i])) # Printing output print(Output) #Output : [END]
Find Mean of a List of Numpy Array
https://www.geeksforgeeks.org/python-find-mean-of-a-list-of-numpy-array/
# Python code to find mean of # every numpy array in list # Importing module import numpy as np # List Initialization Input = [np.array([11, 12, 13]), np.array([14, 15, 16]), np.array([17, 18, 19])] # Output list initialization Output = [] # using np.mean() for i in range(len(Input)): Output.append(np.average(Input[i])) # Printing output print(Output)
#Output :
Find Mean of a List of Numpy Array # Python code to find mean of # every numpy array in list # Importing module import numpy as np # List Initialization Input = [np.array([11, 12, 13]), np.array([14, 15, 16]), np.array([17, 18, 19])] # Output list initialization Output = [] # using np.mean() for i in range(len(Input)): Output.append(np.average(Input[i])) # Printing output print(Output) #Output : [END]