code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def makefile_responds_to(target): """Runs `make --question <target>` to detect if a makefile responds to the specified target.""" # According to http://www.gnu.org/software/make/manual/make.html#index-exit-status-of-make, # 0 means OK, 1 means the target is not up to date, and 2 means error returncode, _ = _run(["make", "--question", target], timeout=5) return returncode != 2
Runs `make --question <target>` to detect if a makefile responds to the specified target.
makefile_responds_to
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def makefile_check(): """Detects if you have a makefile and runs some sanity tests against it to ensure it is paasta-ready""" makefile_path = is_file_in_dir("Makefile", os.getcwd()) if makefile_path: print(PaastaCheckMessages.MAKEFILE_FOUND) if makefile_has_a_tab(makefile_path): print(PaastaCheckMessages.MAKEFILE_HAS_A_TAB) else: print(PaastaCheckMessages.MAKEFILE_HAS_NO_TABS) if makefile_has_docker_tag(makefile_path): print(PaastaCheckMessages.MAKEFILE_HAS_DOCKER_TAG) else: print(PaastaCheckMessages.MAKEFILE_HAS_NO_DOCKER_TAG) if makefile_responds_to("cook-image"): print(PaastaCheckMessages.MAKEFILE_RESPONDS_BUILD_IMAGE) else: print(PaastaCheckMessages.MAKEFILE_RESPONDS_BUILD_IMAGE_FAIL) if makefile_responds_to("itest"): print(PaastaCheckMessages.MAKEFILE_RESPONDS_ITEST) else: print(PaastaCheckMessages.MAKEFILE_RESPONDS_ITEST_FAIL) if makefile_responds_to("test"): print(PaastaCheckMessages.MAKEFILE_RESPONDS_TEST) else: print(PaastaCheckMessages.MAKEFILE_RESPONDS_TEST_FAIL) else: print(PaastaCheckMessages.MAKEFILE_MISSING)
Detects if you have a makefile and runs some sanity tests against it to ensure it is paasta-ready
makefile_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def get_deploy_groups_used_by_framework(instance_type, service, soa_dir): """This is a kind of funny function that gets all the instances for specified service and framework, and massages it into a form that matches up with what deploy.yaml's steps look like. This is only so we can compare it 1-1 with what deploy.yaml has for linting. :param instance_type: one of the entries in utils.INSTANCE_TYPES :param service: the service name :param soa_dir: The SOA configuration directory to read from :returns: a list of deploy group names used by the service. """ deploy_groups = [] for cluster in list_clusters(service, soa_dir): for _, instance in get_service_instance_list( service=service, cluster=cluster, instance_type=instance_type, soa_dir=soa_dir, ): try: config = get_instance_config( service=service, instance=instance, cluster=cluster, soa_dir=soa_dir, load_deployments=False, instance_type=instance_type, ) deploy_groups.append(config.get_deploy_group()) except NotImplementedError: pass return set(filter(None, deploy_groups))
This is a kind of funny function that gets all the instances for specified service and framework, and massages it into a form that matches up with what deploy.yaml's steps look like. This is only so we can compare it 1-1 with what deploy.yaml has for linting. :param instance_type: one of the entries in utils.INSTANCE_TYPES :param service: the service name :param soa_dir: The SOA configuration directory to read from :returns: a list of deploy group names used by the service.
get_deploy_groups_used_by_framework
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def deployments_check(service, soa_dir): """Checks for consistency between deploy.yaml and the kubernetes/etc yamls""" the_return = True pipeline_deploy_groups = get_pipeline_deploy_groups( service=service, soa_dir=soa_dir ) framework_deploy_groups = {} in_deploy_not_frameworks = set(pipeline_deploy_groups) for it in INSTANCE_TYPES: framework_deploy_groups[it] = get_deploy_groups_used_by_framework( it, service, soa_dir ) in_framework_not_deploy = set(framework_deploy_groups[it]) - set( pipeline_deploy_groups ) in_deploy_not_frameworks -= set(framework_deploy_groups[it]) if len(in_framework_not_deploy) > 0: print( "{} There are some instance(s) you have asked to run in {} that".format( x_mark(), it ) ) print(" do not have a corresponding entry in deploy.yaml:") print(" %s" % PaastaColors.bold(", ".join(in_framework_not_deploy))) print(" You should probably configure these to use a 'deploy_group' or") print( " add entries to deploy.yaml for them so they are deployed to those clusters." ) the_return = False if len(in_deploy_not_frameworks) > 0: print( "%s There are some instance(s) in deploy.yaml that are not referenced" % x_mark() ) print(" by any instance:") print(" %s" % PaastaColors.bold((", ".join(in_deploy_not_frameworks)))) print( " You should probably delete these deploy.yaml entries if they are unused." ) the_return = False if the_return is True: print(success("All entries in deploy.yaml correspond to a paasta instance")) for it in INSTANCE_TYPES: if len(framework_deploy_groups[it]) > 0: print( success( "All %s instances have a corresponding deploy.yaml entry" % it ) ) return the_return
Checks for consistency between deploy.yaml and the kubernetes/etc yamls
deployments_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def sensu_check(service, service_path, soa_dir): """Check whether monitoring.yaml exists in service directory, and that the team name is declared. :param service: name of service currently being examined :param service_path: path to location of monitoring.yaml file""" if is_file_in_dir("monitoring.yaml", service_path): print(PaastaCheckMessages.SENSU_MONITORING_FOUND) team = get_team(service=service, overrides={}, soa_dir=soa_dir) if team is None: print(PaastaCheckMessages.SENSU_TEAM_MISSING) else: print(PaastaCheckMessages.sensu_team_found(team)) else: print(PaastaCheckMessages.SENSU_MONITORING_MISSING)
Check whether monitoring.yaml exists in service directory, and that the team name is declared. :param service: name of service currently being examined :param service_path: path to location of monitoring.yaml file
sensu_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def service_dir_check(service, soa_dir): """Check whether directory service exists in /nail/etc/services :param service: string of service name we wish to inspect """ try: validate_service_name(service, soa_dir) print(PaastaCheckMessages.service_dir_found(service, soa_dir)) except NoSuchService: print(PaastaCheckMessages.service_dir_missing(service, soa_dir))
Check whether directory service exists in /nail/etc/services :param service: string of service name we wish to inspect
service_dir_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def smartstack_check(service, service_path, soa_dir): """Check whether smartstack.yaml exists in service directory, and the proxy ports are declared. Print appropriate message depending on outcome. :param service: name of service currently being examined :param service_path: path to location of smartstack.yaml file""" if is_file_in_dir("smartstack.yaml", service_path): print(PaastaCheckMessages.SMARTSTACK_YAML_FOUND) instances = get_all_namespaces_for_service(service=service, soa_dir=soa_dir) if len(instances) > 0: for namespace, config in get_all_namespaces_for_service( service=service, soa_dir=soa_dir, full_name=False ): if "proxy_port" in config: print( PaastaCheckMessages.smartstack_port_found( namespace, config.get("proxy_port") ) ) else: print(PaastaCheckMessages.SMARTSTACK_PORT_MISSING) else: print(PaastaCheckMessages.SMARTSTACK_PORT_MISSING)
Check whether smartstack.yaml exists in service directory, and the proxy ports are declared. Print appropriate message depending on outcome. :param service: name of service currently being examined :param service_path: path to location of smartstack.yaml file
smartstack_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def paasta_check(args): """Analyze the service in the PWD to determine if it is paasta ready :param args: argparse.Namespace obj created from sys.args by cli""" soa_dir = args.yelpsoa_config_root service = figure_out_service_name(args, soa_dir) service_path = os.path.join(soa_dir, service) service_dir_check(service, soa_dir) deploy_check(service_path) deploy_has_security_check(service, soa_dir) git_repo_check(service, soa_dir) docker_check() makefile_check() deployments_check(service, soa_dir) sensu_check(service, service_path, soa_dir) smartstack_check(service, service_path, soa_dir) paasta_validate_soa_configs(service, service_path)
Analyze the service in the PWD to determine if it is paasta ready :param args: argparse.Namespace obj created from sys.args by cli
paasta_check
python
Yelp/paasta
paasta_tools/cli/cmds/check.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/check.py
Apache-2.0
def paasta_list(args): """Print a list of Yelp services currently running :param args: argparse.Namespace obj created from sys.args by cli""" if args.print_instances: services = list_service_instances(args.soa_dir) elif args.all: services = list_services(args.soa_dir) else: services = list_paasta_services(args.soa_dir) for service in services: print(service)
Print a list of Yelp services currently running :param args: argparse.Namespace obj created from sys.args by cli
paasta_list
python
Yelp/paasta
paasta_tools/cli/cmds/list.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/list.py
Apache-2.0
def perform_http_healthcheck(url, timeout): """Returns true if healthcheck on url succeeds, false otherwise :param url: the healthcheck url :param timeout: timeout in seconds :returns: True if healthcheck succeeds within number of seconds specified by timeout, false otherwise """ try: with Timeout(seconds=timeout): try: res = requests.get(url, verify=False) except requests.ConnectionError: return (False, "http request failed: connection failed") except TimeoutError: return (False, "http request timed out after %d seconds" % timeout) if "content-type" in res.headers and "," in res.headers["content-type"]: print( PaastaColors.yellow( "Multiple content-type headers detected in response." " The Mesos healthcheck system will treat this as a failure!" ) ) return (False, "http request succeeded, code %d" % res.status_code) # check if response code is valid per https://mesosphere.github.io/marathon/docs/health-checks.html elif res.status_code >= 200 and res.status_code < 400: return (True, "http request succeeded, code %d" % res.status_code) else: return (False, "http request failed, code %s" % str(res.status_code))
Returns true if healthcheck on url succeeds, false otherwise :param url: the healthcheck url :param timeout: timeout in seconds :returns: True if healthcheck succeeds within number of seconds specified by timeout, false otherwise
perform_http_healthcheck
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def perform_tcp_healthcheck(url, timeout): """Returns true if successfully connects to host and port, false otherwise :param url: the healthcheck url (in the form tcp://host:port) :param timeout: timeout in seconds :returns: True if healthcheck succeeds within number of seconds specified by timeout, false otherwise """ url_elem = urlparse(url) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(timeout) result = sock.connect_ex((url_elem.hostname, url_elem.port)) sock.close() if result == 0: return (True, "tcp connection succeeded") else: return (False, "%s (timeout %d seconds)" % (os.strerror(result), timeout))
Returns true if successfully connects to host and port, false otherwise :param url: the healthcheck url (in the form tcp://host:port) :param timeout: timeout in seconds :returns: True if healthcheck succeeds within number of seconds specified by timeout, false otherwise
perform_tcp_healthcheck
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def perform_cmd_healthcheck(docker_client, container_id, command, timeout): """Returns true if return code of command is 0 when executed inside container, false otherwise :param docker_client: Docker client object :param container_id: Docker container id :param command: command to execute :param timeout: timeout in seconds :returns: True if command exits with return code 0, false otherwise """ (output, return_code) = execute_in_container( docker_client, container_id, command, timeout ) if return_code == 0: return (True, output) else: return (False, output)
Returns true if return code of command is 0 when executed inside container, false otherwise :param docker_client: Docker client object :param container_id: Docker container id :param command: command to execute :param timeout: timeout in seconds :returns: True if command exits with return code 0, false otherwise
perform_cmd_healthcheck
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def run_healthcheck_on_container( docker_client, container_id, healthcheck_mode, healthcheck_data, timeout ): """Performs healthcheck on a container :param container_id: Docker container id :param healthcheck_mode: one of 'http', 'https', 'tcp', or 'cmd' :param healthcheck_data: a URL when healthcheck_mode is 'http[s]' or 'tcp', a command if healthcheck_mode is 'cmd' :param timeout: timeout in seconds for individual check :returns: a tuple of (bool, output string) """ healthcheck_result = (False, "unknown") if healthcheck_mode == "cmd": healthcheck_result = perform_cmd_healthcheck( docker_client, container_id, healthcheck_data, timeout ) elif healthcheck_mode == "http" or healthcheck_mode == "https": healthcheck_result = perform_http_healthcheck(healthcheck_data, timeout) elif healthcheck_mode == "tcp": healthcheck_result = perform_tcp_healthcheck(healthcheck_data, timeout) else: print( PaastaColors.yellow( "Healthcheck mode '%s' is not currently supported!" % healthcheck_mode ) ) sys.exit(1) return healthcheck_result
Performs healthcheck on a container :param container_id: Docker container id :param healthcheck_mode: one of 'http', 'https', 'tcp', or 'cmd' :param healthcheck_data: a URL when healthcheck_mode is 'http[s]' or 'tcp', a command if healthcheck_mode is 'cmd' :param timeout: timeout in seconds for individual check :returns: a tuple of (bool, output string)
run_healthcheck_on_container
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def simulate_healthcheck_on_service( instance_config, docker_client, container_id, healthcheck_mode, healthcheck_data, healthcheck_enabled, ): """Simulates Marathon-style healthcheck on given service if healthcheck is enabled :param instance_config: service manifest :param docker_client: Docker client object :param container_id: Docker container id :param healthcheck_data: tuple url to healthcheck :param healthcheck_enabled: boolean :returns: healthcheck_passed: boolean """ healthcheck_link = PaastaColors.cyan(healthcheck_data) if healthcheck_enabled: grace_period = instance_config.get_healthcheck_grace_period_seconds() timeout = instance_config.get_healthcheck_timeout_seconds() interval = instance_config.get_healthcheck_interval_seconds() max_failures = instance_config.get_healthcheck_max_consecutive_failures() print( "\nStarting health check via %s (waiting %s seconds before " "considering failures due to grace period):" % (healthcheck_link, grace_period) ) # silently start performing health checks until grace period ends or first check succeeds graceperiod_end_time = time.time() + grace_period after_grace_period_attempts = 0 healthchecking = True def _stream_docker_logs(container_id, generator): while healthchecking: try: # the generator will block until another log line is available log_line = next(generator).decode("utf-8").rstrip("\n") if healthchecking: print(f"container [{container_id[:12]}]: {log_line}") else: # stop streaming at first opportunity, since generator.close() # cant be used until the container is dead break except StopIteration: # natural end of logs break docker_logs_generator = docker_client.logs( container_id, stderr=True, stream=True ) threading.Thread( target=_stream_docker_logs, daemon=True, args=(container_id, docker_logs_generator), ).start() while True: # First inspect the container for early exits container_state = docker_client.inspect_container(container_id) if not container_state["State"]["Running"]: print( PaastaColors.red( "Container exited with code {}".format( container_state["State"]["ExitCode"] ) ) ) healthcheck_passed = False break healthcheck_passed, healthcheck_output = run_healthcheck_on_container( docker_client, container_id, healthcheck_mode, healthcheck_data, timeout ) # Yay, we passed the healthcheck if healthcheck_passed: print( "{}'{}' (via {})".format( PaastaColors.green("Healthcheck succeeded!: "), healthcheck_output, healthcheck_link, ) ) break # Otherwise, print why we failed if time.time() < graceperiod_end_time: color = PaastaColors.grey msg = "(disregarded due to grace period)" extra_msg = f" (via: {healthcheck_link}. Output: {healthcheck_output})" else: # If we've exceeded the grace period, we start incrementing attempts after_grace_period_attempts += 1 color = PaastaColors.red msg = "(Attempt {} of {})".format( after_grace_period_attempts, max_failures ) extra_msg = f" (via: {healthcheck_link}. Output: {healthcheck_output})" print("{}{}".format(color(f"Healthcheck failed! {msg}"), extra_msg)) if after_grace_period_attempts == max_failures: break time.sleep(interval) healthchecking = False # end docker logs stream else: print( "\nPaaSTA would have healthchecked your service via\n%s" % healthcheck_link ) healthcheck_passed = True return healthcheck_passed
Simulates Marathon-style healthcheck on given service if healthcheck is enabled :param instance_config: service manifest :param docker_client: Docker client object :param container_id: Docker container id :param healthcheck_data: tuple url to healthcheck :param healthcheck_enabled: boolean :returns: healthcheck_passed: boolean
simulate_healthcheck_on_service
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def docker_pull_image(docker_url): """Pull an image via ``docker pull``. Uses the actual pull command instead of the python bindings due to the docker auth/registry transition. Once we are past Docker 1.6 we can use better credential management, but for now this function assumes the user running the command has already been authorized for the registry""" print( "Please wait while the image (%s) is pulled (times out after 30m)..." % docker_url, file=sys.stderr, ) with Timeout( seconds=1800, error_message=f"Timed out pulling docker image from {docker_url}" ), open(os.devnull, mode="wb") as DEVNULL: ret, _ = _run("docker pull %s" % docker_url, stream=True, stdin=DEVNULL) if ret != 0: print( "\nPull failed. Are you authorized to run docker commands?", file=sys.stderr, ) sys.exit(ret)
Pull an image via ``docker pull``. Uses the actual pull command instead of the python bindings due to the docker auth/registry transition. Once we are past Docker 1.6 we can use better credential management, but for now this function assumes the user running the command has already been authorized for the registry
docker_pull_image
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def get_container_id(docker_client, container_name): """Use 'docker_client' to find the container we started, identifiable by its 'container_name'. If we can't find the id, raise LostContainerException. """ containers = docker_client.containers(all=False) for container in containers: if "/%s" % container_name in container.get("Names", []): return container.get("Id") raise LostContainerException( "Can't find the container I just launched so I can't do anything else.\n" "Try docker 'ps --all | grep %s' to see where it went.\n" "Here were all the containers:\n" "%s" % (container_name, containers) )
Use 'docker_client' to find the container we started, identifiable by its 'container_name'. If we can't find the id, raise LostContainerException.
get_container_id
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def get_local_run_environment_vars(instance_config, port0, framework): """Returns a dictionary of environment variables to simulate what would be available to a paasta service running in a container""" hostname = socket.getfqdn() docker_image = instance_config.get_docker_image() if docker_image == "": # In a local_run environment, the docker_image may not be available # so we can fall-back to the injected DOCKER_TAG per the paasta contract docker_image = os.environ["DOCKER_TAG"] env = { "HOST": hostname, "PAASTA_DOCKER_IMAGE": docker_image, "PAASTA_LAUNCHED_BY": get_possible_launched_by_user_variable_from_env(), "PAASTA_HOST": hostname, # Kubernetes instances remove PAASTA_CLUSTER, so we need to re-add it ourselves "PAASTA_CLUSTER": instance_config.get_cluster(), } return env
Returns a dictionary of environment variables to simulate what would be available to a paasta service running in a container
get_local_run_environment_vars
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def assume_aws_role( instance_config: InstanceConfig, service: str, assume_role_arn: str, assume_pod_identity: bool, use_okta_role: bool, aws_account: str, ) -> AWSSessionCreds: """Runs AWS cli to assume into the correct role, then extract and return the ENV variables from that session""" pod_identity = instance_config.get_iam_role() if assume_role_arn: pod_identity = assume_role_arn if assume_pod_identity and not pod_identity: print( f"Error: --assume-pod-identity passed but no pod identity was found for this instance ({instance_config.instance})", file=sys.stderr, ) sys.exit(1) if pod_identity and (assume_pod_identity or assume_role_arn): print( "Calling aws-okta to assume role {} using account {}".format( pod_identity, aws_account ) ) elif use_okta_role: print(f"Calling aws-okta using account {aws_account}") elif "AWS_ROLE_ARN" in os.environ and "AWS_WEB_IDENTITY_TOKEN_FILE" in os.environ: # Get a session using the current pod identity print( f"Found Pod Identity token in env. Assuming into role {os.environ['AWS_ROLE_ARN']}." ) boto_session = boto3.Session() credentials = boto_session.get_credentials() assumed_creds_dict: AWSSessionCreds = { "AWS_ACCESS_KEY_ID": credentials.access_key, "AWS_SECRET_ACCESS_KEY": credentials.secret_key, "AWS_SESSION_TOKEN": credentials.token, "AWS_SECURITY_TOKEN": credentials.token, } return assumed_creds_dict else: # use_okta_role, assume_pod_identity, and assume_role are all empty, and there's no # pod identity (web identity token) in the env. This shouldn't happen print( "Error: assume_aws_role called without required arguments and no pod identity env", file=sys.stderr, ) sys.exit(1) # local-run will sometimes run as root - make sure that we get the actual # users AWS credentials instead of looking for non-existent root AWS # credentials if os.getuid() == 0: aws_okta_cmd = [ "sudo", "-u", get_username(), f"HOME=/nail/home/{get_username()}", "aws-okta", "-a", aws_account, "-o", "json", ] else: aws_okta_cmd = ["aws-okta", "-a", aws_account, "-o", "json"] cmd = subprocess.run(aws_okta_cmd, stdout=subprocess.PIPE) if cmd.returncode != 0: print( "Error calling aws-okta. Remove --assume-pod-identity to run without pod identity role", file=sys.stderr, ) sys.exit(1) cmd_output = json.loads(cmd.stdout.decode("utf-8")) if not use_okta_role: boto_session = boto3.Session( aws_access_key_id=cmd_output["AccessKeyId"], aws_secret_access_key=cmd_output["SecretAccessKey"], aws_session_token=cmd_output["SessionToken"], ) sts_client = boto_session.client("sts") assumed_role = sts_client.assume_role( RoleArn=pod_identity, RoleSessionName=f"{get_username()}-local-run" ) # The contents of "Credentials" key from assume_role is the same as from aws-okta cmd_output = assumed_role["Credentials"] creds_dict: AWSSessionCreds = { "AWS_ACCESS_KEY_ID": cmd_output["AccessKeyId"], "AWS_SECRET_ACCESS_KEY": cmd_output["SecretAccessKey"], "AWS_SESSION_TOKEN": cmd_output["SessionToken"], "AWS_SECURITY_TOKEN": cmd_output["SessionToken"], } return creds_dict
Runs AWS cli to assume into the correct role, then extract and return the ENV variables from that session
assume_aws_role
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def run_docker_container( docker_client, service, instance, docker_url, volumes, interactive, command, healthcheck, healthcheck_only, user_port, instance_config, secret_provider_name, soa_dir=DEFAULT_SOA_DIR, dry_run=False, json_dict=False, framework=None, secret_provider_kwargs={}, skip_secrets=False, assume_pod_identity=False, assume_role_arn="", use_okta_role=False, assume_role_aws_account: Optional[str] = None, use_service_auth_token: bool = False, use_sso_service_auth_token: bool = False, ): """docker-py has issues running a container with a TTY attached, so for consistency we execute 'docker run' directly in both interactive and non-interactive modes. In non-interactive mode when the run is complete, stop the container and remove it (with docker-py). """ if user_port: if check_if_port_free(user_port): chosen_port = user_port else: print( PaastaColors.red( "The chosen port is already in use!\n" "Try specifying another one, or omit (--port|-o) and paasta will find a free one for you" ), file=sys.stderr, ) sys.exit(1) else: chosen_port = pick_random_port(service) environment = instance_config.get_env() secret_volumes = {} # type: ignore if not skip_secrets: # if secrets_for_owner_team enabled in yelpsoa for service if is_secrets_for_teams_enabled(service, soa_dir): try: kube_client = KubeClient( config_file=KUBE_CONFIG_USER_PATH, context=instance_config.cluster ) secret_environment = get_kubernetes_secret_env_variables( kube_client, environment, service, instance_config.get_namespace() ) secret_volumes = get_kubernetes_secret_volumes( kube_client, instance_config.get_secret_volumes(), service, instance_config.get_namespace(), ) except Exception as e: print( f"Failed to retrieve kubernetes secrets with {e.__class__.__name__}: {e}" ) print( "If you don't need the secrets for local-run, you can add --skip-secrets" ) sys.exit(1) else: try: secret_environment = decrypt_secret_environment_variables( secret_provider_name=secret_provider_name, environment=environment, soa_dir=soa_dir, service_name=instance_config.get_service(), cluster_name=instance_config.cluster, secret_provider_kwargs=secret_provider_kwargs, ) secret_volumes = decrypt_secret_volumes( secret_provider_name=secret_provider_name, secret_volumes_config=instance_config.get_secret_volumes(), soa_dir=soa_dir, service_name=instance_config.get_service(), cluster_name=instance_config.cluster, secret_provider_kwargs=secret_provider_kwargs, ) except Exception as e: print(f"Failed to decrypt secrets with {e.__class__.__name__}: {e}") print( "If you don't need the secrets for local-run, you can add --skip-secrets" ) sys.exit(1) environment.update(secret_environment) if ( assume_role_arn or assume_pod_identity or use_okta_role or "AWS_WEB_IDENTITY_TOKEN_FILE" in os.environ ): aws_creds = assume_aws_role( instance_config, service, assume_role_arn, assume_pod_identity, use_okta_role, assume_role_aws_account, ) environment.update(aws_creds) if use_service_auth_token: environment["YELP_SVC_AUTHZ_TOKEN"] = get_service_auth_token() elif use_sso_service_auth_token: environment["YELP_SVC_AUTHZ_TOKEN"] = get_sso_auth_token() local_run_environment = get_local_run_environment_vars( instance_config=instance_config, port0=chosen_port, framework=framework ) environment.update(local_run_environment) net = instance_config.get_net() memory = instance_config.get_mem() container_name = get_container_name() docker_params = instance_config.format_docker_parameters() healthcheck_mode, healthcheck_data = get_healthcheck_for_instance( service, instance, instance_config, chosen_port, soa_dir=soa_dir ) if healthcheck_mode is None: container_port = None interactive = True elif not user_port and not healthcheck and not healthcheck_only: container_port = None else: try: container_port = instance_config.get_container_port() except AttributeError: container_port = None simulate_healthcheck = ( healthcheck_only or healthcheck ) and healthcheck_mode is not None for container_mount_path, secret_content in secret_volumes.items(): temp_secret_folder = tempfile.mktemp(dir=os.environ.get("TMPDIR", "/nail/tmp")) os.makedirs(temp_secret_folder, exist_ok=True) temp_secret_filename = os.path.join(temp_secret_folder, str(uuid.uuid4())) # write the secret contents # Permissions will automatically be set to readable by "users" group # TODO: Make this readable only by "nobody" user? What about other non-standard users that people sometimes use inside the container? # -rw-r--r-- 1 dpopes users 3.2K Nov 28 19:16 854bdbad-30b8-4681-ae4e-854cb28075c5 try: # First try to write the file as a string # This is for text like config files with open(temp_secret_filename, "w") as f: f.write(secret_content) except TypeError: # If that fails, try to write it as bytes # This is for binary files like TLS keys with open(temp_secret_filename, "wb") as fb: fb.write(secret_content) # Append this to the list of volumes passed to docker run volumes.append(f"{temp_secret_filename}:{container_mount_path}:ro") docker_run_args = dict( memory=memory, chosen_port=chosen_port, container_port=container_port, container_name=container_name, volumes=volumes, env=environment, interactive=interactive, detach=simulate_healthcheck, docker_hash=docker_url, command=command, net=net, docker_params=docker_params, ) docker_run_cmd = get_docker_run_cmd(**docker_run_args) joined_docker_run_cmd = " ".join(docker_run_cmd) if dry_run: if json_dict: print(json.dumps(docker_run_args)) else: print(json.dumps(docker_run_cmd)) return 0 else: print("Running docker command:\n%s" % PaastaColors.grey(joined_docker_run_cmd)) merged_env = {**os.environ, **environment} if interactive or not simulate_healthcheck: # NOTE: This immediately replaces us with the docker run cmd. Docker # run knows how to clean up the running container in this situation. wrapper_path = shutil.which("paasta_docker_wrapper") # To properly simulate mesos, we pop the PATH, which is not available to # The executor merged_env.pop("PATH") execlpe(wrapper_path, *docker_run_cmd, merged_env) # For testing, when execlpe is patched out and doesn't replace us, we # still want to bail out. return 0 container_started = False container_id = None try: (returncode, output) = _run(docker_run_cmd, env=merged_env) if returncode != 0: print( "Failure trying to start your container!" "Returncode: %d" "Output:" "%s" "" "Fix that problem and try again." "http://y/paasta-troubleshooting" % (returncode, output), sep="\n", ) # Container failed to start so no need to cleanup; just bail. sys.exit(1) container_started = True container_id = get_container_id(docker_client, container_name) print("Found our container running with CID %s" % container_id) if simulate_healthcheck: healthcheck_result = simulate_healthcheck_on_service( instance_config=instance_config, docker_client=docker_client, container_id=container_id, healthcheck_mode=healthcheck_mode, healthcheck_data=healthcheck_data, healthcheck_enabled=healthcheck, ) def _output_exit_code(): returncode = docker_client.inspect_container(container_id)["State"][ "ExitCode" ] print(f"Container exited: {returncode})") if healthcheck_only: if container_started: _output_exit_code() _cleanup_container(docker_client, container_id) if healthcheck_mode is None: print( "--healthcheck-only, but no healthcheck is defined for this instance!" ) sys.exit(1) elif healthcheck_result is True: sys.exit(0) else: sys.exit(1) running = docker_client.inspect_container(container_id)["State"]["Running"] if running: print("Your service is now running! Tailing stdout and stderr:") for line in docker_client.logs( container_id, stderr=True, stream=True, ): # writing to sys.stdout.buffer lets us write the raw bytes we # get from the docker client without having to convert them to # a utf-8 string sys.stdout.buffer.write(line) sys.stdout.flush() else: _output_exit_code() returncode = 3 except KeyboardInterrupt: returncode = 3 # Cleanup if the container exits on its own or interrupted. if container_started: returncode = docker_client.inspect_container(container_id)["State"]["ExitCode"] _cleanup_container(docker_client, container_id) return returncode
docker-py has issues running a container with a TTY attached, so for consistency we execute 'docker run' directly in both interactive and non-interactive modes. In non-interactive mode when the run is complete, stop the container and remove it (with docker-py).
run_docker_container
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def format_command_for_type(command, instance_type, date): """ Given an instance_type, return a function that appropriately formats the command to be run. """ if instance_type == "tron": interpolated_command = parse_time_variables(command, date) return interpolated_command else: return command
Given an instance_type, return a function that appropriately formats the command to be run.
format_command_for_type
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def configure_and_run_docker_container( docker_client, docker_url, docker_sha, service, instance, cluster, system_paasta_config, args, assume_role_aws_account, pull_image=False, dry_run=False, ): """ Run Docker container by image hash with args set in command line. Function prints the output of run command in stdout. """ if instance is None and args.healthcheck_only: print("With --healthcheck-only, --instance MUST be provided!", file=sys.stderr) return 1 if instance is None and not sys.stdin.isatty(): print( "--instance and --cluster must be specified when using paasta local-run without a tty!", file=sys.stderr, ) return 1 soa_dir = args.yelpsoa_config_root volumes = args.volumes load_deployments = (docker_url is None or pull_image) and not docker_sha interactive = args.interactive try: if instance is None: instance_type = "adhoc" instance = "interactive" instance_config = get_default_interactive_config( service=service, cluster=cluster, soa_dir=soa_dir, load_deployments=load_deployments, ) interactive = True else: instance_type = validate_service_instance( service, instance, cluster, soa_dir ) instance_config = get_instance_config( service=service, instance=instance, cluster=cluster, load_deployments=load_deployments, soa_dir=soa_dir, ) except NoConfigurationForServiceError as e: print(str(e), file=sys.stderr) return 1 except NoDeploymentsAvailable: print( PaastaColors.red( "Error: No deployments.json found in %(soa_dir)s/%(service)s. " "You can generate this by running: " "generate_deployments_for_service -d %(soa_dir)s -s %(service)s" % {"soa_dir": soa_dir, "service": service} ), sep="\n", file=sys.stderr, ) return 1 if docker_sha is not None: instance_config.branch_dict = { "git_sha": docker_sha, "docker_image": build_docker_image_name(service=service, sha=docker_sha), "desired_state": "start", "force_bounce": None, } if docker_url is None: try: docker_url = instance_config.get_docker_url() except NoDockerImageError: if instance_config.get_deploy_group() is None: print( PaastaColors.red( f"Error: {service}.{instance} has no 'deploy_group' set. Please set one so " "the proper image can be used to run for this service." ), sep="", file=sys.stderr, ) else: print( PaastaColors.red( "Error: No sha has been marked for deployment for the %s deploy group.\n" "Please ensure this service has either run through a jenkins pipeline " "or paasta mark-for-deployment has been run for %s\n" % (instance_config.get_deploy_group(), service) ), sep="", file=sys.stderr, ) return 1 if pull_image: docker_pull_image(docker_url) for volume in instance_config.get_volumes( system_paasta_config.get_volumes(), ): if os.path.exists(volume["hostPath"]): volumes.append( "{}:{}:{}".format( volume["hostPath"], volume["containerPath"], volume["mode"].lower() ) ) else: print( PaastaColors.yellow( "Warning: Path %s does not exist on this host. Skipping this binding." % volume["hostPath"] ), file=sys.stderr, ) if interactive is True and args.cmd is None: command = "bash" elif args.cmd: command = args.cmd else: command_from_config = instance_config.get_cmd() if command_from_config: command = format_command_for_type( command=command_from_config, instance_type=instance_type, date=args.date ) else: command = instance_config.get_args() secret_provider_kwargs = { "vault_cluster_config": system_paasta_config.get_vault_cluster_config(), "vault_auth_method": args.vault_auth_method, "vault_token_file": args.vault_token_file, } return run_docker_container( docker_client=docker_client, service=service, instance=instance, docker_url=docker_url, volumes=volumes, interactive=interactive, command=command, healthcheck=args.healthcheck, healthcheck_only=args.healthcheck_only, user_port=args.user_port, instance_config=instance_config, soa_dir=args.yelpsoa_config_root, dry_run=dry_run, json_dict=args.dry_run_json_dict, framework=instance_type, secret_provider_name=system_paasta_config.get_secret_provider_name(), secret_provider_kwargs=secret_provider_kwargs, skip_secrets=args.skip_secrets, assume_pod_identity=args.assume_pod_identity, assume_role_arn=args.assume_role_arn, assume_role_aws_account=assume_role_aws_account, use_okta_role=args.use_okta_role, use_service_auth_token=args.use_service_auth_token, use_sso_service_auth_token=args.use_sso_service_auth_token, )
Run Docker container by image hash with args set in command line. Function prints the output of run command in stdout.
configure_and_run_docker_container
python
Yelp/paasta
paasta_tools/cli/cmds/local_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/local_run.py
Apache-2.0
def build_component_descriptions(components: Mapping[str, Mapping[str, Any]]) -> str: """Returns a colored description string for every log component based on its help attribute""" output = [] for k, v in components.items(): output.append(" {}: {}".format(v["color"](k), v["help"])) return "\n".join(output)
Returns a colored description string for every log component based on its help attribute
build_component_descriptions
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def check_timestamp_in_range( timestamp: datetime.datetime, start_time: datetime.datetime, end_time: datetime.datetime, ) -> bool: """A convenience function to check if a datetime.datetime timestamp is within the given start and end times, returns true if start_time or end_time is None :param timestamp: The timestamp to check :param start_time: The start of the interval :param end_time: The end of the interval :return: True if timestamp is within start_time and end_time range, False otherwise """ if timestamp is not None and start_time is not None and end_time is not None: if timestamp.tzinfo is None: timestamp = pytz.utc.localize(timestamp) return start_time < timestamp < end_time else: return True
A convenience function to check if a datetime.datetime timestamp is within the given start and end times, returns true if start_time or end_time is None :param timestamp: The timestamp to check :param start_time: The start of the interval :param end_time: The end of the interval :return: True if timestamp is within start_time and end_time range, False otherwise
check_timestamp_in_range
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def paasta_log_line_passes_filter( line: str, levels: Sequence[str], service: str, components: Iterable[str], clusters: Sequence[str], instances: List[str], pods: Iterable[str] = None, start_time: datetime.datetime = None, end_time: datetime.datetime = None, ) -> bool: """Given a (JSON-formatted) log line, return True if the line should be displayed given the provided levels, components, and clusters; return False otherwise. NOTE: Pods are optional as services that use Mesos do not operate with pods. """ try: parsed_line = json.loads(line) except ValueError: log.debug("Trouble parsing line as json. Skipping. Line: %r" % line) return False if ( (instances is None or parsed_line.get("instance") in instances) and (parsed_line.get("level") is None or parsed_line.get("level") in levels) and parsed_line.get("component") in components and ( parsed_line.get("cluster") in clusters or parsed_line.get("cluster") == ANY_CLUSTER ) ): timestamp = isodate.parse_datetime(parsed_line.get("timestamp")) if check_timestamp_in_range(timestamp, start_time, end_time): return True return False
Given a (JSON-formatted) log line, return True if the line should be displayed given the provided levels, components, and clusters; return False otherwise. NOTE: Pods are optional as services that use Mesos do not operate with pods.
paasta_log_line_passes_filter
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def extract_utc_timestamp_from_log_line(line: str) -> datetime.datetime: """ Extracts the timestamp from a log line of the format "<timestamp> <other data>" and returns a UTC datetime object or None if it could not parse the line """ # Extract ISO 8601 date per http://www.pelagodesign.com/blog/2009/05/20/iso-8601-date-validation-that-doesnt-suck/ iso_re = ( r"^([\+-]?\d{4}(?!\d{2}\b))((-?)((0[1-9]|1[0-2])(\3([12]\d|0[1-9]|3[01]))?|W([0-4]\d|5[0-2])(-?[1-7])?|" r"(00[1-9]|0[1-9]\d|[12]\d{2}|3([0-5]\d|6[1-6])))([T\s]((([01]\d|2[0-3])((:?)[0-5]\d)?|24\:?00)([\.,]\d+" r"(?!:))?)?(\17[0-5]\d([\.,]\d+)?)?([zZ]|([\+-])([01]\d|2[0-3]):?([0-5]\d)?)?)?)? " ) tokens = re.match(iso_re, line) if not tokens: # Could not parse line return None timestamp = tokens.group(0).strip() dt = isodate.parse_datetime(timestamp) utc_timestamp = datetime_convert_timezone(dt, dt.tzinfo, tz.tzutc()) return utc_timestamp
Extracts the timestamp from a log line of the format "<timestamp> <other data>" and returns a UTC datetime object or None if it could not parse the line
extract_utc_timestamp_from_log_line
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def print_log( line: str, requested_levels: Sequence[str], raw_mode: bool = False, strip_headers: bool = False, ) -> None: """Mostly a stub to ease testing. Eventually this may do some formatting or something. """ if raw_mode: # suppress trailing newline since scribereader already attached one print(line, end=" ", flush=True) else: print( prettify_log_line(line, requested_levels, strip_headers), flush=True, )
Mostly a stub to ease testing. Eventually this may do some formatting or something.
print_log
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def prettify_timestamp(timestamp: datetime.datetime) -> str: """Returns more human-friendly form of 'timestamp' without microseconds and in local time. """ dt = isodate.parse_datetime(timestamp) pretty_timestamp = datetime_from_utc_to_local(dt) return pretty_timestamp.strftime("%Y-%m-%d %H:%M:%S")
Returns more human-friendly form of 'timestamp' without microseconds and in local time.
prettify_timestamp
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def prettify_log_line( line: str, requested_levels: Sequence[str], strip_headers: bool ) -> str: """Given a line from the log, which is expected to be JSON and have all the things we expect, return a pretty formatted string containing relevant values. """ try: parsed_line = json.loads(line) except ValueError: log.debug("Trouble parsing line as json. Skipping. Line: %r" % line) return "Invalid JSON: %s" % line try: if strip_headers: return "%(timestamp)s %(message)s" % ( { "timestamp": prettify_timestamp(parsed_line["timestamp"]), "message": parsed_line["message"], } ) else: return "%(timestamp)s %(component)s - %(message)s" % ( { "timestamp": prettify_timestamp(parsed_line["timestamp"]), "component": prettify_component(parsed_line["component"]), "message": parsed_line["message"], } ) except KeyError: log.debug( "JSON parsed correctly but was missing a key. Skipping. Line: %r" % line ) return "JSON missing keys: %s" % line
Given a line from the log, which is expected to be JSON and have all the things we expect, return a pretty formatted string containing relevant values.
prettify_log_line
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def register_log_reader(name): """Returns a decorator that registers a log reader class at a given name so get_log_reader_classes can find it.""" def outer(log_reader_class): _log_reader_classes[name] = log_reader_class return log_reader_class return outer
Returns a decorator that registers a log reader class at a given name so get_log_reader_classes can find it.
register_log_reader
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def run_code_over_scribe_envs( self, clusters: Sequence[str], components: Iterable[str], callback: Callable[..., None], ) -> None: """Iterates over the scribe environments for a given set of clusters and components, executing functions for each component :param clusters: The set of clusters :param components: The set of components :param callback: The callback function. Gets called with (component_name, stream_info, scribe_env, cluster) The cluster field will only be set if the component is set to per_cluster """ scribe_envs: Set[str] = set() for cluster in clusters: scribe_envs.update(self.determine_scribereader_envs(components, cluster)) log.debug("Connect to these scribe envs to tail scribe logs: %s" % scribe_envs) for scribe_env in scribe_envs: # These components all get grouped in one call for backwards compatibility grouped_components = {"build", "deploy", "monitoring"} if any([component in components for component in grouped_components]): stream_info = self.get_stream_info("default") callback(components, stream_info, scribe_env, cluster=None) non_defaults = set(components) - grouped_components for component in non_defaults: stream_info = self.get_stream_info(component) if stream_info.per_cluster: for cluster in clusters: callback([component], stream_info, scribe_env, cluster=cluster) else: callback([component], stream_info, scribe_env, cluster=None)
Iterates over the scribe environments for a given set of clusters and components, executing functions for each component :param clusters: The set of clusters :param components: The set of components :param callback: The callback function. Gets called with (component_name, stream_info, scribe_env, cluster) The cluster field will only be set if the component is set to per_cluster
run_code_over_scribe_envs
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def tail_logs( self, service: str, levels: Sequence[str], components: Iterable[str], clusters: Sequence[str], instances: List[str], pods: Iterable[str] = None, raw_mode: bool = False, strip_headers: bool = False, ) -> None: """Sergeant function for spawning off all the right log tailing functions. NOTE: This function spawns concurrent processes and doesn't necessarily worry about cleaning them up! That's because we expect to just exit the main process when this function returns (as main() does). Someone calling this function directly with something like "while True: tail_paasta_logs()" may be very sad. NOTE: We try pretty hard to suppress KeyboardInterrupts to prevent big useless stack traces, but it turns out to be non-trivial and we fail ~10% of the time. We decided we could live with it and we're shipping this to see how it fares in real world testing. Here are some things we read about this problem: * http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool * http://jtushman.github.io/blog/2014/01/14/python-%7C-multiprocessing-and-interrupts/ * http://bryceboe.com/2010/08/26/python-multiprocessing-and-keyboardinterrupt/ We could also try harder to terminate processes from more places. We could use process.join() to ensure things have a chance to die. We punted these things. It's possible this whole multiprocessing strategy is wrong-headed. If you are reading this code to curse whoever wrote it, see discussion in PAASTA-214 and https://reviewboard.yelpcorp.com/r/87320/ and feel free to implement one of the other options. """ queue: Queue = Queue() spawned_processes = [] def callback( components: Iterable[str], stream_info: ScribeComponentStreamInfo, scribe_env: str, cluster: str, ) -> None: kw = { "scribe_env": scribe_env, "service": service, "levels": levels, "components": components, "clusters": clusters, "instances": instances, "pods": pods, "queue": queue, "filter_fn": stream_info.filter_fn, } if stream_info.per_cluster: kw["stream_name"] = stream_info.stream_name_fn(service, cluster) kw["clusters"] = [cluster] else: kw["stream_name"] = stream_info.stream_name_fn(service) log.debug( "Running the equivalent of 'scribereader {} {} {}'".format( self.get_scribereader_selector(scribe_env), scribe_env, kw["stream_name"], ) ) process = Process(target=self.scribe_tail, kwargs=kw) spawned_processes.append(process) process.start() self.run_code_over_scribe_envs( clusters=clusters, components=components, callback=callback ) # Pull things off the queue and output them. If any thread dies we are no # longer presenting the user with the full picture so we quit. # # This is convenient for testing, where a fake scribe_tail() can emit a # fake log and exit. Without the thread aliveness check, we would just sit # here forever even though the threads doing the tailing are all gone. # # NOTE: A noisy tailer in one scribe_env (such that the queue never gets # empty) will prevent us from ever noticing that another tailer has died. while True: try: # This is a blocking call with a timeout for a couple reasons: # # * If the queue is empty and we get_nowait(), we loop very tightly # and accomplish nothing. # # * Testing revealed a race condition where print_log() is called # and even prints its message, but this action isn't recorded on # the patched-in print_log(). This resulted in test flakes. A short # timeout seems to soothe this behavior: running this test 10 times # with a timeout of 0.0 resulted in 2 failures; running it with a # timeout of 0.1 resulted in 0 failures. # # * There's a race where thread1 emits its log line and exits # before thread2 has a chance to do anything, causing us to bail # out via the Queue Empty and thread aliveness check. # # We've decided to live with this for now and see if it's really a # problem. The threads in test code exit pretty much immediately # and a short timeout has been enough to ensure correct behavior # there, so IRL with longer start-up times for each thread this # will surely be fine. # # UPDATE: Actually this is leading to a test failure rate of about # 1/10 even with timeout of 1s. I'm adding a sleep to the threads # in test code to smooth this out, then pulling the trigger on # moving that test to integration land where it belongs. line = queue.get(block=True, timeout=0.1) print_log(line, levels, raw_mode, strip_headers) except Empty: try: # If there's nothing in the queue, take this opportunity to make # sure all the tailers are still running. running_processes = [tt.is_alive() for tt in spawned_processes] if not running_processes or not all(running_processes): log.warning( "Quitting because I expected %d log tailers to be alive but only %d are alive." % (len(spawned_processes), running_processes.count(True)) ) for process in spawned_processes: if process.is_alive(): process.terminate() break except KeyboardInterrupt: # Die peacefully rather than printing N threads worth of stack # traces. # # This extra nested catch is because it's pretty easy to be in # the above try block when the user hits Ctrl-C which otherwise # dumps a stack trace. log.warning("Terminating.") break except KeyboardInterrupt: # Die peacefully rather than printing N threads worth of stack # traces. log.warning("Terminating.") break
Sergeant function for spawning off all the right log tailing functions. NOTE: This function spawns concurrent processes and doesn't necessarily worry about cleaning them up! That's because we expect to just exit the main process when this function returns (as main() does). Someone calling this function directly with something like "while True: tail_paasta_logs()" may be very sad. NOTE: We try pretty hard to suppress KeyboardInterrupts to prevent big useless stack traces, but it turns out to be non-trivial and we fail ~10% of the time. We decided we could live with it and we're shipping this to see how it fares in real world testing. Here are some things we read about this problem: * http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool * http://jtushman.github.io/blog/2014/01/14/python-%7C-multiprocessing-and-interrupts/ * http://bryceboe.com/2010/08/26/python-multiprocessing-and-keyboardinterrupt/ We could also try harder to terminate processes from more places. We could use process.join() to ensure things have a chance to die. We punted these things. It's possible this whole multiprocessing strategy is wrong-headed. If you are reading this code to curse whoever wrote it, see discussion in PAASTA-214 and https://reviewboard.yelpcorp.com/r/87320/ and feel free to implement one of the other options.
tail_logs
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def scribe_tail( self, scribe_env: str, stream_name: str, service: str, levels: Sequence[str], components: Iterable[str], clusters: Sequence[str], instances: List[str], pods: Iterable[str], queue: Queue, filter_fn: Callable, parse_fn: Callable = None, ) -> None: """Creates a scribetailer for a particular environment. When it encounters a line that it should report, it sticks it into the provided queue. This code is designed to run in a thread as spawned by tail_paasta_logs(). """ try: log.debug(f"Going to tail {stream_name} scribe stream in {scribe_env}") host, port = scribereader.get_tail_host_and_port( **scribe_env_to_locations(scribe_env), ) tailer = scribereader.get_stream_tailer(stream_name, host, port) for line in tailer: if parse_fn: line = parse_fn(line, clusters, service) if filter_fn( line, levels, service, components, clusters, instances, pods ): queue.put(line) except KeyboardInterrupt: # Die peacefully rather than printing N threads worth of stack # traces. pass except StreamTailerSetupError as e: if "No data in stream" in str(e): log.warning(f"Scribe stream {stream_name} is empty on {scribe_env}") log.warning( "Don't Panic! This may or may not be a problem depending on if you expect there to be" ) log.warning("output within this stream.") # Enter a wait so the process isn't considered dead. # This is just a large number, since apparently some python interpreters # don't like being passed sys.maxsize. sleep(2**16) else: raise
Creates a scribetailer for a particular environment. When it encounters a line that it should report, it sticks it into the provided queue. This code is designed to run in a thread as spawned by tail_paasta_logs().
scribe_tail
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def determine_scribereader_envs( self, components: Iterable[str], cluster: str ) -> Set[str]: """Returns a list of environments that scribereader needs to connect to based on a given list of components and the cluster involved. Some components are in certain environments, regardless of the cluster. Some clusters do not match up with the scribe environment names, so we figure that out here""" envs: List[str] = [] for component in components: # If a component has a 'source_env', we use that # otherwise we lookup what scribe env is associated with a given cluster env = LOG_COMPONENTS[component].get( "source_env", self.cluster_to_scribe_env(cluster) ) if "additional_source_envs" in LOG_COMPONENTS[component]: envs += LOG_COMPONENTS[component]["additional_source_envs"] envs.append(env) return set(envs)
Returns a list of environments that scribereader needs to connect to based on a given list of components and the cluster involved. Some components are in certain environments, regardless of the cluster. Some clusters do not match up with the scribe environment names, so we figure that out here
determine_scribereader_envs
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def cluster_to_scribe_env(self, cluster: str) -> str: """Looks up the particular scribe env associated with a given paasta cluster. Scribe has its own "environment" key, which doesn't always map 1:1 with our cluster names, so we have to maintain a manual mapping. This mapping is deployed as a config file via puppet as part of the public config deployed to every server. """ env = self.cluster_map.get(cluster, None) if env is None: print("I don't know where scribe logs for %s live?" % cluster) sys.exit(1) else: return env
Looks up the particular scribe env associated with a given paasta cluster. Scribe has its own "environment" key, which doesn't always map 1:1 with our cluster names, so we have to maintain a manual mapping. This mapping is deployed as a config file via puppet as part of the public config deployed to every server.
cluster_to_scribe_env
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def scribe_env_to_locations(scribe_env) -> Mapping[str, Any]: """Converts a scribe environment to a dictionary of locations. The return value is meant to be used as kwargs for `scribereader.get_tail_host_and_port`. """ locations = {"ecosystem": None, "region": None, "superregion": None} if scribe_env in scribereader.PROD_REGIONS: locations["region"] = scribe_env elif scribe_env in scribereader.PROD_SUPERREGIONS: locations["superregion"] = scribe_env else: # non-prod envs are expressed as ecosystems locations["ecosystem"] = scribe_env return locations
Converts a scribe environment to a dictionary of locations. The return value is meant to be used as kwargs for `scribereader.get_tail_host_and_port`.
scribe_env_to_locations
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def generate_start_end_time( from_string: str = "30m", to_string: str = None ) -> Tuple[datetime.datetime, datetime.datetime]: """Parses the --from and --to command line arguments to create python datetime objects representing the start and end times for log retrieval :param from_string: The --from argument, defaults to 30 minutes :param to_string: The --to argument, defaults to the time right now :return: A tuple containing start_time, end_time, which specify the interval of log retrieval """ if to_string is None: end_time = datetime.datetime.utcnow() else: # Try parsing as a a natural time duration first, if that fails move on to # parsing as an ISO-8601 timestamp to_duration = timeparse(to_string) if to_duration is not None: end_time = datetime.datetime.utcnow() - datetime.timedelta( seconds=to_duration ) else: end_time = isodate.parse_datetime(to_string) if not end_time: raise ValueError( "--to argument not in ISO8601 format and not a valid pytimeparse duration" ) from_duration = timeparse(from_string) if from_duration is not None: start_time = datetime.datetime.utcnow() - datetime.timedelta( seconds=from_duration ) else: start_time = isodate.parse_datetime(from_string) if not start_time: raise ValueError( "--from argument not in ISO8601 format and not a valid pytimeparse duration" ) # Covert the timestamps to something timezone aware start_time = pytz.utc.localize(start_time) end_time = pytz.utc.localize(end_time) if start_time > end_time: raise ValueError("Start time bigger than end time") return start_time, end_time
Parses the --from and --to command line arguments to create python datetime objects representing the start and end times for log retrieval :param from_string: The --from argument, defaults to 30 minutes :param to_string: The --to argument, defaults to the time right now :return: A tuple containing start_time, end_time, which specify the interval of log retrieval
generate_start_end_time
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def paasta_logs(args: argparse.Namespace) -> int: """Print the logs for as Paasta service. :param args: argparse.Namespace obj created from sys.args by cli""" soa_dir = args.soa_dir service = figure_out_service_name(args, soa_dir) clusters = args.cluster if ( args.cluster is None or args.instance is None or len(args.instance.split(",")) > 2 ): print( PaastaColors.red("You must specify one cluster and one instance."), file=sys.stderr, ) return 1 if verify_instances(args.instance, service, clusters, soa_dir): return 1 instance = args.instance if args.pods is None: pods = None else: pods = args.pods.split(",") components = args.components if "app_output" in args.components: components.remove("app_output") components.add("stdout") components.add("stderr") if args.verbose: log.setLevel(logging.DEBUG) else: log.setLevel(logging.INFO) levels = [DEFAULT_LOGLEVEL, "debug"] log.debug(f"Going to get logs for {service} on cluster {clusters}") log_reader = get_log_reader(components) if not validate_filtering_args(args, log_reader): return 1 # They haven't specified what kind of filtering they want, decide for them if args.line_count is None and args.time_from is None and not args.tail: return pick_default_log_mode( args, log_reader, service, levels, components, clusters, instance, pods ) if args.tail: print( PaastaColors.cyan("Tailing logs and applying filters..."), file=sys.stderr ) log_reader.tail_logs( service=service, levels=levels, components=components, clusters=clusters, instances=[instance], pods=pods, raw_mode=args.raw_mode, strip_headers=args.strip_headers, ) return 0 # If the logger doesn't support offsetting the number of lines by a particular line number # there is no point in distinguishing between a positive/negative number of lines since it # can only get the last N lines if not log_reader.SUPPORTS_LINE_OFFSET and args.line_count is not None: args.line_count = abs(args.line_count) # Handle line based filtering if args.line_count is not None and args.line_offset is None: log_reader.print_last_n_logs( service=service, line_count=args.line_count, levels=levels, components=components, clusters=clusters, instances=[instance], pods=pods, raw_mode=args.raw_mode, strip_headers=args.strip_headers, ) return 0 elif args.line_count is not None and args.line_offset is not None: log_reader.print_logs_by_offset( service=service, line_count=args.line_count, line_offset=args.line_offset, levels=levels, components=components, clusters=clusters, instances=[instance], pods=pods, raw_mode=args.raw_mode, strip_headers=args.strip_headers, ) return 0 # Handle time based filtering try: start_time, end_time = generate_start_end_time(args.time_from, args.time_to) except ValueError as e: print(PaastaColors.red(str(e)), file=sys.stderr) return 1 log_reader.print_logs_by_time( service=service, start_time=start_time, end_time=end_time, levels=levels, components=components, clusters=clusters, instances=[instance], pods=pods, raw_mode=args.raw_mode, strip_headers=args.strip_headers, ) return 0
Print the logs for as Paasta service. :param args: argparse.Namespace obj created from sys.args by cli
paasta_logs
python
Yelp/paasta
paasta_tools/cli/cmds/logs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/logs.py
Apache-2.0
def can_run_metric_watcher_threads( service: str, soa_dir: str, ) -> bool: """ Cannot run slo and metric watcher threads together for now. SLO Watcher Threads take precedence over metric watcher threads. Metric Watcher Threads can run if there are no SLOs available. """ slo_files = get_files_of_type_in_dir( file_type="slo", service=service, soa_dir=soa_dir ) rollback_files = get_files_of_type_in_dir( file_type="rollback", service=service, soa_dir=soa_dir ) return bool(not slo_files and rollback_files)
Cannot run slo and metric watcher threads together for now. SLO Watcher Threads take precedence over metric watcher threads. Metric Watcher Threads can run if there are no SLOs available.
can_run_metric_watcher_threads
python
Yelp/paasta
paasta_tools/cli/cmds/mark_for_deployment.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/mark_for_deployment.py
Apache-2.0
def get_slack_channel(self) -> str: """Safely get some slack channel to post to. Defaults to ``DEFAULT_SLACK_CHANNEL``. Currently only uses the first slack channel available, and doesn't support multi-channel notifications.""" if self.deploy_info.get("slack_notify", True): try: channel = self.deploy_info.get("slack_channels")[0] # Nightly jenkins builds will often re-deploy master. This causes Slack noise that wasn't present before # the auto-rollbacks work. if self.deployment_version == self.old_deployment_version: print( f"Rollback image matches rollforward image: {self.deployment_version}, " f"Sending slack notifications to {DEFAULT_SLACK_CHANNEL} instead of {channel}." ) return DEFAULT_SLACK_CHANNEL else: return channel except (IndexError, AttributeError, TypeError): return DEFAULT_SLACK_CHANNEL else: return DEFAULT_SLACK_CHANNEL
Safely get some slack channel to post to. Defaults to ``DEFAULT_SLACK_CHANNEL``. Currently only uses the first slack channel available, and doesn't support multi-channel notifications.
get_slack_channel
python
Yelp/paasta
paasta_tools/cli/cmds/mark_for_deployment.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/mark_for_deployment.py
Apache-2.0
def paasta_pause_service_autoscaler(args): """With a given cluster and duration, pauses the paasta service autoscaler in that cluster for duration minutes""" if args.duration > MAX_PAUSE_DURATION: if not args.force: print( "Specified duration: {d} longer than max: {m}".format( d=args.duration, m=MAX_PAUSE_DURATION ) ) print("If you are really sure, run again with --force") return 3 if args.info: return_code = get_service_autoscale_pause_time(args.cluster) elif args.resume: return_code = delete_service_autoscale_pause_time(args.cluster) _log_audit(action="resume-service-autoscaler", cluster=args.cluster) else: minutes = args.duration return_code = update_service_autoscale_pause_time(args.cluster, minutes) _log_audit( action="pause-service-autoscaler", action_details={"duration": minutes}, cluster=args.cluster, ) return return_code
With a given cluster and duration, pauses the paasta service autoscaler in that cluster for duration minutes
paasta_pause_service_autoscaler
python
Yelp/paasta
paasta_tools/cli/cmds/pause_service_autoscaler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/pause_service_autoscaler.py
Apache-2.0
def is_docker_image_already_in_registry(service: str, soa_dir: str, sha: str, image_version: Optional[str] = None) -> bool: # type: ignore """Verifies that docker image exists in the paasta registry. :param service: name of the service :param sha: git sha :returns: True, False or raises requests.exceptions.RequestException """ registry_uri = get_service_docker_registry(service, soa_dir) repository, tag = build_docker_image_name(service, sha, image_version).split(":", 1) creds = read_docker_registry_creds(registry_uri) uri = f"{registry_uri}/v2/{repository}/manifests/{tag}" with requests.Session() as s: try: url = "https://" + uri r = ( s.head(url, timeout=30) if creds[0] is None else s.head(url, auth=creds, timeout=30) ) except SSLError: # If no auth creds, fallback to trying http if creds[0] is not None: raise url = "http://" + uri r = s.head(url, timeout=30) if r.status_code == 200: return True elif r.status_code == 404: return False # No Such Repository Error r.raise_for_status()
Verifies that docker image exists in the paasta registry. :param service: name of the service :param sha: git sha :returns: True, False or raises requests.exceptions.RequestException
is_docker_image_already_in_registry
python
Yelp/paasta
paasta_tools/cli/cmds/push_to_registry.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/push_to_registry.py
Apache-2.0
def get_versions_for_service( service: str, deploy_groups: Collection[str], soa_dir: str ) -> Mapping[DeploymentVersion, Tuple[str, str]]: """Returns a dictionary of 2-tuples of the form (timestamp, deploy_group) for each version tuple of (deploy sha, image_version)""" if service is None: return {} git_url = get_git_url(service=service, soa_dir=soa_dir) all_deploy_groups = list_deploy_groups(service=service, soa_dir=soa_dir) deploy_groups, _ = validate_given_deploy_groups(all_deploy_groups, deploy_groups) previously_deployed_versions: Dict[DeploymentVersion, Tuple[str, str]] = {} for ref, sha in list_remote_refs(git_url).items(): regex_match = extract_tags(ref) try: deploy_group = regex_match["deploy_group"] tstamp = regex_match["tstamp"] image_version = regex_match["image_version"] except KeyError: pass else: # Now we filter and dedup by picking the most recent sha for a deploy group # Note that all strings are greater than '' if deploy_group in deploy_groups: version = DeploymentVersion(sha=sha, image_version=image_version) tstamp_so_far = previously_deployed_versions.get(version, ("all", ""))[ 1 ] if tstamp > tstamp_so_far: previously_deployed_versions[version] = (tstamp, deploy_group) return previously_deployed_versions
Returns a dictionary of 2-tuples of the form (timestamp, deploy_group) for each version tuple of (deploy sha, image_version)
get_versions_for_service
python
Yelp/paasta
paasta_tools/cli/cmds/rollback.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/rollback.py
Apache-2.0
def paasta_rollback(args: argparse.Namespace) -> int: """Call mark_for_deployment with rollback parameters :param args: contains all the arguments passed onto the script: service, deploy groups and sha. These arguments will be verified and passed onto mark_for_deployment. """ soa_dir = args.soa_dir service = figure_out_service_name(args, soa_dir) deploy_info = get_deploy_info(service=service, soa_dir=args.soa_dir) if not can_user_deploy_service(deploy_info, service): return 1 git_url = get_git_url(service, soa_dir) if args.all_deploy_groups: given_deploy_groups = list_deploy_groups(service=service, soa_dir=soa_dir) else: given_deploy_groups = { deploy_group for deploy_group in args.deploy_groups.split(",") if deploy_group } all_deploy_groups = list_deploy_groups(service=service, soa_dir=soa_dir) deploy_groups, invalid = validate_given_deploy_groups( all_deploy_groups, given_deploy_groups ) if len(invalid) > 0: print( PaastaColors.yellow( "These deploy groups are not valid and will be skipped: %s.\n" % (",").join(invalid) ) ) if len(deploy_groups) == 0 and not args.all_deploy_groups: print( PaastaColors.red( "ERROR: No valid deploy groups specified for %s.\n Use the flag -a to rollback all valid deploy groups for this service" % (service) ) ) return 1 versions = get_versions_for_service(service, deploy_groups, soa_dir) commit = args.commit image_version = args.image_version new_version = DeploymentVersion(sha=commit, image_version=image_version) if not commit: print("Please specify a commit to mark for rollback (-k, --commit).") list_previous_versions( service, deploy_groups, bool(given_deploy_groups), versions ) return 1 elif new_version not in versions and not args.force: print( PaastaColors.red( f"This version {new_version} has never been deployed before." ) ) print("Please double check it or use --force to skip this verification.\n") list_previous_versions( service, deploy_groups, bool(given_deploy_groups), versions ) return 1 try: validate_full_git_sha(args.commit) except argparse.ArgumentTypeError as e: print(PaastaColors.red(f"Error: {e}")) return 1 # TODO: Add similar check for when image_version is empty and no-commit redeploys is enforced for requested deploy_group returncode = 0 for deploy_group in deploy_groups: rolled_back_from = get_currently_deployed_version(service, deploy_group) returncode |= mark_for_deployment( git_url=git_url, service=service, deploy_group=deploy_group, commit=commit, image_version=image_version, ) # we could also gate this by the return code from m-f-d, but we probably care more about someone wanting to # rollback than we care about if the underlying machinery was successfully able to complete the request if rolled_back_from != new_version: audit_action_details = { "rolled_back_from": str(rolled_back_from), "rolled_back_to": str(new_version), "rollback_type": RollbackTypes.USER_INITIATED_ROLLBACK.value, "deploy_group": deploy_group, } _log_audit( action="rollback", action_details=audit_action_details, service=service ) if returncode == 0: print( PaastaColors.yellow( f"WARNING: You MUST manually revert changes in Git! Use 'git revert {rolled_back_from.sha}', and go through the normal push process. " ) ) print( PaastaColors.yellow( f"WARNING: Failing to do so means that Jenkins will redeploy the latest code on the next scheduled build!" ) ) return returncode
Call mark_for_deployment with rollback parameters :param args: contains all the arguments passed onto the script: service, deploy groups and sha. These arguments will be verified and passed onto mark_for_deployment.
paasta_rollback
python
Yelp/paasta
paasta_tools/cli/cmds/rollback.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/rollback.py
Apache-2.0
def _add_and_update_args(parser: argparse.ArgumentParser): """common args for `add` and `update`.""" parser.add_argument( "-p", "--plain-text", required=False, type=str, help="Optionally specify the secret as a command line argument", ) parser.add_argument( "-i", "--stdin", required=False, action="store_true", default=False, help="Optionally pass the plaintext from stdin", ) parser.add_argument( "--cross-env-motivation", required=False, type=str, help=( "Provide motivation in case the same value is being duplicated " "across multiple runtime environments when adding or updating a secret" ), metavar="MOTIVATION", ) parser.add_argument( "-n", "--secret-name", type=check_secret_name, required=True, help="The name of the secret to create/update, " "this is the name you will reference in your " "services yaml files and should " "be unique per service.", ) parser.add_argument( # type: ignore "-c", "--clusters", help="A comma-separated list of clusters to create secrets for. " "Note: this is translated to ecosystems because Vault is run " "at an ecosystem level. As a result you can only have different " "secrets per ecosystem. (it is not possible for example to encrypt " "a different value for pnw-prod vs nova-prod. " "Defaults to all clusters in which the service runs. " "For example: --clusters pnw-prod,nova-prod ", ).completer = lazy_choices_completer(list_clusters)
common args for `add` and `update`.
_add_and_update_args
python
Yelp/paasta
paasta_tools/cli/cmds/secret.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/secret.py
Apache-2.0
def get_docker_image( args: argparse.Namespace, instance_config: InstanceConfig ) -> Optional[str]: """ Since the Docker image digest used to launch the Spark cluster is obtained by inspecting local Docker images, we need to ensure that the Docker image exists locally or is pulled in all scenarios. """ # docker image is built locally then pushed if args.build: return build_and_push_docker_image(args) docker_url = "" if args.image: docker_url = args.image else: try: docker_url = instance_config.get_docker_url() except NoDockerImageError: print( PaastaColors.red( "Error: No sha has been marked for deployment for the %s deploy group.\n" "Please ensure this service has either run through a jenkins pipeline " "or paasta mark-for-deployment has been run for %s\n" % (instance_config.get_deploy_group(), args.service) ), sep="", file=sys.stderr, ) return None print( "Please wait while the image (%s) is pulled (times out after 5m)..." % docker_url, file=sys.stderr, ) # Need sudo for credentials when pulling images from paasta docker registry (docker-paasta.yelpcorp.com) # However, in CI env, we can't connect to docker via root and we can pull with user `jenkins` is_ci_env = "CI" in os.environ cmd_prefix = "" if is_ci_env else "sudo -H " retcode, _ = _run(f"{cmd_prefix}docker pull {docker_url}", stream=True, timeout=300) if retcode != 0: print( "\nPull failed. Are you authorized to run docker commands?", file=sys.stderr, ) return None return docker_url
Since the Docker image digest used to launch the Spark cluster is obtained by inspecting local Docker images, we need to ensure that the Docker image exists locally or is pulled in all scenarios.
get_docker_image
python
Yelp/paasta
paasta_tools/cli/cmds/spark_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/spark_run.py
Apache-2.0
def get_spark_env( args: argparse.Namespace, spark_conf_str: str, aws_creds: Tuple[Optional[str], Optional[str], Optional[str]], ui_port: str, system_paasta_config: SystemPaastaConfig, ) -> Dict[str, str]: """Create the env config dict to configure on the docker container""" spark_env = {} access_key, secret_key, session_token = aws_creds if access_key: spark_env["AWS_ACCESS_KEY_ID"] = access_key spark_env["AWS_SECRET_ACCESS_KEY"] = secret_key if session_token is not None: spark_env["AWS_SESSION_TOKEN"] = session_token spark_env["AWS_DEFAULT_REGION"] = args.aws_region spark_env["PAASTA_LAUNCHED_BY"] = get_possible_launched_by_user_variable_from_env() spark_env["PAASTA_INSTANCE_TYPE"] = "spark" # Run spark (and mesos framework) as root. spark_env["SPARK_USER"] = "root" spark_env["SPARK_OPTS"] = spark_conf_str # Default configs to start the jupyter notebook server if args.cmd == "jupyter-lab": spark_env["JUPYTER_RUNTIME_DIR"] = "/source/.jupyter" spark_env["JUPYTER_DATA_DIR"] = "/source/.jupyter" spark_env["JUPYTER_CONFIG_DIR"] = "/source/.jupyter" elif args.cmd == "history-server": dirs = args.work_dir.split(":") spark_env["SPARK_LOG_DIR"] = dirs[1] if not args.spark_args or not args.spark_args.startswith( "spark.history.fs.logDirectory" ): print( "history-server requires spark.history.fs.logDirectory in spark-args", file=sys.stderr, ) sys.exit(1) spark_env["SPARK_HISTORY_OPTS"] = ( f"-D{args.spark_args} " f"-Dspark.history.ui.port={ui_port}" ) spark_env["SPARK_DAEMON_CLASSPATH"] = "/opt/spark/extra_jars/*" spark_env["SPARK_NO_DAEMONIZE"] = "true" if args.get_eks_token_via_iam_user: with open(SPARK_DRIVER_IAM_USER) as f: config = ConfigParser() config.read_file(f) # these env variables are consumed by a script specified in the spark kubeconfig - and which will result in a tightly-scoped IAM identity being used for EKS cluster access spark_env["GET_EKS_TOKEN_AWS_ACCESS_KEY_ID"] = config["default"][ "aws_access_key_id" ] spark_env["GET_EKS_TOKEN_AWS_SECRET_ACCESS_KEY"] = config["default"][ "aws_secret_access_key" ] spark_env["KUBECONFIG"] = system_paasta_config.get_spark_iam_user_kubeconfig() else: spark_env["KUBECONFIG"] = system_paasta_config.get_spark_kubeconfig() return spark_env
Create the env config dict to configure on the docker container
get_spark_env
python
Yelp/paasta
paasta_tools/cli/cmds/spark_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/spark_run.py
Apache-2.0
def _calculate_docker_shared_memory_size(shm_size: Optional[str]) -> str: """In Order of preference: 1. Argument: --docker-shm-size 3. Default """ if shm_size: return shm_size return DEFAULT_DOCKER_SHM_SIZE
In Order of preference: 1. Argument: --docker-shm-size 3. Default
_calculate_docker_shared_memory_size
python
Yelp/paasta
paasta_tools/cli/cmds/spark_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/spark_run.py
Apache-2.0
def build_and_push_docker_image(args: argparse.Namespace) -> Optional[str]: """ Build an image if the default Spark service image is not preferred. The image needs to be pushed to a registry for the Spark executors to pull. """ if not makefile_responds_to("cook-image"): print( "A local Makefile with a 'cook-image' target is required for --build", file=sys.stderr, ) return None default_tag = "{}-{}".format(DEFAULT_SPARK_DOCKER_IMAGE_PREFIX, get_username()) docker_tag = os.environ.get("DOCKER_TAG", default_tag) os.environ["DOCKER_TAG"] = docker_tag cook_return = paasta_cook_image( args=None, service=args.service, soa_dir=args.yelpsoa_config_root ) if cook_return != 0: return None registry_uri = args.docker_registry or _get_adhoc_docker_registry( service=args.service, soa_dir=args.yelpsoa_config_root, ) docker_url = f"{registry_uri}/{docker_tag}" command = f"docker tag {docker_tag} {docker_url}" print(PaastaColors.grey(command)) retcode, _ = _run(command, stream=True) if retcode != 0: return None if registry_uri != DEFAULT_SPARK_DOCKER_REGISTRY: command = "sudo -H docker push %s" % docker_url else: command = "docker push %s" % docker_url print(PaastaColors.grey(command)) retcode, output = _run(command, stream=False) if retcode != 0: return None # With unprivileged docker, the digest on the remote registry may not match the digest # in the local environment. Because of this, we have to parse the digest message from the # server response and use downstream when launching spark executors # Output from `docker push` with unprivileged docker looks like # Using default tag: latest # The push refers to repository [docker-dev.yelpcorp.com/paasta-spark-run-dpopes:latest] # latest: digest: sha256:0a43aa65174a400bd280d48d460b73eb49b0ded4072c9e173f919543bf693557 # With privileged docker, the last line has an extra "size: 123" # latest: digest: sha256:0a43aa65174a400bd280d48d460b73eb49b0ded4072c9e173f919543bf693557 size: 52 digest_line = output.split("\n")[-1] digest_match = re.match(r"[^:]*: [^:]*: (?P<digest>[^\s]*)", digest_line) if not digest_match: raise ValueError(f"Could not determine digest from output: {output}") digest = digest_match.group("digest") image_url = f"{docker_url}@{digest}" # If the local digest doesn't match the remote digest AND the registry is # non-default (which requires requires authentication, and consequently sudo), # downstream `docker run` commands will fail trying to authenticate. # To work around this, we can proactively `sudo docker pull` here so that # the image exists locally and can be `docker run` without sudo if registry_uri != DEFAULT_SPARK_DOCKER_REGISTRY: command = f"sudo -H docker pull {image_url}" print(PaastaColors.grey(command)) retcode, output = _run(command, stream=False) if retcode != 0: raise NoDockerImageError(f"Could not pull {image_url}: {output}") return image_url
Build an image if the default Spark service image is not preferred. The image needs to be pushed to a registry for the Spark executors to pull.
build_and_push_docker_image
python
Yelp/paasta
paasta_tools/cli/cmds/spark_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/spark_run.py
Apache-2.0
def update_args_from_tronfig(args: argparse.Namespace) -> Optional[Dict[str, str]]: """ Load and check the following config fields from the provided Tronfig. - executor - pool - iam_role - iam_role_provider - force_spark_resource_configs - max_runtime - command - env - spark_args Returns: environment variables dictionary or None if failed. """ action_dict = parse_tronfig(args.tronfig, args.job_id) if action_dict is None: print( PaastaColors.red(f"Unable to get configs from job-id: {args.job_id}"), file=sys.stderr, ) return None # executor === spark if action_dict.get("executor", "") != "spark": print( PaastaColors.red("Invalid Tronfig: executor should be 'spark'"), file=sys.stderr, ) return None # iam_role / aws_profile if ( "iam_role" in action_dict and action_dict.get("iam_role_provider", "aws") != "aws" ): print( PaastaColors.red("Invalid Tronfig: iam_role_provider should be 'aws'"), file=sys.stderr, ) return None # Other args: map Tronfig YAML fields to spark-run CLI args fields_to_args = { "pool": "pool", "iam_role": "assume_aws_role", "force_spark_resource_configs": "force_spark_resource_configs", "max_runtime": "timeout_job_runtime", "command": "cmd", "spark_args": "spark_args", } for field_name, arg_name in fields_to_args.items(): if field_name in action_dict: value = action_dict[field_name] # Convert spark_args values from dict to a string "k1=v1 k2=v2" if field_name == "spark_args": value = " ".join([f"{k}={v}" for k, v in dict(value).items()]) # Beautify for printing arg_name_str = (f"--{arg_name.replace('_', '-')}").ljust(31, " ") # Only load iam_role value if --aws-profile is not set if field_name == "iam_role" and args.aws_profile is not None: print( PaastaColors.yellow( f"Ignoring Tronfig: `{field_name} : {value}`, since `--aws-profile` is provided. " f"We are giving higher priority to `--aws-profile` in case of paasta spark-run adhoc runs." ), ) continue if hasattr(args, arg_name): print( PaastaColors.yellow( f"Overwriting args with Tronfig: {arg_name_str} => {field_name} : {value}" ), ) setattr(args, arg_name, value) # env (currently paasta spark-run does not support Spark driver secrets environment variables) return action_dict.get("env", dict())
Load and check the following config fields from the provided Tronfig. - executor - pool - iam_role - iam_role_provider - force_spark_resource_configs - max_runtime - command - env - spark_args Returns: environment variables dictionary or None if failed.
update_args_from_tronfig
python
Yelp/paasta
paasta_tools/cli/cmds/spark_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/spark_run.py
Apache-2.0
def make_mutate_refs_func(service_config, force_bounce, desired_state): """Create a function that will inform send_pack that we want to create tags corresponding to the set of branches passed, with the given force_bounce and desired_state parameters. These tags will point at the current tip of the branch they associate with. dulwich's send_pack wants a function that takes a dictionary of ref name to sha and returns a modified version of that dictionary. send_pack will then diff what is returned versus what was passed in, and inform the remote git repo of our desires.""" def mutate_refs(refs): deploy_group = service_config.get_deploy_group() (_, head_sha, _) = get_latest_deployment_tag(refs, deploy_group) refs[ format_tag(service_config.get_branch(), force_bounce, desired_state) ] = head_sha return refs return mutate_refs
Create a function that will inform send_pack that we want to create tags corresponding to the set of branches passed, with the given force_bounce and desired_state parameters. These tags will point at the current tip of the branch they associate with. dulwich's send_pack wants a function that takes a dictionary of ref name to sha and returns a modified version of that dictionary. send_pack will then diff what is returned versus what was passed in, and inform the remote git repo of our desires.
make_mutate_refs_func
python
Yelp/paasta
paasta_tools/cli/cmds/start_stop_restart.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/start_stop_restart.py
Apache-2.0
def paasta_start_or_stop(args, desired_state): """Requests a change of state to start or stop given branches of a service.""" soa_dir = args.soa_dir pargs = apply_args_filters(args) if len(pargs) == 0: return 1 affected_services = { s for service_list in pargs.values() for s in service_list.keys() } if len(affected_services) > 1: print( PaastaColors.red("Warning: trying to start/stop/restart multiple services:") ) for cluster, services_instances in pargs.items(): print("Cluster %s:" % cluster) for service, instances in services_instances.items(): print(" Service %s:" % service) print(" Instances %s" % ",".join(instances.keys())) if sys.stdin.isatty(): confirm = choice.Binary("Are you sure you want to continue?", False).ask() else: confirm = False if not confirm: print() print("exiting") return 1 if not all( [ can_user_deploy_service(get_deploy_info(service, soa_dir), service) for service in affected_services ] ): print(PaastaColors.red("Exiting due to missing deploy permissions")) return 1 invalid_deploy_groups = [] kubernetes_message_printed = False affected_flinks = [] if args.clusters is None or args.instances is None: if confirm_to_continue(pargs.items(), desired_state) is False: print() print("exiting") return 1 for cluster, services_instances in pargs.items(): for service, instances in services_instances.items(): for instance in instances.keys(): service_config = get_instance_config( service=service, cluster=cluster, instance=instance, soa_dir=soa_dir, load_deployments=False, ) if isinstance(service_config, FlinkDeploymentConfig): affected_flinks.append(service_config) continue try: remote_refs = get_remote_refs(service, soa_dir) except remote_git.LSRemoteException as e: msg = ( "Error talking to the git server: %s\n" "This PaaSTA command requires access to the git server to operate.\n" "The git server may be down or not reachable from here.\n" "Try again from somewhere where the git server can be reached, " "like your developer environment." ) % str(e) print(msg) return 1 deploy_group = service_config.get_deploy_group() (deploy_tag, _, _) = get_latest_deployment_tag( remote_refs, deploy_group ) if deploy_tag not in remote_refs: invalid_deploy_groups.append(deploy_group) else: force_bounce = utils.format_timestamp(datetime.datetime.utcnow()) if ( isinstance(service_config, KubernetesDeploymentConfig) and not kubernetes_message_printed ): print_kubernetes_message(desired_state) kubernetes_message_printed = True issue_state_change_for_service( service_config=service_config, force_bounce=force_bounce, desired_state=desired_state, ) return_val = 0 # TODO: Refactor to discover if set_state is available for given # instance_type in API if affected_flinks: print_flink_message(desired_state) system_paasta_config = load_system_paasta_config() for service_config in affected_flinks: cluster = service_config.cluster service = service_config.service instance = service_config.instance is_eks = isinstance(service_config, FlinkEksDeploymentConfig) client = get_paasta_oapi_client( cluster=get_paasta_oapi_api_clustername(cluster=cluster, is_eks=is_eks), system_paasta_config=system_paasta_config, ) if not client: print("Cannot get a paasta-api client") exit(1) try: client.service.instance_set_state( service=service, instance=instance, desired_state=desired_state, ) except client.api_error as exc: print(exc.reason) return exc.status return_val = 0 if invalid_deploy_groups: print(f"No deploy tags found for {', '.join(invalid_deploy_groups)}.") print(f"Has {service} been deployed there yet?") return_val = 1 return return_val
Requests a change of state to start or stop given branches of a service.
paasta_start_or_stop
python
Yelp/paasta
paasta_tools/cli/cmds/start_stop_restart.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/start_stop_restart.py
Apache-2.0
def get_actual_deployments( service: str, soa_dir: str ) -> Mapping[str, DeploymentVersion]: """Given a service, return a dict of instances->DeploymentVersions""" config_loader = PaastaServiceConfigLoader(service=service, soa_dir=soa_dir) clusters = list_clusters(service=service, soa_dir=soa_dir) actual_deployments = {} for cluster in clusters: for instance_type in DEPLOYMENT_INSTANCE_CONFIG: for instance_config in config_loader.instance_configs( cluster=cluster, instance_type_class=instance_type ): namespace = f"{cluster}.{instance_config.instance}" actual_deployments[namespace] = get_deployment_version_from_dockerurl( instance_config.get_docker_image() ) if not actual_deployments: print( f"Warning: it looks like {service} has not been deployed anywhere yet!", file=sys.stderr, ) return actual_deployments
Given a service, return a dict of instances->DeploymentVersions
get_actual_deployments
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def find_instance_types(status: Any) -> List[str]: """ find_instance_types finds the instance types from the status api response. It iterates over all instance type registered in `INSTANCE_TYPE_WRITERS`. :param status: paasta api status object :return: the list of matching instance types """ types: List[str] = [] for instance_type in INSTANCE_TYPE_WRITERS.keys(): if status.get(instance_type) is not None: types.append(instance_type) return types
find_instance_types finds the instance types from the status api response. It iterates over all instance type registered in `INSTANCE_TYPE_WRITERS`. :param status: paasta api status object :return: the list of matching instance types
find_instance_types
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def report_status_for_cluster( service: str, cluster: str, deploy_pipeline: Sequence[str], actual_deployments: Mapping[str, DeploymentVersion], instance_whitelist: Mapping[str, Type[InstanceConfig]], system_paasta_config: SystemPaastaConfig, lock: Lock, verbose: int = 0, new: bool = False, all_namespaces: bool = False, ) -> Tuple[int, Sequence[str]]: """With a given service and cluster, prints the status of the instances in that cluster""" output = ["", "service: %s" % service, "cluster: %s" % cluster] deployed_instances = [] instances = [ (instance, instance_config_class) for instance, instance_config_class in instance_whitelist.items() if instance_config_class in ALLOWED_INSTANCE_CONFIG ] # Tron instance are not present in the deploy pipeline, so treat them as # seen by default to avoid error messages seen_instances = [ instance for instance, instance_config_class in instance_whitelist.items() if instance_config_class == TronActionConfig ] for namespace in deploy_pipeline: cluster_in_pipeline, instance = namespace.split(".") seen_instances.append(instance) if cluster_in_pipeline != cluster: continue if instances and instance not in instances: continue # Case: service deployed to cluster.instance if namespace in actual_deployments: deployed_instances.append(instance) # Case: flink instances don't use `deployments.json` elif instance_whitelist.get(instance) == FlinkDeploymentConfig: deployed_instances.append(instance) # Case: service NOT deployed to cluster.instance else: output.append(" instance: %s" % PaastaColors.red(instance)) output.append(" Git sha: None (not deployed yet)") return_code = 0 return_codes = [] for deployed_instance, instance_config_class in instances: return_codes.append( paasta_status_on_api_endpoint( cluster=cluster, service=service, instance=deployed_instance, system_paasta_config=system_paasta_config, lock=lock, verbose=verbose, new=new, all_namespaces=all_namespaces, is_eks=(instance_config_class in EKS_DEPLOYMENT_CONFIGS), ) ) if any(return_codes): return_code = 1 output.append( report_invalid_whitelist_values( whitelist=[instance[0] for instance in instances], items=seen_instances, item_type="instance", ) ) return return_code, output
With a given service and cluster, prints the status of the instances in that cluster
report_status_for_cluster
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def report_invalid_whitelist_values( whitelist: Iterable[str], items: Sequence[str], item_type: str ) -> str: """Warns the user if there are entries in ``whitelist`` which don't correspond to any item in ``items``. Helps highlight typos. """ return_string = "" bogus_entries = [] if whitelist is None: return "" for entry in whitelist: if entry not in items: bogus_entries.append(entry) if len(bogus_entries) > 0: return_string = ( "\n" "Warning: This service does not have any %s matching these names:\n%s" ) % (item_type, ",".join(bogus_entries)) return return_string
Warns the user if there are entries in ``whitelist`` which don't correspond to any item in ``items``. Helps highlight typos.
report_invalid_whitelist_values
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def get_filters( args, ) -> Sequence[Callable[[InstanceConfig], bool]]: """Figures out which filters to apply from an args object, and returns them :param args: args object :returns: list of functions that take an instance config and returns if the instance conf matches the filter """ filters = [] if args.service: filters.append(lambda conf: conf.get_service() in args.service.split(",")) if args.clusters: filters.append(lambda conf: conf.get_cluster() in args.clusters.split(",")) if args.instances: filters.append(lambda conf: conf.get_instance() in args.instances.split(",")) if args.deploy_group: filters.append( lambda conf: conf.get_deploy_group() in args.deploy_group.split(",") ) if args.registration: normalized_regs = normalize_registrations( service=args.service, registrations=args.registration.split(",") ) filters.append( lambda conf: any( reg in normalized_regs for reg in ( conf.get_registrations() if hasattr(conf, "get_registrations") else [] ) ) ) if args.owner: owners = args.owner.split(",") filters.append( # If the instance owner is None, check the service owner, else check the instance owner lambda conf: get_team( overrides={}, service=conf.get_service(), soa_dir=args.soa_dir ) in owners if conf.get_team() is None else conf.get_team() in owners ) return filters
Figures out which filters to apply from an args object, and returns them :param args: args object :returns: list of functions that take an instance config and returns if the instance conf matches the filter
get_filters
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def apply_args_filters( args, ) -> Mapping[str, Mapping[str, Mapping[str, Type[InstanceConfig]]]]: """ Take an args object and returns the dict of cluster:service:instances Currently, will filter by clusters, instances, services, and deploy_groups If no instances are found, will print a message and try to find matching instances for each service :param args: args object containing attributes to filter by :returns: Dict of dicts, in format {cluster_name: {service_name: {instance1, instance2}}} """ clusters_services_instances: DefaultDict[ str, DefaultDict[str, Dict[str, Type[InstanceConfig]]] ] = defaultdict(lambda: defaultdict(dict)) if args.service_instance: if args.service or args.instances: print( PaastaColors.red( f"Invalid command. Do not include optional arguments -s or -i " f"when using shorthand notation." ) ) return clusters_services_instances if "." in args.service_instance: args.service, args.instances = args.service_instance.split(".", 1) else: print(PaastaColors.red(f'Use a "." to separate service and instance name')) return clusters_services_instances if args.service: try: validate_service_name(args.service, soa_dir=args.soa_dir) except NoSuchService: print(PaastaColors.red(f'The service "{args.service}" does not exist.')) all_services = list_services(soa_dir=args.soa_dir) suggestions = difflib.get_close_matches( args.service, all_services, n=5, cutoff=0.5 ) if suggestions: print(PaastaColors.red(f"Did you mean any of these?")) for suggestion in suggestions: print(PaastaColors.red(f" {suggestion}")) return clusters_services_instances all_services = [args.service] else: args.service = None all_services = list_services(soa_dir=args.soa_dir) if args.service is None and args.owner is None: args.service = figure_out_service_name(args, soa_dir=args.soa_dir) if args.clusters: clusters = args.clusters.split(",") else: clusters = list_clusters() if args.instances: instances = args.instances.split(",") else: instances = None filters = get_filters(args) i_count = 0 for service in all_services: if args.service and service != args.service: continue for instance_conf in get_instance_configs_for_service( service, soa_dir=args.soa_dir, clusters=clusters, instances=instances ): if all([f(instance_conf) for f in filters]): cluster_service = clusters_services_instances[ instance_conf.get_cluster() ][service] cluster_service[instance_conf.get_instance()] = instance_conf.__class__ i_count += 1 if i_count == 0 and args.service and args.instances: for service in args.service.split(","): verify_instances(args.instances, service, clusters) return clusters_services_instances
Take an args object and returns the dict of cluster:service:instances Currently, will filter by clusters, instances, services, and deploy_groups If no instances are found, will print a message and try to find matching instances for each service :param args: args object containing attributes to filter by :returns: Dict of dicts, in format {cluster_name: {service_name: {instance1, instance2}}}
apply_args_filters
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def paasta_status(args) -> int: """Print the status of a Yelp service running on PaaSTA. :param args: argparse.Namespace obj created from sys.args by cli""" soa_dir = args.soa_dir system_paasta_config = load_system_paasta_config() return_codes = [0] lock = Lock() tasks = [] clusters_services_instances = apply_args_filters(args) for cluster, service_instances in clusters_services_instances.items(): for service, instances in service_instances.items(): all_flink = all((i in FLINK_DEPLOYMENT_CONFIGS) for i in instances.values()) actual_deployments: Mapping[str, DeploymentVersion] if all_flink: actual_deployments = {} else: actual_deployments = get_actual_deployments(service, soa_dir) if all_flink or actual_deployments: deploy_pipeline = list(get_planned_deployments(service, soa_dir)) new = _use_new_paasta_status(args, system_paasta_config) tasks.append( ( report_status_for_cluster, dict( service=service, cluster=cluster, deploy_pipeline=deploy_pipeline, actual_deployments=actual_deployments, instance_whitelist=instances, system_paasta_config=system_paasta_config, lock=lock, verbose=args.verbose, new=new, all_namespaces=args.all_namespaces, ), ) ) else: print(missing_deployments_message(service)) return_codes.append(1) with concurrent.futures.ThreadPoolExecutor(max_workers=20) as executor: tasks = [executor.submit(t[0], **t[1]) for t in tasks] # type: ignore try: for future in concurrent.futures.as_completed(tasks): # type: ignore return_code, output = future.result() return_codes.append(return_code) except KeyboardInterrupt: # ideally we wouldn't need to reach into `ThreadPoolExecutor` # internals, but so far this is the best way to stop all these # threads until a public interface is added executor._threads.clear() # type: ignore concurrent.futures.thread._threads_queues.clear() # type: ignore raise KeyboardInterrupt return max(return_codes)
Print the status of a Yelp service running on PaaSTA. :param args: argparse.Namespace obj created from sys.args by cli
paasta_status
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def _backend_report( normal_instance_count: int, up_backends: int, system_name: BackendType ) -> str: """Given that a service is in smartstack, this returns a human readable report of the up backends""" # TODO: Take into account a configurable threshold, PAASTA-1102 crit_threshold = 50 under_replicated, ratio = is_under_replicated( num_available=up_backends, expected_count=normal_instance_count, crit_threshold=crit_threshold, ) if under_replicated: status = PaastaColors.red("Critical") count = PaastaColors.red( "(%d/%d, %d%%)" % (up_backends, normal_instance_count, ratio) ) else: status = PaastaColors.green("Healthy") count = PaastaColors.green("(%d/%d)" % (up_backends, normal_instance_count)) up_string = PaastaColors.bold("UP") return f"{status} - in {system_name} with {count} total backends {up_string} in this namespace."
Given that a service is in smartstack, this returns a human readable report of the up backends
_backend_report
python
Yelp/paasta
paasta_tools/cli/cmds/status.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/status.py
Apache-2.0
def get_schema_validator(file_type: str) -> Draft4Validator: """Get the correct schema to use for validation :param file_type: what schema type should we validate against """ schema_path = f"schemas/{file_type}_schema.json" autoscaling_path = "schemas/autoscaling_schema.json" schema = pkgutil.get_data("paasta_tools.cli", schema_path).decode() autoscaling_ref = pkgutil.get_data("paasta_tools.cli", autoscaling_path).decode() # This bit of code loads the base schemas and any relevant "referenced" schemas # into a shared "store" -- so that you can reference the shared schema without # having to find the exact right path on disk in your schema file. If you want # to reference one schema from another, you still have to include a # {"$ref": "<schema_id>#field"} section in your JsonSchema # # (see https://python-jsonschema.readthedocs.io/en/v2.6.0/references/ and this # stack overflow answer https://stackoverflow.com/a/65150457 for details) # # Also note that this functionality has changed significantly in modern versions # of python-jsonschema, so if we ever update we'll need to do some work here. base_schema = json.loads(schema) autoscaling_schema = json.loads(autoscaling_ref) store = { "base": base_schema, autoscaling_schema["$id"]: json.loads(autoscaling_ref), } resolver = RefResolver.from_schema(base_schema, store=store) return Draft4Validator( json.loads(schema), resolver=resolver, format_checker=FormatChecker(), )
Get the correct schema to use for validation :param file_type: what schema type should we validate against
get_schema_validator
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def validate_rollback_bounds( config: Dict[str, List[ConditionConfig]], file_loc: str ) -> bool: """ Ensure that at least one of upper_bound or lower_bound is set (and set to non-null values) """ errors = [] for source, queries in config.items(): for query in queries: if not any( ( query.get("lower_bound"), query.get("upper_bound"), ), ): errors.append( f"{file_loc}:{source}: {query['query']} needs one of lower_bound OR upper_bound set." ) for error in errors: print( failure(error, link=""), # TODO: point to actual docs once they exist ) return len(errors) == 0
Ensure that at least one of upper_bound or lower_bound is set (and set to non-null values)
validate_rollback_bounds
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def validate_schema(file_path: str, file_type: str) -> bool: """Check if the specified config file has a valid schema :param file_path: path to file to validate :param file_type: what schema type should we validate against """ try: validator = get_schema_validator(file_type) except Exception as e: print(f"{SCHEMA_ERROR}: {file_type}, error: {e!r}") return False basename = os.path.basename(file_path) config_file_object = get_config_file_dict(file_path) try: validator.validate(config_file_object) if file_type in K8S_TYPES and not validate_instance_names( config_file_object, file_path ): return False if file_type == "rollback" and not validate_rollback_bounds( config_file_object["conditions"], file_path, ): return False except ValidationError: print(f"{SCHEMA_INVALID}: {file_path}") errors = validator.iter_errors(config_file_object) print(" Validation Message: %s" % exceptions.best_match(errors).message) return False except Exception as e: print(f"{SCHEMA_ERROR}: {file_type}, error: {e!r}") return False else: print(f"{SCHEMA_VALID}: {basename}") return True
Check if the specified config file has a valid schema :param file_path: path to file to validate :param file_type: what schema type should we validate against
validate_schema
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def validate_all_schemas(service_path: str) -> bool: """Finds all recognized config files in service directory, and validates their schema. :param service_path: path to location of configuration files """ path = os.path.join(service_path, "**/*.yaml") returncode = True for file_name in glob(path, recursive=True): if os.path.islink(file_name): continue filename_without_service_path = os.path.relpath(file_name, start=service_path) for file_type in SCHEMA_TYPES: if filename_without_service_path.startswith(file_type): if not validate_schema(file_name, file_type): returncode = False return returncode
Finds all recognized config files in service directory, and validates their schema. :param service_path: path to location of configuration files
validate_all_schemas
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def check_service_path(service_path): """Check that the specified path exists and has yaml files :param service_path: Path to directory that should contain yaml files """ if not service_path or not os.path.isdir(service_path): print( failure( "%s is not a directory" % service_path, "http://paasta.readthedocs.io/en/latest/yelpsoa_configs.html", ) ) return False if not glob(os.path.join(service_path, "*.yaml")): print( failure( "%s does not contain any .yaml files" % service_path, "http://paasta.readthedocs.io/en/latest/yelpsoa_configs.html", ) ) return False return True
Check that the specified path exists and has yaml files :param service_path: Path to directory that should contain yaml files
check_service_path
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def get_service_path(service, soa_dir): """Determine the path of the directory containing the conf files :param service: Name of service :param soa_dir: Directory containing soa configs for all services """ if service: service_path = os.path.join(soa_dir, service) else: if soa_dir == os.getcwd(): service_path = os.getcwd() else: print(UNKNOWN_SERVICE) return None return service_path
Determine the path of the directory containing the conf files :param service: Name of service :param soa_dir: Directory containing soa configs for all services
get_service_path
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def path_to_soa_dir_service(service_path): """Split a service_path into its soa_dir and service name components""" soa_dir = os.path.dirname(service_path) service = os.path.basename(service_path) return soa_dir, service
Split a service_path into its soa_dir and service name components
path_to_soa_dir_service
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def validate_unique_instance_names(service_path): """Check that the service does not use the same instance name more than once""" soa_dir, service = path_to_soa_dir_service(service_path) check_passed = True for cluster in list_clusters(service, soa_dir): service_instances = get_service_instance_list( service=service, cluster=cluster, soa_dir=soa_dir ) instance_names = [service_instance[1] for service_instance in service_instances] instance_name_to_count = Counter(instance_names) duplicate_instance_names = [ instance_name for instance_name, count in instance_name_to_count.items() if count > 1 ] if duplicate_instance_names: check_passed = False print( duplicate_instance_names_message( service, cluster, duplicate_instance_names ) ) else: print(no_duplicate_instance_names_message(service, cluster)) return check_passed
Check that the service does not use the same instance name more than once
validate_unique_instance_names
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def validate_autoscaling_configs(service_path: str) -> bool: """Validate new autoscaling configurations that are not validated by jsonschema for the service of interest. :param service_path: Path to directory containing soa conf yaml files for service """ soa_dir, service = path_to_soa_dir_service(service_path) returncode = True link = "" skip_cpu_override_validation_list = ( load_system_paasta_config().get_skip_cpu_override_validation_services() ) for cluster in list_clusters(service, soa_dir): for instance, instance_config in load_all_instance_configs_for_service( service=service, cluster=cluster, soa_dir=soa_dir ): if instance_config.get_instance_type() not in K8S_TYPES: continue instance_config = cast(LongRunningServiceConfig, instance_config) if ( # instance_config is an `InstanceConfig` object, which doesn't have an `is_autoscaling_enabled()` # method, but by asserting that the type is in K8S_TYPES, we know we're dealing with either # a KubernetesDeploymentConfig or an EksDeploymentConfig, so the cast is safe. instance_config.is_autoscaling_enabled() # we should eventually make the python templates add the override comment # to the correspoding YAML line, but until then we just opt these out of that validation and __is_templated( service, soa_dir, cluster, workload=instance_config.get_instance_type(), ) is False ): autoscaling_params = instance_config.get_autoscaling_params() should_skip_cpu_override_validation = ( service in skip_cpu_override_validation_list ) seen_provider_types: Set[str] = set() configured_provider_count = len(autoscaling_params["metrics_providers"]) for metrics_provider in autoscaling_params["metrics_providers"]: try: # Generic validation of the config _validate_autoscaling_config(metrics_provider) # Multi-metrics specific validation: # 1. Bespoke policies cannot use multi-metrics scaling # 2. Can't set the same metrics provider multiple times if ( metrics_provider.get("decision_policy") == "bespoke" and configured_provider_count > 1 ): raise AutoscalingValidationError( f"cannot use bespoke autoscaling with HPA autoscaling" ) if metrics_provider["type"] in seen_provider_types: raise AutoscalingValidationError( f"cannot set the same metrics provider multiple times: {metrics_provider['type']}" ) seen_provider_types.add(metrics_provider["type"]) # Metrics-provider specific validations if metrics_provider["type"] == METRICS_PROVIDER_ACTIVE_REQUESTS: _validate_active_requests_autoscaling_configs( instance_config, metrics_provider ) elif metrics_provider["type"] == METRICS_PROVIDER_PROMQL: _validate_arbitrary_promql_autoscaling_configs( metrics_provider ) elif ( metrics_provider["type"] == METRICS_PROVIDER_CPU # to enable kew autoscaling we just set a decision policy of "bespoke", but # the metrics_provider is (confusingly) left as "cpu" and metrics_provider.get("decision_policy") != "bespoke" and not should_skip_cpu_override_validation ): # Do some extra validation below: we don't abstract that into the above function # call because it needs a lot of extra information # we need access to the comments, so we need to read the config with ruamel to be able # to actually get them in a "nice" automated fashion config = get_config_file_dict( os.path.join( soa_dir, service, f"{instance_config.get_instance_type()}-{cluster}.yaml", ), use_ruamel=True, ) if config[instance].get("cpus") is None: # If we're using multiple scaling metrics and one of them is CPU, we must # opt out of CPU autotuning if configured_provider_count > 1: link = "y/override-cpu-autotune" raise AutoscalingValidationError( "using CPU-based scaling with multiple scaling metrics requires explicit " "'cpus' setting; see the following link for more info:" ) # cpu autoscaled, but using autotuned values - can skip continue cpu_comment = _get_comments_for_key( data=config[instance], key="cpus" ) # we could probably have a separate error message if there's a comment that doesn't match # the ack pattern, but that seems like overkill - especially for something that could cause # a DAR if people aren't being careful. if ( cpu_comment is None or re.search( pattern=OVERRIDE_CPU_AUTOTUNE_ACK_PATTERN, string=cpu_comment, ) is None ): link = "y/override-cpu-autotune" raise AutoscalingValidationError( f"CPU override detected for a CPU-autoscaled instance; " "see the following link for next steps:" ) except AutoscalingValidationError as e: returncode = False print( failure( msg=f"Autoscaling validation failed for {service}.{instance} in {cluster}: {str(e)}", link=link, ) ) return returncode
Validate new autoscaling configurations that are not validated by jsonschema for the service of interest. :param service_path: Path to directory containing soa conf yaml files for service
validate_autoscaling_configs
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def paasta_validate_soa_configs( service: str, service_path: str, verbose: bool = False ) -> bool: """Analyze the service in service_path to determine if the conf files are valid :param service_path: Path to directory containing soa conf yaml files for service """ if not check_service_path(service_path): return False if not validate_service_name(service): return False checks: List[Callable[[str], bool]] = [ validate_all_schemas, partial(validate_tron, verbose=verbose), validate_paasta_objects, validate_unique_instance_names, validate_autoscaling_configs, validate_secrets, validate_min_max_instances, validate_cpu_burst, ] # NOTE: we're explicitly passing a list comprehension to all() # instead of a generator expression so that we run all checks # no matter what return all([check(service_path) for check in checks])
Analyze the service in service_path to determine if the conf files are valid :param service_path: Path to directory containing soa conf yaml files for service
paasta_validate_soa_configs
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def paasta_validate(args): """Generate a service_path from the provided args and call paasta_validate_soa_configs :param args: argparse.Namespace obj created from sys.args by cli """ service_path = get_service_path(args.service, args.yelpsoa_config_root) service = args.service or guess_service_name() if not paasta_validate_soa_configs(service, service_path, args.verbose): return 1
Generate a service_path from the provided args and call paasta_validate_soa_configs :param args: argparse.Namespace obj created from sys.args by cli
paasta_validate
python
Yelp/paasta
paasta_tools/cli/cmds/validate.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/validate.py
Apache-2.0
def get_latest_marked_version( git_url: str, deploy_group: str ) -> Optional[DeploymentVersion]: """Return the latest marked for deployment version or None""" # TODO: correct this function for new tag format refs = list_remote_refs(git_url) _, sha, image_version = get_latest_deployment_tag(refs, deploy_group) if sha: return DeploymentVersion(sha=sha, image_version=image_version) # We did not find a ref for this deploy group return None
Return the latest marked for deployment version or None
get_latest_marked_version
python
Yelp/paasta
paasta_tools/cli/cmds/wait_for_deployment.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/wait_for_deployment.py
Apache-2.0
def validate_version_is_latest( version: DeploymentVersion, git_url: str, deploy_group: str, service: str ): """Verify if the requested version is the latest marked for deployment. Raise exception when the provided version is not the latest marked for deployment in 'deploy_group' for 'service'. """ try: marked_version = get_latest_marked_version(git_url, deploy_group) except LSRemoteException as e: print( "Error talking to the git server: {}\n" "It is not possible to verify that {} is marked for deployment in {}, " "but I assume that it is marked and will continue waiting..".format( e, version, deploy_group ) ) return if marked_version is None: raise VersionError( "ERROR: Nothing is marked for deployment " "in {} for {}".format(deploy_group, service) ) if version != marked_version: raise VersionError( "ERROR: The latest version marked for " "deployment in {} is {}".format(deploy_group, marked_version) )
Verify if the requested version is the latest marked for deployment. Raise exception when the provided version is not the latest marked for deployment in 'deploy_group' for 'service'.
validate_version_is_latest
python
Yelp/paasta
paasta_tools/cli/cmds/wait_for_deployment.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/wait_for_deployment.py
Apache-2.0
def validate_deploy_group(deploy_group: str, service: str, soa_dir: str): """Validate deploy_group. Raise exception if the specified deploy group is not used anywhere. """ in_use_deploy_groups = list_deploy_groups(service=service, soa_dir=soa_dir) _, invalid_deploy_groups = validate_given_deploy_groups( in_use_deploy_groups, [deploy_group] ) if len(invalid_deploy_groups) == 1: raise DeployGroupError( "ERROR: These deploy groups are not currently " "used anywhere: {}.\n" "You probably need one of these in-use deploy " "groups?:\n {}".format( ",".join(invalid_deploy_groups), ",".join(in_use_deploy_groups) ) )
Validate deploy_group. Raise exception if the specified deploy group is not used anywhere.
validate_deploy_group
python
Yelp/paasta
paasta_tools/cli/cmds/wait_for_deployment.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/cmds/wait_for_deployment.py
Apache-2.0
def _get_smartstack_proxy_ports_from_file(root, file): """Given a root and file (as from os.walk), attempt to return the highest smartstack proxy port number (int) from that file. Returns 0 if there is no smartstack proxy_port. """ ports = set() with open(os.path.join(root, file)) as f: data = yaml.safe_load(f) if file.endswith("service.yaml") and "smartstack" in data: # Specifying this in service.yaml is old and deprecated and doesn't # support multiple namespaces. ports = {int(data["smartstack"].get("proxy_port", 0))} elif file.endswith("smartstack.yaml"): for namespace in data.keys(): ports.add(data[namespace].get("proxy_port", 0)) return ports
Given a root and file (as from os.walk), attempt to return the highest smartstack proxy port number (int) from that file. Returns 0 if there is no smartstack proxy_port.
_get_smartstack_proxy_ports_from_file
python
Yelp/paasta
paasta_tools/cli/fsm/autosuggest.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/fsm/autosuggest.py
Apache-2.0
def suggest_smartstack_proxy_port( yelpsoa_config_root, range_min=19000, range_max=21000 ): """Pick a random available port in the 19000-21000 block""" available_proxy_ports = set(range(range_min, range_max + 1)) for root, dirs, files in os.walk(yelpsoa_config_root): for f in files: if f.endswith("smartstack.yaml"): try: used_ports = _get_smartstack_proxy_ports_from_file(root, f) for used_port in used_ports: available_proxy_ports.discard(used_port) except Exception: pass available_proxy_ports.difference_update(get_inuse_ports_from_etc_services()) try: return random.choice(list(available_proxy_ports)) except IndexError: raise Exception( f"There are no more ports available in the range [{range_min}, {range_max}]" )
Pick a random available port in the 19000-21000 block
suggest_smartstack_proxy_port
python
Yelp/paasta
paasta_tools/cli/fsm/autosuggest.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cli/fsm/autosuggest.py
Apache-2.0
def get_deploy_durations_from_file(filename): """ filename: path to a file to be parsed for datetime data The expected input is a paasta service log for the deploy events The way I've been fetching them is by running 'internal logreader command' | grep deploy | grep event > filename """ file_object = open(filename, "r") data = sorted( [json.loads(line.rstrip("\n")) for line in file_object], key=lambda x: get_datetime_from_ts(x["timestamp"]), ) timedeltas = defaultdict(list) last_time = dict() instance_bitvector = defaultdict(bool) # defaults to False for datum in data: time = get_datetime_from_ts(datum["timestamp"]) instance = datum["instance"] if "in progress" in datum["message"] and not instance_bitvector[instance]: instance_bitvector[instance] = True last_time[instance] = time elif "finishing" in datum["message"]: instance_bitvector[instance] = False timedeltas[instance].append(time - last_time[instance]) return timedeltas
filename: path to a file to be parsed for datetime data The expected input is a paasta service log for the deploy events The way I've been fetching them is by running 'internal logreader command' | grep deploy | grep event > filename
get_deploy_durations_from_file
python
Yelp/paasta
paasta_tools/contrib/bounce_log_latency_parser.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/contrib/bounce_log_latency_parser.py
Apache-2.0
def host_to_ip(host: str, fallback: str) -> str: """Try to resolve a host to an IP with a fallback. Because DNS resolution is relatively slow and can't be easily performed using asyncio, we cheat a little and use a regex for well-formed hostnames to try to guess the IP without doing real resolution. A fallback is needed because in some cases the nerve registration does not match an actual hostname (e.g. "prod-db15" or "prod-splunk-master"). """ for match in ( re.match(r"^(\d+)-(\d+)-(\d+)-(\d+)-", host), re.match(r"^ip-(\d+)-(\d+)-(\d+)-(\d+)", host), ): if match: return ".".join(match.groups()) else: try: return socket.gethostbyname(host) except socket.gaierror: return fallback
Try to resolve a host to an IP with a fallback. Because DNS resolution is relatively slow and can't be easily performed using asyncio, we cheat a little and use a regex for well-formed hostnames to try to guess the IP without doing real resolution. A fallback is needed because in some cases the nerve registration does not match an actual hostname (e.g. "prod-db15" or "prod-splunk-master").
host_to_ip
python
Yelp/paasta
paasta_tools/contrib/check_orphans.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/contrib/check_orphans.py
Apache-2.0
def get_container_type(container_name: str, instance_name: str) -> str: """ To differentiate between main service containers and sidecars """ if instance_name and container_name == kubernetes_tools.sanitise_kubernetes_name( instance_name ): return MAIN_CONTAINER_TYPE else: return container_name
To differentiate between main service containers and sidecars
get_container_type
python
Yelp/paasta
paasta_tools/contrib/get_running_task_allocation.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/contrib/get_running_task_allocation.py
Apache-2.0
def get_report_from_splunk(creds, app, filename, criteria_filter): """Expect a table containing at least the following fields: criteria (<service> kubernetes-<cluster_name> <instance>) service_owner (Optional) project (Required to create tickets) estimated_monthly_savings (Optional) search_time (Unix time) one of the following pairs: - current_cpus and suggested_cpus - current_mem and suggested_mem - current_disk and suggested_disk - suggested_hacheck_cpus - suggested_cpu_burst_add - suggested_min_instances - suggested_max_instances """ url = f"https://splunk-api.yelpcorp.com/servicesNS/nobody/{app}/search/jobs/export" search = ( '| inputlookup {filename} | search criteria="{criteria_filter}"' '| eval _time = search_time | where _time > relative_time(now(),"-7d")' ).format(filename=filename, criteria_filter=criteria_filter) log.debug(f"Sending this query to Splunk: {search}\n") data = {"output_mode": "json", "search": search} creds = creds.split(":") resp = requests.post(url, data=data, auth=(creds[0], creds[1])) resp_text = resp.text.split("\n") log.info("Found {} services to rightsize".format(len(resp_text) - 1)) resp_text = [x for x in resp_text if x] resp_text = [json.loads(x) for x in resp_text] services_to_update = {} for d in resp_text: if "result" not in d: raise ValueError(f"Splunk request didn't return any results: {resp_text}") criteria = d["result"]["criteria"] serv = { "cluster": criteria.split(" ")[1], "date": d["result"]["_time"].split(" ")[0], "instance": criteria.split(" ")[2], "money": d["result"].get("estimated_monthly_savings", 0), "owner": d["result"].get("service_owner", "Unavailable"), "project": d["result"].get("project", "Unavailable"), "service": criteria.split(" ")[0], # only mergeable fields below "cpu_burst_add": d["result"].get("suggested_cpu_burst_add"), "cpus": d["result"].get("suggested_cpus"), "disk": d["result"].get("suggested_disk"), "hacheck_cpus": d["result"].get("suggested_hacheck_cpus"), "max_instances": d["result"].get("suggested_max_instances"), "mem": d["result"].get("suggested_mem"), "min_instances": d["result"].get("suggested_min_instances"), "old_cpus": d["result"].get("current_cpus"), "old_disk": d["result"].get("current_disk"), "old_mem": d["result"].get("current_mem"), } # the report we get is all strings, so we need to convert them to the right types field_conversions = { "current_cpus": float, "suggested_cpu_burst_add": float, "suggested_cpus": float, "suggested_disk": int, "suggested_hacheck_cpus": float, "suggested_max_instances": int, "suggested_mem": int, "suggested_min_instances": int, # not quite sure why these are floats...they're ints in soaconfigs "current_disk": _force_str_to_int, "current_mem": _force_str_to_int, } # merge results if we've already seen rows for this service # NOTE: this is necessary since the Splunk search can return multiple rows # for the same (service, cluster, instance) tuple as the autotune query # treats certain cpu allocation changes as if the tuple was entirely different. # this is ostensibly due to a theory that if you update resource allocation, existing # autotune data is potentially invalidated - but in practice this ends up hampering # autotune for services with highly variable resource allocation - e.g., we have some services # that have their cpu allocation tweaked by +/-.1 cpu pretty frequently, but then min/max autotune # is never updated. if criteria in services_to_update: for key in serv: # we probably don't want to merge any other fields since they're going to be strings :p if key not in field_conversions: continue last_proposed_suggestion = services_to_update[criteria][key] proposed_suggestion = serv[key] # if both are non-null, take the max of the two if ( last_proposed_suggestion is not None and proposed_suggestion is not None ): services_to_update[criteria][key] = max( last_proposed_suggestion, proposed_suggestion, key=field_conversions[key], ) # otherwise, if only one of these is non-null, use that one elif last_proposed_suggestion is not None: services_to_update[criteria][key] = last_proposed_suggestion elif proposed_suggestion is not None: services_to_update[criteria][key] = proposed_suggestion # otherwise, if we didn't enter any of the above branches, we're essentially leaving in place the # existing None # otherwise, simply add the service to the final report else: services_to_update[criteria] = serv return { "search": search, "results": services_to_update, }
Expect a table containing at least the following fields: criteria (<service> kubernetes-<cluster_name> <instance>) service_owner (Optional) project (Required to create tickets) estimated_monthly_savings (Optional) search_time (Unix time) one of the following pairs: - current_cpus and suggested_cpus - current_mem and suggested_mem - current_disk and suggested_disk - suggested_hacheck_cpus - suggested_cpu_burst_add - suggested_min_instances - suggested_max_instances
get_report_from_splunk
python
Yelp/paasta
paasta_tools/contrib/paasta_update_soa_memcpu.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/contrib/paasta_update_soa_memcpu.py
Apache-2.0
def get_reviewers_in_group(group_name): """Using rbt's target-groups argument overrides our configured default review groups. So we'll expand the group into usernames and pass those users in the group individually. """ rightsizer_reviewers = json.loads( subprocess.check_output( ( "rbt", "api-get", "--server", "https://reviewboard.yelpcorp.com", f"groups/{group_name}/users/", ) ).decode("UTF-8") ) return [user.get("username", "") for user in rightsizer_reviewers.get("users", {})]
Using rbt's target-groups argument overrides our configured default review groups. So we'll expand the group into usernames and pass those users in the group individually.
get_reviewers_in_group
python
Yelp/paasta
paasta_tools/contrib/paasta_update_soa_memcpu.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/contrib/paasta_update_soa_memcpu.py
Apache-2.0
def nested_inc(op, _, attr_val, attr_name, state, step=1): """Increments relevant counter by step from args array""" oph = state.setdefault(op, {}) nameh = oph.setdefault(attr_name, {}) nameh.setdefault(attr_val, 0) nameh[attr_val] += step return state
Increments relevant counter by step from args array
nested_inc
python
Yelp/paasta
paasta_tools/frameworks/constraints.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/constraints.py
Apache-2.0
def check_offer_constraints(offer, constraints, state): """Returns True if all constraints are satisfied by offer's attributes, returns False otherwise. Prints a error message and re-raises if an error was thrown.""" for (attr, op, val) in constraints: try: offer_attr = next((x for x in offer.attributes if x.name == attr), None) if offer_attr is None: print("Attribute not found for a constraint: %s" % attr) return False elif not (CONS_OPS[op](val, offer_attr.text.value, offer_attr.name, state)): print( "Constraint not satisfied: [{} {} {}] for {} with {}".format( attr, op, val, offer_attr.text.value, state ) ) return False except Exception as err: print( "Error while matching constraint: [{} {} {}] {}".format( attr, op, val, str(err) ) ) raise err return True
Returns True if all constraints are satisfied by offer's attributes, returns False otherwise. Prints a error message and re-raises if an error was thrown.
check_offer_constraints
python
Yelp/paasta
paasta_tools/frameworks/constraints.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/constraints.py
Apache-2.0
def update_constraint_state(offer, constraints, state, step=1): """Mutates state for each offer attribute found in constraints by calling relevant UPDATE_OP lambda""" for (attr, op, val) in constraints: for oa in offer.attributes: if attr == oa.name: UPDATE_OPS[op](val, oa.text.value, attr, state, step)
Mutates state for each offer attribute found in constraints by calling relevant UPDATE_OP lambda
update_constraint_state
python
Yelp/paasta
paasta_tools/frameworks/constraints.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/constraints.py
Apache-2.0
def launch_tasks_for_offers( self, driver: MesosSchedulerDriver, offers ) -> List[TaskInfo]: """For each offer tries to launch all tasks that can fit in there. Declines offer if no fitting tasks found.""" launched_tasks: List[TaskInfo] = [] for offer in offers: with self.constraint_state_lock: try: tasks, new_state = self.tasks_and_state_for_offer( driver, offer, self.constraint_state ) if tasks is not None and len(tasks) > 0: driver.launchTasks([offer.id], tasks) for task in tasks: self.task_store.add_task_if_doesnt_exist( task["task_id"]["value"], health=None, mesos_task_state=TASK_STAGING, offer=offer, resources=task["resources"], ) launched_tasks.extend(tasks) self.constraint_state = new_state else: driver.declineOffer(offer.id) except ConstraintFailAllTasksError: self.log("Offer failed constraints for every task, rejecting 60s") filters = {"refuse_seconds": 60} driver.declineOffer(offer.id, filters) return launched_tasks
For each offer tries to launch all tasks that can fit in there. Declines offer if no fitting tasks found.
launch_tasks_for_offers
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def task_fits(self, offer): """Checks whether the offer is big enough to fit the tasks""" needed_resources = { "cpus": self.service_config.get_cpus(), "mem": self.service_config.get_mem(), "disk": self.service_config.get_disk(), } for resource in offer.resources: try: if resource.scalar.value < needed_resources[resource.name]: return False except KeyError: pass return True
Checks whether the offer is big enough to fit the tasks
task_fits
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def need_more_tasks(self, name, existingTasks, scheduledTasks): """Returns whether we need to start more tasks.""" num_have = 0 for task, parameters in existingTasks.items(): if self.is_task_new(name, task) and ( parameters.mesos_task_state in LIVE_TASK_STATES ): num_have += 1 for task in scheduledTasks: if task["name"] == name: num_have += 1 return num_have < self.service_config.get_desired_instances()
Returns whether we need to start more tasks.
need_more_tasks
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def tasks_and_state_for_offer( self, driver: MesosSchedulerDriver, offer, state: ConstraintState ) -> Tuple[List[TaskInfo], ConstraintState]: """Returns collection of tasks that can fit inside an offer.""" tasks: List[TaskInfo] = [] offerCpus = 0.0 offerMem = 0.0 offerPorts: List[int] = [] for resource in offer.resources: if resource.name == "cpus": offerCpus += resource.scalar.value elif resource.name == "mem": offerMem += resource.scalar.value elif resource.name == "ports": for rg in resource.ranges.range: # I believe mesos protobuf ranges are inclusive, but range() is exclusive offerPorts += range(rg.begin, rg.end + 1) remainingCpus = offerCpus remainingMem = offerMem remainingPorts = set(offerPorts) base_task = self.service_config.base_task(self.system_paasta_config) base_task["agent_id"]["value"] = offer["agent_id"]["value"] task_mem = self.service_config.get_mem() task_cpus = self.service_config.get_cpus() # don't mutate existing state new_constraint_state = copy.deepcopy(state) total = 0 failed_constraints = 0 while self.need_more_tasks( base_task["name"], self.task_store.get_all_tasks(), tasks ): total += 1 if not ( remainingCpus >= task_cpus and remainingMem >= task_mem and self.offer_matches_pool(offer) and len(remainingPorts) >= 1 ): break if not ( check_offer_constraints(offer, self.constraints, new_constraint_state) ): failed_constraints += 1 break task_port = random.choice(list(remainingPorts)) task = copy.deepcopy(base_task) task["task_id"] = {"value": "{}.{}".format(task["name"], uuid.uuid4().hex)} task["container"]["docker"]["port_mappings"][0]["host_port"] = task_port for resource in task["resources"]: if resource["name"] == "ports": resource["ranges"]["range"][0]["begin"] = task_port resource["ranges"]["range"][0]["end"] = task_port tasks.append(task) remainingCpus -= task_cpus remainingMem -= task_mem remainingPorts -= {task_port} update_constraint_state(offer, self.constraints, new_constraint_state) # raise constraint error but only if no other tasks fit/fail the offer if total > 0 and failed_constraints == total: raise ConstraintFailAllTasksError return tasks, new_constraint_state
Returns collection of tasks that can fit inside an offer.
tasks_and_state_for_offer
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def healthiness_score(task_id): """Return a tuple that can be used as a key for sorting, that expresses our desire to keep this task around. Higher values (things that sort later) are more desirable.""" params = all_tasks_with_params[task_id] state_score = { TASK_KILLING: 0, TASK_FINISHED: 0, TASK_FAILED: 0, TASK_KILLED: 0, TASK_LOST: 0, TASK_ERROR: 0, TASK_STAGING: 1, TASK_STARTING: 2, TASK_RUNNING: 3, }[params.mesos_task_state] # unhealthy tasks < healthy # staging < starting < running # old < new return ( params.is_healthy, state_score, self.is_task_new(base_task_name, task_id), )
Return a tuple that can be used as a key for sorting, that expresses our desire to keep this task around. Higher values (things that sort later) are more desirable.
healthiness_score
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def get_happy_tasks(self, tasks_with_params: Dict[str, MesosTaskParameters]): """Filter a dictionary of tasks->params to those that are running and not draining.""" happy_tasks = {} for tid, params in tasks_with_params.items(): if params.mesos_task_state == TASK_RUNNING and not params.is_draining: happy_tasks[tid] = params return happy_tasks
Filter a dictionary of tasks->params to those that are running and not draining.
get_happy_tasks
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def make_drain_task(self, task_id: str): """Return a DrainTask object, which is suitable for passing to drain methods.""" ports = [] params = self.task_store.get_task(task_id) for resource in params.resources: if resource["name"] == "ports": for rg in resource["ranges"]["range"]: for port in range(rg["begin"], rg["end"] + 1): ports.append(port) return DrainTask( id=task_id, host=params.offer["agent_id"]["value"], ports=ports )
Return a DrainTask object, which is suitable for passing to drain methods.
make_drain_task
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def recreate_drain_method(self) -> None: """Re-instantiate self.drain_method. Should be called after self.service_config changes.""" self.drain_method = drain_lib.get_drain_method( name=self.service_config.get_drain_method( self.service_config.service_namespace_config ), service=self.service_name, instance=self.instance_name, registrations=self.service_config.get_registrations(), **self.service_config.get_drain_method_params( self.service_config.service_namespace_config ), )
Re-instantiate self.drain_method. Should be called after self.service_config changes.
recreate_drain_method
python
Yelp/paasta
paasta_tools/frameworks/native_scheduler.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_scheduler.py
Apache-2.0
def base_task( self, system_paasta_config: SystemPaastaConfig, portMappings=True ) -> TaskInfo: """Return a TaskInfo Dict with all the fields corresponding to the configuration filled in. Does not include task.agent_id or a task.id; those need to be computed separately. """ docker_volumes = self.get_volumes( system_volumes=system_paasta_config.get_volumes(), ) task: TaskInfo = { "name": "", "task_id": {"value": ""}, "agent_id": {"value": ""}, "container": { "type": "DOCKER", "docker": { "image": self.get_docker_url(), "parameters": [ {"key": param["key"], "value": param["value"]} for param in self.format_docker_parameters() ], "network": self.get_mesos_network_mode(), "port_mappings": [], }, "volumes": [ { "container_path": volume["containerPath"], "host_path": volume["hostPath"], "mode": volume["mode"].upper(), } for volume in docker_volumes ], }, "command": { "value": str(self.get_cmd()), "uris": [ { "value": system_paasta_config.get_dockercfg_location(), "extract": False, } ], }, "resources": [ { "name": "cpus", "type": "SCALAR", "scalar": {"value": self.get_cpus()}, }, {"name": "mem", "type": "SCALAR", "scalar": {"value": self.get_mem()}}, ], } if portMappings: task["container"]["docker"]["port_mappings"] = [ { "container_port": self.get_container_port(), # filled by tasks_and_state_for_offer() "host_port": 0, "protocol": "tcp", } ] task["resources"].append( { "name": "ports", "type": "RANGES", "ranges": { # filled by tasks_and_state_for_offer "range": [{"begin": 0, "end": 0}] }, } ) task["name"] = self.task_name(task) return task
Return a TaskInfo Dict with all the fields corresponding to the configuration filled in. Does not include task.agent_id or a task.id; those need to be computed separately.
base_task
python
Yelp/paasta
paasta_tools/frameworks/native_service_config.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/native_service_config.py
Apache-2.0
def merge(self: _SelfT, **kwargs) -> "MesosTaskParameters": """Return a merged MesosTaskParameters object, where attributes in other take precedence over self.""" new_dict = copy.deepcopy(self.__dict__) new_dict.update(kwargs) return MesosTaskParameters(**new_dict)
Return a merged MesosTaskParameters object, where attributes in other take precedence over self.
merge
python
Yelp/paasta
paasta_tools/frameworks/task_store.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/task_store.py
Apache-2.0
def add_task_if_doesnt_exist(self, task_id: str, **kwargs) -> None: """Add a task if it does not already exist. If it already exists, do nothing.""" if self.get_task(task_id) is not None: return else: self.overwrite_task(task_id, MesosTaskParameters(**kwargs))
Add a task if it does not already exist. If it already exists, do nothing.
add_task_if_doesnt_exist
python
Yelp/paasta
paasta_tools/frameworks/task_store.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/task_store.py
Apache-2.0
def _get_task(self, task_id: str) -> Tuple[MesosTaskParameters, ZnodeStat]: """Like get_task, but also returns the ZnodeStat that self.zk_client.get() returns""" try: data, stat = self.zk_client.get("/%s" % task_id) return MesosTaskParameters.deserialize(data), stat except NoNodeError: return None, None except json.decoder.JSONDecodeError: _log( service=self.service_name, instance=self.instance_name, level="debug", component="deploy", line=f"Warning: found non-json-decodable value in zookeeper for task {task_id}: {data}", ) return None, None
Like get_task, but also returns the ZnodeStat that self.zk_client.get() returns
_get_task
python
Yelp/paasta
paasta_tools/frameworks/task_store.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/frameworks/task_store.py
Apache-2.0
def _format_remote_run_job_name( job: V1Job, user: str, ) -> str: """Format name for remote run job :param V1Job job: job definition :param str user: the user requesting the remote-run :return: job name """ return limit_size_with_hash(f"remote-run-{user}-{job.metadata.name}")
Format name for remote run job :param V1Job job: job definition :param str user: the user requesting the remote-run :return: job name
_format_remote_run_job_name
python
Yelp/paasta
paasta_tools/kubernetes/remote_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/kubernetes/remote_run.py
Apache-2.0
def remote_run_start( service: str, instance: str, cluster: str, user: str, interactive: bool, recreate: bool, max_duration: int, is_toolbox: bool, ) -> RemoteRunOutcome: """Trigger remote-run job :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox :param bool interactive: whether it is expected to access the remote-run job interactively :param bool recreate: whether to recreate remote-run job if existing :param int max_duration: maximum allowed duration for the remote-ruh job :param bool is_toolbox: requested job is for a toolbox container :return: outcome of the operation, and resulting Kubernetes pod information """ kube_client = KubeClient() # Load the service deployment settings deployment_config = ( generate_toolbox_deployment(service, cluster, user) if is_toolbox else load_eks_service_config(service, instance, cluster) ) # Set to interactive mode if interactive and not is_toolbox: deployment_config.config_dict["cmd"] = f"sleep {max_duration}" # Create the app with a new name formatted_job = deployment_config.format_kubernetes_job( job_label=REMOTE_RUN_JOB_LABEL, deadline_seconds=max_duration, keep_routable_ip=is_toolbox, ) job_name = _format_remote_run_job_name(formatted_job, user) formatted_job.metadata.name = job_name app_wrapper = get_application_wrapper(formatted_job) app_wrapper.soa_config = deployment_config # Launch pod logger.info(f"Starting {job_name}") try: app_wrapper.create(kube_client) except ApiException as e: if e.status != 409: raise if recreate: remote_run_stop( service=service, instance=instance, cluster=cluster, user=user, is_toolbox=is_toolbox, ) return remote_run_start( service=service, instance=instance, cluster=cluster, user=user, interactive=interactive, recreate=False, max_duration=max_duration, is_toolbox=is_toolbox, ) return { "status": 200, "message": "Remote run sandbox started", "job_name": job_name, }
Trigger remote-run job :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox :param bool interactive: whether it is expected to access the remote-run job interactively :param bool recreate: whether to recreate remote-run job if existing :param int max_duration: maximum allowed duration for the remote-ruh job :param bool is_toolbox: requested job is for a toolbox container :return: outcome of the operation, and resulting Kubernetes pod information
remote_run_start
python
Yelp/paasta
paasta_tools/kubernetes/remote_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/kubernetes/remote_run.py
Apache-2.0
def remote_run_ready( service: str, instance: str, cluster: str, job_name: str, user: str, is_toolbox: bool, ) -> RemoteRunOutcome: """Check if remote-run pod is ready :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str job_name: name of the remote-run job to check :param bool is_toolbox: requested job is for a toolbox container :return: job status, with pod info """ kube_client = KubeClient() # Load the service deployment settings deployment_config = ( generate_toolbox_deployment(service, cluster, user) if is_toolbox else load_eks_service_config(service, instance, cluster) ) namespace = deployment_config.get_namespace() pod = find_job_pod(kube_client, namespace, job_name) if not pod: return {"status": 404, "message": "No pod found"} if pod.status.phase == "Running": if pod.metadata.deletion_timestamp: return {"status": 409, "message": "Pod is terminating"} result: RemoteRunOutcome = { "status": 200, "message": "Pod ready", "pod_name": pod.metadata.name, "namespace": namespace, } if is_toolbox: result["pod_address"] = pod.status.pod_ip return result return { "status": 204, "message": "Pod not ready", }
Check if remote-run pod is ready :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str job_name: name of the remote-run job to check :param bool is_toolbox: requested job is for a toolbox container :return: job status, with pod info
remote_run_ready
python
Yelp/paasta
paasta_tools/kubernetes/remote_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/kubernetes/remote_run.py
Apache-2.0
def remote_run_stop( service: str, instance: str, cluster: str, user: str, is_toolbox: bool, ) -> RemoteRunOutcome: """Stop remote-run job :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox :param bool is_toolbox: requested job is for a toolbox container :return: outcome of the operation """ kube_client = KubeClient() # Load the service deployment settings deployment_config = ( generate_toolbox_deployment(service, cluster, user) if is_toolbox else load_eks_service_config(service, instance, cluster) ) # Rebuild the job metadata formatted_job = deployment_config.format_kubernetes_job( job_label=REMOTE_RUN_JOB_LABEL ) job_name = _format_remote_run_job_name(formatted_job, user) formatted_job.metadata.name = job_name # Stop the job logger.info(f"Stopping {job_name}") app_wrapper = get_application_wrapper(formatted_job) app_wrapper.soa_config = deployment_config app_wrapper.deep_delete(kube_client) return {"status": 200, "message": "Job successfully removed"}
Stop remote-run job :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox :param bool is_toolbox: requested job is for a toolbox container :return: outcome of the operation
remote_run_stop
python
Yelp/paasta
paasta_tools/kubernetes/remote_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/kubernetes/remote_run.py
Apache-2.0
def remote_run_token( service: str, instance: str, cluster: str, user: str, ) -> str: """Creates a short lived token for execing into a pod :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox """ kube_client = KubeClient() # Load the service deployment settings deployment_config = load_eks_service_config(service, instance, cluster) namespace = deployment_config.get_namespace() # Rebuild the job metadata formatted_job = deployment_config.format_kubernetes_job( job_label=REMOTE_RUN_JOB_LABEL ) job_name = _format_remote_run_job_name(formatted_job, user) # Find pod and create exec token for it pod = find_job_pod(kube_client, namespace, job_name) if not pod: raise RemoteRunError(f"Pod for {job_name} not found") pod_name = pod.metadata.name logger.info(f"Generating temporary service account token for {pod_name}") service_account = create_remote_run_service_account( kube_client, namespace, pod_name, user ) role = create_pod_scoped_role(kube_client, namespace, pod_name, user) bind_role_to_service_account(kube_client, namespace, service_account, role, user) return create_temp_exec_token(kube_client, namespace, service_account)
Creates a short lived token for execing into a pod :param str service: service name :param str instance: service instance :param str cluster: paasta cluster :param str user: the user requesting the remote-run sandbox
remote_run_token
python
Yelp/paasta
paasta_tools/kubernetes/remote_run.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/kubernetes/remote_run.py
Apache-2.0