Dataset Viewer
Auto-converted to Parquet
code
stringlengths
208
42.9k
apis
sequence
extract_api
stringlengths
129
69.9k
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F from megengine.core import Tensor from official.vision.detection import layers def get_focal_loss( logits: Tensor, labels: Tensor, ignore_label: int = -1, background: int = 0, alpha: float = 0.5, gamma: float = 0, norm_type: str = "fg", ) -> Tensor: r"""Focal Loss for Dense Object Detection: <https://arxiv.org/pdf/1708.02002.pdf> .. math:: FL(p_t) = -\alpha_t(1-p_t)^\gamma \log(p_t) Args: logits (Tensor): the predicted logits with the shape of :math:`(B, A, C)` labels (Tensor): the assigned labels of boxes with shape of :math:`(B, A)` ignore_label (int): the value of ignore class. Default: -1 background (int): the value of background class. Default: 0 alpha (float): parameter to mitigate class imbalance. Default: 0.5 gamma (float): parameter to mitigate easy/hard loss imbalance. Default: 0 norm_type (str): current support "fg", "none": "fg": loss will be normalized by number of fore-ground samples "none": not norm Returns: the calculated focal loss. """ class_range = F.arange(1, logits.shape[2] + 1) labels = F.add_axis(labels, axis=2) scores = F.sigmoid(logits) pos_part = (1 - scores) ** gamma * layers.logsigmoid(logits) neg_part = scores ** gamma * layers.logsigmoid(-logits) pos_loss = -(labels == class_range) * pos_part * alpha neg_loss = ( -(labels != class_range) * (labels != ignore_label) * neg_part * (1 - alpha) ) loss = (pos_loss + neg_loss).sum() if norm_type == "fg": fg_mask = (labels != background) * (labels != ignore_label) return loss / F.maximum(fg_mask.sum(), 1) elif norm_type == "none": return loss else: raise NotImplementedError def get_smooth_l1_loss( pred_bbox: Tensor, gt_bbox: Tensor, labels: Tensor, beta: int = 1, background: int = 0, ignore_label: int = -1, norm_type: str = "fg", ) -> Tensor: r"""Smooth l1 loss used in RetinaNet. Args: pred_bbox (Tensor): the predicted bbox with the shape of :math:`(B, A, 4)` gt_bbox (Tensor): the ground-truth bbox with the shape of :math:`(B, A, 4)` labels (Tensor): the assigned labels of boxes with shape of :math:`(B, A)` beta (int): the parameter of smooth l1 loss. Default: 1 background (int): the value of background class. Default: 0 ignore_label (int): the value of ignore class. Default: -1 norm_type (str): current support "fg", "all", "none": "fg": loss will be normalized by number of fore-ground samples "all": loss will be normalized by number of all samples "none": not norm Returns: the calculated smooth l1 loss. """ pred_bbox = pred_bbox.reshape(-1, 4) gt_bbox = gt_bbox.reshape(-1, 4) labels = labels.reshape(-1) fg_mask = (labels != background) * (labels != ignore_label) loss = get_smooth_l1_base(pred_bbox, gt_bbox, beta) loss = (loss.sum(axis=1) * fg_mask).sum() if norm_type == "fg": loss = loss / F.maximum(fg_mask.sum(), 1) elif norm_type == "all": all_mask = labels != ignore_label loss = loss / F.maximum(all_mask.sum(), 1) elif norm_type == "none": return loss else: raise NotImplementedError return loss def get_smooth_l1_base(pred_bbox: Tensor, gt_bbox: Tensor, beta: float) -> Tensor: r""" Args: pred_bbox (Tensor): the predicted bbox with the shape of :math:`(N, 4)` gt_bbox (Tensor): the ground-truth bbox with the shape of :math:`(N, 4)` beta (int): the parameter of smooth l1 loss. Returns: the calculated smooth l1 loss. """ x = pred_bbox - gt_bbox abs_x = F.abs(x) if beta < 1e-5: loss = abs_x else: in_loss = 0.5 * x ** 2 / beta out_loss = abs_x - 0.5 * beta # FIXME: F.where cannot handle 0-shape tensor yet # loss = F.where(abs_x < beta, in_loss, out_loss) in_mask = abs_x < beta loss = in_loss * in_mask + out_loss * (1 - in_mask) return loss def softmax_loss(scores: Tensor, labels: Tensor, ignore_label: int = -1) -> Tensor: max_scores = F.zero_grad(scores.max(axis=1, keepdims=True)) scores -= max_scores log_prob = scores - F.log(F.exp(scores).sum(axis=1, keepdims=True)) mask = labels != ignore_label vlabels = labels * mask loss = -(F.indexing_one_hot(log_prob, vlabels.astype("int32"), 1) * mask).sum() loss = loss / F.maximum(mask.sum(), 1) return loss
[ "megengine.functional.add_axis", "megengine.functional.arange", "megengine.functional.sigmoid", "megengine.functional.abs", "megengine.functional.exp" ]
[((1623, 1655), 'megengine.functional.arange', 'F.arange', (['(1)', '(logits.shape[2] + 1)'], {}), '(1, logits.shape[2] + 1)\n', (1631, 1655), True, 'import megengine.functional as F\n'), ((1670, 1696), 'megengine.functional.add_axis', 'F.add_axis', (['labels'], {'axis': '(2)'}), '(labels, axis=2)\n', (1680, 1696), True, 'import megengine.functional as F\n'), ((1710, 1727), 'megengine.functional.sigmoid', 'F.sigmoid', (['logits'], {}), '(logits)\n', (1719, 1727), True, 'import megengine.functional as F\n'), ((4412, 4420), 'megengine.functional.abs', 'F.abs', (['x'], {}), '(x)\n', (4417, 4420), True, 'import megengine.functional as F\n'), ((1767, 1792), 'official.vision.detection.layers.logsigmoid', 'layers.logsigmoid', (['logits'], {}), '(logits)\n', (1784, 1792), False, 'from official.vision.detection import layers\n'), ((1826, 1852), 'official.vision.detection.layers.logsigmoid', 'layers.logsigmoid', (['(-logits)'], {}), '(-logits)\n', (1843, 1852), False, 'from official.vision.detection import layers\n'), ((4977, 4990), 'megengine.functional.exp', 'F.exp', (['scores'], {}), '(scores)\n', (4982, 4990), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest from basecls.models.repvgg import RepVGGBlock @pytest.mark.parametrize("w_in", [32, 64]) @pytest.mark.parametrize("w_out", [64]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("groups", [1, 2, 4]) @pytest.mark.parametrize("se_r", [0.0, 0.25]) @pytest.mark.parametrize("act_name", ["relu"]) def test_block(w_in, w_out, stride, groups, se_r, act_name): m = RepVGGBlock(w_in, w_out, stride, groups, se_r, act_name, deploy=False) assert isinstance(m, M.Module) m.eval() x = mge.random.uniform(size=(2, w_in, 8, 8)) y0 = m(x) m = RepVGGBlock.convert_to_deploy(m) y1 = m(x) np.testing.assert_allclose(y1.numpy(), y0.numpy(), rtol=1e-4, atol=1e-6)
[ "megengine.random.uniform" ]
[((218, 259), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[32, 64]'], {}), "('w_in', [32, 64])\n", (241, 259), False, 'import pytest\n'), ((261, 299), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[64]'], {}), "('w_out', [64])\n", (284, 299), False, 'import pytest\n'), ((301, 342), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (324, 342), False, 'import pytest\n'), ((344, 388), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""groups"""', '[1, 2, 4]'], {}), "('groups', [1, 2, 4])\n", (367, 388), False, 'import pytest\n'), ((390, 434), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""se_r"""', '[0.0, 0.25]'], {}), "('se_r', [0.0, 0.25])\n", (413, 434), False, 'import pytest\n'), ((436, 481), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu']"], {}), "('act_name', ['relu'])\n", (459, 481), False, 'import pytest\n'), ((551, 621), 'basecls.models.repvgg.RepVGGBlock', 'RepVGGBlock', (['w_in', 'w_out', 'stride', 'groups', 'se_r', 'act_name'], {'deploy': '(False)'}), '(w_in, w_out, stride, groups, se_r, act_name, deploy=False)\n', (562, 621), False, 'from basecls.models.repvgg import RepVGGBlock\n'), ((679, 719), 'megengine.random.uniform', 'mge.random.uniform', ([], {'size': '(2, w_in, 8, 8)'}), '(size=(2, w_in, 8, 8))\n', (697, 719), True, 'import megengine as mge\n'), ((743, 775), 'basecls.models.repvgg.RepVGGBlock.convert_to_deploy', 'RepVGGBlock.convert_to_deploy', (['m'], {}), '(m)\n', (772, 775), False, 'from basecls.models.repvgg import RepVGGBlock\n')]
import math import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M # ================================= GRU Implementation ========================================================== class GRUCell(M.Module): """ An implementation of GRUCell. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.ih = M.Linear(input_size, 3 * hidden_size, bias=bias) self.hh = M.Linear(hidden_size, 3 * hidden_size, bias=bias) self.reset_parameters() def reset_parameters(self): std = 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): M.init.uniform_(w, -std, std) def forward(self, x, hidden): x = F.reshape(x, (-1, x.shape[1])) gate_x = self.ih(x) gate_h = self.hh(hidden) i_r, i_i, i_n = F.split(gate_x, 3, axis=1) h_r, h_i, h_n = F.split(gate_h, 3, axis=1) resetgate = F.sigmoid(i_r + h_r) inputgate = F.sigmoid(i_i + h_i) newgate = F.tanh(i_n + (resetgate * h_n)) hy = newgate + inputgate * (hidden - newgate) return hy class GRU(M.Module): """ An implementation of GRUModule. """ def __init__( self, input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, ): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.batch_first = batch_first self.dropout = dropout self.rnn_cell_list = [] self.rnn_cell_list.append(GRUCell(self.input_size, self.hidden_size, self.bias)) for l in range(1, self.num_layers): self.rnn_cell_list.append( GRUCell(self.hidden_size, self.hidden_size, self.bias) ) def forward(self, input, hx=None): if hx is None: batch = input.shape[0] if self.batch_first else input.shape[1] h0 = F.zeros((self.num_layers, batch, self.hidden_size)) else: h0 = hx outs = [] hidden = list() for layer in range(self.num_layers): hidden.append(h0[layer, :, :]) length = input.shape[1] if self.batch_first else input.shape[0] for t in range(length): for layer in range(self.num_layers): if layer == 0: if self.batch_first: hidden_l = self.rnn_cell_list[layer]( input[:, t, :], hidden[layer] ) else: hidden_l = self.rnn_cell_list[layer]( input[t, :, :], hidden[layer] ) else: hidden_l = self.rnn_cell_list[layer]( hidden[layer - 1], hidden[layer] ) if self.dropout and (layer is not self.num_layers - 1): hidden_l = F.dropout(hidden_l, self.dropout) hidden[layer] = hidden_l outs.append(hidden_l) if self.batch_first: output = F.stack(outs, axis=1) else: output = F.stack(outs, axis=0) return output # ================================= LSTM Implementation ========================================================== class LSTMCell(M.Module): """ An implementation of LSTMCell. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.x2h = M.Linear(input_size, 4 * hidden_size, bias=bias) self.h2h = M.Linear(hidden_size, 4 * hidden_size, bias=bias) self.reset_parameters() def reset_parameters(self): std = 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): M.init.uniform_(w, -std, std) def forward(self, x, hidden): hx, cx = hidden x = F.reshape(x, (-1, x.shape[1])) gates = self.x2h(x) + self.h2h(hx) ingate, forgetgate, cellgate, outgate = F.split(gates, 4, axis=1) ingate = F.sigmoid(ingate) forgetgate = F.sigmoid(forgetgate) cellgate = F.tanh(cellgate) outgate = F.sigmoid(outgate) cy = F.mul(cx, forgetgate) + F.mul(ingate, cellgate) hy = F.mul(outgate, F.tanh(cy)) return (hy, cy) class LSTM(M.Module): """ An implementation of LSTMModule. """ def __init__( self, input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, ): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.batch_first = batch_first self.dropout = dropout self.rnn_cell_list = [] self.rnn_cell_list.append( LSTMCell(self.input_size, self.hidden_size, self.bias) ) for l in range(1, self.num_layers): self.rnn_cell_list.append( LSTMCell(self.hidden_size, self.hidden_size, self.bias) ) def forward(self, input, hx=None): if hx is None: batch = input.shape[0] if self.batch_first else input.shape[1] h0 = F.zeros((self.num_layers, batch, self.hidden_size)) c0 = F.zeros((self.num_layers, batch, self.hidden_size)) else: h0 = hx[0] c0 = hx[1] outs = [] hidden = list() for layer in range(self.num_layers): hidden.append((h0[layer, :, :], c0[layer, :, :])) length = input.shape[1] if self.batch_first else input.shape[0] for t in range(length): for layer in range(self.num_layers): if layer == 0: inp = input[:, t, :] if self.batch_first else input[t, :, :] hidden_l = self.rnn_cell_list[layer]( inp, (hidden[layer][0], hidden[layer][1]) ) else: hidden_l = self.rnn_cell_list[layer]( hidden[layer - 1][0], (hidden[layer][0], hidden[layer][1]) ) if self.dropout and (layer is not self.num_layers - 1): hidden_l = ( F.dropout(hidden_l[0], self.dropout), F.dropout(hidden_l[1], self.dropout), ) hidden[layer] = hidden_l outs.append(hidden_l[0]) if self.batch_first: output = F.stack(outs, axis=1) else: output = F.stack(outs, axis=0) return output
[ "megengine.functional.zeros", "megengine.functional.mul", "megengine.functional.sigmoid", "megengine.functional.split", "megengine.functional.stack", "megengine.module.Linear", "megengine.functional.dropout", "megengine.functional.tanh", "megengine.functional.reshape", "megengine.module.init.uniform_" ]
[((520, 568), 'megengine.module.Linear', 'M.Linear', (['input_size', '(3 * hidden_size)'], {'bias': 'bias'}), '(input_size, 3 * hidden_size, bias=bias)\n', (528, 568), True, 'import megengine.module as M\n'), ((587, 636), 'megengine.module.Linear', 'M.Linear', (['hidden_size', '(3 * hidden_size)'], {'bias': 'bias'}), '(hidden_size, 3 * hidden_size, bias=bias)\n', (595, 636), True, 'import megengine.module as M\n'), ((876, 906), 'megengine.functional.reshape', 'F.reshape', (['x', '(-1, x.shape[1])'], {}), '(x, (-1, x.shape[1]))\n', (885, 906), True, 'import megengine.functional as F\n'), ((994, 1020), 'megengine.functional.split', 'F.split', (['gate_x', '(3)'], {'axis': '(1)'}), '(gate_x, 3, axis=1)\n', (1001, 1020), True, 'import megengine.functional as F\n'), ((1045, 1071), 'megengine.functional.split', 'F.split', (['gate_h', '(3)'], {'axis': '(1)'}), '(gate_h, 3, axis=1)\n', (1052, 1071), True, 'import megengine.functional as F\n'), ((1093, 1113), 'megengine.functional.sigmoid', 'F.sigmoid', (['(i_r + h_r)'], {}), '(i_r + h_r)\n', (1102, 1113), True, 'import megengine.functional as F\n'), ((1134, 1154), 'megengine.functional.sigmoid', 'F.sigmoid', (['(i_i + h_i)'], {}), '(i_i + h_i)\n', (1143, 1154), True, 'import megengine.functional as F\n'), ((1173, 1202), 'megengine.functional.tanh', 'F.tanh', (['(i_n + resetgate * h_n)'], {}), '(i_n + resetgate * h_n)\n', (1179, 1202), True, 'import megengine.functional as F\n'), ((3899, 3947), 'megengine.module.Linear', 'M.Linear', (['input_size', '(4 * hidden_size)'], {'bias': 'bias'}), '(input_size, 4 * hidden_size, bias=bias)\n', (3907, 3947), True, 'import megengine.module as M\n'), ((3967, 4016), 'megengine.module.Linear', 'M.Linear', (['hidden_size', '(4 * hidden_size)'], {'bias': 'bias'}), '(hidden_size, 4 * hidden_size, bias=bias)\n', (3975, 4016), True, 'import megengine.module as M\n'), ((4281, 4311), 'megengine.functional.reshape', 'F.reshape', (['x', '(-1, x.shape[1])'], {}), '(x, (-1, x.shape[1]))\n', (4290, 4311), True, 'import megengine.functional as F\n'), ((4405, 4430), 'megengine.functional.split', 'F.split', (['gates', '(4)'], {'axis': '(1)'}), '(gates, 4, axis=1)\n', (4412, 4430), True, 'import megengine.functional as F\n'), ((4449, 4466), 'megengine.functional.sigmoid', 'F.sigmoid', (['ingate'], {}), '(ingate)\n', (4458, 4466), True, 'import megengine.functional as F\n'), ((4488, 4509), 'megengine.functional.sigmoid', 'F.sigmoid', (['forgetgate'], {}), '(forgetgate)\n', (4497, 4509), True, 'import megengine.functional as F\n'), ((4529, 4545), 'megengine.functional.tanh', 'F.tanh', (['cellgate'], {}), '(cellgate)\n', (4535, 4545), True, 'import megengine.functional as F\n'), ((4564, 4582), 'megengine.functional.sigmoid', 'F.sigmoid', (['outgate'], {}), '(outgate)\n', (4573, 4582), True, 'import megengine.functional as F\n'), ((722, 749), 'math.sqrt', 'math.sqrt', (['self.hidden_size'], {}), '(self.hidden_size)\n', (731, 749), False, 'import math\n'), ((798, 827), 'megengine.module.init.uniform_', 'M.init.uniform_', (['w', '(-std)', 'std'], {}), '(w, -std, std)\n', (813, 827), True, 'import megengine.module as M\n'), ((2204, 2255), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (2211, 2255), True, 'import megengine.functional as F\n'), ((3392, 3413), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(1)'}), '(outs, axis=1)\n', (3399, 3413), True, 'import megengine.functional as F\n'), ((3449, 3470), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(0)'}), '(outs, axis=0)\n', (3456, 3470), True, 'import megengine.functional as F\n'), ((4102, 4129), 'math.sqrt', 'math.sqrt', (['self.hidden_size'], {}), '(self.hidden_size)\n', (4111, 4129), False, 'import math\n'), ((4178, 4207), 'megengine.module.init.uniform_', 'M.init.uniform_', (['w', '(-std)', 'std'], {}), '(w, -std, std)\n', (4193, 4207), True, 'import megengine.module as M\n'), ((4597, 4618), 'megengine.functional.mul', 'F.mul', (['cx', 'forgetgate'], {}), '(cx, forgetgate)\n', (4602, 4618), True, 'import megengine.functional as F\n'), ((4621, 4644), 'megengine.functional.mul', 'F.mul', (['ingate', 'cellgate'], {}), '(ingate, cellgate)\n', (4626, 4644), True, 'import megengine.functional as F\n'), ((4674, 4684), 'megengine.functional.tanh', 'F.tanh', (['cy'], {}), '(cy)\n', (4680, 4684), True, 'import megengine.functional as F\n'), ((5661, 5712), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (5668, 5712), True, 'import megengine.functional as F\n'), ((5730, 5781), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (5737, 5781), True, 'import megengine.functional as F\n'), ((6974, 6995), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(1)'}), '(outs, axis=1)\n', (6981, 6995), True, 'import megengine.functional as F\n'), ((7031, 7052), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(0)'}), '(outs, axis=0)\n', (7038, 7052), True, 'import megengine.functional as F\n'), ((3230, 3263), 'megengine.functional.dropout', 'F.dropout', (['hidden_l', 'self.dropout'], {}), '(hidden_l, self.dropout)\n', (3239, 3263), True, 'import megengine.functional as F\n'), ((6721, 6757), 'megengine.functional.dropout', 'F.dropout', (['hidden_l[0]', 'self.dropout'], {}), '(hidden_l[0], self.dropout)\n', (6730, 6757), True, 'import megengine.functional as F\n'), ((6783, 6819), 'megengine.functional.dropout', 'F.dropout', (['hidden_l[1]', 'self.dropout'], {}), '(hidden_l[1], self.dropout)\n', (6792, 6819), True, 'import megengine.functional as F\n')]
import megengine.module as M import megengine.functional as F class FlowHead(M.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = M.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = M.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = M.ReLU() def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class SepConvGRU(M.Module): def __init__(self, hidden_dim=128, input_dim=192 + 128): super(SepConvGRU, self).__init__() self.convz1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convr1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convq1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convz2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) self.convr2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) self.convq2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) def forward(self, h, x): # horizontal hx = F.concat([h, x], axis=1) z = F.sigmoid(self.convz1(hx)) r = F.sigmoid(self.convr1(hx)) q = F.tanh(self.convq1(F.concat([r * h, x], axis=1))) h = (1 - z) * h + z * q # vertical hx = F.concat([h, x], axis=1) z = F.sigmoid(self.convz2(hx)) r = F.sigmoid(self.convr2(hx)) q = F.tanh(self.convq2(F.concat([r * h, x], axis=1))) h = (1 - z) * h + z * q return h class BasicMotionEncoder(M.Module): def __init__(self, cor_planes): super(BasicMotionEncoder, self).__init__() self.convc1 = M.Conv2d(cor_planes, 256, 1, padding=0) self.convc2 = M.Conv2d(256, 192, 3, padding=1) self.convf1 = M.Conv2d(2, 128, 7, padding=3) self.convf2 = M.Conv2d(128, 64, 3, padding=1) self.conv = M.Conv2d(64 + 192, 128 - 2, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = F.concat([cor, flo], axis=1) out = F.relu(self.conv(cor_flo)) return F.concat([out, flow], axis=1) class BasicUpdateBlock(M.Module): def __init__(self, hidden_dim, cor_planes, mask_size=8): super(BasicUpdateBlock, self).__init__() self.encoder = BasicMotionEncoder(cor_planes) self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128 + hidden_dim) self.flow_head = FlowHead(hidden_dim, hidden_dim=256) self.mask = M.Sequential( M.Conv2d(128, 256, 3, padding=1), M.ReLU(), M.Conv2d(256, mask_size**2 * 9, 1, padding=0), ) def forward(self, net, inp, corr, flow, upsample=True): motion_features = self.encoder(flow, corr) inp = F.concat([inp, motion_features], axis=1) net = self.gru(net, inp) delta_flow = self.flow_head(net) # scale mask to balence gradients mask = 0.25 * self.mask(net) return net, mask, delta_flow
[ "megengine.functional.concat", "megengine.module.ReLU", "megengine.module.Conv2d" ]
[((207, 252), 'megengine.module.Conv2d', 'M.Conv2d', (['input_dim', 'hidden_dim', '(3)'], {'padding': '(1)'}), '(input_dim, hidden_dim, 3, padding=1)\n', (215, 252), True, 'import megengine.module as M\n'), ((274, 311), 'megengine.module.Conv2d', 'M.Conv2d', (['hidden_dim', '(2)', '(3)'], {'padding': '(1)'}), '(hidden_dim, 2, 3, padding=1)\n', (282, 311), True, 'import megengine.module as M\n'), ((332, 340), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (338, 340), True, 'import megengine.module as M\n'), ((576, 644), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (584, 644), True, 'import megengine.module as M\n'), ((689, 757), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (697, 757), True, 'import megengine.module as M\n'), ((802, 870), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (810, 870), True, 'import megengine.module as M\n'), ((916, 984), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (924, 984), True, 'import megengine.module as M\n'), ((1029, 1097), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (1037, 1097), True, 'import megengine.module as M\n'), ((1142, 1210), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (1150, 1210), True, 'import megengine.module as M\n'), ((1297, 1321), 'megengine.functional.concat', 'F.concat', (['[h, x]'], {'axis': '(1)'}), '([h, x], axis=1)\n', (1305, 1321), True, 'import megengine.functional as F\n'), ((1527, 1551), 'megengine.functional.concat', 'F.concat', (['[h, x]'], {'axis': '(1)'}), '([h, x], axis=1)\n', (1535, 1551), True, 'import megengine.functional as F\n'), ((1890, 1929), 'megengine.module.Conv2d', 'M.Conv2d', (['cor_planes', '(256)', '(1)'], {'padding': '(0)'}), '(cor_planes, 256, 1, padding=0)\n', (1898, 1929), True, 'import megengine.module as M\n'), ((1952, 1984), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(192)', '(3)'], {'padding': '(1)'}), '(256, 192, 3, padding=1)\n', (1960, 1984), True, 'import megengine.module as M\n'), ((2007, 2037), 'megengine.module.Conv2d', 'M.Conv2d', (['(2)', '(128)', '(7)'], {'padding': '(3)'}), '(2, 128, 7, padding=3)\n', (2015, 2037), True, 'import megengine.module as M\n'), ((2060, 2091), 'megengine.module.Conv2d', 'M.Conv2d', (['(128)', '(64)', '(3)'], {'padding': '(1)'}), '(128, 64, 3, padding=1)\n', (2068, 2091), True, 'import megengine.module as M\n'), ((2112, 2153), 'megengine.module.Conv2d', 'M.Conv2d', (['(64 + 192)', '(128 - 2)', '(3)'], {'padding': '(1)'}), '(64 + 192, 128 - 2, 3, padding=1)\n', (2120, 2153), True, 'import megengine.module as M\n'), ((2367, 2395), 'megengine.functional.concat', 'F.concat', (['[cor, flo]'], {'axis': '(1)'}), '([cor, flo], axis=1)\n', (2375, 2395), True, 'import megengine.functional as F\n'), ((2452, 2481), 'megengine.functional.concat', 'F.concat', (['[out, flow]'], {'axis': '(1)'}), '([out, flow], axis=1)\n', (2460, 2481), True, 'import megengine.functional as F\n'), ((3123, 3163), 'megengine.functional.concat', 'F.concat', (['[inp, motion_features]'], {'axis': '(1)'}), '([inp, motion_features], axis=1)\n', (3131, 3163), True, 'import megengine.functional as F\n'), ((2872, 2904), 'megengine.module.Conv2d', 'M.Conv2d', (['(128)', '(256)', '(3)'], {'padding': '(1)'}), '(128, 256, 3, padding=1)\n', (2880, 2904), True, 'import megengine.module as M\n'), ((2918, 2926), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2924, 2926), True, 'import megengine.module as M\n'), ((2940, 2987), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(mask_size ** 2 * 9)', '(1)'], {'padding': '(0)'}), '(256, mask_size ** 2 * 9, 1, padding=0)\n', (2948, 2987), True, 'import megengine.module as M\n'), ((1431, 1459), 'megengine.functional.concat', 'F.concat', (['[r * h, x]'], {'axis': '(1)'}), '([r * h, x], axis=1)\n', (1439, 1459), True, 'import megengine.functional as F\n'), ((1661, 1689), 'megengine.functional.concat', 'F.concat', (['[r * h, x]'], {'axis': '(1)'}), '([r * h, x], axis=1)\n', (1669, 1689), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python3 from dataset import SIDDValData from model import UNetD import megengine.data as data from utils import batch_PSNR from tqdm import tqdm import argparse import pickle import megengine def test(args): valid_dataset = SIDDValData(args.data) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=1, drop_last=False ) valid_dataloader = data.DataLoader( valid_dataset, sampler=valid_sampler, num_workers=8, ) model = UNetD(3) with open(args.checkpoint, "rb") as f: state = pickle.load(f) model.load_state_dict(state["state_dict"]) model.eval() def valid_step(image, label): pred = model(image) pred = image - pred psnr_it = batch_PSNR(pred, label) return psnr_it def valid(func, data_queue): psnr_v = 0. for step, (image, label) in tqdm(enumerate(data_queue)): image = megengine.tensor(image) label = megengine.tensor(label) psnr_it = func(image, label) psnr_v += psnr_it psnr_v /= step + 1 return psnr_v psnr_v = valid(valid_step, valid_dataloader) print("PSNR: {:.3f}".format(psnr_v.item()) ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="MegEngine NBNet") parser.add_argument("-d", "--data", default="/data/sidd", metavar="DIR", help="path to imagenet dataset") parser.add_argument("-c", "--checkpoint", help="path to checkpoint") args = parser.parse_args() test(args) # vim: ts=4 sw=4 sts=4 expandtab
[ "megengine.data.DataLoader", "megengine.tensor", "megengine.data.SequentialSampler" ]
[((245, 267), 'dataset.SIDDValData', 'SIDDValData', (['args.data'], {}), '(args.data)\n', (256, 267), False, 'from dataset import SIDDValData\n'), ((288, 356), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(1)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=1, drop_last=False)\n', (310, 356), True, 'import megengine.data as data\n'), ((394, 462), 'megengine.data.DataLoader', 'data.DataLoader', (['valid_dataset'], {'sampler': 'valid_sampler', 'num_workers': '(8)'}), '(valid_dataset, sampler=valid_sampler, num_workers=8)\n', (409, 462), True, 'import megengine.data as data\n'), ((506, 514), 'model.UNetD', 'UNetD', (['(3)'], {}), '(3)\n', (511, 514), False, 'from model import UNetD\n'), ((1276, 1330), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine NBNet"""'}), "(description='MegEngine NBNet')\n", (1299, 1330), False, 'import argparse\n'), ((574, 588), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (585, 588), False, 'import pickle\n'), ((762, 785), 'utils.batch_PSNR', 'batch_PSNR', (['pred', 'label'], {}), '(pred, label)\n', (772, 785), False, 'from utils import batch_PSNR\n'), ((948, 971), 'megengine.tensor', 'megengine.tensor', (['image'], {}), '(image)\n', (964, 971), False, 'import megengine\n'), ((992, 1015), 'megengine.tensor', 'megengine.tensor', (['label'], {}), '(label)\n', (1008, 1015), False, 'import megengine\n')]
import os import numpy as np import collections import megengine.module as M import megengine.functional as F import megengine as mge from megengine.data.dataset import Dataset from megengine.data import DataLoader import hparams as hp from megengine.data import Collator class AsrDataset(Dataset): def __init__(self, data_set="train"): """ Args: root_dir (string): Directory with all the spectrograms. """ self.metas = self.load_metas(hp.dataset_root, data_set) def load_metas(self, root, data_set): # fix a bug metas = [] with open(os.path.join(root, f"{data_set}.txt")) as f: for line in f.readlines(): info = line.split("|") metas.append( { "mel_path": os.path.join(root, info[0]), "frames": info[1], "token_ids_str": info[2], "speaker": info[3], } ) return metas def __len__(self): return len(self.metas) def __getitem__(self, idx): meta = self.metas[idx] token_ids = [int(i) for i in meta["token_ids_str"].split(" ")] text = np.array(token_ids, dtype=np.int32) mel = np.load(meta["mel_path"]) text_input = text[:-1] text_output = text[1:] text_length = text_input.shape[0] pos_text = np.arange(1, text_length + 1) pos_mel = np.arange(1, mel.shape[0] + 1) return { "text": text, "text_input": text_input, "text_output": text_output, "text_length": text_length, "mel": mel, "pos_mel": pos_mel, "pos_text": pos_text, } class AsrCollator(Collator): def __init__(self, pad_value: float = 0.0): super().__init__() self.pad_value = pad_value def apply(self, batch): # Puts each data field into a tensor with outer dimension batch size if isinstance(batch[0], collections.Mapping): text = [d["text"] for d in batch] text_input = [d["text_input"] for d in batch] text_output = [d["text_output"] for d in batch] text_length = [d["text_length"] for d in batch] mel = [d["mel"] for d in batch] mel_length = [d["mel"].shape[0] for d in batch] pos_mel = [d["pos_mel"] for d in batch] pos_text = [d["pos_text"] for d in batch] text = [ i for i, _ in sorted( zip(text, mel_length), key=lambda x: x[1], reverse=True ) ] text_input = [ i for i, _ in sorted( zip(text_input, mel_length), key=lambda x: x[1], reverse=True ) ] text_output = [ i for i, _ in sorted( zip(text_output, mel_length), key=lambda x: x[1], reverse=True ) ] text_length = [ i for i, _ in sorted( zip(text_length, mel_length), key=lambda x: x[1], reverse=True ) ] mel = [ i for i, _ in sorted( zip(mel, mel_length), key=lambda x: x[1], reverse=True ) ] pos_text = [ i for i, _ in sorted( zip(pos_text, mel_length), key=lambda x: x[1], reverse=True ) ] pos_mel = [ i for i, _ in sorted( zip(pos_mel, mel_length), key=lambda x: x[1], reverse=True ) ] mel_length = sorted(mel_length, reverse=True) # PAD sequences with largest length of the batch text_input = _prepare_data(text_input).astype(np.int32) text_output = _prepare_data(text_output).astype(np.int32) mel = _pad_mel(mel) pos_mel = _prepare_data(pos_mel).astype(np.int32) pos_text = _prepare_data(pos_text).astype(np.int32) return ( mge.Tensor(text_input), mge.Tensor(text_output), mge.Tensor(mel), mge.Tensor(pos_text), mge.Tensor(pos_mel), mge.Tensor(text_length), mge.Tensor(mel_length), ) raise TypeError( ( "batch must contain tensors, numbers, dicts or lists; found {}".format( type(batch[0]) ) ) ) def collate_fn_transformer_test(batch): # Puts each data field into a tensor with outer dimension batch size # if isinstance(batch[0], collections.Mapping): text = [batch["text"]] # for d in batch] text_input = batch["text_input"] text_output = batch["text_output"] text_length = batch["text_length"] mel = [batch["mel"]] mel_length = [batch["mel"].shape[1]] pos_mel = batch["pos_mel"] pos_text = batch["pos_text"] text = [ i for i, _ in sorted(zip(text, mel_length), key=lambda x: x[1], reverse=True) ] text_input = [ i for i, _ in sorted( zip(text_input, mel_length), key=lambda x: x[1], reverse=True ) ] text_output = [ i for i, _ in sorted( zip(text_output, mel_length), key=lambda x: x[1], reverse=True ) ] text_length = [ i for i, _ in sorted( zip(text_length, mel_length), key=lambda x: x[1], reverse=True ) ] mel = [i for i, _ in sorted(zip(mel, mel_length), key=lambda x: x[1], reverse=True)] pos_text = [ i for i, _ in sorted(zip(pos_text, mel_length), key=lambda x: x[1], reverse=True) ] pos_mel = [ i for i, _ in sorted(zip(pos_mel, mel_length), key=lambda x: x[1], reverse=True) ] mel_length = sorted(mel_length, reverse=True) # PAD sequences with largest length of the batch text_input = _prepare_data(text_input).astype(np.int32) text_output = _prepare_data(text_output).astype(np.int32) mel = _pad_mel(mel[0]) pos_mel = _prepare_data(pos_mel).astype(np.int32) pos_text = _prepare_data(pos_text).astype(np.int32) return ( mge.Tensor(text_input), mge.Tensor(text_output), mge.Tensor(mel), mge.Tensor(pos_text), mge.Tensor(pos_mel), mge.Tensor(text_length), mge.Tensor(mel_length), ) raise TypeError( ( "batch must contain tensors, numbers, dicts or lists; found {}".format( type(batch[0]) ) ) ) ############################ Utils ################################### def _pad_data(x, length): _pad = 0 return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad) def _prepare_data(inputs): max_len = max((len(x) for x in inputs)) return np.stack([_pad_data(x, max_len) for x in inputs]) def _pad_mel(inputs): _pad = 0 def _pad_one(x, max_len): mel_len = x.shape[0] return np.pad( x, [[0, max_len - mel_len], [0, 0]], mode="constant", constant_values=_pad ) max_len = max((x.shape[0] for x in inputs)) return np.stack([_pad_one(x, max_len) for x in inputs])
[ "megengine.Tensor" ]
[((7013, 7087), 'numpy.pad', 'np.pad', (['x', '(0, length - x.shape[0])'], {'mode': '"""constant"""', 'constant_values': '_pad'}), "(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)\n", (7019, 7087), True, 'import numpy as np\n'), ((1250, 1285), 'numpy.array', 'np.array', (['token_ids'], {'dtype': 'np.int32'}), '(token_ids, dtype=np.int32)\n', (1258, 1285), True, 'import numpy as np\n'), ((1300, 1325), 'numpy.load', 'np.load', (["meta['mel_path']"], {}), "(meta['mel_path'])\n", (1307, 1325), True, 'import numpy as np\n'), ((1449, 1478), 'numpy.arange', 'np.arange', (['(1)', '(text_length + 1)'], {}), '(1, text_length + 1)\n', (1458, 1478), True, 'import numpy as np\n'), ((1497, 1527), 'numpy.arange', 'np.arange', (['(1)', '(mel.shape[0] + 1)'], {}), '(1, mel.shape[0] + 1)\n', (1506, 1527), True, 'import numpy as np\n'), ((6499, 6521), 'megengine.Tensor', 'mge.Tensor', (['text_input'], {}), '(text_input)\n', (6509, 6521), True, 'import megengine as mge\n'), ((6531, 6554), 'megengine.Tensor', 'mge.Tensor', (['text_output'], {}), '(text_output)\n', (6541, 6554), True, 'import megengine as mge\n'), ((6564, 6579), 'megengine.Tensor', 'mge.Tensor', (['mel'], {}), '(mel)\n', (6574, 6579), True, 'import megengine as mge\n'), ((6589, 6609), 'megengine.Tensor', 'mge.Tensor', (['pos_text'], {}), '(pos_text)\n', (6599, 6609), True, 'import megengine as mge\n'), ((6619, 6638), 'megengine.Tensor', 'mge.Tensor', (['pos_mel'], {}), '(pos_mel)\n', (6629, 6638), True, 'import megengine as mge\n'), ((6648, 6671), 'megengine.Tensor', 'mge.Tensor', (['text_length'], {}), '(text_length)\n', (6658, 6671), True, 'import megengine as mge\n'), ((6681, 6703), 'megengine.Tensor', 'mge.Tensor', (['mel_length'], {}), '(mel_length)\n', (6691, 6703), True, 'import megengine as mge\n'), ((7334, 7420), 'numpy.pad', 'np.pad', (['x', '[[0, max_len - mel_len], [0, 0]]'], {'mode': '"""constant"""', 'constant_values': '_pad'}), "(x, [[0, max_len - mel_len], [0, 0]], mode='constant',\n constant_values=_pad)\n", (7340, 7420), True, 'import numpy as np\n'), ((607, 644), 'os.path.join', 'os.path.join', (['root', 'f"""{data_set}.txt"""'], {}), "(root, f'{data_set}.txt')\n", (619, 644), False, 'import os\n'), ((4312, 4334), 'megengine.Tensor', 'mge.Tensor', (['text_input'], {}), '(text_input)\n', (4322, 4334), True, 'import megengine as mge\n'), ((4352, 4375), 'megengine.Tensor', 'mge.Tensor', (['text_output'], {}), '(text_output)\n', (4362, 4375), True, 'import megengine as mge\n'), ((4393, 4408), 'megengine.Tensor', 'mge.Tensor', (['mel'], {}), '(mel)\n', (4403, 4408), True, 'import megengine as mge\n'), ((4426, 4446), 'megengine.Tensor', 'mge.Tensor', (['pos_text'], {}), '(pos_text)\n', (4436, 4446), True, 'import megengine as mge\n'), ((4464, 4483), 'megengine.Tensor', 'mge.Tensor', (['pos_mel'], {}), '(pos_mel)\n', (4474, 4483), True, 'import megengine as mge\n'), ((4501, 4524), 'megengine.Tensor', 'mge.Tensor', (['text_length'], {}), '(text_length)\n', (4511, 4524), True, 'import megengine as mge\n'), ((4542, 4564), 'megengine.Tensor', 'mge.Tensor', (['mel_length'], {}), '(mel_length)\n', (4552, 4564), True, 'import megengine as mge\n'), ((818, 845), 'os.path.join', 'os.path.join', (['root', 'info[0]'], {}), '(root, info[0])\n', (830, 845), False, 'import os\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import multiprocessing import os import time # pylint: disable=import-error import model as resnet_model import megengine import megengine.autodiff as autodiff import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.optimizer as optim logging = megengine.logger.get_logger() def main(): parser = argparse.ArgumentParser(description="MegEngine ImageNet Training") parser.add_argument("-d", "--data", metavar="DIR", help="path to imagenet dataset") parser.add_argument( "-a", "--arch", default="resnet50", help="model architecture (default: resnet50)", ) parser.add_argument( "-n", "--ngpus", default=None, type=int, help="number of GPUs per node (default: None, use all available GPUs)", ) parser.add_argument( "--save", metavar="DIR", default="output", help="path to save checkpoint and log", ) parser.add_argument( "--epochs", default=10, type=int, help="number of total epochs to run (default: 10)", ) parser.add_argument( "-b", "--batch-size", metavar="SIZE", default=64, type=int, help="batch size for single GPU (default: 64)", ) parser.add_argument( "--lr", "--learning-rate", metavar="LR", default=0.025, type=float, help="learning rate for single GPU (default: 0.025)", ) parser.add_argument( "--momentum", default=0.9, type=float, help="momentum (default: 0.9)" ) parser.add_argument( "--weight-decay", default=1e-4, type=float, help="weight decay (default: 1e-4)" ) parser.add_argument("-j", "--workers", default=2, type=int) parser.add_argument( "-p", "--print-freq", default=20, type=int, metavar="N", help="print frequency (default: 20)", ) parser.add_argument("--dist-addr", default="localhost") parser.add_argument("--dist-port", default=23456, type=int) parser.add_argument("--world-size", default=1, type=int) parser.add_argument("--rank", default=0, type=int) parser.add_argument( "--enable-dtr", dest="enable_dtr", action="store_true", help="Enable DTR") args = parser.parse_args() # create server if is master if args.rank <= 0: server = dist.Server(port=args.dist_port) # pylint: disable=unused-variable # noqa: F841 # get device count with multiprocessing.Pool(1) as pool: ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"]) if args.ngpus: ngpus_per_node = args.ngpus # launch processes procs = [] for local_rank in range(ngpus_per_node): p = multiprocessing.Process( target=worker, kwargs=dict( rank=args.rank * ngpus_per_node + local_rank, world_size=args.world_size * ngpus_per_node, ngpus_per_node=ngpus_per_node, args=args, ), ) p.start() procs.append(p) # join processes for p in procs: p.join() def worker(rank, world_size, ngpus_per_node, args): # pylint: disable=too-many-statements # enable DTR if args.enable_dtr: from megengine.utils.dtr import DTR ds = DTR(memory_budget=5*1024**3) if rank == 0: os.makedirs(os.path.join(args.save, args.arch), exist_ok=True) megengine.logger.set_log_file(os.path.join(args.save, args.arch, "log.txt")) # init process group if world_size > 1: dist.init_process_group( master_ip=args.dist_addr, port=args.dist_port, world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend="nccl", ) logging.info( "init process group rank %d / %d", dist.get_rank(), dist.get_world_size() ) # build dataset train_dataloader, valid_dataloader = build_dataset(args) train_queue = iter(train_dataloader) # infinite steps_per_epoch = 1280000 // (world_size * args.batch_size) # build model model = resnet_model.__dict__[args.arch]() # Sync parameters if world_size > 1: dist.bcast_list_(model.parameters(), dist.WORLD) # Autodiff gradient manager gm = autodiff.GradManager().attach( model.parameters(), callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None, ) # Optimizer opt = optim.SGD( model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay * world_size, # scale weight decay in "SUM" mode ) # train and valid func def train_step(image, label): with gm: logits = model(image) loss = F.nn.cross_entropy(logits, label) acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5)) gm.backward(loss) opt.step().clear_grad() return loss, acc1, acc5 def valid_step(image, label): logits = model(image) loss = F.nn.cross_entropy(logits, label) acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5)) # calculate mean values if world_size > 1: loss = F.distributed.all_reduce_sum(loss) / world_size acc1 = F.distributed.all_reduce_sum(acc1) / world_size acc5 = F.distributed.all_reduce_sum(acc5) / world_size return loss, acc1, acc5 # multi-step learning rate scheduler with warmup def adjust_learning_rate(step): lr = args.lr * 0.1 ** bisect.bisect_right( [30 * steps_per_epoch, 60 * steps_per_epoch, 80 * steps_per_epoch], step ) if step < 5 * steps_per_epoch: # warmup lr = args.lr * (step / (5 * steps_per_epoch)) for param_group in opt.param_groups: param_group["lr"] = lr return lr # start training objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") clck = AverageMeter("Time") for step in range(0, args.epochs * steps_per_epoch): lr = adjust_learning_rate(step) t = time.time() image, label = next(train_queue) image = megengine.tensor(image, dtype="float32") label = megengine.tensor(label, dtype="int32") loss, acc1, acc5 = train_step(image, label) objs.update(loss.item()) top1.update(100 * acc1.item()) top5.update(100 * acc5.item()) clck.update(time.time() - t) if step % args.print_freq == 0 and dist.get_rank() == 0: logging.info( "Epoch %d Step %d, LR %.4f, %s %s %s %s", step // steps_per_epoch, step, lr, objs, top1, top5, clck, ) objs.reset() top1.reset() top5.reset() clck.reset() if (step + 1) % steps_per_epoch == 0: model.eval() _, valid_acc1, valid_acc5 = valid(valid_step, valid_dataloader, args) model.train() logging.info( "Epoch %d Test Acc@1 %.3f, Acc@5 %.3f", (step + 1) // steps_per_epoch, valid_acc1, valid_acc5, ) megengine.save( { "epoch": (step + 1) // steps_per_epoch, "state_dict": model.state_dict(), }, os.path.join(args.save, args.arch, "checkpoint.pkl"), ) def valid(func, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") clck = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): image = megengine.tensor(image, dtype="float32") label = megengine.tensor(label, dtype="int32") n = image.shape[0] loss, acc1, acc5 = func(image, label) objs.update(loss.item(), n) top1.update(100 * acc1.item(), n) top5.update(100 * acc5.item(), n) clck.update(time.time() - t, n) t = time.time() if step % args.print_freq == 0 and dist.get_rank() == 0: logging.info("Test step %d, %s %s %s %s", step, objs, top1, top5, clck) return objs.avg, top1.avg, top5.avg def build_dataset(args): train_dataset = data.dataset.ImageNet(args.data, train=True) train_sampler = data.Infinite( data.RandomSampler(train_dataset, batch_size=args.batch_size, drop_last=True) ) train_dataloader = data.DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( [ # Baseline Augmentation for small models T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ) if args.arch in ("resnet18", "resnet34") else T.Compose( [ # Facebook Augmentation for large models T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ), num_workers=args.workers, ) valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_dataloader = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [ T.Resize(256), T.CenterCrop(224), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ), num_workers=args.workers, ) return train_dataloader, valid_dataloader class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.functional.topk_accuracy", "megengine.data.transform.RandomHorizontalFlip", "megengine.distributed.init_process_group", "megengine.utils.dtr.DTR", "megengine.distributed.get_rank", "megengine.functional.distributed.all_reduce_sum", "megengine.data.transform.CenterCrop", "megengine.distributed.get_world_size", "megengine.tensor", "megengine.data.transform.Resize", "megengine.functional.nn.cross_entropy", "megengine.data.SequentialSampler", "megengine.distributed.Server", "megengine.data.transform.Normalize", "megengine.logger.get_logger", "megengine.data.transform.ToMode", "megengine.distributed.make_allreduce_cb", "megengine.data.RandomSampler", "megengine.data.transform.RandomResizedCrop", "megengine.data.transform.ColorJitter", "megengine.data.dataset.ImageNet", "megengine.autodiff.GradManager" ]
[((753, 782), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (780, 782), False, 'import megengine\n'), ((809, 875), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine ImageNet Training"""'}), "(description='MegEngine ImageNet Training')\n", (832, 875), False, 'import argparse\n'), ((8402, 8413), 'time.time', 'time.time', ([], {}), '()\n', (8411, 8413), False, 'import time\n'), ((9079, 9123), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(True)'}), '(args.data, train=True)\n', (9100, 9123), True, 'import megengine.data as data\n'), ((10255, 10300), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (10276, 10300), True, 'import megengine.data as data\n'), ((10321, 10391), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (10343, 10391), True, 'import megengine.data as data\n'), ((2923, 2955), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (2934, 2955), True, 'import megengine.distributed as dist\n'), ((3038, 3061), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (3058, 3061), False, 'import multiprocessing\n'), ((3897, 3929), 'megengine.utils.dtr.DTR', 'DTR', ([], {'memory_budget': '(5 * 1024 ** 3)'}), '(memory_budget=5 * 1024 ** 3)\n', (3900, 3929), False, 'from megengine.utils.dtr import DTR\n'), ((4156, 4315), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (4179, 4315), True, 'import megengine.distributed as dist\n'), ((5686, 5719), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (5704, 5719), True, 'import megengine.functional as F\n'), ((5741, 5784), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (5756, 5784), True, 'import megengine.functional as F\n'), ((6781, 6792), 'time.time', 'time.time', ([], {}), '()\n', (6790, 6792), False, 'import time\n'), ((6851, 6891), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (6867, 6891), False, 'import megengine\n'), ((6908, 6946), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (6924, 6946), False, 'import megengine\n'), ((8485, 8525), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (8501, 8525), False, 'import megengine\n'), ((8542, 8580), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (8558, 8580), False, 'import megengine\n'), ((8829, 8840), 'time.time', 'time.time', ([], {}), '()\n', (8838, 8840), False, 'import time\n'), ((9167, 9244), 'megengine.data.RandomSampler', 'data.RandomSampler', (['train_dataset'], {'batch_size': 'args.batch_size', 'drop_last': '(True)'}), '(train_dataset, batch_size=args.batch_size, drop_last=True)\n', (9185, 9244), True, 'import megengine.data as data\n'), ((3964, 3998), 'os.path.join', 'os.path.join', (['args.save', 'args.arch'], {}), '(args.save, args.arch)\n', (3976, 3998), False, 'import os\n'), ((4053, 4098), 'os.path.join', 'os.path.join', (['args.save', 'args.arch', '"""log.txt"""'], {}), "(args.save, args.arch, 'log.txt')\n", (4065, 4098), False, 'import os\n'), ((4459, 4474), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4472, 4474), True, 'import megengine.distributed as dist\n'), ((4476, 4497), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4495, 4497), True, 'import megengine.distributed as dist\n'), ((4918, 4940), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (4938, 4940), True, 'import megengine.autodiff as autodiff\n'), ((5405, 5438), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (5423, 5438), True, 'import megengine.functional as F\n'), ((5464, 5507), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (5479, 5507), True, 'import megengine.functional as F\n'), ((4995, 5024), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""'], {}), "('SUM')\n", (5017, 5024), True, 'import megengine.distributed as dist\n'), ((5863, 5897), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['loss'], {}), '(loss)\n', (5891, 5897), True, 'import megengine.functional as F\n'), ((5930, 5964), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (5958, 5964), True, 'import megengine.functional as F\n'), ((5997, 6031), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (6025, 6031), True, 'import megengine.functional as F\n'), ((6197, 6294), 'bisect.bisect_right', 'bisect.bisect_right', (['[30 * steps_per_epoch, 60 * steps_per_epoch, 80 * steps_per_epoch]', 'step'], {}), '([30 * steps_per_epoch, 60 * steps_per_epoch, 80 *\n steps_per_epoch], step)\n', (6216, 6294), False, 'import bisect\n'), ((7132, 7143), 'time.time', 'time.time', ([], {}), '()\n', (7141, 7143), False, 'import time\n'), ((7193, 7208), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7206, 7208), True, 'import megengine.distributed as dist\n'), ((8158, 8210), 'os.path.join', 'os.path.join', (['args.save', 'args.arch', '"""checkpoint.pkl"""'], {}), "(args.save, args.arch, 'checkpoint.pkl')\n", (8170, 8210), False, 'import os\n'), ((8797, 8808), 'time.time', 'time.time', ([], {}), '()\n', (8806, 8808), False, 'import time\n'), ((8885, 8900), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8898, 8900), True, 'import megengine.distributed as dist\n'), ((10559, 10572), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (10567, 10572), True, 'import megengine.data.transform as T\n'), ((10590, 10607), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (10602, 10607), True, 'import megengine.data.transform as T\n'), ((10625, 10697), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (10636, 10697), True, 'import megengine.data.transform as T\n'), ((10763, 10778), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (10771, 10778), True, 'import megengine.data.transform as T\n'), ((9446, 9470), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['(224)'], {}), '(224)\n', (9465, 9470), True, 'import megengine.data.transform as T\n'), ((9488, 9512), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9510, 9512), True, 'import megengine.data.transform as T\n'), ((9530, 9602), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (9541, 9602), True, 'import megengine.data.transform as T\n'), ((9668, 9683), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (9676, 9683), True, 'import megengine.data.transform as T\n'), ((9854, 9878), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['(224)'], {}), '(224)\n', (9873, 9878), True, 'import megengine.data.transform as T\n'), ((9896, 9920), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9918, 9920), True, 'import megengine.data.transform as T\n'), ((9938, 9997), 'megengine.data.transform.ColorJitter', 'T.ColorJitter', ([], {'brightness': '(0.4)', 'contrast': '(0.4)', 'saturation': '(0.4)'}), '(brightness=0.4, contrast=0.4, saturation=0.4)\n', (9951, 9997), True, 'import megengine.data.transform as T\n'), ((10015, 10087), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (10026, 10087), True, 'import megengine.data.transform as T\n'), ((10153, 10168), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (10161, 10168), True, 'import megengine.data.transform as T\n')]
# -*- coding: utf-8 -*- import megengine as mge import megengine.random as rand import megengine.functional as F import numpy as np from config import config from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr, box_overlap_ignore_opr import pdb def fpn_roi_target(rpn_rois, im_info, gt_boxes, fg_threshold = config.fg_threshold, top_k=1): return_rois, return_labels = [], [] return_bbox_targets = [] # get per image proposals and gt_boxes batch_per_gpu = im_info.shape[0] sampling = True # is_sample = True if top_k < 2 else False for bid in range(batch_per_gpu): gt_boxes_perimg = gt_boxes[bid, :im_info[bid, 5].astype(np.int32), :] dummy_gt = F.ones([1, gt_boxes_perimg.shape[1]]) batch_inds = F.ones((gt_boxes_perimg.shape[0], 1)) * bid #if config.proposal_append_gt: gt_rois = F.concat([batch_inds, gt_boxes_perimg[:, :4]], axis=1) batch_rois_mask = F.equal(rpn_rois[:, 0], bid) > 0 _, batch_rois_index = F.cond_take(batch_rois_mask, batch_rois_mask) # batch_roi_mask = rpn_rois[:, 0] == bid # batch_roi_inds = mask_to_inds(batch_roi_mask) all_rois= F.concat([rpn_rois[batch_rois_index], gt_rois], axis=0) if sampling \ else rpn_rois[batch_rois_index] # all_rois = F.concat([rpn_rois.ai[batch_roi_inds], gt_rois], axis=0) gt_boxes_perimg = F.concat([gt_boxes_perimg, dummy_gt],axis=0) overlaps_normal, overlaps_ignore = box_overlap_ignore_opr( all_rois[:, 1:5], gt_boxes_perimg) # overlaps_normal, overlaps_normal_indices = F.argsort(overlaps_normal, descending=True) # overlaps_ignore, overlaps_ignore_indices = F.argsort(overlaps_ignore, descending=True) overlaps_normal_indices = F.argsort(overlaps_normal, descending=True) overlaps_normal = F.gather(overlaps_normal, 1, overlaps_normal_indices) # overlaps_normal = F.nn.indexing_one_hot(overlaps_normal, overlaps_normal_indices, 1) overlaps_ignore_indices = F.argsort(overlaps_ignore, descending = True) overlaps_ignore = F.gather(overlaps_ignore, 1, overlaps_ignore_indices) # overlaps_ignore = F.nn.indexing_one_hot(overlaps_ignore, overlaps_ignore_indices, 1) # gt max and indices, ignore max and indices max_overlaps_normal = overlaps_normal[:, :top_k].flatten() gt_assignment_normal = overlaps_normal_indices[:, :top_k].flatten() max_overlaps_ignore = overlaps_ignore[:, :top_k].flatten() gt_assignment_ignore = overlaps_ignore_indices[:, :top_k].flatten() # cons masks ignore_assign_mask = (max_overlaps_normal < fg_threshold).astype(np.float32) * ( max_overlaps_ignore > max_overlaps_normal).astype(np.float32) max_overlaps = max_overlaps_normal * (1 - ignore_assign_mask).astype(np.float32) + \ max_overlaps_ignore * ignore_assign_mask gt_assignment = gt_assignment_normal * (1- ignore_assign_mask) + \ gt_assignment_ignore * ignore_assign_mask gt_assignment = gt_assignment.astype(np.int32) labels = gt_boxes_perimg[gt_assignment, 4] fg_mask = (max_overlaps >= fg_threshold).astype(np.float32) * (1 - F.equal(labels, config.ignore_label)) bg_mask = (max_overlaps < config.bg_threshold_high).astype(np.float32) * ( max_overlaps >= config.bg_threshold_low).astype(np.float32) fg_mask = fg_mask.reshape(-1, top_k) bg_mask = bg_mask.reshape(-1, top_k) pos_max = config.num_rois * config.fg_ratio fg_inds_mask = _bernoulli_sample_masks(fg_mask[:, 0], pos_max, 1) if sampling else F.equal(fg_mask[:, 0], 0) neg_max = config.num_rois - fg_inds_mask.sum() bg_inds_mask = _bernoulli_sample_masks(bg_mask[:, 0], neg_max, 1) if sampling else F.equal(bg_mask[:, 0], 0) labels = labels * fg_mask.reshape(-1) keep_mask = fg_inds_mask + bg_inds_mask keep_mask = keep_mask + F.equal(keep_mask.sum(), 0) # keep_inds = mask_to_inds(keep_mask) _, keep_inds = F.cond_take(keep_mask > 0, keep_mask) #keep_inds = keep_inds[:F.minimum(config.num_rois, keep_inds.shapeof()[0])] # labels labels = labels.reshape(-1, top_k)[keep_inds] gt_assignment = gt_assignment.reshape(-1, top_k)[keep_inds].reshape(-1).astype(np.int32) target_boxes = gt_boxes_perimg[gt_assignment, :4] # rois = all_rois.ai[keep_inds] rois = all_rois[keep_inds] # target_shape = (rois.shapeof()[0], top_k, rois.shapeof()[-1]) n, c = rois.shape[0], rois.shape[1] target_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, top_k, c)).reshape(-1, c) # target_rois = F.add_axis(rois, 1).broadcast(target_shape).reshape(-1, rois.shapeof()[-1]) bbox_targets = bbox_transform_opr(target_rois[:, 1:5], target_boxes[:, :4]) if config.rcnn_bbox_normalize_targets: std_opr = mge.tensor(config.bbox_normalize_stds[None, :]).to(rois.device) mean_opr = mge.tensor(config.bbox_normalize_means[None, :]).to(rois.device) minus_opr = mean_opr / std_opr bbox_targets = bbox_targets / std_opr - minus_opr bbox_targets = bbox_targets.reshape(-1, top_k * 4) return_rois.append(rois) return_labels.append(labels) return_bbox_targets.append(bbox_targets) if config.batch_per_gpu == 1: rois, labels, bbox_targets = rois.detach(), labels.detach(), bbox_targets.detach() return rois, labels, bbox_targets # return F.zero_grad(rois), F.zero_grad(labels), F.zero_grad(bbox_targets) else: return_rois = F.concat(return_rois, axis=0) return_labels = F.concat(return_labels, axis=0) return_bbox_targets = F.concat(return_bbox_targets, axis=0) return_rois = return_rois.detach() return_labels = return_labels.detach() return_bbox_targets = return_bbox_targets.detach() return return_rois, return_labels, return_bbox_targets # rois, labels, bbox_targets = return_rois.detach(), return_labels.detach(), return_bbox_targets.detach() # return rois, labels, bbox_targets # return F.zero_grad(return_rois), F.zero_grad(return_labels), F.zero_grad(return_bbox_targets) def _bernoulli_sample_masks(masks, num_samples, sample_value): """ Using the bernoulli sampling method""" sample_mask = F.equal(masks, sample_value) num_mask = sample_mask.sum() num_final_samples = F.minimum(num_mask, num_samples) # here, we use the bernoulli probability to sample the anchors sample_prob = num_final_samples / num_mask # uniform_rng = rand.uniform(sample_mask.shapeof()[0]) uniform_rng = rand.uniform(0, 1, sample_mask.shape) after_sampled_mask = (uniform_rng <= sample_prob) * sample_mask return after_sampled_mask
[ "megengine.functional.gather", "megengine.functional.minimum", "megengine.functional.argsort", "megengine.tensor", "megengine.functional.cond_take", "megengine.random.uniform", "megengine.functional.equal", "megengine.functional.expand_dims", "megengine.functional.concat", "megengine.functional.ones" ]
[((6507, 6535), 'megengine.functional.equal', 'F.equal', (['masks', 'sample_value'], {}), '(masks, sample_value)\n', (6514, 6535), True, 'import megengine.functional as F\n'), ((6593, 6625), 'megengine.functional.minimum', 'F.minimum', (['num_mask', 'num_samples'], {}), '(num_mask, num_samples)\n', (6602, 6625), True, 'import megengine.functional as F\n'), ((6817, 6854), 'megengine.random.uniform', 'rand.uniform', (['(0)', '(1)', 'sample_mask.shape'], {}), '(0, 1, sample_mask.shape)\n', (6829, 6854), True, 'import megengine.random as rand\n'), ((706, 743), 'megengine.functional.ones', 'F.ones', (['[1, gt_boxes_perimg.shape[1]]'], {}), '([1, gt_boxes_perimg.shape[1]])\n', (712, 743), True, 'import megengine.functional as F\n'), ((867, 921), 'megengine.functional.concat', 'F.concat', (['[batch_inds, gt_boxes_perimg[:, :4]]'], {'axis': '(1)'}), '([batch_inds, gt_boxes_perimg[:, :4]], axis=1)\n', (875, 921), True, 'import megengine.functional as F\n'), ((1011, 1056), 'megengine.functional.cond_take', 'F.cond_take', (['batch_rois_mask', 'batch_rois_mask'], {}), '(batch_rois_mask, batch_rois_mask)\n', (1022, 1056), True, 'import megengine.functional as F\n'), ((1408, 1453), 'megengine.functional.concat', 'F.concat', (['[gt_boxes_perimg, dummy_gt]'], {'axis': '(0)'}), '([gt_boxes_perimg, dummy_gt], axis=0)\n', (1416, 1453), True, 'import megengine.functional as F\n'), ((1496, 1553), 'det_opr.bbox_opr.box_overlap_ignore_opr', 'box_overlap_ignore_opr', (['all_rois[:, 1:5]', 'gt_boxes_perimg'], {}), '(all_rois[:, 1:5], gt_boxes_perimg)\n', (1518, 1553), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr, box_overlap_ignore_opr\n'), ((1800, 1843), 'megengine.functional.argsort', 'F.argsort', (['overlaps_normal'], {'descending': '(True)'}), '(overlaps_normal, descending=True)\n', (1809, 1843), True, 'import megengine.functional as F\n'), ((1870, 1923), 'megengine.functional.gather', 'F.gather', (['overlaps_normal', '(1)', 'overlaps_normal_indices'], {}), '(overlaps_normal, 1, overlaps_normal_indices)\n', (1878, 1923), True, 'import megengine.functional as F\n'), ((2053, 2096), 'megengine.functional.argsort', 'F.argsort', (['overlaps_ignore'], {'descending': '(True)'}), '(overlaps_ignore, descending=True)\n', (2062, 2096), True, 'import megengine.functional as F\n'), ((2125, 2178), 'megengine.functional.gather', 'F.gather', (['overlaps_ignore', '(1)', 'overlaps_ignore_indices'], {}), '(overlaps_ignore, 1, overlaps_ignore_indices)\n', (2133, 2178), True, 'import megengine.functional as F\n'), ((4149, 4186), 'megengine.functional.cond_take', 'F.cond_take', (['(keep_mask > 0)', 'keep_mask'], {}), '(keep_mask > 0, keep_mask)\n', (4160, 4186), True, 'import megengine.functional as F\n'), ((4902, 4962), 'det_opr.bbox_opr.bbox_transform_opr', 'bbox_transform_opr', (['target_rois[:, 1:5]', 'target_boxes[:, :4]'], {}), '(target_rois[:, 1:5], target_boxes[:, :4])\n', (4920, 4962), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr, box_overlap_ignore_opr\n'), ((5749, 5778), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (5757, 5778), True, 'import megengine.functional as F\n'), ((5803, 5834), 'megengine.functional.concat', 'F.concat', (['return_labels'], {'axis': '(0)'}), '(return_labels, axis=0)\n', (5811, 5834), True, 'import megengine.functional as F\n'), ((5865, 5902), 'megengine.functional.concat', 'F.concat', (['return_bbox_targets'], {'axis': '(0)'}), '(return_bbox_targets, axis=0)\n', (5873, 5902), True, 'import megengine.functional as F\n'), ((766, 803), 'megengine.functional.ones', 'F.ones', (['(gt_boxes_perimg.shape[0], 1)'], {}), '((gt_boxes_perimg.shape[0], 1))\n', (772, 803), True, 'import megengine.functional as F\n'), ((948, 976), 'megengine.functional.equal', 'F.equal', (['rpn_rois[:, 0]', 'bid'], {}), '(rpn_rois[:, 0], bid)\n', (955, 976), True, 'import megengine.functional as F\n'), ((1189, 1244), 'megengine.functional.concat', 'F.concat', (['[rpn_rois[batch_rois_index], gt_rois]'], {'axis': '(0)'}), '([rpn_rois[batch_rois_index], gt_rois], axis=0)\n', (1197, 1244), True, 'import megengine.functional as F\n'), ((3727, 3752), 'megengine.functional.equal', 'F.equal', (['fg_mask[:, 0]', '(0)'], {}), '(fg_mask[:, 0], 0)\n', (3734, 3752), True, 'import megengine.functional as F\n'), ((3899, 3924), 'megengine.functional.equal', 'F.equal', (['bg_mask[:, 0]', '(0)'], {}), '(bg_mask[:, 0], 0)\n', (3906, 3924), True, 'import megengine.functional as F\n'), ((3296, 3332), 'megengine.functional.equal', 'F.equal', (['labels', 'config.ignore_label'], {}), '(labels, config.ignore_label)\n', (3303, 3332), True, 'import megengine.functional as F\n'), ((4725, 4747), 'megengine.functional.expand_dims', 'F.expand_dims', (['rois', '(1)'], {}), '(rois, 1)\n', (4738, 4747), True, 'import megengine.functional as F\n'), ((5032, 5079), 'megengine.tensor', 'mge.tensor', (['config.bbox_normalize_stds[None, :]'], {}), '(config.bbox_normalize_stds[None, :])\n', (5042, 5079), True, 'import megengine as mge\n'), ((5119, 5167), 'megengine.tensor', 'mge.tensor', (['config.bbox_normalize_means[None, :]'], {}), '(config.bbox_normalize_means[None, :])\n', (5129, 5167), True, 'import megengine as mge\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy from typing import Optional, Sequence import cv2 import megengine.data as data import megengine.data.transform as T import numpy as np from basecore.config import ConfigDict from loguru import logger from basecls.utils import registers from .augment import WARP_PARAMS, TorchAutoAugment, TorchRandAugment from .const import CV2_INTERP, PIL_INTERP from .mixup import MixupCutmixCollator from .rand_erase import RandomErasing __all__ = [ "build_transform", "AutoAugment", "SimpleAugment", "ColorAugment", "RandAugment", "build_mixup", ] def build_transform( cfg: ConfigDict, train: bool = True, augments: T.Transform = None ) -> T.Transform: """Build function for MegEngine transform. Args: cfg: config for building transform. train: train set or test set. Default: ``True`` augments: augments for building transform. Returns: A transform. """ if train: assert augments is not None bgr_mean = copy.deepcopy(cfg.preprocess.img_mean) bgr_std = copy.deepcopy(cfg.preprocess.img_std) if cfg.preprocess.img_color_space == "RGB": bgr_mean = bgr_mean[::-1] bgr_std = bgr_std[::-1] WARP_PARAMS["fillcolor"] = tuple(round(v) for v in bgr_mean[::-1]) # need RGB WARP_PARAMS["resample"] = PIL_INTERP[cfg.augments.resize.interpolation] transforms = [ T.RandomResizedCrop( cfg.preprocess.img_size, cfg.augments.resize.scale_range, cfg.augments.resize.ratio_range, CV2_INTERP[cfg.augments.resize.interpolation], ), T.RandomHorizontalFlip(), augments, RandomErasing( **cfg.augments.rand_erase.to_dict(), pad_mean=bgr_mean, # need BGR pad_std=bgr_std, # need BGR ), ToColorSpace(cfg.preprocess.img_color_space), T.ToMode(), ] else: assert augments is None transforms = [ T.Resize( int(cfg.test.img_size / cfg.test.crop_pct / 2 + 0.5) * 2, # make it even CV2_INTERP[cfg.augments.resize.interpolation], ), T.CenterCrop(cfg.test.img_size), ToColorSpace(cfg.preprocess.img_color_space), T.ToMode(), ] return T.Compose(transforms=transforms, order=["image", "image_category"]) class ToColorSpace(T.VisionTransform): """Transform to transfer color space. Args: color_space: color space, supports ``"BGR"``, ``"RGB"`` and ``"GRAY"``. """ def __init__(self, color_space: str, *, order: Sequence = None): super().__init__(order) if color_space not in ("BGR", "RGB", "GRAY"): raise ValueError(f"Color space '{color_space}' not supported") self.color_space = color_space def _apply_image(self, image: np.ndarray) -> np.ndarray: if self.color_space == "BGR": return image elif self.color_space == "RGB": return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif self.color_space == "GRAY": return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)[..., np.newaxis] else: raise ValueError(f"Color space '{self.color_space}' not supported") @registers.augments.register() class SimpleAugment: """Simple augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.PseudoTransform() @registers.augments.register() class ColorAugment: """Color augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: aug_args = cfg.augments.color_aug.to_dict() lighting_scale = aug_args.pop("lighting") return T.Compose([T.ColorJitter(**aug_args), T.Lighting(lighting_scale)]) @registers.augments.register() class AutoAugment: """AutoAugment.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.TorchTransformCompose([TorchAutoAugment()]) @registers.augments.register() class RandAugment: """Random augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.TorchTransformCompose([TorchRandAugment(**cfg.augments.rand_aug.to_dict())]) def build_mixup(cfg: ConfigDict, train: bool = True) -> Optional[data.Collator]: """Build (optionally) Mixup/CutMix augment. Args: cfg: config for building Mixup/CutMix collator. train: train set or test set. Default: ``True`` Returns: :py:class:`~basecls.data.mixup.MixupCutmixCollator` or ``None`` """ mixup_cfg = cfg.augments.mixup if train and ( mixup_cfg.mixup_alpha > 0.0 or mixup_cfg.cutmix_alpha > 0.0 or mixup_cfg.cutmix_minmax is not None ): mixup_collator = MixupCutmixCollator(**mixup_cfg.to_dict(), num_classes=cfg.num_classes) logger.info(f"Using mixup with configuration:\n{mixup_cfg}") else: mixup_collator = None return mixup_collator
[ "megengine.data.transform.Lighting", "megengine.data.transform.PseudoTransform", "megengine.data.transform.RandomResizedCrop", "megengine.data.transform.RandomHorizontalFlip", "megengine.data.transform.ColorJitter", "megengine.data.transform.Compose", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop" ]
[((3450, 3479), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (3477, 3479), False, 'from basecls.utils import registers\n'), ((3640, 3669), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (3667, 3669), False, 'from basecls.utils import registers\n'), ((3977, 4006), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (4004, 4006), False, 'from basecls.utils import registers\n'), ((4183, 4212), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (4210, 4212), False, 'from basecls.utils import registers\n'), ((2493, 2560), 'megengine.data.transform.Compose', 'T.Compose', ([], {'transforms': 'transforms', 'order': "['image', 'image_category']"}), "(transforms=transforms, order=['image', 'image_category'])\n", (2502, 2560), True, 'import megengine.data.transform as T\n'), ((1089, 1127), 'copy.deepcopy', 'copy.deepcopy', (['cfg.preprocess.img_mean'], {}), '(cfg.preprocess.img_mean)\n', (1102, 1127), False, 'import copy\n'), ((1146, 1183), 'copy.deepcopy', 'copy.deepcopy', (['cfg.preprocess.img_std'], {}), '(cfg.preprocess.img_std)\n', (1159, 1183), False, 'import copy\n'), ((3617, 3636), 'megengine.data.transform.PseudoTransform', 'T.PseudoTransform', ([], {}), '()\n', (3634, 3636), True, 'import megengine.data.transform as T\n'), ((5064, 5127), 'loguru.logger.info', 'logger.info', (['f"""Using mixup with configuration:\n{mixup_cfg}"""'], {}), '(f"""Using mixup with configuration:\n{mixup_cfg}""")\n', (5075, 5127), False, 'from loguru import logger\n'), ((1513, 1680), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['cfg.preprocess.img_size', 'cfg.augments.resize.scale_range', 'cfg.augments.resize.ratio_range', 'CV2_INTERP[cfg.augments.resize.interpolation]'], {}), '(cfg.preprocess.img_size, cfg.augments.resize.\n scale_range, cfg.augments.resize.ratio_range, CV2_INTERP[cfg.augments.\n resize.interpolation])\n', (1532, 1680), True, 'import megengine.data.transform as T\n'), ((1763, 1787), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (1785, 1787), True, 'import megengine.data.transform as T\n'), ((2068, 2078), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (2076, 2078), True, 'import megengine.data.transform as T\n'), ((2357, 2388), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['cfg.test.img_size'], {}), '(cfg.test.img_size)\n', (2369, 2388), True, 'import megengine.data.transform as T\n'), ((2460, 2470), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (2468, 2470), True, 'import megengine.data.transform as T\n'), ((3197, 3235), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (3209, 3235), False, 'import cv2\n'), ((3918, 3943), 'megengine.data.transform.ColorJitter', 'T.ColorJitter', ([], {}), '(**aug_args)\n', (3931, 3943), True, 'import megengine.data.transform as T\n'), ((3945, 3971), 'megengine.data.transform.Lighting', 'T.Lighting', (['lighting_scale'], {}), '(lighting_scale)\n', (3955, 3971), True, 'import megengine.data.transform as T\n'), ((3296, 3335), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (3308, 3335), False, 'import cv2\n')]
# Copyright (c) 2020 <NAME> # This code is licensed under MIT license # (https://github.com/kwotsin/mimicry/blob/master/LICENSE) # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ """ Implementation of Base GAN models. """ import megengine import megengine.functional as F import megengine.module as M import megengine.random as R import numpy as np from . import losses from .basemodel import BaseModel class BaseGenerator(BaseModel): r""" Base class for a generic unconditional generator model. Attributes: nz (int): Noise dimension for upsampling. ngf (int): Variable controlling generator feature map sizes. bottom_width (int): Starting width for upsampling generator output to an image. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, nz, ngf, bottom_width, loss_type, **kwargs): super().__init__(**kwargs) self.nz = nz self.ngf = ngf self.bottom_width = bottom_width self.loss_type = loss_type def _train_step_implementation( self, real_batch, netD=None, optG=None): # Produce fake images fake_images = self._infer_step_implementation(real_batch) # Compute output logit of D thinking image real output = netD(fake_images) # Compute loss errG = self.compute_gan_loss(output=output) optG.zero_grad() optG.backward(errG) optG.step() return errG def _infer_step_implementation(self, batch): # Get only batch size from real batch batch_size = batch.shape[0] noise = R.gaussian(shape=[batch_size, self.nz]) fake_images = self.forward(noise) return fake_images def compute_gan_loss(self, output): if self.loss_type == "ns": errG = losses.ns_loss_gen(output) elif self.loss_type == "wasserstein": errG = losses.wasserstein_loss_gen(output) else: raise ValueError("Invalid loss_type {} selected.".format( self.loss_type)) return errG def generate_images(self, num_images): """Generate images of shape [`num_images`, C, H, W]. Depending on the final activation function, pixel values are NOT guarenteed to be within [0, 1]. """ return self.infer_step(np.empty(num_images, dtype="float32")) class BaseDiscriminator(BaseModel): r""" Base class for a generic unconditional discriminator model. Attributes: ndf (int): Variable controlling discriminator feature map sizes. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, ndf, loss_type, **kwargs): super().__init__(**kwargs) self.ndf = ndf self.loss_type = loss_type def _train_step_implementation( self, real_batch, netG=None, optD=None): # Produce logits for real images output_real = self._infer_step_implementation(real_batch) # Produce fake images fake_images = netG._infer_step_implementation(real_batch) fake_images = F.zero_grad(fake_images) # Produce logits for fake images output_fake = self._infer_step_implementation(fake_images) # Compute loss for D errD = self.compute_gan_loss(output_real=output_real, output_fake=output_fake) D_x, D_Gz = self.compute_probs(output_real=output_real, output_fake=output_fake) # Backprop and update gradients optD.zero_grad() optD.backward(errD) optD.step() return errD, D_x, D_Gz def _infer_step_implementation(self, batch): return self.forward(batch) def compute_gan_loss(self, output_real, output_fake): r""" Computes GAN loss for discriminator. Args: output_real (Tensor): A batch of output logits of shape (N, 1) from real images. output_fake (Tensor): A batch of output logits of shape (N, 1) from fake images. Returns: errD (Tensor): A batch of GAN losses for the discriminator. """ # Compute loss for D if self.loss_type == "gan" or self.loss_type == "ns": errD = losses.minimax_loss_dis(output_fake=output_fake, output_real=output_real) elif self.loss_type == "wasserstein": errD = losses.wasserstein_loss_dis(output_fake=output_fake, output_real=output_real) else: raise ValueError("Invalid loss_type selected.") return errD def compute_probs(self, output_real, output_fake): r""" Computes probabilities from real/fake images logits. Args: output_real (Tensor): A batch of output logits of shape (N, 1) from real images. output_fake (Tensor): A batch of output logits of shape (N, 1) from fake images. Returns: tuple: Average probabilities of real/fake image considered as real for the batch. """ D_x = F.sigmoid(output_real).mean() D_Gz = F.sigmoid(output_fake).mean() return D_x, D_Gz
[ "megengine.random.gaussian", "megengine.functional.zero_grad", "megengine.functional.sigmoid" ]
[((2259, 2298), 'megengine.random.gaussian', 'R.gaussian', ([], {'shape': '[batch_size, self.nz]'}), '(shape=[batch_size, self.nz])\n', (2269, 2298), True, 'import megengine.random as R\n'), ((3780, 3804), 'megengine.functional.zero_grad', 'F.zero_grad', (['fake_images'], {}), '(fake_images)\n', (3791, 3804), True, 'import megengine.functional as F\n'), ((2994, 3031), 'numpy.empty', 'np.empty', (['num_images'], {'dtype': '"""float32"""'}), "(num_images, dtype='float32')\n", (3002, 3031), True, 'import numpy as np\n'), ((5829, 5851), 'megengine.functional.sigmoid', 'F.sigmoid', (['output_real'], {}), '(output_real)\n', (5838, 5851), True, 'import megengine.functional as F\n'), ((5874, 5896), 'megengine.functional.sigmoid', 'F.sigmoid', (['output_fake'], {}), '(output_fake)\n', (5883, 5896), True, 'import megengine.functional as F\n')]
import numpy as np import megengine import megengine.module as M import megengine.functional as F import math from . import default_init_weights class ShuffleV2Block(M.Module): def __init__(self, inp, oup, mid_channels, *, ksize, stride): super().__init__() self.stride = stride assert stride in [1, 2] self.mid_channels = mid_channels self.ksize = ksize pad = ksize // 2 self.pad = pad self.inp = inp outputs = oup - inp branch_main = [ # pw M.Conv2d(inp, mid_channels, 1, 1, 0, bias=False), M.ReLU(), # dw M.Conv2d( mid_channels, mid_channels, ksize, stride, pad, groups=mid_channels, bias=False, ), # pw-linear M.Conv2d(mid_channels, outputs, 1, 1, 0, bias=False), M.ReLU(), ] self.branch_main = M.Sequential(*branch_main) if stride == 2: branch_proj = [ # dw M.Conv2d(inp, inp, ksize, stride, pad, groups=inp, bias=False), M.BatchNorm2d(inp), # pw-linear M.Conv2d(inp, inp, 1, 1, 0, bias=False), M.BatchNorm2d(inp), M.ReLU(), ] self.branch_proj = M.Sequential(*branch_proj) else: self.branch_proj = None self.init_weights() def forward(self, old_x): if self.stride == 1: x_proj, x = self.channel_shuffle(old_x) return F.concat((x_proj, self.branch_main(x)), 1) elif self.stride == 2: x_proj = old_x x = old_x return F.concat((self.branch_proj(x_proj), self.branch_main(x)), 1) else: raise ValueError("use stride 1 or 2, current stride {}".format(self.stride)) def channel_shuffle(self, x): batchsize, num_channels, height, width = x.shape # assert (num_channels % 4 == 0) x = x.reshape(batchsize * num_channels // 2, 2, height * width) x = F.transpose(x, (1, 0, 2)) x = x.reshape(2, -1, num_channels // 2, height, width) return x[0], x[1] def init_weights(self): default_init_weights(self, scale=0.2)
[ "megengine.module.ReLU", "megengine.module.BatchNorm2d", "megengine.functional.transpose", "megengine.module.Sequential", "megengine.module.Conv2d" ]
[((943, 969), 'megengine.module.Sequential', 'M.Sequential', (['*branch_main'], {}), '(*branch_main)\n', (955, 969), True, 'import megengine.module as M\n'), ((2111, 2136), 'megengine.functional.transpose', 'F.transpose', (['x', '(1, 0, 2)'], {}), '(x, (1, 0, 2))\n', (2122, 2136), True, 'import megengine.functional as F\n'), ((555, 603), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'mid_channels', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, mid_channels, 1, 1, 0, bias=False)\n', (563, 603), True, 'import megengine.module as M\n'), ((617, 625), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (623, 625), True, 'import megengine.module as M\n'), ((656, 750), 'megengine.module.Conv2d', 'M.Conv2d', (['mid_channels', 'mid_channels', 'ksize', 'stride', 'pad'], {'groups': 'mid_channels', 'bias': '(False)'}), '(mid_channels, mid_channels, ksize, stride, pad, groups=\n mid_channels, bias=False)\n', (664, 750), True, 'import megengine.module as M\n'), ((830, 882), 'megengine.module.Conv2d', 'M.Conv2d', (['mid_channels', 'outputs', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(mid_channels, outputs, 1, 1, 0, bias=False)\n', (838, 882), True, 'import megengine.module as M\n'), ((896, 904), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (902, 904), True, 'import megengine.module as M\n'), ((1352, 1378), 'megengine.module.Sequential', 'M.Sequential', (['*branch_proj'], {}), '(*branch_proj)\n', (1364, 1378), True, 'import megengine.module as M\n'), ((1060, 1122), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'inp', 'ksize', 'stride', 'pad'], {'groups': 'inp', 'bias': '(False)'}), '(inp, inp, ksize, stride, pad, groups=inp, bias=False)\n', (1068, 1122), True, 'import megengine.module as M\n'), ((1140, 1158), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['inp'], {}), '(inp)\n', (1153, 1158), True, 'import megengine.module as M\n'), ((1204, 1243), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'inp', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, inp, 1, 1, 0, bias=False)\n', (1212, 1243), True, 'import megengine.module as M\n'), ((1261, 1279), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['inp'], {}), '(inp)\n', (1274, 1279), True, 'import megengine.module as M\n'), ((1297, 1305), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1303, 1305), True, 'import megengine.module as M\n')]
# -*- coding: utf-8 -*- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2021 Megvii Inc. All rights reserved. # ---------------------------------------------------------------------- """Megengine BERT model.""" import copy import json import math import os import urllib import urllib.request from io import open import numpy as np import megengine as mge import megengine.functional as F import megengine.hub as hub from megengine import Parameter from megengine.functional.loss import cross_entropy from megengine.module import Dropout, Embedding, Linear, Module, Sequential from megengine.module.activation import Softmax def transpose(inp, a, b): cur_shape = list(range(0, inp.ndim)) cur_shape[a], cur_shape[b] = cur_shape[b], cur_shape[a] return inp.transpose(cur_shape) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): x * 0.5 * (1.0 + F.tanh((F.sqrt(2 / math.pi) * (x + 0.044715 * (x ** 3))))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + F.tanh(F.sqrt(2 / math.pi) * (x + 0.044715 * (x ** 3)))) ACT2FN = {"gelu": gelu, "relu": F.relu} class BertConfig: """Configuration class to store the configuration of a `BertModel`. """ def __init__( self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, ): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError( "First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)" ) @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) class BertLayerNorm(Module): """Construct a layernorm module in the TF style (epsilon inside the square root). """ def __init__(self, hidden_size, eps=1e-12): super().__init__() self.weight = Parameter(np.ones(hidden_size).astype(np.float32)) self.bias = Parameter(np.zeros(hidden_size).astype(np.float32)) self.variance_epsilon = eps def forward(self, x): u = F.mean(x, len(x.shape) - 1, True) s = F.mean((x - u) ** 2, len(x.shape) - 1, True) x = (x - u) / ((s + self.variance_epsilon) ** 0.5) return self.weight * x + self.bias class BertEmbeddings(Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = Embedding( config.max_position_embeddings, config.hidden_size ) self.token_type_embeddings = Embedding( config.type_vocab_size, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name # and be able to load any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.shape[1] if token_type_ids is None: token_type_ids = F.zeros_like(input_ids) position_ids = F.linspace(0, seq_length - 1, seq_length).astype(np.int32) position_ids = F.broadcast_to(F.expand_dims(position_ids, 0), input_ids.shape) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = Linear(config.hidden_size, self.all_head_size) self.key = Linear(config.hidden_size, self.all_head_size) self.value = Linear(config.hidden_size, self.all_head_size) self.dropout = Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): # using symbolic shapes to make trace happy x_shape = mge.tensor(x.shape) new_x_shape = F.concat( [x_shape[:-1], (self.num_attention_heads, self.attention_head_size)] ) x = x.reshape(new_x_shape) return x.transpose(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = F.matmul(query_layer, transpose(key_layer, -1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = Softmax(len(attention_scores.shape) - 1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = F.matmul(attention_probs, value_layer) context_layer = context_layer.transpose(0, 2, 1, 3) # using symbolic shapes to make trace happy context_shape = mge.tensor(context_layer.shape) new_context_layer_shape = F.concat([context_shape[:-2], self.all_head_size]) context_layer = context_layer.reshape(new_context_layer_shape) return context_layer class BertSelfOutput(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(Module): def __init__(self, config): super().__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(Module): def __init__(self, config): super().__init__() self.layer = Sequential( *[BertLayer(config) for _ in range(config.num_hidden_layers)] ) # self.layer = ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.activation = F.tanh def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertModel(Module): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of classifier pretrained on top of the hidden state associated to the first character of the input (`CLS`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super().__init__() self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) def forward( self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, ): if attention_mask is None: attention_mask = F.ones_like(input_ids) if token_type_ids is None: token_type_ids = F.zeros_like(input_ids) # print('input_ids', input_ids.sum()) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. # print('attention_mask', attention_mask.sum()) extended_attention_mask = F.expand_dims(attention_mask, (1, 2)) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.astype( next(self.parameters()).dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers = self.encoder( embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, ) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class BertForSequenceClassification(Module): """BERT model for classification. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForSequenceClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels, bert=None): super().__init__() if bert is None: self.bert = BertModel(config) else: self.bert = bert self.num_labels = num_labels self.dropout = Dropout(config.hidden_dropout_prob) self.classifier = Linear(config.hidden_size, num_labels) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): _, pooled_output = self.bert( input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False ) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) if labels is not None: loss = cross_entropy( logits.reshape(-1, self.num_labels), labels.reshape(-1) ) return logits, loss else: return logits, None DATA_URL = "https://data.megengine.org.cn/models/weights/bert" CONFIG_NAME = "bert_config.json" VOCAB_NAME = "vocab.txt" MODEL_NAME = { "wwm_cased_L-24_H-1024_A-16": "wwm_cased_L_24_H_1024_A_16", "wwm_uncased_L-24_H-1024_A-16": "wwm_uncased_L_24_H_1024_A_16", "cased_L-12_H-768_A-12": "cased_L_12_H_768_A_12", "cased_L-24_H-1024_A-16": "cased_L_24_H_1024_A_16", "uncased_L-12_H-768_A-12": "uncased_L_12_H_768_A_12", "uncased_L-24_H-1024_A-16": "uncased_L_24_H_1024_A_16", "chinese_L-12_H-768_A-12": "chinese_L_12_H_768_A_12", "multi_cased_L-12_H-768_A-12": "multi_cased_L_12_H_768_A_12", } def download_file(url, filename): # urllib.URLopener().retrieve(url, filename) urllib.request.urlretrieve(url, filename) def create_hub_bert(model_name, pretrained): assert model_name in MODEL_NAME, "{} not in the valid models {}".format( model_name, MODEL_NAME ) data_dir = "./{}".format(model_name) if not os.path.exists(data_dir): os.makedirs(data_dir) vocab_url = "{}/{}/{}".format(DATA_URL, model_name, VOCAB_NAME) config_url = "{}/{}/{}".format(DATA_URL, model_name, CONFIG_NAME) vocab_file = "./{}/{}".format(model_name, VOCAB_NAME) config_file = "./{}/{}".format(model_name, CONFIG_NAME) download_file(vocab_url, vocab_file) download_file(config_url, config_file) config = BertConfig(config_file) model = hub.load("megengine/models", MODEL_NAME[model_name], pretrained=pretrained) return model, config, vocab_file @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl" ) def uncased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl" ) def cased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl" ) def uncased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl" ) def cased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl" ) def chinese_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 21128, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl" ) def multi_cased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 119547, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl" ) def wwm_uncased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl" ) def wwm_cased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config)
[ "megengine.hub.pretrained", "megengine.module.Embedding", "megengine.hub.load", "megengine.tensor", "megengine.functional.concat", "megengine.functional.matmul", "megengine.functional.sqrt", "megengine.functional.ones_like", "megengine.functional.zeros_like", "megengine.functional.linspace", "megengine.module.Dropout", "megengine.module.Linear", "megengine.functional.expand_dims" ]
[((24900, 25043), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl'\n )\n", (24914, 25043), True, 'import megengine.hub as hub\n'), ((25559, 25698), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl'\n )\n", (25573, 25698), True, 'import megengine.hub as hub\n'), ((26212, 26357), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl'\n )\n", (26226, 26357), True, 'import megengine.hub as hub\n'), ((26876, 27017), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl'\n )\n", (26890, 27017), True, 'import megengine.hub as hub\n'), ((27761, 27904), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl'\n )\n", (27775, 27904), True, 'import megengine.hub as hub\n'), ((28647, 28798), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl'\n )\n", (28661, 28798), True, 'import megengine.hub as hub\n'), ((29547, 29700), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl'\n )\n", (29561, 29700), True, 'import megengine.hub as hub\n'), ((30222, 30371), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl'\n )\n", (30236, 30371), True, 'import megengine.hub as hub\n'), ((24078, 24119), 'urllib.request.urlretrieve', 'urllib.request.urlretrieve', (['url', 'filename'], {}), '(url, filename)\n', (24104, 24119), False, 'import urllib\n'), ((24783, 24858), 'megengine.hub.load', 'hub.load', (['"""megengine/models"""', 'MODEL_NAME[model_name]'], {'pretrained': 'pretrained'}), "('megengine/models', MODEL_NAME[model_name], pretrained=pretrained)\n", (24791, 24858), True, 'import megengine.hub as hub\n'), ((5786, 5814), 'copy.deepcopy', 'copy.deepcopy', (['self.__dict__'], {}), '(self.__dict__)\n', (5799, 5814), False, 'import copy\n'), ((7035, 7083), 'megengine.module.Embedding', 'Embedding', (['config.vocab_size', 'config.hidden_size'], {}), '(config.vocab_size, config.hidden_size)\n', (7044, 7083), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7119, 7180), 'megengine.module.Embedding', 'Embedding', (['config.max_position_embeddings', 'config.hidden_size'], {}), '(config.max_position_embeddings, config.hidden_size)\n', (7128, 7180), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7240, 7293), 'megengine.module.Embedding', 'Embedding', (['config.type_vocab_size', 'config.hidden_size'], {}), '(config.type_vocab_size, config.hidden_size)\n', (7249, 7293), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7560, 7595), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (7567, 7595), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((8981, 9027), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (8987, 9027), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9047, 9093), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (9053, 9093), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9115, 9161), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (9121, 9161), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9186, 9230), 'megengine.module.Dropout', 'Dropout', (['config.attention_probs_dropout_prob'], {}), '(config.attention_probs_dropout_prob)\n', (9193, 9230), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9341, 9360), 'megengine.tensor', 'mge.tensor', (['x.shape'], {}), '(x.shape)\n', (9351, 9360), True, 'import megengine as mge\n'), ((9383, 9461), 'megengine.functional.concat', 'F.concat', (['[x_shape[:-1], (self.num_attention_heads, self.attention_head_size)]'], {}), '([x_shape[:-1], (self.num_attention_heads, self.attention_head_size)])\n', (9391, 9461), True, 'import megengine.functional as F\n'), ((10768, 10806), 'megengine.functional.matmul', 'F.matmul', (['attention_probs', 'value_layer'], {}), '(attention_probs, value_layer)\n', (10776, 10806), True, 'import megengine.functional as F\n'), ((10943, 10974), 'megengine.tensor', 'mge.tensor', (['context_layer.shape'], {}), '(context_layer.shape)\n', (10953, 10974), True, 'import megengine as mge\n'), ((11009, 11059), 'megengine.functional.concat', 'F.concat', (['[context_shape[:-2], self.all_head_size]'], {}), '([context_shape[:-2], self.all_head_size])\n', (11017, 11059), True, 'import megengine.functional as F\n'), ((11272, 11318), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.hidden_size'], {}), '(config.hidden_size, config.hidden_size)\n', (11278, 11318), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((11412, 11447), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (11419, 11447), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12210, 12262), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.intermediate_size'], {}), '(config.hidden_size, config.intermediate_size)\n', (12216, 12262), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12736, 12788), 'megengine.module.Linear', 'Linear', (['config.intermediate_size', 'config.hidden_size'], {}), '(config.intermediate_size, config.hidden_size)\n', (12742, 12788), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12882, 12917), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (12889, 12917), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((14562, 14608), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.hidden_size'], {}), '(config.hidden_size, config.hidden_size)\n', (14568, 14608), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((18962, 18999), 'megengine.functional.expand_dims', 'F.expand_dims', (['attention_mask', '(1, 2)'], {}), '(attention_mask, (1, 2))\n', (18975, 18999), True, 'import megengine.functional as F\n'), ((22709, 22744), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (22716, 22744), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((22771, 22809), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'num_labels'], {}), '(config.hidden_size, num_labels)\n', (22777, 22809), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((24333, 24357), 'os.path.exists', 'os.path.exists', (['data_dir'], {}), '(data_dir)\n', (24347, 24357), False, 'import os\n'), ((24367, 24388), 'os.makedirs', 'os.makedirs', (['data_dir'], {}), '(data_dir)\n', (24378, 24388), False, 'import os\n'), ((5485, 5523), 'io.open', 'open', (['json_file', '"""r"""'], {'encoding': '"""utf-8"""'}), "(json_file, 'r', encoding='utf-8')\n", (5489, 5523), False, 'from io import open\n'), ((5597, 5613), 'json.loads', 'json.loads', (['text'], {}), '(text)\n', (5607, 5613), False, 'import json\n'), ((6108, 6151), 'io.open', 'open', (['json_file_path', '"""w"""'], {'encoding': '"""utf-8"""'}), "(json_file_path, 'w', encoding='utf-8')\n", (6112, 6151), False, 'from io import open\n'), ((7757, 7780), 'megengine.functional.zeros_like', 'F.zeros_like', (['input_ids'], {}), '(input_ids)\n', (7769, 7780), True, 'import megengine.functional as F\n'), ((7902, 7932), 'megengine.functional.expand_dims', 'F.expand_dims', (['position_ids', '(0)'], {}), '(position_ids, 0)\n', (7915, 7932), True, 'import megengine.functional as F\n'), ((10185, 10220), 'math.sqrt', 'math.sqrt', (['self.attention_head_size'], {}), '(self.attention_head_size)\n', (10194, 10220), False, 'import math\n'), ((18332, 18354), 'megengine.functional.ones_like', 'F.ones_like', (['input_ids'], {}), '(input_ids)\n', (18343, 18354), True, 'import megengine.functional as F\n'), ((18419, 18442), 'megengine.functional.zeros_like', 'F.zeros_like', (['input_ids'], {}), '(input_ids)\n', (18431, 18442), True, 'import megengine.functional as F\n'), ((3928, 3987), 'io.open', 'open', (['vocab_size_or_config_json_file', '"""r"""'], {'encoding': '"""utf-8"""'}), "(vocab_size_or_config_json_file, 'r', encoding='utf-8')\n", (3932, 3987), False, 'from io import open\n'), ((7805, 7846), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(seq_length - 1)', 'seq_length'], {}), '(0, seq_length - 1, seq_length)\n', (7815, 7846), True, 'import megengine.functional as F\n'), ((1797, 1816), 'megengine.functional.sqrt', 'F.sqrt', (['(2 / math.pi)'], {}), '(2 / math.pi)\n', (1803, 1816), True, 'import megengine.functional as F\n'), ((6444, 6464), 'numpy.ones', 'np.ones', (['hidden_size'], {}), '(hidden_size)\n', (6451, 6464), True, 'import numpy as np\n'), ((6515, 6536), 'numpy.zeros', 'np.zeros', (['hidden_size'], {}), '(hidden_size)\n', (6523, 6536), True, 'import numpy as np\n')]
#!/usr/bin/env mdl # This file will seal the nms opr within a better way than lib_nms import ctypes import os import struct import numpy as np import megengine as mge import megengine.functional as F from megengine._internal.craniotome import CraniotomeBase from megengine.core.tensor import wrap_io_tensor _current_path = os.path.dirname(os.path.abspath(__file__)) _so_path = os.path.join(_current_path, "lib_nms.so") try: _so_lib = ctypes.CDLL(_so_path) except Exception: import subprocess mge_path = os.path.join(os.path.dirname(mge.__file__), "_internal", "include") assert os.path.exists(mge_path), "{} file not found".format(mge_path) src_file = os.path.join(_current_path, "gpu_nms", "nms.cu") assert os.path.exists(src_file), "{} file not found".format(src_file) cmd = ( "nvcc -I {} -shared -o {} -Xcompiler '-fno-strict-aliasing -fPIC' {}".format( mge_path, _so_path, src_file ) ) subprocess.check_call(cmd, shell=True) _so_lib = ctypes.CDLL(_so_path) _TYPE_POINTER = ctypes.c_void_p _TYPE_POINTER = ctypes.c_void_p _TYPE_INT = ctypes.c_int32 _TYPE_FLOAT = ctypes.c_float _so_lib.NMSForwardGpu.argtypes = [ _TYPE_POINTER, _TYPE_POINTER, _TYPE_POINTER, _TYPE_POINTER, _TYPE_FLOAT, _TYPE_INT, _TYPE_POINTER, ] _so_lib.NMSForwardGpu.restype = _TYPE_INT _so_lib.CreateHostDevice.restype = _TYPE_POINTER class NMSCran(CraniotomeBase): __nr_inputs__ = 1 __nr_outputs__ = 3 def setup(self, iou_threshold, max_output): self._iou_threshold = iou_threshold self._max_output = max_output # Load the necessary host device self._host_device = _so_lib.CreateHostDevice() def execute(self, inputs, outputs): box_tensor_ptr = inputs[0].pubapi_dev_tensor_ptr output_tensor_ptr = outputs[0].pubapi_dev_tensor_ptr output_num_tensor_ptr = outputs[1].pubapi_dev_tensor_ptr mask_tensor_ptr = outputs[2].pubapi_dev_tensor_ptr _so_lib.NMSForwardGpu( box_tensor_ptr, mask_tensor_ptr, output_tensor_ptr, output_num_tensor_ptr, self._iou_threshold, self._max_output, self._host_device, ) def grad(self, wrt_idx, inputs, outputs, out_grad): return 0 def init_output_dtype(self, input_dtypes): return [np.int32, np.int32, np.int32] def get_serialize_params(self): return ("nms", struct.pack("fi", self._iou_threshold, self._max_output)) def infer_shape(self, inp_shapes): nr_box = inp_shapes[0][0] threadsPerBlock = 64 output_size = nr_box # here we compute the number of int32 used in mask_outputs. # In original version, we compute the bytes only. mask_size = int( nr_box * (nr_box // threadsPerBlock + int((nr_box % threadsPerBlock) > 0)) * 8 / 4 ) return [[output_size], [1], [mask_size]] @wrap_io_tensor def gpu_nms(box, iou_threshold, max_output): keep, num, _ = NMSCran.make(box, iou_threshold=iou_threshold, max_output=max_output) return keep[:num] def batched_nms(boxes, scores, idxs, iou_threshold, num_keep, use_offset=False): if use_offset: boxes_offset = ( mge.tensor([0, 0, 1, 1], device=boxes.device) .reshape(1, 4) .broadcast(boxes.shapeof(0), 4) ) boxes = boxes - boxes_offset max_coordinate = boxes.max() offsets = idxs * (max_coordinate + 1) boxes_for_nms = boxes + offsets.reshape(-1, 1).broadcast(boxes.shapeof(0), 4) boxes_with_scores = F.concat([boxes_for_nms, scores.reshape(-1, 1)], axis=1) keep_inds = gpu_nms(boxes_with_scores, iou_threshold, num_keep) return keep_inds
[ "megengine.tensor" ]
[((380, 421), 'os.path.join', 'os.path.join', (['_current_path', '"""lib_nms.so"""'], {}), "(_current_path, 'lib_nms.so')\n", (392, 421), False, 'import os\n'), ((342, 367), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (357, 367), False, 'import os\n'), ((441, 462), 'ctypes.CDLL', 'ctypes.CDLL', (['_so_path'], {}), '(_so_path)\n', (452, 462), False, 'import ctypes\n'), ((597, 621), 'os.path.exists', 'os.path.exists', (['mge_path'], {}), '(mge_path)\n', (611, 621), False, 'import os\n'), ((675, 723), 'os.path.join', 'os.path.join', (['_current_path', '"""gpu_nms"""', '"""nms.cu"""'], {}), "(_current_path, 'gpu_nms', 'nms.cu')\n", (687, 723), False, 'import os\n'), ((735, 759), 'os.path.exists', 'os.path.exists', (['src_file'], {}), '(src_file)\n', (749, 759), False, 'import os\n'), ((958, 996), 'subprocess.check_call', 'subprocess.check_call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (979, 996), False, 'import subprocess\n'), ((1011, 1032), 'ctypes.CDLL', 'ctypes.CDLL', (['_so_path'], {}), '(_so_path)\n', (1022, 1032), False, 'import ctypes\n'), ((531, 560), 'os.path.dirname', 'os.path.dirname', (['mge.__file__'], {}), '(mge.__file__)\n', (546, 560), False, 'import os\n'), ((2486, 2542), 'struct.pack', 'struct.pack', (['"""fi"""', 'self._iou_threshold', 'self._max_output'], {}), "('fi', self._iou_threshold, self._max_output)\n", (2497, 2542), False, 'import struct\n'), ((3330, 3375), 'megengine.tensor', 'mge.tensor', (['[0, 0, 1, 1]'], {'device': 'boxes.device'}), '([0, 0, 1, 1], device=boxes.device)\n', (3340, 3375), True, 'import megengine as mge\n')]
# -*- coding: utf-8 -*- # Copyright 2019 - present, Facebook, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights reserved. # --------------------------------------------------------------------- import numpy as np import megengine.functional as F import megengine.module as M from megengine import Parameter class FrozenBatchNorm2d(M.Module): """ BatchNorm2d, which the weight, bias, running_mean, running_var are immutable. """ def __init__(self, num_features, eps=1e-5): super().__init__() self.num_features = num_features self.eps = eps self.weight = Parameter(np.ones(num_features, dtype=np.float32)) self.bias = Parameter(np.zeros(num_features, dtype=np.float32)) self.running_mean = Parameter(np.zeros((1, num_features, 1, 1), dtype=np.float32)) self.running_var = Parameter(np.ones((1, num_features, 1, 1), dtype=np.float32)) def forward(self, x): scale = self.weight.reshape(1, -1, 1, 1) * ( 1.0 / F.sqrt(self.running_var + self.eps) ) bias = self.bias.reshape(1, -1, 1, 1) - self.running_mean * scale return x * scale.detach() + bias.detach() class GroupNorm(M.Module): def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): super().__init__() self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: M.init.ones_(self.weight) M.init.zeros_(self.bias) def forward(self, x): output = x.reshape(x.shape[0], self.num_groups, -1) mean = F.mean(output, axis=2, keepdims=True) mean2 = F.mean(output ** 2, axis=2, keepdims=True) var = mean2 - mean * mean output = (output - mean) / F.sqrt(var + self.eps) output = output.reshape(x.shape) if self.affine: output = self.weight.reshape(1, -1, 1, 1) * output + \ self.bias.reshape(1, -1, 1, 1) return output def get_norm(norm): """ Args: norm (str): currently support "BN", "SyncBN", "FrozenBN" and "GN" Returns: M.Module or None: the normalization layer """ if norm is None: return None norm = { "BN": M.BatchNorm2d, "SyncBN": M.SyncBatchNorm, "FrozenBN": FrozenBatchNorm2d, "GN": GroupNorm, }[norm] return norm
[ "megengine.functional.mean", "megengine.functional.sqrt", "megengine.module.init.zeros_", "megengine.module.init.ones_" ]
[((3029, 3066), 'megengine.functional.mean', 'F.mean', (['output'], {'axis': '(2)', 'keepdims': '(True)'}), '(output, axis=2, keepdims=True)\n', (3035, 3066), True, 'import megengine.functional as F\n'), ((3083, 3125), 'megengine.functional.mean', 'F.mean', (['(output ** 2)'], {'axis': '(2)', 'keepdims': '(True)'}), '(output ** 2, axis=2, keepdims=True)\n', (3089, 3125), True, 'import megengine.functional as F\n'), ((1691, 1730), 'numpy.ones', 'np.ones', (['num_features'], {'dtype': 'np.float32'}), '(num_features, dtype=np.float32)\n', (1698, 1730), True, 'import numpy as np\n'), ((1762, 1802), 'numpy.zeros', 'np.zeros', (['num_features'], {'dtype': 'np.float32'}), '(num_features, dtype=np.float32)\n', (1770, 1802), True, 'import numpy as np\n'), ((1843, 1894), 'numpy.zeros', 'np.zeros', (['(1, num_features, 1, 1)'], {'dtype': 'np.float32'}), '((1, num_features, 1, 1), dtype=np.float32)\n', (1851, 1894), True, 'import numpy as np\n'), ((1933, 1983), 'numpy.ones', 'np.ones', (['(1, num_features, 1, 1)'], {'dtype': 'np.float32'}), '((1, num_features, 1, 1), dtype=np.float32)\n', (1940, 1983), True, 'import numpy as np\n'), ((2864, 2889), 'megengine.module.init.ones_', 'M.init.ones_', (['self.weight'], {}), '(self.weight)\n', (2876, 2889), True, 'import megengine.module as M\n'), ((2902, 2926), 'megengine.module.init.zeros_', 'M.init.zeros_', (['self.bias'], {}), '(self.bias)\n', (2915, 2926), True, 'import megengine.module as M\n'), ((3196, 3218), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (3202, 3218), True, 'import megengine.functional as F\n'), ((2083, 2118), 'megengine.functional.sqrt', 'F.sqrt', (['(self.running_var + self.eps)'], {}), '(self.running_var + self.eps)\n', (2089, 2118), True, 'import megengine.functional as F\n'), ((2572, 2611), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (2579, 2611), True, 'import numpy as np\n'), ((2647, 2687), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (2655, 2687), True, 'import numpy as np\n')]
# BSD 3-Clause License # Copyright (c) <NAME> 2016, # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ import megengine.functional as F import megengine.module as M __all__ = ['MobileNetV2', 'mobilenet_v2'] def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class InvertedResidual(M.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(M.ConvBnRelu2d(inp, hidden_dim, kernel_size=1, bias=False)) layers.extend([ # dw M.ConvBnRelu2d(hidden_dim, hidden_dim, kernel_size=3, padding=1, stride=stride, groups=hidden_dim, bias=False), # pw-linear M.ConvBn2d(hidden_dim, oup, kernel_size=1, bias=False) ]) self.conv = M.Sequential(*layers) self.add = M.Elemwise("ADD") def forward(self, x): if self.use_res_connect: return self.add(x, self.conv(x)) else: return self.conv(x) class MobileNetV2(M.Module): def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features = [M.ConvBnRelu2d(3, input_channel, kernel_size=3, padding=1, stride=2, bias=False)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(M.ConvBnRelu2d(input_channel, self.last_channel, kernel_size=1, bias=False)) # make it M.Sequential self.features = M.Sequential(*features) # building classifier self.classifier = M.Sequential( M.Dropout(0.2), M.Linear(self.last_channel, num_classes), ) self.quant = M.QuantStub() self.dequant = M.DequantStub() # weight initialization for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode='fan_out') if m.bias is not None: M.init.zeros_(m.bias) elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) elif isinstance(m, M.Linear): M.init.normal_(m.weight, 0, 0.01) M.init.zeros_(m.bias) def forward(self, x): x = self.quant(x) x = self.features(x) x = F.avg_pool2d(x, 7) x = F.flatten(x, 1) x = self.dequant(x) x = self.classifier(x) return x def mobilenet_v2(**kwargs): """ Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. """ model = MobileNetV2(**kwargs) return model
[ "megengine.module.Elemwise", "megengine.module.ConvBnRelu2d", "megengine.module.Dropout", "megengine.functional.flatten", "megengine.module.DequantStub", "megengine.module.Linear", "megengine.module.ConvBn2d", "megengine.module.init.msra_normal_", "megengine.module.init.zeros_", "megengine.module.init.normal_", "megengine.module.init.ones_", "megengine.functional.avg_pool2d", "megengine.module.Sequential", "megengine.module.QuantStub" ]
[((3759, 3780), 'megengine.module.Sequential', 'M.Sequential', (['*layers'], {}), '(*layers)\n', (3771, 3780), True, 'import megengine.module as M\n'), ((3800, 3817), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (3810, 3817), True, 'import megengine.module as M\n'), ((6265, 6288), 'megengine.module.Sequential', 'M.Sequential', (['*features'], {}), '(*features)\n', (6277, 6288), True, 'import megengine.module as M\n'), ((6474, 6487), 'megengine.module.QuantStub', 'M.QuantStub', ([], {}), '()\n', (6485, 6487), True, 'import megengine.module as M\n'), ((6511, 6526), 'megengine.module.DequantStub', 'M.DequantStub', ([], {}), '()\n', (6524, 6526), True, 'import megengine.module as M\n'), ((7124, 7142), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(7)'], {}), '(x, 7)\n', (7136, 7142), True, 'import megengine.functional as F\n'), ((7155, 7170), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (7164, 7170), True, 'import megengine.functional as F\n'), ((5599, 5684), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['(3)', 'input_channel'], {'kernel_size': '(3)', 'padding': '(1)', 'stride': '(2)', 'bias': '(False)'}), '(3, input_channel, kernel_size=3, padding=1, stride=2, bias=False\n )\n', (5613, 5684), True, 'import megengine.module as M\n'), ((6133, 6208), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['input_channel', 'self.last_channel'], {'kernel_size': '(1)', 'bias': '(False)'}), '(input_channel, self.last_channel, kernel_size=1, bias=False)\n', (6147, 6208), True, 'import megengine.module as M\n'), ((6372, 6386), 'megengine.module.Dropout', 'M.Dropout', (['(0.2)'], {}), '(0.2)\n', (6381, 6386), True, 'import megengine.module as M\n'), ((6400, 6440), 'megengine.module.Linear', 'M.Linear', (['self.last_channel', 'num_classes'], {}), '(self.last_channel, num_classes)\n', (6408, 6440), True, 'import megengine.module as M\n'), ((3385, 3443), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['inp', 'hidden_dim'], {'kernel_size': '(1)', 'bias': '(False)'}), '(inp, hidden_dim, kernel_size=1, bias=False)\n', (3399, 3443), True, 'import megengine.module as M\n'), ((3498, 3613), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['hidden_dim', 'hidden_dim'], {'kernel_size': '(3)', 'padding': '(1)', 'stride': 'stride', 'groups': 'hidden_dim', 'bias': '(False)'}), '(hidden_dim, hidden_dim, kernel_size=3, padding=1, stride=\n stride, groups=hidden_dim, bias=False)\n', (3512, 3613), True, 'import megengine.module as M\n'), ((3673, 3727), 'megengine.module.ConvBn2d', 'M.ConvBn2d', (['hidden_dim', 'oup'], {'kernel_size': '(1)', 'bias': '(False)'}), '(hidden_dim, oup, kernel_size=1, bias=False)\n', (3683, 3727), True, 'import megengine.module as M\n'), ((6649, 6694), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_out"""'}), "(m.weight, mode='fan_out')\n", (6668, 6694), True, 'import megengine.module as M\n'), ((6754, 6775), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (6767, 6775), True, 'import megengine.module as M\n'), ((6839, 6861), 'megengine.module.init.ones_', 'M.init.ones_', (['m.weight'], {}), '(m.weight)\n', (6851, 6861), True, 'import megengine.module as M\n'), ((6878, 6899), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (6891, 6899), True, 'import megengine.module as M\n'), ((6958, 6991), 'megengine.module.init.normal_', 'M.init.normal_', (['m.weight', '(0)', '(0.01)'], {}), '(m.weight, 0, 0.01)\n', (6972, 6991), True, 'import megengine.module as M\n'), ((7008, 7029), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (7021, 7029), True, 'import megengine.module as M\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F class Matcher: def __init__(self, thresholds, labels, allow_low_quality_matches=False): assert len(thresholds) + 1 == len(labels), "thresholds and labels are not matched" assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])) thresholds.append(float("inf")) thresholds.insert(0, -float("inf")) self.thresholds = thresholds self.labels = labels self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, matrix): """ matrix(tensor): A two dim tensor with shape of (N, M). N is number of GT-boxes, while M is the number of anchors in detection. """ assert len(matrix.shape) == 2 max_scores = matrix.max(axis=0) match_indices = F.argmax(matrix, axis=0) # default ignore label: -1 labels = F.full_like(match_indices, -1) for label, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): mask = (max_scores >= low) & (max_scores < high) labels[mask] = label if self.allow_low_quality_matches: mask = (matrix == F.max(matrix, axis=1, keepdims=True)).sum(axis=0) > 0 labels[mask] = 1 return match_indices, labels
[ "megengine.functional.max", "megengine.functional.argmax", "megengine.functional.full_like" ]
[((1208, 1232), 'megengine.functional.argmax', 'F.argmax', (['matrix'], {'axis': '(0)'}), '(matrix, axis=0)\n', (1216, 1232), True, 'import megengine.functional as F\n'), ((1286, 1316), 'megengine.functional.full_like', 'F.full_like', (['match_indices', '(-1)'], {}), '(match_indices, -1)\n', (1297, 1316), True, 'import megengine.functional as F\n'), ((1579, 1615), 'megengine.functional.max', 'F.max', (['matrix'], {'axis': '(1)', 'keepdims': '(True)'}), '(matrix, axis=1, keepdims=True)\n', (1584, 1615), True, 'import megengine.functional as F\n')]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
3