code
stringlengths 208
42.9k
| apis
list | extract_api
stringlengths 129
69.9k
|
---|---|---|
# Some code is modified from pytorch
# pytorch is licensed under BSD
# From PyTorch:
# Copyright (c) 2016- Facebook, Inc (<NAME>)
# Copyright (c) 2014- Facebook, Inc (<NAME>)
# Copyright (c) 2011-2014 Idiap Research Institute (<NAME>)
# Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU (<NAME>)
# Copyright (c) 2006-2010 NEC Laboratories America (<NAME>, <NAME>, <NAME>, <NAME>)
# Copyright (c) 2006 Idiap Research Institute (<NAME>)
# Copyright (c) 2001-2004 Idiap Research Institute (<NAME>, <NAME>, <NAME>)
# From Caffe2:
# Copyright (c) 2016-present, Facebook Inc. All rights reserved.
# All contributions by Facebook:
# Copyright (c) 2016 Facebook Inc.
# All contributions by Google:
# Copyright (c) 2015 Google Inc.
# All rights reserved.
# All contributions by Yang<NAME>:
# Copyright (c) 2015 Yang<NAME>
# All rights reserved.
# All contributions by Kakao Brain:
# Copyright 2019-2020 Kakao Brain
# All contributions from Caffe:
# Copyright(c) 2013, 2014, 2015, the respective contributors
# All rights reserved.
# All other contributions:
# Copyright(c) 2015, 2016 the respective contributors
# All rights reserved.
# Caffe2 uses a copyright model similar to Caffe: each contributor holds
# copyright over their contributions to Caffe2. The project versioning records
# all such contribution and copyright details. If a contributor wants to further
# mark their specific copyright on a particular contribution, they should
# indicate their copyright solely in the commit message of the change when it is
# committed.
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
# and IDIAP Research Institute nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import megengine as mge
import megengine.module as M
from megengine import functional as F
from megengine import Parameter
from megengine.module.init import xavier_uniform_, zeros_
from typing import List, Tuple, Dict, Optional
import numpy as np
from .utility import safe_masked_fill, has_nan_or_inf
def multi_head_attention_forward(
query: mge.Tensor,
key: mge.Tensor,
value: mge.Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: mge.Tensor,
in_proj_bias: Optional[mge.Tensor],
bias_k: Optional[mge.Tensor],
bias_v: Optional[mge.Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: mge.Tensor,
out_proj_bias: Optional[mge.Tensor],
training: bool = True,
key_padding_mask: Optional[mge.Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[mge.Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[mge.Tensor] = None,
k_proj_weight: Optional[mge.Tensor] = None,
v_proj_weight: Optional[mge.Tensor] = None,
static_k: Optional[mge.Tensor] = None,
static_v: Optional[mge.Tensor] = None,
proj_only: bool = False
) -> Tuple[mge.Tensor, Optional[mge.Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
tgt_len, bsz, embed_dim = query.shape
assert embed_dim == embed_dim_to_check
# allow MHA to have different sizes for the feature dimension
assert key.shape[0] == value.shape[0] and key.shape[1] == value.shape[1]
if isinstance(embed_dim, mge.Tensor):
# embed_dim can be a tensor when JIT tracing
#head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
#NOTE: when positive number, floor_div is equivalent to trunc_div (in megengine only floor_div is available)
head_dim = F.floor_div(embed_dim, num_heads)
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
assert not use_separate_proj_weight
assert need_weights
assert attn_mask is None
assert bias_k is None and bias_v is None
assert not add_zero_attn
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = F.linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = F.linear(value, _w, _b)
q = q * scaling
raw_v = v
raw_v = raw_v.reshape(-1, bsz, num_heads, head_dim)
if proj_only:
return query, None, raw_v
# convert ByteTensor key_padding_mask to bool
if key_padding_mask is not None and key_padding_mask.dtype == np.uint8:
warnings.warn(
"Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
)
key_padding_mask = key_padding_mask.astype(np.bool)
#def _pad_last_dim_right_only(tensor):
# '''
# To replace with torch.nn.functional.pad(tensor, (0, 1))
# '''
# return F.concat([tensor, F.expand_dims(F.zeros(tensor.shape[:-1]), axis=-1)], axis=-1)
#q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
q = q.reshape(tgt_len, bsz * num_heads, head_dim).transpose(1, 0, 2)
if k is not None:
#k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
k = k.reshape(-1, bsz * num_heads, head_dim).transpose(1, 0, 2)
if v is not None:
#v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
v = v.reshape(-1, bsz * num_heads, head_dim).transpose(1, 0, 2)
if static_k is not None:
assert static_k.shape[0] == bsz * num_heads
assert static_k.shape[2] == head_dim
k = static_k
if static_v is not None:
assert static_v.shape[0] == bsz * num_heads
assert static_v.shape[2] == head_dim
v = static_v
src_len = k.shape[1]
if key_padding_mask is not None:
assert key_padding_mask.shape[1] == src_len
#attn_output_weights = torch.bmm(q, k.transpose(1, 2))
attn_output_weights = F.matmul(q, k.transpose(0, 2, 1))
assert list(attn_output_weights.shape) == [bsz * num_heads, tgt_len, src_len]
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.reshape(bsz, num_heads, tgt_len, src_len)
key_padding_mask = F.expand_dims(F.expand_dims(key_padding_mask, axis=1), axis=2)
attn_output_weights = safe_masked_fill(attn_output_weights, key_padding_mask, float("-inf"))
attn_output_weights = attn_output_weights.reshape(bsz * num_heads, tgt_len, src_len)
attn_output_weights_no_softmax = attn_output_weights
attn_output_weights = F.softmax(attn_output_weights, axis=-1)
attn_output_weights = F.dropout(attn_output_weights, dropout_p, training=training)
attn_output = F.matmul(attn_output_weights, v)
assert attn_output.shape == (bsz * num_heads, tgt_len, head_dim)
attn_output = F.transpose(attn_output, (1, 0, 2)).reshape(tgt_len, bsz, embed_dim)
attn_output = F.nn.linear(attn_output, out_proj_weight, out_proj_bias)
# average attention weights over heads
attn_output_weights = attn_output_weights_no_softmax.reshape(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights, raw_v
class MultiheadAttention(M.Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
Args:
embed_dim: total dimension of the model.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
bias: add bias as module parameter. Default: True.
add_bias_kv: add bias to the key and value sequences at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
kdim: total number of features in key. Default: None.
vdim: total number of features in value. Default: None.
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
to :attr:`embed_dim` such that query, key, and value have the same
number of features.
Examples::
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__constants__ = ['batch_first']
bias_k: Optional[mge.Tensor]
bias_v: Optional[mge.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
kdim=None, vdim=None, batch_first=False):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
# True By default
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
# False By default
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.in_proj_weight = Parameter(F.zeros((3 * embed_dim, embed_dim)))
if bias:
self.in_proj_bias = Parameter(F.zeros((3 * embed_dim,)))
else:
self.in_proj_bias = None
self.out_proj = M.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = Parameter(F.zeros((1, 1, embed_dim)))
self.bias_v = Parameter(F.zeros((1, 1, embed_dim)))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.in_proj_weight)
if self.in_proj_bias is not None:
zeros_(self.in_proj_bias)
zeros_(self.out_proj.bias)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super(MultiheadAttention, self).__setstate__(state)
def forward(self, query: mge.Tensor, key: mge.Tensor, value: mge.Tensor, key_padding_mask: Optional[mge.Tensor] = None,
need_weights: bool = True, attn_mask: Optional[mge.Tensor] = None, proj_only=False) -> Tuple[mge.Tensor, Optional[mge.Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. When given a binary mask and a value is True,
the corresponding value on the attention layer will be ignored. When given
a byte mask and a value is non-zero, the corresponding value on the attention
layer will be ignored
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Shapes for inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the position
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the
source sequence length.
If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence
length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend
the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
Shapes for outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
attn_output, attn_output_weights, values = multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights, #need_weights by default is True
attn_mask=attn_mask, proj_only=proj_only)
return attn_output, attn_output_weights, values
|
[
"megengine.functional.nn.linear",
"megengine.functional.floor_div",
"megengine.functional.zeros",
"megengine.module.init.zeros_",
"megengine.functional.matmul",
"megengine.functional.softmax",
"megengine.functional.expand_dims",
"megengine.functional.transpose",
"megengine.functional.dropout",
"megengine.module.Linear",
"megengine.functional.linear",
"megengine.module.init.xavier_uniform_"
] |
[((9573, 9596), 'megengine.functional.linear', 'F.linear', (['query', '_w', '_b'], {}), '(query, _w, _b)\n', (9581, 9596), True, 'from megengine import functional as F\n'), ((9843, 9864), 'megengine.functional.linear', 'F.linear', (['key', '_w', '_b'], {}), '(key, _w, _b)\n', (9851, 9864), True, 'from megengine import functional as F\n'), ((10098, 10121), 'megengine.functional.linear', 'F.linear', (['value', '_w', '_b'], {}), '(value, _w, _b)\n', (10106, 10121), True, 'from megengine import functional as F\n'), ((12452, 12491), 'megengine.functional.softmax', 'F.softmax', (['attn_output_weights'], {'axis': '(-1)'}), '(attn_output_weights, axis=-1)\n', (12461, 12491), True, 'from megengine import functional as F\n'), ((12518, 12578), 'megengine.functional.dropout', 'F.dropout', (['attn_output_weights', 'dropout_p'], {'training': 'training'}), '(attn_output_weights, dropout_p, training=training)\n', (12527, 12578), True, 'from megengine import functional as F\n'), ((12598, 12630), 'megengine.functional.matmul', 'F.matmul', (['attn_output_weights', 'v'], {}), '(attn_output_weights, v)\n', (12606, 12630), True, 'from megengine import functional as F\n'), ((12805, 12861), 'megengine.functional.nn.linear', 'F.nn.linear', (['attn_output', 'out_proj_weight', 'out_proj_bias'], {}), '(attn_output, out_proj_weight, out_proj_bias)\n', (12816, 12861), True, 'from megengine import functional as F\n'), ((8958, 8991), 'megengine.functional.floor_div', 'F.floor_div', (['embed_dim', 'num_heads'], {}), '(embed_dim, num_heads)\n', (8969, 8991), True, 'from megengine import functional as F\n'), ((15589, 15630), 'megengine.module.Linear', 'M.Linear', (['embed_dim', 'embed_dim'], {'bias': 'bias'}), '(embed_dim, embed_dim, bias=bias)\n', (15597, 15630), True, 'import megengine.module as M\n'), ((15963, 15999), 'megengine.module.init.xavier_uniform_', 'xavier_uniform_', (['self.in_proj_weight'], {}), '(self.in_proj_weight)\n', (15978, 15999), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((12125, 12164), 'megengine.functional.expand_dims', 'F.expand_dims', (['key_padding_mask'], {'axis': '(1)'}), '(key_padding_mask, axis=1)\n', (12138, 12164), True, 'from megengine import functional as F\n'), ((12718, 12753), 'megengine.functional.transpose', 'F.transpose', (['attn_output', '(1, 0, 2)'], {}), '(attn_output, (1, 0, 2))\n', (12729, 12753), True, 'from megengine import functional as F\n'), ((15390, 15425), 'megengine.functional.zeros', 'F.zeros', (['(3 * embed_dim, embed_dim)'], {}), '((3 * embed_dim, embed_dim))\n', (15397, 15425), True, 'from megengine import functional as F\n'), ((16055, 16080), 'megengine.module.init.zeros_', 'zeros_', (['self.in_proj_bias'], {}), '(self.in_proj_bias)\n', (16061, 16080), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((16093, 16119), 'megengine.module.init.zeros_', 'zeros_', (['self.out_proj.bias'], {}), '(self.out_proj.bias)\n', (16099, 16119), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((15487, 15512), 'megengine.functional.zeros', 'F.zeros', (['(3 * embed_dim,)'], {}), '((3 * embed_dim,))\n', (15494, 15512), True, 'from megengine import functional as F\n'), ((15692, 15718), 'megengine.functional.zeros', 'F.zeros', (['(1, 1, embed_dim)'], {}), '((1, 1, embed_dim))\n', (15699, 15718), True, 'from megengine import functional as F\n'), ((15756, 15782), 'megengine.functional.zeros', 'F.zeros', (['(1, 1, embed_dim)'], {}), '((1, 1, embed_dim))\n', (15763, 15782), True, 'from megengine import functional as F\n')]
|
import megengine as mge
import megengine.module as nn
import megengine.functional as F
from model.module import Encoder, Fusion, Decoder, Regression
from common import se3, quaternion
import math
class OMNet(nn.Module):
def __init__(self, params):
super(OMNet, self).__init__()
self.num_iter = params.titer
self.encoder = [Encoder() for _ in range(self.num_iter)]
self.fusion = [Fusion() for _ in range(self.num_iter)]
self.decoder = [Decoder() for _ in range(self.num_iter)]
self.regression = [Regression() for _ in range(self.num_iter)]
self.overlap_dist = params.overlap_dist
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear):
nn.init.msra_normal_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
# elif isinstance(m, nn.BatchNorm1d):
# nn.init.ones_(m.weight)
# nn.init.zeros_(m.bias)
def generate_overlap_mask(self, points_src, points_ref, mask_src, mask_ref, transform_gt):
points_src[F.logical_not(mask_src.astype("bool")), :] = 50.0
points_ref[F.logical_not(mask_ref.astype("bool")), :] = 100.0
points_src = se3.mge_transform(transform_gt, points_src)
points_src = F.expand_dims(points_src, axis=2)
points_ref = F.expand_dims(points_ref, axis=1)
dist_matrix = F.sqrt(F.sum(F.square(points_src - points_ref), axis=-1)) # (B, N, N)
dist_s2r = F.min(dist_matrix, axis=2)
dist_r2s = F.min(dist_matrix, axis=1)
overlap_src_mask = dist_s2r < self.overlap_dist # (B, N)
overlap_ref_mask = dist_r2s < self.overlap_dist # (B, N)
return overlap_src_mask, overlap_ref_mask
def forward(self, data_batch):
endpoints = {}
xyz_src = data_batch["points_src"]
xyz_ref = data_batch["points_ref"]
transform_gt = data_batch["transform_gt"]
pose_gt = data_batch["pose_gt"]
# init endpoints
all_src_cls_pair = []
all_ref_cls_pair = []
all_transform_pair = []
all_pose_pair = []
all_xyz_src_t = [xyz_src]
# init params
B, src_N, _ = xyz_src.shape
_, ref_N, _ = xyz_ref.shape
init_quat = F.tile(mge.tensor([1, 0, 0, 0], dtype="float32"), (B, 1)) # (B, 4)
init_translate = F.tile(mge.tensor([0, 0, 0], dtype="float32"), (B, 1)) # (B, 3)
pose_pred = F.concat((init_quat, init_translate), axis=1) # (B, 7)
# rename xyz_src
xyz_src_iter = F.copy(xyz_src, device=xyz_src.device)
for i in range(self.num_iter):
# deley mask
if i < 2:
src_pred_mask = F.ones((B, src_N), dtype=xyz_src.dtype)
ref_pred_mask = F.ones((B, ref_N), dtype=xyz_ref.dtype)
# encoder
src_encoder_feats, src_glob_feat = self.encoder[i](xyz_src_iter.transpose(0, 2, 1).detach(), F.expand_dims(src_pred_mask,
axis=1))
ref_encoder_feats, ref_glob_feat = self.encoder[i](xyz_ref.transpose(0, 2, 1).detach(), F.expand_dims(ref_pred_mask, axis=1))
# fusion
src_concat_feat = F.concat(
(src_encoder_feats[0], F.repeat(src_glob_feat, src_N, axis=2), F.repeat(ref_glob_feat, src_N, axis=2)), axis=1)
ref_concat_feat = F.concat(
(ref_encoder_feats[0], F.repeat(ref_glob_feat, ref_N, axis=2), F.repeat(src_glob_feat, ref_N, axis=2)), axis=1)
_, src_fused_feat = self.fusion[i](src_concat_feat, F.expand_dims(src_pred_mask, axis=1))
_, ref_fused_feat = self.fusion[i](ref_concat_feat, F.expand_dims(ref_pred_mask, axis=1))
# decoder
src_decoder_feats, src_cls_pred = self.decoder[i](src_fused_feat)
ref_decoder_feats, ref_cls_pred = self.decoder[i](ref_fused_feat)
# regression
src_feat = F.concat(src_decoder_feats, axis=1) * F.expand_dims(src_pred_mask, axis=1)
ref_feat = F.concat(ref_decoder_feats, axis=1) * F.expand_dims(ref_pred_mask, axis=1)
concat_feat = F.concat((src_fused_feat, src_feat, ref_fused_feat, ref_feat), axis=1)
concat_feat = F.max(concat_feat, axis=-1)
pose_pred_iter = self.regression[i](concat_feat) # (B, 7)
xyz_src_iter = quaternion.mge_quat_transform(pose_pred_iter, xyz_src_iter.detach())
pose_pred = quaternion.mge_transform_pose(pose_pred.detach(), pose_pred_iter)
transform_pred = quaternion.mge_quat2mat(pose_pred)
# compute overlap and cls gt
overlap_src_mask, overlap_ref_mask = self.generate_overlap_mask(F.copy(xyz_src, device=xyz_src.device),
F.copy(xyz_ref, device=xyz_ref.device), src_pred_mask,
ref_pred_mask, transform_gt)
# overlap_src_mask, overlap_ref_mask = self.generate_overlap_mask(xyz_src, xyz_ref, src_pred_mask, ref_pred_mask, transform_gt)
src_cls_gt = F.ones((B, src_N)) * overlap_src_mask
ref_cls_gt = F.ones((B, ref_N)) * overlap_ref_mask
src_pred_mask = F.argmax(src_cls_pred, axis=1)
ref_pred_mask = F.argmax(ref_cls_pred, axis=1)
# add endpoints
all_src_cls_pair.append([src_cls_gt, src_cls_pred])
all_ref_cls_pair.append([ref_cls_gt, ref_cls_pred])
all_transform_pair.append([transform_gt, transform_pred])
all_pose_pair.append([pose_gt, pose_pred])
all_xyz_src_t.append(xyz_src_iter)
endpoints["all_src_cls_pair"] = all_src_cls_pair
endpoints["all_ref_cls_pair"] = all_ref_cls_pair
endpoints["all_transform_pair"] = all_transform_pair
endpoints["all_pose_pair"] = all_pose_pair
endpoints["transform_pair"] = [transform_gt, transform_pred]
endpoints["pose_pair"] = [pose_gt, pose_pred]
endpoints["all_xyz_src_t"] = all_xyz_src_t
return endpoints
def fetch_net(params):
if params.net_type == "omnet":
net = OMNet(params)
else:
raise NotImplementedError
return net
|
[
"megengine.functional.repeat",
"megengine.module.init.calculate_fan_in_and_fan_out",
"megengine.functional.ones",
"megengine.functional.expand_dims",
"megengine.functional.concat",
"megengine.functional.max",
"megengine.functional.min",
"megengine.functional.argmax",
"megengine.tensor",
"megengine.functional.copy",
"megengine.module.init.uniform_",
"megengine.functional.square"
] |
[((1424, 1467), 'common.se3.mge_transform', 'se3.mge_transform', (['transform_gt', 'points_src'], {}), '(transform_gt, points_src)\n', (1441, 1467), False, 'from common import se3, quaternion\n'), ((1489, 1522), 'megengine.functional.expand_dims', 'F.expand_dims', (['points_src'], {'axis': '(2)'}), '(points_src, axis=2)\n', (1502, 1522), True, 'import megengine.functional as F\n'), ((1544, 1577), 'megengine.functional.expand_dims', 'F.expand_dims', (['points_ref'], {'axis': '(1)'}), '(points_ref, axis=1)\n', (1557, 1577), True, 'import megengine.functional as F\n'), ((1690, 1716), 'megengine.functional.min', 'F.min', (['dist_matrix'], {'axis': '(2)'}), '(dist_matrix, axis=2)\n', (1695, 1716), True, 'import megengine.functional as F\n'), ((1736, 1762), 'megengine.functional.min', 'F.min', (['dist_matrix'], {'axis': '(1)'}), '(dist_matrix, axis=1)\n', (1741, 1762), True, 'import megengine.functional as F\n'), ((2653, 2698), 'megengine.functional.concat', 'F.concat', (['(init_quat, init_translate)'], {'axis': '(1)'}), '((init_quat, init_translate), axis=1)\n', (2661, 2698), True, 'import megengine.functional as F\n'), ((2758, 2796), 'megengine.functional.copy', 'F.copy', (['xyz_src'], {'device': 'xyz_src.device'}), '(xyz_src, device=xyz_src.device)\n', (2764, 2796), True, 'import megengine.functional as F\n'), ((353, 362), 'model.module.Encoder', 'Encoder', ([], {}), '()\n', (360, 362), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((417, 425), 'model.module.Fusion', 'Fusion', ([], {}), '()\n', (423, 425), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((481, 490), 'model.module.Decoder', 'Decoder', ([], {}), '()\n', (488, 490), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((549, 561), 'model.module.Regression', 'Regression', ([], {}), '()\n', (559, 561), False, 'from model.module import Encoder, Fusion, Decoder, Regression\n'), ((2482, 2523), 'megengine.tensor', 'mge.tensor', (['[1, 0, 0, 0]'], {'dtype': '"""float32"""'}), "([1, 0, 0, 0], dtype='float32')\n", (2492, 2523), True, 'import megengine as mge\n'), ((2575, 2613), 'megengine.tensor', 'mge.tensor', (['[0, 0, 0]'], {'dtype': '"""float32"""'}), "([0, 0, 0], dtype='float32')\n", (2585, 2613), True, 'import megengine as mge\n'), ((4439, 4509), 'megengine.functional.concat', 'F.concat', (['(src_fused_feat, src_feat, ref_fused_feat, ref_feat)'], {'axis': '(1)'}), '((src_fused_feat, src_feat, ref_fused_feat, ref_feat), axis=1)\n', (4447, 4509), True, 'import megengine.functional as F\n'), ((4536, 4563), 'megengine.functional.max', 'F.max', (['concat_feat'], {'axis': '(-1)'}), '(concat_feat, axis=-1)\n', (4541, 4563), True, 'import megengine.functional as F\n'), ((4850, 4884), 'common.quaternion.mge_quat2mat', 'quaternion.mge_quat2mat', (['pose_pred'], {}), '(pose_pred)\n', (4873, 4884), False, 'from common import se3, quaternion\n'), ((5573, 5603), 'megengine.functional.argmax', 'F.argmax', (['src_cls_pred'], {'axis': '(1)'}), '(src_cls_pred, axis=1)\n', (5581, 5603), True, 'import megengine.functional as F\n'), ((5632, 5662), 'megengine.functional.argmax', 'F.argmax', (['ref_cls_pred'], {'axis': '(1)'}), '(ref_cls_pred, axis=1)\n', (5640, 5662), True, 'import megengine.functional as F\n'), ((1613, 1646), 'megengine.functional.square', 'F.square', (['(points_src - points_ref)'], {}), '(points_src - points_ref)\n', (1621, 1646), True, 'import megengine.functional as F\n'), ((2916, 2955), 'megengine.functional.ones', 'F.ones', (['(B, src_N)'], {'dtype': 'xyz_src.dtype'}), '((B, src_N), dtype=xyz_src.dtype)\n', (2922, 2955), True, 'import megengine.functional as F\n'), ((2988, 3027), 'megengine.functional.ones', 'F.ones', (['(B, ref_N)'], {'dtype': 'xyz_ref.dtype'}), '((B, ref_N), dtype=xyz_ref.dtype)\n', (2994, 3027), True, 'import megengine.functional as F\n'), ((3156, 3192), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (3169, 3192), True, 'import megengine.functional as F\n'), ((3413, 3449), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (3426, 3449), True, 'import megengine.functional as F\n'), ((3872, 3908), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (3885, 3908), True, 'import megengine.functional as F\n'), ((3974, 4010), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (3987, 4010), True, 'import megengine.functional as F\n'), ((4240, 4275), 'megengine.functional.concat', 'F.concat', (['src_decoder_feats'], {'axis': '(1)'}), '(src_decoder_feats, axis=1)\n', (4248, 4275), True, 'import megengine.functional as F\n'), ((4278, 4314), 'megengine.functional.expand_dims', 'F.expand_dims', (['src_pred_mask'], {'axis': '(1)'}), '(src_pred_mask, axis=1)\n', (4291, 4314), True, 'import megengine.functional as F\n'), ((4338, 4373), 'megengine.functional.concat', 'F.concat', (['ref_decoder_feats'], {'axis': '(1)'}), '(ref_decoder_feats, axis=1)\n', (4346, 4373), True, 'import megengine.functional as F\n'), ((4376, 4412), 'megengine.functional.expand_dims', 'F.expand_dims', (['ref_pred_mask'], {'axis': '(1)'}), '(ref_pred_mask, axis=1)\n', (4389, 4412), True, 'import megengine.functional as F\n'), ((5003, 5041), 'megengine.functional.copy', 'F.copy', (['xyz_src'], {'device': 'xyz_src.device'}), '(xyz_src, device=xyz_src.device)\n', (5009, 5041), True, 'import megengine.functional as F\n'), ((5119, 5157), 'megengine.functional.copy', 'F.copy', (['xyz_ref'], {'device': 'xyz_ref.device'}), '(xyz_ref, device=xyz_ref.device)\n', (5125, 5157), True, 'import megengine.functional as F\n'), ((5444, 5462), 'megengine.functional.ones', 'F.ones', (['(B, src_N)'], {}), '((B, src_N))\n', (5450, 5462), True, 'import megengine.functional as F\n'), ((5507, 5525), 'megengine.functional.ones', 'F.ones', (['(B, ref_N)'], {}), '((B, ref_N))\n', (5513, 5525), True, 'import megengine.functional as F\n'), ((878, 924), 'megengine.module.init.calculate_fan_in_and_fan_out', 'nn.init.calculate_fan_in_and_fan_out', (['m.weight'], {}), '(m.weight)\n', (914, 924), True, 'import megengine.module as nn\n'), ((995, 1034), 'megengine.module.init.uniform_', 'nn.init.uniform_', (['m.bias', '(-bound)', 'bound'], {}), '(m.bias, -bound, bound)\n', (1011, 1034), True, 'import megengine.module as nn\n'), ((3551, 3589), 'megengine.functional.repeat', 'F.repeat', (['src_glob_feat', 'src_N'], {'axis': '(2)'}), '(src_glob_feat, src_N, axis=2)\n', (3559, 3589), True, 'import megengine.functional as F\n'), ((3591, 3629), 'megengine.functional.repeat', 'F.repeat', (['ref_glob_feat', 'src_N'], {'axis': '(2)'}), '(ref_glob_feat, src_N, axis=2)\n', (3599, 3629), True, 'import megengine.functional as F\n'), ((3719, 3757), 'megengine.functional.repeat', 'F.repeat', (['ref_glob_feat', 'ref_N'], {'axis': '(2)'}), '(ref_glob_feat, ref_N, axis=2)\n', (3727, 3757), True, 'import megengine.functional as F\n'), ((3759, 3797), 'megengine.functional.repeat', 'F.repeat', (['src_glob_feat', 'ref_N'], {'axis': '(2)'}), '(src_glob_feat, ref_N, axis=2)\n', (3767, 3797), True, 'import megengine.functional as F\n'), ((793, 805), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (802, 805), False, 'import math\n'), ((957, 974), 'math.sqrt', 'math.sqrt', (['fan_in'], {}), '(fan_in)\n', (966, 974), False, 'import math\n')]
|
#! /usr/bin/env python3
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import logging
import re
from collections import namedtuple
import numpy as np
from tqdm import tqdm
import megengine as mge
from megengine.core.tensor.dtype import is_quantize
from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level
from megengine.utils.module_stats import (
enable_receptive_field,
get_activation_stats,
get_op_stats,
get_param_stats,
print_activations_stats,
print_op_stats,
print_param_stats,
print_summary,
sizeof_fmt,
sum_activations_stats,
sum_op_stats,
sum_param_stats,
)
from megengine.utils.network import Network
logger = get_logger(__name__)
def visualize(
model_path: str,
log_path: str,
input: np.ndarray = None,
inp_dict: dict = None,
cal_params: bool = True,
cal_flops: bool = True,
cal_activations: bool = True,
logging_to_stdout: bool = True,
bar_length_max: int = 20,
):
r"""Load megengine dumped model and visualize graph structure with tensorboard log files.
Can also record and print model's statistics like :func:`~.module_stats`
Args:
model_path: dir path for megengine dumped model.
log_path: dir path for tensorboard graph log.
input: user defined input data for running model and calculating stats, alternative with inp_dict, used when the model has only one input.
inp_dict: input dict for running model and calculating stats, alternative with input, used when the model has more than one input. When both input and inp_dict are None, a random input will be used.
cal_params: whether calculate and record params size.
cal_flops: whether calculate and record op flops.
cal_activations: whether calculate and record op activations.
logging_to_stdout: whether print all calculated statistic details.
bar_length_max: size of bar indicating max flops or parameter size in net stats.
model_path: str:
log_path: str:
input: np.ndarray:
inp_dict: dict:
cal_params: bool:
cal_flops: bool:
cal_activations: bool:
logging_to_stdout: bool:
bar_length_max: int:
"""
if log_path:
try:
from tensorboard.compat.proto.attr_value_pb2 import AttrValue
from tensorboard.compat.proto.config_pb2 import RunMetadata
from tensorboard.compat.proto.graph_pb2 import GraphDef
from tensorboard.compat.proto.node_def_pb2 import NodeDef
from tensorboard.compat.proto.step_stats_pb2 import (
AllocatorMemoryUsed,
DeviceStepStats,
NodeExecStats,
StepStats,
)
from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto
from tensorboard.compat.proto.versions_pb2 import VersionDef
from tensorboardX import SummaryWriter
except ImportError:
logger.error(
"TensorBoard and TensorboardX are required for visualize.",
exc_info=True,
)
return
enable_receptive_field()
graph = Network.load(model_path)
graph.reset_batch_size(1)
has_input = False
if input is not None or inp_dict is not None:
has_input = True
repl_dict = {}
inp_vars = graph.input_vars
if inp_dict is not None:
assert len(inp_dict) == len(
inp_vars
), "Inputs are not sufficient for calculation."
for v in inp_vars:
new_input = graph.make_const(inp_dict[v.name], name=v.name)
repl_dict[v] = new_input
else:
assert len(inp_vars) == 1, "The graph needs more than one input."
inp_var = inp_vars[0]
repl_dict[inp_var] = graph.make_const(input, name=inp_var.name)
graph.replace_vars(repl_dict=repl_dict)
graph._compile()
def process_name(name):
# nodes that start with point or contain float const will lead to display bug
if not re.match(r"^[+-]?\d*\.\d*", name):
name = name.replace(".", "/")
return name.encode(encoding="utf-8")
summary = [["item", "value"]]
node_list = []
flops_list = []
params_list = []
activations_list = []
total_stats = namedtuple(
"total_stats", ["param_size", "param_dims", "flops", "act_size", "act_dims"]
)
stats_details = namedtuple("module_stats", ["params", "flops", "activations"])
for node in tqdm(graph.all_oprs):
if hasattr(node, "output_idx"):
node_oup = node.outputs[node.output_idx]
else:
if len(node.outputs) != 1:
logger.warning(
"OpNode {} has more than one output and not has 'output_idx' attr.".format(
node
)
)
node_oup = node.outputs[0]
inp_list = [process_name(var.owner.name) for var in node.inputs]
if log_path:
# detail format see tensorboard/compat/proto/attr_value.proto
attr = {
"_output_shapes": AttrValue(
list=AttrValue.ListValue(
shape=[
TensorShapeProto(
dim=[
TensorShapeProto.Dim(size=d) for d in node_oup.shape
]
)
]
)
),
"params": AttrValue(s=str(node.params).encode(encoding="utf-8")),
"dtype": AttrValue(s=str(node_oup.dtype).encode(encoding="utf-8")),
}
if cal_flops:
flops_stats = get_op_stats(node, node.inputs, node.outputs)
if flops_stats is not None:
# add op flops attr
if log_path and hasattr(flops_stats, "flops_num"):
attr["flops"] = AttrValue(
s=sizeof_fmt(flops_stats["flops"]).encode(encoding="utf-8")
)
flops_stats["name"] = node.name
flops_stats["class_name"] = node.type
flops_list.append(flops_stats)
if cal_activations:
acts = get_activation_stats(node_oup, has_input=has_input)
acts["name"] = node.name
acts["class_name"] = node.type
activations_list.append(acts)
if cal_params:
if node.type == "ImmutableTensor":
param_stats = get_param_stats(node_oup)
# add tensor size attr
if log_path:
attr["size"] = AttrValue(
s=sizeof_fmt(param_stats["size"]).encode(encoding="utf-8")
)
param_stats["name"] = node.name
params_list.append(param_stats)
if log_path:
node_list.append(
NodeDef(
name=process_name(node.name),
op=node.type,
input=inp_list,
attr=attr,
)
)
# summary
extra_info = {
"#ops": len(graph.all_oprs),
"#params": len(params_list),
}
(
total_flops,
total_param_dims,
total_param_size,
total_act_dims,
total_act_size,
) = (0, 0, 0, 0, 0)
if cal_params:
total_param_dims, total_param_size, params_list = sum_param_stats(
params_list, bar_length_max
)
extra_info["total_param_dims"] = sizeof_fmt(total_param_dims, suffix="")
extra_info["total_param_size"] = sizeof_fmt(total_param_size)
if logging_to_stdout:
print_param_stats(params_list)
if cal_flops:
total_flops, flops_list = sum_op_stats(flops_list, bar_length_max)
extra_info["total_flops"] = sizeof_fmt(total_flops, suffix="OPs")
if logging_to_stdout:
print_op_stats(flops_list)
if cal_activations:
total_act_dims, total_act_size, activations_list = sum_activations_stats(
activations_list, bar_length_max
)
extra_info["total_act_dims"] = sizeof_fmt(total_act_dims, suffix="")
extra_info["total_act_size"] = sizeof_fmt(total_act_size)
if logging_to_stdout:
print_activations_stats(activations_list, has_input=has_input)
if cal_flops and cal_params:
extra_info["flops/param_size"] = "{:3.3f}".format(
total_flops / total_param_size
)
if log_path:
graph_def = GraphDef(node=node_list, versions=VersionDef(producer=22))
device = "/device:CPU:0"
stepstats = RunMetadata(
step_stats=StepStats(dev_stats=[DeviceStepStats(device=device)])
)
writer = SummaryWriter(log_path)
writer._get_file_writer().add_graph((graph_def, stepstats))
print_summary(**extra_info)
return (
total_stats(
param_size=total_param_size,
param_dims=total_param_dims,
flops=total_flops,
act_size=total_act_size,
act_dims=total_act_dims,
),
stats_details(
params=params_list, flops=flops_list, activations=activations_list
),
)
def main():
parser = argparse.ArgumentParser(
description="load a megengine dumped model and export log file for tensorboard visualization.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("model_path", help="dumped model path.")
parser.add_argument("--log_path", help="tensorboard log path.")
parser.add_argument(
"--load_input_data",
help="load input data from pickle file; it should be a numpy array or a dict of numpy array",
)
parser.add_argument(
"--bar_length_max",
type=int,
default=20,
help="size of bar indicating max flops or parameter size in net stats.",
)
parser.add_argument(
"--cal_params",
action="store_true",
help="whether calculate and record params size.",
)
parser.add_argument(
"--cal_flops",
action="store_true",
help="whether calculate and record op flops.",
)
parser.add_argument(
"--cal_activations",
action="store_true",
help="whether calculate and record op activations.",
)
parser.add_argument(
"--logging_to_stdout",
action="store_true",
help="whether print all calculated statistic details.",
)
parser.add_argument(
"--all",
action="store_true",
help="whether print all stats. Tensorboard logs will be placed in './log' if not specified.",
)
args = parser.parse_args()
if args.load_input_data:
logger.info("load data from {}".format(args.load_input_data))
data = mge.load(args.load_input_data)
if isinstance(data, dict):
for v in data.values():
assert isinstance(
v, np.ndarray
), "data should provide ndarray; got {} instead".format(v)
args.inp_dict = data
elif isinstance(data, np.ndarray):
args.input = data
else:
logger.error("input data should be a numpy array or a dict of numpy array")
if args.all:
args.cal_params = True
args.cal_flops = True
args.cal_activations = True
args.logging_to_stdout = True
if not args.log_path:
args.log_path = "./log"
kwargs = vars(args)
kwargs.pop("all")
kwargs.pop("load_input_data")
visualize(**kwargs)
if __name__ == "__main__":
main()
|
[
"megengine.utils.module_stats.sum_op_stats",
"megengine.logger.get_logger",
"megengine.utils.module_stats.print_param_stats",
"megengine.utils.module_stats.sum_param_stats",
"megengine.utils.module_stats.get_param_stats",
"megengine.utils.module_stats.print_op_stats",
"megengine.utils.network.Network.load",
"megengine.utils.module_stats.get_op_stats",
"megengine.utils.module_stats.sum_activations_stats",
"megengine.utils.module_stats.sizeof_fmt",
"megengine.utils.module_stats.get_activation_stats",
"megengine.utils.module_stats.print_summary",
"megengine.load",
"megengine.utils.module_stats.print_activations_stats",
"megengine.utils.module_stats.enable_receptive_field"
] |
[((1019, 1039), 'megengine.logger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (1029, 1039), False, 'from megengine.logger import _imperative_rt_logger, get_logger, set_mgb_log_level\n'), ((3458, 3482), 'megengine.utils.module_stats.enable_receptive_field', 'enable_receptive_field', ([], {}), '()\n', (3480, 3482), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((3496, 3520), 'megengine.utils.network.Network.load', 'Network.load', (['model_path'], {}), '(model_path)\n', (3508, 3520), False, 'from megengine.utils.network import Network\n'), ((4678, 4770), 'collections.namedtuple', 'namedtuple', (['"""total_stats"""', "['param_size', 'param_dims', 'flops', 'act_size', 'act_dims']"], {}), "('total_stats', ['param_size', 'param_dims', 'flops', 'act_size',\n 'act_dims'])\n", (4688, 4770), False, 'from collections import namedtuple\n'), ((4801, 4863), 'collections.namedtuple', 'namedtuple', (['"""module_stats"""', "['params', 'flops', 'activations']"], {}), "('module_stats', ['params', 'flops', 'activations'])\n", (4811, 4863), False, 'from collections import namedtuple\n'), ((4881, 4901), 'tqdm.tqdm', 'tqdm', (['graph.all_oprs'], {}), '(graph.all_oprs)\n', (4885, 4901), False, 'from tqdm import tqdm\n'), ((9338, 9365), 'megengine.utils.module_stats.print_summary', 'print_summary', ([], {}), '(**extra_info)\n', (9351, 9365), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9745, 9930), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""load a megengine dumped model and export log file for tensorboard visualization."""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description=\n 'load a megengine dumped model and export log file for tensorboard visualization.'\n , formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (9768, 9930), False, 'import argparse\n'), ((7889, 7933), 'megengine.utils.module_stats.sum_param_stats', 'sum_param_stats', (['params_list', 'bar_length_max'], {}), '(params_list, bar_length_max)\n', (7904, 7933), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((7997, 8036), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_param_dims'], {'suffix': '""""""'}), "(total_param_dims, suffix='')\n", (8007, 8036), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8078, 8106), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_param_size'], {}), '(total_param_size)\n', (8088, 8106), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8233, 8273), 'megengine.utils.module_stats.sum_op_stats', 'sum_op_stats', (['flops_list', 'bar_length_max'], {}), '(flops_list, bar_length_max)\n', (8245, 8273), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8310, 8347), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_flops'], {'suffix': '"""OPs"""'}), "(total_flops, suffix='OPs')\n", (8320, 8347), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8501, 8556), 'megengine.utils.module_stats.sum_activations_stats', 'sum_activations_stats', (['activations_list', 'bar_length_max'], {}), '(activations_list, bar_length_max)\n', (8522, 8556), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8618, 8655), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_act_dims'], {'suffix': '""""""'}), "(total_act_dims, suffix='')\n", (8628, 8655), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8695, 8721), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['total_act_size'], {}), '(total_act_size)\n', (8705, 8721), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9241, 9264), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['log_path'], {}), '(log_path)\n', (9254, 9264), False, 'from tensorboardX import SummaryWriter\n'), ((11326, 11356), 'megengine.load', 'mge.load', (['args.load_input_data'], {}), '(args.load_input_data)\n', (11334, 11356), True, 'import megengine as mge\n'), ((4417, 4452), 're.match', 're.match', (['"""^[+-]?\\\\d*\\\\.\\\\d*"""', 'name'], {}), "('^[+-]?\\\\d*\\\\.\\\\d*', name)\n", (4425, 4452), False, 'import re\n'), ((6131, 6176), 'megengine.utils.module_stats.get_op_stats', 'get_op_stats', (['node', 'node.inputs', 'node.outputs'], {}), '(node, node.inputs, node.outputs)\n', (6143, 6176), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((6670, 6721), 'megengine.utils.module_stats.get_activation_stats', 'get_activation_stats', (['node_oup'], {'has_input': 'has_input'}), '(node_oup, has_input=has_input)\n', (6690, 6721), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8149, 8179), 'megengine.utils.module_stats.print_param_stats', 'print_param_stats', (['params_list'], {}), '(params_list)\n', (8166, 8179), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8390, 8416), 'megengine.utils.module_stats.print_op_stats', 'print_op_stats', (['flops_list'], {}), '(flops_list)\n', (8404, 8416), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((8764, 8826), 'megengine.utils.module_stats.print_activations_stats', 'print_activations_stats', (['activations_list'], {'has_input': 'has_input'}), '(activations_list, has_input=has_input)\n', (8787, 8826), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((6945, 6970), 'megengine.utils.module_stats.get_param_stats', 'get_param_stats', (['node_oup'], {}), '(node_oup)\n', (6960, 6970), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((9045, 9068), 'tensorboard.compat.proto.versions_pb2.VersionDef', 'VersionDef', ([], {'producer': '(22)'}), '(producer=22)\n', (9055, 9068), False, 'from tensorboard.compat.proto.versions_pb2 import VersionDef\n'), ((9181, 9211), 'tensorboard.compat.proto.step_stats_pb2.DeviceStepStats', 'DeviceStepStats', ([], {'device': 'device'}), '(device=device)\n', (9196, 9211), False, 'from tensorboard.compat.proto.step_stats_pb2 import AllocatorMemoryUsed, DeviceStepStats, NodeExecStats, StepStats\n'), ((6393, 6425), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["flops_stats['flops']"], {}), "(flops_stats['flops'])\n", (6403, 6425), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((7111, 7142), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["param_stats['size']"], {}), "(param_stats['size'])\n", (7121, 7142), False, 'from megengine.utils.module_stats import enable_receptive_field, get_activation_stats, get_op_stats, get_param_stats, print_activations_stats, print_op_stats, print_param_stats, print_summary, sizeof_fmt, sum_activations_stats, sum_op_stats, sum_param_stats\n'), ((5718, 5746), 'tensorboard.compat.proto.tensor_shape_pb2.TensorShapeProto.Dim', 'TensorShapeProto.Dim', ([], {'size': 'd'}), '(size=d)\n', (5738, 5746), False, 'from tensorboard.compat.proto.tensor_shape_pb2 import TensorShapeProto\n')]
|
# Copyright (c) 2020 <NAME>
# This code is licensed under MIT license
# (https://github.com/kwotsin/mimicry/blob/master/LICENSE)
# ------------------------------------------------------------------------------
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved.
# ------------------------------------------------------------------------------
import megengine.functional as F
from megengine.core.tensor_factory import zeros
def ns_loss_gen(output_fake):
r"""
Non-saturating loss for generator.
Args:
output_fake (Tensor): Discriminator output logits for fake images.
Returns:
Tensor: A scalar tensor loss output.
"""
output_fake = F.sigmoid(output_fake)
return -F.log(output_fake + 1e-8).mean()
# def ns_loss_gen(output_fake):
# """numerical stable version"""
# return F.log(1 + F.exp(-output_fake)).mean()
def _bce_loss_with_logits(output, labels, **kwargs):
r"""
Sigmoid cross entropy with logits, see tensorflow
https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits
"""
loss = F.maximum(output, 0) - output * labels + F.log(1 + F.exp(-F.abs(output)))
return loss.mean()
def minimax_loss_dis(output_fake,
output_real,
real_label_val=1.0,
fake_label_val=0.0,
**kwargs):
r"""
Standard minimax loss for GANs through the BCE Loss with logits fn.
Args:
output_fake (Tensor): Discriminator output logits for fake images.
output_real (Tensor): Discriminator output logits for real images.
real_label_val (int): Label for real images.
fake_label_val (int): Label for fake images.
device (torch.device): Torch device object for sending created data.
Returns:
Tensor: A scalar tensor loss output.
"""
# Produce real and fake labels.
fake_labels = zeros((output_fake.shape[0], 1)) + fake_label_val
real_labels = zeros((output_real.shape[0], 1)) + real_label_val
# FF, compute loss and backprop D
errD_fake = _bce_loss_with_logits(output=output_fake,
labels=fake_labels,
**kwargs)
errD_real = _bce_loss_with_logits(output=output_real,
labels=real_labels,
**kwargs)
# Compute cumulative error
loss = errD_real + errD_fake
return loss
def wasserstein_loss_gen(output_fake):
r"""
Computes the wasserstein loss for generator.
Args:
output_fake (Tensor): Discriminator output logits for fake images.
Returns:
Tensor: A scalar tensor loss output.
"""
loss = -output_fake.mean()
return loss
def wasserstein_loss_dis(output_real, output_fake):
r"""
Computes the wasserstein loss for the discriminator.
Args:
output_real (Tensor): Discriminator output logits for real images.
output_fake (Tensor): Discriminator output logits for fake images.
Returns:
Tensor: A scalar tensor loss output.
"""
loss = -1.0 * output_real.mean() + output_fake.mean()
return loss
|
[
"megengine.functional.maximum",
"megengine.functional.sigmoid",
"megengine.core.tensor_factory.zeros",
"megengine.functional.log",
"megengine.functional.abs"
] |
[((1132, 1154), 'megengine.functional.sigmoid', 'F.sigmoid', (['output_fake'], {}), '(output_fake)\n', (1141, 1154), True, 'import megengine.functional as F\n'), ((2374, 2406), 'megengine.core.tensor_factory.zeros', 'zeros', (['(output_fake.shape[0], 1)'], {}), '((output_fake.shape[0], 1))\n', (2379, 2406), False, 'from megengine.core.tensor_factory import zeros\n'), ((2442, 2474), 'megengine.core.tensor_factory.zeros', 'zeros', (['(output_real.shape[0], 1)'], {}), '((output_real.shape[0], 1))\n', (2447, 2474), False, 'from megengine.core.tensor_factory import zeros\n'), ((1547, 1567), 'megengine.functional.maximum', 'F.maximum', (['output', '(0)'], {}), '(output, 0)\n', (1556, 1567), True, 'import megengine.functional as F\n'), ((1168, 1194), 'megengine.functional.log', 'F.log', (['(output_fake + 1e-08)'], {}), '(output_fake + 1e-08)\n', (1173, 1194), True, 'import megengine.functional as F\n'), ((1605, 1618), 'megengine.functional.abs', 'F.abs', (['output'], {}), '(output)\n', (1610, 1618), True, 'import megengine.functional as F\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
from helpers import MLP
import megengine._internal as mgb
import megengine.functional as F
from megengine.core import Graph
from megengine.module import Linear, Module
from megengine.optimizer import SGD
from megengine.test import assertTensorClose
def test_compile_multi_times_eager():
return # XXX: rewrite or remove this test
data = Input("data", shape=(2, 28))
label = Input("label", shape=(2,), dtype=np.int32)
mlp = MLP()
opt = SGD(mlp.parameters(requires_grad=True), lr=0.01)
pred0 = mlp(data)
pred = F.softmax(pred0)
loss = F.square_loss(pred, label.reshape(2, 1))
opt.zero_grad()
grads = opt.backward(loss)
opt.step()
f0 = compile(pred, None)
f1 = compile([pred, loss], grads, copy=False)
for _ in range(3):
data = np.random.random((2, 28)).astype(np.float32)
label = np.random.randint(0, 10, (2,)).astype(np.float32)
out0 = f0(data=data)
out1 = f1(data=data, label=label)
assertTensorClose(out0[0], out1[0])
def test_compile_multi_times_static():
return # XXX: rewrite or remove this test
with Graph() as cg:
cg.set_option("eager_evaluation", False)
data = Input("data", shape=(2, 28))
label = Input("label", shape=(2,), dtype=np.int32)
mlp = MLP()
opt = SGD(mlp.parameters(requires_grad=True), lr=0.01)
pred0 = mlp(data)
pred = F.softmax(pred0)
loss = F.square_loss(pred, label.reshape(2, 1))
opt.zero_grad()
grads = opt.backward(loss)
opt.step()
f0 = compile(pred, None)
f1 = compile([pred, loss], grads, copy=True)
data = np.random.random((2, 28)).astype(np.float32)
label = np.random.randint(0, 10, (2,)).astype(np.float32)
out0 = f0(data=data)
out1 = f1(data=data, label=label)
assertTensorClose(out0[0], out1[0])
_ = compile([pred, loss], grads, copy=False)
with pytest.raises(mgb.MegBrainError):
f0(data=data)
|
[
"megengine.test.assertTensorClose",
"megengine.core.Graph",
"megengine.functional.softmax"
] |
[((853, 858), 'helpers.MLP', 'MLP', ([], {}), '()\n', (856, 858), False, 'from helpers import MLP\n'), ((952, 968), 'megengine.functional.softmax', 'F.softmax', (['pred0'], {}), '(pred0)\n', (961, 968), True, 'import megengine.functional as F\n'), ((1395, 1430), 'megengine.test.assertTensorClose', 'assertTensorClose', (['out0[0]', 'out1[0]'], {}), '(out0[0], out1[0])\n', (1412, 1430), False, 'from megengine.test import assertTensorClose\n'), ((1528, 1535), 'megengine.core.Graph', 'Graph', ([], {}), '()\n', (1533, 1535), False, 'from megengine.core import Graph\n'), ((1710, 1715), 'helpers.MLP', 'MLP', ([], {}), '()\n', (1713, 1715), False, 'from helpers import MLP\n'), ((1821, 1837), 'megengine.functional.softmax', 'F.softmax', (['pred0'], {}), '(pred0)\n', (1830, 1837), True, 'import megengine.functional as F\n'), ((2265, 2300), 'megengine.test.assertTensorClose', 'assertTensorClose', (['out0[0]', 'out1[0]'], {}), '(out0[0], out1[0])\n', (2282, 2300), False, 'from megengine.test import assertTensorClose\n'), ((2368, 2400), 'pytest.raises', 'pytest.raises', (['mgb.MegBrainError'], {}), '(mgb.MegBrainError)\n', (2381, 2400), False, 'import pytest\n'), ((1205, 1230), 'numpy.random.random', 'np.random.random', (['(2, 28)'], {}), '((2, 28))\n', (1221, 1230), True, 'import numpy as np\n'), ((1266, 1296), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(2,)'], {}), '(0, 10, (2,))\n', (1283, 1296), True, 'import numpy as np\n'), ((2075, 2100), 'numpy.random.random', 'np.random.random', (['(2, 28)'], {}), '((2, 28))\n', (2091, 2100), True, 'import numpy as np\n'), ((2136, 2166), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(2,)'], {}), '(0, 10, (2,))\n', (2153, 2166), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import time
import numpy as np
import pytest
from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset
from megengine.data.sampler import RandomSampler, SequentialSampler
from megengine.data.transform import PseudoTransform, Transform
def init_dataset():
sample_num = 100
rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
dataset = ArrayDataset(rand_data, label)
return dataset
def test_dataloader_init():
dataset = init_dataset()
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=2, divide=True)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, timeout=-1)
with pytest.raises(ValueError):
dataloader = DataLoader(dataset, num_workers=0, divide=True)
dataloader = DataLoader(dataset)
assert isinstance(dataloader.sampler, SequentialSampler)
assert isinstance(dataloader.transform, PseudoTransform)
assert isinstance(dataloader.collator, Collator)
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
)
assert len(dataloader) == 17
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
)
assert len(dataloader) == 16
def test_dataloader_serial():
dataset = init_dataset()
dataloader = DataLoader(
dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
def test_dataloader_parallel():
# set max shared memory to 100M
os.environ["MGE_PLASMA_MEMORY"] = "100000000"
dataset = init_dataset()
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=False,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
num_workers=2,
divide=True,
)
for (data, label) in dataloader:
assert data.shape == (4, 1, 32, 32)
assert label.shape == (4,)
def test_dataloader_parallel_timeout():
dataset = init_dataset()
class TimeoutTransform(Transform):
def __init__(self):
pass
def apply(self, input):
time.sleep(10)
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=TimeoutTransform(),
num_workers=2,
timeout=2,
)
with pytest.raises(RuntimeError, match=r".*timeout.*"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
def test_dataloader_parallel_worker_exception():
dataset = init_dataset()
class FakeErrorTransform(Transform):
def __init__(self):
pass
def apply(self, input):
y = x + 1
return input
dataloader = DataLoader(
dataset,
sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
transform=FakeErrorTransform(),
num_workers=2,
)
with pytest.raises(RuntimeError, match=r"worker.*died"):
data_iter = iter(dataloader)
batch_data = next(data_iter)
|
[
"megengine.data.sampler.RandomSampler",
"megengine.data.dataloader.DataLoader",
"megengine.data.dataset.ArrayDataset"
] |
[((767, 838), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)'], {'size': '(sample_num, 1, 32, 32)', 'dtype': 'np.uint8'}), '(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)\n', (784, 838), True, 'import numpy as np\n'), ((851, 906), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': '(sample_num,)', 'dtype': 'int'}), '(0, 10, size=(sample_num,), dtype=int)\n', (868, 906), True, 'import numpy as np\n'), ((921, 951), 'megengine.data.dataset.ArrayDataset', 'ArrayDataset', (['rand_data', 'label'], {}), '(rand_data, label)\n', (933, 951), False, 'from megengine.data.dataset import ArrayDataset\n'), ((1440, 1459), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {}), '(dataset)\n', (1450, 1459), False, 'from megengine.data.dataloader import DataLoader\n'), ((1039, 1064), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1052, 1064), False, 'import pytest\n'), ((1087, 1134), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(2)', 'divide': '(True)'}), '(dataset, num_workers=2, divide=True)\n', (1097, 1134), False, 'from megengine.data.dataloader import DataLoader\n'), ((1144, 1169), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1157, 1169), False, 'import pytest\n'), ((1192, 1227), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(-1)'}), '(dataset, num_workers=-1)\n', (1202, 1227), False, 'from megengine.data.dataloader import DataLoader\n'), ((1237, 1262), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1250, 1262), False, 'import pytest\n'), ((1285, 1316), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'timeout': '(-1)'}), '(dataset, timeout=-1)\n', (1295, 1316), False, 'from megengine.data.dataloader import DataLoader\n'), ((1326, 1351), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1339, 1351), False, 'import pytest\n'), ((1374, 1421), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(0)', 'divide': '(True)'}), '(dataset, num_workers=0, divide=True)\n', (1384, 1421), False, 'from megengine.data.dataloader import DataLoader\n'), ((3392, 3440), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '""".*timeout.*"""'}), "(RuntimeError, match='.*timeout.*')\n", (3405, 3440), False, 'import pytest\n'), ((3960, 4009), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""worker.*died"""'}), "(RuntimeError, match='worker.*died')\n", (3973, 4009), False, 'import pytest\n'), ((1690, 1743), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(False)'}), '(dataset, batch_size=6, drop_last=False)\n', (1703, 1743), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((1837, 1889), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(True)'}), '(dataset, batch_size=6, drop_last=True)\n', (1850, 1889), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2044, 2097), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2057, 2097), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2432, 2485), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2445, 2485), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2717, 2770), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2730, 2770), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((3139, 3153), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (3149, 3153), False, 'import time\n'), ((3242, 3295), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (3255, 3295), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((3827, 3880), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (3840, 3880), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n')]
|
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import sys
import pytest
from megengine.core import _config as config
from megengine.core import _trace_option as trace_option
from megengine.core import get_option
from megengine.core._imperative_rt.core2 import (
_get_amp_dtype_autocast,
_get_amp_high_prec_dtype,
_get_amp_low_prec_dtype,
_get_convert_inputs,
)
from megengine.core.tensor import amp
from megengine.device import get_device_count
sys.path.append(os.path.join(os.path.dirname(__file__), "helpers"))
_ngpu = get_device_count("gpu")
@pytest.fixture(autouse=True)
def skip_by_ngpu(request):
if request.node.get_closest_marker("require_ngpu"):
require_ngpu = int(request.node.get_closest_marker("require_ngpu").args[0])
if require_ngpu > _ngpu:
pytest.skip("skipped for ngpu unsatisfied: {}".format(require_ngpu))
@pytest.fixture(autouse=True)
def skip_distributed(request):
if request.node.get_closest_marker("distributed_isolated"):
if platform.system() in ("Windows", "Darwin"):
pytest.skip(
"skipped for distributed unsupported at platform: {}".format(
platform.system()
)
)
@pytest.fixture(autouse=True)
def run_around_tests():
env_vars1 = {
"symbolic_shape": trace_option.use_symbolic_shape(),
"async_level": get_option("async_level"),
"enable_drop": get_option("enable_drop"),
"max_recompute_time": get_option("max_recompute_time"),
"catch_worker_execption": get_option("catch_worker_execption"),
"enable_host_compute": get_option("enable_host_compute"),
# "record_computing_path": get_option("record_computing_path"),
"disable_memory_forwarding": get_option("disable_memory_forwarding"),
"enable_dtr_auto_drop": get_option("enable_dtr_auto_drop"),
"enable_dtr_sqrt_sampling": get_option("enable_dtr_sqrt_sampling"),
"dtr_eviction_threshold": get_option("dtr_eviction_threshold"),
"dtr_evictee_minimum_size": get_option("dtr_evictee_minimum_size"),
"benchmark_kernel": config.benchmark_kernel,
"deterministic_kernel": config.deterministic_kernel,
"compute_mode": config._compute_mode,
"conv_format": config._conv_format,
"amp_enabled": amp.enabled,
"convert_inputs": _get_convert_inputs(),
"amp_dtype_autocast": _get_amp_dtype_autocast(),
"amp_high_prec_dtype": _get_amp_high_prec_dtype(),
"amp_low_prec_dtype": _get_amp_low_prec_dtype(),
}
yield
env_vars2 = {
"symbolic_shape": trace_option.use_symbolic_shape(),
"async_level": get_option("async_level"),
"enable_drop": get_option("enable_drop"),
"max_recompute_time": get_option("max_recompute_time"),
"catch_worker_execption": get_option("catch_worker_execption"),
"enable_host_compute": get_option("enable_host_compute"),
# "record_computing_path": get_option("record_computing_path"),
"disable_memory_forwarding": get_option("disable_memory_forwarding"),
"enable_dtr_auto_drop": get_option("enable_dtr_auto_drop"),
"enable_dtr_sqrt_sampling": get_option("enable_dtr_sqrt_sampling"),
"dtr_eviction_threshold": get_option("dtr_eviction_threshold"),
"dtr_evictee_minimum_size": get_option("dtr_evictee_minimum_size"),
"benchmark_kernel": config.benchmark_kernel,
"deterministic_kernel": config.deterministic_kernel,
"compute_mode": config._compute_mode,
"conv_format": config._conv_format,
"amp_enabled": amp.enabled,
"convert_inputs": _get_convert_inputs(),
"amp_dtype_autocast": _get_amp_dtype_autocast(),
"amp_high_prec_dtype": _get_amp_high_prec_dtype(),
"amp_low_prec_dtype": _get_amp_low_prec_dtype(),
}
for key in env_vars1:
assert (
env_vars1[key] == env_vars2[key]
), "{} have been changed after test".format(key)
|
[
"megengine.core._imperative_rt.core2._get_amp_low_prec_dtype",
"megengine.core._imperative_rt.core2._get_amp_high_prec_dtype",
"megengine.device.get_device_count",
"megengine.core._trace_option.use_symbolic_shape",
"megengine.core._imperative_rt.core2._get_amp_dtype_autocast",
"megengine.core.get_option",
"megengine.core._imperative_rt.core2._get_convert_inputs"
] |
[((873, 896), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (889, 896), False, 'from megengine.device import get_device_count\n'), ((900, 928), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (914, 928), False, 'import pytest\n'), ((1213, 1241), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1227, 1241), False, 'import pytest\n'), ((1568, 1596), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1582, 1596), False, 'import pytest\n'), ((825, 850), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (840, 850), False, 'import os\n'), ((1665, 1698), 'megengine.core._trace_option.use_symbolic_shape', 'trace_option.use_symbolic_shape', ([], {}), '()\n', (1696, 1698), True, 'from megengine.core import _trace_option as trace_option\n'), ((1723, 1748), 'megengine.core.get_option', 'get_option', (['"""async_level"""'], {}), "('async_level')\n", (1733, 1748), False, 'from megengine.core import get_option\n'), ((1773, 1798), 'megengine.core.get_option', 'get_option', (['"""enable_drop"""'], {}), "('enable_drop')\n", (1783, 1798), False, 'from megengine.core import get_option\n'), ((1830, 1862), 'megengine.core.get_option', 'get_option', (['"""max_recompute_time"""'], {}), "('max_recompute_time')\n", (1840, 1862), False, 'from megengine.core import get_option\n'), ((1898, 1934), 'megengine.core.get_option', 'get_option', (['"""catch_worker_execption"""'], {}), "('catch_worker_execption')\n", (1908, 1934), False, 'from megengine.core import get_option\n'), ((1967, 2000), 'megengine.core.get_option', 'get_option', (['"""enable_host_compute"""'], {}), "('enable_host_compute')\n", (1977, 2000), False, 'from megengine.core import get_option\n'), ((2111, 2150), 'megengine.core.get_option', 'get_option', (['"""disable_memory_forwarding"""'], {}), "('disable_memory_forwarding')\n", (2121, 2150), False, 'from megengine.core import get_option\n'), ((2184, 2218), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_auto_drop"""'], {}), "('enable_dtr_auto_drop')\n", (2194, 2218), False, 'from megengine.core import get_option\n'), ((2256, 2294), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_sqrt_sampling"""'], {}), "('enable_dtr_sqrt_sampling')\n", (2266, 2294), False, 'from megengine.core import get_option\n'), ((2330, 2366), 'megengine.core.get_option', 'get_option', (['"""dtr_eviction_threshold"""'], {}), "('dtr_eviction_threshold')\n", (2340, 2366), False, 'from megengine.core import get_option\n'), ((2404, 2442), 'megengine.core.get_option', 'get_option', (['"""dtr_evictee_minimum_size"""'], {}), "('dtr_evictee_minimum_size')\n", (2414, 2442), False, 'from megengine.core import get_option\n'), ((2710, 2731), 'megengine.core._imperative_rt.core2._get_convert_inputs', '_get_convert_inputs', ([], {}), '()\n', (2729, 2731), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2763, 2788), 'megengine.core._imperative_rt.core2._get_amp_dtype_autocast', '_get_amp_dtype_autocast', ([], {}), '()\n', (2786, 2788), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2821, 2847), 'megengine.core._imperative_rt.core2._get_amp_high_prec_dtype', '_get_amp_high_prec_dtype', ([], {}), '()\n', (2845, 2847), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2879, 2904), 'megengine.core._imperative_rt.core2._get_amp_low_prec_dtype', '_get_amp_low_prec_dtype', ([], {}), '()\n', (2902, 2904), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2966, 2999), 'megengine.core._trace_option.use_symbolic_shape', 'trace_option.use_symbolic_shape', ([], {}), '()\n', (2997, 2999), True, 'from megengine.core import _trace_option as trace_option\n'), ((3024, 3049), 'megengine.core.get_option', 'get_option', (['"""async_level"""'], {}), "('async_level')\n", (3034, 3049), False, 'from megengine.core import get_option\n'), ((3074, 3099), 'megengine.core.get_option', 'get_option', (['"""enable_drop"""'], {}), "('enable_drop')\n", (3084, 3099), False, 'from megengine.core import get_option\n'), ((3131, 3163), 'megengine.core.get_option', 'get_option', (['"""max_recompute_time"""'], {}), "('max_recompute_time')\n", (3141, 3163), False, 'from megengine.core import get_option\n'), ((3199, 3235), 'megengine.core.get_option', 'get_option', (['"""catch_worker_execption"""'], {}), "('catch_worker_execption')\n", (3209, 3235), False, 'from megengine.core import get_option\n'), ((3268, 3301), 'megengine.core.get_option', 'get_option', (['"""enable_host_compute"""'], {}), "('enable_host_compute')\n", (3278, 3301), False, 'from megengine.core import get_option\n'), ((3412, 3451), 'megengine.core.get_option', 'get_option', (['"""disable_memory_forwarding"""'], {}), "('disable_memory_forwarding')\n", (3422, 3451), False, 'from megengine.core import get_option\n'), ((3485, 3519), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_auto_drop"""'], {}), "('enable_dtr_auto_drop')\n", (3495, 3519), False, 'from megengine.core import get_option\n'), ((3557, 3595), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_sqrt_sampling"""'], {}), "('enable_dtr_sqrt_sampling')\n", (3567, 3595), False, 'from megengine.core import get_option\n'), ((3631, 3667), 'megengine.core.get_option', 'get_option', (['"""dtr_eviction_threshold"""'], {}), "('dtr_eviction_threshold')\n", (3641, 3667), False, 'from megengine.core import get_option\n'), ((3705, 3743), 'megengine.core.get_option', 'get_option', (['"""dtr_evictee_minimum_size"""'], {}), "('dtr_evictee_minimum_size')\n", (3715, 3743), False, 'from megengine.core import get_option\n'), ((4011, 4032), 'megengine.core._imperative_rt.core2._get_convert_inputs', '_get_convert_inputs', ([], {}), '()\n', (4030, 4032), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4064, 4089), 'megengine.core._imperative_rt.core2._get_amp_dtype_autocast', '_get_amp_dtype_autocast', ([], {}), '()\n', (4087, 4089), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4122, 4148), 'megengine.core._imperative_rt.core2._get_amp_high_prec_dtype', '_get_amp_high_prec_dtype', ([], {}), '()\n', (4146, 4148), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4180, 4205), 'megengine.core._imperative_rt.core2._get_amp_low_prec_dtype', '_get_amp_low_prec_dtype', ([], {}), '()\n', (4203, 4205), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((1348, 1365), 'platform.system', 'platform.system', ([], {}), '()\n', (1363, 1365), False, 'import platform\n'), ((1515, 1532), 'platform.system', 'platform.system', ([], {}), '()\n', (1530, 1532), False, 'import platform\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import os
import platform
import re
import subprocess
import sys
from math import ceil
import numpy as np
import pytest
import megengine as mge
import megengine.autodiff as ad
import megengine.distributed as dist
import megengine.functional as F
from megengine.device import get_default_device, set_default_device
from megengine.functional.debug_param import set_conv_execution_strategy
from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module
from megengine.optimizer import SGD
from megengine.tensor import Tensor
p_num = 4
def get_gpu_name():
try:
gpu_info = subprocess.check_output(
["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"]
)
gpu_info = gpu_info.decode("ascii").split("\n")[0]
except:
gpu_info = "None"
return gpu_info
def get_cpu_name():
cpu_info = "None"
try:
cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii")
for line in cpu_info.split("\n"):
if "model name" in line:
return re.sub(".*model name.*:", "", line, 1).strip()
except:
pass
return cpu_info
def get_xpu_name():
if mge.is_cuda_available():
return get_gpu_name()
else:
return get_cpu_name()
class MnistNet(Module):
def __init__(self, has_bn=True):
super().__init__()
self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True)
self.pool0 = AvgPool2d(2)
self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True)
self.pool1 = AvgPool2d(2)
self.fc0 = Linear(20 * 4 * 4, 500, bias=True)
self.fc1 = Linear(500, 10, bias=True)
self.bn0 = None
self.bn1 = None
if has_bn:
self.bn0 = BatchNorm2d(20)
self.bn1 = BatchNorm2d(20)
def forward(self, x):
x = self.conv0(x)
if self.bn0:
x = self.bn0(x)
x = F.relu(x)
x = self.pool0(x)
x = self.conv1(x)
if self.bn1:
x = self.bn1(x)
x = F.relu(x)
x = self.pool1(x)
x = F.flatten(x, 1)
x = self.fc0(x)
x = F.relu(x)
x = self.fc1(x)
return x
def train(data, label, net, opt, gm):
opt.clear_grad()
with gm:
pred = net(data)
loss = F.nn.cross_entropy(pred, label)
gm.backward(loss)
opt.step()
return loss
def update_model(model_path):
"""
Update the dumped model with test cases for new reference values.
The model with pre-trained weights is trained for one iter with the test data attached.
The loss and updated net state dict is dumped.
.. code-block:: python
from test_dp_correctness import update_model
update_model('mnist_model_with_test.mge') # for gpu
update_model('mnist_model_with_test_cpu.mge') # for cpu
"""
net = MnistNet(has_bn=True)
checkpoint = mge.load(model_path)
net.load_state_dict(checkpoint["net_init"])
lr = checkpoint["sgd_lr"]
opt = SGD(net.parameters(), lr=lr)
gm = ad.GradManager().attach(
net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)]
)
data = Tensor(checkpoint["data"], dtype=np.float32)
label = Tensor(checkpoint["label"], dtype=np.int32)
opt.clear_grad()
loss = train(data, label, net=net, opt=opt)
opt.step()
xpu_name = get_xpu_name()
checkpoint.update(
{"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name}
)
mge.serialization.save(checkpoint, model_path)
def run_test(
model_path, use_jit, use_symbolic, sublinear_memory_config=None, max_err=None,
):
"""
Load the model with test cases and run the training for one iter.
The loss and updated weights are compared with reference value to verify the correctness.
Dump a new file with updated result by calling update_model
if you think the test fails due to numerical rounding errors instead of bugs.
Please think twice before you do so.
"""
checkpoint = mge.load(model_path)
data = checkpoint["data"]
label = checkpoint["label"]
@dist.launcher
def worker(max_err):
net = MnistNet(has_bn=True)
net.load_state_dict(checkpoint["net_init"])
lr = checkpoint["sgd_lr"]
opt = SGD(net.parameters(), lr=lr)
gm = ad.GradManager().attach(
net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)]
)
# use same data and label for all gpu's
# such that the result does not depend on number of gpu
data_train = Tensor(data)
label_train = Tensor(label)
loss = train(data_train, label_train, net, opt, gm)
np.testing.assert_allclose(loss.numpy(), checkpoint["loss"], atol=max_err)
if dist.get_rank():
return
for param, param_ref in zip(
net.state_dict().items(), checkpoint["net_updated"].items()
):
assert param[0] == param_ref[0]
if "bn" in param[0]:
ref = param_ref[1].reshape(param[1].shape)
np.testing.assert_allclose(param[1], ref, atol=max_err)
else:
np.testing.assert_allclose(param[1], param_ref[1], atol=max_err)
worker(max_err)
@pytest.mark.require_ngpu(2)
@pytest.mark.isolated_distributed
def test_dp_correctness():
model_name = "mnist_model_with_test.mge"
model_path = os.path.join(os.path.dirname(__file__), model_name)
set_conv_execution_strategy("HEURISTIC_REPRODUCIBLE")
run_test(model_path, False, False, max_err=1e-5)
|
[
"megengine.autodiff.GradManager",
"megengine.module.Conv2d",
"megengine.module.AvgPool2d",
"megengine.functional.nn.cross_entropy",
"megengine.functional.debug_param.set_conv_execution_strategy",
"megengine.distributed.make_allreduce_cb",
"megengine.serialization.save",
"megengine.is_cuda_available",
"megengine.module.BatchNorm2d",
"megengine.load",
"megengine.functional.relu",
"megengine.functional.flatten",
"megengine.distributed.get_rank",
"megengine.tensor.Tensor",
"megengine.module.Linear"
] |
[((5688, 5715), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (5712, 5715), False, 'import pytest\n'), ((1564, 1587), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1585, 1587), True, 'import megengine as mge\n'), ((3294, 3314), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (3302, 3314), True, 'import megengine as mge\n'), ((3566, 3610), 'megengine.tensor.Tensor', 'Tensor', (["checkpoint['data']"], {'dtype': 'np.float32'}), "(checkpoint['data'], dtype=np.float32)\n", (3572, 3610), False, 'from megengine.tensor import Tensor\n'), ((3623, 3666), 'megengine.tensor.Tensor', 'Tensor', (["checkpoint['label']"], {'dtype': 'np.int32'}), "(checkpoint['label'], dtype=np.int32)\n", (3629, 3666), False, 'from megengine.tensor import Tensor\n'), ((3898, 3944), 'megengine.serialization.save', 'mge.serialization.save', (['checkpoint', 'model_path'], {}), '(checkpoint, model_path)\n', (3920, 3944), True, 'import megengine as mge\n'), ((4434, 4454), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (4442, 4454), True, 'import megengine as mge\n'), ((5895, 5948), 'megengine.functional.debug_param.set_conv_execution_strategy', 'set_conv_execution_strategy', (['"""HEURISTIC_REPRODUCIBLE"""'], {}), "('HEURISTIC_REPRODUCIBLE')\n", (5922, 5948), False, 'from megengine.functional.debug_param import set_conv_execution_strategy\n'), ((975, 1067), 'subprocess.check_output', 'subprocess.check_output', (["['nvidia-smi', '--query-gpu=gpu_name', '--format=csv,noheader']"], {}), "(['nvidia-smi', '--query-gpu=gpu_name',\n '--format=csv,noheader'])\n", (998, 1067), False, 'import subprocess\n'), ((1770, 1809), 'megengine.module.Conv2d', 'Conv2d', (['(1)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(1, 20, kernel_size=5, bias=True)\n', (1776, 1809), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1831, 1843), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1840, 1843), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1865, 1905), 'megengine.module.Conv2d', 'Conv2d', (['(20)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(20, 20, kernel_size=5, bias=True)\n', (1871, 1905), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1927, 1939), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1936, 1939), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1959, 1993), 'megengine.module.Linear', 'Linear', (['(20 * 4 * 4)', '(500)'], {'bias': '(True)'}), '(20 * 4 * 4, 500, bias=True)\n', (1965, 1993), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2013, 2039), 'megengine.module.Linear', 'Linear', (['(500)', '(10)'], {'bias': '(True)'}), '(500, 10, bias=True)\n', (2019, 2039), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2299, 2308), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2305, 2308), True, 'import megengine.functional as F\n'), ((2422, 2431), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2428, 2431), True, 'import megengine.functional as F\n'), ((2470, 2485), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2479, 2485), True, 'import megengine.functional as F\n'), ((2522, 2531), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2528, 2531), True, 'import megengine.functional as F\n'), ((2687, 2718), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['pred', 'label'], {}), '(pred, label)\n', (2705, 2718), True, 'import megengine.functional as F\n'), ((4995, 5007), 'megengine.tensor.Tensor', 'Tensor', (['data'], {}), '(data)\n', (5001, 5007), False, 'from megengine.tensor import Tensor\n'), ((5030, 5043), 'megengine.tensor.Tensor', 'Tensor', (['label'], {}), '(label)\n', (5036, 5043), False, 'from megengine.tensor import Tensor\n'), ((5201, 5216), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5214, 5216), True, 'import megengine.distributed as dist\n'), ((5852, 5877), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5867, 5877), False, 'import os\n'), ((2130, 2145), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (2141, 2145), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2169, 2184), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (2180, 2184), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((3442, 3458), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (3456, 3458), True, 'import megengine.autodiff as ad\n'), ((1275, 1324), 'subprocess.check_output', 'subprocess.check_output', (["['cat', '/proc/cpuinfo']"], {}), "(['cat', '/proc/cpuinfo'])\n", (1298, 1324), False, 'import subprocess\n'), ((3504, 3546), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""MEAN"""', 'dist.WORLD'], {}), "('MEAN', dist.WORLD)\n", (3526, 3546), True, 'import megengine.distributed as dist\n'), ((4741, 4757), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (4755, 4757), True, 'import megengine.autodiff as ad\n'), ((5509, 5564), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['param[1]', 'ref'], {'atol': 'max_err'}), '(param[1], ref, atol=max_err)\n', (5535, 5564), True, 'import numpy as np\n'), ((5599, 5663), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['param[1]', 'param_ref[1]'], {'atol': 'max_err'}), '(param[1], param_ref[1], atol=max_err)\n', (5625, 5663), True, 'import numpy as np\n'), ((4807, 4849), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""MEAN"""', 'dist.WORLD'], {}), "('MEAN', dist.WORLD)\n", (4829, 4849), True, 'import megengine.distributed as dist\n'), ((1443, 1481), 're.sub', 're.sub', (['""".*model name.*:"""', '""""""', 'line', '(1)'], {}), "('.*model name.*:', '', line, 1)\n", (1449, 1481), False, 'import re\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import contextlib
import os
import tempfile
import numpy as np
import pytest
import megengine as mge
import megengine._internal as mgb
import megengine.module as M
from megengine import jit, tensor
from megengine.core.tensor import Tensor
from megengine.jit import SublinearMemoryConfig
from megengine.test import assertTensorClose
@contextlib.contextmanager
def mkstemp():
fd, path = tempfile.mkstemp()
try:
os.close(fd)
yield path
finally:
os.remove(path)
def load_and_compile(fpath):
cg, _, outputs = mgb.load_comp_graph_from_file(fpath)
inputs = mgb.cgtools.get_dep_vars(outputs, "Host2DeviceCopy")
inputs = sorted(inputs, key=lambda i: i.name)
outputs = list(map(mgb.copy_output, outputs))
if len(outputs) == 1:
(outputs,) = outputs
return cg.compile(inputs, outputs)
def test_symbolic():
@jit.trace(symbolic=False)
def f(x):
return Tensor(mgb.opr.assert_equal(x._symvar, x._symvar + 1))
with pytest.raises(mgb.exc.MegBrainError):
f.trace(0)
@jit.trace(symbolic=True)
def f(x):
return Tensor(mgb.opr.assert_equal(x._symvar, x._symvar + 1))
f.trace(0)
def test_dump():
@jit.trace(symbolic=True)
def f(x, y):
return x * y
f.trace(0, 0)
with mkstemp() as out:
f.dump(out)
g = load_and_compile(out)
np.testing.assert_allclose(g([1, 2, 3], [1, 2, 3]), [1, 4, 9])
def test_goptions():
@jit.trace(symbolic=True, opt_level=0)
def f(x):
return x / x
@jit.trace(symbolic=True, opt_level=1)
def g(x):
return x / x
out = f([0.0]).numpy()
# out is nan
if out == out:
raise
# with gopt, x / x returns 1
out = g([0.0]).numpy()
assert out == 1
def test_json_prof():
@jit.trace(symbolic=True, profiling=True)
def f(x):
return x * x
f([0.0])
out = f.get_profile()
assert out.get("profiler")
def test_capture_dump():
p = tensor(7)
@jit.trace(symbolic=True)
def f(x):
return x * p
f.trace(0)
with mkstemp() as out:
f.dump(out)
g = load_and_compile(out)
np.testing.assert_allclose(g([1, 2, 3]), [7, 14, 21])
def test_dump_volatile():
p = tensor(7)
@jit.trace(symbolic=True)
def f(x):
return x * p
f.trace(0)
with mkstemp() as out:
f.dump(out)
cg, _, outputs = mgb.load_comp_graph_from_file(out)
(out,) = outputs
assert mgb.cgtools.get_type(mgb.cgtools.get_inputs(out)[1]) == "SharedDeviceTensor"
def test_shape_tracing():
for symbolic in [False, True]:
@jit.trace(symbolic=symbolic)
def f(x):
a, b = x.shape
return a * b
assert f(np.zeros([4, 3], dtype="float32")).item() == 12
assert f(np.zeros([6, 4], dtype="float32")).item() == 24
def test_shape_infer():
@jit.trace(symbolic=True)
def f(x):
a, b = x.shape
return sum(x[i] for i in range(a))
x = np.random.randn(3, 10).astype("float32")
assertTensorClose(f(x), x.sum(0))
x = np.random.randn(4, 10).astype("float32")
assertTensorClose(f(x), x[:3].sum(0))
def test_dump_bn_fused():
class ConvBNReLU(M.Sequential):
def __init__(self):
super(ConvBNReLU, self).__init__(
M.Conv2d(3, 4, 3, 1, 1, groups=1, bias=False),
M.BatchNorm2d(4),
M.ReLU(),
)
net = ConvBNReLU()
net.eval()
@jit.trace(symbolic=True)
def fun(data):
return net(data)
data = np.random.random([1, 3, 224, 224]).astype(np.float32)
fun.trace(data)
with mkstemp() as out:
fun.dump(out, optimize_for_inference=True)
cg, _, outputs = mgb.load_comp_graph_from_file(out)
(out,) = outputs
inputs = mgb.cgtools.get_inputs(out)
assert len(inputs) == 2 and (
mgb.cgtools.get_type(inputs[0]) == "MultipleDeviceTensorHolder"
and mgb.cgtools.get_type(inputs[1]) == "ConvolutionForward"
)
# Simply verify the options passed down
def test_sublinear():
config = SublinearMemoryConfig(genetic_nr_iter=10)
@jit.trace(symbolic=True, sublinear_memory_config=config)
def f(x):
return x + x
f([0.0])
|
[
"megengine._internal.cgtools.get_dep_vars",
"megengine.tensor",
"megengine.module.ReLU",
"megengine._internal.cgtools.get_inputs",
"megengine.module.BatchNorm2d",
"megengine._internal.load_comp_graph_from_file",
"megengine.module.Conv2d",
"megengine._internal.opr.assert_equal",
"megengine.jit.trace",
"megengine.jit.SublinearMemoryConfig",
"megengine._internal.cgtools.get_type"
] |
[((770, 788), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (786, 788), False, 'import tempfile\n'), ((927, 963), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['fpath'], {}), '(fpath)\n', (956, 963), True, 'import megengine._internal as mgb\n'), ((977, 1029), 'megengine._internal.cgtools.get_dep_vars', 'mgb.cgtools.get_dep_vars', (['outputs', '"""Host2DeviceCopy"""'], {}), "(outputs, 'Host2DeviceCopy')\n", (1001, 1029), True, 'import megengine._internal as mgb\n'), ((1252, 1277), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (1261, 1277), False, 'from megengine import jit, tensor\n'), ((1435, 1459), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1444, 1459), False, 'from megengine import jit, tensor\n'), ((1584, 1608), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1593, 1608), False, 'from megengine import jit, tensor\n'), ((1844, 1881), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(0)'}), '(symbolic=True, opt_level=0)\n', (1853, 1881), False, 'from megengine import jit, tensor\n'), ((1923, 1960), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(1)'}), '(symbolic=True, opt_level=1)\n', (1932, 1960), False, 'from megengine import jit, tensor\n'), ((2184, 2224), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'profiling': '(True)'}), '(symbolic=True, profiling=True)\n', (2193, 2224), False, 'from megengine import jit, tensor\n'), ((2367, 2376), 'megengine.tensor', 'tensor', (['(7)'], {}), '(7)\n', (2373, 2376), False, 'from megengine import jit, tensor\n'), ((2383, 2407), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2392, 2407), False, 'from megengine import jit, tensor\n'), ((2636, 2645), 'megengine.tensor', 'tensor', (['(7)'], {}), '(7)\n', (2642, 2645), False, 'from megengine import jit, tensor\n'), ((2652, 2676), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2661, 2676), False, 'from megengine import jit, tensor\n'), ((3280, 3304), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (3289, 3304), False, 'from megengine import jit, tensor\n'), ((3884, 3908), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (3893, 3908), False, 'from megengine import jit, tensor\n'), ((4212, 4239), 'megengine._internal.cgtools.get_inputs', 'mgb.cgtools.get_inputs', (['out'], {}), '(out)\n', (4234, 4239), True, 'import megengine._internal as mgb\n'), ((4497, 4538), 'megengine.jit.SublinearMemoryConfig', 'SublinearMemoryConfig', ([], {'genetic_nr_iter': '(10)'}), '(genetic_nr_iter=10)\n', (4518, 4538), False, 'from megengine.jit import SublinearMemoryConfig\n'), ((4545, 4601), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'sublinear_memory_config': 'config'}), '(symbolic=True, sublinear_memory_config=config)\n', (4554, 4601), False, 'from megengine import jit, tensor\n'), ((806, 818), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (814, 818), False, 'import os\n'), ((859, 874), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (868, 874), False, 'import os\n'), ((1372, 1408), 'pytest.raises', 'pytest.raises', (['mgb.exc.MegBrainError'], {}), '(mgb.exc.MegBrainError)\n', (1385, 1408), False, 'import pytest\n'), ((2801, 2835), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['out'], {}), '(out)\n', (2830, 2835), True, 'import megengine._internal as mgb\n'), ((3019, 3047), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (3028, 3047), False, 'from megengine import jit, tensor\n'), ((4142, 4176), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['out'], {}), '(out)\n', (4171, 4176), True, 'import megengine._internal as mgb\n'), ((1314, 1360), 'megengine._internal.opr.assert_equal', 'mgb.opr.assert_equal', (['x._symvar', '(x._symvar + 1)'], {}), '(x._symvar, x._symvar + 1)\n', (1334, 1360), True, 'import megengine._internal as mgb\n'), ((1496, 1542), 'megengine._internal.opr.assert_equal', 'mgb.opr.assert_equal', (['x._symvar', '(x._symvar + 1)'], {}), '(x._symvar, x._symvar + 1)\n', (1516, 1542), True, 'import megengine._internal as mgb\n'), ((3394, 3416), 'numpy.random.randn', 'np.random.randn', (['(3)', '(10)'], {}), '(3, 10)\n', (3409, 3416), True, 'import numpy as np\n'), ((3481, 3503), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)'], {}), '(4, 10)\n', (3496, 3503), True, 'import numpy as np\n'), ((3965, 3999), 'numpy.random.random', 'np.random.random', (['[1, 3, 224, 224]'], {}), '([1, 3, 224, 224])\n', (3981, 3999), True, 'import numpy as np\n'), ((2890, 2917), 'megengine._internal.cgtools.get_inputs', 'mgb.cgtools.get_inputs', (['out'], {}), '(out)\n', (2912, 2917), True, 'import megengine._internal as mgb\n'), ((3718, 3763), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(4)', '(3)', '(1)', '(1)'], {'groups': '(1)', 'bias': '(False)'}), '(3, 4, 3, 1, 1, groups=1, bias=False)\n', (3726, 3763), True, 'import megengine.module as M\n'), ((3781, 3797), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(4)'], {}), '(4)\n', (3794, 3797), True, 'import megengine.module as M\n'), ((3815, 3823), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3821, 3823), True, 'import megengine.module as M\n'), ((4282, 4313), 'megengine._internal.cgtools.get_type', 'mgb.cgtools.get_type', (['inputs[0]'], {}), '(inputs[0])\n', (4302, 4313), True, 'import megengine._internal as mgb\n'), ((4358, 4389), 'megengine._internal.cgtools.get_type', 'mgb.cgtools.get_type', (['inputs[1]'], {}), '(inputs[1])\n', (4378, 4389), True, 'import megengine._internal as mgb\n'), ((3136, 3169), 'numpy.zeros', 'np.zeros', (['[4, 3]'], {'dtype': '"""float32"""'}), "([4, 3], dtype='float32')\n", (3144, 3169), True, 'import numpy as np\n'), ((3201, 3234), 'numpy.zeros', 'np.zeros', (['[6, 4]'], {'dtype': '"""float32"""'}), "([6, 4], dtype='float32')\n", (3209, 3234), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import multiprocessing
import time
# pylint: disable=import-error
import model as snet_model
import megengine
import megengine.data as data
import megengine.data.transform as T
import megengine.distributed as dist
import megengine.functional as F
logging = megengine.logger.get_logger()
def main():
parser = argparse.ArgumentParser(description="MegEngine ImageNet Training")
parser.add_argument("-d", "--data", metavar="DIR", help="path to imagenet dataset")
parser.add_argument(
"-a",
"--arch",
default="shufflenet_v2_x1_0",
help="model architecture (default: shufflenet_v2_x1_0)",
)
parser.add_argument(
"-n",
"--ngpus",
default=None,
type=int,
help="number of GPUs per node (default: None, use all available GPUs)",
)
parser.add_argument(
"-m", "--model", metavar="PKL", default=None, help="path to model checkpoint"
)
parser.add_argument("-j", "--workers", default=2, type=int)
parser.add_argument(
"-p",
"--print-freq",
default=20,
type=int,
metavar="N",
help="print frequency (default: 10)",
)
parser.add_argument("--dist-addr", default="localhost")
parser.add_argument("--dist-port", default=23456, type=int)
parser.add_argument("--world-size", default=1, type=int)
parser.add_argument("--rank", default=0, type=int)
args = parser.parse_args()
# create server if is master
if args.rank <= 0:
server = dist.Server(port=args.dist_port) # pylint: disable=unused-variable # noqa: F841
# get device count
with multiprocessing.Pool(1) as pool:
ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"])
if args.ngpus:
ngpus_per_node = args.ngpus
# launch processes
procs = []
for local_rank in range(ngpus_per_node):
p = multiprocessing.Process(
target=worker,
kwargs=dict(
rank=args.rank * ngpus_per_node + local_rank,
world_size=args.world_size * ngpus_per_node,
ngpus_per_node=ngpus_per_node,
args=args,
),
)
p.start()
procs.append(p)
# join processes
for p in procs:
p.join()
def worker(rank, world_size, ngpus_per_node, args):
# init process group
if world_size > 1:
dist.init_process_group(
master_ip=args.dist_addr,
port=args.dist_port,
world_size=world_size,
rank=rank,
device=rank % ngpus_per_node,
backend="nccl",
)
logging.info(
"init process group rank %d / %d", dist.get_rank(), dist.get_world_size()
)
# build dataset
_, valid_dataloader = build_dataset(args)
# build model
model = snet_model.__dict__[args.arch](pretrained=args.model is None)
if args.model is not None:
logging.info("load from checkpoint %s", args.model)
checkpoint = megengine.load(args.model)
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
model.load_state_dict(state_dict)
def valid_step(image, label):
logits = model(image)
loss = F.nn.cross_entropy(logits, label)
acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5))
# calculate mean values
if world_size > 1:
loss = F.distributed.all_reduce_sum(loss) / world_size
acc1 = F.distributed.all_reduce_sum(acc1) / world_size
acc5 = F.distributed.all_reduce_sum(acc5) / world_size
return loss, acc1, acc5
model.eval()
_, valid_acc1, valid_acc5 = valid(valid_step, valid_dataloader, args)
logging.info(
"Test Acc@1 %.3f, Acc@5 %.3f",
valid_acc1,
valid_acc5,
)
def valid(func, data_queue, args):
objs = AverageMeter("Loss")
top1 = AverageMeter("Acc@1")
top5 = AverageMeter("Acc@5")
clck = AverageMeter("Time")
t = time.time()
for step, (image, label) in enumerate(data_queue):
image = megengine.tensor(image, dtype="float32")
label = megengine.tensor(label, dtype="int32")
n = image.shape[0]
loss, acc1, acc5 = func(image, label)
objs.update(loss.item(), n)
top1.update(100 * acc1.item(), n)
top5.update(100 * acc5.item(), n)
clck.update(time.time() - t, n)
t = time.time()
if step % args.print_freq == 0 and dist.get_rank() == 0:
logging.info("Test step %d, %s %s %s %s", step, objs, top1, top5, clck)
return objs.avg, top1.avg, top5.avg
def build_dataset(args):
train_dataloader = None
valid_dataset = data.dataset.ImageNet(args.data, train=False)
valid_sampler = data.SequentialSampler(
valid_dataset, batch_size=100, drop_last=False
)
valid_dataloader = data.DataLoader(
valid_dataset,
sampler=valid_sampler,
transform=T.Compose(
[
T.Resize(256),
T.CenterCrop(224),
T.Normalize(
mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395]
), # BGR
T.ToMode("CHW"),
]
),
num_workers=args.workers,
)
return train_dataloader, valid_dataloader
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":.3f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
if __name__ == "__main__":
main()
|
[
"megengine.data.dataset.ImageNet",
"megengine.logger.get_logger",
"megengine.functional.nn.cross_entropy",
"megengine.distributed.init_process_group",
"megengine.functional.topk_accuracy",
"megengine.data.SequentialSampler",
"megengine.tensor",
"megengine.distributed.Server",
"megengine.functional.distributed.all_reduce_sum",
"megengine.load",
"megengine.data.transform.Normalize",
"megengine.data.transform.CenterCrop",
"megengine.distributed.get_rank",
"megengine.data.transform.Resize",
"megengine.distributed.get_world_size",
"megengine.data.transform.ToMode"
] |
[((653, 682), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (680, 682), False, 'import megengine\n'), ((710, 776), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine ImageNet Training"""'}), "(description='MegEngine ImageNet Training')\n", (733, 776), False, 'import argparse\n'), ((4432, 4443), 'time.time', 'time.time', ([], {}), '()\n', (4441, 4443), False, 'import time\n'), ((5137, 5182), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (5158, 5182), True, 'import megengine.data as data\n'), ((5203, 5273), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (5225, 5273), True, 'import megengine.data as data\n'), ((1918, 1950), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (1929, 1950), True, 'import megengine.distributed as dist\n'), ((2033, 2056), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (2053, 2056), False, 'import multiprocessing\n'), ((2808, 2967), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (2831, 2967), True, 'import megengine.distributed as dist\n'), ((3432, 3458), 'megengine.load', 'megengine.load', (['args.model'], {}), '(args.model)\n', (3446, 3458), False, 'import megengine\n'), ((3670, 3703), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (3688, 3703), True, 'import megengine.functional as F\n'), ((3725, 3768), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (3740, 3768), True, 'import megengine.functional as F\n'), ((4515, 4555), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (4531, 4555), False, 'import megengine\n'), ((4572, 4610), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (4588, 4610), False, 'import megengine\n'), ((4859, 4870), 'time.time', 'time.time', ([], {}), '()\n', (4868, 4870), False, 'import time\n'), ((3111, 3126), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3124, 3126), True, 'import megengine.distributed as dist\n'), ((3128, 3149), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3147, 3149), True, 'import megengine.distributed as dist\n'), ((3847, 3881), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['loss'], {}), '(loss)\n', (3875, 3881), True, 'import megengine.functional as F\n'), ((3914, 3948), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (3942, 3948), True, 'import megengine.functional as F\n'), ((3981, 4015), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (4009, 4015), True, 'import megengine.functional as F\n'), ((4827, 4838), 'time.time', 'time.time', ([], {}), '()\n', (4836, 4838), False, 'import time\n'), ((4915, 4930), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4928, 4930), True, 'import megengine.distributed as dist\n'), ((5441, 5454), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (5449, 5454), True, 'import megengine.data.transform as T\n'), ((5472, 5489), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (5484, 5489), True, 'import megengine.data.transform as T\n'), ((5507, 5579), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (5518, 5579), True, 'import megengine.data.transform as T\n'), ((5645, 5660), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (5653, 5660), True, 'import megengine.data.transform as T\n')]
|
import math
import numpy
import megengine as mge
import megengine.module as M
import megengine.functional as F
from .layer_norm import LayerNorm
class DecoderLayer(M.Module):
"""Single decoder layer module."""
def __init__(
self,
size,
self_attn,
src_attn,
feed_forward,
dropout_rate,
normalize_before=True,
):
"""Construct an DecoderLayer object."""
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
self.norm2 = LayerNorm(size)
self.norm3 = LayerNorm(size)
self.dropout = M.dropout.Dropout(dropout_rate)
self.normalize_before = normalize_before
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
"""Compute decoded features.
Args:
tgt (megengine.Tensor): decoded previous target features (batch, max_time_out, size)
tgt_mask (megengine.Tensor): mask for x (batch, max_time_out)
memory (megengine.Tensor): encoded source features (batch, max_time_in, size)
memory_mask (megengine.Tensor): mask for memory (batch, max_time_in)
cache (megengine.Tensor): cached output (batch, max_time_out-1, size)
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt_q = tgt
tgt_q_mask = tgt_mask
else:
# compute only the last frame query keeping dim: max_time_out -> 1
assert cache.shape == (
tgt.shape[0],
tgt.shape[1] - 1,
self.size,
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
tgt_q = tgt[:, -1:, :]
residual = residual[:, -1:, :]
tgt_q_mask = None
if tgt_mask is not None:
tgt_q_mask = tgt_mask[:, -1:, :]
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask))
if not self.normalize_before:
x = self.norm2(x)
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm3(x)
if cache is not None:
x = F.concat([cache, x], axis=1)
return x, tgt_mask, memory, memory_mask
|
[
"megengine.module.dropout.Dropout",
"megengine.functional.concat"
] |
[((744, 775), 'megengine.module.dropout.Dropout', 'M.dropout.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (761, 775), True, 'import megengine.module as M\n'), ((2705, 2733), 'megengine.functional.concat', 'F.concat', (['[cache, x]'], {'axis': '(1)'}), '([cache, x], axis=1)\n', (2713, 2733), True, 'import megengine.functional as F\n')]
|
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import argparse
from loguru import logger
import multiprocessing as mp
import megengine as mge
import megengine.distributed as dist
from yolox.core import Trainer
from yolox.exp import get_exp
from yolox.utils import configure_nccl
def make_parser():
parser = argparse.ArgumentParser("YOLOX train parser")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
parser.add_argument(
"-d", "--devices", default=None, type=int, help="device for training"
)
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="plz input your expriment description file",
)
parser.add_argument(
"--resume", default=False, action="store_true", help="resume training"
)
parser.add_argument("-c", "--ckpt", default=None, type=str, help="checkpoint file")
parser.add_argument(
"--num_machine", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"--sync_level", type=int, default=None, help="config sync level, use 0 to debug"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser
@logger.catch
def main(exp, args):
if not args.experiment_name:
args.experiment_name = exp.exp_name
# set environment variables for distributed training
configure_nccl()
# enable dtr to avoid CUDA OOM
mge.dtr.enable()
if args.sync_level is not None:
# NOTE: use sync_level = 0 to debug mge error
from megengine.core._imperative_rt.core2 import config_async_level
logger.info("Using aysnc_level {}".format(args.sync_level))
config_async_level(args.sync_level)
trainer = Trainer(exp, args)
trainer.train()
if __name__ == "__main__":
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
exp.merge(args.opts)
mp.set_start_method("spawn")
num_gpus = dist.helper.get_device_count_by_fork("gpu")
if args.devices is None:
args.devices = num_gpus
assert args.devices <= num_gpus
if args.devices > 1:
train = dist.launcher(main, n_gpus=args.devices)
train(exp, args)
else:
main(exp, args)
|
[
"megengine.dtr.enable",
"megengine.distributed.helper.get_device_count_by_fork",
"megengine.distributed.launcher",
"megengine.core._imperative_rt.core2.config_async_level"
] |
[((364, 409), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""YOLOX train parser"""'], {}), "('YOLOX train parser')\n", (387, 409), False, 'import argparse\n'), ((1837, 1853), 'yolox.utils.configure_nccl', 'configure_nccl', ([], {}), '()\n', (1851, 1853), False, 'from yolox.utils import configure_nccl\n'), ((1894, 1910), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (1908, 1910), True, 'import megengine as mge\n'), ((2204, 2222), 'yolox.core.Trainer', 'Trainer', (['exp', 'args'], {}), '(exp, args)\n', (2211, 2222), False, 'from yolox.core import Trainer\n'), ((2320, 2353), 'yolox.exp.get_exp', 'get_exp', (['args.exp_file', 'args.name'], {}), '(args.exp_file, args.name)\n', (2327, 2353), False, 'from yolox.exp import get_exp\n'), ((2384, 2412), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (2403, 2412), True, 'import multiprocessing as mp\n'), ((2428, 2471), 'megengine.distributed.helper.get_device_count_by_fork', 'dist.helper.get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2464, 2471), True, 'import megengine.distributed as dist\n'), ((2153, 2188), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['args.sync_level'], {}), '(args.sync_level)\n', (2171, 2188), False, 'from megengine.core._imperative_rt.core2 import config_async_level\n'), ((2613, 2653), 'megengine.distributed.launcher', 'dist.launcher', (['main'], {'n_gpus': 'args.devices'}), '(main, n_gpus=args.devices)\n', (2626, 2653), True, 'import megengine.distributed as dist\n')]
|
import numpy as np
import megengine.functional as F
from common import se3, so3
def compute_losses(endpoints, params):
loss = {}
# compute losses
if params.loss_type == "finet":
num_iter = len(endpoints["all_pose_pair"])
triplet_loss = {}
for i in range(num_iter):
# reg loss
pose_pair = endpoints["all_pose_pair"][i]
loss["quat_{}".format(i)] = F.nn.l1_loss(pose_pair[0][:, :4], pose_pair[1][:, :4]) * params.loss_alpha1
loss["translate_{}".format(i)] = F.nn.square_loss(pose_pair[0][:, 4:], pose_pair[1][:, 4:]) * params.loss_alpha2
# transformation sensitivity loss (TSL)
if i < 2:
all_R_feats = endpoints["all_R_feats"][i]
all_t_feats = endpoints["all_t_feats"][i]
# R feats triplet loss
R_feats_pos = F.nn.square_loss(all_t_feats[0], all_t_feats[1])
R_feats_neg = F.nn.square_loss(all_R_feats[0], all_R_feats[1])
triplet_loss["R_feats_triplet_pos_{}".format(i)] = R_feats_pos
triplet_loss["R_feats_triplet_neg_{}".format(i)] = R_feats_neg
loss["R_feats_triplet_{}".format(i)] = (F.clip(-R_feats_neg + params.margin[i], lower=0.0) +
R_feats_pos) * params.loss_alpha3
# t feats triplet loss
t_feats_pos = F.nn.square_loss(all_R_feats[0], all_R_feats[2])
t_feats_neg = F.nn.square_loss(all_t_feats[0], all_t_feats[2])
triplet_loss["t_feats_triplet_pos_{}".format(i)] = t_feats_pos
triplet_loss["t_feats_triplet_neg_{}".format(i)] = t_feats_neg
loss["t_feats_triplet_{}".format(i)] = (F.clip(-t_feats_neg + params.margin[i], lower=0.0) +
t_feats_pos) * params.loss_alpha3
# point-wise feature dropout loss (PFDL)
all_dropout_R_feats = endpoints["all_dropout_R_feats"][i]
all_dropout_t_feats = endpoints["all_dropout_t_feats"][i]
loss["src_R_feats_dropout_{}".format(i)] = F.nn.square_loss(all_dropout_R_feats[0], all_dropout_R_feats[1]) * params.loss_alpha4
loss["ref_R_feats_dropout_{}".format(i)] = F.nn.square_loss(all_dropout_R_feats[2], all_dropout_R_feats[3]) * params.loss_alpha4
loss["src_t_feats_dropout_{}".format(i)] = F.nn.square_loss(all_dropout_t_feats[0], all_dropout_t_feats[1]) * params.loss_alpha4
loss["ref_t_feats_dropout_{}".format(i)] = F.nn.square_loss(all_dropout_t_feats[2], all_dropout_t_feats[3]) * params.loss_alpha4
# total loss
total_losses = []
for k in loss:
total_losses.append(loss[k])
loss["total"] = F.sum(F.concat(total_losses))
else:
raise NotImplementedError
return loss
def compute_metrics(endpoints, params):
metrics = {}
gt_transforms = endpoints["transform_pair"][0]
pred_transforms = endpoints["transform_pair"][1]
# Euler angles, Individual translation errors (Deep Closest Point convention)
if "prnet" in params.transform_type:
r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="zyx")
r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="zyx")
else:
r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="xyz")
r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="xyz")
t_gt = gt_transforms[:, :3, 3]
t_pred = pred_transforms[:, :3, 3]
r_mse = F.mean((r_gt_euler_deg - r_pred_euler_deg)**2, axis=1)
r_mae = F.mean(F.abs(r_gt_euler_deg - r_pred_euler_deg), axis=1)
t_mse = F.mean((t_gt - t_pred)**2, axis=1)
t_mae = F.mean(F.abs(t_gt - t_pred), axis=1)
r_mse = F.mean(r_mse)
t_mse = F.mean(t_mse)
r_mae = F.mean(r_mae)
t_mae = F.mean(t_mae)
# Rotation, translation errors (isotropic, i.e. doesn"t depend on error
# direction, which is more representative of the actual error)
concatenated = se3.mge_concatenate(se3.mge_inverse(gt_transforms), pred_transforms)
rot_trace = concatenated[:, 0, 0] + concatenated[:, 1, 1] + concatenated[:, 2, 2]
residual_rotdeg = F.acos(F.clip(0.5 * (rot_trace - 1), -1.0, 1.0)) * 180.0 / np.pi
residual_transmag = F.norm(concatenated[:, :, 3], axis=-1)
err_r = F.mean(residual_rotdeg)
err_t = F.mean(residual_transmag)
# weighted score of isotropic errors
score = err_r * 0.01 + err_t
metrics = {"R_MSE": r_mse, "R_MAE": r_mae, "t_MSE": t_mse, "t_MAE": t_mae, "Err_R": err_r, "Err_t": err_t, "score": score}
return metrics
|
[
"megengine.functional.nn.l1_loss",
"megengine.functional.clip",
"megengine.functional.nn.square_loss",
"megengine.functional.mean",
"megengine.functional.norm",
"megengine.functional.abs",
"megengine.functional.concat"
] |
[((3616, 3672), 'megengine.functional.mean', 'F.mean', (['((r_gt_euler_deg - r_pred_euler_deg) ** 2)'], {'axis': '(1)'}), '((r_gt_euler_deg - r_pred_euler_deg) ** 2, axis=1)\n', (3622, 3672), True, 'import megengine.functional as F\n'), ((3752, 3788), 'megengine.functional.mean', 'F.mean', (['((t_gt - t_pred) ** 2)'], {'axis': '(1)'}), '((t_gt - t_pred) ** 2, axis=1)\n', (3758, 3788), True, 'import megengine.functional as F\n'), ((3849, 3862), 'megengine.functional.mean', 'F.mean', (['r_mse'], {}), '(r_mse)\n', (3855, 3862), True, 'import megengine.functional as F\n'), ((3875, 3888), 'megengine.functional.mean', 'F.mean', (['t_mse'], {}), '(t_mse)\n', (3881, 3888), True, 'import megengine.functional as F\n'), ((3901, 3914), 'megengine.functional.mean', 'F.mean', (['r_mae'], {}), '(r_mae)\n', (3907, 3914), True, 'import megengine.functional as F\n'), ((3927, 3940), 'megengine.functional.mean', 'F.mean', (['t_mae'], {}), '(t_mae)\n', (3933, 3940), True, 'import megengine.functional as F\n'), ((4370, 4408), 'megengine.functional.norm', 'F.norm', (['concatenated[:, :, 3]'], {'axis': '(-1)'}), '(concatenated[:, :, 3], axis=-1)\n', (4376, 4408), True, 'import megengine.functional as F\n'), ((4421, 4444), 'megengine.functional.mean', 'F.mean', (['residual_rotdeg'], {}), '(residual_rotdeg)\n', (4427, 4444), True, 'import megengine.functional as F\n'), ((4457, 4482), 'megengine.functional.mean', 'F.mean', (['residual_transmag'], {}), '(residual_transmag)\n', (4463, 4482), True, 'import megengine.functional as F\n'), ((3216, 3270), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(gt_transforms[:, :3, :3], seq='zyx')\n", (3233, 3270), False, 'from common import se3, so3\n'), ((3298, 3354), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(pred_transforms[:, :3, :3], seq='zyx')\n", (3315, 3354), False, 'from common import se3, so3\n'), ((3390, 3444), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(gt_transforms[:, :3, :3], seq='xyz')\n", (3407, 3444), False, 'from common import se3, so3\n'), ((3472, 3528), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(pred_transforms[:, :3, :3], seq='xyz')\n", (3489, 3528), False, 'from common import se3, so3\n'), ((3690, 3730), 'megengine.functional.abs', 'F.abs', (['(r_gt_euler_deg - r_pred_euler_deg)'], {}), '(r_gt_euler_deg - r_pred_euler_deg)\n', (3695, 3730), True, 'import megengine.functional as F\n'), ((3806, 3826), 'megengine.functional.abs', 'F.abs', (['(t_gt - t_pred)'], {}), '(t_gt - t_pred)\n', (3811, 3826), True, 'import megengine.functional as F\n'), ((4124, 4154), 'common.se3.mge_inverse', 'se3.mge_inverse', (['gt_transforms'], {}), '(gt_transforms)\n', (4139, 4154), False, 'from common import se3, so3\n'), ((2819, 2841), 'megengine.functional.concat', 'F.concat', (['total_losses'], {}), '(total_losses)\n', (2827, 2841), True, 'import megengine.functional as F\n'), ((420, 474), 'megengine.functional.nn.l1_loss', 'F.nn.l1_loss', (['pose_pair[0][:, :4]', 'pose_pair[1][:, :4]'], {}), '(pose_pair[0][:, :4], pose_pair[1][:, :4])\n', (432, 474), True, 'import megengine.functional as F\n'), ((541, 599), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['pose_pair[0][:, 4:]', 'pose_pair[1][:, 4:]'], {}), '(pose_pair[0][:, 4:], pose_pair[1][:, 4:])\n', (557, 599), True, 'import megengine.functional as F\n'), ((881, 929), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_t_feats[0]', 'all_t_feats[1]'], {}), '(all_t_feats[0], all_t_feats[1])\n', (897, 929), True, 'import megengine.functional as F\n'), ((960, 1008), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_R_feats[0]', 'all_R_feats[1]'], {}), '(all_R_feats[0], all_R_feats[1])\n', (976, 1008), True, 'import megengine.functional as F\n'), ((1435, 1483), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_R_feats[0]', 'all_R_feats[2]'], {}), '(all_R_feats[0], all_R_feats[2])\n', (1451, 1483), True, 'import megengine.functional as F\n'), ((1514, 1562), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_t_feats[0]', 'all_t_feats[2]'], {}), '(all_t_feats[0], all_t_feats[2])\n', (1530, 1562), True, 'import megengine.functional as F\n'), ((2169, 2233), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_dropout_R_feats[0]', 'all_dropout_R_feats[1]'], {}), '(all_dropout_R_feats[0], all_dropout_R_feats[1])\n', (2185, 2233), True, 'import megengine.functional as F\n'), ((2310, 2374), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_dropout_R_feats[2]', 'all_dropout_R_feats[3]'], {}), '(all_dropout_R_feats[2], all_dropout_R_feats[3])\n', (2326, 2374), True, 'import megengine.functional as F\n'), ((2451, 2515), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_dropout_t_feats[0]', 'all_dropout_t_feats[1]'], {}), '(all_dropout_t_feats[0], all_dropout_t_feats[1])\n', (2467, 2515), True, 'import megengine.functional as F\n'), ((2592, 2656), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['all_dropout_t_feats[2]', 'all_dropout_t_feats[3]'], {}), '(all_dropout_t_feats[2], all_dropout_t_feats[3])\n', (2608, 2656), True, 'import megengine.functional as F\n'), ((4288, 4328), 'megengine.functional.clip', 'F.clip', (['(0.5 * (rot_trace - 1))', '(-1.0)', '(1.0)'], {}), '(0.5 * (rot_trace - 1), -1.0, 1.0)\n', (4294, 4328), True, 'import megengine.functional as F\n'), ((1223, 1273), 'megengine.functional.clip', 'F.clip', (['(-R_feats_neg + params.margin[i])'], {'lower': '(0.0)'}), '(-R_feats_neg + params.margin[i], lower=0.0)\n', (1229, 1273), True, 'import megengine.functional as F\n'), ((1777, 1827), 'megengine.functional.clip', 'F.clip', (['(-t_feats_neg + params.margin[i])'], {'lower': '(0.0)'}), '(-t_feats_neg + params.margin[i], lower=0.0)\n', (1783, 1827), True, 'import megengine.functional as F\n')]
|
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import pytest
import megengine as mge
import megengine.distributed as dist
from megengine import tensor
from megengine.distributed.functional import (
all_gather,
all_to_all,
gather,
reduce_scatter_sum,
scatter,
)
from megengine.jit import trace
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize("shape", [(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)], ids=str)
@pytest.mark.parametrize("symbolic", [False, True], ids=str)
@pytest.mark.parametrize("axis", [0, 1], ids=str)
@pytest.mark.isolated_distributed
def test_all_gather(shape, symbolic, axis):
@dist.launcher(n_gpus=2)
def worker(data, expect):
rank = dist.get_rank()
inp = tensor(data[rank])
def func():
output = all_gather(inp, axis=axis)
return output
func = trace(symbolic=symbolic)(func)
output = func()
assert np.allclose(output.numpy(), expect[rank])
x = np.random.random_sample(shape).astype("float32")
y = np.random.random_sample(shape).astype("float32")
z = np.concatenate((x, y), axis=axis)
data = (x, y)
expect = (z, z)
worker(data, expect)
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
"shape,symbolic", [((2, 4, 6, 8), False), ((2, 4, 6, 8), True)], ids=str
)
@pytest.mark.parametrize("axis", [1, 0, 2, 3], ids=str)
@pytest.mark.isolated_distributed
def test_reduce_scatter_sum(shape, symbolic, axis):
@dist.launcher(n_gpus=2)
def worker(data, expect):
rank = dist.get_rank()
inp = tensor(data[rank])
def func():
output = reduce_scatter_sum(inp, axis=axis)
return output
func = trace(symbolic=symbolic)(func)
output = func()
assert np.allclose(output.numpy(), expect[rank])
x = np.random.random_sample(shape).astype("float32")
y = np.random.random_sample(shape).astype("float32")
z = x + y
data = (x, y)
z = np.split(z, 2, axis=axis)
z = np.concatenate(z, axis=0)
expect = (z[: z.shape[0] // 2], z[z.shape[0] // 2 :])
worker(data, expect)
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize(
"shape,symbolic", [((2, 4, 6, 8), True), ((2, 4, 6, 8), False)], ids=str
)
@pytest.mark.parametrize("axis", [1, 0, 2, 3], ids=str)
@pytest.mark.isolated_distributed
def test_scatter(shape, symbolic, axis):
@dist.launcher(n_gpus=2)
def worker(data, expect):
rank = dist.get_rank()
inp = tensor(data[rank])
def func():
output = scatter(inp, axis=axis)
return output
func = trace(symbolic=symbolic)(func)
output = func()
assert np.allclose(output.numpy(), expect[rank])
x = np.random.random_sample(shape).astype("float32")
y = x + 1
data = (x, y)
_x = np.split(x, 2, axis=axis)
_x = np.concatenate(_x, axis=0)
expect = (_x[: _x.shape[0] // 2], _x[_x.shape[0] // 2 :])
worker(data, expect)
@pytest.mark.require_ngpu(2)
@pytest.mark.parametrize("shape", [(2, 4, 6, 8)], ids=str)
@pytest.mark.parametrize("symbolic", [False, True], ids=str)
@pytest.mark.parametrize(
"split_axis,concat_axis", [(0, 1), (1, 0), (2, 0), (0, 2), (2, 3)], ids=str
)
@pytest.mark.isolated_distributed
def test_all_to_all(shape, symbolic, split_axis, concat_axis):
@dist.launcher(n_gpus=2)
def worker(data):
rank = dist.get_rank()
inp = tensor(data[rank])
def func():
all_to_all_output = all_to_all(
inp, split_axis=split_axis, concat_axis=concat_axis
)
gather_C = gather(inp, axis=concat_axis)
gather_B = gather(all_to_all_output, axis=split_axis)
if rank == 0:
return gather_B, gather_C
return all_to_all_output
func = trace(symbolic=symbolic)(func)
ret = func()
if rank == 0:
assert np.allclose(ret[0], ret[1])
x = np.random.random_sample(shape).astype("float32")
y = np.random.random_sample(shape).astype("float32")
data = (x, y)
worker(data)
|
[
"megengine.tensor",
"megengine.distributed.functional.reduce_scatter_sum",
"megengine.distributed.get_rank",
"megengine.distributed.functional.all_gather",
"megengine.distributed.functional.scatter",
"megengine.distributed.functional.all_to_all",
"megengine.jit.trace",
"megengine.distributed.launcher",
"megengine.distributed.functional.gather"
] |
[((666, 693), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (690, 693), False, 'import pytest\n'), ((695, 783), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)],\n ids=str)\n", (718, 783), False, 'import pytest\n'), ((781, 840), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {'ids': 'str'}), "('symbolic', [False, True], ids=str)\n", (804, 840), False, 'import pytest\n'), ((842, 890), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[0, 1]'], {'ids': 'str'}), "('axis', [0, 1], ids=str)\n", (865, 890), False, 'import pytest\n'), ((1538, 1565), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (1562, 1565), False, 'import pytest\n'), ((1567, 1668), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape,symbolic"""', '[((2, 4, 6, 8), False), ((2, 4, 6, 8), True)]'], {'ids': 'str'}), "('shape,symbolic', [((2, 4, 6, 8), False), ((2, 4, 6,\n 8), True)], ids=str)\n", (1590, 1668), False, 'import pytest\n'), ((1672, 1726), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[1, 0, 2, 3]'], {'ids': 'str'}), "('axis', [1, 0, 2, 3], ids=str)\n", (1695, 1726), False, 'import pytest\n'), ((2468, 2495), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (2492, 2495), False, 'import pytest\n'), ((2497, 2598), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape,symbolic"""', '[((2, 4, 6, 8), True), ((2, 4, 6, 8), False)]'], {'ids': 'str'}), "('shape,symbolic', [((2, 4, 6, 8), True), ((2, 4, 6,\n 8), False)], ids=str)\n", (2520, 2598), False, 'import pytest\n'), ((2602, 2656), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[1, 0, 2, 3]'], {'ids': 'str'}), "('axis', [1, 0, 2, 3], ids=str)\n", (2625, 2656), False, 'import pytest\n'), ((3326, 3353), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (3350, 3353), False, 'import pytest\n'), ((3355, 3412), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 4, 6, 8)]'], {'ids': 'str'}), "('shape', [(2, 4, 6, 8)], ids=str)\n", (3378, 3412), False, 'import pytest\n'), ((3414, 3473), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {'ids': 'str'}), "('symbolic', [False, True], ids=str)\n", (3437, 3473), False, 'import pytest\n'), ((3475, 3579), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""split_axis,concat_axis"""', '[(0, 1), (1, 0), (2, 0), (0, 2), (2, 3)]'], {'ids': 'str'}), "('split_axis,concat_axis', [(0, 1), (1, 0), (2, 0),\n (0, 2), (2, 3)], ids=str)\n", (3498, 3579), False, 'import pytest\n'), ((974, 997), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (987, 997), True, 'import megengine.distributed as dist\n'), ((1438, 1471), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {'axis': 'axis'}), '((x, y), axis=axis)\n', (1452, 1471), True, 'import numpy as np\n'), ((1818, 1841), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (1831, 1841), True, 'import megengine.distributed as dist\n'), ((2322, 2347), 'numpy.split', 'np.split', (['z', '(2)'], {'axis': 'axis'}), '(z, 2, axis=axis)\n', (2330, 2347), True, 'import numpy as np\n'), ((2356, 2381), 'numpy.concatenate', 'np.concatenate', (['z'], {'axis': '(0)'}), '(z, axis=0)\n', (2370, 2381), True, 'import numpy as np\n'), ((2737, 2760), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (2750, 2760), True, 'import megengine.distributed as dist\n'), ((3174, 3199), 'numpy.split', 'np.split', (['x', '(2)'], {'axis': 'axis'}), '(x, 2, axis=axis)\n', (3182, 3199), True, 'import numpy as np\n'), ((3209, 3235), 'numpy.concatenate', 'np.concatenate', (['_x'], {'axis': '(0)'}), '(_x, axis=0)\n', (3223, 3235), True, 'import numpy as np\n'), ((3684, 3707), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (3697, 3707), True, 'import megengine.distributed as dist\n'), ((1043, 1058), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1056, 1058), True, 'import megengine.distributed as dist\n'), ((1073, 1091), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (1079, 1091), False, 'from megengine import tensor\n'), ((1887, 1902), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1900, 1902), True, 'import megengine.distributed as dist\n'), ((1917, 1935), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (1923, 1935), False, 'from megengine import tensor\n'), ((2806, 2821), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2819, 2821), True, 'import megengine.distributed as dist\n'), ((2836, 2854), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (2842, 2854), False, 'from megengine import tensor\n'), ((3745, 3760), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3758, 3760), True, 'import megengine.distributed as dist\n'), ((3775, 3793), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (3781, 3793), False, 'from megengine import tensor\n'), ((1134, 1160), 'megengine.distributed.functional.all_gather', 'all_gather', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (1144, 1160), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((1203, 1227), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (1208, 1227), False, 'from megengine.jit import trace\n'), ((1324, 1354), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1347, 1354), True, 'import numpy as np\n'), ((1381, 1411), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1404, 1411), True, 'import numpy as np\n'), ((1978, 2012), 'megengine.distributed.functional.reduce_scatter_sum', 'reduce_scatter_sum', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (1996, 2012), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((2055, 2079), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2060, 2079), False, 'from megengine.jit import trace\n'), ((2176, 2206), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2199, 2206), True, 'import numpy as np\n'), ((2233, 2263), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2256, 2263), True, 'import numpy as np\n'), ((2897, 2920), 'megengine.distributed.functional.scatter', 'scatter', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (2904, 2920), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((2963, 2987), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2968, 2987), False, 'from megengine.jit import trace\n'), ((3084, 3114), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (3107, 3114), True, 'import numpy as np\n'), ((3847, 3910), 'megengine.distributed.functional.all_to_all', 'all_to_all', (['inp'], {'split_axis': 'split_axis', 'concat_axis': 'concat_axis'}), '(inp, split_axis=split_axis, concat_axis=concat_axis)\n', (3857, 3910), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((3964, 3993), 'megengine.distributed.functional.gather', 'gather', (['inp'], {'axis': 'concat_axis'}), '(inp, axis=concat_axis)\n', (3970, 3993), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((4017, 4059), 'megengine.distributed.functional.gather', 'gather', (['all_to_all_output'], {'axis': 'split_axis'}), '(all_to_all_output, axis=split_axis)\n', (4023, 4059), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((4181, 4205), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (4186, 4205), False, 'from megengine.jit import trace\n'), ((4274, 4301), 'numpy.allclose', 'np.allclose', (['ret[0]', 'ret[1]'], {}), '(ret[0], ret[1])\n', (4285, 4301), True, 'import numpy as np\n'), ((4311, 4341), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4334, 4341), True, 'import numpy as np\n'), ((4368, 4398), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4391, 4398), True, 'import numpy as np\n')]
|
import numpy as np
import megengine as mge
import megengine.functional as F
from common import se3, so3
def compute_losses(data_batch, endpoints, params):
loss = {}
# compute losses
if params.loss_type == "omnet":
num_iter = len(endpoints["all_pose_pair"])
for i in range(num_iter):
# mask loss
src_cls_pair, ref_cls_pair = endpoints["all_src_cls_pair"][i], endpoints["all_ref_cls_pair"][i]
src_cls = F.nn.frequency_weighted_cross_entropy(src_cls_pair[1], src_cls_pair[0], weight=mge.tensor([0.7, 0.3]))
ref_cls = F.nn.frequency_weighted_cross_entropy(ref_cls_pair[1], ref_cls_pair[0], weight=mge.tensor([0.7, 0.3]))
loss["cls_{}".format(i)] = (src_cls + ref_cls) / 2.0
# reg loss
pose_pair = endpoints["all_pose_pair"][i]
loss["quat_{}".format(i)] = F.nn.l1_loss(pose_pair[1][:, :4], pose_pair[0][:, :4]) * params.loss_alpha1
loss["translate_{}".format(i)] = F.nn.square_loss(pose_pair[1][:, 4:], pose_pair[0][:, 4:]) * params.loss_alpha2
# total loss
total_losses = []
for k in loss:
total_losses.append(loss[k])
loss["total"] = F.sum(F.concat(total_losses))
else:
raise NotImplementedError
return loss
def compute_metrics(data_batch, endpoints, params):
metrics = {}
gt_transforms = endpoints["transform_pair"][0]
pred_transforms = endpoints["transform_pair"][1]
# Euler angles, Individual translation errors (Deep Closest Point convention)
if "prnet" in params.transform_type:
r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="zyx")
r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="zyx")
else:
r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="xyz")
r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="xyz")
t_gt = gt_transforms[:, :3, 3]
t_pred = pred_transforms[:, :3, 3]
r_mse = F.mean((r_gt_euler_deg - r_pred_euler_deg)**2, axis=1)
r_mae = F.mean(F.abs(r_gt_euler_deg - r_pred_euler_deg), axis=1)
t_mse = F.mean((t_gt - t_pred)**2, axis=1)
t_mae = F.mean(F.abs(t_gt - t_pred), axis=1)
r_mse = F.mean(r_mse)
t_mse = F.mean(t_mse)
r_mae = F.mean(r_mae)
t_mae = F.mean(t_mae)
# Rotation, translation errors (isotropic, i.e. doesn"t depend on error
# direction, which is more representative of the actual error)
concatenated = se3.mge_concatenate(se3.mge_inverse(gt_transforms), pred_transforms)
rot_trace = concatenated[:, 0, 0] + concatenated[:, 1, 1] + concatenated[:, 2, 2]
residual_rotdeg = F.acos(F.clip(0.5 * (rot_trace - 1), -1.0, 1.0)) * 180.0 / np.pi
residual_transmag = F.norm(concatenated[:, :, 3], axis=-1)
err_r = F.mean(residual_rotdeg)
err_t = F.mean(residual_transmag)
# weighted score of isotropic errors
score = err_r * 0.01 + err_t
metrics = {"R_MSE": r_mse, "R_MAE": r_mae, "t_MSE": t_mse, "t_MAE": t_mae, "Err_R": err_r, "Err_t": err_t, "score": score}
# metrics = utils.tensor_mge(metrics, check_on=False)
return metrics
|
[
"megengine.tensor",
"megengine.functional.nn.l1_loss",
"megengine.functional.clip",
"megengine.functional.nn.square_loss",
"megengine.functional.mean",
"megengine.functional.norm",
"megengine.functional.abs",
"megengine.functional.concat"
] |
[((2027, 2083), 'megengine.functional.mean', 'F.mean', (['((r_gt_euler_deg - r_pred_euler_deg) ** 2)'], {'axis': '(1)'}), '((r_gt_euler_deg - r_pred_euler_deg) ** 2, axis=1)\n', (2033, 2083), True, 'import megengine.functional as F\n'), ((2163, 2199), 'megengine.functional.mean', 'F.mean', (['((t_gt - t_pred) ** 2)'], {'axis': '(1)'}), '((t_gt - t_pred) ** 2, axis=1)\n', (2169, 2199), True, 'import megengine.functional as F\n'), ((2260, 2273), 'megengine.functional.mean', 'F.mean', (['r_mse'], {}), '(r_mse)\n', (2266, 2273), True, 'import megengine.functional as F\n'), ((2286, 2299), 'megengine.functional.mean', 'F.mean', (['t_mse'], {}), '(t_mse)\n', (2292, 2299), True, 'import megengine.functional as F\n'), ((2312, 2325), 'megengine.functional.mean', 'F.mean', (['r_mae'], {}), '(r_mae)\n', (2318, 2325), True, 'import megengine.functional as F\n'), ((2338, 2351), 'megengine.functional.mean', 'F.mean', (['t_mae'], {}), '(t_mae)\n', (2344, 2351), True, 'import megengine.functional as F\n'), ((2781, 2819), 'megengine.functional.norm', 'F.norm', (['concatenated[:, :, 3]'], {'axis': '(-1)'}), '(concatenated[:, :, 3], axis=-1)\n', (2787, 2819), True, 'import megengine.functional as F\n'), ((2832, 2855), 'megengine.functional.mean', 'F.mean', (['residual_rotdeg'], {}), '(residual_rotdeg)\n', (2838, 2855), True, 'import megengine.functional as F\n'), ((2868, 2893), 'megengine.functional.mean', 'F.mean', (['residual_transmag'], {}), '(residual_transmag)\n', (2874, 2893), True, 'import megengine.functional as F\n'), ((1627, 1681), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(gt_transforms[:, :3, :3], seq='zyx')\n", (1644, 1681), False, 'from common import se3, so3\n'), ((1709, 1765), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(pred_transforms[:, :3, :3], seq='zyx')\n", (1726, 1765), False, 'from common import se3, so3\n'), ((1801, 1855), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(gt_transforms[:, :3, :3], seq='xyz')\n", (1818, 1855), False, 'from common import se3, so3\n'), ((1883, 1939), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(pred_transforms[:, :3, :3], seq='xyz')\n", (1900, 1939), False, 'from common import se3, so3\n'), ((2101, 2141), 'megengine.functional.abs', 'F.abs', (['(r_gt_euler_deg - r_pred_euler_deg)'], {}), '(r_gt_euler_deg - r_pred_euler_deg)\n', (2106, 2141), True, 'import megengine.functional as F\n'), ((2217, 2237), 'megengine.functional.abs', 'F.abs', (['(t_gt - t_pred)'], {}), '(t_gt - t_pred)\n', (2222, 2237), True, 'import megengine.functional as F\n'), ((2535, 2565), 'common.se3.mge_inverse', 'se3.mge_inverse', (['gt_transforms'], {}), '(gt_transforms)\n', (2550, 2565), False, 'from common import se3, so3\n'), ((1219, 1241), 'megengine.functional.concat', 'F.concat', (['total_losses'], {}), '(total_losses)\n', (1227, 1241), True, 'import megengine.functional as F\n'), ((877, 931), 'megengine.functional.nn.l1_loss', 'F.nn.l1_loss', (['pose_pair[1][:, :4]', 'pose_pair[0][:, :4]'], {}), '(pose_pair[1][:, :4], pose_pair[0][:, :4])\n', (889, 931), True, 'import megengine.functional as F\n'), ((998, 1056), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['pose_pair[1][:, 4:]', 'pose_pair[0][:, 4:]'], {}), '(pose_pair[1][:, 4:], pose_pair[0][:, 4:])\n', (1014, 1056), True, 'import megengine.functional as F\n'), ((2699, 2739), 'megengine.functional.clip', 'F.clip', (['(0.5 * (rot_trace - 1))', '(-1.0)', '(1.0)'], {}), '(0.5 * (rot_trace - 1), -1.0, 1.0)\n', (2705, 2739), True, 'import megengine.functional as F\n'), ((546, 568), 'megengine.tensor', 'mge.tensor', (['[0.7, 0.3]'], {}), '([0.7, 0.3])\n', (556, 568), True, 'import megengine as mge\n'), ((671, 693), 'megengine.tensor', 'mge.tensor', (['[0.7, 0.3]'], {}), '([0.7, 0.3])\n', (681, 693), True, 'import megengine as mge\n')]
|
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# pylint: disable=import-error,no-name-in-module,no-member
from test.utils import LinearOpr
import megengine as mge
import megengine.module as M
import numpy as np
from megengine.core.tensor import dtype
from megengine.core.tensor.dtype import _builtin_quant_dtypes
from megengine.module.quant_dequant import QuantStub
from megengine.quantization.quantize import quantize_qat
from megengine.quantization.utils import create_qparams
from megengine.traced_module.fake_quant import FakeQuantize
from .test_caffe import _test_convert_result
from .tm_utils import get_traced_module
max_err = 1e-6
def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)):
qat_net = quantize_qat(net)
inps = []
for _ in range(num_inp):
data1 = mge.tensor(np.random.random(shape)) * 16
data1 = data1.astype(inp_dtype)
inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy()))
inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype))
inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"]
inps.append(inp1)
return qat_net, inps
def get_qat_inputs_quint8(inp_dtype, num_inp=1, shape=(1, 16, 384, 512)):
inps = []
for _ in range(num_inp):
data1 = mge.tensor(np.random.random(shape)) * 16
data1 = data1.astype(inp_dtype)
inp1 = mge.tensor(dtype.convert_from_quint8(data1.numpy()))
inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype))
inp1.qparams.zero_point = mge.tensor(dtype.get_zero_point(inp_dtype))
inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["quint8"]
inps.append(inp1)
return inps
def test_linear():
net = LinearOpr()
inp_dtype = dtype.qint8(16.0 / 128.0)
qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100))
traced_module, tm_result = get_traced_module(qat_net, inps[0])
inp = inps[0].astype(inp_dtype)
_test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False)
def test_add():
class ElemwiseOpr(M.Module):
def __init__(self,):
super().__init__()
self.data = np.ones((2, 3, 224, 224)).astype(np.float32)
self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32)
self.add1 = M.Elemwise("add")
self.add2 = M.Elemwise("add")
self.add3 = M.Elemwise("add")
scale = mge.tensor((16.0 / 128.0))
self.quant_stub = QuantStub()
self.quant_stub.act_fake_quant = FakeQuantize(
_builtin_quant_dtypes["qint8"]
)
self.quant_stub.act_fake_quant.set_qparams(
create_qparams(
dtype_meta=_builtin_quant_dtypes["qint8"],
scale=scale,
zero_point=None,
)
)
self.quant_stub1 = QuantStub()
self.quant_stub1.act_fake_quant = FakeQuantize(
_builtin_quant_dtypes["qint8"]
)
self.quant_stub1.act_fake_quant.set_qparams(
create_qparams(
dtype_meta=_builtin_quant_dtypes["qint8"],
scale=scale,
zero_point=None,
)
)
def forward(self, a):
n = self.quant_stub(mge.tensor(np.float32(10)))
data1 = self.quant_stub1(mge.tensor(self.data1))
x = self.add1(a, n)
y = self.add2(a, data1)
z = self.add3(x, y)
return z
net = ElemwiseOpr()
inp_dtype = dtype.qint8(16.0 / 128.0)
qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 1, 1))
traced_module, tm_result = get_traced_module(qat_net, inps[0])
print(traced_module.flatten().graph)
inp = inps[0].astype(inp_dtype)
_test_convert_result(
inp,
traced_module,
tm_result,
max_err,
require_quantize=False,
split_conv_relu=True,
)
def test_det_model():
net = mge.load("models_fire_det.fix_batch.fuse_scale_cpu.pkl")
inp_dtype = dtype.qint8(16.0 / 128.0)
qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 512, 512))
traced_module, tm_result = get_traced_module(qat_net, inps[0])
inp = inps[0].astype(inp_dtype)
_test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False)
def test_snpe_model_8f():
model = "8w16f_backbone.tm"
net = mge.load(model)
print(net.flatten().graph)
inp_dtype = dtype.quint8(16.0 / 128.0, 128)
inps = get_qat_inputs_quint8(inp_dtype, num_inp=2, shape=(1, 16, 384, 512))
tm_result = dict(zip(net.graph.outputs, net(*inps)))
_test_convert_result(
inps,
net,
tm_result,
max_err,
input_data_type="quint8",
input_scales=inps[0].qparams.scale,
input_zero_points=inps[0].qparams.zero_point,
require_quantize=False,
param_fake_quant=True,
split_conv_relu=True,
input_name=["inp", "prev"],
)
|
[
"megengine.core.tensor.dtype.get_scale",
"megengine.quantization.quantize.quantize_qat",
"megengine.tensor",
"megengine.core.tensor.dtype.get_zero_point",
"megengine.core.tensor.dtype.qint8",
"megengine.core.tensor.dtype.quint8",
"megengine.module.quant_dequant.QuantStub",
"megengine.quantization.utils.create_qparams",
"megengine.module.Elemwise",
"megengine.traced_module.fake_quant.FakeQuantize",
"megengine.load"
] |
[((1033, 1050), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (1045, 1050), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2023, 2034), 'test.utils.LinearOpr', 'LinearOpr', ([], {}), '()\n', (2032, 2034), False, 'from test.utils import LinearOpr\n'), ((2051, 2076), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2062, 2076), False, 'from megengine.core.tensor import dtype\n'), ((3910, 3935), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (3921, 3935), False, 'from megengine.core.tensor import dtype\n'), ((4348, 4404), 'megengine.load', 'mge.load', (['"""models_fire_det.fix_batch.fuse_scale_cpu.pkl"""'], {}), "('models_fire_det.fix_batch.fuse_scale_cpu.pkl')\n", (4356, 4404), True, 'import megengine as mge\n'), ((4421, 4446), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (4432, 4446), False, 'from megengine.core.tensor import dtype\n'), ((4781, 4796), 'megengine.load', 'mge.load', (['model'], {}), '(model)\n', (4789, 4796), True, 'import megengine as mge\n'), ((4844, 4875), 'megengine.core.tensor.dtype.quint8', 'dtype.quint8', (['(16.0 / 128.0)', '(128)'], {}), '(16.0 / 128.0, 128)\n', (4856, 4875), False, 'from megengine.core.tensor import dtype\n'), ((1298, 1324), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1313, 1324), False, 'from megengine.core.tensor import dtype\n'), ((1772, 1798), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1787, 1798), False, 'from megengine.core.tensor import dtype\n'), ((1845, 1876), 'megengine.core.tensor.dtype.get_zero_point', 'dtype.get_zero_point', (['inp_dtype'], {}), '(inp_dtype)\n', (1865, 1876), False, 'from megengine.core.tensor import dtype\n'), ((2613, 2630), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2623, 2630), True, 'import megengine.module as M\n'), ((2655, 2672), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2665, 2672), True, 'import megengine.module as M\n'), ((2697, 2714), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2707, 2714), True, 'import megengine.module as M\n'), ((2736, 2760), 'megengine.tensor', 'mge.tensor', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2746, 2760), True, 'import megengine as mge\n'), ((2793, 2804), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (2802, 2804), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((2850, 2894), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (2862, 2894), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((3209, 3220), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (3218, 3220), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((3267, 3311), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (3279, 3311), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((1121, 1144), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1137, 1144), True, 'import numpy as np\n'), ((1594, 1617), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1610, 1617), True, 'import numpy as np\n'), ((2997, 3088), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3011, 3088), False, 'from megengine.quantization.utils import create_qparams\n'), ((3415, 3506), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3429, 3506), False, 'from megengine.quantization.utils import create_qparams\n'), ((3724, 3746), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (3734, 3746), True, 'import megengine as mge\n'), ((2469, 2494), 'numpy.ones', 'np.ones', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (2476, 2494), True, 'import numpy as np\n'), ((2539, 2569), 'numpy.random.random', 'np.random.random', (['(1, 3, 1, 1)'], {}), '((1, 3, 1, 1))\n', (2555, 2569), True, 'import numpy as np\n'), ((3670, 3684), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (3680, 3684), True, 'import numpy as np\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.