code
stringlengths
208
42.9k
apis
list
extract_api
stringlengths
129
69.9k
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine._internal as mgb from megengine.core import tensor from megengine.test import assertTensorClose def test_recoverable(): a = tensor() b = tensor() a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((3, 7)).astype("float32") a.set_value(a_np) b.set_value(b_np) # Do some normal computation. a2 = a * 2 ab = a @ b # Raise a computation error. with pytest.raises(mgb.MegBrainError): _ = a * b # Variable a2 and ab should be still usable after error happened. assertTensorClose(a2.numpy(), a_np * 2) assertTensorClose(ab.numpy(), a_np @ b_np) # Should allow computation as well. ab2 = ab ** 2 assertTensorClose(ab2.numpy(), (a_np @ b_np) ** 2)
[ "megengine.core.tensor" ]
[((582, 590), 'megengine.core.tensor', 'tensor', ([], {}), '()\n', (588, 590), False, 'from megengine.core import tensor\n'), ((599, 607), 'megengine.core.tensor', 'tensor', ([], {}), '()\n', (605, 607), False, 'from megengine.core import tensor\n'), ((868, 900), 'pytest.raises', 'pytest.raises', (['mgb.MegBrainError'], {}), '(mgb.MegBrainError)\n', (881, 900), False, 'import pytest\n'), ((619, 643), 'numpy.random.random', 'np.random.random', (['(4, 3)'], {}), '((4, 3))\n', (635, 643), True, 'import numpy as np\n'), ((673, 697), 'numpy.random.random', 'np.random.random', (['(3, 7)'], {}), '((3, 7))\n', (689, 697), True, 'import numpy as np\n')]
import pytest import megengine as mge import megengine.functional as F from megengine.core._imperative_rt.core2 import config_async_level, get_async_level def test_basic(): config_async_level(2) assert get_async_level() == 2 with pytest.raises(RuntimeError): config_async_level(3) def test_level1_infer_value(): config_async_level(1) a = mge.tensor([[1, 2], [2, 3], [3, 4]], dtype="float32") b = mge.tensor([1, 1], dtype="float32") # make DepType::VALUE unknown c = b * 2 with pytest.raises(RuntimeError): d = F.reshape(a, c) def test_level1_infer_shape_with_unknown(): config_async_level(2) a = mge.tensor([[1, 2, 2, 3]], dtype="float32") b = mge.tensor([1, 1]) c = b * 2 # make DepType::SHAPE unknown d = F.reshape(a, c) config_async_level(1) e = mge.tensor([[1, 2]], dtype="float32") with pytest.raises(RuntimeError): f = F.matmul(d, e)
[ "megengine.core._imperative_rt.core2.get_async_level", "megengine.core._imperative_rt.core2.config_async_level", "megengine.tensor", "megengine.functional.matmul", "megengine.functional.reshape" ]
[((180, 201), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(2)'], {}), '(2)\n', (198, 201), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((341, 362), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(1)'], {}), '(1)\n', (359, 362), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((371, 424), 'megengine.tensor', 'mge.tensor', (['[[1, 2], [2, 3], [3, 4]]'], {'dtype': '"""float32"""'}), "([[1, 2], [2, 3], [3, 4]], dtype='float32')\n", (381, 424), True, 'import megengine as mge\n'), ((433, 468), 'megengine.tensor', 'mge.tensor', (['[1, 1]'], {'dtype': '"""float32"""'}), "([1, 1], dtype='float32')\n", (443, 468), True, 'import megengine as mge\n'), ((633, 654), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(2)'], {}), '(2)\n', (651, 654), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((663, 706), 'megengine.tensor', 'mge.tensor', (['[[1, 2, 2, 3]]'], {'dtype': '"""float32"""'}), "([[1, 2, 2, 3]], dtype='float32')\n", (673, 706), True, 'import megengine as mge\n'), ((715, 733), 'megengine.tensor', 'mge.tensor', (['[1, 1]'], {}), '([1, 1])\n', (725, 733), True, 'import megengine as mge\n'), ((790, 805), 'megengine.functional.reshape', 'F.reshape', (['a', 'c'], {}), '(a, c)\n', (799, 805), True, 'import megengine.functional as F\n'), ((810, 831), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(1)'], {}), '(1)\n', (828, 831), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((840, 877), 'megengine.tensor', 'mge.tensor', (['[[1, 2]]'], {'dtype': '"""float32"""'}), "([[1, 2]], dtype='float32')\n", (850, 877), True, 'import megengine as mge\n'), ((213, 230), 'megengine.core._imperative_rt.core2.get_async_level', 'get_async_level', ([], {}), '()\n', (228, 230), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((245, 272), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (258, 272), False, 'import pytest\n'), ((282, 303), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(3)'], {}), '(3)\n', (300, 303), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((526, 553), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (539, 553), False, 'import pytest\n'), ((567, 582), 'megengine.functional.reshape', 'F.reshape', (['a', 'c'], {}), '(a, c)\n', (576, 582), True, 'import megengine.functional as F\n'), ((887, 914), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (900, 914), False, 'import pytest\n'), ((928, 942), 'megengine.functional.matmul', 'F.matmul', (['d', 'e'], {}), '(d, e)\n', (936, 942), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from tempfile import TemporaryFile import numpy as np import megengine as mge from megengine import Parameter, Tensor def test_tensor_serialization(): def tensor_eq(a, b): assert a.dtype == b.dtype assert a.device == b.device np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: data = np.random.randint(low=0, high=7, size=[233]) a = Tensor(data, device="xpux", dtype=np.int32) pickle.dump(a, f) f.seek(0) b = pickle.load(f) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Parameter(np.random.random(size=(233, 2)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert isinstance(b, Parameter) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert type(b) is Tensor np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) mge.save(a, f) f.seek(0) b = mge.load(f, map_location="cpux") assert type(b) is Tensor assert "cpu" in str(b.device) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: if mge.is_cuda_available(): device_org = mge.get_default_device() mge.set_default_device("gpu0") a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) mge.save(a, f) f.seek(0) mge.set_default_device("cpux") b = mge.load(f, map_location={"gpu0": "cpu0"}) assert type(b) is Tensor assert "cpu0" in str(b.device) np.testing.assert_equal(a.numpy(), b.numpy()) mge.set_default_device(device_org)
[ "megengine.is_cuda_available", "megengine.Tensor", "megengine.load", "megengine.get_default_device", "megengine.set_default_device", "megengine.save" ]
[((705, 720), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (718, 720), False, 'from tempfile import TemporaryFile\n'), ((742, 786), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(7)', 'size': '[233]'}), '(low=0, high=7, size=[233])\n', (759, 786), True, 'import numpy as np\n'), ((799, 842), 'megengine.Tensor', 'Tensor', (['data'], {'device': '"""xpux"""', 'dtype': 'np.int32'}), "(data, device='xpux', dtype=np.int32)\n", (805, 842), False, 'from megengine import Parameter, Tensor\n'), ((851, 868), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (862, 868), False, 'import pickle\n'), ((899, 913), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (910, 913), False, 'import pickle\n'), ((978, 993), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (991, 993), False, 'from tempfile import TemporaryFile\n'), ((1082, 1099), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1093, 1099), False, 'import pickle\n'), ((1130, 1144), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1141, 1144), False, 'import pickle\n'), ((1249, 1264), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1262, 1264), False, 'from tempfile import TemporaryFile\n'), ((1350, 1367), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1361, 1367), False, 'import pickle\n'), ((1398, 1412), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1409, 1412), False, 'import pickle\n'), ((1510, 1525), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1523, 1525), False, 'from tempfile import TemporaryFile\n'), ((1611, 1625), 'megengine.save', 'mge.save', (['a', 'f'], {}), '(a, f)\n', (1619, 1625), True, 'import megengine as mge\n'), ((1656, 1688), 'megengine.load', 'mge.load', (['f'], {'map_location': '"""cpux"""'}), "(f, map_location='cpux')\n", (1664, 1688), True, 'import megengine as mge\n'), ((1824, 1839), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1837, 1839), False, 'from tempfile import TemporaryFile\n'), ((1857, 1880), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1878, 1880), True, 'import megengine as mge\n'), ((1907, 1931), 'megengine.get_default_device', 'mge.get_default_device', ([], {}), '()\n', (1929, 1931), True, 'import megengine as mge\n'), ((1944, 1974), 'megengine.set_default_device', 'mge.set_default_device', (['"""gpu0"""'], {}), "('gpu0')\n", (1966, 1974), True, 'import megengine as mge\n'), ((2062, 2076), 'megengine.save', 'mge.save', (['a', 'f'], {}), '(a, f)\n', (2070, 2076), True, 'import megengine as mge\n'), ((2111, 2141), 'megengine.set_default_device', 'mge.set_default_device', (['"""cpux"""'], {}), "('cpux')\n", (2133, 2141), True, 'import megengine as mge\n'), ((2158, 2200), 'megengine.load', 'mge.load', (['f'], {'map_location': "{'gpu0': 'cpu0'}"}), "(f, map_location={'gpu0': 'cpu0'})\n", (2166, 2200), True, 'import megengine as mge\n'), ((2351, 2385), 'megengine.set_default_device', 'mge.set_default_device', (['device_org'], {}), '(device_org)\n', (2373, 2385), True, 'import megengine as mge\n'), ((1022, 1053), 'numpy.random.random', 'np.random.random', ([], {'size': '(233, 2)'}), '(size=(233, 2))\n', (1038, 1053), True, 'import numpy as np\n'), ((1290, 1321), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (1306, 1321), True, 'import numpy as np\n'), ((1551, 1582), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (1567, 1582), True, 'import numpy as np\n'), ((1998, 2029), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (2014, 2029), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size * dist.get_world_size() * ( cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_stages, epoch) ) ) # Warm up lr_factor = 1.0 if epoch == 0 and step < cfg.warm_iters: lr_factor = (step + 1.0) / cfg.warm_iters for param_group in optimizer.param_groups: param_group["lr"] = base_lr * lr_factor def build_dataset(dataset_dir, cfg): data_cfg = copy.deepcopy(cfg.train_dataset) data_name = data_cfg.pop("name") data_cfg["root"] = os.path.join(dataset_dir, data_name, data_cfg["root"]) if "ann_file" in data_cfg: data_cfg["ann_file"] = os.path.join(dataset_dir, data_name, data_cfg["ann_file"]) data_cfg["order"] = ["image", "boxes", "boxes_category", "info"] return data_mapper[data_name](**data_cfg) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ), T.RandomHorizontalFlip(), T.ToMode(), ], order=["image", "boxes", "boxes_category"], ), collator=DetectionPadCollator(), num_workers=2, ) return train_dataloader if __name__ == "__main__": main()
[ "megengine.data.transform.ToMode", "megengine.device.set_prealloc_config", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.dtr.enable", "megengine.get_logger", "megengine.distributed.make_allreduce_cb", "megengine.data.transform.RandomHorizontalFlip", "megengine.tensor", "megengine.data.RandomSampler", "megengine.data.transform.ShortestEdgeResize", "megengine.autodiff.GradManager", "megengine.load", "megengine.distributed.launcher", "megengine.core._imperative_rt.utils._set_defrag" ]
[((767, 784), 'megengine.core._imperative_rt.utils._set_defrag', '_set_defrag', (['(True)'], {}), '(True)\n', (778, 784), False, 'from megengine.core._imperative_rt.utils import _set_defrag\n'), ((992, 1016), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (1006, 1016), True, 'import megengine as mge\n'), ((1041, 1107), 'megengine.device.set_prealloc_config', 'mge.device.set_prealloc_config', (['(1024)', '(1024)', '(256 * 1024 * 1024)', '(4.0)'], {}), '(1024, 1024, 256 * 1024 * 1024, 4.0)\n', (1071, 1107), True, 'import megengine as mge\n'), ((1142, 1167), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1165, 1167), False, 'import argparse\n'), ((2517, 2531), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2529, 2531), False, 'from datetime import datetime\n'), ((3015, 3031), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (3029, 3031), True, 'import megengine as mge\n'), ((3103, 3130), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.file'], {}), '(args.file)\n', (3119, 3130), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3277, 3312), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.teacher_file'], {}), '(args.teacher_file)\n', (3293, 3312), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3529, 3563), 'megengine.load', 'mge.load', (['args.teacher_weight_file'], {}), '(args.teacher_weight_file)\n', (3537, 3563), True, 'import megengine as mge\n'), ((3821, 3856), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.distill_file'], {}), '(args.distill_file)\n', (3837, 3856), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((4725, 4738), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4736, 4738), False, 'from megengine.autodiff import GradManager\n'), ((7515, 7583), 'layers.tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(model.cfg.num_losses + distiller.num_losses)'}), '(record_len=model.cfg.num_losses + distiller.num_losses)\n', (7527, 7583), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((7601, 7627), 'layers.tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(2)'}), '(record_len=2)\n', (7613, 7627), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((10114, 10146), 'copy.deepcopy', 'copy.deepcopy', (['cfg.train_dataset'], {}), '(cfg.train_dataset)\n', (10127, 10146), False, 'import copy\n'), ((10208, 10262), 'os.path.join', 'os.path.join', (['dataset_dir', 'data_name', "data_cfg['root']"], {}), "(dataset_dir, data_name, data_cfg['root'])\n", (10220, 10262), False, 'import os\n'), ((2692, 2714), 'os.path.isdir', 'os.path.isdir', (['log_dir'], {}), '(log_dir)\n', (2705, 2714), False, 'import os\n'), ((2724, 2744), 'os.makedirs', 'os.makedirs', (['log_dir'], {}), '(log_dir)\n', (2735, 2744), False, 'import os\n'), ((2819, 2861), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {'n_gpus': 'args.devices'}), '(worker, n_gpus=args.devices)\n', (2832, 2861), True, 'import megengine.distributed as dist\n'), ((3946, 3961), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3959, 3961), True, 'import megengine.distributed as dist\n'), ((4746, 4767), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4765, 4767), True, 'import megengine.distributed as dist\n'), ((5001, 5027), 'megengine.load', 'mge.load', (['args.weight_file'], {}), '(args.weight_file)\n', (5009, 5027), True, 'import megengine as mge\n'), ((5315, 5336), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5334, 5336), True, 'import megengine.distributed as dist\n'), ((5605, 5620), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5618, 5620), True, 'import megengine.distributed as dist\n'), ((8029, 8040), 'time.time', 'time.time', ([], {}), '()\n', (8038, 8040), False, 'import time\n'), ((8098, 8109), 'time.time', 'time.time', ([], {}), '()\n', (8107, 8109), False, 'import time\n'), ((8125, 8136), 'time.time', 'time.time', ([], {}), '()\n', (8134, 8136), False, 'import time\n'), ((8419, 8430), 'time.time', 'time.time', ([], {}), '()\n', (8428, 8430), False, 'import time\n'), ((10326, 10384), 'os.path.join', 'os.path.join', (['dataset_dir', 'data_name', "data_cfg['ann_file']"], {}), "(dataset_dir, data_name, data_cfg['ann_file'])\n", (10338, 10384), False, 'import os\n'), ((11215, 11273), 'layers.tools.utils.GroupedRandomSampler', 'GroupedRandomSampler', (['train_dataset', 'batch_size', 'group_ids'], {}), '(train_dataset, batch_size, group_ids)\n', (11235, 11273), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3988, 4014), 'layers.tools.utils.get_config_info', 'get_config_info', (['model.cfg'], {}), '(model.cfg)\n', (4003, 4014), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((6315, 6330), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6328, 6330), True, 'import megengine.distributed as dist\n'), ((7733, 7754), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (7752, 7754), True, 'import megengine.distributed as dist\n'), ((8504, 8519), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8517, 8519), True, 'import megengine.distributed as dist\n'), ((9456, 9497), 'math.cos', 'math.cos', (['(cur_iter / total_iter * math.pi)'], {}), '(cur_iter / total_iter * math.pi)\n', (9464, 9497), False, 'import math\n'), ((9701, 9722), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (9720, 9722), True, 'import megengine.distributed as dist\n'), ((9772, 9819), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_stages', 'epoch'], {}), '(cfg.lr_decay_stages, epoch)\n', (9791, 9819), False, 'import bisect\n'), ((11020, 11076), 'megengine.data.RandomSampler', 'RandomSampler', (['train_dataset', 'batch_size'], {'drop_last': '(True)'}), '(train_dataset, batch_size, drop_last=True)\n', (11033, 11076), False, 'from megengine.data import DataLoader, Infinite, RandomSampler\n'), ((11948, 11970), 'layers.tools.utils.DetectionPadCollator', 'DetectionPadCollator', ([], {}), '()\n', (11968, 11970), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((4451, 4472), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4470, 4472), True, 'import megengine.distributed as dist\n'), ((8187, 8217), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (8197, 8217), True, 'import megengine as mge\n'), ((8239, 8272), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (8249, 8272), True, 'import megengine as mge\n'), ((8295, 8329), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (8305, 8329), True, 'import megengine as mge\n'), ((2573, 2600), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (2589, 2600), False, 'import os\n'), ((4845, 4887), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""mean"""', 'dist.WORLD'], {}), "('mean', dist.WORLD)\n", (4867, 4887), True, 'import megengine.distributed as dist\n'), ((11601, 11702), 'megengine.data.transform.ShortestEdgeResize', 'T.ShortestEdgeResize', (['cfg.train_image_short_size', 'cfg.train_image_max_size'], {'sample_style': '"""choice"""'}), "(cfg.train_image_short_size, cfg.train_image_max_size,\n sample_style='choice')\n", (11621, 11702), True, 'from megengine.data import transform as T\n'), ((11795, 11819), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (11817, 11819), True, 'from megengine.data import transform as T\n'), ((11837, 11847), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (11845, 11847), True, 'from megengine.data import transform as T\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(), F.grad(s2, a, use_virtual_grad=False).numpy(), ) run(False, False) run(True, False) run(True, True) def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0) a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) aa, bb = Test()(a, b) assertTensorClose( F.grad(aa, a, use_virtual_grad=False).numpy(), np.array([1.0], dtype=np.float32) ) assertTensorClose( F.grad(aa, b, use_virtual_grad=False).numpy(), np.array([0.0], dtype=np.float32) ) def test_zero_grad(): class StopGradient(Function): def forward(self, a): return a def backward(self, *_): return None a = tensor(np.array([1.0], dtype=np.float32)) b = a * 3.0 c = a * 4.0 loss = StopGradient()(b) + c assertTensorClose( F.grad(loss, a, use_virtual_grad=False).numpy(), np.array([4.0], dtype=np.float32), )
[ "megengine.functional.sigmoid", "megengine.jit.trace", "megengine.functional.exp", "megengine.core.tensor", "megengine.functional.maximum", "megengine.functional.grad", "megengine.functional.round" ]
[((715, 725), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (721, 725), False, 'from megengine.core import Function, tensor\n'), ((734, 744), 'megengine.core.tensor', 'tensor', (['bv'], {}), '(bv)\n', (740, 744), False, 'from megengine.core import Function, tensor\n'), ((1339, 1349), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (1345, 1349), False, 'from megengine.core import Function, tensor\n'), ((1358, 1368), 'megengine.core.tensor', 'tensor', (['bv'], {}), '(bv)\n', (1364, 1368), False, 'from megengine.core import Function, tensor\n'), ((2257, 2267), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (2263, 2267), False, 'from megengine.core import Function, tensor\n'), ((3606, 3618), 'megengine.functional.sigmoid', 'F.sigmoid', (['a'], {}), '(a)\n', (3615, 3618), True, 'import megengine.functional as F\n'), ((4126, 4159), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4134, 4159), True, 'import numpy as np\n'), ((4176, 4209), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (4184, 4209), True, 'import numpy as np\n'), ((4315, 4348), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4323, 4348), True, 'import numpy as np\n'), ((4433, 4466), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'np.float32'}), '([0.0], dtype=np.float32)\n', (4441, 4466), True, 'import numpy as np\n'), ((4655, 4688), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4663, 4688), True, 'import numpy as np\n'), ((4843, 4876), 'numpy.array', 'np.array', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (4851, 4876), True, 'import numpy as np\n'), ((602, 630), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (618, 630), True, 'import numpy as np\n'), ((659, 687), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (675, 687), True, 'import numpy as np\n'), ((1226, 1254), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1242, 1254), True, 'import numpy as np\n'), ((1283, 1311), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1299, 1311), True, 'import numpy as np\n'), ((2201, 2229), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (2217, 2229), True, 'import numpy as np\n'), ((2414, 2447), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (2422, 2447), True, 'import numpy as np\n'), ((3369, 3408), 'numpy.array', 'np.array', (['[1926.0817]'], {'dtype': 'np.float32'}), '([1926.0817], dtype=np.float32)\n', (3377, 3408), True, 'import numpy as np\n'), ((3516, 3559), 'megengine.jit.trace', 'trace', (['run_saved_context'], {'symbolic': 'symbolic'}), '(run_saved_context, symbolic=symbolic)\n', (3521, 3559), False, 'from megengine.jit import trace\n'), ((1025, 1061), 'megengine.functional.grad', 'F.grad', (['c', 'a'], {'use_virtual_grad': '(False)'}), '(c, a, use_virtual_grad=False)\n', (1031, 1061), True, 'import megengine.functional as F\n'), ((1101, 1137), 'megengine.functional.grad', 'F.grad', (['c', 'b'], {'use_virtual_grad': '(False)'}), '(c, b, use_virtual_grad=False)\n', (1107, 1137), True, 'import megengine.functional as F\n'), ((1389, 1417), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1405, 1417), True, 'import numpy as np\n'), ((1758, 1794), 'megengine.functional.grad', 'F.grad', (['c', 'a'], {'use_virtual_grad': '(False)'}), '(c, a, use_virtual_grad=False)\n', (1764, 1794), True, 'import megengine.functional as F\n'), ((1834, 1870), 'megengine.functional.grad', 'F.grad', (['c', 'b'], {'use_virtual_grad': '(False)'}), '(c, b, use_virtual_grad=False)\n', (1840, 1870), True, 'import megengine.functional as F\n'), ((2023, 2045), 'megengine.functional.maximum', 'F.maximum', (['maxv', '(-minv)'], {}), '(maxv, -minv)\n', (2032, 2045), True, 'import megengine.functional as F\n'), ((2071, 2089), 'megengine.functional.round', 'F.round', (['(x / scale)'], {}), '(x / scale)\n', (2078, 2089), True, 'import megengine.functional as F\n'), ((2342, 2380), 'megengine.functional.grad', 'F.grad', (['q_2', 'a'], {'use_virtual_grad': '(False)'}), '(q_2, a, use_virtual_grad=False)\n', (2348, 2380), True, 'import megengine.functional as F\n'), ((4268, 4305), 'megengine.functional.grad', 'F.grad', (['aa', 'a'], {'use_virtual_grad': '(False)'}), '(aa, a, use_virtual_grad=False)\n', (4274, 4305), True, 'import megengine.functional as F\n'), ((4386, 4423), 'megengine.functional.grad', 'F.grad', (['aa', 'b'], {'use_virtual_grad': '(False)'}), '(aa, b, use_virtual_grad=False)\n', (4392, 4423), True, 'import megengine.functional as F\n'), ((4786, 4825), 'megengine.functional.grad', 'F.grad', (['loss', 'a'], {'use_virtual_grad': '(False)'}), '(loss, a, use_virtual_grad=False)\n', (4792, 4825), True, 'import megengine.functional as F\n'), ((2673, 2682), 'megengine.functional.exp', 'F.exp', (['(-x)'], {}), '(-x)\n', (2678, 2682), True, 'import megengine.functional as F\n'), ((3067, 3076), 'megengine.functional.exp', 'F.exp', (['(-x)'], {}), '(-x)\n', (3072, 3076), True, 'import megengine.functional as F\n'), ((3707, 3743), 'megengine.functional.grad', 'F.grad', (['s', 'a'], {'use_virtual_grad': '(False)'}), '(s, a, use_virtual_grad=False)\n', (3713, 3743), True, 'import megengine.functional as F\n'), ((3765, 3802), 'megengine.functional.grad', 'F.grad', (['s2', 'a'], {'use_virtual_grad': '(False)'}), '(s2, a, use_virtual_grad=False)\n', (3771, 3802), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs = F.metric.topk_accuracy(outputs, targets, (1, 5)) if self.cfg.amp.enabled: grad_scaler.backward(grad_manager, total_loss) else: grad_manager.backward(total_loss) if self.progress.iter % self.cfg.solver.accumulation_steps == 0: self.modify_grad() optimizer.step().clear_grad() self.model_ema_step() return losses, accs def modify_grad(self): grad_cfg = self.cfg.solver.grad_clip # TODO: support advanced params for grad clip in the future params = self.model.parameters() if grad_cfg.name is None: return elif grad_cfg.name == "norm": optim.clip_grad_norm(params, grad_cfg.max_norm) elif grad_cfg.name == "value": optim.clip_grad_value(params, grad_cfg.lower, grad_cfg.upper) else: raise ValueError(f"Grad clip type '{grad_cfg.name}' not supported") def model_ema_step(self): """Implement momentum based Exponential Moving Average (EMA) for model states https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py Also inspired by Pycls https://github.com/facebookresearch/pycls/pull/138/, which is more flexible and efficient Heuristically, one can use a momentum of 0.9999 as used by Tensorflow and 0.9998 as used by timm, which updates model ema every iter. To be more efficient, one can set ``update_period`` to e.g. 8 or 32 to speed up your training, and decrease your momentum at scale: set ``momentum=0.9978`` from 0.9999 (32 times) when you ``update_period=32``. Also, to make model EMA really work (improve generalization), one should carefully tune the momentum based on various factors, e.g. the learning rate scheduler, the total batch size, the training epochs, e.t.c. To initialize a momentum in Pycls style, one set ``model_ema.alpha = 1e-5`` instead. Momentum will be calculated through ``_calculate_pycls_momentum``. """ if self.ema is None: return ema_cfg = self.cfg.model_ema cur_iter, cur_epoch = self.progress.iter, self.progress.epoch if cur_iter % ema_cfg.update_period == 0: if cur_epoch > (ema_cfg.start_epoch or self.cfg.solver.warmup_epochs): momentum = ( ema_cfg.momentum if ema_cfg.alpha is None else _calculate_pycls_momentum( alpha=ema_cfg.alpha, total_batch_size=self.cfg.batch_size * dist.get_world_size(), max_epoch=self.cfg.solver.max_epoch, update_period=ema_cfg.update_period, ) ) else: # copy model to ema momentum = 0.0 if not hasattr(self, "_ema_states"): self._ema_states = ( list(self.ema.parameters()) + list(self.ema.buffers()), list(self.model.parameters()) + list(self.model.buffers()), ) for e, p in zip(*self._ema_states): # _inplace_add_(e, p, alpha=mge.tensor(momentum), beta=mge.tensor(1 - momentum)) e._reset(e * momentum + p * (1 - momentum)) def _calculate_pycls_momentum( alpha: float, total_batch_size: int, max_epoch: int, update_period: int ): """pycls style momentum calculation which uses a relative model_ema to decouple momentum with other training hyper-parameters e.g. * training epochs * interval to update ema * batch sizes Usually the alpha is a tiny positive floating number, e.g. 1e-4 or 1e-5, with ``max_epoch=100``, ``total_batch_size=1024`` and ``update_period=32``, the ema momentum should be 0.996723175, which has roughly same behavior to the default setting. i.e. ``momentum=0.9999`` together with ``update_period=1`` """ return max(0, 1 - alpha * (total_batch_size / max_epoch * update_period))
[ "megengine.jit.trace", "megengine.distributed.get_world_size", "megengine.optimizer.clip_grad_value", "megengine.amp.autocast", "megengine.optimizer.clip_grad_norm", "megengine.functional.argmax", "megengine._full_sync", "megengine.functional.metric.topk_accuracy" ]
[((666, 695), 'basecls.utils.registers.trainers.register', 'registers.trainers.register', ([], {}), '()\n', (693, 695), False, 'from basecls.utils import registers\n'), ((1698, 1757), 'basecls.layers.Preprocess', 'Preprocess', (['cfg.preprocess.img_mean', 'cfg.preprocess.img_std'], {}), '(cfg.preprocess.img_mean, cfg.preprocess.img_std)\n', (1708, 1757), False, 'from basecls.layers import Preprocess, build_loss\n'), ((1778, 1793), 'basecls.layers.build_loss', 'build_loss', (['cfg'], {}), '(cfg)\n', (1788, 1793), False, 'from basecls.layers import Preprocess, build_loss\n'), ((1815, 1848), 'basecore.utils.MeterBuffer', 'MeterBuffer', (['cfg.log_every_n_iter'], {}), '(cfg.log_every_n_iter)\n', (1826, 1848), False, 'from basecore.utils import MeterBuffer\n'), ((2610, 2629), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2627, 2629), False, 'import time\n'), ((2729, 2745), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (2743, 2745), True, 'import megengine as mge\n'), ((2830, 2849), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2847, 2849), False, 'import time\n'), ((2871, 2890), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2888, 2890), False, 'import time\n'), ((2956, 2972), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (2970, 2972), True, 'import megengine as mge\n'), ((3058, 3077), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3075, 3077), False, 'import time\n'), ((1616, 1636), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (1629, 1636), False, 'import copy\n'), ((1974, 2015), 'megengine.jit.trace', 'jit.trace', (['self.model_step'], {'symbolic': '(True)'}), '(self.model_step, symbolic=True)\n', (1983, 2015), False, 'from megengine import jit\n'), ((4565, 4613), 'megengine.functional.metric.topk_accuracy', 'F.metric.topk_accuracy', (['outputs', 'targets', '(1, 5)'], {}), '(outputs, targets, (1, 5))\n', (4587, 4613), True, 'import megengine.functional as F\n'), ((3642, 3684), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.cfg.amp.enabled'}), '(enabled=self.cfg.amp.enabled)\n', (3654, 3684), True, 'import megengine.amp as amp\n'), ((4520, 4545), 'megengine.functional.argmax', 'F.argmax', (['targets'], {'axis': '(1)'}), '(targets, axis=1)\n', (4528, 4545), True, 'import megengine.functional as F\n'), ((5280, 5327), 'megengine.optimizer.clip_grad_norm', 'optim.clip_grad_norm', (['params', 'grad_cfg.max_norm'], {}), '(params, grad_cfg.max_norm)\n', (5300, 5327), True, 'import megengine.optimizer as optim\n'), ((5379, 5440), 'megengine.optimizer.clip_grad_value', 'optim.clip_grad_value', (['params', 'grad_cfg.lower', 'grad_cfg.upper'], {}), '(params, grad_cfg.lower, grad_cfg.upper)\n', (5400, 5440), True, 'import megengine.optimizer as optim\n'), ((7230, 7251), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (7249, 7251), True, 'import megengine.distributed as dist\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() self.linear.weight.name = "user-weight" self.linear.bias.name = "user-bias" def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) (matrix_mul_op,) = [op for op in ops if op.name == "simple.linear.MatrixMul"] for var in matrix_mul_op.inputs: assert var.name in ("simple.quant.TypeCvt", "simple.linear.user-weight") # WONTFIX: bias' name does not meet expectations because of astype operator after quantization
[ "megengine.module.Linear", "megengine.quantization.quantize.quantize_qat", "megengine.module.QuantStub", "megengine.Parameter", "megengine.functional.relu", "megengine.module.DequantStub", "megengine.jit.tracing.trace", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.utils.naming.AutoNaming.clear", "megengine.quantization.quantize.quantize", "megengine.utils.comp_graph_tools.get_oprs_seq" ]
[((1296, 1346), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (1319, 1346), False, 'import pytest\n'), ((1708, 1758), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (1731, 1758), False, 'import pytest\n'), ((2211, 2261), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (2234, 2261), False, 'import pytest\n'), ((2678, 2728), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (2701, 2728), False, 'import pytest\n'), ((2872, 2922), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (2895, 2922), False, 'import pytest\n'), ((3173, 3223), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (3196, 3223), False, 'import pytest\n'), ((3731, 3781), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (3754, 3781), False, 'import pytest\n'), ((4733, 4783), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (4756, 4783), False, 'import pytest\n'), ((5287, 5337), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (5310, 5337), False, 'import pytest\n'), ((5760, 5810), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (5783, 5810), False, 'import pytest\n'), ((5982, 6071), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""tensor_name, var_name"""', "[('data', 'data'), (None, 'arg_0')]"], {}), "('tensor_name, var_name', [('data', 'data'), (None,\n 'arg_0')])\n", (6005, 6071), False, 'import pytest\n'), ((6553, 6603), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (6576, 6603), False, 'import pytest\n'), ((7433, 7483), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (7456, 7483), False, 'import pytest\n'), ((8348, 8398), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {}), "('symbolic', [False, True])\n", (8371, 8398), False, 'import pytest\n'), ((844, 862), 'megengine.utils.naming.AutoNaming.clear', 'AutoNaming.clear', ([], {}), '()\n', (860, 862), False, 'from megengine.utils.naming import AutoNaming\n'), ((874, 927), 'megengine.jit.tracing.trace', 'trace', (['func'], {'symbolic': 'symbolic', 'capture_as_const': '(True)'}), '(func, symbolic=symbolic, capture_as_const=True)\n', (879, 927), False, 'from megengine.jit.tracing import trace\n'), ((997, 1009), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1007, 1009), False, 'import io\n'), ((1248, 1277), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (1268, 1277), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6165, 6211), 'megengine.jit.tracing.trace', 'trace', (['f'], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(f, symbolic=True, capture_as_const=True)\n', (6170, 6211), False, 'from megengine.jit.tracing import trace\n'), ((6299, 6311), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6309, 6311), False, 'import io\n'), ((7076, 7091), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['m'], {}), '(m)\n', (7088, 7091), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((7096, 7107), 'megengine.quantization.quantize.quantize', 'quantize', (['m'], {}), '(m)\n', (7104, 7107), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((7976, 7991), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['m'], {}), '(m)\n', (7988, 7991), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((7996, 8007), 'megengine.quantization.quantize.quantize', 'quantize', (['m'], {}), '(m)\n', (8004, 8007), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((8978, 8993), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['m'], {}), '(m)\n', (8990, 8993), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((8998, 9009), 'megengine.quantization.quantize.quantize', 'quantize', (['m'], {}), '(m)\n', (9006, 9009), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((943, 964), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 3)'}), '(shape=(2, 3))\n', (950, 964), True, 'import numpy as np\n'), ((1202, 1220), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (1214, 1220), True, 'from megengine.core.tensor import megbrain_graph as G\n'), ((6227, 6248), 'numpy.ones', 'np.ones', ([], {'shape': '(2, 3)'}), '(shape=(2, 3))\n', (6234, 6248), True, 'import numpy as np\n'), ((6430, 6448), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (6442, 6448), True, 'from megengine.core.tensor import megbrain_graph as G\n'), ((6475, 6504), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (6495, 6504), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((1940, 1964), 'megengine.Parameter', 'Parameter', (['(1.0)'], {'name': '"""k"""'}), "(1.0, name='k')\n", (1949, 1964), False, 'from megengine import Parameter, Tensor\n'), ((2442, 2466), 'megengine.Parameter', 'Parameter', (['(2.0)'], {'name': '"""k"""'}), "(2.0, name='k')\n", (2451, 2466), False, 'from megengine import Parameter, Tensor\n'), ((3407, 3421), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {}), '(3, 3)\n', (3415, 3421), True, 'import megengine.module as M\n'), ((4968, 4992), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {'name': '"""x"""'}), "(3, 3, name='x')\n", (4976, 4992), True, 'import megengine.module as M\n'), ((5547, 5556), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (5553, 5556), True, 'import megengine.functional as F\n'), ((5573, 5582), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (5579, 5582), True, 'import megengine.functional as F\n'), ((6780, 6793), 'megengine.module.QuantStub', 'M.QuantStub', ([], {}), '()\n', (6791, 6793), True, 'import megengine.module as M\n'), ((6820, 6845), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (6828, 6845), True, 'import megengine.module as M\n'), ((6873, 6888), 'megengine.module.DequantStub', 'M.DequantStub', ([], {}), '()\n', (6886, 6888), True, 'import megengine.module as M\n'), ((7660, 7673), 'megengine.module.QuantStub', 'M.QuantStub', ([], {}), '()\n', (7671, 7673), True, 'import megengine.module as M\n'), ((7700, 7745), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {'bias': '(True)', 'name': '"""user-linear"""'}), "(3, 3, bias=True, name='user-linear')\n", (7708, 7745), True, 'import megengine.module as M\n'), ((7773, 7788), 'megengine.module.DequantStub', 'M.DequantStub', ([], {}), '()\n', (7786, 7788), True, 'import megengine.module as M\n'), ((8581, 8594), 'megengine.module.QuantStub', 'M.QuantStub', ([], {}), '()\n', (8592, 8594), True, 'import megengine.module as M\n'), ((8621, 8646), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (8629, 8646), True, 'import megengine.module as M\n'), ((8674, 8689), 'megengine.module.DequantStub', 'M.DequantStub', ([], {}), '()\n', (8687, 8689), True, 'import megengine.module as M\n'), ((3975, 3989), 'megengine.module.Linear', 'M.Linear', (['(3)', '(3)'], {}), '(3, 3)\n', (3983, 3989), True, 'import megengine.module as M\n')]
import megengine import megengine.module as M import megengine.functional as F def default_init_weights(module, scale=1, nonlinearity="relu"): """ nonlinearity: leaky_relu """ for m in module.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_in", nonlinearity=nonlinearity) m.weight *= scale if m.bias is not None: M.init.zeros_(m.bias) else: pass
[ "megengine.module.init.zeros_", "megengine.module.init.msra_normal_" ]
[((272, 343), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_in"""', 'nonlinearity': 'nonlinearity'}), "(m.weight, mode='fan_in', nonlinearity=nonlinearity)\n", (291, 343), True, 'import megengine.module as M\n'), ((425, 446), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (438, 446), True, 'import megengine.module as M\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import Parameter from .init import ones_, zeros_ from .module import Module class GroupNorm(Module): """ Simple implementation of GroupNorm. Only support 4d tensor now. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, self.num_groups, -1) mean = x.mean(axis=2, keepdims=True) var = (x * x).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = ( "groups={num_groups}, channels={num_channels}, " "eps={eps}, affine={affine}" ) return s.format(**self.__dict__) class InstanceNorm(Module): """ Simple implementation of InstanceNorm. Only support 4d tensor now. Reference: https://arxiv.org/abs/1607.08022. Note that InstanceNorm equals using GroupNome with num_groups=num_channels. """ def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype="float32")) self.bias = Parameter(np.zeros(num_channels, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, C, -1) mean = x.mean(axis=2, keepdims=True) var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = "channels={num_channels}, eps={eps}, affine={affine}" return s.format(**self.__dict__) class LayerNorm(Module): """ Simple implementation of LayerNorm. Support tensor of any shape as input. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, normalized_shape, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) if isinstance(normalized_shape, int): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(self.normalized_shape, dtype="float32")) self.bias = Parameter(np.zeros(self.normalized_shape, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x_shape = x.shape dim_delta = len(x_shape) - len(self.normalized_shape) non_flatten_shape = x_shape[:dim_delta] x = x.reshape(*non_flatten_shape, -1) mean = x.mean(axis=-1, keepdims=True) var = (x ** 2).mean(axis=-1, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(x_shape) if self.affine: x = self.weight * x + self.bias return x def _module_info_string(self) -> str: s = "normalized_shape={normalized_shape}, eps={eps}, affine={affine}" return s.format(**self.__dict__)
[ "megengine.functional.sqrt" ]
[((1634, 1656), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (1640, 1656), True, 'import megengine.functional as F\n'), ((3137, 3159), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (3143, 3159), True, 'import megengine.functional as F\n'), ((4729, 4751), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (4735, 4751), True, 'import megengine.functional as F\n'), ((1017, 1056), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (1024, 1056), True, 'import numpy as np\n'), ((1092, 1132), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (1100, 1132), True, 'import numpy as np\n'), ((2536, 2574), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': '"""float32"""'}), "(num_channels, dtype='float32')\n", (2543, 2574), True, 'import numpy as np\n'), ((2610, 2649), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': '"""float32"""'}), "(num_channels, dtype='float32')\n", (2618, 2649), True, 'import numpy as np\n'), ((4023, 4070), 'numpy.ones', 'np.ones', (['self.normalized_shape'], {'dtype': '"""float32"""'}), "(self.normalized_shape, dtype='float32')\n", (4030, 4070), True, 'import numpy as np\n'), ((4106, 4154), 'numpy.zeros', 'np.zeros', (['self.normalized_shape'], {'dtype': '"""float32"""'}), "(self.normalized_shape, dtype='float32')\n", (4114, 4154), True, 'import numpy as np\n')]
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module = trace_module(module, {"data": data}) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() quad = mge.tensor(np.random.normal(size=(batch_size, 4, 2)), dtype=np.float32) expect = module(data, quad) traced_module = trace_module(module, data, quad) actual = traced_module(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) func = trace(traced_module, capture_as_const=True) actual = func(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) model = io.BytesIO() func.dump(model, arg_names=("data", "quad")) model.seek(0) infer_cg = cgtools.GraphInference(model) actual = list( infer_cg.run(inp_dict={"data": data.numpy(), "quad": quad.numpy()}).values() )[0] np.testing.assert_allclose(expect, actual)
[ "megengine.jit.trace", "megengine.functional.repeat", "megengine.functional.zeros", "megengine.functional.broadcast_to", "megengine.functional.ones", "megengine.functional.matinv", "megengine.functional.warp_perspective", "megengine.core._trace_option.set_symbolic_shape", "megengine.traced_module.trace_module", "megengine.utils.comp_graph_tools.GraphInference" ]
[((324, 348), 'megengine.core._trace_option.set_symbolic_shape', 'set_symbolic_shape', (['(True)'], {}), '(True)\n', (342, 348), False, 'from megengine.core._trace_option import set_symbolic_shape\n'), ((2000, 2036), 'megengine.traced_module.trace_module', 'trace_module', (['module', "{'data': data}"], {}), "(module, {'data': data})\n", (2012, 2036), False, 'from megengine.traced_module import trace_module\n'), ((2047, 2074), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (2059, 2074), False, 'import pickle\n'), ((2095, 2112), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (2107, 2112), False, 'import pickle\n'), ((2298, 2330), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'data', 'quad'], {}), '(module, data, quad)\n', (2310, 2330), False, 'from megengine.traced_module import trace_module\n'), ((2462, 2505), 'megengine.jit.trace', 'trace', (['traced_module'], {'capture_as_const': '(True)'}), '(traced_module, capture_as_const=True)\n', (2467, 2505), False, 'from megengine.jit import trace\n'), ((2629, 2641), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2639, 2641), False, 'import io\n'), ((2724, 2753), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['model'], {}), '(model)\n', (2746, 2753), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2871, 2913), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['expect', 'actual'], {}), '(expect, actual)\n', (2897, 2913), True, 'import numpy as np\n'), ((522, 535), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (529, 535), True, 'import megengine.functional as F\n'), ((553, 565), 'megengine.functional.ones', 'F.ones', (['(1,)'], {}), '((1,))\n', (559, 565), True, 'import megengine.functional as F\n'), ((907, 941), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.I', 'quad.shape'], {}), '(self.I, quad.shape)\n', (921, 941), True, 'import megengine.functional as F\n'), ((954, 987), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.A', '(N, 8, 8)'], {}), '(self.A, (N, 8, 8))\n', (968, 987), True, 'import megengine.functional as F\n'), ((1412, 1450), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['data', 'M', '(48, 160)'], {}), '(data, M, (48, 160))\n', (1430, 1450), True, 'import megengine.functional as F\n'), ((1899, 1955), 'numpy.random.randint', 'np.random.randint', (['(0)', '(256)'], {'size': '(batch_size, 3, 48, 160)'}), '(0, 256, size=(batch_size, 3, 48, 160))\n', (1916, 1955), True, 'import numpy as np\n'), ((2185, 2226), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(batch_size, 4, 2)'}), '(size=(batch_size, 4, 2))\n', (2201, 2226), True, 'import numpy as np\n'), ((2415, 2450), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['i', 'j'], {}), '(i, j)\n', (2444, 2450), True, 'import numpy as np\n'), ((2581, 2616), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['i', 'j'], {}), '(i, j)\n', (2610, 2616), True, 'import numpy as np\n'), ((612, 679), 'numpy.array', 'np.array', (['[[[0, 0], [160, 0], [160, 48], [0, 48]]]'], {'dtype': '"""float32"""'}), "([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype='float32')\n", (620, 679), True, 'import numpy as np\n'), ((844, 876), 'megengine.functional.repeat', 'F.repeat', (['self.bb_out', 'N'], {'axis': '(0)'}), '(self.bb_out, N, axis=0)\n', (852, 876), True, 'import megengine.functional as F\n'), ((1304, 1315), 'megengine.functional.matinv', 'F.matinv', (['A'], {}), '(A)\n', (1312, 1315), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F import megengine.functional.elemwise as elemwise from megengine import tensor from megengine.core.tensor import dtype from megengine.functional.elemwise import Elemwise from megengine.jit import trace def test_abs(): np.testing.assert_allclose( F.abs(tensor([-3.0, -4.0, -5.0])).numpy(), np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)), ) np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0))) def test_elemwise_mode_string(): for key, mode in vars(Elemwise.Mode).items(): if isinstance(mode, Elemwise.Mode): assert key == mode assert Elemwise(mode=key) == Elemwise(mode=mode) def test_multiply(): np.testing.assert_allclose( F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0)) ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), 4.0).numpy(), np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0), ) np.testing.assert_allclose( F.mul(4.0, tensor([3.0, 4.0])).numpy(), np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)), ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(), np.multiply( np.array([3.0, 4.0], dtype=np.float32), np.array([3.0, 4.0], dtype=np.float32), ), ) def test_div(): np.testing.assert_allclose( F.div(tensor([3.0, 4.0]), 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( F.floor_div(tensor([-5.0, -7.0]), 2).numpy(), np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([-5, -7]) // 2).numpy(), np.floor_divide(np.array([-5, -7], dtype=np.int32), 2), ) def test_clamp(): """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and `F.clip` will fall into wrong conditions unexpectedly. """ x = np.linspace(-6, 6, dtype="float32") np.testing.assert_allclose( F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6) ) np.testing.assert_allclose( F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0) ) def test_isnan(): for case in [[1, float("nan"), 0]]: np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case)) def test_isinf(): for case in [[1, float("inf"), 0]]: np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case)) def test_sign(): for case in [[1, -1, 0]]: x = tensor(case) np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype)) def test_cosh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.cosh(x) y_mge = F.cosh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_sinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.sinh(x) y_mge = F.sinh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_asinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.arcsinh(x) y_mge = F.asinh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_acosh(): x = np.arange(0, 10000).astype("float32") / 100 + 1 y_np = np.arccosh(x) y_mge = F.acosh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_atanh(): np.random.seed(42) x = np.random.rand(100).astype("float32") * 2 - 1 y_np = np.arctanh(x) y_mge = F.atanh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_hswish(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hswish(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_silu(): x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32") y_np = x / (1 + np.exp(-x)) y_mge = F.silu(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_hsigmoid(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hsigmoid(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_logical_oprs(): x = np.array([[True, False], [False, True]]) y = np.array([[True, True], [False, False]]) xx = tensor(x) yy = tensor(y) np.testing.assert_equal(~x, (F.logical_not(xx)).numpy()) np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy()) np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy()) np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy()) def test_logaddexp(): x = np.random.randn(2, 100) y = np.random.randn(2, 100) xx = tensor(x) yy = tensor(y) out_np = np.log(np.exp(x) + np.exp(y)) out_mge = F.logaddexp(xx, yy) np.testing.assert_almost_equal(out_np, out_mge.numpy(), decimal=6) def test_qadd(): inp_scale = 0.5 outp_scale = 0.2 x = np.arange(6).reshape(2, 3).astype("float32") y = np.arange(6).reshape(2, 3).astype("float32") x = tensor(x, dtype=dtype.qint8(inp_scale)) y = tensor(y, dtype=dtype.qint8(inp_scale)) result_mge = F.elemwise._elemwise_multi_type( x, y, mode="qadd", dtype=dtype.qint8(outp_scale) ) result_mge = result_mge.astype("float32").numpy() result_expect = x.astype("float32").numpy() + y.astype("float32").numpy() np.testing.assert_almost_equal(result_mge, result_expect, decimal=6) def test_int32_input(): x = tensor(np.array([1, 2, 3, 4, 5]), dtype="int32") for op_name in elemwise.__all__: op = getattr(elemwise, op_name) nargs = op.__code__.co_argcount if op_name == "clip": inp = (x, 0, 1) elif op_name.endswith("_shift"): inp = (x, 1) elif op_name.startswith("logical_"): continue else: inp = (x,) * nargs y = op(*inp) y.numpy() @pytest.mark.parametrize("is_trace", [True, False]) def test_empty_tensor(is_trace): binary_func = [] unary_func = [] for op_name in elemwise.__all__: op = getattr(elemwise, op_name) nargs = op.__code__.co_argcount if op_name == "clip": unary_func.append(["clip", lambda x, f=op: f(x, lower=0, upper=1)]) elif op_name.endswith("_shift"): unary_func.append( [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="int32"), 1)] ) elif op_name.startswith("logical_"): # logical_xxx op only accept boolean type if nargs == 1: unary_func.append( [op_name, lambda x, f=op: f(tensor(x.numpy(), dtype="bool"))] ) else: assert nargs == 2 binary_func.append( [ op_name, lambda x, y, f=op: f( tensor(x.numpy(), dtype="bool"), tensor(y.numpy(), dtype="bool"), ), ] ) elif nargs == 1: unary_func.append([op_name, op]) elif nargs == 2: binary_func.append([op_name, op]) else: raise NotImplementedError("nargs {}".format(nargs)) def run_test(func, args, ref_shape, is_trace, sym=False): args = [tensor(t, dtype="float32") for t in args] if is_trace: func = trace(symbolic=sym)(func) for _ in range(3): out = func(*args) assert out.numpy().shape == ref_shape else: out = func(*args) assert out.numpy().shape == ref_shape, out.numpy().shape inps = [ np.array([]).astype("float32"), np.random.randn(2, 0, 3).astype("float32"), 123, ] for op_name, op in unary_func: if is_trace: for sym in [True, False]: run_test(op, [inps[0],], inps[0].shape, True, sym) run_test(op, [inps[1],], inps[1].shape, True, sym) else: run_test(op, [inps[0],], inps[0].shape, False) run_test(op, [inps[1],], inps[1].shape, False) for op_name, op in binary_func: if is_trace: for sym in [True, False]: run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, True, sym) run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, True, sym) run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, True, sym) run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, True, sym) else: run_test(op, [inps[0], inps[0]], (inps[0] + inps[0]).shape, False) run_test(op, [inps[1], inps[1]], (inps[1] + inps[1]).shape, False) run_test(op, [inps[0], inps[2]], (inps[0] + inps[2]).shape, False) run_test(op, [inps[1], inps[2]], (inps[1] + inps[2]).shape, False)
[ "megengine.functional.sign", "megengine.functional.elemwise.Elemwise", "megengine.core.tensor.dtype.qint8", "megengine.functional.logical_not", "megengine.jit.trace", "megengine.tensor", "megengine.functional.logical_xor", "megengine.functional.logical_or", "megengine.functional.mul", "megengine.functional.logaddexp", "megengine.functional.logical_and", "megengine.functional.abs" ]
[((6757, 6807), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_trace"""', '[True, False]'], {}), "('is_trace', [True, False])\n", (6780, 6807), False, 'import pytest\n'), ((2580, 2615), 'numpy.linspace', 'np.linspace', (['(-6)', '(6)'], {'dtype': '"""float32"""'}), "(-6, 6, dtype='float32')\n", (2591, 2615), True, 'import numpy as np\n'), ((3292, 3310), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3306, 3310), True, 'import numpy as np\n'), ((3369, 3379), 'numpy.cosh', 'np.cosh', (['x'], {}), '(x)\n', (3376, 3379), True, 'import numpy as np\n'), ((3422, 3473), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['y_np', 'y_mge'], {'rtol': '(1e-05)'}), '(y_np, y_mge, rtol=1e-05)\n', (3448, 3473), True, 'import numpy as np\n'), ((3496, 3514), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3510, 3514), True, 'import numpy as np\n'), ((3573, 3583), 'numpy.sinh', 'np.sinh', (['x'], {}), '(x)\n', (3580, 3583), True, 'import numpy as np\n'), ((3626, 3677), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['y_np', 'y_mge'], {'rtol': '(1e-05)'}), '(y_np, y_mge, rtol=1e-05)\n', (3652, 3677), True, 'import numpy as np\n'), ((3701, 3719), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3715, 3719), True, 'import numpy as np\n'), ((3778, 3791), 'numpy.arcsinh', 'np.arcsinh', (['x'], {}), '(x)\n', (3788, 3791), True, 'import numpy as np\n'), ((3835, 3889), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(5)'}), '(y_np, y_mge, decimal=5)\n', (3865, 3889), True, 'import numpy as np\n'), ((3977, 3990), 'numpy.arccosh', 'np.arccosh', (['x'], {}), '(x)\n', (3987, 3990), True, 'import numpy as np\n'), ((4034, 4088), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(6)'}), '(y_np, y_mge, decimal=6)\n', (4064, 4088), True, 'import numpy as np\n'), ((4113, 4131), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4127, 4131), True, 'import numpy as np\n'), ((4197, 4210), 'numpy.arctanh', 'np.arctanh', (['x'], {}), '(x)\n', (4207, 4210), True, 'import numpy as np\n'), ((4254, 4308), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(5)'}), '(y_np, y_mge, decimal=5)\n', (4284, 4308), True, 'import numpy as np\n'), ((4334, 4352), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4348, 4352), True, 'import numpy as np\n'), ((4499, 4553), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(6)'}), '(y_np, y_mge, decimal=6)\n', (4529, 4553), True, 'import numpy as np\n'), ((4705, 4759), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(6)'}), '(y_np, y_mge, decimal=6)\n', (4735, 4759), True, 'import numpy as np\n'), ((4787, 4805), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4801, 4805), True, 'import numpy as np\n'), ((4950, 5004), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['y_np', 'y_mge'], {'decimal': '(6)'}), '(y_np, y_mge, decimal=6)\n', (4980, 5004), True, 'import numpy as np\n'), ((5040, 5080), 'numpy.array', 'np.array', (['[[True, False], [False, True]]'], {}), '([[True, False], [False, True]])\n', (5048, 5080), True, 'import numpy as np\n'), ((5089, 5129), 'numpy.array', 'np.array', (['[[True, True], [False, False]]'], {}), '([[True, True], [False, False]])\n', (5097, 5129), True, 'import numpy as np\n'), ((5139, 5148), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (5145, 5148), False, 'from megengine import tensor\n'), ((5158, 5167), 'megengine.tensor', 'tensor', (['y'], {}), '(y)\n', (5164, 5167), False, 'from megengine import tensor\n'), ((5458, 5481), 'numpy.random.randn', 'np.random.randn', (['(2)', '(100)'], {}), '(2, 100)\n', (5473, 5481), True, 'import numpy as np\n'), ((5490, 5513), 'numpy.random.randn', 'np.random.randn', (['(2)', '(100)'], {}), '(2, 100)\n', (5505, 5513), True, 'import numpy as np\n'), ((5523, 5532), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (5529, 5532), False, 'from megengine import tensor\n'), ((5542, 5551), 'megengine.tensor', 'tensor', (['y'], {}), '(y)\n', (5548, 5551), False, 'from megengine import tensor\n'), ((5609, 5628), 'megengine.functional.logaddexp', 'F.logaddexp', (['xx', 'yy'], {}), '(xx, yy)\n', (5620, 5628), True, 'import megengine.functional as F\n'), ((6211, 6279), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['result_mge', 'result_expect'], {'decimal': '(6)'}), '(result_mge, result_expect, decimal=6)\n', (6241, 6279), True, 'import numpy as np\n'), ((2693, 2713), 'numpy.clip', 'np.clip', (['(x + 3)', '(0)', '(6)'], {}), '(x + 3, 0, 6)\n', (2700, 2713), True, 'import numpy as np\n'), ((2798, 2819), 'numpy.clip', 'np.clip', (['(x - 3)', '(-6)', '(0)'], {}), '(x - 3, -6, 0)\n', (2805, 2819), True, 'import numpy as np\n'), ((3171, 3183), 'megengine.tensor', 'tensor', (['case'], {}), '(case)\n', (3177, 3183), False, 'from megengine import tensor\n'), ((6321, 6346), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5]'], {}), '([1, 2, 3, 4, 5])\n', (6329, 6346), True, 'import numpy as np\n'), ((761, 807), 'numpy.array', 'np.array', (['[-3.0, -4.0, -5.0]'], {'dtype': 'np.float32'}), '([-3.0, -4.0, -5.0], dtype=np.float32)\n', (769, 807), True, 'import numpy as np\n'), ((876, 892), 'numpy.float32', 'np.float32', (['(-3.0)'], {}), '(-3.0)\n', (886, 892), True, 'import numpy as np\n'), ((1218, 1234), 'numpy.float32', 'np.float32', (['(-3.0)'], {}), '(-3.0)\n', (1228, 1234), True, 'import numpy as np\n'), ((1236, 1252), 'numpy.float32', 'np.float32', (['(-4.0)'], {}), '(-4.0)\n', (1246, 1252), True, 'import numpy as np\n'), ((1361, 1399), 'numpy.array', 'np.array', (['[3.0, 4.0]'], {'dtype': 'np.float32'}), '([3.0, 4.0], dtype=np.float32)\n', (1369, 1399), True, 'import numpy as np\n'), ((1519, 1557), 'numpy.array', 'np.array', (['[3.0, 4.0]'], {'dtype': 'np.float32'}), '([3.0, 4.0], dtype=np.float32)\n', (1527, 1557), True, 'import numpy as np\n'), ((1695, 1733), 'numpy.array', 'np.array', (['[3.0, 4.0]'], {'dtype': 'np.float32'}), '([3.0, 4.0], dtype=np.float32)\n', (1703, 1733), True, 'import numpy as np\n'), ((1747, 1785), 'numpy.array', 'np.array', (['[3.0, 4.0]'], {'dtype': 'np.float32'}), '([3.0, 4.0], dtype=np.float32)\n', (1755, 1785), True, 'import numpy as np\n'), ((1918, 1952), 'numpy.array', 'np.array', (['[3, 4]'], {'dtype': 'np.float32'}), '([3, 4], dtype=np.float32)\n', (1926, 1952), True, 'import numpy as np\n'), ((2045, 2079), 'numpy.array', 'np.array', (['[3, 4]'], {'dtype': 'np.float32'}), '([3, 4], dtype=np.float32)\n', (2053, 2079), True, 'import numpy as np\n'), ((2202, 2242), 'numpy.array', 'np.array', (['[-5.0, -7.0]'], {'dtype': 'np.float32'}), '([-5.0, -7.0], dtype=np.float32)\n', (2210, 2242), True, 'import numpy as np\n'), ((2352, 2386), 'numpy.array', 'np.array', (['[-5, -7]'], {'dtype': 'np.int32'}), '([-5, -7], dtype=np.int32)\n', (2360, 2386), True, 'import numpy as np\n'), ((2952, 2966), 'numpy.isnan', 'np.isnan', (['case'], {}), '(case)\n', (2960, 2966), True, 'import numpy as np\n'), ((3094, 3108), 'numpy.isinf', 'np.isinf', (['case'], {}), '(case)\n', (3102, 3108), True, 'import numpy as np\n'), ((3319, 3339), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (3334, 3339), True, 'import numpy as np\n'), ((3523, 3543), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (3538, 3543), True, 'import numpy as np\n'), ((3728, 3748), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (3743, 3748), True, 'import numpy as np\n'), ((4361, 4381), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (4376, 4381), True, 'import numpy as np\n'), ((4581, 4612), 'numpy.array', 'np.array', (['[-1.5, 0.0, 1.0, 1.5]'], {}), '([-1.5, 0.0, 1.0, 1.5])\n', (4589, 4612), True, 'import numpy as np\n'), ((4651, 4661), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (4657, 4661), True, 'import numpy as np\n'), ((4814, 4834), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (4829, 4834), True, 'import numpy as np\n'), ((4875, 4895), 'numpy.maximum', 'np.maximum', (['(x + 3)', '(0)'], {}), '(x + 3, 0)\n', (4885, 4895), True, 'import numpy as np\n'), ((5572, 5581), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (5578, 5581), True, 'import numpy as np\n'), ((5584, 5593), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (5590, 5593), True, 'import numpy as np\n'), ((5890, 5912), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (5901, 5912), False, 'from megengine.core.tensor import dtype\n'), ((5938, 5960), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (5949, 5960), False, 'from megengine.core.tensor import dtype\n'), ((6045, 6068), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['outp_scale'], {}), '(outp_scale)\n', (6056, 6068), False, 'from megengine.core.tensor import dtype\n'), ((8203, 8229), 'megengine.tensor', 'tensor', (['t'], {'dtype': '"""float32"""'}), "(t, dtype='float32')\n", (8209, 8229), False, 'from megengine import tensor\n'), ((848, 859), 'megengine.functional.abs', 'F.abs', (['(-3.0)'], {}), '(-3.0)\n', (853, 859), True, 'import megengine.functional as F\n'), ((1074, 1092), 'megengine.functional.elemwise.Elemwise', 'Elemwise', ([], {'mode': 'key'}), '(mode=key)\n', (1082, 1092), False, 'from megengine.functional.elemwise import Elemwise\n'), ((1096, 1115), 'megengine.functional.elemwise.Elemwise', 'Elemwise', ([], {'mode': 'mode'}), '(mode=mode)\n', (1104, 1115), False, 'from megengine.functional.elemwise import Elemwise\n'), ((1179, 1196), 'megengine.functional.mul', 'F.mul', (['(-3.0)', '(-4.0)'], {}), '(-3.0, -4.0)\n', (1184, 1196), True, 'import megengine.functional as F\n'), ((3399, 3408), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (3405, 3408), False, 'from megengine import tensor\n'), ((3603, 3612), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (3609, 3612), False, 'from megengine import tensor\n'), ((3812, 3821), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (3818, 3821), False, 'from megengine import tensor\n'), ((4011, 4020), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (4017, 4020), False, 'from megengine import tensor\n'), ((4231, 4240), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (4237, 4240), False, 'from megengine import tensor\n'), ((4426, 4446), 'numpy.maximum', 'np.maximum', (['(x + 3)', '(0)'], {}), '(x + 3, 0)\n', (4436, 4446), True, 'import numpy as np\n'), ((4476, 4485), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (4482, 4485), False, 'from megengine import tensor\n'), ((4682, 4691), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (4688, 4691), False, 'from megengine import tensor\n'), ((4927, 4936), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (4933, 4936), False, 'from megengine import tensor\n'), ((5201, 5218), 'megengine.functional.logical_not', 'F.logical_not', (['xx'], {}), '(xx)\n', (5214, 5218), True, 'import megengine.functional as F\n'), ((5264, 5285), 'megengine.functional.logical_and', 'F.logical_and', (['xx', 'yy'], {}), '(xx, yy)\n', (5277, 5285), True, 'import megengine.functional as F\n'), ((5330, 5350), 'megengine.functional.logical_or', 'F.logical_or', (['xx', 'yy'], {}), '(xx, yy)\n', (5342, 5350), True, 'import megengine.functional as F\n'), ((5395, 5416), 'megengine.functional.logical_xor', 'F.logical_xor', (['xx', 'yy'], {}), '(xx, yy)\n', (5408, 5416), True, 'import megengine.functional as F\n'), ((8285, 8304), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'sym'}), '(symbolic=sym)\n', (8290, 8304), False, 'from megengine.jit import trace\n'), ((8565, 8577), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (8573, 8577), True, 'import numpy as np\n'), ((8605, 8629), 'numpy.random.randn', 'np.random.randn', (['(2)', '(0)', '(3)'], {}), '(2, 0, 3)\n', (8620, 8629), True, 'import numpy as np\n'), ((709, 735), 'megengine.tensor', 'tensor', (['[-3.0, -4.0, -5.0]'], {}), '([-3.0, -4.0, -5.0])\n', (715, 735), False, 'from megengine import tensor\n'), ((1307, 1325), 'megengine.tensor', 'tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (1313, 1325), False, 'from megengine import tensor\n'), ((1465, 1483), 'megengine.tensor', 'tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (1471, 1483), False, 'from megengine import tensor\n'), ((1613, 1631), 'megengine.tensor', 'tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (1619, 1631), False, 'from megengine import tensor\n'), ((1633, 1651), 'megengine.tensor', 'tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (1639, 1651), False, 'from megengine import tensor\n'), ((1868, 1886), 'megengine.tensor', 'tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (1874, 1886), False, 'from megengine import tensor\n'), ((2006, 2020), 'megengine.tensor', 'tensor', (['[3, 4]'], {}), '([3, 4])\n', (2012, 2020), False, 'from megengine import tensor\n'), ((2144, 2164), 'megengine.tensor', 'tensor', (['[-5.0, -7.0]'], {}), '([-5.0, -7.0])\n', (2150, 2164), False, 'from megengine import tensor\n'), ((2296, 2312), 'megengine.tensor', 'tensor', (['[-5, -7]'], {}), '([-5, -7])\n', (2302, 2312), False, 'from megengine import tensor\n'), ((3219, 3228), 'megengine.functional.sign', 'F.sign', (['x'], {}), '(x)\n', (3225, 3228), True, 'import megengine.functional as F\n'), ((3238, 3251), 'numpy.sign', 'np.sign', (['case'], {}), '(case)\n', (3245, 3251), True, 'import numpy as np\n'), ((3918, 3937), 'numpy.arange', 'np.arange', (['(0)', '(10000)'], {}), '(0, 10000)\n', (3927, 3937), True, 'import numpy as np\n'), ((4140, 4159), 'numpy.random.rand', 'np.random.rand', (['(100)'], {}), '(100)\n', (4154, 4159), True, 'import numpy as np\n'), ((5768, 5780), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (5777, 5780), True, 'import numpy as np\n'), ((5821, 5833), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (5830, 5833), True, 'import numpy as np\n'), ((2663, 2672), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (2669, 2672), False, 'from megengine import tensor\n'), ((2767, 2776), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (2773, 2776), False, 'from megengine import tensor\n'), ((2929, 2941), 'megengine.tensor', 'tensor', (['case'], {}), '(case)\n', (2935, 2941), False, 'from megengine import tensor\n'), ((3071, 3083), 'megengine.tensor', 'tensor', (['case'], {}), '(case)\n', (3077, 3083), False, 'from megengine import tensor\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F from megengine import tensor def test_cross_entropy_with_logits(): data = tensor([[0, 50], [0, -150]]).astype(np.float32) label = tensor([1, 0]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) label = tensor([0, 1]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 100) label = np.array([1, 0]) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) def test_cross_entropy(): def softmax(x): x = np.exp(x) x /= x.sum(1, keepdims=True) return x def ref(x, y): return np.mean([-np.log(x[i, y[i]]) for i in range(len(y))]) x = (np.random.rand(5, 10) - 0.5) * 4 y = np.random.randint(10, size=(5,)) for i in range(len(x)): x[i, y[i]] += np.random.rand() * 2 x = softmax(x) l_ref = ref(x, y) l = F.nn.cross_entropy(tensor(x, "float32"), tensor(y, "int32"), with_logits=False) np.testing.assert_allclose(l.numpy(), l_ref) def test_cross_entropy_reduction(): logits = np.random.randn(16, 10) label = np.random.randint(10, size=[16]) logits = tensor(logits, dtype="float32") label = tensor(label, dtype="int32") perm = np.random.permutation(16) logits_perm = tensor(logits[perm], dtype="float32") label_perm = tensor(label[perm], dtype="int32") loss = F.nn.cross_entropy(logits, label, reduction="none") loss_perm = F.nn.cross_entropy(logits_perm, label_perm, reduction="none") np.testing.assert_allclose(loss.numpy()[perm], loss_perm.numpy()) loss_sum = F.nn.cross_entropy(logits, label, reduction="sum") np.testing.assert_allclose(loss.numpy().sum(), loss_sum.numpy(), rtol=2e-7) loss_mean = F.nn.cross_entropy(logits, label, reduction="mean") np.testing.assert_allclose(loss_mean.numpy(), loss_sum.numpy() / 16) loss_ls = F.nn.cross_entropy(logits, label, reduction="mean", label_smooth=0.1) loss_ls_none_reduce = F.nn.cross_entropy( logits, label, reduction="none", label_smooth=0.1 ) np.testing.assert_allclose( loss_ls.numpy(), loss_ls_none_reduce.numpy().mean(), rtol=2e-7 ) with pytest.raises(ValueError): F.nn.cross_entropy(logits, label, reduction="MEAN") with pytest.raises(ValueError): F.nn.cross_entropy(logits, label, reduction="max") def ctc_nll_naive_npy( pred, pred_lengths, label, label_lengths, blank=0, reduction="mean", time_major=False, ): """naive :func:`ctc_nll` using numpy arrays. Used for testing and helping our user to understand how CTC works. Only ``LABEL_COMPACT`` mode is supported.""" pred = np.asarray(pred, dtype=np.float32) pred_lengths = np.asarray(pred_lengths, dtype=np.int8) label = np.asarray(label, dtype=np.int32) label_lengths = np.asarray(label_lengths, dtype=np.int32) if time_major: pred = np.transpose(pred, (1, 0, 2)) # pred in (N, T, P) format batch_size, time_len, nr_class = pred.shape assert pred_lengths.shape == (batch_size,) and pred_lengths.max() <= pred.shape[1] assert label_lengths.shape == (batch_size,) assert label.shape == (label_lengths.sum(),) and label.max() < nr_class ret = np.empty((batch_size,), dtype=np.float32) label_start = 0 for i in range(batch_size): label_end = label_start + label_lengths[i] ret[i] = _ctc_npy_single_seq( pred[i][: pred_lengths[i]], label[label_start:label_end], blank ) label_start = label_end if reduction == "mean": return (ret / label_lengths).mean() elif reduction == "sum": return ret.sum() elif reduction == "none": return ret else: raise ValueError("{} is not a valid value for reduction".format(reduction)) def _ctc_npy_single_seq(pred, label, blank): def safelog(x): eps = np.finfo(x.dtype).tiny return np.log(np.maximum(x, eps)) def log_sum_exp(x, y): x, y = np.maximum(x, y), np.minimum(x, y) return x + np.log1p(np.exp(y - x)) assert np.abs(pred.sum(axis=1) - 1).max() <= 1e-3 len_pred, alphabet_size = pred.shape (len_label,) = label.shape len_ex_label = len_label * 2 + 1 ex_label = (np.zeros(len_ex_label)).astype(np.int32) + blank ex_label[1::2] = label prob = np.zeros(len_ex_label, dtype=np.float32) prob[0] = pred[0][ex_label[0]] prob[1] = pred[0][ex_label[1]] prob = safelog(prob) # compute on log scale ex_label_pmask = ex_label[2:] != ex_label[:-2] for t in range(1, len_pred): # enter loop: prob[i] = log(p(pred[:t+1], label[:i+1])) new_prob = prob.copy() new_prob[1:] = log_sum_exp(new_prob[1:], prob[:-1]) new_prob[2:] = ( new_prob[2:] * (1 - ex_label_pmask) + log_sum_exp(new_prob[2:], prob[:-2]) * ex_label_pmask ) new_prob += safelog(pred[t, ex_label]) prob = new_prob return -log_sum_exp(prob[-1], prob[-2]) def test_ctc_loss(): def test_func(T, C, N): input = np.random.randn(T, N, C) input = F.softmax(tensor(input), axis=-1).numpy() input_lengths = np.ones(N, dtype=np.int32) * T target_lengths = np.random.randint(low=1, high=T + 1, size=(N,), dtype=np.int32) target = np.random.randint( low=1, high=C, size=(sum(target_lengths)), dtype=np.int32 ) input_mge = tensor(input) input_lengths_mge = tensor(input_lengths) target_mge = tensor(target) target_lengths_mge = tensor(target_lengths) blank = np.random.randint(C) for method in ["mean", "sum", "none"]: np_out = ctc_nll_naive_npy( input, input_lengths, target, target_lengths, blank=blank, reduction=method, time_major=True, ) mge_out = F.nn.ctc_loss( input_mge, input_lengths_mge, target_mge, target_lengths_mge, blank=blank, reduction=method, ) np.testing.assert_allclose(mge_out.numpy(), np_out, rtol=2e-6) cases = [[1, 2, 1], [100, 50, 200], [100, 5, 1]] for case in cases: test_func(*case)
[ "megengine.functional.nn.cross_entropy", "megengine.functional.nn.ctc_loss", "megengine.tensor" ]
[((627, 658), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (645, 658), True, 'import megengine.functional as F\n'), ((764, 795), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (782, 795), True, 'import megengine.functional as F\n'), ((859, 875), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (867, 875), True, 'import numpy as np\n'), ((887, 918), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (905, 918), True, 'import megengine.functional as F\n'), ((1233, 1265), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(5,)'}), '(10, size=(5,))\n', (1250, 1265), True, 'import numpy as np\n'), ((1566, 1589), 'numpy.random.randn', 'np.random.randn', (['(16)', '(10)'], {}), '(16, 10)\n', (1581, 1589), True, 'import numpy as np\n'), ((1602, 1634), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '[16]'}), '(10, size=[16])\n', (1619, 1634), True, 'import numpy as np\n'), ((1648, 1679), 'megengine.tensor', 'tensor', (['logits'], {'dtype': '"""float32"""'}), "(logits, dtype='float32')\n", (1654, 1679), False, 'from megengine import tensor\n'), ((1692, 1720), 'megengine.tensor', 'tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (1698, 1720), False, 'from megengine import tensor\n'), ((1733, 1758), 'numpy.random.permutation', 'np.random.permutation', (['(16)'], {}), '(16)\n', (1754, 1758), True, 'import numpy as np\n'), ((1777, 1814), 'megengine.tensor', 'tensor', (['logits[perm]'], {'dtype': '"""float32"""'}), "(logits[perm], dtype='float32')\n", (1783, 1814), False, 'from megengine import tensor\n'), ((1832, 1866), 'megengine.tensor', 'tensor', (['label[perm]'], {'dtype': '"""int32"""'}), "(label[perm], dtype='int32')\n", (1838, 1866), False, 'from megengine import tensor\n'), ((1879, 1930), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""none"""'}), "(logits, label, reduction='none')\n", (1897, 1930), True, 'import megengine.functional as F\n'), ((1947, 2008), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits_perm', 'label_perm'], {'reduction': '"""none"""'}), "(logits_perm, label_perm, reduction='none')\n", (1965, 2008), True, 'import megengine.functional as F\n'), ((2095, 2145), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""sum"""'}), "(logits, label, reduction='sum')\n", (2113, 2145), True, 'import megengine.functional as F\n'), ((2243, 2294), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""mean"""'}), "(logits, label, reduction='mean')\n", (2261, 2294), True, 'import megengine.functional as F\n'), ((2383, 2452), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""mean"""', 'label_smooth': '(0.1)'}), "(logits, label, reduction='mean', label_smooth=0.1)\n", (2401, 2452), True, 'import megengine.functional as F\n'), ((2479, 2548), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""none"""', 'label_smooth': '(0.1)'}), "(logits, label, reduction='none', label_smooth=0.1)\n", (2497, 2548), True, 'import megengine.functional as F\n'), ((3189, 3223), 'numpy.asarray', 'np.asarray', (['pred'], {'dtype': 'np.float32'}), '(pred, dtype=np.float32)\n', (3199, 3223), True, 'import numpy as np\n'), ((3243, 3282), 'numpy.asarray', 'np.asarray', (['pred_lengths'], {'dtype': 'np.int8'}), '(pred_lengths, dtype=np.int8)\n', (3253, 3282), True, 'import numpy as np\n'), ((3295, 3328), 'numpy.asarray', 'np.asarray', (['label'], {'dtype': 'np.int32'}), '(label, dtype=np.int32)\n', (3305, 3328), True, 'import numpy as np\n'), ((3349, 3390), 'numpy.asarray', 'np.asarray', (['label_lengths'], {'dtype': 'np.int32'}), '(label_lengths, dtype=np.int32)\n', (3359, 3390), True, 'import numpy as np\n'), ((3758, 3799), 'numpy.empty', 'np.empty', (['(batch_size,)'], {'dtype': 'np.float32'}), '((batch_size,), dtype=np.float32)\n', (3766, 3799), True, 'import numpy as np\n'), ((4865, 4905), 'numpy.zeros', 'np.zeros', (['len_ex_label'], {'dtype': 'np.float32'}), '(len_ex_label, dtype=np.float32)\n', (4873, 4905), True, 'import numpy as np\n'), ((1029, 1038), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1035, 1038), True, 'import numpy as np\n'), ((1405, 1425), 'megengine.tensor', 'tensor', (['x', '"""float32"""'], {}), "(x, 'float32')\n", (1411, 1425), False, 'from megengine import tensor\n'), ((1427, 1445), 'megengine.tensor', 'tensor', (['y', '"""int32"""'], {}), "(y, 'int32')\n", (1433, 1445), False, 'from megengine import tensor\n'), ((2682, 2707), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2695, 2707), False, 'import pytest\n'), ((2717, 2768), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""MEAN"""'}), "(logits, label, reduction='MEAN')\n", (2735, 2768), True, 'import megengine.functional as F\n'), ((2779, 2804), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2792, 2804), False, 'import pytest\n'), ((2814, 2864), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""max"""'}), "(logits, label, reduction='max')\n", (2832, 2864), True, 'import megengine.functional as F\n'), ((3426, 3455), 'numpy.transpose', 'np.transpose', (['pred', '(1, 0, 2)'], {}), '(pred, (1, 0, 2))\n', (3438, 3455), True, 'import numpy as np\n'), ((5599, 5623), 'numpy.random.randn', 'np.random.randn', (['T', 'N', 'C'], {}), '(T, N, C)\n', (5614, 5623), True, 'import numpy as np\n'), ((5762, 5825), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(1)', 'high': '(T + 1)', 'size': '(N,)', 'dtype': 'np.int32'}), '(low=1, high=T + 1, size=(N,), dtype=np.int32)\n', (5779, 5825), True, 'import numpy as np\n'), ((5963, 5976), 'megengine.tensor', 'tensor', (['input'], {}), '(input)\n', (5969, 5976), False, 'from megengine import tensor\n'), ((6005, 6026), 'megengine.tensor', 'tensor', (['input_lengths'], {}), '(input_lengths)\n', (6011, 6026), False, 'from megengine import tensor\n'), ((6049, 6063), 'megengine.tensor', 'tensor', (['target'], {}), '(target)\n', (6055, 6063), False, 'from megengine import tensor\n'), ((6093, 6115), 'megengine.tensor', 'tensor', (['target_lengths'], {}), '(target_lengths)\n', (6099, 6115), False, 'from megengine import tensor\n'), ((6133, 6153), 'numpy.random.randint', 'np.random.randint', (['C'], {}), '(C)\n', (6150, 6153), True, 'import numpy as np\n'), ((524, 552), 'megengine.tensor', 'tensor', (['[[0, 50], [0, -150]]'], {}), '([[0, 50], [0, -150]])\n', (530, 552), False, 'from megengine import tensor\n'), ((584, 598), 'megengine.tensor', 'tensor', (['[1, 0]'], {}), '([1, 0])\n', (590, 598), False, 'from megengine import tensor\n'), ((721, 735), 'megengine.tensor', 'tensor', (['[0, 1]'], {}), '([0, 1])\n', (727, 735), False, 'from megengine import tensor\n'), ((1192, 1213), 'numpy.random.rand', 'np.random.rand', (['(5)', '(10)'], {}), '(5, 10)\n', (1206, 1213), True, 'import numpy as np\n'), ((1316, 1332), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1330, 1332), True, 'import numpy as np\n'), ((4410, 4427), 'numpy.finfo', 'np.finfo', (['x.dtype'], {}), '(x.dtype)\n', (4418, 4427), True, 'import numpy as np\n'), ((4455, 4473), 'numpy.maximum', 'np.maximum', (['x', 'eps'], {}), '(x, eps)\n', (4465, 4473), True, 'import numpy as np\n'), ((4518, 4534), 'numpy.maximum', 'np.maximum', (['x', 'y'], {}), '(x, y)\n', (4528, 4534), True, 'import numpy as np\n'), ((4536, 4552), 'numpy.minimum', 'np.minimum', (['x', 'y'], {}), '(x, y)\n', (4546, 4552), True, 'import numpy as np\n'), ((5706, 5732), 'numpy.ones', 'np.ones', (['N'], {'dtype': 'np.int32'}), '(N, dtype=np.int32)\n', (5713, 5732), True, 'import numpy as np\n'), ((6483, 6593), 'megengine.functional.nn.ctc_loss', 'F.nn.ctc_loss', (['input_mge', 'input_lengths_mge', 'target_mge', 'target_lengths_mge'], {'blank': 'blank', 'reduction': 'method'}), '(input_mge, input_lengths_mge, target_mge, target_lengths_mge,\n blank=blank, reduction=method)\n', (6496, 6593), True, 'import megengine.functional as F\n'), ((4581, 4594), 'numpy.exp', 'np.exp', (['(y - x)'], {}), '(y - x)\n', (4587, 4594), True, 'import numpy as np\n'), ((4777, 4799), 'numpy.zeros', 'np.zeros', (['len_ex_label'], {}), '(len_ex_label)\n', (4785, 4799), True, 'import numpy as np\n'), ((1138, 1156), 'numpy.log', 'np.log', (['x[i, y[i]]'], {}), '(x[i, y[i]])\n', (1144, 1156), True, 'import numpy as np\n'), ((5650, 5663), 'megengine.tensor', 'tensor', (['input'], {}), '(input)\n', (5656, 5663), False, 'from megengine import tensor\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from io import BytesIO import numpy as np from helpers import MLP, graph_mode import megengine.functional as F from megengine import load, optimizer, save from megengine.core import TensorDict, tensor from megengine.jit import trace from megengine.test import assertTensorClose def get_input(): batch_size, input_dim = 2, 28 data_shape, label_shape = (batch_size, input_dim), (batch_size,) data, label = tensor(dtype=np.float32), tensor(dtype=np.int32) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) return data, data_shape, label, label_shape @graph_mode("eager", "static") def test_optimizer_serialization(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = optimizer.SGD(mlp.parameters(), lr=0.01, momentum=0.9) slots = TensorDict() for param in mlp.parameters(): slots[param] = np.zeros(param.shape).astype(np.float32) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) opt.step() for param in mlp.parameters(): slots[param] = slots[param] * 0.9 + param.grad.numpy() with BytesIO() as fout: save(opt.state_dict(), fout) fout.seek(0) state_dict = load(fout) opt1 = optimizer.SGD(mlp.parameters(), lr=0.02, momentum=0.8) opt1.load_state_dict(state_dict) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt1.zero_grad() opt1.backward(loss) orig_params = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) opt1.step() for param in mlp.parameters(): orig_param = orig_params[param] slots[param] = slots[param] * 0.9 + param.grad.numpy() assertTensorClose(param.numpy(), orig_param - 0.01 * slots[param]) def _test_optimizer(opt_str, test_case, check_class, update_lr=False): iter_num = 3 data, data_shape, label, label_shape = get_input() net = MLP() opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) check_func = check_class(net, **test_case) step = 0 # eager graph for i in range(iter_num): if update_lr and i == 1: # change learning rate for group in opt.param_groups: group["lr"] += 0.01 check_func.lr += 0.01 data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = net(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) ori_params = TensorDict() for param in net.parameters(): ori_params[param] = np.copy(param.numpy()) opt.step() step += 1 check_func(ori_params, net.parameters(), step) # static graph @trace def train_func(data, label): pred = net(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.backward(loss) for i in range(iter_num): if update_lr and i == 1: # change learning rate for group in opt.param_groups: group["lr"] += 0.01 check_func.lr += 0.01 opt.zero_grad() ori_params = TensorDict() for param in net.parameters(): ori_params[param] = np.copy(param.numpy()) train_func( np.random.random(data_shape).astype(np.float32), np.random.randint(0, 10, label_shape).astype(np.int32), ) opt.step() step += 1 check_func(ori_params, net.parameters(), step) def test_sgd(): class CheckValue: def __init__(self, net, **kwarg): self.slots = TensorDict() for param in net.parameters(): self.slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() if hasattr(self, "momentum"): self.slots[param] = grad + self.slots[param] * self.momentum delta = -self.lr * self.slots[param] else: delta = -self.lr * grad assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"momentum": 0.9, "lr": 0.01}, # SGD with momentum {"lr": 0.01}, # simple SGD {"weight_decay": 0.1, "lr": 0.01}, # with weight_decay ] for case in cases: _test_optimizer("SGD", case, CheckValue) _test_optimizer("SGD", case, CheckValue, update_lr=True) def test_adam(): class CheckValue: def __init__(self, net, **kwarg): self.m_slots = TensorDict() self.v_slots = TensorDict() for param in net.parameters(): self.m_slots[param] = np.zeros(param.shape).astype(np.float32) self.v_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() m = self.m_slots[param] v = self.v_slots[param] m *= self.betas[0] m += (1 - self.betas[0]) * grad v *= self.betas[1] v += (1 - self.betas[1]) * grad * grad delta = (m / (1 - self.betas[0] ** step)) / ( np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps ) assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta) cases = [ {"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01}, { "betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01, "weight_decay": 0.1, }, # with weight_decay ] for case in cases: _test_optimizer("Adam", case, CheckValue) _test_optimizer("Adam", case, CheckValue, update_lr=True) def test_adagrad(): class CheckValue: def __init__(self, net, **kwarg): self.s_slots = TensorDict() for param in net.parameters(): self.s_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() self.s_slots[param] += grad ** 2 delta = grad / (self.s_slots[param] + self.eps) ** 0.5 delta *= -(self.lr / (1 + (step - 1) * self.lr_decay)) assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.01}, {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.0}, # without lr_decay { "lr": 0.01, "eps": 1e-06, "lr_decay": 0.01, "weight_decay": 0.1, }, # with weight_decay ] for case in cases: _test_optimizer("Adagrad", case, CheckValue) _test_optimizer("Adagrad", case, CheckValue, update_lr=True) def test_adadelta(): class CheckValue: def __init__(self, net, **kwarg): self.s_slots = TensorDict() self.a_slots = TensorDict() for param in net.parameters(): self.s_slots[param] = np.zeros(param.shape).astype(np.float32) self.a_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() self.s_slots[param] = self.s_slots[param] * self.rho + grad ** 2 * ( 1 - self.rho ) delta = ( grad * ((self.a_slots[param] + self.eps) ** 0.5) / (self.s_slots[param] + self.eps) ** 0.5 ) self.a_slots[param] = self.a_slots[param] * self.rho + delta ** 2 * ( 1 - self.rho ) delta *= -self.lr assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"lr": 1.0, "eps": 1e-06, "rho": 0.9}, {"lr": 1.0, "eps": 1e-06, "rho": 0.9, "weight_decay": 0.9}, # with weight_decay ] for case in cases: _test_optimizer("Adadelta", case, CheckValue) _test_optimizer("Adadelta", case, CheckValue, update_lr=True)
[ "megengine.core.TensorDict", "megengine.load", "megengine.core.tensor" ]
[((1024, 1053), 'helpers.graph_mode', 'graph_mode', (['"""eager"""', '"""static"""'], {}), "('eager', 'static')\n", (1034, 1053), False, 'from helpers import MLP, graph_mode\n'), ((1155, 1160), 'helpers.MLP', 'MLP', ([], {}), '()\n', (1158, 1160), False, 'from helpers import MLP, graph_mode\n'), ((1238, 1250), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (1248, 1250), False, 'from megengine.core import TensorDict, tensor\n'), ((2617, 2622), 'helpers.MLP', 'MLP', ([], {}), '()\n', (2620, 2622), False, 'from helpers import MLP, graph_mode\n'), ((797, 821), 'megengine.core.tensor', 'tensor', ([], {'dtype': 'np.float32'}), '(dtype=np.float32)\n', (803, 821), False, 'from megengine.core import TensorDict, tensor\n'), ((823, 845), 'megengine.core.tensor', 'tensor', ([], {'dtype': 'np.int32'}), '(dtype=np.int32)\n', (829, 845), False, 'from megengine.core import TensorDict, tensor\n'), ((934, 971), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (951, 971), True, 'import numpy as np\n'), ((1591, 1600), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1598, 1600), False, 'from io import BytesIO\n'), ((1689, 1699), 'megengine.load', 'load', (['fout'], {}), '(fout)\n', (1693, 1699), False, 'from megengine import load, optimizer, save\n'), ((2104, 2116), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (2114, 2116), False, 'from megengine.core import TensorDict, tensor\n'), ((3261, 3273), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3271, 3273), False, 'from megengine.core import TensorDict, tensor\n'), ((3879, 3891), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3889, 3891), False, 'from megengine.core import TensorDict, tensor\n'), ((1908, 1945), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (1925, 1945), True, 'import numpy as np\n'), ((3068, 3105), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (3085, 3105), True, 'import numpy as np\n'), ((4344, 4356), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (4354, 4356), False, 'from megengine.core import TensorDict, tensor\n'), ((5444, 5456), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5454, 5456), False, 'from megengine.core import TensorDict, tensor\n'), ((5484, 5496), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5494, 5496), False, 'from megengine.core import TensorDict, tensor\n'), ((6890, 6902), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (6900, 6902), False, 'from megengine.core import TensorDict, tensor\n'), ((8067, 8079), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (8077, 8079), False, 'from megengine.core import TensorDict, tensor\n'), ((8107, 8119), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (8117, 8119), False, 'from megengine.core import TensorDict, tensor\n'), ((865, 893), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (881, 893), True, 'import numpy as np\n'), ((1309, 1330), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (1317, 1330), True, 'import numpy as np\n'), ((1835, 1863), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1851, 1863), True, 'import numpy as np\n'), ((2995, 3023), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (3011, 3023), True, 'import numpy as np\n'), ((4018, 4046), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4034, 4046), True, 'import numpy as np\n'), ((4079, 4116), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (4096, 4116), True, 'import numpy as np\n'), ((4436, 4457), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (4444, 4457), True, 'import numpy as np\n'), ((5578, 5599), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5586, 5599), True, 'import numpy as np\n'), ((5657, 5678), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5665, 5678), True, 'import numpy as np\n'), ((6246, 6286), 'numpy.sqrt', 'np.sqrt', (['(v / (1 - self.betas[1] ** step))'], {}), '(v / (1 - self.betas[1] ** step))\n', (6253, 6286), True, 'import numpy as np\n'), ((6984, 7005), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (6992, 7005), True, 'import numpy as np\n'), ((8201, 8222), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (8209, 8222), True, 'import numpy as np\n'), ((8280, 8301), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (8288, 8301), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied import json import os import pytest from megengine import Parameter, tensor from megengine.core import option from megengine.module import Module from megengine.utils.profiler import Profiler, scope class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.23], dtype="float32") def forward(self, x): x = x * self.a return x def test_profiler(): profile_prefix = "pytest_profile" profile_format = "chrome_timeline.json" profile_path = "{}.{}".format(profile_prefix, profile_format) with Profiler(profile_prefix, format=profile_format): with scope("my_scope"): oup = Simple()(tensor([1.23], dtype="float32")) with open(profile_path, "r") as f: events = json.load(f) os.remove(profile_path) prev_ts = {} scope_count = 0 for event in events: if "dur" in event: assert event["dur"] >= 0 elif "ts" in event and "tid" in event: ts = event["ts"] tid = event["tid"] if ts == 0: continue assert (tid not in prev_ts) or prev_ts[tid] <= ts prev_ts[tid] = ts if "name" in event and event["name"] == "my_scope": scope_count += 1 assert scope_count > 0 and scope_count % 2 == 0
[ "megengine.tensor", "megengine.utils.profiler.scope", "megengine.Parameter", "megengine.utils.profiler.Profiler" ]
[((1165, 1188), 'os.remove', 'os.remove', (['profile_path'], {}), '(profile_path)\n', (1174, 1188), False, 'import os\n'), ((669, 703), 'megengine.Parameter', 'Parameter', (['[1.23]'], {'dtype': '"""float32"""'}), "([1.23], dtype='float32')\n", (678, 703), False, 'from megengine import Parameter, tensor\n'), ((951, 998), 'megengine.utils.profiler.Profiler', 'Profiler', (['profile_prefix'], {'format': 'profile_format'}), '(profile_prefix, format=profile_format)\n', (959, 998), False, 'from megengine.utils.profiler import Profiler, scope\n'), ((1148, 1160), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1157, 1160), False, 'import json\n'), ((1013, 1030), 'megengine.utils.profiler.scope', 'scope', (['"""my_scope"""'], {}), "('my_scope')\n", (1018, 1030), False, 'from megengine.utils.profiler import Profiler, scope\n'), ((1059, 1090), 'megengine.tensor', 'tensor', (['[1.23]'], {'dtype': '"""float32"""'}), "([1.23], dtype='float32')\n", (1065, 1090), False, 'from megengine import Parameter, tensor\n')]
#! /usr/bin/env python3 # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import getopt import os import runpy import sys from megengine.logger import get_logger from megengine.utils.profiler import Profiler, merge_trace_events def main(): parser = argparse.ArgumentParser( prog="megengine.tools.profiler", description="Profiling megengine program" ) parser.add_argument( "-m", "--module", action="store_true", help="whether launch program as module" ) parser.add_argument("-o", "--output", type=str, help="output file location") parser.add_argument( "-f", "--format", action="append", type=str, help="output file format", choices=Profiler.valid_formats, ) parser.add_argument( "--merge_trace_events", action="store_true", ) parser.add_argument( "--clean", action="store_true", ) for opt in Profiler.valid_options: parser.add_argument("--" + opt, type=int, default=None) args, extras = parser.parse_known_args(sys.argv[1:]) prof_args = {} for opt in Profiler.valid_options: optval = getattr(args, opt, None) if optval is not None: prof_args[opt] = optval if args.output is not None: prof_args["path"] = args.output if args.format: prof_args["formats"] = args.format if args.clean: for file in os.listdir(profiler.directory): os.remove(os.path.join(profiler.directory, file)) if len(extras) == 0: if not args.merge_trace_events: parser.print_usage() exit(1) else: filename = extras[0] if not args.module: if not os.path.exists(filename): get_logger().fatal("cannot find file {}".format(filename)) exit(1) filename = os.path.realpath(filename) # Replace profiler's dir with script's dir in front of module search path. sys.path[0] = os.path.dirname(filename) sys.argv[:] = [filename, *extras[1:]] profiler = Profiler(**prof_args) with profiler: if args.module: runpy.run_module(filename) else: run_script(filename) profiler.dump() if args.merge_trace_events: merge_trace_events(profiler.directory) def run_module(modulename): runpy.run_module(modulename, None, "__main__", True) def run_script(filename): runpy.run_path(filename, None, "__main__") if __name__ == "__main__": main()
[ "megengine.utils.profiler.merge_trace_events", "megengine.logger.get_logger", "megengine.utils.profiler.Profiler" ]
[((575, 679), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""megengine.tools.profiler"""', 'description': '"""Profiling megengine program"""'}), "(prog='megengine.tools.profiler', description=\n 'Profiling megengine program')\n", (598, 679), False, 'import argparse\n'), ((2719, 2771), 'runpy.run_module', 'runpy.run_module', (['modulename', 'None', '"""__main__"""', '(True)'], {}), "(modulename, None, '__main__', True)\n", (2735, 2771), False, 'import runpy\n'), ((2804, 2846), 'runpy.run_path', 'runpy.run_path', (['filename', 'None', '"""__main__"""'], {}), "(filename, None, '__main__')\n", (2818, 2846), False, 'import runpy\n'), ((1730, 1760), 'os.listdir', 'os.listdir', (['profiler.directory'], {}), '(profiler.directory)\n', (1740, 1760), False, 'import os\n'), ((2410, 2431), 'megengine.utils.profiler.Profiler', 'Profiler', ([], {}), '(**prof_args)\n', (2418, 2431), False, 'from megengine.utils.profiler import Profiler, merge_trace_events\n'), ((2646, 2684), 'megengine.utils.profiler.merge_trace_events', 'merge_trace_events', (['profiler.directory'], {}), '(profiler.directory)\n', (2664, 2684), False, 'from megengine.utils.profiler import Profiler, merge_trace_events\n'), ((2177, 2203), 'os.path.realpath', 'os.path.realpath', (['filename'], {}), '(filename)\n', (2193, 2203), False, 'import os\n'), ((2317, 2342), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (2332, 2342), False, 'import os\n'), ((1784, 1822), 'os.path.join', 'os.path.join', (['profiler.directory', 'file'], {}), '(profiler.directory, file)\n', (1796, 1822), False, 'import os\n'), ((2029, 2053), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (2043, 2053), False, 'import os\n'), ((2499, 2525), 'runpy.run_module', 'runpy.run_module', (['filename'], {}), '(filename)\n', (2515, 2525), False, 'import runpy\n'), ((2071, 2083), 'megengine.logger.get_logger', 'get_logger', ([], {}), '()\n', (2081, 2083), False, 'from megengine.logger import get_logger\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import cv2 import megengine as mge import megengine.data.dataset as dataset import megengine.jit as jit import numpy as np from megengine.utils.http_download import download_from_url from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus class Config: NUM_CLASSES = 21 IMG_SIZE = 512 IMG_MEAN = [103.530, 116.280, 123.675] IMG_STD = [57.375, 57.120, 58.395] cfg = Config() def main(): parser = argparse.ArgumentParser() parser.add_argument("--image_path", type=str, default=None, help="inference image") parser.add_argument("--model_path", type=str, default=None, help="inference model") args = parser.parse_args() net = load_model(args.model_path) if args.image_path is None: download_from_url("https://data.megengine.org.cn/images/cat.jpg", "test.jpg") img = cv2.imread("test.jpg") else: img = cv2.imread(args.image_path) pred = inference(img, net) cv2.imwrite("out.jpg", pred) def load_model(model_path): model_dict = mge.load(model_path) net = DeepLabV3Plus(class_num=cfg.NUM_CLASSES) net.load_state_dict(model_dict["state_dict"]) print("load model %s" % (model_path)) net.eval() return net def inference(img, net): @jit.trace(symbolic=True, opt_level=2) def pred_fun(data, net=None): net.eval() pred = net(data) return pred img = (img.astype("float32") - np.array(cfg.IMG_MEAN)) / np.array(cfg.IMG_STD) orih, oriw = img.shape[:2] img = cv2.resize(img, (cfg.IMG_SIZE, cfg.IMG_SIZE)) img = img.transpose(2, 0, 1)[np.newaxis] data = mge.tensor() data.set_value(img) pred = pred_fun(data, net=net) pred = pred.numpy().squeeze().argmax(0) pred = cv2.resize( pred.astype("uint8"), (oriw, orih), interpolation=cv2.INTER_NEAREST ) class_colors = dataset.PascalVOC.class_colors out = np.zeros((orih, oriw, 3)) nids = np.unique(pred) for t in nids: out[pred == t] = class_colors[t] return out if __name__ == "__main__": main()
[ "megengine.jit.trace", "megengine.tensor", "megengine.load", "megengine.utils.http_download.download_from_url" ]
[((829, 854), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (852, 854), False, 'import argparse\n'), ((1343, 1371), 'cv2.imwrite', 'cv2.imwrite', (['"""out.jpg"""', 'pred'], {}), "('out.jpg', pred)\n", (1354, 1371), False, 'import cv2\n'), ((1419, 1439), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (1427, 1439), True, 'import megengine as mge\n'), ((1450, 1490), 'official.vision.segmentation.deeplabv3plus.DeepLabV3Plus', 'DeepLabV3Plus', ([], {'class_num': 'cfg.NUM_CLASSES'}), '(class_num=cfg.NUM_CLASSES)\n', (1463, 1490), False, 'from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus\n'), ((1645, 1682), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(2)'}), '(symbolic=True, opt_level=2)\n', (1654, 1682), True, 'import megengine.jit as jit\n'), ((1906, 1951), 'cv2.resize', 'cv2.resize', (['img', '(cfg.IMG_SIZE, cfg.IMG_SIZE)'], {}), '(img, (cfg.IMG_SIZE, cfg.IMG_SIZE))\n', (1916, 1951), False, 'import cv2\n'), ((2009, 2021), 'megengine.tensor', 'mge.tensor', ([], {}), '()\n', (2019, 2021), True, 'import megengine as mge\n'), ((2291, 2316), 'numpy.zeros', 'np.zeros', (['(orih, oriw, 3)'], {}), '((orih, oriw, 3))\n', (2299, 2316), True, 'import numpy as np\n'), ((2328, 2343), 'numpy.unique', 'np.unique', (['pred'], {}), '(pred)\n', (2337, 2343), True, 'import numpy as np\n'), ((1141, 1218), 'megengine.utils.http_download.download_from_url', 'download_from_url', (['"""https://data.megengine.org.cn/images/cat.jpg"""', '"""test.jpg"""'], {}), "('https://data.megengine.org.cn/images/cat.jpg', 'test.jpg')\n", (1158, 1218), False, 'from megengine.utils.http_download import download_from_url\n'), ((1233, 1255), 'cv2.imread', 'cv2.imread', (['"""test.jpg"""'], {}), "('test.jpg')\n", (1243, 1255), False, 'import cv2\n'), ((1280, 1307), 'cv2.imread', 'cv2.imread', (['args.image_path'], {}), '(args.image_path)\n', (1290, 1307), False, 'import cv2\n'), ((1843, 1864), 'numpy.array', 'np.array', (['cfg.IMG_STD'], {}), '(cfg.IMG_STD)\n', (1851, 1864), True, 'import numpy as np\n'), ((1817, 1839), 'numpy.array', 'np.array', (['cfg.IMG_MEAN'], {}), '(cfg.IMG_MEAN)\n', (1825, 1839), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as TF from tabulate import tabulate import megengine as mge import megengine.functional as MF import megengine.module as MM module_cache = { "conv2d": (MM.Conv2d(32, 32, 3, 1, 0), nn.Conv2d(32, 32, 3, 1, 0).cuda()), "dw_conv2d": ( MM.Conv2d(32, 32, 3, 1, 0, groups=32), nn.Conv2d(32, 32, 3, 1, 0, groups=32).cuda(), ), "conv3d": (MM.Conv3d(32, 32, 3, 1, 0), nn.Conv3d(32, 32, 3, 1, 0).cuda()), "ConvTranspose2d": ( MM.ConvTranspose2d(32, 32, 3, 1, 0), nn.ConvTranspose2d(32, 32, 3, 1, 0).cuda(), ), "BatchNorm2d": (MM.BatchNorm2d(64), nn.BatchNorm2d(64).cuda()), "Linear": (MM.Linear(1000, 1000), nn.Linear(1000, 1000).cuda()), } test_cases = [ # (mge op, torch op, small inps, large inps, unpack_inps, rep) ( "adaptive_avg_pool2d", lambda x: MF.adaptive_avg_pool2d(x, (7, 7)), lambda x: TF.adaptive_avg_pool2d(x, (7, 7)), [(2, 32, 16, 16)], [(64, 512, 16, 16)], True, 1000, ), ( "adaptive_max_pool2d", lambda x: MF.adaptive_max_pool2d(x, (7, 7)), lambda x: TF.adaptive_max_pool2d(x, (7, 7)), [(2, 32, 16, 16)], [(64, 512, 16, 16)], True, 1000, ), ("argsort", MF.argsort, torch.argsort, [(1000,)], [(1000, 1000),], True, 1000), ( "avg_pool2d", lambda x: MF.avg_pool2d(x, 2), lambda x: TF.avg_pool2d(x, 2), [(2, 32, 16, 16)], [(64, 512, 16, 16)], True, 1000, ), ( "broadcast", lambda x: MF.broadcast_to(x, (5,) + x.shape), lambda x: torch.broadcast_to(x, (5,) + x.shape), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "batchedmatmul", MF.matmul, torch.matmul, [(8, 64, 32), (8, 32, 64)], [(8, 2048, 512), (8, 512, 2048)], True, 1000, ), ( "batchnrom2d", lambda x: module_cache["BatchNorm2d"][0](x), lambda x: module_cache["BatchNorm2d"][1](x), [(2, 64, 16, 16)], [(64, 64, 128, 128)], True, 1000, ), ( "concat", MF.concat, torch.cat, [(20, 100), (50, 100), (30, 100)], [(64, 512, 16, 16), (64, 512, 16, 16), (64, 512, 16, 16)], False, 1000, ), ( "conv2d", lambda x: module_cache["conv2d"][0](x), lambda x: module_cache["conv2d"][1](x), [(2, 32, 16, 16)], [(32, 32, 128, 128)], True, 1000, ), ( "conv3d", lambda x: module_cache["conv3d"][0](x), lambda x: module_cache["conv3d"][1](x), [(2, 32, 8, 8, 8)], [(32, 32, 16, 16, 16)], True, 1000, ), ( "convTranspose2d", lambda x: module_cache["ConvTranspose2d"][0](x), lambda x: module_cache["ConvTranspose2d"][1](x), [(2, 32, 16, 16)], [(32, 32, 128, 128)], True, 1000, ), ( "dropout", lambda x: MF.dropout(x, 0.5), TF.dropout, [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "dw_conv2d", lambda x: module_cache["dw_conv2d"][0](x), lambda x: module_cache["dw_conv2d"][1](x), [(2, 32, 16, 16)], [(32, 32, 128, 128)], True, 1000, ), ( "elemwise.unary", MF.log, torch.log, [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "elemwise.binary", MF.add, torch.add, [(100, 100), (100, 100)], [(64, 512, 16, 16), (64, 512, 16, 16)], True, 1000, ), ( "expand_dims", lambda x: MF.expand_dims(x, 0), lambda x: torch.unsqueeze(x, 0), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ("gelu", MF.gelu, TF.gelu, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ("hswish", MF.hswish, TF.hardswish, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ( "hsigmoid", MF.hsigmoid, TF.hardsigmoid, [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ("isinf", MF.isinf, torch.isinf, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ( "indeixngMultiAxisVec", lambda x: x[[1, 3, 5], [1, 3, 5], [1, 3, 5], [1, 3, 5]], lambda x: x[[1, 3, 5], [1, 3, 5], [1, 3, 5], [1, 3, 5]], [(10, 10, 10, 10)], [(64, 512, 16, 16)], True, 1000, ), ( "logsigmoid", MF.logsigmoid, TF.logsigmoid, [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "leaky_relu", lambda x: MF.leaky_relu(x, 0.5), lambda x: TF.leaky_relu(x, 0.5), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "linear", lambda x: module_cache["Linear"][0](x), lambda x: module_cache["Linear"][1](x), [(10, 1000)], [(64, 128, 1000)], True, 1000, ), ("matinv", MF.matinv, torch.inverse, [(10, 10)], [(30, 30)], True, 1000), ( "matmul", MF.matmul, torch.matmul, [(64, 32), (32, 64)], [(2048, 1024), (1024, 2048)], True, 1000, ), ( "max_pool2d", lambda x: MF.max_pool2d(x, 2), lambda x: TF.max_pool2d(x, 2), [(2, 32, 16, 16)], [(64, 512, 16, 16)], True, 1000, ), ( "normal", lambda x: mge.random.normal(0, 1, x.shape), lambda x: torch.randn(x.shape, device="cuda"), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "prelu", MF.prelu, TF.prelu, [(100, 100), (1,)], [(64, 512, 16, 16), (1,)], True, 1000, ), ( "reduce.max", lambda x: MF.max(x, 0), lambda x: torch.max(x, 0), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "reduce.mean", lambda x: MF.mean(x, 0), lambda x: torch.mean(x, 0), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "reduce.mean", lambda x: MF.mean(x, 0), lambda x: torch.mean(x, 0), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ("relu", MF.relu, TF.relu, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ("relu6", MF.relu6, TF.relu6, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ( "repeat", lambda x: MF.repeat(x, 5), lambda x: torch.repeat_interleave(x, 5), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ("silu", MF.silu, TF.silu, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ( "split", lambda x: MF.split(x, 5), lambda x: torch.split(x, 5), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ("sigmoid", MF.sigmoid, TF.sigmoid, [(100, 100)], [(64, 512, 16, 16)], True, 1000), ( "softmax", lambda x: MF.softmax(x, axis=1), lambda x: TF.softmax(x, dim=1), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "softplus", MF.softplus, TF.softplus, [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "squeeze", lambda x: MF.squeeze(x, 0), lambda x: torch.squeeze(x, 0), [(1, 100, 100)], [(1, 64, 512, 16, 16)], True, 1000, ), ( "stack", MF.stack, torch.stack, [(100, 100), (100, 100)], [(64, 512, 16, 16), (64, 512, 16, 16)], False, 10000, ), ( "subtensor", lambda x: x[0:20, 10:60], lambda x: x[0:20, 10:60], [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "topk", lambda x: MF.topk(x, 10), lambda x: torch.topk(x, 10), [(100, 100)], [(1000, 1000)], True, 1000, ), ( "tile", lambda x: MF.tile(x, (2,) * len(x.shape)), lambda x: torch.tile(x, (2,) * len(x.shape)), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "transpose", lambda x: MF.transpose(x, list(range(len(x.shape)))[::-1]), lambda x: torch.permute(x, list(range(len(x.shape)))[::-1]), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "where", lambda x: MF.where(x > 0.5, x, x), lambda x: torch.where(x > 0.5, x, x), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ( "uniform", lambda x: mge.random.uniform(0, 1, x.shape), lambda x: torch.rand(x.shape, device="cuda"), [(100, 100)], [(64, 512, 16, 16)], True, 1000, ), ] def perf_func(func, inps, reps, unpack_inps, is_mge): if is_mge: mge._full_sync() tik = time.time() for _ in range(reps): if unpack_inps: out = func(*inps) else: out = func(inps) mge._full_sync() else: torch.cuda.synchronize() with torch.no_grad(): tik = time.time() for _ in range(reps): if unpack_inps: out = func(*inps) else: out = func(inps) torch.cuda.synchronize() return time.time() - tik def get_avg_time(func, inps, reps, unpack_inps, is_mge): # warm up for _ in range(2): t = perf_func(func, inps, reps, unpack_inps, is_mge) times = [] for _ in range(5): t = perf_func(func, inps, reps, unpack_inps, is_mge) times.append(t) return np.mean(times) def get_perf_results(mge_func, torch_func, shapes, unpack_inps, reps): inps = [np.random.randn(*shape) for shape in shapes] inps_mge = [mge.tensor(inp, dtype="float32") for inp in inps] avg_time_mge = get_avg_time(mge_func, inps_mge, reps, unpack_inps, True) inps_torch = [torch.Tensor(inp).type(torch.float).cuda() for inp in inps] avg_time_torch = get_avg_time(torch_func, inps_torch, reps, unpack_inps, False) return avg_time_mge, avg_time_torch if __name__ == "__main__": header = [ "opr_name", "time(mge/pytorch; small input)", "time(mge/pytorch; large input)", ] table = [] for case in test_cases: assert len(case) == 7 name, mge_func, torch_func, small_shapes, large_shapes, unpack_inps, reps = case data = [] data.append(name) print("========== op: {}".format(name)) avg_time_mge, avg_time_torch = get_perf_results( mge_func, torch_func, small_shapes, unpack_inps, reps ) print("mge time: {}".format(avg_time_mge)) print("torch time: {}".format(avg_time_torch)) data.append("{:.2f}".format(avg_time_mge / avg_time_torch)) avg_time_mge, avg_time_torch = get_perf_results( mge_func, torch_func, large_shapes, unpack_inps, reps ) print("mge time: {}".format(avg_time_mge)) print("torch time: {}".format(avg_time_torch)) data.append("{:.2f}".format(avg_time_mge / avg_time_torch)) table.append(data) print(tabulate(table, header, tablefmt="github"))
[ "megengine.random.normal", "megengine.functional.adaptive_max_pool2d", "megengine.functional.avg_pool2d", "megengine.module.Conv2d", "megengine.functional.repeat", "megengine.functional.max_pool2d", "megengine.functional.squeeze", "megengine.module.BatchNorm2d", "megengine.functional.leaky_relu", "megengine.functional.broadcast_to", "megengine.functional.split", "megengine.tensor", "megengine.functional.dropout", "megengine.functional.adaptive_avg_pool2d", "megengine.module.ConvTranspose2d", "megengine.functional.max", "megengine._full_sync", "megengine.module.Linear", "megengine.module.Conv3d", "megengine.functional.expand_dims", "megengine.functional.softmax", "megengine.functional.topk", "megengine.random.uniform", "megengine.functional.mean", "megengine.functional.where" ]
[((10595, 10609), 'numpy.mean', 'np.mean', (['times'], {}), '(times)\n', (10602, 10609), True, 'import numpy as np\n'), ((629, 655), 'megengine.module.Conv2d', 'MM.Conv2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (638, 655), True, 'import megengine.module as MM\n'), ((720, 757), 'megengine.module.Conv2d', 'MM.Conv2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {'groups': '(32)'}), '(32, 32, 3, 1, 0, groups=32)\n', (729, 757), True, 'import megengine.module as MM\n'), ((835, 861), 'megengine.module.Conv3d', 'MM.Conv3d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (844, 861), True, 'import megengine.module as MM\n'), ((932, 967), 'megengine.module.ConvTranspose2d', 'MM.ConvTranspose2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (950, 967), True, 'import megengine.module as MM\n'), ((1048, 1066), 'megengine.module.BatchNorm2d', 'MM.BatchNorm2d', (['(64)'], {}), '(64)\n', (1062, 1066), True, 'import megengine.module as MM\n'), ((1111, 1132), 'megengine.module.Linear', 'MM.Linear', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (1120, 1132), True, 'import megengine.module as MM\n'), ((9764, 9780), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (9778, 9780), True, 'import megengine as mge\n'), ((9795, 9806), 'time.time', 'time.time', ([], {}), '()\n', (9804, 9806), False, 'import time\n'), ((9958, 9974), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (9972, 9974), True, 'import megengine as mge\n'), ((9993, 10017), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (10015, 10017), False, 'import torch\n'), ((10249, 10273), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (10271, 10273), False, 'import torch\n'), ((10285, 10296), 'time.time', 'time.time', ([], {}), '()\n', (10294, 10296), False, 'import time\n'), ((10695, 10718), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (10710, 10718), True, 'import numpy as np\n'), ((10757, 10789), 'megengine.tensor', 'mge.tensor', (['inp'], {'dtype': '"""float32"""'}), "(inp, dtype='float32')\n", (10767, 10789), True, 'import megengine as mge\n'), ((12149, 12191), 'tabulate.tabulate', 'tabulate', (['table', 'header'], {'tablefmt': '"""github"""'}), "(table, header, tablefmt='github')\n", (12157, 12191), False, 'from tabulate import tabulate\n'), ((1305, 1338), 'megengine.functional.adaptive_avg_pool2d', 'MF.adaptive_avg_pool2d', (['x', '(7, 7)'], {}), '(x, (7, 7))\n', (1327, 1338), True, 'import megengine.functional as MF\n'), ((1358, 1391), 'torch.nn.functional.adaptive_avg_pool2d', 'TF.adaptive_avg_pool2d', (['x', '(7, 7)'], {}), '(x, (7, 7))\n', (1380, 1391), True, 'import torch.nn.functional as TF\n'), ((1539, 1572), 'megengine.functional.adaptive_max_pool2d', 'MF.adaptive_max_pool2d', (['x', '(7, 7)'], {}), '(x, (7, 7))\n', (1561, 1572), True, 'import megengine.functional as MF\n'), ((1592, 1625), 'torch.nn.functional.adaptive_max_pool2d', 'TF.adaptive_max_pool2d', (['x', '(7, 7)'], {}), '(x, (7, 7))\n', (1614, 1625), True, 'import torch.nn.functional as TF\n'), ((1848, 1867), 'megengine.functional.avg_pool2d', 'MF.avg_pool2d', (['x', '(2)'], {}), '(x, 2)\n', (1861, 1867), True, 'import megengine.functional as MF\n'), ((1887, 1906), 'torch.nn.functional.avg_pool2d', 'TF.avg_pool2d', (['x', '(2)'], {}), '(x, 2)\n', (1900, 1906), True, 'import torch.nn.functional as TF\n'), ((2044, 2078), 'megengine.functional.broadcast_to', 'MF.broadcast_to', (['x', '((5,) + x.shape)'], {}), '(x, (5,) + x.shape)\n', (2059, 2078), True, 'import megengine.functional as MF\n'), ((2098, 2135), 'torch.broadcast_to', 'torch.broadcast_to', (['x', '((5,) + x.shape)'], {}), '(x, (5,) + x.shape)\n', (2116, 2135), False, 'import torch\n'), ((3552, 3570), 'megengine.functional.dropout', 'MF.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (3562, 3570), True, 'import megengine.functional as MF\n'), ((4284, 4304), 'megengine.functional.expand_dims', 'MF.expand_dims', (['x', '(0)'], {}), '(x, 0)\n', (4298, 4304), True, 'import megengine.functional as MF\n'), ((4324, 4345), 'torch.unsqueeze', 'torch.unsqueeze', (['x', '(0)'], {}), '(x, 0)\n', (4339, 4345), False, 'import torch\n'), ((5308, 5329), 'megengine.functional.leaky_relu', 'MF.leaky_relu', (['x', '(0.5)'], {}), '(x, 0.5)\n', (5321, 5329), True, 'import megengine.functional as MF\n'), ((5349, 5370), 'torch.nn.functional.leaky_relu', 'TF.leaky_relu', (['x', '(0.5)'], {}), '(x, 0.5)\n', (5362, 5370), True, 'import torch.nn.functional as TF\n'), ((5954, 5973), 'megengine.functional.max_pool2d', 'MF.max_pool2d', (['x', '(2)'], {}), '(x, 2)\n', (5967, 5973), True, 'import megengine.functional as MF\n'), ((5993, 6012), 'torch.nn.functional.max_pool2d', 'TF.max_pool2d', (['x', '(2)'], {}), '(x, 2)\n', (6006, 6012), True, 'import torch.nn.functional as TF\n'), ((6147, 6179), 'megengine.random.normal', 'mge.random.normal', (['(0)', '(1)', 'x.shape'], {}), '(0, 1, x.shape)\n', (6164, 6179), True, 'import megengine as mge\n'), ((6199, 6234), 'torch.randn', 'torch.randn', (['x.shape'], {'device': '"""cuda"""'}), "(x.shape, device='cuda')\n", (6210, 6234), False, 'import torch\n'), ((6525, 6537), 'megengine.functional.max', 'MF.max', (['x', '(0)'], {}), '(x, 0)\n', (6531, 6537), True, 'import megengine.functional as MF\n'), ((6557, 6572), 'torch.max', 'torch.max', (['x', '(0)'], {}), '(x, 0)\n', (6566, 6572), False, 'import torch\n'), ((6707, 6720), 'megengine.functional.mean', 'MF.mean', (['x', '(0)'], {}), '(x, 0)\n', (6714, 6720), True, 'import megengine.functional as MF\n'), ((6740, 6756), 'torch.mean', 'torch.mean', (['x', '(0)'], {}), '(x, 0)\n', (6750, 6756), False, 'import torch\n'), ((6891, 6904), 'megengine.functional.mean', 'MF.mean', (['x', '(0)'], {}), '(x, 0)\n', (6898, 6904), True, 'import megengine.functional as MF\n'), ((6924, 6940), 'torch.mean', 'torch.mean', (['x', '(0)'], {}), '(x, 0)\n', (6934, 6940), False, 'import torch\n'), ((7231, 7246), 'megengine.functional.repeat', 'MF.repeat', (['x', '(5)'], {}), '(x, 5)\n', (7240, 7246), True, 'import megengine.functional as MF\n'), ((7266, 7295), 'torch.repeat_interleave', 'torch.repeat_interleave', (['x', '(5)'], {}), '(x, 5)\n', (7289, 7295), False, 'import torch\n'), ((7503, 7517), 'megengine.functional.split', 'MF.split', (['x', '(5)'], {}), '(x, 5)\n', (7511, 7517), True, 'import megengine.functional as MF\n'), ((7537, 7554), 'torch.split', 'torch.split', (['x', '(5)'], {}), '(x, 5)\n', (7548, 7554), False, 'import torch\n'), ((7773, 7794), 'megengine.functional.softmax', 'MF.softmax', (['x'], {'axis': '(1)'}), '(x, axis=1)\n', (7783, 7794), True, 'import megengine.functional as MF\n'), ((7814, 7834), 'torch.nn.functional.softmax', 'TF.softmax', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (7824, 7834), True, 'import torch.nn.functional as TF\n'), ((8119, 8135), 'megengine.functional.squeeze', 'MF.squeeze', (['x', '(0)'], {}), '(x, 0)\n', (8129, 8135), True, 'import megengine.functional as MF\n'), ((8155, 8174), 'torch.squeeze', 'torch.squeeze', (['x', '(0)'], {}), '(x, 0)\n', (8168, 8174), False, 'import torch\n'), ((8670, 8684), 'megengine.functional.topk', 'MF.topk', (['x', '(10)'], {}), '(x, 10)\n', (8677, 8684), True, 'import megengine.functional as MF\n'), ((8704, 8721), 'torch.topk', 'torch.topk', (['x', '(10)'], {}), '(x, 10)\n', (8714, 8721), False, 'import torch\n'), ((9308, 9331), 'megengine.functional.where', 'MF.where', (['(x > 0.5)', 'x', 'x'], {}), '(x > 0.5, x, x)\n', (9316, 9331), True, 'import megengine.functional as MF\n'), ((9351, 9377), 'torch.where', 'torch.where', (['(x > 0.5)', 'x', 'x'], {}), '(x > 0.5, x, x)\n', (9362, 9377), False, 'import torch\n'), ((9508, 9541), 'megengine.random.uniform', 'mge.random.uniform', (['(0)', '(1)', 'x.shape'], {}), '(0, 1, x.shape)\n', (9526, 9541), True, 'import megengine as mge\n'), ((9561, 9595), 'torch.rand', 'torch.rand', (['x.shape'], {'device': '"""cuda"""'}), "(x.shape, device='cuda')\n", (9571, 9595), False, 'import torch\n'), ((10031, 10046), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10044, 10046), False, 'import torch\n'), ((10066, 10077), 'time.time', 'time.time', ([], {}), '()\n', (10075, 10077), False, 'import time\n'), ((657, 683), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (666, 683), True, 'import torch.nn as nn\n'), ((767, 804), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {'groups': '(32)'}), '(32, 32, 3, 1, 0, groups=32)\n', (776, 804), True, 'import torch.nn as nn\n'), ((863, 889), 'torch.nn.Conv3d', 'nn.Conv3d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (872, 889), True, 'import torch.nn as nn\n'), ((977, 1012), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(32)', '(32)', '(3)', '(1)', '(0)'], {}), '(32, 32, 3, 1, 0)\n', (995, 1012), True, 'import torch.nn as nn\n'), ((1068, 1086), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (1082, 1086), True, 'import torch.nn as nn\n'), ((1134, 1155), 'torch.nn.Linear', 'nn.Linear', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (1143, 1155), True, 'import torch.nn as nn\n'), ((10903, 10920), 'torch.Tensor', 'torch.Tensor', (['inp'], {}), '(inp)\n', (10915, 10920), False, 'import torch\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine import Parameter, tensor from megengine.core._imperative_rt.core2 import sync from megengine.device import get_default_device, set_default_device from megengine.functional.distributed import ( all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter, ) def run_reduce_sum(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = reduce_sum(inp) if rank == 0: assert np.allclose(output.numpy(), expect[rank]) else: assert output is None x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = x + y data = (x, y) expect = (z, None) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_reduce_sum_multishape(shape): run_reduce_sum(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_reduce_sum_multidtype(dtype): run_reduce_sum((8, 10), dtype) def run_broadcast(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = broadcast(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = x + 1 data = (x, y) expect = (x, x) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_broadcast_multishape(shape): run_broadcast(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_broadcast_multidtype(dtype): run_broadcast((8, 10), dtype) def run_all_gather(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = all_gather(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = np.concatenate((x, y)) data = (x, y) expect = (z, z) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_all_gather_multishape(shape): run_all_gather(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_all_gather_multidtype(dtype): run_all_gather((8, 10), dtype) def run_reduce_scatter_sum(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = reduce_scatter_sum(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = x + y data = (x, y) expect = (z[: shape[0] // 2], z[shape[0] // 2 :]) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 3), (8, 10), (88, 44)], ids=str) @pytest.mark.isolated_distributed def test_reduce_scatter_sum_multishape(shape): run_reduce_scatter_sum(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_reduce_scatter_sum_multidtype(dtype): run_reduce_scatter_sum((8, 10), dtype) def run_all_reduce_sum(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = all_reduce_sum(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = x + y data = (x, y) expect = (z, z) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_sum_multishape(shape): run_all_reduce_sum(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_sum_multidtype(dtype): run_all_reduce_sum((8, 10), dtype) def run_all_reduce_max(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = all_reduce_max(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = np.maximum(x, y) data = (x, y) expect = (z, z) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_max_multishape(shape): run_all_reduce_max(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_max_multidtype(dtype): run_all_reduce_max((8, 10), dtype) def run_all_reduce_min(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = all_reduce_min(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = np.minimum(x, y) data = (x, y) expect = (z, z) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_min_multishape(shape): run_all_reduce_min(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_all_reduce_min_multidtype(dtype): run_all_reduce_min((8, 10), dtype) def run_gather(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = gather(inp) if rank == 0: assert np.allclose(output.numpy(), expect[rank]) else: assert output is None x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) z = np.concatenate((x, y)) data = (x, y) expect = (z, None) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 3), (8, 10), (99, 77)], ids=str) @pytest.mark.isolated_distributed def test_gather_multishape(shape): run_gather(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_gather_multidtype(dtype): run_gather((8, 10), dtype) def run_scatter(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = scatter(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = x + 1 data = (x, y) expect = (x[: shape[0] // 2], x[shape[0] // 2 :]) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 3), (8, 10), (100, 77)], ids=str) @pytest.mark.isolated_distributed def test_scatter_multishape(shape): run_scatter(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_scatter_multidtype(dtype): run_scatter((8, 10), dtype) def run_all_to_all(shape, dtype): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) output = all_to_all(inp) assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype(dtype) y = np.random.random_sample(shape).astype(dtype) a = np.concatenate((x[: shape[0] // 2], y[: shape[0] // 2])) b = np.concatenate((x[shape[0] // 2 :], y[shape[0] // 2 :])) data = (x, y) expect = (a, b) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 3), (8, 10), (100, 77)], ids=str) @pytest.mark.isolated_distributed def test_all_to_all_multishape(shape): run_all_to_all(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) @pytest.mark.isolated_distributed def test_all_to_all_multidtype(dtype): run_all_to_all((8, 10), dtype) def run_io_remote(shape, dtype): @dist.launcher(n_gpus=2) def worker(val, shape): rank = dist.get_rank() if rank == 0: # remote send x = tensor(val, device="xpu0") remote_send(x, 1) sync() else: # remote recv y = remote_recv(0) assert y.device == get_default_device() np.testing.assert_almost_equal(val, y.numpy()) val = np.random.random_sample(shape).astype(dtype) worker(val, shape) @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed @pytest.mark.parametrize("shape", [(), (1,), (4, 5)], ids=str) def test_io_remote_multishape(shape): run_io_remote(shape, "float32") @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed @pytest.mark.parametrize("dtype", ["float32", "int32", "int8", "uint8"], ids=str) def test_io_remote_multidtype(dtype): run_io_remote((8, 10), dtype) @pytest.mark.require_ngpu(2) def test_cuda_init_before_fork(): a = mge.tensor(1, device="gpu0") @dist.launcher(n_gpus=2) def worker(): a += 1 b = mge.tensor(2) with pytest.raises(AssertionError): worker()
[ "megengine.functional.distributed.all_reduce_sum", "megengine.functional.distributed.all_reduce_max", "megengine.functional.distributed.broadcast", "megengine.distributed.get_rank", "megengine.device.get_default_device", "megengine.functional.distributed.gather", "megengine.functional.distributed.all_to_all", "megengine.functional.distributed.remote_send", "megengine.tensor", "megengine.core._imperative_rt.core2.sync", "megengine.functional.distributed.all_reduce_min", "megengine.functional.distributed.remote_recv", "megengine.functional.distributed.all_gather", "megengine.functional.distributed.reduce_scatter_sum", "megengine.functional.distributed.scatter", "megengine.distributed.launcher", "megengine.functional.distributed.reduce_sum" ]
[((1418, 1445), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (1442, 1445), False, 'import pytest\n'), ((1447, 1532), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str\n )\n", (1470, 1532), False, 'import pytest\n'), ((1641, 1668), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (1665, 1668), False, 'import pytest\n'), ((1670, 1755), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (1693, 1755), False, 'import pytest\n'), ((2240, 2267), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (2264, 2267), False, 'import pytest\n'), ((2269, 2354), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str\n )\n", (2292, 2354), False, 'import pytest\n'), ((2461, 2488), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (2485, 2488), False, 'import pytest\n'), ((2490, 2575), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (2513, 2575), False, 'import pytest\n'), ((3130, 3157), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (3154, 3157), False, 'import pytest\n'), ((3159, 3235), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(1,), (2, 3), (8, 10), (99, 77)], ids=str)\n", (3182, 3235), False, 'import pytest\n'), ((3349, 3376), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (3373, 3376), False, 'import pytest\n'), ((3378, 3463), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (3401, 3463), False, 'import pytest\n'), ((4053, 4080), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (4077, 4080), False, 'import pytest\n'), ((4082, 4152), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (88, 44)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (88, 44)], ids=str)\n", (4105, 4152), False, 'import pytest\n'), ((4282, 4309), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (4306, 4309), False, 'import pytest\n'), ((4311, 4396), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (4334, 4396), False, 'import pytest\n'), ((4960, 4987), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (4984, 4987), False, 'import pytest\n'), ((4989, 5074), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str\n )\n", (5012, 5074), False, 'import pytest\n'), ((5191, 5218), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (5215, 5218), False, 'import pytest\n'), ((5220, 5305), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (5243, 5305), False, 'import pytest\n'), ((5872, 5899), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (5896, 5899), False, 'import pytest\n'), ((5901, 5986), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str\n )\n", (5924, 5986), False, 'import pytest\n'), ((6103, 6130), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (6127, 6130), False, 'import pytest\n'), ((6132, 6217), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (6155, 6217), False, 'import pytest\n'), ((6784, 6811), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (6808, 6811), False, 'import pytest\n'), ((6813, 6898), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(), (1,), (2, 3), (8, 10), (99, 77)], ids=str\n )\n", (6836, 6898), False, 'import pytest\n'), ((7015, 7042), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (7039, 7042), False, 'import pytest\n'), ((7044, 7129), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (7067, 7129), False, 'import pytest\n'), ((7763, 7790), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (7787, 7790), False, 'import pytest\n'), ((7792, 7862), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (99, 77)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (99, 77)], ids=str)\n", (7815, 7862), False, 'import pytest\n'), ((7968, 7995), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (7992, 7995), False, 'import pytest\n'), ((7997, 8082), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (8020, 8082), False, 'import pytest\n'), ((8589, 8616), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (8613, 8616), False, 'import pytest\n'), ((8618, 8689), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (100, 77)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (100, 77)], ids=str)\n", (8641, 8689), False, 'import pytest\n'), ((8797, 8824), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (8821, 8824), False, 'import pytest\n'), ((8826, 8911), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (8849, 8911), False, 'import pytest\n'), ((9561, 9588), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (9585, 9588), False, 'import pytest\n'), ((9590, 9661), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (100, 77)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (100, 77)], ids=str)\n", (9613, 9661), False, 'import pytest\n'), ((9775, 9802), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (9799, 9802), False, 'import pytest\n'), ((9804, 9889), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (9827, 9889), False, 'import pytest\n'), ((10498, 10525), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (10522, 10525), False, 'import pytest\n'), ((10561, 10622), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(), (1,), (4, 5)]'], {'ids': 'str'}), "('shape', [(), (1,), (4, 5)], ids=str)\n", (10584, 10622), False, 'import pytest\n'), ((10700, 10727), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (10724, 10727), False, 'import pytest\n'), ((10763, 10848), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32', 'int32', 'int8', 'uint8']"], {'ids': 'str'}), "('dtype', ['float32', 'int32', 'int8', 'uint8'], ids=str\n )\n", (10786, 10848), False, 'import pytest\n'), ((10919, 10946), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (10943, 10946), False, 'import pytest\n'), ((946, 969), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (959, 969), True, 'import megengine.distributed as dist\n'), ((1899, 1922), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (1912, 1922), True, 'import megengine.distributed as dist\n'), ((2718, 2741), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (2731, 2741), True, 'import megengine.distributed as dist\n'), ((3041, 3063), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (3055, 3063), True, 'import numpy as np\n'), ((3616, 3639), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (3629, 3639), True, 'import megengine.distributed as dist\n'), ((4561, 4584), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (4574, 4584), True, 'import megengine.distributed as dist\n'), ((5462, 5485), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (5475, 5485), True, 'import megengine.distributed as dist\n'), ((5789, 5805), 'numpy.maximum', 'np.maximum', (['x', 'y'], {}), '(x, y)\n', (5799, 5805), True, 'import numpy as np\n'), ((6374, 6397), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (6387, 6397), True, 'import megengine.distributed as dist\n'), ((6701, 6717), 'numpy.minimum', 'np.minimum', (['x', 'y'], {}), '(x, y)\n', (6711, 6717), True, 'import numpy as np\n'), ((7278, 7301), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (7291, 7301), True, 'import megengine.distributed as dist\n'), ((7671, 7693), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (7685, 7693), True, 'import numpy as np\n'), ((8216, 8239), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (8229, 8239), True, 'import megengine.distributed as dist\n'), ((9050, 9073), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (9063, 9073), True, 'import megengine.distributed as dist\n'), ((9373, 9427), 'numpy.concatenate', 'np.concatenate', (['(x[:shape[0] // 2], y[:shape[0] // 2])'], {}), '((x[:shape[0] // 2], y[:shape[0] // 2]))\n', (9387, 9427), True, 'import numpy as np\n'), ((9438, 9492), 'numpy.concatenate', 'np.concatenate', (['(x[shape[0] // 2:], y[shape[0] // 2:])'], {}), '((x[shape[0] // 2:], y[shape[0] // 2:]))\n', (9452, 9492), True, 'import numpy as np\n'), ((10033, 10056), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (10046, 10056), True, 'import megengine.distributed as dist\n'), ((10989, 11017), 'megengine.tensor', 'mge.tensor', (['(1)'], {'device': '"""gpu0"""'}), "(1, device='gpu0')\n", (10999, 11017), True, 'import megengine as mge\n'), ((11024, 11047), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (11037, 11047), True, 'import megengine.distributed as dist\n'), ((1015, 1030), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1028, 1030), True, 'import megengine.distributed as dist\n'), ((1045, 1063), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (1051, 1063), False, 'from megengine import Parameter, tensor\n'), ((1081, 1096), 'megengine.functional.distributed.reduce_sum', 'reduce_sum', (['inp'], {}), '(inp)\n', (1091, 1096), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((1968, 1983), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1981, 1983), True, 'import megengine.distributed as dist\n'), ((1998, 2016), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (2004, 2016), False, 'from megengine import Parameter, tensor\n'), ((2034, 2048), 'megengine.functional.distributed.broadcast', 'broadcast', (['inp'], {}), '(inp)\n', (2043, 2048), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((2787, 2802), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2800, 2802), True, 'import megengine.distributed as dist\n'), ((2817, 2835), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (2823, 2835), False, 'from megengine import Parameter, tensor\n'), ((2853, 2868), 'megengine.functional.distributed.all_gather', 'all_gather', (['inp'], {}), '(inp)\n', (2863, 2868), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((3685, 3700), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3698, 3700), True, 'import megengine.distributed as dist\n'), ((3715, 3733), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (3721, 3733), False, 'from megengine import Parameter, tensor\n'), ((3751, 3774), 'megengine.functional.distributed.reduce_scatter_sum', 'reduce_scatter_sum', (['inp'], {}), '(inp)\n', (3769, 3774), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((4630, 4645), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4643, 4645), True, 'import megengine.distributed as dist\n'), ((4660, 4678), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (4666, 4678), False, 'from megengine import Parameter, tensor\n'), ((4696, 4715), 'megengine.functional.distributed.all_reduce_sum', 'all_reduce_sum', (['inp'], {}), '(inp)\n', (4710, 4715), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((5531, 5546), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5544, 5546), True, 'import megengine.distributed as dist\n'), ((5561, 5579), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (5567, 5579), False, 'from megengine import Parameter, tensor\n'), ((5597, 5616), 'megengine.functional.distributed.all_reduce_max', 'all_reduce_max', (['inp'], {}), '(inp)\n', (5611, 5616), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((6443, 6458), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6456, 6458), True, 'import megengine.distributed as dist\n'), ((6473, 6491), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (6479, 6491), False, 'from megengine import Parameter, tensor\n'), ((6509, 6528), 'megengine.functional.distributed.all_reduce_min', 'all_reduce_min', (['inp'], {}), '(inp)\n', (6523, 6528), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((7347, 7362), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7360, 7362), True, 'import megengine.distributed as dist\n'), ((7377, 7395), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (7383, 7395), False, 'from megengine import Parameter, tensor\n'), ((7413, 7424), 'megengine.functional.distributed.gather', 'gather', (['inp'], {}), '(inp)\n', (7419, 7424), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((8285, 8300), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8298, 8300), True, 'import megengine.distributed as dist\n'), ((8315, 8333), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (8321, 8333), False, 'from megengine import Parameter, tensor\n'), ((8351, 8363), 'megengine.functional.distributed.scatter', 'scatter', (['inp'], {}), '(inp)\n', (8358, 8363), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((9119, 9134), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (9132, 9134), True, 'import megengine.distributed as dist\n'), ((9149, 9167), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (9155, 9167), False, 'from megengine import Parameter, tensor\n'), ((9185, 9200), 'megengine.functional.distributed.all_to_all', 'all_to_all', (['inp'], {}), '(inp)\n', (9195, 9200), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((10100, 10115), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (10113, 10115), True, 'import megengine.distributed as dist\n'), ((11093, 11106), 'megengine.tensor', 'mge.tensor', (['(2)'], {}), '(2)\n', (11103, 11106), True, 'import megengine as mge\n'), ((11117, 11146), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (11130, 11146), False, 'import pytest\n'), ((1237, 1267), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1260, 1267), True, 'import numpy as np\n'), ((1290, 1320), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1313, 1320), True, 'import numpy as np\n'), ((2115, 2145), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2138, 2145), True, 'import numpy as np\n'), ((2935, 2965), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2958, 2965), True, 'import numpy as np\n'), ((2988, 3018), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (3011, 3018), True, 'import numpy as np\n'), ((3841, 3871), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (3864, 3871), True, 'import numpy as np\n'), ((3894, 3924), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (3917, 3924), True, 'import numpy as np\n'), ((4782, 4812), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4805, 4812), True, 'import numpy as np\n'), ((4835, 4865), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4858, 4865), True, 'import numpy as np\n'), ((5683, 5713), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (5706, 5713), True, 'import numpy as np\n'), ((5736, 5766), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (5759, 5766), True, 'import numpy as np\n'), ((6595, 6625), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (6618, 6625), True, 'import numpy as np\n'), ((6648, 6678), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (6671, 6678), True, 'import numpy as np\n'), ((7565, 7595), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (7588, 7595), True, 'import numpy as np\n'), ((7618, 7648), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (7641, 7648), True, 'import numpy as np\n'), ((8430, 8460), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (8453, 8460), True, 'import numpy as np\n'), ((9267, 9297), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (9290, 9297), True, 'import numpy as np\n'), ((9320, 9350), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (9343, 9350), True, 'import numpy as np\n'), ((10169, 10195), 'megengine.tensor', 'tensor', (['val'], {'device': '"""xpu0"""'}), "(val, device='xpu0')\n", (10175, 10195), False, 'from megengine import Parameter, tensor\n'), ((10208, 10225), 'megengine.functional.distributed.remote_send', 'remote_send', (['x', '(1)'], {}), '(x, 1)\n', (10219, 10225), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((10238, 10244), 'megengine.core._imperative_rt.core2.sync', 'sync', ([], {}), '()\n', (10242, 10244), False, 'from megengine.core._imperative_rt.core2 import sync\n'), ((10290, 10304), 'megengine.functional.distributed.remote_recv', 'remote_recv', (['(0)'], {}), '(0)\n', (10301, 10304), False, 'from megengine.functional.distributed import all_gather, all_reduce_max, all_reduce_min, all_reduce_sum, all_to_all, broadcast, gather, reduce_scatter_sum, reduce_sum, remote_recv, remote_send, scatter\n'), ((10427, 10457), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (10450, 10457), True, 'import numpy as np\n'), ((10336, 10356), 'megengine.device.get_default_device', 'get_default_device', ([], {}), '()\n', (10354, 10356), False, 'from megengine.device import get_default_device, set_default_device\n')]
import math import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None): assert clamp is None or clamp >= 0 def_gain = 1.0 if act in ['relu', 'lrelu', 'swish']: # 除了这些激活函数的def_gain = np.sqrt(2),其余激活函数的def_gain = 1.0 def_gain = np.sqrt(2) def_alpha = 0.0 if act in ['lrelu']: # 除了这些激活函数的def_alpha = 0.2,其余激活函数的def_alpha = 0.0 def_alpha = 0.2 alpha = float(alpha if alpha is not None else def_alpha) gain = float(gain if gain is not None else def_gain) clamp = float(clamp if clamp is not None else -1) # 加上偏移 if b is not None: new_shape = [-1 if i == dim else 1 for i in range(x.ndim)] b_ = F.reshape(b, new_shape) x = x + b_ x_add_b = x # 经过激活函数 alpha = float(alpha) # 只有leaky_relu需要 if act == 'linear': pass elif act == 'relu': x = F.relu(x) elif act == 'lrelu': x = F.leaky_relu(x, alpha) elif act == 'tanh': x = F.tanh(x) elif act == 'sigmoid': x = F.sigmoid(x) elif act == 'elu': x = F.elu(x) elif act == 'selu': x = F.selu(x) elif act == 'softplus': x = F.softplus(x) elif act == 'swish': x = F.sigmoid(x) * x else: raise NotImplementedError("activation \'{}\' is not implemented.".format(act)) act_x = x # 乘以缩放因子 gain = float(gain) if gain != 1: x = x * gain gain_x = x # 限制范围 if clamp >= 0: x = F.clip(x, -clamp, clamp) clamp_x = x return clamp_x class FullyConnectedLayer(M.Module): def __init__(self, in_features, # Number of input features. out_features, # Number of output features. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier = 1, # Learning rate multiplier. bias_init = 0, # Initial value for the additive bias. ): super().__init__() self.activation = activation self.weight = mge.Parameter(mge.tensor(np.random.randn(out_features, in_features).astype(np.float32)) / lr_multiplier) self.bias = mge.Parameter(mge.tensor(np.ones(out_features, ).astype(np.float32) * bias_init)) if bias else None self.weight_gain = lr_multiplier / np.sqrt(in_features) self.weight_gain = float(self.weight_gain) self.bias_gain = lr_multiplier def forward(self, x): # w = self.weight.to(x.dtype) * self.weight_gain w = self.weight * self.weight_gain b = self.bias if b is not None: # b = b.to(x.dtype) if self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: out = F.matmul(x, w, transpose_b=True) + F.expand_dims(b, 0) else: # r = x.matmul(w.t()) r = F.matmul(x, w, transpose_b=True) out = bias_act(r, b, act=self.activation) return out
[ "megengine.functional.sigmoid", "megengine.functional.softplus", "megengine.functional.matmul", "megengine.functional.expand_dims", "megengine.functional.relu", "megengine.functional.leaky_relu", "megengine.functional.elu", "megengine.functional.clip", "megengine.functional.selu", "megengine.functional.reshape", "megengine.functional.tanh" ]
[((379, 389), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (386, 389), True, 'import numpy as np\n'), ((797, 820), 'megengine.functional.reshape', 'F.reshape', (['b', 'new_shape'], {}), '(b, new_shape)\n', (806, 820), True, 'import megengine.functional as F\n'), ((1597, 1621), 'megengine.functional.clip', 'F.clip', (['x', '(-clamp)', 'clamp'], {}), '(x, -clamp, clamp)\n', (1603, 1621), True, 'import megengine.functional as F\n'), ((986, 995), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (992, 995), True, 'import megengine.functional as F\n'), ((2521, 2541), 'numpy.sqrt', 'np.sqrt', (['in_features'], {}), '(in_features)\n', (2528, 2541), True, 'import numpy as np\n'), ((3110, 3142), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {'transpose_b': '(True)'}), '(x, w, transpose_b=True)\n', (3118, 3142), True, 'import megengine.functional as F\n'), ((1033, 1055), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x', 'alpha'], {}), '(x, alpha)\n', (1045, 1055), True, 'import megengine.functional as F\n'), ((2991, 3023), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {'transpose_b': '(True)'}), '(x, w, transpose_b=True)\n', (2999, 3023), True, 'import megengine.functional as F\n'), ((3026, 3045), 'megengine.functional.expand_dims', 'F.expand_dims', (['b', '(0)'], {}), '(b, 0)\n', (3039, 3045), True, 'import megengine.functional as F\n'), ((1092, 1101), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (1098, 1101), True, 'import megengine.functional as F\n'), ((1141, 1153), 'megengine.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (1150, 1153), True, 'import megengine.functional as F\n'), ((1189, 1197), 'megengine.functional.elu', 'F.elu', (['x'], {}), '(x)\n', (1194, 1197), True, 'import megengine.functional as F\n'), ((2278, 2320), 'numpy.random.randn', 'np.random.randn', (['out_features', 'in_features'], {}), '(out_features, in_features)\n', (2293, 2320), True, 'import numpy as np\n'), ((1234, 1243), 'megengine.functional.selu', 'F.selu', (['x'], {}), '(x)\n', (1240, 1243), True, 'import megengine.functional as F\n'), ((2403, 2424), 'numpy.ones', 'np.ones', (['out_features'], {}), '(out_features)\n', (2410, 2424), True, 'import numpy as np\n'), ((1284, 1297), 'megengine.functional.softplus', 'F.softplus', (['x'], {}), '(x)\n', (1294, 1297), True, 'import megengine.functional as F\n'), ((1335, 1347), 'megengine.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (1344, 1347), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Test int8 quantizated model on ImageNet. Note: * QAT simulate int8 with fp32, gpu only. * Quantized use real int8, cpu only, a bit slow. * Results may be slightly different between qat and quantized mode. """ import argparse import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument( "-m", "--mode", default="qat", type=str, choices=["normal", "qat", "quantized"], help="Quantization Mode\n" "normal: no quantization, using float32\n" "qat: quantization aware training, simulate int8\n" "quantized: convert mode to int8 quantized, inference only", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size test_proc = dist.launcher(worker) if world_size > 1 else worker test_proc(world_size, args) def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) model = models.__dict__[args.arch]() if args.mode != "normal": quantize_qat(model, qconfig=Q.ema_fakequant_qconfig) if args.checkpoint: logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) if args.mode == "quantized": quantize(model) # Define valid graph def valid_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 # Build valid datasets logger.info("preparing dataset..") valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args) if rank == 0: logger.info("TEST %f, %f", valid_acc, valid_acc5) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label = mge.tensor(label, dtype="int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info("Step %d, %s %s %s %s", step, objs, top1, top5, total_time) return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.distributed.is_distributed", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop", "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.data.dataset.ImageNet", "megengine.data.transform.Resize", "megengine.tensor", "megengine.distributed.helper.get_device_count_by_fork", "megengine.functional.loss.cross_entropy", "megengine.quantization.quantize.quantize", "megengine.quantization.quantize.quantize_qat", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.topk_accuracy", "megengine.load", "megengine.distributed.launcher" ]
[((950, 974), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (964, 974), True, 'import megengine as mge\n'), ((1002, 1027), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1025, 1027), False, 'import argparse\n'), ((2354, 2369), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2367, 2369), True, 'import megengine.distributed as dist\n'), ((3627, 3672), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (3648, 3672), True, 'import megengine.data as data\n'), ((3693, 3763), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (3715, 3763), True, 'import megengine.data as data\n'), ((4362, 4373), 'time.time', 'time.time', ([], {}), '()\n', (4371, 4373), False, 'import time\n'), ((2010, 2053), 'megengine.distributed.helper.get_device_count_by_fork', 'dist.helper.get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2046, 2053), True, 'import megengine.distributed as dist\n'), ((2184, 2205), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (2197, 2205), True, 'import megengine.distributed as dist\n'), ((2608, 2660), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['model'], {'qconfig': 'Q.ema_fakequant_qconfig'}), '(model, qconfig=Q.ema_fakequant_qconfig)\n', (2620, 2660), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((2773, 2798), 'megengine.load', 'mge.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (2781, 2798), True, 'import megengine as mge\n'), ((2959, 2974), 'megengine.quantization.quantize.quantize', 'quantize', (['model'], {}), '(model)\n', (2967, 2974), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((3101, 3154), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (3121, 3154), True, 'import megengine.functional as F\n'), ((3176, 3214), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (3191, 3214), True, 'import megengine.functional as F\n'), ((3226, 3247), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (3245, 3247), True, 'import megengine.distributed as dist\n'), ((4472, 4506), 'megengine.tensor', 'mge.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (4482, 4506), True, 'import megengine as mge\n'), ((4523, 4555), 'megengine.tensor', 'mge.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (4533, 4555), True, 'import megengine as mge\n'), ((4792, 4803), 'time.time', 'time.time', ([], {}), '()\n', (4801, 4803), False, 'import time\n'), ((3287, 3323), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (3317, 3323), True, 'import megengine.distributed as dist\n'), ((3326, 3347), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3345, 3347), True, 'import megengine.distributed as dist\n'), ((3367, 3403), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (3397, 3403), True, 'import megengine.distributed as dist\n'), ((3406, 3427), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3425, 3427), True, 'import megengine.distributed as dist\n'), ((3447, 3483), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (3477, 3483), True, 'import megengine.distributed as dist\n'), ((3486, 3507), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3505, 3507), True, 'import megengine.distributed as dist\n'), ((4763, 4774), 'time.time', 'time.time', ([], {}), '()\n', (4772, 4774), False, 'import time\n'), ((4849, 4864), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4862, 4864), True, 'import megengine.distributed as dist\n'), ((3909, 3922), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (3917, 3922), True, 'import megengine.data.transform as T\n'), ((3924, 3941), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (3936, 3941), True, 'import megengine.data.transform as T\n'), ((3943, 3964), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(128)'}), '(mean=128)\n', (3954, 3964), True, 'import megengine.data.transform as T\n'), ((3966, 3981), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3974, 3981), True, 'import megengine.data.transform as T\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import multiprocessing as mp import os import cv2 import megengine as mge import megengine.data as data import megengine.data.dataset as dataset import megengine.data.transform as T import megengine.jit as jit import numpy as np from tqdm import tqdm from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus class Config: DATA_WORKERS = 4 NUM_CLASSES = 21 IMG_SIZE = 512 IMG_MEAN = [103.530, 116.280, 123.675] IMG_STD = [57.375, 57.120, 58.395] VAL_BATCHES = 1 VAL_MULTISCALE = [1.0] # [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] VAL_FLIP = False VAL_SLIP = False VAL_SAVE = None cfg = Config() def main(): parser = argparse.ArgumentParser() parser.add_argument( "-d", "--dataset_dir", type=str, default="/data/datasets/VOC2012", ) parser.add_argument( "-m", "--model_path", type=str, default=None, help="eval model file" ) args = parser.parse_args() test_loader, test_size = build_dataloader(args.dataset_dir) print("number of test images: %d" % (test_size)) net = DeepLabV3Plus(class_num=cfg.NUM_CLASSES) model_dict = mge.load(args.model_path) net.load_state_dict(model_dict["state_dict"]) print("load model %s" % (args.model_path)) net.eval() result_list = [] for sample_batched in tqdm(test_loader): img = sample_batched[0].squeeze() label = sample_batched[1].squeeze() pred = evaluate(net, img) result_list.append({"pred": pred, "gt": label}) if cfg.VAL_SAVE: save_results(result_list, cfg.VAL_SAVE) compute_metric(result_list) def pad_image_to_shape(img, shape, border_mode, value): margin = np.zeros(4, np.uint32) pad_height = shape[0] - img.shape[0] if shape[0] - img.shape[0] > 0 else 0 pad_width = shape[1] - img.shape[1] if shape[1] - img.shape[1] > 0 else 0 margin[0] = pad_height // 2 margin[1] = pad_height // 2 + pad_height % 2 margin[2] = pad_width // 2 margin[3] = pad_width // 2 + pad_width % 2 img = cv2.copyMakeBorder( img, margin[0], margin[1], margin[2], margin[3], border_mode, value=value ) return img, margin def eval_single(net, img, is_flip): @jit.trace(symbolic=True, opt_level=2) def pred_fun(data, net=None): net.eval() pred = net(data) return pred data = mge.tensor() data.set_value(img.transpose(2, 0, 1)[np.newaxis]) pred = pred_fun(data, net=net) if is_flip: img_flip = img[:, ::-1, :] data.set_value(img_flip.transpose(2, 0, 1)[np.newaxis]) pred_flip = pred_fun(data, net=net) pred = (pred + pred_flip[:, :, :, ::-1]) / 2.0 del pred_flip pred = pred.numpy().squeeze().transpose(1, 2, 0) del data return pred def evaluate(net, img): ori_h, ori_w, _ = img.shape pred_all = np.zeros((ori_h, ori_w, cfg.NUM_CLASSES)) for rate in cfg.VAL_MULTISCALE: if cfg.VAL_SLIP: img_scale = cv2.resize( img, None, fx=rate, fy=rate, interpolation=cv2.INTER_LINEAR ) val_size = (cfg.IMG_SIZE, cfg.IMG_SIZE) else: out_h, out_w = int(cfg.IMG_SIZE * rate), int(cfg.IMG_SIZE * rate) img_scale = cv2.resize(img, (out_w, out_h), interpolation=cv2.INTER_LINEAR) val_size = (out_h, out_w) new_h, new_w, _ = img_scale.shape if (new_h <= val_size[0]) and (new_h <= val_size[1]): img_pad, margin = pad_image_to_shape( img_scale, val_size, cv2.BORDER_CONSTANT, value=0 ) pred = eval_single(net, img_pad, cfg.VAL_FLIP) pred = pred[ margin[0] : (pred.shape[0] - margin[1]), margin[2] : (pred.shape[1] - margin[3]), :, ] else: stride_rate = 2 / 3 stride = [int(np.ceil(i * stride_rate)) for i in val_size] print(img_scale.shape, stride, val_size) img_pad, margin = pad_image_to_shape( img_scale, val_size, cv2.BORDER_CONSTANT, value=0 ) pad_h, pad_w = img_pad.shape[:2] r_grid, c_grid = [ int(np.ceil((ps - cs) / stride)) + 1 for ps, cs, stride in zip(img_pad.shape, val_size, stride) ] pred_scale = np.zeros((pad_h, pad_w, cfg.NUM_CLASSES)) count_scale = np.zeros((pad_h, pad_w, cfg.NUM_CLASSES)) for grid_yidx in range(r_grid): for grid_xidx in range(c_grid): s_x = grid_xidx * stride[1] s_y = grid_yidx * stride[0] e_x = min(s_x + val_size[1], pad_w) e_y = min(s_y + val_size[0], pad_h) s_x = e_x - val_size[1] s_y = e_y - val_size[0] img_sub = img_pad[s_y:e_y, s_x:e_x, :] timg_pad, tmargin = pad_image_to_shape( img_sub, val_size, cv2.BORDER_CONSTANT, value=0 ) print(tmargin, timg_pad.shape) tpred = eval_single(net, timg_pad, cfg.VAL_FLIP) tpred = tpred[ margin[0] : (tpred.shape[0] - margin[1]), margin[2] : (tpred.shape[1] - margin[3]), :, ] count_scale[s_y:e_y, s_x:e_x, :] += 1 pred_scale[s_y:e_y, s_x:e_x, :] += tpred pred_scale = pred_scale / count_scale pred = pred_scale[ margin[0] : (pred_scale.shape[0] - margin[1]), margin[2] : (pred_scale.shape[1] - margin[3]), :, ] pred = cv2.resize(pred, (ori_w, ori_h), interpolation=cv2.INTER_LINEAR) pred_all = pred_all + pred pred_all = pred_all / len(cfg.VAL_MULTISCALE) result = np.argmax(pred_all, axis=2).astype(np.uint8) return result def save_results(result_list, save_dir): if not os.path.exists(save_dir): os.makedirs(save_dir) for idx, sample in enumerate(result_list): file_path = os.path.join(save_dir, "%d.png" % idx) cv2.imwrite(file_path, sample["pred"]) file_path = os.path.join(save_dir, "%d.gt.png" % idx) cv2.imwrite(file_path, sample["gt"]) def compute_metric(result_list): """ modified from https://github.com/YudeWang/deeplabv3plus-pytorch """ TP, P, T = [], [], [] for i in range(cfg.NUM_CLASSES): TP.append(mp.Value("i", 0, lock=True)) P.append(mp.Value("i", 0, lock=True)) T.append(mp.Value("i", 0, lock=True)) def compare(start, step, TP, P, T): for idx in tqdm(range(start, len(result_list), step)): pred = result_list[idx]["pred"] gt = result_list[idx]["gt"] cal = gt < 255 mask = (pred == gt) * cal for i in range(cfg.NUM_CLASSES): P[i].acquire() P[i].value += np.sum((pred == i) * cal) P[i].release() T[i].acquire() T[i].value += np.sum((gt == i) * cal) T[i].release() TP[i].acquire() TP[i].value += np.sum((gt == i) * mask) TP[i].release() p_list = [] for i in range(8): p = mp.Process(target=compare, args=(i, 8, TP, P, T)) p.start() p_list.append(p) for p in p_list: p.join() class_names = dataset.PascalVOC.class_names IoU = [] for i in range(cfg.NUM_CLASSES): IoU.append(TP[i].value / (T[i].value + P[i].value - TP[i].value + 1e-10)) for i in range(cfg.NUM_CLASSES): if i == 0: print("%11s:%7.3f%%" % ("backbound", IoU[i] * 100), end="\t") else: if i % 2 != 1: print("%11s:%7.3f%%" % (class_names[i - 1], IoU[i] * 100), end="\t") else: print("%11s:%7.3f%%" % (class_names[i - 1], IoU[i] * 100)) miou = np.mean(np.array(IoU)) print("\n======================================================") print("%11s:%7.3f%%" % ("mIoU", miou * 100)) return miou def build_dataloader(dataset_dir): val_dataset = dataset.PascalVOC(dataset_dir, "val", order=["image", "mask"]) val_sampler = data.SequentialSampler(val_dataset, cfg.VAL_BATCHES) val_dataloader = data.DataLoader( val_dataset, sampler=val_sampler, transform=T.Normalize( mean=cfg.IMG_MEAN, std=cfg.IMG_STD, order=["image", "mask"] ), num_workers=cfg.DATA_WORKERS, ) return val_dataloader, val_dataset.__len__() if __name__ == "__main__": main()
[ "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.jit.trace", "megengine.tensor", "megengine.load", "megengine.data.dataset.PascalVOC" ]
[((1066, 1091), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1089, 1091), False, 'import argparse\n'), ((1465, 1505), 'official.vision.segmentation.deeplabv3plus.DeepLabV3Plus', 'DeepLabV3Plus', ([], {'class_num': 'cfg.NUM_CLASSES'}), '(class_num=cfg.NUM_CLASSES)\n', (1478, 1505), False, 'from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus\n'), ((1523, 1548), 'megengine.load', 'mge.load', (['args.model_path'], {}), '(args.model_path)\n', (1531, 1548), True, 'import megengine as mge\n'), ((1710, 1727), 'tqdm.tqdm', 'tqdm', (['test_loader'], {}), '(test_loader)\n', (1714, 1727), False, 'from tqdm import tqdm\n'), ((2077, 2099), 'numpy.zeros', 'np.zeros', (['(4)', 'np.uint32'], {}), '(4, np.uint32)\n', (2085, 2099), True, 'import numpy as np\n'), ((2426, 2523), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['img', 'margin[0]', 'margin[1]', 'margin[2]', 'margin[3]', 'border_mode'], {'value': 'value'}), '(img, margin[0], margin[1], margin[2], margin[3],\n border_mode, value=value)\n', (2444, 2523), False, 'import cv2\n'), ((2600, 2637), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(2)'}), '(symbolic=True, opt_level=2)\n', (2609, 2637), True, 'import megengine.jit as jit\n'), ((2748, 2760), 'megengine.tensor', 'mge.tensor', ([], {}), '()\n', (2758, 2760), True, 'import megengine as mge\n'), ((3242, 3283), 'numpy.zeros', 'np.zeros', (['(ori_h, ori_w, cfg.NUM_CLASSES)'], {}), '((ori_h, ori_w, cfg.NUM_CLASSES))\n', (3250, 3283), True, 'import numpy as np\n'), ((8680, 8742), 'megengine.data.dataset.PascalVOC', 'dataset.PascalVOC', (['dataset_dir', '"""val"""'], {'order': "['image', 'mask']"}), "(dataset_dir, 'val', order=['image', 'mask'])\n", (8697, 8742), True, 'import megengine.data.dataset as dataset\n'), ((8761, 8813), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['val_dataset', 'cfg.VAL_BATCHES'], {}), '(val_dataset, cfg.VAL_BATCHES)\n', (8783, 8813), True, 'import megengine.data as data\n'), ((6173, 6237), 'cv2.resize', 'cv2.resize', (['pred', '(ori_w, ori_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(pred, (ori_w, ori_h), interpolation=cv2.INTER_LINEAR)\n', (6183, 6237), False, 'import cv2\n'), ((6454, 6478), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (6468, 6478), False, 'import os\n'), ((6488, 6509), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (6499, 6509), False, 'import os\n'), ((6577, 6615), 'os.path.join', 'os.path.join', (['save_dir', "('%d.png' % idx)"], {}), "(save_dir, '%d.png' % idx)\n", (6589, 6615), False, 'import os\n'), ((6624, 6662), 'cv2.imwrite', 'cv2.imwrite', (['file_path', "sample['pred']"], {}), "(file_path, sample['pred'])\n", (6635, 6662), False, 'import cv2\n'), ((6683, 6724), 'os.path.join', 'os.path.join', (['save_dir', "('%d.gt.png' % idx)"], {}), "(save_dir, '%d.gt.png' % idx)\n", (6695, 6724), False, 'import os\n'), ((6733, 6769), 'cv2.imwrite', 'cv2.imwrite', (['file_path', "sample['gt']"], {}), "(file_path, sample['gt'])\n", (6744, 6769), False, 'import cv2\n'), ((7795, 7844), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'compare', 'args': '(i, 8, TP, P, T)'}), '(target=compare, args=(i, 8, TP, P, T))\n', (7805, 7844), True, 'import multiprocessing as mp\n'), ((8475, 8488), 'numpy.array', 'np.array', (['IoU'], {}), '(IoU)\n', (8483, 8488), True, 'import numpy as np\n'), ((3369, 3440), 'cv2.resize', 'cv2.resize', (['img', 'None'], {'fx': 'rate', 'fy': 'rate', 'interpolation': 'cv2.INTER_LINEAR'}), '(img, None, fx=rate, fy=rate, interpolation=cv2.INTER_LINEAR)\n', (3379, 3440), False, 'import cv2\n'), ((3639, 3702), 'cv2.resize', 'cv2.resize', (['img', '(out_w, out_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(img, (out_w, out_h), interpolation=cv2.INTER_LINEAR)\n', (3649, 3702), False, 'import cv2\n'), ((4751, 4792), 'numpy.zeros', 'np.zeros', (['(pad_h, pad_w, cfg.NUM_CLASSES)'], {}), '((pad_h, pad_w, cfg.NUM_CLASSES))\n', (4759, 4792), True, 'import numpy as np\n'), ((4819, 4860), 'numpy.zeros', 'np.zeros', (['(pad_h, pad_w, cfg.NUM_CLASSES)'], {}), '((pad_h, pad_w, cfg.NUM_CLASSES))\n', (4827, 4860), True, 'import numpy as np\n'), ((6337, 6364), 'numpy.argmax', 'np.argmax', (['pred_all'], {'axis': '(2)'}), '(pred_all, axis=2)\n', (6346, 6364), True, 'import numpy as np\n'), ((6970, 6997), 'multiprocessing.Value', 'mp.Value', (['"""i"""', '(0)'], {'lock': '(True)'}), "('i', 0, lock=True)\n", (6978, 6997), True, 'import multiprocessing as mp\n'), ((7016, 7043), 'multiprocessing.Value', 'mp.Value', (['"""i"""', '(0)'], {'lock': '(True)'}), "('i', 0, lock=True)\n", (7024, 7043), True, 'import multiprocessing as mp\n'), ((7062, 7089), 'multiprocessing.Value', 'mp.Value', (['"""i"""', '(0)'], {'lock': '(True)'}), "('i', 0, lock=True)\n", (7070, 7089), True, 'import multiprocessing as mp\n'), ((8920, 8992), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': 'cfg.IMG_MEAN', 'std': 'cfg.IMG_STD', 'order': "['image', 'mask']"}), "(mean=cfg.IMG_MEAN, std=cfg.IMG_STD, order=['image', 'mask'])\n", (8931, 8992), True, 'import megengine.data.transform as T\n'), ((7450, 7475), 'numpy.sum', 'np.sum', (['((pred == i) * cal)'], {}), '((pred == i) * cal)\n', (7456, 7475), True, 'import numpy as np\n'), ((7568, 7591), 'numpy.sum', 'np.sum', (['((gt == i) * cal)'], {}), '((gt == i) * cal)\n', (7574, 7591), True, 'import numpy as np\n'), ((7686, 7710), 'numpy.sum', 'np.sum', (['((gt == i) * mask)'], {}), '((gt == i) * mask)\n', (7692, 7710), True, 'import numpy as np\n'), ((4279, 4303), 'numpy.ceil', 'np.ceil', (['(i * stride_rate)'], {}), '(i * stride_rate)\n', (4286, 4303), True, 'import numpy as np\n'), ((4603, 4630), 'numpy.ceil', 'np.ceil', (['((ps - cs) / stride)'], {}), '((ps - cs) / stride)\n', (4610, 4630), True, 'import numpy as np\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from functools import partial import numpy as np import pytest import megengine as mge import megengine.functional as F import megengine.module as Float import megengine.module.qat as QAT import megengine.module.quantized as Q from megengine import Parameter, Tensor from megengine.core.tensor import dtype from megengine.quantization import ( FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams, ) from megengine.quantization.quantize import ( disable_fake_quant, disable_observer, propagate_qconfig, ) min_max_fakequant_qconfig = QConfig( weight_observer=partial(MinMaxObserver, dtype="qint8_narrow"), act_observer=partial(MinMaxObserver, dtype="qint8"), weight_fake_quant=partial(FakeQuantize, dtype="qint8_narrow"), act_fake_quant=partial(FakeQuantize, dtype="qint8"), ) def gen_inp_scale(): return np.float32(np.random.rand() + 1) min_val = np.random.randint(-127, 0, size=(2,)).astype("float32") max_val = np.random.randint(1, 127, size=(2,)).astype("float32") weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2) act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2) def quant(x, scale): inp_dtype = dtype.qint8(scale) return x.astype(inp_dtype) def fake_quant(x, scale, qmin, qmax): x = x / scale x = F.round(x) x = F.clip(x, qmin, qmax) x = x * scale return x fake_quant_act = partial(fake_quant, qmin=-128, qmax=127) fake_quant_weight = partial(fake_quant, qmin=-127, qmax=127) fake_quant_bias = partial(fake_quant, qmin=-(2 ** 31), qmax=2 ** 31 - 1) def init_qat_net(net): if net.with_weight: net.weight_observer.min_val[...] = Tensor(min_val[0]) net.weight_observer.max_val[...] = Tensor(max_val[0]) if net.with_act: net.act_observer.min_val[...] = Tensor(min_val[1]) net.act_observer.max_val[...] = Tensor(max_val[1]) def test_quant_stub(): normal_net = Float.QuantStub() normal_net.eval() qat_from_float = QAT.QuantStub.from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) qat_net = QAT.QuantStub() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.QuantStub.from_qat_module(qat_net) q_net.eval() x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) def test_dequant_stub(): normal_net = Float.DequantStub() normal_net.eval() qat_from_float = QAT.DequantStub.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) qat_net = QAT.DequantStub() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.DequantStub.from_qat_module(qat_net) q_net.eval() x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.scale = inp_scale normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = normal_net(x) qat = qat_net(x) q = q_net(quant(x, inp_scale)).numpy() np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) @pytest.mark.parametrize("kind", ["cos", "relu", "add", "mul", "fuse_add_relu"]) def test_elemwise(kind): normal_net = Float.Elemwise(kind) normal_net.eval() qat_from_float = QAT.Elemwise.from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) qat_net = QAT.Elemwise(kind) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.Elemwise.from_qat_module(qat_net) q_net.eval() x1_scale = np.float32(np.random.rand() + 1) x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x1 = fake_quant_act(x1, x1_scale) x1.qparams.scale = x1_scale x2_scale = np.float32(np.random.rand() + 1) x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x2 = fake_quant_act(x2, x2_scale) x2.qparams.scale = x2_scale x1_int8 = quant(x1, x1_scale) x2_int8 = quant(x2, x2_scale) # test correctness of `Float`, `QAT` and `Quantized` if kind in ("add", "mul", "fuse_add_relu"): normal = normal_net(x1, x2) qat_without_fakequant = qat_from_float(x1, x2) fake_quant_normal = fake_quant_act(normal_net(x1, x2), act_scale) qat = qat_net(x1, x2) q = q_net(x1_int8, x2_int8).numpy() * act_scale else: normal = normal_net(x1) qat_without_fakequant = qat_from_float(x1) fake_quant_normal = fake_quant_act(normal_net(x1), act_scale) qat = qat_net(x1) q = q_net(x1_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) def test_linear(): normal_net = Float.Linear(3, 3, bias=True) normal_net.eval() qat_net = QAT.Linear(3, 3, bias=True) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) x_int8 = quant(x, inp_scale) weight = np.random.normal(size=(3, 3)).astype("float32") bias = np.random.normal(size=(3,)).astype("float32") normal_net.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.weight[...] = Parameter(weight) qat_net.bias[...] = Parameter(bias) qat_from_float = QAT.Linear.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) q_net = Q.Linear.from_qat_module(qat_net) q_net.eval() normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal.numpy()) np.testing.assert_allclose(q, fake_quant_normal.numpy()) @pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"]) def test_conv(module): normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True) normal_net.eval() qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) x = mge.tensor(np.random.normal(size=(1, 3, 3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) x_int8 = quant(x, inp_scale) weight = np.random.normal(size=(3, 3, 3, 3)).astype("float32") bias = np.random.normal(size=(1, 3, 1, 1)).astype("float32") if module in ("ConvBn2d", "ConvBnRelu2d"): normal_net.conv.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.conv.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.conv.weight[...] = Parameter(weight) qat_net.conv.bias[...] = Parameter(bias) else: normal_net.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.weight[...] = Parameter(weight) qat_net.bias[...] = Parameter(bias) qat_from_float = getattr(QAT, module).from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) q_net = getattr(Q, module).from_qat_module(qat_net) q_net.eval() normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal, atol=1e-5) np.testing.assert_allclose(qat, fake_quant_normal, atol=act_scale) np.testing.assert_allclose(q, fake_quant_normal.numpy(), atol=act_scale) def test_concat(): normal_net = Float.Concat() normal_net.eval() qat_net = QAT.Concat() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) inps = [] inps_int8 = [] for i in range(3): inp_scale = gen_inp_scale() inps.append(mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))) inps[i] = fake_quant_act(inps[i], inp_scale) inps[i].qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) inps_int8.append(quant(inps[i], inp_scale)) qat_from_float = QAT.Concat.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) q_net = Q.Concat.from_qat_module(qat_net) q_net.eval() normal = normal_net(inps) qat_without_fakequant = qat_from_float(inps) fake_quant_normal = fake_quant_act(normal_net(inps), act_scale) qat = qat_net(inps) q = q_net(inps_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal.numpy()) np.testing.assert_allclose(q, fake_quant_normal.numpy())
[ "megengine.quantization.quantize.propagate_qconfig", "megengine.module.Elemwise", "megengine.module.quantized.Elemwise.from_qat_module", "megengine.module.qat.Linear", "megengine.core.tensor.dtype.qint8", "megengine.module.DequantStub", "megengine.module.qat.Linear.from_float_module", "megengine.module.qat.Elemwise", "megengine.module.quantized.QuantStub.from_qat_module", "megengine.module.qat.QuantStub", "megengine.module.quantized.Linear.from_qat_module", "megengine.module.quantized.DequantStub.from_qat_module", "megengine.module.qat.Concat", "megengine.module.qat.Elemwise.from_float_module", "megengine.Parameter", "megengine.module.qat.Concat.from_float_module", "megengine.module.QuantStub", "megengine.module.qat.DequantStub", "megengine.module.quantized.Concat.from_qat_module", "megengine.quantization.quantize.disable_observer", "megengine.functional.round", "megengine.module.Linear", "megengine.module.Concat", "megengine.module.qat.QuantStub.from_float_module", "megengine.functional.clip", "megengine.quantization.quantize.disable_fake_quant", "megengine.module.qat.DequantStub.from_float_module", "megengine.Tensor", "megengine.quantization.create_qparams" ]
[((1778, 1818), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-128)', 'qmax': '(127)'}), '(fake_quant, qmin=-128, qmax=127)\n', (1785, 1818), False, 'from functools import partial\n'), ((1839, 1879), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-127)', 'qmax': '(127)'}), '(fake_quant, qmin=-127, qmax=127)\n', (1846, 1879), False, 'from functools import partial\n'), ((1898, 1950), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-2 ** 31)', 'qmax': '(2 ** 31 - 1)'}), '(fake_quant, qmin=-2 ** 31, qmax=2 ** 31 - 1)\n', (1905, 1950), False, 'from functools import partial\n'), ((4210, 4289), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kind"""', "['cos', 'relu', 'add', 'mul', 'fuse_add_relu']"], {}), "('kind', ['cos', 'relu', 'add', 'mul', 'fuse_add_relu'])\n", (4233, 4289), False, 'import pytest\n'), ((7476, 7549), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""module"""', "['Conv2d', 'ConvBn2d', 'ConvBnRelu2d']"], {}), "('module', ['Conv2d', 'ConvBn2d', 'ConvBnRelu2d'])\n", (7499, 7549), False, 'import pytest\n'), ((1571, 1589), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['scale'], {}), '(scale)\n', (1582, 1589), False, 'from megengine.core.tensor import dtype\n'), ((1687, 1697), 'megengine.functional.round', 'F.round', (['x'], {}), '(x)\n', (1694, 1697), True, 'import megengine.functional as F\n'), ((1706, 1727), 'megengine.functional.clip', 'F.clip', (['x', 'qmin', 'qmax'], {}), '(x, qmin, qmax)\n', (1712, 1727), True, 'import megengine.functional as F\n'), ((2307, 2324), 'megengine.module.QuantStub', 'Float.QuantStub', ([], {}), '()\n', (2322, 2324), True, 'import megengine.module as Float\n'), ((2369, 2412), 'megengine.module.qat.QuantStub.from_float_module', 'QAT.QuantStub.from_float_module', (['normal_net'], {}), '(normal_net)\n', (2400, 2412), True, 'import megengine.module.qat as QAT\n'), ((2443, 2475), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (2459, 2475), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2480, 2514), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (2498, 2514), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2530, 2545), 'megengine.module.qat.QuantStub', 'QAT.QuantStub', ([], {}), '()\n', (2543, 2545), True, 'import megengine.module.qat as QAT\n'), ((2569, 2594), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (2585, 2594), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2600, 2653), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (2617, 2653), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2693, 2729), 'megengine.module.quantized.QuantStub.from_qat_module', 'Q.QuantStub.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (2720, 2729), True, 'import megengine.module.quantized as Q\n'), ((3017, 3074), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (3043, 3074), True, 'import numpy as np\n'), ((3079, 3129), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (3105, 3129), True, 'import numpy as np\n'), ((3235, 3254), 'megengine.module.DequantStub', 'Float.DequantStub', ([], {}), '()\n', (3252, 3254), True, 'import megengine.module as Float\n'), ((3299, 3344), 'megengine.module.qat.DequantStub.from_float_module', 'QAT.DequantStub.from_float_module', (['normal_net'], {}), '(normal_net)\n', (3332, 3344), True, 'import megengine.module.qat as QAT\n'), ((3375, 3409), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (3393, 3409), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3414, 3446), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (3430, 3446), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3462, 3479), 'megengine.module.qat.DequantStub', 'QAT.DequantStub', ([], {}), '()\n', (3477, 3479), True, 'import megengine.module.qat as QAT\n'), ((3503, 3528), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (3519, 3528), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3534, 3587), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (3551, 3587), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3627, 3665), 'megengine.module.quantized.DequantStub.from_qat_module', 'Q.DequantStub.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (3656, 3665), True, 'import megengine.module.quantized as Q\n'), ((4033, 4090), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (4059, 4090), True, 'import numpy as np\n'), ((4095, 4145), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (4121, 4145), True, 'import numpy as np\n'), ((4332, 4352), 'megengine.module.Elemwise', 'Float.Elemwise', (['kind'], {}), '(kind)\n', (4346, 4352), True, 'import megengine.module as Float\n'), ((4397, 4439), 'megengine.module.qat.Elemwise.from_float_module', 'QAT.Elemwise.from_float_module', (['normal_net'], {}), '(normal_net)\n', (4427, 4439), True, 'import megengine.module.qat as QAT\n'), ((4470, 4502), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (4486, 4502), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4507, 4541), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (4525, 4541), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4557, 4575), 'megengine.module.qat.Elemwise', 'QAT.Elemwise', (['kind'], {}), '(kind)\n', (4569, 4575), True, 'import megengine.module.qat as QAT\n'), ((4599, 4624), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (4615, 4624), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4630, 4683), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (4647, 4683), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4723, 4758), 'megengine.module.quantized.Elemwise.from_qat_module', 'Q.Elemwise.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (4749, 4758), True, 'import megengine.module.quantized as Q\n'), ((5818, 5875), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (5844, 5875), True, 'import numpy as np\n'), ((5880, 5930), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (5906, 5930), True, 'import numpy as np\n'), ((6030, 6059), 'megengine.module.Linear', 'Float.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (6042, 6059), True, 'import megengine.module as Float\n'), ((6097, 6124), 'megengine.module.qat.Linear', 'QAT.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (6107, 6124), True, 'import megengine.module.qat as QAT\n'), ((6148, 6173), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (6164, 6173), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6179, 6232), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (6196, 6232), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6798, 6815), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (6807, 6815), False, 'from megengine import Parameter, Tensor\n'), ((6840, 6855), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (6849, 6855), False, 'from megengine import Parameter, Tensor\n'), ((6878, 6918), 'megengine.module.qat.Linear.from_float_module', 'QAT.Linear.from_float_module', (['normal_net'], {}), '(normal_net)\n', (6906, 6918), True, 'import megengine.module.qat as QAT\n'), ((6949, 6983), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (6967, 6983), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6988, 7020), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (7004, 7020), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((7034, 7067), 'megengine.module.quantized.Linear.from_qat_module', 'Q.Linear.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (7058, 7067), True, 'import megengine.module.quantized as Q\n'), ((7291, 7348), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (7317, 7348), True, 'import numpy as np\n'), ((7752, 7777), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (7768, 7777), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((7783, 7836), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (7800, 7836), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((8920, 8952), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (8936, 8952), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((8957, 8991), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (8975, 8991), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((9272, 9341), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {'atol': '(1e-05)'}), '(qat_without_fakequant, normal, atol=1e-05)\n', (9298, 9341), True, 'import numpy as np\n'), ((9345, 9411), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {'atol': 'act_scale'}), '(qat, fake_quant_normal, atol=act_scale)\n', (9371, 9411), True, 'import numpy as np\n'), ((9527, 9541), 'megengine.module.Concat', 'Float.Concat', ([], {}), '()\n', (9539, 9541), True, 'import megengine.module as Float\n'), ((9579, 9591), 'megengine.module.qat.Concat', 'QAT.Concat', ([], {}), '()\n', (9589, 9591), True, 'import megengine.module.qat as QAT\n'), ((9615, 9640), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (9631, 9640), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((9646, 9699), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (9663, 9699), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10115, 10155), 'megengine.module.qat.Concat.from_float_module', 'QAT.Concat.from_float_module', (['normal_net'], {}), '(normal_net)\n', (10143, 10155), True, 'import megengine.module.qat as QAT\n'), ((10186, 10220), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (10204, 10220), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10225, 10257), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (10241, 10257), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10271, 10304), 'megengine.module.quantized.Concat.from_qat_module', 'Q.Concat.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (10295, 10304), True, 'import megengine.module.quantized as Q\n'), ((10543, 10600), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (10569, 10600), True, 'import numpy as np\n'), ((963, 1008), 'functools.partial', 'partial', (['MinMaxObserver'], {'dtype': '"""qint8_narrow"""'}), "(MinMaxObserver, dtype='qint8_narrow')\n", (970, 1008), False, 'from functools import partial\n'), ((1027, 1065), 'functools.partial', 'partial', (['MinMaxObserver'], {'dtype': '"""qint8"""'}), "(MinMaxObserver, dtype='qint8')\n", (1034, 1065), False, 'from functools import partial\n'), ((1089, 1132), 'functools.partial', 'partial', (['FakeQuantize'], {'dtype': '"""qint8_narrow"""'}), "(FakeQuantize, dtype='qint8_narrow')\n", (1096, 1132), False, 'from functools import partial\n'), ((1153, 1189), 'functools.partial', 'partial', (['FakeQuantize'], {'dtype': '"""qint8"""'}), "(FakeQuantize, dtype='qint8')\n", (1160, 1189), False, 'from functools import partial\n'), ((1272, 1309), 'numpy.random.randint', 'np.random.randint', (['(-127)', '(0)'], {'size': '(2,)'}), '(-127, 0, size=(2,))\n', (1289, 1309), True, 'import numpy as np\n'), ((1338, 1374), 'numpy.random.randint', 'np.random.randint', (['(1)', '(127)'], {'size': '(2,)'}), '(1, 127, size=(2,))\n', (1355, 1374), True, 'import numpy as np\n'), ((2045, 2063), 'megengine.Tensor', 'Tensor', (['min_val[0]'], {}), '(min_val[0])\n', (2051, 2063), False, 'from megengine import Parameter, Tensor\n'), ((2107, 2125), 'megengine.Tensor', 'Tensor', (['max_val[0]'], {}), '(max_val[0])\n', (2113, 2125), False, 'from megengine import Parameter, Tensor\n'), ((2187, 2205), 'megengine.Tensor', 'Tensor', (['min_val[1]'], {}), '(min_val[1])\n', (2193, 2205), False, 'from megengine import Parameter, Tensor\n'), ((2246, 2264), 'megengine.Tensor', 'Tensor', (['max_val[1]'], {}), '(max_val[1])\n', (2252, 2264), False, 'from megengine import Parameter, Tensor\n'), ((6418, 6473), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (6432, 6473), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((8028, 8083), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (8042, 8083), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((8496, 8513), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (8505, 8513), False, 'from megengine import Parameter, Tensor\n'), ((8547, 8562), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (8556, 8562), False, 'from megengine import Parameter, Tensor\n'), ((8755, 8772), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (8764, 8772), False, 'from megengine import Parameter, Tensor\n'), ((8801, 8816), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (8810, 8816), False, 'from megengine import Parameter, Tensor\n'), ((1238, 1254), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1252, 1254), True, 'import numpy as np\n'), ((1419, 1452), 'numpy.max', 'np.max', (['[-min_val[0], max_val[0]]'], {}), '([-min_val[0], max_val[0]])\n', (1425, 1452), True, 'import numpy as np\n'), ((1487, 1520), 'numpy.max', 'np.max', (['[-min_val[1], max_val[1]]'], {}), '([-min_val[1], max_val[1]])\n', (1493, 1520), True, 'import numpy as np\n'), ((4803, 4819), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4817, 4819), True, 'import numpy as np\n'), ((4991, 5007), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (5005, 5007), True, 'import numpy as np\n'), ((6523, 6552), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (6539, 6552), True, 'import numpy as np\n'), ((6582, 6609), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3,)'}), '(size=(3,))\n', (6598, 6609), True, 'import numpy as np\n'), ((8133, 8168), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3, 3, 3)'}), '(size=(3, 3, 3, 3))\n', (8149, 8168), True, 'import numpy as np\n'), ((8198, 8233), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 3, 1, 1)'}), '(size=(1, 3, 1, 1))\n', (8214, 8233), True, 'import numpy as np\n'), ((9984, 10039), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (9998, 10039), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((2767, 2796), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (2783, 2796), True, 'import numpy as np\n'), ((3703, 3732), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (3719, 3732), True, 'import numpy as np\n'), ((4845, 4874), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (4861, 4874), True, 'import numpy as np\n'), ((5033, 5062), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (5049, 5062), True, 'import numpy as np\n'), ((6279, 6308), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (6295, 6308), True, 'import numpy as np\n'), ((7883, 7918), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 3, 3, 3)'}), '(size=(1, 3, 3, 3))\n', (7899, 7918), True, 'import numpy as np\n'), ((9850, 9879), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (9866, 9879), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import argparse import importlib import multiprocessing as mp import os import sys import megengine as mge import megengine.distributed as dist from basecore.config import ConfigDict from loguru import logger from basecls.engine import ClsTester from basecls.models import build_model, load_model from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger def make_parser() -> argparse.ArgumentParser: """Build args parser for testing script. Returns: The args parser. """ parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, help="testing process description file") parser.add_argument("-w", "--weight_file", default=None, type=str, help="weight file") return parser @logger.catch def worker(args: argparse.Namespace): """Worker function for testing script. Args: args: args for testing script. """ logger.info(f"Init process group for gpu{dist.get_rank()} done") sys.path.append(os.path.dirname(args.file)) module_name = os.path.splitext(os.path.basename(args.file))[0] current_network = importlib.import_module(module_name) cfg = current_network.Cfg() if cfg.output_dir is None: cfg.output_dir = f"./logs_{module_name}" cfg.output_dir = os.path.abspath(cfg.output_dir) if args.weight_file: cfg.weights = args.weight_file else: cfg.weights = os.path.join(cfg.output_dir, "latest.pkl") cfg.set_mode("freeze") if dist.get_rank() == 0 and not os.path.exists(cfg.output_dir): os.makedirs(cfg.output_dir) dist.group_barrier() setup_logger(cfg.output_dir, "test_log.txt", to_loguru=True) logger.info(f"args: {args}") if cfg.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") tester = build(cfg) tester.test() def build(cfg: ConfigDict): """Build function for testing script. Args: cfg: config for testing. Returns: A tester. """ model = build_model(cfg) load_model(model, cfg.weights) model.eval() default_logging(cfg, model) dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) return ClsTester(cfg, model, dataloader) def main(): """Main function for testing script.""" parser = make_parser() args = parser.parse_args() mp.set_start_method("spawn") set_nccl_env() set_num_threads() if not os.path.exists(args.file): raise ValueError("Description file does not exist") device_count = mge.device.get_device_count("gpu") if device_count == 0: logger.warning("No GPU was found, testing on CPU") worker(args) elif device_count > 1: mp_worker = dist.launcher(worker) mp_worker(args) else: worker(args) if __name__ == "__main__": main()
[ "megengine.distributed.get_rank", "megengine.functional.debug_param.set_execution_strategy", "megengine.device.get_device_count", "megengine.distributed.group_barrier", "megengine.distributed.launcher" ]
[((632, 657), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (655, 657), False, 'import argparse\n'), ((1220, 1256), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1243, 1256), False, 'import importlib\n'), ((1390, 1421), 'os.path.abspath', 'os.path.abspath', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1405, 1421), False, 'import os\n'), ((1699, 1719), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1717, 1719), True, 'import megengine.distributed as dist\n'), ((1725, 1785), 'basecls.utils.setup_logger', 'setup_logger', (['cfg.output_dir', '"""test_log.txt"""'], {'to_loguru': '(True)'}), "(cfg.output_dir, 'test_log.txt', to_loguru=True)\n", (1737, 1785), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((1790, 1818), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (1801, 1818), False, 'from loguru import logger\n'), ((2165, 2181), 'basecls.models.build_model', 'build_model', (['cfg'], {}), '(cfg)\n', (2176, 2181), False, 'from basecls.models import build_model, load_model\n'), ((2186, 2216), 'basecls.models.load_model', 'load_model', (['model', 'cfg.weights'], {}), '(model, cfg.weights)\n', (2196, 2216), False, 'from basecls.models import build_model, load_model\n'), ((2239, 2266), 'basecls.utils.default_logging', 'default_logging', (['cfg', 'model'], {}), '(cfg, model)\n', (2254, 2266), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2475, 2508), 'basecls.engine.ClsTester', 'ClsTester', (['cfg', 'model', 'dataloader'], {}), '(cfg, model, dataloader)\n', (2484, 2508), False, 'from basecls.engine import ClsTester\n'), ((2630, 2658), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (2649, 2658), True, 'import multiprocessing as mp\n'), ((2664, 2678), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (2676, 2678), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2683, 2700), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (2698, 2700), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2820, 2854), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2847, 2854), True, 'import megengine as mge\n'), ((1103, 1129), 'os.path.dirname', 'os.path.dirname', (['args.file'], {}), '(args.file)\n', (1118, 1129), False, 'import os\n'), ((1519, 1561), 'os.path.join', 'os.path.join', (['cfg.output_dir', '"""latest.pkl"""'], {}), "(cfg.output_dir, 'latest.pkl')\n", (1531, 1561), False, 'import os\n'), ((1667, 1694), 'os.makedirs', 'os.makedirs', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1678, 1694), False, 'import os\n'), ((1848, 1884), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (1859, 1884), False, 'from loguru import logger\n'), ((1893, 1953), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (1942, 1953), True, 'import megengine as mge\n'), ((2713, 2738), 'os.path.exists', 'os.path.exists', (['args.file'], {}), '(args.file)\n', (2727, 2738), False, 'import os\n'), ((2890, 2940), 'loguru.logger.warning', 'logger.warning', (['"""No GPU was found, testing on CPU"""'], {}), "('No GPU was found, testing on CPU')\n", (2904, 2940), False, 'from loguru import logger\n'), ((1166, 1193), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (1182, 1193), False, 'import os\n'), ((1598, 1613), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1611, 1613), True, 'import megengine.distributed as dist\n'), ((1627, 1657), 'os.path.exists', 'os.path.exists', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1641, 1657), False, 'import os\n'), ((2285, 2325), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (2310, 2325), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3009, 3030), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (3022, 3030), True, 'import megengine.distributed as dist\n'), ((1058, 1073), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1071, 1073), True, 'import megengine.distributed as dist\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.functional as F import megengine.module as M __all__ = ["fuse_conv_and_bn", "fuse_model", "replace_module"] def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = M.Conv2d( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, ) # fused_conv.weight = bn.weight / running_var * conv.weight w_conv = conv.weight.reshape(conv.out_channels, -1) factor = (bn.weight / F.sqrt(bn.eps + bn.running_var)).reshape(-1) # diag_factor = diag(factor) fusedconv.weight = mge.Parameter( (factor.reshape(-1, 1) * w_conv).reshape(fusedconv.weight.shape) ) # fused_conv.bias = bn.bias + (conv.bias - running_mean) * bn.weight / runing_var conv_bias = F.zeros(bn.running_mean.shape) if conv.bias is None else conv.bias fuse_bias = bn.bias + (conv_bias - bn.running_mean) * factor.reshape(1, -1, 1, 1) fusedconv.bias = mge.Parameter(fuse_bias) return fusedconv def fuse_model(model): from yolox.models.network_blocks import BaseConv for m in model.modules(): if type(m) is BaseConv and hasattr(m, "bn"): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.fuseforward # update forward return model def replace_module(module, replaced_module_type, new_module_type, replace_func=None): """ Replace given type in module to a new type. mostly used in deploy. Args: module (nn.Module): model to apply replace operation. replaced_module_type (Type): module type to be replaced. new_module_type (Type) replace_func (function): python function to describe replace logic. Defalut value None. Returns: model (nn.Module): module that already been replaced. """ def default_replace_func(replaced_module_type, new_module_type): return new_module_type() if replace_func is None: replace_func = default_replace_func model = module if isinstance(module, replaced_module_type): model = replace_func(replaced_module_type, new_module_type) else: # recurrsively replace for name, child in module.named_children(): new_child = replace_module(child, replaced_module_type, new_module_type) if new_child is not child: # child is already replaced model.add_module(name, new_child) return model
[ "megengine.functional.zeros", "megengine.Parameter", "megengine.functional.sqrt", "megengine.module.Conv2d" ]
[((403, 555), 'megengine.module.Conv2d', 'M.Conv2d', (['conv.in_channels', 'conv.out_channels'], {'kernel_size': 'conv.kernel_size', 'stride': 'conv.stride', 'padding': 'conv.padding', 'groups': 'conv.groups', 'bias': '(True)'}), '(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size,\n stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True)\n', (411, 555), True, 'import megengine.module as M\n'), ((1234, 1258), 'megengine.Parameter', 'mge.Parameter', (['fuse_bias'], {}), '(fuse_bias)\n', (1247, 1258), True, 'import megengine as mge\n'), ((1060, 1090), 'megengine.functional.zeros', 'F.zeros', (['bn.running_mean.shape'], {}), '(bn.running_mean.shape)\n', (1067, 1090), True, 'import megengine.functional as F\n'), ((762, 793), 'megengine.functional.sqrt', 'F.sqrt', (['(bn.eps + bn.running_var)'], {}), '(bn.eps + bn.running_var)\n', (768, 793), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize( "head_args", [ None, dict(name=None), dict(name="ClsHead", w_out=8), dict(name="ClsHead", w_out=8, width=8, norm_name="BN", act_name="relu"), dict(name="ClsHead", w_out=8, width=8, norm_name="BN", act_name="relu", bias=False), dict(name="VGGHead", w_out=8, width=8), dict(name="VGGHead", w_out=8, width=8, dropout_prob=0.5, act_name="relu"), dict(name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu"), dict(name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu", se_r=0.25), dict( name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu", se_r=0.25, bias=False, ), ], ) @pytest.mark.parametrize("norm_name", ["BN"]) @pytest.mark.parametrize("act_name", ["relu"]) def test_build_head(w_in, head_args, norm_name, act_name): m = build_head(w_in, head_args, norm_name, act_name) if head_args is None or head_args.get("name") is None: assert m is None else: assert isinstance(m, M.Module) def test_cls_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = ClsHead(C, K)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K def test_mbv3_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = MBV3Head(C, K, 8, 16)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K def test_vgg_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = VGGHead(C, K, 8)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K
[ "megengine.Tensor" ]
[((238, 274), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (261, 274), False, 'import pytest\n'), ((1128, 1172), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm_name"""', "['BN']"], {}), "('norm_name', ['BN'])\n", (1151, 1172), False, 'import pytest\n'), ((1174, 1219), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu']"], {}), "('act_name', ['relu'])\n", (1197, 1219), False, 'import pytest\n'), ((1287, 1335), 'basecls.layers.build_head', 'build_head', (['w_in', 'head_args', 'norm_name', 'act_name'], {}), '(w_in, head_args, norm_name, act_name)\n', (1297, 1335), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1521, 1547), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1535, 1547), True, 'import numpy as np\n'), ((1713, 1739), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1727, 1739), True, 'import numpy as np\n'), ((1912, 1938), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1926, 1938), True, 'import numpy as np\n'), ((1574, 1587), 'basecls.layers.ClsHead', 'ClsHead', (['C', 'K'], {}), '(C, K)\n', (1581, 1587), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1588, 1601), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1598, 1601), True, 'import megengine as mge\n'), ((1766, 1787), 'basecls.layers.MBV3Head', 'MBV3Head', (['C', 'K', '(8)', '(16)'], {}), '(C, K, 8, 16)\n', (1774, 1787), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1788, 1801), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1798, 1801), True, 'import megengine as mge\n'), ((1965, 1981), 'basecls.layers.VGGHead', 'VGGHead', (['C', 'K', '(8)'], {}), '(C, K, 8)\n', (1972, 1981), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1982, 1995), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1992, 1995), True, 'import megengine as mge\n')]
import os import os.path as osp import bisect import argparse import multiprocessing as mp import numpy as np from tqdm import tqdm import megengine as mge from megengine import distributed as dist from megengine import optimizer as optim import megengine.autodiff as autodiff from megengine import jit import dataset, network from config import config as cfg from misc_utils import ensure_dir import socket import pdb ensure_dir(cfg.output_dir) logger = mge.get_logger(__name__) log_path = osp.join(cfg.output_dir, 'logger.log') mge.set_log_file(log_path, mode='a') def find_free_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port def allreduce_cb(param, grad, group=dist.WORLD): return dist.functional.all_reduce_sum(grad, group) / group.size def train_one_epoch(model, gm, data_iter, opt, max_steps, rank, epoch_id, gpu_num): # @jit.trace(symbolic=False,) def propagate(): with gm: loss_dict = model(model.inputs) total_loss = sum([loss_dict[key].mean() for key in loss_dict.keys()]) gm.backward(total_loss) opt.step().clear_grad() loss_dict['total_loss'] = total_loss return loss_dict for step in range(max_steps): # learing rate if epoch_id == 0 and step < cfg.warm_iters: base_lr = ( cfg.basic_lr * gpu_num * cfg.batch_per_gpu * (cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_sates, epoch_id) ) ) lr_factor = (step + 1.0) / cfg.warm_iters for param_group in opt.param_groups: param_group['lr'] = (0.33 + 0.67 * lr_factor) * base_lr mini_batch = next(data_iter) im_info = mini_batch["im_info"] image = mini_batch["data"][:, :, :int(im_info[0, 0]), :int(im_info[0, 1])] model.inputs["image"].set_value(image) model.inputs["gt_boxes"].set_value(mini_batch["boxes"]) model.inputs["im_info"].set_value(mini_batch["im_info"]) del mini_batch losses = propagate() print_str = ' ' for loss_name, loss_value in losses.items(): print_str += ', {}: {:.4f}'.format(loss_name, loss_value.numpy()) if rank == 0: if step % cfg.log_dump_interval == 0: logger.info( "epoch-{}, {}/{}, lr: {:.4f}{}.\n{}".format( epoch_id, step, max_steps, opt.param_groups[0]["lr"], print_str, cfg.workspace, ) ) def worker(rank, gpu_num, args): # using sublinear os.environ["MGB_COMP_GRAPH_OPT"] = "enable_sublinear_memory_opt=1;seq_opt.enable_seq_comp_node_opt=0" os.environ["MGB_SUBLINEAR_MEMORY_GENETIC_NR_ITER"] = '10' os.environ['MGB_CUDA_RESERVE_MEMORY'] = '1' # establish the server if is the master dist_port = args.port if rank == 0: dist.Server(port=dist_port) if gpu_num> 1: dist.init_process_group( master_ip="localhost", port=dist_port, world_size=gpu_num, rank=rank, device=rank, ) logger.info("Init process group for gpu%d done", rank) model = network.Network() params = model.parameters(requires_grad=True) model.train() # Autodiff gradient manager gm = autodiff.GradManager().attach( model.parameters(), callbacks=allreduce_cb, ) opt = optim.SGD( params, lr=cfg.basic_lr * gpu_num * cfg.batch_per_gpu, momentum=cfg.momentum, weight_decay=cfg.weight_decay, ) if cfg.pretrain_weight is not None: weights = mge.load(cfg.pretrain_weight) del weights['fc.weight'] del weights['fc.bias'] model.resnet50.load_state_dict(weights) start_epoch = 0 if args.resume_weights is not None: assert osp.exists(args.resume_weights) model_file = args.resume_weights model_dict = mge.load(model_file) start_epoch, weights = model_dict['epoch'] + 1, model_dict['state_dict'] model.load_state_dict(weights, strict=False) logger.info("Prepare dataset") train_loader = dataset.train_dataset(rank) logger.info("Training...") for epoch_id in range(start_epoch, cfg.max_epoch): for param_group in opt.param_groups: param_group["lr"] = ( cfg.basic_lr * gpu_num * cfg.batch_per_gpu * (cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_sates, epoch_id)) ) max_steps = cfg.nr_images_epoch // (cfg.batch_per_gpu * gpu_num) train_one_epoch(model, gm, train_loader, opt, max_steps, rank, epoch_id, gpu_num) if rank == 0: save_path = osp.join(cfg.model_dir, 'epoch-{}.pkl'.format(epoch_id + 1)) state_dict = model.state_dict() names = [k for k, _ in state_dict.items()] for name in names: if name.startswith('inputs.'): del state_dict[name] mge.save( {"epoch": epoch_id, "state_dict": state_dict}, save_path, ) logger.info("dump weights to %s", save_path) def train(args): # ------------------------ begin training -------------------------- # valid_nr_dev = mge.get_device_count("gpu") gpu_num = min(valid_nr_dev, args.num_gpus) assert gpu_num > 0 logger.info('Device Count: {}'.format(gpu_num)) ensure_dir(cfg.model_dir) if not osp.exists('output'): os.symlink(cfg.output_dir,'output') if gpu_num > 1: args.port =find_free_port() mp.set_start_method("spawn") processes = list() for i in range(gpu_num): process = mp.Process(target=worker, args=(i, gpu_num, args)) process.start() processes.append(process) for p in processes: p.join() else: worker(0, 1, args) def run_train(): parser = argparse.ArgumentParser() parser.add_argument("--num_gpus", "-d", default=-1, type=int, help="total number of gpus for training") parser.add_argument('--resume_weights', '-r', default=None, type=str) parser.add_argument('--progressbar', '-p', action='store_true', default=False) parser.add_argument('--port', '-pt', type=int, default=11123) args = parser.parse_args() train(args) if __name__ == '__main__': run_train()
[ "megengine.set_log_file", "megengine.get_device_count", "megengine.save", "megengine.get_logger", "megengine.optimizer.SGD", "megengine.distributed.functional.all_reduce_sum", "megengine.distributed.init_process_group", "megengine.autodiff.GradManager", "megengine.distributed.Server", "megengine.load" ]
[((420, 446), 'misc_utils.ensure_dir', 'ensure_dir', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (430, 446), False, 'from misc_utils import ensure_dir\n'), ((456, 480), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (470, 480), True, 'import megengine as mge\n'), ((492, 530), 'os.path.join', 'osp.join', (['cfg.output_dir', '"""logger.log"""'], {}), "(cfg.output_dir, 'logger.log')\n", (500, 530), True, 'import os.path as osp\n'), ((531, 567), 'megengine.set_log_file', 'mge.set_log_file', (['log_path'], {'mode': '"""a"""'}), "(log_path, mode='a')\n", (547, 567), True, 'import megengine as mge\n'), ((603, 652), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (616, 652), False, 'import socket\n'), ((3444, 3461), 'network.Network', 'network.Network', ([], {}), '()\n', (3459, 3461), False, 'import dataset, network\n'), ((3680, 3803), 'megengine.optimizer.SGD', 'optim.SGD', (['params'], {'lr': '(cfg.basic_lr * gpu_num * cfg.batch_per_gpu)', 'momentum': 'cfg.momentum', 'weight_decay': 'cfg.weight_decay'}), '(params, lr=cfg.basic_lr * gpu_num * cfg.batch_per_gpu, momentum=\n cfg.momentum, weight_decay=cfg.weight_decay)\n', (3689, 3803), True, 'from megengine import optimizer as optim\n'), ((4423, 4450), 'dataset.train_dataset', 'dataset.train_dataset', (['rank'], {}), '(rank)\n', (4444, 4450), False, 'import dataset, network\n'), ((5549, 5576), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (5569, 5576), True, 'import megengine as mge\n'), ((5704, 5729), 'misc_utils.ensure_dir', 'ensure_dir', (['cfg.model_dir'], {}), '(cfg.model_dir)\n', (5714, 5729), False, 'from misc_utils import ensure_dir\n'), ((6224, 6249), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6247, 6249), False, 'import argparse\n'), ((803, 846), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['grad', 'group'], {}), '(grad, group)\n', (833, 846), True, 'from megengine import distributed as dist\n'), ((3134, 3161), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'dist_port'}), '(port=dist_port)\n', (3145, 3161), True, 'from megengine import distributed as dist\n'), ((3190, 3301), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': '"""localhost"""', 'port': 'dist_port', 'world_size': 'gpu_num', 'rank': 'rank', 'device': 'rank'}), "(master_ip='localhost', port=dist_port, world_size=\n gpu_num, rank=rank, device=rank)\n", (3213, 3301), True, 'from megengine import distributed as dist\n'), ((3897, 3926), 'megengine.load', 'mge.load', (['cfg.pretrain_weight'], {}), '(cfg.pretrain_weight)\n', (3905, 3926), True, 'import megengine as mge\n'), ((4115, 4146), 'os.path.exists', 'osp.exists', (['args.resume_weights'], {}), '(args.resume_weights)\n', (4125, 4146), True, 'import os.path as osp\n'), ((4209, 4229), 'megengine.load', 'mge.load', (['model_file'], {}), '(model_file)\n', (4217, 4229), True, 'import megengine as mge\n'), ((5742, 5762), 'os.path.exists', 'osp.exists', (['"""output"""'], {}), "('output')\n", (5752, 5762), True, 'import os.path as osp\n'), ((5772, 5808), 'os.symlink', 'os.symlink', (['cfg.output_dir', '"""output"""'], {}), "(cfg.output_dir, 'output')\n", (5782, 5808), False, 'import os\n'), ((5873, 5901), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (5892, 5901), True, 'import multiprocessing as mp\n'), ((3572, 3594), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (3592, 3594), True, 'import megengine.autodiff as autodiff\n'), ((5282, 5348), 'megengine.save', 'mge.save', (["{'epoch': epoch_id, 'state_dict': state_dict}", 'save_path'], {}), "({'epoch': epoch_id, 'state_dict': state_dict}, save_path)\n", (5290, 5348), True, 'import megengine as mge\n'), ((5984, 6034), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(i, gpu_num, args)'}), '(target=worker, args=(i, gpu_num, args))\n', (5994, 6034), True, 'import multiprocessing as mp\n'), ((1531, 1580), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_sates', 'epoch_id'], {}), '(cfg.lr_decay_sates, epoch_id)\n', (1550, 1580), False, 'import bisect\n'), ((4715, 4764), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_sates', 'epoch_id'], {}), '(cfg.lr_decay_sates, epoch_id)\n', (4734, 4764), False, 'import bisect\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) # save quantized model mge.save( {"step": -1, "state_dict": model.state_dict()}, os.path.join(save_dir, "checkpoint-calibration.pkl"), ) logger.info( "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")) ) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label = mge.tensor(label, dtype="int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info("Step %d, %s %s %s %s", step, objs, top1, top5, total_time) # break if step == args.report_freq: break return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.distributed.is_distributed", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop", "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.data.dataset.ImageNet", "megengine.data.transform.Resize", "megengine.tensor", "megengine.distributed.helper.get_device_count_by_fork", "megengine.functional.loss.cross_entropy", "megengine.quantization.quantize.quantize", "megengine.quantization.quantize.quantize_qat", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.topk_accuracy", "megengine.quantization.quantize.enable_observer", "megengine.load", "megengine.distributed.launcher" ]
[((866, 890), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (880, 890), True, 'import megengine as mge\n'), ((918, 943), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (941, 943), False, 'import argparse\n'), ((2188, 2217), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (2211, 2217), False, 'import collections\n'), ((2618, 2633), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2631, 2633), True, 'import megengine.distributed as dist\n'), ((2807, 2863), 'os.path.join', 'os.path.join', (['args.save', "(args.arch + '.' + 'calibration')"], {}), "(args.save, args.arch + '.' + 'calibration')\n", (2819, 2863), False, 'import os\n'), ((3180, 3205), 'megengine.load', 'mge.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (3188, 3205), True, 'import megengine as mge\n'), ((3364, 3409), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (3385, 3409), True, 'import megengine.data as data\n'), ((3430, 3500), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (3452, 3500), True, 'import megengine.data as data\n'), ((3834, 3884), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['model'], {'qconfig': 'Q.calibration_qconfig'}), '(model, qconfig=Q.calibration_qconfig)\n', (3846, 3884), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((4559, 4574), 'megengine.quantization.quantize.quantize', 'quantize', (['model'], {}), '(model)\n', (4567, 4574), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((5717, 5728), 'time.time', 'time.time', ([], {}), '()\n', (5726, 5728), False, 'import time\n'), ((1558, 1601), 'megengine.distributed.helper.get_device_count_by_fork', 'dist.helper.get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1594, 1601), True, 'import megengine.distributed as dist\n'), ((1870, 1891), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (1883, 1891), True, 'import megengine.distributed as dist\n'), ((2875, 2899), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (2889, 2899), False, 'import os\n'), ((2909, 2945), 'os.makedirs', 'os.makedirs', (['save_dir'], {'exist_ok': '(True)'}), '(save_dir, exist_ok=True)\n', (2920, 2945), False, 'import os\n'), ((2967, 3000), 'os.path.join', 'os.path.join', (['save_dir', '"""log.txt"""'], {}), "(save_dir, 'log.txt')\n", (2979, 3000), False, 'import os\n'), ((3976, 3998), 'megengine.quantization.quantize.enable_observer', 'enable_observer', (['model'], {}), '(model)\n', (3991, 3998), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((4044, 4097), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (4064, 4097), True, 'import megengine.functional as F\n'), ((4119, 4157), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (4134, 4157), True, 'import megengine.functional as F\n'), ((4169, 4190), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (4188, 4190), True, 'import megengine.distributed as dist\n'), ((4702, 4755), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (4722, 4755), True, 'import megengine.functional as F\n'), ((4777, 4815), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (4792, 4815), True, 'import megengine.functional as F\n'), ((4827, 4848), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (4846, 4848), True, 'import megengine.distributed as dist\n'), ((5369, 5421), 'os.path.join', 'os.path.join', (['save_dir', '"""checkpoint-calibration.pkl"""'], {}), "(save_dir, 'checkpoint-calibration.pkl')\n", (5381, 5421), False, 'import os\n'), ((5827, 5861), 'megengine.tensor', 'mge.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (5837, 5861), True, 'import megengine as mge\n'), ((5878, 5910), 'megengine.tensor', 'mge.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (5888, 5910), True, 'import megengine as mge\n'), ((6147, 6158), 'time.time', 'time.time', ([], {}), '()\n', (6156, 6158), False, 'import time\n'), ((5474, 5526), 'os.path.join', 'os.path.join', (['save_dir', '"""checkpoint-calibration.pkl"""'], {}), "(save_dir, 'checkpoint-calibration.pkl')\n", (5486, 5526), False, 'import os\n'), ((4230, 4266), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (4260, 4266), True, 'import megengine.distributed as dist\n'), ((4269, 4290), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4288, 4290), True, 'import megengine.distributed as dist\n'), ((4310, 4346), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (4340, 4346), True, 'import megengine.distributed as dist\n'), ((4349, 4370), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4368, 4370), True, 'import megengine.distributed as dist\n'), ((4390, 4426), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (4420, 4426), True, 'import megengine.distributed as dist\n'), ((4429, 4450), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4448, 4450), True, 'import megengine.distributed as dist\n'), ((4888, 4924), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (4918, 4924), True, 'import megengine.distributed as dist\n'), ((4927, 4948), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4946, 4948), True, 'import megengine.distributed as dist\n'), ((4968, 5004), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (4998, 5004), True, 'import megengine.distributed as dist\n'), ((5007, 5028), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5026, 5028), True, 'import megengine.distributed as dist\n'), ((5048, 5084), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (5078, 5084), True, 'import megengine.distributed as dist\n'), ((5087, 5108), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5106, 5108), True, 'import megengine.distributed as dist\n'), ((6118, 6129), 'time.time', 'time.time', ([], {}), '()\n', (6127, 6129), False, 'import time\n'), ((6204, 6219), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6217, 6219), True, 'import megengine.distributed as dist\n'), ((3646, 3659), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (3654, 3659), True, 'import megengine.data.transform as T\n'), ((3661, 3678), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (3673, 3678), True, 'import megengine.data.transform as T\n'), ((3680, 3701), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(128)'}), '(mean=128)\n', (3691, 3701), True, 'import megengine.data.transform as T\n'), ((3703, 3718), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3711, 3718), True, 'import megengine.data.transform as T\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x = F.flatten(x, 1) x = self.fc(x) return x def save_grad_value(net): for param in net.parameters(): param.grad_backup = param.grad.numpy().copy() def test_clip_grad_norm(): net = Net() x = mge.tensor(np.random.randn(10, 3, 224, 224)) gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: loss = net(x).sum() gm.backward(loss) save_grad_value(net) max_norm = 1.0 original_norm = optim.clip_grad_norm(net.parameters(), max_norm=max_norm, ord=2) scale = max_norm / original_norm for param in net.parameters(): np.testing.assert_almost_equal(param.grad.numpy(), param.grad_backup * scale) opt.step().clear_grad() def test_clip_grad_value(): net = Net() x = np.random.randn(10, 3, 224, 224).astype("float32") gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: y = net(mge.tensor(x)) y = y.mean() gm.backward(y) save_grad_value(net) max_val = 5 min_val = -2 optim.clip_grad_value(net.parameters(), lower=min_val, upper=max_val) for param in net.parameters(): np.testing.assert_almost_equal( param.grad.numpy(), np.maximum(np.minimum(param.grad_backup, max_val), min_val), ) opt.step().clear_grad()
[ "megengine.module.Linear", "megengine.tensor", "megengine.module.AvgPool2d", "megengine.module.BatchNorm2d", "megengine.functional.avg_pool2d", "megengine.functional.relu", "megengine.autodiff.GradManager", "megengine.module.Conv2d", "megengine.functional.flatten" ]
[((623, 686), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(64)'], {'kernel_size': '(7)', 'stride': '(2)', 'padding': '(3)', 'bias': '(False)'}), '(3, 64, kernel_size=7, stride=2, padding=3, bias=False)\n', (631, 686), True, 'import megengine.module as M\n'), ((706, 723), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(64)'], {}), '(64)\n', (719, 723), True, 'import megengine.module as M\n'), ((747, 794), 'megengine.module.AvgPool2d', 'M.AvgPool2d', ([], {'kernel_size': '(5)', 'stride': '(5)', 'padding': '(0)'}), '(kernel_size=5, stride=5, padding=0)\n', (758, 794), True, 'import megengine.module as M\n'), ((813, 829), 'megengine.module.Linear', 'M.Linear', (['(64)', '(10)'], {}), '(64, 10)\n', (821, 829), True, 'import megengine.module as M\n'), ((919, 928), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (925, 928), True, 'import megengine.functional as F\n'), ((969, 988), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(22)'], {}), '(x, 22)\n', (981, 988), True, 'import megengine.functional as F\n'), ((1001, 1016), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (1010, 1016), True, 'import megengine.functional as F\n'), ((1238, 1270), 'numpy.random.randn', 'np.random.randn', (['(10)', '(3)', '(224)', '(224)'], {}), '(10, 3, 224, 224)\n', (1253, 1270), True, 'import numpy as np\n'), ((1281, 1297), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1295, 1297), True, 'import megengine.autodiff as ad\n'), ((1817, 1849), 'numpy.random.randn', 'np.random.randn', (['(10)', '(3)', '(224)', '(224)'], {}), '(10, 3, 224, 224)\n', (1832, 1849), True, 'import numpy as np\n'), ((1877, 1893), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1891, 1893), True, 'import megengine.autodiff as ad\n'), ((2006, 2019), 'megengine.tensor', 'mge.tensor', (['x'], {}), '(x)\n', (2016, 2019), True, 'import megengine as mge\n'), ((2327, 2365), 'numpy.minimum', 'np.minimum', (['param.grad_backup', 'max_val'], {}), '(param.grad_backup, max_val)\n', (2337, 2365), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import megengine.module as M import megengine.functional as F class LeNet32x32(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool # Conv2d(1, 6, kernel_size=(5, 5)) self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() # MaxPool2d(kernel_size=2, stride=2, padding=0) self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 5 * 5, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten reshape the tensor x with (N, C, H, W) into shape of (N, C*H*W) # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 5, 5) x = F.flatten(x, 1) # x.shape: (256, 400) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x class LeNet224x224(M.Module): def __init__(self): super().__init__() # single channel image, two 5x5 Conv + ReLU + Pool self.conv1 = M.Conv2d(1, 6, 5) self.relu1 = M.ReLU() self.pool1 = M.MaxPool2d(2, 2) self.conv2 = M.Conv2d(6, 16, 5) self.relu2 = M.ReLU() self.pool2 = M.MaxPool2d(2, 2) # two FC + ReLU self.fc1 = M.Linear(16 * 53 * 53, 120) self.relu3 = M.ReLU() self.fc2 = M.Linear(120, 84) self.relu4 = M.ReLU() # classifier self.classifier = M.Linear(84, 10) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) # F.flatten(x, 1) reshape the tensor x with (N, C, H, W) along # the 1st dimension into shape of (N, C*H*W), # i.e., x = x.reshape(x.shape[0], -1) # x.shape: (256, 16, 53, 53) x = F.flatten(x, 1) # x.shape: (256, 16*53*53) x = self.relu3(self.fc1(x)) x = self.relu4(self.fc2(x)) x = self.classifier(x) return x
[ "megengine.module.MaxPool2d", "megengine.module.Linear", "megengine.module.ReLU", "megengine.module.Conv2d", "megengine.functional.flatten" ]
[((289, 306), 'megengine.module.Conv2d', 'M.Conv2d', (['(1)', '(6)', '(5)'], {}), '(1, 6, 5)\n', (297, 306), True, 'import megengine.module as M\n'), ((328, 336), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (334, 336), True, 'import megengine.module as M\n'), ((414, 431), 'megengine.module.MaxPool2d', 'M.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (425, 431), True, 'import megengine.module as M\n'), ((453, 471), 'megengine.module.Conv2d', 'M.Conv2d', (['(6)', '(16)', '(5)'], {}), '(6, 16, 5)\n', (461, 471), True, 'import megengine.module as M\n'), ((493, 501), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (499, 501), True, 'import megengine.module as M\n'), ((523, 540), 'megengine.module.MaxPool2d', 'M.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (534, 540), True, 'import megengine.module as M\n'), ((584, 609), 'megengine.module.Linear', 'M.Linear', (['(16 * 5 * 5)', '(120)'], {}), '(16 * 5 * 5, 120)\n', (592, 609), True, 'import megengine.module as M\n'), ((631, 639), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (637, 639), True, 'import megengine.module as M\n'), ((659, 676), 'megengine.module.Linear', 'M.Linear', (['(120)', '(84)'], {}), '(120, 84)\n', (667, 676), True, 'import megengine.module as M\n'), ((698, 706), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (704, 706), True, 'import megengine.module as M\n'), ((754, 770), 'megengine.module.Linear', 'M.Linear', (['(84)', '(10)'], {}), '(84, 10)\n', (762, 770), True, 'import megengine.module as M\n'), ((1075, 1090), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (1084, 1090), True, 'import megengine.functional as F\n'), ((1403, 1420), 'megengine.module.Conv2d', 'M.Conv2d', (['(1)', '(6)', '(5)'], {}), '(1, 6, 5)\n', (1411, 1420), True, 'import megengine.module as M\n'), ((1442, 1450), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1448, 1450), True, 'import megengine.module as M\n'), ((1472, 1489), 'megengine.module.MaxPool2d', 'M.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (1483, 1489), True, 'import megengine.module as M\n'), ((1511, 1529), 'megengine.module.Conv2d', 'M.Conv2d', (['(6)', '(16)', '(5)'], {}), '(6, 16, 5)\n', (1519, 1529), True, 'import megengine.module as M\n'), ((1551, 1559), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1557, 1559), True, 'import megengine.module as M\n'), ((1581, 1598), 'megengine.module.MaxPool2d', 'M.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (1592, 1598), True, 'import megengine.module as M\n'), ((1642, 1669), 'megengine.module.Linear', 'M.Linear', (['(16 * 53 * 53)', '(120)'], {}), '(16 * 53 * 53, 120)\n', (1650, 1669), True, 'import megengine.module as M\n'), ((1691, 1699), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1697, 1699), True, 'import megengine.module as M\n'), ((1719, 1736), 'megengine.module.Linear', 'M.Linear', (['(120)', '(84)'], {}), '(120, 84)\n', (1727, 1736), True, 'import megengine.module as M\n'), ((1758, 1766), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1764, 1766), True, 'import megengine.module as M\n'), ((1814, 1830), 'megengine.module.Linear', 'M.Linear', (['(84)', '(10)'], {}), '(84, 10)\n', (1822, 1830), True, 'import megengine.module as M\n'), ((2178, 2193), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2187, 2193), True, 'import megengine.functional as F\n')]
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask loss = -(F.indexing_one_hot(log_prob, vlabel, 1) * mask) return loss def smooth_l1_loss(pred, target, beta: float): abs_x = F.abs(pred - target) in_mask = abs_x < beta out_mask = 1 - in_mask in_loss = 0.5 * abs_x ** 2 / beta out_loss = abs_x - 0.5 * beta loss = in_loss * in_mask + out_loss * out_mask return loss.sum(axis=1)
[ "megengine.functional.abs", "megengine.functional.equal", "megengine.functional.exp", "megengine.functional.indexing_one_hot" ]
[((496, 516), 'megengine.functional.abs', 'F.abs', (['(pred - target)'], {}), '(pred - target)\n', (501, 516), True, 'import megengine.functional as F\n'), ((304, 332), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (311, 332), True, 'import megengine.functional as F\n'), ((372, 411), 'megengine.functional.indexing_one_hot', 'F.indexing_one_hot', (['log_prob', 'vlabel', '(1)'], {}), '(log_prob, vlabel, 1)\n', (390, 411), True, 'import megengine.functional as F\n'), ((249, 260), 'megengine.functional.exp', 'F.exp', (['pred'], {}), '(pred)\n', (254, 260), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge from megengine import tensor from megengine.core.autodiff.grad import Grad from megengine.core.tensor.function import Function from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.fake_quant import TQT_Function from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import QuantMode, fake_quant_tensor class numpy_TQT_Function: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_TQT(): f = TQT_Function(-127, 127) nf = numpy_TQT_Function(-127, 127) def check_inp(a, b, c, a_np, b_np, c_np): np.testing.assert_allclose( f.forward(a, b).numpy(), nf.forward(a_np, b_np).astype("float32"), rtol=1e-6, atol=1e-6, ) c1, c2 = f.backward(c) c1_np, c2_np = nf.backward(c_np) np.testing.assert_allclose(c1.numpy(), c1_np.astype("float32"), rtol=1e-6) np.testing.assert_allclose(c2.numpy(), c2_np.astype("float32"), rtol=5e-5) a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((1)).astype("float32") a = tensor(a_np) b = tensor(b_np) check_inp(a, b, b, a_np, b_np, b_np) def _save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 def run(zero_point, scale): q_dict = {} q_dict["mode"] = QuantMode.ASYMMERTIC q_dict["scale"] = scale q_dict["zero_point"] = zero_point inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qmin, qmax, q_dict).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qmin, qmax, q_dict) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) grad = Grad().wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) zero_point = tensor([1.0], dtype=np.float32) scale = tensor([4.0], dtype=np.float32) run(zero_point, scale) zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) run(zero_point, scale)
[ "megengine.tensor", "megengine.core.tensor.utils.make_shape_tuple", "megengine.quantization.utils.fake_quant_tensor", "megengine.quantization.fake_quant.TQT_Function", "megengine.core.autodiff.grad.Grad" ]
[((2261, 2284), 'megengine.quantization.fake_quant.TQT_Function', 'TQT_Function', (['(-127)', '(127)'], {}), '(-127, 127)\n', (2273, 2284), False, 'from megengine.quantization.fake_quant import TQT_Function\n'), ((2906, 2918), 'megengine.tensor', 'tensor', (['a_np'], {}), '(a_np)\n', (2912, 2918), False, 'from megengine import tensor\n'), ((2927, 2939), 'megengine.tensor', 'tensor', (['b_np'], {}), '(b_np)\n', (2933, 2939), False, 'from megengine import tensor\n'), ((4657, 4688), 'megengine.tensor', 'tensor', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4663, 4688), False, 'from megengine import tensor\n'), ((4701, 4732), 'megengine.tensor', 'tensor', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (4707, 4732), False, 'from megengine import tensor\n'), ((1238, 1259), 'numpy.round', 'np.round', (['inp_clipped'], {}), '(inp_clipped)\n', (1246, 1259), True, 'import numpy as np\n'), ((1670, 1691), 'numpy.abs', 'np.abs', (['(mask_clip - 1)'], {}), '(mask_clip - 1)\n', (1676, 1691), True, 'import numpy as np\n'), ((3704, 3767), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-512.0)', 'high': '(512.0)', 'size': '(1, 32, 32, 32)'}), '(low=-512.0, high=512.0, size=(1, 32, 32, 32))\n', (3721, 3767), True, 'import numpy as np\n'), ((3782, 3816), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (3788, 3816), False, 'from megengine import tensor\n'), ((4002, 4026), 'numpy.allclose', 'np.allclose', (['oup', 'oup_gt'], {}), '(oup, oup_gt)\n', (4013, 4026), True, 'import numpy as np\n'), ((4105, 4139), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4111, 4139), False, 'from megengine import tensor\n'), ((4203, 4243), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qmin', 'qmax', 'q_dict'], {}), '(x, qmin, qmax, q_dict)\n', (4220, 4243), False, 'from megengine.quantization.utils import QuantMode, fake_quant_tensor\n'), ((4298, 4332), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4304, 4332), False, 'from megengine import tensor\n'), ((1149, 1188), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (1159, 1188), True, 'import numpy as np\n'), ((2148, 2157), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (2154, 2157), True, 'import numpy as np\n'), ((2804, 2828), 'numpy.random.random', 'np.random.random', (['(4, 3)'], {}), '((4, 3))\n', (2820, 2828), True, 'import numpy as np\n'), ((2858, 2877), 'numpy.random.random', 'np.random.random', (['(1)'], {}), '(1)\n', (2874, 2877), True, 'import numpy as np\n'), ((4573, 4603), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x.grad.shape'], {}), '(x.grad.shape)\n', (4589, 4603), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4607, 4638), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x1.grad.shape'], {}), '(x1.grad.shape)\n', (4623, 4638), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4791, 4813), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (4798, 4813), True, 'import numpy as np\n'), ((4858, 4880), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (4865, 4880), True, 'import numpy as np\n'), ((3854, 3896), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['inp', 'qmin', 'qmax', 'q_dict'], {}), '(inp, qmin, qmax, q_dict)\n', (3871, 3896), False, 'from megengine.quantization.utils import QuantMode, fake_quant_tensor\n'), ((4155, 4161), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4159, 4161), False, 'from megengine.core.autodiff.grad import Grad\n'), ((4348, 4354), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4352, 4354), False, 'from megengine.core.autodiff.grad import Grad\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F import megengine.module as M import models.backbones.resnet.model as resnet import layers class FreeAnchor(M.Module): """ Implement RetinaNet (https://arxiv.org/abs/1708.02002). """ def __init__(self, cfg): super().__init__() self.cfg = cfg self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=self.cfg.anchor_scales, anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=self.cfg.anchor_offset, ) self.box_coder = layers.BoxCoder(cfg.reg_mean, cfg.reg_std) self.in_features = cfg.in_features # ----------------------- build backbone ------------------------ # bottom_up = getattr(resnet, cfg.backbone)( norm=layers.get_norm(cfg.backbone_norm), pretrained=cfg.backbone_pretrained ) del bottom_up.fc # ----------------------- build FPN ----------------------------- # self.backbone = layers.FPN( bottom_up=bottom_up, in_features=cfg.fpn_in_features, out_channels=cfg.fpn_out_channels, norm=cfg.fpn_norm, top_block=layers.LastLevelP6P7( cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.fpn_top_in_feature ), strides=cfg.fpn_in_strides, channels=cfg.fpn_in_channels, ) backbone_shape = self.backbone.output_shape() feature_shapes = [backbone_shape[f] for f in self.in_features] # ----------------------- build FreeAnchor Head ----------------- # self.head = layers.BoxHead(cfg, feature_shapes) def preprocess_image(self, image): padded_image = layers.get_padded_tensor(image, 32, 0.0) normed_image = ( padded_image - np.array(self.cfg.img_mean, dtype="float32")[None, :, None, None] ) / np.array(self.cfg.img_std, dtype="float32")[None, :, None, None] return normed_image def forward(self, image, im_info, gt_boxes=None): image = self.preprocess_image(image) features = self.backbone(image) features = [features[f] for f in self.in_features] box_logits, box_offsets = self.head(features) box_logits_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, self.cfg.num_classes) for _ in box_logits ] box_offsets_list = [ _.transpose(0, 2, 3, 1).reshape(image.shape[0], -1, 4) for _ in box_offsets ] anchors_list = self.anchor_generator(features) all_level_box_logits = F.concat(box_logits_list, axis=1) all_level_box_offsets = F.concat(box_offsets_list, axis=1) all_level_anchors = F.concat(anchors_list, axis=0) if self.training: loss_dict = self.get_losses( all_level_anchors, all_level_box_logits, all_level_box_offsets, gt_boxes, im_info ) self.cfg.losses_keys = list(loss_dict.keys()) return loss_dict else: # currently not support multi-batch testing assert image.shape[0] == 1 pred_boxes = self.box_coder.decode( all_level_anchors, all_level_box_offsets[0] ) pred_boxes = pred_boxes.reshape(-1, 4) scale_w = im_info[0, 1] / im_info[0, 3] scale_h = im_info[0, 0] / im_info[0, 2] pred_boxes = pred_boxes / F.concat( [scale_w, scale_h, scale_w, scale_h], axis=0 ) clipped_boxes = layers.get_clipped_boxes( pred_boxes, im_info[0, 2:4] ).reshape(-1, 4) pred_score = F.sigmoid(all_level_box_logits)[0] return pred_score, clipped_boxes def get_losses(self, anchors, pred_logits, pred_offsets, gt_boxes, im_info): # pylint: disable=too-many-statements def positive_bag_loss(logits, axis=1): weight = 1.0 / (1.0 - logits) weight /= weight.sum(axis=axis, keepdims=True) bag_prob = (weight * logits).sum(axis=1) return -layers.safelog(bag_prob) def negative_bag_loss(logits, gamma): return (logits ** gamma) * (-layers.safelog(1.0 - logits)) pred_scores = F.sigmoid(pred_logits) box_prob_list = [] positive_losses = [] clamp_eps = 1e-7 bucket_size = self.cfg.bucket_size for bid in range(im_info.shape[0]): boxes_info = gt_boxes[bid, : im_info[bid, 4].astype("int32")] # id 0 is used for background classes, so -1 first labels = boxes_info[:, 4].astype("int32") - 1 pred_box = self.box_coder.decode(anchors, pred_offsets[bid]).detach() overlaps = layers.get_iou(boxes_info[:, :4], pred_box).detach() thresh1 = self.cfg.box_iou_threshold thresh2 = F.clip( overlaps.max(axis=1, keepdims=True), lower=thresh1 + clamp_eps, upper=1.0 ) gt_pred_prob = F.clip( (overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0) image_boxes_prob = F.zeros(pred_logits.shape[1:]).detach() # guarantee that nonzero_idx is not empty if gt_pred_prob.max() > clamp_eps: _, nonzero_idx = F.cond_take(gt_pred_prob != 0, gt_pred_prob) # since nonzeros is only 1 dim, use num_anchor to get real indices num_anchors = gt_pred_prob.shape[1] anchors_idx = nonzero_idx % num_anchors gt_idx = nonzero_idx // num_anchors image_boxes_prob[anchors_idx, labels[gt_idx]] = gt_pred_prob[gt_idx, anchors_idx] box_prob_list.append(image_boxes_prob) # construct bags for objects match_quality_matrix = layers.get_iou(boxes_info[:, :4], anchors).detach() num_gt = match_quality_matrix.shape[0] _, matched_idx = F.topk( match_quality_matrix, k=bucket_size, descending=True, no_sort=True, ) matched_idx = matched_idx.detach() matched_idx_flatten = matched_idx.reshape(-1) gather_idx = labels.reshape(-1, 1) gather_idx = F.broadcast_to(gather_idx, (num_gt, bucket_size)) gather_src = pred_scores[bid, matched_idx_flatten] gather_src = gather_src.reshape(num_gt, bucket_size, -1) matched_score = F.indexing_one_hot(gather_src, gather_idx, axis=2) topk_anchors = anchors[matched_idx_flatten] boxes_broad_cast = F.broadcast_to( F.expand_dims(boxes_info[:, :4], axis=1), (num_gt, bucket_size, 4) ).reshape(-1, 4) matched_offsets = self.box_coder.encode(topk_anchors, boxes_broad_cast) reg_loss = layers.smooth_l1_loss( pred_offsets[bid, matched_idx_flatten], matched_offsets, beta=self.cfg.smooth_l1_beta ).sum(axis=-1) * self.cfg.reg_loss_weight matched_reg_scores = F.exp(-reg_loss) positive_losses.append( positive_bag_loss( matched_score * matched_reg_scores.reshape(-1, bucket_size), axis=1 ) ) num_foreground = im_info[:, 4].sum() pos_loss = F.concat(positive_losses).sum() / F.maximum(num_foreground, 1) box_probs = F.stack(box_prob_list, axis=0) neg_loss = negative_bag_loss( pred_scores * (1 - box_probs), self.cfg.focal_loss_gamma ).sum() / F.maximum(num_foreground * bucket_size, 1) alpha = self.cfg.focal_loss_alpha pos_loss = pos_loss * alpha neg_loss = neg_loss * (1 - alpha) loss_dict = { "total_loss": pos_loss + neg_loss, "pos_loss": pos_loss, "neg_loss": neg_loss, } return loss_dict class FreeAnchorConfig: # pylint: disable=too-many-statements def __init__(self): self.backbone = "resnet50" self.backbone_pretrained = True self.backbone_norm = "FrozenBN" self.backbone_freeze_at = 2 self.fpn_norm = None self.fpn_in_features = ["res3", "res4", "res5"] self.fpn_in_strides = [8, 16, 32] self.fpn_in_channels = [512, 1024, 2048] self.fpn_out_channels = 256 self.fpn_top_in_feature = "p5" self.fpn_top_in_channel = 256 # ------------------------ data cfg -------------------------- # self.train_dataset = dict( name="coco", root="train2017", ann_file="annotations/instances_train2017.json", remove_images_without_annotations=True, ) self.test_dataset = dict( name="coco", root="val2017", ann_file="annotations/instances_val2017.json", remove_images_without_annotations=False, ) self.num_classes = 80 self.img_mean = [103.530, 116.280, 123.675] # BGR self.img_std = [57.375, 57.120, 58.395] # ----------------------- net cfg ------------------------- # self.stride = [8, 16, 32, 64, 128] self.in_features = ["p3", "p4", "p5", "p6", "p7"] self.reg_mean = [0.0, 0.0, 0.0, 0.0] self.reg_std = [0.1, 0.1, 0.2, 0.2] self.anchor_scales = [ [x, x * 2 ** (1.0 / 3), x * 2 ** (2.0 / 3)] for x in [32, 64, 128, 256, 512] ] self.anchor_ratios = [[0.5, 1, 2]] self.anchor_offset = 0.5 self.box_iou_threshold = 0.6 self.bucket_size = 50 self.class_aware_box = False self.cls_prior_prob = 0.02 # ------------------------ loss cfg -------------------------- # self.focal_loss_alpha = 0.5 self.focal_loss_gamma = 2 self.smooth_l1_beta = 0 # use L1 loss self.reg_loss_weight = 0.75 self.num_losses = 3 # ------------------------ training cfg ---------------------- # self.train_image_short_size = (640, 672, 704, 736, 768, 800) self.train_image_max_size = 1333 self.basic_lr = 0.01 / 16 # The basic learning rate for single-image self.momentum = 0.9 self.weight_decay = 1e-4 self.log_interval = 20 self.nr_images_epoch = 80000 self.max_epoch = 54 self.warm_iters = 500 self.lr_decay_rate = 0.1 self.lr_decay_stages = [42, 50] # ------------------------ testing cfg ----------------------- # self.test_image_short_size = 800 self.test_image_max_size = 1333 self.test_max_boxes_per_image = 100 self.test_vis_threshold = 0.3 self.test_cls_threshold = 0.05 self.test_nms = 0.5
[ "megengine.functional.zeros", "megengine.functional.broadcast_to", "megengine.functional.stack", "megengine.functional.concat", "megengine.functional.exp", "megengine.functional.sigmoid", "megengine.functional.maximum", "megengine.functional.cond_take", "megengine.functional.topk", "megengine.functional.expand_dims", "megengine.functional.clip", "megengine.functional.indexing_one_hot" ]
[((740, 906), 'layers.AnchorBoxGenerator', 'layers.AnchorBoxGenerator', ([], {'anchor_scales': 'self.cfg.anchor_scales', 'anchor_ratios': 'self.cfg.anchor_ratios', 'strides': 'self.cfg.stride', 'offset': 'self.cfg.anchor_offset'}), '(anchor_scales=self.cfg.anchor_scales,\n anchor_ratios=self.cfg.anchor_ratios, strides=self.cfg.stride, offset=\n self.cfg.anchor_offset)\n', (765, 906), False, 'import layers\n'), ((982, 1024), 'layers.BoxCoder', 'layers.BoxCoder', (['cfg.reg_mean', 'cfg.reg_std'], {}), '(cfg.reg_mean, cfg.reg_std)\n', (997, 1024), False, 'import layers\n'), ((2048, 2083), 'layers.BoxHead', 'layers.BoxHead', (['cfg', 'feature_shapes'], {}), '(cfg, feature_shapes)\n', (2062, 2083), False, 'import layers\n'), ((2147, 2187), 'layers.get_padded_tensor', 'layers.get_padded_tensor', (['image', '(32)', '(0.0)'], {}), '(image, 32, 0.0)\n', (2171, 2187), False, 'import layers\n'), ((3049, 3082), 'megengine.functional.concat', 'F.concat', (['box_logits_list'], {'axis': '(1)'}), '(box_logits_list, axis=1)\n', (3057, 3082), True, 'import megengine.functional as F\n'), ((3115, 3149), 'megengine.functional.concat', 'F.concat', (['box_offsets_list'], {'axis': '(1)'}), '(box_offsets_list, axis=1)\n', (3123, 3149), True, 'import megengine.functional as F\n'), ((3178, 3208), 'megengine.functional.concat', 'F.concat', (['anchors_list'], {'axis': '(0)'}), '(anchors_list, axis=0)\n', (3186, 3208), True, 'import megengine.functional as F\n'), ((4751, 4773), 'megengine.functional.sigmoid', 'F.sigmoid', (['pred_logits'], {}), '(pred_logits)\n', (4760, 4773), True, 'import megengine.functional as F\n'), ((7984, 8014), 'megengine.functional.stack', 'F.stack', (['box_prob_list'], {'axis': '(0)'}), '(box_prob_list, axis=0)\n', (7991, 8014), True, 'import megengine.functional as F\n'), ((5523, 5593), 'megengine.functional.clip', 'F.clip', (['((overlaps - thresh1) / (thresh2 - thresh1))'], {'lower': '(0)', 'upper': '(1.0)'}), '((overlaps - thresh1) / (thresh2 - thresh1), lower=0, upper=1.0)\n', (5529, 5593), True, 'import megengine.functional as F\n'), ((6464, 6538), 'megengine.functional.topk', 'F.topk', (['match_quality_matrix'], {'k': 'bucket_size', 'descending': '(True)', 'no_sort': '(True)'}), '(match_quality_matrix, k=bucket_size, descending=True, no_sort=True)\n', (6470, 6538), True, 'import megengine.functional as F\n'), ((6796, 6845), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['gather_idx', '(num_gt, bucket_size)'], {}), '(gather_idx, (num_gt, bucket_size))\n', (6810, 6845), True, 'import megengine.functional as F\n'), ((7007, 7057), 'megengine.functional.indexing_one_hot', 'F.indexing_one_hot', (['gather_src', 'gather_idx'], {'axis': '(2)'}), '(gather_src, gather_idx, axis=2)\n', (7025, 7057), True, 'import megengine.functional as F\n'), ((7627, 7643), 'megengine.functional.exp', 'F.exp', (['(-reg_loss)'], {}), '(-reg_loss)\n', (7632, 7643), True, 'import megengine.functional as F\n'), ((7935, 7963), 'megengine.functional.maximum', 'F.maximum', (['num_foreground', '(1)'], {}), '(num_foreground, 1)\n', (7944, 7963), True, 'import megengine.functional as F\n'), ((8141, 8183), 'megengine.functional.maximum', 'F.maximum', (['(num_foreground * bucket_size)', '(1)'], {}), '(num_foreground * bucket_size, 1)\n', (8150, 8183), True, 'import megengine.functional as F\n'), ((1214, 1248), 'layers.get_norm', 'layers.get_norm', (['cfg.backbone_norm'], {}), '(cfg.backbone_norm)\n', (1229, 1248), False, 'import layers\n'), ((1611, 1706), 'layers.LastLevelP6P7', 'layers.LastLevelP6P7', (['cfg.fpn_top_in_channel', 'cfg.fpn_out_channels', 'cfg.fpn_top_in_feature'], {}), '(cfg.fpn_top_in_channel, cfg.fpn_out_channels, cfg.\n fpn_top_in_feature)\n', (1631, 1706), False, 'import layers\n'), ((2330, 2373), 'numpy.array', 'np.array', (['self.cfg.img_std'], {'dtype': '"""float32"""'}), "(self.cfg.img_std, dtype='float32')\n", (2338, 2373), True, 'import numpy as np\n'), ((3919, 3973), 'megengine.functional.concat', 'F.concat', (['[scale_w, scale_h, scale_w, scale_h]'], {'axis': '(0)'}), '([scale_w, scale_h, scale_w, scale_h], axis=0)\n', (3927, 3973), True, 'import megengine.functional as F\n'), ((4156, 4187), 'megengine.functional.sigmoid', 'F.sigmoid', (['all_level_box_logits'], {}), '(all_level_box_logits)\n', (4165, 4187), True, 'import megengine.functional as F\n'), ((4585, 4609), 'layers.safelog', 'layers.safelog', (['bag_prob'], {}), '(bag_prob)\n', (4599, 4609), False, 'import layers\n'), ((5817, 5861), 'megengine.functional.cond_take', 'F.cond_take', (['(gt_pred_prob != 0)', 'gt_pred_prob'], {}), '(gt_pred_prob != 0, gt_pred_prob)\n', (5828, 5861), True, 'import megengine.functional as F\n'), ((2252, 2296), 'numpy.array', 'np.array', (['self.cfg.img_mean'], {'dtype': '"""float32"""'}), "(self.cfg.img_mean, dtype='float32')\n", (2260, 2296), True, 'import numpy as np\n'), ((4032, 4085), 'layers.get_clipped_boxes', 'layers.get_clipped_boxes', (['pred_boxes', 'im_info[0, 2:4]'], {}), '(pred_boxes, im_info[0, 2:4])\n', (4056, 4085), False, 'import layers\n'), ((4698, 4726), 'layers.safelog', 'layers.safelog', (['(1.0 - logits)'], {}), '(1.0 - logits)\n', (4712, 4726), False, 'import layers\n'), ((5244, 5287), 'layers.get_iou', 'layers.get_iou', (['boxes_info[:, :4]', 'pred_box'], {}), '(boxes_info[:, :4], pred_box)\n', (5258, 5287), False, 'import layers\n'), ((5643, 5673), 'megengine.functional.zeros', 'F.zeros', (['pred_logits.shape[1:]'], {}), '(pred_logits.shape[1:])\n', (5650, 5673), True, 'import megengine.functional as F\n'), ((6332, 6374), 'layers.get_iou', 'layers.get_iou', (['boxes_info[:, :4]', 'anchors'], {}), '(boxes_info[:, :4], anchors)\n', (6346, 6374), False, 'import layers\n'), ((7901, 7926), 'megengine.functional.concat', 'F.concat', (['positive_losses'], {}), '(positive_losses)\n', (7909, 7926), True, 'import megengine.functional as F\n'), ((7178, 7218), 'megengine.functional.expand_dims', 'F.expand_dims', (['boxes_info[:, :4]'], {'axis': '(1)'}), '(boxes_info[:, :4], axis=1)\n', (7191, 7218), True, 'import megengine.functional as F\n'), ((7383, 7495), 'layers.smooth_l1_loss', 'layers.smooth_l1_loss', (['pred_offsets[bid, matched_idx_flatten]', 'matched_offsets'], {'beta': 'self.cfg.smooth_l1_beta'}), '(pred_offsets[bid, matched_idx_flatten],\n matched_offsets, beta=self.cfg.smooth_l1_beta)\n', (7404, 7495), False, 'import layers\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.hub as hub import megengine.module as M import official.vision.classification.resnet.model as resnet import numpy as np class DeconvLayers(M.Module): def __init__(self, nf1, nf2s, kernels, num_layers, bias=True, norm=M.BatchNorm2d): super(DeconvLayers, self).__init__() _body = [] for i in range(num_layers): kernel = kernels[i] padding = ( kernel // 3 ) # padding=0 when kernel=2 and padding=1 when kernel=4 or kernel=3 _body += [ M.ConvTranspose2d(nf1, nf2s[i], kernel, 2, padding, bias=bias), norm(nf2s[i]), M.ReLU(), ] nf1 = nf2s[i] self.body = M.Sequential(*_body) def forward(self, x): return self.body(x) class SimpleBaseline(M.Module): def __init__(self, backbone, cfg): super(SimpleBaseline, self).__init__() norm = M.BatchNorm2d self.backbone = getattr(resnet, backbone)( norm=norm, pretrained=cfg.backbone_pretrained ) del self.backbone.fc self.cfg = cfg self.deconv_layers = DeconvLayers( cfg.initial_deconv_channels, cfg.deconv_channels, cfg.deconv_kernel_sizes, cfg.num_deconv_layers, cfg.deconv_with_bias, norm, ) self.last_layer = M.Conv2d(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1) self._initialize_weights() self.inputs = { "image": mge.tensor(dtype="float32"), "heatmap": mge.tensor(dtype="float32"), "heat_valid": mge.tensor(dtype="float32"), } def calc_loss(self): out = self.forward(self.inputs["image"]) valid = self.inputs["heat_valid"][:, :, None, None] label = self.inputs["heatmap"][:, -1] loss = F.square_loss(out * valid, label * valid) return loss def predict(self): return self.forward(self.inputs["image"]) def _initialize_weights(self): for k, m in self.deconv_layers.named_modules(): if isinstance(m, M.ConvTranspose2d): M.init.normal_(m.weight, std=0.001) if self.cfg.deconv_with_bias: M.init.zeros_(m.bias) if isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) M.init.normal_(self.last_layer.weight, std=0.001) M.init.zeros_(self.last_layer.bias) def forward(self, x): f = self.backbone.extract_features(x)["res5"] f = self.deconv_layers(f) pred = self.last_layer(f) return pred class SimpleBaseline_Config: initial_deconv_channels = 2048 num_deconv_layers = 3 deconv_channels = [256, 256, 256] deconv_kernel_sizes = [4, 4, 4] deconv_with_bias = False keypoint_num = 17 backbone_pretrained = True cfg = SimpleBaseline_Config() @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl" ) def simplebaseline_res50(**kwargs): model = SimpleBaseline(backbone="resnet50", cfg=cfg, **kwargs) return model @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline101_256x192_0_255_72_2.pkl" ) def simplebaseline_res101(**kwargs): model = SimpleBaseline(backbone="resnet101", cfg=cfg, **kwargs) return model @hub.pretrained( "https://data.megengine.org.cn/models/weights/simplebaseline152_256x192_0_255_72_4.pkl" ) def simplebaseline_res152(**kwargs): model = SimpleBaseline(backbone="resnet152", cfg=cfg, **kwargs) return model
[ "megengine.module.init.zeros_", "megengine.module.init.normal_", "megengine.tensor", "megengine.module.ReLU", "megengine.module.Conv2d", "megengine.module.init.ones_", "megengine.module.ConvTranspose2d", "megengine.functional.square_loss", "megengine.module.Sequential", "megengine.hub.pretrained" ]
[((3431, 3543), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/simplebaseline50_256x192_0_255_71_2.pkl'\n )\n", (3445, 3543), True, 'import megengine.hub as hub\n'), ((3664, 3777), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/simplebaseline101_256x192_0_255_72_2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/simplebaseline101_256x192_0_255_72_2.pkl'\n )\n", (3678, 3777), True, 'import megengine.hub as hub\n'), ((3900, 4013), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/simplebaseline152_256x192_0_255_72_4.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/simplebaseline152_256x192_0_255_72_4.pkl'\n )\n", (3914, 4013), True, 'import megengine.hub as hub\n'), ((1176, 1196), 'megengine.module.Sequential', 'M.Sequential', (['*_body'], {}), '(*_body)\n', (1188, 1196), True, 'import megengine.module as M\n'), ((1851, 1911), 'megengine.module.Conv2d', 'M.Conv2d', (['cfg.deconv_channels[-1]', 'cfg.keypoint_num', '(3)', '(1)', '(1)'], {}), '(cfg.deconv_channels[-1], cfg.keypoint_num, 3, 1, 1)\n', (1859, 1911), True, 'import megengine.module as M\n'), ((2336, 2377), 'megengine.functional.square_loss', 'F.square_loss', (['(out * valid)', '(label * valid)'], {}), '(out * valid, label * valid)\n', (2349, 2377), True, 'import megengine.functional as F\n'), ((2885, 2934), 'megengine.module.init.normal_', 'M.init.normal_', (['self.last_layer.weight'], {'std': '(0.001)'}), '(self.last_layer.weight, std=0.001)\n', (2899, 2934), True, 'import megengine.module as M\n'), ((2943, 2978), 'megengine.module.init.zeros_', 'M.init.zeros_', (['self.last_layer.bias'], {}), '(self.last_layer.bias)\n', (2956, 2978), True, 'import megengine.module as M\n'), ((1994, 2021), 'megengine.tensor', 'mge.tensor', ([], {'dtype': '"""float32"""'}), "(dtype='float32')\n", (2004, 2021), True, 'import megengine as mge\n'), ((2046, 2073), 'megengine.tensor', 'mge.tensor', ([], {'dtype': '"""float32"""'}), "(dtype='float32')\n", (2056, 2073), True, 'import megengine as mge\n'), ((2101, 2128), 'megengine.tensor', 'mge.tensor', ([], {'dtype': '"""float32"""'}), "(dtype='float32')\n", (2111, 2128), True, 'import megengine as mge\n'), ((995, 1057), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['nf1', 'nf2s[i]', 'kernel', '(2)', 'padding'], {'bias': 'bias'}), '(nf1, nf2s[i], kernel, 2, padding, bias=bias)\n', (1012, 1057), True, 'import megengine.module as M\n'), ((1106, 1114), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1112, 1114), True, 'import megengine.module as M\n'), ((2630, 2665), 'megengine.module.init.normal_', 'M.init.normal_', (['m.weight'], {'std': '(0.001)'}), '(m.weight, std=0.001)\n', (2644, 2665), True, 'import megengine.module as M\n'), ((2815, 2837), 'megengine.module.init.ones_', 'M.init.ones_', (['m.weight'], {}), '(m.weight)\n', (2827, 2837), True, 'import megengine.module as M\n'), ((2854, 2875), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (2867, 2875), True, 'import megengine.module as M\n'), ((2732, 2753), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (2745, 2753), True, 'import megengine.module as M\n')]
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) 2019 Megvii Technology # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ import argparse import multiprocessing as mp import os import time import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.jit as jit import megengine.optimizer as optim import shufflenet_v2 as M from tensorboardX import SummaryWriter logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="shufflenet_v2_x0_5", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="./models", type=str) parser.add_argument("-m", "--model", default=None, type=str) parser.add_argument('-o', '--output', type=str, required=True, help='set path for checkpoints \w tensorboard') parser.add_argument("-b", "--batch-size", default=128, type=int) parser.add_argument("--learning-rate", default=0.0625, type=float) parser.add_argument("--momentum", default=0.9, type=float) parser.add_argument("--weight-decay", default=4e-5, type=float) parser.add_argument("--steps", default=300000, type=int) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = mge.get_device_count("gpu") if args.ngpus is None else args.ngpus save_dir = os.path.join(args.save, args.arch, "b{}".format(args.batch_size * world_size)) if not os.path.exists(save_dir): os.makedirs(save_dir) mge.set_log_file(os.path.join(save_dir, "log.txt")) if not os.path.exists(args.output): os.makedirs(args.output) if world_size > 1: # scale learning rate by number of gpus args.learning_rate *= world_size # start distributed training, dispatch sub-processes mp.set_start_method("spawn") processes = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank, world_size, args)) p.start() processes.append(p) for p in processes: p.join() else: worker(0, 1, args) def get_parameters(model): group_no_weight_decay = [] group_weight_decay = [] for pname, p in model.named_parameters(requires_grad=True): if pname.find("weight") >= 0 and len(p.shape) > 1: # print("include ", pname, p.shape) group_weight_decay.append(p) else: # print("not include ", pname, p.shape) group_no_weight_decay.append(p) assert len(list(model.parameters())) == len(group_weight_decay) + len( group_no_weight_decay ) groups = [ dict(params=group_weight_decay), dict(params=group_no_weight_decay, weight_decay=0.0), ] return groups def worker(rank, world_size, args): # pylint: disable=too-many-statements mge.set_log_file(os.path.join(args.save, args.arch, "log.txt")) if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) dist.init_process_group( master_ip="localhost", master_port=23456, world_size=world_size, rank=rank, dev=rank, ) save_dir = os.path.join(args.save, args.arch) if rank == 0: prefixs=['train', 'valid'] writers = {prefix: SummaryWriter(os.path.join(args.output, prefix)) for prefix in prefixs} model = getattr(M, args.arch)() step_start = 0 if args.model: logger.info("load weights from %s", args.model) model.load_state_dict(mge.load(args.model)) step_start = int(args.model.split("-")[1].split(".")[0]) optimizer = optim.SGD( get_parameters(model), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay, ) # Define train and valid graph @jit.trace(symbolic=True) def train_func(image, label): model.train() logits = model(image) loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1) acc1, acc5 = F.accuracy(logits, label, (1, 5)) optimizer.backward(loss) # compute gradients if dist.is_distributed(): # all_reduce_mean loss = dist.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 @jit.trace(symbolic=True) def valid_func(image, label): model.eval() logits = model(image) loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1) acc1, acc5 = F.accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 # Build train and valid datasets logger.info("preparing dataset..") train_dataset = data.dataset.ImageNet(args.data, train=True) train_sampler = data.Infinite(data.RandomSampler( train_dataset, batch_size=args.batch_size, drop_last=True )) train_queue = data.DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( [ T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), T.ToMode("CHW"), ] ), num_workers=args.workers, ) train_queue = iter(train_queue) valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [ T.Resize(256), T.CenterCrop(224), T.ToMode("CHW"), ] ), num_workers=args.workers, ) # Start training objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step in range(step_start, args.steps + 1): # Linear learning rate decay decay = 1.0 decay = 1 - float(step) / args.steps if step < args.steps else 0 for param_group in optimizer.param_groups: param_group["lr"] = args.learning_rate * decay image, label = next(train_queue) time_data=time.time()-t image = image.astype("float32") label = label.astype("int32") n = image.shape[0] optimizer.zero_grad() loss, acc1, acc5 = train_func(image, label) optimizer.step() top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) objs.update(loss.numpy()[0], n) total_time.update(time.time() - t) time_iter=time.time()-t t = time.time() if step % args.report_freq == 0 and rank == 0: logger.info( "TRAIN Iter %06d: lr = %f,\tloss = %f,\twc_loss = 1,\tTop-1 err = %f,\tTop-5 err = %f,\tdata_time = %f,\ttrain_time = %f,\tremain_hours=%f", step, args.learning_rate * decay, float(objs.__str__().split()[1]), 1-float(top1.__str__().split()[1])/100, 1-float(top5.__str__().split()[1])/100, time_data, time_iter - time_data, time_iter * (args.steps - step) / 3600, ) writers['train'].add_scalar('loss', float(objs.__str__().split()[1]), global_step=step) writers['train'].add_scalar('top1_err', 1-float(top1.__str__().split()[1])/100, global_step=step) writers['train'].add_scalar('top5_err', 1-float(top5.__str__().split()[1])/100, global_step=step) objs.reset() top1.reset() top5.reset() total_time.reset() if step % 10000 == 0 and rank == 0 and step != 0: logger.info("SAVING %06d", step) mge.save( model.state_dict(), os.path.join(save_dir, "checkpoint-{:06d}.pkl".format(step)), ) if step % 10000 == 0 and step != 0: loss, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args) logger.info("TEST Iter %06d: loss = %f,\tTop-1 err = %f,\tTop-5 err = %f", step, loss, 1-valid_acc/100, 1-valid_acc5/100) if rank == 0: writers['valid'].add_scalar('loss', loss, global_step=step) writers['valid'].add_scalar('top1_err', 1-valid_acc/100, global_step=step) writers['valid'].add_scalar('top5_err', 1-valid_acc5/100, global_step=step) mge.save( model.state_dict(), os.path.join(save_dir, "checkpoint-{:06d}.pkl".format(step)) ) loss, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args) logger.info("TEST Iter %06d: loss=%f,\tTop-1 err = %f,\tTop-5 err = %f", step, _, 1-valid_acc/100, 1-valid_acc5/100) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = image.astype("float32") # convert np.uint8 to float32 label = label.astype("int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info( "Step %d, %s %s %s %s", step, objs, top1, top5, total_time, ) return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.get_device_count", "megengine.distributed.is_distributed", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop", "megengine.data.SequentialSampler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.data.dataset.ImageNet", "megengine.data.transform.RandomHorizontalFlip", "megengine.jit.trace", "megengine.data.transform.Resize", "megengine.data.transform.ColorJitter", "megengine.data.RandomSampler", "megengine.functional.accuracy", "megengine.data.transform.RandomResizedCrop", "megengine.distributed.all_reduce_sum", "megengine.functional.cross_entropy_with_softmax", "megengine.distributed.init_process_group", "megengine.load" ]
[((2178, 2202), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (2192, 2202), True, 'import megengine as mge\n'), ((2230, 2255), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2253, 2255), False, 'import argparse\n'), ((5245, 5279), 'os.path.join', 'os.path.join', (['args.save', 'args.arch'], {}), '(args.save, args.arch)\n', (5257, 5279), False, 'import os\n'), ((5890, 5914), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (5899, 5914), True, 'import megengine.jit as jit\n'), ((6485, 6509), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (6494, 6509), True, 'import megengine.jit as jit\n'), ((7116, 7160), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(True)'}), '(args.data, train=True)\n', (7137, 7160), True, 'import megengine.data as data\n'), ((7737, 7782), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (7758, 7782), True, 'import megengine.data as data\n'), ((7803, 7873), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (7825, 7873), True, 'import megengine.data as data\n'), ((8351, 8362), 'time.time', 'time.time', ([], {}), '()\n', (8360, 8362), False, 'import time\n'), ((11489, 11500), 'time.time', 'time.time', ([], {}), '()\n', (11498, 11500), False, 'import time\n'), ((3225, 3252), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (3245, 3252), True, 'import megengine as mge\n'), ((3397, 3421), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (3411, 3421), False, 'import os\n'), ((3431, 3452), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (3442, 3452), False, 'import os\n'), ((3474, 3507), 'os.path.join', 'os.path.join', (['save_dir', '"""log.txt"""'], {}), "(save_dir, 'log.txt')\n", (3486, 3507), False, 'import os\n'), ((3521, 3548), 'os.path.exists', 'os.path.exists', (['args.output'], {}), '(args.output)\n', (3535, 3548), False, 'import os\n'), ((3558, 3582), 'os.makedirs', 'os.makedirs', (['args.output'], {}), '(args.output)\n', (3569, 3582), False, 'import os\n'), ((3766, 3794), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (3785, 3794), True, 'import multiprocessing as mp\n'), ((4835, 4880), 'os.path.join', 'os.path.join', (['args.save', 'args.arch', '"""log.txt"""'], {}), "(args.save, args.arch, 'log.txt')\n", (4847, 4880), False, 'import os\n'), ((5048, 5161), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': '"""localhost"""', 'master_port': '(23456)', 'world_size': 'world_size', 'rank': 'rank', 'dev': 'rank'}), "(master_ip='localhost', master_port=23456,\n world_size=world_size, rank=rank, dev=rank)\n", (5071, 5161), True, 'import megengine.distributed as dist\n'), ((6016, 6077), 'megengine.functional.cross_entropy_with_softmax', 'F.cross_entropy_with_softmax', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (6044, 6077), True, 'import megengine.functional as F\n'), ((6099, 6132), 'megengine.functional.accuracy', 'F.accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (6109, 6132), True, 'import megengine.functional as F\n'), ((6198, 6219), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (6217, 6219), True, 'import megengine.distributed as dist\n'), ((6610, 6671), 'megengine.functional.cross_entropy_with_softmax', 'F.cross_entropy_with_softmax', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (6638, 6671), True, 'import megengine.functional as F\n'), ((6693, 6726), 'megengine.functional.accuracy', 'F.accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (6703, 6726), True, 'import megengine.functional as F\n'), ((6738, 6759), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (6757, 6759), True, 'import megengine.distributed as dist\n'), ((7195, 7272), 'megengine.data.RandomSampler', 'data.RandomSampler', (['train_dataset'], {'batch_size': 'args.batch_size', 'drop_last': '(True)'}), '(train_dataset, batch_size=args.batch_size, drop_last=True)\n', (7213, 7272), True, 'import megengine.data as data\n'), ((9162, 9173), 'time.time', 'time.time', ([], {}), '()\n', (9171, 9173), False, 'import time\n'), ((11928, 11939), 'time.time', 'time.time', ([], {}), '()\n', (11937, 11939), False, 'import time\n'), ((3873, 3929), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(rank, world_size, args)'}), '(target=worker, args=(rank, world_size, args))\n', (3883, 3929), True, 'import multiprocessing as mp\n'), ((5594, 5614), 'megengine.load', 'mge.load', (['args.model'], {}), '(args.model)\n', (5602, 5614), True, 'import megengine as mge\n'), ((8714, 8725), 'time.time', 'time.time', ([], {}), '()\n', (8723, 8725), False, 'import time\n'), ((9136, 9147), 'time.time', 'time.time', ([], {}), '()\n', (9145, 9147), False, 'import time\n'), ((5375, 5408), 'os.path.join', 'os.path.join', (['args.output', 'prefix'], {}), '(args.output, prefix)\n', (5387, 5408), False, 'import os\n'), ((6259, 6284), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['loss'], {}), '(loss)\n', (6278, 6284), True, 'import megengine.distributed as dist\n'), ((6287, 6308), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6306, 6308), True, 'import megengine.distributed as dist\n'), ((6328, 6353), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (6347, 6353), True, 'import megengine.distributed as dist\n'), ((6356, 6377), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6375, 6377), True, 'import megengine.distributed as dist\n'), ((6397, 6422), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (6416, 6422), True, 'import megengine.distributed as dist\n'), ((6425, 6446), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6444, 6446), True, 'import megengine.distributed as dist\n'), ((6799, 6824), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['loss'], {}), '(loss)\n', (6818, 6824), True, 'import megengine.distributed as dist\n'), ((6827, 6848), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6846, 6848), True, 'import megengine.distributed as dist\n'), ((6868, 6893), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (6887, 6893), True, 'import megengine.distributed as dist\n'), ((6896, 6917), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6915, 6917), True, 'import megengine.distributed as dist\n'), ((6937, 6962), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (6956, 6962), True, 'import megengine.distributed as dist\n'), ((6965, 6986), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (6984, 6986), True, 'import megengine.distributed as dist\n'), ((9101, 9112), 'time.time', 'time.time', ([], {}), '()\n', (9110, 9112), False, 'import time\n'), ((11899, 11910), 'time.time', 'time.time', ([], {}), '()\n', (11908, 11910), False, 'import time\n'), ((11985, 12000), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (11998, 12000), True, 'import megengine.distributed as dist\n'), ((7436, 7460), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['(224)'], {}), '(224)\n', (7455, 7460), True, 'import megengine.data.transform as T\n'), ((7478, 7502), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (7500, 7502), True, 'import megengine.data.transform as T\n'), ((7520, 7579), 'megengine.data.transform.ColorJitter', 'T.ColorJitter', ([], {'brightness': '(0.4)', 'contrast': '(0.4)', 'saturation': '(0.4)'}), '(brightness=0.4, contrast=0.4, saturation=0.4)\n', (7533, 7579), True, 'import megengine.data.transform as T\n'), ((7597, 7612), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (7605, 7612), True, 'import megengine.data.transform as T\n'), ((8036, 8049), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (8044, 8049), True, 'import megengine.data.transform as T\n'), ((8067, 8084), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (8079, 8084), True, 'import megengine.data.transform as T\n'), ((8102, 8117), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (8110, 8117), True, 'import megengine.data.transform as T\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.functional as F import megengine.jit as jit import megengine.module as M import megengine.random as R def test_random_static_diff_result(): @jit.trace(symbolic=True) def graph_a(): return R.uniform(5) + R.gaussian(5) @jit.trace(symbolic=True) def graph_b(): return R.uniform(5) + R.gaussian(5) a = graph_a() b = graph_b() assert np.any(a.numpy() != b.numpy()) def test_random_static_same_result(): @jit.trace(symbolic=True) def graph_a(): R.manual_seed(731) return R.uniform(5) + R.gaussian(5) @jit.trace(symbolic=True) def graph_b(): R.manual_seed(731) return R.uniform(5) + R.gaussian(5) a = graph_a() b = graph_b() assert np.all(a.numpy() == b.numpy()) def test_random_dynamic_diff_result(): a = R.uniform(5) + R.gaussian(5) b = R.uniform(5) + R.gaussian(5) assert np.any(a.numpy() != b.numpy()) def test_random_dynamic_same_result(): R.manual_seed(0) a = R.uniform(5) + R.gaussian(5) R.manual_seed(0) b = R.uniform(5) + R.gaussian(5) assert np.all(a.numpy() == b.numpy()) def test_dropout_dynamic_diff_result(): x = mge.ones(10) a = F.dropout(x, 0.5) b = F.dropout(x, 0.5) assert np.any(a.numpy() != b.numpy()) def test_dropout_dynamic_same_result(): x = mge.ones(10) R.manual_seed(0) a = F.dropout(x, 0.5) R.manual_seed(0) b = F.dropout(x, 0.5) assert np.all(a.numpy() == b.numpy()) def test_M_dropout_static_diff_result(): m = M.Dropout(0.5) @jit.trace(symbolic=True) def graph_a(x): return m(x) @jit.trace(symbolic=True) def graph_b(x): return m(x) x = np.ones(10, dtype="float32") a = graph_a(x) a = a.numpy().copy() b = graph_b(x) c = graph_a(x) assert np.any(a != b.numpy()) assert np.any(a != c.numpy()) def test_M_dropout_static_same_result(): m = M.Dropout(0.5) @jit.trace(symbolic=True) def graph_a(x): return m(x) @jit.trace(symbolic=True) def graph_b(x): return m(x) x = np.ones(10, dtype="float32") R.manual_seed(0) a = graph_a(x) a = a.numpy().copy() R.manual_seed(0) b = graph_b(x) R.manual_seed(0) # useless c = graph_a(x) assert np.all(a == b.numpy()) assert np.any(a != c.numpy())
[ "megengine.module.Dropout", "megengine.jit.trace", "megengine.functional.dropout", "megengine.random.uniform", "megengine.ones", "megengine.random.gaussian", "megengine.random.manual_seed" ]
[((585, 609), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (594, 609), True, 'import megengine.jit as jit\n'), ((679, 703), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (688, 703), True, 'import megengine.jit as jit\n'), ((891, 915), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (900, 915), True, 'import megengine.jit as jit\n'), ((1012, 1036), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1021, 1036), True, 'import megengine.jit as jit\n'), ((1408, 1424), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1421, 1424), True, 'import megengine.random as R\n'), ((1466, 1482), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1479, 1482), True, 'import megengine.random as R\n'), ((1612, 1624), 'megengine.ones', 'mge.ones', (['(10)'], {}), '(10)\n', (1620, 1624), True, 'import megengine as mge\n'), ((1633, 1650), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1642, 1650), True, 'import megengine.functional as F\n'), ((1659, 1676), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1668, 1676), True, 'import megengine.functional as F\n'), ((1769, 1781), 'megengine.ones', 'mge.ones', (['(10)'], {}), '(10)\n', (1777, 1781), True, 'import megengine as mge\n'), ((1786, 1802), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1799, 1802), True, 'import megengine.random as R\n'), ((1811, 1828), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1820, 1828), True, 'import megengine.functional as F\n'), ((1833, 1849), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1846, 1849), True, 'import megengine.random as R\n'), ((1858, 1875), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1867, 1875), True, 'import megengine.functional as F\n'), ((1969, 1983), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (1978, 1983), True, 'import megengine.module as M\n'), ((1990, 2014), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1999, 2014), True, 'import megengine.jit as jit\n'), ((2061, 2085), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2070, 2085), True, 'import megengine.jit as jit\n'), ((2135, 2163), 'numpy.ones', 'np.ones', (['(10)'], {'dtype': '"""float32"""'}), "(10, dtype='float32')\n", (2142, 2163), True, 'import numpy as np\n'), ((2365, 2379), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (2374, 2379), True, 'import megengine.module as M\n'), ((2386, 2410), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2395, 2410), True, 'import megengine.jit as jit\n'), ((2457, 2481), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2466, 2481), True, 'import megengine.jit as jit\n'), ((2531, 2559), 'numpy.ones', 'np.ones', (['(10)'], {'dtype': '"""float32"""'}), "(10, dtype='float32')\n", (2538, 2559), True, 'import numpy as np\n'), ((2564, 2580), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2577, 2580), True, 'import megengine.random as R\n'), ((2629, 2645), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2642, 2645), True, 'import megengine.random as R\n'), ((2669, 2685), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2682, 2685), True, 'import megengine.random as R\n'), ((943, 961), 'megengine.random.manual_seed', 'R.manual_seed', (['(731)'], {}), '(731)\n', (956, 961), True, 'import megengine.random as R\n'), ((1064, 1082), 'megengine.random.manual_seed', 'R.manual_seed', (['(731)'], {}), '(731)\n', (1077, 1082), True, 'import megengine.random as R\n'), ((1255, 1267), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1264, 1267), True, 'import megengine.random as R\n'), ((1270, 1283), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1280, 1283), True, 'import megengine.random as R\n'), ((1292, 1304), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1301, 1304), True, 'import megengine.random as R\n'), ((1307, 1320), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1317, 1320), True, 'import megengine.random as R\n'), ((1433, 1445), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1442, 1445), True, 'import megengine.random as R\n'), ((1448, 1461), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1458, 1461), True, 'import megengine.random as R\n'), ((1491, 1503), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1500, 1503), True, 'import megengine.random as R\n'), ((1506, 1519), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1516, 1519), True, 'import megengine.random as R\n'), ((644, 656), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (653, 656), True, 'import megengine.random as R\n'), ((659, 672), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (669, 672), True, 'import megengine.random as R\n'), ((738, 750), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (747, 750), True, 'import megengine.random as R\n'), ((753, 766), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (763, 766), True, 'import megengine.random as R\n'), ((977, 989), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (986, 989), True, 'import megengine.random as R\n'), ((992, 1005), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1002, 1005), True, 'import megengine.random as R\n'), ((1098, 1110), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1107, 1110), True, 'import megengine.random as R\n'), ((1113, 1126), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1123, 1126), True, 'import megengine.random as R\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import os import time import pickle import numpy as np import megengine.amp as amp import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import SGD import megengine.jit as jit from tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 512 * 1024 * 1024, 2.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-a", "--arch", type=str, help="model architecture", ) parser.add_argument( "-n", "--ngpus", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch-size", default=2, type=int, help="batchsize for training", ) parser.add_argument( "-s", "--steps", default=100, type=int, help="number of train steps (default: 100)", ) parser.add_argument( "--trace", action='store_true', default=False, help="whether use trace or not (default: False)", ) parser.add_argument( "--preloader", action='store_true', default=False, help="whether use preloader or not (default: False)", ) parser.add_argument( "--symbolic", action='store_true', default=False, help="whether use symbolic trace or not (default: False)", ) parser.add_argument( "-d", "--loader", default=False, action="store_true", help="use pseudo detection dataset loader", ) parser.add_argument( "-p", "--print-freq", default=1, type=int, help="print frequency (default: 1)", ) parser.add_argument( "-m", "--mode", default="normal", type=str, choices=["normal", "mp"], help="Quantization Mode\n" "normal: no quantization, using float32\n" "mp: input type is fp16", ) parser.add_argument("--preload", default=False, action="store_true", help="whether use preload") return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # if args.ngpus > 1: train_func = dist.launcher(worker, n_gpus=args.ngpus) train_func(args) else: worker(args) def worker(args): config_file = { "faster_rcnn": "configs/faster_rcnn_res50_coco_1x_800size.py", "atss": "configs/atss_res50_coco_1x_800size.py", "retinanet": "configs/retinanet_res50_coco_1x_800size.py", }[args.arch] current_network = import_from_file(config_file) model = current_network.Net(current_network.Cfg()) model.train() # if dist.get_rank() == 0: # logger.info(get_config_info(model.cfg)) # logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size, momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay * dist.get_world_size(), ) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("SUM", dist.WORLD)] ) else: gm.attach(params_with_grad) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters(), dist.WORLD) # sync parameters train_loader = None for epoch in range(1): train_one_epoch(model, train_loader, opt, gm, epoch, args) def train_one_epoch(model, data_queue, opt, gm, epoch, args): @amp.autocast(enabled=args.mode == "mp") def train_func(image, im_info, gt_boxes): with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) opt.step().clear_grad() return loss_list if args.trace: if args.symbolic: train_func = jit.trace(train_func, symbolic=True, sublinear_memory_config=jit.SublinearMemoryConfig(genetic_nr_iter=50), symbolic_shape=True) else: train_func = jit.trace(train_func, symbolic=False, symbolic_shape=False) else: assert args.symbolic==False, "invalid arguments: trace=Trace, symbolic=True" loss_meter = AverageMeter(record_len=model.cfg.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) file_dir = os.path.dirname(os.path.abspath(__file__)) data_path = os.path.join(file_dir, 'batch.pkl') # batch_size for batch.pkl is 2 mini_batch = pickle.load(open(data_path, "rb")) if args.batch_size != 2: repeats = (args.batch_size+1) // 2 mini_batch['data'] = np.concatenate([mini_batch['data'],]*repeats)[:args.batch_size] mini_batch['im_info'] = np.concatenate([mini_batch['im_info'],]*repeats)[:args.batch_size] mini_batch['gt_boxes'] = np.concatenate([mini_batch['gt_boxes'],]*repeats)[:args.batch_size] # warm up for step in range(10): if data_queue: mini_batch = next(data_queue) loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]) ) _ = [loss.numpy() for loss in loss_list] for step in range(args.steps): tik = time.time() if data_queue: mini_batch = next(data_queue) data_tok = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]) ) loss_meter.update([loss.numpy().item() for loss in loss_list]) tok = time.time() time_meter.update([tok - tik, data_tok - tik]) if step % args.print_freq == 0 and dist.get_rank() == 0: print( "Step {}, Loss ({}), Time (tot:{:.3f}, data:{:.3f})".format( step, "".join(["{:.3f} ".format(t) for t in loss_meter.average()]), *time_meter.average(), )) loss_meter.reset() if dist.get_rank() == 0: print("="*20, "summary", "="*20) print(" benchmark: detection") if args.trace: print(" mode: trace(symbolic={})".format("True, sublinear=True" if args.symbolic else "False")) else: print(" mode: imperative") print(" loader: {}".format("" if not args.loader else "--loader")) if args.loader: print(" preload: {}".format("" if not args.preload else "--preload")) print(" arch: {}".format(args.arch)) print("train_mode: {}".format(args.mode)) print(" batchsize: {}".format(args.batch_size)) print(" #GPU: {}".format(args.ngpus)) print(" avg time: {:.3f} seconds".format(time_meter.average()[0])) # pylint: disable=unused-argument def build_dataset(dataset_dir, cfg): return PseudoDetectionDataset(order=["image", "boxes", "boxes_category", "info"]) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg, preloader= False): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ), T.RandomHorizontalFlip(), T.ToMode(), ], order=["image", "boxes", "boxes_category"], ), collator=DetectionPadCollator(), num_workers=8, preload= preloader, ) return train_dataloader if __name__ == "__main__": main()
[ "megengine.data.transform.ToMode", "megengine.amp.autocast", "megengine.device.set_prealloc_config", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.distributed.make_allreduce_cb", "megengine.data.transform.RandomHorizontalFlip", "megengine.jit.trace", "megengine.jit.SublinearMemoryConfig", "megengine.tensor", "megengine.data.RandomSampler", "megengine.data.transform.ShortestEdgeResize", "megengine.autodiff.GradManager", "megengine.distributed.launcher" ]
[((942, 966), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (956, 966), True, 'import megengine as mge\n'), ((991, 1057), 'megengine.device.set_prealloc_config', 'mge.device.set_prealloc_config', (['(1024)', '(1024)', '(512 * 1024 * 1024)', '(2.0)'], {}), '(1024, 1024, 512 * 1024 * 1024, 2.0)\n', (1021, 1057), True, 'import megengine as mge\n'), ((1092, 1117), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1115, 1117), False, 'import argparse\n'), ((3265, 3294), 'tools.utils.import_from_file', 'import_from_file', (['config_file'], {}), '(config_file)\n', (3281, 3294), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((4010, 4023), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4021, 4023), False, 'from megengine.autodiff import GradManager\n'), ((4528, 4567), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': "(args.mode == 'mp')"}), "(enabled=args.mode == 'mp')\n", (4540, 4567), True, 'import megengine.amp as amp\n'), ((5277, 5322), 'tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': 'model.cfg.num_losses'}), '(record_len=model.cfg.num_losses)\n', (5289, 5322), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5340, 5366), 'tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(2)'}), '(record_len=2)\n', (5352, 5366), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5571, 5606), 'os.path.join', 'os.path.join', (['file_dir', '"""batch.pkl"""'], {}), "(file_dir, 'batch.pkl')\n", (5583, 5606), False, 'import os\n'), ((8136, 8210), 'tools.utils.PseudoDetectionDataset', 'PseudoDetectionDataset', ([], {'order': "['image', 'boxes', 'boxes_category', 'info']"}), "(order=['image', 'boxes', 'boxes_category', 'info'])\n", (8158, 8210), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((2893, 2933), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {'n_gpus': 'args.ngpus'}), '(worker, n_gpus=args.ngpus)\n', (2906, 2933), True, 'import megengine.distributed as dist\n'), ((4031, 4052), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4050, 4052), True, 'import megengine.distributed as dist\n'), ((4237, 4258), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4256, 4258), True, 'import megengine.distributed as dist\n'), ((5528, 5553), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (5543, 5553), False, 'import os\n'), ((6466, 6477), 'time.time', 'time.time', ([], {}), '()\n', (6475, 6477), False, 'import time\n'), ((6562, 6573), 'time.time', 'time.time', ([], {}), '()\n', (6571, 6573), False, 'import time\n'), ((6864, 6875), 'time.time', 'time.time', ([], {}), '()\n', (6873, 6875), False, 'import time\n'), ((7287, 7302), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7300, 7302), True, 'import megengine.distributed as dist\n'), ((8924, 8982), 'tools.utils.GroupedRandomSampler', 'GroupedRandomSampler', (['train_dataset', 'batch_size', 'group_ids'], {}), '(train_dataset, batch_size, group_ids)\n', (8944, 8982), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5104, 5163), 'megengine.jit.trace', 'jit.trace', (['train_func'], {'symbolic': '(False)', 'symbolic_shape': '(False)'}), '(train_func, symbolic=False, symbolic_shape=False)\n', (5113, 5163), True, 'import megengine.jit as jit\n'), ((5473, 5494), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5492, 5494), True, 'import megengine.distributed as dist\n'), ((5793, 5839), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['data']] * repeats)"], {}), "([mini_batch['data']] * repeats)\n", (5807, 5839), True, 'import numpy as np\n'), ((5889, 5938), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['im_info']] * repeats)"], {}), "([mini_batch['im_info']] * repeats)\n", (5903, 5938), True, 'import numpy as np\n'), ((5989, 6039), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['gt_boxes']] * repeats)"], {}), "([mini_batch['gt_boxes']] * repeats)\n", (6003, 6039), True, 'import numpy as np\n'), ((8729, 8785), 'megengine.data.RandomSampler', 'RandomSampler', (['train_dataset', 'batch_size'], {'drop_last': '(True)'}), '(train_dataset, batch_size, drop_last=True)\n', (8742, 8785), False, 'from megengine.data import DataLoader, Infinite, RandomSampler\n'), ((9675, 9697), 'tools.utils.DetectionPadCollator', 'DetectionPadCollator', ([], {}), '()\n', (9695, 9697), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((3971, 3992), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3990, 3992), True, 'import megengine.distributed as dist\n'), ((6214, 6244), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (6224, 6244), True, 'import megengine as mge\n'), ((6266, 6299), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (6276, 6299), True, 'import megengine as mge\n'), ((6322, 6356), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (6332, 6356), True, 'import megengine as mge\n'), ((6625, 6655), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (6635, 6655), True, 'import megengine as mge\n'), ((6677, 6710), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (6687, 6710), True, 'import megengine as mge\n'), ((6733, 6767), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (6743, 6767), True, 'import megengine as mge\n'), ((6976, 6991), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6989, 6991), True, 'import megengine.distributed as dist\n'), ((4130, 4171), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""', 'dist.WORLD'], {}), "('SUM', dist.WORLD)\n", (4152, 4171), True, 'import megengine.distributed as dist\n'), ((4997, 5042), 'megengine.jit.SublinearMemoryConfig', 'jit.SublinearMemoryConfig', ([], {'genetic_nr_iter': '(50)'}), '(genetic_nr_iter=50)\n', (5022, 5042), True, 'import megengine.jit as jit\n'), ((9328, 9429), 'megengine.data.transform.ShortestEdgeResize', 'T.ShortestEdgeResize', (['cfg.train_image_short_size', 'cfg.train_image_max_size'], {'sample_style': '"""choice"""'}), "(cfg.train_image_short_size, cfg.train_image_max_size,\n sample_style='choice')\n", (9348, 9429), True, 'from megengine.data import transform as T\n'), ((9522, 9546), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9544, 9546), True, 'from megengine.data import transform as T\n'), ((9564, 9574), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (9572, 9574), True, 'from megengine.data import transform as T\n')]
import logging from megengine.distributed.group import get_rank from megengine.distributed import is_distributed logger_initialized = {} def get_logger(name, log_file=None, log_level=logging.INFO): """Initialize and get a logger by name. If the logger has not been initialized, this method will initialize the logger by adding one or two handlers, otherwise the initialized logger will be directly returned. During initialization, a StreamHandler will always be added. If `log_file` is specified and the process rank is 0, a FileHandler will also be added. Args: name (str): Logger name. log_file (str | None): The log filename. If specified, a FileHandler will be added to the logger. log_level (int): The logger level. Note that only the process of rank 0 is affected, and other processes will set the level to "Error" thus be silent most of the time. Returns: logging.Logger: The expected logger. """ logger = logging.getLogger(name) if name in logger_initialized: return logger # handle hierarchical names # e.g., logger "a" is initialized, then logger "a.b" will skip the # initialization since it is a child of "a". for logger_name in logger_initialized: if name.startswith(logger_name): # child return logger # fix stream twice bug # while logger.handlers: # logger.handlers.pop() stream_handler = logging.StreamHandler() handlers = [stream_handler] if is_distributed(): rank = get_rank() else: rank = 0 # only rank 0 will add a FileHandler if rank == 0 and log_file is not None: file_handler = logging.FileHandler(log_file, 'w') handlers.append(file_handler) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') for handler in handlers: handler.setFormatter(formatter) handler.setLevel(log_level) logger.addHandler(handler) if rank == 0: logger.setLevel(log_level) else: logger.setLevel(logging.ERROR) logger_initialized[name] = True return logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "edit". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ root_name = __name__.split('.')[0] # edit.utils.logger if is_distributed(): rank = get_rank() root_name = "rank" + str(rank) + "_" + root_name logger = get_logger(root_name, log_file, log_level) return logger
[ "megengine.distributed.is_distributed", "megengine.distributed.group.get_rank" ]
[((1026, 1049), 'logging.getLogger', 'logging.getLogger', (['name'], {}), '(name)\n', (1043, 1049), False, 'import logging\n'), ((1494, 1517), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (1515, 1517), False, 'import logging\n'), ((1558, 1574), 'megengine.distributed.is_distributed', 'is_distributed', ([], {}), '()\n', (1572, 1574), False, 'from megengine.distributed import is_distributed\n'), ((1827, 1900), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (1844, 1900), False, 'import logging\n'), ((3007, 3023), 'megengine.distributed.is_distributed', 'is_distributed', ([], {}), '()\n', (3021, 3023), False, 'from megengine.distributed import is_distributed\n'), ((1591, 1601), 'megengine.distributed.group.get_rank', 'get_rank', ([], {}), '()\n', (1599, 1601), False, 'from megengine.distributed.group import get_rank\n'), ((1737, 1771), 'logging.FileHandler', 'logging.FileHandler', (['log_file', '"""w"""'], {}), "(log_file, 'w')\n", (1756, 1771), False, 'import logging\n'), ((3040, 3050), 'megengine.distributed.group.get_rank', 'get_rank', ([], {}), '()\n', (3048, 3050), False, 'from megengine.distributed.group import get_rank\n')]
import argparse import logging import os import dataset.data_loader as data_loader import model.net as net from common import utils from loss.losses import compute_losses, compute_metrics from common.manager import Manager import megengine.distributed as dist import megengine.functional as F parser = argparse.ArgumentParser() parser.add_argument("--model_dir", default="experiments/base_model", help="Directory containing params.json") parser.add_argument("--restore_file", default="best", help="name of the file in --model_dir containing weights to load") def evaluate(model, manager): rank = dist.get_rank() world_size = dist.get_world_size() """Evaluate the model on `num_steps` batches. Args: model: (torch.nn.Module) the neural network manager: a class instance that contains objects related to train and evaluate. """ # set model to evaluation mode model.eval() # compute metrics over the dataset if manager.dataloaders["val"] is not None: # loss status and val status initial manager.reset_loss_status() manager.reset_metric_status("val") for data_batch in manager.dataloaders["val"]: # compute the real batch size bs = data_batch["points_src"].shape[0] # move to GPU if available data_batch = utils.tensor_mge(data_batch) # compute model output output_batch = model(data_batch) # compute all loss on this batch loss = compute_losses(output_batch, manager.params) metrics = compute_metrics(output_batch, manager.params) if world_size > 1: for k, v in loss.items(): loss[k] = F.distributed.all_reduce_sum(v) / world_size for k, v in metrics.items(): metrics[k] = F.distributed.all_reduce_sum(v) / world_size manager.update_loss_status(loss, "val", bs) # compute all metrics on this batch manager.update_metric_status(metrics, "val", bs) # update val data to tensorboard if rank == 0: # compute RMSE metrics manager.summarize_metric_status(metrics, "val") manager.writer.add_scalar("Loss/val", manager.loss_status["total"].avg, manager.epoch) # manager.logger.info("Loss/valid epoch {}: {:.4f}".format(manager.epoch, manager.loss_status["total"].avg)) for k, v in manager.val_status.items(): manager.writer.add_scalar("Metric/val/{}".format(k), v.avg, manager.epoch) # For each epoch, print the metric manager.print_metrics("val", title="Val", color="green") if manager.dataloaders["test"] is not None: # loss status and val status initial manager.reset_loss_status() manager.reset_metric_status("test") for data_batch in manager.dataloaders["test"]: # compute the real batch size bs = data_batch["points_src"].shape[0] # move to GPU if available data_batch = utils.tensor_mge(data_batch) # compute model output output_batch = model(data_batch) # compute all loss on this batch loss = compute_losses(output_batch, manager.params) metrics = compute_metrics(output_batch, manager.params) if world_size > 1: for k, v in loss.items(): loss[k] = F.distributed.all_reduce_sum(v) / world_size for k, v in metrics.items(): metrics[k] = F.distributed.all_reduce_sum(v) / world_size manager.update_loss_status(loss, "test", bs) # compute all metrics on this batch manager.update_metric_status(metrics, "test", bs) # update test data to tensorboard if rank == 0: # compute RMSE metrics manager.summarize_metric_status(metrics, "test") manager.writer.add_scalar("Loss/test", manager.loss_status["total"].avg, manager.epoch) # manager.logger.info("Loss/test epoch {}: {:.4f}".format(manager.epoch, manager.loss_status["total"].avg)) for k, v in manager.val_status.items(): manager.writer.add_scalar("Metric/test/{}".format(k), v.avg, manager.epoch) # For each epoch, print the metric manager.print_metrics("test", title="Test", color="red") def test(model, manager): """Test the model with loading checkpoints. Args: model: (torch.nn.Module) the neural network manager: a class instance that contains objects related to train and evaluate. """ # set model to evaluation mode model.eval() # compute metrics over the dataset if manager.dataloaders["val"] is not None: # loss status and val status initial manager.reset_loss_status() manager.reset_metric_status("val") for data_batch in manager.dataloaders["val"]: # compute the real batch size bs = data_batch["points_src"].shape[0] # move to GPU if available data_batch = utils.tensor_mge(data_batch) # compute model output output_batch = model(data_batch) # compute all loss on this batch loss = compute_losses(output_batch, manager.params) manager.update_loss_status(loss, "val", bs) # compute all metrics on this batch metrics = compute_metrics(output_batch, manager.params) manager.update_metric_status(metrics, "val", bs) # compute RMSE metrics manager.summarize_metric_status(metrics, "val") # For each epoch, update and print the metric manager.print_metrics("val", title="Val", color="green") if manager.dataloaders["test"] is not None: # loss status and test status initial manager.reset_loss_status() manager.reset_metric_status("test") for data_batch in manager.dataloaders["test"]: # compute the real batch size bs = data_batch["points_src"].shape[0] # move to GPU if available data_batch = utils.tensor_mge(data_batch) # compute model output output_batch = model(data_batch) # compute all loss on this batch loss = compute_losses(output_batch, manager.params) manager.update_loss_status(loss, "test", bs) # compute all metrics on this batch metrics = compute_metrics(output_batch, manager.params) manager.update_metric_status(metrics, "test", bs) # compute RMSE metrics manager.summarize_metric_status(metrics, "test") # For each epoch, print the metric manager.print_metrics("test", title="Test", color="red") if __name__ == "__main__": """ Evaluate the model on the test set. """ # Load the parameters args = parser.parse_args() json_path = os.path.join(args.model_dir, "params.json") assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path) params = utils.Params(json_path) # Only load model weights params.only_weights = True # Update args into params params.update(vars(args)) # Get the logger logger = utils.set_logger(os.path.join(args.model_dir, "evaluate.log")) # Create the input data pipeline logging.info("Creating the dataset...") # Fetch dataloaders dataloaders = data_loader.fetch_dataloader(params) # Define the model and optimizer model = net.fetch_net(params) # Initial status for checkpoint manager manager = Manager(model=model, optimizer=None, scheduler=None, params=params, dataloaders=dataloaders, writer=None, logger=logger) # Reload weights from the saved file manager.load_checkpoints() # Test the model logger.info("Starting test") # Evaluate test(model, manager)
[ "megengine.functional.distributed.all_reduce_sum", "megengine.distributed.get_world_size", "megengine.distributed.get_rank" ]
[((306, 331), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (329, 331), False, 'import argparse\n'), ((606, 621), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (619, 621), True, 'import megengine.distributed as dist\n'), ((639, 660), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (658, 660), True, 'import megengine.distributed as dist\n'), ((7021, 7064), 'os.path.join', 'os.path.join', (['args.model_dir', '"""params.json"""'], {}), "(args.model_dir, 'params.json')\n", (7033, 7064), False, 'import os\n'), ((7076, 7101), 'os.path.isfile', 'os.path.isfile', (['json_path'], {}), '(json_path)\n', (7090, 7101), False, 'import os\n'), ((7175, 7198), 'common.utils.Params', 'utils.Params', (['json_path'], {}), '(json_path)\n', (7187, 7198), False, 'from common import utils\n'), ((7461, 7500), 'logging.info', 'logging.info', (['"""Creating the dataset..."""'], {}), "('Creating the dataset...')\n", (7473, 7500), False, 'import logging\n'), ((7544, 7580), 'dataset.data_loader.fetch_dataloader', 'data_loader.fetch_dataloader', (['params'], {}), '(params)\n', (7572, 7580), True, 'import dataset.data_loader as data_loader\n'), ((7631, 7652), 'model.net.fetch_net', 'net.fetch_net', (['params'], {}), '(params)\n', (7644, 7652), True, 'import model.net as net\n'), ((7712, 7836), 'common.manager.Manager', 'Manager', ([], {'model': 'model', 'optimizer': 'None', 'scheduler': 'None', 'params': 'params', 'dataloaders': 'dataloaders', 'writer': 'None', 'logger': 'logger'}), '(model=model, optimizer=None, scheduler=None, params=params,\n dataloaders=dataloaders, writer=None, logger=logger)\n', (7719, 7836), False, 'from common.manager import Manager\n'), ((7373, 7417), 'os.path.join', 'os.path.join', (['args.model_dir', '"""evaluate.log"""'], {}), "(args.model_dir, 'evaluate.log')\n", (7385, 7417), False, 'import os\n'), ((1343, 1371), 'common.utils.tensor_mge', 'utils.tensor_mge', (['data_batch'], {}), '(data_batch)\n', (1359, 1371), False, 'from common import utils\n'), ((1516, 1560), 'loss.losses.compute_losses', 'compute_losses', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (1530, 1560), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((1583, 1628), 'loss.losses.compute_metrics', 'compute_metrics', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (1598, 1628), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((3090, 3118), 'common.utils.tensor_mge', 'utils.tensor_mge', (['data_batch'], {}), '(data_batch)\n', (3106, 3118), False, 'from common import utils\n'), ((3263, 3307), 'loss.losses.compute_losses', 'compute_losses', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (3277, 3307), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((3330, 3375), 'loss.losses.compute_metrics', 'compute_metrics', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (3345, 3375), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((5164, 5192), 'common.utils.tensor_mge', 'utils.tensor_mge', (['data_batch'], {}), '(data_batch)\n', (5180, 5192), False, 'from common import utils\n'), ((5337, 5381), 'loss.losses.compute_losses', 'compute_losses', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (5351, 5381), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((5508, 5553), 'loss.losses.compute_metrics', 'compute_metrics', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (5523, 5553), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((6209, 6237), 'common.utils.tensor_mge', 'utils.tensor_mge', (['data_batch'], {}), '(data_batch)\n', (6225, 6237), False, 'from common import utils\n'), ((6382, 6426), 'loss.losses.compute_losses', 'compute_losses', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (6396, 6426), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((6554, 6599), 'loss.losses.compute_metrics', 'compute_metrics', (['output_batch', 'manager.params'], {}), '(output_batch, manager.params)\n', (6569, 6599), False, 'from loss.losses import compute_losses, compute_metrics\n'), ((1732, 1763), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['v'], {}), '(v)\n', (1760, 1763), True, 'import megengine.functional as F\n'), ((1855, 1886), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['v'], {}), '(v)\n', (1883, 1886), True, 'import megengine.functional as F\n'), ((3479, 3510), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['v'], {}), '(v)\n', (3507, 3510), True, 'import megengine.functional as F\n'), ((3602, 3633), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['v'], {}), '(v)\n', (3630, 3633), True, 'import megengine.functional as F\n')]
import sys sys.path.append('.') import cv2 import megengine as mge import megengine.functional as F import numpy as np from model.RIFE import Model model = Model() model.load_model('train_log') model.eval() name = ['Beanbags', 'Dimetrodon', 'DogDance', 'Grove2', 'Grove3', 'Hydrangea', 'MiniCooper', 'RubberWhale', 'Urban2', 'Urban3', 'Venus', 'Walking'] IE_list = [] for i in name: i0 = cv2.imread('other-data/{}/frame10.png'.format(i)).transpose(2, 0, 1) / 255. i1 = cv2.imread('other-data/{}/frame11.png'.format(i)).transpose(2, 0, 1) / 255. gt = cv2.imread('other-gt-interp/{}/frame10i11.png'.format(i)) h, w = i0.shape[1], i0.shape[2] imgs = F.zeros([1, 6, 480, 640]) ph = (480 - h) // 2 pw = (640 - w) // 2 imgs[:, :3, :h, :w] = F.expand_dims(mge.Tensor(i0), 0).astype("float32") imgs[:, 3:, :h, :w] = F.expand_dims(mge.Tensor(i1), 0).astype("float32") I0 = imgs[:, :3] I2 = imgs[:, 3:] pred = model.inference(I0, I2) out = pred[0].detach().numpy().transpose(1, 2, 0) out = np.round(out[:h, :w] * 255) IE_list.append(np.abs((out - gt * 1.0)).mean()) print(np.mean(IE_list))
[ "megengine.functional.zeros", "megengine.Tensor" ]
[((11, 31), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (26, 31), False, 'import sys\n'), ((157, 164), 'model.RIFE.Model', 'Model', ([], {}), '()\n', (162, 164), False, 'from model.RIFE import Model\n'), ((670, 695), 'megengine.functional.zeros', 'F.zeros', (['[1, 6, 480, 640]'], {}), '([1, 6, 480, 640])\n', (677, 695), True, 'import megengine.functional as F\n'), ((1039, 1066), 'numpy.round', 'np.round', (['(out[:h, :w] * 255)'], {}), '(out[:h, :w] * 255)\n', (1047, 1066), True, 'import numpy as np\n'), ((1129, 1145), 'numpy.mean', 'np.mean', (['IE_list'], {}), '(IE_list)\n', (1136, 1145), True, 'import numpy as np\n'), ((784, 798), 'megengine.Tensor', 'mge.Tensor', (['i0'], {}), '(i0)\n', (794, 798), True, 'import megengine as mge\n'), ((861, 875), 'megengine.Tensor', 'mge.Tensor', (['i1'], {}), '(i1)\n', (871, 875), True, 'import megengine as mge\n'), ((1086, 1108), 'numpy.abs', 'np.abs', (['(out - gt * 1.0)'], {}), '(out - gt * 1.0)\n', (1092, 1108), True, 'import numpy as np\n')]
# Copyright (c) 2014-2022 Megvii Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import megengine import megengine.functional as F import megengine.module as nn import numpy as np from basecls.layers import DropPath, init_weights from basecls.utils import registers def _fuse_prebn_conv1x1(bn, conv): module_output = copy.deepcopy(conv) module_output.bias = megengine.Parameter(np.zeros(module_output._infer_bias_shape(), dtype=np.float32)) assert conv.groups == 1 kernel = conv.weight running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = F.sqrt(running_var + eps) t = (gamma / std).reshape(1, -1, 1, 1) module_output.weight[:] = kernel * t module_output.bias[:] = F.conv2d(beta - running_mean * gamma / std, kernel, conv.bias) return module_output def _fuse_conv_bn(conv, bn): module_output = copy.deepcopy(conv) module_output.bias = megengine.Parameter(np.zeros(module_output._infer_bias_shape(), dtype=np.float32)) # flatten then reshape in case of group conv kernel = F.flatten(conv.weight, end_axis=conv.weight.ndim - 4) running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = F.sqrt(running_var + eps) t = (gamma / std).reshape(-1, 1, 1, 1) module_output.weight[:] = (kernel * t).reshape(module_output.weight.shape) module_output.bias[:] = beta + ((conv.bias if conv.bias is not None else 0) - running_mean) * gamma / std return module_output class ConvBn2d(nn.ConvBn2d): def __init__(self, *args, **kwargs): bias = kwargs.pop("bias", False) and False super().__init__(*args, bias=bias, **kwargs) @classmethod def fuse_conv_bn(cls, module: nn.Module): module_output = module if isinstance(module, ConvBn2d): return _fuse_conv_bn(module.conv, module.bn) for name, child in module.named_children(): setattr(module_output, name, cls.fuse_conv_bn(child)) del module return module_output class LargeKernelReparam(nn.Module): def __init__(self, channels, kernel, small_kernels=()): super(LargeKernelReparam, self).__init__() self.dw_large = ConvBn2d(channels, channels, kernel, padding=kernel // 2, groups=channels) self.small_kernels = small_kernels for k in self.small_kernels: setattr(self, f"dw_small_{k}", ConvBn2d(channels, channels, k, padding=k // 2, groups=channels)) def forward(self, inp): outp = self.dw_large(inp) for k in self.small_kernels: outp += getattr(self, f"dw_small_{k}")(inp) return outp @classmethod def convert_to_deploy(cls, module: nn.Module): module_output = module if isinstance(module, LargeKernelReparam): module = ConvBn2d.fuse_conv_bn(module) module_output = copy.deepcopy(module.dw_large) kernel = module_output.kernel_size[0] for k in module.small_kernels: dw_small = getattr(module, f"dw_small_{k}") module_output.weight += F.pad(dw_small.weight, [[0, 0]] * 3 + [[(kernel - k) // 2] * 2] * 2) module_output.bias += dw_small.bias return module_output for name, child in module.named_children(): setattr(module_output, name, cls.convert_to_deploy(child)) del module return module_output class Mlp(nn.Module): def __init__(self, in_channels, hidden_channels=None, out_channels=None, act_layer=nn.GELU, drop=0.,): super().__init__() out_features = out_channels or in_channels hidden_features = hidden_channels or in_channels self.fc1 = ConvBn2d(in_channels, hidden_features, 1, stride=1, padding=0) self.act = act_layer() self.fc2 = ConvBn2d(hidden_features, out_features, 1, stride=1, padding=0) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class RepLKBlock(nn.Module): def __init__(self, channels, kernel, small_kernels=(), dw_ratio=1.0, mlp_ratio=4.0, drop_path=0., activation=nn.ReLU): super().__init__() self.pre_bn = nn.BatchNorm2d(channels) self.pw1 = ConvBn2d(channels, int(channels * dw_ratio), 1, 1, 0) self.pw1_act = activation() self.dw = LargeKernelReparam(int(channels * dw_ratio), kernel, small_kernels=small_kernels) self.dw_act = activation() self.pw2 = ConvBn2d(int(channels * dw_ratio), channels, 1, 1, 0) self.premlp_bn = nn.BatchNorm2d(channels) self.mlp = Mlp(in_channels=channels, hidden_channels=int(channels * mlp_ratio)) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): y = self.pre_bn(x) y = self.pw1_act(self.pw1(y)) y = self.dw_act(self.dw(y)) y = self.pw2(y) x = x + self.drop_path(y) y = self.premlp_bn(x) y = self.mlp(y) x = x + self.drop_path(y) return x @classmethod def convert_to_deploy(cls, module: nn.Module): module_output = module if isinstance(module, RepLKBlock): LargeKernelReparam.convert_to_deploy(module) ConvBn2d.fuse_conv_bn(module) module.pre_bn, module.pw1 = nn.Identity(), _fuse_prebn_conv1x1(module.pre_bn, module.pw1) module.premlp_bn, module.mlp.fc1 = nn.Identity(), _fuse_prebn_conv1x1(module.premlp_bn, module.mlp.fc1) return module_output for name, child in module.named_children(): setattr(module_output, name, cls.convert_to_deploy(child)) del module return module_output class DownSample(nn.Sequential): def __init__(self, in_channels, out_channels, activation=nn.ReLU): super().__init__( ConvBn2d(in_channels, out_channels, 1), activation(), ConvBn2d(out_channels, out_channels, 3, stride=2, padding=1, groups=out_channels), activation(), ) class Stem(nn.Sequential): def __init__(self, in_channels, out_channels, activation=nn.ReLU): super().__init__( ConvBn2d(in_channels, out_channels, 3, stride=2, padding=1), activation(), ConvBn2d(out_channels, out_channels, 3, padding=1, groups=out_channels), activation(), ConvBn2d(out_channels, out_channels, 1), activation(), ConvBn2d(out_channels, out_channels, 3, stride=2, padding=1, groups=out_channels), activation(), ) class RepLKNet(nn.Module): def __init__( self, in_channels=3, depths=(2, 2, 18, 2), dims=(128, 256, 512, 1024), kernel_sizes=(31, 29, 27, 13), small_kernels=(5,), dw_ratio=1.0, mlp_ratio=4.0, num_classes=1000, drop_path_rate=0.5, ): super().__init__() self.stem = Stem(in_channels, dims[0]) # stochastic depth dpr = (x for x in np.linspace(0, drop_path_rate, sum(depths))) # stochastic depth decay rule self.blocks = [] for stage, (depth, dim, ksize) in enumerate(zip(depths, dims, kernel_sizes)): for _ in range(depth): self.blocks.append( RepLKBlock(dim, ksize, small_kernels=small_kernels, dw_ratio=dw_ratio, mlp_ratio=mlp_ratio, drop_path=next(dpr)) ) if stage < len(depths) - 1: self.blocks.append(DownSample(dim, dims[stage + 1])) self.norm = nn.BatchNorm2d(dims[-1]) self.avgpool = nn.AdaptiveAvgPool2d(1) self.head = nn.Linear(dims[-1], num_classes) if num_classes > 0 else nn.Identity() init_weights(self) def forward_features(self, x): x = self.stem(x) for blk in self.blocks: x = blk(x) x = self.norm(x) x = self.avgpool(x) x = F.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x @classmethod def convert_to_deploy(cls, module: nn.Module): module_output = module if isinstance(module, RepLKNet): RepLKBlock.convert_to_deploy(module) ConvBn2d.fuse_conv_bn(module) return module_output for name, child in module.named_children(): setattr(module_output, name, cls.convert_to_deploy(child)) del module return module_output @registers.models.register() def replknet31_base(**kwargs): kwargs.pop("head", None) return RepLKNet(dims=(128, 256, 512, 1024), dw_ratio=1.0, **kwargs) @registers.models.register() def replknet31_large(**kwargs): kwargs.pop("head", None) return RepLKNet(dims=(192, 384, 768, 1536), dw_ratio=1.0, **kwargs) @registers.models.register() def replknet_xlarge(**kwargs): kwargs.pop("head", None) return RepLKNet(dims=(256, 512, 1024, 2048), kernel_sizes=(27, 27, 27, 13), small_kernels=(), dw_ratio=1.5, **kwargs)
[ "megengine.module.Dropout", "megengine.module.Linear", "megengine.functional.pad", "megengine.functional.sqrt", "megengine.module.BatchNorm2d", "megengine.functional.conv2d", "megengine.module.AdaptiveAvgPool2d", "megengine.module.Identity", "megengine.functional.flatten" ]
[((9027, 9054), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9052, 9054), False, 'from basecls.utils import registers\n'), ((9190, 9217), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9215, 9217), False, 'from basecls.utils import registers\n'), ((9354, 9381), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9379, 9381), False, 'from basecls.utils import registers\n'), ((597, 616), 'copy.deepcopy', 'copy.deepcopy', (['conv'], {}), '(conv)\n', (610, 616), False, 'import copy\n'), ((914, 939), 'megengine.functional.sqrt', 'F.sqrt', (['(running_var + eps)'], {}), '(running_var + eps)\n', (920, 939), True, 'import megengine.functional as F\n'), ((1052, 1114), 'megengine.functional.conv2d', 'F.conv2d', (['(beta - running_mean * gamma / std)', 'kernel', 'conv.bias'], {}), '(beta - running_mean * gamma / std, kernel, conv.bias)\n', (1060, 1114), True, 'import megengine.functional as F\n'), ((1191, 1210), 'copy.deepcopy', 'copy.deepcopy', (['conv'], {}), '(conv)\n', (1204, 1210), False, 'import copy\n'), ((1381, 1434), 'megengine.functional.flatten', 'F.flatten', (['conv.weight'], {'end_axis': '(conv.weight.ndim - 4)'}), '(conv.weight, end_axis=conv.weight.ndim - 4)\n', (1390, 1434), True, 'import megengine.functional as F\n'), ((1571, 1596), 'megengine.functional.sqrt', 'F.sqrt', (['(running_var + eps)'], {}), '(running_var + eps)\n', (1577, 1596), True, 'import megengine.functional as F\n'), ((4265, 4281), 'megengine.module.Dropout', 'nn.Dropout', (['drop'], {}), '(drop)\n', (4275, 4281), True, 'import megengine.module as nn\n'), ((4653, 4677), 'megengine.module.BatchNorm2d', 'nn.BatchNorm2d', (['channels'], {}), '(channels)\n', (4667, 4677), True, 'import megengine.module as nn\n'), ((5021, 5045), 'megengine.module.BatchNorm2d', 'nn.BatchNorm2d', (['channels'], {}), '(channels)\n', (5035, 5045), True, 'import megengine.module as nn\n'), ((8078, 8102), 'megengine.module.BatchNorm2d', 'nn.BatchNorm2d', (['dims[-1]'], {}), '(dims[-1])\n', (8092, 8102), True, 'import megengine.module as nn\n'), ((8126, 8149), 'megengine.module.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (8146, 8149), True, 'import megengine.module as nn\n'), ((8249, 8267), 'basecls.layers.init_weights', 'init_weights', (['self'], {}), '(self)\n', (8261, 8267), False, 'from basecls.layers import DropPath, init_weights\n'), ((8449, 8464), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (8458, 8464), True, 'import megengine.functional as F\n'), ((3234, 3264), 'copy.deepcopy', 'copy.deepcopy', (['module.dw_large'], {}), '(module.dw_large)\n', (3247, 3264), False, 'import copy\n'), ((5160, 5179), 'basecls.layers.DropPath', 'DropPath', (['drop_path'], {}), '(drop_path)\n', (5168, 5179), False, 'from basecls.layers import DropPath, init_weights\n'), ((5203, 5216), 'megengine.module.Identity', 'nn.Identity', ([], {}), '()\n', (5214, 5216), True, 'import megengine.module as nn\n'), ((8170, 8202), 'megengine.module.Linear', 'nn.Linear', (['dims[-1]', 'num_classes'], {}), '(dims[-1], num_classes)\n', (8179, 8202), True, 'import megengine.module as nn\n'), ((8227, 8240), 'megengine.module.Identity', 'nn.Identity', ([], {}), '()\n', (8238, 8240), True, 'import megengine.module as nn\n'), ((3458, 3526), 'megengine.functional.pad', 'F.pad', (['dw_small.weight', '([[0, 0]] * 3 + [[(kernel - k) // 2] * 2] * 2)'], {}), '(dw_small.weight, [[0, 0]] * 3 + [[(kernel - k) // 2] * 2] * 2)\n', (3463, 3526), True, 'import megengine.functional as F\n'), ((5793, 5806), 'megengine.module.Identity', 'nn.Identity', ([], {}), '()\n', (5804, 5806), True, 'import megengine.module as nn\n'), ((5902, 5915), 'megengine.module.Identity', 'nn.Identity', ([], {}), '()\n', (5913, 5915), True, 'import megengine.module as nn\n')]
#!/usr/bin/env python3 import megengine as mge import megengine.module as nn import megengine.functional as F def conv3x3(in_chn, out_chn, bias=True): layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias) return layer def conv_down(in_chn, out_chn, bias=False): layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias) return layer class UNetD(nn.Module): def __init__(self, in_chn, wf=32, depth=5, relu_slope=0.2, subspace_dim=16): super(UNetD, self).__init__() self.depth = depth self.down_path = [] prev_channels = self.get_input_chn(in_chn) for i in range(depth): downsample = True if (i+1) < depth else False self.down_path.append(UNetConvBlock(prev_channels, (2**i)*wf, downsample, relu_slope)) prev_channels = (2**i) * wf # self.ema = EMAU(prev_channels, prev_channels//8) self.up_path = [] subnet_repeat_num = 1 for i in reversed(range(depth - 1)): self.up_path.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope, subnet_repeat_num, subspace_dim)) prev_channels = (2**i)*wf subnet_repeat_num += 1 self.last = conv3x3(prev_channels, in_chn, bias=True) #self._initialize() def forward(self, x1): blocks = [] for i, down in enumerate(self.down_path): # print(x1.shape) if (i+1) < self.depth: x1, x1_up = down(x1) blocks.append(x1_up) else: x1 = down(x1) # print(x1.shape) # x1 = self.ema(x1) for i, up in enumerate(self.up_path): # print(x1.shape, blocks[-i-1].shape) x1 = up(x1, blocks[-i-1]) pred = self.last(x1) return pred def get_input_chn(self, in_chn): return in_chn def _initialize(self): gain = nn.init.calculate_gain('leaky_relu', 0.20) for m in self.modules(): if isinstance(m, nn.Conv2d): print("weight") nn.init.xavier_uniform_(m.weight) if m.bias is not None: print("bias") nn.init.zeros_(m.bias) class UNetConvBlock(nn.Module): def __init__(self, in_size, out_size, downsample, relu_slope): super(UNetConvBlock, self).__init__() self.block = nn.Sequential( nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True), nn.LeakyReLU(relu_slope), nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True), nn.LeakyReLU(relu_slope)) self.downsample = downsample if downsample: self.downsample = conv_down(out_size, out_size, bias=False) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): out = self.block(x) sc = self.shortcut(x) out = out + sc if self.downsample: out_down = self.downsample(out) return out_down, out else: return out class UNetUpBlock(nn.Module): def __init__(self, in_size, out_size, relu_slope, subnet_repeat_num, subspace_dim=16): super(UNetUpBlock, self).__init__() self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True) self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope) self.num_subspace = subspace_dim print(self.num_subspace, subnet_repeat_num) self.subnet = Subspace(in_size, self.num_subspace) self.skip_m = skip_blocks(out_size, out_size, subnet_repeat_num) def forward(self, x, bridge): up = self.up(x) bridge = self.skip_m(bridge) out = F.concat([up, bridge], 1) if self.subnet: b_, c_, h_, w_ = bridge.shape sub = self.subnet(out) V_t = sub.reshape(b_, self.num_subspace, h_*w_) V_t = V_t / (1e-6 + F.abs(V_t).sum(axis=2, keepdims=True)) V = V_t.transpose(0, 2, 1) mat = F.matmul(V_t, V) mat_inv = F.matinv(mat) project_mat = F.matmul(mat_inv, V_t) bridge_ = bridge.reshape(b_, c_, h_*w_) project_feature = F.matmul(project_mat, bridge_.transpose(0, 2, 1)) bridge = F.matmul(V, project_feature).transpose(0, 2, 1).reshape(b_, c_, h_, w_) out = F.concat([up, bridge], 1) out = self.conv_block(out) return out class Subspace(nn.Module): def __init__(self, in_size, out_size): super(Subspace, self).__init__() self.blocks = [] self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2)) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): sc = self.shortcut(x) for i in range(len(self.blocks)): x = self.blocks[i](x) return x + sc class skip_blocks(nn.Module): def __init__(self, in_size, out_size, repeat_num=1): super(skip_blocks, self).__init__() self.blocks = [] self.re_num = repeat_num mid_c = 128 self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2)) for i in range(self.re_num - 2): self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2)) self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2)) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): sc = self.shortcut(x) for m in self.blocks: x = m(x) return x + sc if __name__ == "__main__": import numpy as np a = UNetD(3) #print(a) im = mge.tensor(np.random.randn(1, 3, 128, 128).astype(np.float32)) print(a(im))
[ "megengine.module.init.calculate_gain", "megengine.functional.matmul", "megengine.module.init.zeros_", "megengine.functional.concat", "megengine.functional.matinv", "megengine.module.ConvTranspose2d", "megengine.module.init.xavier_uniform_", "megengine.module.Conv2d", "megengine.functional.abs", "megengine.module.LeakyReLU" ]
[((164, 237), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_chn', 'out_chn'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': 'bias'}), '(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)\n', (173, 237), True, 'import megengine.module as nn\n'), ((313, 386), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_chn', 'out_chn'], {'kernel_size': '(4)', 'stride': '(2)', 'padding': '(1)', 'bias': 'bias'}), '(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias)\n', (322, 386), True, 'import megengine.module as nn\n'), ((1951, 1992), 'megengine.module.init.calculate_gain', 'nn.init.calculate_gain', (['"""leaky_relu"""', '(0.2)'], {}), "('leaky_relu', 0.2)\n", (1973, 1992), True, 'import megengine.module as nn\n'), ((2843, 2897), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (2852, 2897), True, 'import megengine.module as nn\n'), ((3334, 3407), 'megengine.module.ConvTranspose2d', 'nn.ConvTranspose2d', (['in_size', 'out_size'], {'kernel_size': '(2)', 'stride': '(2)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=2, stride=2, bias=True)\n', (3352, 3407), True, 'import megengine.module as nn\n'), ((3821, 3846), 'megengine.functional.concat', 'F.concat', (['[up, bridge]', '(1)'], {}), '([up, bridge], 1)\n', (3829, 3846), True, 'import megengine.functional as F\n'), ((4797, 4851), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (4806, 4851), True, 'import megengine.module as nn\n'), ((5497, 5551), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (5506, 5551), True, 'import megengine.module as nn\n'), ((2462, 2527), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=3, padding=1, bias=True)\n', (2471, 2527), True, 'import megengine.module as nn\n'), ((2541, 2565), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['relu_slope'], {}), '(relu_slope)\n', (2553, 2565), True, 'import megengine.module as nn\n'), ((2579, 2645), 'megengine.module.Conv2d', 'nn.Conv2d', (['out_size', 'out_size'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(True)'}), '(out_size, out_size, kernel_size=3, padding=1, bias=True)\n', (2588, 2645), True, 'import megengine.module as nn\n'), ((2659, 2683), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['relu_slope'], {}), '(relu_slope)\n', (2671, 2683), True, 'import megengine.module as nn\n'), ((4136, 4152), 'megengine.functional.matmul', 'F.matmul', (['V_t', 'V'], {}), '(V_t, V)\n', (4144, 4152), True, 'import megengine.functional as F\n'), ((4175, 4188), 'megengine.functional.matinv', 'F.matinv', (['mat'], {}), '(mat)\n', (4183, 4188), True, 'import megengine.functional as F\n'), ((4215, 4237), 'megengine.functional.matmul', 'F.matmul', (['mat_inv', 'V_t'], {}), '(mat_inv, V_t)\n', (4223, 4237), True, 'import megengine.functional as F\n'), ((4481, 4506), 'megengine.functional.concat', 'F.concat', (['[up, bridge]', '(1)'], {}), '([up, bridge], 1)\n', (4489, 4506), True, 'import megengine.functional as F\n'), ((2116, 2149), 'megengine.module.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['m.weight'], {}), '(m.weight)\n', (2139, 2149), True, 'import megengine.module as nn\n'), ((5786, 5817), 'numpy.random.randn', 'np.random.randn', (['(1)', '(3)', '(128)', '(128)'], {}), '(1, 3, 128, 128)\n', (5801, 5817), True, 'import numpy as np\n'), ((2243, 2265), 'megengine.module.init.zeros_', 'nn.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (2257, 2265), True, 'import megengine.module as nn\n'), ((4040, 4050), 'megengine.functional.abs', 'F.abs', (['V_t'], {}), '(V_t)\n', (4045, 4050), True, 'import megengine.functional as F\n'), ((4391, 4419), 'megengine.functional.matmul', 'F.matmul', (['V', 'project_feature'], {}), '(V, project_feature)\n', (4399, 4419), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import pickle import boto3 import megengine as mge from collections import defaultdict from termcolor import colored from common import utils class Manager(): def __init__(self, model, optimizer, params, dataloaders, writer, logger, scheduler): # params status self.model = model self.writer = writer self.logger = logger self.params = params self.optimizer = optimizer self.scheduler = scheduler self.dataloaders = dataloaders # metric_rule should be either Descende or Ascende self.metric_rule = params.metric_rule self.epoch = 0 self.step = 0 # 越低越好 if self.metric_rule == "Descende": self.best_val_score = 100 self.best_test_score = 100 # 越高越好 elif self.metric_rule == "Ascende": self.best_val_score = 0 self.best_test_score = 0 self.cur_val_score = 0 self.cur_test_score = 0 # train status self.train_status = defaultdict(utils.AverageMeter) # val status self.val_status = defaultdict(utils.AverageMeter) # test status self.test_status = defaultdict(utils.AverageMeter) # model status self.loss_status = defaultdict(utils.AverageMeter) # client init self.s3_client = boto3.client('s3', endpoint_url='http://oss.i.brainpp.cn') self.bucket_name = params.bucket_name def update_step(self): self.step += 1 def update_epoch(self): self.epoch += 1 def update_loss_status(self, loss, split, bs=None): if split == "train": for k, v in loss.items(): bs = self.params.train_batch_size self.loss_status[k].update(val=v.item(), num=bs) elif split == "val": for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=bs) elif split == "test": for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=bs) else: raise ValueError("Wrong eval type: {}".format(split)) def update_metric_status(self, metrics, split, bs): if split == "val": for k, v in metrics.items(): self.val_status[k].update(val=v.item(), num=bs) self.cur_val_score = self.val_status[self.params.major_metric].avg elif split == "test": for k, v in metrics.items(): self.test_status[k].update(val=v.item(), num=bs) self.cur_test_score = self.test_status[self.params.major_metric].avg else: raise ValueError("Wrong eval type: {}".format(split)) def reset_loss_status(self): for k, v in self.loss_status.items(): self.loss_status[k].reset() def reset_metric_status(self, split): if split == "val": for k, v in self.val_status.items(): self.val_status[k].reset() elif split == "test": for k, v in self.test_status.items(): self.test_status[k].reset() else: raise ValueError("Wrong eval type: {}".format(split)) def print_train_info(self): exp_name = self.params.model_dir.split('/')[-1] print_str = "{} Epoch: {:4d}, lr={:.6f} ".format(exp_name, self.epoch, self.scheduler.get_lr()[0]) print_str += "total loss: %.4f(%.4f)" % (self.loss_status['total'].val, self.loss_status['total'].avg) return print_str def print_metrics(self, split, title="Eval", color="red"): if split == "val": metric_status = self.val_status elif split == "test": metric_status = self.test_status else: raise ValueError("Wrong eval type: {}".format(split)) if split == "val": print_str = " | ".join("{}: {:.4f} - avg: {:.4f}".format(k, v.val, v.avg) for k, v in metric_status.items()) print_str += " | lastest: {:.4f} | pre_best: {:.4f}".format(self.cur_val_score, self.best_val_score) elif split == "test": print_str = " | ".join("{}: {:.4f} - avg: {:.4f}".format(k, v.val, v.avg) for k, v in metric_status.items()) self.logger.info(colored("{} Results: {}".format(title, print_str), color, attrs=["bold"])) def check_best_save_last_checkpoints(self, latest_freq=5): state = { "state_dict": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), "scheduler": self.scheduler.state_dict(), "step": self.step, "epoch": self.epoch, } if "val" in self.dataloaders: state["best_val_score"] = self.best_val_score if "test" in self.dataloaders: state["best_test_score"] = self.best_test_score # save latest checkpoint if self.epoch % latest_freq == 0: latest_ckpt_name = os.path.join(self.params.model_dir, "model_latest.pth") if self.params.save_mode == "local": # print(state) mge.save(state, latest_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=latest_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved latest checkpoint to: {}".format(latest_ckpt_name)) # save val latest metrics, and check if val is best checkpoints if "val" in self.dataloaders: val_latest_metrics_name = os.path.join(self.params.model_dir, "val_metrics_latest.json") utils.save_dict_to_json(self.val_status, val_latest_metrics_name) # 越低越好 if self.metric_rule == "Descende": is_best = self.cur_val_score < self.best_val_score # 越高越好 elif self.metric_rule == "Ascende": is_best = self.cur_val_score > self.best_val_score else: raise Exception("metric_rule should be either Descende or Ascende") if is_best: # save metrics self.best_val_score = self.cur_val_score best_metrics_name = os.path.join(self.params.model_dir, "val_metrics_best.json") utils.save_dict_to_json(self.val_status, best_metrics_name) self.logger.info("Current is val best, score={:.4f}".format(self.best_val_score)) # save checkpoint best_ckpt_name = os.path.join(self.params.model_dir, "val_model_best.pth") if self.params.save_mode == "local": mge.save(state, best_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=best_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved val best checkpoint to: {}".format(best_ckpt_name)) # save test latest metrics, and check if test is best checkpoints # if self.dataloaders["test"] is not None: if "test" in self.dataloaders: test_latest_metrics_name = os.path.join(self.params.model_dir, "test_metrics_latest.json") utils.save_dict_to_json(self.test_status, test_latest_metrics_name) # 越低越好 if self.metric_rule == "Descende": is_best = self.cur_test_score < self.best_test_score # 越高越好 elif self.metric_rule == "Ascende": is_best = self.cur_test_score > self.best_test_score else: raise Exception("metric_rule should be either Descende or Ascende") if is_best: # save metrics self.best_test_score = self.cur_test_score best_metrics_name = os.path.join(self.params.model_dir, "test_metrics_best.json") utils.save_dict_to_json(self.test_status, best_metrics_name) self.logger.info("Current is test best, score={:.4f}".format(self.best_test_score)) # save checkpoint best_ckpt_name = os.path.join(self.params.model_dir, "test_model_best.pth") if self.params.save_mode == "local": mge.save(state, best_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=best_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved test best checkpoint to: {}".format(best_ckpt_name)) def load_checkpoints(self): if self.params.save_mode == "local": state = mge.load(self.params.restore_file) elif self.params.save_mode == "oss": resp = self.s3_client.get_object(Bucket=self.bucket_name, Key=self.params.restore_file[0:]) state = resp["Body"].read() state = pickle.loads(state) else: raise NotImplementedError ckpt_component = [] if "state_dict" in state and self.model is not None: try: self.model.load_state_dict(state["state_dict"]) except Warning("Using custom loading net"): net_dict = self.model.state_dict() if "module" not in list(state["state_dict"].keys())[0]: state_dict = {"module." + k: v for k, v in state["state_dict"].items() if "module." + k in net_dict.keys()} else: state_dict = {k: v for k, v in state["state_dict"].items() if k in net_dict.keys()} net_dict.update(state_dict) self.model.load_state_dict(net_dict, strict=False) ckpt_component.append("net") if not self.params.only_weights: print("reload states from checkpoints!") if "optimizer" in state and self.optimizer is not None: try: self.optimizer.load_state_dict(state["optimizer"]) except Warning("Using custom loading optimizer"): optimizer_dict = self.optimizer.state_dict() state_dict = {k: v for k, v in state["optimizer"].items() if k in optimizer_dict.keys()} optimizer_dict.update(state_dict) self.optimizer.load_state_dict(optimizer_dict) ckpt_component.append("opt") if "scheduler" in state and self.train_status["scheduler"] is not None: try: self.scheduler.load_state_dict(state["scheduler"]) except Warning("Using custom loading scheduler"): scheduler_dict = self.scheduler.state_dict() state_dict = {k: v for k, v in state["scheduler"].items() if k in scheduler_dict.keys()} scheduler_dict.update(state_dict) self.scheduler.load_state_dict(scheduler_dict) ckpt_component.append("sch") if "step" in state: self.step = state["step"] + 1 self.train_status["step"] = state["step"] + 1 ckpt_component.append("step: {}".format(self.train_status["step"])) if "epoch" in state: self.epoch = state["epoch"] + 1 self.train_status["epoch"] = state["epoch"] + 1 ckpt_component.append("epoch: {}".format(self.train_status["epoch"])) if "best_val_score" in state: self.best_val_score = state["best_val_score"] ckpt_component.append("best val score: {:.3g}".format(self.best_val_score)) if "best_test_score" in state: self.best_test_score = state["best_test_score"] ckpt_component.append("best test score: {:.3g}".format(self.best_test_score)) ckpt_component = ", ".join(i for i in ckpt_component) self.logger.info("Loaded models from: {}".format(self.params.restore_file)) self.logger.info("Ckpt load: {}".format(ckpt_component))
[ "megengine.save", "megengine.load" ]
[((1472, 1503), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1483, 1503), False, 'from collections import defaultdict\n'), ((1555, 1586), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1566, 1586), False, 'from collections import defaultdict\n'), ((1640, 1671), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1651, 1671), False, 'from collections import defaultdict\n'), ((1726, 1757), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1737, 1757), False, 'from collections import defaultdict\n'), ((1809, 1867), 'boto3.client', 'boto3.client', (['"""s3"""'], {'endpoint_url': '"""http://oss.i.brainpp.cn"""'}), "('s3', endpoint_url='http://oss.i.brainpp.cn')\n", (1821, 1867), False, 'import boto3\n'), ((5498, 5553), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""model_latest.pth"""'], {}), "(self.params.model_dir, 'model_latest.pth')\n", (5510, 5553), False, 'import os\n'), ((6207, 6269), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_metrics_latest.json"""'], {}), "(self.params.model_dir, 'val_metrics_latest.json')\n", (6219, 6269), False, 'import os\n'), ((6283, 6348), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.val_status', 'val_latest_metrics_name'], {}), '(self.val_status, val_latest_metrics_name)\n', (6306, 6348), False, 'from common import utils\n'), ((7951, 8014), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_metrics_latest.json"""'], {}), "(self.params.model_dir, 'test_metrics_latest.json')\n", (7963, 8014), False, 'import os\n'), ((8028, 8095), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.test_status', 'test_latest_metrics_name'], {}), '(self.test_status, test_latest_metrics_name)\n', (8051, 8095), False, 'from common import utils\n'), ((9599, 9633), 'megengine.load', 'mge.load', (['self.params.restore_file'], {}), '(self.params.restore_file)\n', (9607, 9633), True, 'import megengine as mge\n'), ((5653, 5686), 'megengine.save', 'mge.save', (['state', 'latest_ckpt_name'], {}), '(state, latest_ckpt_name)\n', (5661, 5686), True, 'import megengine as mge\n'), ((6882, 6942), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_metrics_best.json"""'], {}), "(self.params.model_dir, 'val_metrics_best.json')\n", (6894, 6942), False, 'import os\n'), ((6960, 7019), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.val_status', 'best_metrics_name'], {}), '(self.val_status, best_metrics_name)\n', (6983, 7019), False, 'from common import utils\n'), ((7188, 7245), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_model_best.pth"""'], {}), "(self.params.model_dir, 'val_model_best.pth')\n", (7200, 7245), False, 'import os\n'), ((8631, 8692), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_metrics_best.json"""'], {}), "(self.params.model_dir, 'test_metrics_best.json')\n", (8643, 8692), False, 'import os\n'), ((8710, 8770), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.test_status', 'best_metrics_name'], {}), '(self.test_status, best_metrics_name)\n', (8733, 8770), False, 'from common import utils\n'), ((8941, 8999), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_model_best.pth"""'], {}), "(self.params.model_dir, 'test_model_best.pth')\n", (8953, 8999), False, 'import os\n'), ((9849, 9868), 'pickle.loads', 'pickle.loads', (['state'], {}), '(state)\n', (9861, 9868), False, 'import pickle\n'), ((5766, 5785), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (5778, 5785), False, 'import pickle\n'), ((7321, 7352), 'megengine.save', 'mge.save', (['state', 'best_ckpt_name'], {}), '(state, best_ckpt_name)\n', (7329, 7352), True, 'import megengine as mge\n'), ((9075, 9106), 'megengine.save', 'mge.save', (['state', 'best_ckpt_name'], {}), '(state, best_ckpt_name)\n', (9083, 9106), True, 'import megengine as mge\n'), ((7440, 7459), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (7452, 7459), False, 'import pickle\n'), ((9194, 9213), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (9206, 9213), False, 'import pickle\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from functools import partial from typing import Tuple, Union import megengine._internal as mgb from ... import module as Float from ...core import Parameter from ...functional import conv_bias_activation from ...module import Conv2d from ...quantization.utils import register_method_to_class class _ConvBnActivation2d(Conv2d): r"""Applies a 2D convolution over an quantized input tensor, inference only. The parameter is same with :class: `~.Conv2d` """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode: str = "CROSS_CORRELATION", compute_mode: str = "DEFAULT", ): super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, True, conv_mode, compute_mode, ) self.scale = 1.0 self.zero_point = 0.0 self.output_dtype = mgb.dtype.qint8(self.scale) self.weight = self.weight.astype(self.output_dtype) self.bias = self.bias.astype(mgb.dtype.qint32(self.scale)) def calc_conv_quantized(self, inp, nonlinear_mode="IDENTITY"): inp_scale = mgb.dtype.get_scale(inp.dtype) w_scale = mgb.dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale return conv_bias_activation( inp, self.weight, self.bias.astype(mgb.dtype.qint32(bias_scale)), self.output_dtype, self.stride, self.padding, self.dilation, self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, nonlinear_mode=nonlinear_mode, ) class ConvBn2d(_ConvBnActivation2d): def forward(self, inp): if self.training: raise ValueError("quantized module only support inference.") return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") class ConvBnRelu2d(_ConvBnActivation2d): def forward(self, inp): if self.training: raise ValueError("quantized module only support inference.") return self.calc_conv_quantized(inp, nonlinear_mode="RELU") def to_quantized(quantized_class, float_module): qconv = quantized_class( float_module.conv.in_channels, float_module.conv.out_channels, float_module.conv.kernel_size, float_module.conv.stride, float_module.conv.padding, float_module.conv.dilation, float_module.conv.groups, ) w_fold, b_fold = float_module.fold_weight_bias( float_module.bn.running_mean, float_module.bn.running_var ) weight = w_fold.astype(float_module.weight_observer.get_dtype()) qconv.output_dtype = float_module.act_observer.get_dtype() qconv.weight = Parameter(weight.numpy()) qconv.bias = Parameter(b_fold.numpy()) qconv.scale, qconv.zero_point = float_module.act_observer.get_qparams() return qconv # replace :class:`~.module.QATModule`'s ``to_quantized`` method. # implemented here to avoid circular import. register_method_to_class(Float.ConvBn2d)(partial(to_quantized, ConvBn2d)) register_method_to_class(Float.ConvBnRelu2d)(partial(to_quantized, ConvBnRelu2d))
[ "megengine._internal.dtype.qint32", "megengine._internal.dtype.qint8", "megengine._internal.dtype.get_scale" ]
[((3763, 3794), 'functools.partial', 'partial', (['to_quantized', 'ConvBn2d'], {}), '(to_quantized, ConvBn2d)\n', (3770, 3794), False, 'from functools import partial\n'), ((3841, 3876), 'functools.partial', 'partial', (['to_quantized', 'ConvBnRelu2d'], {}), '(to_quantized, ConvBnRelu2d)\n', (3848, 3876), False, 'from functools import partial\n'), ((1573, 1600), 'megengine._internal.dtype.qint8', 'mgb.dtype.qint8', (['self.scale'], {}), '(self.scale)\n', (1588, 1600), True, 'import megengine._internal as mgb\n'), ((1816, 1846), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['inp.dtype'], {}), '(inp.dtype)\n', (1835, 1846), True, 'import megengine._internal as mgb\n'), ((1865, 1903), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['self.weight.dtype'], {}), '(self.weight.dtype)\n', (1884, 1903), True, 'import megengine._internal as mgb\n'), ((1698, 1726), 'megengine._internal.dtype.qint32', 'mgb.dtype.qint32', (['self.scale'], {}), '(self.scale)\n', (1714, 1726), True, 'import megengine._internal as mgb\n'), ((2053, 2081), 'megengine._internal.dtype.qint32', 'mgb.dtype.qint32', (['bias_scale'], {}), '(bias_scale)\n', (2069, 2081), True, 'import megengine._internal as mgb\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from megengine import tensor from megengine.test import assertTensorClose def test_reshape_tuple(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(inp.shape) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_asterisk(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(*inp.shape) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_shapeof(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(inp.shapeof()) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_tensor(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor([4, 4])) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4)) def test_reshape_tensor_fused(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor([4, 4]), 1) assertTensorClose(out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(4, 4, 1)) def test_reshape_fused(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) out = out.reshape(tensor(2), 2, tensor(4), 1) assertTensorClose( out.numpy(), np.arange(100, 116, dtype=np.int32).reshape(2, 2, 4, 1) ) def test_reshape_wrong_tuple(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) with pytest.raises(ValueError): out = out.reshape((2, 2), 4) def test_reshape_wrong_tuple2(): out = tensor(np.arange(100, 116, dtype=np.int32).reshape(1, 16)) with pytest.raises(AssertionError): out = out.reshape(4, (2, 2)) def test_broadcast_tuple(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(inp.shape) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2) def test_broadcast_asterisk(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(*inp.shape) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2) def test_broadcast_shapeof(): inp = tensor(np.arange(1, 17, dtype=np.int32).reshape(4, 4)) out = tensor(np.arange(100, 104, dtype=np.int32).reshape(1, 4)) out = out.broadcast(inp.shapeof()) tmp = np.array([[100, 101, 102, 103]], dtype=np.int32) out2 = np.repeat(tmp, 4, axis=0) assertTensorClose(out.numpy(), out2)
[ "megengine.tensor" ]
[((2620, 2668), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (2628, 2668), True, 'import numpy as np\n'), ((2680, 2705), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (2689, 2705), True, 'import numpy as np\n'), ((2962, 3010), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (2970, 3010), True, 'import numpy as np\n'), ((3022, 3047), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (3031, 3047), True, 'import numpy as np\n'), ((3306, 3354), 'numpy.array', 'np.array', (['[[100, 101, 102, 103]]'], {'dtype': 'np.int32'}), '([[100, 101, 102, 103]], dtype=np.int32)\n', (3314, 3354), True, 'import numpy as np\n'), ((3366, 3391), 'numpy.repeat', 'np.repeat', (['tmp', '(4)'], {'axis': '(0)'}), '(tmp, 4, axis=0)\n', (3375, 3391), True, 'import numpy as np\n'), ((1461, 1475), 'megengine.tensor', 'tensor', (['[4, 4]'], {}), '([4, 4])\n', (1467, 1475), False, 'from megengine import tensor\n'), ((1690, 1704), 'megengine.tensor', 'tensor', (['[4, 4]'], {}), '([4, 4])\n', (1696, 1704), False, 'from megengine import tensor\n'), ((1918, 1927), 'megengine.tensor', 'tensor', (['(2)'], {}), '(2)\n', (1924, 1927), False, 'from megengine import tensor\n'), ((1932, 1941), 'megengine.tensor', 'tensor', (['(4)'], {}), '(4)\n', (1938, 1941), False, 'from megengine import tensor\n'), ((2165, 2190), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2178, 2190), False, 'import pytest\n'), ((2342, 2371), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2355, 2371), False, 'import pytest\n'), ((530, 562), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (539, 562), True, 'import numpy as np\n'), ((595, 630), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (604, 630), True, 'import numpy as np\n'), ((716, 751), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (725, 751), True, 'import numpy as np\n'), ((815, 847), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (824, 847), True, 'import numpy as np\n'), ((880, 915), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (889, 915), True, 'import numpy as np\n'), ((1002, 1037), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1011, 1037), True, 'import numpy as np\n'), ((1100, 1132), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (1109, 1132), True, 'import numpy as np\n'), ((1165, 1200), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1174, 1200), True, 'import numpy as np\n'), ((1290, 1325), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1299, 1325), True, 'import numpy as np\n'), ((1387, 1422), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1396, 1422), True, 'import numpy as np\n'), ((1513, 1548), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1522, 1548), True, 'import numpy as np\n'), ((1616, 1651), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1625, 1651), True, 'import numpy as np\n'), ((1745, 1780), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1754, 1780), True, 'import numpy as np\n'), ((1844, 1879), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (1853, 1879), True, 'import numpy as np\n'), ((1991, 2026), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2000, 2026), True, 'import numpy as np\n'), ((2104, 2139), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2113, 2139), True, 'import numpy as np\n'), ((2281, 2316), 'numpy.arange', 'np.arange', (['(100)', '(116)'], {'dtype': 'np.int32'}), '(100, 116, dtype=np.int32)\n', (2290, 2316), True, 'import numpy as np\n'), ((2457, 2489), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (2466, 2489), True, 'import numpy as np\n'), ((2522, 2557), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (2531, 2557), True, 'import numpy as np\n'), ((2798, 2830), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (2807, 2830), True, 'import numpy as np\n'), ((2863, 2898), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (2872, 2898), True, 'import numpy as np\n'), ((3139, 3171), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {'dtype': 'np.int32'}), '(1, 17, dtype=np.int32)\n', (3148, 3171), True, 'import numpy as np\n'), ((3204, 3239), 'numpy.arange', 'np.arange', (['(100)', '(104)'], {'dtype': 'np.int32'}), '(100, 104, dtype=np.int32)\n', (3213, 3239), True, 'import numpy as np\n')]
import sys sys.path.append('.') import time import megengine as mge from model.RIFE import Model model = Model() model.eval() I0 = mge.random(1, 3, 480, 640) I1 = mge.random(1, 3, 480, 640) for i in range(100): pred = model.inference(I0, I1) mge._full_sync() time_stamp = time.time() for i in range(100): pred = model.inference(I0, I1) mge._full_sync() print((time.time() - time_stamp) / 100)
[ "megengine.random", "megengine._full_sync" ]
[((11, 31), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (26, 31), False, 'import sys\n'), ((106, 113), 'model.RIFE.Model', 'Model', ([], {}), '()\n', (111, 113), False, 'from model.RIFE import Model\n'), ((133, 159), 'megengine.random', 'mge.random', (['(1)', '(3)', '(480)', '(640)'], {}), '(1, 3, 480, 640)\n', (143, 159), True, 'import megengine as mge\n'), ((165, 191), 'megengine.random', 'mge.random', (['(1)', '(3)', '(480)', '(640)'], {}), '(1, 3, 480, 640)\n', (175, 191), True, 'import megengine as mge\n'), ((248, 264), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (262, 264), True, 'import megengine as mge\n'), ((278, 289), 'time.time', 'time.time', ([], {}), '()\n', (287, 289), False, 'import time\n'), ((346, 362), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (360, 362), True, 'import megengine as mge\n'), ((370, 381), 'time.time', 'time.time', ([], {}), '()\n', (379, 381), False, 'import time\n')]
# Copyright (c) Megvii, Inc. and its affiliates. import megengine.functional as F import megengine.module as M from .head import get_head from .loss import get_loss from .resnet import get_backbone from .stn import STN class FaceRecognitionModel(M.Module): """combination of all building blocks, including backbone, head and loss """ def __init__(self, configs): """initialize with configuration Args: configs (dict): configuration, required fields include: backbone: custom name of backbone output_head: custon name of output head feature_dim: dimension number of output embedding loss_type: custon name of loss function num_class: classification number of dataset loss_scale: used in loss function loss_m1: used in loss function loss_m2: used in loss function loss_m3: used in loss function use_stn: whether or not use stn """ super().__init__() backbone_constructor = get_backbone(configs["backbone"]) self.backbone = backbone_constructor() head_constructor = get_head(configs["output_head"]) self.head = head_constructor(feature_dim=configs["feature_dim"], channel=self.backbone.output_channel) metric_constructor = get_loss(configs["loss_type"]) self.metric = metric_constructor( num_class=configs["num_class"], scale=configs["loss_scale"], m1=configs["loss_m1"], m2=configs["loss_m2"], m3=configs["loss_m3"], feature_dim=configs["feature_dim"], ) if configs["use_stn"]: self.stn = STN() self.use_stn = True else: self.use_stn = False def forward_embedding_only(self, images): """run forward pass without calculating loss, expected useful during evaluation. Args: images (Tensor): preprocessed images (shape: n * 3 * 112 * 112) Returns: embedding (Tensor): embedding """ if self.use_stn: images = self.stn(images) feature_map = self.backbone(images) embedding = self.head(feature_map) embedding = F.normalize(embedding, axis=1) return embedding def forward(self, images, labels): """run forward pass and calculate loss, expected useful during training. Args: images (Tensor): preprocessed images (shape: n * 3 * 112 * 112) labels (Tensor): ground truth class id (shape: n) Returns: loss (Tensor): loss accuracy (Tensor): top1 accuracy (range: 0~1) embedding (Tensor): embedding """ embedding = self.forward_embedding_only(images) loss, accuracy = self.metric(embedding, labels) return loss, accuracy, embedding
[ "megengine.functional.normalize" ]
[((2314, 2344), 'megengine.functional.normalize', 'F.normalize', (['embedding'], {'axis': '(1)'}), '(embedding, axis=1)\n', (2325, 2344), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine.functional as F from megengine import tensor from megengine.core.autodiff.grad import Function, Grad from megengine.core.tensor.dtype import QuantDtypeMeta from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import ( QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward, ) class TQT_numpy: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_tqt(): g = [] def cb(grad): g.append(grad) x = np.random.randint(-128, 128, size=(1, 2, 3, 4)).astype("float32") s = np.random.rand(1) - 1 g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32") n = TQT_numpy(-127, 127) y_np = n.forward(x, s) g_x_np, g_s_np = n.backward(g_y) x = mge.tensor(x, dtype="float32") s = mge.tensor(s, dtype="float32") g_y = mge.tensor(g_y, dtype="float32") with Grad() as grad: grad.wrt(x, s, callback=cb) y = tqt_forward(-127, 127, x, s) grad(y, g_y) g_x, g_s = g np.testing.assert_allclose(y.numpy(), y_np, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(g_x.numpy(), g_x_np, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(g_s.numpy(), g_s_np, rtol=5e-5, atol=5e-5) def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 test_dtype = QuantDtypeMeta("test_qint8", None, "int8", qmin, qmax) def run(zero_point, scale): qparams = create_qparams(QuantMode.ASYMMERTIC, test_dtype, scale, zero_point) inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qparams).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) with Grad() as grad: grad.wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qparams) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) with Grad() as grad: grad.wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) # test nan x = F.full((1, 32, 3, 3), np.nan) y = fake_quant_tensor(x, qparams).numpy() assert np.isnan(y).all() zero_point = tensor([1.0], dtype=np.float32) scale = tensor([4.0], dtype=np.float32) run(zero_point, scale) zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) run(zero_point, scale) class LSQ_numpy: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale, zero_point, grad_scale): inp_scaled = inp / scale + zero_point inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.floor(inp_clipped + 0.5) inp_flq = (inp_rounded - zero_point) * scale self.saved_tensors = (inp_scaled, inp_rounded, scale, grad_scale) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, scale, grad_scale) = self.saved_tensors ind_small = inp_scaled < self.lowerbound ind_big = inp_scaled > self.upperbound ind_middle = np.logical_xor(ind_small, ind_big) ind_middle = np.abs(ind_middle - 1) grad_s = ( ind_small * self.lowerbound + ind_big * self.upperbound + ind_middle * (-inp_scaled + inp_rounded) ) grad_s = grad_s * grad_scale * grad_inp_flq grad_s = grad_s.sum() grad_inp = grad_inp_flq * ind_middle return grad_inp, grad_s def test_lsq(): g = [] def cb(grad): g.append(grad) # FIXME: use random number when LSQ is fixed # x = np.random.randint(-128, 128, size=(1, 2, 3, 4)).astype("float32") # s = np.random.rand(1) x = np.array( [ [ [ [4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0, -65.0, 109.0, -115.0], ], [ [-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, 108.0, -79.0], [54.0, 63.0, -10.0, -50.0], ], ] ], dtype="float32", ) s = np.array([0.02918224], dtype="float32") eps = np.array([1e-5], dtype="float32") s = np.abs(s) if np.abs(s) > eps else eps zero_point = np.array([1.0], dtype="float32") grad_s = np.array([2.0], dtype="float32") g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32") n = LSQ_numpy(-127, 127) y_np = n.forward(x, s, zero_point, grad_s) g_x_np, g_s_np = n.backward(g_y) x = mge.tensor(x, dtype="float32") s = mge.tensor(s, dtype="float32") zero_point = mge.tensor(zero_point, dtype="float32") grad_s = mge.tensor(grad_s, dtype="float32") g_y = mge.tensor(g_y, dtype="float32") with Grad() as grad: grad.wrt(x, s, callback=cb) y = lsq_forward(-127, 127, x, s, zero_point, grad_s) grad(y, g_y) g_x, g_s = g np.testing.assert_allclose(y.numpy(), y_np, rtol=1e-7, atol=1e-7) np.testing.assert_allclose(g_x.numpy(), g_x_np, rtol=1e-7, atol=1e-7) np.testing.assert_allclose(g_s.numpy(), g_s_np, rtol=5e-7, atol=5e-7)
[ "megengine.quantization.utils.fake_quant_tensor", "megengine.functional.maximum", "megengine.quantization.utils.lsq_forward", "megengine.functional.full", "megengine.core.tensor.utils.make_shape_tuple", "megengine.quantization.utils.create_qparams", "megengine.functional.ones_like", "megengine.core.autodiff.grad.Grad", "megengine.tensor", "megengine.quantization.utils.tqt_forward", "megengine.core.tensor.dtype.QuantDtypeMeta", "megengine.functional.round" ]
[((2467, 2511), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 2, 3, 4)', 'dtype': '"""float32"""'}), "(shape=(1, 2, 3, 4), dtype='float32')\n", (2474, 2511), True, 'import numpy as np\n'), ((2615, 2645), 'megengine.tensor', 'mge.tensor', (['x'], {'dtype': '"""float32"""'}), "(x, dtype='float32')\n", (2625, 2645), True, 'import megengine as mge\n'), ((2654, 2684), 'megengine.tensor', 'mge.tensor', (['s'], {'dtype': '"""float32"""'}), "(s, dtype='float32')\n", (2664, 2684), True, 'import megengine as mge\n'), ((2695, 2727), 'megengine.tensor', 'mge.tensor', (['g_y'], {'dtype': '"""float32"""'}), "(g_y, dtype='float32')\n", (2705, 2727), True, 'import megengine as mge\n'), ((3625, 3679), 'megengine.core.tensor.dtype.QuantDtypeMeta', 'QuantDtypeMeta', (['"""test_qint8"""', 'None', '"""int8"""', 'qmin', 'qmax'], {}), "('test_qint8', None, 'int8', qmin, qmax)\n", (3639, 3679), False, 'from megengine.core.tensor.dtype import QuantDtypeMeta\n'), ((4958, 4989), 'megengine.tensor', 'tensor', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4964, 4989), False, 'from megengine import tensor\n'), ((5002, 5033), 'megengine.tensor', 'tensor', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (5008, 5033), False, 'from megengine import tensor\n'), ((6683, 6900), 'numpy.array', 'np.array', (['[[[[4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0, -65.0, \n 109.0, -115.0]], [[-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, 108.0, -\n 79.0], [54.0, 63.0, -10.0, -50.0]]]]'], {'dtype': '"""float32"""'}), "([[[[4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0,\n -65.0, 109.0, -115.0]], [[-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, \n 108.0, -79.0], [54.0, 63.0, -10.0, -50.0]]]], dtype='float32')\n", (6691, 6900), True, 'import numpy as np\n'), ((7150, 7189), 'numpy.array', 'np.array', (['[0.02918224]'], {'dtype': '"""float32"""'}), "([0.02918224], dtype='float32')\n", (7158, 7189), True, 'import numpy as np\n'), ((7200, 7234), 'numpy.array', 'np.array', (['[1e-05]'], {'dtype': '"""float32"""'}), "([1e-05], dtype='float32')\n", (7208, 7234), True, 'import numpy as np\n'), ((7297, 7329), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': '"""float32"""'}), "([1.0], dtype='float32')\n", (7305, 7329), True, 'import numpy as np\n'), ((7343, 7375), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': '"""float32"""'}), "([2.0], dtype='float32')\n", (7351, 7375), True, 'import numpy as np\n'), ((7387, 7431), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 2, 3, 4)', 'dtype': '"""float32"""'}), "(shape=(1, 2, 3, 4), dtype='float32')\n", (7394, 7431), True, 'import numpy as np\n'), ((7555, 7585), 'megengine.tensor', 'mge.tensor', (['x'], {'dtype': '"""float32"""'}), "(x, dtype='float32')\n", (7565, 7585), True, 'import megengine as mge\n'), ((7594, 7624), 'megengine.tensor', 'mge.tensor', (['s'], {'dtype': '"""float32"""'}), "(s, dtype='float32')\n", (7604, 7624), True, 'import megengine as mge\n'), ((7642, 7681), 'megengine.tensor', 'mge.tensor', (['zero_point'], {'dtype': '"""float32"""'}), "(zero_point, dtype='float32')\n", (7652, 7681), True, 'import megengine as mge\n'), ((7695, 7730), 'megengine.tensor', 'mge.tensor', (['grad_s'], {'dtype': '"""float32"""'}), "(grad_s, dtype='float32')\n", (7705, 7730), True, 'import megengine as mge\n'), ((7742, 7774), 'megengine.tensor', 'mge.tensor', (['g_y'], {'dtype': '"""float32"""'}), "(g_y, dtype='float32')\n", (7752, 7774), True, 'import megengine as mge\n'), ((1283, 1304), 'numpy.round', 'np.round', (['inp_clipped'], {}), '(inp_clipped)\n', (1291, 1304), True, 'import numpy as np\n'), ((1715, 1736), 'numpy.abs', 'np.abs', (['(mask_clip - 1)'], {}), '(mask_clip - 1)\n', (1721, 1736), True, 'import numpy as np\n'), ((2435, 2452), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2449, 2452), True, 'import numpy as np\n'), ((2737, 2743), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (2741, 2743), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((2801, 2829), 'megengine.quantization.utils.tqt_forward', 'tqt_forward', (['(-127)', '(127)', 'x', 's'], {}), '(-127, 127, x, s)\n', (2812, 2829), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((3267, 3277), 'megengine.functional.round', 'F.round', (['x'], {}), '(x)\n', (3274, 3277), True, 'import megengine.functional as F\n'), ((3473, 3493), 'megengine.functional.maximum', 'F.maximum', (['oup', 'qmin'], {}), '(oup, qmin)\n', (3482, 3493), True, 'import megengine.functional as F\n'), ((3731, 3798), 'megengine.quantization.utils.create_qparams', 'create_qparams', (['QuantMode.ASYMMERTIC', 'test_dtype', 'scale', 'zero_point'], {}), '(QuantMode.ASYMMERTIC, test_dtype, scale, zero_point)\n', (3745, 3798), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((3818, 3881), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-512.0)', 'high': '(512.0)', 'size': '(1, 32, 32, 32)'}), '(low=-512.0, high=512.0, size=(1, 32, 32, 32))\n', (3835, 3881), True, 'import numpy as np\n'), ((3896, 3930), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (3902, 3930), False, 'from megengine import tensor\n'), ((4105, 4129), 'numpy.allclose', 'np.allclose', (['oup', 'oup_gt'], {}), '(oup, oup_gt)\n', (4116, 4129), True, 'import numpy as np\n'), ((4208, 4242), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4214, 4242), False, 'from megengine import tensor\n'), ((4422, 4456), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4428, 4456), False, 'from megengine import tensor\n'), ((4827, 4856), 'megengine.functional.full', 'F.full', (['(1, 32, 3, 3)', 'np.nan'], {}), '((1, 32, 3, 3), np.nan)\n', (4833, 4856), True, 'import megengine.functional as F\n'), ((5637, 5664), 'numpy.floor', 'np.floor', (['(inp_clipped + 0.5)'], {}), '(inp_clipped + 0.5)\n', (5645, 5664), True, 'import numpy as np\n'), ((6046, 6080), 'numpy.logical_xor', 'np.logical_xor', (['ind_small', 'ind_big'], {}), '(ind_small, ind_big)\n', (6060, 6080), True, 'import numpy as np\n'), ((6102, 6124), 'numpy.abs', 'np.abs', (['(ind_middle - 1)'], {}), '(ind_middle - 1)\n', (6108, 6124), True, 'import numpy as np\n'), ((7242, 7251), 'numpy.abs', 'np.abs', (['s'], {}), '(s)\n', (7248, 7251), True, 'import numpy as np\n'), ((7784, 7790), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7788, 7790), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((7848, 7896), 'megengine.quantization.utils.lsq_forward', 'lsq_forward', (['(-127)', '(127)', 'x', 's', 'zero_point', 'grad_s'], {}), '(-127, 127, x, s, zero_point, grad_s)\n', (7859, 7896), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((1194, 1233), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (1204, 1233), True, 'import numpy as np\n'), ((2193, 2202), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (2199, 2202), True, 'import numpy as np\n'), ((2361, 2408), 'numpy.random.randint', 'np.random.randint', (['(-128)', '(128)'], {'size': '(1, 2, 3, 4)'}), '(-128, 128, size=(1, 2, 3, 4))\n', (2378, 2408), True, 'import numpy as np\n'), ((4256, 4262), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4260, 4262), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4334, 4363), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qparams'], {}), '(x, qparams)\n', (4351, 4363), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4470, 4476), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4474, 4476), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4729, 4759), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x.grad.shape'], {}), '(x.grad.shape)\n', (4745, 4759), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4763, 4794), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x1.grad.shape'], {}), '(x1.grad.shape)\n', (4779, 4794), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((5092, 5114), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (5099, 5114), True, 'import numpy as np\n'), ((5159, 5181), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (5166, 5181), True, 'import numpy as np\n'), ((5548, 5587), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (5558, 5587), True, 'import numpy as np\n'), ((7255, 7264), 'numpy.abs', 'np.abs', (['s'], {}), '(s)\n', (7261, 7264), True, 'import numpy as np\n'), ((3968, 3999), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['inp', 'qparams'], {}), '(inp, qparams)\n', (3985, 3999), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4869, 4898), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qparams'], {}), '(x, qparams)\n', (4886, 4898), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4922, 4933), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (4930, 4933), True, 'import numpy as np\n'), ((4391, 4405), 'megengine.functional.ones_like', 'F.ones_like', (['x'], {}), '(x)\n', (4402, 4405), True, 'import megengine.functional as F\n'), ((4635, 4650), 'megengine.functional.ones_like', 'F.ones_like', (['x1'], {}), '(x1)\n', (4646, 4650), True, 'import megengine.functional as F\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import Tuple, Union import numpy as np import megengine._internal as mgb from ... import module as Float from ...core import Parameter from ...functional import conv_bias_activation from ..qat import conv as QAT from .module import QuantizedModule class Conv2d(Float.Conv2d, QuantizedModule): r"""quantized version of :class:`~.qat.conv.Conv2d`.""" r"""Applies a 2D convolution over an quantized input tensor, inference only. The parameter is same with :class: `~.Conv2d` """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode: str = "CROSS_CORRELATION", compute_mode: str = "DEFAULT", dtype=None, ): super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, True, conv_mode, compute_mode, ) self.output_dtype = dtype def calc_conv_quantized(self, inp, nonlinear_mode="IDENTITY"): inp_scale = mgb.dtype.get_scale(inp.dtype) w_scale = mgb.dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale return conv_bias_activation( inp, self.weight, self.bias.astype(mgb.dtype.qint32(bias_scale)), self.output_dtype, self.stride, self.padding, self.dilation, self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, nonlinear_mode=nonlinear_mode, ) @classmethod def from_qat_module(cls, qat_module: QAT.Conv2d): r""" return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ output_dtype = qat_module.get_activation_dtype() qconv = cls( qat_module.in_channels, qat_module.out_channels, qat_module.kernel_size, qat_module.stride, qat_module.padding, qat_module.dilation, qat_module.groups, dtype=output_dtype, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) qconv.weight = Parameter(weight.numpy()) if qat_module.bias is not None: qconv.bias = Parameter(qat_module.bias.numpy()) else: qconv.bias = Parameter( np.zeros(qat_module._infer_bias_shape(), dtype=np.float32) ) return qconv def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") class ConvRelu2d(Conv2d): r"""quantized version of :class:`~.qat.conv.ConvRelu2d`.""" def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="RELU")
[ "megengine._internal.dtype.get_scale", "megengine._internal.dtype.qint32" ]
[((1670, 1700), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['inp.dtype'], {}), '(inp.dtype)\n', (1689, 1700), True, 'import megengine._internal as mgb\n'), ((1719, 1757), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['self.weight.dtype'], {}), '(self.weight.dtype)\n', (1738, 1757), True, 'import megengine._internal as mgb\n'), ((1907, 1935), 'megengine._internal.dtype.qint32', 'mgb.dtype.qint32', (['bias_scale'], {}), '(bias_scale)\n', (1923, 1935), True, 'import megengine._internal as mgb\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import pytest import megengine as mge import megengine.functional as F from megengine.core import Buffer, Graph, Parameter from megengine.module import Conv2d from megengine.test import assertTensorClose def test_set_value(): v0 = np.random.random((2, 3)).astype(np.float32) param = Parameter(v0) v1 = np.random.random((2, 3)).astype(np.float32) param.set_value(v1) assertTensorClose(param.numpy(), v1, max_err=5e-6) v2 = np.random.random((3, 3)).astype(np.float32) # TODO: add this # with pytest.raises(ValueError): # param.set_value(v2) assertTensorClose(param.numpy(), v1, max_err=5e-6) def test_fill(): a = Buffer(np.zeros((2, 3), dtype=np.float32)) a.fill(3) assertTensorClose(a.numpy(), np.full((2, 3), 3, dtype=np.float32)) a.fill(124.568) assertTensorClose(a.numpy(), np.full((2, 3), 124.568, dtype=np.float32)) # TODO: remove or rewrite following test # def test_attach(): # p_ = np.random.random((2, 3)).astype(np.float32) # with Graph() as g: # g.set_option('eager_evaluation', False) # p = Parameter(p_) # v = p * 2 # f = compile(v, None) # out, = f() # assertTensorClose(out, p_ * 2) # F.add_update(p, p) # out, = f() # assertTensorClose(out, p_ * 4) # TODO: remove or rewrite following test # def test_module_attach(): # v = np.random.random((1, 3, 64, 64)).astype(np.float32) # net = Conv2d(3, 16, 3) # with Graph() as g: # g.set_option('eager_evaluation', False) # data0 = Input("data") # f = compile(net(data0), None) # out0, = f(data=v) # data1 = Input("data", value=v) # out1 = net(data1) # assertTensorClose(out0, out1.numpy()) def test_shape_warning(): with Graph() as cg: cg.set_option("eager_evaluation", False) b = Buffer(np.ones((2, 3)).astype(np.float32)) with pytest.warns(None) as record: print(b.shape) if len(record) != 0: raise ValueError( "Getting the shape of a constant Tensor should throw no Warning" )
[ "megengine.core.Graph", "megengine.core.Parameter" ]
[((703, 716), 'megengine.core.Parameter', 'Parameter', (['v0'], {}), '(v0)\n', (712, 716), False, 'from megengine.core import Buffer, Graph, Parameter\n'), ((1080, 1114), 'numpy.zeros', 'np.zeros', (['(2, 3)'], {'dtype': 'np.float32'}), '((2, 3), dtype=np.float32)\n', (1088, 1114), True, 'import numpy as np\n'), ((1163, 1199), 'numpy.full', 'np.full', (['(2, 3)', '(3)'], {'dtype': 'np.float32'}), '((2, 3), 3, dtype=np.float32)\n', (1170, 1199), True, 'import numpy as np\n'), ((1254, 1296), 'numpy.full', 'np.full', (['(2, 3)', '(124.568)'], {'dtype': 'np.float32'}), '((2, 3), 124.568, dtype=np.float32)\n', (1261, 1296), True, 'import numpy as np\n'), ((2186, 2193), 'megengine.core.Graph', 'Graph', ([], {}), '()\n', (2191, 2193), False, 'from megengine.core import Buffer, Graph, Parameter\n'), ((647, 671), 'numpy.random.random', 'np.random.random', (['(2, 3)'], {}), '((2, 3))\n', (663, 671), True, 'import numpy as np\n'), ((726, 750), 'numpy.random.random', 'np.random.random', (['(2, 3)'], {}), '((2, 3))\n', (742, 750), True, 'import numpy as np\n'), ((858, 882), 'numpy.random.random', 'np.random.random', (['(3, 3)'], {}), '((3, 3))\n', (874, 882), True, 'import numpy as np\n'), ((2318, 2336), 'pytest.warns', 'pytest.warns', (['None'], {}), '(None)\n', (2330, 2336), False, 'import pytest\n'), ((2269, 2284), 'numpy.ones', 'np.ones', (['(2, 3)'], {}), '((2, 3))\n', (2276, 2284), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import argparse import math import megengine.functional as F import megengine.module as M import numpy as np from megengine import jit, tensor class ConvNet(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(in_channels=3, out_channels=1, kernel_size=3, bias=False) def forward(self, input): x = self.conv1(input) return x if __name__ == "__main__": parser = argparse.ArgumentParser( description="dump mge model for add_demo", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--dir", help="set the dir where the model to dump", default=".", type=str, ) args = parser.parse_args() net = ConvNet() net.eval() @jit.trace(symbolic=True, capture_as_const=True) def fun(data): return net(data) inp = tensor(np.arange(0, 96).astype("float32").reshape(2, 3, 4, 4)) out = fun(inp) fun.dump(args.dir + "/conv_demo_f32_without_data.mge", arg_names=["data"], no_assert=True)
[ "megengine.module.Conv2d", "megengine.jit.trace" ]
[((457, 583), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""dump mge model for add_demo"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description='dump mge model for add_demo',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (480, 583), False, 'import argparse\n'), ((816, 863), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (825, 863), False, 'from megengine import jit, tensor\n'), ((268, 334), 'megengine.module.Conv2d', 'M.Conv2d', ([], {'in_channels': '(3)', 'out_channels': '(1)', 'kernel_size': '(3)', 'bias': '(False)'}), '(in_channels=3, out_channels=1, kernel_size=3, bias=False)\n', (276, 334), True, 'import megengine.module as M\n'), ((925, 941), 'numpy.arange', 'np.arange', (['(0)', '(96)'], {}), '(0, 96)\n', (934, 941), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import contextlib import functools import itertools import os from typing import Callable, Tuple, Union import numpy as np import megengine._internal as mgb from megengine._internal.plugin import CompGraphProfiler from ..core import Tensor, graph, tensor from .sublinear_memory_config import SublinearMemoryConfig def sideeffect(f): # during eager tracing, wrapped function is called with proxy inputs # during static tracing, wrapped function will not be called at all @functools.wraps(f) def wrapper(*args, **kwargs): # pylint: disable=inconsistent-return-statements if not trace._active_instance: return f(*args, **kwargs) tensors = {} for i, x in itertools.chain(enumerate(args), kwargs.items()): if isinstance(x, Tensor): tensors[i] = x if tensors: _keys, tensors = zip(*tensors.items()) else: _keys, tensors = (), () def callback(*tensors, f=f, keys=_keys, args=args, kwargs=kwargs): replace = dict(zip(keys, tensors)) args = tuple(replace.get(i, x) for i, x in enumerate(args)) kwargs = {i: replace.get(i, x) for i, x in kwargs.items()} if f(*args, **kwargs) is not None: raise TypeError("a sideeffect function should return None") # TODO: clear memory trace._active_instance._register_callback(callback, tensors) return wrapper def mark_impure(x): if not trace._active_instance: return x return trace._active_instance._mark_impure(x) def barrier(x): if not trace._active_instance: return x return trace._active_instance._insert_barrier(x) def _dummy(): return mgb.make_immutable(*graph._use_default_if_none(None, None), 0) class unset: pass class trace: """ Wrap a callable and provide: * tracing via :meth:`.trace` and :meth:`.dump` * accelerated evalutaion via :meth:`.__call__` :param func: Positional only argument. :param symbolic: Whether to use symbolic tensor. Default: False :param opt_level: Optimization level for compiling trace. :param log_level: Log level. :param sublinear_memory_config: Configuration for sublinear memory optimization. If not None, it enables sublinear memory optimization with given setting. :param allreduce_pack_max_size: Maximum size of an allreduce pack in MB. If not None, multiple gradients will be packed and synchronized together :param profiling: Whether to profile compiled trace. Default: False """ _active_instance = None enabled = not os.getenv("MGE_DISABLE_TRACE") _UNSTARTED = "unstarted" _STARTED = "started" _FINISHED = "finished" def __new__(cls, *args, **kwargs): if not args: return functools.partial(cls, **kwargs) return super().__new__(cls) def __init__( self, func: Callable[..., Union[None, Tensor, Tuple[Tensor]]], *, symbolic: bool = False, opt_level: int = None, log_level: int = None, sublinear_memory_config: SublinearMemoryConfig = None, allreduce_pack_max_size: int = None, profiling: bool = False ): self.__wrapped__ = func self._symbolic = symbolic self._graph_opt_level = opt_level self._log_level = log_level self._sublinear_memory_config = sublinear_memory_config self._allreduce_pack_max_size = allreduce_pack_max_size self._status = self._UNSTARTED self._args = None self._kwargs = None self._outputs = unset self._sym_outputs = unset self._outspec = None self._checkpoint = None self._compiled_func = None self._profiling = profiling self._profiler = None @property def _active(self): c1 = self._status == self._STARTED c2 = type(self)._active_instance is self assert c1 == c2 return c1 def _register_callback(self, f, args=()): assert self._active assert isinstance(args, (tuple, list)) proxies = self._make_proxies(args) self._forward(args, proxies, checkpoint=True) # NOTE: under eager graph callback will fire immediately job = mgb.opr.callback_injector( self._insert_barrier(_dummy()), lambda _: f(*proxies) ) self._insert_checkpoint(job) self._outspec.append(job) def _insert_barrier(self, x): assert self._active if self._checkpoint is None: return x if isinstance(x, Tensor): x = x._symvar wrap = True else: wrap = False if not isinstance(x, mgb.SymbolVar): raise TypeError x = mgb.opr.virtual_dep([x, self._checkpoint]) if wrap: x = Tensor(x) return x def _insert_checkpoint(self, *args, no_barrier=False): assert self._active if not args: return args = tuple(x._symvar if isinstance(x, Tensor) else x for x in args) for x in args: if not isinstance(x, mgb.SymbolVar): raise TypeError if not no_barrier and self._checkpoint is not None: # normally no need to _insert_barrier here, but if # someone forget to call _insert_barrier beforehand, # this can make things less broken args += (self._checkpoint,) if len(args) == 1: self._checkpoint = args[0] else: self._checkpoint = mgb.opr.virtual_dep(args) def _mark_impure(self, x): assert self._active ret = x if isinstance(x, Tensor): x = x._symvar if not isinstance(x, mgb.SymbolVar): raise TypeError self._outspec.append(x) self._insert_checkpoint(x) return ret def _make_proxies(self, args): assert isinstance(args, (tuple, list)) for x in args: assert isinstance(x, Tensor) return tuple(tensor(dtype=x.dtype, device=x.device) for x in args) def _forward(self, srcs, dests, checkpoint=True): # pseudo-op: does not run under static graph; traced # TODO: use shared memory assert len(srcs) == len(dests) if not self._active: for s, d in zip(srcs, dests): d.set_value(s, share=False) return jobs = [] for s, d in zip(srcs, dests): def callback(value, dest=d): dest.set_value(value, share=False) s = self._insert_barrier(s._symvar) # NOTE: callback immediately fire in eager graph jobs.append(mgb.opr.callback_injector(s, callback)) self._outspec.extend(jobs) if checkpoint: self._insert_checkpoint(*jobs, no_barrier=True) def _forward_inputs(self, *args, **kwargs): if self._kwargs is None: self._kwargs = kwargs elif self._kwargs != kwargs: raise ValueError("kwargs must not change between invocations") if self._args is None: self._args = [] for i in args: if isinstance(i, Tensor): self._args.append(tensor(dtype=i.dtype, device=i.device)) self._args[-1].set_value(i, share=False) else: self._args.append(tensor(i)) else: if not len(args) == len(self._args): raise TypeError for i, proxy in zip(args, self._args): proxy.set_value(i, share=False) # XXX: sync? def _make_outputs(self, outputs): if outputs is None: self._outputs = None return if isinstance(outputs, Tensor): # no one is able to call barrier after this, so no need to checkpoint # but checkpoint do little harm anyway (self._outputs,) = self._make_proxies([outputs]) return if not isinstance(outputs, (tuple, list)): raise TypeError("should return (tuple of) tensor") for i in outputs: if not isinstance(i, Tensor): raise TypeError("should return (tuple of) tensor") self._outputs = self._make_proxies(outputs) def _foward_outputs(self, outputs): # pseudo-op: does not run under static graph; traced if self._outputs is unset: self._make_outputs(outputs) if self._outputs is None: if outputs is not None: raise TypeError("should return None") elif isinstance(self._outputs, Tensor): if not isinstance(outputs, Tensor): raise TypeError("should return a tensor") self._forward([outputs], [self._outputs]) else: assert isinstance(self._outputs, tuple) def check(): if not isinstance(outputs, (tuple, list)): return False if len(self._outputs) != len(outputs): return False for x in outputs: if not isinstance(x, Tensor): return False return True if not check(): raise TypeError( "should return tuple of %d tensors" % len(self._outputs) ) self._forward(outputs, self._outputs) def _apply_graph_options(self, cg): # graph opt level if self._graph_opt_level is not None: cg.set_option("graph_opt_level", self._graph_opt_level) # log level if self._log_level is not None: cg.set_option("log_level", self._log_level) # sublinear if self._sublinear_memory_config is not None: cg.set_option("enable_sublinear_memory_opt", True) cg.set_option( "sublinear_mem_cofig.lb_memory", self._sublinear_memory_config.lb_memory, ) cg.set_option( "sublinear_mem_cofig.genetic_nr_iter", self._sublinear_memory_config.genetic_nr_iter, ) cg.set_option( "sublinear_mem_cofig.genetic_pool_size", self._sublinear_memory_config.genetic_pool_size, ) cg.set_option( "sublinear_mem_cofig.thresh_nr_try", self._sublinear_memory_config.thresh_nr_try, ) cg.set_option( "sublinear_mem_cofig.num_worker", self._sublinear_memory_config.num_worker, ) # pack allreduce if self._allreduce_pack_max_size is not None: cg.set_option("allreduce_pack_max_size", self._allreduce_pack_max_size) # profile if self._profiling: self._profiler = CompGraphProfiler(cg) def _get_graph(self, eager): if eager: if not hasattr(self, "_eager_graph"): # pylint: disable=attribute-defined-outside-init self._eager_graph = graph.Graph(eager_evaluation=True) self._apply_graph_options(self._eager_graph) return self._eager_graph else: if not hasattr(self, "_static_graph"): # pylint: disable=attribute-defined-outside-init self._static_graph = graph.Graph(eager_evaluation=False) self._apply_graph_options(self._static_graph) return self._static_graph @contextlib.contextmanager def _prepare(self, args, kwargs, enable): # prepare for execution self._forward_inputs(*args, **kwargs) if not enable: # XXX: use our own graph here? cg = None elif self._status == self._FINISHED: cg = None elif self._symbolic: cg = self._get_graph(eager=False) else: cg = self._get_graph(eager=True) try: # NOTE: always trace in a new graph, so capturing an undetached tensor # will never work (would work if tracing in default graph) if cg is None: yield else: with cg: yield finally: # XXX: properly release memory if cg: cg.clear_device_memory() @contextlib.contextmanager def _activate(self): # prepare for tracing if self._status != self._UNSTARTED: raise RuntimeError("cannot trace a second time") if type(self)._active_instance is not None: raise RuntimeError("nested trace is unsupported") self._status = self._STARTED type(self)._active_instance = self self._user_cache = {} try: yield finally: self._status = self._FINISHED self._user_cache = None type(self)._active_instance = None def _run_wrapped(self): outputs = self.__wrapped__(*self._args, **self._kwargs) self._foward_outputs(outputs) return outputs def _do_trace(self): with self._activate(): self._outspec = [] outputs = self._run_wrapped() if outputs is None: self._sym_outputs = None else: if isinstance(outputs, Tensor): outputs = [outputs] # _run_wrapped has checked validity of outputs self._sym_outputs = tuple(i._symvar for i in outputs) mgb.comp_graph_tools.set_priority_to_id(self._outspec) self._compiled_func = graph.get_default_graph().compile(None, self._outspec) def trace(self, *args: Tensor, **kwargs): """ Trace wrapped callable with provided arguments. """ with self._prepare(args, kwargs, enable=True): self._do_trace() return self def __call__(self, *args: Tensor, **kwargs): """ Evaluate on provided arguments, using compiled trace instead of the original callable if applicable. :return: ``None`` or :class:`~.Tensor` or tuple of :class:`~.Tensor`, depending on the return value of wrapped callable. """ with self._prepare(args, kwargs, enable=self.enabled): if not self.enabled: self._run_wrapped() elif self._status == self._FINISHED: self._compiled_func() else: if self._status == self._UNSTARTED: self._do_trace() if self._symbolic: self._compiled_func() return self._outputs def dump( self, fpath, *, arg_names=None, append=False, optimize_for_inference=False, **kwargs ): """ Serialize trace to file system. :param fpath: positional only argument. Path of output file. :param arg_names: names of the input tensors in the traced function. :param append: whether output is appended to ``fpath``. :param optimize_for_inference: whether to enable optimize_for_inference pass before dump. :param enable_io16xc32: whether to use float16 for I/O between oprs and use float32 as internal computation precision. Note the output var would be changed to float16. :param enable_ioc16: whether to use float16 for both I/O and computation precision. :param enable_hwcd4: whether to use NHWCD4 data layout. This is faster on some OpenCL backend. :param enable_nchw88: whether to use NCHW88 data layout. it currently used in X86 AVX backend. :param enable_nchw44: whether to use NCHW44 data layout. it currently used in arm backend. :param enable_nchw44_dot: whether to use NCHW44_dot data layout. it currently used in armv8.2+dotprod backend. :param enable_nchw4: whether to use NCHW4 data layout. it currently used in nvidia backend(based on cudnn). :param enable_nchw32: whether to use NCHW32 data layout. it currently used in nvidia backend with tensorcore(based on cudnn). :param enable_chwn4: whether to use CHWN4 data layout. it currently used in nvidia backend with tensorcore. :param enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty into one opr. :param enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z input for inference on nvidia backend(this optimization pass will result in mismatch of the precision of output of training and inference) """ if self._status != self._FINISHED: raise ValueError("not traced") assert isinstance(self._sym_outputs, (tuple, type(None))) if not self._sym_outputs: raise ValueError("not outputs") if arg_names is None: arg_names = ["arg_%d" % i for i in range(len(self._args))] elif len(arg_names) != len(self._args): raise ValueError( "len(arg_names) should be {}, got {}".format( len(self._args), len(arg_names) ) ) optimize_for_inference_args_map = { "enable_io16xc32": "f16_io_f32_comp", "enable_ioc16": "f16_io_comp", "enable_hwcd4": "use_nhwcd4", "enable_nchw4": "use_nchw4", "enable_nchw88": "use_nchw88", "enable_nchw32": "use_nchw32", "enable_nchw44": "use_nchw44", "enable_nchw44_dot": "use_nchw44_dot", "enable_chwn4": "use_chwn4", "enable_fuse_conv_bias_nonlinearity": "fuse_conv_bias_nonlinearity", "enable_fuse_conv_bias_with_z": "fuse_conv_bias_with_z", } if optimize_for_inference: optimize_for_inference_kwargs = {} for k, v in optimize_for_inference_args_map.items(): if kwargs.pop(k, False): optimize_for_inference_kwargs[v] = True else: for k in optimize_for_inference_args_map: if kwargs.get(k, False): raise ValueError( "cannot set %s when optimize_for_inference is not set" % k ) if kwargs: raise ValueError("unknown options: %s" % list(kwargs)) cg = self._sym_outputs[0].owner_graph replace = {} for t, name in zip(self._args, arg_names): # relies on symvar dedup s = t.__mgb_symvar__(comp_graph=cg) replace[s] = mgb.make_arg( t.device, cg, dtype=t.dtype, shape=t.shape, name=name ) # Convert VolatileSharedDeviceTensor to SharedDeviceTensor, # otherwise some optimizations would not work. The conversion is # safe because there simply is no way (using builtin ops) to make # a VolatileSharedDeviceTensor actually volatile. for s in mgb.cgtools.get_dep_vars( self._sym_outputs, "VolatileSharedDeviceTensor" ): if s in replace: continue # is an input replace[s] = mgb.SharedND._from_symvar(s).symvar( cg, name=s.name, volatile=False ) sym_outputs = mgb.cgtools.replace_vars(self._sym_outputs, replace) sym_outputs = list(sym_outputs) if optimize_for_inference: sym_outputs = mgb.optimize_for_inference( sym_outputs, **optimize_for_inference_kwargs ) mgb.serialize_comp_graph_to_file(fpath, sym_outputs, append=append) def get_profile(self): """ Get profiling result for compiled trace. :return: a json compatible object. """ if not self._profiler: raise RuntimeError("trace is not set with profiling=True") return self._profiler.get()
[ "megengine._internal.cgtools.get_dep_vars", "megengine._internal.opr.callback_injector", "megengine._internal.make_arg", "megengine._internal.plugin.CompGraphProfiler", "megengine._internal.serialize_comp_graph_to_file", "megengine._internal.optimize_for_inference", "megengine._internal.comp_graph_tools.set_priority_to_id", "megengine._internal.opr.virtual_dep", "megengine._internal.SharedND._from_symvar", "megengine._internal.cgtools.replace_vars" ]
[((865, 883), 'functools.wraps', 'functools.wraps', (['f'], {}), '(f)\n', (880, 883), False, 'import functools\n'), ((3018, 3048), 'os.getenv', 'os.getenv', (['"""MGE_DISABLE_TRACE"""'], {}), "('MGE_DISABLE_TRACE')\n", (3027, 3048), False, 'import os\n'), ((5194, 5236), 'megengine._internal.opr.virtual_dep', 'mgb.opr.virtual_dep', (['[x, self._checkpoint]'], {}), '([x, self._checkpoint])\n', (5213, 5236), True, 'import megengine._internal as mgb\n'), ((19650, 19723), 'megengine._internal.cgtools.get_dep_vars', 'mgb.cgtools.get_dep_vars', (['self._sym_outputs', '"""VolatileSharedDeviceTensor"""'], {}), "(self._sym_outputs, 'VolatileSharedDeviceTensor')\n", (19674, 19723), True, 'import megengine._internal as mgb\n'), ((19962, 20014), 'megengine._internal.cgtools.replace_vars', 'mgb.cgtools.replace_vars', (['self._sym_outputs', 'replace'], {}), '(self._sym_outputs, replace)\n', (19986, 20014), True, 'import megengine._internal as mgb\n'), ((20227, 20294), 'megengine._internal.serialize_comp_graph_to_file', 'mgb.serialize_comp_graph_to_file', (['fpath', 'sym_outputs'], {'append': 'append'}), '(fpath, sym_outputs, append=append)\n', (20259, 20294), True, 'import megengine._internal as mgb\n'), ((3211, 3243), 'functools.partial', 'functools.partial', (['cls'], {}), '(cls, **kwargs)\n', (3228, 3243), False, 'import functools\n'), ((5993, 6018), 'megengine._internal.opr.virtual_dep', 'mgb.opr.virtual_dep', (['args'], {}), '(args)\n', (6012, 6018), True, 'import megengine._internal as mgb\n'), ((11341, 11362), 'megengine._internal.plugin.CompGraphProfiler', 'CompGraphProfiler', (['cg'], {}), '(cg)\n', (11358, 11362), False, 'from megengine._internal.plugin import CompGraphProfiler\n'), ((14050, 14104), 'megengine._internal.comp_graph_tools.set_priority_to_id', 'mgb.comp_graph_tools.set_priority_to_id', (['self._outspec'], {}), '(self._outspec)\n', (14089, 14104), True, 'import megengine._internal as mgb\n'), ((19262, 19329), 'megengine._internal.make_arg', 'mgb.make_arg', (['t.device', 'cg'], {'dtype': 't.dtype', 'shape': 't.shape', 'name': 'name'}), '(t.device, cg, dtype=t.dtype, shape=t.shape, name=name)\n', (19274, 19329), True, 'import megengine._internal as mgb\n'), ((20116, 20188), 'megengine._internal.optimize_for_inference', 'mgb.optimize_for_inference', (['sym_outputs'], {}), '(sym_outputs, **optimize_for_inference_kwargs)\n', (20142, 20188), True, 'import megengine._internal as mgb\n'), ((7142, 7180), 'megengine._internal.opr.callback_injector', 'mgb.opr.callback_injector', (['s', 'callback'], {}), '(s, callback)\n', (7167, 7180), True, 'import megengine._internal as mgb\n'), ((19841, 19869), 'megengine._internal.SharedND._from_symvar', 'mgb.SharedND._from_symvar', (['s'], {}), '(s)\n', (19866, 19869), True, 'import megengine._internal as mgb\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.core import Parameter, tensor def _init_process_group_wrapper(world_size, rank, dev, backend, q): if rank == 0: dist.init_process_group("localhost", 0, world_size, rank, dev, backend) q.put(dist.get_master_port()) else: port = q.get() dist.init_process_group("localhost", port, world_size, rank, dev, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.reduce_sum(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, None, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_gather(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.gather(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, None, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_broadcast(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.broadcast(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, backend, x, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, x, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_scatter(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.scatter(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process( target=worker, args=(0, x, backend, x[: shape[0] // 2], port_queue) ) p1 = mp.Process( target=worker, args=(1, y, backend, x[shape[0] // 2 :], port_queue) ) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_to_all(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_to_all(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") a = np.concatenate((x[: shape[0] // 2], y[: shape[0] // 2])) b = np.concatenate((x[shape[0] // 2 :], y[shape[0] // 2 :])) p0 = mp.Process(target=worker, args=(0, x, backend, a, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, b, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_gather(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_gather(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_scatter_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.reduce_scatter_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process( target=worker, args=(0, x, backend, z[: shape[0] // 2], port_queue) ) p1 = mp.Process( target=worker, args=(1, y, backend, z[shape[0] // 2 :], port_queue) ) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 4), (8, 10), (88, 44)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_max(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_max(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.maximum(x, y) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_min(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_min(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.minimum(x, y) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_bcast_param(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = Parameter(data) dist.functional.bcast_param(inp) assert np.allclose(inp.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, backend, x, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, x, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend)
[ "megengine.core.tensor", "megengine.distributed.functional.all_reduce_min", "megengine.distributed.get_master_port", "megengine.distributed.functional.all_gather", "megengine.distributed.init_process_group", "megengine.distributed.functional.all_to_all", "megengine.get_device_count", "megengine.distributed.functional.bcast_param", "megengine.distributed.functional.reduce_sum", "megengine.distributed.functional.gather", "megengine.distributed.functional.broadcast", "megengine.distributed.functional.all_reduce_max", "megengine.distributed.functional.scatter", "megengine.distributed.functional.all_reduce_sum", "megengine.core.Parameter", "megengine.distributed.functional.reduce_scatter_sum" ]
[((636, 707), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', '(0)', 'world_size', 'rank', 'dev', 'backend'], {}), "('localhost', 0, world_size, rank, dev, backend)\n", (659, 707), True, 'import megengine.distributed as dist\n'), ((787, 861), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', 'rank', 'dev', 'backend'], {}), "('localhost', port, world_size, rank, dev, backend)\n", (810, 861), True, 'import megengine.distributed as dist\n'), ((1368, 1380), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (1374, 1380), False, 'from megengine.core import Parameter, tensor\n'), ((1398, 1429), 'megengine.distributed.functional.reduce_sum', 'dist.functional.reduce_sum', (['inp'], {}), '(inp)\n', (1424, 1429), True, 'import megengine.distributed as dist\n'), ((1624, 1634), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (1632, 1634), True, 'import multiprocessing as mp\n'), ((1772, 1834), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (1782, 1834), True, 'import multiprocessing as mp\n'), ((1848, 1913), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, None, port_queue)'}), '(target=worker, args=(1, y, backend, None, port_queue))\n', (1858, 1913), True, 'import multiprocessing as mp\n'), ((889, 906), 'platform.system', 'platform.system', ([], {}), '()\n', (904, 906), False, 'import platform\n'), ((989, 1006), 'platform.system', 'platform.system', ([], {}), '()\n', (1004, 1006), False, 'import platform\n'), ((2671, 2683), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (2677, 2683), False, 'from megengine.core import Parameter, tensor\n'), ((2701, 2728), 'megengine.distributed.functional.gather', 'dist.functional.gather', (['inp'], {}), '(inp)\n', (2723, 2728), True, 'import megengine.distributed as dist\n'), ((2923, 2933), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (2931, 2933), True, 'import multiprocessing as mp\n'), ((3052, 3074), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (3066, 3074), True, 'import numpy as np\n'), ((3088, 3150), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (3098, 3150), True, 'import multiprocessing as mp\n'), ((3164, 3229), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, None, port_queue)'}), '(target=worker, args=(1, y, backend, None, port_queue))\n', (3174, 3229), True, 'import multiprocessing as mp\n'), ((2196, 2213), 'platform.system', 'platform.system', ([], {}), '()\n', (2211, 2213), False, 'import platform\n'), ((2296, 2313), 'platform.system', 'platform.system', ([], {}), '()\n', (2311, 2313), False, 'import platform\n'), ((3990, 4002), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (3996, 4002), False, 'from megengine.core import Parameter, tensor\n'), ((4020, 4050), 'megengine.distributed.functional.broadcast', 'dist.functional.broadcast', (['inp'], {}), '(inp)\n', (4045, 4050), True, 'import megengine.distributed as dist\n'), ((4155, 4165), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (4163, 4165), True, 'import multiprocessing as mp\n'), ((4250, 4312), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x, port_queue)'}), '(target=worker, args=(0, x, backend, x, port_queue))\n', (4260, 4312), True, 'import multiprocessing as mp\n'), ((4326, 4388), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x, port_queue)'}), '(target=worker, args=(1, y, backend, x, port_queue))\n', (4336, 4388), True, 'import multiprocessing as mp\n'), ((3512, 3529), 'platform.system', 'platform.system', ([], {}), '()\n', (3527, 3529), False, 'import platform\n'), ((3612, 3629), 'platform.system', 'platform.system', ([], {}), '()\n', (3627, 3629), False, 'import platform\n'), ((5147, 5159), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (5153, 5159), False, 'from megengine.core import Parameter, tensor\n'), ((5177, 5205), 'megengine.distributed.functional.scatter', 'dist.functional.scatter', (['inp'], {}), '(inp)\n', (5200, 5205), True, 'import megengine.distributed as dist\n'), ((5310, 5320), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (5318, 5320), True, 'import multiprocessing as mp\n'), ((5405, 5483), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x[:shape[0] // 2], port_queue)'}), '(target=worker, args=(0, x, backend, x[:shape[0] // 2], port_queue))\n', (5415, 5483), True, 'import multiprocessing as mp\n'), ((5520, 5598), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x[shape[0] // 2:], port_queue)'}), '(target=worker, args=(1, y, backend, x[shape[0] // 2:], port_queue))\n', (5530, 5598), True, 'import multiprocessing as mp\n'), ((4671, 4688), 'platform.system', 'platform.system', ([], {}), '()\n', (4686, 4688), False, 'import platform\n'), ((4771, 4788), 'platform.system', 'platform.system', ([], {}), '()\n', (4786, 4788), False, 'import platform\n'), ((6384, 6396), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (6390, 6396), False, 'from megengine.core import Parameter, tensor\n'), ((6414, 6445), 'megengine.distributed.functional.all_to_all', 'dist.functional.all_to_all', (['inp'], {}), '(inp)\n', (6440, 6445), True, 'import megengine.distributed as dist\n'), ((6550, 6560), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (6558, 6560), True, 'import multiprocessing as mp\n'), ((6679, 6733), 'numpy.concatenate', 'np.concatenate', (['(x[:shape[0] // 2], y[:shape[0] // 2])'], {}), '((x[:shape[0] // 2], y[:shape[0] // 2]))\n', (6693, 6733), True, 'import numpy as np\n'), ((6748, 6802), 'numpy.concatenate', 'np.concatenate', (['(x[shape[0] // 2:], y[shape[0] // 2:])'], {}), '((x[shape[0] // 2:], y[shape[0] // 2:]))\n', (6762, 6802), True, 'import numpy as np\n'), ((6818, 6880), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, a, port_queue)'}), '(target=worker, args=(0, x, backend, a, port_queue))\n', (6828, 6880), True, 'import multiprocessing as mp\n'), ((6894, 6956), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, b, port_queue)'}), '(target=worker, args=(1, y, backend, b, port_queue))\n', (6904, 6956), True, 'import multiprocessing as mp\n'), ((5905, 5922), 'platform.system', 'platform.system', ([], {}), '()\n', (5920, 5922), False, 'import platform\n'), ((6005, 6022), 'platform.system', 'platform.system', ([], {}), '()\n', (6020, 6022), False, 'import platform\n'), ((7719, 7731), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (7725, 7731), False, 'from megengine.core import Parameter, tensor\n'), ((7749, 7780), 'megengine.distributed.functional.all_gather', 'dist.functional.all_gather', (['inp'], {}), '(inp)\n', (7775, 7780), True, 'import megengine.distributed as dist\n'), ((7885, 7895), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (7893, 7895), True, 'import multiprocessing as mp\n'), ((8014, 8036), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (8028, 8036), True, 'import numpy as np\n'), ((8050, 8112), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (8060, 8112), True, 'import multiprocessing as mp\n'), ((8126, 8188), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (8136, 8188), True, 'import multiprocessing as mp\n'), ((7240, 7257), 'platform.system', 'platform.system', ([], {}), '()\n', (7255, 7257), False, 'import platform\n'), ((7340, 7357), 'platform.system', 'platform.system', ([], {}), '()\n', (7355, 7357), False, 'import platform\n'), ((8958, 8970), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (8964, 8970), False, 'from megengine.core import Parameter, tensor\n'), ((8988, 9027), 'megengine.distributed.functional.reduce_scatter_sum', 'dist.functional.reduce_scatter_sum', (['inp'], {}), '(inp)\n', (9022, 9027), True, 'import megengine.distributed as dist\n'), ((9132, 9142), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (9140, 9142), True, 'import multiprocessing as mp\n'), ((9280, 9358), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z[:shape[0] // 2], port_queue)'}), '(target=worker, args=(0, x, backend, z[:shape[0] // 2], port_queue))\n', (9290, 9358), True, 'import multiprocessing as mp\n'), ((9395, 9473), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z[shape[0] // 2:], port_queue)'}), '(target=worker, args=(1, y, backend, z[shape[0] // 2:], port_queue))\n', (9405, 9473), True, 'import multiprocessing as mp\n'), ((8471, 8488), 'platform.system', 'platform.system', ([], {}), '()\n', (8486, 8488), False, 'import platform\n'), ((8571, 8588), 'platform.system', 'platform.system', ([], {}), '()\n', (8586, 8588), False, 'import platform\n'), ((10262, 10274), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (10268, 10274), False, 'from megengine.core import Parameter, tensor\n'), ((10292, 10327), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['inp'], {}), '(inp)\n', (10322, 10327), True, 'import megengine.distributed as dist\n'), ((10432, 10442), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (10440, 10442), True, 'import multiprocessing as mp\n'), ((10580, 10642), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (10590, 10642), True, 'import multiprocessing as mp\n'), ((10656, 10718), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (10666, 10718), True, 'import multiprocessing as mp\n'), ((9779, 9796), 'platform.system', 'platform.system', ([], {}), '()\n', (9794, 9796), False, 'import platform\n'), ((9879, 9896), 'platform.system', 'platform.system', ([], {}), '()\n', (9894, 9896), False, 'import platform\n'), ((11484, 11496), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (11490, 11496), False, 'from megengine.core import Parameter, tensor\n'), ((11514, 11549), 'megengine.distributed.functional.all_reduce_max', 'dist.functional.all_reduce_max', (['inp'], {}), '(inp)\n', (11544, 11549), True, 'import megengine.distributed as dist\n'), ((11654, 11664), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (11662, 11664), True, 'import multiprocessing as mp\n'), ((11783, 11799), 'numpy.maximum', 'np.maximum', (['x', 'y'], {}), '(x, y)\n', (11793, 11799), True, 'import numpy as np\n'), ((11813, 11875), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (11823, 11875), True, 'import multiprocessing as mp\n'), ((11889, 11951), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (11899, 11951), True, 'import multiprocessing as mp\n'), ((11001, 11018), 'platform.system', 'platform.system', ([], {}), '()\n', (11016, 11018), False, 'import platform\n'), ((11101, 11118), 'platform.system', 'platform.system', ([], {}), '()\n', (11116, 11118), False, 'import platform\n'), ((12717, 12729), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (12723, 12729), False, 'from megengine.core import Parameter, tensor\n'), ((12747, 12782), 'megengine.distributed.functional.all_reduce_min', 'dist.functional.all_reduce_min', (['inp'], {}), '(inp)\n', (12777, 12782), True, 'import megengine.distributed as dist\n'), ((12887, 12897), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (12895, 12897), True, 'import multiprocessing as mp\n'), ((13016, 13032), 'numpy.minimum', 'np.minimum', (['x', 'y'], {}), '(x, y)\n', (13026, 13032), True, 'import numpy as np\n'), ((13046, 13108), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (13056, 13108), True, 'import multiprocessing as mp\n'), ((13122, 13184), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (13132, 13184), True, 'import multiprocessing as mp\n'), ((12234, 12251), 'platform.system', 'platform.system', ([], {}), '()\n', (12249, 12251), False, 'import platform\n'), ((12334, 12351), 'platform.system', 'platform.system', ([], {}), '()\n', (12349, 12351), False, 'import platform\n'), ((13947, 13962), 'megengine.core.Parameter', 'Parameter', (['data'], {}), '(data)\n', (13956, 13962), False, 'from megengine.core import Parameter, tensor\n'), ((13971, 14003), 'megengine.distributed.functional.bcast_param', 'dist.functional.bcast_param', (['inp'], {}), '(inp)\n', (13998, 14003), True, 'import megengine.distributed as dist\n'), ((14105, 14115), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (14113, 14115), True, 'import multiprocessing as mp\n'), ((14200, 14262), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x, port_queue)'}), '(target=worker, args=(0, x, backend, x, port_queue))\n', (14210, 14262), True, 'import multiprocessing as mp\n'), ((14276, 14338), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x, port_queue)'}), '(target=worker, args=(1, y, backend, x, port_queue))\n', (14286, 14338), True, 'import multiprocessing as mp\n'), ((13467, 13484), 'platform.system', 'platform.system', ([], {}), '()\n', (13482, 13484), False, 'import platform\n'), ((13567, 13584), 'platform.system', 'platform.system', ([], {}), '()\n', (13582, 13584), False, 'import platform\n'), ((722, 744), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (742, 744), True, 'import megengine.distributed as dist\n'), ((1212, 1239), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (1232, 1239), True, 'import megengine as mge\n'), ((2515, 2542), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2535, 2542), True, 'import megengine as mge\n'), ((3834, 3861), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (3854, 3861), True, 'import megengine as mge\n'), ((4991, 5018), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (5011, 5018), True, 'import megengine as mge\n'), ((6228, 6255), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (6248, 6255), True, 'import megengine as mge\n'), ((7563, 7590), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (7583, 7590), True, 'import megengine as mge\n'), ((8802, 8829), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (8822, 8829), True, 'import megengine as mge\n'), ((10106, 10133), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (10126, 10133), True, 'import megengine as mge\n'), ((11328, 11355), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (11348, 11355), True, 'import megengine as mge\n'), ((12561, 12588), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (12581, 12588), True, 'import megengine as mge\n'), ((13791, 13818), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (13811, 13818), True, 'import megengine as mge\n'), ((1647, 1669), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1661, 1669), True, 'import numpy as np\n'), ((1700, 1722), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1714, 1722), True, 'import numpy as np\n'), ((2946, 2968), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (2960, 2968), True, 'import numpy as np\n'), ((2999, 3021), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (3013, 3021), True, 'import numpy as np\n'), ((4178, 4200), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (4192, 4200), True, 'import numpy as np\n'), ((5333, 5355), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (5347, 5355), True, 'import numpy as np\n'), ((6573, 6595), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (6587, 6595), True, 'import numpy as np\n'), ((6626, 6648), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (6640, 6648), True, 'import numpy as np\n'), ((7908, 7930), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (7922, 7930), True, 'import numpy as np\n'), ((7961, 7983), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (7975, 7983), True, 'import numpy as np\n'), ((9155, 9177), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (9169, 9177), True, 'import numpy as np\n'), ((9208, 9230), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (9222, 9230), True, 'import numpy as np\n'), ((10455, 10477), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (10469, 10477), True, 'import numpy as np\n'), ((10508, 10530), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (10522, 10530), True, 'import numpy as np\n'), ((11677, 11699), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (11691, 11699), True, 'import numpy as np\n'), ((11730, 11752), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (11744, 11752), True, 'import numpy as np\n'), ((12910, 12932), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (12924, 12932), True, 'import numpy as np\n'), ((12963, 12985), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (12977, 12985), True, 'import numpy as np\n'), ((14128, 14150), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (14142, 14150), True, 'import numpy as np\n')]
import os import sys import time from collections import OrderedDict from time import strftime, gmtime from tensorboardX import SummaryWriter from dataset import AsrDataset, DataLoader, AsrCollator from models.transformer import Model import hparams as hp import argparse import megengine as mge import megengine.module as M import megengine.functional as F from megengine.functional import clip, concat, minimum, norm from megengine.core._imperative_rt.core2 import pop_scope, push_scope from typing import Iterable, Union from megengine.tensor import Tensor import megengine.distributed as dist from megengine.data import SequentialSampler, RandomSampler, DataLoader from criterions.label_smoothing_loss import LabelSmoothingLoss from megengine.utils.network import Network as Net import megengine.autodiff as autodiff import megengine.data as data import megengine import multiprocessing logging = megengine.logger.get_logger() def clip_grad_norm( tensors: Union[Tensor, Iterable[Tensor]], max_norm: float, ord: float = 2.0, ): push_scope("clip_grad_norm") if isinstance(tensors, Tensor): tensors = [tensors] tensors = [t for t in tensors if t.grad is not None] norm_ = [norm(t.grad.flatten(), ord=ord) for t in tensors] if len(norm_) > 1: norm_ = norm(concat(norm_), ord=ord) else: norm_ = norm_[0] scale = max_norm / (norm_ + 1e-6) scale = minimum(scale, 1) for tensor in tensors: tensor.grad._reset(tensor.grad * scale) pop_scope("clip_grad_norm") return norm_ class exponential_ma: def __init__(self, ratio): self.value = 0 self.weight = 0 self.ratio = ratio def update(self, x): self.value = self.value * self.ratio + (1 - self.ratio) * x self.weight = self.weight * self.ratio + (1 - self.ratio) def get_value(self): if self.weight < 1e-8: return 0 return self.value / self.weight def update_train_log(monitor_vars_name, ma_dict, losses, ttrain, tdata): for n in monitor_vars_name: for ma in ma_dict["losses"]: ma[n].update(losses[n]) for ma in ma_dict["ttrain"]: ma.update(ttrain) for ma in ma_dict["tdata"]: ma.update(tdata) def print_train_log(sess, epoch, minibatch, ma_dict, minibatch_per_epoch): ma_output = "[{}] e:{}, {}/{} ".format( strftime("%Y-%m-%d %H:%M:%S", gmtime()), epoch, minibatch, minibatch_per_epoch ) print(ma_output, file=sys.stderr) line = " {:31}:".format("speed") for ma in ma_dict["ttrain"]: line += "{:10.2g}".format(1 / ma.get_value()) print(line, file=sys.stderr) line = " {:31}".format("dp/tot") for ma1, ma2 in zip(ma_dict["ttrain"], ma_dict["tdata"]): line += "{:10.2g}".format(ma2.get_value() / ma1.get_value()) print(line, file=sys.stderr) for k in sess.loss_names: line = " {:31}".format(k) for ma in ma_dict["losses"]: line += "{:10.2E}".format(ma[k].get_value()) print(line, file=sys.stderr) line = " {:31}: {}".format("lr", sess.get_learning_rate()) print(line, file=sys.stderr) sys.stderr.flush() def adjust_learning_rate(optimizer, step_num, warmup_step=4000): lr = ( hp.lr * warmup_step ** 0.5 * min(step_num * warmup_step ** -1.5, step_num ** -0.5) ) for param_group in optimizer.param_groups: param_group["lr"] = lr def set_grad(net, min, max): for param in net.parameters(): param.grad = mge.random.uniform(min, max, param.shape) param.grad_backup = F.copy(param.grad) class Session: def __init__(self, args): with open(os.path.join(hp.dataset_root, "vocab.txt")) as f: self.vocab = [w.strip() for w in f.readlines()] self.vocab = ["<pad>"] + self.vocab print(f"Vocab Size: {len(self.vocab)}") self.model = Model(hp.num_mels, len(self.vocab)) world_size = args.world_size * args.ngpus if world_size > 1: dist.bcast_list_(self.model.parameters(), dist.WORLD) # Autodiff gradient manager self.gm = autodiff.GradManager().attach( self.model.parameters(), callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None, ) self.global_step = 0 self.optimizer = mge.optimizer.Adam(self.model.parameters(), lr=hp.lr) # load pretrain model if args.continue_path: ckpt = mge.load(args.continue_path) if "model" in ckpt: state_dict = ckpt["model"] self.model.load_state_dict(state_dict, strict=False) self.loss_names = ["total"] self.criterion = LabelSmoothingLoss(len(self.vocab), 0, hp.lsm_weight) def get_learning_rate(self): lr = self.optimizer.param_groups[0]["lr"] return lr def get_current_losses(self): losses = OrderedDict() for name in self.loss_names: losses[name] = float(getattr(self, "loss_" + name)) return losses def optimize_parameters(self, data): """Calculate losses, gradients, and update network weights; called in every training iteration""" text_input, text_output, mel, pos_text, pos_mel, text_length, mel_length = data with self.gm: hs_pad, hs_mask, pred_pad, pred_mask = self.model.forward( mel, mel_length, text_input, text_length ) self.loss_total = self.criterion(pred_pad, text_output) self.gm.backward(self.loss_total) clip_grad_norm(self.model.parameters(), 1.0) self.optimizer.step().clear_grad() def main(): os.makedirs(hp.checkpoint_path, exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--continue_path") parser.add_argument( "-n", "--ngpus", default=None, type=int, help="number of GPUs per node (default: None, use all available GPUs)", ) parser.add_argument( "--save", metavar="DIR", default="output", help="path to save checkpoint and log", ) parser.add_argument( "--epochs", default=90, type=int, help="number of total epochs to run (default: 90)", ) parser.add_argument("-j", "--workers", default=2, type=int) parser.add_argument( "-p", "--print-freq", default=20, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument("--dist-addr", default="localhost") parser.add_argument("--dist-port", default=23456, type=int) parser.add_argument("--world-size", default=1, type=int) parser.add_argument("--rank", default=0, type=int) args = parser.parse_args() # create server if is master if args.rank <= 0: server = dist.Server( port=args.dist_port ) # pylint: disable=unused-variable # noqa: F841 # get device count with multiprocessing.Pool(1) as pool: ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"]) if args.ngpus: ngpus_per_node = args.ngpus # launch processes procs = [] for local_rank in range(ngpus_per_node): p = multiprocessing.Process( target=worker, kwargs=dict( rank=args.rank * ngpus_per_node + local_rank, world_size=args.world_size * ngpus_per_node, ngpus_per_node=ngpus_per_node, args=args, ), ) p.start() procs.append(p) # join processes for p in procs: p.join() def worker(rank, world_size, ngpus_per_node, args): # pylint: disable=too-many-statements if rank == 0: os.makedirs(os.path.join(args.save, "asr"), exist_ok=True) megengine.logger.set_log_file(os.path.join(args.save, "asr", "log.txt")) # init process group if world_size > 1: dist.init_process_group( master_ip=args.dist_addr, port=args.dist_port, world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend="nccl", ) logging.info( "init process group rank %d / %d", dist.get_rank(), dist.get_world_size() ) # build dataset train_dataloader = build_dataset(args) train_queue = iter(train_dataloader) steps_per_epoch = 164905 // (world_size * hp.batch_size) sess = Session(args) ma_rates = [1 - 0.01 ** x for x in range(3)] ma_dict = { "losses": [ {k: exponential_ma(rate) for k in sess.loss_names} for rate in ma_rates ], "ttrain": [exponential_ma(rate) for rate in ma_rates], "tdata": [exponential_ma(rate) for rate in ma_rates], } for epoch in range(1, (hp.epochs + 1) * steps_per_epoch): t_minibatch_start = time.time() sess.global_step += 1 if sess.global_step < 400000: adjust_learning_rate(sess.optimizer, sess.global_step) tdata = time.time() - t_minibatch_start data = next(train_queue) sess.optimize_parameters(data) losses = sess.get_current_losses() ttrain = time.time() - t_minibatch_start # print(ttrain, tdata) update_train_log(sess.loss_names, ma_dict, losses, ttrain, tdata) if sess.global_step % hp.log_interval == 0 and rank == 0: print_train_log(sess, epoch, epoch, ma_dict, hp.epochs * steps_per_epoch) if sess.global_step % hp.save_interval == 0 and rank == 0: print("*******************************************") mge.save( {"model": sess.model.state_dict(), "global_step": sess.global_step}, os.path.join( hp.checkpoint_path, "checkpoint_%d.pkl" % sess.global_step ), ) print("*******************************************") if sess.global_step > hp.max_steps: exit(1) def build_dataset(args): dataset = AsrDataset() train_sampler = data.Infinite( RandomSampler(dataset=dataset, batch_size=hp.batch_size) ) dataloader = DataLoader( dataset=dataset, sampler=train_sampler, collator=AsrCollator() ) return dataloader if __name__ == "__main__": main()
[ "megengine.core._imperative_rt.core2.push_scope", "megengine.autodiff.GradManager", "megengine.logger.get_logger", "megengine.functional.minimum", "megengine.random.uniform", "megengine.distributed.init_process_group", "megengine.distributed.make_allreduce_cb", "megengine.functional.concat", "megengine.distributed.Server", "megengine.functional.copy", "megengine.load", "megengine.distributed.get_rank", "megengine.data.RandomSampler", "megengine.distributed.get_world_size", "megengine.core._imperative_rt.core2.pop_scope" ]
[((902, 931), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (929, 931), False, 'import megengine\n'), ((1050, 1078), 'megengine.core._imperative_rt.core2.push_scope', 'push_scope', (['"""clip_grad_norm"""'], {}), "('clip_grad_norm')\n", (1060, 1078), False, 'from megengine.core._imperative_rt.core2 import pop_scope, push_scope\n'), ((1416, 1433), 'megengine.functional.minimum', 'minimum', (['scale', '(1)'], {}), '(scale, 1)\n', (1423, 1433), False, 'from megengine.functional import clip, concat, minimum, norm\n'), ((1513, 1540), 'megengine.core._imperative_rt.core2.pop_scope', 'pop_scope', (['"""clip_grad_norm"""'], {}), "('clip_grad_norm')\n", (1522, 1540), False, 'from megengine.core._imperative_rt.core2 import pop_scope, push_scope\n'), ((3181, 3199), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (3197, 3199), False, 'import sys\n'), ((5731, 5777), 'os.makedirs', 'os.makedirs', (['hp.checkpoint_path'], {'exist_ok': '(True)'}), '(hp.checkpoint_path, exist_ok=True)\n', (5742, 5777), False, 'import os\n'), ((5791, 5816), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5814, 5816), False, 'import argparse\n'), ((10157, 10169), 'dataset.AsrDataset', 'AsrDataset', ([], {}), '()\n', (10167, 10169), False, 'from dataset import AsrDataset, DataLoader, AsrCollator\n'), ((3556, 3597), 'megengine.random.uniform', 'mge.random.uniform', (['min', 'max', 'param.shape'], {}), '(min, max, param.shape)\n', (3574, 3597), True, 'import megengine as mge\n'), ((3626, 3644), 'megengine.functional.copy', 'F.copy', (['param.grad'], {}), '(param.grad)\n', (3632, 3644), True, 'import megengine.functional as F\n'), ((4966, 4979), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4977, 4979), False, 'from collections import OrderedDict\n'), ((6925, 6957), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (6936, 6957), True, 'import megengine.distributed as dist\n'), ((7062, 7085), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (7082, 7085), False, 'import multiprocessing\n'), ((8045, 8204), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (8068, 8204), True, 'import megengine.distributed as dist\n'), ((8989, 9000), 'time.time', 'time.time', ([], {}), '()\n', (8998, 9000), False, 'import time\n'), ((10213, 10269), 'megengine.data.RandomSampler', 'RandomSampler', ([], {'dataset': 'dataset', 'batch_size': 'hp.batch_size'}), '(dataset=dataset, batch_size=hp.batch_size)\n', (10226, 10269), False, 'from megengine.data import SequentialSampler, RandomSampler, DataLoader\n'), ((1307, 1320), 'megengine.functional.concat', 'concat', (['norm_'], {}), '(norm_)\n', (1313, 1320), False, 'from megengine.functional import clip, concat, minimum, norm\n'), ((2420, 2428), 'time.gmtime', 'gmtime', ([], {}), '()\n', (2426, 2428), False, 'from time import strftime, gmtime\n'), ((4523, 4551), 'megengine.load', 'mge.load', (['args.continue_path'], {}), '(args.continue_path)\n', (4531, 4551), True, 'import megengine as mge\n'), ((7861, 7891), 'os.path.join', 'os.path.join', (['args.save', '"""asr"""'], {}), "(args.save, 'asr')\n", (7873, 7891), False, 'import os\n'), ((7946, 7987), 'os.path.join', 'os.path.join', (['args.save', '"""asr"""', '"""log.txt"""'], {}), "(args.save, 'asr', 'log.txt')\n", (7958, 7987), False, 'import os\n'), ((8348, 8363), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8361, 8363), True, 'import megengine.distributed as dist\n'), ((8365, 8386), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (8384, 8386), True, 'import megengine.distributed as dist\n'), ((9152, 9163), 'time.time', 'time.time', ([], {}), '()\n', (9161, 9163), False, 'import time\n'), ((9316, 9327), 'time.time', 'time.time', ([], {}), '()\n', (9325, 9327), False, 'import time\n'), ((10362, 10375), 'dataset.AsrCollator', 'AsrCollator', ([], {}), '()\n', (10373, 10375), False, 'from dataset import AsrDataset, DataLoader, AsrCollator\n'), ((3710, 3752), 'os.path.join', 'os.path.join', (['hp.dataset_root', '"""vocab.txt"""'], {}), "(hp.dataset_root, 'vocab.txt')\n", (3722, 3752), False, 'import os\n'), ((4175, 4197), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (4195, 4197), True, 'import megengine.autodiff as autodiff\n'), ((9860, 9932), 'os.path.join', 'os.path.join', (['hp.checkpoint_path', "('checkpoint_%d.pkl' % sess.global_step)"], {}), "(hp.checkpoint_path, 'checkpoint_%d.pkl' % sess.global_step)\n", (9872, 9932), False, 'import os\n'), ((4265, 4294), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""'], {}), "('SUM')\n", (4287, 4294), True, 'import megengine.distributed as dist\n')]
# Copyright (c) 2020 <NAME> # This code is licensed under MIT license # (https://github.com/kwotsin/mimicry/blob/master/LICENSE) # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ import megengine.functional as F import megengine.jit as jit from .. import gan from ..blocks import DBlock, DBlockOptimized class WGANBaseGenerator(gan.BaseGenerator): r""" ResNet backbone generator for ResNet WGAN. Attributes: nz (int): Noise dimension for upsampling. ngf (int): Variable controlling generator feature map sizes. bottom_width (int): Starting width for upsampling generator output to an image. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, nz, ngf, bottom_width, **kwargs): super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, loss_type="wasserstein", **kwargs) class WGANBaseDiscriminator(gan.BaseDiscriminator): r""" ResNet backbone discriminator for ResNet WGAN. Attributes: ndf (int): Variable controlling discriminator feature map sizes. loss_type (str): Name of loss to use for GAN loss. """ def __init__(self, ndf, **kwargs): super().__init__(ndf=ndf, loss_type="wasserstein", **kwargs) def _reset_jit_graph(self, impl: callable): """We override this func to attach weight clipping after default training step""" traced_obj = jit.trace(impl) def _(*args, **kwargs): ret = traced_obj(*args, **kwargs) if self.training: self._apply_lipshitz_constraint() # dynamically apply weight clipping return ret return _ def _apply_lipshitz_constraint(self): """Weight clipping described in [Wasserstein GAN](https://arxiv.org/abs/1701.07875)""" for p in self.parameters(): F.add_update(p, F.clamp(p, lower=-3e-2, upper=3e-2), alpha=0) def layernorm(x): original_shape = x.shape x = x.reshape(original_shape[0], -1) m = F.mean(x, axis=1, keepdims=True) v = F.mean((x - m) ** 2, axis=1, keepdims=True) x = (x - m) / F.maximum(F.sqrt(v), 1e-6) x = x.reshape(original_shape) return x class WGANDBlockWithLayerNorm(DBlock): def _residual(self, x): h = x h = layernorm(h) h = self.activation(h) h = self.c1(h) h = layernorm(h) h = self.activation(h) h = self.c2(h) if self.downsample: h = F.avg_pool2d(h, 2) return h class WGANDBlockOptimized(DBlockOptimized): pass
[ "megengine.functional.sqrt", "megengine.functional.mean", "megengine.jit.trace", "megengine.functional.clamp", "megengine.functional.avg_pool2d" ]
[((2715, 2747), 'megengine.functional.mean', 'F.mean', (['x'], {'axis': '(1)', 'keepdims': '(True)'}), '(x, axis=1, keepdims=True)\n', (2721, 2747), True, 'import megengine.functional as F\n'), ((2756, 2799), 'megengine.functional.mean', 'F.mean', (['((x - m) ** 2)'], {'axis': '(1)', 'keepdims': '(True)'}), '((x - m) ** 2, axis=1, keepdims=True)\n', (2762, 2799), True, 'import megengine.functional as F\n'), ((2118, 2133), 'megengine.jit.trace', 'jit.trace', (['impl'], {}), '(impl)\n', (2127, 2133), True, 'import megengine.jit as jit\n'), ((2828, 2837), 'megengine.functional.sqrt', 'F.sqrt', (['v'], {}), '(v)\n', (2834, 2837), True, 'import megengine.functional as F\n'), ((3177, 3195), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['h', '(2)'], {}), '(h, 2)\n', (3189, 3195), True, 'import megengine.functional as F\n'), ((2571, 2606), 'megengine.functional.clamp', 'F.clamp', (['p'], {'lower': '(-0.03)', 'upper': '(0.03)'}), '(p, lower=-0.03, upper=0.03)\n', (2578, 2606), True, 'import megengine.functional as F\n')]
import megengine as mge import megengine.module as M import megengine.functional as F from megengine.core import Parameter from utils import * def addLeakyRelu(x): return M.Sequential(x, M.LeakyReLU(0.1)) def addSig(x): return M.Sequential(x, M.Sigmoid()) def up_block(x, ic, oc): return M.ConvTranspose2d(ic, oc, 4, stride=2, padding=1) def down_block(x, ic, oc): return M.Conv2d(ic, oc, 3, padding=1, stride=2) class BasicBlock(M.Module): expansion = 1 def __init__( self, in_channels, channels, stride=1, groups=1, base_width=64, dilation=1, norm=M.BatchNorm2d, ): super().__init__() if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.conv1 = M.Conv2d( in_channels, channels, 3, stride, padding=dilation, bias=True ) self.conv2 = M.Conv2d(channels, channels, 3, 1, padding=1, bias=True) if in_channels == channels and stride == 1: self.downsample = M.Identity() elif stride == 1: self.downsample = M.Conv2d(in_channels, channels, 1, stride, bias=False) else: self.downsample = M.Sequential( M.AvgPool2d(kernel_size=stride, stride=stride), M.Conv2d(in_channels, channels, 1, 1, bias=False) ) self.fc1 = M.Conv2d(channels, 16, kernel_size=1) self.fc2 = M.Conv2d(16, channels, kernel_size=1) self.relu1 = M.LeakyReLU(0.1) self.relu2 = M.LeakyReLU(0.1) self.relu3 = M.LeakyReLU(0.1) def forward(self, x): identity = x x = self.conv1(x) x = self.relu1(x) x = self.conv2(x) identity = self.downsample(identity) w = x.mean(3, True).mean(2, True) w = self.relu2(self.fc1(w)) w = F.sigmoid(self.fc2(w)) x = x * w + identity x = self.relu3(x) return x def subpixel(x): shape = x.shape x = x.reshape(shape[0], shape[1] // 4, 2, 2, shape[2], shape[3]) x = F.dimshuffle(x, (0, 1, 4, 2, 5, 3)) return x.reshape(shape[0], shape[1] // 4, shape[2]*2, shape[3]*2) c = 64 class SimpleUNet(M.Module): def __init__(self): super().__init__() self.conv0_ = (BasicBlock(3, 32, stride=2)) self.conv1_ = (BasicBlock(32, c, stride=2)) self.conv0 = (BasicBlock(15, 32, stride=2)) self.conv1 = (BasicBlock(32, c, stride=2)) self.conv2 = (BasicBlock(c, 2*c, stride=1)) self.conv3 = (BasicBlock(2*c, 2*c, stride=1)) self.conv4 = (BasicBlock(4*c, 2*c, stride=1)) self.conv5 = (BasicBlock(4*c, 2*c, stride=1)) self.conv6 = (BasicBlock(6*c, 2*c, stride=1)) self.conv7 = (BasicBlock(6*c, 2*c, stride=1)) self.conv8 = (BasicBlock(6*c, 2*c, stride=1)) self.conv9 = (BasicBlock(6*c, 2*c, stride=1)) self.conv10 = (BasicBlock(3*c, 4*c, stride=1)) self.conv11 = addSig(M.Conv2d(c+32, 12, 1)) def forward(self, x): size = x.shape x = x.reshape((size[0] * 5, 3) + size[2:]) conv0 = tsm(self.conv0_(x)) conv1 = tsm(self.conv1_(conv0)) # x = (x.reshape((size[0], 15) + x.shape[2:])) conv0_ = (conv0.reshape((size[0], 5) + conv0.shape[1:]))[:, 2] conv1_ = (conv1.reshape((size[0], 5) + conv1.shape[1:]))[:, 2] conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv0 += conv0_ conv1 += conv1_ conv2 = (self.conv2(conv1)) conv3 = (self.conv3(conv2)) conv4 = (self.conv4(F.concat((conv3, conv2), 1))) conv5 = (self.conv5(F.concat((conv4, conv3), 1))) conv6 = (self.conv6(F.concat((conv5, conv4, conv2), 1))) conv7 = (self.conv7(F.concat((conv6, conv5, conv3), 1))) conv8 = (self.conv8(F.concat((conv7, conv6, conv4), 1))) conv9 = (self.conv9(F.concat((conv8, conv7, conv5), 1))) conv10 = subpixel(self.conv10(F.concat((conv9, conv1), 1))) conv11 = subpixel(self.conv11(F.concat((conv10, conv0), 1))) conv11 = conv11 * 2 - 1 # sigmoid to [-1, 1] return F.minimum(F.maximum(conv11 + x[:, 6:9], 0), 1)
[ "megengine.module.ConvTranspose2d", "megengine.functional.maximum", "megengine.module.LeakyReLU", "megengine.module.Conv2d", "megengine.module.AvgPool2d", "megengine.module.Sigmoid", "megengine.module.Identity", "megengine.functional.dimshuffle", "megengine.functional.concat" ]
[((303, 352), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['ic', 'oc', '(4)'], {'stride': '(2)', 'padding': '(1)'}), '(ic, oc, 4, stride=2, padding=1)\n', (320, 352), True, 'import megengine.module as M\n'), ((392, 432), 'megengine.module.Conv2d', 'M.Conv2d', (['ic', 'oc', '(3)'], {'padding': '(1)', 'stride': '(2)'}), '(ic, oc, 3, padding=1, stride=2)\n', (400, 432), True, 'import megengine.module as M\n'), ((2241, 2276), 'megengine.functional.dimshuffle', 'F.dimshuffle', (['x', '(0, 1, 4, 2, 5, 3)'], {}), '(x, (0, 1, 4, 2, 5, 3))\n', (2253, 2276), True, 'import megengine.functional as F\n'), ((192, 208), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (203, 208), True, 'import megengine.module as M\n'), ((253, 264), 'megengine.module.Sigmoid', 'M.Sigmoid', ([], {}), '()\n', (262, 264), True, 'import megengine.module as M\n'), ((949, 1020), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(3)', 'stride'], {'padding': 'dilation', 'bias': '(True)'}), '(in_channels, channels, 3, stride, padding=dilation, bias=True)\n', (957, 1020), True, 'import megengine.module as M\n'), ((1064, 1120), 'megengine.module.Conv2d', 'M.Conv2d', (['channels', 'channels', '(3)', '(1)'], {'padding': '(1)', 'bias': '(True)'}), '(channels, channels, 3, 1, padding=1, bias=True)\n', (1072, 1120), True, 'import megengine.module as M\n'), ((1560, 1597), 'megengine.module.Conv2d', 'M.Conv2d', (['channels', '(16)'], {'kernel_size': '(1)'}), '(channels, 16, kernel_size=1)\n', (1568, 1597), True, 'import megengine.module as M\n'), ((1618, 1655), 'megengine.module.Conv2d', 'M.Conv2d', (['(16)', 'channels'], {'kernel_size': '(1)'}), '(16, channels, kernel_size=1)\n', (1626, 1655), True, 'import megengine.module as M\n'), ((1677, 1693), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1688, 1693), True, 'import megengine.module as M\n'), ((1715, 1731), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1726, 1731), True, 'import megengine.module as M\n'), ((1753, 1769), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1764, 1769), True, 'import megengine.module as M\n'), ((1203, 1215), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (1213, 1215), True, 'import megengine.module as M\n'), ((3156, 3179), 'megengine.module.Conv2d', 'M.Conv2d', (['(c + 32)', '(12)', '(1)'], {}), '(c + 32, 12, 1)\n', (3164, 3179), True, 'import megengine.module as M\n'), ((3782, 3809), 'megengine.functional.concat', 'F.concat', (['(conv3, conv2)', '(1)'], {}), '((conv3, conv2), 1)\n', (3790, 3809), True, 'import megengine.functional as F\n'), ((3840, 3867), 'megengine.functional.concat', 'F.concat', (['(conv4, conv3)', '(1)'], {}), '((conv4, conv3), 1)\n', (3848, 3867), True, 'import megengine.functional as F\n'), ((3898, 3932), 'megengine.functional.concat', 'F.concat', (['(conv5, conv4, conv2)', '(1)'], {}), '((conv5, conv4, conv2), 1)\n', (3906, 3932), True, 'import megengine.functional as F\n'), ((3963, 3997), 'megengine.functional.concat', 'F.concat', (['(conv6, conv5, conv3)', '(1)'], {}), '((conv6, conv5, conv3), 1)\n', (3971, 3997), True, 'import megengine.functional as F\n'), ((4028, 4062), 'megengine.functional.concat', 'F.concat', (['(conv7, conv6, conv4)', '(1)'], {}), '((conv7, conv6, conv4), 1)\n', (4036, 4062), True, 'import megengine.functional as F\n'), ((4093, 4127), 'megengine.functional.concat', 'F.concat', (['(conv8, conv7, conv5)', '(1)'], {}), '((conv8, conv7, conv5), 1)\n', (4101, 4127), True, 'import megengine.functional as F\n'), ((4347, 4379), 'megengine.functional.maximum', 'F.maximum', (['(conv11 + x[:, 6:9])', '(0)'], {}), '(conv11 + x[:, 6:9], 0)\n', (4356, 4379), True, 'import megengine.functional as F\n'), ((1272, 1326), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(1)', 'stride'], {'bias': '(False)'}), '(in_channels, channels, 1, stride, bias=False)\n', (1280, 1326), True, 'import megengine.module as M\n'), ((4168, 4195), 'megengine.functional.concat', 'F.concat', (['(conv9, conv1)', '(1)'], {}), '((conv9, conv1), 1)\n', (4176, 4195), True, 'import megengine.functional as F\n'), ((4236, 4264), 'megengine.functional.concat', 'F.concat', (['(conv10, conv0)', '(1)'], {}), '((conv10, conv0), 1)\n', (4244, 4264), True, 'import megengine.functional as F\n'), ((1405, 1451), 'megengine.module.AvgPool2d', 'M.AvgPool2d', ([], {'kernel_size': 'stride', 'stride': 'stride'}), '(kernel_size=stride, stride=stride)\n', (1416, 1451), True, 'import megengine.module as M\n'), ((1473, 1522), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(1)', '(1)'], {'bias': '(False)'}), '(in_channels, channels, 1, 1, bias=False)\n', (1481, 1522), True, 'import megengine.module as M\n')]
# MegFlow is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2019-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #!/usr/bin/env python # coding=utf-8 from math import log from loguru import logger import megengine as mge import cv2 import megengine.functional as F import numpy as np from .model import Model if __name__ == "__main__": import sys if len(sys.argv) < 5: print("usage: python3 -m reid_alignedreid/demo reid.pkl positive1.png positive2.png negtive.jpg") sys.exit(0) model = Model() sd = mge.load(sys.argv[1]) model.load_state_dict(sd, strict=False) model.eval() feat1 = model.inference(cv2.imread(sys.argv[2])) logger.info(f'{feat1}') feat2 = model.inference(cv2.imread(sys.argv[3])) logger.info(f'{feat2}') feat3 = model.inference(cv2.imread(sys.argv[4])) logger.info(f'{feat3}') positive = np.linalg.norm(feat1-feat2) print(f'distance_positive: {positive}') negtive = np.linalg.norm(feat3-feat2) print(f'distance_negtive: {negtive}')
[ "megengine.load" ]
[((778, 799), 'megengine.load', 'mge.load', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (786, 799), True, 'import megengine as mge\n'), ((918, 941), 'loguru.logger.info', 'logger.info', (['f"""{feat1}"""'], {}), "(f'{feat1}')\n", (929, 941), False, 'from loguru import logger\n'), ((999, 1022), 'loguru.logger.info', 'logger.info', (['f"""{feat2}"""'], {}), "(f'{feat2}')\n", (1010, 1022), False, 'from loguru import logger\n'), ((1081, 1104), 'loguru.logger.info', 'logger.info', (['f"""{feat3}"""'], {}), "(f'{feat3}')\n", (1092, 1104), False, 'from loguru import logger\n'), ((1121, 1150), 'numpy.linalg.norm', 'np.linalg.norm', (['(feat1 - feat2)'], {}), '(feat1 - feat2)\n', (1135, 1150), True, 'import numpy as np\n'), ((1208, 1237), 'numpy.linalg.norm', 'np.linalg.norm', (['(feat3 - feat2)'], {}), '(feat3 - feat2)\n', (1222, 1237), True, 'import numpy as np\n'), ((737, 748), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (745, 748), False, 'import sys\n'), ((889, 912), 'cv2.imread', 'cv2.imread', (['sys.argv[2]'], {}), '(sys.argv[2])\n', (899, 912), False, 'import cv2\n'), ((970, 993), 'cv2.imread', 'cv2.imread', (['sys.argv[3]'], {}), '(sys.argv[3])\n', (980, 993), False, 'import cv2\n'), ((1052, 1075), 'cv2.imread', 'cv2.imread', (['sys.argv[4]'], {}), '(sys.argv[4])\n', (1062, 1075), False, 'import cv2\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle import numpy as np import pytest from megengine.core.tensor.dtype import intb1, intb2, intb4 from megengine.tensor import Tensor def bit_define_test(bit, low_bit_type): max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) a = np.array([i for i in range(min_value, max_value + 2, 2)], dtype=low_bit_type) for i in range(max_value + 1): np.testing.assert_equal(a[i], i * 2 - max_value) np.testing.assert_equal(str(a[i]), str(i * 2 - max_value)) with pytest.raises(ValueError): np.arange(min_value, max_value, dtype=low_bit_type) with pytest.raises(ValueError): np.arange(min_value - 2, max_value + 4, 2, dtype=low_bit_type) np.testing.assert_allclose( np.arange(min_value, 12, 2, dtype=low_bit_type), (np.arange((13 - min_value) // 2, dtype=np.int8) % (max_value + 1)) * 2 - max_value, ) np.testing.assert_allclose( np.arange(max_value, max_value - 20, -2, dtype=low_bit_type), (np.arange(max_value, max_value - 10, -1, dtype=np.int8) % (max_value + 1)) * 2 - max_value, ) def test_define(): bit_define_test(1, intb1) bit_define_test(2, intb2) bit_define_test(4, intb4) def _bit_cast_test(bit, low_bit_type): dtypes = [np.int8, np.int16, np.int32, np.float32, np.float64] max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) for dtype in dtypes: np.testing.assert_allclose( np.arange(min_value, max_value + 2, 2, dtype=low_bit_type).astype(dtype), np.arange(min_value, max_value + 2, 2, dtype=dtype), ) with pytest.raises(ValueError): np.array([2, 1, -1], dtype=int).astype(low_bit_type) with pytest.raises(ValueError): np.array([min_value - 2, 1, max_value + 2], dtype=int).astype(low_bit_type) def test_cast(): _bit_cast_test(1, intb1) _bit_cast_test(2, intb2) _bit_cast_test(4, intb4) def _shared_nd_test(bit, low_bit_type): max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) data = np.arange(min_value, max_value + 2, 2, dtype=low_bit_type) snd = Tensor(data, dtype=low_bit_type, device="xpux") np.testing.assert_allclose(snd.numpy(), range(min_value, max_value + 2, 2)) data = np.arange(min_value, max_value + 2, 4, dtype=low_bit_type) snd = Tensor(data, dtype=low_bit_type, device="xpux") np.testing.assert_allclose(snd.numpy(), range(min_value, max_value + 2, 4)) def test_shared_nd(): _shared_nd_test(1, intb1) _shared_nd_test(2, intb2) _shared_nd_test(4, intb4) def test_pickle(): x = np.ascontiguousarray(np.random.randint(2, size=8192) * 2 - 1, dtype=intb1) pkl = pickle.dumps(x, pickle.HIGHEST_PROTOCOL) y = pickle.loads(pkl) assert x.dtype is y.dtype np.testing.assert_allclose(x.astype(np.float32), y.astype(np.float32))
[ "megengine.tensor.Tensor" ]
[((2414, 2472), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 2, dtype=low_bit_type)\n', (2423, 2472), True, 'import numpy as np\n'), ((2483, 2530), 'megengine.tensor.Tensor', 'Tensor', (['data'], {'dtype': 'low_bit_type', 'device': '"""xpux"""'}), "(data, dtype=low_bit_type, device='xpux')\n", (2489, 2530), False, 'from megengine.tensor import Tensor\n'), ((2623, 2681), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(4)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 4, dtype=low_bit_type)\n', (2632, 2681), True, 'import numpy as np\n'), ((2692, 2739), 'megengine.tensor.Tensor', 'Tensor', (['data'], {'dtype': 'low_bit_type', 'device': '"""xpux"""'}), "(data, dtype=low_bit_type, device='xpux')\n", (2698, 2739), False, 'from megengine.tensor import Tensor\n'), ((3048, 3088), 'pickle.dumps', 'pickle.dumps', (['x', 'pickle.HIGHEST_PROTOCOL'], {}), '(x, pickle.HIGHEST_PROTOCOL)\n', (3060, 3088), False, 'import pickle\n'), ((3097, 3114), 'pickle.loads', 'pickle.loads', (['pkl'], {}), '(pkl)\n', (3109, 3114), False, 'import pickle\n'), ((734, 782), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['a[i]', '(i * 2 - max_value)'], {}), '(a[i], i * 2 - max_value)\n', (757, 782), True, 'import numpy as np\n'), ((860, 885), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (873, 885), False, 'import pytest\n'), ((895, 946), 'numpy.arange', 'np.arange', (['min_value', 'max_value'], {'dtype': 'low_bit_type'}), '(min_value, max_value, dtype=low_bit_type)\n', (904, 946), True, 'import numpy as np\n'), ((957, 982), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (970, 982), False, 'import pytest\n'), ((992, 1054), 'numpy.arange', 'np.arange', (['(min_value - 2)', '(max_value + 4)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value - 2, max_value + 4, 2, dtype=low_bit_type)\n', (1001, 1054), True, 'import numpy as np\n'), ((1096, 1143), 'numpy.arange', 'np.arange', (['min_value', '(12)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, 12, 2, dtype=low_bit_type)\n', (1105, 1143), True, 'import numpy as np\n'), ((1293, 1353), 'numpy.arange', 'np.arange', (['max_value', '(max_value - 20)', '(-2)'], {'dtype': 'low_bit_type'}), '(max_value, max_value - 20, -2, dtype=low_bit_type)\n', (1302, 1353), True, 'import numpy as np\n'), ((1984, 2009), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1997, 2009), False, 'import pytest\n'), ((2081, 2106), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2094, 2106), False, 'import pytest\n'), ((1911, 1962), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'dtype'}), '(min_value, max_value + 2, 2, dtype=dtype)\n', (1920, 1962), True, 'import numpy as np\n'), ((2019, 2050), 'numpy.array', 'np.array', (['[2, 1, -1]'], {'dtype': 'int'}), '([2, 1, -1], dtype=int)\n', (2027, 2050), True, 'import numpy as np\n'), ((2116, 2170), 'numpy.array', 'np.array', (['[min_value - 2, 1, max_value + 2]'], {'dtype': 'int'}), '([min_value - 2, 1, max_value + 2], dtype=int)\n', (2124, 2170), True, 'import numpy as np\n'), ((2984, 3015), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': '(8192)'}), '(2, size=8192)\n', (3001, 3015), True, 'import numpy as np\n'), ((1154, 1201), 'numpy.arange', 'np.arange', (['((13 - min_value) // 2)'], {'dtype': 'np.int8'}), '((13 - min_value) // 2, dtype=np.int8)\n', (1163, 1201), True, 'import numpy as np\n'), ((1364, 1419), 'numpy.arange', 'np.arange', (['max_value', '(max_value - 10)', '(-1)'], {'dtype': 'np.int8'}), '(max_value, max_value - 10, -1, dtype=np.int8)\n', (1373, 1419), True, 'import numpy as np\n'), ((1825, 1883), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 2, dtype=low_bit_type)\n', (1834, 1883), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: skip-file import argparse import sys # pylint: disable=import-error import resnet.model as resnet_model # pylint: disable=import-error import shufflenet.model as snet_model import numpy as np import megengine as mge import megengine.functional as F from megengine import jit def dump_static_graph(model, graph_name, shape): model.eval() data = mge.Tensor(np.ones(shape, dtype=np.uint8)) @jit.trace(capture_as_const=True) def pred_func(data): out = data.astype(np.float32) output_h, output_w = 224, 224 # resize print(shape) M = mge.tensor(np.array([[1,0,0], [0,1,0], [0,0,1]], dtype=np.float32)) M_shape = F.concat([data.shape[0],M.shape]) M = F.broadcast_to(M, M_shape) out = F.vision.warp_perspective(out, M, (output_h, output_w), format='NHWC') # mean _mean = mge.Tensor(np.array([103.530, 116.280, 123.675], dtype=np.float32)) out = F.sub(out, _mean) # div _div = mge.Tensor(np.array([57.375, 57.120, 58.395], dtype=np.float32)) out = F.div(out, _div) # dimshuffile out = F.transpose(out, (0,3,1,2)) outputs = model(out) return outputs pred_func(data) pred_func.dump( graph_name, arg_names=["data"], optimize_for_inference=True, enable_fuse_conv_bias_nonlinearity=True, ) def main(): parser = argparse.ArgumentParser(description="MegEngine Classification Dump .mge") parser.add_argument( "-a", "--arch", default="resnet18", help="model architecture (default: resnet18)", ) parser.add_argument( "-s", "--shape", type=int, nargs='+', default="1 3 224 224", help="input shape (default: 1 3 224 224)" ) parser.add_argument( "-o", "--output", type=str, default="model.mge", help="output filename" ) args = parser.parse_args() if 'resnet' in args.arch: model = getattr(resnet_model, args.arch)(pretrained=True) elif 'shufflenet' in args.arch: model = getattr(snet_model, args.arch)(pretrained=True) else: print('unavailable arch {}'.format(args.arch)) sys.exit() print(model) dump_static_graph(model, args.output, tuple(args.shape)) if __name__ == "__main__": main()
[ "megengine.functional.div", "megengine.functional.broadcast_to", "megengine.jit.trace", "megengine.functional.sub", "megengine.functional.vision.warp_perspective", "megengine.functional.concat", "megengine.functional.transpose" ]
[((795, 827), 'megengine.jit.trace', 'jit.trace', ([], {'capture_as_const': '(True)'}), '(capture_as_const=True)\n', (804, 827), False, 'from megengine import jit\n'), ((1815, 1888), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine Classification Dump .mge"""'}), "(description='MegEngine Classification Dump .mge')\n", (1838, 1888), False, 'import argparse\n'), ((757, 787), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.uint8'}), '(shape, dtype=np.uint8)\n', (764, 787), True, 'import numpy as np\n'), ((1074, 1108), 'megengine.functional.concat', 'F.concat', (['[data.shape[0], M.shape]'], {}), '([data.shape[0], M.shape])\n', (1082, 1108), True, 'import megengine.functional as F\n'), ((1120, 1146), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['M', 'M_shape'], {}), '(M, M_shape)\n', (1134, 1146), True, 'import megengine.functional as F\n'), ((1161, 1231), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['out', 'M', '(output_h, output_w)'], {'format': '"""NHWC"""'}), "(out, M, (output_h, output_w), format='NHWC')\n", (1186, 1231), True, 'import megengine.functional as F\n'), ((1345, 1362), 'megengine.functional.sub', 'F.sub', (['out', '_mean'], {}), '(out, _mean)\n', (1350, 1362), True, 'import megengine.functional as F\n'), ((1472, 1488), 'megengine.functional.div', 'F.div', (['out', '_div'], {}), '(out, _div)\n', (1477, 1488), True, 'import megengine.functional as F\n'), ((1526, 1556), 'megengine.functional.transpose', 'F.transpose', (['out', '(0, 3, 1, 2)'], {}), '(out, (0, 3, 1, 2))\n', (1537, 1556), True, 'import megengine.functional as F\n'), ((991, 1052), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float32)\n', (999, 1052), True, 'import numpy as np\n'), ((1274, 1327), 'numpy.array', 'np.array', (['[103.53, 116.28, 123.675]'], {'dtype': 'np.float32'}), '([103.53, 116.28, 123.675], dtype=np.float32)\n', (1282, 1327), True, 'import numpy as np\n'), ((1404, 1455), 'numpy.array', 'np.array', (['[57.375, 57.12, 58.395]'], {'dtype': 'np.float32'}), '([57.375, 57.12, 58.395], dtype=np.float32)\n', (1412, 1455), True, 'import numpy as np\n'), ((2661, 2671), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2669, 2671), False, 'import sys\n')]
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.module as M from official.vision.detection import layers class RCNN(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.box_coder = layers.BoxCoder(cfg.rcnn_reg_mean, cfg.rcnn_reg_std) # roi head self.in_features = cfg.rcnn_in_features self.stride = cfg.rcnn_stride self.pooling_method = cfg.pooling_method self.pooling_size = cfg.pooling_size self.fc1 = M.Linear(256 * self.pooling_size[0] * self.pooling_size[1], 1024) self.fc2 = M.Linear(1024, 1024) for l in [self.fc1, self.fc2]: M.init.normal_(l.weight, std=0.01) M.init.fill_(l.bias, 0) # box predictor self.pred_cls = M.Linear(1024, cfg.num_classes + 1) self.pred_delta = M.Linear(1024, (cfg.num_classes + 1) * 4) M.init.normal_(self.pred_cls.weight, std=0.01) M.init.normal_(self.pred_delta.weight, std=0.001) for l in [self.pred_cls, self.pred_delta]: M.init.fill_(l.bias, 0) def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None): rcnn_rois, labels, bbox_targets = self.get_ground_truth( rcnn_rois, im_info, gt_boxes ) fpn_fms = [fpn_fms[x] for x in self.in_features] pool_features = layers.roi_pool( fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.pooling_method, ) flatten_feature = F.flatten(pool_features, start_axis=1) roi_feature = F.relu(self.fc1(flatten_feature)) roi_feature = F.relu(self.fc2(roi_feature)) pred_logits = self.pred_cls(roi_feature) pred_offsets = self.pred_delta(roi_feature) if self.training: # loss for classification loss_rcnn_cls = layers.softmax_loss(pred_logits, labels) # loss for regression pred_offsets = pred_offsets.reshape(-1, self.cfg.num_classes + 1, 4) vlabels = labels.reshape(-1, 1).broadcast((labels.shapeof(0), 4)) pred_offsets = F.indexing_one_hot(pred_offsets, vlabels, axis=1) loss_rcnn_loc = layers.get_smooth_l1_loss( pred_offsets, bbox_targets, labels, self.cfg.rcnn_smooth_l1_beta, norm_type="all", ) loss_dict = {"loss_rcnn_cls": loss_rcnn_cls, "loss_rcnn_loc": loss_rcnn_loc} return loss_dict else: # slice 1 for removing background pred_scores = F.softmax(pred_logits, axis=1)[:, 1:] pred_offsets = pred_offsets[:, 4:].reshape(-1, 4) target_shape = (rcnn_rois.shapeof(0), self.cfg.num_classes, 4) # rois (N, 4) -> (N, 1, 4) -> (N, 80, 4) -> (N * 80, 4) base_rois = ( F.add_axis(rcnn_rois[:, 1:5], 1).broadcast(target_shape).reshape(-1, 4) ) pred_bbox = self.box_coder.decode(base_rois, pred_offsets) return pred_bbox, pred_scores def get_ground_truth(self, rpn_rois, im_info, gt_boxes): if not self.training: return rpn_rois, None, None return_rois = [] return_labels = [] return_bbox_targets = [] # get per image proposals and gt_boxes for bid in range(self.cfg.batch_per_gpu): num_valid_boxes = im_info[bid, 4] gt_boxes_per_img = gt_boxes[bid, :num_valid_boxes, :] batch_inds = mge.ones((gt_boxes_per_img.shapeof(0), 1)) * bid # if config.proposal_append_gt: gt_rois = F.concat([batch_inds, gt_boxes_per_img[:, :4]], axis=1) batch_roi_mask = rpn_rois[:, 0] == bid _, batch_roi_inds = F.cond_take(batch_roi_mask == 1, batch_roi_mask) # all_rois : [batch_id, x1, y1, x2, y2] all_rois = F.concat([rpn_rois.ai[batch_roi_inds], gt_rois]) overlaps_normal, overlaps_ignore = layers.get_iou( all_rois[:, 1:5], gt_boxes_per_img, return_ignore=True, ) max_overlaps_normal = overlaps_normal.max(axis=1) gt_assignment_normal = F.argmax(overlaps_normal, axis=1) max_overlaps_ignore = overlaps_ignore.max(axis=1) gt_assignment_ignore = F.argmax(overlaps_ignore, axis=1) ignore_assign_mask = (max_overlaps_normal < self.cfg.fg_threshold) * ( max_overlaps_ignore > max_overlaps_normal ) max_overlaps = ( max_overlaps_normal * (1 - ignore_assign_mask) + max_overlaps_ignore * ignore_assign_mask ) gt_assignment = ( gt_assignment_normal * (1 - ignore_assign_mask) + gt_assignment_ignore * ignore_assign_mask ) gt_assignment = gt_assignment.astype("int32") labels = gt_boxes_per_img.ai[gt_assignment, 4] # ---------------- get the fg/bg labels for each roi ---------------# fg_mask = (max_overlaps >= self.cfg.fg_threshold) * ( labels != self.cfg.ignore_label ) bg_mask = (max_overlaps < self.cfg.bg_threshold_high) * ( max_overlaps >= self.cfg.bg_threshold_low ) num_fg_rois = self.cfg.num_rois * self.cfg.fg_ratio fg_inds_mask = self._bernoulli_sample_masks(fg_mask, num_fg_rois, 1) num_bg_rois = self.cfg.num_rois - fg_inds_mask.sum() bg_inds_mask = self._bernoulli_sample_masks(bg_mask, num_bg_rois, 1) labels = labels * fg_inds_mask keep_mask = fg_inds_mask + bg_inds_mask _, keep_inds = F.cond_take(keep_mask == 1, keep_mask) # Add next line to avoid memory exceed keep_inds = keep_inds[: F.minimum(self.cfg.num_rois, keep_inds.shapeof(0))] # labels labels = labels.ai[keep_inds].astype("int32") rois = all_rois.ai[keep_inds] target_boxes = gt_boxes_per_img.ai[gt_assignment.ai[keep_inds], :4] bbox_targets = self.box_coder.encode(rois[:, 1:5], target_boxes) bbox_targets = bbox_targets.reshape(-1, 4) return_rois.append(rois) return_labels.append(labels) return_bbox_targets.append(bbox_targets) return ( F.zero_grad(F.concat(return_rois, axis=0)), F.zero_grad(F.concat(return_labels, axis=0)), F.zero_grad(F.concat(return_bbox_targets, axis=0)), ) def _bernoulli_sample_masks(self, masks, num_samples, sample_value): """ Using the bernoulli sampling method""" sample_mask = masks == sample_value num_mask = sample_mask.sum() num_final_samples = F.minimum(num_mask, num_samples) # here, we use the bernoulli probability to sample the anchors sample_prob = num_final_samples / num_mask uniform_rng = mge.random.uniform(sample_mask.shapeof(0)) after_sampled_mask = (uniform_rng <= sample_prob) * sample_mask return after_sampled_mask
[ "megengine.functional.argmax", "megengine.functional.flatten", "megengine.module.init.fill_", "megengine.functional.indexing_one_hot", "megengine.functional.softmax", "megengine.functional.minimum", "megengine.module.init.normal_", "megengine.functional.add_axis", "megengine.module.Linear", "megengine.functional.concat", "megengine.functional.cond_take" ]
[((636, 688), 'official.vision.detection.layers.BoxCoder', 'layers.BoxCoder', (['cfg.rcnn_reg_mean', 'cfg.rcnn_reg_std'], {}), '(cfg.rcnn_reg_mean, cfg.rcnn_reg_std)\n', (651, 688), False, 'from official.vision.detection import layers\n'), ((909, 974), 'megengine.module.Linear', 'M.Linear', (['(256 * self.pooling_size[0] * self.pooling_size[1])', '(1024)'], {}), '(256 * self.pooling_size[0] * self.pooling_size[1], 1024)\n', (917, 974), True, 'import megengine.module as M\n'), ((994, 1014), 'megengine.module.Linear', 'M.Linear', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (1002, 1014), True, 'import megengine.module as M\n'), ((1186, 1221), 'megengine.module.Linear', 'M.Linear', (['(1024)', '(cfg.num_classes + 1)'], {}), '(1024, cfg.num_classes + 1)\n', (1194, 1221), True, 'import megengine.module as M\n'), ((1248, 1289), 'megengine.module.Linear', 'M.Linear', (['(1024)', '((cfg.num_classes + 1) * 4)'], {}), '(1024, (cfg.num_classes + 1) * 4)\n', (1256, 1289), True, 'import megengine.module as M\n'), ((1298, 1344), 'megengine.module.init.normal_', 'M.init.normal_', (['self.pred_cls.weight'], {'std': '(0.01)'}), '(self.pred_cls.weight, std=0.01)\n', (1312, 1344), True, 'import megengine.module as M\n'), ((1353, 1402), 'megengine.module.init.normal_', 'M.init.normal_', (['self.pred_delta.weight'], {'std': '(0.001)'}), '(self.pred_delta.weight, std=0.001)\n', (1367, 1402), True, 'import megengine.module as M\n'), ((1761, 1854), 'official.vision.detection.layers.roi_pool', 'layers.roi_pool', (['fpn_fms', 'rcnn_rois', 'self.stride', 'self.pooling_size', 'self.pooling_method'], {}), '(fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.\n pooling_method)\n', (1776, 1854), False, 'from official.vision.detection import layers\n'), ((1899, 1937), 'megengine.functional.flatten', 'F.flatten', (['pool_features'], {'start_axis': '(1)'}), '(pool_features, start_axis=1)\n', (1908, 1937), True, 'import megengine.functional as F\n'), ((7226, 7258), 'megengine.functional.minimum', 'F.minimum', (['num_mask', 'num_samples'], {}), '(num_mask, num_samples)\n', (7235, 7258), True, 'import megengine.functional as F\n'), ((1066, 1100), 'megengine.module.init.normal_', 'M.init.normal_', (['l.weight'], {'std': '(0.01)'}), '(l.weight, std=0.01)\n', (1080, 1100), True, 'import megengine.module as M\n'), ((1113, 1136), 'megengine.module.init.fill_', 'M.init.fill_', (['l.bias', '(0)'], {}), '(l.bias, 0)\n', (1125, 1136), True, 'import megengine.module as M\n'), ((1466, 1489), 'megengine.module.init.fill_', 'M.init.fill_', (['l.bias', '(0)'], {}), '(l.bias, 0)\n', (1478, 1489), True, 'import megengine.module as M\n'), ((2240, 2280), 'official.vision.detection.layers.softmax_loss', 'layers.softmax_loss', (['pred_logits', 'labels'], {}), '(pred_logits, labels)\n', (2259, 2280), False, 'from official.vision.detection import layers\n'), ((2502, 2551), 'megengine.functional.indexing_one_hot', 'F.indexing_one_hot', (['pred_offsets', 'vlabels'], {'axis': '(1)'}), '(pred_offsets, vlabels, axis=1)\n', (2520, 2551), True, 'import megengine.functional as F\n'), ((2581, 2694), 'official.vision.detection.layers.get_smooth_l1_loss', 'layers.get_smooth_l1_loss', (['pred_offsets', 'bbox_targets', 'labels', 'self.cfg.rcnn_smooth_l1_beta'], {'norm_type': '"""all"""'}), "(pred_offsets, bbox_targets, labels, self.cfg.\n rcnn_smooth_l1_beta, norm_type='all')\n", (2606, 2694), False, 'from official.vision.detection import layers\n'), ((4041, 4096), 'megengine.functional.concat', 'F.concat', (['[batch_inds, gt_boxes_per_img[:, :4]]'], {'axis': '(1)'}), '([batch_inds, gt_boxes_per_img[:, :4]], axis=1)\n', (4049, 4096), True, 'import megengine.functional as F\n'), ((4180, 4228), 'megengine.functional.cond_take', 'F.cond_take', (['(batch_roi_mask == 1)', 'batch_roi_mask'], {}), '(batch_roi_mask == 1, batch_roi_mask)\n', (4191, 4228), True, 'import megengine.functional as F\n'), ((4304, 4352), 'megengine.functional.concat', 'F.concat', (['[rpn_rois.ai[batch_roi_inds], gt_rois]'], {}), '([rpn_rois.ai[batch_roi_inds], gt_rois])\n', (4312, 4352), True, 'import megengine.functional as F\n'), ((4401, 4471), 'official.vision.detection.layers.get_iou', 'layers.get_iou', (['all_rois[:, 1:5]', 'gt_boxes_per_img'], {'return_ignore': '(True)'}), '(all_rois[:, 1:5], gt_boxes_per_img, return_ignore=True)\n', (4415, 4471), False, 'from official.vision.detection import layers\n'), ((4601, 4634), 'megengine.functional.argmax', 'F.argmax', (['overlaps_normal'], {'axis': '(1)'}), '(overlaps_normal, axis=1)\n', (4609, 4634), True, 'import megengine.functional as F\n'), ((4733, 4766), 'megengine.functional.argmax', 'F.argmax', (['overlaps_ignore'], {'axis': '(1)'}), '(overlaps_ignore, axis=1)\n', (4741, 4766), True, 'import megengine.functional as F\n'), ((6143, 6181), 'megengine.functional.cond_take', 'F.cond_take', (['(keep_mask == 1)', 'keep_mask'], {}), '(keep_mask == 1, keep_mask)\n', (6154, 6181), True, 'import megengine.functional as F\n'), ((2989, 3019), 'megengine.functional.softmax', 'F.softmax', (['pred_logits'], {'axis': '(1)'}), '(pred_logits, axis=1)\n', (2998, 3019), True, 'import megengine.functional as F\n'), ((6828, 6857), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (6836, 6857), True, 'import megengine.functional as F\n'), ((6884, 6915), 'megengine.functional.concat', 'F.concat', (['return_labels'], {'axis': '(0)'}), '(return_labels, axis=0)\n', (6892, 6915), True, 'import megengine.functional as F\n'), ((6942, 6979), 'megengine.functional.concat', 'F.concat', (['return_bbox_targets'], {'axis': '(0)'}), '(return_bbox_targets, axis=0)\n', (6950, 6979), True, 'import megengine.functional as F\n'), ((3274, 3306), 'megengine.functional.add_axis', 'F.add_axis', (['rcnn_rois[:, 1:5]', '(1)'], {}), '(rcnn_rois[:, 1:5], 1)\n', (3284, 3306), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import math from typing import List import megengine.module as M from megengine.core import Tensor from official.vision.detection.layers import basic class RetinaNetHead(M.Module): """ The head used in RetinaNet for object classification and box regression. """ def __init__(self, cfg, input_shape: List[basic.ShapeSpec]): super().__init__() in_channels = input_shape[0].channels num_classes = cfg.num_classes num_convs = 4 prior_prob = cfg.cls_prior_prob num_anchors = [9, 9, 9, 9, 9] assert ( len(set(num_anchors)) == 1 ), "not support different number of anchors between levels" num_anchors = num_anchors[0] cls_subnet = [] bbox_subnet = [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1,) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1,) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) self.cls_score = M.Conv2d( in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1, ) self.bbox_pred = M.Conv2d( in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1 ) # Initialization for modules in [ self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred, ]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, mean=0, std=0.01) M.init.fill_(layer.bias, 0) # Use prior in model initialization to improve stability bias_value = -math.log((1 - prior_prob) / prior_prob) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features: List[Tensor]): logits, bbox_reg = [], [] for feature in features: logits.append(self.cls_score(self.cls_subnet(feature))) bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature))) return logits, bbox_reg
[ "megengine.module.init.normal_", "megengine.module.init.fill_", "megengine.module.ReLU", "megengine.module.Sequential", "megengine.module.Conv2d" ]
[((1556, 1581), 'megengine.module.Sequential', 'M.Sequential', (['*cls_subnet'], {}), '(*cls_subnet)\n', (1568, 1581), True, 'import megengine.module as M\n'), ((1609, 1635), 'megengine.module.Sequential', 'M.Sequential', (['*bbox_subnet'], {}), '(*bbox_subnet)\n', (1621, 1635), True, 'import megengine.module as M\n'), ((1661, 1749), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(num_anchors * num_classes)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, num_anchors * num_classes, kernel_size=3, stride=1,\n padding=1)\n', (1669, 1749), True, 'import megengine.module as M\n'), ((1794, 1868), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(num_anchors * 4)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)\n', (1802, 1868), True, 'import megengine.module as M\n'), ((2411, 2456), 'megengine.module.init.fill_', 'M.init.fill_', (['self.cls_score.bias', 'bias_value'], {}), '(self.cls_score.bias, bias_value)\n', (2423, 2456), True, 'import megengine.module as M\n'), ((2363, 2402), 'math.log', 'math.log', (['((1 - prior_prob) / prior_prob)'], {}), '((1 - prior_prob) / prior_prob)\n', (2371, 2402), False, 'import math\n'), ((1228, 1298), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'in_channels'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, in_channels, kernel_size=3, stride=1, padding=1)\n', (1236, 1298), True, 'import megengine.module as M\n'), ((1344, 1352), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1350, 1352), True, 'import megengine.module as M\n'), ((1402, 1472), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'in_channels'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, in_channels, kernel_size=3, stride=1, padding=1)\n', (1410, 1472), True, 'import megengine.module as M\n'), ((1519, 1527), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1525, 1527), True, 'import megengine.module as M\n'), ((2180, 2226), 'megengine.module.init.normal_', 'M.init.normal_', (['layer.weight'], {'mean': '(0)', 'std': '(0.01)'}), '(layer.weight, mean=0, std=0.01)\n', (2194, 2226), True, 'import megengine.module as M\n'), ((2247, 2274), 'megengine.module.init.fill_', 'M.init.fill_', (['layer.bias', '(0)'], {}), '(layer.bias, 0)\n', (2259, 2274), True, 'import megengine.module as M\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine.functional as F from megengine.core.tensor import dtype from megengine.device import get_cuda_compute_capability, get_device_count from megengine.functional.elemwise import _elemwise_multi_type, _elwise from megengine.module.quantized.conv import ConvTranspose2d from megengine.quantization import QuantMode, create_qparams def quant(x, scale): x_dtype = dtype.qint8(scale) return x.astype(x_dtype) def fake_quant(x, scale): x = x / scale x = F.round(x) x = F.clip(x, -128, 127) x = x * scale return x @pytest.mark.parametrize("kind", ["abs", "sin", "sub", "mul", "fuse_add_tanh"]) def test_elemwise(kind): x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x1_scale = np.float32(np.random.rand() + 1) x1 = fake_quant(x1, x1_scale) x1.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", x1_scale)) x1_int8 = quant(x1, x1_scale) x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x2_scale = np.float32(np.random.rand() + 1) x2 = fake_quant(x2, x2_scale) x2.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", x2_scale)) x2_int8 = quant(x2, x2_scale) output_scale = np.float32(np.random.rand() + 1) output_dtype = dtype.qint8(output_scale) quantized_kind = "q" + kind if kind in ("abs", "sin"): desired_out = fake_quant(_elwise(x1, mode=kind), output_scale) actual_out = ( _elemwise_multi_type( x1_int8, mode=quantized_kind, dtype=output_dtype ).numpy() * output_scale ) else: desired_out = fake_quant(_elwise(x1, x2, mode=kind), output_scale) actual_out = ( _elemwise_multi_type( x1_int8, x2_int8, mode=quantized_kind, dtype=output_dtype ).numpy() * output_scale ) np.testing.assert_allclose(actual_out, desired_out.numpy()) @pytest.mark.skipif( get_device_count("gpu") > 0, reason="cuda does not support nchw int8" ) def test_conv_bias(): inp_scale = np.float32(np.random.rand() + 1) w_scale = np.float32(np.random.rand() + 1) outp_scale = np.float32(np.random.rand() + 1) inp_dtype = dtype.qint8(inp_scale) w_dtype = dtype.qint8(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.qint8(outp_scale) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, nonlinear_mode="identity", ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_int8 = mge.tensor(inpv, dtype=inp_dtype) w_int8 = mge.Parameter(wv, dtype=w_dtype) b_int32 = mge.Parameter(bv, dtype=b_dtype) inp_fp32 = inp_int8.astype("float32") w_fp32 = w_int8.astype("float32") b_fp32 = b_int32.astype("float32") def convert_to_nchw4(var): var = F.reshape( var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3]) ) var = F.transpose(var, (0, 1, 3, 4, 2)) return var def run_conv2d(inp, w, b): O = F.conv2d( inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), ) if nonlinear_mode == "relu": return F.relu(O) else: return O def run_conv_bias(inp, w, b, format="NCHW"): b = b if has_bias else mge.Parameter(np.zeros_like(b.numpy())) if format == "NCHW4": inp = convert_to_nchw4(inp) w = convert_to_nchw4(w) b = convert_to_nchw4(b) return F.quantized.conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode, ) format = "NCHW4" if mge.is_cuda_available() else "NCHW" expected = run_conv2d(inp_fp32, w_fp32, b_fp32) expected = expected.astype(out_dtype).astype("float32") result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype( "float32" ) if format == "NCHW4": result = F.transpose(result, (0, 1, 4, 2, 3)) expected = F.flatten(expected) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") @pytest.mark.skip(reason="does not support int4 when cuda version is lower than 10.2") def test_conv_bias_int4(): inp_scale = 1.5 w_scale = 2.5 outp_scale = 1.5 inp_dtype = dtype.quint4(inp_scale, 0) w_dtype = dtype.qint4(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.quint4(outp_scale, 0) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, nonlinear_mode="identity", ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_quint4(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint4(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_uint4 = mge.Tensor(inpv, dtype=inp_dtype) w_int4 = mge.Parameter(wv, dtype=w_dtype) b_int32 = mge.Parameter(bv, dtype=b_dtype) inp_fp32 = inp_uint4.astype("float32") w_fp32 = w_int4.astype("float32") b_fp32 = b_int32.astype("float32") def run_conv2d(inp, w, b): O = F.conv2d( inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), ) if nonlinear_mode == "relu": return F.relu(O) else: return O def run_conv_bias(inp, w, b): b = b if has_bias else mge.Parameter(np.zeros_like(b.numpy())) return F.quantized.conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode, ) expected = run_conv2d(inp_fp32, w_fp32, b_fp32) expected = expected.astype(out_dtype).astype("float32") result = run_conv_bias(inp_uint4, w_int4, b_int32).astype("float32") expected = F.flatten(expected) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") @pytest.mark.skipif( get_device_count("gpu") > 0 and get_cuda_compute_capability(0) < 61, reason="does not support int8 when gpu compute capability less than 6.1", ) def test_conv_transpose2d(): rng = np.random.RandomState(seed=2021) def test_func( N, IC, IH, IW, OC, KH, KW, SH, SW, PH, PW, DH, DW, groups=1, has_bias=True, conv_mode: str = "cross_correlation", compute_mode: str = "default", ): inp_scale = np.float32(rng.uniform(low=0.04, high=0.06)) weight_scale = np.float32(rng.uniform(low=0.04, high=0.06)) bias_scale = inp_scale * weight_scale out_scale = np.float32(rng.uniform(low=0.04, high=0.06)) inp_dtype = dtype.qint8(inp_scale) weight_dtype = dtype.qint8(weight_scale) bias_dtype = dtype.qint32(bias_scale) out_dtype = dtype.qint8(out_scale) inp_fp32 = rng.uniform(low=-1, high=1, size=(N, IC, IH, IW)).astype(np.float32) weight_fp32 = rng.uniform(low=-1, high=1, size=(IC, OC, KH, KW)).astype( np.float32 ) bias_fp32 = rng.uniform(low=-1, high=1, size=(1, OC, 1, 1)).astype(np.float32) inp_int8 = dtype.convert_to_qint8(inp_fp32, inp_dtype) weight_int8 = dtype.convert_to_qint8(weight_fp32, weight_dtype) bias_int32 = dtype.convert_to_qint32(bias_fp32, bias_dtype) inp_int8 = mge.tensor(inp_int8, dtype=inp_dtype) weight_int8 = mge.Parameter(weight_int8, dtype=weight_dtype) bias_int32 = mge.Parameter(bias_int32, dtype=bias_dtype) inp_fp32 = inp_int8.astype("float32") weight_fp32 = weight_int8.astype("float32") bias_fp32 = bias_int32.astype("float32") expected = F.conv_transpose2d( inp_fp32, weight_fp32, bias_fp32 if has_bias else None, stride=(SH, SW), padding=(PH, PW), dilation=(DH, DW), groups=groups, conv_mode=conv_mode, compute_mode=compute_mode, ) expected = dtype.convert_to_qint8(expected.numpy(), out_dtype) expected = dtype.convert_from_qint8(expected) conv_transpose2d = ConvTranspose2d( in_channels=IC, out_channels=OC, kernel_size=(KH, KW), stride=(SH, SW), padding=(PH, PW), dilation=(DH, DW), groups=groups, bias=has_bias, conv_mode=conv_mode, compute_mode=compute_mode, dtype=out_dtype, ) conv_transpose2d.weight = mge.Parameter(weight_int8) if has_bias: conv_transpose2d.bias = mge.Parameter(bias_int32) result = conv_transpose2d.forward(inp_int8).numpy() result = dtype.convert_from_qint8(result) np.testing.assert_allclose(result, expected, atol=out_scale) test_func(1, 4, 1, 1, 4, 1, 1, 1, 1, 0, 0, 1, 1, 1, False) test_func(2, 4, 3, 1, 8, 1, 1, 1, 1, 0, 0, 1, 1, 1, False) test_func(4, 4, 16, 16, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, False) test_func(32, 64, 36, 28, 16, 3, 2, 1, 3, 1, 0, 1, 1, 1, False)
[ "megengine.functional.conv2d", "megengine.functional.reshape", "megengine.core.tensor.dtype.convert_to_qint4", "megengine.functional.transpose", "megengine.core.tensor.dtype.qint32", "megengine.functional.clip", "megengine.Tensor", "megengine.core.tensor.dtype.qint4", "megengine.device.get_device_count", "megengine.core.tensor.dtype.quint4", "megengine.functional.quantized.conv_bias_activation", "megengine.tensor", "megengine.functional.elemwise._elwise", "megengine.core.tensor.dtype.convert_to_qint32", "megengine.core.tensor.dtype.qint8", "megengine.functional.elemwise._elemwise_multi_type", "megengine.is_cuda_available", "megengine.quantization.create_qparams", "megengine.functional.relu", "megengine.core.tensor.dtype.get_scale", "megengine.functional.flatten", "megengine.core.tensor.dtype.convert_from_qint8", "megengine.device.get_cuda_compute_capability", "megengine.functional.conv_transpose2d", "megengine.Parameter", "megengine.core.tensor.dtype.convert_to_quint4", "megengine.module.quantized.conv.ConvTranspose2d", "megengine.functional.round", "megengine.core.tensor.dtype.convert_to_qint8" ]
[((966, 1044), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kind"""', "['abs', 'sin', 'sub', 'mul', 'fuse_add_tanh']"], {}), "('kind', ['abs', 'sin', 'sub', 'mul', 'fuse_add_tanh'])\n", (989, 1044), False, 'import pytest\n'), ((5797, 5887), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""does not support int4 when cuda version is lower than 10.2"""'}), "(reason=\n 'does not support int4 when cuda version is lower than 10.2')\n", (5813, 5887), False, 'import pytest\n'), ((790, 808), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['scale'], {}), '(scale)\n', (801, 808), False, 'from megengine.core.tensor import dtype\n'), ((892, 902), 'megengine.functional.round', 'F.round', (['x'], {}), '(x)\n', (899, 902), True, 'import megengine.functional as F\n'), ((911, 931), 'megengine.functional.clip', 'F.clip', (['x', '(-128)', '(127)'], {}), '(x, -128, 127)\n', (917, 931), True, 'import megengine.functional as F\n'), ((1669, 1694), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['output_scale'], {}), '(output_scale)\n', (1680, 1694), False, 'from megengine.core.tensor import dtype\n'), ((2633, 2655), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (2644, 2655), False, 'from megengine.core.tensor import dtype\n'), ((2670, 2690), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['w_scale'], {}), '(w_scale)\n', (2681, 2690), False, 'from megengine.core.tensor import dtype\n'), ((2705, 2738), 'megengine.core.tensor.dtype.qint32', 'dtype.qint32', (['(inp_scale * w_scale)'], {}), '(inp_scale * w_scale)\n', (2717, 2738), False, 'from megengine.core.tensor import dtype\n'), ((2755, 2778), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['outp_scale'], {}), '(outp_scale)\n', (2766, 2778), False, 'from megengine.core.tensor import dtype\n'), ((5985, 6011), 'megengine.core.tensor.dtype.quint4', 'dtype.quint4', (['inp_scale', '(0)'], {}), '(inp_scale, 0)\n', (5997, 6011), False, 'from megengine.core.tensor import dtype\n'), ((6026, 6046), 'megengine.core.tensor.dtype.qint4', 'dtype.qint4', (['w_scale'], {}), '(w_scale)\n', (6037, 6046), False, 'from megengine.core.tensor import dtype\n'), ((6061, 6094), 'megengine.core.tensor.dtype.qint32', 'dtype.qint32', (['(inp_scale * w_scale)'], {}), '(inp_scale * w_scale)\n', (6073, 6094), False, 'from megengine.core.tensor import dtype\n'), ((6111, 6138), 'megengine.core.tensor.dtype.quint4', 'dtype.quint4', (['outp_scale', '(0)'], {}), '(outp_scale, 0)\n', (6123, 6138), False, 'from megengine.core.tensor import dtype\n'), ((8770, 8802), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': '(2021)'}), '(seed=2021)\n', (8791, 8802), True, 'import numpy as np\n'), ((1243, 1297), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'x1_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', x1_scale)\n", (1257, 1297), False, 'from megengine.quantization import QuantMode, create_qparams\n'), ((1507, 1561), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'x2_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', x2_scale)\n", (1521, 1561), False, 'from megengine.quantization import QuantMode, create_qparams\n'), ((3005, 3043), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, IC, IH, IW)'}), '(size=(N, IC, IH, IW))\n', (3021, 3043), True, 'import numpy as np\n'), ((3058, 3097), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(OC, IC, KH, KW)'}), '(size=(OC, IC, KH, KW))\n', (3074, 3097), True, 'import numpy as np\n'), ((3112, 3148), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, OC, 1, 1)'}), '(size=(1, OC, 1, 1))\n', (3128, 3148), True, 'import numpy as np\n'), ((3169, 3195), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (3184, 3195), False, 'from megengine.core.tensor import dtype\n'), ((3214, 3238), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['w_dtype'], {}), '(w_dtype)\n', (3229, 3238), False, 'from megengine.core.tensor import dtype\n'), ((3257, 3281), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['b_dtype'], {}), '(b_dtype)\n', (3272, 3281), False, 'from megengine.core.tensor import dtype\n'), ((3298, 3350), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(inp_v * inp_scale)', 'inp_dtype'], {}), '(inp_v * inp_scale, inp_dtype)\n', (3320, 3350), False, 'from megengine.core.tensor import dtype\n'), ((3364, 3410), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(w_v * w_scale)', 'w_dtype'], {}), '(w_v * w_scale, w_dtype)\n', (3386, 3410), False, 'from megengine.core.tensor import dtype\n'), ((3424, 3471), 'megengine.core.tensor.dtype.convert_to_qint32', 'dtype.convert_to_qint32', (['(b_v * b_scale)', 'b_dtype'], {}), '(b_v * b_scale, b_dtype)\n', (3447, 3471), False, 'from megengine.core.tensor import dtype\n'), ((3492, 3525), 'megengine.tensor', 'mge.tensor', (['inpv'], {'dtype': 'inp_dtype'}), '(inpv, dtype=inp_dtype)\n', (3502, 3525), True, 'import megengine as mge\n'), ((3543, 3575), 'megengine.Parameter', 'mge.Parameter', (['wv'], {'dtype': 'w_dtype'}), '(wv, dtype=w_dtype)\n', (3556, 3575), True, 'import megengine as mge\n'), ((3594, 3626), 'megengine.Parameter', 'mge.Parameter', (['bv'], {'dtype': 'b_dtype'}), '(bv, dtype=b_dtype)\n', (3607, 3626), True, 'import megengine as mge\n'), ((5242, 5261), 'megengine.functional.flatten', 'F.flatten', (['expected'], {}), '(expected)\n', (5251, 5261), True, 'import megengine.functional as F\n'), ((5279, 5296), 'megengine.functional.flatten', 'F.flatten', (['result'], {}), '(result)\n', (5288, 5296), True, 'import megengine.functional as F\n'), ((2377, 2400), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2393, 2400), False, 'from megengine.device import get_cuda_compute_capability, get_device_count\n'), ((6365, 6403), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, IC, IH, IW)'}), '(size=(N, IC, IH, IW))\n', (6381, 6403), True, 'import numpy as np\n'), ((6418, 6457), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(OC, IC, KH, KW)'}), '(size=(OC, IC, KH, KW))\n', (6434, 6457), True, 'import numpy as np\n'), ((6472, 6508), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, OC, 1, 1)'}), '(size=(1, OC, 1, 1))\n', (6488, 6508), True, 'import numpy as np\n'), ((6529, 6555), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (6544, 6555), False, 'from megengine.core.tensor import dtype\n'), ((6574, 6598), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['w_dtype'], {}), '(w_dtype)\n', (6589, 6598), False, 'from megengine.core.tensor import dtype\n'), ((6617, 6641), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['b_dtype'], {}), '(b_dtype)\n', (6632, 6641), False, 'from megengine.core.tensor import dtype\n'), ((6658, 6711), 'megengine.core.tensor.dtype.convert_to_quint4', 'dtype.convert_to_quint4', (['(inp_v * inp_scale)', 'inp_dtype'], {}), '(inp_v * inp_scale, inp_dtype)\n', (6681, 6711), False, 'from megengine.core.tensor import dtype\n'), ((6725, 6771), 'megengine.core.tensor.dtype.convert_to_qint4', 'dtype.convert_to_qint4', (['(w_v * w_scale)', 'w_dtype'], {}), '(w_v * w_scale, w_dtype)\n', (6747, 6771), False, 'from megengine.core.tensor import dtype\n'), ((6785, 6832), 'megengine.core.tensor.dtype.convert_to_qint32', 'dtype.convert_to_qint32', (['(b_v * b_scale)', 'b_dtype'], {}), '(b_v * b_scale, b_dtype)\n', (6808, 6832), False, 'from megengine.core.tensor import dtype\n'), ((6854, 6887), 'megengine.Tensor', 'mge.Tensor', (['inpv'], {'dtype': 'inp_dtype'}), '(inpv, dtype=inp_dtype)\n', (6864, 6887), True, 'import megengine as mge\n'), ((6905, 6937), 'megengine.Parameter', 'mge.Parameter', (['wv'], {'dtype': 'w_dtype'}), '(wv, dtype=w_dtype)\n', (6918, 6937), True, 'import megengine as mge\n'), ((6956, 6988), 'megengine.Parameter', 'mge.Parameter', (['bv'], {'dtype': 'b_dtype'}), '(bv, dtype=b_dtype)\n', (6969, 6988), True, 'import megengine as mge\n'), ((8003, 8022), 'megengine.functional.flatten', 'F.flatten', (['expected'], {}), '(expected)\n', (8012, 8022), True, 'import megengine.functional as F\n'), ((8040, 8057), 'megengine.functional.flatten', 'F.flatten', (['result'], {}), '(result)\n', (8049, 8057), True, 'import megengine.functional as F\n'), ((9376, 9398), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (9387, 9398), False, 'from megengine.core.tensor import dtype\n'), ((9422, 9447), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['weight_scale'], {}), '(weight_scale)\n', (9433, 9447), False, 'from megengine.core.tensor import dtype\n'), ((9469, 9493), 'megengine.core.tensor.dtype.qint32', 'dtype.qint32', (['bias_scale'], {}), '(bias_scale)\n', (9481, 9493), False, 'from megengine.core.tensor import dtype\n'), ((9514, 9536), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['out_scale'], {}), '(out_scale)\n', (9525, 9536), False, 'from megengine.core.tensor import dtype\n'), ((9847, 9890), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['inp_fp32', 'inp_dtype'], {}), '(inp_fp32, inp_dtype)\n', (9869, 9890), False, 'from megengine.core.tensor import dtype\n'), ((9913, 9962), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['weight_fp32', 'weight_dtype'], {}), '(weight_fp32, weight_dtype)\n', (9935, 9962), False, 'from megengine.core.tensor import dtype\n'), ((9984, 10030), 'megengine.core.tensor.dtype.convert_to_qint32', 'dtype.convert_to_qint32', (['bias_fp32', 'bias_dtype'], {}), '(bias_fp32, bias_dtype)\n', (10007, 10030), False, 'from megengine.core.tensor import dtype\n'), ((10051, 10088), 'megengine.tensor', 'mge.tensor', (['inp_int8'], {'dtype': 'inp_dtype'}), '(inp_int8, dtype=inp_dtype)\n', (10061, 10088), True, 'import megengine as mge\n'), ((10111, 10157), 'megengine.Parameter', 'mge.Parameter', (['weight_int8'], {'dtype': 'weight_dtype'}), '(weight_int8, dtype=weight_dtype)\n', (10124, 10157), True, 'import megengine as mge\n'), ((10179, 10222), 'megengine.Parameter', 'mge.Parameter', (['bias_int32'], {'dtype': 'bias_dtype'}), '(bias_int32, dtype=bias_dtype)\n', (10192, 10222), True, 'import megengine as mge\n'), ((10391, 10590), 'megengine.functional.conv_transpose2d', 'F.conv_transpose2d', (['inp_fp32', 'weight_fp32', '(bias_fp32 if has_bias else None)'], {'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dilation': '(DH, DW)', 'groups': 'groups', 'conv_mode': 'conv_mode', 'compute_mode': 'compute_mode'}), '(inp_fp32, weight_fp32, bias_fp32 if has_bias else None,\n stride=(SH, SW), padding=(PH, PW), dilation=(DH, DW), groups=groups,\n conv_mode=conv_mode, compute_mode=compute_mode)\n', (10409, 10590), True, 'import megengine.functional as F\n'), ((10792, 10826), 'megengine.core.tensor.dtype.convert_from_qint8', 'dtype.convert_from_qint8', (['expected'], {}), '(expected)\n', (10816, 10826), False, 'from megengine.core.tensor import dtype\n'), ((10855, 11087), 'megengine.module.quantized.conv.ConvTranspose2d', 'ConvTranspose2d', ([], {'in_channels': 'IC', 'out_channels': 'OC', 'kernel_size': '(KH, KW)', 'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dilation': '(DH, DW)', 'groups': 'groups', 'bias': 'has_bias', 'conv_mode': 'conv_mode', 'compute_mode': 'compute_mode', 'dtype': 'out_dtype'}), '(in_channels=IC, out_channels=OC, kernel_size=(KH, KW),\n stride=(SH, SW), padding=(PH, PW), dilation=(DH, DW), groups=groups,\n bias=has_bias, conv_mode=conv_mode, compute_mode=compute_mode, dtype=\n out_dtype)\n', (10870, 11087), False, 'from megengine.module.quantized.conv import ConvTranspose2d\n'), ((11253, 11279), 'megengine.Parameter', 'mge.Parameter', (['weight_int8'], {}), '(weight_int8)\n', (11266, 11279), True, 'import megengine as mge\n'), ((11440, 11472), 'megengine.core.tensor.dtype.convert_from_qint8', 'dtype.convert_from_qint8', (['result'], {}), '(result)\n', (11464, 11472), False, 'from megengine.core.tensor import dtype\n'), ((11481, 11541), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['result', 'expected'], {'atol': 'out_scale'}), '(result, expected, atol=out_scale)\n', (11507, 11541), True, 'import numpy as np\n'), ((1165, 1181), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1179, 1181), True, 'import numpy as np\n'), ((1429, 1445), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1443, 1445), True, 'import numpy as np\n'), ((1628, 1644), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1642, 1644), True, 'import numpy as np\n'), ((1792, 1814), 'megengine.functional.elemwise._elwise', '_elwise', (['x1'], {'mode': 'kind'}), '(x1, mode=kind)\n', (1799, 1814), False, 'from megengine.functional.elemwise import _elemwise_multi_type, _elwise\n'), ((2054, 2080), 'megengine.functional.elemwise._elwise', '_elwise', (['x1', 'x2'], {'mode': 'kind'}), '(x1, x2, mode=kind)\n', (2061, 2080), False, 'from megengine.functional.elemwise import _elemwise_multi_type, _elwise\n'), ((2498, 2514), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2512, 2514), True, 'import numpy as np\n'), ((2545, 2561), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2559, 2561), True, 'import numpy as np\n'), ((2595, 2611), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2609, 2611), True, 'import numpy as np\n'), ((3813, 3898), 'megengine.functional.reshape', 'F.reshape', (['var', '(var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])'], {}), '(var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])\n )\n', (3822, 3898), True, 'import megengine.functional as F\n'), ((3942, 3975), 'megengine.functional.transpose', 'F.transpose', (['var', '(0, 1, 3, 4, 2)'], {}), '(var, (0, 1, 3, 4, 2))\n', (3953, 3975), True, 'import megengine.functional as F\n'), ((4051, 4127), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'w', '(b if has_bias else None)'], {'stride': '(SH, SW)', 'padding': '(PH, PW)'}), '(inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW))\n', (4059, 4127), True, 'import megengine.functional as F\n'), ((4582, 4712), 'megengine.functional.quantized.conv_bias_activation', 'F.quantized.conv_bias_activation', (['inp', 'w', 'b'], {'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dtype': 'out_dtype', 'nonlinear_mode': 'nonlinear_mode'}), '(inp, w, b, stride=(SH, SW), padding=(PH,\n PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode)\n', (4614, 4712), True, 'import megengine.functional as F\n'), ((4865, 4888), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (4886, 4888), True, 'import megengine as mge\n'), ((5186, 5222), 'megengine.functional.transpose', 'F.transpose', (['result', '(0, 1, 4, 2, 3)'], {}), '(result, (0, 1, 4, 2, 3))\n', (5197, 5222), True, 'import megengine.functional as F\n'), ((7174, 7250), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'w', '(b if has_bias else None)'], {'stride': '(SH, SW)', 'padding': '(PH, PW)'}), '(inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW))\n', (7182, 7250), True, 'import megengine.functional as F\n'), ((7532, 7662), 'megengine.functional.quantized.conv_bias_activation', 'F.quantized.conv_bias_activation', (['inp', 'w', 'b'], {'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dtype': 'out_dtype', 'nonlinear_mode': 'nonlinear_mode'}), '(inp, w, b, stride=(SH, SW), padding=(PH,\n PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode)\n', (7564, 7662), True, 'import megengine.functional as F\n'), ((11337, 11362), 'megengine.Parameter', 'mge.Parameter', (['bias_int32'], {}), '(bias_int32)\n', (11350, 11362), True, 'import megengine as mge\n'), ((8582, 8605), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (8598, 8605), False, 'from megengine.device import get_cuda_compute_capability, get_device_count\n'), ((8614, 8644), 'megengine.device.get_cuda_compute_capability', 'get_cuda_compute_capability', (['(0)'], {}), '(0)\n', (8641, 8644), False, 'from megengine.device import get_cuda_compute_capability, get_device_count\n'), ((1090, 1119), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (1106, 1119), True, 'import numpy as np\n'), ((1354, 1383), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (1370, 1383), True, 'import numpy as np\n'), ((4223, 4232), 'megengine.functional.relu', 'F.relu', (['O'], {}), '(O)\n', (4229, 4232), True, 'import megengine.functional as F\n'), ((7346, 7355), 'megengine.functional.relu', 'F.relu', (['O'], {}), '(O)\n', (7352, 7355), True, 'import megengine.functional as F\n'), ((1865, 1935), 'megengine.functional.elemwise._elemwise_multi_type', '_elemwise_multi_type', (['x1_int8'], {'mode': 'quantized_kind', 'dtype': 'output_dtype'}), '(x1_int8, mode=quantized_kind, dtype=output_dtype)\n', (1885, 1935), False, 'from megengine.functional.elemwise import _elemwise_multi_type, _elwise\n'), ((2131, 2210), 'megengine.functional.elemwise._elemwise_multi_type', '_elemwise_multi_type', (['x1_int8', 'x2_int8'], {'mode': 'quantized_kind', 'dtype': 'output_dtype'}), '(x1_int8, x2_int8, mode=quantized_kind, dtype=output_dtype)\n', (2151, 2210), False, 'from megengine.functional.elemwise import _elemwise_multi_type, _elwise\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import functools from typing import Callable, Optional import megengine._internal as mgb from ..core import set_default_device _master_ip = None _master_port = 0 _world_size = 0 _rank = 0 _backend = None def init_process_group( master_ip: str, master_port: int, world_size: int, rank: int, dev: int, backend: Optional[str] = "nccl", ) -> None: """Initialize the distributed process group, and also specify the device used in the current process. :param master_ip: IP address of the master node. :param master_port: Port available for all processes to communicate. :param world_size: Total number of processes participating in the job. :param rank: Rank of the current process. :param dev: The GPU device id to bind this process to. :param backend: Communicator backend, currently support 'nccl' and 'ucx' """ global _master_ip # pylint: disable=global-statement global _master_port # pylint: disable=global-statement global _world_size # pylint: disable=global-statement global _rank # pylint: disable=global-statement global _backend # pylint: disable=global-statement if not isinstance(master_ip, str): raise TypeError("Expect type str but got {}".format(type(master_ip))) if not isinstance(master_port, int): raise TypeError("Expect type int but got {}".format(type(master_port))) if not isinstance(world_size, int): raise TypeError("Expect type int but got {}".format(type(world_size))) if not isinstance(rank, int): raise TypeError("Expect type int but got {}".format(type(rank))) if not isinstance(backend, str): raise TypeError("Expect type str but got {}".format(type(backend))) _master_ip = master_ip _master_port = master_port _world_size = world_size _rank = rank _backend = backend set_default_device(mgb.comp_node("gpu" + str(dev))) if rank == 0: _master_port = mgb.config.create_mm_server("0.0.0.0", master_port) if _master_port == -1: raise Exception("Failed to start server on port {}".format(master_port)) else: assert master_port > 0, "master_port must be specified for non-zero rank" def is_distributed() -> bool: """Return True if the distributed process group has been initialized""" return _world_size is not None and _world_size > 1 def get_master_ip() -> str: """Get the IP address of the master node""" return str(_master_ip) def get_master_port() -> int: """Get the port of the rpc server on the master node""" return _master_port def get_world_size() -> int: """Get the total number of processes participating in the job""" return _world_size def get_rank() -> int: """Get the rank of the current process""" return _rank def get_backend() -> str: """Get the backend str""" return str(_backend) def group_barrier() -> None: """Block until all ranks in the group reach this barrier""" mgb.config.group_barrier(_master_ip, _master_port, _world_size, _rank) def synchronized(func: Callable): """Decorator. Decorated function will synchronize when finished. Specifically, we use this to prevent data race during hub.load""" @functools.wraps(func) def _(*args, **kwargs): if not is_distributed(): return func(*args, **kwargs) ret = func(*args, **kwargs) group_barrier() return ret return _
[ "megengine._internal.config.create_mm_server", "megengine._internal.config.group_barrier" ]
[((3376, 3446), 'megengine._internal.config.group_barrier', 'mgb.config.group_barrier', (['_master_ip', '_master_port', '_world_size', '_rank'], {}), '(_master_ip, _master_port, _world_size, _rank)\n', (3400, 3446), True, 'import megengine._internal as mgb\n'), ((3628, 3649), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (3643, 3649), False, 'import functools\n'), ((2339, 2390), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', 'master_port'], {}), "('0.0.0.0', master_port)\n", (2366, 2390), True, 'import megengine._internal as mgb\n')]
import functools import numpy as np import pytest import megengine from megengine.autodiff.grad_manager import GradManager from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt from megengine.core.tensor.utils import subgraph_fn from megengine.device import CompNode, get_default_device from megengine.jit import trace _assert_allclose = functools.partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6) @functools.lru_cache(maxsize=None) def _get_batch_norm_fn(dtype, device, channels, ndim, interpret, gopt_level): @subgraph_fn( "BatchNormNd", dtype=dtype, device=device, nr_inputs=4, interpret=interpret, gopt_level=gopt_level, ) def batch_norm_nd(inputs, f, c): input, eps, weight, bias = inputs[0:4] reduce_shape = c( (1, channels) + (1,) * (ndim - 2), dtype="int32", device=device ) input_shape = f(GetVarShape(), input) input_elems = f(Reduce(mode="product", axis=0), input_shape) reduce_elems = f(Reduce(mode="product", axis=0), reduce_shape) reduce_size = f("//", input_elems, reduce_elems) reduce_size = f(TypeCvt(dtype=dtype), reduce_size) channel_x1s = f(Reduce(mode="sum"), input, reduce_shape) channel_x2s = f(Reduce(mode="sum_sqr"), input, reduce_shape) channel_mean = f("/", channel_x1s, reduce_size) channel_var = f( "-", f("/", channel_x2s, reduce_size), f("*", channel_mean, channel_mean), ) invsqrt_channel_var = f("**", f("+", channel_var, eps), c(-0.5)) inv_var_wt = f("*", invsqrt_channel_var, weight) neg_channel_mean = f("-", channel_mean) outvar = f( "fma3", input, inv_var_wt, f("fma3", neg_channel_mean, inv_var_wt, bias), ) return (outvar,), (True,) return batch_norm_nd @pytest.mark.parametrize("device", [get_default_device(), "cpux"]) @pytest.mark.parametrize("batch_size", [1, 8]) @pytest.mark.parametrize("channels", [3]) @pytest.mark.parametrize( "use_trace, symbolic", [(False, None), (True, False), (True, True)] ) @pytest.mark.parametrize("gopt_level", [None, 1, 2]) @pytest.mark.parametrize("dtype", ["float32"]) def test_subgraph(device, batch_size, channels, use_trace, symbolic, gopt_level, dtype): device = CompNode(device) def subgraph_batch_norm(inp, weight, bias, eps, diff): inp = inp.detach() with GradManager().attach(inp) as gm: batch_norm_fn = _get_batch_norm_fn( dtype, device, channels, ndim, interpret=False, gopt_level=gopt_level ) out, *_ = batch_norm_fn(inp, eps, weight, bias) gm.backward(out * 1e3 + 1e3, diff) return out, inp.grad def primitive_batch_norm(inp, weight, bias, eps, diff): inp = inp.detach() with GradManager().attach(inp) as gm: batch_norm_fn = _get_batch_norm_fn( dtype, device, channels, ndim, interpret=True, gopt_level=gopt_level ) (out,) = batch_norm_fn(inp, eps, weight, bias) gm.backward(out * 1e3 + 1e3, diff) return out, inp.grad if use_trace: subgraph_batch_norm = trace(symbolic=symbolic)(subgraph_batch_norm) primitive_batch_norm = trace(symbolic=symbolic)(primitive_batch_norm) def rand_tensor(shape, dtype=dtype, device=device): return megengine.tensor(np.random.random(shape), dtype=dtype, device=device) # skip this test because could not do several reduce sequentially with opr cache return # test shape change for image_shape in [(223, 223), (10, 20)]: ndim = len(image_shape) + 2 input_shape = (batch_size, channels) + image_shape param_shape = (1, channels) + (1,) * len(image_shape) inp = rand_tensor(input_shape) * 1e3 + 1e3 weight = rand_tensor(param_shape) bias = rand_tensor(param_shape) eps = megengine.tensor(1e-5, dtype=dtype, device=device) diff = rand_tensor(input_shape) out1, grad1 = subgraph_batch_norm(inp, weight, bias, eps, diff) out2, grad2 = primitive_batch_norm(inp, weight, bias, eps, diff) _assert_allclose(out1.numpy(), out2.numpy()) _assert_allclose(grad1.numpy(), grad2.numpy()) @functools.lru_cache(maxsize=None) def _get_mul_fn(dtype, device): @subgraph_fn( "Mul", dtype=dtype, device=device, nr_inputs=2, gopt_level=None, jit_fusion=False, custom_grad=True, ) def mul(inputs, f, c): x, y = inputs[0:2] z = f("*", x, y) (dz,) = yield (z,) dx = f("*", dz, y) dy = f("*", dz, x) yield (dx, dy) return mul def test_subgraph_jit_backward(): x_np = np.random.rand(3, 4, 5).astype("float32") x1 = megengine.Tensor(x_np) x2 = megengine.Tensor(x_np) mul = _get_mul_fn(x1.dtype, x1.device) gm = GradManager() gm.attach([x1, x2]) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y1) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y1 + y2) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y2)
[ "megengine.core.ops.builtin.GetVarShape", "megengine.tensor", "megengine.device.CompNode", "megengine.Tensor", "megengine.device.get_default_device", "megengine.jit.trace", "megengine.core.tensor.utils.subgraph_fn", "megengine.autodiff.grad_manager.GradManager", "megengine.core.ops.builtin.Reduce", "megengine.core.ops.builtin.TypeCvt" ]
[((355, 424), 'functools.partial', 'functools.partial', (['np.testing.assert_allclose'], {'atol': '(5e-06)', 'rtol': '(5e-06)'}), '(np.testing.assert_allclose, atol=5e-06, rtol=5e-06)\n', (372, 424), False, 'import functools\n'), ((426, 459), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (445, 459), False, 'import functools\n'), ((1944, 1989), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""batch_size"""', '[1, 8]'], {}), "('batch_size', [1, 8])\n", (1967, 1989), False, 'import pytest\n'), ((1991, 2031), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""channels"""', '[3]'], {}), "('channels', [3])\n", (2014, 2031), False, 'import pytest\n'), ((2033, 2130), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_trace, symbolic"""', '[(False, None), (True, False), (True, True)]'], {}), "('use_trace, symbolic', [(False, None), (True, False\n ), (True, True)])\n", (2056, 2130), False, 'import pytest\n'), ((2133, 2184), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""gopt_level"""', '[None, 1, 2]'], {}), "('gopt_level', [None, 1, 2])\n", (2156, 2184), False, 'import pytest\n'), ((2186, 2231), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32']"], {}), "('dtype', ['float32'])\n", (2209, 2231), False, 'import pytest\n'), ((4331, 4364), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (4350, 4364), False, 'import functools\n'), ((543, 658), 'megengine.core.tensor.utils.subgraph_fn', 'subgraph_fn', (['"""BatchNormNd"""'], {'dtype': 'dtype', 'device': 'device', 'nr_inputs': '(4)', 'interpret': 'interpret', 'gopt_level': 'gopt_level'}), "('BatchNormNd', dtype=dtype, device=device, nr_inputs=4,\n interpret=interpret, gopt_level=gopt_level)\n", (554, 658), False, 'from megengine.core.tensor.utils import subgraph_fn\n'), ((2334, 2350), 'megengine.device.CompNode', 'CompNode', (['device'], {}), '(device)\n', (2342, 2350), False, 'from megengine.device import CompNode, get_default_device\n'), ((4402, 4518), 'megengine.core.tensor.utils.subgraph_fn', 'subgraph_fn', (['"""Mul"""'], {'dtype': 'dtype', 'device': 'device', 'nr_inputs': '(2)', 'gopt_level': 'None', 'jit_fusion': '(False)', 'custom_grad': '(True)'}), "('Mul', dtype=dtype, device=device, nr_inputs=2, gopt_level=None,\n jit_fusion=False, custom_grad=True)\n", (4413, 4518), False, 'from megengine.core.tensor.utils import subgraph_fn\n'), ((4875, 4897), 'megengine.Tensor', 'megengine.Tensor', (['x_np'], {}), '(x_np)\n', (4891, 4897), False, 'import megengine\n'), ((4907, 4929), 'megengine.Tensor', 'megengine.Tensor', (['x_np'], {}), '(x_np)\n', (4923, 4929), False, 'import megengine\n'), ((4982, 4995), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (4993, 4995), False, 'from megengine.autodiff.grad_manager import GradManager\n'), ((3981, 4032), 'megengine.tensor', 'megengine.tensor', (['(1e-05)'], {'dtype': 'dtype', 'device': 'device'}), '(1e-05, dtype=dtype, device=device)\n', (3997, 4032), False, 'import megengine\n'), ((1912, 1932), 'megengine.device.get_default_device', 'get_default_device', ([], {}), '()\n', (1930, 1932), False, 'from megengine.device import CompNode, get_default_device\n'), ((930, 943), 'megengine.core.ops.builtin.GetVarShape', 'GetVarShape', ([], {}), '()\n', (941, 943), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((976, 1006), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""product"""', 'axis': '(0)'}), "(mode='product', axis=0)\n", (982, 1006), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1046, 1076), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""product"""', 'axis': '(0)'}), "(mode='product', axis=0)\n", (1052, 1076), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1173, 1193), 'megengine.core.ops.builtin.TypeCvt', 'TypeCvt', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (1180, 1193), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1232, 1250), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""sum"""'}), "(mode='sum')\n", (1238, 1250), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1297, 1319), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""sum_sqr"""'}), "(mode='sum_sqr')\n", (1303, 1319), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((3241, 3265), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (3246, 3265), False, 'from megengine.jit import trace\n'), ((3318, 3342), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (3323, 3342), False, 'from megengine.jit import trace\n'), ((3454, 3477), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (3470, 3477), True, 'import numpy as np\n'), ((4824, 4847), 'numpy.random.rand', 'np.random.rand', (['(3)', '(4)', '(5)'], {}), '(3, 4, 5)\n', (4838, 4847), True, 'import numpy as np\n'), ((2451, 2464), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (2462, 2464), False, 'from megengine.autodiff.grad_manager import GradManager\n'), ((2873, 2886), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (2884, 2886), False, 'from megengine.autodiff.grad_manager import GradManager\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import random import megengine as mge import megengine.distributed as dist import megengine.functional as F class DataPrefetcher: """ DataPrefetcher is inspired by code of following file: https://github.com/NVIDIA/apex/blob/master/examples/imagenet/main_amp.py It could speedup your pytorch dataloader. For more information, please check https://github.com/NVIDIA/apex/issues/304#issuecomment-493562789. """ def __init__(self, loader): self.loader = iter(loader) def preload(self): try: self.next_input, self.next_target, _, _ = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return def next(self): inputs, target, _, _ = next(self.loader) return inputs.numpy(), target.numpy() def random_resize(data_loader, exp, epoch, rank, is_distributed): tensor = mge.tensor([1]) if rank == 0: if epoch > exp.max_epoch - 10: size = exp.input_size else: size = random.randint(*exp.random_size) size = int(32 * size) tensor *= size if is_distributed: tensor = F.distributed.broadcast(tensor) dist.group_barrier() input_size = data_loader.change_input_dim(multiple=tensor.item(), random_range=None) return input_size
[ "megengine.functional.distributed.broadcast", "megengine.tensor", "megengine.distributed.group_barrier" ]
[((1025, 1040), 'megengine.tensor', 'mge.tensor', (['[1]'], {}), '([1])\n', (1035, 1040), True, 'import megengine as mge\n'), ((1297, 1328), 'megengine.functional.distributed.broadcast', 'F.distributed.broadcast', (['tensor'], {}), '(tensor)\n', (1320, 1328), True, 'import megengine.functional as F\n'), ((1337, 1357), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1355, 1357), True, 'import megengine.distributed as dist\n'), ((1166, 1198), 'random.randint', 'random.randint', (['*exp.random_size'], {}), '(*exp.random_size)\n', (1180, 1198), False, 'import random\n')]
import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def softmax_loss(pred, label, ignore_label=-1): max_pred = pred.max(axis=1, keepdims=True).detach() pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask.astype(np.float32) loss = -(F.nn.indexing_one_hot(log_prob, vlabel.astype(np.int32), 1).flatten() * mask) loss = loss.sum() / F.maximum(mask.sum(), 1) return loss def softmax_loss_opr(pred, label, ignore_label=-1): max_pred = pred.max(axis=1, keepdims=True).detach() pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask.astype(np.float32) loss = -(F.nn.indexing_one_hot(log_prob, vlabel.astype(np.int32), 1).flatten() * mask) return loss def _smooth_l1_base(pred, gt, sigma): sigma2 = sigma ** 2 cond_point = 1 / sigma2 x = pred - gt abs_x = F.abs(x) in_mask = abs_x < cond_point out_mask = 1 - in_mask.astype(np.float32) in_value = 0.5 * (sigma * x) ** 2 out_value = abs_x - 0.5 / sigma2 value = in_value * in_mask.astype(np.float32) + out_value * out_mask return value def _get_mask_of_label(label, background, ignore_label): mask_fg = 1 - F.equal(label, background).astype(np.float32) mask_ig = 1 - F.equal(label, ignore_label).astype(np.float32) mask = mask_fg * mask_ig return mask, mask_ig def smooth_l1_loss_rcnn_opr( pred, gt, label, sigma = 1, background=0, ignore_label=-1): """ pred : (minibatch, class_num, 4) gt : (minibatch, 4) label : (minibatch, ) """ broadcast_label = F.broadcast_to(label.reshape(-1, 1), (1, pred.shape[-1])) broadcast_mask, broadcast_mask_ig = _get_mask_of_label( broadcast_label, background, ignore_label) vlabel = broadcast_label * broadcast_mask pred_corr = F.nn.indexing_one_hot(pred, vlabel.astype(np.int32), 1) value = _smooth_l1_base(pred_corr, gt, sigma) loss = (value * broadcast_mask).sum(dim=1) return loss def smooth_l1_loss_rpn(pred, gt, label, sigma=1, background=0, ignore_label=-1, axis=1): value = _smooth_l1_base(pred, gt, sigma) mask, mask_ig = _get_mask_of_label(label, background, ignore_label) loss = (value.sum(axis = axis) * mask).sum() / F.maximum(mask_ig.sum(), 1) return loss def smooth_l1_loss_rcnn_opr( pred, gt, label, sigma = 1, background=0, ignore_label=-1): """ pred : (minibatch, class_num, 4) gt : (minibatch, 4) label : (minibatch, ) """ broadcast_label = F.broadcast_to(label.reshape(-1, 1), (label.shape[0], pred.shape[-1])) broadcast_mask, broadcast_mask_ig = _get_mask_of_label( broadcast_label, background, ignore_label) vlabel = broadcast_label * broadcast_mask pred_corr = F.nn.indexing_one_hot(pred, vlabel.astype(np.int32), 1) value = _smooth_l1_base(pred_corr, gt, sigma) loss = (value * broadcast_mask).sum(axis=1) return loss def smooth_l1_loss(pred, target, beta: float): abs_x = F.abs(pred - target) in_mask = abs_x < beta out_mask = 1 - in_mask.astype(np.float32) in_loss = 0.5 * abs_x ** 2 / beta out_loss = abs_x - 0.5 * beta loss = in_loss * in_mask.astype(np.float32) + out_loss * out_mask return loss.sum(axis=1) def sigmoid_cross_entropy_retina( pred, label, ignore_label=-1, background=0, alpha=0.5, gamma=0): device = pred.device mask = 1 - F.equal(label, ignore_label).astype(np.float32) vlabel = label * mask n, m, c = pred.shape zero_mat = F.zeros([n, m, c + 1]).to(device) index = F.expand_dims(vlabel, 2).astype(np.int32) one_hot = F.scatter(zero_mat, 2, index, F.ones([n, m, 1])) onehot = one_hot[:, :, 1:] pos_part = F.pow(1 - pred, gamma) * onehot * F.log(pred) neg_part = F.pow(pred, gamma) * (1 - onehot) * F.log(1 - pred) loss = -(alpha * pos_part + (1 - alpha) * neg_part).sum(axis=2) * mask positive_mask = (label > 0) return loss.sum() / F.maximum(positive_mask.sum(), 1) def smooth_l1_loss_retina( pred, gt, label, sigma=3, background=0, ignore_label=-1, axis=2): value = _smooth_l1_base(pred, gt, sigma) mask, mask_ig = _get_mask_of_label(label, background, ignore_label) loss = (value.sum(axis=axis) * mask).sum() / F.maximum(mask.sum(), 1) return loss def iou_l1_loss(pred, max_overlaps, gt, ignore_label=-1, background=0): pred = pred.reshape(pred.shape[0], -1, max_overlaps.shape[2]) abs_x = F.abs(pred - max_overlaps) mask_bg = 1 - F.equal(gt, background).astype(np.float32) mask_ig = 1 - F.equal(gt, ignore_label).astype(np.float32) mask = mask_bg * mask_ig mask = mask.reshape(mask.shape[0], -1, pred.shape[2]) loss = (abs_x * mask).sum() / F.maximum(mask.sum(), 1) return loss def smooth_l1_loss_rcnn( pred, gt, label, sigma = 1, background=0, ignore_label=-1): """ pred : (minibatch, class_num, 4) gt : (minibatch, 4) label : (minibatch, ) """ loss = smooth_l1_loss_rcnn_opr(pred, gt, label, sigma) loss = loss.sum()/F.maximum((label > 0).sum(), 1) return loss
[ "megengine.functional.exp", "megengine.functional.pow", "megengine.functional.equal", "megengine.functional.zeros", "megengine.functional.log", "megengine.functional.ones", "megengine.functional.expand_dims", "megengine.functional.abs" ]
[((1072, 1080), 'megengine.functional.abs', 'F.abs', (['x'], {}), '(x)\n', (1077, 1080), True, 'import megengine.functional as F\n'), ((3251, 3271), 'megengine.functional.abs', 'F.abs', (['(pred - target)'], {}), '(pred - target)\n', (3256, 3271), True, 'import megengine.functional as F\n'), ((4722, 4748), 'megengine.functional.abs', 'F.abs', (['(pred - max_overlaps)'], {}), '(pred - max_overlaps)\n', (4727, 4748), True, 'import megengine.functional as F\n'), ((325, 353), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (332, 353), True, 'import megengine.functional as F\n'), ((769, 797), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (776, 797), True, 'import megengine.functional as F\n'), ((3916, 3933), 'megengine.functional.ones', 'F.ones', (['[n, m, 1]'], {}), '([n, m, 1])\n', (3922, 3933), True, 'import megengine.functional as F\n'), ((4016, 4027), 'megengine.functional.log', 'F.log', (['pred'], {}), '(pred)\n', (4021, 4027), True, 'import megengine.functional as F\n'), ((4079, 4094), 'megengine.functional.log', 'F.log', (['(1 - pred)'], {}), '(1 - pred)\n', (4084, 4094), True, 'import megengine.functional as F\n'), ((3783, 3805), 'megengine.functional.zeros', 'F.zeros', (['[n, m, c + 1]'], {}), '([n, m, c + 1])\n', (3790, 3805), True, 'import megengine.functional as F\n'), ((3829, 3853), 'megengine.functional.expand_dims', 'F.expand_dims', (['vlabel', '(2)'], {}), '(vlabel, 2)\n', (3842, 3853), True, 'import megengine.functional as F\n'), ((3982, 4004), 'megengine.functional.pow', 'F.pow', (['(1 - pred)', 'gamma'], {}), '(1 - pred, gamma)\n', (3987, 4004), True, 'import megengine.functional as F\n'), ((4043, 4061), 'megengine.functional.pow', 'F.pow', (['pred', 'gamma'], {}), '(pred, gamma)\n', (4048, 4061), True, 'import megengine.functional as F\n'), ((1406, 1432), 'megengine.functional.equal', 'F.equal', (['label', 'background'], {}), '(label, background)\n', (1413, 1432), True, 'import megengine.functional as F\n'), ((1470, 1498), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (1477, 1498), True, 'import megengine.functional as F\n'), ((3668, 3696), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (3675, 3696), True, 'import megengine.functional as F\n'), ((4767, 4790), 'megengine.functional.equal', 'F.equal', (['gt', 'background'], {}), '(gt, background)\n', (4774, 4790), True, 'import megengine.functional as F\n'), ((4828, 4853), 'megengine.functional.equal', 'F.equal', (['gt', 'ignore_label'], {}), '(gt, ignore_label)\n', (4835, 4853), True, 'import megengine.functional as F\n'), ((270, 281), 'megengine.functional.exp', 'F.exp', (['pred'], {}), '(pred)\n', (275, 281), True, 'import megengine.functional as F\n'), ((714, 725), 'megengine.functional.exp', 'F.exp', (['pred'], {}), '(pred)\n', (719, 725), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import inspect import io import itertools from tempfile import mkstemp import numpy as np import pytest import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.optimizer as optim import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import set_symbolic_shape from megengine.core.ops import builtin as ops from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.utils import isscalar from megengine.functional import exp, log from megengine.jit import exclude_from_trace, trace from megengine.module import Module from megengine.random import normal, uniform from megengine.utils.naming import AutoNaming @pytest.mark.parametrize("trace_mode", [False, True]) @pytest.mark.parametrize("return_mode", ["Value", "Tuple", "List", "Dict"]) def test_trace(trace_mode, return_mode): @trace(symbolic=trace_mode) def f(x): if return_mode == "Tuple": return (-x,) elif return_mode == "List": return [-x] elif return_mode == "Dict": return {"neg": -x} else: return -x def get_numpy(y): if return_mode == "Tuple" or return_mode == "List": return y[0].numpy() elif return_mode == "Dict": return y["neg"].numpy() return y.numpy() x = tensor([1]) y = get_numpy(f(x)) for i in range(3): np.testing.assert_equal(get_numpy(f(x)), y) def test_output_copy_trace(): class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a # will result into a copy of output in grad x = F.exp(x) return x ys = {False: [], True: []} for symbolic in [False, True]: net = Simple() gm = GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) data = tensor(np.arange(4).reshape(2, 2), dtype="float32") @trace(symbolic=symbolic) def train_func(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = train_func(data).numpy() ys[symbolic].append(y) for i in range(3): np.testing.assert_equal(ys[False][i], ys[True][i]) @pytest.mark.parametrize("trace_mode", [False, True]) def test_exclude_from_trace(trace_mode): @trace(symbolic=trace_mode) def f(x): x = -x with exclude_from_trace(): if i % 2: x = -x x = -x return x x = tensor([1]) for i in range(3): y = f(x).numpy() np.testing.assert_equal(f(x).numpy(), y) @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse(trace_mode): # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(a, b): base = 0 c = b - a _, idx = F.topk(c, 3) # internally, biased_idx will be idx as gopt will ignore the addition biased_idx = base + idx return biased_idx a = tensor(np.ones((7, 2)), dtype=np.int32) b = tensor(2 * np.ones((7, 2)), dtype=np.float32) for i in range(3): y = f(a, b) y.numpy() @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse_in_grad(trace_mode): w = Parameter(np.ones([4, 6]), dtype="float32") gm = GradManager().attach(w) opt = optim.SGD([w], lr=0.01, momentum=0.9, weight_decay=5e-4) # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(): with gm: wm = F.sum(w ** 2, axis=1) ** 0.5 loss = wm.mean() gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = f() y.numpy() def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf x = -x buf = x.numpy() x = -x return x buf = None x = tensor([1]) for i in range(3): y = f(x).numpy() z = buf buf = None np.testing.assert_equal(f(x).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): return a + b # prevent from remaining scope from exception test AutoNaming.clear() a = tensor([2]) b = tensor([4]) y = f(a, b).numpy() for i in range(3): np.testing.assert_equal(f(a, b).numpy(), y) file = io.BytesIO() dump_info = f.dump(file) assert dump_info.nr_opr == 3 np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"]) np.testing.assert_equal(dump_info.outputs, ["ADD"]) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(a, b)).values())[0] np.testing.assert_equal(result[0], y) def test_capture_dump(): a = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * a x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(x)).values())[0] np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * p x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) cg, _, outputs = G.load_graph(file) (out,) = outputs assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "ImmutableTensor" ) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_profiler(trace_mode): @trace(symbolic=trace_mode, profiling=True) def f(x): return -x x = tensor([1]) y = f(x).numpy() f(x) f(x) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") def test_goptions(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): # directly return x / x will not trigger gopt # since there's no way to tell the two x are the same y = 2.0 * x return y / y @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): y = 2.0 * x return y / y d = tensor(0.0) assert not np.isfinite(f(d).numpy()) np.testing.assert_equal(g(d).numpy().item(), 1.0) def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) val = 1.0e4 d = tensor(val) o = tensor(0.0) assert not np.isfinite(f(d, o).numpy()) np.testing.assert_almost_equal(g(d, o), val) def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_optimize_for_inference_broadcast(): a = tensor(np.ones(1, dtype=np.float32)) @trace(capture_as_const=True, symbolic_shape=True) def f(): return a._broadcast(tensor([1, 10], dtype=np.int32)) f() f.dump(io.BytesIO()) def test_trace_cvt_bool(): x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): a = x.shape b = a[0] assert isscalar(b) return b == 0 for i in range(3): np.testing.assert_equal(f(x).numpy(), False) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_reshape(trace_mode): x1 = tensor(np.random.randn(2, 10, 10)) x2 = tensor(np.random.randn(4, 10, 10)) x3 = tensor(np.random.randn(8, 10, 10)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = x.reshape(x.shape[0], 100) return y f(x1) f(x2) f(x3) def test_trace_topk(): x = tensor([5, 2, 7, 1, 0, 3, 2]) @trace(symbolic=True) def f(x): y = F.topk(x, 3) np.testing.assert_equal(y[0].shape.numpy(), np.array([3,])) return y for i in range(3): f(x) def test_trace_warp_perspective(): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) @trace(symbolic=True) def f(x, M): out = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) return out for i in range(3): f(x, M) def test_raise_on_trace(): step_count = 0 catch_count = 0 bad_step = 10 class CatchMe(Exception): pass a = tensor([1, 2, 3, 4]) b = tensor([5, 6, 7, 8]) c = tensor([9, 0, 1, 2]) @trace def add_abc(a, b, c): ps = a + b result = ps + c if step_count == bad_step: raise CatchMe("catch me") return result for i in range(100): try: d = add_abc(a, b, c) except CatchMe as e: catch_count += 1 else: np.testing.assert_equal(d.numpy(), (a + b + c).numpy()) step_count += 1 assert catch_count == 1 @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_broadcast(trace_mode): x1 = tensor(np.random.randn(3, 1, 1)) x2 = tensor(np.random.randn(1, 4, 1)) x3 = tensor(np.random.randn(1, 1, 5)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = F.broadcast_to(x, (3, 4, 5)) return y f(x1) f(x2) f(x3) def test_trace_nms(): def make_inputs(n): boxes = np.zeros((n, 4)) boxes[:, :2] = np.random.rand(n, 2) * 100 boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100 scores = np.random.rand(n) return tensor(boxes), tensor(scores) @trace(symbolic=False) def f(boxes, scores): # with tracing, max_output must be specified results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) # without tracing, max output can be inferred inside nms with exclude_from_trace(): _ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5) return results f(*make_inputs(10)) f(*make_inputs(20)) f(*make_inputs(30)) def test_trace_valid_broadcast(): x1 = tensor(np.random.randn(1, 1)) x2 = tensor(np.random.randn(1, 2)) shape = (tensor([2]), tensor([2])) @trace(symbolic=False) def f(x, shape): y = F.broadcast_to(x, shape) return y f(x1, shape) f(x2, shape) def test_clip(): x = tensor(np.random.randn(10, 10)) @trace(symbolic=True) def f(x, lower, upper): y = F.clip(x, lower, upper) return y for i in range(3): f(x, tensor([0]), tensor([1])) # test returning noncontiguous tensor from trace def test_slice(): @trace def f(x): return x[:, 1::2] x = F.arange(8).reshape(2, 4) f(x) y = f(x) np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2]) y + y @pytest.mark.parametrize("shape_mode", [False, True]) def test_random(shape_mode): def run_test(op): @trace(symbolic=True, symbolic_shape=shape_mode) def f(): out = op(size=[10, 10]) out_shape = out.shape assert out_shape is not None if not isinstance(out_shape, tuple): assert out.shape.numpy() is not None return out for _ in range(3): f() run_test(uniform) run_test(normal) @pytest.mark.parametrize("shape_mode", [False, True]) def test_trace_advance_indexing(shape_mode): funcs = [ lambda x, i: x[i], # lambda x, i, j: x[i, j], # FIXME lambda x, i, j: x[i, :, j, ...], # lambda x, start, end: x[start:end], # FIXME lambda x, start, end: x[:, 0, start:end, ..., 1], lambda x, vec: x[vec], lambda x, vec: x[vec, ..., 0, 1:3], lambda x, vec: x[vec, vec[0], vec[1]], # lambda x, i, start, end, vec: x[i, ..., :, vec, start:end], # FIXME lambda x, mask: x[mask], ] inputs = { "x": np.random.randn(5, 5, 5, 5, 5).astype("float32"), "i": 0, "j": 2, "start": 1, "end": 3, "vec": [1, 2, 3], "mask": np.random.randn(5, 5, 5, 5, 5) >= 0, } for f in funcs: sig = inspect.signature(f) param_names = list(sig._parameters.keys()) params = {} params_np = {} f_traced = trace(f, symbolic=False, symbolic_shape=shape_mode) for name in param_names: params[name] = tensor(inputs[name]) params_np[name] = inputs[name] expected = f(**params_np) result_imperative = f(**params) np.testing.assert_equal(expected, result_imperative.numpy()) for _ in range(3): result_trace = f_traced(**params) np.testing.assert_equal(expected, result_trace.numpy())
[ "megengine.functional.arange", "megengine.utils.comp_graph_tools.GraphInference", "megengine.utils.naming.AutoNaming.clear", "megengine.optimizer.SGD", "megengine.autodiff.GradManager", "megengine.jit.trace", "megengine.functional.clip", "megengine.functional.sum", "megengine.core.tensor.utils.isscalar", "megengine.functional.vision.warp_perspective", "megengine.utils.comp_graph_tools.get_owner_opr_inputs", "megengine.functional.vision.nms", "megengine.tensor", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.topk", "megengine.functional.exp", "megengine.functional.broadcast_to", "megengine.jit.exclude_from_trace", "megengine.Parameter", "megengine.utils.comp_graph_tools.get_oprs_seq" ]
[((1162, 1214), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (1185, 1214), False, 'import pytest\n'), ((1216, 1290), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""return_mode"""', "['Value', 'Tuple', 'List', 'Dict']"], {}), "('return_mode', ['Value', 'Tuple', 'List', 'Dict'])\n", (1239, 1290), False, 'import pytest\n'), ((2940, 2992), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (2963, 2992), False, 'import pytest\n'), ((3329, 3381), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (3352, 3381), False, 'import pytest\n'), ((3889, 3941), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (3912, 3941), False, 'import pytest\n'), ((6628, 6680), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (6651, 6680), False, 'import pytest\n'), ((9311, 9363), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (9334, 9363), False, 'import pytest\n'), ((11140, 11192), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (11163, 11192), False, 'import pytest\n'), ((13015, 13067), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape_mode"""', '[False, True]'], {}), "('shape_mode', [False, True])\n", (13038, 13067), False, 'import pytest\n'), ((13520, 13572), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape_mode"""', '[False, True]'], {}), "('shape_mode', [False, True])\n", (13543, 13572), False, 'import pytest\n'), ((1337, 1363), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode'}), '(symbolic=trace_mode)\n', (1342, 1363), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1822, 1833), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (1828, 1833), False, 'from megengine import Parameter, tensor\n'), ((3039, 3065), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode'}), '(symbolic=trace_mode)\n', (3044, 3065), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3216, 3227), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (3222, 3227), False, 'from megengine import Parameter, tensor\n'), ((3463, 3502), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'opt_level': '(2)'}), '(symbolic=trace_mode, opt_level=2)\n', (3468, 3502), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4082, 4140), 'megengine.optimizer.SGD', 'optim.SGD', (['[w]'], {'lr': '(0.01)', 'momentum': '(0.9)', 'weight_decay': '(0.0005)'}), '([w], lr=0.01, momentum=0.9, weight_decay=0.0005)\n', (4091, 4140), True, 'import megengine.optimizer as optim\n'), ((4185, 4224), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'opt_level': '(2)'}), '(symbolic=trace_mode, opt_level=2)\n', (4190, 4224), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5000, 5043), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5005, 5043), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5142, 5160), 'megengine.utils.naming.AutoNaming.clear', 'AutoNaming.clear', ([], {}), '()\n', (5158, 5160), False, 'from megengine.utils.naming import AutoNaming\n'), ((5169, 5180), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (5175, 5180), False, 'from megengine import Parameter, tensor\n'), ((5189, 5200), 'megengine.tensor', 'tensor', (['[4]'], {}), '([4])\n', (5195, 5200), False, 'from megengine import Parameter, tensor\n'), ((5313, 5325), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5323, 5325), False, 'import io\n'), ((5392, 5453), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.inputs', "['arg_0', 'arg_1']"], {}), "(dump_info.inputs, ['arg_0', 'arg_1'])\n", (5415, 5453), True, 'import numpy as np\n'), ((5458, 5509), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.outputs', "['ADD']"], {}), "(dump_info.outputs, ['ADD'])\n", (5481, 5509), True, 'import numpy as np\n'), ((5542, 5570), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['file'], {}), '(file)\n', (5564, 5570), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((5627, 5664), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (5650, 5664), True, 'import numpy as np\n'), ((5700, 5711), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (5706, 5711), False, 'from megengine import Parameter, tensor\n'), ((5718, 5761), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5723, 5761), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5806, 5817), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (5812, 5817), False, 'from megengine import Parameter, tensor\n'), ((5924, 5936), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5934, 5936), False, 'import io\n'), ((5986, 6014), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['file'], {}), '(file)\n', (6008, 6014), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6068, 6105), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (6091, 6105), True, 'import numpy as np\n'), ((6142, 6153), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (6148, 6153), False, 'from megengine import Parameter, tensor\n'), ((6160, 6203), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6165, 6203), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6248, 6259), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (6254, 6259), False, 'from megengine import Parameter, tensor\n'), ((6366, 6378), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6376, 6378), False, 'import io\n'), ((6464, 6482), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (6476, 6482), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6723, 6765), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'profiling': '(True)'}), '(symbolic=trace_mode, profiling=True)\n', (6728, 6765), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6807, 6818), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (6813, 6818), False, 'from megengine import Parameter, tensor\n'), ((6970, 7026), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (6975, 7026), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7204, 7260), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7209, 7260), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7325, 7336), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (7331, 7336), False, 'from megengine import Parameter, tensor\n'), ((7472, 7528), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (7477, 7528), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7588, 7644), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7593, 7644), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7723, 7734), 'megengine.tensor', 'tensor', (['val'], {}), '(val)\n', (7729, 7734), False, 'from megengine import Parameter, tensor\n'), ((7743, 7754), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (7749, 7754), False, 'from megengine import Parameter, tensor\n'), ((7884, 7940), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (7889, 7940), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7988, 8044), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7993, 8044), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8119, 8128), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (8126, 8128), False, 'from tempfile import mkstemp\n'), ((8193, 8210), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8205, 8210), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8224, 8253), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (8244, 8253), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((8338, 8355), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8350, 8355), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8369, 8398), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (8389, 8398), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((8484, 8527), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (8489, 8527), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8578, 8587), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (8585, 8587), False, 'from tempfile import mkstemp\n'), ((8656, 8673), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8668, 8673), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8881, 8930), 'megengine.jit.trace', 'trace', ([], {'capture_as_const': '(True)', 'symbolic_shape': '(True)'}), '(capture_as_const=True, symbolic_shape=True)\n', (8886, 8930), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9076, 9103), 'megengine.tensor', 'tensor', (['[0]'], {'dtype': 'np.int32'}), '([0], dtype=np.int32)\n', (9082, 9103), False, 'from megengine import Parameter, tensor\n'), ((9110, 9130), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (9115, 9130), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9538, 9587), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'capture_as_const': '(True)'}), '(symbolic=trace_mode, capture_as_const=True)\n', (9543, 9587), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9722, 9751), 'megengine.tensor', 'tensor', (['[5, 2, 7, 1, 0, 3, 2]'], {}), '([5, 2, 7, 1, 0, 3, 2])\n', (9728, 9751), False, 'from megengine import Parameter, tensor\n'), ((9758, 9778), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (9763, 9778), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10252, 10272), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (10257, 10272), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10617, 10637), 'megengine.tensor', 'tensor', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (10623, 10637), False, 'from megengine import Parameter, tensor\n'), ((10646, 10666), 'megengine.tensor', 'tensor', (['[5, 6, 7, 8]'], {}), '([5, 6, 7, 8])\n', (10652, 10666), False, 'from megengine import Parameter, tensor\n'), ((10675, 10695), 'megengine.tensor', 'tensor', (['[9, 0, 1, 2]'], {}), '([9, 0, 1, 2])\n', (10681, 10695), False, 'from megengine import Parameter, tensor\n'), ((11363, 11412), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'capture_as_const': '(True)'}), '(symbolic=trace_mode, capture_as_const=True)\n', (11368, 11412), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((11791, 11812), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (11796, 11812), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12398, 12419), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (12403, 12419), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12595, 12615), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (12600, 12615), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2549, 2573), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2554, 2573), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2886, 2936), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['ys[False][i]', 'ys[True][i]'], {}), '(ys[False][i], ys[True][i])\n', (2909, 2936), True, 'import numpy as np\n'), ((3572, 3584), 'megengine.functional.topk', 'F.topk', (['c', '(3)'], {}), '(c, 3)\n', (3578, 3584), True, 'import megengine.functional as F\n'), ((3737, 3752), 'numpy.ones', 'np.ones', (['(7, 2)'], {}), '((7, 2))\n', (3744, 3752), True, 'import numpy as np\n'), ((4004, 4019), 'numpy.ones', 'np.ones', (['[4, 6]'], {}), '([4, 6])\n', (4011, 4019), True, 'import numpy as np\n'), ((4580, 4604), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (4585, 4604), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4767, 4778), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (4773, 4778), False, 'from megengine import Parameter, tensor\n'), ((8093, 8104), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (8099, 8104), False, 'from megengine import Parameter, tensor\n'), ((8261, 8272), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (8267, 8272), False, 'from megengine import Parameter, tensor\n'), ((8557, 8563), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (8560, 8563), False, 'from megengine.functional import exp, log\n'), ((8594, 8605), 'megengine.tensor', 'tensor', (['(5.0)'], {}), '(5.0)\n', (8600, 8605), False, 'from megengine import Parameter, tensor\n'), ((8845, 8873), 'numpy.ones', 'np.ones', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (8852, 8873), True, 'import numpy as np\n'), ((9025, 9037), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (9035, 9037), False, 'import io\n'), ((9197, 9208), 'megengine.core.tensor.utils.isscalar', 'isscalar', (['b'], {}), '(b)\n', (9205, 9208), False, 'from megengine.core.tensor.utils import isscalar\n'), ((9416, 9442), 'numpy.random.randn', 'np.random.randn', (['(2)', '(10)', '(10)'], {}), '(2, 10, 10)\n', (9431, 9442), True, 'import numpy as np\n'), ((9460, 9486), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)', '(10)'], {}), '(4, 10, 10)\n', (9475, 9486), True, 'import numpy as np\n'), ((9504, 9530), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)', '(10)'], {}), '(8, 10, 10)\n', (9519, 9530), True, 'import numpy as np\n'), ((9805, 9817), 'megengine.functional.topk', 'F.topk', (['x', '(3)'], {}), '(x, 3)\n', (9811, 9817), True, 'import megengine.functional as F\n'), ((10304, 10343), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['x', 'M', '(2, 2)'], {}), '(x, M, (2, 2))\n', (10329, 10343), True, 'import megengine.functional as F\n'), ((11247, 11271), 'numpy.random.randn', 'np.random.randn', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (11262, 11271), True, 'import numpy as np\n'), ((11289, 11313), 'numpy.random.randn', 'np.random.randn', (['(1)', '(4)', '(1)'], {}), '(1, 4, 1)\n', (11304, 11313), True, 'import numpy as np\n'), ((11331, 11355), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)', '(5)'], {}), '(1, 1, 5)\n', (11346, 11355), True, 'import numpy as np\n'), ((11439, 11467), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 4, 5)'], {}), '(x, (3, 4, 5))\n', (11453, 11467), True, 'import megengine.functional as F\n'), ((11580, 11596), 'numpy.zeros', 'np.zeros', (['(n, 4)'], {}), '((n, 4))\n', (11588, 11596), True, 'import numpy as np\n'), ((11721, 11738), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (11735, 11738), True, 'import numpy as np\n'), ((11910, 11975), 'megengine.functional.vision.nms', 'F.vision.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)', 'max_output': '(20)'}), '(boxes, scores=scores, iou_thresh=0.5, max_output=20)\n', (11922, 11975), True, 'import megengine.functional as F\n'), ((12291, 12312), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)'], {}), '(1, 1)\n', (12306, 12312), True, 'import numpy as np\n'), ((12330, 12351), 'numpy.random.randn', 'np.random.randn', (['(1)', '(2)'], {}), '(1, 2)\n', (12345, 12351), True, 'import numpy as np\n'), ((12366, 12377), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (12372, 12377), False, 'from megengine import Parameter, tensor\n'), ((12379, 12390), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (12385, 12390), False, 'from megengine import Parameter, tensor\n'), ((12453, 12477), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', 'shape'], {}), '(x, shape)\n', (12467, 12477), True, 'import megengine.functional as F\n'), ((12564, 12587), 'numpy.random.randn', 'np.random.randn', (['(10)', '(10)'], {}), '(10, 10)\n', (12579, 12587), True, 'import numpy as np\n'), ((12656, 12679), 'megengine.functional.clip', 'F.clip', (['x', 'lower', 'upper'], {}), '(x, lower, upper)\n', (12662, 12679), True, 'import megengine.functional as F\n'), ((13128, 13175), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'symbolic_shape': 'shape_mode'}), '(symbolic=True, symbolic_shape=shape_mode)\n', (13133, 13175), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((14365, 14385), 'inspect.signature', 'inspect.signature', (['f'], {}), '(f)\n', (14382, 14385), False, 'import inspect\n'), ((14499, 14550), 'megengine.jit.trace', 'trace', (['f'], {'symbolic': '(False)', 'symbolic_shape': 'shape_mode'}), '(f, symbolic=False, symbolic_shape=shape_mode)\n', (14504, 14550), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2072, 2106), 'megengine.Parameter', 'Parameter', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (2081, 2106), False, 'from megengine import Parameter, tensor\n'), ((2237, 2245), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (2242, 2245), True, 'import megengine.functional as F\n'), ((3108, 3128), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (3126, 3128), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3789, 3804), 'numpy.ones', 'np.ones', (['(7, 2)'], {}), '((7, 2))\n', (3796, 3804), True, 'import numpy as np\n'), ((4048, 4061), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4059, 4061), False, 'from megengine.autodiff import GradManager\n'), ((4944, 4975), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['z', 'buf'], {}), '(z, buf)\n', (4967, 4975), True, 'import numpy as np\n'), ((7974, 7980), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7977, 7980), False, 'from megengine.functional import exp, log\n'), ((8078, 8084), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (8081, 8084), False, 'from megengine.functional import exp, log\n'), ((8972, 9003), 'megengine.tensor', 'tensor', (['[1, 10]'], {'dtype': 'np.int32'}), '([1, 10], dtype=np.int32)\n', (8978, 9003), False, 'from megengine import Parameter, tensor\n'), ((9870, 9883), 'numpy.array', 'np.array', (['[3]'], {}), '([3])\n', (9878, 9883), True, 'import numpy as np\n'), ((10395, 10417), 'numpy.array', 'np.array', (['[1, 1, 2, 2]'], {}), '([1, 1, 2, 2])\n', (10403, 10417), True, 'import numpy as np\n'), ((11620, 11640), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (11634, 11640), True, 'import numpy as np\n'), ((11755, 11768), 'megengine.tensor', 'tensor', (['boxes'], {}), '(boxes)\n', (11761, 11768), False, 'from megengine import Parameter, tensor\n'), ((11770, 11784), 'megengine.tensor', 'tensor', (['scores'], {}), '(scores)\n', (11776, 11784), False, 'from megengine import Parameter, tensor\n'), ((12054, 12074), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (12072, 12074), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12092, 12142), 'megengine.functional.vision.nms', 'F.vision.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)'}), '(boxes, scores=scores, iou_thresh=0.5)\n', (12104, 12142), True, 'import megengine.functional as F\n'), ((12734, 12745), 'megengine.tensor', 'tensor', (['[0]'], {}), '([0])\n', (12740, 12745), False, 'from megengine import Parameter, tensor\n'), ((12747, 12758), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (12753, 12758), False, 'from megengine import Parameter, tensor\n'), ((12889, 12900), 'megengine.functional.arange', 'F.arange', (['(8)'], {}), '(8)\n', (12897, 12900), True, 'import megengine.functional as F\n'), ((14288, 14318), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)', '(5)', '(5)', '(5)'], {}), '(5, 5, 5, 5, 5)\n', (14303, 14318), True, 'import numpy as np\n'), ((14611, 14631), 'megengine.tensor', 'tensor', (['inputs[name]'], {}), '(inputs[name])\n', (14617, 14631), False, 'from megengine import Parameter, tensor\n'), ((2371, 2384), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2382, 2384), False, 'from megengine.autodiff import GradManager\n'), ((4272, 4293), 'megengine.functional.sum', 'F.sum', (['(w ** 2)'], {'axis': '(1)'}), '(w ** 2, axis=1)\n', (4277, 4293), True, 'import megengine.functional as F\n'), ((6552, 6585), 'megengine.utils.comp_graph_tools.get_owner_opr_inputs', 'cgtools.get_owner_opr_inputs', (['out'], {}), '(out)\n', (6580, 6585), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((7565, 7571), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7568, 7571), False, 'from megengine.functional import exp, log\n'), ((7574, 7580), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (7577, 7580), False, 'from megengine.functional import exp, log\n'), ((7681, 7687), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7684, 7687), False, 'from megengine.functional import exp, log\n'), ((7690, 7696), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (7693, 7696), False, 'from megengine.functional import exp, log\n'), ((10021, 10052), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (10030, 10052), True, 'import numpy as np\n'), ((10121, 10200), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (10129, 10200), True, 'import numpy as np\n'), ((11670, 11690), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (11684, 11690), True, 'import numpy as np\n'), ((14126, 14156), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)', '(5)', '(5)', '(5)'], {}), '(5, 5, 5, 5, 5)\n', (14141, 14156), True, 'import numpy as np\n'), ((2494, 2506), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (2503, 2506), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import re import subprocess import sys import numpy as np import megengine as mge import megengine.functional as F from megengine import jit, tensor from megengine.functional.debug_param import set_conv_execution_strategy from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module from megengine.optimizer import SGD from megengine.test import assertTensorClose def get_gpu_name(): try: gpu_info = subprocess.check_output( ["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"] ) gpu_info = gpu_info.decode("ascii").split("\n")[0] except: gpu_info = "None" return gpu_info def get_cpu_name(): cpu_info = "None" try: cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii") for line in cpu_info.split("\n"): if "model name" in line: return re.sub(".*model name.*:", "", line, 1).strip() except: pass return cpu_info def get_xpu_name(): if mge.is_cuda_available(): return get_gpu_name() else: return get_cpu_name() class MnistNet(Module): def __init__(self, has_bn=False): super().__init__() self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True) self.pool0 = AvgPool2d(2) self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True) self.pool1 = AvgPool2d(2) self.fc0 = Linear(20 * 4 * 4, 500, bias=True) self.fc1 = Linear(500, 10, bias=True) self.bn0 = None self.bn1 = None if has_bn: self.bn0 = BatchNorm2d(20) self.bn1 = BatchNorm2d(20) def forward(self, x): x = self.conv0(x) if self.bn0: x = self.bn0(x) x = F.relu(x) x = self.pool0(x) x = self.conv1(x) if self.bn1: x = self.bn1(x) x = F.relu(x) x = self.pool1(x) x = F.flatten(x, 1) x = self.fc0(x) x = F.relu(x) x = self.fc1(x) return x def train(data, label, net, opt): pred = net(data) loss = F.cross_entropy_with_softmax(pred, label) opt.backward(loss) return loss def update_model(model_path): """ Update the dumped model with test cases for new reference values. The model with pre-trained weights is trained for one iter with the test data attached. The loss and updated net state dict is dumped. .. code-block:: python from test_correctness import update_model update_model('mnist_model_with_test.mge') # for gpu update_model('mnist_model_with_test_cpu.mge') # for cpu """ net = MnistNet(has_bn=True) checkpoint = mge.load(model_path) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) data = tensor(dtype=np.float32) label = tensor(dtype=np.int32) data.set_value(checkpoint["data"]) label.set_value(checkpoint["label"]) opt.zero_grad() loss = train(data, label, net=net, opt=opt) opt.step() xpu_name = get_xpu_name() checkpoint.update( {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name} ) mge.save(checkpoint, model_path) def run_test(model_path, use_jit, use_symbolic): """ Load the model with test cases and run the training for one iter. The loss and updated weights are compared with reference value to verify the correctness. Dump a new file with updated result by calling update_model if you think the test fails due to numerical rounding errors instead of bugs. Please think twice before you do so. """ net = MnistNet(has_bn=True) checkpoint = mge.load(model_path) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) data = tensor(dtype=np.float32) label = tensor(dtype=np.int32) data.set_value(checkpoint["data"]) label.set_value(checkpoint["label"]) max_err = 1e-5 train_func = train if use_jit: train_func = jit.trace(train_func, symbolic=use_symbolic) opt.zero_grad() loss = train_func(data, label, net=net, opt=opt) opt.step() assertTensorClose(loss.numpy(), checkpoint["loss"], max_err=max_err) for param, param_ref in zip( net.state_dict().items(), checkpoint["net_updated"].items() ): assert param[0] == param_ref[0] assertTensorClose(param[1], param_ref[1], max_err=max_err) def test_correctness(): if mge.is_cuda_available(): model_name = "mnist_model_with_test.mge" else: model_name = "mnist_model_with_test_cpu.mge" model_path = os.path.join(os.path.dirname(__file__), model_name) set_conv_execution_strategy("HEURISTIC_REPRODUCIBLE") run_test(model_path, False, False) run_test(model_path, True, False) run_test(model_path, True, True)
[ "megengine.test.assertTensorClose", "megengine.save", "megengine.tensor", "megengine.functional.relu", "megengine.functional.flatten", "megengine.functional.debug_param.set_conv_execution_strategy", "megengine.module.Conv2d", "megengine.module.AvgPool2d", "megengine.functional.cross_entropy_with_softmax", "megengine.is_cuda_available", "megengine.jit.trace", "megengine.module.Linear", "megengine.module.BatchNorm2d", "megengine.load" ]
[((1407, 1430), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1428, 1430), True, 'import megengine as mge\n'), ((2486, 2527), 'megengine.functional.cross_entropy_with_softmax', 'F.cross_entropy_with_softmax', (['pred', 'label'], {}), '(pred, label)\n', (2514, 2527), True, 'import megengine.functional as F\n'), ((3082, 3102), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (3090, 3102), True, 'import megengine as mge\n'), ((3232, 3256), 'megengine.tensor', 'tensor', ([], {'dtype': 'np.float32'}), '(dtype=np.float32)\n', (3238, 3256), False, 'from megengine import jit, tensor\n'), ((3269, 3291), 'megengine.tensor', 'tensor', ([], {'dtype': 'np.int32'}), '(dtype=np.int32)\n', (3275, 3291), False, 'from megengine import jit, tensor\n'), ((3602, 3634), 'megengine.save', 'mge.save', (['checkpoint', 'model_path'], {}), '(checkpoint, model_path)\n', (3610, 3634), True, 'import megengine as mge\n'), ((4105, 4125), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (4113, 4125), True, 'import megengine as mge\n'), ((4255, 4279), 'megengine.tensor', 'tensor', ([], {'dtype': 'np.float32'}), '(dtype=np.float32)\n', (4261, 4279), False, 'from megengine import jit, tensor\n'), ((4292, 4314), 'megengine.tensor', 'tensor', ([], {'dtype': 'np.int32'}), '(dtype=np.int32)\n', (4298, 4314), False, 'from megengine import jit, tensor\n'), ((4934, 4957), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (4955, 4957), True, 'import megengine as mge\n'), ((5144, 5197), 'megengine.functional.debug_param.set_conv_execution_strategy', 'set_conv_execution_strategy', (['"""HEURISTIC_REPRODUCIBLE"""'], {}), "('HEURISTIC_REPRODUCIBLE')\n", (5171, 5197), False, 'from megengine.functional.debug_param import set_conv_execution_strategy\n'), ((818, 910), 'subprocess.check_output', 'subprocess.check_output', (["['nvidia-smi', '--query-gpu=gpu_name', '--format=csv,noheader']"], {}), "(['nvidia-smi', '--query-gpu=gpu_name',\n '--format=csv,noheader'])\n", (841, 910), False, 'import subprocess\n'), ((1614, 1653), 'megengine.module.Conv2d', 'Conv2d', (['(1)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(1, 20, kernel_size=5, bias=True)\n', (1620, 1653), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1675, 1687), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1684, 1687), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1709, 1749), 'megengine.module.Conv2d', 'Conv2d', (['(20)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(20, 20, kernel_size=5, bias=True)\n', (1715, 1749), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1771, 1783), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1780, 1783), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1803, 1837), 'megengine.module.Linear', 'Linear', (['(20 * 4 * 4)', '(500)'], {'bias': '(True)'}), '(20 * 4 * 4, 500, bias=True)\n', (1809, 1837), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1857, 1883), 'megengine.module.Linear', 'Linear', (['(500)', '(10)'], {'bias': '(True)'}), '(500, 10, bias=True)\n', (1863, 1883), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2143, 2152), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2149, 2152), True, 'import megengine.functional as F\n'), ((2266, 2275), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2272, 2275), True, 'import megengine.functional as F\n'), ((2314, 2329), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2323, 2329), True, 'import megengine.functional as F\n'), ((2366, 2375), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2372, 2375), True, 'import megengine.functional as F\n'), ((4476, 4520), 'megengine.jit.trace', 'jit.trace', (['train_func'], {'symbolic': 'use_symbolic'}), '(train_func, symbolic=use_symbolic)\n', (4485, 4520), False, 'from megengine import jit, tensor\n'), ((4841, 4899), 'megengine.test.assertTensorClose', 'assertTensorClose', (['param[1]', 'param_ref[1]'], {'max_err': 'max_err'}), '(param[1], param_ref[1], max_err=max_err)\n', (4858, 4899), False, 'from megengine.test import assertTensorClose\n'), ((5101, 5126), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5116, 5126), False, 'import os\n'), ((1974, 1989), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (1985, 1989), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2013, 2028), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (2024, 2028), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1118, 1167), 'subprocess.check_output', 'subprocess.check_output', (["['cat', '/proc/cpuinfo']"], {}), "(['cat', '/proc/cpuinfo'])\n", (1141, 1167), False, 'import subprocess\n'), ((1286, 1324), 're.sub', 're.sub', (['""".*model name.*:"""', '""""""', 'line', '(1)'], {}), "('.*model name.*:', '', line, 1)\n", (1292, 1324), False, 'import re\n')]
import math import megengine.module as M import megengine.functional as F import megengine as mge class PositionalEncoding(M.Module): """Positional encoding. :param int d_model: embedding dim :param float dropout_rate: dropout rate :param int max_len: maximum input length """ def __init__(self, d_model, dropout_rate, max_len=5000): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = M.dropout.Dropout(dropout_rate) self.pe = mge.Tensor(0.0) self.extend_pe(F.tensor.zeros([1, max_len])) def extend_pe(self, x): """Reset the positional encodings.""" if len(self.pe.shape): if self.pe.shape[1] >= x.shape[1]: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = F.tensor.zeros([x.shape[1], self.d_model]) position = mge.Tensor(F.arange(0, x.shape[1], dtype="float32")).reshape( x.shape[1], -1 ) div_term = F.exp( mge.Tensor(F.arange(0, self.d_model, 2, dtype="float32")) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = F.sin(position * div_term) pe[:, 1::2] = F.cos(position * div_term) h, w = pe.shape pe = pe.reshape(-1, h, w) self.pe[...] = pe.to(device=x.device) def forward(self, x: mge.Tensor): """Add positional encoding. Args: x (megengine.Tensor): Input. Its shape is (batch, time, ...) Returns: megengine.Tensor: Encoded tensor. Its shape is (batch, time, ...) """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.shape[1]] return self.dropout(x)
[ "megengine.functional.arange", "megengine.module.dropout.Dropout", "megengine.functional.cos", "megengine.Tensor", "megengine.functional.tensor.zeros", "megengine.functional.sin" ]
[((521, 544), 'math.sqrt', 'math.sqrt', (['self.d_model'], {}), '(self.d_model)\n', (530, 544), False, 'import math\n'), ((568, 599), 'megengine.module.dropout.Dropout', 'M.dropout.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (585, 599), True, 'import megengine.module as M\n'), ((618, 633), 'megengine.Tensor', 'mge.Tensor', (['(0.0)'], {}), '(0.0)\n', (628, 633), True, 'import megengine as mge\n'), ((1024, 1066), 'megengine.functional.tensor.zeros', 'F.tensor.zeros', (['[x.shape[1], self.d_model]'], {}), '([x.shape[1], self.d_model])\n', (1038, 1066), True, 'import megengine.functional as F\n'), ((1363, 1389), 'megengine.functional.sin', 'F.sin', (['(position * div_term)'], {}), '(position * div_term)\n', (1368, 1389), True, 'import megengine.functional as F\n'), ((1412, 1438), 'megengine.functional.cos', 'F.cos', (['(position * div_term)'], {}), '(position * div_term)\n', (1417, 1438), True, 'import megengine.functional as F\n'), ((657, 685), 'megengine.functional.tensor.zeros', 'F.tensor.zeros', (['[1, max_len]'], {}), '([1, max_len])\n', (671, 685), True, 'import megengine.functional as F\n'), ((1097, 1137), 'megengine.functional.arange', 'F.arange', (['(0)', 'x.shape[1]'], {'dtype': '"""float32"""'}), "(0, x.shape[1], dtype='float32')\n", (1105, 1137), True, 'import megengine.functional as F\n'), ((1234, 1279), 'megengine.functional.arange', 'F.arange', (['(0)', 'self.d_model', '(2)'], {'dtype': '"""float32"""'}), "(0, self.d_model, 2, dtype='float32')\n", (1242, 1279), True, 'import megengine.functional as F\n'), ((1297, 1314), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (1305, 1314), False, 'import math\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy from typing import Any, Mapping import megengine as mge import megengine.functional as F import megengine.module as M from .modules import SE, activation, conv2d, gap2d, linear, norm2d __all__ = ["build_head", "ClsHead", "MBV3Head", "VGGHead"] def build_head( w_in: int, head_args: Mapping[str, Any] = None, norm_name: str = "BN", act_name: str = "relu" ) -> M.Module: """The factory function to build head. Note: if ``head_args`` is ``None`` or ``head_args["name"]`` is ``None``, this function will do nothing and return ``None``. Args: w_in: input width. head_args: head args. Default: ``None`` norm_name: default normalization function, will be overridden by the same key in ``head_args``. Default: ``"BN"`` act_name: default activation function, will be overridden by the same key in ``head_args``. Default: ``"relu"`` Returns: A head. """ if head_args is None: return None head_args = copy.deepcopy(head_args) head_name = head_args.pop("name", None) if head_name is None: return None head_args["w_in"] = w_in head_args.setdefault("norm_name", norm_name) head_args.setdefault("act_name", act_name) if callable(head_name): return head_name(**head_args) if isinstance(head_name, str): head_funcs = { "ClsHead": ClsHead, "MBV3Head": MBV3Head, "VGGHead": VGGHead, } if head_name in head_funcs: return head_funcs[head_name](**head_args) raise ValueError(f"Head '{head_name}' not supported") class ClsHead(M.Module): """Cls head: Conv, BN, Act, AvgPool, FC. Args: w_in: input width. w_out: output width, normally the number of classes. Default: ``1000`` width: width for first conv in head, conv will be omitted if set to 0. Default: ``0`` dropout_prob: dropout probability. Default: ``0.0`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"relu"`` bias: whether fc has bias. Default: ``True`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 0, dropout_prob: float = 0.0, norm_name: str = "BN", act_name: str = "relu", bias: bool = True, ): super().__init__() self.width = width if self.width > 0: self.conv = conv2d(w_in, self.width, 1) self.bn = norm2d(norm_name, self.width) self.act = activation(act_name) w_in = self.width self.avg_pool = gap2d() if dropout_prob > 0.0: self.dropout = M.Dropout(dropout_prob) self.fc = linear(w_in, w_out, bias=bias) def forward(self, x: mge.Tensor) -> mge.Tensor: if self.width > 0: x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.avg_pool(x) x = F.flatten(x, 1) if getattr(self, "dropout", None) is not None: x = self.dropout(x) x = self.fc(x) return x class MBV3Head(M.Module): """MobileNet V3 head: Conv, BN, Act, AvgPool, SE, FC, Act, FC. Args: w_in: input width. w_out: output width, normally the number of classes. width: width for first conv in head. w_h: width for first linear in head. dropout_prob: dropout probability. Default: ``0.0`` se_r: Squeeze-and-Excitation (SE) ratio. Default: ``0.0`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"hswish"`` bias: whether fc has bias. Default: ``True`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 960, w_h: int = 1280, dropout_prob: float = 0.0, se_r: float = 0.0, norm_name: str = "BN", act_name: str = "hswish", bias: bool = True, ): super().__init__() self.conv = conv2d(w_in, width, 1) self.bn = norm2d(norm_name, width) self.act = activation(act_name) self.avg_pool = gap2d() if se_r > 0.0: self.se = SE(width, int(se_r * width), act_name) self.h_fc = linear(width, w_h, bias=bias) self.h_act = activation(act_name) if dropout_prob > 0.0: self.dropout = M.Dropout(dropout_prob) self.fc = linear(w_h, w_out, bias=bias) def forward(self, x: mge.Tensor) -> mge.Tensor: x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.avg_pool(x) if getattr(self, "se", None) is not None: x = self.se(x) x = F.flatten(x, 1) x = self.h_fc(x) x = self.h_act(x) if getattr(self, "dropout", None) is not None: x = self.dropout(x) x = self.fc(x) return x class VGGHead(M.Module): """VGG head: AvgPool, [FC, Act, Dropout] x2, FC. Args: w_in: input width. w_out: output width, normally the number of classes. Default: ``1000`` width: width for linear in head. Default: ``4096`` dropout_prob: dropout probability. Default: ``0.5`` act_name: activation function. Default: ``"relu"`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 4096, dropout_prob: float = 0.5, act_name: str = "relu", **kwargs, ): super().__init__() self.avg_pool = gap2d(7) self.classifier = M.Sequential( linear(w_in * 7 * 7, width, bias=True), activation(act_name), M.Dropout(dropout_prob), linear(width, width, bias=True), activation(act_name), M.Dropout(dropout_prob), linear(width, w_out, bias=True), ) def forward(self, x: mge.Tensor) -> mge.Tensor: x = self.avg_pool(x) x = F.flatten(x, 1) x = self.classifier(x) return x
[ "megengine.module.Dropout", "megengine.functional.flatten" ]
[((1112, 1136), 'copy.deepcopy', 'copy.deepcopy', (['head_args'], {}), '(head_args)\n', (1125, 1136), False, 'import copy\n'), ((3120, 3135), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (3129, 3135), True, 'import megengine.functional as F\n'), ((4881, 4896), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (4890, 4896), True, 'import megengine.functional as F\n'), ((6144, 6159), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (6153, 6159), True, 'import megengine.functional as F\n'), ((2842, 2865), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (2851, 2865), True, 'import megengine.module as M\n'), ((4566, 4589), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (4575, 4589), True, 'import megengine.module as M\n'), ((5854, 5877), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (5863, 5877), True, 'import megengine.module as M\n'), ((5970, 5993), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (5979, 5993), True, 'import megengine.module as M\n')]
import numpy as np from megengine import Tensor import megengine.functional as F import pdb class AnchorGenerator(): """default anchor generator for fpn. This class generate anchors by feature map in level. """ def __init__(self, base_size=16, ratios=[0.5, 1, 2], base_scale=2): self.base_size = base_size self.base_scale = np.array(base_scale) self.anchor_ratios = ratios def _whctrs(self, anchor): """convert anchor box into (w, h, ctr_x, ctr_y) """ w = anchor[:, 2] - anchor[:, 0] + 1 h = anchor[:, 3] - anchor[:, 1] + 1 x_ctr = anchor[:, 0] + 0.5 * (w - 1) y_ctr = anchor[:, 1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def get_plane_anchors(self, anchor_scales: np.ndarray): """get anchors per location on feature map. The anchor number is anchor_scales x anchor_ratios """ base_anchor = Tensor([0, 0, self.base_size - 1, self.base_size - 1]) base_anchor = base_anchor.reshape(1, -1) w, h, x_ctr, y_ctr = self._whctrs(base_anchor) # ratio enumerate size = w * h size_ratios = size / self.anchor_ratios #pdb.set_trace() ws = F.sqrt(size_ratios) hs = ws * self.anchor_ratios # ws = size_ratios.sqrt().round() # hs = (ws * self.anchor_ratios).round() # scale enumerate anchor_scales = anchor_scales.reshape(1, -1).astype(np.float32) ws = F.expand_dims(ws, 1) hs = F.expand_dims(hs, 1) ws = (ws * anchor_scales).reshape(-1, 1) hs = (hs * anchor_scales).reshape(-1, 1) # make anchors anchors = F.concat( [ x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1), ], axis=1, ) return anchors.astype(np.float32) def get_center_offsets(self, featmap, stride): # f_shp = featmap.shape # fm_height, fm_width = f_shp[-2], f_shp[-1] fm_height, fm_width = featmap.shape[2:] shift_x = F.linspace(0, fm_width - 1, fm_width) * stride shift_y = F.linspace(0, fm_height - 1, fm_height) * stride # make the mesh grid of shift_x and shift_y mesh_shape = (fm_height, fm_width) broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), mesh_shape) broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), mesh_shape) # broad_shift_x = shift_x.reshape(-1, shift_x.shape[0]).broadcast_to(*mesh_shape) # broad_shift_y = shift_y.reshape(shift_y.shape[0], -1).broadcast_to(*mesh_shape) flatten_shift_x = broad_shift_x.flatten() flatten_shift_y = broad_shift_y.flatten() shifts = F.stack([flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y], axis=1) # flatten_shift_x = F.add_axis(broad_shift_x.reshape(-1), 1) # flatten_shift_y = F.add_axis(broad_shift_y.reshape(-1), 1) # shifts = F.concat( # [flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y,], # axis=1) return shifts def get_anchors_by_feature(self, featmap, stride): # shifts shape: [A, 4] shifts = self.get_center_offsets(featmap, stride) # plane_anchors shape: [B, 4], e.g. B=3 plane_anchors = self.get_plane_anchors(self.base_scale * stride) # all_anchors = shifts.repeat(1,3) + cell_anchors.flatten() all_anchors = F.expand_dims(plane_anchors, 0) + F.expand_dims(shifts, 1) all_anchors = all_anchors.reshape(-1, 4) return all_anchors def __call__(self, featmap, stride): return self.get_anchors_by_feature(featmap, stride)
[ "megengine.functional.linspace", "megengine.Tensor", "megengine.functional.stack", "megengine.functional.sqrt", "megengine.functional.expand_dims", "megengine.functional.concat" ]
[((364, 384), 'numpy.array', 'np.array', (['base_scale'], {}), '(base_scale)\n', (372, 384), True, 'import numpy as np\n'), ((939, 993), 'megengine.Tensor', 'Tensor', (['[0, 0, self.base_size - 1, self.base_size - 1]'], {}), '([0, 0, self.base_size - 1, self.base_size - 1])\n', (945, 993), False, 'from megengine import Tensor\n'), ((1231, 1250), 'megengine.functional.sqrt', 'F.sqrt', (['size_ratios'], {}), '(size_ratios)\n', (1237, 1250), True, 'import megengine.functional as F\n'), ((1490, 1510), 'megengine.functional.expand_dims', 'F.expand_dims', (['ws', '(1)'], {}), '(ws, 1)\n', (1503, 1510), True, 'import megengine.functional as F\n'), ((1524, 1544), 'megengine.functional.expand_dims', 'F.expand_dims', (['hs', '(1)'], {}), '(hs, 1)\n', (1537, 1544), True, 'import megengine.functional as F\n'), ((1684, 1802), 'megengine.functional.concat', 'F.concat', (['[x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), \n y_ctr + 0.5 * (hs - 1)]'], {'axis': '(1)'}), '([x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws -\n 1), y_ctr + 0.5 * (hs - 1)], axis=1)\n', (1692, 1802), True, 'import megengine.functional as F\n'), ((2826, 2916), 'megengine.functional.stack', 'F.stack', (['[flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y]'], {'axis': '(1)'}), '([flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y\n ], axis=1)\n', (2833, 2916), True, 'import megengine.functional as F\n'), ((2159, 2196), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_width - 1)', 'fm_width'], {}), '(0, fm_width - 1, fm_width)\n', (2169, 2196), True, 'import megengine.functional as F\n'), ((2224, 2263), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_height - 1)', 'fm_height'], {}), '(0, fm_height - 1, fm_height)\n', (2234, 2263), True, 'import megengine.functional as F\n'), ((3566, 3597), 'megengine.functional.expand_dims', 'F.expand_dims', (['plane_anchors', '(0)'], {}), '(plane_anchors, 0)\n', (3579, 3597), True, 'import megengine.functional as F\n'), ((3600, 3624), 'megengine.functional.expand_dims', 'F.expand_dims', (['shifts', '(1)'], {}), '(shifts, 1)\n', (3613, 3624), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import json import os from tqdm import tqdm import megengine as mge import megengine.distributed as dist from megengine.data import DataLoader from official.vision.detection.tools.utils import ( DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for testing", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument("-se", "--start_epoch", default=-1, type=int) parser.add_argument("-ee", "--end_epoch", default=-1, type=int) return parser def main(): # pylint: disable=import-outside-toplevel,too-many-branches,too-many-statements from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval parser = make_parser() args = parser.parse_args() current_network = import_from_file(args.file) cfg = current_network.Cfg() if args.weight_file: args.start_epoch = args.end_epoch = -1 else: if args.start_epoch == -1: args.start_epoch = cfg.max_epoch - 1 if args.end_epoch == -1: args.end_epoch = args.start_epoch assert 0 <= args.start_epoch <= args.end_epoch < cfg.max_epoch for epoch_num in range(args.start_epoch, args.end_epoch + 1): if args.weight_file: weight_file = args.weight_file else: weight_file = "log-of-{}/epoch_{}.pkl".format( os.path.basename(args.file).split(".")[0], epoch_num ) if args.devices > 1: dist_worker = dist.launcher(n_gpus=args.devices)(worker) result_list = dist_worker(current_network, weight_file, args.dataset_dir) result_list = sum(result_list, []) else: result_list = worker(current_network, weight_file, args.dataset_dir) all_results = DetEvaluator.format(result_list, cfg) if args.weight_file: json_path = "{}_{}.json".format( os.path.basename(args.file).split(".")[0], os.path.basename(args.weight_file).split(".")[0], ) else: json_path = "log-of-{}/epoch_{}.json".format( os.path.basename(args.file).split(".")[0], epoch_num ) all_results = json.dumps(all_results) with open(json_path, "w") as fo: fo.write(all_results) logger.info("Save results to %s, start evaluation!", json_path) eval_gt = COCO( os.path.join( args.dataset_dir, cfg.test_dataset["name"], cfg.test_dataset["ann_file"] ) ) eval_dt = eval_gt.loadRes(json_path) cocoEval = COCOeval(eval_gt, eval_dt, iouType="bbox") cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() metrics = [ "AP", "[email protected]", "[email protected]", "APs", "APm", "APl", "AR@1", "AR@10", "AR@100", "ARs", "ARm", "ARl", ] logger.info("mmAP".center(32, "-")) for i, m in enumerate(metrics): logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i]) logger.info("-" * 32) def worker(current_network, weight_file, dataset_dir): cfg = current_network.Cfg() cfg.backbone_pretrained = False model = current_network.Net(cfg) model.eval() state_dict = mge.load(weight_file) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] model.load_state_dict(state_dict) evaluator = DetEvaluator(model) test_loader = build_dataloader(dataset_dir, model.cfg) if dist.get_rank() == 0: test_loader = tqdm(test_loader) result_list = [] for data in test_loader: image, im_info = DetEvaluator.process_inputs( data[0][0], model.cfg.test_image_short_size, model.cfg.test_image_max_size, ) pred_res = evaluator.predict( image=mge.tensor(image), im_info=mge.tensor(im_info) ) result = { "pred_boxes": pred_res, "image_id": int(data[1][2][0].split(".")[0].split("_")[-1]), } result_list.append(result) return result_list # pylint: disable=unused-argument def build_dataloader(dataset_dir, cfg): val_dataset = PseudoDetectionDataset(length=5000, order=["image", "info"]) val_sampler = InferenceSampler(val_dataset, 1) val_dataloader = DataLoader(val_dataset, sampler=val_sampler, num_workers=2) return val_dataloader if __name__ == "__main__": main()
[ "megengine.get_logger", "megengine.distributed.get_rank", "megengine.data.DataLoader", "megengine.tensor", "megengine.distributed.launcher", "megengine.load" ]
[((691, 715), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (705, 715), True, 'import megengine as mge\n'), ((774, 799), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (797, 799), False, 'import argparse\n'), ((1656, 1683), 'official.vision.detection.tools.utils.import_from_file', 'import_from_file', (['args.file'], {}), '(args.file)\n', (1672, 1683), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((4286, 4307), 'megengine.load', 'mge.load', (['weight_file'], {}), '(weight_file)\n', (4294, 4307), True, 'import megengine as mge\n'), ((4444, 4463), 'official.vision.detection.tools.utils.DetEvaluator', 'DetEvaluator', (['model'], {}), '(model)\n', (4456, 4463), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((5235, 5295), 'official.vision.detection.tools.utils.PseudoDetectionDataset', 'PseudoDetectionDataset', ([], {'length': '(5000)', 'order': "['image', 'info']"}), "(length=5000, order=['image', 'info'])\n", (5257, 5295), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((5314, 5346), 'official.vision.detection.tools.utils.InferenceSampler', 'InferenceSampler', (['val_dataset', '(1)'], {}), '(val_dataset, 1)\n', (5330, 5346), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((5368, 5427), 'megengine.data.DataLoader', 'DataLoader', (['val_dataset'], {'sampler': 'val_sampler', 'num_workers': '(2)'}), '(val_dataset, sampler=val_sampler, num_workers=2)\n', (5378, 5427), False, 'from megengine.data import DataLoader\n'), ((2678, 2715), 'official.vision.detection.tools.utils.DetEvaluator.format', 'DetEvaluator.format', (['result_list', 'cfg'], {}), '(result_list, cfg)\n', (2697, 2715), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((3106, 3129), 'json.dumps', 'json.dumps', (['all_results'], {}), '(all_results)\n', (3116, 3129), False, 'import json\n'), ((3506, 3548), 'pycocotools.cocoeval.COCOeval', 'COCOeval', (['eval_gt', 'eval_dt'], {'iouType': '"""bbox"""'}), "(eval_gt, eval_dt, iouType='bbox')\n", (3514, 3548), False, 'from pycocotools.cocoeval import COCOeval\n'), ((4531, 4546), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4544, 4546), True, 'import megengine.distributed as dist\n'), ((4575, 4592), 'tqdm.tqdm', 'tqdm', (['test_loader'], {}), '(test_loader)\n', (4579, 4592), False, 'from tqdm import tqdm\n'), ((4669, 4776), 'official.vision.detection.tools.utils.DetEvaluator.process_inputs', 'DetEvaluator.process_inputs', (['data[0][0]', 'model.cfg.test_image_short_size', 'model.cfg.test_image_max_size'], {}), '(data[0][0], model.cfg.test_image_short_size,\n model.cfg.test_image_max_size)\n', (4696, 4776), False, 'from official.vision.detection.tools.utils import DetEvaluator, InferenceSampler, PseudoDetectionDataset, import_from_file\n'), ((3315, 3406), 'os.path.join', 'os.path.join', (['args.dataset_dir', "cfg.test_dataset['name']", "cfg.test_dataset['ann_file']"], {}), "(args.dataset_dir, cfg.test_dataset['name'], cfg.test_dataset[\n 'ann_file'])\n", (3327, 3406), False, 'import os\n'), ((2384, 2418), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': 'args.devices'}), '(n_gpus=args.devices)\n', (2397, 2418), True, 'import megengine.distributed as dist\n'), ((4876, 4893), 'megengine.tensor', 'mge.tensor', (['image'], {}), '(image)\n', (4886, 4893), True, 'import megengine as mge\n'), ((4915, 4934), 'megengine.tensor', 'mge.tensor', (['im_info'], {}), '(im_info)\n', (4925, 4934), True, 'import megengine as mge\n'), ((2261, 2288), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (2277, 2288), False, 'import os\n'), ((2806, 2833), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (2822, 2833), False, 'import os\n'), ((2865, 2899), 'os.path.basename', 'os.path.basename', (['args.weight_file'], {}), '(args.weight_file)\n', (2881, 2899), False, 'import os\n'), ((3017, 3044), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (3033, 3044), False, 'import os\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize("w_out", [8]) @pytest.mark.parametrize("k", [3, 5]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("dilation", [1, 2]) @pytest.mark.parametrize("groups", [1, 2]) @pytest.mark.parametrize("bias", [True, False]) def test_conv2d(w_in, w_out, k, stride, dilation, groups, bias): m = conv2d(w_in, w_out, k, stride=stride, dilation=dilation, groups=groups, bias=bias) assert isinstance(m, M.Conv2d) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("drop_prob", [0.0, 0.5]) def test_drop_path(drop_prob): m = DropPath(drop_prob) assert isinstance(m, M.Module) m.training = True m(mge.random.normal(size=(2, 4, 8, 8))) m.training = False x = np.random.rand(2, 4, 8, 8).astype("float32") y = m(mge.Tensor(x)).numpy() np.testing.assert_allclose(y, x, rtol=1e-4, atol=1e-6) @pytest.mark.parametrize("shape", [1, (7, 7)]) def test_gap2d(shape): m = gap2d(shape) assert isinstance(m, M.AdaptiveAvgPool2d) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize("w_out", [8]) @pytest.mark.parametrize("bias", [True, False]) def test_linear(w_in, w_out, bias): m = linear(w_in, w_out, bias=bias) assert isinstance(m, M.Linear) m(mge.random.normal(size=(2, 8, 4))) # TODO: "GN", "IN" and "LN" need different hyper-parameters @pytest.mark.parametrize("name", [None, "BN", "SyncBN"]) @pytest.mark.parametrize("w_in", [4]) def test_norm2d(name, w_in): m = norm2d(name, w_in) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("k", [3, 5]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("name", ["avg", "max"]) def test_pool2d(k, stride, name): m = pool2d(k, stride=stride, name=name) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("w_in", [8]) @pytest.mark.parametrize("w_se", [4]) @pytest.mark.parametrize("act_name", ["relu", "silu"]) def test_se(w_in, w_se, act_name): m = SE(w_in, w_se, act_name) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 8, 8, 8)))
[ "megengine.random.normal", "megengine.Tensor" ]
[((251, 287), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (274, 287), False, 'import pytest\n'), ((289, 326), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[8]'], {}), "('w_out', [8])\n", (312, 326), False, 'import pytest\n'), ((328, 364), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""k"""', '[3, 5]'], {}), "('k', [3, 5])\n", (351, 364), False, 'import pytest\n'), ((366, 407), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (389, 407), False, 'import pytest\n'), ((409, 452), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dilation"""', '[1, 2]'], {}), "('dilation', [1, 2])\n", (432, 452), False, 'import pytest\n'), ((454, 495), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""groups"""', '[1, 2]'], {}), "('groups', [1, 2])\n", (477, 495), False, 'import pytest\n'), ((497, 543), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (520, 543), False, 'import pytest\n'), ((783, 831), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""drop_prob"""', '[0.0, 0.5]'], {}), "('drop_prob', [0.0, 0.5])\n", (806, 831), False, 'import pytest\n'), ((1165, 1210), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[1, (7, 7)]'], {}), "('shape', [1, (7, 7)])\n", (1188, 1210), False, 'import pytest\n'), ((1349, 1385), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (1372, 1385), False, 'import pytest\n'), ((1387, 1424), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[8]'], {}), "('w_out', [8])\n", (1410, 1424), False, 'import pytest\n'), ((1426, 1472), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (1449, 1472), False, 'import pytest\n'), ((1688, 1743), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "[None, 'BN', 'SyncBN']"], {}), "('name', [None, 'BN', 'SyncBN'])\n", (1711, 1743), False, 'import pytest\n'), ((1745, 1781), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (1768, 1781), False, 'import pytest\n'), ((1921, 1957), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""k"""', '[3, 5]'], {}), "('k', [3, 5])\n", (1944, 1957), False, 'import pytest\n'), ((1959, 2000), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (1982, 2000), False, 'import pytest\n'), ((2002, 2049), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['avg', 'max']"], {}), "('name', ['avg', 'max'])\n", (2025, 2049), False, 'import pytest\n'), ((2211, 2247), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[8]'], {}), "('w_in', [8])\n", (2234, 2247), False, 'import pytest\n'), ((2249, 2285), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_se"""', '[4]'], {}), "('w_se', [4])\n", (2272, 2285), False, 'import pytest\n'), ((2287, 2340), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu', 'silu']"], {}), "('act_name', ['relu', 'silu'])\n", (2310, 2340), False, 'import pytest\n'), ((617, 703), 'basecls.layers.conv2d', 'conv2d', (['w_in', 'w_out', 'k'], {'stride': 'stride', 'dilation': 'dilation', 'groups': 'groups', 'bias': 'bias'}), '(w_in, w_out, k, stride=stride, dilation=dilation, groups=groups,\n bias=bias)\n', (623, 703), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((871, 890), 'basecls.layers.DropPath', 'DropPath', (['drop_prob'], {}), '(drop_prob)\n', (879, 890), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1107, 1164), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['y', 'x'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(y, x, rtol=0.0001, atol=1e-06)\n', (1133, 1164), True, 'import numpy as np\n'), ((1242, 1254), 'basecls.layers.gap2d', 'gap2d', (['shape'], {}), '(shape)\n', (1247, 1254), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1517, 1547), 'basecls.layers.linear', 'linear', (['w_in', 'w_out'], {'bias': 'bias'}), '(w_in, w_out, bias=bias)\n', (1523, 1547), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1819, 1837), 'basecls.layers.norm2d', 'norm2d', (['name', 'w_in'], {}), '(name, w_in)\n', (1825, 1837), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((2092, 2127), 'basecls.layers.pool2d', 'pool2d', (['k'], {'stride': 'stride', 'name': 'name'}), '(k, stride=stride, name=name)\n', (2098, 2127), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((2384, 2408), 'basecls.layers.SE', 'SE', (['w_in', 'w_se', 'act_name'], {}), '(w_in, w_se, act_name)\n', (2386, 2408), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((742, 778), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (759, 778), True, 'import megengine as mge\n'), ((955, 991), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (972, 991), True, 'import megengine as mge\n'), ((1308, 1344), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (1325, 1344), True, 'import megengine as mge\n'), ((1590, 1623), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 8, 4)'}), '(size=(2, 8, 4))\n', (1607, 1623), True, 'import megengine as mge\n'), ((1880, 1916), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (1897, 1916), True, 'import megengine as mge\n'), ((2170, 2206), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (2187, 2206), True, 'import megengine as mge\n'), ((2451, 2487), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 8, 8, 8)'}), '(size=(2, 8, 8, 8))\n', (2468, 2487), True, 'import megengine as mge\n'), ((1025, 1051), 'numpy.random.rand', 'np.random.rand', (['(2)', '(4)', '(8)', '(8)'], {}), '(2, 4, 8, 8)\n', (1039, 1051), True, 'import numpy as np\n'), ((1080, 1093), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1090, 1093), True, 'import megengine as mge\n')]
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_min_max_observer(): word_size = get_device_count_by_fork("gpu") x = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() @dist.launcher def worker(): rank = dist.get_rank() m = SyncMinMaxObserver() y = mge.tensor(x[rank * 3 : (rank + 1) * 3]) m(y) assert m.min_val == np_min and m.max_val == np_max worker() @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_exponential_moving_average_observer(): word_size = get_device_count_by_fork("gpu") t = np.random.rand() x1 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") x2 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) @dist.launcher def worker(): rank = dist.get_rank() m = SyncExponentialMovingAverageObserver(momentum=t) y1 = mge.tensor(x1[rank * 3 : (rank + 1) * 3]) y2 = mge.tensor(x2[rank * 3 : (rank + 1) * 3]) m(y1) m(y2) np.testing.assert_allclose(m.min_val.numpy(), expected_min, atol=1e-6) np.testing.assert_allclose(m.max_val.numpy(), expected_max, atol=1e-6) worker()
[ "megengine.quantization.observer.Observer", "megengine.tensor", "megengine.distributed.get_rank", "megengine.quantization.observer.SyncMinMaxObserver", "megengine.distributed.helper.get_device_count_by_fork", "megengine.quantization.observer.PassiveObserver", "megengine.quantization.observer.ExponentialMovingAverageObserver", "megengine.quantization.observer.SyncExponentialMovingAverageObserver", "megengine.quantization.observer.MinMaxObserver" ]
[((599, 612), 'megengine.tensor', 'mge.tensor', (['x'], {}), '(x)\n', (609, 612), True, 'import megengine as mge\n'), ((621, 637), 'megengine.quantization.observer.MinMaxObserver', 'MinMaxObserver', ([], {}), '()\n', (635, 637), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((821, 837), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (835, 837), True, 'import numpy as np\n'), ((1060, 1104), 'megengine.quantization.observer.ExponentialMovingAverageObserver', 'ExponentialMovingAverageObserver', ([], {'momentum': 't'}), '(momentum=t)\n', (1092, 1104), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1392, 1424), 'megengine.quantization.observer.PassiveObserver', 'PassiveObserver', (['q_dict', '"""qint8"""'], {}), "(q_dict, 'qint8')\n", (1407, 1424), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1959, 1990), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1983, 1990), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((2730, 2761), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2754, 2761), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((2770, 2786), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2784, 2786), True, 'import numpy as np\n'), ((417, 441), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (430, 441), False, 'import pytest\n'), ((451, 468), 'megengine.quantization.observer.Observer', 'Observer', (['"""qint8"""'], {}), "('qint8')\n", (459, 468), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1111, 1143), 'megengine.tensor', 'mge.tensor', (['x1'], {'dtype': 'np.float32'}), '(x1, dtype=np.float32)\n', (1121, 1143), True, 'import megengine as mge\n'), ((1151, 1183), 'megengine.tensor', 'mge.tensor', (['x2'], {'dtype': 'np.float32'}), '(x2, dtype=np.float32)\n', (1161, 1183), True, 'import megengine as mge\n'), ((1367, 1382), 'megengine.tensor', 'mge.tensor', (['(1.0)'], {}), '(1.0)\n', (1377, 1382), True, 'import megengine as mge\n'), ((2147, 2162), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2160, 2162), True, 'import megengine.distributed as dist\n'), ((2175, 2195), 'megengine.quantization.observer.SyncMinMaxObserver', 'SyncMinMaxObserver', ([], {}), '()\n', (2193, 2195), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((2208, 2246), 'megengine.tensor', 'mge.tensor', (['x[rank * 3:(rank + 1) * 3]'], {}), '(x[rank * 3:(rank + 1) * 3])\n', (2218, 2246), True, 'import megengine as mge\n'), ((1610, 1627), 'platform.system', 'platform.system', ([], {}), '()\n', (1625, 1627), False, 'import platform\n'), ((1710, 1727), 'platform.system', 'platform.system', ([], {}), '()\n', (1725, 1727), False, 'import platform\n'), ((1807, 1838), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1831, 1838), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((3078, 3093), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3091, 3093), True, 'import megengine.distributed as dist\n'), ((3106, 3154), 'megengine.quantization.observer.SyncExponentialMovingAverageObserver', 'SyncExponentialMovingAverageObserver', ([], {'momentum': 't'}), '(momentum=t)\n', (3142, 3154), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((3168, 3207), 'megengine.tensor', 'mge.tensor', (['x1[rank * 3:(rank + 1) * 3]'], {}), '(x1[rank * 3:(rank + 1) * 3])\n', (3178, 3207), True, 'import megengine as mge\n'), ((3223, 3262), 'megengine.tensor', 'mge.tensor', (['x2[rank * 3:(rank + 1) * 3]'], {}), '(x2[rank * 3:(rank + 1) * 3])\n', (3233, 3262), True, 'import megengine as mge\n'), ((2362, 2379), 'platform.system', 'platform.system', ([], {}), '()\n', (2377, 2379), False, 'import platform\n'), ((2462, 2479), 'platform.system', 'platform.system', ([], {}), '()\n', (2477, 2479), False, 'import platform\n'), ((2559, 2590), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2583, 2590), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((508, 534), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (522, 534), True, 'import numpy as np\n'), ((847, 873), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (861, 873), True, 'import numpy as np\n'), ((901, 927), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (915, 927), True, 'import numpy as np\n'), ((1566, 1581), 'megengine.tensor', 'mge.tensor', (['(2.0)'], {}), '(2.0)\n', (1576, 1581), True, 'import megengine as mge\n'), ((1999, 2037), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2013, 2037), True, 'import numpy as np\n'), ((2796, 2834), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2810, 2834), True, 'import numpy as np\n'), ((2862, 2900), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2876, 2900), True, 'import numpy as np\n')]
import random from megengine.data.transform import RandomResizedCrop as mge_RRC from megengine.data.transform import Resize as mge_resize from ..registry import PIPELINES from edit.utils import interp_codes @PIPELINES.register_module() class Resize(object): """ Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR. """ def __init__(self, keys, size, interpolation='bilinear'): assert interpolation in interp_codes self.keys = keys self.size = size self.interpolation_str = interpolation self.resize = mge_resize(output_size=self.size, interpolation=interp_codes[interpolation]) def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ for key in self.keys: if isinstance(results[key], list): results[key] = [ self.resize.apply(v) for v in results[key] ] else: results[key] = self.resize.apply(results[key]) return results def __repr__(self): interpolate_str = self.interpolation_str format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', interpolation={0})'.format(interpolate_str) return format_string @PIPELINES.register_module() class RandomResizedCrop(object): """ Crop the input data to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. After applying crop transfrom, the input data will be resized to given size. Args: output_size (int|list|tuple): Target size of output image, with (height, width) shape. scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0) ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) interpolation: 'nearest': cv2.INTER_NEAREST, 'bilinear': cv2.INTER_LINEAR, 'bicubic': cv2.INTER_CUBIC, 'area': cv2.INTER_AREA, 'lanczos': cv2.INTER_LANCZOS4 """ def __init__(self, keys, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', do_prob = 0.5): assert interpolation in interp_codes self.keys = keys self.size = output_size self.interpolation_str = interpolation self.scale = scale self.ratio = ratio self.rrc = mge_RRC(output_size=output_size, scale_range=scale, ratio_range=ratio, interpolation=interp_codes[interpolation]) self.do_prob = do_prob def __call__(self, results): """Call function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ if random.random() < self.do_prob: for key in self.keys: if isinstance(results[key], list): results[key] = [ self.rrc.apply(v) for v in results[key] ] else: results[key] = self.rrc.apply(results[key]) return results else: return results def __repr__(self): interpolate_str = self.interpolation_str format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string
[ "megengine.data.transform.Resize", "megengine.data.transform.RandomResizedCrop" ]
[((935, 1011), 'megengine.data.transform.Resize', 'mge_resize', ([], {'output_size': 'self.size', 'interpolation': 'interp_codes[interpolation]'}), '(output_size=self.size, interpolation=interp_codes[interpolation])\n', (945, 1011), True, 'from megengine.data.transform import Resize as mge_resize\n'), ((3160, 3277), 'megengine.data.transform.RandomResizedCrop', 'mge_RRC', ([], {'output_size': 'output_size', 'scale_range': 'scale', 'ratio_range': 'ratio', 'interpolation': 'interp_codes[interpolation]'}), '(output_size=output_size, scale_range=scale, ratio_range=ratio,\n interpolation=interp_codes[interpolation])\n', (3167, 3277), True, 'from megengine.data.transform import RandomResizedCrop as mge_RRC\n'), ((3592, 3607), 'random.random', 'random.random', ([], {}), '()\n', (3605, 3607), False, 'import random\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import bisect import datetime import math import os import pickle import time from typing import Optional import megengine as mge import megengine.distributed as dist import megengine.module as M from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import ( Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime, ) from loguru import logger from tensorboardX import SummaryWriter from basecls.layers import compute_precise_bn_stats from basecls.models import sync_model from basecls.utils import default_logging, registers from .tester import ClsTester __all__ = [ "CheckpointHook", "EvalHook", "LoggerHook", "LRSchedulerHook", "PreciseBNHook", "ResumeHook", "TensorboardHook", ] def _create_checkpoint(trainer: BaseTrainer, save_dir: str) -> Checkpoint: """Create a checkpoint for save and resume""" model = trainer.model ema = trainer.ema ckpt_kws = {"ema": ema} if ema is not None else {} optim = trainer.solver.optimizer scaler = trainer.solver.grad_scaler progress = trainer.progress ckpt = Checkpoint( save_dir, model, tag_file=None, optimizer=optim, scaler=scaler, progress=progress, **ckpt_kws, ) return ckpt class CheckpointHook(BaseHook): """Hook for managing checkpoints during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. save_every_n_epoch: interval for saving checkpoint. Default: ``1`` """ def __init__(self, save_dir: str = None, save_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.save_every_n_epoch = save_every_n_epoch def after_epoch(self): progress = self.trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) ckpt.save("latest.pkl") if progress.epoch % self.save_every_n_epoch == 0: progress_str = progress.progress_str_list() save_name = "_".join(progress_str[:-1]) + ".pkl" ckpt.save(save_name) logger.info(f"Save checkpoint {save_name} to {self.save_dir}") def after_train(self): # NOTE: usually final ema is not the best so we dont save it mge.save( {"state_dict": self.trainer.model.state_dict()}, os.path.join(self.save_dir, "dumped_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) class EvalHook(BaseHook): """Hook for evaluating during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. eval_every_n_epoch: interval for evaluating. Default: ``1`` """ def __init__(self, save_dir: str = None, eval_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.eval_every_n_epoch = eval_every_n_epoch self.best_acc1 = 0 self.best_ema_acc1 = 0 def after_epoch(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema progress = trainer.progress if progress.epoch % self.eval_every_n_epoch == 0 and progress.epoch != progress.max_epoch: self.test(cfg, model, ema) def after_train(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema # TODO: actually useless maybe when precise_bn is on sync_model(model) if ema is not None: sync_model(ema) self.test(cfg, model, ema) def test(self, cfg: ConfigDict, model: M.Module, ema: Optional[M.Module] = None): dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) tester = ClsTester(cfg, model, dataloader) acc1, _ = tester.test() if acc1 > self.best_acc1: self.best_acc1 = acc1 if dist.get_rank() == 0: mge.save( {"state_dict": model.state_dict(), "acc1": self.best_acc1}, os.path.join(self.save_dir, "best_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, " f"Best Test Acc@1: {self.best_acc1:.3f}" ) if ema is None: return tester_ema = ClsTester(cfg, ema, dataloader) ema_acc1, _ = tester_ema.test() if ema_acc1 > self.best_ema_acc1: self.best_ema_acc1 = ema_acc1 if dist.get_rank() == 0: mge.save( {"state_dict": ema.state_dict(), "acc1": self.best_ema_acc1}, os.path.join(self.save_dir, "best_ema_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, " f"Best EMA Acc@1: {self.best_ema_acc1:.3f}" ) class LoggerHook(BaseHook): """Hook for logging during training. Effect during ``before_train``, ``after_train``, ``before_iter`` and ``after_iter`` procedure. Args: log_every_n_iter: interval for logging. Default: ``20`` """ def __init__(self, log_every_n_iter: int = 20): super().__init__() self.log_every_n_iter = log_every_n_iter self.meter = MeterBuffer(self.log_every_n_iter) def before_train(self): trainer = self.trainer progress = trainer.progress default_logging(trainer.cfg, trainer.model) logger.info(f"Starting training from epoch {progress.epoch}, iteration {progress.iter}") self.start_training_time = time.perf_counter() def after_train(self): total_training_time = time.perf_counter() - self.start_training_time total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( "Total training time: {} ({:.4f} s / iter)".format( total_time_str, self.meter["iters_time"].global_avg ) ) def before_iter(self): self.iter_start_time = time.perf_counter() def after_iter(self): single_iter_time = time.perf_counter() - self.iter_start_time delta_time = get_last_call_deltatime() if delta_time is None: delta_time = single_iter_time self.meter.update( { "iters_time": single_iter_time, # to get global average iter time "eta_iter_time": delta_time, # to get ETA time "extra_time": delta_time - single_iter_time, # to get extra time } ) trainer = self.trainer progress = trainer.progress epoch_id, iter_id = progress.epoch, progress.iter max_epoch, max_iter = progress.max_epoch, progress.max_iter if iter_id % self.log_every_n_iter == 0 or (iter_id == 1 and epoch_id == 1): log_str_list = [] # step info string log_str_list.append(str(progress)) # loss string log_str_list.append(self.get_loss_str(trainer.meter)) # stat string log_str_list.append(self.get_stat_str(trainer.meter)) # other training info like learning rate. log_str_list.append(self.get_train_info_str()) # memory useage. log_str_list.append(self.get_memory_str(trainer.meter)) # time string left_iters = max_iter - iter_id + (max_epoch - epoch_id) * max_iter time_str = self.get_time_str(left_iters) log_str_list.append(time_str) # filter empty strings log_str_list = [s for s in log_str_list if len(s) > 0] log_str = ", ".join(log_str_list) logger.info(log_str) # reset meters in trainer trainer.meter.reset() def get_loss_str(self, meter): """Get loss information during trainging process.""" loss_dict = meter.get_filtered_meter(filter_key="loss") loss_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in loss_dict.items()] ) return loss_str def get_stat_str(self, meter): """Get stat information during trainging process.""" stat_dict = meter.get_filtered_meter(filter_key="stat") stat_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in stat_dict.items()] ) return stat_str def get_memory_str(self, meter): """Get memory information during trainging process.""" def mem_in_Mb(mem_value): return math.ceil(mem_value / 1024 / 1024) mem_dict = meter.get_filtered_meter(filter_key="memory") mem_str = ", ".join( [ f"{name}:{mem_in_Mb(value.latest)}({mem_in_Mb(value.avg)})Mb" for name, value in mem_dict.items() ] ) return mem_str def get_train_info_str(self): """Get training process related information such as learning rate.""" # extra info to display, such as learning rate trainer = self.trainer lr = trainer.solver.optimizer.param_groups[0]["lr"] lr_str = f"lr:{lr:.3e}" loss_scale = trainer.solver.grad_scaler.scale_factor loss_scale_str = f", amp_loss_scale:{loss_scale:.1f}" if trainer.cfg.amp.enabled else "" return lr_str + loss_scale_str def get_time_str(self, left_iters: int) -> str: """Get time related information sucn as data_time, train_time, ETA and so on.""" # time string trainer = self.trainer time_dict = trainer.meter.get_filtered_meter(filter_key="time") train_time_str = ", ".join( [f"{name}:{value.avg:.3f}s" for name, value in time_dict.items()] ) train_time_str += ", extra_time:{:.3f}s, ".format(self.meter["extra_time"].avg) eta_seconds = self.meter["eta_iter_time"].global_avg * left_iters eta_string = "ETA:{}".format(datetime.timedelta(seconds=int(eta_seconds))) time_str = train_time_str + eta_string return time_str class LRSchedulerHook(BaseHook): """Hook for learning rate scheduling during training. Effect during ``before_epoch`` procedure. """ def before_epoch(self): trainer = self.trainer epoch_id = trainer.progress.epoch cfg = trainer.cfg.solver lr_factor = self.get_lr_factor(cfg, epoch_id) if epoch_id <= cfg.warmup_epochs: alpha = (epoch_id - 1) / cfg.warmup_epochs lr_factor *= cfg.warmup_factor * (1 - alpha) + alpha scaled_lr = self.total_lr * lr_factor for param_group in trainer.solver.optimizer.param_groups: param_group["lr"] = scaled_lr def get_lr_factor(self, cfg: ConfigDict, epoch_id: int) -> float: """Calculate learning rate factor. It supports ``"step"``, ``"linear"``, ``"cosine"``, ``"exp"``, and ``"rel_exp"`` schedule. Args: cfg: config for training. epoch_id: current epoch. Returns: Learning rate factor. """ if cfg.lr_schedule == "step": return cfg.lr_decay_factor ** bisect.bisect_left(cfg.lr_decay_steps, epoch_id) elif cfg.lr_schedule == "linear": alpha = 1 - (epoch_id - 1) / cfg.max_epoch return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "cosine": alpha = 0.5 * (1 + math.cos(math.pi * (epoch_id - 1) / cfg.max_epoch)) return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "exp": return cfg.lr_decay_factor ** (epoch_id - 1) elif cfg.lr_schedule == "rel_exp": if cfg.lr_min_factor <= 0: raise ValueError( "Exponential lr schedule requires lr_min_factor to be greater than 0" ) return cfg.lr_min_factor ** ((epoch_id - 1) / cfg.max_epoch) else: raise NotImplementedError(f"Learning rate schedule '{cfg.lr_schedule}' not supported") @cached_property def total_lr(self) -> float: """Total learning rate.""" cfg = self.trainer.cfg.solver total_lr = cfg.basic_lr * dist.get_world_size() # linear scaling rule return total_lr class PreciseBNHook(BaseHook): """Hook for precising BN during training. Effect during ``after_epoch`` procedure. Args: precise_every_n_epoch: interval for precising BN. Default: ``1`` """ def __init__(self, precise_every_n_epoch: int = 1): super().__init__() self.precise_every_n_epoch = precise_every_n_epoch def before_train(self): if self.precise_every_n_epoch == -1: self.precise_every_n_epoch = self.trainer.progress.max_epoch def after_epoch(self): trainer = self.trainer if ( trainer.progress.epoch % self.precise_every_n_epoch == 0 and trainer.cfg.bn.num_samples_precise > 0 ): logger.info(f"Apply Precising BN at epoch{trainer.progress.epoch}") compute_precise_bn_stats(trainer.cfg, trainer.model, trainer.dataloader) if trainer.ema is not None: logger.info(f"Apply Precising BN for EMA at epoch{trainer.progress.epoch}") compute_precise_bn_stats(trainer.cfg, trainer.ema, trainer.dataloader) class ResumeHook(BaseHook): """Hook for resuming training process. Effect during ``before_train`` procedure. Args: save_dir: checkpoint directory. resume: enable resume or not. Default: ``False`` """ def __init__(self, save_dir: int = None, resume: bool = False): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.resume = resume def before_train(self): trainer = self.trainer if self.resume: progress = trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) filename = ckpt.get_checkpoint_file("latest.pkl") logger.info(f"Load checkpoint from {filename}") ckpt.resume(filename) # since ckpt is dumped after every epoch, # resume training requires epoch + 1 and set iter to 1 progress.epoch += 1 progress.iter = 1 class TensorboardHook(BaseHook): """Hook for tensorboard during training. Effect during ``before_train``, ``after_train`` and ``after_iter`` procedure. Args: log_dir: tensorboard directory. log_every_n_iter: interval for logging. Default: ``20`` scalar_type: statistic to record, supports ``"latest"``, ``"avg"``, ``"global_avg"`` and ``"median"``. Default: ``"latest"`` """ def __init__(self, log_dir: str, log_every_n_iter: int = 20, scalar_type: str = "latest"): super().__init__() if scalar_type not in ("latest", "avg", "global_avg", "median"): raise ValueError(f"Tensorboard scalar type '{scalar_type}' not supported") ensure_dir(log_dir) self.log_dir = log_dir self.log_every_n_iter = log_every_n_iter self.scalar_type = scalar_type def before_train(self): self.writer = SummaryWriter(self.log_dir) def after_train(self): self.writer.close() def after_iter(self): trainer = self.trainer epoch_id, iter_id = trainer.progress.epoch, trainer.progress.iter if iter_id % self.log_every_n_iter == 0 or (iter_id == 1 and epoch_id == 1): self.write(context=trainer) def write(self, context): cur_iter = self.calc_iter(context.progress) for key, meter in context.meter.items(): value = getattr(meter, self.scalar_type, meter.latest) for prefix in ("loss", "stat", "time", "memory"): if prefix in key: key = f"{prefix}/{key}" break self.writer.add_scalar(key, value, cur_iter) # write lr into tensorboard lr = context.solver.optimizer.param_groups[0]["lr"] self.writer.add_scalar("lr", lr, cur_iter) # write loss_scale into tensorboard if context.cfg.amp.enabled: loss_scale = context.solver.grad_scaler.scale_factor self.writer.add_scalar("amp_loss_scale", loss_scale, cur_iter) @classmethod def calc_iter(cls, progress): return (progress.epoch - 1) * progress.max_iter + progress.iter - 1
[ "megengine.distributed.get_rank", "megengine.distributed.get_world_size" ]
[((1244, 1353), 'basecore.utils.Checkpoint', 'Checkpoint', (['save_dir', 'model'], {'tag_file': 'None', 'optimizer': 'optim', 'scaler': 'scaler', 'progress': 'progress'}), '(save_dir, model, tag_file=None, optimizer=optim, scaler=scaler,\n progress=progress, **ckpt_kws)\n', (1254, 1353), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((1828, 1848), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (1838, 1848), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((3059, 3079), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (3069, 3079), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((3749, 3766), 'basecls.models.sync_model', 'sync_model', (['model'], {}), '(model)\n', (3759, 3766), False, 'from basecls.models import sync_model\n'), ((4603, 4728), 'loguru.logger.info', 'logger.info', (['f"""Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, Best Test Acc@1: {self.best_acc1:.3f}"""'], {}), "(\n f'Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, Best Test Acc@1: {self.best_acc1:.3f}'\n )\n", (4614, 4728), False, 'from loguru import logger\n'), ((5284, 5415), 'loguru.logger.info', 'logger.info', (['f"""Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, Best EMA Acc@1: {self.best_ema_acc1:.3f}"""'], {}), "(\n f'Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, Best EMA Acc@1: {self.best_ema_acc1:.3f}'\n )\n", (5295, 5415), False, 'from loguru import logger\n'), ((5848, 5882), 'basecore.utils.MeterBuffer', 'MeterBuffer', (['self.log_every_n_iter'], {}), '(self.log_every_n_iter)\n', (5859, 5882), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((5988, 6031), 'basecls.utils.default_logging', 'default_logging', (['trainer.cfg', 'trainer.model'], {}), '(trainer.cfg, trainer.model)\n', (6003, 6031), False, 'from basecls.utils import default_logging, registers\n'), ((6041, 6139), 'loguru.logger.info', 'logger.info', (['f"""Starting training from epoch {progress.epoch}, iteration {progress.iter}"""'], {}), "(\n f'Starting training from epoch {progress.epoch}, iteration {progress.iter}'\n )\n", (6052, 6139), False, 'from loguru import logger\n'), ((6166, 6185), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6183, 6185), False, 'import time\n'), ((6605, 6624), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6622, 6624), False, 'import time\n'), ((6744, 6769), 'basecore.utils.get_last_call_deltatime', 'get_last_call_deltatime', ([], {}), '()\n', (6767, 6769), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((14390, 14410), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (14400, 14410), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((15725, 15744), 'basecore.utils.ensure_dir', 'ensure_dir', (['log_dir'], {}), '(log_dir)\n', (15735, 15744), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((15915, 15942), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['self.log_dir'], {}), '(self.log_dir)\n', (15928, 15942), False, 'from tensorboardX import SummaryWriter\n'), ((2320, 2382), 'loguru.logger.info', 'logger.info', (['f"""Save checkpoint {save_name} to {self.save_dir}"""'], {}), "(f'Save checkpoint {save_name} to {self.save_dir}')\n", (2331, 2382), False, 'from loguru import logger\n'), ((2571, 2618), 'os.path.join', 'os.path.join', (['self.save_dir', '"""dumped_model.pkl"""'], {}), "(self.save_dir, 'dumped_model.pkl')\n", (2583, 2618), False, 'import os\n'), ((3807, 3822), 'basecls.models.sync_model', 'sync_model', (['ema'], {}), '(ema)\n', (3817, 3822), False, 'from basecls.models import sync_model\n'), ((6244, 6263), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6261, 6263), False, 'import time\n'), ((6320, 6367), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'total_training_time'}), '(seconds=total_training_time)\n', (6338, 6367), False, 'import datetime\n'), ((6679, 6698), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6696, 6698), False, 'import time\n'), ((8288, 8308), 'loguru.logger.info', 'logger.info', (['log_str'], {}), '(log_str)\n', (8299, 8308), False, 'from loguru import logger\n'), ((9181, 9215), 'math.ceil', 'math.ceil', (['(mem_value / 1024 / 1024)'], {}), '(mem_value / 1024 / 1024)\n', (9190, 9215), False, 'import math\n'), ((12883, 12904), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (12902, 12904), True, 'import megengine.distributed as dist\n'), ((13678, 13745), 'loguru.logger.info', 'logger.info', (['f"""Apply Precising BN at epoch{trainer.progress.epoch}"""'], {}), "(f'Apply Precising BN at epoch{trainer.progress.epoch}')\n", (13689, 13745), False, 'from loguru import logger\n'), ((13758, 13830), 'basecls.layers.compute_precise_bn_stats', 'compute_precise_bn_stats', (['trainer.cfg', 'trainer.model', 'trainer.dataloader'], {}), '(trainer.cfg, trainer.model, trainer.dataloader)\n', (13782, 13830), False, 'from basecls.layers import compute_precise_bn_stats\n'), ((14738, 14785), 'loguru.logger.info', 'logger.info', (['f"""Load checkpoint from {filename}"""'], {}), "(f'Load checkpoint from {filename}')\n", (14749, 14785), False, 'from loguru import logger\n'), ((3966, 4006), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (3991, 4006), False, 'from basecls.utils import default_logging, registers\n'), ((4320, 4335), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4333, 4335), True, 'import megengine.distributed as dist\n'), ((4995, 5010), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5008, 5010), True, 'import megengine.distributed as dist\n'), ((11802, 11850), 'bisect.bisect_left', 'bisect.bisect_left', (['cfg.lr_decay_steps', 'epoch_id'], {}), '(cfg.lr_decay_steps, epoch_id)\n', (11820, 11850), False, 'import bisect\n'), ((13887, 13962), 'loguru.logger.info', 'logger.info', (['f"""Apply Precising BN for EMA at epoch{trainer.progress.epoch}"""'], {}), "(f'Apply Precising BN for EMA at epoch{trainer.progress.epoch}')\n", (13898, 13962), False, 'from loguru import logger\n'), ((13979, 14049), 'basecls.layers.compute_precise_bn_stats', 'compute_precise_bn_stats', (['trainer.cfg', 'trainer.ema', 'trainer.dataloader'], {}), '(trainer.cfg, trainer.ema, trainer.dataloader)\n', (14003, 14049), False, 'from basecls.layers import compute_precise_bn_stats\n'), ((4468, 4513), 'os.path.join', 'os.path.join', (['self.save_dir', '"""best_model.pkl"""'], {}), "(self.save_dir, 'best_model.pkl')\n", (4480, 4513), False, 'import os\n'), ((5145, 5194), 'os.path.join', 'os.path.join', (['self.save_dir', '"""best_ema_model.pkl"""'], {}), "(self.save_dir, 'best_ema_model.pkl')\n", (5157, 5194), False, 'import os\n'), ((12092, 12142), 'math.cos', 'math.cos', (['(math.pi * (epoch_id - 1) / cfg.max_epoch)'], {}), '(math.pi * (epoch_id - 1) / cfg.max_epoch)\n', (12100, 12142), False, 'import math\n')]
import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import math from config import config from backbone.resnet50 import ResNet50 from module.generate_anchors import generate_anchors from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr from det_opr.utils import get_padded_tensor from rpn_anchor_target_opr import rpn_anchor_target_opr from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss import pdb class RetinaNetAnchorV2(M.Module): def __init__(self): super().__init__() def generate_anchors_opr(self, fm_3x3, fm_stride, anchor_scales=(8, 16, 32, 64, 128), anchor_ratios=(1, 2, 3), base_size = 4): np_anchors = generate_anchors( base_size=base_size, ratios=np.array(anchor_ratios), scales=np.array(anchor_scales)) device = fm_3x3.device anchors = mge.tensor(np_anchors).to(device) height, width = fm_3x3.shape[2], fm_3x3.shape[3] shift_x = F.linspace(0, width-1, width).to(device) * fm_stride shift_y = F.linspace(0, height -1, height).to(device) * fm_stride broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), (height, width)).flatten() broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), (height, width)).flatten() shifts = F.stack([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1) c = anchors.shape[1] all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts, axis=1) all_anchors = all_anchors.reshape(-1, c).detach() return all_anchors def forward(self, fpn_fms): all_anchors_list = [] fm_stride = [8, 16, 32, 64, 128] fm_stride.reverse() for i, fm_3x3 in enumerate(fpn_fms): anchor_scales = np.array(config.anchor_base_scale) * fm_stride[i] all_anchors = self.generate_anchors_opr(fm_3x3, fm_stride[i], anchor_scales, config.anchor_aspect_ratios, base_size = 4) all_anchors_list.append(all_anchors) return all_anchors_list class Network(M.Module): def __init__(self): super().__init__() # ----------------------- build the backbone ------------------------ # self.resnet50 = ResNet50() # ------------ freeze the weights of resnet stage1 and stage 2 ------ # if config.backbone_freeze_at >= 1: for p in self.resnet50.conv1.parameters(): # p.requires_grad = False p = p.detach() if config.backbone_freeze_at >= 2: for p in self.resnet50.layer1.parameters(): # p.requires_grad = False p = p.detach() # -------------------------- build the FPN -------------------------- # self.backbone = FPN(self.resnet50) # -------------------------- build the RPN -------------------------- # # self.RPN = RPN(config.rpn_channel) self.head = RetinaNetHead() # -------------------------- buid the anchor generator -------------- # self.anchor_generator = RetinaNetAnchorV2() # -------------------------- buid the criteria ---------------------- # self.criteria = RetinaNetCriteriaV2() # -------------------------- input Tensor --------------------------- # self.inputs = { "image": mge.tensor( np.random.random([2, 3, 756, 1400]).astype(np.float32), dtype="float32", ), "im_info": mge.tensor( np.random.random([2, 6]).astype(np.float32), dtype="float32", ), "gt_boxes": mge.tensor( np.random.random([2, 500, 5]).astype(np.float32), dtype="float32", ), } def pre_process(self, images): mean = config.image_mean.reshape(1, -1, 1, 1).astype(np.float32) std = config.image_std.reshape(1, -1, 1, 1).astype(np.float32) mean = mge.tensor(mean).to(images.device) std = mge.tensor(std).to(images.device) normed_images = (images - mean) / std normed_images = get_padded_tensor(normed_images, 64) return normed_images def forward(self, inputs): im_info = inputs['im_info'] # process the images normed_images = self.pre_process(inputs['image']) if self.training: gt_boxes = inputs['gt_boxes'] return self._forward_train(normed_images, im_info, gt_boxes) else: return self._forward_test(normed_images, im_info) def _forward_train(self, image, im_info, gt_boxes): loss_dict = {} # stride: 128,64,32,16,8, p6->p2 fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) loss_dict = self.criteria( pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, gt_boxes, im_info) return loss_dict def _forward_test(self, image, im_info): fpn_fms = self.backbone(image) pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list = self.head(fpn_fms) anchors_list = self.anchor_generator(fpn_fms) pred_boxes = self._recover_dtboxes(anchors_list, pred_cls_list, pred_reg_list, rpn_iou_list) return pred_boxes def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list, rpn_iou_list): assert rpn_cls_list[0].shape[0] == 1 all_anchors = F.concat(anchors_list, axis = 0) rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0] rpn_bbox_offsets_final = F.concat(rpn_bbox_list,axis=1)[0] rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0] rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4) rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1) rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1) n, c = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (n, 1, c)).reshape(-1, c) rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets) pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1) return pred_boxes class RetinaNetCriteriaV2(M.Module): def __init__(self): super().__init__() def anchor_iou_target_opr(self, boxes, im_info, all_anchors, rpn_bbox_offsets): n = rpn_bbox_offsets.shape[0] res = [] for i in range(n): gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)] offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach() m = offsets.shape[0] an, ac = all_anchors.shape[0], all_anchors.shape[1] anchors = F.broadcast_to(F.expand_dims(all_anchors, 1), (an, 1, ac)).reshape(-1, ac) dtboxes = bbox_transform_inv_opr(anchors[:,:4], offsets[:, :4]) overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4]) ignore_mask = 1 - F.equal(gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32) ignore_mask = F.expand_dims(ignore_mask, axis=0) overlaps = overlaps * ignore_mask index = F.argmax(overlaps, axis = 1) value = F.nn.indexing_one_hot(overlaps, index, 1) value = F.expand_dims(F.expand_dims(value, axis=1), axis=0) res.append(value) result = F.concat(res, 0) return result def forward(self, pred_cls_list, rpn_num_prob_list, pred_reg_list, anchors_list, rpn_iou_list, boxes, im_info): all_anchors_list = [F.concat([a, i*F.ones([a.shape[0], 1]).to(a.device)], axis=1) for i, a in enumerate(anchors_list)] all_anchors_final = F.concat(all_anchors_list, axis = 0) rpn_bbox_offset_final = F.concat(pred_reg_list, axis = 1) rpn_cls_prob_final = F.concat(pred_cls_list, axis = 1) rpn_iou_prob_final = F.concat(rpn_iou_list, axis = 1) rpn_num_per_points_final = F.concat(rpn_num_prob_list, axis = 1) rpn_labels, rpn_target_boxes = rpn_anchor_target_opr(boxes, im_info, all_anchors_final) ious_target = self.anchor_iou_target_opr(boxes, im_info, all_anchors_final, rpn_bbox_offset_final) n = rpn_labels.shape[0] target_boxes = rpn_target_boxes.reshape(n, -1, 2, 4).transpose(2, 0, 1, 3) rpn_cls_prob_final = rpn_cls_prob_final offsets_final = rpn_bbox_offset_final target_boxes = target_boxes[0] rpn_labels = rpn_labels.transpose(2, 0, 1) labels = rpn_labels[0] cls_loss = sigmoid_cross_entropy_retina(rpn_cls_prob_final, labels, alpha = config.focal_loss_alpha, gamma = config.focal_loss_gamma) rpn_bbox_loss = smooth_l1_loss_retina(offsets_final, target_boxes, labels) rpn_labels = F.expand_dims(labels, axis=2) rpn_iou_loss = iou_l1_loss(rpn_iou_prob_final, ious_target, rpn_labels) loss_dict = {} loss_dict['rpn_cls_loss'] = cls_loss loss_dict['rpn_bbox_loss'] = 2 * rpn_bbox_loss loss_dict['rpn_iou_loss'] = 2 * rpn_iou_loss return loss_dict class RetinaNetHead(M.Module): def __init__(self): super().__init__() num_convs = 4 in_channels = 256 cls_subnet, bbox_subnet = [], [] for _ in range(num_convs): cls_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) cls_subnet.append(M.ReLU()) bbox_subnet.append( M.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) ) bbox_subnet.append(M.ReLU()) self.cls_subnet = M.Sequential(*cls_subnet) self.bbox_subnet = M.Sequential(*bbox_subnet) # predictor self.cls_score = M.Conv2d( in_channels, config.num_cell_anchors * (config.num_classes-1) * 1, kernel_size=3, stride=1, padding=1) self.bbox_pred = M.Conv2d( in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3, stride=1, padding=1) self.iou_pred = M.Conv2d( in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self.num_pred = M.Conv2d(in_channels, config.num_cell_anchors * 1, kernel_size = 3, stride=1, padding = 1) self._init_weights() def _init_weights(self): # Initialization for modules in [self.cls_subnet, self.bbox_subnet, self.num_pred, self.cls_score, self.bbox_pred, self.iou_pred]: for layer in modules.modules(): if isinstance(layer, M.Conv2d): M.init.normal_(layer.weight, std=0.01) M.init.fill_(layer.bias, 0) prior_prob = 0.01 # Use prior in model initialization to improve stability bias_value = -(math.log((1 - prior_prob) / prior_prob)) M.init.fill_(self.cls_score.bias, bias_value) def forward(self, features): cls_prob_list, rpn_num_prob_list, pred_bbox_list, rpn_iou_prob_list = [], [], [], [] for feature in features: rpn_cls_conv = self.cls_subnet(feature) cls_score = self.cls_score(rpn_cls_conv) rpn_num_prob = self.num_pred(rpn_cls_conv) cls_prob = F.sigmoid(cls_score) rpn_box_conv = self.bbox_subnet(feature) offsets = self.bbox_pred(rpn_box_conv) rpn_iou_prob = self.iou_pred(rpn_box_conv) cls_prob_list.append(cls_prob) pred_bbox_list.append(offsets) rpn_iou_prob_list.append(rpn_iou_prob) rpn_num_prob_list.append(rpn_num_prob) assert cls_prob_list[0].ndim == 4 pred_cls_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in cls_prob_list] pred_reg_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, 4) for _ in pred_bbox_list] rpn_iou_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_iou_prob_list] rpn_num_prob_list = [ _.transpose(0, 2, 3, 1).reshape(_.shape[0], -1, (config.num_classes-1)) for _ in rpn_num_prob_list] return pred_cls_list, rpn_num_prob_list, pred_reg_list, rpn_iou_list class FPN(M.Module): """ This module implements Feature Pyramid Network. It creates pyramid features built on top of some input feature maps. """ def __init__(self, bottom_up): super(FPN, self).__init__() in_channels = [512, 1024, 2048] fpn_dim = 256 use_bias =True lateral_convs, output_convs = [], [] for idx, in_channels in enumerate(in_channels): lateral_conv = M.Conv2d( in_channels, fpn_dim, kernel_size=1, bias=use_bias) output_conv = M.Conv2d( fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias) M.init.msra_normal_(lateral_conv.weight, mode="fan_in") M.init.msra_normal_(output_conv.weight, mode="fan_in") if use_bias: M.init.fill_(lateral_conv.bias, 0) M.init.fill_(output_conv.bias, 0) lateral_convs.append(lateral_conv) output_convs.append(output_conv) self.p6 = M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias) self.p7 = M.Conv2d(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias) self.relu = M.ReLU() lateral_convs.reverse() output_convs.reverse() self.lateral_convs = lateral_convs self.output_convs = output_convs self.bottom_up = bottom_up def forward(self, x): bottom_up_features = self.bottom_up(x) # bottom_up_features = bottom_up_features[::-1] bottom_up_features.reverse() results = [] prev_features = self.lateral_convs[0](bottom_up_features[0]) results.append(self.output_convs[0](prev_features)) for features, lateral_conv, output_conv in zip( bottom_up_features[1:], self.lateral_convs[1:], self.output_convs[1:] ): fh, fw = features.shape[2:] top_down_features = F.nn.interpolate( prev_features, size = (fh, fw), mode="BILINEAR") lateral_features = lateral_conv(features) prev_features = lateral_features + top_down_features results.append(output_conv(prev_features)) # p6 p6 = self.p6(results[0]) results.insert(0, p6) p7 = self.p7(self.relu(p6)) results.insert(0, p7) return results
[ "megengine.module.init.fill_", "megengine.module.ReLU", "megengine.functional.sigmoid", "megengine.functional.ones", "megengine.module.Conv2d", "megengine.functional.expand_dims", "megengine.functional.nn.interpolate", "megengine.functional.stack", "megengine.functional.concat", "megengine.functional.argmax", "megengine.tensor", "megengine.module.Sequential", "megengine.functional.equal", "megengine.module.init.normal_", "megengine.functional.linspace", "megengine.module.init.msra_normal_", "megengine.functional.nn.indexing_one_hot" ]
[((1393, 1470), 'megengine.functional.stack', 'F.stack', (['[broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y]'], {'axis': '(1)'}), '([broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y], axis=1)\n', (1400, 1470), True, 'import megengine.functional as F\n'), ((2352, 2362), 'backbone.resnet50.ResNet50', 'ResNet50', ([], {}), '()\n', (2360, 2362), False, 'from backbone.resnet50 import ResNet50\n'), ((4203, 4239), 'det_opr.utils.get_padded_tensor', 'get_padded_tensor', (['normed_images', '(64)'], {}), '(normed_images, 64)\n', (4220, 4239), False, 'from det_opr.utils import get_padded_tensor\n'), ((5673, 5703), 'megengine.functional.concat', 'F.concat', (['anchors_list'], {'axis': '(0)'}), '(anchors_list, axis=0)\n', (5681, 5703), True, 'import megengine.functional as F\n'), ((6253, 6302), 'det_opr.bbox_opr.bbox_transform_inv_opr', 'bbox_transform_inv_opr', (['anchors', 'rpn_bbox_offsets'], {}), '(anchors, rpn_bbox_offsets)\n', (6275, 6302), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr\n'), ((6324, 6382), 'megengine.functional.concat', 'F.concat', (['[rpn_bbox, rpn_cls_scores, rpn_iou_prob]'], {'axis': '(1)'}), '([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1)\n', (6332, 6382), True, 'import megengine.functional as F\n'), ((7613, 7629), 'megengine.functional.concat', 'F.concat', (['res', '(0)'], {}), '(res, 0)\n', (7621, 7629), True, 'import megengine.functional as F\n'), ((7947, 7981), 'megengine.functional.concat', 'F.concat', (['all_anchors_list'], {'axis': '(0)'}), '(all_anchors_list, axis=0)\n', (7955, 7981), True, 'import megengine.functional as F\n'), ((8025, 8056), 'megengine.functional.concat', 'F.concat', (['pred_reg_list'], {'axis': '(1)'}), '(pred_reg_list, axis=1)\n', (8033, 8056), True, 'import megengine.functional as F\n'), ((8088, 8119), 'megengine.functional.concat', 'F.concat', (['pred_cls_list'], {'axis': '(1)'}), '(pred_cls_list, axis=1)\n', (8096, 8119), True, 'import megengine.functional as F\n'), ((8151, 8181), 'megengine.functional.concat', 'F.concat', (['rpn_iou_list'], {'axis': '(1)'}), '(rpn_iou_list, axis=1)\n', (8159, 8181), True, 'import megengine.functional as F\n'), ((8219, 8254), 'megengine.functional.concat', 'F.concat', (['rpn_num_prob_list'], {'axis': '(1)'}), '(rpn_num_prob_list, axis=1)\n', (8227, 8254), True, 'import megengine.functional as F\n'), ((8298, 8354), 'rpn_anchor_target_opr.rpn_anchor_target_opr', 'rpn_anchor_target_opr', (['boxes', 'im_info', 'all_anchors_final'], {}), '(boxes, im_info, all_anchors_final)\n', (8319, 8354), False, 'from rpn_anchor_target_opr import rpn_anchor_target_opr\n'), ((8834, 8957), 'det_opr.loss_opr.sigmoid_cross_entropy_retina', 'sigmoid_cross_entropy_retina', (['rpn_cls_prob_final', 'labels'], {'alpha': 'config.focal_loss_alpha', 'gamma': 'config.focal_loss_gamma'}), '(rpn_cls_prob_final, labels, alpha=config.\n focal_loss_alpha, gamma=config.focal_loss_gamma)\n', (8862, 8957), False, 'from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss\n'), ((8998, 9056), 'det_opr.loss_opr.smooth_l1_loss_retina', 'smooth_l1_loss_retina', (['offsets_final', 'target_boxes', 'labels'], {}), '(offsets_final, target_boxes, labels)\n', (9019, 9056), False, 'from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss\n'), ((9079, 9108), 'megengine.functional.expand_dims', 'F.expand_dims', (['labels'], {'axis': '(2)'}), '(labels, axis=2)\n', (9092, 9108), True, 'import megengine.functional as F\n'), ((9132, 9188), 'det_opr.loss_opr.iou_l1_loss', 'iou_l1_loss', (['rpn_iou_prob_final', 'ious_target', 'rpn_labels'], {}), '(rpn_iou_prob_final, ious_target, rpn_labels)\n', (9143, 9188), False, 'from det_opr.loss_opr import sigmoid_cross_entropy_retina, smooth_l1_loss_retina, iou_l1_loss\n'), ((9983, 10008), 'megengine.module.Sequential', 'M.Sequential', (['*cls_subnet'], {}), '(*cls_subnet)\n', (9995, 10008), True, 'import megengine.module as M\n'), ((10036, 10062), 'megengine.module.Sequential', 'M.Sequential', (['*bbox_subnet'], {}), '(*bbox_subnet)\n', (10048, 10062), True, 'import megengine.module as M\n'), ((10108, 10226), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(config.num_cell_anchors * (config.num_classes - 1) * 1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, config.num_cell_anchors * (config.num_classes - 1) * \n 1, kernel_size=3, stride=1, padding=1)\n', (10116, 10226), True, 'import megengine.module as M\n'), ((10270, 10364), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(config.num_cell_anchors * 4 * 1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, config.num_cell_anchors * 4 * 1, kernel_size=3,\n stride=1, padding=1)\n', (10278, 10364), True, 'import megengine.module as M\n'), ((10411, 10501), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(config.num_cell_anchors * 1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, config.num_cell_anchors * 1, kernel_size=3, stride=1,\n padding=1)\n', (10419, 10501), True, 'import megengine.module as M\n'), ((10552, 10642), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', '(config.num_cell_anchors * 1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, config.num_cell_anchors * 1, kernel_size=3, stride=1,\n padding=1)\n', (10560, 10642), True, 'import megengine.module as M\n'), ((11253, 11298), 'megengine.module.init.fill_', 'M.init.fill_', (['self.cls_score.bias', 'bias_value'], {}), '(self.cls_score.bias, bias_value)\n', (11265, 11298), True, 'import megengine.module as M\n'), ((13742, 13819), 'megengine.module.Conv2d', 'M.Conv2d', (['fpn_dim', 'fpn_dim'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'bias': 'use_bias'}), '(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias)\n', (13750, 13819), True, 'import megengine.module as M\n'), ((13838, 13915), 'megengine.module.Conv2d', 'M.Conv2d', (['fpn_dim', 'fpn_dim'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'bias': 'use_bias'}), '(fpn_dim, fpn_dim, kernel_size=3, stride=2, padding=1, bias=use_bias)\n', (13846, 13915), True, 'import megengine.module as M\n'), ((13936, 13944), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (13942, 13944), True, 'import megengine.module as M\n'), ((1523, 1553), 'megengine.functional.expand_dims', 'F.expand_dims', (['anchors'], {'axis': '(0)'}), '(anchors, axis=0)\n', (1536, 1553), True, 'import megengine.functional as F\n'), ((1556, 1585), 'megengine.functional.expand_dims', 'F.expand_dims', (['shifts'], {'axis': '(1)'}), '(shifts, axis=1)\n', (1569, 1585), True, 'import megengine.functional as F\n'), ((5737, 5767), 'megengine.functional.concat', 'F.concat', (['rpn_cls_list'], {'axis': '(1)'}), '(rpn_cls_list, axis=1)\n', (5745, 5767), True, 'import megengine.functional as F\n'), ((5804, 5835), 'megengine.functional.concat', 'F.concat', (['rpn_bbox_list'], {'axis': '(1)'}), '(rpn_bbox_list, axis=1)\n', (5812, 5835), True, 'import megengine.functional as F\n'), ((5867, 5897), 'megengine.functional.concat', 'F.concat', (['rpn_iou_list'], {'axis': '(1)'}), '(rpn_iou_list, axis=1)\n', (5875, 5897), True, 'import megengine.functional as F\n'), ((7044, 7098), 'det_opr.bbox_opr.bbox_transform_inv_opr', 'bbox_transform_inv_opr', (['anchors[:, :4]', 'offsets[:, :4]'], {}), '(anchors[:, :4], offsets[:, :4])\n', (7066, 7098), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr\n'), ((7121, 7161), 'det_opr.bbox_opr.box_overlap_opr', 'box_overlap_opr', (['dtboxes', 'gtboxes[:, :4]'], {}), '(dtboxes, gtboxes[:, :4])\n', (7136, 7161), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, box_overlap_opr\n'), ((7288, 7322), 'megengine.functional.expand_dims', 'F.expand_dims', (['ignore_mask'], {'axis': '(0)'}), '(ignore_mask, axis=0)\n', (7301, 7322), True, 'import megengine.functional as F\n'), ((7402, 7428), 'megengine.functional.argmax', 'F.argmax', (['overlaps'], {'axis': '(1)'}), '(overlaps, axis=1)\n', (7410, 7428), True, 'import megengine.functional as F\n'), ((7451, 7492), 'megengine.functional.nn.indexing_one_hot', 'F.nn.indexing_one_hot', (['overlaps', 'index', '(1)'], {}), '(overlaps, index, 1)\n', (7472, 7492), True, 'import megengine.functional as F\n'), ((11204, 11243), 'math.log', 'math.log', (['((1 - prior_prob) / prior_prob)'], {}), '((1 - prior_prob) / prior_prob)\n', (11212, 11243), False, 'import math\n'), ((11648, 11668), 'megengine.functional.sigmoid', 'F.sigmoid', (['cls_score'], {}), '(cls_score)\n', (11657, 11668), True, 'import megengine.functional as F\n'), ((13163, 13223), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'fpn_dim'], {'kernel_size': '(1)', 'bias': 'use_bias'}), '(in_channels, fpn_dim, kernel_size=1, bias=use_bias)\n', (13171, 13223), True, 'import megengine.module as M\n'), ((13267, 13344), 'megengine.module.Conv2d', 'M.Conv2d', (['fpn_dim', 'fpn_dim'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': 'use_bias'}), '(fpn_dim, fpn_dim, kernel_size=3, stride=1, padding=1, bias=use_bias)\n', (13275, 13344), True, 'import megengine.module as M\n'), ((13374, 13429), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['lateral_conv.weight'], {'mode': '"""fan_in"""'}), "(lateral_conv.weight, mode='fan_in')\n", (13393, 13429), True, 'import megengine.module as M\n'), ((13442, 13496), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['output_conv.weight'], {'mode': '"""fan_in"""'}), "(output_conv.weight, mode='fan_in')\n", (13461, 13496), True, 'import megengine.module as M\n'), ((14669, 14732), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['prev_features'], {'size': '(fh, fw)', 'mode': '"""BILINEAR"""'}), "(prev_features, size=(fh, fw), mode='BILINEAR')\n", (14685, 14732), True, 'import megengine.functional as F\n'), ((841, 864), 'numpy.array', 'np.array', (['anchor_ratios'], {}), '(anchor_ratios)\n', (849, 864), True, 'import numpy as np\n'), ((885, 908), 'numpy.array', 'np.array', (['anchor_scales'], {}), '(anchor_scales)\n', (893, 908), True, 'import numpy as np\n'), ((959, 981), 'megengine.tensor', 'mge.tensor', (['np_anchors'], {}), '(np_anchors)\n', (969, 981), True, 'import megengine as mge\n'), ((1891, 1925), 'numpy.array', 'np.array', (['config.anchor_base_scale'], {}), '(config.anchor_base_scale)\n', (1899, 1925), True, 'import numpy as np\n'), ((3906, 3944), 'config.config.image_mean.reshape', 'config.image_mean.reshape', (['(1)', '(-1)', '(1)', '(1)'], {}), '(1, -1, 1, 1)\n', (3931, 3944), False, 'from config import config\n'), ((3978, 4015), 'config.config.image_std.reshape', 'config.image_std.reshape', (['(1)', '(-1)', '(1)', '(1)'], {}), '(1, -1, 1, 1)\n', (4002, 4015), False, 'from config import config\n'), ((4050, 4066), 'megengine.tensor', 'mge.tensor', (['mean'], {}), '(mean)\n', (4060, 4066), True, 'import megengine as mge\n'), ((4099, 4114), 'megengine.tensor', 'mge.tensor', (['std'], {}), '(std)\n', (4109, 4114), True, 'import megengine as mge\n'), ((7527, 7555), 'megengine.functional.expand_dims', 'F.expand_dims', (['value'], {'axis': '(1)'}), '(value, axis=1)\n', (7540, 7555), True, 'import megengine.functional as F\n'), ((9658, 9728), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'in_channels'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, in_channels, kernel_size=3, stride=1, padding=1)\n', (9666, 9728), True, 'import megengine.module as M\n'), ((9773, 9781), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (9779, 9781), True, 'import megengine.module as M\n'), ((9831, 9901), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'in_channels'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(in_channels, in_channels, kernel_size=3, stride=1, padding=1)\n', (9839, 9901), True, 'import megengine.module as M\n'), ((9947, 9955), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (9953, 9955), True, 'import megengine.module as M\n'), ((13538, 13572), 'megengine.module.init.fill_', 'M.init.fill_', (['lateral_conv.bias', '(0)'], {}), '(lateral_conv.bias, 0)\n', (13550, 13572), True, 'import megengine.module as M\n'), ((13589, 13622), 'megengine.module.init.fill_', 'M.init.fill_', (['output_conv.bias', '(0)'], {}), '(output_conv.bias, 0)\n', (13601, 13622), True, 'import megengine.module as M\n'), ((1068, 1099), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(width - 1)', 'width'], {}), '(0, width - 1, width)\n', (1078, 1099), True, 'import megengine.functional as F\n'), ((1139, 1172), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(height - 1)', 'height'], {}), '(0, height - 1, height)\n', (1149, 1172), True, 'import megengine.functional as F\n'), ((6177, 6206), 'megengine.functional.expand_dims', 'F.expand_dims', (['all_anchors', '(1)'], {}), '(all_anchors, 1)\n', (6190, 6206), True, 'import megengine.functional as F\n'), ((11002, 11040), 'megengine.module.init.normal_', 'M.init.normal_', (['layer.weight'], {'std': '(0.01)'}), '(layer.weight, std=0.01)\n', (11016, 11040), True, 'import megengine.module as M\n'), ((11061, 11088), 'megengine.module.init.fill_', 'M.init.fill_', (['layer.bias', '(0)'], {}), '(layer.bias, 0)\n', (11073, 11088), True, 'import megengine.module as M\n'), ((3490, 3525), 'numpy.random.random', 'np.random.random', (['[2, 3, 756, 1400]'], {}), '([2, 3, 756, 1400])\n', (3506, 3525), True, 'import numpy as np\n'), ((3629, 3653), 'numpy.random.random', 'np.random.random', (['[2, 6]'], {}), '([2, 6])\n', (3645, 3653), True, 'import numpy as np\n'), ((3758, 3787), 'numpy.random.random', 'np.random.random', (['[2, 500, 5]'], {}), '([2, 500, 5])\n', (3774, 3787), True, 'import numpy as np\n'), ((6962, 6991), 'megengine.functional.expand_dims', 'F.expand_dims', (['all_anchors', '(1)'], {}), '(all_anchors, 1)\n', (6975, 6991), True, 'import megengine.functional as F\n'), ((7192, 7242), 'megengine.functional.equal', 'F.equal', (['gtboxes[:, 4]', 'config.anchor_ignore_label'], {}), '(gtboxes[:, 4], config.anchor_ignore_label)\n', (7199, 7242), True, 'import megengine.functional as F\n'), ((7821, 7844), 'megengine.functional.ones', 'F.ones', (['[a.shape[0], 1]'], {}), '([a.shape[0], 1])\n', (7827, 7844), True, 'import megengine.functional as F\n')]
import os import time import numpy as np import megengine.distributed as dist import megengine as mge import megengine.functional as F from megengine.autodiff import GradManager from edit.core.hook.evaluation import psnr, ssim from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image from ..base import BaseModel from ..builder import build_backbone, build_loss from ..registry import MODELS from tqdm import tqdm def get_bilinear(image): B,T,C,h,w = image.shape image = image.reshape(-1, C,h,w) return F.nn.interpolate(image, scale_factor=4).reshape(B,T,C,4*h, 4*w) def train_generator_batch(image, label, *, gm, netG, netloss): B,T,_,h,w = image.shape biup = get_bilinear(image) netG.train() with gm: forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] loss = netloss(res+biup, label) gm.backward(loss) if dist.is_distributed(): loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() return loss def test_generator_batch(image, *, netG): # image: [1,100,3,180,320] B,T,_,h,w = image.shape biup = get_bilinear(image) netG.eval() forward_hiddens = [] backward_hiddens = [] res = [] hidden = F.zeros((2*B, netG.hidden_channels, h, w)) for i in range(T): now_frame = F.concat([image[:, i, ...], image[:, T-i-1, ...]], axis=0) if i==0: flow = netG.flownet(now_frame, now_frame) else: ref = F.concat([image[:, i-1, ...], image[:, T-i, ...]], axis=0) flow = netG.flownet(now_frame, ref) hidden = netG(hidden, flow, now_frame) forward_hiddens.append(hidden[0:B, ...]) backward_hiddens.append(hidden[B:2*B, ...]) for i in range(T): res.append(netG.do_upsample(forward_hiddens[i], backward_hiddens[T-i-1])) res = F.stack(res, axis = 1) # [B,T,3,H,W] return res + biup epoch_dict = {} def adjust_learning_rate(optimizer, epoch): if epoch>=8 and epoch % 1 == 0 and epoch_dict.get(epoch, None) is None: epoch_dict[epoch] = True for param_group in optimizer.param_groups: param_group["lr"] = param_group["lr"] * 0.8 print("adjust lr! , now lr: {}".format(param_group["lr"])) # TODO 可以再写一个父类,抽象一些公共方法,当大于1个模型时,代码重复了,如getimdid和test step @MODELS.register_module() class BidirectionalRestorer(BaseModel): allowed_metrics = {'PSNR': psnr, 'SSIM': ssim} def __init__(self, generator, pixel_loss, train_cfg=None, eval_cfg=None, pretrained=None, Fidelity_loss=None): super(BidirectionalRestorer, self).__init__() self.train_cfg = train_cfg self.eval_cfg = eval_cfg # generator self.generator = build_backbone(generator) # loss self.pixel_loss = build_loss(pixel_loss) if Fidelity_loss: self.Fidelity_loss = build_loss(Fidelity_loss) else: self.Fidelity_loss = None # load pretrained self.init_weights(pretrained) def init_weights(self, pretrained=None): self.generator.init_weights(pretrained) def train_step(self, batchdata, now_epoch, now_iter): LR_tensor = mge.tensor(batchdata['lq'], dtype="float32") HR_tensor = mge.tensor(batchdata['gt'], dtype="float32") loss = train_generator_batch(LR_tensor, HR_tensor, gm=self.gms['generator'], netG=self.generator, netloss=self.pixel_loss) adjust_learning_rate(self.optimizers['generator'], now_epoch) self.optimizers['generator'].step() self.optimizers['generator'].clear_grad() return loss def get_img_id(self, key): shift = self.eval_cfg.get('save_shift', 0) assert isinstance(key, str) L = key.split("/") return int(L[-1][:-4]), str(int(L[-2]) - shift).zfill(3) # id, clip def test_step(self, batchdata, **kwargs): """ possible kwargs: save_image save_path ensemble """ lq = batchdata['lq'] # [B,3,h,w] gt = batchdata.get('gt', None) # if not None: [B,3,4*h,4*w] assert len(batchdata['lq_path']) == 1 # 每个sample所带的lq_path列表长度仅为1, 即自己 lq_paths = batchdata['lq_path'][0] # length 为batch长度 now_start_id, clip = self.get_img_id(lq_paths[0]) now_end_id, _ = self.get_img_id(lq_paths[-1]) assert clip == _ if now_start_id==0: print("first frame: {}".format(lq_paths[0])) self.LR_list = [] self.HR_list = [] # pad lq B ,_ ,origin_H, origin_W = lq.shape lq = img_multi_padding(lq, padding_multi=self.eval_cfg.multi_pad, pad_method = "edge") # edge constant self.LR_list.append(lq) # [1,3,h,w] if gt is not None: for i in range(B): self.HR_list.append(gt[i:i+1, ...]) if now_end_id == 99: print("start to forward all frames....") if self.eval_cfg.gap == 1: # do ensemble (8 times) ensemble_res = [] self.LR_list = np.concatenate(self.LR_list, axis=0) # [100, 3,h,w] for item in tqdm(range(8)): # do not have flip inp = mge.tensor(ensemble_forward(self.LR_list, Type=item), dtype="float32") oup = test_generator_batch(F.expand_dims(inp, axis=0), netG=self.generator) ensemble_res.append(ensemble_back(oup.numpy(), Type=item)) self.HR_G = sum(ensemble_res) / len(ensemble_res) # ensemble_res 结果取平均 elif self.eval_cfg.gap == 2: raise NotImplementedError("not implement gap != 1 now") # self.HR_G_1 = test_generator_batch(F.stack(self.LR_list[::2], axis=1), netG=self.generator) # self.HR_G_2 = test_generator_batch(F.stack(self.LR_list[1::2], axis=1), netG=self.generator) # [B,T,C,H,W] # # 交叉组成HR_G # res = [] # _,T1,_,_,_ = self.HR_G_1.shape # _,T2,_,_,_ = self.HR_G_2.shape # assert T1 == T2 # for i in range(T1): # res.append(self.HR_G_1[:, i, ...]) # res.append(self.HR_G_2[:, i, ...]) # self.HR_G = F.stack(res, axis=1) # [B,T,C,H,W] else: raise NotImplementedError("do not support eval&test gap value") scale = self.generator.upscale_factor # get numpy self.HR_G = img_de_multi_padding(self.HR_G, origin_H=origin_H * scale, origin_W=origin_W * scale) # depad for HR_G [B,T,C,H,W] if kwargs.get('save_image', False): print("saving images to disk ...") save_path = kwargs.get('save_path') B,T,_,_,_ = self.HR_G.shape assert B == 1 assert T == 100 for i in range(T): img = tensor2img(self.HR_G[0, i, ...], min_max=(0, 1)) if (i+1)%10 == 0: imwrite(img, file_path=os.path.join(save_path, "partframes", f"{clip}_{str(i).zfill(8)}.png")) imwrite(img, file_path=os.path.join(save_path, "allframes", f"{clip}_{str(i).zfill(8)}.png")) return now_end_id == 99 def cal_for_eval(self, gathered_outputs, gathered_batchdata): if gathered_outputs: crop_border = self.eval_cfg.crop_border assert len(self.HR_list) == 100 res = [] for i in range(len(self.HR_list)): G = tensor2img(self.HR_G[0, i, ...], min_max=(0, 1)) gt = tensor2img(self.HR_list[i][0], min_max=(0, 1)) eval_result = dict() for metric in self.eval_cfg.metrics: eval_result[metric+"_RGB"] = self.allowed_metrics[metric](G, gt, crop_border) # eval_result[metric+"_Y"] = self.allowed_metrics[metric](G_key_y, gt_y, crop_border) res.append(eval_result) return res else: return []
[ "megengine.tensor", "megengine.functional.nn.interpolate", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.zeros", "megengine.functional.stack", "megengine.functional.expand_dims", "megengine.distributed.is_distributed", "megengine.distributed.get_world_size", "megengine.functional.concat" ]
[((2104, 2148), 'megengine.functional.zeros', 'F.zeros', (['(2 * B, netG.hidden_channels, h, w)'], {}), '((2 * B, netG.hidden_channels, h, w))\n', (2111, 2148), True, 'import megengine.functional as F\n'), ((2722, 2742), 'megengine.functional.stack', 'F.stack', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (2729, 2742), True, 'import megengine.functional as F\n'), ((975, 1019), 'megengine.functional.zeros', 'F.zeros', (['(2 * B, netG.hidden_channels, h, w)'], {}), '((2 * B, netG.hidden_channels, h, w))\n', (982, 1019), True, 'import megengine.functional as F\n'), ((1645, 1665), 'megengine.functional.stack', 'F.stack', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (1652, 1665), True, 'import megengine.functional as F\n'), ((1759, 1780), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (1778, 1780), True, 'import megengine.distributed as dist\n'), ((2190, 2252), 'megengine.functional.concat', 'F.concat', (['[image[:, i, ...], image[:, T - i - 1, ...]]'], {'axis': '(0)'}), '([image[:, i, ...], image[:, T - i - 1, ...]], axis=0)\n', (2198, 2252), True, 'import megengine.functional as F\n'), ((4055, 4099), 'megengine.tensor', 'mge.tensor', (["batchdata['lq']"], {'dtype': '"""float32"""'}), "(batchdata['lq'], dtype='float32')\n", (4065, 4099), True, 'import megengine as mge\n'), ((4120, 4164), 'megengine.tensor', 'mge.tensor', (["batchdata['gt']"], {'dtype': '"""float32"""'}), "(batchdata['gt'], dtype='float32')\n", (4130, 4164), True, 'import megengine as mge\n'), ((5499, 5578), 'edit.utils.img_multi_padding', 'img_multi_padding', (['lq'], {'padding_multi': 'self.eval_cfg.multi_pad', 'pad_method': '"""edge"""'}), "(lq, padding_multi=self.eval_cfg.multi_pad, pad_method='edge')\n", (5516, 5578), False, 'from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image\n'), ((665, 704), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['image'], {'scale_factor': '(4)'}), '(image, scale_factor=4)\n', (681, 704), True, 'import megengine.functional as F\n'), ((1069, 1131), 'megengine.functional.concat', 'F.concat', (['[image[:, i, ...], image[:, T - i - 1, ...]]'], {'axis': '(0)'}), '([image[:, i, ...], image[:, T - i - 1, ...]], axis=0)\n', (1077, 1131), True, 'import megengine.functional as F\n'), ((2352, 2414), 'megengine.functional.concat', 'F.concat', (['[image[:, i - 1, ...], image[:, T - i, ...]]'], {'axis': '(0)'}), '([image[:, i - 1, ...], image[:, T - i, ...]], axis=0)\n', (2360, 2414), True, 'import megengine.functional as F\n'), ((7418, 7508), 'edit.utils.img_de_multi_padding', 'img_de_multi_padding', (['self.HR_G'], {'origin_H': '(origin_H * scale)', 'origin_W': '(origin_W * scale)'}), '(self.HR_G, origin_H=origin_H * scale, origin_W=\n origin_W * scale)\n', (7438, 7508), False, 'from edit.utils import img_multi_padding, img_de_multi_padding, flow_to_image\n'), ((1247, 1309), 'megengine.functional.concat', 'F.concat', (['[image[:, i - 1, ...], image[:, T - i, ...]]'], {'axis': '(0)'}), '([image[:, i - 1, ...], image[:, T - i, ...]], axis=0)\n', (1255, 1309), True, 'import megengine.functional as F\n'), ((1801, 1837), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (1831, 1837), True, 'import megengine.distributed as dist\n'), ((1840, 1861), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (1859, 1861), True, 'import megengine.distributed as dist\n'), ((5982, 6018), 'numpy.concatenate', 'np.concatenate', (['self.LR_list'], {'axis': '(0)'}), '(self.LR_list, axis=0)\n', (5996, 6018), True, 'import numpy as np\n'), ((8507, 8555), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_G[0, i, ...]'], {'min_max': '(0, 1)'}), '(self.HR_G[0, i, ...], min_max=(0, 1))\n', (8517, 8555), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((8577, 8623), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_list[i][0]'], {'min_max': '(0, 1)'}), '(self.HR_list[i][0], min_max=(0, 1))\n', (8587, 8623), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((7854, 7902), 'edit.utils.tensor2img', 'tensor2img', (['self.HR_G[0, i, ...]'], {'min_max': '(0, 1)'}), '(self.HR_G[0, i, ...], min_max=(0, 1))\n', (7864, 7902), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((6134, 6175), 'edit.utils.ensemble_forward', 'ensemble_forward', (['self.LR_list'], {'Type': 'item'}), '(self.LR_list, Type=item)\n', (6150, 6175), False, 'from edit.utils import imwrite, tensor2img, bgr2ycbcr, img_multi_padding, img_de_multi_padding, ensemble_forward, ensemble_back\n'), ((6241, 6267), 'megengine.functional.expand_dims', 'F.expand_dims', (['inp'], {'axis': '(0)'}), '(inp, axis=0)\n', (6254, 6267), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) self.backbone = getattr(resnet, cfg.backbone)( replace_stride_with_dilation=[False, False, True], pretrained=cfg.backbone_pretrained, ) del self.backbone.fc def forward(self, x): layers = self.backbone.extract_features(x) up0 = self.aspp(layers["res5"]) up0 = self.dropout(up0) up0 = F.nn.interpolate(up0, scale_factor=self.sub_output_stride) up1 = self.upstage1(layers["res2"]) up1 = F.concat([up0, up1], 1) up2 = self.upstage2(up1) out = self.conv_out(up2) out = F.nn.interpolate(out, scale_factor=4) return out
[ "megengine.module.ReLU", "megengine.module.init.ones_", "megengine.module.init.msra_normal_", "megengine.functional.nn.interpolate", "megengine.module.init.zeros_", "megengine.module.Conv2d", "megengine.functional.mean", "megengine.module.Dropout", "megengine.module.BatchNorm2d", "megengine.functional.concat" ]
[((2386, 2409), 'megengine.functional.mean', 'F.mean', (['x', '[2, 3]', '(True)'], {}), '(x, [2, 3], True)\n', (2392, 2409), True, 'import megengine.functional as F\n'), ((2453, 2499), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['gp', '(x.shape[2], x.shape[3])'], {}), '(gp, (x.shape[2], x.shape[3]))\n', (2469, 2499), True, 'import megengine.functional as F\n'), ((2515, 2568), 'megengine.functional.concat', 'F.concat', (['[conv1, conv31, conv32, conv33, gp]'], {'axis': '(1)'}), '([conv1, conv31, conv32, conv33, gp], axis=1)\n', (2523, 2568), True, 'import megengine.functional as F\n'), ((3002, 3016), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (3011, 3016), True, 'import megengine.module as M\n'), ((3548, 3596), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', 'self.num_classes', '(1)', '(1)'], {'padding': '(0)'}), '(256, self.num_classes, 1, 1, padding=0)\n', (3556, 3596), True, 'import megengine.module as M\n'), ((4249, 4307), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['up0'], {'scale_factor': 'self.sub_output_stride'}), '(up0, scale_factor=self.sub_output_stride)\n', (4265, 4307), True, 'import megengine.functional as F\n'), ((4367, 4390), 'megengine.functional.concat', 'F.concat', (['[up0, up1]', '(1)'], {}), '([up0, up1], 1)\n', (4375, 4390), True, 'import megengine.functional as F\n'), ((4473, 4510), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['out'], {'scale_factor': '(4)'}), '(out, scale_factor=4)\n', (4489, 4510), True, 'import megengine.functional as F\n'), ((657, 734), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(1)', '(1)'], {'padding': '(0)', 'dilation': 'dr', 'bias': '(False)'}), '(in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False)\n', (665, 734), True, 'import megengine.module as M\n'), ((778, 805), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (791, 805), True, 'import megengine.module as M\n'), ((819, 827), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (825, 827), True, 'import megengine.module as M\n'), ((886, 976), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(6 * dr)', 'dilation': '(6 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr,\n bias=False)\n', (894, 976), True, 'import megengine.module as M\n'), ((1113, 1140), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1126, 1140), True, 'import megengine.module as M\n'), ((1154, 1162), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1160, 1162), True, 'import megengine.module as M\n'), ((1221, 1313), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(12 * dr)', 'dilation': '(12 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr,\n bias=False)\n', (1229, 1313), True, 'import megengine.module as M\n'), ((1450, 1477), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1463, 1477), True, 'import megengine.module as M\n'), ((1491, 1499), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1497, 1499), True, 'import megengine.module as M\n'), ((1558, 1650), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(18 * dr)', 'dilation': '(18 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr,\n bias=False)\n', (1566, 1650), True, 'import megengine.module as M\n'), ((1787, 1814), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1800, 1814), True, 'import megengine.module as M\n'), ((1828, 1836), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1834, 1836), True, 'import megengine.module as M\n'), ((1897, 1953), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(in_channels, out_channels, 1, 1, 0, bias=False)\n', (1905, 1953), True, 'import megengine.module as M\n'), ((1967, 1994), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1980, 1994), True, 'import megengine.module as M\n'), ((2008, 2016), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2014, 2016), True, 'import megengine.module as M\n'), ((2078, 2147), 'megengine.module.Conv2d', 'M.Conv2d', (['(out_channels * 5)', 'out_channels', '(1)', '(1)'], {'padding': '(0)', 'bias': '(False)'}), '(out_channels * 5, out_channels, 1, 1, padding=0, bias=False)\n', (2086, 2147), True, 'import megengine.module as M\n'), ((2161, 2188), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (2174, 2188), True, 'import megengine.module as M\n'), ((2202, 2210), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2208, 2210), True, 'import megengine.module as M\n'), ((3068, 3119), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(48)', '(1)', '(1)'], {'padding': '(1 // 2)', 'bias': '(False)'}), '(256, 48, 1, 1, padding=1 // 2, bias=False)\n', (3076, 3119), True, 'import megengine.module as M\n'), ((3133, 3150), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(48)'], {}), '(48)\n', (3146, 3150), True, 'import megengine.module as M\n'), ((3164, 3172), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3170, 3172), True, 'import megengine.module as M\n'), ((3235, 3287), 'megengine.module.Conv2d', 'M.Conv2d', (['(256 + 48)', '(256)', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(256 + 48, 256, 3, 1, padding=1, bias=False)\n', (3243, 3287), True, 'import megengine.module as M\n'), ((3301, 3319), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(256)'], {}), '(256)\n', (3314, 3319), True, 'import megengine.module as M\n'), ((3333, 3341), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3339, 3341), True, 'import megengine.module as M\n'), ((3355, 3369), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (3364, 3369), True, 'import megengine.module as M\n'), ((3383, 3430), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(256)', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(256, 256, 3, 1, padding=1, bias=False)\n', (3391, 3430), True, 'import megengine.module as M\n'), ((3444, 3462), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(256)'], {}), '(256)\n', (3457, 3462), True, 'import megengine.module as M\n'), ((3476, 3484), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3482, 3484), True, 'import megengine.module as M\n'), ((3498, 3512), 'megengine.module.Dropout', 'M.Dropout', (['(0.1)'], {}), '(0.1)\n', (3507, 3512), True, 'import megengine.module as M\n'), ((3687, 3753), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_out"""', 'nonlinearity': '"""relu"""'}), "(m.weight, mode='fan_out', nonlinearity='relu')\n", (3706, 3753), True, 'import megengine.module as M\n'), ((3817, 3839), 'megengine.module.init.ones_', 'M.init.ones_', (['m.weight'], {}), '(m.weight)\n', (3829, 3839), True, 'import megengine.module as M\n'), ((3856, 3877), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (3869, 3877), True, 'import megengine.module as M\n')]
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal = F.maximum(inter / union, 0) overlaps_ignore = F.maximum(inter / b_area_box, 0) overlaps = F.maximum(inter / union, 0) # gt_ignore_mask = F.add_axis(F.equal(gt[:, 4], ignore_label), 0).broadcast(*area_target_shape) ignore_mask = F.equal(gt[:, 4], ignore_label) gt_ignore_mask = F.expand_dims(ignore_mask, 0) overlaps_normal *= (1 - gt_ignore_mask) overlaps_ignore *= gt_ignore_mask return overlaps_normal, overlaps_ignore
[ "megengine.functional.exp", "megengine.functional.maximum", "megengine.functional.equal", "megengine.functional.stack", "megengine.functional.expand_dims", "megengine.functional.minimum", "megengine.functional.prod", "megengine.functional.log" ]
[((1566, 1587), 'math.log', 'math.log', (['(1000.0 / 16)'], {}), '(1000.0 / 16)\n', (1574, 1587), False, 'import math\n'), ((2027, 2051), 'megengine.functional.minimum', 'F.minimum', (['dw', 'max_delta'], {}), '(dw, max_delta)\n', (2036, 2051), True, 'import megengine.functional as F\n'), ((2061, 2085), 'megengine.functional.minimum', 'F.minimum', (['dh', 'max_delta'], {}), '(dh, max_delta)\n', (2070, 2085), True, 'import megengine.functional as F\n'), ((2528, 2581), 'megengine.functional.stack', 'F.stack', (['[pred_x1, pred_y1, pred_x2, pred_y2]'], {'axis': '(1)'}), '([pred_x1, pred_y1, pred_x2, pred_y2], axis=1)\n', (2535, 2581), True, 'import megengine.functional as F\n'), ((3230, 3258), 'megengine.functional.log', 'F.log', (['(gt_width / bbox_width)'], {}), '(gt_width / bbox_width)\n', (3235, 3258), True, 'import megengine.functional as F\n'), ((3275, 3305), 'megengine.functional.log', 'F.log', (['(gt_height / bbox_height)'], {}), '(gt_height / bbox_height)\n', (3280, 3305), True, 'import megengine.functional as F\n'), ((3319, 3380), 'megengine.functional.stack', 'F.stack', (['[target_dx, target_dy, target_dw, target_dh]'], {'axis': '(1)'}), '([target_dx, target_dy, target_dw, target_dh], axis=1)\n', (3326, 3380), True, 'import megengine.functional as F\n'), ((5226, 5253), 'megengine.functional.maximum', 'F.maximum', (['(inter / union)', '(0)'], {}), '(inter / union, 0)\n', (5235, 5253), True, 'import megengine.functional as F\n'), ((6978, 7005), 'megengine.functional.maximum', 'F.maximum', (['(inter / union)', '(0)'], {}), '(inter / union, 0)\n', (6987, 7005), True, 'import megengine.functional as F\n'), ((7028, 7060), 'megengine.functional.maximum', 'F.maximum', (['(inter / b_area_box)', '(0)'], {}), '(inter / b_area_box, 0)\n', (7037, 7060), True, 'import megengine.functional as F\n'), ((7076, 7103), 'megengine.functional.maximum', 'F.maximum', (['(inter / union)', '(0)'], {}), '(inter / union, 0)\n', (7085, 7103), True, 'import megengine.functional as F\n'), ((7223, 7254), 'megengine.functional.equal', 'F.equal', (['gt[:, 4]', 'ignore_label'], {}), '(gt[:, 4], ignore_label)\n', (7230, 7254), True, 'import megengine.functional as F\n'), ((7276, 7305), 'megengine.functional.expand_dims', 'F.expand_dims', (['ignore_mask', '(0)'], {}), '(ignore_mask, 0)\n', (7289, 7305), True, 'import megengine.functional as F\n'), ((2116, 2125), 'megengine.functional.exp', 'F.exp', (['dw'], {}), '(dw)\n', (2121, 2125), True, 'import megengine.functional as F\n'), ((2158, 2167), 'megengine.functional.exp', 'F.exp', (['dh'], {}), '(dh)\n', (2163, 2167), True, 'import megengine.functional as F\n'), ((3958, 3979), 'megengine.functional.expand_dims', 'F.expand_dims', (['box', '(1)'], {}), '(box, 1)\n', (3971, 3979), True, 'import megengine.functional as F\n'), ((4028, 4048), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt', '(0)'], {}), '(gt, 0)\n', (4041, 4048), True, 'import megengine.functional as F\n'), ((4275, 4315), 'megengine.functional.minimum', 'F.minimum', (['b_box[:, :, 2]', 'b_gt[:, :, 2]'], {}), '(b_box[:, :, 2], b_gt[:, :, 2])\n', (4284, 4315), True, 'import megengine.functional as F\n'), ((4318, 4358), 'megengine.functional.maximum', 'F.maximum', (['b_box[:, :, 0]', 'b_gt[:, :, 0]'], {}), '(b_box[:, :, 0], b_gt[:, :, 0])\n', (4327, 4358), True, 'import megengine.functional as F\n'), ((4382, 4422), 'megengine.functional.minimum', 'F.minimum', (['b_box[:, :, 3]', 'b_gt[:, :, 3]'], {}), '(b_box[:, :, 3], b_gt[:, :, 3])\n', (4391, 4422), True, 'import megengine.functional as F\n'), ((4425, 4465), 'megengine.functional.maximum', 'F.maximum', (['b_box[:, :, 1]', 'b_gt[:, :, 1]'], {}), '(b_box[:, :, 1], b_gt[:, :, 1])\n', (4434, 4465), True, 'import megengine.functional as F\n'), ((4492, 4508), 'megengine.functional.maximum', 'F.maximum', (['iw', '(0)'], {}), '(iw, 0)\n', (4501, 4508), True, 'import megengine.functional as F\n'), ((4511, 4527), 'megengine.functional.maximum', 'F.maximum', (['ih', '(0)'], {}), '(ih, 0)\n', (4520, 4527), True, 'import megengine.functional as F\n'), ((4544, 4579), 'megengine.functional.maximum', 'F.maximum', (['(box[:, 2] - box[:, 0])', '(0)'], {}), '(box[:, 2] - box[:, 0], 0)\n', (4553, 4579), True, 'import megengine.functional as F\n'), ((4582, 4617), 'megengine.functional.maximum', 'F.maximum', (['(box[:, 3] - box[:, 1])', '(0)'], {}), '(box[:, 3] - box[:, 1], 0)\n', (4591, 4617), True, 'import megengine.functional as F\n'), ((4632, 4665), 'megengine.functional.maximum', 'F.maximum', (['(gt[:, 2] - gt[:, 0])', '(0)'], {}), '(gt[:, 2] - gt[:, 0], 0)\n', (4641, 4665), True, 'import megengine.functional as F\n'), ((4668, 4701), 'megengine.functional.maximum', 'F.maximum', (['(gt[:, 3] - gt[:, 1])', '(0)'], {}), '(gt[:, 3] - gt[:, 1], 0)\n', (4677, 4701), True, 'import megengine.functional as F\n'), ((4793, 4819), 'megengine.functional.expand_dims', 'F.expand_dims', (['area_box', '(1)'], {}), '(area_box, 1)\n', (4806, 4819), True, 'import megengine.functional as F\n'), ((4860, 4885), 'megengine.functional.expand_dims', 'F.expand_dims', (['area_gt', '(0)'], {}), '(area_gt, 0)\n', (4873, 4885), True, 'import megengine.functional as F\n'), ((5880, 5901), 'megengine.functional.expand_dims', 'F.expand_dims', (['box', '(1)'], {}), '(box, 1)\n', (5893, 5901), True, 'import megengine.functional as F\n'), ((5951, 5971), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt', '(0)'], {}), '(gt, 0)\n', (5964, 5971), True, 'import megengine.functional as F\n'), ((6133, 6173), 'megengine.functional.minimum', 'F.minimum', (['b_box[:, :, 2]', 'b_gt[:, :, 2]'], {}), '(b_box[:, :, 2], b_gt[:, :, 2])\n', (6142, 6173), True, 'import megengine.functional as F\n'), ((6176, 6216), 'megengine.functional.maximum', 'F.maximum', (['b_box[:, :, 0]', 'b_gt[:, :, 0]'], {}), '(b_box[:, :, 0], b_gt[:, :, 0])\n', (6185, 6216), True, 'import megengine.functional as F\n'), ((6240, 6280), 'megengine.functional.minimum', 'F.minimum', (['b_box[:, :, 3]', 'b_gt[:, :, 3]'], {}), '(b_box[:, :, 3], b_gt[:, :, 3])\n', (6249, 6280), True, 'import megengine.functional as F\n'), ((6283, 6323), 'megengine.functional.maximum', 'F.maximum', (['b_box[:, :, 1]', 'b_gt[:, :, 1]'], {}), '(b_box[:, :, 1], b_gt[:, :, 1])\n', (6292, 6323), True, 'import megengine.functional as F\n'), ((6350, 6366), 'megengine.functional.maximum', 'F.maximum', (['iw', '(0)'], {}), '(iw, 0)\n', (6359, 6366), True, 'import megengine.functional as F\n'), ((6369, 6385), 'megengine.functional.maximum', 'F.maximum', (['ih', '(0)'], {}), '(ih, 0)\n', (6378, 6385), True, 'import megengine.functional as F\n'), ((6402, 6437), 'megengine.functional.maximum', 'F.maximum', (['(box[:, 2] - box[:, 0])', '(0)'], {}), '(box[:, 2] - box[:, 0], 0)\n', (6411, 6437), True, 'import megengine.functional as F\n'), ((6440, 6475), 'megengine.functional.maximum', 'F.maximum', (['(box[:, 3] - box[:, 1])', '(0)'], {}), '(box[:, 3] - box[:, 1], 0)\n', (6449, 6475), True, 'import megengine.functional as F\n'), ((6490, 6523), 'megengine.functional.maximum', 'F.maximum', (['(gt[:, 2] - gt[:, 0])', '(0)'], {}), '(gt[:, 2] - gt[:, 0], 0)\n', (6499, 6523), True, 'import megengine.functional as F\n'), ((6526, 6559), 'megengine.functional.maximum', 'F.maximum', (['(gt[:, 3] - gt[:, 1])', '(0)'], {}), '(gt[:, 3] - gt[:, 1], 0)\n', (6535, 6559), True, 'import megengine.functional as F\n'), ((6871, 6896), 'megengine.functional.expand_dims', 'F.expand_dims', (['area_gt', '(0)'], {}), '(area_gt, 0)\n', (6884, 6896), True, 'import megengine.functional as F\n'), ((991, 1021), 'megengine.functional.prod', 'F.prod', (['(wh >= min_size)'], {'axis': '(1)'}), '(wh >= min_size, axis=1)\n', (997, 1021), True, 'import megengine.functional as F\n'), ((6798, 6824), 'megengine.functional.expand_dims', 'F.expand_dims', (['area_box', '(1)'], {}), '(area_box, 1)\n', (6811, 6824), True, 'import megengine.functional as F\n'), ((565, 587), 'megengine.functional.expand_dims', 'F.expand_dims', (['rois', '(1)'], {}), '(rois, 1)\n', (578, 587), True, 'import megengine.functional as F\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = ( Tensor(opr.mean) # type: ignore[attr-defined] if opr.mean is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[3].np_data) ) bn_var = ( Tensor(opr.var) # type: ignore[attr-defined] if opr.var is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[4].np_data) ) conv_op = net.find_inp_oprs(opr)[0] conv_weight = conv_op.inp_tensors[1].np_data if len(conv_op.inp_tensors) == 2: # add conv bias tensor weight_shape = conv_op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) conv_bias = IRTensor( name=conv_op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=np.zeros(bias_shape, dtype=np.float32), owner_opr=conv_op, ) if conv_op.inp_tensors[0].scale and conv_op.inp_tensors[1].scale: conv_bias.set_qparams( conv_op.inp_tensors[0].scale * conv_op.inp_tensors[1].scale, 0 ) conv_bias.q_dtype = "int32" conv_op.inp_tensors.append(conv_bias) conv_bias = conv_op.inp_tensors[2].np_data.reshape(1, -1, 1, 1) w_fold, b_fold = fold_conv_bn( conv_weight, conv_bias, conv_op.groups, gamma, beta, bn_mean, bn_var, opr.eps, # type: ignore[attr-defined] ) conv_op.inp_tensors[1].np_data = w_fold.numpy() conv_op.inp_tensors[2].np_data = b_fold.numpy() # delete bn opr conv_op.out_tensors[0] = opr.out_tensors[-1] conv_op.out_tensors[0].owner_opr = conv_op index = net._opr_ids.index(id(opr)) net.delete_ops(index) @_register_tranformation_rule(TransformerRule.REMOVE_IDENTITY) def _remove_identity(net: IRGraph): delete_intended = [] for op_id, opr in zip(net._opr_ids, net.all_oprs): if not isinstance(opr, IdentityOpr): continue user_ops = net.find_out_oprs(opr) for user in user_ops: idx = user.inp_tensors.index(opr.out_tensors[0]) user.inp_tensors[idx] = opr.inp_tensors[0] idx = opr.inp_tensors[0].user_opr.index(opr) opr.inp_tensors[0].user_opr[idx] = user delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.EXPAND_CONVRELU) def _expand_conv_relu(net: IRGraph): for opr in net.all_oprs: if not isinstance(opr, ConvRelu2dOpr): continue conv_op = Conv2dOpr( stride=opr.stride, padding=opr.padding, dilation=opr.dilation, groups=opr.groups, ) conv_op.inp_tensors = opr.inp_tensors for t in conv_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = conv_op conv_out_tensor = IRTensor( name=opr.inp_tensors[0].name + "_conv_out", shape=opr.out_tensors[0].shape, dtype=opr.out_tensors[0].dtype, scale=opr.out_tensors[0].scale, zero_point=opr.out_tensors[0].zero_point, q_type=opr.out_tensors[0].q_dtype, owner_opr=conv_op, ) conv_op.out_tensors = [conv_out_tensor] conv_out_tensor.owner_opr = conv_op idx = net.all_oprs.index(opr) net.add_op(conv_op, idx) relu_op = ReluOpr() relu_op.inp_tensors = conv_op.out_tensors conv_out_tensor.user_opr.append(relu_op) relu_op.out_tensors = opr.out_tensors for t in relu_op.out_tensors: t.owner_opr = relu_op net.replace_op(opr, relu_op)
[ "megengine.Tensor", "megengine.functional.sqrt" ]
[((5519, 5532), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5530, 5532), False, 'from collections import OrderedDict\n'), ((18529, 18542), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (18540, 18542), False, 'from collections import OrderedDict\n'), ((8433, 8532), 'numpy.array', 'np.array', (['[result_shape[0], result_shape[2], result_shape[3], result_shape[1]]'], {'dtype': 'np.int32'}), '([result_shape[0], result_shape[2], result_shape[3], result_shape[1\n ]], dtype=np.int32)\n', (8441, 8532), True, 'import numpy as np\n'), ((10396, 10434), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (10404, 10434), True, 'import numpy as np\n'), ((11433, 11471), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (11441, 11471), True, 'import numpy as np\n'), ((33030, 33048), 'megengine.functional.sqrt', 'sqrt', (['(bn_var + eps)'], {}), '(bn_var + eps)\n', (33034, 33048), False, 'from megengine.functional import sqrt\n'), ((5791, 5893), 'numpy.array', 'np.array', (['[0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0]'], {'dtype': 'np.int32'}), '([0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1],\n 0, 0], dtype=np.int32)\n', (5799, 5893), True, 'import numpy as np\n'), ((3220, 3241), 'functools.cmp_to_key', 'cmp_to_key', (['cmp_rules'], {}), '(cmp_rules)\n', (3230, 3241), False, 'from functools import cmp_to_key\n'), ((4441, 4477), 'numpy.array', 'np.array', (['op.pattern'], {'dtype': 'np.int32'}), '(op.pattern, dtype=np.int32)\n', (4449, 4477), True, 'import numpy as np\n'), ((4955, 4988), 'numpy.array', 'np.array', (['op.axis'], {'dtype': 'np.int32'}), '(op.axis, dtype=np.int32)\n', (4963, 4988), True, 'import numpy as np\n'), ((9740, 9777), 'numpy.array', 'np.array', (['op.out_size'], {'dtype': 'np.int32'}), '(op.out_size, dtype=np.int32)\n', (9748, 9777), True, 'import numpy as np\n'), ((14872, 14890), 'numpy.iinfo', 'np.iinfo', (['np.int32'], {}), '(np.int32)\n', (14880, 14890), True, 'import numpy as np\n'), ((33947, 33965), 'megengine.Tensor', 'Tensor', (['opr.weight'], {}), '(opr.weight)\n', (33953, 33965), False, 'from megengine import Tensor\n'), ((34089, 34123), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[1].np_data'], {}), '(opr.inp_tensors[1].np_data)\n', (34095, 34123), False, 'from megengine import Tensor\n'), ((34175, 34191), 'megengine.Tensor', 'Tensor', (['opr.bias'], {}), '(opr.bias)\n', (34181, 34191), False, 'from megengine import Tensor\n'), ((34313, 34347), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[2].np_data'], {}), '(opr.inp_tensors[2].np_data)\n', (34319, 34347), False, 'from megengine import Tensor\n'), ((34402, 34418), 'megengine.Tensor', 'Tensor', (['opr.mean'], {}), '(opr.mean)\n', (34408, 34418), False, 'from megengine import Tensor\n'), ((34540, 34574), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[3].np_data'], {}), '(opr.inp_tensors[3].np_data)\n', (34546, 34574), False, 'from megengine import Tensor\n'), ((34628, 34643), 'megengine.Tensor', 'Tensor', (['opr.var'], {}), '(opr.var)\n', (34634, 34643), False, 'from megengine import Tensor\n'), ((34764, 34798), 'megengine.Tensor', 'Tensor', (['opr.inp_tensors[4].np_data'], {}), '(opr.inp_tensors[4].np_data)\n', (34770, 34798), False, 'from megengine import Tensor\n'), ((4365, 4385), 'numpy.array', 'np.array', (['op.pattern'], {}), '(op.pattern)\n', (4373, 4385), True, 'import numpy as np\n'), ((14582, 14611), 'numpy.array', 'np.array', (['ret'], {'dtype': 'np.int32'}), '(ret, dtype=np.int32)\n', (14590, 14611), True, 'import numpy as np\n'), ((16601, 16628), 'numpy.array_equal', 'np.array_equal', (['const[1]', 'v'], {}), '(const[1], v)\n', (16615, 16628), True, 'import numpy as np\n'), ((16826, 16868), 'numpy.array_equal', 'np.array_equal', (['const[1]', 'inp_tensors[idx]'], {}), '(const[1], inp_tensors[idx])\n', (16840, 16868), True, 'import numpy as np\n'), ((35512, 35550), 'numpy.zeros', 'np.zeros', (['bias_shape'], {'dtype': 'np.float32'}), '(bias_shape, dtype=np.float32)\n', (35520, 35550), True, 'import numpy as np\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159) Expr._set_next_id(1024) graph = traced_module.graph for expr in graph.get_function_by_type(F.relu).as_list(): relu_out = expr.outputs[0] cur_graph = expr.top_graph with cur_graph.insert_exprs(): neg_out = F.neg(relu_out) cur_graph.replace_node({relu_out: neg_out}) cur_graph.compile() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # check trace TracedModule obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = NewModule(traced_module) traced_module = trace_module(module, x) _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) def test_set_node_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] def rename(name): output_node.name = name np.testing.assert_raises(AssertionError, rename, "block1_out") rename("output") np.testing.assert_equal(str(graph.outputs[0]), "output") def test_set_graph_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] node_name = output_node.name graph.name = "Top" node = graph.get_node_by_name("{}_{}".format("Top", node_name)).as_unique() assert node is output_node def test_extra_block(): class PostProcess(M.Module): def forward(self, x): return x * 2 class Net(M.Module): def __init__(self, traced_module): super().__init__() self.post_process = PostProcess() self.traced_module = traced_module def forward(self, x): x = self.traced_module(x) x = self.post_process(x) return x traced_module, x, expect = _init_block() module = Net(traced_module) np.testing.assert_allclose(2 * expect, module(x), atol=1e-6) traced_module = trace_module(module, x) np.testing.assert_allclose(2 * expect, traced_module(x), atol=1e-6)
[ "megengine.functional.relu", "megengine.traced_module.trace_module", "megengine.traced_module.node.Node._set_next_id", "megengine.functional.zeros", "megengine.functional.ones", "megengine.functional.neg", "megengine.module.Conv2d", "megengine.module.qat.Concat", "megengine.traced_module.expr.Expr._set_next_id", "megengine.functional.copy", "megengine.module.Identity", "megengine.module.BatchNorm2d", "megengine.functional.concat" ]
[((2316, 2333), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2327, 2333), False, 'from collections import defaultdict\n'), ((2686, 2706), 'megengine.functional.ones', 'F.ones', (['(1, 3, 3, 3)'], {}), '((1, 3, 3, 3))\n', (2692, 2706), True, 'import megengine.functional as F\n'), ((2745, 2768), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (2757, 2768), False, 'from megengine.traced_module import trace_module\n'), ((6518, 6527), 'megengine.functional.copy', 'F.copy', (['x'], {}), '(x)\n', (6524, 6527), True, 'import megengine.functional as F\n'), ((9703, 9730), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (9715, 9730), False, 'import pickle\n'), ((9751, 9768), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (9763, 9768), False, 'import pickle\n'), ((9773, 9795), 'megengine.traced_module.node.Node._set_next_id', 'Node._set_next_id', (['(159)'], {}), '(159)\n', (9790, 9795), False, 'from megengine.traced_module.node import ModuleNode, Node, TensorNode\n'), ((9800, 9823), 'megengine.traced_module.expr.Expr._set_next_id', 'Expr._set_next_id', (['(1024)'], {}), '(1024)\n', (9817, 9823), False, 'from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input\n'), ((10331, 10358), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (10343, 10358), False, 'import pickle\n'), ((10379, 10396), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (10391, 10396), False, 'import pickle\n'), ((10455, 10478), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (10467, 10478), False, 'from megengine.traced_module import trace_module\n'), ((10823, 10885), 'numpy.testing.assert_raises', 'np.testing.assert_raises', (['AssertionError', 'rename', '"""block1_out"""'], {}), "(AssertionError, rename, 'block1_out')\n", (10847, 10885), True, 'import numpy as np\n'), ((11876, 11899), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (11888, 11899), False, 'from megengine.traced_module import trace_module\n'), ((1016, 1076), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(in_channels, channels, 3, 1, padding=1, bias=False)\n', (1024, 1076), True, 'import megengine.module as M\n'), ((1096, 1119), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['channels'], {}), '(channels)\n', (1109, 1119), True, 'import megengine.module as M\n'), ((1691, 1707), 'megengine.functional.concat', 'F.concat', (['[a, a]'], {}), '([a, a])\n', (1699, 1707), True, 'import megengine.functional as F\n'), ((4366, 4381), 'megengine.functional.neg', 'F.neg', (['relu_out'], {}), '(relu_out)\n', (4371, 4381), True, 'import megengine.functional as F\n'), ((5432, 5445), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (5439, 5445), True, 'import megengine.functional as F\n'), ((6288, 6300), 'megengine.module.qat.Concat', 'qat.Concat', ([], {}), '()\n', (6298, 6300), True, 'import megengine.module.qat as qat\n'), ((6568, 6602), 'megengine.functional.concat', 'F.concat', (['[expect, expect, expect]'], {}), '([expect, expect, expect])\n', (6576, 6602), True, 'import megengine.functional as F\n'), ((1246, 1255), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (1252, 1255), True, 'import megengine.functional as F\n'), ((3718, 3750), 'itertools.chain', 'chain', (['expr.inputs', 'expr.outputs'], {}), '(expr.inputs, expr.outputs)\n', (3723, 3750), False, 'from itertools import chain\n'), ((4672, 4684), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4682, 4684), True, 'import megengine.module as M\n'), ((4844, 4857), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (4851, 4857), True, 'import megengine.functional as F\n'), ((10050, 10065), 'megengine.functional.neg', 'F.neg', (['relu_out'], {}), '(relu_out)\n', (10055, 10065), True, 'import megengine.functional as F\n'), ((4719, 4731), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4729, 4731), True, 'import megengine.module as M\n'), ((4733, 4745), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4743, 4745), True, 'import megengine.module as M\n'), ((4786, 4798), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4796, 4798), True, 'import megengine.module as M\n'), ((4805, 4817), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4815, 4817), True, 'import megengine.module as M\n'), ((5093, 5101), 'megengine.functional.neg', 'F.neg', (['x'], {}), '(x)\n', (5098, 5101), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.broadcast_to(x, (3, 3, 10)) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3, 1), dtype=np.float32) * 10, x.grad.numpy()) def test_Reduce_sum(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.sum(axis=0) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3), dtype=np.float32), x.grad.numpy()) def test_Reduce_mean(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.mean(axis=0) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3), dtype=np.float32) / 3, x.grad.numpy())
[ "megengine.core._imperative_rt.imperative.make_backward_graph", "megengine.functional.distributed.remote_send", "megengine.functional.expand_dims", "megengine.functional.distributed.remote_recv", "megengine.core._imperative_rt.imperative.sync", "megengine.distributed.init_process_group", "megengine.functional.ones_like", "megengine.core.tensor.tensor.apply", "megengine.core.autodiff.grad.Grad", "megengine.distributed.Server", "megengine.core.tensor.tensor_wrapper.TensorWrapper", "megengine.core._imperative_rt.TensorAttr", "megengine.device.set_default_device", "megengine.functional.broadcast_to", "megengine.distributed.get_free_ports", "megengine.device.get_default_device", "megengine.core.ops.builtin.Elemwise" ]
[((3488, 3558), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""high order gradient was not implemented yet"""'}), "(reason='high order gradient was not implemented yet')\n", (3504, 3558), False, 'import pytest\n'), ((1041, 1055), 'megengine.core.ops.builtin.Elemwise', 'Elemwise', (['mode'], {}), '(mode)\n', (1049, 1055), False, 'from megengine.core.ops.builtin import Elemwise\n'), ((1778, 1795), 'megengine.distributed.Server', 'dist.Server', (['port'], {}), '(port)\n', (1789, 1795), True, 'import megengine.distributed as dist\n'), ((2749, 2775), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker0'}), '(target=worker0)\n', (2759, 2775), True, 'import multiprocessing as mp\n'), ((2785, 2811), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker1'}), '(target=worker1)\n', (2795, 2811), True, 'import multiprocessing as mp\n'), ((4085, 4104), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (4098, 4104), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((4636, 4656), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['[0.0]'], {}), '([0.0])\n', (4649, 4656), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5029, 5048), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (5042, 5048), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5439, 5458), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (5452, 5458), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5467, 5486), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['y_np'], {}), '(y_np)\n', (5480, 5486), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5496, 5516), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['dz_np'], {}), '(dz_np)\n', (5509, 5516), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((5989, 6008), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (6002, 6008), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((6018, 6038), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['dz_np'], {}), '(dz_np)\n', (6031, 6038), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((6377, 6405), 'megengine.core.ops.builtin.Elemwise', 'Elemwise', (['Elemwise.Mode.RELU'], {}), '(Elemwise.Mode.RELU)\n', (6385, 6405), False, 'from megengine.core.ops.builtin import Elemwise\n'), ((6417, 6429), 'megengine.core._imperative_rt.TensorAttr', 'TensorAttr', ([], {}), '()\n', (6427, 6429), False, 'from megengine.core._imperative_rt import TensorAttr, imperative\n'), ((6498, 6556), 'megengine.core._imperative_rt.imperative.make_backward_graph', 'imperative.make_backward_graph', (['op', '[attr]', '[True]', '[True]'], {}), '(op, [attr], [True], [True])\n', (6528, 6556), False, 'from megengine.core._imperative_rt import TensorAttr, imperative\n'), ((6786, 6805), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (6799, 6805), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7067, 7086), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7080, 7086), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7397, 7416), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7410, 7416), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((7726, 7745), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (7739, 7745), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8054, 8073), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8067, 8073), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8129, 8158), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 3, 10)'], {}), '(x, (3, 3, 10))\n', (8143, 8158), True, 'import megengine.functional as F\n'), ((8358, 8377), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8371, 8377), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((8639, 8658), 'megengine.core.tensor.tensor_wrapper.TensorWrapper', 'TensorWrapper', (['x_np'], {}), '(x_np)\n', (8652, 8658), False, 'from megengine.core.tensor.tensor_wrapper import TensorWrapper\n'), ((1095, 1111), 'megengine.core.tensor.tensor.apply', 'apply', (['op', '*args'], {}), '(op, *args)\n', (1100, 1111), False, 'from megengine.core.tensor.tensor import Tensor, apply\n'), ((1739, 1761), 'megengine.distributed.get_free_ports', 'dist.get_free_ports', (['(1)'], {}), '(1)\n', (1758, 1761), True, 'import megengine.distributed as dist\n'), ((1824, 1884), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', '(0)', '(0)'], {}), "('localhost', port, world_size, 0, 0)\n", (1847, 1884), True, 'import megengine.distributed as dist\n'), ((1893, 1930), 'megengine.device.set_default_device', 'mge.device.set_default_device', (['"""gpu0"""'], {}), "('gpu0')\n", (1922, 1930), True, 'import megengine as mge\n'), ((1946, 1952), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (1950, 1952), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2087, 2104), 'megengine.functional.distributed.remote_send', 'remote_send', (['x', '(1)'], {}), '(x, 1)\n', (2098, 2104), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2122, 2168), 'megengine.functional.distributed.remote_recv', 'remote_recv', (['(1)', 'x_np.shape', 'x_np.dtype', '"""gpu0"""'], {}), "(1, x_np.shape, x_np.dtype, 'gpu0')\n", (2133, 2168), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2347, 2407), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', '(1)', '(1)'], {}), "('localhost', port, world_size, 1, 1)\n", (2370, 2407), True, 'import megengine.distributed as dist\n'), ((2416, 2453), 'megengine.device.set_default_device', 'mge.device.set_default_device', (['"""gpu1"""'], {}), "('gpu1')\n", (2445, 2453), True, 'import megengine as mge\n'), ((2469, 2475), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (2473, 2475), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2494, 2540), 'megengine.functional.distributed.remote_recv', 'remote_recv', (['(0)', 'x_np.shape', 'x_np.dtype', '"""gpu1"""'], {}), "(0, x_np.shape, x_np.dtype, 'gpu1')\n", (2505, 2540), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2558, 2580), 'megengine.functional.distributed.remote_send', 'remote_send', (['recv_x', '(0)'], {}), '(recv_x, 0)\n', (2569, 2580), False, 'from megengine.functional.distributed import remote_recv, remote_send\n'), ((2660, 2666), 'megengine.core._imperative_rt.imperative.sync', 'sync', ([], {}), '()\n', (2664, 2666), False, 'from megengine.core._imperative_rt.imperative import sync\n'), ((1562, 1579), 'platform.system', 'platform.system', ([], {}), '()\n', (1577, 1579), False, 'import platform\n'), ((3673, 3691), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3685, 3691), True, 'import numpy as np\n'), ((4393, 4405), 'gc.disable', 'gc.disable', ([], {}), '()\n', (4403, 4405), False, 'import gc\n'), ((5588, 5614), 'weakref.ref', 'weakref.ref', (['x.__wrapped__'], {}), '(x.__wrapped__)\n', (5599, 5614), False, 'import weakref\n'), ((5635, 5661), 'weakref.ref', 'weakref.ref', (['y.__wrapped__'], {}), '(y.__wrapped__)\n', (5646, 5661), False, 'import weakref\n'), ((6107, 6133), 'weakref.ref', 'weakref.ref', (['x.__wrapped__'], {}), '(x.__wrapped__)\n', (6118, 6133), False, 'import weakref\n'), ((6890, 6904), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (6901, 6904), True, 'import megengine.functional as F\n'), ((6934, 6967), 'numpy.ones', 'np.ones', (['(2, 5)'], {'dtype': 'np.float32'}), '((2, 5), dtype=np.float32)\n', (6941, 6967), True, 'import numpy as np\n'), ((7167, 7181), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7178, 7181), True, 'import megengine.functional as F\n'), ((7220, 7281), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 1, 0], [0, 0, 0]]'], {'dtype': 'np.float32'}), '([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32)\n', (7228, 7281), True, 'import numpy as np\n'), ((7503, 7517), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7514, 7517), True, 'import megengine.functional as F\n'), ((7556, 7617), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 0, 0], [0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32)\n', (7564, 7617), True, 'import numpy as np\n'), ((7811, 7830), 'megengine.functional.expand_dims', 'F.expand_dims', (['x', '(2)'], {}), '(x, 2)\n', (7824, 7830), True, 'import megengine.functional as F\n'), ((7848, 7862), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (7859, 7862), True, 'import megengine.functional as F\n'), ((7901, 7946), 'numpy.array', 'np.array', (['[[1, 1, 1, 1, 1]]'], {'dtype': 'np.float32'}), '([[1, 1, 1, 1, 1]], dtype=np.float32)\n', (7909, 7946), True, 'import numpy as np\n'), ((8172, 8186), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8183, 8186), True, 'import megengine.functional as F\n'), ((8460, 8474), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8471, 8474), True, 'import megengine.functional as F\n'), ((8504, 8537), 'numpy.ones', 'np.ones', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (8511, 8537), True, 'import numpy as np\n'), ((8742, 8756), 'megengine.functional.ones_like', 'F.ones_like', (['y'], {}), '(y)\n', (8753, 8756), True, 'import megengine.functional as F\n'), ((1691, 1709), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (1705, 1709), True, 'import numpy as np\n'), ((2953, 2971), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (2967, 2971), True, 'import numpy as np\n'), ((3026, 3032), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3030, 3032), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3100, 3118), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3112, 3118), True, 'import numpy as np\n'), ((3173, 3185), 'numpy.sin', 'np.sin', (['x_np'], {}), '(x_np)\n', (3179, 3185), True, 'import numpy as np\n'), ((3219, 3237), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (3233, 3237), True, 'import numpy as np\n'), ((3292, 3298), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3296, 3298), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3387, 3405), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (3399, 3405), True, 'import numpy as np\n'), ((3591, 3609), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (3605, 3609), True, 'import numpy as np\n'), ((3705, 3711), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3709, 3711), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3752, 3758), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (3756, 3758), False, 'from megengine.core.autodiff.grad import Grad\n'), ((3874, 3886), 'numpy.sin', 'np.sin', (['x_np'], {}), '(x_np)\n', (3880, 3886), True, 'import numpy as np\n'), ((3976, 3988), 'numpy.cos', 'np.cos', (['x_np'], {}), '(x_np)\n', (3982, 3988), True, 'import numpy as np\n'), ((4040, 4058), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (4054, 4058), True, 'import numpy as np\n'), ((4117, 4123), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4121, 4123), False, 'from megengine.core.autodiff.grad import Grad\n'), ((4216, 4234), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (4228, 4234), True, 'import numpy as np\n'), ((4615, 4626), 'gc.enable', 'gc.enable', ([], {}), '()\n', (4624, 4626), False, 'import gc\n'), ((4984, 5002), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (4998, 5002), True, 'import numpy as np\n'), ((5061, 5067), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (5065, 5067), False, 'from megengine.core.autodiff.grad import Grad\n'), ((5153, 5171), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (5165, 5171), True, 'import numpy as np\n'), ((5289, 5307), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (5303, 5307), True, 'import numpy as np\n'), ((5337, 5359), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (5351, 5359), True, 'import numpy as np\n'), ((5390, 5412), 'numpy.random.rand', 'np.random.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (5404, 5412), True, 'import numpy as np\n'), ((5695, 5701), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (5699, 5701), False, 'from megengine.core.autodiff.grad import Grad\n'), ((6169, 6175), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (6173, 6175), False, 'from megengine.core.autodiff.grad import Grad\n'), ((6739, 6759), 'numpy.random.rand', 'np.random.rand', (['(2)', '(5)'], {}), '(2, 5)\n', (6753, 6759), True, 'import numpy as np\n'), ((6818, 6824), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (6822, 6824), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7020, 7040), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (7034, 7040), True, 'import numpy as np\n'), ((7099, 7105), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7103, 7105), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7350, 7370), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (7364, 7370), True, 'import numpy as np\n'), ((7429, 7435), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7433, 7435), False, 'from megengine.core.autodiff.grad import Grad\n'), ((7679, 7699), 'numpy.random.rand', 'np.random.rand', (['(1)', '(5)'], {}), '(1, 5)\n', (7693, 7699), True, 'import numpy as np\n'), ((7758, 7764), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7762, 7764), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8004, 8027), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(1)'], {}), '(3, 3, 1)\n', (8018, 8027), True, 'import numpy as np\n'), ((8086, 8092), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8090, 8092), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8216, 8252), 'numpy.ones', 'np.ones', (['(3, 3, 1)'], {'dtype': 'np.float32'}), '((3, 3, 1), dtype=np.float32)\n', (8223, 8252), True, 'import numpy as np\n'), ((8311, 8331), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (8325, 8331), True, 'import numpy as np\n'), ((8390, 8396), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8394, 8396), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8592, 8612), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (8606, 8612), True, 'import numpy as np\n'), ((8671, 8677), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8675, 8677), False, 'from megengine.core.autodiff.grad import Grad\n'), ((8786, 8819), 'numpy.ones', 'np.ones', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (8793, 8819), True, 'import numpy as np\n'), ((1346, 1377), 'megengine.device.get_default_device', 'mge.device.get_default_device', ([], {}), '()\n', (1375, 1377), True, 'import megengine as mge\n'), ((4742, 4748), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4746, 4748), False, 'from megengine.core.autodiff.grad import Grad\n'), ((2227, 2245), 'numpy.ones_like', 'np.ones_like', (['x_np'], {}), '(x_np)\n', (2239, 2245), True, 'import numpy as np\n'), ((4494, 4510), 'gc.get_objects', 'gc.get_objects', ([], {}), '()\n', (4508, 4510), False, 'import gc\n'), ((4829, 4835), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4833, 4835), False, 'from megengine.core.autodiff.grad import Grad\n'), ((4904, 4910), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4908, 4910), False, 'from megengine.core.autodiff.grad import Grad\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import queue from time import sleep import pytest import megengine as mge import megengine._internal as mgb import megengine.distributed as dist _LOCALHOST = "127.0.0.1" def _assert_q_empty(q): try: res = q.get(timeout=1) except Exception as e: assert isinstance(e, queue.Empty) else: assert False, "queue is not empty" def _assert_q_val(q, val): ret = q.get() assert ret == val def _init_process_group_wrapper(world_size, rank, dev, backend, q): if rank == 0: dist.init_process_group(_LOCALHOST, 0, world_size, rank, dev, backend) q.put(dist.get_master_port()) else: port = q.get() dist.init_process_group(_LOCALHOST, port, world_size, rank, dev, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_create_mm_server(): def worker(): if not mge.is_cuda_available(): return port = mgb.config.create_mm_server("0.0.0.0", 0) assert port > 0 res = mgb.config.create_mm_server("0.0.0.0", port) assert res == -1 p = mp.Process(target=worker) p.start() p.join(10) assert p.exitcode == 0 @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_init_process_group(): world_size = 2 def worker(rank, backend, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) assert dist.is_distributed() == True assert dist.get_master_ip() == _LOCALHOST assert dist.get_master_port() > 0 assert dist.get_world_size() == world_size assert dist.get_rank() == rank assert dist.get_backend() == backend def check(backend): Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, backend, Q)) p1 = mp.Process(target=worker, args=(1, backend, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 check("nccl") check("ucx") @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_group_barrier(): world_size = 2 ip = "127.0.0.1" backend = "nccl" def worker(rank, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) dist.group_barrier() if rank == 0: dist.group_barrier() q.put(0) # to be observed in rank 1 else: _assert_q_empty(q) # q.put(0) is not executed in rank 0 dist.group_barrier() _assert_q_val(q, 0) # q.put(0) executed in rank 0 Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, Q)) p1 = mp.Process(target=worker, args=(1, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_synchronized(): world_size = 2 backend = "nccl" @dist.synchronized def func(rank, q): q.put(rank) def worker(rank, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) dist.group_barrier() if rank == 0: func(0, q) # q.put(0) q.put(2) else: _assert_q_val(q, 0) # func executed in rank 0 _assert_q_empty(q) # q.put(2) is not executed func(1, q) _assert_q_val( q, 1 ) # func in rank 1 executed earlier than q.put(2) in rank 0 _assert_q_val(q, 2) # q.put(2) executed in rank 0 Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, Q)) p1 = mp.Process(target=worker, args=(1, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0
[ "megengine.distributed.group_barrier", "megengine.distributed.get_backend", "megengine.distributed.get_master_ip", "megengine.distributed.get_master_port", "megengine.distributed.get_rank", "megengine.distributed.init_process_group", "megengine.distributed.is_distributed", "megengine.distributed.get_world_size", "megengine.is_cuda_available", "megengine._internal.config.create_mm_server" ]
[((1564, 1589), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker'}), '(target=worker)\n', (1574, 1589), True, 'import multiprocessing as mp\n'), ((3314, 3324), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (3322, 3324), True, 'import multiprocessing as mp\n'), ((3334, 3372), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, Q)'}), '(target=worker, args=(0, Q))\n', (3344, 3372), True, 'import multiprocessing as mp\n'), ((3382, 3420), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, Q)'}), '(target=worker, args=(1, Q))\n', (3392, 3420), True, 'import multiprocessing as mp\n'), ((4415, 4425), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (4423, 4425), True, 'import multiprocessing as mp\n'), ((4435, 4473), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, Q)'}), '(target=worker, args=(0, Q))\n', (4445, 4473), True, 'import multiprocessing as mp\n'), ((4483, 4521), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, Q)'}), '(target=worker, args=(1, Q))\n', (4493, 4521), True, 'import multiprocessing as mp\n'), ((924, 994), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['_LOCALHOST', '(0)', 'world_size', 'rank', 'dev', 'backend'], {}), '(_LOCALHOST, 0, world_size, rank, dev, backend)\n', (947, 994), True, 'import megengine.distributed as dist\n'), ((1074, 1147), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['_LOCALHOST', 'port', 'world_size', 'rank', 'dev', 'backend'], {}), '(_LOCALHOST, port, world_size, rank, dev, backend)\n', (1097, 1147), True, 'import megengine.distributed as dist\n'), ((1405, 1446), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', '(0)'], {}), "('0.0.0.0', 0)\n", (1432, 1446), True, 'import megengine._internal as mgb\n'), ((1485, 1529), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', 'port'], {}), "('0.0.0.0', port)\n", (1512, 1529), True, 'import megengine._internal as mgb\n'), ((1175, 1192), 'platform.system', 'platform.system', ([], {}), '()\n', (1190, 1192), False, 'import platform\n'), ((2310, 2320), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (2318, 2320), True, 'import multiprocessing as mp\n'), ((2334, 2381), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, backend, Q)'}), '(target=worker, args=(0, backend, Q))\n', (2344, 2381), True, 'import multiprocessing as mp\n'), ((2395, 2442), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, backend, Q)'}), '(target=worker, args=(1, backend, Q))\n', (2405, 2442), True, 'import multiprocessing as mp\n'), ((1676, 1693), 'platform.system', 'platform.system', ([], {}), '()\n', (1691, 1693), False, 'import platform\n'), ((3001, 3021), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3019, 3021), True, 'import megengine.distributed as dist\n'), ((2640, 2657), 'platform.system', 'platform.system', ([], {}), '()\n', (2655, 2657), False, 'import platform\n'), ((3968, 3988), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3986, 3988), True, 'import megengine.distributed as dist\n'), ((3562, 3579), 'platform.system', 'platform.system', ([], {}), '()\n', (3577, 3579), False, 'import platform\n'), ((1009, 1031), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (1029, 1031), True, 'import megengine.distributed as dist\n'), ((1346, 1369), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1367, 1369), True, 'import megengine as mge\n'), ((1885, 1908), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1906, 1908), True, 'import megengine as mge\n'), ((2016, 2037), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (2035, 2037), True, 'import megengine.distributed as dist\n'), ((2061, 2081), 'megengine.distributed.get_master_ip', 'dist.get_master_ip', ([], {}), '()\n', (2079, 2081), True, 'import megengine.distributed as dist\n'), ((2111, 2133), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (2131, 2133), True, 'import megengine.distributed as dist\n'), ((2153, 2174), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (2172, 2174), True, 'import megengine.distributed as dist\n'), ((2204, 2219), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2217, 2219), True, 'import megengine.distributed as dist\n'), ((2243, 2261), 'megengine.distributed.get_backend', 'dist.get_backend', ([], {}), '()\n', (2259, 2261), True, 'import megengine.distributed as dist\n'), ((2877, 2900), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (2898, 2900), True, 'import megengine as mge\n'), ((3056, 3076), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3074, 3076), True, 'import megengine.distributed as dist\n'), ((3221, 3241), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3239, 3241), True, 'import megengine.distributed as dist\n'), ((3844, 3867), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (3865, 3867), True, 'import megengine as mge\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io from tempfile import mkstemp import numpy as np import pytest import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.optimizer as optim import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import set_symbolic_shape from megengine.core.ops import builtin as ops from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.utils import isscalar from megengine.functional import exp, log from megengine.jit import exclude_from_trace, trace from megengine.module import Module from megengine.random import normal, uniform def test_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): return -x x = tensor([1]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) def test_output_copy_trace(): class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a # will result into a copy of output in grad x = F.exp(x) return x net = Simple() gm = GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) data = tensor(np.arange(4).reshape(2, 2), dtype="float32") @trace(symbolic=False) def train_f1(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss @trace(symbolic=True) def train_f2(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss for i in range(2): y1 = train_f1(data).numpy() y2 = train_f2(data).numpy() np.testing.assert_equal(y1, y2) def test_exclude_from_trace(): for symbolic in [False, True]: @trace(symbolic=symbolic) def f(x): x = -x with exclude_from_trace(): if i % 2: x = -x x = -x return x x = tensor([1]) for i in range(3): y = f(x).numpy() np.testing.assert_equal(f(x).numpy(), y) def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf x = -x buf = x.numpy() x = -x return x buf = None x = tensor([1]) for i in range(3): y = f(x).numpy() z = buf buf = None np.testing.assert_equal(f(x).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): return a + b a = tensor([2]) b = tensor([4]) y = f(a, b).numpy() for i in range(3): np.testing.assert_equal(f(a, b).numpy(), y) file = io.BytesIO() dump_info = f.dump(file) assert dump_info.nr_opr == 3 np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"]) np.testing.assert_equal(dump_info.outputs, ["ADD(arg_0,arg_1)[4]"]) file.seek(0) result = cgtools.load_and_inference(file, [a, b]) np.testing.assert_equal(result[0], y) def test_capture_dump(): a = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * a x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) result = cgtools.load_and_inference(file, [x]) np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * p x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) cg, _, outputs = G.load_graph(file) (out,) = outputs assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "ImmutableTensor" ) def test_trace_profiler(): for symbolic in [False, True]: @trace(symbolic=symbolic, profiling=True) def f(x): return -x x = tensor([1]) y = f(x).numpy() f(x) f(x) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") @pytest.mark.skip(reason="force opt_level=0 when building graph") def test_goptions(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): # directly return x / x will not trigger gopt # since there's no way to tell the two x are the same y = 2.0 * x return y / y @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): y = 2.0 * x return y / y d = tensor(0.0) assert not np.isfinite(f(d).numpy()) np.testing.assert_equal(g(d).numpy().item(), 1.0) @pytest.mark.skip(reason="force opt_level=0 when building graph") def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) val = 1.0e4 d = tensor(val) o = tensor(0.0) assert not np.isfinite(f(d, o).numpy()) np.testing.assert_almost_equal(g(d, o), val) @pytest.mark.skip(reason="could not use opt_level=0 with dump") def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_optimize_for_inference_broadcast(): a = tensor(np.ones(1, dtype=np.float32)) @trace(capture_as_const=True, symbolic_shape=True) def f(): return a._broadcast(tensor([1, 10], dtype=np.int32)) f() f.dump(io.BytesIO()) def test_trace_cvt_bool(): x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): a = x.shape b = a[0] assert isscalar(b) return b == 0 for i in range(3): np.testing.assert_equal(f(x).numpy(), False) def test_trace_reshape(): for symbolic in [False, True]: x1 = tensor(np.random.randn(2, 10, 10)) x2 = tensor(np.random.randn(4, 10, 10)) x3 = tensor(np.random.randn(8, 10, 10)) @trace(symbolic=symbolic, capture_as_const=True) def f(x): y = x.reshape(x.shape[0], 100) return y f(x1) f(x2) f(x3) def test_trace_topk(): x = tensor([5, 2, 7, 1, 0, 3, 2]) @trace(symbolic=True) def f(x): y = F.topk(x, 3) np.testing.assert_equal(y[0].shape.numpy(), np.array([3,])) return y for i in range(3): f(x) def test_trace_warp_perspective(): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) @trace(symbolic=True) def f(x, M): out = F.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) return out for i in range(1): f(x, M) def test_raise_on_trace(): step_count = 0 catch_count = 0 bad_step = 10 class CatchMe(Exception): pass a = tensor([1, 2, 3, 4]) b = tensor([5, 6, 7, 8]) c = tensor([9, 0, 1, 2]) @trace def add_abc(a, b, c): ps = a + b result = ps + c if step_count == bad_step: raise CatchMe("catch me") return result for i in range(100): try: d = add_abc(a, b, c) except CatchMe as e: catch_count += 1 else: np.testing.assert_equal(d.numpy(), (a + b + c).numpy()) step_count += 1 assert catch_count == 1 def test_trace_broadcast(): for symbolic in [False, True]: x1 = tensor(np.random.randn(3, 1, 1)) x2 = tensor(np.random.randn(1, 4, 1)) x3 = tensor(np.random.randn(1, 1, 5)) @trace(symbolic=symbolic, capture_as_const=True) def f(x): y = F.broadcast_to(x, (3, 4, 5)) return y f(x1) f(x2) f(x3) def test_trace_nms(): def make_inputs(n): boxes = np.zeros((n, 4)) boxes[:, :2] = np.random.rand(n, 2) * 100 boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100 scores = np.random.rand(n) return tensor(boxes), tensor(scores) @trace(symbolic=False) def f(boxes, scores): # with tracing, max_output must be specified results = F.nn.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) # without tracing, max output can be inferred inside nms with exclude_from_trace(): _ = F.nn.nms(boxes, scores=scores, iou_thresh=0.5) return results f(*make_inputs(10)) f(*make_inputs(20)) f(*make_inputs(30)) def test_trace_valid_broadcast(): x1 = tensor(np.random.randn(1, 1)) x2 = tensor(np.random.randn(1, 2)) shape = (tensor([2]), tensor([2])) @trace(symbolic=False) def f(x, shape): y = F.broadcast_to(x, shape) return y f(x1, shape) f(x2, shape) def test_clip(): x = tensor(np.random.randn(10, 10)) @trace(symbolic=True) def f(x, lower, upper): y = F.clip(x, lower, upper) return y for i in range(3): f(x, tensor([0]), tensor([1])) # test returning noncontiguous tensor from trace def test_slice(): @trace def f(x): return x[:, 1::2] x = F.arange(8).reshape(2, 4) f(x) y = f(x) np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2]) y + y def test_random(): def run_test(op): for symbolic_shape in [True, False]: @trace(symbolic=True, symbolic_shape=symbolic_shape) def f(): out = op(size=[10, 10]) out_shape = out.shape assert out_shape is not None if not isinstance(out_shape, tuple): assert out.shape.numpy() is not None return out for _ in range(3): f() run_test(uniform) run_test(normal)
[ "megengine.utils.comp_graph_tools.load_and_inference", "megengine.functional.arange", "megengine.autodiff.GradManager", "megengine.jit.trace", "megengine.functional.clip", "megengine.core.tensor.utils.isscalar", "megengine.utils.comp_graph_tools.get_owner_opr_inputs", "megengine.tensor", "megengine.functional.nn.nms", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.topk", "megengine.functional.exp", "megengine.functional.broadcast_to", "megengine.jit.exclude_from_trace", "megengine.Parameter", "megengine.utils.comp_graph_tools.get_oprs_seq", "megengine.functional.warp_perspective" ]
[((5110, 5174), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""force opt_level=0 when building graph"""'}), "(reason='force opt_level=0 when building graph')\n", (5126, 5174), False, 'import pytest\n'), ((5666, 5730), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""force opt_level=0 when building graph"""'}), "(reason='force opt_level=0 when building graph')\n", (5682, 5730), False, 'import pytest\n'), ((6148, 6210), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""could not use opt_level=0 with dump"""'}), "(reason='could not use opt_level=0 with dump')\n", (6164, 6210), False, 'import pytest\n'), ((1871, 1892), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (1876, 1892), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2049, 2069), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2054, 2069), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3305, 3348), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3310, 3348), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3396, 3407), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (3402, 3407), False, 'from megengine import Parameter, tensor\n'), ((3416, 3427), 'megengine.tensor', 'tensor', (['[4]'], {}), '([4])\n', (3422, 3427), False, 'from megengine import Parameter, tensor\n'), ((3540, 3552), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3550, 3552), False, 'import io\n'), ((3619, 3680), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.inputs', "['arg_0', 'arg_1']"], {}), "(dump_info.inputs, ['arg_0', 'arg_1'])\n", (3642, 3680), True, 'import numpy as np\n'), ((3685, 3752), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.outputs', "['ADD(arg_0,arg_1)[4]']"], {}), "(dump_info.outputs, ['ADD(arg_0,arg_1)[4]'])\n", (3708, 3752), True, 'import numpy as np\n'), ((3783, 3823), 'megengine.utils.comp_graph_tools.load_and_inference', 'cgtools.load_and_inference', (['file', '[a, b]'], {}), '(file, [a, b])\n', (3809, 3823), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((3828, 3865), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (3851, 3865), True, 'import numpy as np\n'), ((3901, 3912), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (3907, 3912), False, 'from megengine import Parameter, tensor\n'), ((3919, 3962), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3924, 3962), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4007, 4018), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (4013, 4018), False, 'from megengine import Parameter, tensor\n'), ((4125, 4137), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4135, 4137), False, 'import io\n'), ((4185, 4222), 'megengine.utils.comp_graph_tools.load_and_inference', 'cgtools.load_and_inference', (['file', '[x]'], {}), '(file, [x])\n', (4211, 4222), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((4227, 4264), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (4250, 4264), True, 'import numpy as np\n'), ((4301, 4312), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (4307, 4312), False, 'from megengine import Parameter, tensor\n'), ((4319, 4362), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (4324, 4362), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4407, 4418), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (4413, 4418), False, 'from megengine import Parameter, tensor\n'), ((4525, 4537), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4535, 4537), False, 'import io\n'), ((4623, 4641), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (4635, 4641), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((5201, 5257), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (5206, 5257), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5435, 5491), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (5440, 5491), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5556, 5567), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (5562, 5567), False, 'from megengine import Parameter, tensor\n'), ((5769, 5825), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (5774, 5825), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5885, 5941), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (5890, 5941), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6020, 6031), 'megengine.tensor', 'tensor', (['val'], {}), '(val)\n', (6026, 6031), False, 'from megengine import Parameter, tensor\n'), ((6040, 6051), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (6046, 6051), False, 'from megengine import Parameter, tensor\n'), ((6245, 6301), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (6250, 6301), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6349, 6405), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (6354, 6405), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6480, 6489), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (6487, 6489), False, 'from tempfile import mkstemp\n'), ((6554, 6571), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (6566, 6571), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6585, 6614), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (6605, 6614), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6699, 6716), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (6711, 6716), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6730, 6759), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (6750, 6759), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6845, 6888), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6850, 6888), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6939, 6948), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (6946, 6948), False, 'from tempfile import mkstemp\n'), ((7017, 7034), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (7029, 7034), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((7242, 7291), 'megengine.jit.trace', 'trace', ([], {'capture_as_const': '(True)', 'symbolic_shape': '(True)'}), '(capture_as_const=True, symbolic_shape=True)\n', (7247, 7291), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7437, 7464), 'megengine.tensor', 'tensor', (['[0]'], {'dtype': 'np.int32'}), '([0], dtype=np.int32)\n', (7443, 7464), False, 'from megengine import Parameter, tensor\n'), ((7471, 7491), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (7476, 7491), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8092, 8121), 'megengine.tensor', 'tensor', (['[5, 2, 7, 1, 0, 3, 2]'], {}), '([5, 2, 7, 1, 0, 3, 2])\n', (8098, 8121), False, 'from megengine import Parameter, tensor\n'), ((8128, 8148), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (8133, 8148), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8622, 8642), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (8627, 8642), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8980, 9000), 'megengine.tensor', 'tensor', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (8986, 9000), False, 'from megengine import Parameter, tensor\n'), ((9009, 9029), 'megengine.tensor', 'tensor', (['[5, 6, 7, 8]'], {}), '([5, 6, 7, 8])\n', (9015, 9029), False, 'from megengine import Parameter, tensor\n'), ((9038, 9058), 'megengine.tensor', 'tensor', (['[9, 0, 1, 2]'], {}), '([9, 0, 1, 2])\n', (9044, 9058), False, 'from megengine import Parameter, tensor\n'), ((10163, 10184), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (10168, 10184), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10762, 10783), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (10767, 10783), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10959, 10979), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (10964, 10979), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1146, 1170), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (1151, 1170), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1224, 1235), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (1230, 1235), False, 'from megengine import Parameter, tensor\n'), ((2450, 2474), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2455, 2474), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2657, 2668), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (2663, 2668), False, 'from megengine import Parameter, tensor\n'), ((2885, 2909), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2890, 2909), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3072, 3083), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (3078, 3083), False, 'from megengine import Parameter, tensor\n'), ((4858, 4898), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'profiling': '(True)'}), '(symbolic=symbolic, profiling=True)\n', (4863, 4898), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4952, 4963), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (4958, 4963), False, 'from megengine import Parameter, tensor\n'), ((6454, 6465), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (6460, 6465), False, 'from megengine import Parameter, tensor\n'), ((6622, 6633), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (6628, 6633), False, 'from megengine import Parameter, tensor\n'), ((6918, 6924), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6921, 6924), False, 'from megengine.functional import exp, log\n'), ((6955, 6966), 'megengine.tensor', 'tensor', (['(5.0)'], {}), '(5.0)\n', (6961, 6966), False, 'from megengine import Parameter, tensor\n'), ((7206, 7234), 'numpy.ones', 'np.ones', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (7213, 7234), True, 'import numpy as np\n'), ((7386, 7398), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7396, 7398), False, 'import io\n'), ((7558, 7569), 'megengine.core.tensor.utils.isscalar', 'isscalar', (['b'], {}), '(b)\n', (7566, 7569), False, 'from megengine.core.tensor.utils import isscalar\n'), ((7886, 7933), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'capture_as_const': '(True)'}), '(symbolic=symbolic, capture_as_const=True)\n', (7891, 7933), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8175, 8187), 'megengine.functional.topk', 'F.topk', (['x', '(3)'], {}), '(x, 3)\n', (8181, 8187), True, 'import megengine.functional as F\n'), ((8674, 8706), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['x', 'M', '(2, 2)'], {}), '(x, M, (2, 2))\n', (8692, 8706), True, 'import megengine.functional as F\n'), ((9713, 9760), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic', 'capture_as_const': '(True)'}), '(symbolic=symbolic, capture_as_const=True)\n', (9718, 9760), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9952, 9968), 'numpy.zeros', 'np.zeros', (['(n, 4)'], {}), '((n, 4))\n', (9960, 9968), True, 'import numpy as np\n'), ((10093, 10110), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (10107, 10110), True, 'import numpy as np\n'), ((10282, 10343), 'megengine.functional.nn.nms', 'F.nn.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)', 'max_output': '(20)'}), '(boxes, scores=scores, iou_thresh=0.5, max_output=20)\n', (10290, 10343), True, 'import megengine.functional as F\n'), ((10655, 10676), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)'], {}), '(1, 1)\n', (10670, 10676), True, 'import numpy as np\n'), ((10694, 10715), 'numpy.random.randn', 'np.random.randn', (['(1)', '(2)'], {}), '(1, 2)\n', (10709, 10715), True, 'import numpy as np\n'), ((10730, 10741), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (10736, 10741), False, 'from megengine import Parameter, tensor\n'), ((10743, 10754), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (10749, 10754), False, 'from megengine import Parameter, tensor\n'), ((10817, 10841), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', 'shape'], {}), '(x, shape)\n', (10831, 10841), True, 'import megengine.functional as F\n'), ((10928, 10951), 'numpy.random.randn', 'np.random.randn', (['(10)', '(10)'], {}), '(10, 10)\n', (10943, 10951), True, 'import numpy as np\n'), ((11020, 11043), 'megengine.functional.clip', 'F.clip', (['x', 'lower', 'upper'], {}), '(x, lower, upper)\n', (11026, 11043), True, 'import megengine.functional as F\n'), ((1480, 1514), 'megengine.Parameter', 'Parameter', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (1489, 1514), False, 'from megengine import Parameter, tensor\n'), ((1645, 1653), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (1650, 1653), True, 'import megengine.functional as F\n'), ((1705, 1718), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1716, 1718), False, 'from megengine.autodiff import GradManager\n'), ((2340, 2371), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['y1', 'y2'], {}), '(y1, y2)\n', (2363, 2371), True, 'import numpy as np\n'), ((3249, 3280), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['z', 'buf'], {}), '(z, buf)\n', (3272, 3280), True, 'import numpy as np\n'), ((6335, 6341), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6338, 6341), False, 'from megengine.functional import exp, log\n'), ((6439, 6445), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (6442, 6445), False, 'from megengine.functional import exp, log\n'), ((7333, 7364), 'megengine.tensor', 'tensor', (['[1, 10]'], {'dtype': 'np.int32'}), '([1, 10], dtype=np.int32)\n', (7339, 7364), False, 'from megengine import Parameter, tensor\n'), ((7752, 7778), 'numpy.random.randn', 'np.random.randn', (['(2)', '(10)', '(10)'], {}), '(2, 10, 10)\n', (7767, 7778), True, 'import numpy as np\n'), ((7800, 7826), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)', '(10)'], {}), '(4, 10, 10)\n', (7815, 7826), True, 'import numpy as np\n'), ((7848, 7874), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)', '(10)'], {}), '(8, 10, 10)\n', (7863, 7874), True, 'import numpy as np\n'), ((8240, 8253), 'numpy.array', 'np.array', (['[3]'], {}), '([3])\n', (8248, 8253), True, 'import numpy as np\n'), ((8758, 8780), 'numpy.array', 'np.array', (['[1, 1, 2, 2]'], {}), '([1, 1, 2, 2])\n', (8766, 8780), True, 'import numpy as np\n'), ((9585, 9609), 'numpy.random.randn', 'np.random.randn', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (9600, 9609), True, 'import numpy as np\n'), ((9631, 9655), 'numpy.random.randn', 'np.random.randn', (['(1)', '(4)', '(1)'], {}), '(1, 4, 1)\n', (9646, 9655), True, 'import numpy as np\n'), ((9677, 9701), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)', '(5)'], {}), '(1, 1, 5)\n', (9692, 9701), True, 'import numpy as np\n'), ((9795, 9823), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 4, 5)'], {}), '(x, (3, 4, 5))\n', (9809, 9823), True, 'import megengine.functional as F\n'), ((9992, 10012), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (10006, 10012), True, 'import numpy as np\n'), ((10127, 10140), 'megengine.tensor', 'tensor', (['boxes'], {}), '(boxes)\n', (10133, 10140), False, 'from megengine import Parameter, tensor\n'), ((10142, 10156), 'megengine.tensor', 'tensor', (['scores'], {}), '(scores)\n', (10148, 10156), False, 'from megengine import Parameter, tensor\n'), ((10422, 10442), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (10440, 10442), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10460, 10506), 'megengine.functional.nn.nms', 'F.nn.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)'}), '(boxes, scores=scores, iou_thresh=0.5)\n', (10468, 10506), True, 'import megengine.functional as F\n'), ((11098, 11109), 'megengine.tensor', 'tensor', (['[0]'], {}), '([0])\n', (11104, 11109), False, 'from megengine import Parameter, tensor\n'), ((11111, 11122), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (11117, 11122), False, 'from megengine import Parameter, tensor\n'), ((11253, 11264), 'megengine.functional.arange', 'F.arange', (['(8)'], {}), '(8)\n', (11261, 11264), True, 'import megengine.functional as F\n'), ((11478, 11529), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'symbolic_shape': 'symbolic_shape'}), '(symbolic=True, symbolic_shape=symbolic_shape)\n', (11483, 11529), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1820, 1832), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (1829, 1832), True, 'import numpy as np\n'), ((2529, 2549), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (2547, 2549), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4711, 4744), 'megengine.utils.comp_graph_tools.get_owner_opr_inputs', 'cgtools.get_owner_opr_inputs', (['out'], {}), '(out)\n', (4739, 4744), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((5862, 5868), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (5865, 5868), False, 'from megengine.functional import exp, log\n'), ((5871, 5877), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (5874, 5877), False, 'from megengine.functional import exp, log\n'), ((5978, 5984), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (5981, 5984), False, 'from megengine.functional import exp, log\n'), ((5987, 5993), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (5990, 5993), False, 'from megengine.functional import exp, log\n'), ((8391, 8422), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (8400, 8422), True, 'import numpy as np\n'), ((8491, 8570), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (8499, 8570), True, 'import numpy as np\n'), ((10042, 10062), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (10056, 10062), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) 2020 <NAME> # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved. """EfficientNet Series EfficientNet: `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_ References: https://github.com/facebookresearch/pycls/blob/main/pycls/models/effnet.py https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py """ import math from numbers import Real from typing import Any, Callable, Mapping, Sequence, Union import megengine.hub as hub import megengine.module as M from basecls.layers import ( SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d, ) from basecls.utils import recursive_update, registers from .mbnet import MBConv from .resnet import AnyStage, SimpleStem __all__ = ["FuseMBConv", "EffNet"] class FuseMBConv(M.Module): """Fusing the proj conv1x1 and depthwise conv into a conv2d. Args: w_in: input width. w_out: output width. stride: stride of conv. kernel: kernel of conv. exp_r: expansion ratio. se_r: SE ratio. has_skip: whether apply skip connection. drop_path_prob: drop path probability. norm_name: normalization function. act_name: activation function. """ def __init__( self, w_in: int, w_out: int, stride: int, kernel: int, exp_r: float, se_r: float, has_skip: bool, drop_path_prob: float, norm_name: str, act_name: str, **kwargs, ): super().__init__() # Expansion w_mid = w_in w_exp = int(w_in * exp_r) if exp_r != 1.0: self.exp = conv2d(w_in, w_exp, kernel, stride=stride) self.exp_bn = norm2d(norm_name, w_exp) self.exp_act = activation(act_name) w_mid = w_exp # SE if se_r > 0.0: w_se = int(w_in * se_r) self.se = SE(w_mid, w_se, act_name) # PWConv self.proj = conv2d( w_mid, w_out, 1 if exp_r != 1.0 else kernel, stride=1 if exp_r != 1.0 else stride ) self.proj_bn = norm2d(norm_name, w_out) self.has_proj_act = exp_r == 1.0 if self.has_proj_act: self.proj_act = activation(act_name) # Skip self.has_skip = has_skip and w_in == w_out and stride == 1 if self.has_skip: self.drop_path = DropPath(drop_path_prob) def forward(self, x): x_p = x if getattr(self, "exp", None) is not None: x = self.exp(x) x = self.exp_bn(x) x = self.exp_act(x) if getattr(self, "se", None) is not None: x = self.se(x) x = self.proj(x) x = self.proj_bn(x) if self.has_proj_act: x = self.proj_act(x) if self.has_skip: x = self.drop_path(x) x = x + x_p return x @registers.models.register() class EffNet(M.Module): """EfficientNet model. Args: stem_w: stem width. block_name: block name. depths: depth for each stage (number of blocks in the stage). widths: width for each stage (width of each block in the stage). strides: strides for each stage (applies to the first block of each stage). kernels: kernel sizes for each stage. exp_rs: expansion ratios for MBConv blocks in each stage. se_r: Squeeze-and-Excitation (SE) ratio. Default: ``0.25`` drop_path_prob: drop path probability. Default: ``0.0`` depth_mult: depth multiplier. Default: ``1.0`` width_mult: width multiplier. Default: ``1.0`` omit_mult: omit multiplier for stem width, head width, the first stage depth and the last stage depth, enabled in EfficientNet-Lite. Default: ``False`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"silu"`` head: head args. Default: ``None`` """ def __init__( self, stem_w: int, block_name: Union[Union[str, Callable], Sequence[Union[str, Callable]]], depths: Sequence[int], widths: Sequence[int], strides: Sequence[int], kernels: Sequence[int], exp_rs: Union[float, Sequence[Union[float, Sequence[float]]]] = 1.0, se_rs: Union[float, Sequence[Union[float, Sequence[float]]]] = 0.0, drop_path_prob: float = 0.0, depth_mult: float = 1.0, width_mult: float = 1.0, omit_mult: bool = False, norm_name: str = "BN", act_name: str = "silu", head: Mapping[str, Any] = None, ): super().__init__() depths = [ d if omit_mult and i in (0, len(depths) - 1) else math.ceil(d * depth_mult) for i, d in enumerate(depths) ] self.depths = depths stem_w = stem_w if omit_mult else make_divisible(stem_w * width_mult, round_limit=0.9) self.stem = SimpleStem(3, stem_w, norm_name, act_name) if isinstance(block_name, (str, Callable)): block_name = [block_name] * len(depths) block_func = [self.get_block_func(bn) for bn in block_name] widths = [make_divisible(w * width_mult, round_limit=0.9) for w in widths] if isinstance(exp_rs, Real): exp_rs = [exp_rs] * len(depths) if isinstance(se_rs, Real): se_rs = [se_rs] * len(depths) drop_path_prob_iter = (i / sum(depths) * drop_path_prob for i in range(sum(depths))) drop_path_probs = [[next(drop_path_prob_iter) for _ in range(d)] for d in depths] model_args = [depths, widths, strides, block_func, kernels, exp_rs, se_rs, drop_path_probs] prev_w = stem_w for i, (d, w, s, bf, k, exp_r, se_r, dp_p) in enumerate(zip(*model_args)): stage = AnyStage( prev_w, w, s, d, bf, kernel=k, exp_r=exp_r, se_r=se_r, se_from_exp=False, se_act_name=act_name, se_approx=False, se_rd_fn=int, has_proj_act=False, has_skip=True, drop_path_prob=dp_p, norm_name=norm_name, act_name=act_name, ) setattr(self, f"s{i + 1}", stage) prev_w = w if head: if head.get("width", 0) > 0 and not omit_mult: head["width"] = make_divisible(head["width"] * width_mult, round_limit=0.9) self.head = build_head(prev_w, head, norm_name, act_name) self.apply(init_weights) def forward(self, x): x = self.stem(x) for i in range(len(self.depths)): stage = getattr(self, f"s{i + 1}") x = stage(x) if getattr(self, "head", None) is not None: x = self.head(x) return x @staticmethod def get_block_func(name: Union[str, Callable]): """Retrieves the block function by name.""" if callable(name): return name if isinstance(name, str): block_funcs = { "FuseMBConv": FuseMBConv, "MBConv": MBConv, } if name in block_funcs.keys(): return block_funcs[name] raise ValueError(f"Block '{name}' not supported") def _build_effnet(**kwargs): model_args = dict( stem_w=32, block_name=MBConv, depths=[1, 2, 2, 3, 3, 4, 1], widths=[16, 24, 40, 80, 112, 192, 320], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 5, 3, 5, 5, 3], exp_rs=[1, 6, 6, 6, 6, 6, 6], se_rs=0.25, drop_path_prob=0.2, head=dict(name="ClsHead", width=1280, dropout_prob=0.2), ) recursive_update(model_args, kwargs) return EffNet(**model_args) def _build_effnet_lite(**kwargs): model_args = dict(se_rs=0.0, omit_mult=True, act_name="relu6") recursive_update(model_args, kwargs) return _build_effnet(**model_args) def _build_effnetv2(**kwargs): model_args = dict( stem_w=32, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv], depths=[1, 2, 2, 3, 5, 8], widths=[16, 32, 48, 96, 112, 192], strides=[1, 2, 2, 2, 1, 2], kernels=[3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25], ) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl" ) def effnet_b0(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl" ) def effnet_b1(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl" ) def effnet_b2(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl" ) def effnet_b3(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl" ) def effnet_b4(**kwargs): model_args = dict(depth_mult=1.8, width_mult=1.4, head=dict(dropout_prob=0.4)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl" ) def effnet_b5(**kwargs): model_args = dict(depth_mult=2.2, width_mult=1.6, head=dict(dropout_prob=0.4)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl" ) def effnet_b6(**kwargs): model_args = dict(depth_mult=2.6, width_mult=1.8, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl" ) def effnet_b7(**kwargs): model_args = dict(depth_mult=3.1, width_mult=2.0, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl" ) def effnet_b8(**kwargs): model_args = dict(depth_mult=3.6, width_mult=2.2, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl" ) def effnet_l2(**kwargs): model_args = dict(depth_mult=5.3, width_mult=4.3, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl" ) def effnet_b0_lite(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl" ) def effnet_b1_lite(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl" ) def effnet_b2_lite(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl" ) def effnet_b3_lite(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl" ) def effnet_b4_lite(**kwargs): model_args = dict(depth_mult=1.8, width_mult=1.4, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl" ) def effnetv2_b0(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl" ) def effnetv2_b1(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl" ) def effnetv2_b2(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl" ) def effnetv2_b3(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl" ) def effnetv2_s(**kwargs): model_args = dict(stem_w=24, depths=[2, 4, 4, 6, 9, 15], widths=[24, 48, 64, 128, 160, 256]) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl" ) def effnetv2_m(**kwargs): model_args = dict( stem_w=24, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv, MBConv], depths=[3, 5, 5, 7, 14, 18, 5], widths=[24, 48, 80, 160, 176, 304, 512], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25, 0.25], head=dict(dropout_prob=0.3), ) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl" ) def effnetv2_l(**kwargs): model_args = dict( stem_w=32, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv, MBConv], depths=[4, 7, 7, 10, 19, 25, 7], widths=[32, 64, 96, 192, 224, 384, 640], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25, 0.25], head=dict(dropout_prob=0.4), ) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args)
[ "megengine.hub.pretrained" ]
[((3301, 3328), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3326, 3328), False, 'from basecls.utils import recursive_update, registers\n'), ((8976, 9003), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9001, 9003), False, 'from basecls.utils import recursive_update, registers\n'), ((9005, 9117), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl'\n )\n", (9019, 9117), True, 'import megengine.hub as hub\n'), ((9276, 9303), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9301, 9303), False, 'from basecls.utils import recursive_update, registers\n'), ((9305, 9417), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl'\n )\n", (9319, 9417), True, 'import megengine.hub as hub\n'), ((9576, 9603), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9601, 9603), False, 'from basecls.utils import recursive_update, registers\n'), ((9605, 9717), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl'\n )\n", (9619, 9717), True, 'import megengine.hub as hub\n'), ((9905, 9932), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9930, 9932), False, 'from basecls.utils import recursive_update, registers\n'), ((9934, 10046), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl'\n )\n", (9948, 10046), True, 'import megengine.hub as hub\n'), ((10234, 10261), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10259, 10261), False, 'from basecls.utils import recursive_update, registers\n'), ((10263, 10375), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl'\n )\n", (10277, 10375), True, 'import megengine.hub as hub\n'), ((10563, 10590), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10588, 10590), False, 'from basecls.utils import recursive_update, registers\n'), ((10592, 10704), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl'\n )\n", (10606, 10704), True, 'import megengine.hub as hub\n'), ((10892, 10919), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10917, 10919), False, 'from basecls.utils import recursive_update, registers\n'), ((10921, 11033), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl'\n )\n", (10935, 11033), True, 'import megengine.hub as hub\n'), ((11221, 11248), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11246, 11248), False, 'from basecls.utils import recursive_update, registers\n'), ((11250, 11362), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl'\n )\n", (11264, 11362), True, 'import megengine.hub as hub\n'), ((11550, 11577), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11575, 11577), False, 'from basecls.utils import recursive_update, registers\n'), ((11579, 11691), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl'\n )\n", (11593, 11691), True, 'import megengine.hub as hub\n'), ((11879, 11906), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11904, 11906), False, 'from basecls.utils import recursive_update, registers\n'), ((11908, 12020), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl'\n )\n", (11922, 12020), True, 'import megengine.hub as hub\n'), ((12208, 12235), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12233, 12235), False, 'from basecls.utils import recursive_update, registers\n'), ((12237, 12359), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl'\n )\n", (12251, 12359), True, 'import megengine.hub as hub\n'), ((12528, 12555), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12553, 12555), False, 'from basecls.utils import recursive_update, registers\n'), ((12557, 12679), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl'\n )\n", (12571, 12679), True, 'import megengine.hub as hub\n'), ((12848, 12875), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12873, 12875), False, 'from basecls.utils import recursive_update, registers\n'), ((12877, 12999), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl'\n )\n", (12891, 12999), True, 'import megengine.hub as hub\n'), ((13197, 13224), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13222, 13224), False, 'from basecls.utils import recursive_update, registers\n'), ((13226, 13348), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl'\n )\n", (13240, 13348), True, 'import megengine.hub as hub\n'), ((13546, 13573), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13571, 13573), False, 'from basecls.utils import recursive_update, registers\n'), ((13575, 13697), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl'\n )\n", (13589, 13697), True, 'import megengine.hub as hub\n'), ((13895, 13922), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13920, 13922), False, 'from basecls.utils import recursive_update, registers\n'), ((13924, 14040), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl'\n )\n", (13938, 14040), True, 'import megengine.hub as hub\n'), ((14203, 14230), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14228, 14230), False, 'from basecls.utils import recursive_update, registers\n'), ((14232, 14348), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl'\n )\n", (14246, 14348), True, 'import megengine.hub as hub\n'), ((14511, 14538), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14536, 14538), False, 'from basecls.utils import recursive_update, registers\n'), ((14540, 14656), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl'\n )\n", (14554, 14656), True, 'import megengine.hub as hub\n'), ((14848, 14875), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14873, 14875), False, 'from basecls.utils import recursive_update, registers\n'), ((14877, 14993), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl'\n )\n", (14891, 14993), True, 'import megengine.hub as hub\n'), ((15185, 15212), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (15210, 15212), False, 'from basecls.utils import recursive_update, registers\n'), ((15214, 15328), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl'\n )\n", (15228, 15328), True, 'import megengine.hub as hub\n'), ((15533, 15560), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (15558, 15560), False, 'from basecls.utils import recursive_update, registers\n'), ((15562, 15676), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl'\n )\n", (15576, 15676), True, 'import megengine.hub as hub\n'), ((16212, 16239), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (16237, 16239), False, 'from basecls.utils import recursive_update, registers\n'), ((16241, 16355), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl'\n )\n", (16255, 16355), True, 'import megengine.hub as hub\n'), ((8251, 8287), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8267, 8287), False, 'from basecls.utils import recursive_update, registers\n'), ((8427, 8463), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8443, 8463), False, 'from basecls.utils import recursive_update, registers\n'), ((8897, 8933), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8913, 8933), False, 'from basecls.utils import recursive_update, registers\n'), ((9197, 9233), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9213, 9233), False, 'from basecls.utils import recursive_update, registers\n'), ((9497, 9533), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9513, 9533), False, 'from basecls.utils import recursive_update, registers\n'), ((9826, 9862), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9842, 9862), False, 'from basecls.utils import recursive_update, registers\n'), ((10155, 10191), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10171, 10191), False, 'from basecls.utils import recursive_update, registers\n'), ((10484, 10520), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10500, 10520), False, 'from basecls.utils import recursive_update, registers\n'), ((10813, 10849), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10829, 10849), False, 'from basecls.utils import recursive_update, registers\n'), ((11142, 11178), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11158, 11178), False, 'from basecls.utils import recursive_update, registers\n'), ((11471, 11507), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11487, 11507), False, 'from basecls.utils import recursive_update, registers\n'), ((11800, 11836), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11816, 11836), False, 'from basecls.utils import recursive_update, registers\n'), ((12129, 12165), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12145, 12165), False, 'from basecls.utils import recursive_update, registers\n'), ((12444, 12480), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12460, 12480), False, 'from basecls.utils import recursive_update, registers\n'), ((12764, 12800), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12780, 12800), False, 'from basecls.utils import recursive_update, registers\n'), ((13113, 13149), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13129, 13149), False, 'from basecls.utils import recursive_update, registers\n'), ((13462, 13498), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13478, 13498), False, 'from basecls.utils import recursive_update, registers\n'), ((13811, 13847), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13827, 13847), False, 'from basecls.utils import recursive_update, registers\n'), ((14122, 14158), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14138, 14158), False, 'from basecls.utils import recursive_update, registers\n'), ((14430, 14466), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14446, 14466), False, 'from basecls.utils import recursive_update, registers\n'), ((14767, 14803), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14783, 14803), False, 'from basecls.utils import recursive_update, registers\n'), ((15104, 15140), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (15120, 15140), False, 'from basecls.utils import recursive_update, registers\n'), ((15452, 15488), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (15468, 15488), False, 'from basecls.utils import recursive_update, registers\n'), ((16131, 16167), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (16147, 16167), False, 'from basecls.utils import recursive_update, registers\n'), ((16811, 16847), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (16827, 16847), False, 'from basecls.utils import recursive_update, registers\n'), ((2377, 2471), 'basecls.layers.conv2d', 'conv2d', (['w_mid', 'w_out', '(1 if exp_r != 1.0 else kernel)'], {'stride': '(1 if exp_r != 1.0 else stride)'}), '(w_mid, w_out, 1 if exp_r != 1.0 else kernel, stride=1 if exp_r != \n 1.0 else stride)\n', (2383, 2471), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2512, 2536), 'basecls.layers.norm2d', 'norm2d', (['norm_name', 'w_out'], {}), '(norm_name, w_out)\n', (2518, 2536), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2052, 2094), 'basecls.layers.conv2d', 'conv2d', (['w_in', 'w_exp', 'kernel'], {'stride': 'stride'}), '(w_in, w_exp, kernel, stride=stride)\n', (2058, 2094), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2121, 2145), 'basecls.layers.norm2d', 'norm2d', (['norm_name', 'w_exp'], {}), '(norm_name, w_exp)\n', (2127, 2145), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2173, 2193), 'basecls.layers.activation', 'activation', (['act_name'], {}), '(act_name)\n', (2183, 2193), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2314, 2339), 'basecls.layers.SE', 'SE', (['w_mid', 'w_se', 'act_name'], {}), '(w_mid, w_se, act_name)\n', (2316, 2339), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2636, 2656), 'basecls.layers.activation', 'activation', (['act_name'], {}), '(act_name)\n', (2646, 2656), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2794, 2818), 'basecls.layers.DropPath', 'DropPath', (['drop_path_prob'], {}), '(drop_path_prob)\n', (2802, 2818), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5292, 5344), 'basecls.layers.make_divisible', 'make_divisible', (['(stem_w * width_mult)'], {'round_limit': '(0.9)'}), '(stem_w * width_mult, round_limit=0.9)\n', (5306, 5344), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5599, 5646), 'basecls.layers.make_divisible', 'make_divisible', (['(w * width_mult)'], {'round_limit': '(0.9)'}), '(w * width_mult, round_limit=0.9)\n', (5613, 5646), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((7014, 7059), 'basecls.layers.build_head', 'build_head', (['prev_w', 'head', 'norm_name', 'act_name'], {}), '(prev_w, head, norm_name, act_name)\n', (7024, 7059), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5142, 5167), 'math.ceil', 'math.ceil', (['(d * depth_mult)'], {}), '(d * depth_mult)\n', (5151, 5167), False, 'import math\n'), ((6930, 6989), 'basecls.layers.make_divisible', 'make_divisible', (["(head['width'] * width_mult)"], {'round_limit': '(0.9)'}), "(head['width'] * width_mult, round_limit=0.9)\n", (6944, 6989), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from megengine import tensor from megengine.module import Conv1d, Conv2d, Conv3d, Linear from megengine.module.init import calculate_fan_in_and_fan_out, fill_ def test_fill_(): x = tensor(np.zeros((2, 3, 4)), dtype=np.float32) fill_(x, 5.0) np.testing.assert_array_equal( x.numpy(), np.full(shape=(2, 3, 4), fill_value=5.0, dtype=np.float32) ) def test_calculate_fan_in_and_fan_out(): l = Linear(in_features=3, out_features=8) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 3 assert fanout == 8 with pytest.raises(ValueError): calculate_fan_in_and_fan_out(l.bias) l = Conv1d(in_channels=2, out_channels=3, kernel_size=5) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 2 * 5 assert fanout == 3 * 5 # FIXME: will be wrong for group conv1d # l = Conv1d(in_channels=2, out_channels=4, kernel_size=5, groups=2) # fanin, fanout = calculate_fan_in_and_fan_out(l.weight) # assert fanin == 2 // 2 * 5 # assert fanout == 4 // 2 * 5 l = Conv2d(in_channels=2, out_channels=3, kernel_size=(5, 7)) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 2 * 5 * 7 assert fanout == 3 * 5 * 7 l = Conv2d(in_channels=2, out_channels=4, kernel_size=(5, 7), groups=2) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 2 // 2 * 5 * 7 assert fanout == 4 // 2 * 5 * 7 # FIXME: will be wrong for conv3d # l = Conv3d(in_channels=2, out_channels=3, kernel_size=(5, 7, 9)) # fanin, fanout = calculate_fan_in_and_fan_out(l.weight) # assert fanin == 2 * 5 * 7 * 9 # assert fanout == 3 * 5 * 7 * 9 l = Conv3d(in_channels=2, out_channels=4, kernel_size=(5, 7, 9), groups=2) fanin, fanout = calculate_fan_in_and_fan_out(l.weight) assert fanin == 2 // 2 * 5 * 7 * 9 assert fanout == 4 // 2 * 5 * 7 * 9
[ "megengine.module.init.fill_", "megengine.module.Conv3d", "megengine.module.Conv1d", "megengine.module.init.calculate_fan_in_and_fan_out", "megengine.module.Conv2d", "megengine.module.Linear" ]
[((648, 661), 'megengine.module.init.fill_', 'fill_', (['x', '(5.0)'], {}), '(x, 5.0)\n', (653, 661), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((833, 870), 'megengine.module.Linear', 'Linear', ([], {'in_features': '(3)', 'out_features': '(8)'}), '(in_features=3, out_features=8)\n', (839, 870), False, 'from megengine.module import Conv1d, Conv2d, Conv3d, Linear\n'), ((891, 929), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.weight'], {}), '(l.weight)\n', (919, 929), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((1066, 1118), 'megengine.module.Conv1d', 'Conv1d', ([], {'in_channels': '(2)', 'out_channels': '(3)', 'kernel_size': '(5)'}), '(in_channels=2, out_channels=3, kernel_size=5)\n', (1072, 1118), False, 'from megengine.module import Conv1d, Conv2d, Conv3d, Linear\n'), ((1139, 1177), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.weight'], {}), '(l.weight)\n', (1167, 1177), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((1486, 1543), 'megengine.module.Conv2d', 'Conv2d', ([], {'in_channels': '(2)', 'out_channels': '(3)', 'kernel_size': '(5, 7)'}), '(in_channels=2, out_channels=3, kernel_size=(5, 7))\n', (1492, 1543), False, 'from megengine.module import Conv1d, Conv2d, Conv3d, Linear\n'), ((1564, 1602), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.weight'], {}), '(l.weight)\n', (1592, 1602), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((1673, 1740), 'megengine.module.Conv2d', 'Conv2d', ([], {'in_channels': '(2)', 'out_channels': '(4)', 'kernel_size': '(5, 7)', 'groups': '(2)'}), '(in_channels=2, out_channels=4, kernel_size=(5, 7), groups=2)\n', (1679, 1740), False, 'from megengine.module import Conv1d, Conv2d, Conv3d, Linear\n'), ((1761, 1799), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.weight'], {}), '(l.weight)\n', (1789, 1799), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((2124, 2194), 'megengine.module.Conv3d', 'Conv3d', ([], {'in_channels': '(2)', 'out_channels': '(4)', 'kernel_size': '(5, 7, 9)', 'groups': '(2)'}), '(in_channels=2, out_channels=4, kernel_size=(5, 7, 9), groups=2)\n', (2130, 2194), False, 'from megengine.module import Conv1d, Conv2d, Conv3d, Linear\n'), ((2215, 2253), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.weight'], {}), '(l.weight)\n', (2243, 2253), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n'), ((605, 624), 'numpy.zeros', 'np.zeros', (['(2, 3, 4)'], {}), '((2, 3, 4))\n', (613, 624), True, 'import numpy as np\n'), ((717, 775), 'numpy.full', 'np.full', ([], {'shape': '(2, 3, 4)', 'fill_value': '(5.0)', 'dtype': 'np.float32'}), '(shape=(2, 3, 4), fill_value=5.0, dtype=np.float32)\n', (724, 775), True, 'import numpy as np\n'), ((985, 1010), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (998, 1010), False, 'import pytest\n'), ((1020, 1056), 'megengine.module.init.calculate_fan_in_and_fan_out', 'calculate_fan_in_and_fan_out', (['l.bias'], {}), '(l.bias)\n', (1048, 1056), False, 'from megengine.module.init import calculate_fan_in_and_fan_out, fill_\n')]
import io import numpy as np import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.module as M import megengine.utils.network_node as N from megengine.jit.tracing import trace from megengine.tensor import Tensor from megengine.utils.comp_graph_tools import GraphInference from megengine.utils.network import Network as Net from megengine.utils.network import as_oprnode, set_symbolic_shape from megengine.utils.network_node import Host2DeviceCopy, VarNode def test_metadata(): x = Tensor(0) @trace(symbolic=True, capture_as_const=True) def fwd(x): return x * 2 fwd(x) orig_model = io.BytesIO() fwd.dump(orig_model, user_info="test", optimize_for_inference=False) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata == { "user_info": "test", "graph_modified": False, # False: tracing.dump "optimized_for_inference": False, } orig_model.seek(0) graph.dump( orig_model, user_info={"str": "x", "tensor": x, "module": M.Module, "none": None}, optimize_for_inference=True, enable_nchw4=True, enable_ioc16=True, ) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata == { "user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None}, "graph_modified": True, # True: Network.dump "optimized_for_inference": True, "enable_nchw4": True, "enable_ioc16": True, } orig_model.seek(0) fwd.dump(orig_model, enable_metadata=False) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata is None def test_replace_var(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) vara = graph.var_filter.name("a").as_unique() varb = graph.var_filter.name("b").as_unique() out = F.mul(vara, varb) out = F.relu(out) opnode = list(graph.opr_filter.has_input(vara)) repl_dict = {opnode[0].outputs[0]: out} graph.replace_vars(repl_dict) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [6, 16]) def test_replace_opr(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) vara = graph.var_filter.name("a").as_unique() varb = graph.var_filter.name("b").as_unique() out1 = F.sub(vara, varb) out1 = F.relu(out1) out1 = graph.add_dep_oprs(out1) orig_opr = graph.opr_filter.has_input(vara).as_unique() repl_dict = {orig_opr: out1[0].owner} graph.replace_oprs(repl_dict) modified_model1 = io.BytesIO() graph.dump(modified_model1) modified_model1.seek(0) load_graph = GraphInference(modified_model1) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [0, 0]) def test_splice_network(): x = F.ones((2,)) y = F.ones((2,)) @trace(symbolic=True, capture_as_const=True) def fun1(a, b): return (a + b) * 2 @trace(symbolic=True, capture_as_const=True) def fun2(a): return a * 2 - 1 model = io.BytesIO() fun1(x, y) fun2(x) fun1.dump( model, arg_names=["net1_i0", "net1_i1"], output_names=["net1_o0"], optimize_for_inference=False, ) model.seek(0) net1 = Net.load(model) model.seek(0) fun2.dump( model, arg_names=["net2_i0"], output_names=["net2_o0"], optimize_for_inference=False, ) model.seek(0) net2 = Net.load(model) net1.add_output(*net2.output_vars) var = net1.var_filter.name("net1_i0").as_unique() repl_var = net2.var_filter.name("net2_o0").as_unique() net1.replace_vars({var: repl_var}) assert "net1_i0" not in [var.name for var in net1.all_vars] assert "net2_i0" in [var.name for var in net1.all_vars] model.seek(0) net1.dump(model, keep_var_name=2, optimize_for_inference=False) model.seek(0) net = Net.load(model) assert "net1_i0" not in [var.name for var in net.all_vars] assert "net2_i0" in [var.name for var in net.all_vars] def test_modify_params(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) param_const = graph.params_filter.as_unique() param_const.set_value(3) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [12, 18]) def test_make_const(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) const_b = graph.make_const(np.array([0.0, 0.0]), name="b") varb = graph.var_filter.name("b").as_unique() repl_dict = {varb: const_b} graph.replace_vars(repl_dict) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a) np.testing.assert_equal(out["o"], [2, 4]) def test_add_input(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) inp_c = graph.make_input_node((2,), np.int32, name="c") varo = graph.var_filter.name("o").as_unique() out = F.add(varo, inp_c) out.name = "o1" graph.remove_output(varo) graph.add_output(out) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b, a) np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy()) def test_add_remove_output(): a = Tensor([1.0, 2.0]) b = Tensor([3.0, 4.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2, (a - b) fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names=["o1", "o2"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.var_filter.name("a").as_unique() var_b = net.var_filter.name("b").as_unique() y1 = (var_a + var_b) * 3 y2 = F.sigmoid(var_a + var_b) net.remove_output(*net.output_vars) y1.name = "new_o1" y2.name = "new_o2" net.add_output(y1, y2) modified_model = io.BytesIO() net.dump(modified_model) modified_model.seek(0) g = GraphInference(modified_model) out = g.run(a.numpy(), b.numpy()) np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy()) np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy()) def test_query(): class Model(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 32, 3) self.conv2 = M.Conv2d(32, 32, 3) self.conv3 = M.Conv2d(32, 32, 3) def forward(self, data): x = self.conv1(data) x = self.conv2(x) x = self.conv3(x) return x n = Model() @trace(symbolic=True, capture_as_const=True) def fwd(data): return n(data) fwd(Tensor(np.random.random((1, 3, 224, 224)))) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["data"], output_names="o", keep_opr_name=True, keep_var_name=True, optimize_for_inference=False, ) orig_model.seek(0) graph = Net.load(orig_model) r = graph.data_providers_filter.as_count() assert r == 1 opr = graph.get_opr_by_type(Host2DeviceCopy) assert isinstance(opr, Host2DeviceCopy) r1 = graph.params_filter.as_count() assert r1 == 6 r2 = graph.opr_filter.type(N.ConvolutionForward).as_count() assert r2 == 3 r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count() assert r3 == len(graph.all_oprs) - r2 var = graph.var_filter.name("data").as_unique() r4 = graph.opr_filter.has_input(var).as_count() assert r4 == 1 r5 = graph.opr_filter.name("data").as_count() assert r5 == 1 opr = graph.get_opr_by_name("data") assert isinstance(opr, Host2DeviceCopy) var = graph.get_var_by_name("data") assert isinstance(var, VarNode) r6 = graph.var_filter.name("*bias").as_count() assert r6 == 3 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(5.0)) f.dump(orig_model, optimize_for_inference=False) orig_model.seek(0) optimize_model = io.BytesIO() net = Net.load(orig_model) net.dump(optimize_model, enable_io16xc32=True) optimize_model.seek(0) res = G.load_graph(optimize_model) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_reset_batchsize(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(np.random.random((3, 3, 224, 224)))) f.dump(orig_model, optimize_for_inference=False) orig_model.seek(0) modified_model = io.BytesIO() net = Net.load(orig_model) net.reset_batch_size(1) net.dump(modified_model, optimize_for_inference=False) modified_model.seek(0) net1 = Net.load(modified_model) assert net1.data_providers_filter.as_unique().shape[0] == 1 def test_modify_opr_name(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(np.random.random((3, 3, 224, 224)))) f.dump(orig_model, arg_names=["a"], optimize_for_inference=False) orig_model.seek(0) modified_model = io.BytesIO() net = Net.load(orig_model) net.modify_opr_names("net") net.modify_opr_names(lambda x: "net1." + x) net.dump(modified_model, optimize_for_inference=False) modified_model.seek(0) net1 = Net.load(modified_model) assert net1.data_providers_filter.as_unique().name == "net1.net.a" def test_dump_cond_take(): a = Tensor([1.0, 2.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a): return F.cond_take(a > 1, a) fwd(a) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a"], output_names=["o1", "o2"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.input_vars[0] val, idx = F.cond_take(var_a > 1, var_a) net.remove_output(*net.output_vars) val.name = "value" idx.name = "index" net.add_output(val, idx) modified_model = io.BytesIO() net.dump(modified_model) modified_model.seek(0) g = GraphInference(modified_model) out = g.run(a.numpy()) data = a.numpy() mask = a.numpy() > 1 np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0]) np.testing.assert_equal(out["value"], data[mask]) def test_set_symbolic_shape(): a = Tensor([1.0, 2.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a): return F.relu(a * 2) fwd(a) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.input_vars[0] saved_symbolic_shape = set_symbolic_shape(True) assert isinstance(var_a.shape, VarNode) set_symbolic_shape(False) assert var_a.shape == var_a.partial_shape set_symbolic_shape(saved_symbolic_shape)
[ "megengine.utils.comp_graph_tools.GraphInference", "megengine.functional.ones", "megengine.functional.sigmoid", "megengine.module.Conv2d", "megengine.functional.cond_take", "megengine.utils.network.Network.load", "megengine.functional.add", "megengine.jit.tracing.trace", "megengine.functional.mul", "megengine.utils.network.set_symbolic_shape", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.exp", "megengine.functional.relu", "megengine.tensor.Tensor", "megengine.functional.sub" ]
[((534, 543), 'megengine.tensor.Tensor', 'Tensor', (['(0)'], {}), '(0)\n', (540, 543), False, 'from megengine.tensor import Tensor\n'), ((550, 593), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (555, 593), False, 'from megengine.jit.tracing import trace\n'), ((661, 673), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (671, 673), False, 'import io\n'), ((782, 802), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (790, 802), True, 'from megengine.utils.network import Network as Net\n'), ((1238, 1258), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (1246, 1258), True, 'from megengine.utils.network import Network as Net\n'), ((1640, 1660), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (1648, 1660), True, 'from megengine.utils.network import Network as Net\n'), ((1730, 1744), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (1736, 1744), False, 'from megengine.tensor import Tensor\n'), ((1753, 1767), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (1759, 1767), False, 'from megengine.tensor import Tensor\n'), ((1774, 1817), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (1779, 1817), False, 'from megengine.jit.tracing import trace\n'), ((1896, 1908), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1906, 1908), False, 'import io\n'), ((2054, 2074), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (2062, 2074), True, 'from megengine.utils.network import Network as Net\n'), ((2186, 2203), 'megengine.functional.mul', 'F.mul', (['vara', 'varb'], {}), '(vara, varb)\n', (2191, 2203), True, 'import megengine.functional as F\n'), ((2214, 2225), 'megengine.functional.relu', 'F.relu', (['out'], {}), '(out)\n', (2220, 2225), True, 'import megengine.functional as F\n'), ((2379, 2391), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2389, 2391), False, 'import io\n'), ((2467, 2497), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (2481, 2497), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((2534, 2576), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[6, 16]'], {}), "(out['o'], [6, 16])\n", (2557, 2576), True, 'import numpy as np\n'), ((2612, 2626), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (2618, 2626), False, 'from megengine.tensor import Tensor\n'), ((2635, 2649), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (2641, 2649), False, 'from megengine.tensor import Tensor\n'), ((2656, 2699), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (2661, 2699), False, 'from megengine.jit.tracing import trace\n'), ((2778, 2790), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2788, 2790), False, 'import io\n'), ((2936, 2956), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (2944, 2956), True, 'from megengine.utils.network import Network as Net\n'), ((3069, 3086), 'megengine.functional.sub', 'F.sub', (['vara', 'varb'], {}), '(vara, varb)\n', (3074, 3086), True, 'import megengine.functional as F\n'), ((3098, 3110), 'megengine.functional.relu', 'F.relu', (['out1'], {}), '(out1)\n', (3104, 3110), True, 'import megengine.functional as F\n'), ((3306, 3318), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3316, 3318), False, 'import io\n'), ((3397, 3428), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model1'], {}), '(modified_model1)\n', (3411, 3428), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((3464, 3505), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[0, 0]'], {}), "(out['o'], [0, 0])\n", (3487, 3505), True, 'import numpy as np\n'), ((3543, 3555), 'megengine.functional.ones', 'F.ones', (['(2,)'], {}), '((2,))\n', (3549, 3555), True, 'import megengine.functional as F\n'), ((3564, 3576), 'megengine.functional.ones', 'F.ones', (['(2,)'], {}), '((2,))\n', (3570, 3576), True, 'import megengine.functional as F\n'), ((3583, 3626), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3588, 3626), False, 'from megengine.jit.tracing import trace\n'), ((3680, 3723), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3685, 3723), False, 'from megengine.jit.tracing import trace\n'), ((3779, 3791), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3789, 3791), False, 'import io\n'), ((3998, 4013), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4006, 4013), True, 'from megengine.utils.network import Network as Net\n'), ((4200, 4215), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4208, 4215), True, 'from megengine.utils.network import Network as Net\n'), ((4645, 4660), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4653, 4660), True, 'from megengine.utils.network import Network as Net\n'), ((4820, 4834), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (4826, 4834), False, 'from megengine.tensor import Tensor\n'), ((4843, 4857), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (4849, 4857), False, 'from megengine.tensor import Tensor\n'), ((4864, 4907), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (4869, 4907), False, 'from megengine.jit.tracing import trace\n'), ((4986, 4998), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4996, 4998), False, 'import io\n'), ((5144, 5164), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (5152, 5164), True, 'from megengine.utils.network import Network as Net\n'), ((5266, 5278), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5276, 5278), False, 'import io\n'), ((5354, 5384), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (5368, 5384), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((5421, 5464), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[12, 18]'], {}), "(out['o'], [12, 18])\n", (5444, 5464), True, 'import numpy as np\n'), ((5499, 5513), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (5505, 5513), False, 'from megengine.tensor import Tensor\n'), ((5522, 5536), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (5528, 5536), False, 'from megengine.tensor import Tensor\n'), ((5543, 5586), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5548, 5586), False, 'from megengine.jit.tracing import trace\n'), ((5665, 5677), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5675, 5677), False, 'import io\n'), ((5823, 5843), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (5831, 5843), True, 'from megengine.utils.network import Network as Net\n'), ((6046, 6058), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6056, 6058), False, 'import io\n'), ((6134, 6164), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (6148, 6164), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((6198, 6239), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[2, 4]'], {}), "(out['o'], [2, 4])\n", (6221, 6239), True, 'import numpy as np\n'), ((6273, 6287), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (6279, 6287), False, 'from megengine.tensor import Tensor\n'), ((6296, 6310), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (6302, 6310), False, 'from megengine.tensor import Tensor\n'), ((6317, 6360), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6322, 6360), False, 'from megengine.jit.tracing import trace\n'), ((6439, 6451), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6449, 6451), False, 'import io\n'), ((6597, 6617), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (6605, 6617), True, 'from megengine.utils.network import Network as Net\n'), ((6739, 6757), 'megengine.functional.add', 'F.add', (['varo', 'inp_c'], {}), '(varo, inp_c)\n', (6744, 6757), True, 'import megengine.functional as F\n'), ((6855, 6867), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6865, 6867), False, 'import io\n'), ((6944, 6974), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (6958, 6974), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((7117, 7135), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (7123, 7135), False, 'from megengine.tensor import Tensor\n'), ((7144, 7162), 'megengine.tensor.Tensor', 'Tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (7150, 7162), False, 'from megengine.tensor import Tensor\n'), ((7169, 7212), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (7174, 7212), False, 'from megengine.jit.tracing import trace\n'), ((7300, 7312), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7310, 7312), False, 'import io\n'), ((7490, 7510), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (7498, 7510), True, 'from megengine.utils.network import Network as Net\n'), ((7648, 7672), 'megengine.functional.sigmoid', 'F.sigmoid', (['(var_a + var_b)'], {}), '(var_a + var_b)\n', (7657, 7672), True, 'import megengine.functional as F\n'), ((7809, 7821), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7819, 7821), False, 'import io\n'), ((7887, 7917), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (7901, 7917), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((8507, 8550), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (8512, 8550), False, 'from megengine.jit.tracing import trace\n'), ((8663, 8675), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (8673, 8675), False, 'import io\n'), ((8900, 8920), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (8908, 8920), True, 'from megengine.utils.network import Network as Net\n'), ((9805, 9848), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (9810, 9848), False, 'from megengine.jit.tracing import trace\n'), ((9905, 9917), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (9915, 9917), False, 'import io\n'), ((10035, 10047), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10045, 10047), False, 'import io\n'), ((10058, 10078), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (10066, 10078), True, 'from megengine.utils.network import Network as Net\n'), ((10168, 10196), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['optimize_model'], {}), '(optimize_model)\n', (10180, 10196), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((10341, 10384), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (10346, 10384), False, 'from megengine.jit.tracing import trace\n'), ((10441, 10453), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10451, 10453), False, 'import io\n'), ((10602, 10614), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10612, 10614), False, 'import io\n'), ((10625, 10645), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (10633, 10645), True, 'from megengine.utils.network import Network as Net\n'), ((10772, 10796), 'megengine.utils.network.Network.load', 'Net.load', (['modified_model'], {}), '(modified_model)\n', (10780, 10796), True, 'from megengine.utils.network import Network as Net\n'), ((10896, 10939), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (10901, 10939), False, 'from megengine.jit.tracing import trace\n'), ((10996, 11008), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11006, 11008), False, 'import io\n'), ((11174, 11186), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11184, 11186), False, 'import io\n'), ((11197, 11217), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (11205, 11217), True, 'from megengine.utils.network import Network as Net\n'), ((11396, 11420), 'megengine.utils.network.Network.load', 'Net.load', (['modified_model'], {}), '(modified_model)\n', (11404, 11420), True, 'from megengine.utils.network import Network as Net\n'), ((11530, 11548), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (11536, 11548), False, 'from megengine.tensor import Tensor\n'), ((11555, 11598), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (11560, 11598), False, 'from megengine.jit.tracing import trace\n'), ((11681, 11693), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11691, 11693), False, 'import io\n'), ((11866, 11886), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (11874, 11886), True, 'from megengine.utils.network import Network as Net\n'), ((11933, 11962), 'megengine.functional.cond_take', 'F.cond_take', (['(var_a > 1)', 'var_a'], {}), '(var_a > 1, var_a)\n', (11944, 11962), True, 'import megengine.functional as F\n'), ((12101, 12113), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (12111, 12113), False, 'import io\n'), ((12179, 12209), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (12193, 12209), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((12361, 12410), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['value']", 'data[mask]'], {}), "(out['value'], data[mask])\n", (12384, 12410), True, 'import numpy as np\n'), ((12453, 12471), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (12459, 12471), False, 'from megengine.tensor import Tensor\n'), ((12478, 12521), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (12483, 12521), False, 'from megengine.jit.tracing import trace\n'), ((12596, 12608), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (12606, 12608), False, 'import io\n'), ((12749, 12769), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (12757, 12769), True, 'from megengine.utils.network import Network as Net\n'), ((12828, 12852), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['(True)'], {}), '(True)\n', (12846, 12852), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((12901, 12926), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['(False)'], {}), '(False)\n', (12919, 12926), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((12977, 13017), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['saved_symbolic_shape'], {}), '(saved_symbolic_shape)\n', (12995, 13017), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((5875, 5895), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (5883, 5895), True, 'import numpy as np\n'), ((9878, 9886), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (9883, 9886), True, 'import megengine.functional as F\n'), ((9924, 9935), 'megengine.tensor.Tensor', 'Tensor', (['(5.0)'], {}), '(5.0)\n', (9930, 9935), False, 'from megengine.tensor import Tensor\n'), ((10414, 10422), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (10419, 10422), True, 'import megengine.functional as F\n'), ((10969, 10977), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (10974, 10977), True, 'import megengine.functional as F\n'), ((11630, 11651), 'megengine.functional.cond_take', 'F.cond_take', (['(a > 1)', 'a'], {}), '(a > 1, a)\n', (11641, 11651), True, 'import megengine.functional as F\n'), ((12553, 12566), 'megengine.functional.relu', 'F.relu', (['(a * 2)'], {}), '(a * 2)\n', (12559, 12566), True, 'import megengine.functional as F\n'), ((8227, 8245), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(32)', '(3)'], {}), '(3, 32, 3)\n', (8235, 8245), True, 'import megengine.module as M\n'), ((8271, 8290), 'megengine.module.Conv2d', 'M.Conv2d', (['(32)', '(32)', '(3)'], {}), '(32, 32, 3)\n', (8279, 8290), True, 'import megengine.module as M\n'), ((8316, 8335), 'megengine.module.Conv2d', 'M.Conv2d', (['(32)', '(32)', '(3)'], {}), '(32, 32, 3)\n', (8324, 8335), True, 'import megengine.module as M\n'), ((8609, 8643), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (8625, 8643), True, 'import numpy as np\n'), ((10467, 10501), 'numpy.random.random', 'np.random.random', (['(3, 3, 224, 224)'], {}), '((3, 3, 224, 224))\n', (10483, 10501), True, 'import numpy as np\n'), ((11022, 11056), 'numpy.random.random', 'np.random.random', (['(3, 3, 224, 224)'], {}), '((3, 3, 224, 224))\n', (11038, 11056), True, 'import numpy as np\n'), ((8067, 8083), 'megengine.functional.sigmoid', 'F.sigmoid', (['(a + b)'], {}), '(a + b)\n', (8076, 8083), True, 'import megengine.functional as F\n')]
import math import megengine.module as M import megengine.functional as F class PositionEncodingSine(M.Module): """ This is a sinusoidal position encoding that generalized to 2-dimensional images """ def __init__(self, d_model, max_shape=(256, 256)): """ Args: max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels """ super().__init__() pe = F.zeros((d_model, *max_shape)) y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0) x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0) div_term = F.exp( F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2) ) div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1] pe[0::4, :, :] = F.sin(x_position * div_term) pe[1::4, :, :] = F.cos(x_position * div_term) pe[2::4, :, :] = F.sin(y_position * div_term) pe[3::4, :, :] = F.cos(y_position * div_term) self.pe = F.expand_dims(pe, 0) def forward(self, x): """ Args: x: [N, C, H, W] """ return x + self.pe[:, :, : x.shape[2], : x.shape[3]].to(x.device)
[ "megengine.functional.arange", "megengine.functional.cos", "megengine.functional.zeros", "megengine.functional.ones", "megengine.functional.expand_dims", "megengine.functional.sin" ]
[((446, 476), 'megengine.functional.zeros', 'F.zeros', (['(d_model, *max_shape)'], {}), '((d_model, *max_shape))\n', (453, 476), True, 'import megengine.functional as F\n'), ((751, 782), 'megengine.functional.expand_dims', 'F.expand_dims', (['div_term', '(1, 2)'], {}), '(div_term, (1, 2))\n', (764, 782), True, 'import megengine.functional as F\n'), ((824, 852), 'megengine.functional.sin', 'F.sin', (['(x_position * div_term)'], {}), '(x_position * div_term)\n', (829, 852), True, 'import megengine.functional as F\n'), ((878, 906), 'megengine.functional.cos', 'F.cos', (['(x_position * div_term)'], {}), '(x_position * div_term)\n', (883, 906), True, 'import megengine.functional as F\n'), ((932, 960), 'megengine.functional.sin', 'F.sin', (['(y_position * div_term)'], {}), '(y_position * div_term)\n', (937, 960), True, 'import megengine.functional as F\n'), ((986, 1014), 'megengine.functional.cos', 'F.cos', (['(y_position * div_term)'], {}), '(y_position * div_term)\n', (991, 1014), True, 'import megengine.functional as F\n'), ((1034, 1054), 'megengine.functional.expand_dims', 'F.expand_dims', (['pe', '(0)'], {}), '(pe, 0)\n', (1047, 1054), True, 'import megengine.functional as F\n'), ((521, 538), 'megengine.functional.ones', 'F.ones', (['max_shape'], {}), '(max_shape)\n', (527, 538), True, 'import megengine.functional as F\n'), ((591, 608), 'megengine.functional.ones', 'F.ones', (['max_shape'], {}), '(max_shape)\n', (597, 608), True, 'import megengine.functional as F\n'), ((655, 683), 'megengine.functional.arange', 'F.arange', (['(0)', '(d_model // 2)', '(2)'], {}), '(0, d_model // 2, 2)\n', (663, 683), True, 'import megengine.functional as F\n'), ((688, 705), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (696, 705), False, 'import math\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import cv2 import megengine.functional as F import numpy as np __all__ = [ "preprocess", "postprocess", ] def preprocess(image, input_size, mean, std, swap=(2, 0, 1)): if len(image.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0 else: padded_img = np.ones(input_size) * 114.0 img = np.array(image) r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.float32) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img image = padded_img image = image.astype(np.float32) image = image[:, :, ::-1] image /= 255.0 if mean is not None: image -= mean if std is not None: image /= std image = image.transpose(swap) image = np.ascontiguousarray(image, dtype=np.float32) return image, r def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45): box_corner = F.zeros_like(prediction) box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2 box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2 box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2 box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2 prediction[:, :, :4] = box_corner[:, :, :4] output = [None for _ in range(len(prediction))] for i, image_pred in enumerate(prediction): # If none are remaining => process next image if not image_pred.shape[0]: continue # Get score and class with highest confidence class_conf = F.max(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True) class_pred = F.argmax(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True) class_conf_squeeze = F.squeeze(class_conf) conf_mask = image_pred[:, 4] * class_conf_squeeze >= conf_thre detections = F.concat((image_pred[:, :5], class_conf, class_pred), 1) detections = detections[conf_mask] if not detections.shape[0]: continue nms_out_index = F.vision.nms( detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre, ) detections = detections[nms_out_index] if output[i] is None: output[i] = detections else: output[i] = F.concat((output[i], detections)) return output
[ "megengine.functional.vision.nms", "megengine.functional.argmax", "megengine.functional.squeeze", "megengine.functional.zeros_like", "megengine.functional.concat", "megengine.functional.max" ]
[((475, 490), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (483, 490), True, 'import numpy as np\n'), ((1072, 1117), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['image'], {'dtype': 'np.float32'}), '(image, dtype=np.float32)\n', (1092, 1117), True, 'import numpy as np\n'), ((1234, 1258), 'megengine.functional.zeros_like', 'F.zeros_like', (['prediction'], {}), '(prediction)\n', (1246, 1258), True, 'import megengine.functional as F\n'), ((1897, 1954), 'megengine.functional.max', 'F.max', (['image_pred[:, 5:5 + num_classes]', '(1)'], {'keepdims': '(True)'}), '(image_pred[:, 5:5 + num_classes], 1, keepdims=True)\n', (1902, 1954), True, 'import megengine.functional as F\n'), ((1979, 2039), 'megengine.functional.argmax', 'F.argmax', (['image_pred[:, 5:5 + num_classes]', '(1)'], {'keepdims': '(True)'}), '(image_pred[:, 5:5 + num_classes], 1, keepdims=True)\n', (1987, 2039), True, 'import megengine.functional as F\n'), ((2074, 2095), 'megengine.functional.squeeze', 'F.squeeze', (['class_conf'], {}), '(class_conf)\n', (2083, 2095), True, 'import megengine.functional as F\n'), ((2190, 2246), 'megengine.functional.concat', 'F.concat', (['(image_pred[:, :5], class_conf, class_pred)', '(1)'], {}), '((image_pred[:, :5], class_conf, class_pred), 1)\n', (2198, 2246), True, 'import megengine.functional as F\n'), ((2377, 2455), 'megengine.functional.vision.nms', 'F.vision.nms', (['detections[:, :4]', '(detections[:, 4] * detections[:, 5])', 'nms_thre'], {}), '(detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre)\n', (2389, 2455), True, 'import megengine.functional as F\n'), ((352, 394), 'numpy.ones', 'np.ones', (['(input_size[0], input_size[1], 3)'], {}), '((input_size[0], input_size[1], 3))\n', (359, 394), True, 'import numpy as np\n'), ((436, 455), 'numpy.ones', 'np.ones', (['input_size'], {}), '(input_size)\n', (443, 455), True, 'import numpy as np\n'), ((2636, 2669), 'megengine.functional.concat', 'F.concat', (['(output[i], detections)'], {}), '((output[i], detections))\n', (2644, 2669), True, 'import megengine.functional as F\n')]
import argparse import megengine.core.tensor.megbrain_graph as G import megengine.utils.comp_graph_tools as cgtools from megengine.core._imperative_rt import make_h2d def change_batch_and_dump(inp_file, oup_file): cg, _, outputs = G.load_graph(inp_file) inputs = cgtools.get_dep_vars(outputs[0], "Host2DeviceCopy") replace_dict = {} for var in inputs: n_shape = list(var.shape) n_shape[0] = 1 new_input = make_h2d(cg, "xpux", var.dtype, n_shape, var.name) replace_dict[var] = new_input new_outputs = cgtools.replace_vars(outputs, replace_dict) dump_content, _ = G.dump_graph(map(G.VarNode, new_outputs), keep_var_name=2) with open(oup_file, "wb") as file: file.write(dump_content) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input", required=True, type=str, help="Input megengine dump model file" ) parser.add_argument( "-o", "--output", required=True, type=str, help="Output batch1 model file" ) args = parser.parse_args() change_batch_and_dump(args.input, args.output) if __name__ == "__main__": main()
[ "megengine.core._imperative_rt.make_h2d", "megengine.utils.comp_graph_tools.replace_vars", "megengine.utils.comp_graph_tools.get_dep_vars", "megengine.core.tensor.megbrain_graph.load_graph" ]
[((238, 260), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['inp_file'], {}), '(inp_file)\n', (250, 260), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((274, 325), 'megengine.utils.comp_graph_tools.get_dep_vars', 'cgtools.get_dep_vars', (['outputs[0]', '"""Host2DeviceCopy"""'], {}), "(outputs[0], 'Host2DeviceCopy')\n", (294, 325), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((556, 599), 'megengine.utils.comp_graph_tools.replace_vars', 'cgtools.replace_vars', (['outputs', 'replace_dict'], {}), '(outputs, replace_dict)\n', (576, 599), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((780, 805), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (803, 805), False, 'import argparse\n'), ((448, 498), 'megengine.core._imperative_rt.make_h2d', 'make_h2d', (['cg', '"""xpux"""', 'var.dtype', 'n_shape', 'var.name'], {}), "(cg, 'xpux', var.dtype, n_shape, var.name)\n", (456, 498), False, 'from megengine.core._imperative_rt import make_h2d\n')]
import os import math import numpy as np import six import megengine._internal as mgb from enum import Enum from py_proto import mace_pb2 from transform import base_converter from transform.base_converter import PoolingType from transform.base_converter import ActivationType from transform.base_converter import EltwiseType from transform.base_converter import FrameworkType from transform.base_converter import ReduceType from transform.base_converter import DataFormat from transform.base_converter import MaceOp from transform.base_converter import MaceKeyword from transform.base_converter import ConverterUtil from transform.base_converter import RoundMode from utils.util import mace_check mge_kernel_h_str = "window_h" mge_kernel_w_str = "window_w" mge_stride_h_str = "stride_h" mge_stride_w_str = "stride_w" mge_pad_h_str = "pad_h" mge_pad_w_str = "pad_w" mge_dilate_h_str = "dilate_h" mge_dilate_w_str = "dilate_w" MGESupportedOps = [ "AxisAddRemove", "BatchNormForward", "Concat", "ConvolutionForward", "ConvolutionBackwardData", "Dimshuffle", "Elemwise", "GetVarShape", "Host2DeviceCopy", "Identity", "MarkNoBroadcastElemwise", "MatrixMul", "PoolingForward", "Reduce", "Reshape", "SharedDeviceTensor", "Subtensor", ] MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str) def get_symvar_value(mge_symvar): if mge_symvar.inferred_value is not None: val = mge_symvar.inferred_value else: cg = mge_symvar.owner_graph func = cg.compile_outonly(mge_symvar) val = func() return val def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs): consumer_ids = var2oprs[mge_symvar.id] n_consumers = len(consumer_ids) for consumer_id in consumer_ids: consumer_op = map_oprs[consumer_id[0]] if (mgb.cgtools.get_opr_type(consumer_op) in ("ConvolutionForward", "ConvolutionBackwardData") and consumer_op.params["sparse"] == "GROUP"): mace_check(n_consumers == 1, "This tensor should only feed depthwise conv/deconv") return True return False class MegengineConverter(base_converter.ConverterInterface): """A class for convert megengine dumped model to mace model.""" compute_format_type = { "NCHW": DataFormat.NCHW, "NHWC": DataFormat.NHWC, "DEFAULT": DataFormat.NCHW, } reduce_math_type = { "SUM": ReduceType.SUM, "PROD": ReduceType.PROD, "MIN": ReduceType.MIN, "MAX": ReduceType.MAX, } # SQE_DIFF, CLIP, SIGN maybe needed eltwise_type = { "ADD": EltwiseType.SUM, "SUB": EltwiseType.SUB, "MUL": EltwiseType.PROD, "TRUE_DIV": EltwiseType.DIV, "MIN": EltwiseType.MIN, "MAX": EltwiseType.MAX, "NEGATE": EltwiseType.NEG, "ABS": EltwiseType.ABS, "POW": EltwiseType.POW, "EQ": EltwiseType.EQUAL, "FLOOR_DIV": EltwiseType.FLOOR_DIV, "EXP": EltwiseType.POW, } activation_type = { "RELU": ActivationType.RELU, "TANH": ActivationType.TANH, "SIGMOID": ActivationType.SIGMOID, } def __init__(self, option, src_model_file): self._op_converters = { MGEOpType.AxisAddRemove.name: self.convert_axisaddrm, MGEOpType.BatchNormForward.name: self.convert_batchnorm, MGEOpType.Concat.name: self.convert_concat, MGEOpType.ConvolutionForward.name: self.convert_conv2d, MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d, MGEOpType.Dimshuffle.name: self.convert_dimshuffle, MGEOpType.Elemwise.name: self.convert_elemwise, MGEOpType.GetVarShape.name: self.convert_shape, MGEOpType.Host2DeviceCopy.name: self.convert_nop, MGEOpType.Identity.name: self.convert_identity, MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity, MGEOpType.MatrixMul.name: self.convert_matmul, MGEOpType.PoolingForward.name: self.convert_pooling, MGEOpType.Reduce.name: self.convert_reduce, MGEOpType.Reshape.name: self.convert_reshape, MGEOpType.SharedDeviceTensor.name: self.convert_nop, MGEOpType.Subtensor.name: self.convert_subtensor, } self._option = option self._mace_net_def = mace_pb2.NetDef() ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW) ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW) cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file) map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs) # prune second input of reshape # because it introduces several ops, may increase the overhead operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True) self._mge_cg = cg self._mge_operators = operators self._mge_map_oprs = map_oprs self._mge_var2oprs = var2oprs self._skip_tensors = set() self._bn_statistis_tensors = {} def run(self): self.convert_ops() self.replace_input_output_tensor_name() return self._mace_net_def # only change the input/output tensor name for whole model def replace_input_output_tensor_name(self): for op in self._mace_net_def.op: for i in six.moves.range(len(op.input)): if "," in op.input[i]: op_name = op.input[i] op_name = op_name.replace(",", "#") if (op_name in self._option.input_nodes or op_name in self._option.output_nodes): op.input[i] = op_name for i in six.moves.range(len(op.output)): if "," in op.output[i]: op_name = op.output[i] op_name = op_name.replace(",", "#") if op_name in self._option.output_nodes: op.output[i] = op_name # this method will be called by convert_conv2d/deconv2d and convert_pooling @staticmethod def add_stride_pad_kernel_arg(params, op_def): stride = [params[mge_stride_h_str], params[mge_stride_w_str]] pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2] strides_arg = op_def.arg.add() strides_arg.name = MaceKeyword.mace_strides_str strides_arg.ints.extend(stride) padding_arg = op_def.arg.add() padding_arg.name = MaceKeyword.mace_padding_values_str padding_arg.ints.extend(pad) if op_def.type == MaceOp.Pooling.name: kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]] kernels_arg = op_def.arg.add() kernels_arg.name = MaceKeyword.mace_kernel_str kernels_arg.ints.extend(kernel) if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name, MaceOp.Deconv2D.name, MaceOp.DepthwiseDeconv2d.name): dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]] dilation_arg = op_def.arg.add() dilation_arg.name = MaceKeyword.mace_dilations_str dilation_arg.ints.extend(dilation) def convert_ops(self): for mge_op in self._mge_operators: opr_type = mgb.cgtools.get_opr_type(mge_op) # some reshape operators provide data for batchnorm if opr_type == "Reshape": output = mge_op.outputs[0] next_ops = self._mge_var2oprs[output.id] if len(next_ops) == 1: (next_op_id, _) = next_ops[0] next_op = self._mge_map_oprs[next_op_id] if mgb.cgtools.get_opr_type(next_op) == "BatchNormForward": self._skip_tensors.update( [inp.name for inp in mge_op.inputs]) # using output name to address input symbol var self._bn_statistis_tensors[mge_op.outputs[0].name] = \ mge_op.inputs[0] # skip this reshape op continue self._op_converters[opr_type](mge_op) self.convert_tensors() def add_tensor(self, name, shape, data_type, value): tensor = self._mace_net_def.tensors.add() tensor.name = name tensor.dims.extend(list(shape)) tensor.data_type = data_type if data_type == mace_pb2.DT_INT32: tensor.int32_data.extend(value) else: tensor.float_data.extend(value) # convert all pre-calculated and constant tensors def convert_tensors(self): for mge_op in self._mge_operators: type_opr = mgb.cgtools.get_opr_type(mge_op) # all tensors generated by SharedDeviceTensor op if type_opr == "SharedDeviceTensor": output = mge_op.outputs[0] if output.name not in self._skip_tensors: nshape = output.imm_shape # tensor used for depthwise conv/deconv should be reshaped for_group_conv = is_consumer_group_conv( output, self._mge_var2oprs, self._mge_map_oprs ) if for_group_conv: nshape = ( 1, output.imm_shape[0], output.imm_shape[3], output.imm_shape[4], ) self.add_tensor( output.name, nshape, mace_pb2.DT_FLOAT, get_symvar_value(output).flatten()) else: # handle all constant values for const_tensor in mge_op.inputs: if (const_tensor.inferred_value is not None and const_tensor.name not in self._skip_tensors): self.add_tensor( const_tensor.name, const_tensor.imm_shape, mace_pb2.DT_INT32, const_tensor.inferred_value.flatten()) def convert_nop(self, mge_op): pass def convert_general_op(self, mge_op): op = self._mace_net_def.op.add() op.name = mge_op.name op.type = mgb.cgtools.get_opr_type(mge_op) op.input.extend([mge_input.name for mge_input in mge_op.inputs]) op.output.extend([mge_output.name for mge_output in mge_op.outputs]) for mge_output in mge_op.outputs: output_shape = op.output_shape.add() output_shape.dims.extend(mge_output.imm_shape) data_type_arg = op.arg.add() data_type_arg.name = "T" data_type_arg.i = self._option.data_type framework_type_arg = op.arg.add() framework_type_arg.name = MaceKeyword.mace_framework_type_str framework_type_arg.i = FrameworkType.MEGENGINE.value # check compute format of megengine compute_format = DataFormat.NCHW try: if "format" in mge_op.params.keys(): compute_format = self.compute_format_type[ mge_op.params["format"] ] except AttributeError: compute_format = DataFormat.NCHW ConverterUtil.add_data_format_arg(op, compute_format) return op def convert_identity(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Identity.name def convert_conv2d(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["sparse"] == "GROUP": # weight shape in group conv2d: # (groups, out_channel//groups, in_channels//groups, *kernel_size) groups_divisible = mge_op.inputs[1].imm_shape[2] mace_check( groups_divisible == 1, "Mace does not support group convolution yet", ) op.type = MaceOp.DepthwiseConv2d.name elif mge_op.params["sparse"] == "DENSE": op.type = MaceOp.Conv2D.name else: raise Exception("Unknown sparse mode") mace_check( mge_op.params["mode"] != "CONVOLUTION", "Mace does not support CONVOLUTION computation mode yet", ) self.add_stride_pad_kernel_arg(mge_op.params, op) del op.output[1:] del op.output_shape[1:] def convert_deconv2d(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["sparse"] == "GROUP": # weight shape in group conv2d: # (groups, out_channel//groups, in_channels//groups, *kernel_size) groups_divisible = mge_op.inputs[0].imm_shape[2] mace_check( groups_divisible == 1, "Mace does not support group deconvolution yet", ) op.type = MaceOp.DepthwiseConv2d.name elif mge_op.params["sparse"] == "DENSE": op.type = MaceOp.Deconv2D.name else: mace_check(False, "Unknown sparse mode") mace_check( mge_op.params["mode"] != "CONVOLUTION", "Mace does not support CONVOLUTION computation mode yet", ) self.add_stride_pad_kernel_arg(mge_op.params, op) # inputs order is strange in megengine, fix it swaped_list = [op.input[1], op.input[0]] del op.input[:] op.input.extend(swaped_list) del op.output[1:] del op.output_shape[1:] def convert_dimshuffle(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Transpose.name dims_arg = op.arg.add() dims_arg.name = MaceKeyword.mace_dims_str dims_arg.ints.extend(mge_op.params["pattern"]) def convert_math_elemwise(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Eltwise.name type_arg = op.arg.add() type_arg.name = MaceKeyword.mace_element_type_str type_arg.i = self.eltwise_type[mge_op.params["mode"]].value # EXP in megengine always use the np.e as base if mge_op.params["mode"] == "EXP": exp_tensor_name = mge_op.name + "_exp_base" exp_shape = mge_op.outputs[0].imm_shape exp_value = (np.e * np.ones(exp_shape)).flatten() self.add_tensor( exp_tensor_name, exp_shape, mace_pb2.DT_FLOAT, exp_value ) del op.input[0] op.input.extend([exp_tensor_name, mge_op.inputs[0].name]) def convert_activation(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Activation.name type_arg = op.arg.add() type_arg.name = MaceKeyword.mace_activation_type_str type_arg.s = six.b(self.activation_type[mge_op.params["mode"]].name) def convert_elemwise(self, mge_op): mode = mge_op.params["mode"] if mode in self.eltwise_type: self.convert_math_elemwise(mge_op) else: self.convert_activation(mge_op) def convert_pooling(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Pooling.name pool_type_arg = op.arg.add() pool_type_arg.name = MaceKeyword.mace_pooling_type_str round_mode_arg = op.arg.add() round_mode_arg.name = MaceKeyword.mace_round_mode_str round_mode_arg.i = RoundMode.FLOOR.value # check the case of counting include padding mode = mge_op.params["mode"] if mode == "AVERAGE_COUNT_EXCLUDE_PADDING" or \ (mode == "AVERAGE" and mge_op.params["pad_w"] == 0 and mge_op.params["pad_h"] == 0): pool_type_arg.i = PoolingType.AVG.value elif mode == "MAX": pool_type_arg.i = PoolingType.MAX.value else: mace_check(False, "AVERAGE pooling should not count padding values") self.add_stride_pad_kernel_arg(mge_op.params, op) # delete workspace output, it's useless del op.output[1:] del op.output_shape[1:] def convert_matmul(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.MatMul.name transpose_a = mge_op.params["transposeA"] transpose_a_arg = op.arg.add() transpose_a_arg.name = MaceKeyword.mace_transpose_a_str transpose_a_arg.i = int(transpose_a) transpose_b = mge_op.params["transposeB"] transpose_b_arg = op.arg.add() transpose_b_arg.name = MaceKeyword.mace_transpose_b_str transpose_b_arg.i = int(transpose_b) del op.output[1:] del op.output_shape[1:] def convert_reshape(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Reshape.name # just use the output shape del op.input[1] t_shape = list(mge_op.outputs[0].imm_shape) shape_tensor_name = mge_op.name + "_dest_shape" self.add_tensor( shape_tensor_name, [len(t_shape)], mace_pb2.DT_INT32, t_shape ) op.input.extend([shape_tensor_name]) # usually after reduce operator, remove dimension with value 1 # it's hard to just follow this operator # sometimes axis-add and axis-remove may exist at the same time # for complicated use-case, using reshape is easier def convert_axisaddrm(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["nr_desc"] == 1: if mge_op.params["desc"][0]["method"] == 0: op.type = MaceOp.ExpandDims.name else: op.type = MaceOp.Squeeze.name axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.i = mge_op.params["desc"][0]["axisnum"] else: op.type = MaceOp.Reshape.name dest_shape_tensor_name = op.name + "_dest_shape" dest_shape = mge_op.outputs[0].imm_shape self.add_tensor( dest_shape_tensor_name, (len(dest_shape),), mace_pb2.DT_INT32, dest_shape, ) op.input.extend([dest_shape_tensor_name]) def convert_reduce(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Reduce.name reduce_type_arg = op.arg.add() reduce_type_arg.name = MaceKeyword.mace_reduce_type_str reduce_type_arg.i = self.reduce_math_type[mge_op.params["mode"]].value # in megengine axis won't be list, just int axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.ints.append(mge_op.params["axis"]) # megengine will always keep dims in Reduce operator # dim removal will be done by operator AxisAddRemove keep_dims_arg = op.arg.add() keep_dims_arg.name = MaceKeyword.mace_keepdims_str keep_dims_arg.i = 1 del op.output[1:] del op.output_shape[1:] def convert_concat(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Concat.name axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.i = mge_op.params["axis"] def convert_batchnorm(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.BatchNorm.name gamma_value = get_symvar_value( self._bn_statistis_tensors[mge_op.inputs[1].name] ).flatten() beta_value = get_symvar_value( self._bn_statistis_tensors[mge_op.inputs[2].name] ).flatten() mean_value = get_symvar_value(mge_op.inputs[3]).flatten() var_value = get_symvar_value(mge_op.inputs[4]).flatten() epsilon_value = 1e-5 scale_name = mge_op.name + "_scale" offset_name = mge_op.name + "_offset" scale_value = (1.0 / np.vectorize(math.sqrt)( var_value + epsilon_value)) * gamma_value offset_value = (-mean_value * scale_value) + beta_value self.add_tensor( scale_name, scale_value.shape, mace_pb2.DT_FLOAT, scale_value ) self.add_tensor( offset_name, offset_value.shape, mace_pb2.DT_FLOAT, offset_value ) self._skip_tensors.update([inp.name for inp in mge_op.inputs][1:]) del op.input[1:] op.input.extend([scale_name, offset_name]) # outputs[4] is the correct output del op.output[-1:] del op.output_shape[-1:] del op.output[:4] del op.output_shape[:4] def convert_shape(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Shape.name op.output_type.extend([mace_pb2.DT_INT32]) # axis of subtensor should be constant # subtensor in megengine: numpy-like indexing def convert_subtensor(self, mge_op): op1 = self.convert_general_op(mge_op) op1.type = MaceOp.StridedSlice.name axis = mge_op.inputs[1].inferred_value t_shape = list(mge_op.inputs[0].imm_shape) begin_tensor_name = mge_op.name + "_begin" end_tensor_name = mge_op.name + "_end" stride_tensor_name = mge_op.name + "_stride" begin_tensor_shape = (len(t_shape),) end_tensor_shape = (len(t_shape),) stride_tensor_shape = (len(t_shape),) begin_vals = [0] * len(t_shape) end_vals = [shapei for shapei in t_shape] stride_vals = [1] * len(t_shape) def check_val(sym_var): try: val = sym_var.inferred_value[0] except TypeError: mace_check( False, "you should feed const values for subtensor axis" ) return val squeeze_dims = [] idx = len(mge_op.inputs) - 1 while idx: val = check_val(mge_op.inputs[idx]) for ai in mge_op.params[::-1]: ai_idx = ai["axis"] if ai["step"] > 0: stride_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["end"] > 0: if val < 0: val = t_shape[ai_idx] + val end_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["begin"] > 0: if val < 0: val = t_shape[ai_idx] + val begin_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["idx"] > 0: if val < 0: val = t_shape[ai_idx] + val squeeze_dims.append(ai_idx) begin_vals[ai_idx] = val end_vals[ai_idx] = val + 1 idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) for ai_idx in range(len(t_shape)): t_shape[ai_idx] = math.ceil( (end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx] ) self.add_tensor( begin_tensor_name, begin_tensor_shape, mace_pb2.DT_INT32, begin_vals, ) self.add_tensor( end_tensor_name, end_tensor_shape, mace_pb2.DT_INT32, end_vals ) self.add_tensor( stride_tensor_name, stride_tensor_shape, mace_pb2.DT_INT32, stride_vals, ) del op1.input[1:] op1.input.extend( [begin_tensor_name, end_tensor_name, stride_tensor_name] ) if len(squeeze_dims) > 0: # create squeeze op to remove shape=1 dims mid_output_name = mge_op.name + "_mid_reshape" del op1.output[0] op1.output.extend([mid_output_name]) output_shape = op1.output_shape[0] del output_shape.dims[:] output_shape.dims.extend(t_shape) op2 = self._mace_net_def.op.add() op2.type = MaceOp.Squeeze.name op2.name = mge_op.name + "_squeeze" data_type_arg = op2.arg.add() data_type_arg.name = "T" data_type_arg.i = self._option.data_type framework_type_arg = op2.arg.add() framework_type_arg.name = MaceKeyword.mace_framework_type_str framework_type_arg.i = FrameworkType.MEGENGINE.value ConverterUtil.add_data_format_arg(op2, DataFormat.NCHW) op2.input.extend([mid_output_name]) op2.output.extend([mge_op.outputs[0].name]) output_shape = op2.output_shape.add() output_shape.dims.extend(mge_op.outputs[0].imm_shape) axis_arg = op2.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.ints.extend(squeeze_dims)
[ "megengine._internal.cgtools.graph_traversal", "megengine._internal.cgtools.get_opr_type", "megengine._internal.cgtools.get_oprs_seq", "megengine._internal.load_comp_graph_from_file" ]
[((1313, 1378), 'enum.Enum', 'Enum', (['"""MGEOpType"""', '[(op, op) for op in MGESupportedOps]'], {'type': 'str'}), "('MGEOpType', [(op, op) for op in MGESupportedOps], type=str)\n", (1317, 1378), False, 'from enum import Enum\n'), ((4473, 4490), 'py_proto.mace_pb2.NetDef', 'mace_pb2.NetDef', ([], {}), '()\n', (4488, 4490), False, 'from py_proto import mace_pb2\n'), ((4499, 4567), 'transform.base_converter.ConverterUtil.set_filter_format', 'ConverterUtil.set_filter_format', (['self._mace_net_def', 'DataFormat.OIHW'], {}), '(self._mace_net_def, DataFormat.OIHW)\n', (4530, 4567), False, 'from transform.base_converter import ConverterUtil\n'), ((4576, 4646), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['self._mace_net_def', 'DataFormat.NCHW'], {}), '(self._mace_net_def, DataFormat.NCHW)\n', (4609, 4646), False, 'from transform.base_converter import ConverterUtil\n'), ((4673, 4718), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['src_model_file'], {}), '(src_model_file)\n', (4702, 4718), True, 'import megengine._internal as mgb\n'), ((4755, 4791), 'megengine._internal.cgtools.graph_traversal', 'mgb.cgtools.graph_traversal', (['outputs'], {}), '(outputs)\n', (4782, 4791), True, 'import megengine._internal as mgb\n'), ((4923, 4976), 'megengine._internal.cgtools.get_oprs_seq', 'mgb.cgtools.get_oprs_seq', (['outputs'], {'prune_reshape': '(True)'}), '(outputs, prune_reshape=True)\n', (4947, 4976), True, 'import megengine._internal as mgb\n'), ((10640, 10672), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (10664, 10672), True, 'import megengine._internal as mgb\n'), ((11620, 11673), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['op', 'compute_format'], {}), '(op, compute_format)\n', (11653, 11673), False, 'from transform.base_converter import ConverterUtil\n'), ((12488, 12600), 'utils.util.mace_check', 'mace_check', (["(mge_op.params['mode'] != 'CONVOLUTION')", '"""Mace does not support CONVOLUTION computation mode yet"""'], {}), "(mge_op.params['mode'] != 'CONVOLUTION',\n 'Mace does not support CONVOLUTION computation mode yet')\n", (12498, 12600), False, 'from utils.util import mace_check\n'), ((13428, 13540), 'utils.util.mace_check', 'mace_check', (["(mge_op.params['mode'] != 'CONVOLUTION')", '"""Mace does not support CONVOLUTION computation mode yet"""'], {}), "(mge_op.params['mode'] != 'CONVOLUTION',\n 'Mace does not support CONVOLUTION computation mode yet')\n", (13438, 13540), False, 'from utils.util import mace_check\n'), ((15136, 15191), 'six.b', 'six.b', (["self.activation_type[mge_op.params['mode']].name"], {}), "(self.activation_type[mge_op.params['mode']].name)\n", (15141, 15191), False, 'import six\n'), ((2048, 2134), 'utils.util.mace_check', 'mace_check', (['(n_consumers == 1)', '"""This tensor should only feed depthwise conv/deconv"""'], {}), "(n_consumers == 1,\n 'This tensor should only feed depthwise conv/deconv')\n", (2058, 2134), False, 'from utils.util import mace_check\n'), ((7486, 7518), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (7510, 7518), True, 'import megengine._internal as mgb\n'), ((8937, 8969), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (8961, 8969), True, 'import megengine._internal as mgb\n'), ((12146, 12231), 'utils.util.mace_check', 'mace_check', (['(groups_divisible == 1)', '"""Mace does not support group convolution yet"""'], {}), "(groups_divisible == 1, 'Mace does not support group convolution yet'\n )\n", (12156, 12231), False, 'from utils.util import mace_check\n'), ((13080, 13166), 'utils.util.mace_check', 'mace_check', (['(groups_divisible == 1)', '"""Mace does not support group deconvolution yet"""'], {}), "(groups_divisible == 1,\n 'Mace does not support group deconvolution yet')\n", (13090, 13166), False, 'from utils.util import mace_check\n'), ((23684, 23756), 'math.ceil', 'math.ceil', (['((end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx])'], {}), '((end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx])\n', (23693, 23756), False, 'import math\n'), ((25169, 25224), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['op2', 'DataFormat.NCHW'], {}), '(op2, DataFormat.NCHW)\n', (25202, 25224), False, 'from transform.base_converter import ConverterUtil\n'), ((1867, 1904), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['consumer_op'], {}), '(consumer_op)\n', (1891, 1904), True, 'import megengine._internal as mgb\n'), ((13378, 13418), 'utils.util.mace_check', 'mace_check', (['(False)', '"""Unknown sparse mode"""'], {}), "(False, 'Unknown sparse mode')\n", (13388, 13418), False, 'from utils.util import mace_check\n'), ((16210, 16278), 'utils.util.mace_check', 'mace_check', (['(False)', '"""AVERAGE pooling should not count padding values"""'], {}), "(False, 'AVERAGE pooling should not count padding values')\n", (16220, 16278), False, 'from utils.util import mace_check\n'), ((20280, 20303), 'numpy.vectorize', 'np.vectorize', (['math.sqrt'], {}), '(math.sqrt)\n', (20292, 20303), True, 'import numpy as np\n'), ((22013, 22081), 'utils.util.mace_check', 'mace_check', (['(False)', '"""you should feed const values for subtensor axis"""'], {}), "(False, 'you should feed const values for subtensor axis')\n", (22023, 22081), False, 'from utils.util import mace_check\n'), ((7896, 7929), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['next_op'], {}), '(next_op)\n', (7920, 7929), True, 'import megengine._internal as mgb\n'), ((14648, 14666), 'numpy.ones', 'np.ones', (['exp_shape'], {}), '(exp_shape)\n', (14655, 14666), True, 'import numpy as np\n')]
# Copyright (c) Megvii, Inc. and its affiliates. import megengine as mge import megengine.functional as F import megengine.module as M from .resnet import BasicBlock class STN(M.Module): """spatial transformer networks from `"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_ some detailed implements are highly simplified while good performance maintained """ def __init__(self, input_size=112): assert input_size == 112, f"expected input_size == 112, got {input_size}" super().__init__() self.input_size = input_size self.stem = M.Sequential( M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False), M.BatchNorm2d(8), M.ReLU(), M.MaxPool2d(kernel_size=2, stride=2), BasicBlock(8, 16), BasicBlock(16, 32, stride=2), BasicBlock(32, 64, stride=2), ) self.fc = M.Linear(64, 9) def _get_transformed_image(self, image, mat3x3): """apply perspective transform to the image note: there is NO need to guarantee the bottom right element equals 1 Args: image (Tensor): input images (shape: n * 3 * 112 * 112) mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3) Returns: transformed_image (Tensor): perspectively transformed image """ s = self.input_size transformed_image = F.warp_perspective(image, mat3x3, [s, s]) return transformed_image def _get_mat3x3(self, image): """get perspective matrix used in the transformation note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables. Args: image (Tensor): input images (shape: n * 3 * 112 * 112) Returns: mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3) """ x = self.stem(image) x = F.avg_pool2d(x, 7) x = F.flatten(x, 1) x = self.fc(x) s = self.input_size # 0.01 here is a magic number. it aims to maintain identity transform at early stage of training residual = x.reshape(-1, 3, 3) * 0.01 base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32") base = F.broadcast_to(base, residual.shape) left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]).astype("float32") left_scale = F.broadcast_to(left_scale, residual.shape) right_scale = mge.tensor([[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]]).astype("float32") right_scale = F.broadcast_to(right_scale, residual.shape) mat3x3 = F.matmul(left_scale, F.matmul(base + residual, right_scale)) return mat3x3 def forward(self, image): mat3x3 = self._get_mat3x3(image) transformed_image = self._get_transformed_image(image, mat3x3) return transformed_image
[ "megengine.functional.broadcast_to", "megengine.functional.flatten", "megengine.module.ReLU", "megengine.tensor", "megengine.module.MaxPool2d", "megengine.functional.matmul", "megengine.module.Conv2d", "megengine.functional.warp_perspective", "megengine.module.Linear", "megengine.module.BatchNorm2d", "megengine.functional.avg_pool2d" ]
[((944, 959), 'megengine.module.Linear', 'M.Linear', (['(64)', '(9)'], {}), '(64, 9)\n', (952, 959), True, 'import megengine.module as M\n'), ((1452, 1493), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['image', 'mat3x3', '[s, s]'], {}), '(image, mat3x3, [s, s])\n', (1470, 1493), True, 'import megengine.functional as F\n'), ((1960, 1978), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(7)'], {}), '(x, 7)\n', (1972, 1978), True, 'import megengine.functional as F\n'), ((1991, 2006), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2000, 2006), True, 'import megengine.functional as F\n'), ((2304, 2340), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['base', 'residual.shape'], {}), '(base, residual.shape)\n', (2318, 2340), True, 'import megengine.functional as F\n'), ((2447, 2489), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['left_scale', 'residual.shape'], {}), '(left_scale, residual.shape)\n', (2461, 2489), True, 'import megengine.functional as F\n'), ((2606, 2649), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['right_scale', 'residual.shape'], {}), '(right_scale, residual.shape)\n', (2620, 2649), True, 'import megengine.functional as F\n'), ((635, 697), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(8)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'bias': '(False)'}), '(3, 8, kernel_size=3, stride=2, padding=1, bias=False)\n', (643, 697), True, 'import megengine.module as M\n'), ((711, 727), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(8)'], {}), '(8)\n', (724, 727), True, 'import megengine.module as M\n'), ((741, 749), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (747, 749), True, 'import megengine.module as M\n'), ((763, 799), 'megengine.module.MaxPool2d', 'M.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)'}), '(kernel_size=2, stride=2)\n', (774, 799), True, 'import megengine.module as M\n'), ((2688, 2726), 'megengine.functional.matmul', 'F.matmul', (['(base + residual)', 'right_scale'], {}), '(base + residual, right_scale)\n', (2696, 2726), True, 'import megengine.functional as F\n'), ((2225, 2270), 'megengine.tensor', 'mge.tensor', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\n', (2235, 2270), True, 'import megengine as mge\n'), ((2362, 2407), 'megengine.tensor', 'mge.tensor', (['[[s, 0, 0], [0, s, 0], [0, 0, 1]]'], {}), '([[s, 0, 0], [0, s, 0], [0, 0, 1]])\n', (2372, 2407), True, 'import megengine as mge\n'), ((2512, 2565), 'megengine.tensor', 'mge.tensor', (['[[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]]'], {}), '([[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]])\n', (2522, 2565), True, 'import megengine as mge\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M from megengine.core import tensor def test_mge_81(): np.random.seed(0) N, D = 3, 4 x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) a = x * y b = a + z c = F.sum(b) grad_x = F.grad(c, x, use_virtual_grad=False) grad_y = F.grad(c, y, use_virtual_grad=False) grad_z = F.grad(c, z, use_virtual_grad=False) print(grad_x.numpy()) print(grad_y.numpy()) print(grad_z.numpy()) m = M.BatchNorm2d(4) input = tensor(np.zeros((64, 4, 32, 32), dtype=np.float32)) _ = m(input) m = M.BatchNorm2d(4, affine=False) _ = m(input)
[ "megengine.functional.sum", "megengine.functional.grad", "megengine.module.BatchNorm2d" ]
[((542, 559), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (556, 559), True, 'import numpy as np\n'), ((846, 854), 'megengine.functional.sum', 'F.sum', (['b'], {}), '(b)\n', (851, 854), True, 'import megengine.functional as F\n'), ((868, 904), 'megengine.functional.grad', 'F.grad', (['c', 'x'], {'use_virtual_grad': '(False)'}), '(c, x, use_virtual_grad=False)\n', (874, 904), True, 'import megengine.functional as F\n'), ((918, 954), 'megengine.functional.grad', 'F.grad', (['c', 'y'], {'use_virtual_grad': '(False)'}), '(c, y, use_virtual_grad=False)\n', (924, 954), True, 'import megengine.functional as F\n'), ((968, 1004), 'megengine.functional.grad', 'F.grad', (['c', 'z'], {'use_virtual_grad': '(False)'}), '(c, z, use_virtual_grad=False)\n', (974, 1004), True, 'import megengine.functional as F\n'), ((1091, 1107), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(4)'], {}), '(4)\n', (1104, 1107), True, 'import megengine.module as M\n'), ((1197, 1227), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(4)'], {'affine': '(False)'}), '(4, affine=False)\n', (1210, 1227), True, 'import megengine.module as M\n'), ((1127, 1170), 'numpy.zeros', 'np.zeros', (['(64, 4, 32, 32)'], {'dtype': 'np.float32'}), '((64, 4, 32, 32), dtype=np.float32)\n', (1135, 1170), True, 'import numpy as np\n'), ((604, 633), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (620, 633), True, 'import numpy as np\n'), ((682, 711), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (698, 711), True, 'import numpy as np\n'), ((760, 789), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (776, 789), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import math import collections import megengine.module as nn import megengine.functional as F from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator from common.utils import flow_warp, upsample2d_flow_as def conv(inp, out, k=3, s=1, d=1, isReLU=True): if isReLU: ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1)) else: ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True)) return ret class ContextNetwork(nn.Module): def __init__(self, ch_in): super(ContextNetwork, self).__init__() self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8), conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False)) def forward(self, x): return self.convs(x) class FlowEstimator(nn.Module): def __init__(self, ch_in): super(FlowEstimator, self).__init__() self.conv1 = conv(ch_in, 128) self.conv2 = conv(128, 128) self.conv3 = conv(128 + 128, 96) self.conv4 = conv(96 + 128, 64) self.conv5 = conv(96 + 64, 32) # channels of the second last layer self.feat_dim = 32 self.predict_flow = conv(64 + 32, 2, isReLU=False) def forward(self, x): x1 = self.conv1(x) x2 = self.conv2(x1) x3 = self.conv3(F.concat([x1, x2], axis=1)) x4 = self.conv4(F.concat([x2, x3], axis=1)) x5 = self.conv5(F.concat([x3, x4], axis=1)) flow = self.predict_flow(F.concat([x4, x5], axis=1)) return x5, flow class CostVolume(nn.Module): def __init__(self, d=4, *args, **kwargs): super(CostVolume, self).__init__() self.d = d self.out_dim = 2 * self.d + 1 self.pad_size = self.d def forward(self, x1, x2): _, _, H, W = x1.shape x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size))) cv = [] for i in range(self.out_dim): for j in range(self.out_dim): cost = x1 * x2[:, :, i:(i + H), j:(j + W)] cost = F.mean(cost, 1, keepdims=True) cv.append(cost) return F.concat(cv, 1) class FeaturePyramidExtractor(nn.Module): def __init__(self, pyr_chans): super(FeaturePyramidExtractor, self).__init__() self.pyr_chans = pyr_chans self.convs = [] for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])): layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out)) self.convs.append(layer) def forward(self, x): feature_pyramid = [] for conv in self.convs: x = conv(x) feature_pyramid.append(x) return feature_pyramid[::-1] class GyroFlow(nn.Module): def __init__(self, params): super(GyroFlow, self).__init__() self.leakyRELU = nn.LeakyReLU(0.1) self.upsample = params.upsample self.with_bk = True self.pyr_chans = [3, 16, 32, 64, 96, 128, 192] self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans) # correlation range self.d = 4 self.output_level = 4 # cost volume self.cost_volume = CostVolume(d=self.d) self.cv_dim = (self.d * 2 + 1)**2 self.upsampler = NeuralUpsampler() self.ch_inp = 32 + self.cv_dim + 2 self.flow_estimator = FlowEstimator(self.ch_inp) self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2) self.conv_1x1 = list([ conv(192, 32, k=1, s=1, d=1), conv(128, 32, k=1, s=1, d=1), conv(96, 32, k=1, s=1, d=1), conv(64, 32, k=1, s=1, d=1), conv(32, 32, k=1, s=1, d=1) ]) self.with_gyro_field = True self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2) self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.msra_normal_(m.weight, a=math.sqrt(5)) if m.bias is not None: fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(m.bias, -bound, bound) def generate_fused_flow(self, x1, x2): input_feature = F.concat((x1, x2), axis=1) flow = self.flow_predictor(input_feature)[1] assert flow.shape[1] == 2 return flow def generate_map(self, x1, x2): input_feature = F.concat((x1, x2), axis=1) out = self.mask_predictor(input_feature)[1] mask = F.sigmoid(out) assert mask.shape[1] == 1 return mask def self_guided_fusion_module(self, flow, gyro_field_rsz, x1, x2_warp, layer): fuse_flow = self.generate_fused_flow(flow, gyro_field_rsz) mask = self.generate_map(self.conv_1x1[layer](x1), self.conv_1x1[layer](x2_warp)) flow = fuse_flow * mask + gyro_field_rsz * (1 - mask) return flow def normalize_features(self, feature_list, normalize, center, moments_across_channels=True, moments_across_images=True): # Compute feature statistics. statistics = collections.defaultdict(list) axes = [1, 2, 3] if moments_across_channels else [2, 3] # [b, c, h, w] for feature_image in feature_list: mean = F.mean(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1] variance = F.var(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1] statistics['mean'].append(mean) statistics['var'].append(variance) if moments_across_images: statistics['mean'] = ([F.mean(F.stack(statistics['mean'], axis=0), axis=(0, ))] * len(feature_list)) statistics['var'] = ([F.var(F.stack(statistics['var'], axis=0), axis=(0, ))] * len(feature_list)) statistics['std'] = [F.sqrt(v + 1e-16) for v in statistics['var']] # Center and normalize features. if center: feature_list = [f - mean for f, mean in zip(feature_list, statistics['mean'])] if normalize: feature_list = [f / std for f, std in zip(feature_list, statistics['std'])] return feature_list def predict_flow(self, x1_pyrs, x2_pyrs, gyro_field=None): flow_pyrs = [] batch_size, _, h_x1, w_x1 = x1_pyrs[0].shape dtype = x1_pyrs[0].dtype flow = F.zeros((batch_size, 2, h_x1, w_x1), dtype=dtype) for layer, (x1, x2) in enumerate(zip(x1_pyrs, x2_pyrs)): if layer == 0: x2_warp = x2 else: flow = self.upsampler(flow, self.conv_1x1[layer](x1), self.conv_1x1[layer](x2)) gyro_field_rsz = upsample2d_flow_as(gyro_field, flow, if_rate=True) x2_warp = flow_warp(x2, gyro_field_rsz) flow = self.self_guided_fusion_module(flow, gyro_field_rsz, x1, x2_warp, layer) x2_warp = flow_warp(x2, flow) # cost volume normalized x1_normalized, x2_warp_normalized = self.normalize_features([x1, x2_warp], normalize=True, center=True, moments_across_channels=False, moments_across_images=False) _cv = self.cost_volume(x1_normalized, x2_warp_normalized) _cv_relu = self.leakyRELU(_cv) x1 = self.conv_1x1[layer](x1) _x_feat, flow_pred = self.flow_estimator(F.concat([_cv_relu, x1, flow], axis=1)) flow += flow_pred flow_refine = self.context_net(F.concat([_x_feat, flow], axis=1)) flow += flow_refine flow_pyrs.append(flow) if layer == self.output_level: break if self.upsample: flows = [F.vision.interpolate(flow * 4, scale_factor=4, mode='bilinear', align_corners=True) for flow in flow_pyrs] return flows[::-1] def forward(self, data_batch, with_bk=True): x = data_batch['imgs'] imgs = [x[:, 3 * i:3 * i + 3] for i in range(2)] x = [self.feature_pyramid_extractor(img) + [img] for img in imgs] gyro_field = data_batch["gyro_field"] res = {} res['flow_fw'] = self.predict_flow(x[0], x[1], gyro_field) if with_bk: res['flow_bw'] = self.predict_flow(x[1], x[0], -1 * gyro_field) return res class GyroFlowTestFlops(GyroFlow): def forward(self, data_batch, with_bk=True): x = data_batch imgs = [x[:, 3 * i:3 * i + 3] for i in range(2)] x = [self.feature_pyramid_extractor(img) + [img] for img in imgs] gyro_field = F.ones_like(data_batch)[:, :2, ...] res_fw = self.predict_flow(x[0], x[1], gyro_field) if with_bk: res_bw = self.predict_flow(x[1], x[0], -1 * gyro_field) return res_fw, res_bw def fetch_net(params): if params.net_type == "gyroflow": net = GyroFlow(params) else: raise NotImplementedError return net
[ "megengine.module.init.calculate_fan_in_and_fan_out", "megengine.functional.vision.interpolate", "megengine.functional.sigmoid", "megengine.module.Conv2d", "megengine.functional.nn.pad", "megengine.functional.var", "megengine.functional.stack", "megengine.functional.ones_like", "megengine.functional.concat", "megengine.functional.mean", "megengine.module.init.uniform_", "megengine.functional.zeros", "megengine.functional.sqrt", "megengine.module.LeakyReLU" ]
[((3076, 3175), 'megengine.functional.nn.pad', 'F.nn.pad', (['x2', '((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)\n )'], {}), '(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.\n pad_size, self.pad_size)))\n', (3084, 3175), True, 'import megengine.functional as F\n'), ((3427, 3442), 'megengine.functional.concat', 'F.concat', (['cv', '(1)'], {}), '(cv, 1)\n', (3435, 3442), True, 'import megengine.functional as F\n'), ((4151, 4168), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (4163, 4168), True, 'import megengine.module as nn\n'), ((4589, 4606), 'model.nn_upsample.NeuralUpsampler', 'NeuralUpsampler', ([], {}), '()\n', (4604, 4606), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5100, 5143), 'model.nn_upsample.FlowMaskEstimator', 'FlowMaskEstimator', (['(4)', '(8, 16, 32, 16, 8)', '(2)'], {}), '(4, (8, 16, 32, 16, 8), 2)\n', (5117, 5143), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5174, 5219), 'model.nn_upsample.FlowMaskEstimator', 'FlowMaskEstimator', (['(64)', '(32, 32, 32, 16, 8)', '(1)'], {}), '(64, (32, 32, 32, 16, 8), 1)\n', (5191, 5219), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5654, 5680), 'megengine.functional.concat', 'F.concat', (['(x1, x2)'], {'axis': '(1)'}), '((x1, x2), axis=1)\n', (5662, 5680), True, 'import megengine.functional as F\n'), ((5849, 5875), 'megengine.functional.concat', 'F.concat', (['(x1, x2)'], {'axis': '(1)'}), '((x1, x2), axis=1)\n', (5857, 5875), True, 'import megengine.functional as F\n'), ((5943, 5957), 'megengine.functional.sigmoid', 'F.sigmoid', (['out'], {}), '(out)\n', (5952, 5957), True, 'import megengine.functional as F\n'), ((6520, 6549), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (6543, 6549), False, 'import collections\n'), ((7767, 7816), 'megengine.functional.zeros', 'F.zeros', (['(batch_size, 2, h_x1, w_x1)'], {'dtype': 'dtype'}), '((batch_size, 2, h_x1, w_x1), dtype=dtype)\n', (7774, 7816), True, 'import megengine.functional as F\n'), ((1392, 1466), 'megengine.module.Conv2d', 'nn.Conv2d', (['inp', 'out', 'k', 's'], {'padding': '((k - 1) * d // 2)', 'dilation': 'd', 'bias': '(True)'}), '(inp, out, k, s, padding=(k - 1) * d // 2, dilation=d, bias=True)\n', (1401, 1466), True, 'import megengine.module as nn\n'), ((1470, 1487), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1482, 1487), True, 'import megengine.module as nn\n'), ((1527, 1601), 'megengine.module.Conv2d', 'nn.Conv2d', (['inp', 'out', 'k', 's'], {'padding': '((k - 1) * d // 2)', 'dilation': 'd', 'bias': '(True)'}), '(inp, out, k, s, padding=(k - 1) * d // 2, dilation=d, bias=True)\n', (1536, 1601), True, 'import megengine.module as nn\n'), ((2575, 2601), 'megengine.functional.concat', 'F.concat', (['[x1, x2]'], {'axis': '(1)'}), '([x1, x2], axis=1)\n', (2583, 2601), True, 'import megengine.functional as F\n'), ((2627, 2653), 'megengine.functional.concat', 'F.concat', (['[x2, x3]'], {'axis': '(1)'}), '([x2, x3], axis=1)\n', (2635, 2653), True, 'import megengine.functional as F\n'), ((2679, 2705), 'megengine.functional.concat', 'F.concat', (['[x3, x4]'], {'axis': '(1)'}), '([x3, x4], axis=1)\n', (2687, 2705), True, 'import megengine.functional as F\n'), ((2740, 2766), 'megengine.functional.concat', 'F.concat', (['[x4, x5]'], {'axis': '(1)'}), '([x4, x5], axis=1)\n', (2748, 2766), True, 'import megengine.functional as F\n'), ((6692, 6739), 'megengine.functional.mean', 'F.mean', (['feature_image'], {'axis': 'axes', 'keepdims': '(True)'}), '(feature_image, axis=axes, keepdims=True)\n', (6698, 6739), True, 'import megengine.functional as F\n'), ((6789, 6835), 'megengine.functional.var', 'F.var', (['feature_image'], {'axis': 'axes', 'keepdims': '(True)'}), '(feature_image, axis=axes, keepdims=True)\n', (6794, 6835), True, 'import megengine.functional as F\n'), ((7241, 7258), 'megengine.functional.sqrt', 'F.sqrt', (['(v + 1e-16)'], {}), '(v + 1e-16)\n', (7247, 7258), True, 'import megengine.functional as F\n'), ((10234, 10257), 'megengine.functional.ones_like', 'F.ones_like', (['data_batch'], {}), '(data_batch)\n', (10245, 10257), True, 'import megengine.functional as F\n'), ((3349, 3379), 'megengine.functional.mean', 'F.mean', (['cost', '(1)'], {'keepdims': '(True)'}), '(cost, 1, keepdims=True)\n', (3355, 3379), True, 'import megengine.functional as F\n'), ((8087, 8137), 'common.utils.upsample2d_flow_as', 'upsample2d_flow_as', (['gyro_field', 'flow'], {'if_rate': '(True)'}), '(gyro_field, flow, if_rate=True)\n', (8105, 8137), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((8164, 8193), 'common.utils.flow_warp', 'flow_warp', (['x2', 'gyro_field_rsz'], {}), '(x2, gyro_field_rsz)\n', (8173, 8193), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((8318, 8337), 'common.utils.flow_warp', 'flow_warp', (['x2', 'flow'], {}), '(x2, flow)\n', (8327, 8337), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((9050, 9088), 'megengine.functional.concat', 'F.concat', (['[_cv_relu, x1, flow]'], {'axis': '(1)'}), '([_cv_relu, x1, flow], axis=1)\n', (9058, 9088), True, 'import megengine.functional as F\n'), ((9164, 9197), 'megengine.functional.concat', 'F.concat', (['[_x_feat, flow]'], {'axis': '(1)'}), '([_x_feat, flow], axis=1)\n', (9172, 9197), True, 'import megengine.functional as F\n'), ((9379, 9466), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['(flow * 4)'], {'scale_factor': '(4)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow * 4, scale_factor=4, mode='bilinear',\n align_corners=True)\n", (9399, 9466), True, 'import megengine.functional as F\n'), ((5429, 5475), 'megengine.module.init.calculate_fan_in_and_fan_out', 'nn.init.calculate_fan_in_and_fan_out', (['m.weight'], {}), '(m.weight)\n', (5465, 5475), True, 'import megengine.module as nn\n'), ((5546, 5585), 'megengine.module.init.uniform_', 'nn.init.uniform_', (['m.bias', '(-bound)', 'bound'], {}), '(m.bias, -bound, bound)\n', (5562, 5585), True, 'import megengine.module as nn\n'), ((5344, 5356), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (5353, 5356), False, 'import math\n'), ((5508, 5525), 'math.sqrt', 'math.sqrt', (['fan_in'], {}), '(fan_in)\n', (5517, 5525), False, 'import math\n'), ((7030, 7065), 'megengine.functional.stack', 'F.stack', (["statistics['mean']"], {'axis': '(0)'}), "(statistics['mean'], axis=0)\n", (7037, 7065), True, 'import megengine.functional as F\n'), ((7141, 7175), 'megengine.functional.stack', 'F.stack', (["statistics['var']"], {'axis': '(0)'}), "(statistics['var'], axis=0)\n", (7148, 7175), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import argparse import importlib import os import sys import megengine as mge import megengine.distributed as dist from basecore.config import ConfigDict from loguru import logger from basecls.models import build_model, load_model, sync_model from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger def default_parser() -> argparse.ArgumentParser: """Build args parser for training script. Returns: The args parser. """ parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, help="training process description file") parser.add_argument( "--resume", action="store_true", help="resume training from saved checkpoint or not" ) parser.add_argument( "opts", default=None, help="Modify config options using the command-line", nargs=argparse.REMAINDER, ) return parser @logger.catch def worker(args: argparse.Namespace): """Worker function for training script. Args: args: args for training script. """ logger.info(f"Init process group for gpu{dist.get_rank()} done") sys.path.append(os.path.dirname(args.file)) module_name = os.path.splitext(os.path.basename(args.file))[0] current_network = importlib.import_module(module_name) cfg = current_network.Cfg() cfg.merge(args.opts) cfg.resume = args.resume if cfg.output_dir is None: cfg.output_dir = f"./logs_{module_name}" cfg.output_dir = os.path.abspath(cfg.output_dir) cfg.set_mode("freeze") if dist.get_rank() == 0 and not os.path.exists(cfg.output_dir): os.makedirs(cfg.output_dir) dist.group_barrier() # FIXME: will hang in fork mode, however spawn mode meets other issues # try: # from clearml import Task # if dist.get_rank() == 0: # Task.current_task().connect_configuration(cfg) # except Exception as e: # logger.warning(e) setup_logger(cfg.output_dir, "train_log.txt", to_loguru=True) logger.info(f"args: {args}") if cfg.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") if cfg.dtr: logger.info("Enabling DTR...") mge.dtr.enable() trainer = build(cfg) trainer.train() def build(cfg: ConfigDict): """Build function for training script. Args: cfg: config for training. Returns: A trainer. """ model = build_model(cfg) if getattr(cfg, "weights", None) is not None: load_model(model, cfg.weights, strict=False) sync_model(model) model.train() logger.info(f"Using augments named {cfg.augments.name}") augments = registers.augments.get(cfg.augments.name).build(cfg) logger.info(f"Using dataloader named {cfg.data.name}") dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, True, augments) logger.info(f"Using solver named {cfg.solver.name}") solver = registers.solvers.get(cfg.solver.name).build(cfg, model) logger.info(f"Using hooks named {cfg.hooks_name}") hooks = registers.hooks.get(cfg.hooks_name).build(cfg) logger.info(f"Using trainer named {cfg.trainer_name}") TrainerClass = registers.trainers.get(cfg.trainer_name) return TrainerClass(cfg, model, dataloader, solver, hooks=hooks) def main(): """Main function for training script.""" parser = default_parser() args = parser.parse_args() set_nccl_env() set_num_threads() # FIXME: will hang in fork mode, however spawn mode meets other issues # try: # import getpass # from clearml import Task # task_name = f"{getpass.getuser()}-{os.path.splitext(os.path.basename(args.file))[0]}" # task = Task.init(project_name="basecls", task_name=task_name) # noqa: F841 # except Exception as e: # logger.warning(e) device_count = mge.device.get_device_count("gpu") launcher = dist.launcher if not os.path.exists(args.file): raise ValueError("Description file does not exist") if device_count == 0: raise ValueError("Number of devices should be greater than 0") elif device_count > 1 or os.environ.get("RLAUNCH_REPLICA_TOTAL", 0) > 1: mp_worker = launcher(worker) mp_worker(args) else: worker(args) if __name__ == "__main__": main()
[ "megengine.functional.debug_param.set_execution_strategy", "megengine.device.get_device_count", "megengine.distributed.group_barrier", "megengine.dtr.enable", "megengine.distributed.get_rank" ]
[((565, 590), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (588, 590), False, 'import argparse\n'), ((1353, 1389), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1376, 1389), False, 'import importlib\n'), ((1577, 1608), 'os.path.abspath', 'os.path.abspath', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1592, 1608), False, 'import os\n'), ((1746, 1766), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1764, 1766), True, 'import megengine.distributed as dist\n'), ((2048, 2109), 'basecls.utils.setup_logger', 'setup_logger', (['cfg.output_dir', '"""train_log.txt"""'], {'to_loguru': '(True)'}), "(cfg.output_dir, 'train_log.txt', to_loguru=True)\n", (2060, 2109), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2114, 2142), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (2125, 2142), False, 'from loguru import logger\n'), ((2576, 2592), 'basecls.models.build_model', 'build_model', (['cfg'], {}), '(cfg)\n', (2587, 2592), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((2700, 2717), 'basecls.models.sync_model', 'sync_model', (['model'], {}), '(model)\n', (2710, 2717), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((2741, 2797), 'loguru.logger.info', 'logger.info', (['f"""Using augments named {cfg.augments.name}"""'], {}), "(f'Using augments named {cfg.augments.name}')\n", (2752, 2797), False, 'from loguru import logger\n'), ((2870, 2924), 'loguru.logger.info', 'logger.info', (['f"""Using dataloader named {cfg.data.name}"""'], {}), "(f'Using dataloader named {cfg.data.name}')\n", (2881, 2924), False, 'from loguru import logger\n'), ((3014, 3066), 'loguru.logger.info', 'logger.info', (['f"""Using solver named {cfg.solver.name}"""'], {}), "(f'Using solver named {cfg.solver.name}')\n", (3025, 3066), False, 'from loguru import logger\n'), ((3141, 3191), 'loguru.logger.info', 'logger.info', (['f"""Using hooks named {cfg.hooks_name}"""'], {}), "(f'Using hooks named {cfg.hooks_name}')\n", (3152, 3191), False, 'from loguru import logger\n'), ((3256, 3310), 'loguru.logger.info', 'logger.info', (['f"""Using trainer named {cfg.trainer_name}"""'], {}), "(f'Using trainer named {cfg.trainer_name}')\n", (3267, 3310), False, 'from loguru import logger\n'), ((3330, 3370), 'basecls.utils.registers.trainers.get', 'registers.trainers.get', (['cfg.trainer_name'], {}), '(cfg.trainer_name)\n', (3352, 3370), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3565, 3579), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (3577, 3579), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3584, 3601), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (3599, 3601), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((4009, 4043), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (4036, 4043), True, 'import megengine as mge\n'), ((1236, 1262), 'os.path.dirname', 'os.path.dirname', (['args.file'], {}), '(args.file)\n', (1251, 1262), False, 'import os\n'), ((1714, 1741), 'os.makedirs', 'os.makedirs', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1725, 1741), False, 'import os\n'), ((2172, 2208), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (2183, 2208), False, 'from loguru import logger\n'), ((2217, 2277), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (2266, 2277), True, 'import megengine as mge\n'), ((2303, 2333), 'loguru.logger.info', 'logger.info', (['"""Enabling DTR..."""'], {}), "('Enabling DTR...')\n", (2314, 2333), False, 'from loguru import logger\n'), ((2342, 2358), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (2356, 2358), True, 'import megengine as mge\n'), ((2651, 2695), 'basecls.models.load_model', 'load_model', (['model', 'cfg.weights'], {'strict': '(False)'}), '(model, cfg.weights, strict=False)\n', (2661, 2695), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((4085, 4110), 'os.path.exists', 'os.path.exists', (['args.file'], {}), '(args.file)\n', (4099, 4110), False, 'import os\n'), ((1299, 1326), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (1315, 1326), False, 'import os\n'), ((1645, 1660), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1658, 1660), True, 'import megengine.distributed as dist\n'), ((1674, 1704), 'os.path.exists', 'os.path.exists', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1688, 1704), False, 'import os\n'), ((2813, 2854), 'basecls.utils.registers.augments.get', 'registers.augments.get', (['cfg.augments.name'], {}), '(cfg.augments.name)\n', (2835, 2854), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2942, 2982), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (2967, 2982), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3080, 3118), 'basecls.utils.registers.solvers.get', 'registers.solvers.get', (['cfg.solver.name'], {}), '(cfg.solver.name)\n', (3101, 3118), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3204, 3239), 'basecls.utils.registers.hooks.get', 'registers.hooks.get', (['cfg.hooks_name'], {}), '(cfg.hooks_name)\n', (3223, 3239), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((1191, 1206), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1204, 1206), True, 'import megengine.distributed as dist\n'), ((4299, 4341), 'os.environ.get', 'os.environ.get', (['"""RLAUNCH_REPLICA_TOTAL"""', '(0)'], {}), "('RLAUNCH_REPLICA_TOTAL', 0)\n", (4313, 4341), False, 'import os\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import BatchNorm2d def test_frozen_bn(): nchannel = 3 m = BatchNorm2d(nchannel, freeze=True) saved_var = m.running_var.numpy() saved_mean = m.running_mean.numpy() saved_wt = m.weight.numpy() saved_bias = m.bias.numpy() gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).mean() gm.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) np.testing.assert_equal(m.weight.numpy(), saved_wt) np.testing.assert_equal(m.bias.numpy(), saved_bias) np.testing.assert_almost_equal(loss.numpy(), data.mean(), 5) def test_bn_no_track_stat(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).sum() gm.backward(loss) optim.step() def test_bn_no_track_stat2(): nchannel = 3 m = BatchNorm2d(nchannel) # Init with track_running_stat = True m.track_running_stats = False # m.running_var and m.running_mean created during init time saved_var = m.running_var.numpy() assert saved_var is not None saved_mean = m.running_mean.numpy() assert saved_mean is not None gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).sum() gm.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) def test_bn_no_track_stat3(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) m.track_running_stats = True data = np.random.random((6, nchannel, 2, 2)).astype("float32") with pytest.raises(Exception): m(data)
[ "megengine.module.BatchNorm2d", "megengine.autodiff.GradManager" ]
[((630, 664), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'freeze': '(True)'}), '(nchannel, freeze=True)\n', (641, 664), False, 'from megengine.module import BatchNorm2d\n'), ((1445, 1493), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'track_running_stats': '(False)'}), '(nchannel, track_running_stats=False)\n', (1456, 1493), False, 'from megengine.module import BatchNorm2d\n'), ((1827, 1848), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {}), '(nchannel)\n', (1838, 1848), False, 'from megengine.module import BatchNorm2d\n'), ((2592, 2640), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'track_running_stats': '(False)'}), '(nchannel, track_running_stats=False)\n', (2603, 2640), False, 'from megengine.module import BatchNorm2d\n'), ((2750, 2774), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2763, 2774), False, 'import pytest\n'), ((818, 834), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (832, 834), True, 'import megengine.autodiff as ad\n'), ((943, 980), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (959, 980), True, 'import numpy as np\n'), ((1504, 1520), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1518, 1520), True, 'import megengine.autodiff as ad\n'), ((1629, 1666), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (1645, 1666), True, 'import numpy as np\n'), ((2142, 2158), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (2156, 2158), True, 'import megengine.autodiff as ad\n'), ((2267, 2304), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (2283, 2304), True, 'import numpy as np\n'), ((2685, 2722), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (2701, 2722), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import argparse import datetime import multiprocessing as mp import time import megengine as mge import megengine.amp as amp import megengine.autodiff as autodiff import megengine.distributed as dist import megengine.functional as F import megengine.jit as jit import megengine.optimizer as optim from basecore.utils import log_every_n_seconds from loguru import logger from basecls.data.fake_data import FakeDataLoader from basecls.layers import Preprocess from basecls.utils import registers, set_nccl_env, set_num_threads def main(): parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", default="resnet50", type=str) parser.add_argument("--mode", default="eval", type=str) parser.add_argument("-d", "--device", default="gpu", type=str) parser.add_argument("--amp", default=0, type=int) parser.add_argument("--fastrun", action="store_true") parser.add_argument("--trace", action="store_true") parser.add_argument("--dtr", action="store_true") parser.add_argument("-b", "--batch-size", default=32, type=int) parser.add_argument("--channel", default=3, type=int) parser.add_argument("--height", default=224, type=int) parser.add_argument("--width", default=224, type=int) parser.add_argument("-n", "--world-size", default=8, type=int) parser.add_argument("--warm-iters", default=50, type=int) parser.add_argument("-t", "--total-iters", default=200, type=int) parser.add_argument("--log-seconds", default=2, type=int) args = parser.parse_args() mp.set_start_method("spawn") set_nccl_env() set_num_threads() if args.world_size == 1: worker(args) else: dist.launcher(worker, n_gpus=args.world_size)(args) @logger.catch def worker(args: argparse.Namespace): if dist.get_rank() != 0: logger.remove() logger.info(f"args: {args}") if args.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") if args.dtr: logger.info("Enabling DTR...") mge.dtr.enable() mge.set_default_device(f"{args.device}{dist.get_rank()}") model = registers.models.get(args.model)(head=dict(w_out=1000)) dataloader = FakeDataLoader( args.batch_size, (args.height, args.width), args.channel, length=args.warm_iters + args.total_iters, num_classes=1000, ) if args.mode == "train": BenchCls = TrainBench elif args.mode == "eval": BenchCls = EvalBench else: raise NotImplementedError(f"Benchmark mode '{args.mode}' not supported") bench = BenchCls(model, dataloader, args.trace, args.amp) bench.benchmark(args.warm_iters, args.log_seconds) class ClsBench: def __init__(self, model, dataloader, trace: bool = False): self.model = model self.dataloader = dataloader self.preprocess = Preprocess(mean=127, std=128) if trace: self.model_step = jit.trace(self.model_step, symbolic=True) def benchmark(self, warm_iters=50, log_seconds=2): total_iters = len(self.dataloader) - warm_iters total_time = 0 for i, data in enumerate(self.dataloader, 1): if i == warm_iters + 1: total_time = 0 samples, targets = self.preprocess(data) mge._full_sync() t = time.perf_counter() self.model_step(samples, targets) mge._full_sync() total_time += time.perf_counter() - t if log_seconds > 0: cnt = i - warm_iters if i > warm_iters else i tot = total_iters if i > warm_iters else warm_iters cycle = total_time / cnt eta = (tot - cnt) * cycle log_every_n_seconds( "{} process {}/{}, average speed:{:0.3f}ms/iters. ETA:{}".format( "Benchmark" if i > warm_iters else "Warmup", cnt, tot, cycle * 1000, datetime.timedelta(seconds=int(eta)), ), n=log_seconds, ) avg_speed_ms = total_time / total_iters * 1000 logger.info( "Benchmark total time:{}, average speed:{:0.3f}ms/iters.".format( datetime.timedelta(seconds=int(total_time)), avg_speed_ms ) ) return avg_speed_ms def model_step(self, samples, targets): raise NotImplementedError class TrainBench(ClsBench): def __init__(self, model, dataloader, trace: bool = False, amp_version: int = 0): model.train() super().__init__(model, dataloader, trace) self.opt = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001) self.gm = autodiff.GradManager() callbacks = ( [dist.make_allreduce_cb("mean", dist.WORLD)] if dist.get_world_size() > 1 else None ) self.gm.attach(model.parameters(), callbacks=callbacks) self.amp_version = amp_version self.scaler = ( amp.GradScaler(init_scale=65536.0, growth_interval=2000) if amp_version == 2 else amp.GradScaler(init_scale=128.0, growth_interval=0) ) def model_step(self, samples, targets): with self.gm: with amp.autocast(enabled=self.amp_version > 0): pred = self.model(samples) loss = F.loss.cross_entropy(pred, targets) if self.amp_version > 0: self.scaler.backward(self.gm, loss, update_scale=False) self.scaler.update() else: self.gm.backward(loss) self.opt.step().clear_grad() class EvalBench(ClsBench): def __init__(self, model, dataloader, trace: bool = False, amp_version: int = 0): model.eval() super().__init__(model, dataloader, trace) self.amp_version = amp_version def model_step(self, samples, targets): with amp.autocast(enabled=self.amp_version > 0): self.model(samples) if __name__ == "__main__": main()
[ "megengine.functional.loss.cross_entropy", "megengine._full_sync", "megengine.autodiff.GradManager", "megengine.functional.debug_param.set_execution_strategy", "megengine.jit.trace", "megengine.amp.autocast", "megengine.distributed.make_allreduce_cb", "megengine.distributed.launcher", "megengine.dtr.enable", "megengine.amp.GradScaler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size" ]
[((941, 966), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (964, 966), False, 'import argparse\n'), ((1927, 1955), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (1946, 1955), True, 'import multiprocessing as mp\n'), ((1961, 1975), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (1973, 1975), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads\n'), ((1980, 1997), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (1995, 1997), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads\n'), ((2230, 2258), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (2241, 2258), False, 'from loguru import logger\n'), ((2627, 2764), 'basecls.data.fake_data.FakeDataLoader', 'FakeDataLoader', (['args.batch_size', '(args.height, args.width)', 'args.channel'], {'length': '(args.warm_iters + args.total_iters)', 'num_classes': '(1000)'}), '(args.batch_size, (args.height, args.width), args.channel,\n length=args.warm_iters + args.total_iters, num_classes=1000)\n', (2641, 2764), False, 'from basecls.data.fake_data import FakeDataLoader\n'), ((2180, 2195), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2193, 2195), True, 'import megengine.distributed as dist\n'), ((2210, 2225), 'loguru.logger.remove', 'logger.remove', ([], {}), '()\n', (2223, 2225), False, 'from loguru import logger\n'), ((2289, 2325), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (2300, 2325), False, 'from loguru import logger\n'), ((2334, 2394), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (2383, 2394), True, 'import megengine as mge\n'), ((2421, 2451), 'loguru.logger.info', 'logger.info', (['"""Enabling DTR..."""'], {}), "('Enabling DTR...')\n", (2432, 2451), False, 'from loguru import logger\n'), ((2460, 2476), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (2474, 2476), True, 'import megengine as mge\n'), ((2553, 2585), 'basecls.utils.registers.models.get', 'registers.models.get', (['args.model'], {}), '(args.model)\n', (2573, 2585), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads\n'), ((3308, 3337), 'basecls.layers.Preprocess', 'Preprocess', ([], {'mean': '(127)', 'std': '(128)'}), '(mean=127, std=128)\n', (3318, 3337), False, 'from basecls.layers import Preprocess\n'), ((5266, 5288), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (5286, 5288), True, 'import megengine.autodiff as autodiff\n'), ((2067, 2112), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {'n_gpus': 'args.world_size'}), '(worker, n_gpus=args.world_size)\n', (2080, 2112), True, 'import megengine.distributed as dist\n'), ((3387, 3428), 'megengine.jit.trace', 'jit.trace', (['self.model_step'], {'symbolic': '(True)'}), '(self.model_step, symbolic=True)\n', (3396, 3428), True, 'import megengine.jit as jit\n'), ((3753, 3769), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (3767, 3769), True, 'import megengine as mge\n'), ((3786, 3805), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3803, 3805), False, 'import time\n'), ((3866, 3882), 'megengine._full_sync', 'mge._full_sync', ([], {}), '()\n', (3880, 3882), True, 'import megengine as mge\n'), ((5557, 5613), 'megengine.amp.GradScaler', 'amp.GradScaler', ([], {'init_scale': '(65536.0)', 'growth_interval': '(2000)'}), '(init_scale=65536.0, growth_interval=2000)\n', (5571, 5613), True, 'import megengine.amp as amp\n'), ((5663, 5714), 'megengine.amp.GradScaler', 'amp.GradScaler', ([], {'init_scale': '(128.0)', 'growth_interval': '(0)'}), '(init_scale=128.0, growth_interval=0)\n', (5677, 5714), True, 'import megengine.amp as amp\n'), ((6480, 6522), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': '(self.amp_version > 0)'}), '(enabled=self.amp_version > 0)\n', (6492, 6522), True, 'import megengine.amp as amp\n'), ((2521, 2536), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2534, 2536), True, 'import megengine.distributed as dist\n'), ((3909, 3928), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3926, 3928), False, 'import time\n'), ((5371, 5392), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5390, 5392), True, 'import megengine.distributed as dist\n'), ((5324, 5366), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""mean"""', 'dist.WORLD'], {}), "('mean', dist.WORLD)\n", (5346, 5366), True, 'import megengine.distributed as dist\n'), ((5809, 5851), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': '(self.amp_version > 0)'}), '(enabled=self.amp_version > 0)\n', (5821, 5851), True, 'import megengine.amp as amp\n'), ((5919, 5954), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['pred', 'targets'], {}), '(pred, targets)\n', (5939, 5954), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import List, Tuple import numpy as np import megengine._internal as mgb import megengine.functional as F from megengine import Graph, jit from megengine.module import Linear, Module from megengine.test import assertTensorClose from .env import modified_environ class MLP(Module): def __init__(self): super().__init__() self.dense0 = Linear(28, 50) self.dense1 = Linear(50, 20) def forward(self, x): x = self.dense0(x) x = F.relu(x) x = self.dense1(x) return x def has_gpu(num=1): try: mgb.comp_node("gpu{}".format(num - 1)) except mgb.MegBrainError: return False return True def randomNp(*args): for arg in args: assert isinstance(arg, int) return np.random.random(args) def randomTorch(*args): import torch # pylint: disable=import-outside-toplevel for arg in args: assert isinstance(arg, int) return torch.tensor(randomNp(*args), dtype=torch.float32) def graph_mode(*modes): if not set(modes).issubset({"eager", "static"}): raise ValueError("graph mode must be in (eager, static)") def decorator(func): def wrapper(*args, **kwargs): if "eager" in set(modes): func(*args, **kwargs) if "static" in set(modes): with Graph() as cg: cg.set_option("eager_evaluation", False) func(*args, **kwargs) return wrapper return decorator def _default_compare_fn(x, y): assertTensorClose(x.numpy(), y) def opr_test( cases, func, mode=("eager", "static", "dynamic_shape"), compare_fn=_default_compare_fn, ref_fn=None, **kwargs ): """ mode: the list of test mode which are eager, static and dynamic_shape will test all the cases if None. func: the function to run opr. compare_fn: the function to compare the result and expected, use assertTensorClose if None. ref_fn: the function to generate expected data, should assign output if None. cases: the list which have dict element, the list length should be 2 for dynamic shape test. and the dict should have input, and should have output if ref_fn is None. should use list for multiple inputs and outputs for each case. kwargs: The additional kwargs for opr func. simple examples: dtype = np.float32 cases = [{"input": [10, 20]}, {"input": [20, 30]}] opr_test(cases, F.eye, ref_fn=lambda n, m: np.eye(n, m).astype(dtype), dtype=dtype) """ def check_results(results, expected): if not isinstance(results, Tuple): results = (results,) for r, e in zip(results, expected): compare_fn(r, e) def get_trace_fn(func, enabled, symbolic): jit.trace.enabled = enabled return jit.trace(func, symbolic=symbolic) def get_param(cases, idx): case = cases[idx] inp = case.get("input", None) outp = case.get("output", None) if inp is None: raise ValueError("the test case should have input") if not isinstance(inp, List): inp = (inp,) else: inp = tuple(inp) if ref_fn is not None and callable(ref_fn): outp = ref_fn(*inp) if outp is None: raise ValueError("the test case should have output or reference function") if not isinstance(outp, List): outp = (outp,) else: outp = tuple(outp) return inp, outp if not set(mode).issubset({"eager", "static", "dynamic_shape"}): raise ValueError("opr test mode must be in (eager, static, dynamic_shape)") if len(cases) == 0: raise ValueError("should give one case at least") if "dynamic_shape" in set(mode): if len(cases) != 2: raise ValueError("should give 2 cases for dynamic shape test") if not callable(func): raise ValueError("the input func should be callable") inp, outp = get_param(cases, 0) def run(*args, **kwargs): return func(*args, **kwargs) if "eager" in set(mode): f = get_trace_fn(run, False, False) results = f(*inp, **kwargs) check_results(results, outp) if "static" in set(mode) or "dynamic_shape" in set(mode): f = get_trace_fn(run, True, True) results = f(*inp, **kwargs) check_results(results, outp) if "dynamic_shape" in set(mode): inp, outp = get_param(cases, 1) results = f(*inp, **kwargs) check_results(results, outp)
[ "megengine.Graph", "megengine.functional.relu", "megengine.jit.trace", "megengine.module.Linear" ]
[((1156, 1178), 'numpy.random.random', 'np.random.random', (['args'], {}), '(args)\n', (1172, 1178), True, 'import numpy as np\n'), ((747, 761), 'megengine.module.Linear', 'Linear', (['(28)', '(50)'], {}), '(28, 50)\n', (753, 761), False, 'from megengine.module import Linear, Module\n'), ((784, 798), 'megengine.module.Linear', 'Linear', (['(50)', '(20)'], {}), '(50, 20)\n', (790, 798), False, 'from megengine.module import Linear, Module\n'), ((865, 874), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (871, 874), True, 'import megengine.functional as F\n'), ((3321, 3355), 'megengine.jit.trace', 'jit.trace', (['func'], {'symbolic': 'symbolic'}), '(func, symbolic=symbolic)\n', (3330, 3355), False, 'from megengine import Graph, jit\n'), ((1730, 1737), 'megengine.Graph', 'Graph', ([], {}), '()\n', (1735, 1737), False, 'from megengine import Graph, jit\n')]
# -*- coding: utf-8 -*- # Copyright 2018-2019 Open-MMLab. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # --------------------------------------------------------------------- from abc import ABCMeta, abstractmethod import megengine.functional as F import numpy as np from megengine.core import tensor, Tensor class BaseAnchorGenerator(metaclass=ABCMeta): """base class for anchor generator. """ def __init__(self): pass @abstractmethod def get_anchors_by_feature(self) -> Tensor: pass class DefaultAnchorGenerator(BaseAnchorGenerator): """default retinanet anchor generator. This class generate anchors by feature map in level. Args: base_size (int): anchor base size. anchor_scales (np.ndarray): anchor scales based on stride. The practical anchor scale is anchor_scale * stride anchor_ratios(np.ndarray): anchor aspect ratios. offset (float): center point offset.default is 0. """ def __init__( self, base_size=8, anchor_scales: np.ndarray = np.array([2, 3, 4]), anchor_ratios: np.ndarray = np.array([0.5, 1, 2]), offset: float = 0, ): super().__init__() self.base_size = base_size self.anchor_scales = anchor_scales self.anchor_ratios = anchor_ratios self.offset = offset def _whctrs(self, anchor): """convert anchor box into (w, h, ctr_x, ctr_y) """ w = anchor[:, 2] - anchor[:, 0] + 1 h = anchor[:, 3] - anchor[:, 1] + 1 x_ctr = anchor[:, 0] + 0.5 * (w - 1) y_ctr = anchor[:, 1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def get_plane_anchors(self, anchor_scales: np.ndarray): """get anchors per location on feature map. The anchor number is anchor_scales x anchor_ratios """ base_anchor = tensor([0, 0, self.base_size - 1, self.base_size - 1]) base_anchor = F.add_axis(base_anchor, 0) w, h, x_ctr, y_ctr = self._whctrs(base_anchor) # ratio enumerate size = w * h size_ratios = size / self.anchor_ratios ws = size_ratios.sqrt().round() hs = (ws * self.anchor_ratios).round() # scale enumerate anchor_scales = anchor_scales[None, ...] ws = F.add_axis(ws, 1) hs = F.add_axis(hs, 1) ws = (ws * anchor_scales).reshape(-1, 1) hs = (hs * anchor_scales).reshape(-1, 1) anchors = F.concat( [ x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1), ], axis=1, ) return anchors.astype(np.float32) def get_center_offsets(self, featmap, stride): f_shp = featmap.shape fm_height, fm_width = f_shp[-2], f_shp[-1] shift_x = F.linspace(0, fm_width - 1, fm_width) * stride shift_y = F.linspace(0, fm_height - 1, fm_height) * stride # make the mesh grid of shift_x and shift_y mesh_shape = (fm_height, fm_width) broad_shift_x = shift_x.reshape(-1, shift_x.shape[0]).broadcast(*mesh_shape) broad_shift_y = shift_y.reshape(shift_y.shape[0], -1).broadcast(*mesh_shape) flatten_shift_x = F.add_axis(broad_shift_x.reshape(-1), 1) flatten_shift_y = F.add_axis(broad_shift_y.reshape(-1), 1) centers = F.concat( [flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y,], axis=1, ) if self.offset > 0: centers = centers + self.offset * stride return centers def get_anchors_by_feature(self, featmap, stride): # shifts shape: [A, 4] shifts = self.get_center_offsets(featmap, stride) # plane_anchors shape: [B, 4], e.g. B=9 plane_anchors = self.get_plane_anchors(self.anchor_scales * stride) all_anchors = F.add_axis(plane_anchors, 0) + F.add_axis(shifts, 1) all_anchors = all_anchors.reshape(-1, 4) return all_anchors def __call__(self, featmap, stride): return self.get_anchors_by_feature(featmap, stride)
[ "megengine.functional.linspace", "megengine.core.tensor", "megengine.functional.add_axis", "megengine.functional.concat" ]
[((2161, 2180), 'numpy.array', 'np.array', (['[2, 3, 4]'], {}), '([2, 3, 4])\n', (2169, 2180), True, 'import numpy as np\n'), ((2218, 2239), 'numpy.array', 'np.array', (['[0.5, 1, 2]'], {}), '([0.5, 1, 2])\n', (2226, 2239), True, 'import numpy as np\n'), ((2971, 3025), 'megengine.core.tensor', 'tensor', (['[0, 0, self.base_size - 1, self.base_size - 1]'], {}), '([0, 0, self.base_size - 1, self.base_size - 1])\n', (2977, 3025), False, 'from megengine.core import tensor, Tensor\n'), ((3048, 3074), 'megengine.functional.add_axis', 'F.add_axis', (['base_anchor', '(0)'], {}), '(base_anchor, 0)\n', (3058, 3074), True, 'import megengine.functional as F\n'), ((3402, 3419), 'megengine.functional.add_axis', 'F.add_axis', (['ws', '(1)'], {}), '(ws, 1)\n', (3412, 3419), True, 'import megengine.functional as F\n'), ((3433, 3450), 'megengine.functional.add_axis', 'F.add_axis', (['hs', '(1)'], {}), '(hs, 1)\n', (3443, 3450), True, 'import megengine.functional as F\n'), ((3568, 3686), 'megengine.functional.concat', 'F.concat', (['[x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), \n y_ctr + 0.5 * (hs - 1)]'], {'axis': '(1)'}), '([x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws -\n 1), y_ctr + 0.5 * (hs - 1)], axis=1)\n', (3576, 3686), True, 'import megengine.functional as F\n'), ((4526, 4616), 'megengine.functional.concat', 'F.concat', (['[flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y]'], {'axis': '(1)'}), '([flatten_shift_x, flatten_shift_y, flatten_shift_x,\n flatten_shift_y], axis=1)\n', (4534, 4616), True, 'import megengine.functional as F\n'), ((3992, 4029), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_width - 1)', 'fm_width'], {}), '(0, fm_width - 1, fm_width)\n', (4002, 4029), True, 'import megengine.functional as F\n'), ((4057, 4096), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(fm_height - 1)', 'fm_height'], {}), '(0, fm_height - 1, fm_height)\n', (4067, 4096), True, 'import megengine.functional as F\n'), ((5045, 5073), 'megengine.functional.add_axis', 'F.add_axis', (['plane_anchors', '(0)'], {}), '(plane_anchors, 0)\n', (5055, 5073), True, 'import megengine.functional as F\n'), ((5076, 5097), 'megengine.functional.add_axis', 'F.add_axis', (['shifts', '(1)'], {}), '(shifts, 1)\n', (5086, 5097), True, 'import megengine.functional as F\n')]
import os import sys import pytest from megengine.core._imperative_rt.imperative import sync sys.path.append(os.path.join(os.path.dirname(__file__), "helpers")) def pytest_runtest_teardown(): sync()
[ "megengine.core._imperative_rt.imperative.sync" ]
[((201, 207), 'megengine.core._imperative_rt.imperative.sync', 'sync', ([], {}), '()\n', (205, 207), False, 'from megengine.core._imperative_rt.imperative import sync\n'), ((125, 150), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (140, 150), False, 'import os\n')]