code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import unittest from sys import argv import numpy as np import torch from objective.logistic import Logistic_Gradient from .utils import Container, assert_all_close, assert_all_close_dict class TestObj_Logistic_Gradient(unittest.TestCase): def setUp(self): np.random.seed(1234) torch.manual_seed(1234) n_features = 3 n_samples = 5 n_classes = 7 mu = 0.02 self.hparams = Container(n_classes=n_classes, n_features=n_features, n_samples=n_samples, mu=mu) self.w = torch.randn(n_features, n_classes, requires_grad=True) self.x = torch.randn(n_samples, n_features) self.y = torch.randn(n_samples).long() self.obj = Logistic_Gradient(self.hparams) def test_error(self): error_test = self.obj.task_error(self.w, self.x, self.y) error_ref = torch.tensor(2.9248) assert_all_close(error_test, error_ref, "task_error returned value") def test_oracle(self): oracle_info_test = self.obj.oracle(self.w, self.x, self.y) oracle_info_ref = { 'dw': torch.tensor([[ 0.2578, -0.1417, 0.0046, -0.1236, -0.0180, 0.0249, -0.0273], [-0.3585, 0.1889, -0.0937, 0.0522, 0.0100, 0.1239, 0.0620], [-0.2921, 0.2251, -0.1870, 0.1791, 0.0171, 0.0109, -0.0156]]), 'obj': torch.tensor(3.1189)} assert_all_close_dict(oracle_info_ref, oracle_info_test, "oracle returned info") if __name__ == '__main__': unittest.main(argv=argv)
[ "torch.manual_seed", "objective.logistic.Logistic_Gradient", "torch.tensor", "numpy.random.seed", "unittest.main", "torch.randn" ]
[((1628, 1652), 'unittest.main', 'unittest.main', ([], {'argv': 'argv'}), '(argv=argv)\n', (1641, 1652), False, 'import unittest\n'), ((273, 293), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (287, 293), True, 'import numpy as np\n'), ((302, 325), 'torch.manual_seed', 'torch.manual_seed', (['(1234)'], {}), '(1234)\n', (319, 325), False, 'import torch\n'), ((634, 688), 'torch.randn', 'torch.randn', (['n_features', 'n_classes'], {'requires_grad': '(True)'}), '(n_features, n_classes, requires_grad=True)\n', (645, 688), False, 'import torch\n'), ((706, 740), 'torch.randn', 'torch.randn', (['n_samples', 'n_features'], {}), '(n_samples, n_features)\n', (717, 740), False, 'import torch\n'), ((807, 838), 'objective.logistic.Logistic_Gradient', 'Logistic_Gradient', (['self.hparams'], {}), '(self.hparams)\n', (824, 838), False, 'from objective.logistic import Logistic_Gradient\n'), ((951, 971), 'torch.tensor', 'torch.tensor', (['(2.9248)'], {}), '(2.9248)\n', (963, 971), False, 'import torch\n'), ((1190, 1391), 'torch.tensor', 'torch.tensor', (['[[0.2578, -0.1417, 0.0046, -0.1236, -0.018, 0.0249, -0.0273], [-0.3585, \n 0.1889, -0.0937, 0.0522, 0.01, 0.1239, 0.062], [-0.2921, 0.2251, -0.187,\n 0.1791, 0.0171, 0.0109, -0.0156]]'], {}), '([[0.2578, -0.1417, 0.0046, -0.1236, -0.018, 0.0249, -0.0273],\n [-0.3585, 0.1889, -0.0937, 0.0522, 0.01, 0.1239, 0.062], [-0.2921, \n 0.2251, -0.187, 0.1791, 0.0171, 0.0109, -0.0156]])\n', (1202, 1391), False, 'import torch\n'), ((1484, 1504), 'torch.tensor', 'torch.tensor', (['(3.1189)'], {}), '(3.1189)\n', (1496, 1504), False, 'import torch\n'), ((758, 780), 'torch.randn', 'torch.randn', (['n_samples'], {}), '(n_samples)\n', (769, 780), False, 'import torch\n')]
from datasets.dataset_processors import ExtendedDataset from models.model import IdentificationModel, ResNet50 from models.siamese import SiameseNet, MssNet from base import BaseExecutor from utils.utilities import type_error_msg, value_error_msg, timer, load_model import torch from torch.utils.data import DataLoader from torchvision import transforms from configparser import ConfigParser from os import makedirs from os.path import join, exists, dirname from scipy.io import savemat import numpy as np class Tester(BaseExecutor): """A general tester for all. Args: config (ConfigParser): The ConfigParser which reads setting files. name (str): A name defined in base.py. dataset (str): A dataset defined in base.py. model (str): A model defined in base.py. epoch (int): The epoch of the saved trained model for testing. scene (str): A scene defined in base.py. Attributes: test_path (str): Path to save features/labels/cams. """ DEFAULT_BATCH_SIZE = 64 DEFAULT_NUM_WORKER = 8 def __init__(self, config, name, dataset, model, epoch: int, scene): if not isinstance(name, Tester.Name): if isinstance(name, str): if not name.islower(): name = name.lower() if name not in Tester.NAME_LIST: raise ValueError(value_error_msg('name', name, Tester.NAME_LIST)) name = Tester.Name(name) else: raise TypeError(type_error_msg('name', name, [Tester.Name, str])) if not isinstance(dataset, Tester.Dataset): if isinstance(dataset, str): if not dataset.islower(): dataset = dataset.lower() if dataset not in Tester.DATASET_LIST: raise ValueError(value_error_msg('dataset', dataset, Tester.DATASET_LIST)) dataset = Tester.Dataset(dataset) else: raise TypeError(type_error_msg('dataset', dataset, [Tester.Dataset, str])) if not isinstance(model, Tester.Model): if isinstance(model, str): if not model.islower(): model = model.lower() if model not in Tester.MODEL_LIST: raise ValueError(value_error_msg('model', model, Tester.MODEL_LIST)) model = Tester.Model(model) else: raise TypeError(type_error_msg('model', model, [Tester.MODEL_LIST, str])) if not isinstance(scene, Tester.Scene): if isinstance(scene, str): if not scene.islower(): scene = scene.lower() if scene not in Tester.SCENE_LIST: raise ValueError(value_error_msg('scene', scene, Tester.SCENE_LIST)) scene = Tester.Scene(scene) else: raise TypeError(type_error_msg('scene', scene, [Tester.SCENE_LIST, str])) if not isinstance(epoch, int): raise TypeError(type_error_msg('epoch', epoch, [int])) if not epoch >= 0: raise ValueError(value_error_msg('epoch', epoch, 'epoch >= 0')) self.name = name self.dataset = dataset self.model = model self.scene = scene self.config = config self.train_class = config.getint(self.name.value, 'train_class') # initialize model model_name = self.model.value if self.model == Tester.Model.MSSNET: self.model = MssNet(self.config) elif self.model == Tester.Model.RESNET50: self.model = ResNet50(self.config, self.train_class, False) # else: # raise ValueError(value_error_msg('model', model, Tester.MODEL_LIST)) transform_list = [] if self.name == Tester.Name.MARKET1501: transform_list = [ # transforms.Resize((160, 64)), # transforms.Pad(10), # transforms.RandomCrop((160, 64)), # transforms.RandomHorizontalFlip(), # transforms.ToTensor() transforms.Resize((256, 128), interpolation=3), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] self.dataset_type = ['gallery', 'query'] if self.scene == Tester.Scene.MULTI_SHOT: self.dataset_type.append('multi_query') # prepare datasets if self.dataset == Tester.Dataset.EXTENDED: self.dataset = {} for item in self.dataset_type: self.dataset[item] = ExtendedDataset(self.name.value, join(self.config[self.name.value]['dataset_dir'], item), transforms.Compose(transform_list)) else: raise ValueError(value_error_msg('dataset', dataset, Tester.Dataset.EXTENDED)) # load weights load_model(self.model, self.config[self.name.value]['model_format'] % (model_name, epoch)) if isinstance(self.model, IdentificationModel): self.model.set_to_test() self.test_path = self.config[self.name.value]['test_path'] % self.scene.value @timer def run(self): """ Reads: A pth file of model's state dict. Processes: Computes the features of gallery and query imgs. Writes: A mat file of saved gallery and query info. """ Tester.run_info(self.__class__.__name__, self.scene.value) self.model.eval() # for batch norm test_dict = {} dataloader = {} with torch.no_grad(): if self.scene == Tester.Scene.SINGLE_SHOT: for item in self.dataset_type: dataloader[item] = DataLoader(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER, batch_size=Tester.DEFAULT_BATCH_SIZE) test_dict[item + '_feature'] = Tester.normalize(self.extract_feature(dataloader[item])) test_dict[item + '_label'] = self.dataset[item].ids test_dict[item + '_cam'] = self.dataset[item].cams elif self.scene == Tester.Scene.MULTI_SHOT: item = 'gallery' dataloader[item] = DataLoader(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER, batch_size=Tester.DEFAULT_BATCH_SIZE) test_dict[item + '_feature'] = Tester.normalize(self.extract_feature(dataloader[item])) test_dict[item + '_label'] = self.dataset[item].ids test_dict[item + '_cam'] = self.dataset[item].cams item = 'multi_query' # no need to save multi_query features into dict dataloader[item] = DataLoader(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER, batch_size=Tester.DEFAULT_BATCH_SIZE) multi_query_feature = self.extract_feature(dataloader[item]) # no normalization multi_query_label = self.dataset[item].ids multi_query_cam = self.dataset[item].cams item = 'query' test_dict[item + '_label'] = self.dataset[item].ids test_dict[item + '_cam'] = self.dataset[item].cams test_dict[item + '_feature'] = Tester.normalize_numpy(Tester.mean_feature(multi_query_feature, np.asarray(multi_query_label), np.asarray(multi_query_cam), np.asarray(test_dict['query_label']), np.asarray(test_dict['query_cam']), test_dict)) test_dir = dirname(self.test_path) if not exists(test_dir): makedirs(test_dir) # WARNING: save test.mat will trigger overwrite if test.mat is already exists savemat(self.test_path, test_dict) @staticmethod def mean_feature(mquery_feature, mquery_label, mquery_cam, query_label, query_cam, dictionary): """Averages multi query feature to get (mean) query feature. Args: mquery_feature (np.ndarray): The feature of multi query imgs, shape(#multi_query, embedding_dim). mquery_label (np.ndarray): The people labels of multi query imgs, an 1d int array, shape(#multi_query). mquery_cam (np.ndarray): The camera labels of multi query imgs, an 1d int array, shape(#multi_query). query_label (np.ndarray): The people labels of query imgs, an 1d int array, shape(#query). query_cam (np.ndarray): The camera labels of query imgs, an 1d int array, shape(#query). dictionary (dict): A mutable dictionary for adding {'multi_index': [index_array1, index_array2, ...]} (Implicit returns). Returns: query_feature (ndarray): The mean feature of mquery_feature. """ query_feature = [] multi_index = [] for i in range(len(query_label)): label_mask = mquery_label == query_label[i] cam_mask = mquery_cam == query_cam[i] index = np.flatnonzero(label_mask & cam_mask) multi_index.append(index) query_feature.append(np.mean(mquery_feature[index, :], axis=0)) dictionary['multi_index'] = multi_index return np.asarray(query_feature) @staticmethod def flip_lr(img: torch.Tensor): """Flips image tensor horizontally. Args: img (torch.Tensor): The original image tensor. Returns: img_flip (torch.Tensor): The flipped image tensor. """ inv_idx = torch.arange(img.size(3) - 1, -1, -1) # N x C x H x W img_flip = img.index_select(3, inv_idx) return img_flip @staticmethod def normalize(x: torch.Tensor): """Normalizes the 2d torch tensor. Args: x (torch.Tensor): in 2d. Returns: normalized_x (torch.Tensor): in 2d. """ xnorm = torch.norm(x, p=2, dim=1, keepdim=True) return x.div(xnorm.expand_as(x)) @staticmethod def normalize_numpy(x: np.ndarray): # 25% faster than normalize with torch above """Normalizes the 2d numpy array. Args: x (np.ndarray): in 2d. Returns: normalized_x (np.ndarray): in 2d. """ xnorm = np.linalg.norm(x, axis=1, keepdims=True) return x / np.repeat(xnorm, x.shape[1]).reshape(x.shape) def extract_feature(self, dataloader): """Extracts feature in batches. Args: dataloader (torch.utils.data.DataLoader): Initialized dataloader. Returns: feature (np.ndarray): shape(#gallery/query/multi_query, embedding_dim). """ feature = [] if isinstance(self.model, SiameseNet): for i, data in enumerate(dataloader): batch_feature = self.model.forward_once(data) feature.append(batch_feature) elif isinstance(self.model, IdentificationModel): for i, data in enumerate(dataloader): print(i * Tester.DEFAULT_BATCH_SIZE) batch_feature = self.model.forward(data) data = Tester.flip_lr(data) batch_feature += self.model.forward(data) feature.append(batch_feature) return torch.cat(feature, 0).numpy()
[ "scipy.io.savemat", "models.siamese.MssNet", "numpy.linalg.norm", "utils.utilities.load_model", "os.path.exists", "numpy.mean", "numpy.repeat", "numpy.flatnonzero", "numpy.asarray", "torchvision.transforms.ToTensor", "os.path.dirname", "torch.norm", "models.model.ResNet50", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "utils.utilities.type_error_msg", "torchvision.transforms.Compose", "torch.cat", "os.makedirs", "utils.utilities.value_error_msg", "os.path.join", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((5047, 5142), 'utils.utilities.load_model', 'load_model', (['self.model', "(self.config[self.name.value]['model_format'] % (model_name, epoch))"], {}), "(self.model, self.config[self.name.value]['model_format'] % (\n model_name, epoch))\n", (5057, 5142), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((8145, 8168), 'os.path.dirname', 'dirname', (['self.test_path'], {}), '(self.test_path)\n', (8152, 8168), False, 'from os.path import join, exists, dirname\n'), ((8327, 8361), 'scipy.io.savemat', 'savemat', (['self.test_path', 'test_dict'], {}), '(self.test_path, test_dict)\n', (8334, 8361), False, 'from scipy.io import savemat\n'), ((9813, 9838), 'numpy.asarray', 'np.asarray', (['query_feature'], {}), '(query_feature)\n', (9823, 9838), True, 'import numpy as np\n'), ((10496, 10535), 'torch.norm', 'torch.norm', (['x'], {'p': '(2)', 'dim': '(1)', 'keepdim': '(True)'}), '(x, p=2, dim=1, keepdim=True)\n', (10506, 10535), False, 'import torch\n'), ((10867, 10907), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {'axis': '(1)', 'keepdims': '(True)'}), '(x, axis=1, keepdims=True)\n', (10881, 10907), True, 'import numpy as np\n'), ((3554, 3573), 'models.siamese.MssNet', 'MssNet', (['self.config'], {}), '(self.config)\n', (3560, 3573), False, 'from models.siamese import SiameseNet, MssNet\n'), ((5727, 5742), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5740, 5742), False, 'import torch\n'), ((8184, 8200), 'os.path.exists', 'exists', (['test_dir'], {}), '(test_dir)\n', (8190, 8200), False, 'from os.path import join, exists, dirname\n'), ((8214, 8232), 'os.makedirs', 'makedirs', (['test_dir'], {}), '(test_dir)\n', (8222, 8232), False, 'from os import makedirs\n'), ((9598, 9635), 'numpy.flatnonzero', 'np.flatnonzero', (['(label_mask & cam_mask)'], {}), '(label_mask & cam_mask)\n', (9612, 9635), True, 'import numpy as np\n'), ((3061, 3098), 'utils.utilities.type_error_msg', 'type_error_msg', (['"""epoch"""', 'epoch', '[int]'], {}), "('epoch', epoch, [int])\n", (3075, 3098), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((3156, 3201), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""epoch"""', 'epoch', '"""epoch >= 0"""'], {}), "('epoch', epoch, 'epoch >= 0')\n", (3171, 3201), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((3649, 3695), 'models.model.ResNet50', 'ResNet50', (['self.config', 'self.train_class', '(False)'], {}), '(self.config, self.train_class, False)\n', (3657, 3695), False, 'from models.model import IdentificationModel, ResNet50\n'), ((4152, 4198), 'torchvision.transforms.Resize', 'transforms.Resize', (['(256, 128)'], {'interpolation': '(3)'}), '((256, 128), interpolation=3)\n', (4169, 4198), False, 'from torchvision import transforms\n'), ((4216, 4237), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (4235, 4237), False, 'from torchvision import transforms\n'), ((4255, 4321), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (4275, 4321), False, 'from torchvision import transforms\n'), ((4953, 5013), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""dataset"""', 'dataset', 'Tester.Dataset.EXTENDED'], {}), "('dataset', dataset, Tester.Dataset.EXTENDED)\n", (4968, 5013), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((9707, 9748), 'numpy.mean', 'np.mean', (['mquery_feature[index, :]'], {'axis': '(0)'}), '(mquery_feature[index, :], axis=0)\n', (9714, 9748), True, 'import numpy as np\n'), ((11872, 11893), 'torch.cat', 'torch.cat', (['feature', '(0)'], {}), '(feature, 0)\n', (11881, 11893), False, 'import torch\n'), ((1528, 1576), 'utils.utilities.type_error_msg', 'type_error_msg', (['"""name"""', 'name', '[Tester.Name, str]'], {}), "('name', name, [Tester.Name, str])\n", (1542, 1576), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((2010, 2067), 'utils.utilities.type_error_msg', 'type_error_msg', (['"""dataset"""', 'dataset', '[Tester.Dataset, str]'], {}), "('dataset', dataset, [Tester.Dataset, str])\n", (2024, 2067), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((2473, 2529), 'utils.utilities.type_error_msg', 'type_error_msg', (['"""model"""', 'model', '[Tester.MODEL_LIST, str]'], {}), "('model', model, [Tester.MODEL_LIST, str])\n", (2487, 2529), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((2935, 2991), 'utils.utilities.type_error_msg', 'type_error_msg', (['"""scene"""', 'scene', '[Tester.SCENE_LIST, str]'], {}), "('scene', scene, [Tester.SCENE_LIST, str])\n", (2949, 2991), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((4764, 4819), 'os.path.join', 'join', (["self.config[self.name.value]['dataset_dir']", 'item'], {}), "(self.config[self.name.value]['dataset_dir'], item)\n", (4768, 4819), False, 'from os.path import join, exists, dirname\n'), ((4874, 4908), 'torchvision.transforms.Compose', 'transforms.Compose', (['transform_list'], {}), '(transform_list)\n', (4892, 4908), False, 'from torchvision import transforms\n'), ((5885, 5996), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset[item]'], {'num_workers': 'Tester.DEFAULT_NUM_WORKER', 'batch_size': 'Tester.DEFAULT_BATCH_SIZE'}), '(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER,\n batch_size=Tester.DEFAULT_BATCH_SIZE)\n', (5895, 5996), False, 'from torch.utils.data import DataLoader\n'), ((6468, 6579), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset[item]'], {'num_workers': 'Tester.DEFAULT_NUM_WORKER', 'batch_size': 'Tester.DEFAULT_BATCH_SIZE'}), '(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER,\n batch_size=Tester.DEFAULT_BATCH_SIZE)\n', (6478, 6579), False, 'from torch.utils.data import DataLoader\n'), ((6984, 7095), 'torch.utils.data.DataLoader', 'DataLoader', (['self.dataset[item]'], {'num_workers': 'Tester.DEFAULT_NUM_WORKER', 'batch_size': 'Tester.DEFAULT_BATCH_SIZE'}), '(self.dataset[item], num_workers=Tester.DEFAULT_NUM_WORKER,\n batch_size=Tester.DEFAULT_BATCH_SIZE)\n', (6994, 7095), False, 'from torch.utils.data import DataLoader\n'), ((10927, 10955), 'numpy.repeat', 'np.repeat', (['xnorm', 'x.shape[1]'], {}), '(xnorm, x.shape[1])\n', (10936, 10955), True, 'import numpy as np\n'), ((1388, 1435), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""name"""', 'name', 'Tester.NAME_LIST'], {}), "('name', name, Tester.NAME_LIST)\n", (1403, 1435), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((1852, 1908), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""dataset"""', 'dataset', 'Tester.DATASET_LIST'], {}), "('dataset', dataset, Tester.DATASET_LIST)\n", (1867, 1908), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((2327, 2377), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""model"""', 'model', 'Tester.MODEL_LIST'], {}), "('model', model, Tester.MODEL_LIST)\n", (2342, 2377), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((2789, 2839), 'utils.utilities.value_error_msg', 'value_error_msg', (['"""scene"""', 'scene', 'Tester.SCENE_LIST'], {}), "('scene', scene, Tester.SCENE_LIST)\n", (2804, 2839), False, 'from utils.utilities import type_error_msg, value_error_msg, timer, load_model\n'), ((7700, 7729), 'numpy.asarray', 'np.asarray', (['multi_query_label'], {}), '(multi_query_label)\n', (7710, 7729), True, 'import numpy as np\n'), ((7801, 7828), 'numpy.asarray', 'np.asarray', (['multi_query_cam'], {}), '(multi_query_cam)\n', (7811, 7828), True, 'import numpy as np\n'), ((7900, 7936), 'numpy.asarray', 'np.asarray', (["test_dict['query_label']"], {}), "(test_dict['query_label'])\n", (7910, 7936), True, 'import numpy as np\n'), ((8008, 8042), 'numpy.asarray', 'np.asarray', (["test_dict['query_cam']"], {}), "(test_dict['query_cam'])\n", (8018, 8042), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 29 20:53:21 2020 @author: asherhensley """ import dash import dash_core_components as dcc import dash_html_components as html import plotly.express as px import pandas as pd import yulesimon as ys from plotly.subplots import make_subplots import plotly.graph_objects as go from dash.dependencies import Input, Output from dash.exceptions import PreventUpdate import numpy as np import dash_table external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) colors = { 'background': '#000000', 'text': '#4ae2ed' } fig1 = make_subplots() # fig1.update_layout( # autosize=False, # height=400, # width=600, # showlegend=False, # #margin=dict(l=0,r=0,b=50,t=50), # ) fig2 = make_subplots() # fig2.update_layout( # autosize=False, # height=400, # width=600, # showlegend=False, # #margin=dict(l=0,r=0,b=50,t=50), # ) fig3 = make_subplots() colors = { 'background': '#000000', 'text': '#7FDBFF' } df = pd.DataFrame(data={ "Key Statistics":[6], "Values":[4]}) app.layout = html.Div(children=[ html.H1(children='CIRCLON-8', style={'textAlign':'left'}), html.Div(children=[ 'Ticker: ', dcc.Input(id='Ticker',value='MSFT',type='text', size='50'), html.Button('Search',id='Search',n_clicks=0)] ), html.Br(), html.H6(id='Status',children='Ready', style={'textAlign':'left'}), # dash_table.DataTable( # id='table', # columns=[{"name": "Key Statistics", "id": "Key Statistics"}, # {"name": "Values", "id": "Values"}], # data=df.to_dict('records') # ), dcc.Tabs(id="tabs", value='tab-1', children=[ dcc.Tab(label='Prices/Returns', children=[dcc.Graph(id='Figure1',figure=fig1)]), dcc.Tab(label='Volatility Profile', children=[dcc.Graph(id='Figure2',figure=fig2)]), dcc.Tab(label='Modeling Analysis', children=[dcc.Graph(id='Figure3',figure=fig2)]), ]), html.Div(id='tabs-content') ]) @app.callback( Output(component_id='Status', component_property='children'), Input(component_id='Search', component_property='n_clicks') ) def set_status(n_clicks): status = 'Searching...' if n_clicks==0: status = 'Initializing...' return status @app.callback( Output(component_id='Figure1', component_property='figure'), Output(component_id='Figure2', component_property='figure'), Output(component_id='Figure3', component_property='figure'), Output(component_id='Status', component_property='children'), Input(component_id='Ticker', component_property='value'), Input(component_id='Search', component_property='n_clicks') ) def update_figure(ticker_in, n_clicks): ctx = dash.callback_context if not ctx.triggered: ticker = 'MSFT' else: callback_id = ctx.triggered[0]['prop_id'].split('.')[0] if callback_id=='Search': ticker = ticker_in else: ticker = None if ticker==None: raise PreventUpdate else: # Run Model closing_prices, log_returns, dates = ys.GetYahooFeed(ticker,5) Chain = ys.TimeSeries(log_returns) nsteps = 200 burnin = nsteps/2.0 downsample = 2 history = Chain.step(nsteps) sigma, sample_size = ys.ExpectedValue(history.std_deviation, burnin, downsample) mu, sample_size = ys.ExpectedValue(history.mean, burnin, downsample) z = np.arange(-0.2,0.2,0.001) yulesimon_PDF = ys.MixtureModel(z,mu/100,sigma/100) H,b = np.histogram(log_returns,200) delta = b[1]-b[0] bctr = b[1:]-delta/2.0 empirical_PDF = H/(sum(H)*delta) gaussian_PDF = ys.Gaussian(z,np.mean(log_returns),1/np.var(log_returns)) # Update Prices/Returns fig1 = make_subplots(rows=2,cols=1,shared_xaxes=True,vertical_spacing=0.05) fig1.add_trace(go.Scatter(x=dates[1:],y=closing_prices[1:], fill='tozeroy', line_color='#0000ff', fillcolor='#7474f7'), row=1,col=1) fig1.add_trace(go.Scatter(x=dates[1:],y=mu/100+2*sigma/100, fill='tozeroy', fillcolor='#ffb0b0', mode='none'), row=2,col=1) fig1.add_trace(go.Scatter(x=dates[1:],y=mu/100-2*sigma/100, fill='tozeroy', fillcolor='#ffb0b0', mode='none'), row=2,col=1) fig1.add_trace(go.Scatter(x=dates[1:],y=log_returns, line_color='#ff0000'), row=2,col=1) fig1.add_trace(go.Scatter(x=dates[1:],y=mu, line_color='#000000'), row=2,col=1) #fig1.add_trace(go.Scatter(x=dates[1:],y=mu*0,line=dict(dash='dash'), # line_color='#000000'), row=2,col=1) fig1.update_layout( showlegend=False, height=700 ) fig1.update_yaxes(title_text='Daily Close',row=1,col=1) fig1.update_yaxes(title_text='Daily Log-Return',row=2,col=1) # Update Volatility Profile fig2 = make_subplots(rows=1,cols=2, shared_xaxes=True, subplot_titles=("Linear Scale","Log Scale")) fig2.add_trace(go.Scatter(x=bctr,y=empirical_PDF,mode='markers',marker_color='#ff0000'),row=1,col=1) #fig2.add_trace(go.Scatter(x=z,y=gaussian_PDF,line_color='#edc24a',),row=1,col=1) fig2.add_trace(go.Scatter(x=z,y=yulesimon_PDF,line_color='#0000ff',),row=1,col=1) fig2.add_trace(go.Scatter(x=bctr,y=empirical_PDF,mode='markers',marker_color='#ff0000'),row=1,col=2) #fig2.add_trace(go.Scatter(x=z,y=gaussian_PDF,line_color='#edc24a',),row=1,col=2) fig2.add_trace(go.Scatter(x=z,y=yulesimon_PDF,line_color='#0000ff',),row=1,col=2) fig2.update_xaxes(title_text='Log Returns',row=1,col=1) fig2.update_yaxes(title_text='Probability Density',row=1,col=1) fig2.update_xaxes(title_text='Log Returns',row=1,col=2) fig2.update_yaxes(title_text='Probability Density',type="log",row=1,col=2) fig2.update_layout(showlegend=False) # Update Modeling Analysis Tab fig3 = make_subplots(rows=1,cols=2) fig3.add_trace(go.Scatter(y=history.log_likelihood,line_color='#0000ff',),row=1,col=1) fig3.add_trace(go.Scatter(y=history.pvalue,line_color='#ff0000',),row=1,col=2) fig3.update_xaxes(title_text='Iteration',row=1,col=1) fig3.update_yaxes(title_text='Log-Likelihood',row=1,col=1) fig3.update_xaxes(title_text='Iteration',row=1,col=2) fig3.update_yaxes(title_text='p-Value',type="log",row=1,col=2) fig3.update_layout(showlegend=False) return fig1, fig2, fig3, 'Ready' if __name__ == '__main__': app.run_server(debug=True)
[ "dash_html_components.Button", "dash.dependencies.Input", "numpy.arange", "dash_html_components.Div", "yulesimon.TimeSeries", "numpy.mean", "numpy.histogram", "dash.Dash", "dash.dependencies.Output", "dash_html_components.Br", "plotly.graph_objects.Scatter", "yulesimon.GetYahooFeed", "dash_html_components.H6", "pandas.DataFrame", "plotly.subplots.make_subplots", "dash_html_components.H1", "yulesimon.MixtureModel", "yulesimon.ExpectedValue", "dash_core_components.Graph", "dash_core_components.Input", "numpy.var" ]
[((545, 607), 'dash.Dash', 'dash.Dash', (['__name__'], {'external_stylesheets': 'external_stylesheets'}), '(__name__, external_stylesheets=external_stylesheets)\n', (554, 607), False, 'import dash\n'), ((681, 696), 'plotly.subplots.make_subplots', 'make_subplots', ([], {}), '()\n', (694, 696), False, 'from plotly.subplots import make_subplots\n'), ((855, 870), 'plotly.subplots.make_subplots', 'make_subplots', ([], {}), '()\n', (868, 870), False, 'from plotly.subplots import make_subplots\n'), ((1029, 1044), 'plotly.subplots.make_subplots', 'make_subplots', ([], {}), '()\n', (1042, 1044), False, 'from plotly.subplots import make_subplots\n'), ((1116, 1173), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'Key Statistics': [6], 'Values': [4]}"}), "(data={'Key Statistics': [6], 'Values': [4]})\n", (1128, 1173), True, 'import pandas as pd\n'), ((2248, 2308), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""Status"""', 'component_property': '"""children"""'}), "(component_id='Status', component_property='children')\n", (2254, 2308), False, 'from dash.dependencies import Input, Output\n'), ((2314, 2373), 'dash.dependencies.Input', 'Input', ([], {'component_id': '"""Search"""', 'component_property': '"""n_clicks"""'}), "(component_id='Search', component_property='n_clicks')\n", (2319, 2373), False, 'from dash.dependencies import Input, Output\n'), ((2527, 2586), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""Figure1"""', 'component_property': '"""figure"""'}), "(component_id='Figure1', component_property='figure')\n", (2533, 2586), False, 'from dash.dependencies import Input, Output\n'), ((2592, 2651), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""Figure2"""', 'component_property': '"""figure"""'}), "(component_id='Figure2', component_property='figure')\n", (2598, 2651), False, 'from dash.dependencies import Input, Output\n'), ((2657, 2716), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""Figure3"""', 'component_property': '"""figure"""'}), "(component_id='Figure3', component_property='figure')\n", (2663, 2716), False, 'from dash.dependencies import Input, Output\n'), ((2722, 2782), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""Status"""', 'component_property': '"""children"""'}), "(component_id='Status', component_property='children')\n", (2728, 2782), False, 'from dash.dependencies import Input, Output\n'), ((2788, 2844), 'dash.dependencies.Input', 'Input', ([], {'component_id': '"""Ticker"""', 'component_property': '"""value"""'}), "(component_id='Ticker', component_property='value')\n", (2793, 2844), False, 'from dash.dependencies import Input, Output\n'), ((2850, 2909), 'dash.dependencies.Input', 'Input', ([], {'component_id': '"""Search"""', 'component_property': '"""n_clicks"""'}), "(component_id='Search', component_property='n_clicks')\n", (2855, 2909), False, 'from dash.dependencies import Input, Output\n'), ((3373, 3399), 'yulesimon.GetYahooFeed', 'ys.GetYahooFeed', (['ticker', '(5)'], {}), '(ticker, 5)\n', (3388, 3399), True, 'import yulesimon as ys\n'), ((3415, 3441), 'yulesimon.TimeSeries', 'ys.TimeSeries', (['log_returns'], {}), '(log_returns)\n', (3428, 3441), True, 'import yulesimon as ys\n'), ((3580, 3639), 'yulesimon.ExpectedValue', 'ys.ExpectedValue', (['history.std_deviation', 'burnin', 'downsample'], {}), '(history.std_deviation, burnin, downsample)\n', (3596, 3639), True, 'import yulesimon as ys\n'), ((3666, 3716), 'yulesimon.ExpectedValue', 'ys.ExpectedValue', (['history.mean', 'burnin', 'downsample'], {}), '(history.mean, burnin, downsample)\n', (3682, 3716), True, 'import yulesimon as ys\n'), ((3747, 3774), 'numpy.arange', 'np.arange', (['(-0.2)', '(0.2)', '(0.001)'], {}), '(-0.2, 0.2, 0.001)\n', (3756, 3774), True, 'import numpy as np\n'), ((3797, 3838), 'yulesimon.MixtureModel', 'ys.MixtureModel', (['z', '(mu / 100)', '(sigma / 100)'], {}), '(z, mu / 100, sigma / 100)\n', (3812, 3838), True, 'import yulesimon as ys\n'), ((3847, 3877), 'numpy.histogram', 'np.histogram', (['log_returns', '(200)'], {}), '(log_returns, 200)\n', (3859, 3877), True, 'import numpy as np\n'), ((4112, 4183), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(2)', 'cols': '(1)', 'shared_xaxes': '(True)', 'vertical_spacing': '(0.05)'}), '(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05)\n', (4125, 4183), False, 'from plotly.subplots import make_subplots\n'), ((5600, 5699), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'shared_xaxes': '(True)', 'subplot_titles': "('Linear Scale', 'Log Scale')"}), "(rows=1, cols=2, shared_xaxes=True, subplot_titles=(\n 'Linear Scale', 'Log Scale'))\n", (5613, 5699), False, 'from plotly.subplots import make_subplots\n'), ((6739, 6768), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)'}), '(rows=1, cols=2)\n', (6752, 6768), False, 'from plotly.subplots import make_subplots\n'), ((1232, 1290), 'dash_html_components.H1', 'html.H1', ([], {'children': '"""CIRCLON-8"""', 'style': "{'textAlign': 'left'}"}), "(children='CIRCLON-8', style={'textAlign': 'left'})\n", (1239, 1290), True, 'import dash_html_components as html\n'), ((1482, 1491), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (1489, 1491), True, 'import dash_html_components as html\n'), ((1502, 1569), 'dash_html_components.H6', 'html.H6', ([], {'id': '"""Status"""', 'children': '"""Ready"""', 'style': "{'textAlign': 'left'}"}), "(id='Status', children='Ready', style={'textAlign': 'left'})\n", (1509, 1569), True, 'import dash_html_components as html\n'), ((2192, 2219), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""tabs-content"""'}), "(id='tabs-content')\n", (2200, 2219), True, 'import dash_html_components as html\n'), ((4012, 4032), 'numpy.mean', 'np.mean', (['log_returns'], {}), '(log_returns)\n', (4019, 4032), True, 'import numpy as np\n'), ((4204, 4313), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'dates[1:]', 'y': 'closing_prices[1:]', 'fill': '"""tozeroy"""', 'line_color': '"""#0000ff"""', 'fillcolor': '"""#7474f7"""'}), "(x=dates[1:], y=closing_prices[1:], fill='tozeroy', line_color=\n '#0000ff', fillcolor='#7474f7')\n", (4214, 4313), True, 'import plotly.graph_objects as go\n'), ((4447, 4554), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'dates[1:]', 'y': '(mu / 100 + 2 * sigma / 100)', 'fill': '"""tozeroy"""', 'fillcolor': '"""#ffb0b0"""', 'mode': '"""none"""'}), "(x=dates[1:], y=mu / 100 + 2 * sigma / 100, fill='tozeroy',\n fillcolor='#ffb0b0', mode='none')\n", (4457, 4554), True, 'import plotly.graph_objects as go\n'), ((4681, 4788), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'dates[1:]', 'y': '(mu / 100 - 2 * sigma / 100)', 'fill': '"""tozeroy"""', 'fillcolor': '"""#ffb0b0"""', 'mode': '"""none"""'}), "(x=dates[1:], y=mu / 100 - 2 * sigma / 100, fill='tozeroy',\n fillcolor='#ffb0b0', mode='none')\n", (4691, 4788), True, 'import plotly.graph_objects as go\n'), ((4915, 4975), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'dates[1:]', 'y': 'log_returns', 'line_color': '"""#ff0000"""'}), "(x=dates[1:], y=log_returns, line_color='#ff0000')\n", (4925, 4975), True, 'import plotly.graph_objects as go\n'), ((5046, 5097), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'dates[1:]', 'y': 'mu', 'line_color': '"""#000000"""'}), "(x=dates[1:], y=mu, line_color='#000000')\n", (5056, 5097), True, 'import plotly.graph_objects as go\n'), ((5783, 5858), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'bctr', 'y': 'empirical_PDF', 'mode': '"""markers"""', 'marker_color': '"""#ff0000"""'}), "(x=bctr, y=empirical_PDF, mode='markers', marker_color='#ff0000')\n", (5793, 5858), True, 'import plotly.graph_objects as go\n'), ((5982, 6036), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'z', 'y': 'yulesimon_PDF', 'line_color': '"""#0000ff"""'}), "(x=z, y=yulesimon_PDF, line_color='#0000ff')\n", (5992, 6036), True, 'import plotly.graph_objects as go\n'), ((6072, 6147), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'bctr', 'y': 'empirical_PDF', 'mode': '"""markers"""', 'marker_color': '"""#ff0000"""'}), "(x=bctr, y=empirical_PDF, mode='markers', marker_color='#ff0000')\n", (6082, 6147), True, 'import plotly.graph_objects as go\n'), ((6271, 6325), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'z', 'y': 'yulesimon_PDF', 'line_color': '"""#0000ff"""'}), "(x=z, y=yulesimon_PDF, line_color='#0000ff')\n", (6281, 6325), True, 'import plotly.graph_objects as go\n'), ((6791, 6849), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'y': 'history.log_likelihood', 'line_color': '"""#0000ff"""'}), "(y=history.log_likelihood, line_color='#0000ff')\n", (6801, 6849), True, 'import plotly.graph_objects as go\n'), ((6886, 6936), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'y': 'history.pvalue', 'line_color': '"""#ff0000"""'}), "(y=history.pvalue, line_color='#ff0000')\n", (6896, 6936), True, 'import plotly.graph_objects as go\n'), ((4035, 4054), 'numpy.var', 'np.var', (['log_returns'], {}), '(log_returns)\n', (4041, 4054), True, 'import numpy as np\n'), ((1348, 1408), 'dash_core_components.Input', 'dcc.Input', ([], {'id': '"""Ticker"""', 'value': '"""MSFT"""', 'type': '"""text"""', 'size': '"""50"""'}), "(id='Ticker', value='MSFT', type='text', size='50')\n", (1357, 1408), True, 'import dash_core_components as dcc\n'), ((1416, 1462), 'dash_html_components.Button', 'html.Button', (['"""Search"""'], {'id': '"""Search"""', 'n_clicks': '(0)'}), "('Search', id='Search', n_clicks=0)\n", (1427, 1462), True, 'import dash_html_components as html\n'), ((1922, 1958), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""Figure1"""', 'figure': 'fig1'}), "(id='Figure1', figure=fig1)\n", (1931, 1958), True, 'import dash_core_components as dcc\n'), ((2032, 2068), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""Figure2"""', 'figure': 'fig2'}), "(id='Figure2', figure=fig2)\n", (2041, 2068), True, 'import dash_core_components as dcc\n'), ((2141, 2177), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""Figure3"""', 'figure': 'fig2'}), "(id='Figure3', figure=fig2)\n", (2150, 2177), True, 'import dash_core_components as dcc\n')]
import argparse import os import sys import time import warnings from ast import literal_eval warnings.filterwarnings("ignore") import IPython import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import context from context import utils import utils.plotting as plot import utils.db as db import utils.filesystem as fs from utils.misc import get_equal_dicts, length_of_longest from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories def load_data(checkpoint_directories, old_mtimes=None, old_states=None, old_stats=None, best=False): # TODO This is a mess # Parse inputs if best: filename = 'state-dict-best-algorithm.pkl' else: filename = 'state-dict-algorithm.pkl' n_tot_files = len(checkpoint_directories) if old_mtimes is not None: assert old_states is not None, "If given modification times, must also get old data to overwrite" assert old_stats is not None, "If given modification times, must also get old stats to overwrite" # Find files that have been modified mtimes = fs.get_modified_times(checkpoint_directories, filename) if len(mtimes)-len(old_mtimes) > 0: old_mtimes = np.pad(old_mtimes, (0, len(mtimes)-len(old_mtimes)), mode='constant', constant_values=0) elif len(old_mtimes)-len(mtimes) > 0: mtimes = np.pad(mtimes, (0, len(old_mtimes)-len(mtimes)), mode='constant', constant_values=0) is_changed = ~np.equal(old_mtimes, mtimes) checkpoint_directories = [d for i, d in enumerate(checkpoint_directories) if is_changed[i]] n_files = len(checkpoint_directories) idxs = np.where(is_changed)[0] algorithm_states_list = old_states stats_list = old_stats print("Loading " + str(n_files) + " modified files of " + str(n_tot_files) + " total files...") else: n_files = len(checkpoint_directories) print("Loading " + str(n_files) + " files...") algorithm_states_list = [None]*len(checkpoint_directories) stats_list = [None]*len(checkpoint_directories) idxs = range(0, len(checkpoint_directories)) # Strings and constants n_chars = len(str(n_files)) f = ' {:' + str(n_chars) + 'd}/{:' + str(n_chars) + 'd} files loaded' text = "" # Loop over files to load (all or only changed ones) i_file = -1 for i, chkpt_dir in zip(idxs, checkpoint_directories): try: algorithm_states_list[i] = torch.load(os.path.join(chkpt_dir, filename)) stats_list[i] = pd.read_csv(os.path.join(chkpt_dir, 'stats.csv')) i_file += 1 if i_file + 1 != n_files: print(f.format(i_file + 1, n_files), end='\r') except Exception: text += " Required files not (yet) present in: " + chkpt_dir + "\n" # Remove any None algorithm_states_list = [s for s in algorithm_states_list if s is not None] stats_list = [s for s in stats_list if s is not None] # Evaluate any strings as literal types for s in stats_list: for k in s.keys()[s.dtypes == object]: s[k] = s[k].apply(literal_eval) print(f.format(i_file + 1, n_files), end='\n') if text: print(text[:-2]) return algorithm_states_list, stats_list def sub_into_lists(stats_list, keys_to_monitor): for s in stats_list: for k in keys_to_monitor: if k in s and type(s[k][0]) is list: s[k] = [vals_group[0] for vals_group in s[k]] if 'lr' in k and 'lr' not in s.keys(): s['lr'] = s[k][0] def create_plots(args, stats_list, keys_to_monitor, groups): unique_groups = set(groups) n_keys = len(keys_to_monitor) n_chars = len(str(n_keys)) f = ' {:' + str(n_chars) + 'd}/{:' + str(n_chars) + 'd} monitored keys plotted' for i_key, k in enumerate(keys_to_monitor): list_of_series = [s[k].tolist() for s in stats_list if k in s] list_of_genera = [range(len(s)) for s in stats_list if k in s] plot.timeseries(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-all-series.pdf'), bbox_inches='tight') plt.close() plot.timeseries_distribution(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-all-distribution.pdf'), bbox_inches='tight') plt.close() plot.timeseries_median(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-all-median.pdf'), bbox_inches='tight') plt.close() plot.timeseries_final_distribution(list_of_series, label=k, ybins=len(list_of_series)*10) plt.savefig(os.path.join(args.monitor_dir, k + '-all-final-distribution.pdf'), bbox_inches='tight') plt.close() # Subset only those series that are done (or the one that is the longest) l = length_of_longest(list_of_series) indices = [i for i, series in enumerate(list_of_series) if len(series) == l] list_of_longest_series = [list_of_series[i] for i in indices] list_of_longest_genera = [list_of_genera[i] for i in indices] groups_longest_series = groups[indices] plot.timeseries_mean_grouped(list_of_longest_genera, list_of_longest_series, groups_longest_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-all-series-mean-sd' + '.pdf'), bbox_inches='tight') plt.close() if len(unique_groups) > 1: for g in unique_groups: gstr = '{0:02d}'.format(g) g_indices = np.where(groups == g)[0] group_stats = [stats_list[i] for i in g_indices] list_of_series = [s[k].tolist() for s in group_stats if k in s] list_of_genera = [range(len(s)) for s in group_stats if k in s] if list_of_genera and list_of_series: plot.timeseries(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-group-' + gstr + '-series.pdf'), bbox_inches='tight') plt.close() plot.timeseries_distribution(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-group-' + gstr + '-distribution.pdf'), bbox_inches='tight') plt.close() plot.timeseries_median(list_of_genera, list_of_series, xlabel='generations', ylabel=k) plt.savefig(os.path.join(args.monitor_dir, k + '-group-' + gstr + '-median.pdf'), bbox_inches='tight') plt.close() plot.timeseries_final_distribution(list_of_series, label=k, ybins=len(list_of_series)*10) plt.savefig(os.path.join(args.monitor_dir, k + '-group-' + gstr + '-final-distribution.pdf'), bbox_inches='tight') plt.close() if i_key + 1 == n_keys: print(f.format(i_key+1, n_keys), end='\n') else: print(f.format(i_key+1, n_keys), end='\r') def wait_for_updates(args, last_refresh, max_chkpt_int, mtimes_last): """Wait for updates to the chyeckpoint directories. If no updates are seen after waiting more than the maximum checkpoint interval, returns False. Otherwise returns True. """ print("Waiting 'max checkpoint interval' x 2 = " + str(int(max_chkpt_int * 2)) + " seconds before checking for updates...") count_down(count_down_started_at=last_refresh, wait=max_chkpt_int * 2) checkpoint_directories = get_checkpoint_directories(args.d) mtimes = fs.get_modified_times(checkpoint_directories, 'state-dict-algorithm.pkl') if mtimes == mtimes_last: print("Monitoring stopped since loaded data did not change for " + str(int(max_chkpt_int*2)) + " seconds.") return True return False def get_keys_to_monitor(stats_list): keys_to_monitor = {'return_unp', 'accuracy_unp', 'sigma'} for s in stats_list: for c in s.columns: addkeys = set() for k in keys_to_monitor: if k in c: addkeys.add(c) if addkeys: keys_to_monitor.add(*addkeys) return keys_to_monitor def get_data(old_mtimes=None, old_states=None, old_stats=None, timeout=30*60, checkevery=30): checkpoint_directories = get_checkpoint_directories(args.d) algorithm_states, stats_list = load_data(checkpoint_directories, old_mtimes=old_mtimes, old_states=old_states, old_stats=old_stats) # Check if any data found if not algorithm_states: print("No data found.") print("Rechecking directory for files every " + str(checkevery) + " seconds for " + str(int(timeout/60)) + " minutes.") for i in range(0, timeout, checkevery): count_down(wait=checkevery, info_interval=1) checkpoint_directories = get_checkpoint_directories(args.d) algorithm_states, stats_list = load_data(checkpoint_directories, old_mtimes=old_mtimes, old_states=old_states, old_stats=old_stats) if algorithm_states: return algorithm_states, stats_list print("{:2.2f} minutes remaining".format((timeout - i-checkevery)/60)) print("No data found to monitor after checking for " + str(int(timeout/60)) + " minutes.") return algorithm_states, stats_list def count_down(wait=60, count_down_started_at=None, info_interval=5): if count_down_started_at is not None: seconds_remaining = int(wait - (time.time() - count_down_started_at)) else: seconds_remaining = wait for i in range(0, seconds_remaining, info_interval): print("Updating in {:s} seconds".format(str(seconds_remaining-i)), end="\r") time.sleep(info_interval) print("Updating... ", end='\n') return time.time() def monitor(args): this_file_dir_local = os.path.dirname(os.path.abspath(__file__)) # Get the root of the package locally and where monitored (may be the same) package_root_this_file = fs.get_parent(this_file_dir_local, 'es-rl') # Get directory to monitor if not args.d: args.d = os.path.join(package_root_this_file, 'experiments', 'checkpoints', args.i) elif not os.path.isabs(args.d): args.d = os.path.join(package_root_this_file, 'experiments', 'checkpoints', args.d) if not os.path.exists(args.d): os.mkdir(args.d) package_root_monitored_directory = fs.get_parent(args.d, 'es-rl') print("Monitoring: " + args.d) # Load data last_refresh = time.time() checkpoint_directories = get_checkpoint_directories(args.d) mtimes = fs.get_modified_times(checkpoint_directories, 'state-dict-algorithm.pkl') algorithm_states, stats_list = get_data(timeout=args.t) if not algorithm_states: print("Monitoring stopped. No data available after " + str(args.t) + " minutes.") return # Create directory for monitoring plots monitor_dir = os.path.join(args.d, 'monitoring') if not os.path.exists(monitor_dir): os.mkdir(monitor_dir) args.monitor_dir = monitor_dir # Setup drobbox if args.c: package_parent_folder_monitored_directory = os.path.join(os.sep,*package_root_monitored_directory.split(os.sep)[:-1]) # args.dbx_dir = os.sep + os.path.relpath(args.monitor_dir, package_parent_folder_monitored_directory) args.dbx_dir = os.sep + os.path.relpath(args.d, package_parent_folder_monitored_directory) token_file = os.path.join(this_file_dir_local, 'dropboxtoken.tok') assert os.path.exists(token_file) dbx = db.get_dropbox_client(token_file) ignored_keys = ['chkpt_dir', 'sensitivities', 'sens_inputs', '_weight_update_scale'] ignored_keys.extend([k for k in algorithm_states[0].keys() if k[0] == '_']) ignored_keys = set(ignored_keys) for s in algorithm_states: if s['optimize_sigma']: ignored_keys.add('sigma') break # Monitoring loop while True: # Prepare data print("Preparing data...") keys_to_monitor = get_keys_to_monitor(stats_list) invert_signs(stats_list, keys_to_monitor) sub_into_lists(stats_list, keys_to_monitor) # Find groups of algorithms groups = get_equal_dicts(algorithm_states, ignored_keys=ignored_keys) print_group_info(algorithm_states, groups, directory=args.monitor_dir) # Plot print("Creating and saving plots...") # try: create_plots(args, stats_list, keys_to_monitor, groups) # except: # pass # Upload results to dropbox if args.c: # db.upload_directory(dbx, args.monitor_dir, args.dbx_dir) db.upload_directory(dbx, args.d, args.dbx_dir, upload_older_files=False) # Break condition if wait_for_updates(args, last_refresh, get_max_chkpt_int(algorithm_states), mtimes): return # Load data print() last_refresh = time.time() algorithm_states, stats_list = get_data(timeout=args.t, old_mtimes=mtimes, old_states=algorithm_states, old_stats=stats_list) checkpoint_directories = get_checkpoint_directories(args.d) mtimes = fs.get_modified_times(checkpoint_directories, 'state-dict-algorithm.pkl') if __name__ == '__main__': # Parse inputs parser = argparse.ArgumentParser(description='Monitorer') parser.add_argument('-d', type=str, metavar='--directory', help='The directory of checkpoints to monitor.') parser.add_argument('-i', type=str, metavar='--identifier', help='The identifier of the checkpoints to monitor.') parser.add_argument('-t', type=int, metavar='--timeout', default=4000, help='If no files are modified during a period of timeout minutes, monitoring is stopped.') parser.add_argument('-c', action='store_true', help='Copying of monitor directory to dropbox.') parser.add_argument('-s', action='store_true', help='Silent mode.') args = parser.parse_args() if args.s: sys.stdout = open(os.devnull, 'w') assert args.d or args.i, "Must specify directory or identifier of checkpoints to monitor" # Colormap # plt.rcParams['image.cmap'] = 'magma' # plt.rcParams['image.cmap'] = 'inferno' # plt.rcParams['image.cmap'] = 'plasma' plt.rcParams['image.cmap'] = 'viridis' try: monitor(args) except KeyboardInterrupt: print("\nMonitoring halted by user KeyboardInterrupt") """ SSHFS sshfs s<EMAIL>@login.<EMAIL>:/zhome/c2/b/86488 ~/mnt LINUX python monitor.py -d ~/mnt/Documents/es-rl/experiments/checkpoints/E001-SM/ -c MAC python monitor.py -d /Users/Jakob/mnt/Documents/es-rl/experiments/checkpoints/E001-SM/ -c python monitor.py -d sftp://[email protected]/zhome/c2/b/86488/Documents/es-rl/experiments/checkpoints/E001-SM """
[ "utils.db.upload_directory", "time.sleep", "numpy.equal", "utils.plotting.timeseries_median", "utils.misc.get_equal_dicts", "os.path.exists", "utils.filesystem.get_parent", "argparse.ArgumentParser", "utils.plotting.timeseries_mean_grouped", "numpy.where", "data_analysis.invert_signs", "matplotlib.pyplot.close", "os.mkdir", "os.path.relpath", "data_analysis.get_checkpoint_directories", "utils.misc.length_of_longest", "data_analysis.print_group_info", "os.path.isabs", "matplotlib.use", "utils.plotting.timeseries_distribution", "utils.db.get_dropbox_client", "time.time", "utils.plotting.timeseries", "warnings.filterwarnings", "data_analysis.get_max_chkpt_int", "os.path.join", "utils.filesystem.get_modified_times", "os.path.abspath" ]
[((94, 127), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (117, 127), False, 'import warnings\n'), ((169, 183), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (176, 183), True, 'import matplotlib as mpl\n'), ((7860, 7894), 'data_analysis.get_checkpoint_directories', 'get_checkpoint_directories', (['args.d'], {}), '(args.d)\n', (7886, 7894), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((7908, 7981), 'utils.filesystem.get_modified_times', 'fs.get_modified_times', (['checkpoint_directories', '"""state-dict-algorithm.pkl"""'], {}), "(checkpoint_directories, 'state-dict-algorithm.pkl')\n", (7929, 7981), True, 'import utils.filesystem as fs\n'), ((8653, 8687), 'data_analysis.get_checkpoint_directories', 'get_checkpoint_directories', (['args.d'], {}), '(args.d)\n', (8679, 8687), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((10143, 10154), 'time.time', 'time.time', ([], {}), '()\n', (10152, 10154), False, 'import time\n'), ((10354, 10397), 'utils.filesystem.get_parent', 'fs.get_parent', (['this_file_dir_local', '"""es-rl"""'], {}), "(this_file_dir_local, 'es-rl')\n", (10367, 10397), True, 'import utils.filesystem as fs\n'), ((10768, 10798), 'utils.filesystem.get_parent', 'fs.get_parent', (['args.d', '"""es-rl"""'], {}), "(args.d, 'es-rl')\n", (10781, 10798), True, 'import utils.filesystem as fs\n'), ((10870, 10881), 'time.time', 'time.time', ([], {}), '()\n', (10879, 10881), False, 'import time\n'), ((10911, 10945), 'data_analysis.get_checkpoint_directories', 'get_checkpoint_directories', (['args.d'], {}), '(args.d)\n', (10937, 10945), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((10959, 11032), 'utils.filesystem.get_modified_times', 'fs.get_modified_times', (['checkpoint_directories', '"""state-dict-algorithm.pkl"""'], {}), "(checkpoint_directories, 'state-dict-algorithm.pkl')\n", (10980, 11032), True, 'import utils.filesystem as fs\n'), ((11290, 11324), 'os.path.join', 'os.path.join', (['args.d', '"""monitoring"""'], {}), "(args.d, 'monitoring')\n", (11302, 11324), False, 'import os\n'), ((13698, 13746), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Monitorer"""'}), "(description='Monitorer')\n", (13721, 13746), False, 'import argparse\n'), ((1183, 1238), 'utils.filesystem.get_modified_times', 'fs.get_modified_times', (['checkpoint_directories', 'filename'], {}), '(checkpoint_directories, filename)\n', (1204, 1238), True, 'import utils.filesystem as fs\n'), ((4158, 4237), 'utils.plotting.timeseries', 'plot.timeseries', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel='generations', ylabel=k)\n", (4173, 4237), True, 'import utils.plotting as plot\n'), ((4342, 4353), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4351, 4353), True, 'import matplotlib.pyplot as plt\n'), ((4363, 4460), 'utils.plotting.timeseries_distribution', 'plot.timeseries_distribution', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel=\n 'generations', ylabel=k)\n", (4391, 4460), True, 'import utils.plotting as plot\n'), ((4566, 4577), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4575, 4577), True, 'import matplotlib.pyplot as plt\n'), ((4587, 4677), 'utils.plotting.timeseries_median', 'plot.timeseries_median', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel='generations',\n ylabel=k)\n", (4609, 4677), True, 'import utils.plotting as plot\n'), ((4778, 4789), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4787, 4789), True, 'import matplotlib.pyplot as plt\n'), ((5005, 5016), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5014, 5016), True, 'import matplotlib.pyplot as plt\n'), ((5112, 5145), 'utils.misc.length_of_longest', 'length_of_longest', (['list_of_series'], {}), '(list_of_series)\n', (5129, 5145), False, 'from utils.misc import get_equal_dicts, length_of_longest\n'), ((5427, 5562), 'utils.plotting.timeseries_mean_grouped', 'plot.timeseries_mean_grouped', (['list_of_longest_genera', 'list_of_longest_series', 'groups_longest_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_longest_genera, list_of_longest_series,\n groups_longest_series, xlabel='generations', ylabel=k)\n", (5455, 5562), True, 'import utils.plotting as plot\n'), ((5676, 5687), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5685, 5687), True, 'import matplotlib.pyplot as plt\n'), ((10057, 10082), 'time.sleep', 'time.sleep', (['info_interval'], {}), '(info_interval)\n', (10067, 10082), False, 'import time\n'), ((10218, 10243), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (10233, 10243), False, 'import os\n'), ((10466, 10540), 'os.path.join', 'os.path.join', (['package_root_this_file', '"""experiments"""', '"""checkpoints"""', 'args.i'], {}), "(package_root_this_file, 'experiments', 'checkpoints', args.i)\n", (10478, 10540), False, 'import os\n'), ((10680, 10702), 'os.path.exists', 'os.path.exists', (['args.d'], {}), '(args.d)\n', (10694, 10702), False, 'import os\n'), ((10712, 10728), 'os.mkdir', 'os.mkdir', (['args.d'], {}), '(args.d)\n', (10720, 10728), False, 'import os\n'), ((11336, 11363), 'os.path.exists', 'os.path.exists', (['monitor_dir'], {}), '(monitor_dir)\n', (11350, 11363), False, 'import os\n'), ((11373, 11394), 'os.mkdir', 'os.mkdir', (['monitor_dir'], {}), '(monitor_dir)\n', (11381, 11394), False, 'import os\n'), ((11823, 11876), 'os.path.join', 'os.path.join', (['this_file_dir_local', '"""dropboxtoken.tok"""'], {}), "(this_file_dir_local, 'dropboxtoken.tok')\n", (11835, 11876), False, 'import os\n'), ((11892, 11918), 'os.path.exists', 'os.path.exists', (['token_file'], {}), '(token_file)\n', (11906, 11918), False, 'import os\n'), ((11933, 11966), 'utils.db.get_dropbox_client', 'db.get_dropbox_client', (['token_file'], {}), '(token_file)\n', (11954, 11966), True, 'import utils.db as db\n'), ((12456, 12497), 'data_analysis.invert_signs', 'invert_signs', (['stats_list', 'keys_to_monitor'], {}), '(stats_list, keys_to_monitor)\n', (12468, 12497), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((12603, 12663), 'utils.misc.get_equal_dicts', 'get_equal_dicts', (['algorithm_states'], {'ignored_keys': 'ignored_keys'}), '(algorithm_states, ignored_keys=ignored_keys)\n', (12618, 12663), False, 'from utils.misc import get_equal_dicts, length_of_longest\n'), ((12672, 12742), 'data_analysis.print_group_info', 'print_group_info', (['algorithm_states', 'groups'], {'directory': 'args.monitor_dir'}), '(algorithm_states, groups, directory=args.monitor_dir)\n', (12688, 12742), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((13332, 13343), 'time.time', 'time.time', ([], {}), '()\n', (13341, 13343), False, 'import time\n'), ((13511, 13545), 'data_analysis.get_checkpoint_directories', 'get_checkpoint_directories', (['args.d'], {}), '(args.d)\n', (13537, 13545), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((13563, 13636), 'utils.filesystem.get_modified_times', 'fs.get_modified_times', (['checkpoint_directories', '"""state-dict-algorithm.pkl"""'], {}), "(checkpoint_directories, 'state-dict-algorithm.pkl')\n", (13584, 13636), True, 'import utils.filesystem as fs\n'), ((1571, 1599), 'numpy.equal', 'np.equal', (['old_mtimes', 'mtimes'], {}), '(old_mtimes, mtimes)\n', (1579, 1599), True, 'import numpy as np\n'), ((1761, 1781), 'numpy.where', 'np.where', (['is_changed'], {}), '(is_changed)\n', (1769, 1781), True, 'import numpy as np\n'), ((4258, 4311), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-all-series.pdf')"], {}), "(args.monitor_dir, k + '-all-series.pdf')\n", (4270, 4311), False, 'import os\n'), ((4476, 4535), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-all-distribution.pdf')"], {}), "(args.monitor_dir, k + '-all-distribution.pdf')\n", (4488, 4535), False, 'import os\n'), ((4694, 4747), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-all-median.pdf')"], {}), "(args.monitor_dir, k + '-all-median.pdf')\n", (4706, 4747), False, 'import os\n'), ((4909, 4974), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-all-final-distribution.pdf')"], {}), "(args.monitor_dir, k + '-all-final-distribution.pdf')\n", (4921, 4974), False, 'import os\n'), ((5579, 5645), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-all-series-mean-sd' + '.pdf')"], {}), "(args.monitor_dir, k + '-all-series-mean-sd' + '.pdf')\n", (5591, 5645), False, 'import os\n'), ((9185, 9219), 'data_analysis.get_checkpoint_directories', 'get_checkpoint_directories', (['args.d'], {}), '(args.d)\n', (9211, 9219), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((10554, 10575), 'os.path.isabs', 'os.path.isabs', (['args.d'], {}), '(args.d)\n', (10567, 10575), False, 'import os\n'), ((10594, 10668), 'os.path.join', 'os.path.join', (['package_root_this_file', '"""experiments"""', '"""checkpoints"""', 'args.d'], {}), "(package_root_this_file, 'experiments', 'checkpoints', args.d)\n", (10606, 10668), False, 'import os\n'), ((11735, 11801), 'os.path.relpath', 'os.path.relpath', (['args.d', 'package_parent_folder_monitored_directory'], {}), '(args.d, package_parent_folder_monitored_directory)\n', (11750, 11801), False, 'import os\n'), ((13060, 13132), 'utils.db.upload_directory', 'db.upload_directory', (['dbx', 'args.d', 'args.dbx_dir'], {'upload_older_files': '(False)'}), '(dbx, args.d, args.dbx_dir, upload_older_files=False)\n', (13079, 13132), True, 'import utils.db as db\n'), ((13208, 13243), 'data_analysis.get_max_chkpt_int', 'get_max_chkpt_int', (['algorithm_states'], {}), '(algorithm_states)\n', (13225, 13243), False, 'from data_analysis import print_group_info, get_best, get_max_chkpt_int, invert_signs, get_checkpoint_directories\n'), ((2596, 2629), 'os.path.join', 'os.path.join', (['chkpt_dir', 'filename'], {}), '(chkpt_dir, filename)\n', (2608, 2629), False, 'import os\n'), ((2671, 2707), 'os.path.join', 'os.path.join', (['chkpt_dir', '"""stats.csv"""'], {}), "(chkpt_dir, 'stats.csv')\n", (2683, 2707), False, 'import os\n'), ((5831, 5852), 'numpy.where', 'np.where', (['(groups == g)'], {}), '(groups == g)\n', (5839, 5852), True, 'import numpy as np\n'), ((6156, 6235), 'utils.plotting.timeseries', 'plot.timeseries', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel='generations', ylabel=k)\n", (6171, 6235), True, 'import utils.plotting as plot\n'), ((6379, 6390), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6388, 6390), True, 'import matplotlib.pyplot as plt\n'), ((6412, 6509), 'utils.plotting.timeseries_distribution', 'plot.timeseries_distribution', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel=\n 'generations', ylabel=k)\n", (6440, 6509), True, 'import utils.plotting as plot\n'), ((6654, 6665), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6663, 6665), True, 'import matplotlib.pyplot as plt\n'), ((6687, 6777), 'utils.plotting.timeseries_median', 'plot.timeseries_median', (['list_of_genera', 'list_of_series'], {'xlabel': '"""generations"""', 'ylabel': 'k'}), "(list_of_genera, list_of_series, xlabel='generations',\n ylabel=k)\n", (6709, 6777), True, 'import utils.plotting as plot\n'), ((6917, 6928), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6926, 6928), True, 'import matplotlib.pyplot as plt\n'), ((7195, 7206), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7204, 7206), True, 'import matplotlib.pyplot as plt\n'), ((9826, 9837), 'time.time', 'time.time', ([], {}), '()\n', (9835, 9837), False, 'import time\n'), ((6268, 6336), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-group-' + gstr + '-series.pdf')"], {}), "(args.monitor_dir, k + '-group-' + gstr + '-series.pdf')\n", (6280, 6336), False, 'import os\n'), ((6537, 6611), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-group-' + gstr + '-distribution.pdf')"], {}), "(args.monitor_dir, k + '-group-' + gstr + '-distribution.pdf')\n", (6549, 6611), False, 'import os\n'), ((6806, 6874), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-group-' + gstr + '-median.pdf')"], {}), "(args.monitor_dir, k + '-group-' + gstr + '-median.pdf')\n", (6818, 6874), False, 'import os\n'), ((7072, 7157), 'os.path.join', 'os.path.join', (['args.monitor_dir', "(k + '-group-' + gstr + '-final-distribution.pdf')"], {}), "(args.monitor_dir, k + '-group-' + gstr + '-final-distribution.pdf'\n )\n", (7084, 7157), False, 'import os\n')]
# analyzing each point forecast and selecting the best, day by day, saving forecasts and making final forecast import os import sys import datetime import logging import logging.handlers as handlers import json import itertools as it import pandas as pd import numpy as np # open local settings with open('./settings.json') as local_json_file: local_submodule_settings = json.loads(local_json_file.read()) local_json_file.close() # log setup current_script_name = os.path.basename(__file__).split('.')[0] log_path_filename = ''.join([local_submodule_settings['log_path'], current_script_name, '.log']) logging.basicConfig(filename=log_path_filename, level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s') logger = logging.getLogger(__name__) logHandler = handlers.RotatingFileHandler(log_path_filename, maxBytes=10485760, backupCount=5) logger.addHandler(logHandler) # load custom libraries sys.path.insert(1, local_submodule_settings['custom_library_path']) from save_forecast_and_make_submission import save_forecast_and_submission from stochastic_model_obtain_results import stochastic_simulation_results_analysis class explore_day_by_day_results_and_generate_submission: def run(self, submission_name, local_ergs_settings): try: print('\nstarting the granular day_by_day ts_by_ts point forecast selection approach') # first check the stage, if evaluation stage, this means that no MSE are available, warning about this if local_ergs_settings['competition_stage'] != 'submitting_after_June_1th_using_1913days': print('settings indicate that the final stage is now in progress') print('so there not available real MSE for comparison') print('the last saved data will be used and allow to continue..') print(''.join(['\x1b[0;2;41m', 'but be careful with this submission and consider other way to make the final submit', '\x1b[0m'])) # loading the forecasts first_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'first_model_forecast_data.npy'])) second_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'second_model_forecast_data.npy'])) third_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'third_model_forecast_data.npy'])) fourth_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'fourth_model_forecast_data.npy'])) # this forecast has the shape=30490, 28 fifth_model_forecast_30490_28 = np.load(''.join([local_ergs_settings['train_data_path'], 'fifth_model_forecast_data.npy'])) fifth_model_forecast = np.zeros(shape=(60980, 28), dtype=np.dtype('float32')) fifth_model_forecast[0: 30490, :] = fifth_model_forecast_30490_28 sixth_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'sixth_model_forecast_data.npy'])) seventh_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'seventh_model_forecast_data.npy'])) eighth_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'eighth_model_nearest_neighbor_forecast_data.npy'])) ninth_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'ninth_model_random_average_simulation_forecast_data.npy'])) best_mse_model_forecast = np.load(''.join([local_ergs_settings['train_data_path'], 'mse_based_best_ts_forecast.npy'])) # day by day comparison with open(''.join([local_ergs_settings['hyperparameters_path'], 'organic_in_block_time_serie_based_model_hyperparameters.json'])) \ as local_r_json_file: local_model_ergs_hyperparameters = json.loads(local_r_json_file.read()) local_r_json_file.close() nof_ts = local_ergs_settings['number_of_time_series'] local_forecast_horizon_days = local_ergs_settings['forecast_horizon_days'] best_lower_error_ts_day_by_day_y_pred = np.zeros(shape=(nof_ts, local_forecast_horizon_days), dtype=np.dtype('float32')) count_best_first_model, count_best_second_model, count_best_third_model, count_best_fourth_model,\ count_best_fifth_model, count_best_sixth_model, count_best_seventh_model, count_best_eighth_model,\ count_best_ninth_model, count_best_mse_model = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ts_model_mse = [] # accessing ground_truth data and rechecking stage of competition local_ergs_raw_data_filename = 'sales_train_evaluation.csv' local_ergs_raw_unit_sales = pd.read_csv(''.join([local_ergs_settings['raw_data_path'], local_ergs_raw_data_filename])) print('raw sales data accessed (day_by_day_approach_best_lower_error_model results evaluation)') # extract data and check dimensions local_ergs_raw_unit_sales = local_ergs_raw_unit_sales.iloc[:, 6:].values local_max_selling_time = np.shape(local_ergs_raw_unit_sales)[1] local_settings_max_selling_time = local_ergs_settings['max_selling_time'] if local_settings_max_selling_time + 28 <= local_max_selling_time: local_ergs_raw_unit_sales_ground_truth = local_ergs_raw_unit_sales print('ground_truth data obtained') print('length raw data ground truth:', local_ergs_raw_unit_sales_ground_truth.shape[1]) local_ergs_raw_unit_sales = local_ergs_raw_unit_sales[:, :local_settings_max_selling_time] print('length raw data for training:', local_ergs_raw_unit_sales.shape[1]) elif local_max_selling_time != local_settings_max_selling_time: print("settings doesn't match data dimensions, it must be rechecked before continue" "(_day_by_day_best_lower_error_model_module)") logger.info(''.join(['\n', datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S"), ' data dimensions does not match settings'])) return False else: if local_ergs_settings['competition_stage'] != 'submitting_after_June_1th_using_1941days': print(''.join(['\x1b[0;2;41m', 'Warning', '\x1b[0m'])) print('please check: forecast horizon days will be included within training data') print('It was expected that the last 28 days were not included..') print('to avoid overfitting') elif local_ergs_settings['competition_stage'] == 'submitting_after_June_1th_using_1941days': print(''.join(['\x1b[0;2;41m', 'Straight end of the competition', '\x1b[0m'])) print('settings indicate that this is the last stage!') print('caution: take in consideration that evaluations in this point are not useful, ' 'because will be made using the last data (the same used in training)') # will only use the last data available local_ergs_raw_unit_sales_ground_truth = \ local_ergs_raw_unit_sales_ground_truth[:, -local_forecast_horizon_days:] # very granular approach # iterating in each point_forecast, calculating error and selecting best lower error model forecast for time_serie_index, day_index in it.product(range(nof_ts), range(local_forecast_horizon_days)): # acquiring day_by_day data ground_truth_ts_day = local_ergs_raw_unit_sales_ground_truth[time_serie_index, day_index] first_model_ts_day = first_model_forecast[time_serie_index, day_index] second_model_ts_day = second_model_forecast[time_serie_index, day_index] third_model_ts_day = third_model_forecast[time_serie_index, day_index] fourth_model_ts_day = fourth_model_forecast[time_serie_index, day_index] fifth_model_ts_day = fifth_model_forecast[time_serie_index, day_index] sixth_model_ts_day = sixth_model_forecast[time_serie_index, day_index] seventh_model_ts_day = seventh_model_forecast[time_serie_index, day_index] eighth_model_ts_day = eighth_model_forecast[time_serie_index, day_index].astype(np.dtype('float32')) ninth_model_ts_day = ninth_model_forecast[time_serie_index, day_index] best_mse_model_ts_day = best_mse_model_forecast[time_serie_index, day_index] # calculating error first_model_ts_day_error = np.abs(ground_truth_ts_day - first_model_ts_day) second_model_ts_day_error = np.abs(ground_truth_ts_day - second_model_ts_day) third_model_ts_day_error = np.abs(ground_truth_ts_day - third_model_ts_day) fourth_model_ts_day_error = np.abs(ground_truth_ts_day - fourth_model_ts_day) fifth_model_ts_day_error = np.abs(ground_truth_ts_day - fifth_model_ts_day) sixth_model_ts_day_error = np.abs(ground_truth_ts_day - sixth_model_ts_day) seventh_model_ts_day_error = np.abs(ground_truth_ts_day - seventh_model_ts_day) eighth_model_ts_day_error = np.abs(ground_truth_ts_day - eighth_model_ts_day) ninth_model_ts_day_error = np.abs(ground_truth_ts_day - ninth_model_ts_day) best_mse_model_ts_day_error = np.abs(ground_truth_ts_day - best_mse_model_ts_day) # selecting best point ts_day forecast if first_model_ts_day_error <= second_model_ts_day_error and \ first_model_ts_day_error <= third_model_ts_day_error \ and first_model_ts_day_error <= fourth_model_ts_day_error \ and first_model_ts_day_error <= fifth_model_ts_day_error\ and first_model_ts_day_error <= sixth_model_ts_day_error \ and first_model_ts_day_error <= seventh_model_ts_day_error\ and first_model_ts_day_error <= eighth_model_ts_day_error \ and first_model_ts_day_error <= ninth_model_ts_day_error \ and first_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = first_model_ts_day count_best_first_model += 1 ts_model_mse.append([time_serie_index, int(1), first_model_ts_day_error]) # elif best_mse_model_ts_day_error <= first_model_ts_day_error \ # and best_mse_model_ts_day_error <= second_model_ts_day_error \ # and best_mse_model_ts_day_error <= third_model_ts_day_error \ # and best_mse_model_ts_day_error <= fourth_model_ts_day_error\ # and best_mse_model_ts_day_error <= fifth_model_ts_day_error \ # and best_mse_model_ts_day_error <= sixth_model_ts_day_error\ # and best_mse_model_ts_day_error <= seventh_model_ts_day_error \ # and best_mse_model_ts_day_error <= eighth_model_ts_day_error\ # and best_mse_model_ts_day_error <= ninth_model_ts_day_error: # best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = best_mse_model_ts_day # count_best_mse_model += 1 # ts_model_mse.append([time_serie_index, int(10), best_mse_model_ts_day_error]) elif second_model_ts_day_error <= first_model_ts_day_error \ and second_model_ts_day_error <= third_model_ts_day_error \ and second_model_ts_day_error <= fourth_model_ts_day_error \ and second_model_ts_day_error <= fifth_model_ts_day_error\ and second_model_ts_day_error <= sixth_model_ts_day_error \ and second_model_ts_day_error <= seventh_model_ts_day_error\ and second_model_ts_day_error <= eighth_model_ts_day_error \ and second_model_ts_day_error <= ninth_model_ts_day_error\ and second_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = second_model_ts_day count_best_second_model += 1 ts_model_mse.append([time_serie_index, int(2), second_model_ts_day_error]) elif third_model_ts_day_error <= first_model_ts_day_error \ and third_model_ts_day_error <= second_model_ts_day_error \ and third_model_ts_day_error <= fourth_model_ts_day_error \ and third_model_ts_day_error <= fifth_model_ts_day_error\ and third_model_ts_day_error <= sixth_model_ts_day_error \ and third_model_ts_day_error <= seventh_model_ts_day_error\ and third_model_ts_day_error <= eighth_model_ts_day_error \ and third_model_ts_day_error <= ninth_model_ts_day_error\ and third_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = third_model_ts_day count_best_third_model += 1 ts_model_mse.append([time_serie_index, int(3), third_model_ts_day_error]) # elif fourth_model_ts_day_error <= first_model_ts_day_error \ # and fourth_model_ts_day_error <= second_model_ts_day_error \ # and fourth_model_ts_day_error <= third_model_ts_day_error \ # and fourth_model_ts_day_error <= fifth_model_ts_day_error\ # and fourth_model_ts_day_error <= sixth_model_ts_day_error \ # and fourth_model_ts_day_error <= seventh_model_ts_day_error\ # and fourth_model_ts_day_error <= eighth_model_ts_day_error \ # and fourth_model_ts_day_error <= ninth_model_ts_day_error\ # and fourth_model_ts_day_error <= best_mse_model_ts_day_error: # best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = fourth_model_ts_day # count_best_fourth_model += 1 # ts_model_mse.append([time_serie_index, int(4), fourth_model_ts_day_error]) elif fifth_model_ts_day_error <= first_model_ts_day_error \ and fifth_model_ts_day_error <= second_model_ts_day_error \ and fifth_model_ts_day_error <= third_model_ts_day_error \ and fifth_model_ts_day_error <= fourth_model_ts_day_error\ and fifth_model_ts_day_error <= sixth_model_ts_day_error \ and fifth_model_ts_day_error <= seventh_model_ts_day_error\ and fifth_model_ts_day_error <= eighth_model_ts_day_error \ and fifth_model_ts_day_error <= ninth_model_ts_day_error\ and fifth_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = fifth_model_ts_day count_best_fifth_model += 1 ts_model_mse.append([time_serie_index, int(5), fifth_model_ts_day_error]) elif sixth_model_ts_day_error <= first_model_ts_day_error \ and sixth_model_ts_day_error <= second_model_ts_day_error \ and sixth_model_ts_day_error <= third_model_ts_day_error \ and sixth_model_ts_day_error <= fourth_model_ts_day_error\ and sixth_model_ts_day_error <= fifth_model_ts_day_error \ and sixth_model_ts_day_error <= seventh_model_ts_day_error\ and sixth_model_ts_day_error <= eighth_model_ts_day_error \ and sixth_model_ts_day_error <= ninth_model_ts_day_error\ and sixth_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = sixth_model_ts_day count_best_sixth_model += 1 ts_model_mse.append([time_serie_index, int(6), sixth_model_ts_day_error]) elif seventh_model_ts_day_error <= first_model_ts_day_error \ and seventh_model_ts_day_error <= second_model_ts_day_error \ and seventh_model_ts_day_error <= third_model_ts_day_error \ and seventh_model_ts_day_error <= fourth_model_ts_day_error\ and seventh_model_ts_day_error <= fifth_model_ts_day_error \ and seventh_model_ts_day_error <= sixth_model_ts_day_error\ and seventh_model_ts_day_error <= eighth_model_ts_day_error \ and seventh_model_ts_day_error <= ninth_model_ts_day_error\ and seventh_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = seventh_model_ts_day count_best_seventh_model += 1 ts_model_mse.append([time_serie_index, int(7), seventh_model_ts_day_error]) elif ninth_model_ts_day_error <= first_model_ts_day_error \ and ninth_model_ts_day_error <= second_model_ts_day_error \ and ninth_model_ts_day_error <= third_model_ts_day_error \ and ninth_model_ts_day_error <= fourth_model_ts_day_error\ and ninth_model_ts_day_error <= fifth_model_ts_day_error \ and ninth_model_ts_day_error <= sixth_model_ts_day_error\ and ninth_model_ts_day_error <= seventh_model_ts_day_error \ and ninth_model_ts_day_error <= eighth_model_ts_day_error\ and ninth_model_ts_day_error <= best_mse_model_ts_day_error: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = ninth_model_ts_day count_best_ninth_model += 1 ts_model_mse.append([time_serie_index, int(9), ninth_model_ts_day_error]) else: best_lower_error_ts_day_by_day_y_pred[time_serie_index, day_index] = eighth_model_ts_day count_best_eighth_model += 1 ts_model_mse.append([time_serie_index, int(8), eighth_model_ts_day_error]) # finally reporting the results print('it was used ', count_best_first_model, ' ts day_by_day forecasts from first model') print('it was used ', count_best_second_model, ' ts day_by_day forecasts from second model') print('it was used ', count_best_third_model, ' ts day_by_day forecasts from third model') print('it was used ', count_best_fourth_model, ' ts day_by_day forecasts from fourth model') print('it was used ', count_best_fifth_model, ' ts day_by_day forecasts from fifth model') print('it was used ', count_best_sixth_model, ' ts day_by_day forecasts from sixth model') print('it was used ', count_best_seventh_model, ' ts day_by_day forecasts from seventh model') print('it was used ', count_best_eighth_model, ' ts day_by_day forecasts from eighth model') print('it was used ', count_best_ninth_model, ' ts day_by_day forecasts from ninth model') print('it was used ', count_best_mse_model, ' ts day_by_day forecasts from best_mse (tenth) model') # saving best mse_based between different models forecast and submission store_and_submit_best_model_forecast = save_forecast_and_submission() point_error_based_best_model_save_review = \ store_and_submit_best_model_forecast.store_and_submit(submission_name, local_ergs_settings, best_lower_error_ts_day_by_day_y_pred) if point_error_based_best_model_save_review: print('best low point forecast error and generate_submission data and submission done') else: print('error at storing best_low_point_forecast_error data and generate_submission or submission') # evaluating the best_lower_error criteria granular_model forecast local_ergs_forecasts_name = 'day_by_day_best_low_error_criteria_model_forecast' zeros_as_forecast = stochastic_simulation_results_analysis() zeros_as_forecast_review = \ zeros_as_forecast.evaluate_stochastic_simulation(local_ergs_settings, local_model_ergs_hyperparameters, local_ergs_raw_unit_sales, local_ergs_raw_unit_sales_ground_truth, local_ergs_forecasts_name) # saving errors by time_serie and storing the estimated best model ts_model_mse = np.array(ts_model_mse) np.save(''.join([local_ergs_settings['models_evaluation_path'], 'best_low_point_forecast_error_ts_model_mse']), ts_model_mse) np.savetxt(''.join([local_ergs_settings['models_evaluation_path'], 'best_low_point_forecast_error_ts_model_mse.csv']), ts_model_mse, fmt='%10.15f', delimiter=',', newline='\n') except Exception as submodule_error: print('best low point forecast error and generate_submission submodule_error: ', submodule_error) logger.info('error in best low point forecast error and generate_submission submodule') logger.error(str(submodule_error), exc_info=True) return False return True
[ "logging.basicConfig", "logging.getLogger", "numpy.shape", "sys.path.insert", "numpy.abs", "numpy.dtype", "logging.handlers.RotatingFileHandler", "stochastic_model_obtain_results.stochastic_simulation_results_analysis", "numpy.array", "datetime.datetime.now", "os.path.basename", "save_forecast_and_make_submission.save_forecast_and_submission" ]
[((612, 742), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'log_path_filename', 'level': 'logging.DEBUG', 'format': '"""%(asctime)s %(levelname)s %(name)s %(message)s"""'}), "(filename=log_path_filename, level=logging.DEBUG, format\n ='%(asctime)s %(levelname)s %(name)s %(message)s')\n", (631, 742), False, 'import logging\n'), ((767, 794), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (784, 794), False, 'import logging\n'), ((808, 893), 'logging.handlers.RotatingFileHandler', 'handlers.RotatingFileHandler', (['log_path_filename'], {'maxBytes': '(10485760)', 'backupCount': '(5)'}), '(log_path_filename, maxBytes=10485760,\n backupCount=5)\n', (836, 893), True, 'import logging.handlers as handlers\n'), ((945, 1012), 'sys.path.insert', 'sys.path.insert', (['(1)', "local_submodule_settings['custom_library_path']"], {}), "(1, local_submodule_settings['custom_library_path'])\n", (960, 1012), False, 'import sys\n'), ((474, 500), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (490, 500), False, 'import os\n'), ((21052, 21082), 'save_forecast_and_make_submission.save_forecast_and_submission', 'save_forecast_and_submission', ([], {}), '()\n', (21080, 21082), False, 'from save_forecast_and_make_submission import save_forecast_and_submission\n'), ((21855, 21895), 'stochastic_model_obtain_results.stochastic_simulation_results_analysis', 'stochastic_simulation_results_analysis', ([], {}), '()\n', (21893, 21895), False, 'from stochastic_model_obtain_results import stochastic_simulation_results_analysis\n'), ((22518, 22540), 'numpy.array', 'np.array', (['ts_model_mse'], {}), '(ts_model_mse)\n', (22526, 22540), True, 'import numpy as np\n'), ((5904, 5939), 'numpy.shape', 'np.shape', (['local_ergs_raw_unit_sales'], {}), '(local_ergs_raw_unit_sales)\n', (5912, 5939), True, 'import numpy as np\n'), ((9531, 9579), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - first_model_ts_day)'], {}), '(ground_truth_ts_day - first_model_ts_day)\n', (9537, 9579), True, 'import numpy as np\n'), ((9624, 9673), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - second_model_ts_day)'], {}), '(ground_truth_ts_day - second_model_ts_day)\n', (9630, 9673), True, 'import numpy as np\n'), ((9717, 9765), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - third_model_ts_day)'], {}), '(ground_truth_ts_day - third_model_ts_day)\n', (9723, 9765), True, 'import numpy as np\n'), ((9810, 9859), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - fourth_model_ts_day)'], {}), '(ground_truth_ts_day - fourth_model_ts_day)\n', (9816, 9859), True, 'import numpy as np\n'), ((9903, 9951), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - fifth_model_ts_day)'], {}), '(ground_truth_ts_day - fifth_model_ts_day)\n', (9909, 9951), True, 'import numpy as np\n'), ((9995, 10043), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - sixth_model_ts_day)'], {}), '(ground_truth_ts_day - sixth_model_ts_day)\n', (10001, 10043), True, 'import numpy as np\n'), ((10089, 10139), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - seventh_model_ts_day)'], {}), '(ground_truth_ts_day - seventh_model_ts_day)\n', (10095, 10139), True, 'import numpy as np\n'), ((10184, 10233), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - eighth_model_ts_day)'], {}), '(ground_truth_ts_day - eighth_model_ts_day)\n', (10190, 10233), True, 'import numpy as np\n'), ((10277, 10325), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - ninth_model_ts_day)'], {}), '(ground_truth_ts_day - ninth_model_ts_day)\n', (10283, 10325), True, 'import numpy as np\n'), ((10372, 10423), 'numpy.abs', 'np.abs', (['(ground_truth_ts_day - best_mse_model_ts_day)'], {}), '(ground_truth_ts_day - best_mse_model_ts_day)\n', (10378, 10423), True, 'import numpy as np\n'), ((3138, 3157), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (3146, 3157), True, 'import numpy as np\n'), ((4911, 4930), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (4919, 4930), True, 'import numpy as np\n'), ((9250, 9269), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (9258, 9269), True, 'import numpy as np\n'), ((6834, 6857), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6855, 6857), False, 'import datetime\n')]
""" Utility functions for running NEB calculations """ import numpy as np from aiida.orm import StructureData from aiida.engine import calcfunction from ase.neb import NEB @calcfunction def neb_interpolate(init_structure, final_strucrture, nimages): """ Interplate NEB frames using the starting and the final structures Get around the PBC warpping problem by calculating the MIC displacements from the initial to the final structure """ ainit = init_structure.get_ase() afinal = final_strucrture.get_ase() disps = [] # Find distances acombined = ainit.copy() acombined.extend(afinal) # Get piece-wise MIC distances for i in range(len(ainit)): dist = acombined.get_distance(i, i + len(ainit), vector=True, mic=True) disps.append(dist.tolist()) disps = np.asarray(disps) ainit.wrap(eps=1e-1) afinal = ainit.copy() # Displace the atoms according to MIC distances afinal.positions += disps neb = NEB([ainit.copy() for i in range(int(nimages) + 1)] + [afinal.copy()]) neb.interpolate() out_init = StructureData(ase=neb.images[0]) out_init.label = init_structure.label + ' INIT' out_final = StructureData(ase=neb.images[-1]) out_final.label = init_structure.label + ' FINAL' outputs = {'image_init': out_init} for i, out in enumerate(neb.images[1:-1]): outputs[f'image_{i+1:02d}'] = StructureData(ase=out) outputs[f'image_{i+1:02d}'].label = init_structure.label + f' FRAME {i+1:02d}' outputs['image_final'] = out_final return outputs @calcfunction def fix_atom_order(reference, to_fix): """ Fix atom order by finding NN distances bet ween two frames. This resolves the issue where two closely matching structures having diffferent atomic orders. Note that the two frames must be close enough for this to work """ aref = reference.get_ase() afix = to_fix.get_ase() # Index of the reference atom in the second structure new_indices = np.zeros(len(aref), dtype=int) # Find distances acombined = aref.copy() acombined.extend(afix) # Get piece-wise MIC distances for i in range(len(aref)): dists = [] for j in range(len(aref)): dist = acombined.get_distance(i, j + len(aref), mic=True) dists.append(dist) min_idx = np.argmin(dists) min_dist = min(dists) if min_dist > 0.5: print(f'Large displacement found - moving atom {j} to {i} - please check if this is correct!') new_indices[i] = min_idx afixed = afix[new_indices] fixed_structure = StructureData(ase=afixed) fixed_structure.label = to_fix.label + ' UPDATED ORDER' return fixed_structure
[ "numpy.argmin", "aiida.orm.StructureData", "numpy.asarray" ]
[((828, 845), 'numpy.asarray', 'np.asarray', (['disps'], {}), '(disps)\n', (838, 845), True, 'import numpy as np\n'), ((1098, 1130), 'aiida.orm.StructureData', 'StructureData', ([], {'ase': 'neb.images[0]'}), '(ase=neb.images[0])\n', (1111, 1130), False, 'from aiida.orm import StructureData\n'), ((1199, 1232), 'aiida.orm.StructureData', 'StructureData', ([], {'ase': 'neb.images[-1]'}), '(ase=neb.images[-1])\n', (1212, 1232), False, 'from aiida.orm import StructureData\n'), ((2633, 2658), 'aiida.orm.StructureData', 'StructureData', ([], {'ase': 'afixed'}), '(ase=afixed)\n', (2646, 2658), False, 'from aiida.orm import StructureData\n'), ((1412, 1434), 'aiida.orm.StructureData', 'StructureData', ([], {'ase': 'out'}), '(ase=out)\n', (1425, 1434), False, 'from aiida.orm import StructureData\n'), ((2365, 2381), 'numpy.argmin', 'np.argmin', (['dists'], {}), '(dists)\n', (2374, 2381), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # @Author: TD21forever # @Date: 2019-05-26 12:14:07 # @Last Modified by: TD21forever # @Last Modified time: 2019-06-17 23:11:15 import numpy as np ''' dp[item][cap]的意思是 从前item个物品中拿东西 放到容量为cap 的背包中 能拿到的最大价值 ''' def solution(num,waste,value,capacity): dp = np.zeros([num+5,capacity+2]) for item in range(1,num+1): for cap in range(1,capacity+1): if waste[item] > cap:#第item个太大了 拿不了 dp[item][cap] = dp[item-1][cap] else: situation1 = dp[item-1][cap]#不拿 situation2 = dp[item-1][cap-waste[item]] + value[item]#拿 if situation1 > situation2: dp[item][cap] = situation1 else: dp[item][cap] = situation2 return dp if __name__ == '__main__': waste = [0, 2, 3, 4] value = [0, 3, 4, 5] num = 3 capacity = 10 res = solution(num,waste,value,capacity) print(res) # print(res[5][20])
[ "numpy.zeros" ]
[((295, 328), 'numpy.zeros', 'np.zeros', (['[num + 5, capacity + 2]'], {}), '([num + 5, capacity + 2])\n', (303, 328), True, 'import numpy as np\n')]
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to visualize the unified scores. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pathlib import matplotlib matplotlib.use("Agg") # Set headless-friendly backend. import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top import numpy as np import pandas as pd import seaborn as sns def heat_square(matrix, output_dir, name, xlabel, ylabel, max_val=None, factor_names=None): """Plot values of a matrix. Each entry is represented as a square of increasing size and different color. Args: matrix: Matrix of values to plot. Values should be in range [0, max_val]. output_dir: Where to save the image. name: File name. xlabel: Name of the x axis of the matrix. ylabel: Name of the y axis of the matrix. max_val: Maximum value acceptable in the matrix. If None, the max_val will be set as the maximum value in the matrix. factor_names: Names of the factors of variation. """ sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2}) sns.set_style("whitegrid") fig, _ = plt.subplots() plot_grid = plt.GridSpec(1, 15, hspace=0.2, wspace=1.2) ax = plt.subplot(plot_grid[:, :-1]) if max_val is None: max_val = np.max(matrix) if max_val == 0: max_val = 1. else: if max_val < np.max(matrix): raise ValueError("The matrix has maximum value larger than max_val") palette = sns.color_palette("Blues", 256) # Estimates the area of the squares: the length of the edge is # roughly: length of the grid in inches * how many points per inch - space for # the axis names times * 14/15 as the last 1/15 part of the figure is occupied # by the colorbar legend. size_scale = ((((ax.get_position().xmax - ax.get_position().xmin) * fig.get_size_inches()[0] * fig.get_dpi() - 40) * 14 / 15 * 0.8) / (matrix.shape[0])) ** 2 plot_matrix_squares(matrix, max_val, palette, size_scale, ax) plt.xticks(range(matrix.shape[0])) if factor_names is not None: plt.yticks(range(matrix.shape[1]), factor_names) else: plt.yticks(range(matrix.shape[1])) plt.xlabel(xlabel) plt.ylabel(ylabel) # Add color legend on the right side of the plot. ax = plt.subplot(plot_grid[:, -1]) plot_bar_palette(palette, max_val, ax) if not os.path.isdir(output_dir): pathlib.Path(output_dir).mkdir(parents=True) output_path = os.path.join(output_dir, "{}.png".format(name)) with open(output_path, "wb") as path: fig.savefig(path, bbox_inches="tight") def plot_matrix_squares(matrix, max_val, palette, size_scale, ax): """Grid of squares where the size is proportional to the matrix values. Args: matrix: Matrix of values to plot. max_val: Maximum value that is allowed in the matrix. palette: Color palette. size_scale: Maximum size of the squares. ax: Axis of the subplot. """ tmp = pd.melt(pd.DataFrame(matrix).reset_index(), id_vars="index") # The columns of the dataframe are: index, variable and value. def to_color(val): ind = int(val / max_val * 255) return palette[ind] ax.scatter(x=tmp["index"], y=tmp["variable"], s=size_scale * tmp["value"] / max_val, marker="s", c=tmp["value"].apply(to_color)) ax.set_xticks([v + 0.5 for v in range(matrix.shape[0])], minor=True) ax.set_yticks([v + 0.5 for v in range(matrix.shape[1])], minor=True) ax.grid(False, "major") ax.grid(True, "minor") ax.set_xlim([-0.5, matrix.shape[0] - 0.5]) ax.set_ylim([-0.5, matrix.shape[1] - 0.5]) ax.tick_params(right=False, top=False, left=False, bottom=False) ax.set_aspect(aspect=1.) def plot_bar_palette(palette, max_val, ax): """Plot color bar legend.""" col_x = [0] * len(palette) bar_y = np.linspace(0, max_val, 256, ax) bar_height = bar_y[1] - bar_y[0] ax.barh(bar_y, np.array([5] * len(palette)), height=bar_height, left=col_x, align="center", color=palette, linewidth=0) ax.set_xlim(1, 2) ax.set_ylim(0, max_val) ax.grid(False) ax.set_xticks([]) ax.set_yticks(np.linspace(0, max_val, 3)) ax.yaxis.tick_right() def plot_recovery_vs_independent(matrix, output_dir, name): """Plot how many factors are recovered and in how many independent groups. Plot how many factors of variation are independently captured in a representation at different thresholds. It takes as input a matrix relating factors of variation and latent dimensions, sort the elements and then plot for each threshold (1) how many factors are discovered and (2) how many factors are encoded independently in the representation. Args: matrix: Contains statistical relations between factors of variation and latent codes. output_dir: Output directory where to save the plot. name: Filename of the plot. """ thresholds = np.sort(matrix.flatten())[::-1] precisions = [precision(matrix, x) for x in thresholds] recalls = [recall(matrix, x) for x in thresholds] sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2}) sns.set_style("whitegrid") fig, ax = plt.subplots() palette = sns.color_palette() plt.plot(range(thresholds.shape[0]), precisions, label="Independent groups", color=palette[0], linewidth=3) plt.plot(range(thresholds.shape[0]), recalls, "--", label="Discovered", color=palette[1], linewidth=3) thresholds_ids = range(0, thresholds.shape[0], 10) plt.xticks(thresholds_ids, np.around(thresholds[thresholds_ids], 2)) ax.set_ylim([0, matrix.shape[0] * 1.1]) ax.tick_params(right=False, top=False, left=False, bottom=False) ax.set_yticks(np.linspace(0, matrix.shape[0], matrix.shape[0] + 1)) plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.25), ncol=2) plt.xlabel("Threshold") plt.ylabel("Number of Factors") if not os.path.isdir(output_dir): pathlib.Path(output_dir).mkdir(parents=True) output_path = os.path.join(output_dir, name + ".png") with open(output_path, "wb") as path: fig.savefig(path, bbox_inches="tight") def precision(matrix, th): """How many independent components are discovered for a given threshold. Args: matrix: Adjacency matrix of shape (num_codes, num_factors) encoding the statistical relations between factors and codes. th: Eliminate all edges smaller than this threshold. Returns: Number of connected components. """ tmp = matrix.copy() tmp[tmp < th] = 0 factors = np.zeros(tmp.shape[0]) codes = np.zeros(tmp.shape[1]) cc = 0 for i in range(len(factors)): if factors[i] == 0: to_visit = [(i, 0)] factors, codes, size = bfs(tmp, to_visit, factors, codes, 1) if size > 1: cc += 1 return cc def recall(matrix, th): """How many factors are discovered for a given threshold. Counts as many factors of variation are captured in the representation. First, we remove all edges in the adjacency matrix with weight smaller than the threshold. Then, we count how many factors are connected to some codes. Args: matrix: Adjacency matrix for the graph. th: Eliminate all edges smaller than this threshold. Returns: Number of discovered factors of variation for the given threshold. """ tmp = matrix.copy() tmp[tmp < th] = 0 return np.sum(np.sum(tmp, axis=1) != 0) def bfs(matrix, to_visit, factors, codes, size): """Traverse the matrix across connected components. Implements breadth first search on an adjacency matrix. In our case, the adjacency matrix encodes the statistical relations between factors of variation and codes. This is used to traverse the adjacency matrix and discover whether a factor is captured in multiple codes and whether there is a path in the graph connecting two factors. Args: matrix: Adjacency matrix for the graph. to_visit: Queue with the nodes to visit. We index the factors and codes in the adjacency matrix and implement the queue with an array containing the nodes that need to be visited. factors: Array of shape (num_factors, ) with flags marking whether factors of variation are visited. codes: Array of shape (num_codes, ) with flags marking whether codes are visited. size: Count how many node are in the same connected component. Returns: factors: Array of shape (num_factors, ) with flags marking whether factors of variation are visited. codes: Array of shape (num_codes, ) with flags marking whether codes are visited. size: How many nodes were visited. """ (current_node, flag) = to_visit.pop() if flag == 0: factors[current_node] = 1 for i in range(len(matrix[current_node, :])): if matrix[current_node, i] != 0: if codes[i] == 0: to_visit.append((i, 1)) size += 1 factors, codes, size = bfs(matrix, to_visit, factors, codes, size) else: codes[current_node] = 1 for i in range(len(matrix[:, current_node])): if matrix[i, current_node] != 0: if factors[i] == 0: to_visit.append((i, 0)) size += 1 factors, codes, size = bfs(matrix, to_visit, factors, codes, size) return factors, codes, size
[ "matplotlib.pyplot.ylabel", "seaborn.set_style", "matplotlib.pyplot.GridSpec", "seaborn.color_palette", "pathlib.Path", "matplotlib.pyplot.xlabel", "numpy.max", "numpy.linspace", "os.path.isdir", "pandas.DataFrame", "matplotlib.use", "seaborn.set_context", "numpy.around", "matplotlib.pyplot.legend", "os.path.join", "numpy.sum", "numpy.zeros", "matplotlib.pyplot.subplot", "matplotlib.pyplot.subplots" ]
[((838, 859), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (852, 859), False, 'import matplotlib\n'), ((1703, 1773), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {'font_scale': '(1.5)', 'rc': "{'lines.linewidth': 2}"}), "('notebook', font_scale=1.5, rc={'lines.linewidth': 2})\n", (1718, 1773), True, 'import seaborn as sns\n'), ((1778, 1804), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (1791, 1804), True, 'import seaborn as sns\n'), ((1818, 1832), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1830, 1832), True, 'import matplotlib.pyplot as plt\n'), ((1849, 1892), 'matplotlib.pyplot.GridSpec', 'plt.GridSpec', (['(1)', '(15)'], {'hspace': '(0.2)', 'wspace': '(1.2)'}), '(1, 15, hspace=0.2, wspace=1.2)\n', (1861, 1892), True, 'import matplotlib.pyplot as plt\n'), ((1902, 1932), 'matplotlib.pyplot.subplot', 'plt.subplot', (['plot_grid[:, :-1]'], {}), '(plot_grid[:, :-1])\n', (1913, 1932), True, 'import matplotlib.pyplot as plt\n'), ((2182, 2213), 'seaborn.color_palette', 'sns.color_palette', (['"""Blues"""', '(256)'], {}), "('Blues', 256)\n", (2199, 2213), True, 'import seaborn as sns\n'), ((2929, 2947), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (2939, 2947), True, 'import matplotlib.pyplot as plt\n'), ((2952, 2970), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (2962, 2970), True, 'import matplotlib.pyplot as plt\n'), ((3034, 3063), 'matplotlib.pyplot.subplot', 'plt.subplot', (['plot_grid[:, -1]'], {}), '(plot_grid[:, -1])\n', (3045, 3063), True, 'import matplotlib.pyplot as plt\n'), ((4635, 4667), 'numpy.linspace', 'np.linspace', (['(0)', 'max_val', '(256)', 'ax'], {}), '(0, max_val, 256, ax)\n', (4646, 4667), True, 'import numpy as np\n'), ((5895, 5965), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {'font_scale': '(1.5)', 'rc': "{'lines.linewidth': 2}"}), "('notebook', font_scale=1.5, rc={'lines.linewidth': 2})\n", (5910, 5965), True, 'import seaborn as sns\n'), ((5970, 5996), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (5983, 5996), True, 'import seaborn as sns\n'), ((6011, 6025), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6023, 6025), True, 'import matplotlib.pyplot as plt\n'), ((6040, 6059), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (6057, 6059), True, 'import seaborn as sns\n'), ((6622, 6688), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""', 'bbox_to_anchor': '(0.5, 1.25)', 'ncol': '(2)'}), "(loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=2)\n", (6632, 6688), True, 'import matplotlib.pyplot as plt\n'), ((6693, 6716), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Threshold"""'], {}), "('Threshold')\n", (6703, 6716), True, 'import matplotlib.pyplot as plt\n'), ((6721, 6752), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of Factors"""'], {}), "('Number of Factors')\n", (6731, 6752), True, 'import matplotlib.pyplot as plt\n'), ((6862, 6901), 'os.path.join', 'os.path.join', (['output_dir', "(name + '.png')"], {}), "(output_dir, name + '.png')\n", (6874, 6901), False, 'import os\n'), ((7423, 7445), 'numpy.zeros', 'np.zeros', (['tmp.shape[0]'], {}), '(tmp.shape[0])\n', (7431, 7445), True, 'import numpy as np\n'), ((7458, 7480), 'numpy.zeros', 'np.zeros', (['tmp.shape[1]'], {}), '(tmp.shape[1])\n', (7466, 7480), True, 'import numpy as np\n'), ((1975, 1989), 'numpy.max', 'np.max', (['matrix'], {}), '(matrix)\n', (1981, 1989), True, 'import numpy as np\n'), ((3119, 3144), 'os.path.isdir', 'os.path.isdir', (['output_dir'], {}), '(output_dir)\n', (3132, 3144), False, 'import os\n'), ((4952, 4978), 'numpy.linspace', 'np.linspace', (['(0)', 'max_val', '(3)'], {}), '(0, max_val, 3)\n', (4963, 4978), True, 'import numpy as np\n'), ((6391, 6431), 'numpy.around', 'np.around', (['thresholds[thresholds_ids]', '(2)'], {}), '(thresholds[thresholds_ids], 2)\n', (6400, 6431), True, 'import numpy as np\n'), ((6564, 6616), 'numpy.linspace', 'np.linspace', (['(0)', 'matrix.shape[0]', '(matrix.shape[0] + 1)'], {}), '(0, matrix.shape[0], matrix.shape[0] + 1)\n', (6575, 6616), True, 'import numpy as np\n'), ((6764, 6789), 'os.path.isdir', 'os.path.isdir', (['output_dir'], {}), '(output_dir)\n', (6777, 6789), False, 'import os\n'), ((2071, 2085), 'numpy.max', 'np.max', (['matrix'], {}), '(matrix)\n', (2077, 2085), True, 'import numpy as np\n'), ((8323, 8342), 'numpy.sum', 'np.sum', (['tmp'], {'axis': '(1)'}), '(tmp, axis=1)\n', (8329, 8342), True, 'import numpy as np\n'), ((3154, 3178), 'pathlib.Path', 'pathlib.Path', (['output_dir'], {}), '(output_dir)\n', (3166, 3178), False, 'import pathlib\n'), ((3744, 3764), 'pandas.DataFrame', 'pd.DataFrame', (['matrix'], {}), '(matrix)\n', (3756, 3764), True, 'import pandas as pd\n'), ((6799, 6823), 'pathlib.Path', 'pathlib.Path', (['output_dir'], {}), '(output_dir)\n', (6811, 6823), False, 'import pathlib\n')]
import argparse import cv2 import numpy as np from inference import Network from openvino.inference_engine import IENetwork, IECore import pylab as plt import math import matplotlib from scipy.ndimage.filters import gaussian_filter INPUT_STREAM = "emotion.mp4" CPU_EXTENSION = "C:\\Program Files (x86)\\IntelSWTools\\openvino\\deployment_tools\\inference_engine\\bin\\intel64\\Release\\cpu_extension_avx2.dll" MODEL = "C:/Users/gremi/Documents/Julien/udacity_intel/models/intel/emotions-recognition-retail-0003/INT8/emotions-recognition-retail-0003.xml" # if linux : /opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/libcpu_extension_sse4.so" COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] EMOTIONS = ['neutral', 'happy', 'sad', 'surprise', 'anger'] def get_args(): ''' Gets the arguments from the command line. ''' parser = argparse.ArgumentParser("Run inference on an input video") # -- Create the descriptions for the commands i_desc = "The location of the input file" d_desc = "The device name, if not 'CPU'" ### Add additional arguments and descriptions for: ### 1) Different confidence thresholds used to draw bounding boxes t_desc = "The confidence thresholds used to draw bounding boxes" ### 2) The user choosing the color of the bounding boxes c_desc = "The color name of the bounding boxes" # -- Add required and optional groups parser._action_groups.pop() optional = parser.add_argument_group('optional arguments') # -- Create the arguments optional.add_argument("-i", help=i_desc, default=INPUT_STREAM) optional.add_argument("-d", help=d_desc, default='CPU') optional.add_argument("-t", help=t_desc, default=0.2) optional.add_argument("-c", help=c_desc, default="green") args = parser.parse_args() return args def preprocessing(input_image, height, width): ''' Given an input image, height and width: - Resize to width and height - Transpose the final "channel" dimension to be first - Reshape the image to add a "batch" of 1 at the start ''' image = cv2.resize(input_image, (width, height)) image = image.transpose((2,0,1)) #image = image.reshape(1, 3, height, width) #print("in preprocessing", *image.shape) # same thine : in preprocessing 3 384 672 image = image.reshape(1, *image.shape) return image def get_mask(processed_output): ''' Given an input image size and processed output for a semantic mask, returns a masks able to be combined with the original image. ''' # Create an empty array for other color channels of mask empty = np.zeros(processed_output.shape) # Stack to make a Green mask where text detected mask = np.dstack((empty, processed_output, empty)) return mask def create_output_image(image, output): ''' creates an output image showing the result of inference. ''' # Remove final part of output not used for heatmaps output = output[:-1] # Get only pose detections above 0.5 confidence, set to 255 #for c in range(len(output)): # output[c] = np.where(output[c]>0.5, 255, 0) # Sum along the "class" axis output = np.sum(output, axis=0) # Get semantic mask pose_mask = get_mask(output) # Combine with original image image = image + pose_mask #return image.astype('uint8') return pose_mask.astype('uint8') def infer_on_video(args): ''' Performs inference on video - main method ''' ### Load the network model into the IE print("Load the network model into the IE") net = Network() net.load_model(MODEL, "CPU", CPU_EXTENSION) # Get and open video capture cap = cv2.VideoCapture(args.i) cap.open(args.i) # Grab the shape of the input width = int(cap.get(3)) height = int(cap.get(4)) # Create a video writer for the output video # The second argument should be `cv2.VideoWriter_fourcc('M','J','P','G')` # on Mac, and `0x00000021` on Linux out = cv2.VideoWriter('out-' + INPUT_STREAM, 0x00000021, 30, (width,height)) # Process frames until the video ends, or process is exited frame_count = 0; while cap.isOpened(): # Read the next frame flag, frame = cap.read() if not flag: break key_pressed = cv2.waitKey(60) preprocessed_frame = preprocessing(frame, net.get_input_shape()[2], net.get_input_shape()[3]) #print("Perform inference on the frame") net.async_inference(preprocessed_frame) if net.wait() == 0: # Get the output of inference output_blobs = net.extract_output() probs = output_blobs['prob_emotion'][0] index_of_maximum = np.argmax(probs) emotion = EMOTIONS[index_of_maximum] if index_of_maximum == 0: probs[0] = 0 emotion = emotion + " (" + EMOTIONS[np.argmax(probs)] + ")" print("emotion=", emotion) # Scale the output text by the image shape scaler = max(int(frame.shape[0] / 1000), 1) # Write the text of color and type onto the image frame = cv2.putText(frame, "Detected: {}".format(emotion), (750 * scaler, 50 * scaler), cv2.FONT_HERSHEY_SIMPLEX, scaler, (0, 0, 0), 3 * scaler) # Write a frame here for debug purpose #cv2.imwrite("frame" + str(frame_count) + ".png", frame) # Write out the frame in the video out.write(frame) # frame count frame_count = frame_count + 1 # Break if escape key pressed if key_pressed == 27: break # Release the out writer, capture, and destroy any OpenCV windows out.release() cap.release() cv2.destroyAllWindows() def main(): print("Starting") args = get_args() infer_on_video(args) if __name__ == "__main__": main()
[ "numpy.dstack", "argparse.ArgumentParser", "numpy.argmax", "cv2.VideoWriter", "numpy.sum", "numpy.zeros", "cv2.destroyAllWindows", "cv2.VideoCapture", "inference.Network", "cv2.resize", "cv2.waitKey" ]
[((1115, 1173), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Run inference on an input video"""'], {}), "('Run inference on an input video')\n", (1138, 1173), False, 'import argparse\n'), ((2370, 2410), 'cv2.resize', 'cv2.resize', (['input_image', '(width, height)'], {}), '(input_image, (width, height))\n', (2380, 2410), False, 'import cv2\n'), ((2907, 2939), 'numpy.zeros', 'np.zeros', (['processed_output.shape'], {}), '(processed_output.shape)\n', (2915, 2939), True, 'import numpy as np\n'), ((3004, 3047), 'numpy.dstack', 'np.dstack', (['(empty, processed_output, empty)'], {}), '((empty, processed_output, empty))\n', (3013, 3047), True, 'import numpy as np\n'), ((3461, 3483), 'numpy.sum', 'np.sum', (['output'], {'axis': '(0)'}), '(output, axis=0)\n', (3467, 3483), True, 'import numpy as np\n'), ((3866, 3875), 'inference.Network', 'Network', ([], {}), '()\n', (3873, 3875), False, 'from inference import Network\n'), ((3968, 3992), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.i'], {}), '(args.i)\n', (3984, 3992), False, 'import cv2\n'), ((4285, 4348), 'cv2.VideoWriter', 'cv2.VideoWriter', (["('out-' + INPUT_STREAM)", '(33)', '(30)', '(width, height)'], {}), "('out-' + INPUT_STREAM, 33, 30, (width, height))\n", (4300, 4348), False, 'import cv2\n'), ((6152, 6175), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (6173, 6175), False, 'import cv2\n'), ((4605, 4620), 'cv2.waitKey', 'cv2.waitKey', (['(60)'], {}), '(60)\n', (4616, 4620), False, 'import cv2\n'), ((5022, 5038), 'numpy.argmax', 'np.argmax', (['probs'], {}), '(probs)\n', (5031, 5038), True, 'import numpy as np\n'), ((5207, 5223), 'numpy.argmax', 'np.argmax', (['probs'], {}), '(probs)\n', (5216, 5223), True, 'import numpy as np\n')]
# Copyright FMR LLC <<EMAIL>> # SPDX-License-Identifier: Apache-2.0 """ The script generates variations for the parameters using configuration file and stores them in respective named tuple """ import math import random from collections import namedtuple import numpy as np # configuration parameters scene_options = [ "aspect_ratio", "color_mode", "exposure_value", "contrast", "crop_min_x", "crop_max_x", "crop_min_y", "crop_max_y", "resolution_x", "resolution_y", "resolution_percentage", "render_engine", ] Scene_tuple = namedtuple( "SceneParameters", scene_options, defaults=[None] * len(scene_options) ) light_options = [ "light_energies", "light_x_location", "light_y_location", "light_z_location", "color_hue", "color_saturation", "color_value", "light_type", ] Light_tuple = namedtuple( "LightParameters", light_options, defaults=[None] * len(light_options) ) camera_options = [ "camera_x_location", "camera_y_location", "camera_z_location", "camera_x_rotation", "camera_y_rotation", "camera_z_rotation", "camera_focal_length", ] Camera_tuple = namedtuple( "CameraParameters", camera_options, defaults=[None] * len(camera_options) ) image_options = [ "image_x_scale", "image_y_scale", "image_z_scale", "image_x_rotation", "image_y_rotation", "image_z_rotation", "image_bbs", "background_image_name", "image_name", ] Image_tuple = namedtuple( "ImageParameters", image_options, defaults=[None] * len(image_options) ) other_options = ["render_device_type"] other_parameter_tuple = namedtuple( "OtherBlenderParameters", other_options, defaults=[None] * len(other_options) ) def random_range(configs, variable, variations): """ Generate random values for the variable in continous scale """ random_values = np.random.uniform( configs[variable]["range"][0], configs[variable]["range"][1], variations ) return random_values def random_categorical_values(configs, variable, variations): """ Generate random values for the variable (e.g aspect ratio etc) If weights values are not given, the function assign equal weight to all the values """ try: weight_values = configs[variable]["weights"] except: weight_values = [1.0] * len(configs[variable]["range"]) random_values = random.choices( configs[variable]["range"], k=variations, weights=weight_values ) return random_values def get_image_parameters( n_variations: int, image_configs: dict, image_files: list, bg_list: list ): """ Generate scene variations based on random values in config file and creates a named tuple for each variation """ # sampling background images from background image files if len(bg_list) == 0: bg_images = [""] * len(image_files) else: bg_images = [random.choice(bg_list) for i in range(len(image_files))] image_parameters_list = [Image_tuple for i in range(n_variations)] image_scale_x_values = random_range(image_configs, "image_x_scale", n_variations) image_scale_y_values = random_range(image_configs, "image_y_scale", n_variations) image_scale_z_values = random_range(image_configs, "image_z_scale", n_variations) image_rotation_x_values = random_range( image_configs, "image_x_rotation", n_variations ) image_rotation_y_values = random_range( image_configs, "image_y_rotation", n_variations ) image_rotation_z_values = random_range( image_configs, "image_z_rotation", n_variations ) for index, _ in enumerate(image_parameters_list): image_parameters_list[index] = image_parameters_list[index]( image_x_scale=image_scale_x_values[index], image_y_scale=image_scale_y_values[index], image_z_scale=image_scale_z_values[index], image_x_rotation=image_rotation_x_values[index], image_y_rotation=image_rotation_y_values[index], image_z_rotation=image_rotation_z_values[index], image_bbs=[], image_name=image_files[index], background_image_name=bg_images[index], ) return image_parameters_list def get_other_blender_parameters(other_parameters: dict): other_parameter_tuple_value = other_parameter_tuple( render_device_type=other_parameters["render_device_type"] ) return other_parameter_tuple_value def get_camera_parameters(n_variations: int, camera_configs: dict): """ Generate camera variations based on random values in config file and creates a named tuple for each variation """ camera_parameters_list = [Camera_tuple for i in range(n_variations)] camera_focal_length_values = random_range( camera_configs, "camera_focal_length", n_variations ) camera_x_location_values = random_range( camera_configs, "camera_x_location", n_variations ) camera_y_location_values = random_range( camera_configs, "camera_y_location", n_variations ) camera_z_location_values = random_range( camera_configs, "camera_z_location", n_variations ) camera_x_rotation_values = random_range( camera_configs, "camera_x_rotation", n_variations ) camera_y_rotation_values = random_range( camera_configs, "camera_y_rotation", n_variations ) camera_z_rotation_values = random_range( camera_configs, "camera_z_rotation", n_variations ) for index, _ in enumerate(camera_parameters_list): camera_parameters_list[index] = camera_parameters_list[index]( camera_x_location=camera_x_location_values[index], camera_y_location=camera_y_location_values[index], camera_z_location=camera_z_location_values[index], camera_focal_length=camera_focal_length_values[index], camera_x_rotation=math.radians(camera_x_rotation_values[index]), camera_y_rotation=math.radians(camera_y_rotation_values[index]), camera_z_rotation=math.radians(camera_z_rotation_values[index]), ) return camera_parameters_list def get_light_parameters(n_variations: int, light_configs: dict): """ Generate light variations based on random values in config file and creates a named tuple for each variation """ light_parameters_list = [Light_tuple for i in range(n_variations)] light_energies = random_range(light_configs, "light_energy", n_variations) light_type_values = random_categorical_values( light_configs, "light_types", n_variations ) hue = random_range(light_configs, "hue", n_variations) saturation = random_range(light_configs, "saturation", n_variations) value = random_range(light_configs, "value", n_variations) light_x_values = random_range(light_configs, "light_x_location", n_variations) light_y_values = random_range(light_configs, "light_x_location", n_variations) light_z_values = random_range(light_configs, "light_x_location", n_variations) for index, _ in enumerate(light_parameters_list): light_parameters_list[index] = light_parameters_list[index]( light_energies=light_energies[index], light_x_location=light_x_values[index], light_y_location=light_y_values[index], light_z_location=light_z_values[index], color_hue=hue[index], color_saturation=saturation[index], color_value=value[index], light_type=light_type_values[index], ) return light_parameters_list def get_scene_parameters(n_variations: int, scene_config: dict): """ Generate scene variations based on random values in config file and creates a named tuple for each variation """ scene_parameters_list = [Scene_tuple for i in range(n_variations)] aspect_ratio_values = random_categorical_values( scene_config, "aspect_ratio", n_variations ) color_mode_values = random_categorical_values( scene_config, "color_modes", n_variations ) resolution_values = random_categorical_values( scene_config, "resolution", n_variations ) contrast_values = random_categorical_values(scene_config, "contrast", n_variations) render_engine_values = random_categorical_values( scene_config, "render_engine", n_variations ) exposure_value_values = random_range(scene_config, "exposure", n_variations) crop_min_x_values = random_range(scene_config, "crop_min_x", n_variations) crop_max_x_values = random_range(scene_config, "crop_max_x", n_variations) crop_min_y_values = random_range(scene_config, "crop_min_y", n_variations) crop_max_y_values = random_range(scene_config, "crop_max_y", n_variations) resolution_percentage_values = random_range( scene_config, "resolution_percentage", n_variations ) for index, _ in enumerate(scene_parameters_list): scene_parameters_list[index] = scene_parameters_list[index]( aspect_ratio=aspect_ratio_values[index], color_mode=color_mode_values[index], exposure_value=exposure_value_values[index], contrast=contrast_values[index], crop_min_x=crop_min_x_values[index], crop_max_x=crop_max_x_values[index], crop_min_y=crop_min_y_values[index], crop_max_y=crop_max_y_values[index], resolution_x=resolution_values[index][0], resolution_y=resolution_values[index][1], resolution_percentage=resolution_percentage_values[index], render_engine=render_engine_values[index], ) return scene_parameters_list
[ "random.choices", "random.choice", "math.radians", "numpy.random.uniform" ]
[((1896, 1992), 'numpy.random.uniform', 'np.random.uniform', (["configs[variable]['range'][0]", "configs[variable]['range'][1]", 'variations'], {}), "(configs[variable]['range'][0], configs[variable]['range']\n [1], variations)\n", (1913, 1992), True, 'import numpy as np\n'), ((2421, 2500), 'random.choices', 'random.choices', (["configs[variable]['range']"], {'k': 'variations', 'weights': 'weight_values'}), "(configs[variable]['range'], k=variations, weights=weight_values)\n", (2435, 2500), False, 'import random\n'), ((2939, 2961), 'random.choice', 'random.choice', (['bg_list'], {}), '(bg_list)\n', (2952, 2961), False, 'import random\n'), ((5959, 6004), 'math.radians', 'math.radians', (['camera_x_rotation_values[index]'], {}), '(camera_x_rotation_values[index])\n', (5971, 6004), False, 'import math\n'), ((6036, 6081), 'math.radians', 'math.radians', (['camera_y_rotation_values[index]'], {}), '(camera_y_rotation_values[index])\n', (6048, 6081), False, 'import math\n'), ((6113, 6158), 'math.radians', 'math.radians', (['camera_z_rotation_values[index]'], {}), '(camera_z_rotation_values[index])\n', (6125, 6158), False, 'import math\n')]
import torch import torchvision import torch.nn as nn import numpy as np import torchvision.transforms as transforms # ================================================================== # # 目录 # # ================================================================== # # 1. autograd计算梯度举例1 (Line 25 to 39) # 2. autograd计算梯度举例2 (Line 46 to 83) # 3. 从numpy加载数据 (Line 90 to 97) # 4. 输入pipline (Line 104 to 129) # 5. 自定义数据的输入pipline (Line 136 to 156) # 6. 预定义模型 (Line 163 to 176) # 7. 保存和加载模型 (Line 183 to 189) # ================================================================== # # 1. autograd计算梯度举例1 # # ================================================================== # # 创建张量 x = torch.tensor(1., requires_grad=True) w = torch.tensor(2., requires_grad=True) b = torch.tensor(3., requires_grad=True) # 创建计算图 y = w * x + b # y = 2 * x + 3 # 计算梯度 y.backward() # 输出梯度 print(x.grad) print(w.grad) print(b.grad) ''' x.grad = tensor(2.) w.grad = tensor(1.) b.grad = tensor(1.) ''' # ================================================================== # # 2. autograd计算梯度举例2 # # ================================================================== # # 创建10×3和10×2的两个随机张量 x = torch.randn(10, 3) y = torch.randn(10, 2) # 构建两个全连接层 linear = nn.Linear(3, 2) print('w: ', linear.weight) print('b: ', linear.bias) ''' w: Parameter containing: tensor([[-0.0707, 0.2341, 0.4827], [-0.5092, -0.1537, 0.2582]], requires_grad=True) b: Parameter containing: tensor([ 0.5335, -0.2167], requires_grad=True) ''' # 构建损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(linear.parameters(), lr=0.01) # 前向传播 pred = linear(x) # 计算损失 loss = criterion(pred, y) print('loss: ', loss.item()) ''' loss: 1.831163763999939 ''' # 反向传播 loss.backward() # 输出梯度 print('dL/dw: ', linear.weight.grad) print('dL/db: ', linear.bias.grad) ''' dL/dw: tensor([[ 0.5340, 0.4947, 0.1947], [-0.1455, 0.5270, 0.6877]]) dL/db: tensor([ 0.5586, -0.8556]) ''' # 1步梯度下降 optimizer.step() # You can also perform gradient descent at the low level. # linear.weight.data.sub_(0.01 * linear.weight.grad.data) # linear.bias.data.sub_(0.01 * linear.bias.grad.data) # 打印出1步梯度下降后的损失 pred = linear(x) loss = criterion(pred, y) print('1步优化后的损失: ', loss.item()) ''' 1步优化后的损失: 1.631872534751892 ''' # ================================================================== # # 3. 从numpy加载数据 # # ================================================================== # # 创建一个numpy数组 x = np.array([[1, 2], [3, 4]]) # 将numpy数组转换为张量 y = torch.from_numpy(x) # 将张量转换为numpy数组 z = y.numpy() # ================================================================== # # 4. 输入pipeline # # ================================================================== # # 下载并构建CIFAR-10数据集. train_dataset = torchvision.datasets.CIFAR10(root='./data/', train=True, transform=transforms.ToTensor(), download=True) # 获取一对数据(从磁盘读数据) image, label = train_dataset[0] print(image.size()) print(label) ''' torch.Size([3, 32, 32]) 6 ''' # 数据加载器(提供队列和线程的方法). train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) # 迭代开始,队列和线程开始加载数据 data_iter = iter(train_loader) # 小批量图像和标签. images, labels = data_iter.next() # 数据加载器的实际使用情况 for images, labels in train_loader: # 训练代码写在此处 pass # ================================================================== # # 5. 自定义数据集的输入pipeline # # ================================================================== # # 构建自定义数据集 class CustomDataset(torch.utils.data.Dataset): def __init__(self): # TODO # 1. 初始化文件路径或者文件名列表 pass def __getitem__(self, index): # TODO # 1. 从文件中读取一个数据(例如numpy.fromfile, PIL.Image.open). # 2. 预处理数据(例如torchvision.Transform). # 3. 返回数据对(例如image and label). pass def __len__(self): # 返回数据集大小 return 0 # 使用预构建的数据加载器 # custom_dataset = CustomDataset() # train_loader = torch.utils.data.DataLoader(dataset=custom_dataset, # batch_size=64, # shuffle=True) # ================================================================== # # 6. 预训练模型 # # ================================================================== # # 下载并加载预训练的ResNet-18模型. resnet = torchvision.models.resnet18(pretrained=True) # 如果只想微调模型的顶层,请进行如下设置. for param in resnet.parameters(): param.requires_grad = False # 更换顶层以进行微调. resnet.fc = nn.Linear(resnet.fc.in_features, 100) # 前向计算 images = torch.randn(64, 3, 224, 224) outputs = resnet(images) print(outputs.size()) ''' 64x3x224x224->64x100 torch.Size([64, 100]) ''' # ================================================================== # # 7. 保存并加载模型 # # ================================================================== # # 保存并加载整个模型 torch.save(resnet, 'model.ckpt') model = torch.load('model.ckpt') # 仅保存和加载模型参数(推荐) torch.save(resnet.state_dict(), 'params.ckpt') resnet.load_state_dict(torch.load('params.ckpt'))
[ "torch.load", "torchvision.models.resnet18", "torch.from_numpy", "numpy.array", "torch.tensor", "torch.nn.MSELoss", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.save", "torchvision.transforms.ToTensor", "torch.randn" ]
[((953, 990), 'torch.tensor', 'torch.tensor', (['(1.0)'], {'requires_grad': '(True)'}), '(1.0, requires_grad=True)\n', (965, 990), False, 'import torch\n'), ((994, 1031), 'torch.tensor', 'torch.tensor', (['(2.0)'], {'requires_grad': '(True)'}), '(2.0, requires_grad=True)\n', (1006, 1031), False, 'import torch\n'), ((1035, 1072), 'torch.tensor', 'torch.tensor', (['(3.0)'], {'requires_grad': '(True)'}), '(3.0, requires_grad=True)\n', (1047, 1072), False, 'import torch\n'), ((1490, 1508), 'torch.randn', 'torch.randn', (['(10)', '(3)'], {}), '(10, 3)\n', (1501, 1508), False, 'import torch\n'), ((1513, 1531), 'torch.randn', 'torch.randn', (['(10)', '(2)'], {}), '(10, 2)\n', (1524, 1531), False, 'import torch\n'), ((1553, 1568), 'torch.nn.Linear', 'nn.Linear', (['(3)', '(2)'], {}), '(3, 2)\n', (1562, 1568), True, 'import torch.nn as nn\n'), ((1852, 1864), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (1862, 1864), True, 'import torch.nn as nn\n'), ((2833, 2859), 'numpy.array', 'np.array', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (2841, 2859), True, 'import numpy as np\n'), ((2881, 2900), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (2897, 2900), False, 'import torch\n'), ((3575, 3654), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'train_dataset', 'batch_size': '(64)', 'shuffle': '(True)'}), '(dataset=train_dataset, batch_size=64, shuffle=True)\n', (3602, 3654), False, 'import torch\n'), ((5011, 5055), 'torchvision.models.resnet18', 'torchvision.models.resnet18', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (5038, 5055), False, 'import torchvision\n'), ((5172, 5209), 'torch.nn.Linear', 'nn.Linear', (['resnet.fc.in_features', '(100)'], {}), '(resnet.fc.in_features, 100)\n', (5181, 5209), True, 'import torch.nn as nn\n'), ((5227, 5255), 'torch.randn', 'torch.randn', (['(64)', '(3)', '(224)', '(224)'], {}), '(64, 3, 224, 224)\n', (5238, 5255), False, 'import torch\n'), ((5575, 5607), 'torch.save', 'torch.save', (['resnet', '"""model.ckpt"""'], {}), "(resnet, 'model.ckpt')\n", (5585, 5607), False, 'import torch\n'), ((5616, 5640), 'torch.load', 'torch.load', (['"""model.ckpt"""'], {}), "('model.ckpt')\n", (5626, 5640), False, 'import torch\n'), ((5729, 5754), 'torch.load', 'torch.load', (['"""params.ckpt"""'], {}), "('params.ckpt')\n", (5739, 5754), False, 'import torch\n'), ((3338, 3359), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3357, 3359), True, 'import torchvision.transforms as transforms\n')]
import astropy.units as u import numpy as np from ..utils import cone_solid_angle #: Unit of the background rate IRF BACKGROUND_UNIT = u.Unit('s-1 TeV-1 sr-1') def background_2d(events, reco_energy_bins, fov_offset_bins, t_obs): """ Calculate background rates in radially symmetric bins in the field of view. GADF documentation here: https://gamma-astro-data-formats.readthedocs.io/en/latest/irfs/full_enclosure/bkg/index.html#bkg-2d Parameters ---------- events: astropy.table.QTable DL2 events table of the selected background events. Needed columns for this function: `reco_source_fov_offset`, `reco_energy`, `weight` reco_energy: astropy.units.Quantity[energy] The bins in reconstructed energy to be used for the IRF fov_offset_bins: astropy.units.Quantity[angle] The bins in the field of view offset to be used for the IRF t_obs: astropy.units.Quantity[time] Observation time. This must match with how the individual event weights are calculated. Returns ------- bg_rate: astropy.units.Quantity The background rate as particles per energy, time and solid angle in the specified bins. Shape: (len(reco_energy_bins) - 1, len(fov_offset_bins) - 1) """ hist, _, _ = np.histogram2d( events["reco_energy"].to_value(u.TeV), events["reco_source_fov_offset"].to_value(u.deg), bins=[ reco_energy_bins.to_value(u.TeV), fov_offset_bins.to_value(u.deg), ], weights=events['weight'], ) # divide all energy bins by their width # hist has shape (n_energy, n_fov_offset) so we need to transpose and then back bin_width_energy = np.diff(reco_energy_bins) per_energy = (hist.T / bin_width_energy).T # divide by solid angle in each fov bin and the observation time bin_solid_angle = np.diff(cone_solid_angle(fov_offset_bins)) bg_rate = per_energy / t_obs / bin_solid_angle return bg_rate.to(BACKGROUND_UNIT)
[ "numpy.diff", "astropy.units.Unit" ]
[((137, 161), 'astropy.units.Unit', 'u.Unit', (['"""s-1 TeV-1 sr-1"""'], {}), "('s-1 TeV-1 sr-1')\n", (143, 161), True, 'import astropy.units as u\n'), ((1738, 1763), 'numpy.diff', 'np.diff', (['reco_energy_bins'], {}), '(reco_energy_bins)\n', (1745, 1763), True, 'import numpy as np\n')]
#!/usr/bin/env pythonw import numpy as np import matplotlib.pyplot as plt def flip_coins(flips = 1000000, bins=100): # Uninformative prior prior = np.ones(bins, dtype='float')/bins likelihood_heads = np.arange(bins)/float(bins) likelihood_tails = 1-likelihood_heads flips = np.random.choice(a=[True, False], size=flips, p=[0.75, 0.25]) for coin in flips: if coin: # Heads posterior = prior * likelihood_heads else: # Tails posterior = prior * likelihood_tails # Normalize posterior /= np.sum(posterior) # The posterior is now the new prior prior = posterior return posterior plt.plot(np.arange(100)/float(100), flip_coins(10)) plt.plot(np.arange(100)/float(100), flip_coins(100)) plt.plot(np.arange(100)/float(100), flip_coins(1000)) plt.plot(np.arange(100)/float(100), flip_coins(10000)) plt.plot(np.arange(100)/float(100), flip_coins(100000)) plt.legend([10, 100, 1000, 10000, 100000]) plt.show()
[ "numpy.ones", "numpy.random.choice", "matplotlib.pyplot.legend", "numpy.sum", "numpy.arange", "matplotlib.pyplot.show" ]
[((954, 996), 'matplotlib.pyplot.legend', 'plt.legend', (['[10, 100, 1000, 10000, 100000]'], {}), '([10, 100, 1000, 10000, 100000])\n', (964, 996), True, 'import matplotlib.pyplot as plt\n'), ((997, 1007), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1005, 1007), True, 'import matplotlib.pyplot as plt\n'), ((296, 357), 'numpy.random.choice', 'np.random.choice', ([], {'a': '[True, False]', 'size': 'flips', 'p': '[0.75, 0.25]'}), '(a=[True, False], size=flips, p=[0.75, 0.25])\n', (312, 357), True, 'import numpy as np\n'), ((157, 185), 'numpy.ones', 'np.ones', (['bins'], {'dtype': '"""float"""'}), "(bins, dtype='float')\n", (164, 185), True, 'import numpy as np\n'), ((214, 229), 'numpy.arange', 'np.arange', (['bins'], {}), '(bins)\n', (223, 229), True, 'import numpy as np\n'), ((571, 588), 'numpy.sum', 'np.sum', (['posterior'], {}), '(posterior)\n', (577, 588), True, 'import numpy as np\n'), ((693, 707), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (702, 707), True, 'import numpy as np\n'), ((745, 759), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (754, 759), True, 'import numpy as np\n'), ((798, 812), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (807, 812), True, 'import numpy as np\n'), ((852, 866), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (861, 866), True, 'import numpy as np\n'), ((907, 921), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (916, 921), True, 'import numpy as np\n')]
import numpy as np import pandas as pd def batch_df2batch(df, evaluate_ids=(), n_obs=-1, tform=np.eye(3), is_vehicles_evaluated=False): """ Convert dataframe to SGAN input :param df: :param evaluate_ids: :param n_obs: number of timesteps observed :param tform: :param is_vehicles_evaluated: :return: """ if is_vehicles_evaluated: agent_ids = np.unique(df['agent_id']) else: agent_ids = np.unique(df[df['agent_type'] == 0]['agent_id']) # peds only # input transform df = tform_df(df, tform) # assume min t is the start t_inds = np.unique(np.sort(df['t'])) t0 = t_inds[0] skip = t_inds[1] - t_inds[0] abs_xy = np.zeros((n_obs, agent_ids.size, 2), dtype=np.float32) rel_xy = np.zeros_like(abs_xy) for i, agent_id in enumerate(agent_ids): for step, t in enumerate(range(t0, t0+n_obs*skip, skip)): xy = df[(df['agent_id'] == agent_id) & (df['t'] == t)][['x', 'y']] if xy.size > 0: abs_xy[step, i, :] = xy.values[0] else: abs_xy[step, i, :] = np.nan # for relative, 1st entry is 0,0, rest are the differences rel_xy[1:, i, :] = abs_xy[1:, i, :] - abs_xy[:-1, i, :] # handle observations w/zeros abs_xy[np.isnan(abs_xy)] = 0. rel_xy[np.isnan(rel_xy)] = 0. seq_start_end = [(0, agent_ids.size)] return abs_xy, rel_xy, seq_start_end def raw_pred2df(pred_list, evaluate_ids, evaluate_inds, tform=np.eye(3)): """ :param pred_list: [i] = n_preds, n_peds, 2 | list of sampled predictions - n_preds = number of timesteps predicted into future :param evaluate_ids: list of agent ids :param evaluate_inds: [i] = index of agent_id=evaluate_ids[i] in prediction :param tform: (3,3) | transformation matrix :return: """ merged_peds = np.stack(pred_list, axis=-1) # (n_preds, n_peds, 2, n_samples) n_preds = merged_peds.shape[0] n_samples = merged_peds.shape[3] cols = ['t', 'agent_id', 'x', 'y', 'sample_id', 'p'] INT_COLUMNS = [cols[i] for i in [0, 1, -2]] data = [] for ind, id in zip(evaluate_inds, evaluate_ids): for t in range(n_preds): z = np.zeros((n_samples, 1)) agent_t_info = np.hstack([ t + z, id + z, merged_peds[t, ind, :, :].T, np.arange(n_samples).reshape((n_samples, 1)), 1./n_samples + z, ]) data.append(agent_t_info) df = pd.DataFrame(np.vstack(data), columns=cols) df[['x', 'y']] = tform_2d_mat(df[['x', 'y']].values, tform) df[INT_COLUMNS] = df[INT_COLUMNS].astype(np.int) return df def tform_df(df, tform): xy = df[['x', 'y']] ret_df = df.copy() ret_df[['x', 'y']] = tform_2d_mat(xy, tform) return ret_df def tform_2d_mat(xy, tform): xy1 = np.hstack([xy, np.ones((xy.shape[0], 1))]) xy1_p = (tform.dot(xy1.T)).T return xy1_p[:, :2]
[ "numpy.eye", "numpy.unique", "numpy.ones", "numpy.sort", "numpy.stack", "numpy.zeros", "numpy.isnan", "numpy.vstack", "numpy.zeros_like", "numpy.arange" ]
[((97, 106), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (103, 106), True, 'import numpy as np\n'), ((707, 761), 'numpy.zeros', 'np.zeros', (['(n_obs, agent_ids.size, 2)'], {'dtype': 'np.float32'}), '((n_obs, agent_ids.size, 2), dtype=np.float32)\n', (715, 761), True, 'import numpy as np\n'), ((775, 796), 'numpy.zeros_like', 'np.zeros_like', (['abs_xy'], {}), '(abs_xy)\n', (788, 796), True, 'import numpy as np\n'), ((1507, 1516), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (1513, 1516), True, 'import numpy as np\n'), ((1882, 1910), 'numpy.stack', 'np.stack', (['pred_list'], {'axis': '(-1)'}), '(pred_list, axis=-1)\n', (1890, 1910), True, 'import numpy as np\n'), ((397, 422), 'numpy.unique', 'np.unique', (["df['agent_id']"], {}), "(df['agent_id'])\n", (406, 422), True, 'import numpy as np\n'), ((453, 501), 'numpy.unique', 'np.unique', (["df[df['agent_type'] == 0]['agent_id']"], {}), "(df[df['agent_type'] == 0]['agent_id'])\n", (462, 501), True, 'import numpy as np\n'), ((623, 639), 'numpy.sort', 'np.sort', (["df['t']"], {}), "(df['t'])\n", (630, 639), True, 'import numpy as np\n'), ((1303, 1319), 'numpy.isnan', 'np.isnan', (['abs_xy'], {}), '(abs_xy)\n', (1311, 1319), True, 'import numpy as np\n'), ((1337, 1353), 'numpy.isnan', 'np.isnan', (['rel_xy'], {}), '(rel_xy)\n', (1345, 1353), True, 'import numpy as np\n'), ((2566, 2581), 'numpy.vstack', 'np.vstack', (['data'], {}), '(data)\n', (2575, 2581), True, 'import numpy as np\n'), ((2239, 2263), 'numpy.zeros', 'np.zeros', (['(n_samples, 1)'], {}), '((n_samples, 1))\n', (2247, 2263), True, 'import numpy as np\n'), ((2925, 2950), 'numpy.ones', 'np.ones', (['(xy.shape[0], 1)'], {}), '((xy.shape[0], 1))\n', (2932, 2950), True, 'import numpy as np\n'), ((2411, 2431), 'numpy.arange', 'np.arange', (['n_samples'], {}), '(n_samples)\n', (2420, 2431), True, 'import numpy as np\n')]
import numpy as npy def convert(num): if num < 0: # num = -num num *= 1024 # num += 32768 num = int(num - 0.5) num = 65535 + num n_str = str(hex(num))[2:] if len(n_str) == 1: n_str = 'fff' + n_str elif len(n_str) == 2: n_str = 'ff' + n_str elif len(n_str) == 3: n_str = 'f' + n_str return n_str else: num *= 1024 num = int(num + 0.5) n_str = str(hex(num))[2:] if len(n_str) == 1: n_str = '000' + n_str elif len(n_str) == 2: n_str = '00' + n_str elif len(n_str) == 3: n_str = '0' + n_str return n_str file = open('16bit.coe', 'w') file_str = "memory_initialization_radix=16;\nmemory_initialization_vector=\n" # fc1 params fc1_w = npy.load('dense_kernel_0.npy') for r in range(128): cnt_128 = 0 unit_128_8 = '' for c in range(1024): unit_128_8 += convert(fc1_w[c][r]) if cnt_128 < 127: cnt_128 += 1 else: cnt_128 = 0 file_str += unit_128_8 + ',\n' unit_128_8 = '' fc1_b = npy.load('dense_bias_0.npy') unit_128_8 = '' for i in range(128): unit_128_8 += convert(fc1_b[i]) file_str += unit_128_8 + ',\n' # fc2 params fc2_w = npy.load('dense_1_kernel_0.npy') for r in range(128): unit_128_8 = '' for c in range(128): unit_128_8 += convert(fc2_w[c][r]) unit_128_8 += ',\n' file_str += unit_128_8 fc2_b = npy.load('dense_1_bias_0.npy') unit_128_8 = '' for i in range(128): unit_128_8 += convert(fc2_b[i]) file_str += unit_128_8 + ',\n' # fc3 params fc3_w = npy.load('dense_2_kernel_0.npy') for r in range(10): unit_128_8 = '' for c in range(128): unit_128_8 += convert(fc3_w[c][r]) unit_128_8 += ',\n' file_str += unit_128_8 fc3_b = npy.load('dense_2_bias_0.npy') unit_128_8 = '' for i in range(128): if i < 10: unit_128_8 += convert(fc3_b[i]) else: unit_128_8 += '0000' file_str += unit_128_8 + ';' file.write(file_str)
[ "numpy.load" ]
[((849, 879), 'numpy.load', 'npy.load', (['"""dense_kernel_0.npy"""'], {}), "('dense_kernel_0.npy')\n", (857, 879), True, 'import numpy as npy\n'), ((1175, 1203), 'numpy.load', 'npy.load', (['"""dense_bias_0.npy"""'], {}), "('dense_bias_0.npy')\n", (1183, 1203), True, 'import numpy as npy\n'), ((1330, 1362), 'numpy.load', 'npy.load', (['"""dense_1_kernel_0.npy"""'], {}), "('dense_1_kernel_0.npy')\n", (1338, 1362), True, 'import numpy as npy\n'), ((1532, 1562), 'numpy.load', 'npy.load', (['"""dense_1_bias_0.npy"""'], {}), "('dense_1_bias_0.npy')\n", (1540, 1562), True, 'import numpy as npy\n'), ((1689, 1721), 'numpy.load', 'npy.load', (['"""dense_2_kernel_0.npy"""'], {}), "('dense_2_kernel_0.npy')\n", (1697, 1721), True, 'import numpy as npy\n'), ((1890, 1920), 'numpy.load', 'npy.load', (['"""dense_2_bias_0.npy"""'], {}), "('dense_2_bias_0.npy')\n", (1898, 1920), True, 'import numpy as npy\n')]
import numpy as np import queue import cv2 import os import datetime SIZE = 32 SCALE = 0.007874015748031496 def quantized_np(array,scale,data_width=8): quantized_array= np.round(array/scale) quantized_array = np.maximum(quantized_array, -2**(data_width-1)) quantized_array = np.minimum(quantized_array, 2**(data_width-1)-1) return quantized_array def get_x_y_cuts(data, n_lines=1): w, h = data.shape visited = set() q = queue.Queue() offset = [(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)] cuts = [] for y in range(h): for x in range(w): x_axis = [] y_axis = [] if data[x][y] < 200 and (x, y) not in visited: q.put((x, y)) visited.add((x, y)) while not q.empty(): x_p, y_p = q.get() for x_offset, y_offset in offset: x_c, y_c = x_p + x_offset, y_p + y_offset if (x_c, y_c) in visited: continue visited.add((x_c, y_c)) try: if data[x_c][y_c] < 200: q.put((x_c, y_c)) x_axis.append(x_c) y_axis.append(y_c) except: pass if x_axis: min_x, max_x = min(x_axis), max(x_axis) min_y, max_y = min(y_axis), max(y_axis) if max_x - min_x > 3 and max_y - min_y > 3: cuts.append([min_x, max_x + 1, min_y, max_y + 1]) if n_lines == 1: cuts = sorted(cuts, key=lambda x: x[2]) pr_item = cuts[0] count = 1 len_cuts = len(cuts) new_cuts = [cuts[0]] pr_k = 0 for i in range(1, len_cuts): pr_item = new_cuts[pr_k] now_item = cuts[i] if not (now_item[2] > pr_item[3]): new_cuts[pr_k][0] = min(pr_item[0], now_item[0]) new_cuts[pr_k][1] = max(pr_item[1], now_item[1]) new_cuts[pr_k][2] = min(pr_item[2], now_item[2]) new_cuts[pr_k][3] = max(pr_item[3], now_item[3]) else: new_cuts.append(now_item) pr_k += 1 cuts = new_cuts return cuts def get_image_cuts(image, dir=None, is_data=False, n_lines=1, data_needed=False, count=0,QUAN = False): if is_data: data = image else: data = cv2.imread(image, 2) cuts = get_x_y_cuts(data, n_lines=n_lines) image_cuts = None for i, item in enumerate(cuts): count += 1 max_dim = max(item[1] - item[0], item[3] - item[2]) new_data = np.ones((int(1.4 * max_dim), int(1.4 * max_dim))) * 255 x_min, x_max = ( max_dim - item[1] + item[0]) // 2, (max_dim - item[1] + item[0]) // 2 + item[1] - item[0] y_min, y_max = ( max_dim - item[3] + item[2]) // 2, (max_dim - item[3] + item[2]) // 2 + item[3] - item[2] new_data[int(0.2 * max_dim) + x_min:int(0.2 * max_dim) + x_max, int(0.2 * max_dim) + y_min:int(0.2 * max_dim) + y_max] = data[item[0]:item[1], item[2]:item[3]] standard_data = cv2.resize(new_data, (SIZE, SIZE)) if not data_needed: cv2.imwrite(dir + str(count) + ".jpg", standard_data) if data_needed: data_flat = np.reshape(standard_data, (1, SIZE*SIZE)) data_flat = (255 - data_flat) / 255 if QUAN == True: data_flat = quantized_np(data_flat,SCALE,data_width=8) else: pass if image_cuts is None: image_cuts = data_flat else: image_cuts = np.r_[image_cuts, data_flat] if data_needed: return image_cuts return count def main(img_dir): for file in os.listdir(img_dir): if file.endswith('jpeg'): path = os.path.join(img_dir, file) oldtime = datetime.datetime.now() #count = process.get_image_cuts(path, dir='./dataset/'+file.split('.')[0]+'_cut',count=0) image_cuts = get_image_cuts( path, dir = img_dir + file.split('.')[0]+'_cut', count=0, data_needed=True) newtime = datetime.datetime.now() Totaltime = (newtime-oldtime).microseconds print("image cut time: ", Totaltime) print(np.size(image_cuts, 0)) if __name__ == '__main__': img_dir = './dataset' main(img_dir)
[ "os.listdir", "numpy.reshape", "numpy.minimum", "cv2.resize", "numpy.size", "os.path.join", "queue.Queue", "datetime.datetime.now", "numpy.maximum", "cv2.imread", "numpy.round" ]
[((175, 198), 'numpy.round', 'np.round', (['(array / scale)'], {}), '(array / scale)\n', (183, 198), True, 'import numpy as np\n'), ((219, 270), 'numpy.maximum', 'np.maximum', (['quantized_array', '(-2 ** (data_width - 1))'], {}), '(quantized_array, -2 ** (data_width - 1))\n', (229, 270), True, 'import numpy as np\n'), ((289, 343), 'numpy.minimum', 'np.minimum', (['quantized_array', '(2 ** (data_width - 1) - 1)'], {}), '(quantized_array, 2 ** (data_width - 1) - 1)\n', (299, 343), True, 'import numpy as np\n'), ((451, 464), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (462, 464), False, 'import queue\n'), ((3947, 3966), 'os.listdir', 'os.listdir', (['img_dir'], {}), '(img_dir)\n', (3957, 3966), False, 'import os\n'), ((2533, 2553), 'cv2.imread', 'cv2.imread', (['image', '(2)'], {}), '(image, 2)\n', (2543, 2553), False, 'import cv2\n'), ((3277, 3311), 'cv2.resize', 'cv2.resize', (['new_data', '(SIZE, SIZE)'], {}), '(new_data, (SIZE, SIZE))\n', (3287, 3311), False, 'import cv2\n'), ((3454, 3497), 'numpy.reshape', 'np.reshape', (['standard_data', '(1, SIZE * SIZE)'], {}), '(standard_data, (1, SIZE * SIZE))\n', (3464, 3497), True, 'import numpy as np\n'), ((4021, 4048), 'os.path.join', 'os.path.join', (['img_dir', 'file'], {}), '(img_dir, file)\n', (4033, 4048), False, 'import os\n'), ((4071, 4094), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4092, 4094), False, 'import datetime\n'), ((4352, 4375), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4373, 4375), False, 'import datetime\n'), ((4498, 4520), 'numpy.size', 'np.size', (['image_cuts', '(0)'], {}), '(image_cuts, 0)\n', (4505, 4520), True, 'import numpy as np\n')]
import numpy as np import time def max_subsequence_sum(sequence): max_sum = 0 for i in range(0, len(sequence)): for j in range(i, len(sequence)): this_sum = 0 for k in range(i, j+1): this_sum += sequence[k] if this_sum > max_sum: max_sum = this_sum return max_sum seq = np.random.randint(-100000,100000,size=1000) start = time.time() result = max_subsequence_sum(seq) print(time.time() - start)
[ "numpy.random.randint", "time.time" ]
[((372, 417), 'numpy.random.randint', 'np.random.randint', (['(-100000)', '(100000)'], {'size': '(1000)'}), '(-100000, 100000, size=1000)\n', (389, 417), True, 'import numpy as np\n'), ((424, 435), 'time.time', 'time.time', ([], {}), '()\n', (433, 435), False, 'import time\n'), ((476, 487), 'time.time', 'time.time', ([], {}), '()\n', (485, 487), False, 'import time\n')]
import numpy as np from pyFAI.multi_geometry import MultiGeometry from pyFAI.ext import splitBBox def inpaint_saxs(imgs, ais, masks): """ Inpaint the 2D image collected by the pixel detector to remove artifacts in later data reduction Parameters: ----------- :param imgs: List of 2D image in pixel :type imgs: ndarray :param ais: List of AzimuthalIntegrator/Transform generated using pyGIX/pyFAI which contain the information about the experiment geometry :type ais: list of AzimuthalIntegrator / TransformIntegrator :param masks: List of 2D image (same dimension as imgs) :type masks: ndarray """ inpaints, mask_inpaints = [], [] for i, (img, ai, mask) in enumerate(zip(imgs, ais, masks)): inpaints.append(ai.inpainting(img.copy(order='C'), mask)) mask_inpaints.append(np.logical_not(np.ones_like(mask))) return inpaints, mask_inpaints def cake_saxs(inpaints, ais, masks, radial_range=(0, 60), azimuth_range=(-90, 90), npt_rad=250, npt_azim=250): """ Unwrapp the stitched image from q-space to 2theta-Chi space (Radial-Azimuthal angle) Parameters: ----------- :param inpaints: List of 2D inpainted images :type inpaints: List of ndarray :param ais: List of AzimuthalIntegrator/Transform generated using pyGIX/pyFAI which contain the information about the experiment geometry :type ais: list of AzimuthalIntegrator / TransformIntegrator :param masks: List of 2D image (same dimension as inpaints) :type masks: List of ndarray :param radial_range: minimum and maximum of the radial range in degree :type radial_range: Tuple :param azimuth_range: minimum and maximum of the 2th range in degree :type azimuth_range: Tuple :param npt_rad: number of point in the radial range :type npt_rad: int :param npt_azim: number of point in the azimuthal range :type npt_azim: int """ mg = MultiGeometry(ais, unit='q_A^-1', radial_range=radial_range, azimuth_range=azimuth_range, wavelength=None, empty=0.0, chi_disc=180) cake, q, chi = mg.integrate2d(lst_data=inpaints, npt_rad=npt_rad, npt_azim=npt_azim, correctSolidAngle=True, lst_mask=masks) return cake, q, chi[::-1] def integrate_rad_saxs(inpaints, ais, masks, radial_range=(0, 40), azimuth_range=(0, 90), npt=2000): """ Radial integration of transmission data using the pyFAI multigeometry module Parameters: ----------- :param inpaints: List of 2D inpainted images :type inpaints: List of ndarray :param ais: List of AzimuthalIntegrator/Transform generated using pyGIX/pyFAI which contain the information about the experiment geometry :type ais: list of AzimuthalIntegrator / TransformIntegrator :param masks: List of 2D image (same dimension as inpaints) :type masks: List of ndarray :param radial_range: minimum and maximum of the radial range in degree :type radial_range: Tuple :param azimuth_range: minimum and maximum of the 2th range in degree :type azimuth_range: Tuple :param npt: number of point of the final 1D profile :type npt: int """ mg = MultiGeometry(ais, unit='q_A^-1', radial_range=radial_range, azimuth_range=azimuth_range, wavelength=None, empty=-1, chi_disc=180) q, i_rad = mg.integrate1d(lst_data=inpaints, npt=npt, correctSolidAngle=True, lst_mask=masks) return q, i_rad def integrate_azi_saxs(cake, q_array, chi_array, radial_range=(0, 10), azimuth_range=(-90, 0)): """ Azimuthal integration of transmission data using masked array on a caked images (image in 2-theta_chi space) Parameters: ----------- :param cake: 2D array unwrapped in 2th-chi space :type cake: ndarray (same dimension as tth_array and chiarray) :param q_array: 2D array containing 2th angles of each pixel :type q_array: ndarray (same dimension as cake and chiarray) :param chi_array: 2D array containing chi angles of each pixel :type chi_array: ndarray (same dimension as cake and tth_array) :param radial_range: minimum and maximum of the radial range in degree :type radial_range: Tuple :param azimuth_range: minimum and maximum of the 2th range in degree :type azimuth_range: Tuple """ q_mesh, chi_mesh = np.meshgrid(q_array, chi_array) cake_mask = np.ma.masked_array(cake) cake_mask = np.ma.masked_where(q_mesh < radial_range[0], cake_mask) cake_mask = np.ma.masked_where(q_mesh > radial_range[1], cake_mask) cake_mask = np.ma.masked_where(azimuth_range[0] > chi_mesh, cake_mask) cake_mask = np.ma.masked_where(azimuth_range[1] < chi_mesh, cake_mask) i_azi = cake_mask.mean(axis=1) return chi_array, i_azi def integrate_rad_gisaxs(img, q_par, q_per, bins=1000, radial_range=None, azimuth_range=None): """ Radial integration of Grazing incidence data using the pyFAI multigeometry module Parameters: ----------- :param q_par: minimum and maximum q_par (in A-1) of the input image :type q_par: Tuple :param q_per: minimum and maximum of q_par in A-1 :type q_per: Tuple :param bins: number of point of the final 1D profile :type bins: int :param img: 2D array containing the stitched intensity :type img: ndarray :param radial_range: q_par range (in A-1) at the which the integration will be done :type radial_range: Tuple :param azimuth_range: q_per range (in A-1) at the which the integration will be done :type azimuth_range: Tuple """ # recalculate the q-range of the input array q_h = np.linspace(q_par[0], q_par[-1], np.shape(img)[1]) q_v = np.linspace(q_per[0], q_per[-1], np.shape(img)[0])[::-1] if radial_range is None: radial_range = (0, q_h.max()) if azimuth_range is None: azimuth_range = (0, q_v.max()) q_h_te, q_v_te = np.meshgrid(q_h, q_v) tth_array = np.sqrt(q_h_te ** 2 + q_v_te ** 2) chi_array = np.rad2deg(np.arctan2(q_h_te, q_v_te)) # Mask the remeshed array img_mask = np.ma.masked_array(img, mask=img == 0) img_mask = np.ma.masked_where(img < 1E-5, img_mask) img_mask = np.ma.masked_where(tth_array < radial_range[0], img_mask) img_mask = np.ma.masked_where(tth_array > radial_range[1], img_mask) img_mask = np.ma.masked_where(chi_array < np.min(azimuth_range), img_mask) img_mask = np.ma.masked_where(chi_array > np.max(azimuth_range), img_mask) q_rad, i_rad, _, _ = splitBBox.histoBBox1d(img_mask, pos0=tth_array, delta_pos0=np.ones_like(img_mask) * (q_par[1] - q_par[0])/np.shape( img_mask)[1], pos1=q_v_te, delta_pos1=np.ones_like(img_mask) * (q_per[1] - q_per[0])/np.shape( img_mask)[0], bins=bins, pos0Range=np.array([np.min(tth_array), np.max(tth_array)]), pos1Range=q_per, dummy=None, delta_dummy=None, mask=img_mask.mask ) return q_rad, i_rad def integrate_qpar(img, q_par, q_per, q_par_range=None, q_per_range=None): """ Horizontal integration of a 2D array using masked array Parameters: ----------- :param q_par: minimum and maximum q_par (in A-1) of the input image :type q_par: Tuple :param q_per: minimum and maximum of q_par in A-1 :type q_per: Tuple :param img: 2D array containing intensity :type img: ndarray :param q_par_range: q_par range (in A-1) at the which the integration will be done :type q_par_range: Tuple :param q_per_range: q_per range (in A-1) at the which the integration will be done :type q_per_range: Tuple """ if q_par_range is None: q_par_range = (np.asarray(q_par).min(), np.asarray(q_par).max()) if q_per_range is None: q_per_range = (np.asarray(q_per).min(), np.asarray(q_per).max()) q_par = np.linspace(q_par[0], q_par[1], np.shape(img)[1]) q_per = np.linspace(q_per[0], q_per[1], np.shape(img)[0])[::-1] qpar_mesh, qper_mesh = np.meshgrid(q_par, q_per) img_mask = np.ma.masked_array(img, mask=img == 0) img_mask = np.ma.masked_where(qper_mesh < q_per_range[0], img_mask) img_mask = np.ma.masked_where(qper_mesh > q_per_range[1], img_mask) img_mask = np.ma.masked_where(q_par_range[0] > qpar_mesh, img_mask) img_mask = np.ma.masked_where(q_par_range[1] < qpar_mesh, img_mask) i_par = np.mean(img_mask, axis=0) return q_par, i_par def integrate_qper(img, q_par, q_per, q_par_range=None, q_per_range=None): """ Vertical integration of a 2D array using masked array Parameters: ----------- :param q_par: minimum and maximum q_par (in A-1) of the input image :type q_par: Tuple :param q_per: minimum and maximum of q_par in A-1 :type q_per: Tuple :param img: 2D array containing intensity :type img: ndarray :param q_par_range: q_par range (in A-1) at the which the integration will be done :type q_par_range: Tuple :param q_per_range: q_per range (in A-1) at the which the integration will be done :type q_per_range: Tuple """ if q_par_range is None: q_par_range = (np.asarray(q_par).min(), np.asarray(q_par).max()) if q_per_range is None: q_per_range = (np.asarray(q_per).min(), np.asarray(q_per).max()) q_par = np.linspace(q_par[0], q_par[1], np.shape(img)[1]) q_per = np.linspace(q_per[0], q_per[1], np.shape(img)[0])[::-1] q_par_mesh, q_per_mesh = np.meshgrid(q_par, q_per) img_mask = np.ma.masked_array(img, mask=img == 0) img_mask = np.ma.masked_where(q_per_mesh < q_per_range[0], img_mask) img_mask = np.ma.masked_where(q_per_mesh > q_per_range[1], img_mask) img_mask = np.ma.masked_where(q_par_mesh < q_par_range[0], img_mask) img_mask = np.ma.masked_where(q_par_mesh > q_par_range[1], img_mask) i_per = np.mean(img_mask, axis=1) return q_per, i_per # TODO: Implement azimuthal integration for GI def cake_gisaxs(img, q_par, q_per, bins=None, radial_range=None, azimuth_range=None): """ Unwrap the stitched image from q-space to 2theta-Chi space (Radial-Azimuthal angle) Parameters: ----------- :param img: List of 2D images :type img: List of ndarray :param q_par: minimum and maximum q_par (in A-1) of the input image :type q_par: Tuple :param q_per: minimum and maximum of q_par in A-1 :type q_per: Tuple :param bins: number of point in both x and y direction of the final cake :type bins: Tuple :param radial_range: minimum and maximum of the radial range in degree :type radial_range: Tuple :param azimuth_range: minimum and maximum of the 2th range in degree :type azimuth_range: Tuple """ if bins is None: bins = tuple(reversed(img.shape)) if radial_range is None: radial_range = (0, q_par[-1]) if azimuth_range is None: azimuth_range = (-180, 180) azimuth_range = np.deg2rad(azimuth_range) # recalculate the q-range of the input array q_h = np.linspace(q_par[0], q_par[-1], bins[0]) q_v = np.linspace(q_per[0], q_per[-1], bins[1])[::-1] q_h_te, q_v_te = np.meshgrid(q_h, q_v) tth_array = np.sqrt(q_h_te**2 + q_v_te**2) chi_array = -np.arctan2(q_h_te, q_v_te) # Mask the remeshed array img_mask = np.ma.masked_array(img, mask=img == 0) img_mask = np.ma.masked_where(tth_array < radial_range[0], img_mask) img_mask = np.ma.masked_where(tth_array > radial_range[1], img_mask) img_mask = np.ma.masked_where(chi_array < np.min(azimuth_range), img_mask) img_mask = np.ma.masked_where(chi_array > np.max(azimuth_range), img_mask) cake, q, chi, _, _ = splitBBox.histoBBox2d(weights=img_mask, pos0=tth_array, delta_pos0=np.ones_like(img_mask) * (q_par[1] - q_par[0])/bins[1], pos1=chi_array, delta_pos1=np.ones_like(img_mask) * (q_per[1] - q_per[0])/bins[1], bins=bins, pos0Range=np.array([np.min(radial_range), np.max(radial_range)]), pos1Range=np.array([np.min(azimuth_range), np.max(azimuth_range)]), dummy=None, delta_dummy=None, mask=img_mask.mask) return cake, q, np.rad2deg(chi)[::-1]
[ "numpy.mean", "numpy.shape", "numpy.ones_like", "numpy.sqrt", "numpy.asarray", "numpy.ma.masked_where", "numpy.max", "numpy.deg2rad", "numpy.linspace", "numpy.arctan2", "numpy.min", "numpy.meshgrid", "pyFAI.multi_geometry.MultiGeometry", "numpy.rad2deg", "numpy.ma.masked_array" ]
[((1972, 2108), 'pyFAI.multi_geometry.MultiGeometry', 'MultiGeometry', (['ais'], {'unit': '"""q_A^-1"""', 'radial_range': 'radial_range', 'azimuth_range': 'azimuth_range', 'wavelength': 'None', 'empty': '(0.0)', 'chi_disc': '(180)'}), "(ais, unit='q_A^-1', radial_range=radial_range, azimuth_range=\n azimuth_range, wavelength=None, empty=0.0, chi_disc=180)\n", (1985, 2108), False, 'from pyFAI.multi_geometry import MultiGeometry\n'), ((3455, 3590), 'pyFAI.multi_geometry.MultiGeometry', 'MultiGeometry', (['ais'], {'unit': '"""q_A^-1"""', 'radial_range': 'radial_range', 'azimuth_range': 'azimuth_range', 'wavelength': 'None', 'empty': '(-1)', 'chi_disc': '(180)'}), "(ais, unit='q_A^-1', radial_range=radial_range, azimuth_range=\n azimuth_range, wavelength=None, empty=-1, chi_disc=180)\n", (3468, 3590), False, 'from pyFAI.multi_geometry import MultiGeometry\n'), ((4812, 4843), 'numpy.meshgrid', 'np.meshgrid', (['q_array', 'chi_array'], {}), '(q_array, chi_array)\n', (4823, 4843), True, 'import numpy as np\n'), ((4860, 4884), 'numpy.ma.masked_array', 'np.ma.masked_array', (['cake'], {}), '(cake)\n', (4878, 4884), True, 'import numpy as np\n'), ((4902, 4957), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_mesh < radial_range[0])', 'cake_mask'], {}), '(q_mesh < radial_range[0], cake_mask)\n', (4920, 4957), True, 'import numpy as np\n'), ((4974, 5029), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_mesh > radial_range[1])', 'cake_mask'], {}), '(q_mesh > radial_range[1], cake_mask)\n', (4992, 5029), True, 'import numpy as np\n'), ((5047, 5105), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(azimuth_range[0] > chi_mesh)', 'cake_mask'], {}), '(azimuth_range[0] > chi_mesh, cake_mask)\n', (5065, 5105), True, 'import numpy as np\n'), ((5122, 5180), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(azimuth_range[1] < chi_mesh)', 'cake_mask'], {}), '(azimuth_range[1] < chi_mesh, cake_mask)\n', (5140, 5180), True, 'import numpy as np\n'), ((6382, 6403), 'numpy.meshgrid', 'np.meshgrid', (['q_h', 'q_v'], {}), '(q_h, q_v)\n', (6393, 6403), True, 'import numpy as np\n'), ((6420, 6454), 'numpy.sqrt', 'np.sqrt', (['(q_h_te ** 2 + q_v_te ** 2)'], {}), '(q_h_te ** 2 + q_v_te ** 2)\n', (6427, 6454), True, 'import numpy as np\n'), ((6556, 6594), 'numpy.ma.masked_array', 'np.ma.masked_array', (['img'], {'mask': '(img == 0)'}), '(img, mask=img == 0)\n', (6574, 6594), True, 'import numpy as np\n'), ((6611, 6652), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(img < 1e-05)', 'img_mask'], {}), '(img < 1e-05, img_mask)\n', (6629, 6652), True, 'import numpy as np\n'), ((6667, 6724), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(tth_array < radial_range[0])', 'img_mask'], {}), '(tth_array < radial_range[0], img_mask)\n', (6685, 6724), True, 'import numpy as np\n'), ((6740, 6797), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(tth_array > radial_range[1])', 'img_mask'], {}), '(tth_array > radial_range[1], img_mask)\n', (6758, 6797), True, 'import numpy as np\n'), ((9010, 9035), 'numpy.meshgrid', 'np.meshgrid', (['q_par', 'q_per'], {}), '(q_par, q_per)\n', (9021, 9035), True, 'import numpy as np\n'), ((9051, 9089), 'numpy.ma.masked_array', 'np.ma.masked_array', (['img'], {'mask': '(img == 0)'}), '(img, mask=img == 0)\n', (9069, 9089), True, 'import numpy as np\n'), ((9106, 9162), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(qper_mesh < q_per_range[0])', 'img_mask'], {}), '(qper_mesh < q_per_range[0], img_mask)\n', (9124, 9162), True, 'import numpy as np\n'), ((9178, 9234), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(qper_mesh > q_per_range[1])', 'img_mask'], {}), '(qper_mesh > q_per_range[1], img_mask)\n', (9196, 9234), True, 'import numpy as np\n'), ((9251, 9307), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_par_range[0] > qpar_mesh)', 'img_mask'], {}), '(q_par_range[0] > qpar_mesh, img_mask)\n', (9269, 9307), True, 'import numpy as np\n'), ((9323, 9379), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_par_range[1] < qpar_mesh)', 'img_mask'], {}), '(q_par_range[1] < qpar_mesh, img_mask)\n', (9341, 9379), True, 'import numpy as np\n'), ((9393, 9418), 'numpy.mean', 'np.mean', (['img_mask'], {'axis': '(0)'}), '(img_mask, axis=0)\n', (9400, 9418), True, 'import numpy as np\n'), ((10463, 10488), 'numpy.meshgrid', 'np.meshgrid', (['q_par', 'q_per'], {}), '(q_par, q_per)\n', (10474, 10488), True, 'import numpy as np\n'), ((10504, 10542), 'numpy.ma.masked_array', 'np.ma.masked_array', (['img'], {'mask': '(img == 0)'}), '(img, mask=img == 0)\n', (10522, 10542), True, 'import numpy as np\n'), ((10559, 10616), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_per_mesh < q_per_range[0])', 'img_mask'], {}), '(q_per_mesh < q_per_range[0], img_mask)\n', (10577, 10616), True, 'import numpy as np\n'), ((10632, 10689), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_per_mesh > q_per_range[1])', 'img_mask'], {}), '(q_per_mesh > q_per_range[1], img_mask)\n', (10650, 10689), True, 'import numpy as np\n'), ((10706, 10763), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_par_mesh < q_par_range[0])', 'img_mask'], {}), '(q_par_mesh < q_par_range[0], img_mask)\n', (10724, 10763), True, 'import numpy as np\n'), ((10779, 10836), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(q_par_mesh > q_par_range[1])', 'img_mask'], {}), '(q_par_mesh > q_par_range[1], img_mask)\n', (10797, 10836), True, 'import numpy as np\n'), ((10850, 10875), 'numpy.mean', 'np.mean', (['img_mask'], {'axis': '(1)'}), '(img_mask, axis=1)\n', (10857, 10875), True, 'import numpy as np\n'), ((11935, 11960), 'numpy.deg2rad', 'np.deg2rad', (['azimuth_range'], {}), '(azimuth_range)\n', (11945, 11960), True, 'import numpy as np\n'), ((12021, 12062), 'numpy.linspace', 'np.linspace', (['q_par[0]', 'q_par[-1]', 'bins[0]'], {}), '(q_par[0], q_par[-1], bins[0])\n', (12032, 12062), True, 'import numpy as np\n'), ((12143, 12164), 'numpy.meshgrid', 'np.meshgrid', (['q_h', 'q_v'], {}), '(q_h, q_v)\n', (12154, 12164), True, 'import numpy as np\n'), ((12181, 12215), 'numpy.sqrt', 'np.sqrt', (['(q_h_te ** 2 + q_v_te ** 2)'], {}), '(q_h_te ** 2 + q_v_te ** 2)\n', (12188, 12215), True, 'import numpy as np\n'), ((12302, 12340), 'numpy.ma.masked_array', 'np.ma.masked_array', (['img'], {'mask': '(img == 0)'}), '(img, mask=img == 0)\n', (12320, 12340), True, 'import numpy as np\n'), ((12357, 12414), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(tth_array < radial_range[0])', 'img_mask'], {}), '(tth_array < radial_range[0], img_mask)\n', (12375, 12414), True, 'import numpy as np\n'), ((12430, 12487), 'numpy.ma.masked_where', 'np.ma.masked_where', (['(tth_array > radial_range[1])', 'img_mask'], {}), '(tth_array > radial_range[1], img_mask)\n', (12448, 12487), True, 'import numpy as np\n'), ((6482, 6508), 'numpy.arctan2', 'np.arctan2', (['q_h_te', 'q_v_te'], {}), '(q_h_te, q_v_te)\n', (6492, 6508), True, 'import numpy as np\n'), ((12073, 12114), 'numpy.linspace', 'np.linspace', (['q_per[0]', 'q_per[-1]', 'bins[1]'], {}), '(q_per[0], q_per[-1], bins[1])\n', (12084, 12114), True, 'import numpy as np\n'), ((12229, 12255), 'numpy.arctan2', 'np.arctan2', (['q_h_te', 'q_v_te'], {}), '(q_h_te, q_v_te)\n', (12239, 12255), True, 'import numpy as np\n'), ((6138, 6151), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (6146, 6151), True, 'import numpy as np\n'), ((6844, 6865), 'numpy.min', 'np.min', (['azimuth_range'], {}), '(azimuth_range)\n', (6850, 6865), True, 'import numpy as np\n'), ((6923, 6944), 'numpy.max', 'np.max', (['azimuth_range'], {}), '(azimuth_range)\n', (6929, 6944), True, 'import numpy as np\n'), ((8896, 8909), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (8904, 8909), True, 'import numpy as np\n'), ((10348, 10361), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (10356, 10361), True, 'import numpy as np\n'), ((12535, 12556), 'numpy.min', 'np.min', (['azimuth_range'], {}), '(azimuth_range)\n', (12541, 12556), True, 'import numpy as np\n'), ((12614, 12635), 'numpy.max', 'np.max', (['azimuth_range'], {}), '(azimuth_range)\n', (12620, 12635), True, 'import numpy as np\n'), ((13565, 13580), 'numpy.rad2deg', 'np.rad2deg', (['chi'], {}), '(chi)\n', (13575, 13580), True, 'import numpy as np\n'), ((894, 912), 'numpy.ones_like', 'np.ones_like', (['mask'], {}), '(mask)\n', (906, 912), True, 'import numpy as np\n'), ((6199, 6212), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (6207, 6212), True, 'import numpy as np\n'), ((8958, 8971), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (8966, 8971), True, 'import numpy as np\n'), ((10410, 10423), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (10418, 10423), True, 'import numpy as np\n'), ((7135, 7157), 'numpy.ones_like', 'np.ones_like', (['img_mask'], {}), '(img_mask)\n', (7147, 7157), True, 'import numpy as np\n'), ((7182, 7200), 'numpy.shape', 'np.shape', (['img_mask'], {}), '(img_mask)\n', (7190, 7200), True, 'import numpy as np\n'), ((7375, 7397), 'numpy.ones_like', 'np.ones_like', (['img_mask'], {}), '(img_mask)\n', (7387, 7397), True, 'import numpy as np\n'), ((7422, 7440), 'numpy.shape', 'np.shape', (['img_mask'], {}), '(img_mask)\n', (7430, 7440), True, 'import numpy as np\n'), ((7622, 7639), 'numpy.min', 'np.min', (['tth_array'], {}), '(tth_array)\n', (7628, 7639), True, 'import numpy as np\n'), ((7641, 7658), 'numpy.max', 'np.max', (['tth_array'], {}), '(tth_array)\n', (7647, 7658), True, 'import numpy as np\n'), ((8700, 8717), 'numpy.asarray', 'np.asarray', (['q_par'], {}), '(q_par)\n', (8710, 8717), True, 'import numpy as np\n'), ((8725, 8742), 'numpy.asarray', 'np.asarray', (['q_par'], {}), '(q_par)\n', (8735, 8742), True, 'import numpy as np\n'), ((8801, 8818), 'numpy.asarray', 'np.asarray', (['q_per'], {}), '(q_per)\n', (8811, 8818), True, 'import numpy as np\n'), ((8826, 8843), 'numpy.asarray', 'np.asarray', (['q_per'], {}), '(q_per)\n', (8836, 8843), True, 'import numpy as np\n'), ((10152, 10169), 'numpy.asarray', 'np.asarray', (['q_par'], {}), '(q_par)\n', (10162, 10169), True, 'import numpy as np\n'), ((10177, 10194), 'numpy.asarray', 'np.asarray', (['q_par'], {}), '(q_par)\n', (10187, 10194), True, 'import numpy as np\n'), ((10253, 10270), 'numpy.asarray', 'np.asarray', (['q_per'], {}), '(q_per)\n', (10263, 10270), True, 'import numpy as np\n'), ((10278, 10295), 'numpy.asarray', 'np.asarray', (['q_per'], {}), '(q_per)\n', (10288, 10295), True, 'import numpy as np\n'), ((12834, 12856), 'numpy.ones_like', 'np.ones_like', (['img_mask'], {}), '(img_mask)\n', (12846, 12856), True, 'import numpy as np\n'), ((13011, 13033), 'numpy.ones_like', 'np.ones_like', (['img_mask'], {}), '(img_mask)\n', (13023, 13033), True, 'import numpy as np\n'), ((13192, 13212), 'numpy.min', 'np.min', (['radial_range'], {}), '(radial_range)\n', (13198, 13212), True, 'import numpy as np\n'), ((13214, 13234), 'numpy.max', 'np.max', (['radial_range'], {}), '(radial_range)\n', (13220, 13234), True, 'import numpy as np\n'), ((13305, 13326), 'numpy.min', 'np.min', (['azimuth_range'], {}), '(azimuth_range)\n', (13311, 13326), True, 'import numpy as np\n'), ((13328, 13349), 'numpy.max', 'np.max', (['azimuth_range'], {}), '(azimuth_range)\n', (13334, 13349), True, 'import numpy as np\n')]
import numpy as np from typing import Tuple import plotly.io from IMLearn.metalearners.adaboost import AdaBoost from IMLearn.learners.classifiers import DecisionStump from IMLearn.metrics import accuracy from utils import * import plotly.graph_objects as go from plotly.subplots import make_subplots plotly.io.renderers.default = 'browser' def generate_data(n: int, noise_ratio: float) -> Tuple[np.ndarray, np.ndarray]: """ Generate a dataset in R^2 of specified size Parameters ---------- n: int Number of samples to generate noise_ratio: float Ratio of labels to invert Returns ------- X: np.ndarray of shape (n_samples,2) Design matrix of samples y: np.ndarray of shape (n_samples,) Labels of samples """ ''' generate samples X with shape: (num_samples, 2) and labels y with shape (num_samples). num_samples: the number of samples to generate noise_ratio: invert the label for this ratio of the samples ''' X, y = np.random.rand(n, 2) * 2 - 1, np.ones(n) y[np.sum(X ** 2, axis=1) < 0.5 ** 2] = -1 y[np.random.choice(n, int(noise_ratio * n))] *= -1 return X, y def fit_and_evaluate_adaboost(noise, n_learners=250, train_size=5000, test_size=500): (train_X, train_y), (test_X, test_y) = generate_data(train_size, noise), generate_data(test_size, noise) # Question 1: Train- and test errors of AdaBoost in noiseless case # print("Fitting.......") adb = AdaBoost(DecisionStump, n_learners).fit(train_X, train_y) # save it # with open(f'adb_{train_size}_{test_size}_{noise}noise.pickle', 'wb') as file: # pickle.dump(adb, file) # print("saved") # return # print("Loading...") # with open(f'adb_{train_size}_{test_size}_{noise}noise.pickle', 'rb') as file2: # adb = pickle.load(file2) # print("Plotting.......") go.Figure( data=[ go.Scatter( x=list(range(1, n_learners + 1)), y=list(map(lambda n: adb.partial_loss(train_X, train_y, n), list(range(1, n_learners + 1)))), mode='markers+lines', name="Training Loss" ), go.Scatter( x=list(range(1, n_learners + 1)), y=list(map(lambda n: adb.partial_loss(test_X, test_y, n), list(range(1, n_learners + 1)))), mode='markers+lines', name="Test Loss" ) ], layout=go.Layout( title=f"Loss as Function of Num of Learners over Data with {noise} noise", xaxis_title={'text': "$\\text{Num of Learners}$"}, yaxis_title={'text': "$\\text{Misclassification Loss}$"} ) ).show() # Question 2: Plotting decision surfaces T = [5, 50, 100, 250] lims = np.array([np.r_[train_X, test_X].min(axis=0), np.r_[train_X, test_X].max(axis=0)]).T + np.array([-.1, .1]) # preds = [adb.partial_predict(train_X, t) for t in T] symbols = np.array(["circle", "x", "diamond"]) fig = make_subplots(rows=2, cols=2, subplot_titles=[f"Decision Boundary for Ensemble of Size {m}" for i, m in enumerate(T)], horizontal_spacing=0.1, vertical_spacing=.05, ) # Add traces for data-points setting symbols and colors for i, m in enumerate(T): fig.add_traces([go.Scatter( x=test_X[:, 0], y=test_X[:, 1], mode="markers", showlegend=False, marker=dict( color=test_y, symbol='diamond', line=dict(color="black", width=1)), ), decision_surface(lambda x: adb.partial_predict(x, m), lims[0], lims[1], showscale=False) ], rows=(i // 2) + 1, cols=(i % 2) + 1 ) fig.update_layout( title=f"Decision Boundaries for Different Ensemble Size <br>", margin=dict(t=100), width=1200, height=1000 ) fig.show() # Question 3: Decision surface of best performing ensemble best_ensemble = np.argmin(np.array( [adb.partial_loss(X=test_X, y=test_y, T=t) for t in range(1, 251)])) + 1 go.Figure( data=[ go.Scatter( x=test_X[:, 0], y=test_X[:, 1], mode="markers", showlegend=False, marker=dict( color=test_y, symbol='diamond', line=dict(color="black", width=1)), ), decision_surface( lambda x: adb.partial_predict(x, best_ensemble), lims[0], lims[1], showscale=False ) ] ).update_layout( title=f"Decision Boundaries for Ensemble of Size {best_ensemble}<br>" f"<sup> With Accuracy of: " f"{accuracy(test_y, adb.partial_predict(test_X, best_ensemble))}" f"</sup>", margin=dict(t=100), width=1200, height=1000 ).show() # Question 4: Decision surface with weighted samples weights = adb.D_ * 10 / np.max(adb.D_) go.Figure( data=[ go.Scatter( x=train_X[:, 0], y=train_X[:, 1], mode="markers", showlegend=False, marker=dict( color=weights, symbol=symbols[train_y.astype(int)], line=dict(color="black", width=1), size=weights ) ).update(), decision_surface( adb.predict, lims[0], lims[1], showscale=False ) ] ).update_layout( title=f"Decision Boundaries for Data with {noise} noise <br>" f"With Training Set Point Size & Color Proportional To It’s Weight<br>" f"<sup> x - True label is blue</sup><br>" f"<sup>diamond - True label is red</sup>", margin=dict(t=120), width=1000, height=1000, ).show() if __name__ == '__main__': np.random.seed(0) fit_and_evaluate_adaboost(noise=0) fit_and_evaluate_adaboost(noise=0.4)
[ "numpy.ones", "numpy.random.rand", "plotly.graph_objects.Layout", "IMLearn.metalearners.adaboost.AdaBoost", "numpy.max", "numpy.array", "numpy.sum", "numpy.random.seed" ]
[((3011, 3047), 'numpy.array', 'np.array', (["['circle', 'x', 'diamond']"], {}), "(['circle', 'x', 'diamond'])\n", (3019, 3047), True, 'import numpy as np\n'), ((6267, 6284), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (6281, 6284), True, 'import numpy as np\n'), ((1056, 1066), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (1063, 1066), True, 'import numpy as np\n'), ((2917, 2938), 'numpy.array', 'np.array', (['[-0.1, 0.1]'], {}), '([-0.1, 0.1])\n', (2925, 2938), True, 'import numpy as np\n'), ((5270, 5284), 'numpy.max', 'np.max', (['adb.D_'], {}), '(adb.D_)\n', (5276, 5284), True, 'import numpy as np\n'), ((1073, 1095), 'numpy.sum', 'np.sum', (['(X ** 2)'], {'axis': '(1)'}), '(X ** 2, axis=1)\n', (1079, 1095), True, 'import numpy as np\n'), ((1493, 1528), 'IMLearn.metalearners.adaboost.AdaBoost', 'AdaBoost', (['DecisionStump', 'n_learners'], {}), '(DecisionStump, n_learners)\n', (1501, 1528), False, 'from IMLearn.metalearners.adaboost import AdaBoost\n'), ((1026, 1046), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (1040, 1046), True, 'import numpy as np\n'), ((2494, 2700), 'plotly.graph_objects.Layout', 'go.Layout', ([], {'title': 'f"""Loss as Function of Num of Learners over Data with {noise} noise"""', 'xaxis_title': "{'text': '$\\\\text{Num of Learners}$'}", 'yaxis_title': "{'text': '$\\\\text{Misclassification Loss}$'}"}), "(title=\n f'Loss as Function of Num of Learners over Data with {noise} noise',\n xaxis_title={'text': '$\\\\text{Num of Learners}$'}, yaxis_title={'text':\n '$\\\\text{Misclassification Loss}$'})\n", (2503, 2700), True, 'import plotly.graph_objects as go\n')]
# -*- coding: utf-8 -*- # # Author: <NAME> <<EMAIL>> # # Setup the SMRT module from __future__ import print_function, absolute_import, division from distutils.command.clean import clean # from setuptools import setup # DO NOT use setuptools!!!!!! import shutil import os import sys if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # Hacky, adopted from sklearn. This sets a global variable # so smrt __init__ can detect if it's being loaded in the setup # routine, so it won't load submodules that haven't yet been built. builtins.__SMRT_SETUP__ = True # metadata DISTNAME = 'smrt' DESCRIPTION = 'Handle class imbalance intelligently by using Variational Autoencoders ' \ 'to generate synthetic observations of your minority class.' MAINTAINER = '<NAME>' MAINTAINER_EMAIL = '<EMAIL>' LICENSE = 'new BSD' # import restricted version import smrt VERSION = smrt.__version__ # get the installation requirements: with open('requirements.txt') as req: REQUIREMENTS = req.read().split(os.linesep) # Custom clean command to remove build artifacts -- adopted from sklearn class CleanCommand(clean): description = "Remove build artifacts from the source tree" # this is mostly in case we ever add a Cython module to SMRT def run(self): clean.run(self) # Remove c files if we are not within a sdist package cwd = os.path.abspath(os.path.dirname(__file__)) remove_c_files = not os.path.exists(os.path.join(cwd, 'PKG-INFO')) if remove_c_files: cython_hash_file = os.path.join(cwd, 'cythonize.dat') if os.path.exists(cython_hash_file): os.unlink(cython_hash_file) print('Will remove generated .c & .so files') if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk(DISTNAME): for filename in filenames: if any(filename.endswith(suffix) for suffix in (".so", ".pyd", ".dll", ".pyc")): print('Removing file: %s' % filename) os.unlink(os.path.join(dirpath, filename)) continue extension = os.path.splitext(filename)[1] if remove_c_files and extension in ['.c', '.cpp']: pyx_file = str.replace(filename, extension, '.pyx') if os.path.exists(os.path.join(dirpath, pyx_file)): os.unlink(os.path.join(dirpath, filename)) # this is for FORTRAN modules, which some of my other packages have used in the past... for dirname in dirnames: if dirname == '__pycache__' or dirname.endswith('.so.dSYM'): print('Removing directory: %s' % dirname) shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} def configuration(parent_package='', top_path=None): # we know numpy is a valid import now from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage(DISTNAME) return config def do_setup(): # setup the config metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, version=VERSION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Intended Audience :: Scikit-learn users', 'Programming Language :: Python', 'Topic :: Machine Learning', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2.7' ], keywords='sklearn scikit-learn tensorflow auto-encoders neural-networks class-imbalance', # packages=[DISTNAME], # install_requires=REQUIREMENTS, cmdclass=cmdclass) if len(sys.argv) == 1 or ( len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg-info', '--version', 'clean'))): # For these actions, NumPy is not required try: from setuptools import setup except ImportError: from distutils.core import setup else: # we DO need numpy try: from numpy.distutils.core import setup except ImportError: raise RuntimeError('Need numpy to build %s' % DISTNAME) # add the config to the metadata metadata['configuration'] = configuration # call setup on the dict setup(**metadata) if __name__ == '__main__': do_setup()
[ "os.path.exists", "distutils.command.clean.clean.run", "distutils.core.setup", "os.path.join", "numpy.distutils.misc_util.Configuration", "os.path.splitext", "os.path.dirname", "os.unlink", "shutil.rmtree", "os.walk" ]
[((3093, 3138), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['None', 'parent_package', 'top_path'], {}), '(None, parent_package, top_path)\n', (3106, 3138), False, 'from numpy.distutils.misc_util import Configuration\n'), ((5720, 5737), 'distutils.core.setup', 'setup', ([], {}), '(**metadata)\n', (5725, 5737), False, 'from distutils.core import setup\n'), ((1315, 1330), 'distutils.command.clean.clean.run', 'clean.run', (['self'], {}), '(self)\n', (1324, 1330), False, 'from distutils.command.clean import clean\n'), ((1780, 1803), 'os.path.exists', 'os.path.exists', (['"""build"""'], {}), "('build')\n", (1794, 1803), False, 'import os\n'), ((1884, 1901), 'os.walk', 'os.walk', (['DISTNAME'], {}), '(DISTNAME)\n', (1891, 1901), False, 'import os\n'), ((1423, 1448), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1438, 1448), False, 'import os\n'), ((1583, 1617), 'os.path.join', 'os.path.join', (['cwd', '"""cythonize.dat"""'], {}), "(cwd, 'cythonize.dat')\n", (1595, 1617), False, 'import os\n'), ((1633, 1665), 'os.path.exists', 'os.path.exists', (['cython_hash_file'], {}), '(cython_hash_file)\n', (1647, 1665), False, 'import os\n'), ((1817, 1839), 'shutil.rmtree', 'shutil.rmtree', (['"""build"""'], {}), "('build')\n", (1830, 1839), False, 'import shutil\n'), ((1494, 1523), 'os.path.join', 'os.path.join', (['cwd', '"""PKG-INFO"""'], {}), "(cwd, 'PKG-INFO')\n", (1506, 1523), False, 'import os\n'), ((1683, 1710), 'os.unlink', 'os.unlink', (['cython_hash_file'], {}), '(cython_hash_file)\n', (1692, 1710), False, 'import os\n'), ((2240, 2266), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (2256, 2266), False, 'import os\n'), ((2150, 2181), 'os.path.join', 'os.path.join', (['dirpath', 'filename'], {}), '(dirpath, filename)\n', (2162, 2181), False, 'import os\n'), ((2447, 2478), 'os.path.join', 'os.path.join', (['dirpath', 'pyx_file'], {}), '(dirpath, pyx_file)\n', (2459, 2478), False, 'import os\n'), ((2858, 2888), 'os.path.join', 'os.path.join', (['dirpath', 'dirname'], {}), '(dirpath, dirname)\n', (2870, 2888), False, 'import os\n'), ((2515, 2546), 'os.path.join', 'os.path.join', (['dirpath', 'filename'], {}), '(dirpath, filename)\n', (2527, 2546), False, 'import os\n')]
import numpy as np import tensorflow as tf import unittest hungarian_module = tf.load_op_library("hungarian.so") class HungarianTests(unittest.TestCase): def test_min_weighted_bp_cover_1(self): W = np.array([[3, 2, 2], [1, 2, 0], [2, 2, 1]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([2, 1, 1]) c_1_t = np.array([1, 1, 0]) M_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) pass def test_min_weighted_bp_cover_2(self): W = np.array([[5, 0, 4, 0], [0, 4, 6, 8], [4, 0, 5, 7]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([5, 6, 5]) c_1_t = np.array([0, 0, 0, 2]) M_t = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_min_weighted_bp_cover_3(self): W = np.array([[5, 0, 2], [3, 1, 0], [0, 5, 0]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([2, 0, 4]) c_1_t = np.array([3, 1, 0]) M_t = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_min_weighted_bp_cover_4(self): W = np.array([[[5, 0, 2], [3, 1, 0], [0, 5, 0]], [[3, 2, 2], [1, 2, 0], [2, 2, 1]]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() c_0 = c_0.eval() c_1 = c_1.eval() c_0_t = np.array([[2, 0, 4], [2, 1, 1]]) c_1_t = np.array([[3, 1, 0], [1, 1, 0]]) M_t = np.array([[[0, 0, 1], [1, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]) self.assertTrue((c_0.flatten() == c_0_t.flatten()).all()) self.assertTrue((c_1.flatten() == c_1_t.flatten()).all()) self.assertTrue((M == M_t).all()) def test_real_values_1(self): # Test the while loop terminates with real values. W = np.array( [[0.90, 0.70, 0.30, 0.20, 0.40, 0.001, 0.001, 0.001, 0.001, 0.001], [0.80, 0.75, 0.92, 0.10, 0.15, 0.001, 0.001, 0.001, 0.001, 0.001], [0.78, 0.85, 0.66, 0.29, 0.21, 0.001, 0.001, 0.001, 0.001, 0.001], [0.42, 0.55, 0.23, 0.43, 0.33, 0.002, 0.001, 0.001, 0.001, 0.001], [0.64, 0.44, 0.33, 0.33, 0.34, 0.001, 0.002, 0.001, 0.001, 0.001], [0.22, 0.55, 0.43, 0.43, 0.14, 0.001, 0.001, 0.002, 0.001, 0.001], [0.43, 0.33, 0.34, 0.22, 0.14, 0.001, 0.001, 0.001, 0.002, 0.001], [0.33, 0.42, 0.23, 0.13, 0.43, 0.001, 0.001, 0.001, 0.001, 0.002], [0.39, 0.24, 0.53, 0.56, 0.89, 0.001, 0.001, 0.001, 0.001, 0.001], [0.12, 0.34, 0.82, 0.82, 0.77, 0.001, 0.001, 0.001, 0.001, 0.001]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() M_t = np.array( [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]]) self.assertTrue((M == M_t).all()) def test_real_values_2(self): W = np.array([[ 0.00604139, 0.0126045, 0.0117373, 0.01245, 0.00808836, 0.0162662, 0.0137996, 0.00403898, 0.0123786, 1e-05 ], [ 0.00604229, 0.0126071, 0.0117400, 0.0124528, 0.00808971, 0.0162703, 0.0138028, 0.00403935, 0.0123812, 1e-05 ], [ 0.00604234, 0.0126073, 0.0117402, 0.012453, 0.00808980, 0.0162706, 0.0138030, 0.00403937, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ], [ 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.0138030, 0.00403938, 0.0123814, 1e-05 ]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_3(self): W = np.array([[ 0.00302646, 0.00321431, 0.0217552, 0.00836773, 0.0256353, 0.0177026, 0.0289461, 0.0214768, 0.0101898, 1e-05 ], [ 0.00302875, 0.003217, 0.0217628, 0.00836405, 0.0256229, 0.0177137, 0.0289468, 0.0214719, 0.0101904, 1e-05 ], [ 0.00302897, 0.00321726, 0.0217636, 0.00836369, 0.0256217, 0.0177148, 0.0289468, 0.0214714, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ], [ 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05 ]]) M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_4(self): W = np.array([[ 1e-05, 0.0634311, 1e-05, 4.76687e-05, 1.00079e-05, 1.00378e-05, 1e-05, 1e-05, 1e-05, 3.9034e-05 ], [ 1e-05, 3.42696e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1.0122e-05, 3.43236e-05, 1e-05 ], [ 1e-05, 0.0426792, 0.031155, 1.0008e-05, 0.00483961, 0.0228187, 1e-05, 1e-05, 1e-05, 0.102463 ], [ 1e-05, 1e-05, 1e-05, 1.07065e-05, 1e-05, 1.00185e-05, 1e-05, 1e-05, 1e-05, 1.00007e-05 ], [ 1e-05, 4.22947e-05, 0.00062168, 0.623917, 1.03468e-05, 0.00588984, 1.00004e-05, 1.44433e-05, 1.00014e-05, 0.000213425 ], [ 1e-05, 1.01764e-05, 1e-05, 0.000667249, 1e-05, 0.000485082, 1e-05, 1e-05, 1.00002e-05, 1e-05 ], [ 1e-05, 1e-05, 1.50331e-05, 1e-05, 0.11269, 1e-05, 1e-05, 1e-05, 1e-05, 1.13251e-05 ], [ 1.0001e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0246974, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 2.89144e-05, 1e-05, 1.05147e-05, 1e-05, 0.000894762, 1.03587e-05, 0.150301, 1e-05, 1.00045e-05 ], [ 1e-05, 3.97901e-05, 1e-05, 1.11641e-05, 1e-05, 2.34249e-05, 1.0007e-05, 2.42828e-05, 1e-05, 1.10529e-05 ]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_5(self): W = np.array([[ 1.4e-05, 1e-05, 1e-05, 0.053306, 0.044139, 1e-05, 1.2e-05, 1e-05, 1e-05, 1e-05 ], [ 0.001234, 1e-05, 1e-05, 2.1e-05, 1e-05, 0.001535, 0.019553, 1e-05, 1e-05, 1e-05 ], [ 0.002148, 1e-05, 1e-05, 1.6e-05, 0.651536, 2e-05, 7.4e-05, 0.002359, 1e-05, 1e-05 ], [ 3.8e-05, 1e-05, 0.000592, 4.7e-05, 0.09173, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 0.213736, 1e-05, 4.5e-05, 0.000768, 1e-05, 1e-05, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 0.317609, 1e-05, 1e-05, 0.002151, 1e-05, 1e-05, 1e-05 ], [ 0.002802, 1e-05, 1.2e-05, 1e-05, 1e-05, 0.002999, 4.8e-05, 1.1e-05, 0.000919, 1e-05 ], [ 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.028816, 1e-05 ], [ 1e-05, 1e-05, 0.047335, 1e-05, 1.2e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05 ], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() def test_real_values_6(self): W = np.array([[ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ], [ 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116 ]]) p = 1e6 W = np.round(W * p) / p M, c_0, c_1 = hungarian_module.hungarian(W) with tf.Session() as sess: M = M.eval() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(HungarianTests) unittest.TextTestRunner(verbosity=2).run(suite)
[ "tensorflow.load_op_library", "numpy.round", "tensorflow.Session", "numpy.array", "unittest.TextTestRunner", "unittest.TestLoader" ]
[((78, 112), 'tensorflow.load_op_library', 'tf.load_op_library', (['"""hungarian.so"""'], {}), "('hungarian.so')\n", (96, 112), True, 'import tensorflow as tf\n'), ((207, 250), 'numpy.array', 'np.array', (['[[3, 2, 2], [1, 2, 0], [2, 2, 1]]'], {}), '([[3, 2, 2], [1, 2, 0], [2, 2, 1]])\n', (215, 250), True, 'import numpy as np\n'), ((407, 426), 'numpy.array', 'np.array', (['[2, 1, 1]'], {}), '([2, 1, 1])\n', (415, 426), True, 'import numpy as np\n'), ((439, 458), 'numpy.array', 'np.array', (['[1, 1, 0]'], {}), '([1, 1, 0])\n', (447, 458), True, 'import numpy as np\n'), ((469, 512), 'numpy.array', 'np.array', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\n', (477, 512), True, 'import numpy as np\n'), ((736, 788), 'numpy.array', 'np.array', (['[[5, 0, 4, 0], [0, 4, 6, 8], [4, 0, 5, 7]]'], {}), '([[5, 0, 4, 0], [0, 4, 6, 8], [4, 0, 5, 7]])\n', (744, 788), True, 'import numpy as np\n'), ((945, 964), 'numpy.array', 'np.array', (['[5, 6, 5]'], {}), '([5, 6, 5])\n', (953, 964), True, 'import numpy as np\n'), ((977, 999), 'numpy.array', 'np.array', (['[0, 0, 0, 2]'], {}), '([0, 0, 0, 2])\n', (985, 999), True, 'import numpy as np\n'), ((1010, 1062), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])\n', (1018, 1062), True, 'import numpy as np\n'), ((1276, 1319), 'numpy.array', 'np.array', (['[[5, 0, 2], [3, 1, 0], [0, 5, 0]]'], {}), '([[5, 0, 2], [3, 1, 0], [0, 5, 0]])\n', (1284, 1319), True, 'import numpy as np\n'), ((1476, 1495), 'numpy.array', 'np.array', (['[2, 0, 4]'], {}), '([2, 0, 4])\n', (1484, 1495), True, 'import numpy as np\n'), ((1508, 1527), 'numpy.array', 'np.array', (['[3, 1, 0]'], {}), '([3, 1, 0])\n', (1516, 1527), True, 'import numpy as np\n'), ((1538, 1581), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 0, 1], [1, 0, 0], [0, 1, 0]])\n', (1546, 1581), True, 'import numpy as np\n'), ((1795, 1880), 'numpy.array', 'np.array', (['[[[5, 0, 2], [3, 1, 0], [0, 5, 0]], [[3, 2, 2], [1, 2, 0], [2, 2, 1]]]'], {}), '([[[5, 0, 2], [3, 1, 0], [0, 5, 0]], [[3, 2, 2], [1, 2, 0], [2, 2, 1]]]\n )\n', (1803, 1880), True, 'import numpy as np\n'), ((2086, 2118), 'numpy.array', 'np.array', (['[[2, 0, 4], [2, 1, 1]]'], {}), '([[2, 0, 4], [2, 1, 1]])\n', (2094, 2118), True, 'import numpy as np\n'), ((2131, 2163), 'numpy.array', 'np.array', (['[[3, 1, 0], [1, 1, 0]]'], {}), '([[3, 1, 0], [1, 1, 0]])\n', (2139, 2163), True, 'import numpy as np\n'), ((2174, 2259), 'numpy.array', 'np.array', (['[[[0, 0, 1], [1, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]'], {}), '([[[0, 0, 1], [1, 0, 0], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]\n )\n', (2182, 2259), True, 'import numpy as np\n'), ((2569, 3283), 'numpy.array', 'np.array', (['[[0.9, 0.7, 0.3, 0.2, 0.4, 0.001, 0.001, 0.001, 0.001, 0.001], [0.8, 0.75, \n 0.92, 0.1, 0.15, 0.001, 0.001, 0.001, 0.001, 0.001], [0.78, 0.85, 0.66,\n 0.29, 0.21, 0.001, 0.001, 0.001, 0.001, 0.001], [0.42, 0.55, 0.23, 0.43,\n 0.33, 0.002, 0.001, 0.001, 0.001, 0.001], [0.64, 0.44, 0.33, 0.33, 0.34,\n 0.001, 0.002, 0.001, 0.001, 0.001], [0.22, 0.55, 0.43, 0.43, 0.14, \n 0.001, 0.001, 0.002, 0.001, 0.001], [0.43, 0.33, 0.34, 0.22, 0.14, \n 0.001, 0.001, 0.001, 0.002, 0.001], [0.33, 0.42, 0.23, 0.13, 0.43, \n 0.001, 0.001, 0.001, 0.001, 0.002], [0.39, 0.24, 0.53, 0.56, 0.89, \n 0.001, 0.001, 0.001, 0.001, 0.001], [0.12, 0.34, 0.82, 0.82, 0.77, \n 0.001, 0.001, 0.001, 0.001, 0.001]]'], {}), '([[0.9, 0.7, 0.3, 0.2, 0.4, 0.001, 0.001, 0.001, 0.001, 0.001], [\n 0.8, 0.75, 0.92, 0.1, 0.15, 0.001, 0.001, 0.001, 0.001, 0.001], [0.78, \n 0.85, 0.66, 0.29, 0.21, 0.001, 0.001, 0.001, 0.001, 0.001], [0.42, 0.55,\n 0.23, 0.43, 0.33, 0.002, 0.001, 0.001, 0.001, 0.001], [0.64, 0.44, 0.33,\n 0.33, 0.34, 0.001, 0.002, 0.001, 0.001, 0.001], [0.22, 0.55, 0.43, 0.43,\n 0.14, 0.001, 0.001, 0.002, 0.001, 0.001], [0.43, 0.33, 0.34, 0.22, 0.14,\n 0.001, 0.001, 0.001, 0.002, 0.001], [0.33, 0.42, 0.23, 0.13, 0.43, \n 0.001, 0.001, 0.001, 0.001, 0.002], [0.39, 0.24, 0.53, 0.56, 0.89, \n 0.001, 0.001, 0.001, 0.001, 0.001], [0.12, 0.34, 0.82, 0.82, 0.77, \n 0.001, 0.001, 0.001, 0.001, 0.001]])\n', (2577, 3283), True, 'import numpy as np\n'), ((3448, 3795), 'numpy.array', 'np.array', (['[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, \n 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0,\n 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1,\n 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0,\n 0, 0, 1, 0, 0, 0, 0, 0, 0]]'], {}), '([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [\n 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0,\n 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0,\n 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0,\n 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]])\n', (3456, 3795), True, 'import numpy as np\n'), ((3903, 5081), 'numpy.array', 'np.array', (['[[0.00604139, 0.0126045, 0.0117373, 0.01245, 0.00808836, 0.0162662, \n 0.0137996, 0.00403898, 0.0123786, 1e-05], [0.00604229, 0.0126071, \n 0.01174, 0.0124528, 0.00808971, 0.0162703, 0.0138028, 0.00403935, \n 0.0123812, 1e-05], [0.00604234, 0.0126073, 0.0117402, 0.012453, \n 0.0080898, 0.0162706, 0.013803, 0.00403937, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05], [0.00604235, 0.0126073, \n 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.013803, 0.00403938, \n 0.0123814, 1e-05], [0.00604235, 0.0126073, 0.0117402, 0.012453, \n 0.00808981, 0.0162706, 0.013803, 0.00403938, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05], [0.00604235, 0.0126073, \n 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.013803, 0.00403938, \n 0.0123814, 1e-05], [0.00604235, 0.0126073, 0.0117402, 0.012453, \n 0.00808981, 0.0162706, 0.013803, 0.00403938, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05]]'], {}), '([[0.00604139, 0.0126045, 0.0117373, 0.01245, 0.00808836, 0.0162662,\n 0.0137996, 0.00403898, 0.0123786, 1e-05], [0.00604229, 0.0126071, \n 0.01174, 0.0124528, 0.00808971, 0.0162703, 0.0138028, 0.00403935, \n 0.0123812, 1e-05], [0.00604234, 0.0126073, 0.0117402, 0.012453, \n 0.0080898, 0.0162706, 0.013803, 0.00403937, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05], [0.00604235, 0.0126073, \n 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.013803, 0.00403938, \n 0.0123814, 1e-05], [0.00604235, 0.0126073, 0.0117402, 0.012453, \n 0.00808981, 0.0162706, 0.013803, 0.00403938, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05], [0.00604235, 0.0126073, \n 0.0117402, 0.012453, 0.00808981, 0.0162706, 0.013803, 0.00403938, \n 0.0123814, 1e-05], [0.00604235, 0.0126073, 0.0117402, 0.012453, \n 0.00808981, 0.0162706, 0.013803, 0.00403938, 0.0123814, 1e-05], [\n 0.00604235, 0.0126073, 0.0117402, 0.012453, 0.00808981, 0.0162706, \n 0.013803, 0.00403938, 0.0123814, 1e-05]])\n', (3911, 5081), True, 'import numpy as np\n'), ((5373, 6544), 'numpy.array', 'np.array', (['[[0.00302646, 0.00321431, 0.0217552, 0.00836773, 0.0256353, 0.0177026, \n 0.0289461, 0.0214768, 0.0101898, 1e-05], [0.00302875, 0.003217, \n 0.0217628, 0.00836405, 0.0256229, 0.0177137, 0.0289468, 0.0214719, \n 0.0101904, 1e-05], [0.00302897, 0.00321726, 0.0217636, 0.00836369, \n 0.0256217, 0.0177148, 0.0289468, 0.0214714, 0.0101905, 1e-05], [\n 0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, \n 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029, 0.0032173, \n 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, 0.0214713, \n 0.0101905, 1e-05], [0.003029, 0.0032173, 0.0217637, 0.00836364, \n 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029,\n 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, \n 0.0214713, 0.0101905, 1e-05], [0.003029, 0.0032173, 0.0217637, \n 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05\n ], [0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, \n 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029, 0.0032173, \n 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, \n 0.0101905, 1e-05]]'], {}), '([[0.00302646, 0.00321431, 0.0217552, 0.00836773, 0.0256353, \n 0.0177026, 0.0289461, 0.0214768, 0.0101898, 1e-05], [0.00302875, \n 0.003217, 0.0217628, 0.00836405, 0.0256229, 0.0177137, 0.0289468, \n 0.0214719, 0.0101904, 1e-05], [0.00302897, 0.00321726, 0.0217636, \n 0.00836369, 0.0256217, 0.0177148, 0.0289468, 0.0214714, 0.0101905, \n 1e-05], [0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, \n 0.0177149, 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029, \n 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.0177149, 0.0289468, \n 0.0214713, 0.0101905, 1e-05], [0.003029, 0.0032173, 0.0217637, \n 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05\n ], [0.003029, 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, \n 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029, 0.0032173, \n 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, 0.0214713, \n 0.0101905, 1e-05], [0.003029, 0.0032173, 0.0217637, 0.00836364, \n 0.0256216, 0.017715, 0.0289468, 0.0214713, 0.0101905, 1e-05], [0.003029,\n 0.0032173, 0.0217637, 0.00836364, 0.0256216, 0.017715, 0.0289468, \n 0.0214713, 0.0101905, 1e-05]])\n', (5381, 6544), True, 'import numpy as np\n'), ((6825, 7870), 'numpy.array', 'np.array', (['[[1e-05, 0.0634311, 1e-05, 4.76687e-05, 1.00079e-05, 1.00378e-05, 1e-05, \n 1e-05, 1e-05, 3.9034e-05], [1e-05, 3.42696e-05, 1e-05, 1e-05, 1e-05, \n 1e-05, 1e-05, 1.0122e-05, 3.43236e-05, 1e-05], [1e-05, 0.0426792, \n 0.031155, 1.0008e-05, 0.00483961, 0.0228187, 1e-05, 1e-05, 1e-05, \n 0.102463], [1e-05, 1e-05, 1e-05, 1.07065e-05, 1e-05, 1.00185e-05, 1e-05,\n 1e-05, 1e-05, 1.00007e-05], [1e-05, 4.22947e-05, 0.00062168, 0.623917, \n 1.03468e-05, 0.00588984, 1.00004e-05, 1.44433e-05, 1.00014e-05, \n 0.000213425], [1e-05, 1.01764e-05, 1e-05, 0.000667249, 1e-05, \n 0.000485082, 1e-05, 1e-05, 1.00002e-05, 1e-05], [1e-05, 1e-05, \n 1.50331e-05, 1e-05, 0.11269, 1e-05, 1e-05, 1e-05, 1e-05, 1.13251e-05],\n [1.0001e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0246974, 1e-05, 1e-05,\n 1e-05], [1e-05, 2.89144e-05, 1e-05, 1.05147e-05, 1e-05, 0.000894762, \n 1.03587e-05, 0.150301, 1e-05, 1.00045e-05], [1e-05, 3.97901e-05, 1e-05,\n 1.11641e-05, 1e-05, 2.34249e-05, 1.0007e-05, 2.42828e-05, 1e-05, \n 1.10529e-05]]'], {}), '([[1e-05, 0.0634311, 1e-05, 4.76687e-05, 1.00079e-05, 1.00378e-05, \n 1e-05, 1e-05, 1e-05, 3.9034e-05], [1e-05, 3.42696e-05, 1e-05, 1e-05, \n 1e-05, 1e-05, 1e-05, 1.0122e-05, 3.43236e-05, 1e-05], [1e-05, 0.0426792,\n 0.031155, 1.0008e-05, 0.00483961, 0.0228187, 1e-05, 1e-05, 1e-05, \n 0.102463], [1e-05, 1e-05, 1e-05, 1.07065e-05, 1e-05, 1.00185e-05, 1e-05,\n 1e-05, 1e-05, 1.00007e-05], [1e-05, 4.22947e-05, 0.00062168, 0.623917, \n 1.03468e-05, 0.00588984, 1.00004e-05, 1.44433e-05, 1.00014e-05, \n 0.000213425], [1e-05, 1.01764e-05, 1e-05, 0.000667249, 1e-05, \n 0.000485082, 1e-05, 1e-05, 1.00002e-05, 1e-05], [1e-05, 1e-05, \n 1.50331e-05, 1e-05, 0.11269, 1e-05, 1e-05, 1e-05, 1e-05, 1.13251e-05],\n [1.0001e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 0.0246974, 1e-05, 1e-05,\n 1e-05], [1e-05, 2.89144e-05, 1e-05, 1.05147e-05, 1e-05, 0.000894762, \n 1.03587e-05, 0.150301, 1e-05, 1.00045e-05], [1e-05, 3.97901e-05, 1e-05,\n 1.11641e-05, 1e-05, 2.34249e-05, 1.0007e-05, 2.42828e-05, 1e-05, \n 1.10529e-05]])\n', (6833, 7870), True, 'import numpy as np\n'), ((8206, 9066), 'numpy.array', 'np.array', (['[[1.4e-05, 1e-05, 1e-05, 0.053306, 0.044139, 1e-05, 1.2e-05, 1e-05, 1e-05, \n 1e-05], [0.001234, 1e-05, 1e-05, 2.1e-05, 1e-05, 0.001535, 0.019553, \n 1e-05, 1e-05, 1e-05], [0.002148, 1e-05, 1e-05, 1.6e-05, 0.651536, 2e-05,\n 7.4e-05, 0.002359, 1e-05, 1e-05], [3.8e-05, 1e-05, 0.000592, 4.7e-05, \n 0.09173, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05], [1e-05, 1e-05, 1e-05, \n 0.213736, 1e-05, 4.5e-05, 0.000768, 1e-05, 1e-05, 1e-05], [1e-05, 1e-05,\n 1e-05, 0.317609, 1e-05, 1e-05, 0.002151, 1e-05, 1e-05, 1e-05], [\n 0.002802, 1e-05, 1.2e-05, 1e-05, 1e-05, 0.002999, 4.8e-05, 1.1e-05, \n 0.000919, 1e-05], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, \n 1e-05, 0.028816, 1e-05], [1e-05, 1e-05, 0.047335, 1e-05, 1.2e-05, 1e-05,\n 1e-05, 1e-05, 1e-05, 1e-05], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05,\n 1e-05, 1e-05, 1e-05, 1e-05]]'], {}), '([[1.4e-05, 1e-05, 1e-05, 0.053306, 0.044139, 1e-05, 1.2e-05, 1e-05,\n 1e-05, 1e-05], [0.001234, 1e-05, 1e-05, 2.1e-05, 1e-05, 0.001535, \n 0.019553, 1e-05, 1e-05, 1e-05], [0.002148, 1e-05, 1e-05, 1.6e-05, \n 0.651536, 2e-05, 7.4e-05, 0.002359, 1e-05, 1e-05], [3.8e-05, 1e-05, \n 0.000592, 4.7e-05, 0.09173, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05], [1e-05,\n 1e-05, 1e-05, 0.213736, 1e-05, 4.5e-05, 0.000768, 1e-05, 1e-05, 1e-05],\n [1e-05, 1e-05, 1e-05, 0.317609, 1e-05, 1e-05, 0.002151, 1e-05, 1e-05, \n 1e-05], [0.002802, 1e-05, 1.2e-05, 1e-05, 1e-05, 0.002999, 4.8e-05, \n 1.1e-05, 0.000919, 1e-05], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05, 1e-05, \n 1e-05, 1e-05, 0.028816, 1e-05], [1e-05, 1e-05, 0.047335, 1e-05, 1.2e-05,\n 1e-05, 1e-05, 1e-05, 1e-05, 1e-05], [1e-05, 1e-05, 1e-05, 1e-05, 1e-05,\n 1e-05, 1e-05, 1e-05, 1e-05, 1e-05]])\n', (8214, 9066), True, 'import numpy as np\n'), ((9387, 10453), 'numpy.array', 'np.array', (['[[0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, \n 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, \n 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [0.003408,\n 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, \n 0.010436, 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, 0.019786, \n 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [0.003408, 0.010531,\n 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, \n 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, \n 0.002743, 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795,\n 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [\n 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, \n 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, \n 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [0.003408,\n 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, \n 0.010436, 0.003116]]'], {}), '([[0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, \n 0.002743, 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795,\n 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [\n 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, \n 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, \n 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [0.003408,\n 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, \n 0.010436, 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, 0.019786, \n 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [0.003408, 0.010531,\n 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, \n 0.003116], [0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, \n 0.002743, 0.023617, 0.010436, 0.003116], [0.003408, 0.010531, 0.002795,\n 1e-05, 0.019786, 0.010435, 0.002743, 0.023617, 0.010436, 0.003116], [\n 0.003408, 0.010531, 0.002795, 1e-05, 0.019786, 0.010435, 0.002743, \n 0.023617, 0.010436, 0.003116]])\n', (9395, 10453), True, 'import numpy as np\n'), ((308, 320), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (318, 320), True, 'import tensorflow as tf\n'), ((846, 858), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (856, 858), True, 'import tensorflow as tf\n'), ((1377, 1389), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1387, 1389), True, 'import tensorflow as tf\n'), ((1987, 1999), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1997, 1999), True, 'import tensorflow as tf\n'), ((3397, 3409), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3407, 3409), True, 'import tensorflow as tf\n'), ((5291, 5303), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5301, 5303), True, 'import tensorflow as tf\n'), ((6743, 6755), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (6753, 6755), True, 'import tensorflow as tf\n'), ((8047, 8062), 'numpy.round', 'np.round', (['(W * p)'], {}), '(W * p)\n', (8055, 8062), True, 'import numpy as np\n'), ((8124, 8136), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8134, 8136), True, 'import tensorflow as tf\n'), ((9228, 9243), 'numpy.round', 'np.round', (['(W * p)'], {}), '(W * p)\n', (9236, 9243), True, 'import numpy as np\n'), ((9305, 9317), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (9315, 9317), True, 'import tensorflow as tf\n'), ((10629, 10644), 'numpy.round', 'np.round', (['(W * p)'], {}), '(W * p)\n', (10637, 10644), True, 'import numpy as np\n'), ((10706, 10718), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (10716, 10718), True, 'import tensorflow as tf\n'), ((10786, 10807), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (10805, 10807), False, 'import unittest\n'), ((10848, 10884), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (10871, 10884), False, 'import unittest\n')]
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import xarray as xr sns.set() def plot_range(xlabel, ylabel, title, x, values): """x and values should have the same size""" plt.plot(x, values, 'r-', linewidth=2) plt.gcf().set_size_inches(8, 2) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) def plot_year_multi(*args): """*args should be iterateble with 2 elements (value, label); value should be an array of 365 elements""" fig = plt.figure(figsize=(8, 3)) ax = fig.add_subplot(1, 1, 1) ox = np.arange(1, 366, 1) for arg in args: ax.plot(ox, arg[0], linewidth=2, label=arg[1]) ax.set_ylabel(r'$values$') ax.set_xlabel(r'$days$') ax.legend(loc='best') def extract_alk(data_train): ds = xr.open_dataset(data_train[0]) alk_df = ds['B_C_Alk'].to_dataframe() alk_surface = alk_df.groupby('z').get_group(data_train[1]) alk = alk_surface.loc['2011-01-01':'2011-12-31'] alk = alk.reset_index() return alk def show_alk(data_train): fig = plt.figure(figsize=(10, 2)) ax = fig.add_subplot(1, 1, 1) for item in data_train: ax.plot(item[0]['time'], item[0]['B_C_Alk'], linewidth=2, label=item[1]) ax.legend(loc='best') ax.set_title('Alkalinity in the surface layer') plt.show() if __name__ == '__main__': print('This is a plot functions module')
[ "seaborn.set", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gcf", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.figure", "matplotlib.pyplot.title", "xarray.open_dataset", "numpy.arange", "matplotlib.pyplot.show" ]
[((93, 102), 'seaborn.set', 'sns.set', ([], {}), '()\n', (100, 102), True, 'import seaborn as sns\n'), ((209, 247), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'values', '"""r-"""'], {'linewidth': '(2)'}), "(x, values, 'r-', linewidth=2)\n", (217, 247), True, 'import matplotlib.pyplot as plt\n'), ((288, 304), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (297, 304), True, 'import matplotlib.pyplot as plt\n'), ((309, 327), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (319, 327), True, 'import matplotlib.pyplot as plt\n'), ((332, 350), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (342, 350), True, 'import matplotlib.pyplot as plt\n'), ((509, 535), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 3)'}), '(figsize=(8, 3))\n', (519, 535), True, 'import matplotlib.pyplot as plt\n'), ((579, 599), 'numpy.arange', 'np.arange', (['(1)', '(366)', '(1)'], {}), '(1, 366, 1)\n', (588, 599), True, 'import numpy as np\n'), ((803, 833), 'xarray.open_dataset', 'xr.open_dataset', (['data_train[0]'], {}), '(data_train[0])\n', (818, 833), True, 'import xarray as xr\n'), ((1073, 1100), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 2)'}), '(figsize=(10, 2))\n', (1083, 1100), True, 'import matplotlib.pyplot as plt\n'), ((1342, 1352), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1350, 1352), True, 'import matplotlib.pyplot as plt\n'), ((252, 261), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (259, 261), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- """ Created on Mon Nov 28 10:47:38 2016 @author: ahefny Policies are BLIND to the representation of states, which could be (1) observation, (2) original latent state or (3) predictive state. Policies takes the "state" dimension x_dim, the number of actions/dim of action as input. """ import numpy as np import scipy.stats class BasePolicy(object): def reset(self): pass def sample_action(self, state): ''' Samples an action and returns a tuple consisting of: chosen action, action probability, dictionary of diagnostic information (values must be numbers or vectors) ''' raise NotImplementedError def _load(self, params): raise NotImplementedError def _save(self): raise NotImplementedError class RandomDiscretePolicy(BasePolicy): def __init__(self, num_actions, rng=None): self.num_actions = num_actions self.rng = rng def sample_action(self, state): action = self.rng.randint(0, self.num_actions) return action, 1. / self.num_actions, {} class RandomGaussianPolicy(BasePolicy): def __init__(self, num_actions, rng=None): self.num_actions = num_actions self.rng = rng def sample_action(self, state): action = self.rng.randn(self.num_actions) return action, np.prod(scipy.stats.norm.pdf(action)), {} class UniformContinuousPolicy(BasePolicy): def __init__(self, low, high, rng=None): self._low = low self._high = high self._prob = 1.0 / np.prod(self._high - self._low) self.rng = rng def sample_action(self, state): dim = len(self._high) action = self.rng.rand(dim) action = action * (self._high - self._low) + self._low return action, self._prob, {} class LinearPolicy(BasePolicy): def __init__(self, K, sigma, rng=None): self._K = K self._sigma = sigma self.rng = rng def reset(self): pass def sample_action(self, state): mean = np.dot(self._K, state) noise = self.rng.randn(len(mean)) sigma = self._sigma action = mean + noise * sigma return action, np.prod(scipy.stats.norm.pdf(noise)), {} class SineWavePolicy(BasePolicy): def __init__(self, amps, periods, phases): self._amps = amps self._scales = 2 * np.pi / periods self._phases = phases * np.pi / 180.0 self._t = 0 def reset(self): self._t = 0 def sample_action(self, state): a = self._amps * np.sin(self._t * self._scales + self._phases) self._t += 1 return a, 1.0, {}
[ "numpy.sin", "numpy.prod", "numpy.dot" ]
[((2094, 2116), 'numpy.dot', 'np.dot', (['self._K', 'state'], {}), '(self._K, state)\n', (2100, 2116), True, 'import numpy as np\n'), ((1598, 1629), 'numpy.prod', 'np.prod', (['(self._high - self._low)'], {}), '(self._high - self._low)\n', (1605, 1629), True, 'import numpy as np\n'), ((2612, 2657), 'numpy.sin', 'np.sin', (['(self._t * self._scales + self._phases)'], {}), '(self._t * self._scales + self._phases)\n', (2618, 2657), True, 'import numpy as np\n')]
import torch import numpy as np from torch.utils.data import Dataset import torchvision.transforms as transforms import skimage.io as io from path import Path import cv2 import torch.nn.functional as F class ETH_LFB(Dataset): def __init__(self, configs): """ dataset for eth local feature benchmark """ super(ETH_LFB, self).__init__() self.configs = configs self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) # self.imfs = [] self.sift = cv2.SIFT_create() imdir = Path(self.configs['data_path']) folder_dir = imdir/self.configs['subfolder'] images_dir = folder_dir/'images' imgs = images_dir.glob('*') self.imfs = imgs self.imfs.sort() def __getitem__(self, item): imf = self.imfs[item] im = io.imread(imf) name = imf.name name = '{}/{}'.format(self.configs['subfolder'], name) if len(im.shape) != 3: #gray images im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB) im = im.copy() im_tensor = self.transform(im) # c, h, w = im_tensor.shape # pad_b = 16 - h%16 # pad_r = 16 - w%16 # pad = (0,pad_r,0,pad_b) # im_tensor = F.pad(im_tensor.unsqueeze(0), pad, mode='replicate').squeeze(0) pad=(0,0,0,0) # now use crop to get suitable size crop_r = w%16 crop_b = h%16 im_tensor = im_tensor[:,:h-crop_b,:w-crop_r] im = im[:h-crop_b,:w-crop_r,:] # using sift keypoints gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY) kpts = self.sift.detect(gray) kpts = np.array([[kp.pt[0], kp.pt[1]] for kp in kpts]) coord = torch.from_numpy(kpts).float() out = {'im1': im_tensor, 'im1_ori':im, 'coord1': coord, 'name1': name, 'pad1':pad} return out def __len__(self): return len(self.imfs)
[ "torch.from_numpy", "numpy.array", "path.Path", "cv2.SIFT_create", "skimage.io.imread", "cv2.cvtColor", "torchvision.transforms.Normalize", "torchvision.transforms.ToTensor" ]
[((752, 769), 'cv2.SIFT_create', 'cv2.SIFT_create', ([], {}), '()\n', (767, 769), False, 'import cv2\n'), ((786, 817), 'path.Path', 'Path', (["self.configs['data_path']"], {}), "(self.configs['data_path'])\n", (790, 817), False, 'from path import Path\n'), ((1075, 1089), 'skimage.io.imread', 'io.imread', (['imf'], {}), '(imf)\n', (1084, 1089), True, 'import skimage.io as io\n'), ((1799, 1835), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_RGB2GRAY'], {}), '(im, cv2.COLOR_RGB2GRAY)\n', (1811, 1835), False, 'import cv2\n'), ((1889, 1936), 'numpy.array', 'np.array', (['[[kp.pt[0], kp.pt[1]] for kp in kpts]'], {}), '([[kp.pt[0], kp.pt[1]] for kp in kpts])\n', (1897, 1936), True, 'import numpy as np\n'), ((1239, 1275), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_GRAY2RGB'], {}), '(im, cv2.COLOR_GRAY2RGB)\n', (1251, 1275), False, 'import cv2\n'), ((448, 469), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (467, 469), True, 'import torchvision.transforms as transforms\n'), ((516, 591), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '(0.485, 0.456, 0.406)', 'std': '(0.229, 0.224, 0.225)'}), '(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))\n', (536, 591), True, 'import torchvision.transforms as transforms\n'), ((1953, 1975), 'torch.from_numpy', 'torch.from_numpy', (['kpts'], {}), '(kpts)\n', (1969, 1975), False, 'import torch\n')]
"""This file contains functions for processing image""" import cv2 import math import copy import numpy as np import matplotlib.pyplot as plt def binarize_image(image): """Binarize image pixel values to 0 and 255.""" unique_values = np.unique(image) if len(unique_values) == 2: if (unique_values == np.array([0., 255.])).all(): return image mean = image.mean() image[image > mean] = 255 image[image <= mean] = 0 return image def read_gray_image(path): """Read in a gray scale image.""" image = cv2.imread(path, 0) return image def read_image(path): """Read in a RGB image.""" image = cv2.imread(path) return image def save_image(image, path): """Save image using cv2.""" cv2.imwrite(path, image) def get_black_area(raw_mask): """Get the area of black values which needs to be filled with Tangram. Input: raw_mask: input image of the Tangram problem, np.array with black area == 0 Return: black: area of black values """ h, w = raw_mask.shape black = h * w - np.count_nonzero(raw_mask) return black def get_unit_length(raw_mask, standard_s=64.): """Get the unit length for a Tangram problem. For example, if an input mask has an area == 64, while a typical 13 Tangram has an area == 64, then the unit length will be 1 for this problem. Input: raw_mask: input image of the Tangram problem, np.array with black area == 0 standard_s: standard square of a set of 13 Tangram, typically 64 Return: unit_length: the length in the mask that equals to 1 in a typical Tangram """ black_area = get_black_area(raw_mask) unit_length = math.sqrt(float(black_area) / float(standard_s)) return unit_length def show_gray_image(image): """Show gray scale image.""" plt.imshow(image, cmap='gray') plt.show() def show_image(image): """Show RGB image.""" plt.imshow(image) plt.show() def get_final_result(grid, elements, colors): """Draw elements on grid and returns the final solution.""" img = copy.deepcopy(grid) if len(img.shape) == 2: # extend it to RGB form image img = np.stack([img, img, img], axis=-1) for i in range(len(elements)): for j in range(elements[i].area): img[elements[i].coordinates[j][0], elements[i].coordinates[j][1]] = colors[i] return img def segment_image(image, tangram_s): """Since we know all elements in a 13 Tangram can be decomposed into small 1x1 squares, I want to segment the original image into grid form that, each pixel corresponds to one 1x1 square. """ # get unit_length unit_length = int(round(get_unit_length(image, tangram_s))) # first reverse image to set black area == 1 and white area == 0 mask = np.zeros_like(image, dtype=np.uint8) mask[image > 128] = 0 mask[image <= 128] = 1 w_sum = np.sum(mask, axis=0) h_sum = np.sum(mask, axis=1) loc1 = np.where(h_sum >= unit_length * 0.5) start_x = loc1[0][0] end_x = loc1[0][-1] + 1 loc2 = np.where(w_sum >= unit_length * 0.5) start_y = loc2[0][0] end_y = loc2[0][-1] + 1 h = end_x - start_x w = end_y - start_y assert (h % unit_length == 0 and w % unit_length == 0) # pad image ori_h, ori_w = mask.shape new_h = (ori_h // unit_length + 2) * unit_length new_w = (ori_w // unit_length + 2) * unit_length new_image = np.ones((new_h, new_w), dtype=np.uint8) * 255 pad_x_start = unit_length - (start_x % unit_length) pad_y_start = unit_length - (start_y % unit_length) new_image[pad_x_start:pad_x_start + ori_h, pad_y_start:pad_y_start + ori_w] = image # generate grid h = new_h // unit_length w = new_w // unit_length grid = np.ones((h, w), dtype=np.uint8) * 255 # iterate over small squares and compare areas mask = np.zeros_like(new_image, dtype=np.uint8) mask[new_image > 128] = 0 mask[new_image <= 128] = 1 for i in range(h): for j in range(w): area = \ np.sum(mask[unit_length * i:unit_length * (i + 1), unit_length * j:unit_length * (j + 1)]) if area > (unit_length ** 2) * 0.5: grid[i, j] = 0 return unit_length, new_image, grid
[ "matplotlib.pyplot.imshow", "cv2.imwrite", "numpy.unique", "numpy.ones", "numpy.where", "numpy.zeros_like", "numpy.count_nonzero", "numpy.sum", "numpy.stack", "numpy.array", "copy.deepcopy", "cv2.imread", "matplotlib.pyplot.show" ]
[((255, 271), 'numpy.unique', 'np.unique', (['image'], {}), '(image)\n', (264, 271), True, 'import numpy as np\n'), ((580, 599), 'cv2.imread', 'cv2.imread', (['path', '(0)'], {}), '(path, 0)\n', (590, 599), False, 'import cv2\n'), ((692, 708), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (702, 708), False, 'import cv2\n'), ((801, 825), 'cv2.imwrite', 'cv2.imwrite', (['path', 'image'], {}), '(path, image)\n', (812, 825), False, 'import cv2\n'), ((1934, 1964), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {'cmap': '"""gray"""'}), "(image, cmap='gray')\n", (1944, 1964), True, 'import matplotlib.pyplot as plt\n'), ((1970, 1980), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1978, 1980), True, 'import matplotlib.pyplot as plt\n'), ((2041, 2058), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image'], {}), '(image)\n', (2051, 2058), True, 'import matplotlib.pyplot as plt\n'), ((2064, 2074), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2072, 2074), True, 'import matplotlib.pyplot as plt\n'), ((2202, 2221), 'copy.deepcopy', 'copy.deepcopy', (['grid'], {}), '(grid)\n', (2215, 2221), False, 'import copy\n'), ((2954, 2990), 'numpy.zeros_like', 'np.zeros_like', (['image'], {'dtype': 'np.uint8'}), '(image, dtype=np.uint8)\n', (2967, 2990), True, 'import numpy as np\n'), ((3059, 3079), 'numpy.sum', 'np.sum', (['mask'], {'axis': '(0)'}), '(mask, axis=0)\n', (3065, 3079), True, 'import numpy as np\n'), ((3093, 3113), 'numpy.sum', 'np.sum', (['mask'], {'axis': '(1)'}), '(mask, axis=1)\n', (3099, 3113), True, 'import numpy as np\n'), ((3126, 3162), 'numpy.where', 'np.where', (['(h_sum >= unit_length * 0.5)'], {}), '(h_sum >= unit_length * 0.5)\n', (3134, 3162), True, 'import numpy as np\n'), ((3230, 3266), 'numpy.where', 'np.where', (['(w_sum >= unit_length * 0.5)'], {}), '(w_sum >= unit_length * 0.5)\n', (3238, 3266), True, 'import numpy as np\n'), ((4057, 4097), 'numpy.zeros_like', 'np.zeros_like', (['new_image'], {'dtype': 'np.uint8'}), '(new_image, dtype=np.uint8)\n', (4070, 4097), True, 'import numpy as np\n'), ((1141, 1167), 'numpy.count_nonzero', 'np.count_nonzero', (['raw_mask'], {}), '(raw_mask)\n', (1157, 1167), True, 'import numpy as np\n'), ((2305, 2339), 'numpy.stack', 'np.stack', (['[img, img, img]'], {'axis': '(-1)'}), '([img, img, img], axis=-1)\n', (2313, 2339), True, 'import numpy as np\n'), ((3607, 3646), 'numpy.ones', 'np.ones', (['(new_h, new_w)'], {'dtype': 'np.uint8'}), '((new_h, new_w), dtype=np.uint8)\n', (3614, 3646), True, 'import numpy as np\n'), ((3953, 3984), 'numpy.ones', 'np.ones', (['(h, w)'], {'dtype': 'np.uint8'}), '((h, w), dtype=np.uint8)\n', (3960, 3984), True, 'import numpy as np\n'), ((4252, 4347), 'numpy.sum', 'np.sum', (['mask[unit_length * i:unit_length * (i + 1), unit_length * j:unit_length * (\n j + 1)]'], {}), '(mask[unit_length * i:unit_length * (i + 1), unit_length * j:\n unit_length * (j + 1)])\n', (4258, 4347), True, 'import numpy as np\n'), ((335, 357), 'numpy.array', 'np.array', (['[0.0, 255.0]'], {}), '([0.0, 255.0])\n', (343, 357), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: #import bibliotek from keras.applications.resnet50 import ResNet50, decode_predictions,preprocess_input from keras.preprocessing import image import numpy as np import requests from io import BytesIO from PIL import Image # In[2]: #podbranie modelu ResNet50 model = ResNet50(weights = 'imagenet') # In[3]: #architektura modelu ResNet50 model.summary() # ## Import zdjecia z internetu # #wyświetla zdjecie w jupyterze # # # # ![] (link) # # ![](https://natgeo.imgix.net/syndication/d03e14b9-ccf2-40d2-9612-997a20d35b4a/magazine-rights-exempt-2016-08-departments-panda-mania-12.jpg?auto=compress,format&w=1024&h=560&fit=crop) # ![](https://www.google.com/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwiFvvuM8MLhAhWHyKQKHSxsBEoQjRx6BAgBEAU&url=https%3A%2F%2Fwww.nationalgeographic.com.au%2Fanimals%2Fwho-discovered-the-panda.aspx&psig=AOvVaw2_1mzwUKFN5triJdvHotFY&ust=1554894652416632) # In[4]: #import zdjecia z internetu url_img = ('https://natgeo.imgix.net/syndication/d03e14b9-ccf2-40d2-9612-997a20d35b4a/magazine-rights-exempt-2016-08-departments-panda-mania-12.jpg?auto=compress,format&w=1024&h=560&fit=crop') response = requests.get(url_img) #zmiana na Bytes img = Image.open(BytesIO(response.content)) #rozmiar zdjecia 224x 224 bo taki wymaga model img = img.resize((224,224)) img # In[5]: # konwersja zdjecia na tablice o wartosciach 0-255 X = image.img_to_array(img) #dodanie nowego wymiaru bo model przyjmuje 4 wymiary X = np.expand_dims(X, axis =0) #(1,,224,224,3) # 1 - zdjecie # 224 - rozmiar # 224 - rozmiar # 3 - RBG X.shape # In[6]: np.expand_dims(X, axis =0).shape # In[7]: #predykcja y_pred = model.predict(X) # In[8]: #prawdopodobieństwo co jest na zdjęciu decode_predictions(y_pred, top = 5) # In[9]: #inne przypadki url_money =('http://3.bp.blogspot.com/-CU3Mg-LeVC4/VWSAi6Ff3dI/AAAAAAAAAkM/UnHJHUkba3c/s400/IMG_9240.JPG') url_dolar =('https://s3.amazonaws.com/ngccoin-production/us-coin-explorer-category/2718362-020o.jpg') url_kasa =('https://ocdn.eu/pulscms-transforms/1/MesktkpTURBXy82NDZmNjk1MTExMzVmN2Q5ZmMwMWE1YjUxODU5YzdkNC5qcGeSlQMAAM0QbM0JPZMFzQNSzQHe') url_snow =('https://miastodzieci.pl/wp-content/uploads/2015/09/snowman-1073800_1920.jpg') url_dolares = ('https://wf2.xcdn.pl/files/17/04/12/984916_hI4O_17123251389_bed3c3a1ba_b_83.jpg') url_cash = ('http://m.wm.pl/2018/07/orig/pieniadze-22-482228.jpg') response = requests.get(url_cash) img = Image.open(BytesIO(response.content)) #rozmiar zdjecia 224x 224 img = img.resize((224,224)) img # In[10]: X = image.img_to_array(img) X = np.expand_dims(X, axis =0) X.shape # In[11]: #predykcja y_pred = model.predict(X) # In[12]: #prawdopodobieństwo co jest na zdjęciu decode_predictions(y_pred, top = 5) # In[ ]:
[ "keras.preprocessing.image.img_to_array", "keras.applications.resnet50.decode_predictions", "io.BytesIO", "requests.get", "numpy.expand_dims", "keras.applications.resnet50.ResNet50" ]
[((323, 351), 'keras.applications.resnet50.ResNet50', 'ResNet50', ([], {'weights': '"""imagenet"""'}), "(weights='imagenet')\n", (331, 351), False, 'from keras.applications.resnet50 import ResNet50, decode_predictions, preprocess_input\n'), ((1204, 1225), 'requests.get', 'requests.get', (['url_img'], {}), '(url_img)\n', (1216, 1225), False, 'import requests\n'), ((1436, 1459), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (1454, 1459), False, 'from keras.preprocessing import image\n'), ((1518, 1543), 'numpy.expand_dims', 'np.expand_dims', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1532, 1543), True, 'import numpy as np\n'), ((1778, 1811), 'keras.applications.resnet50.decode_predictions', 'decode_predictions', (['y_pred'], {'top': '(5)'}), '(y_pred, top=5)\n', (1796, 1811), False, 'from keras.applications.resnet50 import ResNet50, decode_predictions, preprocess_input\n'), ((2458, 2480), 'requests.get', 'requests.get', (['url_cash'], {}), '(url_cash)\n', (2470, 2480), False, 'import requests\n'), ((2602, 2625), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (2620, 2625), False, 'from keras.preprocessing import image\n'), ((2630, 2655), 'numpy.expand_dims', 'np.expand_dims', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (2644, 2655), True, 'import numpy as np\n'), ((2769, 2802), 'keras.applications.resnet50.decode_predictions', 'decode_predictions', (['y_pred'], {'top': '(5)'}), '(y_pred, top=5)\n', (2787, 2802), False, 'from keras.applications.resnet50 import ResNet50, decode_predictions, preprocess_input\n'), ((1261, 1286), 'io.BytesIO', 'BytesIO', (['response.content'], {}), '(response.content)\n', (1268, 1286), False, 'from io import BytesIO\n'), ((1643, 1668), 'numpy.expand_dims', 'np.expand_dims', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1657, 1668), True, 'import numpy as np\n'), ((2498, 2523), 'io.BytesIO', 'BytesIO', (['response.content'], {}), '(response.content)\n', (2505, 2523), False, 'from io import BytesIO\n')]
# -*- coding: utf-8 -*- """ Plot comparisons of IHME projections to actual data for US states. IHME data per IHME: https://covid19.healthdata.org/united-states-of-america IHME data stored here in the "..\data\ihme" directory for each release that was obtained. State-level data per Covid tracking project: https://covidtracking.com/ Data for the COVID-19 repo is contained here in the "..\data\covid19_tracker" directory for each day that the state historical values were obtained. """ import os import numpy as np from scipy.integrate import solve_ivp from scipy.optimize import fsolve import matplotlib.pyplot as plt from datetime import date from scipy.signal import medfilt from read_data import get_data_ctrack, get_data_ihme, format_date_ihme def intfun(s): try: return int(s) except ValueError: return 0 # Select states and set data dates for display #state = 'NY' #state_long = 'New York' #state = 'GA' #state_long = 'Georgia' #state = 'KY' #state_long = 'Kentucky' #state = 'CA' #state_long = 'California' #state = 'WI' #state_long = 'Wisconsin' #ylpct = [0., 15.] #state = 'IA' #state_long = 'Iowa' state = 'AL' state_long = 'Alabama' #state = 'OR' #state_long = 'Oregon' #state = 'FL' #state_long = 'Florida' #ylpct = [0.,25.] #state = 'MI' #state_long = 'Michigan' #state = 'WA' #state_long = 'Washington' #state = 'DC' #state_long = 'District of Columbia' #state = 'NJ' #state_long = 'New Jersey' #state = 'OK' #state_long = 'Oklahoma' #state = 'SD' #state_long = 'South Dakota' # TODO: Have to add all state data together for the covid tracker data #state = 'US' #state_long = 'US' #state = 'TX' #state_long = 'Texas' #state = 'GA' #state_long = 'Georgia' #state = 'MN' #state_long = 'Minnesota' #state = 'CO' #state_long = 'Colorado' ylpct = [0., 30.] # Set files which we're loading from and set data dates for display data_filename = r'..\data\covid19_tracker\states-daily_20200504.csv' data_date = '04 May' #model_fname = r'..\data\ihme\2020_03_31.1\Hospitalization_all_locs.csv' #project_date = '31 March' #model_fname = r'..\data\ihme\2020_04_12.02\Hospitalization_all_locs.csv' #project_date = '13 April' model_fname = r'..\data\ihme\2020_04_16.05\Hospitalization_all_locs.csv' project_date = '17 April' # When to stop the plotting start_date = '20200401' stop_date = '20200510' # Which plots to make plot_testing = True plot_hosp_death = True today = date.today() # Load data and format data = get_data_ctrack(state, data_filename) dates = data['date'] start_date_ind = list(dates).index(start_date) dates = dates[start_date_ind:] pos = data['positive'] neg = data['negative'] hosp = data['hospitalizedCurrently'] icu = data['inIcuCurrently'] vent = data['onVentilatorCurrently'] death = data['death'] date_inds = range(len(dates)) dpos = np.diff(pos, prepend = 0) dneg = np.diff(neg, prepend = 0) dhosp = np.diff(hosp, prepend = 0.) ddhosp = np.diff(dhosp, prepend = 0) ddeath = np.diff(death, prepend = 0) pos = pos[start_date_ind:] neg = neg[start_date_ind:] hosp = hosp[start_date_ind:] death = death[start_date_ind:] dpos = dpos[start_date_ind:] dneg = dneg[start_date_ind:] dhosp = dhosp[start_date_ind:] ddeath = ddeath[start_date_ind:] xticks = date_inds[::4] xticklabels = ['%s/%s' % (s[-3], s[-2:]) for s in dates[::4]] # Load ihme data data_ihme = get_data_ihme(model_fname)[state_long] dates_ihme = [format_date_ihme(s) for s in data_ihme['date']] # Trim to desired range start_ihme = dates_ihme.index(start_date) stop_ihme = dates_ihme.index(stop_date) dates_ihme = dates_ihme[start_ihme:stop_ihme] date_inds_ihme = range(len(dates_ihme)) dhosp_ihme_m, dhosp_ihme_l, dhosp_ihme_u = (data_ihme['admis_mean'][start_ihme:stop_ihme], data_ihme['admis_lower'][start_ihme:stop_ihme], data_ihme['admis_upper'][start_ihme:stop_ihme]) hosp_ihme_m, hosp_ihme_l, hosp_ihme_u = (data_ihme['allbed_mean'][start_ihme:stop_ihme], data_ihme['allbed_lower'][start_ihme:stop_ihme], data_ihme['allbed_upper'][start_ihme:stop_ihme]) death_ihme_m, death_ihme_l, death_ihme_u = (data_ihme['totdea_mean'][start_ihme:stop_ihme], data_ihme['totdea_lower'][start_ihme:stop_ihme], data_ihme['totdea_upper'][start_ihme:stop_ihme]) ddeath_ihme_m, ddeath_ihme_l, ddeath_ihme_u = (data_ihme['deaths_mean'][start_ihme:stop_ihme], data_ihme['deaths_lower'][start_ihme:stop_ihme], data_ihme['deaths_upper'][start_ihme:stop_ihme]) xticks = date_inds_ihme[::4] xticklabels = ['%s/%s' % (s[-3], s[-2:]) for s in dates_ihme[::4]] #%% Data on tests if plot_testing: fig, ax = plt.subplots(1, 3, figsize = (17, 5)) gray = 0.3*np.array([1, 1, 1]) lightblue = [0.3, 0.3, 0.8] darkblue = [0.2, 0.2, 0.6] red = [0.6, 0.2, 0.2] lightred = [0.8, 0.4, 0.4] dtotal = dpos + dneg avg_7 = medfilt(dtotal, 7) ax[0].plot(dates, dtotal, 'o', label = 'Total Tests', color = darkblue, markerfacecolor = lightblue) ax[0].plot(dates, avg_7, 'k--', label = '7 Day Moving Average') ax[0].set_xticks(xticks) ax[0].set_xticklabels(xticklabels) ax[0].set_ylabel('Number of Tests', fontsize = 12, fontweight = 'bold') ax[0].set_xlabel('Date', fontsize = 12, fontweight = 'bold') ax[1].plot(dates, dpos, 'o', label = 'Positive Tests', color = red, markerfacecolor = lightred) avg_3 = medfilt(dpos, 3) avg_7 = medfilt(dpos, 7) # ax[1].plot(dates, avg_3, 'b--', label = '3 Day Moving Average') ax[1].plot(dates, avg_7, 'k--', label = '7 Day Moving Average') ax[1].set_xticks(xticks) ax[1].set_xticklabels(xticklabels) ax[1].set_ylabel('Number of Positives', fontsize = 12, fontweight = 'bold') ax[1].set_xlabel('Date', fontsize = 12, fontweight = 'bold') avg_7 = medfilt(100*dpos/dtotal, 7) ax[2].plot(dates, avg_7, 'k--', label = '7 Day Moving Average') ax[2].plot(dates, 100*dpos/dtotal, 'o', color = 'k', markerfacecolor = gray) ax[2].set_xticks(xticks) ax[2].set_xticklabels(xticklabels) ax[2].set_xlabel('Date', fontweight = 'bold', fontsize = 12) ax[2].set_ylabel('Percentage of Positive Tests', fontweight = 'bold', fontsize = 12) ax[0].set_title('All Tests', fontsize = 12, fontweight = 'bold') ax[1].set_title('Positive Tests', fontsize = 12, fontweight = 'bold') ax[2].set_title('Percentage of Tests Positive', fontsize = 12, fontweight = 'bold') yl0 = ax[0].get_ylim() yl1 = ax[1].get_ylim() yl2 = ax[2].get_ylim() ax[0].set_ylim([-5, yl0[1]]) ax[0].set_xlim([0, len(dates)]) ax[1].set_ylim([-5, yl1[1]]) ax[1].set_xlim([0, len(dates)]) ax[1].legend() if ylpct is None: ax[2].set_ylim([-5, yl2[1]]) else: ax[2].set_ylim(ylpct) ax[2].set_xlim([0, len(dates)]) fig.suptitle('%s: All Tests, Positive Tests, and Positive Test Percentages' % state_long, fontsize = 14, fontweight = 'bold') impath = '../images/test_data' imname = '%s_data%s_%s.png' % (state_long, data_date, str(today)) plt.savefig(os.path.join(impath, imname), bbox_inches = 'tight') #%% Show info on hospitalizations and deaths if plot_hosp_death: impath = '../images/ihme_compare' imname = '%s_data%s_project%s_%s.png' % (state_long, data_date, project_date, str(today)) lightblue = [0.3, 0.3, 0.8] darkblue = [0.2, 0.2, 0.6] fig, ax = plt.subplots(2, 2, figsize = (12, 6)) ax = ax.flatten() ax[0].plot(dates, hosp, 'o', label = 'Reported', color = darkblue, markerfacecolor = lightblue) ax[0].plot(dates_ihme, hosp_ihme_m, 'k-', label = 'IHME Projected [Mean]') ax[0].plot(dates_ihme, hosp_ihme_l, 'r--', label = 'IHME Projected [Lower CI]') ax[0].plot(dates_ihme, hosp_ihme_u, 'r--', label = 'IHME Projected [Upper CI]') ax[0].set_xlim(0, date_inds_ihme[-1]) ax[0].set_xticks(xticks) ax[0].set_xticklabels(xticklabels) ax[0].legend() ax[0].set_ylabel('Total Hospitalized', fontsize = 12, fontweight = 'bold') ax[0].set_title('Hospitalizations', fontsize = 12, fontweight = 'bold') ax[2].plot(dates, dhosp, 'o', color = darkblue, markerfacecolor = lightblue) ax[2].plot(dates_ihme, dhosp_ihme_m, 'k-') ax[2].plot(dates_ihme, dhosp_ihme_l, 'r--') ax[2].plot(dates_ihme, dhosp_ihme_u, 'r--') ax[2].set_xlim(0, date_inds_ihme[-1]) ax[2].set_xticks(xticks) ax[2].set_xticklabels(xticklabels) ax[2].set_ylabel('New Hospitalized', fontsize = 12, fontweight = 'bold') ax[2].set_xlabel('Date', fontsize = 12, fontweight = 'bold') ax[1].plot(dates, death, 'o', label = 'Reported', color = darkblue, markerfacecolor = lightblue) ax[1].plot(dates_ihme, death_ihme_m, 'k-', label = 'IHME Projected [Mean]') ax[1].plot(dates_ihme, death_ihme_l, 'r--', label = 'IHME Projected [Lower CI]') ax[1].plot(dates_ihme, death_ihme_u, 'r--', label = 'IHME Projected [Upper CI]') ax[1].set_xlim(0, date_inds_ihme[-1]) ax[1].set_xticks(xticks) ax[1].set_xticklabels(xticklabels) ax[1].legend() ax[1].set_ylabel('Total Deaths', fontsize = 12, fontweight = 'bold') ax[1].set_title('Deaths', fontsize = 12, fontweight = 'bold') ax[3].plot(dates, ddeath, 'o', color = darkblue, markerfacecolor = lightblue) ax[3].plot(dates_ihme, ddeath_ihme_m, 'k-') ax[3].plot(dates_ihme, ddeath_ihme_l, 'r--') ax[3].plot(dates_ihme, ddeath_ihme_u, 'r--') ax[3].set_xlim(0, date_inds_ihme[-1]) ax[3].set_xticks(xticks) ax[3].set_xticklabels(xticklabels) ax[3].set_ylabel('New Deaths', fontsize = 12, fontweight = 'bold') ax[3].set_xlabel('Date', fontsize = 12, fontweight = 'bold') # plt.tight_layout() fig.suptitle('%s: Reported Data [%s] vs IHME Projections [%s]' % (state_long, data_date, project_date), fontsize = 14, fontweight = 'bold') plt.savefig(os.path.join(impath, imname), bbox_inches = 'tight')
[ "read_data.get_data_ctrack", "os.path.join", "read_data.format_date_ihme", "numpy.diff", "read_data.get_data_ihme", "numpy.array", "scipy.signal.medfilt", "datetime.date.today", "matplotlib.pyplot.subplots" ]
[((2462, 2474), 'datetime.date.today', 'date.today', ([], {}), '()\n', (2472, 2474), False, 'from datetime import date\n'), ((2506, 2543), 'read_data.get_data_ctrack', 'get_data_ctrack', (['state', 'data_filename'], {}), '(state, data_filename)\n', (2521, 2543), False, 'from read_data import get_data_ctrack, get_data_ihme, format_date_ihme\n'), ((2863, 2886), 'numpy.diff', 'np.diff', (['pos'], {'prepend': '(0)'}), '(pos, prepend=0)\n', (2870, 2886), True, 'import numpy as np\n'), ((2896, 2919), 'numpy.diff', 'np.diff', (['neg'], {'prepend': '(0)'}), '(neg, prepend=0)\n', (2903, 2919), True, 'import numpy as np\n'), ((2930, 2956), 'numpy.diff', 'np.diff', (['hosp'], {'prepend': '(0.0)'}), '(hosp, prepend=0.0)\n', (2937, 2956), True, 'import numpy as np\n'), ((2967, 2992), 'numpy.diff', 'np.diff', (['dhosp'], {'prepend': '(0)'}), '(dhosp, prepend=0)\n', (2974, 2992), True, 'import numpy as np\n'), ((3004, 3029), 'numpy.diff', 'np.diff', (['death'], {'prepend': '(0)'}), '(death, prepend=0)\n', (3011, 3029), True, 'import numpy as np\n'), ((3388, 3414), 'read_data.get_data_ihme', 'get_data_ihme', (['model_fname'], {}), '(model_fname)\n', (3401, 3414), False, 'from read_data import get_data_ctrack, get_data_ihme, format_date_ihme\n'), ((3441, 3460), 'read_data.format_date_ihme', 'format_date_ihme', (['s'], {}), '(s)\n', (3457, 3460), False, 'from read_data import get_data_ctrack, get_data_ihme, format_date_ihme\n'), ((5016, 5051), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(17, 5)'}), '(1, 3, figsize=(17, 5))\n', (5028, 5051), True, 'import matplotlib.pyplot as plt\n'), ((5256, 5274), 'scipy.signal.medfilt', 'medfilt', (['dtotal', '(7)'], {}), '(dtotal, 7)\n', (5263, 5274), False, 'from scipy.signal import medfilt\n'), ((5811, 5827), 'scipy.signal.medfilt', 'medfilt', (['dpos', '(3)'], {}), '(dpos, 3)\n', (5818, 5827), False, 'from scipy.signal import medfilt\n'), ((5840, 5856), 'scipy.signal.medfilt', 'medfilt', (['dpos', '(7)'], {}), '(dpos, 7)\n', (5847, 5856), False, 'from scipy.signal import medfilt\n'), ((6225, 6256), 'scipy.signal.medfilt', 'medfilt', (['(100 * dpos / dtotal)', '(7)'], {}), '(100 * dpos / dtotal, 7)\n', (6232, 6256), False, 'from scipy.signal import medfilt\n'), ((7919, 7954), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(12, 6)'}), '(2, 2, figsize=(12, 6))\n', (7931, 7954), True, 'import matplotlib.pyplot as plt\n'), ((5069, 5088), 'numpy.array', 'np.array', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (5077, 5088), True, 'import numpy as np\n'), ((7579, 7607), 'os.path.join', 'os.path.join', (['impath', 'imname'], {}), '(impath, imname)\n', (7591, 7607), False, 'import os\n'), ((10494, 10522), 'os.path.join', 'os.path.join', (['impath', 'imname'], {}), '(impath, imname)\n', (10506, 10522), False, 'import os\n')]
from feature import Feature from itertools import product import numpy as np import random class Node: def __init__(self, K, Cweights, Dweights, seed): self.K = K self.seed = seed self.Kd = int(K*2/3) self.Kc = int(K*1/3) self.Cfeatures = [Feature(False, seed) for k in range(self.Kc)] self.Dfeatures = [Feature(True, seed) for k in range(self.Kd)] self.CfeatureWeights = Cweights self.DfeatureWeights = Dweights self.group = np.arange(self.Kd).reshape((4,-1)) for i in range(self.Kc): self.Cfeatures[i].weight = self.CfeatureWeights[i] for i in range(self.Kd): self.Dfeatures[i].weight = self.DfeatureWeights[i] for i in range(self.group.shape[0]): one = np.random.randint(self.group[i,0], self.group[i,0]+self.group.shape[1]) for k in self.group[i,:]: self.Dfeatures[k].xhat = 0 self.Dfeatures[one].xhat = 1 self.u = np.random.rand() def getAlpha(self): alpha = 0 for f in self.features[self.Kd:]: alpha += min(f.weight * max(f.xhat - f.range, 0), f.weight * min(f.xhat + f.range, 1)) alpha = np.exp(alpha) return alpha def getBeta(self): beta = 0 for f in self.features[self.Kd:]: beta += max(f.weight * max(f.xhat - f.range, 0), f.weight * min(f.xhat + f.range, 1)) beta = np.exp(beta) return beta def getMaxCost(self): maxCost = 0 for f in self.Cfeatures: maxCost += f.cost * min(f.xhat, f.range, 1-f.xhat) for f in self.Dfeatures: maxCost += f.cost return maxCost def printFeatures(self): for f in self.features: feat = {"xhat": f.xhat, "cost": f.cost, "range": f.range, "weight": f.weight} print(feat) def generateCorrelation(self): K = 10 corr = [3, 2, 2] l = sum(corr) m1 = [(1,0,0), (0,1,0), (0,0,1)] m2 = [(1,0), (0,1)] m3 = m2 m4 = list(product(range(2), repeat=K-l)) m = list(product(m1, m2, m3, m4)) self.discreteSpace = [i[0] + i[1] + i[2] + i[3] for i in m] self.discreteCost = [random.random()*10 for i in self.discreteSpace] ws = np.array([f.weight for f in self.features[:self.Kd]]) self.discreteScore = [np.exp(np.dot(ws, np.array(i))) for i in self.discreteSpace]
[ "numpy.random.rand", "itertools.product", "feature.Feature", "numpy.exp", "numpy.array", "numpy.random.randint", "random.random", "numpy.arange" ]
[((1003, 1019), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1017, 1019), True, 'import numpy as np\n'), ((1220, 1233), 'numpy.exp', 'np.exp', (['alpha'], {}), '(alpha)\n', (1226, 1233), True, 'import numpy as np\n'), ((1451, 1463), 'numpy.exp', 'np.exp', (['beta'], {}), '(beta)\n', (1457, 1463), True, 'import numpy as np\n'), ((2322, 2375), 'numpy.array', 'np.array', (['[f.weight for f in self.features[:self.Kd]]'], {}), '([f.weight for f in self.features[:self.Kd]])\n', (2330, 2375), True, 'import numpy as np\n'), ((284, 304), 'feature.Feature', 'Feature', (['(False)', 'seed'], {}), '(False, seed)\n', (291, 304), False, 'from feature import Feature\n'), ((356, 375), 'feature.Feature', 'Feature', (['(True)', 'seed'], {}), '(True, seed)\n', (363, 375), False, 'from feature import Feature\n'), ((792, 867), 'numpy.random.randint', 'np.random.randint', (['self.group[i, 0]', '(self.group[i, 0] + self.group.shape[1])'], {}), '(self.group[i, 0], self.group[i, 0] + self.group.shape[1])\n', (809, 867), True, 'import numpy as np\n'), ((2139, 2162), 'itertools.product', 'product', (['m1', 'm2', 'm3', 'm4'], {}), '(m1, m2, m3, m4)\n', (2146, 2162), False, 'from itertools import product\n'), ((502, 520), 'numpy.arange', 'np.arange', (['self.Kd'], {}), '(self.Kd)\n', (511, 520), True, 'import numpy as np\n'), ((2261, 2276), 'random.random', 'random.random', ([], {}), '()\n', (2274, 2276), False, 'import random\n'), ((2424, 2435), 'numpy.array', 'np.array', (['i'], {}), '(i)\n', (2432, 2435), True, 'import numpy as np\n')]
#https://github.com/Newmu/Theano-Tutorials/blob/master/1_linear_regression.py import theano from theano import tensor as T import numpy as np trX = np.linspace(-1, 1, 101) trY = 2 * trX + np.random.randn(*trX.shape) * 0.33 X = T.scalar() Y = T.scalar() def model(X, w): return X * w w = theano.shared(np.asarray(0., dtype=theano.config.floatX)) y = model(X, w) cost = T.mean(T.sqr(y - Y)) gradient = T.grad(cost=cost, wrt=w) updates = [[w, w - gradient * 0.01]] train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) for i in range(100): for x, y in zip(trX, trY): train(x, y) print(w.get_value()) #something around 2 #https://raw.githubusercontent.com/Newmu/Theano-Tutorials/master/2_logistic_regression.py import theano from theano import tensor as T import numpy as np from fuel.datasets import MNIST from matplotlib import pyplot, cm dataset = MNIST(('train',), sources=('features',)) state = dataset.open() image, = dataset.get_data(state=state, request=[1234]) pyplot.imshow(image.reshape((28, 28)), cmap=cm.Greys_r, interpolation='nearest') pyplot.show() dataset.close(state) def floatX(X): return np.asarray(X, dtype=theano.config.floatX) def init_weights(shape): return theano.shared(floatX(np.random.randn(*shape) * 0.01)) def model(X, w): return T.nnet.softmax(T.dot(X, w)) trX, teX, trY, teY = mnist(onehot=True) X = T.fmatrix() Y = T.fmatrix() w = init_weights((784, 10)) py_x = model(X, w) y_pred = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) gradient = T.grad(cost=cost, wrt=w) update = [[w, w - gradient * 0.05]] train = theano.function(inputs=[X, Y], outputs=cost, updates=update, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_pred, allow_input_downcast=True) for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX), 128)): cost = train(trX[start:end], trY[start:end]) print(i, np.mean(np.argmax(teY, axis=1) == predict(teX)))
[ "theano.tensor.nnet.categorical_crossentropy", "theano.function", "matplotlib.pyplot.show", "theano.tensor.dot", "numpy.asarray", "numpy.argmax", "theano.tensor.sqr", "numpy.linspace", "theano.tensor.fmatrix", "theano.tensor.argmax", "theano.tensor.scalar", "numpy.random.randn", "fuel.datasets.MNIST", "theano.tensor.grad" ]
[((150, 173), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(101)'], {}), '(-1, 1, 101)\n', (161, 173), True, 'import numpy as np\n'), ((230, 240), 'theano.tensor.scalar', 'T.scalar', ([], {}), '()\n', (238, 240), True, 'from theano import tensor as T\n'), ((245, 255), 'theano.tensor.scalar', 'T.scalar', ([], {}), '()\n', (253, 255), True, 'from theano import tensor as T\n'), ((410, 434), 'theano.tensor.grad', 'T.grad', ([], {'cost': 'cost', 'wrt': 'w'}), '(cost=cost, wrt=w)\n', (416, 434), True, 'from theano import tensor as T\n'), ((481, 573), 'theano.function', 'theano.function', ([], {'inputs': '[X, Y]', 'outputs': 'cost', 'updates': 'updates', 'allow_input_downcast': '(True)'}), '(inputs=[X, Y], outputs=cost, updates=updates,\n allow_input_downcast=True)\n', (496, 573), False, 'import theano\n'), ((927, 967), 'fuel.datasets.MNIST', 'MNIST', (["('train',)"], {'sources': "('features',)"}), "(('train',), sources=('features',))\n", (932, 967), False, 'from fuel.datasets import MNIST\n'), ((1127, 1140), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (1138, 1140), False, 'from matplotlib import pyplot, cm\n'), ((1425, 1436), 'theano.tensor.fmatrix', 'T.fmatrix', ([], {}), '()\n', (1434, 1436), True, 'from theano import tensor as T\n'), ((1441, 1452), 'theano.tensor.fmatrix', 'T.fmatrix', ([], {}), '()\n', (1450, 1452), True, 'from theano import tensor as T\n'), ((1511, 1533), 'theano.tensor.argmax', 'T.argmax', (['py_x'], {'axis': '(1)'}), '(py_x, axis=1)\n', (1519, 1533), True, 'from theano import tensor as T\n'), ((1602, 1626), 'theano.tensor.grad', 'T.grad', ([], {'cost': 'cost', 'wrt': 'w'}), '(cost=cost, wrt=w)\n', (1608, 1626), True, 'from theano import tensor as T\n'), ((1672, 1763), 'theano.function', 'theano.function', ([], {'inputs': '[X, Y]', 'outputs': 'cost', 'updates': 'update', 'allow_input_downcast': '(True)'}), '(inputs=[X, Y], outputs=cost, updates=update,\n allow_input_downcast=True)\n', (1687, 1763), False, 'import theano\n'), ((1770, 1840), 'theano.function', 'theano.function', ([], {'inputs': '[X]', 'outputs': 'y_pred', 'allow_input_downcast': '(True)'}), '(inputs=[X], outputs=y_pred, allow_input_downcast=True)\n', (1785, 1840), False, 'import theano\n'), ((310, 353), 'numpy.asarray', 'np.asarray', (['(0.0)'], {'dtype': 'theano.config.floatX'}), '(0.0, dtype=theano.config.floatX)\n', (320, 353), True, 'import numpy as np\n'), ((385, 397), 'theano.tensor.sqr', 'T.sqr', (['(y - Y)'], {}), '(y - Y)\n', (390, 397), True, 'from theano import tensor as T\n'), ((1189, 1230), 'numpy.asarray', 'np.asarray', (['X'], {'dtype': 'theano.config.floatX'}), '(X, dtype=theano.config.floatX)\n', (1199, 1230), True, 'import numpy as np\n'), ((1549, 1589), 'theano.tensor.nnet.categorical_crossentropy', 'T.nnet.categorical_crossentropy', (['py_x', 'Y'], {}), '(py_x, Y)\n', (1580, 1589), True, 'from theano import tensor as T\n'), ((190, 217), 'numpy.random.randn', 'np.random.randn', (['*trX.shape'], {}), '(*trX.shape)\n', (205, 217), True, 'import numpy as np\n'), ((1366, 1377), 'theano.tensor.dot', 'T.dot', (['X', 'w'], {}), '(X, w)\n', (1371, 1377), True, 'from theano import tensor as T\n'), ((1289, 1312), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (1304, 1312), True, 'import numpy as np\n'), ((2016, 2038), 'numpy.argmax', 'np.argmax', (['teY'], {'axis': '(1)'}), '(teY, axis=1)\n', (2025, 2038), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """Make the double periodic shear test grid""" import matplotlib.pyplot as plt from configparser import ConfigParser import numpy as np import sys import os sys.path.append(os.path.abspath("../../..")) from pycato import * # Make the empty grid domain = make_uniform_grid( n_cells=(256, 256), xrange=(0, 2 * np.pi), yrange=(0, 2 * np.pi), input_file="input.ini", ) # Set the initial conditions rho_0 = np.pi / 15 delta = 1 domain["rho"] = domain["rho"] * rho_0 domain["p"] = domain["p"] * 4.0 x = domain["xc"].m y = domain["yc"].m u = domain["u"].m # The u and v arrays depend on the location w/in the grid. # Since they're cell-centered quantities, they need the location # of the cell center (xc, yc) v = delta * np.sin(x) for i in range(y.shape[0]): for j in range(y.shape[1]): if y[i, j] <= np.pi: u[i, j] = np.tanh((y[i, j] - np.pi / 2) / rho_0) else: u[i, j] = np.tanh((1.5 * np.pi - y[i, j]) / rho_0) domain["u"] = u * ureg("cm/s") domain["v"] = v * ureg("cm/s") write_initial_hdf5(filename="double_shear", initial_condition_dict=domain) # Plot the results fig, (ax1, ax2) = plt.subplots(figsize=(18, 8), nrows=1, ncols=2) vc = ax1.pcolormesh( domain["x"].m, domain["y"].m, domain["v"].m, edgecolor="k", lw=0.001, cmap="RdBu", antialiased=True, ) fig.colorbar(vc, ax=ax1, label="Y Velocity") ax1.set_xlabel("X") ax1.set_ylabel("Y") uc = ax2.pcolormesh( domain["x"].m, domain["y"].m, domain["u"].m, edgecolor="k", lw=0.001, cmap="RdBu", antialiased=True, ) ax2.set_xlabel("X") ax2.set_ylabel("Y") fig.colorbar(uc, ax=ax2, label="X Velocity") ax1.axis("equal") ax2.axis("equal") plt.show()
[ "numpy.sin", "numpy.tanh", "os.path.abspath", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((1174, 1221), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(18, 8)', 'nrows': '(1)', 'ncols': '(2)'}), '(figsize=(18, 8), nrows=1, ncols=2)\n', (1186, 1221), True, 'import matplotlib.pyplot as plt\n'), ((1735, 1745), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1743, 1745), True, 'import matplotlib.pyplot as plt\n'), ((198, 225), 'os.path.abspath', 'os.path.abspath', (['"""../../.."""'], {}), "('../../..')\n", (213, 225), False, 'import os\n'), ((760, 769), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (766, 769), True, 'import numpy as np\n'), ((881, 919), 'numpy.tanh', 'np.tanh', (['((y[i, j] - np.pi / 2) / rho_0)'], {}), '((y[i, j] - np.pi / 2) / rho_0)\n', (888, 919), True, 'import numpy as np\n'), ((956, 996), 'numpy.tanh', 'np.tanh', (['((1.5 * np.pi - y[i, j]) / rho_0)'], {}), '((1.5 * np.pi - y[i, j]) / rho_0)\n', (963, 996), True, 'import numpy as np\n')]
import numpy as np from keras.layers import * from keras.models import * from keras.activations import * from keras.callbacks import ModelCheckpoint,ReduceLROnPlateau def keras_model(): model=Sequential() model.add(Conv2D(32,(3,3),padding="same")) model.add(Conv2D(32,(3,3),padding="same")) model.add(MaxPool2D()) model.add(Conv2D(64,(3,3),padding="same")) model.add(Conv2D(64,(3,3),padding="same")) model.add(MaxPool2D()) model.add(Flatten()) model.add(Dense(128,activation='relu')) # model.add(relu()) model.add(Dense(256,activation='relu')) # model.add(relu()) model.add(Dense(128,activation='relu')) # model.add(relu()) model.add(Dense(1)) model.compile(optimizer="adam",loss="mse") filepath="selfdrivingv1.h5" checkpoint= ModelCheckpoint (filepath,verbose=1,save_best_only=True) lr=ReduceLROnPlateau(factor=0.1,patience=3,min_lr=1e-8) callbacks=[checkpoint,lr] return model,callbacks features=np.load("features_40x40.npy") labels=np.load("labels_40x40.npy") #augment data features=np.append(features,features[:,:,::-1],axis=0) labels=np.append(labels,-labels,axis=0) features=features.reshape(features.shape[0],40,40,1) print(features.shape) model,callbacks=keras_model() from sklearn.model_selection import train_test_split as split train_x,test_x,train_y,test_y=split(features,labels,test_size=0.1,random_state=1) print(train_x[0]) model.fit(x=train_x,y=train_y,epochs=10,batch_size=64,callbacks=callbacks,validation_data=(test_x,test_y)) print(model.summary()) model.save("selfdriving1v1.h5")
[ "keras.callbacks.ModelCheckpoint", "sklearn.model_selection.train_test_split", "keras.callbacks.ReduceLROnPlateau", "numpy.append", "numpy.load" ]
[((1030, 1059), 'numpy.load', 'np.load', (['"""features_40x40.npy"""'], {}), "('features_40x40.npy')\n", (1037, 1059), True, 'import numpy as np\n'), ((1068, 1095), 'numpy.load', 'np.load', (['"""labels_40x40.npy"""'], {}), "('labels_40x40.npy')\n", (1075, 1095), True, 'import numpy as np\n'), ((1125, 1174), 'numpy.append', 'np.append', (['features', 'features[:, :, ::-1]'], {'axis': '(0)'}), '(features, features[:, :, ::-1], axis=0)\n', (1134, 1174), True, 'import numpy as np\n'), ((1179, 1213), 'numpy.append', 'np.append', (['labels', '(-labels)'], {'axis': '(0)'}), '(labels, -labels, axis=0)\n', (1188, 1213), True, 'import numpy as np\n'), ((1418, 1472), 'sklearn.model_selection.train_test_split', 'split', (['features', 'labels'], {'test_size': '(0.1)', 'random_state': '(1)'}), '(features, labels, test_size=0.1, random_state=1)\n', (1423, 1472), True, 'from sklearn.model_selection import train_test_split as split\n'), ((839, 896), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['filepath'], {'verbose': '(1)', 'save_best_only': '(True)'}), '(filepath, verbose=1, save_best_only=True)\n', (854, 896), False, 'from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau\n'), ((904, 959), 'keras.callbacks.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'factor': '(0.1)', 'patience': '(3)', 'min_lr': '(1e-08)'}), '(factor=0.1, patience=3, min_lr=1e-08)\n', (921, 959), False, 'from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau\n')]
#encoding=utf8 import time import numpy as np import tensorflow as tf from tensorflow.contrib import crf import cws.BiLSTM as modelDef from cws.data import Data tf.app.flags.DEFINE_string('dict_path', 'data/your_dict.pkl', 'dict path') tf.app.flags.DEFINE_string('train_data', 'data/your_train_data.pkl', 'train data path') tf.app.flags.DEFINE_string('ckpt_path', 'checkpoint/cws.finetune.ckpt/', 'checkpoint path') tf.app.flags.DEFINE_integer('embed_size', 256, 'embedding size') tf.app.flags.DEFINE_integer('hidden_size', 512, 'hidden layer node number') tf.app.flags.DEFINE_integer('batch_size', 128, 'batch size') tf.app.flags.DEFINE_integer('epoch', 20, 'training epoch') tf.app.flags.DEFINE_float('lr', 0.001, 'learning rate') tf.app.flags.DEFINE_string('save_path','checkpoint/cws.ckpt/','new model save path') FLAGS = tf.app.flags.FLAGS class BiLSTMTrain(object): def __init__(self, data_train=None, data_valid=None, data_test=None, model=None): self.data_train = data_train self.data_valid = data_valid self.data_test = data_test self.model = model def train(self): config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) ## finetune ## # ckpt = tf.train.latest_checkpoint(FLAGS.ckpt_path) # saver = tf.train.Saver() # saver.restore(sess, ckpt) # print('-->finetune the ckeckpoint:'+ckpt+'...') ############## max_epoch = 10 tr_batch_size = FLAGS.batch_size max_max_epoch = FLAGS.epoch # Max epoch display_num = 10 # Display 10 pre epoch tr_batch_num = int(self.data_train.y.shape[0] / tr_batch_size) display_batch = int(tr_batch_num / display_num) saver = tf.train.Saver(max_to_keep=10) for epoch in range(max_max_epoch): _lr = FLAGS.lr if epoch > max_epoch: _lr = 0.0002 print('EPOCH %d, lr=%g' % (epoch + 1, _lr)) start_time = time.time() _losstotal = 0.0 show_loss = 0.0 for batch in range(tr_batch_num): fetches = [self.model.loss, self.model.train_op] X_batch, y_batch = self.data_train.next_batch(tr_batch_size) feed_dict = {self.model.X_inputs: X_batch, self.model.y_inputs: y_batch, self.model.lr: _lr, self.model.batch_size: tr_batch_size, self.model.keep_prob: 0.5} _loss, _ = sess.run(fetches, feed_dict) _losstotal += _loss show_loss += _loss if (batch + 1) % display_batch == 0: valid_acc = self.test_epoch(self.data_valid, sess) # valid print('\ttraining loss=%g ; valid acc= %g ' % (show_loss / display_batch, valid_acc)) show_loss = 0.0 mean_loss = _losstotal / (tr_batch_num + 0.000001) if (epoch + 1) % 1 == 0: # Save once per epoch save_path = saver.save(sess, self.model.model_save_path+'_plus', global_step=(epoch + 1)) print('the save path is ', save_path) print('\ttraining %d, loss=%g ' % (self.data_train.y.shape[0], mean_loss)) print('Epoch training %d, loss=%g, speed=%g s/epoch' % ( self.data_train.y.shape[0], mean_loss, time.time() - start_time)) # testing print('**TEST RESULT:') test_acc = self.test_epoch(self.data_test, sess) print('**Test %d, acc=%g' % (self.data_test.y.shape[0], test_acc)) sess.close() def test_epoch(self, dataset=None, sess=None): _batch_size = FLAGS.batch_size _y = dataset.y data_size = _y.shape[0] batch_num = int(data_size / _batch_size) correct_labels = 0 total_labels = 0 fetches = [self.model.scores, self.model.length, self.model.transition_params] for i in range(batch_num): X_batch, y_batch = dataset.next_batch(_batch_size) feed_dict = {self.model.X_inputs: X_batch, self.model.y_inputs: y_batch, self.model.lr: 1e-5, self.model.batch_size: _batch_size, self.model.keep_prob: 1.0} test_score, test_length, transition_params = sess.run(fetches=fetches, feed_dict=feed_dict) #print(test_score) #print(test_length) for tf_unary_scores_, y_, sequence_length_ in zip( test_score, y_batch, test_length): tf_unary_scores_ = tf_unary_scores_[:sequence_length_] y_ = y_[:sequence_length_] viterbi_sequence, _ = crf.viterbi_decode( tf_unary_scores_, transition_params) correct_labels += np.sum(np.equal(viterbi_sequence, y_)) total_labels += sequence_length_ accuracy = correct_labels / float(total_labels) return accuracy def main(_): Data_ = Data(dict_path=FLAGS.dict_path, train_data=FLAGS.train_data) print('Corpus loading completed:', FLAGS.train_data) data_train, data_valid, data_test = Data_.builderTrainData() print('The training set, verification set, and test set split are completed!') model = modelDef.BiLSTMModel(max_len=Data_.max_len, vocab_size=Data_.word2id.__len__()+1, class_num= Data_.tag2id.__len__(), model_save_path=FLAGS.save_path, embed_size=FLAGS.embed_size, hs=FLAGS.hidden_size) print('Model definition completed!') train = BiLSTMTrain(data_train, data_valid, data_test, model) train.train() print('Model training completed!') if __name__ == '__main__': tf.app.run()
[ "tensorflow.app.flags.DEFINE_float", "cws.data.Data", "tensorflow.app.flags.DEFINE_integer", "tensorflow.Session", "tensorflow.train.Saver", "tensorflow.app.flags.DEFINE_string", "numpy.equal", "tensorflow.global_variables_initializer", "tensorflow.ConfigProto", "tensorflow.contrib.crf.viterbi_decode", "time.time", "tensorflow.app.run" ]
[((172, 246), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""dict_path"""', '"""data/your_dict.pkl"""', '"""dict path"""'], {}), "('dict_path', 'data/your_dict.pkl', 'dict path')\n", (198, 246), True, 'import tensorflow as tf\n'), ((248, 339), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""train_data"""', '"""data/your_train_data.pkl"""', '"""train data path"""'], {}), "('train_data', 'data/your_train_data.pkl',\n 'train data path')\n", (274, 339), True, 'import tensorflow as tf\n'), ((337, 432), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""ckpt_path"""', '"""checkpoint/cws.finetune.ckpt/"""', '"""checkpoint path"""'], {}), "('ckpt_path', 'checkpoint/cws.finetune.ckpt/',\n 'checkpoint path')\n", (363, 432), True, 'import tensorflow as tf\n'), ((430, 494), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""embed_size"""', '(256)', '"""embedding size"""'], {}), "('embed_size', 256, 'embedding size')\n", (457, 494), True, 'import tensorflow as tf\n'), ((496, 571), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""hidden_size"""', '(512)', '"""hidden layer node number"""'], {}), "('hidden_size', 512, 'hidden layer node number')\n", (523, 571), True, 'import tensorflow as tf\n'), ((573, 633), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""batch_size"""', '(128)', '"""batch size"""'], {}), "('batch_size', 128, 'batch size')\n", (600, 633), True, 'import tensorflow as tf\n'), ((635, 693), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""epoch"""', '(20)', '"""training epoch"""'], {}), "('epoch', 20, 'training epoch')\n", (662, 693), True, 'import tensorflow as tf\n'), ((695, 750), 'tensorflow.app.flags.DEFINE_float', 'tf.app.flags.DEFINE_float', (['"""lr"""', '(0.001)', '"""learning rate"""'], {}), "('lr', 0.001, 'learning rate')\n", (720, 750), True, 'import tensorflow as tf\n'), ((752, 842), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""save_path"""', '"""checkpoint/cws.ckpt/"""', '"""new model save path"""'], {}), "('save_path', 'checkpoint/cws.ckpt/',\n 'new model save path')\n", (778, 842), True, 'import tensorflow as tf\n'), ((5400, 5460), 'cws.data.Data', 'Data', ([], {'dict_path': 'FLAGS.dict_path', 'train_data': 'FLAGS.train_data'}), '(dict_path=FLAGS.dict_path, train_data=FLAGS.train_data)\n', (5404, 5460), False, 'from cws.data import Data\n'), ((6262, 6274), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (6272, 6274), True, 'import tensorflow as tf\n'), ((1175, 1191), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (1189, 1191), True, 'import tensorflow as tf\n'), ((1256, 1281), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (1266, 1281), True, 'import tensorflow as tf\n'), ((1887, 1917), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(10)'}), '(max_to_keep=10)\n', (1901, 1917), True, 'import tensorflow as tf\n'), ((1300, 1333), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1331, 1333), True, 'import tensorflow as tf\n'), ((2141, 2152), 'time.time', 'time.time', ([], {}), '()\n', (2150, 2152), False, 'import time\n'), ((5065, 5120), 'tensorflow.contrib.crf.viterbi_decode', 'crf.viterbi_decode', (['tf_unary_scores_', 'transition_params'], {}), '(tf_unary_scores_, transition_params)\n', (5083, 5120), False, 'from tensorflow.contrib import crf\n'), ((5203, 5233), 'numpy.equal', 'np.equal', (['viterbi_sequence', 'y_'], {}), '(viterbi_sequence, y_)\n', (5211, 5233), True, 'import numpy as np\n'), ((3633, 3644), 'time.time', 'time.time', ([], {}), '()\n', (3642, 3644), False, 'import time\n')]
""" Implements MissSVM """ from __future__ import print_function, division import numpy as np import scipy.sparse as sp from random import uniform import inspect from misvm.quadprog import IterativeQP, Objective from misvm.util import BagSplitter, spdiag, slices from misvm.kernel import by_name as kernel_by_name from misvm.mica import MICA from misvm.cccp import CCCP class MissSVM(MICA): """ Semi-supervised learning applied to MI data (Zhou & Xu 2007) """ def __init__(self, alpha=1e4, **kwargs): """ @param kernel : the desired kernel function; can be linear, quadratic, polynomial, or rbf [default: linear] @param C : the loss/regularization tradeoff constant [default: 1.0] @param scale_C : if True [default], scale C by the number of examples @param p : polynomial degree when a 'polynomial' kernel is used [default: 3] @param gamma : RBF scale parameter when an 'rbf' kernel is used [default: 1.0] @param verbose : print optimization status messages [default: True] @param sv_cutoff : the numerical cutoff for an example to be considered a support vector [default: 1e-7] @param restarts : the number of random restarts [default: 0] @param max_iters : the maximum number of iterations in the outer loop of the optimization procedure [default: 50] @param alpha : the softmax parameter [default: 1e4] """ self.alpha = alpha super(MissSVM, self).__init__(**kwargs) self._bags = None self._sv_bags = None self._bag_predictions = None def fit(self, bags, y): """ @param bags : a sequence of n bags; each bag is an m-by-k array-like object containing m instances with k features @param y : an array-like object of length n containing -1/+1 labels """ self._bags = map(np.asmatrix, bags) bs = BagSplitter(self._bags, np.asmatrix(y).reshape((-1, 1))) self._X = np.vstack([bs.pos_instances, bs.pos_instances, bs.pos_instances, bs.neg_instances]) self._y = np.vstack([np.matrix(np.ones((bs.X_p + bs.L_p, 1))), -np.matrix(np.ones((bs.L_p + bs.L_n, 1)))]) if self.scale_C: C = self.C / float(len(self._bags)) else: C = self.C # Setup SVM and adjust constraints _, _, f, A, b, lb, ub = self._setup_svm(self._y, self._y, C) ub[:bs.X_p] *= (float(bs.L_n) / float(bs.X_p)) ub[bs.X_p: bs.X_p + 2 * bs.L_p] *= (float(bs.L_n) / float(bs.L_p)) K = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)(self._X, self._X) D = spdiag(self._y) ub0 = np.matrix(ub) ub0[bs.X_p: bs.X_p + 2 * bs.L_p] *= 0.5 def get_V(pos_classifications): eye_n = bs.L_n + 2 * bs.L_p top = np.zeros((bs.X_p, bs.L_p)) for row, (i, j) in enumerate(slices(bs.pos_groups)): top[row, i:j] = _grad_softmin(-pos_classifications[i:j], self.alpha).flat return sp.bmat([[sp.coo_matrix(top), None], [None, sp.eye(eye_n, eye_n)]]) V0 = get_V(np.matrix(np.zeros((bs.L_p, 1)))) qp = IterativeQP(D * V0 * K * V0.T * D, f, A, b, lb, ub0) best_obj = float('inf') best_svm = None for rr in range(self.restarts + 1): if rr == 0: if self.verbose: print('Non-random start...') # Train on instances alphas, obj = qp.solve(self.verbose) else: if self.verbose: print('Random restart %d of %d...' % (rr, self.restarts)) alphas = np.matrix([uniform(0.0, 1.0) for i in range(len(lb))]).T obj = Objective(0.0, 0.0) svm = MICA(kernel=self.kernel, gamma=self.gamma, p=self.p, verbose=self.verbose, sv_cutoff=self.sv_cutoff) svm._X = self._X svm._y = self._y svm._V = V0 svm._alphas = alphas svm._objective = obj svm._compute_separator(K) svm._K = K class missCCCP(CCCP): def bailout(cself, svm, obj_val): return svm def iterate(cself, svm, obj_val): cself.mention('Linearizing constraints...') classifications = svm._predictions[bs.X_p: bs.X_p + bs.L_p] V = get_V(classifications) cself.mention('Computing slacks...') # Difference is [1 - y_i*(w*phi(x_i) + b)] pos_differences = 1.0 - classifications neg_differences = 1.0 + classifications # Slacks are positive differences only pos_slacks = np.multiply(pos_differences > 0, pos_differences) neg_slacks = np.multiply(neg_differences > 0, neg_differences) all_slacks = np.hstack([pos_slacks, neg_slacks]) cself.mention('Linearizing...') # Compute gradient across pairs slack_grads = np.vstack([_grad_softmin(pair, self.alpha) for pair in all_slacks]) # Stack results into one column slack_grads = np.vstack([np.ones((bs.X_p, 1)), slack_grads[:, 0], slack_grads[:, 1], np.ones((bs.L_n, 1))]) # Update QP qp.update_H(D * V * K * V.T * D) qp.update_ub(np.multiply(ub, slack_grads)) # Re-solve cself.mention('Solving QP...') alphas, obj = qp.solve(self.verbose) new_svm = MICA(kernel=self.kernel, gamma=self.gamma, p=self.p, verbose=self.verbose, sv_cutoff=self.sv_cutoff) new_svm._X = self._X new_svm._y = self._y new_svm._V = V new_svm._alphas = alphas new_svm._objective = obj new_svm._compute_separator(K) new_svm._K = K if cself.check_tolerance(obj_val, obj): return None, new_svm return {'svm': new_svm, 'obj_val': obj}, None cccp = missCCCP(verbose=self.verbose, svm=svm, obj_val=None, max_iters=self.max_iters) svm = cccp.solve() if svm is not None: obj = float(svm._objective) if obj < best_obj: best_svm = svm best_obj = obj if best_svm is not None: self._V = best_svm._V self._alphas = best_svm._alphas self._objective = best_svm._objective self._compute_separator(best_svm._K) self._bag_predictions = self.predict(self._bags) def get_params(self, deep=True): super_args = super(MissSVM, self).get_params() args, _, _, _ = inspect.getargspec(MissSVM.__init__) args.pop(0) super_args.update({key: getattr(self, key, None) for key in args}) return super_args def _grad_softmin(x, alpha=1e4): """ Computes the gradient of min function, taken from gradient of softmin as alpha goes to infinity. It is: 0 if x_i != min(x), or 1/n if x_i is one of the n elements equal to min(x) """ grad = np.matrix(np.zeros(x.shape)) minimizers = (x == min(x.flat)) n = float(np.sum(minimizers)) grad[np.nonzero(minimizers)] = 1.0 / n return grad
[ "misvm.quadprog.IterativeQP", "numpy.hstack", "numpy.asmatrix", "numpy.multiply", "misvm.util.spdiag", "misvm.quadprog.Objective", "scipy.sparse.eye", "numpy.vstack", "misvm.mica.MICA", "scipy.sparse.coo_matrix", "misvm.util.slices", "misvm.kernel.by_name", "random.uniform", "numpy.ones", "numpy.nonzero", "inspect.getargspec", "numpy.sum", "numpy.zeros", "numpy.matrix" ]
[((2143, 2231), 'numpy.vstack', 'np.vstack', (['[bs.pos_instances, bs.pos_instances, bs.pos_instances, bs.neg_instances]'], {}), '([bs.pos_instances, bs.pos_instances, bs.pos_instances, bs.\n neg_instances])\n', (2152, 2231), True, 'import numpy as np\n'), ((2909, 2924), 'misvm.util.spdiag', 'spdiag', (['self._y'], {}), '(self._y)\n', (2915, 2924), False, 'from misvm.util import BagSplitter, spdiag, slices\n'), ((2939, 2952), 'numpy.matrix', 'np.matrix', (['ub'], {}), '(ub)\n', (2948, 2952), True, 'import numpy as np\n'), ((3465, 3517), 'misvm.quadprog.IterativeQP', 'IterativeQP', (['(D * V0 * K * V0.T * D)', 'f', 'A', 'b', 'lb', 'ub0'], {}), '(D * V0 * K * V0.T * D, f, A, b, lb, ub0)\n', (3476, 3517), False, 'from misvm.quadprog import IterativeQP, Objective\n'), ((7528, 7564), 'inspect.getargspec', 'inspect.getargspec', (['MissSVM.__init__'], {}), '(MissSVM.__init__)\n', (7546, 7564), False, 'import inspect\n'), ((7967, 7984), 'numpy.zeros', 'np.zeros', (['x.shape'], {}), '(x.shape)\n', (7975, 7984), True, 'import numpy as np\n'), ((8036, 8054), 'numpy.sum', 'np.sum', (['minimizers'], {}), '(minimizers)\n', (8042, 8054), True, 'import numpy as np\n'), ((8065, 8087), 'numpy.nonzero', 'np.nonzero', (['minimizers'], {}), '(minimizers)\n', (8075, 8087), True, 'import numpy as np\n'), ((2823, 2878), 'misvm.kernel.by_name', 'kernel_by_name', (['self.kernel'], {'gamma': 'self.gamma', 'p': 'self.p'}), '(self.kernel, gamma=self.gamma, p=self.p)\n', (2837, 2878), True, 'from misvm.kernel import by_name as kernel_by_name\n'), ((3100, 3126), 'numpy.zeros', 'np.zeros', (['(bs.X_p, bs.L_p)'], {}), '((bs.X_p, bs.L_p))\n', (3108, 3126), True, 'import numpy as np\n'), ((4086, 4190), 'misvm.mica.MICA', 'MICA', ([], {'kernel': 'self.kernel', 'gamma': 'self.gamma', 'p': 'self.p', 'verbose': 'self.verbose', 'sv_cutoff': 'self.sv_cutoff'}), '(kernel=self.kernel, gamma=self.gamma, p=self.p, verbose=self.verbose,\n sv_cutoff=self.sv_cutoff)\n', (4090, 4190), False, 'from misvm.mica import MICA\n'), ((3168, 3189), 'misvm.util.slices', 'slices', (['bs.pos_groups'], {}), '(bs.pos_groups)\n', (3174, 3189), False, 'from misvm.util import BagSplitter, spdiag, slices\n'), ((3427, 3448), 'numpy.zeros', 'np.zeros', (['(bs.L_p, 1)'], {}), '((bs.L_p, 1))\n', (3435, 3448), True, 'import numpy as np\n'), ((4048, 4067), 'misvm.quadprog.Objective', 'Objective', (['(0.0)', '(0.0)'], {}), '(0.0, 0.0)\n', (4057, 4067), False, 'from misvm.quadprog import IterativeQP, Objective\n'), ((2092, 2106), 'numpy.asmatrix', 'np.asmatrix', (['y'], {}), '(y)\n', (2103, 2106), True, 'import numpy as np\n'), ((2353, 2382), 'numpy.ones', 'np.ones', (['(bs.X_p + bs.L_p, 1)'], {}), '((bs.X_p + bs.L_p, 1))\n', (2360, 2382), True, 'import numpy as np\n'), ((5111, 5160), 'numpy.multiply', 'np.multiply', (['(pos_differences > 0)', 'pos_differences'], {}), '(pos_differences > 0, pos_differences)\n', (5122, 5160), True, 'import numpy as np\n'), ((5194, 5243), 'numpy.multiply', 'np.multiply', (['(neg_differences > 0)', 'neg_differences'], {}), '(neg_differences > 0, neg_differences)\n', (5205, 5243), True, 'import numpy as np\n'), ((5277, 5312), 'numpy.hstack', 'np.hstack', (['[pos_slacks, neg_slacks]'], {}), '([pos_slacks, neg_slacks])\n', (5286, 5312), True, 'import numpy as np\n'), ((6198, 6302), 'misvm.mica.MICA', 'MICA', ([], {'kernel': 'self.kernel', 'gamma': 'self.gamma', 'p': 'self.p', 'verbose': 'self.verbose', 'sv_cutoff': 'self.sv_cutoff'}), '(kernel=self.kernel, gamma=self.gamma, p=self.p, verbose=self.verbose,\n sv_cutoff=self.sv_cutoff)\n', (6202, 6302), False, 'from misvm.mica import MICA\n'), ((2425, 2454), 'numpy.ones', 'np.ones', (['(bs.L_p + bs.L_n, 1)'], {}), '((bs.L_p + bs.L_n, 1))\n', (2432, 2454), True, 'import numpy as np\n'), ((3311, 3329), 'scipy.sparse.coo_matrix', 'sp.coo_matrix', (['top'], {}), '(top)\n', (3324, 3329), True, 'import scipy.sparse as sp\n'), ((3373, 3393), 'scipy.sparse.eye', 'sp.eye', (['eye_n', 'eye_n'], {}), '(eye_n, eye_n)\n', (3379, 3393), True, 'import scipy.sparse as sp\n'), ((5998, 6026), 'numpy.multiply', 'np.multiply', (['ub', 'slack_grads'], {}), '(ub, slack_grads)\n', (6009, 6026), True, 'import numpy as np\n'), ((3980, 3997), 'random.uniform', 'uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (3987, 3997), False, 'from random import uniform\n'), ((5662, 5682), 'numpy.ones', 'np.ones', (['(bs.X_p, 1)'], {}), '((bs.X_p, 1))\n', (5669, 5682), True, 'import numpy as np\n'), ((5857, 5877), 'numpy.ones', 'np.ones', (['(bs.L_n, 1)'], {}), '((bs.L_n, 1))\n', (5864, 5877), True, 'import numpy as np\n')]
import numpy as np def trapezoidal_rule(f, a, b, tol=1e-8): """ The trapezoidal rule is known to be very accurate for oscillatory integrals integrated over their period. See papers on spectral integration (it's just the composite trapezoidal rule....) TODO (aaron): f is memoized to get the already computed points quickly. Ideally, we should put this into a C++ function and call it with Cython. (Maybe someday) """ # endpoints first: num = 2 dx = b - a res0 = 1e30 res1 = 0.5 * dx * (f(b) + f(a)) delta_res = res0 - res1 re_err = np.abs(np.real(delta_res)) im_err = np.abs(np.imag(delta_res)) while re_err > tol or im_err > tol: res0 = res1 num = 2 * num - 1 # print(num) x = np.linspace(a, b, num=num) res = 0 dx = (x[1] - x[0]) res += f(x[0]) for i in range(1, len(x) - 1): res += 2 * f(x[i]) res += f(x[-1]) res1 = 0.5 * dx * res delta_res = res1 - res0 re_err = np.abs(np.real(delta_res)) im_err = np.abs(np.imag(delta_res)) if num > 100000: print('Integral failed to converge with', num, 'points.') return np.nan, np.nan, np.nan return res1, re_err, im_err
[ "numpy.real", "numpy.linspace", "numpy.imag" ]
[((599, 617), 'numpy.real', 'np.real', (['delta_res'], {}), '(delta_res)\n', (606, 617), True, 'import numpy as np\n'), ((639, 657), 'numpy.imag', 'np.imag', (['delta_res'], {}), '(delta_res)\n', (646, 657), True, 'import numpy as np\n'), ((778, 804), 'numpy.linspace', 'np.linspace', (['a', 'b'], {'num': 'num'}), '(a, b, num=num)\n', (789, 804), True, 'import numpy as np\n'), ((1052, 1070), 'numpy.real', 'np.real', (['delta_res'], {}), '(delta_res)\n', (1059, 1070), True, 'import numpy as np\n'), ((1096, 1114), 'numpy.imag', 'np.imag', (['delta_res'], {}), '(delta_res)\n', (1103, 1114), True, 'import numpy as np\n')]
""" January 13th 2020 Author T.Mizumoto """ #! python 3 # ver.x1.00 # Integral-Scale_function.py - this program calculate integral-scale and correlation. import numpy as np from scipy.integrate import simps from scipy.stats import pearsonr import pandas as pd # index_basepoint = 0 (defult) def fun_CrossCorr(data, index_basepoint): alpha = data[:, index_basepoint] cross_corretion = [] p_value = [] matrix_num = data.shape point_num = int(matrix_num[1]) for i in range(point_num): line = data[:, i] cc, p = pearsonr(alpha, line) cross_corretion.append(cc) p_value.append(p) df_CC = pd.DataFrame(columns = ["CrossCorrelation", "Pvalue"]) df_CC["CrossCorrelation"] = cross_corretion df_CC["Pvalue"] = p_value return df_CC def fun_IntegralScale(correlation, distance): # find the first negative point minus = np.where(correlation < 0) first_minus = minus[0][0] # extract positibe points corr_plus = list(correlation[:first_minus]) dis_plus = distance[:first_minus] complement = (distance[first_minus + 1] - distance[first_minus]) / 2 + distance[first_minus] corr_plus.append(0.0) dis_plus.append(complement) # integrate integral = simps(corr_plus, dis_plus) return integral if __name__ == "__main__": from graph import Graph import matplotlib.pyplot as plt # read data data_path = "HISTORY/z-traverse_2-1-0_MeasureData.txt" data = np.loadtxt(data_path) coord_path = "HISTORY/z-traverse_2-1-0_Coordinate.txt" coord = np.loadtxt(coord_path) point = [0, 161, 322, 483, 644, 805, 966, 1127, 1288, 1449] name = ["X2-MVD", "X2-RMS1", "X2-RMS2", "X1-MVD", "X1-RMS1", "X1-RMS2", "X0-MVD", "X0-RMS1", "X0-RMS2"] IS_list = [] for i in range(9): pstart = point[i] pend = point[i + 1] # calculate CrossCorrelation df_CC = fun_CrossCorr(data[:, pstart:pend], 0) # only z-traverse z_axis = coord[pstart:pend, 2] distance = [] for j in z_axis: diff = j - z_axis[0] distance.append(diff) IS = fun_IntegralScale(df_CC["CrossCorrelation"], distance) IS_list.append(IS) g = Graph() g.label = ["CrossCorrelation", "Pvalue"] g.line(distance, df_CC["CrossCorrelation"], 0) g.line(distance, df_CC["Pvalue"], 1) plt.legend(title = "IS = " + str(IS)) g.save_graph("graph/Z-traverse/" + name[i]) print(IS_list)
[ "numpy.where", "scipy.integrate.simps", "graph.Graph", "scipy.stats.pearsonr", "pandas.DataFrame", "numpy.loadtxt" ]
[((660, 712), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['CrossCorrelation', 'Pvalue']"}), "(columns=['CrossCorrelation', 'Pvalue'])\n", (672, 712), True, 'import pandas as pd\n'), ((906, 931), 'numpy.where', 'np.where', (['(correlation < 0)'], {}), '(correlation < 0)\n', (914, 931), True, 'import numpy as np\n'), ((1270, 1296), 'scipy.integrate.simps', 'simps', (['corr_plus', 'dis_plus'], {}), '(corr_plus, dis_plus)\n', (1275, 1296), False, 'from scipy.integrate import simps\n'), ((1497, 1518), 'numpy.loadtxt', 'np.loadtxt', (['data_path'], {}), '(data_path)\n', (1507, 1518), True, 'import numpy as np\n'), ((1590, 1612), 'numpy.loadtxt', 'np.loadtxt', (['coord_path'], {}), '(coord_path)\n', (1600, 1612), True, 'import numpy as np\n'), ((565, 586), 'scipy.stats.pearsonr', 'pearsonr', (['alpha', 'line'], {}), '(alpha, line)\n', (573, 586), False, 'from scipy.stats import pearsonr\n'), ((2260, 2267), 'graph.Graph', 'Graph', ([], {}), '()\n', (2265, 2267), False, 'from graph import Graph\n')]
import numpy as np import matplotlib.pyplot as plt from utils import get_state_vowel class HopfieldNetwork: """ Creates a Hopfield Network. """ def __init__(self, patterns): """ Initializes the network. Args: patterns (np.array): Group of states to be memorized by the network. """ self.num_units = patterns.shape[1] self.passes = 0 self.state_units = np.array([1 if 2 * np.random.random() - 1 >= 0 else 0 for _ in range(self.num_units)]) self.W = np.zeros((self.num_units, self.num_units)) for pattern in patterns: self.W += np.dot(np.transpose((2 * patterns - 1)), (2 * patterns - 1)) np.fill_diagonal(self.W, 0) self.energy = [-0.5 * np.dot(np.dot(self.state_units.T, self.W), self.state_units)] def _generate_sequence_units(self): """ Selects randomly the order to update states in the next iteration.""" return np.random.choice(self.num_units, self.num_units) def run(self): """ Runs the network until no updates occur. """ no_update = True while True: for unit in self._generate_sequence_units(): unit_activation = np.dot(self.W[unit, :], self.state_units) if unit_activation >= 0 and self.state_units[unit] == 0: self.state_units[unit] = 1 no_update = False elif unit_activation < 0 and self.state_units[unit] == 1: self.state_units[unit] = 0 no_update = False self.energy.append(-0.5 * np.dot(np.dot(self.state_units.T, self.W), self.state_units)) self.passes += 1 if no_update: break else: no_update = True def main(): np.random.seed(1234) patterns = np.array([get_state_vowel('A'), get_state_vowel('E'), get_state_vowel('I'), get_state_vowel('O'), get_state_vowel('U')]) net = HopfieldNetwork(patterns) net.run() # Plot patterns and output plt.figure(figsize=(6, 3), tight_layout=True) plt.subplot(2, 3, 1) plt.imshow(np.reshape(patterns[0, :], (5, 5)), cmap="Greys_r") plt.title("A") plt.subplot(2, 3, 2) plt.imshow(np.reshape(patterns[1, :], (5, 5)), cmap="Greys_r") plt.title("E") plt.subplot(2, 3, 3) plt.imshow(np.reshape(patterns[2, :], (5, 5)), cmap="Greys_r") plt.title("I") plt.subplot(2, 3, 4) plt.imshow(np.reshape(patterns[3, :], (5, 5)), cmap="Greys_r") plt.title("O") plt.subplot(2, 3, 5) plt.imshow(np.reshape(patterns[4, :], (5, 5)), cmap="Greys_r") plt.title("U") plt.subplot(2, 3, 6) plt.imshow(np.reshape(net.state_units, (5, 5)), cmap="Greys_r") plt.title("Output") # Plot energy over time plt.figure(figsize=(4, 2)) plt.plot(net.energy) plt.title("Energy") plt.show() if __name__ == "__main__": main()
[ "numpy.reshape", "numpy.random.choice", "numpy.random.random", "matplotlib.pyplot.plot", "utils.get_state_vowel", "numpy.fill_diagonal", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.dot", "numpy.random.seed", "matplotlib.pyplot.title", "numpy.transpose", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((1840, 1860), 'numpy.random.seed', 'np.random.seed', (['(1234)'], {}), '(1234)\n', (1854, 1860), True, 'import numpy as np\n'), ((2183, 2228), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 3)', 'tight_layout': '(True)'}), '(figsize=(6, 3), tight_layout=True)\n', (2193, 2228), True, 'import matplotlib.pyplot as plt\n'), ((2233, 2253), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(1)'], {}), '(2, 3, 1)\n', (2244, 2253), True, 'import matplotlib.pyplot as plt\n'), ((2325, 2339), 'matplotlib.pyplot.title', 'plt.title', (['"""A"""'], {}), "('A')\n", (2334, 2339), True, 'import matplotlib.pyplot as plt\n'), ((2344, 2364), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(2)'], {}), '(2, 3, 2)\n', (2355, 2364), True, 'import matplotlib.pyplot as plt\n'), ((2436, 2450), 'matplotlib.pyplot.title', 'plt.title', (['"""E"""'], {}), "('E')\n", (2445, 2450), True, 'import matplotlib.pyplot as plt\n'), ((2455, 2475), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(3)'], {}), '(2, 3, 3)\n', (2466, 2475), True, 'import matplotlib.pyplot as plt\n'), ((2547, 2561), 'matplotlib.pyplot.title', 'plt.title', (['"""I"""'], {}), "('I')\n", (2556, 2561), True, 'import matplotlib.pyplot as plt\n'), ((2566, 2586), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(4)'], {}), '(2, 3, 4)\n', (2577, 2586), True, 'import matplotlib.pyplot as plt\n'), ((2658, 2672), 'matplotlib.pyplot.title', 'plt.title', (['"""O"""'], {}), "('O')\n", (2667, 2672), True, 'import matplotlib.pyplot as plt\n'), ((2677, 2697), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(5)'], {}), '(2, 3, 5)\n', (2688, 2697), True, 'import matplotlib.pyplot as plt\n'), ((2769, 2783), 'matplotlib.pyplot.title', 'plt.title', (['"""U"""'], {}), "('U')\n", (2778, 2783), True, 'import matplotlib.pyplot as plt\n'), ((2788, 2808), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(3)', '(6)'], {}), '(2, 3, 6)\n', (2799, 2808), True, 'import matplotlib.pyplot as plt\n'), ((2881, 2900), 'matplotlib.pyplot.title', 'plt.title', (['"""Output"""'], {}), "('Output')\n", (2890, 2900), True, 'import matplotlib.pyplot as plt\n'), ((2934, 2960), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 2)'}), '(figsize=(4, 2))\n', (2944, 2960), True, 'import matplotlib.pyplot as plt\n'), ((2965, 2985), 'matplotlib.pyplot.plot', 'plt.plot', (['net.energy'], {}), '(net.energy)\n', (2973, 2985), True, 'import matplotlib.pyplot as plt\n'), ((2990, 3009), 'matplotlib.pyplot.title', 'plt.title', (['"""Energy"""'], {}), "('Energy')\n", (2999, 3009), True, 'import matplotlib.pyplot as plt\n'), ((3014, 3024), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3022, 3024), True, 'import matplotlib.pyplot as plt\n'), ((544, 586), 'numpy.zeros', 'np.zeros', (['(self.num_units, self.num_units)'], {}), '((self.num_units, self.num_units))\n', (552, 586), True, 'import numpy as np\n'), ((711, 738), 'numpy.fill_diagonal', 'np.fill_diagonal', (['self.W', '(0)'], {}), '(self.W, 0)\n', (727, 738), True, 'import numpy as np\n'), ((969, 1017), 'numpy.random.choice', 'np.random.choice', (['self.num_units', 'self.num_units'], {}), '(self.num_units, self.num_units)\n', (985, 1017), True, 'import numpy as np\n'), ((2269, 2303), 'numpy.reshape', 'np.reshape', (['patterns[0, :]', '(5, 5)'], {}), '(patterns[0, :], (5, 5))\n', (2279, 2303), True, 'import numpy as np\n'), ((2380, 2414), 'numpy.reshape', 'np.reshape', (['patterns[1, :]', '(5, 5)'], {}), '(patterns[1, :], (5, 5))\n', (2390, 2414), True, 'import numpy as np\n'), ((2491, 2525), 'numpy.reshape', 'np.reshape', (['patterns[2, :]', '(5, 5)'], {}), '(patterns[2, :], (5, 5))\n', (2501, 2525), True, 'import numpy as np\n'), ((2602, 2636), 'numpy.reshape', 'np.reshape', (['patterns[3, :]', '(5, 5)'], {}), '(patterns[3, :], (5, 5))\n', (2612, 2636), True, 'import numpy as np\n'), ((2713, 2747), 'numpy.reshape', 'np.reshape', (['patterns[4, :]', '(5, 5)'], {}), '(patterns[4, :], (5, 5))\n', (2723, 2747), True, 'import numpy as np\n'), ((2824, 2859), 'numpy.reshape', 'np.reshape', (['net.state_units', '(5, 5)'], {}), '(net.state_units, (5, 5))\n', (2834, 2859), True, 'import numpy as np\n'), ((1886, 1906), 'utils.get_state_vowel', 'get_state_vowel', (['"""A"""'], {}), "('A')\n", (1901, 1906), False, 'from utils import get_state_vowel\n'), ((1933, 1953), 'utils.get_state_vowel', 'get_state_vowel', (['"""E"""'], {}), "('E')\n", (1948, 1953), False, 'from utils import get_state_vowel\n'), ((1980, 2000), 'utils.get_state_vowel', 'get_state_vowel', (['"""I"""'], {}), "('I')\n", (1995, 2000), False, 'from utils import get_state_vowel\n'), ((2027, 2047), 'utils.get_state_vowel', 'get_state_vowel', (['"""O"""'], {}), "('O')\n", (2042, 2047), False, 'from utils import get_state_vowel\n'), ((2074, 2094), 'utils.get_state_vowel', 'get_state_vowel', (['"""U"""'], {}), "('U')\n", (2089, 2094), False, 'from utils import get_state_vowel\n'), ((649, 679), 'numpy.transpose', 'np.transpose', (['(2 * patterns - 1)'], {}), '(2 * patterns - 1)\n', (661, 679), True, 'import numpy as np\n'), ((1231, 1272), 'numpy.dot', 'np.dot', (['self.W[unit, :]', 'self.state_units'], {}), '(self.W[unit, :], self.state_units)\n', (1237, 1272), True, 'import numpy as np\n'), ((776, 810), 'numpy.dot', 'np.dot', (['self.state_units.T', 'self.W'], {}), '(self.state_units.T, self.W)\n', (782, 810), True, 'import numpy as np\n'), ((1639, 1673), 'numpy.dot', 'np.dot', (['self.state_units.T', 'self.W'], {}), '(self.state_units.T, self.W)\n', (1645, 1673), True, 'import numpy as np\n'), ((459, 477), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (475, 477), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import unittest import numpy as np import onnx from onnx import TensorProto, helper from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type from onnxruntime.quantization import QuantFormat, QuantType, quantize_static class TestOpRelu(unittest.TestCase): def input_feeds(self, n, name2shape): input_data_list = [] for i in range(n): inputs = {} for name, shape in name2shape.items(): inputs.update({name: np.random.randint(-1, 2, shape).astype(np.float32)}) input_data_list.extend([inputs]) dr = TestDataFeeds(input_data_list) return dr def construct_model_gemm(self, output_model_path): # (input) # | # Gemm # | # Relu # | # Gemm # | # (output) input_name = "input" output_name = "output" initializers = [] def make_gemm(input_name, weight_shape, weight_name, bias_shape, bias_name, output_name): weight_data = np.random.normal(0, 0.1, weight_shape).astype(np.float32) initializers.append(onnx.numpy_helper.from_array(weight_data, name=weight_name)) bias_data = np.random.normal(0, 0.1, bias_shape).astype(np.float32) initializers.append(onnx.numpy_helper.from_array(bias_data, name=bias_name)) return onnx.helper.make_node( "Gemm", [input_name, weight_name, bias_name], [output_name], alpha=1.0, beta=1.0, transB=1, ) # make gemm1 node gemm1_output_name = "gemm1_output" gemm1_node = make_gemm( input_name, [100, 10], "linear1.weight", [100], "linear1.bias", gemm1_output_name, ) # make Relu relu_output = "relu_output" relu_node = onnx.helper.make_node("Relu", [gemm1_output_name], [relu_output]) # make gemm2 node gemm2_node = make_gemm( relu_output, [10, 100], "linear2.weight", [10], "linear2.bias", output_name, ) # make graph input_tensor = helper.make_tensor_value_info(input_name, TensorProto.FLOAT, [-1, 10]) output_tensor = helper.make_tensor_value_info(output_name, TensorProto.FLOAT, [-1, 10]) graph_name = "relu_test" graph = helper.make_graph( [gemm1_node, relu_node, gemm2_node], graph_name, [input_tensor], [output_tensor], initializer=initializers, ) model = helper.make_model(graph, opset_imports=[helper.make_opsetid("", 13)]) model.ir_version = onnx.IR_VERSION onnx.save(model, output_model_path) def static_quant_test( self, model_fp32_path, data_reader, activation_type, weight_type, extra_options={}, ): activation_proto_qtype = TensorProto.UINT8 if activation_type == QuantType.QUInt8 else TensorProto.INT8 activation_type_str = "u8" if (activation_type == QuantType.QUInt8) else "s8" weight_type_str = "u8" if (weight_type == QuantType.QUInt8) else "s8" model_int8_path = "relu_fp32.quant_{}{}.onnx".format(activation_type_str, weight_type_str) data_reader.rewind() quantize_static( model_fp32_path, model_int8_path, data_reader, quant_format=QuantFormat.QOperator, activation_type=activation_type, weight_type=weight_type, extra_options=extra_options, ) qdq_count = 1 if activation_type == QuantType.QUInt8 else 2 relu_count = 0 if activation_type == QuantType.QUInt8 else 1 quant_nodes = {"QGemm": 2, "QuantizeLinear": qdq_count, "DequantizeLinear": qdq_count, "Relu": relu_count} check_op_type_count(self, model_int8_path, **quant_nodes) qnode_io_qtypes = { "QuantizeLinear": [ ["i", 2, activation_proto_qtype], ["o", 0, activation_proto_qtype], ] } qnode_io_qtypes.update({"DequantizeLinear": [["i", 2, activation_proto_qtype]]}) check_qtype_by_node_type(self, model_int8_path, qnode_io_qtypes) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_int8_path, data_reader.get_next()) def static_quant_test_qdq( self, model_fp32_path, data_reader, activation_type, weight_type, extra_options={}, ): activation_proto_qtype = TensorProto.UINT8 if activation_type == QuantType.QUInt8 else TensorProto.INT8 activation_type_str = "u8" if (activation_type == QuantType.QUInt8) else "s8" weight_type_str = "u8" if (weight_type == QuantType.QUInt8) else "s8" model_int8_path = "relu_fp32.quant_dqd_{}{}.onnx".format(activation_type_str, weight_type_str) data_reader.rewind() quantize_static( model_fp32_path, model_int8_path, data_reader, quant_format=QuantFormat.QDQ, activation_type=activation_type, weight_type=weight_type, extra_options=extra_options, ) relu_count = 0 if activation_type == QuantType.QUInt8 else 1 q_count = 3 if activation_type == QuantType.QUInt8 else 4 dq_count = 7 if activation_type == QuantType.QUInt8 else 8 quant_nodes = {"Gemm": 2, "QuantizeLinear": q_count, "DequantizeLinear": dq_count, "Relu": relu_count} check_op_type_count(self, model_int8_path, **quant_nodes) qnode_io_qtypes = { "QuantizeLinear": [ ["i", 2, activation_proto_qtype], ["o", 0, activation_proto_qtype], ] } check_qtype_by_node_type(self, model_int8_path, qnode_io_qtypes) data_reader.rewind() check_model_correctness(self, model_fp32_path, model_int8_path, data_reader.get_next()) def test_quantize_gemm(self): np.random.seed(1) model_fp32_path = "relu_fp32.onnx" self.construct_model_gemm(model_fp32_path) data_reader = self.input_feeds(1, {"input": [5, 10]}) self.static_quant_test( model_fp32_path, data_reader, activation_type=QuantType.QUInt8, weight_type=QuantType.QUInt8, ) self.static_quant_test_qdq( model_fp32_path, data_reader, activation_type=QuantType.QUInt8, weight_type=QuantType.QUInt8, ) def test_quantize_relu_s8s8(self): np.random.seed(1) model_fp32_path = "relu_fp32.onnx" self.construct_model_gemm(model_fp32_path) data_reader = self.input_feeds(1, {"input": [5, 10]}) self.static_quant_test( model_fp32_path, data_reader, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, extra_options={"ActivationSymmetric": True}, ) self.static_quant_test_qdq( model_fp32_path, data_reader, activation_type=QuantType.QInt8, weight_type=QuantType.QInt8, extra_options={"ActivationSymmetric": True}, ) if __name__ == "__main__": unittest.main()
[ "onnx.helper.make_graph", "onnxruntime.quantization.quantize_static", "numpy.random.normal", "onnx.save", "onnx.helper.make_node", "onnx.numpy_helper.from_array", "onnx.helper.make_tensor_value_info", "numpy.random.randint", "numpy.random.seed", "op_test_utils.TestDataFeeds", "unittest.main", "op_test_utils.check_qtype_by_node_type", "op_test_utils.check_op_type_count", "onnx.helper.make_opsetid" ]
[((7923, 7938), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7936, 7938), False, 'import unittest\n'), ((984, 1014), 'op_test_utils.TestDataFeeds', 'TestDataFeeds', (['input_data_list'], {}), '(input_data_list)\n', (997, 1014), False, 'from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type\n'), ((2403, 2468), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Relu"""', '[gemm1_output_name]', '[relu_output]'], {}), "('Relu', [gemm1_output_name], [relu_output])\n", (2424, 2468), False, 'import onnx\n'), ((2732, 2802), 'onnx.helper.make_tensor_value_info', 'helper.make_tensor_value_info', (['input_name', 'TensorProto.FLOAT', '[-1, 10]'], {}), '(input_name, TensorProto.FLOAT, [-1, 10])\n', (2761, 2802), False, 'from onnx import TensorProto, helper\n'), ((2827, 2898), 'onnx.helper.make_tensor_value_info', 'helper.make_tensor_value_info', (['output_name', 'TensorProto.FLOAT', '[-1, 10]'], {}), '(output_name, TensorProto.FLOAT, [-1, 10])\n', (2856, 2898), False, 'from onnx import TensorProto, helper\n'), ((2948, 3078), 'onnx.helper.make_graph', 'helper.make_graph', (['[gemm1_node, relu_node, gemm2_node]', 'graph_name', '[input_tensor]', '[output_tensor]'], {'initializer': 'initializers'}), '([gemm1_node, relu_node, gemm2_node], graph_name, [\n input_tensor], [output_tensor], initializer=initializers)\n', (2965, 3078), False, 'from onnx import TensorProto, helper\n'), ((3283, 3318), 'onnx.save', 'onnx.save', (['model', 'output_model_path'], {}), '(model, output_model_path)\n', (3292, 3318), False, 'import onnx\n'), ((3899, 4094), 'onnxruntime.quantization.quantize_static', 'quantize_static', (['model_fp32_path', 'model_int8_path', 'data_reader'], {'quant_format': 'QuantFormat.QOperator', 'activation_type': 'activation_type', 'weight_type': 'weight_type', 'extra_options': 'extra_options'}), '(model_fp32_path, model_int8_path, data_reader, quant_format\n =QuantFormat.QOperator, activation_type=activation_type, weight_type=\n weight_type, extra_options=extra_options)\n', (3914, 4094), False, 'from onnxruntime.quantization import QuantFormat, QuantType, quantize_static\n'), ((4441, 4498), 'op_test_utils.check_op_type_count', 'check_op_type_count', (['self', 'model_int8_path'], {}), '(self, model_int8_path, **quant_nodes)\n', (4460, 4498), False, 'from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type\n'), ((4780, 4844), 'op_test_utils.check_qtype_by_node_type', 'check_qtype_by_node_type', (['self', 'model_int8_path', 'qnode_io_qtypes'], {}), '(self, model_int8_path, qnode_io_qtypes)\n', (4804, 4844), False, 'from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type\n'), ((5558, 5747), 'onnxruntime.quantization.quantize_static', 'quantize_static', (['model_fp32_path', 'model_int8_path', 'data_reader'], {'quant_format': 'QuantFormat.QDQ', 'activation_type': 'activation_type', 'weight_type': 'weight_type', 'extra_options': 'extra_options'}), '(model_fp32_path, model_int8_path, data_reader, quant_format\n =QuantFormat.QDQ, activation_type=activation_type, weight_type=\n weight_type, extra_options=extra_options)\n', (5573, 5747), False, 'from onnxruntime.quantization import QuantFormat, QuantType, quantize_static\n'), ((6155, 6212), 'op_test_utils.check_op_type_count', 'check_op_type_count', (['self', 'model_int8_path'], {}), '(self, model_int8_path, **quant_nodes)\n', (6174, 6212), False, 'from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type\n'), ((6405, 6469), 'op_test_utils.check_qtype_by_node_type', 'check_qtype_by_node_type', (['self', 'model_int8_path', 'qnode_io_qtypes'], {}), '(self, model_int8_path, qnode_io_qtypes)\n', (6429, 6469), False, 'from op_test_utils import TestDataFeeds, check_model_correctness, check_op_type_count, check_qtype_by_node_type\n'), ((6638, 6655), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (6652, 6655), True, 'import numpy as np\n'), ((7233, 7250), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (7247, 7250), True, 'import numpy as np\n'), ((1834, 1952), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Gemm"""', '[input_name, weight_name, bias_name]', '[output_name]'], {'alpha': '(1.0)', 'beta': '(1.0)', 'transB': '(1)'}), "('Gemm', [input_name, weight_name, bias_name], [\n output_name], alpha=1.0, beta=1.0, transB=1)\n", (1855, 1952), False, 'import onnx\n'), ((1583, 1642), 'onnx.numpy_helper.from_array', 'onnx.numpy_helper.from_array', (['weight_data'], {'name': 'weight_name'}), '(weight_data, name=weight_name)\n', (1611, 1642), False, 'import onnx\n'), ((1757, 1812), 'onnx.numpy_helper.from_array', 'onnx.numpy_helper.from_array', (['bias_data'], {'name': 'bias_name'}), '(bias_data, name=bias_name)\n', (1785, 1812), False, 'import onnx\n'), ((1493, 1531), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)', 'weight_shape'], {}), '(0, 0.1, weight_shape)\n', (1509, 1531), True, 'import numpy as np\n'), ((1669, 1705), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)', 'bias_shape'], {}), '(0, 0.1, bias_shape)\n', (1685, 1705), True, 'import numpy as np\n'), ((3201, 3228), 'onnx.helper.make_opsetid', 'helper.make_opsetid', (['""""""', '(13)'], {}), "('', 13)\n", (3220, 3228), False, 'from onnx import TensorProto, helper\n'), ((873, 904), 'numpy.random.randint', 'np.random.randint', (['(-1)', '(2)', 'shape'], {}), '(-1, 2, shape)\n', (890, 904), True, 'import numpy as np\n')]
from model import * from dataloader import * from utils import * from torch.utils.tensorboard import SummaryWriter import torch.optim as optim import time import gc from tqdm import tqdm import matplotlib.pyplot as plt import torch.nn as nn import numpy as np import warnings as wn wn.filterwarnings('ignore') #load either PAMAP2 or Opportunity Datasets batch_size_train = 500 # PAM batch_size_val = 300 # PAM #batch_size_train = 10000 # OPP #batch_size_val = 1 # OPP # 1 = PAM, 0 = OPP PAM_dataset = 1 if (PAM_dataset): # PAM Dataset train_dataset = Wearables_Dataset(0,dataset_name='PAM2',dataset_path='data/PAM2',train_dataset=True) val_dataset = Wearables_Dataset(0,dataset_name='PAM2',dataset_path='data/PAM2',train_dataset=False) else: # Opportunity Dataset train_dataset = Wearables_Dataset(dataset_name='OPP',dataset_path='data/OPP',train_dataset=True) val_dataset = Wearables_Dataset(dataset_name='OPP',dataset_path='data/OPP',train_dataset=False) # Get dataloaders train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size_train, num_workers=4, shuffle=True) val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size_val, num_workers=4, shuffle=False) writer = SummaryWriter() def init_weights(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): torch.nn.init.xavier_uniform_(m.weight.data) # torch.nn.init.xavier_uniform_(m.bias.data) def plot(train_loss, val_loss, train_acc, val_acc, train_f1, val_f1, dataset): # train/val acc plots x = np.arange(len(train_loss)) fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x,train_acc) ax1.plot(x,val_acc) ax1.set_xlabel('Number of Epochs') ax1.set_ylabel('Accuracy') ax1.set_title('Training vs. Validation Accuracy') ax1.legend(['Training Acc','Val Acc']) fig1.savefig('train_val_accuracy_' + dataset + '.png') # train/val loss plots fig2 = plt.figure() ax2 = fig2.add_subplot(111) ax2.plot(x,train_loss) ax2.plot(x,val_loss) ax2.set_xlabel('Number of Epochs') ax2.set_ylabel('Cross Entropy Loss') ax2.set_title('Training vs. Validation Loss') ax2.legend(['Training Loss','Val Loss']) fig2.savefig('train_val_loss_' + dataset + '.png') # train/val f1 plots fig3 = plt.figure() ax3 = fig3.add_subplot(111) ax3.plot(x,train_f1) ax3.plot(x,val_f1) ax3.set_xlabel('Number of Epochs') ax3.set_ylabel('F1 Score') ax3.set_title('Training vs. Validation F1 Score') ax3.legend(['Train F1 Score','Val F1 Score']) fig3.savefig('train_val_f1_' + dataset + '.png') def train(): train_epoch_loss = [] train_epoch_acc = [] train_epoch_f1 = [] val_epoch_loss = [] val_epoch_acc = [] val_epoch_f1 = [] best_model = 'best_model_train' best_loss = float('inf') for epoch in tqdm(range(epochs)): train_loss_per_iter = [] train_acc_per_iter = [] train_f1_per_iter = [] ts = time.time() for iter, (X, Y) in tqdm(enumerate(train_loader), total=len(train_loader)): optimizer.zero_grad() if use_gpu: inputs = X.cuda() labels = Y.long().cuda() else: inputs, labels = X, Y.long() clear(X, Y) inputs = torch.split(inputs, 9, 1) outputs = psm(inputs) loss = criterion(outputs, torch.max(labels, 1)[1]) clear(outputs) loss.backward() optimizer.step() clear(loss) # save loss per iteration train_loss_per_iter.append(loss.item()) t_acc = compute_acc(outputs,labels) train_acc_per_iter.append(t_acc) micro_f1, macro_f1, weighted = calculate_f1(outputs, labels) train_f1_per_iter.append(weighted) writer.add_scalar('Loss/train', loss.item(), epoch) writer.add_scalar('Accuracy/train', t_acc, epoch) (print("Finish epoch {}, time elapsed {}, train acc {}, train weighted f1 {}".format(epoch, time.time() - ts, np.mean(train_acc_per_iter), np.mean(train_f1_per_iter)))) # calculate validation loss and accuracy val_loss, val_acc, val_f1 = val(epoch) print("Val loss {}, Val Acc {}, Val F1 {}".format(val_loss, val_acc, val_f1)) # Early Stopping if loss < best_loss: best_loss = loss # TODO: Consider switching to state dict instead torch.save(psm, best_model) train_epoch_loss.append(np.mean(train_loss_per_iter)) train_epoch_acc.append(np.mean(train_acc_per_iter)) train_epoch_f1.append(np.mean(train_f1_per_iter)) val_epoch_loss.append(val_loss) val_epoch_acc.append(val_acc) val_epoch_f1.append(val_f1) writer.add_scalar('Loss/val', val_loss, epoch) writer.add_scalar('Accuracy/val', val_acc, epoch) # plot val/training plot curves plot(train_epoch_loss, val_epoch_loss, train_epoch_acc, val_epoch_acc, train_epoch_f1, val_epoch_f1, 'shared') def val(epoch): batch_loss = [] batch_acc = [] batch_f1 = [] for iter, (X, Y) in tqdm(enumerate(val_loader), total=len(val_loader)): ''' y -> Labels (Used for pix acc and IOU) tar -> One-hot encoded labels (used for loss) ''' if use_gpu: inputs = X.cuda() labels = Y.long().cuda() else: inputs, labels = X, Y.long() clear(X, Y) inputs = torch.split(inputs, 9, 1) outputs = psm(inputs) # save val loss/accuracy loss = criterion(outputs, torch.max(labels, 1)[1]) batch_loss.append(loss.item()) batch_acc.append(compute_acc(outputs,labels)) micro_f1, macro_f1, weighted = calculate_f1(outputs, labels) batch_f1.append(weighted) clear(outputs, loss) # if iter % 20 == 0: # print("iter: {}".format(iter)) return np.mean(batch_loss), np.mean(batch_acc), np.mean(batch_f1) if __name__ == "__main__": # Define model parameters epochs = 3 criterion = nn.CrossEntropyLoss() sensors_per_device = 3 fr = 100 # Initialize model sensor model (senseHAR paper Figure 3/4) # Initialize encoder model A,B,C psm = PSM(12, sensors_per_device, fr, p=0.15) psm.apply(init_weights) params = psm.parameters() optimizer = optim.Adam(params, lr=1e-2) use_gpu = torch.cuda.is_available() if use_gpu: psm = psm.cuda() #print("Init val loss: {}, Init val acc: {}, Init val iou: {}".format(val_loss, val_acc, val_iou)) train()
[ "torch.optim.Adam", "torch.utils.tensorboard.SummaryWriter", "numpy.mean", "torch.nn.CrossEntropyLoss", "matplotlib.pyplot.figure", "time.time", "warnings.filterwarnings" ]
[((282, 309), 'warnings.filterwarnings', 'wn.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (299, 309), True, 'import warnings as wn\n'), ((1375, 1390), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (1388, 1390), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((1741, 1753), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1751, 1753), True, 'import matplotlib.pyplot as plt\n'), ((2100, 2112), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2110, 2112), True, 'import matplotlib.pyplot as plt\n'), ((2463, 2475), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2473, 2475), True, 'import matplotlib.pyplot as plt\n'), ((6338, 6359), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (6357, 6359), True, 'import torch.nn as nn\n'), ((6625, 6652), 'torch.optim.Adam', 'optim.Adam', (['params'], {'lr': '(0.01)'}), '(params, lr=0.01)\n', (6635, 6652), True, 'import torch.optim as optim\n'), ((3154, 3165), 'time.time', 'time.time', ([], {}), '()\n', (3163, 3165), False, 'import time\n'), ((6186, 6205), 'numpy.mean', 'np.mean', (['batch_loss'], {}), '(batch_loss)\n', (6193, 6205), True, 'import numpy as np\n'), ((6207, 6225), 'numpy.mean', 'np.mean', (['batch_acc'], {}), '(batch_acc)\n', (6214, 6225), True, 'import numpy as np\n'), ((6227, 6244), 'numpy.mean', 'np.mean', (['batch_f1'], {}), '(batch_f1)\n', (6234, 6244), True, 'import numpy as np\n'), ((4745, 4773), 'numpy.mean', 'np.mean', (['train_loss_per_iter'], {}), '(train_loss_per_iter)\n', (4752, 4773), True, 'import numpy as np\n'), ((4806, 4833), 'numpy.mean', 'np.mean', (['train_acc_per_iter'], {}), '(train_acc_per_iter)\n', (4813, 4833), True, 'import numpy as np\n'), ((4865, 4891), 'numpy.mean', 'np.mean', (['train_f1_per_iter'], {}), '(train_f1_per_iter)\n', (4872, 4891), True, 'import numpy as np\n'), ((4287, 4314), 'numpy.mean', 'np.mean', (['train_acc_per_iter'], {}), '(train_acc_per_iter)\n', (4294, 4314), True, 'import numpy as np\n'), ((4316, 4342), 'numpy.mean', 'np.mean', (['train_f1_per_iter'], {}), '(train_f1_per_iter)\n', (4323, 4342), True, 'import numpy as np\n'), ((4269, 4280), 'time.time', 'time.time', ([], {}), '()\n', (4278, 4280), False, 'import time\n')]
import os import csv import numpy as np from pathlib import Path from tqdm import tqdm from sklearn.utils import shuffle from sklearn.model_selection import train_test_split seed = 3535999445 def imdb(path=Path("data/aclImdb/")): import pickle try: return pickle.load((path / "train-test.p").open("rb")) except FileNotFoundError: pass CLASSES = ["neg", "pos", "unsup"] def get_texts(path): texts,labels = [],[] for idx,label in tqdm(enumerate(CLASSES)): for fname in tqdm((path/label).glob('*.txt'), leave=False): texts.append(fname.read_text()) labels.append(idx) return texts, np.asarray(labels) trXY = get_texts(path / "train") teXY = get_texts(path / "test") data = (trXY, teXY) pickle.dump(data, (path / "train-test.p").open("wb")) return data def _rocstories(path): """Returns 4 lists : st: input sentences ct1: first answer ct2: second answer y: index of the good answer """ with open(path, encoding='utf_8') as f: f = csv.reader(f) st = [] ct1 = [] ct2 = [] y = [] for i, line in enumerate(tqdm(list(f), ncols=80, leave=False)): if i > 0: s = ' '.join(line[1:5]) c1 = line[5] c2 = line[6] st.append(s) ct1.append(c1) ct2.append(c2) y.append(int(line[-1])-1) return st, ct1, ct2, y def rocstories(data_dir, n_train=1497, n_valid=374): storys, comps1, comps2, ys = _rocstories(os.path.join(data_dir, 'cloze_test_val__spring2016 - cloze_test_ALL_val.csv')) teX1, teX2, teX3, _ = _rocstories(os.path.join(data_dir, 'cloze_test_test__spring2016 - cloze_test_ALL_test.csv')) tr_storys, va_storys, tr_comps1, va_comps1, tr_comps2, va_comps2, tr_ys, va_ys = train_test_split(storys, comps1, comps2, ys, test_size=n_valid, random_state=seed) trX1, trX2, trX3 = [], [], [] trY = [] for s, c1, c2, y in zip(tr_storys, tr_comps1, tr_comps2, tr_ys): trX1.append(s) trX2.append(c1) trX3.append(c2) trY.append(y) vaX1, vaX2, vaX3 = [], [], [] vaY = [] for s, c1, c2, y in zip(va_storys, va_comps1, va_comps2, va_ys): vaX1.append(s) vaX2.append(c1) vaX3.append(c2) vaY.append(y) trY = np.asarray(trY, dtype=np.int32) vaY = np.asarray(vaY, dtype=np.int32) return (trX1, trX2, trX3, trY), (vaX1, vaX2, vaX3, vaY), (teX1, teX2, teX3)
[ "pathlib.Path", "sklearn.model_selection.train_test_split", "os.path.join", "numpy.asarray", "csv.reader" ]
[((210, 231), 'pathlib.Path', 'Path', (['"""data/aclImdb/"""'], {}), "('data/aclImdb/')\n", (214, 231), False, 'from pathlib import Path\n'), ((1932, 2018), 'sklearn.model_selection.train_test_split', 'train_test_split', (['storys', 'comps1', 'comps2', 'ys'], {'test_size': 'n_valid', 'random_state': 'seed'}), '(storys, comps1, comps2, ys, test_size=n_valid,\n random_state=seed)\n', (1948, 2018), False, 'from sklearn.model_selection import train_test_split\n'), ((2444, 2475), 'numpy.asarray', 'np.asarray', (['trY'], {'dtype': 'np.int32'}), '(trY, dtype=np.int32)\n', (2454, 2475), True, 'import numpy as np\n'), ((2486, 2517), 'numpy.asarray', 'np.asarray', (['vaY'], {'dtype': 'np.int32'}), '(vaY, dtype=np.int32)\n', (2496, 2517), True, 'import numpy as np\n'), ((1115, 1128), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (1125, 1128), False, 'import csv\n'), ((1649, 1726), 'os.path.join', 'os.path.join', (['data_dir', '"""cloze_test_val__spring2016 - cloze_test_ALL_val.csv"""'], {}), "(data_dir, 'cloze_test_val__spring2016 - cloze_test_ALL_val.csv')\n", (1661, 1726), False, 'import os\n'), ((1766, 1845), 'os.path.join', 'os.path.join', (['data_dir', '"""cloze_test_test__spring2016 - cloze_test_ALL_test.csv"""'], {}), "(data_dir, 'cloze_test_test__spring2016 - cloze_test_ALL_test.csv')\n", (1778, 1845), False, 'import os\n'), ((689, 707), 'numpy.asarray', 'np.asarray', (['labels'], {}), '(labels)\n', (699, 707), True, 'import numpy as np\n')]
''' @date: 31/03/2015 @author: <NAME> Tests for generator ''' import unittest import numpy as np import scipy.constants as constants from PyHEADTAIL.trackers.longitudinal_tracking import RFSystems import PyHEADTAIL.particles.generators as gf from PyHEADTAIL.general.printers import SilentPrinter class TestParticleGenerators(unittest.TestCase): '''Test class for the new ParticleGenerator (generator_functional.py)''' def setUp(self): np.random.seed(0) self.nparticles = 1000 self.epsx = 0.5 self.intensity = 1e11 self.charge = constants.e self.mass = constants.m_p self.circumference = 99 self.gamma = 27.1 self.generator = gf.ParticleGenerator( self.nparticles, self.intensity, self.charge, self.mass, self.circumference, self.gamma, distribution_x=gf.gaussian2D(0.5),alpha_x=-0.7, beta_x=4, D_x=0, distribution_z=gf.gaussian2D(3.0), printer=SilentPrinter()) self.beam = self.generator.generate() def tearDown(self): pass def test_particles_length(self): '''Tests whether the coordinate arrays of the resulting beam have the correct length''' self.assertEqual(self.beam.x.size, self.nparticles, 'Length of x-beam coordinate array not correct') def test_particles_coordinates(self): '''Tests whether only the coordinates specified in the initializer are initialized in the beam (e.g. yp is not) ''' with self.assertRaises(AttributeError): self.beam.yp def test_update_beam_with_existing_coords(self): '''Tests whether updating already existing coords produces beam coordinates of the correct size ''' self.generator.update(self.beam) self.assertEqual(self.beam.x.size, self.nparticles, 'Updating existing coordinates leads to wrong' + 'coordinate lengths') def test_update_beam_with_new_coords(self): '''Tests whether adding new coordinates to the beam works as expected ''' x_copy = self.beam.x.copy() longitudinal_generator = gf.ParticleGenerator( self.nparticles, self.intensity, self.charge, self.mass, self.circumference, self.gamma, distribution_z=gf.gaussian2D(3.0)) longitudinal_generator.update(self.beam) self.assertEqual(self.beam.dp.size, self.nparticles, 'Updating the beam with new coordinates leads to' + 'faulty coordinates') for n in range(self.nparticles): self.assertAlmostEqual(x_copy[n], self.beam.x[n], msg='Updating the beam with new coordinates invalidates' + 'existing coordinates') def test_distributions(self): '''Tests whether the specified distributions return the coords in the correct format (dimensions). If new distributions are added, add them to the test here! ''' # Gaussian dist = gf.gaussian2D(0.1) self.distribution_testing_implementation(dist) # Uniform dist = gf.uniform2D(-2., 3.) self.distribution_testing_implementation(dist) def test_import_distribution(self): '''Tests whether import_distribution produces coordinate arrays of the correct size''' nparticles = 5 coords = [np.linspace(-2, 2, nparticles), np.linspace(-3, 3, nparticles)] import_generator = gf.ParticleGenerator( nparticles, 1e11, constants.e, constants.m_p, 100, 10, distribution_y=gf.import_distribution2D(coords)) beam = import_generator.generate() self.assertEqual(len(beam.y), nparticles, 'import_generator produces coords with the wrong length') self.assertEqual(len(beam.yp), nparticles, 'import_generator produces coords with the wrong length') def test_rf_bucket_distribution(self): '''Tests the functionality of the rf-bucket matchor''' #SPS Q20 flattop nparticles = 100 h1 = 4620 h2 = 4*4620 V1 = 10e6 V2 = 1e6 dphi1 = 0 dphi2 = 0 alpha = 0.00308 p_increment = 0 long_map = RFSystems(self.circumference, [h1, h2], [V1, V2], [dphi1, dphi2], [alpha], self.gamma, p_increment, charge=self.charge, mass=self.mass) bucket = long_map.get_bucket(gamma=self.gamma) bunch = gf.ParticleGenerator( nparticles, 1e11, constants.e, constants.m_p, self.circumference, self.gamma, distribution_z=gf.RF_bucket_distribution( bucket, epsn_z=0.002, printer=SilentPrinter())).generate() def test_cut_bucket_distribution(self): '''Tests functionality of the cut-bucket matchor ''' nparticles = 100 h1 = 4620 h2 = 4*4620 V1 = 10e6 V2 = 1e6 dphi1 = 0 dphi2 = 0 alpha = 0.00308 p_increment = 0 long_map = RFSystems(self.circumference, [h1, h2], [V1, V2], [dphi1, dphi2], [alpha], self.gamma, p_increment, charge=self.charge, mass=self.mass) bucket = long_map.get_bucket(gamma=self.gamma) is_accepted_fn = bucket.make_is_accepted(margin=0.) bunch = gf.ParticleGenerator( nparticles, 11, constants.e, constants.m_p, self.circumference, self.gamma, distribution_z=gf.cut_distribution( is_accepted=is_accepted_fn, distribution=gf.gaussian2D(0.01))).generate() self.assertEqual(nparticles, len(bunch.z), 'bucket_cut_distribution loses particles') self.assertTrue(np.sum(is_accepted_fn(bunch.z, bunch.dp)) == nparticles, 'not all particles generated with the cut RF matcher' + ' lie inside the specified separatrix') def test_import_distribution_raises_error(self): '''Tests whether the generation fails when the number of particles and the size of the specified distribution list do not match ''' nparticles = 10 coords = [np.linspace(-2, 2, nparticles+1), np.linspace(-3, 3, nparticles+1)] import_generator = gf.ParticleGenerator( nparticles, 1e11, constants.e, constants.m_p, 100, 10, distribution_y=gf.import_distribution2D(coords)) with self.assertRaises(AssertionError): beam = import_generator.generate() def distribution_testing_implementation(self, distribution): '''Call this method with the distribution as a parameter. distribution(n_particles) should be a valid command ''' distribution_size = 100 X = distribution(distribution_size) x = X[0] p = X[1] self.assertEqual(x.size, distribution_size, 'space-direction ([0]) of ' + str(distribution) + 'has wrong dimension') self.assertEqual(p.size, distribution_size, 'momentum-direction ([1]) of ' + str(distribution) + 'has wrong dimension') if __name__ == '__main__': unittest.main()
[ "PyHEADTAIL.trackers.longitudinal_tracking.RFSystems", "PyHEADTAIL.general.printers.SilentPrinter", "PyHEADTAIL.particles.generators.gaussian2D", "PyHEADTAIL.particles.generators.import_distribution2D", "PyHEADTAIL.particles.generators.uniform2D", "numpy.linspace", "numpy.random.seed", "unittest.main" ]
[((7430, 7445), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7443, 7445), False, 'import unittest\n'), ((457, 474), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (471, 474), True, 'import numpy as np\n'), ((3136, 3154), 'PyHEADTAIL.particles.generators.gaussian2D', 'gf.gaussian2D', (['(0.1)'], {}), '(0.1)\n', (3149, 3154), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((3244, 3267), 'PyHEADTAIL.particles.generators.uniform2D', 'gf.uniform2D', (['(-2.0)', '(3.0)'], {}), '(-2.0, 3.0)\n', (3256, 3267), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((4398, 4537), 'PyHEADTAIL.trackers.longitudinal_tracking.RFSystems', 'RFSystems', (['self.circumference', '[h1, h2]', '[V1, V2]', '[dphi1, dphi2]', '[alpha]', 'self.gamma', 'p_increment'], {'charge': 'self.charge', 'mass': 'self.mass'}), '(self.circumference, [h1, h2], [V1, V2], [dphi1, dphi2], [alpha],\n self.gamma, p_increment, charge=self.charge, mass=self.mass)\n', (4407, 4537), False, 'from PyHEADTAIL.trackers.longitudinal_tracking import RFSystems\n'), ((5197, 5336), 'PyHEADTAIL.trackers.longitudinal_tracking.RFSystems', 'RFSystems', (['self.circumference', '[h1, h2]', '[V1, V2]', '[dphi1, dphi2]', '[alpha]', 'self.gamma', 'p_increment'], {'charge': 'self.charge', 'mass': 'self.mass'}), '(self.circumference, [h1, h2], [V1, V2], [dphi1, dphi2], [alpha],\n self.gamma, p_increment, charge=self.charge, mass=self.mass)\n', (5206, 5336), False, 'from PyHEADTAIL.trackers.longitudinal_tracking import RFSystems\n'), ((3506, 3536), 'numpy.linspace', 'np.linspace', (['(-2)', '(2)', 'nparticles'], {}), '(-2, 2, nparticles)\n', (3517, 3536), True, 'import numpy as np\n'), ((3556, 3586), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', 'nparticles'], {}), '(-3, 3, nparticles)\n', (3567, 3586), True, 'import numpy as np\n'), ((6364, 6398), 'numpy.linspace', 'np.linspace', (['(-2)', '(2)', '(nparticles + 1)'], {}), '(-2, 2, nparticles + 1)\n', (6375, 6398), True, 'import numpy as np\n'), ((6416, 6450), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(nparticles + 1)'], {}), '(-3, 3, nparticles + 1)\n', (6427, 6450), True, 'import numpy as np\n'), ((873, 891), 'PyHEADTAIL.particles.generators.gaussian2D', 'gf.gaussian2D', (['(0.5)'], {}), '(0.5)\n', (886, 891), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((950, 968), 'PyHEADTAIL.particles.generators.gaussian2D', 'gf.gaussian2D', (['(3.0)'], {}), '(3.0)\n', (963, 968), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((990, 1005), 'PyHEADTAIL.general.printers.SilentPrinter', 'SilentPrinter', ([], {}), '()\n', (1003, 1005), False, 'from PyHEADTAIL.general.printers import SilentPrinter\n'), ((2401, 2419), 'PyHEADTAIL.particles.generators.gaussian2D', 'gf.gaussian2D', (['(3.0)'], {}), '(3.0)\n', (2414, 2419), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((3739, 3771), 'PyHEADTAIL.particles.generators.import_distribution2D', 'gf.import_distribution2D', (['coords'], {}), '(coords)\n', (3763, 3771), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((6601, 6633), 'PyHEADTAIL.particles.generators.import_distribution2D', 'gf.import_distribution2D', (['coords'], {}), '(coords)\n', (6625, 6633), True, 'import PyHEADTAIL.particles.generators as gf\n'), ((4861, 4876), 'PyHEADTAIL.general.printers.SilentPrinter', 'SilentPrinter', ([], {}), '()\n', (4874, 4876), False, 'from PyHEADTAIL.general.printers import SilentPrinter\n'), ((5735, 5754), 'PyHEADTAIL.particles.generators.gaussian2D', 'gf.gaussian2D', (['(0.01)'], {}), '(0.01)\n', (5748, 5754), True, 'import PyHEADTAIL.particles.generators as gf\n')]
import numpy as np import matplotlib.pyplot as plt def filter_rms_error(filter_object, to_filter_data_lambda, desired_filter_data_lambda, dt=0.01, start_time=0.0, end_time=10.0, skip_initial=0, use_pressure_error=False, abs_tol=2.0, rel_tol=0.02, generate_plot=False): """Calculates root-mean-square (RMS) error between data calculated by a filter and a reference function that nominally should yield equal data. Parameters ---------- filter_object : object An object representing the filter being tested. It must have the following functions defined. filter_object(dt: float) filter_object.append(datum: float) filter_object.get_datum() -> float to_filter_data_lambda : lambda A function representing the data being fed to the filter. It should be of the form to_filter_lambda(time: np.array) -> np.array desired_filter_data_lambda : lambda A function representing output that the filter_object output should be nominally equal to. It should be of the form desired_filter_data_lambda(time: np.array) -> np.array start_time=0.0 : float end_time=10.0 : float dt=0.01 : float Represents a time interval in seconds of [start_time, end_time) with steps of dt between. Calculated as np.arange(start_time, end_time, dt). skip_initial=0 : int Ignores the first skip_inital data points when calculating error. This is useful when a filter has an initial transient before it starts returning useful data. use_pressure_error=False : bool Instead of calculating direct RMS error, this function will calculate a normalized error based on given tolerances. This is useful for ventilators trying to calculate pressure meeting ISO 80601-2-80:2018 192.168.127.12.1. Default values for the tolerances are based on this standard. abs_tol=2.0 : float The design absolute tolerance when calculating pressure error, i.e. +/- abs_tol. Only used if use_pressure_error == True. rel_tol=0.02 : float The design relative tolerance when calculating pressure error, i.e. +/- rel_tol * desired_filter_data(t). generate_plot=False : bool If True, then a plot of the filter data and desired_filter_data_lambda with respect to time will be generated. Note that this should be false in non-interactive contexts. Returns ------- error : float If use_pressure_error is False, This returns the RMS error between the filter output and the output of desired_filter_data_lambda. If use_pressure_error is True, This returns a normalized error between the filter output and the output of desired_filter_data_lambda. If error < 1, then the typical error is within the design tolerance. When testing, you can add a safety factor to the error by asserting that the error must be less than 1/safety_factor. """ t = np.arange(start_time, end_time, dt) test_filter = filter_object(dt) to_filter_data = to_filter_data_lambda(t) filtered_data = np.array([]) desired_filtered_data = desired_filter_data_lambda(t) for i in range(len(to_filter_data)): test_filter.append(to_filter_data[i]) filtered_data = np.append(filtered_data, test_filter.get_datum()) if generate_plot: figure, axis = plt.subplots() axis.plot(t, to_filter_data, label="To Filter Data") axis.plot(t, filtered_data, label="Filtered Data") axis.plot(t, desired_filtered_data, label="Desired Filtered Data") axis.legend() plt.show() if not use_pressure_error: return _root_mean_square( (filtered_data - desired_filtered_data)[skip_initial:]) else: return _pressure_error(filtered_data[skip_initial:], desired_filtered_data[skip_initial:]) def _root_mean_square(np_array): return np.sqrt(np.mean(np.square(np_array))) def _pressure_error(calculated_pressure, actual_pressure, abs_tol=2.0, rel_tol=0.02): return _root_mean_square( (calculated_pressure - actual_pressure) / (np.full_like(actual_pressure, abs_tol) + rel_tol * actual_pressure) )
[ "numpy.full_like", "numpy.square", "numpy.array", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((3339, 3374), 'numpy.arange', 'np.arange', (['start_time', 'end_time', 'dt'], {}), '(start_time, end_time, dt)\n', (3348, 3374), True, 'import numpy as np\n'), ((3477, 3489), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3485, 3489), True, 'import numpy as np\n'), ((3789, 3803), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3801, 3803), True, 'import matplotlib.pyplot as plt\n'), ((4029, 4039), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4037, 4039), True, 'import matplotlib.pyplot as plt\n'), ((4376, 4395), 'numpy.square', 'np.square', (['np_array'], {}), '(np_array)\n', (4385, 4395), True, 'import numpy as np\n'), ((4635, 4673), 'numpy.full_like', 'np.full_like', (['actual_pressure', 'abs_tol'], {}), '(actual_pressure, abs_tol)\n', (4647, 4673), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from matplotlib import patches from matplotlib.legend_handler import HandlerTuple from scipy.integrate import quad, simps from math import * #lets the user enter complicated functions easily, eg: exp(3*sin(x**2)) import pyinputplus as pyip # makes taking inputs more convenient for the user from warnings import filterwarnings # prevents a warning for calling ax.set_yscale("symlog", linthresh=ACERTAINVALUE) with linthresh where it is. filterwarnings("ignore", category=__import__('matplotlib').cbook.mplDeprecation) #can avoid having a whole bunch of message if the polynomial interpolation is bad while displaying Simpson's rule's parabolas. filterwarnings("ignore", category=np.RankWarning) #This function is unique because it's the only one to graph many things on each axis, thus it is separate in order to not make special cases in the rest of the code def Riemann(fig, formula, f, xmin, xmax, boolLogX, boolLogY, listGraph_n, listComp_n, lenContinuous, exact, errorBound): continuous_x = np.linspace(xmin, xmax, lenContinuous) continuous_y = f(continuous_x) interval = xmax - xmin listListGraph_xLeft = [np.linspace(xmin, xmax - (interval) / n, n) for n in listGraph_n] listListGraph_yLeft = [f(list_x) for list_x in listListGraph_xLeft] listListComp_xLeft = [np.linspace(xmin, xmax - (interval) / n, n) for n in listComp_n] listListComp_yLeft = [f(list_x) for list_x in listListComp_xLeft] listListGraph_xRight = [np.linspace(xmin + (interval) / n, xmax, n) for n in listGraph_n] listListGraph_yRight = [f(list_x) for list_x in listListGraph_xRight] listListComp_xRight = [np.linspace(xmin + (interval) / n, xmax, n) for n in listComp_n] listListComp_yRight = [f(list_x) for list_x in listListComp_xRight] listListGraph_x = [np.linspace(xmin, xmax - interval / n, n) + interval / (2 * n) for n in listGraph_n] listListGraph_y = [(list_yLeft + list_yRight) / 2 for list_yLeft, list_yRight in zip(listListGraph_yLeft, listListGraph_yRight)] listListComp_y = [(list_yLeft + list_yRight) / 2 for list_yLeft, list_yRight in zip(listListComp_yLeft, listListComp_yRight)] listWidth = [interval / n for n in listGraph_n] fig.suptitle(f"Study of the approximation of the integral of the function y = {formula} on the interval ({xmin}, {xmax}) " f"by left and right Riemann sums and their average and of the quality of the approximations compared to the exact value") #This fills the left side of the figure, filling it row by row. nbCol = ceil(len(listGraph_n) / 5) areaAxes = [fig.add_subplot(ceil(len(listGraph_n) / nbCol), 2 * nbCol, i) for i in range(1, 2 * len(listGraph_n)) if 0 <= i % (2 * nbCol) - 1 < nbCol] for i, ax in enumerate(areaAxes): ax.bar(listListGraph_xLeft[i], listListGraph_yLeft[i], align='edge', alpha=0.5, width=listWidth[i], label="Left sum", color=list("#70db70" if y >= 0 else "#ff6666" for y in listListGraph_yLeft[i])) #green and red ax.bar(listListGraph_x[i], listListGraph_y[i], align='center', alpha=0.5, width=listWidth[i], label="Average of left and right sums", color=list("#071ba3" if y >= 0 else "#d8e30e" for y in listListGraph_y[i])) # blue and orange ax.bar(listListGraph_xRight[i], listListGraph_yRight[i], align='edge', alpha=0.5, width=-listWidth[i], label="Right sum", color=list("#6815a3" if y >= 0 else "#e08f0b" for y in listListGraph_yRight[i])) # purple and yellow ax.plot(continuous_x, continuous_y) if boolLogX: ax.set_xscale('symlog', linthreshy=interval / (10 * max(len(list_) for list_ in listListGraph_x + listListComp_xRight))) if boolLogY: ax.set_yscale('symlog', linthreshy=absGetNonZeroMin(listListGraph_yLeft + listListComp_yLeft + listListGraph_yRight + listListComp_yRight)) ax.set_title(f"{listGraph_n[i]} rectangles") ax.grid(True) #stuff for the legend to display both colors for each barplot. See last answer at #https://stackoverflow.com/questions/31478077/how-to-make-two-markers-share-the-same-label-in-the-legend-using-matplotlib #for explanation, by user rouckas legendpatches = ((patches.Patch(color=color1, alpha=0.5), patches.Patch(color=color2, alpha=0.5)) for color1, color2 in zip(("#70db70", "#071ba3", "#6815a3"), ("#ff6666", "#d8e30e", "#e08f0b"))) areaAxes[0].legend((legendpatches), ("Left sum", "Average of left and right sums", "Right sum"), handler_map={tuple: HandlerTuple(ndivide=None)}, fontsize=10) errorBounder = np.vectorize(lambda x: x if abs(x) > errorBound else 0) #the sorting here is to keep the implicit mapping between the lists of y values and the n values, which gets sorted later. listDistLeft = errorBounder(np.fromiter(((list_y.mean() * (interval) - exact) for list_y in sorted(listListGraph_yLeft + listListComp_yLeft, key=len)), dtype=float)) listDistMid = errorBounder(np.fromiter(((list_y.mean() * (interval) - exact) for list_y in sorted(listListGraph_y + listListComp_y, key=len)), dtype=float)) listDistRight = errorBounder(np.fromiter(((list_y.mean() * (interval) - exact) for list_y in sorted(listListGraph_yRight + listListComp_yRight, key=len)), dtype=float)) accuracyAxes = [fig.add_subplot(2, 2, i) for i in (2, 4)] if 0 in listDistLeft + listDistRight + listDistMid: global exactMessage exactMessage = True if exact == 0: titles = ("difference for each approximation compared to the exact value of the integral, 0", "difference for each approximation compared to the exact value of the integral, 0, on a logarithmic scale") else: listDistLeft, listDistMid, listDistRight = map(lambda x: 100 * x / exact, (listDistLeft, listDistMid, listDistRight)) titles = (f"relative percentage error for each approximation compared to the exact integral: {niceStr(exact)}", f"relative percentage error for each approximation compared to the exact integral: {niceStr(exact)}, on a logarithmic scale") #sorted to avoid lines going back and forth because it wouldn't be monotonically increasing. listTot_n = list(sorted(listGraph_n + listComp_n)) ax = accuracyAxes[0] for listDist, color, label in zip((listDistLeft, listDistMid, listDistRight), ("#70db70", "#071ba3", "#6815a3"), ("Left sums", "Average of left and right sums", "Right sums")): ax.plot(listTot_n, listDist, color=color, label=label) for x, y in zip(listTot_n * 3, np.concatenate((listDistLeft, listDistMid, listDistRight))): ax.text(x, y, niceStr(y)) ax.grid(True) ax.set_title(titles[0]) ax.legend() ax = accuracyAxes[1] for listDist, color, label in zip((listDistLeft, listDistMid, listDistRight), ("#70db70", "#071ba3", "#6815a3"), ("Left sums", "Average of left and right sums", "Right sums")): ax.plot(listTot_n, listDist, color=color, label=label) ax.set_xscale("log") ax.get_xaxis().set_tick_params(which='minor', size=0) ax.get_xaxis().set_tick_params(which='minor', width=0) ax.set_yscale("symlog", linthreshy=absGetNonZeroMin(np.concatenate((listDistLeft, listDistMid, listDistRight))) * 0.9) good_ylim(ax, np.concatenate((listDistLeft, listDistMid, listDistRight))) # sets the y limits to something a bit cleaner for x, y in zip(listTot_n * 3, np.concatenate((listDistLeft, listDistMid, listDistRight))): ax.text(x, y, niceStr(y)) ax.set_title(titles[1]) ax.grid(True, which='major') ax.legend() class Midpoint: def __init__(self, f, xmin, xmax, listGraph_n, listComp_n): self.interval = xmax - xmin self.listListGraph_x = [np.linspace(xmin, xmax - self.interval / n, n) + self.interval / (2*n) for n in listGraph_n] self.listListGraph_y = [f(list_x) for list_x in self.listListGraph_x] self.listListComp_x = [np.linspace(xmin, xmax - self.interval / n, n) + self.interval / (2*n) for n in listComp_n] self.listListComp_y = [f(list_x) for list_x in self.listListComp_x] self.listWidth = [self.interval / n for n in listGraph_n] def titleSpecs(self): return "some midpoint sums" def shapeName(self): return "rectangles" def listDist(self, exact): return np.fromiter(((list_y.mean() * (self.interval) - exact) for list_y in sorted(self.listListGraph_y + self.listListComp_y, key=len)), dtype=float) def graph(self, ax, i): ax.bar(self.listListGraph_x[i], self.listListGraph_y[i], alpha=0.5, width=self.listWidth[i], color=["#70db70" if y >= 0 else "#ff6666" for y in self.listListGraph_y[i]]) class Trapezoidal: def __init__(self, f, xmin, xmax, listGraph_n, listComp_n): self.interval = xmax - xmin self.listListGraph_x = [np.linspace(xmin, xmax, n+1) for n in listGraph_n] self.listListGraph_y = [f(list_x) for list_x in self.listListGraph_x] self.listListComp_x = [np.linspace(xmin, xmax, n+1) for n in listComp_n] self.listListComp_y = [f(list_x) for list_x in self.listListComp_x] def titleSpecs(self): return "some trapezoidal sums" def shapeName(self): return "trapezia" def listDist(self, exact): return np.fromiter((((list_y.sum() - (list_y[0] + list_y[-1]) / 2) / (len(list_y) - 1) * (self.interval) - exact) for list_y in sorted(self.listListGraph_y + self.listListComp_y, key=len)), dtype=float) def graph(self, ax, i): ax.plot(self.listListGraph_x[i], self.listListGraph_y[i], color='#8b008b', linestyle='--') ax.fill_between(self.listListGraph_x[i], self.listListGraph_y[i], alpha=0.5, interpolate=True, color=["#70db70" if y >= 0 else "#ff6666" for y in self.listListGraph_y[i]]) class Simpson: def __init__(self, f, xmin, xmax, listGraph_n, listComp_n): #the list_ns contain a number of parabolas. self.interval = xmax - xmin self.listListGraph_x = [np.linspace(xmin, xmax, 2*n + 1) for n in listGraph_n] # 2n + 1 sub-intervals self.listListGraph_y = [f(list_x) for list_x in self.listListGraph_x] self.listListComp_x = [np.linspace(xmin, xmax, 2*n + 1) for n in listComp_n] self.listListComp_y = [f(list_x) for list_x in self.listListComp_x] def titleSpecs(self): return "Simpson's rule" def shapeName(self): return "parabolas" def listDist(self, exact): return np.fromiter(((simps(list_y, list_x) - exact) for list_x, list_y in zip(list(sorted(self.listListGraph_x + self.listListComp_x, key=len)), list(sorted(self.listListGraph_y + self.listListComp_y, key=len)))), dtype = float) def graph(self, ax, i): """ separate it into n intervals, find the fitting parabola on each of them, grab the corresponding x values from continuous_x, use them to get y values with the polynomial, plot them. """ global continuous_x listData_x = self.listListGraph_x[i] listData_y = self.listListGraph_y[i] n = (len(listData_x) - 1) // 2 # number of parabolas toPlot_y = [] for i_inter in range(n): x_data = listData_x[2*i_inter:2*i_inter+3] y_data = listData_y[2*i_inter:2*i_inter+3] poly = np.polyfit(x_data, y_data, 2) list_x = continuous_x[len(continuous_x) * i_inter // n: len(continuous_x) * (i_inter+1) // n] list_y = np.polyval(poly, list_x) toPlot_y.extend(list_y) ax.plot(continuous_x, toPlot_y, color='#8b008b', linestyle='--') def firstDigit(num): digits = '123456789' for char in str(num): if char in digits: return int(char) def good_ylim(ax, values): # symlog scale can give ugly limits for y values. This fixes that with a 0 and a power of 10 times a digit, like 9e-2. mini, maxi = min(values), max(values) newBottom, newTop = ax.get_ylim() if mini < 0 < maxi: newBottom = -(firstDigit(mini) + 1) * 10 ** floor(log10(-mini)) newTop = (firstDigit(maxi) + 1) * 10 ** floor(log10(maxi)) elif mini < maxi <= 0 : newBottom = -(firstDigit(mini) + 1) * 10 ** floor(log10(-mini)) newTop = 0 elif 0 <= mini < maxi: newBottom = 0 newTop = (firstDigit(maxi) + 1) * 10 ** floor(log10(maxi)) ax.set_ylim(newBottom, newTop) def niceStr(val): #gives a nice value, avoids having far too many digits display. if 100 < abs(val) < 1000000: #just take away a few decimal digits return str(round(val, max(0, 6 - floor(log10(abs(val)))))) #if it is in scientific notation, keep the scientific notation, just reduce the number of digits string = str(val) end = string.find('e') if end != -1: return string[:min(7, end)] + string[end:] else: return string[:min(7, len(string))] def looper(func, check): #for taking inputs: if there is an error, then ask for input again. Used on inputs that are quite error prone: listGraph_n and listComp_n. while True: try: list_ = func() if check(list_): #raises Exception if wrong return list_ except Exception as e: print("An error occured, so you will be asked for that input again, it is probably a typo, but just in case it isn't, here is the error message", e, sep='\n') def getvalue(variable): #input taker global tier tuple = tiers[variable] if tier < tuple[0]: return eval(tuple[1]) else: return eval(tuple[2]) def raiseEx(text): #to raise exceptions in lambda functions raise Exception(text) def absGetNonZeroMin(values): #returns the smallest positive non-zero value in the list, positive, used to set linthreshy on symlog scales, as it can't be 0 return min(abs(val) for val in values if val) if any(values) else 1 def main(): print("If you want to stop the program (which is an infinite loop), enter 0 as a level of customization and the program will terminate") while True: #just a loop allowing to test many functions without quitting/restarting the program. global tier, tiers tier = pyip.inputInt("How much customization do you want ? 0: stop, 1: minimum, 2: average, 3: advanced : ", min=0, max=3) if tier == 0: break #concept: the first value is the default value, the second value is what is executed (with getvalue) to get the value. tiers = {"boologX": (2, 'False', """pyip.inputYesNo("Logarithmic x scale for graphing f(x) ? [y/n]", yesVal='y', noVal='n') == 'y'"""), "boologY": (2, 'False', """pyip.inputYesNo("Logarithmic y scale for graphing f(x) ? [y/n]", yesVal='y', noVal='n') == 'y'"""), "listGraph_n": (2, '[10, 100, 1000]', """list(map(int, input("what number of intervals/shapes would you like to study ? use comma separated values, " "eg: 10, 100, 1000, 10000, spaces don't matter: ").split(',')))"""), "listComp_n": (3, '[]', #the + sign on the next line is for proper string formatting: indented code without indented string. """input('''Enter anything that evaluates to a regular python list of integers, such as [10, 100, 1000] or [3**i for i in range(2, 10)],\n''' + '''these will be added to the computations to display more points in the accuracy graphs:\n''')"""), "lenContinuous": (3, '10000', """pyip.inputInt("How many values should be used to plot f(x) ? For graphing purposes only: ")""")} formula = input("f(x) = ") f = np.vectorize(lambda x: eval(formula)) xmin, xmax = eval(input("Interval of integration: xmin, xmax = ")) boolLogX = getvalue("boologX") boolLogY = getvalue("boologY") listGraph_n = looper(lambda: getvalue('listGraph_n'), lambda list_: True if isinstance(list_, list) and all(isinstance(x, int) for x in list_) else \ raiseEx("It should evaluate to a list of integers")) listComp_n = [] if tier < 3 else looper(lambda : (eval(eval(tiers['listComp_n'][2]))), lambda list_: True if isinstance(list_, list) and all(isinstance(x, int) and x >= 1 for x in list_) else \ raiseEx("It should evaluate to a list of integers all >= 1")) #the first eval gets the comprehension, the second eval computes it. #these 3 are used to graph the function. global continuous_x #can be accessed by methods that need it, like simpson's rule lenContinuous = getvalue("lenContinuous") continuous_x = np.linspace(xmin, xmax, lenContinuous) continuous_y = f(continuous_x) dictMethod = { 1: Riemann, 2: Midpoint, 3: Trapezoidal, 4: Simpson, } exact, errorBound = quad(f, xmin, xmax) errorBounder = np.vectorize(lambda x: x if abs(x) > errorBound else 0) global exactMessage exactMessage = False numbers = looper(lambda: list(map(int, input("What methods would you like to use ? all methods called will be executed one after the other, the results will be displayed " "at the end." + '\n' + "1 for Riemann sums, 2 for midpoint rule, 3 for trapezoidal rule, 4 for Simpson's rule: ") .split(','))), lambda values: True if all(isinstance(val, int) and 1 <= val <= 4 for val in values) else raiseEx("These should all be integers between 1 and 4")) for number in numbers: fig = plt.figure() if number == 1: # this function is a unique case. Riemann(fig, formula, f, xmin, xmax, boolLogX, boolLogY, listGraph_n, listComp_n, lenContinuous, exact, errorBound) fig.subplots_adjust(left=0.05, bottom=0.05, right=0.95, top=0.9, wspace=0.1, hspace=0.6) plt.draw() continue method = dictMethod[number](f, xmin, xmax, listGraph_n, listComp_n) fig.suptitle(f"Study of the approximation of the function y = {formula} on the interval ({xmin}, {xmax}) " f"with {method.titleSpecs()} and of the quality of the approximations compared to the exact value") nbCol = ceil(len(listGraph_n) / 5) areaAxes = (fig.add_subplot(ceil(len(listGraph_n) / nbCol), 2 * nbCol, i) for i in range(1, 2 * len(listGraph_n)) if 0 <= i % (2 * nbCol) - 1 < nbCol) # the left side of the figure, filled row by row. for i, ax in enumerate(areaAxes): method.graph(ax, i) ax.plot(continuous_x, continuous_y) if boolLogX: ax.set_xscale('symlog', linthreshy=(xmax - xmin) / 10 * max(len(list_) for list_ in listGraph_n + listComp_n)) #shouldn't be visible, unless you're really # picky about your graphs. if boolLogY: ax.set_yscale('symlog', linthreshy=absGetNonZeroMin(method.listListGraph_y + method.listListComp_y)) ax.set_title(f"{listGraph_n[i]} {method.shapeName()}") ax.grid(True) listDist = method.listDist(exact) accuracyAxes = [fig.add_subplot(2, 2, i) for i in (2, 4)] listDist = errorBounder(listDist) if 0 in listDist: exactMessage = True if exact == 0: titles = ("difference for each approximation compared to the exact value of the integral, 0", "difference for each approximation compared to the exact value of the integral, 0, on a logarithmic scale") else: listDist = listDist * 100 / exact titles = (f"relative percentage error for each approximation compared to the exact integral: {niceStr(exact)}", f"relative percentage error for each approximation compared to the exact integral: {niceStr(exact)}, on a logarithmic scale") #sorted for nicer graph: prevents line going back and forth by making it monotically increasing. The same sorting order is applied in each method listTot_n = list(sorted(listGraph_n + listComp_n)) ax = accuracyAxes[0] ax.plot(listTot_n, listDist) for x, y in zip(listTot_n, listDist): ax.text(x, y, niceStr(y)) ax.grid(True) ax.set_title(titles[0]) ax = accuracyAxes[1] ax.plot(listTot_n, listDist) ax.set_xscale("log") ax.get_xaxis().set_tick_params(which='minor', size=0) ax.get_xaxis().set_tick_params(which='minor', width=0) ax.set_yscale("symlog", linthreshy=absGetNonZeroMin(listDist) * 0.9) good_ylim(ax, listDist) # sets the y limits to something a bit cleaner for x, y in zip(listTot_n, listDist): ax.text(x, y, niceStr(y)) ax.set_title(titles[1]) ax.grid(True, which='major') fig.subplots_adjust(left=0.05, bottom=0.05,right=0.95, top=0.9, wspace=0.1, hspace=0.5) plt.draw() if exactMessage: print(f"Some 0s are displayed in the accuracy check, however this does not mean necessarily mean the accuracy is perfect:\n" f"the exact value is computed with a certain margin of error, here it is {niceStr(errorBound)}\n" f"and any 0 displayed here means the inacurracy is less than this, and thus too small to be evaluated properly") plt.show() if __name__ == '__main__': main()
[ "matplotlib.legend_handler.HandlerTuple", "numpy.polyfit", "scipy.integrate.quad", "scipy.integrate.simps", "numpy.linspace", "pyinputplus.inputInt", "numpy.polyval", "matplotlib.patches.Patch", "numpy.concatenate", "matplotlib.pyplot.figure", "matplotlib.pyplot.draw", "warnings.filterwarnings", "matplotlib.pyplot.show" ]
[((710, 759), 'warnings.filterwarnings', 'filterwarnings', (['"""ignore"""'], {'category': 'np.RankWarning'}), "('ignore', category=np.RankWarning)\n", (724, 759), False, 'from warnings import filterwarnings\n'), ((1070, 1108), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', 'lenContinuous'], {}), '(xmin, xmax, lenContinuous)\n', (1081, 1108), True, 'import numpy as np\n'), ((1201, 1242), 'numpy.linspace', 'np.linspace', (['xmin', '(xmax - interval / n)', 'n'], {}), '(xmin, xmax - interval / n, n)\n', (1212, 1242), True, 'import numpy as np\n'), ((1367, 1408), 'numpy.linspace', 'np.linspace', (['xmin', '(xmax - interval / n)', 'n'], {}), '(xmin, xmax - interval / n, n)\n', (1378, 1408), True, 'import numpy as np\n'), ((1532, 1573), 'numpy.linspace', 'np.linspace', (['(xmin + interval / n)', 'xmax', 'n'], {}), '(xmin + interval / n, xmax, n)\n', (1543, 1573), True, 'import numpy as np\n'), ((1701, 1742), 'numpy.linspace', 'np.linspace', (['(xmin + interval / n)', 'xmax', 'n'], {}), '(xmin + interval / n, xmax, n)\n', (1712, 1742), True, 'import numpy as np\n'), ((6729, 6787), 'numpy.concatenate', 'np.concatenate', (['(listDistLeft, listDistMid, listDistRight)'], {}), '((listDistLeft, listDistMid, listDistRight))\n', (6743, 6787), True, 'import numpy as np\n'), ((7491, 7549), 'numpy.concatenate', 'np.concatenate', (['(listDistLeft, listDistMid, listDistRight)'], {}), '((listDistLeft, listDistMid, listDistRight))\n', (7505, 7549), True, 'import numpy as np\n'), ((7635, 7693), 'numpy.concatenate', 'np.concatenate', (['(listDistLeft, listDistMid, listDistRight)'], {}), '((listDistLeft, listDistMid, listDistRight))\n', (7649, 7693), True, 'import numpy as np\n'), ((14635, 14760), 'pyinputplus.inputInt', 'pyip.inputInt', (['"""How much customization do you want ? 0: stop, 1: minimum, 2: average, 3: advanced : """'], {'min': '(0)', 'max': '(3)'}), "(\n 'How much customization do you want ? 0: stop, 1: minimum, 2: average, 3: advanced : '\n , min=0, max=3)\n", (14648, 14760), True, 'import pyinputplus as pyip\n'), ((17294, 17332), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', 'lenContinuous'], {}), '(xmin, xmax, lenContinuous)\n', (17305, 17332), True, 'import numpy as np\n'), ((17544, 17563), 'scipy.integrate.quad', 'quad', (['f', 'xmin', 'xmax'], {}), '(f, xmin, xmax)\n', (17548, 17563), False, 'from scipy.integrate import quad, simps\n'), ((22491, 22501), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22499, 22501), True, 'import matplotlib.pyplot as plt\n'), ((1863, 1904), 'numpy.linspace', 'np.linspace', (['xmin', '(xmax - interval / n)', 'n'], {}), '(xmin, xmax - interval / n, n)\n', (1874, 1904), True, 'import numpy as np\n'), ((4314, 4352), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': 'color1', 'alpha': '(0.5)'}), '(color=color1, alpha=0.5)\n', (4327, 4352), False, 'from matplotlib import patches\n'), ((4354, 4392), 'matplotlib.patches.Patch', 'patches.Patch', ([], {'color': 'color2', 'alpha': '(0.5)'}), '(color=color2, alpha=0.5)\n', (4367, 4392), False, 'from matplotlib import patches\n'), ((9093, 9123), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(n + 1)'], {}), '(xmin, xmax, n + 1)\n', (9104, 9123), True, 'import numpy as np\n'), ((9255, 9285), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(n + 1)'], {}), '(xmin, xmax, n + 1)\n', (9266, 9285), True, 'import numpy as np\n'), ((10299, 10333), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(2 * n + 1)'], {}), '(xmin, xmax, 2 * n + 1)\n', (10310, 10333), True, 'import numpy as np\n'), ((10488, 10522), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', '(2 * n + 1)'], {}), '(xmin, xmax, 2 * n + 1)\n', (10499, 10522), True, 'import numpy as np\n'), ((11708, 11737), 'numpy.polyfit', 'np.polyfit', (['x_data', 'y_data', '(2)'], {}), '(x_data, y_data, 2)\n', (11718, 11737), True, 'import numpy as np\n'), ((11867, 11891), 'numpy.polyval', 'np.polyval', (['poly', 'list_x'], {}), '(poly, list_x)\n', (11877, 11891), True, 'import numpy as np\n'), ((18399, 18411), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (18409, 18411), True, 'import matplotlib.pyplot as plt\n'), ((22058, 22068), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (22066, 22068), True, 'import matplotlib.pyplot as plt\n'), ((4635, 4661), 'matplotlib.legend_handler.HandlerTuple', 'HandlerTuple', ([], {'ndivide': 'None'}), '(ndivide=None)\n', (4647, 4661), False, 'from matplotlib.legend_handler import HandlerTuple\n'), ((7969, 8015), 'numpy.linspace', 'np.linspace', (['xmin', '(xmax - self.interval / n)', 'n'], {}), '(xmin, xmax - self.interval / n, n)\n', (7980, 8015), True, 'import numpy as np\n'), ((8173, 8219), 'numpy.linspace', 'np.linspace', (['xmin', '(xmax - self.interval / n)', 'n'], {}), '(xmin, xmax - self.interval / n, n)\n', (8184, 8219), True, 'import numpy as np\n'), ((18731, 18741), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (18739, 18741), True, 'import matplotlib.pyplot as plt\n'), ((7405, 7463), 'numpy.concatenate', 'np.concatenate', (['(listDistLeft, listDistMid, listDistRight)'], {}), '((listDistLeft, listDistMid, listDistRight))\n', (7419, 7463), True, 'import numpy as np\n'), ((10781, 10802), 'scipy.integrate.simps', 'simps', (['list_y', 'list_x'], {}), '(list_y, list_x)\n', (10786, 10802), False, 'from scipy.integrate import quad, simps\n')]
import os import trimesh import unittest import pocketing import numpy as np def get_model(file_name): """ Load a model from the models directory by expanding paths out. Parameters ------------ file_name : str Name of file in `models` Returns ------------ mesh : trimesh.Geometry Trimesh object or similar """ pwd = os.path.dirname(os.path.abspath( os.path.expanduser(__file__))) return trimesh.load(os.path.abspath( os.path.join(pwd, '../models', file_name))) class PocketTest(unittest.TestCase): def test_contour(self): path = get_model('wrench.dxf') poly = path.polygons_full[0] # generate tool paths toolpaths = pocketing.contour.contour_parallel(poly, .05) assert all(trimesh.util.is_shape(i, (-1, 2)) for i in toolpaths) def test_troch(self): path = get_model('wrench.dxf') polygon = path.polygons_full[0] # set radius arbitrarily radius = .125 # set step to 10% of tool radius step = radius * 0.10 # generate our trochoids toolpath = pocketing.trochoidal.toolpath( polygon, step=step) assert trimesh.util.is_shape(toolpath, (-1, 2)) def test_archimedian(self): # test generating a simple archimedean spiral spiral = pocketing.spiral.archimedean(0.5, 2.0, 0.125) assert trimesh.util.is_shape(spiral, (-1, 3, 2)) def test_helix(self): # check a 3D helix # set values off a tool radius tool_radius = 0.25 radius = tool_radius * 1.2 pitch = tool_radius * 0.3 height = 2.0 # create the helix h = pocketing.spiral.helix( radius=radius, height=height, pitch=pitch,) # should be 3-point arcs check_arcs(h) # heights should start and end correctly assert np.isclose(h[0][0][2], 0.0) assert np.isclose(h[-1][-1][2], height) # check the flattened 2D radius radii = np.linalg.norm(h.reshape((-1, 3))[:, :2], axis=1) assert np.allclose(radii, radius) def check_arcs(arcs): # arcs should be 2D or 2D 3-point arcs assert trimesh.util.is_shape(arcs, (-1, 3, (3, 2))) # make sure arcs start where previous arc begins for a, b in zip(arcs[:-1], arcs[1:]): assert np.allclose(a[2], b[0]) if __name__ == '__main__': unittest.main()
[ "numpy.allclose", "pocketing.contour.contour_parallel", "numpy.isclose", "os.path.join", "pocketing.spiral.archimedean", "pocketing.trochoidal.toolpath", "unittest.main", "pocketing.spiral.helix", "trimesh.util.is_shape", "os.path.expanduser" ]
[((2261, 2305), 'trimesh.util.is_shape', 'trimesh.util.is_shape', (['arcs', '(-1, 3, (3, 2))'], {}), '(arcs, (-1, 3, (3, 2)))\n', (2282, 2305), False, 'import trimesh\n'), ((2473, 2488), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2486, 2488), False, 'import unittest\n'), ((732, 778), 'pocketing.contour.contour_parallel', 'pocketing.contour.contour_parallel', (['poly', '(0.05)'], {}), '(poly, 0.05)\n', (766, 778), False, 'import pocketing\n'), ((1155, 1204), 'pocketing.trochoidal.toolpath', 'pocketing.trochoidal.toolpath', (['polygon'], {'step': 'step'}), '(polygon, step=step)\n', (1184, 1204), False, 'import pocketing\n'), ((1234, 1274), 'trimesh.util.is_shape', 'trimesh.util.is_shape', (['toolpath', '(-1, 2)'], {}), '(toolpath, (-1, 2))\n', (1255, 1274), False, 'import trimesh\n'), ((1379, 1424), 'pocketing.spiral.archimedean', 'pocketing.spiral.archimedean', (['(0.5)', '(2.0)', '(0.125)'], {}), '(0.5, 2.0, 0.125)\n', (1407, 1424), False, 'import pocketing\n'), ((1440, 1481), 'trimesh.util.is_shape', 'trimesh.util.is_shape', (['spiral', '(-1, 3, 2)'], {}), '(spiral, (-1, 3, 2))\n', (1461, 1481), False, 'import trimesh\n'), ((1733, 1798), 'pocketing.spiral.helix', 'pocketing.spiral.helix', ([], {'radius': 'radius', 'height': 'height', 'pitch': 'pitch'}), '(radius=radius, height=height, pitch=pitch)\n', (1755, 1798), False, 'import pocketing\n'), ((1958, 1985), 'numpy.isclose', 'np.isclose', (['h[0][0][2]', '(0.0)'], {}), '(h[0][0][2], 0.0)\n', (1968, 1985), True, 'import numpy as np\n'), ((2001, 2033), 'numpy.isclose', 'np.isclose', (['h[-1][-1][2]', 'height'], {}), '(h[-1][-1][2], height)\n', (2011, 2033), True, 'import numpy as np\n'), ((2156, 2182), 'numpy.allclose', 'np.allclose', (['radii', 'radius'], {}), '(radii, radius)\n', (2167, 2182), True, 'import numpy as np\n'), ((2416, 2439), 'numpy.allclose', 'np.allclose', (['a[2]', 'b[0]'], {}), '(a[2], b[0])\n', (2427, 2439), True, 'import numpy as np\n'), ((414, 442), 'os.path.expanduser', 'os.path.expanduser', (['__file__'], {}), '(__file__)\n', (432, 442), False, 'import os\n'), ((494, 535), 'os.path.join', 'os.path.join', (['pwd', '"""../models"""', 'file_name'], {}), "(pwd, '../models', file_name)\n", (506, 535), False, 'import os\n'), ((798, 831), 'trimesh.util.is_shape', 'trimesh.util.is_shape', (['i', '(-1, 2)'], {}), '(i, (-1, 2))\n', (819, 831), False, 'import trimesh\n')]
import gym import random import numpy as np import tflearn from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression from statistics import median, mean from collections import Counter LR = 1e-3 env = gym.make('CartPole-v0') env.reset() goal_steps = 500 score_requirement = 50 initial_games = 10000 def some_random_games_first(): for _ in range(5): for t in range(200): env.reset() env.render() action = env.action_space.sample() observation, reward, done, info = env.step(action) if done: break some_random_games_first() def generate_traning_data(): training_data = [] scores = [] accepted_scores = [] for _ in range(initial_games): score = 0 game_memory = [] prev_observation = [] for _ in range(goal_steps): action = random.randrange(0, 2) observation, reward, done, info = env.step(action) if len(prev_observation) > 0: game_memory.append([prev_observation, action]) prev_observation = observation score += reward if done: break if score > score_requirement: accepted_scores.append(score) for data in game_memory: if data[1] == 1: output = [0, 1] elif data[1] == 0: output = [1, 0] training_data.append([data[0], output]) env.reset() scores.append(score) training_data_save = np.array(training_data) np.save('saved.npy', training_data_save) print('Avg score: ', mean(accepted_scores)) print('Median score: ', median(accepted_scores)) print(Counter(accepted_scores)) return training_data def neural_network_model(input_size): network = input_data(shape=[None, input_size, 1], name='input') network = fully_connected(network, 128, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 512, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 128, activation='relu') network = dropout(network, 0.8) network = fully_connected(network, 2, activation='softmax') network = regression( network, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets') model = tflearn.DNN(network, tensorboard_dir='log') return model def train_model(training_data, model=False): x = np.array([i[0] for i in training_data]).reshape(-1, len(training_data[0][0]), 1) y = [i[1] for i in training_data] if not model: model = neural_network_model(input_size=len(x[0])) model.fit( {'input': x}, {'targets': y}, n_epoch=5, snapshot_step=500, show_metric=True, run_id='openai_learning' ) return model training_data = generate_traning_data() model = train_model(training_data) scores = [] choices = [] for each_game in range(10): score = 0 game_memory = [] prev_obs = [] env.reset() for _ in range(goal_steps): env.render() if len(prev_obs) == 0: action = random.randrange(0, 2) else: action = np.argmax(model.predict(prev_obs.reshape(-1, len(prev_obs), 1))[0]) choices.append(action) new_observation, reward, done, info = env.step(action) prev_obs = new_observation game_memory.append([new_observation, action]) score += reward if done: break scores.append(score) print('Avg score:', sum(scores) / len(scores)) print('choice 1:{} choice 0:{}'.format(choices.count(1) / len(choices), choices.count(0) / len(choices))) print(score_requirement) env.close()
[ "statistics.mean", "tflearn.layers.core.dropout", "tflearn.layers.core.fully_connected", "random.randrange", "tflearn.DNN", "statistics.median", "numpy.array", "collections.Counter", "tflearn.layers.core.input_data", "tflearn.layers.estimator.regression", "gym.make", "numpy.save" ]
[((261, 284), 'gym.make', 'gym.make', (['"""CartPole-v0"""'], {}), "('CartPole-v0')\n", (269, 284), False, 'import gym\n'), ((1632, 1655), 'numpy.array', 'np.array', (['training_data'], {}), '(training_data)\n', (1640, 1655), True, 'import numpy as np\n'), ((1660, 1700), 'numpy.save', 'np.save', (['"""saved.npy"""', 'training_data_save'], {}), "('saved.npy', training_data_save)\n", (1667, 1700), True, 'import numpy as np\n'), ((1919, 1972), 'tflearn.layers.core.input_data', 'input_data', ([], {'shape': '[None, input_size, 1]', 'name': '"""input"""'}), "(shape=[None, input_size, 1], name='input')\n", (1929, 1972), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((1987, 2035), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(128)'], {'activation': '"""relu"""'}), "(network, 128, activation='relu')\n", (2002, 2035), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2050, 2071), 'tflearn.layers.core.dropout', 'dropout', (['network', '(0.8)'], {}), '(network, 0.8)\n', (2057, 2071), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2086, 2134), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(256)'], {'activation': '"""relu"""'}), "(network, 256, activation='relu')\n", (2101, 2134), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2149, 2170), 'tflearn.layers.core.dropout', 'dropout', (['network', '(0.8)'], {}), '(network, 0.8)\n', (2156, 2170), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2185, 2233), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(512)'], {'activation': '"""relu"""'}), "(network, 512, activation='relu')\n", (2200, 2233), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2248, 2269), 'tflearn.layers.core.dropout', 'dropout', (['network', '(0.8)'], {}), '(network, 0.8)\n', (2255, 2269), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2284, 2332), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(256)'], {'activation': '"""relu"""'}), "(network, 256, activation='relu')\n", (2299, 2332), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2347, 2368), 'tflearn.layers.core.dropout', 'dropout', (['network', '(0.8)'], {}), '(network, 0.8)\n', (2354, 2368), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2383, 2431), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(128)'], {'activation': '"""relu"""'}), "(network, 128, activation='relu')\n", (2398, 2431), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2446, 2467), 'tflearn.layers.core.dropout', 'dropout', (['network', '(0.8)'], {}), '(network, 0.8)\n', (2453, 2467), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2482, 2531), 'tflearn.layers.core.fully_connected', 'fully_connected', (['network', '(2)'], {'activation': '"""softmax"""'}), "(network, 2, activation='softmax')\n", (2497, 2531), False, 'from tflearn.layers.core import input_data, dropout, fully_connected\n'), ((2546, 2655), 'tflearn.layers.estimator.regression', 'regression', (['network'], {'optimizer': '"""adam"""', 'learning_rate': 'LR', 'loss': '"""categorical_crossentropy"""', 'name': '"""targets"""'}), "(network, optimizer='adam', learning_rate=LR, loss=\n 'categorical_crossentropy', name='targets')\n", (2556, 2655), False, 'from tflearn.layers.estimator import regression\n'), ((2704, 2747), 'tflearn.DNN', 'tflearn.DNN', (['network'], {'tensorboard_dir': '"""log"""'}), "(network, tensorboard_dir='log')\n", (2715, 2747), False, 'import tflearn\n'), ((1727, 1748), 'statistics.mean', 'mean', (['accepted_scores'], {}), '(accepted_scores)\n', (1731, 1748), False, 'from statistics import median, mean\n'), ((1778, 1801), 'statistics.median', 'median', (['accepted_scores'], {}), '(accepted_scores)\n', (1784, 1801), False, 'from statistics import median, mean\n'), ((1813, 1837), 'collections.Counter', 'Counter', (['accepted_scores'], {}), '(accepted_scores)\n', (1820, 1837), False, 'from collections import Counter\n'), ((937, 959), 'random.randrange', 'random.randrange', (['(0)', '(2)'], {}), '(0, 2)\n', (953, 959), False, 'import random\n'), ((2821, 2860), 'numpy.array', 'np.array', (['[i[0] for i in training_data]'], {}), '([i[0] for i in training_data])\n', (2829, 2860), True, 'import numpy as np\n'), ((3512, 3534), 'random.randrange', 'random.randrange', (['(0)', '(2)'], {}), '(0, 2)\n', (3528, 3534), False, 'import random\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import seaborn as sns sns.set(style='ticks', context='paper', palette='colorblind') try: import cmocean.cm as cmo cmocean_flag = True except: cmocean_flag = False class pltClass: def __init__(self): self.__info__ = 'Python qc package plt class' def float_ncep_inair(sdn, flt, ncep, ax=None, legend=True): if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() ax.plot(sdn, flt, linewidth=2, label='Float') ax.plot(sdn, ncep, linewidth=2, label='NCEP') if legend: ax.legend(loc=3) mhr = mdates.MonthLocator(interval=4) mihr = mdates.MonthLocator() fmt = mdates.DateFormatter('%b %Y') ax.xaxis.set_major_locator(mhr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_minor_locator(mihr) ax.set_ylabel('pO$_2$ (mbar)') for tick in ax.get_xticklabels(): tick.set_rotation(45) g = pltClass() g.fig = fig g.axes = [ax] return g def float_woa_surface(sdn, flt, woa, ax=None, legend=True): if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() ax.plot(sdn, flt, linewidth=2, label='Float') ax.plot(sdn, woa, linewidth=2, label='WOA18') if legend: ax.legend(loc=3) mhr = mdates.MonthLocator(interval=4) mihr = mdates.MonthLocator() fmt = mdates.DateFormatter('%b %Y') ax.xaxis.set_major_locator(mhr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_minor_locator(mihr) ax.set_ylabel('O$_2$ Saturation %') for tick in ax.get_xticklabels(): tick.set_rotation(45) g = pltClass() g.fig = fig g.axes = [ax] return g def gains(sdn, gains, inair=True, ax=None, legend=True): if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() ax.plot(sdn, gains, 'o', markeredgewidth=0.5, markersize=5, markeredgecolor='grey', zorder=3, label='Gains') ax.axhline(np.nanmean(gains), color='k', linestyle='--', label='Mean = {:.2f}'.format(np.nanmean(gains)), zorder=2) ax.axhline(1.0, color='k', linestyle='-', linewidth=0.5, label=None,zorder=1) if legend: ax.legend(loc=3) mhr = mdates.MonthLocator(interval=4) mihr = mdates.MonthLocator() fmt = mdates.DateFormatter('%b %Y') ax.xaxis.set_major_locator(mhr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_minor_locator(mihr) ax.set_ylabel('O$_2$ Gain (unitless)') for tick in ax.get_xticklabels(): tick.set_rotation(45) g = pltClass() g.fig = fig g.axes = [ax] return g def gainplot(sdn, float_data, ref_data, gainvals, ref): fig, axes = plt.subplots(2,1,sharex=True) if ref == 'NCEP': g1 = float_ncep_inair(sdn, float_data, ref_data, ax=axes[0]) g2 = gains(sdn, gainvals, inair=False, ax=axes[1]) elif ref == 'WOA': g1 = float_woa_surface(sdn, float_data, ref_data, ax=axes[0]) g2 = gains(sdn, gainvals, inair=False, ax=axes[1]) g = pltClass() g.fig = fig g.axes = axes return g def var_cscatter(df, varname='DOXY', cmap=None, ax=None, ylim=(0,2000), clabel=None, vmin=None, vmax=None, **kwargs): # define colormaps if cmocean_flag: color_maps = dict( TEMP=cmo.thermal, TEMP_ADJUSTED=cmo.thermal, PSAL=cmo.haline, PSAL_ADJUSTED=cmo.haline, PDEN=cmo.dense, CHLA=cmo.algae, CHLA_ADJUSTED=cmo.algae, BBP700=cmo.matter, BBP700_ADJUSTED=cmo.matter, DOXY=cmo.ice, DOXY_ADJUSTED=cmo.ice, DOWNWELLING_IRRADIANCE=cmo.solar, ) else: color_maps = dict( TEMP=plt.cm.inferno, TEMP_ADJUSTED=plt.cm.inferno, PSAL=plt.cm.viridis, PSAL_ADJUSTED=plt.cm.viridis, PDEN=plt.cm.cividis, CHLA=plt.cm.YlGn, CHLA_ADJUSTED=plt.cm.YlGn, BBP700=plt.cm.pink_r, BBP700_ADJUSTED=plt.cm.pink_r, DOXY=plt.cm.YlGnBu_r, DOXY_ADJUSTED=plt.cm.YlGnBu_r, DOWNWELLING_IRRADIANCE=plt.cm.magma, ) if clabel is None: var_units = dict( TEMP='Temperature ({}C)'.format(chr(176)), TEMP_ADJUSTED='Temperature ({}C)'.format(chr(176)), PSAL='Practical Salinity', PSAL_ADJUSTED='Practical Salinity', PDEN='Potential Density (kg m${-3}$)', CHLA='Chlorophyll (mg m$^{-3}$', CHLA_ADJUSTED='Chlorophyll (mg m$^{-3}$', BBP700='$\mathsf{b_{bp}}$ (m$^{-1}$)', BBP700_ADJUSTED='$\mathsf{b_{bp}}$ (m$^{-1}$)', DOXY='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOXY_ADJUSTED='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOWNWELLING_IRRADIANCE='Downwelling Irradiance (W m$^{-2}$)', ) clabel = var_units[varname] if cmap is None: cmap = color_maps[varname] if ax is None: fig, ax = plt.subplots() else: fig = ax.get_figure() df = df.loc[df.PRES < ylim[1]+50] if vmin is None: vmin = 1.05*df[varname].min() if vmax is None: vmax = 0.95*df[varname].max() im = ax.scatter(df.SDN, df.PRES, c=df[varname], s=50, cmap=cmap, vmin=vmin, vmax=vmax, **kwargs) cb = plt.colorbar(im, ax=ax) cb.set_label(clabel) ax.set_ylim(ylim) ax.invert_yaxis() ax.set_ylabel('Depth (dbar)') w, h = fig.get_figwidth(), fig.get_figheight() fig.set_size_inches(w*2, h) mhr = mdates.MonthLocator(interval=4) mihr = mdates.MonthLocator() fmt = mdates.DateFormatter('%b %Y') ax.xaxis.set_major_locator(mhr) ax.xaxis.set_major_formatter(fmt) ax.xaxis.set_minor_locator(mihr) g = pltClass() g.fig = fig g.axes = [ax] g.cb = cb return g def profiles(df, varlist=['DOXY'], Ncycle=1, Nprof=np.inf, zvar='PRES', xlabels=None, ylabel=None, axes=None, ylim=None, **kwargs): if xlabels is None: var_units = dict( TEMP='Temperature ({}C)'.format(chr(176)), TEMP_ADJUSTED='Temperature ({}C)'.format(chr(176)), PSAL='Practical Salinity', PSAL_ADJUSTED='Practical Salinity', PDEN='Potential Density (kg m$^{-3}$)', CHLA='Chlorophyll (mg m$^{-3}$', CHLA_ADJUSTED='Chlorophyll (mg m$^{-3}$', BBP700='$\mathsf{b_{bp}}$ (m$^{-1}$)', BBP700_ADJUSTED='$\mathsf{b_{bp}}$ (m$^{-1}$)', CDOM='CDOM (mg m$^{-3}$)', CDOM_ADJUSTED='CDOM (mg m$^{-3}$)', DOXY='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOXY_ADJUSTED='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOWNWELLING_IRRADIANCE='Downwelling Irradiance (W m$^{-2}$)', ) xlabels = [var_units[v] if v in var_units.keys() else '' for v in varlist] cm = plt.cm.gray_r if axes is None: fig, axes = plt.subplots(1, len(varlist), sharey=True) if len(varlist) == 1: axes = [axes] elif len(varlist) > 1: fig = axes[0].get_figure() else: fig = axes.get_figure() axes = [axes] if ylim is None: if zvar == 'PRES': ylim=(0,2000) if ylabel is None: ylabel = 'Pressure (dbar)' elif zvar == 'PDEN': ylim = (df.PDEN.min(), df.PDEN.max()) if ylabel is None: ylabel = 'Density (kg m$^{-3}$)' df.loc[df[zvar] > ylim[1]*1.1] = np.nan CYCNUM = df.CYCLE.unique() greyflag = False if not 'color' in kwargs.keys(): greyflag = True else: c = kwargs.pop('color') if Nprof > CYCNUM.shape[0]: Nprof = CYCNUM.shape[0] for i,v in enumerate(varlist): for n in range(Nprof): subset_df = df.loc[df.CYCLE == CYCNUM[Ncycle-1 + n-1]] if greyflag: c = cm(0.75*(CYCNUM[Ncycle-1 + n-1]/CYCNUM[-1])+0.25) axes[i].plot(subset_df[v], subset_df[zvar], color=c, **kwargs) axes[i].set_ylim(ylim[::-1]) axes[i].set_xlabel(xlabels[i]) subset_df = df.loc[df.CYCLE == CYCNUM[Ncycle-1]] date = mdates.num2date(subset_df.SDN.iloc[0]).strftime('%d %b, %Y') axes[0].set_ylabel(ylabel) if Nprof != 1: axes[0].set_title('Cyc. {:d}-{:d}, {}'.format(int(CYCNUM[Ncycle-1]), int(CYCNUM[Ncycle-1+Nprof-1]), date)) else: axes[0].set_title('Cyc. {:d}, {}'.format(int(CYCNUM[Ncycle-1]), date)) w, h = fig.get_figwidth(), fig.get_figheight() fig.set_size_inches(w*len(varlist)/3, h) g = pltClass() g.fig = fig g.axes = axes return g def qc_profiles(df, varlist=['DOXY'], Ncycle=1, Nprof=np.inf, zvar='PRES', xlabels=None, ylabel=None, axes=None, ylim=None, **kwargs): if xlabels is None: var_units = dict( TEMP='Temperature ({}C)'.format(chr(176)), TEMP_ADJUSTED='Temperature ({}C)'.format(chr(176)), PSAL='Practical Salinity', PSAL_ADJUSTED='Practical Salinity', PDEN='Potential Density (kg m$^{-3}$)', CHLA='Chlorophyll (mg m$^{-3}$', CHLA_ADJUSTED='Chlorophyll (mg m$^{-3}$', BBP700='$\mathsf{b_{bp}}$ (m$^{-1}$)', BBP700_ADJUSTED='$\mathsf{b_{bp}}$ (m$^{-1}$)', CDOM='CDOM (mg m$^{-3}$)', CDOM_ADJUSTED='CDOM (mg m$^{-3}$)', DOXY='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOXY_ADJUSTED='Diss. Oxygen ($\mathregular{\mu}$mol kg$^{-1}$)', DOWNWELLING_IRRADIANCE='Downwelling Irradiance (W m$^{-2}$)', ) xlabels = [var_units[v] for v in varlist] if axes is None: fig, axes = plt.subplots(1, len(varlist), sharey=True) if len(varlist) == 1: axes = [axes] elif len(varlist) > 1: fig = axes[0].get_figure() else: fig = axes.get_figure() axes = [axes] if ylim is None: if zvar == 'PRES': ylim=(0,2000) if ylabel is None: ylabel = 'Pressure (dbar)' elif zvar == 'PDEN': ylim = (df.PDEN.min(), df.PDEN.max()) if ylabel is None: ylabel = 'Density (kg m$^{-3}$)' df.loc[df[zvar] > ylim[1]*1.1] = np.nan CYCNUM = df.CYCLE.unique() if Nprof > CYCNUM.shape[0]: Nprof = CYCNUM.shape[0] groups = {'Good':[1,2,5], 'Probably Bad':[3], 'Bad':[4], 'Interpolated':[8]} colors = {'Good':'green', 'Probably Bad':'yellow', 'Bad':'red', 'Interpolated':'blue'} for i,v in enumerate(varlist): vqc = v + '_QC' for n in range(Nprof): subset_df = df.loc[df.CYCLE == CYCNUM[Ncycle-1 + n-1]] for k,f in groups.items(): flag_subset_df = subset_df[subset_df[vqc].isin(f)] axes[i].plot(flag_subset_df[v], flag_subset_df[zvar], 'o', markeredgewidth=0.1, markeredgecolor='k', markerfacecolor=colors[k], **kwargs) axes[i].set_ylim(ylim[::-1]) axes[i].set_xlabel(xlabels[i]) subset_df = df.loc[df.CYCLE == CYCNUM[Ncycle-1]] date = mdates.num2date(subset_df.SDN.iloc[0]).strftime('%d %b, %Y') axes[0].set_ylabel(ylabel) if Nprof != 1: axes[0].set_title('Cyc. {:d}-{:d}, {}'.format(int(CYCNUM[Ncycle-1]), int(CYCNUM[Ncycle-1+Nprof-1]), date)) else: axes[0].set_title('Cyc. {:d}, {}'.format(int(CYCNUM[Ncycle-1]), date)) w, h = fig.get_figwidth(), fig.get_figheight() fig.set_size_inches(w*len(varlist)/3, h) g = pltClass() g.fig = fig g.axes = axes return g
[ "matplotlib.dates.num2date", "seaborn.set", "matplotlib.dates.MonthLocator", "matplotlib.dates.DateFormatter", "matplotlib.pyplot.colorbar", "numpy.nanmean", "matplotlib.pyplot.subplots" ]
[((109, 170), 'seaborn.set', 'sns.set', ([], {'style': '"""ticks"""', 'context': '"""paper"""', 'palette': '"""colorblind"""'}), "(style='ticks', context='paper', palette='colorblind')\n", (116, 170), True, 'import seaborn as sns\n'), ((666, 697), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {'interval': '(4)'}), '(interval=4)\n', (685, 697), True, 'import matplotlib.dates as mdates\n'), ((709, 730), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {}), '()\n', (728, 730), True, 'import matplotlib.dates as mdates\n'), ((742, 771), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%b %Y"""'], {}), "('%b %Y')\n", (762, 771), True, 'import matplotlib.dates as mdates\n'), ((1366, 1397), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {'interval': '(4)'}), '(interval=4)\n', (1385, 1397), True, 'import matplotlib.dates as mdates\n'), ((1409, 1430), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {}), '()\n', (1428, 1430), True, 'import matplotlib.dates as mdates\n'), ((1442, 1471), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%b %Y"""'], {}), "('%b %Y')\n", (1462, 1471), True, 'import matplotlib.dates as mdates\n'), ((2283, 2314), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {'interval': '(4)'}), '(interval=4)\n', (2302, 2314), True, 'import matplotlib.dates as mdates\n'), ((2326, 2347), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {}), '()\n', (2345, 2347), True, 'import matplotlib.dates as mdates\n'), ((2359, 2388), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%b %Y"""'], {}), "('%b %Y')\n", (2379, 2388), True, 'import matplotlib.dates as mdates\n'), ((2762, 2793), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'sharex': '(True)'}), '(2, 1, sharex=True)\n', (2774, 2793), True, 'import matplotlib.pyplot as plt\n'), ((5488, 5511), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['im'], {'ax': 'ax'}), '(im, ax=ax)\n', (5500, 5511), True, 'import matplotlib.pyplot as plt\n'), ((5712, 5743), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {'interval': '(4)'}), '(interval=4)\n', (5731, 5743), True, 'import matplotlib.dates as mdates\n'), ((5755, 5776), 'matplotlib.dates.MonthLocator', 'mdates.MonthLocator', ([], {}), '()\n', (5774, 5776), True, 'import matplotlib.dates as mdates\n'), ((5788, 5817), 'matplotlib.dates.DateFormatter', 'mdates.DateFormatter', (['"""%b %Y"""'], {}), "('%b %Y')\n", (5808, 5817), True, 'import matplotlib.dates as mdates\n'), ((457, 471), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (469, 471), True, 'import matplotlib.pyplot as plt\n'), ((1157, 1171), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1169, 1171), True, 'import matplotlib.pyplot as plt\n'), ((1859, 1873), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1871, 1873), True, 'import matplotlib.pyplot as plt\n'), ((2043, 2060), 'numpy.nanmean', 'np.nanmean', (['gains'], {}), '(gains)\n', (2053, 2060), True, 'import numpy as np\n'), ((5163, 5177), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5175, 5177), True, 'import matplotlib.pyplot as plt\n'), ((8390, 8428), 'matplotlib.dates.num2date', 'mdates.num2date', (['subset_df.SDN.iloc[0]'], {}), '(subset_df.SDN.iloc[0])\n', (8405, 8428), True, 'import matplotlib.dates as mdates\n'), ((11361, 11399), 'matplotlib.dates.num2date', 'mdates.num2date', (['subset_df.SDN.iloc[0]'], {}), '(subset_df.SDN.iloc[0])\n', (11376, 11399), True, 'import matplotlib.dates as mdates\n'), ((2118, 2135), 'numpy.nanmean', 'np.nanmean', (['gains'], {}), '(gains)\n', (2128, 2135), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ P-spline versions of Whittaker functions ---------------------------------------- pybaselines contains penalized spline (P-spline) versions of all of the Whittaker-smoothing-based algorithms implemented in pybaselines. The reason for doing so was that P-splines offer additional user flexibility when choosing parameters for fitting and more easily work for unequally spaced data. This example will examine the relationship of `lam` versus the number of data points when fitting a baseline with the :func:`.arpls` function and its P-spline version, :func:`.pspline_arpls`. Note that the exact optimal `lam` values reported in this example are not of significant use since they depend on many other factors such as the baseline curvature, noise, peaks, etc.; however, the examined trends can be used to simplify the process of selecting `lam` values for fitting new datasets. """ # sphinx_gallery_thumbnail_number = 2 from itertools import cycle import matplotlib.pyplot as plt import numpy as np from pybaselines import spline, whittaker # local import with setup code from example_helpers import make_data, optimize_lam # %% # The baseline for this example is an exponentially decaying baseline, shown below. # Other baseline types could be examined, similar to the # :ref:`Whittaker lam vs data size example <sphx_glr_examples_whittaker_plot_lam_vs_data_size.py>`, # which should give similar results. plt.plot(make_data(1000, bkg_type='exponential')[0]) # %% # For each function, the optimal `lam` value will be calculated for data sizes # ranging from 500 to 20000 points. Further, the intercept and slope of the linear fit # of the log of the data size, N, and the log of the `lam` value will be reported. # The number of knots for the P-spline version is fixed at the default, 100 (the effect # of the number of knots versus optimal `lam` is shown in another # :ref:`example <sphx_glr_examples_spline_plot_lam_vs_num_knots.py>`). print('Function, intercept & slope of log(N) vs log(lam) fit') print('-' * 60) show_plots = False # for debugging num_points = np.logspace(np.log10(500), np.log10(20000), 6, dtype=int) symbols = cycle(['o', 's']) _, ax = plt.subplots() legend = [[], []] for i, func in enumerate((whittaker.arpls, spline.pspline_arpls)): func_name = func.__name__ best_lams = np.empty_like(num_points, float) min_lam = None for j, num_x in enumerate(num_points): y, baseline = make_data(num_x, bkg_type='exponential') # use a slightly lower tolerance to speed up the calculation min_lam = optimize_lam(y, baseline, func, min_lam, tol=1e-2, max_iter=50) best_lams[j] = min_lam if show_plots: plt.figure(num=num_x) if i == 0: plt.plot(y) plt.plot(baseline) plt.plot(func(y, lam=10**min_lam)[0], '--') fit = np.polynomial.polynomial.Polynomial.fit(np.log10(num_points), best_lams, 1) coeffs = fit.convert().coef print(f'{func_name:<16} {coeffs}') line = 10**fit(np.log10(num_points)) handle_1 = ax.plot(num_points, line, label=func_name)[0] handle_2 = ax.plot(num_points, 10**best_lams, next(symbols))[0] legend[0].append((handle_1, handle_2)) legend[1].append(func_name) ax.loglog() ax.legend(*legend) ax.set_xlabel('Input Array Size, N') ax.set_ylabel('Optimal lam Value') plt.show() # %% # The results shown above demonstrate that the slope of the `lam` vs data # size best fit line is much smaller for the P-spline based version of arpls. # This means that once the number of knots is fixed for a particular baseline, # the required `lam` value should be much less affected by a change in the # number of data points (assuming the curvature of the data does not change). # # The above results are particularly useful when processing very large datasets. # A `lam` value greater than ~1e14 typically causes numerical issues that can cause # the solver to fail. Most Whittaker-smoothing-based algorithms reach that `lam` # cutoff when the number of points is around ~20,000-500,000 (depends on the exact # algorithm). Since the P-spline versions do not experience such a large increase in # the required `lam`, they are more suited to fit those larger datasets. Additionally, # the required `lam` value for the P-spline versions can be lowered simply by reducing # the number of knots. # # It should be addressed that a similar result could be obtained using the regular # Whittaker-smoothing-based version by truncating the number of points to a fixed # value. That, however, would require additional processing steps to smooth out the # resulting baseline after interpolating back to the original data size. Thus, the # P-spline versions require less user-intervention to achieve the same result.
[ "itertools.cycle", "numpy.log10", "example_helpers.make_data", "matplotlib.pyplot.plot", "example_helpers.optimize_lam", "matplotlib.pyplot.figure", "numpy.empty_like", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((2171, 2188), 'itertools.cycle', 'cycle', (["['o', 's']"], {}), "(['o', 's'])\n", (2176, 2188), False, 'from itertools import cycle\n'), ((2197, 2211), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2209, 2211), True, 'import matplotlib.pyplot as plt\n'), ((3388, 3398), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3396, 3398), True, 'import matplotlib.pyplot as plt\n'), ((2115, 2128), 'numpy.log10', 'np.log10', (['(500)'], {}), '(500)\n', (2123, 2128), True, 'import numpy as np\n'), ((2130, 2145), 'numpy.log10', 'np.log10', (['(20000)'], {}), '(20000)\n', (2138, 2145), True, 'import numpy as np\n'), ((2343, 2375), 'numpy.empty_like', 'np.empty_like', (['num_points', 'float'], {}), '(num_points, float)\n', (2356, 2375), True, 'import numpy as np\n'), ((1450, 1489), 'example_helpers.make_data', 'make_data', (['(1000)'], {'bkg_type': '"""exponential"""'}), "(1000, bkg_type='exponential')\n", (1459, 1489), False, 'from example_helpers import make_data, optimize_lam\n'), ((2460, 2500), 'example_helpers.make_data', 'make_data', (['num_x'], {'bkg_type': '"""exponential"""'}), "(num_x, bkg_type='exponential')\n", (2469, 2500), False, 'from example_helpers import make_data, optimize_lam\n'), ((2588, 2651), 'example_helpers.optimize_lam', 'optimize_lam', (['y', 'baseline', 'func', 'min_lam'], {'tol': '(0.01)', 'max_iter': '(50)'}), '(y, baseline, func, min_lam, tol=0.01, max_iter=50)\n', (2600, 2651), False, 'from example_helpers import make_data, optimize_lam\n'), ((2930, 2950), 'numpy.log10', 'np.log10', (['num_points'], {}), '(num_points)\n', (2938, 2950), True, 'import numpy as np\n'), ((2719, 2740), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': 'num_x'}), '(num=num_x)\n', (2729, 2740), True, 'import matplotlib.pyplot as plt\n'), ((2804, 2822), 'matplotlib.pyplot.plot', 'plt.plot', (['baseline'], {}), '(baseline)\n', (2812, 2822), True, 'import matplotlib.pyplot as plt\n'), ((3056, 3076), 'numpy.log10', 'np.log10', (['num_points'], {}), '(num_points)\n', (3064, 3076), True, 'import numpy as np\n'), ((2780, 2791), 'matplotlib.pyplot.plot', 'plt.plot', (['y'], {}), '(y)\n', (2788, 2791), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2021-07-08 @author: cook """ from astropy.io import fits from astropy.table import Table import matplotlib.pyplot as plt import numpy as np import os import sys # ============================================================================= # Define variables # ============================================================================= path = '/data/spirou/data/minidata2/reduced/2020-08-31/' # ============================================================================= # Define functions # ============================================================================= def diff_image(imagepath, imagename): try: hdu1 = fits.open(os.path.join(imagepath, imagename)) hdu2 = fits.open(imagename) except: print('Skipping {0} [non-fits]'.format(imagename)) return for extnum in range(len(hdu1)): # get name name = '{0}[{1}]'.format(imagename, extnum) print('=' * 50) print(name) print('=' * 50) if extnum >= len(hdu2): print('\tEXTENSION {0} MISSING HDU2'.format(extnum)) continue # deal with image hdu if isinstance(hdu1[extnum], fits.ImageHDU): imdiff = fits.diff.ImageDataDiff(hdu1[extnum].data, hdu2[extnum].data) print(imdiff.report()) diff = hdu1[extnum].data - hdu2[extnum].data if np.nansum(diff) != 0: fig, frame = plt.subplots(ncols=1, nrows=1) pos = frame.imshow(diff, aspect='auto', origin='lower') frame.set(title=name) fig.colorbar(pos, ax=frame) plt.show() plt.close() elif isinstance(hdu1[extnum], fits.BinTableHDU): imdiff = fits.diff.TableDataDiff(hdu1[extnum].data, hdu2[extnum].data) print(imdiff.report()) else: print('\tSkipping (not ImageHDU or BinHDU)') # ============================================================================= # Start of code # ============================================================================= if __name__ == "__main__": files = np.array(os.listdir('.')) last_modified = [] # get last modified for all files for filename in files: last_modified.append(os.path.getmtime(filename)) # sort by last modified sortmask = np.argsort(last_modified) files = files[sortmask] # diff images in order for filename in files: diff_image(path, filename) # ============================================================================= # End of code # =============================================================================
[ "astropy.io.fits.diff.ImageDataDiff", "os.listdir", "os.path.join", "astropy.io.fits.diff.TableDataDiff", "numpy.argsort", "matplotlib.pyplot.close", "astropy.io.fits.open", "os.path.getmtime", "numpy.nansum", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((2454, 2479), 'numpy.argsort', 'np.argsort', (['last_modified'], {}), '(last_modified)\n', (2464, 2479), True, 'import numpy as np\n'), ((809, 829), 'astropy.io.fits.open', 'fits.open', (['imagename'], {}), '(imagename)\n', (818, 829), False, 'from astropy.io import fits\n'), ((2249, 2264), 'os.listdir', 'os.listdir', (['"""."""'], {}), "('.')\n", (2259, 2264), False, 'import os\n'), ((758, 792), 'os.path.join', 'os.path.join', (['imagepath', 'imagename'], {}), '(imagepath, imagename)\n', (770, 792), False, 'import os\n'), ((1316, 1377), 'astropy.io.fits.diff.ImageDataDiff', 'fits.diff.ImageDataDiff', (['hdu1[extnum].data', 'hdu2[extnum].data'], {}), '(hdu1[extnum].data, hdu2[extnum].data)\n', (1339, 1377), False, 'from astropy.io import fits\n'), ((2383, 2409), 'os.path.getmtime', 'os.path.getmtime', (['filename'], {}), '(filename)\n', (2399, 2409), False, 'import os\n'), ((1486, 1501), 'numpy.nansum', 'np.nansum', (['diff'], {}), '(diff)\n', (1495, 1501), True, 'import numpy as np\n'), ((1537, 1567), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': '(1)', 'nrows': '(1)'}), '(ncols=1, nrows=1)\n', (1549, 1567), True, 'import matplotlib.pyplot as plt\n'), ((1738, 1748), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1746, 1748), True, 'import matplotlib.pyplot as plt\n'), ((1765, 1776), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1774, 1776), True, 'import matplotlib.pyplot as plt\n'), ((1855, 1916), 'astropy.io.fits.diff.TableDataDiff', 'fits.diff.TableDataDiff', (['hdu1[extnum].data', 'hdu2[extnum].data'], {}), '(hdu1[extnum].data, hdu2[extnum].data)\n', (1878, 1916), False, 'from astropy.io import fits\n')]
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Rectangle,Circle import mpl_toolkits.mplot3d.art3d as art3d fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') ax = plt.axes(projection='3d') x,y,z = 10,0,0 dx,dy,dz = 12,12,10 p = Circle((x,y),radius=dx/2,color='b') p2 = Circle((x,y),radius=dx/2,color='b') ax.add_patch(p) ax.add_patch(p2) art3d.pathpatch_2d_to_3d(p, z=z, zdir="z") art3d.pathpatch_2d_to_3d(p2, z=z+dz, zdir="z") us = np.linspace(0, 2 * np.pi, 32) zs = np.linspace(0, 10, 2) us, zs = np.meshgrid(us, zs) xs = 6 * np.cos(us) ys = 6 * np.sin(us) ax.plot_surface(xs, ys, zs, color='g') plt.show()
[ "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.axes", "mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d", "numpy.cos", "numpy.sin", "numpy.meshgrid", "matplotlib.patches.Circle", "matplotlib.pyplot.show" ]
[((192, 204), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (202, 204), True, 'import matplotlib.pyplot as plt\n'), ((257, 282), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (265, 282), True, 'import matplotlib.pyplot as plt\n'), ((325, 365), 'matplotlib.patches.Circle', 'Circle', (['(x, y)'], {'radius': '(dx / 2)', 'color': '"""b"""'}), "((x, y), radius=dx / 2, color='b')\n", (331, 365), False, 'from matplotlib.patches import Rectangle, Circle\n'), ((366, 406), 'matplotlib.patches.Circle', 'Circle', (['(x, y)'], {'radius': '(dx / 2)', 'color': '"""b"""'}), "((x, y), radius=dx / 2, color='b')\n", (372, 406), False, 'from matplotlib.patches import Rectangle, Circle\n'), ((435, 477), 'mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d', 'art3d.pathpatch_2d_to_3d', (['p'], {'z': 'z', 'zdir': '"""z"""'}), "(p, z=z, zdir='z')\n", (459, 477), True, 'import mpl_toolkits.mplot3d.art3d as art3d\n'), ((478, 526), 'mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d', 'art3d.pathpatch_2d_to_3d', (['p2'], {'z': '(z + dz)', 'zdir': '"""z"""'}), "(p2, z=z + dz, zdir='z')\n", (502, 526), True, 'import mpl_toolkits.mplot3d.art3d as art3d\n'), ((531, 560), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(32)'], {}), '(0, 2 * np.pi, 32)\n', (542, 560), True, 'import numpy as np\n'), ((567, 588), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(2)'], {}), '(0, 10, 2)\n', (578, 588), True, 'import numpy as np\n'), ((600, 619), 'numpy.meshgrid', 'np.meshgrid', (['us', 'zs'], {}), '(us, zs)\n', (611, 619), True, 'import numpy as np\n'), ((705, 715), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (713, 715), True, 'import matplotlib.pyplot as plt\n'), ((631, 641), 'numpy.cos', 'np.cos', (['us'], {}), '(us)\n', (637, 641), True, 'import numpy as np\n'), ((652, 662), 'numpy.sin', 'np.sin', (['us'], {}), '(us)\n', (658, 662), True, 'import numpy as np\n')]
import argparse import datetime import sys import threading import time import matplotlib.pyplot as plt import numpy import yaml from .__about__ import __copyright__, __version__ from .main import ( cooldown, measure_temp, measure_core_frequency, measure_ambient_temperature, test, ) def _get_version_text(): return "\n".join( [ "stressberry {} [Python {}.{}.{}]".format( __version__, sys.version_info.major, sys.version_info.minor, sys.version_info.micro, ), __copyright__, ] ) def _get_parser_run(): parser = argparse.ArgumentParser( description="Run stress test for the Raspberry Pi." ) parser.add_argument( "--version", "-v", action="version", version=_get_version_text() ) parser.add_argument( "-n", "--name", type=str, default="stressberry data", help="name the data set (default: 'stressberry data')", ) parser.add_argument( "-t", "--temperature-file", type=str, default=None, help="temperature file e.g /sys/class/thermal/thermal_zone0/temp (default: vcgencmd)", ) parser.add_argument( "-d", "--duration", type=int, default=300, help="stress test duration in seconds (default: 300)", ) parser.add_argument( "-i", "--idle", type=int, default=150, help="idle time in seconds at start and end of stress test (default: 150)", ) parser.add_argument( "--cooldown", type=int, default=60, help="poll interval seconds to check for stable temperature (default: 60)", ) parser.add_argument( "-c", "--cores", type=int, default=None, help="number of CPU cores to stress (default: all)", ) parser.add_argument( "-f", "--frequency-file", type=str, default=None, help="CPU core frequency file e.g. /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq (default: vcgencmd)", ) parser.add_argument( "-a", "--ambient", type=str, nargs=2, default=None, help="measure ambient temperature. Sensor Type [11|22|2302] <GPIO Number> e.g. 2302 26", ) parser.add_argument("outfile", type=argparse.FileType("w"), help="output data file") return parser def run(argv=None): parser = _get_parser_run() args = parser.parse_args(argv) # Cool down first print("Awaiting stable baseline temperature...") cooldown(interval=args.cooldown, filename=args.temperature_file) # Start the stress test in another thread t = threading.Thread( target=lambda: test(args.duration, args.idle, args.cores), args=() ) t.start() times = [] temps = [] freqs = [] ambient = [] while t.is_alive(): times.append(time.time()) temps.append(measure_temp(args.temperature_file)) freqs.append(measure_core_frequency(args.frequency_file)) if args.ambient: ambient_temperature = measure_ambient_temperature( sensor_type=args.ambient[0], pin=args.ambient[1] ) if ambient_temperature is None: # Reading the sensor can return None if it times out. # If never had a good result, probably configuration error # Else use last known value if available or worst case set to zero if not ambient: message = "Could not read ambient temperature sensor {} on pin {}".format( args.ambient[0], args.ambient[1] ) else: message = "WARN - Could not read ambient temperature, using last good value" print(message) ambient_temperature = next( (temp for temp in reversed(ambient) if temp is not None), 0 ) ambient.append(ambient_temperature) delta_t = temps[-1] - ambient[-1] print( "Temperature (current | ambient | ΔT): {:4.1f}°C | {:4.1f}°C | {:4.1f}°C - Frequency: {:4.0f}MHz".format( temps[-1], ambient[-1], delta_t, freqs[-1] ) ) else: print( "Current temperature: {:4.1f}°C - Frequency: {:4.0f}MHz".format( temps[-1], freqs[-1] ) ) # Choose the sample interval such that we have a respectable number of # data points t.join(2.0) # normalize times time0 = times[0] times = [tm - time0 for tm in times] args.outfile.write( "# This file was created by stressberry v{} on {}\n".format( __version__, datetime.datetime.now() ) ) yaml.dump( { "name": args.name, "time": times, "temperature": temps, "cpu frequency": freqs, "ambient": ambient, }, args.outfile, ) return def plot(argv=None): parser = _get_parser_plot() args = parser.parse_args(argv) data = [yaml.load(f, Loader=yaml.SafeLoader) for f in args.infiles] # sort the data such that the data series with the lowest terminal # temperature is plotted last (and appears in the legend last) terminal_temps = [d["temperature"][-1] for d in data] order = [i[0] for i in sorted(enumerate(terminal_temps), key=lambda x: x[1])] # actually plot it fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) for k in order[::-1]: if args.delta_t: temperature_data = numpy.subtract( data[k]["temperature"], data[k]["ambient"] ) else: temperature_data = data[k]["temperature"] ax1.plot( data[k]["time"], temperature_data, label=data[k]["name"], lw=args.line_width ) ax1.grid() if not args.hide_legend: ax1.legend(loc="upper left", bbox_to_anchor=(1.03, 1.0), borderaxespad=0) if args.delta_t: plot_yaxis_label = "Δ temperature °C (over ambient)" else: plot_yaxis_label = "temperature °C" ax1.set_xlabel("time (s)") ax1.set_ylabel(plot_yaxis_label) ax1.set_xlim([data[-1]["time"][0], data[-1]["time"][-1]]) if args.temp_lims: ax1.set_ylim(*args.temp_lims) # Only plot frequencies when using a single input file if len(data) == 1 and args.frequency: ax2 = plt.twinx() ax2.set_ylabel("core frequency (MHz)") if args.freq_lims: ax2.set_ylim(*args.freq_lims) try: for k in order[::-1]: ax2.plot( data[k]["time"], data[k]["cpu frequency"], label=data[k]["name"], color="C1", alpha=0.9, lw=args.line_width, ) ax1.set_zorder(ax2.get_zorder() + 1) # put ax1 plot in front of ax2 ax1.patch.set_visible(False) # hide the 'canvas' except KeyError(): print("Source data does not contain CPU frequency data.") if args.outfile is not None: plt.savefig( args.outfile, transparent=args.transparent, bbox_inches="tight", dpi=args.dpi, ) else: plt.show() return def _get_parser_plot(): parser = argparse.ArgumentParser(description="Plot stress test data.") parser.add_argument( "--version", "-v", action="version", version=_get_version_text() ) parser.add_argument( "infiles", nargs="+", type=argparse.FileType("r"), help="input YAML file(s) (default: stdin)", ) parser.add_argument( "-o", "--outfile", help=( "if specified, the plot is written to this file " "(default: show on screen)" ), ) parser.add_argument( "-t", "--temp-lims", type=float, nargs=2, default=None, help="limits for the temperature (default: data limits)", ) parser.add_argument( "-d", "--dpi", type=int, default=None, help="image resolution in dots per inch when written to file", ) parser.add_argument( "-f", "--frequency", help="plot CPU core frequency (single input files only)", action="store_true", ) parser.add_argument( "-l", "--freq-lims", type=float, nargs=2, default=None, help="limits for the frequency scale (default: data limits)", ) parser.add_argument("--hide-legend", help="do not draw legend", action="store_true") parser.add_argument( "--not-transparent", dest="transparent", help="do not make images transparent", action="store_false", default=True, ) parser.add_argument( "-lw", "--line-width", type=float, default=None, help="line width" ) parser.add_argument( "--delta-t", action="store_true", default=False, help="Use Delta-T (core - ambient) temperature instead of CPU core temperature", ) return parser
[ "argparse.FileType", "matplotlib.pyplot.savefig", "argparse.ArgumentParser", "yaml.dump", "matplotlib.pyplot.twinx", "yaml.load", "numpy.subtract", "datetime.datetime.now", "matplotlib.pyplot.figure", "time.time", "matplotlib.pyplot.show" ]
[((665, 741), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run stress test for the Raspberry Pi."""'}), "(description='Run stress test for the Raspberry Pi.')\n", (688, 741), False, 'import argparse\n'), ((4974, 5103), 'yaml.dump', 'yaml.dump', (["{'name': args.name, 'time': times, 'temperature': temps, 'cpu frequency':\n freqs, 'ambient': ambient}", 'args.outfile'], {}), "({'name': args.name, 'time': times, 'temperature': temps,\n 'cpu frequency': freqs, 'ambient': ambient}, args.outfile)\n", (4983, 5103), False, 'import yaml\n'), ((5680, 5692), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5690, 5692), True, 'import matplotlib.pyplot as plt\n'), ((7613, 7674), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Plot stress test data."""'}), "(description='Plot stress test data.')\n", (7636, 7674), False, 'import argparse\n'), ((5308, 5344), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.SafeLoader'}), '(f, Loader=yaml.SafeLoader)\n', (5317, 5344), False, 'import yaml\n'), ((6654, 6665), 'matplotlib.pyplot.twinx', 'plt.twinx', ([], {}), '()\n', (6663, 6665), True, 'import matplotlib.pyplot as plt\n'), ((7384, 7478), 'matplotlib.pyplot.savefig', 'plt.savefig', (['args.outfile'], {'transparent': 'args.transparent', 'bbox_inches': '"""tight"""', 'dpi': 'args.dpi'}), "(args.outfile, transparent=args.transparent, bbox_inches='tight',\n dpi=args.dpi)\n", (7395, 7478), True, 'import matplotlib.pyplot as plt\n'), ((7552, 7562), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7560, 7562), True, 'import matplotlib.pyplot as plt\n'), ((2438, 2460), 'argparse.FileType', 'argparse.FileType', (['"""w"""'], {}), "('w')\n", (2455, 2460), False, 'import argparse\n'), ((3014, 3025), 'time.time', 'time.time', ([], {}), '()\n', (3023, 3025), False, 'import time\n'), ((4930, 4953), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4951, 4953), False, 'import datetime\n'), ((5810, 5868), 'numpy.subtract', 'numpy.subtract', (["data[k]['temperature']", "data[k]['ambient']"], {}), "(data[k]['temperature'], data[k]['ambient'])\n", (5824, 5868), False, 'import numpy\n'), ((7855, 7877), 'argparse.FileType', 'argparse.FileType', (['"""r"""'], {}), "('r')\n", (7872, 7877), False, 'import argparse\n')]
#!/usr/bin/env python3 import json import argparse import os from collections import OrderedDict from utils import normalize from utils import exact_match_score, regex_match_score, get_rank from utils import slugify, aggregate, aggregate_ans from utils import Tokenizer from multiprocessing import Pool as ProcessPool # import numpy as np import pickle as pk import sys import time import numpy as np ENCODING = "utf-8" DOC_MEAN = 8.5142 DOC_STD = 2.8324 # ANS_MEAN=86486 # ANS_STD=256258 ANS_MEAN = 11588614 ANS_STD = 98865053 all_corr_rank = [] # def process_record(data_line_, prediction_line_, neg_gap_, feature_dir_, record_dir_, match_fn): def process_record(data_line_, prediction_line_, neg_gap_, feature_dir_, record_dir_, match_fn, all_doc_scores, all_ans_scores, z_scores): missing_count_ = 0 total_count_ = 0 stop_count_ = 0 data = json.loads(data_line_) question = data['question'] q_id = slugify(question) q_path = os.path.join(feature_dir_, '%s.json' % q_id) n_q = [0 for _ in Tokenizer.FEAT] if os.path.exists(q_path): q_data = open(q_path, encoding=ENCODING).read() record = json.loads(q_data) q_ner = record['ner'] q_pos = record['pos'] for feat in q_ner + q_pos: n_q[Tokenizer.FEAT_DICT[feat]] += 1 else: print('question feature file %s not exist!' % q_path) sys.stdout.flush() missing_count_ += 1 return missing_count_, total_count_, stop_count_ answer = [normalize(a) for a in data['answer']] prediction = json.loads(prediction_line_) # MAKE SURE REVERSE IS TRUE ranked_prediction = sorted(prediction, key=lambda k: k['doc_score'], reverse=True) correct_rank = get_rank(prediction, answer, match_fn) if correct_rank > 150: # if correct_rank < 50 or correct_rank > 150: return missing_count_, total_count_, stop_count_ all_corr_rank.append(correct_rank - 1) all_n_p = [] all_n_a = [] all_p_scores = [] all_a_scores = [] all_probs = [] all_spans = [] repeats = 0 for i, entry in enumerate(ranked_prediction): doc_id = entry['doc_id'] start = int(entry['start']) end = int(entry['end']) doc_score = entry['doc_score'] ans_score = entry['span_score'] prob = entry['prob'] span = entry['span'] # RESTRICT TO MAX 1000000000 # print("Threshold 1000000") # ans_score=min(ans_score, 1000000) #restrict to max of million if span in all_spans: repeats += 1 all_spans.append(span) ################Calculate sample z score (t statistic) for answer score if all_a_scores == [] or len( all_a_scores) == 1: # dont use a_zscore feature at the beginning or if we only have 1 a_zscore = 0 else: # Take the sample mean of the previous ones, take zscore of the current with respect to that # sample_mean = np.mean(all_a_scores + [ans_score]) sample_mean = np.mean(all_a_scores) # sample_std = np.std(all_a_scores + [ans_score]) sample_std = np.std(all_a_scores) # if sample_std != 0: a_zscore = (ans_score - sample_mean) / sample_std # else: # a_zscore = 0 z_scores.append(a_zscore) # THESE ARE FOR STATISTISTICS OVER ENTIRE DATA SET, IGNORE all_doc_scores.append(doc_score) all_ans_scores.append(ans_score) corr_doc_score = (doc_score - DOC_MEAN) / DOC_STD corr_ans_mean_score = (np.mean(all_a_scores + [ans_score]) - ANS_MEAN) / ANS_STD all_probs.append(prob) ############### p_pos = dict() p_ner = dict() feat_file = os.path.join(feature_dir_, '%s.json' % doc_id) if os.path.exists(feat_file): record = json.load(open(feat_file)) p_ner[doc_id] = record['ner'] p_pos[doc_id] = record['pos'] n_p = [0 for _ in Tokenizer.FEAT] n_a = [0 for _ in Tokenizer.FEAT] for feat in p_ner[doc_id] + p_pos[doc_id]: n_p[Tokenizer.FEAT_DICT[feat]] += 1 for feat in p_ner[doc_id][start:end + 1] + p_pos[doc_id][start:end + 1]: n_a[Tokenizer.FEAT_DICT[feat]] += 1 all_n_p.append(n_p) all_n_a.append(n_a) all_p_scores.append(doc_score) all_a_scores.append(ans_score) f_np = aggregate(all_n_p) f_na = aggregate(all_n_a) f_sp = aggregate(all_p_scores) f_sa = aggregate_ans(all_a_scores) record = OrderedDict() # sp, nq, np, na, ha record['sp'] = f_sp record['nq'] = list(map(float, n_q)) record['np'] = f_np record['na'] = f_na record['sa'] = f_sa record['a_zscore'] = a_zscore record['corr_doc_score'] = corr_doc_score record['i'] = i record['prob_avg'] = sum(all_probs) / len(all_probs) record['prob'] = prob record['repeats'] = repeats record['ans_avg'] = corr_ans_mean_score if i + 1 == correct_rank: # if i + 1 >= correct_rank: record['stop'] = 1 stop_count_ += 1 write_record = True # if i % neg_gap_ ==0: # write_record = True # else: # write_record = False should_return = True # if i + 1 - correct_rank > 30: # should_return = True # else: # should_return = False else: should_return = False if i % neg_gap_ == 0: record['stop'] = 0 write_record = True else: write_record = False if write_record: record_path = os.path.join(record_dir_, '%s_%s.pkl' % (q_id, doc_id)) with open(record_path, 'wb') as f: pk.dump(record, f) total_count_ += 1 if should_return: return missing_count_, total_count_, stop_count_ return missing_count_, total_count_, stop_count_ if __name__ == '__main__': # unzip trec.tgz to trec # below is an example run, take 114.5s(on mac mini 2012), generated 15571 records, 7291 of them are stop labels # python prepare_data.py -p CuratedTrec-test-lstm.preds.txt -a CuratedTrec-test.txt -f trec -r records # all_doc_scores = [] all_ans_scores = [] z_scores = [] parser = argparse.ArgumentParser() parser.add_argument('-p', '--prediction_file', help='prediction file, e.g. CuratedTrec-test-lstm.preds_train.txt') parser.add_argument('-a', '--answer_file', help='data set with labels, e.g. CuratedTrec-test_train.txt') parser.add_argument('-nm', '--no_multiprocess', action='store_true', help='default to use multiprocessing') parser.add_argument('-ns', '--negative_scale', type=int, default=10, help='scale factor for negative samples') parser.add_argument('-r', '--record_dir', default=None, help='dir to save generated records data set') parser.add_argument('-f', '--feature_dir', default=None, help='dir that contains json features files, unzip squad.tgz or trec.tgz to get that dir') parser.add_argument('-rg', '--regex', action='store_true', help='default to use exact match') args = parser.parse_args() match_func = regex_match_score if args.regex else exact_match_score missing_count = 0 total_count = 0 stop_count = 0 answer_file = args.answer_file prediction_file = args.prediction_file record_dir = args.record_dir if not os.path.exists(record_dir): os.makedirs(record_dir) feature_dir = args.feature_dir if not os.path.exists(feature_dir): print('feature_dir does not exist!') exit(-1) s = time.time() if args.no_multiprocess: for data_line, prediction_line in zip(open(answer_file, encoding=ENCODING), open(prediction_file, encoding=ENCODING)): # missing, total, stop = process_record(data_line, prediction_line, args.negative_scale, # feature_dir, record_dir, match_func) missing, total, stop = process_record(data_line, prediction_line, args.negative_scale, feature_dir, record_dir, match_func, all_doc_scores, all_ans_scores, z_scores) missing_count += missing stop_count += stop total_count += total print('processed %d records...' % total_count) sys.stdout.flush() else: print('using multiprocessing...') result_handles = [] async_pool = ProcessPool() for data_line, prediction_line in zip(open(answer_file, encoding=ENCODING), open(prediction_file, encoding=ENCODING)): param = (data_line, prediction_line, args.negative_scale, feature_dir, record_dir, match_func) handle = async_pool.apply_async(process_record, param) result_handles.append(handle) for result in result_handles: missing, total, stop = result.get() missing_count += missing stop_count += stop total_count += total print('processed %d records, stop: %d' % (total_count, stop_count)) sys.stdout.flush() e = time.time() print('%d records' % total_count) print('%d stop labels' % stop_count) print('%d docs not found' % missing_count) print('took %.4f s' % (e - s)) # all_ans_scores = list(map(lambda x: min([x, 1000000]), all_ans_scores)) doc_mean = np.mean(all_doc_scores) ans_mean = np.mean(all_ans_scores) doc_std = np.std(all_doc_scores) ans_std = np.std(all_ans_scores) z_std = np.std(z_scores) z_mean = np.mean(z_scores) print("Doc Mean {}".format(doc_mean)) print("Doc Std {}".format(doc_std)) print("Ans Mean {}".format(ans_mean)) print("Ans Std {}".format(ans_std)) print("Doc Max {}".format(max(all_doc_scores))) print("Ans Max {}".format(max(all_ans_scores))) print("Z Std {}".format(z_std)) print("Z Max {}".format(max(z_scores))) print("Z Mean {}".format(z_mean)) print(len(all_corr_rank)) print("i Std {}".format(np.std(all_corr_rank))) print("i Mean {}".format(np.mean(all_corr_rank)))
[ "os.path.exists", "json.loads", "numpy.mean", "collections.OrderedDict", "pickle.dump", "utils.slugify", "argparse.ArgumentParser", "utils.normalize", "utils.aggregate", "utils.aggregate_ans", "os.makedirs", "os.path.join", "utils.get_rank", "multiprocessing.Pool", "numpy.std", "sys.stdout.flush", "time.time" ]
[((885, 907), 'json.loads', 'json.loads', (['data_line_'], {}), '(data_line_)\n', (895, 907), False, 'import json\n'), ((951, 968), 'utils.slugify', 'slugify', (['question'], {}), '(question)\n', (958, 968), False, 'from utils import slugify, aggregate, aggregate_ans\n'), ((982, 1026), 'os.path.join', 'os.path.join', (['feature_dir_', "('%s.json' % q_id)"], {}), "(feature_dir_, '%s.json' % q_id)\n", (994, 1026), False, 'import os\n'), ((1072, 1094), 'os.path.exists', 'os.path.exists', (['q_path'], {}), '(q_path)\n', (1086, 1094), False, 'import os\n'), ((1585, 1613), 'json.loads', 'json.loads', (['prediction_line_'], {}), '(prediction_line_)\n', (1595, 1613), False, 'import json\n'), ((1752, 1790), 'utils.get_rank', 'get_rank', (['prediction', 'answer', 'match_fn'], {}), '(prediction, answer, match_fn)\n', (1760, 1790), False, 'from utils import exact_match_score, regex_match_score, get_rank\n'), ((6700, 6725), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6723, 6725), False, 'import argparse\n'), ((8080, 8091), 'time.time', 'time.time', ([], {}), '()\n', (8089, 8091), False, 'import time\n'), ((9798, 9809), 'time.time', 'time.time', ([], {}), '()\n', (9807, 9809), False, 'import time\n'), ((10064, 10087), 'numpy.mean', 'np.mean', (['all_doc_scores'], {}), '(all_doc_scores)\n', (10071, 10087), True, 'import numpy as np\n'), ((10103, 10126), 'numpy.mean', 'np.mean', (['all_ans_scores'], {}), '(all_ans_scores)\n', (10110, 10126), True, 'import numpy as np\n'), ((10141, 10163), 'numpy.std', 'np.std', (['all_doc_scores'], {}), '(all_doc_scores)\n', (10147, 10163), True, 'import numpy as np\n'), ((10178, 10200), 'numpy.std', 'np.std', (['all_ans_scores'], {}), '(all_ans_scores)\n', (10184, 10200), True, 'import numpy as np\n'), ((10213, 10229), 'numpy.std', 'np.std', (['z_scores'], {}), '(z_scores)\n', (10219, 10229), True, 'import numpy as np\n'), ((10243, 10260), 'numpy.mean', 'np.mean', (['z_scores'], {}), '(z_scores)\n', (10250, 10260), True, 'import numpy as np\n'), ((1169, 1187), 'json.loads', 'json.loads', (['q_data'], {}), '(q_data)\n', (1179, 1187), False, 'import json\n'), ((1411, 1429), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1427, 1429), False, 'import sys\n'), ((1530, 1542), 'utils.normalize', 'normalize', (['a'], {}), '(a)\n', (1539, 1542), False, 'from utils import normalize\n'), ((3887, 3933), 'os.path.join', 'os.path.join', (['feature_dir_', "('%s.json' % doc_id)"], {}), "(feature_dir_, '%s.json' % doc_id)\n", (3899, 3933), False, 'import os\n'), ((3945, 3970), 'os.path.exists', 'os.path.exists', (['feat_file'], {}), '(feat_file)\n', (3959, 3970), False, 'import os\n'), ((4569, 4587), 'utils.aggregate', 'aggregate', (['all_n_p'], {}), '(all_n_p)\n', (4578, 4587), False, 'from utils import slugify, aggregate, aggregate_ans\n'), ((4603, 4621), 'utils.aggregate', 'aggregate', (['all_n_a'], {}), '(all_n_a)\n', (4612, 4621), False, 'from utils import slugify, aggregate, aggregate_ans\n'), ((4637, 4660), 'utils.aggregate', 'aggregate', (['all_p_scores'], {}), '(all_p_scores)\n', (4646, 4660), False, 'from utils import slugify, aggregate, aggregate_ans\n'), ((4676, 4703), 'utils.aggregate_ans', 'aggregate_ans', (['all_a_scores'], {}), '(all_a_scores)\n', (4689, 4703), False, 'from utils import slugify, aggregate, aggregate_ans\n'), ((4722, 4735), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4733, 4735), False, 'from collections import OrderedDict\n'), ((7875, 7901), 'os.path.exists', 'os.path.exists', (['record_dir'], {}), '(record_dir)\n', (7889, 7901), False, 'import os\n'), ((7911, 7934), 'os.makedirs', 'os.makedirs', (['record_dir'], {}), '(record_dir)\n', (7922, 7934), False, 'import os\n'), ((7981, 8008), 'os.path.exists', 'os.path.exists', (['feature_dir'], {}), '(feature_dir)\n', (7995, 8008), False, 'import os\n'), ((9067, 9080), 'multiprocessing.Pool', 'ProcessPool', ([], {}), '()\n', (9078, 9080), True, 'from multiprocessing import Pool as ProcessPool\n'), ((3107, 3128), 'numpy.mean', 'np.mean', (['all_a_scores'], {}), '(all_a_scores)\n', (3114, 3128), True, 'import numpy as np\n'), ((3227, 3247), 'numpy.std', 'np.std', (['all_a_scores'], {}), '(all_a_scores)\n', (3233, 3247), True, 'import numpy as np\n'), ((6025, 6080), 'os.path.join', 'os.path.join', (['record_dir_', "('%s_%s.pkl' % (q_id, doc_id))"], {}), "(record_dir_, '%s_%s.pkl' % (q_id, doc_id))\n", (6037, 6080), False, 'import os\n'), ((8947, 8965), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8963, 8965), False, 'import sys\n'), ((9770, 9788), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9786, 9788), False, 'import sys\n'), ((10707, 10728), 'numpy.std', 'np.std', (['all_corr_rank'], {}), '(all_corr_rank)\n', (10713, 10728), True, 'import numpy as np\n'), ((10760, 10782), 'numpy.mean', 'np.mean', (['all_corr_rank'], {}), '(all_corr_rank)\n', (10767, 10782), True, 'import numpy as np\n'), ((3706, 3741), 'numpy.mean', 'np.mean', (['(all_a_scores + [ans_score])'], {}), '(all_a_scores + [ans_score])\n', (3713, 3741), True, 'import numpy as np\n'), ((6144, 6162), 'pickle.dump', 'pk.dump', (['record', 'f'], {}), '(record, f)\n', (6151, 6162), True, 'import pickle as pk\n')]
#!/usr/bin/env python3 import layers import cv2 from os.path import join import numpy as np # import tensorflow as tf import Augmentor vw = 320 vh = 320 class Augment: def __init__(self): self.w = 2 * 640 self.h = 2 * 480 self.canvas = np.zeros((self.h, self.w, 3), dtype=np.uint8) def update(self, _im): # sc = .4 # h, w = (int(sc * _im.shape[0]), int(sc * _im.shape[1])) vh = _im.shape[0] vw = _im.shape[1] # im = cv2.resize(_im, (w, h)) self.canvas[100:(100 + vh), :vw, :] = _im cv2.putText(self.canvas, "Original", (0, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0, (255, 255, 255)) cv2.putText(self.canvas, "Distorted", (0, 150 + vh), cv2.FONT_HERSHEY_COMPLEX, 1.0, (255, 255, 255)) self.canvas[(200 + vh):(200 + 2 * vh), :vw, :] = _im cv2.imshow("Image Augment", self.canvas) cv2.waitKey(0) if __name__ == "__main__": data_root = "/mnt/4102422c-af52-4b55-988f-df7544b35598/dataset/KITTI/KITTI_Odometry/" seq = "14" vo_fn = data_root + "dataset/poses/" + seq.zfill(2) + ".txt" im_dir = data_root + "dataset/sequences/" + seq.zfill(2) aux_dir = "/home/handuo/projects/paper/image_base/downloads" i = 0 gui = Augment() # with tf.Session() as sess: ims = [] p = Augmentor.Pipeline(join(im_dir, "image_0/"), output_directory="../../../output", save_format="JPEG") # print("Has %s samples." % (len(p.augmentor_images))) p.zoom(probability=0.3, min_factor=0.9, max_factor=1.2) p.skew(probability=0.75, magnitude=0.3) # p.random_erasing(probability=0.5, rectangle_area=0.3) p.multi_erasing(probability=0.5, max_x_axis=0.3, max_y_axis=0.15, max_num=4) # p.rotate(probability=0.5, max_left_rotation=6, max_right_rotation=6) p.sample(10)
[ "os.path.join", "cv2.imshow", "cv2.putText", "numpy.zeros", "cv2.waitKey" ]
[((268, 313), 'numpy.zeros', 'np.zeros', (['(self.h, self.w, 3)'], {'dtype': 'np.uint8'}), '((self.h, self.w, 3), dtype=np.uint8)\n', (276, 313), True, 'import numpy as np\n'), ((576, 673), 'cv2.putText', 'cv2.putText', (['self.canvas', '"""Original"""', '(0, 50)', 'cv2.FONT_HERSHEY_COMPLEX', '(1.0)', '(255, 255, 255)'], {}), "(self.canvas, 'Original', (0, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0,\n (255, 255, 255))\n", (587, 673), False, 'import cv2\n'), ((678, 783), 'cv2.putText', 'cv2.putText', (['self.canvas', '"""Distorted"""', '(0, 150 + vh)', 'cv2.FONT_HERSHEY_COMPLEX', '(1.0)', '(255, 255, 255)'], {}), "(self.canvas, 'Distorted', (0, 150 + vh), cv2.\n FONT_HERSHEY_COMPLEX, 1.0, (255, 255, 255))\n", (689, 783), False, 'import cv2\n'), ((850, 890), 'cv2.imshow', 'cv2.imshow', (['"""Image Augment"""', 'self.canvas'], {}), "('Image Augment', self.canvas)\n", (860, 890), False, 'import cv2\n'), ((899, 913), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (910, 913), False, 'import cv2\n'), ((1345, 1369), 'os.path.join', 'join', (['im_dir', '"""image_0/"""'], {}), "(im_dir, 'image_0/')\n", (1349, 1369), False, 'from os.path import join\n')]
from qtpy import QtWidgets, QtCore from pyqtgraph.widgets.SpinBox import SpinBox from pyqtgraph.parametertree.parameterTypes.basetypes import WidgetParameterItem from pymodaq.daq_utils.daq_utils import scroll_log, scroll_linear import numpy as np class SliderSpinBox(QtWidgets.QWidget): def __init__(self, *args, subtype='lin', **kwargs): super().__init__() self.subtype = subtype self.initUI(*args, **kwargs) self.valueChanged = self.spinbox.valueChanged # (value) for compatibility with QSpinBox self.sigValueChanged = self.spinbox.sigValueChanged # (self) self.sigValueChanging = self.spinbox.sigValueChanging # (self, value) sent immediately; no delay. self.sigChanged = self.spinbox.sigValueChanged @property def opts(self): return self.spinbox.opts @opts.setter def opts(self, **opts): self.setOpts(**opts) def setOpts(self, **opts): self.spinbox.setOpts(**opts) if 'visible' in opts: self.slider.setVisible(opts['visible']) def insert_widget(self ,widget, row=0): self.vlayout.insertWidget(row, widget) def initUI(self, *args, **kwargs): """ Init the User Interface. """ self.vlayout = QtWidgets.QVBoxLayout() self.slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self.slider.setMinimumWidth(50) self.slider.setMinimum(0) self.slider.setMaximum(100) if 'value' in kwargs: value = kwargs.pop('value') else: if 'bounds' in kwargs: value = kwargs['bounds'][0] else: value = 1 self.spinbox = SpinBox(parent=None, value=value, **kwargs) self.vlayout.addWidget(self.slider) self.vlayout.addWidget(self.spinbox) self.vlayout.setSpacing(0) self.vlayout.setContentsMargins(0, 0, 0, 0) self.setLayout(self.vlayout) self.slider.valueChanged.connect(self.update_spinbox) self.spinbox.valueChanged.connect(self.update_slide) def update_spinbox(self, val): """ val is a percentage [0-100] used in order to set the spinbox value between its min and max """ min_val = float(self.opts['bounds'][0]) max_val = float(self.opts['bounds'][1]) if self.subtype == 'log': val_out = scroll_log(val, min_val, max_val) else: val_out = scroll_linear(val, min_val, max_val) try: self.slider.valueChanged.disconnect(self.update_spinbox) self.spinbox.valueChanged.disconnect(self.update_slide) except Exception: pass self.spinbox.setValue(val_out) self.slider.valueChanged.connect(self.update_spinbox) self.spinbox.valueChanged.connect(self.update_slide) def update_slide(self, val): """ val is the spinbox value between its min and max """ min_val = float(self.opts['bounds'][0]) max_val = float(self.opts['bounds'][1]) try: self.slider.valueChanged.disconnect(self.update_spinbox) self.spinbox.valueChanged.disconnect(self.update_slide) except Exception: pass if self.subtype == 'linear': value = int((val - min_val) / (max_val - min_val) * 100) else: value = int((np.log10(val) - np.log10(min_val)) / (np.log10(max_val) - np.log10(min_val)) * 100) self.slider.setValue(value) self.slider.valueChanged.connect(self.update_spinbox) self.spinbox.valueChanged.connect(self.update_slide) def setValue(self, val): self.spinbox.setValue(val) def value(self): return self.spinbox.value() class SliderParameterItem(WidgetParameterItem): """Registered parameter type which displays a QLineEdit""" def makeWidget(self): opts = self.param.opts defs = { 'value': 0, 'min': None, 'max': None, 'step': 1.0, 'dec': False, 'siPrefix': False, 'suffix': '', 'decimals': 12, } if 'subtype' not in opts: opts['subtype'] = 'linear' defs['bounds'] = [0., self.param.value()] # max value set to default value when no max given if 'limits' not in opts: if 'min' in opts: defs['bounds'][0] = opts['min'] if 'max' in opts: defs['bounds'][1] = opts['max'] else: defs['bounds'] = opts['limits'] w = SliderSpinBox(subtype=opts['subtype'], bounds=defs['bounds'], value=defs['value']) self.setSizeHint(1, QtCore.QSize(50, 50)) return w
[ "numpy.log10", "qtpy.QtWidgets.QVBoxLayout", "pymodaq.daq_utils.daq_utils.scroll_log", "qtpy.QtCore.QSize", "pymodaq.daq_utils.daq_utils.scroll_linear", "pyqtgraph.widgets.SpinBox.SpinBox", "qtpy.QtWidgets.QSlider" ]
[((1283, 1306), 'qtpy.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', ([], {}), '()\n', (1304, 1306), False, 'from qtpy import QtWidgets, QtCore\n'), ((1329, 1368), 'qtpy.QtWidgets.QSlider', 'QtWidgets.QSlider', (['QtCore.Qt.Horizontal'], {}), '(QtCore.Qt.Horizontal)\n', (1346, 1368), False, 'from qtpy import QtWidgets, QtCore\n'), ((1709, 1752), 'pyqtgraph.widgets.SpinBox.SpinBox', 'SpinBox', ([], {'parent': 'None', 'value': 'value'}), '(parent=None, value=value, **kwargs)\n', (1716, 1752), False, 'from pyqtgraph.widgets.SpinBox import SpinBox\n'), ((2402, 2435), 'pymodaq.daq_utils.daq_utils.scroll_log', 'scroll_log', (['val', 'min_val', 'max_val'], {}), '(val, min_val, max_val)\n', (2412, 2435), False, 'from pymodaq.daq_utils.daq_utils import scroll_log, scroll_linear\n'), ((2472, 2508), 'pymodaq.daq_utils.daq_utils.scroll_linear', 'scroll_linear', (['val', 'min_val', 'max_val'], {}), '(val, min_val, max_val)\n', (2485, 2508), False, 'from pymodaq.daq_utils.daq_utils import scroll_log, scroll_linear\n'), ((4675, 4695), 'qtpy.QtCore.QSize', 'QtCore.QSize', (['(50)', '(50)'], {}), '(50, 50)\n', (4687, 4695), False, 'from qtpy import QtWidgets, QtCore\n'), ((3415, 3428), 'numpy.log10', 'np.log10', (['val'], {}), '(val)\n', (3423, 3428), True, 'import numpy as np\n'), ((3431, 3448), 'numpy.log10', 'np.log10', (['min_val'], {}), '(min_val)\n', (3439, 3448), True, 'import numpy as np\n'), ((3453, 3470), 'numpy.log10', 'np.log10', (['max_val'], {}), '(max_val)\n', (3461, 3470), True, 'import numpy as np\n'), ((3473, 3490), 'numpy.log10', 'np.log10', (['min_val'], {}), '(min_val)\n', (3481, 3490), True, 'import numpy as np\n')]
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import logging as log from mo.utils.error import Error from mo.utils.utils import refer_to_faq_msg def tf_slice_infer(node): input = node.in_node(0) begin = node.in_node(1) size = node.in_node(2) output = node.out_node() if input.value is None or begin.value is None or size.value is None: return if begin.value.size > 1 or size.value.size > 1: log.error("Slice operation doesn't support parameters (begin, size) with size more then 1") log.error(" Begin : {}".format(begin.value)) log.error(" Size : {}".format(size.value)) return # if the 'size' value is equal to -1 then all remaining elements in dimension are included in the slice. # refer to TensorFlow documentation for more details if size.value.item() == -1: size.value = np.array(input.shape[0] - begin.value.item()) output.value = input.value[begin.value.item():(begin.value.item() + size.value.item())] output.shape = np.array(output.value.shape, dtype=np.int64) def tf_strided_slice_infer(node): begin_id = node.in_node(1).value end_id = node.in_node(2).value stride = node.in_node(3).value shape = node.in_node(0).shape if shape is None or any([x < 0 for x in shape]): return convert_negative_indices(begin_id, shape) convert_negative_indices(end_id, shape) test_bit = lambda val, offset: ((1 << offset) & val != 0) slice_idx = [] shrink_axis_mask = [] ellipsis_mask = [] new_axis_mask = [] dims = len(begin_id) for idx in range(dims): l = begin_id[idx] if not test_bit(node.begin_mask, idx) else 0 r = end_id[idx] if not test_bit(node.end_mask, idx) else shape[idx] # Check shrink_axis_mask shrink_axis_mask.append(test_bit(node.shrink_axis_mask, idx)) if shrink_axis_mask[idx]: l, r = l, l + 1 # Check new_axis_mask new_axis_mask.append(test_bit(node.new_axis_mask, idx)) if new_axis_mask[idx]: slice_idx.append(np.newaxis) # Check ellipsis_mask ellipsis_mask.append(test_bit(node.ellipsis_mask, idx)) if ellipsis_mask[idx]: shrink_axis_mask[idx] = False l, r = 0, shape[idx] slice_idx.append(slice(l, r, stride[idx])) value = node.in_node(0).value if node.in_node(0).value is not None else np.zeros(shape) value = value[slice_idx] for idx, flag in reversed(list(enumerate(shrink_axis_mask))): if flag: value = np.squeeze(value, idx) node['slices'] = np.array(slice_idx) node['shrink_axis_mask'] = np.array(shrink_axis_mask) node.out_node().value = np.array(value) if node.in_node(0).value is not None else None node.out_node().shape = np.array(value.shape) def convert_negative_indices(indices: np.array, shape: np.array): for ind, value in enumerate(indices): if value < 0: indices[ind] += shape[ind] def caffe_slice_infer(node): """ Slices an input layer to multiple output layers along a given dimension with given slice indices Parameters ---------- node """ top_shape = node.in_node(0).shape slice_axis = node.axis bottom_slice_axis = node.in_node(0).shape[node.axis] if len(node.slice_point) == 0: new_shape = np.array(top_shape, dtype=np.int64) new_shape[slice_axis] = bottom_slice_axis / len(node.out_nodes()) for i in range(0, len(node.out_nodes())): node.out_node(i).shape = new_shape return assert (len(node.slice_point) == len(node.out_nodes()) - 1) prev = 0 slices = [] for slice_point in node.slice_point: if slice_point <= prev: raise Error('Check failed for the layer {}. Slice points should be ordered in increasing manner. '.format(node.id) + 'Current slice point {} is not greater than the previous slice point {}. '.format(slice_point, prev) + 'Please verify your model correctness') slices.append(slice_point - prev) prev = slice_point slices.append(bottom_slice_axis - prev) if sum(slices) != bottom_slice_axis: raise Error('Check failed for the layer {}. Sum of slices points {} does not equal '.format(node.id, sum(slices)) + 'to the value of input blob shape by the given slice axis {}'.format(bottom_slice_axis)) for i in range(len(node.out_nodes())): new_shape = np.array(top_shape, dtype=np.int64) new_shape[slice_axis] = slices[i] node.out_node(i).shape = new_shape def mxnet_slice_axis_infer(node): in_shape = node.in_node(0).shape slice_axis = node.axis new_shape = np.array(in_shape, dtype=np.int64) new_shape[slice_axis] = new_shape[slice_axis] / len(node.out_nodes()) axis_size = in_shape[slice_axis] if node.offset < 0: node.offset += axis_size if not node.dim: node.dim = axis_size elif node.dim < 0: node.dim += axis_size input_dim = in_shape.size node.dim = (node.dim - node.offset) if node.dim > in_shape[slice_axis]: raise Error( '{0} node dimension value is bigger than the corresponding value in the input shape {1}. ' + '\nIn particular {2} is bigger than {3}. The Model Optimizer does not support this case. ' + '\nTo overcome, try to edit the original model "end" property of the {0} layer.', node.name, ','.join(str(i) for i in in_shape), str(node.dim), str(in_shape[slice_axis]) ) for i in range(0, input_dim): if i == slice_axis: new_shape[i] = node.dim else: new_shape[i] = in_shape[i] for i in range(0, len(node.out_nodes())): node.out_node(i)['shape'] = new_shape
[ "numpy.array", "numpy.zeros", "logging.error", "numpy.squeeze" ]
[((1582, 1626), 'numpy.array', 'np.array', (['output.value.shape'], {'dtype': 'np.int64'}), '(output.value.shape, dtype=np.int64)\n', (1590, 1626), True, 'import numpy as np\n'), ((3177, 3196), 'numpy.array', 'np.array', (['slice_idx'], {}), '(slice_idx)\n', (3185, 3196), True, 'import numpy as np\n'), ((3228, 3254), 'numpy.array', 'np.array', (['shrink_axis_mask'], {}), '(shrink_axis_mask)\n', (3236, 3254), True, 'import numpy as np\n'), ((3375, 3396), 'numpy.array', 'np.array', (['value.shape'], {}), '(value.shape)\n', (3383, 3396), True, 'import numpy as np\n'), ((5335, 5369), 'numpy.array', 'np.array', (['in_shape'], {'dtype': 'np.int64'}), '(in_shape, dtype=np.int64)\n', (5343, 5369), True, 'import numpy as np\n'), ((991, 1092), 'logging.error', 'log.error', (['"""Slice operation doesn\'t support parameters (begin, size) with size more then 1"""'], {}), '(\n "Slice operation doesn\'t support parameters (begin, size) with size more then 1"\n )\n', (1000, 1092), True, 'import logging as log\n'), ((2983, 2998), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (2991, 2998), True, 'import numpy as np\n'), ((3284, 3299), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (3292, 3299), True, 'import numpy as np\n'), ((3937, 3972), 'numpy.array', 'np.array', (['top_shape'], {'dtype': 'np.int64'}), '(top_shape, dtype=np.int64)\n', (3945, 3972), True, 'import numpy as np\n'), ((5097, 5132), 'numpy.array', 'np.array', (['top_shape'], {'dtype': 'np.int64'}), '(top_shape, dtype=np.int64)\n', (5105, 5132), True, 'import numpy as np\n'), ((3132, 3154), 'numpy.squeeze', 'np.squeeze', (['value', 'idx'], {}), '(value, idx)\n', (3142, 3154), True, 'import numpy as np\n')]
#!/usr/bin/python; import sys import ast import json import math as m import numpy as np # from scipy.interpolate import interp1d # from scipy.optimize import fsolve # Version Controller sTitle = 'DNVGL RP F103 Cathodic protection of submarine pipelines' sVersion = 'Version 1.0.0' # Define constants pi = m.pi e = m.e precision = 2 fFormat = "{:.{}f}" separate = "--------------------" Table62 = np.array([ [25, 0.050, 0.020], [50, 0.060, 0.030], [80, 0.075, 0.040], [120, 0.100, 0.060], [200, 0.130, 0.080], ]) Table63 = np.array([ ['Al-Zn-In', 30, -1.050, 2000, -1.000, 1500], ['Al-Zn-In', 60, -1.050, 1500, -1.000, 680], ['Al-Zn-In', 80, -1.000, 720, -1.000, 320], ['Zn', 30, -1.030, 780, -0.980, 750], ['Zn', 50, -1.050, 2000, -0.750, 580], ]) TableA1 = np.array([ ['Glass fibre reincored alphat enamel', True, 70, 0.01, 0.0003], ['FBE', True, 90, 0.030, 0.0003], ['FBE', False, 90, 0.030, 0.0010], ['3-layer FBE/PE', True, 80, 0.001, 0.00003], ['3-layer FBE/PE', False, 80, 0.001, 0.00003], ['3-layer FBE/PP', True, 110, 0.001, 0.00003], ['3-layer FBE/PP', False, 80, 0.001, 0.00003], ['FBE/PP Thermally insulating coating', False, 140, 0.0003, 0.00001], ['FBE/PU Thermally insulating coating', False, 70, 0.01, 0.003], ['Polychloroprene', False, 90, 0.01, 0.001], ]) TableA2 = np.array([ ['none', '4E(1) moulded PU on top bare steel (with primer)', 70, 0.30, 0.030], ['1D Adhesive Tape or 2A(1)/2A-(2) HSS (PE/PP backing) with mastic adhesive', '4E(2) moulded PU on top 1D or 2A(1)/2A(2)', 70, 0.10, 0.010], ['2B(1) HSS (backing + adhesive in PE with LE primer)', 'none', 70, 0.03, 0.003], ['2B(1) HSS (backing + adhesive in PE with LE primer)', '4E(2) moulded PU on 0.03 0.003 top 2B(1)', 70, 0.03, 0.003], ['2C (1) HSS (backing + adhesive in PP, LE primer)', 'none', 110, 0.03, 0.003], ['2C (1) HSS (backing + adhesive in PP, LE primer)', '4E(2) moulded PU on top 2B(1)', 110, 0.03, 0.003], ['3A FBE', 'none', 90, 0.10, 0.010], ['3A FBE', '4E(2) moulded PU on top', 90, 0.03, 0.003], ['2B(2) FBE with PE HSS', 'none', 70, 0.01, 0.0003], ['2B(2) FBE with PE HSS', '4E(2) moulded PU on top FBE + PE HSS', 70, 0.01, 0.0003], ['5D(1) and 5E FBE with PE applied as flame spraying or tape, respectively', 'none', 70, 0.01, 0.0003], ['2C(2) FBE with PP HSS', 'none', 140, 0.01, 0.0003], ['5A/B/C(1) FBE, PP adhesive and PP (wrapped, flame sprayed or moulded)', 'none', 140, 0.01, 0.0003], ['NA', '5C(1) Moulded PE on top FBE with PE adhesive', 70, 0.01, 0.0003], ['NA', '5C(2) Moulded PP on top FBE with PP adhesive', 140, 0.01, 0.0003], ['8A polychloroprene', 'none', 90, 0.03, 0.001], ]) # This function final mean current demand, M, in accodance with Eq. 3 of [1] def Icf(Ac, fcf, icm, k): Icf = Ac*fcf*icm*k return Icf; def fcf(a, b, t): fcf = a + b*tf return fcf; # This function return required anode mass, M, in accodance with Eq.5 of [1] def M(Icm, tf, u, e): M = (Icm*tf*8760)/(u*e) return M; def DNVGLRPF113(D, lPL, lFJ, tAmb, tAno, tf, rhoSea, aGap, aThk, aDen, aMat, coatLP, coatFJ, nJoints, burial, u=0.8): k = 1.0 EA0 = -0.85 # determine mean current demand from Table 6-2 of [1] icm = [x for x in Table62 if x[0] > tAmb][0][burial] # print(icm) if aMat == False: aMaterial = 'Al-Zn-In' else: aMaterial = 'Zn' # determine anode properties from Table 6-3 of [1] anode = [x for x in Table63 if (x[0] == aMaterial and float(x[1]) >= float(tAno)) ][0] if burial == 1: EC0 = float(anode[2]) e = float(anode[3]) else: EC0 = float(anode[4]) e = float(anode[5]) # print(anode) # print(EC0) # print(e) # determine coating breakdown factor from Table A-1 of [1] coatingPL = TableA1[coatLP] aPL = float(coatingPL[3]) bPL = float(coatingPL[4]) # print(coatingPL) # print(aPL) # print(bPL) # determine field joint coating breakdown factor from Table A-2 of [1] coatingFJ = TableA2[coatFJ] aFJ = float(coatingFJ[3]) bFJ = float(coatingFJ[4]) # print(coatingFJ) # print(aFJ) # print(bFJ) # determine coating area Acl = pi*D*(lPL)*nJoints AclPL = pi*D*(lPL-2*lFJ)*nJoints AclFJ = pi*D*(2*lFJ)*nJoints # print(AclPL) # print(AclFJ) # print(Acl) #determine mean coating breakdown factor, Eq 2 of [1] fcmPL = aPL + 0.5*bPL*tf fcmFJ = aFJ + 0.5*bFJ*tf # print(fcmPL) # print(fcmFJ) #determine mean current demand, Eq 1 of [1] IcmPL = AclPL*fcmPL*icm*k IcmFJ = AclFJ*fcmFJ*icm*k Icm = IcmPL + IcmFJ # print(IcmPL) # print(IcmFJ) # print(Icm) #determine final coating breakdown factor, Eq 4 of [1] fcfPL = aPL + bPL*tf fcfFJ = aFJ + bFJ*tf # print(fcfPL) # print(fcfFJ) #determine final coating breakdown factor, Eq 3 of [1] IcfPL = AclPL*fcfPL*icm*k IcfFJ = AclFJ*fcfFJ*icm*k Icf = IcfPL + IcfFJ # print(IcfPL) # print(IcfFJ) # print(Icf) #determine minimun required anode mass, Eq. 5 of [1] reqM = (Icm*tf*8760)/(0.80*e) reqV = reqM/aDen # print('required anode mass',reqM) # print('required anode volume', reqV) unitV = (0.25*pi*((D + 2*aThk)**2) - 0.25*pi*(D**2) - 2*aGap*aThk) massLength = reqV/unitV # print('required anode length by mass', massLength) deltaE = EC0 - EA0 reqA = (0.315*rhoSea*Icf/deltaE)**2 unitA = pi*(D+2*(1-u)*aThk) - 2*aGap areaLength = reqA/unitA # print('required anode length by area', areaLength) input = [D, lPL, lFJ, tAmb, tAno, tf, rhoSea, aGap, aThk, aDen, aMat, coatLP, coatFJ, nJoints, burial] # output = [icm, anode, coatingPL, coatingFJ, reqM, reqV, massLength, areaLength] output = [icm, reqM, reqA, massLength, areaLength] report = [] resultRaw = [input, output, report] inputJson = { 'Outer diameter, m':D, 'Length of pipeline, m':lPL, 'Length of field joint':lFJ, 'Ambient temperature, degC':tAmb, 'Design life, year':tf, 'Seawater density, kg/cu.m':rhoSea, } outPutJson = { 'No of joints, N:':nJoints, 'Mean current demand, A/Sq.m.': fFormat.format(icm, precision ), 'Min. required anode mass, kg':fFormat.format(reqM, precision ), 'Min. required surface area, Sq.m':fFormat.format(reqA, precision ), 'Min. required length by anode mass, m':fFormat.format(massLength, precision ), 'Min. required length by anode area, m':fFormat.format(areaLength, precision ), } resultJson = {'input':inputJson, 'output':outPutJson, 'report':report} result = [resultRaw, resultJson] return result; D = 273.05E-03 lPL = 12 lFJ = 0.30 tAmb = 30 tAno = 30 tf = 30 rhoSea = 1 aGap = 25E-03 aThk = 50E-03 aDen = 2700 aMat = 0 coatLP = 0 coatFJ = 0 spaceMin = 10 spaceMax = 10 burial = 1 # 1 for non burial and 2 for burial if __name__ == "__main__": D = float(sys.argv[1]) lPL = float(sys.argv[2]) lFJ = float(sys.argv[3]) tAmb = float(sys.argv[4]) tAno = float(sys.argv[5]) tf = float(sys.argv[6]) rhoSea = float(sys.argv[7]) aGap = float(sys.argv[8]) aThk = float(sys.argv[9]) aDen = float(sys.argv[10]) aMat = int(sys.argv[11]) coatLP = int(sys.argv[12]) coatFJ = int(sys.argv[13]) spaceMin = int(sys.argv[14]) spaceMax = int(sys.argv[15]) burial = int(sys.argv[16]) resultJson = [] for nJoints in range(spaceMin, spaceMax + 1): result = DNVGLRPF113(D, lPL, lFJ, tAmb, tAno, tf, rhoSea, aGap, aThk, aDen, aMat, coatLP, coatFJ, nJoints, burial) resultJson.append(result[1]) print (json.dumps(resultJson))
[ "numpy.array", "json.dumps" ]
[((402, 508), 'numpy.array', 'np.array', (['[[25, 0.05, 0.02], [50, 0.06, 0.03], [80, 0.075, 0.04], [120, 0.1, 0.06], [\n 200, 0.13, 0.08]]'], {}), '([[25, 0.05, 0.02], [50, 0.06, 0.03], [80, 0.075, 0.04], [120, 0.1,\n 0.06], [200, 0.13, 0.08]])\n', (410, 508), True, 'import numpy as np\n'), ((550, 767), 'numpy.array', 'np.array', (["[['Al-Zn-In', 30, -1.05, 2000, -1.0, 1500], ['Al-Zn-In', 60, -1.05, 1500, -\n 1.0, 680], ['Al-Zn-In', 80, -1.0, 720, -1.0, 320], ['Zn', 30, -1.03, \n 780, -0.98, 750], ['Zn', 50, -1.05, 2000, -0.75, 580]]"], {}), "([['Al-Zn-In', 30, -1.05, 2000, -1.0, 1500], ['Al-Zn-In', 60, -1.05,\n 1500, -1.0, 680], ['Al-Zn-In', 80, -1.0, 720, -1.0, 320], ['Zn', 30, -\n 1.03, 780, -0.98, 750], ['Zn', 50, -1.05, 2000, -0.75, 580]])\n", (558, 767), True, 'import numpy as np\n'), ((814, 1345), 'numpy.array', 'np.array', (["[['Glass fibre reincored alphat enamel', True, 70, 0.01, 0.0003], ['FBE', \n True, 90, 0.03, 0.0003], ['FBE', False, 90, 0.03, 0.001], [\n '3-layer FBE/PE', True, 80, 0.001, 3e-05], ['3-layer FBE/PE', False, 80,\n 0.001, 3e-05], ['3-layer FBE/PP', True, 110, 0.001, 3e-05], [\n '3-layer FBE/PP', False, 80, 0.001, 3e-05], [\n 'FBE/PP Thermally insulating coating', False, 140, 0.0003, 1e-05], [\n 'FBE/PU Thermally insulating coating', False, 70, 0.01, 0.003], [\n 'Polychloroprene', False, 90, 0.01, 0.001]]"], {}), "([['Glass fibre reincored alphat enamel', True, 70, 0.01, 0.0003],\n ['FBE', True, 90, 0.03, 0.0003], ['FBE', False, 90, 0.03, 0.001], [\n '3-layer FBE/PE', True, 80, 0.001, 3e-05], ['3-layer FBE/PE', False, 80,\n 0.001, 3e-05], ['3-layer FBE/PP', True, 110, 0.001, 3e-05], [\n '3-layer FBE/PP', False, 80, 0.001, 3e-05], [\n 'FBE/PP Thermally insulating coating', False, 140, 0.0003, 1e-05], [\n 'FBE/PU Thermally insulating coating', False, 70, 0.01, 0.003], [\n 'Polychloroprene', False, 90, 0.01, 0.001]])\n", (822, 1345), True, 'import numpy as np\n'), ((1380, 2775), 'numpy.array', 'np.array', (["[['none', '4E(1) moulded PU on top bare steel (with primer)', 70, 0.3, 0.03\n ], [\n '1D Adhesive Tape or 2A(1)/2A-(2) HSS (PE/PP backing) with mastic adhesive'\n , '4E(2) moulded PU on top 1D or 2A(1)/2A(2)', 70, 0.1, 0.01], [\n '2B(1) HSS (backing + adhesive in PE with LE primer)', 'none', 70, 0.03,\n 0.003], ['2B(1) HSS (backing + adhesive in PE with LE primer)',\n '4E(2) moulded PU on 0.03 0.003 top 2B(1)', 70, 0.03, 0.003], [\n '2C (1) HSS (backing + adhesive in PP, LE primer)', 'none', 110, 0.03, \n 0.003], ['2C (1) HSS (backing + adhesive in PP, LE primer)',\n '4E(2) moulded PU on top 2B(1)', 110, 0.03, 0.003], ['3A FBE', 'none', \n 90, 0.1, 0.01], ['3A FBE', '4E(2) moulded PU on top', 90, 0.03, 0.003],\n ['2B(2) FBE with PE HSS', 'none', 70, 0.01, 0.0003], [\n '2B(2) FBE with PE HSS', '4E(2) moulded PU on top FBE + PE HSS', 70, \n 0.01, 0.0003], [\n '5D(1) and 5E FBE with PE applied as flame spraying or tape, respectively',\n 'none', 70, 0.01, 0.0003], ['2C(2) FBE with PP HSS', 'none', 140, 0.01,\n 0.0003], [\n '5A/B/C(1) FBE, PP adhesive and PP (wrapped, flame sprayed or moulded)',\n 'none', 140, 0.01, 0.0003], ['NA',\n '5C(1) Moulded PE on top FBE with PE adhesive', 70, 0.01, 0.0003], [\n 'NA', '5C(2) Moulded PP on top FBE with PP adhesive', 140, 0.01, 0.0003\n ], ['8A polychloroprene', 'none', 90, 0.03, 0.001]]"], {}), "([['none', '4E(1) moulded PU on top bare steel (with primer)', 70, \n 0.3, 0.03], [\n '1D Adhesive Tape or 2A(1)/2A-(2) HSS (PE/PP backing) with mastic adhesive'\n , '4E(2) moulded PU on top 1D or 2A(1)/2A(2)', 70, 0.1, 0.01], [\n '2B(1) HSS (backing + adhesive in PE with LE primer)', 'none', 70, 0.03,\n 0.003], ['2B(1) HSS (backing + adhesive in PE with LE primer)',\n '4E(2) moulded PU on 0.03 0.003 top 2B(1)', 70, 0.03, 0.003], [\n '2C (1) HSS (backing + adhesive in PP, LE primer)', 'none', 110, 0.03, \n 0.003], ['2C (1) HSS (backing + adhesive in PP, LE primer)',\n '4E(2) moulded PU on top 2B(1)', 110, 0.03, 0.003], ['3A FBE', 'none', \n 90, 0.1, 0.01], ['3A FBE', '4E(2) moulded PU on top', 90, 0.03, 0.003],\n ['2B(2) FBE with PE HSS', 'none', 70, 0.01, 0.0003], [\n '2B(2) FBE with PE HSS', '4E(2) moulded PU on top FBE + PE HSS', 70, \n 0.01, 0.0003], [\n '5D(1) and 5E FBE with PE applied as flame spraying or tape, respectively',\n 'none', 70, 0.01, 0.0003], ['2C(2) FBE with PP HSS', 'none', 140, 0.01,\n 0.0003], [\n '5A/B/C(1) FBE, PP adhesive and PP (wrapped, flame sprayed or moulded)',\n 'none', 140, 0.01, 0.0003], ['NA',\n '5C(1) Moulded PE on top FBE with PE adhesive', 70, 0.01, 0.0003], [\n 'NA', '5C(2) Moulded PP on top FBE with PP adhesive', 140, 0.01, 0.0003\n ], ['8A polychloroprene', 'none', 90, 0.03, 0.001]])\n", (1388, 2775), True, 'import numpy as np\n'), ((7782, 7804), 'json.dumps', 'json.dumps', (['resultJson'], {}), '(resultJson)\n', (7792, 7804), False, 'import json\n')]
""" Getting started with The Cannon and APOGEE """ import os import numpy as np from astropy.table import Table import AnniesLasso as tc # Load in the data. PATH, CATALOG, FILE_FORMAT = ("/Users/arc/research/apogee/", "apogee-rg.fits", "apogee-rg-custom-normalization-{}.memmap") labelled_set = Table.read(os.path.join(PATH, CATALOG)) dispersion = np.memmap(os.path.join(PATH, FILE_FORMAT).format("dispersion"), mode="r", dtype=float) normalized_flux = np.memmap( os.path.join(PATH, FILE_FORMAT).format("flux"), mode="c", dtype=float).reshape((len(labelled_set), -1)) normalized_ivar = np.memmap( os.path.join(PATH, FILE_FORMAT).format("ivar"), mode="c", dtype=float).reshape(normalized_flux.shape) # The labelled set includes ~14000 stars. Let's chose a random ~1,400 for the # training and validation sets. np.random.seed(888) # For reproducibility. q = np.random.randint(0, 10, len(labelled_set)) % 10 validate_set = (q == 0) train_set = (q == 1) # Create a Cannon model in parallel using all available threads model = tc.L1RegularizedCannonModel(labelled_set[train_set], normalized_flux[train_set], normalized_ivar[train_set], dispersion=dispersion, threads=-1) # No regularization. model.regularization = 0 # Specify the vectorizer. model.vectorizer = tc.vectorizer.NormalizedPolynomialVectorizer( labelled_set[train_set], tc.vectorizer.polynomial.terminator(["TEFF", "LOGG", "FE_H"], 2)) print("Vectorizer terms: {0}".format( " + ".join(model.vectorizer.get_human_readable_label_vector()))) # Train the model. model.train() # Let's set the scatter for each pixel to ensure the mean chi-squared value is # 1 for the training set, then re-train. model._set_s2_by_hogg_heuristic() model.train() # Use the model to fit the stars in the validation set. validation_set_labels = model.fit( normalized_flux[validate_set], normalized_ivar[validate_set]) for i, label_name in enumerate(model.vectorizer.label_names): fig, ax = plt.subplots() x = labelled_set[label_name][validate_set] y = validation_set_labels[:, i] abs_diff = np.abs(y - x) ax.scatter(x, y, facecolor="k") limits = np.array([ax.get_xlim(), ax.get_ylim()]) ax.set_xlim(limits.min(), limits.max()) ax.set_ylim(limits.min(), limits.max()) ax.set_title("{0}: {1:.2f}".format(label_name, np.mean(abs_diff))) print("{0}: {1:.2f}".format(label_name, np.mean(abs_diff)))
[ "numpy.abs", "numpy.mean", "AnniesLasso.vectorizer.polynomial.terminator", "os.path.join", "AnniesLasso.L1RegularizedCannonModel", "numpy.random.seed" ]
[((840, 859), 'numpy.random.seed', 'np.random.seed', (['(888)'], {}), '(888)\n', (854, 859), True, 'import numpy as np\n'), ((1055, 1203), 'AnniesLasso.L1RegularizedCannonModel', 'tc.L1RegularizedCannonModel', (['labelled_set[train_set]', 'normalized_flux[train_set]', 'normalized_ivar[train_set]'], {'dispersion': 'dispersion', 'threads': '(-1)'}), '(labelled_set[train_set], normalized_flux[\n train_set], normalized_ivar[train_set], dispersion=dispersion, threads=-1)\n', (1082, 1203), True, 'import AnniesLasso as tc\n'), ((315, 342), 'os.path.join', 'os.path.join', (['PATH', 'CATALOG'], {}), '(PATH, CATALOG)\n', (327, 342), False, 'import os\n'), ((1379, 1443), 'AnniesLasso.vectorizer.polynomial.terminator', 'tc.vectorizer.polynomial.terminator', (["['TEFF', 'LOGG', 'FE_H']", '(2)'], {}), "(['TEFF', 'LOGG', 'FE_H'], 2)\n", (1414, 1443), True, 'import AnniesLasso as tc\n'), ((2105, 2118), 'numpy.abs', 'np.abs', (['(y - x)'], {}), '(y - x)\n', (2111, 2118), True, 'import numpy as np\n'), ((367, 398), 'os.path.join', 'os.path.join', (['PATH', 'FILE_FORMAT'], {}), '(PATH, FILE_FORMAT)\n', (379, 398), False, 'import os\n'), ((2350, 2367), 'numpy.mean', 'np.mean', (['abs_diff'], {}), '(abs_diff)\n', (2357, 2367), True, 'import numpy as np\n'), ((2415, 2432), 'numpy.mean', 'np.mean', (['abs_diff'], {}), '(abs_diff)\n', (2422, 2432), True, 'import numpy as np\n'), ((481, 512), 'os.path.join', 'os.path.join', (['PATH', 'FILE_FORMAT'], {}), '(PATH, FILE_FORMAT)\n', (493, 512), False, 'import os\n'), ((622, 653), 'os.path.join', 'os.path.join', (['PATH', 'FILE_FORMAT'], {}), '(PATH, FILE_FORMAT)\n', (634, 653), False, 'import os\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :mod:`fit` ================== .. module:: fit :synopsis: .. moduleauthor:: hbldh <<EMAIL>> Created on 2015-09-24, 07:18:22 """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import numpy as np from b2ac.compat import * import b2ac.matrix.matrix_operations as mo import b2ac.eigenmethods.qr_algorithm as qr import b2ac.eigenmethods.inverse_iteration as inv_iter def fit_improved_B2AC_double(points): """Ellipse fitting in Python with improved B2AC algorithm as described in this `paper <http://autotrace.sourceforge.net/WSCG98.pdf>`_. This version of the fitting uses float storage during calculations and performs the eigensolver on a float array. It only uses `b2ac` package methods for fitting, to be as similar to the integer implementation as possible. :param points: The [Nx2] array of points to fit ellipse to. :type points: :py:class:`numpy.ndarray` :return: The conic section array defining the fitted ellipse. :rtype: :py:class:`numpy.ndarray` """ e_conds = [] points = np.array(points, 'float') M, T = _calculate_M_and_T_double(points) e_vals = sorted(qr.QR_algorithm_shift_Givens_double(M)[0]) a = None for ev_ind in [1, 2, 0]: # Find the eigenvector that matches this eigenvector. eigenvector = inv_iter.inverse_iteration_for_eigenvector_double(M, e_vals[ev_ind], 5) # See if that eigenvector yields an elliptical solution. elliptical_condition = (4 * eigenvector[0] * eigenvector[2]) - (eigenvector[1] ** 2) e_conds.append(elliptical_condition) if elliptical_condition > 0: a = eigenvector break if a is None: print("Eigenvalues = {0}".format(e_vals)) print("Elliptical conditions = {0}".format(e_conds)) raise ArithmeticError("No elliptical solution found.") conic_coefficients = np.concatenate((a, np.dot(T, a))) return conic_coefficients def _calculate_M_and_T_double(points): """Part of the B2AC ellipse fitting algorithm, calculating the M and T matrices needed. :param points: The [Nx2] array of points to fit ellipse to. :type points: :py:class:`numpy.ndarray` :return: Matrices M and T. :rtype: tuple """ S = _calculate_scatter_matrix_double(points[:, 0], points[:, 1]) S1 = S[:3, :3] S3 = np.array([S[3, 3], S[3, 4], S[3, 5], S[4, 4], S[4, 5], S[5, 5]]) S3_inv = mo.inverse_symmetric_3by3_double(S3).reshape((3, 3)) S2 = S[:3, 3:] T = -np.dot(S3_inv, S2.T) M_term_2 = np.dot(S2, T) M = S1 + M_term_2 M[[0, 2], :] = M[[2, 0], :] / 2 M[1, :] = -M[1, :] return M, T def _calculate_scatter_matrix_double(x, y): """Calculates the complete scatter matrix for the input coordinates. :param x: The x coordinates. :type x: :py:class:`numpy.ndarray` :param y: The y coordinates. :type y: :py:class:`numpy.ndarray` :return: The complete scatter matrix. :rtype: :py:class:`numpy.ndarray` """ D = np.ones((len(x), 6), 'int64') D[:, 0] = x * x D[:, 1] = x * y D[:, 2] = y * y D[:, 3] = x D[:, 4] = y return D.T.dot(D)
[ "b2ac.eigenmethods.inverse_iteration.inverse_iteration_for_eigenvector_double", "b2ac.matrix.matrix_operations.inverse_symmetric_3by3_double", "numpy.array", "numpy.dot", "b2ac.eigenmethods.qr_algorithm.QR_algorithm_shift_Givens_double" ]
[((1195, 1220), 'numpy.array', 'np.array', (['points', '"""float"""'], {}), "(points, 'float')\n", (1203, 1220), True, 'import numpy as np\n'), ((2502, 2566), 'numpy.array', 'np.array', (['[S[3, 3], S[3, 4], S[3, 5], S[4, 4], S[4, 5], S[5, 5]]'], {}), '([S[3, 3], S[3, 4], S[3, 5], S[4, 4], S[4, 5], S[5, 5]])\n', (2510, 2566), True, 'import numpy as np\n'), ((2697, 2710), 'numpy.dot', 'np.dot', (['S2', 'T'], {}), '(S2, T)\n', (2703, 2710), True, 'import numpy as np\n'), ((1458, 1529), 'b2ac.eigenmethods.inverse_iteration.inverse_iteration_for_eigenvector_double', 'inv_iter.inverse_iteration_for_eigenvector_double', (['M', 'e_vals[ev_ind]', '(5)'], {}), '(M, e_vals[ev_ind], 5)\n', (1507, 1529), True, 'import b2ac.eigenmethods.inverse_iteration as inv_iter\n'), ((2661, 2681), 'numpy.dot', 'np.dot', (['S3_inv', 'S2.T'], {}), '(S3_inv, S2.T)\n', (2667, 2681), True, 'import numpy as np\n'), ((1288, 1326), 'b2ac.eigenmethods.qr_algorithm.QR_algorithm_shift_Givens_double', 'qr.QR_algorithm_shift_Givens_double', (['M'], {}), '(M)\n', (1323, 1326), True, 'import b2ac.eigenmethods.qr_algorithm as qr\n'), ((2055, 2067), 'numpy.dot', 'np.dot', (['T', 'a'], {}), '(T, a)\n', (2061, 2067), True, 'import numpy as np\n'), ((2580, 2616), 'b2ac.matrix.matrix_operations.inverse_symmetric_3by3_double', 'mo.inverse_symmetric_3by3_double', (['S3'], {}), '(S3)\n', (2612, 2616), True, 'import b2ac.matrix.matrix_operations as mo\n')]
import logging import multiprocessing import os import pickle as pkl import numpy as np import tensorflow as tf from gensim.models import word2vec from gensim.models.word2vec import PathLineSentences logger = logging.getLogger('Word2Vec') logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.addHandler(console_handler) seg_file = 'data/processed/seg_text.txt' word_vec_file = 'data/processed/word2vec.txt' FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('processed_data_path', 'data/processed', 'processed data dir to load') tf.app.flags.DEFINE_integer('word_dim', 300, 'dimension of word embedding') def word_vec(): logger.info('Word to vec') model = word2vec.Word2Vec(PathLineSentences(seg_file), sg=1, size=300, window=5, min_count=10, sample=1e-4, workers=multiprocessing.cpu_count()) model.wv.save_word2vec_format(word_vec_file, binary=False) def dump_pkl(file_path, obj): with open(file_path, 'wb') as f: pkl.dump(obj, f) f.close() def create_word_vec(flags): logger.info('Word map and embedding') word_map = {} word_map['PAD'] = len(word_map) word_map['UNK'] = len(word_map) word_embed = [] for line in open(word_vec_file, 'r'): content = line.strip().split() if len(content) != flags.word_dim + 1: continue word_map[content[0]] = len(word_map) word_embed.append(np.asarray(content[1:], dtype=np.float32)) word_embed = np.stack(word_embed) embed_mean, embed_std = word_embed.mean(), word_embed.std() pad_embed = np.random.normal(embed_mean, embed_std, (2, flags.word_dim)) word_embed = np.concatenate((pad_embed, word_embed), axis=0) word_embed = word_embed.astype(np.float32) print('Word in dict - {}'.format(len(word_map))) dump_pkl(os.path.join(flags.processed_data_path, 'word_map.pkl'), word_map) dump_pkl(os.path.join(flags.processed_data_path, 'word_embed.pkl'), word_embed) def main(_): word_vec() create_word_vec(FLAGS) if __name__ == "__main__": tf.app.run()
[ "logging.getLogger", "numpy.random.normal", "logging.StreamHandler", "pickle.dump", "tensorflow.app.flags.DEFINE_integer", "logging.Formatter", "os.path.join", "numpy.asarray", "tensorflow.app.flags.DEFINE_string", "multiprocessing.cpu_count", "numpy.stack", "numpy.concatenate", "gensim.models.word2vec.PathLineSentences", "tensorflow.app.run" ]
[((210, 239), 'logging.getLogger', 'logging.getLogger', (['"""Word2Vec"""'], {}), "('Word2Vec')\n", (227, 239), False, 'import logging\n'), ((282, 355), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (299, 355), False, 'import logging\n'), ((374, 397), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (395, 397), False, 'import logging\n'), ((628, 729), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""processed_data_path"""', '"""data/processed"""', '"""processed data dir to load"""'], {}), "('processed_data_path', 'data/processed',\n 'processed data dir to load')\n", (654, 729), True, 'import tensorflow as tf\n'), ((726, 801), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""word_dim"""', '(300)', '"""dimension of word embedding"""'], {}), "('word_dim', 300, 'dimension of word embedding')\n", (753, 801), True, 'import tensorflow as tf\n'), ((1664, 1684), 'numpy.stack', 'np.stack', (['word_embed'], {}), '(word_embed)\n', (1672, 1684), True, 'import numpy as np\n'), ((1766, 1826), 'numpy.random.normal', 'np.random.normal', (['embed_mean', 'embed_std', '(2, flags.word_dim)'], {}), '(embed_mean, embed_std, (2, flags.word_dim))\n', (1782, 1826), True, 'import numpy as np\n'), ((1844, 1891), 'numpy.concatenate', 'np.concatenate', (['(pad_embed, word_embed)'], {'axis': '(0)'}), '((pad_embed, word_embed), axis=0)\n', (1858, 1891), True, 'import numpy as np\n'), ((2247, 2259), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (2257, 2259), True, 'import tensorflow as tf\n'), ((881, 908), 'gensim.models.word2vec.PathLineSentences', 'PathLineSentences', (['seg_file'], {}), '(seg_file)\n', (898, 908), False, 'from gensim.models.word2vec import PathLineSentences\n'), ((1170, 1186), 'pickle.dump', 'pkl.dump', (['obj', 'f'], {}), '(obj, f)\n', (1178, 1186), True, 'import pickle as pkl\n'), ((2006, 2061), 'os.path.join', 'os.path.join', (['flags.processed_data_path', '"""word_map.pkl"""'], {}), "(flags.processed_data_path, 'word_map.pkl')\n", (2018, 2061), False, 'import os\n'), ((2086, 2143), 'os.path.join', 'os.path.join', (['flags.processed_data_path', '"""word_embed.pkl"""'], {}), "(flags.processed_data_path, 'word_embed.pkl')\n", (2098, 2143), False, 'import os\n'), ((1001, 1028), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1026, 1028), False, 'import multiprocessing\n'), ((1603, 1644), 'numpy.asarray', 'np.asarray', (['content[1:]'], {'dtype': 'np.float32'}), '(content[1:], dtype=np.float32)\n', (1613, 1644), True, 'import numpy as np\n')]
import struct import numpy from math import floor class HeightMap: def __init__(self, width, length, heightData=None, max_val=0): self.heightData = ( heightData if heightData != None else [0 for n in range(width * length)] ) self.width = width self.length = length self.highest = max_val def copy(self): return HeightMap(self.width, self.length, list(self.heightData)) def getMax(self): return self.highest @classmethod def from_data(cls, data, res, width): heightData, length, m = cls._parse_data(data, res, width) return cls(width, length, heightData, m) def serialize(self, res): return HeightMap._serialize_data(self.heightData, res, self.getWidth()) # Takes a bz height map byte buffer and converts it to an array of height points @classmethod def _parse_data(cls, data, res, width): size = int(len(data) / 2) zone_size = 2 ** res length = int(size / width) m = 0 obuffer = [0 for n in range(size)] for n in range(size): try: d_idx = n * 2 zone = int(n / (zone_size ** 2)) x = (n % zone_size) + zone * zone_size % width z = (int(n / zone_size) % zone_size) + int( zone * zone_size / width ) * zone_size height = struct.unpack("<H", data[d_idx : d_idx + 2])[0] m = max(m, height) b_idx = int(x + ((length - 1) - z) * width) obuffer[b_idx] = height except Exception as e: break return obuffer, length, m # Takes an array of height points and converts it to a bz height map @classmethod def _serialize_data(cls, data, res, width): size = len(data) zone_size = 2 ** res length = int(size / width) obuffer = [b"" for n in range(size)] for n in range(size): try: zone = int(n / (zone_size ** 2)) x = (n % zone_size) + zone * zone_size % width z = (int(n / zone_size) % zone_size) + int( zone * zone_size / width ) * zone_size b_idx = int(x + ((length - 1) - z) * width) obuffer[n] = struct.pack("<H", data[b_idx]) except Exception as e: print(e) break return b"".join(obuffer) def getWidth(self): return self.width def getLength(self): return self.length def getHeight(self, x, z): xx = int(min(max(x, 0), self.getWidth() - 1)) zz = int(min(max(z, 0), self.getLength() - 1)) return self.heightData[xx + zz * self.getWidth()] def getCroped(self, x, z, w, h): return HeightMap( w, h, [self.getHeight(x + n % w, z + int(n / w)) for n in range(w * h)] ) def getResized(self, newW, newL, method=lambda x, z, map: map.getHeight(x, z)): newMap = [0 for n in range(int(newW * newL))] wf, lf = self.getWidth() / newW, self.getLength() / newL m = 0 print("Resizing:") lp = 0 for i in range(len(newMap)): x = i % newW z = int(i / newW) newMap[i] = int(method(int(x * wf), int(z * lf), self)) m = max(m, newMap[i]) p = int((i + 1) / len(newMap) * 25) if p != lp: print( "[{}{}] - {:>8}/{:<8}".format( "=" * p, " " * (25 - p), i + 1, len(newMap) ), end="\r", ) lp = p print("\nDone") return HeightMap(int(newW), int(newL), newMap, m) w_cache = {} def createWeightGrid(size): if not int(size) in w_cache: c = size / 2 weights = [ size - ((c - n % size) ** 2 + (c - int(n / size)) ** 2) ** 0.5 for n in range(0, size * size) ] w_cache[int(size)] = weights return w_cache[int(size)] def AvgEdge(x, z, map, grid=5): cropped = map.getCroped(int(x - grid / 2), int(z - grid / 2), grid, grid) hdata = cropped.heightData weights = createWeightGrid(grid) mean, median = numpy.average(hdata, weights=weights), numpy.median(hdata) d = [n for n in hdata if (abs(n - mean) >= abs(n - median))] return numpy.mean([numpy.mean(d)]) def Avg(x, z, map, grid=5): cropped = map.getCroped(int(x - grid / 2), int(z - grid / 2), grid, grid) weights = createWeightGrid(grid) hdata = cropped.heightData return numpy.average(hdata, weights=weights)
[ "numpy.mean", "numpy.median", "numpy.average", "struct.pack", "struct.unpack" ]
[((4669, 4706), 'numpy.average', 'numpy.average', (['hdata'], {'weights': 'weights'}), '(hdata, weights=weights)\n', (4682, 4706), False, 'import numpy\n'), ((4318, 4355), 'numpy.average', 'numpy.average', (['hdata'], {'weights': 'weights'}), '(hdata, weights=weights)\n', (4331, 4355), False, 'import numpy\n'), ((4357, 4376), 'numpy.median', 'numpy.median', (['hdata'], {}), '(hdata)\n', (4369, 4376), False, 'import numpy\n'), ((4465, 4478), 'numpy.mean', 'numpy.mean', (['d'], {}), '(d)\n', (4475, 4478), False, 'import numpy\n'), ((2358, 2388), 'struct.pack', 'struct.pack', (['"""<H"""', 'data[b_idx]'], {}), "('<H', data[b_idx])\n", (2369, 2388), False, 'import struct\n'), ((1428, 1470), 'struct.unpack', 'struct.unpack', (['"""<H"""', 'data[d_idx:d_idx + 2]'], {}), "('<H', data[d_idx:d_idx + 2])\n", (1441, 1470), False, 'import struct\n')]
from ctypes import * from typing import * from pathlib import Path from numpy import array, cos, ndarray, pi, random, sin, zeros, tan try: lib = cdll.LoadLibrary(str(Path(__file__).with_name("libkmeans.so"))) except Exception as E: print(f"Cannot load DLL") print(E) class observation_2d(Structure): _fields_ = [("x", c_double), ("y", c_double), ("group", c_size_t)] class observation_3d(Structure): _fields_ = [("x", c_double), ("y", c_double), ("z", c_double), ("group", c_size_t)] class cluster_2d(Structure): _fields_ = [("x", c_double), ("y", c_double), ("count", c_size_t)] class cluster_3d(Structure): _fields_ = [("x", c_double), ("y", c_double), ("z", c_double), ("count", c_size_t)] lib.kmeans_2d.restype = POINTER(cluster_2d) def kmeans_2d(observations: ndarray, k: Optional[int] = 5) -> Tuple[ndarray, ndarray]: """Partition observations into k clusters. Parameters ---------- observations : ndarray, `shape (N, 2)` An array of observations (x, y) to be clustered. Data should be provided as: `[(x, y), (x, y), (x, y), ...]` k : int, optional Amount of clusters to partition observations into, by default 5 Returns ------- center : ndarray, `shape (k, 2)` An array of positions to center of each cluster. count : ndarray, `shape (k, )` Array of counts of datapoints closest to the center of its cluster. Examples ------- >>> observations = [[6, 1], [-4, -4], [1, -7], [9, -2], [6, -6]] >>> center, count = kmeans_2d(observations, k=2) >>> center [[-4, -4 5, -3]] >>> count [1, 4] """ if not isinstance(observations, ndarray): raise TypeError("Observations must be a ndarray.") # Fix orientation on data if observations.shape[-1] == 2: observations = observations.T else: raise ValueError("Provided array should contain ((x, y), ) observations.") # Find observation_2d length n = observations.shape[-1] # Create a Python list of observations py_observations_list = map(observation_2d, *observations) # Convert the Python list into a c-array c_observations_array = (observation_2d * n)(*py_observations_list) # Get c-array of cluster_2d c_clusters_array = lib.kmeans_2d( c_observations_array, c_size_t(n), c_size_t(k)) # Convert c-array of clusters into a python list py_clusters_list = [c_clusters_array[index] for index in range(k)] # Split clusters center = zeros([k, 2], dtype=observations.dtype) count = zeros(k, dtype=int) for index, cluster_object in enumerate(py_clusters_list): center[index][0] = cluster_object.x center[index][1] = cluster_object.y count[index] = cluster_object.count # Pack into DataFrame and return return (center, count) lib.kmeans_3d.restype = POINTER(cluster_3d) def kmeans_3d(observations: ndarray, k: Optional[int] = 5) -> Tuple[ndarray, ndarray]: """Partition observations into k clusters. Parameters ---------- observations : ndarray, `shape (N, 3)` An array of observations (x, y) to be clustered. Data should be provided as: `[(x, y, z), (x, y, z), (x, y, z), ...]` k : int, optional Amount of clusters to partition observations into, by default 5 Returns ------- center : ndarray, `shape (k, 3)` An array of positions to center of each cluster. count : ndarray, `shape (k, )` Array of counts of datapoints closest to the center of its cluster. Examples ------- >>> observations = [[6, 1, 3], [-4, -4, -4], [1, -7, 7], [9, -2, 1], [6, -6, 6]] >>> center, count = kmeans_3d(observations, k=2) >>> center [[ -0.35830777 -7.41219447 201.90265473] [ 1.83808572 -5.86460671 -28.00696338] [ -0.81562641 -1.20418037 1.60364838]] >>> count [2, 3] """ if not isinstance(observations, ndarray): raise TypeError("Observations must be a ndarray.") # Fix orientation on data if observations.shape[-1] == 3: observations = observations.T else: raise ValueError("Provided array should contain ((x, y, z), ) observations.") # Find observation_3d length n = observations.shape[-1] # Create a Python list of observations py_observations_list = map(observation_3d, *observations) # Convert the Python list into a c-array c_observations_array = (observation_3d * n)(*py_observations_list) # Get c-array of cluster_2d c_clusters_array = lib.kmeans_3d(c_observations_array, c_size_t(n), c_size_t(k)) # Convert c-array of clusters into a python list py_clusters_list = [c_clusters_array[index] for index in range(k)] # Split clusters center = zeros([k, 3], dtype=observations.dtype) count = zeros(k, dtype=int) for index, cluster_object in enumerate(py_clusters_list): center[index][0] = cluster_object.x center[index][1] = cluster_object.y center[index][2] = cluster_object.z count[index] = cluster_object.count # Pack into DataFrame and return return (center, count) def kmeans(observations: ndarray, k: Optional[int] = 5) -> Tuple[ndarray, ndarray]: """Partition observations into k clusters. Parameters ---------- observations : ndarray, `shape (N, 2)` or `shape (N, 3)` An array of observations (x, y) to be clustered. Data should be provided as: `[(x, y), (x, y), (x, y), ...]` or `[(x, y, z), (x, y, z), (x, y, z), ...]` k : int, optional Amount of clusters to partition observations into, by default 5 Returns ------- center : ndarray, `shape (k, 2)` or `shape (k, 3)` An array of positions to center of each cluster. count : ndarray, `shape (k, )` Array of counts of datapoints closest to the center of its cluster. Examples ------- >>> observations = [[6, 1], [-4, -4], [1, -7], [9, -2], [6, -6]] >>> center, count = kmeans_2d(observations, k=2) >>> center [[-4, -4 5, -3]] >>> count [1, 4] """ if not isinstance(observations, ndarray): raise TypeError("Observations must be a ndarray.") if observations.shape[-1] == 3: return kmeans_3d(observations, k) elif observations.shape[-1] == 2: return kmeans_2d(observations, k) else: pass if __name__ == "__main__": random.seed(1234) rand_list = random.random(100) x = 10 * rand_list * cos(2 * pi * rand_list) y = 10 * rand_list * sin(2 * pi * rand_list) z = 10 * rand_list * tan(2 * pi * rand_list) df = array([x, y, z]).T print(f"Observations:\n{df[0:5]}\n...\n\nshape {len(df), len(df[0])}\n") centers, count = kmeans(df, 3) print(f"Centers:\n{centers}\n") print(f"Count:\n{count}") observations = [[6, 1], [-4, -4], [1, -7], [9, -2], [6, -6]] center, count = kmeans_2d(array(observations), k=2) print(f"Centers:\n{centers}\n") print(f"Count:\n{count}")
[ "numpy.tan", "pathlib.Path", "numpy.random.random", "numpy.array", "numpy.zeros", "numpy.cos", "numpy.random.seed", "numpy.sin" ]
[((2541, 2580), 'numpy.zeros', 'zeros', (['[k, 2]'], {'dtype': 'observations.dtype'}), '([k, 2], dtype=observations.dtype)\n', (2546, 2580), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((2593, 2612), 'numpy.zeros', 'zeros', (['k'], {'dtype': 'int'}), '(k, dtype=int)\n', (2598, 2612), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((4813, 4852), 'numpy.zeros', 'zeros', (['[k, 3]'], {'dtype': 'observations.dtype'}), '([k, 3], dtype=observations.dtype)\n', (4818, 4852), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((4865, 4884), 'numpy.zeros', 'zeros', (['k'], {'dtype': 'int'}), '(k, dtype=int)\n', (4870, 4884), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6497, 6514), 'numpy.random.seed', 'random.seed', (['(1234)'], {}), '(1234)\n', (6508, 6514), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6532, 6550), 'numpy.random.random', 'random.random', (['(100)'], {}), '(100)\n', (6545, 6550), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6577, 6600), 'numpy.cos', 'cos', (['(2 * pi * rand_list)'], {}), '(2 * pi * rand_list)\n', (6580, 6600), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6626, 6649), 'numpy.sin', 'sin', (['(2 * pi * rand_list)'], {}), '(2 * pi * rand_list)\n', (6629, 6649), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6675, 6698), 'numpy.tan', 'tan', (['(2 * pi * rand_list)'], {}), '(2 * pi * rand_list)\n', (6678, 6698), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((6709, 6725), 'numpy.array', 'array', (['[x, y, z]'], {}), '([x, y, z])\n', (6714, 6725), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((7005, 7024), 'numpy.array', 'array', (['observations'], {}), '(observations)\n', (7010, 7024), False, 'from numpy import array, cos, ndarray, pi, random, sin, zeros, tan\n'), ((172, 186), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (176, 186), False, 'from pathlib import Path\n')]
from collections import Counter, defaultdict import matplotlib as mpl import networkx as nx import numba import numpy as np import pandas as pd import plotly.graph_objects as go import seaborn as sns from fa2 import ForceAtlas2 from scipy import sparse def to_adjacency_matrix(net): if sparse.issparse(net): if type(net) == "scipy.sparse.csr.csr_matrix": return net return sparse.csr_matrix(net, dtype=np.float64), np.arange(net.shape[0]) elif "networkx" in "%s" % type(net): return ( sparse.csr_matrix(nx.adjacency_matrix(net), dtype=np.float64), net.nodes(), ) elif "numpy.ndarray" == type(net): return sparse.csr_matrix(net, dtype=np.float64), np.arange(net.shape[0]) def to_nxgraph(net): if sparse.issparse(net): return nx.from_scipy_sparse_matrix(net) elif "networkx" in "%s" % type(net): return net elif "numpy.ndarray" == type(net): return nx.from_numpy_array(net) def set_node_colors(c, x, cmap, colored_nodes): node_colors = defaultdict(lambda x: "#8d8d8d") node_edge_colors = defaultdict(lambda x: "#4d4d4d") cnt = Counter([c[d] for d in colored_nodes]) num_groups = len(cnt) # Set up the palette if cmap is None: if num_groups <= 10: cmap = sns.color_palette().as_hex() elif num_groups <= 20: cmap = sns.color_palette("tab20").as_hex() else: cmap = sns.color_palette("hls", num_groups).as_hex() # Calc size of groups cmap = dict( zip( [d[0] for d in cnt.most_common(num_groups)], [cmap[i] for i in range(num_groups)], ) ) bounds = np.linspace(0, 1, 11) norm = mpl.colors.BoundaryNorm(bounds, ncolors=12, extend="both") # Calculate the color for each node using the palette cmap_coreness = { k: sns.light_palette(v, n_colors=12).as_hex() for k, v in cmap.items() } cmap_coreness_dark = { k: sns.dark_palette(v, n_colors=12).as_hex() for k, v in cmap.items() } for d in colored_nodes: node_colors[d] = cmap_coreness[c[d]][norm(x[d]) - 1] node_edge_colors[d] = cmap_coreness_dark[c[d]][-norm(x[d])] return node_colors, node_edge_colors def classify_nodes(G, c, x, max_num=None): non_residuals = [d for d in G.nodes() if (c[d] is not None) and (x[d] is not None)] residuals = [d for d in G.nodes() if (c[d] is None) or (x[d] is None)] # Count the number of groups cnt = Counter([c[d] for d in non_residuals]) cvals = np.array([d[0] for d in cnt.most_common(len(cnt))]) if max_num is not None: cvals = set(cvals[:max_num]) else: cvals = set(cvals) # colored_nodes = [d for d in non_residuals if c[d] in cvals] muted = [d for d in non_residuals if not c[d] in cvals] # Bring core nodes to front order = np.argsort([x[d] for d in colored_nodes]) colored_nodes = [colored_nodes[d] for d in order] return colored_nodes, muted, residuals def calc_node_pos(G, iterations=300, **params): default_params = dict( # Behavior alternatives outboundAttractionDistribution=False, # Dissuade hubs linLogMode=False, # NOT IMPLEMENTED adjustSizes=False, # Prevent overlap (NOT IMPLEMENTED) edgeWeightInfluence=1.0, # Performance jitterTolerance=1.0, # Tolerance barnesHutOptimize=True, barnesHutTheta=1.2, multiThreaded=False, # NOT IMPLEMENTED # Tuning scalingRatio=2.0, strongGravityMode=False, gravity=1.0, verbose=False, ) if params is not None: for k, v in params.items(): default_params[k] = v forceatlas2 = ForceAtlas2(**default_params) return forceatlas2.forceatlas2_networkx_layout(G, pos=None, iterations=iterations) def draw( G, c, x, ax, draw_edge=True, font_size=0, pos=None, cmap=None, max_group_num=None, draw_nodes_kwd={}, draw_edges_kwd={"edge_color": "#adadad"}, draw_labels_kwd={}, layout_kwd={}, ): """Plot the core-periphery structure in the networks. :param G: Graph :type G: networkx.Graph :param c: dict :type c: group membership c[i] of i :param x: core (x[i])=1 or periphery (x[i]=0) :type x: dict :param ax: axis :type ax: matplotlib.pyplot.ax :param draw_edge: whether to draw edges, defaults to True :type draw_edge: bool, optional :param font_size: font size for node labels, defaults to 0 :type font_size: int, optional :param pos: pos[i] is the xy coordinate of node i, defaults to None :type pos: dict, optional :param cmap: colomap defaults to None :type cmap: matplotlib.cmap, optional :param max_group_num: Number of groups to color, defaults to None :type max_group_num: int, optional :param draw_nodes_kwd: Parameter for networkx.draw_networkx_nodes, defaults to {} :type draw_nodes_kwd: dict, optional :param draw_edges_kwd: Parameter for networkx.draw_networkx_edges, defaults to {"edge_color": "#adadad"} :type draw_edges_kwd: dict, optional :param draw_labels_kwd: Parameter for networkx.draw_networkx_labels, defaults to {} :type draw_labels_kwd: dict, optional :param layout_kwd: layout keywords, defaults to {} :type layout_kwd: dict, optional :return: (ax, pos) :rtype: matplotlib.pyplot.ax, dict """ # Split node into residual and non-residual colored_nodes, muted_nodes, residuals = classify_nodes(G, c, x, max_group_num) node_colors, node_edge_colors = set_node_colors(c, x, cmap, colored_nodes) # Set the position of nodes if pos is None: pos = calc_node_pos(G, **layout_kwd) # Draw nodes = nx.draw_networkx_nodes( G, pos, node_color=[node_colors[d] for d in colored_nodes], nodelist=colored_nodes, ax=ax, # zorder=3, **draw_nodes_kwd ) if nodes is not None: nodes.set_zorder(3) nodes.set_edgecolor([node_edge_colors[r] for r in colored_nodes]) draw_nodes_kwd_residual = draw_nodes_kwd.copy() draw_nodes_kwd_residual["node_size"] = 0.1 * draw_nodes_kwd.get("node_size", 100) nodes = nx.draw_networkx_nodes( G, pos, node_color="#efefef", nodelist=residuals, node_shape="s", ax=ax, **draw_nodes_kwd_residual ) if nodes is not None: nodes.set_zorder(1) nodes.set_edgecolor("#4d4d4d") if draw_edge: nx.draw_networkx_edges( G.subgraph(colored_nodes + residuals), pos, ax=ax, **draw_edges_kwd ) if font_size > 0: nx.draw_networkx_labels(G, pos, ax=ax, font_size=font_size, **draw_labels_kwd) ax.axis("off") return ax, pos def draw_interactive(G, c, x, hover_text=None, node_size=10.0, pos=None, cmap=None): node_colors, node_edge_colors = set_node_colors(G, c, x, cmap) if pos is None: pos = nx.spring_layout(G) nodelist = [d for d in G.nodes()] group_ids = [c[d] if c[d] is not None else "residual" for d in nodelist] coreness = [x[d] if x[d] is not None else "residual" for d in nodelist] node_size_list = [(x[d] + 1) if x[d] is not None else 1 / 2 for d in nodelist] pos_x = [pos[d][0] for d in nodelist] pos_y = [pos[d][1] for d in nodelist] df = pd.DataFrame( { "x": pos_x, "y": pos_y, "name": nodelist, "group_id": group_ids, "coreness": coreness, "node_size": node_size_list, } ) df["marker"] = df["group_id"].apply( lambda s: "circle" if s != "residual" else "square" ) df["hovertext"] = df.apply( lambda s: "{ht}<br>Group: {group}<br>Coreness: {coreness}".format( ht="Node %s" % s["name"] if hover_text is None else hover_text.get(s["name"], ""), group=s["group_id"], coreness=s["coreness"], ), axis=1, ) fig = go.Figure( data=go.Scatter( x=df["x"], y=df["y"], marker_size=df["node_size"], marker_symbol=df["marker"], hovertext=df["hovertext"], hoverlabel=dict(namelength=0), hovertemplate="%{hovertext}", marker={ "color": node_colors, "sizeref": 1.0 / node_size, "line": {"color": node_edge_colors, "width": 1}, }, mode="markers", ), ) fig.update_layout( autosize=False, width=800, height=800, template="plotly_white", # layout=go.Layout(xaxis={"showgrid": False}, yaxis={"showgrid": True}), ) return fig
[ "numpy.argsort", "networkx.draw_networkx_nodes", "networkx.draw_networkx_labels", "numpy.arange", "seaborn.color_palette", "networkx.spring_layout", "networkx.from_scipy_sparse_matrix", "numpy.linspace", "networkx.from_numpy_array", "pandas.DataFrame", "scipy.sparse.csr_matrix", "networkx.adjacency_matrix", "seaborn.light_palette", "scipy.sparse.issparse", "seaborn.dark_palette", "fa2.ForceAtlas2", "collections.Counter", "collections.defaultdict", "matplotlib.colors.BoundaryNorm" ]
[((293, 313), 'scipy.sparse.issparse', 'sparse.issparse', (['net'], {}), '(net)\n', (308, 313), False, 'from scipy import sparse\n'), ((792, 812), 'scipy.sparse.issparse', 'sparse.issparse', (['net'], {}), '(net)\n', (807, 812), False, 'from scipy import sparse\n'), ((1070, 1102), 'collections.defaultdict', 'defaultdict', (["(lambda x: '#8d8d8d')"], {}), "(lambda x: '#8d8d8d')\n", (1081, 1102), False, 'from collections import Counter, defaultdict\n'), ((1126, 1158), 'collections.defaultdict', 'defaultdict', (["(lambda x: '#4d4d4d')"], {}), "(lambda x: '#4d4d4d')\n", (1137, 1158), False, 'from collections import Counter, defaultdict\n'), ((1170, 1208), 'collections.Counter', 'Counter', (['[c[d] for d in colored_nodes]'], {}), '([c[d] for d in colored_nodes])\n', (1177, 1208), False, 'from collections import Counter, defaultdict\n'), ((1717, 1738), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(11)'], {}), '(0, 1, 11)\n', (1728, 1738), True, 'import numpy as np\n'), ((1750, 1808), 'matplotlib.colors.BoundaryNorm', 'mpl.colors.BoundaryNorm', (['bounds'], {'ncolors': '(12)', 'extend': '"""both"""'}), "(bounds, ncolors=12, extend='both')\n", (1773, 1808), True, 'import matplotlib as mpl\n'), ((2537, 2575), 'collections.Counter', 'Counter', (['[c[d] for d in non_residuals]'], {}), '([c[d] for d in non_residuals])\n', (2544, 2575), False, 'from collections import Counter, defaultdict\n'), ((2919, 2960), 'numpy.argsort', 'np.argsort', (['[x[d] for d in colored_nodes]'], {}), '([x[d] for d in colored_nodes])\n', (2929, 2960), True, 'import numpy as np\n'), ((3786, 3815), 'fa2.ForceAtlas2', 'ForceAtlas2', ([], {}), '(**default_params)\n', (3797, 3815), False, 'from fa2 import ForceAtlas2\n'), ((5833, 5968), 'networkx.draw_networkx_nodes', 'nx.draw_networkx_nodes', (['G', 'pos'], {'node_color': '[node_colors[d] for d in colored_nodes]', 'nodelist': 'colored_nodes', 'ax': 'ax'}), '(G, pos, node_color=[node_colors[d] for d in\n colored_nodes], nodelist=colored_nodes, ax=ax, **draw_nodes_kwd)\n', (5855, 5968), True, 'import networkx as nx\n'), ((6318, 6444), 'networkx.draw_networkx_nodes', 'nx.draw_networkx_nodes', (['G', 'pos'], {'node_color': '"""#efefef"""', 'nodelist': 'residuals', 'node_shape': '"""s"""', 'ax': 'ax'}), "(G, pos, node_color='#efefef', nodelist=residuals,\n node_shape='s', ax=ax, **draw_nodes_kwd_residual)\n", (6340, 6444), True, 'import networkx as nx\n'), ((7466, 7600), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': pos_x, 'y': pos_y, 'name': nodelist, 'group_id': group_ids,\n 'coreness': coreness, 'node_size': node_size_list}"], {}), "({'x': pos_x, 'y': pos_y, 'name': nodelist, 'group_id':\n group_ids, 'coreness': coreness, 'node_size': node_size_list})\n", (7478, 7600), True, 'import pandas as pd\n'), ((829, 861), 'networkx.from_scipy_sparse_matrix', 'nx.from_scipy_sparse_matrix', (['net'], {}), '(net)\n', (856, 861), True, 'import networkx as nx\n'), ((6768, 6846), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['G', 'pos'], {'ax': 'ax', 'font_size': 'font_size'}), '(G, pos, ax=ax, font_size=font_size, **draw_labels_kwd)\n', (6791, 6846), True, 'import networkx as nx\n'), ((7077, 7096), 'networkx.spring_layout', 'nx.spring_layout', (['G'], {}), '(G)\n', (7093, 7096), True, 'import networkx as nx\n'), ((408, 448), 'scipy.sparse.csr_matrix', 'sparse.csr_matrix', (['net'], {'dtype': 'np.float64'}), '(net, dtype=np.float64)\n', (425, 448), False, 'from scipy import sparse\n'), ((450, 473), 'numpy.arange', 'np.arange', (['net.shape[0]'], {}), '(net.shape[0])\n', (459, 473), True, 'import numpy as np\n'), ((976, 1000), 'networkx.from_numpy_array', 'nx.from_numpy_array', (['net'], {}), '(net)\n', (995, 1000), True, 'import networkx as nx\n'), ((1901, 1934), 'seaborn.light_palette', 'sns.light_palette', (['v'], {'n_colors': '(12)'}), '(v, n_colors=12)\n', (1918, 1934), True, 'import seaborn as sns\n'), ((2013, 2045), 'seaborn.dark_palette', 'sns.dark_palette', (['v'], {'n_colors': '(12)'}), '(v, n_colors=12)\n', (2029, 2045), True, 'import seaborn as sns\n'), ((562, 586), 'networkx.adjacency_matrix', 'nx.adjacency_matrix', (['net'], {}), '(net)\n', (581, 586), True, 'import networkx as nx\n'), ((696, 736), 'scipy.sparse.csr_matrix', 'sparse.csr_matrix', (['net'], {'dtype': 'np.float64'}), '(net, dtype=np.float64)\n', (713, 736), False, 'from scipy import sparse\n'), ((738, 761), 'numpy.arange', 'np.arange', (['net.shape[0]'], {}), '(net.shape[0])\n', (747, 761), True, 'import numpy as np\n'), ((1330, 1349), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (1347, 1349), True, 'import seaborn as sns\n'), ((1409, 1435), 'seaborn.color_palette', 'sns.color_palette', (['"""tab20"""'], {}), "('tab20')\n", (1426, 1435), True, 'import seaborn as sns\n'), ((1478, 1514), 'seaborn.color_palette', 'sns.color_palette', (['"""hls"""', 'num_groups'], {}), "('hls', num_groups)\n", (1495, 1514), True, 'import seaborn as sns\n')]
""" A sampler defines a method to sample random data from certain distribution. """ from typing import List import numpy as np class BaseSampler(object): def __init__(self): pass def sample(self, shape, *args): raise NotImplementedError class IntSampler(BaseSampler): def __init__(self, low, high=None): super(IntSampler, self).__init__() if high is None: self.low = 0 self.high = low else: self.low = low self.high = high def sample(self, shape, *args): return np.random.randint(low=self.low, high=self.high, size=shape, dtype=np.int64) class UniformSampler(BaseSampler): def __init__(self, low, high): super(UniformSampler, self).__init__() self.low = np.array(low) self.high = np.array(high) assert self.low.shape == self.high.shape, 'The shape of low and high must be the same. Got low type {} and high type {}'.format( self.low.shape, self.high.shape) def sample(self, shape, *args): return np.random.uniform(low=self.low, high=self.high, size=shape + self.low.shape).astype(np.float32) class GaussianSampler(BaseSampler): def __init__(self, mu=0.0, sigma=1.0): super(GaussianSampler, self).__init__() self.mu = mu self.sigma = sigma def sample(self, shape, *args): return np.random.normal(self.mu, self.sigma, shape) class GaussianMixtureSampler(BaseSampler): """ Sample from GMM with prior probability distribution """ def __init__(self, mu: List, sigma: List, prob=None): assert type(mu) == list and type(sigma) == list, 'mu and sigma must be list' assert len(mu) == len(sigma), 'length of mu and sigma must be the same' if type(prob) == list: assert len(mu) == len(prob) and np.sum(prob) == 1., 'The sum of probability list should be 1.' super(GaussianMixtureSampler, self).__init__() self.mu = mu self.sigma = sigma self.prob = prob def sample(self, shape, *args): ind = np.random.choice(len(self.mu), p=self.prob) return np.random.randn(*shape) * self.sigma[ind] + self.mu[ind] class ConditionGaussianSampler(BaseSampler): """ Conditional Gaussian sampler """ def __init__(self, mu: List, sigma: List): assert type(mu) == list and type(sigma) == list, 'mu and sigma must be list' assert len(mu) == len(sigma), 'length of mu and sigma must be the same' super(ConditionGaussianSampler, self).__init__() self.mu = np.expand_dims(np.array(mu), axis=1) self.sigma = np.expand_dims(np.array(sigma), axis=1) def sample(self, shape, *args): ind = args[0] return np.random.randn(*shape) * self.sigma[ind] + self.mu[ind]
[ "numpy.random.normal", "numpy.array", "numpy.random.randint", "numpy.sum", "numpy.random.uniform", "numpy.random.randn" ]
[((582, 657), 'numpy.random.randint', 'np.random.randint', ([], {'low': 'self.low', 'high': 'self.high', 'size': 'shape', 'dtype': 'np.int64'}), '(low=self.low, high=self.high, size=shape, dtype=np.int64)\n', (599, 657), True, 'import numpy as np\n'), ((796, 809), 'numpy.array', 'np.array', (['low'], {}), '(low)\n', (804, 809), True, 'import numpy as np\n'), ((830, 844), 'numpy.array', 'np.array', (['high'], {}), '(high)\n', (838, 844), True, 'import numpy as np\n'), ((1405, 1449), 'numpy.random.normal', 'np.random.normal', (['self.mu', 'self.sigma', 'shape'], {}), '(self.mu, self.sigma, shape)\n', (1421, 1449), True, 'import numpy as np\n'), ((2607, 2619), 'numpy.array', 'np.array', (['mu'], {}), '(mu)\n', (2615, 2619), True, 'import numpy as np\n'), ((2665, 2680), 'numpy.array', 'np.array', (['sigma'], {}), '(sigma)\n', (2673, 2680), True, 'import numpy as np\n'), ((1080, 1156), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'self.low', 'high': 'self.high', 'size': '(shape + self.low.shape)'}), '(low=self.low, high=self.high, size=shape + self.low.shape)\n', (1097, 1156), True, 'import numpy as np\n'), ((2159, 2182), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (2174, 2182), True, 'import numpy as np\n'), ((2764, 2787), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (2779, 2787), True, 'import numpy as np\n'), ((1858, 1870), 'numpy.sum', 'np.sum', (['prob'], {}), '(prob)\n', (1864, 1870), True, 'import numpy as np\n')]
import numpy as np class StandardDeviation(): @staticmethod def standardDeviation(data): return np.std(data)
[ "numpy.std" ]
[((113, 125), 'numpy.std', 'np.std', (['data'], {}), '(data)\n', (119, 125), True, 'import numpy as np\n')]
import numpy as np def bowl(vs, v_ref=1.0, scale=.1): def normal(v, loc, scale): return 1 / np.sqrt(2 * np.pi * scale**2) * np.exp( - 0.5 * np.square(v - loc) / scale**2 ) def _bowl(v): if np.abs(v-v_ref) > 0.05: return 2 * np.abs(v-v_ref) - 0.095 else: return - 0.01 * normal(v, v_ref, scale) + 0.04 return np.array([_bowl(v) for v in vs])
[ "numpy.abs", "numpy.sqrt", "numpy.square" ]
[((216, 233), 'numpy.abs', 'np.abs', (['(v - v_ref)'], {}), '(v - v_ref)\n', (222, 233), True, 'import numpy as np\n'), ((107, 138), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi * scale ** 2)'], {}), '(2 * np.pi * scale ** 2)\n', (114, 138), True, 'import numpy as np\n'), ((263, 280), 'numpy.abs', 'np.abs', (['(v - v_ref)'], {}), '(v - v_ref)\n', (269, 280), True, 'import numpy as np\n'), ((155, 173), 'numpy.square', 'np.square', (['(v - loc)'], {}), '(v - loc)\n', (164, 173), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sun Feb 7 13:43:01 2016 @author: fergal A series of metrics to quantify the noise in a lightcurve: Includes: x sgCdpp x Marshall's noise estimate o An FT based estimate of 6 hour artifact strength. o A per thruster firing estimate of 6 hour artifact strength. $Id$ $URL$ """ __version__ = "$Id$" __URL__ = "$URL$" from scipy.signal import savgol_filter import matplotlib.pyplot as mp import numpy as np import fft keplerLongCadence_s = 1765.4679 keplerLongCadence_days = keplerLongCadence_s / float(86400) def computeRollTweakAmplitude(y, nHarmonics = 3, tweakPeriod_days = .25, \ expTime_days=None, plot=False): """Compute strength of roll tweak artifact in K2 data with an FT approach. Compute FT of lightcurve Optional Inputs: ----------------- plot Show a diagnostic plot Returns: -------- float indicating strength of correction. A value of 1 means the amplitude of the tweak is approx equal to the strength of all other signals in the FT. """ if expTime_days is None: expTime_days = keplerLongCadence_days #computes FT with frequencies in cycles per days ft = fft.computeFft(y, expTime_days) #Thruster firings every 6 hours artifactFreq_cd = 1/tweakPeriod_days #cycles per day if plot: mp.clf() mp.plot(ft[:,0], 1e6*ft[:,1], 'b-') metric = 0 nPtsForMed = 50 for i in range(1, nHarmonics+1): wh = np.argmin( np.fabs(ft[:,0] - i*artifactFreq_cd)) med = np.median(ft[wh-nPtsForMed:wh+nPtsForMed, 1]) metric += ft[wh, 1] / med if plot: mp.axvline(i*artifactFreq_cd, color='m') return metric / float(nHarmonics) def computeSgCdpp_ppm(y, transitDuration_cadences=13, plot=False): """Estimates 6hr CDPP using <NAME> Cleve's Savitzy-Golay technique An interesting estimate of the noise in a lightcurve is the scatter after all long term trends have been removed. This is the kernel of the idea behind the Combined Differential Photometric Precision (CDPP) metric used in classic Kepler. <NAME> devised a much simpler algorithm for computing CDPP using a Savitzy-Golay detrending, which he called Savitzy-Golay CDPP, or SG-CDPP. We implement his algorithm here. Inputs: ---------- y (1d numpy array) normalised flux to calculate noise from. Flux should have a mean of zero and be in units of fractional amplitude. Note: Bad data in input will skew result. Some filtering of outliers is performed, but Nan's or Infs will not be caught. Optional Inputs: ----------------- transitDuration_cadences (int) Adjust the assumed transit width, in cadences. Default is 13, which corresponds to a 6.5 hour transit in K2 plot Show a diagnostic plot Returns: ------------ Estimated noise in parts per million. Notes: ------------- Taken from svn+ssh://murzim/repo/so/trunk/Develop/jvc/common/compute_SG_noise.m by <NAME> """ #These 3 values were chosen for the original algorithm, and we don't #change them here. window = 101 polyorder=2 noiseNorm = 1.40 #Name change for consistency with original algorithm cadencesPerTransit = transitDuration_cadences if cadencesPerTransit < 4: raise ValueError("Cadences per transit must be >= 4") if len(y) < window: raise ValueError("Can't compute CDPP for timeseries with fewer points than defined window (%i points)" %(window)) trend = savgol_filter(y, window_length=window, polyorder=polyorder) detrend = y-trend filtered = np.ones(cadencesPerTransit)/float(cadencesPerTransit) smoothed = np.convolve(detrend, filtered, mode='same') if plot: mp.clf() mp.plot(y, 'ko') mp.plot(trend, 'r-') mp.plot(smoothed, 'g.') sgCdpp_ppm = noiseNorm*robustStd(smoothed, 1)*1e6 return sgCdpp_ppm def estimateScatterWithMarshallMethod(flux, plot=False): """Estimate the typical scatter in a lightcurve. Uses the same method as Marshall (Mullally et al 2016 submitted) Inputs: ---------- flux (np 1d array). Flux to measure scatter of. Need not have zero mean. Optional Inputs: ----------------- plot Show a diagnostic plot Returns: ------------ (float) scatter of data in the same units as in the input ``flux`` Notes: ---------- Algorithm is reasonably sensitive to outliers. For best results uses outlier rejection on your lightcurve before computing scatter. Nan's and infs in lightcurve will propegate to the return value. """ diff= np.diff(flux) #Remove egregious outliers. Shouldn't make much difference idx = sigmaClip(diff, 5) diff = diff[~idx] mean = np.mean(diff) mad = np.median(np.fabs(diff-mean)) std = 1.4826*mad if plot: mp.clf() mp.plot(flux, 'ko') mp.plot(diff, 'r.') mp.figure(2) mp.clf() bins = np.linspace(-3000, 3000, 61) mp.hist(1e6*diff, bins=bins, ec="none") mp.xlim(-3000, 3000) mp.axvline(-1e6*float(std/np.sqrt(2)), color='r') mp.axvline(1e6*float(std/np.sqrt(2)), color='r') #std is the rms of the diff. std on single point #is 1/sqrt(2) of that value, return float(std/np.sqrt(2)) def singlePointDifferenceSigmaClip(a, nSigma=4, maxIter=1e4, initialClip=None): """Iteratively find and remove outliers in first derivative If a dataset can be modeled as a constant offset + noise + outliers, those outliers can be found and rejected with a sigma-clipping approach. If the data contains some time-varying signal, this signal must be removed before applying a sigma clip. This function removes the signal by applying a single point difference. The function computes a[i+1] - a[i], and sigma clips the result. Slowly varying trends will have single point differences that are dominated by noise, but outliers have strong first derivatives and will show up strongly in this metric. Inputs: ---------- y (1d numpy array) Array to be cleaned nSigma (float) Threshold to cut at. 5 is typically a good value for most arrays found in practice. Optional Inputs: ------------------- maxIter (int) Maximum number of iterations initialClip (1d boolean array) If an element of initialClip is set to True, that value is treated as a bad value in the first iteration, and not included in the computation of the mean and std. Returns: ------------ 1d numpy array. Where set to True, the corresponding element of y is an outlier. """ #Scatter in single point difference is root 2 time larger #than in initial lightcurve threshold = nSigma/np.sqrt(2) diff1 = np.roll(a, -1) - a diff1[-1] = 0 #Don't trust the last value because a[-1] not necessarily equal to a idx1 = sigmaClip(diff1, nSigma, maxIter, initialClip) diff2 = np.roll(a, 1) - a diff2[0] = 0 idx2 = sigmaClip(diff2, nSigma, maxIter, initialClip) flags = idx1 & idx2 #This bit of magic ensures only single point outliers are marked, #not strong trends in the data. It insists that the previous point #in difference time series is an outlier in the opposite direction, otherwise #the point is considered unflagged. This prevents marking transits as bad data. outlierIdx = flags outlierIdx &= np.roll(idx1, 1) outlierIdx &= (np.roll(diff1, 1) * diff1 < 0) return outlierIdx def sigmaClip(y, nSigma, maxIter=1e4, initialClip=None): """Iteratively find and remove outliers Find outliers by identifiny all points more than **nSigma** from the mean value. The recalculate the mean and std and repeat until no more outliers found. Inputs: ---------- y (1d numpy array) Array to be cleaned nSigma (float) Threshold to cut at. 5 is typically a good value for most arrays found in practice. Optional Inputs: ------------------- maxIter (int) Maximum number of iterations initialClip (1d boolean array) If an element of initialClip is set to True, that value is treated as a bad value in the first iteration, and not included in the computation of the mean and std. Returns: ------------ 1d numpy array. Where set to True, the corresponding element of y is an outlier. """ #import matplotlib.pyplot as mp idx = initialClip if initialClip is None: idx = np.zeros( len(y), dtype=bool) assert(len(idx) == len(y)) #x = np.arange(len(y)) #mp.plot(x, y, 'k.') oldNumClipped = np.sum(idx) for i in range(int(maxIter)): mean = np.nanmean(y[~idx]) std = np.nanstd(y[~idx]) newIdx = np.fabs(y-mean) > nSigma*std newIdx = np.logical_or(idx, newIdx) newNumClipped = np.sum(newIdx) #print "Iter %i: %i (%i) clipped points " \ #%(i, newNumClipped, oldNumClipped) if newNumClipped == oldNumClipped: return newIdx oldNumClipped = newNumClipped idx = newIdx i+=1 return idx def robustMean(y, percent): """Compute the mean of the percent.. 100-percent percentile points A fast, and typically good enough estimate of the mean in the presence of outliers. """ ySorted = np.sort( y[np.isfinite(y)] ) num = len(ySorted) lwr = int( percent/100. * num) upr = int( (100-percent)/100. * num) return np.mean( ySorted[lwr:upr]) def robustStd(y, percent): """Compute a robust standard deviation with JVC's technique A fast, and typically good enough estimate of the mean in the presence of outliers.Cuts out 1st and 99th percentile values and computes std of the rest. Used by computeSgCdpp() to match the behaviour of <NAME> Cleve's original algorithm Taken from svn+ssh://murzim/repo/so/trunk/Develop/jvc/common/robust_std.m """ ySorted = np.sort( y[np.isfinite(y)] ) num = len(ySorted) lwr = int( percent/100. * num) upr = int( (100-percent)/100. * num) return np.std( ySorted[lwr:upr])
[ "numpy.convolve", "matplotlib.pyplot.hist", "numpy.sqrt", "scipy.signal.savgol_filter", "numpy.nanmean", "numpy.isfinite", "fft.computeFft", "numpy.mean", "matplotlib.pyplot.plot", "numpy.diff", "numpy.linspace", "numpy.nanstd", "numpy.ones", "numpy.std", "matplotlib.pyplot.xlim", "numpy.fabs", "numpy.median", "numpy.roll", "matplotlib.pyplot.clf", "numpy.logical_or", "numpy.sum", "matplotlib.pyplot.figure", "matplotlib.pyplot.axvline" ]
[((1197, 1228), 'fft.computeFft', 'fft.computeFft', (['y', 'expTime_days'], {}), '(y, expTime_days)\n', (1211, 1228), False, 'import fft\n'), ((3608, 3667), 'scipy.signal.savgol_filter', 'savgol_filter', (['y'], {'window_length': 'window', 'polyorder': 'polyorder'}), '(y, window_length=window, polyorder=polyorder)\n', (3621, 3667), False, 'from scipy.signal import savgol_filter\n'), ((3775, 3818), 'numpy.convolve', 'np.convolve', (['detrend', 'filtered'], {'mode': '"""same"""'}), "(detrend, filtered, mode='same')\n", (3786, 3818), True, 'import numpy as np\n'), ((4759, 4772), 'numpy.diff', 'np.diff', (['flux'], {}), '(flux)\n', (4766, 4772), True, 'import numpy as np\n'), ((4900, 4913), 'numpy.mean', 'np.mean', (['diff'], {}), '(diff)\n', (4907, 4913), True, 'import numpy as np\n'), ((7666, 7682), 'numpy.roll', 'np.roll', (['idx1', '(1)'], {}), '(idx1, 1)\n', (7673, 7682), True, 'import numpy as np\n'), ((8912, 8923), 'numpy.sum', 'np.sum', (['idx'], {}), '(idx)\n', (8918, 8923), True, 'import numpy as np\n'), ((9772, 9797), 'numpy.mean', 'np.mean', (['ySorted[lwr:upr]'], {}), '(ySorted[lwr:upr])\n', (9779, 9797), True, 'import numpy as np\n'), ((10392, 10416), 'numpy.std', 'np.std', (['ySorted[lwr:upr]'], {}), '(ySorted[lwr:upr])\n', (10398, 10416), True, 'import numpy as np\n'), ((1348, 1356), 'matplotlib.pyplot.clf', 'mp.clf', ([], {}), '()\n', (1354, 1356), True, 'import matplotlib.pyplot as mp\n'), ((1365, 1410), 'matplotlib.pyplot.plot', 'mp.plot', (['ft[:, 0]', '(1000000.0 * ft[:, 1])', '"""b-"""'], {}), "(ft[:, 0], 1000000.0 * ft[:, 1], 'b-')\n", (1372, 1410), True, 'import matplotlib.pyplot as mp\n'), ((1551, 1600), 'numpy.median', 'np.median', (['ft[wh - nPtsForMed:wh + nPtsForMed, 1]'], {}), '(ft[wh - nPtsForMed:wh + nPtsForMed, 1])\n', (1560, 1600), True, 'import numpy as np\n'), ((3706, 3733), 'numpy.ones', 'np.ones', (['cadencesPerTransit'], {}), '(cadencesPerTransit)\n', (3713, 3733), True, 'import numpy as np\n'), ((3841, 3849), 'matplotlib.pyplot.clf', 'mp.clf', ([], {}), '()\n', (3847, 3849), True, 'import matplotlib.pyplot as mp\n'), ((3858, 3874), 'matplotlib.pyplot.plot', 'mp.plot', (['y', '"""ko"""'], {}), "(y, 'ko')\n", (3865, 3874), True, 'import matplotlib.pyplot as mp\n'), ((3883, 3903), 'matplotlib.pyplot.plot', 'mp.plot', (['trend', '"""r-"""'], {}), "(trend, 'r-')\n", (3890, 3903), True, 'import matplotlib.pyplot as mp\n'), ((3912, 3935), 'matplotlib.pyplot.plot', 'mp.plot', (['smoothed', '"""g."""'], {}), "(smoothed, 'g.')\n", (3919, 3935), True, 'import matplotlib.pyplot as mp\n'), ((4934, 4954), 'numpy.fabs', 'np.fabs', (['(diff - mean)'], {}), '(diff - mean)\n', (4941, 4954), True, 'import numpy as np\n'), ((4997, 5005), 'matplotlib.pyplot.clf', 'mp.clf', ([], {}), '()\n', (5003, 5005), True, 'import matplotlib.pyplot as mp\n'), ((5014, 5033), 'matplotlib.pyplot.plot', 'mp.plot', (['flux', '"""ko"""'], {}), "(flux, 'ko')\n", (5021, 5033), True, 'import matplotlib.pyplot as mp\n'), ((5042, 5061), 'matplotlib.pyplot.plot', 'mp.plot', (['diff', '"""r."""'], {}), "(diff, 'r.')\n", (5049, 5061), True, 'import matplotlib.pyplot as mp\n'), ((5070, 5082), 'matplotlib.pyplot.figure', 'mp.figure', (['(2)'], {}), '(2)\n', (5079, 5082), True, 'import matplotlib.pyplot as mp\n'), ((5091, 5099), 'matplotlib.pyplot.clf', 'mp.clf', ([], {}), '()\n', (5097, 5099), True, 'import matplotlib.pyplot as mp\n'), ((5115, 5143), 'numpy.linspace', 'np.linspace', (['(-3000)', '(3000)', '(61)'], {}), '(-3000, 3000, 61)\n', (5126, 5143), True, 'import numpy as np\n'), ((5152, 5199), 'matplotlib.pyplot.hist', 'mp.hist', (['(1000000.0 * diff)'], {'bins': 'bins', 'ec': '"""none"""'}), "(1000000.0 * diff, bins=bins, ec='none')\n", (5159, 5199), True, 'import matplotlib.pyplot as mp\n'), ((5201, 5221), 'matplotlib.pyplot.xlim', 'mp.xlim', (['(-3000)', '(3000)'], {}), '(-3000, 3000)\n', (5208, 5221), True, 'import matplotlib.pyplot as mp\n'), ((6981, 6991), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (6988, 6991), True, 'import numpy as np\n'), ((7009, 7023), 'numpy.roll', 'np.roll', (['a', '(-1)'], {}), '(a, -1)\n', (7016, 7023), True, 'import numpy as np\n'), ((7191, 7204), 'numpy.roll', 'np.roll', (['a', '(1)'], {}), '(a, 1)\n', (7198, 7204), True, 'import numpy as np\n'), ((8973, 8992), 'numpy.nanmean', 'np.nanmean', (['y[~idx]'], {}), '(y[~idx])\n', (8983, 8992), True, 'import numpy as np\n'), ((9007, 9025), 'numpy.nanstd', 'np.nanstd', (['y[~idx]'], {}), '(y[~idx])\n', (9016, 9025), True, 'import numpy as np\n'), ((9090, 9116), 'numpy.logical_or', 'np.logical_or', (['idx', 'newIdx'], {}), '(idx, newIdx)\n', (9103, 9116), True, 'import numpy as np\n'), ((9141, 9155), 'numpy.sum', 'np.sum', (['newIdx'], {}), '(newIdx)\n', (9147, 9155), True, 'import numpy as np\n'), ((1498, 1537), 'numpy.fabs', 'np.fabs', (['(ft[:, 0] - i * artifactFreq_cd)'], {}), '(ft[:, 0] - i * artifactFreq_cd)\n', (1505, 1537), True, 'import numpy as np\n'), ((1661, 1703), 'matplotlib.pyplot.axvline', 'mp.axvline', (['(i * artifactFreq_cd)'], {'color': '"""m"""'}), "(i * artifactFreq_cd, color='m')\n", (1671, 1703), True, 'import matplotlib.pyplot as mp\n'), ((5445, 5455), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5452, 5455), True, 'import numpy as np\n'), ((7702, 7719), 'numpy.roll', 'np.roll', (['diff1', '(1)'], {}), '(diff1, 1)\n', (7709, 7719), True, 'import numpy as np\n'), ((9044, 9061), 'numpy.fabs', 'np.fabs', (['(y - mean)'], {}), '(y - mean)\n', (9051, 9061), True, 'import numpy as np\n'), ((9643, 9657), 'numpy.isfinite', 'np.isfinite', (['y'], {}), '(y)\n', (9654, 9657), True, 'import numpy as np\n'), ((10263, 10277), 'numpy.isfinite', 'np.isfinite', (['y'], {}), '(y)\n', (10274, 10277), True, 'import numpy as np\n'), ((5256, 5266), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5263, 5266), True, 'import numpy as np\n'), ((5313, 5323), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5320, 5323), True, 'import numpy as np\n')]
# Notes from this experiment: # 1. adapt() is way slower than np.unique -- takes forever for 1M, hangs for 10M # 2. TF returns error if adapt is inside tf.function. adapt uses graph inside anyway # 3. OOM in batch mode during sparse_to_dense despite of seting sparse in keras # 4. Mini-batch works but 15x(g)/20x slower than sklearn # 5. Always replace NaNs in string cols as np.nan is float # 6. Full graph mode lazily triggers all models together -- produce OOM # 7. Partial graph mode sequentially execute graph-models # TODO1: all sparse intermediates, including the outputs # TODO2: Tune mini-batch size for best performance import sys import time import numpy as np import scipy as sp from scipy.sparse import csr_matrix import pandas as pd import math import warnings import os # Force to CPU (default is GPU) os.environ["CUDA_VISIBLE_DEVICES"] = "" import tensorflow as tf from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras import layers # Make numpy values easier to read. np.set_printoptions(precision=3, suppress=True) warnings.filterwarnings('ignore') #cleaner, but not recommended def readNprep(nRows): # Read the 1M or the 10M dataset if nRows == 1: print("Reading file: criteo_day21_1M") criteo = pd.read_csv("~/datasets/criteo_day21_1M", delimiter=",", header=None) else: print("Reading file: criteo_day21_10M") criteo = pd.read_csv("~/datasets/criteo_day21_10M", delimiter=",", header=None) print(criteo.head()) # Replace NaNs with 0 for numeric and empty string for categorical criteo = criteo.apply(lambda x: x.fillna(0) if x.dtype.kind in 'biufc' else x.fillna('')) # Pandas infer the type of first 14 columns as float and int. # SystemDS reads those as STRINGS and apply passthrough FT on those. # For a fair comparision, convert those here to str and later back to float pt = [*range(0,14)] criteo[pt] = criteo[pt].astype(str) #print(criteo.info()) return criteo def getCategoricalLayer(X, name, useNumpy): # NaN handling. np.nan is a float, which leads to ValueError for str cols X[name].fillna('', inplace=True) if useNumpy: vocab = np.unique(X[name].astype(np.string_)) onehot = layers.StringLookup(vocabulary=vocab, output_mode="multi_hot", num_oov_indices=0, sparse=True) # adapt is not required if vocabulary is passed else: onehot = layers.StringLookup(output_mode="multi_hot", num_oov_indices=0) df2tf = tf.convert_to_tensor(np.array(X[name], dtype=np.string_)) onehot.adapt(df2tf) #print("#uniques in col ", name, " is ", onehot.vocabulary_size()) return onehot def getLayers(X): # Passh through transformation -- convert to float pt = [*range(0,14)] X[pt] = X[pt].astype(np.float64) # Build a dictionary with symbolic input tensors w/ proper dtype inputs = {} for name, column in X.items(): dtype = column.dtype if dtype == object: dtype = tf.string else: dtype = tf.float64 inputs[name] = tf.keras.Input(shape=(1,), dtype=dtype, sparse=True) # Seperate out the numeric inputs numeric = {name:input for name,input in inputs.items() if input.dtype==tf.float64} # Concatenate the numeric inputs together and # add to the list of layers as is prepro = [layers.Concatenate()(list(numeric.values()))] # Recode and dummycode the string inputs for name, input in inputs.items(): if input.dtype == tf.float64: continue onehot = getCategoricalLayer(X, name, True) #use np.unique encoded = onehot(input) # Append to the same list prepro.append(encoded) # Concatenate all the preprocessed inputs together, # and build a model to apply batch wise later cat_layers = layers.Concatenate()(prepro) print(cat_layers) model_prep = tf.keras.Model(inputs, cat_layers) return model_prep def lazyGraphTransform(X, model, n, isSmall): # This method builds a graph of all the mini-batch transformations # by pushing the loop-slicing logic inside a tf.function. # However, lazily triggering all the models produce OOM X_dict = {name: tf.convert_to_tensor(np.array(value)) for name, value in X.items()} res = batchTransform(X_dict, model, X.shape[0], isSmall) @tf.function def batchTransform(X, model_prep, n, isSmall): # Batch-wise transform to avoid OOM # 10k/1.5k: best performance within memory budget batch_size = 10000 if isSmall==1 else 1500 beg = 0 allRes = [] while beg < n: end = beg + batch_size if end > n: end = n batch_dict = {name: X[name][beg:end] for name, value in X.items()} X_batch = model_prep(batch_dict) print(X_batch[:1, :]) #print the placeholder allRes.append(X_batch) if end == n: break else: beg = end out = tf.stack(allRes, axis=0) #fix rank print(out.shape) return out def batchGraphTransform(X, model, n, isSmall): # Batch-wise eager transform to avoid OOM # 10k/1.5k: best performance within memory budget batch_size = 10000 if isSmall==1 else 1500 beg = 0 while beg < n: end = beg + batch_size if end > n: end = n batch_dict = {name: np.array(value)[beg:end] for name, value in X.items()} X_batch = transform(batch_dict, model) # Don't stack the results to avoid OOM print(X_batch[:1, :]) #print first 1 row if end == n: break else: beg = end @tf.function def transform(X_dict, model_prep): X_prep = model_prep(X_dict) #print(X_prep[:5, :]) #print to verify lazy execution return X_prep isSmall = int(sys.argv[1]) #1M vs 10M subset of Criteo X = readNprep(isSmall) t1 = time.time() model = getLayers(X) # Lazy transform triggers all models togther -- produce OOM #res = lazyGraphTransform(X, model, X.shape[0], isSmall) # Partially lazy mode keeps the slice-look outside of tf.function batchGraphTransform(X, model, X.shape[0], isSmall) print("Elapsed time for transformations using tf-keras = %s sec" % (time.time() - t1)) #np.savetxt("X_prep_sk.csv", X_prep, fmt='%1.2f', delimiter=',') #dense #sp.sparse.save_npz("X_prep_sk.npz", X_prep) #sparse
[ "tensorflow.keras.layers.Concatenate", "pandas.read_csv", "tensorflow.keras.layers.StringLookup", "numpy.array", "tensorflow.keras.Input", "tensorflow.keras.Model", "time.time", "warnings.filterwarnings", "tensorflow.stack", "numpy.set_printoptions" ]
[((1020, 1067), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(3)', 'suppress': '(True)'}), '(precision=3, suppress=True)\n', (1039, 1067), True, 'import numpy as np\n'), ((1068, 1101), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1091, 1101), False, 'import warnings\n'), ((5797, 5808), 'time.time', 'time.time', ([], {}), '()\n', (5806, 5808), False, 'import time\n'), ((3889, 3923), 'tensorflow.keras.Model', 'tf.keras.Model', (['inputs', 'cat_layers'], {}), '(inputs, cat_layers)\n', (3903, 3923), True, 'import tensorflow as tf\n'), ((4912, 4936), 'tensorflow.stack', 'tf.stack', (['allRes'], {'axis': '(0)'}), '(allRes, axis=0)\n', (4920, 4936), True, 'import tensorflow as tf\n'), ((1271, 1340), 'pandas.read_csv', 'pd.read_csv', (['"""~/datasets/criteo_day21_1M"""'], {'delimiter': '""","""', 'header': 'None'}), "('~/datasets/criteo_day21_1M', delimiter=',', header=None)\n", (1282, 1340), True, 'import pandas as pd\n'), ((1412, 1482), 'pandas.read_csv', 'pd.read_csv', (['"""~/datasets/criteo_day21_10M"""'], {'delimiter': '""","""', 'header': 'None'}), "('~/datasets/criteo_day21_10M', delimiter=',', header=None)\n", (1423, 1482), True, 'import pandas as pd\n'), ((2246, 2344), 'tensorflow.keras.layers.StringLookup', 'layers.StringLookup', ([], {'vocabulary': 'vocab', 'output_mode': '"""multi_hot"""', 'num_oov_indices': '(0)', 'sparse': '(True)'}), "(vocabulary=vocab, output_mode='multi_hot',\n num_oov_indices=0, sparse=True)\n", (2265, 2344), False, 'from tensorflow.keras import layers\n'), ((2420, 2483), 'tensorflow.keras.layers.StringLookup', 'layers.StringLookup', ([], {'output_mode': '"""multi_hot"""', 'num_oov_indices': '(0)'}), "(output_mode='multi_hot', num_oov_indices=0)\n", (2439, 2483), False, 'from tensorflow.keras import layers\n'), ((3067, 3119), 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': '(1,)', 'dtype': 'dtype', 'sparse': '(True)'}), '(shape=(1,), dtype=dtype, sparse=True)\n', (3081, 3119), True, 'import tensorflow as tf\n'), ((3821, 3841), 'tensorflow.keras.layers.Concatenate', 'layers.Concatenate', ([], {}), '()\n', (3839, 3841), False, 'from tensorflow.keras import layers\n'), ((2519, 2554), 'numpy.array', 'np.array', (['X[name]'], {'dtype': 'np.string_'}), '(X[name], dtype=np.string_)\n', (2527, 2554), True, 'import numpy as np\n'), ((3356, 3376), 'tensorflow.keras.layers.Concatenate', 'layers.Concatenate', ([], {}), '()\n', (3374, 3376), False, 'from tensorflow.keras import layers\n'), ((4227, 4242), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (4235, 4242), True, 'import numpy as np\n'), ((6135, 6146), 'time.time', 'time.time', ([], {}), '()\n', (6144, 6146), False, 'import time\n'), ((5299, 5314), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (5307, 5314), True, 'import numpy as np\n')]
import warnings import numpy as np import scipy.sparse as sp from joblib import Parallel, delayed from scipy.special import expit from sklearn.exceptions import ConvergenceWarning from sklearn.utils import check_array, check_random_state from sklearn.linear_model import LogisticRegression from tqdm import tqdm from .multidynet import initialize_node_effects_single from .omega_lsm import update_omega from .deltas_lsm import update_deltas from .lds_lsm import update_latent_positions from .variances import update_tau_sq, update_sigma_sq __all__ = ['DynamicNetworkLSM'] class ModelParameters(object): def __init__(self, omega, X, X_sigma, X_cross_cov, delta, delta_sigma, a_tau_sq, b_tau_sq, c_sigma_sq, d_sigma_sq): self.omega_ = omega self.X_ = X self.X_sigma_ = X_sigma self.X_cross_cov_ = X_cross_cov self.delta_ = delta self.delta_sigma_ = delta_sigma self.a_tau_sq_ = a_tau_sq self.b_tau_sq_ = b_tau_sq self.c_sigma_sq_ = c_sigma_sq self.d_sigma_sq_ = d_sigma_sq self.converged_ = False self.logp_ = [] def initialize_parameters(Y, n_features, delta_var_prior, a, b, c, d, random_state): rng = check_random_state(random_state) n_time_steps, n_nodes, _ = Y.shape # omega is initialized by drawing from the prior? omega = np.zeros((n_time_steps, n_nodes, n_nodes)) # intialize latent space randomly X = rng.randn(n_time_steps, n_nodes, n_features) # intialize to marginal covariances sigma_init = np.eye(n_features) X_sigma = np.tile( sigma_init[None, None], reps=(n_time_steps, n_nodes, 1, 1)) # initialize cross-covariances cross_init = np.eye(n_features) X_cross_cov = np.tile( cross_init[None, None], reps=(n_time_steps - 1, n_nodes, 1, 1)) # initialize node-effects based on a logistic regression with # no higher order structure delta = initialize_node_effects_single(Y) delta_sigma = delta_var_prior * np.ones(n_nodes) # initialize based on prior information a_tau_sq = a b_tau_sq = b c_sigma_sq = c d_sigma_sq = d return ModelParameters( omega=omega, X=X, X_sigma=X_sigma, X_cross_cov=X_cross_cov, delta=delta, delta_sigma=delta_sigma, a_tau_sq=a_tau_sq, b_tau_sq=b_tau_sq, c_sigma_sq=c_sigma_sq, d_sigma_sq=d_sigma_sq) def optimize_elbo(Y, n_features, delta_var_prior, tau_sq, sigma_sq, a, b, c, d, max_iter, tol, random_state, verbose=True): # convergence criteria (Eq{L(Y | theta)}) loglik = -np.infty # initialize parameters of the model model = initialize_parameters( Y, n_features, delta_var_prior, a, b, c, d, random_state) for n_iter in tqdm(range(max_iter), disable=not verbose): prev_loglik = loglik # coordinate ascent # omega updates loglik = update_omega( Y, model.omega_, model.X_, model.X_sigma_, model.delta_, model.delta_sigma_) # latent trajectory updates tau_sq_prec = ( model.a_tau_sq_ / model.b_tau_sq_ if tau_sq == 'auto' else 1. / tau_sq) sigma_sq_prec = ( model.c_sigma_sq_ / model.d_sigma_sq_ if sigma_sq == 'auto' else 1. / sigma_sq) update_latent_positions( Y, model.X_, model.X_sigma_, model.X_cross_cov_, model.delta_, model.omega_, tau_sq_prec, sigma_sq_prec) # update node random effects update_deltas( Y, model.X_, model.delta_, model.delta_sigma_, model.omega_, delta_var_prior) # update intial variance of the latent space if tau_sq == 'auto': model.a_tau_sq_, model.b_tau_sq_ = update_tau_sq( Y, model.X_, model.X_sigma_, a, b) # update step sizes if sigma_sq == 'auto': model.c_sigma_sq_, model.d_sigma_sq_ = update_sigma_sq( Y, model.X_, model.X_sigma_, model.X_cross_cov_, c, d) model.logp_.append(loglik) # check convergence change = loglik - prev_loglik if abs(change) < tol: model.converged_ = True model.logp_ = np.asarray(model.logp_) break return model def calculate_probabilities(X, delta): n_time_steps = X.shape[0] n_nodes = X.shape[1] probas = np.zeros( (n_time_steps, n_nodes, n_nodes), dtype=np.float64) deltas = delta.reshape(-1, 1) for t in range(n_time_steps): probas[t] = expit(np.add(deltas, deltas.T) + np.dot(X[t], X[t].T)) return probas class DynamicNetworkLSM(object): def __init__(self, n_features=2, delta_var_prior=4, tau_sq='auto', sigma_sq='auto', a=4.0, b=20.0, c=10, d=0.1, n_init=1, max_iter=500, tol=1e-2, n_jobs=-1, random_state=42): self.n_features = n_features self.delta_var_prior = delta_var_prior self.tau_sq = tau_sq self.sigma_sq = sigma_sq self.a = a self.b = b self.c = c self.d = d self.n_init = n_init self.max_iter = max_iter self.tol = tol self.n_jobs = n_jobs self.random_state = random_state def fit(self, Y): """ Parameters ---------- Y : array-like, shape (n_time_steps, n_nodes, n_nodes) """ Y = check_array(Y, order='C', dtype=np.float64, ensure_2d=False, allow_nd=True, copy=False) random_state = check_random_state(self.random_state) # run the elbo optimization over different initializations seeds = random_state.randint(np.iinfo(np.int32).max, size=self.n_init) verbose = True if self.n_init == 1 else False models = Parallel(n_jobs=self.n_jobs)(delayed(optimize_elbo)( Y, self.n_features, self.delta_var_prior, self.tau_sq, self.sigma_sq, self.a, self.b, self.c, self.d, self.max_iter, self.tol, seed, verbose=verbose) for seed in seeds) # choose model with the largest convergence criteria best_model = models[0] best_criteria = models[0].logp_[-1] for i in range(1, len(models)): if models[i].logp_[-1] > best_criteria: best_model = models[i] if not best_model.converged_: warnings.warn('Best model did not converge. ' 'Try a different random initialization, ' 'or increase max_iter, tol ' 'or check for degenerate data.', ConvergenceWarning) self._set_parameters(best_model) # calculate dyad-probabilities self.probas_ = calculate_probabilities( self.X_, self.delta_) # calculate in-sample AUC #self.auc_ = calculate_auc_layer(Y, self.probas_) return self def _set_parameters(self, model): self.omega_ = model.omega_ self.X_ = model.X_ self.X_sigma_ = model.X_sigma_ self.X_cross_cov_ = model.X_cross_cov_ self.delta_ = model.delta_ self.delta_sigma_ = model.delta_sigma_ self.a_tau_sq_ = model.a_tau_sq_ self.b_tau_sq_ = model.b_tau_sq_ self.tau_sq_ = self.b_tau_sq_ / (self.a_tau_sq_ - 1) self.c_sigma_sq_ = model.c_sigma_sq_ self.d_sigma_sq_ = model.d_sigma_sq_ self.sigma_sq_ = self.d_sigma_sq_ / (self.c_sigma_sq_ - 1) self.logp_ = model.logp_ return self
[ "numpy.tile", "numpy.eye", "sklearn.utils.check_random_state", "numpy.ones", "numpy.add", "numpy.asarray", "numpy.iinfo", "joblib.Parallel", "numpy.zeros", "numpy.dot", "sklearn.utils.check_array", "warnings.warn", "joblib.delayed" ]
[((1275, 1307), 'sklearn.utils.check_random_state', 'check_random_state', (['random_state'], {}), '(random_state)\n', (1293, 1307), False, 'from sklearn.utils import check_array, check_random_state\n'), ((1415, 1457), 'numpy.zeros', 'np.zeros', (['(n_time_steps, n_nodes, n_nodes)'], {}), '((n_time_steps, n_nodes, n_nodes))\n', (1423, 1457), True, 'import numpy as np\n'), ((1608, 1626), 'numpy.eye', 'np.eye', (['n_features'], {}), '(n_features)\n', (1614, 1626), True, 'import numpy as np\n'), ((1641, 1708), 'numpy.tile', 'np.tile', (['sigma_init[None, None]'], {'reps': '(n_time_steps, n_nodes, 1, 1)'}), '(sigma_init[None, None], reps=(n_time_steps, n_nodes, 1, 1))\n', (1648, 1708), True, 'import numpy as np\n'), ((1771, 1789), 'numpy.eye', 'np.eye', (['n_features'], {}), '(n_features)\n', (1777, 1789), True, 'import numpy as np\n'), ((1808, 1879), 'numpy.tile', 'np.tile', (['cross_init[None, None]'], {'reps': '(n_time_steps - 1, n_nodes, 1, 1)'}), '(cross_init[None, None], reps=(n_time_steps - 1, n_nodes, 1, 1))\n', (1815, 1879), True, 'import numpy as np\n'), ((4463, 4523), 'numpy.zeros', 'np.zeros', (['(n_time_steps, n_nodes, n_nodes)'], {'dtype': 'np.float64'}), '((n_time_steps, n_nodes, n_nodes), dtype=np.float64)\n', (4471, 4523), True, 'import numpy as np\n'), ((2070, 2086), 'numpy.ones', 'np.ones', (['n_nodes'], {}), '(n_nodes)\n', (2077, 2086), True, 'import numpy as np\n'), ((5515, 5606), 'sklearn.utils.check_array', 'check_array', (['Y'], {'order': '"""C"""', 'dtype': 'np.float64', 'ensure_2d': '(False)', 'allow_nd': '(True)', 'copy': '(False)'}), "(Y, order='C', dtype=np.float64, ensure_2d=False, allow_nd=True,\n copy=False)\n", (5526, 5606), False, 'from sklearn.utils import check_array, check_random_state\n'), ((5651, 5688), 'sklearn.utils.check_random_state', 'check_random_state', (['self.random_state'], {}), '(self.random_state)\n', (5669, 5688), False, 'from sklearn.utils import check_array, check_random_state\n'), ((4293, 4316), 'numpy.asarray', 'np.asarray', (['model.logp_'], {}), '(model.logp_)\n', (4303, 4316), True, 'import numpy as np\n'), ((5907, 5935), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs'}), '(n_jobs=self.n_jobs)\n', (5915, 5935), False, 'from joblib import Parallel, delayed\n'), ((6508, 6678), 'warnings.warn', 'warnings.warn', (['"""Best model did not converge. Try a different random initialization, or increase max_iter, tol or check for degenerate data."""', 'ConvergenceWarning'], {}), "(\n 'Best model did not converge. Try a different random initialization, or increase max_iter, tol or check for degenerate data.'\n , ConvergenceWarning)\n", (6521, 6678), False, 'import warnings\n'), ((4628, 4652), 'numpy.add', 'np.add', (['deltas', 'deltas.T'], {}), '(deltas, deltas.T)\n', (4634, 4652), True, 'import numpy as np\n'), ((4655, 4675), 'numpy.dot', 'np.dot', (['X[t]', 'X[t].T'], {}), '(X[t], X[t].T)\n', (4661, 4675), True, 'import numpy as np\n'), ((5794, 5812), 'numpy.iinfo', 'np.iinfo', (['np.int32'], {}), '(np.int32)\n', (5802, 5812), True, 'import numpy as np\n'), ((5936, 5958), 'joblib.delayed', 'delayed', (['optimize_elbo'], {}), '(optimize_elbo)\n', (5943, 5958), False, 'from joblib import Parallel, delayed\n')]
#!/usr/bin/env python __author__ = "<NAME>" __license__ = "MIT" __email__ = "<EMAIL>" __credits__ = "<NAME> -- An amazing Linear Algebra Professor" import cvxopt import numpy as np class SupportVectorClassification: """ Support Vector Machine classification model """ def __init__(self): """ Instantiate class: SupportVectorClassification """ self._bias = np.array([]) self._weights = np.array([]) def predict(self, predictors): """ Predict output given a set of predictors :param predictors: ndarray -> used to calculate prediction :return: ndarray -> prediction """ def train(self, predictors, expected_values): """ Train model based on list of predictors and expected value :param predictors: list(ndarray) -> list of predictors to train model on :param expected_values: list(float) -> list of expected values for given predictors """ if len(predictors) != len(expected_values): raise Exception('Length of predictors != length of expected values') self._generate_optimal_hyperplanes(predictors, expected_values) def _generate_optimal_hyperplanes(self, predictors, expected_values): """ Find and generate optimal hyperplanes given set of predictors and expected values :param predictors: list(ndarray) -> list of predictors to train model on :param expected_values: list(float) -> list of expected values for given predictors """ m = predictors.shape[0] k = np.array([np.dot(predictors[i], predictors[j]) for j in range(m) for i in range(m)]).reshape((m, m)) p = cvxopt.matrix(np.outer(expected_values, expected_values)*k) q = cvxopt.matrix(-1*np.ones(m)) equality_constraint1 = cvxopt.matrix(expected_values, (1, m)) equality_constraint2 = cvxopt.matrix(0.0) inequality_constraint1 = cvxopt.matrix(np.diag(-1*np.ones(m))) inequality_constraint2 = cvxopt.matrix(np.zeros(m)) solution = cvxopt.solvers.qp(p, q, inequality_constraint1, inequality_constraint2, equality_constraint1, equality_constraint2) multipliers = np.ravel(solution['x']) has_positive_multiplier = multipliers > 1e-7 sv_multipliers = multipliers[has_positive_multiplier] support_vectors = predictors[has_positive_multiplier] support_vectors_y = expected_values[has_positive_multiplier] if support_vectors and support_vectors_y and sv_multipliers: self._weights = np.sum(multipliers[i]*expected_values[i]*predictors[i] for i in range(len(expected_values))) self._bias = np.sum([expected_values[i] - np.dot(self._weights, predictors[i]) for i in range(len(predictors))])/len(predictors) else: pass svm = SupportVectorClassification() y = np.array([np.array([1]), np.array([-1]), np.array([-1]), np.array([1]), np.array([-1])]) t_data = np.array([np.array([1, 1]), np.array([2, 2]), np.array([2, 3]), np.array([0, 0]), np.array([2, 4])]) svm.train(t_data, y)
[ "numpy.ones", "numpy.array", "numpy.zeros", "numpy.outer", "numpy.dot", "cvxopt.matrix", "numpy.ravel", "cvxopt.solvers.qp" ]
[((407, 419), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (415, 419), True, 'import numpy as np\n'), ((444, 456), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (452, 456), True, 'import numpy as np\n'), ((1843, 1881), 'cvxopt.matrix', 'cvxopt.matrix', (['expected_values', '(1, m)'], {}), '(expected_values, (1, m))\n', (1856, 1881), False, 'import cvxopt\n'), ((1914, 1932), 'cvxopt.matrix', 'cvxopt.matrix', (['(0.0)'], {}), '(0.0)\n', (1927, 1932), False, 'import cvxopt\n'), ((2083, 2202), 'cvxopt.solvers.qp', 'cvxopt.solvers.qp', (['p', 'q', 'inequality_constraint1', 'inequality_constraint2', 'equality_constraint1', 'equality_constraint2'], {}), '(p, q, inequality_constraint1, inequality_constraint2,\n equality_constraint1, equality_constraint2)\n', (2100, 2202), False, 'import cvxopt\n'), ((2258, 2281), 'numpy.ravel', 'np.ravel', (["solution['x']"], {}), "(solution['x'])\n", (2266, 2281), True, 'import numpy as np\n'), ((2975, 2988), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (2983, 2988), True, 'import numpy as np\n'), ((2990, 3004), 'numpy.array', 'np.array', (['[-1]'], {}), '([-1])\n', (2998, 3004), True, 'import numpy as np\n'), ((3006, 3020), 'numpy.array', 'np.array', (['[-1]'], {}), '([-1])\n', (3014, 3020), True, 'import numpy as np\n'), ((3022, 3035), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (3030, 3035), True, 'import numpy as np\n'), ((3037, 3051), 'numpy.array', 'np.array', (['[-1]'], {}), '([-1])\n', (3045, 3051), True, 'import numpy as np\n'), ((3073, 3089), 'numpy.array', 'np.array', (['[1, 1]'], {}), '([1, 1])\n', (3081, 3089), True, 'import numpy as np\n'), ((3091, 3107), 'numpy.array', 'np.array', (['[2, 2]'], {}), '([2, 2])\n', (3099, 3107), True, 'import numpy as np\n'), ((3109, 3125), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (3117, 3125), True, 'import numpy as np\n'), ((3127, 3143), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (3135, 3143), True, 'import numpy as np\n'), ((3145, 3161), 'numpy.array', 'np.array', (['[2, 4]'], {}), '([2, 4])\n', (3153, 3161), True, 'import numpy as np\n'), ((2051, 2062), 'numpy.zeros', 'np.zeros', (['m'], {}), '(m)\n', (2059, 2062), True, 'import numpy as np\n'), ((1725, 1767), 'numpy.outer', 'np.outer', (['expected_values', 'expected_values'], {}), '(expected_values, expected_values)\n', (1733, 1767), True, 'import numpy as np\n'), ((1800, 1810), 'numpy.ones', 'np.ones', (['m'], {}), '(m)\n', (1807, 1810), True, 'import numpy as np\n'), ((1991, 2001), 'numpy.ones', 'np.ones', (['m'], {}), '(m)\n', (1998, 2001), True, 'import numpy as np\n'), ((1608, 1644), 'numpy.dot', 'np.dot', (['predictors[i]', 'predictors[j]'], {}), '(predictors[i], predictors[j])\n', (1614, 1644), True, 'import numpy as np\n'), ((2772, 2808), 'numpy.dot', 'np.dot', (['self._weights', 'predictors[i]'], {}), '(self._weights, predictors[i])\n', (2778, 2808), True, 'import numpy as np\n')]
""" MIT License Copyright 2021 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import signal from netCDF4 import Dataset import matplotlib.pyplot as plt import matplotlib.animation as animation from datetime import datetime from pkg_resources import get_distribution import numpy as np import shutil from hans.tools import abort from hans.material import Material from hans.plottools import adaptiveLimits from hans.integrate import ConservedField class Problem: def __init__(self, options, disc, bc, geometry, numerics, material, surface, ic): """ Collects all information about a single problem and contains the methods to run a simulation, based on the problem defintiion." Parameters ---------- options : dict Contains IO options. disc : dict Contains discretization parameters. bc : dict Contains boundary condition parameters. geometry : dict Contains geometry parameters. numerics : dict Contains numerics parameters. material : dict Contains material parameters. surface : dict Contains surface parameters. restart_file : str Filename of the netCDF file, from which simulation is restarted. """ self.options = options self.disc = disc self.bc = bc self.geometry = geometry self.numerics = numerics self.material = material self.surface = surface self.ic = ic self.sanity_checks() def sanity_checks(self): self.check_options() self.check_disc() self.check_geo() self.check_num() self.check_mat() self.check_bc() if self.ic is not None: self.check_ic() if self.surface is not None: self.check_surface() print("Sanity checks completed. Start simulation!") print(60 * "-") def run(self, out_dir="data", out_name=None, plot=False): """ Starts the simulation. Parameters ---------- out_dir : str Output directory (default: data). out_name : str NetCDF output filename (default: None) plot : bool On-the-fly plotting flag (default: False). """ # global write options writeInterval = self.options['writeInterval'] if "maxT" in self.numerics.keys(): maxT = self.numerics["maxT"] else: maxT = np.inf if "maxIt" in self.numerics.keys(): maxIt = self.numerics["maxIt"] else: maxIt = np.inf if "tol" in self.numerics.keys(): tol = self.numerics["tol"] else: tol = 0. # Initial conditions q_init, t_init = self.get_initial_conditions() # intialize solution field self.q = ConservedField(self.disc, self.bc, self.geometry, self.material, self.numerics, self.surface, q_init=q_init, t_init=t_init) rank = self.q.comm.Get_rank() # time stamp of simulation start time self.tStart = datetime.now() # Header line for screen output if rank == 0: print(f"{'Step':10s}\t{'Timestep':12s}\t{'Time':12s}\t{'Epsilon':12s}", flush=True) if plot: # on-the-fly plotting self.plot(writeInterval) else: nc = self.init_netcdf(out_dir, out_name, rank) i = 0 self._write_mode = 0 while self._write_mode == 0: # Perform time update self.q.update(i) # increase time step i += 1 # catch signals and execute signal handler signal.signal(signal.SIGINT, self.receive_signal) signal.signal(signal.SIGTERM, self.receive_signal) signal.signal(signal.SIGHUP, self.receive_signal) signal.signal(signal.SIGUSR1, self.receive_signal) signal.signal(signal.SIGUSR2, self.receive_signal) # convergence if i > 1 and self.q.eps < tol: self._write_mode = 1 break # maximum time reached if round(self.q.time, 15) >= maxT: self._write_mode = 2 break # maximum number of iterations reached if i >= maxIt: self._write_mode = 3 break if i % writeInterval == 0: self.write_to_netcdf(i, nc, mode=self._write_mode) if rank == 0: self.write_to_stdout(i, mode=self._write_mode) self.write_to_netcdf(i, nc, mode=self._write_mode) if rank == 0: self.write_to_stdout(i, mode=self._write_mode) def get_initial_conditions(self): """ Return the initial field given by last frame of restart file or as defined through inputs. Returns ------- np.array Inital field of conserved variables. tuple Inital time and timestep """ if self.ic is None: q_init = np.zeros((3, self.disc["Nx"], self.disc["Ny"])) q_init[0] += self.material["rho0"] t_init = (0., self.numerics["dt"]) else: # read last frame of restart file if self.ic["type"] == "restart": q_init, t_init = self.read_last_frame() elif self.ic["type"] == "perturbation": q_init = np.zeros((3, self.disc["Nx"], self.disc["Ny"])) q_init[0] += self.material["rho0"] t_init = (0., self.numerics["dt"]) q_init[0, self.disc["Nx"] // 2, self.disc["Ny"] // 2] *= self.ic["factor"] elif self.ic["type"] == "longitudinal_wave": x = np.linspace(0 + self.disc["dx"]/2, self.disc["Lx"] - self.disc["dx"]/2, self.disc["Nx"]) y = np.linspace(0 + self.disc["dy"]/2, self.disc["Ly"] - self.disc["dy"]/2, self.disc["Ny"]) xx, yy = np.meshgrid(x, y, indexing="ij") q_init = np.zeros((3, self.disc["Nx"], self.disc["Ny"])) q_init[0] += self.material["rho0"] k = 2. * np.pi / self.disc["Lx"] * self.ic["nwave"] q_init[1] += self.ic["amp"] * np.sin(k * xx) t_init = (0., self.numerics["dt"]) elif self.ic["type"] == "shear_wave": x = np.linspace(0 + self.disc["dx"]/2, self.disc["Lx"] - self.disc["dx"]/2, self.disc["Nx"]) y = np.linspace(0 + self.disc["dy"]/2, self.disc["Ly"] - self.disc["dy"]/2, self.disc["Ny"]) xx, yy = np.meshgrid(x, y, indexing="ij") q_init = np.zeros((3, self.disc["Nx"], self.disc["Ny"])) q_init[0] += self.material["rho0"] k = 2. * np.pi / self.disc["Lx"] * self.ic["nwave"] q_init[2] += self.ic["amp"] * np.sin(k * xx) t_init = (0., self.numerics["dt"]) return q_init, t_init def read_last_frame(self): """ Read last frame from restart file and use as initial values for new run. Returns ------- np.array Solution field at last frame, used as inital field. tuple Total time and timestep of last frame. """ file = Dataset(self.ic["file"], "r") rho = np.array(file.variables['rho'])[-1] jx = np.array(file.variables['jx'])[-1] jy = np.array(file.variables['jy'])[-1] dt = float(file.variables["dt"][-1]) t = float(file.variables["time"][-1]) q0 = np.zeros([3] + list(rho.shape)) q0[0] = rho q0[1] = jx q0[2] = jy return q0, (t, dt) def init_netcdf(self, out_dir, out_name, rank): """ Initialize netCDF4 file, create dimensions, variables and metadata. Parameters ---------- out_dir : str Output directoy. out_name : str Filename prefix. rank : int Rank of the MPI communicator Returns ------- netCDF4.Dataset Initialized dataset. """ if rank == 0: if not(os.path.exists(out_dir)): os.makedirs(out_dir) if self.ic is None or self.ic["type"] != "restart": if rank == 0: if out_name is None: # default unique filename with timestamp timestamp = datetime.now().replace(microsecond=0).strftime("%Y-%m-%d_%H%M%S") name = self.options["name"] outfile = f"{timestamp}_{name}.nc" else: # custom filename with zero padded number tag = str(len([1 for f in os.listdir(out_dir) if f.startswith(out_name)]) + 1).zfill(4) outfile = f"{out_name}-{tag}.nc" self.outpath = os.path.join(out_dir, outfile) else: self.outpath = None self.outpath = self.q.comm.bcast(self.outpath, root=0) # initialize NetCDF file parallel = False if self.q.comm.Get_size() > 1: parallel = True nc = Dataset(self.outpath, 'w', parallel=parallel, format='NETCDF3_64BIT_OFFSET') nc.restarts = 0 nc.createDimension('x', self.disc["Nx"]) nc.createDimension('y', self.disc["Ny"]) nc.createDimension('step', None) # create unknown variable buffer as timeseries of 2D fields var0 = nc.createVariable('rho', 'f8', ('step', 'x', 'y')) var1 = nc.createVariable('jx', 'f8', ('step', 'x', 'y')) var2 = nc.createVariable('jy', 'f8', ('step', 'x', 'y')) var0.set_collective(True) var1.set_collective(True) var2.set_collective(True) # create scalar variables nc.createVariable('time', 'f8', ('step')) nc.createVariable('mass', 'f8', ('step')) nc.createVariable('vmax', 'f8', ('step')) nc.createVariable('vSound', 'f8', ('step')) nc.createVariable('dt', 'f8', ('step')) nc.createVariable('eps', 'f8', ('step')) nc.createVariable('ekin', 'f8', ('step')) # write metadata nc.setncattr(f"tStart-{nc.restarts}", self.tStart.strftime("%d/%m/%Y %H:%M:%S")) nc.setncattr("version", get_distribution('hans').version) disc = self.disc.copy() bc = self.bc.copy() categories = {"options": self.options, "disc": disc, "bc": bc, "geometry": self.geometry, "numerics": self.numerics, "material": self.material} if self.surface is not None: categories["surface"] = self.surface if self.ic is not None: categories["ic"] = self.ic # reset modified input dictionaries bc["x0"] = "".join(bc["x0"]) bc["x1"] = "".join(bc["x1"]) bc["y0"] = "".join(bc["y0"]) bc["y1"] = "".join(bc["y1"]) del disc["nghost"] del disc["pX"] del disc["pY"] for name, cat in categories.items(): for key, value in cat.items(): nc.setncattr(f"{name}_{key}", value) else: # append to existing netCDF file parallel = False if self.q.comm.Get_size() > 1: parallel = True nc = Dataset(self.ic["file"], 'a', parallel=parallel, format='NETCDF3_64BIT_OFFSET') self.outpath = os.path.relpath(self.ic["file"]) backup_file = f"{os.path.splitext(self.ic['file'])[0]}-{nc.restarts}.nc" # create backup if rank == 0: shutil.copy(self.ic["file"], backup_file) # increase restart counter nc.restarts += 1 # append modified attributes nc.setncattr(f"tStart-{nc.restarts}", self.tStart.strftime("%d/%m/%Y %H:%M:%S")) for key, value in self.numerics.items(): name = f"numerics_{key}-{nc.restarts}" nc.setncattr(name, value) nc.setncattr(f"ic_type-{nc.restarts}", "restart") nc.setncattr(f"ic_file-{nc.restarts}", backup_file) return nc def write_to_stdout(self, i, mode): """ Write information about the current time step to stdout. Parameters ---------- i : int Current time step. mode : int Writing mode (0: normal, 1: converged, 2: max time, 3: execution stopped). """ print(f"{i:10d}\t{self.q.dt:.6e}\t{self.q.time:.6e}\t{self.q.eps:.6e}", flush=True) if mode == 1: print(f"\nSolution has converged after {i:d} steps. Output written to: {self.outpath}", flush=True) elif mode == 2: print(f"\nNo convergence within {i: d} steps.", end=" ", flush=True) print(f"Stopping criterion: maximum time {self.numerics['maxT']: .1e} s reached.", flush=True) print(f"Output written to: {self.outpath}", flush=True) elif mode == 3: print(f"\nNo convergence within {i: d} steps.", end=" ", flush=True) print(f"Stopping criterion: maximum number of iterations reached.", flush=True) print(f"Output written to: {self.outpath}", flush=True) elif mode == 4: print(f"Execution stopped. Output written to: {self.outpath}", flush=True) if mode > 0: walltime = datetime.now() - self.tStart print(f"Total wall clock time: {str(walltime).split('.')[0]}", end=" ", flush=True) print(f"(Performance: {i/walltime.total_seconds(): .2f} steps/s", end=" ", flush=True) print(f"on {self.q.comm.dims[0]} x {self.q.comm.dims[1]} MPI grid)", flush=True) def write_to_netcdf(self, i, nc, mode): """ Append current solution field to netCDF file. Parameters ---------- i : int Current time step. nc : netCDF4.Dataset NetCDF Dataset object. mode : int Writing mode (0: normal, 1: converged, 2: max time, 3: execution stopped). """ step = nc.variables["rho"].shape[0] xrange, yrange = self.q.without_ghost nc.variables['rho'][step, xrange, yrange] = self.q.inner[0] nc.variables['jx'][step, xrange, yrange] = self.q.inner[1] nc.variables['jy'][step, xrange, yrange] = self.q.inner[2] nc.variables["time"][step] = self.q.time nc.variables["mass"][step] = self.q.mass nc.variables["vmax"][step] = self.q.vmax nc.variables["vSound"][step] = self.q.vSound nc.variables["dt"][step] = self.q.dt nc.variables["eps"][step] = self.q.eps nc.variables["ekin"][step] = self.q.ekin if mode > 0: nc.setncattr(f"tEnd-{nc.restarts}", datetime.now().strftime("%d/%m/%Y %H:%M:%S")) nc.close() def receive_signal(self, signum, frame): """ Signal handler. Catches signals send to the process and sets write mode to 3 (abort). Parameters ---------- signum : signal code frame : Description of parameter `frame`. """ if signum in [signal.SIGINT, signal.SIGTERM, signal.SIGHUP, signal.SIGUSR1]: self._write_mode = 4 def plot(self, writeInterval): """ Initialize on-the-fly plotting. Parameters ---------- writeInterval : int Write interval for stdout in plotting mode. """ fig, ax = plt.subplots(2, 2, figsize=(14, 9), sharex=True) Nx = self.disc["Nx"] dx = self.disc["dx"] x = np.arange(Nx) * dx + dx / 2 ax[0, 0].plot(x, self.q.centerline_x[1]) ax[0, 1].plot(x, self.q.centerline_x[2]) ax[1, 0].plot(x, self.q.centerline_x[0]) ax[1, 1].plot(x, Material(self.material).eos_pressure(self.q.centerline_x[0])) ax[0, 0].set_title(r'$j_x$') ax[0, 1].set_title(r'$j_y$') ax[1, 0].set_title(r'$\rho$') ax[1, 1].set_title(r'$p$') ax[1, 0].set_xlabel('distance x (m)') ax[1, 1].set_xlabel('distance x (m)') def init(): pass _ = animation.FuncAnimation(fig, self.animate1D, 100000, fargs=(fig, ax, writeInterval), interval=1, init_func=init, repeat=False) plt.show() def animate1D(self, i, fig, ax, writeInterval): """ Animator function. Update solution and plots. Parameters ---------- i : type Current time step. fig : matplotlib.figure Figure object. ax : np.array Array containing the axes of the figure. writeInterval : int Write interval for stdout in plotting mode. """ self.q.update(i) fig.suptitle('time = {:.2f} ns'.format(self.q.time * 1e9)) ax[0, 0].lines[0].set_ydata(self.q.centerline_x[1]) ax[0, 1].lines[0].set_ydata(self.q.centerline_x[2]) ax[1, 0].lines[0].set_ydata(self.q.centerline_x[0]) ax[1, 1].lines[0].set_ydata(Material(self.material).eos_pressure(self.q.centerline_x[0])) ax = adaptiveLimits(ax) if i % writeInterval == 0: print(f"{i:10d}\t{self.q.dt:.6e}\t{self.q.time:.6e}\t{self.q.eps:.6e}", flush=True) def check_options(self): """ Sanity check for I/O options input. """ print("Checking I/O options... ") try: writeInterval = int(self.options["writeInterval"]) assert writeInterval > 0 except KeyError: print("***Output interval not given, fallback to 1000") self.options["writeInterval"] = 1000 except AssertionError: try: assert writeInterval != 0 except AssertionError: print("***Output interval is zero. fallback to 1000") self.options["writeInterval"] = 1000 else: print("***Output interval is negative. Converting to positive value.") writeInterval *= -1 self.options["writeInterval"] = writeInterval def check_disc(self): """ Sanity check for discretization input. [Nx, Ny] are required, then look for [Lx, Ly] or [dx, dy] (in that order). """ print("Checking discretization... ") try: self.disc["Nx"] = int(self.disc['Nx']) assert self.disc["Nx"] > 0 except KeyError: print("***Number of grid cells Nx not specified. Abort.") abort() except AssertionError: print("***Number of grid cells Nx must be larger than zero. Abort") abort() try: self.disc["Ny"] = int(self.disc['Ny']) assert self.disc["Ny"] > 0 except KeyError: print("***Number of grid cells 'Ny' not specified. Abort.") abort() except AssertionError: print("***Number of grid cells 'Ny' must be larger than zero. Abort") abort() try: self.disc["Lx"] = float(self.disc["Lx"]) except KeyError: try: self.disc["dx"] = float(self.disc["dx"]) except KeyError: print("At least two of 'Nx' 'Lx', 'dx' must be given. Abort.") abort() else: self.disc["Lx"] = self.disc["dx"] * self.disc["Nx"] else: self.disc["dx"] = self.disc["Lx"] / self.disc["Nx"] try: self.disc["Ly"] = float(self.disc["Ly"]) except KeyError: try: self.disc["dy"] = float(self.disc["dy"]) except KeyError: print("At least two of 'Ny' 'Ly', 'dy' must be given. Abort.") abort() else: self.disc["Ly"] = self.disc["dy"] * self.disc["Ny"] else: self.disc["dy"] = self.disc["Ly"] / self.disc["Ny"] def check_geo(self): """ Sanity check for geometry input. """ print("Checking geometry... ") if self.geometry["type"] in ["journal", "journal_x", "journal_y"]: self.geometry["CR"] = float(self.geometry["CR"]) self.geometry["eps"] = float(self.geometry["eps"]) elif self.geometry["type"] == "parabolic": self.geometry["hmin"] = float(self.geometry['hmin']) self.geometry["hmax"] = float(self.geometry['hmax']) elif self.geometry["type"] == "twin_parabolic": self.geometry["hmin"] = float(self.geometry['hmin']) self.geometry["hmax"] = float(self.geometry['hmax']) elif self.geometry["type"] in ["inclined", "inclined_x", "inclined_y"]: self.geometry["h1"] = float(self.geometry['h1']) self.geometry["h2"] = float(self.geometry['h2']) elif self.geometry["type"] == "inclined_pocket": self.geometry["h1"] = float(self.geometry['h1']) self.geometry["h2"] = float(self.geometry['h2']) self.geometry["hp"] = float(self.geometry['hp']) self.geometry["c"] = float(self.geometry['c']) self.geometry["l"] = float(self.geometry['l']) self.geometry["w"] = float(self.geometry['w']) elif self.geometry["type"] in ["half_sine", "half_sine_squared"]: self.geometry["h0"] = float(self.geometry['h0']) self.geometry["amp"] = float(self.geometry['amp']) self.geometry["num"] = float(self.geometry['num']) def check_num(self): """ Sanity check for numerics options. """ print("Checking numerics options... ") try: self.numerics["integrator"] = self.numerics["integrator"] assert self.numerics["integrator"] in ["MC", "MC_bf", "MC_fb", "MC_alt", "LW", "RK3"] except KeyError: print("***Integrator not specified. Use default (MacCormack).") self.numerics["integrator"] = "MC" except AssertionError: print(f'***Unknown integrator \'{self.numerics["integrator"]}\'. Abort.') abort() if self.numerics["integrator"].startswith("MC"): try: self.numerics["fluxLim"] = float(self.numerics["fluxLim"]) except KeyError: pass try: self.numerics["stokes"] = int(self.numerics["stokes"]) except KeyError: print("***Boolean parameter 'stokes' not given. Use default (True).") self.numerics["stokes"] = 1 try: self.numerics["adaptive"] = int(self.numerics["adaptive"]) except KeyError: print("***Boolean parameter 'adaptive' not given. Use default (False).") self.numerics["adaptive"] = 0 if self.numerics["adaptive"] == 1: try: self.numerics["C"] = float(self.numerics["C"]) except KeyError: print("***CFL number not given. Use default (0.5).") self.numerics["C"] = 0.5 try: self.numerics["dt"] = float(self.numerics["dt"]) except KeyError: print("***Timestep not given. Use default (1e-10).") self.numerics["dt"] = 1e-10 stopping_criteria = 0 try: self.numerics["tol"] = float(self.numerics["tol"]) stopping_criteria += 1 except KeyError: pass try: self.numerics["maxT"] = float(self.numerics["maxT"]) stopping_criteria += 1 except KeyError: pass try: self.numerics["maxIt"] = int(self.numerics["maxIt"]) stopping_criteria += 1 except KeyError: pass if stopping_criteria == 0: print("***No stopping criterion given. Abort.") abort() if self.numerics["integrator"] == "RK3": self.disc["nghost"] = 2 else: self.disc["nghost"] = 1 def check_mat(self): """ Sanity check on material settings. """ print("Checking material options... ") if self.material["EOS"] == "DH": self.material["rho0"] = float(self.material["rho0"]) self.material["P0"] = float(self.material["P0"]) self.material["C1"] = float(self.material["C1"]) self.material["C2"] = float(self.material["C2"]) elif self.material["EOS"] == "PL": self.material["rho0"] = float(self.material["rho0"]) self.material["P0"] = float(self.material["P0"]) self.material["alpha"] = float(self.material['alpha']) elif self.material["EOS"] == "vdW": self.material["M"] = float(self.material['M']) self.material["T"] = float(self.material['T0']) self.material["a"] = float(self.material['a']) self.material["b"] = float(self.material['b']) elif self.material["EOS"] == "Tait": self.material["rho0"] = float(self.material["rho0"]) self.material["P0"] = float(self.material["P0"]) self.material["K"] = float(self.material['K']) self.material["n"] = float(self.material['n']) elif self.material["EOS"] == "cubic": self.material["a"] = float(self.material['a']) self.material["b"] = float(self.material['b']) self.material["c"] = float(self.material['c']) self.material["d"] = float(self.material['d']) elif self.material["EOS"].startswith("Bayada"): self.material["cl"] = float(self.material["cl"]) self.material["cv"] = float(self.material["cv"]) self.material["rhol"] = float(self.material["rhol"]) self.material["rhov"] = float(self.material["rhov"]) self.material["shear"] = float(self.material["shear"]) self.material["shearv"] = float(self.material["shearv"]) self.material["rhov"] = float(self.material["rhov"]) self.material["shear"] = float(self.material["shear"]) self.material["bulk"] = float(self.material["bulk"]) if "Pcav" in self.material.keys(): self.material["Pcav"] = float(self.material["Pcav"]) if "piezo" in self.material.keys(): if self.material["piezo"] == "Barus": self.material["aB"] = float(self.material["aB"]) elif self.material["piezo"] == "Vogel": self.material["rho0"] = float(self.material['rho0']) self.material["g"] = float(self.material["g"]) self.material["mu_inf"] = float(self.material["mu_inf"]) self.material["phi_inf"] = float(self.material["phi_inf"]) self.material["BF"] = float(self.material["BF"]) if "thinning" in self.material.keys(): if self.material["thinning"] == "Eyring": self.material["tau0"] = float(self.material["tau0"]) elif self.material["thinning"] == "Carreau": self.material["relax"] = float(self.material["relax"]) self.material["a"] = float(self.material["a"]) self.material["N"] = float(self.material["N"]) elif self.material["thinning"] == "PL": self.material["shear"] = float(self.material["shear"]) self.material["n"] = float(self.material["n"]) if "PLindex" in self.material.keys(): self.material["PLindex"] = float(self.material["PLindex"]) def check_surface(self): """ Sanity check for surface input. """ print("Checking surface parameters... ") if "lslip" in self.surface.keys(): self.surface["lslip"] = float(self.surface["lslip"]) else: self.surface["lslip"] = 0. if self.surface["type"] in ["stripes", "stripes_x", "stripes_y"]: try: self.surface["num"] = int(self.surface["num"]) except KeyError: self.surface["num"] = 1 try: self.surface["sign"] = int(self.surface["sign"]) except KeyError: self.surface["sign"] = -1 def check_ic(self): """ Sanity check for initial conditions input. """ print("Checking initial conditions... ") if self.ic["type"] != "restart": if self.ic["type"] == "perturbation": self.ic["factor"] = float(self.ic["factor"]) elif self.ic["type"] in ["longitudinal_wave", "shear_wave"]: self.ic["amp"] = float(self.ic["amp"]) if "nwave" in self.ic.keys(): self.ic["nwave"] = int(self.ic["nwave"]) else: self.ic["nwave"] = 1 def check_bc(self): """ Sanity check for boundary condition input. Parameters ---------- bc : dict Boundary condition parameters read from yaml input file. disc : dict Discretization parameters. material : dict Material parameters. Returns ------- dict Boundary condition parameters. """ print("Checking boundary conditions... ") self.bc["x0"] = np.array(list(self.bc["x0"])) self.bc["x1"] = np.array(list(self.bc["x1"])) self.bc["y0"] = np.array(list(self.bc["y0"])) self.bc["y1"] = np.array(list(self.bc["y1"])) assert len(self.bc["x0"]) == 3 assert len(self.bc["x1"]) == 3 assert len(self.bc["y0"]) == 3 assert len(self.bc["y1"]) == 3 if "P" in self.bc["x0"] and "P" in self.bc["x1"]: self.disc["pX"] = 1 else: self.disc["pX"] = 0 if "P" in self.bc["y0"] and "P" in self.bc["y1"]: self.disc["pY"] = 1 else: self.disc["pY"] = 0 if "D" in self.bc["x0"]: if "px0" in self.bc.keys(): px0 = float(self.bc["px0"]) self.bc["rhox0"] = Material(self.material).eos_density(px0) else: self.bc["rhox0"] = self.material["rho0"] if "D" in self.bc["x1"]: if "px1" in self.bc.keys(): px1 = float(self.bc["px1"]) self.bc["rhox1"] = Material(self.material).eos_density(px1) else: self.bc["rhox1"] = self.material["rho0"] if "D" in self.bc["y0"]: if "py0" in self.bc.keys(): py0 = float(self.bc["py0"]) self.bc["rhoy0"] = Material(self.material).eos_density(py0) else: self.bc["rhoy0"] = self.material["rho0"] if "D" in self.bc["y1"]: if "py1" in self.bc.keys(): py1 = float(self.bc["py1"]) self.bc["rhoy1"] = Material(self.material).eos_density(py1) else: self.bc["rhoy1"] = self.material["rho0"] assert np.all((self.bc["x0"] == "P") == (self.bc["x1"] == "P")), "Inconsistent boundary conditions (x)" assert np.all((self.bc["y0"] == "P") == (self.bc["y1"] == "P")), "Inconsistent boundary conditions (y)"
[ "hans.tools.abort", "numpy.array", "numpy.sin", "numpy.arange", "os.path.exists", "os.listdir", "netCDF4.Dataset", "numpy.linspace", "numpy.meshgrid", "pkg_resources.get_distribution", "os.path.relpath", "os.path.splitext", "shutil.copy", "hans.plottools.adaptiveLimits", "hans.material.Material", "matplotlib.pyplot.show", "signal.signal", "os.makedirs", "matplotlib.animation.FuncAnimation", "os.path.join", "datetime.datetime.now", "numpy.zeros", "hans.integrate.ConservedField", "numpy.all", "matplotlib.pyplot.subplots" ]
[((3950, 4078), 'hans.integrate.ConservedField', 'ConservedField', (['self.disc', 'self.bc', 'self.geometry', 'self.material', 'self.numerics', 'self.surface'], {'q_init': 'q_init', 't_init': 't_init'}), '(self.disc, self.bc, self.geometry, self.material, self.\n numerics, self.surface, q_init=q_init, t_init=t_init)\n', (3964, 4078), False, 'from hans.integrate import ConservedField\n'), ((4406, 4420), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4418, 4420), False, 'from datetime import datetime\n'), ((8815, 8844), 'netCDF4.Dataset', 'Dataset', (["self.ic['file']", '"""r"""'], {}), "(self.ic['file'], 'r')\n", (8822, 8844), False, 'from netCDF4 import Dataset\n'), ((17398, 17446), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(14, 9)', 'sharex': '(True)'}), '(2, 2, figsize=(14, 9), sharex=True)\n', (17410, 17446), True, 'import matplotlib.pyplot as plt\n'), ((18073, 18203), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'self.animate1D', '(100000)'], {'fargs': '(fig, ax, writeInterval)', 'interval': '(1)', 'init_func': 'init', 'repeat': '(False)'}), '(fig, self.animate1D, 100000, fargs=(fig, ax,\n writeInterval), interval=1, init_func=init, repeat=False)\n', (18096, 18203), True, 'import matplotlib.animation as animation\n'), ((18425, 18435), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (18433, 18435), True, 'import matplotlib.pyplot as plt\n'), ((19260, 19278), 'hans.plottools.adaptiveLimits', 'adaptiveLimits', (['ax'], {}), '(ax)\n', (19274, 19278), False, 'from hans.plottools import adaptiveLimits\n'), ((33229, 33285), 'numpy.all', 'np.all', (["((self.bc['x0'] == 'P') == (self.bc['x1'] == 'P'))"], {}), "((self.bc['x0'] == 'P') == (self.bc['x1'] == 'P'))\n", (33235, 33285), True, 'import numpy as np\n'), ((33341, 33397), 'numpy.all', 'np.all', (["((self.bc['y0'] == 'P') == (self.bc['y1'] == 'P'))"], {}), "((self.bc['y0'] == 'P') == (self.bc['y1'] == 'P'))\n", (33347, 33397), True, 'import numpy as np\n'), ((6562, 6609), 'numpy.zeros', 'np.zeros', (["(3, self.disc['Nx'], self.disc['Ny'])"], {}), "((3, self.disc['Nx'], self.disc['Ny']))\n", (6570, 6609), True, 'import numpy as np\n'), ((8860, 8891), 'numpy.array', 'np.array', (["file.variables['rho']"], {}), "(file.variables['rho'])\n", (8868, 8891), True, 'import numpy as np\n'), ((8909, 8939), 'numpy.array', 'np.array', (["file.variables['jx']"], {}), "(file.variables['jx'])\n", (8917, 8939), True, 'import numpy as np\n'), ((8957, 8987), 'numpy.array', 'np.array', (["file.variables['jy']"], {}), "(file.variables['jy'])\n", (8965, 8987), True, 'import numpy as np\n'), ((10742, 10818), 'netCDF4.Dataset', 'Dataset', (['self.outpath', '"""w"""'], {'parallel': 'parallel', 'format': '"""NETCDF3_64BIT_OFFSET"""'}), "(self.outpath, 'w', parallel=parallel, format='NETCDF3_64BIT_OFFSET')\n", (10749, 10818), False, 'from netCDF4 import Dataset\n'), ((13167, 13246), 'netCDF4.Dataset', 'Dataset', (["self.ic['file']", '"""a"""'], {'parallel': 'parallel', 'format': '"""NETCDF3_64BIT_OFFSET"""'}), "(self.ic['file'], 'a', parallel=parallel, format='NETCDF3_64BIT_OFFSET')\n", (13174, 13246), False, 'from netCDF4 import Dataset\n'), ((13274, 13306), 'os.path.relpath', 'os.path.relpath', (["self.ic['file']"], {}), "(self.ic['file'])\n", (13289, 13306), False, 'import os\n'), ((26034, 26041), 'hans.tools.abort', 'abort', ([], {}), '()\n', (26039, 26041), False, 'from hans.tools import abort\n'), ((5045, 5094), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'self.receive_signal'], {}), '(signal.SIGINT, self.receive_signal)\n', (5058, 5094), False, 'import signal\n'), ((5111, 5161), 'signal.signal', 'signal.signal', (['signal.SIGTERM', 'self.receive_signal'], {}), '(signal.SIGTERM, self.receive_signal)\n', (5124, 5161), False, 'import signal\n'), ((5178, 5227), 'signal.signal', 'signal.signal', (['signal.SIGHUP', 'self.receive_signal'], {}), '(signal.SIGHUP, self.receive_signal)\n', (5191, 5227), False, 'import signal\n'), ((5244, 5294), 'signal.signal', 'signal.signal', (['signal.SIGUSR1', 'self.receive_signal'], {}), '(signal.SIGUSR1, self.receive_signal)\n', (5257, 5294), False, 'import signal\n'), ((5311, 5361), 'signal.signal', 'signal.signal', (['signal.SIGUSR2', 'self.receive_signal'], {}), '(signal.SIGUSR2, self.receive_signal)\n', (5324, 5361), False, 'import signal\n'), ((9703, 9726), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (9717, 9726), False, 'import os\n'), ((9745, 9765), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (9756, 9765), False, 'import os\n'), ((10429, 10459), 'os.path.join', 'os.path.join', (['out_dir', 'outfile'], {}), '(out_dir, outfile)\n', (10441, 10459), False, 'import os\n'), ((13464, 13505), 'shutil.copy', 'shutil.copy', (["self.ic['file']", 'backup_file'], {}), "(self.ic['file'], backup_file)\n", (13475, 13505), False, 'import shutil\n'), ((15257, 15271), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (15269, 15271), False, 'from datetime import datetime\n'), ((17518, 17531), 'numpy.arange', 'np.arange', (['Nx'], {}), '(Nx)\n', (17527, 17531), True, 'import numpy as np\n'), ((20695, 20702), 'hans.tools.abort', 'abort', ([], {}), '()\n', (20700, 20702), False, 'from hans.tools import abort\n'), ((20826, 20833), 'hans.tools.abort', 'abort', ([], {}), '()\n', (20831, 20833), False, 'from hans.tools import abort\n'), ((21047, 21054), 'hans.tools.abort', 'abort', ([], {}), '()\n', (21052, 21054), False, 'from hans.tools import abort\n'), ((21180, 21187), 'hans.tools.abort', 'abort', ([], {}), '()\n', (21185, 21187), False, 'from hans.tools import abort\n'), ((24288, 24295), 'hans.tools.abort', 'abort', ([], {}), '()\n', (24293, 24295), False, 'from hans.tools import abort\n'), ((6942, 6989), 'numpy.zeros', 'np.zeros', (["(3, self.disc['Nx'], self.disc['Ny'])"], {}), "((3, self.disc['Nx'], self.disc['Ny']))\n", (6950, 6989), True, 'import numpy as np\n'), ((11968, 11992), 'pkg_resources.get_distribution', 'get_distribution', (['"""hans"""'], {}), "('hans')\n", (11984, 11992), False, 'from pkg_resources import get_distribution\n'), ((17719, 17742), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (17727, 17742), False, 'from hans.material import Material\n'), ((19184, 19207), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (19192, 19207), False, 'from hans.material import Material\n'), ((7260, 7356), 'numpy.linspace', 'np.linspace', (["(0 + self.disc['dx'] / 2)", "(self.disc['Lx'] - self.disc['dx'] / 2)", "self.disc['Nx']"], {}), "(0 + self.disc['dx'] / 2, self.disc['Lx'] - self.disc['dx'] / 2,\n self.disc['Nx'])\n", (7271, 7356), True, 'import numpy as np\n'), ((7369, 7465), 'numpy.linspace', 'np.linspace', (["(0 + self.disc['dy'] / 2)", "(self.disc['Ly'] - self.disc['dy'] / 2)", "self.disc['Ny']"], {}), "(0 + self.disc['dy'] / 2, self.disc['Ly'] - self.disc['dy'] / 2,\n self.disc['Ny'])\n", (7380, 7465), True, 'import numpy as np\n'), ((7483, 7515), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {'indexing': '"""ij"""'}), "(x, y, indexing='ij')\n", (7494, 7515), True, 'import numpy as np\n'), ((7542, 7589), 'numpy.zeros', 'np.zeros', (["(3, self.disc['Nx'], self.disc['Ny'])"], {}), "((3, self.disc['Nx'], self.disc['Ny']))\n", (7550, 7589), True, 'import numpy as np\n'), ((13337, 13370), 'os.path.splitext', 'os.path.splitext', (["self.ic['file']"], {}), "(self.ic['file'])\n", (13353, 13370), False, 'import os\n'), ((16660, 16674), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (16672, 16674), False, 'from datetime import datetime\n'), ((21478, 21485), 'hans.tools.abort', 'abort', ([], {}), '()\n', (21483, 21485), False, 'from hans.tools import abort\n'), ((21940, 21947), 'hans.tools.abort', 'abort', ([], {}), '()\n', (21945, 21947), False, 'from hans.tools import abort\n'), ((32290, 32313), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (32298, 32313), False, 'from hans.material import Material\n'), ((32559, 32582), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (32567, 32582), False, 'from hans.material import Material\n'), ((32828, 32851), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (32836, 32851), False, 'from hans.material import Material\n'), ((33097, 33120), 'hans.material.Material', 'Material', (['self.material'], {}), '(self.material)\n', (33105, 33120), False, 'from hans.material import Material\n'), ((7755, 7769), 'numpy.sin', 'np.sin', (['(k * xx)'], {}), '(k * xx)\n', (7761, 7769), True, 'import numpy as np\n'), ((7891, 7987), 'numpy.linspace', 'np.linspace', (["(0 + self.disc['dx'] / 2)", "(self.disc['Lx'] - self.disc['dx'] / 2)", "self.disc['Nx']"], {}), "(0 + self.disc['dx'] / 2, self.disc['Lx'] - self.disc['dx'] / 2,\n self.disc['Nx'])\n", (7902, 7987), True, 'import numpy as np\n'), ((8000, 8096), 'numpy.linspace', 'np.linspace', (["(0 + self.disc['dy'] / 2)", "(self.disc['Ly'] - self.disc['dy'] / 2)", "self.disc['Ny']"], {}), "(0 + self.disc['dy'] / 2, self.disc['Ly'] - self.disc['dy'] / 2,\n self.disc['Ny'])\n", (8011, 8096), True, 'import numpy as np\n'), ((8114, 8146), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {'indexing': '"""ij"""'}), "(x, y, indexing='ij')\n", (8125, 8146), True, 'import numpy as np\n'), ((8173, 8220), 'numpy.zeros', 'np.zeros', (["(3, self.disc['Nx'], self.disc['Ny'])"], {}), "((3, self.disc['Nx'], self.disc['Ny']))\n", (8181, 8220), True, 'import numpy as np\n'), ((8386, 8400), 'numpy.sin', 'np.sin', (['(k * xx)'], {}), '(k * xx)\n', (8392, 8400), True, 'import numpy as np\n'), ((9983, 9997), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (9995, 9997), False, 'from datetime import datetime\n'), ((10282, 10301), 'os.listdir', 'os.listdir', (['out_dir'], {}), '(out_dir)\n', (10292, 10301), False, 'import os\n')]
""" Script to make nucleosome occupancy track! @author: <NAME> """ ##### IMPORT MODULES ##### # import necessary python modules #import matplotlib as mpl #mpl.use('PS') import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import traceback import itertools import pysam from pyatac.utils import shell_command,read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta from pyatac.chunk import ChunkList from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk from pyatac.fragmentsizes import FragmentSizes from pyatac.bias import PWM def _occHelper(arg): """function to get occupancy for a set of bed regions """ (chunk, params) = arg try: occ = OccChunk(chunk) occ.process(params) out = (occ.getNucDist(), occ.occ, [occ.peaks[i] for i in sorted(occ.peaks.keys())]) occ.removeData() except Exception as e: print(('Caught exception when processing:\n'+ chunk.asBed()+"\n")) traceback.print_exc() print() raise e return out def _writeOcc(track_queue, out): out_handle1 = open(out + '.occ.bedgraph','a') out_handle2 = open(out + '.occ.lower_bound.bedgraph','a') out_handle3 = open(out + '.occ.upper_bound.bedgraph','a') try: for track in iter(track_queue.get, 'STOP'): track.write_track(out_handle1, vals = track.smoothed_vals) track.write_track(out_handle2, vals = track.smoothed_lower) track.write_track(out_handle3, vals = track.smoothed_upper) track_queue.task_done() except Exception as e: print('Caught exception when writing occupancy track\n') traceback.print_exc() print() raise e out_handle1.close() out_handle2.close() out_handle3.close() return True def _writePeaks(pos_queue, out): out_handle = open(out + '.occpeaks.bed','a') try: for poslist in iter(pos_queue.get, 'STOP'): for pos in poslist: pos.write(out_handle) pos_queue.task_done() except Exception as e: print('Caught exception when writing occupancy track\n') traceback.print_exc() print() raise e out_handle.close() return True def run_occ(args): """run occupancy calling """ if args.fasta: chrs = read_chrom_sizes_from_fasta(args.fasta) else: chrs = read_chrom_sizes_from_bam(args.bam) pwm = PWM.open(args.pwm) chunks = ChunkList.read(args.bed, chromDict = chrs, min_offset = args.flank + args.upper//2 + max(pwm.up,pwm.down) + args.nuc_sep//2) chunks.slop(chrs, up = args.nuc_sep//2, down = args.nuc_sep//2) chunks.merge() maxQueueSize = args.cores*10 fragment_dist = FragmentMixDistribution(0, upper = args.upper) if args.sizes is not None: tmp = FragmentSizes.open(args.sizes) fragment_dist.fragmentsizes = FragmentSizes(0, args.upper, vals = tmp.get(0,args.upper)) else: fragment_dist.getFragmentSizes(args.bam, chunks) fragment_dist.modelNFR() fragment_dist.plotFits(args.out + '.occ_fit.pdf') fragment_dist.fragmentsizes.save(args.out + '.fragmentsizes.txt') params = OccupancyParameters(fragment_dist, args.upper, args.fasta, args.pwm, sep = args.nuc_sep, min_occ = args.min_occ, flank = args.flank, bam = args.bam, ci = args.confidence_interval, step = args.step) sets = chunks.split(items = args.cores * 5) pool1 = mp.Pool(processes = max(1,args.cores-1)) out_handle1 = open(args.out + '.occ.bedgraph','w') out_handle1.close() out_handle2 = open(args.out + '.occ.lower_bound.bedgraph','w') out_handle2.close() out_handle3 = open(args.out + '.occ.upper_bound.bedgraph','w') out_handle3.close() write_queue = mp.JoinableQueue(maxsize = maxQueueSize) write_process = mp.Process(target = _writeOcc, args=(write_queue, args.out)) write_process.start() peaks_handle = open(args.out + '.occpeaks.bed','w') peaks_handle.close() peaks_queue = mp.JoinableQueue() peaks_process = mp.Process(target = _writePeaks, args=(peaks_queue, args.out)) peaks_process.start() nuc_dist = np.zeros(args.upper) for j in sets: tmp = pool1.map(_occHelper, list(zip(j,itertools.repeat(params)))) for result in tmp: nuc_dist += result[0] write_queue.put(result[1]) peaks_queue.put(result[2]) pool1.close() pool1.join() write_queue.put('STOP') peaks_queue.put('STOP') write_process.join() peaks_process.join() pysam.tabix_compress(args.out + '.occpeaks.bed', args.out + '.occpeaks.bed.gz',force = True) shell_command('rm ' + args.out + '.occpeaks.bed') pysam.tabix_index(args.out + '.occpeaks.bed.gz', preset = "bed", force = True) for i in ('occ','occ.lower_bound','occ.upper_bound'): pysam.tabix_compress(args.out + '.' + i + '.bedgraph', args.out + '.'+i+'.bedgraph.gz',force = True) shell_command('rm ' + args.out + '.' + i + '.bedgraph') pysam.tabix_index(args.out + '.' + i + '.bedgraph.gz', preset = "bed", force = True) dist_out = FragmentSizes(0, args.upper, vals = nuc_dist) dist_out.save(args.out + '.nuc_dist.txt') print("Making figure") #make figure fig = plt.figure() plt.plot(list(range(0,args.upper)),dist_out.get(0,args.upper),label = "Nucleosome Distribution") plt.xlabel("Fragment Size") plt.ylabel("Frequency") fig.savefig(args.out+'.nuc_dist.pdf') plt.close(fig)
[ "pysam.tabix_compress", "multiprocessing.JoinableQueue", "nucleoatac.Occupancy.OccChunk", "matplotlib.pyplot.ylabel", "multiprocessing.Process", "itertools.repeat", "pyatac.utils.read_chrom_sizes_from_fasta", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.close", "pysam.tabix_index", "traceback.print_exc", "nucleoatac.Occupancy.FragmentMixDistribution", "pyatac.utils.read_chrom_sizes_from_bam", "pyatac.utils.shell_command", "pyatac.fragmentsizes.FragmentSizes", "nucleoatac.Occupancy.OccupancyParameters", "pyatac.bias.PWM.open", "pyatac.fragmentsizes.FragmentSizes.open", "numpy.zeros", "matplotlib.pyplot.figure" ]
[((2492, 2510), 'pyatac.bias.PWM.open', 'PWM.open', (['args.pwm'], {}), '(args.pwm)\n', (2500, 2510), False, 'from pyatac.bias import PWM\n'), ((2789, 2833), 'nucleoatac.Occupancy.FragmentMixDistribution', 'FragmentMixDistribution', (['(0)'], {'upper': 'args.upper'}), '(0, upper=args.upper)\n', (2812, 2833), False, 'from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk\n'), ((3242, 3437), 'nucleoatac.Occupancy.OccupancyParameters', 'OccupancyParameters', (['fragment_dist', 'args.upper', 'args.fasta', 'args.pwm'], {'sep': 'args.nuc_sep', 'min_occ': 'args.min_occ', 'flank': 'args.flank', 'bam': 'args.bam', 'ci': 'args.confidence_interval', 'step': 'args.step'}), '(fragment_dist, args.upper, args.fasta, args.pwm, sep=\n args.nuc_sep, min_occ=args.min_occ, flank=args.flank, bam=args.bam, ci=\n args.confidence_interval, step=args.step)\n', (3261, 3437), False, 'from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk\n'), ((3832, 3870), 'multiprocessing.JoinableQueue', 'mp.JoinableQueue', ([], {'maxsize': 'maxQueueSize'}), '(maxsize=maxQueueSize)\n', (3848, 3870), True, 'import multiprocessing as mp\n'), ((3893, 3951), 'multiprocessing.Process', 'mp.Process', ([], {'target': '_writeOcc', 'args': '(write_queue, args.out)'}), '(target=_writeOcc, args=(write_queue, args.out))\n', (3903, 3951), True, 'import multiprocessing as mp\n'), ((4079, 4097), 'multiprocessing.JoinableQueue', 'mp.JoinableQueue', ([], {}), '()\n', (4095, 4097), True, 'import multiprocessing as mp\n'), ((4118, 4178), 'multiprocessing.Process', 'mp.Process', ([], {'target': '_writePeaks', 'args': '(peaks_queue, args.out)'}), '(target=_writePeaks, args=(peaks_queue, args.out))\n', (4128, 4178), True, 'import multiprocessing as mp\n'), ((4222, 4242), 'numpy.zeros', 'np.zeros', (['args.upper'], {}), '(args.upper)\n', (4230, 4242), True, 'import numpy as np\n'), ((4626, 4721), 'pysam.tabix_compress', 'pysam.tabix_compress', (["(args.out + '.occpeaks.bed')", "(args.out + '.occpeaks.bed.gz')"], {'force': '(True)'}), "(args.out + '.occpeaks.bed', args.out +\n '.occpeaks.bed.gz', force=True)\n", (4646, 4721), False, 'import pysam\n'), ((4723, 4772), 'pyatac.utils.shell_command', 'shell_command', (["('rm ' + args.out + '.occpeaks.bed')"], {}), "('rm ' + args.out + '.occpeaks.bed')\n", (4736, 4772), False, 'from pyatac.utils import shell_command, read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta\n'), ((4777, 4851), 'pysam.tabix_index', 'pysam.tabix_index', (["(args.out + '.occpeaks.bed.gz')"], {'preset': '"""bed"""', 'force': '(True)'}), "(args.out + '.occpeaks.bed.gz', preset='bed', force=True)\n", (4794, 4851), False, 'import pysam\n'), ((5201, 5244), 'pyatac.fragmentsizes.FragmentSizes', 'FragmentSizes', (['(0)', 'args.upper'], {'vals': 'nuc_dist'}), '(0, args.upper, vals=nuc_dist)\n', (5214, 5244), False, 'from pyatac.fragmentsizes import FragmentSizes\n'), ((5348, 5360), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5358, 5360), True, 'import matplotlib.pyplot as plt\n'), ((5466, 5493), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Fragment Size"""'], {}), "('Fragment Size')\n", (5476, 5493), True, 'import matplotlib.pyplot as plt\n'), ((5498, 5521), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {}), "('Frequency')\n", (5508, 5521), True, 'import matplotlib.pyplot as plt\n'), ((5568, 5582), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (5577, 5582), True, 'import matplotlib.pyplot as plt\n'), ((728, 743), 'nucleoatac.Occupancy.OccChunk', 'OccChunk', (['chunk'], {}), '(chunk)\n', (736, 743), False, 'from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk\n'), ((2381, 2420), 'pyatac.utils.read_chrom_sizes_from_fasta', 'read_chrom_sizes_from_fasta', (['args.fasta'], {}), '(args.fasta)\n', (2408, 2420), False, 'from pyatac.utils import shell_command, read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta\n'), ((2446, 2481), 'pyatac.utils.read_chrom_sizes_from_bam', 'read_chrom_sizes_from_bam', (['args.bam'], {}), '(args.bam)\n', (2471, 2481), False, 'from pyatac.utils import shell_command, read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta\n'), ((2881, 2911), 'pyatac.fragmentsizes.FragmentSizes.open', 'FragmentSizes.open', (['args.sizes'], {}), '(args.sizes)\n', (2899, 2911), False, 'from pyatac.fragmentsizes import FragmentSizes\n'), ((4927, 5034), 'pysam.tabix_compress', 'pysam.tabix_compress', (["(args.out + '.' + i + '.bedgraph')", "(args.out + '.' + i + '.bedgraph.gz')"], {'force': '(True)'}), "(args.out + '.' + i + '.bedgraph', args.out + '.' + i +\n '.bedgraph.gz', force=True)\n", (4947, 5034), False, 'import pysam\n'), ((5036, 5091), 'pyatac.utils.shell_command', 'shell_command', (["('rm ' + args.out + '.' + i + '.bedgraph')"], {}), "('rm ' + args.out + '.' + i + '.bedgraph')\n", (5049, 5091), False, 'from pyatac.utils import shell_command, read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta\n'), ((5100, 5185), 'pysam.tabix_index', 'pysam.tabix_index', (["(args.out + '.' + i + '.bedgraph.gz')"], {'preset': '"""bed"""', 'force': '(True)'}), "(args.out + '.' + i + '.bedgraph.gz', preset='bed', force=True\n )\n", (5117, 5185), False, 'import pysam\n'), ((1016, 1037), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (1035, 1037), False, 'import traceback\n'), ((1705, 1726), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (1724, 1726), False, 'import traceback\n'), ((2196, 2217), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (2215, 2217), False, 'import traceback\n'), ((4314, 4338), 'itertools.repeat', 'itertools.repeat', (['params'], {}), '(params)\n', (4330, 4338), False, 'import itertools\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import import sys, os from soma import aims, aimsalgo import numpy import optparse parser = optparse.OptionParser( description='Voronoi diagram of the sulci ' \ 'nodes regions, in the grey matter, and extending to the whole 3D space' ) parser.add_option( '-g', '--greywhite', dest='lgw', help='left grey/white mask' ) parser.add_option( '-o', '--output', dest='voronoi', help='output voronoi diagram volume' ) parser.add_option( '-f', '--folds', dest='graph', help='sulci graph file' ) options, args = parser.parse_args() lgw_vol_file = options.lgw fold_graph_file = options.graph voronoi_vol_file = options.voronoi if lgw_vol_file is None and len( args ) > 0: lgw_vol_file = args[0] del args[0] if voronoi_vol_file is None and len( args ) > 0: voronoi_vol_file = args[0] del args[0] if fold_graph_file is None and len( args ) > 0: fold_graph_file = args[0] del args[0] if lgw_vol_file is None or voronoi_vol_file is None \ or fold_graph_file is None or len( args ) != 0: parser.parse( [ '-h' ] ) lgw_vol = aims.read( lgw_vol_file ) fold_graph = aims.read( fold_graph_file ) LCR_label = 255 GM_label = 100 seed = - lgw_vol voxel_size = lgw_vol.header()["voxel_size"] def printbucket( bck, vol, value ): c = aims.RawConverter_BucketMap_VOID_rc_ptr_Volume_S16( False, True, value ) c.printToVolume( bck._get(), vol ) seed_label_list = [] for v in fold_graph.vertices(): try: b = v[ 'aims_ss' ] index = v[ 'skeleton_label' ] seed_label_list.append(int(index)) printbucket( b, seed, index ) printbucket( b, lgw_vol, LCR_label ) #pour que le lcr rentre jusqu au fond des silons try: b = v[ 'aims_bottom' ] printbucket( b, seed, index ) except: pass try: b = v[ 'aims_other' ] printbucket( b, seed, index ) except: pass except: pass f1 = aims.FastMarching() print("Voronoi in Grey matter") f1.doit(seed, [-LCR_label, -GM_label], seed_label_list) voronoi_vol = f1.voronoiVol() print("Voronoi in White matter") f1 = aims.FastMarching() n = numpy.array( voronoi_vol, copy=False ) n[ n == -1 ] = -100 f1.doit( voronoi_vol, [-100], seed_label_list ) # f1.doit( voronoi_vol, [-100], [ 940, 760] ) voronoi_vol = f1.voronoiVol() aims.write( voronoi_vol, voronoi_vol_file )
[ "soma.aims.write", "soma.aims.FastMarching", "optparse.OptionParser", "numpy.array", "soma.aims.RawConverter_BucketMap_VOID_rc_ptr_Volume_S16", "soma.aims.read" ]
[((211, 357), 'optparse.OptionParser', 'optparse.OptionParser', ([], {'description': '"""Voronoi diagram of the sulci nodes regions, in the grey matter, and extending to the whole 3D space"""'}), "(description=\n 'Voronoi diagram of the sulci nodes regions, in the grey matter, and extending to the whole 3D space'\n )\n", (232, 357), False, 'import optparse\n'), ((1154, 1177), 'soma.aims.read', 'aims.read', (['lgw_vol_file'], {}), '(lgw_vol_file)\n', (1163, 1177), False, 'from soma import aims, aimsalgo\n'), ((1193, 1219), 'soma.aims.read', 'aims.read', (['fold_graph_file'], {}), '(fold_graph_file)\n', (1202, 1219), False, 'from soma import aims, aimsalgo\n'), ((1967, 1986), 'soma.aims.FastMarching', 'aims.FastMarching', ([], {}), '()\n', (1984, 1986), False, 'from soma import aims, aimsalgo\n'), ((2143, 2162), 'soma.aims.FastMarching', 'aims.FastMarching', ([], {}), '()\n', (2160, 2162), False, 'from soma import aims, aimsalgo\n'), ((2167, 2203), 'numpy.array', 'numpy.array', (['voronoi_vol'], {'copy': '(False)'}), '(voronoi_vol, copy=False)\n', (2178, 2203), False, 'import numpy\n'), ((2351, 2392), 'soma.aims.write', 'aims.write', (['voronoi_vol', 'voronoi_vol_file'], {}), '(voronoi_vol, voronoi_vol_file)\n', (2361, 2392), False, 'from soma import aims, aimsalgo\n'), ((1358, 1428), 'soma.aims.RawConverter_BucketMap_VOID_rc_ptr_Volume_S16', 'aims.RawConverter_BucketMap_VOID_rc_ptr_Volume_S16', (['(False)', '(True)', 'value'], {}), '(False, True, value)\n', (1408, 1428), False, 'from soma import aims, aimsalgo\n')]
#!/usr/bin/env python3 import numpy as np import copy import itertools import sys import ete3 import numpy as np from Bio import AlignIO # import CIAlign.cropSeq as cropSeq # from AlignmentStats import find_removed_cialign def writeOutfile(outfile, arr, nams, rmfile=None): ''' Writes an alignment stored in a numpy array into a FASTA file. Parameters ---------- outfile: str Path to FASTA file where the output should be stored arr: np.array Numpy array containing the cleaned alignment nams: list List of nams of sequences in the input alignment removed: set Set of names of sequences which have been removed rmfile: str Path to file used to log sequences and columns which have been removed Returns ------- None ''' out = open(outfile, "w") i = 0 for nam in nams: out.write(">%s\n%s\n" % (nam, "".join(list(arr[i])))) i += 1 out.close() # helper function to read MSA from file into np array def readMSA(infile, log=None, outfile_stem=None): ''' Convert an alignment into a numpy array. Parameters ---------- infile: string path to input alignment file in FASTA format log: logging.Logger An open log file object Returns ------- arr: np.array 2D numpy array in the same order as fasta_dict where each row represents a single column in the alignment and each column a single sequence. nams: list List of sequence names in the same order as in the input file ''' formatErrorMessage = "The MSA file needs to be in FASTA format." nams = [] seqs = [] nam = "" seq = "" with open(infile) as input: for line in input: line = line.strip() if len(line) == 0: continue # todo: test! if line[0] == ">": seqs.append([s.upper() for s in seq]) nams.append(nam.upper()) seq = [] nam = line.replace(">", "") else: if len(nams) == 0: if log: log.error(formatErrorMessage) print(formatErrorMessage) exit() seq += list(line) seqs.append(np.array([s.upper() for s in seq])) nams.append(nam.upper()) arr = np.array(seqs[1:]) return (arr, nams[1:]) def find_removed_cialign(removed_file, arr, nams, keeprows=False): ''' Reads the "_removed.txt" file generated by CIAlign to determine what CIAlign has removed from the original alignment. Replaces nucleotides removed by CIAlign with "!" in the array representing the alignment so that it is still possible to compare these alignments with uncleaned alignments in terms of knowing which columns and pairs of residues are aligned. ! characters are always counted as mismatches in comparisons between alignments. Also counts how many total characters were removed by CIAlign and how many non-gap characters. Parameters ---------- removed_file: str Path to a CIAlign _removed.txt log file arr: np.array Numpy array containing the alignment represented as a 2D matrix, where dimension 1 is sequences and dimension 2 is columns nams: list List of names in the original alignment, in the same order as in the input and the sequence array (these should always be the same). Returns ------- cleanarr: 2D numpy array containing the alignment represented as a 2D matrix, where dimension 1 is sequences and dimension 2 is columns, with residues removed by CIAlign represented as ! Fully removed sequences are removed from this array. cleannams: List of names in the output alignment, with any sequences fully removed by CIAlign removed. ''' # Read the CIAlign _removed.txt log file lines = [line.strip().split("\t") for line in open(removed_file).readlines()] removed_count_total = 0 removed_count_nongap = 0 # Make an empty dictionary D = {x: set() for x in nams} for line in lines: func = line[0] if len(line) != 1: ids = line[-1].split(",") else: ids = [] ids = [id.upper() for id in ids] # for crop_ends and remove_insertions columns are removed so keep # track of column numbers as integers if func in ['crop_ends', 'remove_insertions', 'other']: ids = [int(x) for x in ids] # crop_ends is only applied to some sequences so also # keep track of sequence names if func == "crop_ends": nam = line[1].upper() D[nam] = D[nam] | set(ids) # no need to remove insertions from sequences which were removed # completely later elif func == "remove_insertions": for nam in nams: # nam = nam.upper() if D[nam] != "removed": D[nam] = D[nam] | set(ids) # remove divergent and remove short remove the whole sequence elif func in ["remove_divergent", "remove_short", "otherc"]: for nam in ids: D[nam] = "removed" elif func == "other": for nam in nams: if D[nam] != "removed": D[nam] = D[nam] | set(ids) # make copies of the arrays (because I'm never quite sure when # python makes links rather than copies) cleannams = copy.copy(nams) cleannams = np.array([x.upper() for x in cleannams]) cleanarr = copy.copy(arr) # iterate through everything that has been changed for nam, val in D.items(): which_nam = np.where(cleannams == nam)[0][0] # remove the removed sequences from the array if val == "removed": # keep track of the number of removed positions removed_count_total += len(cleanarr[which_nam]) # keep track of the number of removed residues removed_count_nongap += sum(cleanarr[which_nam] != "-") # only keep names of sequences which are not removed cleannams = np.append(cleannams[:which_nam], cleannams[which_nam + 1:]) # only keep the sequences which are not removed cleanarr = np.vstack([cleanarr[:which_nam], cleanarr[which_nam+1:]]) # remove them from the input temporarily just to keep the shapes # the same arr = np.vstack([arr[:which_nam], arr[which_nam+1:]]) else: # replace column substitutions with ! which_pos = np.array(sorted(list(val))) if len(which_pos) != 0: cleanarr[which_nam, which_pos] = "!" removed_count_total += np.sum(cleanarr == "!") # sometimes gaps are removed - make these gaps in the output rather than # !s cleanarr[arr == "-"] = "-" removed_count_nongap += np.sum(cleanarr == "!") return (cleanarr, cleannams, removed_count_total, removed_count_nongap) msa_file = sys.argv[1] removed_file = sys.argv[2] fake_outfile = sys.argv[3] arr, nams = readMSA(msa_file) arr = np.char.upper(arr) (cleanarr, cleannams, removed_count_total, removed_count_nongap) = find_removed_cialign(removed_file, arr, nams) writeOutfile(fake_outfile, cleanarr, cleannams)
[ "numpy.char.upper", "numpy.where", "numpy.append", "numpy.array", "numpy.sum", "numpy.vstack", "copy.copy" ]
[((7324, 7342), 'numpy.char.upper', 'np.char.upper', (['arr'], {}), '(arr)\n', (7337, 7342), True, 'import numpy as np\n'), ((2403, 2421), 'numpy.array', 'np.array', (['seqs[1:]'], {}), '(seqs[1:])\n', (2411, 2421), True, 'import numpy as np\n'), ((5606, 5621), 'copy.copy', 'copy.copy', (['nams'], {}), '(nams)\n', (5615, 5621), False, 'import copy\n'), ((5694, 5708), 'copy.copy', 'copy.copy', (['arr'], {}), '(arr)\n', (5703, 5708), False, 'import copy\n'), ((6938, 6961), 'numpy.sum', 'np.sum', (["(cleanarr == '!')"], {}), "(cleanarr == '!')\n", (6944, 6961), True, 'import numpy as np\n'), ((7108, 7131), 'numpy.sum', 'np.sum', (["(cleanarr == '!')"], {}), "(cleanarr == '!')\n", (7114, 7131), True, 'import numpy as np\n'), ((6269, 6328), 'numpy.append', 'np.append', (['cleannams[:which_nam]', 'cleannams[which_nam + 1:]'], {}), '(cleannams[:which_nam], cleannams[which_nam + 1:])\n', (6278, 6328), True, 'import numpy as np\n'), ((6447, 6506), 'numpy.vstack', 'np.vstack', (['[cleanarr[:which_nam], cleanarr[which_nam + 1:]]'], {}), '([cleanarr[:which_nam], cleanarr[which_nam + 1:]])\n', (6456, 6506), True, 'import numpy as np\n'), ((6657, 6706), 'numpy.vstack', 'np.vstack', (['[arr[:which_nam], arr[which_nam + 1:]]'], {}), '([arr[:which_nam], arr[which_nam + 1:]])\n', (6666, 6706), True, 'import numpy as np\n'), ((5816, 5842), 'numpy.where', 'np.where', (['(cleannams == nam)'], {}), '(cleannams == nam)\n', (5824, 5842), True, 'import numpy as np\n')]
""" Contacts between nucleotides in a tetracycline aptamer ====================================================== This example reproduces a figure from the publication *"StreAM-Tg: algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs"* [1]_. The figure displays a coarse grained model of a tetracycline aptamer and highlights interacting nucleotides based on a cutoff distance. .. [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, "StreAM-Tg: algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs." Algorithms Mol Biol 12 (2017). """ # Code source: <NAME> # License: CC0 import numpy as np import biotite.structure as struc import biotite.structure.io.mmtf as mmtf import biotite.database.rcsb as rcsb import ammolite PNG_SIZE = (800, 800) ######################################################################## mmtf_file = mmtf.MMTFFile.read(rcsb.fetch("3EGZ", "mmtf")) structure = mmtf.get_structure(mmtf_file, model=1) aptamer = structure[struc.filter_nucleotides(structure)] # Coarse graining: Represent each nucleotide using its C3' atom aptamer = aptamer[aptamer.atom_name == "C3'"] # Connect consecutive nucleotides indices = np.arange(aptamer.array_length()) aptamer.bonds = struc.BondList( aptamer.array_length(), np.stack((indices[:-1], indices[1:]), axis=-1) ) pymol_obj = ammolite.PyMOLObject.from_structure(aptamer) pymol_obj.show("sticks") pymol_obj.show("spheres") pymol_obj.color("black") ammolite.cmd.set("stick_color", "red") ammolite.cmd.set("stick_radius", 0.5) ammolite.cmd.set("sphere_scale", 1.0) ammolite.cmd.set("sphere_quality", 4) # Adjust camera pymol_obj.orient() pymol_obj.zoom(buffer=10) ammolite.cmd.rotate("z", 90) ammolite.show(PNG_SIZE) ######################################################################## CUTOFF = 13 # Find contacts within cutoff distance adjacency_matrix = struc.CellList(aptamer, CUTOFF) \ .create_adjacency_matrix(CUTOFF) for i, j in zip(*np.where(adjacency_matrix)): pymol_obj.distance("", i, j, show_label=False, gap=0) ammolite.cmd.set("dash_color", "firebrick") # Add black outlines ammolite.cmd.bg_color("white") ammolite.cmd.set("ray_trace_mode", 1) ammolite.cmd.set("ray_trace_disco_factor", 0.5) ammolite.show(PNG_SIZE) # sphinx_gallery_thumbnail_number = 2
[ "ammolite.PyMOLObject.from_structure", "biotite.database.rcsb.fetch", "numpy.where", "biotite.structure.io.mmtf.get_structure", "numpy.stack", "biotite.structure.CellList", "ammolite.show", "biotite.structure.filter_nucleotides", "ammolite.cmd.set", "ammolite.cmd.rotate", "ammolite.cmd.bg_color" ]
[((998, 1036), 'biotite.structure.io.mmtf.get_structure', 'mmtf.get_structure', (['mmtf_file'], {'model': '(1)'}), '(mmtf_file, model=1)\n', (1016, 1036), True, 'import biotite.structure.io.mmtf as mmtf\n'), ((1409, 1453), 'ammolite.PyMOLObject.from_structure', 'ammolite.PyMOLObject.from_structure', (['aptamer'], {}), '(aptamer)\n', (1444, 1453), False, 'import ammolite\n'), ((1530, 1568), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""stick_color"""', '"""red"""'], {}), "('stick_color', 'red')\n", (1546, 1568), False, 'import ammolite\n'), ((1569, 1606), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""stick_radius"""', '(0.5)'], {}), "('stick_radius', 0.5)\n", (1585, 1606), False, 'import ammolite\n'), ((1607, 1644), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""sphere_scale"""', '(1.0)'], {}), "('sphere_scale', 1.0)\n", (1623, 1644), False, 'import ammolite\n'), ((1645, 1682), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""sphere_quality"""', '(4)'], {}), "('sphere_quality', 4)\n", (1661, 1682), False, 'import ammolite\n'), ((1745, 1773), 'ammolite.cmd.rotate', 'ammolite.cmd.rotate', (['"""z"""', '(90)'], {}), "('z', 90)\n", (1764, 1773), False, 'import ammolite\n'), ((1774, 1797), 'ammolite.show', 'ammolite.show', (['PNG_SIZE'], {}), '(PNG_SIZE)\n', (1787, 1797), False, 'import ammolite\n'), ((2135, 2178), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""dash_color"""', '"""firebrick"""'], {}), "('dash_color', 'firebrick')\n", (2151, 2178), False, 'import ammolite\n'), ((2201, 2231), 'ammolite.cmd.bg_color', 'ammolite.cmd.bg_color', (['"""white"""'], {}), "('white')\n", (2222, 2231), False, 'import ammolite\n'), ((2232, 2269), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""ray_trace_mode"""', '(1)'], {}), "('ray_trace_mode', 1)\n", (2248, 2269), False, 'import ammolite\n'), ((2270, 2317), 'ammolite.cmd.set', 'ammolite.cmd.set', (['"""ray_trace_disco_factor"""', '(0.5)'], {}), "('ray_trace_disco_factor', 0.5)\n", (2286, 2317), False, 'import ammolite\n'), ((2319, 2342), 'ammolite.show', 'ammolite.show', (['PNG_SIZE'], {}), '(PNG_SIZE)\n', (2332, 2342), False, 'import ammolite\n'), ((958, 984), 'biotite.database.rcsb.fetch', 'rcsb.fetch', (['"""3EGZ"""', '"""mmtf"""'], {}), "('3EGZ', 'mmtf')\n", (968, 984), True, 'import biotite.database.rcsb as rcsb\n'), ((1057, 1092), 'biotite.structure.filter_nucleotides', 'struc.filter_nucleotides', (['structure'], {}), '(structure)\n', (1081, 1092), True, 'import biotite.structure as struc\n'), ((1347, 1393), 'numpy.stack', 'np.stack', (['(indices[:-1], indices[1:])'], {'axis': '(-1)'}), '((indices[:-1], indices[1:]), axis=-1)\n', (1355, 1393), True, 'import numpy as np\n'), ((1944, 1975), 'biotite.structure.CellList', 'struc.CellList', (['aptamer', 'CUTOFF'], {}), '(aptamer, CUTOFF)\n', (1958, 1975), True, 'import biotite.structure as struc\n'), ((2047, 2073), 'numpy.where', 'np.where', (['adjacency_matrix'], {}), '(adjacency_matrix)\n', (2055, 2073), True, 'import numpy as np\n')]
import numpy as np class DOM: """ Object representing a discretized observation model. Comprised primarily by the DOM.edges and DOM.chi vectors, which represent the discrete mask and state-dependent emission probabilities, respectively. """ def __init__(self): self.k = None self.n_bins = None self.edges = None self.classes = None self.chi = None self.type = 'DOM' self.n_params = None def set_params(self, config): """ Set relevant parameters for DOM object. Args: config (dict): Parameters to set. """ params = {'n_bins', 'edges', 'classes', 'chi', 'n_params'} self.__dict__.update((param, np.array(value)) for param, value in config.items() if param in params) def initialize(self, k, stats): """ Initialize DOM parameters according to dataset properties. Args: k (int): Number of components to use stats (dict): Dictionary of dataset sets, generated by Dataset.compute_stats() """ k = k + 5 qbin_sizes = 0.5 / k # Quantile sizes qbin_edges = 0.25 + qbin_sizes*np.arange(0, k+1) # Edge locations (in quantile terms) bin_edges = np.interp(qbin_edges, stats['quantile_basis'], stats['quantiles']) self.k = k self.n_bins = k + 2 self.classes = list(range(1, self.n_bins + 2)) self.edges = [-np.Inf] + [edge for edge in bin_edges] + [np.Inf] self.chi = np.zeros((2, self.n_bins + 1)) dist = np.linspace(2, 1, self.n_bins) # Bins captured by observations scaled_dist = 0.9 * dist / dist.sum() # Scaling by 0.9 to allow for 0.1 emission prob of NaN self.chi[1, :-1] = scaled_dist # Paired emission dist self.chi[0, :-1] = np.flip(scaled_dist) # Unpaired emission dist self.chi[1, -1] = 0.1 # NaN observations self.chi[0, -1] = 0.1 # NaN observations self.n_params = 2*(self.n_bins-2) def discretize(self, transcript): """ Compute the DOM class for all nucleotides in an RNA and save the resulting vector to Transcript.obs_dom. """ # np.searchsorted is identical to the digitize call here, but marginally faster (especially # for a large number of bins and/or a large number of RNAs). # transcript.obs_dom = np.digitize(transcript.obs, bins=self.edges) transcript.obs_dom = np.searchsorted(self.edges, transcript.obs, side='left') def compute_emissions(self, transcript, reference=False): """ Compute emission probabilities according to the discretized observation model. This amounts to simply accessing the correct indices of the DOM pdf matrix, chi. Args: transcript (src.patteRNA.Transcript.Transcript): Transcript to process reference (bool): Whether or not it's a reference transcript """ if reference: pass transcript.B = self.chi[:, transcript.obs_dom-1] @staticmethod def post_process(transcript): pass # No post-processing needed for DOM model def m_step(self, transcript): """ Compute pseudo-counts en route to updating model parameters according to maximium-likelihood approach. Args: transcript (Transcript): Transcript to process Returns: params (dict): Partial pseudo-counts """ chi_0 = np.fromiter((transcript.gamma[0, transcript.obs_dom == dom_class].sum() for dom_class in self.classes), float) chi_1 = np.fromiter((transcript.gamma[1, transcript.obs_dom == dom_class].sum() for dom_class in self.classes), float) params = {'chi': np.vstack((chi_0, chi_1)), 'chi_norm': np.sum(transcript.gamma, axis=1)} return params def update_from_pseudocounts(self, pseudocounts, nan=False): """ Scheme model parameters from transcript-level pseudo-counts. Args: pseudocounts (dict): Dictionary of total pseudo-counts nan (bool): Whether or not to treat NaNs as informative """ self.chi = pseudocounts['chi'] / pseudocounts['chi_norm'][:, None] self.scale_chi(nan=nan) def scale_chi(self, nan=False): """ Scale chi vector to a probability distribution. Args: nan (bool): Whether or not to treat NaNs as informative """ if nan: self.chi[:, :] = self.chi[:, :] / np.sum(self.chi[:, :], axis=1)[:, np.newaxis] else: self.chi[:, :-1] = 0.9 * self.chi[:, :-1] / np.sum(self.chi[:, :-1], axis=1)[:, np.newaxis] self.chi[:, -1] = 0.1 # NaN observations def snapshot(self): """ Returns a text summary of model parameters. """ text = "" text += "{}:\n{}\n".format('chi', np.array2string(self.chi)) return text def serialize(self): """ Return a dictionary containing all of the parameters needed to describe the emission model. """ return {'type': self.type, 'n_bins': self.n_bins, 'classes': self.classes, 'edges': self.edges, 'chi': self.chi.tolist(), 'n_params': self.n_params} def reset(self): """ Reset DOM object to un-initialized state. """ self.edges = None self.chi = None self.k = None self.n_bins = None self.classes = None self.n_params = None
[ "numpy.flip", "numpy.searchsorted", "numpy.array2string", "numpy.sum", "numpy.zeros", "numpy.linspace", "numpy.array", "numpy.vstack", "numpy.interp", "numpy.arange" ]
[((1282, 1348), 'numpy.interp', 'np.interp', (['qbin_edges', "stats['quantile_basis']", "stats['quantiles']"], {}), "(qbin_edges, stats['quantile_basis'], stats['quantiles'])\n", (1291, 1348), True, 'import numpy as np\n'), ((1544, 1574), 'numpy.zeros', 'np.zeros', (['(2, self.n_bins + 1)'], {}), '((2, self.n_bins + 1))\n', (1552, 1574), True, 'import numpy as np\n'), ((1591, 1621), 'numpy.linspace', 'np.linspace', (['(2)', '(1)', 'self.n_bins'], {}), '(2, 1, self.n_bins)\n', (1602, 1621), True, 'import numpy as np\n'), ((1847, 1867), 'numpy.flip', 'np.flip', (['scaled_dist'], {}), '(scaled_dist)\n', (1854, 1867), True, 'import numpy as np\n'), ((2497, 2553), 'numpy.searchsorted', 'np.searchsorted', (['self.edges', 'transcript.obs'], {'side': '"""left"""'}), "(self.edges, transcript.obs, side='left')\n", (2512, 2553), True, 'import numpy as np\n'), ((3846, 3871), 'numpy.vstack', 'np.vstack', (['(chi_0, chi_1)'], {}), '((chi_0, chi_1))\n', (3855, 3871), True, 'import numpy as np\n'), ((3903, 3935), 'numpy.sum', 'np.sum', (['transcript.gamma'], {'axis': '(1)'}), '(transcript.gamma, axis=1)\n', (3909, 3935), True, 'import numpy as np\n'), ((5020, 5045), 'numpy.array2string', 'np.array2string', (['self.chi'], {}), '(self.chi)\n', (5035, 5045), True, 'import numpy as np\n'), ((1205, 1224), 'numpy.arange', 'np.arange', (['(0)', '(k + 1)'], {}), '(0, k + 1)\n', (1214, 1224), True, 'import numpy as np\n'), ((743, 758), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (751, 758), True, 'import numpy as np\n'), ((4640, 4670), 'numpy.sum', 'np.sum', (['self.chi[:, :]'], {'axis': '(1)'}), '(self.chi[:, :], axis=1)\n', (4646, 4670), True, 'import numpy as np\n'), ((4756, 4788), 'numpy.sum', 'np.sum', (['self.chi[:, :-1]'], {'axis': '(1)'}), '(self.chi[:, :-1], axis=1)\n', (4762, 4788), True, 'import numpy as np\n')]
"""Calculate the partial derivatives of the source coordinates Description: ------------ Calculate the partial derivatives of the source coordinates. This is done according to equations (2.47) - (2.50) in Teke [2]_. References: ----------- .. [1] <NAME>. and <NAME>. (eds.), IERS Conventions (2010), IERS Technical Note No. 36, BKG (2010). http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html .. [2] <NAME>, Sub-daily parameter estimation in VLBI data analysis. https://geo.tuwien.ac.at/fileadmin/editors/GM/GM87_teke.pdf """ # External library imports import numpy as np # Midgard imports from midgard.dev import plugins # Where imports from where.lib import config from where import apriori from where.lib import log # Name of parameter PARAMETER = __name__.split(".")[-1] @plugins.register def src_dir(dset): """Calculate the partial derivative of the source coordinates Args: dset: A Dataset containing model data. Returns: Tuple: Array of partial derivatives, list of their names, and their unit """ column_names = ["ra", "dec"] sources = np.asarray(dset.unique("source")) icrf = apriori.get("crf", time=dset.time) # Remove sources that should be fixed fix_idx = np.zeros(len(sources)) for group in config.tech[PARAMETER].fix_sources.list: fix_idx = np.logical_or( [icrf[src].meta[group] if group in icrf[src].meta else src == group for src in sources], fix_idx ) for group in config.tech[PARAMETER].except_sources.list: except_idx = np.array([icrf[src].meta[group] if group in icrf[src].meta else src == group for src in sources]) fix_idx = np.logical_and(np.logical_not(except_idx), fix_idx) sources = sources[np.logical_not(fix_idx)] # Calculate partials partials = np.zeros((dset.num_obs, len(sources) * 2)) baseline = (dset.site_pos_2.gcrs.pos - dset.site_pos_1.gcrs.pos).mat dK_dra = dset.src_dir.dsrc_dra[:, None, :] dK_ddec = dset.src_dir.dsrc_ddec[:, None, :] all_partials = np.hstack((-dK_dra @ baseline, -dK_ddec @ baseline))[:, :, 0] for idx, src in enumerate(sources): src_idx = dset.filter(source=src) partials[src_idx, idx * 2 : idx * 2 + 2] = all_partials[src_idx] column_names = [s + "_" + name for s in sources for name in column_names] return partials, column_names, "meter"
[ "numpy.hstack", "numpy.logical_not", "where.apriori.get", "numpy.logical_or", "numpy.array" ]
[((1179, 1213), 'where.apriori.get', 'apriori.get', (['"""crf"""'], {'time': 'dset.time'}), "('crf', time=dset.time)\n", (1190, 1213), False, 'from where import apriori\n'), ((1371, 1488), 'numpy.logical_or', 'np.logical_or', (['[(icrf[src].meta[group] if group in icrf[src].meta else src == group) for\n src in sources]', 'fix_idx'], {}), '([(icrf[src].meta[group] if group in icrf[src].meta else src ==\n group) for src in sources], fix_idx)\n', (1384, 1488), True, 'import numpy as np\n'), ((1588, 1691), 'numpy.array', 'np.array', (['[(icrf[src].meta[group] if group in icrf[src].meta else src == group) for\n src in sources]'], {}), '([(icrf[src].meta[group] if group in icrf[src].meta else src ==\n group) for src in sources])\n', (1596, 1691), True, 'import numpy as np\n'), ((1779, 1802), 'numpy.logical_not', 'np.logical_not', (['fix_idx'], {}), '(fix_idx)\n', (1793, 1802), True, 'import numpy as np\n'), ((2076, 2128), 'numpy.hstack', 'np.hstack', (['(-dK_dra @ baseline, -dK_ddec @ baseline)'], {}), '((-dK_dra @ baseline, -dK_ddec @ baseline))\n', (2085, 2128), True, 'import numpy as np\n'), ((1719, 1745), 'numpy.logical_not', 'np.logical_not', (['except_idx'], {}), '(except_idx)\n', (1733, 1745), True, 'import numpy as np\n')]
#!/usr/bin/env python # # fsl_ents.py - Extract ICA component time courses from a MELODIC directory. # # Author: <NAME> <<EMAIL>> # """This module defines the ``fsl_ents`` script, for extracting component time series from a MELODIC ``.ica`` directory. """ import os.path as op import sys import argparse import warnings import numpy as np # See atlasq.py for explanation with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning) import fsl.data.fixlabels as fixlabels import fsl.data.melodicanalysis as melanalysis DTYPE = np.float64 name = "fsl_ents" desc = 'Extract component time series from a MELODIC .ica directory' usage = """ {name}: {desc} Usage: {name} <.ica directory> [-o outfile] <fixfile> {name} <.ica directory> [-o outfile] <component> [<component> ...] {name} <.ica directory> [-o outfile] [-c conffile] [-c conffile] <fixfile> {name} <.ica directory> [-o outfile] [-c conffile] [-c conffile] <component> [<component> ...] """.format(name=name, desc=desc).strip() # noqa helps = { 'outfile' : 'File to save time series to', 'overwrite' : 'Overwrite output file if it exists', 'icadir' : '.ica directory to extract time series from.', 'component' : 'Component number or FIX/AROMA file specifying components to extract.', 'confound' : 'Extra files to append to output file.', } def parseArgs(args): """Parses command line arguments. :arg args: Sequence of command line arguments. :returns: An ``argparse.Namespace`` object containing parsed arguments. """ if len(args) == 0: print(usage) sys.exit(0) parser = argparse.ArgumentParser(prog=name, usage=usage, description=desc) parser.add_argument('-o', '--outfile', help=helps['outfile'], default='confound_timeseries.txt') parser.add_argument('-ow', '--overwrite', action='store_true', help=helps['overwrite']) parser.add_argument('-c', '--conffile', action='append', help=helps['confound']) parser.add_argument('icadir', help=helps['icadir']) parser.add_argument('components', nargs='+', help=helps['component']) args = parser.parse_args(args) # Error if ica directory does not exist if not op.exists(args.icadir): print('ICA directory {} does not exist'.format(args.icadir)) sys.exit(1) # Error if output exists, but overwrite not specified if op.exists(args.outfile) and not args.overwrite: print('Output file {} already exists and --overwrite not ' 'specified'.format(args.outfile)) sys.exit(1) # Convert components into integers, # or absolute file paths, and error # if any are not one of these. for i, c in enumerate(args.components): if op.exists(c): args.components[i] = op.abspath(c) else: try: args.components[i] = int(c) except ValueError: print('Bad component: {}. Components must either be component ' 'indices (starting from 1), or paths to FIX/AROMA ' 'files.') sys.exit(1) # Convert confound files to absolute # paths, error if any do not exist. if args.conffile is None: args.conffile = [] for i, cf in enumerate(args.conffile): if not op.exists(cf): print('Confound file does not exist: {}'.format(cf)) sys.exit(1) args.conffile[i] = op.abspath(cf) args.outfile = op.abspath(args.outfile) args.icadir = op.abspath(args.icadir) return args def genComponentIndexList(comps, ncomps): """Turns the given sequence of integers and file paths into a list of 0-based component indices. :arg comps: Sequence containing 1-based component indices, and/or paths to FIX/AROMA label text files. :arg ncomps: Number of components in the input data - indices larger than this will be ignored. :returns: List of 0-based component indices. """ allcomps = [] for c in comps: if isinstance(c, int): ccomps = [c] else: ccomps = fixlabels.loadLabelFile(c, returnIndices=True)[2] allcomps.extend([c - 1 for c in ccomps]) if any([c < 0 or c >= ncomps for c in allcomps]): raise ValueError('Invalid component indices: {}'.format(allcomps)) return list(sorted(set(allcomps))) def loadConfoundFiles(conffiles, npts): """Loads the given confound files, and copies them all into a single 2D ``(npoints, nconfounds)`` matrix. :arg conffiles: Sequence of paths to files containing confound time series (where each row corresponds to a time point, and each column corresponds to a single confound). :arg npts: Expected number of time points :returns: A ``(npoints, nconfounds)`` ``numpy`` matrix. """ matrices = [] for cfile in conffiles: mat = np.loadtxt(cfile, dtype=DTYPE) if len(mat.shape) == 1: mat = np.atleast_2d(mat).T if mat.shape[0] != npts: raise ValueError('Confound file {} does not have correct number ' 'of points (expected {}, has {})'.format( cfile, npts, mat.shape[0])) matrices.append(mat) ncols = sum([m.shape[1] for m in matrices]) confounds = np.zeros((npts, ncols), dtype=DTYPE) coli = 0 for mat in matrices: matcols = mat.shape[1] confounds[:, coli:coli + matcols] = mat coli = coli + matcols return confounds def main(argv=None): """Entry point for the ``fsl_ents`` script. Identifies component time series to extract, extracts them, loads extra confound files, and saves them out to a file. """ if argv is None: argv = sys.argv[1:] args = parseArgs(argv) try: ts = melanalysis.getComponentTimeSeries(args.icadir) npts, ncomps = ts.shape confs = loadConfoundFiles(args.conffile, npts) comps = genComponentIndexList(args.components, ncomps) ts = ts[:, comps] except Exception as e: print(e) sys.exit(1) ts = np.hstack((ts, confs)) np.savetxt(args.outfile, ts, fmt='%10.5f') if __name__ == '__main__': sys.exit(main())
[ "os.path.exists", "numpy.atleast_2d", "argparse.ArgumentParser", "numpy.hstack", "warnings.catch_warnings", "numpy.zeros", "fsl.data.fixlabels.loadLabelFile", "numpy.savetxt", "sys.exit", "os.path.abspath", "numpy.loadtxt", "warnings.filterwarnings", "fsl.data.melodicanalysis.getComponentTimeSeries" ]
[((415, 440), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (438, 440), False, 'import warnings\n'), ((446, 503), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'FutureWarning'}), "('ignore', category=FutureWarning)\n", (469, 503), False, 'import warnings\n'), ((1718, 1783), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': 'name', 'usage': 'usage', 'description': 'desc'}), '(prog=name, usage=usage, description=desc)\n', (1741, 1783), False, 'import argparse\n'), ((3852, 3876), 'os.path.abspath', 'op.abspath', (['args.outfile'], {}), '(args.outfile)\n', (3862, 3876), True, 'import os.path as op\n'), ((3896, 3919), 'os.path.abspath', 'op.abspath', (['args.icadir'], {}), '(args.icadir)\n', (3906, 3919), True, 'import os.path as op\n'), ((5800, 5836), 'numpy.zeros', 'np.zeros', (['(npts, ncols)'], {'dtype': 'DTYPE'}), '((npts, ncols), dtype=DTYPE)\n', (5808, 5836), True, 'import numpy as np\n'), ((6703, 6725), 'numpy.hstack', 'np.hstack', (['(ts, confs)'], {}), '((ts, confs))\n', (6712, 6725), True, 'import numpy as np\n'), ((6730, 6772), 'numpy.savetxt', 'np.savetxt', (['args.outfile', 'ts'], {'fmt': '"""%10.5f"""'}), "(args.outfile, ts, fmt='%10.5f')\n", (6740, 6772), True, 'import numpy as np\n'), ((1692, 1703), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1700, 1703), False, 'import sys\n'), ((2575, 2597), 'os.path.exists', 'op.exists', (['args.icadir'], {}), '(args.icadir)\n', (2584, 2597), True, 'import os.path as op\n'), ((2676, 2687), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2684, 2687), False, 'import sys\n'), ((2754, 2777), 'os.path.exists', 'op.exists', (['args.outfile'], {}), '(args.outfile)\n', (2763, 2777), True, 'import os.path as op\n'), ((2925, 2936), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2933, 2936), False, 'import sys\n'), ((3108, 3120), 'os.path.exists', 'op.exists', (['c'], {}), '(c)\n', (3117, 3120), True, 'import os.path as op\n'), ((3817, 3831), 'os.path.abspath', 'op.abspath', (['cf'], {}), '(cf)\n', (3827, 3831), True, 'import os.path as op\n'), ((5354, 5384), 'numpy.loadtxt', 'np.loadtxt', (['cfile'], {'dtype': 'DTYPE'}), '(cfile, dtype=DTYPE)\n', (5364, 5384), True, 'import numpy as np\n'), ((6380, 6427), 'fsl.data.melodicanalysis.getComponentTimeSeries', 'melanalysis.getComponentTimeSeries', (['args.icadir'], {}), '(args.icadir)\n', (6414, 6427), True, 'import fsl.data.melodicanalysis as melanalysis\n'), ((3155, 3168), 'os.path.abspath', 'op.abspath', (['c'], {}), '(c)\n', (3165, 3168), True, 'import os.path as op\n'), ((3686, 3699), 'os.path.exists', 'op.exists', (['cf'], {}), '(cf)\n', (3695, 3699), True, 'import os.path as op\n'), ((3778, 3789), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3786, 3789), False, 'import sys\n'), ((6681, 6692), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6689, 6692), False, 'import sys\n'), ((4522, 4568), 'fsl.data.fixlabels.loadLabelFile', 'fixlabels.loadLabelFile', (['c'], {'returnIndices': '(True)'}), '(c, returnIndices=True)\n', (4545, 4568), True, 'import fsl.data.fixlabels as fixlabels\n'), ((5436, 5454), 'numpy.atleast_2d', 'np.atleast_2d', (['mat'], {}), '(mat)\n', (5449, 5454), True, 'import numpy as np\n'), ((3477, 3488), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3485, 3488), False, 'import sys\n')]
import collections import io import numpy as np import tensorflow as tf hidden_dim = 1000 input_size = 28 * 28 output_size = 10 train_data_file = "/home/harper/dataset/mnist/train-images.idx3-ubyte" train_label_file = "/home/harper/dataset/mnist/train-labels.idx1-ubyte" test_data_file = "/home/harper/dataset/mnist/t10k-images.idx3-ubyte" test_label_file = "/home/harper/dataset/mnist/t10k-labels.idx1-ubyte" Datasets = collections.namedtuple("Datasets", ['train', 'test']) class Dataset(object): def __init__(self, data, label): self.data = data self.label = label self.size = self.data.shape[0] perm = np.random.permutation(self.size) self.data = self.data[perm] self.label = self.label[perm] self.start = 0 def next_batch(self, batch_size): if self.start == self.size: perm = np.random.permutation(self.size) self.data = self.data[perm] self.label = self.label[perm] self.start = 0 start = self.start end = min(start + batch_size, self.size) self.start = end return [self.data[start:end], self.label[start:end]] def read_data(file): with io.open(file, 'rb') as stream: magic = stream.read(4) num_record = np.frombuffer(stream.read(4), np.dtype(np.uint32).newbyteorder(">"))[0] raw = stream.read(input_size * num_record) flat = np.frombuffer(raw, np.uint8).astype(np.float32) / 255 result = flat.reshape([-1, input_size]) return result def read_label(file): with io.open(file, 'rb') as stream: magic = stream.read(4) num_record = np.frombuffer(stream.read(4), np.dtype(np.uint32).newbyteorder(">"))[0] raw = stream.read(num_record) return np.frombuffer(raw, np.uint8).astype(np.int32) def read_datasets(): train_data = read_data(train_data_file) train_label = read_label(train_label_file) test_data = read_data(test_data_file) test_label = read_label(test_label_file) return Datasets(train=Dataset(train_data, train_label), test=Dataset(test_data, test_label)) mnist = read_datasets() x = tf.placeholder(tf.float32, [None, input_size], name="x") label = tf.placeholder(tf.int64, [None], name="label") with tf.name_scope("layer1"): w1 = tf.Variable(tf.truncated_normal([input_size, hidden_dim], stddev=0.01), name="w1") b1 = tf.Variable(tf.zeros([hidden_dim]), name="b1") layer1_out = tf.nn.relu(tf.matmul(x, w1) + b1, "l1o") with tf.name_scope("layer2"): w2 = tf.Variable(tf.truncated_normal([hidden_dim, output_size], stddev=0.01), name="w2") b2 = tf.Variable(tf.zeros([output_size]), name="b2") layer2_out = tf.matmul(layer1_out, w2) + b2 with tf.name_scope("loss"): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=layer2_out, name="cross_entropy") cross_entropy = tf.reduce_mean(cross_entropy) with tf.name_scope("sgd"): train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy) with tf.name_scope("accuracy"): prediction = tf.argmax(layer2_out, 1, name="prediction") correct_prediction = tf.equal(prediction, label) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.name_scope("summary"): tf.summary.histogram('b1', b1) tf.summary.histogram('w1', w1) tf.summary.histogram('w2', w2) tf.summary.histogram('b2', b2) tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter("/home/harper/tftemp") train_writer.add_graph(tf.get_default_graph()) builder = tf.saved_model.builder.SavedModelBuilder("/home/harper/mnistmodel") with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(5000): batch = mnist.train.next_batch(50) if batch is None: break if i % 100 == 0: train_accuracy, merged_summary = sess.run([accuracy, merged], feed_dict={x: batch[0], label: batch[1]}) train_writer.add_summary(merged_summary, i) print('step %d, training accuracy %g' % (i, train_accuracy)) print( 'test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.data, label: mnist.test.label})) _, merged_summary = sess.run([train_step, merged], feed_dict={x: batch[0], label: batch[1]}) train_writer.add_summary(merged_summary, i) print( 'test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.data, label: mnist.test.label})) # Build Signature to save to model signature = tf.saved_model.signature_def_utils.build_signature_def( inputs={ 'input': tf.saved_model.utils.build_tensor_info(x) }, outputs={ 'output': tf.saved_model.utils.build_tensor_info(prediction) }, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME ) builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature}) builder.save() train_writer.close()
[ "tensorflow.equal", "io.open", "tensorflow.nn.sparse_softmax_cross_entropy_with_logits", "tensorflow.reduce_mean", "tensorflow.cast", "tensorflow.placeholder", "tensorflow.Session", "tensorflow.matmul", "numpy.frombuffer", "tensorflow.summary.scalar", "tensorflow.train.AdamOptimizer", "numpy.dtype", "tensorflow.zeros", "tensorflow.get_default_graph", "numpy.random.permutation", "collections.namedtuple", "tensorflow.summary.merge_all", "tensorflow.summary.histogram", "tensorflow.summary.FileWriter", "tensorflow.truncated_normal", "tensorflow.saved_model.utils.build_tensor_info", "tensorflow.global_variables_initializer", "tensorflow.argmax", "tensorflow.name_scope", "tensorflow.saved_model.builder.SavedModelBuilder" ]
[((425, 478), 'collections.namedtuple', 'collections.namedtuple', (['"""Datasets"""', "['train', 'test']"], {}), "('Datasets', ['train', 'test'])\n", (447, 478), False, 'import collections\n'), ((2192, 2248), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, input_size]'], {'name': '"""x"""'}), "(tf.float32, [None, input_size], name='x')\n", (2206, 2248), True, 'import tensorflow as tf\n'), ((2257, 2303), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int64', '[None]'], {'name': '"""label"""'}), "(tf.int64, [None], name='label')\n", (2271, 2303), True, 'import tensorflow as tf\n'), ((3004, 3033), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {}), '(cross_entropy)\n', (3018, 3033), True, 'import tensorflow as tf\n'), ((3576, 3598), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (3596, 3598), True, 'import tensorflow as tf\n'), ((3615, 3659), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""/home/harper/tftemp"""'], {}), "('/home/harper/tftemp')\n", (3636, 3659), True, 'import tensorflow as tf\n'), ((3717, 3784), 'tensorflow.saved_model.builder.SavedModelBuilder', 'tf.saved_model.builder.SavedModelBuilder', (['"""/home/harper/mnistmodel"""'], {}), "('/home/harper/mnistmodel')\n", (3757, 3784), True, 'import tensorflow as tf\n'), ((2310, 2333), 'tensorflow.name_scope', 'tf.name_scope', (['"""layer1"""'], {}), "('layer1')\n", (2323, 2333), True, 'import tensorflow as tf\n'), ((2547, 2570), 'tensorflow.name_scope', 'tf.name_scope', (['"""layer2"""'], {}), "('layer2')\n", (2560, 2570), True, 'import tensorflow as tf\n'), ((2775, 2796), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (2788, 2796), True, 'import tensorflow as tf\n'), ((2818, 2924), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'labels': 'label', 'logits': 'layer2_out', 'name': '"""cross_entropy"""'}), "(labels=label, logits=\n layer2_out, name='cross_entropy')\n", (2864, 2924), True, 'import tensorflow as tf\n'), ((3040, 3060), 'tensorflow.name_scope', 'tf.name_scope', (['"""sgd"""'], {}), "('sgd')\n", (3053, 3060), True, 'import tensorflow as tf\n'), ((3138, 3163), 'tensorflow.name_scope', 'tf.name_scope', (['"""accuracy"""'], {}), "('accuracy')\n", (3151, 3163), True, 'import tensorflow as tf\n'), ((3182, 3225), 'tensorflow.argmax', 'tf.argmax', (['layer2_out', '(1)'], {'name': '"""prediction"""'}), "(layer2_out, 1, name='prediction')\n", (3191, 3225), True, 'import tensorflow as tf\n'), ((3251, 3278), 'tensorflow.equal', 'tf.equal', (['prediction', 'label'], {}), '(prediction, label)\n', (3259, 3278), True, 'import tensorflow as tf\n'), ((3356, 3380), 'tensorflow.name_scope', 'tf.name_scope', (['"""summary"""'], {}), "('summary')\n", (3369, 3380), True, 'import tensorflow as tf\n'), ((3386, 3416), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""b1"""', 'b1'], {}), "('b1', b1)\n", (3406, 3416), True, 'import tensorflow as tf\n'), ((3421, 3451), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""w1"""', 'w1'], {}), "('w1', w1)\n", (3441, 3451), True, 'import tensorflow as tf\n'), ((3456, 3486), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""w2"""', 'w2'], {}), "('w2', w2)\n", (3476, 3486), True, 'import tensorflow as tf\n'), ((3491, 3521), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""b2"""', 'b2'], {}), "('b2', b2)\n", (3511, 3521), True, 'import tensorflow as tf\n'), ((3526, 3565), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (3543, 3565), True, 'import tensorflow as tf\n'), ((3683, 3705), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (3703, 3705), True, 'import tensorflow as tf\n'), ((3791, 3803), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3801, 3803), True, 'import tensorflow as tf\n'), ((647, 679), 'numpy.random.permutation', 'np.random.permutation', (['self.size'], {}), '(self.size)\n', (668, 679), True, 'import numpy as np\n'), ((1208, 1227), 'io.open', 'io.open', (['file', '"""rb"""'], {}), "(file, 'rb')\n", (1215, 1227), False, 'import io\n'), ((1588, 1607), 'io.open', 'io.open', (['file', '"""rb"""'], {}), "(file, 'rb')\n", (1595, 1607), False, 'import io\n'), ((2356, 2414), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[input_size, hidden_dim]'], {'stddev': '(0.01)'}), '([input_size, hidden_dim], stddev=0.01)\n', (2375, 2414), True, 'import tensorflow as tf\n'), ((2448, 2470), 'tensorflow.zeros', 'tf.zeros', (['[hidden_dim]'], {}), '([hidden_dim])\n', (2456, 2470), True, 'import tensorflow as tf\n'), ((2593, 2652), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[hidden_dim, output_size]'], {'stddev': '(0.01)'}), '([hidden_dim, output_size], stddev=0.01)\n', (2612, 2652), True, 'import tensorflow as tf\n'), ((2686, 2709), 'tensorflow.zeros', 'tf.zeros', (['[output_size]'], {}), '([output_size])\n', (2694, 2709), True, 'import tensorflow as tf\n'), ((2739, 2764), 'tensorflow.matmul', 'tf.matmul', (['layer1_out', 'w2'], {}), '(layer1_out, w2)\n', (2748, 2764), True, 'import tensorflow as tf\n'), ((3309, 3348), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (3316, 3348), True, 'import tensorflow as tf\n'), ((3826, 3859), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3857, 3859), True, 'import tensorflow as tf\n'), ((872, 904), 'numpy.random.permutation', 'np.random.permutation', (['self.size'], {}), '(self.size)\n', (893, 904), True, 'import numpy as np\n'), ((2511, 2527), 'tensorflow.matmul', 'tf.matmul', (['x', 'w1'], {}), '(x, w1)\n', (2520, 2527), True, 'import tensorflow as tf\n'), ((3079, 3108), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(0.001)'], {}), '(0.001)\n', (3101, 3108), True, 'import tensorflow as tf\n'), ((1796, 1824), 'numpy.frombuffer', 'np.frombuffer', (['raw', 'np.uint8'], {}), '(raw, np.uint8)\n', (1809, 1824), True, 'import numpy as np\n'), ((4788, 4829), 'tensorflow.saved_model.utils.build_tensor_info', 'tf.saved_model.utils.build_tensor_info', (['x'], {}), '(x)\n', (4826, 4829), True, 'import tensorflow as tf\n'), ((4881, 4931), 'tensorflow.saved_model.utils.build_tensor_info', 'tf.saved_model.utils.build_tensor_info', (['prediction'], {}), '(prediction)\n', (4919, 4931), True, 'import tensorflow as tf\n'), ((1431, 1459), 'numpy.frombuffer', 'np.frombuffer', (['raw', 'np.uint8'], {}), '(raw, np.uint8)\n', (1444, 1459), True, 'import numpy as np\n'), ((1322, 1341), 'numpy.dtype', 'np.dtype', (['np.uint32'], {}), '(np.uint32)\n', (1330, 1341), True, 'import numpy as np\n'), ((1701, 1720), 'numpy.dtype', 'np.dtype', (['np.uint32'], {}), '(np.uint32)\n', (1709, 1720), True, 'import numpy as np\n')]
import json import tempfile from collections import OrderedDict import os import numpy as np from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from utils import BoxList #from utils.pycocotools_rotation import Rotation_COCOeval def evaluate(dataset, predictions, result_file, score_threshold=None, epoch=0): coco_results = {} coco_results['bbox'] = make_coco_detection(predictions, dataset, score_threshold) results = COCOResult('bbox') path = os.path.join(result_file, str(epoch)+'_result.json') res = evaluate_predictions_on_coco(dataset.coco, coco_results['bbox'], path, 'bbox') results.update(res) # with tempfile.NamedTemporaryFile() as f: # path = f.name # res = evaluate_predictions_on_coco( # dataset.coco, coco_results['bbox'], path, 'bbox' # ) # results.update(res) print(results) return results.results def evaluate_predictions_on_coco(coco_gt, results, result_file, iou_type): with open(result_file, 'w') as f: json.dump(results, f) coco_dt = coco_gt.loadRes(str(result_file)) if results else COCO() coco_eval = Rotation_COCOeval(coco_gt, coco_dt, iou_type) coco_eval.params.iouThrs = np.linspace(.25, 0.95, int(np.round((0.95 - .25) / .05)) + 1, endpoint=True) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() score_threshold = compute_thresholds_for_classes(coco_eval) return coco_eval def compute_thresholds_for_classes(coco_eval): precision = coco_eval.eval['precision'] precision = precision[0, :, :, 0, -1] scores = coco_eval.eval['scores'] scores = scores[0, :, :, 0, -1] recall = np.linspace(0, 1, num=precision.shape[0]) recall = recall[:, None] f1 = (2 * precision * recall) / (np.maximum(precision + recall, 1e-6)) max_f1 = f1.max(0) max_f1_id = f1.argmax(0) scores = scores[max_f1_id, range(len(max_f1_id))] print('Maximum f1 for classes:') print(list(max_f1)) print('Score thresholds for classes') print(list(scores)) print('') return scores def make_coco_detection(predictions, dataset, score_threshold=None): coco_results = [] for id, pred in enumerate(predictions): orig_id = dataset.id2img[id] if len(pred) == 0: continue img_meta = dataset.get_image_meta(id) pred_resize = map_to_origin_image(img_meta, pred, flipmode='no', resize_mode='letterbox') boxes = pred_resize.bbox.tolist() scores = pred_resize.get_field('scores').tolist() labels = pred_resize.get_field('labels').tolist() labels = [dataset.id2category[i] for i in labels] if score_threshold is None: score_threshold = [0]*len(dataset.id2category) coco_results.extend( [ { 'image_id': orig_id, 'category_id': labels[k], 'bbox': box, 'score': scores[k], } for k, box in enumerate(boxes) if scores[k] > score_threshold[labels[k] - 1] ] ) return coco_results class COCOResult: METRICS = { 'bbox': ['AP', 'AP50', 'AP75', 'APs', 'APm', 'APl'], 'segm': ['AP', 'AP50', 'AP75', 'APs', 'APm', 'APl'], 'box_proposal': [ 'AR@100', 'ARs@100', 'ARm@100', 'ARl@100', 'AR@1000', 'ARs@1000', 'ARm@1000', 'ARl@1000', ], 'keypoints': ['AP', 'AP50', 'AP75', 'APm', 'APl'], } def __init__(self, *iou_types): allowed_types = ("box_proposal", "bbox", "segm", "keypoints") assert all(iou_type in allowed_types for iou_type in iou_types) results = OrderedDict() for iou_type in iou_types: results[iou_type] = OrderedDict( [(metric, -1) for metric in COCOResult.METRICS[iou_type]] ) self.results = results def update(self, coco_eval): if coco_eval is None: return assert isinstance(coco_eval, COCOeval) s = coco_eval.stats iou_type = coco_eval.params.iouType res = self.results[iou_type] metrics = COCOResult.METRICS[iou_type] for idx, metric in enumerate(metrics): res[metric] = s[idx] def __repr__(self): return repr(self.results) def map_to_origin_image(img_meta, pred, flipmode='no', resize_mode='letterbox'): ''' img_meta: "id": int, "width": int, "height": int,"file_name": str, pred: boxlist object flipmode:'h':Horizontal flip,'v':vertical flip 'no': no flip resize_mode: 'letterbox' , 'wrap' ''' assert pred.mode == 'xyxyxyxy' if flipmode == 'h': pred = pred.transpose(0) elif flipmode == 'v': pred = pred.transpose(1) elif flipmode == 'no': pass else: raise Exception("unspported flip mode, 'h', 'v' or 'no' ") width = img_meta['width'] height = img_meta['height'] resized_width, resized_height = pred.size if resize_mode == 'letterbox': if width > height: scale = resized_width / width size = (resized_width, int(scale * height)) else: scale = resized_height / height size = (int(width * scale), resized_height) pred_resize = BoxList(pred.bbox, size, mode='xyxyxyxy') pred_resize._copy_extra_fields(pred) pred_resize = pred_resize.clip_to_image(remove_empty=True) pred_resize = pred_resize.resize((width, height)) pred_resize = pred_resize.clip_to_image(remove_empty=True) #pred_resize = pred_resize.convert('xywh') elif resize_mode == 'wrap': pred_resize = pred.resize((width, height)) pred_resize = pred_resize.convert('xyxyxyxy') pred_resize = pred_resize.clip_to_image(remove_empty=True) else: raise Exception("unspported reisze mode, either 'letterbox' or 'wrap' ") return pred_resize
[ "collections.OrderedDict", "numpy.round", "utils.BoxList", "pycocotools.coco.COCO", "numpy.linspace", "numpy.maximum", "json.dump" ]
[((1758, 1799), 'numpy.linspace', 'np.linspace', (['(0)', '(1)'], {'num': 'precision.shape[0]'}), '(0, 1, num=precision.shape[0])\n', (1769, 1799), True, 'import numpy as np\n'), ((1082, 1103), 'json.dump', 'json.dump', (['results', 'f'], {}), '(results, f)\n', (1091, 1103), False, 'import json\n'), ((1171, 1177), 'pycocotools.coco.COCO', 'COCO', ([], {}), '()\n', (1175, 1177), False, 'from pycocotools.coco import COCO\n'), ((1870, 1907), 'numpy.maximum', 'np.maximum', (['(precision + recall)', '(1e-06)'], {}), '(precision + recall, 1e-06)\n', (1880, 1907), True, 'import numpy as np\n'), ((3970, 3983), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3981, 3983), False, 'from collections import OrderedDict\n'), ((5638, 5679), 'utils.BoxList', 'BoxList', (['pred.bbox', 'size'], {'mode': '"""xyxyxyxy"""'}), "(pred.bbox, size, mode='xyxyxyxy')\n", (5645, 5679), False, 'from utils import BoxList\n'), ((4053, 4123), 'collections.OrderedDict', 'OrderedDict', (['[(metric, -1) for metric in COCOResult.METRICS[iou_type]]'], {}), '([(metric, -1) for metric in COCOResult.METRICS[iou_type]])\n', (4064, 4123), False, 'from collections import OrderedDict\n'), ((1302, 1332), 'numpy.round', 'np.round', (['((0.95 - 0.25) / 0.05)'], {}), '((0.95 - 0.25) / 0.05)\n', (1310, 1332), True, 'import numpy as np\n')]
#! /usr/env/bin python import os import linecache import numpy as np from collections import OrderedDict from CP2K_kit.tools import call from CP2K_kit.tools import data_op from CP2K_kit.tools import file_tools from CP2K_kit.tools import read_input from CP2K_kit.tools import traj_info from CP2K_kit.deepff import load_data from CP2K_kit.deepff import gen_lammps_task def get_sys_num(exe_dir): ''' get_sys_num: get the number of systems Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: sys_num: int sys_num is the number of systems. ''' cmd = "ls | grep %s" % ('sys_') sys_num = len(call.call_returns_shell(exe_dir, cmd)) return sys_num def get_data_num(exe_dir): ''' get_data_num: get the number of data Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: data_num: int data_num is the number of data. ''' cmd = "ls | grep %s" % ('data_') data_num = len(call.call_returns_shell(exe_dir, cmd)) return data_num def get_task_num(exe_dir, get_task_dir=False): ''' get_task_num: get the number of tasks in a system Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: task_num: int task_num is the number of tasks in a system. ''' cmd = "ls | grep %s" % ('task_') task_dir = call.call_returns_shell(exe_dir, cmd) task_num = len(task_dir) if get_task_dir: return task_num, task_dir else: return task_num def get_lmp_model_num(exe_dir): ''' get_lmp_model_num: get the number of models in lammps directory. Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: model_num: int model_num is the number of models in lammps directory. ''' cmd = "ls | grep %s" % ("'model_[0-9]'") model_num = len(call.call_returns_shell(exe_dir, cmd)) return model_num def get_deepmd_model_num(exe_dir): ''' get_deepmd_model_num: get the number of models in deepmd directory. Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: model_num: int model_num is the number of models in deepmd directory. ''' model_num = len(call.call_returns_shell(exe_dir, "ls -ll |awk '/^d/ {print $NF}'")) return model_num def get_traj_num(exe_dir): ''' get_traj_num: get the number of frames Args: exe_dir: string exe_dir is the directory where shell script will be excuted. Returns: traj_num: int traj_num is the number of frames. ''' cmd = "ls | grep %s" % ('traj_') traj_num = len(call.call_returns_shell(exe_dir, cmd)) return traj_num def dump_input(work_dir, inp_file, f_key): ''' dump_input: dump deepff input file, it will call read_input module. Args: work_dir: string work_dir is the working directory of CP2K_kit. inp_file: string inp_file is the deepff input file f_key: 1-d string list f_key is fixed to: ['deepmd', 'lammps', 'cp2k', 'model_devi', 'environ'] Returns : deepmd_dic: dictionary deepmd_dic contains keywords used in deepmd. lammps_dic: dictionary lammpd_dic contains keywords used in lammps. cp2k_dic: dictionary cp2k_dic contains keywords used in cp2k. model_devi_dic: dictionary model_devi contains keywords used in model_devi. environ_dic: dictionary environ_dic contains keywords used in environment. ''' job_type_param = read_input.dump_info(work_dir, inp_file, f_key) deepmd_dic = job_type_param[0] lammps_dic = job_type_param[1] cp2k_dic = job_type_param[2] active_learn_dic = job_type_param[3] environ_dic = job_type_param[4] return deepmd_dic, lammps_dic, cp2k_dic, active_learn_dic, environ_dic def get_atoms_type(deepmd_dic): ''' get_atoms_type: get atoms type for total systems Args: deepmd_dic: dictionary deepmd_dic contains keywords used in deepmd. Returns: final_atoms_type: list final_atoms_type is the atoms type for all systems. Example: ['O', 'H'] ''' import linecache atoms_type = [] train_dic = deepmd_dic['training'] for key in train_dic: if ( 'system' in key ): traj_coord_file = train_dic[key]['traj_coord_file'] line_num = file_tools.grep_line_num("'PDB file'", traj_coord_file, os.getcwd()) if ( line_num == 0 ): coord_file_type = 'coord_xyz' else: coord_file_type = 'coord_pdb' atoms_num, pre_base_block, end_base_block, pre_base, frames_num, each, start_id, end_id, time_step = \ traj_info.get_traj_info(traj_coord_file, coord_file_type) atoms = [] for i in range(atoms_num): line_i = linecache.getline(traj_coord_file, pre_base+pre_base_block+i+1) line_i_split = data_op.split_str(line_i, ' ', '\n') if ( coord_file_type == 'coord_xyz' ): atoms.append(line_i_split[0]) elif ( coord_file_type == 'coord_pdb' ): atoms.append(line_i_split[len(line_i_split)-1]) linecache.clearcache() atoms_type.append(data_op.list_replicate(atoms)) tot_atoms_type = data_op.list_reshape(atoms_type) final_atoms_type = data_op.list_replicate(tot_atoms_type) return final_atoms_type def dump_init_data(work_dir, deepmd_dic, train_stress, tot_atoms_type_dic): ''' dump_init_data: load initial training data. Args: work_dir: string work_dir is working directory of CP2K_kit. deepmd_dic: dictionary deepmd_dic contains keywords used in deepmd. train_stress: bool train_stress is whether we need to dump stress. tot_atoms_type_dic: dictionary tot_atoms_type_dic is the atoms type dictionary. Returns: init_train_data: 1-d string list init_train_data contains initial training data directories. init_data_num : int init_data_num is the number of data for initial training. ''' init_train_data_dir = ''.join((work_dir, '/init_train_data')) if ( not os.path.exists(init_train_data_dir) ): cmd = "mkdir %s" % ('init_train_data') call.call_simple_shell(work_dir, cmd) i = 0 init_train_data = [] init_data_num = 0 train_dic = deepmd_dic['training'] shuffle_data = train_dic['shuffle_data'] for key in train_dic: if ( 'system' in key): save_dir = ''.join((work_dir, '/init_train_data/data_', str(i))) if ( not os.path.exists(save_dir) ): cmd = "mkdir %s" % (save_dir) call.call_simple_shell(work_dir, cmd) init_train_data.append(save_dir) cmd = "ls | grep %s" %("'set.'") set_dir_name = call.call_returns_shell(save_dir, cmd) choosed_num = train_dic[key]['choosed_frame_num'] data_num = [] if ( len(set_dir_name) > 0 ): for set_dir in set_dir_name: data_num_part = [] set_dir_abs = ''.join((save_dir, '/', set_dir)) coord_npy_file = ''.join((set_dir_abs, '/coord.npy')) force_npy_file = ''.join((set_dir_abs, '/force.npy')) box_npy_file = ''.join((set_dir_abs, '/box.npy')) energy_npy_file = ''.join((set_dir_abs, '/energy.npy')) if ( all(os.path.exists(npy_file) for npy_file in [coord_npy_file, force_npy_file, box_npy_file, energy_npy_file]) ): for npy_file in [coord_npy_file, force_npy_file, box_npy_file, energy_npy_file]: data_num_part.append(len(np.load(npy_file))) else: data_num_part = [0,0,0,0] virial_npy_file = ''.join((set_dir_abs, '/virial.npy')) if ( os.path.exists(virial_npy_file) ): data_num_part.append(len(np.load(virial_npy_file))) data_num.append(data_num_part) else: data_num = [[0,0,0,0]] data_num = data_op.add_2d_list(data_num) if ( all(j == choosed_num for j in data_num) ): if ( len(set_dir_name) == 1 ): init_data_num_part = choosed_num else: final_set_dir_abs = ''.join((save_dir, '/', set_dir_name[len(set_dir_name)-1])) final_energy_npy_file = ''.join((final_set_dir_abs, '/energy.npy')) init_data_num_part = choosed_num-len(np.load(final_energy_npy_file)) else: traj_type = train_dic[key]['traj_type'] start = train_dic[key]['start_frame'] end = train_dic[key]['end_frame'] parts = train_dic[key]['set_parts'] if ( traj_type == 'md' ): traj_coord_file = train_dic[key]['traj_coord_file'] traj_frc_file = train_dic[key]['traj_frc_file'] traj_cell_file = train_dic[key]['traj_cell_file'] traj_stress_file = train_dic[key]['traj_stress_file'] load_data.load_data_from_dir(traj_coord_file, traj_frc_file, traj_cell_file, traj_stress_file, \ train_stress, work_dir, save_dir, start, end, choosed_num, tot_atoms_type_dic) elif ( traj_type == 'mtd' ): data_dir = train_dic[key]['data_dir'] task_dir_prefix = train_dic[key]['task_dir_prefix'] proj_name = train_dic[key]['proj_name'] out_file_name = train_dic[key]['out_file_name'] choosed_index = data_op.gen_list(start, end, 1) choosed_index_array = np.array(choosed_index) np.random.shuffle(choosed_index_array) choosed_index = list(choosed_index_array[0:choosed_num]) load_data.load_data_from_sepfile(data_dir, save_dir, task_dir_prefix, proj_name, tot_atoms_type_dic, \ sorted(choosed_index), out_file_name) energy_array, coord_array, frc_array, box_array, virial_array = load_data.read_raw_data(save_dir) init_data_num_part, init_test_data_num_part = load_data.raw_data_to_set(parts, shuffle_data, save_dir, energy_array, \ coord_array, frc_array, box_array, virial_array) init_data_num = init_data_num+init_data_num_part i = i+1 if ( 'set_data_dir' in train_dic.keys() ): init_train_data.append(os.path.abspath(train_dic['set_data_dir'])) energy_npy_file = ''.join((os.path.abspath(train_dic['set_data_dir']), '/set.000/energy.npy')) set_data_num = len(np.load(energy_npy_file)) init_data_num = init_data_num+set_data_num return init_train_data, init_data_num def check_deepff_run(work_dir, iter_id): ''' check_deepff_run: check the running state of deepff Args: work_dir: string work_dir is workding directory. iter_id: int iter_id is current iteration number. Returns: failure_model: 1-d int list failure_model is the id of failure models. ''' train_dir = ''.join((work_dir, '/iter_', str(iter_id), '/01.train')) model_num = get_deepmd_model_num(train_dir) failure_model = [] for i in range(model_num): model_dir = ''.join((train_dir, '/', str(i))) lcurve_file = ''.join((model_dir, '/lcurve.out')) whole_line_num = len(open(lcurve_file).readlines()) choosed_line_num = int(0.1*whole_line_num) start_line = whole_line_num-choosed_line_num force_trn = [] for j in range(choosed_line_num): line = linecache.getline(lcurve_file, start_line+j+1) line_split = data_op.split_str(line, ' ') if ( data_op.eval_str(line_split[0]) == 1 and len(line_split) >= 8 ): force_trn.append(float(line_split[6])) linecache.clearcache() force_max = max(force_trn) force_min = min(force_trn) force_avg = np.mean(np.array(force_trn)) if ( ((force_max-force_min) >= 0.04 and force_max >= 0.08) or force_avg >= 0.08 ): failure_model.append(i) return failure_model def get_md_sys_info(lmp_dic, tot_atoms_type_dic): ''' get_md_sys_info: get the system information for lammps md. Args: lmp_dic: dictionary lmp_dic contains parameters for lammps. tot_atoms_type_dic: dictionary tot_atoms_type_dic is the atoms type dictionary. Returns: sys_num: int sys_num is the number of systems. atoms_type_multi_sys: 2-d dictionary, dim = (num of lammps systems) * (num of atom types) atoms_type_multi_sys is the atoms type for multi-systems. example: {0:{'O':1,'H':2,'N':3},1:{'O':1,'S':2,'N':3}} atoms_num_tot: dictionary atoms_num_tot contains number of atoms for different systems. Example: {0:3, 1:3} use_mtd_tot: bool use_mtd_tot is whethet using metadynamics for whole systems. ''' atoms_type_multi_sys = [] atoms_num_tot = [] use_mtd_tot = [] sys_num = 0 for key in lmp_dic: if 'system' in key: sys_num = sys_num + 1 for i in range(sys_num): sys = 'system' + str(i) box_file_name = lmp_dic[sys]['box'] coord_file_name = lmp_dic[sys]['coord'] use_mtd = lmp_dic[sys]['use_mtd'] tri_cell_vec, atoms, x, y, z = gen_lammps_task.get_box_coord(box_file_name, coord_file_name) atoms_type = data_op.list_replicate(atoms) atoms_type_dic = OrderedDict() for j in atoms_type: if j in tot_atoms_type_dic.keys(): atoms_type_dic[j] = tot_atoms_type_dic[j]+1 else: log_info.log_error('Input error: %s atom type in system %d is not trained, please check deepff/lammps/system' %(j, i)) exit() atoms_type_multi_sys.append(atoms_type_dic) atoms_num_tot.append(len(atoms)) use_mtd_tot.append(use_mtd) return sys_num, atoms_type_multi_sys, atoms_num_tot, use_mtd_tot
[ "CP2K_kit.deepff.gen_lammps_task.get_box_coord", "CP2K_kit.tools.data_op.list_replicate", "numpy.array", "CP2K_kit.tools.data_op.gen_list", "CP2K_kit.tools.data_op.add_2d_list", "os.path.exists", "CP2K_kit.deepff.load_data.load_data_from_dir", "CP2K_kit.tools.data_op.eval_str", "CP2K_kit.tools.data_op.split_str", "linecache.getline", "CP2K_kit.tools.read_input.dump_info", "collections.OrderedDict", "CP2K_kit.tools.traj_info.get_traj_info", "CP2K_kit.tools.data_op.list_reshape", "CP2K_kit.deepff.load_data.read_raw_data", "linecache.clearcache", "CP2K_kit.deepff.load_data.raw_data_to_set", "os.getcwd", "CP2K_kit.tools.call.call_returns_shell", "CP2K_kit.tools.call.call_simple_shell", "os.path.abspath", "numpy.load", "numpy.random.shuffle" ]
[((1413, 1450), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', 'cmd'], {}), '(exe_dir, cmd)\n', (1436, 1450), False, 'from CP2K_kit.tools import call\n'), ((3556, 3603), 'CP2K_kit.tools.read_input.dump_info', 'read_input.dump_info', (['work_dir', 'inp_file', 'f_key'], {}), '(work_dir, inp_file, f_key)\n', (3576, 3603), False, 'from CP2K_kit.tools import read_input\n'), ((5204, 5236), 'CP2K_kit.tools.data_op.list_reshape', 'data_op.list_reshape', (['atoms_type'], {}), '(atoms_type)\n', (5224, 5236), False, 'from CP2K_kit.tools import data_op\n'), ((5258, 5296), 'CP2K_kit.tools.data_op.list_replicate', 'data_op.list_replicate', (['tot_atoms_type'], {}), '(tot_atoms_type)\n', (5280, 5296), False, 'from CP2K_kit.tools import data_op\n'), ((664, 701), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', 'cmd'], {}), '(exe_dir, cmd)\n', (687, 701), False, 'from CP2K_kit.tools import call\n'), ((1017, 1054), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', 'cmd'], {}), '(exe_dir, cmd)\n', (1040, 1054), False, 'from CP2K_kit.tools import call\n'), ((1918, 1955), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', 'cmd'], {}), '(exe_dir, cmd)\n', (1941, 1955), False, 'from CP2K_kit.tools import call\n'), ((2302, 2368), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', '"""ls -ll |awk \'/^d/ {print $NF}\'"""'], {}), '(exe_dir, "ls -ll |awk \'/^d/ {print $NF}\'")\n', (2325, 2368), False, 'from CP2K_kit.tools import call\n'), ((2690, 2727), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['exe_dir', 'cmd'], {}), '(exe_dir, cmd)\n', (2713, 2727), False, 'from CP2K_kit.tools import call\n'), ((6062, 6097), 'os.path.exists', 'os.path.exists', (['init_train_data_dir'], {}), '(init_train_data_dir)\n', (6076, 6097), False, 'import os\n'), ((6148, 6185), 'CP2K_kit.tools.call.call_simple_shell', 'call.call_simple_shell', (['work_dir', 'cmd'], {}), '(work_dir, cmd)\n', (6170, 6185), False, 'from CP2K_kit.tools import call\n'), ((11439, 11461), 'linecache.clearcache', 'linecache.clearcache', ([], {}), '()\n', (11459, 11461), False, 'import linecache\n'), ((12874, 12935), 'CP2K_kit.deepff.gen_lammps_task.get_box_coord', 'gen_lammps_task.get_box_coord', (['box_file_name', 'coord_file_name'], {}), '(box_file_name, coord_file_name)\n', (12903, 12935), False, 'from CP2K_kit.deepff import gen_lammps_task\n'), ((12953, 12982), 'CP2K_kit.tools.data_op.list_replicate', 'data_op.list_replicate', (['atoms'], {}), '(atoms)\n', (12975, 12982), False, 'from CP2K_kit.tools import data_op\n'), ((13004, 13017), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (13015, 13017), False, 'from collections import OrderedDict\n'), ((4657, 4714), 'CP2K_kit.tools.traj_info.get_traj_info', 'traj_info.get_traj_info', (['traj_coord_file', 'coord_file_type'], {}), '(traj_coord_file, coord_file_type)\n', (4680, 4714), False, 'from CP2K_kit.tools import traj_info\n'), ((5106, 5128), 'linecache.clearcache', 'linecache.clearcache', ([], {}), '()\n', (5126, 5128), False, 'import linecache\n'), ((6666, 6704), 'CP2K_kit.tools.call.call_returns_shell', 'call.call_returns_shell', (['save_dir', 'cmd'], {}), '(save_dir, cmd)\n', (6689, 6704), False, 'from CP2K_kit.tools import call\n'), ((7810, 7839), 'CP2K_kit.tools.data_op.add_2d_list', 'data_op.add_2d_list', (['data_num'], {}), '(data_num)\n', (7829, 7839), False, 'from CP2K_kit.tools import data_op\n'), ((10115, 10157), 'os.path.abspath', 'os.path.abspath', (["train_dic['set_data_dir']"], {}), "(train_dic['set_data_dir'])\n", (10130, 10157), False, 'import os\n'), ((10281, 10305), 'numpy.load', 'np.load', (['energy_npy_file'], {}), '(energy_npy_file)\n', (10288, 10305), True, 'import numpy as np\n'), ((11217, 11267), 'linecache.getline', 'linecache.getline', (['lcurve_file', '(start_line + j + 1)'], {}), '(lcurve_file, start_line + j + 1)\n', (11234, 11267), False, 'import linecache\n'), ((11283, 11311), 'CP2K_kit.tools.data_op.split_str', 'data_op.split_str', (['line', '""" """'], {}), "(line, ' ')\n", (11300, 11311), False, 'from CP2K_kit.tools import data_op\n'), ((11548, 11567), 'numpy.array', 'np.array', (['force_trn'], {}), '(force_trn)\n', (11556, 11567), True, 'import numpy as np\n'), ((4413, 4424), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4422, 4424), False, 'import os\n'), ((4782, 4851), 'linecache.getline', 'linecache.getline', (['traj_coord_file', '(pre_base + pre_base_block + i + 1)'], {}), '(traj_coord_file, pre_base + pre_base_block + i + 1)\n', (4799, 4851), False, 'import linecache\n'), ((4869, 4905), 'CP2K_kit.tools.data_op.split_str', 'data_op.split_str', (['line_i', '""" """', '"""\n"""'], {}), "(line_i, ' ', '\\n')\n", (4886, 4905), False, 'from CP2K_kit.tools import data_op\n'), ((5153, 5182), 'CP2K_kit.tools.data_op.list_replicate', 'data_op.list_replicate', (['atoms'], {}), '(atoms)\n', (5175, 5182), False, 'from CP2K_kit.tools import data_op\n'), ((6455, 6479), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (6469, 6479), False, 'import os\n'), ((6529, 6566), 'CP2K_kit.tools.call.call_simple_shell', 'call.call_simple_shell', (['work_dir', 'cmd'], {}), '(work_dir, cmd)\n', (6551, 6566), False, 'from CP2K_kit.tools import call\n'), ((9683, 9716), 'CP2K_kit.deepff.load_data.read_raw_data', 'load_data.read_raw_data', (['save_dir'], {}), '(save_dir)\n', (9706, 9716), False, 'from CP2K_kit.deepff import load_data\n'), ((9771, 9894), 'CP2K_kit.deepff.load_data.raw_data_to_set', 'load_data.raw_data_to_set', (['parts', 'shuffle_data', 'save_dir', 'energy_array', 'coord_array', 'frc_array', 'box_array', 'virial_array'], {}), '(parts, shuffle_data, save_dir, energy_array,\n coord_array, frc_array, box_array, virial_array)\n', (9796, 9894), False, 'from CP2K_kit.deepff import load_data\n'), ((10190, 10232), 'os.path.abspath', 'os.path.abspath', (["train_dic['set_data_dir']"], {}), "(train_dic['set_data_dir'])\n", (10205, 10232), False, 'import os\n'), ((7610, 7641), 'os.path.exists', 'os.path.exists', (['virial_npy_file'], {}), '(virial_npy_file)\n', (7624, 7641), False, 'import os\n'), ((8717, 8898), 'CP2K_kit.deepff.load_data.load_data_from_dir', 'load_data.load_data_from_dir', (['traj_coord_file', 'traj_frc_file', 'traj_cell_file', 'traj_stress_file', 'train_stress', 'work_dir', 'save_dir', 'start', 'end', 'choosed_num', 'tot_atoms_type_dic'], {}), '(traj_coord_file, traj_frc_file, traj_cell_file,\n traj_stress_file, train_stress, work_dir, save_dir, start, end,\n choosed_num, tot_atoms_type_dic)\n', (8745, 8898), False, 'from CP2K_kit.deepff import load_data\n'), ((11323, 11354), 'CP2K_kit.tools.data_op.eval_str', 'data_op.eval_str', (['line_split[0]'], {}), '(line_split[0])\n', (11339, 11354), False, 'from CP2K_kit.tools import data_op\n'), ((9213, 9244), 'CP2K_kit.tools.data_op.gen_list', 'data_op.gen_list', (['start', 'end', '(1)'], {}), '(start, end, 1)\n', (9229, 9244), False, 'from CP2K_kit.tools import data_op\n'), ((9277, 9300), 'numpy.array', 'np.array', (['choosed_index'], {}), '(choosed_index)\n', (9285, 9300), True, 'import numpy as np\n'), ((9311, 9349), 'numpy.random.shuffle', 'np.random.shuffle', (['choosed_index_array'], {}), '(choosed_index_array)\n', (9328, 9349), True, 'import numpy as np\n'), ((7214, 7238), 'os.path.exists', 'os.path.exists', (['npy_file'], {}), '(npy_file)\n', (7228, 7238), False, 'import os\n'), ((8205, 8235), 'numpy.load', 'np.load', (['final_energy_npy_file'], {}), '(final_energy_npy_file)\n', (8212, 8235), True, 'import numpy as np\n'), ((7682, 7706), 'numpy.load', 'np.load', (['virial_npy_file'], {}), '(virial_npy_file)\n', (7689, 7706), True, 'import numpy as np\n'), ((7455, 7472), 'numpy.load', 'np.load', (['npy_file'], {}), '(npy_file)\n', (7462, 7472), True, 'import numpy as np\n')]
import time import numpy as np import utils.measurement_subs as measurement_subs import utils.socket_subs as socket_subs from .do_fridge_sweep import do_fridge_sweep from .do_device_sweep import do_device_sweep def device_fridge_2d( graph_proc, rpg, data_file, read_inst, sweep_inst=[], set_inst=[], set_value=[], pre_value=[], finish_value=[], fridge_sweep="B", fridge_set=0.0, device_start=0.0, device_stop=1.0, device_step=0.1, device_finish=0.0, device_mid=[], fridge_start=0.0, fridge_stop=1.0, fridge_rate=0.1, delay=0, sample=1, timeout=-1, wait=0.0, comment="No comment!", network_dir="Z:\\DATA", persist=True, x_custom=[] ): """2D data acquisition either by sweeping a device parameter or by sweepng a fridge parameter The program decides which of these to do depending on if the the variable "sweep_inst" is assigned. i.e. if "sweep_inst" is assigned the device is swept and the fridge parameter is stepped. If the device is being swept the variable "fridge_rate" is the size of successive steps of either T or B. If the fridge is being swept the first set_inst is stepped by the "device_step" For the case of successive B sweeps the fridge will be swept forwards and backwards e.g. Vg = -60 V B = -9 --> +9 T Vg = -50 V B = +9 --> -9 T etc ... Note that in this case the first "set_value" will be overwritten therefore a dummy e.g. 0.0 should be written in the case that there are additional set_inst """ if sweep_inst: sweep_device = True else: sweep_device = False if fridge_sweep == "B": b_sweep = True else: b_sweep = False if not finish_value: finish_value = list(set_value) # We step over the x variable and sweep over the y if sweep_device: x_vec = np.hstack((np.arange(fridge_start, fridge_stop, fridge_rate), fridge_stop)) y_start = device_start y_stop = device_stop y_step = device_step else: x_vec = np.hstack((np.arange(device_start, device_stop, device_step), device_stop)) y_start = fridge_start y_stop = fridge_stop y_step = fridge_rate if not not x_custom: x_vec = x_custom if sweep_device: y_len = len(measurement_subs.generate_device_sweep( device_start, device_stop, device_step, mid=device_mid)) else: y_len = abs(y_start - y_stop) / y_step + 1 num_of_inst = len(read_inst) plot_2d_window = [None] * num_of_inst view_box = [None] * num_of_inst image_view = [None] * num_of_inst z_array = [np.zeros((len(x_vec), y_len)) for i in range(num_of_inst)] if sweep_device: for i in range(num_of_inst): plot_2d_window[i] = rpg.QtGui.QMainWindow() plot_2d_window[i].resize(500, 500) view_box[i] = rpg.ViewBox(invertY=True) image_view[i] = rpg.ImageView(view=rpg.PlotItem(viewBox=view_box[i])) plot_2d_window[i].setCentralWidget(image_view[i]) plot_2d_window[i].setWindowTitle("read_inst %d" % i) plot_2d_window[i].show() view_box[i].setAspectLocked(False) y_scale = y_step x_scale = (x_vec[-2] - x_vec[0]) / np.float(len(x_vec) - 1) for j in range(num_of_inst): image_view[j].setImage(z_array[j], scale=(x_scale, y_scale), pos=(x_vec[0], y_start)) for i, v in enumerate(x_vec): if sweep_device: # sweep the device and fix T or B if b_sweep: data_list = do_device_sweep( graph_proc, rpg, data_file, sweep_inst, read_inst, set_inst=set_inst, set_value=set_value, finish_value=finish_value, pre_value=pre_value, b_set=v, persist=False, sweep_start=device_start, sweep_stop=device_stop, sweep_step=device_step, sweep_finish=device_finish, sweep_mid=device_mid, delay=delay, sample=sample, t_set=fridge_set, timeout=timeout, wait=wait, return_data=True, make_plot=False, comment=comment, network_dir=network_dir ) else: data_list = do_device_sweep( graph_proc, rpg, data_file, sweep_inst, read_inst, set_inst=set_inst, set_value=set_value, finish_value=finish_value, pre_value=pre_value, b_set=fridge_set, persist=True, sweep_start=device_start, sweep_stop=device_stop, sweep_step=device_step, sweep_mid=device_mid, delay=delay, sample=sample, t_set=v, timeout=timeout, wait=wait, return_data=True, make_plot=False, comment=comment, network_dir=network_dir ) else: set_value[0] = v if i == len(x_vec) - 1: finish_value[0] = 0.0 else: finish_value[0] = x_vec[i + 1] # Fix the device and sweep T or B if b_sweep: data_list = do_fridge_sweep( graph_proc, rpg, data_file, read_inst, set_inst=set_inst, set_value=set_value, finish_value=finish_value, pre_value=pre_value, fridge_sweep="B", fridge_set=fridge_set, sweep_start=fridge_start, sweep_stop=fridge_stop, sweep_rate=fridge_rate, sweep_finish=fridge_stop, persist=False, delay=delay, sample=sample, timeout=timeout, wait=wait, return_data=True, comment=comment, network_dir=network_dir) tmp_sweep = [fridge_start, fridge_stop] fridge_start = tmp_sweep[1] fridge_stop = tmp_sweep[0] else: data_list = do_fridge_sweep( graph_proc, rpg, data_file, read_inst, set_inst=set_inst, set_value=set_value, finish_value=finish_value, pre_value=pre_value, fridge_sweep="T", fridge_set=fridge_set, sweep_start=fridge_start, sweep_stop=fridge_stop, sweep_rate=fridge_rate, sweep_finish=fridge_stop, persist=True, delay=delay, sample=sample, timeout=timeout, wait=wait, return_data=True, comment=comment, network_dir=network_dir) if sweep_device: for j in range(num_of_inst): z_array[j][i, :] = data_list[j + 1] image_view[j].setImage(z_array[j], pos=(x_vec[0], y_start), scale=(x_scale, y_scale)) m_client = socket_subs.SockClient('localhost', 18861) time.sleep(2) measurement_subs.socket_write(m_client, "SET 0.0 0") time.sleep(2) m_client.close() time.sleep(2) return
[ "numpy.arange", "time.sleep", "utils.socket_subs.SockClient", "utils.measurement_subs.generate_device_sweep", "utils.measurement_subs.socket_write" ]
[((7004, 7046), 'utils.socket_subs.SockClient', 'socket_subs.SockClient', (['"""localhost"""', '(18861)'], {}), "('localhost', 18861)\n", (7026, 7046), True, 'import utils.socket_subs as socket_subs\n'), ((7051, 7064), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (7061, 7064), False, 'import time\n'), ((7069, 7121), 'utils.measurement_subs.socket_write', 'measurement_subs.socket_write', (['m_client', '"""SET 0.0 0"""'], {}), "(m_client, 'SET 0.0 0')\n", (7098, 7121), True, 'import utils.measurement_subs as measurement_subs\n'), ((7126, 7139), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (7136, 7139), False, 'import time\n'), ((7166, 7179), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (7176, 7179), False, 'import time\n'), ((1944, 1993), 'numpy.arange', 'np.arange', (['fridge_start', 'fridge_stop', 'fridge_rate'], {}), '(fridge_start, fridge_stop, fridge_rate)\n', (1953, 1993), True, 'import numpy as np\n'), ((2135, 2184), 'numpy.arange', 'np.arange', (['device_start', 'device_stop', 'device_step'], {}), '(device_start, device_stop, device_step)\n', (2144, 2184), True, 'import numpy as np\n'), ((2390, 2488), 'utils.measurement_subs.generate_device_sweep', 'measurement_subs.generate_device_sweep', (['device_start', 'device_stop', 'device_step'], {'mid': 'device_mid'}), '(device_start, device_stop,\n device_step, mid=device_mid)\n', (2428, 2488), True, 'import utils.measurement_subs as measurement_subs\n')]
import re import numpy as np import sympy as sp import random as rd from functools import reduce NORMAL_VECTOR_ID = 'hyperplane_normal_vector_%s_%i' NUM_NORMAL_VECS_ID = 'num_normal_vectors_%s' CHAMBER_ID = 'chamber_%s_%s' FVECTOR_ID = 'feature_vector_%s' FVEC_ID_EX = re.compile(r'feature_vector_([\S]*)') class HyperplaneHasher(): def __init__(self, kvstore, name, normal_vectors=None): """'name' is a string used for cribbing names of things to be stored in the KeyValueStore instance 'kvstore'. 'normal_vectors' is either a list of 1-rankal numpy arrays, all of the same rank, or else of type None. In the latter case, normal vectors are assumed to exist in 'kvstore', and are named NORMAL_VECTOR_ID % ('name', i), where i is an integer.""" self.kvstore = kvstore self.name = name if normal_vectors is None: self.num_normal_vectors = kvstore.get_int( NUM_NORMAL_VECS_ID % name) self.normal_vectors = [kvstore.get_vector(NORMAL_VECTOR_ID % (name, i)) for i in range(self.num_normal_vectors)] else: self.normal_vectors = normal_vectors self.num_normal_vectors = len(normal_vectors) self.rank = len(self.normal_vectors[0]) def _compute_num_chambers(self): """Computes the number of chambers defined by the hyperplanes corresponding to the normal vectors.""" d = self.rank n = self.num_normal_vectors raw_cfs = sp.binomial_coefficients_list(n) cfs = np.array([(-1)**i * raw_cfs[i] for i in range(n + 1)]) powers = np.array([max(entry, 0) for entry in [d - k for k in range(n + 1)]]) ys = np.array([-1] * len(powers)) return (-1)**d * sum(cfs * (ys**powers)) @classmethod def _flip_digit(cls, binary_string, i): """Given a string 'binary_string' of length n, each letter of which is either '0' or '1', and an integer 0 <= i <= n-1, returns the binary_string in which the i-th letter is flipped.""" for letter in binary_string: if letter not in ['0', '1']: raise ValueError( """Input string contains characters other than '0' and '1'.""") if i > len(binary_string) - 1 or i < 0: raise ValueError( """Argument 'i' outside range 0 <= i <= len(binary_string) - 1.""") else: flip_dict = {'0': '1', '1': '0'} letters = [letter for letter in binary_string] letters[i] = flip_dict[binary_string[i]] return ''.join(letters) @classmethod def _hamming_distance(cls, bstring_1, bstring_2): """Given two strings of equal length, composed of only 0s and 1s, computes the Hamming Distance between them: the number of places at which they differ.""" for pair in zip(bstring_1, bstring_2): if not set(pair).issubset(set(['0', '1'])): raise ValueError( """Input strings contain characters other than '0' and '1'.""") if len(bstring_1) != len(bstring_2): raise ValueError("""Lengths of input strings disagree.""") else: total = 0 for i in range(len(bstring_1)): if bstring_1[i] != bstring_2[i]: total += 1 return total def _hamming_distance_i(self, chamber_id, i): """Given a chamber_id 'chamber_id' and an integer 0 <= i <= self.rank - 1, returns the alphabetically sorted list of all chamber_ids having Hamming Distance equal to i from 'chamber_id'.""" for letter in chamber_id: if letter not in ['0', '1']: raise ValueError( """Input string contains characters other than '0' and '1'.""") if i < 0 or i > self.num_normal_vectors - 1: raise ValueError( """Argument 'i' outside range 0 <= i <= len(binary_string) - 1.""") if len(chamber_id) != self.num_normal_vectors: raise ValueError("""len(chamber_id) != self.num_normal_vectors.""") else: result = [] cids = self._all_binary_strings() for cid in cids: if self._hamming_distance(chamber_id, cid) == i: result.append(cid) return result def _all_binary_strings(self): """Returns a list of all binary strings of length self.num_normal_vectors.""" n = self.num_normal_vectors strings = [np.binary_repr(i) for i in range(2**n)] return ['0' * (n - len(entry)) + entry for entry in strings] @classmethod def _random_vectors(cls, num, rank): """This class method return a list of length 'num' or vectors (numpy arrays) of rank 'rank'. Both arguments are assumed to be positive integers.""" vec_list = [ np.array([rd.random() - 0.5 for i in range(rank)]) for j in range(num)] return vec_list def label_chamber(self, chamber_id, label): """Appends the string 'label' to the set with key 'chamber_id' in self.kvstore, if such exists. If not, then a new singleton set {'label'} is created in self.kvstore with key 'chamber_id'. The method is idempotent.""" full_chamber_id = CHAMBER_ID % (self.name, chamber_id) full_label_id = FVECTOR_ID % label self.kvstore.add_to_set(full_chamber_id, full_label_id) def bulk_label_chamber(self, chamber_ids, labels): """The arguments 'chamber_ids' and 'labels' must be lists of strings of equal length, else ValueError is raised. This method produces the same result as calling self.label_chamber(ch_id, label) for all pairs (ch_id, label) in chamber_ids x labels, but may be faster if self.kvstore is an instance of class DynamoDBAdapter.""" chamber_ids = [CHAMBER_ID % (self.name, chamber_id) for chamber_id in chamber_ids] labels = [FVECTOR_ID % label for label in labels] self.kvstore.bulk_add_to_set(chamber_ids, labels) def unlabel_chamber(self, chamber_id, label): """Removes 'label' from the set corresponding to 'chamber_id'. Raises KeyError if 'label' is not an element of the corresponding set.""" full_chamber_id = CHAMBER_ID % (self.name, chamber_id) full_label_id = FVECTOR_ID % label self.kvstore.remove_from_set(full_chamber_id, full_label_id) def chamber_labels(self, chamber_id): """Returns the set of labels corresponding to key chamber_id. Returns empty set if chamber_id is unknown.""" try: full_chamber_id = CHAMBER_ID % (self.name, chamber_id) result = set([FVEC_ID_EX.findall(entry)[0] for entry in self.kvstore.get_set( full_chamber_id) if len(FVEC_ID_EX.findall(entry)) > 0]) return result except KeyError: return set() def get_chamber_id(self, vector): """Returns the chamber_id of the chamber to which vector belongs. Throws a ValueError if rank(vector) differs from the ranks of the normal vectors. The binary digits of the chamber_id for vectors are computed in the order given by the output of the get_normal_vectors() method.""" if len(vector) != self.rank: raise ValueError("""len(vector) != self.rank""") else: PMZO = {1: 1, -1: 0} signs = [int(np.sign(np.dot(vector, nvec))) for nvec in self.normal_vectors] chamber_id = ''.join([str(PMZO[entry]) for entry in signs]) return chamber_id def get_chamber_ids(self): """Returns the set of all chamber ids.""" chamber_id_prefix = 'chamber_%s' % self.name chamber_id_ex = re.compile(r'%s_([\S]*)' % chamber_id_prefix) chamber_ids = [''.join(chamber_id_ex.findall(entry)) for entry in self.kvstore.get_set_ids()] return set([entry for entry in chamber_ids if len(entry) > 0]) def adjacent_chamber_ids(self, chamber_id): """Returns the set of ids of all chambers directly adjacent to the chamber corresponding to 'chamber_id'.""" results = set([chamber_id]) for i in range(len(chamber_id)): results.add(self._flip_digit(chamber_id, i)) results = sorted(results) return results def proximal_chamber_ids(self, chamber_id, num_labels): """This method returns the smallest list of chamber ids proximal to the string 'chamber_id', such that the union of the corresponding chambers contains at least 'num_labels' labels, assumed to be a positive integer. The list is sorted by ascending distance. NOTE: A set S of chambers is _proximal_ to a given chamber C if (i) C is in S, and (ii) D in S implies all chambers nearer to C than D are also in S. Here, the distance between two chambers is given by the alphabetical distance of their ids.""" total = 0 pids = [] for i in range(self.num_normal_vectors): if total >= num_labels: break hdi = self._hamming_distance_i(chamber_id, i) for j in range(len(hdi)): if total >= num_labels: break next_id = hdi[j] total += len(self.chamber_labels(next_id)) pids.append(next_id) if total >= num_labels: break return pids def proximal_chamber_labels(self, chamber_id, num_labels): """Finds the smallest set of proximal chambers containing at least 'num_labels' labels, assumed to be a positive integer, and returns the set of all labels from this.""" pcids = self.proximal_chamber_ids(chamber_id, num_labels) labels_list = [self.chamber_labels(cid) for cid in pcids] labels = reduce(lambda x, y: x.union(y), labels_list) return labels def get_normal_vectors(self): """Returns the list of normal vectors.""" return self.normal_vectors
[ "re.compile", "numpy.binary_repr", "numpy.dot", "sympy.binomial_coefficients_list", "random.random" ]
[((270, 307), 're.compile', 're.compile', (['"""feature_vector_([\\\\S]*)"""'], {}), "('feature_vector_([\\\\S]*)')\n", (280, 307), False, 'import re\n'), ((1551, 1583), 'sympy.binomial_coefficients_list', 'sp.binomial_coefficients_list', (['n'], {}), '(n)\n', (1580, 1583), True, 'import sympy as sp\n'), ((7996, 8041), 're.compile', 're.compile', (["('%s_([\\\\S]*)' % chamber_id_prefix)"], {}), "('%s_([\\\\S]*)' % chamber_id_prefix)\n", (8006, 8041), False, 'import re\n'), ((4648, 4665), 'numpy.binary_repr', 'np.binary_repr', (['i'], {}), '(i)\n', (4662, 4665), True, 'import numpy as np\n'), ((5031, 5042), 'random.random', 'rd.random', ([], {}), '()\n', (5040, 5042), True, 'import random as rd\n'), ((7658, 7678), 'numpy.dot', 'np.dot', (['vector', 'nvec'], {}), '(vector, nvec)\n', (7664, 7678), True, 'import numpy as np\n')]
""" Set of programs and tools to read the outputs from RH (Han's version) """ import os import sys import io import xdrlib import numpy as np class Rhout: """ Reads outputs from RH. Currently the reading the following output files is supported: - input.out - geometry.out - atmos.out - spectrum.out (no Stokes) - spectrum_XX (no Stokes, from solveray) - brs.out - J.dat - opacity.out (no Stokes) These output files are NOT supported: - Atom (atom, collrate, damping, pops, radrate) - Flux - metals - molecule Parameters ---------- fdir : str, optional Directory with output files. verbose : str, optional If True, will print more details. Notes ----- In general, the way to read all the XDR files should be: Modify read_xdr_file so that it returns only xdata. Then, on each read_xxx, read the necessary header variables, rewind (xdata.set_position(0)), then read the variables in order. This allows the flexibility of derived datatypes, and appending to dictionary (e.g. as in readatmos for all the elements and etc.). It also allows one to read directly into attribute of the class (with setattr(self,'aa',<data>)) """ def __init__(self, fdir='.', verbose=True): ''' Reads all the output data from a RH run.''' self.verbose = verbose self.fdir = fdir self.read_input('{0}/input.out'.format(fdir)) self.read_geometry('{0}/geometry.out'.format(fdir)) self.read_atmosphere('{0}/atmos.out'.format(fdir)) self.read_spectrum('{0}/spectrum.out'.format(fdir)) if os.path.isfile('{0}/spectrum_1.00'.format(fdir)): self.read_ray('{0}/spectrum_1.00'.format(fdir)) def read_input(self, infile='input.out'): ''' Reads RH input.out file. ''' data = read_xdr_file(infile) self.input = {} input_vars = [('magneto_optical', 'i'), ('PRD_angle_dep', 'i'), ('XRD', 'i'), ('start_solution', 'i'), ('stokes_mode', 'i'), ('metallicity', 'd'), ('backgr_pol', 'i'), ('big_endian', 'i')] for v in input_vars: self.input[v[0]] = read_xdr_var(data, v[1:]) close_xdr(data, infile, verbose=self.verbose) def read_geometry(self, infile='geometry.out'): ''' Reads RH geometry.out file. ''' data = read_xdr_file(infile) self.geometry = {} geom_type = ['ONE_D_PLANE', 'TWO_D_PLANE', 'SPHERICAL_SYMMETRIC', 'THREE_D_PLANE'] type = read_xdr_var(data, ('i',)) if type not in list(range(4)): raise ValueError('read_geometry: invalid geometry type {0} in {1}'. format(type, infile)) nrays = read_xdr_var(data, ('i',)) self.nrays = nrays self.geometry_type = geom_type[type] # read some parameters and define structure to be read if self.geometry_type == 'ONE_D_PLANE': ndep = read_xdr_var(data, ('i',)) self.ndep = ndep geom_vars = [('xmu', 'd', (nrays,)), ('wmu', 'd', (nrays,)), ('height', 'd', (ndep,)), ('cmass', 'd', (ndep,)), ('tau500', 'd', (ndep,)), ('vz', 'd', (ndep,))] elif self.geometry_type == 'TWO_D_PLANE': nx = read_xdr_var(data, ('i',)) nz = read_xdr_var(data, ('i',)) self.nx = nx self.nz = nz geom_vars = [('angleSet', 'i'), ('xmu', 'd', (nrays,)), ('ymu', 'd', (nrays,)), ('wmu', 'd', (nrays,)), ('x', 'd', (nx,)), ('z', 'd', (nz,)), ('vx', 'd', (nx, nz)), ('vz', 'd', (nx, nz))] elif self.geometry_type == 'THREE_D_PLANE': nx = read_xdr_var(data, ('i',)) ny = read_xdr_var(data, ('i',)) nz = read_xdr_var(data, ('i',)) self.nx = nx self.ny = ny self.nz = nz geom_vars = [('angleSet', 'i'), ('xmu', 'd', (nrays,)), ('ymu', 'd', (nrays,)), ('wmu', 'd', (nrays,)), ('dx', 'd'), ('dy', 'd'), ('z', 'd', (nz,)), ('vx', 'd', (nx, ny, nz)), ('vy', 'd', (nx, ny, nz)), ('vz', 'd', (nx, ny, nz))] elif self.geometry_type == 'SPHERICAL_SYMMETRIC': nradius = read_xdr_var(data, ('i',)) ncore = read_xdr_var(data, ('i',)) self.nradius = nradius self.ncore = ncore geom_vars = [('radius', 'd'), ('xmu', 'd', (nrays,)), ('wmu', 'd', (nrays,)), ('r', 'd', (nradius,)), ('cmass', 'd', (nradius,)), ('tau500', 'd', (nradius,)), ('vr', 'd', (nradius,))] # read data for v in geom_vars: self.geometry[v[0]] = read_xdr_var(data, v[1:]) close_xdr(data, infile, verbose=self.verbose) def read_atmosphere(self, infile='atmos.out'): ''' Reads RH atmos.out file ''' if not hasattr(self, 'geometry'): em = ('read_atmosphere: geometry data not loaded, ' 'call read_geometry() first!') raise ValueError(em) data = read_xdr_file(infile) self.atmos = {} nhydr = read_xdr_var(data, ('i',)) nelem = read_xdr_var(data, ('i',)) self.atmos['nhydr'] = nhydr self.atmos['nelem'] = nelem # read some parameters and define structure to be read if self.geometry_type == 'ONE_D_PLANE': ndep = self.ndep atmos_vars = [('moving', 'i'), ('T', 'd', (ndep,)), ('n_elec', 'd', (ndep,)), ('vturb', 'd', (ndep,)), ('nh', 'd', (ndep, nhydr)), ('id', 's')] elif self.geometry_type == 'TWO_D_PLANE': nx, nz = self.nx, self.nz atmos_vars = [('moving', 'i'), ('T', 'd', (nx, nz)), ('n_elec', 'd', (nx, nz)), ('vturb', 'd', (nx, nz)), ('nh', 'd', (nx, nz, nhydr)), ('id', 's')] elif self.geometry_type == 'THREE_D_PLANE': nx, ny, nz = self.nx, self.ny, self.nz atmos_vars = [('moving', 'i'), ('T', 'd', (nx, ny, nz)), ('n_elec', 'd', (nx, ny, nz) ), ('vturb', 'd', (nx, ny, nz)), ('nh', 'd', (nx, ny, nz, nhydr)), ('id', 's')] elif self.geometry_type == 'SPHERICAL_SYMMETRIC': nradius = self.nradius atmos_vars = [('moving', 'i'), ('T', 'd', (nradius,)), ('n_elec', 'd', (nradius,)), ('vturb', 'd', (nradius,)), ('nh', 'd', (nradius, nhydr)), ('id', 's')] # read data for v in atmos_vars: self.atmos[v[0]] = read_xdr_var(data, v[1:]) # read elements into nested dictionaries self.elements = {} for v in range(nelem): el = read_xdr_var(data, ('s',)).strip() weight = read_xdr_var(data, ('d',)) abund = read_xdr_var(data, ('d',)) self.elements[el] = {'weight': weight, 'abund': abund} # read stokes data, if present self.stokes = False if self.geometry_type != 'SPHERICAL_SYMMETRIC': try: stokes = read_xdr_var(data, ('i',)) except EOFError or IOError: if self.verbose: print('(WWW) read_atmos: no Stokes data in atmos.out,' ' skipping.') return self.stokes = True ss = self.atmos['T'].shape stokes_vars = [('B', 'd', ss), ('gamma_B', 'd', ss), ('chi_B', 'd', ss)] for v in stokes_vars: self.atmos[v[0]] = read_xdr_var(data, v[1:]) close_xdr(data, infile, verbose=self.verbose) def read_spectrum(self, infile='spectrum.out'): ''' Reads RH spectrum.out file ''' if not hasattr(self, 'geometry'): em = ('read_spectrum: geometry data not loaded, ' 'call read_geometry() first!') raise ValueError(em) if not hasattr(self, 'atmos'): em = ('read_spectrum: atmos data not loaded, ' 'call read_atmos() first!') raise ValueError(em) data = read_xdr_file(infile) profs = {} self.spec = {} nspect = read_xdr_var(data, ('i',)) self.spec['nspect'] = nspect nrays = self.nrays self.wave = read_xdr_var(data, ('d', (nspect,))) if self.geometry_type == 'ONE_D_PLANE': ishape = (nrays, nspect) elif self.geometry_type == 'TWO_D_PLANE': ishape = (self.nx, nrays, nspect) elif self.geometry_type == 'THREE_D_PLANE': ishape = (self.nx, self.ny, nrays, nspect) elif self.geometry_type == 'SPHERICAL_SYMMETRIC': ishape = (nrays, nspect) self.imu = read_xdr_var(data, ('d', ishape)) self.spec['vacuum_to_air'] = read_xdr_var(data, ('i',)) self.spec['air_limit'] = read_xdr_var(data, ('d',)) if self.stokes: self.stokes_Q = read_xdr_var(data, ('d', ishape)) self.stokes_U = read_xdr_var(data, ('d', ishape)) self.stokes_V = read_xdr_var(data, ('d', ishape)) close_xdr(data, infile, verbose=self.verbose) # read as_rn, if it exists if os.path.isfile('asrs.out'): data = read_xdr_file('asrs.out') if self.atmos['moving'] or self.stokes or self.input['PRD_angle_dep']: self.spec['as_rn'] = read_xdr_var(data, ('i', (nrays, nspect))) else: self.spec['as_rn'] = read_xdr_var(data, ('i', (nspect,))) close_xdr(data, 'asrs.out', verbose=self.verbose) def read_ray(self, infile='spectrum_1.00'): ''' Reads spectra for single ray files (e.g. mu=1). ''' if not hasattr(self, 'geometry'): em = ('read_spectrum: geometry data not loaded,' ' call read_geometry() first!') raise ValueError(em) if not hasattr(self, 'spec'): em = ('read_spectrum: spectral data not loaded, ' 'call read_spectrum() first!') raise ValueError(em) data = read_xdr_file(infile) nspect = self.spec['nspect'] self.ray = {} if self.geometry_type == 'ONE_D_PLANE': self.muz = read_xdr_var(data, ('d',)) ishape = (nspect,) sshape = (self.ndep,) elif self.geometry_type == 'TWO_D_PLANE': self.mux = read_xdr_var(data, ('d',)) self.muz = read_xdr_var(data, ('d',)) ishape = (self.nx, nspect) sshape = (self.nx, self.nz) elif self.geometry_type == 'THREE_D_PLANE': self.mux = read_xdr_var(data, ('d',)) self.muy = read_xdr_var(data, ('d',)) ishape = (self.nx, self.ny, nspect) sshape = (self.nx, self.ny, self.nz) elif self.geometry_type == 'SPHERICAL_SYMMETRIC': self.muz = read_xdr_var(data, ('d',)) ishape = (nspect,) sshape = (self.nradius,) # read intensity self.int = read_xdr_var(data, ('d', ishape)) # read absorption and source function if written ns = read_xdr_var(data, ('i',)) if ns > 0: nshape = (ns,) + sshape self.ray['chi'] = np.zeros(nshape, dtype='d') self.ray['S'] = np.zeros(nshape, dtype='d') self.ray['wave_idx'] = np.zeros(ns, dtype='l') for i in range(ns): self.ray['wave_idx'][i] = read_xdr_var(data, ('i',)) self.ray['chi'][i] = read_xdr_var(data, ('d', sshape)) self.ray['S'][i] = read_xdr_var(data, ('d', sshape)) if self.stokes: self.ray_stokes_Q = read_xdr_var(data, ('d', ishape)) self.ray_stokes_U = read_xdr_var(data, ('d', ishape)) self.ray_stokes_V = read_xdr_var(data, ('d', ishape)) close_xdr(data, infile, verbose=self.verbose) def read_brs(self, infile='brs.out'): ''' Reads the file with the background opacity record settings, in the old (xdr) format. ''' if not hasattr(self, 'geometry'): em = ('read_brs: geometry data not loaded, call read_geometry()' ' first!') raise ValueError(em) if not hasattr(self, 'spec'): em = ('read_brs: spectrum data not loaded, call read_spectrum()' ' first!') raise ValueError(em) data = read_xdr_file(infile) atmosID = read_xdr_var(data, ('s',)).strip() nspace = read_xdr_var(data, ('i',)) nspect = read_xdr_var(data, ('i',)) if nspect != self.spec['nspect']: em = ('(EEE) read_brs: nspect in file different from atmos. ' 'Aborting.') raise ValueError(em) self.brs = {} if self.atmos['moving'] or self.stokes: ishape = (2, self.nrays, nspect) else: ishape = (nspect,) self.brs['hasline'] = read_xdr_var( data, ('i', (nspect,))).astype('Bool') self.brs['ispolarized'] = read_xdr_var( data, ('i', (nspect,))).astype('Bool') self.brs['backgrrecno'] = read_xdr_var(data, ('i', ishape)) close_xdr(data, infile, verbose=self.verbose) def read_j(self, infile='J.dat'): ''' Reads the mean radiation field, for all wavelengths. ''' if not hasattr(self, 'geometry'): em = 'read_j: geometry data not loaded, call read_geometry() first!' raise ValueError(em) if not hasattr(self, 'spec'): em = 'read_j: spectrum data not loaded, call read_spec() first!' raise ValueError(em) data_file = open(infile, 'r') nspect = self.spec['nspect'] if self.geometry_type == 'ONE_D_PLANE': rec_len = self.ndep * 8 ishape = (nspect, self.ndep) elif self.geometry_type == 'TWO_D_PLANE': rec_len = (self.nx * self.nz) * 8 ishape = (nspect, self.nx, self.nz) elif self.geometry_type == 'THREE_D_PLANE': rec_len = (self.nx * self.ny * self.nz) * 8 ishape = (nspect, self.nx, self.ny, self.nz) elif self.geometry_type == 'SPHERICAL_SYMMETRIC': rec_len = self.nradius * 8 ishape = (nspect, self.nradius) self.J = np.zeros(ishape) for i in range(nspect): # point background file to position and read data_file.seek(i * rec_len) self.J[i] = read_file_var(data_file, ('d', ishape[1:])) data_file.close() def read_opacity(self, infile_line='opacity.out', infile_bg='background.dat', imu=0): ''' Reads RH atmos.out file ''' if not hasattr(self, 'geometry'): em = ('read_opacity: geometry data not loaded,' ' call read_geometry() first!') raise ValueError(em) if not hasattr(self, 'spec'): em = ('read_opacity: spectrum data not loaded,' ' call read_spec() first!') raise ValueError(em) if not hasattr(self.atmos, 'brs'): self.read_brs() data_line = read_xdr_file(infile_line) file_bg = open(infile_bg, 'r') nspect = self.spec['nspect'] if self.geometry_type == 'ONE_D_PLANE': as_rec_len = 2 * self.ndep * 8 bg_rec_len = self.ndep * 8 ishape = (nspect, self.ndep) elif self.geometry_type == 'TWO_D_PLANE': as_rec_len = 2 * (self.nx * self.nz) * 8 bg_rec_len = (self.nx * self.nz) * 8 ishape = (nspect, self.nx, self.nz) elif self.geometry_type == 'THREE_D_PLANE': as_rec_len = 2 * (self.nx * self.ny * self.nz) * 8 bg_rec_len = (self.nx * self.ny * self.nz) * 8 ishape = (nspect, self.nx, self.ny, self.nz) elif self.geometry_type == 'SPHERICAL_SYMMETRIC': as_rec_len = 2 * self.nradius * 8 bg_rec_len = self.nradius * 8 ishape = (nspect, self.nradius) # create arrays chi_as = np.zeros(ishape) eta_as = np.zeros(ishape) chi_c = np.zeros(ishape) eta_c = np.zeros(ishape) scatt = np.zeros(ishape) # NOTE: this will not work when a line is polarised. # For those cases these arrays must be read per wavelength, and will # have different sizes for different wavelengths. if np.sum(self.brs['ispolarized']): em = ('read_opacity: Polarized line(s) detected, cannot continue' ' with opacity extraction') raise ValueError(em) # get record numbers if self.atmos['moving'] or self.stokes or self.input['PRD_angle_dep']: as_index = self.spec['as_rn'][imu] * as_rec_len bg_index = self.brs['backgrrecno'][1, imu] * bg_rec_len else: as_index = self.spec['as_rn'] * as_rec_len bg_index = self.brs['backgrrecno'] * bg_rec_len # Read arrays for i in range(nspect): if as_index[i] >= 0: # avoid non-active set lines # point xdr buffer to position and read data_line.set_position(as_index[i]) chi_as[i] = read_xdr_var(data_line, ('d', ishape[1:])) eta_as[i] = read_xdr_var(data_line, ('d', ishape[1:])) # point background file to position and read file_bg.seek(bg_index[i]) chi_c[i] = read_file_var(file_bg, ('d', ishape[1:])) eta_c[i] = read_file_var(file_bg, ('d', ishape[1:])) scatt[i] = read_file_var(file_bg, ('d', ishape[1:])) self.chi_as = chi_as self.eta_as = eta_as self.chi_c = chi_c self.eta_c = eta_c self.scatt = scatt close_xdr(data_line, infile_line, verbose=False) file_bg.close() def get_contrib_imu(self, imu, type='total', op_file='opacity.out', bg_file='background.dat', j_file='J.dat'): ''' Calculates the contribution function for intensity, for a particular ray, defined by imu. type can be: \'total\', \'line, or \'continuum\' The units of self.contribi are J m^-2 s^-1 Hz^-1 sr^-1 km^-1 NOTE: This only calculates the contribution function for the quadrature rays (ie, often not for disk-centre) For rays calculated with solve ray, one must use get_contrib_ray ''' type = type.lower() if not hasattr(self, 'geometry'): em = ('get_contrib_imu: geometry data not loaded,' ' call read_geometry() first!') raise ValueError(em) if not hasattr(self, 'spec'): em = ('get_contrib_imu: spectrum data not loaded,' ' call read_spec() first!') raise ValueError(em) self.read_opacity(infile_line=op_file, infile_bg=bg_file, imu=imu) self.read_j(infile=j_file) mu = self.geometry['xmu'][imu] # Calculate optical depth ab = (self.chi_c + self.chi_as) self.tau = get_tau(self.geometry['height'], mu, ab) # Calculate source function if type == 'total': self.S = (self.eta_as + self.eta_c + self.J * self.scatt) / ab elif type == 'line': self.S = self.eta_as / ab elif type == 'continuum': self.S = (self.eta_c + self.J * self.scatt) / ab else: raise ValueError('get_contrib_imu: invalid type!') # Calculate contribution function self.contribi = get_contrib( self.geometry['height'], mu, self.tau, self.S) return def get_contrib_ray(self, inray='ray.input', rayfile='spectrum_1.00'): ''' Calculates the contribution function for intensity, for a particular ray The units of self.contrib are J m^-2 s^-1 Hz^-1 sr^-1 km^-1 ''' inray = self.fdir + '/' + inray rayfile = self.fdir + '/' + rayfile if not hasattr(self, 'ray'): self.read_ray(infile=rayfile) if 'wave_idx' not in list(self.ray.keys()): em = ('get_contrib_ray: no chi/source function written to ' 'ray file, aborting.') raise ValueError(em) # read mu from ray.input file mu = np.loadtxt(inray, dtype='f')[0] if not (0 <= mu <= 1.): em = 'get_contrib_ray: invalid mu read: %f' % mu raise ValueError(em) idx = self.ray['wave_idx'] # Calculate optical depth self.tau = get_tau(self.geometry['height'], mu, self.ray['chi']) # Calculate contribution function self.contrib = get_contrib(self.geometry['height'], mu, self.tau, self.ray['S']) return class RhAtmos: """ Reads input atmosphere from RH. Currently only 2D format supported. Parameters ---------- format : str, optional Atmosphere format. Currently only '2D' (default) supported. filename : str, optional File to read. verbose : str, optional If True, will print more details. """ def __init__(self, format="2D", filename=None, verbose=True): ''' Reads RH input atmospheres. ''' self.verbose = verbose if format.lower() == "2d": if filename is not None: self.read_atmos2d(filename) else: raise NotImplementedError("Format %s not yet supported" % format) def read_atmos2d(self, filename): """ Reads input 2D atmosphere """ data = read_xdr_file(filename) self.nx = read_xdr_var(data, ('i',)) self.nz = read_xdr_var(data, ('i',)) self.nhydr = read_xdr_var(data, ('i',)) self.hboundary = read_xdr_var(data, ('i',)) self.bvalue = read_xdr_var(data, ('i', (2, ))) nx, nz, nhydr = self.nx, self.nz, self.nhydr atmos_vars = [('dx', 'd', (nx,)), ('z', 'd', (nz,)), ('T', 'd', (nx, nz)), ('ne', 'd', (nx, nz)), ('vturb', 'd', (nx, nz)), ('vx', 'd', (nx, nz)), ('vz', 'd', (nx, nz)), ('nh', 'd', (nx, nz, nhydr)) ] for v in atmos_vars: setattr(self, v[0], read_xdr_var(data, v[1:])) def write_atmos2d(self, filename, dx, z, T, ne, vturb, vx, vz, nh, hboundary, bvalue): nx, nz = T.shape nhydr = nh.shape[-1] assert T.shape == ne.shape assert ne.shape == vturb.shape assert vturb.shape == nh.shape[:-1] assert dx.shape[0] == nx assert z.shape[0] == nz # Pack as double p = xdrlib.Packer() p.pack_int(nx) p.pack_int(nz) p.pack_int(nhydr) p.pack_int(hboundary) p.pack_int(bvalue[0]) p.pack_int(bvalue[1]) p.pack_farray(nx, dx.ravel().astype('d'), p.pack_double) p.pack_farray(nz, z.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz, T.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz, ne.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz, vturb.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz, vx.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz, vz.ravel().astype('d'), p.pack_double) p.pack_farray(nx * nz * nhydr, nh.T.ravel().astype('d'), p.pack_double) # Write to file f = open(filename, 'wb') f.write(p.get_buffer()) f.close() ############################################################################# # TOOLS ############################################################################# class EmptyData: def __init__(self): pass def read_xdr_file(filename): # ,var,cl=None,verbose=False): """ Reads data from XDR file. Because of the way xdrlib works, this reads the whole file to memory at once. Avoid with very large files. Parameters ---------- filename : string File to read. Returns ------- result : xdrlib.Unpacker object """ try: f = io.open(filename, 'rb') data = f.read() f.close() except IOError as e: raise IOError( 'read_xdr_file: problem reading {0}: {1}'.format(filename, e)) # return XDR data return xdrlib.Unpacker(data) def close_xdr(buf, ofile='', verbose=False): """ Closes the xdrlib.Unpacker object, gives warning if not all data read. Parameters ---------- buf : xdrlib.Unpacker object data object. ofile : string, optional Original file from which data was read. verbose : bool, optional Whether to print warning or not. """ try: buf.done() except: # .done() will raise error if data remaining if verbose: print(('(WWW) close_xdr: {0} not all data read!'.format(ofile))) def read_xdr_var(buf, var): """ Reads a single variable/array from a xdrlib.Unpack buffer. Parameters ---------- buf: xdrlib.Unpack object Data buffer. var: tuple with (type[,shape]), where type is 'f', 'd', 'i', 'ui', or 's'. Shape is optional, and if true is shape of array. Type and shape of variable to read Returns ------- out : int/float or array Resulting variable. """ assert len(var) > 0 if var[0] not in ['f', 'd', 'i', 'ui', 's']: raise ValueError('read_xdr_var: data type' ' {0} not currently supported'.format(var[0])) fdict = {'f': buf.unpack_float, 'd': buf.unpack_double, 'i': buf.unpack_int, 'ui': buf.unpack_uint, 's': buf.unpack_string} func = fdict[var[0]] # Single or array? if len(var) == 1: # this is because RH seems to write the size of the string twice if var[0] == 's': buf.unpack_int() out = func() else: nitems = np.prod(var[1]) out = np.array(buf.unpack_farray(nitems, func)).reshape(var[1][::-1]) # invert order of indices, to match IDL's out = np.transpose(out, list(range(len(var[1])))[::-1]) return out def read_file_var(buf, var): ''' Reads a single variable/array from a file buffer. IN: buf: open file object var: tuple with (type[,shape]), where type is 'f', 'd', 'i', 'ui', or 's'. Shape is optional, and if true is shape of array. OUT: variable/array ''' assert len(var) > 0 if len(var) == 1: out = np.fromfile(buf, dtype=var, count=1) elif len(var) == 2: out = np.fromfile(buf, dtype=var[0], count=var[1][0]) else: nitems = np.prod(var[1]) out = np.array(np.fromfile(buf, dtype=var[0], count=nitems)).\ reshape(var[1][::-1]) out = np.transpose(out, list(range(len(var[1])))[::-1]) return out def get_tau(x, mu, chi): ''' Calculates the optical depth, given x (height), mu (cos[theta]) and chi, absorption coefficient. Chi can be n-dimensional, as long as last index is depth. ''' # With scipy, this could be done in one line with # scipy.integrate.quadrature.cumtrapz, but we are avoiding scipy to keep # these tools more independent if len(x) != chi.shape[-1]: raise ValueError('get_tau: x and chi have different sizes!') path = x / mu npts = len(x) # bring depth to first index, to allow n-d algebra chi_t = np.transpose(chi) tau = np.zeros(chi_t.shape) for i in range(1, npts): tau[i] = tau[i - 1] + 0.5 * \ (chi_t[i - 1] + chi_t[i]) * (path[i - 1] - path[i]) return tau.T def get_contrib(z, mu, tau_in, S): ''' Calculates contribution function using x, mu, tau, and the source function. ''' # Tau truncated at 100 (large enough to be useless) tau = tau_in.copy() tau[tau_in > 100.] = 100. # Calculate dtau (transpose to keep n-D generic form), and dx dtau = np.zeros(tau_in.shape[::-1]) tt = np.transpose(tau_in) dtau[1:] = tt[1:] - tt[:-1] dtau = np.transpose(dtau) dx = np.zeros(z.shape) dx[1:] = (z[1:] - z[:-1]) / mu dx[0] = dx[1] # Calculate contribution function contrib = S * np.exp(-tau) * (- dtau / dx) / mu # convert from m^-1 to km^-1, units are now: J m^-2 s^-1 Hz^-1 sr^-1 km^-1 contrib *= 1.e3 return contrib def write_B(outfile, Bx, By, Bz): ''' Writes a RH magnetic field file. Input B arrays can be any rank, as they will be flattened before write. Bx, By, Bz units should be T.''' if (Bx.shape != By.shape) or (By.shape != Bz.shape): raise TypeError('writeB: B arrays have different shapes!') n = np.prod(Bx.shape) # Convert into spherical coordinates B = np.sqrt(Bx**2 + By**2 + Bz**2) gamma_B = np.arccos(Bz / B) chi_B = np.arctan(By / Bx) # Pack as double p = xdrlib.Packer() p.pack_farray(n, B.ravel().astype('d'), p.pack_double) p.pack_farray(n, gamma_B.ravel().astype('d'), p.pack_double) p.pack_farray(n, chi_B.ravel().astype('d'), p.pack_double) # Write to file f = open(outfile, 'wb') f.write(p.get_buffer()) f.close() return
[ "xdrlib.Unpacker", "numpy.prod", "numpy.fromfile", "numpy.sqrt", "numpy.arccos", "io.open", "os.path.isfile", "xdrlib.Packer", "numpy.zeros", "numpy.sum", "numpy.exp", "numpy.loadtxt", "numpy.transpose", "numpy.arctan" ]
[((24930, 24951), 'xdrlib.Unpacker', 'xdrlib.Unpacker', (['data'], {}), '(data)\n', (24945, 24951), False, 'import xdrlib\n'), ((28119, 28136), 'numpy.transpose', 'np.transpose', (['chi'], {}), '(chi)\n', (28131, 28136), True, 'import numpy as np\n'), ((28147, 28168), 'numpy.zeros', 'np.zeros', (['chi_t.shape'], {}), '(chi_t.shape)\n', (28155, 28168), True, 'import numpy as np\n'), ((28637, 28665), 'numpy.zeros', 'np.zeros', (['tau_in.shape[::-1]'], {}), '(tau_in.shape[::-1])\n', (28645, 28665), True, 'import numpy as np\n'), ((28675, 28695), 'numpy.transpose', 'np.transpose', (['tau_in'], {}), '(tau_in)\n', (28687, 28695), True, 'import numpy as np\n'), ((28739, 28757), 'numpy.transpose', 'np.transpose', (['dtau'], {}), '(dtau)\n', (28751, 28757), True, 'import numpy as np\n'), ((28767, 28784), 'numpy.zeros', 'np.zeros', (['z.shape'], {}), '(z.shape)\n', (28775, 28784), True, 'import numpy as np\n'), ((29368, 29385), 'numpy.prod', 'np.prod', (['Bx.shape'], {}), '(Bx.shape)\n', (29375, 29385), True, 'import numpy as np\n'), ((29435, 29471), 'numpy.sqrt', 'np.sqrt', (['(Bx ** 2 + By ** 2 + Bz ** 2)'], {}), '(Bx ** 2 + By ** 2 + Bz ** 2)\n', (29442, 29471), True, 'import numpy as np\n'), ((29480, 29497), 'numpy.arccos', 'np.arccos', (['(Bz / B)'], {}), '(Bz / B)\n', (29489, 29497), True, 'import numpy as np\n'), ((29510, 29528), 'numpy.arctan', 'np.arctan', (['(By / Bx)'], {}), '(By / Bx)\n', (29519, 29528), True, 'import numpy as np\n'), ((29558, 29573), 'xdrlib.Packer', 'xdrlib.Packer', ([], {}), '()\n', (29571, 29573), False, 'import xdrlib\n'), ((9632, 9658), 'os.path.isfile', 'os.path.isfile', (['"""asrs.out"""'], {}), "('asrs.out')\n", (9646, 9658), False, 'import os\n'), ((14763, 14779), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (14771, 14779), True, 'import numpy as np\n'), ((16544, 16560), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (16552, 16560), True, 'import numpy as np\n'), ((16578, 16594), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (16586, 16594), True, 'import numpy as np\n'), ((16611, 16627), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (16619, 16627), True, 'import numpy as np\n'), ((16644, 16660), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (16652, 16660), True, 'import numpy as np\n'), ((16677, 16693), 'numpy.zeros', 'np.zeros', (['ishape'], {}), '(ishape)\n', (16685, 16693), True, 'import numpy as np\n'), ((16913, 16944), 'numpy.sum', 'np.sum', (["self.brs['ispolarized']"], {}), "(self.brs['ispolarized'])\n", (16919, 16944), True, 'import numpy as np\n'), ((23258, 23273), 'xdrlib.Packer', 'xdrlib.Packer', ([], {}), '()\n', (23271, 23273), False, 'import xdrlib\n'), ((24708, 24731), 'io.open', 'io.open', (['filename', '"""rb"""'], {}), "(filename, 'rb')\n", (24715, 24731), False, 'import io\n'), ((26588, 26603), 'numpy.prod', 'np.prod', (['var[1]'], {}), '(var[1])\n', (26595, 26603), True, 'import numpy as np\n'), ((27185, 27221), 'numpy.fromfile', 'np.fromfile', (['buf'], {'dtype': 'var', 'count': '(1)'}), '(buf, dtype=var, count=1)\n', (27196, 27221), True, 'import numpy as np\n'), ((11676, 11703), 'numpy.zeros', 'np.zeros', (['nshape'], {'dtype': '"""d"""'}), "(nshape, dtype='d')\n", (11684, 11703), True, 'import numpy as np\n'), ((11732, 11759), 'numpy.zeros', 'np.zeros', (['nshape'], {'dtype': '"""d"""'}), "(nshape, dtype='d')\n", (11740, 11759), True, 'import numpy as np\n'), ((11795, 11818), 'numpy.zeros', 'np.zeros', (['ns'], {'dtype': '"""l"""'}), "(ns, dtype='l')\n", (11803, 11818), True, 'import numpy as np\n'), ((20869, 20897), 'numpy.loadtxt', 'np.loadtxt', (['inray'], {'dtype': '"""f"""'}), "(inray, dtype='f')\n", (20879, 20897), True, 'import numpy as np\n'), ((27260, 27307), 'numpy.fromfile', 'np.fromfile', (['buf'], {'dtype': 'var[0]', 'count': 'var[1][0]'}), '(buf, dtype=var[0], count=var[1][0])\n', (27271, 27307), True, 'import numpy as np\n'), ((27335, 27350), 'numpy.prod', 'np.prod', (['var[1]'], {}), '(var[1])\n', (27342, 27350), True, 'import numpy as np\n'), ((28894, 28906), 'numpy.exp', 'np.exp', (['(-tau)'], {}), '(-tau)\n', (28900, 28906), True, 'import numpy as np\n'), ((27374, 27418), 'numpy.fromfile', 'np.fromfile', (['buf'], {'dtype': 'var[0]', 'count': 'nitems'}), '(buf, dtype=var[0], count=nitems)\n', (27385, 27418), True, 'import numpy as np\n')]
import logging, tqdm import numpy as np import rawpy import colour_demosaicing as cd import HDRutils.io as io from HDRutils.utils import * logger = logging.getLogger(__name__) def merge(files, do_align=False, demosaic_first=True, normalize=False, color_space='sRGB', wb=None, saturation_percent=0.98, black_level=0, bayer_pattern='RGGB', exp=None, gain=None, aperture=None, estimate_exp='gfxdisp', cam='default', perc=10, outlier='cerman'): """ Merge multiple SDR images into a single HDR image after demosacing. This is a wrapper function that extracts metadata and calls the appropriate function. :files: Filenames containing the inpt images :do_align: Align by estimation homography :demosaic_first: Order of operations :color_space: Output color-space. Pick 1 of [sRGB, raw, Adobe, XYZ] :normalize: Output pixels lie between 0 and 1 :wb: White-balance values after merging. Pick from [None, camera] or supply 3 values. :saturation_percent: Saturation offset from reported white-point :black_level: Camera's black level :bayer_patter: Color filter array pattern of the camera :exp: Exposure time (in seconds) required when metadata is not present :gain: Camera gain (ISO/100) required when metadata is not present :aperture: Aperture required when metadata is not present :estimate_exp: Estimate exposure times by solving a system. Pick 1 of ['gfxdisp','cerman'] :cam: Camera noise model for exposure estimation :perc: Estimate exposures using min-variance rows :outlier: Iterative outlier removal. Pick 1 of [None, 'cerman', 'ransac'] :return: Merged FP32 HDR image """ data = get_metadata(files, color_space, saturation_percent, black_level, exp, gain, aperture) if estimate_exp: # TODO: Handle imamge stacks with varying gain and aperture assert len(set(data['gain'])) == 1 and len(set(data['aperture'])) == 1 if do_align: # TODO: Perform exposure alignment after homography (adds additional overhead since # images need to be demosaiced) logger.warning('Exposure alignment is done before homography, may cause it to fail') Y = np.array([io.imread(f, libraw=False) for f in files], dtype=np.float32) exif_exp = data['exp'] estimate = np.ones(data['N'], dtype=bool) for i in range(data['N']): # Skip images where > 90% of the pixels are saturated if (Y[i] >= data['saturation_point']).sum() > 0.9*Y[i].size: logger.warning(f'Skipping exposure estimation for file {files[i]} due to saturation') estimate[i] = False data['exp'][estimate] = estimate_exposures(Y[estimate], data['exp'][estimate], data, estimate_exp, cam=cam, outlier=outlier) if demosaic_first: HDR, num_sat = imread_demosaic_merge(files, data, do_align, saturation_percent) else: HDR, num_sat = imread_merge_demosaic(files, data, do_align, bayer_pattern) if num_sat > 0: logger.warning(f'{num_sat/(data["h"]*data["w"]):.3f}% of pixels (n={num_sat}) are ' \ 'saturated in the shortest exposure. The values for these pixels will ' \ 'be inaccurate.') if wb == 'camera': wb = data['white_balance'][:3] if wb is not None: assert len(wb) == 3, 'Provide list [R G B] corresponding to white patch in the image' HDR = HDR * np.array(wb)[None,None,:] if HDR.min() < 0: logger.info('Clipping negative pixels.') HDR[HDR < 0] = 0 if normalize: HDR = HDR / HDR.max() return HDR.astype(np.float32) def imread_demosaic_merge(files, metadata, do_align, sat_percent): """ First postprocess using libraw and then merge RGB images. This function merges in an online way and can handle a large number of inputs with little memory. """ assert metadata['raw_format'], 'Libraw unsupported, use merge(..., demosaic_first=False)' logger.info('Demosaicing before merging.') # Check for saturation in shortest exposure shortest_exposure = np.argmin(metadata['exp'] * metadata['gain'] * metadata['aperture']) logger.info(f'Shortest exposure is {shortest_exposure}') if do_align: ref_idx = np.argsort(metadata['exp'] * metadata['gain'] * metadata['aperture'])[len(files)//2] ref_img = io.imread(files[ref_idx]) / metadata['exp'][ref_idx] \ / metadata['gain'][ref_idx] \ / metadata['aperture'][ref_idx] num_saturated = 0 num, denom = np.zeros((2, metadata['h'], metadata['w'], 3)) for i, f in enumerate(tqdm.tqdm(files, leave=False)): raw = rawpy.imread(f) img = io.imread_libraw(raw, color_space=metadata['color_space']) saturation_point_img = sat_percent * (2**(8*img.dtype.itemsize) - 1) if do_align and i != ref_idx: scaled_img = img / metadata['exp'][i] \ / metadata['gain'][i] \ / metadata['aperture'][i] img = align(ref_img, scaled_img, img) # Ignore saturated pixels in all but shortest exposure if i == shortest_exposure: unsaturated = np.ones_like(img, dtype=bool) num_sat = np.count_nonzero(np.logical_not( get_unsaturated(raw.raw_image_visible, metadata['saturation_point'], img, saturation_point_img))) / 3 else: unsaturated = get_unsaturated(raw.raw_image_visible, metadata['saturation_point'], img, saturation_point_img) X_times_t = img / metadata['gain'][i] / metadata['aperture'][i] denom[unsaturated] += metadata['exp'][i] num[unsaturated] += X_times_t[unsaturated] HDR = num / denom return HDR, num_sat def imread_merge_demosaic(files, metadata, do_align, pattern): """ Merge RAW images before demosaicing. This function merges in an online way and can handle a large number of inputs with little memory. """ if do_align: ref_idx = np.argsort(metadata['exp'] * metadata['gain'] * metadata['aperture'])[len(files)//2] ref_img = io.imread(files[ref_idx]).astype(np.float32) if metadata['raw_format']: ref_img = cd.demosaicing_CFA_Bayer_bilinear(ref_img, pattern=pattern) ref_img = ref_img / metadata['exp'][ref_idx] \ / metadata['gain'][ref_idx] \ / metadata['aperture'][ref_idx] logger.info('Merging before demosaicing.') # More transforms available here: # http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html if metadata['color_space'] == 'raw': color_mat = np.eye(3) else: assert metadata['raw_format'], \ 'Only RAW color_space supported. Use merge(..., color_space=\'raw\')' raw = rawpy.imread(files[0]) assert (raw.rgb_xyz_matrix[-1] == 0).all() native2xyz = np.linalg.inv(raw.rgb_xyz_matrix[:-1]) if metadata['color_space'] == 'xyz': xyz2out = np.eye(3) elif metadata['color_space'] == 'srgb': xyz2out = np.array([[3.2406, -1.5372, -0.4986], [-0.9689, 1.8758, 0.0415], [0.0557, -0.2040, 1.0570]]) elif metadata['color_space'] == 'adobe': xyz2out = np.array([[2.0413690, -0.5649464, -0.3446944], [-0.9692660, 1.8760108, 0.0415560], [0.0134474, -0.1183897, 1.0154096]]) else: logger.warning('Unsupported color-space, switching to camara raw.') native2xyz = np.eye(3) xyz2out = np.eye(3) color_mat = (xyz2out @ native2xyz).transpose() # Check for saturation in shortest exposure shortest_exposure = np.argmin(metadata['exp'] * metadata['gain'] * metadata['aperture']) logger.info(f'Shortest exposure is {shortest_exposure}') num_saturated = 0 num, denom = np.zeros((2, metadata['h'], metadata['w'])) black_frame = np.tile(metadata['black_level'].reshape(2, 2), (metadata['h']//2, metadata['w']//2)) for i, f in enumerate(tqdm.tqdm(files, leave=False)): img = io.imread(f, libraw=False).astype(np.float32) if do_align and i != ref_idx: i_img = io.imread(f).astype(np.float32) if metadata['raw_format']: i_img = cd.demosaicing_CFA_Bayer_bilinear(i_img, pattern=pattern) i_img = i_img / metadata['exp'][i] \ / metadata['gain'][i] \ / metadata['aperture'][i] img = align(ref_img, i_img, img) # Ignore saturated pixels in all but shortest exposure if i == shortest_exposure: unsaturated = np.ones_like(img, dtype=bool) num_sat = np.count_nonzero(np.logical_not(get_unsaturated( img, metadata['saturation_point']))) else: unsaturated = get_unsaturated(img, metadata['saturation_point']) # Subtract black level for linearity img -= black_frame X_times_t = img / metadata['gain'][i] / metadata['aperture'][i] denom[unsaturated] += metadata['exp'][i] num[unsaturated] += X_times_t[unsaturated] HDR_bayer = num / denom # Libraw does not support 32-bit values. Use colour-demosaicing instead: # https://colour-demosaicing.readthedocs.io/en/latest/manual.html logger.info('Running bilinear demosaicing') HDR = cd.demosaicing_CFA_Bayer_bilinear(HDR_bayer, pattern=pattern) # Convert to output color-space logger.info(f'Using color matrix: {color_mat}') HDR = HDR @ color_mat return HDR, num_sat
[ "logging.getLogger", "numpy.ones_like", "numpy.eye", "HDRutils.io.imread", "numpy.ones", "tqdm.tqdm", "numpy.argsort", "numpy.array", "numpy.zeros", "numpy.linalg.inv", "HDRutils.io.imread_libraw", "numpy.argmin", "rawpy.imread", "colour_demosaicing.demosaicing_CFA_Bayer_bilinear" ]
[((151, 178), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (168, 178), False, 'import logging, tqdm\n'), ((3835, 3903), 'numpy.argmin', 'np.argmin', (["(metadata['exp'] * metadata['gain'] * metadata['aperture'])"], {}), "(metadata['exp'] * metadata['gain'] * metadata['aperture'])\n", (3844, 3903), True, 'import numpy as np\n'), ((4267, 4313), 'numpy.zeros', 'np.zeros', (["(2, metadata['h'], metadata['w'], 3)"], {}), "((2, metadata['h'], metadata['w'], 3))\n", (4275, 4313), True, 'import numpy as np\n'), ((7072, 7140), 'numpy.argmin', 'np.argmin', (["(metadata['exp'] * metadata['gain'] * metadata['aperture'])"], {}), "(metadata['exp'] * metadata['gain'] * metadata['aperture'])\n", (7081, 7140), True, 'import numpy as np\n'), ((7233, 7276), 'numpy.zeros', 'np.zeros', (["(2, metadata['h'], metadata['w'])"], {}), "((2, metadata['h'], metadata['w']))\n", (7241, 7276), True, 'import numpy as np\n'), ((8564, 8625), 'colour_demosaicing.demosaicing_CFA_Bayer_bilinear', 'cd.demosaicing_CFA_Bayer_bilinear', (['HDR_bayer'], {'pattern': 'pattern'}), '(HDR_bayer, pattern=pattern)\n', (8597, 8625), True, 'import colour_demosaicing as cd\n'), ((2203, 2233), 'numpy.ones', 'np.ones', (["data['N']"], {'dtype': 'bool'}), "(data['N'], dtype=bool)\n", (2210, 2233), True, 'import numpy as np\n'), ((4337, 4366), 'tqdm.tqdm', 'tqdm.tqdm', (['files'], {'leave': '(False)'}), '(files, leave=False)\n', (4346, 4366), False, 'import logging, tqdm\n'), ((4377, 4392), 'rawpy.imread', 'rawpy.imread', (['f'], {}), '(f)\n', (4389, 4392), False, 'import rawpy\n'), ((4401, 4459), 'HDRutils.io.imread_libraw', 'io.imread_libraw', (['raw'], {'color_space': "metadata['color_space']"}), "(raw, color_space=metadata['color_space'])\n", (4417, 4459), True, 'import HDRutils.io as io\n'), ((6154, 6163), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (6160, 6163), True, 'import numpy as np\n'), ((6287, 6309), 'rawpy.imread', 'rawpy.imread', (['files[0]'], {}), '(files[0])\n', (6299, 6309), False, 'import rawpy\n'), ((6370, 6408), 'numpy.linalg.inv', 'np.linalg.inv', (['raw.rgb_xyz_matrix[:-1]'], {}), '(raw.rgb_xyz_matrix[:-1])\n', (6383, 6408), True, 'import numpy as np\n'), ((7408, 7437), 'tqdm.tqdm', 'tqdm.tqdm', (['files'], {'leave': '(False)'}), '(files, leave=False)\n', (7417, 7437), False, 'import logging, tqdm\n'), ((3989, 4058), 'numpy.argsort', 'np.argsort', (["(metadata['exp'] * metadata['gain'] * metadata['aperture'])"], {}), "(metadata['exp'] * metadata['gain'] * metadata['aperture'])\n", (3999, 4058), True, 'import numpy as np\n'), ((4817, 4846), 'numpy.ones_like', 'np.ones_like', (['img'], {'dtype': 'bool'}), '(img, dtype=bool)\n', (4829, 4846), True, 'import numpy as np\n'), ((5574, 5643), 'numpy.argsort', 'np.argsort', (["(metadata['exp'] * metadata['gain'] * metadata['aperture'])"], {}), "(metadata['exp'] * metadata['gain'] * metadata['aperture'])\n", (5584, 5643), True, 'import numpy as np\n'), ((5766, 5825), 'colour_demosaicing.demosaicing_CFA_Bayer_bilinear', 'cd.demosaicing_CFA_Bayer_bilinear', (['ref_img'], {'pattern': 'pattern'}), '(ref_img, pattern=pattern)\n', (5799, 5825), True, 'import colour_demosaicing as cd\n'), ((6462, 6471), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (6468, 6471), True, 'import numpy as np\n'), ((7915, 7944), 'numpy.ones_like', 'np.ones_like', (['img'], {'dtype': 'bool'}), '(img, dtype=bool)\n', (7927, 7944), True, 'import numpy as np\n'), ((2103, 2129), 'HDRutils.io.imread', 'io.imread', (['f'], {'libraw': '(False)'}), '(f, libraw=False)\n', (2112, 2129), True, 'import HDRutils.io as io\n'), ((3217, 3229), 'numpy.array', 'np.array', (['wb'], {}), '(wb)\n', (3225, 3229), True, 'import numpy as np\n'), ((5679, 5704), 'HDRutils.io.imread', 'io.imread', (['files[ref_idx]'], {}), '(files[ref_idx])\n', (5688, 5704), True, 'import HDRutils.io as io\n'), ((6527, 6622), 'numpy.array', 'np.array', (['[[3.2406, -1.5372, -0.4986], [-0.9689, 1.8758, 0.0415], [0.0557, -0.204, 1.057]\n ]'], {}), '([[3.2406, -1.5372, -0.4986], [-0.9689, 1.8758, 0.0415], [0.0557, -\n 0.204, 1.057]])\n', (6535, 6622), True, 'import numpy as np\n'), ((7448, 7474), 'HDRutils.io.imread', 'io.imread', (['f'], {'libraw': '(False)'}), '(f, libraw=False)\n', (7457, 7474), True, 'import HDRutils.io as io\n'), ((7611, 7668), 'colour_demosaicing.demosaicing_CFA_Bayer_bilinear', 'cd.demosaicing_CFA_Bayer_bilinear', (['i_img'], {'pattern': 'pattern'}), '(i_img, pattern=pattern)\n', (7644, 7668), True, 'import colour_demosaicing as cd\n'), ((4094, 4119), 'HDRutils.io.imread', 'io.imread', (['files[ref_idx]'], {}), '(files[ref_idx])\n', (4103, 4119), True, 'import HDRutils.io as io\n'), ((6692, 6813), 'numpy.array', 'np.array', (['[[2.041369, -0.5649464, -0.3446944], [-0.969266, 1.8760108, 0.041556], [\n 0.0134474, -0.1183897, 1.0154096]]'], {}), '([[2.041369, -0.5649464, -0.3446944], [-0.969266, 1.8760108, \n 0.041556], [0.0134474, -0.1183897, 1.0154096]])\n', (6700, 6813), True, 'import numpy as np\n'), ((6923, 6932), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (6929, 6932), True, 'import numpy as np\n'), ((6946, 6955), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (6952, 6955), True, 'import numpy as np\n'), ((7537, 7549), 'HDRutils.io.imread', 'io.imread', (['f'], {}), '(f)\n', (7546, 7549), True, 'import HDRutils.io as io\n')]
import pickle import numpy as np import sys def eigen(num, split_num, layer_num): prefix = 'min_' layer_num = int(layer_num) num = str(num) #cur = [8, 8, 8, 8, 16, 16, 24, 24, 24, 24, 24, 24, 32, 32] #cur = [10, 12, 13, 13, 21, 29, 35, 37, 35, 25, 28, 28, 37, 32] #cur = [12, 12, 18, 17, 28, 54, 55, 45, 40, 25, 28, 28, 37, 32] #cur = [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16] cur = [22, 23, (20, 2), 25, (22, 2), 25, (24, 2), 20, 18, 19, 19, 20, (18, 2), 20] cur = [27, 39, (22, 2), 39, (37, 2), 40, (30, 2), 20, 18, 21, 21, 21, (19, 2), 20] cur = [29, 74, (24, 2), 54, (50, 2), 64, (42, 2), 21, 18, 24, 21, 21, (19, 2), 20] cur = [33, 132, (28, 2), 69, (59, 2), 104, (53, 2), 21, 18, 24, 21, 21, (19, 2), 20] cur = [33, 209, (34, 2), 90, (72, 2), 160, (64, 2), 21, 18, 24, 21, 21, (19, 2), 20] cur[2] = cur[2][0] cur[4] = cur[4][0] cur[6] = cur[6][0] cur[12] = cur[12][0] cur = [4,4,4,4] cur = [4, 7, 5, 4] cur = [10, 12, 21, 11] cur = [11, 18, 29, 12] cur = [11, 18, 29, 12] cur = [11, 30, 38, 12] print(cur) cur = pickle.load(open('cifar10max' + str(num) + '.pkl', 'rb')) curt = [] DD = 0 layer_num = len(cur) ''' for i in cur: if i != 'M': curt.append(i) for i in range(layer_num): #w = pickle.load(open('eigen/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') try: w = pickle.load(open('eigenm/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') #w1 = pickle.load(open('eigen/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') print(w) #print(w.shape) except: DD = DD + 1 continue if i == DD: W = w else: W = np.concatenate([W, w], 0) ''' prefix = 'max_' r = [0.116849326, 0.038422294, 0.02061177, 0.02997986, 0.014377874, 0.0062844744, 0.012592447, 0.006363712, 0.008475702, 0.02377023, 0.038945824, 0.03370137, 0.03196905, 0.06754288] r = np.ones([14]) #r = pickle.load(open('cifar10max' + str(num) + 'mag.pkl','rb')) for i in range(layer_num): #w = pickle.load(open('eigen/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') try: w = pickle.load(open('eigenmax/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') #print(np.mean(w)) w *= np.sqrt(r[i]) print(np.mean(w)) #w1 = pickle.load(open('eigen/' + prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') #print(w.shape) except: DD = DD + 1 continue if i == DD: W = w else: W = np.concatenate([W, -w], 0) st = np.argsort(W) L = W.shape[0] t = int(0.15 * L) thre = W[st[t]] SP = {} VP = {} SP1 = {} VP1 = {} DL = [] dp = [] prefix = sys.argv[3] + '_' for i in range(layer_num): if i == 0: k = 3 else: k = 1 try: w = pickle.load(open('eigenmax/' +prefix+ 'A_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') v = pickle.load(open('eigenmax/' +prefix+ 'V_' + str(i) + '_' + num + '_.pkl', 'rb'), encoding='latin1') w *= np.sqrt(r[i]) except: print(i) l = int(0.1 * curt[i]) D = np.random.randint(0, curt[i], size=[int(0.1 * curt[i]), 1]) SP[i] = D VD = np.zeros([1, 1, 1]) #VP[i] = np.reshape(v, [v.shape[0], -1, k, k]) VP[i] = np.zeros([curt[i], curt[i-1], 1, 1]) DL.append(l) continue if prefix == 'max_': ic = -1 else: ic = 1 D = np.argwhere((ic * w) < thre) l = D.shape[0] SP[i] = np.squeeze(D) #SP1[i] = np.random.randint(0, curt[i], size=[D.shape[0], 1]) VD = v[D].astype(float) VP[i] = np.reshape(v, [v.shape[0], -1, k, k]) #VP1[i] = np.zeros_like(VD) dp.append(l) DL.append(l) print(SP[i].shape) print(VP[i].shape) print(cur[i]) pickle.dump(SP, open('eigenmax/' + num + prefix + 'global.pkl', 'wb')) pickle.dump(VP, open('eigenmax/' + num + prefix + 'globalv.pkl', 'wb')) print(DL) DL = np.array(DL) ct = 0 DDL = [] for i in cur: if i == 'M': DDL.append('M') continue else: DDL.append(int(i + DL[ct])) ct += 1 for i in range(len(cur)): cur[i] = int(DDL[i]) #print(DL) print(DDL) print(cur) pickle.dump(DL, open('maxcfg' + str(int(num) + 1) + '.pkl', 'wb')) #print(SP) eigen(sys.argv[1], 1, sys.argv[2])
[ "numpy.mean", "numpy.reshape", "numpy.ones", "numpy.sqrt", "numpy.squeeze", "numpy.argsort", "numpy.array", "numpy.zeros", "numpy.argwhere", "numpy.concatenate" ]
[((2128, 2141), 'numpy.ones', 'np.ones', (['[14]'], {}), '([14])\n', (2135, 2141), True, 'import numpy as np\n'), ((2887, 2900), 'numpy.argsort', 'np.argsort', (['W'], {}), '(W)\n', (2897, 2900), True, 'import numpy as np\n'), ((4491, 4503), 'numpy.array', 'np.array', (['DL'], {}), '(DL)\n', (4499, 4503), True, 'import numpy as np\n'), ((3908, 3934), 'numpy.argwhere', 'np.argwhere', (['(ic * w < thre)'], {}), '(ic * w < thre)\n', (3919, 3934), True, 'import numpy as np\n'), ((3989, 4002), 'numpy.squeeze', 'np.squeeze', (['D'], {}), '(D)\n', (3999, 4002), True, 'import numpy as np\n'), ((4121, 4158), 'numpy.reshape', 'np.reshape', (['v', '[v.shape[0], -1, k, k]'], {}), '(v, [v.shape[0], -1, k, k])\n', (4131, 4158), True, 'import numpy as np\n'), ((2533, 2546), 'numpy.sqrt', 'np.sqrt', (['r[i]'], {}), '(r[i])\n', (2540, 2546), True, 'import numpy as np\n'), ((2851, 2877), 'numpy.concatenate', 'np.concatenate', (['[W, -w]', '(0)'], {}), '([W, -w], 0)\n', (2865, 2877), True, 'import numpy as np\n'), ((3431, 3444), 'numpy.sqrt', 'np.sqrt', (['r[i]'], {}), '(r[i])\n', (3438, 3444), True, 'import numpy as np\n'), ((2565, 2575), 'numpy.mean', 'np.mean', (['w'], {}), '(w)\n', (2572, 2575), True, 'import numpy as np\n'), ((3632, 3651), 'numpy.zeros', 'np.zeros', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (3640, 3651), True, 'import numpy as np\n'), ((3731, 3769), 'numpy.zeros', 'np.zeros', (['[curt[i], curt[i - 1], 1, 1]'], {}), '([curt[i], curt[i - 1], 1, 1])\n', (3739, 3769), True, 'import numpy as np\n')]
import numpy as np import open3d as o3d import pickle import torch import ipdb st = ipdb.set_trace def apply_4x4(RT, xyz): B, N, _ = list(xyz.shape) ones = torch.ones_like(xyz[:,:,0:1]) xyz1 = torch.cat([xyz, ones], 2) xyz1_t = torch.transpose(xyz1, 1, 2) # this is B x 4 x N xyz2_t = torch.matmul(RT, xyz1_t) xyz2 = torch.transpose(xyz2_t, 1, 2) xyz2 = xyz2[:,:,:3] return xyz2 def make_pcd(pts): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pts[:, :3]) # if the dim is greater than 3 I expect the color if pts.shape[1] == 6: pcd.colors = o3d.utility.Vector3dVector(pts[:, 3:] / 255.\ if pts[:, 3:].max() > 1. else pts[:, 3:]) return pcd mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1, origin=[0, 0, 0]) pcd_list = [mesh_frame] # for i in range(10): # path = f"/Users/shamitlal/Desktop/temp/convocc/pointcloud_0{i}.npz" # pcd = np.load(path)['points'] # st() # pcd = make_pcd(pcd) # pcd_list.append(pcd) path = f"/Users/shamitlal/Desktop/temp/convocc/pointcloud.npz" pcd = np.load(path)['points'] print("max: ", np.max(pcd, axis=0)) print("min: ", np.min(pcd, axis=0)) pcd = make_pcd(pcd) pcd_list.append(pcd) print("Pcd list len is: ", len(pcd_list)) o3d.visualization.draw_geometries(pcd_list) # Visualize inside points # path = f"/Users/shamitlal/Desktop/temp/convocc/points.npz" # pcd = np.load(path) # occ = np.unpackbits(pcd['occupancies']) # pcd = pcd['points'] # occ_pts_idx = np.where(occ==1)[0] # pcd = pcd[occ_pts_idx] # print("max: ", np.max(pcd, axis=0)) # print("min: ", np.min(pcd, axis=0)) # pcd = make_pcd(pcd) # pcd_list.append(pcd) # # Visualize actual pointcloud # path = f"/Users/shamitlal/Desktop/temp/convocc/pointcloud.npz" # pcd = np.load(path)['points'] # print("max: ", np.max(pcd, axis=0)) # print("min: ", np.min(pcd, axis=0)) # pcd = make_pcd(pcd) # pcd_list.append(pcd) # print("Pcd list len is: ", len(pcd_list)) o3d.visualization.draw_geometries(pcd_list) #Visualize pydisco shapenet data # path = f"/Users/shamitlal/Desktop/temp/convocc/02958343_c48a804986a819b4bda733a39f84326d.p" # pfile = pickle.load(open(path, "rb")) # xyz_camXs = torch.tensor(pfile['xyz_camXs_raw']) # origin_T_camXs = torch.tensor(pfile['origin_T_camXs_raw']) # xyz_origin = apply_4x4(origin_T_camXs, xyz_camXs) # pcd = xyz_origin.reshape(-1, 3) # x, y, z = torch.abs(pcd[:,0]), torch.abs(pcd[:,1]), torch.abs(pcd[:,2]) # cond1 = (x<10) # cond2 = (y<10) # cond3 = (z<10) # cond = cond1 & cond2 & cond3 # pcd = pcd[cond] # pcd_list.append(make_pcd(pcd)) # o3d.visualization.draw_geometries(pcd_list) # st() # aa=1
[ "torch.ones_like", "torch.transpose", "numpy.max", "open3d.utility.Vector3dVector", "open3d.visualization.draw_geometries", "torch.matmul", "open3d.geometry.PointCloud", "numpy.min", "open3d.geometry.TriangleMesh.create_coordinate_frame", "numpy.load", "torch.cat" ]
[((760, 835), 'open3d.geometry.TriangleMesh.create_coordinate_frame', 'o3d.geometry.TriangleMesh.create_coordinate_frame', ([], {'size': '(1)', 'origin': '[0, 0, 0]'}), '(size=1, origin=[0, 0, 0])\n', (809, 835), True, 'import open3d as o3d\n'), ((1315, 1358), 'open3d.visualization.draw_geometries', 'o3d.visualization.draw_geometries', (['pcd_list'], {}), '(pcd_list)\n', (1348, 1358), True, 'import open3d as o3d\n'), ((2012, 2055), 'open3d.visualization.draw_geometries', 'o3d.visualization.draw_geometries', (['pcd_list'], {}), '(pcd_list)\n', (2045, 2055), True, 'import open3d as o3d\n'), ((167, 198), 'torch.ones_like', 'torch.ones_like', (['xyz[:, :, 0:1]'], {}), '(xyz[:, :, 0:1])\n', (182, 198), False, 'import torch\n'), ((208, 233), 'torch.cat', 'torch.cat', (['[xyz, ones]', '(2)'], {}), '([xyz, ones], 2)\n', (217, 233), False, 'import torch\n'), ((247, 274), 'torch.transpose', 'torch.transpose', (['xyz1', '(1)', '(2)'], {}), '(xyz1, 1, 2)\n', (262, 274), False, 'import torch\n'), ((312, 336), 'torch.matmul', 'torch.matmul', (['RT', 'xyz1_t'], {}), '(RT, xyz1_t)\n', (324, 336), False, 'import torch\n'), ((348, 377), 'torch.transpose', 'torch.transpose', (['xyz2_t', '(1)', '(2)'], {}), '(xyz2_t, 1, 2)\n', (363, 377), False, 'import torch\n'), ((448, 473), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (471, 473), True, 'import open3d as o3d\n'), ((491, 529), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['pts[:, :3]'], {}), '(pts[:, :3])\n', (517, 529), True, 'import open3d as o3d\n'), ((1136, 1149), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (1143, 1149), True, 'import numpy as np\n'), ((1175, 1194), 'numpy.max', 'np.max', (['pcd'], {'axis': '(0)'}), '(pcd, axis=0)\n', (1181, 1194), True, 'import numpy as np\n'), ((1211, 1230), 'numpy.min', 'np.min', (['pcd'], {'axis': '(0)'}), '(pcd, axis=0)\n', (1217, 1230), True, 'import numpy as np\n')]
""" Helper functions for image processing The color space conversion functions are modified from functions of the Python package scikit-image, https://github.com/scikit-image/scikit-image. scikit-image has the following license. Copyright (C) 2019, the scikit-image team All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of skimage nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from PIL import Image import numpy as np from sklearn.cluster import KMeans, AgglomerativeClustering from sklearn.metrics import pairwise_distances import requests from io import BytesIO import os from dotenv import load_dotenv load_dotenv() sls_stage = os.getenv("SLS_STAGE") if sls_stage == 'local': import plotly.graph_objects as go default_k = 4 xyz_ref_white = np.asarray((0.95047, 1.0, 1.08883)) xyz_from_rgb = np.array( [ [0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227], ] ) rgb_from_xyz = np.linalg.inv(xyz_from_rgb) def rgb2xyz(rgb_arr): """ Convert colur from RGB to CIE 1931 XYZ Parameters ---------- rgb_arr: ndarray Color in RGB Returns ------ xyz_arr: ndarray Color in CIE 1931 XYZ """ xyz_arr = np.copy(rgb_arr) mask = xyz_arr > 0.04045 xyz_arr[mask] = np.power((xyz_arr[mask] + 0.055) / 1.055, 2.4) xyz_arr[~mask] /= 12.92 return xyz_arr @ np.transpose(xyz_from_rgb) def xyz2lab(xyz_arr): """ Convert colur from CIE 1931 XYZ to CIE 1976 L*a*b* Parameters ---------- xyz_arr: ndarray Color in CIE 1931 XYZ Returns ------ lab_arr: ndarray Color in CIE 1976 L*a*b* """ lab_arr = np.copy(xyz_arr) / xyz_ref_white mask = lab_arr > 0.008856 lab_arr[mask] = np.cbrt(lab_arr[mask]) lab_arr[~mask] = 7.787 * lab_arr[~mask] + 16.0 / 116.0 x, y, z = lab_arr[:, 0], lab_arr[:, 1], lab_arr[:, 2] L = (116.0 * y) - 16.0 a = 500.0 * (x - y) b = 200.0 * (y - z) return np.transpose(np.asarray((L, a, b))) def lab2xyz(lab_arr): """ Convert colur from CIE 1976 L*a*b* to CIE 1931 XYZ Parameters ---------- lab_arr: ndarray Color in CIE 1976 L*a*b* Returns ------ xyz_arr: ndarray Color in CIE 1931 XYZ """ L, a, b = lab_arr[:, 0], lab_arr[:, 1], lab_arr[:, 2] y = (L + 16.0) / 116.0 x = (a / 500.0) + y z = y - (b / 200.0) if np.any(z < 0): invalid = np.nonzero(z < 0) warn( "Color data out of range: Z < 0 in %s pixels" % invalid[0].size, stacklevel=2, ) z[invalid] = 0 xyz_arr = np.transpose(np.asarray((x, y, z))) mask = xyz_arr > 0.2068966 xyz_arr[mask] = np.power(xyz_arr[mask], 3.0) xyz_arr[~mask] = (xyz_arr[~mask] - 16.0 / 116.0) / 7.787 # rescale to the reference white (illuminant) xyz_arr *= xyz_ref_white return xyz_arr def xyz2rgb(xyz_arr): """ Convert colur from CIE 1931 XYZ to RGB Parameters ---------- xyz_arr: ndarray Color in CIE 1931 XYZ Returns ------ rgb_arr: ndarray Color in RGB """ rgb_arr = xyz_arr @ np.transpose(rgb_from_xyz) mask = rgb_arr > 0.0031308 rgb_arr[mask] = 1.055 * np.power(rgb_arr[mask], 1 / 2.4) - 0.055 rgb_arr[~mask] *= 12.92 rgb_arr = np.clip(rgb_arr, 0, 1) return rgb_arr def rgb2lab(rgb_arr): """ Convert colur from RGB to CIE 1976 L*a*b* Parameters ---------- rgb_arr: ndarray Color in RGB Returns ------- lab_arr: ndarray Color in CIE 1976 L*a*b* """ return xyz2lab(rgb2xyz(rgb_arr)) def lab2rgb(lab_arr): """ Convert colur from CIE 1976 L*a*b* to RGB Parameters ---------- lab_arr: ndarray Color in CIE 1976 L*a*b* Returns ------ rgb_arr: ndarray Color in RGB """ return xyz2rgb(lab2xyz(lab_arr)) def get_lab_data(im): """ Convert colur from CIE 1976 L*a*b* to RGB Parameters ---------- im: Image Image to create palette Returns ------ lab_arr: ndarray Color in CIE 1976 L*a*b* """ img_size = 150, 150 im.thumbnail(img_size) pixel_rgb = np.asarray(im) # Range of RGB in Pillow is [0, 255], that in skimage is [0, 1] pixel_lab = rgb2lab(pixel_rgb.reshape(-1, pixel_rgb.shape[-1]) / 255) return pixel_lab.reshape(-1, pixel_lab.shape[-1]) def make_img(colors, counts): """ Create image from colors Parameters ---------- colors: ndarray Color in RGB counts: ndarray Number of data points in each color cluster Returns ------ img: Image Generated image """ img_size = 512, 512 n_clusters = len(colors) lengths = ( ((counts / np.sum(counts)) + (1.0 / n_clusters)) / 2.0 * img_size[0] ).astype(np.uint16) # Ensure sum of lengths equals img_size[0] lengths[0] = lengths[0] + (img_size[0] - np.sum(lengths)) pixel_group = np.array( [np.tile(colors[i], (lengths[i], img_size[1], 1)) for i in range(n_clusters)] ) pixel_rgb = np.transpose(np.concatenate(pixel_group), (1, 0, 2)) return Image.fromarray(pixel_rgb, mode="RGB") def get_hex_string(rgb_arr): """ Covert RGB color to HEX values Parameters ---------- rgb_arr: ndarray Color in RGB Returns ------ hex_names: str HEX values of color """ def int2hex(integer): hex_string = hex(integer)[2:] if len(hex_string) < 2: return "0" + hex_string return hex_string return "".join(np.vectorize(int2hex)(rgb_arr)).upper() def cluster_kmeans(data, n_clusters): """ Partition data with k-means clustering Parameters ---------- data: ndarray Data points n_clusters: int Number of clusters Returns ------ centers: ndarray Clusters centers labels: ndarray Center label of every data point """ kmeans = KMeans(n_clusters) labels = kmeans.fit_predict(data) centers = kmeans.cluster_centers_ return centers, labels def compute_medoid(data): """ Get medoid of data Parameters ---------- data: ndarray Data points Returns ------ medoid: ndarray Medoid """ dist_mat = pairwise_distances(data) return data[np.argmin(dist_mat.sum(axis=0))] def cluster_agglo(data, n_clusters): """ Partition data with agglomerative clustering Parameters ---------- data: ndarray Data points n_clusters: int Number of clusters Returns ------ centers: ndarray Clusters centers labels: ndarray Center label of every data point """ ac = AgglomerativeClustering(n_clusters) labels = ac.fit_predict(data) print("Completed agglomerative clustering") centers = np.empty([n_clusters, 3]) for i in range(n_clusters): centers[i] = compute_medoid(data[labels == i]) return centers, labels def get_cluster(centers, labels): """ Sort cluster centers and count number of labels Parameters ---------- centers: ndarray Clusters centers labels: ndarray Center label of every data point Returns ------ sort_centers: ndarray Clusters centers sorted by number of label descending sort_labels: ndarray Sorted center label of every data point sort_counts: ndarray Number of data points of sorted centers """ _, counts = np.unique(labels, return_counts=True) sort_idx = (-counts).argsort() sort_labels = np.vectorize(lambda i: list(sort_idx).index(i))(labels) return centers[sort_idx], sort_labels, counts[sort_idx] def get_palette(im, k): """ Create a palette from an image Parameters ---------- im: Image Image to create palette from k: int Number of pallete colors If None or k is outside of the range [2, 10], uses default_k as k Returns ------ im_output: Image Image of palette colors hex_colors: ndarray Palette colors in HEX values """ if k is None: k = default_k elif k < 2 or k > 10: k = default_k data = get_lab_data(im) print("Get {} clusters".format(k)) centers, labels = cluster_agglo(data, k) sorted_centers, _, counts = get_cluster(centers, labels) # Range of RGB in Pillow is [0, 255], that in skimage is [0, 1] centers_rgb = (255 * lab2rgb(sorted_centers)).astype(np.uint8) print("Clusters are") print(centers_rgb) return ( make_img(centers_rgb, counts), np.apply_along_axis(get_hex_string, 1, centers_rgb), ) def get_palette_plot(im, k): """ Create a palette from an image and plot clusters in 3D Parameters ---------- img: Image Image to create palette. k: int Number of pallete colors. If None or k is outside of the range [2, 10], uses default_k as k Returns ------ im_output: Image Image of palette colors hex_colors: ndarray Palette colors in HEX values """ if k is None: k = default_k elif k < 2 or k > 10: k = default_k data = get_lab_data(im) print("Get {} clusters".format(k)) centers, labels = cluster_agglo(data, k) sorted_centers, sorted_labels, counts = get_cluster(centers, labels) # Range of RGB in Pillow is [0, 255], that in skimage is [0, 1] centers_rgb = (255 * lab2rgb(sorted_centers)).astype(np.uint8) print("Clusters in RGB are") print(centers_rgb) centers_hex = np.apply_along_axis(get_hex_string, 1, centers_rgb) plot_3d(data, sorted_labels, centers_hex) return ( make_img(centers_rgb, counts), centers_hex, ) def plot_3d(data, labels, centers_hex): """ Plot clustered data in 3D Parameters ---------- data: ndarray Data points labels: ndarray Labels of every data point centers_hex: ndarray Color in HEX values """ l, a, b = np.transpose(data) fig = go.Figure( data=[ go.Scatter3d( x=a, y=b, z=l, mode="markers", marker={ "size": 3, "color": np.vectorize(lambda hex: "#" + hex)(centers_hex)[labels], "opacity": 0.1, }, ) ] ) fig.update_layout( scene={"xaxis_title": "a", "yaxis_title": "b", "zaxis_title": "L",} ) fig.show() def get_image_from_url(url): """ Download and create image Parameters ---------- url: str Image link Returns ------ im: Image Image downloaded """ print("Get image from ", url) response = requests.get(url) return Image.open(BytesIO(response.content))
[ "numpy.clip", "io.BytesIO", "numpy.array", "sklearn.cluster.AgglomerativeClustering", "numpy.asarray", "dotenv.load_dotenv", "numpy.empty", "numpy.concatenate", "numpy.tile", "numpy.any", "requests.get", "numpy.nonzero", "numpy.transpose", "numpy.vectorize", "sklearn.cluster.KMeans", "numpy.copy", "PIL.Image.fromarray", "numpy.unique", "os.getenv", "numpy.power", "sklearn.metrics.pairwise_distances", "numpy.sum", "numpy.linalg.inv", "numpy.apply_along_axis", "numpy.cbrt" ]
[((1918, 1931), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (1929, 1931), False, 'from dotenv import load_dotenv\n'), ((1945, 1967), 'os.getenv', 'os.getenv', (['"""SLS_STAGE"""'], {}), "('SLS_STAGE')\n", (1954, 1967), False, 'import os\n'), ((2064, 2099), 'numpy.asarray', 'np.asarray', (['(0.95047, 1.0, 1.08883)'], {}), '((0.95047, 1.0, 1.08883))\n', (2074, 2099), True, 'import numpy as np\n'), ((2116, 2225), 'numpy.array', 'np.array', (['[[0.412453, 0.35758, 0.180423], [0.212671, 0.71516, 0.072169], [0.019334, \n 0.119193, 0.950227]]'], {}), '([[0.412453, 0.35758, 0.180423], [0.212671, 0.71516, 0.072169], [\n 0.019334, 0.119193, 0.950227]])\n', (2124, 2225), True, 'import numpy as np\n'), ((2276, 2303), 'numpy.linalg.inv', 'np.linalg.inv', (['xyz_from_rgb'], {}), '(xyz_from_rgb)\n', (2289, 2303), True, 'import numpy as np\n'), ((2558, 2574), 'numpy.copy', 'np.copy', (['rgb_arr'], {}), '(rgb_arr)\n', (2565, 2574), True, 'import numpy as np\n'), ((2624, 2670), 'numpy.power', 'np.power', (['((xyz_arr[mask] + 0.055) / 1.055)', '(2.4)'], {}), '((xyz_arr[mask] + 0.055) / 1.055, 2.4)\n', (2632, 2670), True, 'import numpy as np\n'), ((3108, 3130), 'numpy.cbrt', 'np.cbrt', (['lab_arr[mask]'], {}), '(lab_arr[mask])\n', (3115, 3130), True, 'import numpy as np\n'), ((3774, 3787), 'numpy.any', 'np.any', (['(z < 0)'], {}), '(z < 0)\n', (3780, 3787), True, 'import numpy as np\n'), ((4076, 4104), 'numpy.power', 'np.power', (['xyz_arr[mask]', '(3.0)'], {}), '(xyz_arr[mask], 3.0)\n', (4084, 4104), True, 'import numpy as np\n'), ((4697, 4719), 'numpy.clip', 'np.clip', (['rgb_arr', '(0)', '(1)'], {}), '(rgb_arr, 0, 1)\n', (4704, 4719), True, 'import numpy as np\n'), ((5623, 5637), 'numpy.asarray', 'np.asarray', (['im'], {}), '(im)\n', (5633, 5637), True, 'import numpy as np\n'), ((6602, 6640), 'PIL.Image.fromarray', 'Image.fromarray', (['pixel_rgb'], {'mode': '"""RGB"""'}), "(pixel_rgb, mode='RGB')\n", (6617, 6640), False, 'from PIL import Image\n'), ((7454, 7472), 'sklearn.cluster.KMeans', 'KMeans', (['n_clusters'], {}), '(n_clusters)\n', (7460, 7472), False, 'from sklearn.cluster import KMeans, AgglomerativeClustering\n'), ((7791, 7815), 'sklearn.metrics.pairwise_distances', 'pairwise_distances', (['data'], {}), '(data)\n', (7809, 7815), False, 'from sklearn.metrics import pairwise_distances\n'), ((8230, 8265), 'sklearn.cluster.AgglomerativeClustering', 'AgglomerativeClustering', (['n_clusters'], {}), '(n_clusters)\n', (8253, 8265), False, 'from sklearn.cluster import KMeans, AgglomerativeClustering\n'), ((8362, 8387), 'numpy.empty', 'np.empty', (['[n_clusters, 3]'], {}), '([n_clusters, 3])\n', (8370, 8387), True, 'import numpy as np\n'), ((9023, 9060), 'numpy.unique', 'np.unique', (['labels'], {'return_counts': '(True)'}), '(labels, return_counts=True)\n', (9032, 9060), True, 'import numpy as np\n'), ((11152, 11203), 'numpy.apply_along_axis', 'np.apply_along_axis', (['get_hex_string', '(1)', 'centers_rgb'], {}), '(get_hex_string, 1, centers_rgb)\n', (11171, 11203), True, 'import numpy as np\n'), ((11614, 11632), 'numpy.transpose', 'np.transpose', (['data'], {}), '(data)\n', (11626, 11632), True, 'import numpy as np\n'), ((12399, 12416), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (12411, 12416), False, 'import requests\n'), ((2720, 2746), 'numpy.transpose', 'np.transpose', (['xyz_from_rgb'], {}), '(xyz_from_rgb)\n', (2732, 2746), True, 'import numpy as np\n'), ((3025, 3041), 'numpy.copy', 'np.copy', (['xyz_arr'], {}), '(xyz_arr)\n', (3032, 3041), True, 'import numpy as np\n'), ((3347, 3368), 'numpy.asarray', 'np.asarray', (['(L, a, b)'], {}), '((L, a, b))\n', (3357, 3368), True, 'import numpy as np\n'), ((3807, 3824), 'numpy.nonzero', 'np.nonzero', (['(z < 0)'], {}), '(z < 0)\n', (3817, 3824), True, 'import numpy as np\n'), ((4002, 4023), 'numpy.asarray', 'np.asarray', (['(x, y, z)'], {}), '((x, y, z))\n', (4012, 4023), True, 'import numpy as np\n'), ((4528, 4554), 'numpy.transpose', 'np.transpose', (['rgb_from_xyz'], {}), '(rgb_from_xyz)\n', (4540, 4554), True, 'import numpy as np\n'), ((6551, 6578), 'numpy.concatenate', 'np.concatenate', (['pixel_group'], {}), '(pixel_group)\n', (6565, 6578), True, 'import numpy as np\n'), ((10159, 10210), 'numpy.apply_along_axis', 'np.apply_along_axis', (['get_hex_string', '(1)', 'centers_rgb'], {}), '(get_hex_string, 1, centers_rgb)\n', (10178, 10210), True, 'import numpy as np\n'), ((12439, 12464), 'io.BytesIO', 'BytesIO', (['response.content'], {}), '(response.content)\n', (12446, 12464), False, 'from io import BytesIO\n'), ((4614, 4646), 'numpy.power', 'np.power', (['rgb_arr[mask]', '(1 / 2.4)'], {}), '(rgb_arr[mask], 1 / 2.4)\n', (4622, 4646), True, 'import numpy as np\n'), ((6385, 6400), 'numpy.sum', 'np.sum', (['lengths'], {}), '(lengths)\n', (6391, 6400), True, 'import numpy as np\n'), ((6439, 6487), 'numpy.tile', 'np.tile', (['colors[i]', '(lengths[i], img_size[1], 1)'], {}), '(colors[i], (lengths[i], img_size[1], 1))\n', (6446, 6487), True, 'import numpy as np\n'), ((7050, 7071), 'numpy.vectorize', 'np.vectorize', (['int2hex'], {}), '(int2hex)\n', (7062, 7071), True, 'import numpy as np\n'), ((6211, 6225), 'numpy.sum', 'np.sum', (['counts'], {}), '(counts)\n', (6217, 6225), True, 'import numpy as np\n'), ((11875, 11910), 'numpy.vectorize', 'np.vectorize', (["(lambda hex: '#' + hex)"], {}), "(lambda hex: '#' + hex)\n", (11887, 11910), True, 'import numpy as np\n')]
""" TopView is the main Widget with the related ControllerTopView Class There are several SliceView windows (sagittal, coronal, possibly tilted etc...) that each have a SliceController object The underlying data model object is an ibllib.atlas.AllenAtlas object TopView(QMainWindow) ControllerTopView(PgImageController) SliceView(QWidget) SliceController(PgImageController) """ from dataclasses import dataclass, field from pathlib import Path import numpy as np from PyQt5 import QtWidgets, uic from PyQt5.QtGui import QTransform import pyqtgraph as pg import matplotlib from ibllib.atlas import AllenAtlas import qt class TopView(QtWidgets.QMainWindow): """ Main Window of the application. This is a top view of the brain with 2 movable lines allowing to select sagittal and coronal slices. """ @staticmethod def _instances(): app = QtWidgets.QApplication.instance() return [w for w in app.topLevelWidgets() if isinstance(w, TopView)] @staticmethod def _get_or_create(title=None, **kwargs): av = next(filter(lambda e: e.isVisible() and e.windowTitle() == title, TopView._instances()), None) if av is None: av = TopView(**kwargs) av.setWindowTitle(title) return av def __init__(self, **kwargs): super(TopView, self).__init__() self.ctrl = ControllerTopView(self, **kwargs) self.ctrl.image_layers = [ImageLayer()] uic.loadUi(Path(__file__).parent.joinpath('topview.ui'), self) self.plotItem_topview.setAspectLocked(True) self.plotItem_topview.addItem(self.ctrl.imageItem) # setup one horizontal and one vertical line that can be moved line_kwargs = {'movable': True, 'pen': pg.mkPen((0, 255, 0), width=3)} self.line_coronal = pg.InfiniteLine(angle=0, pos=0, **line_kwargs) self.line_sagittal = pg.InfiniteLine(angle=90, pos=0, **line_kwargs) self.line_coronal.sigDragged.connect(self._refresh_coronal) # sigPositionChangeFinished self.line_sagittal.sigDragged.connect(self._refresh_sagittal) self.plotItem_topview.addItem(self.line_coronal) self.plotItem_topview.addItem(self.line_sagittal) # connect signals and slots: mouse moved s = self.plotItem_topview.getViewBox().scene() self.proxy = pg.SignalProxy(s.sigMouseMoved, rateLimit=60, slot=self.mouseMoveEvent) # combobox for the atlas remapping choices self.comboBox_mappings.addItems(self.ctrl.atlas.regions.mappings.keys()) self.comboBox_mappings.currentIndexChanged.connect(self._refresh) # slider for transparency between image and labels self.slider_alpha.sliderMoved.connect(self.slider_alpha_move) self.ctrl.set_top() def add_scatter_feature(self, data): self.ctrl.scatter_data = data / 1e6 self.ctrl.scatter_data_ind = self.ctrl.atlas.bc.xyz2i(self.ctrl.scatter_data) self.ctrl.fig_coronal.add_scatter() self.ctrl.fig_sagittal.add_scatter() self.line_coronal.sigDragged.connect( lambda: self.ctrl.set_scatter(self.ctrl.fig_coronal, self.line_coronal.value())) self.line_sagittal.sigDragged.connect( lambda: self.ctrl.set_scatter(self.ctrl.fig_sagittal, self.line_sagittal.value())) self.ctrl.set_scatter(self.ctrl.fig_coronal) self.ctrl.set_scatter(self.ctrl.fig_sagittal) def add_image_layer(self, **kwargs): """ :param pg_kwargs: pyqtgraph setImage arguments: {'levels': None, 'lut': None, 'opacity': 1.0} :param slice_kwargs: ibllib.atlas.slice arguments: {'volume': 'image', 'mode': 'clip'} :return: """ self.ctrl.fig_sagittal.add_image_layer(**kwargs) self.ctrl.fig_coronal.add_image_layer(**kwargs) def add_regions_feature(self, values, cmap, opacity=1.0): self.ctrl.values = values # creat cmap look up table colormap = matplotlib.cm.get_cmap(cmap) colormap._init() lut = (colormap._lut * 255).view(np.ndarray) lut = np.insert(lut, 0, [0, 0, 0, 0], axis=0) self.add_image_layer(pg_kwargs={'lut': lut, 'opacity': opacity}, slice_kwargs={ 'volume': 'value', 'region_values': values, 'mode': 'clip'}) self._refresh() def slider_alpha_move(self): annotation_alpha = self.slider_alpha.value() / 100 self.ctrl.fig_coronal.ctrl.image_layers[0].pg_kwargs['opacity'] = 1 - annotation_alpha self.ctrl.fig_sagittal.ctrl.image_layers[0].pg_kwargs['opacity'] = 1 - annotation_alpha self.ctrl.fig_coronal.ctrl.image_layers[1].pg_kwargs['opacity'] = annotation_alpha self.ctrl.fig_sagittal.ctrl.image_layers[1].pg_kwargs['opacity'] = annotation_alpha self._refresh() def mouseMoveEvent(self, scenepos): if isinstance(scenepos, tuple): scenepos = scenepos[0] else: return pass # qpoint = self.imageItem.mapFromScene(scenepos) def _refresh(self): self._refresh_sagittal() self._refresh_coronal() def _refresh_coronal(self): self.ctrl.set_slice(self.ctrl.fig_coronal, self.line_coronal.value(), mapping=self.comboBox_mappings.currentText()) def _refresh_sagittal(self): self.ctrl.set_slice(self.ctrl.fig_sagittal, self.line_sagittal.value(), mapping=self.comboBox_mappings.currentText()) class SliceView(QtWidgets.QWidget): """ Window containing a volume slice """ def __init__(self, topview: TopView, waxis, haxis, daxis): super(SliceView, self).__init__() self.topview = topview self.ctrl = SliceController(self, waxis, haxis, daxis) uic.loadUi(Path(__file__).parent.joinpath('sliceview.ui'), self) self.add_image_layer(slice_kwargs={'volume': 'image', 'mode': 'clip'}, pg_kwargs={'opacity': 0.8}) self.add_image_layer(slice_kwargs={'volume': 'annotation', 'mode': 'clip'}, pg_kwargs={'opacity': 0.2}) # init the image display self.plotItem_slice.setAspectLocked(True) # connect signals and slots s = self.plotItem_slice.getViewBox().scene() self.proxy = pg.SignalProxy(s.sigMouseMoved, rateLimit=60, slot=self.mouseMoveEvent) s.sigMouseClicked.connect(self.mouseClick) def add_scatter(self): self.scatterItem = pg.ScatterPlotItem() self.plotItem_slice.addItem(self.scatterItem) def add_image_layer(self, **kwargs): """ :param pg_kwargs: pyqtgraph setImage arguments: {'levels': None, 'lut': None, 'opacity': 1.0} :param slice_kwargs: ibllib.atlas.slice arguments: {'volume': 'image', 'mode': 'clip'} :return: """ il = ImageLayer(**kwargs) self.ctrl.image_layers.append(il) self.plotItem_slice.addItem(il.image_item) def closeEvent(self, event): self.destroy() def keyPressEvent(self, e): pass def mouseClick(self, event): if not event.double(): return def mouseMoveEvent(self, scenepos): if isinstance(scenepos, tuple): scenepos = scenepos[0] else: return qpoint = self.ctrl.image_layers[0].image_item.mapFromScene(scenepos) iw, ih, w, h, v, region = self.ctrl.cursor2xyamp(qpoint) self.label_x.setText(f"{w:.4f}") self.label_y.setText(f"{h:.4f}") self.label_ix.setText(f"{iw:.0f}") self.label_iy.setText(f"{ih:.0f}") if isinstance(v, np.ndarray): self.label_v.setText(str(v)) else: self.label_v.setText(f"{v:.4f}") if region is None: self.label_region.setText("") self.label_acronym.setText("") else: self.label_region.setText(region['name'][0]) self.label_acronym.setText(region['acronym'][0]) def replace_image_layer(self, index, **kwargs): if index and len(self.imageItem) >= index: il = self.image_layers.pop(index) self.plotItem_slice.removeItem(il.image_item) self.add_image_layer(**kwargs) class PgImageController: """ Abstract class that implements mapping from axes to voxels for any window. Not instantiated directly. """ def __init__(self, win, res=25): self.qwidget = win self.transform = None # affine transform image indices 2 data domain self.image_layers = [] def cursor2xyamp(self, qpoint): """Used for the mouse hover function over image display""" iw, ih = self.cursor2ind(qpoint) v = self.im[iw, ih] w, h, _ = np.matmul(self.transform, np.array([iw, ih, 1])) return iw, ih, w, h, v def cursor2ind(self, qpoint): """ image coordinates over the image display""" iw = np.max((0, np.min((int(np.floor(qpoint.x())), self.nw - 1)))) ih = np.max((0, np.min((int(np.round(qpoint.y())), self.nh - 1)))) return iw, ih @property def imageItem(self): """returns the first image item""" return self.image_layers[0].image_item def set_image(self, pg_image_item, im, dw, dh, w0, h0, **pg_kwargs): """ :param im: :param dw: :param dh: :param w0: :param h0: :param pgkwargs: og.ImageItem.setImage() parameters: level=None, lut=None, opacity=1 :return: """ self.im = im self.nw, self.nh = self.im.shape[0:2] pg_image_item.setImage(self.im, **pg_kwargs) transform = [dw, 0., 0., 0., dh, 0., w0, h0, 1.] self.transform = np.array(transform).reshape((3, 3)).T pg_image_item.setTransform(QTransform(*transform)) def set_points(self, x=None, y=None): # at the moment brush and size are fixed! These need to be arguments # For the colour need to convert the colour to QtGui.QColor self.qwidget.scatterItem.setData(x=x, y=y, brush='b', size=5) class ControllerTopView(PgImageController): """ TopView ControllerTopView """ def __init__(self, qmain: TopView, res: int = 25, volume='image', brainmap='Allen'): super(ControllerTopView, self).__init__(qmain) self.volume = volume self.atlas = AllenAtlas(res, brainmap=brainmap) self.fig_top = self.qwidget = qmain # Setup Coronal slice: width: ml, height: dv, depth: ap self.fig_coronal = SliceView(qmain, waxis=0, haxis=2, daxis=1) self.fig_coronal.setWindowTitle('Coronal Slice') self.set_slice(self.fig_coronal) self.fig_coronal.show() # Setup Sagittal slice: width: ap, height: dv, depth: ml self.fig_sagittal = SliceView(qmain, waxis=1, haxis=2, daxis=0) self.fig_sagittal.setWindowTitle('Sagittal Slice') self.set_slice(self.fig_sagittal) self.fig_sagittal.show() def set_slice(self, fig, coord=0, mapping="Allen"): waxis, haxis, daxis = (fig.ctrl.waxis, fig.ctrl.haxis, fig.ctrl.daxis) # construct the transform matrix image 2 ibl coordinates dw = self.atlas.bc.dxyz[waxis] dh = self.atlas.bc.dxyz[haxis] wl = self.atlas.bc.lim(waxis) - dw / 2 hl = self.atlas.bc.lim(haxis) - dh / 2 # the ImageLayer object carries slice kwargs and pyqtgraph ImageSet kwargs # reversed order so the self.im is set with the base layer for layer in reversed(fig.ctrl.image_layers): _slice = self.atlas.slice(coord, axis=daxis, mapping=mapping, **layer.slice_kwargs) fig.ctrl.set_image(layer.image_item, _slice, dw, dh, wl[0], hl[0], **layer.pg_kwargs) fig.ctrl.slice_coord = coord def set_top(self): img = self.atlas.top.transpose() img[np.isnan(img)] = np.nanmin(img) # img has dims ml, ap dw, dh = (self.atlas.bc.dxyz[0], self.atlas.bc.dxyz[1]) wl, hl = (self.atlas.bc.xlim, self.atlas.bc.ylim) self.set_image(self.image_layers[0].image_item, img, dw, dh, wl[0], hl[0]) def set_scatter(self, fig, coord=0): waxis = fig.ctrl.waxis # dealing with coronal slice if waxis == 0: idx = np.where(self.scatter_data_ind[:, 1] == self.atlas.bc.y2i(coord))[0] x = self.scatter_data[idx, 0] y = self.scatter_data[idx, 2] else: idx = np.where(self.scatter_data_ind[:, 0] == self.atlas.bc.x2i(coord))[0] x = self.scatter_data[idx, 1] y = self.scatter_data[idx, 2] fig.ctrl.set_points(x, y) def set_volume(self, volume): self.volume = volume class SliceController(PgImageController): def __init__(self, fig, waxis=None, haxis=None, daxis=None): """ :param waxis: brain atlas axis corresponding to display abscissa (coronal: 0, sagittal: 1) :param haxis: brain atlas axis corresponding to display ordinate (coronal: 2, sagittal: 2) :param daxis: brain atlas axis corresponding to display abscissa (coronal: 1, sagittal: 0) """ super(SliceController, self).__init__(fig) self.waxis = waxis self.haxis = haxis self.daxis = daxis def cursor2xyamp(self, qpoint): """ Extends the superclass method to also get the brain region from the model :param qpoint: :return: """ iw, ih, w, h, v = super(SliceController, self).cursor2xyamp(qpoint) ba = self.qwidget.topview.ctrl.atlas xyz = np.zeros(3) xyz[np.array([self.waxis, self.haxis, self.daxis])] = [w, h, self.slice_coord] mapping = self.qwidget.topview.comboBox_mappings.currentText() try: region = ba.regions.get(ba.get_labels(xyz, mapping=mapping)) except ValueError: region = None return iw, ih, w, h, v, region @dataclass class ImageLayer: """ Class for keeping track of image layers. :param image_item :param pg_kwargs: pyqtgraph setImage arguments: {'levels': None, 'lut': None, 'opacity': 1.0} :param slice_kwargs: ibllib.atlas.slice arguments: {'volume': 'image', 'mode': 'clip'} :param """ image_item: pg.ImageItem = field(default_factory=pg.ImageItem) pg_kwargs: dict = field(default_factory=lambda: {}) slice_kwargs: dict = field(default_factory=lambda: {'volume': 'image', 'mode': 'clip'}) def view(res=25, title=None, brainmap='Allen'): """ """ qt.create_app() av = TopView._get_or_create(title=title, res=res, brainmap=brainmap) av.show() return av
[ "numpy.insert", "PyQt5.QtWidgets.QApplication.instance", "PyQt5.QtGui.QTransform", "matplotlib.cm.get_cmap", "pathlib.Path", "pyqtgraph.ScatterPlotItem", "pyqtgraph.InfiniteLine", "numpy.array", "ibllib.atlas.AllenAtlas", "numpy.zeros", "numpy.isnan", "pyqtgraph.mkPen", "numpy.nanmin", "qt.create_app", "dataclasses.field", "pyqtgraph.SignalProxy" ]
[((14373, 14408), 'dataclasses.field', 'field', ([], {'default_factory': 'pg.ImageItem'}), '(default_factory=pg.ImageItem)\n', (14378, 14408), False, 'from dataclasses import dataclass, field\n'), ((14431, 14465), 'dataclasses.field', 'field', ([], {'default_factory': '(lambda : {})'}), '(default_factory=lambda : {})\n', (14436, 14465), False, 'from dataclasses import dataclass, field\n'), ((14490, 14557), 'dataclasses.field', 'field', ([], {'default_factory': "(lambda : {'volume': 'image', 'mode': 'clip'})"}), "(default_factory=lambda : {'volume': 'image', 'mode': 'clip'})\n", (14495, 14557), False, 'from dataclasses import dataclass, field\n'), ((14627, 14642), 'qt.create_app', 'qt.create_app', ([], {}), '()\n', (14640, 14642), False, 'import qt\n'), ((894, 927), 'PyQt5.QtWidgets.QApplication.instance', 'QtWidgets.QApplication.instance', ([], {}), '()\n', (925, 927), False, 'from PyQt5 import QtWidgets, uic\n'), ((1852, 1898), 'pyqtgraph.InfiniteLine', 'pg.InfiniteLine', ([], {'angle': '(0)', 'pos': '(0)'}), '(angle=0, pos=0, **line_kwargs)\n', (1867, 1898), True, 'import pyqtgraph as pg\n'), ((1928, 1975), 'pyqtgraph.InfiniteLine', 'pg.InfiniteLine', ([], {'angle': '(90)', 'pos': '(0)'}), '(angle=90, pos=0, **line_kwargs)\n', (1943, 1975), True, 'import pyqtgraph as pg\n'), ((2383, 2454), 'pyqtgraph.SignalProxy', 'pg.SignalProxy', (['s.sigMouseMoved'], {'rateLimit': '(60)', 'slot': 'self.mouseMoveEvent'}), '(s.sigMouseMoved, rateLimit=60, slot=self.mouseMoveEvent)\n', (2397, 2454), True, 'import pyqtgraph as pg\n'), ((4019, 4047), 'matplotlib.cm.get_cmap', 'matplotlib.cm.get_cmap', (['cmap'], {}), '(cmap)\n', (4041, 4047), False, 'import matplotlib\n'), ((4140, 4179), 'numpy.insert', 'np.insert', (['lut', '(0)', '[0, 0, 0, 0]'], {'axis': '(0)'}), '(lut, 0, [0, 0, 0, 0], axis=0)\n', (4149, 4179), True, 'import numpy as np\n'), ((6372, 6443), 'pyqtgraph.SignalProxy', 'pg.SignalProxy', (['s.sigMouseMoved'], {'rateLimit': '(60)', 'slot': 'self.mouseMoveEvent'}), '(s.sigMouseMoved, rateLimit=60, slot=self.mouseMoveEvent)\n', (6386, 6443), True, 'import pyqtgraph as pg\n'), ((6550, 6570), 'pyqtgraph.ScatterPlotItem', 'pg.ScatterPlotItem', ([], {}), '()\n', (6568, 6570), True, 'import pyqtgraph as pg\n'), ((10451, 10485), 'ibllib.atlas.AllenAtlas', 'AllenAtlas', (['res'], {'brainmap': 'brainmap'}), '(res, brainmap=brainmap)\n', (10461, 10485), False, 'from ibllib.atlas import AllenAtlas\n'), ((11968, 11982), 'numpy.nanmin', 'np.nanmin', (['img'], {}), '(img)\n', (11977, 11982), True, 'import numpy as np\n'), ((13680, 13691), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (13688, 13691), True, 'import numpy as np\n'), ((1792, 1822), 'pyqtgraph.mkPen', 'pg.mkPen', (['(0, 255, 0)'], {'width': '(3)'}), '((0, 255, 0), width=3)\n', (1800, 1822), True, 'import pyqtgraph as pg\n'), ((8858, 8879), 'numpy.array', 'np.array', (['[iw, ih, 1]'], {}), '([iw, ih, 1])\n', (8866, 8879), True, 'import numpy as np\n'), ((9883, 9905), 'PyQt5.QtGui.QTransform', 'QTransform', (['*transform'], {}), '(*transform)\n', (9893, 9905), False, 'from PyQt5.QtGui import QTransform\n'), ((11951, 11964), 'numpy.isnan', 'np.isnan', (['img'], {}), '(img)\n', (11959, 11964), True, 'import numpy as np\n'), ((13704, 13750), 'numpy.array', 'np.array', (['[self.waxis, self.haxis, self.daxis]'], {}), '([self.waxis, self.haxis, self.daxis])\n', (13712, 13750), True, 'import numpy as np\n'), ((9810, 9829), 'numpy.array', 'np.array', (['transform'], {}), '(transform)\n', (9818, 9829), True, 'import numpy as np\n'), ((1511, 1525), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1515, 1525), False, 'from pathlib import Path\n'), ((5848, 5862), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (5852, 5862), False, 'from pathlib import Path\n')]
import os import numpy as np import numpy.random as rnd import matplotlib.pyplot as plt import logging from pandas import DataFrame from common.gen_samples import * from common.data_plotter import * from aad.aad_globals import * from aad.aad_support import * from aad.forest_description import * from aad.anomaly_dataset_support import * # from percept.percept import * """ pythonw -m aad.plot_anomalies_rectangle """ def get_x_tau(x, w, tau): v = x.dot(w) ranked = np.argsort(-v) tau_id = ranked[int(tau * len(v))] return tau_id, x[tau_id] def plot_anomalies_ifor(outdir, plot=False, plot_legends=False): u_theta = np.pi * 4. / 4 + np.pi * 5 / 180 x, y = get_sphere_samples([(50, 0, np.pi * 4. / 4, np.pi * 4. / 4 + np.pi * 2 / 4), (15, 1, u_theta - np.pi * 5 / 180, u_theta + np.pi * 5 / 180), (15, 1, np.pi * 6. / 4 - np.pi * 1.5 / 180, np.pi * 6. / 4)]) n, d = x.shape id_nomls = np.where(y == 0)[0] id_anoms = np.where(y == 1)[0] n_anoms = len(id_anoms) x_nomls, y_nomls = x[id_nomls, :], y[id_nomls] x_anoms, y_anoms = x[id_anoms, :], y[id_anoms] if plot: axis_fontsize = 16 line_colors = ["blue", "red", "red"] line_types = ["--", "--", "-"] line_widths = [2, 2, 2] lines = list() line_labels = list() tau = n_anoms * 1. / n # multiplying by a factor to move the plane lower w = normalize(np.ones(2)) r = np.array([np.min(x[:, 0]), np.max(x[:, 0])]) tau_id, x_tau = get_x_tau(x, w, tau) q_tau = w.dot(x_tau) # plot the true weight vector u = interpolate_2D_line_by_point_and_vec(np.array([-1., 1.]), [0., 0.], [np.cos(u_theta + np.pi * 1 / 4), np.sin(u_theta + np.pi * 1 / 4)]) lines.append(u) line_labels.append(r"True weights ${\bf u}$") zd = interpolate_2D_line_by_point_and_vec(np.array([-1., 1.0]), [0., 0.], w) lines.append(zd) line_labels.append(r"Uniform weights ${\bf w}_{unif}$") zw = interpolate_2D_line_by_slope_and_intercept(np.array([-1., 1.]), -w[0] / w[1], q_tau / w[1]) lines.append(zw) line_labels.append(r"hyperplane $\perp$ ${\bf w}_{unif}$") pdffile = os.path.join(outdir, "anomalies_in_ifor.pdf") dp = DataPlotter(pdfpath=pdffile, rows=1, cols=1) pl = dp.get_next_plot() pl.set_aspect('equal') # plt.xlabel('x', fontsize=axis_fontsize) # plt.ylabel('y', fontsize=axis_fontsize) plt.xticks([]) plt.yticks([]) plt.xlim([-1.05, 1.05]) plt.ylim([-1.05, 1.05]) pl.scatter(x_nomls[:, 0], x_nomls[:, 1], s=45, c="blue", marker="+", label="Nominal") pl.scatter(x_anoms[:, 0], x_anoms[:, 1], s=45, c="red", marker="+", label="Anomaly") for i, line in enumerate(lines): color = "blue" if line_colors is None else line_colors[i] pl.plot(line[:, 0], line[:, 1], line_types[i], color=color, linewidth=line_widths[i], label=line_labels[i] if plot_legends else None) plt.axhline(0, linestyle="--", color="lightgrey") plt.axvline(0, linestyle="--", color="lightgrey") if plot_legends: pl.legend(loc='lower right', prop={'size': 12}) dp.close() return x, y def plot_anomalies_rect(outdir, plot=False, plot_legends=False): x_nomls = rnd.uniform(0., 1., 500) x_nomls = np.reshape(x_nomls, newshape=(250, -1)) anom_mu = (0.83, 0.95) u_theta = np.arctan(0.9 / 0.8) anom_score_dist = MVNParams( mu=np.array([anom_mu[0], anom_mu[1]]), mcorr=np.array([ [1, -0.5], [0, 1.0]]), dvar=np.array([0.002, 0.0005]) ) n_anoms = 30 x_anoms = generate_dependent_normal_samples(n_anoms, anom_score_dist.mu, anom_score_dist.mcorr, anom_score_dist.dvar) x = np.vstack([x_nomls, x_anoms]) y = np.array(np.zeros(x_nomls.shape[0], dtype=int)) y = np.append(y, np.ones(x_anoms.shape[0], dtype=int)) if plot: n, d = x.shape # tau is computed assuming that the anomalies occupy tau-proportion # of the circumference tau = n_anoms * 1.3 / n # multiplying by a factor to move the plane lower w = normalize(np.ones(2)) r = np.array([np.min(x[:, 0]), np.max(x[:, 0])]) line_colors = ["blue", "red", "red"] line_types = ["--", "--", "-"] line_widths = [2, 2, 2] lines = list() line_labels = list() tau_id, x_tau = get_x_tau(x, w, tau) q_tau = w.dot(x_tau) # plot the true weight vector u = interpolate_2D_line_by_point_and_vec(np.array([0., 1.]), [0., 0.], [np.cos(u_theta), np.sin(u_theta)]) lines.append(u) line_labels.append(r"True weights ${\bf u}$") zd = interpolate_2D_line_by_point_and_vec(np.array([0., 1.0]), [0., 0.], w) lines.append(zd) line_labels.append(r"Uniform weights ${\bf w}_{unif}$") zw = interpolate_2D_line_by_slope_and_intercept(np.array([0., 1.05]), -w[0] / w[1], q_tau / w[1]) lines.append(zw) line_labels.append(r"hyperplane $\perp$ ${\bf w}_{unif}$") axis_fontsize = 16 pdffile = os.path.join(outdir, "anomalies_in_rect.pdf") dp = DataPlotter(pdfpath=pdffile, rows=1, cols=1) pl = dp.get_next_plot() pl.set_aspect('equal') # plt.xlabel('x', fontsize=axis_fontsize) # plt.ylabel('y', fontsize=axis_fontsize) plt.xticks([]) plt.yticks([]) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) pl.scatter(x_nomls[:, 0], x_nomls[:, 1], s=45, c="blue", marker="+", label="Nominal") pl.scatter(x_anoms[:, 0], x_anoms[:, 1], s=45, c="red", marker="+", label="Anomaly") for i, line in enumerate(lines): color = "blue" if line_colors is None else line_colors[i] pl.plot(line[:, 0], line[:, 1], line_types[i], color=color, linewidth=line_widths[i], label=line_labels[i] if plot_legends else None) if plot_legends: pl.legend(loc='lower right', prop={'size': 12}) dp.close() return x, y if __name__ == "__main__": logger = logging.getLogger(__name__) args = get_command_args(debug=True, debug_args=["--debug", "--plot", "--log_file=temp/plot_anomalies_rectangle.log"]) # print "log file: %s" % args.log_file configure_logger(args) rnd.seed(42) outdir = "./temp/illustration" dir_create(outdir) # plot isolation forest score distribution illustration # plot_anomalies_ifor(outdir, plot=True, plot_legends=False) plot_anomalies_rect(outdir, plot=True, plot_legends=False)
[ "logging.getLogger", "numpy.argsort", "numpy.array", "numpy.sin", "numpy.reshape", "numpy.where", "numpy.max", "matplotlib.pyplot.axhline", "matplotlib.pyplot.yticks", "numpy.vstack", "numpy.random.seed", "numpy.min", "matplotlib.pyplot.ylim", "numpy.arctan", "numpy.ones", "matplotlib.pyplot.xticks", "numpy.cos", "matplotlib.pyplot.xlim", "os.path.join", "numpy.zeros", "numpy.random.uniform", "matplotlib.pyplot.axvline" ]
[((481, 495), 'numpy.argsort', 'np.argsort', (['(-v)'], {}), '(-v)\n', (491, 495), True, 'import numpy as np\n'), ((3499, 3525), 'numpy.random.uniform', 'rnd.uniform', (['(0.0)', '(1.0)', '(500)'], {}), '(0.0, 1.0, 500)\n', (3510, 3525), True, 'import numpy.random as rnd\n'), ((3538, 3577), 'numpy.reshape', 'np.reshape', (['x_nomls'], {'newshape': '(250, -1)'}), '(x_nomls, newshape=(250, -1))\n', (3548, 3577), True, 'import numpy as np\n'), ((3620, 3640), 'numpy.arctan', 'np.arctan', (['(0.9 / 0.8)'], {}), '(0.9 / 0.8)\n', (3629, 3640), True, 'import numpy as np\n'), ((4131, 4160), 'numpy.vstack', 'np.vstack', (['[x_nomls, x_anoms]'], {}), '([x_nomls, x_anoms])\n', (4140, 4160), True, 'import numpy as np\n'), ((6545, 6572), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (6562, 6572), False, 'import logging\n'), ((6875, 6887), 'numpy.random.seed', 'rnd.seed', (['(42)'], {}), '(42)\n', (6883, 6887), True, 'import numpy.random as rnd\n'), ((988, 1004), 'numpy.where', 'np.where', (['(y == 0)'], {}), '(y == 0)\n', (996, 1004), True, 'import numpy as np\n'), ((1023, 1039), 'numpy.where', 'np.where', (['(y == 1)'], {}), '(y == 1)\n', (1031, 1039), True, 'import numpy as np\n'), ((2339, 2384), 'os.path.join', 'os.path.join', (['outdir', '"""anomalies_in_ifor.pdf"""'], {}), "(outdir, 'anomalies_in_ifor.pdf')\n", (2351, 2384), False, 'import os\n'), ((2614, 2628), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (2624, 2628), True, 'import matplotlib.pyplot as plt\n'), ((2637, 2651), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (2647, 2651), True, 'import matplotlib.pyplot as plt\n'), ((2660, 2683), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-1.05, 1.05]'], {}), '([-1.05, 1.05])\n', (2668, 2683), True, 'import matplotlib.pyplot as plt\n'), ((2692, 2715), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-1.05, 1.05]'], {}), '([-1.05, 1.05])\n', (2700, 2715), True, 'import matplotlib.pyplot as plt\n'), ((3189, 3238), 'matplotlib.pyplot.axhline', 'plt.axhline', (['(0)'], {'linestyle': '"""--"""', 'color': '"""lightgrey"""'}), "(0, linestyle='--', color='lightgrey')\n", (3200, 3238), True, 'import matplotlib.pyplot as plt\n'), ((3247, 3296), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(0)'], {'linestyle': '"""--"""', 'color': '"""lightgrey"""'}), "(0, linestyle='--', color='lightgrey')\n", (3258, 3296), True, 'import matplotlib.pyplot as plt\n'), ((4178, 4215), 'numpy.zeros', 'np.zeros', (['x_nomls.shape[0]'], {'dtype': 'int'}), '(x_nomls.shape[0], dtype=int)\n', (4186, 4215), True, 'import numpy as np\n'), ((4238, 4274), 'numpy.ones', 'np.ones', (['x_anoms.shape[0]'], {'dtype': 'int'}), '(x_anoms.shape[0], dtype=int)\n', (4245, 4274), True, 'import numpy as np\n'), ((5539, 5584), 'os.path.join', 'os.path.join', (['outdir', '"""anomalies_in_rect.pdf"""'], {}), "(outdir, 'anomalies_in_rect.pdf')\n", (5551, 5584), False, 'import os\n'), ((5814, 5828), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5824, 5828), True, 'import matplotlib.pyplot as plt\n'), ((5837, 5851), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5847, 5851), True, 'import matplotlib.pyplot as plt\n'), ((5860, 5883), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.05, 1.05]'], {}), '([-0.05, 1.05])\n', (5868, 5883), True, 'import matplotlib.pyplot as plt\n'), ((5892, 5915), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-0.05, 1.05]'], {}), '([-0.05, 1.05])\n', (5900, 5915), True, 'import matplotlib.pyplot as plt\n'), ((1489, 1499), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (1496, 1499), True, 'import numpy as np\n'), ((1721, 1742), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {}), '([-1.0, 1.0])\n', (1729, 1742), True, 'import numpy as np\n'), ((1998, 2019), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {}), '([-1.0, 1.0])\n', (2006, 2019), True, 'import numpy as np\n'), ((2179, 2200), 'numpy.array', 'np.array', (['[-1.0, 1.0]'], {}), '([-1.0, 1.0])\n', (2187, 2200), True, 'import numpy as np\n'), ((3686, 3720), 'numpy.array', 'np.array', (['[anom_mu[0], anom_mu[1]]'], {}), '([anom_mu[0], anom_mu[1]])\n', (3694, 3720), True, 'import numpy as np\n'), ((3736, 3767), 'numpy.array', 'np.array', (['[[1, -0.5], [0, 1.0]]'], {}), '([[1, -0.5], [0, 1.0]])\n', (3744, 3767), True, 'import numpy as np\n'), ((3807, 3832), 'numpy.array', 'np.array', (['[0.002, 0.0005]'], {}), '([0.002, 0.0005])\n', (3815, 3832), True, 'import numpy as np\n'), ((4526, 4536), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (4533, 4536), True, 'import numpy as np\n'), ((4927, 4947), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (4935, 4947), True, 'import numpy as np\n'), ((5171, 5191), 'numpy.array', 'np.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (5179, 5191), True, 'import numpy as np\n'), ((5351, 5372), 'numpy.array', 'np.array', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (5359, 5372), True, 'import numpy as np\n'), ((1523, 1538), 'numpy.min', 'np.min', (['x[:, 0]'], {}), '(x[:, 0])\n', (1529, 1538), True, 'import numpy as np\n'), ((1540, 1555), 'numpy.max', 'np.max', (['x[:, 0]'], {}), '(x[:, 0])\n', (1546, 1555), True, 'import numpy as np\n'), ((1802, 1833), 'numpy.cos', 'np.cos', (['(u_theta + np.pi * 1 / 4)'], {}), '(u_theta + np.pi * 1 / 4)\n', (1808, 1833), True, 'import numpy as np\n'), ((1835, 1866), 'numpy.sin', 'np.sin', (['(u_theta + np.pi * 1 / 4)'], {}), '(u_theta + np.pi * 1 / 4)\n', (1841, 1866), True, 'import numpy as np\n'), ((4560, 4575), 'numpy.min', 'np.min', (['x[:, 0]'], {}), '(x[:, 0])\n', (4566, 4575), True, 'import numpy as np\n'), ((4577, 4592), 'numpy.max', 'np.max', (['x[:, 0]'], {}), '(x[:, 0])\n', (4583, 4592), True, 'import numpy as np\n'), ((5007, 5022), 'numpy.cos', 'np.cos', (['u_theta'], {}), '(u_theta)\n', (5013, 5022), True, 'import numpy as np\n'), ((5024, 5039), 'numpy.sin', 'np.sin', (['u_theta'], {}), '(u_theta)\n', (5030, 5039), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Barycenters =========== This example shows three methods to compute barycenters of time series. For an overview over the available methods see the :mod:`tslearn.barycenters` module. *tslearn* provides three methods for calculating barycenters for a given set of time series: * *Euclidean barycenter* is simply the arithmetic mean for each individual point in time, minimizing the summed euclidean distance for each of them. As can be seen below, it is very different from the DTW-based methods and may often be inappropriate. However, it is the fastest of the methods shown. * *DTW Barycenter Averaging (DBA)* is an iteratively refined barycenter, starting out with a (potentially) bad candidate and improving it until convergence criteria are met. The optimization can be accomplished with (a) expectation-maximization [1] and (b) stochastic subgradient descent [2]. Empirically, the latter "is [often] more stable and finds better solutions in shorter time" [2]. * *Soft-DTW barycenter* uses a differentiable loss function to iteratively find a barycenter [3]. The method itself and the parameter :math:`\\gamma=1.0` is described in more detail in the section on :ref:`DTW<dtw>`. There is also a dedicated :ref:`example<sphx_glr_auto_examples_plot_barycenter_interpolate.py>` available. [1] <NAME>, <NAME> & <NAME>. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, Elsevier, 2011, Vol. 44, Num. 3, pp. 678-693. [2] <NAME> & <NAME>. Nonsmooth Analysis and Subgradient Methods for Averaging in Dynamic Time Warping Spaces. Pattern Recognition, 74, 340-358. [3] <NAME> & <NAME>. Soft-DTW: a Differentiable Loss Function for Time-Series. ICML 2017. """ # Author: <NAME>, <NAME> # License: BSD 3 clause import numpy import matplotlib.pyplot as plt from tslearn.barycenters import \ euclidean_barycenter, \ dtw_barycenter_averaging, \ dtw_barycenter_averaging_subgradient, \ softdtw_barycenter from tslearn.datasets import CachedDatasets # fetch the example data set numpy.random.seed(0) X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace") X = X_train[y_train == 2] length_of_sequence = X.shape[1] def plot_helper(barycenter): # plot all points of the data set for series in X: plt.plot(series.ravel(), "k-", alpha=.2) # plot the given barycenter of them plt.plot(barycenter.ravel(), "r-", linewidth=2) # plot the four variants with the same number of iterations and a tolerance of # 1e-3 where applicable ax1 = plt.subplot(4, 1, 1) plt.title("Euclidean barycenter") plot_helper(euclidean_barycenter(X)) plt.subplot(4, 1, 2, sharex=ax1) plt.title("DBA (vectorized version of Petitjean's EM)") plot_helper(dtw_barycenter_averaging(X, max_iter=50, tol=1e-3)) plt.subplot(4, 1, 3, sharex=ax1) plt.title("DBA (subgradient descent approach)") plot_helper(dtw_barycenter_averaging_subgradient(X, max_iter=50, tol=1e-3)) plt.subplot(4, 1, 4, sharex=ax1) plt.title("Soft-DTW barycenter ($\gamma$=1.0)") plot_helper(softdtw_barycenter(X, gamma=1., max_iter=50, tol=1e-3)) # clip the axes for better readability ax1.set_xlim([0, length_of_sequence]) # show the plot(s) plt.tight_layout() plt.show()
[ "tslearn.barycenters.dtw_barycenter_averaging", "tslearn.barycenters.dtw_barycenter_averaging_subgradient", "tslearn.barycenters.euclidean_barycenter", "tslearn.datasets.CachedDatasets", "numpy.random.seed", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "tslearn.barycenters.softdtw_barycenter", "matplotlib.pyplot.show" ]
[((2102, 2122), 'numpy.random.seed', 'numpy.random.seed', (['(0)'], {}), '(0)\n', (2119, 2122), False, 'import numpy\n'), ((2587, 2607), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(1)', '(1)'], {}), '(4, 1, 1)\n', (2598, 2607), True, 'import matplotlib.pyplot as plt\n'), ((2608, 2641), 'matplotlib.pyplot.title', 'plt.title', (['"""Euclidean barycenter"""'], {}), "('Euclidean barycenter')\n", (2617, 2641), True, 'import matplotlib.pyplot as plt\n'), ((2680, 2712), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(1)', '(2)'], {'sharex': 'ax1'}), '(4, 1, 2, sharex=ax1)\n', (2691, 2712), True, 'import matplotlib.pyplot as plt\n'), ((2713, 2768), 'matplotlib.pyplot.title', 'plt.title', (['"""DBA (vectorized version of Petitjean\'s EM)"""'], {}), '("DBA (vectorized version of Petitjean\'s EM)")\n', (2722, 2768), True, 'import matplotlib.pyplot as plt\n'), ((2834, 2866), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(1)', '(3)'], {'sharex': 'ax1'}), '(4, 1, 3, sharex=ax1)\n', (2845, 2866), True, 'import matplotlib.pyplot as plt\n'), ((2867, 2914), 'matplotlib.pyplot.title', 'plt.title', (['"""DBA (subgradient descent approach)"""'], {}), "('DBA (subgradient descent approach)')\n", (2876, 2914), True, 'import matplotlib.pyplot as plt\n'), ((2992, 3024), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(1)', '(4)'], {'sharex': 'ax1'}), '(4, 1, 4, sharex=ax1)\n', (3003, 3024), True, 'import matplotlib.pyplot as plt\n'), ((3025, 3073), 'matplotlib.pyplot.title', 'plt.title', (['"""Soft-DTW barycenter ($\\\\gamma$=1.0)"""'], {}), "('Soft-DTW barycenter ($\\\\gamma$=1.0)')\n", (3034, 3073), True, 'import matplotlib.pyplot as plt\n'), ((3239, 3257), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3255, 3257), True, 'import matplotlib.pyplot as plt\n'), ((3258, 3268), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3266, 3268), True, 'import matplotlib.pyplot as plt\n'), ((2654, 2677), 'tslearn.barycenters.euclidean_barycenter', 'euclidean_barycenter', (['X'], {}), '(X)\n', (2674, 2677), False, 'from tslearn.barycenters import euclidean_barycenter, dtw_barycenter_averaging, dtw_barycenter_averaging_subgradient, softdtw_barycenter\n'), ((2781, 2832), 'tslearn.barycenters.dtw_barycenter_averaging', 'dtw_barycenter_averaging', (['X'], {'max_iter': '(50)', 'tol': '(0.001)'}), '(X, max_iter=50, tol=0.001)\n', (2805, 2832), False, 'from tslearn.barycenters import euclidean_barycenter, dtw_barycenter_averaging, dtw_barycenter_averaging_subgradient, softdtw_barycenter\n'), ((2927, 2990), 'tslearn.barycenters.dtw_barycenter_averaging_subgradient', 'dtw_barycenter_averaging_subgradient', (['X'], {'max_iter': '(50)', 'tol': '(0.001)'}), '(X, max_iter=50, tol=0.001)\n', (2963, 2990), False, 'from tslearn.barycenters import euclidean_barycenter, dtw_barycenter_averaging, dtw_barycenter_averaging_subgradient, softdtw_barycenter\n'), ((3085, 3141), 'tslearn.barycenters.softdtw_barycenter', 'softdtw_barycenter', (['X'], {'gamma': '(1.0)', 'max_iter': '(50)', 'tol': '(0.001)'}), '(X, gamma=1.0, max_iter=50, tol=0.001)\n', (3103, 3141), False, 'from tslearn.barycenters import euclidean_barycenter, dtw_barycenter_averaging, dtw_barycenter_averaging_subgradient, softdtw_barycenter\n'), ((2148, 2164), 'tslearn.datasets.CachedDatasets', 'CachedDatasets', ([], {}), '()\n', (2162, 2164), False, 'from tslearn.datasets import CachedDatasets\n')]
import numpy as np import pandas as pd import pandas.api.types as pdtypes from ..utils import resolution from ..doctools import document from .stat import stat @document class stat_boxplot(stat): """ Compute boxplot statistics {usage} Parameters ---------- {common_parameters} coef : float, optional (default: 1.5) Length of the whiskers as a multiple of the Interquartile Range. See Also -------- plotnine.geoms.geom_boxplot """ _aesthetics_doc = """ {aesthetics_table} .. rubric:: Options for computed aesthetics :: 'width' # width of boxplot 'lower' # lower hinge, 25% quantile 'middle' # median, 50% quantile 'upper' # upper hinge, 75% quantile 'notchlower' # lower edge of notch, computed as; # :py:`median - 1.58 * IQR / sqrt(n)` 'notchupper' # upper edge of notch, computed as; # :py:`median + 1.58 * IQR / sqrt(n)` 'ymin' # lower whisker, computed as; smallest observation # greater than or equal to lower hinge - 1.5 * IQR 'ymax' # upper whisker, computed as; largest observation # less than or equal to upper hinge + 1.5 * IQR Calculated aesthetics are accessed using the `after_stat` function. e.g. :py:`after_stat('width')`. """ REQUIRED_AES = {'x', 'y'} NON_MISSING_AES = {'weight'} DEFAULT_PARAMS = {'geom': 'boxplot', 'position': 'dodge', 'na_rm': False, 'coef': 1.5, 'width': None} CREATES = {'lower', 'upper', 'middle', 'ymin', 'ymax', 'outliers', 'notchupper', 'notchlower', 'width', 'relvarwidth'} def setup_params(self, data): if self.params['width'] is None: self.params['width'] = resolution(data['x'], False) * 0.75 return self.params @classmethod def compute_group(cls, data, scales, **params): y = data['y'].to_numpy() weights = data.get('weight', None) total_weight = len(y) if weights is None else np.sum(weights) res = weighted_boxplot_stats(y, weights=weights, whis=params['coef']) if len(np.unique(data['x'])) > 1: width = np.ptp(data['x']) * 0.9 else: width = params['width'] if pdtypes.is_categorical_dtype(data['x']): x = data['x'].iloc[0] else: x = np.mean([data['x'].min(), data['x'].max()]) d = { 'ymin': res['whislo'], 'lower': res['q1'], 'middle': [res['med']], 'upper': res['q3'], 'ymax': res['whishi'], 'outliers': [res['fliers']], 'notchupper': res['cihi'], 'notchlower': res['cilo'], 'x': x, 'width': width, 'relvarwidth': np.sqrt(total_weight) } return pd.DataFrame(d) def weighted_percentile(a, q, weights=None): """ Compute the weighted q-th percentile of data Parameters ---------- a : array_like Input that can be converted into an array. q : array_like[float] Percentile or sequence of percentiles to compute. Must be int the range [0, 100] weights : array_like Weights associated with the input values. """ # Calculate and interpolate weighted percentiles # method derived from https://en.wikipedia.org/wiki/Percentile # using numpy's standard C = 1 if weights is None: weights = np.ones(len(a)) weights = np.asarray(weights) q = np.asarray(q) C = 1 idx_s = np.argsort(a) a_s = a[idx_s] w_n = weights[idx_s] S_N = np.sum(weights) S_n = np.cumsum(w_n) p_n = (S_n - C * w_n) / (S_N + (1 - 2 * C) * w_n) pcts = np.interp(q / 100.0, p_n, a_s) return pcts def weighted_boxplot_stats(x, weights=None, whis=1.5): """ Calculate weighted boxplot plot statistics Parameters ---------- x : array_like Data weights : array_like, optional Weights associated with the data. whis : float, optional (default: 1.5) Position of the whiskers beyond the interquartile range. The data beyond the whisker are considered outliers. If a float, the lower whisker is at the lowest datum above ``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and third quartiles. The default value of ``whis = 1.5`` corresponds to Tukey's original definition of boxplots. Notes ----- This method adapted from Matplotlibs boxplot_stats. The key difference is the use of a weighted percentile calculation and then using linear interpolation to map weight percentiles back to data. """ if weights is None: q1, med, q3 = np.percentile(x, (25, 50, 75)) n = len(x) else: q1, med, q3 = weighted_percentile(x, (25, 50, 75), weights) n = np.sum(weights) iqr = q3 - q1 mean = np.average(x, weights=weights) cilo = med - 1.58 * iqr / np.sqrt(n) cihi = med + 1.58 * iqr / np.sqrt(n) # low extreme loval = q1 - whis * iqr lox = x[x >= loval] if len(lox) == 0 or np.min(lox) > q1: whislo = q1 else: whislo = np.min(lox) # high extreme hival = q3 + whis * iqr hix = x[x <= hival] if len(hix) == 0 or np.max(hix) < q3: whishi = q3 else: whishi = np.max(hix) bpstats = { 'fliers': x[(x < whislo) | (x > whishi)], 'mean': mean, 'med': med, 'q1': q1, 'q3': q3, 'iqr': iqr, 'whislo': whislo, 'whishi': whishi, 'cilo': cilo, 'cihi': cihi, } return bpstats
[ "numpy.ptp", "numpy.sqrt", "numpy.unique", "numpy.average", "numpy.asarray", "numpy.max", "numpy.argsort", "numpy.sum", "pandas.api.types.is_categorical_dtype", "numpy.percentile", "numpy.interp", "numpy.min", "pandas.DataFrame", "numpy.cumsum" ]
[((3580, 3599), 'numpy.asarray', 'np.asarray', (['weights'], {}), '(weights)\n', (3590, 3599), True, 'import numpy as np\n'), ((3608, 3621), 'numpy.asarray', 'np.asarray', (['q'], {}), '(q)\n', (3618, 3621), True, 'import numpy as np\n'), ((3645, 3658), 'numpy.argsort', 'np.argsort', (['a'], {}), '(a)\n', (3655, 3658), True, 'import numpy as np\n'), ((3713, 3728), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (3719, 3728), True, 'import numpy as np\n'), ((3739, 3753), 'numpy.cumsum', 'np.cumsum', (['w_n'], {}), '(w_n)\n', (3748, 3753), True, 'import numpy as np\n'), ((3819, 3849), 'numpy.interp', 'np.interp', (['(q / 100.0)', 'p_n', 'a_s'], {}), '(q / 100.0, p_n, a_s)\n', (3828, 3849), True, 'import numpy as np\n'), ((5101, 5131), 'numpy.average', 'np.average', (['x'], {'weights': 'weights'}), '(x, weights=weights)\n', (5111, 5131), True, 'import numpy as np\n'), ((2350, 2389), 'pandas.api.types.is_categorical_dtype', 'pdtypes.is_categorical_dtype', (["data['x']"], {}), "(data['x'])\n", (2378, 2389), True, 'import pandas.api.types as pdtypes\n'), ((2925, 2940), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (2937, 2940), True, 'import pandas as pd\n'), ((4915, 4945), 'numpy.percentile', 'np.percentile', (['x', '(25, 50, 75)'], {}), '(x, (25, 50, 75))\n', (4928, 4945), True, 'import numpy as np\n'), ((5055, 5070), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (5061, 5070), True, 'import numpy as np\n'), ((5374, 5385), 'numpy.min', 'np.min', (['lox'], {}), '(lox)\n', (5380, 5385), True, 'import numpy as np\n'), ((5547, 5558), 'numpy.max', 'np.max', (['hix'], {}), '(hix)\n', (5553, 5558), True, 'import numpy as np\n'), ((2107, 2122), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (2113, 2122), True, 'import numpy as np\n'), ((2878, 2899), 'numpy.sqrt', 'np.sqrt', (['total_weight'], {}), '(total_weight)\n', (2885, 2899), True, 'import numpy as np\n'), ((5162, 5172), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (5169, 5172), True, 'import numpy as np\n'), ((5203, 5213), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (5210, 5213), True, 'import numpy as np\n'), ((5309, 5320), 'numpy.min', 'np.min', (['lox'], {}), '(lox)\n', (5315, 5320), True, 'import numpy as np\n'), ((5482, 5493), 'numpy.max', 'np.max', (['hix'], {}), '(hix)\n', (5488, 5493), True, 'import numpy as np\n'), ((2217, 2237), 'numpy.unique', 'np.unique', (["data['x']"], {}), "(data['x'])\n", (2226, 2237), True, 'import numpy as np\n'), ((2264, 2281), 'numpy.ptp', 'np.ptp', (["data['x']"], {}), "(data['x'])\n", (2270, 2281), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import math import numpy as np import matplotlib.pyplot as plt #Constants GNa = 120 #Maximal conductance(Na+) ms/cm2 Gk = 36 #Maximal condectance(K+) ms/cm2 Gleak = 0.3 #Maximal conductance(leak) ms/cm2 cm = 1 #Cell capacitance uF/cm2 delta = 0.01 #Axon condectivity ms2 ENa = 50 #Nernst potential (Na+) mV Ek = -77 #Nernst potential (K+) mV Eleak = -54.4 #Nernst potential (leak) mV #Simulation Parameters simulation_time = 25.0 #ms domain_length = 4 #cm dt = 0.001 #ms dx = 0.1 #cm x = np.arange(0,domain_length,dx) time = np.arange(0,simulation_time,dt) #Convenience variables a1 = delta*dt/(dx*dx*cm) #V(i-1,t) a2 = 1 - 2*delta*dt/(dx*dx*cm) #V(i,t) a3 = delta*dt/(dx*dx*cm) #V(i+1,t) #Solution matrix V = np.zeros((len(x),len(time))) M = np.zeros((len(x),len(time))) N = np.zeros((len(x),len(time))) H = np.zeros((len(x),len(time))) V_initial = -70 #mV #Initial condition #When t=0, V=-70mV M=N=H=0 V[:,0] = V_initial M[:,0] = 0 N[:,0] = 0 H[:,0] = 0 #time loop for n in range(0,len(time)-1): #loop over space for i in range(1,len(x)-1): if n*dt <= 0.9 and n*dt >= 0.5 and i*dx <= 0.3: Istim = -25 #uA/cm2 else: Istim = 0 #Convenience variables INa = GNa*math.pow(M[i,n],3)*H[i,n]*(V[i,n]-ENa) Ik = Gk*math.pow(N[i,n],4)*(V[i,n]-Ek) Ileak = Gleak*(V[i,n]-Eleak) Iion = INa + Ik + Ileak + Istim #FTCS V[i,n+1] = a1*V[i-1,n] + a2*V[i,n] + a3*V[i+1,n] - dt*Iion/cm #Gating variables:M aM = (40+V[i,n])/(1-math.exp(-0.1*(40+V[i,n]))) bM = 0.108*math.exp(-V[i,n]/18) Minf = aM/(aM+bM) tM = 1/(aM+bM) M[i,n+1] = M[i,n] + dt*(Minf-M[i,n])/tM #Gating variables:H aH = 0.0027*math.exp(-V[i,n]/20) bH = 1/(1+math.exp(-0.1*(35-V[i,n]))) Hinf = aH/(aH+bH) tH = 1/(aH+bH) H[i,n+1] = H[i,n] + dt*(Hinf-H[i,n])/tH #Gating variables:N aN = 0.01*(55+V[i,n])/(1-math.exp(-0.1*(55+V[i,n]))) bN = 0.055*math.exp(-V[i,n]/80) Ninf = aN/(aN+bN) tN = 1/(aN+bN) N[i,n+1] = N[i,n] + dt*(Ninf-N[i,n])/tN #No flux boundary condition at both end V[0,n+1] = V[1,n+1] V[len(x)-1,n+1] = V[len(x)-2,n+1] #Conduction velocity Max1 = np.argmax(V[0,:]) Max2 = np.argmax(V[len(x)-1,:]) print(domain_length/((Max2-Max1)*dt)) #Plot V versus time for the first and last node of the axon. plt.figure(1) plt.clf() plt.plot(time,V[0,:],'r-',time,V[len(x)-1,:],'b-') plt.show()
[ "math.pow", "matplotlib.pyplot.clf", "numpy.argmax", "matplotlib.pyplot.figure", "math.exp", "numpy.arange", "matplotlib.pyplot.show" ]
[((518, 549), 'numpy.arange', 'np.arange', (['(0)', 'domain_length', 'dx'], {}), '(0, domain_length, dx)\n', (527, 549), True, 'import numpy as np\n'), ((555, 588), 'numpy.arange', 'np.arange', (['(0)', 'simulation_time', 'dt'], {}), '(0, simulation_time, dt)\n', (564, 588), True, 'import numpy as np\n'), ((2350, 2368), 'numpy.argmax', 'np.argmax', (['V[0, :]'], {}), '(V[0, :])\n', (2359, 2368), True, 'import numpy as np\n'), ((2502, 2515), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2512, 2515), True, 'import matplotlib.pyplot as plt\n'), ((2516, 2525), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2523, 2525), True, 'import matplotlib.pyplot as plt\n'), ((2577, 2587), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2585, 2587), True, 'import matplotlib.pyplot as plt\n'), ((1642, 1665), 'math.exp', 'math.exp', (['(-V[i, n] / 18)'], {}), '(-V[i, n] / 18)\n', (1650, 1665), False, 'import math\n'), ((1809, 1832), 'math.exp', 'math.exp', (['(-V[i, n] / 20)'], {}), '(-V[i, n] / 20)\n', (1817, 1832), False, 'import math\n'), ((2085, 2108), 'math.exp', 'math.exp', (['(-V[i, n] / 80)'], {}), '(-V[i, n] / 80)\n', (2093, 2108), False, 'import math\n'), ((1337, 1357), 'math.pow', 'math.pow', (['N[i, n]', '(4)'], {}), '(N[i, n], 4)\n', (1345, 1357), False, 'import math\n'), ((1595, 1626), 'math.exp', 'math.exp', (['(-0.1 * (40 + V[i, n]))'], {}), '(-0.1 * (40 + V[i, n]))\n', (1603, 1626), False, 'import math\n'), ((1850, 1881), 'math.exp', 'math.exp', (['(-0.1 * (35 - V[i, n]))'], {}), '(-0.1 * (35 - V[i, n]))\n', (1858, 1881), False, 'import math\n'), ((2038, 2069), 'math.exp', 'math.exp', (['(-0.1 * (55 + V[i, n]))'], {}), '(-0.1 * (55 + V[i, n]))\n', (2046, 2069), False, 'import math\n'), ((1282, 1302), 'math.pow', 'math.pow', (['M[i, n]', '(3)'], {}), '(M[i, n], 3)\n', (1290, 1302), False, 'import math\n')]
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np def entropy(p): q = 1. - p return -p * np.log(p) - q * np.log(q) def jsd(p, q): return [entropy(p / 2. + q / 2.) - entropy(p) / 2. - entropy(q) / 2.] def jsd_grad(go, o, pq_list): p, q = pq_list m = (p + q) / 2. return [np.log(p * (1 - m) / (1 - p) / m) / 2. * go, None] class TestJSDOps(hu.HypothesisTestCase): @given(n=st.integers(10, 100), **hu.gcs_cpu_only) def test_bernoulli_jsd(self, n, gc, dc): p = np.random.rand(n).astype(np.float32) q = np.random.rand(n).astype(np.float32) op = core.CreateOperator("BernoulliJSD", ["p", "q"], ["l"]) self.assertReferenceChecks( device_option=gc, op=op, inputs=[p, q], reference=jsd, output_to_grad='l', grad_reference=jsd_grad, )
[ "numpy.random.rand", "numpy.log", "hypothesis.strategies.integers", "caffe2.python.core.CreateOperator" ]
[((1536, 1590), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""BernoulliJSD"""', "['p', 'q']", "['l']"], {}), "('BernoulliJSD', ['p', 'q'], ['l'])\n", (1555, 1590), False, 'from caffe2.python import core\n'), ((1031, 1040), 'numpy.log', 'np.log', (['p'], {}), '(p)\n', (1037, 1040), True, 'import numpy as np\n'), ((1047, 1056), 'numpy.log', 'np.log', (['q'], {}), '(q)\n', (1053, 1056), True, 'import numpy as np\n'), ((1339, 1359), 'hypothesis.strategies.integers', 'st.integers', (['(10)', '(100)'], {}), '(10, 100)\n', (1350, 1359), True, 'import hypothesis.strategies as st\n'), ((1232, 1265), 'numpy.log', 'np.log', (['(p * (1 - m) / (1 - p) / m)'], {}), '(p * (1 - m) / (1 - p) / m)\n', (1238, 1265), True, 'import numpy as np\n'), ((1437, 1454), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (1451, 1454), True, 'import numpy as np\n'), ((1486, 1503), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (1500, 1503), True, 'import numpy as np\n')]
from collections import deque import networkx as nx import numpy as np def random_subtree(T, alpha, beta, subtree_mark): """ Random subtree of T according to Algorithm X in [1]. Args: alpha (float): probability of continuing to a neighbor beta (float): probability of non empty subtree T (NetworkX graph): the tree of which the subtree is taken Returns: A subtree of T References: [1] <NAME>., <NAME>. Pavlenko Bayesian structure learning in graphical models using sequential Monte Carlo. """ # Take empty subtree with prob beta empty = np.random.multinomial(1, [beta, 1-beta]).argmax() subtree_edges = [] subtree_nodes = [] if empty == 1: separators = {} subtree = nx.Graph() return (subtree, [], [], {}, separators, 1-beta) # Take non-empty subtree n = T.order() w = 0.0 visited = set() # cliques q = deque([]) start = np.random.randint(n) # then n means new component separators = {} #start_node = T.nodes()[start] # nx < 2.x start_node = list(T.nodes())[start] # nx > 2.x q.append(start_node) subtree_adjlist = {start_node: []} while len(q) > 0: node = q.popleft() visited.add(node) subtree_nodes.append(node) #T.node[node]["subnode"] = subtree_mark for neig in T.neighbors(node): b = np.random.multinomial(1, [1-alpha, alpha]).argmax() if neig not in visited: if b == 1: subtree_edges.append((node, neig)) subtree_adjlist[node].append(neig) subtree_adjlist[neig] = [node] q.append(neig) # Add separator sep = neig & node if not sep in separators: separators[sep] = [] separators[sep].append((neig, node)) else: w += 1 # subtree = T.subgraph(subtree_nodes) # assert subtree_nodes in T.nodes() subtree = None v = len(subtree_nodes) probtree = beta * v * np.power(alpha, v-1) / np.float(n) probtree *= np.power(1-alpha, w) return (subtree, subtree_nodes, subtree_edges, subtree_adjlist, separators, probtree) def pdf(subtree, T, alpha, beta): """ Returns the probability of the subtree subtree generated by random_subtree(T, alpha, beta). Args: T (NetworkX graph): A tree subtree (NetworkX graph): a subtree of T drawn by the subtree kernel alpha (float): Subtree kernel parameter beta (float): Subtree kernel parameter Returns: float """ p = subtree.order() if p == 0: return 1.0 - beta forest = T.subgraph(set(T.nodes()) - set(subtree.nodes())) #components = nx.connected_components(forest) components = forest.connected_components() w = float(len(list(components))) v = float(subtree.order()) alpha = float(alpha) beta = float(beta) n = float(T.order()) prob = beta * v * np.power(alpha, v-1) * np.power(1-alpha, w) / n return prob
[ "numpy.float", "collections.deque", "numpy.power", "networkx.Graph", "numpy.random.multinomial", "numpy.random.randint" ]
[((937, 946), 'collections.deque', 'deque', (['[]'], {}), '([])\n', (942, 946), False, 'from collections import deque\n'), ((959, 979), 'numpy.random.randint', 'np.random.randint', (['n'], {}), '(n)\n', (976, 979), True, 'import numpy as np\n'), ((2194, 2216), 'numpy.power', 'np.power', (['(1 - alpha)', 'w'], {}), '(1 - alpha, w)\n', (2202, 2216), True, 'import numpy as np\n'), ((770, 780), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (778, 780), True, 'import networkx as nx\n'), ((2166, 2177), 'numpy.float', 'np.float', (['n'], {}), '(n)\n', (2174, 2177), True, 'import numpy as np\n'), ((612, 654), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', '[beta, 1 - beta]'], {}), '(1, [beta, 1 - beta])\n', (633, 654), True, 'import numpy as np\n'), ((2143, 2165), 'numpy.power', 'np.power', (['alpha', '(v - 1)'], {}), '(alpha, v - 1)\n', (2151, 2165), True, 'import numpy as np\n'), ((3110, 3132), 'numpy.power', 'np.power', (['(1 - alpha)', 'w'], {}), '(1 - alpha, w)\n', (3118, 3132), True, 'import numpy as np\n'), ((3087, 3109), 'numpy.power', 'np.power', (['alpha', '(v - 1)'], {}), '(alpha, v - 1)\n', (3095, 3109), True, 'import numpy as np\n'), ((1405, 1449), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', '[1 - alpha, alpha]'], {}), '(1, [1 - alpha, alpha])\n', (1426, 1449), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Constants parameter functions DRS Import Rules: - only from apero.lang and apero.core.constants Created on 2019-01-17 at 15:24 @author: cook """ from collections import OrderedDict import copy import numpy as np import os import pkg_resources import shutil import sys from typing import Union, List, Type from pathlib import Path from apero.core.constants import constant_functions from apero.lang import drs_exceptions # ============================================================================= # Define variables # ============================================================================= # Define script name __NAME__ = 'param_functions.py' # Define package name PACKAGE = 'apero' # Define relative path to 'const' sub-package CONST_PATH = './core/instruments/' CORE_PATH = './core/instruments/default/' # Define config/constant/keyword scripts to open SCRIPTS = ['default_config.py', 'default_constants.py', 'default_keywords.py'] USCRIPTS = ['user_config.ini', 'user_constants.ini', 'user_keywords.ini'] PSEUDO_CONST_FILE = 'pseudo_const.py' PSEUDO_CONST_CLASS = 'PseudoConstants' # get the Drs Exceptions ArgumentError = drs_exceptions.ArgumentError ArgumentWarning = drs_exceptions.ArgumentWarning DRSError = drs_exceptions.DrsError DRSWarning = drs_exceptions.DrsWarning TextError = drs_exceptions.TextError TextWarning = drs_exceptions.TextWarning ConfigError = drs_exceptions.ConfigError ConfigWarning = drs_exceptions.ConfigWarning # get the logger BLOG = drs_exceptions.basiclogger # relative folder cache REL_CACHE = dict() CONFIG_CACHE = dict() PCONFIG_CACHE = dict() # cache some settings SETTINGS_CACHE_KEYS = ['DRS_DEBUG', 'ALLOW_BREAKPOINTS'] SETTINGS_CACHE = dict() # ============================================================================= # Define Custom classes # ============================================================================= # case insensitive dictionary class CaseInsensitiveDict(dict): """ Custom dictionary with string keys that are case insensitive """ def __init__(self, *arg, **kw): """ Construct the case insensitive dictionary class :param arg: arguments passed to dict :param kw: keyword arguments passed to dict """ # set function name _ = display_func(None, '__init__', __NAME__, 'CaseInsensitiveDict') # super from dict super(CaseInsensitiveDict, self).__init__(*arg, **kw) # force keys to be capitals (internally) self.__capitalise_keys__() def __getitem__(self, key: str) -> object: """ Method used to get the value of an item using "key" used as x.__getitem__(y) <==> x[y] where key is case insensitive :param key: string, the key for the value returned (case insensitive) :type key: str :return value: object, the value stored at position "key" """ # set function name _ = display_func(None, '__getitem__', __NAME__, 'CaseInsensitiveDict') # make key capitals key = _capitalise_key(key) # return from supers dictionary storage return super(CaseInsensitiveDict, self).__getitem__(key) def __setitem__(self, key: str, value: object, source: str = None): """ Sets an item wrapper for self[key] = value :param key: string, the key to set for the parameter :param value: object, the object to set (as in dictionary) for the parameter :param source: string, the source for the parameter :type key: str :type value: object :type source: str :return: None """ # set function name _ = display_func(None, '__setitem__', __NAME__, 'CaseInsensitiveDict') # capitalise string keys key = _capitalise_key(key) # then do the normal dictionary setting super(CaseInsensitiveDict, self).__setitem__(key, value) def __contains__(self, key: str) -> bool: """ Method to find whether CaseInsensitiveDict instance has key="key" used with the "in" operator if key exists in CaseInsensitiveDict True is returned else False is returned :param key: string, "key" to look for in CaseInsensitiveDict instance :type key: str :return bool: True if CaseInsensitiveDict instance has a key "key", else False :rtype: bool """ # set function name _ = display_func(None, '__contains__', __NAME__, 'CaseInsensitiveDict') # capitalize key first key = _capitalise_key(key) # return True if key in keys else return False return super(CaseInsensitiveDict, self).__contains__(key) def __delitem__(self, key: str): """ Deletes the "key" from CaseInsensitiveDict instance, case insensitive :param key: string, the key to delete from ParamDict instance, case insensitive :type key: str :return None: """ # set function name _ = display_func(None, '__delitem__', __NAME__, 'CaseInsensitiveDict') # capitalize key first key = _capitalise_key(key) # delete key from keys super(CaseInsensitiveDict, self).__delitem__(key) def get(self, key: str, default: Union[None, object] = None): """ Overrides the dictionary get function If "key" is in CaseInsensitiveDict instance then returns this value, else returns "default" (if default returned source is set to None) key is case insensitive :param key: string, the key to search for in ParamDict instance case insensitive :param default: object or None, if key not in ParamDict instance this object is returned :type key: str :type default: Union[None, object] :return value: if key in ParamDict instance this value is returned else the default value is returned (None if undefined) """ # set function name _ = display_func(None, 'get', __NAME__, 'CaseInsensitiveDict') # capitalise string keys key = _capitalise_key(key) # if we have the key return the value if key in self.keys(): return self.__getitem__(key) # else return the default key (None if not defined) else: return default def __capitalise_keys__(self): """ Capitalizes all keys in ParamDict (used to make ParamDict case insensitive), only if keys entered are strings :return None: """ # set function name _ = display_func(None, '__capitalise_keys__', __NAME__, 'CaseInsensitiveDict') # make keys a list keys = list(self.keys()) # loop around key in keys for key in keys: # check if key is a string if type(key) == str: # get value value = super(CaseInsensitiveDict, self).__getitem__(key) # delete old key super(CaseInsensitiveDict, self).__delitem__(key) # if it is a string set it to upper case key = key.upper() # set the new key super(CaseInsensitiveDict, self).__setitem__(key, value) class ListCaseInsensitiveDict(CaseInsensitiveDict): def __getitem__(self, key: str) -> list: """ Method used to get the value of an item using "key" used as x.__getitem__(y) <==> x[y] where key is case insensitive :param key: string, the key for the value returned (case insensitive) :type key: str :return value: list, the value stored at position "key" """ # set function name _ = display_func(None, '__getitem__', __NAME__, 'ListCaseInsensitiveDict') # return from supers dictionary storage # noinspection PyTypeChecker return list(super(ListCaseInsensitiveDict, self).__getitem__(key)) def __setitem__(self, key: str, value: list, source: str = None): """ Sets an item wrapper for self[key] = value :param key: string, the key to set for the parameter :param value: object, the object to set (as in dictionary) for the parameter :param source: string, the source for the parameter :type key: str :type value: list :type source: str :return: None """ # set function name _ = display_func(None, '__setitem__', __NAME__, 'ListCaseInsensitiveDict') # then do the normal dictionary setting super(ListCaseInsensitiveDict, self).__setitem__(key, list(value)) class ParamDict(CaseInsensitiveDict): """ Custom dictionary to retain source of a parameter (added via setSource, retreived via getSource). String keys are case insensitive. """ def __init__(self, *arg, **kw): """ Constructor for parameter dictionary, calls dict.__init__ i.e. the same as running dict(*arg, *kw) :param arg: arguments passed to CaseInsensitiveDict :param kw: keyword arguments passed to CaseInsensitiveDict """ # set function name _ = display_func(None, '__init__', __NAME__, 'ParamDict') # storage for the sources self.sources = CaseInsensitiveDict() # storage for the source history self.source_history = ListCaseInsensitiveDict() # storage for the instances self.instances = CaseInsensitiveDict() # the print format self.pfmt = '\t{0:30s}{1:45s} # {2}' # the print format for list items self.pfmt_ns = '\t{1:45s}' # whether the parameter dictionary is locked for editing self.locked = False # get text entry from constants (manual database) self.textentry = constant_functions.DisplayText() # run the super class (CaseInsensitiveDict <-- dict) super(ParamDict, self).__init__(*arg, **kw) def __getitem__(self, key: str) -> object: """ Method used to get the value of an item using "key" used as x.__getitem__(y) <==> x[y] where key is case insensitive :param key: string, the key for the value returned (case insensitive) :type key: str :return value: object, the value stored at position "key" :raises ConfigError: if key not found """ # set function name _ = display_func(None, '__getitem__', __NAME__, 'ParamDict') # try to get item from super try: return super(ParamDict, self).__getitem__(key) except KeyError: # log that parameter was not found in parameter dictionary emsg = self.textentry('00-003-00024', args=[key]) raise ConfigError(emsg, level='error') def __setitem__(self, key: str, value: object, source: Union[None, str] = None, instance: Union[None, object] = None): """ Sets an item wrapper for self[key] = value :param key: string, the key to set for the parameter :param value: object, the object to set (as in dictionary) for the parameter :param source: string, the source for the parameter :type key: str :type source: Union[None, str] :type instance: Union[None, object] :return: None :raises ConfigError: if parameter dictionary is locked """ global SETTINGS_CACHE # set function name _ = display_func(None, '__setitem__', __NAME__, 'ParamDict') # deal with parameter dictionary being locked if self.locked: # log that parameter dictionary is locked so we cannot set key raise ConfigError(self.textentry('00-003-00025', args=[key, value])) # if we dont have the key in sources set it regardless if key not in self.sources: self.sources[key] = source self.instances[key] = instance # if we do have the key only set it if source is not None elif source is not None: self.sources[key] = source self.instances[key] = instance # if setting in cached settings add if key in SETTINGS_CACHE_KEYS: SETTINGS_CACHE[key] = copy.deepcopy(value) # then do the normal dictionary setting super(ParamDict, self).__setitem__(key, value) def __contains__(self, key: str) -> bool: """ Method to find whether ParamDict instance has key="key" used with the "in" operator if key exists in ParamDict True is returned else False is returned :param key: string, "key" to look for in ParamDict instance :return bool: True if ParamDict instance has a key "key", else False """ # set function name _ = display_func(None, '__contains__', __NAME__, 'ParamDict') # run contains command from super return super(ParamDict, self).__contains__(key) def __delitem__(self, key: str): """ Deletes the "key" from ParamDict instance, case insensitive :param key: string, the key to delete from ParamDict instance, case insensitive :return None: """ # set function name _ = display_func(None, '__delitem__', __NAME__, 'ParamDict') # delete item using super super(ParamDict, self).__delitem__(key) def __repr__(self): """ Get the offical string representation for this instance :return: return the string representation :rtype: str """ # set function name _ = display_func(None, '__repr__', __NAME__, 'ParamDict') # get string from string print return self._string_print() def __str__(self) -> str: """ Get the informal string representation for this instance :return: return the string representation :rtype: str """ # set function name _ = display_func(None, '__repr__', __NAME__, 'ParamDict') # get string from string print return self._string_print() def set(self, key: str, value: object, source: Union[None, str] = None, instance: Union[None, object] = None): """ Set an item even if params is locked :param key: str, the key to set :param value: object, the value of the key to set :param source: str, the source of the value/key to set :param instance: object, the instance of the value/key to set :type key: str :type source: str :type instance: object :return: None """ # set function name _ = display_func(None, 'set', __NAME__, 'ParamDict') # if we dont have the key in sources set it regardless if key not in self.sources: self.sources[key] = source self.instances[key] = instance # if we do have the key only set it if source is not None elif source is not None: self.sources[key] = source self.instances[key] = instance # then do the normal dictionary setting super(ParamDict, self).__setitem__(key, value) def lock(self): """ Locks the parameter dictionary :return: """ # set function name _ = display_func(None, 'lock', __NAME__, 'ParamDict') # set locked to True self.locked = True def unlock(self): """ Unlocks the parameter dictionary :return: """ # set function name _ = display_func(None, 'unlock', __NAME__, 'ParamDict') # set locked to False self.locked = False def get(self, key: str, default: Union[None, object] = None) -> object: """ Overrides the dictionary get function If "key" is in ParamDict instance then returns this value, else returns "default" (if default returned source is set to None) key is case insensitive :param key: string, the key to search for in ParamDict instance case insensitive :param default: object or None, if key not in ParamDict instance this object is returned :type key: str :return value: if key in ParamDict instance this value is returned else the default value is returned (None if undefined) """ # set function name _ = display_func(None, 'get', __NAME__, 'ParamDict') # if we have the key return the value if key in self.keys(): return self.__getitem__(key) # else return the default key (None if not defined) else: self.sources[key] = None return default def set_source(self, key: str, source: str): """ Set a key to have sources[key] = source raises a ConfigError if key not found :param key: string, the main dictionary string :param source: string, the source to set :type key: str :type source: str :return None: :raises ConfigError: if key not found """ # set function name _ = display_func(None, 'set_source', __NAME__, 'ParamDict') # capitalise key = _capitalise_key(key) # don't put full path for sources in package source = _check_mod_source(source) # only add if key is in main dictionary if key in self.keys(): self.sources[key] = source # add to history if key in self.source_history: self.source_history[key].append(source) else: self.source_history[key] = [source] else: # log error: source cannot be added for key emsg = self.textentry('00-003-00026', args=[key]) raise ConfigError(emsg, level='error') def set_instance(self, key: str, instance: object): """ Set a key to have instance[key] = instance raise a Config Error if key not found :param key: str, the key to add :param instance: object, the instance to store (normally Const/Keyword) :type key: str :return None: :raises ConfigError: if key not found """ # set function name _ = display_func(None, 'set_instance', __NAME__, 'ParamDict') # capitalise key = _capitalise_key(key) # only add if key is in main dictionary if key in self.keys(): self.instances[key] = instance else: # log error: instance cannot be added for key emsg = self.textentry('00-003-00027', args=[key]) raise ConfigError(emsg, level='error') def append_source(self, key: str, source: str): """ Adds source to the source of key (appends if exists) i.e. sources[key] = oldsource + source :param key: string, the main dictionary string :param source: string, the source to set :type key: str :type source: str :return None: """ # set function name _ = display_func(None, 'append_source', __NAME__, 'ParamDict') # capitalise key = _capitalise_key(key) # if key exists append source to it if key in self.keys() and key in list(self.sources.keys()): self.sources[key] += ' {0}'.format(source) else: self.set_source(key, source) def set_sources(self, keys: List[str], sources: Union[str, List[str], dict]): """ Set a list of keys sources raises a ConfigError if key not found :param keys: list of strings, the list of keys to add sources for :param sources: string or list of strings or dictionary of strings, the source or sources to add, if a dictionary source = sources[key] for key = keys[i] if list source = sources[i] for keys[i] if string all sources with these keys will = source :type keys: list :type sources: Union[str, list, dict] :return None: """ # set function name _ = display_func(None, 'set_sources', __NAME__, 'ParamDict') # loop around each key in keys for k_it in range(len(keys)): # assign the key from k_it key = keys[k_it] # capitalise key = _capitalise_key(key) # Get source for this iteration if type(sources) == list: source = sources[k_it] elif type(sources) == dict: source = sources[key] else: source = str(sources) # set source self.set_source(key, source) def set_instances(self, keys: List[str], instances: Union[object, list, dict]): """ Set a list of keys sources raises a ConfigError if key not found :param keys: list of strings, the list of keys to add sources for :param instances: object or list of objects or dictionary of objects, the source or sources to add, if a dictionary source = sources[key] for key = keys[i] if list source = sources[i] for keys[i] if object all sources with these keys will = source :type keys: list :type instances: Union[object, list, dict] :return None: """ # set function name _ = display_func(None, 'set_instances', __NAME__, 'ParamDict') # loop around each key in keys for k_it in range(len(keys)): # assign the key from k_it key = keys[k_it] # capitalise key = _capitalise_key(key) # Get source for this iteration if type(instances) == list: instance = instances[k_it] elif type(instances) == dict: instance = instances[key] else: instance = instances # set source self.set_instance(key, instance) def append_sources(self, keys: str, sources: Union[str, List[str], dict]): """ Adds list of keys sources (appends if exists) raises a ConfigError if key not found :param keys: list of strings, the list of keys to add sources for :param sources: string or list of strings or dictionary of strings, the source or sources to add, if a dictionary source = sources[key] for key = keys[i] if list source = sources[i] for keys[i] if string all sources with these keys will = source :type keys: list :type sources: Union[str, List[str], dict] :return None: """ # set function name _ = display_func(None, 'append_sources', __NAME__, 'ParamDict') # loop around each key in keys for k_it in range(len(keys)): # assign the key from k_it key = keys[k_it] # capitalise key = _capitalise_key(key) # Get source for this iteration if type(sources) == list: source = sources[k_it] elif type(sources) == dict: source = sources[key] else: source = str(sources) # append key self.append_source(key, source) def set_all_sources(self, source: str): """ Set all keys in dictionary to this source :param source: string, all keys will be set to this source :type source: str :return None: """ # set function name _ = display_func(None, 'set_all_sources', __NAME__, 'ParamDict') # loop around each key in keys for key in self.keys(): # capitalise key = _capitalise_key(key) # set key self.sources[key] = source def append_all_sources(self, source: str): """ Sets all sources to this "source" value :param source: string, the source to set :type source: str :return None: """ # set function name _ = display_func(None, 'append_all_sources', __NAME__, 'ParamDict') # loop around each key in keys for key in self.keys(): # capitalise key = _capitalise_key(key) # set key self.sources[key] += ' {0}'.format(source) def get_source(self, key: str) -> str: """ Get a source from the parameter dictionary (must be set) raises a ConfigError if key not found :param key: string, the key to find (must be set) :return source: string, the source of the parameter """ # set function name _ = display_func(None, 'get_source', __NAME__, 'ParamDict') # capitalise key = _capitalise_key(key) # if key in keys and sources then return source if key in self.keys() and key in self.sources.keys(): return str(self.sources[key]) # else raise a Config Error else: # log error: no source set for key emsg = self.textentry('00-003-00028', args=[key]) raise ConfigError(emsg, level='error') def get_instance(self, key: str) -> object: """ Get a source from the parameter dictionary (must be set) raises a ConfigError if key not found :param key: string, the key to find (must be set) :return source: string, the source of the parameter """ # set function name _ = display_func(None, 'get_instance', __NAME__, 'ParamDict') # capitalise key = _capitalise_key(key) # if key in keys and sources then return source if key in self.keys() and key in self.instances.keys(): return self.instances[key] # else raise a Config Error else: emsg = self.textentry('00-003-00029', args=[key]) raise ConfigError(emsg, level='error') def source_keys(self) -> List[str]: """ Get a dict_keys for the sources for this parameter dictionary order the same as self.keys() :return sources: values of sources dictionary """ # set function name _ = display_func(None, 'source_keys', __NAME__, 'ParamDict') # return all keys in source dictionary return list(self.sources.keys()) def source_values(self) -> List[object]: """ Get a dict_values for the sources for this parameter dictionary order the same as self.keys() :return sources: values of sources dictionary """ # set function name _ = display_func(None, 'source_values', __NAME__, 'ParamDict') # return all values in source dictionary return list(self.sources.values()) def startswith(self, substring: str) -> List[str]: """ Return all keys that start with this substring :param substring: string, the prefix that the keys start with :type substring: str :return keys: list of strings, the keys with this substring at the start """ # set function name _ = display_func(None, 'startswith', __NAME__, 'ParamDict') # define return list return_keys = [] # loop around keys for key in self.keys(): # make sure key is string if type(key) != str: continue # if first if str(key).startswith(substring.upper()): return_keys.append(key) # return keys return return_keys def contains(self, substring: str) -> List[str]: """ Return all keys that contain this substring :param substring: string, the sub-string to look for in all keys :type substring: str :return keys: list of strings, the keys which contain this substring """ # set function name _ = display_func(None, 'contains', __NAME__, 'ParamDict') # define return list return_keys = [] # loop around keys for key in self.keys(): # make sure key is string if type(key) != str: continue # if first if substring.upper() in key: return_keys.append(key) # return keys return return_keys def endswith(self, substring: str) -> List[str]: """ Return all keys that end with this substring :param substring: string, the suffix that the keys ends with :type substring: str :return keys: list of strings, the keys with this substring at the end """ # set function name _ = display_func(None, 'endswith', __NAME__, 'ParamDict') # define return list return_keys = [] # loop around keys for key in self.keys(): # make sure key is string if type(key) != str: continue # if first if str(key).endswith(substring.upper()): return_keys.append(key) # return keys return return_keys def copy(self): """ Copy a parameter dictionary (deep copy parameters) :return: the copy of the parameter dictionary :rtype: ParamDict """ # set function name _ = display_func(None, 'copy', __NAME__, 'ParamDict') # make new copy of param dict pp = ParamDict() keys = list(self.keys()) values = list(self.values()) # loop around keys and add to new copy for k_it, key in enumerate(keys): value = values[k_it] # try to deep copy parameter if isinstance(value, ParamDict): pp[key] = value.copy() else: # noinspection PyBroadException try: pp[key] = copy.deepcopy(value) except Exception as _: pp[key] = type(value)(value) # copy source if key in self.sources: pp.set_source(key, str(self.sources[key])) else: pp.set_source(key, 'Unknown') # copy source history if key in self.source_history: pp.source_history[key] = list(self.source_history[key]) else: pp.source_history[key] = [] # copy instance if key in self.instances: pp.set_instance(key, self.instances[key]) else: pp.set_instance(key, None) # return new param dict filled return pp def merge(self, paramdict, overwrite: bool = True): """ Merge another parameter dictionary with this one :param paramdict: ParamDict, another parameter dictionary to merge with this one :param overwrite: bool, if True (default) allows overwriting of parameters, else skips ones already present :type paramdict: ParamDict :type overwrite: bool :return: None """ # set function name _ = display_func(None, 'merge', __NAME__, 'ParamDict') # add param dict to self for key in paramdict: # deal with no overwriting if not overwrite and key in self.keys: continue # copy source if key in paramdict.sources: ksource = paramdict.sources[key] else: ksource = None # copy instance if key in paramdict.instances: kinst = paramdict.instances[key] else: kinst = None # add to self self.set(key, paramdict[key], ksource, kinst) def _string_print(self) -> str: """ Constructs a string representation of the instance :return: a string representation of the instance :rtype: str """ # set function name _ = display_func(None, '_string_print', __NAME__, 'ParamDict') # get keys and values keys = list(self.keys()) values = list(self.values()) # string storage return_string = 'ParamDict:\n' strvalues = [] # loop around each key in keys for k_it, key in enumerate(keys): # get this iterations values value = values[k_it] # deal with no source if key not in self.sources: self.sources[key] = 'None' # print value if type(value) in [list, np.ndarray]: sargs = [key, list(value), self.sources[key], self.pfmt] strvalues += _string_repr_list(*sargs) elif type(value) in [dict, OrderedDict, ParamDict]: strvalue = list(value.keys()).__repr__()[:40] sargs = [key + '[DICT]', strvalue, self.sources[key]] strvalues += [self.pfmt.format(*sargs)] else: strvalue = str(value)[:40] sargs = [key + ':', strvalue, self.sources[key]] strvalues += [self.pfmt.format(*sargs)] # combine list into single string for string_value in strvalues: return_string += '\n {0}'.format(string_value) # return string return return_string + '\n' def listp(self, key: str, separator: str = ',', dtype: Union[None, Type] = None) -> list: """ Turn a string list parameter (separated with `separator`) into a list of objects (of data type `dtype`) i.e. ParamDict['MYPARAM'] = '1, 2, 3, 4' x = ParamDict.listp('my_parameter', dtype=int) gives: x = list([1, 2, 3, 4]) :param key: str, the key that contains a string list :param separator: str, the character that separates :param dtype: type, the type to cast the list element to :return: the list of values extracted from the string for `key` :rtype: list """ # set function name _ = display_func(None, 'listp', __NAME__, 'ParamDict') # if key is present attempt str-->list if key in self.keys(): item = self.__getitem__(key) else: # log error: parameter not found in parameter dict (via listp) emsg = self.textentry('00-003-00030', args=[key]) raise ConfigError(emsg, level='error') # convert string if key in self.keys() and isinstance(item, str): return _map_listparameter(str(item), separator=separator, dtype=dtype) elif isinstance(item, list): return item else: # log error: parameter not found in parameter dict (via listp) emsg = self.textentry('00-003-00032', args=[key]) raise ConfigError(emsg, level='error') def dictp(self, key: str, dtype: Union[str, None] = None) -> dict: """ Turn a string dictionary parameter into a python dictionary of objects (of data type `dtype`) i.e. ParamDict['MYPARAM'] = '{"varA":1, "varB":2}' x = ParamDict.listp('my_parameter', dtype=int) gives: x = dict(varA=1, varB=2) Note string dictionary must be in the {"key":value} format :param key: str, the key that contains a string list :param dtype: type, the type to cast the list element to :return: the list of values extracted from the string for `key` :rtype: dict """ # set function name _ = display_func(None, 'dictp', __NAME__, 'ParamDict') # if key is present attempt str-->dict if key in self.keys(): item = self.__getitem__(key) else: # log error message: parameter not found in param dict (via dictp) emsg = self.textentry('00-003-00031', args=[key]) raise ConfigError(emsg.format(key), level='error') # convert string if isinstance(item, str): return _map_dictparameter(str(item), dtype=dtype) elif isinstance(item, dict): return item else: # log error message: parameter not found in param dict (via dictp) emsg = self.textentry('00-003-00033', args=[key]) raise ConfigError(emsg.format(key), level='error') def get_instanceof(self, lookup: object, nameattr: str = 'name') -> dict: """ Get all instances of object instance lookup i.e. perform isinstance(object, lookup) :param lookup: object, the instance to lookup :param nameattr: str, the attribute in instance that we will return as the key :return: a dictionary of keys/value pairs where each value is an instance that belongs to instance of `lookup` :rtype: dict """ # set function name _ = display_func(None, 'get_instanceof', __NAME__, 'ParamDict') # output storage keydict = dict() # loop around all keys for key in list(self.instances.keys()): # get the instance for this key instance = self.instances[key] # skip None if instance is None: continue # else check instance type if isinstance(instance, type(lookup)): if hasattr(instance, nameattr): name = getattr(instance, nameattr) keydict[name] = instance else: continue # return keyworddict return keydict def info(self, key: str): """ Display the information related to a specific key :param key: str, the key to display information about :type key: str :return: None """ # set function name _ = display_func(None, 'info', __NAME__, 'ParamDict') # deal with key not existing if key not in self.keys(): print(self.textentry('40-000-00001', args=[key])) return # print key title print(self.textentry('40-000-00002', args=[key])) # print value stats value = self.__getitem__(key) # print the data type print(self.textentry('40-000-00003', args=[type(value).__name__])) # deal with lists and numpy array if isinstance(value, (list, np.ndarray)): sargs = [key, list(value), None, self.pfmt_ns] wargs = [np.nanmin(value), np.nanmax(value), np.sum(np.isnan(value)) > 0, _string_repr_list(*sargs)] print(self.textentry('40-000-00004', args=wargs)) # deal with dictionaries elif isinstance(value, (dict, OrderedDict, ParamDict)): strvalue = list(value.keys()).__repr__()[:40] sargs = [key + '[DICT]', strvalue, None] wargs = [len(list(value.keys())), self.pfmt_ns.format(*sargs)] print(self.textentry('40-000-00005', args=wargs)) # deal with everything else else: strvalue = str(value)[:40] sargs = [key + ':', strvalue, None] wargs = [self.pfmt_ns.format(*sargs)] print(self.textentry('40-000-00006', args=wargs)) # add source info if key in self.sources: print(self.textentry('40-000-00007', args=[self.sources[key]])) # add instances info if key in self.instances: print(self.textentry('40-000-00008', args=[self.instances[key]])) def history(self, key: str): """ Display the history of where key was defined (using source) :param key: str, the key to print history of :type key: str :return: None """ # set function name _ = display_func(None, 'history', __NAME__, 'ParamDict') # if history found then print it if key in self.source_history: # print title: History for key print(self.textentry('40-000-00009', args=[key])) # loop around history and print row by row for it, entry in enumerate(self.source_history[key]): print('{0}: {1}'.format(it + 1, entry)) # else display that there was not history found else: print(self.textentry('40-000-00010', args=[key])) # ============================================================================= # Define functions # ============================================================================= def update_paramdicts(*args, **kwargs): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'update_paramdicts', __NAME__) # get key from kwargs key = kwargs.get('key', None) # get value from kwargs value = kwargs.get('value', None) # get source from kwargs source = kwargs.get('source', None) # get instance from kwargs instance = kwargs.get('instance', None) # loop through param dicts for arg in args: if isinstance(arg, ParamDict): arg.set(key, value=value, source=source, instance=instance) def load_config(instrument=None, from_file=True, cache=True): global CONFIG_CACHE # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'load_config', __NAME__) # check config cache if instrument in CONFIG_CACHE and cache: return CONFIG_CACHE[instrument].copy() # deal with instrument set to 'None' if isinstance(instrument, str): if instrument.upper() == 'NONE': instrument = None # get instrument sub-package constants files modules = get_module_names(instrument) # get constants from modules try: keys, values, sources, instances = _load_from_module(modules, True) except ConfigError: sys.exit(1) params = ParamDict(zip(keys, values)) # Set the source params.set_sources(keys=keys, sources=sources) # add to params for it in range(len(keys)): # set instance (Const/Keyword instance) params.set_instance(keys[it], instances[it]) # get constants from user config files if from_file: # get instrument user config files files = _get_file_names(params, instrument) try: keys, values, sources, instances = _load_from_file(files, modules) except ConfigError: sys.exit(1) # add to params for it in range(len(keys)): # set value params[keys[it]] = values[it] # set instance (Const/Keyword instance) params.set_instance(keys[it], instances[it]) params.set_sources(keys=keys, sources=sources) # save sources to params params = _save_config_params(params) # cache these params if cache: CONFIG_CACHE[instrument] = params.copy() # return the parameter dictionary return params def load_pconfig(instrument=None): global PCONFIG_CACHE # set function name (cannot break here --> no access to inputs) func_name = display_func(None, 'load_pconfig', __NAME__) # check cache if instrument in PCONFIG_CACHE: return PCONFIG_CACHE[instrument] # deal with instrument set to 'None' if isinstance(instrument, str): if instrument.upper() == 'NONE': instrument = None # get instrument sub-package constants files modules = get_module_names(instrument, mod_list=[PSEUDO_CONST_FILE]) # import module mod = constant_functions.import_module(func_name, modules[0]) # check that we have class and import it if hasattr(mod, PSEUDO_CONST_CLASS): psconst = getattr(mod, PSEUDO_CONST_CLASS) # else raise error else: emsg = 'Module "{0}" is required to have class "{1}"' ConfigError(emsg.format(modules[0], PSEUDO_CONST_CLASS)) sys.exit(1) # get instance of PseudoClass pconfig = psconst(instrument=instrument) # update cache PCONFIG_CACHE[instrument] = pconfig return pconfig def get_config_all(): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'get_config_all', __NAME__) # get module names modules = get_module_names(None) # loop around modules and print our __all__ statement for module in modules: # generate a list of all functions in a module rawlist = constant_functions.generate_consts(module)[0] # print to std-out print('=' * 50) print('MODULE: {0}'.format(module)) print('=' * 50) print('') print('__all__ = [\'{0}\']'.format('\', \''.join(rawlist))) print('') def get_file_names(instrument=None, file_list=None, instrument_path=None, default_path=None): # set function name (cannot break here --> no access to inputs) func_name = display_func(None, 'get_file_names', __NAME__) # get core path core_path = get_relative_folder(PACKAGE, default_path) # get constants package path if instrument is not None: const_path = get_relative_folder(PACKAGE, instrument_path) # get the directories within const_path filelist = np.sort(os.listdir(const_path)) directories = [] for filename in filelist: if os.path.isdir(filename): directories.append(filename) else: const_path = None # get the directories within const_path filelist = np.sort(os.listdir(core_path)) directories = [] for filename in filelist: if os.path.isdir(filename): directories.append(filename) # construct module import name if instrument is None: filepath = os.path.join(core_path, '') else: filepath = os.path.join(const_path, instrument.lower()) # get module names paths = [] for filename in file_list: # get file path fpath = os.path.join(filepath, filename) # append if path exists if not os.path.exists(fpath): emsgs = ['DevError: Filepath "{0}" does not exist.' ''.format(fpath), '\tfunction = {0}'.format(func_name)] raise ConfigError(emsgs, level='error') # append mods paths.append(fpath) # make sure we found something if len(paths) == 0: emsgs = ['DevError: No files found', '\tfunction = {0}'.format(func_name)] raise ConfigError(emsgs, level='error') # return modules return paths def get_module_names(instrument=None, mod_list=None, instrument_path=None, default_path=None, path=True): # set function name (cannot break here --> no access to inputs) func_name = display_func(None, '_get_module_names', __NAME__) # deal with no module list if mod_list is None: mod_list = SCRIPTS # deal with no path if instrument_path is None: instrument_path = CONST_PATH if default_path is None: default_path = CORE_PATH # get constants package path const_path = get_relative_folder(PACKAGE, instrument_path) core_path = get_relative_folder(PACKAGE, default_path) # get the directories within const_path filelist = np.sort(os.listdir(const_path)) directories = [] for filename in filelist: if os.path.isdir(filename): directories.append(filename) # construct sub-module name relpath = os.path.normpath(instrument_path).replace('.', '') relpath = relpath.replace(os.sep, '.').strip('.') corepath = os.path.normpath(default_path).replace('.', '') corepath = corepath.replace(os.sep, '.').strip('.') # construct module import name if instrument is None: modpath = '{0}.{1}'.format(PACKAGE, corepath) filepath = os.path.join(core_path, '') else: modpath = '{0}.{1}.{2}'.format(PACKAGE, relpath, instrument.lower()) filepath = os.path.join(const_path, instrument.lower()) # get module names mods, paths = [], [] for script in mod_list: # make sure script doesn't end with .py mscript = script.split('.')[0] # get mod path mod = '{0}.{1}'.format(modpath, mscript) # get file path fpath = os.path.join(filepath, script) # append if path exists found = True if not os.path.exists(fpath): if not fpath.endswith('.py'): fpath += '.py' if not os.path.exists(fpath): found = False else: found = False # deal with no file found if not found: emsgs = ['DevError: Const mod path "{0}" does not exist.' ''.format(mod), '\tpath = {0}'.format(fpath), '\tfunction = {0}'.format(func_name)] raise ConfigError(emsgs, level='error') # append mods mods.append(mod) paths.append(fpath) # make sure we found something if len(mods) == 0: emsgs = ['DevError: No config dirs found', '\tfunction = {0}'.format(func_name)] raise ConfigError(emsgs, level='error') if len(mods) != len(mod_list): emsgs = ['DevError: Const mod scrips missing found=[{0}]' ''.format(','.join(mods)), '\tfunction = {0}'.format(func_name)] raise ConfigError(emsgs, level='error') # return modules if path: return paths else: return mods def print_error(error): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'print_error', __NAME__) # print the configuration file print('\n') print('=' * 70) print(' Configuration file {0}:'.format(error.level)) print('=' * 70, '\n') # get the error string estring = error.message # if error string is not a list assume it is a string and push it into # a single element list if type(estring) is not list: estring = [estring] # loop around error strings (now must be a list of strings) for emsg in estring: # replace new line with new line + tab emsg = emsg.replace('\n', '\n\t') # print to std-out print('\t' + emsg) # print a gap between this and next lines print('=' * 70, '\n') def break_point(params=None, allow=None, level=2): # set function name (cannot break inside break function) _ = str(__NAME__) + '.break_point()' # if we don't have parameters load them from config file if params is None: params = load_config() # force to True params['ALLOW_BREAKPOINTS'] = True # if allow is not set if allow is None: allow = params['ALLOW_BREAKPOINTS'] # if still not allowed the return if not allow: return # copy pdbrc _copy_pdb_rc(params, level=level) # catch bdb quit # noinspection PyPep8 try: _execute_ipdb() except Exception: emsg = 'USER[00-000-00000]: Debugger breakpoint exit.' raise drs_exceptions.DebugExit(emsg) finally: # delete pdbrc _remove_pdb_rc(params) # noinspection PyUnusedLocal def catch_sigint(signal_received, frame): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'catch_sigint', __NAME__) # raise Keyboard Interrupt raise KeyboardInterrupt('\nSIGINT or CTRL-C detected. Exiting\n') def window_size(drows=80, dcols=80): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'window_size', __NAME__) # only works on unix operating systems if os.name == 'posix': # see if we have stty commnad if shutil.which('stty') is None: return drows, dcols # try to open via open and split output back to rows and columns # noinspection PyPep8,PyBroadException try: rows, columns = os.popen('stty size', 'r').read().split() return int(rows), int(columns) # if not just pass over this except Exception: pass # if we are on windows we have to get window size differently elif os.name == 'nt': # taken from: https://gist.github.com/jtriley/1108174 # noinspection PyPep8,PyBroadException try: import struct from ctypes import windll, create_string_buffer # stdin handle is -10 # stdout handle is -11 # stderr handle is -12 h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: out = struct.unpack("hhhhHhhhhhh", csbi.raw) left, top, right, bottom = out[5:9] sizex = right - left + 1 sizey = bottom - top + 1 return int(sizey), int(sizex) # if not just pass over this except Exception: pass # if we have reached this point return the default number of rows # and columns return drows, dcols def display_func(params=None, name=None, program=None, class_name=None, wlog=None, textentry=None): # set function name (cannot break here --> no access to inputs) func_name = str(__NAME__) + '.display_func()' # deal with no wlog defined if wlog is None: wlog = drs_exceptions.wlogbasic # deal with not text entry defined if textentry is None: textentry = constant_functions.DisplayText() # start the string function strfunc = '' # deal with no file name if name is None: name = 'Unknown' # ---------------------------------------------------------------------- # add the program if program is not None: strfunc = str(program) if class_name is not None: strfunc += '.{0}'.format(class_name) # add the name strfunc += '.{0}'.format(name) # add brackets to show function if not strfunc.endswith('()'): strfunc += '()' # ---------------------------------------------------------------------- # deal with adding a break point if params is not None: if 'INPUTS' in params and 'BREAKFUNC' in params['INPUTS']: # get break function breakfunc = params['INPUTS']['BREAKFUNC'] # only deal with break function if it is set if breakfunc not in [None, 'None', '']: # get function name (without ending) funcname = strfunc.replace('()', '') # if function name endwith break function then we break here if funcname.endswith(breakfunc): # log we are breaking due to break function wargs = [breakfunc] msg = textentry('10-005-00004', args=wargs) wlog(params, 'warning', msg) break_point(params, allow=True, level=3) # ---------------------------------------------------------------------- # deal with no params (do not log) if params is None: return strfunc # deal with debug level too low (just return here) if params['DRS_DEBUG'] < params['DEBUG_MODE_FUNC_PRINT']: return strfunc # ---------------------------------------------------------------------- # below here just for debug mode func print # ---------------------------------------------------------------------- # add the string function to param dict if 'DEBUG_FUNC_LIST' not in params: params.set('DEBUG_FUNC_LIST', value=[None], source=func_name) if 'DEBUG_FUNC_DICT' not in params: params.set('DEBUG_FUNC_DICT', value=dict(), source=func_name) # append to list params['DEBUG_FUNC_LIST'].append(strfunc) # update debug dictionary if strfunc in params['DEBUG_FUNC_DICT']: params['DEBUG_FUNC_DICT'][strfunc] += 1 else: params['DEBUG_FUNC_DICT'][strfunc] = 1 # get count count = params['DEBUG_FUNC_DICT'][strfunc] # find previous entry previous = params['DEBUG_FUNC_LIST'][-2] # find out whether we have the same entry same_entry = previous == strfunc # add count strfunc += ' (N={0})'.format(count) # if we don't have a list then just print if params['DEBUG_FUNC_LIST'][-2] is None: # log in func wlog(params, 'debug', textentry('90-000-00004', args=[strfunc]), wrap=False) elif not same_entry: # get previous set of counts previous_count = _get_prev_count(params, previous) # only log if count is greater than 1 if previous_count > 1: # log how many of previous there were dargs = [previous_count] wlog(params, 'debug', textentry('90-000-00005', args=dargs)) # log in func wlog(params, 'debug', textentry('90-000-00004', args=[strfunc]), wrap=False) # return func_name return strfunc # ============================================================================= # Config loading private functions # ============================================================================= def _get_file_names(params, instrument=None): # set function name (cannot break here --> no access to inputs) _ = display_func(params, '_get_file_names', __NAME__) # deal with no instrument if instrument is None: return [] # get user environmental path user_env = params['DRS_USERENV'] # get user default path (if environmental path unset) user_dpath = params['DRS_USER_DEFAULT'] # get the package name drs_package = params['DRS_PACKAGE'] # change user_dpath to a absolute path user_dpath = get_relative_folder(drs_package, user_dpath) # deal with no user environment and no default path if user_env is None and user_dpath is None: return [] # set empty directory directory = None # ------------------------------------------------------------------------- # User environmental path # ------------------------------------------------------------------------- # check environmental path exists if user_env in os.environ: # get value path = os.environ[user_env] # check that directory linked exists if os.path.exists(path): # set directory directory = path # ------------------------------------------------------------------------- # if directory is not empty then we need to get instrument specific files # ------------------------------------------------------------------------- if directory is not None: # look for sub-directories (and if not found directory set to None so # that we check the user default path) source = 'environmental variables ({0})'.format(user_env) subdir = _get_subdir(directory, instrument, source=source) if subdir is None: directory = None # ------------------------------------------------------------------------- # User default path # ------------------------------------------------------------------------- # check default path exists if directory is None: # check the directory linked exists if os.path.exists(user_dpath): # set directory directory = user_dpath # if directory is still empty return empty list if directory is None: return [] # ------------------------------------------------------------------------- # if directory is not empty then we need to get instrument specific files # ------------------------------------------------------------------------- # look for sub-directories (This time if not found we have none and should # return an empty set of files source = 'default user config file ({0})'.format(user_dpath) subdir = _get_subdir(directory, instrument, source=source) if subdir is None: return [] # ------------------------------------------------------------------------- # look for user configurations within instrument sub-folder # ------------------------------------------------------------------------- files = [] for script in USCRIPTS: # construct path path = os.path.join(directory, subdir, script) # check that it exists if os.path.exists(path): files.append(path) # deal with no files found if len(files) == 0: wmsg1 = ('User config defined but instrument "{0}" directory ' 'has no configurations files') wmsg2 = '\tValid config files: {0}'.format(','.join(USCRIPTS)) ConfigWarning([wmsg1.format(instrument), wmsg2]) # return files return files def _get_subdir(directory, instrument, source): # set function name (cannot break here --> no access to inputs) _ = display_func(None, 'catch_sigint', __NAME__) # get display text textentry = constant_functions.DisplayText() # set the sub directory to None initially subdir = None # loop around items in the directory for filename in np.sort(os.listdir(directory)): # check that the absolute path is a directory cond1 = os.path.isdir(os.path.join(directory, filename)) # check that item (directory) is named the same as the instrument cond2 = filename.lower() == instrument.lower() # if both conditions true set the sub directory as this item if cond1 and cond2: subdir = filename # deal with instrument sub-folder not found if subdir is None: # raise a config warning that directory not found wargs = [source, instrument.lower(), directory] ConfigWarning(textentry('10-002-00001', args=wargs)) # return the subdir return subdir def get_relative_folder(package, folder: Union[str, Path]): """ Get the absolute path of folder defined at relative path folder from package :param package: string, the python package name :param folder: string, the relative path of the config folder :return data: string, the absolute path and filename of the default config file """ global REL_CACHE # TODO: update to pathlib.Path if isinstance(folder, Path): folder = str(folder) # set function name (cannot break here --> no access to inputs) func_name = display_func(None, 'get_relative_folder', __NAME__) # get text entry textentry = constant_functions.DisplayText() # ---------------------------------------------------------------------- # check relative folder cache if package in REL_CACHE and folder in REL_CACHE[package]: return REL_CACHE[package][folder] # ---------------------------------------------------------------------- # get the package.__init__ file path try: init = pkg_resources.resource_filename(package, '__init__.py') except ImportError: eargs = [package, func_name] raise ConfigError(textentry('00-008-00001', args=eargs), level='error') # Get the config_folder from relative path current = os.getcwd() # get directory name of folder dirname = os.path.dirname(init) # change to directory in init os.chdir(dirname) # get the absolute path of the folder data_folder = os.path.abspath(folder) # change back to working dir os.chdir(current) # test that folder exists if not os.path.exists(data_folder): # raise exception eargs = [os.path.basename(data_folder), os.path.dirname(data_folder)] raise ConfigError(textentry('00-003-00005', args=eargs), level='error') # ---------------------------------------------------------------------- # update REL_CACHE if package not in REL_CACHE: REL_CACHE[package] = dict() # update entry REL_CACHE[folder] = data_folder # ---------------------------------------------------------------------- # return the absolute data_folder path return data_folder def _load_from_module(modules, quiet=False): # set function name (cannot break here --> no access to inputs) func_name = display_func(None, '_load_from_module', __NAME__) # get text entry textentry = constant_functions.DisplayText() # storage for returned values keys, values, sources, instances = [], [], [], [] # loop around modules for module in modules: # get a list of keys values mkeys, mvalues = constant_functions.generate_consts(module) # loop around each value and test type for it in range(len(mkeys)): # get iteration values mvalue = mvalues[it] # get the parameter name key = mkeys[it] # deal with duplicate keys if key in keys: # raise exception eargs = [key, module, ','.join(modules), func_name] raise ConfigError(textentry('00-003-00006', args=eargs), level='error') # valid parameter cond = mvalue.validate(quiet=quiet) # if validated append to keys/values/sources if cond: keys.append(key) values.append(mvalue.true_value) sources.append(mvalue.source) instances.append(mvalue) # return keys return keys, values, sources, instances def _load_from_file(files, modules): # set function name (cannot break here --> no access to inputs) _ = display_func(None, '_load_from_file', __NAME__) # get text entry textentry = constant_functions.DisplayText() # ------------------------------------------------------------------------- # load constants from file # ------------------------------------------------------------------------- fkeys, fvalues, fsources = [], [], [] for filename in files: # get keys/values from script fkey, fvalue = constant_functions.get_constants_from_file(filename) # add to fkeys and fvalues (loop around fkeys) for it in range(len(fkey)): # get this iterations values fkeyi, fvaluei = fkey[it], fvalue[it] # if this is not a new constant print warning if fkeyi in fkeys: # log warning message wargs = [fkeyi, filename, ','.join(set(fsources)), filename] ConfigWarning(textentry('10-002-00002', args=wargs), level='warning') # append to list fkeys.append(fkeyi) fvalues.append(fvaluei) fsources.append(filename) # ------------------------------------------------------------------------- # Now need to test the values are correct # ------------------------------------------------------------------------- # storage for returned values keys, values, sources, instances = [], [], [], [] # loop around modules for module in modules: # get a list of keys values mkeys, mvalues = constant_functions.generate_consts(module) # loop around each value and test type for it in range(len(mkeys)): # get iteration values mvalue = mvalues[it] # loop around the file values for jt in range(len(fkeys)): # if we are not dealing with the same key skip if fkeys[jt] != mkeys[it]: continue # if we are then we need to validate value = mvalue.validate(fvalues[jt], source=fsources[jt]) # now append to output lists keys.append(fkeys[jt]) values.append(value) sources.append(fsources[jt]) instances.append(mvalue) # return keys values and sources return keys, values, sources, instances def _save_config_params(params): # set function name (cannot break here --> no access to inputs) func_name = display_func(params, '_save_config_params', __NAME__) # get sources from paramater dictionary sources = params.sources.values() # get unique sources usources = set(sources) # set up storage params['DRS_CONFIG'] = [] params.set_source('DRS_CONFIG', func_name) # loop around and add to param for source in usources: params['DRS_CONFIG'].append(source) # return the parameters return params def _check_mod_source(source: str) -> str: # set function name (cannot break here --> no access to inputs) _ = display_func(None, '_check_mod_source', __NAME__) # deal with source is None if source is None: return source # if source doesn't exist also skip if not os.path.exists(source): return source # get package path package_path = get_relative_folder(PACKAGE, '') # if package path not in source then skip if package_path not in source: return source # remove package path and replace with PACKAGE source = source.replace(package_path, PACKAGE.lower()) # replace separators with . source = source.replace(os.sep, '.') # remove double dots while '..' in source: source = source.replace('..', '.') # return edited source return source def _execute_ipdb(): # set function name (cannot break here --> within break function) _ = str(__NAME__) + '._execute_ipdb()' # start ipdb # noinspection PyBroadException try: # import ipython debugger # noinspection PyUnresolvedReferences import ipdb # set the ipython trace ipdb.set_trace() except Exception as _: # import python debugger (standard python module) import pdb # set the python trace pdb.set_trace() # ============================================================================= # Other private functions # ============================================================================= # capitalisation function (for case insensitive keys) def _capitalise_key(key: str) -> str: """ Capitalizes "key" (used to make ParamDict case insensitive), only if key is a string :param key: string or object, if string then key is capitalized else nothing is done :return key: capitalized string (or unchanged object) """ # set function name (cannot break here --> no access to inputs) _ = display_func(None, '_capitalise_key', __NAME__) # capitalise string keys if type(key) == str: key = key.upper() return key def _string_repr_list(key: str, values: Union[list, np.ndarray], source: str, fmt: str) -> List[str]: """ Represent a list (or array) as a string list but only the first 40 charactersay :param key: str, the key the list (values) came from :param values: vector, the list or numpy array to print as a string :param source: str, the source where the values were defined :param fmt: str, the format for the printed list :return: """ # set function name (cannot break here --> no access to inputs) _ = display_func(None, '_load_from_file', __NAME__) # get the list as a string str_value = list(values).__repr__() # if the string is longer than 40 characters cut down and add ... if len(str_value) > 40: str_value = str_value[:40] + '...' # return the string as a list entry return [fmt.format(key, str_value, source)] def _map_listparameter(value, separator=',', dtype=None): """ Map a string list into a python list :param value: str or list, if list returns if string tries to evaluate :param separator: str, where to split the str at to make a list :param dtype: type, if set forces elements of list to this data type :return: """ # set function name (cannot break here --> no access to inputs) func_name = display_func(None, '_map_listparameter', __NAME__) # get text entry textentry = constant_functions.DisplayText() # return list if already a list if isinstance(value, (list, np.ndarray)): return list(value) # try evaluating is a list # noinspection PyBroadException try: # evulate value rawvalue = eval(value) # if it is a list return as a list if isinstance(rawvalue, list): return list(rawvalue) # if it is not pass except Exception as _: pass # deal with an empty value i.e. '' if value == '': return [] # try to return dtyped data try: # first split by separator listparameter = value.split(separator) # return the stripped down values if dtype is not None and isinstance(dtype, type): return list(map(lambda x: dtype(x.strip()), listparameter)) else: return list(map(lambda x: x.strip(), listparameter)) except Exception as e: eargs = [value, type(e), e, func_name] BLOG(message=textentry('00-003-00002', args=eargs), level='error') def _map_dictparameter(value: str, dtype: Union[None, Type] = None) -> dict: """ Map a string dictionary into a python dictionary :param value: str, tries to evaluate string into a dictionary i.e. "dict(a=1, b=2)" or {'a':1, 'b': 2} :param dtype: type, if set forces elements of list to this data type :return: """ # set function name (cannot break here --> no access to inputs) func_name = display_func(None, '_map_dictparameter', __NAME__) # get text entry textentry = constant_functions.DisplayText() # deal with an empty value i.e. '' if value == '': return dict() # try evaulating as a dict try: rawvalue = eval(value) if isinstance(rawvalue, dict): returndict = dict() for key in rawvalue.keys(): if dtype is not None and isinstance(dtype, type): returndict[key] = dtype(rawvalue[key]) else: returndict[key] = rawvalue[key] return returndict except Exception as e: eargs = [value, type(e), e, func_name] BLOG(message=textentry('00-003-00003', args=eargs), level='error') def _copy_pdb_rc(params, level=0): # set function name (cannot break here --> no access to inputs) _ = str(__NAME__) + '_copy_pdb_rc()' # set global CURRENT_PATH global CURRENT_PATH # get package package = params['DRS_PACKAGE'] # get path path = params['DRS_PDB_RC_FILE'] filename = params['DRS_PDB_RC_FILENAME'] # get current path CURRENT_PATH = os.getcwd() # get absolute path oldsrc = get_relative_folder(package, path) tmppath = oldsrc + '_tmp' # get newsrc newsrc = os.path.join(CURRENT_PATH, filename) # read the lines with open(oldsrc, 'r') as f: lines = f.readlines() # deal with levels if level == 0: upkey = '' else: upkey = 'up\n' * level # loop around lines and replace newlines = [] for line in lines: newlines.append(line.format(up=upkey)) # write the lines with open(tmppath, 'w') as f: f.writelines(newlines) # copy shutil.copy(tmppath, newsrc) # remove tmp file os.remove(tmppath) def _remove_pdb_rc(params): # set function name (cannot break here --> no access to inputs) _ = str(__NAME__) + '_remove_pdb_rc()' # get file name filename = params['DRS_PDB_RC_FILENAME'] # get newsrc newsrc = os.path.join(CURRENT_PATH, filename) # remove if os.path.exists(newsrc): os.remove(newsrc) def _get_prev_count(params, previous): # set function name (cannot break here --> no access to inputs) _ = str(__NAME__) + '._get_prev_count()' # get the debug list debug_list = params['DEBUG_FUNC_LIST'][:-1] # get the number of iterations n_elements = 0 # loop around until we get to for row in range(len(debug_list))[::-1]: if debug_list[row] != previous: break else: n_elements += 1 # return number of element founds return n_elements # ============================================================================= # Start of code # ============================================================================= # Main code here if __name__ == "__main__": # ---------------------------------------------------------------------- # print 'Hello World!' print("Hello World!") # ============================================================================= # End of code # =============================================================================
[ "ctypes.create_string_buffer", "copy.deepcopy", "sys.exit", "numpy.nanmin", "os.remove", "os.path.exists", "ctypes.windll.kernel32.GetConsoleScreenBufferInfo", "os.listdir", "apero.core.constants.constant_functions.generate_consts", "os.path.normpath", "apero.core.constants.constant_functions.DisplayText", "os.path.isdir", "apero.core.constants.constant_functions.get_constants_from_file", "numpy.nanmax", "os.popen", "apero.core.constants.constant_functions.import_module", "ipdb.set_trace", "shutil.which", "os.path.dirname", "struct.unpack", "numpy.isnan", "shutil.copy", "apero.lang.drs_exceptions.DebugExit", "os.path.join", "pkg_resources.resource_filename", "os.getcwd", "os.chdir", "ctypes.windll.kernel32.GetStdHandle", "os.path.basename", "pdb.set_trace", "os.path.abspath" ]
[((44313, 44368), 'apero.core.constants.constant_functions.import_module', 'constant_functions.import_module', (['func_name', 'modules[0]'], {}), '(func_name, modules[0])\n', (44345, 44368), False, 'from apero.core.constants import constant_functions\n'), ((61893, 61925), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (61923, 61925), False, 'from apero.core.constants import constant_functions\n'), ((63423, 63455), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (63453, 63455), False, 'from apero.core.constants import constant_functions\n'), ((64071, 64082), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (64080, 64082), False, 'import os\n'), ((64132, 64153), 'os.path.dirname', 'os.path.dirname', (['init'], {}), '(init)\n', (64147, 64153), False, 'import os\n'), ((64192, 64209), 'os.chdir', 'os.chdir', (['dirname'], {}), '(dirname)\n', (64200, 64209), False, 'import os\n'), ((64270, 64293), 'os.path.abspath', 'os.path.abspath', (['folder'], {}), '(folder)\n', (64285, 64293), False, 'import os\n'), ((64331, 64348), 'os.chdir', 'os.chdir', (['current'], {}), '(current)\n', (64339, 64348), False, 'import os\n'), ((65189, 65221), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (65219, 65221), False, 'from apero.core.constants import constant_functions\n'), ((66562, 66594), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (66592, 66594), False, 'from apero.core.constants import constant_functions\n'), ((72966, 72998), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (72996, 72998), False, 'from apero.core.constants import constant_functions\n'), ((74554, 74586), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (74584, 74586), False, 'from apero.core.constants import constant_functions\n'), ((75621, 75632), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (75630, 75632), False, 'import os\n'), ((75765, 75801), 'os.path.join', 'os.path.join', (['CURRENT_PATH', 'filename'], {}), '(CURRENT_PATH, filename)\n', (75777, 75801), False, 'import os\n'), ((76214, 76242), 'shutil.copy', 'shutil.copy', (['tmppath', 'newsrc'], {}), '(tmppath, newsrc)\n', (76225, 76242), False, 'import shutil\n'), ((76269, 76287), 'os.remove', 'os.remove', (['tmppath'], {}), '(tmppath)\n', (76278, 76287), False, 'import os\n'), ((76524, 76560), 'os.path.join', 'os.path.join', (['CURRENT_PATH', 'filename'], {}), '(CURRENT_PATH, filename)\n', (76536, 76560), False, 'import os\n'), ((76581, 76603), 'os.path.exists', 'os.path.exists', (['newsrc'], {}), '(newsrc)\n', (76595, 76603), False, 'import os\n'), ((10081, 10113), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (10111, 10113), False, 'from apero.core.constants import constant_functions\n'), ((44674, 44685), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (44682, 44685), False, 'import sys\n'), ((46536, 46563), 'os.path.join', 'os.path.join', (['core_path', '""""""'], {}), "(core_path, '')\n", (46548, 46563), False, 'import os\n'), ((46748, 46780), 'os.path.join', 'os.path.join', (['filepath', 'filename'], {}), '(filepath, filename)\n', (46760, 46780), False, 'import os\n'), ((48084, 48106), 'os.listdir', 'os.listdir', (['const_path'], {}), '(const_path)\n', (48094, 48106), False, 'import os\n'), ((48170, 48193), 'os.path.isdir', 'os.path.isdir', (['filename'], {}), '(filename)\n', (48183, 48193), False, 'import os\n'), ((48642, 48669), 'os.path.join', 'os.path.join', (['core_path', '""""""'], {}), "(core_path, '')\n", (48654, 48669), False, 'import os\n'), ((49097, 49127), 'os.path.join', 'os.path.join', (['filepath', 'script'], {}), '(filepath, script)\n', (49109, 49127), False, 'import os\n'), ((54424, 54456), 'apero.core.constants.constant_functions.DisplayText', 'constant_functions.DisplayText', ([], {}), '()\n', (54454, 54456), False, 'from apero.core.constants import constant_functions\n'), ((59227, 59247), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (59241, 59247), False, 'import os\n'), ((60189, 60215), 'os.path.exists', 'os.path.exists', (['user_dpath'], {}), '(user_dpath)\n', (60203, 60215), False, 'import os\n'), ((61208, 61247), 'os.path.join', 'os.path.join', (['directory', 'subdir', 'script'], {}), '(directory, subdir, script)\n', (61220, 61247), False, 'import os\n'), ((61290, 61310), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (61304, 61310), False, 'import os\n'), ((62059, 62080), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (62069, 62080), False, 'import os\n'), ((63813, 63868), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['package', '"""__init__.py"""'], {}), "(package, '__init__.py')\n", (63844, 63868), False, 'import pkg_resources\n'), ((64390, 64417), 'os.path.exists', 'os.path.exists', (['data_folder'], {}), '(data_folder)\n', (64404, 64417), False, 'import os\n'), ((65424, 65466), 'apero.core.constants.constant_functions.generate_consts', 'constant_functions.generate_consts', (['module'], {}), '(module)\n', (65458, 65466), False, 'from apero.core.constants import constant_functions\n'), ((66916, 66968), 'apero.core.constants.constant_functions.get_constants_from_file', 'constant_functions.get_constants_from_file', (['filename'], {}), '(filename)\n', (66958, 66968), False, 'from apero.core.constants import constant_functions\n'), ((68014, 68056), 'apero.core.constants.constant_functions.generate_consts', 'constant_functions.generate_consts', (['module'], {}), '(module)\n', (68048, 68056), False, 'from apero.core.constants import constant_functions\n'), ((69699, 69721), 'os.path.exists', 'os.path.exists', (['source'], {}), '(source)\n', (69713, 69721), False, 'import os\n'), ((70583, 70599), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (70597, 70599), False, 'import ipdb\n'), ((76613, 76630), 'os.remove', 'os.remove', (['newsrc'], {}), '(newsrc)\n', (76622, 76630), False, 'import os\n'), ((12570, 12590), 'copy.deepcopy', 'copy.deepcopy', (['value'], {}), '(value)\n', (12583, 12590), False, 'import copy\n'), ((42643, 42654), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (42651, 42654), False, 'import sys\n'), ((45208, 45250), 'apero.core.constants.constant_functions.generate_consts', 'constant_functions.generate_consts', (['module'], {}), '(module)\n', (45242, 45250), False, 'from apero.core.constants import constant_functions\n'), ((46008, 46030), 'os.listdir', 'os.listdir', (['const_path'], {}), '(const_path)\n', (46018, 46030), False, 'import os\n'), ((46106, 46129), 'os.path.isdir', 'os.path.isdir', (['filename'], {}), '(filename)\n', (46119, 46129), False, 'import os\n'), ((46287, 46308), 'os.listdir', 'os.listdir', (['core_path'], {}), '(core_path)\n', (46297, 46308), False, 'import os\n'), ((46384, 46407), 'os.path.isdir', 'os.path.isdir', (['filename'], {}), '(filename)\n', (46397, 46407), False, 'import os\n'), ((46828, 46849), 'os.path.exists', 'os.path.exists', (['fpath'], {}), '(fpath)\n', (46842, 46849), False, 'import os\n'), ((48282, 48315), 'os.path.normpath', 'os.path.normpath', (['instrument_path'], {}), '(instrument_path)\n', (48298, 48315), False, 'import os\n'), ((48402, 48432), 'os.path.normpath', 'os.path.normpath', (['default_path'], {}), '(default_path)\n', (48418, 48432), False, 'import os\n'), ((49196, 49217), 'os.path.exists', 'os.path.exists', (['fpath'], {}), '(fpath)\n', (49210, 49217), False, 'import os\n'), ((51927, 51957), 'apero.lang.drs_exceptions.DebugExit', 'drs_exceptions.DebugExit', (['emsg'], {}), '(emsg)\n', (51951, 51957), False, 'from apero.lang import drs_exceptions\n'), ((52598, 52618), 'shutil.which', 'shutil.which', (['"""stty"""'], {}), "('stty')\n", (52610, 52618), False, 'import shutil\n'), ((62167, 62200), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (62179, 62200), False, 'import os\n'), ((64462, 64491), 'os.path.basename', 'os.path.basename', (['data_folder'], {}), '(data_folder)\n', (64478, 64491), False, 'import os\n'), ((64493, 64521), 'os.path.dirname', 'os.path.dirname', (['data_folder'], {}), '(data_folder)\n', (64508, 64521), False, 'import os\n'), ((70743, 70758), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (70756, 70758), False, 'import pdb\n'), ((39290, 39306), 'numpy.nanmin', 'np.nanmin', (['value'], {}), '(value)\n', (39299, 39306), True, 'import numpy as np\n'), ((39308, 39324), 'numpy.nanmax', 'np.nanmax', (['value'], {}), '(value)\n', (39317, 39324), True, 'import numpy as np\n'), ((43211, 43222), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (43219, 43222), False, 'import sys\n'), ((53406, 53439), 'ctypes.windll.kernel32.GetStdHandle', 'windll.kernel32.GetStdHandle', (['(-12)'], {}), '(-12)\n', (53434, 53439), False, 'from ctypes import windll, create_string_buffer\n'), ((53459, 53483), 'ctypes.create_string_buffer', 'create_string_buffer', (['(22)'], {}), '(22)\n', (53479, 53483), False, 'from ctypes import windll, create_string_buffer\n'), ((53502, 53553), 'ctypes.windll.kernel32.GetConsoleScreenBufferInfo', 'windll.kernel32.GetConsoleScreenBufferInfo', (['h', 'csbi'], {}), '(h, csbi)\n', (53544, 53553), False, 'from ctypes import windll, create_string_buffer\n'), ((30575, 30595), 'copy.deepcopy', 'copy.deepcopy', (['value'], {}), '(value)\n', (30588, 30595), False, 'import copy\n'), ((49315, 49336), 'os.path.exists', 'os.path.exists', (['fpath'], {}), '(fpath)\n', (49329, 49336), False, 'import os\n'), ((53596, 53634), 'struct.unpack', 'struct.unpack', (['"""hhhhHhhhhhh"""', 'csbi.raw'], {}), "('hhhhHhhhhhh', csbi.raw)\n", (53609, 53634), False, 'import struct\n'), ((39354, 39369), 'numpy.isnan', 'np.isnan', (['value'], {}), '(value)\n', (39362, 39369), True, 'import numpy as np\n'), ((52821, 52847), 'os.popen', 'os.popen', (['"""stty size"""', '"""r"""'], {}), "('stty size', 'r')\n", (52829, 52847), False, 'import os\n')]
import matplotlib.pyplot as plt import matplotlib from matplotlib import animation import seaborn as sns import numpy as np import cmocean import os from mpl_toolkits.axes_grid1 import AxesGrid from mpl_toolkits.axes_grid1 import make_axes_locatable import scipy import scipy.ndimage from scipy.stats import norm import matplotlib.image as mpimg class Plotter(): def __init__(self, dic_data, deck, data_modes, plot_deltas = False): self.zz = deck.targetplot plot_contour_linear = deck.doc["Plots"]["Contour Plots"]["Linear"]["Plot_it"] plot_contour_log = deck.doc["Plots"]["Contour Plots"]["Log"]["Plot_it"] plot_quiver = deck.doc["Plots"]["Quiver"]["Plot_it"] plot_streamplots = deck.doc["Plots"]["Streamplots"]["Plot_it"] gif_heatmaps = deck.doc["Plots"]["Heatmaps"]["Gif_it"] gif_contourlin = deck.doc["Plots"]["Contour Plots"]["Linear"]["Gif_it"] gif_contourlog = deck.doc["Plots"]["Contour Plots"]["Log"]["Gif_it"] for self.index, dic_image in enumerate(dic_data.dataframe): index = self.index if plot_contour_linear.lower() == "true": self.create_contourplot_linear(dic_data.dic_paths[index], dic_image, deck, data_modes) if plot_contour_log.lower() == "true": self.create_contourplot_log(dic_data.dic_paths[index], dic_image, deck, data_modes) if plot_quiver.lower() == "true": self.create_quiver(dic_data.dic_paths[index], dic_image, deck) if plot_streamplots.lower() == "true": self.create_streamplot(dic_data.dic_paths[index], dic_image, deck) # Do we really need this ? self.plot_dataset(dic_data.dic_paths[index], dic_image, deck) if plot_deltas == True: if index == 0: pass else: self.plot_deltas(dic_data.dic_paths[index], dic_image, deck) if deck.plot_heatmaps.lower() == "true": for index2, gdf in enumerate(data_modes.grouped): if index == index2: self.build_deltaheatmaps(dic_data.dic_paths[index], gdf, deck, data_modes.scale_min, data_modes.scale_max) if gif_heatmaps == "true": self.create_heatmaps_gif(data_modes.grouped, deck, data_modes.scale_min, data_modes.scale_max) if gif_contourlin.lower() == "true": self.create_contourplotlin_gif(dic_data.dataframe, deck, data_modes, dic_data.dic_paths) if gif_contourlog.lower() == "true": self.create_contourplotlog_gif(dic_data.dataframe, deck, data_modes, dic_data.dic_paths) def filter_NaN_Matrix(self, U, sigVal): #Fonction pour limiter la propagation des NaNs dans le filtre gaussien lissant l'image V=U.copy() V[np.isnan(U)]=0 VV=scipy.ndimage.gaussian_filter(V,sigma=sigVal) W=0*U.copy()+1 W[np.isnan(U)]=0 WW=scipy.ndimage.gaussian_filter(W,sigma=sigVal) np.seterr(divide='ignore', invalid='ignore') #enleve le pb de division /0 Z=VV/WW return Z def create_contourplot_log(self, file_name, df, deck, data_modes): x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) img_name = file_name[0 : len(file_name) -10] + '.tif' img = plt.imread(img_name) fig, ax = plt.subplots(dpi=300,) ax.imshow(img, alpha = 1, cmap = 'gray') df.loc[df["sigma"] == -1, deck.doc["Plots"]['Target Plot'] ] = np.nan e1 = np.array(df[deck.doc["Plots"]['Target Plot']].values) e1 = e1.reshape(len(y), len(x)) levels = np.sort(np.append( np.append( -np.logspace(0.1, abs(data_modes.vmin_0),10) , np.linspace(-0.01,0.01,5) ), np.logspace(0.1,data_modes.vmax_0,15))) ax.contour(x, y, e1, colors = 'k', linewidths = 0.5, levels = levels) pcm = ax.pcolormesh(x,y,e1,norm=matplotlib.colors.SymLogNorm(linthresh=0.001, linscale=0.1, vmin=data_modes.vmin_0, vmax=data_modes.vmax_0), cmap='plasma') fig.colorbar(pcm, ax=ax, extend = 'both') plt.title(deck.doc["Plots"]['Target Plot']+", "+str(self.index)) plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"-contourplot-log"+".png") plt.close() def create_contourplot_linear(self, file_name, df, deck, data_modes): x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) img_name = file_name[0 : len(file_name) -10] + '.tif' img = plt.imread(img_name) fig, ax = plt.subplots(dpi=300,) ax.imshow(img, alpha = 1, cmap = 'gray') df.loc[df["sigma"] == -1, deck.doc["Plots"]['Target Plot'] ] = np.nan e1 = np.array(df[deck.doc["Plots"]['Target Plot']].values) e1 = e1.reshape(len(y), len(x)) levels = np.linspace(data_modes.vmin_0, data_modes.vmax_0,10) cs = plt.contourf(x, y, e1, origin = 'lower', extend = 'both', cmap = 'plasma', alpha = 0.5) plt.contour(x, y, e1, levels = levels, colors = 'k', linewidths = 0.5) fig.colorbar(cs) plt.title(deck.doc["Plots"]['Target Plot']+", "+str(self.index)) plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"-contourplot-linear"+".png") plt.close() def create_quiver(self, file_name, df, deck): x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) df.loc[df["sigma"] == -1, "gamma" ] = np.nan self.teta_ = np.array(df["gamma"].values) teta_1 = np.cos(self.teta_) self.teta_1 = teta_1.reshape(len(y), len(x)) teta_2 = np.sin(self.teta_) self.teta_2 = teta_2.reshape(len(y), len(x)) contour_ = np.array(df[self.zz].values) self.contour_ = contour_.reshape((len(y), len(x))) img_name = file_name[0 : len(file_name) -10] + '.tif' img = plt.imread(img_name) fig, ax = plt.subplots(dpi=300) ax.imshow(img, cmap = plt.get_cmap('gray'), alpha = 1) skip1 = ( slice(None, None, 20)) skip2 = ( slice(None, None, 20), slice(None, None,20) ) tf1 = self.filter_NaN_Matrix(np.array(self.teta_1),7) tf2 = self.filter_NaN_Matrix(np.array(self.teta_2),7) contourf = self.filter_NaN_Matrix(np.array(self.contour_),7) plt.quiver(np.array(x[skip1]),np.array(y[skip1]),tf1[skip2], tf2[skip2], contourf[skip2], cmap='plasma', scale = 50) plt.colorbar() plt.title(deck.doc["Plots"]['Target Plot']+", "+str(self.index)) plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"-quiver"+".png") plt.close() def create_streamplot(self, file_name, df, deck): x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) img_name = file_name[0 : len(file_name) -10] + '.tif' img = plt.imread(img_name) fig, ax = plt.subplots(dpi=300) ax.imshow(img, cmap = plt.get_cmap('gray'), alpha = 1) tf1 = self.filter_NaN_Matrix(np.array(self.teta_1),7) tf2 = self.filter_NaN_Matrix(np.array(self.teta_2),7) contourf = self.filter_NaN_Matrix(np.array(self.contour_),7) fig = plt.streamplot(np.array(x), np.array(y), tf1, tf2, color=contourf, linewidth=1, cmap='plasma', density=1.3, arrowsize=0.5) plt.title(deck.doc["Plots"]['Target Plot']+", "+str(self.index)) plt.colorbar() plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"-stream"+".png") plt.close() def plot_dataset(self, file_name, df, deck): df = df.sort_index(axis=1, level='"x"', ascending=False) x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) df.loc[df["sigma"] == -1, deck.doc["Plots"]['Target Plot'] ] = np.nan zv = 100*(df[deck.doc["Plots"]['Target Plot']].values) zv = zv.reshape((len(y), len(x))) fig = plt.contour(x, y, zv, levels=8, linewidths=0.4, colors="black") cs = plt.contourf(x, y, zv, origin = 'lower', extend = 'both', cmap = 'plasma', alpha = 0.5) cbar = plt.colorbar(cs) cbar.ax.set_xlabel('Strain (%)') plt.title(deck.doc["Plots"]['Target Plot']) plt.clabel(fig, inline=0.1, fontsize=5) plt.legend() plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-3]+"_contour.png") plt.close() def plot_deltas(self, file_name, df, deck): df = df.sort_index(axis=1, level='"x"', ascending=False) x = list(sorted(set( df["x"].values ))) y = list(sorted(set( df["y"].values ))) df.loc[df["sigma"] == -1, deck.plot_inccontour_target ] = np.nan zv = 100*(df[deck.plot_inccontour_target].values) fig = plt.contour(x, y, zv, levels=8, linewidths=0.4, colors="black") cs = plt.contourf(x, y, zv, origin = 'lower', extend = 'both', cmap = 'plasma', alpha = 0.5) cbar = plt.colorbar(cs) cbar.ax.set_xlabel('Strain (%)') plt.title(deck.plot_inccontour_target) plt.clabel(fig, inline=0.1, fontsize=5) plt.legend() plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) plt.savefig("./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"_deltas"+".png") plt.close() def build_deltaheatmaps(self, file_name, df, deck, vmin, vmax): ''' Plots a heatmap for each image with delta variations over the x and y splitting regions df = pandas data frame with set index, one column and target values. ''' df = df.pivot('region_y', 'region_x', deck.target) #df = df.sort_index(ascending=False) fig, ax = plt.subplots(figsize=(9,6)) sns.set() # bug of matplotlib 3.1 forces to manually set ylim to avoid cut-off top and bottom # might remove this later sns.heatmap(df, linewidths= .5, vmin = float(vmin), vmax = float(vmax), annot = True, annot_kws={"size": 9}, cmap = cmocean.cm.curl, ax = ax) ax.set_ylim(len(df), 0) plot_dir = "./plots/" check_folder = os.path.isdir(plot_dir) if not check_folder: os.makedirs(plot_dir) fig.savefig( "./plots/"+self.zz.strip('"')+"-"+file_name[:-4]+"_heatmap"+".png") plt.close() def create_heatmaps_gif(self, dfs, deck, vmin, vmax): #set base plotting space fig = plt.figure(figsize=(9,6)) # create iterator data_frames_iterator = iter(dfs) # set up formatting of the gif later writer='matplotlib.animation.PillowWriter' #'imagemagick' def update_frame(i): plt.clf() heatmap_data = next(data_frames_iterator) heatmap_data = heatmap_data.pivot('region_y', 'region_x', deck.doc["Plots"]["Incremental Contour"]["Target Plot"]) ax = sns.heatmap(heatmap_data, linewidths= 0, vmin = float(vmin), vmax = float(vmax), annot = True, annot_kws={"size": 9}, cmap = "YlGnBu", ) #need to manually set y_lim to avoi cropping of top and bottom cells ax.set_ylim(heatmap_data.shape[0], 0) animation.FuncAnimation(fig, update_frame, frames=len(dfs)-1, interval=400).save('./plots/heatmaps.gif', writer = writer) def create_contourplotlin_gif(self, dfs, deck, data_modes, filenames): #set base plotting space fig, ax = plt.subplots(dpi=200, figsize=(12,10)) x = list(sorted(set( dfs[0]["x"].values ))) y = list(sorted(set( dfs[0]["y"].values ))) # create iterator data_frames_iterator = iter(dfs) # set up formatting of the gif later writer='matplotlib.animation.PillowWriter' def update_frame_log(i): plt.clf() img_name = filenames[i][0 : len(filenames[i]) -10] + '.tif' img = plt.imread(img_name) plt.imshow(img, alpha = 1, cmap = 'gray') df = next(data_frames_iterator) df.loc[df["sigma"] == -1, deck.doc["Plots"]['Target Plot'] ] = np.nan e1 = np.array(df[deck.doc["Plots"]['Target Plot']].values) e1 = e1.reshape(len(y), len(x)) levels = np.sort(np.linspace(data_modes.vmin_0, data_modes.vmax_0,20)) cont = plt.pcolormesh(x,y,e1,vmin=data_modes.vmin_0, vmax=data_modes.vmax_0,cmap='plasma') plt.contour(x, y, e1, levels = levels, colors = 'k', linewidths = 0.5) plt.colorbar(cont) return cont animation.FuncAnimation(fig, update_frame_log, frames=len(dfs)-1, interval=600).save('./plots/contourplotlin.gif', writer = writer) def create_contourplotlog_gif(self, dfs, deck, data_modes, filenames): #set base plotting space fig, ax = plt.subplots(dpi=92, figsize=(12,10)) x = list(sorted(set( dfs[0]["x"].values ))) y = list(sorted(set( dfs[0]["y"].values ))) # create iterator data_frames_iterator = iter(dfs) # set up formatting of the gif later writer='matplotlib.animation.PillowWriter' def update_frame_log(i): plt.clf() img_name = filenames[i][0 : len(filenames[i]) -10] + '.tif' img = plt.imread(img_name) plt.imshow(img, alpha = 1, cmap = 'gray') df = next(data_frames_iterator) df.loc[df["sigma"] == -1, deck.doc["Plots"]['Target Plot'] ] = np.nan e1 = np.array(df[deck.doc["Plots"]['Target Plot']].values) e1 = e1.reshape(len(y), len(x)) levels = np.sort(np.append( np.append( -np.logspace(0.1, abs(data_modes.vmin_0),10) , np.linspace(-0.01,0.01,5) ), np.logspace(0.1,data_modes.vmax_0,15))) cont = plt.pcolormesh(x,y,e1,norm=matplotlib.colors.SymLogNorm(linthresh=0.001, linscale=0.1, vmin=data_modes.vmin_0, vmax=data_modes.vmax_0), vmin=data_modes.vmin_0, vmax=data_modes.vmax_0,cmap='plasma') plt.contour(x, y, e1, levels = levels, colors = 'k', linewidths = 0.5) plt.colorbar(cont) return cont animation.FuncAnimation(fig, update_frame_log, frames=len(dfs)-1, interval=600).save('./plots/contourplotlog.gif', writer = writer)
[ "matplotlib.pyplot.pcolormesh", "numpy.array", "scipy.ndimage.gaussian_filter", "numpy.sin", "matplotlib.pyplot.imshow", "matplotlib.pyplot.contourf", "seaborn.set", "matplotlib.pyplot.close", "matplotlib.pyplot.contour", "numpy.linspace", "os.path.isdir", "matplotlib.pyplot.clabel", "numpy.logspace", "numpy.isnan", "numpy.cos", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.get_cmap", "os.makedirs", "matplotlib.pyplot.imread", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.clf", "matplotlib.pyplot.figure", "matplotlib.colors.SymLogNorm", "numpy.seterr", "matplotlib.pyplot.subplots" ]
[((2947, 2993), 'scipy.ndimage.gaussian_filter', 'scipy.ndimage.gaussian_filter', (['V'], {'sigma': 'sigVal'}), '(V, sigma=sigVal)\n', (2976, 2993), False, 'import scipy\n'), ((3053, 3099), 'scipy.ndimage.gaussian_filter', 'scipy.ndimage.gaussian_filter', (['W'], {'sigma': 'sigVal'}), '(W, sigma=sigVal)\n', (3082, 3099), False, 'import scipy\n'), ((3108, 3152), 'numpy.seterr', 'np.seterr', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (3117, 3152), True, 'import numpy as np\n'), ((3470, 3490), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (3480, 3490), True, 'import matplotlib.pyplot as plt\n'), ((3509, 3530), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(300)'}), '(dpi=300)\n', (3521, 3530), True, 'import matplotlib.pyplot as plt\n'), ((3681, 3734), 'numpy.array', 'np.array', (["df[deck.doc['Plots']['Target Plot']].values"], {}), "(df[deck.doc['Plots']['Target Plot']].values)\n", (3689, 3734), True, 'import numpy as np\n'), ((4372, 4395), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (4385, 4395), False, 'import os\n'), ((4565, 4576), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4574, 4576), True, 'import matplotlib.pyplot as plt\n'), ((4858, 4878), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (4868, 4878), True, 'import matplotlib.pyplot as plt\n'), ((4897, 4918), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(300)'}), '(dpi=300)\n', (4909, 4918), True, 'import matplotlib.pyplot as plt\n'), ((5063, 5116), 'numpy.array', 'np.array', (["df[deck.doc['Plots']['Target Plot']].values"], {}), "(df[deck.doc['Plots']['Target Plot']].values)\n", (5071, 5116), True, 'import numpy as np\n'), ((5174, 5227), 'numpy.linspace', 'np.linspace', (['data_modes.vmin_0', 'data_modes.vmax_0', '(10)'], {}), '(data_modes.vmin_0, data_modes.vmax_0, 10)\n', (5185, 5227), True, 'import numpy as np\n'), ((5241, 5320), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', 'e1'], {'origin': '"""lower"""', 'extend': '"""both"""', 'cmap': '"""plasma"""', 'alpha': '(0.5)'}), "(x, y, e1, origin='lower', extend='both', cmap='plasma', alpha=0.5)\n", (5253, 5320), True, 'import matplotlib.pyplot as plt\n'), ((5338, 5402), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'e1'], {'levels': 'levels', 'colors': '"""k"""', 'linewidths': '(0.5)'}), "(x, y, e1, levels=levels, colors='k', linewidths=0.5)\n", (5349, 5402), True, 'import matplotlib.pyplot as plt\n'), ((5562, 5585), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (5575, 5585), False, 'import os\n'), ((5756, 5767), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5765, 5767), True, 'import matplotlib.pyplot as plt\n'), ((6008, 6036), 'numpy.array', 'np.array', (["df['gamma'].values"], {}), "(df['gamma'].values)\n", (6016, 6036), True, 'import numpy as np\n'), ((6063, 6081), 'numpy.cos', 'np.cos', (['self.teta_'], {}), '(self.teta_)\n', (6069, 6081), True, 'import numpy as np\n'), ((6161, 6179), 'numpy.sin', 'np.sin', (['self.teta_'], {}), '(self.teta_)\n', (6167, 6179), True, 'import numpy as np\n'), ((6262, 6290), 'numpy.array', 'np.array', (['df[self.zz].values'], {}), '(df[self.zz].values)\n', (6270, 6290), True, 'import numpy as np\n'), ((6431, 6451), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (6441, 6451), True, 'import matplotlib.pyplot as plt\n'), ((6470, 6491), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(300)'}), '(dpi=300)\n', (6482, 6491), True, 'import matplotlib.pyplot as plt\n'), ((6989, 7003), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (7001, 7003), True, 'import matplotlib.pyplot as plt\n'), ((7131, 7154), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (7144, 7154), False, 'import os\n'), ((7315, 7326), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7324, 7326), True, 'import matplotlib.pyplot as plt\n'), ((7562, 7582), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (7572, 7582), True, 'import matplotlib.pyplot as plt\n'), ((7610, 7631), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(300)'}), '(dpi=300)\n', (7622, 7631), True, 'import matplotlib.pyplot as plt\n'), ((8222, 8236), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (8234, 8236), True, 'import matplotlib.pyplot as plt\n'), ((8291, 8314), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (8304, 8314), False, 'import os\n'), ((8474, 8485), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8483, 8485), True, 'import matplotlib.pyplot as plt\n'), ((8914, 8977), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'zv'], {'levels': '(8)', 'linewidths': '(0.4)', 'colors': '"""black"""'}), "(x, y, zv, levels=8, linewidths=0.4, colors='black')\n", (8925, 8977), True, 'import matplotlib.pyplot as plt\n'), ((8991, 9070), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', 'zv'], {'origin': '"""lower"""', 'extend': '"""both"""', 'cmap': '"""plasma"""', 'alpha': '(0.5)'}), "(x, y, zv, origin='lower', extend='both', cmap='plasma', alpha=0.5)\n", (9003, 9070), True, 'import matplotlib.pyplot as plt\n'), ((9094, 9110), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['cs'], {}), '(cs)\n', (9106, 9110), True, 'import matplotlib.pyplot as plt\n'), ((9161, 9204), 'matplotlib.pyplot.title', 'plt.title', (["deck.doc['Plots']['Target Plot']"], {}), "(deck.doc['Plots']['Target Plot'])\n", (9170, 9204), True, 'import matplotlib.pyplot as plt\n'), ((9213, 9252), 'matplotlib.pyplot.clabel', 'plt.clabel', (['fig'], {'inline': '(0.1)', 'fontsize': '(5)'}), '(fig, inline=0.1, fontsize=5)\n', (9223, 9252), True, 'import matplotlib.pyplot as plt\n'), ((9261, 9273), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (9271, 9273), True, 'import matplotlib.pyplot as plt\n'), ((9336, 9359), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (9349, 9359), False, 'import os\n'), ((9516, 9527), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9525, 9527), True, 'import matplotlib.pyplot as plt\n'), ((9896, 9959), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'zv'], {'levels': '(8)', 'linewidths': '(0.4)', 'colors': '"""black"""'}), "(x, y, zv, levels=8, linewidths=0.4, colors='black')\n", (9907, 9959), True, 'import matplotlib.pyplot as plt\n'), ((9973, 10052), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', 'zv'], {'origin': '"""lower"""', 'extend': '"""both"""', 'cmap': '"""plasma"""', 'alpha': '(0.5)'}), "(x, y, zv, origin='lower', extend='both', cmap='plasma', alpha=0.5)\n", (9985, 10052), True, 'import matplotlib.pyplot as plt\n'), ((10076, 10092), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['cs'], {}), '(cs)\n', (10088, 10092), True, 'import matplotlib.pyplot as plt\n'), ((10143, 10181), 'matplotlib.pyplot.title', 'plt.title', (['deck.plot_inccontour_target'], {}), '(deck.plot_inccontour_target)\n', (10152, 10181), True, 'import matplotlib.pyplot as plt\n'), ((10190, 10229), 'matplotlib.pyplot.clabel', 'plt.clabel', (['fig'], {'inline': '(0.1)', 'fontsize': '(5)'}), '(fig, inline=0.1, fontsize=5)\n', (10200, 10229), True, 'import matplotlib.pyplot as plt\n'), ((10238, 10250), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (10248, 10250), True, 'import matplotlib.pyplot as plt\n'), ((10305, 10328), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (10318, 10328), False, 'import os\n'), ((10487, 10498), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10496, 10498), True, 'import matplotlib.pyplot as plt\n'), ((10903, 10931), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(9, 6)'}), '(figsize=(9, 6))\n', (10915, 10931), True, 'import matplotlib.pyplot as plt\n'), ((10939, 10948), 'seaborn.set', 'sns.set', ([], {}), '()\n', (10946, 10948), True, 'import seaborn as sns\n'), ((11310, 11333), 'os.path.isdir', 'os.path.isdir', (['plot_dir'], {}), '(plot_dir)\n', (11323, 11333), False, 'import os\n'), ((11494, 11505), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11503, 11505), True, 'import matplotlib.pyplot as plt\n'), ((11613, 11639), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 6)'}), '(figsize=(9, 6))\n', (11623, 11639), True, 'import matplotlib.pyplot as plt\n'), ((12828, 12867), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(200)', 'figsize': '(12, 10)'}), '(dpi=200, figsize=(12, 10))\n', (12840, 12867), True, 'import matplotlib.pyplot as plt\n'), ((14198, 14236), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'dpi': '(92)', 'figsize': '(12, 10)'}), '(dpi=92, figsize=(12, 10))\n', (14210, 14236), True, 'import matplotlib.pyplot as plt\n'), ((2921, 2932), 'numpy.isnan', 'np.isnan', (['U'], {}), '(U)\n', (2929, 2932), True, 'import numpy as np\n'), ((3027, 3038), 'numpy.isnan', 'np.isnan', (['U'], {}), '(U)\n', (3035, 3038), True, 'import numpy as np\n'), ((4439, 4460), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (4450, 4460), False, 'import os\n'), ((5627, 5648), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (5638, 5648), False, 'import os\n'), ((6699, 6720), 'numpy.array', 'np.array', (['self.teta_1'], {}), '(self.teta_1)\n', (6707, 6720), True, 'import numpy as np\n'), ((6761, 6782), 'numpy.array', 'np.array', (['self.teta_2'], {}), '(self.teta_2)\n', (6769, 6782), True, 'import numpy as np\n'), ((6828, 6851), 'numpy.array', 'np.array', (['self.contour_'], {}), '(self.contour_)\n', (6836, 6851), True, 'import numpy as np\n'), ((6875, 6893), 'numpy.array', 'np.array', (['x[skip1]'], {}), '(x[skip1])\n', (6883, 6893), True, 'import numpy as np\n'), ((6894, 6912), 'numpy.array', 'np.array', (['y[skip1]'], {}), '(y[skip1])\n', (6902, 6912), True, 'import numpy as np\n'), ((7198, 7219), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (7209, 7219), False, 'import os\n'), ((7733, 7754), 'numpy.array', 'np.array', (['self.teta_1'], {}), '(self.teta_1)\n', (7741, 7754), True, 'import numpy as np\n'), ((7795, 7816), 'numpy.array', 'np.array', (['self.teta_2'], {}), '(self.teta_2)\n', (7803, 7816), True, 'import numpy as np\n'), ((7862, 7885), 'numpy.array', 'np.array', (['self.contour_'], {}), '(self.contour_)\n', (7870, 7885), True, 'import numpy as np\n'), ((7927, 7938), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (7935, 7938), True, 'import numpy as np\n'), ((7940, 7951), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (7948, 7951), True, 'import numpy as np\n'), ((8357, 8378), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (8368, 8378), False, 'import os\n'), ((9401, 9422), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (9412, 9422), False, 'import os\n'), ((10370, 10391), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (10381, 10391), False, 'import os\n'), ((11375, 11396), 'os.makedirs', 'os.makedirs', (['plot_dir'], {}), '(plot_dir)\n', (11386, 11396), False, 'import os\n'), ((11869, 11878), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (11876, 11878), True, 'import matplotlib.pyplot as plt\n'), ((13182, 13191), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (13189, 13191), True, 'import matplotlib.pyplot as plt\n'), ((13283, 13303), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (13293, 13303), True, 'import matplotlib.pyplot as plt\n'), ((13316, 13353), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'alpha': '(1)', 'cmap': '"""gray"""'}), "(img, alpha=1, cmap='gray')\n", (13326, 13353), True, 'import matplotlib.pyplot as plt\n'), ((13503, 13556), 'numpy.array', 'np.array', (["df[deck.doc['Plots']['Target Plot']].values"], {}), "(df[deck.doc['Plots']['Target Plot']].values)\n", (13511, 13556), True, 'import numpy as np\n'), ((13704, 13795), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['x', 'y', 'e1'], {'vmin': 'data_modes.vmin_0', 'vmax': 'data_modes.vmax_0', 'cmap': '"""plasma"""'}), "(x, y, e1, vmin=data_modes.vmin_0, vmax=data_modes.vmax_0,\n cmap='plasma')\n", (13718, 13795), True, 'import matplotlib.pyplot as plt\n'), ((13800, 13864), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'e1'], {'levels': 'levels', 'colors': '"""k"""', 'linewidths': '(0.5)'}), "(x, y, e1, levels=levels, colors='k', linewidths=0.5)\n", (13811, 13864), True, 'import matplotlib.pyplot as plt\n'), ((13884, 13902), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['cont'], {}), '(cont)\n', (13896, 13902), True, 'import matplotlib.pyplot as plt\n'), ((14551, 14560), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (14558, 14560), True, 'import matplotlib.pyplot as plt\n'), ((14652, 14672), 'matplotlib.pyplot.imread', 'plt.imread', (['img_name'], {}), '(img_name)\n', (14662, 14672), True, 'import matplotlib.pyplot as plt\n'), ((14685, 14722), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'alpha': '(1)', 'cmap': '"""gray"""'}), "(img, alpha=1, cmap='gray')\n", (14695, 14722), True, 'import matplotlib.pyplot as plt\n'), ((14872, 14925), 'numpy.array', 'np.array', (["df[deck.doc['Plots']['Target Plot']].values"], {}), "(df[deck.doc['Plots']['Target Plot']].values)\n", (14880, 14925), True, 'import numpy as np\n'), ((15367, 15431), 'matplotlib.pyplot.contour', 'plt.contour', (['x', 'y', 'e1'], {'levels': 'levels', 'colors': '"""k"""', 'linewidths': '(0.5)'}), "(x, y, e1, levels=levels, colors='k', linewidths=0.5)\n", (15378, 15431), True, 'import matplotlib.pyplot as plt\n'), ((15451, 15469), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['cont'], {}), '(cont)\n', (15463, 15469), True, 'import matplotlib.pyplot as plt\n'), ((3899, 3938), 'numpy.logspace', 'np.logspace', (['(0.1)', 'data_modes.vmax_0', '(15)'], {}), '(0.1, data_modes.vmax_0, 15)\n', (3910, 3938), True, 'import numpy as np\n'), ((4058, 4170), 'matplotlib.colors.SymLogNorm', 'matplotlib.colors.SymLogNorm', ([], {'linthresh': '(0.001)', 'linscale': '(0.1)', 'vmin': 'data_modes.vmin_0', 'vmax': 'data_modes.vmax_0'}), '(linthresh=0.001, linscale=0.1, vmin=data_modes\n .vmin_0, vmax=data_modes.vmax_0)\n', (4086, 4170), False, 'import matplotlib\n'), ((6522, 6542), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""gray"""'], {}), "('gray')\n", (6534, 6542), True, 'import matplotlib.pyplot as plt\n'), ((7662, 7682), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""gray"""'], {}), "('gray')\n", (7674, 7682), True, 'import matplotlib.pyplot as plt\n'), ((13631, 13684), 'numpy.linspace', 'np.linspace', (['data_modes.vmin_0', 'data_modes.vmax_0', '(20)'], {}), '(data_modes.vmin_0, data_modes.vmax_0, 20)\n', (13642, 13684), True, 'import numpy as np\n'), ((3870, 3897), 'numpy.linspace', 'np.linspace', (['(-0.01)', '(0.01)', '(5)'], {}), '(-0.01, 0.01, 5)\n', (3881, 3897), True, 'import numpy as np\n'), ((15098, 15137), 'numpy.logspace', 'np.logspace', (['(0.1)', 'data_modes.vmax_0', '(15)'], {}), '(0.1, data_modes.vmax_0, 15)\n', (15109, 15137), True, 'import numpy as np\n'), ((15184, 15296), 'matplotlib.colors.SymLogNorm', 'matplotlib.colors.SymLogNorm', ([], {'linthresh': '(0.001)', 'linscale': '(0.1)', 'vmin': 'data_modes.vmin_0', 'vmax': 'data_modes.vmax_0'}), '(linthresh=0.001, linscale=0.1, vmin=data_modes\n .vmin_0, vmax=data_modes.vmax_0)\n', (15212, 15296), False, 'import matplotlib\n'), ((15069, 15096), 'numpy.linspace', 'np.linspace', (['(-0.01)', '(0.01)', '(5)'], {}), '(-0.01, 0.01, 5)\n', (15080, 15096), True, 'import numpy as np\n')]
#!/usr/bin/env python3 """ ROS component that implement a ball detector """ # Import of libraries import sys import time import numpy as np from scipy.ndimage import filters import imutils import cv2 import roslib import rospy from sensor_msgs.msg import CompressedImage from sensoring.srv import DetectImage,DetectImageResponse ## Variable for logging purpose VERBOSE = False class image_feature: """ A class used to detect a green ball Attributes ----- @param subscriber: variable that represents a subscriber to the camera topic @type subscriber: Subscriber @param resp_center: center of the ball @type resp_center: int @param resp_radius: radius of the ball @type resp_radius: int Methods ----- getCenter(): Get the center of the ball getRadius() Get the radius of the ball callback(ros_data) Callback function of subscribed topic. Here images get converted and features detected """ def __init__(self): ''' Constuctor. Initialize the node and the attributes, subscribe to topic of the camera ''' rospy.init_node('image_detector', anonymous=True) ## ROS Subsriber object for getting the images self.subscriber = rospy.Subscriber("/robot/camera1/image_raw/compressed",CompressedImage, self.callback, queue_size=1) ## Center of the ball self.resp_center = -1 ## Radius of the ball self.resp_radius = -1 def getCenter(self): ''' Get the center of the ball @returns: center of the ball @rtype: int ''' return self.resp_center def getRadius(self): ''' Get the radius of the ball @returns: radius of the ball @rtype: int ''' return self.resp_radius def callback(self, ros_data): ''' Callback function for converting the images and detecting the features ''' if VERBOSE: print ('received image of type: "%s"' % ros_data.format) #### direct conversion to CV2 #### np_arr = np.fromstring(ros_data.data, np.uint8) image_np = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) # OpenCV >= 3.0: greenLower = (50, 50, 20) greenUpper = (70, 255, 255) blurred = cv2.GaussianBlur(image_np, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) #cv2.imshow('mask', mask) cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(image_np, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(image_np, center, 5, (0, 0, 255), -1) self.resp_center = center[0] self.resp_radius = radius else: self.resp_center = -1 self.resp_radius = -1 cv2.imshow('window', image_np) cv2.waitKey(2) class ball_info: """ A class used to represent a service for providing the radius and center of the ball Attributes ----- @param ic: istance of class image_feature @type ic: image_feature @param s: service object @type s: Service Methods ----- handle_object(req): Received a request and reply with the center and radius of the ball """ def __init__(self): ''' Constuctor. Initialize the node and service, create an instance of the class image_feature ''' rospy.init_node('image_detector', anonymous=True) ## Image feature object self.ic = image_feature() ## ROS service object self.s = rospy.Service('detect_image', DetectImage, self.handle_object) def handle_object(self,req): """ Received a request and reply with the center and radius of the ball(the request is empty) @returns: radius and center of the ball @rtype: DetectImageResponse """ resp = DetectImageResponse() resp.object = str(self.ic.getCenter())+" "+str(self.ic.getRadius()) return resp def main(args): ''' Main function.Starting the nodes ''' c = ball_info() try: rospy.spin() except KeyboardInterrupt: print ("Shutting down ROS Image feature detector module") cv2.destroyAllWindows() if __name__ == '__main__': main(sys.argv)
[ "rospy.init_node", "cv2.imshow", "cv2.destroyAllWindows", "cv2.imdecode", "cv2.erode", "rospy.Service", "imutils.grab_contours", "rospy.spin", "numpy.fromstring", "rospy.Subscriber", "cv2.waitKey", "cv2.minEnclosingCircle", "sensoring.srv.DetectImageResponse", "cv2.circle", "cv2.cvtColor", "cv2.moments", "cv2.GaussianBlur", "cv2.inRange", "cv2.dilate" ]
[((5511, 5534), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5532, 5534), False, 'import cv2\n'), ((1227, 1276), 'rospy.init_node', 'rospy.init_node', (['"""image_detector"""'], {'anonymous': '(True)'}), "('image_detector', anonymous=True)\n", (1242, 1276), False, 'import rospy\n'), ((1361, 1466), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/robot/camera1/image_raw/compressed"""', 'CompressedImage', 'self.callback'], {'queue_size': '(1)'}), "('/robot/camera1/image_raw/compressed', CompressedImage,\n self.callback, queue_size=1)\n", (1377, 1466), False, 'import rospy\n'), ((2277, 2315), 'numpy.fromstring', 'np.fromstring', (['ros_data.data', 'np.uint8'], {}), '(ros_data.data, np.uint8)\n', (2290, 2315), True, 'import numpy as np\n'), ((2335, 2373), 'cv2.imdecode', 'cv2.imdecode', (['np_arr', 'cv2.IMREAD_COLOR'], {}), '(np_arr, cv2.IMREAD_COLOR)\n', (2347, 2373), False, 'import cv2\n'), ((2482, 2521), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['image_np', '(11, 11)', '(0)'], {}), '(image_np, (11, 11), 0)\n', (2498, 2521), False, 'import cv2\n'), ((2536, 2576), 'cv2.cvtColor', 'cv2.cvtColor', (['blurred', 'cv2.COLOR_BGR2HSV'], {}), '(blurred, cv2.COLOR_BGR2HSV)\n', (2548, 2576), False, 'import cv2\n'), ((2592, 2632), 'cv2.inRange', 'cv2.inRange', (['hsv', 'greenLower', 'greenUpper'], {}), '(hsv, greenLower, greenUpper)\n', (2603, 2632), False, 'import cv2\n'), ((2648, 2683), 'cv2.erode', 'cv2.erode', (['mask', 'None'], {'iterations': '(2)'}), '(mask, None, iterations=2)\n', (2657, 2683), False, 'import cv2\n'), ((2699, 2735), 'cv2.dilate', 'cv2.dilate', (['mask', 'None'], {'iterations': '(2)'}), '(mask, None, iterations=2)\n', (2709, 2735), False, 'import cv2\n'), ((2906, 2933), 'imutils.grab_contours', 'imutils.grab_contours', (['cnts'], {}), '(cnts)\n', (2927, 2933), False, 'import imutils\n'), ((3952, 3982), 'cv2.imshow', 'cv2.imshow', (['"""window"""', 'image_np'], {}), "('window', image_np)\n", (3962, 3982), False, 'import cv2\n'), ((3991, 4005), 'cv2.waitKey', 'cv2.waitKey', (['(2)'], {}), '(2)\n', (4002, 4005), False, 'import cv2\n'), ((4649, 4698), 'rospy.init_node', 'rospy.init_node', (['"""image_detector"""'], {'anonymous': '(True)'}), "('image_detector', anonymous=True)\n", (4664, 4698), False, 'import rospy\n'), ((4814, 4876), 'rospy.Service', 'rospy.Service', (['"""detect_image"""', 'DetectImage', 'self.handle_object'], {}), "('detect_image', DetectImage, self.handle_object)\n", (4827, 4876), False, 'import rospy\n'), ((5168, 5189), 'sensoring.srv.DetectImageResponse', 'DetectImageResponse', ([], {}), '()\n', (5187, 5189), False, 'from sensoring.srv import DetectImage, DetectImageResponse\n'), ((5398, 5410), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (5408, 5410), False, 'import rospy\n'), ((3262, 3287), 'cv2.minEnclosingCircle', 'cv2.minEnclosingCircle', (['c'], {}), '(c)\n', (3284, 3287), False, 'import cv2\n'), ((3304, 3318), 'cv2.moments', 'cv2.moments', (['c'], {}), '(c)\n', (3315, 3318), False, 'import cv2\n'), ((3731, 3779), 'cv2.circle', 'cv2.circle', (['image_np', 'center', '(5)', '(0, 0, 255)', '(-1)'], {}), '(image_np, center, 5, (0, 0, 255), -1)\n', (3741, 3779), False, 'import cv2\n')]
import numpy as np import openpnm as op from porespy.filters import trim_nonpercolating_paths import collections def tortuosity(im, axis, return_im=False, **kwargs): r""" Calculates tortuosity of given image in specified direction Parameters ---------- im : ND-image The binary image to analyze with ``True`` indicating phase of interest axis : int The axis along which to apply boundary conditions return_im : boolean If ``True`` then the resulting tuple contains a copy of the input image with the concentration profile. Returns ------- results : tuple A named-tuple containing: * ``tortuosity`` calculated using the ``effective_porosity`` as * ``effective_porosity`` of the image after applying ``trim_nonpercolating_paths``. This removes disconnected voxels which cause singular matrices. :math:`(D_{AB}/D_{eff}) \cdot \varepsilon`. * ``original_porosity`` of the image as given * ``formation_factor`` found as :math:`D_{AB}/D_{eff}`. * ``image`` containing the concentration values from the simulation. This is only returned if ``return_im`` is ``True``. """ if axis > (im.ndim - 1): raise Exception("Axis argument is too high") # Obtain original porosity porosity_orig = im.sum()/im.size # removing floating pores im = trim_nonpercolating_paths(im, inlet_axis=axis, outlet_axis=axis) # porosity is changed because of trimmimg floating pores porosity_true = im.sum()/im.size if porosity_true < porosity_orig: print('Caution, True porosity is:', porosity_true, 'and volume fraction filled:', abs(porosity_orig-porosity_true)*100, '%') # cubic network generation net = op.network.CubicTemplate(template=im, spacing=1) # adding phase water = op.phases.Water(network=net) water['throat.diffusive_conductance'] = 1 # dummy value # running Fickian Diffusion fd = op.algorithms.FickianDiffusion(network=net, phase=water) # choosing axis of concentration gradient inlets = net['pore.coords'][:, axis] <= 1 outlets = net['pore.coords'][:, axis] >= im.shape[axis]-1 # boundary conditions on concentration C_in = 1.0 C_out = 0.0 fd.set_value_BC(pores=inlets, values=C_in) fd.set_value_BC(pores=outlets, values=C_out) # Use specified solver if given if 'solver_family' in kwargs.keys(): fd.settings.update(kwargs) else: # Use pyamg otherwise, if presnet try: import pyamg fd.settings['solver_family'] = 'pyamg' except ModuleNotFoundError: # Use scipy cg as last resort fd.settings['solver_family'] = 'scipy' fd.settings['solver_type'] = 'cg' op.utils.tic() fd.run() op.utils.toc() # calculating molar flow rate, effective diffusivity and tortuosity rate_out = fd.rate(pores=outlets)[0] rate_in = fd.rate(pores=inlets)[0] if not np.allclose(-rate_out, rate_in): raise Exception('Something went wrong, inlet and outlet rate do not match') delta_C = C_in - C_out L = im.shape[axis] A = np.prod(im.shape)/L N_A = A/L*delta_C Deff = rate_in/N_A tau = porosity_true/(Deff) result = collections.namedtuple('tortuosity_result', ['tortuosity', 'effective_porosity', 'original_porosity', 'formation_factor', 'image']) result.tortuosity = tau result.formation_factor = 1/Deff result.original_porosity = porosity_orig result.effective_porosity = porosity_true if return_im: conc = np.zeros([im.size, ], dtype=float) conc[net['pore.template_indices']] = fd['pore.concentration'] conc = np.reshape(conc, newshape=im.shape) result.image = conc else: result.image = None return result
[ "numpy.prod", "openpnm.utils.toc", "openpnm.phases.Water", "openpnm.utils.tic", "collections.namedtuple", "numpy.allclose", "numpy.reshape", "porespy.filters.trim_nonpercolating_paths", "numpy.zeros", "openpnm.algorithms.FickianDiffusion", "openpnm.network.CubicTemplate" ]
[((1416, 1480), 'porespy.filters.trim_nonpercolating_paths', 'trim_nonpercolating_paths', (['im'], {'inlet_axis': 'axis', 'outlet_axis': 'axis'}), '(im, inlet_axis=axis, outlet_axis=axis)\n', (1441, 1480), False, 'from porespy.filters import trim_nonpercolating_paths\n'), ((1819, 1867), 'openpnm.network.CubicTemplate', 'op.network.CubicTemplate', ([], {'template': 'im', 'spacing': '(1)'}), '(template=im, spacing=1)\n', (1843, 1867), True, 'import openpnm as op\n'), ((1899, 1927), 'openpnm.phases.Water', 'op.phases.Water', ([], {'network': 'net'}), '(network=net)\n', (1914, 1927), True, 'import openpnm as op\n'), ((2030, 2086), 'openpnm.algorithms.FickianDiffusion', 'op.algorithms.FickianDiffusion', ([], {'network': 'net', 'phase': 'water'}), '(network=net, phase=water)\n', (2060, 2086), True, 'import openpnm as op\n'), ((2825, 2839), 'openpnm.utils.tic', 'op.utils.tic', ([], {}), '()\n', (2837, 2839), True, 'import openpnm as op\n'), ((2857, 2871), 'openpnm.utils.toc', 'op.utils.toc', ([], {}), '()\n', (2869, 2871), True, 'import openpnm as op\n'), ((3319, 3454), 'collections.namedtuple', 'collections.namedtuple', (['"""tortuosity_result"""', "['tortuosity', 'effective_porosity', 'original_porosity',\n 'formation_factor', 'image']"], {}), "('tortuosity_result', ['tortuosity',\n 'effective_porosity', 'original_porosity', 'formation_factor', 'image'])\n", (3341, 3454), False, 'import collections\n'), ((3035, 3066), 'numpy.allclose', 'np.allclose', (['(-rate_out)', 'rate_in'], {}), '(-rate_out, rate_in)\n', (3046, 3066), True, 'import numpy as np\n'), ((3210, 3227), 'numpy.prod', 'np.prod', (['im.shape'], {}), '(im.shape)\n', (3217, 3227), True, 'import numpy as np\n'), ((3872, 3904), 'numpy.zeros', 'np.zeros', (['[im.size]'], {'dtype': 'float'}), '([im.size], dtype=float)\n', (3880, 3904), True, 'import numpy as np\n'), ((3992, 4027), 'numpy.reshape', 'np.reshape', (['conc'], {'newshape': 'im.shape'}), '(conc, newshape=im.shape)\n', (4002, 4027), True, 'import numpy as np\n')]
import unittest import numpy from oo_trees.dataset import * from oo_trees.decision_tree import * from oo_trees.attribute import * class TestDecisionTree(unittest.TestCase): def test_classification(self): X = numpy.array([[0, 1], [0, 0], [1, 0], [1, 1]]) y = numpy.array(['H', 'H', 'H', 'T']) dataset = Dataset(X, y) tree = DecisionTree(dataset) self.assertEqual(len(tree.branches), 2) self.assertEqual(len(tree.branches[1].branches), 0) self.assertEqual(len(tree.branches[0].branches), 2) self.assertEqual(len(tree.branches[0].branches[1].branches), 0) self.assertEqual(len(tree.branches[0].branches[0].branches), 0) self.assertEqual(tree.classify([0, 0]), 'H') self.assertEqual(tree.classify([0, 1]), 'H') self.assertEqual(tree.classify([1, 0]), 'H') self.assertEqual(tree.classify([1, 1]), 'T') self.assertEqual(tree.classify([2, 0]), 'H') # it can handle unknown values too def test_min_points(self): X = numpy.array([[0], [1], [1]]) y = numpy.array(['H', 'T', 'T']) dataset = Dataset(X, y) tree = DecisionTree(dataset, min_samples_split=0) self.assertEqual(len(tree.branches), 2) tree = DecisionTree(dataset, min_samples_split=5) self.assertEqual(len(tree.branches), 0) self.assertEqual(tree.leaf_value(), 'T') def test_max_depth(self): X = numpy.array([[0], [1], [1]]) y = numpy.array(['H', 'T', 'T']) dataset = Dataset(X, y) tree = DecisionTree(dataset, max_depth=3) self.assertEqual(len(tree.branches), 2) numpy.testing.assert_array_equal([2, 2], [t.depth for t in tree.branches.values()]) tree = DecisionTree(dataset, max_depth=1) self.assertEqual(len(tree.branches), 0) self.assertEqual(tree.leaf_value(), 'T') def test_performance_on(self): # x1 < 0.25 => 'a' # x1 >= 0.25, x2 = 0 => 'b' # x1 < 0.50, x2 = 1 => 'c' # x1 >= 0.50, x2 = 1 => 'a' Xtrain = numpy.array([[0.15, 0], [0.232, 1], [0.173, 0], [0.263, 0], [0.671, 0], [0.9, 0], [0.387, 1], [0.482, 1], [0.632, 1], [0.892, 1]]) ytrain = numpy.array([ 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'a', 'a']) training_dataset = Dataset(Xtrain, ytrain, [NumericAttribute(0), CategoricalAttribute(1)]) tree = DecisionTree(training_dataset) # expecting # Real # a b c #Pred a 2 0 2 # # b 1 2 0 # # c 1 0 2 # accuracy: 6/10 # a,a a,a a,c a,c b,a b,b b,b c,a c,c c,c Xtest = numpy.array([[0.13, 0], [0.73, 1], [0.47, 1], [0.33, 1], [0.7, 1], [0.3, 0], [0.5, 0], [0.1, 1], [0.476, 1], [0.265, 1]]) ytest = numpy.array([ 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c']) test_dataset = Dataset(Xtest, ytest, [NumericAttribute(0), CategoricalAttribute(1)]) performance = tree.performance_on(test_dataset) self.assertEqual(performance.accuracy, 0.6) numpy.testing.assert_array_equal(performance.to_array(), [[2,0,2], [1,2,0], [1,0,2]])
[ "numpy.array" ]
[((221, 266), 'numpy.array', 'numpy.array', (['[[0, 1], [0, 0], [1, 0], [1, 1]]'], {}), '([[0, 1], [0, 0], [1, 0], [1, 1]])\n', (232, 266), False, 'import numpy\n'), ((279, 312), 'numpy.array', 'numpy.array', (["['H', 'H', 'H', 'T']"], {}), "(['H', 'H', 'H', 'T'])\n", (290, 312), False, 'import numpy\n'), ((1039, 1067), 'numpy.array', 'numpy.array', (['[[0], [1], [1]]'], {}), '([[0], [1], [1]])\n', (1050, 1067), False, 'import numpy\n'), ((1080, 1108), 'numpy.array', 'numpy.array', (["['H', 'T', 'T']"], {}), "(['H', 'T', 'T'])\n", (1091, 1108), False, 'import numpy\n'), ((1445, 1473), 'numpy.array', 'numpy.array', (['[[0], [1], [1]]'], {}), '([[0], [1], [1]])\n', (1456, 1473), False, 'import numpy\n'), ((1486, 1514), 'numpy.array', 'numpy.array', (["['H', 'T', 'T']"], {}), "(['H', 'T', 'T'])\n", (1497, 1514), False, 'import numpy\n'), ((2089, 2224), 'numpy.array', 'numpy.array', (['[[0.15, 0], [0.232, 1], [0.173, 0], [0.263, 0], [0.671, 0], [0.9, 0], [\n 0.387, 1], [0.482, 1], [0.632, 1], [0.892, 1]]'], {}), '([[0.15, 0], [0.232, 1], [0.173, 0], [0.263, 0], [0.671, 0], [\n 0.9, 0], [0.387, 1], [0.482, 1], [0.632, 1], [0.892, 1]])\n', (2100, 2224), False, 'import numpy\n'), ((2237, 2300), 'numpy.array', 'numpy.array', (["['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'a', 'a']"], {}), "(['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'a', 'a'])\n", (2248, 2300), False, 'import numpy\n'), ((2855, 2980), 'numpy.array', 'numpy.array', (['[[0.13, 0], [0.73, 1], [0.47, 1], [0.33, 1], [0.7, 1], [0.3, 0], [0.5, 0],\n [0.1, 1], [0.476, 1], [0.265, 1]]'], {}), '([[0.13, 0], [0.73, 1], [0.47, 1], [0.33, 1], [0.7, 1], [0.3, 0],\n [0.5, 0], [0.1, 1], [0.476, 1], [0.265, 1]])\n', (2866, 2980), False, 'import numpy\n'), ((2993, 3056), 'numpy.array', 'numpy.array', (["['a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c']"], {}), "(['a', 'a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'])\n", (3004, 3056), False, 'import numpy\n')]
import numpy as np k_i = np.array([0.20, 0.22, 0.78, 0.80, 0.30, 0.32, 0.96, 1.00, 1.20, 1.43, 1.80, 1.88, 0.40, 0.50, 3.24, 3.50, 0.38, 0.43, 2.24, 4.90, 0.40, 0.44, 1.22, 4.00, 0.39, 0.44, 0.96, 1.80, 0.39, 0.45, 0.80, 1.60, 0.40, 0.47, 0.60, 1.60], dtype=float) c_i = np.linspace(0, 160, 9) t_i = np.array([16, 25, 50, 75], dtype=float) def phi_ij(c_ii, c_j, t_ii, t_j): return np.sqrt(1 + (c_ii - c_j)**2 + (t_ii - t_j)**2) def calculate_aj(): b_ij = np.zeros((36, 36), dtype=float) i = 0 for c_j_val in c_i: for t_j_val in t_i: j = 0 for c_i_val in c_i: for t_i_val in t_i: b_ij[i, j] = phi_ij(c_i_val, c_j_val, t_i_val, t_j_val) j += 1 i += 1 a_ij = np.linalg.solve(b_ij, k_i) return a_ij def tk_ct(a_ij, c, t): i = 0 function_value = 0 for c_j in c_i: for t_j in t_i: function_value += a_ij[i] * phi_ij(c, c_j, t, t_j) i += 1 return function_value def check(): a_ij = calculate_aj() k_test = np.zeros(36, dtype=float) i = 0 for c in c_i: for t in t_i: k_test[i] = tk_ct(a_ij, c, t) i += 1 print(k_test)
[ "numpy.linalg.solve", "numpy.sqrt", "numpy.array", "numpy.linspace", "numpy.zeros" ]
[((26, 255), 'numpy.array', 'np.array', (['[0.2, 0.22, 0.78, 0.8, 0.3, 0.32, 0.96, 1.0, 1.2, 1.43, 1.8, 1.88, 0.4, 0.5,\n 3.24, 3.5, 0.38, 0.43, 2.24, 4.9, 0.4, 0.44, 1.22, 4.0, 0.39, 0.44, \n 0.96, 1.8, 0.39, 0.45, 0.8, 1.6, 0.4, 0.47, 0.6, 1.6]'], {'dtype': 'float'}), '([0.2, 0.22, 0.78, 0.8, 0.3, 0.32, 0.96, 1.0, 1.2, 1.43, 1.8, 1.88,\n 0.4, 0.5, 3.24, 3.5, 0.38, 0.43, 2.24, 4.9, 0.4, 0.44, 1.22, 4.0, 0.39,\n 0.44, 0.96, 1.8, 0.39, 0.45, 0.8, 1.6, 0.4, 0.47, 0.6, 1.6], dtype=float)\n', (34, 255), True, 'import numpy as np\n'), ((401, 423), 'numpy.linspace', 'np.linspace', (['(0)', '(160)', '(9)'], {}), '(0, 160, 9)\n', (412, 423), True, 'import numpy as np\n'), ((430, 469), 'numpy.array', 'np.array', (['[16, 25, 50, 75]'], {'dtype': 'float'}), '([16, 25, 50, 75], dtype=float)\n', (438, 469), True, 'import numpy as np\n'), ((517, 567), 'numpy.sqrt', 'np.sqrt', (['(1 + (c_ii - c_j) ** 2 + (t_ii - t_j) ** 2)'], {}), '(1 + (c_ii - c_j) ** 2 + (t_ii - t_j) ** 2)\n', (524, 567), True, 'import numpy as np\n'), ((597, 628), 'numpy.zeros', 'np.zeros', (['(36, 36)'], {'dtype': 'float'}), '((36, 36), dtype=float)\n', (605, 628), True, 'import numpy as np\n'), ((913, 939), 'numpy.linalg.solve', 'np.linalg.solve', (['b_ij', 'k_i'], {}), '(b_ij, k_i)\n', (928, 939), True, 'import numpy as np\n'), ((1233, 1258), 'numpy.zeros', 'np.zeros', (['(36)'], {'dtype': 'float'}), '(36, dtype=float)\n', (1241, 1258), True, 'import numpy as np\n')]
import numpy as np def fit_MRF_pseudolikelihood(adj_exc,adj_inh,y): ''' Fit a Markov random field using maximum pseudolikelihood estimation, also known as logistic regression. The conditional probabilities follow y_i ~ Logistic(B[0] + B[1] A1_{ij} y_j + A1[2] X_{ij} (1-y_j) + B[3] A2_{ij} y_j + B[4] A3_{ij} (1-y_j) ), where A1 = adj_exc and A2 = adj_inh and each term is summed over j. Params ====== adj_exc: excitatory adjacency matrix adj_inh: inhibitory adjacency matrix y: site variables, 0 or 1 Returns ======= B: logistic regression coefficients ''' from sklearn.linear_model import LogisticRegression from sklearn import cross_validation if len(np.unique(y)) < 2: B=np.array([np.nan,np.nan,np.nan,np.nan,np.nan]) else: N=y.shape[0] ytile=np.tile(y,(N,1)).T X1=np.array(np.sum(np.multiply(adj_exc,ytile),0)).flatten() X2=np.array(np.sum(np.multiply(adj_exc,1-ytile),0)).flatten() X3=np.array(np.sum(np.multiply(adj_inh,ytile),0)).flatten() X4=np.array(np.sum(np.multiply(adj_inh,1-ytile),0)).flatten() model=LogisticRegression(penalty='l2') X=np.column_stack((X1,X2,X3,X4)) model.fit(X,y) B=np.hstack((model.intercept_, model.coef_.flatten())) return B def predict_MRF(B, adj_exc, adj_inh, burn_in=4e3, steps=1e4, skip_multiple=3): ''' Perform prediction with an MRF (Markov random field). Uses Gibbs sampling to sample from the distribution P(y) =1/Z exp( -H(y) ). The Hamiltonian is: H = \sum_{ij} y_i (B[0] + B[1] A1_{ji} y_j + A1[2] X_{ji} (1-y_j) + B[3] A2_{ji} y_j + B[4] A3_{ji} (1-y_j)) Params ====== B: coefficients of the MRF adj_exc: excitatory adjacency matrix adj_inh: inhibitory adjacency matrix burn_in: number of burn-in steps to take (default: 4000) steps: total number of Gibbs steps to take (default: 10000) skip_multiple: skips skip_multiple * num_neuron steps between samples Returns ======= ypostmean: posterior mean of state ''' import numpy.random def gibbs_proba(y,B,adj_exc,adj_inh): term0=B[0]*np.dot(adj_exc.T,y) term1=B[1]*np.dot(adj_exc.T,(1-y)) term2=B[2]*np.dot(adj_inh.T,y) term3=B[3]*np.dot(adj_inh.T,(1-y)) e=B[4]+term0+term1+term2+term3 return np.exp(e)/(np.exp(e)+1.0) N=adj_exc.shape[0] steps=int(steps) # run a Gibbs sampler y=np.random.rand(N,1) samples=np.zeros((N,steps)) # zero diagonals (should be 0 already) np.fill_diagonal(adj_exc,0) np.fill_diagonal(adj_inh,0) for ii in range(steps): yt=y # Gibbs update proba=gibbs_proba(y,B,adj_exc,adj_inh) yt=np.array(np.random.rand(N,1) < proba,dtype=np.float) y=yt samples[:,ii]=y.flatten() # compute mle use_indices=np.arange(burn_in,steps,skip_multiple*N, dtype=int) final_samples=samples[:,use_indices] ypostmean=np.mean(final_samples,axis=1) return ypostmean def fit_logistic_graph_features(): pass def get_node_features(adj_exc,adj_inh,normalize_centrality=True): ''' Get node-based features to train logistic classifier Params ====== adj_exc: excitatory adjacency matrix adj_inh: inhibitory adjacency matrix normalize_centrality: normalize relevant measures? (default: True) Returns ======= X: numneuron x numfeatures array to be used with logistic regression X_labels ''' import networkx as nx G_exc=nx.DiGraph(adj_exc) G_inh=nx.DiGraph(adj_inh) def dict_to_array(d): return np.array([d[i] for i in sorted(d)]) def features(G,normalize_centrality): ''' Returns the features we are interested in within a dict ''' load_centrality=nx.load_centrality(G,normalized=normalize_centrality) betweenness_centrality=nx.betweenness_centrality(G,normalized=normalize_centrality) eigenvector_centrality=nx.eigenvector_centrality_numpy(G,normalized=normalize_centrality) closeness_centrality=nx.closeness_centrality(G,normalized=normalize_centrality) in_degree=G.in_degree() out_degree=G.out_degree() core_number=nx.core_number(G) clustering=nx.clustering(G) d={} d['in_degree']=in_degree d['out_degree']=out_degree d['load_centrality']=load_centrality d['betweennes_centrality']=betweennes_centrality d['eigenvector_centrality']=eigenvector_centrality d['closeness_centrality']=closeness_centrality d['core_number']=core_number return d # grab the features d_exc=features(G_exc) d_inh=features(G_inh) # setup some structures num_features=len(d_exc)+len(d_inh) num_nodes=G.number_of_nodes() X=np.zeros((num_nodes,num_features),dtype=np.float) X_labels=[] # fill in X and Xlabels feature_index=0 for gclass in ('exc','inh'): if gclass == 'exc': d=d_exc else: d=d_inh for feature in sorted(d): X_labels.append(feature+"_"+gclass) X[:,feature_index]=dict_to_array(d[feature]) feature_index+=1 return X, X_labels
[ "numpy.random.rand", "numpy.column_stack", "numpy.array", "networkx.closeness_centrality", "networkx.betweenness_centrality", "numpy.arange", "networkx.eigenvector_centrality_numpy", "numpy.mean", "numpy.multiply", "networkx.clustering", "networkx.DiGraph", "numpy.exp", "numpy.dot", "networkx.load_centrality", "numpy.tile", "numpy.fill_diagonal", "networkx.core_number", "numpy.unique", "sklearn.linear_model.LogisticRegression", "numpy.zeros" ]
[((2585, 2605), 'numpy.random.rand', 'np.random.rand', (['N', '(1)'], {}), '(N, 1)\n', (2599, 2605), True, 'import numpy as np\n'), ((2617, 2637), 'numpy.zeros', 'np.zeros', (['(N, steps)'], {}), '((N, steps))\n', (2625, 2637), True, 'import numpy as np\n'), ((2684, 2712), 'numpy.fill_diagonal', 'np.fill_diagonal', (['adj_exc', '(0)'], {}), '(adj_exc, 0)\n', (2700, 2712), True, 'import numpy as np\n'), ((2717, 2745), 'numpy.fill_diagonal', 'np.fill_diagonal', (['adj_inh', '(0)'], {}), '(adj_inh, 0)\n', (2733, 2745), True, 'import numpy as np\n'), ((3001, 3056), 'numpy.arange', 'np.arange', (['burn_in', 'steps', '(skip_multiple * N)'], {'dtype': 'int'}), '(burn_in, steps, skip_multiple * N, dtype=int)\n', (3010, 3056), True, 'import numpy as np\n'), ((3108, 3138), 'numpy.mean', 'np.mean', (['final_samples'], {'axis': '(1)'}), '(final_samples, axis=1)\n', (3115, 3138), True, 'import numpy as np\n'), ((3681, 3700), 'networkx.DiGraph', 'nx.DiGraph', (['adj_exc'], {}), '(adj_exc)\n', (3691, 3700), True, 'import networkx as nx\n'), ((3711, 3730), 'networkx.DiGraph', 'nx.DiGraph', (['adj_inh'], {}), '(adj_inh)\n', (3721, 3730), True, 'import networkx as nx\n'), ((4975, 5026), 'numpy.zeros', 'np.zeros', (['(num_nodes, num_features)'], {'dtype': 'np.float'}), '((num_nodes, num_features), dtype=np.float)\n', (4983, 5026), True, 'import numpy as np\n'), ((791, 841), 'numpy.array', 'np.array', (['[np.nan, np.nan, np.nan, np.nan, np.nan]'], {}), '([np.nan, np.nan, np.nan, np.nan, np.nan])\n', (799, 841), True, 'import numpy as np\n'), ((1192, 1224), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l2"""'}), "(penalty='l2')\n", (1210, 1224), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1235, 1268), 'numpy.column_stack', 'np.column_stack', (['(X1, X2, X3, X4)'], {}), '((X1, X2, X3, X4))\n', (1250, 1268), True, 'import numpy as np\n'), ((3968, 4022), 'networkx.load_centrality', 'nx.load_centrality', (['G'], {'normalized': 'normalize_centrality'}), '(G, normalized=normalize_centrality)\n', (3986, 4022), True, 'import networkx as nx\n'), ((4053, 4114), 'networkx.betweenness_centrality', 'nx.betweenness_centrality', (['G'], {'normalized': 'normalize_centrality'}), '(G, normalized=normalize_centrality)\n', (4078, 4114), True, 'import networkx as nx\n'), ((4145, 4212), 'networkx.eigenvector_centrality_numpy', 'nx.eigenvector_centrality_numpy', (['G'], {'normalized': 'normalize_centrality'}), '(G, normalized=normalize_centrality)\n', (4176, 4212), True, 'import networkx as nx\n'), ((4241, 4300), 'networkx.closeness_centrality', 'nx.closeness_centrality', (['G'], {'normalized': 'normalize_centrality'}), '(G, normalized=normalize_centrality)\n', (4264, 4300), True, 'import networkx as nx\n'), ((4386, 4403), 'networkx.core_number', 'nx.core_number', (['G'], {}), '(G)\n', (4400, 4403), True, 'import networkx as nx\n'), ((4423, 4439), 'networkx.clustering', 'nx.clustering', (['G'], {}), '(G)\n', (4436, 4439), True, 'import networkx as nx\n'), ((762, 774), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (771, 774), True, 'import numpy as np\n'), ((883, 901), 'numpy.tile', 'np.tile', (['y', '(N, 1)'], {}), '(y, (N, 1))\n', (890, 901), True, 'import numpy as np\n'), ((2279, 2299), 'numpy.dot', 'np.dot', (['adj_exc.T', 'y'], {}), '(adj_exc.T, y)\n', (2285, 2299), True, 'import numpy as np\n'), ((2318, 2342), 'numpy.dot', 'np.dot', (['adj_exc.T', '(1 - y)'], {}), '(adj_exc.T, 1 - y)\n', (2324, 2342), True, 'import numpy as np\n'), ((2361, 2381), 'numpy.dot', 'np.dot', (['adj_inh.T', 'y'], {}), '(adj_inh.T, y)\n', (2367, 2381), True, 'import numpy as np\n'), ((2400, 2424), 'numpy.dot', 'np.dot', (['adj_inh.T', '(1 - y)'], {}), '(adj_inh.T, 1 - y)\n', (2406, 2424), True, 'import numpy as np\n'), ((2478, 2487), 'numpy.exp', 'np.exp', (['e'], {}), '(e)\n', (2484, 2487), True, 'import numpy as np\n'), ((2489, 2498), 'numpy.exp', 'np.exp', (['e'], {}), '(e)\n', (2495, 2498), True, 'import numpy as np\n'), ((2876, 2896), 'numpy.random.rand', 'np.random.rand', (['N', '(1)'], {}), '(N, 1)\n', (2890, 2896), True, 'import numpy as np\n'), ((929, 956), 'numpy.multiply', 'np.multiply', (['adj_exc', 'ytile'], {}), '(adj_exc, ytile)\n', (940, 956), True, 'import numpy as np\n'), ((997, 1028), 'numpy.multiply', 'np.multiply', (['adj_exc', '(1 - ytile)'], {}), '(adj_exc, 1 - ytile)\n', (1008, 1028), True, 'import numpy as np\n'), ((1067, 1094), 'numpy.multiply', 'np.multiply', (['adj_inh', 'ytile'], {}), '(adj_inh, ytile)\n', (1078, 1094), True, 'import numpy as np\n'), ((1135, 1166), 'numpy.multiply', 'np.multiply', (['adj_inh', '(1 - ytile)'], {}), '(adj_inh, 1 - ytile)\n', (1146, 1166), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np import treegp from treegp_test_helper import timer from treegp_test_helper import get_correlation_length_matrix from treegp_test_helper import make_1d_grf from treegp_test_helper import make_2d_grf @timer def test_hyperparameter_search_1d(): optimizer = ['log-likelihood', 'two-pcf'] npoints = [100, 2000] noise = 0.01 sigma = [1., 2., 1., 2.] l = [0.5, 0.8, 8., 10.] kernels = ['RBF', 'RBF', 'VonKarman', 'VonKarman'] max_sep = [1.75, 1.75, 1.25, 1.25] for n, opt in enumerate(optimizer): for i, ker in enumerate(kernels): # Generate 1D gaussian random fields. kernel = "%f**2 * %s(%f)"%((sigma[i], ker, l[i])) kernel_skl = treegp.eval_kernel(kernel) x, y, y_err = make_1d_grf(kernel_skl, noise=noise, seed=42, npoints=npoints[n]) # Do gp interpolation without hyperparameters # fitting (truth is put initially). gp = treegp.GPInterpolation(kernel=kernel, optimizer=opt, normalize=True, nbins=15, min_sep=0.1, max_sep=max_sep[i]) gp.initialize(x, y, y_err=y_err) gp.solve() # test if found hyperparameters are close the true hyperparameters. np.testing.assert_allclose(kernel_skl.theta, gp.kernel.theta, atol=7e-1) if opt == "two-pcf": xi, xi_weight, distance, coord, mask = gp.return_2pcf() np.testing.assert_allclose(xi, gp._optimizer._2pcf, atol=1e-10) if opt == "log-likelihood": logL = gp.return_log_likelihood() np.testing.assert_allclose(logL, gp._optimizer._logL, atol=1e-10) # Predict at same position as the simulated data. # Predictions are strictily equal to the input data # in the case of no noise. With noise you should expect # to have a pull distribution with mean function arround 0 # with a std<1 (you use the same data to train and validate, and # the data are well sample compared to the input correlation # length). y_predict, y_cov = gp.predict(x, return_cov=True) y_std = np.sqrt(np.diag(y_cov)) pull = y - y_predict mean_pull = np.mean(pull) std_pull = np.std(pull) # Test that mean of the pull is close to zeros and std of the pull bellow 1. np.testing.assert_allclose(0., mean_pull, atol=3.*(std_pull)/np.sqrt(npoints[n])) if std_pull > 1.: raise ValueError("std_pull is > 1. Current value std_pull = %f"%(std_pull)) # Test that for extrapolation, interpolation is the mean function (0 here) # and the diagonal of the covariance matrix is close to the hyperameters is # link to the amplitudes of the fluctuation of the gaussian random fields. new_x = np.linspace(np.max(x)+6.*l[i], np.max(x)+7.*l[i], npoints[n]).reshape((npoints[n],1)) y_predict, y_cov = gp.predict(new_x, return_cov=True) y_std = np.sqrt(np.diag(y_cov)) np.testing.assert_allclose(np.mean(y)*np.ones_like(y_std), y_predict, atol=1e-5) sig = np.sqrt(np.exp(gp.kernel.theta[0])) np.testing.assert_allclose(sig*np.ones_like(y_std), y_std, atol=1e-5) @timer def test_hyperparameter_search_2d(): optimizer = ['log-likelihood', 'anisotropic', 'anisotropic'] npoints = [600, 2000, 2000] noise = 0.01 sigma = 2. size = [0.5, 0.5, 1.5] g1 = 0.2 g2 = 0.2 ker = ['AnisotropicRBF', 'AnisotropicRBF', 'AnisotropicVonKarman'] for n, opt in enumerate(optimizer): # Generate 2D gaussian random fields. L = get_correlation_length_matrix(size[n], g1, g2) invL = np.linalg.inv(L) kernel = "%f**2*%s"%((sigma, ker[n])) kernel += "(invLam={0!r})".format(invL) kernel_skl = treegp.eval_kernel(kernel) x, y, y_err = make_2d_grf(kernel_skl, noise=noise, seed=42, npoints=npoints[n]) # Do gp interpolation without hyperparameters # fitting (truth is put initially). gp = treegp.GPInterpolation(kernel=kernel, optimizer=opt, normalize=True, nbins=21, min_sep=0., max_sep=1., p0=[0.3, 0.,0.]) gp.initialize(x, y, y_err=y_err) gp.solve() # test if found hyperparameters are close the true hyperparameters. np.testing.assert_allclose(kernel_skl.theta, gp.kernel.theta, atol=5e-1) # Predict at same position as the simulated data. # Predictions are strictily equal to the input data # in the case of no noise. With noise you should expect # to have a pull distribution with mean function arround 0 # with a std<1 (you use the same data to train and validate, and # the data are well sample compared to the input correlation # length). y_predict, y_cov = gp.predict(x, return_cov=True) y_std = np.sqrt(np.diag(y_cov)) pull = y - y_predict pull /= np.sqrt(y_err**2 + y_std**2) mean_pull = np.mean(pull) std_pull = np.std(pull) # Test that mean of the pull is close to zeros and std of the pull bellow 1. np.testing.assert_allclose(0., mean_pull, atol=3.*(std_pull)/np.sqrt(npoints[n])) if std_pull > 1.: raise ValueError("std_pull is > 1. Current value std_pull = %f"%(std_pull)) # Test that for extrapolation, interpolation is the mean function (0 here) # and the diagonal of the covariance matrix is close to the hyperameters is # link to the amplitudes of the fluctuation of the gaussian random fields. np.random.seed(42) x1 = np.random.uniform(np.max(x)+6.*size[n], np.max(x)+6.*size[n], npoints[n]) x2 = np.random.uniform(np.max(x)+6.*size[n], np.max(x)+6.*size[n], npoints[n]) new_x = np.array([x1, x2]).T y_predict, y_cov = gp.predict(new_x, return_cov=True) y_std = np.sqrt(np.diag(y_cov)) np.testing.assert_allclose(np.mean(y), y_predict, atol=1e-5) sig = np.sqrt(np.exp(gp.kernel.theta[0])) np.testing.assert_allclose(sig*np.ones_like(y_std), y_std, atol=1e-5) if __name__ == "__main__": test_hyperparameter_search_1d() test_hyperparameter_search_2d()
[ "numpy.mean", "treegp.GPInterpolation", "treegp.eval_kernel", "numpy.sqrt", "numpy.ones_like", "numpy.testing.assert_allclose", "treegp_test_helper.make_1d_grf", "numpy.diag", "numpy.exp", "treegp_test_helper.get_correlation_length_matrix", "numpy.array", "numpy.linalg.inv", "numpy.max", "numpy.random.seed", "numpy.std", "treegp_test_helper.make_2d_grf" ]
[((3968, 4014), 'treegp_test_helper.get_correlation_length_matrix', 'get_correlation_length_matrix', (['size[n]', 'g1', 'g2'], {}), '(size[n], g1, g2)\n', (3997, 4014), False, 'from treegp_test_helper import get_correlation_length_matrix\n'), ((4030, 4046), 'numpy.linalg.inv', 'np.linalg.inv', (['L'], {}), '(L)\n', (4043, 4046), True, 'import numpy as np\n'), ((4162, 4188), 'treegp.eval_kernel', 'treegp.eval_kernel', (['kernel'], {}), '(kernel)\n', (4180, 4188), False, 'import treegp\n'), ((4212, 4277), 'treegp_test_helper.make_2d_grf', 'make_2d_grf', (['kernel_skl'], {'noise': 'noise', 'seed': '(42)', 'npoints': 'npoints[n]'}), '(kernel_skl, noise=noise, seed=42, npoints=npoints[n])\n', (4223, 4277), False, 'from treegp_test_helper import make_2d_grf\n'), ((4458, 4587), 'treegp.GPInterpolation', 'treegp.GPInterpolation', ([], {'kernel': 'kernel', 'optimizer': 'opt', 'normalize': '(True)', 'nbins': '(21)', 'min_sep': '(0.0)', 'max_sep': '(1.0)', 'p0': '[0.3, 0.0, 0.0]'}), '(kernel=kernel, optimizer=opt, normalize=True, nbins=\n 21, min_sep=0.0, max_sep=1.0, p0=[0.3, 0.0, 0.0])\n', (4480, 4587), False, 'import treegp\n'), ((4794, 4865), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['kernel_skl.theta', 'gp.kernel.theta'], {'atol': '(0.5)'}), '(kernel_skl.theta, gp.kernel.theta, atol=0.5)\n', (4820, 4865), True, 'import numpy as np\n'), ((5421, 5453), 'numpy.sqrt', 'np.sqrt', (['(y_err ** 2 + y_std ** 2)'], {}), '(y_err ** 2 + y_std ** 2)\n', (5428, 5453), True, 'import numpy as np\n'), ((5470, 5483), 'numpy.mean', 'np.mean', (['pull'], {}), '(pull)\n', (5477, 5483), True, 'import numpy as np\n'), ((5503, 5515), 'numpy.std', 'np.std', (['pull'], {}), '(pull)\n', (5509, 5515), True, 'import numpy as np\n'), ((6066, 6084), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (6080, 6084), True, 'import numpy as np\n'), ((765, 791), 'treegp.eval_kernel', 'treegp.eval_kernel', (['kernel'], {}), '(kernel)\n', (783, 791), False, 'import treegp\n'), ((818, 883), 'treegp_test_helper.make_1d_grf', 'make_1d_grf', (['kernel_skl'], {'noise': 'noise', 'seed': '(42)', 'npoints': 'npoints[n]'}), '(kernel_skl, noise=noise, seed=42, npoints=npoints[n])\n', (829, 883), False, 'from treegp_test_helper import make_1d_grf\n'), ((1084, 1200), 'treegp.GPInterpolation', 'treegp.GPInterpolation', ([], {'kernel': 'kernel', 'optimizer': 'opt', 'normalize': '(True)', 'nbins': '(15)', 'min_sep': '(0.1)', 'max_sep': 'max_sep[i]'}), '(kernel=kernel, optimizer=opt, normalize=True, nbins=\n 15, min_sep=0.1, max_sep=max_sep[i])\n', (1106, 1200), False, 'import treegp\n'), ((1438, 1509), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['kernel_skl.theta', 'gp.kernel.theta'], {'atol': '(0.7)'}), '(kernel_skl.theta, gp.kernel.theta, atol=0.7)\n', (1464, 1509), True, 'import numpy as np\n'), ((2483, 2496), 'numpy.mean', 'np.mean', (['pull'], {}), '(pull)\n', (2490, 2496), True, 'import numpy as np\n'), ((2520, 2532), 'numpy.std', 'np.std', (['pull'], {}), '(pull)\n', (2526, 2532), True, 'import numpy as np\n'), ((5360, 5374), 'numpy.diag', 'np.diag', (['y_cov'], {}), '(y_cov)\n', (5367, 5374), True, 'import numpy as np\n'), ((6337, 6355), 'numpy.array', 'np.array', (['[x1, x2]'], {}), '([x1, x2])\n', (6345, 6355), True, 'import numpy as np\n'), ((6445, 6459), 'numpy.diag', 'np.diag', (['y_cov'], {}), '(y_cov)\n', (6452, 6459), True, 'import numpy as np\n'), ((6497, 6507), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (6504, 6507), True, 'import numpy as np\n'), ((6553, 6579), 'numpy.exp', 'np.exp', (['gp.kernel.theta[0]'], {}), '(gp.kernel.theta[0])\n', (6559, 6579), True, 'import numpy as np\n'), ((1645, 1708), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['xi', 'gp._optimizer._2pcf'], {'atol': '(1e-10)'}), '(xi, gp._optimizer._2pcf, atol=1e-10)\n', (1671, 1708), True, 'import numpy as np\n'), ((1815, 1880), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['logL', 'gp._optimizer._logL'], {'atol': '(1e-10)'}), '(logL, gp._optimizer._logL, atol=1e-10)\n', (1841, 1880), True, 'import numpy as np\n'), ((2410, 2424), 'numpy.diag', 'np.diag', (['y_cov'], {}), '(y_cov)\n', (2417, 2424), True, 'import numpy as np\n'), ((3312, 3326), 'numpy.diag', 'np.diag', (['y_cov'], {}), '(y_cov)\n', (3319, 3326), True, 'import numpy as np\n'), ((3460, 3486), 'numpy.exp', 'np.exp', (['gp.kernel.theta[0]'], {}), '(gp.kernel.theta[0])\n', (3466, 3486), True, 'import numpy as np\n'), ((6116, 6125), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (6122, 6125), True, 'import numpy as np\n'), ((6169, 6178), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (6175, 6178), True, 'import numpy as np\n'), ((6234, 6243), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (6240, 6243), True, 'import numpy as np\n'), ((6287, 6296), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (6293, 6296), True, 'import numpy as np\n'), ((6620, 6639), 'numpy.ones_like', 'np.ones_like', (['y_std'], {}), '(y_std)\n', (6632, 6639), True, 'import numpy as np\n'), ((3380, 3390), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (3387, 3390), True, 'import numpy as np\n'), ((3391, 3410), 'numpy.ones_like', 'np.ones_like', (['y_std'], {}), '(y_std)\n', (3403, 3410), True, 'import numpy as np\n'), ((3531, 3550), 'numpy.ones_like', 'np.ones_like', (['y_std'], {}), '(y_std)\n', (3543, 3550), True, 'import numpy as np\n'), ((5671, 5690), 'numpy.sqrt', 'np.sqrt', (['npoints[n]'], {}), '(npoints[n])\n', (5678, 5690), True, 'import numpy as np\n'), ((2696, 2715), 'numpy.sqrt', 'np.sqrt', (['npoints[n]'], {}), '(npoints[n])\n', (2703, 2715), True, 'import numpy as np\n'), ((3135, 3144), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (3141, 3144), True, 'import numpy as np\n'), ((3154, 3163), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (3160, 3163), True, 'import numpy as np\n')]