code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np import pandas as pd from collections import OrderedDict import tabulate del(tabulate.LATEX_ESCAPE_RULES[u'$']) del(tabulate.LATEX_ESCAPE_RULES[u'\\']) del(tabulate.LATEX_ESCAPE_RULES[u'{']) del(tabulate.LATEX_ESCAPE_RULES[u'}']) del(tabulate.LATEX_ESCAPE_RULES[u'^']) data = {} scens = ["SPEAR-SWV","SPEAR-IBM","CPLEX-RCW","CPLEX-REG","CPLEX-CORLAT"] models = ["RF", "DNN"] EVA_BUDGETs = [1,3600] WC_BUDGET = 172800 # sec RUNS = 3 for scen in scens: for model in models: for EVA_BUDGET in EVA_BUDGETs: rep_options = [True] if model=="DNN" else [False] for reg in rep_options: print(scen,model,EVA_BUDGET,reg) data[scen] = data.get(scen,{}) data[scen][model] = data[scen].get(model,{}) data[scen][model][EVA_BUDGET] = data[scen][model].get(EVA_BUDGET,{}) t = [np.inf] rmse_I = [np.inf] rmsle_I = [np.inf] rmse_II = [np.inf] rmsle_II = [np.inf] rmse_III = [np.inf] rmsle_III = [np.inf] rmse_IV = [np.inf] rmsle_IV = [np.inf] for seed in range(1,RUNS+1): with open("{0}_{1}_{2}_{3}_{4}_{5}.log".format(scen, model, reg, EVA_BUDGET,WC_BUDGET, seed)) as fp: for line in fp: if line.startswith("Training Time: "): t.append(float(line.split(":")[1])) elif line.startswith("RMSE (I)"): rmse_I.append(float(line.split(":")[1])) elif line.startswith("RMSLE (I)"): rmsle_I.append(float(line.split(":")[1])) elif line.startswith("RMSE (II)"): rmse_II.append(float(line.split(":")[1])) elif line.startswith("RMSLE (II)"): rmsle_II.append(float(line.split(":")[1])) elif line.startswith("RMSE (III)"): rmse_III.append(float(line.split(":")[1])) elif line.startswith("RMSLE (III)"): rmsle_III.append(float(line.split(":")[1])) elif line.startswith("RMSE (IV)"): rmse_IV.append(float(line.split(":")[1])) elif line.startswith("RMSLE (IV)"): rmsle_IV.append(float(line.split(":")[1])) best_run = np.argmin(rmse_I) data[scen][model][EVA_BUDGET]["time"] = t[best_run] data[scen][model][EVA_BUDGET]["RMSE (I)"] = rmse_I[best_run] data[scen][model][EVA_BUDGET]["RMSEL (I)"] = rmsle_I[best_run] data[scen][model][EVA_BUDGET]["RMSE (II)"] = rmse_II[best_run] data[scen][model][EVA_BUDGET]["RMSEL (II)"] = rmsle_II[best_run] data[scen][model][EVA_BUDGET]["RMSE (III)"] = rmse_III[best_run] data[scen][model][EVA_BUDGET]["RMSEL (III)"] = rmsle_III[best_run] data[scen][model][EVA_BUDGET]["RMSE (IV)"] = rmse_IV[best_run] data[scen][model][EVA_BUDGET]["RMSEL (IV)"] = rmsle_IV[best_run] for budget in EVA_BUDGETs: table_data = [["","","\multicolumn{2}{c}{$\conf_{\\text{train}}$}","\multicolumn{2}{c}{$\conf_{\\text{test}}$}"], ["Domain", "Instances","RF","DNN","RF","DNN"] ] for scen in scens: row = [scen, "$\insts_{\\text{train}}$"] for quad in ["I","III"]: for model in models: row.append("$%.2f$" %(data[scen][model][budget]["RMSEL (%s)" %(quad)])) table_data.append(row) row = [scen, "$\insts_{\\text{test}}$"] for quad in ["II","IV"]: for model in models: row.append("$%.2f$" %(data[scen][model][budget]["RMSEL (%s)" %(quad)])) table_data.append(row) print(tabulate.tabulate(tabular_data=table_data, tablefmt="latex_booktabs"))
[ "numpy.argmin", "tabulate.tabulate" ]
[((4159, 4228), 'tabulate.tabulate', 'tabulate.tabulate', ([], {'tabular_data': 'table_data', 'tablefmt': '"""latex_booktabs"""'}), "(tabular_data=table_data, tablefmt='latex_booktabs')\n", (4176, 4228), False, 'import tabulate\n'), ((2679, 2696), 'numpy.argmin', 'np.argmin', (['rmse_I'], {}), '(rmse_I)\n', (2688, 2696), True, 'import numpy as np\n')]
""" (C) Copyright 2021 IBM Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on June 30, 2021 """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from fuse.losses.loss_base import FuseLossBase from fuse.utils.utils_hierarchical_dict import FuseUtilsHierarchicalDict from typing import Callable, Dict, Optional def make_one_hot(input, num_classes, device='cuda'): """Convert class index tensor to one hot encoding tensor. Args: input: A tensor of shape [N, 1, *] num_classes: An int of number of class Returns: A tensor of shape [N, num_classes, *] """ shape = np.array(input.shape) shape[1] = num_classes shape = tuple(shape) result = torch.zeros(shape, device=device) result = result.scatter_(1, input, 1) return result class BinaryDiceLoss(nn.Module): def __init__(self, power: int=1, eps: float =1., reduction: str = 'mean'): ''' :param power: Denominator value: \sum{x^p} + \sum{y^p}, default: 1 :param eps: A float number to smooth loss, and avoid NaN error, default: 1 :param reduction: Reduction method to apply, return mean over batch if 'mean', return sum if 'sum', return a tensor of shape [N,] if 'none' Returns: Loss tensor according to arg reduction Raise: Exception if unexpected reduction ''' super().__init__() self.p = power self.reduction = reduction self.eps = eps def __call__(self, predict, target): assert predict.shape[0] == target.shape[0], "predict & target batch size don't match" predict = predict.contiguous().view(predict.shape[0], -1) target = target.contiguous().view(target.shape[0], -1) if target.dtype == torch.int64: target = target.type(torch.float32).to(target.device) num = 2*torch.sum(torch.mul(predict, target), dim=1) + self.eps den = torch.sum(predict.pow(self.p) + target.pow(self.p), dim=1) + self.eps loss = 1 - num / den # return loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() elif self.reduction == 'none': return loss else: raise Exception('Unexpected reduction {}'.format(self.reduction)) class FuseDiceLoss(FuseLossBase): def __init__(self, pred_name, target_name, filter_func: Optional[Callable] = None, class_weights=None, ignore_cls_index_list=None, resize_mode: str = 'maxpool', **kwargs): ''' :param pred_name: batch_dict key for predicted output (e.g., class probabilities after softmax). Expected Tensor shape = [batch, num_classes, height, width] :param target_name: batch_dict key for target (e.g., ground truth label). Expected Tensor shape = [batch, height, width] :param filter_func: function that filters batch_dict/ The function gets ans input batch_dict and returns filtered batch_dict :param class_weights: An array of shape [num_classes,] :param ignore_cls_index_list: class index to ignore (list) :param resize_mode: Resize mode- either using a max pooling kernel(default), or using PyTorch interpolation ('interpolate'/'maxpool') :param kwargs: args pass to BinaryDiceLoss ''' super().__init__(pred_name, target_name, class_weights) self.class_weights = class_weights self.filter_func = filter_func self.kwargs = kwargs self.ignore_cls_index_list = ignore_cls_index_list self.resize_mode = resize_mode self.dice = BinaryDiceLoss(**self.kwargs) def __call__(self, batch_dict): if self.filter_func is not None: batch_dict = self.filter_func(batch_dict) predict = FuseUtilsHierarchicalDict.get(batch_dict, self.pred_name).float() target = FuseUtilsHierarchicalDict.get(batch_dict, self.target_name).long() n, c, h, w = predict.shape tar_shape = target.shape if len(tar_shape) < 4: target = target.unsqueeze(1) nt, ct, ht, wt = target.shape if h != ht or w != wt: # upsample if self.resize_mode == 'maxpool': block_height = int(ht / h) block_width = int(wt / w) residual_h = int((ht - (block_height * h)) / 2) residual_w = int((wt - (block_width * w)) / 2) target = torch.nn.functional.max_pool2d(target[:, :, residual_h:ht - residual_h, residual_w:wt - residual_w], kernel_size=(block_height, block_width)) elif self.resize_mode == 'interpolate': target = torch.nn.functional.interpolate(target, size=(h, w)) else: raise Exception total_loss = 0 n_classes = predict.shape[1] # Convert target to one hot encoding if n_classes > 1 and target.shape[1] != n_classes: target = make_one_hot(target, n_classes) assert predict.shape == target.shape, 'predict & target shape do not match' total_class_weights = sum(self.class_weights) if self.class_weights is not None else n_classes for cls_index in range(n_classes): if cls_index not in self.ignore_cls_index_list: dice_loss = self.dice(predict[:, cls_index, :, :], target[:, cls_index, :, :]) if self.class_weights is not None: assert self.class_weights.shape[0] == n_classes, \ 'Expect weight shape [{}], got[{}]'.format(n_classes, self.class_weights.shape[0]) dice_loss *= self.class_weights[cls_index] total_loss += dice_loss total_loss /= total_class_weights return self.weight*total_loss
[ "torch.mul", "numpy.array", "fuse.utils.utils_hierarchical_dict.FuseUtilsHierarchicalDict.get", "torch.nn.functional.interpolate", "torch.nn.functional.max_pool2d", "torch.zeros" ]
[((1137, 1158), 'numpy.array', 'np.array', (['input.shape'], {}), '(input.shape)\n', (1145, 1158), True, 'import numpy as np\n'), ((1224, 1257), 'torch.zeros', 'torch.zeros', (['shape'], {'device': 'device'}), '(shape, device=device)\n', (1235, 1257), False, 'import torch\n'), ((4650, 4707), 'fuse.utils.utils_hierarchical_dict.FuseUtilsHierarchicalDict.get', 'FuseUtilsHierarchicalDict.get', (['batch_dict', 'self.pred_name'], {}), '(batch_dict, self.pred_name)\n', (4679, 4707), False, 'from fuse.utils.utils_hierarchical_dict import FuseUtilsHierarchicalDict\n'), ((4733, 4792), 'fuse.utils.utils_hierarchical_dict.FuseUtilsHierarchicalDict.get', 'FuseUtilsHierarchicalDict.get', (['batch_dict', 'self.target_name'], {}), '(batch_dict, self.target_name)\n', (4762, 4792), False, 'from fuse.utils.utils_hierarchical_dict import FuseUtilsHierarchicalDict\n'), ((5307, 5452), 'torch.nn.functional.max_pool2d', 'torch.nn.functional.max_pool2d', (['target[:, :, residual_h:ht - residual_h, residual_w:wt - residual_w]'], {'kernel_size': '(block_height, block_width)'}), '(target[:, :, residual_h:ht - residual_h,\n residual_w:wt - residual_w], kernel_size=(block_height, block_width))\n', (5337, 5452), False, 'import torch\n'), ((2444, 2470), 'torch.mul', 'torch.mul', (['predict', 'target'], {}), '(predict, target)\n', (2453, 2470), False, 'import torch\n'), ((5583, 5635), 'torch.nn.functional.interpolate', 'torch.nn.functional.interpolate', (['target'], {'size': '(h, w)'}), '(target, size=(h, w))\n', (5614, 5635), False, 'import torch\n')]
from typing import Optional import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras import Model from tensorflow.keras.layers import Layer import numpy as np import rinokeras as rk from rinokeras.layers import WeightNormDense as Dense from rinokeras.layers import LayerNorm, Stack class RandomReplaceMask(Layer): """ Copied from rinokeras because we're going to potentially have different replace masks. Replaces some percentage of the input with a mask token. Used for implementing style models. This is actually slightly more complex - it does one of three things Based on https://arxiv.org/abs/1810.04805. Args: percentage (float): Percentage of input tokens to mask mask_token (int): Token to replace masked input with """ def __init__(self, percentage: float, mask_token: int, n_symbols: Optional[int] = None, *args, **kwargs) -> None: super().__init__(*args, **kwargs) if not 0 <= percentage < 1: raise ValueError("Masking percentage must be in [0, 1).\ Received {}".format(percentage)) self.percentage = percentage self.mask_token = mask_token self.n_symbols = n_symbols def _generate_bert_mask(self, inputs): mask_shape = K.shape(inputs) bert_mask = K.random_uniform(mask_shape) < self.percentage return bert_mask def call(self, inputs: tf.Tensor, mask: Optional[tf.Tensor] = None): """ Args: inputs (tf.Tensor[ndims=2, int]): Tensor of values to mask mask (Optional[tf.Tensor[bool]]): Locations in the inputs to that are valid (i.e. not padding, start tokens, etc.) Returns: masked_inputs (tf.Tensor[ndims=2, int]): Tensor of masked values bert_mask: Locations in the input that were masked """ bert_mask = self._generate_bert_mask(inputs) if mask is not None: bert_mask &= mask masked_inputs = inputs * tf.cast(~bert_mask, inputs.dtype) token_bert_mask = K.random_uniform(K.shape(bert_mask)) < 0.8 random_bert_mask = (K.random_uniform( K.shape(bert_mask)) < 0.1) & ~token_bert_mask true_bert_mask = ~token_bert_mask & ~random_bert_mask token_bert_mask = tf.cast(token_bert_mask & bert_mask, inputs.dtype) random_bert_mask = tf.cast(random_bert_mask & bert_mask, inputs.dtype) true_bert_mask = tf.cast(true_bert_mask & bert_mask, inputs.dtype) masked_inputs += self.mask_token * token_bert_mask # type: ignore masked_inputs += K.random_uniform( K.shape(bert_mask), 0, self.n_symbols, dtype=inputs.dtype) * random_bert_mask masked_inputs += inputs * true_bert_mask return masked_inputs, bert_mask class ContiguousReplaceMask(Layer): """ Copied from rinokeras because we're going to potentially have different replace masks. Replaces some percentage of the input with a mask token. Used for implementing style models. This is actually slightly more complex - it does one of three things Based on https://arxiv.org/abs/1810.04805. Args: percentage (float): Percentage of input tokens to mask mask_token (int): Token to replace masked input with """ def __init__(self, percentage: float, mask_token: int, n_symbols: Optional[int] = None, avg_seq_len: int = 3, *args, **kwargs) -> None: super().__init__(*args, **kwargs) if not 0 <= percentage < 1: raise ValueError("Masking percentage must be in [0, 1).\ Received {}".format(percentage)) self.percentage = percentage self.mask_token = mask_token self.avg_seq_len = avg_seq_len self.n_symbols = n_symbols def _generate_bert_mask(self, inputs): def _numpy_generate_contiguous_mask(array): mask = np.random.random(array.shape) < (1 / self.avg_seq_len) mask = np.cumsum(mask, 1) seqvals = np.max(mask) mask_prob = self.percentage * array.shape[1] / seqvals # increase probability because fewer sequences vals_to_mask = np.arange(seqvals)[np.random.random((seqvals,)) < mask_prob] indices_to_mask = np.isin(mask, vals_to_mask) mask[indices_to_mask] = 1 mask[~indices_to_mask] = 0 return np.asarray(mask, np.bool) bert_mask = tf.py_func(_numpy_generate_contiguous_mask, [inputs], tf.bool) bert_mask.set_shape(inputs.shape) return bert_mask class RandomSequenceMask(Model): def __init__(self, n_symbols: int, mask_token: int, mask_percentage: float = 0.15, mask_type: str = 'random'): super().__init__() if mask_type == 'random': self.bert_mask = RandomReplaceMask(mask_percentage, mask_token, n_symbols) elif mask_type == 'contiguous': self.bert_mask = ContiguousReplaceMask(mask_percentage, mask_token, n_symbols) else: raise ValueError("Unrecognized mask_type: {}".format(mask_type)) def call(self, inputs): """ Args: sequence: tf.Tensor[int32] - Amino acid sequence, a padded tensor with shape [batch_size, MAX_PROTEIN_LENGTH] protein_length: tf.Tensor[int32] - Length of each protein in the sequence, a tensor with shape [batch_size] Output: amino_acid_probs: tf.Tensor[float32] - Probability of each type of amino acid, a tensor with shape [batch_size, MAX_PROTEIN_LENGTH, n_symbols] """ sequence = inputs['primary'] protein_length = inputs['protein_length'] sequence_mask = rk.utils.convert_sequence_length_to_sequence_mask( sequence, protein_length) masked_sequence, bert_mask = self.bert_mask(sequence, sequence_mask) inputs['original_sequence'] = sequence inputs['primary'] = masked_sequence inputs['bert_mask'] = bert_mask return inputs
[ "tensorflow.keras.backend.shape", "numpy.random.random", "numpy.asarray", "numpy.isin", "numpy.max", "rinokeras.utils.convert_sequence_length_to_sequence_mask", "numpy.cumsum", "tensorflow.keras.backend.random_uniform", "tensorflow.py_func", "tensorflow.cast", "numpy.arange" ]
[((1368, 1383), 'tensorflow.keras.backend.shape', 'K.shape', (['inputs'], {}), '(inputs)\n', (1375, 1383), True, 'import tensorflow.keras.backend as K\n'), ((2467, 2517), 'tensorflow.cast', 'tf.cast', (['(token_bert_mask & bert_mask)', 'inputs.dtype'], {}), '(token_bert_mask & bert_mask, inputs.dtype)\n', (2474, 2517), True, 'import tensorflow as tf\n'), ((2545, 2596), 'tensorflow.cast', 'tf.cast', (['(random_bert_mask & bert_mask)', 'inputs.dtype'], {}), '(random_bert_mask & bert_mask, inputs.dtype)\n', (2552, 2596), True, 'import tensorflow as tf\n'), ((2622, 2671), 'tensorflow.cast', 'tf.cast', (['(true_bert_mask & bert_mask)', 'inputs.dtype'], {}), '(true_bert_mask & bert_mask, inputs.dtype)\n', (2629, 2671), True, 'import tensorflow as tf\n'), ((4697, 4759), 'tensorflow.py_func', 'tf.py_func', (['_numpy_generate_contiguous_mask', '[inputs]', 'tf.bool'], {}), '(_numpy_generate_contiguous_mask, [inputs], tf.bool)\n', (4707, 4759), True, 'import tensorflow as tf\n'), ((6044, 6119), 'rinokeras.utils.convert_sequence_length_to_sequence_mask', 'rk.utils.convert_sequence_length_to_sequence_mask', (['sequence', 'protein_length'], {}), '(sequence, protein_length)\n', (6093, 6119), True, 'import rinokeras as rk\n'), ((1404, 1432), 'tensorflow.keras.backend.random_uniform', 'K.random_uniform', (['mask_shape'], {}), '(mask_shape)\n', (1420, 1432), True, 'import tensorflow.keras.backend as K\n'), ((2170, 2203), 'tensorflow.cast', 'tf.cast', (['(~bert_mask)', 'inputs.dtype'], {}), '(~bert_mask, inputs.dtype)\n', (2177, 2203), True, 'import tensorflow as tf\n'), ((4238, 4256), 'numpy.cumsum', 'np.cumsum', (['mask', '(1)'], {}), '(mask, 1)\n', (4247, 4256), True, 'import numpy as np\n'), ((4279, 4291), 'numpy.max', 'np.max', (['mask'], {}), '(mask)\n', (4285, 4291), True, 'import numpy as np\n'), ((4525, 4552), 'numpy.isin', 'np.isin', (['mask', 'vals_to_mask'], {}), '(mask, vals_to_mask)\n', (4532, 4552), True, 'import numpy as np\n'), ((4650, 4675), 'numpy.asarray', 'np.asarray', (['mask', 'np.bool'], {}), '(mask, np.bool)\n', (4660, 4675), True, 'import numpy as np\n'), ((2248, 2266), 'tensorflow.keras.backend.shape', 'K.shape', (['bert_mask'], {}), '(bert_mask)\n', (2255, 2266), True, 'import tensorflow.keras.backend as K\n'), ((2804, 2822), 'tensorflow.keras.backend.shape', 'K.shape', (['bert_mask'], {}), '(bert_mask)\n', (2811, 2822), True, 'import tensorflow.keras.backend as K\n'), ((4164, 4193), 'numpy.random.random', 'np.random.random', (['array.shape'], {}), '(array.shape)\n', (4180, 4193), True, 'import numpy as np\n'), ((4434, 4452), 'numpy.arange', 'np.arange', (['seqvals'], {}), '(seqvals)\n', (4443, 4452), True, 'import numpy as np\n'), ((2332, 2350), 'tensorflow.keras.backend.shape', 'K.shape', (['bert_mask'], {}), '(bert_mask)\n', (2339, 2350), True, 'import tensorflow.keras.backend as K\n'), ((4453, 4481), 'numpy.random.random', 'np.random.random', (['(seqvals,)'], {}), '((seqvals,))\n', (4469, 4481), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import glob as glb import os import cv2 import pickle ################################################################################################################# def create_new_folder (new_dir): if not os.path.exists(new_dir): os.makedirs(new_dir) return ################################################################################################################# def save_transform_matrix(img_filename, saveas_dir): img = np.copy(mpimg.imread(img_filename)) img_size = img.shape[1::-1] # prepare source and destination points to calculate the transform matrix dim_x = img_size[0] pt1 = (219, 720) pt2 = (1110, 720) pt3 = (675, 442) pt4 = (602, 442) pts = (pt1, pt2, pt3, pt4) src = np.float32(pts).reshape(-1, 2) dst = np.copy(src) dst[0][0] = 400 dst[1][0] = dim_x - 400 dst[3][0] = 400 dst[2][0] = dim_x - 400 dst[3][1] = 0 dst[2][1] = 0 # calculate transform matrix M = cv2.getPerspectiveTransform(src, dst) # calculate inverse transform matrix Minv = cv2.getPerspectiveTransform(dst, src) # save M and Minv in binary format db_file = open(saveas_dir + 'mtx_transform', 'wb') db = {} db['TM'] = M db['TMinv'] = Minv pickle.dump(db, db_file) db_file.close() return #get images from folder images=glb.glob('./*.jpg') #create folder to save the new img in new_dir = './transform_matrix/' create_new_folder (new_dir) #caluculate transform Matrix (using first image) test=images[0] save_transform_matrix(test, new_dir)
[ "numpy.copy", "os.path.exists", "pickle.dump", "os.makedirs", "cv2.getPerspectiveTransform", "matplotlib.image.imread", "numpy.float32", "glob.glob" ]
[((1438, 1457), 'glob.glob', 'glb.glob', (['"""./*.jpg"""'], {}), "('./*.jpg')\n", (1446, 1457), True, 'import glob as glb\n'), ((878, 890), 'numpy.copy', 'np.copy', (['src'], {}), '(src)\n', (885, 890), True, 'import numpy as np\n'), ((1066, 1103), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (1093, 1103), False, 'import cv2\n'), ((1157, 1194), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['dst', 'src'], {}), '(dst, src)\n', (1184, 1194), False, 'import cv2\n'), ((1347, 1371), 'pickle.dump', 'pickle.dump', (['db', 'db_file'], {}), '(db, db_file)\n', (1358, 1371), False, 'import pickle\n'), ((298, 321), 'os.path.exists', 'os.path.exists', (['new_dir'], {}), '(new_dir)\n', (312, 321), False, 'import os\n'), ((331, 351), 'os.makedirs', 'os.makedirs', (['new_dir'], {}), '(new_dir)\n', (342, 351), False, 'import os\n'), ((549, 575), 'matplotlib.image.imread', 'mpimg.imread', (['img_filename'], {}), '(img_filename)\n', (561, 575), True, 'import matplotlib.image as mpimg\n'), ((837, 852), 'numpy.float32', 'np.float32', (['pts'], {}), '(pts)\n', (847, 852), True, 'import numpy as np\n')]
import logging from collections import OrderedDict from copy import deepcopy from datetime import datetime, timedelta from pathlib import Path from time import sleep import cv2 import numpy as np import pandas as pd from PyQt5.QtCore import Qt, QTimer, pyqtSlot from PyQt5.QtGui import QColor, QImage, QPixmap from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget from .view import VideoAppViewer class VideoApp(VideoAppViewer): def __init__(self, videopath: str, outpath: str, **config): self.videopath = videopath self.outpath = outpath self.config = config self.title = self.config.get('title', 'PyQt5 video labeling viewer') super().__init__(title=self.title) # draw config if self.config.get('draw') and isinstance(self.config['draw'], dict): draw_config = self.config['draw'] self.label_frame.draw_color = draw_config.get('color', QColor(0, 0, 0)) self.label_frame.draw_thickness = draw_config.get('thickness', 2) self.label_frame.draw_style = draw_config.get('style', Qt.SolidLine) if self.config.get('select') and isinstance(self.config['select'], dict): select_config = self.config['select'] self.label_frame.select_color = select_config.get('color', QColor(0, 0, 0)) self.label_frame.select_thickness = select_config.get('thickness', 3) self.label_frame.select_style = select_config.get('style', Qt.SolidLine) # record config check_label = self.config.get('label') label_color = self.config['label'].get('color', (0, 0, 0)) if check_label else None label_thickness = self.config['label'].get('thickness', 2) if check_label else None self.label_color = label_color self.label_thickness = label_thickness self.limit_nlabel = self.config.get('limit_nlabel', None) self.records = [] # read video self.cap = cv2.VideoCapture(self.videopath) self.target_frame_idx = 0 # ready to update self.render_frame_idx = None # redneded self.scale_height = self.scale_width = None self.is_playing_video = False self.is_force_update = False self._update_video_info() self._update_frame() # widget binding self.slider_video.setRange(0, self.frame_count-1) self.slider_video.sliderMoved.connect(self.on_slider_moved) self.slider_video.sliderReleased.connect(self.on_slider_released) self.btn_play_video.clicked.connect(self.on_play_video_clicked) self.label_frame.mousePressEvent = self.event_frame_mouse_press self.label_frame.mouseMoveEvent = self.event_frame_mouse_move self.label_frame.mouseReleaseEvent = self.event_frame_mouse_release self.btn_previous_record.clicked.connect(self._goto_previous_record) self.btn_next_record.clicked.connect(self._goto_next_record) self.btn_export_records.clicked.connect(self.save_file) self.table_preview_records.doubleClicked.connect(self.event_preview_double_clicked) self.show() @property def frame_count(self): return int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) if self.cap else None @property def frame_height(self): return int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) if self.cap else None @property def frame_width(self): return int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) if self.cap else None @property def video_fps(self): return int(self.cap.get(cv2.CAP_PROP_FPS)) if self.cap else None def _ndarray_to_qimage(self, image: np.ndarray): """convert cv2 image to pyqt5 image Arguments: image {np.ndarray} -- original RGB image Returns: {QImage} -- pyqt5 image format """ return QImage(image, image.shape[1], image.shape[0], QImage.Format_RGB888) def _frame_idx_to_hmsf(self, frame_idx: int): """convert to hmsf timestamp by given frame idx and fps""" assert self.video_fps base = datetime.strptime('00:00:00.000000', '%H:%M:%S.%f') delta = timedelta(seconds=frame_idx/self.video_fps) return (base + delta).strftime('%H:%M:%S.%f') def _frame_idx_to_hms(self, frame_idx: int): """convert to hms timestamp by given frame idx and fps""" assert self.video_fps base = datetime.strptime('00:00:00', '%H:%M:%S') delta = timedelta(seconds=frame_idx//self.video_fps) return (base + delta).strftime('%H:%M:%S') def _read_frame(self, frame_idx: int): """check frame idx and read frame status than return frame Arguments: frame_idx {int} -- frame index Returns: {np.ndarray} -- RGB image in (h, w, c) """ if frame_idx >= self.frame_count: self.logger.exception('frame index %d should be less than %d', frame_idx, self.frame_count) else: self.target_frame_idx = frame_idx self.cap.set(1, frame_idx) read_success, frame = self.cap.read() if read_success: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return frame self.logger.exception('read #%d frame failed', frame_idx) def _play_video(self): """play video when button clicked""" if self.is_playing_video and self.video_fps: frame_idx = min(self.render_frame_idx+1, self.frame_count) if frame_idx == self.frame_count: self.on_play_video_clicked() else: self.target_frame_idx = frame_idx QTimer.singleShot(1/self.video_fps, self._play_video) def _check_coor_in_frame(self, coor_x: int, coor_y: int): """check the coordinate in mouse event""" return 0 < coor_x < self.scale_width and 0 < coor_y < self.scale_height def _update_video_info(self): shape = str((self.frame_width, self.frame_height)) self.label_video_path.setText(self.videopath) self.label_video_shape.setText(shape) self.label_video_fps.setText(str(self.video_fps)) def _update_frame(self): """read and update image to label""" if self.target_frame_idx != self.render_frame_idx or self.is_force_update: self.is_force_update = False frame = self._read_frame(self.target_frame_idx) if frame is not None: # draw, convert, resize pixmap frame = self.draw_rects(self.target_frame_idx, frame) pixmap = QPixmap(self._ndarray_to_qimage(frame)) self.scale_width = int(min(pixmap.width(), self.screen.width()*0.8)) self.scale_height = int(pixmap.height() * (self.scale_width / pixmap.width())) pixmap = pixmap.scaled(self.scale_width, self.scale_height, Qt.KeepAspectRatio) self.label_frame.setPixmap(pixmap) self.label_frame.resize(self.scale_width, self.scale_height) # sync, update related information self._update_frame_status(self.target_frame_idx) self.render_frame_idx = self.target_frame_idx self.slider_video.setValue(self.render_frame_idx) QTimer.singleShot(1000/self.video_fps, self._update_frame) def _update_frame_status(self, frame_idx: int, err: str = ''): """update frame status Arguments: frame_idx {int} -- frame index Keyword Arguments: err {str} -- show status when exception (default: '') """ msg = '#frame ({}/{})'.format(frame_idx, self.frame_count-1) if err: msg += '\n{}'.format(err) self.label_video_status.setText(msg) def _get_records_by_frame_idx(self, frame_idx=None): """return specfic records by frame index (default: current frame)""" frame_idx = frame_idx or self.render_frame_idx return list(filter(lambda x: x['frame_idx'] == frame_idx, self.records)) def _get_nrecord_in_current_frame(self): """get the number of records in current frame""" current_records = self._get_records_by_frame_idx() return len(current_records) if current_records else None def _get_closest_record_in_current_frame(self, coor_x: int, coor_y: int): """get the closest record by given coor in current frame Arguments: coor_x {int} -- cooridinate x coor_y {int} -- cooridinate Returns: {OrderedDict} -- the closest record """ current_records = deepcopy(self._get_records_by_frame_idx()) for rid, record in enumerate(current_records): pt1, pt2 = (record['x1'], record['y1']), (record['x2'], record['y2']) if pt1[0] < coor_x < pt2[0] and pt1[1] < coor_y < pt2[1]: center = np.array(((pt2[0]+pt1[0])/2, (pt2[1]+pt1[1])/2)) dist = np.linalg.norm(center - np.array((coor_x, coor_y))) current_records[rid]['dist'] = dist current_records = list(filter(lambda x: 'dist' in x, current_records)) if current_records: return sorted(current_records, key=lambda x: x['dist'])[0] def _remove_record(self, frame_idx: int, pt1: tuple, pt2: tuple): """remove record by given value Arguments: frame_idx {int} -- record frame index pt1 {tuple} -- record (x1, y1) pt2 {tuple} -- record (x2, y2) """ current_records = self._get_records_by_frame_idx(frame_idx) target_record = None for record in current_records: src_pt1, src_pt2 = (record['x1'], record['y1']), (record['x2'], record['y2']) if src_pt1 == pt1 and src_pt2 == pt2: target_record = record if target_record: target_row_idx = self.records.index(target_record) self.records.remove(target_record) self.remove_record_from_preview(target_row_idx) @pyqtSlot() def _goto_previous_record(self): rest_records = list(filter(lambda x: x['frame_idx'] < self.render_frame_idx, self.records)) if not rest_records: QMessageBox.information(self, 'Info', 'no previous record', QMessageBox.Ok) else: self.target_frame_idx = rest_records[-1]['frame_idx'] @pyqtSlot() def _goto_next_record(self): rest_records = list(filter(lambda x: x['frame_idx'] > self.render_frame_idx, self.records)) if not rest_records: QMessageBox.information(self, 'Info', 'no next record', QMessageBox.Ok) else: self.target_frame_idx = rest_records[0]['frame_idx'] @pyqtSlot() def on_slider_released(self): """update frame and frame status when the slider released""" self.target_frame_idx = self.slider_video.value() @pyqtSlot() def on_slider_moved(self): """update frame status only when the slider moved""" self._update_frame_status(frame_idx=self.slider_video.value()) @pyqtSlot() def on_play_video_clicked(self): """control to play or pause the video""" self.is_playing_video = not self.is_playing_video if self.is_playing_video: self.btn_play_video.setIcon(self.style().standardIcon(QStyle.SP_MediaPause)) self._play_video() else: self.btn_play_video.setIcon(self.style().standardIcon(QStyle.SP_MediaPlay)) @pyqtSlot() def event_frame_mouse_press(self, event): """label frame press mouse event - Qt.LeftButton: drawing - Qt.RightButton: select to delete Arguments: event {PyQt5.QtGui.QMouseEvent} -- event object """ if self._check_coor_in_frame(event.x(), event.y()) and not self.is_playing_video: if event.button() == Qt.LeftButton: nrecords = self._get_nrecord_in_current_frame() if self.limit_nlabel and nrecords and self.limit_nlabel <= nrecords: self.logger.warning('not available to add a new record (exist=%d, limit=%d)', \ nrecords, self.limit_nlabel) else: self.label_frame.is_drawing = True self.label_frame.is_selecting = False self.logger.debug('press mouse at (%d, %d)', event.x(), event.y()) self.label_frame.pt1 = (event.x(), event.y()) elif event.button() == Qt.RightButton: closest_record = self._get_closest_record_in_current_frame(event.x(), event.y()) if closest_record: pt1 = (closest_record['x1'], closest_record['y1']) pt2 = (closest_record['x2'], closest_record['y2']) message = '<b>Do you want to delete the record ?</b><br/><br/> \ frame index -\t{} <br/> position -\t{} {}'.format( closest_record['frame_idx'], str(pt1), str(pt2)) reply = QMessageBox.question(self, 'Delete Record', message, \ QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.Yes: self._remove_record(closest_record['frame_idx'], pt1, pt2) self.is_force_update = True self.update() @pyqtSlot() def event_frame_mouse_move(self, event): if self.label_frame.is_drawing and self._check_coor_in_frame(event.x(), event.y()): self.logger.debug('move mouse at (%d, %d)', event.x(), event.y()) self.label_frame.pt2 = (event.x(), event.y()) self.update() elif not self.label_frame.is_drawing and not self.is_playing_video: closest_record = self._get_closest_record_in_current_frame(event.x(), event.y()) if closest_record: self.label_frame.is_selecting = True self.label_frame.select_pt1 = (closest_record['x1'], closest_record['y1']) self.label_frame.select_pt2 = (closest_record['x2'], closest_record['y2']) else: self.label_frame.is_selecting = False self.label_frame.select_pt1 = self.label_frame.select_pt2 = None self.update() @pyqtSlot() def event_frame_mouse_release(self, event): if self.label_frame.is_drawing: self.label_frame.is_drawing = False self.logger.debug('release mouse at (%d, %d)', event.x(), event.y()) if self._check_coor_in_frame(event.x(), event.y()): self.label_frame.pt2 = (event.x(), event.y()) pt1, pt2 = self.label_frame.revise_coor(self.label_frame.pt1, self.label_frame.pt2) record = OrderedDict([ ('timestamp_hms', self._frame_idx_to_hms(self.render_frame_idx)), ('timestamp_hmsf', self._frame_idx_to_hmsf(self.render_frame_idx)), ('frame_idx', self.render_frame_idx), ('fps', self.video_fps), ('frame_height', self.frame_height), ('frame_width', self.frame_width), ('scale_height', self.scale_height), ('scale_width', self.scale_width), ('x1', pt1[0]), ('y1', pt1[1]), ('x2', pt2[0]), ('y2', pt2[1]), ('center_x', (pt1[0]+pt2[0])//2), ('center_y', (pt1[1]+pt2[1])//2) ]) self.records.append(record) self.records = sorted(self.records, key=lambda x: x['frame_idx']) self.add_record_to_preview(record['timestamp_hms'], \ record['frame_idx'], \ (record['x1'], record['y1']), \ (record['x2'], record['y2'])) self.label_frame.pt1 = self.label_frame.pt2 = None self.is_force_update = True self.update() @pyqtSlot() def event_preview_double_clicked(self): row = self.table_preview_records.currentRow() frame_idx = int(self.table_preview_records.item(row, 1).text()) self.target_frame_idx = frame_idx def draw_rects(self, frame_idx: int, frame: np.ndarray): rest_records = list(filter(lambda x: x['frame_idx'] == frame_idx, self.records)) if not rest_records: return frame for record in rest_records: pt1, pt2 = (record['x1'], record['y1']), (record['x2'], record['y2']) cv2.rectangle(frame, pt1, pt2, self.label_color, self.label_thickness) return frame def save_file(self): """export records to default paths - click ok only close message box - click close to close PyQt program """ exist_msg = 'File <b>{}</b> exist.<br/><br/>\ Do you want to replace?'.format(self.outpath) info_msg = 'Save at <b>{}</b><br/>\ total records: {}'.format(self.outpath, len(self.records)) # check the file existense exist_reply = QMessageBox.No if Path(self.outpath).exists(): exist_reply = QMessageBox.question(self, 'File Exist', exist_msg, \ QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if not Path(self.outpath).exists() or exist_reply == QMessageBox.Yes: df_labels = pd.DataFrame().from_records(self.records) df_labels.to_csv(self.outpath, index=False) # check if the application is going to close reply = QMessageBox.about(self, 'Info', info_msg) self.close() def keyPressEvent(self, event): """global keyboard event""" if event.key() in [Qt.Key_Space, Qt.Key_P]: self.on_play_video_clicked() elif event.key() in [Qt.Key_Right, Qt.Key_D]: self.target_frame_idx = min(self.target_frame_idx+self.video_fps, self.frame_count-1) elif event.key() in [Qt.Key_Left, Qt.Key_A]: self.target_frame_idx = max(0, self.target_frame_idx-self.video_fps) else: self.logger.debug('clicked %s but no related binding event', str(event.key()))
[ "cv2.rectangle", "PyQt5.QtCore.QTimer.singleShot", "datetime.datetime.strptime", "pathlib.Path", "PyQt5.QtGui.QColor", "PyQt5.QtCore.pyqtSlot", "PyQt5.QtGui.QImage", "PyQt5.QtWidgets.QMessageBox.information", "numpy.array", "PyQt5.QtWidgets.QMessageBox.question", "PyQt5.QtWidgets.QMessageBox.about", "cv2.VideoCapture", "cv2.cvtColor", "pandas.DataFrame", "datetime.timedelta" ]
[((10100, 10110), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (10108, 10110), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((10451, 10461), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (10459, 10461), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((10793, 10803), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (10801, 10803), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((10971, 10981), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (10979, 10981), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((11151, 11161), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (11159, 11161), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((11568, 11578), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (11576, 11578), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((13541, 13551), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (13549, 13551), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((14471, 14481), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (14479, 14481), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((16076, 16086), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (16084, 16086), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((1967, 1999), 'cv2.VideoCapture', 'cv2.VideoCapture', (['self.videopath'], {}), '(self.videopath)\n', (1983, 1999), False, 'import cv2\n'), ((3879, 3946), 'PyQt5.QtGui.QImage', 'QImage', (['image', 'image.shape[1]', 'image.shape[0]', 'QImage.Format_RGB888'], {}), '(image, image.shape[1], image.shape[0], QImage.Format_RGB888)\n', (3885, 3946), False, 'from PyQt5.QtGui import QColor, QImage, QPixmap\n'), ((4110, 4161), 'datetime.datetime.strptime', 'datetime.strptime', (['"""00:00:00.000000"""', '"""%H:%M:%S.%f"""'], {}), "('00:00:00.000000', '%H:%M:%S.%f')\n", (4127, 4161), False, 'from datetime import datetime, timedelta\n'), ((4178, 4223), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(frame_idx / self.video_fps)'}), '(seconds=frame_idx / self.video_fps)\n', (4187, 4223), False, 'from datetime import datetime, timedelta\n'), ((4437, 4478), 'datetime.datetime.strptime', 'datetime.strptime', (['"""00:00:00"""', '"""%H:%M:%S"""'], {}), "('00:00:00', '%H:%M:%S')\n", (4454, 4478), False, 'from datetime import datetime, timedelta\n'), ((4495, 4541), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(frame_idx // self.video_fps)'}), '(seconds=frame_idx // self.video_fps)\n', (4504, 4541), False, 'from datetime import datetime, timedelta\n'), ((5695, 5750), 'PyQt5.QtCore.QTimer.singleShot', 'QTimer.singleShot', (['(1 / self.video_fps)', 'self._play_video'], {}), '(1 / self.video_fps, self._play_video)\n', (5712, 5750), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((7327, 7387), 'PyQt5.QtCore.QTimer.singleShot', 'QTimer.singleShot', (['(1000 / self.video_fps)', 'self._update_frame'], {}), '(1000 / self.video_fps, self._update_frame)\n', (7344, 7387), False, 'from PyQt5.QtCore import Qt, QTimer, pyqtSlot\n'), ((17701, 17742), 'PyQt5.QtWidgets.QMessageBox.about', 'QMessageBox.about', (['self', '"""Info"""', 'info_msg'], {}), "(self, 'Info', info_msg)\n", (17718, 17742), False, 'from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget\n'), ((10289, 10364), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', (['self', '"""Info"""', '"""no previous record"""', 'QMessageBox.Ok'], {}), "(self, 'Info', 'no previous record', QMessageBox.Ok)\n", (10312, 10364), False, 'from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget\n'), ((10636, 10707), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', (['self', '"""Info"""', '"""no next record"""', 'QMessageBox.Ok'], {}), "(self, 'Info', 'no next record', QMessageBox.Ok)\n", (10659, 10707), False, 'from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget\n'), ((16634, 16704), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'pt1', 'pt2', 'self.label_color', 'self.label_thickness'], {}), '(frame, pt1, pt2, self.label_color, self.label_thickness)\n', (16647, 16704), False, 'import cv2\n'), ((17280, 17385), 'PyQt5.QtWidgets.QMessageBox.question', 'QMessageBox.question', (['self', '"""File Exist"""', 'exist_msg', '(QMessageBox.Yes | QMessageBox.No)', 'QMessageBox.No'], {}), "(self, 'File Exist', exist_msg, QMessageBox.Yes |\n QMessageBox.No, QMessageBox.No)\n", (17300, 17385), False, 'from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget\n'), ((929, 944), 'PyQt5.QtGui.QColor', 'QColor', (['(0)', '(0)', '(0)'], {}), '(0, 0, 0)\n', (935, 944), False, 'from PyQt5.QtGui import QColor, QImage, QPixmap\n'), ((1308, 1323), 'PyQt5.QtGui.QColor', 'QColor', (['(0)', '(0)', '(0)'], {}), '(0, 0, 0)\n', (1314, 1323), False, 'from PyQt5.QtGui import QColor, QImage, QPixmap\n'), ((5193, 5231), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2RGB'], {}), '(frame, cv2.COLOR_BGR2RGB)\n', (5205, 5231), False, 'import cv2\n'), ((8947, 9003), 'numpy.array', 'np.array', (['((pt2[0] + pt1[0]) / 2, (pt2[1] + pt1[1]) / 2)'], {}), '(((pt2[0] + pt1[0]) / 2, (pt2[1] + pt1[1]) / 2))\n', (8955, 9003), True, 'import numpy as np\n'), ((17225, 17243), 'pathlib.Path', 'Path', (['self.outpath'], {}), '(self.outpath)\n', (17229, 17243), False, 'from pathlib import Path\n'), ((17533, 17547), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (17545, 17547), True, 'import pandas as pd\n'), ((9043, 9069), 'numpy.array', 'np.array', (['(coor_x, coor_y)'], {}), '((coor_x, coor_y))\n', (9051, 9069), True, 'import numpy as np\n'), ((13159, 13265), 'PyQt5.QtWidgets.QMessageBox.question', 'QMessageBox.question', (['self', '"""Delete Record"""', 'message', '(QMessageBox.Yes | QMessageBox.No)', 'QMessageBox.No'], {}), "(self, 'Delete Record', message, QMessageBox.Yes |\n QMessageBox.No, QMessageBox.No)\n", (13179, 13265), False, 'from PyQt5.QtWidgets import QMessageBox, QStyle, QWidget\n'), ((17446, 17464), 'pathlib.Path', 'Path', (['self.outpath'], {}), '(self.outpath)\n', (17450, 17464), False, 'from pathlib import Path\n')]
import numpy as np import pandas as pd from .scm import SCM class DataGenerator: def generate(self, scm: SCM, n_samples: int, seed: int): pass class SimpleDataGenerator(DataGenerator): def generate(self, scm: SCM, n_samples: int, seed: int): """ Generates date according to the given Structural Causal Model This Generator assumes that variables are normally distributed The noise is distributed according to standard normal distribution :param scm: instance of SCM :param n_samples: number of samples to generate :param seed: random seed :return: """ np.random.seed(seed) data = {} for equation in scm.equations: data[equation["output_variable"].name] = np.zeros(n_samples) for input_variable, coeff in equation["input_variables"].items(): if input_variable.name not in data: raise AttributeError( f"No data generated for dependent variable {input_variable.name}" ) data[equation["output_variable"].name] += ( data[input_variable.name] * coeff ) mean = 0 std = 1.0 if isinstance(equation["output_variable"].config, dict): mean = equation["output_variable"].config.get("mean", 0) std = equation["output_variable"].config.get("std", 1.0) data[equation["output_variable"].name] += np.random.normal( loc=mean, scale=std, size=n_samples ) if ( isinstance(equation["output_variable"].config, dict) and "mask" in equation["output_variable"].config ): out_val = data[equation["output_variable"].name] out_val[out_val < equation["output_variable"].config["mask"]] = 0 out_val[out_val > 0] = 1 data[equation["output_variable"].name] = out_val return pd.DataFrame.from_dict(data)
[ "numpy.random.normal", "numpy.zeros", "numpy.random.seed", "pandas.DataFrame.from_dict" ]
[((653, 673), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (667, 673), True, 'import numpy as np\n'), ((2057, 2085), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['data'], {}), '(data)\n', (2079, 2085), True, 'import pandas as pd\n'), ((786, 805), 'numpy.zeros', 'np.zeros', (['n_samples'], {}), '(n_samples)\n', (794, 805), True, 'import numpy as np\n'), ((1537, 1590), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'mean', 'scale': 'std', 'size': 'n_samples'}), '(loc=mean, scale=std, size=n_samples)\n', (1553, 1590), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import numpy from rl.agents.policy.policy_agent import PolicyAgent class Random(PolicyAgent): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def act(self, state: numpy.ndarray, available_actions: numpy.ndarray): """ Uses a uniform random distribution to determine it's action given a state TODO: Act according to different distributions :param state: The state of the environment :param available_actions: A list of available possible actions (positions on the board to mark) :return: a random action """ return numpy.random.choice(available_actions)
[ "numpy.random.choice" ]
[((644, 682), 'numpy.random.choice', 'numpy.random.choice', (['available_actions'], {}), '(available_actions)\n', (663, 682), False, 'import numpy\n')]
# --------------------------------------------------- # Intermediate Python - Loops # 22 set 2020 # VNTBJR # --------------------------------------------------- # # Load packages library(reticulate) # while loop ------------------------------------------- # Basic while loop # Initialize offset offset = 8 # Code the while loop while offset != 0 : print("correcting...") offset = offset - 1 print(offset) quit() # Add conditionals # Initialize offset offset = -6 # Code the while loop while offset != 0 : print("correcting...") if offset > 0 : offset = offset - 1 else : offset = offset + 1 print(offset) quit() ###################################################################### # for loop ------------------------------------------- # Loop over a list # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for area in areas : print(area) quit() # Indexes and values # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Change for loop to use enumerate() and update print() for index, a in enumerate(areas) : print("room " + str(index) + ": " + str(a)) quit() # Indexes and values (2) # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for index, area in enumerate(areas) : print("room " + str(index + 1) + ": " + str(area)) quit() # Loop over list of lists # house list of lists house = [["hallway", 11.25], ["kitchen", 18.0], ["living room", 20.0], ["bedroom", 10.75], ["bathroom", 9.50]] # Build a for loop from scratch for room, area in house : print("the " + str(room) + " is " + str(area) + " sqm") quit() ###################################################################### # Loop Data Structures Part 1 ------------------------------------------- # Loop over dictionary # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'austria':'vienna' } # Iterate over europe for key, value in europe.items() : print("the capital of " + str(key) + " is " + str(value)) quit() # Loop over Numpy array # Import numpy as np import numpy as np import pandas as pd # Load data mlb = pd.read_csv("Datasets/MLB.csv", sep = ",") # Create data for the exercise np_height = np.array(mlb[["Height"]]) np_weight = np.array(mlb[["Weight"]]) np_baseball = [] for height in np.nditer(np_height) : for weight in np.nditer(np_weight) : np_baseball.append([height, weight]) quit() np_baseball = np.array(np_baseball) type(np_baseball) # For loop over np_height for height in np.nditer(np_height) : print(str(height) + " inches") quit() # For loop over np_baseball for hw in np.nditer(np_baseball) : print(hw) quit() ###################################################################### # Loop Data Structures Part 2 ------------------------------------------- # Loop over DataFrame (1) # Import cars data import pandas as pd cars = pd.read_csv('Datasets/Cars.csv', index_col = 0) # Iterate over rows of cars for lab, row in cars.iterrows() : print(lab) print(row) quit() # Loop over DataFrame (2) # Adapt for loop for lab, row in cars.iterrows() : print(str(lab) + ": " + str(row["cars_per_cap"])) quit() # Add column (1) # Code for loop that adds COUNTRY column for lab, row in cars.iterrows() : cars.loc[lab, "COUNTRY"] = row["country"].upper() quit() # Print cars print(cars) # Add column (2) # Import cars data import pandas as pd cars = pd.read_csv('Datasets/Cars.csv', index_col = 0) # Use .apply(str.upper) cars["COUNTRY"] = cars["country"].apply(str.upper) print(cars) ######################################################################
[ "numpy.array", "numpy.nditer", "pandas.read_csv" ]
[((2262, 2302), 'pandas.read_csv', 'pd.read_csv', (['"""Datasets/MLB.csv"""'], {'sep': '""","""'}), "('Datasets/MLB.csv', sep=',')\n", (2273, 2302), True, 'import pandas as pd\n'), ((2349, 2374), 'numpy.array', 'np.array', (["mlb[['Height']]"], {}), "(mlb[['Height']])\n", (2357, 2374), True, 'import numpy as np\n'), ((2387, 2412), 'numpy.array', 'np.array', (["mlb[['Weight']]"], {}), "(mlb[['Weight']])\n", (2395, 2412), True, 'import numpy as np\n'), ((2445, 2465), 'numpy.nditer', 'np.nditer', (['np_height'], {}), '(np_height)\n', (2454, 2465), True, 'import numpy as np\n'), ((2569, 2590), 'numpy.array', 'np.array', (['np_baseball'], {}), '(np_baseball)\n', (2577, 2590), True, 'import numpy as np\n'), ((2650, 2670), 'numpy.nditer', 'np.nditer', (['np_height'], {}), '(np_height)\n', (2659, 2670), True, 'import numpy as np\n'), ((2753, 2775), 'numpy.nditer', 'np.nditer', (['np_baseball'], {}), '(np_baseball)\n', (2762, 2775), True, 'import numpy as np\n'), ((3017, 3062), 'pandas.read_csv', 'pd.read_csv', (['"""Datasets/Cars.csv"""'], {'index_col': '(0)'}), "('Datasets/Cars.csv', index_col=0)\n", (3028, 3062), True, 'import pandas as pd\n'), ((3542, 3587), 'pandas.read_csv', 'pd.read_csv', (['"""Datasets/Cars.csv"""'], {'index_col': '(0)'}), "('Datasets/Cars.csv', index_col=0)\n", (3553, 3587), True, 'import pandas as pd\n'), ((2484, 2504), 'numpy.nditer', 'np.nditer', (['np_weight'], {}), '(np_weight)\n', (2493, 2504), True, 'import numpy as np\n')]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools import gzip import hashlib import json import logging import os import random import warnings from collections import defaultdict from dataclasses import dataclass, field from itertools import islice from pathlib import Path from typing import ( ClassVar, Dict, List, Optional, Sequence, Tuple, Type, TypedDict, Union, ) import numpy as np import torch from iopath.common.file_io import PathManager from PIL import Image from pytorch3d.io import IO from pytorch3d.renderer.cameras import PerspectiveCameras from pytorch3d.structures.pointclouds import Pointclouds from . import types from .dataset_base import DatasetBase, FrameData logger = logging.getLogger(__name__) class FrameAnnotsEntry(TypedDict): subset: Optional[str] frame_annotation: types.FrameAnnotation @dataclass(eq=False) class JsonIndexDataset(DatasetBase): """ A dataset with annotations in json files like the Common Objects in 3D (CO3D) dataset. Args: frame_annotations_file: A zipped json file containing metadata of the frames in the dataset, serialized List[types.FrameAnnotation]. sequence_annotations_file: A zipped json file containing metadata of the sequences in the dataset, serialized List[types.SequenceAnnotation]. subset_lists_file: A json file containing the lists of frames corresponding corresponding to different subsets (e.g. train/val/test) of the dataset; format: {subset: (sequence_name, frame_id, file_path)}. subsets: Restrict frames/sequences only to the given list of subsets as defined in subset_lists_file (see above). limit_to: Limit the dataset to the first #limit_to frames (after other filters have been applied). limit_sequences_to: Limit the dataset to the first #limit_sequences_to sequences (after other sequence filters have been applied but before frame-based filters). pick_sequence: A list of sequence names to restrict the dataset to. exclude_sequence: A list of the names of the sequences to exclude. limit_category_to: Restrict the dataset to the given list of categories. dataset_root: The root folder of the dataset; all the paths in jsons are specified relative to this root (but not json paths themselves). load_images: Enable loading the frame RGB data. load_depths: Enable loading the frame depth maps. load_depth_masks: Enable loading the frame depth map masks denoting the depth values used for evaluation (the points consistent across views). load_masks: Enable loading frame foreground masks. load_point_clouds: Enable loading sequence-level point clouds. max_points: Cap on the number of loaded points in the point cloud; if reached, they are randomly sampled without replacement. mask_images: Whether to mask the images with the loaded foreground masks; 0 value is used for background. mask_depths: Whether to mask the depth maps with the loaded foreground masks; 0 value is used for background. image_height: The height of the returned images, masks, and depth maps; aspect ratio is preserved during cropping/resizing. image_width: The width of the returned images, masks, and depth maps; aspect ratio is preserved during cropping/resizing. box_crop: Enable cropping of the image around the bounding box inferred from the foreground region of the loaded segmentation mask; masks and depth maps are cropped accordingly; cameras are corrected. box_crop_mask_thr: The threshold used to separate pixels into foreground and background based on the foreground_probability mask; if no value is greater than this threshold, the loader lowers it and repeats. box_crop_context: The amount of additional padding added to each dimension of the cropping bounding box, relative to box size. remove_empty_masks: Removes the frames with no active foreground pixels in the segmentation mask after thresholding (see box_crop_mask_thr). n_frames_per_sequence: If > 0, randomly samples #n_frames_per_sequence frames in each sequences uniformly without replacement if it has more frames than that; applied before other frame-level filters. seed: The seed of the random generator sampling #n_frames_per_sequence random frames per sequence. sort_frames: Enable frame annotations sorting to group frames from the same sequences together and order them by timestamps eval_batches: A list of batches that form the evaluation set; list of batch-sized lists of indices corresponding to __getitem__ of this class, thus it can be used directly as a batch sampler. """ frame_annotations_type: ClassVar[ Type[types.FrameAnnotation] ] = types.FrameAnnotation path_manager: Optional[PathManager] = None frame_annotations_file: str = "" sequence_annotations_file: str = "" subset_lists_file: str = "" subsets: Optional[List[str]] = None limit_to: int = 0 limit_sequences_to: int = 0 pick_sequence: Sequence[str] = () exclude_sequence: Sequence[str] = () limit_category_to: Sequence[int] = () dataset_root: str = "" load_images: bool = True load_depths: bool = True load_depth_masks: bool = True load_masks: bool = True load_point_clouds: bool = False max_points: int = 0 mask_images: bool = False mask_depths: bool = False image_height: Optional[int] = 256 image_width: Optional[int] = 256 box_crop: bool = False box_crop_mask_thr: float = 0.4 box_crop_context: float = 1.0 remove_empty_masks: bool = False n_frames_per_sequence: int = -1 seed: int = 0 sort_frames: bool = False eval_batches: Optional[List[List[int]]] = None frame_annots: List[FrameAnnotsEntry] = field(init=False) seq_annots: Dict[str, types.SequenceAnnotation] = field(init=False) def __post_init__(self) -> None: # pyre-fixme[16]: `JsonIndexDataset` has no attribute `subset_to_image_path`. self.subset_to_image_path = None self._load_frames() self._load_sequences() if self.sort_frames: self._sort_frames() self._load_subset_lists() self._filter_db() # also computes sequence indices logger.info(str(self)) def seq_frame_index_to_dataset_index( self, seq_frame_index: Union[ List[List[Union[Tuple[str, int, str], Tuple[str, int]]]], ], ) -> List[List[int]]: """ Obtain indices into the dataset object given a list of frames specified as `seq_frame_index = List[List[Tuple[sequence_name:str, frame_number:int]]]`. """ # TODO: check the frame numbers are unique _dataset_seq_frame_n_index = { seq: { self.frame_annots[idx]["frame_annotation"].frame_number: idx for idx in seq_idx } for seq, seq_idx in self._seq_to_idx.items() } def _get_batch_idx(seq_name, frame_no, path=None) -> int: idx = _dataset_seq_frame_n_index[seq_name][frame_no] if path is not None: # Check that the loaded frame path is consistent # with the one stored in self.frame_annots. assert os.path.normpath( self.frame_annots[idx]["frame_annotation"].image.path ) == os.path.normpath( path ), f"Inconsistent batch {seq_name, frame_no, path}." return idx batches_idx = [[_get_batch_idx(*b) for b in batch] for batch in seq_frame_index] return batches_idx def __str__(self) -> str: return f"JsonIndexDataset #frames={len(self.frame_annots)}" def __len__(self) -> int: return len(self.frame_annots) def _get_frame_type(self, entry: FrameAnnotsEntry) -> Optional[str]: return entry["subset"] def __getitem__(self, index) -> FrameData: if index >= len(self.frame_annots): raise IndexError(f"index {index} out of range {len(self.frame_annots)}") entry = self.frame_annots[index]["frame_annotation"] point_cloud = self.seq_annots[entry.sequence_name].point_cloud frame_data = FrameData( frame_number=_safe_as_tensor(entry.frame_number, torch.long), frame_timestamp=_safe_as_tensor(entry.frame_timestamp, torch.float), sequence_name=entry.sequence_name, sequence_category=self.seq_annots[entry.sequence_name].category, camera_quality_score=_safe_as_tensor( self.seq_annots[entry.sequence_name].viewpoint_quality_score, torch.float, ), point_cloud_quality_score=_safe_as_tensor( point_cloud.quality_score, torch.float ) if point_cloud is not None else None, ) # The rest of the fields are optional frame_data.frame_type = self._get_frame_type(self.frame_annots[index]) ( frame_data.fg_probability, frame_data.mask_path, frame_data.bbox_xywh, clamp_bbox_xyxy, ) = self._load_crop_fg_probability(entry) scale = 1.0 if self.load_images and entry.image is not None: # original image size frame_data.image_size_hw = _safe_as_tensor(entry.image.size, torch.long) ( frame_data.image_rgb, frame_data.image_path, frame_data.mask_crop, scale, ) = self._load_crop_images( entry, frame_data.fg_probability, clamp_bbox_xyxy ) if self.load_depths and entry.depth is not None: ( frame_data.depth_map, frame_data.depth_path, frame_data.depth_mask, ) = self._load_mask_depth(entry, clamp_bbox_xyxy, frame_data.fg_probability) if entry.viewpoint is not None: frame_data.camera = self._get_pytorch3d_camera( entry, scale, clamp_bbox_xyxy, ) if self.load_point_clouds and point_cloud is not None: frame_data.sequence_point_cloud_path = pcl_path = os.path.join( self.dataset_root, point_cloud.path ) frame_data.sequence_point_cloud = _load_pointcloud( self._local_path(pcl_path), max_points=self.max_points ) return frame_data def _load_crop_fg_probability( self, entry: types.FrameAnnotation ) -> Tuple[ Optional[torch.Tensor], Optional[str], Optional[torch.Tensor], Optional[torch.Tensor], ]: fg_probability, full_path, bbox_xywh, clamp_bbox_xyxy = ( None, None, None, None, ) if (self.load_masks or self.box_crop) and entry.mask is not None: full_path = os.path.join(self.dataset_root, entry.mask.path) mask = _load_mask(self._local_path(full_path)) if mask.shape[-2:] != entry.image.size: raise ValueError( f"bad mask size: {mask.shape[-2:]} vs {entry.image.size}!" ) bbox_xywh = torch.tensor(_get_bbox_from_mask(mask, self.box_crop_mask_thr)) if self.box_crop: clamp_bbox_xyxy = _get_clamp_bbox(bbox_xywh, self.box_crop_context) mask = _crop_around_box(mask, clamp_bbox_xyxy, full_path) fg_probability, _, _ = self._resize_image(mask, mode="nearest") return fg_probability, full_path, bbox_xywh, clamp_bbox_xyxy def _load_crop_images( self, entry: types.FrameAnnotation, fg_probability: Optional[torch.Tensor], clamp_bbox_xyxy: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, str, torch.Tensor, float]: assert self.dataset_root is not None and entry.image is not None path = os.path.join(self.dataset_root, entry.image.path) image_rgb = _load_image(self._local_path(path)) if image_rgb.shape[-2:] != entry.image.size: raise ValueError( f"bad image size: {image_rgb.shape[-2:]} vs {entry.image.size}!" ) if self.box_crop: assert clamp_bbox_xyxy is not None image_rgb = _crop_around_box(image_rgb, clamp_bbox_xyxy, path) image_rgb, scale, mask_crop = self._resize_image(image_rgb) if self.mask_images: assert fg_probability is not None image_rgb *= fg_probability return image_rgb, path, mask_crop, scale def _load_mask_depth( self, entry: types.FrameAnnotation, clamp_bbox_xyxy: Optional[torch.Tensor], fg_probability: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, str, torch.Tensor]: entry_depth = entry.depth assert entry_depth is not None path = os.path.join(self.dataset_root, entry_depth.path) depth_map = _load_depth(self._local_path(path), entry_depth.scale_adjustment) if self.box_crop: assert clamp_bbox_xyxy is not None depth_bbox_xyxy = _rescale_bbox( clamp_bbox_xyxy, entry.image.size, depth_map.shape[-2:] ) depth_map = _crop_around_box(depth_map, depth_bbox_xyxy, path) depth_map, _, _ = self._resize_image(depth_map, mode="nearest") if self.mask_depths: assert fg_probability is not None depth_map *= fg_probability if self.load_depth_masks: assert entry_depth.mask_path is not None mask_path = os.path.join(self.dataset_root, entry_depth.mask_path) depth_mask = _load_depth_mask(self._local_path(mask_path)) if self.box_crop: assert clamp_bbox_xyxy is not None depth_mask_bbox_xyxy = _rescale_bbox( clamp_bbox_xyxy, entry.image.size, depth_mask.shape[-2:] ) depth_mask = _crop_around_box( depth_mask, depth_mask_bbox_xyxy, mask_path ) depth_mask, _, _ = self._resize_image(depth_mask, mode="nearest") else: depth_mask = torch.ones_like(depth_map) return depth_map, path, depth_mask def _get_pytorch3d_camera( self, entry: types.FrameAnnotation, scale: float, clamp_bbox_xyxy: Optional[torch.Tensor], ) -> PerspectiveCameras: entry_viewpoint = entry.viewpoint assert entry_viewpoint is not None # principal point and focal length principal_point = torch.tensor( entry_viewpoint.principal_point, dtype=torch.float ) focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float) half_image_size_wh_orig = ( torch.tensor(list(reversed(entry.image.size)), dtype=torch.float) / 2.0 ) # first, we convert from the dataset's NDC convention to pixels format = entry_viewpoint.intrinsics_format if format.lower() == "ndc_norm_image_bounds": # this is e.g. currently used in CO3D for storing intrinsics rescale = half_image_size_wh_orig elif format.lower() == "ndc_isotropic": rescale = half_image_size_wh_orig.min() else: raise ValueError(f"Unknown intrinsics format: {format}") # principal point and focal length in pixels principal_point_px = half_image_size_wh_orig - principal_point * rescale focal_length_px = focal_length * rescale if self.box_crop: assert clamp_bbox_xyxy is not None principal_point_px -= clamp_bbox_xyxy[:2] # now, convert from pixels to PyTorch3D v0.5+ NDC convention if self.image_height is None or self.image_width is None: out_size = list(reversed(entry.image.size)) else: out_size = [self.image_width, self.image_height] half_image_size_output = torch.tensor(out_size, dtype=torch.float) / 2.0 half_min_image_size_output = half_image_size_output.min() # rescaled principal point and focal length in ndc principal_point = ( half_image_size_output - principal_point_px * scale ) / half_min_image_size_output focal_length = focal_length_px * scale / half_min_image_size_output return PerspectiveCameras( focal_length=focal_length[None], principal_point=principal_point[None], R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None], T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None], ) def _load_frames(self) -> None: logger.info(f"Loading Co3D frames from {self.frame_annotations_file}.") local_file = self._local_path(self.frame_annotations_file) with gzip.open(local_file, "rt", encoding="utf8") as zipfile: frame_annots_list = types.load_dataclass( zipfile, List[self.frame_annotations_type] ) if not frame_annots_list: raise ValueError("Empty dataset!") self.frame_annots = [ FrameAnnotsEntry(frame_annotation=a, subset=None) for a in frame_annots_list ] def _load_sequences(self) -> None: logger.info(f"Loading Co3D sequences from {self.sequence_annotations_file}.") local_file = self._local_path(self.sequence_annotations_file) with gzip.open(local_file, "rt", encoding="utf8") as zipfile: seq_annots = types.load_dataclass(zipfile, List[types.SequenceAnnotation]) if not seq_annots: raise ValueError("Empty sequences file!") self.seq_annots = {entry.sequence_name: entry for entry in seq_annots} def _load_subset_lists(self) -> None: logger.info(f"Loading Co3D subset lists from {self.subset_lists_file}.") if not self.subset_lists_file: return with open(self._local_path(self.subset_lists_file), "r") as f: subset_to_seq_frame = json.load(f) frame_path_to_subset = { path: subset for subset, frames in subset_to_seq_frame.items() for _, _, path in frames } for frame in self.frame_annots: frame["subset"] = frame_path_to_subset.get( frame["frame_annotation"].image.path, None ) if frame["subset"] is None: warnings.warn( "Subset lists are given but don't include " + frame["frame_annotation"].image.path ) def _sort_frames(self) -> None: # Sort frames to have them grouped by sequence, ordered by timestamp self.frame_annots = sorted( self.frame_annots, key=lambda f: ( f["frame_annotation"].sequence_name, f["frame_annotation"].frame_timestamp or 0, ), ) def _filter_db(self) -> None: if self.remove_empty_masks: logger.info("Removing images with empty masks.") old_len = len(self.frame_annots) msg = "remove_empty_masks needs every MaskAnnotation.mass to be set." def positive_mass(frame_annot: types.FrameAnnotation) -> bool: mask = frame_annot.mask if mask is None: return False if mask.mass is None: raise ValueError(msg) return mask.mass > 1 self.frame_annots = [ frame for frame in self.frame_annots if positive_mass(frame["frame_annotation"]) ] logger.info("... filtered %d -> %d" % (old_len, len(self.frame_annots))) # this has to be called after joining with categories!! subsets = self.subsets if subsets: if not self.subset_lists_file: raise ValueError( "Subset filter is on but subset_lists_file was not given" ) logger.info(f"Limiting Co3D dataset to the '{subsets}' subsets.") # truncate the list of subsets to the valid one self.frame_annots = [ entry for entry in self.frame_annots if entry["subset"] in subsets ] if len(self.frame_annots) == 0: raise ValueError(f"There are no frames in the '{subsets}' subsets!") self._invalidate_indexes(filter_seq_annots=True) if len(self.limit_category_to) > 0: logger.info(f"Limiting dataset to categories: {self.limit_category_to}") self.seq_annots = { name: entry for name, entry in self.seq_annots.items() if entry.category in self.limit_category_to } # sequence filters for prefix in ("pick", "exclude"): orig_len = len(self.seq_annots) attr = f"{prefix}_sequence" arr = getattr(self, attr) if len(arr) > 0: logger.info(f"{attr}: {str(arr)}") self.seq_annots = { name: entry for name, entry in self.seq_annots.items() if (name in arr) == (prefix == "pick") } logger.info("... filtered %d -> %d" % (orig_len, len(self.seq_annots))) if self.limit_sequences_to > 0: self.seq_annots = dict( islice(self.seq_annots.items(), self.limit_sequences_to) ) # retain only frames from retained sequences self.frame_annots = [ f for f in self.frame_annots if f["frame_annotation"].sequence_name in self.seq_annots ] self._invalidate_indexes() if self.n_frames_per_sequence > 0: logger.info(f"Taking max {self.n_frames_per_sequence} per sequence.") keep_idx = [] for seq, seq_indices in self._seq_to_idx.items(): # infer the seed from the sequence name, this is reproducible # and makes the selection differ for different sequences seed = _seq_name_to_seed(seq) + self.seed seq_idx_shuffled = random.Random(seed).sample( sorted(seq_indices), len(seq_indices) ) keep_idx.extend(seq_idx_shuffled[: self.n_frames_per_sequence]) logger.info( "... filtered %d -> %d" % (len(self.frame_annots), len(keep_idx)) ) self.frame_annots = [self.frame_annots[i] for i in keep_idx] self._invalidate_indexes(filter_seq_annots=False) # sequences are not decimated, so self.seq_annots is valid if self.limit_to > 0 and self.limit_to < len(self.frame_annots): logger.info( "limit_to: filtered %d -> %d" % (len(self.frame_annots), self.limit_to) ) self.frame_annots = self.frame_annots[: self.limit_to] self._invalidate_indexes(filter_seq_annots=True) def _invalidate_indexes(self, filter_seq_annots: bool = False) -> None: # update _seq_to_idx and filter seq_meta according to frame_annots change # if filter_seq_annots, also uldates seq_annots based on the changed _seq_to_idx self._invalidate_seq_to_idx() if filter_seq_annots: self.seq_annots = { k: v for k, v in self.seq_annots.items() if k in self._seq_to_idx } def _invalidate_seq_to_idx(self) -> None: seq_to_idx = defaultdict(list) for idx, entry in enumerate(self.frame_annots): seq_to_idx[entry["frame_annotation"].sequence_name].append(idx) self._seq_to_idx = seq_to_idx def _resize_image( self, image, mode="bilinear" ) -> Tuple[torch.Tensor, float, torch.Tensor]: image_height, image_width = self.image_height, self.image_width if image_height is None or image_width is None: # skip the resizing imre_ = torch.from_numpy(image) return imre_, 1.0, torch.ones_like(imre_[:1]) # takes numpy array, returns pytorch tensor minscale = min( image_height / image.shape[-2], image_width / image.shape[-1], ) imre = torch.nn.functional.interpolate( torch.from_numpy(image)[None], # pyre-ignore[6] scale_factor=minscale, mode=mode, align_corners=False if mode == "bilinear" else None, recompute_scale_factor=True, )[0] imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width) imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre mask = torch.zeros(1, self.image_height, self.image_width) mask[:, 0 : imre.shape[1] - 1, 0 : imre.shape[2] - 1] = 1.0 return imre_, minscale, mask def _local_path(self, path: str) -> str: if self.path_manager is None: return path return self.path_manager.get_local_path(path) def get_frame_numbers_and_timestamps( self, idxs: Sequence[int] ) -> List[Tuple[int, float]]: out: List[Tuple[int, float]] = [] for idx in idxs: frame_annotation = self.frame_annots[idx]["frame_annotation"] out.append( (frame_annotation.frame_number, frame_annotation.frame_timestamp) ) return out def get_eval_batches(self) -> Optional[List[List[int]]]: return self.eval_batches def _seq_name_to_seed(seq_name) -> int: return int(hashlib.sha1(seq_name.encode("utf-8")).hexdigest(), 16) def _load_image(path) -> np.ndarray: with Image.open(path) as pil_im: im = np.array(pil_im.convert("RGB")) im = im.transpose((2, 0, 1)) im = im.astype(np.float32) / 255.0 return im def _load_16big_png_depth(depth_png) -> np.ndarray: with Image.open(depth_png) as depth_pil: # the image is stored with 16-bit depth but PIL reads it as I (32 bit). # we cast it to uint16, then reinterpret as float16, then cast to float32 depth = ( np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) .astype(np.float32) .reshape((depth_pil.size[1], depth_pil.size[0])) ) return depth def _load_1bit_png_mask(file: str) -> np.ndarray: with Image.open(file) as pil_im: mask = (np.array(pil_im.convert("L")) > 0.0).astype(np.float32) return mask def _load_depth_mask(path) -> np.ndarray: if not path.lower().endswith(".png"): raise ValueError('unsupported depth mask file name "%s"' % path) m = _load_1bit_png_mask(path) return m[None] # fake feature channel def _load_depth(path, scale_adjustment) -> np.ndarray: if not path.lower().endswith(".png"): raise ValueError('unsupported depth file name "%s"' % path) d = _load_16big_png_depth(path) * scale_adjustment d[~np.isfinite(d)] = 0.0 return d[None] # fake feature channel def _load_mask(path) -> np.ndarray: with Image.open(path) as pil_im: mask = np.array(pil_im) mask = mask.astype(np.float32) / 255.0 return mask[None] # fake feature channel def _get_1d_bounds(arr) -> Tuple[int, int]: nz = np.flatnonzero(arr) return nz[0], nz[-1] def _get_bbox_from_mask( mask, thr, decrease_quant: float = 0.05 ) -> Tuple[int, int, int, int]: # bbox in xywh masks_for_box = np.zeros_like(mask) while masks_for_box.sum() <= 1.0: masks_for_box = (mask > thr).astype(np.float32) thr -= decrease_quant if thr <= 0.0: warnings.warn(f"Empty masks_for_bbox (thr={thr}) => using full image.") x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2)) y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1)) return x0, y0, x1 - x0, y1 - y0 def _get_clamp_bbox( bbox: torch.Tensor, box_crop_context: float = 0.0, impath: str = "" ) -> torch.Tensor: # box_crop_context: rate of expansion for bbox # returns possibly expanded bbox xyxy as float # increase box size if box_crop_context > 0.0: c = box_crop_context bbox = bbox.float() bbox[0] -= bbox[2] * c / 2 bbox[1] -= bbox[3] * c / 2 bbox[2] += bbox[2] * c bbox[3] += bbox[3] * c if (bbox[2:] <= 1.0).any(): raise ValueError( f"squashed image {impath}!! The bounding box contains no pixels." ) bbox[2:] = torch.clamp(bbox[2:], 2) bbox[2:] += bbox[0:2] + 1 # convert to [xmin, ymin, xmax, ymax] # +1 because upper bound is not inclusive return bbox def _crop_around_box(tensor, bbox, impath: str = ""): # bbox is xyxy, where the upper bound is corrected with +1 bbox[[0, 2]] = torch.clamp(bbox[[0, 2]], 0.0, tensor.shape[-1]) bbox[[1, 3]] = torch.clamp(bbox[[1, 3]], 0.0, tensor.shape[-2]) bbox = bbox.round().long() tensor = tensor[..., bbox[1] : bbox[3], bbox[0] : bbox[2]] assert all(c > 0 for c in tensor.shape), f"squashed image {impath}" return tensor def _rescale_bbox(bbox: torch.Tensor, orig_res, new_res) -> torch.Tensor: assert bbox is not None assert np.prod(orig_res) > 1e-8 # average ratio of dimensions rel_size = (new_res[0] / orig_res[0] + new_res[1] / orig_res[1]) / 2.0 return bbox * rel_size def _safe_as_tensor(data, dtype): if data is None: return None return torch.tensor(data, dtype=dtype) # NOTE this cache is per-worker; they are implemented as processes. # each batch is loaded and collated by a single worker; # since sequences tend to co-occur within batches, this is useful. @functools.lru_cache(maxsize=256) def _load_pointcloud(pcl_path: Union[str, Path], max_points: int = 0) -> Pointclouds: pcl = IO().load_pointcloud(pcl_path) if max_points > 0: pcl = pcl.subsample(max_points) return pcl
[ "logging.getLogger", "numpy.prod", "gzip.open", "dataclasses.dataclass", "torch.from_numpy", "numpy.array", "numpy.isfinite", "random.Random", "numpy.flatnonzero", "os.path.normpath", "pytorch3d.io.IO", "warnings.warn", "dataclasses.field", "torch.ones_like", "torch.clamp", "PIL.Image.open", "os.path.join", "torch.tensor", "collections.defaultdict", "json.load", "functools.lru_cache", "numpy.zeros_like", "torch.zeros" ]
[((908, 935), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (925, 935), False, 'import logging\n'), ((1046, 1065), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (1055, 1065), False, 'from dataclasses import dataclass, field\n'), ((30535, 30567), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': '(256)'}), '(maxsize=256)\n', (30554, 30567), False, 'import functools\n'), ((6340, 6357), 'dataclasses.field', 'field', ([], {'init': '(False)'}), '(init=False)\n', (6345, 6357), False, 'from dataclasses import dataclass, field\n'), ((6412, 6429), 'dataclasses.field', 'field', ([], {'init': '(False)'}), '(init=False)\n', (6417, 6429), False, 'from dataclasses import dataclass, field\n'), ((28144, 28163), 'numpy.flatnonzero', 'np.flatnonzero', (['arr'], {}), '(arr)\n', (28158, 28163), True, 'import numpy as np\n'), ((28331, 28350), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (28344, 28350), True, 'import numpy as np\n'), ((29348, 29372), 'torch.clamp', 'torch.clamp', (['bbox[2:]', '(2)'], {}), '(bbox[2:], 2)\n', (29359, 29372), False, 'import torch\n'), ((29643, 29691), 'torch.clamp', 'torch.clamp', (['bbox[[0, 2]]', '(0.0)', 'tensor.shape[-1]'], {}), '(bbox[[0, 2]], 0.0, tensor.shape[-1])\n', (29654, 29691), False, 'import torch\n'), ((29711, 29759), 'torch.clamp', 'torch.clamp', (['bbox[[1, 3]]', '(0.0)', 'tensor.shape[-2]'], {}), '(bbox[[1, 3]], 0.0, tensor.shape[-2])\n', (29722, 29759), False, 'import torch\n'), ((30309, 30340), 'torch.tensor', 'torch.tensor', (['data'], {'dtype': 'dtype'}), '(data, dtype=dtype)\n', (30321, 30340), False, 'import torch\n'), ((12619, 12668), 'os.path.join', 'os.path.join', (['self.dataset_root', 'entry.image.path'], {}), '(self.dataset_root, entry.image.path)\n', (12631, 12668), False, 'import os\n'), ((13601, 13650), 'os.path.join', 'os.path.join', (['self.dataset_root', 'entry_depth.path'], {}), '(self.dataset_root, entry_depth.path)\n', (13613, 13650), False, 'import os\n'), ((15331, 15395), 'torch.tensor', 'torch.tensor', (['entry_viewpoint.principal_point'], {'dtype': 'torch.float'}), '(entry_viewpoint.principal_point, dtype=torch.float)\n', (15343, 15395), False, 'import torch\n'), ((15441, 15502), 'torch.tensor', 'torch.tensor', (['entry_viewpoint.focal_length'], {'dtype': 'torch.float'}), '(entry_viewpoint.focal_length, dtype=torch.float)\n', (15453, 15502), False, 'import torch\n'), ((24389, 24406), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (24400, 24406), False, 'from collections import defaultdict\n'), ((25437, 25501), 'torch.zeros', 'torch.zeros', (['image.shape[0]', 'self.image_height', 'self.image_width'], {}), '(image.shape[0], self.image_height, self.image_width)\n', (25448, 25501), False, 'import torch\n'), ((25579, 25630), 'torch.zeros', 'torch.zeros', (['(1)', 'self.image_height', 'self.image_width'], {}), '(1, self.image_height, self.image_width)\n', (25590, 25630), False, 'import torch\n'), ((26545, 26561), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (26555, 26561), False, 'from PIL import Image\n'), ((26767, 26788), 'PIL.Image.open', 'Image.open', (['depth_png'], {}), '(depth_png)\n', (26777, 26788), False, 'from PIL import Image\n'), ((27246, 27262), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (27256, 27262), False, 'from PIL import Image\n'), ((27940, 27956), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (27950, 27956), False, 'from PIL import Image\n'), ((27983, 27999), 'numpy.array', 'np.array', (['pil_im'], {}), '(pil_im)\n', (27991, 27999), True, 'import numpy as np\n'), ((28502, 28573), 'warnings.warn', 'warnings.warn', (['f"""Empty masks_for_bbox (thr={thr}) => using full image."""'], {}), "(f'Empty masks_for_bbox (thr={thr}) => using full image.')\n", (28515, 28573), False, 'import warnings\n'), ((30060, 30077), 'numpy.prod', 'np.prod', (['orig_res'], {}), '(orig_res)\n', (30067, 30077), True, 'import numpy as np\n'), ((10859, 10908), 'os.path.join', 'os.path.join', (['self.dataset_root', 'point_cloud.path'], {}), '(self.dataset_root, point_cloud.path)\n', (10871, 10908), False, 'import os\n'), ((11582, 11630), 'os.path.join', 'os.path.join', (['self.dataset_root', 'entry.mask.path'], {}), '(self.dataset_root, entry.mask.path)\n', (11594, 11630), False, 'import os\n'), ((14318, 14372), 'os.path.join', 'os.path.join', (['self.dataset_root', 'entry_depth.mask_path'], {}), '(self.dataset_root, entry_depth.mask_path)\n', (14330, 14372), False, 'import os\n'), ((14922, 14948), 'torch.ones_like', 'torch.ones_like', (['depth_map'], {}), '(depth_map)\n', (14937, 14948), False, 'import torch\n'), ((16726, 16767), 'torch.tensor', 'torch.tensor', (['out_size'], {'dtype': 'torch.float'}), '(out_size, dtype=torch.float)\n', (16738, 16767), False, 'import torch\n'), ((17590, 17634), 'gzip.open', 'gzip.open', (['local_file', '"""rt"""'], {'encoding': '"""utf8"""'}), "(local_file, 'rt', encoding='utf8')\n", (17599, 17634), False, 'import gzip\n'), ((18193, 18237), 'gzip.open', 'gzip.open', (['local_file', '"""rt"""'], {'encoding': '"""utf8"""'}), "(local_file, 'rt', encoding='utf8')\n", (18202, 18237), False, 'import gzip\n'), ((18785, 18797), 'json.load', 'json.load', (['f'], {}), '(f)\n', (18794, 18797), False, 'import json\n'), ((24869, 24892), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (24885, 24892), False, 'import torch\n'), ((27828, 27842), 'numpy.isfinite', 'np.isfinite', (['d'], {}), '(d)\n', (27839, 27842), True, 'import numpy as np\n'), ((30664, 30668), 'pytorch3d.io.IO', 'IO', ([], {}), '()\n', (30666, 30668), False, 'from pytorch3d.io import IO\n'), ((19192, 19294), 'warnings.warn', 'warnings.warn', (['("Subset lists are given but don\'t include " + frame[\'frame_annotation\'].\n image.path)'], {}), '("Subset lists are given but don\'t include " + frame[\n \'frame_annotation\'].image.path)\n', (19205, 19294), False, 'import warnings\n'), ((24924, 24950), 'torch.ones_like', 'torch.ones_like', (['imre_[:1]'], {}), '(imre_[:1])\n', (24939, 24950), False, 'import torch\n'), ((7842, 7913), 'os.path.normpath', 'os.path.normpath', (["self.frame_annots[idx]['frame_annotation'].image.path"], {}), "(self.frame_annots[idx]['frame_annotation'].image.path)\n", (7858, 7913), False, 'import os\n'), ((7955, 7977), 'os.path.normpath', 'os.path.normpath', (['path'], {}), '(path)\n', (7971, 7977), False, 'import os\n'), ((17253, 17303), 'torch.tensor', 'torch.tensor', (['entry_viewpoint.R'], {'dtype': 'torch.float'}), '(entry_viewpoint.R, dtype=torch.float)\n', (17265, 17303), False, 'import torch\n'), ((17325, 17375), 'torch.tensor', 'torch.tensor', (['entry_viewpoint.T'], {'dtype': 'torch.float'}), '(entry_viewpoint.T, dtype=torch.float)\n', (17337, 17375), False, 'import torch\n'), ((25184, 25207), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (25200, 25207), False, 'import torch\n'), ((23035, 23054), 'random.Random', 'random.Random', (['seed'], {}), '(seed)\n', (23048, 23054), False, 'import random\n'), ((27009, 27045), 'numpy.array', 'np.array', (['depth_pil'], {'dtype': 'np.uint16'}), '(depth_pil, dtype=np.uint16)\n', (27017, 27045), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Jun 13 13:10:41 2018 @author: crius """ import Hamiltonians as H import numpy as np import tools as t import spintensor as st import spinops as so import time import Expand as ex from matplotlib import pyplot as plt exp = np.exp N = 8 nlegs = 4 S = 0.5 c = np.sqrt(2) Jcurr=0 J1=1 J2=1 Htot = H.nlegHeisenberg.blockH(N,S,nlegs,c,Js = [1,1],gamma =[0.0, 4.0],full='True') Hfull = sum(Htot).todense() eigs, vecs = np.linalg.eigh(Hfull) Eigvecs = np.asarray(vecs.T) print(list(eigs)) Envecs = [] for vc in Eigvecs: A = ex.Expand(vc,S,N,Jcurr) Envecs.append(A) statelist = t.Statelist(N,S) Statevecs = [] for state in statelist: vec = [] up = [1,0] down = [0,1] for i in state: if i == 0: vec.append(down) elif i ==1: vec.append(up) Basestate = ''.join(map(str,state)) B = [Basestate,vec[0]]#initializes state so that tensor product can be preformed for i in range(len(vec)-1): D = np.kron(B[1],vec[i+1]) B[1] = D Statevecs.append((B[0],B[1])) #### Basestates = dict(Statevecs) #print(Basestates) BS = Basestates['11001100'] s = so.sz(S) print(t.exval(BS,BS,Hfull)) ##### k=1 Op = so.SziOp(N,S,k,full='True') def getkey(m,n): key = str((2**m)*(2*n + 1) -1) return(key) Coeff = [] for i,vec1 in enumerate(Eigvecs): for j,vec2 in enumerate(Eigvecs): co = (getkey(i,j),vec2@BS*t.exval(BS,vec1,Op)) Coeff.append(co) Coeffs = dict(Coeff) #### Coeff1 = [] for i1,vec1 in enumerate(Eigvecs) : for j1,vec2 in enumerate(Eigvecs): c1 = Coeffs[getkey(i1,j1)] co1 = t.exval(vec1,vec2,Op)*c1 E1 = (getkey(i1,j1),co1) Coeff1.append(E1) Coeffs1 = dict(Coeff1) #print(Coeffs) ###### times = np.linspace(0.0,1,10) #times = [0, 1/9, 2/9,3/9,4/9,5/9,6/9,7/9,8/9,1] #print(times) timeEx = [] for tim in times: #print(tim) start = time.time() ex = [] for i,eig1 in enumerate(eigs): for j,eig2 in enumerate(eigs): C = Coeffs1[getkey(i,j)] #F = t.timeEv(tim,eig1,eig2,C) F = C*np.cos(tim*(eig2-eig1))# ex.append(F) timeEx.append(sum(ex)) stop = time.time() print(stop-start) print(timeEx) plt.plot(times,timeEx)
[ "tools.Statelist", "numpy.sqrt", "Expand.append", "spinops.SziOp", "matplotlib.pyplot.plot", "numpy.asarray", "numpy.kron", "numpy.linspace", "Expand.Expand", "tools.exval", "Hamiltonians.nlegHeisenberg.blockH", "numpy.linalg.eigh", "numpy.cos", "time.time", "spinops.sz" ]
[((306, 316), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (313, 316), True, 'import numpy as np\n'), ((343, 429), 'Hamiltonians.nlegHeisenberg.blockH', 'H.nlegHeisenberg.blockH', (['N', 'S', 'nlegs', 'c'], {'Js': '[1, 1]', 'gamma': '[0.0, 4.0]', 'full': '"""True"""'}), "(N, S, nlegs, c, Js=[1, 1], gamma=[0.0, 4.0], full=\n 'True')\n", (366, 429), True, 'import Hamiltonians as H\n'), ((463, 484), 'numpy.linalg.eigh', 'np.linalg.eigh', (['Hfull'], {}), '(Hfull)\n', (477, 484), True, 'import numpy as np\n'), ((495, 513), 'numpy.asarray', 'np.asarray', (['vecs.T'], {}), '(vecs.T)\n', (505, 513), True, 'import numpy as np\n'), ((643, 660), 'tools.Statelist', 't.Statelist', (['N', 'S'], {}), '(N, S)\n', (654, 660), True, 'import tools as t\n'), ((1225, 1233), 'spinops.sz', 'so.sz', (['S'], {}), '(S)\n', (1230, 1233), True, 'import spinops as so\n'), ((1278, 1308), 'spinops.SziOp', 'so.SziOp', (['N', 'S', 'k'], {'full': '"""True"""'}), "(N, S, k, full='True')\n", (1286, 1308), True, 'import spinops as so\n'), ((1890, 1913), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1)', '(10)'], {}), '(0.0, 1, 10)\n', (1901, 1913), True, 'import numpy as np\n'), ((2414, 2437), 'matplotlib.pyplot.plot', 'plt.plot', (['times', 'timeEx'], {}), '(times, timeEx)\n', (2422, 2437), True, 'from matplotlib import pyplot as plt\n'), ((571, 597), 'Expand.Expand', 'ex.Expand', (['vc', 'S', 'N', 'Jcurr'], {}), '(vc, S, N, Jcurr)\n', (580, 597), True, 'import Expand as ex\n'), ((1240, 1262), 'tools.exval', 't.exval', (['BS', 'BS', 'Hfull'], {}), '(BS, BS, Hfull)\n', (1247, 1262), True, 'import tools as t\n'), ((2034, 2045), 'time.time', 'time.time', ([], {}), '()\n', (2043, 2045), False, 'import time\n'), ((2360, 2371), 'time.time', 'time.time', ([], {}), '()\n', (2369, 2371), False, 'import time\n'), ((1051, 1076), 'numpy.kron', 'np.kron', (['B[1]', 'vec[i + 1]'], {}), '(B[1], vec[i + 1])\n', (1058, 1076), True, 'import numpy as np\n'), ((1735, 1758), 'tools.exval', 't.exval', (['vec1', 'vec2', 'Op'], {}), '(vec1, vec2, Op)\n', (1742, 1758), True, 'import tools as t\n'), ((2297, 2309), 'Expand.append', 'ex.append', (['F'], {}), '(F)\n', (2306, 2309), True, 'import Expand as ex\n'), ((1507, 1528), 'tools.exval', 't.exval', (['BS', 'vec1', 'Op'], {}), '(BS, vec1, Op)\n', (1514, 1528), True, 'import tools as t\n'), ((2260, 2287), 'numpy.cos', 'np.cos', (['(tim * (eig2 - eig1))'], {}), '(tim * (eig2 - eig1))\n', (2266, 2287), True, 'import numpy as np\n')]
import mnist import numpy as np from PIL import Image from conv import Conv3x3 from maxpool import MaxPool2 from softmax import Softmax train_images = mnist.train_images()[:100] train_labels = mnist.train_labels()[:100] test_images = mnist.test_images()[:1000] test_labels = mnist.test_labels()[:1000] conv = Conv3x3(8) pool = MaxPool2() softmax = Softmax(13 * 13 * 8, 10) def forward(image, label): out = conv.forward((image / 255) - 0.5) out = pool.forward(out) out = softmax.forward(out) loss = -np.log(out[label]) acc = 1 if np.argmax(out) == label else 0 return out, loss, acc def train(image, label, lr=.005): out, loss, acc = forward(image, label) gradient = np.zeros(10) gradient[label] = -1 / out[label] gradient = softmax.backprop(gradient, lr) gradient = pool.backprop(gradient) gradient = conv.backprop(gradient, lr) return out, loss, acc def start_training(): loss = 0 num_correct = 0 for i, (image, label) in enumerate(zip(train_images, train_labels)): if i % 100 == 99: print( f'[Step {i + 1}] Past 100 steps: Average loss {loss / 100}. Accuracy: {num_correct}%' ) loss = 0 num_correct = 0 _, l, acc = train(image, label) loss += l num_correct += acc def test(image, label): np_image = np.array(image) result, loss, acc = train(np_image, label) return result.tolist()
[ "softmax.Softmax", "mnist.test_labels", "mnist.train_images", "numpy.log", "numpy.argmax", "mnist.test_images", "numpy.array", "numpy.zeros", "conv.Conv3x3", "maxpool.MaxPool2", "mnist.train_labels" ]
[((311, 321), 'conv.Conv3x3', 'Conv3x3', (['(8)'], {}), '(8)\n', (318, 321), False, 'from conv import Conv3x3\n'), ((329, 339), 'maxpool.MaxPool2', 'MaxPool2', ([], {}), '()\n', (337, 339), False, 'from maxpool import MaxPool2\n'), ((350, 374), 'softmax.Softmax', 'Softmax', (['(13 * 13 * 8)', '(10)'], {}), '(13 * 13 * 8, 10)\n', (357, 374), False, 'from softmax import Softmax\n'), ((152, 172), 'mnist.train_images', 'mnist.train_images', ([], {}), '()\n', (170, 172), False, 'import mnist\n'), ((194, 214), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (212, 214), False, 'import mnist\n'), ((235, 254), 'mnist.test_images', 'mnist.test_images', ([], {}), '()\n', (252, 254), False, 'import mnist\n'), ((276, 295), 'mnist.test_labels', 'mnist.test_labels', ([], {}), '()\n', (293, 295), False, 'import mnist\n'), ((689, 701), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (697, 701), True, 'import numpy as np\n'), ((1294, 1309), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (1302, 1309), True, 'import numpy as np\n'), ((511, 529), 'numpy.log', 'np.log', (['out[label]'], {}), '(out[label])\n', (517, 529), True, 'import numpy as np\n'), ((543, 557), 'numpy.argmax', 'np.argmax', (['out'], {}), '(out)\n', (552, 557), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Functions for plotting reliability diagrams: smooths of simulated vs observed outcomes on the y-axis against predicted probabilities on the x-axis. """ from __future__ import absolute_import import matplotlib.pyplot as plt import numpy as np import seaborn as sbn from .plot_utils import _label_despine_save_and_show_plot from .smoothers import ContinuousSmoother, DiscreteSmoother, SmoothPlotter from .utils import progress try: # in Python 3 range returns an iterator instead of list # to maintain backwards compatibility use "old" version of range from past.builtins import range except ImportError: pass # Set the plotting style sbn.set_style("darkgrid") def _check_reliability_args(probs, choices, partitions, sim_y): """ Ensures `probs` is a 1D or 2D ndarray, that `choices` is a 1D ndarray, that `partitions` is an int, and that `sim_y` is a ndarray of the same shape as `probs` or None. """ if not isinstance(probs, np.ndarray): msg = "`probs` MUST be an ndarray." raise ValueError(msg) if probs.ndim not in [1, 2]: msg = "probs` MUST be a 1D or 2D ndarray." raise ValueError(msg) if not isinstance(choices, np.ndarray): msg = "`choices` MUST be an ndarray." raise ValueError(msg) if choices.ndim != 1: msg = "`choices` MUST be a 1D ndarray." raise ValueError(msg) if not isinstance(partitions, int): msg = "`partitions` MUST be an int." raise ValueError(msg) if not isinstance(sim_y, np.ndarray) and sim_y is not None: msg = "`sim_y` MUST be an ndarray or None." raise ValueError(msg) sim_to_prob_conditions = probs.ndim != 1 and sim_y.shape != probs.shape if sim_y is not None and sim_to_prob_conditions: msg = ( "`sim_y` MUST have the same shape as `probs` if " "`probs.shape[1] != 1`." ) raise ValueError(msg) return None def add_ref_line(ax, ref_label="Perfect Calibration"): """ Plots a diagonal line to show perfectly calibrated probabilities. Parameters ---------- ax : matplotlib Axes instance The Axes that the reference line should be plotted on. ref_label : str, optional. The label to be applied to the reference line that is drawn. Returns ------- None. `ax` is modified in place: the line is plotted and the label added. """ # Determine the maximum value of the x-axis or y-axis max_ref_val = max(ax.get_xlim()[1], ax.get_ylim()[1]) min_ref_val = max(ax.get_xlim()[0], ax.get_ylim()[0]) # Determine the values to use to plot the reference line ref_vals = np.linspace(min_ref_val, max_ref_val, num=100) # Plot the reference line as a black dashed line ax.plot(ref_vals, ref_vals, "k--", label=ref_label) return None def plot_smoothed_reliability( probs, choices, discrete=True, partitions=10, n_estimators=50, min_samples_leaf=10, random_state=None, line_color="#1f78b4", line_label="Observed vs Predicted", alpha=None, sim_y=None, sim_line_color="#a6cee3", sim_label="Simulated vs Predicted", sim_alpha=0.5, x_label="Mean Predicted Probability", y_label="Binned\nEmpirical\nProbability", title=None, fontsize=12, ref_line=True, figsize=(5, 3), fig_and_ax=None, legend=True, progress_bar=True, show=True, output_file=None, dpi=500, ): """ Creates a binned reliability plot based on the given probability predictions and the given observed outcomes. Parameters ---------- probs : 1D or 2D ndarray. Each element should be in [0, 1]. There should be 1 column for each set of predicted probabilities. These will be plotted on the x-axis. choices : 1D ndarray. Each element should be either a zero or a one. Elements should denote whether the alternative corresponding to the given row was chosen or not. A 'one' corresponds to a an outcome of 'success'. discrete : bool, optional. Determines whether discrete smoothing (i.e. binning) will be used or whether continuous binning via Extremely Randomized Trees will be used. Default is to use discrete binning, so `discrete == True`. partitions : positive int, optional. Denotes the number of partitions to split one's data into for binning. Only used if `discrete is True`. Default == 10. n_estimators : positive int, optional. Determines the number of trees in the ensemble of Extremely Randomized Trees that is used to do continuous smoothing. This parameter controls how smooth one's resulting estimate is. The more estimators the smoother one's estimated relationship and the lower the variance in that estimated relationship. This kwarg is only used if `discrete is False`. Default == 50. min_samples_leaf : positive int, optional. Determines the minimum number of observations allowed in a leaf node in any tree in the ensemble. This parameter is conceptually equivalent to the bandwidth parameter in a kernel density estimator. This kwarg is only used if `discrete is False`. Default == 10. random_state : positive int, or None, optional. Denotes the random seed to be used when constructing the ensemble of Extremely Randomized Trees. This kwarg is only used if `discrete is False`. Default is None. line_color : valid matplotlib color, optional. Determines the color that is used to plot the predicted probabilities versus the observed choices. Default is `'#1f78b4'`. line_label : str or None, optional. Denotes the label to be used for the lines relating the predicted probabilities and the binned, empirical probabilities. Default is 'Observed vs Predicted'. alpha : positive float in [0.0, 1.0], or `None`, optional. Determines the opacity of the observed data drawn on the plot. 0.0 == transparent and 1.0 == opaque. Default == 1.0. sim_y : 2D ndarray or None, optional. Denotes the choices that were simulated based on `probs`. If passed, `sim_y.shape` MUST equal `probs.shape` in order to ensure that lines are plotted for the predicted probabilities versus simulated choices. This kwarg is useful because it shows one the reference distribution of predicted probabilities versus choices that actually come from one's postulated model. sim_line_color : valid matplotlib color, optional. Determines the color that is used to plot the predicted probabilities versus the simulated choices. Default is `'#a6cee3'`. sim_line_label : str, or None, optional. Denotes the label to be used for the lines relating the predicted probabilities and the binned, empirical probabilities based on the simulated choices. Default is 'Simulated vs Predicted'. sim_alpha : positive float in [0.0, 1.0], or `None`, optional. Determines the opacity of the simulated reliability curves. 0.0 == transparent and 1.0 == opaque. Default == 0.5. x_label, y_label : str, optional. Denotes the label for the x-axis and y-axis, respectively. Defaults are 'Mean Predicted Probability' and 'Binned\nEmpirical\nProbability' for the x-axis and y-axis, respectively. title : str, or None, optional. Denotes the title to be displayed for the plot. Default is None. fontsize : int or None, optional. The fontsize to be used in the plot. Default is 12. ref_line : bool, optional. Determines whether a diagonal line, y = x, will be plotted to show the expected relationship. Default is True. figsize : 2-tuple of positive ints. Determines the size of the created figure. Default == (5, 3). fig_and_ax : list of matplotlib figure and axis, or `None`, optional. Determines whether a new figure will be created for the plot or whether the plot will be drawn on existing axes. If None, a new figure will be created. Default is `None`. legend : bool, optional. Determines whether a legend is printed for the plot. Default == True. progress_bar : bool, optional. Determines whether a progress bar is displayed while making the plot. Default == True. show : bool, optional. Determines whether the figure is shown after plotting is complete. Default == True. output_file : str, or None, optional. Denotes the relative or absolute filepath (including the file format) that is to be used to save the plot. If None, the plot will not be saved to file. Default is None. dpi : positive int, optional. Denotes the number of 'dots per inch' for the saved figure. Will only be used if `output_file is not None`. Default == 500. Returns ------- None. """ # Perform some basic argument checking _check_reliability_args(probs, choices, partitions, sim_y) # Make probs 2D if necessary probs = probs[:, None] if probs.ndim == 1 else probs # Create the figure and axes if need be if fig_and_ax is None: fig, ax = plt.subplots(1, figsize=figsize) fig_and_ax = [fig, ax] else: fig, ax = fig_and_ax # Create the progressbar iterator if desired if progress_bar and sim_y is not None: description = "Plotting" if sim_y is None else "Plotting Simulations" sim_iterator = progress(range(sim_y.shape[1]), desc=description) else: sim_iterator = range(probs.shape[1]) # Create the desired smoother if discrete: smoother = DiscreteSmoother( num_obs=probs.shape[0], partitions=partitions ) else: smoother = ContinuousSmoother( n_estimators=n_estimators, min_samples_leaf=min_samples_leaf, random_state=random_state, ) # Create the plotter that will plot single smooth curves plotter = SmoothPlotter(smoother=smoother, ax=ax) # Create helper functions def get_current_probs(col): """ Fetches the current probabilities when plotting the reliability curves. """ current = probs[:, 0] if probs.shape[1] == 1 else probs[:, col] return current # Plot the simulated reliability curves, if desired if sim_y is not None: for i in sim_iterator: current_label = sim_label if i == 0 else None plotter.plot( get_current_probs(i), sim_y[:, i], label=current_label, color=sim_line_color, alpha=sim_alpha, sort=True, ) # Create the progressbar iterator if desired if progress_bar: prob_iterator = progress(range(probs.shape[1]), desc="Plotting") else: prob_iterator = range(probs.shape[1]) # Make the 'true' reliability plots for col in prob_iterator: plotter.plot( get_current_probs(col), choices, label=line_label, color=line_color, alpha=alpha, sort=True, ) # Create the reference line if desired if ref_line: add_ref_line(ax) # Make the legend, if desired if legend: ax.legend(loc="best", fontsize=fontsize) # Take care of boilerplate plotting necessities _label_despine_save_and_show_plot( x_label=x_label, y_label=y_label, fig_and_ax=fig_and_ax, fontsize=fontsize, y_rot=0, y_pad=40, title=title, output_file=output_file, show=show, dpi=dpi, ) return None
[ "seaborn.set_style", "numpy.linspace", "matplotlib.pyplot.subplots", "past.builtins.range" ]
[((681, 706), 'seaborn.set_style', 'sbn.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (694, 706), True, 'import seaborn as sbn\n'), ((2708, 2754), 'numpy.linspace', 'np.linspace', (['min_ref_val', 'max_ref_val'], {'num': '(100)'}), '(min_ref_val, max_ref_val, num=100)\n', (2719, 2754), True, 'import numpy as np\n'), ((9365, 9397), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'figsize'}), '(1, figsize=figsize)\n', (9377, 9397), True, 'import matplotlib.pyplot as plt\n'), ((9745, 9766), 'past.builtins.range', 'range', (['probs.shape[1]'], {}), '(probs.shape[1])\n', (9750, 9766), False, 'from past.builtins import range\n'), ((11078, 11099), 'past.builtins.range', 'range', (['probs.shape[1]'], {}), '(probs.shape[1])\n', (11083, 11099), False, 'from past.builtins import range\n'), ((9671, 9692), 'past.builtins.range', 'range', (['sim_y.shape[1]'], {}), '(sim_y.shape[1])\n', (9676, 9692), False, 'from past.builtins import range\n'), ((11004, 11025), 'past.builtins.range', 'range', (['probs.shape[1]'], {}), '(probs.shape[1])\n', (11009, 11025), False, 'from past.builtins import range\n')]
"""A tool to convert annotation files created with CVAT into ground-truth style images for machine learning. The initial code was copied from: https://gist.github.com/cheind/9850e35bb08cfe12500942fb8b55531f originally written for a similar purpose for the tool BeaverDam (which produces json), and was then adapted for use with CVAT (which produces xml). """ import cv2 import xml.etree.ElementTree as ET import numpy as np from tqdm import tqdm # Create a list of BGR colours stored as 3-tuples of uint_8s colours = [ [255, 0, 0], # Blue [0, 255, 0], # Green [0, 0, 255], # Red [0, 255, 255], # Yellow [255, 255, 0], # Cyan [255, 0, 255], # Magenta [192, 192, 192], # Silver [0, 0, 128], # Maroon [0, 128, 128], # Olive [0, 165, 255], # Orange ] def draw_annotations(video, annotations, display=False): tree = ET.parse(args.ann) root = tree.getroot() # Create a list of 'track' nodes that are children of the root tracks = [child for child in root if child.tag == "track"] # Read the video in as a video object cap = cv2.VideoCapture(args.video) # Get a rough count of the number of frames in the video rough_frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Find the name/path of the video, without file type name_index = -1 while args.video[name_index] != ".": name_index -= 1 # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*"DIVX") framerate = cap.get(cv2.CAP_PROP_FPS) (width, height) = ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), ) out = cv2.VideoWriter( args.video[:name_index] + "_annotated.avi", fourcc, framerate, (width, height) ) for frame_count in tqdm(range(rough_frame_count)): # Read the next frame of the video ret, frame = cap.read() if not ret: # Video is done, so break out of the loop break # Loop over the track objects. For all that have an annotation for this frame, # draw a corresponding rectangle with a colour from the colours list for track in tracks: # Check that this track has any box nodes left if len(track) > 0: # Since the nodes are sorted by frame number, we only have to check the first one box = track[0] if int(box.attrib["frame"]) == frame_count: # Draw the rectangle described by this 'box' node on this frame # Cast the coordinates to floats, then to ints, # as the cv2.rectangle function cannot handle float pixel values # And int(str) cannot handle float strings x_tl = int(float(box.attrib["xtl"])) y_tl = int(float(box.attrib["ytl"])) x_br = int(float(box.attrib["xbr"])) y_br = int(float(box.attrib["ybr"])) cv2.rectangle( frame, (x_tl, y_tl), (x_br, y_br), colours[int(track.attrib["id"]) % len(colours)], 2, -1, ) # delete this box from the track,so we can keep # only checking the first box in the future track.remove(box) # Write the frame with boxes out.write(frame) # Display the resulting frame if display: cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break frame_count += 1 # Keep going, as the frame count is not necessarily accurate so we might not be done while True: # Read the next frame of the video ret, frame = cap.read() if not ret: # Video is done, so break out of the loop break # Loop over the track objects. For all that have an annotation for this frame, # draw a corresponding rectangle with a colour from the colours list for track in tracks: # Check that this track has any box nodes left if len(track) > 0: # Since the nodes are sorted by frame number, # we only have to check the first one box = track[0] if int(box.attrib["frame"]) == frame_count: # Draw the rectangle described by this 'box' node on this frame # Cast the coordinates to floats, then to ints, # as the cv2.rectangle function cannot handle float pixel values # And int(str) cannot handle float strings x_tl = int(float(box.attrib["xtl"])) y_tl = int(float(box.attrib["ytl"])) x_br = int(float(box.attrib["xbr"])) y_br = int(float(box.attrib["ybr"])) cv2.rectangle( frame, (x_tl, y_tl), (x_br, y_br), colours[int(track.attrib["id"]) % len(colours)], 2, -1, ) # delete this box from the track,so we can keep # only checking the first box in the future track.remove(box) # Write the frame with boxes out.write(frame) # Display the resulting frame if display: cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break frame_count += 1 # Release everything cap.release() out.release() cv2.destroyAllWindows() def draw_groundtruth(video, annotations, display=False): tree = ET.parse(args.ann) root = tree.getroot() # Create a list of 'track' nodes that are children of the root tracks = [child for child in root if child.tag == "track"] # Read the video in as a video object cap = cv2.VideoCapture(args.video) # Get a rough count of the number of frames in the video rough_frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Find the name/path of the video, without file type name_index = -1 while args.video[name_index] != ".": name_index -= 1 # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*"DIVX") framerate = cap.get(cv2.CAP_PROP_FPS) (width, height) = ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), ) out = cv2.VideoWriter( args.video[:name_index] + "_groundtruth.avi", fourcc, framerate, (width, height), 0, ) blank_frame = np.zeros((height, width), dtype=np.uint8) for frame_count in tqdm(range(rough_frame_count)): # Copy a new blank frame frame = np.copy(blank_frame) # Read the next frame but discard it, to check if the video is done yet ret, _ = cap.read() if not ret: # Video is done, so break out of the loop break # Loop over the track objects. For all that have an annotation for this frame, # draw a corresponding rectangle with a colour from the colours list for track in tracks: # Check that this track has any box nodes left if len(track) > 0: # Since the nodes are sorted by frame number, # we only have to check the first one box = track[0] if int(box.attrib["frame"]) == frame_count: # Draw the rectangle described by this 'box' node on this frame # Cast the coordinates to floats, then to ints, # as the cv2.rectangle function cannot handle float pixel values # And int(str) cannot handle float strings x_tl = int(float(box.attrib["xtl"])) y_tl = int(float(box.attrib["ytl"])) x_br = int(float(box.attrib["xbr"])) y_br = int(float(box.attrib["ybr"])) cv2.rectangle(frame, (x_tl, y_tl), (x_br, y_br), 255, cv2.FILLED) # delete this box from the track, so we can keep # only checking the first box in the future track.remove(box) # Write the frame with boxes # Convert to BGR so video can be properly saved # frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR) out.write(frame) # Display the resulting frame if display: cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break frame_count += 1 # Keep going, as the frame count is not necessarily accurate so we might not be done while True: # Copy a new blank frame frame = np.copy(blank_frame) # Read the next frame but discard it, to check if the video is done yet ret, og_frame = cap.read() if not ret: # Video is done, so break out of the loop break # Loop over the track objects. For all that have an annotation for this frame, # draw a corresponding rectangle with a colour from the colours list for track in tracks: # Check that this track has any box nodes left if len(track) > 0: # Since the nodes are sorted by frame number, we only have to check the first one box = track[0] if int(box.attrib["frame"]) == frame_count: # Draw the rectangle described by this 'box' node on this frame # Cast the coordinates to floats, then to ints, # as the cv2.rectangle function cannot handle float pixel values # And int(str) cannot handle float strings x_tl = int(float(box.attrib["xtl"])) y_tl = int(float(box.attrib["ytl"])) x_br = int(float(box.attrib["xbr"])) y_br = int(float(box.attrib["ybr"])) cv2.rectangle(frame, (x_tl, y_tl), (x_br, y_br), 255, cv2.FILLED) # delete this box from the track, so we can keep # only checking the first box in the future track.remove(box) # Write the frame with boxes out.write(frame) # Display the resulting frame if display: cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break frame_count += 1 # Release everything cap.release() out.release() cv2.destroyAllWindows() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Draw annotations, either on original videos or as ground-truth saliency maps" ) parser.add_argument( "--folder", "-f", dest="folder", help="Folder containing input files. Video and annotation file names must match exactly, with videos as .mp4 or .avi, and annotations as .xml", required=False, ) parser.add_argument( "--video", "-vid", dest="video", help="Input video file", required=False ) parser.add_argument( "--annotation", "-ann", dest="ann", help="Dense annotation file", required=False ) parser.add_argument( "--bounding_boxes", "-bb", dest="drawing_function", action="store_const", const=draw_annotations, default=draw_groundtruth, ) parser.add_argument("--verbose", "-v", dest="verbose", action="store_true") args = parser.parse_args() # Check that either folder was given, or if not then both video and ann was given if args.folder == None and (args.video == None or args.ann == None): print( "Error: invalid inputs given. Either -folder, or both -video and -ann must be specified." ) if args.folder != None: # Read all files in the folder and call the appropriate function on each # video/annotation pair found # TODO: implement pass else: # Draw bounding boxes on the original video, or ground-truth saliency maps, # depending on if -bb was specified args.drawing_function(args.video, args.ann, args.verbose)
[ "cv2.rectangle", "numpy.copy", "xml.etree.ElementTree.parse", "argparse.ArgumentParser", "cv2.VideoWriter", "cv2.imshow", "numpy.zeros", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.VideoWriter_fourcc", "cv2.waitKey" ]
[((873, 891), 'xml.etree.ElementTree.parse', 'ET.parse', (['args.ann'], {}), '(args.ann)\n', (881, 891), True, 'import xml.etree.ElementTree as ET\n'), ((1101, 1129), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.video'], {}), '(args.video)\n', (1117, 1129), False, 'import cv2\n'), ((1464, 1495), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'DIVX'"], {}), "(*'DIVX')\n", (1486, 1495), False, 'import cv2\n'), ((1675, 1774), 'cv2.VideoWriter', 'cv2.VideoWriter', (["(args.video[:name_index] + '_annotated.avi')", 'fourcc', 'framerate', '(width, height)'], {}), "(args.video[:name_index] + '_annotated.avi', fourcc,\n framerate, (width, height))\n", (1690, 1774), False, 'import cv2\n'), ((5807, 5830), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5828, 5830), False, 'import cv2\n'), ((5901, 5919), 'xml.etree.ElementTree.parse', 'ET.parse', (['args.ann'], {}), '(args.ann)\n', (5909, 5919), True, 'import xml.etree.ElementTree as ET\n'), ((6129, 6157), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.video'], {}), '(args.video)\n', (6145, 6157), False, 'import cv2\n'), ((6492, 6523), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'DIVX'"], {}), "(*'DIVX')\n", (6514, 6523), False, 'import cv2\n'), ((6703, 6807), 'cv2.VideoWriter', 'cv2.VideoWriter', (["(args.video[:name_index] + '_groundtruth.avi')", 'fourcc', 'framerate', '(width, height)', '(0)'], {}), "(args.video[:name_index] + '_groundtruth.avi', fourcc,\n framerate, (width, height), 0)\n", (6718, 6807), False, 'import cv2\n'), ((6870, 6911), 'numpy.zeros', 'np.zeros', (['(height, width)'], {'dtype': 'np.uint8'}), '((height, width), dtype=np.uint8)\n', (6878, 6911), True, 'import numpy as np\n'), ((10851, 10874), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (10872, 10874), False, 'import cv2\n'), ((10938, 11063), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Draw annotations, either on original videos or as ground-truth saliency maps"""'}), "(description=\n 'Draw annotations, either on original videos or as ground-truth saliency maps'\n )\n", (10961, 11063), False, 'import argparse\n'), ((7017, 7037), 'numpy.copy', 'np.copy', (['blank_frame'], {}), '(blank_frame)\n', (7024, 7037), True, 'import numpy as np\n'), ((9041, 9061), 'numpy.copy', 'np.copy', (['blank_frame'], {}), '(blank_frame)\n', (9048, 9061), True, 'import numpy as np\n'), ((3604, 3630), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'frame'], {}), "('frame', frame)\n", (3614, 3630), False, 'import cv2\n'), ((5616, 5642), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'frame'], {}), "('frame', frame)\n", (5626, 5642), False, 'import cv2\n'), ((8761, 8787), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'frame'], {}), "('frame', frame)\n", (8771, 8787), False, 'import cv2\n'), ((10660, 10686), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'frame'], {}), "('frame', frame)\n", (10670, 10686), False, 'import cv2\n'), ((3646, 3660), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3657, 3660), False, 'import cv2\n'), ((5658, 5672), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5669, 5672), False, 'import cv2\n'), ((8277, 8342), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x_tl, y_tl)', '(x_br, y_br)', '(255)', 'cv2.FILLED'], {}), '(frame, (x_tl, y_tl), (x_br, y_br), 255, cv2.FILLED)\n', (8290, 8342), False, 'import cv2\n'), ((8803, 8817), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (8814, 8817), False, 'import cv2\n'), ((10290, 10355), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x_tl, y_tl)', '(x_br, y_br)', '(255)', 'cv2.FILLED'], {}), '(frame, (x_tl, y_tl), (x_br, y_br), 255, cv2.FILLED)\n', (10303, 10355), False, 'import cv2\n'), ((10702, 10716), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (10713, 10716), False, 'import cv2\n')]
import os import tempfile import pytest import numpy as np try: import h5py except ImportError: h5py = None from msl.io import read, HDF5Writer, JSONWriter from msl.io.readers import HDF5Reader from helper import read_sample, roots_equal @pytest.mark.skipif(h5py is None, reason='h5py not installed') def test_read_write_convert(): root1 = read_sample('hdf5_sample.h5') # write as HDF5 then read writer = HDF5Writer(tempfile.gettempdir() + '/msl-hdf5-writer-temp.h5') writer.write(root=root1, mode='w') root2 = read(writer.file) assert root2.file == writer.file assert roots_equal(root1, root2) os.remove(writer.file) # convert to JSON then back to HDF5 json_writer = JSONWriter(tempfile.gettempdir() + '/msl-json-writer-temp.json') json_writer.write(root=root1, mode='w') root_json = read(json_writer.file) assert root_json.file == json_writer.file assert roots_equal(root1, root_json) os.remove(json_writer.file) writer2 = HDF5Writer(tempfile.gettempdir() + '/msl-hdf5-writer-temp2.h5') writer2.write(root=root_json, mode='w') root3 = read(writer2.file) assert root3.file == writer2.file assert roots_equal(root1, root3) os.remove(writer2.file) for root in [root1, root2, root3]: assert isinstance(root, HDF5Reader) for key, value in root.items(): k, v = str(key), str(value) k, v = repr(key), repr(value) order = ['D0', 'G0', 'G1A', 'D1', 'G1B', 'D2', 'D3', 'G2'] for i, key in enumerate(root.keys()): assert os.path.basename(key) == order[i] assert len(root.metadata) == 3 assert root.metadata['version_h5py'] == '2.8.0' assert root.metadata.version_hdf5 == '1.10.2' assert root.metadata['date_created'] == '2018-08-28 15:16:43.904990' assert 'D0' in root assert 'G0' in root d0 = root['D0'] assert root.is_dataset(d0) assert d0.shape == (10, 4) assert d0.dtype.str == '<f4' assert len(d0.metadata) == 2 assert d0.metadata['temperature'] == 21.2 assert d0.metadata.temperature_units == 'deg C' g0 = root.G0 assert root.is_group(g0) assert len(g0.metadata) == 1 assert all(g0.metadata['count'] == [1, 2, 3, 4, 5]) assert 'G1A' in g0 assert 'G1B' in g0 g1a = g0['G1A'] assert root.is_group(g1a) assert len(g1a.metadata) == 2 assert g1a.metadata['one'] == 1 assert g1a.metadata['a'] == 'A' g1b = g0['G1B'] assert root.is_group(g1b) assert len(g1b.metadata) == 2 assert g1b.metadata['one'] == 1 assert g1b.metadata['b'] == 'B' assert 'D1' in g0['G1A'] d1 = root.G0.G1A.D1 assert root.is_dataset(d1) assert len(d1.metadata) == 0 assert d1.shape == (3, 3) assert d1.dtype.str == '<f8' assert 'D2' in g1b assert 'D3' in g0.G1B assert 'G2' in root.G0.G1B d2 = g1b['D2'] assert root.is_dataset(d2) assert len(d2.metadata) == 2 assert d2.metadata['voltage'] == 132.4 assert d2.metadata['voltage_units'] == 'uV' assert d2.shape == (10,) assert d2.dtype.str == '<i4' assert d2[3] == 90 d3 = g1b.D3 assert root.is_dataset(d3) assert len(d3.metadata) == 0 assert d3.shape == (10,) assert d3.dtype.str == '<i4' assert d3[7] == 51 g2 = root.G0.G1B.G2 assert root.is_group(g2) assert len(g2.metadata) == 1 assert g2.metadata['hello'] == 'world' @pytest.mark.skipif(h5py is None, reason='h5py not installed') def test_raises(): root = read_sample('hdf5_sample.h5') writer = HDF5Writer() assert writer.file is None # no file was specified with pytest.raises(ValueError, match=r'must specify a file'): writer.write(root=root) # root must be a Root object with pytest.raises(TypeError, match=r'Root'): writer.write(file='whatever', root=list(root.datasets())[0]) with pytest.raises(TypeError, match=r'Root'): writer.write(file='whatever', root=list(root.groups())[0]) with pytest.raises(TypeError, match=r'Root'): writer.write(file='whatever', root='Root') # cannot overwrite a file by default file = tempfile.gettempdir() + '/msl-hdf5-writer-temp.h5' with open(file, mode='wt') as fp: fp.write('Hi') with pytest.raises(OSError, match=r'File exists'): writer.write(file=file, root=root) with pytest.raises(OSError, match=r'File exists'): writer.write(file=file, root=root, mode='x') with pytest.raises(OSError, match=r'File exists'): writer.write(file=file, root=root, mode='w-') # invalid mode for m in ['r', 'b', 'w+b']: with pytest.raises(ValueError, match=r'Invalid mode'): writer.write(file=file, root=root, mode=m) # r+ is a valid mode, but the file must already exist with pytest.raises(OSError, match=r'File does not exist'): writer.write(file='does_not.exist', root=root, mode='r+') # by specifying the proper mode one can overwrite a file writer.write(file=file, root=root, mode='w') assert roots_equal(root, read(file)) writer.write(file=file, root=root, mode='a') assert roots_equal(root, read(file)) writer.write(file=file, root=root, mode='r+') assert roots_equal(root, read(file)) os.remove(file) @pytest.mark.skipif(h5py is None, reason='h5py not installed') def test_numpy_unicode_dtype(): writer = HDF5Writer() writer.add_metadata(wide_chars=np.array(['1', '-4e+99', 'True'], dtype='<U6')) writer.create_dataset('wide_chars', data=np.random.random(100).reshape(4, 25).astype('<U32')) file = tempfile.gettempdir() + '/msl-hdf5-writer-temp.h5' writer.save(file, mode='w') root = read(file) assert np.array_equal(root.metadata.wide_chars, writer.metadata.wide_chars) # the following array_equal assertion fails so we iterate over all elements instead # assert np.array_equal(root.wide_chars.astype('<U32'), writer.wide_chars) for a, b in zip(root.wide_chars.astype('<U32').flatten(), writer.wide_chars.flatten()): assert a == b os.remove(file)
[ "helper.read_sample", "numpy.random.random", "msl.io.read", "msl.io.HDF5Writer", "numpy.array", "numpy.array_equal", "pytest.raises", "tempfile.gettempdir", "pytest.mark.skipif", "os.path.basename", "helper.roots_equal", "os.remove" ]
[((252, 313), 'pytest.mark.skipif', 'pytest.mark.skipif', (['(h5py is None)'], {'reason': '"""h5py not installed"""'}), "(h5py is None, reason='h5py not installed')\n", (270, 313), False, 'import pytest\n'), ((3668, 3729), 'pytest.mark.skipif', 'pytest.mark.skipif', (['(h5py is None)'], {'reason': '"""h5py not installed"""'}), "(h5py is None, reason='h5py not installed')\n", (3686, 3729), False, 'import pytest\n'), ((5540, 5601), 'pytest.mark.skipif', 'pytest.mark.skipif', (['(h5py is None)'], {'reason': '"""h5py not installed"""'}), "(h5py is None, reason='h5py not installed')\n", (5558, 5601), False, 'import pytest\n'), ((357, 386), 'helper.read_sample', 'read_sample', (['"""hdf5_sample.h5"""'], {}), "('hdf5_sample.h5')\n", (368, 386), False, 'from helper import read_sample, roots_equal\n'), ((545, 562), 'msl.io.read', 'read', (['writer.file'], {}), '(writer.file)\n', (549, 562), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((611, 636), 'helper.roots_equal', 'roots_equal', (['root1', 'root2'], {}), '(root1, root2)\n', (622, 636), False, 'from helper import read_sample, roots_equal\n'), ((641, 663), 'os.remove', 'os.remove', (['writer.file'], {}), '(writer.file)\n', (650, 663), False, 'import os\n'), ((848, 870), 'msl.io.read', 'read', (['json_writer.file'], {}), '(json_writer.file)\n', (852, 870), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((928, 957), 'helper.roots_equal', 'roots_equal', (['root1', 'root_json'], {}), '(root1, root_json)\n', (939, 957), False, 'from helper import read_sample, roots_equal\n'), ((962, 989), 'os.remove', 'os.remove', (['json_writer.file'], {}), '(json_writer.file)\n', (971, 989), False, 'import os\n'), ((1124, 1142), 'msl.io.read', 'read', (['writer2.file'], {}), '(writer2.file)\n', (1128, 1142), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((1192, 1217), 'helper.roots_equal', 'roots_equal', (['root1', 'root3'], {}), '(root1, root3)\n', (1203, 1217), False, 'from helper import read_sample, roots_equal\n'), ((1222, 1245), 'os.remove', 'os.remove', (['writer2.file'], {}), '(writer2.file)\n', (1231, 1245), False, 'import os\n'), ((3760, 3789), 'helper.read_sample', 'read_sample', (['"""hdf5_sample.h5"""'], {}), "('hdf5_sample.h5')\n", (3771, 3789), False, 'from helper import read_sample, roots_equal\n'), ((3804, 3816), 'msl.io.HDF5Writer', 'HDF5Writer', ([], {}), '()\n', (3814, 3816), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5521, 5536), 'os.remove', 'os.remove', (['file'], {}), '(file)\n', (5530, 5536), False, 'import os\n'), ((5647, 5659), 'msl.io.HDF5Writer', 'HDF5Writer', ([], {}), '()\n', (5657, 5659), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5948, 5958), 'msl.io.read', 'read', (['file'], {}), '(file)\n', (5952, 5958), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5970, 6038), 'numpy.array_equal', 'np.array_equal', (['root.metadata.wide_chars', 'writer.metadata.wide_chars'], {}), '(root.metadata.wide_chars, writer.metadata.wide_chars)\n', (5984, 6038), True, 'import numpy as np\n'), ((6326, 6341), 'os.remove', 'os.remove', (['file'], {}), '(file)\n', (6335, 6341), False, 'import os\n'), ((3886, 3940), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""must specify a file"""'}), "(ValueError, match='must specify a file')\n", (3899, 3940), False, 'import pytest\n'), ((4018, 4056), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Root"""'}), "(TypeError, match='Root')\n", (4031, 4056), False, 'import pytest\n'), ((4137, 4175), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Root"""'}), "(TypeError, match='Root')\n", (4150, 4175), False, 'import pytest\n'), ((4254, 4292), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Root"""'}), "(TypeError, match='Root')\n", (4267, 4292), False, 'import pytest\n'), ((4399, 4420), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (4418, 4420), False, 'import tempfile\n'), ((4520, 4563), 'pytest.raises', 'pytest.raises', (['OSError'], {'match': '"""File exists"""'}), "(OSError, match='File exists')\n", (4533, 4563), False, 'import pytest\n'), ((4618, 4661), 'pytest.raises', 'pytest.raises', (['OSError'], {'match': '"""File exists"""'}), "(OSError, match='File exists')\n", (4631, 4661), False, 'import pytest\n'), ((4726, 4769), 'pytest.raises', 'pytest.raises', (['OSError'], {'match': '"""File exists"""'}), "(OSError, match='File exists')\n", (4739, 4769), False, 'import pytest\n'), ((5064, 5115), 'pytest.raises', 'pytest.raises', (['OSError'], {'match': '"""File does not exist"""'}), "(OSError, match='File does not exist')\n", (5077, 5115), False, 'import pytest\n'), ((5324, 5334), 'msl.io.read', 'read', (['file'], {}), '(file)\n', (5328, 5334), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5414, 5424), 'msl.io.read', 'read', (['file'], {}), '(file)\n', (5418, 5424), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5505, 5515), 'msl.io.read', 'read', (['file'], {}), '(file)\n', (5509, 5515), False, 'from msl.io import read, HDF5Writer, JSONWriter\n'), ((5853, 5874), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (5872, 5874), False, 'import tempfile\n'), ((442, 463), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (461, 463), False, 'import tempfile\n'), ((734, 755), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (753, 755), False, 'import tempfile\n'), ((1015, 1036), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (1034, 1036), False, 'import tempfile\n'), ((4891, 4938), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Invalid mode"""'}), "(ValueError, match='Invalid mode')\n", (4904, 4938), False, 'import pytest\n'), ((5695, 5741), 'numpy.array', 'np.array', (["['1', '-4e+99', 'True']"], {'dtype': '"""<U6"""'}), "(['1', '-4e+99', 'True'], dtype='<U6')\n", (5703, 5741), True, 'import numpy as np\n'), ((1586, 1607), 'os.path.basename', 'os.path.basename', (['key'], {}), '(key)\n', (1602, 1607), False, 'import os\n'), ((5788, 5809), 'numpy.random.random', 'np.random.random', (['(100)'], {}), '(100)\n', (5804, 5809), True, 'import numpy as np\n')]
import numpy as np from ringity.classes.diagram import PersistenceDiagram def read_pdiagram(fname, **kwargs): """ Wrapper for numpy.genfromtxt. """ return PersistenceDiagram(np.genfromtxt(fname, **kwargs)) def write_pdiagram(dgm, fname, **kwargs): """ Wrapper for numpy.savetxt. """ array = np.array(dgm) np.savetxt(fname, array, **kwargs)
[ "numpy.array", "numpy.genfromtxt", "numpy.savetxt" ]
[((329, 342), 'numpy.array', 'np.array', (['dgm'], {}), '(dgm)\n', (337, 342), True, 'import numpy as np\n'), ((347, 381), 'numpy.savetxt', 'np.savetxt', (['fname', 'array'], {}), '(fname, array, **kwargs)\n', (357, 381), True, 'import numpy as np\n'), ((191, 221), 'numpy.genfromtxt', 'np.genfromtxt', (['fname'], {}), '(fname, **kwargs)\n', (204, 221), True, 'import numpy as np\n')]
import functools import os from argparse import ArgumentParser import networkx import numpy as np from visualize import heatmap class MatchingClustering(object): def __init__(self, n_clusters): self.n_clusters = n_clusters def fit_predict(self, X): total = len(X) grouping = [{i} for i in range(total)] while len(grouping) > self.n_clusters: gx = networkx.Graph() gx.add_nodes_from(list(range(len(grouping)))) for i in range(len(grouping)): for j in range(i + 1, len(grouping)): w = sum([X[x][y] + 1 for x in grouping[i] for y in grouping[j]]) gx.add_edge(i, j, weight=w + 1) ret = networkx.algorithms.max_weight_matching(gx, maxcardinality=True) ret = sorted(list(ret)) new_grouping = [grouping[a] | grouping[b] for a, b in ret] grouping = new_grouping if len(grouping) != self.n_clusters: raise ValueError("Cannot satisfy need: splitting to {} clusters.".format(self.n_clusters)) ret = np.zeros(total, dtype=np.int) for i, g in enumerate(grouping): ret[list(g)] = i return ret def main(): parser = ArgumentParser() parser.add_argument("dir", type=str) parser.add_argument("--num_classes", default=2, type=int) args = parser.parse_args() cor_matrix = np.loadtxt(os.path.join(args.dir, "corr_heatmap.txt")) grouping = np.loadtxt(os.path.join(args.dir, "group_info.txt"), dtype=np.int) group_number = np.max(grouping) + 1 result_grouping = np.zeros(len(grouping), dtype=np.int) base = 0 for i in sorted(list(range(group_number)), key=lambda d: np.sum(grouping == d)): cur_index = np.where(grouping == i)[0] cor_matrix_grp = cor_matrix[cur_index][:, cur_index] # print(cor_matrix_grp) model = MatchingClustering(n_clusters=args.num_classes) if len(cur_index) < args.num_classes: result_grouping[cur_index] = np.arange(len(cur_index)) + base print("Group {}: Too small") base += len(cur_index) else: predict = model.fit_predict(1 - cor_matrix_grp) print("Group {}: {}".format(i, predict.tolist())) for j in range(args.num_classes): result_grouping[cur_index[predict == j]] = base + j base += args.num_classes heatmap(cor_matrix_grp, filepath=os.path.join("debug", "heatmap_{}".format(i))) print(result_grouping.tolist()) if __name__ == "__main__": main()
[ "networkx.algorithms.max_weight_matching", "argparse.ArgumentParser", "numpy.where", "os.path.join", "networkx.Graph", "numpy.max", "numpy.sum", "numpy.zeros" ]
[((1247, 1263), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (1261, 1263), False, 'from argparse import ArgumentParser\n'), ((1101, 1130), 'numpy.zeros', 'np.zeros', (['total'], {'dtype': 'np.int'}), '(total, dtype=np.int)\n', (1109, 1130), True, 'import numpy as np\n'), ((1428, 1470), 'os.path.join', 'os.path.join', (['args.dir', '"""corr_heatmap.txt"""'], {}), "(args.dir, 'corr_heatmap.txt')\n", (1440, 1470), False, 'import os\n'), ((1498, 1538), 'os.path.join', 'os.path.join', (['args.dir', '"""group_info.txt"""'], {}), "(args.dir, 'group_info.txt')\n", (1510, 1538), False, 'import os\n'), ((1573, 1589), 'numpy.max', 'np.max', (['grouping'], {}), '(grouping)\n', (1579, 1589), True, 'import numpy as np\n'), ((404, 420), 'networkx.Graph', 'networkx.Graph', ([], {}), '()\n', (418, 420), False, 'import networkx\n'), ((731, 795), 'networkx.algorithms.max_weight_matching', 'networkx.algorithms.max_weight_matching', (['gx'], {'maxcardinality': '(True)'}), '(gx, maxcardinality=True)\n', (770, 795), False, 'import networkx\n'), ((1773, 1796), 'numpy.where', 'np.where', (['(grouping == i)'], {}), '(grouping == i)\n', (1781, 1796), True, 'import numpy as np\n'), ((1729, 1750), 'numpy.sum', 'np.sum', (['(grouping == d)'], {}), '(grouping == d)\n', (1735, 1750), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 27 14:39:08 2020 @author: ravi """ import scipy.io as scio import scipy.io.wavfile as scwav import numpy as np import joblib import pyworld as pw import os import warnings warnings.filterwarnings('ignore') from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor from functools import partial from glob import glob from extract_fold_data_hparams import Hparams from feat_utils import normalize_wav, preprocess_contour dict_target_emo = {'neutral_angry':['angry', 'neu-ang'], \ 'neutral_happy':['happy', 'neu-hap'], \ 'neutral_sad':['sad', 'neu-sad']} def _process_wavs(wav_src, wav_tar, args): """ Utterance level features for context expansion """ utt_f0_src = list() utt_f0_tar = list() utt_ec_src = list() utt_ec_tar = list() utt_mfc_src = list() utt_mfc_tar = list() try: src_wav = scwav.read(wav_src) src = np.asarray(src_wav[1], np.float64) tar_wav = scwav.read(wav_tar) tar = np.asarray(tar_wav[1], np.float64) src = normalize_wav(src, floor=-1, ceil=1) tar = normalize_wav(tar, floor=-1, ceil=1) f0_src, t_src = pw.harvest(src, args.fs, frame_period=int(1000*args.win_len)) src_straight = pw.cheaptrick(src, f0_src, t_src, args.fs) f0_tar, t_tar = pw.harvest(tar, args.fs,frame_period=int(1000*args.win_len)) tar_straight = pw.cheaptrick(tar, f0_tar, t_tar, args.fs) src_mfc = pw.code_spectral_envelope(src_straight, args.fs, args.n_mels) tar_mfc = pw.code_spectral_envelope(tar_straight, args.fs, args.n_mels) ec_src = np.sum(src_mfc, axis=1) ec_tar = np.sum(tar_mfc, axis=1) f0_src = preprocess_contour(f0_src) f0_tar = preprocess_contour(f0_tar) ec_src = preprocess_contour(ec_src) ec_tar = preprocess_contour(ec_tar) f0_src = f0_src.reshape(-1,1) f0_tar = f0_tar.reshape(-1,1) ec_src = ec_src.reshape(-1,1) ec_tar = ec_tar.reshape(-1,1) min_length = min([len(f0_src), len(f0_tar)]) if min_length<args.frame_len: return None, None, None, None, None, None, None else: for sample in range(args.n_samplings): start = np.random.randint(0, min_length-args.frame_len+1) end = start + args.frame_len utt_f0_src.append(f0_src[start:end,:]) utt_f0_tar.append(f0_tar[start:end,:]) utt_ec_src.append(ec_src[start:end,:]) utt_ec_tar.append(ec_tar[start:end,:]) utt_mfc_src.append(src_mfc[start:end,:]) utt_mfc_tar.append(tar_mfc[start:end,:]) return utt_mfc_src, utt_mfc_tar, utt_f0_src, utt_f0_tar, \ utt_ec_src, utt_ec_tar, int(os.path.basename(wav_src)[:-4]) except Exception as ex: template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message) return None, None, None, None, None, None, None def extract_features(args): target = dict_target_emo[args.emo_pair][0] speaker_file_info = joblib.load('/home/ravi/Downloads/Emo-Conv/speaker_file_info.pkl') speaker_info = speaker_file_info[args.emo_pair] test_speaker_female = speaker_info[args.fold - 1] test_speaker_male = speaker_info[5 + args.fold - 1] test_file_idx = [i for i in range(test_speaker_female[0], test_speaker_female[1]+1)] test_file_idx += [i for i in range(test_speaker_male[0], test_speaker_male[1]+1)] src_files = sorted(glob(os.path.join(args.data_folder, 'neutral', '*.wav'))) tar_files = sorted(glob(os.path.join(args.data_folder, target, '*.wav'))) train_f0_src = list() train_f0_tar = list() train_ec_src = list() train_ec_tar = list() train_mfc_src = list() train_mfc_tar = list() valid_f0_src = list() valid_f0_tar = list() valid_ec_src = list() valid_ec_tar = list() valid_mfc_src = list() valid_mfc_tar = list() test_f0_src = list() test_f0_tar = list() test_ec_src = list() test_ec_tar = list() test_mfc_src = list() test_mfc_tar = list() train_files = list() valid_files = list() test_files = list() executor = ProcessPoolExecutor(max_workers=6) futures = [] for (s,t) in zip(src_files, tar_files): print("Processing: {0}".format(s)) futures.append(executor.submit(partial(_process_wavs, s, t, args=args))) results = [future.result() for future in tqdm(futures)] for i in range(len(results)): result = results[i] mfc_src = result[0] mfc_tar = result[1] f0_src = result[2] f0_tar = result[3] ec_src = result[4] ec_tar = result[5] file_idx= result[6] # mfc_src, mfc_tar, f0_src, \ # f0_tar, ec_src, ec_tar, file_idx = _process_wavs(s,t,args) if mfc_src: if file_idx in test_file_idx: test_mfc_src.append(mfc_src) test_mfc_tar.append(mfc_tar) test_f0_src.append(f0_src) test_f0_tar.append(f0_tar) test_ec_src.append(ec_src) test_ec_tar.append(ec_tar) test_files.append(int(os.path.basename(s)[:-4])) else: if np.random.rand()<args.eval_size: valid_mfc_src.append(mfc_src) valid_mfc_tar.append(mfc_tar) valid_f0_src.append(f0_src) valid_f0_tar.append(f0_tar) valid_ec_src.append(ec_src) valid_ec_tar.append(ec_tar) valid_files.append(int(os.path.basename(s)[:-4])) else: train_mfc_src.append(mfc_src) train_mfc_tar.append(mfc_tar) train_f0_src.append(f0_src) train_f0_tar.append(f0_tar) train_ec_src.append(ec_src) train_ec_tar.append(ec_tar) train_files.append(int(os.path.basename(s)[:-4])) data_dict = { 'train_mfc_feat_src':np.asarray(train_mfc_src, np.float32), 'train_mfc_feat_tar':np.asarray(train_mfc_tar, np.float32), 'train_f0_feat_src':np.asarray(train_f0_src, np.float32), 'train_f0_feat_tar':np.asarray(train_f0_tar, np.float32), 'train_ec_feat_src':np.asarray(train_ec_src, np.float32), 'train_ec_feat_tar':np.asarray(train_ec_tar, np.float32), 'valid_mfc_feat_src':np.asarray(valid_mfc_src, np.float32), 'valid_mfc_feat_tar':np.asarray(valid_mfc_tar, np.float32), 'valid_f0_feat_src':np.asarray(valid_f0_src, np.float32), 'valid_f0_feat_tar':np.asarray(valid_f0_tar, np.float32), 'valid_ec_feat_src':np.asarray(valid_ec_src, np.float32), 'valid_ec_feat_tar':np.asarray(valid_ec_tar, np.float32), 'test_mfc_feat_src':np.asarray(test_mfc_src, np.float32), 'test_mfc_feat_tar':np.asarray(test_mfc_tar, np.float32), 'test_f0_feat_src':np.asarray(test_f0_src, np.float32), 'test_f0_feat_tar':np.asarray(test_f0_tar, np.float32), 'test_ec_feat_src':np.asarray(test_ec_src, np.float32), 'test_ec_feat_tar':np.asarray(test_ec_tar, np.float32), 'train_files':np.reshape(np.array(train_files), (-1,1)), 'valid_files':np.reshape(np.array(valid_files), (-1,1)), 'test_files':np.reshape(np.array(test_files), (-1,1)) } return data_dict if __name__ == '__main__': hparams = Hparams() parser = hparams.parser hp = parser.parse_args() hp.data_folder = '/home/ravi/Downloads/Emo-Conv/neutral-sad/all_above_0.5' hp.emo_pair = 'neutral_sad' for i in range(1, 6): hp.fold = i data_dict = extract_features(hp) scio.savemat('/home/ravi/Desktop/neu-sad_fold_{0}.mat'.format(i), data_dict) del data_dict
[ "feat_utils.preprocess_contour", "numpy.random.rand", "pyworld.code_spectral_envelope", "pyworld.cheaptrick", "tqdm.tqdm", "numpy.asarray", "extract_fold_data_hparams.Hparams", "os.path.join", "numpy.sum", "numpy.array", "numpy.random.randint", "scipy.io.wavfile.read", "functools.partial", "concurrent.futures.ProcessPoolExecutor", "joblib.load", "os.path.basename", "feat_utils.normalize_wav", "warnings.filterwarnings" ]
[((244, 277), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (267, 277), False, 'import warnings\n'), ((3408, 3474), 'joblib.load', 'joblib.load', (['"""/home/ravi/Downloads/Emo-Conv/speaker_file_info.pkl"""'], {}), "('/home/ravi/Downloads/Emo-Conv/speaker_file_info.pkl')\n", (3419, 3474), False, 'import joblib\n'), ((4563, 4597), 'concurrent.futures.ProcessPoolExecutor', 'ProcessPoolExecutor', ([], {'max_workers': '(6)'}), '(max_workers=6)\n', (4582, 4597), False, 'from concurrent.futures import ProcessPoolExecutor\n'), ((8058, 8067), 'extract_fold_data_hparams.Hparams', 'Hparams', ([], {}), '()\n', (8065, 8067), False, 'from extract_fold_data_hparams import Hparams\n'), ((1018, 1037), 'scipy.io.wavfile.read', 'scwav.read', (['wav_src'], {}), '(wav_src)\n', (1028, 1037), True, 'import scipy.io.wavfile as scwav\n'), ((1052, 1086), 'numpy.asarray', 'np.asarray', (['src_wav[1]', 'np.float64'], {}), '(src_wav[1], np.float64)\n', (1062, 1086), True, 'import numpy as np\n'), ((1106, 1125), 'scipy.io.wavfile.read', 'scwav.read', (['wav_tar'], {}), '(wav_tar)\n', (1116, 1125), True, 'import scipy.io.wavfile as scwav\n'), ((1140, 1174), 'numpy.asarray', 'np.asarray', (['tar_wav[1]', 'np.float64'], {}), '(tar_wav[1], np.float64)\n', (1150, 1174), True, 'import numpy as np\n'), ((1198, 1234), 'feat_utils.normalize_wav', 'normalize_wav', (['src'], {'floor': '(-1)', 'ceil': '(1)'}), '(src, floor=-1, ceil=1)\n', (1211, 1234), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((1249, 1285), 'feat_utils.normalize_wav', 'normalize_wav', (['tar'], {'floor': '(-1)', 'ceil': '(1)'}), '(tar, floor=-1, ceil=1)\n', (1262, 1285), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((1401, 1443), 'pyworld.cheaptrick', 'pw.cheaptrick', (['src', 'f0_src', 't_src', 'args.fs'], {}), '(src, f0_src, t_src, args.fs)\n', (1414, 1443), True, 'import pyworld as pw\n'), ((1558, 1600), 'pyworld.cheaptrick', 'pw.cheaptrick', (['tar', 'f0_tar', 't_tar', 'args.fs'], {}), '(tar, f0_tar, t_tar, args.fs)\n', (1571, 1600), True, 'import pyworld as pw\n'), ((1620, 1681), 'pyworld.code_spectral_envelope', 'pw.code_spectral_envelope', (['src_straight', 'args.fs', 'args.n_mels'], {}), '(src_straight, args.fs, args.n_mels)\n', (1645, 1681), True, 'import pyworld as pw\n'), ((1700, 1761), 'pyworld.code_spectral_envelope', 'pw.code_spectral_envelope', (['tar_straight', 'args.fs', 'args.n_mels'], {}), '(tar_straight, args.fs, args.n_mels)\n', (1725, 1761), True, 'import pyworld as pw\n'), ((1780, 1803), 'numpy.sum', 'np.sum', (['src_mfc'], {'axis': '(1)'}), '(src_mfc, axis=1)\n', (1786, 1803), True, 'import numpy as np\n'), ((1821, 1844), 'numpy.sum', 'np.sum', (['tar_mfc'], {'axis': '(1)'}), '(tar_mfc, axis=1)\n', (1827, 1844), True, 'import numpy as np\n'), ((1871, 1897), 'feat_utils.preprocess_contour', 'preprocess_contour', (['f0_src'], {}), '(f0_src)\n', (1889, 1897), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((1915, 1941), 'feat_utils.preprocess_contour', 'preprocess_contour', (['f0_tar'], {}), '(f0_tar)\n', (1933, 1941), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((1960, 1986), 'feat_utils.preprocess_contour', 'preprocess_contour', (['ec_src'], {}), '(ec_src)\n', (1978, 1986), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((2004, 2030), 'feat_utils.preprocess_contour', 'preprocess_contour', (['ec_tar'], {}), '(ec_tar)\n', (2022, 2030), False, 'from feat_utils import normalize_wav, preprocess_contour\n'), ((6544, 6581), 'numpy.asarray', 'np.asarray', (['train_mfc_src', 'np.float32'], {}), '(train_mfc_src, np.float32)\n', (6554, 6581), True, 'import numpy as np\n'), ((6617, 6654), 'numpy.asarray', 'np.asarray', (['train_mfc_tar', 'np.float32'], {}), '(train_mfc_tar, np.float32)\n', (6627, 6654), True, 'import numpy as np\n'), ((6688, 6724), 'numpy.asarray', 'np.asarray', (['train_f0_src', 'np.float32'], {}), '(train_f0_src, np.float32)\n', (6698, 6724), True, 'import numpy as np\n'), ((6758, 6794), 'numpy.asarray', 'np.asarray', (['train_f0_tar', 'np.float32'], {}), '(train_f0_tar, np.float32)\n', (6768, 6794), True, 'import numpy as np\n'), ((6828, 6864), 'numpy.asarray', 'np.asarray', (['train_ec_src', 'np.float32'], {}), '(train_ec_src, np.float32)\n', (6838, 6864), True, 'import numpy as np\n'), ((6898, 6934), 'numpy.asarray', 'np.asarray', (['train_ec_tar', 'np.float32'], {}), '(train_ec_tar, np.float32)\n', (6908, 6934), True, 'import numpy as np\n'), ((6969, 7006), 'numpy.asarray', 'np.asarray', (['valid_mfc_src', 'np.float32'], {}), '(valid_mfc_src, np.float32)\n', (6979, 7006), True, 'import numpy as np\n'), ((7042, 7079), 'numpy.asarray', 'np.asarray', (['valid_mfc_tar', 'np.float32'], {}), '(valid_mfc_tar, np.float32)\n', (7052, 7079), True, 'import numpy as np\n'), ((7113, 7149), 'numpy.asarray', 'np.asarray', (['valid_f0_src', 'np.float32'], {}), '(valid_f0_src, np.float32)\n', (7123, 7149), True, 'import numpy as np\n'), ((7183, 7219), 'numpy.asarray', 'np.asarray', (['valid_f0_tar', 'np.float32'], {}), '(valid_f0_tar, np.float32)\n', (7193, 7219), True, 'import numpy as np\n'), ((7253, 7289), 'numpy.asarray', 'np.asarray', (['valid_ec_src', 'np.float32'], {}), '(valid_ec_src, np.float32)\n', (7263, 7289), True, 'import numpy as np\n'), ((7323, 7359), 'numpy.asarray', 'np.asarray', (['valid_ec_tar', 'np.float32'], {}), '(valid_ec_tar, np.float32)\n', (7333, 7359), True, 'import numpy as np\n'), ((7393, 7429), 'numpy.asarray', 'np.asarray', (['test_mfc_src', 'np.float32'], {}), '(test_mfc_src, np.float32)\n', (7403, 7429), True, 'import numpy as np\n'), ((7464, 7500), 'numpy.asarray', 'np.asarray', (['test_mfc_tar', 'np.float32'], {}), '(test_mfc_tar, np.float32)\n', (7474, 7500), True, 'import numpy as np\n'), ((7533, 7568), 'numpy.asarray', 'np.asarray', (['test_f0_src', 'np.float32'], {}), '(test_f0_src, np.float32)\n', (7543, 7568), True, 'import numpy as np\n'), ((7601, 7636), 'numpy.asarray', 'np.asarray', (['test_f0_tar', 'np.float32'], {}), '(test_f0_tar, np.float32)\n', (7611, 7636), True, 'import numpy as np\n'), ((7669, 7704), 'numpy.asarray', 'np.asarray', (['test_ec_src', 'np.float32'], {}), '(test_ec_src, np.float32)\n', (7679, 7704), True, 'import numpy as np\n'), ((7737, 7772), 'numpy.asarray', 'np.asarray', (['test_ec_tar', 'np.float32'], {}), '(test_ec_tar, np.float32)\n', (7747, 7772), True, 'import numpy as np\n'), ((3850, 3900), 'os.path.join', 'os.path.join', (['args.data_folder', '"""neutral"""', '"""*.wav"""'], {}), "(args.data_folder, 'neutral', '*.wav')\n", (3862, 3900), False, 'import os\n'), ((3931, 3978), 'os.path.join', 'os.path.join', (['args.data_folder', 'target', '"""*.wav"""'], {}), "(args.data_folder, target, '*.wav')\n", (3943, 3978), False, 'import os\n'), ((4886, 4899), 'tqdm.tqdm', 'tqdm', (['futures'], {}), '(futures)\n', (4890, 4899), False, 'from tqdm import tqdm\n'), ((7811, 7832), 'numpy.array', 'np.array', (['train_files'], {}), '(train_files)\n', (7819, 7832), True, 'import numpy as np\n'), ((7881, 7902), 'numpy.array', 'np.array', (['valid_files'], {}), '(valid_files)\n', (7889, 7902), True, 'import numpy as np\n'), ((7950, 7970), 'numpy.array', 'np.array', (['test_files'], {}), '(test_files)\n', (7958, 7970), True, 'import numpy as np\n'), ((2434, 2487), 'numpy.random.randint', 'np.random.randint', (['(0)', '(min_length - args.frame_len + 1)'], {}), '(0, min_length - args.frame_len + 1)\n', (2451, 2487), True, 'import numpy as np\n'), ((4746, 4785), 'functools.partial', 'partial', (['_process_wavs', 's', 't'], {'args': 'args'}), '(_process_wavs, s, t, args=args)\n', (4753, 4785), False, 'from functools import partial\n'), ((3030, 3055), 'os.path.basename', 'os.path.basename', (['wav_src'], {}), '(wav_src)\n', (3046, 3055), False, 'import os\n'), ((5709, 5725), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (5723, 5725), True, 'import numpy as np\n'), ((5645, 5664), 'os.path.basename', 'os.path.basename', (['s'], {}), '(s)\n', (5661, 5664), False, 'import os\n'), ((6077, 6096), 'os.path.basename', 'os.path.basename', (['s'], {}), '(s)\n', (6093, 6096), False, 'import os\n'), ((6461, 6480), 'os.path.basename', 'os.path.basename', (['s'], {}), '(s)\n', (6477, 6480), False, 'import os\n')]
import numpy as np import cv2 import errno # set environment variable import os os.environ['OPENCV_IO_ENABLE_JASPER']= 'TRUE' # allows JPEG2000 format # path of this file det_path = os.path.split(os.path.abspath(__file__))[0] + '/' class DimensionError(Exception): """ raised when the image does not meet the required maximum dimensions of 1024 x 1024. """ def __init__(self, h, w): message = "Image is too big " + str((h, w)) message += "; max allowed size is (1024, 1024)" super(DimensionError, self).__init__(message) def detect_largest_face(in_path, out_path=None, min_conf=0.8): """ Detects largest face using the DNN face detection algorithm from cv2 library. Args: in_path (str): path of the input image file out_path (str, optional): path of the cropped image file. Defaults to None min_conf (float, optional): threshold confidence to detect face. Defaults to 0.8 Returns: bounding_box: an 2x2 array of two (x,y) coordinates for top left and bottom right of the bounding box """ # check input file path if not os.path.isfile(in_path): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), in_path) # check output file path if out_path: try: with open(out_path, 'w') as f: pass except OSError: raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), out_path) # read file img = cv2.imread(in_path) # check image dimensions h, w = img.shape[:2] if h > 1024 or w > 1024: raise DimensionError(h, w) # detect faces using DNN algorithm from cv2 net = cv2.dnn.readNetFromCaffe( det_path + "models/deploy.prototxt", det_path + "models/res10_300x300_ssd_iter_140000.caffemodel" ) rgb_mean = np.mean(img, axis=(0, 1)) # mean rgb values to remove effects of illumination blob = cv2.dnn.blobFromImage(cv2.resize(img, (300,300)), 1.0, (300, 300), rgb_mean) net.setInput(blob) faces = net.forward() # get the most confident faces conf_faces = np.array(list(filter(lambda x: x[2] > min_conf, faces[0, 0]))) # check if any faces exist assert len(conf_faces) > 0, "No faces found!" # get the largest face first_face = 0 # let first face be biggest face first_box = conf_faces[first_face, 3:7] * np.array([w, h, w, h]) sx, sy, ex, ey = first_box.astype("int") for i in range(1, conf_faces.shape[0]): box = conf_faces[i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") if (endX - startX)*(endY - startY) > (ex - sx)*(ey - sy): sx, sy, ex, ey = startX, startY, endX, endY # save the crop if out_path: largest_crop = img[sy:ey, sx:ex] saved_file = cv2.imwrite(out_path, largest_crop) # return the largest bounding box bounding_box = [(sx, sy), (ex, ey)] return bounding_box
[ "numpy.mean", "cv2.imwrite", "os.strerror", "cv2.dnn.readNetFromCaffe", "os.path.isfile", "numpy.array", "os.path.abspath", "cv2.resize", "cv2.imread" ]
[((1585, 1604), 'cv2.imread', 'cv2.imread', (['in_path'], {}), '(in_path)\n', (1595, 1604), False, 'import cv2\n'), ((1783, 1910), 'cv2.dnn.readNetFromCaffe', 'cv2.dnn.readNetFromCaffe', (["(det_path + 'models/deploy.prototxt')", "(det_path + 'models/res10_300x300_ssd_iter_140000.caffemodel')"], {}), "(det_path + 'models/deploy.prototxt', det_path +\n 'models/res10_300x300_ssd_iter_140000.caffemodel')\n", (1807, 1910), False, 'import cv2\n'), ((1949, 1974), 'numpy.mean', 'np.mean', (['img'], {'axis': '(0, 1)'}), '(img, axis=(0, 1))\n', (1956, 1974), True, 'import numpy as np\n'), ((1203, 1226), 'os.path.isfile', 'os.path.isfile', (['in_path'], {}), '(in_path)\n', (1217, 1226), False, 'import os\n'), ((2060, 2087), 'cv2.resize', 'cv2.resize', (['img', '(300, 300)'], {}), '(img, (300, 300))\n', (2070, 2087), False, 'import cv2\n'), ((2488, 2510), 'numpy.array', 'np.array', (['[w, h, w, h]'], {}), '([w, h, w, h])\n', (2496, 2510), True, 'import numpy as np\n'), ((2947, 2982), 'cv2.imwrite', 'cv2.imwrite', (['out_path', 'largest_crop'], {}), '(out_path, largest_crop)\n', (2958, 2982), False, 'import cv2\n'), ((200, 225), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (215, 225), False, 'import os\n'), ((1274, 1299), 'os.strerror', 'os.strerror', (['errno.ENOENT'], {}), '(errno.ENOENT)\n', (1285, 1299), False, 'import os\n'), ((2636, 2658), 'numpy.array', 'np.array', (['[w, h, w, h]'], {}), '([w, h, w, h])\n', (2644, 2658), True, 'import numpy as np\n'), ((1521, 1546), 'os.strerror', 'os.strerror', (['errno.ENOENT'], {}), '(errno.ENOENT)\n', (1532, 1546), False, 'import os\n')]
""" NCL_coneff_16.py ================ This script illustrates the following concepts: - Showing features of the new color display model - Using a NCL colormap with levels to assign a color palette to contours - Drawing partially transparent filled contours See following URLs to see the reproduced NCL plot & script: - Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/coneff_16.ncl - Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/coneff_16_1_lg.png """ ############################################################################### # Import packages: import numpy as np import xarray as xr import cartopy.crs as ccrs import matplotlib.pyplot as plt import geocat.datafiles as gdf from geocat.viz import cmaps as gvcmaps from geocat.viz import util as gvutil ############################################################################### # Read in data: # Open a netCDF data file using xarray default engine and load the data into xarrays ds = xr.open_dataset(gdf.get('netcdf_files/uv300.nc')) U = ds.U[1, :, :] ############################################################################### # Plot: # Generate figure (set its size (width, height) in inches) plt.figure(figsize=(14, 7)) # Generate axes, using Cartopy projection = ccrs.PlateCarree() ax = plt.axes(projection=projection) # Use global map and draw coastlines ax.set_global() ax.coastlines() # Import an NCL colormap newcmp = gvcmaps.BlueYellowRed # Contourf-plot data (for filled contours) # Note, min-max contour levels are hard-coded. contourf's automatic contour value selector produces fractional values. p = U.plot.contourf(ax=ax, vmin=-16.0, vmax=44, levels=16, cmap=newcmp, add_colorbar=False, transform=projection, extend='neither') # Add horizontal colorbar cbar = plt.colorbar(p, orientation='horizontal', shrink=0.5) cbar.ax.tick_params(labelsize=14) cbar.set_ticks(np.linspace(-12, 40, 14)) # Use geocat.viz.util convenience function to set axes tick values gvutil.set_axes_limits_and_ticks(ax, xticks=np.linspace(-180, 180, 13), yticks=np.linspace(-90, 90, 7)) # Use geocat.viz.util convenience function to make plots look like NCL plots by using latitude, longitude tick labels gvutil.add_lat_lon_ticklabels(ax) # Use geocat.viz.util convenience function to add minor and major tick lines gvutil.add_major_minor_ticks(ax, labelsize=12) # Use geocat.viz.util convenience function to add titles to left and right of the plot axis. gvutil.set_titles_and_labels(ax, maintitle="Color contours mask filled land", lefttitle=U.long_name, lefttitlefontsize=16, righttitle=U.units, righttitlefontsize=16, xlabel="", ylabel="") # Show the plot plt.show()
[ "geocat.datafiles.get", "geocat.viz.util.add_major_minor_ticks", "matplotlib.pyplot.colorbar", "cartopy.crs.PlateCarree", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.axes", "geocat.viz.util.add_lat_lon_ticklabels", "geocat.viz.util.set_titles_and_labels", "matplotlib.pyplot.show" ]
[((1221, 1248), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 7)'}), '(figsize=(14, 7))\n', (1231, 1248), True, 'import matplotlib.pyplot as plt\n'), ((1294, 1312), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (1310, 1312), True, 'import cartopy.crs as ccrs\n'), ((1318, 1349), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': 'projection'}), '(projection=projection)\n', (1326, 1349), True, 'import matplotlib.pyplot as plt\n'), ((1946, 1999), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['p'], {'orientation': '"""horizontal"""', 'shrink': '(0.5)'}), "(p, orientation='horizontal', shrink=0.5)\n", (1958, 1999), True, 'import matplotlib.pyplot as plt\n'), ((2432, 2465), 'geocat.viz.util.add_lat_lon_ticklabels', 'gvutil.add_lat_lon_ticklabels', (['ax'], {}), '(ax)\n', (2461, 2465), True, 'from geocat.viz import util as gvutil\n'), ((2544, 2590), 'geocat.viz.util.add_major_minor_ticks', 'gvutil.add_major_minor_ticks', (['ax'], {'labelsize': '(12)'}), '(ax, labelsize=12)\n', (2572, 2590), True, 'from geocat.viz import util as gvutil\n'), ((2685, 2886), 'geocat.viz.util.set_titles_and_labels', 'gvutil.set_titles_and_labels', (['ax'], {'maintitle': '"""Color contours mask filled land"""', 'lefttitle': 'U.long_name', 'lefttitlefontsize': '(16)', 'righttitle': 'U.units', 'righttitlefontsize': '(16)', 'xlabel': '""""""', 'ylabel': '""""""'}), "(ax, maintitle=\n 'Color contours mask filled land', lefttitle=U.long_name,\n lefttitlefontsize=16, righttitle=U.units, righttitlefontsize=16, xlabel\n ='', ylabel='')\n", (2713, 2886), True, 'from geocat.viz import util as gvutil\n'), ((3093, 3103), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3101, 3103), True, 'import matplotlib.pyplot as plt\n'), ((1020, 1052), 'geocat.datafiles.get', 'gdf.get', (['"""netcdf_files/uv300.nc"""'], {}), "('netcdf_files/uv300.nc')\n", (1027, 1052), True, 'import geocat.datafiles as gdf\n'), ((2049, 2073), 'numpy.linspace', 'np.linspace', (['(-12)', '(40)', '(14)'], {}), '(-12, 40, 14)\n', (2060, 2073), True, 'import numpy as np\n'), ((2220, 2246), 'numpy.linspace', 'np.linspace', (['(-180)', '(180)', '(13)'], {}), '(-180, 180, 13)\n', (2231, 2246), True, 'import numpy as np\n'), ((2288, 2311), 'numpy.linspace', 'np.linspace', (['(-90)', '(90)', '(7)'], {}), '(-90, 90, 7)\n', (2299, 2311), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import FuncFormatter filepath = '/Users/huangjiaming/Documents/developer/ETreeLearning/res/losses/delay_etree.txt' x = [] num = 0 with open(filepath) as fp: for line in fp: c = list(map(int, line.split())) x = c print(np.mean(x), np.std(x)) fig,(ax0,ax1) = plt.subplots(nrows=2,figsize=(9,6)) # pdf概率分布图 ax0.hist(x, 100, normed=1, histtype='bar', facecolor='blue', edgecolor="black", alpha=0.9) ax0.set_title('') ax0.set_xlabel('Delay / ms') ax0.set_ylabel('Percent') #cdf累计概率函数 ax1.hist(x,100,normed=1,histtype='bar',facecolor='red', edgecolor="black", alpha=0.9,cumulative=True,rwidth=0.8) ax1.set_title("cdf") ax1.set_xlabel('Delay / ms') ax1.set_ylabel('Percent') fig.subplots_adjust(hspace=0.4) plt.savefig('./reports/20200301/delay_etree_100_nodes', dpi=600)
[ "numpy.mean", "matplotlib.pyplot.savefig", "matplotlib.pyplot.subplots", "numpy.std" ]
[((360, 397), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'figsize': '(9, 6)'}), '(nrows=2, figsize=(9, 6))\n', (372, 397), True, 'import matplotlib.pyplot as plt\n'), ((853, 917), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./reports/20200301/delay_etree_100_nodes"""'], {'dpi': '(600)'}), "('./reports/20200301/delay_etree_100_nodes', dpi=600)\n", (864, 917), True, 'import matplotlib.pyplot as plt\n'), ((317, 327), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (324, 327), True, 'import numpy as np\n'), ((329, 338), 'numpy.std', 'np.std', (['x'], {}), '(x)\n', (335, 338), True, 'import numpy as np\n')]
import numpy as np from typing import List, Tuple class InterfaceSolver(): """ Informal interface for solving class needed to interact with rubiks environment. """ def __init__(self, depth:int, possible_moves: List[str]) -> None: """ Will be passed depth, i.e. number of backwards turns cube has been randomly shuffled from solved. Additionally will be passed the list of acceptable moves that should be returned by the get_action method. Can be upper or lower case characters but must be in possible_moves. Each character corresponds to a face of the cube, upper case is a clockwise turn, lower case is counter clockwise, will be passed as all upper case. """ pass def get_name(self) -> str: """ Each solver will have an associated button in the GUI, this text will be what is displayed on the button. """ def clear(self) -> None: """ Will be called before every fresh solve. Can use to reset any necessary parameters. """ pass def get_action(self, cube_state:np.array) -> Tuple[str,bool]: """ Will be passed cube state as a 6x3x3 np.array, where the first index represents the 6 sides of the cube, and the 2nd and 3rd index form a 3x3 table representing each of the 9 faces on one side of the cube. Each entry has an integer value {0,5} representing a color. A solved cube is when for each side, each 3x3 matrix only contains one value. Can assume cube_state results from taking previous action on previous cube_state. Must return character from possible_moves passed in init, can be upper or lower case as described above. Also must return boolean value indicating if solver is terminating (True), or not (False). If terminating can either provide action and it will be executed and then terminate, or can pass action as None, and solving will be terminated without any action. """ pass def find_shortest_path(node_1,node_2): """ Given two nodes indicated by a string of their move sequence from the start node (forward moves only), this method returns the shortest move sequence from node_1 to node_2. """ # Change to lists node_1 = list(node_1) node_1_common = node_1.copy() node_2 = list(node_2) node_2_common = node_2.copy() # Get length of smaller small_length = min(len(node_1),len(node_2)) # get to smallest common parent node for i in range(small_length): if (node_1[i] == node_2[i]): # then pop because they are the same node_1_common.pop(0) node_2_common.pop(0) else: # as soon as this isn't true cant get any closer parent node break # Now generate path by reversing path to node_1, and follow path to node_2 shortest_path = [x.lower() for x in node_1_common[::-1]] shortest_path.extend(node_2_common) return shortest_path class DepthFirstSearch(InterfaceSolver): """ Implements a depth first search algorithm bounded by depth provided. """ def __init__(self, depth, possible_moves): self.depth = depth self.possible_moves = possible_moves def get_name(self): return "DFS" def depth_first_search(self,current_move,depth): # If past max depth just retun if depth < 0: return # Otherwise append move to list (or if empty/starting do nothing) if not len(current_move) == 0: self.moves_to_make.append(current_move) # Now go through each possible move/node from here recursively for m in self.possible_moves: self.depth_first_search(m,depth-1) # Now before return, undo current move if not len(current_move) == 0: self.moves_to_make.append(current_move.lower()) return def clear(self): """ Because depth bounded and possible moves do not change, can pre-compute all actions, and then will terminate via main if solved, or here if out of pre-computed moves. """ # Make list of all moves using recursive depth first search self.moves_to_make = [] self.depth_first_search("",self.depth) # Reverse string so that popping is constant time self.moves_to_make.reverse() def get_action(self, cube_state): """ If only one move left provide last action and terminate, otherwise, pop Get action based off current index, increment index, and return """ terminating = False if len(self.moves_to_make) == 1: terminating = True return self.moves_to_make.pop(), terminating class BreadthFirstSearch(InterfaceSolver): """ Implements a breadth first search algorithm bounded by depth provided. """ def __init__(self, depth, possible_moves): self.depth = depth self.possible_moves = possible_moves def get_name(self): return "BFS" def clear(self): """ Because depth bounded and possible moves do not change, can pre-compute all actions, and then will terminate via main if solved, or here if out of pre-computed moves. """ # Simulating going through and popping from list below, but just pop and # append to main list which will be used in action. save_moves_to_make = [] track_moves_to_make = [] track_moves_to_make.extend(self.possible_moves) save_moves_to_make.extend(self.possible_moves) while len(track_moves_to_make) > 0: # Get next move next_move = track_moves_to_make.pop(0) # Now go through neighbors of this next_move/node for m in self.possible_moves: to_append = next_move+m if len(to_append) > self.depth: continue else: track_moves_to_make.append(to_append) save_moves_to_make.append(to_append) # Now make completed move list using shortest path between each self.moves_to_make = [] for i in range(len(save_moves_to_make)): if i ==0: self.moves_to_make.append(save_moves_to_make[0]) else: self.moves_to_make.extend(find_shortest_path(save_moves_to_make[i-1],save_moves_to_make[i])) # Reverse string so that popping is constant time self.moves_to_make.reverse() def get_action(self, cube_state): """ If only one move left provide last action and terminate, otherwise, pop Get action based off current index, increment index, and return """ terminating = False if len(self.moves_to_make) == 1: terminating = True return self.moves_to_make.pop(), terminating class BestFirstSearch(InterfaceSolver): """ Implements a best first search algorithm bounded by depth provided. Here the metric is used is percentage complete. For each side the number of squares with the same color as the center is computed. This metric is summed for each side anid is divide by the total number of cube faces. """ def __init__(self, depth, possible_moves): self.depth = depth self.possible_moves = possible_moves def get_name(self): return "BestFS" def clear(self): self.cube_state_move = [] self.cube_state_values = [] self.actions = [] self.possible_moves_for_node = [] self.last_action = "" self.move_queue = [] self.previous_node = "" def get_value(self,cube_state): total_equal = 0 total = cube_state.size for i in range(6): center_val = cube_state[i,1,1] total_equal += np.sum(cube_state[i,:,:]==center_val) return float(total_equal)/total def get_action_nodes(self, cube_state): """ Method to actually select next nodes given known values. """ # 1. Get value of current cube_state, and append state and value, and nodes_moved_to self.cube_state_values.append(self.get_value(cube_state)) self.cube_state_move.append(self.last_action) self.possible_moves_for_node.append(self.possible_moves.copy()) if len(self.actions) == 0: self.actions.append("") # 2. Now find best current state ranked_idx = np.argsort(np.array(self.cube_state_values))[::-1] next_move = None for idx in ranked_idx: # If no more possible moves, just continue, if have move make it and break if len(self.possible_moves_for_node[idx]) == 0 or len(self.cube_state_move[idx])==self.depth: continue else: next_move = self.cube_state_move[idx] + self.possible_moves_for_node[idx].pop() break # 3. If next_move is still none, terminate, no more moves to make if next_move is None: return None # 4. Otherwise, save action and return self.last_action = next_move return next_move def get_action(self,cube_state): """ Need wrapper method for node selection to process transitions between nodes. """ terminating = False # 1. If move queue empty, calculate next node using method, find path and append if len(self.move_queue) == 0: next_node = self.get_action_nodes(cube_state) if next_node is None: self.move_queue.append(None) terminating = True else: node_path = find_shortest_path(self.previous_node,next_node) self.move_queue.extend(node_path) self.previous_node = next_node # 2. Set previous node, pop and take action return self.move_queue.pop(0), terminating #
[ "numpy.sum", "numpy.array" ]
[((8033, 8074), 'numpy.sum', 'np.sum', (['(cube_state[i, :, :] == center_val)'], {}), '(cube_state[i, :, :] == center_val)\n', (8039, 8074), True, 'import numpy as np\n'), ((8674, 8706), 'numpy.array', 'np.array', (['self.cube_state_values'], {}), '(self.cube_state_values)\n', (8682, 8706), True, 'import numpy as np\n')]
import sys from glob import glob from serial import Serial, SerialException import numpy as np BAUD_RATE = 9600 PORT = 'COM5' READ_TIMEOUT = 1 LOWER_BOUND = 0.01 UPPER_BOUND = 0.4 class SerialCommunication(): """ Manages the communication and sends the data to the Arduino """ def __init__(self): self._serial_channel = Serial() self._serial_channel.port = PORT self._serial_channel.baudrate = BAUD_RATE @property def baudrate(self): return self._serial_channel.baudrate @baudrate.setter def baudrate(self, new_baudrate): if not self._serial_channel.is_open: self._serial_channel.baudrate = new_baudrate else: raise Exception("Close connection before changing baudrate") @property def port(self): return self._serial_channel.port @port.setter def set_port(self, new_port): if not self._serial_channel.is_open: self._serial_channel.port = new_port else: raise Exception("Close connection before changing port") def get_available_serial_ports(self): """ Returns a list of all ports that can be opened """ if self._serial_channel.is_open: raise Exception("Close connection before") result = [] for port in self._list_all_possibles_ports(): try: Serial(port).close() result.append(port) except (OSError, SerialException): pass return result def establish_communication(self): """ Enables the communication with the arduino with the latest parameters Throws a SerialException is it cannot connect to port """ try: self._serial_channel.open() except SerialException as error: print("Error when connecting to serial %s port" % (self._serial_channel.port)) raise(SerialException) def send_data(self, data): """ prints feedback data from the arduino and sends the new data """ if self._is_data_available(): print(("Reading : ", self._read_bytes(len(data)))) data = [x[1] for x in data] if self._is_data_valid(data): value_to_send = self._get_clipped_signals(data) print(('Sending', value_to_send)) try: self._serial_channel.write(bytearray(value_to_send)) except SerialTimeoutException as e: print('Error when sending data to microcontroller:' + str(e)) def close_communication(self): self._serial_channel.close() def _list_all_possibles_ports(self): if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') return ports def _read_bytes(self, nb_bytes=1): bytes_received = [] for _ in range(nb_bytes): bytes_received.append(self._serial_channel.read(1)) return [ord(byte) for byte in bytes_received if byte] def _is_data_available(self): return self._serial_channel is not None and self._serial_channel.is_open and self._serial_channel.in_waiting def _is_data_valid(self, data): return self._serial_channel is not None and self._serial_channel.is_open and not np.any(np.isnan(data)) def _get_clipped_signals(self, signals): clipped_list = np.clip(signals, LOWER_BOUND, UPPER_BOUND) return [int(255 * (x - LOWER_BOUND)/(UPPER_BOUND - LOWER_BOUND)) for x in clipped_list]
[ "numpy.clip", "sys.platform.startswith", "serial.Serial", "numpy.isnan", "glob.glob" ]
[((342, 350), 'serial.Serial', 'Serial', ([], {}), '()\n', (348, 350), False, 'from serial import Serial, SerialException\n'), ((2715, 2745), 'sys.platform.startswith', 'sys.platform.startswith', (['"""win"""'], {}), "('win')\n", (2738, 2745), False, 'import sys\n'), ((3799, 3841), 'numpy.clip', 'np.clip', (['signals', 'LOWER_BOUND', 'UPPER_BOUND'], {}), '(signals, LOWER_BOUND, UPPER_BOUND)\n', (3806, 3841), True, 'import numpy as np\n'), ((2820, 2852), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (2843, 2852), False, 'import sys\n'), ((2856, 2889), 'sys.platform.startswith', 'sys.platform.startswith', (['"""cygwin"""'], {}), "('cygwin')\n", (2879, 2889), False, 'import sys\n'), ((2972, 2997), 'glob.glob', 'glob', (['"""/dev/tty[A-Za-z]*"""'], {}), "('/dev/tty[A-Za-z]*')\n", (2976, 2997), False, 'from glob import glob\n'), ((3011, 3044), 'sys.platform.startswith', 'sys.platform.startswith', (['"""darwin"""'], {}), "('darwin')\n", (3034, 3044), False, 'import sys\n'), ((3066, 3084), 'glob.glob', 'glob', (['"""/dev/tty.*"""'], {}), "('/dev/tty.*')\n", (3070, 3084), False, 'from glob import glob\n'), ((3713, 3727), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (3721, 3727), True, 'import numpy as np\n'), ((1391, 1403), 'serial.Serial', 'Serial', (['port'], {}), '(port)\n', (1397, 1403), False, 'from serial import Serial, SerialException\n')]
import sys import time import threading import grpc import numpy import soundfile as sf import tensorflow as tf import _init_paths import audioset.vggish_input as vggish_input from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc tf.app.flags.DEFINE_integer('concurrency', 1, 'concurrent inference requests limit') tf.app.flags.DEFINE_integer('num_tests', 100, 'Number of test sample') tf.app.flags.DEFINE_string('server', '0.0.0.0:8500', 'PredictionService host:port') tf.app.flags.DEFINE_string('work_dir', '/tmp', 'Working directory') FLAGS = tf.app.flags.FLAGS class _ResultCounter(object): def __init__(self, num_tests, concurrency): self._num_tests = num_tests self._concurrency = concurrency self._error = 0 self._done = 0 self._active = 0 self._condition = threading.Condition() self._start_time = -1 self._end_time = 0 def inc_done(self): with self._condition: self._done += 1 if self._done == self._num_tests: self.set_end_time(time.time()) self._condition.notify() def dec_active(self): with self._condition: self._active -= 1 self._condition.notify() def throttle(self): with self._condition: if self._start_time == -1: self._start_time = time.time() while self._active == self._concurrency: self._condition.wait() self._active += 1 def set_start_time(self, start_time): self._start_time = start_time def set_end_time(self, end_time): self._end_time = end_time def get_throughput(self): if self._end_time == 0: self.set_end_time(time.time()) print(self._end_time - self._start_time) return self._num_tests / (self._end_time - self._start_time) def time_to_sample(t, sr, factor): return round(sr * t / factor) def _create_rpc_callback(label, result_counter): def _callback(result_future): exception = result_future.exception() if exception: # result_counter.inc_error() print(exception) else: print('normal') sys.stdout.write('.') sys.stdout.flush() response = numpy.array(result_future.result().outputs['output'].float_val) result_counter.inc_done() result_counter.dec_active() return _callback def inference(hostport, work_dir, concurrency, num_tests): audio_path = 'test_DB/test_airport.wav' num_secs = 1 sc_start = 0 sc_end = 2000 wav_data, sr = sf.read(audio_path, dtype='int16') assert wav_data.dtype == numpy.int16, 'Bad sample type: %r' % wav_data.dtype samples = wav_data / 32768.0 # Convert to [-1.0, +1.0] sc_center = time_to_sample((sc_start + sc_end) / 2, sr, 1000.0) # print('Center is {} when sample_rate is {}'.format(sc_center, sr)) data_length = len(samples) data_width = time_to_sample(num_secs, sr, 1.0) half_input_width = int(data_width / 2) if sc_center < half_input_width: pad_width = half_input_width - sc_center samples = numpy.pad(samples, [(pad_width, 0), (0, 0)], mode='constant', constant_values=0) sc_center += pad_width elif sc_center + half_input_width > data_length: pad_width = sc_center + half_input_width - data_length samples = numpy.pad(samples, [(0, pad_width), (0, 0)], mode='constant', constant_values=0) samples = samples[sc_center - half_input_width: sc_center + half_input_width] audio_input = vggish_input.waveform_to_examples(samples, sr) print(audio_input.dtype) audio_input = audio_input.astype(numpy.float32) channel = grpc.insecure_channel(hostport) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) result_counter = _ResultCounter(num_tests, concurrency) for _ in range(num_tests): request = predict_pb2.PredictRequest() request.model_spec.name = 'vgg' request.model_spec.signature_name = 'prediction' print(audio_input.shape) request.inputs['input'].CopyFrom(tf.contrib.util.make_tensor_proto(audio_input, shape=audio_input.shape)) result_counter.throttle() result_future = stub.Predict.future(request, 5.0) result_future.add_done_callback(_create_rpc_callback(None, result_counter)) return result_counter.get_throughput() def main(_): if FLAGS.num_tests > 10000: print('num_tests should not be greater than 10k') return if not FLAGS.server: print('please specify server host:port') return tfs_throughput = inference(FLAGS.server, FLAGS.work_dir, FLAGS.concurrency, FLAGS.num_tests) print('\n TFS Thoughput: %s requests/sec' % (tfs_throughput)) if __name__ == '__main__': tf.app.run()
[ "sys.stdout.flush", "tensorflow.app.flags.DEFINE_integer", "tensorflow_serving.apis.predict_pb2.PredictRequest", "tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub", "grpc.insecure_channel", "tensorflow.app.flags.DEFINE_string", "sys.stdout.write", "numpy.pad", "audioset.vggish_input.waveform_to_examples", "time.time", "tensorflow.contrib.util.make_tensor_proto", "soundfile.read", "threading.Condition", "tensorflow.app.run" ]
[((293, 381), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""concurrency"""', '(1)', '"""concurrent inference requests limit"""'], {}), "('concurrency', 1,\n 'concurrent inference requests limit')\n", (320, 381), True, 'import tensorflow as tf\n'), ((378, 448), 'tensorflow.app.flags.DEFINE_integer', 'tf.app.flags.DEFINE_integer', (['"""num_tests"""', '(100)', '"""Number of test sample"""'], {}), "('num_tests', 100, 'Number of test sample')\n", (405, 448), True, 'import tensorflow as tf\n'), ((449, 536), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""server"""', '"""0.0.0.0:8500"""', '"""PredictionService host:port"""'], {}), "('server', '0.0.0.0:8500',\n 'PredictionService host:port')\n", (475, 536), True, 'import tensorflow as tf\n'), ((533, 600), 'tensorflow.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""work_dir"""', '"""/tmp"""', '"""Working directory"""'], {}), "('work_dir', '/tmp', 'Working directory')\n", (559, 600), True, 'import tensorflow as tf\n'), ((2715, 2749), 'soundfile.read', 'sf.read', (['audio_path'], {'dtype': '"""int16"""'}), "(audio_path, dtype='int16')\n", (2722, 2749), True, 'import soundfile as sf\n'), ((3689, 3735), 'audioset.vggish_input.waveform_to_examples', 'vggish_input.waveform_to_examples', (['samples', 'sr'], {}), '(samples, sr)\n', (3722, 3735), True, 'import audioset.vggish_input as vggish_input\n'), ((3831, 3862), 'grpc.insecure_channel', 'grpc.insecure_channel', (['hostport'], {}), '(hostport)\n', (3852, 3862), False, 'import grpc\n'), ((3874, 3932), 'tensorflow_serving.apis.prediction_service_pb2_grpc.PredictionServiceStub', 'prediction_service_pb2_grpc.PredictionServiceStub', (['channel'], {}), '(channel)\n', (3923, 3932), False, 'from tensorflow_serving.apis import prediction_service_pb2_grpc\n'), ((4942, 4954), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (4952, 4954), True, 'import tensorflow as tf\n'), ((883, 904), 'threading.Condition', 'threading.Condition', ([], {}), '()\n', (902, 904), False, 'import threading\n'), ((3262, 3347), 'numpy.pad', 'numpy.pad', (['samples', '[(pad_width, 0), (0, 0)]'], {'mode': '"""constant"""', 'constant_values': '(0)'}), "(samples, [(pad_width, 0), (0, 0)], mode='constant', constant_values=0\n )\n", (3271, 3347), False, 'import numpy\n'), ((4042, 4070), 'tensorflow_serving.apis.predict_pb2.PredictRequest', 'predict_pb2.PredictRequest', ([], {}), '()\n', (4068, 4070), False, 'from tensorflow_serving.apis import predict_pb2\n'), ((2298, 2319), 'sys.stdout.write', 'sys.stdout.write', (['"""."""'], {}), "('.')\n", (2314, 2319), False, 'import sys\n'), ((2332, 2350), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2348, 2350), False, 'import sys\n'), ((3508, 3593), 'numpy.pad', 'numpy.pad', (['samples', '[(0, pad_width), (0, 0)]'], {'mode': '"""constant"""', 'constant_values': '(0)'}), "(samples, [(0, pad_width), (0, 0)], mode='constant', constant_values=0\n )\n", (3517, 3593), False, 'import numpy\n'), ((4242, 4313), 'tensorflow.contrib.util.make_tensor_proto', 'tf.contrib.util.make_tensor_proto', (['audio_input'], {'shape': 'audio_input.shape'}), '(audio_input, shape=audio_input.shape)\n', (4275, 4313), True, 'import tensorflow as tf\n'), ((1428, 1439), 'time.time', 'time.time', ([], {}), '()\n', (1437, 1439), False, 'import time\n'), ((1813, 1824), 'time.time', 'time.time', ([], {}), '()\n', (1822, 1824), False, 'import time\n'), ((1125, 1136), 'time.time', 'time.time', ([], {}), '()\n', (1134, 1136), False, 'import time\n')]
# -*- coding: utf-8 -*- """ Created on Wed Jun 24 21:46:56 2020 @author: adwait """ import numpy as np import cv2 import pims from tkinter import messagebox, Tk from PIL import ImageFont, ImageDraw, Image from PyQt5.QtGui import QIcon import logging class MainRecordFunctions: def recordVideo(self, frame1, frame2): logging.debug("recordvideo") if self.forceData.force_filepath == "": start_framenum = -1 end_framenum = -1 else: # self.forceData.getArea(self.frameTime, self.dataDict) start_framenum = self.forceData.plot_slice2.start end_framenum = self.forceData.plot_slice2.stop + 1 if self.recordStatus == True: if int(self.framePos) >= start_framenum: h , w = 512, 512 #TODO: include this gui # dim = (w, h) if frame2.ndim == 2: frame2 = cv2.cvtColor(frame2, cv2.COLOR_GRAY2BGR) ## if self.showContours.isChecked() == False: ## roi = self.roiBound ## self.merged_frame[:h, :w] = self.image_resize(frame1[roi[1]:roi[3], ## roi[0]:roi[2]], ## w, h, inter = cv2.INTER_AREA) ## else: self.merged_frame[:h, :w], scaleFactor = self.image_resize(frame1, w, h, inter = cv2.INTER_AREA) if self.configRecWindow.fourRec.isChecked() == True: if self.forceData.force_filepath == "" or self.cap2 == None: root = Tk() root.withdraw() messagebox.showinfo("Error!", "Check 2nd video file or force data file. Not found!") root.destroy() self.record_frame() #finish recording self.playStatus = False #pause video return ## frame2 = cv2.cvtColor(self.frame_contours, cv2.COLOR_GRAY2BGR) # frame2 = self.frame_contour.copy() # ret, frame3 = self.cap2.read() # self.forceData.getArea(self.frameTime, self.dataDict) # self.forceData.plotData(self.lengthUnit.currentText()) #prepare plot # frame4 = cv2.resize(cv2.cvtColor(self.forceData.convertPlot(), cv2.COLOR_RGB2BGR), # (w, h), interpolation = cv2.INTER_AREA) #only record till plot range. continue playing to get all data if int(self.framePos) == end_framenum: # if ret == False: #video at end logging.debug("2nd video end") # self.cap2.release() self.cap2 = None self.record_frame() #finish recording self.playStatus = True return else: frame2 = self.frame_contour.copy() frame3 = self.cap2[self.framePos-1]#self.cap2.read() self.forceData.getArea(self.frameTime, self.dataDict) # self.forceData.plotData(self.imageDataUnitDict) #prepare plot self.forceData.plotImageAnimate(int(self.framePos)) frame4 = cv2.resize(cv2.cvtColor(self.forceData.convertPlot(), cv2.COLOR_RGB2BGR), (w, h), interpolation = cv2.INTER_AREA) # framenumber1 = self.cap.get(cv2.CAP_PROP_POS_FRAMES) # framenumber2 = self.cap2.get(cv2.CAP_PROP_POS_FRAMES) # logging.debug('%s, %s, %s', "position", framenumber1, framenumber2) # if framenumber1 != framenumber2: #check both videos are in sync # root = Tk() # root.withdraw() # messagebox.showinfo("Error!", "Video frame numbers dont match!\n" + # "Video-1 frame:\t" + str(framenumber1) + "\n" + # "Video-2 frame:\t" + str(framenumber2)) # root.destroy() # self.record_frame() #finish recording # self.playStatus = False #pause video # return # logging.debug('%s, %s, %s', "position", self.cap.get(cv2.CAP_PROP_POS_FRAMES), # self.cap2.get(cv2.CAP_PROP_POS_FRAMES)) self.merged_frame[:h, w:], r = self.image_resize(frame3, w, h, inter = cv2.INTER_AREA) self.merged_frame[h:, :w], r = self.image_resize(frame2, w, h, inter = cv2.INTER_AREA) self.merged_frame[h:, w:], r = self.image_resize(frame4, w, h, inter = cv2.INTER_AREA) # Write video2 title font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (int(1.0*w), int(0.05*h)) fontScale = 1.5 fontColor = (0,0,250) thickness = 3 lineType = 1 cv2.putText(self.merged_frame, self.configRecWindow.video2Title.text(), bottomLeftCornerOfText, font,fontScale, fontColor,thickness, lineType) else: #only record till plot range. continue playing to get all data if int(self.framePos) == end_framenum: self.record_frame() #finish recording self.playStatus = True return else: self.merged_frame[:h, w:], r = self.image_resize(frame2, w, h, inter = cv2.INTER_AREA) # Write video1 title font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (int(0.0*w), int(0.05*h)) fontScale = 1.5 fontColor = (0,0,250) thickness = 3 lineType = 1 cv2.putText(self.merged_frame, self.configRecWindow.video1Title.text(), bottomLeftCornerOfText, font,fontScale, fontColor,thickness, lineType) # Write time font = cv2.FONT_HERSHEY_SIMPLEX bottomLeftCornerOfText = (int(1.55*w), int(0.1*h)) fontScale = 2 fontColor = (0,200,200) thickness = 10 lineType = 2 logging.debug('%s, %s', self.frameTime.item(int(self.framePos-1)), bottomLeftCornerOfText) text = 'Time: ' + "{0:.3f}".format(self.frameTime.item(int(self.framePos-1))) + ' s' cv2.putText(self.merged_frame, text, bottomLeftCornerOfText, font,fontScale, fontColor,thickness, lineType) #Draw scale bar logging.debug('%s, %s', scaleFactor, "scalef") pixLength = scaleFactor * self.pixelValue.value() scalepos1 = (int(0.8*w), int(0.95*h)) scalepos2 = (int(scalepos1[0] + pixLength), scalepos1[1]) scalelabelpos = (int(scalepos1[0] + 0.5 * (pixLength - 100)), scalepos1[1] + 10) #length of label is 51 pixels cv2.line(self.merged_frame, scalepos1, scalepos2, fontColor, thickness) fontScale = 1 thickness = 5 color = (0,200,200) text = str(int(self.lengthValue.value())) + ' ' + self.lengthUnit.currentText() font = ImageFont.truetype("arial.ttf", 28, encoding="unic") img_pil = Image.fromarray(self.merged_frame) draw = ImageDraw.Draw(img_pil) draw.text(scalelabelpos, text, font = font, fill = color) self.merged_frame = np.array(img_pil) logging.debug('%s, %s, %s', self.merged_frame.shape, w, h) self.out.write(self.merged_frame) cv2.namedWindow("Recording Preview", cv2.WINDOW_KEEPRATIO) cv2.imshow("Recording Preview", self.merged_frame) cv2.resizeWindow("Recording Preview", 800, 400) # elif self.configRecWindow.fourRec.isChecked() == True: # ret, frame3 = self.cap2.read() def record_frame(self): logging.debug("record_frame") if self.recordStatus == True: self.out.release() self.recordBtn.setIcon(QIcon('images/record.png')) self.recordBtn.setEnabled(False) self.middleleftGroupBox.setEnabled(True) self.bcGroupBox.setEnabled(True) self.dftGroupBox.setEnabled(True) self.threshGroupBox.setEnabled(True) self.threshROIGroupBox.setEnabled(True) self.dataGroupBox.setEnabled(True) self.roiBtn.setEnabled(True) self.analyzeVideo.setEnabled(True) self.recordStatus = False self.playStatus = False else: self.recordBtn.setIcon(QIcon('images/recording.png')) self.middleleftGroupBox.setEnabled(False) self.bcGroupBox.setEnabled(False) self.dftGroupBox.setEnabled(False) self.threshGroupBox.setEnabled(False) self.threshROIGroupBox.setEnabled(False) self.dataGroupBox.setEnabled(False) self.roiBtn.setEnabled(False) self.analyzeVideo.setEnabled(False) self.recordStatus = True self.playback() ## self.recordStatus = not self.recordStatus #function to resize frame for recording def image_resize(self, image, width = None, height = None, inter = cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] resized = np.zeros([height, width, 3], dtype = np.uint8) if width is None and height is None: return image, 0 if width is None: r = height / float(h) dim = (int(w * r), height) elif height is None: r = width / float(w) dim = (width, int(h * r)) else: rh = height / float(h) rw = width / float(w) if rh < rw: r = rh dim = (int(w * r), height) else: r = rw dim = (width, int(h * r)) hdiff = int((height - dim[1])/2) wdiff = int((width - dim[0])/2) resized[hdiff:(hdiff + dim[1]), wdiff:(wdiff + dim[0])] = cv2.resize(image, dim, interpolation = inter) logging.debug('%s, %s', dim, resized.shape) return resized, r def showRecWindow(self): #open recording configuration window self.configRecWindow.showWindow(self.recordingPath) def configureRecord(self): if self.videoPath != "": self.w = self.roiBound[2] - self.roiBound[0] self.h = self.roiBound[3] - self.roiBound[1] logging.debug('%s, %s, %s', "configurerecord", self.w, self.h) self.codecChoices = {'DIVX': cv2.VideoWriter_fourcc(*'DIVX'), 'MJPG': cv2.VideoWriter_fourcc('M','J','P','G'), 'FFV1': cv2.VideoWriter_fourcc('F','F','V','1')} fourcc = self.codecChoices.get(self.configRecWindow.codec.currentText()) self.recordingPath = self.configRecWindow.textbox.toPlainText() if self.configRecWindow.fourRec.isChecked() == True: i = 2 else: i = 1 w = 2 * 512 #TODO: include this in gui (check above) h = i * 512 size = (w, h) ## fps = self.frameRate fps = self.configRecWindow.fps.value() #fixed playback fps self.out = cv2.VideoWriter(self.recordingPath, fourcc, fps, size) self.merged_frame = np.empty([h, w, 3], dtype = np.uint8) logging.debug('%s, %s', self.recordingPath, self.merged_frame.shape) self.recordBtn.setEnabled(True) videofile2 = self.configRecWindow.videoTextbox.toPlainText() #second video logging.debug(videofile2) if videofile2 != "": # self.cap2 = cv2.VideoCapture(videofile2) self.cap2 = pims.Video(videofile2) self.configRecWindow.close() self.seekSlider.setValue(1) #reset to beginning # self.showContours.setChecked(False) #uncheck show contours self.clear_data() #clear data
[ "PyQt5.QtGui.QIcon", "logging.debug", "cv2.imshow", "pims.Video", "PIL.ImageDraw.Draw", "numpy.array", "cv2.resizeWindow", "cv2.line", "PIL.ImageFont.truetype", "cv2.VideoWriter", "numpy.empty", "cv2.VideoWriter_fourcc", "tkinter.messagebox.showinfo", "cv2.putText", "cv2.cvtColor", "cv2.resize", "cv2.namedWindow", "PIL.Image.fromarray", "numpy.zeros", "tkinter.Tk" ]
[((352, 380), 'logging.debug', 'logging.debug', (['"""recordvideo"""'], {}), "('recordvideo')\n", (365, 380), False, 'import logging\n'), ((9583, 9612), 'logging.debug', 'logging.debug', (['"""record_frame"""'], {}), "('record_frame')\n", (9596, 9612), False, 'import logging\n'), ((11078, 11122), 'numpy.zeros', 'np.zeros', (['[height, width, 3]'], {'dtype': 'np.uint8'}), '([height, width, 3], dtype=np.uint8)\n', (11086, 11122), True, 'import numpy as np\n'), ((11882, 11925), 'cv2.resize', 'cv2.resize', (['image', 'dim'], {'interpolation': 'inter'}), '(image, dim, interpolation=inter)\n', (11892, 11925), False, 'import cv2\n'), ((11991, 12034), 'logging.debug', 'logging.debug', (['"""%s, %s"""', 'dim', 'resized.shape'], {}), "('%s, %s', dim, resized.shape)\n", (12004, 12034), False, 'import logging\n'), ((13615, 13640), 'logging.debug', 'logging.debug', (['videofile2'], {}), '(videofile2)\n', (13628, 13640), False, 'import logging\n'), ((12412, 12474), 'logging.debug', 'logging.debug', (['"""%s, %s, %s"""', '"""configurerecord"""', 'self.w', 'self.h'], {}), "('%s, %s, %s', 'configurerecord', self.w, self.h)\n", (12425, 12474), False, 'import logging\n'), ((13265, 13319), 'cv2.VideoWriter', 'cv2.VideoWriter', (['self.recordingPath', 'fourcc', 'fps', 'size'], {}), '(self.recordingPath, fourcc, fps, size)\n', (13280, 13319), False, 'import cv2\n'), ((13355, 13390), 'numpy.empty', 'np.empty', (['[h, w, 3]'], {'dtype': 'np.uint8'}), '([h, w, 3], dtype=np.uint8)\n', (13363, 13390), True, 'import numpy as np\n'), ((13406, 13474), 'logging.debug', 'logging.debug', (['"""%s, %s"""', 'self.recordingPath', 'self.merged_frame.shape'], {}), "('%s, %s', self.recordingPath, self.merged_frame.shape)\n", (13419, 13474), False, 'import logging\n'), ((13752, 13774), 'pims.Video', 'pims.Video', (['videofile2'], {}), '(videofile2)\n', (13762, 13774), False, 'import pims\n'), ((7806, 7919), 'cv2.putText', 'cv2.putText', (['self.merged_frame', 'text', 'bottomLeftCornerOfText', 'font', 'fontScale', 'fontColor', 'thickness', 'lineType'], {}), '(self.merged_frame, text, bottomLeftCornerOfText, font,\n fontScale, fontColor, thickness, lineType)\n', (7817, 7919), False, 'import cv2\n'), ((8041, 8087), 'logging.debug', 'logging.debug', (['"""%s, %s"""', 'scaleFactor', '"""scalef"""'], {}), "('%s, %s', scaleFactor, 'scalef')\n", (8054, 8087), False, 'import logging\n'), ((8464, 8535), 'cv2.line', 'cv2.line', (['self.merged_frame', 'scalepos1', 'scalepos2', 'fontColor', 'thickness'], {}), '(self.merged_frame, scalepos1, scalepos2, fontColor, thickness)\n', (8472, 8535), False, 'import cv2\n'), ((8788, 8840), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""arial.ttf"""', '(28)'], {'encoding': '"""unic"""'}), "('arial.ttf', 28, encoding='unic')\n", (8806, 8840), False, 'from PIL import ImageFont, ImageDraw, Image\n'), ((8868, 8902), 'PIL.Image.fromarray', 'Image.fromarray', (['self.merged_frame'], {}), '(self.merged_frame)\n', (8883, 8902), False, 'from PIL import ImageFont, ImageDraw, Image\n'), ((8927, 8950), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img_pil'], {}), '(img_pil)\n', (8941, 8950), False, 'from PIL import ImageFont, ImageDraw, Image\n'), ((9063, 9080), 'numpy.array', 'np.array', (['img_pil'], {}), '(img_pil)\n', (9071, 9080), True, 'import numpy as np\n'), ((9104, 9162), 'logging.debug', 'logging.debug', (['"""%s, %s, %s"""', 'self.merged_frame.shape', 'w', 'h'], {}), "('%s, %s, %s', self.merged_frame.shape, w, h)\n", (9117, 9162), False, 'import logging\n'), ((9231, 9289), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Recording Preview"""', 'cv2.WINDOW_KEEPRATIO'], {}), "('Recording Preview', cv2.WINDOW_KEEPRATIO)\n", (9246, 9289), False, 'import cv2\n'), ((9307, 9357), 'cv2.imshow', 'cv2.imshow', (['"""Recording Preview"""', 'self.merged_frame'], {}), "('Recording Preview', self.merged_frame)\n", (9317, 9357), False, 'import cv2\n'), ((9375, 9422), 'cv2.resizeWindow', 'cv2.resizeWindow', (['"""Recording Preview"""', '(800)', '(400)'], {}), "('Recording Preview', 800, 400)\n", (9391, 9422), False, 'import cv2\n'), ((9720, 9746), 'PyQt5.QtGui.QIcon', 'QIcon', (['"""images/record.png"""'], {}), "('images/record.png')\n", (9725, 9746), False, 'from PyQt5.QtGui import QIcon\n'), ((10309, 10338), 'PyQt5.QtGui.QIcon', 'QIcon', (['"""images/recording.png"""'], {}), "('images/recording.png')\n", (10314, 10338), False, 'from PyQt5.QtGui import QIcon\n'), ((12517, 12548), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'DIVX'"], {}), "(*'DIVX')\n", (12539, 12548), False, 'import cv2\n'), ((12592, 12634), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (['"""M"""', '"""J"""', '"""P"""', '"""G"""'], {}), "('M', 'J', 'P', 'G')\n", (12614, 12634), False, 'import cv2\n'), ((12680, 12722), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (['"""F"""', '"""F"""', '"""V"""', '"""1"""'], {}), "('F', 'F', 'V', '1')\n", (12702, 12722), False, 'import cv2\n'), ((966, 1006), 'cv2.cvtColor', 'cv2.cvtColor', (['frame2', 'cv2.COLOR_GRAY2BGR'], {}), '(frame2, cv2.COLOR_GRAY2BGR)\n', (978, 1006), False, 'import cv2\n'), ((1823, 1827), 'tkinter.Tk', 'Tk', ([], {}), '()\n', (1825, 1827), False, 'from tkinter import messagebox, Tk\n'), ((1894, 1982), 'tkinter.messagebox.showinfo', 'messagebox.showinfo', (['"""Error!"""', '"""Check 2nd video file or force data file. Not found!"""'], {}), "('Error!',\n 'Check 2nd video file or force data file. Not found!')\n", (1913, 1982), False, 'from tkinter import messagebox, Tk\n'), ((2995, 3025), 'logging.debug', 'logging.debug', (['"""2nd video end"""'], {}), "('2nd video end')\n", (3008, 3025), False, 'import logging\n')]
from abc import ABC, abstractmethod import collections import statistics import numpy as np import sklearn.metrics import torch class Evaluator(ABC): """Class to evaluate model outputs and report the result. """ def __init__(self): self.reset() @abstractmethod def add_predictions(self, predictions, targets): pass @abstractmethod def get_report(self): pass @abstractmethod def reset(self): pass class MulticlassClassificationEvaluator(Evaluator): def add_predictions(self, predictions, targets): """ Evaluate a batch of predictions. Args: predictions: the model output tensor. Shape (N, num_class) targets: the golden truths. Shape (N,) """ assert len(predictions) == len(targets) assert len(targets.shape) == 1 # top-1 accuracy _, indices = torch.topk(predictions, 1) correct = indices.view(-1).eq(targets) correct_num = int(correct.long().sum(0)) self.top1_correct_num += correct_num # top-5 accuracy k = min(5, predictions.shape[1]) _, indices = torch.topk(predictions, k) correct = indices == targets.view(-1, 1).long().expand(-1, k) self.top5_correct_num += int(correct.long().sum()) # Average precision target_vec = torch.zeros_like(predictions, dtype=torch.uint8) for i, t in enumerate(targets): target_vec[i, t] = 1 ap = sklearn.metrics.average_precision_score(target_vec.view(-1).cpu().numpy(), predictions.view(-1).cpu().numpy(), average='macro') self.ap += ap * len(predictions) self.total_num += len(predictions) def get_report(self): return {'top1_accuracy': float(self.top1_correct_num) / self.total_num if self.total_num else 0.0, 'top5_accuracy': float(self.top5_correct_num) / self.total_num if self.total_num else 0.0, 'average_precision': self.ap / self.total_num if self.total_num else 0.0} def reset(self): self.top1_correct_num = 0 self.top5_correct_num = 0 self.ap = 0 self.total_num = 0 class MultilabelClassificationEvaluator(Evaluator): def add_predictions(self, predictions, targets): """ Evaluate a batch of predictions. Args: predictions: the model output tensor. Shape (N, num_class) targets: the golden truths. Shape (N, num_class) """ assert len(predictions) == len(targets) targets = targets.to(torch.uint8) num = torch.mul(predictions > 0.5, targets).long().sum(1) # shape (N,) den = torch.add(predictions > 0.5, targets).ge(1).long().sum(1) # shape (N,) den[den == 0] = 1 # To avoid zero-division. If den==0, num should be zero as well. self.correct_num += torch.sum(num.to(torch.float32) / den.to(torch.float32)) ap = sklearn.metrics.average_precision_score(targets.view(-1).cpu().numpy(), predictions.view(-1).cpu().numpy(), average='macro') self.ap += ap * len(predictions) self.total_num += len(predictions) def get_report(self): return {'accuracy_50': float(self.correct_num) / self.total_num if self.total_num else 0.0, 'average_precision': self.ap / self.total_num if self.total_num else 0.0} def reset(self): self.correct_num = 0 self.ap = 0 self.total_num = 0 class ObjectDetectionSingleIOUEvaluator(Evaluator): def __init__(self, iou): super(ObjectDetectionSingleIOUEvaluator, self).__init__() self.iou = iou def add_predictions(self, predictions, targets): """ Evaluate list of image with object detection results using single IOU evaluation. Args: predictions: list of predictions [[[label_idx, probability, L, T, R, B], ...], [...], ...] targets: list of image targets [[[label_idx, L, T, R, B], ...], ...] """ assert len(predictions) == len(targets) eval_predictions = collections.defaultdict(list) eval_ground_truths = collections.defaultdict(dict) for img_idx, prediction in enumerate(predictions): for bbox in prediction: label = int(bbox[0]) eval_predictions[label].append([img_idx, float(bbox[1]), float(bbox[2]), float(bbox[3]), float(bbox[4]), float(bbox[5])]) for img_idx, target in enumerate(targets): for bbox in target: label = int(bbox[0]) if img_idx not in eval_ground_truths[label]: eval_ground_truths[label][img_idx] = [] eval_ground_truths[label][img_idx].append([float(bbox[1]), float(bbox[2]), float(bbox[3]), float(bbox[4])]) class_indices = set(list(eval_predictions.keys()) + list(eval_ground_truths.keys())) for class_index in class_indices: is_correct, probabilities = self._evaluate_predictions(eval_ground_truths[class_index], eval_predictions[class_index], self.iou) true_num = sum([len(l) for l in eval_ground_truths[class_index].values()]) self.is_correct[class_index].extend(is_correct) self.probabilities[class_index].extend(probabilities) self.true_num[class_index] += true_num def _calculate_area(self, rect): w = rect[2] - rect[0]+1e-5 h = rect[3] - rect[1]+1e-5 return float(w * h) if w > 0 and h > 0 else 0.0 def _calculate_iou(self, rect0, rect1): rect_intersect = [max(rect0[0], rect1[0]), max(rect0[1], rect1[1]), min(rect0[2], rect1[2]), min(rect0[3], rect1[3])] area_intersect = self._calculate_area(rect_intersect) return area_intersect / (self._calculate_area(rect0) + self._calculate_area(rect1) - area_intersect) def _is_true_positive(self, prediction, ground_truth, already_detected, iou_threshold): image_id = prediction[0] prediction_rect = prediction[2:6] if image_id not in ground_truth: return False, already_detected ious = np.array([self._calculate_iou(prediction_rect, g) for g in ground_truth[image_id]]) best_bb = np.argmax(ious) best_iou = ious[best_bb] if best_iou < iou_threshold or (image_id, best_bb) in already_detected: return False, already_detected already_detected.add((image_id, best_bb)) return True, already_detected def _evaluate_predictions(self, ground_truths, predictions, iou_threshold): """ Evaluate the correctness of the given predictions. Args: ground_truths: List of ground truths for the class. {image_id: [[left, top, right, bottom], [...]], ...} predictions: List of predictions for the class. [[image_id, probability, left, top, right, bottom], [...], ...] iou_threshold: Minimum IOU hreshold to be considered as a same bounding box. """ # Sort the predictions by the probability sorted_predictions = sorted(predictions, key=lambda x: -x[1]) already_detected = set() is_correct = [] for prediction in sorted_predictions: correct, already_detected = self._is_true_positive(prediction, ground_truths, already_detected, iou_threshold) is_correct.append(correct) is_correct = np.array(is_correct) probabilities = np.array([p[1] for p in sorted_predictions]) return is_correct, probabilities def _calculate_average_precision(self, is_correct, probabilities, true_num): if true_num == 0: return 0 if not is_correct or not any(is_correct): return 0 recall = float(np.sum(is_correct)) / true_num return sklearn.metrics.average_precision_score(is_correct, probabilities) * recall def get_report(self): all_aps = [] for class_index in self.is_correct: ap = self._calculate_average_precision(self.is_correct[class_index], self.probabilities[class_index], self.true_num[class_index]) all_aps.append(ap) mean_ap = statistics.mean(all_aps) if all_aps else 0 return {'mAP_{}'.format(int(self.iou*100)): mean_ap} def reset(self): self.is_correct = collections.defaultdict(list) self.probabilities = collections.defaultdict(list) self.true_num = collections.defaultdict(int) class ObjectDetectionEvaluator(Evaluator): def __init__(self, iou_values=[0.3, 0.5, 0.75, 0.9]): self.evaluators = [ObjectDetectionSingleIOUEvaluator(iou) for iou in iou_values] super(ObjectDetectionEvaluator, self).__init__() def add_predictions(self, predictions, targets): for evaluator in self.evaluators: evaluator.add_predictions(predictions, targets) def get_report(self): report = {} for evaluator in self.evaluators: report.update(evaluator.get_report()) return report def reset(self): for evaluator in self.evaluators: evaluator.reset()
[ "statistics.mean", "torch.mul", "torch.topk", "numpy.argmax", "numpy.array", "numpy.sum", "torch.add", "collections.defaultdict", "torch.zeros_like" ]
[((904, 930), 'torch.topk', 'torch.topk', (['predictions', '(1)'], {}), '(predictions, 1)\n', (914, 930), False, 'import torch\n'), ((1160, 1186), 'torch.topk', 'torch.topk', (['predictions', 'k'], {}), '(predictions, k)\n', (1170, 1186), False, 'import torch\n'), ((1366, 1414), 'torch.zeros_like', 'torch.zeros_like', (['predictions'], {'dtype': 'torch.uint8'}), '(predictions, dtype=torch.uint8)\n', (1382, 1414), False, 'import torch\n'), ((4069, 4098), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (4092, 4098), False, 'import collections\n'), ((4128, 4157), 'collections.defaultdict', 'collections.defaultdict', (['dict'], {}), '(dict)\n', (4151, 4157), False, 'import collections\n'), ((6290, 6305), 'numpy.argmax', 'np.argmax', (['ious'], {}), '(ious)\n', (6299, 6305), True, 'import numpy as np\n'), ((7523, 7543), 'numpy.array', 'np.array', (['is_correct'], {}), '(is_correct)\n', (7531, 7543), True, 'import numpy as np\n'), ((7568, 7612), 'numpy.array', 'np.array', (['[p[1] for p in sorted_predictions]'], {}), '([p[1] for p in sorted_predictions])\n', (7576, 7612), True, 'import numpy as np\n'), ((8538, 8567), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (8561, 8567), False, 'import collections\n'), ((8597, 8626), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (8620, 8626), False, 'import collections\n'), ((8651, 8679), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (8674, 8679), False, 'import collections\n'), ((8386, 8410), 'statistics.mean', 'statistics.mean', (['all_aps'], {}), '(all_aps)\n', (8401, 8410), False, 'import statistics\n'), ((7878, 7896), 'numpy.sum', 'np.sum', (['is_correct'], {}), '(is_correct)\n', (7884, 7896), True, 'import numpy as np\n'), ((2595, 2632), 'torch.mul', 'torch.mul', (['(predictions > 0.5)', 'targets'], {}), '(predictions > 0.5, targets)\n', (2604, 2632), False, 'import torch\n'), ((2675, 2712), 'torch.add', 'torch.add', (['(predictions > 0.5)', 'targets'], {}), '(predictions > 0.5, targets)\n', (2684, 2712), False, 'import torch\n')]
""" This module exrtacts features from the data, saves the feauters from all measurements to global results file and creates one file for every sensor with all measurements. :copyright: (c) 2022 by <NAME>, Hochschule-Bonn-Rhein-Sieg :license: see LICENSE for more details. """ from pyexpat import features import pandas as pd from scipy.signal import chirp, find_peaks, peak_widths import matplotlib.pyplot as plt import numpy as np from pathlib import Path ###################################################################################################################### ## this class creates objects for every sensor and stores all measurment for this sensor ## class Sensor: """This is for creating objects for every sensor and stores the data from all measurements in this object. Sensor names are picked up in properties. One DataFrame for every sensor is created Args: properties (dictionary): properties is a dictionary with all parameters for evaluating the data """ def __init__(self, properties): """ constructor method """ df_dict = {} # dicht with df for each sensor, one for all measurments self.properties = properties for sensor in self.properties['sensors']: df_dict[sensor] = pd.DataFrame() self.df_dict = df_dict def add_item(self,df, name): # append data from measurement in global sensor df """This function sorts the passed DataFrame into those of the sensor object and names the respective columns with the name of the measurement. Args: df (pandas.DataFrame): The columns of the DataFrame should match those in the properties.json file. name (string): Measurement name """ sensors_to_delelte = [] for sensor in self.df_dict: try: self.df_dict[sensor][name] = df[sensor] except: print('no data for {0} in {1}'.format(sensor, name)) sensors_to_delelte.append(sensor) # deleting dataframes for sensors not included in measurements for del_sensor in sensors_to_delelte: del self.df_dict[del_sensor] print('deleting {} from results'.format(del_sensor)) def save_items(self, path): # save one file for every sensor with all measurements """This function saves all DataFrames contained in the sensor object, one file is saved per sensor. A folder "results" is created in the root folder where the files are stored. Args: path (string): Path to the folder in which the measurement folders are stored """ for sensor in self.df_dict: name = sensor + '_gesamt' save_df(self.df_dict[sensor], path, name) ###################################################################################################################### ## this class creates plots with all sensors for every measurement ## class Plot: """ This class creates plot objects. For each one, an image with all sensors of a measurement is created. Args: name (string): Name of the measurement size (int): Number of sensors to be plotted properties (dictionary): properties is a dictionary with all parameters for evaluating the data """ def __init__(self,name, size, properties): """ constructor method """ self.plot_properties = properties['plot_properties']['measurement_plot'] self.properties = properties self.fig, self.axs = plt.subplots(size, sharex=True, dpi=self.plot_properties['dpi'], figsize=self.plot_properties['size']) self.name = name self.i = 0 def add_subplot(self, sensor, df_corr, peak_properties, results_half, results_full, peaks): """This function assigns a subplot for the corresponding sensor to the plot object. Args: sensor (string): Name of the sensor df_corr (pandas.DataFrame): Dataframe with prepared data from measurement peak_properties (dictionary): peak_properties is a dictionary with data about extracted peaks results_half (numpy.array): Array with from measurement extracted feauters for the half peak results_full (numpy.array): Array with from measurement extracted feauters for the full peak peaks (numpy.array): Array with from measurement extracted feauters for detected peaks """ self.axs[self.i].plot(df_corr[sensor], color=self.properties['sensors'][sensor]['color']) ## print peaks in plot if peaks.size != 0: self.axs[self.i].plot(df_corr.index[peaks], df_corr[sensor][df_corr.index[peaks]], "x") self.axs[self.i].vlines(x=df_corr.index[peaks][0], ymin=df_corr[sensor][df_corr.index[peaks][0]] - peak_properties["prominences"], ymax=df_corr[sensor][df_corr.index[peaks][0]], color="C1") self.axs[self.i].hlines(y=peak_properties["width_heights"], xmin=df_corr.index[int(peak_properties["left_ips"])], xmax=df_corr.index[int(peak_properties["right_ips"])], color="C1") self.axs[self.i].hlines(y=results_full[1], xmin=df_corr.index[int(results_full[2])], xmax=df_corr.index[int(results_full[3])], color="C2") self.axs[self.i].hlines(y=results_half[1], xmin=df_corr.index[int(results_half[2])], xmax=df_corr.index[int(results_half[3])], color="C2") label = sensor + ' [V]' self.axs[self.i].set_ylabel(label, rotation=0, loc='top', fontsize = self.plot_properties['label_size']) self.axs[self.i].tick_params(axis='y', labelsize= self.plot_properties['font_size']) self.axs[self.i].grid() try: self.axs[self.i].set_yticks(np.arange(0,np.max(df_corr[sensor]),round(np.max(df_corr[sensor])/3, 2))) except: self.axs[self.i].set_yticks(np.arange(0,5,5/3)) self.i = self.i +1 def show_fig(self, path): """This function saves the created plot object in the folder "results\\plots\\single_measurements". Args: path (string): Path to the folder in which the measurement folders are stored """ self.axs[-1].set_xlabel("time [s]" , fontsize = self.plot_properties['label_size']) plt.xticks(fontsize=self.plot_properties['font_size']) self.axs[-1].get_shared_x_axes().join(*self.axs) self.fig.tight_layout() path = path + '\\results\\plots\\single_measurements' Path(path).mkdir(parents=True, exist_ok=True) path = path + '\\' + self.name + '.jpeg' self.fig.tight_layout() # plt.show() self.fig.savefig(path) plt.close(self.fig) def width_clip(x, threshold): """This function extracts the feauter "width clip", which calculates the length at which a signal is too large for the measuring range. Args: x (list): Time series from which the feature is to be extracted threshold (float): Value from which an exceeding of the measuring range is Return: width clip (float): Returns the length in which the signal is greater than the measuring range. """ x = x.tolist() flag = False list_peaks = [] start = 0 end = 0 for i in range(len(x)): if flag == False and x[i] > threshold: flag = True start = i elif flag == True and x[i] < threshold: flag = False end = i list_peaks.append(end-start) if len(list_peaks) == 0 or np.max(list_peaks) <= 4: return 0 else: return np.max(list_peaks) def running_mean(x): """This function calculates a moving average of a time series of data. Here N is the sample interval over which the smoothing takes place. Args: x (list): Time series to be smoothed Returns: smoothed data (list): Returns the smoothed data """ N = 20 # über wie viele Werte wird geglättet return np.convolve(x, np.ones((N,))/N)[(N-1):] def get_slope(x,t): """This function calculates the slope of a peak from exceeding the threshold to the maximum. Args: x (list): x Values from which the slope is to be determined t (list): time section from which the slope is to be determined Returns: slope (float): slope of the section """ end = 0 flag = False for i in range(len(x)-1): if flag == False: if x[i+1] > x[i]: pass else: end = i flag = True slope = (x[end]-x[0])/(t[end]-t[0]) return slope def evaluate_sensor(df, sensor, threshold): """This function calculates the slope of a peak from exceeding the threshold to the maximum. Args: df (pandas.DataFrame): DateFrame with all sensors from one measurement sensor (string): sensor to evaluate threshold (float): Value from which an exceeding of the measuring range is determined Return: peaks (numpy.array): extracted peaks properties (dictionary): properties of measurement results_half (numpy.array): extracted feauters from peak half results_full (numpy.array): extracted feauters from peak full result_dict (dictionary): dictionary with extracted feauters """ peaks, peak_properties = find_peaks(df[sensor], prominence=0, width=1, distance=20000, height=threshold) results_half = peak_widths(df[sensor], peaks, rel_height=0.5) results_full = peak_widths(df[sensor], peaks, rel_height=0.99) try: df_peak = pd.DataFrame(df[sensor].iloc[int(results_full[2]):int(results_full[3])]) except: pass # functions for feature extraction def get_peak(): return df.index[int(peaks[0])] def get_start(): return df.index[int(results_full[2])] def get_stop(): return df.index[int(results_full[3])] def get_width(): return df.index[int(results_full[3])] - df.index[int(results_full[2])] def get_width_half(): return df.index[int(results_half[3])] - df.index[int(results_half[2])] def get_height(): return df[sensor][df.index[int(peaks[0])]] def get_integral(): return np.trapz(df_peak[sensor] ,x=df_peak.index) def get_slope_2(): return get_slope(df_peak[sensor].tolist(), df_peak.index.tolist()) def get_width_clip(): return width_clip(df[sensor], 4.9) def get_width_heigth(): return (df.index[int(results_full[3])] - df.index[int(results_full[2])])/(df[sensor][df.index[int(peaks[0])]]) values = [get_peak, get_start, get_stop,get_width, get_width_half, get_height, get_integral, get_slope_2, get_width_clip, get_width_heigth] features = "peak[s] start[s] stop[s] width[s] width_half[s] height intetegral[Vs] slope[V/s] width_clip[s] width_heigth[s/V]".split() #build the json result for this measurement result_dict = {} for feature, value in zip(features,values): name = "{0}_{1} {2}".format(sensor, feature[:feature.find('[')], feature[feature.find('['):]) try: result_dict[name] = value() except: result_dict[name] = 0 return (peaks, peak_properties, results_half, results_full, result_dict) def cut_peakarea(df, sensor_to_cut,sensors_norm): """This function cuts out the sigbificant range of a measurement. A part from the maximum of the "sensor_to_cut" - "place_before_peak" to the maximum of the "sensor_to_cut" + "place_after_peak" is cut out. In addition, columns with the smoothed data of the corresponding sensors are added. Args: df (pandas.DataFrame): DateFrame with all sensors from one measurement sensor_to_cut (string): Sensor with which the time period is to be determined sensors_norm (list): List of sensors to be normalised Returns: df_corr (pandas.DataFrame): DataFrame with significant range of measurement with smoothed values """ place_before_peak = 1000 place_after_peak = 10000 step = 0.00001 len_signal = step * (place_after_peak + place_before_peak) # cuts the important part of the file, adds running mean col and ammount of signals try: # error = 1/0 index_sensor_to_cut_max = df[sensor_to_cut].idxmax(axis = 0) if index_sensor_to_cut_max <= place_before_peak: index_sensor_to_cut_max = place_before_peak elif index_sensor_to_cut_max >= (len(df.index)- place_after_peak): index_sensor_to_cut_max = len(df.index)- place_after_peak except: print('no maximum found') index_sensor_to_cut_max = len(df.index)//2 df_corr = df.iloc[index_sensor_to_cut_max - place_before_peak:index_sensor_to_cut_max + place_after_peak].apply(np.abs) df_corr['time [s]'] = np.arange(0, 0.11, 0.00001) for sensor in sensors_norm: df_corr[[sensor + '_nm']] = df_corr[[sensor]].apply(running_mean) df_corr.set_index('time [s]', inplace=True) return df_corr ## saving the result df ## def save_df(df, path, name): """This function saves a DataFrame to csv in the results folder. Param: df (pandas.DataFrame): DataFrame to save path (string): path to root directory of data name (string): Name under which the file is to be saved """ path = path + '\\results' Path(path).mkdir(parents=True, exist_ok=True) path = path + '\\' + name + '.csv' print(name + 'saved as ' + path) df.to_csv(path, sep=';', decimal=',', index = True) def read_file(path,decimal,name, path_out, object_raw, properties): """This function reads files of the raw data. The data is evaluated and features are extracted. A plot is created for each file. The function returns a dict with all extracted features Args: path (string): path to measurements file decimal (string): decimal of stored data name (string): name of the measurement path_out (string): path to save the figures object_raw (object): figure object for plotting measurement properties (dictionary): properties from properties json Returns: dict_result (dictionary): dictionary with all extracted feauters for a measurement """ sensors = properties['sensors'] path = path + path[path.rfind('\\'):] + '.txt' dict_result = {} df_measurement = pd.read_csv(path, delimiter='\t', decimal=decimal, dtype=float) df_corr = cut_peakarea(df_measurement, properties['sensor_to_cut'], properties['sensors_norm']) object_raw.add_item(df_corr, name) # adding data from measurement to df for each sensor including all measurements fig = Plot(name,len(df_corr.columns), properties) df_corr = df_corr.reindex(sorted(df_corr.columns), axis=1) for this_sensor in df_corr.columns: peaks, peak_properties, results_half, results_full, this_dict_result = evaluate_sensor(df_corr, this_sensor, sensors[this_sensor]['threshold']) dict_result.update(this_dict_result) fig.add_subplot(this_sensor, df_corr, peak_properties, results_half, results_full, peaks) fig.show_fig(path_out) return dict_result
[ "numpy.trapz", "numpy.ones", "pandas.read_csv", "matplotlib.pyplot.xticks", "pathlib.Path", "numpy.max", "matplotlib.pyplot.close", "scipy.signal.peak_widths", "scipy.signal.find_peaks", "pandas.DataFrame", "matplotlib.pyplot.subplots", "numpy.arange" ]
[((9673, 9752), 'scipy.signal.find_peaks', 'find_peaks', (['df[sensor]'], {'prominence': '(0)', 'width': '(1)', 'distance': '(20000)', 'height': 'threshold'}), '(df[sensor], prominence=0, width=1, distance=20000, height=threshold)\n', (9683, 9752), False, 'from scipy.signal import chirp, find_peaks, peak_widths\n'), ((9772, 9818), 'scipy.signal.peak_widths', 'peak_widths', (['df[sensor]', 'peaks'], {'rel_height': '(0.5)'}), '(df[sensor], peaks, rel_height=0.5)\n', (9783, 9818), False, 'from scipy.signal import chirp, find_peaks, peak_widths\n'), ((9838, 9885), 'scipy.signal.peak_widths', 'peak_widths', (['df[sensor]', 'peaks'], {'rel_height': '(0.99)'}), '(df[sensor], peaks, rel_height=0.99)\n', (9849, 9885), False, 'from scipy.signal import chirp, find_peaks, peak_widths\n'), ((13172, 13197), 'numpy.arange', 'np.arange', (['(0)', '(0.11)', '(1e-05)'], {}), '(0, 0.11, 1e-05)\n', (13181, 13197), True, 'import numpy as np\n'), ((14769, 14832), 'pandas.read_csv', 'pd.read_csv', (['path'], {'delimiter': '"""\t"""', 'decimal': 'decimal', 'dtype': 'float'}), "(path, delimiter='\\t', decimal=decimal, dtype=float)\n", (14780, 14832), True, 'import pandas as pd\n'), ((3601, 3708), 'matplotlib.pyplot.subplots', 'plt.subplots', (['size'], {'sharex': '(True)', 'dpi': "self.plot_properties['dpi']", 'figsize': "self.plot_properties['size']"}), "(size, sharex=True, dpi=self.plot_properties['dpi'], figsize=\n self.plot_properties['size'])\n", (3613, 3708), True, 'import matplotlib.pyplot as plt\n'), ((6463, 6517), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': "self.plot_properties['font_size']"}), "(fontsize=self.plot_properties['font_size'])\n", (6473, 6517), True, 'import matplotlib.pyplot as plt\n'), ((6873, 6892), 'matplotlib.pyplot.close', 'plt.close', (['self.fig'], {}), '(self.fig)\n', (6882, 6892), True, 'import matplotlib.pyplot as plt\n'), ((7825, 7843), 'numpy.max', 'np.max', (['list_peaks'], {}), '(list_peaks)\n', (7831, 7843), True, 'import numpy as np\n'), ((10559, 10601), 'numpy.trapz', 'np.trapz', (['df_peak[sensor]'], {'x': 'df_peak.index'}), '(df_peak[sensor], x=df_peak.index)\n', (10567, 10601), True, 'import numpy as np\n'), ((1296, 1310), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1308, 1310), True, 'import pandas as pd\n'), ((7758, 7776), 'numpy.max', 'np.max', (['list_peaks'], {}), '(list_peaks)\n', (7764, 7776), True, 'import numpy as np\n'), ((13741, 13751), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (13745, 13751), False, 'from pathlib import Path\n'), ((6677, 6687), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (6681, 6687), False, 'from pathlib import Path\n'), ((8247, 8260), 'numpy.ones', 'np.ones', (['(N,)'], {}), '((N,))\n', (8254, 8260), True, 'import numpy as np\n'), ((5942, 5965), 'numpy.max', 'np.max', (['df_corr[sensor]'], {}), '(df_corr[sensor])\n', (5948, 5965), True, 'import numpy as np\n'), ((6060, 6082), 'numpy.arange', 'np.arange', (['(0)', '(5)', '(5 / 3)'], {}), '(0, 5, 5 / 3)\n', (6069, 6082), True, 'import numpy as np\n'), ((5972, 5995), 'numpy.max', 'np.max', (['df_corr[sensor]'], {}), '(df_corr[sensor])\n', (5978, 5995), True, 'import numpy as np\n')]
import krippendorff import pandas as pd import numpy as np from . import utils def r_to_z(r): return np.arctanh(r) def z_to_r(z): return np.tanh(z) def confidence_interval(r, conf_level=95, stat=np.mean): z = r_to_z(r) ci = utils.bootstrap_ci(z, stat=stat, conf_level=conf_level) ci = z_to_r(ci) return pd.Series({'lo': ci[0], 'hi': ci[1]}) def average(r): return z_to_r(np.mean(r_to_z(r))) def krippendorffs_alpha(data, level_of_measurement='ratio'): return krippendorff.alpha(reliability_data=data, level_of_measurement=level_of_measurement)
[ "numpy.arctanh", "pandas.Series", "numpy.tanh", "krippendorff.alpha" ]
[((107, 120), 'numpy.arctanh', 'np.arctanh', (['r'], {}), '(r)\n', (117, 120), True, 'import numpy as np\n'), ((149, 159), 'numpy.tanh', 'np.tanh', (['z'], {}), '(z)\n', (156, 159), True, 'import numpy as np\n'), ((334, 371), 'pandas.Series', 'pd.Series', (["{'lo': ci[0], 'hi': ci[1]}"], {}), "({'lo': ci[0], 'hi': ci[1]})\n", (343, 371), True, 'import pandas as pd\n'), ((504, 593), 'krippendorff.alpha', 'krippendorff.alpha', ([], {'reliability_data': 'data', 'level_of_measurement': 'level_of_measurement'}), '(reliability_data=data, level_of_measurement=\n level_of_measurement)\n', (522, 593), False, 'import krippendorff\n')]
import numpy as np #we use numpy alot def main(): i = 0 #declare i = 0 n = 10 #declare n = 10 x = 119.0 #float x, these have a . #we can use numpy to quickly make arrays y = np.zeros(n, dtype=float) #declares 10 zeros #we can use for loops to iterate through a variable for i in range(n): #i in range [0, n-1] y[i] = 2.0 * float(i) + 1.0 #set y = 2i+1 as floats for y_element in y: print(y_element) if __name__ == "__main__": main()
[ "numpy.zeros" ]
[((189, 213), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': 'float'}), '(n, dtype=float)\n', (197, 213), True, 'import numpy as np\n')]
import numpy as np import matplotlib as plt from collections import Counter from math import log import sys import time class ListQueue: def __init__(self, capacity): self.__capacity = capacity self.__data = [None] * self.__capacity self.__size = 0 self.__front = 0 self.__end = 0 def __len__(self): return self.__size def is_empty(self): return self.__size == 0 def first(self): if self.is_empty(): print('Queue is empty.') else: return self.__data[self.__front] def dequeue(self): if self.is_empty(): print('Queue is empty.') return None answer = self.__data[self.__front] self.__data[self.__front] = None self.__front = (self.__front + 1) % self.__capacity self.__size -= 1 return answer def enqueue(self, e): if self.__size == self.__capacity: print('The queue is full.') return None self.__data[self.__end] = e self.__end = (self.__end + 1) % self.__capacity self.__size += 1 def __str__(self): return str(self.__data) def __repr__(self): return str(self) class TreeNode(): """树结点""" def __init__(self, feature_idx=None, feature_val=None, feature_name=None, node_val=None, child=None): """ feature_idx: 该结点对应的划分特征索引 feature_val: 划分特征对应的值 二叉树 所以这里的value应该是一个特定的值 feature_name: 划分特征名 node_val: 该结点存储的值,**只有叶结点才存储类别** child: 子树 """ self._feature_idx = feature_idx self._feature_val = feature_val self._feature_name = feature_name # 叶结点存储类别 self._node_val = node_val # 非叶结点存储划分信息 self._child = child def DFSearch(self): if self._child != None: print(self._feature_name) print(self._feature_val) if self._child is None: print(self._node_val) return else: if self._child[0] is not None: self._child[0].DFSearch() if self._child[1] is not None: self._child[1].DFSearch() def BFSearch(self): q = ListQueue(2000) q.enqueue(self) while q.is_empty() is False: cNode = q.dequeue() if cNode._child is not None: q.enqueue(cNode._child[0]) q.enqueue(cNode._child[1]) if cNode._feature_name is not None and cNode._feature_val is not None: print(cNode._feature_name) print(cNode._feature_val) elif cNode._node_val is not None: print(cNode._node_val) class DecisionTreeScratch(): """决策树算法Scratch实现""" def __init__(self, feature_name, etype="gain"): """ feature_name: 每列特征名 etype: 可取值有 gain: 使用信息增益 ratio: 使用信息增益比 gini: 使用基尼系数 """ self._root = None self._fea_name = feature_name self._etype = etype def _build_tree(self, X, y): """ 构建树 X: 用于构建子树的数据集 y: X对应的标签 """ # 子树只剩下一个类别时直接置为叶结点 if np.unique(y).shape[0] == 1: return TreeNode(node_val=y[0]) max_gain, max_fea_idx, fea_val = self.try_split( X, y, choice=self._etype) feature_name = self._fea_name[max_fea_idx] child_tree = dict() # 遍历所选特征每一个可能的值,对每一个值构建子树 # 该子树对应的数据集和标签 child_X_l = X[X[:, max_fea_idx] <= fea_val] child_y_l = y[X[:, max_fea_idx] <= fea_val] child_X_r = X[X[:, max_fea_idx] > fea_val] child_y_r = y[X[:, max_fea_idx] > fea_val] # 构建子树 child_tree[0] = self._build_tree(child_X_l, child_y_l) child_tree[1] = self._build_tree(child_X_r, child_y_r) return TreeNode(max_fea_idx, feature_name=feature_name, child=child_tree, feature_val=fea_val) def get_entropy(self, y): """ 计算熵 y: 数据集标签 """ entropy = 0 # 计算每个类别的数量 num_ck = np.unique(y, return_counts=True) for i in range(len(num_ck[0])): p = num_ck[1][i] / len(y) entropy -= p * np.log2(p) return entropy def get_conditional_entropy(self, x, y, value): """ 计算条件熵 x: 数据集的某个特征对应的列向量,训练集中一行表示一个样本,列表示特征 y: 数据集标签 """ cond_entropy = 0 X_l, X_r, y_l, y_r = self.split( x.reshape(x.shape[0], 1), y, 0, value=value) sub_entropy1 = self.get_entropy(y_l) sub_entropy2 = self.get_entropy(y_r) p1 = len(y_l) / len(y) p2 = len(y_r) / len(y) cond_entropy = p1*sub_entropy1 + p2*sub_entropy2 return cond_entropy def get_gain(self, x, y, value): """ 计算信息增益 x: 数据集的某个特征对应的列向量,训练集中一行表示一个样本,列表示特征 y: 数据集标签 """ return self.get_entropy(y) - self.get_conditional_entropy(x, y, value=value) def get_gain_ration(self, x, y, value): """ 计算信息增益比 x: 数据集的某个特征对应的列向量,训练集中一行表示一个样本,列表示特征 y: 数据集标签 """ m = self.get_gain(x, y, value=value) n = self.get_entropy(x) if n != 0: return m/n else: return 0 def split(self, X, y, d, value): index_a = (X[:, d] <= value) index_b = (X[:, d] > value) return X[index_a], X[index_b], y[index_a], y[index_b] def gini(self, y): counter = Counter(y) res = 1.0 for num in counter.values(): p = num/len(y) res -= p**2 return res def try_split(self, X, y, choice=None): best_g = -np.inf if choice == 'gini': best_g = np.inf best_d, best_v = -1, -1 for d in range(X.shape[1]): sorted_index = np.argsort(X[:, d]) for i in range(1, len(X)): if X[sorted_index[i-1], d] != X[sorted_index[i], d]: v = (X[sorted_index[i-1], d]+X[sorted_index[i], d])/2 x_l, x_r, y_l, y_r = self.split(X, y, d, v) length = len(y_l) + len(y_r) if choice == 'gini': g = len(y_l)/length*self.gini(y_l) + \ len(y_r)/length*self.gini(y_r) if g < best_g: best_g, best_d, best_v = g, d, v elif choice == 'gain': g = self.get_gain(X[:, d], y, value=v) if g > best_g: best_g, best_v, best_d = g, v, d else: g = self.get_gain_ration(X[:, d], y, value=v) if g > best_g: best_g, best_v, best_d = g, v, d return best_g, best_d, best_v if __name__ == '__main__': data = np.genfromtxt('train.csv', dtype=np.float64, encoding='utf-8-sig', delimiter=',') X = data[1:51, :-2] y = data[1:51, -1] tree = DecisionTreeScratch(etype='ratio', feature_name=np.array(['fixed acidity', ' volatile acidity', ' citric acid', ' residual sugar', ' chlorides', ' free sulfur dioxide', ' total sulfur dioxide', ' density', ' pH', ' sulphates', ' alcohol', ' quality', 'result'])) root = tree._build_tree(X, y) root.DFSearch() root.BFSearch()
[ "numpy.unique", "collections.Counter", "numpy.argsort", "numpy.array", "numpy.log2", "numpy.genfromtxt" ]
[((7410, 7495), 'numpy.genfromtxt', 'np.genfromtxt', (['"""train.csv"""'], {'dtype': 'np.float64', 'encoding': '"""utf-8-sig"""', 'delimiter': '""","""'}), "('train.csv', dtype=np.float64, encoding='utf-8-sig',\n delimiter=',')\n", (7423, 7495), True, 'import numpy as np\n'), ((4406, 4438), 'numpy.unique', 'np.unique', (['y'], {'return_counts': '(True)'}), '(y, return_counts=True)\n', (4415, 4438), True, 'import numpy as np\n'), ((5958, 5968), 'collections.Counter', 'Counter', (['y'], {}), '(y)\n', (5965, 5968), False, 'from collections import Counter\n'), ((6329, 6348), 'numpy.argsort', 'np.argsort', (['X[:, d]'], {}), '(X[:, d])\n', (6339, 6348), True, 'import numpy as np\n'), ((7627, 7852), 'numpy.array', 'np.array', (["['fixed acidity', ' volatile acidity', ' citric acid', ' residual sugar',\n ' chlorides', ' free sulfur dioxide', ' total sulfur dioxide',\n ' density', ' pH', ' sulphates', ' alcohol', ' quality', 'result']"], {}), "(['fixed acidity', ' volatile acidity', ' citric acid',\n ' residual sugar', ' chlorides', ' free sulfur dioxide',\n ' total sulfur dioxide', ' density', ' pH', ' sulphates', ' alcohol',\n ' quality', 'result'])\n", (7635, 7852), True, 'import numpy as np\n'), ((4547, 4557), 'numpy.log2', 'np.log2', (['p'], {}), '(p)\n', (4554, 4557), True, 'import numpy as np\n'), ((3476, 3488), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (3485, 3488), True, 'import numpy as np\n')]
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/always-newbie161/probml-notebooks/blob/jax_vdvae/notebooks/vdvae_jax_cifar_demo.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="cTSe7I6g45v8" # This notebook shows demo working with vdvae in jax and the code used is from [vdvae-jax](https://github.com/j-towns/vdvae-jax) from [<NAME>](https://j-towns.github.io/) # + [markdown] id="PxtpxTPEMS4C" # ## Setup # + id="ipHVirxUHTDJ" from google.colab import auth auth.authenticate_user() # + colab={"base_uri": "https://localhost:8080/"} id="Z6gM2ytSHnO0" outputId="3e63de9d-6808-4cd9-eb1f-08996a6a7fed" project_id = 'probml' # !gcloud config set project {project_id} # + id="a3__DVx74sso" colab={"base_uri": "https://localhost:8080/", "height": 52} outputId="579bc832-9028-49f3-c164-c426d32f66a6" ''' this should be the format of the checkpoint filetree: checkpoint_path >> model(optimizer)_checkpoint_file. checkpoint_path_ema >> ema_checkpoint_file ''' checkpoint_path='/content/vdvae_cifar10_2.86/latest_cifar10' # checkpoints are downloaded at these paths. # vdvae_cifar10_2.86/latest_cifar10 - optimizer+mode # vdvae_cifar10_2.86/latest_cifar10_ema - ema_params' # + id="4_RnWXhwIV85" colab={"base_uri": "https://localhost:8080/"} cellView="form" outputId="de8dedaf-bdd3-4fb7-99ee-7cfe96229d1c" #@title Download checkpoints # !gsutil cp -r gs://gsoc_bucket/vdvae_cifar10_2.86 ./ # !ls -l /content/vdvae_cifar10_2.86/latest_cifar10 # !ls -l /content/vdvae_cifar10_2.86/latest_cifar10_ema # + colab={"base_uri": "https://localhost:8080/"} id="z3fThb8PIYHG" outputId="8406f5b2-cb50-42f5-aa78-4dc4f85afb02" # !git clone https://github.com/j-towns/vdvae-jax.git # + colab={"base_uri": "https://localhost:8080/"} id="053XPypoMobJ" outputId="0e415f07-00a4-4815-c2c5-288236ac2c98" # %cd vdvae-jax # + colab={"base_uri": "https://localhost:8080/"} id="X1hY6VqmNApP" outputId="41014f01-32bf-4377-85e5-e18328d2161a" # !pip install --quiet flax # + id="y013geSvWQUg" import os try: os.environ['COLAB_TPU_ADDR'] import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() except: pass # + colab={"base_uri": "https://localhost:8080/"} id="XDzBF1uZXOlu" outputId="929c368c-4610-49b0-bc94-76b891bc9b0e" import jax jax.local_devices() # + [markdown] id="KrFas8alNwJ0" # ## Model # (for cifar10) # + [markdown] id="4Mr89HhnTbaF" # ### Setting up hyperparams # + id="B0QZ6aKoP08z" from hps import HPARAMS_REGISTRY, Hyperparams, add_vae_arguments from train_helpers import setup_save_dirs import argparse import dataclasses H = Hyperparams() parser = argparse.ArgumentParser() parser = add_vae_arguments(parser) parser.set_defaults(hps= 'cifar10',conv_precision='highest') H = dataclasses.replace(H, **vars(parser.parse_args([]))) hparam_sets = [x for x in H.hps.split(',') if x] for hp_set in hparam_sets: hps = HPARAMS_REGISTRY[hp_set] parser.set_defaults(**hps) H = dataclasses.replace(H, **vars(parser.parse_args([]))) H = setup_save_dirs(H) # + [markdown] id="NisrtOPlfmef" # This model is a hierarchical model with multiple stochastic blocks with multiple deterministic layers. You can know about model skeleton by observing the encoder and decoder "strings" # # **How to understand the string:** # * blocks are comma seperated # * `axb` implies there are `b` res blocks(set of Conv layers) for dimensions `axa` # * `amb` implies it is a mixin block which increases the inter-image dims from `a` to `b` using **nearest neighbour upsampling** (used in decoder) # * `adb` implies it's a block with avg-pooling layer which reduces the dims from `a` to `b`(used in encoder) # # for more understanding refer to this [paper](https://arxiv.org/abs/2011.10650) # # # + colab={"base_uri": "https://localhost:8080/"} id="-OyvG1KbP2qT" outputId="bc0a16e1-0cbb-4951-c5ef-e8310bc9deb4" hparams = dataclasses.asdict(H) for k in ['enc_blocks','dec_blocks','zdim','n_batch','device_count']: print(f'{k}:{hparams[k]}') # + id="FGD3wwRxvF3Y" from utils import logger from jax.interpreters.xla import DeviceArray log = logger(H.logdir) if H.log_wandb: import wandb def logprint(*args, pprint=False, **kwargs): if len(args) > 0: log(*args) wandb.log({k: np.array(x) if type(x) is DeviceArray else x for k, x in kwargs.items()}) wandb.init(config=dataclasses.asdict(H)) else: logprint = log # + colab={"base_uri": "https://localhost:8080/"} id="cABtXQvqSG2Z" outputId="2c43dea8-4c53-44cc-dd91-0c7577d07a7e" import numpy as np from jax import lax import torch import imageio from PIL import Image import glob from torch.utils.data import DataLoader from torchvision import transforms np.random.seed(H.seed) torch.manual_seed(H.seed) H = dataclasses.replace( H, conv_precision = {'default': lax.Precision.DEFAULT, 'high': lax.Precision.HIGH, 'highest': lax.Precision.HIGHEST}[H.conv_precision], seed_init =H.seed, seed_sample=H.seed + 1, seed_train =H.seed + 2 + H.host_id, seed_eval =H.seed + 2 + H.host_count + H.host_id, ) print('training model on ', H.dataset) # + [markdown] id="Gs8bNNXpTMxZ" # ### Downloading cifar10 dataset # + colab={"base_uri": "https://localhost:8080/"} id="4An20_C-SvCT" outputId="023f5c9a-87fd-4ad8-abc3-0945b9fe4374" # !./setup_cifar10.sh # + [markdown] id="Js-LK-vojdSw" # ### Setting up the model, data and the preprocess fn. # + id="AylLXttfTSca" from data import set_up_data H, data_train, data_valid_or_test, preprocess_fn = set_up_data(H) # + colab={"base_uri": "https://localhost:8080/"} id="GWsr1xszZ_te" outputId="a5ba8d4e-b088-46ec-ac31-b4fbd250618d" from train_helpers import load_vaes H = dataclasses.replace(H, restore_path=checkpoint_path) optimizer, ema_params, start_epoch = load_vaes(H, logprint) # + colab={"base_uri": "https://localhost:8080/"} id="PEH8BtbmaK4O" outputId="f32e3fa2-746e-404b-bbae-aaca80078568" start_epoch # no.of.epochs trained # + colab={"base_uri": "https://localhost:8080/"} id="9nAJ3EGLICEh" outputId="6a47c0b6-aaf0-45a3-8a1c-b0c6bb6b3d40" # Hparams for the current model hparams = dataclasses.asdict(H) for i, k in enumerate(sorted(hparams)): logprint(f'type=hparam, key={k}, value={getattr(H, k)}') # + [markdown] id="HS2o9uFqjgyv" # ### Evaluation # + colab={"base_uri": "https://localhost:8080/"} id="jhiF_NjEuWQv" outputId="b0d88a47-5af0-4452-d1c0-88d90ef1a71e" from train import run_test_eval run_test_eval(H, ema_params, data_valid_or_test, preprocess_fn, logprint) # + [markdown] id="tppWoc_hypdn" # ### Function to save and show of batch of images given as a numpy array. # # # + id="AJbKzeuzzGcS" def zoom_in(fname, shape): im = Image.open(fname) resized_im = im.resize(shape) resized_im.save(fname) def save_n_show(images, order, image_shape, fname, zoom=True, show=False): n_rows, n_images = order im = images.reshape((n_rows, n_images, *image_shape))\ .transpose([0, 2, 1, 3, 4])\ .reshape([n_rows * image_shape[0], n_images * image_shape[1], 3]) print(f'printing samples to {fname}') imageio.imwrite(fname, im) if zoom: zoom_in(fname, (640, 64)) # w=640, h=64 if show: display(Image.open(fname)) # + [markdown] id="9TlNptkdd5ME" # ## Generations # + id="EcnvaTn3iJfo" n_images = 10 num_temperatures = 3 image_shape = [H.image_size,H.image_size,H.image_channels] H = dataclasses.replace(H, num_images_visualize=n_images, num_temperatures_visualize=num_temperatures) # + [markdown] id="LDHUzIgBbjuX" # Images will be saved in the following dir # + colab={"base_uri": "https://localhost:8080/", "height": 0} id="EhJ17q1dfSNu" outputId="fb923dee-dc4d-4e68-e2c5-20f3f41874c1" H.save_dir # + [markdown] id="Xm_BYJYjiuzt" # As the model params are replicated over multiple devices, unreplicated copy of them is made to use it for sampling and generations. # + id="VJbqZRxWilR9" from jax import random from vae import VAE from flax import jax_utils from functools import partial rng = random.PRNGKey(H.seed_sample) ema_apply = partial(VAE(H).apply,{'params': jax_utils.unreplicate(ema_params)}) forward_uncond_samples = partial(ema_apply, method=VAE(H).forward_uncond_samples) # + colab={"base_uri": "https://localhost:8080/"} id="XF5dvNqeRcIC" outputId="477884a0-d016-43c3-96ac-26b3cfd65d55" temperatures = [1.0, 0.9, 0.8, 0.7] for t in temperatures[:H.num_temperatures_visualize]: im = forward_uncond_samples(n_images, rng, t=t) im = np.asarray(im) save_n_show(im, [1,n_images], image_shape, f'{H.save_dir}/generations-tem-{t}.png') # + colab={"base_uri": "https://localhost:8080/", "height": 0} id="RdypV3PJfyfN" outputId="bc5042cf-54c7-4380-e2f2-d36ab4951d65" for t in temperatures[:H.num_temperatures_visualize]: print("="*25) print(f"Generation of {n_images} new images for t={t}") print("="*25) fname = f'{H.save_dir}/generations-tem-{t}.png' display(Image.open(fname)) # + [markdown] id="89M1-l8Ogd2k" # ## Reconstructions # + id="014yXaJfgfhq" n_images = 10 image_shape = [H.image_size,H.image_size,H.image_channels] # + [markdown] id="z5xtClDEYTI-" # Preprocessing images before getting the latents # + id="81EExYe0glPu" from train import get_sample_for_visualization viz_batch_original, viz_batch_processed = get_sample_for_visualization( data_valid_or_test, preprocess_fn, n_images, H.dataset) # + [markdown] id="eDENCERSiMm6" # Getting the partial functions from the model methods # + id="vPpzIoM_hQHK" forward_get_latents = partial(ema_apply, method=VAE(H).forward_get_latents) forward_samples_set_latents = partial( ema_apply, method=VAE(H).forward_samples_set_latents) # + [markdown] id="AnNFN7S7YZe1" # Getting latents of different levels. # + id="nt2_Zjqlha1U" zs = [s['z'] for s in forward_get_latents(viz_batch_processed, rng)] # + [markdown] id="7RA8e6qJYcqF" # No of latent observations used depends on `H.num_variables_visualize `, altering it gives different resolutions of the reconstructions. # + id="ThgwoF6ihe9e" recons = [] lv_points = np.floor(np.linspace(0, 1, H.num_variables_visualize + 2) * len(zs)).astype(int)[1:-1] for i in lv_points: recons.append(forward_samples_set_latents(n_images, zs[:i], rng, t=0.1)) # + [markdown] id="iawVwy7XYp9Z" # Original Images # + colab={"base_uri": "https://localhost:8080/", "height": 115} id="ih0D1sfRhy6F" outputId="8696bbaf-2a7c-4d89-9d7d-ebea19d37e7a" orig_im = np.array(viz_batch_original) print("Original test images") save_n_show(orig_im, [1, n_images], image_shape, f'{H.save_dir}/orig_test.png', show=True) # + [markdown] id="vbFgprJuYr7R" # Reconstructions. # + colab={"base_uri": "https://localhost:8080/", "height": 809} id="Ol7rNCgfh57R" outputId="e8d562cf-206e-42ae-a84b-5a5fd02489e8" for i,r in enumerate(recons): r = np.array(r) print("="*25) print(f"Generation of {n_images} new images for {i+1}x resolution") print("="*25) fname = f'{H.save_dir}/recon_test-res-{i+1}x.png' save_n_show(r, [1, n_images], image_shape, fname, show=True)
[ "hps.Hyperparams", "jax.local_devices", "google.colab.auth.authenticate_user", "numpy.array", "data.set_up_data", "train_helpers.setup_save_dirs", "train.get_sample_for_visualization", "jax.random.PRNGKey", "dataclasses.asdict", "argparse.ArgumentParser", "numpy.asarray", "flax.jax_utils.unreplicate", "numpy.linspace", "numpy.random.seed", "train.run_test_eval", "jax.tools.colab_tpu.setup_tpu", "vae.VAE", "utils.logger", "dataclasses.replace", "train_helpers.load_vaes", "torch.manual_seed", "PIL.Image.open", "imageio.imwrite", "hps.add_vae_arguments" ]
[((849, 873), 'google.colab.auth.authenticate_user', 'auth.authenticate_user', ([], {}), '()\n', (871, 873), False, 'from google.colab import auth\n'), ((2613, 2632), 'jax.local_devices', 'jax.local_devices', ([], {}), '()\n', (2630, 2632), False, 'import jax\n'), ((2927, 2940), 'hps.Hyperparams', 'Hyperparams', ([], {}), '()\n', (2938, 2940), False, 'from hps import HPARAMS_REGISTRY, Hyperparams, add_vae_arguments\n'), ((2950, 2975), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2973, 2975), False, 'import argparse\n'), ((2985, 3010), 'hps.add_vae_arguments', 'add_vae_arguments', (['parser'], {}), '(parser)\n', (3002, 3010), False, 'from hps import HPARAMS_REGISTRY, Hyperparams, add_vae_arguments\n'), ((3337, 3355), 'train_helpers.setup_save_dirs', 'setup_save_dirs', (['H'], {}), '(H)\n', (3352, 3355), False, 'from train_helpers import setup_save_dirs\n'), ((4207, 4228), 'dataclasses.asdict', 'dataclasses.asdict', (['H'], {}), '(H)\n', (4225, 4228), False, 'import dataclasses\n'), ((4427, 4443), 'utils.logger', 'logger', (['H.logdir'], {}), '(H.logdir)\n', (4433, 4443), False, 'from utils import logger\n'), ((5020, 5042), 'numpy.random.seed', 'np.random.seed', (['H.seed'], {}), '(H.seed)\n', (5034, 5042), True, 'import numpy as np\n'), ((5043, 5068), 'torch.manual_seed', 'torch.manual_seed', (['H.seed'], {}), '(H.seed)\n', (5060, 5068), False, 'import torch\n'), ((5073, 5366), 'dataclasses.replace', 'dataclasses.replace', (['H'], {'conv_precision': "{'default': lax.Precision.DEFAULT, 'high': lax.Precision.HIGH, 'highest':\n lax.Precision.HIGHEST}[H.conv_precision]", 'seed_init': 'H.seed', 'seed_sample': '(H.seed + 1)', 'seed_train': '(H.seed + 2 + H.host_id)', 'seed_eval': '(H.seed + 2 + H.host_count + H.host_id)'}), "(H, conv_precision={'default': lax.Precision.DEFAULT,\n 'high': lax.Precision.HIGH, 'highest': lax.Precision.HIGHEST}[H.\n conv_precision], seed_init=H.seed, seed_sample=H.seed + 1, seed_train=H\n .seed + 2 + H.host_id, seed_eval=H.seed + 2 + H.host_count + H.host_id)\n", (5092, 5366), False, 'import dataclasses\n'), ((5902, 5916), 'data.set_up_data', 'set_up_data', (['H'], {}), '(H)\n', (5913, 5916), False, 'from data import set_up_data\n'), ((6074, 6126), 'dataclasses.replace', 'dataclasses.replace', (['H'], {'restore_path': 'checkpoint_path'}), '(H, restore_path=checkpoint_path)\n', (6093, 6126), False, 'import dataclasses\n'), ((6164, 6186), 'train_helpers.load_vaes', 'load_vaes', (['H', 'logprint'], {}), '(H, logprint)\n', (6173, 6186), False, 'from train_helpers import load_vaes\n'), ((6498, 6519), 'dataclasses.asdict', 'dataclasses.asdict', (['H'], {}), '(H)\n', (6516, 6519), False, 'import dataclasses\n'), ((6821, 6894), 'train.run_test_eval', 'run_test_eval', (['H', 'ema_params', 'data_valid_or_test', 'preprocess_fn', 'logprint'], {}), '(H, ema_params, data_valid_or_test, preprocess_fn, logprint)\n', (6834, 6894), False, 'from train import run_test_eval\n'), ((7779, 7881), 'dataclasses.replace', 'dataclasses.replace', (['H'], {'num_images_visualize': 'n_images', 'num_temperatures_visualize': 'num_temperatures'}), '(H, num_images_visualize=n_images,\n num_temperatures_visualize=num_temperatures)\n', (7798, 7881), False, 'import dataclasses\n'), ((8395, 8424), 'jax.random.PRNGKey', 'random.PRNGKey', (['H.seed_sample'], {}), '(H.seed_sample)\n', (8409, 8424), False, 'from jax import random\n'), ((9661, 9750), 'train.get_sample_for_visualization', 'get_sample_for_visualization', (['data_valid_or_test', 'preprocess_fn', 'n_images', 'H.dataset'], {}), '(data_valid_or_test, preprocess_fn, n_images, H\n .dataset)\n', (9689, 9750), False, 'from train import get_sample_for_visualization\n'), ((10804, 10832), 'numpy.array', 'np.array', (['viz_batch_original'], {}), '(viz_batch_original)\n', (10812, 10832), True, 'import numpy as np\n'), ((2438, 2469), 'jax.tools.colab_tpu.setup_tpu', 'jax.tools.colab_tpu.setup_tpu', ([], {}), '()\n', (2467, 2469), False, 'import jax\n'), ((7066, 7083), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (7076, 7083), False, 'from PIL import Image\n'), ((7479, 7505), 'imageio.imwrite', 'imageio.imwrite', (['fname', 'im'], {}), '(fname, im)\n', (7494, 7505), False, 'import imageio\n'), ((8857, 8871), 'numpy.asarray', 'np.asarray', (['im'], {}), '(im)\n', (8867, 8871), True, 'import numpy as np\n'), ((11175, 11186), 'numpy.array', 'np.array', (['r'], {}), '(r)\n', (11183, 11186), True, 'import numpy as np\n'), ((8446, 8452), 'vae.VAE', 'VAE', (['H'], {}), '(H)\n', (8449, 8452), False, 'from vae import VAE\n'), ((8470, 8503), 'flax.jax_utils.unreplicate', 'jax_utils.unreplicate', (['ema_params'], {}), '(ema_params)\n', (8491, 8503), False, 'from flax import jax_utils\n'), ((9294, 9311), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (9304, 9311), False, 'from PIL import Image\n'), ((4677, 4698), 'dataclasses.asdict', 'dataclasses.asdict', (['H'], {}), '(H)\n', (4695, 4698), False, 'import dataclasses\n'), ((7586, 7603), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (7596, 7603), False, 'from PIL import Image\n'), ((8558, 8564), 'vae.VAE', 'VAE', (['H'], {}), '(H)\n', (8561, 8564), False, 'from vae import VAE\n'), ((9915, 9921), 'vae.VAE', 'VAE', (['H'], {}), '(H)\n', (9918, 9921), False, 'from vae import VAE\n'), ((10008, 10014), 'vae.VAE', 'VAE', (['H'], {}), '(H)\n', (10011, 10014), False, 'from vae import VAE\n'), ((4581, 4592), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (4589, 4592), True, 'import numpy as np\n'), ((10437, 10485), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(H.num_variables_visualize + 2)'], {}), '(0, 1, H.num_variables_visualize + 2)\n', (10448, 10485), True, 'import numpy as np\n')]
"""Performs face alignment and stores face thumbnails in the output directory.""" # MIT License # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from scipy import misc import sys import os import argparse import tensorflow as tf import numpy as np import facenet import align.detect_face import random from time import sleep def main(curr_dir, pnet, rnet, onet, image_path, margin=32, image_size=160, detect_multiple_faces=False): minsize = 20 # minimum size of face threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold factor = 0.709 # scale factor files = [] filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(curr_dir, filename+'_face.jpg') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim<2: print('Unable to align "%s"' % image_path) return 0 if img.ndim == 2: img = facenet.to_rgb(img) img = img[:,:,0:3] bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces>0: det = bounding_boxes[:,0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces>1: if detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1]) img_center = img_size / 2 offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets,2.0),0) index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering det_arr.append(det[index,:]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-margin/2, 0) bb[1] = np.maximum(det[1]-margin/2, 0) bb[2] = np.minimum(det[2]+margin/2, img_size[1]) bb[3] = np.minimum(det[3]+margin/2, img_size[0]) cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear') filename_base, file_extension = os.path.splitext(output_filename) if detect_multiple_faces: output_filename_n = "{}_{}{}".format(filename_base, i, file_extension) else: output_filename_n = "{}{}".format(filename_base, file_extension) files.append(output_filename_n) misc.imsave(output_filename_n, scaled) else: print('Unable to align "%s"' % image_path) return 0 return files
[ "os.path.exists", "numpy.minimum", "numpy.power", "scipy.misc.imsave", "os.path.join", "numpy.asarray", "os.path.splitext", "os.path.split", "numpy.squeeze", "numpy.argmax", "scipy.misc.imread", "numpy.zeros", "numpy.vstack", "scipy.misc.imresize", "numpy.maximum", "facenet.to_rgb" ]
[((1824, 1870), 'os.path.join', 'os.path.join', (['curr_dir', "(filename + '_face.jpg')"], {}), "(curr_dir, filename + '_face.jpg')\n", (1836, 1870), False, 'import os\n'), ((1902, 1933), 'os.path.exists', 'os.path.exists', (['output_filename'], {}), '(output_filename)\n', (1916, 1933), False, 'import os\n'), ((1966, 1989), 'scipy.misc.imread', 'misc.imread', (['image_path'], {}), '(image_path)\n', (1977, 1989), False, 'from scipy import misc\n'), ((1769, 1794), 'os.path.split', 'os.path.split', (['image_path'], {}), '(image_path)\n', (1782, 1794), False, 'import os\n'), ((2312, 2331), 'facenet.to_rgb', 'facenet.to_rgb', (['img'], {}), '(img)\n', (2326, 2331), False, 'import facenet\n'), ((2655, 2676), 'numpy.asarray', 'np.asarray', (['img.shape'], {}), '(img.shape)\n', (2665, 2676), True, 'import numpy as np\n'), ((3562, 3577), 'numpy.squeeze', 'np.squeeze', (['det'], {}), '(det)\n', (3572, 3577), True, 'import numpy as np\n'), ((3603, 3630), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': 'np.int32'}), '(4, dtype=np.int32)\n', (3611, 3630), True, 'import numpy as np\n'), ((3659, 3693), 'numpy.maximum', 'np.maximum', (['(det[0] - margin / 2)', '(0)'], {}), '(det[0] - margin / 2, 0)\n', (3669, 3693), True, 'import numpy as np\n'), ((3718, 3752), 'numpy.maximum', 'np.maximum', (['(det[1] - margin / 2)', '(0)'], {}), '(det[1] - margin / 2, 0)\n', (3728, 3752), True, 'import numpy as np\n'), ((3777, 3821), 'numpy.minimum', 'np.minimum', (['(det[2] + margin / 2)', 'img_size[1]'], {}), '(det[2] + margin / 2, img_size[1])\n', (3787, 3821), True, 'import numpy as np\n'), ((3846, 3890), 'numpy.minimum', 'np.minimum', (['(det[3] + margin / 2)', 'img_size[0]'], {}), '(det[3] + margin / 2, img_size[0])\n', (3856, 3890), True, 'import numpy as np\n'), ((3977, 4044), 'scipy.misc.imresize', 'misc.imresize', (['cropped', '(image_size, image_size)'], {'interp': '"""bilinear"""'}), "(cropped, (image_size, image_size), interp='bilinear')\n", (3990, 4044), False, 'from scipy import misc\n'), ((4118, 4151), 'os.path.splitext', 'os.path.splitext', (['output_filename'], {}), '(output_filename)\n', (4134, 4151), False, 'import os\n'), ((4480, 4518), 'scipy.misc.imsave', 'misc.imsave', (['output_filename_n', 'scaled'], {}), '(output_filename_n, scaled)\n', (4491, 4518), False, 'from scipy import misc\n'), ((3070, 3175), 'numpy.vstack', 'np.vstack', (['[(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 -\n img_center[0]]'], {}), '([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:,\n 3]) / 2 - img_center[0]])\n', (3079, 3175), True, 'import numpy as np\n'), ((3268, 3324), 'numpy.argmax', 'np.argmax', (['(bounding_box_size - offset_dist_squared * 2.0)'], {}), '(bounding_box_size - offset_dist_squared * 2.0)\n', (3277, 3324), True, 'import numpy as np\n'), ((3468, 3483), 'numpy.squeeze', 'np.squeeze', (['det'], {}), '(det)\n', (3478, 3483), True, 'import numpy as np\n'), ((3211, 3233), 'numpy.power', 'np.power', (['offsets', '(2.0)'], {}), '(offsets, 2.0)\n', (3219, 3233), True, 'import numpy as np\n'), ((2856, 2874), 'numpy.squeeze', 'np.squeeze', (['det[i]'], {}), '(det[i])\n', (2866, 2874), True, 'import numpy as np\n')]
from tester.ni_usb_6211 import NiUsb6211 import numpy as np OUTPUT_READ_CHANNEL = "ai0" VCC_READ_CHANNEL = "ai1" TOLERANCE = 0.001 def test_find_devices(): devices = NiUsb6211.find_devices() assert type(devices) == list, "Not a list!" if len(devices) > 0: assert type(devices[0]) == str, "An element is not a string!" def test_integration(): niUsb6211 = NiUsb6211(output_read_channel=OUTPUT_READ_CHANNEL, vcc_read_channel=VCC_READ_CHANNEL) assert niUsb6211, "The object does not exist!" assert niUsb6211.init() == None, "Initialization not successful!" # Read samples. # Read only one channel. samples = niUsb6211.read_samples(1, channels=0) assert samples, "No sample returned!" assert samples.shape == (1,), "Wrong shape!" # Read the other channel. samples = niUsb6211.read_samples(1, channels=1) assert samples, "No sample returned!" assert samples.shape == (1,), "Wrong shape!" # Read both channels, 1 sample. samples = niUsb6211.read_samples(1, channels=[0, 1]) assert np.all(samples), "No samples returned!" assert samples.shape == (2, 1), "Wrong shape!" # Read both channels, many samples. samples = niUsb6211.read_samples(10, channels=[0, 1]) assert np.all(samples), "No samples returned!" assert samples.shape == (2, 10), "Wrong shape!" # Writing sample = 1.0 niUsb6211.write_sample(sample) assert abs(niUsb6211.get_measured_output_voltage() - sample) <= TOLERANCE, f"Output reading ({niUsb6211.get_measured_output_voltage()}) does not match the written value ({sample})." measurement = niUsb6211.get_measured_output_voltage() vref = niUsb6211.get_reference_voltage() def is_number(x): try: float(x) return True except: return False assert is_number(measurement), f"Get_reference_voltage() output ({vref}) not a number!" assert is_number(vref), f"Get_reference_voltage() output ({vref}) not a number!" # Test different argument types. sample = 1 niUsb6211.write_sample(sample) sample = "1" niUsb6211.write_sample(sample) # niUsb6211.read_samples(10, channels=[0, 1]) niUsb6211.deinit()
[ "tester.ni_usb_6211.NiUsb6211", "numpy.all", "tester.ni_usb_6211.NiUsb6211.find_devices" ]
[((172, 196), 'tester.ni_usb_6211.NiUsb6211.find_devices', 'NiUsb6211.find_devices', ([], {}), '()\n', (194, 196), False, 'from tester.ni_usb_6211 import NiUsb6211\n'), ((382, 472), 'tester.ni_usb_6211.NiUsb6211', 'NiUsb6211', ([], {'output_read_channel': 'OUTPUT_READ_CHANNEL', 'vcc_read_channel': 'VCC_READ_CHANNEL'}), '(output_read_channel=OUTPUT_READ_CHANNEL, vcc_read_channel=\n VCC_READ_CHANNEL)\n', (391, 472), False, 'from tester.ni_usb_6211 import NiUsb6211\n'), ((1067, 1082), 'numpy.all', 'np.all', (['samples'], {}), '(samples)\n', (1073, 1082), True, 'import numpy as np\n'), ((1268, 1283), 'numpy.all', 'np.all', (['samples'], {}), '(samples)\n', (1274, 1283), True, 'import numpy as np\n')]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Defines a class for the COMPAS dataset.""" import pandas as pd import numpy as np from .base_wrapper import BasePerformanceDatasetWrapper from tempeh.constants import FeatureType, Tasks, DataTypes, ClassVars, CompasDatasets # noqa def compas_data_loader(): """ Downloads COMPAS data from the propublica GitHub repository. :return: pandas.DataFrame with columns 'sex', 'age', 'juv_fel_count', 'juv_misd_count', 'juv_other_count', 'priors_count', 'two_year_recid', 'age_cat_25 - 45', 'age_cat_Greater than 45', 'age_cat_Less than 25', 'race_African-American', 'race_Caucasian', 'c_charge_degree_F', 'c_charge_degree_M' """ data = pd.read_csv("https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv") # noqa: E501 # filter similar to # https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb data = data[(data['days_b_screening_arrest'] <= 30) & (data['days_b_screening_arrest'] >= -30) & (data['is_recid'] != -1) & (data['c_charge_degree'] != "O") & (data['score_text'] != "N/A")] # filter out all records except the ones with the most common two races data = data[(data['race'] == 'African-American') | (data['race'] == 'Caucasian')] # Select relevant columns for machine learning. # We explicitly leave in age_cat to allow linear classifiers to be non-linear in age data = data[["sex", "age", "age_cat", "race", "juv_fel_count", "juv_misd_count", "juv_other_count", "priors_count", "c_charge_degree", "two_year_recid"]] # map string representation of feature "sex" to 0 for Female and 1 for Male data = data.assign(sex=(data["sex"] == "Male") * 1) data = pd.get_dummies(data) return data def recover_categorical_encoding_for_compas_race(data): return np.array(list(map(lambda tuple: "".join(list(tuple)), zip( [ "African-American" if is_column_true else "" for is_column_true in data[:, 9] ], [ "Caucasian" if is_column_true else "" for is_column_true in data[:, 10] ])))) class CompasPerformanceDatasetWrapper(BasePerformanceDatasetWrapper): """COMPAS Datasets""" dataset_map = { CompasDatasets.COMPAS: (compas_data_loader, "two_year_recid", [FeatureType.NOMINAL] + [FeatureType.CONTINUOUS] * 5 + [FeatureType.NOMINAL] * 8) } metadata_map = { CompasDatasets.COMPAS: (Tasks.BINARY, DataTypes.TABULAR, (6172, 14)) } load_function = None feature_type = None target_col = None def __init__(self, drop_race=True, drop_sex=True): """Initializes the COMPAS dataset """ bunch = type(self).load_function() target = bunch[self._target_col].astype(int) bunch.drop(self._target_col, axis=1, inplace=True) bunch = bunch.astype(float) super().__init__(bunch, target, nrows=self._size[0], data_t=self._feature_type) self._features = list(bunch) if drop_race: self._race_train = recover_categorical_encoding_for_compas_race(self._X_train) self._race_test = recover_categorical_encoding_for_compas_race(self._X_test) # race is in columns 9-10 because the super class constructor removes the target self._X_train = np.delete(self._X_train, np.s_[9:11], axis=1) self._X_test = np.delete(self._X_test, np.s_[9:11], axis=1) del[self._features[9:11]] if drop_sex: self._sex_train = self._X_train[:, 0] self._sex_test = self._X_test[:, 0] self._X_train = np.delete(self._X_train, 0, axis=1) self._X_test = np.delete(self._X_test, 0, axis=1) del[self._features[0]] self._target_names = np.unique(target) @classmethod def generate_dataset_class(cls, name, nrows=None): """Generate a dataset class. :param name: the name of the dataset :type name: str :param nrows: number of rows to resize the dataset to :type nrows: int :rtype: cls """ load_function, target_col, feature_type = cls.dataset_map[name] task, data_type, size = cls.metadata_map[name] if nrows is not None: size = (nrows, size[1]) class_name = name.title() + "PerformanceDatasetWrapper" return type(class_name, (cls, ), {ClassVars.LOAD_FUNCTION: load_function, ClassVars.FEATURE_TYPE: feature_type, ClassVars.TASK: task, ClassVars.DATA_TYPE: data_type, ClassVars.SIZE: size, ClassVars.TARGET_COL: target_col})
[ "pandas.get_dummies", "numpy.delete", "numpy.unique", "pandas.read_csv" ]
[((768, 888), 'pandas.read_csv', 'pd.read_csv', (['"""https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv"""'], {}), "(\n 'https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-scores-two-years.csv'\n )\n", (779, 888), True, 'import pandas as pd\n'), ((1888, 1908), 'pandas.get_dummies', 'pd.get_dummies', (['data'], {}), '(data)\n', (1902, 1908), True, 'import pandas as pd\n'), ((4004, 4021), 'numpy.unique', 'np.unique', (['target'], {}), '(target)\n', (4013, 4021), True, 'import numpy as np\n'), ((3536, 3581), 'numpy.delete', 'np.delete', (['self._X_train', 'np.s_[9:11]'], {'axis': '(1)'}), '(self._X_train, np.s_[9:11], axis=1)\n', (3545, 3581), True, 'import numpy as np\n'), ((3609, 3653), 'numpy.delete', 'np.delete', (['self._X_test', 'np.s_[9:11]'], {'axis': '(1)'}), '(self._X_test, np.s_[9:11], axis=1)\n', (3618, 3653), True, 'import numpy as np\n'), ((3841, 3876), 'numpy.delete', 'np.delete', (['self._X_train', '(0)'], {'axis': '(1)'}), '(self._X_train, 0, axis=1)\n', (3850, 3876), True, 'import numpy as np\n'), ((3904, 3938), 'numpy.delete', 'np.delete', (['self._X_test', '(0)'], {'axis': '(1)'}), '(self._X_test, 0, axis=1)\n', (3913, 3938), True, 'import numpy as np\n')]
import numpy as np from scipy.interpolate import CubicSpline class WaypointTraj(object): """ """ def __init__(self, points): """ This is the constructor for the Trajectory object. A fresh trajectory object will be constructed before each mission. For a waypoint trajectory, the input argument is an array of 3D destination coordinates. You are free to choose the times of arrival and the path taken between the points in any way you like. You should initialize parameters and pre-compute values such as polynomial coefficients here. Inputs: points, (N, 3) array of N waypoint coordinates in 3D """ self.v = 2 #m/s self.points = points self.t = np.zeros(len(points),) if np.shape(self.points) == (3,) or np.shape(self.points) == (1,3): pass elif np.shape(self.points) != (3,) or np.shape(self.points) != (1,3): for i in range(len(self.t)-1): self.t[(i+1)] = np.linalg.norm((points[(i+1)]-points[i]))/self.v self.point_t = np.zeros(len(points),) for i in range(int(len(self.t)-1)): self.point_t[(i+1)] = self.point_t[i] + self.t[i+1] self.f = CubicSpline(self.point_t,self.points,axis = 0) def update(self, t): """ Given the present time, return the desired flat output and derivatives. Inputs t, time, s Outputs flat_output, a dict describing the present desired flat outputs with keys x, position, m x_dot, velocity, m/s x_ddot, acceleration, m/s**2 x_dddot, jerk, m/s**3 x_ddddot, snap, m/s**4 yaw, yaw angle, rad yaw_dot, yaw rate, rad/s """ x = np.zeros((3,)) x_dot = np.zeros((3,)) x_ddot = np.zeros((3,)) x_dddot = np.zeros((3,)) x_ddddot = np.zeros((3,)) yaw = 0 yaw_dot = 0 if np.shape(self.points) == (3,) or np.shape(self.points) == (1,3): x = np.reshape(self.points,(3,)) elif np.shape(self.points) != (3,) or np.shape(self.points) != (1,3): if t > self.point_t[-1]: x = self.points[-1] else: x = self.f(t) flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot, 'yaw':yaw, 'yaw_dot':yaw_dot} return flat_output
[ "numpy.reshape", "scipy.interpolate.CubicSpline", "numpy.zeros", "numpy.linalg.norm", "numpy.shape" ]
[((1920, 1934), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (1928, 1934), True, 'import numpy as np\n'), ((1954, 1968), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (1962, 1968), True, 'import numpy as np\n'), ((1988, 2002), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (1996, 2002), True, 'import numpy as np\n'), ((2022, 2036), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (2030, 2036), True, 'import numpy as np\n'), ((2056, 2070), 'numpy.zeros', 'np.zeros', (['(3,)'], {}), '((3,))\n', (2064, 2070), True, 'import numpy as np\n'), ((2209, 2238), 'numpy.reshape', 'np.reshape', (['self.points', '(3,)'], {}), '(self.points, (3,))\n', (2219, 2238), True, 'import numpy as np\n'), ((821, 842), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (829, 842), True, 'import numpy as np\n'), ((854, 875), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (862, 875), True, 'import numpy as np\n'), ((1294, 1340), 'scipy.interpolate.CubicSpline', 'CubicSpline', (['self.point_t', 'self.points'], {'axis': '(0)'}), '(self.point_t, self.points, axis=0)\n', (1305, 1340), False, 'from scipy.interpolate import CubicSpline\n'), ((2128, 2149), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (2136, 2149), True, 'import numpy as np\n'), ((2161, 2182), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (2169, 2182), True, 'import numpy as np\n'), ((916, 937), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (924, 937), True, 'import numpy as np\n'), ((949, 970), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (957, 970), True, 'import numpy as np\n'), ((2251, 2272), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (2259, 2272), True, 'import numpy as np\n'), ((2284, 2305), 'numpy.shape', 'np.shape', (['self.points'], {}), '(self.points)\n', (2292, 2305), True, 'import numpy as np\n'), ((1056, 1097), 'numpy.linalg.norm', 'np.linalg.norm', (['(points[i + 1] - points[i])'], {}), '(points[i + 1] - points[i])\n', (1070, 1097), True, 'import numpy as np\n')]
# Question 07, Lab 07 # AB Satyaprakash, 180123062 # imports import pandas as pd import numpy as np # functions def f(t, y): return y - t**2 + 1 def F(t): return (t+1)**2 - 0.5*np.exp(t) def RungeKutta4(t, y, h): k1 = f(t, y) k2 = f(t+h/2, y+h*k1/2) k3 = f(t+h/2, y+h*k2/2) k4 = f(t+h, y+h*k3) return y + h*(k1 + 2*k2 + 2*k3 + k4)/6 def AdamsBashforth(t, y, h): return y[-1] + h*(55*f(t[-1], y[-1]) - 59*f(t[-2], y[-2]) + 37*f(t[-3], y[-3]) - 9*f(t[-4], y[-4]))/24 def AdasmMoulton(t, y, h): t1 = t[-1]+h y1 = AdamsBashforth(t, y, h) return y[-1] + h*(9*f(t1, y1) + 19*f(t[-1], y[-1]) - 5*f(t[-2], y[-2]) + f(t[-3], y[-3]))/24 # program body t = [0] y = [0.5] h = 0.2 t.append(round(t[-1]+h, 1)) y.append(RungeKutta4(t[-1], y[-1], h)) t.append(round(t[-1]+h, 1)) y.append(RungeKutta4(t[-1], y[-1], h)) t.append(round(t[-1]+h, 1)) y.append(RungeKutta4(t[-1], y[-1], h)) yact = [] while t[-1] < 2: y.append(AdasmMoulton(t, y, h)) t.append(round(t[-1]+h, 1)) for T in t: yact.append(F(T)) df = pd.DataFrame() df["Adam's Predictor-Corrector Method"] = pd.Series(y) df['Actual Value'] = pd.Series(yact) df.set_index(pd.Series(t), inplace=True) print(df)
[ "pandas.DataFrame", "numpy.exp", "pandas.Series" ]
[((1063, 1077), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1075, 1077), True, 'import pandas as pd\n'), ((1120, 1132), 'pandas.Series', 'pd.Series', (['y'], {}), '(y)\n', (1129, 1132), True, 'import pandas as pd\n'), ((1154, 1169), 'pandas.Series', 'pd.Series', (['yact'], {}), '(yact)\n', (1163, 1169), True, 'import pandas as pd\n'), ((1183, 1195), 'pandas.Series', 'pd.Series', (['t'], {}), '(t)\n', (1192, 1195), True, 'import pandas as pd\n'), ((191, 200), 'numpy.exp', 'np.exp', (['t'], {}), '(t)\n', (197, 200), True, 'import numpy as np\n')]
import numpy as np import cwrapping GurobiEnv = cwrapping.gurobicpy.GurobiEnv def make_float64(lists): newlists = [] for e in lists: newlists.append(np.float64(e)) return newlists def check_feasibility(A, b, solution): RHS = np.dot(A, solution) if np.sum(RHS - (1.0 - 1e-10) * b > 1e-5) >= 1: return False else: return True class GurobiOriginalEnv(object): def __init__(self, A, b, c, solution=None, reward_type='obj'): A, b, c = make_float64([A, b, c]) self.baseenv = GurobiEnv() self.baseenv.reset(A, b, c) self.A0 = A.copy() self.b0 = b.copy() self.c0 = c.copy() self.IPsolution = solution self.reward_type = reward_type assert reward_type in ['simple', 'obj'] # upon init, check if the ip problem can be solved by lp try: _, done = self._reset() assert done is False except NotImplementedError: print('the env needs to be initialized with nontrivial ip') def _reset(self): A,b,cutsa,cutsb,done,objval,xfull,tab = self.baseenv.reset(self.A0, self.b0, self.c0) self.cutsa = cutsa self.cutsb = cutsb self.objval = objval self.x = xfull self.tab = tab return (A, b, self.c0, cutsa, cutsb), done def reset(self): s, d = self._reset() return s def step(self, action): if isinstance(action, list): if len(action) >= 1: for a in action: cuta = self.cutsa[a,:] cutb = self.cutsb[a] A,b,cutsa,cutsb,done,objval,xfull,tab = self.baseenv.step(cuta, cutb) if len(action) == 0: return (self.A0,self.b0,self.c0,[],[]), 0.0, True elif isinstance(action, int): cuta = self.cutsa[action,:] cutb = self.cutsb[action] A,b,cutsa,cutsb,done,objval,xfull,tab = self.baseenv.step(cuta, cutb) else: raise NotImplementedError # compute reward if self.reward_type == 'obj': reward = abs(objval - self.objval) elif self.reward_type == 'simple': reward = -1 else: raise NotImplementedError self.cutsa = cutsa self.cutsb = cutsb self.objval = objval self.done = done self.x = xfull self.tab = tab return (A, b, self.c0, cutsa, cutsb), reward, done, {} class timelimit_wrapper(object): def __init__(self, env, timelimit): self.env = env self.timelimit = timelimit self.counter = 0 def reset(self): self.counter = 0 return self.env.reset() def step(self, action): self.counter += 1 obs, reward, done, info = self.env.step(action) if self.counter >= self.timelimit: done = True return obs, reward, done, info
[ "numpy.sum", "numpy.dot", "numpy.float64" ]
[((235, 254), 'numpy.dot', 'np.dot', (['A', 'solution'], {}), '(A, solution)\n', (241, 254), True, 'import numpy as np\n'), ((259, 298), 'numpy.sum', 'np.sum', (['(RHS - (1.0 - 1e-10) * b > 1e-05)'], {}), '(RHS - (1.0 - 1e-10) * b > 1e-05)\n', (265, 298), True, 'import numpy as np\n'), ((155, 168), 'numpy.float64', 'np.float64', (['e'], {}), '(e)\n', (165, 168), True, 'import numpy as np\n')]
import numpy as np import torch from torch.utils.data import Dataset class DSpritesDataset(Dataset): """dSprites dataset.""" def __init__(self, npz_file:str, transform=None): """ Args: npz_file: Path to the npz file. root_dir: Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ dataset_zip = np.load(npz_file, allow_pickle=True, encoding='latin1') self.dataset = self.preprocess_zip(dataset_zip) del dataset_zip self.transform = transform def __len__(self): return self.dataset['images'].shape[0] def __getitem__(self, idx): image = self.dataset['images'][idx] latents_class = self.dataset['latents_classes'][idx] latents_value = self.dataset['latents_values'][idx] sample = (image, latents_class, latents_value) if self.transform: sample = self.transform(sample) return sample @staticmethod def preprocess_zip(data_zip): # TODO: filter out the data we do not need in the future return { 'images': data_zip['imgs'], 'latents_classes': data_zip['latents_values'], 'latents_values': data_zip['latents_values'] }
[ "numpy.load" ]
[((449, 504), 'numpy.load', 'np.load', (['npz_file'], {'allow_pickle': '(True)', 'encoding': '"""latin1"""'}), "(npz_file, allow_pickle=True, encoding='latin1')\n", (456, 504), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from tflearn.data_utils import * from os.path import join import numpy as np from skimage import io, transform from keras.models import load_model from skimage.color import rgb2lab, lab2rgb import time from functools import wraps import warnings from tensorflow.python.ops.image_ops import rgb_to_hsv import tensorflow as tf from keras import backend as K warnings.filterwarnings("ignore") def time_this_function(func): @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() print(func.__name__, end - start) return result return wrapper class DeHaze: def __init__(self): self.inputImagsPath, self.outputImagsPath = './Test', './TestOutput' self.Models = {'model_L': './Model/dehaze_rough_l.h5', 'model_A': './Model/dehaze_rough_a.h5', 'model_B': './Model/dehaze_rough_b.h5', 'model_refine': './Model/dehaze_refine_mse_30.h5'} self.first_StepResize = (228, 304, 3) self.extensionCoef_x, self.extensionCoef_y = 6, 8 def SSIM_Loss(self, y_true, y_pred): y_pred_hsv = rgb_to_hsv(y_pred) # mae_loss mae = K.mean(K.abs(y_pred - y_true), axis=-1) # tv_loss shape = tf.shape(y_pred) height, width = shape[1], shape[2] y = tf.slice(y_pred, [0, 0, 0, 0], tf.stack([-1, height - 1, -1, -1])) - tf.slice(y_pred, [0, 1, 0, 0], [-1, -1, -1, -1]) x = tf.slice(y_pred, [0, 0, 0, 0], tf.stack([-1, -1, width - 1, -1])) - tf.slice(y_pred, [0, 0, 1, 0], [-1, -1, -1, -1]) tv_loss = tf.nn.l2_loss(x) / tf.to_float(tf.size(x)) + tf.nn.l2_loss(y) / tf.to_float(tf.size(y)) # ssim_loss c1 = 0.01 ** 2 c2 = 0.03 ** 2 y_true = tf.transpose(y_true, [0, 2, 3, 1]) y_pred = tf.transpose(y_pred, [0, 2, 3, 1]) patches_true = tf.extract_image_patches(y_true, [1, 8, 8, 1], [1, 2, 2, 1], [1, 1, 1, 1], "SAME") patches_pred = tf.extract_image_patches(y_pred, [1, 8, 8, 1], [1, 2, 2, 1], [1, 1, 1, 1], "SAME") # Get mean u_true = K.mean(patches_true, axis=-1) u_pred = K.mean(patches_pred, axis=-1) # Get variance var_true = K.var(patches_true, axis=-1) var_pred = K.var(patches_pred, axis=-1) # Get std dev std_true = K.sqrt(var_true) std_pred = K.sqrt(var_pred) covar_true_pred = std_pred * std_true ssim = (2 * u_true * u_pred + c1) * (2 * covar_true_pred + c2) denom = (K.square(u_true) + K.square(u_pred) + c1) * (var_pred + var_true + c2) ssim /= denom size = tf.size(y_pred_hsv) light_loss = tf.nn.l2_loss(y_pred_hsv[:, :, :, 2]) / tf.to_float(size) total_loss = -0.07 * light_loss + 1.0 * mae - 0.0005 * tv_loss return total_loss ''' Loading dataset ''' @time_this_function def loadImages(self): self.firstStepInputImages = [] self.inputImagesList = os.listdir(self.inputImagsPath) for pk, pil in enumerate(self.inputImagesList): prou_img = transform.resize(io.imread(join(self.inputImagsPath, pil)), self.first_StepResize) self.firstStepInputImages.append(rgb2lab(np.uint8(prou_img * 255.0))) print("Loading...Done") ''' Haze Removal Part ''' @time_this_function def first_step(self): print('#testing images: %s' % (len(self.firstStepInputImages))) self.firstStepInputImages = np.reshape(self.firstStepInputImages, [-1]+list(self.first_StepResize)) l_pres = load_model(self.Models['model_L']).predict(self.firstStepInputImages) a_pres = load_model(self.Models['model_A']).predict(self.firstStepInputImages) b_pres = load_model(self.Models['model_B']).predict(self.firstStepInputImages) predicts = [[l[0], l[1], a[0], a[1], b[0], b[1]] for l, a, b in zip(l_pres, a_pres, b_pres)] self.firstOutputImages = [self.restoreCImg(iv, predicts[ik]) for ik, iv in enumerate(self.firstStepInputImages)] ''' Texture Refinement Part ''' @time_this_function def second_step(self): self.secondInputImages = [] for pk, pil in enumerate(self.firstOutputImages): imgc = np.pad(np.reshape(pil, newshape=[-1]+list(pil.shape)), [[0, 0], [self.extensionCoef_x, self.extensionCoef_x], [self.extensionCoef_y, self.extensionCoef_y], [0, 0]], mode='reflect') self.secondInputImages.append(np.reshape(imgc, newshape=list(imgc.shape[1:4])) / 255.0) model = load_model(self.Models['model_refine'], custom_objects={'SSIM_Loss': self.SSIM_Loss}) prou_imgs = np.reshape(self.secondInputImages, [-1]+(list(self.secondInputImages[0].shape))) self.secondOutputImages = np.clip(model.predict(prou_imgs), 0, 1) [io.imsave(join(self.outputImagsPath, self.inputImagesList[ik]), iv[self.extensionCoef_x:iv.shape[0] - self.extensionCoef_x, self.extensionCoef_y:iv.shape[1] - self.extensionCoef_y, :]) for ik, iv in enumerate(self.secondOutputImages)] ''' Color Transfer ''' def restoreCImg(self, haze_img_lab=None, avg_stds=None): pre_img = np.zeros(haze_img_lab.shape) avg_clean, std_clean = np.zeros([3]), np.zeros([3]) avg_haze, std_haze = np.zeros([3]), np.zeros([3]) for channel in range(3): avg_clean[channel], std_clean[channel] = avg_stds[channel * 2], avg_stds[channel * 2 + 1] avg_haze[channel], std_haze[channel] = np.mean(haze_img_lab[:, :, channel]), np.std(haze_img_lab[:, :, channel]) pre_img[:, :, channel] = (haze_img_lab[:, :, channel] - avg_haze[channel]) * (std_clean[channel] / std_haze[channel]) + avg_clean[channel] return np.clip(np.uint8(lab2rgb(pre_img) * 255.0), np.uint8(0), np.uint8(255)) def __del__(self): print("Done") def run(self): self.loadImages() self.first_step() self.second_step() if __name__ == '__main__': deHaze = DeHaze() deHaze.run()
[ "numpy.uint8", "tensorflow.shape", "tensorflow.transpose", "tensorflow.slice", "numpy.mean", "skimage.color.lab2rgb", "keras.backend.square", "functools.wraps", "keras.backend.var", "tensorflow.extract_image_patches", "tensorflow.size", "keras.backend.abs", "tensorflow.stack", "keras.backend.sqrt", "tensorflow.nn.l2_loss", "numpy.std", "time.time", "warnings.filterwarnings", "keras.models.load_model", "tensorflow.to_float", "keras.backend.mean", "os.path.join", "tensorflow.python.ops.image_ops.rgb_to_hsv", "numpy.zeros" ]
[((380, 413), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (403, 413), False, 'import warnings\n'), ((451, 462), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (456, 462), False, 'from functools import wraps\n'), ((513, 524), 'time.time', 'time.time', ([], {}), '()\n', (522, 524), False, 'import time\n'), ((578, 589), 'time.time', 'time.time', ([], {}), '()\n', (587, 589), False, 'import time\n'), ((1174, 1192), 'tensorflow.python.ops.image_ops.rgb_to_hsv', 'rgb_to_hsv', (['y_pred'], {}), '(y_pred)\n', (1184, 1192), False, 'from tensorflow.python.ops.image_ops import rgb_to_hsv\n'), ((1302, 1318), 'tensorflow.shape', 'tf.shape', (['y_pred'], {}), '(y_pred)\n', (1310, 1318), True, 'import tensorflow as tf\n'), ((1990, 2024), 'tensorflow.transpose', 'tf.transpose', (['y_true', '[0, 2, 3, 1]'], {}), '(y_true, [0, 2, 3, 1])\n', (2002, 2024), True, 'import tensorflow as tf\n'), ((2042, 2076), 'tensorflow.transpose', 'tf.transpose', (['y_pred', '[0, 2, 3, 1]'], {}), '(y_pred, [0, 2, 3, 1])\n', (2054, 2076), True, 'import tensorflow as tf\n'), ((2100, 2186), 'tensorflow.extract_image_patches', 'tf.extract_image_patches', (['y_true', '[1, 8, 8, 1]', '[1, 2, 2, 1]', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(y_true, [1, 8, 8, 1], [1, 2, 2, 1], [1, 1, 1, 1],\n 'SAME')\n", (2124, 2186), True, 'import tensorflow as tf\n'), ((2206, 2292), 'tensorflow.extract_image_patches', 'tf.extract_image_patches', (['y_pred', '[1, 8, 8, 1]', '[1, 2, 2, 1]', '[1, 1, 1, 1]', '"""SAME"""'], {}), "(y_pred, [1, 8, 8, 1], [1, 2, 2, 1], [1, 1, 1, 1],\n 'SAME')\n", (2230, 2292), True, 'import tensorflow as tf\n'), ((2325, 2354), 'keras.backend.mean', 'K.mean', (['patches_true'], {'axis': '(-1)'}), '(patches_true, axis=-1)\n', (2331, 2354), True, 'from keras import backend as K\n'), ((2372, 2401), 'keras.backend.mean', 'K.mean', (['patches_pred'], {'axis': '(-1)'}), '(patches_pred, axis=-1)\n', (2378, 2401), True, 'from keras import backend as K\n'), ((2444, 2472), 'keras.backend.var', 'K.var', (['patches_true'], {'axis': '(-1)'}), '(patches_true, axis=-1)\n', (2449, 2472), True, 'from keras import backend as K\n'), ((2492, 2520), 'keras.backend.var', 'K.var', (['patches_pred'], {'axis': '(-1)'}), '(patches_pred, axis=-1)\n', (2497, 2520), True, 'from keras import backend as K\n'), ((2562, 2578), 'keras.backend.sqrt', 'K.sqrt', (['var_true'], {}), '(var_true)\n', (2568, 2578), True, 'from keras import backend as K\n'), ((2598, 2614), 'keras.backend.sqrt', 'K.sqrt', (['var_pred'], {}), '(var_pred)\n', (2604, 2614), True, 'from keras import backend as K\n'), ((2858, 2877), 'tensorflow.size', 'tf.size', (['y_pred_hsv'], {}), '(y_pred_hsv)\n', (2865, 2877), True, 'import tensorflow as tf\n'), ((4757, 4847), 'keras.models.load_model', 'load_model', (["self.Models['model_refine']"], {'custom_objects': "{'SSIM_Loss': self.SSIM_Loss}"}), "(self.Models['model_refine'], custom_objects={'SSIM_Loss': self.\n SSIM_Loss})\n", (4767, 4847), False, 'from keras.models import load_model\n'), ((5369, 5397), 'numpy.zeros', 'np.zeros', (['haze_img_lab.shape'], {}), '(haze_img_lab.shape)\n', (5377, 5397), True, 'import numpy as np\n'), ((1234, 1256), 'keras.backend.abs', 'K.abs', (['(y_pred - y_true)'], {}), '(y_pred - y_true)\n', (1239, 1256), True, 'from keras import backend as K\n'), ((1443, 1491), 'tensorflow.slice', 'tf.slice', (['y_pred', '[0, 1, 0, 0]', '[-1, -1, -1, -1]'], {}), '(y_pred, [0, 1, 0, 0], [-1, -1, -1, -1])\n', (1451, 1491), True, 'import tensorflow as tf\n'), ((1662, 1710), 'tensorflow.slice', 'tf.slice', (['y_pred', '[0, 0, 1, 0]', '[-1, -1, -1, -1]'], {}), '(y_pred, [0, 0, 1, 0], [-1, -1, -1, -1])\n', (1670, 1710), True, 'import tensorflow as tf\n'), ((2899, 2936), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['y_pred_hsv[:, :, :, 2]'], {}), '(y_pred_hsv[:, :, :, 2])\n', (2912, 2936), True, 'import tensorflow as tf\n'), ((2939, 2956), 'tensorflow.to_float', 'tf.to_float', (['size'], {}), '(size)\n', (2950, 2956), True, 'import tensorflow as tf\n'), ((5429, 5442), 'numpy.zeros', 'np.zeros', (['[3]'], {}), '([3])\n', (5437, 5442), True, 'import numpy as np\n'), ((5444, 5457), 'numpy.zeros', 'np.zeros', (['[3]'], {}), '([3])\n', (5452, 5457), True, 'import numpy as np\n'), ((5487, 5500), 'numpy.zeros', 'np.zeros', (['[3]'], {}), '([3])\n', (5495, 5500), True, 'import numpy as np\n'), ((5502, 5515), 'numpy.zeros', 'np.zeros', (['[3]'], {}), '([3])\n', (5510, 5515), True, 'import numpy as np\n'), ((5986, 5997), 'numpy.uint8', 'np.uint8', (['(0)'], {}), '(0)\n', (5994, 5997), True, 'import numpy as np\n'), ((5999, 6012), 'numpy.uint8', 'np.uint8', (['(255)'], {}), '(255)\n', (6007, 6012), True, 'import numpy as np\n'), ((1405, 1439), 'tensorflow.stack', 'tf.stack', (['[-1, height - 1, -1, -1]'], {}), '([-1, height - 1, -1, -1])\n', (1413, 1439), True, 'import tensorflow as tf\n'), ((1625, 1658), 'tensorflow.stack', 'tf.stack', (['[-1, -1, width - 1, -1]'], {}), '([-1, -1, width - 1, -1])\n', (1633, 1658), True, 'import tensorflow as tf\n'), ((1818, 1834), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['x'], {}), '(x)\n', (1831, 1834), True, 'import tensorflow as tf\n'), ((1863, 1879), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['y'], {}), '(y)\n', (1876, 1879), True, 'import tensorflow as tf\n'), ((3791, 3825), 'keras.models.load_model', 'load_model', (["self.Models['model_L']"], {}), "(self.Models['model_L'])\n", (3801, 3825), False, 'from keras.models import load_model\n'), ((3878, 3912), 'keras.models.load_model', 'load_model', (["self.Models['model_A']"], {}), "(self.Models['model_A'])\n", (3888, 3912), False, 'from keras.models import load_model\n'), ((3965, 3999), 'keras.models.load_model', 'load_model', (["self.Models['model_B']"], {}), "(self.Models['model_B'])\n", (3975, 3999), False, 'from keras.models import load_model\n'), ((5037, 5089), 'os.path.join', 'join', (['self.outputImagsPath', 'self.inputImagesList[ik]'], {}), '(self.outputImagsPath, self.inputImagesList[ik])\n', (5041, 5089), False, 'from os.path import join\n'), ((5702, 5738), 'numpy.mean', 'np.mean', (['haze_img_lab[:, :, channel]'], {}), '(haze_img_lab[:, :, channel])\n', (5709, 5738), True, 'import numpy as np\n'), ((5740, 5775), 'numpy.std', 'np.std', (['haze_img_lab[:, :, channel]'], {}), '(haze_img_lab[:, :, channel])\n', (5746, 5775), True, 'import numpy as np\n'), ((1849, 1859), 'tensorflow.size', 'tf.size', (['x'], {}), '(x)\n', (1856, 1859), True, 'import tensorflow as tf\n'), ((1894, 1904), 'tensorflow.size', 'tf.size', (['y'], {}), '(y)\n', (1901, 1904), True, 'import tensorflow as tf\n'), ((2749, 2765), 'keras.backend.square', 'K.square', (['u_true'], {}), '(u_true)\n', (2757, 2765), True, 'from keras import backend as K\n'), ((2768, 2784), 'keras.backend.square', 'K.square', (['u_pred'], {}), '(u_pred)\n', (2776, 2784), True, 'from keras import backend as K\n'), ((3342, 3372), 'os.path.join', 'join', (['self.inputImagsPath', 'pil'], {}), '(self.inputImagsPath, pil)\n', (3346, 3372), False, 'from os.path import join\n'), ((3451, 3477), 'numpy.uint8', 'np.uint8', (['(prou_img * 255.0)'], {}), '(prou_img * 255.0)\n', (3459, 3477), True, 'import numpy as np\n'), ((5959, 5975), 'skimage.color.lab2rgb', 'lab2rgb', (['pre_img'], {}), '(pre_img)\n', (5966, 5975), False, 'from skimage.color import rgb2lab, lab2rgb\n')]
## the noise masks of funcSize are not binarized, this script is to binarize them import os, json import nibabel as nib import numpy as np from scipy import ndimage # initalize data work_dir = '/mindhive/saxelab3/anzellotti/forrest/output_denoise/' all_subjects = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-09', 'sub-10', 'sub-14', 'sub-15', 'sub-16', 'sub-17', 'sub-18', 'sub-19', 'sub-20'] out_dir = '/mindhive/saxelab3/anzellotti/forrest/derivatives/fmriprep/' ### work_dir = '/Users/chloe/Documents/output_denoise/' ### all_subjects = ['sub-02'] ### out_dir = '/Users/chloe/Documents/' mask = '_CSF_WM_mask_union_bin_shrinked_funcSize.nii.gz' mask_thr = 0.5 # iterate through all subjects for sub in all_subjects: # generate union mask # initialize info sub_dir = work_dir + sub + '_denoise/' mask_dir = sub_dir + sub + mask sub_out_dir = out_dir + sub + '_complete/' + sub + '_ROIs/' # load data mask_union = nib.load(mask_dir) mask_union_affine = mask_union.affine mask_union_header = mask_union.header mask_union = mask_union.get_data() new_mask_union = np.zeros(mask_union.shape) # make union of the two masks, filter with threshold for x in range(0, mask_union.shape[0]): for y in range(0, mask_union.shape[1]): for z in range(0, mask_union.shape[2]): if mask_union[x, y, z] >= mask_thr: new_mask_union[x, y, z] = 1 # save the shrinked mask somewhere mask_union_img = nib.Nifti1Image(new_mask_union, mask_union_affine, mask_union_header) nib.save(mask_union_img, sub_out_dir + sub + '_CSF_WM_mask_union_bin_shrinked_funcSize.nii.gz')
[ "nibabel.Nifti1Image", "numpy.zeros", "nibabel.save", "nibabel.load" ]
[((938, 956), 'nibabel.load', 'nib.load', (['mask_dir'], {}), '(mask_dir)\n', (946, 956), True, 'import nibabel as nib\n'), ((1089, 1115), 'numpy.zeros', 'np.zeros', (['mask_union.shape'], {}), '(mask_union.shape)\n', (1097, 1115), True, 'import numpy as np\n'), ((1427, 1496), 'nibabel.Nifti1Image', 'nib.Nifti1Image', (['new_mask_union', 'mask_union_affine', 'mask_union_header'], {}), '(new_mask_union, mask_union_affine, mask_union_header)\n', (1442, 1496), True, 'import nibabel as nib\n'), ((1498, 1597), 'nibabel.save', 'nib.save', (['mask_union_img', "(sub_out_dir + sub + '_CSF_WM_mask_union_bin_shrinked_funcSize.nii.gz')"], {}), "(mask_union_img, sub_out_dir + sub +\n '_CSF_WM_mask_union_bin_shrinked_funcSize.nii.gz')\n", (1506, 1597), True, 'import nibabel as nib\n')]
# This is a comparison for the CSSP algorithms on real datasets. # This is a test for subsampling functions: ## * Projection DPPs ## * Volume sampling ## * Pivoted QR ## * Double Phase ## * Largest leverage scores ## import sys sys.path.insert(0, '..') from CSSPy.dataset_tools import * from CSSPy.volume_sampler import * from CSSPy.optimized_projection_dpp_sampler import * from CSSPy.projection_dpp_sampler import * from CSSPy.uniform_sampler import * from CSSPy.evaluation_functions import * from CSSPy.experiments_tools import * from CSSPy.visualization_tools import * import numpy as np import timeit import pandas as pd from matplotlib import pyplot as plt # Import the dataset dataset_name = "colon" dataset_file = dataset_name+str("_X") clustering_labels_file = dataset_name +str("_Y") t = timeit.Timer('char in text', setup='text = "sample string"; char = "g"') X_df = pd.read_csv('datasets/'+dataset_file+'.csv', sep=",", header=None) X_matrix = X_df.values # The dimensions of the matrix d = np.shape(X_matrix)[1] N = np.shape(X_matrix)[0] -1 # The singular value decomposition of the matrix k = 10 _,D,V = np.linalg.svd(X_matrix) V_k = calculate_right_eigenvectors_k_svd(X_matrix,k) rank_X = np.shape(D)[0] # Calculate and sort the k-leverage scores klv_test_1 = np.asarray(list(reversed(np.sort((np.diag(np.dot(np.transpose(V_k),V_k))))))) # Plot of the k-leverage scores and the cumulative k-leverage scores plot_cumul_leverage_scores(klv_test_1,dataset_name,k) def random_error_list_to_min_error_list(error_list): l_test = len(error_list) min_value_random_list = min(error_list) new_list = [min_value_random_list]*l_test return min_value_random_list # These lists contains the approximation errors after boosting boosting_error_fro_volume_sampling_list = [] boosting_error_fro_projection_dpp_list = [] boosting_error_fro_largest_lvs_list = [] boosting_error_fro_pivoted_qr_list = [] boosting_error_fro_double_phase_list = [] boosting_error_fro_aggregated_list = [] # This is the aggregated list for the results of all the algortihms error_fro_aggregated_list = [] # This parameter equals 0 for the first iteration and 1 for the rest to avoid the repetition of the determinstic sampling deterministic_algos_flag = 0 # Initialization of the deterministic algorithms error_fro_list_pivoted_qr_sampling = 0 error_fro_list_largest_lvs_sampling = 0 # Launch the simulations with the following batch sizes exp_number = 50 boosting_batch = 1 for T_B in list(range(boosting_batch)): print ("Boosting step") print(T_B) error_fro_aggregated_list = [] error_fro_list_double_phase_sampling = launch_exp_double_phase_sampler(X_matrix,dataset_name,k,exp_number,V,D,V_k,"fro") error_fro_list_optimized_projection_DPP = launch_exp_optimized_projection_dpp(X_matrix,dataset_name,k,exp_number,V,D,V_k,"fro") error_fro_list_volume_sampling = launch_exp_volume_sampling(X_matrix,dataset_name,k,exp_number,V,D,V_k,"fro") if deterministic_algos_flag == 0: error_fro_list_pivoted_qr_sampling = launch_exp_pivoted_qr_sampling(X_matrix,dataset_name,k,exp_number,V,D,V_k,"fro") error_fro_list_largest_lvs_sampling = launch_exp_largest_leveragescores_sampling(X_matrix,dataset_name,k,exp_number,V,D,V_k,"fro") min_error_fro_list_pivoted_qr_sampling = error_fro_list_pivoted_qr_sampling[0] min_error_fro_list_largest_lvs_sampling = error_fro_list_largest_lvs_sampling[0] deterministic_algos_flag = deterministic_algos_flag +1 min_error_fro_list_volume_sampling = random_error_list_to_min_error_list(error_fro_list_volume_sampling) min_error_fro_list_optimized_projection_DPP = random_error_list_to_min_error_list(error_fro_list_optimized_projection_DPP) min_error_fro_list_double_phase_sampling = random_error_list_to_min_error_list(error_fro_list_double_phase_sampling) min_error_fro_list_largest_lvs_sampling = error_fro_list_largest_lvs_sampling[0] min_error_fro_list_pivoted_qr_sampling = error_fro_list_pivoted_qr_sampling[0] boosting_error_fro_volume_sampling_list.append(min_error_fro_list_volume_sampling) boosting_error_fro_projection_dpp_list.append(min_error_fro_list_optimized_projection_DPP) boosting_error_fro_largest_lvs_list.append(min_error_fro_list_largest_lvs_sampling) boosting_error_fro_pivoted_qr_list.append(min_error_fro_list_pivoted_qr_sampling) boosting_error_fro_double_phase_list.append(min_error_fro_list_double_phase_sampling) error_fro_aggregated_list.append(error_fro_list_volume_sampling) error_fro_aggregated_list.append(error_fro_list_optimized_projection_DPP) error_fro_aggregated_list.append(error_fro_list_largest_lvs_sampling) error_fro_aggregated_list.append(error_fro_list_pivoted_qr_sampling) error_fro_aggregated_list.append(error_fro_list_double_phase_sampling) boosting_error_fro_aggregated_list.append(boosting_error_fro_volume_sampling_list) boosting_error_fro_aggregated_list.append(boosting_error_fro_projection_dpp_list) boosting_error_fro_aggregated_list.append(boosting_error_fro_largest_lvs_list) boosting_error_fro_aggregated_list.append(boosting_error_fro_pivoted_qr_list) boosting_error_fro_aggregated_list.append(boosting_error_fro_double_phase_list) # Plot the comparison of the algorithms plt.figure(figsize=(10, 6)) plt.xticks(fontsize=16) plt.yticks(fontsize=16) ax = plt.subplot(111) box1 =plt.boxplot(error_fro_aggregated_list, showfliers=False) plt.setp(box1['medians'], color='red', linewidth=3) plt.ylabel(r'$\mathrm{\|\| X- \pi_{C} X \|\| _{Fr}}$', fontsize=16) plt.gca().xaxis.set_ticklabels(["Volume S.","Projection DPP","Largest lvs","Pivoted QR","Double Phase"]) # Save the results on a txt file savefile_name = "results/test_2/"+dataset_name+"_allalgos_"+str(exp_number)+"samples_k_"+str(k)+".txt" np.savetxt(savefile_name, error_fro_aggregated_list, fmt='%f') # Save the figure on a pdf file figfile_name= "results/test_2/"+dataset_name+"_allalgos_"+str(exp_number)+"samples_k_"+str(k)+".pdf" plt.savefig(figfile_name) # Show the figure plt.show() # Plot the comparison of boosting of the algorithms plt.figure(figsize=(10, 6)) plt.xticks(fontsize=16) plt.yticks(fontsize=16) ax = plt.subplot(111) box_2 = plt.boxplot(boosting_error_fro_aggregated_list, showfliers=False) plt.setp(box_2['medians'], color='red', linewidth=3) plt.ylabel(r'$\mathrm{\|\| X- \pi_{C} X \|\| _{Fr}}$', fontsize=16) plt.gca().xaxis.set_ticklabels(["Volume S.","Projection DPP","Largest lvs","Pivoted QR","Double Phase"]) # Save the results on a txt file savefile_name = "results/test_2/"+dataset_name+"_boosting_allalgos_"+str(exp_number)+"samples_k_"+str(k)+".txt" np.savetxt(savefile_name, boosting_error_fro_aggregated_list, fmt='%f') # Save the figure on a pdf file figfile_name= "results/test_2/"+dataset_name+"_boosting_allalgos_"+str(exp_number)+"samples_k_"+str(k)+".pdf" plt.savefig(figfile_name) # Show the figure plt.show()
[ "matplotlib.pyplot.boxplot", "matplotlib.pyplot.setp", "sys.path.insert", "matplotlib.pyplot.savefig", "timeit.Timer", "pandas.read_csv", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gca", "matplotlib.pyplot.figure", "matplotlib.pyplot.yticks", "numpy.savetxt", "numpy.linalg.svd", "numpy.shape", "numpy.transpose", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((230, 254), 'sys.path.insert', 'sys.path.insert', (['(0)', '""".."""'], {}), "(0, '..')\n", (245, 254), False, 'import sys\n'), ((803, 875), 'timeit.Timer', 'timeit.Timer', (['"""char in text"""'], {'setup': '"""text = "sample string"; char = "g\\""""'}), '(\'char in text\', setup=\'text = "sample string"; char = "g"\')\n', (815, 875), False, 'import timeit\n'), ((883, 953), 'pandas.read_csv', 'pd.read_csv', (["('datasets/' + dataset_file + '.csv')"], {'sep': '""","""', 'header': 'None'}), "('datasets/' + dataset_file + '.csv', sep=',', header=None)\n", (894, 953), True, 'import pandas as pd\n'), ((1125, 1148), 'numpy.linalg.svd', 'np.linalg.svd', (['X_matrix'], {}), '(X_matrix)\n', (1138, 1148), True, 'import numpy as np\n'), ((5336, 5363), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (5346, 5363), True, 'from matplotlib import pyplot as plt\n'), ((5365, 5388), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(16)'}), '(fontsize=16)\n', (5375, 5388), True, 'from matplotlib import pyplot as plt\n'), ((5389, 5412), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(16)'}), '(fontsize=16)\n', (5399, 5412), True, 'from matplotlib import pyplot as plt\n'), ((5418, 5434), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (5429, 5434), True, 'from matplotlib import pyplot as plt\n'), ((5442, 5498), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['error_fro_aggregated_list'], {'showfliers': '(False)'}), '(error_fro_aggregated_list, showfliers=False)\n', (5453, 5498), True, 'from matplotlib import pyplot as plt\n'), ((5499, 5550), 'matplotlib.pyplot.setp', 'plt.setp', (["box1['medians']"], {'color': '"""red"""', 'linewidth': '(3)'}), "(box1['medians'], color='red', linewidth=3)\n", (5507, 5550), True, 'from matplotlib import pyplot as plt\n'), ((5552, 5624), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathrm{\\\\|\\\\| X- \\\\pi_{C} X \\\\|\\\\| _{Fr}}$"""'], {'fontsize': '(16)'}), "('$\\\\mathrm{\\\\|\\\\| X- \\\\pi_{C} X \\\\|\\\\| _{Fr}}$', fontsize=16)\n", (5562, 5624), True, 'from matplotlib import pyplot as plt\n'), ((5862, 5924), 'numpy.savetxt', 'np.savetxt', (['savefile_name', 'error_fro_aggregated_list'], {'fmt': '"""%f"""'}), "(savefile_name, error_fro_aggregated_list, fmt='%f')\n", (5872, 5924), True, 'import numpy as np\n'), ((6059, 6084), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figfile_name'], {}), '(figfile_name)\n', (6070, 6084), True, 'from matplotlib import pyplot as plt\n'), ((6104, 6114), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6112, 6114), True, 'from matplotlib import pyplot as plt\n'), ((6172, 6199), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (6182, 6199), True, 'from matplotlib import pyplot as plt\n'), ((6201, 6224), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(16)'}), '(fontsize=16)\n', (6211, 6224), True, 'from matplotlib import pyplot as plt\n'), ((6225, 6248), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(16)'}), '(fontsize=16)\n', (6235, 6248), True, 'from matplotlib import pyplot as plt\n'), ((6254, 6270), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (6265, 6270), True, 'from matplotlib import pyplot as plt\n'), ((6280, 6345), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['boosting_error_fro_aggregated_list'], {'showfliers': '(False)'}), '(boosting_error_fro_aggregated_list, showfliers=False)\n', (6291, 6345), True, 'from matplotlib import pyplot as plt\n'), ((6346, 6398), 'matplotlib.pyplot.setp', 'plt.setp', (["box_2['medians']"], {'color': '"""red"""', 'linewidth': '(3)'}), "(box_2['medians'], color='red', linewidth=3)\n", (6354, 6398), True, 'from matplotlib import pyplot as plt\n'), ((6400, 6472), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\mathrm{\\\\|\\\\| X- \\\\pi_{C} X \\\\|\\\\| _{Fr}}$"""'], {'fontsize': '(16)'}), "('$\\\\mathrm{\\\\|\\\\| X- \\\\pi_{C} X \\\\|\\\\| _{Fr}}$', fontsize=16)\n", (6410, 6472), True, 'from matplotlib import pyplot as plt\n'), ((6722, 6793), 'numpy.savetxt', 'np.savetxt', (['savefile_name', 'boosting_error_fro_aggregated_list'], {'fmt': '"""%f"""'}), "(savefile_name, boosting_error_fro_aggregated_list, fmt='%f')\n", (6732, 6793), True, 'import numpy as np\n'), ((6937, 6962), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figfile_name'], {}), '(figfile_name)\n', (6948, 6962), True, 'from matplotlib import pyplot as plt\n'), ((6982, 6992), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6990, 6992), True, 'from matplotlib import pyplot as plt\n'), ((1009, 1027), 'numpy.shape', 'np.shape', (['X_matrix'], {}), '(X_matrix)\n', (1017, 1027), True, 'import numpy as np\n'), ((1211, 1222), 'numpy.shape', 'np.shape', (['D'], {}), '(D)\n', (1219, 1222), True, 'import numpy as np\n'), ((1035, 1053), 'numpy.shape', 'np.shape', (['X_matrix'], {}), '(X_matrix)\n', (1043, 1053), True, 'import numpy as np\n'), ((5620, 5629), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (5627, 5629), True, 'from matplotlib import pyplot as plt\n'), ((6471, 6480), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6478, 6480), True, 'from matplotlib import pyplot as plt\n'), ((1334, 1351), 'numpy.transpose', 'np.transpose', (['V_k'], {}), '(V_k)\n', (1346, 1351), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Remove transcription sites in the FISH image. """ import os import argparse import time import datetime import sys import bigfish.stack as stack import numpy as np from utils import Logger from loader import (get_metadata_directory, generate_filename_base, images_generator) if __name__ == "__main__": print() # parse arguments parser = argparse.ArgumentParser() parser.add_argument("experience_directory", help="Name of the experience directory.", type=str) parser.add_argument("--base_directory", help="Path of the data directory.", type=str, default="/Users/arthur/data/2019_racha") parser.add_argument("--output_directory", help="Path of the output directory.", type=str, default="/Users/arthur/output/2019_racha") parser.add_argument("--log_directory", help="Path of the log directory.", type=str, default="/Users/arthur/output/2019_racha/log") # initialize parameters args = parser.parse_args() experience_directory = args.experience_directory base_directory = args.base_directory output_directory = args.output_directory # input-output directories nuc_mask_directory = os.path.join(output_directory, "nuc_mask") foci_directory = os.path.join(output_directory, "foci_detection") transcription_site_directory = os.path.join(output_directory, "transcription_site_removal") # check directories exist log_directory = args.log_directory if not os.path.isdir(base_directory): raise ValueError("Directory does not exist: {0}" .format(base_directory)) if not os.path.isdir(output_directory): raise ValueError("Directory does not exist: {0}" .format(output_directory)) if not os.path.isdir(nuc_mask_directory): raise ValueError("Directory does not exist: {0}" .format(nuc_mask_directory)) if not os.path.isdir(foci_directory): raise ValueError("Directory does not exist: {0}" .format(foci_directory)) if not os.path.isdir(transcription_site_directory): raise ValueError("Directory does not exist: {0}" .format(transcription_site_directory)) if not os.path.isdir(log_directory): raise ValueError("Directory does not exist: {0}" .format(log_directory)) # initialize logging now = datetime.datetime.now() date = now.strftime("%Y-%m-%d %H:%M:%S") log_file = os.path.join( log_directory, "log" + "_" + experience_directory) sys.stdout = Logger(log_file) print("Running {0} file...".format(os.path.basename(__file__)), "\n") start_time = time.time() print("Data directory: {0}".format(base_directory)) print("Experience directory name: {0}".format(experience_directory)) print("Output directory: {0}".format(output_directory)) print("Nuclei mask directory: {0}".format(nuc_mask_directory)) print("Foci directory: {0}".format(foci_directory)) print("Transcription site removal directory: {0}" .format(transcription_site_directory)) print("Log directory: {0}".format(log_directory)) print("Log file: {0}".format(log_file.split("/")[-1])) print("Date: {0}".format(date), "\n") print("Files are saved with the pattern " "'gene_author_puromycin_paper_drug_batch_fov' \n") print("Removing transcription sites...") # start analysis experience = get_metadata_directory(experience_directory) filename_base = generate_filename_base(experience) generator = images_generator(base_directory, experience_directory, return_image=False) nb_images = 0 for i, _ in enumerate(generator): filename = filename_base + "_" + str(i) print("\t", filename) # spots path = os.path.join(foci_directory, filename + ".npz") data = np.load(path) clustered_spots = data["clustered_spots"] foci = data["foci"] # nuclei masks path = os.path.join(nuc_mask_directory, filename + ".png") mask_nuc = stack.read_image(path) nuc = mask_nuc > 0 # spots out of foci and inside foci spots_out_foci = clustered_spots.copy() spots_out_foci = spots_out_foci[spots_out_foci[:, 3] == -1, :] spots_in_foci = clustered_spots.copy() spots_in_foci = spots_in_foci[spots_in_foci[:, 3] != -1, :] # remove foci inside nuclei spots_in_foci_cleaned, foci_cleaned = stack.remove_transcription_site( mask_nuc=nuc, spots_in_foci=spots_in_foci, foci=foci) # save transcription site-free coordinates path = os.path.join(transcription_site_directory, filename) np.savez(path, spots_out_foci=spots_out_foci, spots_in_foci=spots_in_foci_cleaned, foci=foci_cleaned) nb_images += 1 print() print("Done ({0} images)!".format(nb_images), "\n") end_time = time.time() duration = int(round((end_time - start_time) / 60)) print("Duration: {0} minutes.".format(duration))
[ "numpy.savez", "bigfish.stack.remove_transcription_site", "argparse.ArgumentParser", "os.path.join", "bigfish.stack.read_image", "utils.Logger", "datetime.datetime.now", "os.path.isdir", "loader.generate_filename_base", "os.path.basename", "loader.get_metadata_directory", "numpy.load", "time.time", "loader.images_generator" ]
[((404, 429), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (427, 429), False, 'import argparse\n'), ((1453, 1495), 'os.path.join', 'os.path.join', (['output_directory', '"""nuc_mask"""'], {}), "(output_directory, 'nuc_mask')\n", (1465, 1495), False, 'import os\n'), ((1517, 1565), 'os.path.join', 'os.path.join', (['output_directory', '"""foci_detection"""'], {}), "(output_directory, 'foci_detection')\n", (1529, 1565), False, 'import os\n'), ((1601, 1661), 'os.path.join', 'os.path.join', (['output_directory', '"""transcription_site_removal"""'], {}), "(output_directory, 'transcription_site_removal')\n", (1613, 1661), False, 'import os\n'), ((2748, 2771), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2769, 2771), False, 'import datetime\n'), ((2832, 2895), 'os.path.join', 'os.path.join', (['log_directory', "('log' + '_' + experience_directory)"], {}), "(log_directory, 'log' + '_' + experience_directory)\n", (2844, 2895), False, 'import os\n'), ((2922, 2938), 'utils.Logger', 'Logger', (['log_file'], {}), '(log_file)\n', (2928, 2938), False, 'from utils import Logger\n'), ((3031, 3042), 'time.time', 'time.time', ([], {}), '()\n', (3040, 3042), False, 'import time\n'), ((3807, 3851), 'loader.get_metadata_directory', 'get_metadata_directory', (['experience_directory'], {}), '(experience_directory)\n', (3829, 3851), False, 'from loader import get_metadata_directory, generate_filename_base, images_generator\n'), ((3872, 3906), 'loader.generate_filename_base', 'generate_filename_base', (['experience'], {}), '(experience)\n', (3894, 3906), False, 'from loader import get_metadata_directory, generate_filename_base, images_generator\n'), ((3923, 3997), 'loader.images_generator', 'images_generator', (['base_directory', 'experience_directory'], {'return_image': '(False)'}), '(base_directory, experience_directory, return_image=False)\n', (3939, 3997), False, 'from loader import get_metadata_directory, generate_filename_base, images_generator\n'), ((5388, 5399), 'time.time', 'time.time', ([], {}), '()\n', (5397, 5399), False, 'import time\n'), ((1791, 1820), 'os.path.isdir', 'os.path.isdir', (['base_directory'], {}), '(base_directory)\n', (1804, 1820), False, 'import os\n'), ((1940, 1971), 'os.path.isdir', 'os.path.isdir', (['output_directory'], {}), '(output_directory)\n', (1953, 1971), False, 'import os\n'), ((2093, 2126), 'os.path.isdir', 'os.path.isdir', (['nuc_mask_directory'], {}), '(nuc_mask_directory)\n', (2106, 2126), False, 'import os\n'), ((2250, 2279), 'os.path.isdir', 'os.path.isdir', (['foci_directory'], {}), '(foci_directory)\n', (2263, 2279), False, 'import os\n'), ((2399, 2442), 'os.path.isdir', 'os.path.isdir', (['transcription_site_directory'], {}), '(transcription_site_directory)\n', (2412, 2442), False, 'import os\n'), ((2576, 2604), 'os.path.isdir', 'os.path.isdir', (['log_directory'], {}), '(log_directory)\n', (2589, 2604), False, 'import os\n'), ((4198, 4245), 'os.path.join', 'os.path.join', (['foci_directory', "(filename + '.npz')"], {}), "(foci_directory, filename + '.npz')\n", (4210, 4245), False, 'import os\n'), ((4261, 4274), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (4268, 4274), True, 'import numpy as np\n'), ((4392, 4443), 'os.path.join', 'os.path.join', (['nuc_mask_directory', "(filename + '.png')"], {}), "(nuc_mask_directory, filename + '.png')\n", (4404, 4443), False, 'import os\n'), ((4463, 4485), 'bigfish.stack.read_image', 'stack.read_image', (['path'], {}), '(path)\n', (4479, 4485), True, 'import bigfish.stack as stack\n'), ((4875, 4964), 'bigfish.stack.remove_transcription_site', 'stack.remove_transcription_site', ([], {'mask_nuc': 'nuc', 'spots_in_foci': 'spots_in_foci', 'foci': 'foci'}), '(mask_nuc=nuc, spots_in_foci=spots_in_foci,\n foci=foci)\n', (4906, 4964), True, 'import bigfish.stack as stack\n'), ((5065, 5117), 'os.path.join', 'os.path.join', (['transcription_site_directory', 'filename'], {}), '(transcription_site_directory, filename)\n', (5077, 5117), False, 'import os\n'), ((5126, 5232), 'numpy.savez', 'np.savez', (['path'], {'spots_out_foci': 'spots_out_foci', 'spots_in_foci': 'spots_in_foci_cleaned', 'foci': 'foci_cleaned'}), '(path, spots_out_foci=spots_out_foci, spots_in_foci=\n spots_in_foci_cleaned, foci=foci_cleaned)\n', (5134, 5232), True, 'import numpy as np\n'), ((2979, 3005), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (2995, 3005), False, 'import os\n')]
""" Methods to search an ImageCollection with brute force, exhaustive search. """ import cgi import abc import cPickle import numpy as np from sklearn.decomposition import PCA from sklearn.metrics.pairwise import \ manhattan_distances, euclidean_distances, additive_chi2_kernel import pyflann from scipy.spatial import cKDTree import util from image import Image from rayleigh.util import TicToc tt = TicToc() class SearchableImageCollection(object): """ Initialize with a rayleigh.ImageCollection, a distance_metric, and the number of dimensions to reduce the histograms to. Parameters ---------- image_collection : rayleigh.ImageCollection dist_metric : string must be in self.DISTANCE_METRICS sigma : nonnegative float Amount of smoothing applied to histograms. If 0, none. num_dimensions : int number of dimensions to reduce the histograms to, using PCA. If 0, do not reduce dimensions. """ def __init__(self, image_collection, dist_metric, sigma, num_dimensions): self.ic = image_collection self.id_ind_map = self.ic.get_id_ind_map() self.distance_metric = dist_metric if self.distance_metric not in self.DISTANCE_METRICS: raise Exception("Unsupported distance metric.") self.num_dimensions = num_dimensions self.hists_reduced = self.ic.get_hists() self.sigma = sigma if self.sigma > 0: self.smooth_histograms() if self.num_dimensions > 0: self.reduce_dimensionality() @staticmethod def load(filename): """ Load ImageCollection from filename. """ return cPickle.load(open(filename)) def save(self, filename): """ Save self to filename. """ cPickle.dump(self, open(filename, 'w'), 2) def smooth_histograms(self): """ Smooth histograms with a Gaussian. """ for i in range(self.hists_reduced.shape[0]): color_hist = self.hists_reduced[i, :] self.hists_reduced[i, :] = util.smooth_histogram( color_hist, self.ic.palette, self.sigma) def reduce_dimensionality(self): """ Compute and store PCA dimensionality-reduced histograms. """ tt.tic('reduce_dimensionality') self.pca = PCA(n_components=self.num_dimensions, whiten=True) self.pca.fit(self.hists_reduced) self.hists_reduced = self.pca.transform(self.hists_reduced) tt.toc('reduce_dimensionality') def get_image_hist(self, img_id): """ Return the smoothed image histogram of the image with the given id. Parameters ---------- img_id : string Returns ------- color_hist : ndarray """ img_ind = self.id_ind_map[img_id] color_hist = self.hists_reduced[img_ind, :] return color_hist def search_by_image_in_dataset(self, img_id, num=20): """ Search images in database for similarity to the image with img_id in the database. See search_by_color_hist() for implementation. Parameters ---------- img_id : string num : int, optional Returns ------- query_img_data : dict results : list list of dicts of nearest neighbors to query """ query_img_data = self.ic.get_image(img_id, no_hist=True) color_hist = self.get_image_hist(img_id) results, time_elapsed = self.search_by_color_hist(color_hist, num, reduced=True) return query_img_data, results, time_elapsed def search_by_image(self, image_filename, num=20): """ Search images in database by color similarity to image. See search_by_color_hist(). """ query_img = Image(image_filename) color_hist = util.histogram_colors_smoothed( query_img.lab_array, self.ic.palette, sigma=self.sigma, direct=False) results, time_elapsed = self.search_by_color_hist(color_hist) return query_img.as_dict(), results, time_elapsed def search_by_color_hist(self, color_hist, num=20, reduced=False): """ Search images in database by color similarity to the given histogram. Parameters ---------- color_hist : (K,) ndarray histogram over the color palette num : int, optional number of nearest neighbors to ret reduced : boolean, optional is the given color_hist already reduced in dimensionality? Returns ------- query_img : dict info about the query image results : list list of dicts of nearest neighbors to query """ if self.num_dimensions > 0 and not reduced: color_hist = self.pca.transform(color_hist) tt.tic('nn_ind') nn_ind, nn_dists = self.nn_ind(color_hist, num) time_elapsed = tt.qtoc('nn_ind') results = [] # TODO: tone up the amount of data returned: don't need resized size, # _id, maybe something else? for ind, dist in zip(nn_ind, nn_dists): img_id = self.id_ind_map[ind] img = self.ic.get_image(img_id, no_hist=True) img['url'] = cgi.escape(img['url']) img['distance'] = dist results.append(img) return results, time_elapsed @abc.abstractmethod def nn_ind(self, color_hist, num): """ Return num closest nearest neighbors (potentially approximate) to the query color_hist, and the distances to them. Override this search method in extending classes. Parameters ---------- color_hist : (K,) ndarray histogram over the color palette num : int number of nearest neighbors to return. Returns ------- nn_ind : (num,) ndarray Indices of the neighbors in the dataset. nn_dists (num,) ndarray Distances to the neighbors returned. """ pass class SearchableImageCollectionExact(SearchableImageCollection): """ Search the image collection exhaustively (mainly through np.dot). """ DISTANCE_METRICS = ['manhattan', 'euclidean', 'chi_square'] def nn_ind(self, color_hist, num): """ Exact nearest neighbor seach through exhaustive comparison. """ if self.distance_metric == 'manhattan': dists = manhattan_distances(color_hist, self.hists_reduced) elif self.distance_metric == 'euclidean': dists = euclidean_distances(color_hist, self.hists_reduced, squared=True) elif self.distance_metric == 'chi_square': dists = -additive_chi2_kernel(color_hist, self.hists_reduced) dists = dists.flatten() nn_ind = np.argsort(dists).flatten()[:num] nn_dists = dists[nn_ind] return nn_ind, nn_dists class SearchableImageCollectionFLANN(SearchableImageCollection): """ Search the image collection using the FLANN library for aNN indexing. The FLANN index is built with automatic tuning of the search algorithm, which can take a while (~90s on 25K images). """ DISTANCE_METRICS = ['manhattan', 'euclidean', 'chi_square'] @staticmethod def load(filename): # Saving the flann object results in memory errors, so we use its own # method to save its index in a separate file. sic = cPickle.load(open(filename)) return sic.build_index(filename + '_flann_index') def save(self, filename): # See comment in load(). flann = self.flann self.flann = None cPickle.dump(self, open(filename, 'w'), 2) flann.save_index(filename + '_flann_index') self.flann = flann def __init__(self, image_collection, distance_metric, sigma, dimensions): super(SearchableImageCollectionFLANN, self).__init__( image_collection, distance_metric, sigma, dimensions) self.build_index() def build_index(self, index_filename=None): tt.tic('build_index') pyflann.set_distance_type(self.distance_metric) self.flann = pyflann.FLANN() if index_filename: self.flann.load_index(index_filename, self.hists_reduced) else: self.params = self.flann.build_index( self.hists_reduced, algorithm='autotuned', sample_fraction=0.3, target_precision=.8, build_weight=0.01, memory_weight=0.) print(self.params) tt.toc('build_index') return self def nn_ind(self, color_hist, num): nn_ind, nn_dists = self.flann.nn_index( color_hist, num, checks=self.params['checks']) return nn_ind.flatten(), nn_dists.flatten() class SearchableImageCollectionCKDTree(SearchableImageCollection): """ Use the cKDTree data structure from scipy.spatial for the index. Parameters: - LEAF_SIZE (int): The number of points at which the algorithm switches over to brute-force. - EPS (non-negative float): Parameter for query(), such that the k-th returned value is guaranteed to be no further than (1 + eps) times the distance to the real k-th nearest neighbor. NOTE: These parameters have not been tuned. """ DISTANCE_METRICS = ['manhattan', 'euclidean'] Ps = {'manhattan': 1, 'euclidean': 2} LEAF_SIZE = 5 EPSILON = 1 @staticmethod def load(filename): return cPickle.load(open(filename)).build_index() def __init__(self, image_collection, distance_metric, sigma, dimensions): super(SearchableImageCollectionCKDTree, self).__init__( image_collection, distance_metric, sigma, dimensions) self.build_index() def build_index(self): tt.tic('build_index_ckdtree') self.ckdtree = cKDTree(self.hists_reduced, self.LEAF_SIZE) self.p = self.Ps[self.distance_metric] tt.toc('build_index_ckdtree') return self def nn_ind(self, color_hist, num): nn_dists, nn_ind = self.ckdtree.query( color_hist, num, eps=self.EPSILON, p=self.p) return nn_ind.flatten(), nn_dists.flatten()
[ "scipy.spatial.cKDTree", "sklearn.metrics.pairwise.manhattan_distances", "sklearn.decomposition.PCA", "sklearn.metrics.pairwise.euclidean_distances", "util.histogram_colors_smoothed", "pyflann.set_distance_type", "sklearn.metrics.pairwise.additive_chi2_kernel", "numpy.argsort", "pyflann.FLANN", "rayleigh.util.TicToc", "cgi.escape", "util.smooth_histogram", "image.Image" ]
[((408, 416), 'rayleigh.util.TicToc', 'TicToc', ([], {}), '()\n', (414, 416), False, 'from rayleigh.util import TicToc\n'), ((2377, 2427), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'self.num_dimensions', 'whiten': '(True)'}), '(n_components=self.num_dimensions, whiten=True)\n', (2380, 2427), False, 'from sklearn.decomposition import PCA\n'), ((3897, 3918), 'image.Image', 'Image', (['image_filename'], {}), '(image_filename)\n', (3902, 3918), False, 'from image import Image\n'), ((3940, 4045), 'util.histogram_colors_smoothed', 'util.histogram_colors_smoothed', (['query_img.lab_array', 'self.ic.palette'], {'sigma': 'self.sigma', 'direct': '(False)'}), '(query_img.lab_array, self.ic.palette, sigma=\n self.sigma, direct=False)\n', (3970, 4045), False, 'import util\n'), ((8282, 8329), 'pyflann.set_distance_type', 'pyflann.set_distance_type', (['self.distance_metric'], {}), '(self.distance_metric)\n', (8307, 8329), False, 'import pyflann\n'), ((8351, 8366), 'pyflann.FLANN', 'pyflann.FLANN', ([], {}), '()\n', (8364, 8366), False, 'import pyflann\n'), ((10077, 10120), 'scipy.spatial.cKDTree', 'cKDTree', (['self.hists_reduced', 'self.LEAF_SIZE'], {}), '(self.hists_reduced, self.LEAF_SIZE)\n', (10084, 10120), False, 'from scipy.spatial import cKDTree\n'), ((2111, 2173), 'util.smooth_histogram', 'util.smooth_histogram', (['color_hist', 'self.ic.palette', 'self.sigma'], {}), '(color_hist, self.ic.palette, self.sigma)\n', (2132, 2173), False, 'import util\n'), ((5383, 5405), 'cgi.escape', 'cgi.escape', (["img['url']"], {}), "(img['url'])\n", (5393, 5405), False, 'import cgi\n'), ((6606, 6657), 'sklearn.metrics.pairwise.manhattan_distances', 'manhattan_distances', (['color_hist', 'self.hists_reduced'], {}), '(color_hist, self.hists_reduced)\n', (6625, 6657), False, 'from sklearn.metrics.pairwise import manhattan_distances, euclidean_distances, additive_chi2_kernel\n'), ((6728, 6793), 'sklearn.metrics.pairwise.euclidean_distances', 'euclidean_distances', (['color_hist', 'self.hists_reduced'], {'squared': '(True)'}), '(color_hist, self.hists_reduced, squared=True)\n', (6747, 6793), False, 'from sklearn.metrics.pairwise import manhattan_distances, euclidean_distances, additive_chi2_kernel\n'), ((6977, 6994), 'numpy.argsort', 'np.argsort', (['dists'], {}), '(dists)\n', (6987, 6994), True, 'import numpy as np\n'), ((6866, 6918), 'sklearn.metrics.pairwise.additive_chi2_kernel', 'additive_chi2_kernel', (['color_hist', 'self.hists_reduced'], {}), '(color_hist, self.hists_reduced)\n', (6886, 6918), False, 'from sklearn.metrics.pairwise import manhattan_distances, euclidean_distances, additive_chi2_kernel\n')]
#!/usr/bin/env python3 import os import argparse import numpy as np from sklearn import preprocessing from sklearn import datasets from tqdm import tqdm class Network(object): def __init__(self): self.linear1 = Linear(64, 128) self.relu1 = ReLU() self.linear2 = Linear(128, 64) self.relu2 = ReLU() self.linear3 = Linear(64, 10) def forward(self, x): out = self.relu1(self.linear1(x)) out = self.relu2(self.linear2(out)) out = self.linear3(out) return out def __call__(self, x): return self.forward(x) class Linear(object): def __init__(self, input_size, output_size): self.W = np.zeros((input_size, output_size)) self.cache = None self.reset_parameters() def forward(self, x): self.cache = x return x @ self.W def backward(self, grad): pass def reset_parameters(self): var = 1 / self.W.shape[0] self.W = np.random.normal(loc=0, scale=var, size=self.W.shape) def __call__(self, x): return self.forward(x) class ReLU(object): def __init__(self): self.cache = None def forward(self, x): self.cache = x return np.clip(x, a_min=0, a_max=None) def __call__(self, x): return self.forward(x) def softmax(X): """https://deepnotes.io/softmax-crossentropy""" exps = np.exp(X - np.max(X)) return exps / np.sum(exps) def cross_entropy(X, y): """https://deepnotes.io/softmax-crossentropy""" m = y.shape[0] p = softmax(X) log_likelihood = -np.log(p[range(m),y]) loss = np.sum(log_likelihood) / m return loss def main(args): data, target = datasets.load_digits(return_X_y=True) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data, target = data[indices], target[indices] splits = (int(0.7 * data.shape[0]), int(0.9 * data.shape[0])) scaler = preprocessing.StandardScaler().fit(data[:splits[0]]) data = scaler.transform(data) train, val, test = zip(np.split(data, splits), np.split(target, splits)) net = Network() for epoch in range(args.epochs): pred = net(train[0]) loss = cross_entropy(pred, train[1]) import ipdb; ipdb.set_trace() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--epochs", type=int, default=100) args = parser.parse_args() main(args)
[ "numpy.random.normal", "numpy.clip", "argparse.ArgumentParser", "ipdb.set_trace", "sklearn.datasets.load_digits", "numpy.max", "sklearn.preprocessing.StandardScaler", "numpy.sum", "numpy.zeros", "numpy.split", "numpy.arange", "numpy.random.shuffle" ]
[((1714, 1751), 'sklearn.datasets.load_digits', 'datasets.load_digits', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (1734, 1751), False, 'from sklearn import datasets\n'), ((1766, 1790), 'numpy.arange', 'np.arange', (['data.shape[0]'], {}), '(data.shape[0])\n', (1775, 1790), True, 'import numpy as np\n'), ((1795, 1821), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (1812, 1821), True, 'import numpy as np\n'), ((2329, 2354), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2352, 2354), False, 'import argparse\n'), ((689, 724), 'numpy.zeros', 'np.zeros', (['(input_size, output_size)'], {}), '((input_size, output_size))\n', (697, 724), True, 'import numpy as np\n'), ((987, 1040), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'var', 'size': 'self.W.shape'}), '(loc=0, scale=var, size=self.W.shape)\n', (1003, 1040), True, 'import numpy as np\n'), ((1237, 1268), 'numpy.clip', 'np.clip', (['x'], {'a_min': '(0)', 'a_max': 'None'}), '(x, a_min=0, a_max=None)\n', (1244, 1268), True, 'import numpy as np\n'), ((1449, 1461), 'numpy.sum', 'np.sum', (['exps'], {}), '(exps)\n', (1455, 1461), True, 'import numpy as np\n'), ((1634, 1656), 'numpy.sum', 'np.sum', (['log_likelihood'], {}), '(log_likelihood)\n', (1640, 1656), True, 'import numpy as np\n'), ((2066, 2088), 'numpy.split', 'np.split', (['data', 'splits'], {}), '(data, splits)\n', (2074, 2088), True, 'import numpy as np\n'), ((2090, 2114), 'numpy.split', 'np.split', (['target', 'splits'], {}), '(target, splits)\n', (2098, 2114), True, 'import numpy as np\n'), ((2270, 2286), 'ipdb.set_trace', 'ipdb.set_trace', ([], {}), '()\n', (2284, 2286), False, 'import ipdb\n'), ((1420, 1429), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (1426, 1429), True, 'import numpy as np\n'), ((1952, 1982), 'sklearn.preprocessing.StandardScaler', 'preprocessing.StandardScaler', ([], {}), '()\n', (1980, 1982), False, 'from sklearn import preprocessing\n')]
""" University of Minnesota Aerospace Engineering and Mechanics - UAV Lab Copyright 2019 Regents of the University of Minnesota See: LICENSE.md for complete license details Author: <NAME> Analysis for Huginn (mAEWing2) FLT03 and FLT04 """ #%% # Import Libraries import numpy as np import matplotlib.pyplot as plt # Hack to allow loading the Core package if __name__ == "__main__" and __package__ is None: from sys import path, argv from os.path import dirname, abspath, join path.insert(0, abspath(join(dirname(argv[0]), ".."))) path.insert(0, abspath(join(dirname(argv[0]), "..", 'Core'))) del path, argv, dirname, abspath, join from Core import Loader from Core import OpenData # Constants hz2rps = 2 * np.pi rps2hz = 1 / hz2rps #%% File Lists import os.path as path pathBase = path.join('/home', 'rega0051', 'FlightArchive', 'Huginn') #pathBase = path.join('G:', 'Shared drives', 'UAVLab', 'Flight Data', 'Huginn') #pathBase = path.join('D:/', 'Huginn') fileList = {} flt = 'FLT05' fileList[flt] = {} fileList[flt]['log'] = path.join(pathBase, 'Huginn' + flt, 'Huginn' + flt + '.h5') fileList[flt]['config'] = path.join(pathBase, 'Huginn' + flt, 'huginn.json') fileList[flt]['def'] = path.join(pathBase, 'Huginn' + flt, 'huginn_def.json') flt = 'FLT06' fileList[flt] = {} fileList[flt]['log'] = path.join(pathBase, 'Huginn' + flt, 'Huginn' + flt + '.h5') fileList[flt]['config'] = path.join(pathBase, 'Huginn' + flt, 'huginn.json') fileList[flt]['def'] = path.join(pathBase, 'Huginn' + flt, 'huginn_def.json') #%% Wind/Air Cal windSegList = [ {'flt': 'FLT05', 'seg': ('time_us', [566483686, 582408497])}, {'flt': 'FLT05', 'seg': ('time_us', [602534178, 622279236])}, {'flt': 'FLT05', 'seg': ('time_us', [637362791, 654286351])}, {'flt': 'FLT05', 'seg': ('time_us', [666668777, 687832534])}, {'flt': 'FLT05', 'seg': ('time_us', [703115100, 766364351])}, # Long!! {'flt': 'FLT05', 'seg': ('time_us', [788467105, 799488311])}, {'flt': 'FLT05', 'seg': ('time_us', [811669552, 831211361])}, {'flt': 'FLT05', 'seg': ('time_us', [844412511, 861513899])}, {'flt': 'FLT05', 'seg': ('time_us', [873694795, 887575754])}, {'flt': 'FLT05', 'seg': ('time_us', [899096534, 909897237])}, {'flt': 'FLT05', 'seg': ('time_us', [927000000, 950000000])}, # Landing Approach {'flt': 'FLT06', 'seg': ('time_us', [940358346, 955822061])}, {'flt': 'FLT06', 'seg': ('time_us', [982747328, 1000069848])}, {'flt': 'FLT06', 'seg': ('time_us', [1010491142, 1026492809])}, {'flt': 'FLT06', 'seg': ('time_us', [1036733749, 1054855133])}, {'flt': 'FLT06', 'seg': ('time_us', [1065295790, 1087597269])}, # Slowing Turn {'flt': 'FLT06', 'seg': ('time_us', [1103958408, 1122539650])}, {'flt': 'FLT06', 'seg': ('time_us', [1140000000, 1165401057])}, {'flt': 'FLT06', 'seg': ('time_us', [1165401057, 1189143263])}, {'flt': 'FLT06', 'seg': ('time_us', [1189143263, 1225000000])}, # Landing Approach {'flt': 'FLT06', 'seg': ('time_us', [1225000000, 1260000000])}, # Landing Approach ] oDataWindList = [] for windSeg in windSegList: fltNum = windSeg['flt'] fileLog = fileList[fltNum]['log'] fileConfig = fileList[fltNum]['config'] oData, h5Data = Loader.Log_RAPTRS(fileLog, fileConfig) for key in h5Data['Sensor-Processing']['PostProcess']['INS'].keys(): oData[key] = h5Data['Sensor-Processing']['PostProcess']['INS'][key] oData = OpenData.Decimate(oData, 10) oDataWindList.append(OpenData.Segment(oData, windSeg['seg'])) fig, ax = plt.subplots(nrows=2) for oDataWind in oDataWindList: latGps_deg = oDataWind['rGps_D_ddm'][0] lonGps_deg = oDataWind['rGps_D_ddm'][1] latB_deg = oDataWind['rB_D_ddm'][0] lonB_deg = oDataWind['rB_D_ddm'][1] ax[0].plot(lonGps_deg, latGps_deg, '.', label='GPS') ax[0].plot(lonB_deg, latB_deg, label='Ekf') ax[0].grid() ax[1].plot(oDataWind['time_s'], oDataWind['vIas_mps']) ax[1].plot(oDataWind['time_s'], oDataWind['sB_L_rad'][0]*180.0/np.pi) ax[1].grid() #%% ## Pre-Optimization, Initial Guess for the Wind # Over-ride Default Error Model, Optional pData = {} pData['5Hole'] = {} pData['5Hole']['r_B_m'] = np.array([1.0, 0.0, 0.0]) pData['5Hole']['s_B_rad'] = np.array([0.0, 0.0, 0.0]) * 180.0/np.pi pData['5Hole']['v'] = {} pData['5Hole']['v']['errorType'] = 'ScaleBias+' pData['5Hole']['v']['K'] = 1.0 pData['5Hole']['v']['bias'] = 0.0 pData['5Hole']['alt'] = pData['5Hole']['v'].copy() pData['5Hole']['alpha'] = pData['5Hole']['v'].copy() pData['5Hole']['beta'] = pData['5Hole']['v'].copy() pData['5Hole']['v']['K'] = 0.95 #%% Optimize from Core import AirData from Core import AirDataCalibration rad2deg = 180.0 / np.pi deg2rad = 1 / rad2deg oDataList = oDataWindList # Compute the optimal parameters #opt = {'Method': 'BFGS', 'Options': {'disp': True}} opt = {'Method': 'L-BFGS-B', 'Options': {'disp': True}} #opt = {'Method': 'L-BFGS-B', 'Options': {'maxiter': 10, 'disp': True}} #opt = {'Method': 'CG', 'Options': {'disp': True}} #%% First Phase - Airspeed and Wind only opt['wind'] = [] for seg in oDataList: seg['vMean_AE_L_mps'] = np.asarray([-2.0, 0.0, 0.0]) opt['wind'].append({'val': seg['vMean_AE_L_mps'], 'lb': np.asarray([-10, -10, -3]), 'ub': np.asarray([10, 10, 3])}) opt['param'] = [] opt['param'].append({'val': pData['5Hole']['v']['K'], 'lb': 0.80, 'ub': 1.20}) opt['param'].append({'val': pData['5Hole']['v']['bias'], 'lb': -3.0, 'ub': 3.0}) opt['param'].append({'val': pData['5Hole']['alpha']['K'], 'lb': 1.00, 'ub': 1.00}) opt['param'].append({'val': pData['5Hole']['alpha']['bias'], 'lb': -0.0 * deg2rad, 'ub': 0.0 * deg2rad}) opt['param'].append({'val': pData['5Hole']['beta']['K'], 'lb': 1.00, 'ub': 1.00}) opt['param'].append({'val': pData['5Hole']['beta']['bias'], 'lb': -0.0 * deg2rad, 'ub': 0.0 * deg2rad}) #AirDataCalibration.CostFunc(xOpt, optInfo, oDataList, param) opt['Result'] = AirDataCalibration.EstCalib(opt, oDataList, pData['5Hole']) nSegs = len(oDataWindList) nWinds = nSegs * 3 vWind = opt['Result']['x'][0:nWinds].reshape((nSegs, 3)) #%% Second Phase - add alpha and beta if False: for iSeg, seg in enumerate(oDataList): seg['vMean_AE_L_mps'] = vWind[iSeg] opt['wind'][iSeg]['val'] = seg['vMean_AE_L_mps'] opt['wind'][iSeg]['lb'] = seg['vMean_AE_L_mps'] - np.asarray([0.0, 0.0, 0.0]) opt['wind'][iSeg]['ub'] = seg['vMean_AE_L_mps'] + np.asarray([0.0, 0.0, 0.0]) opt['param'][0] = {'val': pData['5Hole']['v']['K'], 'lb': 1.0 * pData['5Hole']['v']['K'], 'ub': 1.0 * pData['5Hole']['v']['K']} opt['param'][1] = {'val': pData['5Hole']['v']['bias'], 'lb': pData['5Hole']['v']['bias']-0.0, 'ub': pData['5Hole']['v']['bias']+0.0} opt['param'][2] = {'val': pData['5Hole']['alpha']['K'], 'lb': 0.8, 'ub': 1.2} opt['param'][3] = {'val': pData['5Hole']['alpha']['bias'], 'lb': -4.0 * deg2rad, 'ub': 4.0 * deg2rad} opt['param'][4] = {'val': pData['5Hole']['beta']['K'], 'lb': 0.8, 'ub': 1.2} opt['param'][5] = {'val': pData['5Hole']['beta']['bias'], 'lb': -4.0 * deg2rad, 'ub': 4.0 * deg2rad} #AirDataCalibration.CostFunc(xOpt, optInfo, oDataList, param) opt['Result'] = AirDataCalibration.EstCalib(opt, oDataList, pData['5Hole']) nSegs = len(oDataWindList) nWinds = nSegs * 3 vWind = opt['Result']['x'][0:nWinds].reshape((nSegs, 3)) #%% Plot the Solution from SensorModel import SensorErrorModel for iSeg, oDataWind in enumerate(oDataWindList): # Update the Flight data with the new calibrations calib = AirData.ApplyCalibration(oDataWind, pData['5Hole']) oDataWind.update(calib) v_BA_B_mps, v_BA_L_mps = AirData.Airspeed2NED(oDataWind['v_PA_P_mps'], oDataWind['sB_L_rad'], pData['5Hole']) oDataWind['vMean_AE_L_mps'] = vWind[iSeg] if True: plt.figure() plt.subplot(3,1,1) plt.plot(oDataWind['time_s'], oDataWind['vB_L_mps'][0], label = 'Inertial') plt.plot(oDataWind['time_s'], v_BA_L_mps[0] + oDataWind['vMean_AE_L_mps'][0], label = 'AirData + Wind') plt.grid() plt.legend() plt.subplot(3,1,2) plt.plot(oDataWind['time_s'], oDataWind['vB_L_mps'][1]) plt.plot(oDataWind['time_s'], v_BA_L_mps[1] + oDataWind['vMean_AE_L_mps'][1]) plt.grid() plt.subplot(3,1,3) plt.plot(oDataWind['time_s'], oDataWind['vB_L_mps'][2]) plt.plot(oDataWind['time_s'], v_BA_L_mps[2] + oDataWind['vMean_AE_L_mps'][2]) plt.grid() v_AE_L_mps = np.repeat([oDataWind['vMean_AE_L_mps']], oDataWind['vB_L_mps'].shape[-1], axis=0).T vError_mps = (v_BA_L_mps + v_AE_L_mps) - oDataWind['vB_L_mps'] vErrorMag_mps = np.linalg.norm(vError_mps, axis=0) vAirUncalMag_mps = oDataWind['vIas_mps'] vAirMag_mps = np.linalg.norm((v_BA_L_mps + v_AE_L_mps), axis=0) vInertMag_mps = np.linalg.norm(oDataWind['vB_L_mps'], axis=0) plt.figure(0) # plt.plot(vAirMag_mps, vInertMag_mps - vAirMag_mps, '.') plt.plot(vAirMag_mps, vInertMag_mps, '.') plt.grid() print('Wind (m/s): ', oDataWind['vMean_AE_L_mps']) plt.figure(0) vA_mps = np.linspace(15, 35, 5) vAcal_mps = SensorErrorModel(vA_mps, pData['5Hole']['v']) plt.plot(vA_mps, vA_mps, 'k:') #plt.plot(vA_mps, vA_mps - vG_mps, 'k:') print('Velocity Gain: ', pData['5Hole']['v']['K']) print('Velocity Bias: ', pData['5Hole']['v']['bias']) print('Alpha Gain: ', pData['5Hole']['alpha']['K']) print('Alpha Bias: ', pData['5Hole']['alpha']['bias']) print('Beta Gain: ', pData['5Hole']['beta']['K']) print('Beta Bias: ', pData['5Hole']['beta']['bias'])
[ "Core.AirData.ApplyCalibration", "matplotlib.pyplot.grid", "Core.AirData.Airspeed2NED", "Core.AirDataCalibration.EstCalib", "numpy.array", "Core.OpenData.Decimate", "numpy.linalg.norm", "numpy.repeat", "matplotlib.pyplot.plot", "numpy.asarray", "numpy.linspace", "Core.Loader.Log_RAPTRS", "sys.path.join", "os.path.dirname", "matplotlib.pyplot.legend", "Core.OpenData.Segment", "matplotlib.pyplot.figure", "SensorModel.SensorErrorModel", "matplotlib.pyplot.subplot", "matplotlib.pyplot.subplots" ]
[((811, 868), 'sys.path.join', 'path.join', (['"""/home"""', '"""rega0051"""', '"""FlightArchive"""', '"""Huginn"""'], {}), "('/home', 'rega0051', 'FlightArchive', 'Huginn')\n", (820, 868), False, 'from sys import path, argv\n'), ((1059, 1118), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", "('Huginn' + flt + '.h5')"], {}), "(pathBase, 'Huginn' + flt, 'Huginn' + flt + '.h5')\n", (1068, 1118), False, 'from sys import path, argv\n'), ((1145, 1195), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", '"""huginn.json"""'], {}), "(pathBase, 'Huginn' + flt, 'huginn.json')\n", (1154, 1195), False, 'from sys import path, argv\n'), ((1219, 1273), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", '"""huginn_def.json"""'], {}), "(pathBase, 'Huginn' + flt, 'huginn_def.json')\n", (1228, 1273), False, 'from sys import path, argv\n'), ((1331, 1390), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", "('Huginn' + flt + '.h5')"], {}), "(pathBase, 'Huginn' + flt, 'Huginn' + flt + '.h5')\n", (1340, 1390), False, 'from sys import path, argv\n'), ((1417, 1467), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", '"""huginn.json"""'], {}), "(pathBase, 'Huginn' + flt, 'huginn.json')\n", (1426, 1467), False, 'from sys import path, argv\n'), ((1491, 1545), 'sys.path.join', 'path.join', (['pathBase', "('Huginn' + flt)", '"""huginn_def.json"""'], {}), "(pathBase, 'Huginn' + flt, 'huginn_def.json')\n", (1500, 1545), False, 'from sys import path, argv\n'), ((3667, 3688), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)'}), '(nrows=2)\n', (3679, 3688), True, 'import matplotlib.pyplot as plt\n'), ((4315, 4340), 'numpy.array', 'np.array', (['[1.0, 0.0, 0.0]'], {}), '([1.0, 0.0, 0.0])\n', (4323, 4340), True, 'import numpy as np\n'), ((6044, 6103), 'Core.AirDataCalibration.EstCalib', 'AirDataCalibration.EstCalib', (['opt', 'oDataList', "pData['5Hole']"], {}), "(opt, oDataList, pData['5Hole'])\n", (6071, 6103), False, 'from Core import AirDataCalibration\n'), ((9199, 9212), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (9209, 9212), True, 'import matplotlib.pyplot as plt\n'), ((9222, 9244), 'numpy.linspace', 'np.linspace', (['(15)', '(35)', '(5)'], {}), '(15, 35, 5)\n', (9233, 9244), True, 'import numpy as np\n'), ((9257, 9302), 'SensorModel.SensorErrorModel', 'SensorErrorModel', (['vA_mps', "pData['5Hole']['v']"], {}), "(vA_mps, pData['5Hole']['v'])\n", (9273, 9302), False, 'from SensorModel import SensorErrorModel\n'), ((9303, 9333), 'matplotlib.pyplot.plot', 'plt.plot', (['vA_mps', 'vA_mps', '"""k:"""'], {}), "(vA_mps, vA_mps, 'k:')\n", (9311, 9333), True, 'import matplotlib.pyplot as plt\n'), ((3350, 3388), 'Core.Loader.Log_RAPTRS', 'Loader.Log_RAPTRS', (['fileLog', 'fileConfig'], {}), '(fileLog, fileConfig)\n', (3367, 3388), False, 'from Core import Loader\n'), ((3560, 3588), 'Core.OpenData.Decimate', 'OpenData.Decimate', (['oData', '(10)'], {}), '(oData, 10)\n', (3577, 3588), False, 'from Core import OpenData\n'), ((5262, 5290), 'numpy.asarray', 'np.asarray', (['[-2.0, 0.0, 0.0]'], {}), '([-2.0, 0.0, 0.0])\n', (5272, 5290), True, 'import numpy as np\n'), ((7305, 7364), 'Core.AirDataCalibration.EstCalib', 'AirDataCalibration.EstCalib', (['opt', 'oDataList', "pData['5Hole']"], {}), "(opt, oDataList, pData['5Hole'])\n", (7332, 7364), False, 'from Core import AirDataCalibration\n'), ((7664, 7715), 'Core.AirData.ApplyCalibration', 'AirData.ApplyCalibration', (['oDataWind', "pData['5Hole']"], {}), "(oDataWind, pData['5Hole'])\n", (7688, 7715), False, 'from Core import AirData\n'), ((7774, 7863), 'Core.AirData.Airspeed2NED', 'AirData.Airspeed2NED', (["oDataWind['v_PA_P_mps']", "oDataWind['sB_L_rad']", "pData['5Hole']"], {}), "(oDataWind['v_PA_P_mps'], oDataWind['sB_L_rad'], pData[\n '5Hole'])\n", (7794, 7863), False, 'from Core import AirData\n'), ((8786, 8820), 'numpy.linalg.norm', 'np.linalg.norm', (['vError_mps'], {'axis': '(0)'}), '(vError_mps, axis=0)\n', (8800, 8820), True, 'import numpy as np\n'), ((8884, 8931), 'numpy.linalg.norm', 'np.linalg.norm', (['(v_BA_L_mps + v_AE_L_mps)'], {'axis': '(0)'}), '(v_BA_L_mps + v_AE_L_mps, axis=0)\n', (8898, 8931), True, 'import numpy as np\n'), ((8954, 8999), 'numpy.linalg.norm', 'np.linalg.norm', (["oDataWind['vB_L_mps']"], {'axis': '(0)'}), "(oDataWind['vB_L_mps'], axis=0)\n", (8968, 8999), True, 'import numpy as np\n'), ((9005, 9018), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (9015, 9018), True, 'import matplotlib.pyplot as plt\n'), ((9084, 9125), 'matplotlib.pyplot.plot', 'plt.plot', (['vAirMag_mps', 'vInertMag_mps', '"""."""'], {}), "(vAirMag_mps, vInertMag_mps, '.')\n", (9092, 9125), True, 'import matplotlib.pyplot as plt\n'), ((9130, 9140), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (9138, 9140), True, 'import matplotlib.pyplot as plt\n'), ((3614, 3653), 'Core.OpenData.Segment', 'OpenData.Segment', (['oData', "windSeg['seg']"], {}), "(oData, windSeg['seg'])\n", (3630, 3653), False, 'from Core import OpenData\n'), ((4369, 4394), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (4377, 4394), True, 'import numpy as np\n'), ((7928, 7940), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7938, 7940), True, 'import matplotlib.pyplot as plt\n'), ((7949, 7969), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (7960, 7969), True, 'import matplotlib.pyplot as plt\n'), ((7976, 8049), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "oDataWind['vB_L_mps'][0]"], {'label': '"""Inertial"""'}), "(oDataWind['time_s'], oDataWind['vB_L_mps'][0], label='Inertial')\n", (7984, 8049), True, 'import matplotlib.pyplot as plt\n'), ((8060, 8166), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "(v_BA_L_mps[0] + oDataWind['vMean_AE_L_mps'][0])"], {'label': '"""AirData + Wind"""'}), "(oDataWind['time_s'], v_BA_L_mps[0] + oDataWind['vMean_AE_L_mps'][0\n ], label='AirData + Wind')\n", (8068, 8166), True, 'import matplotlib.pyplot as plt\n'), ((8172, 8182), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (8180, 8182), True, 'import matplotlib.pyplot as plt\n'), ((8191, 8203), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8201, 8203), True, 'import matplotlib.pyplot as plt\n'), ((8212, 8232), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(2)'], {}), '(3, 1, 2)\n', (8223, 8232), True, 'import matplotlib.pyplot as plt\n'), ((8239, 8294), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "oDataWind['vB_L_mps'][1]"], {}), "(oDataWind['time_s'], oDataWind['vB_L_mps'][1])\n", (8247, 8294), True, 'import matplotlib.pyplot as plt\n'), ((8303, 8380), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "(v_BA_L_mps[1] + oDataWind['vMean_AE_L_mps'][1])"], {}), "(oDataWind['time_s'], v_BA_L_mps[1] + oDataWind['vMean_AE_L_mps'][1])\n", (8311, 8380), True, 'import matplotlib.pyplot as plt\n'), ((8389, 8399), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (8397, 8399), True, 'import matplotlib.pyplot as plt\n'), ((8408, 8428), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(3)'], {}), '(3, 1, 3)\n', (8419, 8428), True, 'import matplotlib.pyplot as plt\n'), ((8435, 8490), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "oDataWind['vB_L_mps'][2]"], {}), "(oDataWind['time_s'], oDataWind['vB_L_mps'][2])\n", (8443, 8490), True, 'import matplotlib.pyplot as plt\n'), ((8499, 8576), 'matplotlib.pyplot.plot', 'plt.plot', (["oDataWind['time_s']", "(v_BA_L_mps[2] + oDataWind['vMean_AE_L_mps'][2])"], {}), "(oDataWind['time_s'], v_BA_L_mps[2] + oDataWind['vMean_AE_L_mps'][2])\n", (8507, 8576), True, 'import matplotlib.pyplot as plt\n'), ((8585, 8595), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (8593, 8595), True, 'import matplotlib.pyplot as plt\n'), ((8614, 8699), 'numpy.repeat', 'np.repeat', (["[oDataWind['vMean_AE_L_mps']]", "oDataWind['vB_L_mps'].shape[-1]"], {'axis': '(0)'}), "([oDataWind['vMean_AE_L_mps']], oDataWind['vB_L_mps'].shape[-1],\n axis=0)\n", (8623, 8699), True, 'import numpy as np\n'), ((5351, 5377), 'numpy.asarray', 'np.asarray', (['[-10, -10, -3]'], {}), '([-10, -10, -3])\n', (5361, 5377), True, 'import numpy as np\n'), ((5385, 5408), 'numpy.asarray', 'np.asarray', (['[10, 10, 3]'], {}), '([10, 10, 3])\n', (5395, 5408), True, 'import numpy as np\n'), ((6459, 6486), 'numpy.asarray', 'np.asarray', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (6469, 6486), True, 'import numpy as np\n'), ((6545, 6572), 'numpy.asarray', 'np.asarray', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (6555, 6572), True, 'import numpy as np\n'), ((520, 536), 'os.path.dirname', 'dirname', (['argv[0]'], {}), '(argv[0])\n', (527, 536), False, 'from os.path import dirname, abspath, join\n'), ((578, 594), 'os.path.dirname', 'dirname', (['argv[0]'], {}), '(argv[0])\n', (585, 594), False, 'from os.path import dirname, abspath, join\n')]
#! /usr/bin/env python ######################################################################## # # # Resums the non-global logarithms, needs ngl_resum.py # # # # If using ngl_resum, please cite # # doi:10.1007/JHEP09(2020)029 # # https://inspirehep.net/literature/1798660 # # # ######################################################################## __author__ = '<NAME>' __email__ = '<EMAIL>' __date__ = 'October 19, 2020' import time import numpy as np import argparse import ngl_resum as ngl parser = argparse.ArgumentParser(description='This code shows how to '\ 'use ngl_resum to shower a single dipole aligned with the '\ 'z-axis, both legs with velocity b. The outside region is '\ 'defined by the symmetric rapidity gap from -y to y. '\ 'This code was used to produce some of the results in '\ 'Section 4 of arXiv:2006.00014') parser.add_argument('-b','--beta', help='beta of dipole legs', \ default=1, type=float) parser.add_argument('-y','--ymax', help='ymax of outside region', \ default=0.8, type=float) parser.add_argument('-n','--nsh', help='number of showerings', \ default=100, type=int) parser.add_argument('-t','--tmax', help='maximal shower time tmax', \ default=0.1, type=float) parser.add_argument('-m','--nbins', help='number of bins in hists', \ default=100, type=int) parser.add_argument('-c','--cutoff', help='cutoff of shower', \ default=6, type=float) parser.add_argument('-s','--seed', help='random seed', \ default=None, type=int) args = vars(parser.parse_args()) nbins=int(args['nbins']) tmax=float(args['tmax']) nsh=int(args['nsh']) showerCutoff=float(args['cutoff']) b=float(args['beta']) if not(args['seed'] is None) : np.random.seed(args['seed']) dipole=[ngl.FourVector(1,0,0,b),ngl.FourVector(1,0,0,-b)] ev=ngl.Event(feedDipole=dipole) def _outside(self,vec): rapRangeMax=float(args['ymax']) rapRangeMin=0.0 return (abs(vec.rap)<rapRangeMax) and (abs(vec.rap)>=rapRangeMin) outsideRegion=ngl.OutsideRegion() outsideRegion.outside = _outside.__get__(outsideRegion,\ ngl.OutsideRegion) shower=ngl.Shower(ev,outsideRegion,nsh,nbins,tmax,showerCutoff) timeStart = time.time() shower.shower() print('runtime=', time.time()-timeStart,' sec') print('*************************************') print('* t LL(t) dS(t) * ') print('*************************************\n') print('*** Binned Result ***\n\n') for i in range(0,shower.resLL.nbins): print( round(shower.resLL.centerBinValue[i],4),' ', \ shower.resLL.entries[i],' ', \ np.sqrt(shower.resLL.squaredError[i])) print('\n\n' ) snlo=shower.ngl1Loop snloError=np.sqrt((shower.ngl1LoopSq-shower.ngl1Loop**2)/(nsh)) print('snlo=',snlo) print('snloError=',snloError) print('\n') snnlo=shower.ngl2Loop+0.5*snlo**2 #Error(snnlo)=|d(snnlo)/d(fullNGL2Loop)*Error(fullNGL2Loop)| # + |d(snnlo)/d(snlo)*Error(snlo)| snnloError=abs(np.sqrt((shower.ngl2LoopSq-shower.ngl2Loop**2)/(nsh)))\ +abs(snlo*snloError) print('snnlo=',snnlo) print('snnloError=',snnloError) print('\n') print('\n')
[ "numpy.sqrt", "argparse.ArgumentParser", "ngl_resum.FourVector", "ngl_resum.Shower", "ngl_resum.Event", "ngl_resum.OutsideRegion", "numpy.random.seed", "time.time" ]
[((838, 1158), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""This code shows how to use ngl_resum to shower a single dipole aligned with the z-axis, both legs with velocity b. The outside region is defined by the symmetric rapidity gap from -y to y. This code was used to produce some of the results in Section 4 of arXiv:2006.00014"""'}), "(description=\n 'This code shows how to use ngl_resum to shower a single dipole aligned with the z-axis, both legs with velocity b. The outside region is defined by the symmetric rapidity gap from -y to y. This code was used to produce some of the results in Section 4 of arXiv:2006.00014'\n )\n", (861, 1158), False, 'import argparse\n'), ((2180, 2208), 'ngl_resum.Event', 'ngl.Event', ([], {'feedDipole': 'dipole'}), '(feedDipole=dipole)\n', (2189, 2208), True, 'import ngl_resum as ngl\n'), ((2375, 2394), 'ngl_resum.OutsideRegion', 'ngl.OutsideRegion', ([], {}), '()\n', (2392, 2394), True, 'import ngl_resum as ngl\n'), ((2507, 2568), 'ngl_resum.Shower', 'ngl.Shower', (['ev', 'outsideRegion', 'nsh', 'nbins', 'tmax', 'showerCutoff'], {}), '(ev, outsideRegion, nsh, nbins, tmax, showerCutoff)\n', (2517, 2568), True, 'import ngl_resum as ngl\n'), ((2577, 2588), 'time.time', 'time.time', ([], {}), '()\n', (2586, 2588), False, 'import time\n'), ((3090, 3147), 'numpy.sqrt', 'np.sqrt', (['((shower.ngl1LoopSq - shower.ngl1Loop ** 2) / nsh)'], {}), '((shower.ngl1LoopSq - shower.ngl1Loop ** 2) / nsh)\n', (3097, 3147), True, 'import numpy as np\n'), ((2085, 2113), 'numpy.random.seed', 'np.random.seed', (["args['seed']"], {}), "(args['seed'])\n", (2099, 2113), True, 'import numpy as np\n'), ((2126, 2152), 'ngl_resum.FourVector', 'ngl.FourVector', (['(1)', '(0)', '(0)', 'b'], {}), '(1, 0, 0, b)\n', (2140, 2152), True, 'import ngl_resum as ngl\n'), ((2150, 2177), 'ngl_resum.FourVector', 'ngl.FourVector', (['(1)', '(0)', '(0)', '(-b)'], {}), '(1, 0, 0, -b)\n', (2164, 2177), True, 'import ngl_resum as ngl\n'), ((2630, 2641), 'time.time', 'time.time', ([], {}), '()\n', (2639, 2641), False, 'import time\n'), ((3001, 3038), 'numpy.sqrt', 'np.sqrt', (['shower.resLL.squaredError[i]'], {}), '(shower.resLL.squaredError[i])\n', (3008, 3038), True, 'import numpy as np\n'), ((3367, 3424), 'numpy.sqrt', 'np.sqrt', (['((shower.ngl2LoopSq - shower.ngl2Loop ** 2) / nsh)'], {}), '((shower.ngl2LoopSq - shower.ngl2Loop ** 2) / nsh)\n', (3374, 3424), True, 'import numpy as np\n')]
import time import picamera import numpy as np import cv2 with picamera.PiCamera() as camera: camera.resolution = (3280, 2464) camera. start_preview() time. sleep(2) camera.capture('image.data', 'yuv') ################################################## fd = open('image.data', 'rb') f=np.fromfile(fd, dtype=np.uint8, count=3280*2464) im = f.reshape((3280, 2464)) fd.close() cv2.imwrite('rawconverted.jpg', im)
[ "cv2.imwrite", "numpy.fromfile", "picamera.PiCamera", "time.sleep" ]
[((301, 351), 'numpy.fromfile', 'np.fromfile', (['fd'], {'dtype': 'np.uint8', 'count': '(3280 * 2464)'}), '(fd, dtype=np.uint8, count=3280 * 2464)\n', (312, 351), True, 'import numpy as np\n'), ((390, 425), 'cv2.imwrite', 'cv2.imwrite', (['"""rawconverted.jpg"""', 'im'], {}), "('rawconverted.jpg', im)\n", (401, 425), False, 'import cv2\n'), ((63, 82), 'picamera.PiCamera', 'picamera.PiCamera', ([], {}), '()\n', (80, 82), False, 'import picamera\n'), ((163, 176), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (173, 176), False, 'import time\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import numpy as np import scipy.io.wavfile as wav import random import tables import pickle def feed_to_hdf5(feature_vector, subject_num, utterance_train_storage, utterance_test_storage, label_train_storage, label_test_storage): """ :param feature_vector: The feature vector for each sound file of shape: (num_frames,num_features_per_frame,num_channles.) :param subject_num: The subject class in 'int' format. :param utterance_storage: The HDF5 object for storing utterance feature map. :param label_train_storage: The HDF5 object for storing train label. :param label_test_storage: The HDF5 object for storing test label. :return: Each utterance will be stored in HDF5 file. """ num_utterances_per_speaker = 20 stride_step = 20 utterance_length = 80 num_frames = feature_vector.shape[0] num_samples = int(np.floor((num_frames - utterance_length - num_utterances_per_speaker) / float(stride_step))) + 1 # Half of the samples will be fed for training. range_training = range(int(4 * num_samples / 5)) range_training = range(1) for sample_index in range_training: # initial index of each utterance init = sample_index * stride_step utterance = np.zeros((1, 80, 40, 20), dtype=np.float32) for utterance_speaker in range(num_utterances_per_speaker): utterance[:, :, :, utterance_speaker] = feature_vector[None, init + utterance_speaker:init + utterance_speaker + utterance_length, :, 0] utterance_train_storage.append(utterance) label_train_storage.append((np.array([subject_num + 1], dtype=np.int32))) # The second half of each sound file will be used for testing on the same subject. range_testing = range(int(4 * num_samples / 5), int(num_samples)) range_testing = range(1,2) for sample_index in range_testing: # initial index of each utterance init = sample_index * stride_step utterance = np.zeros((1, 80, 40, 20), dtype=np.float32) for utterance_speaker in range(num_utterances_per_speaker): utterance[:, :, :, utterance_speaker] = feature_vector[None, init + utterance_speaker:init + utterance_speaker + utterance_length, :, 0] utterance_test_storage.append(utterance) label_test_storage.append((np.array([subject_num + 1], dtype=np.int32)))
[ "numpy.array", "numpy.zeros" ]
[((1387, 1430), 'numpy.zeros', 'np.zeros', (['(1, 80, 40, 20)'], {'dtype': 'np.float32'}), '((1, 80, 40, 20), dtype=np.float32)\n', (1395, 1430), True, 'import numpy as np\n'), ((2216, 2259), 'numpy.zeros', 'np.zeros', (['(1, 80, 40, 20)'], {'dtype': 'np.float32'}), '((1, 80, 40, 20), dtype=np.float32)\n', (2224, 2259), True, 'import numpy as np\n'), ((1838, 1881), 'numpy.array', 'np.array', (['[subject_num + 1]'], {'dtype': 'np.int32'}), '([subject_num + 1], dtype=np.int32)\n', (1846, 1881), True, 'import numpy as np\n'), ((2665, 2708), 'numpy.array', 'np.array', (['[subject_num + 1]'], {'dtype': 'np.int32'}), '([subject_num + 1], dtype=np.int32)\n', (2673, 2708), True, 'import numpy as np\n')]
import numpy as np from bokeh.models import ColumnDataSource, HoverTool from bokeh.palettes import Cividis256 as Pallete from bokeh.plotting import Figure, figure from bokeh.transform import factor_cmap def draw_interactive_scatter_plot( texts: np.ndarray, xs: np.ndarray, ys: np.ndarray, values: np.ndarray, labels: np.ndarray, text_column: str, label_column: str, ) -> Figure: # Smooth down values for coloring, by taking the entropy = log10(perplexity) and multiply it by 10000 values = ((np.log10(values)) * 10000).round().astype(int) # Normalize values to range between 0-255, to assign a color for each value max_value = values.max() min_value = values.min() if max_value - min_value == 0: values_color = np.ones(len(values)) else: values_color = ( ((values - min_value) / (max_value - min_value) * 255).round().astype(int) ) values_color_sorted = sorted(values_color) values_list = values.astype(str).tolist() values_sorted = sorted(values_list) labels_list = labels.astype(str).tolist() source = ColumnDataSource( data=dict(x=xs, y=ys, text=texts, label=values_list, original_label=labels_list) ) hover = HoverTool( tooltips=[(text_column, "@text{safe}"), (label_column, "@original_label")] ) p = figure(plot_width=800, plot_height=800, tools=[hover]) p.circle( "x", "y", size=10, source=source, fill_color=factor_cmap( "label", palette=[Pallete[id_] for id_ in values_color_sorted], factors=values_sorted, ), ) p.axis.visible = False p.xgrid.grid_line_color = None p.ygrid.grid_line_color = None p.toolbar.logo = None return p
[ "bokeh.transform.factor_cmap", "numpy.log10", "bokeh.plotting.figure", "bokeh.models.HoverTool" ]
[((1245, 1334), 'bokeh.models.HoverTool', 'HoverTool', ([], {'tooltips': "[(text_column, '@text{safe}'), (label_column, '@original_label')]"}), "(tooltips=[(text_column, '@text{safe}'), (label_column,\n '@original_label')])\n", (1254, 1334), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((1353, 1407), 'bokeh.plotting.figure', 'figure', ([], {'plot_width': '(800)', 'plot_height': '(800)', 'tools': '[hover]'}), '(plot_width=800, plot_height=800, tools=[hover])\n', (1359, 1407), False, 'from bokeh.plotting import Figure, figure\n'), ((1507, 1609), 'bokeh.transform.factor_cmap', 'factor_cmap', (['"""label"""'], {'palette': '[Pallete[id_] for id_ in values_color_sorted]', 'factors': 'values_sorted'}), "('label', palette=[Pallete[id_] for id_ in values_color_sorted],\n factors=values_sorted)\n", (1518, 1609), False, 'from bokeh.transform import factor_cmap\n'), ((530, 546), 'numpy.log10', 'np.log10', (['values'], {}), '(values)\n', (538, 546), True, 'import numpy as np\n')]
def plot_power_spectra(kbins, deltab_2, deltac_2, deltac_2_nodeconv, tf, ax=None): ''' Plot density and velocity power spectra and compare with CAMB ''' import numpy as np import matplotlib.pylab as plt from seren3.cosmology.transfer_function import TF if ax is None: ax = plt.gca() k, pkb = tf.TF_Pk(TF.B) k, pkc = tf.TF_Pk(TF.C) ax.loglog(kbins, deltac_2, label="CDM", color="royalblue", linewidth=2.) ax.loglog(kbins, deltac_2_nodeconv, color="navy", linestyle='--') ax.loglog(kbins, deltab_2, label="Baryons", color="darkorange", linewidth=2.) # CAMB deltab_2_CAMB = pkb * (k ** 3.) / (2. * np.pi ** 2.) deltac_2_CAMB = pkc * (k ** 3.) / (2. * np.pi ** 2.) # direc = '/lustre/scratch/astro/ds381/simulations/baryon_drift/100Mpc/z200/zoom/lvl14/' # fname = "%s/input_powerspec_baryon.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # k = ps_data[0] # P_bar = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # fname = "%s/input_powerspec_cdm.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # P_cdm = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # deltac_2_CAMB = P_cdm * (k ** 3.) # deltab_2_CAMB = P_bar * (k ** 3.) ax.loglog(k, deltac_2_CAMB, color="royalblue", linestyle=":") ax.loglog(k, deltab_2_CAMB, color="darkorange", linestyle=":") ax.set_xlabel(r"k [Mpc$^{-1}$ h a$^{-1}$]", fontsize=20) # ax.set_ylabel(r"$\mathcal{P}(k)$", fontsize=20) ax.legend(loc="upper left", frameon=False, prop={"size" : 18}) # plt.xlim(0.001, 100) ax.set_xlim(0.01, 1e4) ax.set_ylim(1e-12, 2) def plot_velocity_power_spectra(kbins, vdeltab_2, vdeltac_2, tf, ax=None): ''' Plot density and velocity power spectra and compare with CAMB ''' import numpy as np import matplotlib.pylab as plt from seren3.cosmology import linear_velocity_ps from seren3.cosmology.transfer_function import TF if ax is None: ax = plt.gca() k, pkb = tf.TF_Pk(TF.B) k, pkc = tf.TF_Pk(TF.C) ix = np.where(~np.isnan(vdeltab_2)) ax.loglog(kbins[ix][3:], vdeltac_2[ix][3:], label="CDM", color="royalblue", linewidth=2.) ax.loglog(kbins[ix][3:], vdeltab_2[ix][3:], label="Baryons", color="darkorange", linewidth=2.) # CAMB deltab_2_CAMB = pkb * (k ** 3.) / (2. * np.pi ** 2.) deltac_2_CAMB = pkc * (k ** 3.) / (2. * np.pi ** 2.) cosmo = tf.cosmo vdeltab_2_CAMB = linear_velocity_ps(k, np.sqrt(deltab_2_CAMB), **cosmo)**2 vdeltac_2_CAMB = linear_velocity_ps(k, np.sqrt(deltac_2_CAMB), **cosmo)**2 vnorm = vdeltab_2_CAMB/deltab_2_CAMB k, pkb = tf.TF_Pk(TF.VBARYON) k, pkc = tf.TF_Pk(TF.VCDM) vdeltab_2_CAMB = pkb * (k ** 3.) / (2. * np.pi ** 2.) * vnorm * 0.702 vdeltac_2_CAMB = pkc * (k ** 3.) / (2. * np.pi ** 2.) * vnorm * 0.702 # direc = '/lustre/scratch/astro/ds381/simulations/baryon_drift/100Mpc/z200/zoom/lvl14/' # fname = "%s/input_powerspec_baryon.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # k = ps_data[0] # P_bar = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # fname = "%s/input_powerspec_cdm.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # P_cdm = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # deltac_2_CAMB = P_cdm * (k ** 3.) # deltab_2_CAMB = P_bar * (k ** 3.) ax.loglog(k, vdeltac_2_CAMB, color="royalblue", linestyle=":") ax.loglog(k, vdeltab_2_CAMB, color="darkorange", linestyle=":") ax.set_xlabel(r"k [Mpc$^{-1}$ h a$^{-1}$]", fontsize=20) ax.set_ylabel(r"$\mathcal{P}_{v}(k)$ [km s$^{-1}$]", fontsize=20) ax.legend(loc="lower left", frameon=False, prop={"size" : 18}) # plt.xlim(0.001, 100) ax.set_xlim(0.01, 1e4) # ax.set_ylim(1e-12, 2) def plot_velocity(data_9, data_14): import matplotlib.pylab as plt fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6)) for ax, data in zip(axs.flatten(), [data_9, data_14]): kbins, deltab_2, deltac_2, deltac_2_nodeconv, tf = data kbins = kbins[3:] deltab_2 = deltab_2[3:] deltac_2 = deltac_2[3:] deltac_2_nodeconv = deltac_2_nodeconv[3:] plot_velocity_power_spectra(kbins, deltab_2, deltac_2, tf, ax=ax) # axs[0].set_ylabel(r"$\mathcal{P}(k)$", fontsize=20) axs[0].set_ylabel(r"$\mathcal{P}_{v}(k)$ [km s$^{-1}$]", fontsize=20) fig.tight_layout() plt.show() def plot(data_9, data_14): import matplotlib.pylab as plt fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6)) for ax, data in zip(axs.flatten(), [data_9, data_14]): kbins, deltab_2, deltac_2, deltac_2_nodeconv, tf = data kbins = kbins[ix][3:] deltab_2 = deltab_2[3:] deltac_2 = deltac_2[3:] deltac_2_nodeconv = deltac_2_nodeconv[3:] plot_power_spectra(kbins, deltab_2, deltac_2, deltac_2_nodeconv, tf, ax=ax) # kbins, vdeltab_2, vdeltac_2, tf = data # plot_velocity_power_spectra(kbins, deltab_2, deltac_2, tf, ax=ax) axs[0].set_ylabel(r"$\mathcal{P}(k)$", fontsize=20) # axs[0].set_ylabel(r"$\mathcal{P}_{v}(k)$ [km s$^{-1}$]", fontsize=20) fig.tight_layout() plt.show() def plot_power_spectra_bias(kbins_bias, deltab_2_bias, deltac_2_bias, kbins, deltab_2, deltac_2, tf, ax=None): ''' Plot density and velocity power spectra and compare with CAMB ''' import numpy as np import matplotlib.pylab as plt from seren3.cosmology.transfer_function import TF import matplotlib.gridspec as gridspec fig = plt.figure(figsize=(8,6)) gs = gridspec.GridSpec(5,4,wspace=0.,hspace=0.) ax = fig.add_subplot(gs[2:,:]) ax2 = fig.add_subplot(gs[:2,:], sharex=ax) k, pkb = tf.TF_Pk(TF.B) k, pkc = tf.TF_Pk(TF.C) ix = np.where(~np.isnan(deltab_2_bias)) ax.loglog(kbins_bias[ix], deltac_2_bias[ix], label="CDM", color="royalblue", linewidth=2.) ax.loglog(kbins_bias[ix], deltab_2_bias[ix], label="Baryons", color="darkorange", linewidth=2.) ix = np.where(~np.isnan(deltab_2)) ax.loglog(kbins[ix], deltac_2[ix], color="royalblue", linewidth=2., linestyle="--") ax.loglog(kbins[ix], deltab_2[ix], color="darkorange", linewidth=2., linestyle="--") ax.loglog([0.0001, 0.0001], [100, 100], color="k", linewidth=2., linestyle="-", label="Biased") ax.loglog([0.0001, 0.0001], [100, 100], color="k", linewidth=2., linestyle="--", label="Unbiased") ax2.plot(kbins_bias[ix], deltac_2_bias[ix]/deltac_2[ix], color="royalblue", linewidth=2.) ax2.plot(kbins_bias[ix], deltab_2_bias[ix]/deltab_2[ix], color="darkorange", linewidth=2.) ax2.plot(np.linspace(0.1, 3000), np.ones(50), linestyle=":", color="k", label="Unity") # CAMB deltab_2_CAMB = pkb * (k ** 3.) / (2. * np.pi ** 2.) deltac_2_CAMB = pkc * (k ** 3.) / (2. * np.pi ** 2.) # direc = '/lustre/scratch/astro/ds381/simulations/baryon_drift/100Mpc/z200/zoom/lvl14/' # fname = "%s/input_powerspec_baryon.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # k = ps_data[0] # P_bar = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # fname = "%s/input_powerspec_cdm.txt" % direc # ps_data = np.loadtxt(fname, unpack=True) # P_cdm = ps_data[1] * (2 * np.pi) ** 3 * tf._norm # deltac_2_CAMB = P_cdm * (k ** 3.) # deltab_2_CAMB = P_bar * (k ** 3.) ax.loglog(k, deltac_2_CAMB, color="royalblue", linestyle=":", alpha=0.5) ax.loglog(k, deltab_2_CAMB, color="darkorange", linestyle=":", alpha=0.5) ax.set_xlabel(r"k [Mpc$^{-1}$ h a$^{-1}$]", fontsize=20) ax.set_ylabel(r"$\mathcal{P}(k)$", fontsize=20) ax.legend(loc="lower left", ncol=2, frameon=False, prop={"size" : 18}) # plt.xlim(0.001, 100) ax.set_xlim(1, 2000) ax.set_ylim(1e-8, 2) ax2.set_ylim(-0.2, 1.2) ax2.set_ylabel(r"$b(k,v_{bc})$", fontsize=20) ax2.set_title(r"$|v_{bc,\mathrm{rec}}|$ = 19.06 km s$^{-1}$", fontsize=20) ax2.legend(loc="lower left", frameon=False, prop={"size" : 20}) plt.setp(ax2.get_xticklabels(), visible=False)
[ "matplotlib.pylab.gca", "matplotlib.pylab.subplots", "numpy.sqrt", "numpy.ones", "matplotlib.pylab.figure", "matplotlib.gridspec.GridSpec", "numpy.linspace", "numpy.isnan", "matplotlib.pylab.show" ]
[((3864, 3911), 'matplotlib.pylab.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(2)', 'figsize': '(12, 6)'}), '(nrows=1, ncols=2, figsize=(12, 6))\n', (3876, 3911), True, 'import matplotlib.pylab as plt\n'), ((4410, 4420), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (4418, 4420), True, 'import matplotlib.pylab as plt\n'), ((4501, 4548), 'matplotlib.pylab.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(2)', 'figsize': '(12, 6)'}), '(nrows=1, ncols=2, figsize=(12, 6))\n', (4513, 4548), True, 'import matplotlib.pylab as plt\n'), ((5186, 5196), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (5194, 5196), True, 'import matplotlib.pylab as plt\n'), ((5559, 5585), 'matplotlib.pylab.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (5569, 5585), True, 'import matplotlib.pylab as plt\n'), ((5594, 5641), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(5)', '(4)'], {'wspace': '(0.0)', 'hspace': '(0.0)'}), '(5, 4, wspace=0.0, hspace=0.0)\n', (5611, 5641), True, 'import matplotlib.gridspec as gridspec\n'), ((310, 319), 'matplotlib.pylab.gca', 'plt.gca', ([], {}), '()\n', (317, 319), True, 'import matplotlib.pylab as plt\n'), ((1990, 1999), 'matplotlib.pylab.gca', 'plt.gca', ([], {}), '()\n', (1997, 1999), True, 'import matplotlib.pylab as plt\n'), ((6643, 6665), 'numpy.linspace', 'np.linspace', (['(0.1)', '(3000)'], {}), '(0.1, 3000)\n', (6654, 6665), True, 'import numpy as np\n'), ((6667, 6678), 'numpy.ones', 'np.ones', (['(50)'], {}), '(50)\n', (6674, 6678), True, 'import numpy as np\n'), ((2077, 2096), 'numpy.isnan', 'np.isnan', (['vdeltab_2'], {}), '(vdeltab_2)\n', (2085, 2096), True, 'import numpy as np\n'), ((2483, 2505), 'numpy.sqrt', 'np.sqrt', (['deltab_2_CAMB'], {}), '(deltab_2_CAMB)\n', (2490, 2505), True, 'import numpy as np\n'), ((2562, 2584), 'numpy.sqrt', 'np.sqrt', (['deltac_2_CAMB'], {}), '(deltac_2_CAMB)\n', (2569, 2584), True, 'import numpy as np\n'), ((5797, 5820), 'numpy.isnan', 'np.isnan', (['deltab_2_bias'], {}), '(deltab_2_bias)\n', (5805, 5820), True, 'import numpy as np\n'), ((6038, 6056), 'numpy.isnan', 'np.isnan', (['deltab_2'], {}), '(deltab_2)\n', (6046, 6056), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List from unittest.mock import patch import numpy as np from ...common import testing from . import core @testing.parametrized( bragg=("bragg", [2.93, 2.18, 2.35, 2.12, 31.53, 15.98, 226.69, 193.11]), morpho=("morpho", [280.36, 52.96, 208.16, 72.69, 89.92, 60.37, 226.69, 193.11]), chirped=("chirped", [280.36, 52.96, 104.08, 36.34, 31.53, 15.98, 226.69, 193.11]), ) def test_photonics_transforms(pb: str, expected: List[float]) -> None: np.random.seed(24) with patch("shutil.which", return_value="here"): func = core.Photonics(pb, 16) # should be 8... but it is actually not allowed. Nevermind here, HACK IT NEXT LINE func.instrumentation.args[0]._dimension = 8 # type: ignore x = np.random.normal(0, 1, size=8) (output,), _ = func.instrumentation.data_to_arguments(x) np.testing.assert_almost_equal(output, expected, decimal=2) np.random.seed(24) x2 = np.random.normal(0, 1, size=8) np.testing.assert_almost_equal(x, x2, decimal=2, err_msg="x was modified in the process") def test_morpho_transform_constraints() -> None: with patch("shutil.which", return_value="here"): func = core.Photonics("morpho", 60) x = np.random.normal(0, 5, size=60) # std 5 to play with boundaries (output,), _ = func.instrumentation.data_to_arguments(x) assert np.all(output >= 0) q = len(x) // 4 assert np.all(output[:q] <= 300) assert np.all(output[q: 3 * q] <= 600) assert np.all(output[2 * q: 3 * q] >= 30) assert np.all(output[3 * q:] <= 300) def test_photonics() -> None: with patch("shutil.which", return_value="here"): photo = core.Photonics("bragg", 16) with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n12\n"): with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n12\n"): output = photo(np.zeros(16)) np.testing.assert_equal(output, 12) # check error with patch("nevergrad.instrumentation.utils.CommandFunction.__call__", return_value="line1\n"): np.testing.assert_raises(RuntimeError, photo, np.zeros(16).tolist()) np.testing.assert_raises(AssertionError, photo, np.zeros(12).tolist())
[ "numpy.random.normal", "numpy.testing.assert_equal", "numpy.testing.assert_almost_equal", "numpy.zeros", "numpy.random.seed", "numpy.all", "unittest.mock.patch" ]
[((674, 692), 'numpy.random.seed', 'np.random.seed', (['(24)'], {}), '(24)\n', (688, 692), True, 'import numpy as np\n'), ((940, 970), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(8)'}), '(0, 1, size=8)\n', (956, 970), True, 'import numpy as np\n'), ((1036, 1095), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['output', 'expected'], {'decimal': '(2)'}), '(output, expected, decimal=2)\n', (1066, 1095), True, 'import numpy as np\n'), ((1100, 1118), 'numpy.random.seed', 'np.random.seed', (['(24)'], {}), '(24)\n', (1114, 1118), True, 'import numpy as np\n'), ((1128, 1158), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {'size': '(8)'}), '(0, 1, size=8)\n', (1144, 1158), True, 'import numpy as np\n'), ((1163, 1257), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['x', 'x2'], {'decimal': '(2)', 'err_msg': '"""x was modified in the process"""'}), "(x, x2, decimal=2, err_msg=\n 'x was modified in the process')\n", (1193, 1257), True, 'import numpy as np\n'), ((1409, 1440), 'numpy.random.normal', 'np.random.normal', (['(0)', '(5)'], {'size': '(60)'}), '(0, 5, size=60)\n', (1425, 1440), True, 'import numpy as np\n'), ((1546, 1565), 'numpy.all', 'np.all', (['(output >= 0)'], {}), '(output >= 0)\n', (1552, 1565), True, 'import numpy as np\n'), ((1597, 1622), 'numpy.all', 'np.all', (['(output[:q] <= 300)'], {}), '(output[:q] <= 300)\n', (1603, 1622), True, 'import numpy as np\n'), ((1634, 1664), 'numpy.all', 'np.all', (['(output[q:3 * q] <= 600)'], {}), '(output[q:3 * q] <= 600)\n', (1640, 1664), True, 'import numpy as np\n'), ((1677, 1710), 'numpy.all', 'np.all', (['(output[2 * q:3 * q] >= 30)'], {}), '(output[2 * q:3 * q] >= 30)\n', (1683, 1710), True, 'import numpy as np\n'), ((1723, 1752), 'numpy.all', 'np.all', (['(output[3 * q:] <= 300)'], {}), '(output[3 * q:] <= 300)\n', (1729, 1752), True, 'import numpy as np\n'), ((2139, 2174), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['output', '(12)'], {}), '(output, 12)\n', (2162, 2174), True, 'import numpy as np\n'), ((702, 744), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (707, 744), False, 'from unittest.mock import patch\n'), ((1313, 1355), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (1318, 1355), False, 'from unittest.mock import patch\n'), ((1794, 1836), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': '"""here"""'}), "('shutil.which', return_value='here')\n", (1799, 1836), False, 'from unittest.mock import patch\n'), ((1891, 1988), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n12\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n12\\n')\n", (1896, 1988), False, 'from unittest.mock import patch\n'), ((2202, 2295), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n')\n", (2207, 2295), False, 'from unittest.mock import patch\n'), ((1999, 2096), 'unittest.mock.patch', 'patch', (['"""nevergrad.instrumentation.utils.CommandFunction.__call__"""'], {'return_value': '"""line1\n12\n"""'}), "('nevergrad.instrumentation.utils.CommandFunction.__call__',\n return_value='line1\\n12\\n')\n", (2004, 2096), False, 'from unittest.mock import patch\n'), ((2121, 2133), 'numpy.zeros', 'np.zeros', (['(16)'], {}), '(16)\n', (2129, 2133), True, 'import numpy as np\n'), ((2422, 2434), 'numpy.zeros', 'np.zeros', (['(12)'], {}), '(12)\n', (2430, 2434), True, 'import numpy as np\n'), ((2347, 2359), 'numpy.zeros', 'np.zeros', (['(16)'], {}), '(16)\n', (2355, 2359), True, 'import numpy as np\n')]
#!env python import collections import queue import logging import enum import functools import json import time import os import gzip import shutil import random # ONLY USED FOR RANDOM DELAY AT BEGINNING. import numpy as np import argparse import sys sys.path.append("../src-testbed") import events import common import placement_controller class LocalController(object): def __init__(self, simulation): self.simulation = simulation def requestInference(self, curr_time, request): new_events = [] if len(self.simulation.model_placements.getWorkersFromModel(request.model)) > 0: # There is a placement of the model already worker = self.selectWorker(self.simulation.model_placements.getWorkersFromModel(request.model)) new_events.extend(worker.assignRequest(curr_time, request, model_miss=False)) elif self.simulation.flags.do_reactive: new_events.extend(self.simulation.placement_controller.requestPlacement(curr_time, request)) else: logging.error("No available workers found") request.markRejected() new_events.append( (curr_time, events.RequestCompletionEvent(self.simulation, request)) ) return new_events def selectWorker(self, possible_workers): return self.simulation.rng.choice(possible_workers) class PlacementController(object): def __init__(self, simulation, flags): self.simulation = simulation self.flags = flags self.model_placements = self.simulation.model_placements self.placement_controller = placement_controller.PlacementController(flags) self.placement_controller.model_placements = self.model_placements # Overwrite with our model_placements def requestPlacement(self, curr_time, request): new_events = [] model_info = { model: { "open_requests" : (self.simulation.metrics.per_model_requests[model] - self.simulation.metrics.per_model_responses[model]), "last_used" : model.last_used, "requests_submitted": self.simulation.metrics.per_model_requests[model], "placement_count" : len(self.model_placements.getWorkersFromModel(model)), "load_latency" : model.getLoadLatency(), "exec_latency" : model.getExecLatency(), "loaded_size" : model.getSize(), } for model in self.model_placements.getModels() } self.placement_controller.setModelInfo(model_info) self.placement_controller.requestToAddModels([request.model], request.id) # TODO: Figure out the proper logic on these. Specifically, this should be negotiated through the local controller while not self.placement_controller.model_placements.removals.empty(): # First we schedule all removals worker, model = self.model_placements.removals.get() new_events.extend(worker.removeModel(curr_time, model)) self.simulation.mark_as_saturated() while not self.placement_controller.model_placements.additions.empty(): # Next we schedule all additions worker, model = self.model_placements.additions.get() new_events.extend(worker.addModel(curr_time, model)) # Next we schedule the model on the chosen worker (or see what worker can now take it and assign it) if len(self.simulation.model_placements.getWorkersFromModel(request.model)) > 0: worker = self.simulation.local_controller.selectWorker(self.simulation.model_placements.getWorkersFromModel(request.model)) new_events.extend(worker.assignRequest(curr_time, request, model_miss=True)) else: request.markRejected() new_events.append( (curr_time, events.RequestCompletionEvent(self.simulation, request)) ) return new_events @functools.total_ordering class Worker(object): class QueueItem(object): def __init__(self, item, latency): self.item = item self.latency = latency def getLatency(self): return self.latency def __init__(self, simulation, worker_name, *args, **kwargs): self.simulation = simulation self.name = worker_name self.executing = False self.queue = queue.Queue() self.models_loaded = set() def __str__(self): return self.name def __hash__(self): return hash(self.name) def __lt__(self, other): return self.name < other.name def __eq__(self, other): if isinstance(other, self.__class__): return self.name == other.name else: return self.name == other def assignRequest(self, curr_time, request, model_miss): new_events = [] request.assignToWorker(curr_time, model_miss) self.queue.put(self.__class__.QueueItem(request, request.model.getExecLatency())) if not self.executing: new_events.extend(self.startExecuting(curr_time)) return new_events def removeModel(self, curr_time, model): new_events = [] event_to_add = events.ModelRemovalEvent(self.simulation, self, model) self.queue.put(self.QueueItem(event_to_add, model.getUnloadLatency())) if not self.executing: new_events.extend(self.startExecuting(curr_time)) return new_events def addModel(self, curr_time, model): new_events = [] self.queue.put(self.QueueItem(events.ModelAdditionEvent(self.simulation, self, model), model.getLoadLatency())) if not self.executing: new_events.extend(self.startExecuting(curr_time)) return new_events def _removeModel(self, curr_time, model): new_events = [] print(f"({curr_time:0.3f}) Removing {model} from {self}") self.models_loaded.remove(model) return new_events def _addModel(self, curr_time, model): new_events = [] print(f"({curr_time:0.3f}) Adding {model} to {self}") self.models_loaded.add(model) return new_events def startExecuting(self, curr_time): new_events = [] if self.executing: return new_events if self.queue.empty(): return new_events self.executing = True next_queue_item = self.queue.get() if isinstance(next_queue_item.item, self.simulation.Request): new_events.extend(next_queue_item.item.model.executeRequest(curr_time)) next_queue_item.item.startExecution(curr_time) completion_event = events.WorkerQueueCompletionEvent(self.simulation, self, next_queue_item) new_events.append((curr_time + next_queue_item.getLatency(), completion_event)) return new_events @functools.total_ordering class Model(common.ModelPlacements.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def executeRequest(self, curr_time): new_events = [] self.last_used = curr_time return new_events class Simulation(object): class Metrics(object): def __init__(self, simulation): self.simulation = simulation self.general_metrics = { "requests_in" : 0, "requests_out" : 0, } self.per_model_requests = collections.defaultdict(int) self.per_model_responses = collections.defaultdict(int) self.per_model_latency = collections.defaultdict(list) def markRequestIn(self, model_name): self.general_metrics["requests_in"] += 1 self.per_model_requests[model_name] += 1 def markRequestOut(self, model_name, latency): self.general_metrics["requests_out"] += 1 self.per_model_responses[model_name] += 1 self.per_model_latency[model_name].append(latency) def reportMetrics(self): print(f"Requests: {self.general_metrics['requests_out']} / {self.general_metrics['requests_in']} completed") for model in sorted(self.per_model_latency.keys()): print(f"{model} : {np.average(self.per_model_latency[model]):0.3f} : {np.average(self.per_model_latency[model]) / self.simulation.models_by_name[model].load_latency:%}") class Request(object): class Status(enum.Enum): INIT = 1 ACCEPTED = 2 REJECTED = 3 EXECUTING = 4 COMPLETED = 5 def __init__(self, simulation, request_id, arrival_time, model_requested, *args, **kwargs): self.simulation = simulation self.status = self.__class__.Status.INIT self.id = int(request_id) self.model_requested = model_requested self.model = self.simulation.models_by_name[model_requested] self.arrival_time = float(arrival_time) self.assignment_time = float('inf') self.execution_time = float('inf') self.completion_time = float('inf') self.model_miss = False self.is_saturated = False def __str__(self): return f"R({self.id}, {self.arrival_time}, {self.model_requested}, {self.status})" def markRejected(self): self.status = self.__class__.Status.REJECTED def markComplete(self, curr_time): self.completion_time = curr_time self.status = self.__class__.Status.COMPLETED self.simulation.metrics.markRequestOut(self.model_requested, (curr_time-self.arrival_time)) def assignToWorker(self, curr_time, model_miss): self.assignment_time = curr_time self.model_miss = model_miss def startExecution(self, curr_time): self.execution_time = curr_time def getResponse(self): response_dict = { "request_id" : self.id, "model" : self.model_requested, "response" : f"{self.status}", "placement_delay" : self.assignment_time - self.arrival_time, "queue_delay" : self.execution_time - self.assignment_time, "execution_delay" : self.completion_time - self.execution_time, "overall_latency" : self.completion_time - self.arrival_time, "model_miss" : self.model_miss, "saturated" : self.is_saturated, } return json.dumps(response_dict) @classmethod def fromLine(cls, simulation, line): return cls(simulation, *(line.split())) def __init__(self, flags, models_to_be_requested, rng_seed=None, *args, **kwargs): self.flags = flags self.rng = np.random.default_rng(rng_seed) self.results_fid = gzip.open(os.path.join(flags.results_dir, f"{flags.run_identifier}.log.gz"), 'wt') self.cache_size = flags.max_concurrent_models self.is_saturated = False model_descriptions = common.getModelInfo(json_file=flags.model_description_file) time.sleep(10*random.random()) if not os.path.exists(os.path.join(flags.results_dir, os.path.basename(flags.model_description_file))): shutil.copy(flags.model_description_file, flags.results_dir) shutil.copy(flags.workload_file, flags.results_dir) # Internally important data self.models_by_name = { model_name : Model(model_name, model_descriptions[model_name]) for model_name in models_to_be_requested } self.workers_by_name = { worker_name : Worker(self, worker_name) for worker_name in [f"worker_{i:02d}" for i in range(flags.num_workers_to_add)] } self.model_placements = common.ModelPlacements() for model in self.models_by_name.values(): self.model_placements.addModel(model) for worker in self.workers_by_name.values(): self.model_placements.addWorker(worker) self.metrics = self.Metrics(self) # Components self.local_controller = LocalController(self) self.placement_controller = PlacementController(self, self.flags) # Event Queue self.event_queue = queue.PriorityQueue() # Setup some models in cache, because why not #for worker in sorted(self.workers_by_name.values()): # for model in self.rng.choice(sorted(self.models_by_name.values()), size=self.cache_size, replace=False): # self.model_placements.addModelToWorker(worker, model) #self.model_placements.sync() def run(self): logging.info("Starting simulation") while not self.event_queue.empty(): curr_time, next_event = self.event_queue.get() logging.debug(f"NextEvent -> ({curr_time} : {next_event}") events_to_add = next_event.run(curr_time) for event_tuple in events_to_add: self.event_queue.put(event_tuple) logging.info("Simulation complete") self.metrics.reportMetrics() self.results_fid.close() def mark_as_saturated(self): self.is_saturated = True def recordExit(self, request): self.results_fid.write(f"{request.getResponse()}\n") def getFlags(): parser = argparse.ArgumentParser( parents=[ common.getParser(add_help=False), placement_controller.getParser(add_help=False, include_parents=False) ], conflict_handler='resolve' ) parser.add_argument("--cache_size", default=3) parser.add_argument('--workload_file', default="../workload/workload.txt") parser.add_argument('--model_description_file', default="../workload/models.json") parser.add_argument('--stop_after', default=float('inf'), type=float) parser.add_argument('--run_identifier', default=None, help="Identifier for saving data logs") parser.add_argument('--results_dir', default="results/") parser.add_argument('--show_debug', action='store_true') parser.add_argument('--base_logging_dir', default=os.path.abspath(os.path.join(os.path.dirname(__file__), '../../logs/simulation')) ) parser.add_argument('--run_series', default=None) flags = parser.parse_args() if flags.run_identifier is None: flags.run_identifier = flags.model_eviction_algorithm flags.run_identifier = f"{flags.run_identifier}.{int(time.time())}" if flags.run_series is not None: flags.base_logging_dir = os.path.join(flags.base_logging_dir, flags.run_series) else: flags.base_logging_dir = os.path.join(flags.base_logging_dir, flags.run_identifier) flags.results_dir = flags.base_logging_dir if not os.path.exists(flags.results_dir): os.makedirs(flags.results_dir) return flags def main(): flags = getFlags() common.getLogger(hide_debug=(not flags.show_debug)) with open(flags.workload_file) as workload_fid: models_to_be_requested = set([l.split(' ')[2].strip() for l in workload_fid.readlines()]) simulation = Simulation(flags, models_to_be_requested, cache_size=flags.cache_size, rng_seed=flags.rng_seed) workload_fid = open(flags.workload_file) line = workload_fid.readline() first_request = simulation.Request.fromLine(simulation, line) simulation.event_queue.put( (first_request.arrival_time, events.RequestArrival(simulation, first_request, workload_fid)) ) simulation.run() workload_fid.close() if __name__ == '__main__': main()
[ "numpy.random.default_rng", "events.WorkerQueueCompletionEvent", "common.getLogger", "logging.debug", "events.ModelAdditionEvent", "logging.info", "sys.path.append", "logging.error", "os.path.exists", "common.getParser", "json.dumps", "events.ModelRemovalEvent", "events.RequestCompletionEvent", "random.random", "common.getModelInfo", "events.RequestArrival", "queue.PriorityQueue", "placement_controller.getParser", "common.ModelPlacements", "numpy.average", "placement_controller.PlacementController", "os.path.dirname", "shutil.copy", "time.time", "os.makedirs", "os.path.join", "collections.defaultdict", "os.path.basename", "queue.Queue" ]
[((254, 287), 'sys.path.append', 'sys.path.append', (['"""../src-testbed"""'], {}), "('../src-testbed')\n", (269, 287), False, 'import sys\n'), ((14014, 14063), 'common.getLogger', 'common.getLogger', ([], {'hide_debug': '(not flags.show_debug)'}), '(hide_debug=not flags.show_debug)\n', (14030, 14063), False, 'import common\n'), ((1527, 1574), 'placement_controller.PlacementController', 'placement_controller.PlacementController', (['flags'], {}), '(flags)\n', (1567, 1574), False, 'import placement_controller\n'), ((4208, 4221), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (4219, 4221), False, 'import queue\n'), ((4973, 5027), 'events.ModelRemovalEvent', 'events.ModelRemovalEvent', (['self.simulation', 'self', 'model'], {}), '(self.simulation, self, model)\n', (4997, 5027), False, 'import events\n'), ((6303, 6376), 'events.WorkerQueueCompletionEvent', 'events.WorkerQueueCompletionEvent', (['self.simulation', 'self', 'next_queue_item'], {}), '(self.simulation, self, next_queue_item)\n', (6336, 6376), False, 'import events\n'), ((10047, 10078), 'numpy.random.default_rng', 'np.random.default_rng', (['rng_seed'], {}), '(rng_seed)\n', (10068, 10078), True, 'import numpy as np\n'), ((10302, 10361), 'common.getModelInfo', 'common.getModelInfo', ([], {'json_file': 'flags.model_description_file'}), '(json_file=flags.model_description_file)\n', (10321, 10361), False, 'import common\n'), ((11031, 11055), 'common.ModelPlacements', 'common.ModelPlacements', ([], {}), '()\n', (11053, 11055), False, 'import common\n'), ((11473, 11494), 'queue.PriorityQueue', 'queue.PriorityQueue', ([], {}), '()\n', (11492, 11494), False, 'import queue\n'), ((11848, 11883), 'logging.info', 'logging.info', (['"""Starting simulation"""'], {}), "('Starting simulation')\n", (11860, 11883), False, 'import logging\n'), ((12176, 12211), 'logging.info', 'logging.info', (['"""Simulation complete"""'], {}), "('Simulation complete')\n", (12188, 12211), False, 'import logging\n'), ((13676, 13730), 'os.path.join', 'os.path.join', (['flags.base_logging_dir', 'flags.run_series'], {}), '(flags.base_logging_dir, flags.run_series)\n', (13688, 13730), False, 'import os\n'), ((13768, 13826), 'os.path.join', 'os.path.join', (['flags.base_logging_dir', 'flags.run_identifier'], {}), '(flags.base_logging_dir, flags.run_identifier)\n', (13780, 13826), False, 'import os\n'), ((13884, 13917), 'os.path.exists', 'os.path.exists', (['flags.results_dir'], {}), '(flags.results_dir)\n', (13898, 13917), False, 'import os\n'), ((13923, 13953), 'os.makedirs', 'os.makedirs', (['flags.results_dir'], {}), '(flags.results_dir)\n', (13934, 13953), False, 'import os\n'), ((7009, 7037), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (7032, 7037), False, 'import collections\n'), ((7071, 7099), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (7094, 7099), False, 'import collections\n'), ((7131, 7160), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (7154, 7160), False, 'import collections\n'), ((9777, 9802), 'json.dumps', 'json.dumps', (['response_dict'], {}), '(response_dict)\n', (9787, 9802), False, 'import json\n'), ((10118, 10183), 'os.path.join', 'os.path.join', (['flags.results_dir', 'f"""{flags.run_identifier}.log.gz"""'], {}), "(flags.results_dir, f'{flags.run_identifier}.log.gz')\n", (10130, 10183), False, 'import os\n'), ((10511, 10571), 'shutil.copy', 'shutil.copy', (['flags.model_description_file', 'flags.results_dir'], {}), '(flags.model_description_file, flags.results_dir)\n', (10522, 10571), False, 'import shutil\n'), ((10578, 10629), 'shutil.copy', 'shutil.copy', (['flags.workload_file', 'flags.results_dir'], {}), '(flags.workload_file, flags.results_dir)\n', (10589, 10629), False, 'import shutil\n'), ((11983, 12041), 'logging.debug', 'logging.debug', (['f"""NextEvent -> ({curr_time} : {next_event}"""'], {}), "(f'NextEvent -> ({curr_time} : {next_event}')\n", (11996, 12041), False, 'import logging\n'), ((14529, 14591), 'events.RequestArrival', 'events.RequestArrival', (['simulation', 'first_request', 'workload_fid'], {}), '(simulation, first_request, workload_fid)\n', (14550, 14591), False, 'import events\n'), ((999, 1042), 'logging.error', 'logging.error', (['"""No available workers found"""'], {}), "('No available workers found')\n", (1012, 1042), False, 'import logging\n'), ((5303, 5358), 'events.ModelAdditionEvent', 'events.ModelAdditionEvent', (['self.simulation', 'self', 'model'], {}), '(self.simulation, self, model)\n', (5328, 5358), False, 'import events\n'), ((10380, 10395), 'random.random', 'random.random', ([], {}), '()\n', (10393, 10395), False, 'import random\n'), ((12519, 12551), 'common.getParser', 'common.getParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (12535, 12551), False, 'import common\n'), ((12571, 12640), 'placement_controller.getParser', 'placement_controller.getParser', ([], {'add_help': '(False)', 'include_parents': '(False)'}), '(add_help=False, include_parents=False)\n', (12601, 12640), False, 'import placement_controller\n'), ((13594, 13605), 'time.time', 'time.time', ([], {}), '()\n', (13603, 13605), False, 'import time\n'), ((3726, 3781), 'events.RequestCompletionEvent', 'events.RequestCompletionEvent', (['self.simulation', 'request'], {}), '(self.simulation, request)\n', (3755, 3781), False, 'import events\n'), ((10455, 10501), 'os.path.basename', 'os.path.basename', (['flags.model_description_file'], {}), '(flags.model_description_file)\n', (10471, 10501), False, 'import os\n'), ((13306, 13331), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (13321, 13331), False, 'import os\n'), ((1109, 1164), 'events.RequestCompletionEvent', 'events.RequestCompletionEvent', (['self.simulation', 'request'], {}), '(self.simulation, request)\n', (1138, 1164), False, 'import events\n'), ((7734, 7775), 'numpy.average', 'np.average', (['self.per_model_latency[model]'], {}), '(self.per_model_latency[model])\n', (7744, 7775), True, 'import numpy as np\n'), ((7785, 7826), 'numpy.average', 'np.average', (['self.per_model_latency[model]'], {}), '(self.per_model_latency[model])\n', (7795, 7826), True, 'import numpy as np\n')]
# the simplex projection algorithm implemented as a layer, while using the saliency maps to obtain object size estimates import sys sys.path.insert(0,'/home/briq/libs/caffe/python') import caffe import random import numpy as np import scipy.misc import imageio import cv2 import scipy.ndimage as nd import os.path import scipy.io as sio class SimplexProjectionLayer(caffe.Layer): saliency_path = '/media/VOC/saliency/thresholded_saliency_images/' input_list_path = '/home/briq/libs/CSPN/training/input_list.txt' def simplexProjectionLinear(self, data_ind, class_ind, V_im, nu): if(nu<1): return V_im heatmap_size = V_im.shape[0]*V_im.shape[1] theta = np.sum(V_im) if(theta ==nu): # the size constrain is already satisfied return V_im if(theta < nu): pi = V_im+(nu-theta)/heatmap_size return pi V = V_im.flatten() s = 0.0 p = 0.0 U=V while(len(U) > 0): k = random.randint(0, len(U)-1) uk = U[k] UG = U[U>=uk] delta_p = len(UG) delta_s = np.sum(UG) if ((s+delta_s)-(p+delta_p)*uk<nu): s = s+delta_s p = p+delta_p U = U[U<uk] else: U = UG U = np.delete(U, np.where(U==uk)) if(p<0.000001): raise ValueError('rho is too small, apparently something went wrong in the CNN') # happens when nu<1 or V_im=infinity for example theta = (s-nu)/p pi = V_im-theta return pi def setup(self, bottom, top): self.num_labels = bottom[0].shape[1] with open(self.input_list_path) as fp: self.images = fp.readlines() random.seed() def reshape(self, bottom, top): top[0].reshape(*bottom[0].data.shape) def forward(self, bottom, top): for i in range(bottom[0].num): im_id = int(bottom[2].data[i]) im_name = self.images[im_id].split(' ')[0].split('.')[0] top[0].data[i] = bottom[0].data[i] saliency_name = self.saliency_path+im_name+'.mat' if (not os.path.isfile(saliency_name)): continue saliency_im = sio.loadmat(saliency_name, squeeze_me=True)['data'] for c in range(self.num_labels): if(c==0): continue if(bottom[1].data[i,0,0,c]>0.5): # the label is there instance = bottom[0].data[i][c] nu = np.sum(saliency_im==c) if(nu>1): instance = bottom[0].data[i][c] top[0].data[i][c]= self.simplexProjectionLinear(i, c, instance, nu) def backward(self, top, propagate_down, bottom): pass
[ "sys.path.insert", "numpy.where", "scipy.io.loadmat", "random.seed", "numpy.sum" ]
[((132, 182), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""/home/briq/libs/caffe/python"""'], {}), "(0, '/home/briq/libs/caffe/python')\n", (147, 182), False, 'import sys\n'), ((711, 723), 'numpy.sum', 'np.sum', (['V_im'], {}), '(V_im)\n', (717, 723), True, 'import numpy as np\n'), ((1802, 1815), 'random.seed', 'random.seed', ([], {}), '()\n', (1813, 1815), False, 'import random\n'), ((1151, 1161), 'numpy.sum', 'np.sum', (['UG'], {}), '(UG)\n', (1157, 1161), True, 'import numpy as np\n'), ((2336, 2379), 'scipy.io.loadmat', 'sio.loadmat', (['saliency_name'], {'squeeze_me': '(True)'}), '(saliency_name, squeeze_me=True)\n', (2347, 2379), True, 'import scipy.io as sio\n'), ((1372, 1389), 'numpy.where', 'np.where', (['(U == uk)'], {}), '(U == uk)\n', (1380, 1389), True, 'import numpy as np\n'), ((2635, 2659), 'numpy.sum', 'np.sum', (['(saliency_im == c)'], {}), '(saliency_im == c)\n', (2641, 2659), True, 'import numpy as np\n')]
''' This file implements JPP-Net for human parsing and pose detection. ''' import tensorflow as tf import os from tensorflow.python.framework import graph_util import numpy as np from PIL import Image import matplotlib.pyplot as plt from tensorflow.python.platform import gfile import time class JPP(object): # Magic numbers are for normalization. You can get details from original JPP-Net repo. IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32) def __init__(self, pb_path): options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=options)) self.sess = tf.Session() with gfile.FastGFile(pb_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) self.sess.graph.as_default() tf.import_graph_def(graph_def, name='') # import compute graph self.sess.run(tf.global_variables_initializer()) self.img_tensor = sess.graph.get_tensor_by_name('img_1:0') self.pose_tensor = sess.graph.get_tensor_by_name('pose:0') self.parse_tensor = sess.graph.get_tensor_by_name('parse:0') def predict(self, img): ''' img is a human image array with shape (any,any,3) return a list, [pose, parse] ''' ret = self.sess.run([self.pose_tensor,self.parse_tensor], feed_dict={self.img_tensor: img-JPP.IMG_MEAN}) return ret
[ "tensorflow.Session", "tensorflow.GraphDef", "tensorflow.global_variables_initializer", "numpy.array", "tensorflow.python.platform.gfile.FastGFile", "tensorflow.import_graph_def", "tensorflow.ConfigProto", "tensorflow.GPUOptions" ]
[((423, 493), 'numpy.array', 'np.array', (['(104.00698793, 116.66876762, 122.67891434)'], {'dtype': 'np.float32'}), '((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)\n', (431, 493), True, 'import numpy as np\n'), ((548, 580), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'allow_growth': '(True)'}), '(allow_growth=True)\n', (561, 580), True, 'import tensorflow as tf\n'), ((672, 684), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (682, 684), True, 'import tensorflow as tf\n'), ((698, 728), 'tensorflow.python.platform.gfile.FastGFile', 'gfile.FastGFile', (['pb_path', '"""rb"""'], {}), "(pb_path, 'rb')\n", (713, 728), False, 'from tensorflow.python.platform import gfile\n'), ((759, 772), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (770, 772), True, 'import tensorflow as tf\n'), ((874, 913), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (893, 913), True, 'import tensorflow as tf\n'), ((959, 992), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (990, 992), True, 'import tensorflow as tf\n'), ((614, 649), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'gpu_options': 'options'}), '(gpu_options=options)\n', (628, 649), True, 'import tensorflow as tf\n')]
# # GeomProc: geometry processing library in python + numpy # # Copyright (c) 2008-2021 <NAME> <<EMAIL>> # under the MIT License. # # See file LICENSE.txt for details on the copyright license. # """This module contains the implicit function class of the GeomProc geometry processing library used for defining implicit functions and performing surface reconstruction. """ import numpy as np import math import random # Implicit surface class class impsurf: """A class that defines an implicit function Attributes ---------- evaluate = pointer to a function(array_like x) : float Function used for evaluating the implicit function at a 3D point x, returning the signed distance of the surface to point x. Notes ----- An implicit function can be setup by calling one of the setup_<name> methods. After that, the implicit function can be evaluated by simply calling the impsurf.evaluate(x) method. """ def __init__(self): self.evaluate = None def compute_displaced_samples(self, pc, epsilon): """Create a set of samples displaced along point normals Parameters ---------- pc : geomproc.pcloud Input point cloud stored as a point cloud object. Note that the point cloud needs to have normal vectors associated to the points epsilon : float Amount of displacement to perform along normals Returns ------- None Notes ----- Given an input point cloud, this method creates a set of samples that can be used for RBF surface reconstruction. Given an input point cloud with n points, the method creates a sample set with n*2 points, where n points are the original points from the input point cloud, and another n points are created by displacing each original sample along its normal by a value of epsilon. The samples are stored in the temporary attribute of the class called "sample", which is of shape (n*2, 3). Moreover, the method also creates a vector of displacements called "displacement", which is of shape (n*2, 1). The vector stores the displacement of each sample, which is zero for the original samples and epsilon for the new samples. See Also -------- geomproc.impsurf.impsurf.setup_rbf """ # Check if points have normals if pc.normal.shape[0] == 0: raise RuntimeError('point cloud does not have normals') # Get number of points in cloud n = pc.point.shape[0] # Initialize samples and their displacements self.sample = np.zeros((n*2, 3)) self.displacement = np.zeros((n*2, 1)) # The first portion of the samples are simply the points in the # point cloud with displacement 0 self.sample[0:n, :] = pc.point # Add additional samples displaced from the surface by epsilon. The # samples are displaced along the normal direction for i in range(n): self.sample[n+i, :] = pc.point[i, :] + pc.normal[i, :]*epsilon self.displacement[n+i] = epsilon def compute_rbf(self, kernel, vectorized=False): """Reconstruct an implicit function from a set of point samples Parameters ---------- kernel : function Kernel function of the form kernel(x, y) : float that computes the dissimilarity between two 3D points x and y, e.g., kernel = lambda x, y: math.pow(np.linalg.norm(x - y), 3) vectorized : boolean If vectorized is True, the method assumes that the kernel supplied function applies the kernel function to two sets of points, resulting in a matrix of shape (m, n) for sets of samples with m and n points. The default value of vectorized is False Returns ------- None Notes ----- The method reconstructs an implicit function from a set of point samples using the RBF method. The method assumes that a set of samples and displacements have been stored in the temporary attributes "sample" and "displacement", as described in the help of method surfrec.impsurf.compute_displaced_samples. The method then stores a temporary attribute "w" that represents the weights of radial basis functions (RBFs). The weights define the implicit function in the form phi(x) = \sum_{i=1}^n w(i)*kernel(x, sample(i)). The method also stores the given kernel in the temporary attribute "kernel". See Also -------- geomproc.impsurf.impsurf.compute_displaced_samples geomproc.impsurf.impsurf.setup_rbf """ # Check the type of kernel we are using if vectorized: # Apply vectorized kernel self.K = kernel(self.sample, self.sample) if self.K.shape != (self.sample.shape[0], self.sample.shape[0]): raise RuntimeError('vectorized kernel returns output of invalid size '+str(self.K.shape)) else: # Get number of samples n = self.sample.shape[0] # Initialize matrix self.K = np.zeros((n, n)) # Fill matrix entries for i in range(n): for j in range(n): self.K[i, j] = kernel(self.sample[i, :], self.sample[j, :]) # Solve linear system self.w = np.linalg.solve(self.K, self.displacement) # Save kernel self.kernel = kernel # Remember kernel type self.vectorized = vectorized def evaluate_rbf(self, x): """Evaluate an implicit function encoded as an RBF Parameters ---------- x : array_like 3D point where the RBF should be evaluated Returns ------- y : float Scalar value of the implicit function at point x Notes ----- The method returns the value of the implicit function at a given point x. The value is typically the signed distance of the point to the surface. The method assumes that temporary attributes "sample", "kernel", and "w" have been stored in the class, as described in the help of methods surfrec.impsurf.compute_displaced_samples and surfrec.impsurf.compute_rbf. See Also -------- geomproc.impsurf.impsurf.compute_displaced_samples geomproc.impsurf.impsurf.compute_rbf geomproc.impsurf.impsurf.setup_rbf """ if self.vectorized: # Make sure input point is a row vector inx = np.array(x) if inx.shape[0] > 1: inx = x[np.newaxis, :] # Call kernel with all samples diff = self.kernel(inx, self.sample) # RBF y = np.sum(self.w*diff.T) else: y = 0.0 for i in range(self.sample.shape[0]): y += self.w[i]*self.kernel(x, self.sample[i, :]) return y def setup_rbf(self, pc, epsilon, kernel, vectorized=False): """Setup an implicit function based on a set of point samples Parameters ---------- pc : geomproc.pcloud Input point cloud stored as a point cloud object. Note that the point cloud needs to have normal vectors associated to the points epsilon : float Amount of displacement to perform along normals kernel : function Kernel function of the form kernel(x, y) : float that computes the dissimilarity between two 3D points x and y, e.g., kernel = lambda x, y: math.pow(np.linalg.norm(x - y), 3) vectorized : boolean If vectorized is True, the method assumes that the kernel supplied function applies the kernel function to two sets of points, resulting in a matrix of shape (m, n) for sets of samples with m and n points. The default value of vectorized is False Returns ------- None Notes ----- Setup an implicit function by reconstructing the function from a set of point samples using the RBF method. The method first displaces the original point samples by a certain amount epsilon, to create additional samples that help avoid a trivial solution to the surface reconstruction problem. Then, the method reconstructs a surface with the RBF method based on the given kernel and solving a linear system. Once the implicit function is setup, it can be evaluated with the "evaluate" method of the class, which is a pointer to surfrec.impsurf.evalute_rbf. See Also -------- geomproc.impsurf.impsurf.compute_displaced_samples geomproc.impsurf.impsurf.compute_rbf geomproc.impsurf.impsurf.evaluate_rbf """ self.compute_displaced_samples(pc, epsilon) self.compute_rbf(kernel, vectorized) self.evaluate = self.evaluate_rbf def evaluate_sphere(self, p): """Evaluate the implicit function of a sphere Parameters ---------- p : array_like 3D point where the sphere should be evaluated Returns ------- y : float Scalar value of the implicit function at point p Notes ----- The method evaluates the implicit function of a sphere at a given point. The method assumes that the center and radius of the sphere have been stored in the temporary attributes "center" and "sphere" by the method surfrec.impsurf.setup_sphere. See Also -------- geomproc.impsurf.impsurf.setup_sphere Examples -------- >>> import geomproc >>> surf = geomproc.impsurf() >>> surf.setup_sphere(0.5) >>> val = surf.evaluate([0, 0, 0]) """ return ((p[0] - self.center[0])*(p[0] - self.center[0]) + (p[1] - self.center[1])*(p[1] - self.center[1]) + (p[2] - self.center[2])*(p[2] - self.center[2]) - self.radius*self.radius) def setup_sphere(self, radius=1.0, center=[0.0, 0.0, 0.0]): """Setup the implicit function of a sphere Parameters ---------- radius : float Scalar representing the radius of the sphere (the default value is 1) center : array_like 3D point representing the center of the sphere (the default value is the origin) Returns ------- None Notes ----- The method sets up the implicit function for a sphere with a given center and radius. Once the implicit function is setup, it can be evaluated with the "evaluate" method of the class, which is a pointer to surfrec.evaluate_sphere. See Also -------- geomproc.impsurf.impsurf.evaluate_sphere Examples -------- >>> import geomproc >>> surf = geomproc.impsurf() >>> surf.setup_sphere(0.5) >>> val = surf.evaluate([0, 0, 0]) """ self.center = center self.radius = radius self.evaluate = self.evaluate_sphere def evaluate_torus(self, p): """Evaluate the implicit function of a torus Parameters ---------- p : array_like 3D point where the sphere should be evaluated Returns ------- y : float Scalar value of the implicit function at point p Notes ----- The method evaluates the implicit function of a torus at a given point. The method assumes that the two scalars "radius1" and "radius2" that describe the torus have been saved into temporary attributes of the class by the method surfrec.impsurf.setup_torus. See Also -------- geomproc.impsurf.impsurf.setup_torus Examples -------- >>> import geomproc >>> surf = geomproc.impsurf() >>> surf.setup_torus(0.6, 0.3) >>> val = surf.evaluate([0, 0, 0]) """ return math.pow(math.sqrt(p[0]*p[0] + p[1]*p[1]) - self.radius1, 2) + p[2]*p[2] - self.radius2*self.radius2 def setup_torus(self, radius1, radius2): """Setup the implicit function of a torus Parameters ---------- radius1 : float The distance from the center of the tube to the center of the torus radius2: float Radius of the tube Returns ------- None Notes ----- The method sets up the implicit function for a torus which is radially symmetric about the z-axis. Once the implicit function is setup, it can be evaluated with the "evaluate" method of the class, which is a pointer to surfrec.evaluate_torus. See Also -------- geomproc.impsurf.impsurf.evaluate_torus Examples -------- >>> import geomproc >>> surf = geomproc.impsurf() >>> surf.setup_torus(0.6, 0.3) >>> val = surf.evaluate([0, 0, 0]) """ self.radius1 = radius1 self.radius2 = radius2 self.evaluate = self.evaluate_torus
[ "numpy.linalg.solve", "math.sqrt", "numpy.array", "numpy.zeros", "numpy.sum" ]
[((2726, 2746), 'numpy.zeros', 'np.zeros', (['(n * 2, 3)'], {}), '((n * 2, 3))\n', (2734, 2746), True, 'import numpy as np\n'), ((2773, 2793), 'numpy.zeros', 'np.zeros', (['(n * 2, 1)'], {}), '((n * 2, 1))\n', (2781, 2793), True, 'import numpy as np\n'), ((5602, 5644), 'numpy.linalg.solve', 'np.linalg.solve', (['self.K', 'self.displacement'], {}), '(self.K, self.displacement)\n', (5617, 5644), True, 'import numpy as np\n'), ((5355, 5371), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (5363, 5371), True, 'import numpy as np\n'), ((6825, 6836), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (6833, 6836), True, 'import numpy as np\n'), ((7035, 7058), 'numpy.sum', 'np.sum', (['(self.w * diff.T)'], {}), '(self.w * diff.T)\n', (7041, 7058), True, 'import numpy as np\n'), ((12509, 12545), 'math.sqrt', 'math.sqrt', (['(p[0] * p[0] + p[1] * p[1])'], {}), '(p[0] * p[0] + p[1] * p[1])\n', (12518, 12545), False, 'import math\n')]
import pickle import numpy as np import matplotlib.pyplot as plt with open('./quadratic/eval_record.pickle','rb') as loss: data = pickle.load(loss) print('Mat_record',len(data['Mat_record'])) #print('bias',data['inter_gradient_record']) #print('constant',data['intra_record']) with open('./quadratic/evaluate_record.pickle','rb') as loss1: data1 = pickle.load(loss1) x = np.array(data1['x_record']) print('x_record',x.shape) #print('bias',data1['inter_gradient_record']) #print('constant',data1['intra_record']) #x = range(10000) #ax = plt.axes(yscale='log') #ax.plot(x,data,'b') #plt.show('loss')
[ "numpy.array", "pickle.load" ]
[((382, 409), 'numpy.array', 'np.array', (["data1['x_record']"], {}), "(data1['x_record'])\n", (390, 409), True, 'import numpy as np\n'), ((135, 152), 'pickle.load', 'pickle.load', (['loss'], {}), '(loss)\n', (146, 152), False, 'import pickle\n'), ((359, 377), 'pickle.load', 'pickle.load', (['loss1'], {}), '(loss1)\n', (370, 377), False, 'import pickle\n')]
#--SHAPES and TEXTS--# import cv2 import numpy as np #We are going to use the numpy library to create our matrix #0 stands for black and 1 stands for white img = np.zeros((512,512,3),np.uint8) # (height,width) and the channel, it gives us value range 0-255 #print(img) #img[200:300,100:300] = 255,0,0 #whole image is img[:] #the origin of the image is top left corner in OpenCV cv2.line(img,(0,0),(img.shape[1],img.shape[0]),(0,255,0),3) #img.shape[1] is width and img.shape[0] is height. Now we got a diagonal line cv2.line(img,(0,0),(300,300),(200,255,200),3) #image,start,end,color,thickness cv2.rectangle(img,(0,0),(250,350),(0,0,255),2) #start,end,color,thickness etc. Write cv2.FILLED instead of thickness if you want to fill ur shape cv2.circle(img,(450,50),30,(255,255,0),5) #center,radius,color,thickness cv2.putText(img," OPENCV ", (300,100),cv2.FONT_HERSHEY_COMPLEX,0.5,(0,150,0),3) #text,position,font,scale,color,thickness etc. Scale=bigness cv2.imshow("Matrix", img) cv2.waitKey(0)
[ "cv2.rectangle", "cv2.line", "cv2.putText", "cv2.imshow", "cv2.circle", "numpy.zeros", "cv2.waitKey" ]
[((173, 206), 'numpy.zeros', 'np.zeros', (['(512, 512, 3)', 'np.uint8'], {}), '((512, 512, 3), np.uint8)\n', (181, 206), True, 'import numpy as np\n'), ((395, 462), 'cv2.line', 'cv2.line', (['img', '(0, 0)', '(img.shape[1], img.shape[0])', '(0, 255, 0)', '(3)'], {}), '(img, (0, 0), (img.shape[1], img.shape[0]), (0, 255, 0), 3)\n', (403, 462), False, 'import cv2\n'), ((534, 587), 'cv2.line', 'cv2.line', (['img', '(0, 0)', '(300, 300)', '(200, 255, 200)', '(3)'], {}), '(img, (0, 0), (300, 300), (200, 255, 200), 3)\n', (542, 587), False, 'import cv2\n'), ((614, 668), 'cv2.rectangle', 'cv2.rectangle', (['img', '(0, 0)', '(250, 350)', '(0, 0, 255)', '(2)'], {}), '(img, (0, 0), (250, 350), (0, 0, 255), 2)\n', (627, 668), False, 'import cv2\n'), ((761, 809), 'cv2.circle', 'cv2.circle', (['img', '(450, 50)', '(30)', '(255, 255, 0)', '(5)'], {}), '(img, (450, 50), 30, (255, 255, 0), 5)\n', (771, 809), False, 'import cv2\n'), ((835, 926), 'cv2.putText', 'cv2.putText', (['img', '""" OPENCV """', '(300, 100)', 'cv2.FONT_HERSHEY_COMPLEX', '(0.5)', '(0, 150, 0)', '(3)'], {}), "(img, ' OPENCV ', (300, 100), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0,\n 150, 0), 3)\n", (846, 926), False, 'import cv2\n'), ((979, 1004), 'cv2.imshow', 'cv2.imshow', (['"""Matrix"""', 'img'], {}), "('Matrix', img)\n", (989, 1004), False, 'import cv2\n'), ((1008, 1022), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1019, 1022), False, 'import cv2\n')]
# -*- coding: utf-8 -*- """ Created on Fri Aug 13 15:10:58 2021 @author: nguy0936 """ from pyenvnoise.utils import ptiread data = ptiread('R:\CMPH-Windfarm Field Study\Hornsdale\set2\Recording-1.1.pti') import numpy as np file_name = 'R:\CMPH-Windfarm Field Study\Hornsdale\set2\Recording-1.1.pti' fid = open(file_name, "r", encoding='utf-8', errors='ignore') headerlinecnt = 1 numref = 1 ## Get all information # get hearder information setup # first 15 lines are setup info tline = fid.readline() # determine start header line while tline != '[SETUP START]\n': numref += 1 headerlinecnt += 1 end_setup = numref + 13 tline = fid.readline() while headerlinecnt<end_setup: tline = fid.readline() headerlinecnt = headerlinecnt + 1 if headerlinecnt == (numref+2): RECInfoSectionSize = int(tline.partition('=')[2]) if headerlinecnt == (numref+3): RECInfoSectionPos = int(tline.partition('=')[2]) if headerlinecnt==(numref + 4): SampleFrequency = int(float(tline.partition('=')[2])) if headerlinecnt==(numref+5): numchannels = int(tline.partition('=')[2]) if headerlinecnt==(numref+11): Sample = int(tline.partition('=')[2]) if headerlinecnt==(numref+12): Date = tline.partition('=')[2] if headerlinecnt==(numref+13): Time = tline.partition('=')[2] ## Get channel info # the most important infor is correction factor CorrectionFactor = [] for nchann in range(numchannels): for i in range(10): tline = fid.readline() if tline.partition('=')[0] == 'CorrectionFactor': CorrectionFactor.append(float(tline.partition('=')[2])) if tline.partition('=')[0] == 'SampleFrequency': SampleFrequency = int(tline.partition('=')[2]) ## Read binary data # poiter to main data # 20 bytes may a subheader which may not important fid.seek( RECInfoSectionPos + RECInfoSectionSize + 20, 0) # the size of each segment, it around 250 ms # fro Fs = 8192 Hz, it is 2048*4 bytes data + 4*4 bytes info (channel id) dsize = np.fromfile(fid, dtype=np.int16, count=1) cols = int(Sample/(dsize-4)*numchannels) # back to start data fid.seek( RECInfoSectionPos + RECInfoSectionSize + 20, 0) #print(fid.tell()) # read all data into rawdata and ignore 4 first bytes with info rawdata = np.fromfile(fid, np.int32).reshape((-1, dsize[0])).T rawdata = np.delete(rawdata, np.s_[0:4], 0) ## Save data into channels # calculate factors for actual Pa, full range is 16 bit system CorrectionFactor = np.array(CorrectionFactor) factor = CorrectionFactor / 2**16 # initilise array data Data = np.empty([int(rawdata.shape[0]*rawdata.shape[1]/numchannels), numchannels]) for i in range(numchannels): Data[:,i]= np.transpose( rawdata[:,i:rawdata.shape[1]:numchannels] ).ravel()*factor[i]
[ "numpy.fromfile", "numpy.delete", "pyenvnoise.utils.ptiread", "numpy.array", "numpy.transpose" ]
[((133, 209), 'pyenvnoise.utils.ptiread', 'ptiread', (['"""R:\\\\CMPH-Windfarm Field Study\\\\Hornsdale\\\\set2\\\\Recording-1.1.pti"""'], {}), "('R:\\\\CMPH-Windfarm Field Study\\\\Hornsdale\\\\set2\\\\Recording-1.1.pti')\n", (140, 209), False, 'from pyenvnoise.utils import ptiread\n'), ((2162, 2203), 'numpy.fromfile', 'np.fromfile', (['fid'], {'dtype': 'np.int16', 'count': '(1)'}), '(fid, dtype=np.int16, count=1)\n', (2173, 2203), True, 'import numpy as np\n'), ((2482, 2515), 'numpy.delete', 'np.delete', (['rawdata', 'np.s_[0:4]', '(0)'], {}), '(rawdata, np.s_[0:4], 0)\n', (2491, 2515), True, 'import numpy as np\n'), ((2626, 2652), 'numpy.array', 'np.array', (['CorrectionFactor'], {}), '(CorrectionFactor)\n', (2634, 2652), True, 'import numpy as np\n'), ((2419, 2445), 'numpy.fromfile', 'np.fromfile', (['fid', 'np.int32'], {}), '(fid, np.int32)\n', (2430, 2445), True, 'import numpy as np\n'), ((2840, 2896), 'numpy.transpose', 'np.transpose', (['rawdata[:, i:rawdata.shape[1]:numchannels]'], {}), '(rawdata[:, i:rawdata.shape[1]:numchannels])\n', (2852, 2896), True, 'import numpy as np\n')]
import numpy as np from OpenGL.arrays import vbo from .Mesh_utils import MeshFuncs, MeshSignals, BBox import openmesh import copy from .Shader import * orig_set_vertex_property_array = openmesh.PolyMesh.set_vertex_property_array def svpa(self, prop_name, array=None, element_shape=None, element_value=None): if array is not None: try: orig_set_vertex_property_array(self, prop_name, array) except Exception as e: print('error when set attribute', prop_name, type(array), array.shape, self.n_vertices()) raise e return if element_shape is None: if element_value is None: element_shape = () else: element_shape = np.shape(element_value) if element_value is None: orig_set_vertex_property_array(self, prop_name, np.empty(element_shape)) else: orig_set_vertex_property_array(self, prop_name, np.array( np.broadcast_to(element_value, element_shape))) openmesh.PolyMesh.set_vertex_property_array = svpa orig_set_face_property_array = openmesh.PolyMesh.set_face_property_array def sfpa(self, prop_name, array=None, element_shape=None, element_value=None): if array is not None: try: orig_set_face_property_array(self, prop_name, array) except Exception as e: print('error when set attribute', prop_name, type(array), array.shape, self.n_faces()) raise e return if element_shape is None: if element_value is None: element_shape = () else: element_shape = np.shape(element_value) if element_value is None: orig_set_face_property_array(self, prop_name, np.empty(element_shape)) else: orig_set_face_property_array(self, prop_name, np.array( np.broadcast_to(element_value, element_shape))) openmesh.PolyMesh.set_face_property_array = sfpa orig_set_edge_property_array = openmesh.PolyMesh.set_edge_property_array def sepa(self, prop_name, array=None, element_shape=None, element_value=None): if array is not None: try: orig_set_edge_property_array(self, prop_name, array) except Exception as e: print('error when set attribute', prop_name, type(array), array.shape, self.n_faces()) raise e return if element_shape is None: if element_value is None: element_shape = () else: element_shape = np.shape(element_value) if element_value is None: orig_set_edge_property_array(self, prop_name, np.empty(element_shape)) else: orig_set_edge_property_array(self, prop_name, np.array( np.broadcast_to(element_value, element_shape))) openmesh.PolyMesh.set_edge_property_array = sepa DATA_TYPE_MAP = { float: 'float', int: 'int', bool: 'bool', str: 'str', list: 'list', tuple: 'tuple', } DEFAULT_VALUE_MAP = { "float": 0.0, "int": 0, "vector2": [0, 0], "vector3": [0, 0, 0], "vector4": [0, 0, 0, 0], "matrix3": np.identity(3, dtype=np.float64), "matrix4": np.identity(4, dtype=np.float64), "bool": False, "list": [], "tuple": {}, "custom": None, "str": '', } DATA_IS_ARRAY_MAP = { "float": True, "int": True, "vector2": True, "vector3": True, "vector4": True, "matrix3": True, "matrix4": True, "bool": False, "list": False, "tuple": False, "custom": False, "str": False, } DATA_SHAPE_MAP = { "float": None, "int": None, "vector2": [0, 2], "vector3": [0, 3], "vector4": [0, 4], "matrix3": [0, 3, 3], "matrix4": [0, 4, 4], "bool": None, "list": None, "tuple": None, "custom": None, "str": None, } def get_shape(element_num, base_shape): if base_shape is None: shape = (element_num,) else: base_shape[0] = element_num shape = tuple(base_shape) return shape class Mesh(object): def __init__(self, mesh=None): self.opts = { 'color': (1., 1., 1.), 'edgeColor': (0.5, 0.5, 0.5), 'pointColor': (1.0, 1.0, 0.0), 'shader': standShader, 'smooth': True, 'computeNormals': False, } self._attributeMap = { "vertex": { "pos": {'default_value': [0, 0, 0], 'type': 'vector3', 'is_array': True} }, "face": {}, "edge": {}, "detail": {} } self.signals = MeshSignals() self._selected = False self.edge_colors = { True: (1.0, 1.0, 0.0, 1.0), False: (0.15, 0.15, 0.15, 1.0) } if mesh is None: self._mesh = openmesh.PolyMesh() else: self._mesh = mesh self._mesh.release_vertex_texcoords1D() self._mesh.release_vertex_texcoords2D() self._mesh.release_vertex_texcoords3D() self._mesh.release_vertex_colors() self._mesh.release_halfedge_texcoords1D() self._mesh.release_halfedge_texcoords2D() self._mesh.release_halfedge_texcoords3D() self._mesh.release_halfedge_normals() self._mesh.release_halfedge_colors() self._mesh.release_face_colors() self._mesh.release_face_texture_index() self._mesh.release_edge_colors() self.bbox = BBox() self._GLFaces = None self._flatColor = 0 self.__view = None @property def meshFuncs(self): """ Get a object which contains some utility mesh functions. Returns: MeshFuncs object. """ return MeshFuncs(self) @property def mesh(self): """ Get the real mesh object. Returns: openmesh.PolyMesh. """ return self._mesh @property def bbox_min(self): """ Get bounding box min value. Returns: list. """ vts = self.getVertexes() if vts is None: return [0, 0, 0] try: _bbox_min = list(np.min(vts, axis=0)) except: return [0, 0, 0] return _bbox_min @property def bbox_max(self): """ Get bounding box max value. Returns: list. """ vts = self.getVertexes() if vts is None: return [0, 0, 0] try: _bbox_max = list(np.max(vts, axis=0)) except: return [0, 0, 0] return _bbox_max @property def bbox_center(self): """ Get bounding box center value. Returns: list. """ _, __, _bbox_center = self.get_bbox_info() return _bbox_center def get_bbox_info(self): """ Get bounding box min, max, center. Returns: min->list, max->list, center->list. """ _min = self.bbox_min _max = self.bbox_max _center = [(_min[0] + _max[0]) / 2.0, (_min[1] + _max[1]) / 2.0, (_min[2] + _max[2]) / 2.0] return _min, _max, _center def visible(self): return True def _setView(self, v): self.__view = v def view(self): return self.__view def update(self): v = self.view() if v is None: return v.update() def update_GLFace(self): """ Prepare the mesh data for OpenGL. """ b = self.getTriangulateMesh() self._GLFaces = b.face_vertex_indices() def getTriangulateMesh(self): """ Triangulate all faces and return a new mesh. Returns: openmesh.PolyMesh. """ b = copy.deepcopy(self._mesh) b.triangulate() return b def setFlatColor(self, mode): """ Set if use flat color for render. Args: mode(bool): True means use flat color. """ if mode is True: self._flatColor = 1 else: self._flatColor = 0 def setSelected(self, sel): self._selected = sel # self.opts['edgeColor'] = self.edge_colors[False] self.update() def getSelected(self): return self._selected def drawBBox(self): _min, _max, _center = self.get_bbox_info() size = [abs(_min[0] - _max[0]), abs(_min[1] - _max[1]), abs(_min[2] - _max[2])] tr = self.bbox.set(_center, size) glMatrixMode(GL_MODELVIEW) glPushMatrix() try: a = np.array(tr.copyDataTo()).reshape((4, 4)) glMultMatrixf(a.transpose()) self.bbox.paint() finally: glMatrixMode(GL_MODELVIEW) glPopMatrix() def setShader(self, shader): self.opts['shader'] = shader self.update() def shader(self): return self.opts['shader'] def setColor(self, c): self.opts['color'] = c self.update() def paint(self): # self.setupGLState() if self._GLFaces is None: self.update_GLFace() verts = self.getVertexes() if verts is None: return glEnableClientState(GL_VERTEX_ARRAY) glVertexPointerf(verts) color = self.getColors() hasColor = color is not None if not hasColor: glColor3f(*self.opts['color']) else: glEnableClientState(GL_COLOR_ARRAY) glColorPointerf(color) if self.view().opts['drawFaces'] and self.getNumFaces() > 0: with self.shader(): self.shader().setUniform1i("flatColor", self._flatColor) norms = self.getNormals() faces = self._GLFaces uvs = self.getUVs() try: if norms is not None: glEnableClientState(GL_NORMAL_ARRAY) glNormalPointerf(norms) if uvs is not None: glEnableClientState(GL_TEXTURE_COORD_ARRAY) glTexCoordPointerf(uvs) if faces is None: glDrawArrays(GL_TRIANGLES, 0, np.product(verts.shape[:-1])) else: faces = faces.astype(np.uint).flatten() glDrawElements(GL_TRIANGLES, faces.shape[0], GL_UNSIGNED_INT, faces) finally: glDisableClientState(GL_NORMAL_ARRAY) glDisableClientState(GL_TEXTURE_COORD_ARRAY) if self.view().opts['drawPoints']: if self._mesh.has_vertex_property("pscale"): pscale = self.getVertexAttribData("pscale") else: pscale = None if not hasColor: glColor3f(*self.opts['pointColor']) with PointShader: camPos = self.view().cameraPosition() if camPos is not None: PointShader.setUniform3f("camPos", camPos) PointShader.setUniform1i("pixmode", 0) else: PointShader.setUniform1i("pixmode", 1) if pscale is None: PointShader.setUniform1f("unifrom_scale", 0.5) glDrawArrays(GL_POINTS, 0, self.getNumVertexes()) else: PointShader.setUniform1f("unifrom_scale", -1) pscaleAttrib = PointShader.getAttribLocation("pscale") vertexScales = vbo.VBO(pscale.flatten()) vertexScales.bind() glEnableVertexAttribArray(pscaleAttrib) glVertexAttribPointer(pscaleAttrib, 1, GL_FLOAT, False, 0, None) glDrawArrays(GL_POINTS, 0, self.getNumVertexes()) vertexScales.unbind() glDisableClientState(GL_COLOR_ARRAY) if self.view().opts['drawEdges'] and self.getNumEdges() > 0: edges = self.getEdges() # color = self.getEdgesColors() try: # if color is None: glColor3f(*self.opts['edgeColor']) # else: # glEnableClientState(GL_COLOR_ARRAY) # glColorPointerf(color) edges = edges.flatten() glDrawElements(GL_LINES, edges.shape[0], GL_UNSIGNED_INT, edges) finally: pass # glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) if self._selected: self.drawBBox() def getVertexes(self): """ Get mesh vertex positions. Returns: np.ndarray, shape = (nv,3). """ p = self._mesh.points() if p.shape[0] == 0: return None return p def getFaces(self): """ Get mesh faces-vertex indices. Returns: list of np.ndarray or None. """ f = self._mesh.face_vertex_indices() if f.shape[0] == 0: return None return [face[face >= 0] for face in f] def getColors(self): """ Get mesh vertex colors. Returns: np.ndarray, shape = (nv,3) or None. """ if self.hasAttribute('vertex', 'color'): return self.getVertexAttribData("color") else: return None def getUVs(self): """ Get mesh vertex texcoords. Returns: np.ndarray, shape = (nv,3) or None. """ if self.hasAttribute('vertex', 'uv'): uv = self.getVertexAttribData("uv") return uv return None def getNormals(self): """ Get mesh vertex normals. Returns: np.ndarray, shape = (nv,3) or None. """ if not self.hasAttribute('vertex', 'normal'): if self.getNumFaces() == 0: return None self.createAttribute('vertex', 'normal', attribType='vector3', defaultValue=[0, 0, 0], applyValue=False) self._mesh.update_vertex_normals() return self._mesh.vertex_normals() def getFaceNormals(self): """ Get mesh face normals. Returns: np.ndarray, shape = (nf,3) or None. """ if not self.hasAttribute('face', 'normal'): if self.getNumFaces() == 0: return None self.createAttribute('face', 'normal', attribType='vector3', defaultValue=[0, 0, 0], applyValue=False) self._mesh.update_face_normals() return self._mesh.face_normals() def getVertexFaces(self): """ Get mesh vertex-face indices. Returns: list of np.ndarray. """ vf = self._mesh.vertex_face_indices() return [face[face >= 0] for face in vf] def getEdges(self): """ Get mesh edge-vertex indices. Returns: np.ndarray or None. """ e = self._mesh.edge_vertex_indices() if e.shape[0] == 0: return None return e def getNumVertexes(self): """ Get mesh vertices count. Returns: int. """ return self._mesh.n_vertices() def getNumFaces(self): """ Get mesh faces count. Returns: int. """ return self._mesh.n_faces() def getNumEdges(self): """ Get mesh edges count. Returns: int. """ return self._mesh.n_edges() @property def attributeMap(self): """ Get mesh all attribute info. Returns: dict{'vertex':...,'edge':...,'face':...,'detail':...}. """ return self._attributeMap def getAttribNames(self, allInOne=False, with_group=False): """ Get attribute names of the mesh. Args: allInOne(bool): return all names in one list. with_group(bool): return names with group names. Returns: dict or list. """ if with_group: v = list(self._attributeMap["vertex"].keys()) f = list(self._attributeMap["face"].keys()) e = list(self._attributeMap["edge"].keys()) else: v = [i for i in self._attributeMap["vertex"].keys() if ":" not in i] f = [i for i in self._attributeMap["face"].keys() if ":" not in i] e = [i for i in self._attributeMap["edge"].keys() if ":" not in i] d = list(self._attributeMap["detail"].keys()) if allInOne: result = [] result.extend(v) result.extend(f) result.extend(e) result.extend(d) else: result = {'vertex': v, 'face': f, 'edge': e, 'detail': d} return result def _getAttribType(self, attribClass, name): """ Get attribute value type. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: str. """ if attribClass == "vertex": value = self.getVertexAttrib(name, 0) elif attribClass == "edge": value = self.getEdgeAttrib(name, 0) elif attribClass == "face": value = self.getFaceAttrib(name, 0) elif attribClass == "detail": value = self.getDetailAttrib(name) else: return 'none' checkType = type(value) if checkType is np.ndarray or checkType is list: if checkType is np.ndarray: size = value.size else: size = len(value) if size == 2: return 'vector2' elif size == 3: return 'vector3' elif size == 4: return 'vector4' elif size == 9: return 'matrix3' elif size == 16: return 'matrix4' return DATA_TYPE_MAP.get(checkType, 'none') def getAttribType(self, attribClass, name): """ Get attribute type. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: attribute type(str). """ if not self.hasAttribute(attribClass, name): raise AttributeError("the attribute does't exist!") return self._attributeMap[attribClass][name]['type'] def getAttribDefaultValue(self, attribClass, name): """ Get attribute default value Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: default attribute value. """ if not self.hasAttribute(attribClass, name): raise AttributeError("the attribute does't exist!") return self._attributeMap[attribClass][name]['default_value'] def getAttribIsArray(self, attribClass, name): """ Get whether attribute is array. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: bool. """ if not self.hasAttribute(attribClass, name): raise AttributeError("the attribute does't exist!") return self._attributeMap[attribClass][name]['is_array'] def getAttribInfo(self, attribClass, name): """ Get attribute info. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: dict {'default_value': defaultValue, 'type': attribType, is_array': array_mode}. """ return self._attributeMap[attribClass][name] def setAttribInfo(self, attribClass, name, info): """ Set attribute info. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. info(dict): {'default_value': defaultValue, 'type': attribType, is_array': array_mode}. """ self._attributeMap[attribClass][name] = info def createAttribute(self, attribClass, name, attribType=None, defaultValue=None, applyValue=True): """ Create a new attribute. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. attribType(str): type of the attribute value->[float, int, vector2, vector3, vector4, matrix3, matrix4 , bool, list, tuple, custom]. defaultValue(any): default value of the attribute. applyValue(bool): apply the default value. """ if attribType is None: attribType = self._getAttribType(attribClass, name) if defaultValue is None: defaultValue = DEFAULT_VALUE_MAP.get(attribType, None) array_mode = DATA_IS_ARRAY_MAP.get(attribType, False) shape = DATA_SHAPE_MAP.get(attribType, None) if attribType == 'list': shape = [0, len(defaultValue)] if attribClass == "vertex": if name == 'pos': return if array_mode: self._mesh.vertex_property_array(name) else: self._mesh.vertex_property(name) if applyValue: data = np.broadcast_to(defaultValue, get_shape(self.getNumVertexes(), shape)) if array_mode: self._mesh.set_vertex_property_array(name, data) else: self._mesh.set_vertex_property(name, list(data)) elif attribClass == "face": if array_mode: self._mesh.face_property_array(name) else: self._mesh.face_property(name) if applyValue: data = np.broadcast_to(defaultValue, get_shape(self.getNumFaces(), shape)) if array_mode: self._mesh.set_face_property_array(name, data) else: self._mesh.set_face_property(name, list(data)) elif attribClass == "edge": if array_mode: self._mesh.edge_property_array(name) else: self._mesh.edge_property(name) if applyValue: data = np.broadcast_to(defaultValue, get_shape(self.getNumEdges(), shape)) if array_mode: self._mesh.set_edge_property_array(name, data) else: self._mesh.set_edge_property(name, list(data)) elif attribClass == "detail": array_mode = False else: raise AttributeError("please input attribute class in ['vertex', 'edge', 'face', 'detail']") self._attributeMap[attribClass][name] = {'default_value': defaultValue, 'type': attribType, 'is_array': array_mode} def removeAttribute(self, attribClass, name): """ Remove a attribute. Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. """ if attribClass == "vertex": if name == 'pos': return if self._mesh.has_vertex_property(name): self._mesh.remove_vertex_property(name) self._attributeMap["vertex"].pop(name) elif attribClass == "face": if self._mesh.has_face_property(name): self._mesh.remove_face_property(name) self._attributeMap["face"].pop(name) elif attribClass == "edge": if self._mesh.has_edge_property(name): self._mesh.remove_edge_property(name) self._attributeMap["edge"].pop(name) elif attribClass == "detail": if name in self._attributeMap["detail"].keys(): self._attributeMap["detail"].pop(name) def renameAttribute(self, attribClass, name, new_name): """ Rename a attribute Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail'] names(str): specific attribute name new_names(str): new attribute name """ self.copyAttribute(attribClass, name, new_name, True) def copyAttribute(self, attribClass, from_name, to_name, remove=False): """ Copy attribute data to a new attribute. Args: attribClass: one of ['vertex', 'edge', 'face', 'detail']. from_name: specific attribute name. to_name: new attribute name. remove: remove the from attribute. """ if not self.hasAttribute(attribClass, from_name): raise AttributeError("attribute {} of {} not exist".format(from_name, attribClass)) if from_name == to_name: return attrib_type = self.getAttribType(attribClass, from_name) default_value = self.getAttribDefaultValue(attribClass, from_name) if attribClass == "vertex": a = self.getVertexAttribData(from_name) self.setVertexAttribData(to_name, a, attrib_type, default_value) elif attribClass == "face": a = self.getFaceAttribData(from_name) self.setFaceAttribData(to_name, a, attrib_type, default_value) elif attribClass == "edge": a = self.getEdgeAttribData(from_name) self.setEdgeAttribData(to_name, a, attrib_type, default_value) elif attribClass == "detail": self.createAttribute("detail", to_name, attrib_type, default_value) if remove: self.removeAttribute(attribClass, from_name) def hasAttribute(self, attribClass, name): """ Returns whether the mesh contains a specific attribute Args: attribClass(str): one of ['vertex', 'edge', 'face', 'detail']. name(str): specific attribute name. Returns: bool. """ if attribClass in self._attributeMap.keys(): if name in self._attributeMap[attribClass].keys(): return True return False def addVertex(self, pos): """ Add a vertex to the mesh. Args: pos(list/tuple/np.ndarray): position of the new vertex, type can be: [list,ndarray,tuple]. Returns: openmesh.VertexHandle. """ if type(pos) is list: return self._mesh.add_vertex(np.array(pos)) elif type(pos) is np.ndarray: return self._mesh.add_vertex(pos) elif type(pos) is tuple: return self._mesh.add_vertex(np.array([pos[0], pos[1], pos[2]])) def addFace(self, vts): """ Add a face to the mesh. Args: vts(list): vertices of the new face, type can be: list of [openmesh.VertexHandle, int] Returns: openmesh.FaceHandle """ self._GLFaces = None if type(vts[0]) is openmesh.VertexHandle: return self._mesh.add_face(vts) else: return self._mesh.add_face([self._mesh.vertex_handle(i) for i in vts]) def addVertices(self, vts): """ Add vertices to the mesh. Args: vts: new vertices , np.ndarray or list, shape = (n,3). """ self._GLFaces = None self._mesh.add_vertices(vts) def addFaces(self, fcs): """ Add faces to the mesh. Args: fcs: new faces , np.ndarray or list of ndarray. """ self._GLFaces = None self._mesh.add_faces(fcs) def removeVertex(self, vt, isolate=False, clean=True): """ Remove a vertex from mesh. Args: vt(int/openmesh.VertexHandle): vertex index or vertex handle. isolate(bool): if True, delete the connected elements. clean(bool): if True, garbage collection after delete. """ if type(vt) is not openmesh.VertexHandle: vt = self._mesh.vertex_handle(vt) if vt.idx() < self.getNumVertexes(): self._mesh.delete_vertex(vt, isolate) if clean: self._mesh.garbage_collection() self._GLFaces = None def removeFace(self, fc, isolate=False, clean=True): """ Remove a face from mesh. Args: fc(int/openmesh.FaceHandle): face index or face handle. isolate(bool): if True, delete the connected elements. clean(bool): if True, garbage collection after delete. """ if type(fc) is not openmesh.FaceHandle: fc = self._mesh.face_handle(fc) if fc.idx() < self.getNumFaces(): self._mesh.delete_face(fc, isolate) if clean: self._mesh.garbage_collection() self._GLFaces = None def removeEdge(self, eg, isolate=False, clean=True): """ Remove an edge from mesh. Args: eg(int/openmesh.EdgeHandle): edge index or edge handle. isolate(bool): if True, delete the connected elements. clean(bool): if True, garbage collection after delete. """ if type(eg) is not openmesh.EdgeHandle: eg = self._mesh.edge_handle(eg) if eg.idx() < self.getNumEdges(): self._mesh.delete_edge(eg, isolate) if clean: self._mesh.garbage_collection() self._GLFaces = None def removeVertices(self, vts, isolate=False): """ Remove vertices from mesh. @param vts: list of vertex index or list of vertex handle. @param isolate: if True, delete the connected elements. """ for vt in vts: self.removeVertex(vt, isolate, False) self._mesh.garbage_collection() def removeFaces(self, fcs, isolate=False): """ Remove faces from mesh. Args: fcs(list): list of face index or list of face handle. isolate(bool): if True, delete the connected elements. """ for fc in fcs: self.removeFace(fc, isolate, False) self._mesh.garbage_collection() def removeEdges(self, egs, isolate=False): """ Remove edges from mesh. Args: egs(list): list of edge index or list of edge handle. isolate(bool): if True, delete the connected elements. """ for eg in egs: self.removeEdge(eg, isolate, False) self._mesh.garbage_collection() def clear(self): """ Clear all mesh data. """ self._mesh.clear() self._attributeMap = {} self.signals.emit_attribChanged() self.update() def getVertexAttribData(self, name): """ Get vertex attribute data. Args: name(str): specific attribute name. Returns: vertex attribute data. """ if name == 'pos': return self._mesh.points() elif name == 'normal': return self.getNormals() else: if not self.hasAttribute('vertex', name): raise AttributeError("Attribute {} does't exist!".format(name)) if self.getAttribIsArray('vertex', name): return self._mesh.vertex_property_array(name) else: return self._mesh.vertex_property(name) def getFaceAttribData(self, name): """ Get face attribute data. Args: name(str): specific attribute name. Returns: face attribute data. """ if name == 'normal': return self.getFaceNormals() else: if not self._mesh.has_face_property(name): raise AttributeError("Attribute {} does't exist!".format(name)) if self.getAttribIsArray('face', name): return self._mesh.face_property_array(name) else: return self._mesh.face_property(name) def getEdgeAttribData(self, name): """ Get edge attribute data. Args: name(str): specific attribute name. Returns: edge attribute data. """ if not self._mesh.has_edge_property(name): raise AttributeError("Attribute {} does't exist!".format(name)) if self.getAttribIsArray('edge', name): return self._mesh.edge_property_array(name) else: return self._mesh.edge_property(name) def setVertexAttribData(self, name, data, attribType=None, defaultValue=None): """ Set vertex attribute data , if the attribute not exist, create and set it. Args: name(str): specific attribute name. data(lsit/np.ndarray): attribute data. attribType(str): if the attribute is not exist, we need attribType to create the attribute. defaultValue(any): if the attribute is not exist, we need defaultValue to create the attribute. """ if name == 'pos': self._mesh.points()[..., [0, 1, 2]] = data elif name == 'normal': self.getNormals()[..., [0, 1, 2]] = data else: if not self._mesh.has_vertex_property(name): if defaultValue is None: defaultValue = data[0] self.createAttribute('vertex', name, attribType, defaultValue=defaultValue, applyValue=False) is_array = self.getAttribIsArray('vertex', name) if is_array: self._mesh.set_vertex_property_array(name, data) else: self._mesh.set_vertex_property(name, data) self.signals.emit_attribChanged() def setFaceAttribData(self, name, data, attribType=None, defaultValue=None): """ Set face attribute data , if the attribute not exist, create and set it. Args: name(str): specific attribute name. data(lsit/np.ndarray): attribute data. attribType(str): if the attribute is not exist, we need attribType to create the attribute. defaultValue(any): if the attribute is not exist, we need defaultValue to create the attribute. """ if name == 'normal': self.getFaceNormals()[..., [0, 1, 2]] = data else: if not self._mesh.has_face_property(name): if defaultValue is None: defaultValue = data[0] self.createAttribute('face', name, attribType, defaultValue=defaultValue, applyValue=False) is_array = self.getAttribIsArray('face', name) if is_array: self._mesh.set_face_property_array(name, data) else: self._mesh.set_face_property(name, data) self.signals.emit_attribChanged() def setEdgeAttribData(self, name, data, attribType=None, defaultValue=None): """ Set edge attribute data , if the attribute not exist, create and set it. Args: name(str): specific attribute name. data(lsit/np.ndarray): attribute data. attribType(str): if the attribute is not exist, we need attribType to create the attribute. defaultValue(any): if the attribute is not exist, we need defaultValue to create the attribute. """ if not self._mesh.has_edge_property(name): if defaultValue is None: defaultValue = data[0] self.createAttribute('edge', name, attribType, defaultValue=defaultValue, applyValue=False) is_array = self.getAttribIsArray('edge', name) if is_array: self._mesh.set_edge_property_array(name, data) else: self._mesh.set_edge_property(name, data) self.signals.emit_attribChanged() def getVertexAttrib(self, name, index): """ Get a vertex attribute value. Args: name(str): specific attribute name. index(int): vertex index. Returns: vertex attribute value. """ vh = self._mesh.vertex_handle(index) if self._mesh.has_vertex_property(name): return self._mesh.vertex_property(name, vh) if name == 'pos': return self._mesh.point(vh) elif name == 'normal': return self._mesh.normal(vh) def getFaceAttrib(self, name, index): """ Get a face attribute value. Args: name(str): specific attribute name. index(int): face index. Returns: face attribute value. """ fh = self._mesh.face_handle(index) if self._mesh.has_face_property(name): return self._mesh.face_property(name, fh) if name == 'normal': return self._mesh.normal(fh) def getEdgeAttrib(self, name, index): """ Get a edge attribute value. Args: name(str): specific attribute name. index(int): edge index. Returns: edge attribute value. """ eh = self._mesh.edge_handle(index) if self._mesh.has_edge_property(name): return self._mesh.edge_property(name, eh) return None def setVertexAttrib(self, name, index, value): """ Set a vertex attribute value. Args: name(str): specific attribute name. index(int): vertex index. value(any): attribute value. """ vh = self._mesh.vertex_handle(index) if self._mesh.has_vertex_property(name): self._mesh.set_vertex_property(name, vh, value) self.signals.emit_attribChanged() return True if name == 'pos': self._mesh.set_point(vh, value) return True elif name == 'normal': self._mesh.set_normal(vh, value) return True return False def setFaceAttrib(self, name, index, value): """ Set a face attribute value. Args: name(str): specific attribute name. index(int): face index. value(any): attribute value. """ fh = self._mesh.face_handle(index) if self._mesh.has_face_property(name): self._mesh.set_face_property(name, fh, value) self.signals.emit_attribChanged() return True if name == 'normal': self._mesh.set_normal(fh, value) return True return False def setEdgeAttrib(self, name, index, value): """ Set a edge attribute value. Args: name(str): specific attribute name. index(int): edge index. value(any): attribute value. """ eh = self._mesh.edge_handle(index) if self._mesh.has_edge_property(name): self._mesh.set_edge_property(name, eh, value) self.signals.emit_attribChanged() return True return False def getDetailAttrib(self, name): """ Get a detail attribute value. Args: name(str): specific attribute name. Returns: detail attribute value. """ if name in self._attributeMap['detail'].keys(): return self._attributeMap['detail'][name]['default_value'] return None def setDetailAttrib(self, name, value, attribType=None): """ Set a detail attribute value. Args: name(str): specific attribute name. value(any): attribute value. attribType(str): if the attribute is not exist, we need attribType to create the attribute. """ if name in self._attributeMap['detail'].keys(): self._attributeMap['detail'][name]['default_value'] = value else: if attribType is None: raise AttributeError("detail attribute {} not exist, please create it or input attribType".format(name)) self.createAttribute('detail', name, attribType, value) self.signals.emit_attribChanged() def getAllVertexAttributes(self): """ Get all vertex attribute data. Returns: dict {attribute name: attribute data}. """ data = {} for attrib_name in self._attributeMap["vertex"].keys(): data[attrib_name] = self.getVertexAttribData(attrib_name) return data def createGroup(self, groupClass, name, default=False): """ Create a group. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. default(bool): if True, all elements will in the group. """ if groupClass == 'vertex': name = "v:" + name elif groupClass == 'face': name = "f:" + name elif groupClass == 'edge': name = "e:" + name self.createAttribute(groupClass, name, 'bool', default) def getGroupData(self, groupClass, name): """ Get group data. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. Returns: list of bool. """ if groupClass == 'vertex': name = "v:" + name if self._mesh.has_vertex_property(name): return self._mesh.vertex_property_array(name).astype(np.bool) elif groupClass == 'face': name = "f:" + name if self._mesh.has_face_property(name): return self._mesh.face_property_array(name).astype(np.bool) elif groupClass == 'edge': name = "e:" + name if self._mesh.has_edge_property(name): return self._mesh.edge_property_array(name).astype(np.bool) else: raise AttributeError("class {} does not support group".format(groupClass)) raise AttributeError("Group {} does not exist".format(name)) def setGroupData(self, groupClass, name, data): """ Set group data. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. data(list): list of bool. """ if groupClass == 'vertex': name = "v:" + name self.setVertexAttribData(name, data, 'bool', False) elif groupClass == 'face': name = "f:" + name self.setFaceAttribData(name, data, 'bool', False) elif groupClass == 'edge': name = "e:" + name self.setEdgeAttribData(name, data, 'bool', False) def getGroup(self, groupClass, name, index): """ Get whether a specific element is in the group. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. index(int): element index. Returns: group value(bool). """ if groupClass == 'vertex': name = "v:" + name if self._mesh.has_vertex_property(name): vh = self._mesh.vertex_handle(index) return bool(self._mesh.vertex_property(name, vh)) elif groupClass == 'face': name = "f:" + name if self._mesh.has_face_property(name): fh = self._mesh.face_handle(index) return bool(self._mesh.face_property(name, fh)) elif groupClass == 'edge': name = "e:" + name if self._mesh.has_edge_property(name): eh = self._mesh.edge_handle(index) return bool(self._mesh.edge_property(name, eh)) def setGroup(self, groupClass, name, index, value): """ Set whether a specific element is in the group. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. index(int): element index. value(bool). """ assert type(value) is bool if groupClass == 'vertex': self.setVertexAttrib("v:" + name, index, value) elif groupClass == 'face': self.setFaceAttrib("f:" + name, index, value) elif groupClass == 'edge': self.setEdgeAttrib("e:" + name, index, value) def getGroupNames(self, allInOne=False): """ Get all group names of the mesh. Args allInOne(bool): put all names in one list. Returns: dict or list. """ v = [i[2:] for i in self._attributeMap["vertex"].keys() if ":" in i] f = [i[2:] for i in self._attributeMap["face"].keys() if ":" in i] e = [i[2:] for i in self._attributeMap["edge"].keys() if ":" in i] if allInOne: result = [] result.extend(v) result.extend(f) result.extend(e) else: result = {'vertex': v, 'face': f, 'edge': e} return result def removeGroup(self, groupClass, name): """ Remove a group from mesh. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. """ if groupClass == 'vertex': name = "v:" + name elif groupClass == 'face': name = "f:" + name elif groupClass == 'edge': name = "e:" + name if ":" in name: self.removeAttribute(groupClass, name) def hasGroup(self, groupClass, name): """ Get whether the mesh contain a specific group. Args: groupClass(str): one of ['vertex', 'edge', 'face']. name(str): specific group name. Returns: bool """ if groupClass == 'vertex': name = "v:" + name elif groupClass == 'face': name = "f:" + name elif groupClass == 'edge': name = "e:" + name if ":" in name: return self.hasAttribute(groupClass, name) else: return False
[ "numpy.identity", "numpy.product", "openmesh.PolyMesh", "numpy.min", "numpy.max", "numpy.array", "numpy.empty", "copy.deepcopy", "numpy.shape", "numpy.broadcast_to" ]
[((3084, 3116), 'numpy.identity', 'np.identity', (['(3)'], {'dtype': 'np.float64'}), '(3, dtype=np.float64)\n', (3095, 3116), True, 'import numpy as np\n'), ((3133, 3165), 'numpy.identity', 'np.identity', (['(4)'], {'dtype': 'np.float64'}), '(4, dtype=np.float64)\n', (3144, 3165), True, 'import numpy as np\n'), ((7821, 7846), 'copy.deepcopy', 'copy.deepcopy', (['self._mesh'], {}), '(self._mesh)\n', (7834, 7846), False, 'import copy\n'), ((722, 745), 'numpy.shape', 'np.shape', (['element_value'], {}), '(element_value)\n', (730, 745), True, 'import numpy as np\n'), ((833, 856), 'numpy.empty', 'np.empty', (['element_shape'], {}), '(element_shape)\n', (841, 856), True, 'import numpy as np\n'), ((1608, 1631), 'numpy.shape', 'np.shape', (['element_value'], {}), '(element_value)\n', (1616, 1631), True, 'import numpy as np\n'), ((1717, 1740), 'numpy.empty', 'np.empty', (['element_shape'], {}), '(element_shape)\n', (1725, 1740), True, 'import numpy as np\n'), ((2488, 2511), 'numpy.shape', 'np.shape', (['element_value'], {}), '(element_value)\n', (2496, 2511), True, 'import numpy as np\n'), ((2597, 2620), 'numpy.empty', 'np.empty', (['element_shape'], {}), '(element_shape)\n', (2605, 2620), True, 'import numpy as np\n'), ((4783, 4802), 'openmesh.PolyMesh', 'openmesh.PolyMesh', ([], {}), '()\n', (4800, 4802), False, 'import openmesh\n'), ((946, 991), 'numpy.broadcast_to', 'np.broadcast_to', (['element_value', 'element_shape'], {}), '(element_value, element_shape)\n', (961, 991), True, 'import numpy as np\n'), ((1828, 1873), 'numpy.broadcast_to', 'np.broadcast_to', (['element_value', 'element_shape'], {}), '(element_value, element_shape)\n', (1843, 1873), True, 'import numpy as np\n'), ((2708, 2753), 'numpy.broadcast_to', 'np.broadcast_to', (['element_value', 'element_shape'], {}), '(element_value, element_shape)\n', (2723, 2753), True, 'import numpy as np\n'), ((6156, 6175), 'numpy.min', 'np.min', (['vts'], {'axis': '(0)'}), '(vts, axis=0)\n', (6162, 6175), True, 'import numpy as np\n'), ((6510, 6529), 'numpy.max', 'np.max', (['vts'], {'axis': '(0)'}), '(vts, axis=0)\n', (6516, 6529), True, 'import numpy as np\n'), ((27023, 27036), 'numpy.array', 'np.array', (['pos'], {}), '(pos)\n', (27031, 27036), True, 'import numpy as np\n'), ((27196, 27230), 'numpy.array', 'np.array', (['[pos[0], pos[1], pos[2]]'], {}), '([pos[0], pos[1], pos[2]])\n', (27204, 27230), True, 'import numpy as np\n'), ((10338, 10366), 'numpy.product', 'np.product', (['verts.shape[:-1]'], {}), '(verts.shape[:-1])\n', (10348, 10366), True, 'import numpy as np\n')]
import numpy as np import pyautogui import imutils from mss import mss from PIL import Image import cv2 import copy import argparse from hand_poses import HandPoses from hand_detect import HandDetect from delay import Delay from spotify_controls import SpotifyControls parser = argparse.ArgumentParser() parser.add_argument("--detect_threshold", help="minimum percentage of a hand prediction", type=float, default=0.90) parser.add_argument("--pose_threshold", help="SVC threshold in classification confidence", type=float, default=0.90) parser.add_argument("--path_classifier", help="path to classifier", type=str, default='models/spotify_gesture_cmd_model.pkl') parser.add_argument("--moving_average", help="minimum percentage of pose prediction of last frames", type=float, default=0.85) parser.add_argument("--frames_in", help="number of frames to consider to predict a pose when in action", type=int, default=20) parser.add_argument("--frames_out", help="number of frames to consider to predict a pose", type=int, default=40) parser.add_argument("--show_lm", help="show hand landmarks", type=bool, default=True) args = parser.parse_args() hand_detect = HandDetect(detect_threshold=args.detect_threshold) hand_pose = HandPoses(pose_threshold=args.pose_threshold, name_classifier=args.path_classifier) # This will log into Spotify using your personal account with a separate popup window spotify_controller = SpotifyControls() delay = Delay(hand_pose.classifier.classes_, moving_average=args.moving_average, frames_in_action=args.frames_in, frames_out=args.frames_out) webcam = True if webcam: cap = cv2.VideoCapture(0) else: sct = mss() with hand_detect.mp_hands.Hands( max_num_hands=1, min_detection_confidence=0.6, min_tracking_confidence=0.5) as hands: while True: if webcam: ret, image = cap.read() else: # screenshot ret = True # image = pyautogui.screenshot() # image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Higher fps with mss for screen grab: mon = sct.monitors[0] image = np.array(sct.grab(mon)) image = np.flip(image[:, :, :3], 2) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if not ret: # Image was not successfully read! print('\rNo image! Is a webcam available?', '', end='') continue raw_frame = copy.deepcopy(image) image = cv2.flip(image, 1) image_height, image_width, _ = image.shape #spotify_controller.draw_mouse_rectangle(image) for (pose, confidence), (lm, mp_lm) in hand_detect.detect_hand(hands=hands, image=raw_frame, hand_pose=hand_pose, delay=delay): if args.show_lm: hand_detect.mp_drawing.draw_landmarks( image, mp_lm, hand_detect.mp_hands.HAND_CONNECTIONS) if pose is not None: cv2.putText(image, f"{pose}: ({confidence:.2f})", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 100), 2) print(f"\r{pose}: ({confidence:.2f}) ", "", end="") spotify_controller.execute_cmd(pose=pose, lm=lm, delay=delay, frame=image) else: cv2.putText(image, f"Idle", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 100), 2) if delay.ignore_frames: cv2.putText(image, f"Position locked", (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 100), 2) key = (cv2.waitKey(10) & 0xFF) image = cv2.resize(image, (int(image_width * .6), int(image_height * .6)), interpolation=cv2.INTER_AREA) # if webcam: cv2.imshow('frame', image) if key == ord('q'): break if webcam: cap.release() cv2.destroyAllWindows()
[ "numpy.flip", "delay.Delay", "argparse.ArgumentParser", "mss.mss", "hand_poses.HandPoses", "hand_detect.HandDetect", "cv2.flip", "cv2.imshow", "cv2.putText", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.cvtColor", "copy.deepcopy", "spotify_controls.SpotifyControls", "cv2.waitKey" ]
[((282, 307), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (305, 307), False, 'import argparse\n'), ((1307, 1357), 'hand_detect.HandDetect', 'HandDetect', ([], {'detect_threshold': 'args.detect_threshold'}), '(detect_threshold=args.detect_threshold)\n', (1317, 1357), False, 'from hand_detect import HandDetect\n'), ((1370, 1458), 'hand_poses.HandPoses', 'HandPoses', ([], {'pose_threshold': 'args.pose_threshold', 'name_classifier': 'args.path_classifier'}), '(pose_threshold=args.pose_threshold, name_classifier=args.\n path_classifier)\n', (1379, 1458), False, 'from hand_poses import HandPoses\n'), ((1583, 1600), 'spotify_controls.SpotifyControls', 'SpotifyControls', ([], {}), '()\n', (1598, 1600), False, 'from spotify_controls import SpotifyControls\n'), ((1609, 1746), 'delay.Delay', 'Delay', (['hand_pose.classifier.classes_'], {'moving_average': 'args.moving_average', 'frames_in_action': 'args.frames_in', 'frames_out': 'args.frames_out'}), '(hand_pose.classifier.classes_, moving_average=args.moving_average,\n frames_in_action=args.frames_in, frames_out=args.frames_out)\n', (1614, 1746), False, 'from delay import Delay\n'), ((4278, 4301), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4299, 4301), False, 'import cv2\n'), ((1779, 1798), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (1795, 1798), False, 'import cv2\n'), ((1815, 1820), 'mss.mss', 'mss', ([], {}), '()\n', (1818, 1820), False, 'from mss import mss\n'), ((2608, 2628), 'copy.deepcopy', 'copy.deepcopy', (['image'], {}), '(image)\n', (2621, 2628), False, 'import copy\n'), ((2646, 2664), 'cv2.flip', 'cv2.flip', (['image', '(1)'], {}), '(image, 1)\n', (2654, 2664), False, 'import cv2\n'), ((4174, 4200), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'image'], {}), "('frame', image)\n", (4184, 4200), False, 'import cv2\n'), ((2352, 2379), 'numpy.flip', 'np.flip', (['image[:, :, :3]', '(2)'], {}), '(image[:, :, :3], 2)\n', (2359, 2379), True, 'import numpy as np\n'), ((2400, 2438), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (2412, 2438), False, 'import cv2\n'), ((3972, 3987), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (3983, 3987), False, 'import cv2\n'), ((3302, 3415), 'cv2.putText', 'cv2.putText', (['image', 'f"""{pose}: ({confidence:.2f})"""', '(30, 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.7)', '(0, 255, 100)', '(2)'], {}), "(image, f'{pose}: ({confidence:.2f})', (30, 30), cv2.\n FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 100), 2)\n", (3313, 3415), False, 'import cv2\n'), ((3652, 3743), 'cv2.putText', 'cv2.putText', (['image', 'f"""Idle"""', '(30, 30)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.7)', '(0, 255, 100)', '(2)'], {}), "(image, f'Idle', (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, \n 255, 100), 2)\n", (3663, 3743), False, 'import cv2\n'), ((3827, 3929), 'cv2.putText', 'cv2.putText', (['image', 'f"""Position locked"""', '(30, 60)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.7)', '(255, 0, 100)', '(2)'], {}), "(image, f'Position locked', (30, 60), cv2.FONT_HERSHEY_SIMPLEX, \n 0.7, (255, 0, 100), 2)\n", (3838, 3929), False, 'import cv2\n')]
import numpy as np from scipy.fft import fft def CAR(X, labels): N = X.shape N_classes = len(np.unique(labels)) data10 = np.zeros((N[0], N[1], 1)) data11 = np.zeros((N[0], N[1], 1)) data12 = np.zeros((N[0], N[1], 1)) data13 = np.zeros((N[0], N[1], 1)) for trial in range(N[2]): ## Média de cada um os trials de todos canais data = X[:,:,trial] X_med = np.mean(data, axis = 1).reshape(data.shape[0]) data_car = data - X_med.reshape((X.shape[0],1)) if (labels[trial] == 0): data10 = np.append(data10, data_car.reshape((data_car.shape[0], data_car.shape[1], 1)), axis = 2)#append na terceira dimensão, dos trials elif (labels[trial] == 1): data11 = np.append(data11, data_car.reshape((data_car.shape[0], data_car.shape[1], 1)), axis = 2) elif (labels[trial] == 2): data12 = np.append(data12, data_car.reshape((data_car.shape[0], data_car.shape[1], 1)), axis = 2) elif (labels[trial] == 3): data13 = np.append(data13, data_car.reshape((data_car.shape[0], data_car.shape[1], 1)), axis = 2) data10 = np.delete(data10, 0, axis=2) data11 = np.delete(data11, 0, axis=2) data12 = np.delete(data12, 0, axis=2) data13 = np.delete(data13, 0, axis=2) return data10,data11,data12,data13 def Ext_fft (N, fs, data10, data11, data12, data13, out_chans): """ args: N -> x.shape fs -> sampling frequency dataX -> matrix (1536,16, 12) out_chan -> canais a serem excluidos """ N_class = 4; N_trials = 12; n_harmonicas = 2 N_pos = ((N[0]/fs)*np.array([np.array([10,11,12,13])*i for i in range(1,n_harmonicas+1)])).ravel().astype(int) val_chans = np.array(range(1,17)) val_chans = np.delete(val_chans, [np.where(val_chans == c) for c in out_chans]) #Cria array(1:16) dps exclui os valores a partir de out_chan N_chans = val_chans.shape[0] n_features = N_pos.shape[0] F_dez=np.zeros((N_trials,N_chans*N_class*n_harmonicas)) #vetor de trials X (canais*classes) F_onze=np.zeros((N_trials,N_chans*N_class*n_harmonicas)) F_doze=np.zeros((N_trials,N_chans*N_class*n_harmonicas)) F_treze=np.zeros((N_trials,N_chans*N_class*n_harmonicas)) for trial in range(0,N_trials): Chans_XY=0 for chans in val_chans-1: a = abs(fft(data10[:,chans,trial])) # roda pela posição de N_pos 10,11,12,13 b = abs(fft(data11[:,chans,trial])) c = abs(fft(data12[:,chans,trial])) d = abs(fft(data13[:,chans,trial])) F_dez[trial,Chans_XY+np.array(range(0,n_features))] = a[N_pos[range(0,n_features)]]; # roda pela posição de N_pos 10,11,12,13 F_onze[trial,Chans_XY+np.array(range(0,n_features))] = b[N_pos[range(0,n_features)]]; # roda pela posição de N_pos 10,11,12,13 F_doze[trial,Chans_XY+np.array(range(0,n_features))] = c[N_pos[range(0,n_features)]]; # roda pela posição de N_pos 10,11,12,13 F_treze[trial,Chans_XY+np.array(range(0,n_features))] = d[N_pos[range(0,n_features)]]; # roda pela posição de N_pos 10,11,12,13 Chans_XY += n_features return F_dez, F_onze, F_doze, F_treze def CAR_FFT(X,labels, fs): # FILTRO CAR d10, d11, d12, d13 = CAR(X,labels) # EXTRAÇÃO FFT out_chans = [] #out_chans = [1, 2, 3, 4, 10, 14, 15,16] F_dez, F_onze, F_doze, F_treze = Ext_fft (*(X.shape, fs, d10, d11, d12, d13), out_chans = out_chans) F_all = np.vstack([F_dez, F_onze, F_doze, F_treze]) return F_all
[ "numpy.mean", "numpy.unique", "numpy.where", "numpy.delete", "numpy.array", "numpy.zeros", "numpy.vstack", "scipy.fft.fft" ]
[((140, 165), 'numpy.zeros', 'np.zeros', (['(N[0], N[1], 1)'], {}), '((N[0], N[1], 1))\n', (148, 165), True, 'import numpy as np\n'), ((179, 204), 'numpy.zeros', 'np.zeros', (['(N[0], N[1], 1)'], {}), '((N[0], N[1], 1))\n', (187, 204), True, 'import numpy as np\n'), ((218, 243), 'numpy.zeros', 'np.zeros', (['(N[0], N[1], 1)'], {}), '((N[0], N[1], 1))\n', (226, 243), True, 'import numpy as np\n'), ((257, 282), 'numpy.zeros', 'np.zeros', (['(N[0], N[1], 1)'], {}), '((N[0], N[1], 1))\n', (265, 282), True, 'import numpy as np\n'), ((1161, 1189), 'numpy.delete', 'np.delete', (['data10', '(0)'], {'axis': '(2)'}), '(data10, 0, axis=2)\n', (1170, 1189), True, 'import numpy as np\n'), ((1203, 1231), 'numpy.delete', 'np.delete', (['data11', '(0)'], {'axis': '(2)'}), '(data11, 0, axis=2)\n', (1212, 1231), True, 'import numpy as np\n'), ((1245, 1273), 'numpy.delete', 'np.delete', (['data12', '(0)'], {'axis': '(2)'}), '(data12, 0, axis=2)\n', (1254, 1273), True, 'import numpy as np\n'), ((1287, 1315), 'numpy.delete', 'np.delete', (['data13', '(0)'], {'axis': '(2)'}), '(data13, 0, axis=2)\n', (1296, 1315), True, 'import numpy as np\n'), ((2027, 2081), 'numpy.zeros', 'np.zeros', (['(N_trials, N_chans * N_class * n_harmonicas)'], {}), '((N_trials, N_chans * N_class * n_harmonicas))\n', (2035, 2081), True, 'import numpy as np\n'), ((2124, 2178), 'numpy.zeros', 'np.zeros', (['(N_trials, N_chans * N_class * n_harmonicas)'], {}), '((N_trials, N_chans * N_class * n_harmonicas))\n', (2132, 2178), True, 'import numpy as np\n'), ((2185, 2239), 'numpy.zeros', 'np.zeros', (['(N_trials, N_chans * N_class * n_harmonicas)'], {}), '((N_trials, N_chans * N_class * n_harmonicas))\n', (2193, 2239), True, 'import numpy as np\n'), ((2247, 2301), 'numpy.zeros', 'np.zeros', (['(N_trials, N_chans * N_class * n_harmonicas)'], {}), '((N_trials, N_chans * N_class * n_harmonicas))\n', (2255, 2301), True, 'import numpy as np\n'), ((3590, 3633), 'numpy.vstack', 'np.vstack', (['[F_dez, F_onze, F_doze, F_treze]'], {}), '([F_dez, F_onze, F_doze, F_treze])\n', (3599, 3633), True, 'import numpy as np\n'), ((103, 120), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (112, 120), True, 'import numpy as np\n'), ((1840, 1864), 'numpy.where', 'np.where', (['(val_chans == c)'], {}), '(val_chans == c)\n', (1848, 1864), True, 'import numpy as np\n'), ((408, 429), 'numpy.mean', 'np.mean', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (415, 429), True, 'import numpy as np\n'), ((2411, 2439), 'scipy.fft.fft', 'fft', (['data10[:, chans, trial]'], {}), '(data10[:, chans, trial])\n', (2414, 2439), False, 'from scipy.fft import fft\n'), ((2500, 2528), 'scipy.fft.fft', 'fft', (['data11[:, chans, trial]'], {}), '(data11[:, chans, trial])\n', (2503, 2528), False, 'from scipy.fft import fft\n'), ((2548, 2576), 'scipy.fft.fft', 'fft', (['data12[:, chans, trial]'], {}), '(data12[:, chans, trial])\n', (2551, 2576), False, 'from scipy.fft import fft\n'), ((2596, 2624), 'scipy.fft.fft', 'fft', (['data13[:, chans, trial]'], {}), '(data13[:, chans, trial])\n', (2599, 2624), False, 'from scipy.fft import fft\n'), ((1681, 1707), 'numpy.array', 'np.array', (['[10, 11, 12, 13]'], {}), '([10, 11, 12, 13])\n', (1689, 1707), True, 'import numpy as np\n')]
from typing import Optional, Callable, List import torch as tc import numpy as np from drl.agents.architectures.stateless.abstract import StatelessArchitecture class Identity(StatelessArchitecture): """ Identity architecture. Useful for unit testing. """ def __init__( self, input_shape: List[int], w_init: Optional[Callable[[tc.Tensor], None]], b_init: Optional[Callable[[tc.Tensor], None]]): """ Args: input_dim (List[int]): Input shape. w_init (Optional[Callable[[tc.Tensor], None]]): Weight initializer. b_init (Optional[Callable[[tc.Tensor], None]]): Bias initializer. """ super().__init__(w_init, b_init) self._input_shape = input_shape @property def input_shape(self) -> List[int]: return self._input_shape @property def output_dim(self) -> int: return np.prod(self._input_shape) def forward(self, x, **kwargs): assert list(x.shape[1:]) == self.input_shape features = x.reshape(-1, self.output_dim) return features
[ "numpy.prod" ]
[((938, 964), 'numpy.prod', 'np.prod', (['self._input_shape'], {}), '(self._input_shape)\n', (945, 964), True, 'import numpy as np\n')]
''' Hash and Acoustic Fingerprint Functions <NAME> ''' import numpy as np def findAdjPts(index,A,delay_time,delta_time,delta_freq): "Find the three closest adjacent points to the anchor point" adjPts = [] low_x = A[index][0]+delay_time high_x = low_x+delta_time low_y = A[index][1]-delta_freq/2 high_y = A[index][1]+delta_freq/2 for i in A: if ((i[0]>low_x and i[0]<high_x) and (i[1]>low_y and i[1]<high_y)): adjPts.append(i) return adjPts def hashPeaks(A,songID,delay_time,delta_time,delta_freq): "Create a matrix of peaks hashed as: [[freq_anchor, freq_other, delta_time], time_anchor, songID]" hashMatrix = np.zeros((len(A)*100,5)) #Assume size limitation index = 0 numPeaks = len(A) for i in range(0,numPeaks): adjPts = findAdjPts(i,A,delay_time,delta_time,delta_freq) adjNum=len(adjPts) for j in range(0,adjNum): hashMatrix[index][0] = A[i][1] hashMatrix[index][1] = adjPts[j][1] hashMatrix[index][2] = adjPts[j][0]-A[i][0] hashMatrix[index][3] = A[i][0] hashMatrix[index][4] = songID index=index+1 hashMatrix = hashMatrix[~np.all(hashMatrix==0,axis=1)] hashMatrix = np.sort(hashMatrix,axis=0) return hashMatrix def hashSamplePeaks(A,delay_time,delta_time,delta_freq): "Create a matrix of peaks hashed as: [[freq_anchor, freq_other, delta_time],time_anchor]" hashMatrix = np.zeros((len(A)*100,4)) index = 0 numPeaks = len(A) for i in range(0,numPeaks): adjPts = findAdjPts(i,A,delay_time,delta_time,delta_freq) adjNum = len(adjPts) for j in range(0,adjNum): hashMatrix[index][0] = A[i][1] hashMatrix[index][1] = adjPts[j][1] hashMatrix[index][2] = adjPts[j][0]-A[i][0] hashMatrix[index][3] = A[i][0] index=index+1 hashMatrix = hashMatrix[~np.all(hashMatrix==0,axis=1)] hashMatrix = np.sort(hashMatrix,axis=0) return hashMatrix def findTimePairs(hash_database,sample_hash,deltaTime,deltaFreq): "Find the matching pairs between sample audio file and the songs in the database" timePairs = [] for i in sample_hash: for j in hash_database: if(i[0] > (j[0]-deltaFreq) and i[0] < (j[0] + deltaFreq)): if(i[1] > (j[1]-deltaFreq) and i[1] < (j[1] + deltaFreq)): if(i[2] > (j[2]-deltaTime) and i[2] < (j[2] + deltaTime)): timePairs.append((j[3],i[3],j[4])) else: continue else: continue else: continue return timePairs
[ "numpy.all", "numpy.sort" ]
[((1283, 1310), 'numpy.sort', 'np.sort', (['hashMatrix'], {'axis': '(0)'}), '(hashMatrix, axis=0)\n', (1290, 1310), True, 'import numpy as np\n'), ((2025, 2052), 'numpy.sort', 'np.sort', (['hashMatrix'], {'axis': '(0)'}), '(hashMatrix, axis=0)\n', (2032, 2052), True, 'import numpy as np\n'), ((1236, 1267), 'numpy.all', 'np.all', (['(hashMatrix == 0)'], {'axis': '(1)'}), '(hashMatrix == 0, axis=1)\n', (1242, 1267), True, 'import numpy as np\n'), ((1978, 2009), 'numpy.all', 'np.all', (['(hashMatrix == 0)'], {'axis': '(1)'}), '(hashMatrix == 0, axis=1)\n', (1984, 2009), True, 'import numpy as np\n')]
from utils.stats_trajectories import trajectory_arclength import statistics as stats import numpy as np import logging # Returns a matrix of trajectories: # the entry (i,j) has the paths that go from the goal i to the goal j def separate_trajectories_between_goals(trajectories, goals_areas): goals_n = len(goals_areas) goals = goals_areas[:,1:] mat = np.empty((goals_n,goals_n),dtype=object) # Initialize the matrix elements to empty lists for i in range(goals_n): for j in range(goals_n): mat[i][j] = [] not_associated = [] # For all trajectories for idx,tr in enumerate(trajectories): x, y = tr[0], tr[1] traj_len = len(x) associated_to_goals = False if traj_len > 2: # Start and finish points start_x, start_y = x[0], y[0] end_x, end_y = x[-1],y[-1] start_goal, end_goal = None, None # Find starting and finishing goal for j in range(goals_n): if(is_in_area([start_x,start_y], goals[j])): start_goal = j for k in range(goals_n): if(is_in_area([end_x,end_y], goals[k])): end_goal = k if start_goal is not None and end_goal is not None: mat[start_goal][end_goal].append(tr) associated_to_goals = True if (not associated_to_goals): not_associated.append(tr) return mat,not_associated # Removes atypical trajectories def filter_trajectories(trajectories): n_trajs = len(trajectories) if n_trajs == 0: return [] arclen = [] for tr in trajectories: vec_arclen = trajectory_arclength(tr) tr_arclen = vec_arclen[-1] arclen.append(tr_arclen) # compute the median and SD of the trajectory set M = stats.median(arclen) if len(arclen) < 2: SD = 0.0 else: SD = stats.stdev(arclen) # remove trajectories that differ more than 3SD filtered_set = [] for i in range(n_trajs): if arclen[i] > 0 and abs(arclen[i] - M) <= 3.0*SD: filtered_set.append(trajectories[i]) return filtered_set # Removes atypical trajectories from a multidimensional array def filter_traj_matrix(raw_path_set_matrix): all_trajectories = [] # Initialize a nRowsxnCols matrix with empty lists filtered_matrix = np.empty(raw_path_set_matrix.shape,dtype=object) for i in range(raw_path_set_matrix.shape[0]): for j in range(raw_path_set_matrix.shape[1]): filtered_matrix[i][j] = [] for i in range(raw_path_set_matrix.shape[0]): for j in range(raw_path_set_matrix.shape[1]): # If the list of trajectories is non-empty, filter it if(len(raw_path_set_matrix[i][j]) > 0): filtered = filter_trajectories(raw_path_set_matrix[i][j]) filtered_matrix[i][j].extend(filtered) all_trajectories.extend(filtered) return filtered_matrix, all_trajectories def start_time(traj): return traj[2][0] def get_trajectories_given_time_interval(trajectories, start_time, finish_time): # Note: the list of trajectories is sorted by initial time n = len(trajectories) if n == 0: logging.error("Empty set") return [] traj_set = [] i = 0 t = start_time while(t <= finish_time): tr = trajectories[i] t = tr[2][0] if(start_time <= t and t <= finish_time): traj_set.append(tr) i += 1 return traj_set # Split a trajectory into sub-trajectories between pairs of goals def break_multigoal_traj(tr, goals): x, y, t = tr[0], tr[1], tr[2] traj_set = [] new_x, new_y, new_t = [], [], [] # New trajectory last_goal = -1 # Last goal started = False # Flag to indicate that we have started with one goal for i in range(len(x)): xy = [x[i], y[i]] # Current position # Am I in a goal current_goal = -1 for j in range(len(goals)): # If the position lies in the goal zone if is_in_area(xy, goals[j,1:]): current_goal=j if current_goal==-1 and last_goal!=-1 and started: # Split the trajectory just before traj_set.append([np.array(new_x),np.array(new_y),np.array(new_t)] ) if current_goal==-1 and last_goal!=-1: # At that point we start the trajectory # with a point that should be in last_goal started = True new_x, new_y, new_t = [x[i-1]], [y[i-1]], [t[i-1]] last_goal=current_goal new_x.append(x[i]) new_y.append(y[i]) new_t.append(t[i]) # Coming at the end if current_goal>0 and i==len(x)-1 and started: traj_set.append([np.array(new_x),np.array(new_y),np.array(new_t)] ) return traj_set # Returns 3 lists with the x, y and arc-len values of a trajectory set, respectively def get_data_from_set(trajectories): list_x, list_y, list_arclen = [], [], [] for tr in trajectories: list_x.append(tr[0]) list_y.append(tr[1]) list_arclen.append(trajectory_arclength(tr) ) return list_x, list_y, list_arclen # Linear regression: f(l) = a + b*l # Returns the slope of the line and the intercept def line_parameters(traj, flag): traj_arclen = trajectory_arclength(traj) arclen = traj_arclen[-1] if arclen == 0: return 0.,0. x, y = traj[0], traj[1] if flag == 'x': b = x[0] a = (x[-1]-b)/arclen if flag == 'y': b = y[0] a = (y[-1]-b)/arclen return a, b # Takes as an input a set of trajectories (between goals) # and a flag that says whether the orientation is in x or y def get_linear_prior_mean(trajectories, flag): n = len(trajectories) if n == 0: return [0.,0.,0.] lineParameters = np.array([ line_parameters(trajectories[i], flag) for i in range(n)]) mean = [np.median(lineParameters[:,0]), np.median(lineParameters[:,1]) ] var = [np.var(lineParameters[:,0]), np.var(lineParameters[:,1]) ] cov = np.cov(lineParameters[:,0],lineParameters[:,1]) return mean, var def arclen_to_time(init_time, arclen, speed): n = len(arclen) time = np.zeros(n, dtype=int) time[0] = init_time for i in range(1,len(arclen)): time[i] = int(time[i-1] + (arclen[i]-arclen[i-1])/speed) return time # Function to get the ground truth data: n data def observed_data(traj, n): if (len(traj)==4): x, y, l, t = traj obsX, obsY, obsL, obsT = np.reshape(x[0:n],(-1,1)), np.reshape(y[0:n],(-1,1)), np.reshape(l[0:n],(-1,1)),np.reshape(t[0:n],(-1,1)) obsS = np.reshape(np.divide(np.sqrt(np.square(x[1:n+1]-x[:n])+np.square(y[1:n+1]-y[:n])),t[1:n+1]-t[:n]),(-1,1)) gtX, gtY, gtT = np.reshape(x[n:],(-1,1)), np.reshape(y[n:],(-1,1)),np.reshape(t[n:],(-1,1)) gtS = np.reshape(np.concatenate([np.divide(np.sqrt(np.square(x[n+1:]-x[n:-1])+np.square(y[n+1:]-y[n:-1])),t[n+1:]-t[n:-1]),[0.0]]),(-1,1)) if gtS.shape[0]<2: return None, None gtS[-1,0] = gtS[-2,0] return np.concatenate([obsX, obsY, obsL, obsT, obsS],axis=1),np.concatenate([gtX, gtY, gtT,gtS],axis=1) else: if (len(traj)==3): x, y, t = traj obsX, obsY, obsT = np.reshape(x[0:n],(-1,1)), np.reshape(y[0:n],(-1,1)), np.reshape(t[0:n],(-1,1)) return np.concatenate([obsX, obsY, obsT],axis=1) def observed_data_given_time(traj, time): _, _, t = traj i = 0 while(t[i] <= time and i < len(t)-1): i += 1 return observed_data(traj, i) def reshape_trajectory(traj): x, y, t = traj[:,0], traj[:,1], traj[:,2] x.reshape((-1,1)) y.reshape((-1,1)) t.reshape((-1,1)) return [x,y,t] # Checks if a point (x,y) belongs to an area R def is_in_area(p, area): x, y = p[0], p[1] if(x >= min(area[0::2]) and x <= max(area[0::2])): if(y >= min(area[1::2]) and y <= max(area[1::2])): return True else: return False else: return False def get_goal_of_point(p, goals): for i in range(len(goals)): if is_in_area(p,goals[i]): return i return None # Returns the center of a rectangular area def goal_center(area): dx, dy = area[-2] - area[0], area[-1] - area[1] centroid = [area[0] + dx/2., area[1] + dy/2.] return centroid def goal_center_and_size(area): center = np.array([0.25*float(np.sum(area[::2])),0.25*float(np.sum(area[1::2]))]) size = np.array([float(np.max(area[::2]))-float(np.min(area[::2])),float(np.max(area[1::2]))-float(np.min(area[1::2]))]) return center, size
[ "statistics.stdev", "numpy.median", "numpy.reshape", "utils.stats_trajectories.trajectory_arclength", "numpy.max", "statistics.median", "numpy.array", "numpy.zeros", "numpy.sum", "numpy.empty", "numpy.square", "numpy.concatenate", "numpy.min", "numpy.cov", "logging.error", "numpy.var" ]
[((370, 412), 'numpy.empty', 'np.empty', (['(goals_n, goals_n)'], {'dtype': 'object'}), '((goals_n, goals_n), dtype=object)\n', (378, 412), True, 'import numpy as np\n'), ((1884, 1904), 'statistics.median', 'stats.median', (['arclen'], {}), '(arclen)\n', (1896, 1904), True, 'import statistics as stats\n'), ((2437, 2486), 'numpy.empty', 'np.empty', (['raw_path_set_matrix.shape'], {'dtype': 'object'}), '(raw_path_set_matrix.shape, dtype=object)\n', (2445, 2486), True, 'import numpy as np\n'), ((5469, 5495), 'utils.stats_trajectories.trajectory_arclength', 'trajectory_arclength', (['traj'], {}), '(traj)\n', (5489, 5495), False, 'from utils.stats_trajectories import trajectory_arclength\n'), ((6224, 6274), 'numpy.cov', 'np.cov', (['lineParameters[:, 0]', 'lineParameters[:, 1]'], {}), '(lineParameters[:, 0], lineParameters[:, 1])\n', (6230, 6274), True, 'import numpy as np\n'), ((6371, 6393), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': 'int'}), '(n, dtype=int)\n', (6379, 6393), True, 'import numpy as np\n'), ((1726, 1750), 'utils.stats_trajectories.trajectory_arclength', 'trajectory_arclength', (['tr'], {}), '(tr)\n', (1746, 1750), False, 'from utils.stats_trajectories import trajectory_arclength\n'), ((1969, 1988), 'statistics.stdev', 'stats.stdev', (['arclen'], {}), '(arclen)\n', (1980, 1988), True, 'import statistics as stats\n'), ((3316, 3342), 'logging.error', 'logging.error', (['"""Empty set"""'], {}), "('Empty set')\n", (3329, 3342), False, 'import logging\n'), ((6079, 6110), 'numpy.median', 'np.median', (['lineParameters[:, 0]'], {}), '(lineParameters[:, 0])\n', (6088, 6110), True, 'import numpy as np\n'), ((6111, 6142), 'numpy.median', 'np.median', (['lineParameters[:, 1]'], {}), '(lineParameters[:, 1])\n', (6120, 6142), True, 'import numpy as np\n'), ((6155, 6183), 'numpy.var', 'np.var', (['lineParameters[:, 0]'], {}), '(lineParameters[:, 0])\n', (6161, 6183), True, 'import numpy as np\n'), ((6184, 6212), 'numpy.var', 'np.var', (['lineParameters[:, 1]'], {}), '(lineParameters[:, 1])\n', (6190, 6212), True, 'import numpy as np\n'), ((7558, 7600), 'numpy.concatenate', 'np.concatenate', (['[obsX, obsY, obsT]'], {'axis': '(1)'}), '([obsX, obsY, obsT], axis=1)\n', (7572, 7600), True, 'import numpy as np\n'), ((5264, 5288), 'utils.stats_trajectories.trajectory_arclength', 'trajectory_arclength', (['tr'], {}), '(tr)\n', (5284, 5288), False, 'from utils.stats_trajectories import trajectory_arclength\n'), ((6694, 6721), 'numpy.reshape', 'np.reshape', (['x[0:n]', '(-1, 1)'], {}), '(x[0:n], (-1, 1))\n', (6704, 6721), True, 'import numpy as np\n'), ((6721, 6748), 'numpy.reshape', 'np.reshape', (['y[0:n]', '(-1, 1)'], {}), '(y[0:n], (-1, 1))\n', (6731, 6748), True, 'import numpy as np\n'), ((6748, 6775), 'numpy.reshape', 'np.reshape', (['l[0:n]', '(-1, 1)'], {}), '(l[0:n], (-1, 1))\n', (6758, 6775), True, 'import numpy as np\n'), ((6774, 6801), 'numpy.reshape', 'np.reshape', (['t[0:n]', '(-1, 1)'], {}), '(t[0:n], (-1, 1))\n', (6784, 6801), True, 'import numpy as np\n'), ((6945, 6971), 'numpy.reshape', 'np.reshape', (['x[n:]', '(-1, 1)'], {}), '(x[n:], (-1, 1))\n', (6955, 6971), True, 'import numpy as np\n'), ((6971, 6997), 'numpy.reshape', 'np.reshape', (['y[n:]', '(-1, 1)'], {}), '(y[n:], (-1, 1))\n', (6981, 6997), True, 'import numpy as np\n'), ((6996, 7022), 'numpy.reshape', 'np.reshape', (['t[n:]', '(-1, 1)'], {}), '(t[n:], (-1, 1))\n', (7006, 7022), True, 'import numpy as np\n'), ((7271, 7325), 'numpy.concatenate', 'np.concatenate', (['[obsX, obsY, obsL, obsT, obsS]'], {'axis': '(1)'}), '([obsX, obsY, obsL, obsT, obsS], axis=1)\n', (7285, 7325), True, 'import numpy as np\n'), ((7325, 7369), 'numpy.concatenate', 'np.concatenate', (['[gtX, gtY, gtT, gtS]'], {'axis': '(1)'}), '([gtX, gtY, gtT, gtS], axis=1)\n', (7339, 7369), True, 'import numpy as np\n'), ((7463, 7490), 'numpy.reshape', 'np.reshape', (['x[0:n]', '(-1, 1)'], {}), '(x[0:n], (-1, 1))\n', (7473, 7490), True, 'import numpy as np\n'), ((7490, 7517), 'numpy.reshape', 'np.reshape', (['y[0:n]', '(-1, 1)'], {}), '(y[0:n], (-1, 1))\n', (7500, 7517), True, 'import numpy as np\n'), ((7517, 7544), 'numpy.reshape', 'np.reshape', (['t[0:n]', '(-1, 1)'], {}), '(t[0:n], (-1, 1))\n', (7527, 7544), True, 'import numpy as np\n'), ((4393, 4408), 'numpy.array', 'np.array', (['new_x'], {}), '(new_x)\n', (4401, 4408), True, 'import numpy as np\n'), ((4409, 4424), 'numpy.array', 'np.array', (['new_y'], {}), '(new_y)\n', (4417, 4424), True, 'import numpy as np\n'), ((4425, 4440), 'numpy.array', 'np.array', (['new_t'], {}), '(new_t)\n', (4433, 4440), True, 'import numpy as np\n'), ((4912, 4927), 'numpy.array', 'np.array', (['new_x'], {}), '(new_x)\n', (4920, 4927), True, 'import numpy as np\n'), ((4928, 4943), 'numpy.array', 'np.array', (['new_y'], {}), '(new_y)\n', (4936, 4943), True, 'import numpy as np\n'), ((4944, 4959), 'numpy.array', 'np.array', (['new_t'], {}), '(new_t)\n', (4952, 4959), True, 'import numpy as np\n'), ((8623, 8640), 'numpy.sum', 'np.sum', (['area[::2]'], {}), '(area[::2])\n', (8629, 8640), True, 'import numpy as np\n'), ((8653, 8671), 'numpy.sum', 'np.sum', (['area[1::2]'], {}), '(area[1::2])\n', (8659, 8671), True, 'import numpy as np\n'), ((8702, 8719), 'numpy.max', 'np.max', (['area[::2]'], {}), '(area[::2])\n', (8708, 8719), True, 'import numpy as np\n'), ((8727, 8744), 'numpy.min', 'np.min', (['area[::2]'], {}), '(area[::2])\n', (8733, 8744), True, 'import numpy as np\n'), ((8752, 8770), 'numpy.max', 'np.max', (['area[1::2]'], {}), '(area[1::2])\n', (8758, 8770), True, 'import numpy as np\n'), ((8778, 8796), 'numpy.min', 'np.min', (['area[1::2]'], {}), '(area[1::2])\n', (8784, 8796), True, 'import numpy as np\n'), ((6844, 6873), 'numpy.square', 'np.square', (['(x[1:n + 1] - x[:n])'], {}), '(x[1:n + 1] - x[:n])\n', (6853, 6873), True, 'import numpy as np\n'), ((6870, 6899), 'numpy.square', 'np.square', (['(y[1:n + 1] - y[:n])'], {}), '(y[1:n + 1] - y[:n])\n', (6879, 6899), True, 'import numpy as np\n'), ((7081, 7111), 'numpy.square', 'np.square', (['(x[n + 1:] - x[n:-1])'], {}), '(x[n + 1:] - x[n:-1])\n', (7090, 7111), True, 'import numpy as np\n'), ((7108, 7138), 'numpy.square', 'np.square', (['(y[n + 1:] - y[n:-1])'], {}), '(y[n + 1:] - y[n:-1])\n', (7117, 7138), True, 'import numpy as np\n')]
import numpy as np from utils.metrics import variation_ratio, entropy, bald from utils.progress_bar import Progbar def get_monte_carlo_metric(metric): if metric == 'variation_ratio': return VariationRationMC elif metric == 'entropy': return EntropyMC elif metric == 'bald': return BaldMC elif metric == 'random': return Random elif metric == 'softmax': return Softmax elif metric == 'ceal': return CEAL class MonteCarloEvaluation: def __init__(self, sess, model, data_batch, sizes_batch, labels_batch, num_classes, num_samples, max_len, verbose): self.sess = sess self.model = model self.data_batch = data_batch self.sizes_batch = sizes_batch self.labels_batch = labels_batch self.num_classes = num_classes self.num_samples = num_samples self.max_len = max_len self.verbose = verbose def preprocess_batch(self, data_batch, sizes_batch): preprocessed_batch = [] preprocessed_sizes_batch = [] for data, size in zip(data_batch, sizes_batch): if len(data) < self.max_len: data += [0] * (self.max_len - len(data)) elif len(data) > self.max_len: data = data[:self.max_len] size = self.max_len preprocessed_batch.append(data) preprocessed_sizes_batch.append(size) return np.array(preprocessed_batch), np.array(preprocessed_sizes_batch) def initialize_predictions(self): raise NotImplementedError def update_predictions(self, predictions, index): raise NotImplementedError def evaluate(self): raise NotImplementedError def create_feed_dict(self, data_batch, sizes_batch): self.feed_dict = self.model.create_feed_dict( data_placeholder=data_batch, sizes_placeholder=sizes_batch) def prediction_samples(self, preprocess_batch=True): predictions = self.initialize_predictions() if preprocess_batch: data_batch, sizes_batch = self.preprocess_batch( self.data_batch, self.sizes_batch) self.create_feed_dict(data_batch, sizes_batch) for i in range(self.num_samples): if self.verbose: progbar = Progbar(target=self.num_samples) self.update_predictions(predictions, i) if self.verbose: progbar.update(i + 1, []) return predictions class VariationRationMC(MonteCarloEvaluation): def initialize_predictions(self): return np.zeros(shape=(self.data_batch.shape[0], self.num_samples)) def update_predictions(self, predictions, index): prediction = self.sess.run( self.model.predictions, feed_dict=self.feed_dict) predictions[:, index] = prediction def evaluate(self): all_preds = self.prediction_samples() mc_counts = self.monte_carlo_samples_count(all_preds) variation_ratios = np.array(variation_ratio(mc_counts)) return variation_ratios def monte_carlo_samples_count(self, all_preds): mc_counts = [] all_preds = all_preds.astype(dtype=np.int64) for row in all_preds: bincount = np.bincount(row) mc_counts.append((bincount, bincount.argmax())) return mc_counts def monte_carlo_dropout_evaluate(self, num_data): all_preds = self.monte_carlo_samples() mc_counts = self.monte_carlo_samples_count(all_preds) predictions = np.zeros(shape=(num_data)) for index, (bincount, value) in enumerate(mc_counts): predictions[index] = value correct_pred = np.equal(predictions, self.labels_batch) return np.mean(correct_pred) class EntropyMC(MonteCarloEvaluation): def initialize_predictions(self): return np.zeros(shape=(self.data_batch.shape[0], self.num_classes)) def update_predictions(self, predictions, index): prediction = self.sess.run( self.model.predictions_distribution, feed_dict=self.feed_dict) predictions += prediction def evaluate(self): all_preds = self.prediction_samples() entropy_values = entropy(all_preds, self.num_samples) return entropy_values class BaldMC(MonteCarloEvaluation): def __init__(self, sess, model, data_batch, sizes_batch, labels_batch, num_classes, num_samples, max_len, verbose): super().__init__(sess, model, data_batch, sizes_batch, labels_batch, num_classes, num_samples, max_len, verbose) self.dropout_entropy = np.zeros(shape=(self.data_batch.shape[0])) def initialize_predictions(self): return np.zeros(shape=(self.data_batch.shape[0], self.num_classes)) def update_predictions(self, predictions, index): prediction = self.sess.run( self.model.predictions_distribution, feed_dict=self.feed_dict) self.dropout_entropy += entropy(prediction, 1) predictions += prediction def evaluate(self): all_preds = self.prediction_samples() bald_values = bald(all_preds, self.dropout_entropy, self.num_samples) return bald_values class Random(MonteCarloEvaluation): def __init__(self, sess, model, data_batch, sizes_batch, labels_batch, num_classes, num_samples, max_len, verbose): super().__init__(sess, model, data_batch, sizes_batch, labels_batch, num_classes, 0, max_len, verbose) def create_feed_dict(self, data_batch, sizes_batch): recurrent_output_dropout = 1 recurrent_state_dropout = 1 embedding_dropout = 1 self.feed_dict = self.model.create_feed_dict( recurrent_output_dropout=recurrent_output_dropout, recurrent_state_dropout=recurrent_state_dropout, embedding_dropout=embedding_dropout, data_placeholder=data_batch, sizes_placeholder=sizes_batch) def initialize_predictions(self): return None def evaluate(self): return np.random.uniform(size=(self.data_batch.shape[0])) class Softmax(MonteCarloEvaluation): def __init__(self, sess, model, data_batch, sizes_batch, labels_batch, num_classes, num_samples, max_len, verbose): super().__init__(sess, model, data_batch, sizes_batch, labels_batch, num_classes, 1, max_len, verbose) def create_feed_dict(self, data_batch, sizes_batch): recurrent_output_dropout = 1 recurrent_state_dropout = 1 embedding_dropout = 1 self.feed_dict = self.model.create_feed_dict( recurrent_output_dropout=recurrent_output_dropout, recurrent_state_dropout=recurrent_state_dropout, embedding_dropout=embedding_dropout, data_placeholder=data_batch, sizes_placeholder=sizes_batch) def initialize_predictions(self): return np.zeros(shape=(self.data_batch.shape[0], self.num_classes)) def update_predictions(self, predictions, index): prediction = self.sess.run( self.model.predictions_distribution, feed_dict=self.feed_dict) predictions += prediction def evaluate(self): all_preds = self.prediction_samples() return np.amax(all_preds, axis=1) class CEAL(BaldMC): def evaluate(self): all_preds = self.prediction_samples() bald_values = bald(all_preds, self.dropout_entropy, self.num_samples) return bald_values, all_preds
[ "numpy.mean", "utils.metrics.bald", "utils.metrics.variation_ratio", "numpy.equal", "numpy.array", "numpy.zeros", "numpy.bincount", "numpy.random.uniform", "utils.progress_bar.Progbar", "numpy.amax", "utils.metrics.entropy" ]
[((2651, 2711), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.data_batch.shape[0], self.num_samples)'}), '(shape=(self.data_batch.shape[0], self.num_samples))\n', (2659, 2711), True, 'import numpy as np\n'), ((3625, 3649), 'numpy.zeros', 'np.zeros', ([], {'shape': 'num_data'}), '(shape=num_data)\n', (3633, 3649), True, 'import numpy as np\n'), ((3777, 3817), 'numpy.equal', 'np.equal', (['predictions', 'self.labels_batch'], {}), '(predictions, self.labels_batch)\n', (3785, 3817), True, 'import numpy as np\n'), ((3834, 3855), 'numpy.mean', 'np.mean', (['correct_pred'], {}), '(correct_pred)\n', (3841, 3855), True, 'import numpy as np\n'), ((3951, 4011), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.data_batch.shape[0], self.num_classes)'}), '(shape=(self.data_batch.shape[0], self.num_classes))\n', (3959, 4011), True, 'import numpy as np\n'), ((4321, 4357), 'utils.metrics.entropy', 'entropy', (['all_preds', 'self.num_samples'], {}), '(all_preds, self.num_samples)\n', (4328, 4357), False, 'from utils.metrics import variation_ratio, entropy, bald\n'), ((4743, 4783), 'numpy.zeros', 'np.zeros', ([], {'shape': 'self.data_batch.shape[0]'}), '(shape=self.data_batch.shape[0])\n', (4751, 4783), True, 'import numpy as np\n'), ((4840, 4900), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.data_batch.shape[0], self.num_classes)'}), '(shape=(self.data_batch.shape[0], self.num_classes))\n', (4848, 4900), True, 'import numpy as np\n'), ((5112, 5134), 'utils.metrics.entropy', 'entropy', (['prediction', '(1)'], {}), '(prediction, 1)\n', (5119, 5134), False, 'from utils.metrics import variation_ratio, entropy, bald\n'), ((5262, 5317), 'utils.metrics.bald', 'bald', (['all_preds', 'self.dropout_entropy', 'self.num_samples'], {}), '(all_preds, self.dropout_entropy, self.num_samples)\n', (5266, 5317), False, 'from utils.metrics import variation_ratio, entropy, bald\n'), ((6230, 6278), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'self.data_batch.shape[0]'}), '(size=self.data_batch.shape[0])\n', (6247, 6278), True, 'import numpy as np\n'), ((7121, 7181), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.data_batch.shape[0], self.num_classes)'}), '(shape=(self.data_batch.shape[0], self.num_classes))\n', (7129, 7181), True, 'import numpy as np\n'), ((7482, 7508), 'numpy.amax', 'np.amax', (['all_preds'], {'axis': '(1)'}), '(all_preds, axis=1)\n', (7489, 7508), True, 'import numpy as np\n'), ((7624, 7679), 'utils.metrics.bald', 'bald', (['all_preds', 'self.dropout_entropy', 'self.num_samples'], {}), '(all_preds, self.dropout_entropy, self.num_samples)\n', (7628, 7679), False, 'from utils.metrics import variation_ratio, entropy, bald\n'), ((1474, 1502), 'numpy.array', 'np.array', (['preprocessed_batch'], {}), '(preprocessed_batch)\n', (1482, 1502), True, 'import numpy as np\n'), ((1504, 1538), 'numpy.array', 'np.array', (['preprocessed_sizes_batch'], {}), '(preprocessed_sizes_batch)\n', (1512, 1538), True, 'import numpy as np\n'), ((3090, 3116), 'utils.metrics.variation_ratio', 'variation_ratio', (['mc_counts'], {}), '(mc_counts)\n', (3105, 3116), False, 'from utils.metrics import variation_ratio, entropy, bald\n'), ((3335, 3351), 'numpy.bincount', 'np.bincount', (['row'], {}), '(row)\n', (3346, 3351), True, 'import numpy as np\n'), ((2362, 2394), 'utils.progress_bar.Progbar', 'Progbar', ([], {'target': 'self.num_samples'}), '(target=self.num_samples)\n', (2369, 2394), False, 'from utils.progress_bar import Progbar\n')]
from __future__ import print_function from numpy import pi, arange, sin, cos import numpy as np import os.path import time from bokeh.objects import (Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool) from bokeh.glyphs import Circle from bokeh import session x = arange(-2 * pi, 2 * pi, 0.1) y = sin(x) # Create an array of times, starting at the current time, and extending # for len(x) number of hours. times = np.arange(len(x)) * 3600000 + time.time() source = ColumnDataSource( data=dict(x=x, y=y, times=times) ) xdr = DataRange1d(sources=[source.columns("times")]) ydr = DataRange1d(sources=[source.columns("y")]) circle = Circle(x="times", y="y", fill_color="red", size=5, line_color="black") glyph_renderer = Glyph( data_source=source, xdata_range=xdr, ydata_range=ydr, glyph=circle, ) plot = Plot(x_range=xdr, y_range=ydr, data_sources=[source], border=80) xaxis = DatetimeAxis(plot=plot, dimension=0, location="min") yaxis = LinearAxis(plot=plot, dimension=1, location="min") pantool = PanTool(dataranges=[xdr, ydr], dimensions=["width", "height"]) wheelzoomtool = WheelZoomTool(dataranges=[xdr, ydr], dimensions=("width", "height")) plot.renderers.append(glyph_renderer) plot.tools = [pantool, wheelzoomtool] sess = session.HTMLFileSession("dateaxis.html") sess.add(plot, recursive=True) sess.plotcontext.children.append(plot) sess.save(js="absolute", css="absolute") sess.dumpjson(file="dateaxis.json") print("Wrote %s" % sess.filename) if __name__ == "__main__": sess.view()
[ "bokeh.session.HTMLFileSession", "bokeh.objects.Glyph", "bokeh.objects.WheelZoomTool", "bokeh.objects.LinearAxis", "bokeh.objects.PanTool", "bokeh.objects.DatetimeAxis", "bokeh.glyphs.Circle", "numpy.sin", "bokeh.objects.Plot", "time.time", "numpy.arange" ]
[((317, 345), 'numpy.arange', 'arange', (['(-2 * pi)', '(2 * pi)', '(0.1)'], {}), '(-2 * pi, 2 * pi, 0.1)\n', (323, 345), False, 'from numpy import pi, arange, sin, cos\n'), ((350, 356), 'numpy.sin', 'sin', (['x'], {}), '(x)\n', (353, 356), False, 'from numpy import pi, arange, sin, cos\n'), ((690, 760), 'bokeh.glyphs.Circle', 'Circle', ([], {'x': '"""times"""', 'y': '"""y"""', 'fill_color': '"""red"""', 'size': '(5)', 'line_color': '"""black"""'}), "(x='times', y='y', fill_color='red', size=5, line_color='black')\n", (696, 760), False, 'from bokeh.glyphs import Circle\n'), ((779, 852), 'bokeh.objects.Glyph', 'Glyph', ([], {'data_source': 'source', 'xdata_range': 'xdr', 'ydata_range': 'ydr', 'glyph': 'circle'}), '(data_source=source, xdata_range=xdr, ydata_range=ydr, glyph=circle)\n', (784, 852), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((880, 944), 'bokeh.objects.Plot', 'Plot', ([], {'x_range': 'xdr', 'y_range': 'ydr', 'data_sources': '[source]', 'border': '(80)'}), '(x_range=xdr, y_range=ydr, data_sources=[source], border=80)\n', (884, 944), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((965, 1017), 'bokeh.objects.DatetimeAxis', 'DatetimeAxis', ([], {'plot': 'plot', 'dimension': '(0)', 'location': '"""min"""'}), "(plot=plot, dimension=0, location='min')\n", (977, 1017), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((1026, 1076), 'bokeh.objects.LinearAxis', 'LinearAxis', ([], {'plot': 'plot', 'dimension': '(1)', 'location': '"""min"""'}), "(plot=plot, dimension=1, location='min')\n", (1036, 1076), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((1088, 1150), 'bokeh.objects.PanTool', 'PanTool', ([], {'dataranges': '[xdr, ydr]', 'dimensions': "['width', 'height']"}), "(dataranges=[xdr, ydr], dimensions=['width', 'height'])\n", (1095, 1150), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((1167, 1235), 'bokeh.objects.WheelZoomTool', 'WheelZoomTool', ([], {'dataranges': '[xdr, ydr]', 'dimensions': "('width', 'height')"}), "(dataranges=[xdr, ydr], dimensions=('width', 'height'))\n", (1180, 1235), False, 'from bokeh.objects import Plot, DataRange1d, LinearAxis, DatetimeAxis, ColumnDataSource, Glyph, PanTool, WheelZoomTool\n'), ((1321, 1361), 'bokeh.session.HTMLFileSession', 'session.HTMLFileSession', (['"""dateaxis.html"""'], {}), "('dateaxis.html')\n", (1344, 1361), False, 'from bokeh import session\n'), ((498, 509), 'time.time', 'time.time', ([], {}), '()\n', (507, 509), False, 'import time\n')]
import numpy as np from skimage.measure import label from lib.utils_lung_segmentation import get_max_rect_in_mask def getLargestCC(segmentation): '''find largest connected component return: binary mask of the largest connected component''' labels = label(segmentation) assert(labels.max() != 0 ) # assume at least 1 CC largestCC = labels == np.argmax(np.bincount(labels.flat)[1:])+1 return largestCC def test_max_rect_in_mask(random_blobs): '''make sure that we can find the largest rectangle inside a bindary mask check that the coordinates of the rectangle are the coorect ones''' blobs_largest = getLargestCC(random_blobs) coords_largest = get_max_rect_in_mask(blobs_largest) assert coords_largest == (83, 125, 143, 155)
[ "numpy.bincount", "skimage.measure.label", "lib.utils_lung_segmentation.get_max_rect_in_mask" ]
[((266, 285), 'skimage.measure.label', 'label', (['segmentation'], {}), '(segmentation)\n', (271, 285), False, 'from skimage.measure import label\n'), ((690, 725), 'lib.utils_lung_segmentation.get_max_rect_in_mask', 'get_max_rect_in_mask', (['blobs_largest'], {}), '(blobs_largest)\n', (710, 725), False, 'from lib.utils_lung_segmentation import get_max_rect_in_mask\n'), ((376, 400), 'numpy.bincount', 'np.bincount', (['labels.flat'], {}), '(labels.flat)\n', (387, 400), True, 'import numpy as np\n')]
# Copyright 2018 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ================================================================================================ """ A :std:doc:`dimod composite <dimod:reference/samplers>` that tiles small problems multiple times to a Chimera-structured sampler. The :class:`.TilingComposite` takes a problem that can fit on a small :std:doc:`Chimera <system:reference/intro>` graph and replicates it across a larger Chimera graph to obtain samples from multiple areas of the solver in one call. For example, a 2x2 Chimera lattice could be tiled 64 times (8x8) on a fully-yielded D-Wave 2000Q system (16x16). See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ from __future__ import division from math import sqrt, ceil import dimod import dwave_networkx as dnx import numpy as np __all__ = ['TilingComposite', 'draw_tiling'] class TilingComposite(dimod.Sampler, dimod.Composite, dimod.Structured): """Composite to tile a small problem across a Chimera-structured sampler. Inherits from :class:`dimod.Sampler`, :class:`dimod.Composite`, and :class:`dimod.Structured`. Enables parallel sampling for small problems (problems that are minor-embeddable in a small part of a D-Wave solver's :std:doc:`Chimera <system:reference/intro>` graph). The notation *CN* refers to a Chimera graph consisting of an NxN grid of unit cells. Each Chimera unit cell is itself a bipartite graph with shores of size t. The D-Wave 2000Q QPU supports a C16 Chimera graph: its 2048 qubits are logically mapped into a 16x16 matrix of unit cell of 8 qubits (t=4). A problem that can be minor-embedded in a single unit cell, for example, can therefore be tiled across the unit cells of a D-Wave 2000Q as 16x16 duplicates. This enables sampling 256 solutions in a single call. Args: sampler (:class:`dimod.Sampler`): Structured dimod sampler to be wrapped. sub_m (int): Number of rows of Chimera unit cells for minor-embedding the problem once. sub_n (int): Number of columns of Chimera unit cells for minor-embedding the problem once. t (int, optional, default=4): Size of the shore within each Chimera unit cell. Examples: This example instantiates a composed sampler using composite :class:`.TilingComposite` to tile a QUBO problem on a D-Wave solver, embedding it with composite :class:`.EmbeddingComposite` and selecting the D-Wave solver with the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`. The two-variable QUBO represents a logical NOT gate (two nodes with biases of -1 that are coupled with strength 2) and is easily minor-embedded in a single Chimera cell (it needs only any two coupled qubits) and so can be tiled multiple times across a D-Wave solver for parallel solution (the two nodes should typically have opposite values). >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import EmbeddingComposite >>> from dwave.system.composites import TilingComposite >>> sampler = EmbeddingComposite(TilingComposite(DWaveSampler(), 1, 1, 4)) >>> Q = {(1, 1): -1, (1, 2): 2, (2, 1): 0, (2, 2): -1} >>> response = sampler.sample_qubo(Q) >>> for sample in response.samples(): # doctest: +SKIP ... print(sample) ... {1: 0, 2: 1} {1: 1, 2: 0} {1: 1, 2: 0} {1: 1, 2: 0} {1: 0, 2: 1} {1: 0, 2: 1} {1: 1, 2: 0} {1: 0, 2: 1} {1: 1, 2: 0} >>> # Snipped above response for brevity See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ nodelist = None """list: List of active qubits for the structured solver. Examples: This example creates a :class:`.TilingComposite` for a problem that requires a 2x1 Chimera lattice to solve with a :class:`DWaveSampler` as the sampler. It prints the active qubits retrieved from a D-Wave solver selected by the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`. >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import TilingComposite >>> sampler_tile = TilingComposite(DWaveSampler(), 2, 1, 4) >>> sampler_tile.nodelist # doctest: +SKIP [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ edgelist = None """list: List of active couplers for the D-Wave solver. Examples: This example creates a :class:`.TilingComposite` for a problem that requires a 1x2 Chimera lattice to solve with a :class:`DWaveSampler` as the sampler. It prints the active couplers retrieved from a D-Wave solver selected by the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`. >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import TilingComposite >>> sampler_tile = TilingComposite(DWaveSampler(), 1, 2, 4) >>> sampler_tile.edgelist # doctest: +SKIP [[0, 4], [0, 5], [0, 6], [0, 7], [1, 4], [1, 5], [1, 6], [1, 7], [2, 4], [2, 5], [2, 6], [2, 7], [3, 4], [3, 5], [3, 6], [3, 7], [4, 12], [5, 13], [6, 14], [7, 15], [8, 12], [8, 13], [8, 14], [8, 15], [9, 12], [9, 13], [9, 14], [9, 15], [10, 12], [10, 13], [10, 14], [10, 15], [11, 12], [11, 13], [11, 14], [11, 15]] See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ parameters = None """dict[str, list]: Parameters in the form of a dict. For an instantiated composed sampler, keys are the keyword parameters accepted by the child sampler. Examples: This example instantiates a :class:`.TilingComposite` sampler using a D-Wave solver selected by the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>` and views the solver's parameters. >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import TilingComposite >>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4) >>> sampler_tile.parameters # doctest: +SKIP {u'anneal_offsets': ['parameters'], u'anneal_schedule': ['parameters'], u'annealing_time': ['parameters'], u'answer_mode': ['parameters'], u'auto_scale': ['parameters'], >>> # Snipped above response for brevity See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ properties = None """dict: Properties in the form of a dict. For an instantiated composed sampler, contains one key :code:`'child_properties'` that has a copy of the child sampler's properties. Examples: This example instantiates a :class:`.TilingComposite` sampler using a D-Wave solver selected by the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>` and views the solver's properties. >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import TilingComposite >>> sampler_tile = TilingComposite(DWaveSampler(), 1, 1, 4) >>> sampler_tile.properties # doctest: +SKIP {'child_properties': {u'anneal_offset_ranges': [[-0.2197463755538704, 0.03821687759418928], [-0.2242514597680286, 0.01718456460967399], [-0.20860153999435985, 0.05511969218508182], [-0.2108920134230625, 0.056392603743884134], [-0.21788292874621265, 0.03360435584845211], [-0.21700680373359477, 0.005297355417068621], >>> # Snipped above response for brevity See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ children = None """list: The single wrapped structured sampler.""" def __init__(self, sampler, sub_m, sub_n, t=4): self.parameters = sampler.parameters.copy() self.properties = properties = {'child_properties': sampler.properties} tile = dnx.chimera_graph(sub_m, sub_n, t) self.nodelist = sorted(tile.nodes) self.edgelist = sorted(sorted(edge) for edge in tile.edges) # dimod.Structured abstract base class automatically populates adjacency and structure as # mixins based on nodelist and edgelist if not isinstance(sampler, dimod.Structured): # we could also just tile onto the unstructured sampler but in that case we would need # to know how many tiles to use raise ValueError("given child sampler should be structured") self.children = [sampler] nodes_per_cell = t * 2 edges_per_cell = t * t m = n = int(ceil(sqrt(ceil(len(sampler.structure.nodelist) / nodes_per_cell)))) # assume square lattice shape system = dnx.chimera_graph(m, n, t, node_list=sampler.structure.nodelist, edge_list=sampler.structure.edgelist) c2i = {chimera_index: linear_index for (linear_index, chimera_index) in system.nodes(data='chimera_index')} sub_c2i = {chimera_index: linear_index for (linear_index, chimera_index) in tile.nodes(data='chimera_index')} # Count the connections between these qubits def _between(qubits1, qubits2): edges = [edge for edge in system.edges if edge[0] in qubits1 and edge[1] in qubits2] return len(edges) # Get the list of qubits in a cell def _cell_qubits(i, j): return [c2i[(i, j, u, k)] for u in range(2) for k in range(t) if (i, j, u, k) in c2i] # get a mask of complete cells cells = [[False for _ in range(n)] for _ in range(m)] for i in range(m): for j in range(n): qubits = _cell_qubits(i, j) cells[i][j] = len(qubits) == nodes_per_cell and _between(qubits, qubits) == edges_per_cell # List of 'embeddings' self.embeddings = properties['embeddings'] = embeddings = [] # For each possible chimera cell check if the next few cells are complete for i in range(m + 1 - sub_m): for j in range(n + 1 - sub_n): # Check if the sub cells are matched match = all(cells[i + sub_i][j + sub_j] for sub_i in range(sub_m) for sub_j in range(sub_n)) # Check if there are connections between the cells. for sub_i in range(sub_m): for sub_j in range(sub_n): if sub_m > 1 and sub_i < sub_m - 1: match &= _between(_cell_qubits(i + sub_i, j + sub_j), _cell_qubits(i + sub_i + 1, j + sub_j)) == t if sub_n > 1 and sub_j < sub_n - 1: match &= _between(_cell_qubits(i + sub_i, j + sub_j), _cell_qubits(i + sub_i, j + sub_j + 1)) == t if match: # Pull those cells out into an embedding. embedding = {} for sub_i in range(sub_m): for sub_j in range(sub_n): cells[i + sub_i][j + sub_j] = False # Mark cell as matched for u in range(2): for k in range(t): embedding[sub_c2i[sub_i, sub_j, u, k]] = {c2i[(i + sub_i, j + sub_j, u, k)]} embeddings.append(embedding) if len(embeddings) == 0: raise ValueError("no tile embeddings found; is the sampler Chimera structured?") @dimod.bqm_structured def sample(self, bqm, **kwargs): """Sample from the provided binary quadratic model Args: bqm (:obj:`dimod.BinaryQuadraticModel`): Binary quadratic model to be sampled from. **kwargs: Optional keyword arguments for the sampling method, specified per solver. Returns: :class:`dimod.Response` Examples: This example uses :class:`.TilingComposite` to instantiate a composed sampler that submits a simple Ising problem of just two variables that map to qubits 0 and 1 on the D-Wave solver selected by the user's default :std:doc:`D-Wave Cloud Client configuration file <cloud-client:reference/intro>`. (The simplicity of this example obviates the need for an embedding composite.) Because the problem fits in a single :std:doc:`Chimera <system:reference/intro>` unit cell, it is tiled across the solver's entire Chimera graph, resulting in multiple samples. >>> from dwave.system.samplers import DWaveSampler >>> from dwave.system.composites import EmbeddingComposite, TilingComposite >>> sampler = TilingComposite(DWaveSampler(), 1, 1, 4) >>> response = sampler.sample_ising({0: -1, 1: 1}, {}) >>> for sample in response.samples(): # doctest: +SKIP ... print(sample) ... {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} {0: 1, 1: -1} >>> # Snipped above response for brevity See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ # apply the embeddings to the given problem to tile it across the child sampler embedded_bqm = dimod.BinaryQuadraticModel.empty(bqm.vartype) __, __, target_adjacency = self.child.structure for embedding in self.embeddings: embedded_bqm.update(dimod.embed_bqm(bqm, embedding, target_adjacency)) # solve the problem on the child system tiled_response = self.child.sample(embedded_bqm, **kwargs) responses = [] for embedding in self.embeddings: embedding = {v: chain for v, chain in embedding.items() if v in bqm.linear} responses.append(dimod.unembed_response(tiled_response, embedding, bqm)) # stack the records record = np.rec.array(np.hstack((resp.record for resp in responses))) vartypes = set(resp.vartype for resp in responses) if len(vartypes) > 1: raise RuntimeError("inconsistent vartypes returned") vartype = vartypes.pop() info = {} for resp in responses: info.update(resp.info) labels = responses[0].variable_labels return dimod.Response(record, labels, info, vartype) @property def num_tiles(self): return len(self.embeddings) def draw_tiling(sampler, t=4): """Draw Chimera graph of sampler with colored tiles. Args: sampler (:class:`dwave_micro_client_dimod.TilingComposite`): A tiled dimod sampler to be drawn. t (int): The size of the shore within each :std:doc:`Chimera <system:reference/intro>` cell. Uses :std:doc:`dwave_networkx.draw_chimera <networkx:index>`. Linear biases are overloaded to color the graph according to which tile each Chimera cell belongs to. See `Ocean Glossary <https://docs.ocean.dwavesys.com/en/latest/glossary.html>`_ for explanations of technical terms in descriptions of Ocean tools. """ child = sampler.child nodes_per_cell = t * 2 m = n = int(ceil(sqrt(ceil(len(child.structure.nodelist) / nodes_per_cell)))) # assume square lattice shape system = dnx.chimera_graph(m, n, t, node_list=child.structure.nodelist, edge_list=child.structure.edgelist) labels = {node: -len(sampler.embeddings) for node in system.nodes} # unused cells are blue labels.update({node: i for i, embedding in enumerate(sampler.embeddings) for s in embedding.values() for node in s}) dnx.draw_chimera(system, linear_biases=labels)
[ "dimod.unembed_response", "numpy.hstack", "dimod.Response", "dimod.BinaryQuadraticModel.empty", "dwave_networkx.chimera_graph", "dimod.embed_bqm", "dwave_networkx.draw_chimera" ]
[((17215, 17318), 'dwave_networkx.chimera_graph', 'dnx.chimera_graph', (['m', 'n', 't'], {'node_list': 'child.structure.nodelist', 'edge_list': 'child.structure.edgelist'}), '(m, n, t, node_list=child.structure.nodelist, edge_list=\n child.structure.edgelist)\n', (17232, 17318), True, 'import dwave_networkx as dnx\n'), ((17536, 17582), 'dwave_networkx.draw_chimera', 'dnx.draw_chimera', (['system'], {'linear_biases': 'labels'}), '(system, linear_biases=labels)\n', (17552, 17582), True, 'import dwave_networkx as dnx\n'), ((9583, 9617), 'dwave_networkx.chimera_graph', 'dnx.chimera_graph', (['sub_m', 'sub_n', 't'], {}), '(sub_m, sub_n, t)\n', (9600, 9617), True, 'import dwave_networkx as dnx\n'), ((10379, 10486), 'dwave_networkx.chimera_graph', 'dnx.chimera_graph', (['m', 'n', 't'], {'node_list': 'sampler.structure.nodelist', 'edge_list': 'sampler.structure.edgelist'}), '(m, n, t, node_list=sampler.structure.nodelist, edge_list=\n sampler.structure.edgelist)\n', (10396, 10486), True, 'import dwave_networkx as dnx\n'), ((15216, 15261), 'dimod.BinaryQuadraticModel.empty', 'dimod.BinaryQuadraticModel.empty', (['bqm.vartype'], {}), '(bqm.vartype)\n', (15248, 15261), False, 'import dimod\n'), ((16243, 16288), 'dimod.Response', 'dimod.Response', (['record', 'labels', 'info', 'vartype'], {}), '(record, labels, info, vartype)\n', (16257, 16288), False, 'import dimod\n'), ((15859, 15903), 'numpy.hstack', 'np.hstack', (['(resp.record for resp in responses)'], {}), '(resp.record for resp in responses)\n', (15868, 15903), True, 'import numpy as np\n'), ((15392, 15441), 'dimod.embed_bqm', 'dimod.embed_bqm', (['bqm', 'embedding', 'target_adjacency'], {}), '(bqm, embedding, target_adjacency)\n', (15407, 15441), False, 'import dimod\n'), ((15744, 15798), 'dimod.unembed_response', 'dimod.unembed_response', (['tiled_response', 'embedding', 'bqm'], {}), '(tiled_response, embedding, bqm)\n', (15766, 15798), False, 'import dimod\n')]
# Copyright (c) 2021, Parallel Systems Architecture Laboratory (PARSA), EPFL & # Machine Learning and Optimization Laboratory (MLO), EPFL. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the PARSA, EPFL & MLO, EPFL # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ # # Modified file from Salesforce's LSTM and QRNN Language Model Toolkit # (https://github.com/salesforce/awd-lstm-lm). See LICENSE for more details. import numpy as np import torch import torch.nn.functional as F from torch.autograd import Variable def embedded_dropout(embed, words, dropout=0.1, scale=None): if dropout: mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(embed.weight) / (1 - dropout) mask = Variable(mask) masked_embed_weight = mask * embed.weight else: masked_embed_weight = embed.weight if scale: masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight padding_idx = embed.padding_idx if padding_idx is None: padding_idx = -1 X = X = F.embedding( words, masked_embed_weight, padding_idx, embed.max_norm, embed.norm_type, embed.scale_grad_by_freq, embed.sparse ) return X if __name__ == '__main__': V = 50 h = 4 bptt = 10 batch_size = 2 embed = torch.nn.Embedding(V, h) words = np.random.random_integers(low=0, high=V-1, size=(batch_size, bptt)) words = torch.LongTensor(words) words = Variable(words) origX = embed(words) X = embedded_dropout(embed, words) print(origX) print(X)
[ "numpy.random.random_integers", "torch.LongTensor", "torch.nn.functional.embedding", "torch.autograd.Variable", "torch.nn.Embedding" ]
[((2519, 2649), 'torch.nn.functional.embedding', 'F.embedding', (['words', 'masked_embed_weight', 'padding_idx', 'embed.max_norm', 'embed.norm_type', 'embed.scale_grad_by_freq', 'embed.sparse'], {}), '(words, masked_embed_weight, padding_idx, embed.max_norm, embed.\n norm_type, embed.scale_grad_by_freq, embed.sparse)\n', (2530, 2649), True, 'import torch.nn.functional as F\n'), ((2779, 2803), 'torch.nn.Embedding', 'torch.nn.Embedding', (['V', 'h'], {}), '(V, h)\n', (2797, 2803), False, 'import torch\n'), ((2815, 2884), 'numpy.random.random_integers', 'np.random.random_integers', ([], {'low': '(0)', 'high': '(V - 1)', 'size': '(batch_size, bptt)'}), '(low=0, high=V - 1, size=(batch_size, bptt))\n', (2840, 2884), True, 'import numpy as np\n'), ((2893, 2916), 'torch.LongTensor', 'torch.LongTensor', (['words'], {}), '(words)\n', (2909, 2916), False, 'import torch\n'), ((2927, 2942), 'torch.autograd.Variable', 'Variable', (['words'], {}), '(words)\n', (2935, 2942), False, 'from torch.autograd import Variable\n'), ((2219, 2233), 'torch.autograd.Variable', 'Variable', (['mask'], {}), '(mask)\n', (2227, 2233), False, 'from torch.autograd import Variable\n')]
''' Investigating the offset of CIV emission in the Cloudy models as a function of ionization, nebular metallicity, stellar metallicity, stellar population type, age, etc. ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from scipy.optimize import curve_fit from cloudy_func import * # written by TAH import warnings from scipy.optimize import OptimizeWarning warnings.simplefilter("error", OptimizeWarning) # for when no CIV emission seen __author__ = '<NAME>' __email__ = '<EMAIL>' # for the emission line profiles def gaussian(xaxis, mean, A, sig, offset): ''' Simple Gaussian functionc ''' return A * np.exp(-np.power(xaxis-mean, 2.) / (2*np.power(sig, 2.))) + offset # velocity offset plot using wavelengths instead of redshift # the spectrum is already at systemic (so that z_sys=0) def velocity_offset(lam_obs,lam_rest): return 2.998e5 * ((lam_obs/lam_rest) - 1) # km/s # model parameters u = np.arange(-3.5,-1.4,0.2) # full range, 11 ionization points zneb = [0.1,0.2,0.3,0.5] # full range, some have 0.4 as well mass = 300 # 300 or 100 stars = 'binary' # binary or single age = 7 # 7, 7.477, or 8 neb = 0 # for the nebular metallicity civ = 1548.19 # angstroms for ion in u[:5]: # pulling model spectrum spec = get_cloudy_spec(f'{stars}_cont_{mass}',mass,age,zneb[neb],ioni=ion) spec['wavelength'] *= 1e4 spec['spectrum'] /= (2.998e18/spec.wavelength.values) # nu*Fnu --> Fnu # zooming in around CIV spec = reorder_spectrum(spec) # Cloudy orders it backwards spec = spec.query('1490 < wavelength < 1610').copy() spec['spectrum'] /= np.median(spec.spectrum.values) # normalizing it # plotting CIV area of spectrum plt.figure(figsize=(9,6)) plt.plot(spec.wavelength,spec.spectrum) text_kwargs = {'transform':plt.gca().transAxes,'fontsize':15} plt.text(0.025,0.94,f'logU: {round(ion,1)}',**text_kwargs) # fitting the CIV emission # gaussian(xaxis, mean, A, sig, offset) try: popt,pcov = curve_fit(gaussian,spec.wavelength,spec.spectrum,p0=[1548,1,2,1]) plt.plot(spec.wavelength,gaussian(spec.wavelength,*popt)) plt.axvline(popt[0]) # calculating offset offset = velocity_offset(popt[0],civ) plt.text(0.025,0.05,f'offset: {round(offset,2)} km/s',**text_kwargs) except OptimizeWarning: print('\nNo emission detected, finding max value.',end='\n\n') zoomin = spec.query('1540 < wavelength < 1565').copy() # wavelength of peak value peak = zoomin.loc[zoomin['spectrum'].idxmax(),'wavelength'] plt.axvline(peak,ls=':') # calculating offset using the max value (will likely stay the same) offset = velocity_offset(peak,civ) plt.text(0.025,0.05,f'offset: {round(offset,2)} km/s',**text_kwargs) plt.yscale('log') plt.ylim(0.25,6) plt.gca().set_yticks([0.3,1.,3,]) plt.gca().set_yticklabels(['0.3','1.0','3.0',]) plt.xlabel('rest wavelength [$\AA$]') plt.ylabel('normalized flux') plt.tight_layout() plt.show() plt.close() print() # ---------------------------------------------------------- # # -- running through all models to build table of offsets -- # # ---------------------------------------------------------- # # zstellar = [0.1,0.2,0.3,0.5] # zneb = [0.1,0.3,0.5] # offsets = pd.DataFrame({'z':[],'zneb':[],'u':[],'offset':[],'age':[],'mass':[],'stars':[]}) # for stars in ['binary','single']: # print('For stars:',stars) # for mass in [300,100]: # print('For mass:',mass) # for met in zstellar: # stellar metallicity # print('For Z_stellar:',met) # for neb in zneb: # nebular metallicity # # checking for when stellar == nebular when it's 0.3 or 0.5 # if neb == 0.1 and met == 0.3: pass # no need to run this model twice # elif neb == 0.1 and met == 0.5: pass # no need to run this model twice # else: # # need to check if matches stellar # if neb == 0.1: neb = met # fix nebular to stellar metallicity # print('For Z_neb:',neb) # for ion in u: # print('For logU:',round(ion,1),end=',\t') # # pulling model spectrum # spec = get_cloudy_spec(f'{stars}_cont_{mass}',mass,age,met,zneb=neb,ioni=ion) # spec['wavelength'] *= 1e4 # spec['spectrum'] /= (2.998e18/spec.wavelength.values) # nu*Fnu --> Fnu # # zooming in around CIV # spec = spec.query('1490 < wavelength < 1610').copy() # spec['spectrum'] /= np.median(spec.spectrum.values) # normalizing it # spec = reorder_spectrum(spec) # Cloudy orders it backwards # # fitting the CIV emission # # gaussian(xaxis, mean, A, sig, offset) # try: # popt,pcov = curve_fit(gaussian,spec.wavelength,spec.spectrum,p0=[1548,1,2,1]) # # calculating offset # offset = velocity_offset(popt[0],civ) # print(f'offset: {round(offset,2)} km/s') # except OptimizeWarning: # print('Bad fit/no emission detected.') # offset = np.nan # filldf = pd.DataFrame({'z':[met],'zneb':[neb],'u':[ion],'offset':[round(offset,3)],\ # 'age':[int(age)],'mass':[int(mass)],'stars':[stars]}) # offsets = offsets.append(filldf,ignore_index=True) # print() # print(end='\n\n') # print(end='\n\n') # print(end='\n\n\n') # # ---------------------------------------- # # # ---------------------------------------- # # print('Saving table to file...',end='\n\n') # df_dtypes = {'zneb':float,'u':float,'offset':float,'age':int,'mass':int,'stars':str} # offsets = offsets.astype(df_dtypes) # to make sure column dtypes don't change # # offsets.to_csv('plots-data/offsets_civ.txt',sep='\t',index=False) # print(offsets.head())
[ "scipy.optimize.curve_fit", "numpy.median", "matplotlib.pyplot.ylabel", "numpy.power", "matplotlib.pyplot.gca", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "warnings.simplefilter", "matplotlib.pyplot.ylim", "matplotlib.pyplot.yscale", "matplotlib.pyplot.axvline", "numpy.arange", "matplotlib.pyplot.show" ]
[((427, 474), 'warnings.simplefilter', 'warnings.simplefilter', (['"""error"""', 'OptimizeWarning'], {}), "('error', OptimizeWarning)\n", (448, 474), False, 'import warnings\n'), ((983, 1009), 'numpy.arange', 'np.arange', (['(-3.5)', '(-1.4)', '(0.2)'], {}), '(-3.5, -1.4, 0.2)\n', (992, 1009), True, 'import numpy as np\n'), ((1728, 1759), 'numpy.median', 'np.median', (['spec.spectrum.values'], {}), '(spec.spectrum.values)\n', (1737, 1759), True, 'import numpy as np\n'), ((1819, 1845), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 6)'}), '(figsize=(9, 6))\n', (1829, 1845), True, 'import matplotlib.pyplot as plt\n'), ((1849, 1889), 'matplotlib.pyplot.plot', 'plt.plot', (['spec.wavelength', 'spec.spectrum'], {}), '(spec.wavelength, spec.spectrum)\n', (1857, 1889), True, 'import matplotlib.pyplot as plt\n'), ((2967, 2984), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (2977, 2984), True, 'import matplotlib.pyplot as plt\n'), ((2989, 3006), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0.25)', '(6)'], {}), '(0.25, 6)\n', (2997, 3006), True, 'import matplotlib.pyplot as plt\n'), ((3100, 3138), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""rest wavelength [$\\\\AA$]"""'], {}), "('rest wavelength [$\\\\AA$]')\n", (3110, 3138), True, 'import matplotlib.pyplot as plt\n'), ((3142, 3171), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""normalized flux"""'], {}), "('normalized flux')\n", (3152, 3171), True, 'import matplotlib.pyplot as plt\n'), ((3177, 3195), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3193, 3195), True, 'import matplotlib.pyplot as plt\n'), ((3200, 3210), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3208, 3210), True, 'import matplotlib.pyplot as plt\n'), ((3215, 3226), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3224, 3226), True, 'import matplotlib.pyplot as plt\n'), ((2123, 2194), 'scipy.optimize.curve_fit', 'curve_fit', (['gaussian', 'spec.wavelength', 'spec.spectrum'], {'p0': '[1548, 1, 2, 1]'}), '(gaussian, spec.wavelength, spec.spectrum, p0=[1548, 1, 2, 1])\n', (2132, 2194), False, 'from scipy.optimize import curve_fit\n'), ((2263, 2283), 'matplotlib.pyplot.axvline', 'plt.axvline', (['popt[0]'], {}), '(popt[0])\n', (2274, 2283), True, 'import matplotlib.pyplot as plt\n'), ((1920, 1929), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1927, 1929), True, 'import matplotlib.pyplot as plt\n'), ((2727, 2752), 'matplotlib.pyplot.axvline', 'plt.axvline', (['peak'], {'ls': '""":"""'}), "(peak, ls=':')\n", (2738, 2752), True, 'import matplotlib.pyplot as plt\n'), ((3010, 3019), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3017, 3019), True, 'import matplotlib.pyplot as plt\n'), ((3048, 3057), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3055, 3057), True, 'import matplotlib.pyplot as plt\n'), ((689, 716), 'numpy.power', 'np.power', (['(xaxis - mean)', '(2.0)'], {}), '(xaxis - mean, 2.0)\n', (697, 716), True, 'import numpy as np\n'), ((719, 737), 'numpy.power', 'np.power', (['sig', '(2.0)'], {}), '(sig, 2.0)\n', (727, 737), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d import psoap from psoap.data import lkca14, redshift, Chunk from psoap import matrix_functions from psoap import covariance from psoap import orbit # from matplotlib.ticker import FormatStrFormatter as FSF # from matplotlib.ticker import MaxNLocator # from matplotlib.ticker import MultipleLocator # Specify orbital parameters and make a sanity plot q = 0.2 K = 5.0 # km/s e = 0.2 # omega = 10.0 # deg P = 10.0 # days T0 = 0.0 # epoch gamma = 5.0 # km/s n_epochs = 10 obs_dates = np.array([2.1, 4.9, 8.0, 9.9, 12.2, 16.0, 16.9, 19.1, 22.3, 26.1]) # obs_dates = np.linspace(5, 150, num=n_epochs) orb = orbit.SB2(q, K, e, omega, P, T0, gamma, obs_dates) vAs, vBs = orb.get_component_velocities() dates_fine = np.linspace(0, 30, num=200) vA_fine, vB_fine = orb.get_component_velocities(dates_fine) vAs_relative = vAs - vAs[0] np.save("SB2/vAs_relative.npy", vAs_relative) vBs_relative = vBs - vBs[0] np.save("SB2/vBs_relative.npy", vBs_relative) fig, ax = plt.subplots(nrows=3, figsize=(6,6)) ax[0].plot(dates_fine, vA_fine, "b") ax[0].plot(orb.obs_dates, vAs, "bo") ax[0].plot(dates_fine, vB_fine, "g") ax[0].plot(orb.obs_dates, vBs, "go") ax[0].axhline(gamma, ls="-.", color="0.5") ax[-1].set_xlabel(r"$t$ [days]") ax[0].set_ylabel(r"$v_A$ [km $\mathrm{s}^{-1}$]") # For subsequent axes, plot velocities of stars relative to first observation. ax[1].plot(orb.obs_dates, vAs_relative, "bo") ax[1].set_ylabel(r"$v_A$ relative") ax[2].plot(orb.obs_dates, vBs_relative, "go") ax[2].set_ylabel(r"$v_B$ relative") fig.subplots_adjust(left=0.14, right=0.86, bottom=0.24) fig.savefig("SB2/orbit.png") # Load the fake primary spectra we prepared wl_f, fl_f = np.load("primary_wl_fl.npy") # Load the fake secondary spectra we prepared wl_g, fl_g = np.load("secondary_wl_fl.npy") n_f = len(wl_f) n_g = len(wl_g) print("n_f:", n_f, "n_g:", n_g) # Shorten these to be the same. if n_f < n_g: n_pix = n_f print("Shortening g to f") else: n_pix =n_g print("Shortening f to g") wl = wl_f[0:n_pix] fl_f = fl_f[0:n_pix] fl_g = fl_g[0:n_pix] # Just assume that wl_f will be wl_g as well. # Create fake wavelengths with Doppler shifts by apply these to the master wl wls_f = np.empty((n_epochs, n_pix)) wls_g = np.empty((n_epochs, n_pix)) for i in range(n_epochs): wls_f[i] = redshift(wl, vAs[i]) wls_g[i] = redshift(wl, vBs[i]) # Falling plot of all eight epochs of each spectrum, overlaid with the velocities for each # Show spectra on each plot along with chosen amplitude scaling fig, ax = plt.subplots(nrows=n_epochs, sharex=True) for i in range(n_epochs): ax[i].plot(wls_f[i], fl_f, "b") ax[i].plot(wls_g[i], fl_g, "g") ax[i].set_ylabel("epoch {:}".format(i)) ax[-1].set_xlabel(r"$\lambda [\AA]$") fig.savefig("SB2/dataset_noiseless_full.png", dpi=300) # Here is where we set up the number of chunks, and choose what region of overlaps we want. # New chunks [start, stop] # chunk_wls = [[5240, 5250], [5255, 5265], [5270, 5280]] chunk_wls = [[5265, 5275]] # Measure this as S/N per resolution element. That means that there is a sqrt(2.5) effect. # let alpha be the percentage of the primary as the total flux. ratio = 0.2 alpha = (1 / (ratio + 1)) print("Ratio: {}, alpha: {}".format(ratio, alpha)) # alpha = 0.90 # Assume a S/N = 40, so N = 1.0 / 40 S_N = 60 # per resolution element noise_amp = 1.0 / (S_N/np.sqrt(2.5)) # per pixel # Truncate down to a smaller region to ensure overlap between all orders. for (wl0, wl1) in chunk_wls: print("Creating chunk {:.0f} to {:.0f}".format(wl0, wl1)) # Keep everything the same size. These are how many pixels we plan to keep in common between # epochs ind = (wls_f[0] > wl0) & (wls_f[0] < wl1) n_pix_common = np.sum(ind) print("n_pix_common = {}".format(n_pix_common)) # Now choose a narrower, common wl grid, which will just be f. # Now we should have a giant array of wavelengths that all share the same flux values, but shifted wls_comb = np.zeros((n_epochs, n_pix_common)) fls_f = np.empty((n_epochs, n_pix_common)) fls_g = np.empty((n_epochs, n_pix_common)) fls_comb = np.empty((n_epochs, n_pix_common)) fls_noise = np.zeros((n_epochs, n_pix_common)) sigma_comb = noise_amp * np.ones((n_epochs, n_pix_common)) for i in range(n_epochs): # Select a subset of wl_f that has the appropriate number of pixels ind_0 = np.searchsorted(wls_f[i], wl0) print("Inserting at index {}, wavelength {:.2f}".format(ind_0, wls_f[i, ind_0])) wl_common = wls_f[i, ind_0:(ind_0 + n_pix_common)] # Interpolate the master spectrum onto this grid interp = interp1d(wls_f[i], fl_f) fl_f_common = interp(wl_common) interp = interp1d(wls_g[i], fl_g) fl_g_common = interp(wl_common) fl_common = alpha * fl_f_common + (1 - alpha) * fl_g_common # Add noise to it fl_common_noise = fl_common + np.random.normal(scale=noise_amp, size=n_pix_common) # Store into array wls_comb[i] = wl_common fls_f[i] = fl_f_common fls_g[i] = fl_g_common fls_comb[i] = fl_common fls_noise[i] = fl_common_noise fig, ax = plt.subplots(nrows=4, sharex=True) ax[0].plot(wl_common, alpha * fl_f_common, "b") ax[0].set_ylabel(r"$f$") ax[1].plot(wl_common, (1 - alpha) * fl_g_common, "g") ax[1].set_ylabel(r"$g$") ax[2].plot(wl_common, fl_common, "k") ax[2].set_ylabel(r"$f + g$") ax[3].plot(wl_common, fl_common_noise, "k") ax[3].set_ylabel(r"$f + g +$ noise") ax[-1].set_xlabel(r"$\lambda\;[\AA]$") fig.savefig("SB2/epoch_{}.png".format(i), dpi=300) # Save the created spectra into a chunk date_comb = obs_dates[:,np.newaxis] * np.ones_like(wls_comb) chunkSpec = Chunk(wls_comb, fls_noise, sigma_comb, date_comb) wl0 = np.min(wls_comb) wl1 = np.max(wls_comb) chunkSpec.save(0, wl0, wl1, prefix="SB2/") # 2D arrays before we have summed them or added noise. print("STDEV primary", np.std(alpha * fls_f)) print("STDEV secondary", np.std((1 - alpha) * fls_g)) np.save("SB2/fls_f.npy", alpha * fls_f) np.save("SB2/fls_g.npy", (1 - alpha) * fls_g) np.save("SB2/fls_comb.npy", fls_comb)
[ "numpy.sqrt", "scipy.interpolate.interp1d", "numpy.array", "psoap.orbit.SB2", "numpy.save", "numpy.searchsorted", "numpy.max", "numpy.linspace", "numpy.empty", "numpy.min", "numpy.random.normal", "numpy.ones", "psoap.data.Chunk", "numpy.std", "numpy.ones_like", "psoap.data.redshift", "numpy.sum", "numpy.zeros", "numpy.load", "matplotlib.pyplot.subplots" ]
[((577, 643), 'numpy.array', 'np.array', (['[2.1, 4.9, 8.0, 9.9, 12.2, 16.0, 16.9, 19.1, 22.3, 26.1]'], {}), '([2.1, 4.9, 8.0, 9.9, 12.2, 16.0, 16.9, 19.1, 22.3, 26.1])\n', (585, 643), True, 'import numpy as np\n'), ((700, 750), 'psoap.orbit.SB2', 'orbit.SB2', (['q', 'K', 'e', 'omega', 'P', 'T0', 'gamma', 'obs_dates'], {}), '(q, K, e, omega, P, T0, gamma, obs_dates)\n', (709, 750), False, 'from psoap import orbit\n'), ((808, 835), 'numpy.linspace', 'np.linspace', (['(0)', '(30)'], {'num': '(200)'}), '(0, 30, num=200)\n', (819, 835), True, 'import numpy as np\n'), ((925, 970), 'numpy.save', 'np.save', (['"""SB2/vAs_relative.npy"""', 'vAs_relative'], {}), "('SB2/vAs_relative.npy', vAs_relative)\n", (932, 970), True, 'import numpy as np\n'), ((1000, 1045), 'numpy.save', 'np.save', (['"""SB2/vBs_relative.npy"""', 'vBs_relative'], {}), "('SB2/vBs_relative.npy', vBs_relative)\n", (1007, 1045), True, 'import numpy as np\n'), ((1057, 1094), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(3)', 'figsize': '(6, 6)'}), '(nrows=3, figsize=(6, 6))\n', (1069, 1094), True, 'import matplotlib.pyplot as plt\n'), ((1760, 1788), 'numpy.load', 'np.load', (['"""primary_wl_fl.npy"""'], {}), "('primary_wl_fl.npy')\n", (1767, 1788), True, 'import numpy as np\n'), ((1849, 1879), 'numpy.load', 'np.load', (['"""secondary_wl_fl.npy"""'], {}), "('secondary_wl_fl.npy')\n", (1856, 1879), True, 'import numpy as np\n'), ((2290, 2317), 'numpy.empty', 'np.empty', (['(n_epochs, n_pix)'], {}), '((n_epochs, n_pix))\n', (2298, 2317), True, 'import numpy as np\n'), ((2326, 2353), 'numpy.empty', 'np.empty', (['(n_epochs, n_pix)'], {}), '((n_epochs, n_pix))\n', (2334, 2353), True, 'import numpy as np\n'), ((2619, 2660), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'n_epochs', 'sharex': '(True)'}), '(nrows=n_epochs, sharex=True)\n', (2631, 2660), True, 'import matplotlib.pyplot as plt\n'), ((2396, 2416), 'psoap.data.redshift', 'redshift', (['wl', 'vAs[i]'], {}), '(wl, vAs[i])\n', (2404, 2416), False, 'from psoap.data import lkca14, redshift, Chunk\n'), ((2432, 2452), 'psoap.data.redshift', 'redshift', (['wl', 'vBs[i]'], {}), '(wl, vBs[i])\n', (2440, 2452), False, 'from psoap.data import lkca14, redshift, Chunk\n'), ((3828, 3839), 'numpy.sum', 'np.sum', (['ind'], {}), '(ind)\n', (3834, 3839), True, 'import numpy as np\n'), ((4078, 4112), 'numpy.zeros', 'np.zeros', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4086, 4112), True, 'import numpy as np\n'), ((4125, 4159), 'numpy.empty', 'np.empty', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4133, 4159), True, 'import numpy as np\n'), ((4172, 4206), 'numpy.empty', 'np.empty', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4180, 4206), True, 'import numpy as np\n'), ((4222, 4256), 'numpy.empty', 'np.empty', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4230, 4256), True, 'import numpy as np\n'), ((4273, 4307), 'numpy.zeros', 'np.zeros', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4281, 4307), True, 'import numpy as np\n'), ((5930, 5979), 'psoap.data.Chunk', 'Chunk', (['wls_comb', 'fls_noise', 'sigma_comb', 'date_comb'], {}), '(wls_comb, fls_noise, sigma_comb, date_comb)\n', (5935, 5979), False, 'from psoap.data import lkca14, redshift, Chunk\n'), ((5990, 6006), 'numpy.min', 'np.min', (['wls_comb'], {}), '(wls_comb)\n', (5996, 6006), True, 'import numpy as np\n'), ((6017, 6033), 'numpy.max', 'np.max', (['wls_comb'], {}), '(wls_comb)\n', (6023, 6033), True, 'import numpy as np\n'), ((6255, 6294), 'numpy.save', 'np.save', (['"""SB2/fls_f.npy"""', '(alpha * fls_f)'], {}), "('SB2/fls_f.npy', alpha * fls_f)\n", (6262, 6294), True, 'import numpy as np\n'), ((6299, 6344), 'numpy.save', 'np.save', (['"""SB2/fls_g.npy"""', '((1 - alpha) * fls_g)'], {}), "('SB2/fls_g.npy', (1 - alpha) * fls_g)\n", (6306, 6344), True, 'import numpy as np\n'), ((6349, 6386), 'numpy.save', 'np.save', (['"""SB2/fls_comb.npy"""', 'fls_comb'], {}), "('SB2/fls_comb.npy', fls_comb)\n", (6356, 6386), True, 'import numpy as np\n'), ((3460, 3472), 'numpy.sqrt', 'np.sqrt', (['(2.5)'], {}), '(2.5)\n', (3467, 3472), True, 'import numpy as np\n'), ((4338, 4371), 'numpy.ones', 'np.ones', (['(n_epochs, n_pix_common)'], {}), '((n_epochs, n_pix_common))\n', (4345, 4371), True, 'import numpy as np\n'), ((4496, 4526), 'numpy.searchsorted', 'np.searchsorted', (['wls_f[i]', 'wl0'], {}), '(wls_f[i], wl0)\n', (4511, 4526), True, 'import numpy as np\n'), ((4751, 4775), 'scipy.interpolate.interp1d', 'interp1d', (['wls_f[i]', 'fl_f'], {}), '(wls_f[i], fl_f)\n', (4759, 4775), False, 'from scipy.interpolate import interp1d\n'), ((4834, 4858), 'scipy.interpolate.interp1d', 'interp1d', (['wls_g[i]', 'fl_g'], {}), '(wls_g[i], fl_g)\n', (4842, 4858), False, 'from scipy.interpolate import interp1d\n'), ((5299, 5333), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(4)', 'sharex': '(True)'}), '(nrows=4, sharex=True)\n', (5311, 5333), True, 'import matplotlib.pyplot as plt\n'), ((5891, 5913), 'numpy.ones_like', 'np.ones_like', (['wls_comb'], {}), '(wls_comb)\n', (5903, 5913), True, 'import numpy as np\n'), ((6169, 6190), 'numpy.std', 'np.std', (['(alpha * fls_f)'], {}), '(alpha * fls_f)\n', (6175, 6190), True, 'import numpy as np\n'), ((6221, 6248), 'numpy.std', 'np.std', (['((1 - alpha) * fls_g)'], {}), '((1 - alpha) * fls_g)\n', (6227, 6248), True, 'import numpy as np\n'), ((5033, 5085), 'numpy.random.normal', 'np.random.normal', ([], {'scale': 'noise_amp', 'size': 'n_pix_common'}), '(scale=noise_amp, size=n_pix_common)\n', (5049, 5085), True, 'import numpy as np\n')]
import cv2 import sys import json from image_encoder.image_encoder import decode import numpy import requests # Get user supplied values def get_image(fpath): with open(fpath) as f: record = [json.loads(line) for line in f] img = decode(record[0]["image"]) return img def n_faces(fpath): cascPath = "haarcascade_frontalface_default.xml" # Create the haar cascade faceCascade = cv2.CascadeClassifier(cascPath) # Read the image img = get_image(fpath) image = cv2.cvtColor(numpy.array(img), cv2.COLOR_RGB2BGR) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect faces in the image faces = faceCascade.detectMultiScale( gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE ) output = {} i = 1 for (x, y, w, h) in faces: k = "face"+str(i) output[k] = [int(x),int(y), int(x+w), int(y+h)] i+=1 print(output) to_send = {"fpath":fpath, "result":{"faces":output}} requests.post('http://imagedb:5000/append',json = to_send) return to_send if __name__ == "__main__": from pika_listener import QueueListener Q = QueueListener(n_faces, 'imageq_n_faces') Q.run() # powered by bee
[ "image_encoder.image_encoder.decode", "json.loads", "requests.post", "numpy.array", "cv2.cvtColor", "cv2.CascadeClassifier", "pika_listener.QueueListener" ]
[((247, 273), 'image_encoder.image_encoder.decode', 'decode', (["record[0]['image']"], {}), "(record[0]['image'])\n", (253, 273), False, 'from image_encoder.image_encoder import decode\n'), ((413, 444), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['cascPath'], {}), '(cascPath)\n', (434, 444), False, 'import cv2\n'), ((568, 607), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (580, 607), False, 'import cv2\n'), ((1052, 1109), 'requests.post', 'requests.post', (['"""http://imagedb:5000/append"""'], {'json': 'to_send'}), "('http://imagedb:5000/append', json=to_send)\n", (1065, 1109), False, 'import requests\n'), ((1213, 1253), 'pika_listener.QueueListener', 'QueueListener', (['n_faces', '"""imageq_n_faces"""'], {}), "(n_faces, 'imageq_n_faces')\n", (1226, 1253), False, 'from pika_listener import QueueListener\n'), ((520, 536), 'numpy.array', 'numpy.array', (['img'], {}), '(img)\n', (531, 536), False, 'import numpy\n'), ((205, 221), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (215, 221), False, 'import json\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import optparse import os import re import sys import vtk from multiprocessing import Process import parse_imx RADIUS = 3 # For Open and Gauss SCALE = 50.0 # For Rasterization class RepairMeshParser(optparse.OptionParser): def __init__(self): optparse.OptionParser.__init__(self) self.add_option("-a", "--areas", dest="areas_file", help="The output areas file in csv", metavar="FILE") self.add_option("-i", "--input-vrml", dest="input_vrml", help="The mesh to de repaired in vrml file format", metavar="FILE") self.add_option("-d", "--auto-dir", dest="vrmls_dir", help="A directory with a bunch of vrmls", metavar="FILE") self.add_option("-o", "--output-dir", dest="output_dir", help="The output dir ussed when provides a dir as input", metavar="FILE") self.add_option("-s", "--scale-factor", dest="scale", default=50.0, help="Tehe scale factor used in the rasterization") self.add_option("-c", "--combine", action="store_true", dest="combine", help="Combine all polydatas in one object") def write_image(image, filename): """Write vtk image data to file.""" aWriter = vtk.vtkMetaImageWriter() aWriter.SetInputData(image) aWriter.SetFileName(filename) aWriter.SetFileDimensionality(3) aWriter.SetCompression(False) aWriter.Write() def voxelizer(polydata, scale=SCALE, radius=RADIUS): """ volume voxelization not anti-aliased """ # Get selection boundaries. (minX, maxX, minY, maxY, minZ, maxZ) = [int(x * scale) for x in polydata.GetBounds()] # convert tuple of floats to ints # print(" Selection bounds are %s" % str((minX, maxX, minY, maxY, minZ, maxZ))) # dimensions of the resulting image # print(" Dimensions: %s" % str((maxX - minX, maxY - minY, maxZ - minZ))) padd = radius + 6 (minX, maxX, minY, maxY, minZ, maxZ) = ( minX - padd, maxX + padd, minY - padd, maxY + padd, minZ - padd, maxZ + padd) ps1 = 1.0 / float(scale) # pixel size for the stencil, make sure it's a float division! ps2 = 1.0 # pixel size for the image ## Convert a surface mesh into an image stencil that can be used to mask an image with vtkImageStencil. polyToStencilFilter = vtk.vtkPolyDataToImageStencil() polyToStencilFilter.SetInputData(polydata) polyToStencilFilter.SetOutputWholeExtent(minX, maxX, minY, maxY, minZ, maxZ) polyToStencilFilter.SetOutputSpacing(ps1, ps1, ps1) polyToStencilFilter.SetOutputOrigin(0.0, 0.0, 0.0) polyToStencilFilter.Update() # Create an empty (3D) image of appropriate size. image = vtk.vtkImageData() image.SetSpacing(ps2, ps2, ps2) image.SetOrigin(0.0, 0.0, 0.0) image.SetExtent(minX, maxX, minY, maxY, minZ, maxZ) image.AllocateScalars(vtk.VTK_UNSIGNED_CHAR, 1) # Mask the empty image with the image stencil. # First All the background to 0 # Needed otherwise introduces noise stencil = vtk.vtkImageStencil() stencil.SetInputData(image) stencil.SetStencilData(polyToStencilFilter.GetOutput()) stencil.ReverseStencilOff() stencil.SetBackgroundValue(0) stencil.Update() # Foreground to 255 stencil2 = vtk.vtkImageStencil() stencil2.SetInputData(stencil.GetOutput()) stencil2.SetStencilData(polyToStencilFilter.GetOutput()) stencil2.ReverseStencilOn() stencil2.SetBackgroundValue(255) stencil2.Update() finishImage = stencil2.GetOutput() print(finishImage.GetNumberOfCells()) return stencil2.GetOutput() def axisAligment(actor): polyData = actor.GetMapper().GetInput() centerCalculer = vtk.vtkCenterOfMass() centerCalculer.SetInputData(polyData) centerCalculer.SetUseScalarsAsWeights(False) centerCalculer.Update() center = centerCalculer.GetCenter() print(center) centerTransform = vtk.vtkTransform() centerTransform.Translate(-center[0], -center[1], -center[2]) transformFilter = vtk.vtkTransformFilter() transformFilter.SetInputData(polyData) transformFilter.SetTransform(centerTransform) transformFilter.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(transformFilter.GetOutput()) mapper.Update() actor.SetMapper(mapper) polyData = actor.GetMapper().GetInput() centerCalculer = vtk.vtkCenterOfMass() centerCalculer.SetInputData(polyData) centerCalculer.SetUseScalarsAsWeights(False) centerCalculer.Update() centerAux = centerCalculer.GetCenter() print(centerAux) pointsMatrixAux = [] for i in range(0, polyData.GetNumberOfPoints()): point = polyData.GetPoint(i) pointsMatrixAux.append(point) pointMatrix = np.matrix(pointsMatrixAux) pointMatrixT = pointMatrix.transpose() covarianzeMatrix = pointMatrixT * pointMatrix u, s, vh = np.linalg.svd(covarianzeMatrix, full_matrices=True) rotationMatrix = vtk.vtkMatrix4x4() for i in range(3): for j in range(3): rotationMatrix.SetElement(i, j, u[i, j]) rotationMatrix.SetElement(i, 3, 0) for i in range(3): rotationMatrix.SetElement(3, i, 0) rotationMatrix.SetElement(3, 3, 1) rotationTransform = vtk.vtkTransform() rotationTransform.SetMatrix(rotationMatrix) transformFilter = vtk.vtkTransformFilter() transformFilter.SetInputData(actor.GetMapper().GetInput()) transformFilter.SetTransform(rotationTransform) transformFilter.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(transformFilter.GetOutput()) actor.SetMapper(mapper) return center, rotationTransform def open_image(image, radius): openFilter = vtk.vtkImageDilateErode3D() openFilter.SetDilateValue(255) openFilter.SetErodeValue(0) openFilter.SetKernelSize(radius, radius, radius) openFilter.SetInputData(image) openFilter.Update() return openFilter.GetOutput() def dump_voxels(actor, filename): poly = actor.GetMapper().GetInput() pre_image = voxelizer(poly, 50) image = open_image(pre_image, RADIUS) write_image(image, filename) def open_actor(actor, actor_index=0, scale=SCALE, radius=RADIUS): poly = actor.GetMapper().GetInput() pre_image = voxelizer(poly, scale) opened_image = open_image(pre_image, radius) gauss = vtk.vtkImageGaussianSmooth() gauss.SetDimensionality(3) gauss.SetStandardDeviation(radius, radius, radius) gauss.SetInputData(opened_image) gauss.Update() image_to_contour = gauss.GetOutput() contour = vtk.vtkMarchingCubes() contour.SetInputData(image_to_contour) contour.SetValue(0, 127.5) contour.ComputeScalarsOff() contour.Update() repared_poly = contour.GetOutput() if repared_poly.GetNumberOfCells() == 0: print("ERROR: number_of_cells = 0", end=' ') # write_image(image_to_contour, "/tmp/%d.mhd"%actor_index) raise ValueError("ERROR: number_of_cells = 0") # (minX, maxX, minY, maxY, minZ, maxZ) = [int(x) for x in repared_poly.GetBounds()] #convert tuple of floats to ints # print " Repared bounds are %s"%str((minX, maxX, minY, maxY, minZ, maxZ)) #dimensions of the resulting image # print " Dimensions: %s"%str((maxX - minX, maxY - minY, maxZ - minZ)) actor.GetMapper().SetInputData(repared_poly) def compute_area(actor): polydata = actor.GetMapper().GetInput() number_of_cells = polydata.GetNumberOfCells() area = 0 for i in range(number_of_cells): area += vtk.vtkMeshQuality.TriangleArea(polydata.GetCell(i)) return area def combine_actors(actors_list): appender = vtk.vtkAppendPolyData() for actor in actors_list: poly = actor.GetMapper().GetInput() appender.AddInput(poly) appender.Update() combined_poly = appender.GetOutput() combined_actor = vtk.vtkActor() combined_actor.SetMapper(vtk.vtkPolyDataMapper()) combined_actor.GetMapper().SetInputData(combined_poly) return combined_actor def show_actor(actor, ren, rw): ren.RemoveAllViewProps() ren.AddActor(actor) ren.ResetCamera() rw.Render() def compute_all_areas(actors_list, scale=SCALE): areas = [] for i, actor in enumerate(actors_list): # scale = SCALE sys.stdout.write("%d " % i) area_pre = compute_area(actor) try: open_actor(actor, i, scale) except ValueError as e: # [KNOWN BUG] The sizes are corrected, but not the position scale = scale * 2 open_actor(actor, i, scale) area_post = compute_area(actor) / scale ** 2 areas.append((i, area_pre, area_post, area_post / area_pre)) sys.stdout.flush() print("\n") return areas def compute_centroids(actors_list): return [a.GetCenter() for a in actors_list] def csv_areas(actors_list, filename, scale=SCALE, names=None): centroids = compute_centroids(actors_list) # Centroids of original actors print( "-------- Repairing original mesh and Calculating areas (This process might take a long time, please wait) -----------") areas = compute_all_areas(actors_list, scale) print("-------- Saving CSV file -----------") if names is not None: csv = "Object,Pre_Area,Post_Area,Post/Pre,X,Y,Z,Name\n" for i in range(len(areas)): data = [] data.extend(areas[i]) data.extend(centroids[i]) data.append(names[i]) csv += "%d,%f,%f,%f,%f,%f,%f,%s\n" % tuple(data) else: csv = "Object,Pre_Area,Post_Area,Post/Pre,X,Y,Z\n" for i in range(len(areas)): data = [] data.extend(areas[i]) data.extend(centroids[i]) csv += "%d,%f,%f,%f,%f,%f,%f\n" % tuple(data) with open(filename, 'w') as f: f.write(csv) def underScale(actor, scale): transform = vtk.vtkTransform() relation = float(1) / float(scale) transform.Scale(relation, relation, relation) transformFilter = vtk.vtkTransformFilter() transformFilter.SetInputData(actor.GetMapper().GetInput()) transformFilter.SetTransform(transform) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(transformFilter.GetOutputPort()) mapper.Update() actor.SetMapper(mapper) return actor def reduceMesh(actor, reduction): decimate = vtk.vtkDecimatePro() decimate.SetInputData(actor.GetMapper().GetInput()) decimate.SetTargetReduction(reduction / 100) decimate.Update() decimateMapper = vtk.vtkPolyDataMapper() decimateMapper.SetInputConnection(decimate.GetOutputPort()) decimateMapper.Update() actor.SetMapper(decimateMapper) return actor # Only for future versions of VTK, at the moment is a beta feature def save_obj(rw, dir, name): exporter = vtk.vtkOBJExporter() if not os.path.isdir(dir): os.makedirs(dir) path = "%s/%s" % (dir, name) exporter.SetFilePrefix(path) exporter.SetRenderWindow(rw) exporter.Write() def save_stl(polydata, dir, name): exporter = vtk.vtkSTLWriter() if not os.path.isdir(dir): os.makedirs(dir) path = '%s/%s.stl' % (dir, name) exporter.SetFileName(path) exporter.SetInputData(polydata) exporter.Write() def save_vrml(name, dir, rw): if not os.path.isdir(dir): os.makedirs(dir) path = '%s/%s.vrml' % (dir, name) rw.Render() exporter = vtk.vtkVRMLExporter() exporter.SetFileName(path) exporter.SetRenderWindow(rw) rw.Render() exporter.Write() def initActorForExport(actor, rw, scale, reduction): ren = rw.GetRenderers().GetFirstRenderer() actor = underScale(actor, scale) actor = reduceMesh(actor, reduction) ren.AddActor(actor) def toOriginalPos(actor, center, rotationTransform): rotMat = vtk.vtkMatrix4x4() rotationTransform.GetTranspose(rotMat) rotTrans = vtk.vtkTransform() rotTrans.SetMatrix(rotMat) transformFilter = vtk.vtkTransformFilter() transformFilter.SetInputData(actor.GetMapper().GetInput()) transformFilter.SetTransform(rotTrans) transformFilter.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(transformFilter.GetOutputPort()) mapper.Update() actor.SetMapper(mapper) centerTransform = vtk.vtkTransform() centerTransform.Translate(center[0], center[1], center[2]) transformFilter = vtk.vtkTransformFilter() transformFilter.SetInputData(actor.GetMapper().GetInput()) transformFilter.SetTransform(centerTransform) transformFilter.Update() mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(transformFilter.GetOutputPort()) mapper.Update() actor.SetMapper(mapper) centerCalculer = vtk.vtkCenterOfMass() centerCalculer.SetInputData(actor.GetMapper().GetInput()) centerCalculer.SetUseScalarsAsWeights(False) centerCalculer.Update() center = centerCalculer.GetCenter() print(center) def main(input_filename, areas_filename, scale, is_imx, exportPath=None, exportType=False, reduction=70, radius=RADIUS, combine=False): # TODO: The following doesn't hide the RenderWindow :/ # factGraphics = vtk.vtkGraphicsFactory() # factGraphics.SetUseMesaClasses(1) # factImage = vtk.vtkImagingFactory() # factImage.SetUseMesaClasses(1) if exportPath is None: pos = areas_filename.rfind("/") filename = os.path.splitext(input_filename)[0] posFilename = filename.rfind("/") exportPath = areas_filename[:pos] + "/Meshes" + filename[posFilename:] else: filename = os.path.splitext(input_filename)[0] pos = filename.rfind("/") if pos == -1: exportPath += "/" exportPath += filename[pos:] print(exportPath) if is_imx: vrml_filename = os.path.splitext(input_filename)[0] + ".vrml" names_filename = os.path.splitext(input_filename)[0] + ".names" args = ["{}".format(input_filename), "{}".format(vrml_filename), "{}".format(names_filename)] p = Process(target=parse_imx.main, args=[args]) p.start() p.join() names_list = [] with open(names_filename) as f: for line in f: line = re.sub(r'\n', '', line) names_list.append(line) else: vrml_filename = input_filename names_list = None rw = vtk.vtkRenderWindow() rwi = vtk.vtkRenderWindowInteractor() rwi.SetRenderWindow(rw) # rw.OffScreenRenderingOn() importer = vtk.vtkVRMLImporter() importer.SetFileName(vrml_filename) # importer = vtk.vtk3DSImporter() # importer.SetFileName("cube.3ds") importer.Read() importer.SetRenderWindow(rw) importer.Update() rw.Render() ren = importer.GetRenderer() actors = ren.GetActors() actors.InitTraversal() rwExport = vtk.vtkRenderWindow() # rwExport.OffScreenRenderingOn() renExport = vtk.vtkRenderer() rwExport.AddRenderer(renExport) rwExport.Render() if is_imx: csv = "Object,Pre_Area,Post_Area,Post/Pre,X,Y,Z,Name\n" else: csv = "Object,Pre_Area,Post_Area,Post/Pre,X,Y,Z\n" print( "-------- Repairing original mesh and Calculating areas (This process might take a long time, please wait) -----------") for i in range(ren.GetNumberOfPropsRendered()): sys.stdout.write("%d _" % i) actor = actors.GetNextActor() polydata = actor.GetMapper().GetInput() polydataCopy = vtk.vtkPolyData() polydataCopy.DeepCopy(polydata) area_pre = compute_area(actor) centroid = actor.GetCenter() rescaled = False try: rw.Render() (center, rotation) = axisAligment(actor) rw.Render() open_actor(actor, i, scale, radius) except ValueError as e: # [KNOWN BUG] The sizes are corrected, but not the position scale = scale * 2 open_actor(actor, i, scale, radius) rescaled = True area_post = compute_area(actor) / scale ** 2 if is_imx: data = [] data.extend([i, area_pre, area_post, area_post / area_pre]) data.extend(centroid) data.append(names_list[i]) csv += "%d,%f,%f,%f,%f,%f,%f,%s\n" % tuple(data) else: data = [] data.extend([i, area_pre, area_post, area_post / area_pre]) data.extend(centroid) csv += "%d,%f,%f,%f,%f,%f,%f\n" % tuple(data) if exportType != "None": initActorForExport(actor, rwExport, scale, reduction) toOriginalPos(actor, center, rotation) if names_list is not None: name = names_list[i] else: name = i if exportType == "Stl": save_stl(actor.GetMapper().GetInput(), exportPath, str(name) + "_R") save_stl(polydataCopy, exportPath, str(name) + "_O") renExport.RemoveActor(actor) elif exportType == "Vrml": save_vrml(str(name) + "_R", exportPath, rwExport) renExport.RemoveActor(actor) actorOld = vtk.vtkActor() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(polydataCopy) actorOld.SetMapper(mapper) renExport.AddActor(actorOld) save_vrml(str(name) + "_O", exportPath, rwExport) renExport.RemoveActor(actorOld) elif exportType == "Obj": save_obj(rwExport, exportPath, str(name) + "_R") renExport.RemoveActor(actor) actorOld = vtk.vtkActor() mapper = vtk.vtkPolyDataMapper() mapper.SetInputData(polydataCopy) actorOld.SetMapper(mapper) renExport.AddActor(actorOld) save_obj(rwExport, exportPath, str(name) + "_O") renExport.RemoveActor(actorOld) ren.RemoveActor(actor) if rescaled: scale /= 2 with open(areas_filename, 'w') as f: f.write(csv) if is_imx: os.remove(vrml_filename) os.remove(names_filename) rw.Finalize() print("")
[ "vtk.vtkPolyDataToImageStencil", "multiprocessing.Process", "vtk.vtkOBJExporter", "vtk.vtkImageStencil", "vtk.vtkDecimatePro", "vtk.vtkVRMLExporter", "os.remove", "vtk.vtkVRMLImporter", "vtk.vtkImageDilateErode3D", "os.path.isdir", "vtk.vtkRenderer", "vtk.vtkMetaImageWriter", "sys.stdout.flush", "numpy.matrix", "optparse.OptionParser.__init__", "vtk.vtkAppendPolyData", "os.path.splitext", "vtk.vtkRenderWindowInteractor", "vtk.vtkRenderWindow", "vtk.vtkPolyDataMapper", "vtk.vtkTransform", "vtk.vtkActor", "vtk.vtkImageData", "numpy.linalg.svd", "re.sub", "vtk.vtkImageGaussianSmooth", "vtk.vtkMarchingCubes", "vtk.vtkMatrix4x4", "os.makedirs", "vtk.vtkPolyData", "vtk.vtkSTLWriter", "vtk.vtkCenterOfMass", "vtk.vtkTransformFilter", "sys.stdout.write" ]
[((1355, 1379), 'vtk.vtkMetaImageWriter', 'vtk.vtkMetaImageWriter', ([], {}), '()\n', (1377, 1379), False, 'import vtk\n'), ((2470, 2501), 'vtk.vtkPolyDataToImageStencil', 'vtk.vtkPolyDataToImageStencil', ([], {}), '()\n', (2499, 2501), False, 'import vtk\n'), ((2841, 2859), 'vtk.vtkImageData', 'vtk.vtkImageData', ([], {}), '()\n', (2857, 2859), False, 'import vtk\n'), ((3181, 3202), 'vtk.vtkImageStencil', 'vtk.vtkImageStencil', ([], {}), '()\n', (3200, 3202), False, 'import vtk\n'), ((3422, 3443), 'vtk.vtkImageStencil', 'vtk.vtkImageStencil', ([], {}), '()\n', (3441, 3443), False, 'import vtk\n'), ((3849, 3870), 'vtk.vtkCenterOfMass', 'vtk.vtkCenterOfMass', ([], {}), '()\n', (3868, 3870), False, 'import vtk\n'), ((4071, 4089), 'vtk.vtkTransform', 'vtk.vtkTransform', ([], {}), '()\n', (4087, 4089), False, 'import vtk\n'), ((4179, 4203), 'vtk.vtkTransformFilter', 'vtk.vtkTransformFilter', ([], {}), '()\n', (4201, 4203), False, 'import vtk\n'), ((4340, 4363), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (4361, 4363), False, 'import vtk\n'), ((4532, 4553), 'vtk.vtkCenterOfMass', 'vtk.vtkCenterOfMass', ([], {}), '()\n', (4551, 4553), False, 'import vtk\n'), ((4911, 4937), 'numpy.matrix', 'np.matrix', (['pointsMatrixAux'], {}), '(pointsMatrixAux)\n', (4920, 4937), True, 'import numpy as np\n'), ((5046, 5097), 'numpy.linalg.svd', 'np.linalg.svd', (['covarianzeMatrix'], {'full_matrices': '(True)'}), '(covarianzeMatrix, full_matrices=True)\n', (5059, 5097), True, 'import numpy as np\n'), ((5120, 5138), 'vtk.vtkMatrix4x4', 'vtk.vtkMatrix4x4', ([], {}), '()\n', (5136, 5138), False, 'import vtk\n'), ((5418, 5436), 'vtk.vtkTransform', 'vtk.vtkTransform', ([], {}), '()\n', (5434, 5436), False, 'import vtk\n'), ((5508, 5532), 'vtk.vtkTransformFilter', 'vtk.vtkTransformFilter', ([], {}), '()\n', (5530, 5532), False, 'import vtk\n'), ((5691, 5714), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (5712, 5714), False, 'import vtk\n'), ((5884, 5911), 'vtk.vtkImageDilateErode3D', 'vtk.vtkImageDilateErode3D', ([], {}), '()\n', (5909, 5911), False, 'import vtk\n'), ((6521, 6549), 'vtk.vtkImageGaussianSmooth', 'vtk.vtkImageGaussianSmooth', ([], {}), '()\n', (6547, 6549), False, 'import vtk\n'), ((6749, 6771), 'vtk.vtkMarchingCubes', 'vtk.vtkMarchingCubes', ([], {}), '()\n', (6769, 6771), False, 'import vtk\n'), ((7831, 7854), 'vtk.vtkAppendPolyData', 'vtk.vtkAppendPolyData', ([], {}), '()\n', (7852, 7854), False, 'import vtk\n'), ((8045, 8059), 'vtk.vtkActor', 'vtk.vtkActor', ([], {}), '()\n', (8057, 8059), False, 'import vtk\n'), ((10090, 10108), 'vtk.vtkTransform', 'vtk.vtkTransform', ([], {}), '()\n', (10106, 10108), False, 'import vtk\n'), ((10221, 10245), 'vtk.vtkTransformFilter', 'vtk.vtkTransformFilter', ([], {}), '()\n', (10243, 10245), False, 'import vtk\n'), ((10367, 10390), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (10388, 10390), False, 'import vtk\n'), ((10570, 10590), 'vtk.vtkDecimatePro', 'vtk.vtkDecimatePro', ([], {}), '()\n', (10588, 10590), False, 'import vtk\n'), ((10740, 10763), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (10761, 10763), False, 'import vtk\n'), ((11022, 11042), 'vtk.vtkOBJExporter', 'vtk.vtkOBJExporter', ([], {}), '()\n', (11040, 11042), False, 'import vtk\n'), ((11272, 11290), 'vtk.vtkSTLWriter', 'vtk.vtkSTLWriter', ([], {}), '()\n', (11288, 11290), False, 'import vtk\n'), ((11631, 11652), 'vtk.vtkVRMLExporter', 'vtk.vtkVRMLExporter', ([], {}), '()\n', (11650, 11652), False, 'import vtk\n'), ((12026, 12044), 'vtk.vtkMatrix4x4', 'vtk.vtkMatrix4x4', ([], {}), '()\n', (12042, 12044), False, 'import vtk\n'), ((12103, 12121), 'vtk.vtkTransform', 'vtk.vtkTransform', ([], {}), '()\n', (12119, 12121), False, 'import vtk\n'), ((12176, 12200), 'vtk.vtkTransformFilter', 'vtk.vtkTransformFilter', ([], {}), '()\n', (12198, 12200), False, 'import vtk\n'), ((12350, 12373), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (12371, 12373), False, 'import vtk\n'), ((12508, 12526), 'vtk.vtkTransform', 'vtk.vtkTransform', ([], {}), '()\n', (12524, 12526), False, 'import vtk\n'), ((12613, 12637), 'vtk.vtkTransformFilter', 'vtk.vtkTransformFilter', ([], {}), '()\n', (12635, 12637), False, 'import vtk\n'), ((12794, 12817), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (12815, 12817), False, 'import vtk\n'), ((12951, 12972), 'vtk.vtkCenterOfMass', 'vtk.vtkCenterOfMass', ([], {}), '()\n', (12970, 12972), False, 'import vtk\n'), ((14611, 14632), 'vtk.vtkRenderWindow', 'vtk.vtkRenderWindow', ([], {}), '()\n', (14630, 14632), False, 'import vtk\n'), ((14643, 14674), 'vtk.vtkRenderWindowInteractor', 'vtk.vtkRenderWindowInteractor', ([], {}), '()\n', (14672, 14674), False, 'import vtk\n'), ((14751, 14772), 'vtk.vtkVRMLImporter', 'vtk.vtkVRMLImporter', ([], {}), '()\n', (14770, 14772), False, 'import vtk\n'), ((15088, 15109), 'vtk.vtkRenderWindow', 'vtk.vtkRenderWindow', ([], {}), '()\n', (15107, 15109), False, 'import vtk\n'), ((15164, 15181), 'vtk.vtkRenderer', 'vtk.vtkRenderer', ([], {}), '()\n', (15179, 15181), False, 'import vtk\n'), ((326, 362), 'optparse.OptionParser.__init__', 'optparse.OptionParser.__init__', (['self'], {}), '(self)\n', (356, 362), False, 'import optparse\n'), ((8089, 8112), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (8110, 8112), False, 'import vtk\n'), ((8466, 8493), 'sys.stdout.write', 'sys.stdout.write', (["('%d ' % i)"], {}), "('%d ' % i)\n", (8482, 8493), False, 'import sys\n'), ((8891, 8909), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8907, 8909), False, 'import sys\n'), ((11054, 11072), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (11067, 11072), False, 'import os\n'), ((11082, 11098), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (11093, 11098), False, 'import os\n'), ((11302, 11320), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (11315, 11320), False, 'import os\n'), ((11330, 11346), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (11341, 11346), False, 'import os\n'), ((11516, 11534), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (11529, 11534), False, 'import os\n'), ((11544, 11560), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (11555, 11560), False, 'import os\n'), ((14268, 14311), 'multiprocessing.Process', 'Process', ([], {'target': 'parse_imx.main', 'args': '[args]'}), '(target=parse_imx.main, args=[args])\n', (14275, 14311), False, 'from multiprocessing import Process\n'), ((15591, 15619), 'sys.stdout.write', 'sys.stdout.write', (["('%d _' % i)"], {}), "('%d _' % i)\n", (15607, 15619), False, 'import sys\n'), ((15729, 15746), 'vtk.vtkPolyData', 'vtk.vtkPolyData', ([], {}), '()\n', (15744, 15746), False, 'import vtk\n'), ((18414, 18438), 'os.remove', 'os.remove', (['vrml_filename'], {}), '(vrml_filename)\n', (18423, 18438), False, 'import os\n'), ((18447, 18472), 'os.remove', 'os.remove', (['names_filename'], {}), '(names_filename)\n', (18456, 18472), False, 'import os\n'), ((13628, 13660), 'os.path.splitext', 'os.path.splitext', (['input_filename'], {}), '(input_filename)\n', (13644, 13660), False, 'import os\n'), ((13814, 13846), 'os.path.splitext', 'os.path.splitext', (['input_filename'], {}), '(input_filename)\n', (13830, 13846), False, 'import os\n'), ((14036, 14068), 'os.path.splitext', 'os.path.splitext', (['input_filename'], {}), '(input_filename)\n', (14052, 14068), False, 'import os\n'), ((14107, 14139), 'os.path.splitext', 'os.path.splitext', (['input_filename'], {}), '(input_filename)\n', (14123, 14139), False, 'import os\n'), ((14462, 14485), 're.sub', 're.sub', (['"""\\\\n"""', '""""""', 'line'], {}), "('\\\\n', '', line)\n", (14468, 14485), False, 'import re\n'), ((17446, 17460), 'vtk.vtkActor', 'vtk.vtkActor', ([], {}), '()\n', (17458, 17460), False, 'import vtk\n'), ((17486, 17509), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (17507, 17509), False, 'import vtk\n'), ((17937, 17951), 'vtk.vtkActor', 'vtk.vtkActor', ([], {}), '()\n', (17949, 17951), False, 'import vtk\n'), ((17977, 18000), 'vtk.vtkPolyDataMapper', 'vtk.vtkPolyDataMapper', ([], {}), '()\n', (17998, 18000), False, 'import vtk\n')]
#!/usr/bin/env python from holtztools import plots,html from astropy.io import fits,ascii import numpy as np import math import pdb import argparse import os import matplotlib.pyplot as plt def throughplot(instrument='apogee-s',outfile=None,inter=False) : ''' Routine to make zeropoint/throughput plots from apogeeSci summary files with information including FWHM, GDRMS, CART ''' # instrument specific if instrument == 'apogee-s' : gain=3. carts=[20,25] fiber_rad=0.65 telescope='lco25m' else : gain=1.9 carts=[0,10] fiber_rad=1. telescope='apo25m' # read summary data made by mkmonitor a=fits.open(instrument+'Sci.fits')[1].data gd = np.where(a['NREADS'] >= 47)[0] a=a[gd] # use weather information if we can clouds=np.zeros(len(a)).astype(int) nmiss=0 nhave=0 try : c=ascii.read(os.environ['APOGEEREDUCEPLAN_DIR']+'/data/'+telescope+'/clouds.txt') try: for i,p in enumerate(a['PLATE']) : j=np.where((c['plate'] == p) & (c['MJD'] == a['MJD'][i]) )[0] if len(j)>0 : if len(j)>1 : print('double cloud match',p,a['MJD'][i]) pdb.set_trace() clouds[i] = c['clouds_level'][j[0]] nhave+=1 else : nmiss+=1 print('no clouds match found for',a['MJD'][i],p) except : print('error!',i,p,j) pdb.set_trace() gd=np.where(clouds <= 1)[0] a=a[gd] except : print('cant open clouds file') # seeing correction factor sigma = a['FWHM']/2.354 sigma = a['SEEING']/2.354 ee = 1. - np.exp(-(fiber_rad**2)/(2*sigma**2)) corr = a['ZERONORM']-2.5*np.log10(ee) gd = np.where(np.isfinite(corr))[0] a=a[gd] ee=ee[gd] corr=corr[gd] # run number for LCO run = ((a['MJD']-57850)/29.+0.5).astype(int) # rough throughput calculation h=6.63e-27 c=3.e10 lam=1.6e-4 dlam=0.3 dt=10.6 area=math.pi*(125.**2-50.**2) fvega=11.38e-11 through=10**(0.4*a['ZERONORM'])*h*c/lam/dlam/dt*gain/area/fvega/ee # straight DHA dha=a['HA']-a['DESIGN_HA'][:,0] #dha=np.abs(dha) # "normalized" DHA j=np.where(a['HA']<a['DESIGN_HA'][:,0])[0] dha[j]/=(a['DESIGN_HA'][j,0]-a['DESIGN_HA'][j,1]) j=np.where(a['HA']>=a['DESIGN_HA'][:,0])[0] dha[j]/=(a['DESIGN_HA'][j,2]-a['DESIGN_HA'][j,0]) #plots with MJD files=[] out='monitor/'+instrument+'/'+instrument # point size by FWHM psize=a['FWHM']/1.*40 j=np.where(psize == 0.)[0] psize[j] = 10 # histograms by run fig,ax=plots.multi(2,3,figsize=(8,12)) file=out+'zero_hist.png' runs=list(set(run)) runs.append(999) for r in runs : gd = np.where(run == r)[0] if r == 999 : gd = np.where(run < 999)[0] if r >= 8 : lw=2 else : lw=1 print(r,len(gd)) try: n,b,p=plt.hist(a['GDRMS'][gd],histtype='step',bins=np.arange(0,1,0.05),label='{:3d}'.format(r),linewidth=lw,normed=False) if r == 999 : n/=2 ax[0,0].plot(b[0:-1]+(b[1]-b[0])/2.,n,linewidth=lw,label='{:2d}'.format(r)) ax[0,0].set_xlabel('GDRMS') except : pass try: n,b,p=plt.hist(a['ZERONORM'][gd],histtype='step',bins=np.arange(12,15.5,0.1),linewidth=lw,normed=False,label='{:2d}'.format(r)) if r == 999 : n/=2 ax[0,1].plot(b[0:-1]+(b[1]-b[0])/2.,n,linewidth=lw,label='{:2d}'.format(r)) ax[0,1].set_xlabel('ZERONORM') n,b,p=plt.hist(corr[gd],histtype='step',bins=np.arange(12,16,0.1),linewidth=lw,normed=False,label='{:3d}'.format(r)) if r == 999 : n/=2 ax[1,0].plot(b[0:-1]+(b[1]-b[0])/2.,n,linewidth=lw,label='{:3d}'.format(r)) ax[1,0].set_xlabel('ZERONORM (adjusted)') n,b,p=plt.hist(a['ZERORMS'][gd],histtype='step',bins=np.arange(0,1,0.05),linewidth=lw,normed=False,label='{:3d}'.format(r)) if r == 999 : n/=2 ax[1,1].plot(b[0:-1]+(b[1]-b[0])/2.,n,linewidth=lw,label='{:3d}'.format(r)) ax[1,1].set_xlabel('ZERORMS') n,b,p=plt.hist(through[gd],histtype='step',bins=np.arange(0,0.34,0.02),linewidth=lw,normed=False,label='{:3d}'.format(r)) if r == 999 : n/=2 ax[2,0].plot(b[0:-1]+(b[1]-b[0])/2.,n,linewidth=lw,label='{:3d}'.format(r)) ax[2,0].set_xlabel('THROUGHPUT (adjusted)') except : pass if instrument == 'apogee-s' : ax[0,0].legend(fontsize=6,loc=1,title='Run') ax[0,1].legend(fontsize=6,loc=2,title='Run') ax[1,0].legend(fontsize=6,loc=2,title='Run') ax[1,1].legend(fontsize=6,loc=1,title='Run') ax[2,1].remove() fig.tight_layout() fig.savefig(file) files.append([os.path.basename(file)]) ctype = [a['FWHM'],a['SEEING'],a['GDRMS'],dha,a['CART']] name = ['zero_fwhm','zero_seeing','zero_gdrms','zero_dha','zero_cart'] zr=[[0.5,2.],[0.5,2.],[0,0.8],[-2,2],carts] zt=['FWHM','SEEING','GDRMS','DHA','CART'] for j,c in enumerate(ctype) : fig,ax=plots.multi(1,4,hspace=0.001,sharex=True,figsize=(24,6)) file=out+name[j]+'.png' plots.plotc(ax[0],a['MJD'],a['ZERONORM'],c,yr=[12,15.5],zr=zr[j],size=psize,colorbar=True,xt='MJD',yt='ZERONORM',zt=zt[j]) plots.plotc(ax[1],a['MJD'],corr,c,yr=[12,15.5],zr=zr[j],size=psize,colorbar=True,xt='MJD',yt='ZERONORM (adjusted)',zt=zt[j]) plots.plotc(ax[2],a['MJD'],a['ZERORMS'],c,yr=[0,1],zr=zr[j],size=psize,colorbar=True,xt='MJD',yt='ZERORMS',zt=zt[j]) plots.plotc(ax[3],a['MJD'],through,c,yr=[0,0.3],zr=zr[j],size=psize,colorbar=True,xt='MJD',yt='throughput',zt=zt[j]) fig.savefig(file) files.append([os.path.basename(file)]) fig,ax=plots.multi(1,1) plots.plotc(ax,a['SEEING'],a['ZERONORM'],a['GDRMS'],xr=[0.,3.0],yr=[13,15.5],zr=[0.2,1.2],xt='Seeing',yt='ZERONORM',zt='GDRMS',colorbar=True,size=1) #plots.plotc(ax[1],a['SEEING'],corr,a['GDRMS'],xr=[0.,3.0],yr=[13,15.5],zr=[0.2,1.2],xt='Seeing',yt='seeing-corrected ZERONORM',zt='GDRMS',colorbar=True,size=1) file=out+'_seeing.png' fig.savefig(file) files.append([os.path.basename(file)]) out='monitor/'+instrument+'/'+instrument html.htmltab(files,file=out+'zero.html') if inter : pdb.set_trace() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Make throughput plots", usage="through --instrument apogee-s") parser.add_argument("-i", "--instrument", type=str, required=True, help="instrument to plot", choices=['apogee-s', 'apogee-n']) args = parser.parse_args() throughplot(instrument=args.instrument)
[ "numpy.log10", "argparse.ArgumentParser", "numpy.where", "holtztools.html.htmltab", "numpy.exp", "holtztools.plots.multi", "holtztools.plots.plotc", "numpy.isfinite", "os.path.basename", "pdb.set_trace", "astropy.io.fits.open", "astropy.io.ascii.read", "numpy.arange" ]
[((2788, 2822), 'holtztools.plots.multi', 'plots.multi', (['(2)', '(3)'], {'figsize': '(8, 12)'}), '(2, 3, figsize=(8, 12))\n', (2799, 2822), False, 'from holtztools import plots, html\n'), ((5967, 5984), 'holtztools.plots.multi', 'plots.multi', (['(1)', '(1)'], {}), '(1, 1)\n', (5978, 5984), False, 'from holtztools import plots, html\n'), ((5988, 6160), 'holtztools.plots.plotc', 'plots.plotc', (['ax', "a['SEEING']", "a['ZERONORM']", "a['GDRMS']"], {'xr': '[0.0, 3.0]', 'yr': '[13, 15.5]', 'zr': '[0.2, 1.2]', 'xt': '"""Seeing"""', 'yt': '"""ZERONORM"""', 'zt': '"""GDRMS"""', 'colorbar': '(True)', 'size': '(1)'}), "(ax, a['SEEING'], a['ZERONORM'], a['GDRMS'], xr=[0.0, 3.0], yr=[\n 13, 15.5], zr=[0.2, 1.2], xt='Seeing', yt='ZERONORM', zt='GDRMS',\n colorbar=True, size=1)\n", (5999, 6160), False, 'from holtztools import plots, html\n'), ((6444, 6487), 'holtztools.html.htmltab', 'html.htmltab', (['files'], {'file': "(out + 'zero.html')"}), "(files, file=out + 'zero.html')\n", (6456, 6487), False, 'from holtztools import plots, html\n'), ((6565, 6669), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Make throughput plots"""', 'usage': '"""through --instrument apogee-s"""'}), "(description='Make throughput plots', usage=\n 'through --instrument apogee-s')\n", (6588, 6669), False, 'import argparse\n'), ((744, 771), 'numpy.where', 'np.where', (["(a['NREADS'] >= 47)"], {}), "(a['NREADS'] >= 47)\n", (752, 771), True, 'import numpy as np\n'), ((912, 1001), 'astropy.io.ascii.read', 'ascii.read', (["(os.environ['APOGEEREDUCEPLAN_DIR'] + '/data/' + telescope + '/clouds.txt')"], {}), "(os.environ['APOGEEREDUCEPLAN_DIR'] + '/data/' + telescope +\n '/clouds.txt')\n", (922, 1001), False, 'from astropy.io import fits, ascii\n'), ((1798, 1840), 'numpy.exp', 'np.exp', (['(-fiber_rad ** 2 / (2 * sigma ** 2))'], {}), '(-fiber_rad ** 2 / (2 * sigma ** 2))\n', (1804, 1840), True, 'import numpy as np\n'), ((2374, 2414), 'numpy.where', 'np.where', (["(a['HA'] < a['DESIGN_HA'][:, 0])"], {}), "(a['HA'] < a['DESIGN_HA'][:, 0])\n", (2382, 2414), True, 'import numpy as np\n'), ((2475, 2516), 'numpy.where', 'np.where', (["(a['HA'] >= a['DESIGN_HA'][:, 0])"], {}), "(a['HA'] >= a['DESIGN_HA'][:, 0])\n", (2483, 2516), True, 'import numpy as np\n'), ((2709, 2731), 'numpy.where', 'np.where', (['(psize == 0.0)'], {}), '(psize == 0.0)\n', (2717, 2731), True, 'import numpy as np\n'), ((5293, 5354), 'holtztools.plots.multi', 'plots.multi', (['(1)', '(4)'], {'hspace': '(0.001)', 'sharex': '(True)', 'figsize': '(24, 6)'}), '(1, 4, hspace=0.001, sharex=True, figsize=(24, 6))\n', (5304, 5354), False, 'from holtztools import plots, html\n'), ((5386, 5523), 'holtztools.plots.plotc', 'plots.plotc', (['ax[0]', "a['MJD']", "a['ZERONORM']", 'c'], {'yr': '[12, 15.5]', 'zr': 'zr[j]', 'size': 'psize', 'colorbar': '(True)', 'xt': '"""MJD"""', 'yt': '"""ZERONORM"""', 'zt': 'zt[j]'}), "(ax[0], a['MJD'], a['ZERONORM'], c, yr=[12, 15.5], zr=zr[j],\n size=psize, colorbar=True, xt='MJD', yt='ZERONORM', zt=zt[j])\n", (5397, 5523), False, 'from holtztools import plots, html\n'), ((5515, 5654), 'holtztools.plots.plotc', 'plots.plotc', (['ax[1]', "a['MJD']", 'corr', 'c'], {'yr': '[12, 15.5]', 'zr': 'zr[j]', 'size': 'psize', 'colorbar': '(True)', 'xt': '"""MJD"""', 'yt': '"""ZERONORM (adjusted)"""', 'zt': 'zt[j]'}), "(ax[1], a['MJD'], corr, c, yr=[12, 15.5], zr=zr[j], size=psize,\n colorbar=True, xt='MJD', yt='ZERONORM (adjusted)', zt=zt[j])\n", (5526, 5654), False, 'from holtztools import plots, html\n'), ((5646, 5778), 'holtztools.plots.plotc', 'plots.plotc', (['ax[2]', "a['MJD']", "a['ZERORMS']", 'c'], {'yr': '[0, 1]', 'zr': 'zr[j]', 'size': 'psize', 'colorbar': '(True)', 'xt': '"""MJD"""', 'yt': '"""ZERORMS"""', 'zt': 'zt[j]'}), "(ax[2], a['MJD'], a['ZERORMS'], c, yr=[0, 1], zr=zr[j], size=\n psize, colorbar=True, xt='MJD', yt='ZERORMS', zt=zt[j])\n", (5657, 5778), False, 'from holtztools import plots, html\n'), ((5769, 5900), 'holtztools.plots.plotc', 'plots.plotc', (['ax[3]', "a['MJD']", 'through', 'c'], {'yr': '[0, 0.3]', 'zr': 'zr[j]', 'size': 'psize', 'colorbar': '(True)', 'xt': '"""MJD"""', 'yt': '"""throughput"""', 'zt': 'zt[j]'}), "(ax[3], a['MJD'], through, c, yr=[0, 0.3], zr=zr[j], size=psize,\n colorbar=True, xt='MJD', yt='throughput', zt=zt[j])\n", (5780, 5900), False, 'from holtztools import plots, html\n'), ((6508, 6523), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (6521, 6523), False, 'import pdb\n'), ((694, 728), 'astropy.io.fits.open', 'fits.open', (["(instrument + 'Sci.fits')"], {}), "(instrument + 'Sci.fits')\n", (703, 728), False, 'from astropy.io import fits, ascii\n'), ((1600, 1621), 'numpy.where', 'np.where', (['(clouds <= 1)'], {}), '(clouds <= 1)\n', (1608, 1621), True, 'import numpy as np\n'), ((1864, 1876), 'numpy.log10', 'np.log10', (['ee'], {}), '(ee)\n', (1872, 1876), True, 'import numpy as np\n'), ((1896, 1913), 'numpy.isfinite', 'np.isfinite', (['corr'], {}), '(corr)\n', (1907, 1913), True, 'import numpy as np\n'), ((2927, 2945), 'numpy.where', 'np.where', (['(run == r)'], {}), '(run == r)\n', (2935, 2945), True, 'import numpy as np\n'), ((4990, 5012), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (5006, 5012), False, 'import os\n'), ((6369, 6391), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (6385, 6391), False, 'import os\n'), ((1572, 1587), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (1585, 1587), False, 'import pdb\n'), ((2989, 3008), 'numpy.where', 'np.where', (['(run < 999)'], {}), '(run < 999)\n', (2997, 3008), True, 'import numpy as np\n'), ((5930, 5952), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (5946, 5952), False, 'import os\n'), ((1070, 1125), 'numpy.where', 'np.where', (["((c['plate'] == p) & (c['MJD'] == a['MJD'][i]))"], {}), "((c['plate'] == p) & (c['MJD'] == a['MJD'][i]))\n", (1078, 1125), True, 'import numpy as np\n'), ((3158, 3179), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.05)'], {}), '(0, 1, 0.05)\n', (3167, 3179), True, 'import numpy as np\n'), ((3489, 3513), 'numpy.arange', 'np.arange', (['(12)', '(15.5)', '(0.1)'], {}), '(12, 15.5, 0.1)\n', (3498, 3513), True, 'import numpy as np\n'), ((3782, 3804), 'numpy.arange', 'np.arange', (['(12)', '(16)', '(0.1)'], {}), '(12, 16, 0.1)\n', (3791, 3804), True, 'import numpy as np\n'), ((4092, 4113), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.05)'], {}), '(0, 1, 0.05)\n', (4101, 4113), True, 'import numpy as np\n'), ((4384, 4408), 'numpy.arange', 'np.arange', (['(0)', '(0.34)', '(0.02)'], {}), '(0, 0.34, 0.02)\n', (4393, 4408), True, 'import numpy as np\n'), ((1286, 1301), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (1299, 1301), False, 'import pdb\n')]
from datetime import date from models import gtfs, config, util, nextbus, routeconfig import argparse import shapely import partridge as ptg import numpy as np from pathlib import Path import requests import json import boto3 import gzip import hashlib import math import zipfile # Downloads and parses the GTFS specification # and saves the configuration for all routes to S3. # The S3 object contains data merged from GTFS and the Nextbus API (for agencies using Nextbus). # The frontend can then request this S3 URL directly without hitting the Python backend. # For each direction, the JSON object contains a coords array defining the shape of the route, # where the values are objects containing lat/lon properties: # # "coords":[ # {"lat":37.80707,"lon":-122.41727} # {"lat":37.80727,"lon":-122.41562}, # {"lat":37.80748,"lon":-122.41398}, # {"lat":37.80768,"lon":-122.41234}, # ... # ] # # For each direction, the JSON object also contains a stop_geometry object where the keys are stop IDs # and the values are objects with a distance property (cumulative distance in meters to that stop along the GTFS # shape), # and an after_index property (index into the coords array of the last coordinate before that stop). # # "stop_geometry":{ # "5184":{"distance":8,"after_index":0}, # "3092":{"distance":279,"after_index":1}, # "3095":{"distance":573,"after_index":3}, # "4502":{"distance":1045,"after_index":8}, # ... #} # # In order to match a Nextbus direction with a GTFS shape_id, this finds the GTFS shape_id for that route where # distance(first coordinate of shape, first stop location) + distance(last coordinate of shape, last stop location) # is a minimum. # # Currently the script just overwrites the one S3 path, but this process could be extended in the future to # store different paths for different dates, to allow fetching historical data for route configurations. # def match_nextbus_direction(nextbus_route_config, geometry): shape_start = geometry.coords[0] shape_end = geometry.coords[-1] nextbus_dir_infos = nextbus_route_config.get_direction_infos() terminal_dists = [] for nextbus_dir_info in nextbus_dir_infos: nextbus_dir_stop_ids = nextbus_dir_info.get_stop_ids() first_stop_info = nextbus_route_config.get_stop_info(nextbus_dir_stop_ids[0]) last_stop_info = nextbus_route_config.get_stop_info(nextbus_dir_stop_ids[-1]) # Determine distance between first nextbus stop and start of GTFS shape, # plus distance between last stop and end of GTFS shape, # for all Nextbus directions for this route. start_dist = util.haver_distance(first_stop_info.lat, first_stop_info.lon, shape_start[1], shape_start[0]) end_dist = util.haver_distance(last_stop_info.lat, last_stop_info.lon, shape_end[1], shape_end[0]) terminal_dist = start_dist + end_dist terminal_dists.append(terminal_dist) terminal_dist_order = np.argsort(terminal_dists) best_nextbus_dir_index = terminal_dist_order[0] # index of the "best" shape for this direction, with the minimum terminal_dist best_nextbus_dir_info = nextbus_dir_infos[best_nextbus_dir_index] best_terminal_dist = terminal_dists[best_nextbus_dir_index] return best_nextbus_dir_info, best_terminal_dist def get_stop_geometry(stop_xy, shape_lines_xy, shape_cumulative_dist, start_index): # Finds the first position of a particular stop along a shape (after the start_index'th line segment in shape_lines_xy), # using XY coordinates in meters. # The returned dict is used by the frontend to draw line segments along a route between two stops. num_shape_lines = len(shape_lines_xy) best_offset = 99999999 best_index = 0 shape_index = start_index while shape_index < num_shape_lines: shape_line_offset = shape_lines_xy[shape_index].distance(stop_xy) if shape_line_offset < best_offset: best_offset = shape_line_offset best_index = shape_index if best_offset < 50 and shape_line_offset > best_offset: break shape_index += 1 shape_point = shapely.geometry.Point(shape_lines_xy[best_index].coords[0]) distance_after_shape_point = stop_xy.distance(shape_point) distance_to_shape_point = shape_cumulative_dist[best_index] stop_dist = distance_to_shape_point + distance_after_shape_point if best_offset > 30: print(f' stop_dist = {int(stop_dist)} = ({int(distance_to_shape_point)} + {int(distance_after_shape_point)}), offset = {int(best_offset)}, after_index = {best_index} ') return { 'distance': int(stop_dist), # total distance in meters along the route shape to this stop 'after_index': best_index, # the index of the coordinate of the shape just before this stop 'offset': int(best_offset) # distance in meters between this stop and the closest line segment of shape } def get_unique_shapes(direction_trips_df, stop_times_df, stops_map, normalize_gtfs_stop_id): # Finds the unique shapes associated with a GTFS route/direction, merging shapes that contain common subsequences of stops. # These unique shapes may represent multiple branches of a route. # Returns a list of dicts with properties 'shape_id', 'count', and 'stop_ids', sorted by count in descending order. stop_times_trip_id_values = stop_times_df['trip_id'].values direction_shape_id_values = direction_trips_df['shape_id'].values unique_shapes_map = {} direction_shape_ids, direction_shape_id_counts = np.unique(direction_shape_id_values, return_counts=True) direction_shape_id_order = np.argsort(-1 * direction_shape_id_counts) direction_shape_ids = direction_shape_ids[direction_shape_id_order] direction_shape_id_counts = direction_shape_id_counts[direction_shape_id_order] for shape_id, shape_id_count in zip(direction_shape_ids, direction_shape_id_counts): shape_trip = direction_trips_df[direction_shape_id_values == shape_id].iloc[0] shape_trip_id = shape_trip.trip_id shape_trip_stop_times = stop_times_df[stop_times_trip_id_values == shape_trip_id].sort_values('stop_sequence') shape_trip_stop_ids = [ normalize_gtfs_stop_id(gtfs_stop_id) for gtfs_stop_id in shape_trip_stop_times['stop_id'].values ] unique_shape_key = hashlib.sha256(json.dumps(shape_trip_stop_ids).encode('utf-8')).hexdigest()[0:12] #print(f' shape {shape_id} ({shape_id_count})') if unique_shape_key not in unique_shapes_map: for other_shape_key, other_shape_info in unique_shapes_map.items(): #print(f" checking match with {shape_id} and {other_shape_info['shape_id']}") if is_subsequence(shape_trip_stop_ids, other_shape_info['stop_ids']): print(f" shape {shape_id} is subsequence of shape {other_shape_info['shape_id']}") unique_shape_key = other_shape_key break elif is_subsequence(other_shape_info['stop_ids'], shape_trip_stop_ids): print(f" shape {other_shape_info['shape_id']} is subsequence of shape {shape_id}") shape_id_count += other_shape_info['count'] del unique_shapes_map[other_shape_key] break if unique_shape_key not in unique_shapes_map: unique_shapes_map[unique_shape_key] = { 'count': 0, 'shape_id': shape_id, 'stop_ids': shape_trip_stop_ids } unique_shapes_map[unique_shape_key]['count'] += shape_id_count sorted_shapes = sorted(unique_shapes_map.values(), key=lambda shape: -1 * shape['count']) for shape_info in sorted_shapes: count = shape_info['count'] shape_id = shape_info['shape_id'] stop_ids = shape_info['stop_ids'] first_stop_id = stop_ids[0] last_stop_id = stop_ids[-1] first_stop = stops_map[first_stop_id] last_stop = stops_map[last_stop_id] print(f' shape_id: {shape_id} ({count}x) stops:{len(stop_ids)} from {first_stop_id} {first_stop.stop_name} to {last_stop_id} {last_stop.stop_name} {",".join(stop_ids)}') return sorted_shapes def download_gtfs_data(agency: config.Agency, gtfs_cache_dir): gtfs_url = agency.gtfs_url if gtfs_url is None: raise Exception(f'agency {agency.id} does not have gtfs_url in config') cache_dir = Path(gtfs_cache_dir) if not cache_dir.exists(): print(f'downloading gtfs data from {gtfs_url}') r = requests.get(gtfs_url) if r.status_code != 200: raise Exception(f"Error fetching {gtfs_url}: HTTP {r.status_code}: {r.text}") zip_path = f'{util.get_data_dir()}/gtfs-{agency.id}.zip' with open(zip_path, 'wb') as f: f.write(r.content) with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(gtfs_cache_dir) def is_subsequence(smaller, bigger): smaller_len = len(smaller) bigger_len = len(bigger) if smaller_len > bigger_len: return False try: start_pos = bigger.index(smaller[0]) except ValueError: return False end_pos = start_pos+smaller_len if end_pos > bigger_len: return False return smaller == bigger[start_pos:end_pos] def save_routes_for_agency(agency: config.Agency, save_to_s3=True): agency_id = agency.id gtfs_cache_dir = f'{util.get_data_dir()}/gtfs-{agency_id}' download_gtfs_data(agency, gtfs_cache_dir) feed = ptg.load_geo_feed(gtfs_cache_dir, {}) print(f"Loading {agency_id} routes...") routes_df = feed.routes if agency.gtfs_agency_id is not None: routes_df = routes_df[routes_df.agency_id == agency.gtfs_agency_id] routes_data = [] print(f"Loading {agency_id} trips...") trips_df = feed.trips trips_df['direction_id'] = trips_df['direction_id'].astype(str) print(f"Loading {agency_id} stop times...") stop_times_df = feed.stop_times print(f"Loading {agency_id} shapes...") shapes_df = feed.shapes print(f"Loading {agency_id} stops...") stops_df = feed.stops # gtfs_stop_ids_map allows looking up row from stops.txt via GTFS stop_id gtfs_stop_ids_map = {stop.stop_id: stop for stop in stops_df.itertuples()} stop_id_gtfs_field = agency.stop_id_gtfs_field # get OpenTransit stop ID for GTFS stop_id (may be the same) def normalize_gtfs_stop_id(gtfs_stop_id): if stop_id_gtfs_field != 'stop_id': return getattr(gtfs_stop_ids_map[gtfs_stop_id], stop_id_gtfs_field) else: return gtfs_stop_id # stops_map allows looking up row from stops.txt via OpenTransit stop ID if stop_id_gtfs_field != 'stop_id': stops_map = {getattr(stop, stop_id_gtfs_field): stop for stop in stops_df.itertuples()} else: stops_map = gtfs_stop_ids_map if agency.provider == 'nextbus': nextbus_route_order = [route.id for route in nextbus.get_route_list(agency.nextbus_id)] for route in routes_df.itertuples(): gtfs_route_id = route.route_id short_name = route.route_short_name long_name = route.route_long_name if isinstance(short_name, str) and isinstance(long_name, str): title = f'{short_name} - {long_name}' elif isinstance(short_name, str): title = short_name else: title = long_name type = int(route.route_type) if hasattr(route, 'route_type') else None url = route.route_url if hasattr(route, 'route_url') and isinstance(route.route_url, str) else None #color = route.route_color #text_color = route.route_text_color route_id = getattr(route, agency.route_id_gtfs_field) if agency.provider == 'nextbus': route_id = route_id.replace('-', '_') # hack to handle muni route IDs where e.g. GTFS has "T-OWL" but nextbus has "T_OWL" try: nextbus_route_config = nextbus.get_route_config(agency.nextbus_id, route_id) title = nextbus_route_config.title except Exception as ex: print(ex) continue try: sort_order = nextbus_route_order.index(route_id) except ValueError as ex: print(ex) sort_order = None else: sort_order = int(route.route_sort_order) if hasattr(route, 'route_sort_order') else None print(f'route {route_id} {title}') route_data = { 'id': route_id, 'title': title, 'url': url, 'type': type, #'color': color, #'text_color': text_color, 'gtfs_route_id': gtfs_route_id, 'sort_order': sort_order, 'stops': {}, 'directions': [], } directions = [] route_directions_df = feed.get('route_directions.txt') # unofficial trimet gtfs extension if not route_directions_df.empty: route_directions_df = route_directions_df[route_directions_df['route_id'] == gtfs_route_id] else: route_directions_df = None routes_data.append(route_data) route_trips_df = trips_df[trips_df['route_id'] == gtfs_route_id] route_direction_id_values = route_trips_df['direction_id'].values def add_custom_direction(custom_direction_info): direction_id = custom_direction_info['id'] print(f' custom direction = {direction_id}') gtfs_direction_id = custom_direction_info['gtfs_direction_id'] direction_trips_df = route_trips_df[route_direction_id_values == gtfs_direction_id] included_stop_ids = custom_direction_info.get('included_stop_ids', []) excluded_stop_ids = custom_direction_info.get('excluded_stop_ids', []) shapes = get_unique_shapes( direction_trips_df=direction_trips_df, stop_times_df=stop_times_df, stops_map=stops_map, normalize_gtfs_stop_id=normalize_gtfs_stop_id ) def contains_included_stops(shape_stop_ids): min_index = 0 for stop_id in included_stop_ids: try: index = shape_stop_ids.index(stop_id, min_index) except ValueError: return False min_index = index + 1 # stops must appear in same order as in included_stop_ids return True def contains_excluded_stop(shape_stop_ids): for stop_id in excluded_stop_ids: try: index = shape_stop_ids.index(stop_id) return True except ValueError: pass return False matching_shapes = [] for shape in shapes: shape_stop_ids = shape['stop_ids'] if contains_included_stops(shape_stop_ids) and not contains_excluded_stop(shape_stop_ids): matching_shapes.append(shape) if len(matching_shapes) != 1: matching_shape_ids = [shape['shape_id'] for shape in matching_shapes] error_message = f'{len(matching_shapes)} shapes found for route {route_id} with GTFS direction ID {gtfs_direction_id}' if len(included_stop_ids) > 0: error_message += f" including {','.join(included_stop_ids)}" if len(excluded_stop_ids) > 0: error_message += f" excluding {','.join(excluded_stop_ids)}" if len(matching_shape_ids) > 0: error_message += f": {','.join(matching_shape_ids)}" raise Exception(error_message) matching_shape = matching_shapes[0] matching_shape_id = matching_shape['shape_id'] matching_shape_count = matching_shape['count'] print(f' matching shape = {matching_shape_id} ({matching_shape_count} times)') add_direction( id=direction_id, gtfs_shape_id=matching_shape_id, gtfs_direction_id=gtfs_direction_id, stop_ids=matching_shape['stop_ids'], title=custom_direction_info.get('title', None) ) def add_default_direction(direction_id): print(f' default direction = {direction_id}') direction_trips_df = route_trips_df[route_direction_id_values == direction_id] shapes = get_unique_shapes( direction_trips_df=direction_trips_df, stop_times_df=stop_times_df, stops_map=stops_map, normalize_gtfs_stop_id=normalize_gtfs_stop_id) best_shape = shapes[0] best_shape_id = best_shape['shape_id'] best_shape_count = best_shape['count'] print(f' most common shape = {best_shape_id} ({best_shape_count} times)') add_direction( id=direction_id, gtfs_shape_id=best_shape_id, gtfs_direction_id=direction_id, stop_ids=best_shape['stop_ids'] ) def add_direction(id, gtfs_shape_id, gtfs_direction_id, stop_ids, title = None): if title is None: default_direction_info = agency.default_directions.get(gtfs_direction_id, {}) title_prefix = default_direction_info.get('title_prefix', None) last_stop_id = stop_ids[-1] last_stop = stops_map[last_stop_id] if title_prefix is not None: title = f"{title_prefix} to {last_stop.stop_name}" else: title = f"To {last_stop.stop_name}" print(f' title = {title}') dir_data = { 'id': id, 'title': title, 'gtfs_shape_id': gtfs_shape_id, 'gtfs_direction_id': gtfs_direction_id, 'stops': stop_ids, 'stop_geometry': {}, } route_data['directions'].append(dir_data) for stop_id in stop_ids: stop = stops_map[stop_id] stop_data = { 'id': stop_id, 'lat': round(stop.geometry.y, 5), # stop_lat in gtfs 'lon': round(stop.geometry.x, 5), # stop_lon in gtfs 'title': stop.stop_name, 'url': stop.stop_url if hasattr(stop, 'stop_url') and isinstance(stop.stop_url, str) else None, } route_data['stops'][stop_id] = stop_data geometry = shapes_df[shapes_df['shape_id'] == gtfs_shape_id]['geometry'].values[0] # partridge returns GTFS geometries for each shape_id as a shapely LineString # (https://shapely.readthedocs.io/en/stable/manual.html#linestrings). # Each coordinate is an array in [lon,lat] format (note: longitude first, latitude second) dir_data['coords'] = [ { 'lat': round(coord[1], 5), 'lon': round(coord[0], 5) } for coord in geometry.coords ] if agency.provider == 'nextbus': # match nextbus direction IDs with GTFS direction IDs best_nextbus_dir_info, best_terminal_dist = match_nextbus_direction(nextbus_route_config, geometry) print(f' {direction_id} = {best_nextbus_dir_info.id} (terminal_dist={int(best_terminal_dist)}) {" (questionable match)" if best_terminal_dist > 300 else ""}') # dir_data['title'] = best_nextbus_dir_info.title dir_data['nextbus_direction_id'] = best_nextbus_dir_info.id start_lat = geometry.coords[0][1] start_lon = geometry.coords[0][0] #print(f" start_lat = {start_lat} start_lon = {start_lon}") deg_lat_dist = util.haver_distance(start_lat, start_lon, start_lat-0.1, start_lon)*10 deg_lon_dist = util.haver_distance(start_lat, start_lon, start_lat, start_lon-0.1)*10 # projection function from lon/lat coordinates in degrees (z ignored) to x/y coordinates in meters. # satisfying the interface of shapely.ops.transform (https://shapely.readthedocs.io/en/stable/manual.html#shapely.ops.transform). # This makes it possible to use shapely methods to calculate the distance in meters between geometries def project_xy(lon, lat, z=None): return (round((lon - start_lon) * deg_lon_dist, 1), round((lat - start_lat) * deg_lat_dist, 1)) xy_geometry = shapely.ops.transform(project_xy, geometry) shape_lon_lat = np.array(geometry).T shape_lon = shape_lon_lat[0] shape_lat = shape_lon_lat[1] shape_prev_lon = np.r_[shape_lon[0], shape_lon[:-1]] shape_prev_lat = np.r_[shape_lat[0], shape_lat[:-1]] # shape_cumulative_dist[i] is the cumulative distance in meters along the shape geometry from 0th to ith coordinate shape_cumulative_dist = np.cumsum(util.haver_distance(shape_lon, shape_lat, shape_prev_lon, shape_prev_lat)) shape_lines_xy = [shapely.geometry.LineString(xy_geometry.coords[i:i+2]) for i in range(0, len(xy_geometry.coords) - 1)] # this is the total distance of the GTFS shape, which may not be exactly the same as the # distance along the route between the first and last Nextbus stop dir_data['distance'] = int(shape_cumulative_dist[-1]) print(f" distance = {dir_data['distance']}") # Find each stop along the route shape, so that the frontend can draw line segments between stops along the shape start_index = 0 for stop_id in stop_ids: stop_info = route_data['stops'][stop_id] # Need to project lon/lat coords to x/y in order for shapely to determine the distance between # a point and a line (shapely doesn't support distance for lon/lat coords) stop_xy = shapely.geometry.Point(project_xy(stop_info['lon'], stop_info['lat'])) stop_geometry = get_stop_geometry(stop_xy, shape_lines_xy, shape_cumulative_dist, start_index) if stop_geometry['offset'] > 100: print(f" !! bad geometry for stop {stop_id}: {stop_geometry['offset']} m from route line segment") continue dir_data['stop_geometry'][stop_id] = stop_geometry start_index = stop_geometry['after_index'] if route_id in agency.custom_directions: for custom_direction_info in agency.custom_directions[route_id]: add_custom_direction(custom_direction_info) else: for direction_id in np.unique(route_direction_id_values): add_default_direction(direction_id) if routes_data[0]['sort_order'] is not None: sort_key = lambda route_data: route_data['sort_order'] else: sort_key = lambda route_data: route_data['id'] routes_data = sorted(routes_data, key=sort_key) data_str = json.dumps({ 'version': routeconfig.DefaultVersion, 'routes': routes_data }, separators=(',', ':')) cache_path = routeconfig.get_cache_path(agency_id) with open(cache_path, "w") as f: f.write(data_str) if save_to_s3: s3 = boto3.resource('s3') s3_path = routeconfig.get_s3_path(agency_id) s3_bucket = config.s3_bucket print(f'saving to s3://{s3_bucket}/{s3_path}') object = s3.Object(s3_bucket, s3_path) object.put( Body=gzip.compress(bytes(data_str, 'utf-8')), CacheControl='max-age=86400', ContentType='application/json', ContentEncoding='gzip', ACL='public-read' ) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Save route configuration from GTFS and possibly Nextbus API') parser.add_argument('--agency', required=False, help='Agency ID') parser.add_argument('--s3', dest='s3', action='store_true', help='store in s3') parser.set_defaults(s3=False) args = parser.parse_args() agencies = [config.get_agency(args.agency)] if args.agency is not None else config.agencies for agency in agencies: save_routes_for_agency(agency, args.s3)
[ "zipfile.ZipFile", "models.nextbus.get_route_list", "shapely.geometry.Point", "numpy.argsort", "numpy.array", "partridge.load_geo_feed", "argparse.ArgumentParser", "pathlib.Path", "json.dumps", "boto3.resource", "models.nextbus.get_route_config", "models.config.get_agency", "shapely.ops.transform", "requests.get", "shapely.geometry.LineString", "models.util.get_data_dir", "numpy.unique", "models.routeconfig.get_s3_path", "models.util.haver_distance", "models.routeconfig.get_cache_path" ]
[((2964, 2990), 'numpy.argsort', 'np.argsort', (['terminal_dists'], {}), '(terminal_dists)\n', (2974, 2990), True, 'import numpy as np\n'), ((4156, 4216), 'shapely.geometry.Point', 'shapely.geometry.Point', (['shape_lines_xy[best_index].coords[0]'], {}), '(shape_lines_xy[best_index].coords[0])\n', (4178, 4216), False, 'import shapely\n'), ((5580, 5636), 'numpy.unique', 'np.unique', (['direction_shape_id_values'], {'return_counts': '(True)'}), '(direction_shape_id_values, return_counts=True)\n', (5589, 5636), True, 'import numpy as np\n'), ((5668, 5710), 'numpy.argsort', 'np.argsort', (['(-1 * direction_shape_id_counts)'], {}), '(-1 * direction_shape_id_counts)\n', (5678, 5710), True, 'import numpy as np\n'), ((8532, 8552), 'pathlib.Path', 'Path', (['gtfs_cache_dir'], {}), '(gtfs_cache_dir)\n', (8536, 8552), False, 'from pathlib import Path\n'), ((9646, 9683), 'partridge.load_geo_feed', 'ptg.load_geo_feed', (['gtfs_cache_dir', '{}'], {}), '(gtfs_cache_dir, {})\n', (9663, 9683), True, 'import partridge as ptg\n'), ((23533, 23634), 'json.dumps', 'json.dumps', (["{'version': routeconfig.DefaultVersion, 'routes': routes_data}"], {'separators': "(',', ':')"}), "({'version': routeconfig.DefaultVersion, 'routes': routes_data},\n separators=(',', ':'))\n", (23543, 23634), False, 'import json\n'), ((23671, 23708), 'models.routeconfig.get_cache_path', 'routeconfig.get_cache_path', (['agency_id'], {}), '(agency_id)\n', (23697, 23708), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((24300, 24403), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Save route configuration from GTFS and possibly Nextbus API"""'}), "(description=\n 'Save route configuration from GTFS and possibly Nextbus API')\n", (24323, 24403), False, 'import argparse\n'), ((2644, 2742), 'models.util.haver_distance', 'util.haver_distance', (['first_stop_info.lat', 'first_stop_info.lon', 'shape_start[1]', 'shape_start[0]'], {}), '(first_stop_info.lat, first_stop_info.lon, shape_start[1\n ], shape_start[0])\n', (2663, 2742), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((2757, 2848), 'models.util.haver_distance', 'util.haver_distance', (['last_stop_info.lat', 'last_stop_info.lon', 'shape_end[1]', 'shape_end[0]'], {}), '(last_stop_info.lat, last_stop_info.lon, shape_end[1],\n shape_end[0])\n', (2776, 2848), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((8652, 8674), 'requests.get', 'requests.get', (['gtfs_url'], {}), '(gtfs_url)\n', (8664, 8674), False, 'import requests\n'), ((23806, 23826), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (23820, 23826), False, 'import boto3\n'), ((23845, 23879), 'models.routeconfig.get_s3_path', 'routeconfig.get_s3_path', (['agency_id'], {}), '(agency_id)\n', (23868, 23879), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((8951, 8981), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zip_path', '"""r"""'], {}), "(zip_path, 'r')\n", (8966, 8981), False, 'import zipfile\n'), ((9547, 9566), 'models.util.get_data_dir', 'util.get_data_dir', ([], {}), '()\n', (9564, 9566), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((20973, 21016), 'shapely.ops.transform', 'shapely.ops.transform', (['project_xy', 'geometry'], {}), '(project_xy, geometry)\n', (20994, 21016), False, 'import shapely\n'), ((23196, 23232), 'numpy.unique', 'np.unique', (['route_direction_id_values'], {}), '(route_direction_id_values)\n', (23205, 23232), True, 'import numpy as np\n'), ((24636, 24666), 'models.config.get_agency', 'config.get_agency', (['args.agency'], {}), '(args.agency)\n', (24653, 24666), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((8822, 8841), 'models.util.get_data_dir', 'util.get_data_dir', ([], {}), '()\n', (8839, 8841), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((11107, 11148), 'models.nextbus.get_route_list', 'nextbus.get_route_list', (['agency.nextbus_id'], {}), '(agency.nextbus_id)\n', (11129, 11148), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((12121, 12174), 'models.nextbus.get_route_config', 'nextbus.get_route_config', (['agency.nextbus_id', 'route_id'], {}), '(agency.nextbus_id, route_id)\n', (12145, 12174), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((20249, 20318), 'models.util.haver_distance', 'util.haver_distance', (['start_lat', 'start_lon', '(start_lat - 0.1)', 'start_lon'], {}), '(start_lat, start_lon, start_lat - 0.1, start_lon)\n', (20268, 20318), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((20347, 20416), 'models.util.haver_distance', 'util.haver_distance', (['start_lat', 'start_lon', 'start_lat', '(start_lon - 0.1)'], {}), '(start_lat, start_lon, start_lat, start_lon - 0.1)\n', (20366, 20416), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((21046, 21064), 'numpy.array', 'np.array', (['geometry'], {}), '(geometry)\n', (21054, 21064), True, 'import numpy as np\n'), ((21455, 21528), 'models.util.haver_distance', 'util.haver_distance', (['shape_lon', 'shape_lat', 'shape_prev_lon', 'shape_prev_lat'], {}), '(shape_lon, shape_lat, shape_prev_lon, shape_prev_lat)\n', (21474, 21528), False, 'from models import gtfs, config, util, nextbus, routeconfig\n'), ((21561, 21617), 'shapely.geometry.LineString', 'shapely.geometry.LineString', (['xy_geometry.coords[i:i + 2]'], {}), '(xy_geometry.coords[i:i + 2])\n', (21588, 21617), False, 'import shapely\n'), ((6414, 6445), 'json.dumps', 'json.dumps', (['shape_trip_stop_ids'], {}), '(shape_trip_stop_ids)\n', (6424, 6445), False, 'import json\n')]
"""AVLetters lip dataset. The original dataset is available from http://www.ee.surrey.ac.uk/Projects/LILiR/datasets/avletters1/index.html This dataset consists of three repetitions by each of 10 talkers, five male (two with moustaches) and five female, of the isolated letters A-Z, a total of 780 utterances References ---------- <NAME>, T.Cootes, <NAME>, <NAME>, and <NAME>. Extraction of visual features for lipreading. IEEE Trans. on Pattern Analysis and Machine Vision, vol. 24, no. 2, pp. 198-213, 2002. """ # License: BSD 3 clause import numpy as np from string import ascii_uppercase import random from os import listdir from os.path import dirname, exists, isfile, join from scipy.io import loadmat folderpath = join(dirname(__file__), './avletters/Lips/') def fetch_avletters_averaged(): """Load the AVLetters dataset with averaged frames ================ ======================= Classes 26 Samples total 780 Dimensionality (12, 60, 80) Features real, between 255 and 0 ================ ======================= Returns ------- (lip_videos, label) : tuple lip_videos : ndarray of shape (780, 12, 60, 80) The lip videos with averaged frames. Each video consists of 12 60x80 image frames. persons : ndarray of shape (780,) The persons corresponding to the lip videos. label : ndarray of shape (780,) Labels corresponding to the lip videos. Those labels are ranging from 0-23 and correspond to the letters spoken in the lip video. """ if not (exists(folderpath)): raise IOError("Data not found") lip_paths = [] for f in listdir(folderpath): if isfile(join(folderpath, f)) and f.endswith('.mat'): lip_paths.append(f) n_samples = 780 n_frames = 12 n_rows = 60 n_columns = 80 people = ['Anya', 'Bill', 'Faye', 'John', 'Kate', 'Nicola', 'Stephen', 'Steve', 'Verity', 'Yi'] lip_videos = np.empty(shape=(n_samples, n_frames, n_rows, n_columns), dtype=float) persons = np.zeros(shape=(n_samples,), dtype='<U8') label = np.empty(shape=(n_samples,), dtype=int) # Save all lip videos in the preferred form for i, lip_path in enumerate(lip_paths): # Load the lip video lip_mat = loadmat(folderpath + lip_path) n_frames_curr = int(lip_mat['siz'][0,2]) lip_video = lip_mat['vid'].reshape(n_columns, n_rows, n_frames_curr) lip_video = lip_video.transpose(2, 1, 0) # Average the video frames over a window of size # `n_frames_curr - n_frames + 1` so that the new video # has `n_frames` frames. window_size = n_frames_curr - n_frames + 1 for j in range(n_frames): lip_videos[i, j] = lip_video[j:j+window_size].mean(axis=0) for p in people: if p in lip_path: persons[i] = p label[i] = ord(lip_path[0]) - ord('A') return (lip_videos, persons, label)
[ "os.path.exists", "os.listdir", "scipy.io.loadmat", "os.path.join", "os.path.dirname", "numpy.zeros", "numpy.empty" ]
[((736, 753), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (743, 753), False, 'from os.path import dirname, exists, isfile, join\n'), ((1790, 1809), 'os.listdir', 'listdir', (['folderpath'], {}), '(folderpath)\n', (1797, 1809), False, 'from os import listdir\n'), ((2113, 2182), 'numpy.empty', 'np.empty', ([], {'shape': '(n_samples, n_frames, n_rows, n_columns)', 'dtype': 'float'}), '(shape=(n_samples, n_frames, n_rows, n_columns), dtype=float)\n', (2121, 2182), True, 'import numpy as np\n'), ((2197, 2238), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n_samples,)', 'dtype': '"""<U8"""'}), "(shape=(n_samples,), dtype='<U8')\n", (2205, 2238), True, 'import numpy as np\n'), ((2251, 2290), 'numpy.empty', 'np.empty', ([], {'shape': '(n_samples,)', 'dtype': 'int'}), '(shape=(n_samples,), dtype=int)\n', (2259, 2290), True, 'import numpy as np\n'), ((1696, 1714), 'os.path.exists', 'exists', (['folderpath'], {}), '(folderpath)\n', (1702, 1714), False, 'from os.path import dirname, exists, isfile, join\n'), ((2432, 2462), 'scipy.io.loadmat', 'loadmat', (['(folderpath + lip_path)'], {}), '(folderpath + lip_path)\n', (2439, 2462), False, 'from scipy.io import loadmat\n'), ((1829, 1848), 'os.path.join', 'join', (['folderpath', 'f'], {}), '(folderpath, f)\n', (1833, 1848), False, 'from os.path import dirname, exists, isfile, join\n')]
import cv2 import numpy as np img = cv2.imread('../Resources/Photos/park.jpg') b,g,r = cv2.split(img) # cv2.imshow('Blue',b) # cv2.imshow('Green',g) # cv2.imshow('Red',r) blank = np.zeros(img.shape[:2],dtype='uint8') blue = cv2.merge([b,blank,blank]) green = cv2.merge([blank,g,blank]) red = cv2.merge([blank,blank,r]) # cv2.imshow('Blue',blue) # cv2.imshow('Green',green) # cv2.imshow('Red',red) # print(f'img -> {img.shape}, b->{b.shape}, g->{g.shape}, r-> {r.shape}') merged = cv2.merge([b,g,r]) cv2.imshow('Merged',merged) cv2.waitKey(0)
[ "cv2.merge", "cv2.imshow", "numpy.zeros", "cv2.waitKey", "cv2.split", "cv2.imread" ]
[((37, 79), 'cv2.imread', 'cv2.imread', (['"""../Resources/Photos/park.jpg"""'], {}), "('../Resources/Photos/park.jpg')\n", (47, 79), False, 'import cv2\n'), ((89, 103), 'cv2.split', 'cv2.split', (['img'], {}), '(img)\n', (98, 103), False, 'import cv2\n'), ((182, 220), 'numpy.zeros', 'np.zeros', (['img.shape[:2]'], {'dtype': '"""uint8"""'}), "(img.shape[:2], dtype='uint8')\n", (190, 220), True, 'import numpy as np\n'), ((227, 255), 'cv2.merge', 'cv2.merge', (['[b, blank, blank]'], {}), '([b, blank, blank])\n', (236, 255), False, 'import cv2\n'), ((262, 290), 'cv2.merge', 'cv2.merge', (['[blank, g, blank]'], {}), '([blank, g, blank])\n', (271, 290), False, 'import cv2\n'), ((295, 323), 'cv2.merge', 'cv2.merge', (['[blank, blank, r]'], {}), '([blank, blank, r])\n', (304, 323), False, 'import cv2\n'), ((484, 504), 'cv2.merge', 'cv2.merge', (['[b, g, r]'], {}), '([b, g, r])\n', (493, 504), False, 'import cv2\n'), ((503, 531), 'cv2.imshow', 'cv2.imshow', (['"""Merged"""', 'merged'], {}), "('Merged', merged)\n", (513, 531), False, 'import cv2\n'), ((531, 545), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (542, 545), False, 'import cv2\n')]
# encoding: utf-8 """ @author: ccj @contact: """ import numpy as np from typing import List, Dict, Tuple, Any import torch import torch.nn.functional as F def crop_white(image: np.ndarray, value: int = 255) -> np.ndarray: """ Crop white border from image :param image: Type: np.ndarray, image to be processed :param value: Type: int, default value is 255 :return: Cropped image after removing the white border """ assert (image.shape[2] == 3), "image shape should be [W, H, 3]" assert (image.dtype == np.uint8), "image type should be np.uint8" ys, = (image.min((1, 2)) < value).nonzero() xs, = (image.min(0).min(1) < value).nonzero() if len(xs) == 0 or len(ys) == 0: return image return image[ys.min(): ys.max()+1, xs.min(): xs.max()+1] def get_tiles(image: np.ndarray, tile_size: int = 256, n_tiles: int = 36, mode: int = 0) -> Tuple[Dict[str, Any], bool]: """ Crop big image to multiple pieces of small patches :param image: Type np.ndarray, image to be cropped :param tile_size: Type int, size of small patches :param n_tiles: Type int, number of small patches :param mode: Type int, pad type for cropping :return: dict includes small pacthes and its responding index, bool flag indicates if the image can get enough small patches """ result = [] h, w, c = image.shape pad_h = (tile_size - h % tile_size) % tile_size + ((tile_size * mode) // 2) pad_w = (tile_size - w % tile_size) % tile_size + ((tile_size * mode) // 2) img2 = np.pad(image, [[pad_h // 2, pad_h - pad_h // 2], [pad_w // 2, pad_w - pad_w//2], [0, 0]], constant_values=255) img3 = img2.reshape( img2.shape[0] // tile_size, tile_size, img2.shape[1] // tile_size, tile_size, 3 ) img3 = img3.transpose(0, 2, 1, 3, 4).reshape(-1, tile_size, tile_size,3) n_tiles_with_info = (img3.reshape(img3.shape[0], -1).sum(1) < tile_size ** 2 * 3 * 255).sum() if len(img3) < n_tiles: img3 = np.pad(img3, [[0, n_tiles-len(img3)], [0, 0], [0, 0], [0, 0]], constant_values=255) idxs = np.argsort(img3.reshape(img3.shape[0], -1).sum(-1))[:n_tiles] img3 = img3[idxs] for i in range(len(img3)): result.append({'img': img3[i], 'idx': i}) return result, n_tiles_with_info >= n_tiles def glue_to_one_picture(image: np.ndarray, tile_size: int = 256, n_tiles: int = 36, random_idx: bool = True) -> np.ndarray: """ reorganize the distribution of images :param image: Type: np.ndarray, image to be processed :param tile_size: Type int, size of small patches :param n_tiles: Type int, number of small patches :param random_idx: Type bool, determine if the small patches are randomly organized :return: a image that is generated by reorganizing cropped patches from original image """ tiles, _ = get_tiles(image, tile_size=tile_size, n_tiles=n_tiles, mode=0) if random_idx: patch_idxes = np.random.choice(list(range(n_tiles)), n_tiles, replace=False) else: patch_idxes = list(range(n_tiles)) n_row_tiles = int(np.sqrt(n_tiles)) images = np.zeros((tile_size * n_row_tiles, tile_size * n_row_tiles, 3)).astype(np.uint8) index = 0 for h in range(n_row_tiles): for w in range(n_row_tiles): if len(tiles) > patch_idxes[index]: this_img = tiles[patch_idxes[index]]["img"] index = index + 1 else: this_img = np.zeros((tile_size, tile_size, 3)).astype(np.uint8) images[h * tile_size:(h + 1) * tile_size, w * tile_size:(w + 1) * tile_size, :] = this_img return images def cutmix(batch: List[Dict[str, Any]], hparams: Dict[str, Any]) -> Dict[str, Any]: """ Apply cutmix transform for one batch of images :param batch: Type: dict, batch of dataset (default: {"image": image, "target": target} :param hparams: Type: config, config file :return: batch of dataset """ image, target = batch["image"], batch["target"] batch_size = image.shape[0] img_h, img_w = image.shape[2:] imgs, labs = [], [] for j in range(batch_size): p = np.random.uniform(0., 1.) if p >= hparams["cutmix_prob"]: idx = int(np.random.uniform(0, batch_size)) # choose x, y and beta dist x = np.random.uniform(0, img_w) y = np.random.uniform(0, img_h) b = np.random.uniform(0., 1.) w = img_w * np.sqrt(1 - b) h = img_h * np.sqrt(1 - b) x0 = int(np.round(max(0, x - w/2))) x1 = int(np.round(min(img_w, x + w/2))) y0 = int(np.round(max(0, y - h/2))) y1 = int(np.round(min(img_h, y + h/2))) one = image[j, :, y0:y1, 0:x0] two = image[idx, :, y0:y1, x0:x1] three = image[j, :, y0:y1, x1: img_w] middle = torch.cat((one, two, three), dim=2) img = torch.cat((image[j, :, 0:y0, :], middle, image[j, :, y1:img_h, :]), dim=1) imgs.append(img) a = w * h / img_w / img_h if len(target.shape) < 2: if hparams.ohe_mode: lab1 = F.one_hot(target[j], num_classes=hparams.num_class) lab2 = F.one_hot(target[idx], num_classes=hparams.num_class) else: lab1 = target[j] lab2 = target[idx] else: lab1 = target[j, :] lab2 = target[idx, :] labs.append((1 - a) * lab1 + a * lab2) else: imgs.append(image[j, :, :, :]) if len(target.shape) < 2: if hparams.ohe_mode: labs.append(F.one_hot(target[j], num_classes=hparams.num_class).float()) else: labs.append(target[j]) else: labs.append(target[j, :]) image2 = torch.stack(imgs) label2 = torch.stack(labs) return { "image": image2, "target": label2, } def mixup(batch: List[Dict[str, Any]], hparams: Dict[str, Any]) -> Dict[str, Any]: """ Apply mixup transform for one batch of images :param batch: Type: dict, batch of dataset (default: {"image": image, "target": target} :param hparams: Type: config, config file :return: batch of dataset """ image, target = batch["image"], batch["target"] batch_size = image.shape[0] imgs, labs = [], [] for j in range(batch_size): p = np.random.uniform(0., 1.) if p >= hparams["mixup_prob"]: idx = int(np.random.uniform(0, batch_size)) # choose beta dist b = np.random.uniform(0., 1.) img = (1 - b) * image[j, :, :, :] + b * image[idx, :, :, :] imgs.append(img) if len(target.shape) < 2: if hparams.ohe_mode: lab1 = F.one_hot(target[j], num_classes=hparams.num_class) lab2 = F.one_hot(target[idx], num_classes=hparams.num_class) else: lab1 = target[j] lab2 = target[idx] else: lab1 = target[j, :] lab2 = target[idx, :] labs.append((1 - b) * lab1 + b * lab2) else: imgs.append(image[j, :, :, :]) if len(target.shape) < 2: if hparams.ohe_mode: labs.append(F.one_hot(target[j], num_classes=hparams.num_class).float()) else: labs.append(target[j]) else: labs.append(target[j, :]) image2 = torch.stack(imgs) label2 = torch.stack(labs) return { "image": image2, "target": label2, } class MixCollator: def __init__(self, hparams: Dict[str, Any]): super(MixCollator, self).__init__() self.hparams = hparams def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, Any]: batch = torch.utils.data.dataloader.default_collate(batch) if self.hparams["mix_aug"]["cutmix"]: batch = cutmix(batch, self.hparams) if self.hparams["mix_aug"]["mixup"]: batch = mixup(batch, self.hparams) return batch
[ "torch.utils.data.dataloader.default_collate", "numpy.sqrt", "torch.stack", "numpy.zeros", "torch.nn.functional.one_hot", "numpy.random.uniform", "numpy.pad", "torch.cat" ]
[((1593, 1709), 'numpy.pad', 'np.pad', (['image', '[[pad_h // 2, pad_h - pad_h // 2], [pad_w // 2, pad_w - pad_w // 2], [0, 0]]'], {'constant_values': '(255)'}), '(image, [[pad_h // 2, pad_h - pad_h // 2], [pad_w // 2, pad_w - pad_w //\n 2], [0, 0]], constant_values=255)\n', (1599, 1709), True, 'import numpy as np\n'), ((6057, 6074), 'torch.stack', 'torch.stack', (['imgs'], {}), '(imgs)\n', (6068, 6074), False, 'import torch\n'), ((6088, 6105), 'torch.stack', 'torch.stack', (['labs'], {}), '(labs)\n', (6099, 6105), False, 'import torch\n'), ((7798, 7815), 'torch.stack', 'torch.stack', (['imgs'], {}), '(imgs)\n', (7809, 7815), False, 'import torch\n'), ((7829, 7846), 'torch.stack', 'torch.stack', (['labs'], {}), '(labs)\n', (7840, 7846), False, 'import torch\n'), ((3206, 3222), 'numpy.sqrt', 'np.sqrt', (['n_tiles'], {}), '(n_tiles)\n', (3213, 3222), True, 'import numpy as np\n'), ((4285, 4312), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (4302, 4312), True, 'import numpy as np\n'), ((6660, 6687), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (6677, 6687), True, 'import numpy as np\n'), ((8150, 8200), 'torch.utils.data.dataloader.default_collate', 'torch.utils.data.dataloader.default_collate', (['batch'], {}), '(batch)\n', (8193, 8200), False, 'import torch\n'), ((3237, 3300), 'numpy.zeros', 'np.zeros', (['(tile_size * n_row_tiles, tile_size * n_row_tiles, 3)'], {}), '((tile_size * n_row_tiles, tile_size * n_row_tiles, 3))\n', (3245, 3300), True, 'import numpy as np\n'), ((4463, 4490), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'img_w'], {}), '(0, img_w)\n', (4480, 4490), True, 'import numpy as np\n'), ((4507, 4534), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'img_h'], {}), '(0, img_h)\n', (4524, 4534), True, 'import numpy as np\n'), ((4551, 4578), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (4568, 4578), True, 'import numpy as np\n'), ((5018, 5053), 'torch.cat', 'torch.cat', (['(one, two, three)'], {'dim': '(2)'}), '((one, two, three), dim=2)\n', (5027, 5053), False, 'import torch\n'), ((5072, 5146), 'torch.cat', 'torch.cat', (['(image[j, :, 0:y0, :], middle, image[j, :, y1:img_h, :])'], {'dim': '(1)'}), '((image[j, :, 0:y0, :], middle, image[j, :, y1:img_h, :]), dim=1)\n', (5081, 5146), False, 'import torch\n'), ((6828, 6855), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (6845, 6855), True, 'import numpy as np\n'), ((4373, 4405), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'batch_size'], {}), '(0, batch_size)\n', (4390, 4405), True, 'import numpy as np\n'), ((4602, 4616), 'numpy.sqrt', 'np.sqrt', (['(1 - b)'], {}), '(1 - b)\n', (4609, 4616), True, 'import numpy as np\n'), ((4641, 4655), 'numpy.sqrt', 'np.sqrt', (['(1 - b)'], {}), '(1 - b)\n', (4648, 4655), True, 'import numpy as np\n'), ((6747, 6779), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'batch_size'], {}), '(0, batch_size)\n', (6764, 6779), True, 'import numpy as np\n'), ((5318, 5369), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[j]'], {'num_classes': 'hparams.num_class'}), '(target[j], num_classes=hparams.num_class)\n', (5327, 5369), True, 'import torch.nn.functional as F\n'), ((5397, 5450), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[idx]'], {'num_classes': 'hparams.num_class'}), '(target[idx], num_classes=hparams.num_class)\n', (5406, 5450), True, 'import torch.nn.functional as F\n'), ((7059, 7110), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[j]'], {'num_classes': 'hparams.num_class'}), '(target[j], num_classes=hparams.num_class)\n', (7068, 7110), True, 'import torch.nn.functional as F\n'), ((7138, 7191), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[idx]'], {'num_classes': 'hparams.num_class'}), '(target[idx], num_classes=hparams.num_class)\n', (7147, 7191), True, 'import torch.nn.functional as F\n'), ((3589, 3624), 'numpy.zeros', 'np.zeros', (['(tile_size, tile_size, 3)'], {}), '((tile_size, tile_size, 3))\n', (3597, 3624), True, 'import numpy as np\n'), ((5857, 5908), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[j]'], {'num_classes': 'hparams.num_class'}), '(target[j], num_classes=hparams.num_class)\n', (5866, 5908), True, 'import torch.nn.functional as F\n'), ((7598, 7649), 'torch.nn.functional.one_hot', 'F.one_hot', (['target[j]'], {'num_classes': 'hparams.num_class'}), '(target[j], num_classes=hparams.num_class)\n', (7607, 7649), True, 'import torch.nn.functional as F\n')]
import pickle import numpy as np import scipy.linalg as sci from scipy import signal # Rotations def wrap2Pi(x): xm = np.mod(x+np.pi,(2.0*np.pi)) return xm-np.pi def Rot(x): return np.array([[np.cos(x),-np.sin(x)],[np.sin(x),np.cos(x)]]) def RotVec(x_vec, rot_vec): rvec = np.array([np.dot(x_vec[i,:-1],Rot(rot_vec[i])) for i in range(x_vec.shape[0])]) return np.hstack([rvec, x_vec[:,2].reshape(x_vec.shape[0],1)]) # Rattling def diffusion_vel(x, dt): t_vec = np.expand_dims(np.sqrt(np.arange(1,x.shape[0]+1)*dt),axis=1) vec = np.divide(x-x[0],t_vec) return vec def rattling(x, dt, noRat = False, diffVel=True): if diffVel: vec = diffusion_vel(x, dt) else: vec = np.copy(x) C = np.cov(vec.T) if noRat: R = None else: if len(np.shape(C)) == 0: R = 0.5*np.log(C) else: R = 0.5*np.log(np.linalg.det(C)) return R, C def rattling_windows(mat, dt, window_sz, overlap,noRat=False,diffVel=True): cov_list = [] rat_list = [] ind_list = window_inds(mat,window_sz,overlap) for inds in ind_list: R, C = rattling(mat[inds[0]:inds[1],:],dt,noRat, diffVel) cov_list.append(C) rat_list.append(R) return rat_list, cov_list, ind_list # Rectangular windowing def window_inds(dataset, window_sz, overlap, offset=0): """ Helper function that applies a rectangular window to the dataset given some overlap percentage, s.t. ov \in [0,1) """ data_len = dataset.shape[0] assert window_sz < data_len ind1 = offset ind2 = offset+window_sz-1 ind_list = [] ov_ind_diff = int(np.ceil(np.abs(overlap*window_sz))) if ov_ind_diff == window_sz: ov_ind_diff += -1 while ind2 < data_len+offset: ind_list.append((ind1,ind2)) ind1 += window_sz-ov_ind_diff ind2 += window_sz-ov_ind_diff return ind_list # Filtering def moving_average(x,N): return np.convolve(x,np.ones((N,))/float(N),mode='valid') def butter_highpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) return b, a def butter_highpass_filter(data, cutoff, fs, order=5): b, a = butter_highpass(cutoff, fs, order=order) y = signal.filtfilt(b, a, data) return y def butter_bandstop(cutoffs, fs, order=5): nyq = 0.5 * fs normal_cutoffs = cutoffs / nyq b, a = signal.butter(order, normal_cutoffs, btype='bandstop', analog=False) return b, a def butter_bandstop_filter(data, cutoffs, fs, order=5): b, a = butter_bandstop(cutoffs, fs, order=order) y = signal.filtfilt(b, a, data) return y # Save/Load def store_data(fname, rlist, clist, elist): db = {} db['rlist'] = rlist db['clist'] = clist db['elist'] = elist dbfile = open(fname, 'ab') pickle.dump(db, dbfile) dbfile.close() def load_data(fname): # for reading also binary mode is important dbfile = open(fname, 'rb') db = pickle.load(dbfile) rlist = db['rlist'] clist = db['clist'] elist = db['elist'] dbfile.close() return rlist, clist, elist # Observable preprocessing def preprocess(data): """ Here we have take in a dataset of smarticle coordinates of the following shape: (SampleNum, SmarticleNum*3), where each of the 3 coordinates are coords = [x,y,theta,L_arm_theta,R_arm_theta]. We output a 7 dimensional vector of the following format: [<mx_1>,<mx_2>,<mx_3>,<my_1>,<my_2>,<my_3>,e_theta] """ # Take in (x,y,theta) of each smarticle S1_coords = data[:,0:3] S2_coords = data[:,3:6] S3_coords = data[:,6:9] ######################### # Rotational invariance # ######################### # Get CoM from the frame of each smarticle CoM = np.mean([S1_coords,S2_coords,S3_coords],axis=0) CoM_S1 = CoM-S1_coords CoM_S2 = CoM-S2_coords CoM_S3 = CoM-S3_coords # Wrap angles CoM_S1[:,2] = wrap2Pi(CoM_S1[:,2]) CoM_S2[:,2] = wrap2Pi(CoM_S2[:,2]) CoM_S3[:,2] = wrap2Pi(CoM_S3[:,2]) # Rotate coordinates so they're relative to the previous timestep relCoM_S1 = RotVec(CoM_S1, S1_coords[:,2]) relCoM_S2 = RotVec(CoM_S2, S2_coords[:,2]) relCoM_S3 = RotVec(CoM_S3, S3_coords[:,2]) # Result Matrix resMat = np.vstack([relCoM_S1[:,0],relCoM_S2[:,0],relCoM_S3[:,0], relCoM_S1[:,1],relCoM_S2[:,1],relCoM_S3[:,1]]).T # For theta: pTheta = np.abs(np.mean(np.exp(1j*np.vstack([S1_coords[:,2],S2_coords[:,2],S3_coords[:,2]]).T),axis=1)).reshape(data.shape[0],1) return np.hstack([resMat,pTheta])
[ "numpy.hstack", "scipy.signal.filtfilt", "numpy.log", "numpy.sin", "numpy.cov", "numpy.mod", "numpy.arange", "numpy.divide", "numpy.mean", "numpy.vstack", "numpy.abs", "numpy.ones", "pickle.load", "numpy.cos", "numpy.shape", "numpy.copy", "pickle.dump", "scipy.signal.butter", "numpy.linalg.det" ]
[((120, 150), 'numpy.mod', 'np.mod', (['(x + np.pi)', '(2.0 * np.pi)'], {}), '(x + np.pi, 2.0 * np.pi)\n', (126, 150), True, 'import numpy as np\n'), ((545, 571), 'numpy.divide', 'np.divide', (['(x - x[0])', 't_vec'], {}), '(x - x[0], t_vec)\n', (554, 571), True, 'import numpy as np\n'), ((730, 743), 'numpy.cov', 'np.cov', (['vec.T'], {}), '(vec.T)\n', (736, 743), True, 'import numpy as np\n'), ((2128, 2191), 'scipy.signal.butter', 'signal.butter', (['order', 'normal_cutoff'], {'btype': '"""high"""', 'analog': '(False)'}), "(order, normal_cutoff, btype='high', analog=False)\n", (2141, 2191), False, 'from scipy import signal\n'), ((2324, 2351), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'data'], {}), '(b, a, data)\n', (2339, 2351), False, 'from scipy import signal\n'), ((2474, 2542), 'scipy.signal.butter', 'signal.butter', (['order', 'normal_cutoffs'], {'btype': '"""bandstop"""', 'analog': '(False)'}), "(order, normal_cutoffs, btype='bandstop', analog=False)\n", (2487, 2542), False, 'from scipy import signal\n'), ((2677, 2704), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'data'], {}), '(b, a, data)\n', (2692, 2704), False, 'from scipy import signal\n'), ((2898, 2921), 'pickle.dump', 'pickle.dump', (['db', 'dbfile'], {}), '(db, dbfile)\n', (2909, 2921), False, 'import pickle\n'), ((3087, 3106), 'pickle.load', 'pickle.load', (['dbfile'], {}), '(dbfile)\n', (3098, 3106), False, 'import pickle\n'), ((3850, 3900), 'numpy.mean', 'np.mean', (['[S1_coords, S2_coords, S3_coords]'], {'axis': '(0)'}), '([S1_coords, S2_coords, S3_coords], axis=0)\n', (3857, 3900), True, 'import numpy as np\n'), ((4590, 4617), 'numpy.hstack', 'np.hstack', (['[resMat, pTheta]'], {}), '([resMat, pTheta])\n', (4599, 4617), True, 'import numpy as np\n'), ((711, 721), 'numpy.copy', 'np.copy', (['x'], {}), '(x)\n', (718, 721), True, 'import numpy as np\n'), ((4325, 4443), 'numpy.vstack', 'np.vstack', (['[relCoM_S1[:, 0], relCoM_S2[:, 0], relCoM_S3[:, 0], relCoM_S1[:, 1],\n relCoM_S2[:, 1], relCoM_S3[:, 1]]'], {}), '([relCoM_S1[:, 0], relCoM_S2[:, 0], relCoM_S3[:, 0], relCoM_S1[:, \n 1], relCoM_S2[:, 1], relCoM_S3[:, 1]])\n', (4334, 4443), True, 'import numpy as np\n'), ((1667, 1694), 'numpy.abs', 'np.abs', (['(overlap * window_sz)'], {}), '(overlap * window_sz)\n', (1673, 1694), True, 'import numpy as np\n'), ((1985, 1998), 'numpy.ones', 'np.ones', (['(N,)'], {}), '((N,))\n', (1992, 1998), True, 'import numpy as np\n'), ((197, 206), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (203, 206), True, 'import numpy as np\n'), ((220, 229), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (226, 229), True, 'import numpy as np\n'), ((230, 239), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (236, 239), True, 'import numpy as np\n'), ((497, 525), 'numpy.arange', 'np.arange', (['(1)', '(x.shape[0] + 1)'], {}), '(1, x.shape[0] + 1)\n', (506, 525), True, 'import numpy as np\n'), ((800, 811), 'numpy.shape', 'np.shape', (['C'], {}), '(C)\n', (808, 811), True, 'import numpy as np\n'), ((839, 848), 'numpy.log', 'np.log', (['C'], {}), '(C)\n', (845, 848), True, 'import numpy as np\n'), ((208, 217), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (214, 217), True, 'import numpy as np\n'), ((890, 906), 'numpy.linalg.det', 'np.linalg.det', (['C'], {}), '(C)\n', (903, 906), True, 'import numpy as np\n'), ((4487, 4549), 'numpy.vstack', 'np.vstack', (['[S1_coords[:, 2], S2_coords[:, 2], S3_coords[:, 2]]'], {}), '([S1_coords[:, 2], S2_coords[:, 2], S3_coords[:, 2]])\n', (4496, 4549), True, 'import numpy as np\n')]
""" Make a learning curve for the full neural net trained on all 30 output measures. The point of this graph is to investigate how much training data is needed to achieve various MSE values. """ import matplotlib.pyplot as plt import numpy as np import cPickle as pickle import lasagne from lasagne import layers from lasagne import nonlinearities from lasagne.nonlinearities import ScaledTanH from nolearn.lasagne import NeuralNet, TrainSplit from sklearn.learning_curve import learning_curve from lignet_utils import gen_train_test x_train, x_test, y_train, y_test, x_scaler, y_scaler = gen_train_test() # set up the Scaled tanh parameters. See nonlinearities.py for usage notes. # I am following the guidance of LeCun et al. for these values scaled_tanh = ScaledTanH(scale_in=2./3, scale_out=1.7159) # Make a learning curve to find out how much training data to use train_size = int(1 * x_train.shape[0]) xt = x_train[:train_size, :] yt = y_train[:train_size, :] train_sizes, train_scores, valid_scores = learning_curve( NeuralNet( layers=[ ('input', layers.InputLayer), ('hidden0', layers.DenseLayer), ('hidden1', layers.DenseLayer), ('output', layers.DenseLayer) ], input_shape=(None, x_train.shape[1]), hidden0_num_units=18, hidden0_nonlinearity=scaled_tanh, hidden1_num_units=20, hidden1_nonlinearity=scaled_tanh, output_num_units=y_train.shape[1], output_nonlinearity=nonlinearities.linear, regression=True, verbose=1, max_epochs=4000, update=lasagne.updates.adagrad, train_split=TrainSplit(eval_size=0.3), ), xt, yt, train_sizes=[500, 1500, 5000, 15000, 35000, 75000, 133333], scoring='mean_squared_error') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) valid_scores_mean = np.mean(valid_scores, axis=1) valid_scores_std = np.std(valid_scores, axis=1) with open('learning_curve.pkl', 'wb') as pkl: pickle.dump([train_scores_mean, train_scores_std, valid_scores_mean, valid_scores_std, train_sizes], pkl)
[ "numpy.mean", "cPickle.dump", "lignet_utils.gen_train_test", "lasagne.nonlinearities.ScaledTanH", "numpy.std", "nolearn.lasagne.TrainSplit" ]
[((593, 609), 'lignet_utils.gen_train_test', 'gen_train_test', ([], {}), '()\n', (607, 609), False, 'from lignet_utils import gen_train_test\n'), ((764, 810), 'lasagne.nonlinearities.ScaledTanH', 'ScaledTanH', ([], {'scale_in': '(2.0 / 3)', 'scale_out': '(1.7159)'}), '(scale_in=2.0 / 3, scale_out=1.7159)\n', (774, 810), False, 'from lasagne.nonlinearities import ScaledTanH\n'), ((1832, 1861), 'numpy.mean', 'np.mean', (['train_scores'], {'axis': '(1)'}), '(train_scores, axis=1)\n', (1839, 1861), True, 'import numpy as np\n'), ((1881, 1909), 'numpy.std', 'np.std', (['train_scores'], {'axis': '(1)'}), '(train_scores, axis=1)\n', (1887, 1909), True, 'import numpy as np\n'), ((1930, 1959), 'numpy.mean', 'np.mean', (['valid_scores'], {'axis': '(1)'}), '(valid_scores, axis=1)\n', (1937, 1959), True, 'import numpy as np\n'), ((1979, 2007), 'numpy.std', 'np.std', (['valid_scores'], {'axis': '(1)'}), '(valid_scores, axis=1)\n', (1985, 2007), True, 'import numpy as np\n'), ((2059, 2168), 'cPickle.dump', 'pickle.dump', (['[train_scores_mean, train_scores_std, valid_scores_mean, valid_scores_std,\n train_sizes]', 'pkl'], {}), '([train_scores_mean, train_scores_std, valid_scores_mean,\n valid_scores_std, train_sizes], pkl)\n', (2070, 2168), True, 'import cPickle as pickle\n'), ((1663, 1688), 'nolearn.lasagne.TrainSplit', 'TrainSplit', ([], {'eval_size': '(0.3)'}), '(eval_size=0.3)\n', (1673, 1688), False, 'from nolearn.lasagne import NeuralNet, TrainSplit\n')]
import numpy, copy from numpy import nan from PyQt5.QtGui import QPalette, QColor, QFont from PyQt5.QtWidgets import QMessageBox from orangewidget import gui from orangewidget import widget from orangewidget.settings import Setting from oasys.widgets import gui as oasysgui from oasys.widgets import congruence from oasys.widgets.gui import ConfirmDialog from oasys.util.oasys_util import TriggerIn, TriggerOut import oasys.util.oasys_util as OU from srxraylib.util.data_structures import ScaledMatrix from scipy.interpolate import RectBivariateSpline from wofrysrw.propagator.wavefront2D.srw_wavefront import SRWWavefront, PolarizationComponent, Polarization from wofrysrw.beamline.optical_elements.other.srw_crl import SRWCRL from wofry.propagator.propagator import PropagationManager from wofrysrw.propagator.propagators2D.srw_fresnel_native import SRW_APPLICATION from wofrysrw.propagator.propagators2D.srw_propagation_mode import SRWPropagationMode from orangecontrib.srw.util.srw_objects import SRWData from orangecontrib.srw.util.srw_util import SRWPlot from orangecontrib.srw.widgets.gui.ow_srw_wavefront_viewer import SRWWavefrontViewer class OWThicknessErrorPhaseShift(SRWWavefrontViewer): name = "Thickness Error Phase Shift" description = "Thickness Error Phase Shift" icon = "icons/thickness_phase_shifter.png" maintainer = "<NAME>" maintainer_email = "<EMAIL>" priority = 5 category = "Display Data Tools" keywords = ["data", "file", "load", "read"] outputs = [{"name":"SRWData", "type":SRWData, "doc":"SRW Optical Element Data", "id":"data"}, {"name":"Trigger", "type": TriggerIn, "doc":"Feedback signal to start a new beam simulation", "id":"Trigger"}] inputs = [("SRWData", SRWData, "set_input"), ("Error Profiles", list, "setErrorProfiles"), ("Trigger", TriggerOut, "propagate_new_wavefront")] crl_error_profiles = Setting([]) crl_scaling_factor = Setting(1.0) TABS_AREA_HEIGHT = 555 CONTROL_AREA_WIDTH = 405 def __init__(self): super().__init__() self.runaction = widget.OWAction("Propagate Wavefront", self) self.runaction.triggered.connect(self.propagate_wavefront) self.addAction(self.runaction) button_box = oasysgui.widgetBox(self.controlArea, "", addSpace=False, orientation="horizontal") button = gui.button(button_box, self, "Propagate Wavefront", callback=self.propagate_wavefront) font = QFont(button.font()) font.setBold(True) button.setFont(font) palette = QPalette(button.palette()) # make a copy of the palette palette.setColor(QPalette.ButtonText, QColor('Dark Blue')) button.setPalette(palette) # assign new palette button.setFixedHeight(45) button = gui.button(button_box, self, "Reset Fields", callback=self.callResetSettings) font = QFont(button.font()) font.setItalic(True) button.setFont(font) palette = QPalette(button.palette()) # make a copy of the palette palette.setColor(QPalette.ButtonText, QColor('Dark Red')) button.setPalette(palette) # assign new palette button.setFixedHeight(45) button.setFixedWidth(150) gui.separator(self.controlArea) self.controlArea.setFixedWidth(self.CONTROL_AREA_WIDTH) self.tabs_setting = oasysgui.tabWidget(self.controlArea) self.tabs_setting.setFixedHeight(self.TABS_AREA_HEIGHT) self.tabs_setting.setFixedWidth(self.CONTROL_AREA_WIDTH-5) tab_thick = oasysgui.createTabPage(self.tabs_setting, "Thickness Error") input_box = oasysgui.widgetBox(tab_thick, "Thickness Error Files", addSpace=True, orientation="vertical", height=390, width=self.CONTROL_AREA_WIDTH-20) self.files_area = oasysgui.textArea(height=315) input_box.layout().addWidget(self.files_area) self.refresh_files_text_area() oasysgui.lineEdit(input_box, self, "crl_scaling_factor", "Thickness Error Scaling Factor", labelWidth=260, valueType=float, orientation="horizontal") def refresh_files_text_area(self): text = "" for file in self.crl_error_profiles: text += file + "\n" self.files_area.setText(text) def setErrorProfiles(self, error_profiles): try: if not error_profiles is None: self.crl_error_profiles = error_profiles self.refresh_files_text_area() except Exception as exception: QMessageBox.critical(self, "Error", exception.args[0], QMessageBox.Ok) if self.IS_DEVELOP: raise exception def set_input(self, srw_data): if not srw_data is None: self.input_srw_data = srw_data if self.is_automatic_run: self.propagate_wavefront() def set_srw_live_propagation_mode(self): if PropagationManager.Instance().get_propagation_mode(SRW_APPLICATION)==SRWPropagationMode.WHOLE_BEAMLINE: raise ValueError("Propagation Mode not supported, switch to Element by Element") else: super(OWThicknessErrorPhaseShift, self).set_srw_live_propagation_mode() def propagate_wavefront(self): try: self.progressBarInit() if self.input_srw_data is None: raise Exception("No Input Data") self.check_data() input_wavefront = self.input_srw_data.get_srw_wavefront().duplicate() srw_beamline = self.input_srw_data.get_srw_beamline().duplicate() optical_element = srw_beamline.get_beamline_element_at(-1).get_optical_element() coordinates = srw_beamline.get_beamline_element_at(-1).get_coordinates() if not isinstance(optical_element, SRWCRL): raise ValueError("Thickness Error Phase Shift should be connected to a CRL optical element") if coordinates.q() != 0.0: raise ValueError("Thickness Error Phase Shift should be applied on unpropagated wavefronts: put 'q' value to 0.0 in the previous optical element") crl_delta = optical_element.delta crl_w_mirr_2D_values = [OWThicknessErrorPhaseShift.h5_readsurface(thickness_error_file) for thickness_error_file in self.crl_error_profiles] # TO WOFRY generic_wavefront = input_wavefront.toGenericWavefront() for thickness_error_profile in crl_w_mirr_2D_values: phase_shift = OWThicknessErrorPhaseShift.get_crl_phase_shift(thickness_error_profile, crl_delta, generic_wavefront, self.crl_scaling_factor) generic_wavefront.add_phase_shift(phase_shift, Polarization.SIGMA) generic_wavefront.add_phase_shift(phase_shift, Polarization.PI) # TO SRW output_wavefront = SRWWavefront.fromGenericWavefront(generic_wavefront) output_wavefront.Rx = input_wavefront.Rx output_wavefront.Ry = input_wavefront.Ry output_wavefront.dRx = input_wavefront.dRx output_wavefront.dRy = input_wavefront.dRy output_wavefront.xc = input_wavefront.xc output_wavefront.yc = input_wavefront.yc output_wavefront.avgPhotEn = input_wavefront.avgPhotEn output_wavefront.presCA = input_wavefront.presCA output_wavefront.presFT = input_wavefront.presFT output_wavefront.unitElFld = input_wavefront.unitElFld output_wavefront.arElecPropMatr = copy.deepcopy(input_wavefront.arElecPropMatr) output_wavefront.arMomX = copy.deepcopy(input_wavefront.arMomX) output_wavefront.arMomY = copy.deepcopy(input_wavefront.arMomY) output_wavefront.arWfrAuxData = copy.deepcopy(input_wavefront.arWfrAuxData) output_wavefront.partBeam = copy.deepcopy(input_wavefront.partBeam) output_wavefront.setScanningData(input_wavefront.scanned_variable_data) output_srw_data = SRWData(srw_beamline=srw_beamline, srw_wavefront=output_wavefront) self.progressBarSet(50) self.initializeTabs() tickets = [] self.run_calculation_for_plots(output_wavefront=output_wavefront, tickets=tickets, progress_bar_value=50) self.plot_results(tickets, 80) self.progressBarFinished() self.setStatusMessage("") self.send("SRWData", output_srw_data) self.send("Trigger", TriggerIn(new_object=True)) except Exception as e: QMessageBox.critical(self, "Error", str(e.args[0]), QMessageBox.Ok) self.setStatusMessage("") self.progressBarFinished() if self.IS_DEVELOP: raise e def run_calculation_for_plots(self, output_wavefront, tickets, progress_bar_value): if self.view_type==2: e, h, v, i = output_wavefront.get_intensity(multi_electron=False, polarization_component_to_be_extracted=PolarizationComponent.LINEAR_HORIZONTAL) tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, i[int(e.size/2)])) self.progressBarSet(progress_bar_value) e, h, v, i = output_wavefront.get_intensity(multi_electron=False, polarization_component_to_be_extracted=PolarizationComponent.LINEAR_VERTICAL) tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, i[int(e.size/2)])) e, h, v, p = output_wavefront.get_phase(polarization_component_to_be_extracted=PolarizationComponent.LINEAR_HORIZONTAL) tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, p[int(e.size/2)])) self.progressBarSet(progress_bar_value + 10) e, h, v, p = output_wavefront.get_phase(polarization_component_to_be_extracted=PolarizationComponent.LINEAR_VERTICAL) tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, p[int(e.size/2)])) elif self.view_type==1: e, h, v, i = output_wavefront.get_intensity(multi_electron=False) tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, i[int(e.size/2)])) self.progressBarSet(progress_bar_value) e, h, v, p = output_wavefront.get_phase() tickets.append(SRWPlot.get_ticket_2D(h*1000, v*1000, p[int(e.size/2)])) self.progressBarSet(progress_bar_value + 10) def propagate_new_wavefront(self, trigger): try: if trigger and trigger.new_object == True: if trigger.has_additional_parameter("variable_name"): if self.input_srw_data is None: raise Exception("No Input Data") variable_name = trigger.get_additional_parameter("variable_name").strip() variable_display_name = trigger.get_additional_parameter("variable_display_name").strip() variable_value = trigger.get_additional_parameter("variable_value") variable_um = trigger.get_additional_parameter("variable_um") if "," in variable_name: variable_names = variable_name.split(",") for variable_name in variable_names: setattr(self, variable_name.strip(), variable_value) else: setattr(self, variable_name, variable_value) self.input_srw_data.get_srw_wavefront().setScanningData(SRWWavefront.ScanningData(variable_name, variable_value, variable_display_name, variable_um)) self.propagate_wavefront() except Exception as exception: QMessageBox.critical(self, "Error", str(exception), QMessageBox.Ok) if self.IS_DEVELOP: raise exception def check_data(self): if len(self.crl_error_profiles) == 0: raise ValueError("No Thickness error profile specified") congruence.checkPositiveNumber(self.crl_scaling_factor, "Thickness Error Scaling Factor") @classmethod def h5_readsurface(cls, filename): x_coords, y_coords, z_values = OU.read_surface_file(filename) return ScaledMatrix(x_coords, y_coords, z_values.T) @classmethod def get_crl_phase_shift(cls, thickness_error_profile, crl_delta, wavefront, crl_scaling_factor=1.0): coord_x = thickness_error_profile.x_coord coord_y = thickness_error_profile.y_coord thickness_error = thickness_error_profile.z_values interpolator = RectBivariateSpline(coord_x, coord_y, thickness_error, bbox=[None, None, None, None], kx=1, ky=1, s=0) wavelength = wavefront.get_wavelength() wavefront_coord_x = wavefront.get_coordinate_x() wavefront_coord_y = wavefront.get_coordinate_y() thickness_error = interpolator(wavefront_coord_x, wavefront_coord_y) thickness_error[numpy.where(thickness_error==numpy.nan)] = 0.0 thickness_error *= crl_scaling_factor return -2*numpy.pi*crl_delta*thickness_error/wavelength def getVariablesToPlot(self): if self.view_type == 2: return [[1, 2], [1, 2], [1, 2], [1, 2]] else: return [[1, 2], [1, 2]] def getWeightedPlots(self): if self.view_type == 2: return [False, False, True, True] else: return [False, True] def getWeightTickets(self): if self.view_type == 2: return [nan, nan, 0, 1] else: return [nan, 0] def getTitles(self, with_um=False): if self.view_type == 2: if with_um: return ["Intensity SE \u03c0 [ph/s/.1%bw/mm\u00b2]", "Intensity SE \u03c3 [ph/s/.1%bw/mm\u00b2]", "Phase SE \u03c0 [rad]", "Phase SE \u03c0 [rad]"] else: return ["Intensity SE \u03c0", "Intensity SE \u03c3", "Phase SE \u03c0", "Phase SE \u03c3"] else: if with_um: return ["Intensity SE [ph/s/.1%bw/mm\u00b2]", "Phase SE [rad]"] else: return ["Intensity SE", "Phase SE"] def getXTitles(self): if self.view_type == 2: return ["X [\u03bcm]", "X [\u03bcm]", "X [\u03bcm]", "X [\u03bcm]"] else: return ["X [\u03bcm]", "X [\u03bcm]"] def getYTitles(self): if self.view_type == 2: return ["Y [\u03bcm]", "Y [\u03bcm]", "Y [\u03bcm]", "Y [\u03bcm]"] else: return ["Y [\u03bcm]", "Y [\u03bcm]"] def getXUM(self): if self.view_type == 2: return ["X [\u03bcm]", "X [\u03bcm]", "X [\u03bcm]", "X [\u03bcm]"] else: return ["X [\u03bcm]", "X [\u03bcm]"] def getYUM(self): if self.view_type == 2: return ["Y [\u03bcm]", "Y [\u03bcm]", "Y [\u03bcm]", "Y [\u03bcm]"] else: return ["Y [\u03bcm]", "Y [\u03bcm]"] def callResetSettings(self): if ConfirmDialog.confirmed(parent=self, message="Confirm Reset of the Fields?"): try: self.resetSettings() except: pass
[ "oasys.widgets.gui.widgetBox", "oasys.widgets.gui.createTabPage", "PyQt5.QtGui.QColor", "oasys.util.oasys_util.read_surface_file", "oasys.widgets.gui.tabWidget", "copy.deepcopy", "orangewidget.settings.Setting", "wofrysrw.propagator.wavefront2D.srw_wavefront.SRWWavefront.fromGenericWavefront", "oasys.widgets.congruence.checkPositiveNumber", "wofrysrw.propagator.wavefront2D.srw_wavefront.SRWWavefront.ScanningData", "scipy.interpolate.RectBivariateSpline", "numpy.where", "orangecontrib.srw.util.srw_objects.SRWData", "orangewidget.gui.separator", "oasys.widgets.gui.lineEdit", "orangewidget.gui.button", "wofry.propagator.propagator.PropagationManager.Instance", "oasys.widgets.gui.ConfirmDialog.confirmed", "oasys.widgets.gui.textArea", "oasys.util.oasys_util.TriggerIn", "PyQt5.QtWidgets.QMessageBox.critical", "srxraylib.util.data_structures.ScaledMatrix", "orangewidget.widget.OWAction" ]
[((2028, 2039), 'orangewidget.settings.Setting', 'Setting', (['[]'], {}), '([])\n', (2035, 2039), False, 'from orangewidget.settings import Setting\n'), ((2065, 2077), 'orangewidget.settings.Setting', 'Setting', (['(1.0)'], {}), '(1.0)\n', (2072, 2077), False, 'from orangewidget.settings import Setting\n'), ((2213, 2257), 'orangewidget.widget.OWAction', 'widget.OWAction', (['"""Propagate Wavefront"""', 'self'], {}), "('Propagate Wavefront', self)\n", (2228, 2257), False, 'from orangewidget import widget\n'), ((2386, 2473), 'oasys.widgets.gui.widgetBox', 'oasysgui.widgetBox', (['self.controlArea', '""""""'], {'addSpace': '(False)', 'orientation': '"""horizontal"""'}), "(self.controlArea, '', addSpace=False, orientation=\n 'horizontal')\n", (2404, 2473), True, 'from oasys.widgets import gui as oasysgui\n'), ((2487, 2578), 'orangewidget.gui.button', 'gui.button', (['button_box', 'self', '"""Propagate Wavefront"""'], {'callback': 'self.propagate_wavefront'}), "(button_box, self, 'Propagate Wavefront', callback=self.\n propagate_wavefront)\n", (2497, 2578), False, 'from orangewidget import gui\n'), ((2915, 2992), 'orangewidget.gui.button', 'gui.button', (['button_box', 'self', '"""Reset Fields"""'], {'callback': 'self.callResetSettings'}), "(button_box, self, 'Reset Fields', callback=self.callResetSettings)\n", (2925, 2992), False, 'from orangewidget import gui\n'), ((3360, 3391), 'orangewidget.gui.separator', 'gui.separator', (['self.controlArea'], {}), '(self.controlArea)\n', (3373, 3391), False, 'from orangewidget import gui\n'), ((3486, 3522), 'oasys.widgets.gui.tabWidget', 'oasysgui.tabWidget', (['self.controlArea'], {}), '(self.controlArea)\n', (3504, 3522), True, 'from oasys.widgets import gui as oasysgui\n'), ((3675, 3735), 'oasys.widgets.gui.createTabPage', 'oasysgui.createTabPage', (['self.tabs_setting', '"""Thickness Error"""'], {}), "(self.tabs_setting, 'Thickness Error')\n", (3697, 3735), True, 'from oasys.widgets import gui as oasysgui\n'), ((3757, 3902), 'oasys.widgets.gui.widgetBox', 'oasysgui.widgetBox', (['tab_thick', '"""Thickness Error Files"""'], {'addSpace': '(True)', 'orientation': '"""vertical"""', 'height': '(390)', 'width': '(self.CONTROL_AREA_WIDTH - 20)'}), "(tab_thick, 'Thickness Error Files', addSpace=True,\n orientation='vertical', height=390, width=self.CONTROL_AREA_WIDTH - 20)\n", (3775, 3902), True, 'from oasys.widgets import gui as oasysgui\n'), ((3924, 3953), 'oasys.widgets.gui.textArea', 'oasysgui.textArea', ([], {'height': '(315)'}), '(height=315)\n', (3941, 3953), True, 'from oasys.widgets import gui as oasysgui\n'), ((4058, 4215), 'oasys.widgets.gui.lineEdit', 'oasysgui.lineEdit', (['input_box', 'self', '"""crl_scaling_factor"""', '"""Thickness Error Scaling Factor"""'], {'labelWidth': '(260)', 'valueType': 'float', 'orientation': '"""horizontal"""'}), "(input_box, self, 'crl_scaling_factor',\n 'Thickness Error Scaling Factor', labelWidth=260, valueType=float,\n orientation='horizontal')\n", (4075, 4215), True, 'from oasys.widgets import gui as oasysgui\n'), ((12076, 12169), 'oasys.widgets.congruence.checkPositiveNumber', 'congruence.checkPositiveNumber', (['self.crl_scaling_factor', '"""Thickness Error Scaling Factor"""'], {}), "(self.crl_scaling_factor,\n 'Thickness Error Scaling Factor')\n", (12106, 12169), False, 'from oasys.widgets import congruence\n'), ((12262, 12292), 'oasys.util.oasys_util.read_surface_file', 'OU.read_surface_file', (['filename'], {}), '(filename)\n', (12282, 12292), True, 'import oasys.util.oasys_util as OU\n'), ((12309, 12353), 'srxraylib.util.data_structures.ScaledMatrix', 'ScaledMatrix', (['x_coords', 'y_coords', 'z_values.T'], {}), '(x_coords, y_coords, z_values.T)\n', (12321, 12353), False, 'from srxraylib.util.data_structures import ScaledMatrix\n'), ((12660, 12766), 'scipy.interpolate.RectBivariateSpline', 'RectBivariateSpline', (['coord_x', 'coord_y', 'thickness_error'], {'bbox': '[None, None, None, None]', 'kx': '(1)', 'ky': '(1)', 's': '(0)'}), '(coord_x, coord_y, thickness_error, bbox=[None, None,\n None, None], kx=1, ky=1, s=0)\n', (12679, 12766), False, 'from scipy.interpolate import RectBivariateSpline\n'), ((15248, 15324), 'oasys.widgets.gui.ConfirmDialog.confirmed', 'ConfirmDialog.confirmed', ([], {'parent': 'self', 'message': '"""Confirm Reset of the Fields?"""'}), "(parent=self, message='Confirm Reset of the Fields?')\n", (15271, 15324), False, 'from oasys.widgets.gui import ConfirmDialog\n'), ((2786, 2805), 'PyQt5.QtGui.QColor', 'QColor', (['"""Dark Blue"""'], {}), "('Dark Blue')\n", (2792, 2805), False, 'from PyQt5.QtGui import QPalette, QColor, QFont\n'), ((3207, 3225), 'PyQt5.QtGui.QColor', 'QColor', (['"""Dark Red"""'], {}), "('Dark Red')\n", (3213, 3225), False, 'from PyQt5.QtGui import QPalette, QColor, QFont\n'), ((7041, 7093), 'wofrysrw.propagator.wavefront2D.srw_wavefront.SRWWavefront.fromGenericWavefront', 'SRWWavefront.fromGenericWavefront', (['generic_wavefront'], {}), '(generic_wavefront)\n', (7074, 7093), False, 'from wofrysrw.propagator.wavefront2D.srw_wavefront import SRWWavefront, PolarizationComponent, Polarization\n'), ((7728, 7773), 'copy.deepcopy', 'copy.deepcopy', (['input_wavefront.arElecPropMatr'], {}), '(input_wavefront.arElecPropMatr)\n', (7741, 7773), False, 'import numpy, copy\n'), ((7813, 7850), 'copy.deepcopy', 'copy.deepcopy', (['input_wavefront.arMomX'], {}), '(input_wavefront.arMomX)\n', (7826, 7850), False, 'import numpy, copy\n'), ((7890, 7927), 'copy.deepcopy', 'copy.deepcopy', (['input_wavefront.arMomY'], {}), '(input_wavefront.arMomY)\n', (7903, 7927), False, 'import numpy, copy\n'), ((7973, 8016), 'copy.deepcopy', 'copy.deepcopy', (['input_wavefront.arWfrAuxData'], {}), '(input_wavefront.arWfrAuxData)\n', (7986, 8016), False, 'import numpy, copy\n'), ((8057, 8096), 'copy.deepcopy', 'copy.deepcopy', (['input_wavefront.partBeam'], {}), '(input_wavefront.partBeam)\n', (8070, 8096), False, 'import numpy, copy\n'), ((8213, 8279), 'orangecontrib.srw.util.srw_objects.SRWData', 'SRWData', ([], {'srw_beamline': 'srw_beamline', 'srw_wavefront': 'output_wavefront'}), '(srw_beamline=srw_beamline, srw_wavefront=output_wavefront)\n', (8220, 8279), False, 'from orangecontrib.srw.util.srw_objects import SRWData\n'), ((13028, 13069), 'numpy.where', 'numpy.where', (['(thickness_error == numpy.nan)'], {}), '(thickness_error == numpy.nan)\n', (13039, 13069), False, 'import numpy, copy\n'), ((4644, 4714), 'PyQt5.QtWidgets.QMessageBox.critical', 'QMessageBox.critical', (['self', '"""Error"""', 'exception.args[0]', 'QMessageBox.Ok'], {}), "(self, 'Error', exception.args[0], QMessageBox.Ok)\n", (4664, 4714), False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((8703, 8729), 'oasys.util.oasys_util.TriggerIn', 'TriggerIn', ([], {'new_object': '(True)'}), '(new_object=True)\n', (8712, 8729), False, 'from oasys.util.oasys_util import TriggerIn, TriggerOut\n'), ((5081, 5110), 'wofry.propagator.propagator.PropagationManager.Instance', 'PropagationManager.Instance', ([], {}), '()\n', (5108, 5110), False, 'from wofry.propagator.propagator import PropagationManager\n'), ((11628, 11724), 'wofrysrw.propagator.wavefront2D.srw_wavefront.SRWWavefront.ScanningData', 'SRWWavefront.ScanningData', (['variable_name', 'variable_value', 'variable_display_name', 'variable_um'], {}), '(variable_name, variable_value,\n variable_display_name, variable_um)\n', (11653, 11724), False, 'from wofrysrw.propagator.wavefront2D.srw_wavefront import SRWWavefront, PolarizationComponent, Polarization\n')]
import numpy as np import torch from matplotlib import pyplot as plt from scipy.spatial.distance import directed_hausdorff from numpy import linalg as LA from sklearn import metrics def get_roc_auc(target, prediction): y_true = target.view(-1).numpy() y_score = prediction.view(-1).cpu().detach().numpy() roc_auc_score = metrics.roc_auc_score(y_true, y_score) return roc_auc_score def get_precission_recall_auc(target, prediction): y_true = target.view(-1).numpy() y_score = prediction.view(-1).cpu().detach().numpy() precision, recall, _ = metrics.precision_recall_curve(y_true, y_score) precission_recall_auc = metrics.auc(recall, precision) return precission_recall_auc def dice_coef(target, prediction): pred_flat = prediction.contiguous().view(-1) target_flat = target.contiguous().view(-1) intersection = torch.sum(pred_flat * target_flat) union = torch.sum(pred_flat + target_flat) coef = (2 * intersection) / union return coef def hausdorff_distance(target_coord, prediction_coord): if len(prediction_coord) >= 1: hausdorff_distance = max(directed_hausdorff(target_coord, prediction_coord)[0], directed_hausdorff(prediction_coord, target_coord)[0]) else: hausdorff_distance = None return hausdorff_distance def jaccard_coef(target_fg, prediction_fg): intersection = torch.sum(prediction_fg * target_fg) union = torch.sum(prediction_fg + target_fg) coef_fg = intersection/(union - intersection) return coef_fg # def gt_hot_encoding(ground_truth): # return (ground_truth-1)*-1 def mean_surface_distance(target_coord, prediction_coord): surface_sum_distance = 0 if len(prediction_coord) != 0: for point in target_coord: min_distances = min([LA.norm(coord) for coord in np.array(point)-np.array(prediction_coord)]) surface_sum_distance += min_distances for point in prediction_coord: min_distances = min([LA.norm(coord) for coord in np.array(point) - np.array(target_coord)]) surface_sum_distance += min_distances return surface_sum_distance/(len(target_coord) + len(prediction_coord)) else: return None def convert_to_coordinates(target, prediction): target = target.squeeze_(0).numpy() prediction = prediction.squeeze_(0).numpy() target_coord = [(x, y, z) for x, y, z in zip(np.where(target==1)[0], np.where(target==1)[1], np.where(target==1)[2])] prediction_coord = [(x, y, z) for x, y, z in zip(np.where(prediction==1)[0], np.where(prediction==1)[1], np.where(prediction==1)[2])] return target_coord, prediction_coord def get_relative_volume(mask): relative_volume = 100 * torch.sum(mask)/mask.numel() return relative_volume def plot_ct_and_mask(query, mask, pred, title, path): query = query.squeeze_(0).squeeze_(0).detach().cpu() pred = pred.squeeze_(0) fig1 = plt.figure() fig2 = plt.figure() subplot_1 = 1 subplot_2 = 1 slices = np.random.choice(np.arange(query.shape[2]), 5) for i in slices: fig = plt.figure(figsize=(10, 10)) ax_gt = fig.add_subplot(1, 2, 1) ax_gt.imshow(query[:, :, i] + mask[:, :, i] * 5, cmap=plt.cm.bone, aspect='auto') ax_pred = fig.add_subplot(1, 2, 2) ax_pred.imshow(query[:, :, i] + pred[:, :, i] * 5, cmap=plt.cm.bone, aspect='auto') plt.title(title + ' slice ' + str(i)) plt.savefig(path + '/' + title + ' slice ' + str(i) + '.png') def save_images(prediction, path, title, in_memory=None): prediction = prediction.squeeze_(0) if in_memory is not None: title = title + in_memory np.save(path + '/' + title, prediction)
[ "scipy.spatial.distance.directed_hausdorff", "numpy.arange", "numpy.where", "sklearn.metrics.auc", "sklearn.metrics.precision_recall_curve", "sklearn.metrics.roc_auc_score", "numpy.array", "matplotlib.pyplot.figure", "torch.sum", "numpy.linalg.norm", "numpy.save" ]
[((336, 374), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (357, 374), False, 'from sklearn import metrics\n'), ((574, 621), 'sklearn.metrics.precision_recall_curve', 'metrics.precision_recall_curve', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (604, 621), False, 'from sklearn import metrics\n'), ((650, 680), 'sklearn.metrics.auc', 'metrics.auc', (['recall', 'precision'], {}), '(recall, precision)\n', (661, 680), False, 'from sklearn import metrics\n'), ((867, 901), 'torch.sum', 'torch.sum', (['(pred_flat * target_flat)'], {}), '(pred_flat * target_flat)\n', (876, 901), False, 'import torch\n'), ((914, 948), 'torch.sum', 'torch.sum', (['(pred_flat + target_flat)'], {}), '(pred_flat + target_flat)\n', (923, 948), False, 'import torch\n'), ((1378, 1414), 'torch.sum', 'torch.sum', (['(prediction_fg * target_fg)'], {}), '(prediction_fg * target_fg)\n', (1387, 1414), False, 'import torch\n'), ((1427, 1463), 'torch.sum', 'torch.sum', (['(prediction_fg + target_fg)'], {}), '(prediction_fg + target_fg)\n', (1436, 1463), False, 'import torch\n'), ((2933, 2945), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2943, 2945), True, 'from matplotlib import pyplot as plt\n'), ((2957, 2969), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2967, 2969), True, 'from matplotlib import pyplot as plt\n'), ((3681, 3720), 'numpy.save', 'np.save', (["(path + '/' + title)", 'prediction'], {}), "(path + '/' + title, prediction)\n", (3688, 3720), True, 'import numpy as np\n'), ((3037, 3062), 'numpy.arange', 'np.arange', (['query.shape[2]'], {}), '(query.shape[2])\n', (3046, 3062), True, 'import numpy as np\n'), ((3102, 3130), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (3112, 3130), True, 'from matplotlib import pyplot as plt\n'), ((2725, 2740), 'torch.sum', 'torch.sum', (['mask'], {}), '(mask)\n', (2734, 2740), False, 'import torch\n'), ((1129, 1179), 'scipy.spatial.distance.directed_hausdorff', 'directed_hausdorff', (['target_coord', 'prediction_coord'], {}), '(target_coord, prediction_coord)\n', (1147, 1179), False, 'from scipy.spatial.distance import directed_hausdorff\n'), ((1184, 1234), 'scipy.spatial.distance.directed_hausdorff', 'directed_hausdorff', (['prediction_coord', 'target_coord'], {}), '(prediction_coord, target_coord)\n', (1202, 1234), False, 'from scipy.spatial.distance import directed_hausdorff\n'), ((1797, 1811), 'numpy.linalg.norm', 'LA.norm', (['coord'], {}), '(coord)\n', (1804, 1811), True, 'from numpy import linalg as LA\n'), ((1992, 2006), 'numpy.linalg.norm', 'LA.norm', (['coord'], {}), '(coord)\n', (1999, 2006), True, 'from numpy import linalg as LA\n'), ((2411, 2432), 'numpy.where', 'np.where', (['(target == 1)'], {}), '(target == 1)\n', (2419, 2432), True, 'import numpy as np\n'), ((2435, 2456), 'numpy.where', 'np.where', (['(target == 1)'], {}), '(target == 1)\n', (2443, 2456), True, 'import numpy as np\n'), ((2459, 2480), 'numpy.where', 'np.where', (['(target == 1)'], {}), '(target == 1)\n', (2467, 2480), True, 'import numpy as np\n'), ((2537, 2562), 'numpy.where', 'np.where', (['(prediction == 1)'], {}), '(prediction == 1)\n', (2545, 2562), True, 'import numpy as np\n'), ((2565, 2590), 'numpy.where', 'np.where', (['(prediction == 1)'], {}), '(prediction == 1)\n', (2573, 2590), True, 'import numpy as np\n'), ((2593, 2618), 'numpy.where', 'np.where', (['(prediction == 1)'], {}), '(prediction == 1)\n', (2601, 2618), True, 'import numpy as np\n'), ((1825, 1840), 'numpy.array', 'np.array', (['point'], {}), '(point)\n', (1833, 1840), True, 'import numpy as np\n'), ((1841, 1867), 'numpy.array', 'np.array', (['prediction_coord'], {}), '(prediction_coord)\n', (1849, 1867), True, 'import numpy as np\n'), ((2020, 2035), 'numpy.array', 'np.array', (['point'], {}), '(point)\n', (2028, 2035), True, 'import numpy as np\n'), ((2038, 2060), 'numpy.array', 'np.array', (['target_coord'], {}), '(target_coord)\n', (2046, 2060), True, 'import numpy as np\n')]
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : <EMAIL> @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : tensorflow_cookbook @File : C0707_Doc2Vec.py @Version : v0.1 @Time : 2019-12-06 17:12 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《TensorFlow机器学习实战指南,Nick McClure》, Sec0707,P172 @Desc : 自然语言处理,使用 TensorFlow 实现基于 Doc2Vec 的情感分析 @理解:关键是文档嵌套与单词嵌套的结合。 结合有两种方式:❶ 文档嵌套和单词嵌套相加;❷ 文档嵌套直接在单词嵌套后面。 这个模型采用的是第2种方式,但是使用的数据集对于理解Doc2Vec方法效果不太好,通过这个例子只能知道如何使用,无法知道这个模型带来的改变是什么。 这个例子还说明,虽然使用神经网络训练不需要考虑太多前期工作,但是前期数据特征化依然是非常重要的,只有对模型的充分理解才能更好的特征化。 """ # common imports import os import pickle import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import sklearn import tensorflow as tf import winsound from nltk.corpus import stopwords from tensorflow.python.framework import ops # 设置数据显示的精确度为小数点后3位 from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers np.set_printoptions(precision = 8, suppress = True, threshold = np.inf, linewidth = 200) # 利用随机种子,保证随机数据的稳定性,使得每次随机测试的结果一样 seed = 42 np.random.seed(seed) tf.set_random_seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required assert sklearn.__version__ >= "0.20" # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 初始化默认的计算图 ops.reset_default_graph() # Open graph session sess = tf.Session() # ---------------------------------------------------------------------- # Declare model parameters data_folder_name = 'temp' batch_size = 500 vocabulary_size = 7500 generations = 100000 model_learning_rate = 0.001 embedding_size = 200 # Word embedding size doc_embedding_size = 100 # Document embedding size concatenated_size = embedding_size + doc_embedding_size num_sampled = int(batch_size / 2) # Number of negative examples to sample. window_size = 3 # How many words to consider to the left. # Add checkpoints to training save_embeddings_every = 5000 print_valid_every = 5000 print_loss_every = 100 # Declare stop words stops = stopwords.words('english') # We pick a few test words for validation. valid_words = ['love', 'hate', 'happy', 'sad', 'man', 'woman'] # Later we will have to transform these into indices # Load the movie review data print('Loading Data') texts, target = load_movie_data() # Normalize text print('Normalizing Text Data') texts = normalize_text(texts, stops) # Texts must contain at least 3 words target = [target[ix] for ix, x in enumerate(texts) if len(x.split()) > window_size] texts = [x for x in texts if len(x.split()) > window_size] assert (len(target) == len(texts)) # Build our data set and dictionaries print('Creating Dictionary') word_dictionary = build_dictionary(texts, vocabulary_size) word_dictionary_rev = dict(zip(word_dictionary.values(), word_dictionary.keys())) text_data = text_to_numbers(texts, word_dictionary) # 获得检验用的单词的键值 valid_examples = [word_dictionary[x] for x in valid_words] print('Creating Model') # 6. 定义单词嵌套,声明对比噪声损失函数(NCE) embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) nce_weights = tf.Variable(tf.truncated_normal( [vocabulary_size, concatenated_size], stddev = 1.0 / np.sqrt(concatenated_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Create data/target placeholders x_inputs = tf.placeholder(tf.int32, shape = [None, window_size + 1]) # windows_size是单词嵌套,后面的1是文档嵌套 y_target = tf.placeholder(tf.int32, shape = [None, 1]) valid_dataset = tf.constant(valid_examples, dtype = tf.int32) # 8. 创建单词嵌套函数和文档嵌套函数,将单词嵌套求和,再与文档嵌套连接在一起 # 创建单词嵌套函数(基于的CBOW方法) embed = tf.zeros([batch_size, embedding_size]) for element in range(window_size): embed += tf.nn.embedding_lookup(embeddings, x_inputs[:, element]) # 创建文档嵌套函数(文档索引基于文档导入时顺序的唯一索引值) doc_indices = tf.slice(x_inputs, [0, window_size], [batch_size, 1]) doc_embeddings = tf.Variable(tf.random_uniform([len(texts), doc_embedding_size], -1.0, 1.0)) doc_embed = tf.nn.embedding_lookup(doc_embeddings, doc_indices) # 单词嵌套与文档嵌套的连接 final_embed = tf.concat(axis = 1, values = [embed, tf.squeeze(doc_embed)]) # 9. 声明损失函数和优化器 # Get loss from prediction loss = tf.reduce_mean(tf.nn.nce_loss(weights = nce_weights, biases = nce_biases, labels = y_target, inputs = final_embed, num_sampled = num_sampled, num_classes = vocabulary_size)) # Create optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate = model_learning_rate) train_step = optimizer.minimize(loss) # 10. 声明验证单词集的余弦距离 norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b = True) # 11. 创建模型的 Saver 函数,用于保存单词嵌套和文档嵌套 saver = tf.train.Saver({"embeddings": embeddings, "doc_embeddings": doc_embeddings}) # Add variable initializer. init = tf.global_variables_initializer() sess.run(init) # 训练 Doc2Vec 模型 print('Starting Training') loss_vec = [] loss_x_vec = [] for i in range(generations): batch_inputs, batch_labels = generate_batch_data(text_data, batch_size, window_size, method = 'doc2vec') feed_dict = {x_inputs: batch_inputs, y_target: batch_labels} # Run the train step sess.run(train_step, feed_dict = feed_dict) # Return the loss if (i + 1) % print_loss_every == 0: loss_val = sess.run(loss, feed_dict = feed_dict) loss_vec.append(loss_val) loss_x_vec.append(i + 1) print('Loss at step {} : {}'.format(i + 1, loss_val)) # Validation: Print some random words and top 5 related words if (i + 1) % print_valid_every == 0: sim = sess.run(similarity, feed_dict = feed_dict) for j in range(len(valid_words)): valid_word = word_dictionary_rev[valid_examples[j]] top_k = 5 # number of nearest neighbors nearest = (-sim[j, :]).argsort()[1:top_k + 1] log_str = "Nearest to {}:".format(valid_word) for k in range(top_k): close_word = word_dictionary_rev[nearest[k]] log_str = '{} {},'.format(log_str, close_word) print(log_str) # Save dictionary + embeddings if (i + 1) % save_embeddings_every == 0: # Save vocabulary dictionary with open(os.path.join(data_folder_name, 'movie_vocab.pkl'), 'wb') as f: pickle.dump(word_dictionary, f) # Save embeddings model_checkpoint_path = os.path.join(os.getcwd(), data_folder_name, 'doc2vec_movie_embeddings.ckpt') save_path = saver.save(sess, model_checkpoint_path) print('Model saved in file: {}'.format(save_path)) # Start logistic model------------------------- # 使用这些嵌套矩阵训练逻辑回归模型 max_words = 20 logistic_batch_size = 500 # Split dataset into train and test sets # Need to keep the indices sorted to keep track of document index train_indices = np.sort(np.random.choice(len(target), round(0.8 * len(target)), replace = False)) test_indices = np.sort(np.array(list(set(range(len(target))) - set(train_indices)))) texts_train = [x for ix, x in enumerate(texts) if ix in train_indices] texts_test = [x for ix, x in enumerate(texts) if ix in test_indices] target_train = np.array([x for ix, x in enumerate(target) if ix in train_indices]) target_test = np.array([x for ix, x in enumerate(target) if ix in test_indices]) # Convert texts to lists of indices text_data_train = np.array(text_to_numbers(texts_train, word_dictionary)) text_data_test = np.array(text_to_numbers(texts_test, word_dictionary)) # Pad/crop movie reviews to specific length text_data_train = np.array([x[0:max_words] for x in [y + [0] * max_words for y in text_data_train]]) text_data_test = np.array([x[0:max_words] for x in [y + [0] * max_words for y in text_data_test]]) # Define Logistic placeholders log_x_inputs = tf.placeholder(tf.int32, shape = [None, max_words + 1]) # plus 1 for doc index log_y_target = tf.placeholder(tf.int32, shape = [None, 1]) # Define logistic embedding lookup (needed if we have two different batch sizes) # Add together element embeddings in window: log_embed = tf.zeros([logistic_batch_size, embedding_size]) for element in range(max_words): log_embed += tf.nn.embedding_lookup(embeddings, log_x_inputs[:, element]) log_doc_indices = tf.slice(log_x_inputs, [0, max_words], [logistic_batch_size, 1]) log_doc_embed = tf.nn.embedding_lookup(doc_embeddings, log_doc_indices) # concatenate embeddings log_final_embed = tf.concat(axis = 1, values = [log_embed, tf.squeeze(log_doc_embed)]) # Define model: # Create variables for logistic regression A = tf.Variable(tf.random_normal(shape = [concatenated_size, 1])) b = tf.Variable(tf.random_normal(shape = [1, 1])) # Declare logistic model (sigmoid in loss function) model_output = tf.add(tf.matmul(log_final_embed, A), b) # Declare loss function (Cross Entropy loss) logistic_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits = model_output, labels = tf.cast(log_y_target, tf.float32))) # Actual Prediction prediction = tf.round(tf.sigmoid(model_output)) predictions_correct = tf.cast(tf.equal(prediction, tf.cast(log_y_target, tf.float32)), tf.float32) accuracy = tf.reduce_mean(predictions_correct) # Declare optimizer logistic_opt = tf.train.GradientDescentOptimizer(learning_rate = 0.01) logistic_train_step = logistic_opt.minimize(logistic_loss, var_list = [A, b]) # Intitialize Variables init = tf.global_variables_initializer() sess.run(init) # Start Logistic Regression print('Starting Logistic Doc2Vec Model Training') train_loss, test_loss = [], [] train_acc, test_acc = [], [] i_data = [] for i in range(10000): rand_index = np.random.choice(text_data_train.shape[0], size = logistic_batch_size) rand_x = text_data_train[rand_index] # Append review index at the end of text data rand_x_doc_indices = train_indices[rand_index] # 这里才把输入数据补齐(单词索引+文档索引) rand_x = np.hstack((rand_x, np.transpose([rand_x_doc_indices]))) rand_y = np.transpose([target_train[rand_index]]) feed_dict = {log_x_inputs: rand_x, log_y_target: rand_y} sess.run(logistic_train_step, feed_dict = feed_dict) # Only record loss and accuracy every 100 generations if (i + 1) % 100 == 0: rand_index_test = np.random.choice(text_data_test.shape[0], size = logistic_batch_size) rand_x_test = text_data_test[rand_index_test] rand_x_doc_indices_test = test_indices[rand_index_test] rand_x_test = np.hstack((rand_x_test, np.transpose([rand_x_doc_indices_test]))) rand_y_test = np.transpose([target_test[rand_index_test]]) test_feed_dict = {log_x_inputs: rand_x_test, log_y_target: rand_y_test} i_data.append(i + 1) train_loss_temp = sess.run(logistic_loss, feed_dict = feed_dict) train_loss.append(train_loss_temp) test_loss_temp = sess.run(logistic_loss, feed_dict = test_feed_dict) test_loss.append(test_loss_temp) train_acc_temp = sess.run(accuracy, feed_dict = feed_dict) train_acc.append(train_acc_temp) test_acc_temp = sess.run(accuracy, feed_dict = test_feed_dict) test_acc.append(test_acc_temp) if (i + 1) % 500 == 0: acc_and_loss = [i + 1, train_loss_temp, test_loss_temp, train_acc_temp, test_acc_temp] acc_and_loss = [np.round(x, 2) for x in acc_and_loss] print('Generation # {}. Train Loss (Test Loss): {:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} ({:.2f})' .format(*acc_and_loss)) # Plot loss over time plt.figure() plt.plot(i_data, train_loss, 'k-', label = '训练集') plt.plot(i_data, test_loss, 'r--', label = '测试集', linewidth = 4) plt.title('每次迭代的交叉熵损失') plt.xlabel('迭代次数') plt.ylabel('交叉熵损失') plt.legend(loc = 'upper right') # Plot train and test accuracy plt.figure() plt.plot(i_data, train_acc, 'k-', label = '训练集') plt.plot(i_data, test_acc, 'r--', label = '测试集', linewidth = 4) plt.title('训练集和测试集的精度') plt.xlabel('迭代次数') plt.ylabel('精度') plt.legend(loc = 'lower right') # ---------------------------------------------------------------------- # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
[ "numpy.sqrt", "tensorflow.python.framework.ops.reset_default_graph", "matplotlib.pyplot.ylabel", "text_tools.generate_batch_data", "text_tools.text_to_numbers", "numpy.array", "tensorflow.reduce_mean", "text_tools.build_dictionary", "tensorflow.set_random_seed", "tensorflow.cast", "tensorflow.slice", "tensorflow.nn.embedding_lookup", "tensorflow.random_normal", "nltk.corpus.stopwords.words", "tensorflow.Session", "tensorflow.placeholder", "matplotlib.pyplot.plot", "matplotlib.pyplot.xlabel", "numpy.random.seed", "tensorflow.matmul", "text_tools.normalize_text", "tensorflow.square", "tensorflow.zeros", "numpy.round", "numpy.random.choice", "tensorflow.train.GradientDescentOptimizer", "tensorflow.sigmoid", "text_tools.load_movie_data", "matplotlib.pyplot.title", "numpy.transpose", "matplotlib.pyplot.legend", "numpy.set_printoptions", "matplotlib.pyplot.show", "pickle.dump", "tensorflow.nn.nce_loss", "tensorflow.train.Saver", "matplotlib.pyplot.get_fignums", "os.path.join", "os.getcwd", "tensorflow.global_variables_initializer", "tensorflow.random_uniform", "matplotlib.pyplot.figure", "tensorflow.constant", "winsound.Beep", "tensorflow.squeeze" ]
[((1086, 1171), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(8)', 'suppress': '(True)', 'threshold': 'np.inf', 'linewidth': '(200)'}), '(precision=8, suppress=True, threshold=np.inf, linewidth=200\n )\n', (1105, 1171), True, 'import numpy as np\n'), ((1219, 1239), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1233, 1239), True, 'import numpy as np\n'), ((1240, 1264), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['seed'], {}), '(seed)\n', (1258, 1264), True, 'import tensorflow as tf\n'), ((1621, 1646), 'tensorflow.python.framework.ops.reset_default_graph', 'ops.reset_default_graph', ([], {}), '()\n', (1644, 1646), False, 'from tensorflow.python.framework import ops\n'), ((1675, 1687), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1685, 1687), True, 'import tensorflow as tf\n'), ((2330, 2356), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (2345, 2356), False, 'from nltk.corpus import stopwords\n'), ((2585, 2602), 'text_tools.load_movie_data', 'load_movie_data', ([], {}), '()\n', (2600, 2602), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((2660, 2688), 'text_tools.normalize_text', 'normalize_text', (['texts', 'stops'], {}), '(texts, stops)\n', (2674, 2688), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((2992, 3032), 'text_tools.build_dictionary', 'build_dictionary', (['texts', 'vocabulary_size'], {}), '(texts, vocabulary_size)\n', (3008, 3032), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((3127, 3166), 'text_tools.text_to_numbers', 'text_to_numbers', (['texts', 'word_dictionary'], {}), '(texts, word_dictionary)\n', (3142, 3166), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((3621, 3676), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, window_size + 1]'}), '(tf.int32, shape=[None, window_size + 1])\n', (3635, 3676), True, 'import tensorflow as tf\n'), ((3721, 3762), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, 1]'}), '(tf.int32, shape=[None, 1])\n', (3735, 3762), True, 'import tensorflow as tf\n'), ((3781, 3824), 'tensorflow.constant', 'tf.constant', (['valid_examples'], {'dtype': 'tf.int32'}), '(valid_examples, dtype=tf.int32)\n', (3792, 3824), True, 'import tensorflow as tf\n'), ((3899, 3937), 'tensorflow.zeros', 'tf.zeros', (['[batch_size, embedding_size]'], {}), '([batch_size, embedding_size])\n', (3907, 3937), True, 'import tensorflow as tf\n'), ((4089, 4142), 'tensorflow.slice', 'tf.slice', (['x_inputs', '[0, window_size]', '[batch_size, 1]'], {}), '(x_inputs, [0, window_size], [batch_size, 1])\n', (4097, 4142), True, 'import tensorflow as tf\n'), ((4248, 4299), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['doc_embeddings', 'doc_indices'], {}), '(doc_embeddings, doc_indices)\n', (4270, 4299), True, 'import tensorflow as tf\n'), ((4832, 4900), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'model_learning_rate'}), '(learning_rate=model_learning_rate)\n', (4865, 4900), True, 'import tensorflow as tf\n'), ((5096, 5156), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['normalized_embeddings', 'valid_dataset'], {}), '(normalized_embeddings, valid_dataset)\n', (5118, 5156), True, 'import tensorflow as tf\n'), ((5170, 5238), 'tensorflow.matmul', 'tf.matmul', (['valid_embeddings', 'normalized_embeddings'], {'transpose_b': '(True)'}), '(valid_embeddings, normalized_embeddings, transpose_b=True)\n', (5179, 5238), True, 'import tensorflow as tf\n'), ((5285, 5361), 'tensorflow.train.Saver', 'tf.train.Saver', (["{'embeddings': embeddings, 'doc_embeddings': doc_embeddings}"], {}), "({'embeddings': embeddings, 'doc_embeddings': doc_embeddings})\n", (5299, 5361), True, 'import tensorflow as tf\n'), ((5398, 5431), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5429, 5431), True, 'import tensorflow as tf\n'), ((8122, 8210), 'numpy.array', 'np.array', (['[x[0:max_words] for x in [(y + [0] * max_words) for y in text_data_train]]'], {}), '([x[0:max_words] for x in [(y + [0] * max_words) for y in\n text_data_train]])\n', (8130, 8210), True, 'import numpy as np\n'), ((8222, 8309), 'numpy.array', 'np.array', (['[x[0:max_words] for x in [(y + [0] * max_words) for y in text_data_test]]'], {}), '([x[0:max_words] for x in [(y + [0] * max_words) for y in\n text_data_test]])\n', (8230, 8309), True, 'import numpy as np\n'), ((8351, 8404), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, max_words + 1]'}), '(tf.int32, shape=[None, max_words + 1])\n', (8365, 8404), True, 'import tensorflow as tf\n'), ((8446, 8487), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, 1]'}), '(tf.int32, shape=[None, 1])\n', (8460, 8487), True, 'import tensorflow as tf\n'), ((8629, 8676), 'tensorflow.zeros', 'tf.zeros', (['[logistic_batch_size, embedding_size]'], {}), '([logistic_batch_size, embedding_size])\n', (8637, 8676), True, 'import tensorflow as tf\n'), ((8807, 8871), 'tensorflow.slice', 'tf.slice', (['log_x_inputs', '[0, max_words]', '[logistic_batch_size, 1]'], {}), '(log_x_inputs, [0, max_words], [logistic_batch_size, 1])\n', (8815, 8871), True, 'import tensorflow as tf\n'), ((8888, 8943), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['doc_embeddings', 'log_doc_indices'], {}), '(doc_embeddings, log_doc_indices)\n', (8910, 8943), True, 'import tensorflow as tf\n'), ((9715, 9750), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['predictions_correct'], {}), '(predictions_correct)\n', (9729, 9750), True, 'import tensorflow as tf\n'), ((9787, 9840), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': '(0.01)'}), '(learning_rate=0.01)\n', (9820, 9840), True, 'import tensorflow as tf\n'), ((9953, 9986), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (9984, 9986), True, 'import tensorflow as tf\n'), ((12075, 12087), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (12085, 12087), True, 'import matplotlib.pyplot as plt\n'), ((12088, 12135), 'matplotlib.pyplot.plot', 'plt.plot', (['i_data', 'train_loss', '"""k-"""'], {'label': '"""训练集"""'}), "(i_data, train_loss, 'k-', label='训练集')\n", (12096, 12135), True, 'import matplotlib.pyplot as plt\n'), ((12138, 12198), 'matplotlib.pyplot.plot', 'plt.plot', (['i_data', 'test_loss', '"""r--"""'], {'label': '"""测试集"""', 'linewidth': '(4)'}), "(i_data, test_loss, 'r--', label='测试集', linewidth=4)\n", (12146, 12198), True, 'import matplotlib.pyplot as plt\n'), ((12203, 12226), 'matplotlib.pyplot.title', 'plt.title', (['"""每次迭代的交叉熵损失"""'], {}), "('每次迭代的交叉熵损失')\n", (12212, 12226), True, 'import matplotlib.pyplot as plt\n'), ((12227, 12245), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""迭代次数"""'], {}), "('迭代次数')\n", (12237, 12245), True, 'import matplotlib.pyplot as plt\n'), ((12246, 12265), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""交叉熵损失"""'], {}), "('交叉熵损失')\n", (12256, 12265), True, 'import matplotlib.pyplot as plt\n'), ((12266, 12295), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (12276, 12295), True, 'import matplotlib.pyplot as plt\n'), ((12330, 12342), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (12340, 12342), True, 'import matplotlib.pyplot as plt\n'), ((12343, 12389), 'matplotlib.pyplot.plot', 'plt.plot', (['i_data', 'train_acc', '"""k-"""'], {'label': '"""训练集"""'}), "(i_data, train_acc, 'k-', label='训练集')\n", (12351, 12389), True, 'import matplotlib.pyplot as plt\n'), ((12392, 12451), 'matplotlib.pyplot.plot', 'plt.plot', (['i_data', 'test_acc', '"""r--"""'], {'label': '"""测试集"""', 'linewidth': '(4)'}), "(i_data, test_acc, 'r--', label='测试集', linewidth=4)\n", (12400, 12451), True, 'import matplotlib.pyplot as plt\n'), ((12456, 12479), 'matplotlib.pyplot.title', 'plt.title', (['"""训练集和测试集的精度"""'], {}), "('训练集和测试集的精度')\n", (12465, 12479), True, 'import matplotlib.pyplot as plt\n'), ((12480, 12498), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""迭代次数"""'], {}), "('迭代次数')\n", (12490, 12498), True, 'import matplotlib.pyplot as plt\n'), ((12499, 12515), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""精度"""'], {}), "('精度')\n", (12509, 12515), True, 'import matplotlib.pyplot as plt\n'), ((12516, 12545), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (12526, 12545), True, 'import matplotlib.pyplot as plt\n'), ((12631, 12654), 'winsound.Beep', 'winsound.Beep', (['(600)', '(500)'], {}), '(600, 500)\n', (12644, 12654), False, 'import winsound\n'), ((3319, 3382), 'tensorflow.random_uniform', 'tf.random_uniform', (['[vocabulary_size, embedding_size]', '(-1.0)', '(1.0)'], {}), '([vocabulary_size, embedding_size], -1.0, 1.0)\n', (3336, 3382), True, 'import tensorflow as tf\n'), ((3546, 3573), 'tensorflow.zeros', 'tf.zeros', (['[vocabulary_size]'], {}), '([vocabulary_size])\n', (3554, 3573), True, 'import tensorflow as tf\n'), ((3986, 4042), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings', 'x_inputs[:, element]'], {}), '(embeddings, x_inputs[:, element])\n', (4008, 4042), True, 'import tensorflow as tf\n'), ((4456, 4605), 'tensorflow.nn.nce_loss', 'tf.nn.nce_loss', ([], {'weights': 'nce_weights', 'biases': 'nce_biases', 'labels': 'y_target', 'inputs': 'final_embed', 'num_sampled': 'num_sampled', 'num_classes': 'vocabulary_size'}), '(weights=nce_weights, biases=nce_biases, labels=y_target,\n inputs=final_embed, num_sampled=num_sampled, num_classes=vocabulary_size)\n', (4470, 4605), True, 'import tensorflow as tf\n'), ((5583, 5656), 'text_tools.generate_batch_data', 'generate_batch_data', (['text_data', 'batch_size', 'window_size'], {'method': '"""doc2vec"""'}), "(text_data, batch_size, window_size, method='doc2vec')\n", (5602, 5656), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((7940, 7985), 'text_tools.text_to_numbers', 'text_to_numbers', (['texts_train', 'word_dictionary'], {}), '(texts_train, word_dictionary)\n', (7955, 7985), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((8013, 8057), 'text_tools.text_to_numbers', 'text_to_numbers', (['texts_test', 'word_dictionary'], {}), '(texts_test, word_dictionary)\n', (8028, 8057), False, 'from text_tools import build_dictionary, generate_batch_data, load_movie_data, normalize_text, text_to_numbers\n'), ((8727, 8787), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings', 'log_x_inputs[:, element]'], {}), '(embeddings, log_x_inputs[:, element])\n', (8749, 8787), True, 'import tensorflow as tf\n'), ((9133, 9179), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[concatenated_size, 1]'}), '(shape=[concatenated_size, 1])\n', (9149, 9179), True, 'import tensorflow as tf\n'), ((9199, 9229), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[1, 1]'}), '(shape=[1, 1])\n', (9215, 9229), True, 'import tensorflow as tf\n'), ((9308, 9337), 'tensorflow.matmul', 'tf.matmul', (['log_final_embed', 'A'], {}), '(log_final_embed, A)\n', (9317, 9337), True, 'import tensorflow as tf\n'), ((9579, 9603), 'tensorflow.sigmoid', 'tf.sigmoid', (['model_output'], {}), '(model_output)\n', (9589, 9603), True, 'import tensorflow as tf\n'), ((10193, 10261), 'numpy.random.choice', 'np.random.choice', (['text_data_train.shape[0]'], {'size': 'logistic_batch_size'}), '(text_data_train.shape[0], size=logistic_batch_size)\n', (10209, 10261), True, 'import numpy as np\n'), ((10516, 10556), 'numpy.transpose', 'np.transpose', (['[target_train[rand_index]]'], {}), '([target_train[rand_index]])\n', (10528, 10556), True, 'import numpy as np\n'), ((12691, 12701), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12699, 12701), True, 'import matplotlib.pyplot as plt\n'), ((4990, 5011), 'tensorflow.square', 'tf.square', (['embeddings'], {}), '(embeddings)\n', (4999, 5011), True, 'import tensorflow as tf\n'), ((9656, 9689), 'tensorflow.cast', 'tf.cast', (['log_y_target', 'tf.float32'], {}), '(log_y_target, tf.float32)\n', (9663, 9689), True, 'import tensorflow as tf\n'), ((10788, 10855), 'numpy.random.choice', 'np.random.choice', (['text_data_test.shape[0]'], {'size': 'logistic_batch_size'}), '(text_data_test.shape[0], size=logistic_batch_size)\n', (10804, 10855), True, 'import numpy as np\n'), ((11086, 11130), 'numpy.transpose', 'np.transpose', (['[target_test[rand_index_test]]'], {}), '([target_test[rand_index_test]])\n', (11098, 11130), True, 'import numpy as np\n'), ((12662, 12679), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (12677, 12679), True, 'import matplotlib.pyplot as plt\n'), ((4366, 4387), 'tensorflow.squeeze', 'tf.squeeze', (['doc_embed'], {}), '(doc_embed)\n', (4376, 4387), True, 'import tensorflow as tf\n'), ((6885, 6916), 'pickle.dump', 'pickle.dump', (['word_dictionary', 'f'], {}), '(word_dictionary, f)\n', (6896, 6916), False, 'import pickle\n'), ((6989, 7000), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (6998, 7000), False, 'import os\n'), ((9029, 9054), 'tensorflow.squeeze', 'tf.squeeze', (['log_doc_embed'], {}), '(log_doc_embed)\n', (9039, 9054), True, 'import tensorflow as tf\n'), ((9500, 9533), 'tensorflow.cast', 'tf.cast', (['log_y_target', 'tf.float32'], {}), '(log_y_target, tf.float32)\n', (9507, 9533), True, 'import tensorflow as tf\n'), ((10466, 10500), 'numpy.transpose', 'np.transpose', (['[rand_x_doc_indices]'], {}), '([rand_x_doc_indices])\n', (10478, 10500), True, 'import numpy as np\n'), ((3492, 3518), 'numpy.sqrt', 'np.sqrt', (['concatenated_size'], {}), '(concatenated_size)\n', (3499, 3518), True, 'import numpy as np\n'), ((6810, 6859), 'os.path.join', 'os.path.join', (['data_folder_name', '"""movie_vocab.pkl"""'], {}), "(data_folder_name, 'movie_vocab.pkl')\n", (6822, 6859), False, 'import os\n'), ((11022, 11061), 'numpy.transpose', 'np.transpose', (['[rand_x_doc_indices_test]'], {}), '([rand_x_doc_indices_test])\n', (11034, 11061), True, 'import numpy as np\n'), ((11856, 11870), 'numpy.round', 'np.round', (['x', '(2)'], {}), '(x, 2)\n', (11864, 11870), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import torch import numpy as np from utils import Generator import matplotlib.pyplot as plt from IPython.display import HTML import torchvision.utils as vutils import matplotlib.animation as animation from IPython import embed if __name__ == "__main__": model_dir = '../checkpoints' mids = list(range(1, 11)) fixed_noise = torch.randn(64, 100, 1, 1).cuda(0) generator = Generator(100, 64).cuda(0) generator = torch.nn.DataParallel(generator, device_ids=[0, 1]) imgs_list = [] for mid in mids: checkpoints = torch.load(os.path.join(model_dir, 'epoch_%d.pth.tar' % mid)) epoch = checkpoints['epoch'] generator.load_state_dict(checkpoints['generator']) print('epoch : %d, mid : %d' % (epoch, mid)) generator.eval() fake = generator(fixed_noise).detach().cpu() imgs_list.append(fake) fig = plt.figure(figsize=(8,8)) plt.axis("off") embed() ims = [[plt.imshow(np.transpose(i[0],(1, 2, 0)), animated=True)] for i in imgs_list] ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True) HTML(ani.to_jshtml()) plt.subplot(1, 2, 2) plt.axis("off") plt.title("Fake Images") plt.imshow(np.transpose(img_list[-1][0],(1,2,0))) plt.show()
[ "utils.Generator", "matplotlib.pyplot.title", "IPython.embed", "torch.nn.DataParallel", "os.path.join", "matplotlib.animation.ArtistAnimation", "matplotlib.pyplot.figure", "matplotlib.pyplot.axis", "numpy.transpose", "matplotlib.pyplot.subplot", "torch.randn", "matplotlib.pyplot.show" ]
[((495, 546), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['generator'], {'device_ids': '[0, 1]'}), '(generator, device_ids=[0, 1])\n', (516, 546), False, 'import torch\n'), ((968, 994), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (978, 994), True, 'import matplotlib.pyplot as plt\n'), ((998, 1013), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1006, 1013), True, 'import matplotlib.pyplot as plt\n'), ((1018, 1025), 'IPython.embed', 'embed', ([], {}), '()\n', (1023, 1025), False, 'from IPython import embed\n'), ((1125, 1210), 'matplotlib.animation.ArtistAnimation', 'animation.ArtistAnimation', (['fig', 'ims'], {'interval': '(1000)', 'repeat_delay': '(1000)', 'blit': '(True)'}), '(fig, ims, interval=1000, repeat_delay=1000, blit=True\n )\n', (1150, 1210), True, 'import matplotlib.animation as animation\n'), ((1237, 1257), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (1248, 1257), True, 'import matplotlib.pyplot as plt\n'), ((1262, 1277), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1270, 1277), True, 'import matplotlib.pyplot as plt\n'), ((1282, 1306), 'matplotlib.pyplot.title', 'plt.title', (['"""Fake Images"""'], {}), "('Fake Images')\n", (1291, 1306), True, 'import matplotlib.pyplot as plt\n'), ((1365, 1375), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1373, 1375), True, 'import matplotlib.pyplot as plt\n'), ((1322, 1362), 'numpy.transpose', 'np.transpose', (['img_list[-1][0]', '(1, 2, 0)'], {}), '(img_list[-1][0], (1, 2, 0))\n', (1334, 1362), True, 'import numpy as np\n'), ((401, 427), 'torch.randn', 'torch.randn', (['(64)', '(100)', '(1)', '(1)'], {}), '(64, 100, 1, 1)\n', (412, 427), False, 'import torch\n'), ((452, 470), 'utils.Generator', 'Generator', (['(100)', '(64)'], {}), '(100, 64)\n', (461, 470), False, 'from utils import Generator\n'), ((634, 683), 'os.path.join', 'os.path.join', (['model_dir', "('epoch_%d.pth.tar' % mid)"], {}), "(model_dir, 'epoch_%d.pth.tar' % mid)\n", (646, 683), False, 'import os\n'), ((1049, 1078), 'numpy.transpose', 'np.transpose', (['i[0]', '(1, 2, 0)'], {}), '(i[0], (1, 2, 0))\n', (1061, 1078), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from . import common def v_loc(x): return 40*np.log10(x + 1) def x_loc(x): return 40*(np.log10(x) + 1) def main(debug=False): name = ['I', 'SCA', 'tfp'] suffix = ['', '', ''] df = [] for n, s in zip(name, suffix): prec = pd.read_csv(f'results/logk_prec_{n}{s}.csv') prec = prec.groupby(['v', 'x'])['log_err'].mean() prec.name = f'prec_{n}' time = pd.read_csv(f'results/logk_time_{n}{s}.csv') time = time.groupby(['v', 'x'])['time'].mean() time = 1000 * time time.name = f'time_{n}' df += [prec, time] df = pd.concat(df, axis=1) df['diff_prec'] = df['prec_SCA'] - df['prec_I'] df['diff_time'] = df['time_SCA'] - df['time_I'] v, x = zip(*df.index) df['v'] = v df['x'] = x df1 = df[['v', 'x', 'prec_I', 'prec_SCA', 'prec_tfp']].copy() df1.rename(columns=dict(prec_I='I', prec_SCA='SCA', prec_tfp='tfp'), inplace=True) df1 = df1.melt(id_vars=['v','x']) df1.rename(columns=dict(variable='type', value='prec'), inplace=True) df2 = df[['v', 'x', 'time_I', 'time_SCA', 'time_tfp']].copy() df2.rename(columns=dict(time_I='I', time_SCA='SCA', time_tfp='tfp'), inplace=True) df2 = df2.melt(id_vars=['v','x']) df2.rename(columns=dict(variable='type', value='time'), inplace=True) type_cmap = ListedColormap(['silver', 'grey', 'black']) type_cmap.set_under('white') name = [['diff_prec', 'prec_SCA'], ['diff_time', 'time_SCA']] #pos = [[[0.1, 0.85], [0.85, 0.1]], [[0.1, 0.1], [0.1, 0.85]]] vmin = [[-1.0, 0], [-10, 0]] vmax = [[+1.0, 2.8], [10, 28]] cmap = [[type_cmap, 'Reds'], [type_cmap, 'Blues']] fig = common.figure(figsize=(5.5, 4), box=debug) ax = fig.subplots( 2, 2, sharex='col', ) vticks = [0, 1, 5, 10, 50] xticks = [0.1, 0.5, 1, 5, 10, 50] label = [['a', 'c'], ['b', 'd']] pos = [[[-0.15, 0.9], [-0.2, 0.9]], [[-0.15, 0.9], [-0.2, 0.9]]] for i in range(2): for j in [0]: hm = df[name[i][j]].unstack(0) sns.heatmap(hm, vmin=vmin[i][j], vmax=vmax[i][j], cmap=cmap[i][j], ax=ax[i, j]) ax[i, j].invert_yaxis() ax[i, j].set_xticks([v_loc(v) for v in vticks]) ax[i, j].set_xticklabels([f"${k}$" for k in vticks], rotation=0) ax[i, j].xaxis.set_ticks_position('both') ax[i, j].set_yticks([x_loc(x) for x in xticks]) ax[i, j].set_yticklabels([f"${k}$" for k in xticks]) ax[i, j].yaxis.set_ticks_position('both') if i == 1: ax[i, j].set_xlabel('$v$') else: ax[i, j].set_xlabel('') if j == 0: ax[i, j].set_ylabel('$x$') else: ax[i, j].set_ylabel('') for i in range(2): for j in range(2): ax[i, j].text(*pos[i][j], label[i][j], transform=ax[i, j].transAxes) args = dict( color='white', ) sns.boxenplot(x='type', y='prec', data=df1, ax=ax[0, 1], **args) ax[0, 1].xaxis.label.set_visible(False) ax[0, 1].set_ylabel('err ($\log (\Delta/\epsilon + 1)$)') sns.boxenplot(x='type', y='time', data=df2, ax=ax[1, 1], **args) ax[1, 1].set_ylim(0, 35) ax[1, 1].set_ylabel('time (msec)') for i in range(2): for c in ax[i, 1].collections[1::2]: plt.setp(c, color='k') fig.savefig('figs/fig5.pdf') if __name__ == '__main__': main(debug=False)
[ "matplotlib.pyplot.setp", "numpy.log10", "pandas.read_csv", "seaborn.heatmap", "matplotlib.colors.ListedColormap", "seaborn.boxenplot", "pandas.concat" ]
[((744, 765), 'pandas.concat', 'pd.concat', (['df'], {'axis': '(1)'}), '(df, axis=1)\n', (753, 765), True, 'import pandas as pd\n'), ((1477, 1520), 'matplotlib.colors.ListedColormap', 'ListedColormap', (["['silver', 'grey', 'black']"], {}), "(['silver', 'grey', 'black'])\n", (1491, 1520), False, 'from matplotlib.colors import ListedColormap\n'), ((3127, 3191), 'seaborn.boxenplot', 'sns.boxenplot', ([], {'x': '"""type"""', 'y': '"""prec"""', 'data': 'df1', 'ax': 'ax[0, 1]'}), "(x='type', y='prec', data=df1, ax=ax[0, 1], **args)\n", (3140, 3191), True, 'import seaborn as sns\n'), ((3303, 3367), 'seaborn.boxenplot', 'sns.boxenplot', ([], {'x': '"""type"""', 'y': '"""time"""', 'data': 'df2', 'ax': 'ax[1, 1]'}), "(x='type', y='time', data=df2, ax=ax[1, 1], **args)\n", (3316, 3367), True, 'import seaborn as sns\n'), ((191, 206), 'numpy.log10', 'np.log10', (['(x + 1)'], {}), '(x + 1)\n', (199, 206), True, 'import numpy as np\n'), ((399, 443), 'pandas.read_csv', 'pd.read_csv', (['f"""results/logk_prec_{n}{s}.csv"""'], {}), "(f'results/logk_prec_{n}{s}.csv')\n", (410, 443), True, 'import pandas as pd\n'), ((549, 593), 'pandas.read_csv', 'pd.read_csv', (['f"""results/logk_time_{n}{s}.csv"""'], {}), "(f'results/logk_time_{n}{s}.csv')\n", (560, 593), True, 'import pandas as pd\n'), ((238, 249), 'numpy.log10', 'np.log10', (['x'], {}), '(x)\n', (246, 249), True, 'import numpy as np\n'), ((2209, 2288), 'seaborn.heatmap', 'sns.heatmap', (['hm'], {'vmin': 'vmin[i][j]', 'vmax': 'vmax[i][j]', 'cmap': 'cmap[i][j]', 'ax': 'ax[i, j]'}), '(hm, vmin=vmin[i][j], vmax=vmax[i][j], cmap=cmap[i][j], ax=ax[i, j])\n', (2220, 2288), True, 'import seaborn as sns\n'), ((3517, 3539), 'matplotlib.pyplot.setp', 'plt.setp', (['c'], {'color': '"""k"""'}), "(c, color='k')\n", (3525, 3539), True, 'import matplotlib.pyplot as plt\n')]
import symjax import symjax.tensor as T import matplotlib.pyplot as plt import numpy as np J = 5 Q = 4 scales = T.power(2, T.linspace(0.1, J - 1, J * Q)) scales = scales[:, None] print(scales.get()) wavelet = symjax.tensor.signal.complex_morlet(5 * scales, np.pi / scales) waveletw = symjax.tensor.signal.fourier_complex_morlet( 5 * scales, np.pi / scales, wavelet.shape[-1] ) waveletlp = symjax.tensor.signal.littewood_paley_normalization( waveletw, down=np.pi / scales[-1, 0] ) wavelet = wavelet.get() waveletw = waveletw.get() waveletlp = waveletlp.get() plt.subplot(321) for i in range(J * Q): fr = np.real(np.fft.fft(np.fft.ifftshift(wavelet[i]))) fi = np.imag(np.fft.fft(np.fft.ifftshift(wavelet[i]))) plt.plot(i + fr, "--b") plt.plot(i + fi, "--r") plt.subplot(322) for i in range(J * Q): plt.plot(2 * i + wavelet[i].real, c="b") plt.plot(2 * i + wavelet[i].imag, c="r") plt.subplot(324) for i in range(J * Q): fr = np.real(np.fft.fftshift(np.fft.ifft(waveletw[i]))) fi = np.imag(np.fft.fftshift(np.fft.ifft(waveletw[i]))) plt.plot(2 * i + fr / fr.max(), "--b") plt.plot(2 * i + fi / fi.max(), "--r") plt.subplot(323) for i in range(J * Q): plt.plot(i + waveletw[i].real, c="b") plt.plot(i + waveletw[i].imag, c="r") plt.subplot(325) for i in range(J * Q): plt.plot(i + waveletlp[i].real, c="b") plt.plot(i + waveletlp[i].imag, c="r") plt.plot(np.abs(waveletlp).sum(0), c="g") plt.subplot(326) for i in range(J * Q): fr = np.real(np.fft.fftshift(np.fft.ifft(waveletlp[i]))) fi = np.imag(np.fft.fftshift(np.fft.ifft(waveletlp[i]))) plt.plot(2 * i + fr / fr.max(), "--b") plt.plot(2 * i + fi / fi.max(), "--r") # plt.show() plt.savefig("wavelets.png")
[ "numpy.abs", "matplotlib.pyplot.savefig", "symjax.tensor.linspace", "symjax.tensor.signal.littewood_paley_normalization", "symjax.tensor.signal.complex_morlet", "matplotlib.pyplot.plot", "numpy.fft.ifft", "numpy.fft.ifftshift", "matplotlib.pyplot.subplot", "symjax.tensor.signal.fourier_complex_morlet" ]
[((212, 275), 'symjax.tensor.signal.complex_morlet', 'symjax.tensor.signal.complex_morlet', (['(5 * scales)', '(np.pi / scales)'], {}), '(5 * scales, np.pi / scales)\n', (247, 275), False, 'import symjax\n'), ((287, 381), 'symjax.tensor.signal.fourier_complex_morlet', 'symjax.tensor.signal.fourier_complex_morlet', (['(5 * scales)', '(np.pi / scales)', 'wavelet.shape[-1]'], {}), '(5 * scales, np.pi / scales,\n wavelet.shape[-1])\n', (330, 381), False, 'import symjax\n'), ((396, 488), 'symjax.tensor.signal.littewood_paley_normalization', 'symjax.tensor.signal.littewood_paley_normalization', (['waveletw'], {'down': '(np.pi / scales[-1, 0])'}), '(waveletw, down=np.pi /\n scales[-1, 0])\n', (446, 488), False, 'import symjax\n'), ((572, 588), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(321)'], {}), '(321)\n', (583, 588), True, 'import matplotlib.pyplot as plt\n'), ((787, 803), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(322)'], {}), '(322)\n', (798, 803), True, 'import matplotlib.pyplot as plt\n'), ((918, 934), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(324)'], {}), '(324)\n', (929, 934), True, 'import matplotlib.pyplot as plt\n'), ((1165, 1181), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(323)'], {}), '(323)\n', (1176, 1181), True, 'import matplotlib.pyplot as plt\n'), ((1290, 1306), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(325)'], {}), '(325)\n', (1301, 1306), True, 'import matplotlib.pyplot as plt\n'), ((1459, 1475), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(326)'], {}), '(326)\n', (1470, 1475), True, 'import matplotlib.pyplot as plt\n'), ((1722, 1749), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""wavelets.png"""'], {}), "('wavelets.png')\n", (1733, 1749), True, 'import matplotlib.pyplot as plt\n'), ((124, 153), 'symjax.tensor.linspace', 'T.linspace', (['(0.1)', '(J - 1)', '(J * Q)'], {}), '(0.1, J - 1, J * Q)\n', (134, 153), True, 'import symjax.tensor as T\n'), ((734, 757), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + fr)', '"""--b"""'], {}), "(i + fr, '--b')\n", (742, 757), True, 'import matplotlib.pyplot as plt\n'), ((762, 785), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + fi)', '"""--r"""'], {}), "(i + fi, '--r')\n", (770, 785), True, 'import matplotlib.pyplot as plt\n'), ((831, 871), 'matplotlib.pyplot.plot', 'plt.plot', (['(2 * i + wavelet[i].real)'], {'c': '"""b"""'}), "(2 * i + wavelet[i].real, c='b')\n", (839, 871), True, 'import matplotlib.pyplot as plt\n'), ((876, 916), 'matplotlib.pyplot.plot', 'plt.plot', (['(2 * i + wavelet[i].imag)'], {'c': '"""r"""'}), "(2 * i + wavelet[i].imag, c='r')\n", (884, 916), True, 'import matplotlib.pyplot as plt\n'), ((1209, 1246), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + waveletw[i].real)'], {'c': '"""b"""'}), "(i + waveletw[i].real, c='b')\n", (1217, 1246), True, 'import matplotlib.pyplot as plt\n'), ((1251, 1288), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + waveletw[i].imag)'], {'c': '"""r"""'}), "(i + waveletw[i].imag, c='r')\n", (1259, 1288), True, 'import matplotlib.pyplot as plt\n'), ((1334, 1372), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + waveletlp[i].real)'], {'c': '"""b"""'}), "(i + waveletlp[i].real, c='b')\n", (1342, 1372), True, 'import matplotlib.pyplot as plt\n'), ((1377, 1415), 'matplotlib.pyplot.plot', 'plt.plot', (['(i + waveletlp[i].imag)'], {'c': '"""r"""'}), "(i + waveletlp[i].imag, c='r')\n", (1385, 1415), True, 'import matplotlib.pyplot as plt\n'), ((640, 668), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['wavelet[i]'], {}), '(wavelet[i])\n', (656, 668), True, 'import numpy as np\n'), ((699, 727), 'numpy.fft.ifftshift', 'np.fft.ifftshift', (['wavelet[i]'], {}), '(wavelet[i])\n', (715, 727), True, 'import numpy as np\n'), ((991, 1015), 'numpy.fft.ifft', 'np.fft.ifft', (['waveletw[i]'], {}), '(waveletw[i])\n', (1002, 1015), True, 'import numpy as np\n'), ((1051, 1075), 'numpy.fft.ifft', 'np.fft.ifft', (['waveletw[i]'], {}), '(waveletw[i])\n', (1062, 1075), True, 'import numpy as np\n'), ((1425, 1442), 'numpy.abs', 'np.abs', (['waveletlp'], {}), '(waveletlp)\n', (1431, 1442), True, 'import numpy as np\n'), ((1532, 1557), 'numpy.fft.ifft', 'np.fft.ifft', (['waveletlp[i]'], {}), '(waveletlp[i])\n', (1543, 1557), True, 'import numpy as np\n'), ((1593, 1618), 'numpy.fft.ifft', 'np.fft.ifft', (['waveletlp[i]'], {}), '(waveletlp[i])\n', (1604, 1618), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import plotly.graph_objs as go # import plotly.plotly as py dates = pd.date_range('01-Jan-2010', pd.datetime.now().date(), freq='D') df = pd.DataFrame(100 + np.random.randn(dates.size).cumsum(), dates, columns=['AAPL']) trace = go.Scatter(x=df.index, y=df.AAPL) data = [trace] layout = dict( title='Time series with range slider and selectors', xaxis=dict( rangeselector=dict( buttons=list([ dict(count=1, label='1m', step='month', stepmode='backward'), dict(count=6, label='6m', step='month', stepmode='backward'), dict(count=1, label='YTD', step='year', stepmode='todate'), dict(count=1, label='1y', step='year', stepmode='backward'), dict(step='all') ]) ), rangeslider=dict(), type='date' ) ) fig = go.Figure() fig.add_trace(trace) fig.update_layout( title='Time series with range slider and selectors', xaxis=dict( rangeselector=dict( buttons=list([ dict(count=1, label='1m', step='month', stepmode='backward'), dict(count=6, label='6m', step='month', stepmode='backward'), dict(count=1, label='YTD', step='year', stepmode='todate'), dict(count=1, label='1y', step='year', stepmode='backward'), dict(step='all') ]) ), rangeslider=dict( visible=True, thickness=0.3 ), type='date' )) initial_range = ['2016-01-01', '2017-09-01'] fig['layout']['xaxis'].update(range=initial_range) fig.show()
[ "plotly.graph_objs.Figure", "numpy.random.randn", "plotly.graph_objs.Scatter", "pandas.datetime.now" ]
[((270, 303), 'plotly.graph_objs.Scatter', 'go.Scatter', ([], {'x': 'df.index', 'y': 'df.AAPL'}), '(x=df.index, y=df.AAPL)\n', (280, 303), True, 'import plotly.graph_objs as go\n'), ((1145, 1156), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (1154, 1156), True, 'import plotly.graph_objs as go\n'), ((138, 155), 'pandas.datetime.now', 'pd.datetime.now', ([], {}), '()\n', (153, 155), True, 'import pandas as pd\n'), ((198, 225), 'numpy.random.randn', 'np.random.randn', (['dates.size'], {}), '(dates.size)\n', (213, 225), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Jan 15 21:56:08 2020 @author: <NAME> """ # STEP1----------------- # Importing the libraries------------ #------------------------------------------------------------- import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import glob import scipy.signal as ss import csv import sklearn from quilt.data.ResidentMario import missingno_data import missingno as msno import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler # for preprocessing the data from sklearn.ensemble import RandomForestClassifier # Random forest classifier from sklearn.tree import DecisionTreeClassifier # for Decision Tree classifier from sklearn.svm import SVC # for SVM classification from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split # to split the data from sklearn.model_selection import KFold # For cross vbalidation from sklearn.model_selection import GridSearchCV # for tunnig hyper parameter it will use all combination of given parameters from sklearn.model_selection import RandomizedSearchCV # same for tunning hyper parameter but will use random combinations of parameters from sklearn.metrics import confusion_matrix,recall_score,precision_recall_curve,auc,roc_curve,roc_auc_score,classification_report # STEP2------------------# Importing the DATASET ------------ #------------------------------------------------------------ # Loading data from the iMotions the path to csv file directory os.chdir("\\ML4TakeOver\\Data\\RawData") directory = os.getcwd() #dataFrame_takeover_feature = pd.read_csv('takeover_cleaned_feature4ML.csv', index_col=[0]) dataFrame_takeover_feature = pd.read_csv('takeover4ML.csv', index_col=[0]) dataset = dataFrame_takeover_feature chunk_users = ['015_M3', '015_m2', '015_M1', '014_M3', #Select a handful of ppl for saving resource '014_M2', '014_m1'] chunk_dataset = dataset[dataset['Name'].isin(chunk_users)] dataset = chunk_dataset dataset.shape ###### ======================================Encoding notes======================================= # Alarm Type: TA =2, NoA =1, FA = 0 , Z = 3 # TakeOver : TK =1 , NTK= 0 # Alarm : 339.0 =339.0, 103.0= 4, 332.0=14, 259.0=11, 16.0=2, 178.0=6, 284.0=12, # 213.0=9, 323.0=13, 185.0=7, 84.0=3, 137.0=5, 5.0=1, 191.0=8, 254.0=10 # Mode : +1 (Auto)= +1, -1(Manual)= 0 ##### =========================================================================================== dt_tmp = dataset dt_tmp['Takeover'] = dt_tmp.Takeover.astype('category') # Number of "NOT-TAKEOVER" per alarm type dataset[dataset.Takeover == 'NTK']['Coming_AlarmType'].value_counts() # Number of "TAKEOVER" per alarm type dataset[dataset.Takeover == 'TK']['Coming_AlarmType'].value_counts() ## STEP3========================= Eploring the data, mainly the Label (Takeover) ==================== ## =================================================================================================== # let's check the "Takeover" distributions sns.countplot("Takeover",data=dataset) # Let's check the Percentage for "TakeOver" Count_NoTakeOver = len(dataset[dataset["Takeover"]== 0 ]) # Non-TakeOver are repersented by 0 Count_TakeOver = len(dataset[dataset["Takeover"]== 1 ]) # TakeOver by 1 Percentage_of_NoTakeOver = Count_NoTakeOver/(Count_NoTakeOver+Count_TakeOver) print("percentage of None-TakeOver, 0 = ",Percentage_of_NoTakeOver*100) Percentage_of_TakeOver= Count_TakeOver/(Count_NoTakeOver+Count_TakeOver) print("percentage of TakeOver, 1 = ",Percentage_of_TakeOver*100) # the amount related to valid "TakeOver" and "None-Takeover" Amount_TakeOver = dataset[dataset["Takeover"]== 1] Amount_NoTakeOver = dataset[dataset["Takeover"]== 0] plt.figure(figsize=(10,6)) plt.subplot(121) Amount_TakeOver.plot.hist(title="TakeOver", legend =None) plt.subplot(122) Amount_NoTakeOver.plot.hist(title="No-Takeover",legend =None) # Pandas offers us out-of-the-box three various correlation coefficients 1) Pearson's 2) Spearman rank 3) Kendall Tau pearson = dataset.corr(method='pearson') # assume target attr is the "Takeover or -3", then remove corr with itself corr_with_target = pearson.iloc[-3][:] # attributes sorted from the most predictive predictivity = corr_with_target.sort_values(ascending=False) ## STEP4=========================-# Prepration for Machine Learning algorithms========================= ## ==================================================================================================== # Drop useless features for ML dataset = dataset.drop(['Timestamp','index','ID', 'Name', 'EventSource', 'ManualGear','EventW','EventN','GazeDirectionLeftY','Alarm', 'GazeDirectionLeftX', 'GazeDirectionRightX', 'GazeDirectionRightY','CurrentBrake', 'PassBy','RangeN'], axis=1) #ManualGear has only "one" value #EventW is pretty similar to EventN dataset.shape #--------------------------------------------------------- # convert categorical value to the number # convert datatype of object to int and strings dataset['LeftLaneType'] = dataset.LeftLaneType.astype(object) dataset['RightLaneType'] = dataset.RightLaneType.astype(object) dataset['TOT_Class'] = dataset.TOT_Class.astype(object) dataset['Coming_Alarm'] = dataset.Coming_Alarm.astype(object) dataset['Takeover'] = dataset.Takeover.astype(object) dataset['Coming_AlarmType'] = dataset.Coming_AlarmType.astype(object) dataset['NDTask'] = dataset.NDTask.astype(object) #****** Drop features that happing after Alarm (anything after alarm interupt takeover prediction)**************** dataset = dataset.drop(['Mode','TOT_Class', 'AlarmDuration','Coming_Alarm','ReactionTime','Coming_AlarmType'], axis=1) # Coming Alarm maybe helpful for ReactionTime # ------------------------------------------------------. # takeover (NT, TK) is our target input_data = dataset.iloc[:, dataset.columns != 'Takeover'] X = input_data y = dataset[['Takeover']].values.ravel() # ======================================= Encoding Categorical variables ========================= # # Encoding categorical variables from sklearn.preprocessing import StandardScaler,LabelEncoder, OneHotEncoder from sklearn.compose import ColumnTransformer, make_column_transformer #labelencoder class takes cat. var. and assign value to them # List of all Categorical features Cat_Features= ['LeftLaneType','RightLaneType','NDTask'] # Get the column index of the categorical features categorical_features = [] for i in Cat_Features: position = dataset.columns.get_loc(i) categorical_features.append(position) print(categorical_features) # Get the column index of the Contin. features conti_features = [] Cont_Filter = dataset.dtypes!=object Cont_Filter = dataset.columns.where(Cont_Filter).tolist() Cont_Filter_Cleaned = [name for name in Cont_Filter if str(name) !='nan'] for i in Cont_Filter_Cleaned: position = dataset.columns.get_loc(i) conti_features.append(position) print(conti_features) # How many columns will be needed for each categorical feature? print(dataset[Cat_Features].nunique(), 'There are',"--",sum(dataset[Cat_Features].nunique().loc[:]),"--",'groups in the whole dataset') # ===============================Create pipeline for data transformatin (normalize numeric, and hot encoder categorical) # ============================================================================= from sklearn.pipeline import make_pipeline numeric = make_pipeline( StandardScaler()) categorical = make_pipeline( # handles categorical features # sparse = False output an array not sparse matrix OneHotEncoder(sparse=False)) # Automatically take care of Dummy Trap # creates a simple preprocessing pipeline (that will be combined in a full prediction pipeline below) # to scale the numerical features and one-hot encode the categorical features. preprocess = make_column_transformer((numeric, Cont_Filter_Cleaned), (categorical, ['LeftLaneType','RightLaneType','Coming_AlarmType','NDTask']), remainder='passthrough') # ============================================================================= # Taking care of splitting from sklearn.model_selection import train_test_split from sklearn.svm import SVC X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.20, random_state = 42) # apply preprocess step (normalize the numeric value and one hot encoding for the categorical) preprocess.fit_transform(X_train) # ============================================================================= #SVM is usually optimized using two parameters gamma,C . # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] # C: the Cost parameter, Gamma: Control Bias and variance # A High value of Gamma leads to more accuracy but biased results and vice-versa. # Similarly, a large value of Cost parameter (C) indicates poor accuracy but low bias and vice-versa. tuned_parameters2 = [{'kernel': ['linear'], 'C': [1, 100]}] model = make_pipeline( preprocess, SVC()) ##### Try Simple Version ############## from sklearn import svm clf = svm.SVC() X_train = preprocess.fit_transform(X_train) grid_result = clf.fit(X_train, y_train) X_test = preprocess.fit_transform(X_test) clf.predict(X_test) ## we should try this in near future: https://machinelearningmastery.com/multi-class-classification-tutorial-keras-deep-learning-library/ ############## ############################ ########################################## ######################################################## ###################################################################### # the GridSearchCV object with pipeline and the parameter space with 5 folds cross validation. scores = ['precision', 'recall'] best_params = [] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV( SVC(), tuned_parameters2, scoring='%s_macro' % score ) X_train = preprocess.fit_transform(X_train) grid_result = clf.fit(X_train, y_train) best_params.append(grid_result.best_params_) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() X_test = preprocess.fit_transform(X_test) y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # ============================================================================= # ================= Resampling the imbalanced Label of "TakeOver" ======================================== #========================================================================================================== # We create the preprocessing pipelines for both numeric and categorical data. from sklearn.pipeline import Pipeline from sklearn.utils import resample numeric_features = Cont_Filter_Cleaned numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_features = ['LeftLaneType','RightLaneType','Coming_AlarmType','NDTask'] categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) # Append classifier to preprocessing pipeline. # Separate input features and target y = dataset.Takeover X = dataset.drop('Takeover', axis=1) # setting up testing and training sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=27) # concatenate our training data back together X = pd.concat([X_train, y_train], axis=1) # separate minority and majority classes take_over = X[X.Takeover=='TK'] not_takeover = X[X.Takeover=='NTK'] # upsample minority not_takeover_upsampled = resample(not_takeover, replace=True, # sample with replacement n_samples=len(take_over), # match number in majority class random_state=27) # reproducible results # combine majority and upsampled minority upsampled = pd.concat([take_over, not_takeover_upsampled]) # check new class counts upsampled.Takeover.value_counts() #713585 # trying logistic regression again with the balanced dataset y_train = upsampled.Takeover X_train = upsampled.drop('Takeover', axis=1) ##### LOGISTIC REGRESSION ############################### ######################################################### # Now we have a full prediction pipeline. clf = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', LogisticRegression())]) y_score = clf.fit(X_train, y_train) print("model score: %.3f" % clf.score(X_test, y_test)) # model score: 0.846 y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) ##### DECISION TREE ################################## ######################################################### from sklearn.tree import DecisionTreeClassifier clf_3 = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('clf', DecisionTreeClassifier(random_state=0))]) y_score = clf_3.fit(X_train, y_train) print("model score: %.3f" % clf_3.score(X_test, y_test)) # model score: 0.99 y_true_3, y_pred_3 = y_test, clf_3.predict(X_test) print(classification_report(y_true_3, y_pred_3)) ##### RANDOM FOREST ################################## ######################################################### clf_2 = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('clf',RandomForestClassifier(max_depth=2, random_state=0))]) y_score = clf_2.fit(X_train, y_train) print("model score: %.3f" % clf_2.score(X_test, y_test)) # model score: 0.830 y_true_2, y_pred_2 = y_test, clf_2.predict(X_test) print(classification_report(y_true_2, y_pred_2)) ##### Regularized Greedy Forest (RGF) ################################## ############################################################################ from sklearn.utils.validation import check_random_state from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.ensemble import GradientBoostingClassifier from rgf.sklearn import RGFClassifier y_upsampled = upsampled.Takeover X_upsampled = upsampled.drop('Takeover', axis=1) clf_5 = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('classifier', RGFClassifier(max_leaf=400, algorithm="RGF_Sib", test_interval=100, verbose=True))]) n_folds = 5 rgf_scores = cross_val_score(clf_5, X_upsampled, y_upsampled, cv=StratifiedKFold(n_folds)) rgf_score = sum(rgf_scores)/n_folds print('RGF Classifier score: {0:.5f}'.format(rgf_score)) #RGF Classifier score: 0.92304 XGBClassifier(class_weight='balanced') ##### Gradiaent Boosting ############################################# ############################################################################ from sklearn.ensemble import GradientBoostingClassifier clf_gb = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('classifier', GradientBoostingClassifier(n_estimators=20, learning_rate=0.01, subsample=0.6, random_state=127))]) gb_scores = cross_val_score(clf_gb, X_upsampled, y_upsampled, scoring="f1_weighted", cv=StratifiedKFold(n_folds)) gb_score = sum(gb_scores)/n_folds print('Gradient Boosting Classifier score: {0:.5f}'.format(gb_score)) #score: 0.79832 print('>> Mean CV score is: ', round(np.mean(gb_scores),3)) pltt = sns.distplot(pd.Series(gb_scores,name='CV scores distribution(Gradiaent Boosting)'), color='r') ##### ADA Boost ######################################################### ########################################################################### from sklearn.ensemble import AdaBoostClassifier clf_4 = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('classifier', AdaBoostClassifier(n_estimators=100, random_state=0))]) y_score = clf_4.fit(X_train, y_train) print("model score: %.3f" % clf_4.score(X_test, y_test)) # model score: 0.887 y_true_4, y_pred_4 = y_test, clf_4.predict(X_test) print(classification_report(y_true_4, y_pred_4)) ##### GAUSSIAN PROCESS ################################# ######################################################### from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF kernel = 1.0 * RBF(1.0) clf_3 = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('clf',GaussianProcessClassifier(kernel=kernel, random_state=0))]) # model score: 0.830 y_score = clf_3.fit(X_train, y_train) print("model score: %.3f" % clf_3.score(X_test, y_test)) # model score: 0.830 y_true_3, y_pred_3 = y_test, clf_3.predict(X_test) print(classification_report(y_true_3, y_pred_3)) # # ============================================================================= # ================= DownSampling the majority imbalanced Label of "TakeOver" ====================================== #================================================================================================================== # separate minority and majority classes take_over = X[X.Takeover=='TK'] not_takeover = X[X.Takeover=='NTK'] # downsample majority takeover_downsampled = resample(take_over, replace = False, # sample without replacement n_samples = len(not_takeover), # match minority n random_state = 27) # reproducible results # combine minority and downsampled majority downsampled = pd.concat([takeover_downsampled, not_takeover]) # checking counts downsampled.Takeover.value_counts() # trying logistic regression again with the balanced dataset y_train_down = downsampled.Takeover X_train_down = downsampled.drop('Takeover', axis=1) ##### LOGISTIC REGRESSION ############################### ######################################################### # Now we have a full prediction pipeline. clf_down = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', LogisticRegression())]) y_score_down = clf_down.fit(X_train_down, y_train_down) print("model score: %.3f" % clf_down.score(X_test, y_test)) # model score: 0.846 y_true, y_pred = y_test, clf_down.predict(X_test) print(classification_report(y_true, y_pred)) ##### ADA Boost ################################## ######################################################### from sklearn.ensemble import AdaBoostClassifier clf_4_down = Pipeline(steps=[('preprocessor', preprocessor), ('reduce_dim', PCA()), ('classifier', AdaBoostClassifier(n_estimators=100, random_state=0))]) y_score = clf_4_down.fit(X_train_down, y_train_down) print("model score: %.3f" % clf_4_down.score(X_test, y_test)) # model score: 0.887 y_true_down_4, y_pred_down_4 = y_test, clf_4_down.predict(X_test) print(classification_report(y_true_down_4, y_pred_down_4)) # # ============================================================================= # example of one hot encoding for a neural network from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from keras.models import Sequential from keras.layers import Dense from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.models import load_model import h5py import pytest # Check the GPU availability from tensorflow.python.client import device_lib device_lib.list_local_devices() # Assigning values to X, Y y = dataset.Takeover X = dataset.drop('Takeover', axis=1) # setting up testing and training sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=27) # concatenate our training data back together X = pd.concat([X_train, y_train], axis=1) # separate minority and majority classes take_over = X[X.Takeover=='TK'] not_takeover = X[X.Takeover=='NTK'] # upsample minority not_takeover_upsampled = resample(not_takeover, replace=True, # sample with replacement n_samples=len(take_over), # match number in majority class random_state=27) # reproducible results # combine majority and upsampled minority upsampled = pd.concat([take_over, not_takeover_upsampled]) # check new class counts upsampled.Takeover.value_counts() #713585 # trying logistic regression again with the balanced dataset y_train = upsampled.Takeover X_train = upsampled.drop('Takeover', axis=1) ## Preprocessing # Get the column index of the Contin. features conti_features = [] Cont_Filter = dataset.dtypes!=object Cont_Filter = dataset.columns.where(Cont_Filter).tolist() Cont_Filter_Cleaned = [name for name in Cont_Filter if str(name) !='nan'] for i in Cont_Filter_Cleaned: position = dataset.columns.get_loc(i) conti_features.append(position) print(conti_features) numeric_features = Cont_Filter_Cleaned numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_features = ['LeftLaneType','RightLaneType','NDTask'] categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) # prepare input data def prepare_inputs(X_train, X_test): X_train_enc = preprocessor.fit_transform(X_train) X_test_enc = preprocessor.fit_transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X = dataset.drop('Takeover', axis=1) y = dataset.Takeover # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=27) # concatenate our training data back together X = pd.concat([X_train, y_train], axis=1) # separate minority and majority classes take_over = X[X.Takeover=='TK'] not_takeover = X[X.Takeover=='NTK'] # upsample minority not_takeover_upsampled = resample(not_takeover, replace=True, # sample with replacement n_samples=len(take_over), # match number in majority class random_state=27) # reproducible results # combine majority and upsampled minority upsampled = pd.concat([take_over, not_takeover_upsampled]) # check new class counts upsampled.Takeover.value_counts() #713585 # trying logistic regression again with the balanced dataset y_train = upsampled.Takeover X_train = upsampled.drop('Takeover', axis=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # define the model model = Sequential() model.add(Dense(23, input_dim=X_train_enc.shape[1], activation='relu', kernel_initializer='he_normal')) model.add(Dense(14, activation='relu')) model.add(Dense(8, activation='relu')) #logits layer model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # simple early stopping #set early stopping monitor so the model stops training when it won't improve anymore # checkpoint filepath="best-model-{epoch:02d}-{val_loss:.2f}.hdf5" keras_callbacks = [ EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=8), ModelCheckpoint(filepath, monitor='val_loss', mode='min', verbose=1, save_best_only=True) ] # fit the keras model on the dataset history = model.fit(X_train_enc, y_train_enc, validation_split=0.10, epochs=30, batch_size=16, verbose=2, callbacks=keras_callbacks) #val_split: Fraction of the training data to be used as validation data # load the saved best model saved_model = load_model('best-model-02-0.04.hdf5') # list all data in history print(history.history.keys()) # evaluate the model _, train_acc = saved_model.evaluate(X_train_enc, y_train_enc, verbose=2) _, test_acc = saved_model.evaluate(X_test_enc, y_test_enc, verbose=1) print('Accuracy of test: %.2f' % (test_acc*100)) print('Accuracy of the: '+'1) Train: %.3f, 2) Test: %.3f' % (train_acc, test_acc)) # test: 91.04 # plot training history plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend(['train', 'test'], loc='upper left') plt.ylabel('Loss') plt.show() # summarize history for accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
[ "sklearn.preprocessing.LabelEncoder", "tensorflow.python.client.device_lib.list_local_devices", "pandas.read_csv", "matplotlib.pyplot.ylabel", "sklearn.metrics.classification_report", "sklearn.ensemble.AdaBoostClassifier", "sklearn.model_selection.StratifiedKFold", "keras.layers.Dense", "numpy.mean", "sklearn.decomposition.PCA", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "sklearn.tree.DecisionTreeClassifier", "sklearn.gaussian_process.GaussianProcessClassifier", "sklearn.compose.ColumnTransformer", "keras.callbacks.EarlyStopping", "sklearn.gaussian_process.kernels.RBF", "sklearn.model_selection.train_test_split", "sklearn.ensemble.RandomForestClassifier", "sklearn.compose.make_column_transformer", "keras.models.Sequential", "matplotlib.pyplot.subplot", "matplotlib.pyplot.title", "sklearn.ensemble.GradientBoostingClassifier", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "sklearn.svm.SVC", "pandas.Series", "keras.models.load_model", "keras.callbacks.ModelCheckpoint", "sklearn.preprocessing.OneHotEncoder", "rgf.sklearn.RGFClassifier", "os.getcwd", "os.chdir", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.figure", "sklearn.linear_model.LogisticRegression", "sklearn.impute.SimpleImputer", "seaborn.countplot", "pandas.concat" ]
[((1638, 1678), 'os.chdir', 'os.chdir', (['"""\\\\ML4TakeOver\\\\Data\\\\RawData"""'], {}), "('\\\\ML4TakeOver\\\\Data\\\\RawData')\n", (1646, 1678), False, 'import os\n'), ((1692, 1703), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1701, 1703), False, 'import os\n'), ((1827, 1872), 'pandas.read_csv', 'pd.read_csv', (['"""takeover4ML.csv"""'], {'index_col': '[0]'}), "('takeover4ML.csv', index_col=[0])\n", (1838, 1872), True, 'import pandas as pd\n'), ((3219, 3258), 'seaborn.countplot', 'sns.countplot', (['"""Takeover"""'], {'data': 'dataset'}), "('Takeover', data=dataset)\n", (3232, 3258), True, 'import seaborn as sns\n'), ((3937, 3964), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (3947, 3964), True, 'import matplotlib.pyplot as plt\n'), ((3965, 3981), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (3976, 3981), True, 'import matplotlib.pyplot as plt\n'), ((4042, 4058), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (4053, 4058), True, 'import matplotlib.pyplot as plt\n'), ((8233, 8402), 'sklearn.compose.make_column_transformer', 'make_column_transformer', (['(numeric, Cont_Filter_Cleaned)', "(categorical, ['LeftLaneType', 'RightLaneType', 'Coming_AlarmType', 'NDTask'])"], {'remainder': '"""passthrough"""'}), "((numeric, Cont_Filter_Cleaned), (categorical, [\n 'LeftLaneType', 'RightLaneType', 'Coming_AlarmType', 'NDTask']),\n remainder='passthrough')\n", (8256, 8402), False, 'from sklearn.compose import ColumnTransformer, make_column_transformer\n'), ((8701, 8755), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(42)'}), '(X, y, test_size=0.2, random_state=42)\n', (8717, 8755), False, 'from sklearn.model_selection import train_test_split\n'), ((9704, 9713), 'sklearn.svm.SVC', 'svm.SVC', ([], {}), '()\n', (9711, 9713), False, 'from sklearn import svm\n'), ((12432, 12572), 'sklearn.compose.ColumnTransformer', 'ColumnTransformer', ([], {'transformers': "[('num', numeric_transformer, numeric_features), ('cat',\n categorical_transformer, categorical_features)]"}), "(transformers=[('num', numeric_transformer,\n numeric_features), ('cat', categorical_transformer, categorical_features)])\n", (12449, 12572), False, 'from sklearn.compose import ColumnTransformer, make_column_transformer\n'), ((12826, 12880), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(27)'}), '(X, y, test_size=0.2, random_state=27)\n', (12842, 12880), False, 'from sklearn.model_selection import train_test_split\n'), ((12936, 12973), 'pandas.concat', 'pd.concat', (['[X_train, y_train]'], {'axis': '(1)'}), '([X_train, y_train], axis=1)\n', (12945, 12973), True, 'import pandas as pd\n'), ((13438, 13484), 'pandas.concat', 'pd.concat', (['[take_over, not_takeover_upsampled]'], {}), '([take_over, not_takeover_upsampled])\n', (13447, 13484), True, 'import pandas as pd\n'), ((19921, 19968), 'pandas.concat', 'pd.concat', (['[takeover_downsampled, not_takeover]'], {}), '([takeover_downsampled, not_takeover])\n', (19930, 19968), True, 'import pandas as pd\n'), ((22006, 22037), 'tensorflow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', ([], {}), '()\n', (22035, 22037), False, 'from tensorflow.python.client import device_lib\n'), ((22208, 22262), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(27)'}), '(X, y, test_size=0.2, random_state=27)\n', (22224, 22262), False, 'from sklearn.model_selection import train_test_split\n'), ((22318, 22355), 'pandas.concat', 'pd.concat', (['[X_train, y_train]'], {'axis': '(1)'}), '([X_train, y_train], axis=1)\n', (22327, 22355), True, 'import pandas as pd\n'), ((22820, 22866), 'pandas.concat', 'pd.concat', (['[take_over, not_takeover_upsampled]'], {}), '([take_over, not_takeover_upsampled])\n', (22829, 22866), True, 'import pandas as pd\n'), ((23910, 24050), 'sklearn.compose.ColumnTransformer', 'ColumnTransformer', ([], {'transformers': "[('num', numeric_transformer, numeric_features), ('cat',\n categorical_transformer, categorical_features)]"}), "(transformers=[('num', numeric_transformer,\n numeric_features), ('cat', categorical_transformer, categorical_features)])\n", (23927, 24050), False, 'from sklearn.compose import ColumnTransformer, make_column_transformer\n'), ((24640, 24694), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(27)'}), '(X, y, test_size=0.2, random_state=27)\n', (24656, 24694), False, 'from sklearn.model_selection import train_test_split\n'), ((24750, 24787), 'pandas.concat', 'pd.concat', (['[X_train, y_train]'], {'axis': '(1)'}), '([X_train, y_train], axis=1)\n', (24759, 24787), True, 'import pandas as pd\n'), ((25252, 25298), 'pandas.concat', 'pd.concat', (['[take_over, not_takeover_upsampled]'], {}), '([take_over, not_takeover_upsampled])\n', (25261, 25298), True, 'import pandas as pd\n'), ((25708, 25720), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (25718, 25720), False, 'from keras.models import Sequential\n'), ((26742, 26779), 'keras.models.load_model', 'load_model', (['"""best-model-02-0.04.hdf5"""'], {}), "('best-model-02-0.04.hdf5')\n", (26752, 26779), False, 'from keras.models import load_model\n'), ((27186, 27234), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['loss']"], {'label': '"""train"""'}), "(history.history['loss'], label='train')\n", (27194, 27234), True, 'import matplotlib.pyplot as plt\n'), ((27236, 27287), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_loss']"], {'label': '"""test"""'}), "(history.history['val_loss'], label='test')\n", (27244, 27287), True, 'import matplotlib.pyplot as plt\n'), ((27289, 27336), 'matplotlib.pyplot.legend', 'plt.legend', (["['train', 'test']"], {'loc': '"""upper left"""'}), "(['train', 'test'], loc='upper left')\n", (27299, 27336), True, 'import matplotlib.pyplot as plt\n'), ((27338, 27356), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (27348, 27356), True, 'import matplotlib.pyplot as plt\n'), ((27358, 27368), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27366, 27368), True, 'import matplotlib.pyplot as plt\n'), ((27408, 27445), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['accuracy']"], {}), "(history.history['accuracy'])\n", (27416, 27445), True, 'import matplotlib.pyplot as plt\n'), ((27447, 27488), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_accuracy']"], {}), "(history.history['val_accuracy'])\n", (27455, 27488), True, 'import matplotlib.pyplot as plt\n'), ((27490, 27517), 'matplotlib.pyplot.title', 'plt.title', (['"""model accuracy"""'], {}), "('model accuracy')\n", (27499, 27517), True, 'import matplotlib.pyplot as plt\n'), ((27519, 27541), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""accuracy"""'], {}), "('accuracy')\n", (27529, 27541), True, 'import matplotlib.pyplot as plt\n'), ((27543, 27562), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (27553, 27562), True, 'import matplotlib.pyplot as plt\n'), ((27564, 27611), 'matplotlib.pyplot.legend', 'plt.legend', (["['train', 'test']"], {'loc': '"""upper left"""'}), "(['train', 'test'], loc='upper left')\n", (27574, 27611), True, 'import matplotlib.pyplot as plt\n'), ((27613, 27623), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27621, 27623), True, 'import matplotlib.pyplot as plt\n'), ((27655, 27688), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['loss']"], {}), "(history.history['loss'])\n", (27663, 27688), True, 'import matplotlib.pyplot as plt\n'), ((27690, 27727), 'matplotlib.pyplot.plot', 'plt.plot', (["history.history['val_loss']"], {}), "(history.history['val_loss'])\n", (27698, 27727), True, 'import matplotlib.pyplot as plt\n'), ((27729, 27752), 'matplotlib.pyplot.title', 'plt.title', (['"""model loss"""'], {}), "('model loss')\n", (27738, 27752), True, 'import matplotlib.pyplot as plt\n'), ((27754, 27772), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (27764, 27772), True, 'import matplotlib.pyplot as plt\n'), ((27774, 27793), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (27784, 27793), True, 'import matplotlib.pyplot as plt\n'), ((27795, 27842), 'matplotlib.pyplot.legend', 'plt.legend', (["['train', 'test']"], {'loc': '"""upper left"""'}), "(['train', 'test'], loc='upper left')\n", (27805, 27842), True, 'import matplotlib.pyplot as plt\n'), ((27844, 27854), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27852, 27854), True, 'import matplotlib.pyplot as plt\n'), ((7824, 7840), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (7838, 7840), False, 'from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder\n'), ((7962, 7989), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'sparse': '(False)'}), '(sparse=False)\n', (7975, 7989), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((9620, 9625), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (9623, 9625), False, 'from sklearn.svm import SVC\n'), ((14159, 14196), 'sklearn.metrics.classification_report', 'classification_report', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (14180, 14196), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((14737, 14778), 'sklearn.metrics.classification_report', 'classification_report', (['y_true_3', 'y_pred_3'], {}), '(y_true_3, y_pred_3)\n', (14758, 14778), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((15286, 15327), 'sklearn.metrics.classification_report', 'classification_report', (['y_true_2', 'y_pred_2'], {}), '(y_true_2, y_pred_2)\n', (15307, 15327), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((17675, 17746), 'pandas.Series', 'pd.Series', (['gb_scores'], {'name': '"""CV scores distribution(Gradiaent Boosting)"""'}), "(gb_scores, name='CV scores distribution(Gradiaent Boosting)')\n", (17684, 17746), True, 'import pandas as pd\n'), ((18350, 18391), 'sklearn.metrics.classification_report', 'classification_report', (['y_true_4', 'y_pred_4'], {}), '(y_true_4, y_pred_4)\n', (18371, 18391), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((18651, 18659), 'sklearn.gaussian_process.kernels.RBF', 'RBF', (['(1.0)'], {}), '(1.0)\n', (18654, 18659), False, 'from sklearn.gaussian_process.kernels import RBF\n'), ((19063, 19104), 'sklearn.metrics.classification_report', 'classification_report', (['y_true_3', 'y_pred_3'], {}), '(y_true_3, y_pred_3)\n', (19084, 19104), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((20673, 20710), 'sklearn.metrics.classification_report', 'classification_report', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (20694, 20710), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((21304, 21355), 'sklearn.metrics.classification_report', 'classification_report', (['y_true_down_4', 'y_pred_down_4'], {}), '(y_true_down_4, y_pred_down_4)\n', (21325, 21355), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((24348, 24362), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (24360, 24362), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((25732, 25828), 'keras.layers.Dense', 'Dense', (['(23)'], {'input_dim': 'X_train_enc.shape[1]', 'activation': '"""relu"""', 'kernel_initializer': '"""he_normal"""'}), "(23, input_dim=X_train_enc.shape[1], activation='relu',\n kernel_initializer='he_normal')\n", (25737, 25828), False, 'from keras.layers import Dense\n'), ((25837, 25865), 'keras.layers.Dense', 'Dense', (['(14)'], {'activation': '"""relu"""'}), "(14, activation='relu')\n", (25842, 25865), False, 'from keras.layers import Dense\n'), ((25878, 25905), 'keras.layers.Dense', 'Dense', (['(8)'], {'activation': '"""relu"""'}), "(8, activation='relu')\n", (25883, 25905), False, 'from keras.layers import Dense\n'), ((25933, 25963), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (25938, 25963), False, 'from keras.layers import Dense\n'), ((26259, 26327), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'verbose': '(1)', 'patience': '(8)'}), "(monitor='val_loss', mode='min', verbose=1, patience=8)\n", (26272, 26327), False, 'from keras.callbacks import EarlyStopping\n'), ((26336, 26429), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['filepath'], {'monitor': '"""val_loss"""', 'mode': '"""min"""', 'verbose': '(1)', 'save_best_only': '(True)'}), "(filepath, monitor='val_loss', mode='min', verbose=1,\n save_best_only=True)\n", (26351, 26429), False, 'from keras.callbacks import ModelCheckpoint\n'), ((10509, 10514), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (10512, 10514), False, 'from sklearn.svm import SVC\n'), ((11465, 11502), 'sklearn.metrics.classification_report', 'classification_report', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (11486, 11502), False, 'from sklearn.metrics import confusion_matrix, recall_score, precision_recall_curve, auc, roc_curve, roc_auc_score, classification_report\n'), ((16367, 16391), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (['n_folds'], {}), '(n_folds)\n', (16382, 16391), False, 'from sklearn.model_selection import StratifiedKFold, cross_val_score\n'), ((17443, 17467), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (['n_folds'], {}), '(n_folds)\n', (17458, 17467), False, 'from sklearn.model_selection import StratifiedKFold, cross_val_score\n'), ((17631, 17649), 'numpy.mean', 'np.mean', (['gb_scores'], {}), '(gb_scores)\n', (17638, 17649), True, 'import numpy as np\n'), ((12078, 12110), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""median"""'}), "(strategy='median')\n", (12091, 12110), False, 'from sklearn.impute import SimpleImputer\n'), ((12129, 12145), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (12143, 12145), False, 'from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder\n'), ((12297, 12353), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""constant"""', 'fill_value': '"""missing"""'}), "(strategy='constant', fill_value='missing')\n", (12310, 12353), False, 'from sklearn.impute import SimpleImputer\n'), ((12372, 12410), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'handle_unknown': '"""ignore"""'}), "(handle_unknown='ignore')\n", (12385, 12410), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((13964, 13984), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (13982, 13984), False, 'from sklearn.linear_model import LogisticRegression\n'), ((14470, 14475), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (14473, 14475), False, 'from sklearn.decomposition import PCA\n'), ((14511, 14549), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'random_state': '(0)'}), '(random_state=0)\n', (14533, 14549), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((15005, 15010), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (15008, 15010), False, 'from sklearn.decomposition import PCA\n'), ((15045, 15096), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'max_depth': '(2)', 'random_state': '(0)'}), '(max_depth=2, random_state=0)\n', (15067, 15096), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((15905, 15910), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (15908, 15910), False, 'from sklearn.decomposition import PCA\n'), ((15953, 16039), 'rgf.sklearn.RGFClassifier', 'RGFClassifier', ([], {'max_leaf': '(400)', 'algorithm': '"""RGF_Sib"""', 'test_interval': '(100)', 'verbose': '(True)'}), "(max_leaf=400, algorithm='RGF_Sib', test_interval=100, verbose\n =True)\n", (15966, 16039), False, 'from rgf.sklearn import RGFClassifier\n'), ((16885, 16890), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (16888, 16890), False, 'from sklearn.decomposition import PCA\n'), ((16934, 17035), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {'n_estimators': '(20)', 'learning_rate': '(0.01)', 'subsample': '(0.6)', 'random_state': '(127)'}), '(n_estimators=20, learning_rate=0.01, subsample=\n 0.6, random_state=127)\n', (16960, 17035), False, 'from sklearn.ensemble import GradientBoostingClassifier\n'), ((18067, 18072), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (18070, 18072), False, 'from sklearn.decomposition import PCA\n'), ((18113, 18165), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {'n_estimators': '(100)', 'random_state': '(0)'}), '(n_estimators=100, random_state=0)\n', (18131, 18165), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((18757, 18762), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (18760, 18762), False, 'from sklearn.decomposition import PCA\n'), ((18797, 18853), 'sklearn.gaussian_process.GaussianProcessClassifier', 'GaussianProcessClassifier', ([], {'kernel': 'kernel', 'random_state': '(0)'}), '(kernel=kernel, random_state=0)\n', (18822, 18853), False, 'from sklearn.gaussian_process import GaussianProcessClassifier\n'), ((20448, 20468), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (20466, 20468), False, 'from sklearn.linear_model import LogisticRegression\n'), ((20986, 20991), 'sklearn.decomposition.PCA', 'PCA', ([], {}), '()\n', (20989, 20991), False, 'from sklearn.decomposition import PCA\n'), ((21032, 21084), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {'n_estimators': '(100)', 'random_state': '(0)'}), '(n_estimators=100, random_state=0)\n', (21050, 21084), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((23575, 23607), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""median"""'}), "(strategy='median')\n", (23588, 23607), False, 'from sklearn.impute import SimpleImputer\n'), ((23626, 23642), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (23640, 23642), False, 'from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder\n'), ((23775, 23831), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'strategy': '"""constant"""', 'fill_value': '"""missing"""'}), "(strategy='constant', fill_value='missing')\n", (23788, 23831), False, 'from sklearn.impute import SimpleImputer\n'), ((23850, 23888), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'handle_unknown': '"""ignore"""'}), "(handle_unknown='ignore')\n", (23863, 23888), False, 'from sklearn.preprocessing import OneHotEncoder\n')]
# This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # @author: <NAME> import os from typing import Dict, Optional, Tuple, cast import gym import hydra.utils from mbrl.env.offline_data import load_dataset_and_env import numpy as np import omegaconf from omegaconf import read_write import torch import mbrl.constants import mbrl.models import mbrl.planning import mbrl.third_party.pytorch_sac as pytorch_sac import mbrl.types import mbrl.util import mbrl.util.common import mbrl.util.math from mbrl.planning.sac_wrapper import SACAgent MBPO_LOG_FORMAT = mbrl.constants.EVAL_LOG_FORMAT + [ ("epoch", "E", "int"), ("rollout_length", "RL", "int"), ] def create_dataloader_from_dict(cfg: omegaconf.DictConfig, env: gym.Env, dataset: Dict) -> mbrl.util.ReplayBuffer: dataset_length = len(dataset["observations"]) assert cfg.overrides.num_steps >= dataset_length, \ f"Buffer must be large enough for pretraining dataset, trying to fit {dataset_length} into {cfg.overrides.num_steps} steps." rng = np.random.default_rng(seed=cfg.seed) dtype = np.float32 obs_shape = env.observation_space.shape act_shape = env.action_space.shape replay_buffer = mbrl.util.common.create_replay_buffer( cfg, obs_shape, act_shape, rng=rng, obs_type=dtype, action_type=dtype, reward_type=dtype, ) observations = dataset["observations"] actions = dataset["actions"] rewards = dataset["rewards"] next_observations = dataset["next_observations"] dones = dataset["terminals"] if "timeouts" in dataset.keys(): dones = np.logical_or(dataset["terminals"], dataset["timeouts"]) for (obs, act, rew, obs_next, done) in zip(observations, actions, rewards, next_observations, dones): replay_buffer.add(obs, act, obs_next, rew, done) return replay_buffer def train( env: gym.Env, cfg: omegaconf.DictConfig, ) -> None: # ------------------- Initialization ------------------- assert cfg.model_pretraining.train_dataset == cfg.overrides.env, "Dataset for pretraining must come from the training env." debug_mode = cfg.get("debug_mode", False) train_dataset, _ = load_dataset_and_env(cfg.model_pretraining.train_dataset) test_dataset, _ = load_dataset_and_env(cfg.model_pretraining.test_dataset) train_dataset = create_dataloader_from_dict(cfg, env, train_dataset) test_dataset = create_dataloader_from_dict(cfg, env, test_dataset) obs_shape = env.observation_space.shape act_shape = env.action_space.shape # mbrl.planning.complete_agent_cfg(env, cfg.algorithm.agent) # agent = hydra.utils.instantiate(cfg.algorithm.agent) work_dir = os.getcwd() logger = mbrl.util.Logger(work_dir, enable_back_compatible=True) logger.register_group( mbrl.constants.RESULTS_LOG_NAME, MBPO_LOG_FORMAT, color="green", dump_frequency=1, ) torch_generator = torch.Generator(device=cfg.device) if cfg.seed is not None: torch_generator.manual_seed(cfg.seed) dynamics_model = mbrl.util.common.create_one_dim_tr_model(cfg, obs_shape, act_shape) # --------------------------------------------------------- # --------------------- Training Loop --------------------- model_trainer = mbrl.models.ModelTrainer( dynamics_model, optim_lr=cfg.overrides.model_lr, weight_decay=cfg.overrides.model_wd, logger=logger, ) mbrl.util.common.train_model_and_save_model_and_data( dynamics_model, model_trainer, cfg.overrides, train_dataset, work_dir=work_dir, ) return dynamics_model, model_trainer, train_dataset # --------------------------------------------------------- # -------------- Evaluate on test dataset ----------------- pass #TODO: implement more mature testing logic here and maybe some nice viz # --------------------------------------------------------- # -------------- Create initial overrides. dataset -------------- pass #TODO: implement robust saving so we can use this model for more experiments # down the line
[ "numpy.random.default_rng", "mbrl.env.offline_data.load_dataset_and_env", "numpy.logical_or", "os.getcwd", "torch.Generator" ]
[((1098, 1134), 'numpy.random.default_rng', 'np.random.default_rng', ([], {'seed': 'cfg.seed'}), '(seed=cfg.seed)\n', (1119, 1134), True, 'import numpy as np\n'), ((2285, 2342), 'mbrl.env.offline_data.load_dataset_and_env', 'load_dataset_and_env', (['cfg.model_pretraining.train_dataset'], {}), '(cfg.model_pretraining.train_dataset)\n', (2305, 2342), False, 'from mbrl.env.offline_data import load_dataset_and_env\n'), ((2365, 2421), 'mbrl.env.offline_data.load_dataset_and_env', 'load_dataset_and_env', (['cfg.model_pretraining.test_dataset'], {}), '(cfg.model_pretraining.test_dataset)\n', (2385, 2421), False, 'from mbrl.env.offline_data import load_dataset_and_env\n'), ((2792, 2803), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2801, 2803), False, 'import os\n'), ((3045, 3079), 'torch.Generator', 'torch.Generator', ([], {'device': 'cfg.device'}), '(device=cfg.device)\n', (3060, 3079), False, 'import torch\n'), ((1705, 1761), 'numpy.logical_or', 'np.logical_or', (["dataset['terminals']", "dataset['timeouts']"], {}), "(dataset['terminals'], dataset['timeouts'])\n", (1718, 1761), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os from collections import defaultdict import numpy as np from scipy.spatial import distance from tqdm import tqdm np.set_printoptions(threshold=np.inf, suppress=True) def main(args): num_batches = args.num_batches bert_data = defaultdict(list) s_or_e_bert_data = defaultdict(list) print('loading data...') for para_idx in range(num_batches): bert_filename = os.path.join(args.in_dir, 'bert_b{}.npz'.format(para_idx + 1)) bert_outputs = np.load(bert_filename) for k, v in bert_outputs.items(): bert_data[k].append(v) sbert_filename = os.path.join(args.in_dir, '{}_b{}.npz'.format(args.model, para_idx + 1)) sbert_outputs = np.load(sbert_filename) for k, v in sbert_outputs.items(): s_or_e_bert_data[k].append(v) print('stacking all examples of both bert and {}...'.format(args.model)) for k, v in s_or_e_bert_data.items(): s_or_e_bert_data[k] = np.concatenate(v) # stack along batch dim for k, v in bert_data.items(): bert_data[k] = np.concatenate(v) # stack along batch dim print('begin computing...') all_para_distances = [[] for _ in range(12)] all_q_distances = [[] for _ in range(12)] # 500 examples paragraphs for para_idx in tqdm(range(500)): in_ids = bert_data['input_ids'][para_idx] seg_ids = bert_data['segment_ids'][para_idx] feature_ids = bert_data['feature_id'][para_idx] q_ids = s_or_e_bert_data["question_ids"][para_idx] c_ids = s_or_e_bert_data["context_ids"][para_idx] q_length = np.sum(q_ids.astype(np.bool)) c_length = np.sum(c_ids.astype(np.bool)) sequence_length = np.sum(in_ids.astype(np.bool)) second_length = np.sum(seg_ids.astype(np.bool)) first_length = sequence_length - second_length if not (c_length == second_length): print('shifted paragraphs:', feature_ids, c_length, second_length) continue if not (q_length == first_length): print('shifted questions:', feature_ids, q_length, first_length) continue for l in range(12): b_layer_vectors = bert_data['layer{}'.format(l)][para_idx] s_layer_vectors = s_or_e_bert_data['layer{}'.format(l)][para_idx] # b_pvs is layer paragraph tokens vectors for bert b_pvs = b_layer_vectors[first_length:second_length] s_pvs = s_layer_vectors[len(q_ids):len(q_ids) + c_length] # calculate variance of distances of 5 paragraph vectors to the centroid p_dist = np.mean([distance.cosine(b_p, s_p) for b_p, s_p in zip(b_pvs, s_pvs)]) all_para_distances[l].append(p_dist) # q_pvs is layer question tokens vectors for bert b_qvs = b_layer_vectors[:first_length] s_qvs = s_layer_vectors[:q_length] q_dist = np.mean([distance.cosine(b_q, s_q) for b_q, s_q in zip(b_qvs, s_qvs)]) all_q_distances[l].append(q_dist) # all_para_variances has 12 list, each has 100 variances all_para_mean_variances = [np.mean(v) for v in all_para_distances] all_q_mean_variances = [np.mean(v) for v in all_q_distances] print(all_para_mean_variances) print(all_q_mean_variances) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('in_dir', type=str, default=None) parser.add_argument('-n', '--num_batches', type=int, default=20) parser.add_argument('-m', '--model', type=str, default='sbert', choices=('ebert', 'sbert'), help='choose which model compare distance') main(parser.parse_args())
[ "numpy.mean", "scipy.spatial.distance.cosine", "argparse.ArgumentParser", "collections.defaultdict", "numpy.concatenate", "numpy.load", "numpy.set_printoptions" ]
[((188, 240), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf', 'suppress': '(True)'}), '(threshold=np.inf, suppress=True)\n', (207, 240), True, 'import numpy as np\n'), ((310, 327), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (321, 327), False, 'from collections import defaultdict\n'), ((352, 369), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (363, 369), False, 'from collections import defaultdict\n'), ((3408, 3433), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3431, 3433), False, 'import argparse\n'), ((549, 571), 'numpy.load', 'np.load', (['bert_filename'], {}), '(bert_filename)\n', (556, 571), True, 'import numpy as np\n'), ((772, 795), 'numpy.load', 'np.load', (['sbert_filename'], {}), '(sbert_filename)\n', (779, 795), True, 'import numpy as np\n'), ((1031, 1048), 'numpy.concatenate', 'np.concatenate', (['v'], {}), '(v)\n', (1045, 1048), True, 'import numpy as np\n'), ((1133, 1150), 'numpy.concatenate', 'np.concatenate', (['v'], {}), '(v)\n', (1147, 1150), True, 'import numpy as np\n'), ((3194, 3204), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (3201, 3204), True, 'import numpy as np\n'), ((3262, 3272), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (3269, 3272), True, 'import numpy as np\n'), ((2690, 2715), 'scipy.spatial.distance.cosine', 'distance.cosine', (['b_p', 's_p'], {}), '(b_p, s_p)\n', (2705, 2715), False, 'from scipy.spatial import distance\n'), ((2993, 3018), 'scipy.spatial.distance.cosine', 'distance.cosine', (['b_q', 's_q'], {}), '(b_q, s_q)\n', (3008, 3018), False, 'from scipy.spatial import distance\n')]
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to calculate metrics on forecasts.""" import numpy as np def check_shape_wrapper(func): """Wrapper that checks the shapes of predictions and ground truth.""" def wrapped_func(predictions, ground_truth): assert predictions.shape == ground_truth.shape, ( f"Predictions array has shape {predictions.shape}, ground truth has " f"shape {ground_truth.shape}") assert predictions.ndim == 3, ( "Metrics calculation expects rank 3 predictions and ground truth.") assert predictions.shape[-1] == 1, ( "Metrics calculation expects a single target") return func(predictions, ground_truth) wrapped_func.__name__ = func.__name__ return wrapped_func @check_shape_wrapper def rmse(predictions: np.ndarray, ground_truth: np.ndarray) -> float: """Gets the RMSE averaged over time and sites for the given predictions.""" squared_error = (predictions - ground_truth) ** 2 return np.sqrt(np.mean(squared_error)) @check_shape_wrapper def mae(predictions: np.ndarray, ground_truth: np.ndarray) -> float: """Gets MAE averaged over time and sites for the given predictions.""" return np.mean(np.abs(predictions - ground_truth))
[ "numpy.mean", "numpy.abs" ]
[((1677, 1699), 'numpy.mean', 'np.mean', (['squared_error'], {}), '(squared_error)\n', (1684, 1699), True, 'import numpy as np\n'), ((1883, 1917), 'numpy.abs', 'np.abs', (['(predictions - ground_truth)'], {}), '(predictions - ground_truth)\n', (1889, 1917), True, 'import numpy as np\n')]
import torch import torch.nn as nn import argparse from torch.utils.data import Dataset import sys ''' Block of net ''' def net_block(n_in, n_out): block = nn.Sequential(nn.Linear(n_in, n_out), nn.BatchNorm1d(n_out), nn.ReLU()) return block class Model(nn.Module): def __init__(self, n_input, n_hidden, num_class, opt, toplevel=False): super(Model, self).__init__() self.opt = opt self.toplevel = toplevel self.block1 = net_block(n_input, n_hidden) self.dropout = nn.Dropout(p=0.1) if (opt.glove or opt.sift or opt.prefix10m): #if include skip connection: #self.block_mid = net_block(n_hidden + n_input, n_hidden) self.block_mid = net_block(n_hidden, n_hidden) if toplevel: self.block2 = net_block(n_hidden, n_hidden) self.fc1 = nn.Linear(n_hidden, num_class) self.softmax = nn.Softmax(dim=-1) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) nn.init.constant_(m.bias, 0.01) def forward(self, x): y = self.block1(x) #y = self.dropout(x1) if self.opt.glove or self.opt.sift or self.opt.prefix10m: #if include skip connection: #y = self.block_mid(torch.cat([x, y], dim=1)) y = self.block_mid(y) if self.toplevel: y = self.block2(y) y = self.dropout(y) out = self.fc1(y) out = self.softmax(out) return out def get_dataset(data, shuffle, param_batch_size): X, y = data dset = torch.utils.data.TensorDataset(X.float(), y) loader = torch.utils.data.DataLoader(dataset=dset, batch_size=param_batch_size, shuffle=shuffle) return loader def write_results(result, output): result = (-result.detach().numpy()).argsort(axis=1) for i in range(result.shape[0]): output.write(" ".join([str(x) for x in result[i]]) + "\n") def run(param_feat, param_lr, param_batch_size): print("RUNNING WITH: features="+str(param_feat)+"; lr="+str(param_lr)+"; batch_size="+str(param_batch_size)) input_dim = 100 # read data X, y = torch.load('./data/parts64/data.path') import numpy as np dataset = np.load('./data/parts64/dataset.npy') queries = np.load('./data/parts64/queries.npy') n_data = X.size(0) split = int(n_data * 0.95) trainloader = get_dataset((X[:split], y[:split]), shuffle=True, param_batch_size=param_batch_size) valloader = get_dataset((X[split:], y[split:]), shuffle=False, param_batch_size=param_batch_size) # build model m = Model model = m(input_dim=input_dim, feat_dim=param_feat, num_class=64, args=None).cuda() # criterion crit = nn.CrossEntropyLoss().cuda() # optimizer # optimizer = torch.optim.RMSprop(model.parameters(), args.lr) lr = param_lr optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=10**(-4)) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20, 30, 35, 38, 39], gamma=0.1) # start training! losses = [] iterations = 40 for ep in range(1, iterations + 1): print("==="+str(ep)+"===") loss_sum = 0. train_acc_tot = 0 train_n_tot = 0 scheduler.step() for i, (X, y) in enumerate(trainloader): y_pred = model(X.cuda()) loss = crit(y_pred, y.cuda()) optimizer.zero_grad() loss.backward() optimizer.step() loss_sum += loss.item() train_acc_tot += (y_pred.argmax(dim=1).cpu() == y).sum().item() train_n_tot += X.size(0) print("loss:", loss_sum) print("train acc:", train_acc_tot*1. / train_n_tot) losses.append(loss_sum / len(trainloader)) acc_tot = 0 n_tot = 0. for i, (X, y) in enumerate(valloader): y_pred = model(X.cuda()) acc_tot += (y_pred.argmax(dim=1).cpu() == y).sum().item() n_tot += X.size(0) print("val acc:", acc_tot / n_tot) print("Doing inference and writing result files...") # inference on data batch_size = 10000 param_str = "_".join(sys.argv[1:]) with open("./data/parts64/data_prediction"+param_str+".txt","w") as output: for b in range(0, n_data, batch_size): data_batch_results = model(torch.from_numpy(dataset[b:b+batch_size]).float().cuda()).cpu() write_results(data_batch_results, output) # inference on queries query_results = model(torch.from_numpy(queries).float().cuda()).cpu() with open("./data/parts64/queries_prediction"+param_str+".txt","w") as output: write_results(query_results, output) if __name__ == "__main__": run(int(sys.argv[1]), float(sys.argv[2]), int(sys.argv[3]))
[ "torch.nn.ReLU", "torch.nn.Dropout", "torch.optim.lr_scheduler.MultiStepLR", "torch.nn.Softmax", "torch.nn.CrossEntropyLoss", "torch.nn.init.constant_", "torch.load", "torch.from_numpy", "torch.nn.init.xavier_normal_", "torch.nn.BatchNorm1d", "torch.nn.Linear", "torch.utils.data.DataLoader", "numpy.load" ]
[((1855, 1946), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'dset', 'batch_size': 'param_batch_size', 'shuffle': 'shuffle'}), '(dataset=dset, batch_size=param_batch_size,\n shuffle=shuffle)\n', (1882, 1946), False, 'import torch\n'), ((2418, 2456), 'torch.load', 'torch.load', (['"""./data/parts64/data.path"""'], {}), "('./data/parts64/data.path')\n", (2428, 2456), False, 'import torch\n'), ((2494, 2531), 'numpy.load', 'np.load', (['"""./data/parts64/dataset.npy"""'], {}), "('./data/parts64/dataset.npy')\n", (2501, 2531), True, 'import numpy as np\n'), ((2546, 2583), 'numpy.load', 'np.load', (['"""./data/parts64/queries.npy"""'], {}), "('./data/parts64/queries.npy')\n", (2553, 2583), True, 'import numpy as np\n'), ((3222, 3317), 'torch.optim.lr_scheduler.MultiStepLR', 'torch.optim.lr_scheduler.MultiStepLR', (['optimizer'], {'milestones': '[20, 30, 35, 38, 39]', 'gamma': '(0.1)'}), '(optimizer, milestones=[20, 30, 35, 38,\n 39], gamma=0.1)\n', (3258, 3317), False, 'import torch\n'), ((181, 203), 'torch.nn.Linear', 'nn.Linear', (['n_in', 'n_out'], {}), '(n_in, n_out)\n', (190, 203), True, 'import torch.nn as nn\n'), ((231, 252), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['n_out'], {}), '(n_out)\n', (245, 252), True, 'import torch.nn as nn\n'), ((280, 289), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (287, 289), True, 'import torch.nn as nn\n'), ((589, 606), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.1)'}), '(p=0.1)\n', (599, 606), True, 'import torch.nn as nn\n'), ((968, 998), 'torch.nn.Linear', 'nn.Linear', (['n_hidden', 'num_class'], {}), '(n_hidden, num_class)\n', (977, 998), True, 'import torch.nn as nn\n'), ((1023, 1041), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (1033, 1041), True, 'import torch.nn as nn\n'), ((2992, 3013), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3011, 3013), True, 'import torch.nn as nn\n'), ((1141, 1173), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['m.weight'], {}), '(m.weight)\n', (1163, 1173), True, 'import torch.nn as nn\n'), ((1190, 1221), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0.01)'], {}), '(m.bias, 0.01)\n', (1207, 1221), True, 'import torch.nn as nn\n'), ((4809, 4834), 'torch.from_numpy', 'torch.from_numpy', (['queries'], {}), '(queries)\n', (4825, 4834), False, 'import torch\n'), ((4637, 4680), 'torch.from_numpy', 'torch.from_numpy', (['dataset[b:b + batch_size]'], {}), '(dataset[b:b + batch_size])\n', (4653, 4680), False, 'import torch\n')]
import numpy as np import cv2 import glob import PIL.ExifTags import PIL.Image from tqdm import tqdm import os import matplotlib.pyplot as plt from pyntcloud import PyntCloud import open3d as o3d def create_output(vertices, colors, filename): colors = colors.reshape(-1,3) vertices = np.hstack([vertices.reshape(-1,3),colors]) ply_header = '''ply format ascii 1.0 element vertex %(vert_num)d property float x property float y property float z property uchar red property uchar green property uchar blue end_header ''' with open(filename, 'w') as f: f.write(ply_header %dict(vert_num=len(vertices))) np.savetxt(f,vertices,'%f %f %f %d %d %d') def generateDisparityMap(left,right,win_size,min_disp,max_disp,blockSize,uniquenessRatio,speckleSize,speckleRange,f): f = f/100.0 ret = np.load(os.path.join("camera_params","ret.npy")) K = np.load(os.path.join("camera_params","K.npy")) dist = np.load(os.path.join("camera_params","dist.npy")) img_1 = cv2.imread(left) img_2 = cv2.imread(right) img_1 = cv2.resize(img_1,(int(img_1.shape[1]/4),int(img_1.shape[0]/4))) img_2 = cv2.resize(img_2,(int(img_2.shape[1]/4),int(img_2.shape[0]/4))) h,w = img_2.shape[:2] new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(K,dist,(w,h),1,(w,h)) img_1_undistorted = cv2.undistort(img_1, K, dist, None, K) img_2_undistorted = cv2.undistort(img_2, K, dist, None, K) num_disp = max_disp - min_disp stereo = cv2.StereoSGBM_create(minDisparity= min_disp, numDisparities = num_disp, blockSize = blockSize, uniquenessRatio = uniquenessRatio, speckleWindowSize = speckleSize, speckleRange = speckleRange, P1 = 8*3*win_size**2,#8*3*win_size**2, P2 =32*3*win_size**2) #32*3*win_size**2) #Compute disparity map print ("\nComputing the disparity map...") disparity_map = stereo.compute(img_1_undistorted, img_2_undistorted) plt.imsave('disparity_map.jpg',disparity_map) #Generate point cloud. print ("\nGenerating the 3D map...") focal_length = np.load(os.path.join("camera_params","FocalLength.npy"), allow_pickle=True) Q2 = np.float32([[1,0,0,0], [0,-1,0,0], [0,0,focal_length*f,0], #Focal length multiplication obtained experimentally. [0,0,0,1]]) #Reproject points into 3D points_3D = cv2.reprojectImageTo3D(disparity_map, Q2) #Get color points colors = cv2.cvtColor(img_1_undistorted, cv2.COLOR_BGR2RGB) #Get rid of points with value 0 (i.e no depth) mask_map = disparity_map > disparity_map.min() #Mask colors and points. output_points = points_3D[mask_map] output_colors = colors[mask_map] #Define name for output file output_file = 'reconstructed.ply' #Generate point cloud print ("\n Creating the output file... \n") create_output(output_points, output_colors, output_file)
[ "matplotlib.pyplot.imsave", "cv2.undistort", "cv2.reprojectImageTo3D", "os.path.join", "cv2.getOptimalNewCameraMatrix", "cv2.StereoSGBM_create", "cv2.cvtColor", "numpy.savetxt", "cv2.imread", "numpy.float32" ]
[((997, 1013), 'cv2.imread', 'cv2.imread', (['left'], {}), '(left)\n', (1007, 1013), False, 'import cv2\n'), ((1026, 1043), 'cv2.imread', 'cv2.imread', (['right'], {}), '(right)\n', (1036, 1043), False, 'import cv2\n'), ((1253, 1310), 'cv2.getOptimalNewCameraMatrix', 'cv2.getOptimalNewCameraMatrix', (['K', 'dist', '(w, h)', '(1)', '(w, h)'], {}), '(K, dist, (w, h), 1, (w, h))\n', (1282, 1310), False, 'import cv2\n'), ((1330, 1368), 'cv2.undistort', 'cv2.undistort', (['img_1', 'K', 'dist', 'None', 'K'], {}), '(img_1, K, dist, None, K)\n', (1343, 1368), False, 'import cv2\n'), ((1393, 1431), 'cv2.undistort', 'cv2.undistort', (['img_2', 'K', 'dist', 'None', 'K'], {}), '(img_2, K, dist, None, K)\n', (1406, 1431), False, 'import cv2\n'), ((1482, 1730), 'cv2.StereoSGBM_create', 'cv2.StereoSGBM_create', ([], {'minDisparity': 'min_disp', 'numDisparities': 'num_disp', 'blockSize': 'blockSize', 'uniquenessRatio': 'uniquenessRatio', 'speckleWindowSize': 'speckleSize', 'speckleRange': 'speckleRange', 'P1': '(8 * 3 * win_size ** 2)', 'P2': '(32 * 3 * win_size ** 2)'}), '(minDisparity=min_disp, numDisparities=num_disp,\n blockSize=blockSize, uniquenessRatio=uniquenessRatio, speckleWindowSize\n =speckleSize, speckleRange=speckleRange, P1=8 * 3 * win_size ** 2, P2=\n 32 * 3 * win_size ** 2)\n', (1503, 1730), False, 'import cv2\n'), ((1935, 1981), 'matplotlib.pyplot.imsave', 'plt.imsave', (['"""disparity_map.jpg"""', 'disparity_map'], {}), "('disparity_map.jpg', disparity_map)\n", (1945, 1981), True, 'import matplotlib.pyplot as plt\n'), ((2156, 2244), 'numpy.float32', 'np.float32', (['[[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, focal_length * f, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, focal_length * f, 0], [0, 0,\n 0, 1]])\n', (2166, 2244), True, 'import numpy as np\n'), ((2352, 2393), 'cv2.reprojectImageTo3D', 'cv2.reprojectImageTo3D', (['disparity_map', 'Q2'], {}), '(disparity_map, Q2)\n', (2374, 2393), False, 'import cv2\n'), ((2429, 2479), 'cv2.cvtColor', 'cv2.cvtColor', (['img_1_undistorted', 'cv2.COLOR_BGR2RGB'], {}), '(img_1_undistorted, cv2.COLOR_BGR2RGB)\n', (2441, 2479), False, 'import cv2\n'), ((629, 673), 'numpy.savetxt', 'np.savetxt', (['f', 'vertices', '"""%f %f %f %d %d %d"""'], {}), "(f, vertices, '%f %f %f %d %d %d')\n", (639, 673), True, 'import numpy as np\n'), ((827, 867), 'os.path.join', 'os.path.join', (['"""camera_params"""', '"""ret.npy"""'], {}), "('camera_params', 'ret.npy')\n", (839, 867), False, 'import os\n'), ((884, 922), 'os.path.join', 'os.path.join', (['"""camera_params"""', '"""K.npy"""'], {}), "('camera_params', 'K.npy')\n", (896, 922), False, 'import os\n'), ((942, 983), 'os.path.join', 'os.path.join', (['"""camera_params"""', '"""dist.npy"""'], {}), "('camera_params', 'dist.npy')\n", (954, 983), False, 'import os\n'), ((2079, 2127), 'os.path.join', 'os.path.join', (['"""camera_params"""', '"""FocalLength.npy"""'], {}), "('camera_params', 'FocalLength.npy')\n", (2091, 2127), False, 'import os\n')]
# Copyright (c) 2016 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ^ # / \ # | # | # # License included because this module is a heavily modified version based on # Paulo's implementation of dynamic t-SNE. # (https://github.com/paulorauber/thesne) import math import numpy as np import theano import theano.tensor as T from sklearn.utils import check_random_state from scipy.spatial.distance import pdist from modules.layout_io import save_drawing epsilon = 1e-16 floath = np.float32 class SigmaTooLowException(Exception): pass class NaNException(Exception): pass # Squared Euclidean distance between all pairs of row-vectors def sqeuclidean_var(X): N = X.shape[0] ss = (X ** 2).sum(axis=1) return ss.reshape((N, 1)) + ss.reshape((1, N)) - 2 * X.dot(X.T) # Euclidean distance between all pairs of row-vectors def euclidean_var(X): return T.maximum(sqeuclidean_var(X), epsilon) ** 0.5 # Conditional probabilities of picking (ordered) pairs in high-dim space. def p_ij_conditional_var(X, sigma): N = X.shape[0] sqdistance = X**2 esqdistance = T.exp(-sqdistance / ((2 * (sigma**2)).reshape((N, 1)))) esqdistance_zd = T.fill_diagonal(esqdistance, 0) row_sum = T.sum(esqdistance_zd, axis=1).reshape((N, 1)) return esqdistance_zd / row_sum # Possibly dangerous # Symmetrized probabilities of picking pairs in high-dim space. def p_ij_sym_var(p_ij_conditional): return (p_ij_conditional + p_ij_conditional.T) / (2 * p_ij_conditional.shape[0]) # Probabilities of picking pairs in low-dim space (using Student # t-distribution). def q_ij_student_t_var(Y): sqdistance = sqeuclidean_var(Y) one_over = T.fill_diagonal(1 / (sqdistance + 1), 0) return one_over / one_over.sum() # Probabilities of picking pairs in low-dim space (using Gaussian). def q_ij_gaussian_var(Y): sqdistance = sqeuclidean_var(Y) gauss = T.fill_diagonal(T.exp(-sqdistance), 0) return gauss / gauss.sum() # Per point cost function def cost_var(X, Y, sigma, Adj, l_kl, l_e, l_c, l_r, r_eps): N = X.shape[0] num_edges = 0.5 * T.sum(Adj) # Used to normalize s.t. the l_*'s sum up to one. l_sum = l_kl + l_e + l_c + l_r p_ij_conditional = p_ij_conditional_var(X, sigma) p_ij = p_ij_sym_var(p_ij_conditional) q_ij = q_ij_student_t_var(Y) p_ij_safe = T.maximum(p_ij, epsilon) q_ij_safe = T.maximum(q_ij, epsilon) # Kullback-Leibler term kl = T.sum(p_ij * T.log(p_ij_safe / q_ij_safe), axis=1) # Edge contraction term edge_contraction = (1 / (2 * num_edges)) * T.sum(Adj * sqeuclidean_var(Y), axis=1) # Compression term compression = (1 / (2 * N)) * T.sum(Y**2, axis=1) # Repulsion term # repulsion = (1 / (2 * N**2)) * T.sum(T.fill_diagonal(1 / (euclidean_var(Y) + r_eps), 0), axis=1) repulsion = -(1 / (2 * N**2)) * T.sum(T.fill_diagonal(T.log(euclidean_var(Y) + r_eps), 0), axis=1) cost = (l_kl / l_sum) * kl + (l_e / l_sum) * edge_contraction + (l_c / l_sum) * compression + (l_r / l_sum) * repulsion return cost # Binary search on sigma for a given perplexity def find_sigma(X_shared, sigma_shared, N, perplexity, sigma_iters, verbose=0): X = T.fmatrix('X') sigma = T.fvector('sigma') target = np.log(perplexity) P = T.maximum(p_ij_conditional_var(X, sigma), epsilon) entropy = -T.sum(P * T.log(P), axis=1) # Setting update for binary search interval sigmin_shared = theano.shared(np.full(N, np.sqrt(epsilon), dtype=floath)) sigmax_shared = theano.shared(np.full(N, np.inf, dtype=floath)) sigmin = T.fvector('sigmin') sigmax = T.fvector('sigmax') upmin = T.switch(T.lt(entropy, target), sigma, sigmin) upmax = T.switch(T.gt(entropy, target), sigma, sigmax) givens = {X: X_shared, sigma: sigma_shared, sigmin: sigmin_shared, sigmax: sigmax_shared} updates = [(sigmin_shared, upmin), (sigmax_shared, upmax)] update_intervals = theano.function([], entropy, givens=givens, updates=updates) # Setting update for sigma according to search interval upsigma = T.switch(T.isinf(sigmax), sigma * 2, (sigmin + sigmax) / 2.) givens = {sigma: sigma_shared, sigmin: sigmin_shared, sigmax: sigmax_shared} updates = [(sigma_shared, upsigma)] update_sigma = theano.function([], sigma, givens=givens, updates=updates) for i in range(sigma_iters): e = update_intervals() update_sigma() if verbose: print('[find_sigma] Iteration {0}: Perplexities in [{1:.4f}, {2:.4f}].'.format(i + 1, np.exp(e.min()), np.exp(e.max())), end='\r') if verbose: print('\n[find_sigma] Done! Perplexities in [{0:.4f}, {1:.4f}].'.format(np.exp(e.min()), np.exp(e.max()))) if np.any(np.isnan(np.exp(e))): raise SigmaTooLowException('Invalid sigmas. The perplexity is probably too low.') # Receives vectors in Y, and moves co-located vertices in opposite directions, # to assist in the repulsion of vertices. def switch_shake(Y, magnitude=1e-5): N = Y.shape[0] # Auxiliary functions for translating from square to condensed indexing # of the distance matrix. def calc_row_idx(k, n): return int(math.ceil((1 / 2.) * (- (-8 * k + 4 * n**2 - 4 * n - 7)**0.5 + 2 * n - 1) - 1)) def elem_in_i_rows(i, n): return i * (n - 1 - i) + (i * (i + 1)) / 2 def calc_col_idx(k, i, n): return int(n - elem_in_i_rows(i + 1, n) + k) def condensed_to_square(k, n): i = calc_row_idx(k, n) j = calc_col_idx(k, i, n) return i, j euclid_dist = pdist(Y) max_dist = euclid_dist.max() for idx in np.where(euclid_dist <= np.finfo(np.float32).eps)[0]: (i, j) = condensed_to_square(idx, N) nudge = np.random.normal(0, max_dist * magnitude, 2) # v_i and v_j are co-located. Move v_i in a direction, and move v_j in # the opposite direction. Y[i, :] += nudge Y[j, :] -= nudge return Y # Perform momentum-based gradient descent on the cost function with the given # parameters. Return the vertex coordinates and per-vertex cost. def find_Y(X_shared, Y_shared, sigma_shared, N, output_dims, n_epochs, initial_lr, final_lr, lr_switch, init_stdev, initial_momentum, final_momentum, momentum_switch, initial_l_kl, final_l_kl, l_kl_switch, initial_l_e, final_l_e, l_e_switch, initial_l_c, final_l_c, l_c_switch, initial_l_r, final_l_r, l_r_switch, r_eps, Adj_shared, g=None, save_every=None, output_folder=None, verbose=0): # Optimization hyperparameters initial_lr = np.array(initial_lr, dtype=floath) final_lr = np.array(final_lr, dtype=floath) initial_momentum = np.array(initial_momentum, dtype=floath) final_momentum = np.array(final_momentum, dtype=floath) # Hyperparameters used within Theano lr = T.fscalar('lr') lr_shared = theano.shared(initial_lr) momentum = T.fscalar('momentum') momentum_shared = theano.shared(initial_momentum) # Cost parameters initial_l_kl = np.array(initial_l_kl, dtype=floath) final_l_kl = np.array(final_l_kl, dtype=floath) initial_l_e = np.array(initial_l_e, dtype=floath) final_l_e = np.array(final_l_e, dtype=floath) initial_l_c = np.array(initial_l_c, dtype=floath) final_l_c = np.array(final_l_c, dtype=floath) initial_l_r = np.array(initial_l_r, dtype=floath) final_l_r = np.array(final_l_r, dtype=floath) # Cost parameters used within Theano l_kl = T.fscalar('l_kl') l_kl_shared = theano.shared(initial_l_kl) l_e = T.fscalar('l_e') l_e_shared = theano.shared(initial_l_e) l_c = T.fscalar('l_c') l_c_shared = theano.shared(initial_l_c) l_r = T.fscalar('l_r') l_r_shared = theano.shared(initial_l_r) # High-dimensional observations (connectivities of vertices) X = T.fmatrix('X') # 2D projection (coordinates of vertices) Y = T.fmatrix('Y') # Adjacency matrix Adj = T.fmatrix('Adj') # Standard deviations used for Gaussians to attain perplexity sigma = T.fvector('sigma') # Y velocities (for momentum-based descent) Yv = T.fmatrix('Yv') Yv_shared = theano.shared(np.zeros((N, output_dims), dtype=floath)) # Function for retrieving cost for all individual data points costs = cost_var(X, Y, sigma, Adj, l_kl, l_e, l_c, l_r, r_eps) # Sum of all costs (scalar) cost = T.sum(costs) # Gradient of the cost w.r.t. Y grad_Y = T.grad(cost, Y) # Update step for velocity update_Yv = theano.function( [], None, givens={ X: X_shared, sigma: sigma_shared, Y: Y_shared, Yv: Yv_shared, Adj: Adj_shared, lr: lr_shared, momentum: momentum_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared }, updates=[ (Yv_shared, momentum * Yv - lr * grad_Y) ] ) # Gradient descent step update_Y = theano.function( [], [], givens={ Y: Y_shared, Yv: Yv_shared }, updates=[ (Y_shared, Y + Yv) ] ) # Build function to retrieve cost get_cost = theano.function( [], cost, givens={ X: X_shared, sigma: sigma_shared, Y: Y_shared, Adj: Adj_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared } ) # Build function to retrieve per-vertex cost get_costs = theano.function( [], costs, givens={ X: X_shared, sigma: sigma_shared, Y: Y_shared, Adj: Adj_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared } ) # Optimization loop for epoch in range(n_epochs): # Switch parameter if a switching point is reached. if epoch == lr_switch: lr_shared.set_value(final_lr) if epoch == momentum_switch: momentum_shared.set_value(final_momentum) if epoch == l_kl_switch: l_kl_shared.set_value(final_l_kl) if epoch == l_e_switch: l_e_shared.set_value(final_l_e) if epoch == l_c_switch: l_c_shared.set_value(final_l_c) if epoch == l_r_switch: l_r_shared.set_value(final_l_r) if final_l_r != 0: # Give a nudge to co-located vertices in the epoch before the # repulsion kicks in (otherwise they don't feel any). Y_shared.set_value(switch_shake(Y_shared.get_value())) # Do update step for velocity update_Yv() # Do a gradient descent step update_Y() c = get_cost() if np.isnan(float(c)): raise NaNException('Encountered NaN for cost.') if verbose: print('[tsne] Epoch: {0}. Cost: {1:.6f}.'.format(epoch + 1, float(c)), end='\r') if output_folder is not None and g is not None and save_every is not None and epoch % save_every == 0: # Get per-vertex cost for colour-coding cs = get_costs() # Save a snapshot save_drawing(output_folder, g, Y_shared.get_value().T, 'tsne_snap_' + str(epoch).zfill(5), formats=['jpg'], verbose=False, edge_colors="rgb", draw_vertices=False, opacity=0.3) # Get per-vertex cost cs = get_costs() if verbose: print('\n[tsne] Done! ') return np.array(Y_shared.get_value()), cs def tsne(X, perplexity=30, Y=None, output_dims=2, n_epochs=1000, initial_lr=10, final_lr=4, lr_switch=None, init_stdev=1e-4, sigma_iters=50, initial_momentum=0.5, final_momentum=0.8, momentum_switch=250, initial_l_kl=None, final_l_kl=None, l_kl_switch=None, initial_l_e=None, final_l_e=None, l_e_switch=None, initial_l_c=None, final_l_c=None, l_c_switch=None, initial_l_r=None, final_l_r=None, l_r_switch=None, r_eps=1, random_state=None, Adj=None, g=None, save_every=None, snaps_output_folder=None, verbose=1): random_state = check_random_state(random_state) N = X.shape[0] X_shared = theano.shared(np.asarray(X, dtype=floath)) sigma_shared = theano.shared(np.ones(N, dtype=floath)) if Y is None: Y = random_state.normal(0, init_stdev, size=(N, output_dims)) Y_shared = theano.shared(np.asarray(Y, dtype=floath)) # Find sigmas to attain the given perplexity. find_sigma(X_shared, sigma_shared, N, perplexity, sigma_iters, verbose) # Do the optimization to find Y (the vertex coordinates). Y, costs = find_Y(X_shared, Y_shared, sigma_shared, N, output_dims, n_epochs, initial_lr, final_lr, lr_switch, init_stdev, initial_momentum, final_momentum, momentum_switch, initial_l_kl, final_l_kl, l_kl_switch, initial_l_e, final_l_e, l_e_switch, initial_l_c, final_l_c, l_c_switch, initial_l_r, final_l_r, l_r_switch, r_eps, Adj, g, save_every, snaps_output_folder, verbose) # Return the vertex coordinates and the per-vertex costs. return Y, costs
[ "theano.tensor.exp", "theano.tensor.gt", "numpy.sqrt", "numpy.log", "numpy.array", "theano.shared", "theano.function", "numpy.asarray", "theano.tensor.fvector", "numpy.exp", "theano.tensor.fill_diagonal", "numpy.random.normal", "sklearn.utils.check_random_state", "theano.tensor.maximum", "numpy.ones", "theano.tensor.sum", "scipy.spatial.distance.pdist", "theano.tensor.fscalar", "theano.tensor.fmatrix", "numpy.finfo", "theano.tensor.isinf", "theano.tensor.grad", "theano.tensor.lt", "math.ceil", "numpy.zeros", "numpy.full", "theano.tensor.log" ]
[((2250, 2281), 'theano.tensor.fill_diagonal', 'T.fill_diagonal', (['esqdistance', '(0)'], {}), '(esqdistance, 0)\n', (2265, 2281), True, 'import theano.tensor as T\n'), ((2753, 2793), 'theano.tensor.fill_diagonal', 'T.fill_diagonal', (['(1 / (sqdistance + 1))', '(0)'], {}), '(1 / (sqdistance + 1), 0)\n', (2768, 2793), True, 'import theano.tensor as T\n'), ((3422, 3446), 'theano.tensor.maximum', 'T.maximum', (['p_ij', 'epsilon'], {}), '(p_ij, epsilon)\n', (3431, 3446), True, 'import theano.tensor as T\n'), ((3463, 3487), 'theano.tensor.maximum', 'T.maximum', (['q_ij', 'epsilon'], {}), '(q_ij, epsilon)\n', (3472, 3487), True, 'import theano.tensor as T\n'), ((4278, 4292), 'theano.tensor.fmatrix', 'T.fmatrix', (['"""X"""'], {}), "('X')\n", (4287, 4292), True, 'import theano.tensor as T\n'), ((4305, 4323), 'theano.tensor.fvector', 'T.fvector', (['"""sigma"""'], {}), "('sigma')\n", (4314, 4323), True, 'import theano.tensor as T\n'), ((4338, 4356), 'numpy.log', 'np.log', (['perplexity'], {}), '(perplexity)\n', (4344, 4356), True, 'import numpy as np\n'), ((4670, 4689), 'theano.tensor.fvector', 'T.fvector', (['"""sigmin"""'], {}), "('sigmin')\n", (4679, 4689), True, 'import theano.tensor as T\n'), ((4703, 4722), 'theano.tensor.fvector', 'T.fvector', (['"""sigmax"""'], {}), "('sigmax')\n", (4712, 4722), True, 'import theano.tensor as T\n'), ((5038, 5098), 'theano.function', 'theano.function', (['[]', 'entropy'], {'givens': 'givens', 'updates': 'updates'}), '([], entropy, givens=givens, updates=updates)\n', (5053, 5098), False, 'import theano\n'), ((5391, 5449), 'theano.function', 'theano.function', (['[]', 'sigma'], {'givens': 'givens', 'updates': 'updates'}), '([], sigma, givens=givens, updates=updates)\n', (5406, 5449), False, 'import theano\n'), ((6679, 6687), 'scipy.spatial.distance.pdist', 'pdist', (['Y'], {}), '(Y)\n', (6684, 6687), False, 'from scipy.spatial.distance import pdist\n'), ((7748, 7782), 'numpy.array', 'np.array', (['initial_lr'], {'dtype': 'floath'}), '(initial_lr, dtype=floath)\n', (7756, 7782), True, 'import numpy as np\n'), ((7798, 7830), 'numpy.array', 'np.array', (['final_lr'], {'dtype': 'floath'}), '(final_lr, dtype=floath)\n', (7806, 7830), True, 'import numpy as np\n'), ((7854, 7894), 'numpy.array', 'np.array', (['initial_momentum'], {'dtype': 'floath'}), '(initial_momentum, dtype=floath)\n', (7862, 7894), True, 'import numpy as np\n'), ((7916, 7954), 'numpy.array', 'np.array', (['final_momentum'], {'dtype': 'floath'}), '(final_momentum, dtype=floath)\n', (7924, 7954), True, 'import numpy as np\n'), ((8006, 8021), 'theano.tensor.fscalar', 'T.fscalar', (['"""lr"""'], {}), "('lr')\n", (8015, 8021), True, 'import theano.tensor as T\n'), ((8038, 8063), 'theano.shared', 'theano.shared', (['initial_lr'], {}), '(initial_lr)\n', (8051, 8063), False, 'import theano\n'), ((8079, 8100), 'theano.tensor.fscalar', 'T.fscalar', (['"""momentum"""'], {}), "('momentum')\n", (8088, 8100), True, 'import theano.tensor as T\n'), ((8123, 8154), 'theano.shared', 'theano.shared', (['initial_momentum'], {}), '(initial_momentum)\n', (8136, 8154), False, 'import theano\n'), ((8197, 8233), 'numpy.array', 'np.array', (['initial_l_kl'], {'dtype': 'floath'}), '(initial_l_kl, dtype=floath)\n', (8205, 8233), True, 'import numpy as np\n'), ((8251, 8285), 'numpy.array', 'np.array', (['final_l_kl'], {'dtype': 'floath'}), '(final_l_kl, dtype=floath)\n', (8259, 8285), True, 'import numpy as np\n'), ((8304, 8339), 'numpy.array', 'np.array', (['initial_l_e'], {'dtype': 'floath'}), '(initial_l_e, dtype=floath)\n', (8312, 8339), True, 'import numpy as np\n'), ((8356, 8389), 'numpy.array', 'np.array', (['final_l_e'], {'dtype': 'floath'}), '(final_l_e, dtype=floath)\n', (8364, 8389), True, 'import numpy as np\n'), ((8408, 8443), 'numpy.array', 'np.array', (['initial_l_c'], {'dtype': 'floath'}), '(initial_l_c, dtype=floath)\n', (8416, 8443), True, 'import numpy as np\n'), ((8460, 8493), 'numpy.array', 'np.array', (['final_l_c'], {'dtype': 'floath'}), '(final_l_c, dtype=floath)\n', (8468, 8493), True, 'import numpy as np\n'), ((8512, 8547), 'numpy.array', 'np.array', (['initial_l_r'], {'dtype': 'floath'}), '(initial_l_r, dtype=floath)\n', (8520, 8547), True, 'import numpy as np\n'), ((8564, 8597), 'numpy.array', 'np.array', (['final_l_r'], {'dtype': 'floath'}), '(final_l_r, dtype=floath)\n', (8572, 8597), True, 'import numpy as np\n'), ((8651, 8668), 'theano.tensor.fscalar', 'T.fscalar', (['"""l_kl"""'], {}), "('l_kl')\n", (8660, 8668), True, 'import theano.tensor as T\n'), ((8687, 8714), 'theano.shared', 'theano.shared', (['initial_l_kl'], {}), '(initial_l_kl)\n', (8700, 8714), False, 'import theano\n'), ((8725, 8741), 'theano.tensor.fscalar', 'T.fscalar', (['"""l_e"""'], {}), "('l_e')\n", (8734, 8741), True, 'import theano.tensor as T\n'), ((8759, 8785), 'theano.shared', 'theano.shared', (['initial_l_e'], {}), '(initial_l_e)\n', (8772, 8785), False, 'import theano\n'), ((8796, 8812), 'theano.tensor.fscalar', 'T.fscalar', (['"""l_c"""'], {}), "('l_c')\n", (8805, 8812), True, 'import theano.tensor as T\n'), ((8830, 8856), 'theano.shared', 'theano.shared', (['initial_l_c'], {}), '(initial_l_c)\n', (8843, 8856), False, 'import theano\n'), ((8867, 8883), 'theano.tensor.fscalar', 'T.fscalar', (['"""l_r"""'], {}), "('l_r')\n", (8876, 8883), True, 'import theano.tensor as T\n'), ((8901, 8927), 'theano.shared', 'theano.shared', (['initial_l_r'], {}), '(initial_l_r)\n', (8914, 8927), False, 'import theano\n'), ((9002, 9016), 'theano.tensor.fmatrix', 'T.fmatrix', (['"""X"""'], {}), "('X')\n", (9011, 9016), True, 'import theano.tensor as T\n'), ((9071, 9085), 'theano.tensor.fmatrix', 'T.fmatrix', (['"""Y"""'], {}), "('Y')\n", (9080, 9085), True, 'import theano.tensor as T\n'), ((9120, 9136), 'theano.tensor.fmatrix', 'T.fmatrix', (['"""Adj"""'], {}), "('Adj')\n", (9129, 9136), True, 'import theano.tensor as T\n'), ((9216, 9234), 'theano.tensor.fvector', 'T.fvector', (['"""sigma"""'], {}), "('sigma')\n", (9225, 9234), True, 'import theano.tensor as T\n'), ((9293, 9308), 'theano.tensor.fmatrix', 'T.fmatrix', (['"""Yv"""'], {}), "('Yv')\n", (9302, 9308), True, 'import theano.tensor as T\n'), ((9559, 9571), 'theano.tensor.sum', 'T.sum', (['costs'], {}), '(costs)\n', (9564, 9571), True, 'import theano.tensor as T\n'), ((9622, 9637), 'theano.tensor.grad', 'T.grad', (['cost', 'Y'], {}), '(cost, Y)\n', (9628, 9637), True, 'import theano.tensor as T\n'), ((9686, 9975), 'theano.function', 'theano.function', (['[]', 'None'], {'givens': '{X: X_shared, sigma: sigma_shared, Y: Y_shared, Yv: Yv_shared, Adj:\n Adj_shared, lr: lr_shared, momentum: momentum_shared, l_kl: l_kl_shared,\n l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared}', 'updates': '[(Yv_shared, momentum * Yv - lr * grad_Y)]'}), '([], None, givens={X: X_shared, sigma: sigma_shared, Y:\n Y_shared, Yv: Yv_shared, Adj: Adj_shared, lr: lr_shared, momentum:\n momentum_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c: l_c_shared,\n l_r: l_r_shared}, updates=[(Yv_shared, momentum * Yv - lr * grad_Y)])\n', (9701, 9975), False, 'import theano\n'), ((10202, 10297), 'theano.function', 'theano.function', (['[]', '[]'], {'givens': '{Y: Y_shared, Yv: Yv_shared}', 'updates': '[(Y_shared, Y + Yv)]'}), '([], [], givens={Y: Y_shared, Yv: Yv_shared}, updates=[(\n Y_shared, Y + Yv)])\n', (10217, 10297), False, 'import theano\n'), ((10421, 10597), 'theano.function', 'theano.function', (['[]', 'cost'], {'givens': '{X: X_shared, sigma: sigma_shared, Y: Y_shared, Adj: Adj_shared, l_kl:\n l_kl_shared, l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared}'}), '([], cost, givens={X: X_shared, sigma: sigma_shared, Y:\n Y_shared, Adj: Adj_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c:\n l_c_shared, l_r: l_r_shared})\n', (10436, 10597), False, 'import theano\n'), ((10784, 10961), 'theano.function', 'theano.function', (['[]', 'costs'], {'givens': '{X: X_shared, sigma: sigma_shared, Y: Y_shared, Adj: Adj_shared, l_kl:\n l_kl_shared, l_e: l_e_shared, l_c: l_c_shared, l_r: l_r_shared}'}), '([], costs, givens={X: X_shared, sigma: sigma_shared, Y:\n Y_shared, Adj: Adj_shared, l_kl: l_kl_shared, l_e: l_e_shared, l_c:\n l_c_shared, l_r: l_r_shared})\n', (10799, 10961), False, 'import theano\n'), ((13438, 13470), 'sklearn.utils.check_random_state', 'check_random_state', (['random_state'], {}), '(random_state)\n', (13456, 13470), False, 'from sklearn.utils import check_random_state\n'), ((2991, 3009), 'theano.tensor.exp', 'T.exp', (['(-sqdistance)'], {}), '(-sqdistance)\n', (2996, 3009), True, 'import theano.tensor as T\n'), ((3174, 3184), 'theano.tensor.sum', 'T.sum', (['Adj'], {}), '(Adj)\n', (3179, 3184), True, 'import theano.tensor as T\n'), ((3751, 3772), 'theano.tensor.sum', 'T.sum', (['(Y ** 2)'], {'axis': '(1)'}), '(Y ** 2, axis=1)\n', (3756, 3772), True, 'import theano.tensor as T\n'), ((4622, 4654), 'numpy.full', 'np.full', (['N', 'np.inf'], {'dtype': 'floath'}), '(N, np.inf, dtype=floath)\n', (4629, 4654), True, 'import numpy as np\n'), ((4745, 4766), 'theano.tensor.lt', 'T.lt', (['entropy', 'target'], {}), '(entropy, target)\n', (4749, 4766), True, 'import theano.tensor as T\n'), ((4804, 4825), 'theano.tensor.gt', 'T.gt', (['entropy', 'target'], {}), '(entropy, target)\n', (4808, 4825), True, 'import theano.tensor as T\n'), ((5183, 5198), 'theano.tensor.isinf', 'T.isinf', (['sigmax'], {}), '(sigmax)\n', (5190, 5198), True, 'import theano.tensor as T\n'), ((6851, 6895), 'numpy.random.normal', 'np.random.normal', (['(0)', '(max_dist * magnitude)', '(2)'], {}), '(0, max_dist * magnitude, 2)\n', (6867, 6895), True, 'import numpy as np\n'), ((9339, 9379), 'numpy.zeros', 'np.zeros', (['(N, output_dims)'], {'dtype': 'floath'}), '((N, output_dims), dtype=floath)\n', (9347, 9379), True, 'import numpy as np\n'), ((13521, 13548), 'numpy.asarray', 'np.asarray', (['X'], {'dtype': 'floath'}), '(X, dtype=floath)\n', (13531, 13548), True, 'import numpy as np\n'), ((13583, 13607), 'numpy.ones', 'np.ones', (['N'], {'dtype': 'floath'}), '(N, dtype=floath)\n', (13590, 13607), True, 'import numpy as np\n'), ((13727, 13754), 'numpy.asarray', 'np.asarray', (['Y'], {'dtype': 'floath'}), '(Y, dtype=floath)\n', (13737, 13754), True, 'import numpy as np\n'), ((2297, 2326), 'theano.tensor.sum', 'T.sum', (['esqdistance_zd'], {'axis': '(1)'}), '(esqdistance_zd, axis=1)\n', (2302, 2326), True, 'import theano.tensor as T\n'), ((3539, 3567), 'theano.tensor.log', 'T.log', (['(p_ij_safe / q_ij_safe)'], {}), '(p_ij_safe / q_ij_safe)\n', (3544, 3567), True, 'import theano.tensor as T\n'), ((4555, 4571), 'numpy.sqrt', 'np.sqrt', (['epsilon'], {}), '(epsilon)\n', (4562, 4571), True, 'import numpy as np\n'), ((5856, 5865), 'numpy.exp', 'np.exp', (['e'], {}), '(e)\n', (5862, 5865), True, 'import numpy as np\n'), ((6292, 6377), 'math.ceil', 'math.ceil', (['(1 / 2.0 * (-(-8 * k + 4 * n ** 2 - 4 * n - 7) ** 0.5 + 2 * n - 1) - 1)'], {}), '(1 / 2.0 * (-(-8 * k + 4 * n ** 2 - 4 * n - 7) ** 0.5 + 2 * n - 1) - 1\n )\n', (6301, 6377), False, 'import math\n'), ((4443, 4451), 'theano.tensor.log', 'T.log', (['P'], {}), '(P)\n', (4448, 4451), True, 'import theano.tensor as T\n'), ((6760, 6780), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (6768, 6780), True, 'import numpy as np\n')]
import io from PIL import Image, ImageDraw, ImageFont import tensorflow as tf import numpy as np from matplotlib import cm from matplotlib.colors import ListedColormap import pdb default_color = 'blue' highlight_color = 'red' class SemanticSegmentationOverlay: def __init__(self, args): self.segmap_key = args.segmap_key self.segmap_format_key = args.segmap_format_key self.segmap_colormap_file = args.segmap_colormap_file self.font = ImageFont.truetype("./fonts/OpenSans-Regular.ttf", 12) self.segmap_raw_divisor_key = args.segmap_raw_divisor_key if self.segmap_colormap_file is None: self.colormap_function = cm.gist_earth else: self.colormap_function = self.load_colormap() def apply_overlay(self, image_bytes, example): """Apply segmentation overlay over input image. Args: image_bytes: JPEG image. feature: TF Record Feature Returns: image_bytes_with_overlay: JPEG image with segmentation overlay. """ img = Image.open(io.BytesIO(image_bytes)) draw = ImageDraw.Draw(img) width, height = img.size segmap = self.get_segmap(example, height, width) segmap = self.apply_colormap(segmap) segmap_img = Image.fromarray(segmap).convert('RGB') out_img = Image.blend(img, segmap_img, 0.5) with io.BytesIO() as output: out_img.save(output, format="JPEG") image_bytes_with_overlay = output.getvalue() return image_bytes_with_overlay def load_colormap(self): colormap = np.zeros((256, 3), dtype=np.uint8) with open(self.segmap_colormap_file, 'rt') as f: for i, line in enumerate(f): colormap[i] = np.fromstring(line, sep=",", dtype=int) listed_colormap = ListedColormap(colormap/255) return listed_colormap def apply_colormap(self, segmap): cm_array = self.colormap_function(segmap/255) return np.uint8(cm_array*255) def get_segmap(self, example, im_height, im_width): """ From a TF Record Feature, get the image/class label. Args: feature: TF Record Feature Returns: mask (numpy.ndarray): image segmentation mask (0-255) """ segmap_format = example.features.feature[self.segmap_format_key].bytes_list.value[0].decode("utf-8") example = example.SerializeToString() string_feature = tf.io.FixedLenFeature((), tf.string) keys_to_features = {self.segmap_key : string_feature, self.segmap_format_key: string_feature} parsed_tensors = tf.io.parse_single_example( example, features=keys_to_features) label_shape = tf.stack([im_height, im_width, 1 ]) if segmap_format == "raw": flattened_label = tf.io.decode_raw( parsed_tensors[self.segmap_key], out_type=tf.int32) mask = tf.reshape(flattened_label, label_shape).numpy()[:,:,0] // self.segmap_raw_divisor_key elif segmap_format == "png": label = tf.io.decode_image(parsed_tensors[self.segmap_key], channels=1) mask = label.numpy()[:,:,0] else: raise ValueError("Unknown format: "+segmap_format) return mask
[ "numpy.uint8", "PIL.Image.fromarray", "tensorflow.io.decode_image", "tensorflow.io.parse_single_example", "PIL.Image.blend", "io.BytesIO", "PIL.ImageFont.truetype", "matplotlib.colors.ListedColormap", "PIL.ImageDraw.Draw", "numpy.zeros", "tensorflow.io.FixedLenFeature", "tensorflow.io.decode_raw", "tensorflow.reshape", "numpy.fromstring", "tensorflow.stack" ]
[((459, 513), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""./fonts/OpenSans-Regular.ttf"""', '(12)'], {}), "('./fonts/OpenSans-Regular.ttf', 12)\n", (477, 513), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1067, 1086), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img'], {}), '(img)\n', (1081, 1086), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1288, 1321), 'PIL.Image.blend', 'Image.blend', (['img', 'segmap_img', '(0.5)'], {}), '(img, segmap_img, 0.5)\n', (1299, 1321), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1533, 1567), 'numpy.zeros', 'np.zeros', (['(256, 3)'], {'dtype': 'np.uint8'}), '((256, 3), dtype=np.uint8)\n', (1541, 1567), True, 'import numpy as np\n'), ((1748, 1778), 'matplotlib.colors.ListedColormap', 'ListedColormap', (['(colormap / 255)'], {}), '(colormap / 255)\n', (1762, 1778), False, 'from matplotlib.colors import ListedColormap\n'), ((1908, 1932), 'numpy.uint8', 'np.uint8', (['(cm_array * 255)'], {}), '(cm_array * 255)\n', (1916, 1932), True, 'import numpy as np\n'), ((2350, 2386), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['()', 'tf.string'], {}), '((), tf.string)\n', (2371, 2386), True, 'import tensorflow as tf\n'), ((2507, 2569), 'tensorflow.io.parse_single_example', 'tf.io.parse_single_example', (['example'], {'features': 'keys_to_features'}), '(example, features=keys_to_features)\n', (2533, 2569), True, 'import tensorflow as tf\n'), ((2598, 2632), 'tensorflow.stack', 'tf.stack', (['[im_height, im_width, 1]'], {}), '([im_height, im_width, 1])\n', (2606, 2632), True, 'import tensorflow as tf\n'), ((1031, 1054), 'io.BytesIO', 'io.BytesIO', (['image_bytes'], {}), '(image_bytes)\n', (1041, 1054), False, 'import io\n'), ((1333, 1345), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1343, 1345), False, 'import io\n'), ((2706, 2774), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['parsed_tensors[self.segmap_key]'], {'out_type': 'tf.int32'}), '(parsed_tensors[self.segmap_key], out_type=tf.int32)\n', (2722, 2774), True, 'import tensorflow as tf\n'), ((1229, 1252), 'PIL.Image.fromarray', 'Image.fromarray', (['segmap'], {}), '(segmap)\n', (1244, 1252), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1684, 1723), 'numpy.fromstring', 'np.fromstring', (['line'], {'sep': '""","""', 'dtype': 'int'}), "(line, sep=',', dtype=int)\n", (1697, 1723), True, 'import numpy as np\n'), ((2933, 2996), 'tensorflow.io.decode_image', 'tf.io.decode_image', (['parsed_tensors[self.segmap_key]'], {'channels': '(1)'}), '(parsed_tensors[self.segmap_key], channels=1)\n', (2951, 2996), True, 'import tensorflow as tf\n'), ((2799, 2839), 'tensorflow.reshape', 'tf.reshape', (['flattened_label', 'label_shape'], {}), '(flattened_label, label_shape)\n', (2809, 2839), True, 'import tensorflow as tf\n')]
''' Authors: <NAME> and <NAME> Date: July 10, 2017 Pre-cnmf-e processing of videos in chunks: - Downsampling - Motion Correction ''' from os import path, system import pims import av import numpy as np import math from tqdm import tqdm from skimage import img_as_uint from motion import align_video import skimage.io import skimage.filters from skimage.morphology import square import h5py as hd def process_chunk(filename, start, stop, reference, save_name, xlims = None, ylims = None, fps= 20, ds_factor=4, correct_motion=True, thresh=1.8, cutoff=0.05, clean_pixels=False, pixel_thresh=1.1, format='tiff'): ''' Process one chunk of a video read in from pims and save as .tiff Input: - filename: video path - start: start frame - stop: stop frame - reference: reference frame - xlims: tuple of 2 ints, crop limits on x-axis - ylims: tuple of 2 ints, crop limits on y-axis - fps: int, output frames per second - ds_factor: int, downsample factor, default=4 - correct_motion: bool, correct motion, default=True - thresh: flt, threshold for motion correction, default=1.0 - cutoff: flt, cutoff for motion correction, default=0.05 - format: str, format to save chunk as (tiff, avi, hdf5), default='tiff' Output: - None, saves processed chunk as .tiff or .avi ''' chunk = stop/(stop-start) video = pims.ImageIOReader(filename) frame_rate = fps # video.frame_rate video_chunk = video[start:stop] print("Processing frames {} to {} of {}".format(start, stop, len(video))) video_chunk_ds = downsample(video_chunk, ds_factor, xlims, ylims) #in order to have 01, 02 for file sorting and concatenation of chunks if chunk < 10: chunk = '0' + str(chunk) if clean_pixels: remove_dead_pixels(video_chunk_ds, pixel_thresh) if correct_motion: video_chunk_ds = align_video(video_chunk_ds, reference, thresh, cutoff) if format == 'tiff': skimage.io.imsave(save_name + '_temp_{}.tiff'.format(chunk), img_as_uint(video_chunk_ds/2**16)) elif format == 'avi': save_to_avi(video_chunk_ds, fps = frame_rate / ds_factor, filename = save_name + '_temp_{}.avi'.format(chunk)) elif format == 'hdf5': save_to_hdf(video_chunk_ds, filename = save_name + '_temp_{}.hdf5'.format(chunk)) def downsample(vid, ds_factor, xlims=None, ylims=None): ''' Downsample video by ds_factor. If xlims and ylims are not None, crop video to these limits also Input: - vid: numpy array, video - ds_factor: int, downsample factor - xlims (optional): tuple of ints, x-index of crop limits - ylims (optional): tuple of ints: y-index of crop limits Output: - vid_ds: numpy array, downsampled video ''' dims = vid[0].shape if xlims is not None: xs, xe = xlims else: xs = 0 xe = dims[1] - 1 if ylims is not None: ys, ye = ylims else: ys = 0 ye = dims[0] - 1 dims = vid[0].shape vid_ds = np.zeros((int(len(vid)/ds_factor), ye-ys, xe-xs)) frame_ds = 0 for frame in tqdm(range(0, len(vid), ds_factor), desc='Downsampling'): if frame + ds_factor <= len(vid): stack = np.array(vid[frame:frame+ds_factor])[:,ys:ye,xs:xe,0] vid_ds[frame_ds, :, :] = np.round(np.mean(stack, axis=0)) frame_ds += 1 else: continue return vid_ds def get_crop_lims(vid, crop_thresh=40): ''' Find x,y limits where the mean fluorescence is always above a defined threshold value Input: - vid: numpy array, video - crop_thresh: int, fluorescence threshold to find x,y limits to crop to Output: - xlims: tuple of 2 ints, x-axis pixels to crop to - ylims: tuple of 2 ints, y-axis pixels to crop to ''' dims = vid[0].shape xs = np.inf xe = 0 ys = np.inf ye = 0 y = np.arange(dims[0]) x = np.arange(dims[1]) for frame in vid: frame = np.array(frame)[:,:,0] xf = frame.mean(axis=0) yf = frame.mean(axis=1) x_thresh = x[xf>=crop_thresh] y_thresh = y[yf>=crop_thresh] if x_thresh[0] < xs: xs = x_thresh[0] if x_thresh[-1] > xe: xe = x_thresh[-1] if y_thresh[0] < ys: ys = y_thresh[0] if y_thresh[-1] > ye: ye = y_thresh[-1] return (xs, xe), (ys, ye) def remove_dead_pixels(vid, thresh=1.1): for frame in tqdm(range(vid.shape[0]), desc='Removing Dead Pixels'): med = skimage.filters.median(vid[frame, :, :], square(10)).ravel() img = vid[frame, :, :].ravel() img[img>thresh*med] = med[img>thresh*med] vid[frame, :, :] = img.reshape(vid.shape[1], vid.shape[2]) def save_to_avi(vid, fps, filename): total_frames, height, width = vid.shape container = av.open(filename, 'w') stream = container.add_stream('rawvideo', rate=fps) stream.height = height stream.width = width stream.pix_fmt = 'bgr24' for frame in vid: # Convert frame to RGB uint8 values frame = frame.astype('uint8') frame = np.repeat(np.reshape(frame, newshape=(frame.shape[0], frame.shape[1], 1)), repeats=3, axis=2) # Encode frame into stream frame = av.VideoFrame.from_ndarray(frame, format='bgr24') for packet in stream.encode(frame): container.mux(packet) # Flush Stream for packet in stream.encode(): container.mux(packet) # Close file container.close() def save_to_hdf(Y, filename): # Author: <NAME> # Y is a numpy array of dimensions (T_dim, y_dim, x_dim) # FramesxHxW dirname = path.dirname(filename) basename = path.basename(filename) filename_new = path.splitext(filename)[0] + '.hdf5' if path.exists(filename_new): system('rm %s'%filename_new) file = hd.File(filename_new) tdim, xdim, ydim = Y.shape movie = file.create_dataset('original', shape = (tdim, xdim*ydim), chunks = True) file.attrs['folder'] = dirname file.attrs['filename'] = basename file['original'].attrs['duration'] = tdim file['original'].attrs['dims'] = (ydim, xdim) # 2D np.arrays are (row X cols) --> (ydim X xdim) movie[:] = Y.reshape((tdim, xdim*ydim)) return file
[ "os.path.exists", "numpy.mean", "numpy.reshape", "skimage.img_as_uint", "skimage.morphology.square", "os.path.splitext", "h5py.File", "av.VideoFrame.from_ndarray", "os.path.dirname", "av.open", "numpy.array", "os.path.basename", "pims.ImageIOReader", "motion.align_video", "os.system", "numpy.arange" ]
[((1431, 1459), 'pims.ImageIOReader', 'pims.ImageIOReader', (['filename'], {}), '(filename)\n', (1449, 1459), False, 'import pims\n'), ((4013, 4031), 'numpy.arange', 'np.arange', (['dims[0]'], {}), '(dims[0])\n', (4022, 4031), True, 'import numpy as np\n'), ((4040, 4058), 'numpy.arange', 'np.arange', (['dims[1]'], {}), '(dims[1])\n', (4049, 4058), True, 'import numpy as np\n'), ((4985, 5007), 'av.open', 'av.open', (['filename', '"""w"""'], {}), "(filename, 'w')\n", (4992, 5007), False, 'import av\n'), ((5812, 5834), 'os.path.dirname', 'path.dirname', (['filename'], {}), '(filename)\n', (5824, 5834), False, 'from os import path, system\n'), ((5850, 5873), 'os.path.basename', 'path.basename', (['filename'], {}), '(filename)\n', (5863, 5873), False, 'from os import path, system\n'), ((5938, 5963), 'os.path.exists', 'path.exists', (['filename_new'], {}), '(filename_new)\n', (5949, 5963), False, 'from os import path, system\n'), ((6014, 6035), 'h5py.File', 'hd.File', (['filename_new'], {}), '(filename_new)\n', (6021, 6035), True, 'import h5py as hd\n'), ((1940, 1994), 'motion.align_video', 'align_video', (['video_chunk_ds', 'reference', 'thresh', 'cutoff'], {}), '(video_chunk_ds, reference, thresh, cutoff)\n', (1951, 1994), False, 'from motion import align_video\n'), ((5413, 5462), 'av.VideoFrame.from_ndarray', 'av.VideoFrame.from_ndarray', (['frame'], {'format': '"""bgr24"""'}), "(frame, format='bgr24')\n", (5439, 5462), False, 'import av\n'), ((5973, 6003), 'os.system', 'system', (["('rm %s' % filename_new)"], {}), "('rm %s' % filename_new)\n", (5979, 6003), False, 'from os import path, system\n'), ((2090, 2127), 'skimage.img_as_uint', 'img_as_uint', (['(video_chunk_ds / 2 ** 16)'], {}), '(video_chunk_ds / 2 ** 16)\n', (2101, 2127), False, 'from skimage import img_as_uint\n'), ((4098, 4113), 'numpy.array', 'np.array', (['frame'], {}), '(frame)\n', (4106, 4113), True, 'import numpy as np\n'), ((5276, 5339), 'numpy.reshape', 'np.reshape', (['frame'], {'newshape': '(frame.shape[0], frame.shape[1], 1)'}), '(frame, newshape=(frame.shape[0], frame.shape[1], 1))\n', (5286, 5339), True, 'import numpy as np\n'), ((5893, 5916), 'os.path.splitext', 'path.splitext', (['filename'], {}), '(filename)\n', (5906, 5916), False, 'from os import path, system\n'), ((3317, 3355), 'numpy.array', 'np.array', (['vid[frame:frame + ds_factor]'], {}), '(vid[frame:frame + ds_factor])\n', (3325, 3355), True, 'import numpy as np\n'), ((3417, 3439), 'numpy.mean', 'np.mean', (['stack'], {'axis': '(0)'}), '(stack, axis=0)\n', (3424, 3439), True, 'import numpy as np\n'), ((4709, 4719), 'skimage.morphology.square', 'square', (['(10)'], {}), '(10)\n', (4715, 4719), False, 'from skimage.morphology import square\n')]
import numpy as np import pytest import pytoolkit as tk def test_load_voc_od_split(data_dir): ds = tk.datasets.load_voc_od_split(data_dir / "od", split="train") assert len(ds) == 3 assert tuple(ds.metadata["class_names"]) == ("~", "〇") ann = ds.labels[0] assert ann.path == (data_dir / "od" / "JPEGImages" / "無題.jpg") assert ann.width == 768 assert ann.height == 614 assert len(ann.classes) == 1 assert ann.classes[0] == 0 assert (ann.difficults == np.array([False])).all() assert ann.bboxes[0] == pytest.approx( np.array([203 - 1, 255 - 1, 601 - 1, 355 - 1]) / [768, 614, 768, 614] )
[ "numpy.array", "pytoolkit.datasets.load_voc_od_split" ]
[((106, 167), 'pytoolkit.datasets.load_voc_od_split', 'tk.datasets.load_voc_od_split', (["(data_dir / 'od')"], {'split': '"""train"""'}), "(data_dir / 'od', split='train')\n", (135, 167), True, 'import pytoolkit as tk\n'), ((493, 510), 'numpy.array', 'np.array', (['[False]'], {}), '([False])\n', (501, 510), True, 'import numpy as np\n'), ((569, 615), 'numpy.array', 'np.array', (['[203 - 1, 255 - 1, 601 - 1, 355 - 1]'], {}), '([203 - 1, 255 - 1, 601 - 1, 355 - 1])\n', (577, 615), True, 'import numpy as np\n')]
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inconel600 """ import numpy from armi.utils.units import getTc from armi.materials.material import Material class Inconel600(Material): name = "Inconel600" references = { "mass fractions": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "density": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "thermalConductivity": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "specific heat": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "linear expansion percent": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", "linear expansion": "http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf", } def __init__(self): Material.__init__(self) self.p.refTempK = 294.15 self.p.refDens = 8.47 # g/cc # Only density measurement presented in the reference. # Presumed to be performed at 21C since this was the reference temperature for linear expansion measurements. def setDefaultMassFracs(self): massFracs = { "NI": 0.7541, "CR": 0.1550, "FE": 0.0800, "C": 0.0008, "MN55": 0.0050, "S": 0.0001, "SI": 0.0025, "CU": 0.0025, } for element, massFrac in massFracs.items(): self.setMassFrac(element, massFrac) def polyfitThermalConductivity(self, power=2): r""" Calculates the coefficients of a polynomial fit for thermalConductivity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for thermal conductivity. """ Tc = [20.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0] k = [14.9, 15.9, 17.3, 19.0, 20.5, 22.1, 23.9, 25.7, 27.5] return numpy.polyfit(numpy.array(Tc), numpy.array(k), power).tolist() def thermalConductivity(self, Tk=None, Tc=None): r""" Returns the thermal conductivity of Inconel600. Parameters ---------- Tk : float, optional temperature in (K) Tc : float, optional Temperature in (C) Returns ------- thermalCond : float thermal conductivity in W/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(20.0, 800.0, Tc, "thermal conductivity") thermalCond = 3.4938e-6 * Tc ** 2 + 1.3403e-2 * Tc + 14.572 return thermalCond # W/m-C def polyfitHeatCapacity(self, power=2): r""" Calculates the coefficients of a polynomial fit for heatCapacity. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for heat capacity. """ Tc = [20.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0] cp = [444.0, 465.0, 486.0, 502.0, 519.0, 536.0, 578.0, 595.0, 611.0, 628.0] return numpy.polyfit(numpy.array(Tc), numpy.array(cp), power).tolist() def heatCapacity(self, Tk=None, Tc=None): r""" Returns the specific heat capacity of Inconel600. Parameters ---------- Tk : float, optional Temperature in Kelvin. Tc : float, optional Temperature in degrees Celsius. Returns ------- heatCapacity : float heat capacity in J/kg/C """ Tc = getTc(Tc, Tk) self.checkTempRange(20, 900, Tc, "heat capacity") heatCapacity = 7.4021e-6 * Tc ** 2 + 0.20573 * Tc + 441.3 return heatCapacity # J/kg-C def polyfitLinearExpansionPercent(self, power=2): r""" Calculates the coefficients of a polynomial fit for linearExpansionPercent. Based on data from http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Uses mean CTE values to find percent thermal strain values. Fits a polynomial to the data set and returns the coefficients. Parameters ---------- power : int, optional power of the polynomial fit equation Returns ------- list of length 'power' containing the polynomial fit coefficients for linearExpansionPercent """ refTempC = getTc(None, Tk=self.p.refTempK) Tc = [100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0] alpha_mean = [ 1.33e-05, 1.38e-05, 1.42e-05, 1.45e-05, 1.49e-05, 1.53e-05, 1.58e-05, 1.61e-05, 1.64e-05, ] linExpPercent = [0.0] for i, alpha in enumerate(alpha_mean): linExpPercentVal = 100.0 * alpha * (Tc[i] - refTempC) linExpPercent.append(linExpPercentVal) Tc.insert(0, refTempC) return numpy.polyfit( numpy.array(Tc), numpy.array(linExpPercent), power ).tolist() def linearExpansionPercent(self, Tk=None, Tc=None): r""" Returns percent linear expansion of Inconel600. Parameters ---------- Tk : float temperature in (K) Tc : float Temperature in (C) Returns ------- linExpPercent in %-m/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(21.0, 900.0, Tc, "linear expansion percent") linExpPercent = 3.722e-7 * Tc ** 2 + 1.303e-3 * Tc - 2.863e-2 return linExpPercent def linearExpansion(self, Tk=None, Tc=None): r""" From http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf Using the correlation for linearExpansionPercent, the 2nd order polynomial is divided by 100 to convert from percent strain to strain, then differentiated with respect to temperature to find the correlation for instantaneous linear expansion. i.e. for a linearExpansionPercent correlation of a*Tc**2 + b*Tc + c, the linearExpansion correlation is 2*a/100*Tc + b/100 2*(3.722e-7/100.0)*Tc + 1.303e-3/100.0 Parameters ---------- Tk : float temperature in (K) Tc : float Temperature in (C) Returns ------- linExp in m/m/C """ Tc = getTc(Tc, Tk) self.checkTempRange(21.0, 900.0, Tc, "linear expansion") linExp = 7.444e-9 * Tc + 1.303e-5 return linExp
[ "numpy.array", "armi.utils.units.getTc", "armi.materials.material.Material.__init__" ]
[((1378, 1401), 'armi.materials.material.Material.__init__', 'Material.__init__', (['self'], {}), '(self)\n', (1395, 1401), False, 'from armi.materials.material import Material\n'), ((3236, 3249), 'armi.utils.units.getTc', 'getTc', (['Tc', 'Tk'], {}), '(Tc, Tk)\n', (3241, 3249), False, 'from armi.utils.units import getTc\n'), ((4640, 4653), 'armi.utils.units.getTc', 'getTc', (['Tc', 'Tk'], {}), '(Tc, Tk)\n', (4645, 4653), False, 'from armi.utils.units import getTc\n'), ((5485, 5516), 'armi.utils.units.getTc', 'getTc', (['None'], {'Tk': 'self.p.refTempK'}), '(None, Tk=self.p.refTempK)\n', (5490, 5516), False, 'from armi.utils.units import getTc\n'), ((6522, 6535), 'armi.utils.units.getTc', 'getTc', (['Tc', 'Tk'], {}), '(Tc, Tk)\n', (6527, 6535), False, 'from armi.utils.units import getTc\n'), ((7520, 7533), 'armi.utils.units.getTc', 'getTc', (['Tc', 'Tk'], {}), '(Tc, Tk)\n', (7525, 7533), False, 'from armi.utils.units import getTc\n'), ((2776, 2791), 'numpy.array', 'numpy.array', (['Tc'], {}), '(Tc)\n', (2787, 2791), False, 'import numpy\n'), ((2793, 2807), 'numpy.array', 'numpy.array', (['k'], {}), '(k)\n', (2804, 2807), False, 'import numpy\n'), ((4172, 4187), 'numpy.array', 'numpy.array', (['Tc'], {}), '(Tc)\n', (4183, 4187), False, 'import numpy\n'), ((4189, 4204), 'numpy.array', 'numpy.array', (['cp'], {}), '(cp)\n', (4200, 4204), False, 'import numpy\n'), ((6095, 6110), 'numpy.array', 'numpy.array', (['Tc'], {}), '(Tc)\n', (6106, 6110), False, 'import numpy\n'), ((6112, 6138), 'numpy.array', 'numpy.array', (['linExpPercent'], {}), '(linExpPercent)\n', (6123, 6138), False, 'import numpy\n')]
import os import csv from utils import check_dir, make_sentences import numpy as np import pandas as pd def transform(source_path): rows = [] sentence_count = 1 new_sentence=True for root, __subFolders, files in os.walk(source_path): for file in files: if file.endswith('.tags'): for line in open(os.path.join(root, file), encoding='utf-8'): line = line.split() if len(line) >= 5 and new_sentence==True: row = [sentence_count, line[0], line[1], line[4]] new_sentence=False rows.append(row) elif len(line) >= 5: row = [sentence_count, line[0], line[1], line[4]] rows.append(row) else: new_sentence = True sentence_count += 1 return rows, sentence_count def main(): source_path = "./data/gmb-1.0.0" columns = ["sentence_idx", "Word", "POS", "Tag"] rows, sentence_count = transform(source_path) sentence_idx = np.array(range(sentence_count)) # split into train and test files. this will help with keeping the generators simple, # plus this should really be done at the ETL stage of the pipeline anyway! test_idx = np.random.choice(np.array(range(sentence_count)), size=int(sentence_count*0.2), replace=False) train_idx = np.setdiff1d(sentence_idx,test_idx) # check that the directory to store the data exists, if not create it. check_dir("./data/processed_data/gmb/") df_train = pd.DataFrame(data=[s for s in rows if s[0] in train_idx], columns=columns) train_sentences, train_labels = make_sentences(df_train, group_col="sentence_idx", word_col="Word", tag_col="Tag") train_sentences.to_csv("./data/processed_data/gmb/train.sentences.csv", index=False, header=False) train_labels.to_csv("./data/processed_data/gmb/train.labels.csv", index=False, header=False) vocab = df_train["Word"].unique() # TODO change this to be a full list and add a frequency filter. tags = sorted(df_train["Tag"].unique(), reverse=True) with open("./data/processed_data/gmb/vocabulary.txt", "w", newline="") as f: f.write("\n".join(vocab)) with open("./data/processed_data/gmb/tags.txt", "w", newline="") as f: f.write("\n".join(tags)) del (df_train, train_sentences, train_labels, vocab, tags) check_dir("./data/processed_data/gmb/") df_test = pd.DataFrame(data=[s for s in rows if s[0] in test_idx], columns=columns) test_sentences, test_labels = make_sentences(df_test, group_col="sentence_idx", word_col="Word", tag_col="Tag") test_sentences.to_csv("./data/processed_data/gmb/test.sentences.csv", index=False, header=False) test_labels.to_csv("./data/processed_data/gmb/test.labels.csv", index=False, header=False) del (df_test, test_sentences, test_labels) if __name__ == "__main__": main()
[ "utils.make_sentences", "os.path.join", "numpy.setdiff1d", "pandas.DataFrame", "utils.check_dir", "os.walk" ]
[((230, 250), 'os.walk', 'os.walk', (['source_path'], {}), '(source_path)\n', (237, 250), False, 'import os\n'), ((1461, 1497), 'numpy.setdiff1d', 'np.setdiff1d', (['sentence_idx', 'test_idx'], {}), '(sentence_idx, test_idx)\n', (1473, 1497), True, 'import numpy as np\n'), ((1577, 1616), 'utils.check_dir', 'check_dir', (['"""./data/processed_data/gmb/"""'], {}), "('./data/processed_data/gmb/')\n", (1586, 1616), False, 'from utils import check_dir, make_sentences\n'), ((1632, 1706), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '[s for s in rows if s[0] in train_idx]', 'columns': 'columns'}), '(data=[s for s in rows if s[0] in train_idx], columns=columns)\n', (1644, 1706), True, 'import pandas as pd\n'), ((1743, 1830), 'utils.make_sentences', 'make_sentences', (['df_train'], {'group_col': '"""sentence_idx"""', 'word_col': '"""Word"""', 'tag_col': '"""Tag"""'}), "(df_train, group_col='sentence_idx', word_col='Word', tag_col\n ='Tag')\n", (1757, 1830), False, 'from utils import check_dir, make_sentences\n'), ((2482, 2521), 'utils.check_dir', 'check_dir', (['"""./data/processed_data/gmb/"""'], {}), "('./data/processed_data/gmb/')\n", (2491, 2521), False, 'from utils import check_dir, make_sentences\n'), ((2536, 2609), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '[s for s in rows if s[0] in test_idx]', 'columns': 'columns'}), '(data=[s for s in rows if s[0] in test_idx], columns=columns)\n', (2548, 2609), True, 'import pandas as pd\n'), ((2644, 2730), 'utils.make_sentences', 'make_sentences', (['df_test'], {'group_col': '"""sentence_idx"""', 'word_col': '"""Word"""', 'tag_col': '"""Tag"""'}), "(df_test, group_col='sentence_idx', word_col='Word', tag_col=\n 'Tag')\n", (2658, 2730), False, 'from utils import check_dir, make_sentences\n'), ((351, 375), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (363, 375), False, 'import os\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np def find_template(signal, rr): return signal[200:400] def conv(signal, template): scores = [] template_length = len(template) signal_length = len(signal) for ind in range(signal_length-template_length): score = np.dot(signal[ind:ind+template_length], template) score = np.sqrt(score / template_length) - 300 scores.append(score) return scores def findpeaks(signal): pass if __name__ == "__main__": pass
[ "numpy.dot", "numpy.sqrt" ]
[((374, 425), 'numpy.dot', 'np.dot', (['signal[ind:ind + template_length]', 'template'], {}), '(signal[ind:ind + template_length], template)\n', (380, 425), True, 'import numpy as np\n'), ((440, 472), 'numpy.sqrt', 'np.sqrt', (['(score / template_length)'], {}), '(score / template_length)\n', (447, 472), True, 'import numpy as np\n')]
from __future__ import print_function import numpy as np try: import QENSmodels except ImportError: print('Module QENSmodels not found') def hwhmChudleyElliotDiffusion(q, D=0.23, L=1.0): """ Returns some characteristics of `ChudleyElliotDiffusion` as functions of the momentum transfer `q`: the half-width half-maximum (`hwhm`), the elastic incoherent structure factor (`eisf`), and the quasi-elastic incoherent structure factor (`qisf`) Parameters ---------- q: float, list or :class:`~numpy:numpy.ndarray` momentum transfer (non-fitting, in 1/Angstrom) D: float diffusion coefficient (in Angstrom^2/ps). Default to 0.23. L: float jump length (in Angstrom). Default to 1.0. Returns ------- hwhm: :class:`~numpy:numpy.ndarray` half-width half maximum eisf: :class:`~numpy:numpy.ndarray` elastic incoherent structure factor qisf: :class:`~numpy:numpy.ndarray` quasi-elastic incoherent structure factor Examples -------- >>> hwhm, eisf, qisf = hwhmChudleyElliotDiffusion([1., 2.], 0.5, 1.5) >>> round(hwhm[0], 3), round(hwhm[1], 3) (1.616, 1.333) >>> eisf array([0., 0.]) >>> qisf array([1., 1.]) """ # input validation if D <= 0: raise ValueError('The diffusion coefficient should be positive') if L <= 0: raise ValueError('L, the jump length, should be positive') q = np.asarray(q, dtype=np.float32) eisf = np.zeros(q.size) qisf = np.ones(q.size) hwhm = 6. * D * (1. - np.sinc(q * L)) / L**2 # Force hwhm to be numpy array, even if single value hwhm = np.asarray(hwhm, dtype=np.float32) hwhm = np.reshape(hwhm, hwhm.size) return hwhm, eisf, qisf def sqwChudleyElliotDiffusion(w, q, scale=1, center=0, D=0.23, L=1.0): r""" Lorentzian model with half width half maximum equal to :math:`\frac{6D}{L^2}(1 - \frac{sin(QL)}{QL})` It is a model originally developed for jump diffusion in liquids. But it can also be applied to diffusion in crystalline lattices. Atoms or molecules are `caged` by other atoms and jump into a neighbouring cage from time to time. The jump length `L` is identical for all sites. Parameters ---------- w: float, list or :class:`~numpy:numpy.ndarray` energy transfer (in 1/ps) q: float, list or :class:`~numpy:numpy.ndarray` momentum transfer (non-fitting, in 1/Angstrom). scale: float scale factor. Default to 1. center: float center of peak. Default to 0. D: float diffusion coefficient (in Angstrom^2/ps). Default to 0.23. L: float jump distance (in Angstrom). Default to 1.0. Return ------ :class:`~numpy:numpy.ndarray` output array Examples -------- >>> sqw = sqwChudleyElliotDiffusion([1, 2, 3], 1, 1, 0, 1, 1) >>> round(sqw[0], 3) 0.052 >>> round(sqw[1], 3) 0.048 >>> round(sqw[2], 3) 0.042 >>> sqw = sqwChudleyElliotDiffusion(1, 1, 1, 0, 1, 1) >>> round(sqw[0], 3) 0.052 Notes ----- * The `sqwChudleyElliotDiffusion` is expressed as .. math:: S(q, \omega) = \text{Lorentzian}(\omega, \text{scale}, \text{center}, \frac{6D}{l^2}(1 - \frac{sin(Ql)}{Ql})) * Note that an equivalent expression is .. math:: S(q, \omega) = \text{Lorentzian}(\omega, \text{scale}, \text{center}, \frac{1}{\tau}(1 - \frac{sin(Ql)}{Ql})) with :math:`\tau=\frac{l^2}{6D}`. References ---------- * <NAME>, Quasielastic Neutron Scattering and Solid State Diffusion (Oxford, 2000). * <NAME> and <NAME>, *Proc. Phys. Soc.* **77**, 353-361 (1961) `link <https://iopscience.iop.org/article/10.1088/0370-1328/77/2/319/meta>`_ """ # Input validation w = np.asarray(w) q = np.asarray(q, dtype=np.float32) # Create output array sqw = np.zeros((q.size, w.size)) # Get widths, EISFs and QISFs of model hwhm, eisf, qisf = hwhmChudleyElliotDiffusion(q, D, L) # Model for i in range(q.size): sqw[i, :] = QENSmodels.lorentzian(w, scale, center, hwhm[i]) # For Bumps use (needed for final plotting) # Using a 'Curve' in bumps for each Q --> needs vector array if q.size == 1: sqw = np.reshape(sqw, w.size) return sqw if __name__ == "__main__": import doctest doctest.testmod()
[ "numpy.reshape", "numpy.ones", "QENSmodels.lorentzian", "numpy.asarray", "numpy.sinc", "numpy.zeros", "doctest.testmod" ]
[((1468, 1499), 'numpy.asarray', 'np.asarray', (['q'], {'dtype': 'np.float32'}), '(q, dtype=np.float32)\n', (1478, 1499), True, 'import numpy as np\n'), ((1512, 1528), 'numpy.zeros', 'np.zeros', (['q.size'], {}), '(q.size)\n', (1520, 1528), True, 'import numpy as np\n'), ((1540, 1555), 'numpy.ones', 'np.ones', (['q.size'], {}), '(q.size)\n', (1547, 1555), True, 'import numpy as np\n'), ((1674, 1708), 'numpy.asarray', 'np.asarray', (['hwhm'], {'dtype': 'np.float32'}), '(hwhm, dtype=np.float32)\n', (1684, 1708), True, 'import numpy as np\n'), ((1720, 1747), 'numpy.reshape', 'np.reshape', (['hwhm', 'hwhm.size'], {}), '(hwhm, hwhm.size)\n', (1730, 1747), True, 'import numpy as np\n'), ((3935, 3948), 'numpy.asarray', 'np.asarray', (['w'], {}), '(w)\n', (3945, 3948), True, 'import numpy as np\n'), ((3958, 3989), 'numpy.asarray', 'np.asarray', (['q'], {'dtype': 'np.float32'}), '(q, dtype=np.float32)\n', (3968, 3989), True, 'import numpy as np\n'), ((4027, 4053), 'numpy.zeros', 'np.zeros', (['(q.size, w.size)'], {}), '((q.size, w.size))\n', (4035, 4053), True, 'import numpy as np\n'), ((4507, 4524), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (4522, 4524), False, 'import doctest\n'), ((4218, 4266), 'QENSmodels.lorentzian', 'QENSmodels.lorentzian', (['w', 'scale', 'center', 'hwhm[i]'], {}), '(w, scale, center, hwhm[i])\n', (4239, 4266), False, 'import QENSmodels\n'), ((4415, 4438), 'numpy.reshape', 'np.reshape', (['sqw', 'w.size'], {}), '(sqw, w.size)\n', (4425, 4438), True, 'import numpy as np\n'), ((1582, 1596), 'numpy.sinc', 'np.sinc', (['(q * L)'], {}), '(q * L)\n', (1589, 1596), True, 'import numpy as np\n')]