code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np X = 2 * np.random.randn(100, 5) y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5 from pysr import PySRRegressor model = PySRRegressor( niterations=40, binary_operators=["+", "*"], unary_operators=[ "cos", "exp", "sin", "inv(x) = 1/x", # Custom operator (julia syntax) ], model_selection="best", loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax) ) model.fit(X, y) print(model)
[ "pysr.PySRRegressor", "numpy.random.randn", "numpy.cos" ]
[((143, 321), 'pysr.PySRRegressor', 'PySRRegressor', ([], {'niterations': '(40)', 'binary_operators': "['+', '*']", 'unary_operators': "['cos', 'exp', 'sin', 'inv(x) = 1/x']", 'model_selection': '"""best"""', 'loss': '"""loss(x, y) = (x - y)^2"""'}), "(niterations=40, binary_operators=['+', '*'], unary_operators=\n ['cos', 'exp', 'sin', 'inv(x) = 1/x'], model_selection='best', loss=\n 'loss(x, y) = (x - y)^2')\n", (156, 321), False, 'from pysr import PySRRegressor\n'), ((28, 51), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (43, 51), True, 'import numpy as np\n'), ((65, 80), 'numpy.cos', 'np.cos', (['X[:, 3]'], {}), '(X[:, 3])\n', (71, 80), True, 'import numpy as np\n')]
import json import os import cv2 import numpy as np from dgp.datasets.synchronized_dataset import SynchronizedScene from dgp.utils.visualization_engine import visualize_dataset_3d, visualize_dataset_2d, visualize_dataset_sample_3d, visualize_dataset_sample_2d from tests import TEST_DATA_DIR def dummy_caption(dataset, idx): return "SAMPLE" def test_visualize_dataset_3d(): ''' Uses parametrized testing to run multiple cases for SynchronizedSceneDataset ''' scene_json = os.path.join( TEST_DATA_DIR, "dgp", "test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json" ) filepath = "./test_3d_vis.avi" dataset = SynchronizedScene( scene_json, datum_names=['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1, requested_annotations=("bounding_box_2d", "bounding_box_3d") ) visualize_dataset_3d( dataset=dataset, camera_datum_names=['CAMERA_01'], lidar_datum_names=['LIDAR'], radar_datum_names=[], output_video_file=filepath ) assert os.path.exists(filepath) os.remove(filepath) def test_visualize_dataset_2d(): ''' Uses parametrized testing to run multiple cases for SynchronizedSceneDataset ''' scene_json = os.path.join( TEST_DATA_DIR, "dgp", "test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json" ) filepath = "./test_2d_vis.avi" dataset = SynchronizedScene( scene_json, datum_names=['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1, requested_annotations=("bounding_box_2d", "bounding_box_3d") ) visualize_dataset_2d( dataset=dataset, camera_datum_names=['CAMERA_01'], caption_fn=dummy_caption, output_video_file=filepath ) assert os.path.exists(filepath) os.remove(filepath) def test_visualize_dataset_sample_3d(): ''' Uses parametrized testing to run multiple cases for SynchronizedSceneDataset ''' scene_json = os.path.join( TEST_DATA_DIR, "dgp", "test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json" ) dataset = SynchronizedScene( scene_json, datum_names=['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1, requested_annotations=("bounding_box_2d", "bounding_box_3d") ) result = visualize_dataset_sample_3d(dataset=dataset, scene_idx=0, sample_idx=0, camera_datum_names=['camera_05']) data = cv2.imread('tests/data/dgp/vis_output.png', cv2.IMREAD_COLOR) assert np.allclose(result["camera_05"], data)
[ "os.path.exists", "numpy.allclose", "dgp.utils.visualization_engine.visualize_dataset_sample_3d", "dgp.utils.visualization_engine.visualize_dataset_2d", "os.path.join", "dgp.utils.visualization_engine.visualize_dataset_3d", "dgp.datasets.synchronized_dataset.SynchronizedScene", "cv2.imread", "os.remove" ]
[((498, 611), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""dgp"""', '"""test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json"""'], {}), "(TEST_DATA_DIR, 'dgp',\n 'test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json')\n", (510, 611), False, 'import os\n'), ((671, 871), 'dgp.datasets.synchronized_dataset.SynchronizedScene', 'SynchronizedScene', (['scene_json'], {'datum_names': "['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06']", 'forward_context': '(1)', 'backward_context': '(1)', 'requested_annotations': "('bounding_box_2d', 'bounding_box_3d')"}), "(scene_json, datum_names=['LIDAR', 'CAMERA_01',\n 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1,\n requested_annotations=('bounding_box_2d', 'bounding_box_3d'))\n", (688, 871), False, 'from dgp.datasets.synchronized_dataset import SynchronizedScene\n'), ((914, 1073), 'dgp.utils.visualization_engine.visualize_dataset_3d', 'visualize_dataset_3d', ([], {'dataset': 'dataset', 'camera_datum_names': "['CAMERA_01']", 'lidar_datum_names': "['LIDAR']", 'radar_datum_names': '[]', 'output_video_file': 'filepath'}), "(dataset=dataset, camera_datum_names=['CAMERA_01'],\n lidar_datum_names=['LIDAR'], radar_datum_names=[], output_video_file=\n filepath)\n", (934, 1073), False, 'from dgp.utils.visualization_engine import visualize_dataset_3d, visualize_dataset_2d, visualize_dataset_sample_3d, visualize_dataset_sample_2d\n'), ((1122, 1146), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (1136, 1146), False, 'import os\n'), ((1151, 1170), 'os.remove', 'os.remove', (['filepath'], {}), '(filepath)\n', (1160, 1170), False, 'import os\n'), ((1320, 1433), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""dgp"""', '"""test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json"""'], {}), "(TEST_DATA_DIR, 'dgp',\n 'test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json')\n", (1332, 1433), False, 'import os\n'), ((1493, 1693), 'dgp.datasets.synchronized_dataset.SynchronizedScene', 'SynchronizedScene', (['scene_json'], {'datum_names': "['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06']", 'forward_context': '(1)', 'backward_context': '(1)', 'requested_annotations': "('bounding_box_2d', 'bounding_box_3d')"}), "(scene_json, datum_names=['LIDAR', 'CAMERA_01',\n 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1,\n requested_annotations=('bounding_box_2d', 'bounding_box_3d'))\n", (1510, 1693), False, 'from dgp.datasets.synchronized_dataset import SynchronizedScene\n'), ((1737, 1866), 'dgp.utils.visualization_engine.visualize_dataset_2d', 'visualize_dataset_2d', ([], {'dataset': 'dataset', 'camera_datum_names': "['CAMERA_01']", 'caption_fn': 'dummy_caption', 'output_video_file': 'filepath'}), "(dataset=dataset, camera_datum_names=['CAMERA_01'],\n caption_fn=dummy_caption, output_video_file=filepath)\n", (1757, 1866), False, 'from dgp.utils.visualization_engine import visualize_dataset_3d, visualize_dataset_2d, visualize_dataset_sample_3d, visualize_dataset_sample_2d\n'), ((1888, 1912), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (1902, 1912), False, 'import os\n'), ((1917, 1936), 'os.remove', 'os.remove', (['filepath'], {}), '(filepath)\n', (1926, 1936), False, 'import os\n'), ((2093, 2206), 'os.path.join', 'os.path.join', (['TEST_DATA_DIR', '"""dgp"""', '"""test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json"""'], {}), "(TEST_DATA_DIR, 'dgp',\n 'test_scene/scene_01/scene_a8dc5ed1da0923563f85ea129f0e0a83e7fe1867.json')\n", (2105, 2206), False, 'import os\n'), ((2231, 2431), 'dgp.datasets.synchronized_dataset.SynchronizedScene', 'SynchronizedScene', (['scene_json'], {'datum_names': "['LIDAR', 'CAMERA_01', 'CAMERA_05', 'CAMERA_06']", 'forward_context': '(1)', 'backward_context': '(1)', 'requested_annotations': "('bounding_box_2d', 'bounding_box_3d')"}), "(scene_json, datum_names=['LIDAR', 'CAMERA_01',\n 'CAMERA_05', 'CAMERA_06'], forward_context=1, backward_context=1,\n requested_annotations=('bounding_box_2d', 'bounding_box_3d'))\n", (2248, 2431), False, 'from dgp.datasets.synchronized_dataset import SynchronizedScene\n'), ((2484, 2593), 'dgp.utils.visualization_engine.visualize_dataset_sample_3d', 'visualize_dataset_sample_3d', ([], {'dataset': 'dataset', 'scene_idx': '(0)', 'sample_idx': '(0)', 'camera_datum_names': "['camera_05']"}), "(dataset=dataset, scene_idx=0, sample_idx=0,\n camera_datum_names=['camera_05'])\n", (2511, 2593), False, 'from dgp.utils.visualization_engine import visualize_dataset_3d, visualize_dataset_2d, visualize_dataset_sample_3d, visualize_dataset_sample_2d\n'), ((2601, 2662), 'cv2.imread', 'cv2.imread', (['"""tests/data/dgp/vis_output.png"""', 'cv2.IMREAD_COLOR'], {}), "('tests/data/dgp/vis_output.png', cv2.IMREAD_COLOR)\n", (2611, 2662), False, 'import cv2\n'), ((2674, 2712), 'numpy.allclose', 'np.allclose', (["result['camera_05']", 'data'], {}), "(result['camera_05'], data)\n", (2685, 2712), True, 'import numpy as np\n')]
import numpy as np import serial import struct import threading import time from array import array from datetime import datetime class ImuData: def __init__(self, t=0.0, freq=0, ypr=np.zeros(3), a=np.zeros(3), \ W=np.zeros(3)): self.t = t self.freq = freq self.ypr = ypr self.a = a self.W = W class Vectornav(threading.Thread): def __init__(self, thread_id, port, baud, t0): '''Instantiate the IMU thread. Args: thread_id: (int) - Thread ID port: (string) - Port name of the IMU baud: (int) - Baud rate of the IMU t0: (datetime object) - Epoch ''' threading.Thread.__init__(self) self.thread_id = thread_id self._lock = threading.Lock() self._on = True self._t0 = t0 self._port = port self._baud = baud self._t = (datetime.now() - t0).total_seconds() self._ypr = np.zeros(3) self._a = np.zeros(3) self._W = np.zeros(3) # This is specific message has 41 bytes. You should update this to match # your configuration. self._len_payload = 41 print('IMU: initialized') def run(self): '''Start the thread. ''' print('IMU: reading from {} at {}'.format(self._port, self._baud)) # In case the port is not properly closed, try: temp = serial.Serial(self._port, self._baud) temp.close() except: print('\033[91m' + 'Unable to open IMU port at ' + self._port + ':' + str(self._baud) + '\033[0m') return # Open the serial port and start reading. with serial.Serial(self._port, self._baud, timeout=1) as s: # Clear the buffer first. print('IMU: clearing buffer') num_bytes = s.in_waiting s.read(num_bytes) print('IMU: starting main loop') while self._on: imu_sync_detected = False # Check if there are bytes waiting in the buffer. num_bytes = s.in_waiting if num_bytes == 0: # Reduce/delete this sleep time if you are reading data at # a faster rate. time.sleep(0.01) continue # IMU sends 0xFA (int 250) as the first byte. This marks the # begining of the message. imu_sync_detected = self.check_sync_byte(s) if not imu_sync_detected: continue # If the sync byte us detected, read the rest of the message. success = self.read_imu_data(s) if not success: continue print('IMU: thread closed') def check_sync_byte(self, s): '''Check if the sync byte is detected. IMU sends 0xFA (int 250) as the first byte. This marks the begining of the message. Args: s: (serial object) - Already open serial port of the IMU. Return: bool - True if the sync byte is detected in the current buffer. ''' # Iterate over all the bytes in the current buffer. for _ in range(s.in_waiting): byte_in = s.read(1) # Check if the sync byte 0xFA (int 250) is detected. int_in = int.from_bytes(byte_in, 'little') if int_in == 250: return True return False def read_imu_data(self, s): '''Read and parse the payload of the IMU message. Args: s: (serial object) - Already open serial port of the IMU. Return: bool - True if the operation is succesfull ''' # Read data. N = self._len_payload data = s.read(N) # Check if there are unexpected errors in the message. # Last two bytes of the payload is the checksum bytes. checksum_array = array('B', [data[N-1], data[N-2]]) checksum = struct.unpack('H', checksum_array)[0] # Compare the received checksum value against the calculated checksum. crc = self.calculate_imu_crc(data[:N-2]) if not crc == checksum: print('IMU CRC error') return False # If the checksum is valid, parse the data. return self.parse_data(data) def parse_data(self, data): '''Parse the bytes of the sensor measurements Args: data: (byte array) - data read from the serial port Return: bool - True if the operation is succesfull ''' try: with self._lock: self._ypr[0] = struct.unpack('f', data[3:7])[0] self._ypr[1] = struct.unpack('f', data[7:11])[0] self._ypr[2] = struct.unpack('f', data[11:15])[0] self._a[0] = struct.unpack('f', data[15:19])[0] self._a[1] = struct.unpack('f', data[19:23])[0] self._a[2] = struct.unpack('f', data[23:27])[0] self._W[0] = struct.unpack('f', data[27:31])[0] self._W[1] = struct.unpack('f', data[31:35])[0] self._W[2] = struct.unpack('f', data[35:39])[0] except: print('IMU: error parsing data') return False return True def calculate_imu_crc(self, data): '''Calculate the 16-bit CRC for the given message. Args: data: (byte array) - data read from the serial port Return: unsigned short - CRC checksum value ''' data = bytearray(data) crc = np.array([0], dtype=np.ushort) for i in range(len(data)): crc[0] = (crc[0] >> 8) | (crc[0] << 8) crc[0] ^= data[i] crc[0] ^= (crc[0] & 0xff) >> 4 crc[0] ^= crc[0] << 12 crc[0] ^= (crc[0] & 0x00ff) << 5 return crc[0] def output_data(self): '''Output the current measurements. Return: ImuData - current IMU data ''' with self._lock: data = ImuData( self._t, self._ypr, self._a, self._W ) return data def end_thread(self): '''Call to end the IMU thread.''' self._on = False print('IMU: thread close signal received')
[ "threading.Thread.__init__", "array.array", "threading.Lock", "time.sleep", "numpy.array", "numpy.zeros", "struct.unpack", "serial.Serial", "datetime.datetime.now" ]
[((191, 202), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (199, 202), True, 'import numpy as np\n'), ((206, 217), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (214, 217), True, 'import numpy as np\n'), ((235, 246), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (243, 246), True, 'import numpy as np\n'), ((682, 713), 'threading.Thread.__init__', 'threading.Thread.__init__', (['self'], {}), '(self)\n', (707, 713), False, 'import threading\n'), ((771, 787), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (785, 787), False, 'import threading\n'), ((965, 976), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (973, 976), True, 'import numpy as np\n'), ((995, 1006), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1003, 1006), True, 'import numpy as np\n'), ((1025, 1036), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1033, 1036), True, 'import numpy as np\n'), ((4112, 4150), 'array.array', 'array', (['"""B"""', '[data[N - 1], data[N - 2]]'], {}), "('B', [data[N - 1], data[N - 2]])\n", (4117, 4150), False, 'from array import array\n'), ((5804, 5834), 'numpy.array', 'np.array', (['[0]'], {'dtype': 'np.ushort'}), '([0], dtype=np.ushort)\n', (5812, 5834), True, 'import numpy as np\n'), ((1437, 1474), 'serial.Serial', 'serial.Serial', (['self._port', 'self._baud'], {}), '(self._port, self._baud)\n', (1450, 1474), False, 'import serial\n'), ((1728, 1776), 'serial.Serial', 'serial.Serial', (['self._port', 'self._baud'], {'timeout': '(1)'}), '(self._port, self._baud, timeout=1)\n', (1741, 1776), False, 'import serial\n'), ((4166, 4200), 'struct.unpack', 'struct.unpack', (['"""H"""', 'checksum_array'], {}), "('H', checksum_array)\n", (4179, 4200), False, 'import struct\n'), ((907, 921), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (919, 921), False, 'from datetime import datetime\n'), ((2338, 2354), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (2348, 2354), False, 'import time\n'), ((4840, 4869), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[3:7]'], {}), "('f', data[3:7])\n", (4853, 4869), False, 'import struct\n'), ((4904, 4934), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[7:11]'], {}), "('f', data[7:11])\n", (4917, 4934), False, 'import struct\n'), ((4969, 5000), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[11:15]'], {}), "('f', data[11:15])\n", (4982, 5000), False, 'import struct\n'), ((5034, 5065), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[15:19]'], {}), "('f', data[15:19])\n", (5047, 5065), False, 'import struct\n'), ((5098, 5129), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[19:23]'], {}), "('f', data[19:23])\n", (5111, 5129), False, 'import struct\n'), ((5162, 5193), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[23:27]'], {}), "('f', data[23:27])\n", (5175, 5193), False, 'import struct\n'), ((5227, 5258), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[27:31]'], {}), "('f', data[27:31])\n", (5240, 5258), False, 'import struct\n'), ((5291, 5322), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[31:35]'], {}), "('f', data[31:35])\n", (5304, 5322), False, 'import struct\n'), ((5355, 5386), 'struct.unpack', 'struct.unpack', (['"""f"""', 'data[35:39]'], {}), "('f', data[35:39])\n", (5368, 5386), False, 'import struct\n')]
''' objective :- ------------ detect and classify shapes and their location in an image with low latency and high accuracy. it must account for false positives and empty images. modules used :- --------------- 1 - open cv for image processing tasks. 2 - easyocr for text-recognition tasks. 3 - threading for running text-recognition tasks on a separate thread to reduce latency. 4 - atexit to join all threads on program termination. 5 - Text_Detection which is a manually designed module for text-detection using east detection algorithm. Inputs :- --------- 1 - captured frame from the camera video stream. Outputs :- ---------- 1 - whether text has been detected or not. 2 - coordinates of text if detected. 3 - an array containing the objects detected and what is the character that this object represents. Algorithm :- ------------ 1 - apply east text-detection on th input frame 2 - if a new character has been detected a - capture the coordinates of the detected character b - add a new thread that will be assigned the duty of handling the text-recognition using easy ocr. c - create an array which contains many copies of the input frame but rotated in different angles. d - start the thread which will run text-recogntion using the array provided in the previous step. e - return that text has been detected and return its coordinates else return the input frame and that no text has been detected 4 - wait for all threads to finish and join them with the main thread 5 - return an array containing the objects detected and what is the character that this object represents. ''' from cv2 import cv2 from AlphanumericCharacterDetection.recogniser import Recognize from os import remove, listdir import time import numpy as np WHITE_LIST = ['A','B','C','c','D','E','F','G','H','I','J','K','k','L','l','M','m','N','O','o','P','p','Q','R','S','s','T','U','u','V','v','W','w','X','x','Y','y','Z','z','0','1','2','3','4','5','6','7','8','9'] def rotate_image(image, angle): if angle == 0: return image image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR) return result def alphanum_B(image, id): ############################################################################################################## REPLACE [0] for angle in range(0, 360, 90): cv2.imwrite("AlphanumericCharacterDetection/results/" + str(id) + "_" + str(angle) + ".jpg", rotate_image(image, angle)) # x= cv2.imwrite("AlphanumericCharacterDetection/results/" + str(id) + ".jpg", image) ############################################################################################################## [0] out_character = "" out_confidence = 0 out_character = Recognize("AlphanumericCharacterDetection/results/") if out_character is None or out_character == '' : return None,None,None else: pass ############################################################################################################## REPLACE [1] for angle in range(0, 360, 90): remove("AlphanumericCharacterDetection/results/" + str(id) + "_" + str(angle) + ".jpg") # remove("AlphanumericCharacterDetection/results/" + str(id) + ".jpg") ############################################################################################################## end [1] ############################################################################################################## UNCOMMENT [2] out_character = sorted(out_character, key = lambda x: x[1],reverse=True) # sort by confidence ############### special cases ############## # we prefer M, T, C, 4, 3 than other chars # ############################################ preferred = ['M','T','C','4', '3'] for i in preferred: if out_character[0] == i: return out_character[0] for i in range(len(out_character)): if out_character[i][0] in preferred: temp = list(out_character[i]) temp[1] += 0.1 out_character[i] += tuple(temp) out_character = sorted(out_character, key = lambda x: x[1],reverse=True) # sort again by confidence out_character = out_character[0] ############################################################################################################# [2] return out_character if __name__ == '__main__': image = cv2.imread("Sample10.jpg") timer = time.perf_counter() character = alphanum_B(image, 1) print(time.perf_counter()-timer) print(character)
[ "cv2.cv2.getRotationMatrix2D", "cv2.cv2.warpAffine", "cv2.cv2.imread", "time.perf_counter", "AlphanumericCharacterDetection.recogniser.Recognize", "numpy.array" ]
[((2094, 2143), 'cv2.cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['image_center', 'angle', '(1.0)'], {}), '(image_center, angle, 1.0)\n', (2117, 2143), False, 'from cv2 import cv2\n'), ((2154, 2228), 'cv2.cv2.warpAffine', 'cv2.warpAffine', (['image', 'rot_mat', 'image.shape[1::-1]'], {'flags': 'cv2.INTER_LINEAR'}), '(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)\n', (2168, 2228), False, 'from cv2 import cv2\n'), ((2843, 2895), 'AlphanumericCharacterDetection.recogniser.Recognize', 'Recognize', (['"""AlphanumericCharacterDetection/results/"""'], {}), "('AlphanumericCharacterDetection/results/')\n", (2852, 2895), False, 'from AlphanumericCharacterDetection.recogniser import Recognize\n'), ((4617, 4643), 'cv2.cv2.imread', 'cv2.imread', (['"""Sample10.jpg"""'], {}), "('Sample10.jpg')\n", (4627, 4643), False, 'from cv2 import cv2\n'), ((4654, 4673), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4671, 4673), False, 'import time\n'), ((2049, 2077), 'numpy.array', 'np.array', (['image.shape[1::-1]'], {}), '(image.shape[1::-1])\n', (2057, 2077), True, 'import numpy as np\n'), ((4715, 4734), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4732, 4734), False, 'import time\n')]
""" Custom added maze tasks with dense rewards and progressively farther goals For creating expert demonstrations """ from typing import Dict, List, Type, Tuple import numpy as np from mujoco_maze.custom_maze_task import ( GoalRewardLargeUMaze, GoalRewardRoom3x5, GoalRewardRoom3x10, ) from mujoco_maze.task_common import ( MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList, ) class Room3x5(GoalRewardRoom3x5): INNER_REWARD_SCALING: float = 0.01 PENALTY: float = 0 def __init__(self, scale: float, goal: Tuple[float, float], waypoints=None) -> None: super().__init__(scale) self.goals = [MazeGoal(np.array(goal) * scale)] def reward(self, obs: np.ndarray) -> float: reward = -self.goals[0].euc_dist(obs) / self.scale if self.termination(obs): reward = 100.0 return reward class Room3x5WayPoint(Room3x5): def __init__(self, scale: float, goal: Tuple[float, float], waypoints=None) -> None: super().__init__(scale, goal, waypoints) self.goals = [MazeGoal(np.array(goal) * scale)] self.waypoints = [] for waypoint in waypoints: self.waypoints.append( MazeGoal( np.array(waypoint) * scale, rgb=GREEN, custom_size=0.1 * scale / 2, ) ) self.visited = np.zeros(len(self.waypoints), dtype=bool) self.goal_reward = 1000 self.waypoint_reward = 0 # Precalculate distances b/w waypoints self.rews = np.zeros(len(self.waypoints) + 1) self.rews[0] = -euc_dist(self.waypoints[0].pos, [0, 0]) / self.scale for i in range(1, len(self.waypoints)): self.rews[i] = ( -euc_dist(self.waypoints[i - 1].pos, self.waypoints[i].pos) / self.scale ) self.rews[-1] = ( -euc_dist(self.waypoints[-1].pos, self.goals[0].pos) / self.scale ) def reward(self, obs: np.ndarray) -> float: # If all waypoints were visited if self.visited.all(): reward = -self.goals[0].euc_dist(obs) / self.scale if self.termination(obs): reward = self.goal_reward else: # Choose next waypoint goal_idx = np.argmax(~self.visited) # Add all remaining distances reward = np.sum(self.rews[goal_idx + 1 :]) if self.waypoints[goal_idx].neighbor(obs): self.visited[goal_idx] = True reward += self.waypoint_reward else: reward += -self.waypoints[goal_idx].euc_dist(obs) / self.scale return reward class Room3x10(GoalRewardRoom3x10): INNER_REWARD_SCALING: float = 0.01 PENALTY: float = 0 def __init__(self, scale: float, goal: Tuple[float, float], waypoints=None) -> None: super().__init__(scale) self.goals = [MazeGoal(np.array(goal) * scale)] def reward(self, obs: np.ndarray) -> float: reward = -self.goals[0].euc_dist(obs) / self.scale if self.termination(obs): reward = 100.0 return reward class LargeUMaze(GoalRewardLargeUMaze): INNER_REWARD_SCALING: float = 0.01 PENALTY: float = 0 def __init__(self, scale: float, goal: Tuple[float, float], waypoints=None) -> None: super().__init__(scale) self.goals = [MazeGoal(np.array(goal) * scale)] def reward(self, obs: np.ndarray) -> float: reward = -self.goals[0].euc_dist(obs) / self.scale if self.termination(obs): reward = 100.0 return reward class ExpertTaskRegistry: REGISTRY: Dict[str, List[Type[MazeTask]]] = { "DistRoom3x5_1Goals": Room3x5, "DistRoom3x5WayPoint_3Goals": Room3x5WayPoint, "DistRoom3x10_1Goals": Room3x10, "DistLargeUMaze_2Goals": LargeUMaze, "DistLargeUMaze_4Goals": LargeUMaze, } GOALS = { "DistRoom3x5_1Goals": [(4, 0)], "DistRoom3x5WayPoint_3Goals": [(1, 0), (2, 0), (4, 0)], "DistRoom3x10_1Goals": [(9, 0)], "DistLargeUMaze_2Goals": [(2, 2), (0, 4)], "DistLargeUMaze_4Goals": [(2, 1), (2, 2), (2, 3), (0, 4)], } REWARD_THRESHOLDS = { "DistRoom3x5_1Goals": RewardThresholdList([-70], [-70], None), "DistRoom3x5WayPoint_3Goals": RewardThresholdList( [-20, -40, 70], [-20, -40, -70], None ), "DistRoom3x10_1Goals": RewardThresholdList([-70], [-690], None), "DistLargeUMaze_2Goals": RewardThresholdList([-300, -700], [-50, -100], None), "DistLargeUMaze_4Goals": RewardThresholdList( [-200, -400, -600, -800], [-25, -50, -75, -100], None ), } @staticmethod def keys() -> List[str]: return list(ExpertTaskRegistry.REGISTRY.keys()) @staticmethod def tasks(key: str) -> List[Type[MazeTask]]: return ExpertTaskRegistry.REGISTRY[key] @staticmethod def goals(key: str) -> List[Type[MazeTask]]: return ExpertTaskRegistry.GOALS[key] @staticmethod def reward_thresholds(key: str) -> List[Type[MazeTask]]: return ExpertTaskRegistry.REWARD_THRESHOLDS[key]
[ "mujoco_maze.task_common.euc_dist", "mujoco_maze.task_common.RewardThresholdList", "numpy.argmax", "numpy.sum", "numpy.array" ]
[((4318, 4357), 'mujoco_maze.task_common.RewardThresholdList', 'RewardThresholdList', (['[-70]', '[-70]', 'None'], {}), '([-70], [-70], None)\n', (4337, 4357), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((4397, 4455), 'mujoco_maze.task_common.RewardThresholdList', 'RewardThresholdList', (['[-20, -40, 70]', '[-20, -40, -70]', 'None'], {}), '([-20, -40, 70], [-20, -40, -70], None)\n', (4416, 4455), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((4510, 4550), 'mujoco_maze.task_common.RewardThresholdList', 'RewardThresholdList', (['[-70]', '[-690]', 'None'], {}), '([-70], [-690], None)\n', (4529, 4550), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((4585, 4637), 'mujoco_maze.task_common.RewardThresholdList', 'RewardThresholdList', (['[-300, -700]', '[-50, -100]', 'None'], {}), '([-300, -700], [-50, -100], None)\n', (4604, 4637), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((4672, 4746), 'mujoco_maze.task_common.RewardThresholdList', 'RewardThresholdList', (['[-200, -400, -600, -800]', '[-25, -50, -75, -100]', 'None'], {}), '([-200, -400, -600, -800], [-25, -50, -75, -100], None)\n', (4691, 4746), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((2338, 2362), 'numpy.argmax', 'np.argmax', (['(~self.visited)'], {}), '(~self.visited)\n', (2347, 2362), True, 'import numpy as np\n'), ((2426, 2458), 'numpy.sum', 'np.sum', (['self.rews[goal_idx + 1:]'], {}), '(self.rews[goal_idx + 1:])\n', (2432, 2458), True, 'import numpy as np\n'), ((1656, 1695), 'mujoco_maze.task_common.euc_dist', 'euc_dist', (['self.waypoints[0].pos', '[0, 0]'], {}), '(self.waypoints[0].pos, [0, 0])\n', (1664, 1695), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((1928, 1979), 'mujoco_maze.task_common.euc_dist', 'euc_dist', (['self.waypoints[-1].pos', 'self.goals[0].pos'], {}), '(self.waypoints[-1].pos, self.goals[0].pos)\n', (1936, 1979), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((671, 685), 'numpy.array', 'np.array', (['goal'], {}), '(goal)\n', (679, 685), True, 'import numpy as np\n'), ((1090, 1104), 'numpy.array', 'np.array', (['goal'], {}), '(goal)\n', (1098, 1104), True, 'import numpy as np\n'), ((1803, 1861), 'mujoco_maze.task_common.euc_dist', 'euc_dist', (['self.waypoints[i - 1].pos', 'self.waypoints[i].pos'], {}), '(self.waypoints[i - 1].pos, self.waypoints[i].pos)\n', (1811, 1861), False, 'from mujoco_maze.task_common import MazeGoal, MazeTask, GREEN, euc_dist, RewardThresholdList\n'), ((2981, 2995), 'numpy.array', 'np.array', (['goal'], {}), '(goal)\n', (2989, 2995), True, 'import numpy as np\n'), ((3454, 3468), 'numpy.array', 'np.array', (['goal'], {}), '(goal)\n', (3462, 3468), True, 'import numpy as np\n'), ((1259, 1277), 'numpy.array', 'np.array', (['waypoint'], {}), '(waypoint)\n', (1267, 1277), True, 'import numpy as np\n')]
from functools import lru_cache import math import logging from enum import Enum from typing import Optional, List, Tuple, Any, Union, Dict, Callable from concurrent.futures import ThreadPoolExecutor from io import BytesIO import requests import numpy as np from google.api_core import retry from PIL import Image from pyproj import Transformer from pygeotile.point import Point as PygeoPoint from pydantic import BaseModel, validator from pydantic.class_validators import root_validator from labelbox.data.annotation_types import Rectangle, Point, Line, Polygon from .base_data import BaseData from .raster import RasterData VALID_LAT_RANGE = range(-90, 90) VALID_LNG_RANGE = range(-180, 180) DEFAULT_TMS_TILE_SIZE = 256 TILE_DOWNLOAD_CONCURRENCY = 4 logger = logging.getLogger(__name__) VectorTool = Union[Point, Line, Rectangle, Polygon] class EPSG(Enum): """ Provides the EPSG for tiled image assets that are currently supported. SIMPLEPIXEL is Simple that can be used to obtain the pixel space coordinates >>> epsg = EPSG() """ SIMPLEPIXEL = 1 EPSG4326 = 4326 EPSG3857 = 3857 class TiledBounds(BaseModel): """ Bounds for a tiled image asset related to the relevant epsg. Bounds should be Point objects. >>> bounds = TiledBounds(epsg=EPSG.EPSG4326, bounds=[ Point(x=-99.21052827588443, y=19.405662413477728), Point(x=-99.20534818927473, y=19.400498983095076) ]) """ epsg: EPSG bounds: List[Point] @validator('bounds') def validate_bounds_not_equal(cls, bounds): first_bound = bounds[0] second_bound = bounds[1] if first_bound.x == second_bound.x or \ first_bound.y == second_bound.y: raise ValueError( f"Bounds on either axes cannot be equal, currently {bounds}") return bounds #validate bounds are within lat,lng range if they are EPSG4326 @root_validator def validate_bounds_lat_lng(cls, values): epsg = values.get('epsg') bounds = values.get('bounds') if epsg == EPSG.EPSG4326: for bound in bounds: lat, lng = bound.y, bound.x if int(lng) not in VALID_LNG_RANGE or int( lat) not in VALID_LAT_RANGE: raise ValueError(f"Invalid lat/lng bounds. Found {bounds}. " f"lat must be in {VALID_LAT_RANGE}. " f"lng must be in {VALID_LNG_RANGE}.") return values class TileLayer(BaseModel): """ Url that contains the tile layer. Must be in the format: https://c.tile.openstreetmap.org/{z}/{x}/{y}.png >>> layer = TileLayer( url="https://c.tile.openstreetmap.org/{z}/{x}/{y}.png", name="slippy map tile" ) """ url: str name: Optional[str] = "default" def asdict(self) -> Dict[str, str]: return {"tileLayerUrl": self.url, "name": self.name} @validator('url') def validate_url(cls, url): xyz_format = "/{z}/{x}/{y}" if xyz_format not in url: raise ValueError(f"{url} needs to contain {xyz_format}") return url class TiledImageData(BaseData): """ Represents tiled imagery If specified version is 2, converts bounds from [lng,lat] to [lat,lng] Requires the following args: tile_layer: TileLayer tile_bounds: TiledBounds zoom_levels: List[int] Optional args: max_native_zoom: int = None tile_size: Optional[int] version: int = 2 alternative_layers: List[TileLayer] >>> tiled_image_data = TiledImageData(tile_layer=TileLayer, tile_bounds=TiledBounds, zoom_levels=[1, 12]) """ tile_layer: TileLayer tile_bounds: TiledBounds alternative_layers: List[TileLayer] = [] zoom_levels: Tuple[int, int] max_native_zoom: Optional[int] = None tile_size: Optional[int] = DEFAULT_TMS_TILE_SIZE version: Optional[int] = 2 multithread: bool = True def __post_init__(self) -> None: if self.max_native_zoom is None: self.max_native_zoom = self.zoom_levels[0] def asdict(self) -> Dict[str, str]: return { "tileLayerUrl": self.tile_layer.url, "bounds": [[ self.tile_bounds.bounds[0].x, self.tile_bounds.bounds[0].y ], [self.tile_bounds.bounds[1].x, self.tile_bounds.bounds[1].y]], "minZoom": self.zoom_levels[0], "maxZoom": self.zoom_levels[1], "maxNativeZoom": self.max_native_zoom, "epsg": self.tile_bounds.epsg.name, "tileSize": self.tile_size, "alternativeLayers": [ layer.asdict() for layer in self.alternative_layers ], "version": self.version } def raster_data(self, zoom: int = 0, max_tiles: int = 32, multithread=True) -> RasterData: """Converts the tiled image asset into a RasterData object containing an np.ndarray. Uses the minimum zoom provided to render the image. """ if self.tile_bounds.epsg == EPSG.SIMPLEPIXEL: xstart, ystart, xend, yend = self._get_simple_image_params(zoom) elif self.tile_bounds.epsg == EPSG.EPSG4326: xstart, ystart, xend, yend = self._get_3857_image_params( zoom, self.tile_bounds) elif self.tile_bounds.epsg == EPSG.EPSG3857: #transform to 4326 transformer = EPSGTransformer.create_geo_to_geo_transformer( EPSG.EPSG3857, EPSG.EPSG4326) transforming_bounds = [ transformer(self.tile_bounds.bounds[0]), transformer(self.tile_bounds.bounds[1]) ] xstart, ystart, xend, yend = self._get_3857_image_params( zoom, transforming_bounds) else: raise ValueError(f"Unsupported epsg found: {self.tile_bounds.epsg}") self._validate_num_tiles(xstart, ystart, xend, yend, max_tiles) rounded_tiles, pixel_offsets = list( zip(*[ self._tile_to_pixel(pt) for pt in [xstart, ystart, xend, yend] ])) image = self._fetch_image_for_bounds(*rounded_tiles, zoom, multithread) arr = self._crop_to_bounds(image, *pixel_offsets) return RasterData(arr=arr) @property def value(self) -> np.ndarray: """Returns the value of a generated RasterData object. """ return self.raster_data(self.zoom_levels[0], multithread=self.multithread).value def _get_simple_image_params(self, zoom) -> Tuple[float, float, float, float]: """Computes the x and y tile bounds for fetching an image that captures the entire labeling region (TiledData.bounds) given a specific zoom Simple has different order of x / y than lat / lng because of how leaflet behaves leaflet reports all points as pixel locations at a zoom of 0 """ xend, xstart, yend, ystart = ( self.tile_bounds.bounds[1].x, self.tile_bounds.bounds[0].x, self.tile_bounds.bounds[1].y, self.tile_bounds.bounds[0].y, ) return (*[ x * (2**(zoom)) / self.tile_size for x in [xstart, ystart, xend, yend] ],) def _get_3857_image_params( self, zoom: int, bounds: TiledBounds) -> Tuple[float, float, float, float]: """Computes the x and y tile bounds for fetching an image that captures the entire labeling region (TiledData.bounds) given a specific zoom """ lat_start, lat_end = bounds.bounds[1].y, bounds.bounds[0].y lng_start, lng_end = bounds.bounds[1].x, bounds.bounds[0].x # Convert to zoom 0 tile coordinates xstart, ystart = self._latlng_to_tile(lat_start, lng_start) xend, yend = self._latlng_to_tile(lat_end, lng_end) # Make sure that the tiles are increasing in order xstart, xend = min(xstart, xend), max(xstart, xend) ystart, yend = min(ystart, yend), max(ystart, yend) return (*[pt * 2.0**zoom for pt in [xstart, ystart, xend, yend]],) def _latlng_to_tile(self, lat: float, lng: float, zoom=0) -> Tuple[float, float]: """Converts lat/lng to 3857 tile coordinates Formula found here: https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#lon.2Flat_to_tile_numbers_2 """ scale = 2**zoom lat_rad = math.radians(lat) x = (lng + 180.0) / 360.0 * scale y = (1.0 - math.asinh(math.tan(lat_rad)) / math.pi) / 2.0 * scale return x, y def _tile_to_pixel(self, tile: float) -> Tuple[int, int]: """Rounds a tile coordinate and reports the remainder in pixels """ rounded_tile = int(tile) remainder = tile - rounded_tile pixel_offset = int(self.tile_size * remainder) return rounded_tile, pixel_offset def _fetch_image_for_bounds(self, x_tile_start: int, y_tile_start: int, x_tile_end: int, y_tile_end: int, zoom: int, multithread=True) -> np.ndarray: """Fetches the tiles and combines them into a single image. If a tile cannot be fetched, a padding of expected tile size is instead added. """ if multithread: tiles = {} with ThreadPoolExecutor( max_workers=TILE_DOWNLOAD_CONCURRENCY) as exc: for x in range(x_tile_start, x_tile_end + 1): for y in range(y_tile_start, y_tile_end + 1): tiles[(x, y)] = exc.submit(self._fetch_tile, x, y, zoom) rows = [] for y in range(y_tile_start, y_tile_end + 1): row = [] for x in range(x_tile_start, x_tile_end + 1): try: if multithread: row.append(tiles[(x, y)].result()) else: row.append(self._fetch_tile(x, y, zoom)) except: row.append( np.zeros(shape=(self.tile_size, self.tile_size, 3), dtype=np.uint8)) rows.append(np.hstack(row)) return np.vstack(rows) @retry.Retry(initial=1, maximum=16, multiplier=2) def _fetch_tile(self, x: int, y: int, z: int) -> np.ndarray: """ Fetches the image and returns an np array. """ data = requests.get(self.tile_layer.url.format(x=x, y=y, z=z)) data.raise_for_status() decoded = np.array(Image.open(BytesIO(data.content)))[..., :3] if decoded.shape[:2] != (self.tile_size, self.tile_size): logger.warning(f"Unexpected tile size {decoded.shape}.") return decoded def _crop_to_bounds( self, image: np.ndarray, x_px_start: int, y_px_start: int, x_px_end: int, y_px_end: int, ) -> np.ndarray: """This function slices off the excess pixels that are outside of the bounds. This occurs because only full tiles can be downloaded at a time. """ def invert_point(pt): # Must have at least 1 pixel for stability. pt = max(pt, 1) # All pixel points are relative to a single tile # So subtracting the tile size inverts the axis pt = pt - self.tile_size return pt if pt != 0 else None x_px_end, y_px_end = invert_point(x_px_end), invert_point(y_px_end) return image[y_px_start:y_px_end, x_px_start:x_px_end, :] def _validate_num_tiles(self, xstart: float, ystart: float, xend: float, yend: float, max_tiles: int): """Calculates the number of expected tiles we would fetch. If this is greater than the number of max tiles, raise an error. """ total_n_tiles = (yend - ystart + 1) * (xend - xstart + 1) if total_n_tiles > max_tiles: raise ValueError(f"Requested zoom results in {total_n_tiles} tiles." f"Max allowed tiles are {max_tiles}" f"Increase max tiles or reduce zoom level.") @validator('zoom_levels') def validate_zoom_levels(cls, zoom_levels): if zoom_levels[0] > zoom_levels[1]: raise ValueError( f"Order of zoom levels should be min, max. Received {zoom_levels}" ) return zoom_levels class EPSGTransformer(BaseModel): """Transformer class between different EPSG's. Useful when wanting to project in different formats. """ class Config: arbitrary_types_allowed = True transformer: Any @staticmethod def _is_simple(epsg: EPSG) -> bool: return epsg == EPSG.SIMPLEPIXEL @staticmethod def _get_ranges(bounds: np.ndarray) -> Tuple[int, int]: """helper function to get the range between bounds. returns a tuple (x_range, y_range)""" x_range = np.max(bounds[:, 0]) - np.min(bounds[:, 0]) y_range = np.max(bounds[:, 1]) - np.min(bounds[:, 1]) return (x_range, y_range) @staticmethod def _min_max_x_y(bounds: np.ndarray) -> Tuple[int, int, int, int]: """returns the min x, max x, min y, max y of a numpy array """ return np.min(bounds[:, 0]), np.max(bounds[:, 0]), np.min( bounds[:, 1]), np.max(bounds[:, 1]) @classmethod def geo_and_pixel(cls, src_epsg, pixel_bounds: TiledBounds, geo_bounds: TiledBounds, zoom=0) -> Callable: """method to change from one projection to simple projection""" pixel_bounds = pixel_bounds.bounds geo_bounds_epsg = geo_bounds.epsg geo_bounds = geo_bounds.bounds local_bounds = np.array([(point.x, point.y) for point in pixel_bounds], dtype=int) #convert geo bounds to pixel bounds. assumes geo bounds are in wgs84/EPS4326 per leaflet global_bounds = np.array([ PygeoPoint.from_latitude_longitude(latitude=point.y, longitude=point.x).pixels(zoom) for point in geo_bounds ]) #get the range of pixels for both sets of bounds to use as a multiplification factor local_x_range, local_y_range = cls._get_ranges(bounds=local_bounds) global_x_range, global_y_range = cls._get_ranges(bounds=global_bounds) if src_epsg == EPSG.SIMPLEPIXEL: def transform(x: int, y: int) -> Callable[[int, int], Transformer]: scaled_xy = (x * (global_x_range) / (local_x_range), y * (global_y_range) / (local_y_range)) minx, _, miny, _ = cls._min_max_x_y(bounds=global_bounds) x, y = map(lambda i, j: i + j, scaled_xy, (minx, miny)) point = PygeoPoint.from_pixel(pixel_x=x, pixel_y=y, zoom=zoom).latitude_longitude #convert to the desired epsg return Transformer.from_crs(EPSG.EPSG4326.value, geo_bounds_epsg.value, always_xy=True).transform( point[1], point[0]) return transform #handles 4326 from lat,lng elif src_epsg == EPSG.EPSG4326: def transform(x: int, y: int) -> Callable[[int, int], Transformer]: point_in_px = PygeoPoint.from_latitude_longitude( latitude=y, longitude=x).pixels(zoom) minx, _, miny, _ = cls._min_max_x_y(global_bounds) x, y = map(lambda i, j: i - j, point_in_px, (minx, miny)) return (x * (local_x_range) / (global_x_range), y * (local_y_range) / (global_y_range)) return transform #handles 3857 from meters elif src_epsg == EPSG.EPSG3857: def transform(x: int, y: int) -> Callable[[int, int], Transformer]: point_in_px = PygeoPoint.from_meters(meter_y=y, meter_x=x).pixels(zoom) minx, _, miny, _ = cls._min_max_x_y(global_bounds) x, y = map(lambda i, j: i - j, point_in_px, (minx, miny)) return (x * (local_x_range) / (global_x_range), y * (local_y_range) / (global_y_range)) return transform @classmethod def create_geo_to_geo_transformer( cls, src_epsg: EPSG, tgt_epsg: EPSG) -> Callable[[int, int], Transformer]: """method to change from one projection to another projection. supports EPSG transformations not Simple. """ if cls._is_simple(epsg=src_epsg) or cls._is_simple(epsg=tgt_epsg): raise Exception( f"Cannot be used for Simple transformations. Found {src_epsg} and {tgt_epsg}" ) return EPSGTransformer(transformer=Transformer.from_crs( src_epsg.value, tgt_epsg.value, always_xy=True).transform) @classmethod def create_geo_to_pixel_transformer( cls, src_epsg, pixel_bounds: TiledBounds, geo_bounds: TiledBounds, zoom=0) -> Callable[[int, int], Transformer]: """method to change from a geo projection to Simple""" transform_function = cls.geo_and_pixel(src_epsg=src_epsg, pixel_bounds=pixel_bounds, geo_bounds=geo_bounds, zoom=zoom) return EPSGTransformer(transformer=transform_function) @classmethod def create_pixel_to_geo_transformer( cls, src_epsg, pixel_bounds: TiledBounds, geo_bounds: TiledBounds, zoom=0) -> Callable[[int, int], Transformer]: """method to change from a geo projection to Simple""" transform_function = cls.geo_and_pixel(src_epsg=src_epsg, pixel_bounds=pixel_bounds, geo_bounds=geo_bounds, zoom=zoom) return EPSGTransformer(transformer=transform_function) def _get_point_obj(self, point) -> Point: point = self.transformer(point.x, point.y) return Point(x=point[0], y=point[1]) def __call__( self, shape: Union[Point, Line, Rectangle, Polygon] ) -> Union[VectorTool, List[VectorTool]]: if isinstance(shape, list): return [self(geom) for geom in shape] if isinstance(shape, Point): return self._get_point_obj(shape) if isinstance(shape, Line): return Line(points=[self._get_point_obj(p) for p in shape.points]) if isinstance(shape, Polygon): return Polygon( points=[self._get_point_obj(p) for p in shape.points]) if isinstance(shape, Rectangle): return Rectangle(start=self._get_point_obj(shape.start), end=self._get_point_obj(shape.end)) else: raise ValueError(f"Unsupported type found: {type(shape)}")
[ "logging.getLogger", "pygeotile.point.Point.from_latitude_longitude", "pygeotile.point.Point.from_pixel", "math.tan", "pydantic.validator", "numpy.hstack", "concurrent.futures.ThreadPoolExecutor", "pygeotile.point.Point.from_meters", "io.BytesIO", "math.radians", "numpy.max", "numpy.array", "labelbox.data.annotation_types.Point", "pyproj.Transformer.from_crs", "numpy.zeros", "numpy.vstack", "numpy.min", "google.api_core.retry.Retry" ]
[((765, 792), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (782, 792), False, 'import logging\n'), ((1532, 1551), 'pydantic.validator', 'validator', (['"""bounds"""'], {}), "('bounds')\n", (1541, 1551), False, 'from pydantic import BaseModel, validator\n'), ((3019, 3035), 'pydantic.validator', 'validator', (['"""url"""'], {}), "('url')\n", (3028, 3035), False, 'from pydantic import BaseModel, validator\n'), ((10812, 10860), 'google.api_core.retry.Retry', 'retry.Retry', ([], {'initial': '(1)', 'maximum': '(16)', 'multiplier': '(2)'}), '(initial=1, maximum=16, multiplier=2)\n', (10823, 10860), False, 'from google.api_core import retry\n'), ((12767, 12791), 'pydantic.validator', 'validator', (['"""zoom_levels"""'], {}), "('zoom_levels')\n", (12776, 12791), False, 'from pydantic import BaseModel, validator\n'), ((8837, 8854), 'math.radians', 'math.radians', (['lat'], {}), '(lat)\n', (8849, 8854), False, 'import math\n'), ((10790, 10805), 'numpy.vstack', 'np.vstack', (['rows'], {}), '(rows)\n', (10799, 10805), True, 'import numpy as np\n'), ((14442, 14509), 'numpy.array', 'np.array', (['[(point.x, point.y) for point in pixel_bounds]'], {'dtype': 'int'}), '([(point.x, point.y) for point in pixel_bounds], dtype=int)\n', (14450, 14509), True, 'import numpy as np\n'), ((19199, 19228), 'labelbox.data.annotation_types.Point', 'Point', ([], {'x': 'point[0]', 'y': 'point[1]'}), '(x=point[0], y=point[1])\n', (19204, 19228), False, 'from labelbox.data.annotation_types import Rectangle, Point, Line, Polygon\n'), ((13581, 13601), 'numpy.max', 'np.max', (['bounds[:, 0]'], {}), '(bounds[:, 0])\n', (13587, 13601), True, 'import numpy as np\n'), ((13604, 13624), 'numpy.min', 'np.min', (['bounds[:, 0]'], {}), '(bounds[:, 0])\n', (13610, 13624), True, 'import numpy as np\n'), ((13643, 13663), 'numpy.max', 'np.max', (['bounds[:, 1]'], {}), '(bounds[:, 1])\n', (13649, 13663), True, 'import numpy as np\n'), ((13666, 13686), 'numpy.min', 'np.min', (['bounds[:, 1]'], {}), '(bounds[:, 1])\n', (13672, 13686), True, 'import numpy as np\n'), ((13905, 13925), 'numpy.min', 'np.min', (['bounds[:, 0]'], {}), '(bounds[:, 0])\n', (13911, 13925), True, 'import numpy as np\n'), ((13927, 13947), 'numpy.max', 'np.max', (['bounds[:, 0]'], {}), '(bounds[:, 0])\n', (13933, 13947), True, 'import numpy as np\n'), ((13949, 13969), 'numpy.min', 'np.min', (['bounds[:, 1]'], {}), '(bounds[:, 1])\n', (13955, 13969), True, 'import numpy as np\n'), ((13984, 14004), 'numpy.max', 'np.max', (['bounds[:, 1]'], {}), '(bounds[:, 1])\n', (13990, 14004), True, 'import numpy as np\n'), ((9897, 9954), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'TILE_DOWNLOAD_CONCURRENCY'}), '(max_workers=TILE_DOWNLOAD_CONCURRENCY)\n', (9915, 9954), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((10758, 10772), 'numpy.hstack', 'np.hstack', (['row'], {}), '(row)\n', (10767, 10772), True, 'import numpy as np\n'), ((11142, 11163), 'io.BytesIO', 'BytesIO', (['data.content'], {}), '(data.content)\n', (11149, 11163), False, 'from io import BytesIO\n'), ((15547, 15601), 'pygeotile.point.Point.from_pixel', 'PygeoPoint.from_pixel', ([], {'pixel_x': 'x', 'pixel_y': 'y', 'zoom': 'zoom'}), '(pixel_x=x, pixel_y=y, zoom=zoom)\n', (15568, 15601), True, 'from pygeotile.point import Point as PygeoPoint\n'), ((17740, 17808), 'pyproj.Transformer.from_crs', 'Transformer.from_crs', (['src_epsg.value', 'tgt_epsg.value'], {'always_xy': '(True)'}), '(src_epsg.value, tgt_epsg.value, always_xy=True)\n', (17760, 17808), False, 'from pyproj import Transformer\n'), ((14686, 14757), 'pygeotile.point.Point.from_latitude_longitude', 'PygeoPoint.from_latitude_longitude', ([], {'latitude': 'point.y', 'longitude': 'point.x'}), '(latitude=point.y, longitude=point.x)\n', (14720, 14757), True, 'from pygeotile.point import Point as PygeoPoint\n'), ((15735, 15820), 'pyproj.Transformer.from_crs', 'Transformer.from_crs', (['EPSG.EPSG4326.value', 'geo_bounds_epsg.value'], {'always_xy': '(True)'}), '(EPSG.EPSG4326.value, geo_bounds_epsg.value, always_xy=True\n )\n', (15755, 15820), False, 'from pyproj import Transformer\n'), ((8927, 8944), 'math.tan', 'math.tan', (['lat_rad'], {}), '(lat_rad)\n', (8935, 8944), False, 'import math\n'), ((10632, 10699), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.tile_size, self.tile_size, 3)', 'dtype': 'np.uint8'}), '(shape=(self.tile_size, self.tile_size, 3), dtype=np.uint8)\n', (10640, 10699), True, 'import numpy as np\n'), ((16200, 16259), 'pygeotile.point.Point.from_latitude_longitude', 'PygeoPoint.from_latitude_longitude', ([], {'latitude': 'y', 'longitude': 'x'}), '(latitude=y, longitude=x)\n', (16234, 16259), True, 'from pygeotile.point import Point as PygeoPoint\n'), ((16781, 16825), 'pygeotile.point.Point.from_meters', 'PygeoPoint.from_meters', ([], {'meter_y': 'y', 'meter_x': 'x'}), '(meter_y=y, meter_x=x)\n', (16803, 16825), True, 'from pygeotile.point import Point as PygeoPoint\n')]
import numpy import time import threading import matplotlib.pyplot from matplotlib.animation import FuncAnimation class VisualizationWindow: def __init__(self, signal_collector): self.figure, self.axes = matplotlib.pyplot.subplots(7, 1, sharex=True) self.figure.subplots_adjust(hspace=0) self.signal_collector = signal_collector def create_empty_line(ax_index, *args): return self.axes[ax_index].plot([], [], *args)[0] self.acceleration_lines = [create_empty_line(0), create_empty_line(0), create_empty_line(0)] self.breathing_line = create_empty_line(1) self.ecg_line = create_empty_line(2) self.respiration_rate_line = create_empty_line(3, "+") self.heart_rate_line = create_empty_line(4, "+") self.heartbeat_interval_line = create_empty_line(5, "+") self.activity_line = create_empty_line(6, "+") self.artists = self.acceleration_lines + [self.breathing_line, self.ecg_line, self.respiration_rate_line, self.heart_rate_line, self.heartbeat_interval_line, self.activity_line] self.axes[0].set_ylim((-4, 4)) self.axes[1].set_ylim((-1000, 1000)) self.axes[2].set_ylim((-500, 500)) self.axes[3].set_ylim((0, 50)) self.axes[4].set_ylim((0, 120)) self.axes[5].set_ylim((0, 2)) self.axes[6].set_ylim((0, 2)) def update_plots(self, framedata): for stream_name, stream in self.signal_collector.iterate_signal_streams(): signal_value_array = numpy.array(stream.samples, dtype=float) x_values = numpy.arange(len(signal_value_array), dtype=float) x_values /= stream.samplerate x_values += stream.end_timestamp - len(signal_value_array) / stream.samplerate if stream_name == "acceleration": for line_i, line in enumerate(self.acceleration_lines): line.set_xdata(x_values) line.set_ydata(signal_value_array[:, line_i]) elif stream_name == "breathing": self.breathing_line.set_xdata(x_values) self.breathing_line.set_ydata(signal_value_array) elif stream_name == "ecg": self.ecg_line.set_xdata(x_values) self.ecg_line.set_ydata(signal_value_array) for stream_name, event_list in self.signal_collector.iterate_event_streams(): if len(event_list) == 0: continue event_data_array = numpy.array(event_list, dtype=float) event_timestamps = event_data_array[:, 0] event_values = event_data_array[:, 1] event_line_object_map = {"heart_rate": self.heart_rate_line, "respiration_rate": self.respiration_rate_line, "heartbeat_interval": self.heartbeat_interval_line, "activity": self.activity_line} event_line_object = event_line_object_map[stream_name] if event_line_object is not None: event_line_object.set_xdata(event_timestamps) event_line_object.set_ydata(event_values) now = time.time() self.axes[0].set_xlim((now - 115, now + 5)) return self.artists def show(self): anim = FuncAnimation(self.figure, self.update_plots, interval=1000, blit=False) matplotlib.pyplot.show()
[ "matplotlib.animation.FuncAnimation", "numpy.array", "time.time" ]
[((3421, 3432), 'time.time', 'time.time', ([], {}), '()\n', (3430, 3432), False, 'import time\n'), ((3562, 3634), 'matplotlib.animation.FuncAnimation', 'FuncAnimation', (['self.figure', 'self.update_plots'], {'interval': '(1000)', 'blit': '(False)'}), '(self.figure, self.update_plots, interval=1000, blit=False)\n', (3575, 3634), False, 'from matplotlib.animation import FuncAnimation\n'), ((1588, 1628), 'numpy.array', 'numpy.array', (['stream.samples'], {'dtype': 'float'}), '(stream.samples, dtype=float)\n', (1599, 1628), False, 'import numpy\n'), ((2643, 2679), 'numpy.array', 'numpy.array', (['event_list'], {'dtype': 'float'}), '(event_list, dtype=float)\n', (2654, 2679), False, 'import numpy\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import h5py as h5 import os.path as fs import keras from keras.models import Sequential from keras.utils import np_utils from keras.layers.core import Dense, Activation, Dropout from sklearn.model_selection import train_test_split from sklearn.datasets import load_digits from sklearn.linear_model import Perceptron from sklearn.metrics import f1_score from scipy.spatial import distance from sklearn.preprocessing import normalize from sklearn.metrics import accuracy_score import logging as logg from sklearn.decomposition import PCA from sklearn import preprocessing import umap #%% def readHDF5file(PathToSave, SavedFileName, list_group_name): data = [] ff = h5.File(fs.join(PathToSave, SavedFileName), 'r') for group in list_group_name: data.append(ff[group][...]) ff.close() return data def saveHDF5file(PathToSave, SavedFileName, list_group_name, data): num_group = len(list_group_name) num_data = len(data) if num_group != num_data: raise RuntimeError('Group name list and data list length do not match!') ff = h5.File(fs.join(PathToSave, SavedFileName), 'w') for i, group in enumerate(list_group_name): ff.create_dataset(group, data = data[i]) ff.close() return None #%% def pca_result(activations, n_comp): embedding = PCA(n_components= n_comp).fit_transform(activations) return embedding def umap_result(activations, n_comp): embedding = umap.UMAP(n_components=n_comp).fit_transform(activations) return embedding #%% def TrainPerceptron(latent_space): n = len(latent_space) shape_ls = latent_space.shape[1] labels = np.empty((n, 1), dtype = np.int32) labels[:15000], labels[15000:30000], labels[30000:] = 0, 1, 2 #labels[:5000], labels[5000:10000], labels[10000:] = 0, 1, 2 y_train = np_utils.to_categorical(labels) standardized_latent_space = preprocessing.scale(latent_space) model = Sequential() model.add(Dense(3, input_dim= shape_ls)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='Nadam') model.summary() model.fit(standardized_latent_space, y_train, epochs = 250, batch_size=128, validation_split=0.3, shuffle = True, verbose=2) optim = keras.optimizers.SGD(lr=0.02, decay=1e-2/300) model.compile(loss='categorical_crossentropy', optimizer=optim) model.fit(standardized_latent_space, y_train, epochs = 300, batch_size=128, validation_split=0.3, shuffle = True, verbose=2) predict = model.predict(standardized_latent_space, batch_size=4096) predict = np.heaviside(predict - 0.5, 1).astype(np.int32) score = f1_score(y_train, predict, average='micro') return score #%% RootPathLatentSpace = '' logg.basicConfig(filename=fs.join(RootPathLatentSpace, "LatentSpaceLogger.log"), level=logg.INFO) logg umap_shape_mnist = [0, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2] umap_shape_unet = [0, 512, 256, 128, 64, 32, 16, 8, 4, 2] PathToDataSet = '' PathToModel = '' NamesDataSet = [''] name_loss_list = [''] name_NN_list = [''] num_layers = [[], []] precision = np.ones((len(name_NN_list), len(name_loss_list), 5, len(NamesDataSet),\ 7, 11, 2), dtype = np.float32) precision = precision*(-1.) """ for iter_NN in range(len(name_NN_list)): for iter_loss in range(len(name_loss_list)): for launch_num in range(5): for data_iter, data in enumerate(NamesDataSet): number_layer = num_layers[iter_NN] for li, layer_iter in enumerate(number_layer): latent_space= readHDF5file(RootPathLatentSpace,\ 'LatentSpace_Model%s_Loss%s_Launch%d_Layer%d,hdf5'%(name_NN_list[iter_NN],\ name_loss_list[iter_loss],\ launch_num + 1,\ layer_iter),\ ['latent_space'])[0] if iter_NN == 0: compress_list = umap_shape_mnist else: compress_list = umap_shape_unet for dim_iter, dim in enumerate(compress_list): if dim != 0: ls_pca = pca_result(latent_space, dim) f1_score_pca = TrainPerceptron(ls_pca) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d pca score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_pca)) precision[iter_NN, iter_loss, launch_num, data_iter, li,\ dim_iter, 0] = f1_score_pca ls_umap = umap_result(latent_space, dim) f1_score_umap = TrainPerceptron(ls_umap) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d umap score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_umap)) precision[iter_NN, iter_loss, launch_num, data_iter, li,\ dim_iter, 1] = f1_score_umap else: f1_score = TrainPerceptron(latent_space) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score)) precision[iter_NN, iter_loss, launch_num, data_iter, li,\ dim_iter, 0] = f1_score ff = h5.File(fs.join(RootPathLatentSpace, 'preceptron', 'perceptron.hdf5'), 'w') ff.create_dataset('precision', precision) ff.close() """ #%% """ NN1 """ RootPathLatentSpace = '' logg.basicConfig(filename=fs.join(RootPathLatentSpace, "LatentSpaceLogger.log"), level=logg.INFO) logg umap_shape_mnist = [0, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2] PathToDataSet = '' PathToModel = '' NamesDataSet = ['OnlyColor.hdf5',\ 'OnlyH.hdf5',\ 'OnlyX.hdf5',\ 'Only.hdf5'] name_loss_list = ['weighted_categorical_crossentropy',\ 'dice_loss'] name_NN_list = ['ezConvAutoEncoderForMnist', 'UnetСircumcised',\ 'UnetWithSeparableConvСircumcised'] num_layers = [6, 7] iter_NN = 0 for iter_loss in range(len(name_loss_list)): for launch_num in range(5): for data_iter, data in enumerate(NamesDataSet): number_layer = num_layers[iter_NN] for li, layer_iter in enumerate(number_layer): latent_space= readHDF5file(RootPathLatentSpace,\ 'LatentSpace_Model%s_Loss%s_Launch%d_Layer%d,hdf5'%(name_NN_list[iter_NN],\ name_loss_list[iter_loss],\ launch_num + 1,\ layer_iter),\ ['latent_space'])[0] if iter_NN == 0: compress_list = umap_shape_mnist else: compress_list = umap_shape_unet precision = np.ones(len(compress_list), 2) for dim_iter, dim in enumerate(compress_list): if dim != 0: ls_pca = pca_result(latent_space, dim) f1_score_pca = TrainPerceptron(ls_pca) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d pca score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_pca)) precision[dim_iter, 0] = f1_score_pca ls_umap = umap_result(latent_space, dim) f1_score_umap = TrainPerceptron(ls_umap) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d umap score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_umap)) precision[dim_iter, 1] = f1_score_umap else: f1_score = TrainPerceptron(latent_space) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score)) precision[dim_iter, 0] = f1_score precision[dim_iter, 1] = f1_score ff = h5.File(fs.join(RootPathLatentSpace, 'preceptron',\ 'perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5'%(name_NN_list[0],\ name_loss_list[iter_loss],\ launch_num + 1,\ layer_iter)), 'w') ff.create_dataset('precision', precision) ff.close() #%% """ NN2 """ RootPathLatentSpace = '' logg.basicConfig(filename=fs.join(RootPathLatentSpace, "LatentSpaceLogger.log"), level=logg.INFO) logg umap_shape_mnist = [0, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2] PathToDataSet = '' PathToModel = '' NamesDataSet = ['OnlyColor.hdf5',\ 'OnlyH.hdf5',\ 'OnlyX.hdf5',\ 'Only.hdf5'] name_loss_list = ['weighted_categorical_crossentropy',\ 'dice_loss'] name_NN_list = ['ezConvAutoEncoderForMnist', 'UnetСircumcised',\ 'UnetWithSeparableConvСircumcised'] num_layers = [6, 7] iter_NN = 0 for iter_loss in range(len(name_loss_list)): for launch_num in range(5): for data_iter, data in enumerate(NamesDataSet): number_layer = num_layers[iter_NN] for li, layer_iter in enumerate(number_layer): latent_space= readHDF5file(RootPathLatentSpace,\ 'LatentSpace_Model%s_Loss%s_Launch%d_Layer%d,hdf5'%(name_NN_list[iter_NN],\ name_loss_list[iter_loss],\ launch_num + 1,\ layer_iter),\ ['latent_space'])[0] if iter_NN == 0: compress_list = umap_shape_mnist else: compress_list = umap_shape_unet precision = np.ones(len(compress_list), 2) for dim_iter, dim in enumerate(compress_list): if dim != 0: ls_pca = pca_result(latent_space, dim) f1_score_pca = TrainPerceptron(ls_pca) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d pca score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_pca)) precision[dim_iter, 0] = f1_score_pca ls_umap = umap_result(latent_space, dim) f1_score_umap = TrainPerceptron(ls_umap) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d umap score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score_umap)) precision[dim_iter, 1] = f1_score_umap else: f1_score = TrainPerceptron(latent_space) logg.info('%d / %d, %d / %d, %d / %d, %d / %d, %d / %d, %d / %d score = %f'%(iter_NN + 1, len(name_NN_list), \ iter_loss + 1, len(name_loss_list),\ launch_num + 1, 5,\ data_iter + 1, len(NamesDataSet),\ li + 1, len(number_layer),\ dim_iter + 1, len(compress_list),\ f1_score)) precision[dim_iter, 0] = f1_score precision[dim_iter, 1] = f1_score ff = h5.File(fs.join(RootPathLatentSpace, 'preceptron',\ 'perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5'%(name_NN_list[0],\ name_loss_list[iter_loss],\ launch_num + 1,\ layer_iter)), 'w') ff.create_dataset('precision', precision) ff.close()
[ "sklearn.metrics.f1_score", "keras.layers.core.Activation", "sklearn.decomposition.PCA", "os.path.join", "numpy.heaviside", "keras.models.Sequential", "keras.optimizers.SGD", "keras.utils.np_utils.to_categorical", "numpy.empty", "umap.UMAP", "sklearn.preprocessing.scale", "keras.layers.core.Dense" ]
[((1697, 1729), 'numpy.empty', 'np.empty', (['(n, 1)'], {'dtype': 'np.int32'}), '((n, 1), dtype=np.int32)\n', (1705, 1729), True, 'import numpy as np\n'), ((1871, 1902), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['labels'], {}), '(labels)\n', (1894, 1902), False, 'from keras.utils import np_utils\n'), ((1933, 1966), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['latent_space'], {}), '(latent_space)\n', (1952, 1966), False, 'from sklearn import preprocessing\n'), ((1980, 1992), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1990, 1992), False, 'from keras.models import Sequential\n'), ((2294, 2341), 'keras.optimizers.SGD', 'keras.optimizers.SGD', ([], {'lr': '(0.02)', 'decay': '(0.01 / 300)'}), '(lr=0.02, decay=0.01 / 300)\n', (2314, 2341), False, 'import keras\n'), ((2675, 2718), 'sklearn.metrics.f1_score', 'f1_score', (['y_train', 'predict'], {'average': '"""micro"""'}), "(y_train, predict, average='micro')\n", (2683, 2718), False, 'from sklearn.metrics import f1_score\n'), ((780, 814), 'os.path.join', 'fs.join', (['PathToSave', 'SavedFileName'], {}), '(PathToSave, SavedFileName)\n', (787, 814), True, 'import os.path as fs\n'), ((1161, 1195), 'os.path.join', 'fs.join', (['PathToSave', 'SavedFileName'], {}), '(PathToSave, SavedFileName)\n', (1168, 1195), True, 'import os.path as fs\n'), ((2005, 2033), 'keras.layers.core.Dense', 'Dense', (['(3)'], {'input_dim': 'shape_ls'}), '(3, input_dim=shape_ls)\n', (2010, 2033), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((2048, 2069), 'keras.layers.core.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (2058, 2069), False, 'from keras.layers.core import Dense, Activation, Dropout\n'), ((2793, 2846), 'os.path.join', 'fs.join', (['RootPathLatentSpace', '"""LatentSpaceLogger.log"""'], {}), "(RootPathLatentSpace, 'LatentSpaceLogger.log')\n", (2800, 2846), True, 'import os.path as fs\n'), ((6746, 6799), 'os.path.join', 'fs.join', (['RootPathLatentSpace', '"""LatentSpaceLogger.log"""'], {}), "(RootPathLatentSpace, 'LatentSpaceLogger.log')\n", (6753, 6799), True, 'import os.path as fs\n'), ((10863, 10916), 'os.path.join', 'fs.join', (['RootPathLatentSpace', '"""LatentSpaceLogger.log"""'], {}), "(RootPathLatentSpace, 'LatentSpaceLogger.log')\n", (10870, 10916), True, 'import os.path as fs\n'), ((1376, 1400), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n_comp'}), '(n_components=n_comp)\n', (1379, 1400), False, 'from sklearn.decomposition import PCA\n'), ((1503, 1533), 'umap.UMAP', 'umap.UMAP', ([], {'n_components': 'n_comp'}), '(n_components=n_comp)\n', (1512, 1533), False, 'import umap\n'), ((2617, 2647), 'numpy.heaviside', 'np.heaviside', (['(predict - 0.5)', '(1)'], {}), '(predict - 0.5, 1)\n', (2629, 2647), True, 'import numpy as np\n'), ((10332, 10509), 'os.path.join', 'fs.join', (['RootPathLatentSpace', '"""preceptron"""', "('perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5' % (name_NN_list[0],\n name_loss_list[iter_loss], launch_num + 1, layer_iter))"], {}), "(RootPathLatentSpace, 'preceptron', \n 'perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5' % (name_NN_list[0],\n name_loss_list[iter_loss], launch_num + 1, layer_iter))\n", (10339, 10509), True, 'import os.path as fs\n'), ((14449, 14626), 'os.path.join', 'fs.join', (['RootPathLatentSpace', '"""preceptron"""', "('perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5' % (name_NN_list[0],\n name_loss_list[iter_loss], launch_num + 1, layer_iter))"], {}), "(RootPathLatentSpace, 'preceptron', \n 'perceptron_Model%s_Loss%s_Launch%d_Layer%d.hdf5' % (name_NN_list[0],\n name_loss_list[iter_loss], launch_num + 1, layer_iter))\n", (14456, 14626), True, 'import os.path as fs\n')]
import os import cv2 import numpy as np import tensorflow as tf import tensorflow.compat.v1 as tf from PIL import Image from PIL import ImageFont from PIL import ImageDraw from flask_ngrok import run_with_ngrok from flask import Flask,request,send_from_directory,render_template # GLOBAL ACCESS os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) # SETUP APPLICATION tf.disable_eager_execution() app = Flask(__name__, static_url_path='') run_with_ngrok(app) def sparse_tensor_to_strs(sparse_tensor): indices= sparse_tensor[0][0] values = sparse_tensor[0][1] dense_shape = sparse_tensor[0][2] strs = [ [] for i in range(dense_shape[0]) ] string = [] ptr = 0 b = 0 for idx in range(len(indices)): if indices[idx][0] != b: strs[b] = string string = [] b = indices[idx][0] string.append(values[ptr]) ptr = ptr + 1 strs[b] = string return strs def normalize(image): return (255. - image)/255. def resize(image, height): width = int(float(height * image.shape[1]) / image.shape[0]) sample_img = cv2.resize(image, (width, height)) return sample_img voc_file = "vocabulary_semantic.txt" model = "semantic_model/semantic_model.meta" tf.reset_default_graph() sess = tf.InteractiveSession() # Read the dictionary dict_file = open(voc_file,'r') dict_list = dict_file.read().splitlines() int2word = dict() for word in dict_list: word_idx = len(int2word) int2word[word_idx] = word dict_file.close() # Restore weights saver = tf.train.import_meta_graph(model) saver.restore(sess,model[:-5]) graph = tf.get_default_graph() input = graph.get_tensor_by_name("model_input:0") seq_len = graph.get_tensor_by_name("seq_lengths:0") rnn_keep_prob = graph.get_tensor_by_name("keep_prob:0") height_tensor = graph.get_tensor_by_name("input_height:0") width_reduction_tensor = graph.get_tensor_by_name("width_reduction:0") logits = tf.get_collection("logits")[0] # Constants that are saved inside the model itself WIDTH_REDUCTION, HEIGHT = sess.run([width_reduction_tensor, height_tensor]) decoded, _ = tf.nn.ctc_greedy_decoder(logits, seq_len) # HOME @app.route("/") def root(): return render_template('index.html') # IMAGE REQUEST @app.route('/img/<filename>') def send_img(filename): return send_from_directory('', filename) # ANDROID REQUEST @app.route('/android/predict', methods = ['GET', 'POST']) def login(): return 'Yeah, it works.' # GET @app.route('/users/<var>') def hello_user(var): """ this serves as a demo purpose :param user: :return: str """ return "Wow, the GET works %s!" % var # POST @app.route('/api/post_some_data', methods=['POST']) def get_text_prediction(): """ predicts requested text whether it is ham or spam :return: json """ json = request.get_json() print(json) if len(json['text']) == 0: return jsonify({'error': 'invalid input'}) return jsonify({'This is the KEY': json['This is the value?']}) #UPLOAD_FOLDER = 'static/upload' #app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER #@app.route('/upload', methods=['GET','POST']) #def upload(): # if flask.request.method == "POST": # files = flask.request.files.getlist("file") # for file in files: # file.save(os.path.join(app.config['UPLOAD_FOLDER'], file.filename)) # MODEL PREDICTION @app.route('/predict', methods = ['GET', 'POST']) def predict(): if request.method == 'POST': f = request.files['file'] img = f image = Image.open(img).convert('L') image = np.array(image) image = resize(image, HEIGHT) image = normalize(image) image = np.asarray(image).reshape(1,image.shape[0],image.shape[1],1) seq_lengths = [ image.shape[2] / WIDTH_REDUCTION ] prediction = sess.run(decoded, feed_dict={ input: image, seq_len: seq_lengths, rnn_keep_prob: 1.0, }) str_predictions = sparse_tensor_to_strs(prediction) array_of_notes = [] for w in str_predictions[0]: array_of_notes.append(int2word[w]) notes=[] for i in array_of_notes: if i[0:5]=="note-": if not i[6].isdigit(): notes.append(i[5:7]) else: notes.append(i[5]) img = Image.open(img).convert('L') size = (img.size[0], int(img.size[1]*1.5)) layer = Image.new('RGB', size, (255,255,255)) layer.paste(img, box=None) img_arr = np.array(layer) height = int(img_arr.shape[0]) width = int(img_arr.shape[1]) print(img_arr.shape[0]) draw = ImageDraw.Draw(layer) # font = ImageFont.truetype(<font-file>, <font-size>) font = ImageFont.truetype("Aaargh.ttf", 16) # draw.text((x, y),"Sample Text",(r,g,b)) j = width / 9 for i in notes: draw.text((j, height-40), i, (0,0,0), font=font) j+= (width / (len(notes) + 4)) layer.save("img/annotated.png") return render_template('result.html') if __name__=="__main__": app.run()
[ "flask.render_template", "flask.Flask", "PIL.Image.new", "numpy.array", "PIL.ImageDraw.Draw", "tensorflow.compat.v1.get_collection", "tensorflow.compat.v1.get_default_graph", "flask.send_from_directory", "tensorflow.compat.v1.nn.ctc_greedy_decoder", "numpy.asarray", "PIL.ImageFont.truetype", "tensorflow.compat.v1.train.import_meta_graph", "tensorflow.compat.v1.disable_eager_execution", "flask.request.get_json", "tensorflow.compat.v1.reset_default_graph", "cv2.resize", "tensorflow.compat.v1.InteractiveSession", "PIL.Image.open", "flask_ngrok.run_with_ngrok", "os.path.abspath" ]
[((414, 442), 'tensorflow.compat.v1.disable_eager_execution', 'tf.disable_eager_execution', ([], {}), '()\n', (440, 442), True, 'import tensorflow.compat.v1 as tf\n'), ((449, 484), 'flask.Flask', 'Flask', (['__name__'], {'static_url_path': '""""""'}), "(__name__, static_url_path='')\n", (454, 484), False, 'from flask import Flask, request, send_from_directory, render_template\n'), ((485, 504), 'flask_ngrok.run_with_ngrok', 'run_with_ngrok', (['app'], {}), '(app)\n', (499, 504), False, 'from flask_ngrok import run_with_ngrok\n'), ((1291, 1315), 'tensorflow.compat.v1.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (1313, 1315), True, 'import tensorflow.compat.v1 as tf\n'), ((1323, 1346), 'tensorflow.compat.v1.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (1344, 1346), True, 'import tensorflow.compat.v1 as tf\n'), ((1587, 1620), 'tensorflow.compat.v1.train.import_meta_graph', 'tf.train.import_meta_graph', (['model'], {}), '(model)\n', (1613, 1620), True, 'import tensorflow.compat.v1 as tf\n'), ((1660, 1682), 'tensorflow.compat.v1.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (1680, 1682), True, 'import tensorflow.compat.v1 as tf\n'), ((2153, 2194), 'tensorflow.compat.v1.nn.ctc_greedy_decoder', 'tf.nn.ctc_greedy_decoder', (['logits', 'seq_len'], {}), '(logits, seq_len)\n', (2177, 2194), True, 'import tensorflow.compat.v1 as tf\n'), ((367, 392), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (382, 392), False, 'import os\n'), ((1151, 1185), 'cv2.resize', 'cv2.resize', (['image', '(width, height)'], {}), '(image, (width, height))\n', (1161, 1185), False, 'import cv2\n'), ((1980, 2007), 'tensorflow.compat.v1.get_collection', 'tf.get_collection', (['"""logits"""'], {}), "('logits')\n", (1997, 2007), True, 'import tensorflow.compat.v1 as tf\n'), ((2241, 2270), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (2256, 2270), False, 'from flask import Flask, request, send_from_directory, render_template\n'), ((2352, 2385), 'flask.send_from_directory', 'send_from_directory', (['""""""', 'filename'], {}), "('', filename)\n", (2371, 2385), False, 'from flask import Flask, request, send_from_directory, render_template\n'), ((2870, 2888), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (2886, 2888), False, 'from flask import Flask, request, send_from_directory, render_template\n'), ((3629, 3644), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (3637, 3644), True, 'import numpy as np\n'), ((4610, 4649), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'size', '(255, 255, 255)'], {}), "('RGB', size, (255, 255, 255))\n", (4619, 4649), False, 'from PIL import Image\n'), ((4701, 4716), 'numpy.array', 'np.array', (['layer'], {}), '(layer)\n', (4709, 4716), True, 'import numpy as np\n'), ((4841, 4862), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['layer'], {}), '(layer)\n', (4855, 4862), False, 'from PIL import ImageDraw\n'), ((4940, 4976), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""Aaargh.ttf"""', '(16)'], {}), "('Aaargh.ttf', 16)\n", (4958, 4976), False, 'from PIL import ImageFont\n'), ((5232, 5262), 'flask.render_template', 'render_template', (['"""result.html"""'], {}), "('result.html')\n", (5247, 5262), False, 'from flask import Flask, request, send_from_directory, render_template\n'), ((3584, 3599), 'PIL.Image.open', 'Image.open', (['img'], {}), '(img)\n', (3594, 3599), False, 'from PIL import Image\n'), ((3732, 3749), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (3742, 3749), True, 'import numpy as np\n'), ((4514, 4529), 'PIL.Image.open', 'Image.open', (['img'], {}), '(img)\n', (4524, 4529), False, 'from PIL import Image\n')]
import time,os,math,inspect,re,sys,random,argparse from env import SenseEnv from torch.autograd import Variable import numpy as np from itertools import count from collections import namedtuple from tensorboardX import SummaryWriter import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd as autograd from torch.autograd import Variable writer = SummaryWriter() SavedAction = namedtuple('SavedAction', ['action', 'value']) class Policy(nn.Module): def __init__(self,observation_space_n,action_space_n): super(Policy, self).__init__() self.affine1 = nn.Linear(observation_space_n, 256) self.action1 = nn.Linear(256, 128) self.value1 = nn.Linear(256, 128) self.action_head = nn.Linear(128, action_space_n) self.value_head = nn.Linear(128, 1) self.saved_actions = [] self.rewards = [] self.init_weights() def init_weights(self): self.affine1.weight.data.uniform_(-0.1, 0.1) self.action1.weight.data.uniform_(-0.1, 0.1) self.value1.weight.data.uniform_(-0.1, 0.1) def forward(self, x): x = F.relu(self.affine1(x)) xa = F.relu(self.action1(x)) xv = F.relu(self.value1(x)) action_scores = self.action_head(xa) state_values = self.value_head(xv) return F.softmax(action_scores), state_values class CNN(nn.Module): def __init__(self,classification_n): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2)) #self.fc = nn.Linear(7*7*32, 2) self.fc = nn.Linear(80000, classification_n) def forward(self, x): x = x.unsqueeze(1).float() out = self.layer1(x) out = self.layer2(out) #print("size before",out.size()) out = out.view(out.size(0), -1) #print("size after",out.size()) out = self.fc(out) return out parser = argparse.ArgumentParser(description='SenseNet actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--epsilon', type=float, default=0.6, metavar='G', help='epsilon value for random action (default: 0.6)') parser.add_argument('--seed', type=int, default=42, metavar='N', help='random seed (default: 42)') parser.add_argument('--batch_size', type=int, default=42, metavar='N', help='batch size (default: 42)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--debug', action='store_true', help='turn on debug mode') parser.add_argument('--gpu', action='store_true', help='use GPU') parser.add_argument('--log', type=str, help='log experiment to tensorboard') parser.add_argument('--model_path', type=str, help='path to store/retrieve model at') parser.add_argument('--mode', type=str, default="train", help='train/test/all model') args = parser.parse_args() def select_action(state,n_actions,epsilon=0.6): if np.random.rand() < epsilon: return np.random.choice(n_actions) else: state = torch.from_numpy(state).float().unsqueeze(0) probs, state_value = model(Variable(state)) action = probs.multinomial() model.saved_actions.append(SavedAction(action, state_value)) return action.data[0][0] def finish_episode(): R = 0 saved_actions = model.saved_actions value_loss = 0 rewards = [] for r in model.rewards[::-1]: R = r + args.gamma * R rewards.insert(0, R) rewards = torch.Tensor(rewards) rewards = (rewards - rewards.mean()) / (rewards.std() + np.finfo(np.float32).eps) for (action, value), r in zip(saved_actions, rewards): reward = r - value.data[0,0] action.reinforce(reward) value_loss += F.smooth_l1_loss(value, Variable(torch.Tensor([r]))) optimizer.zero_grad() final_nodes = [value_loss] + list(map(lambda p: p.action, saved_actions)) gradients = [torch.ones(1)] + [None] * len(saved_actions) autograd.backward(final_nodes, gradients) optimizer.step() del model.rewards[:] del model.saved_actions[:] #train env = SenseEnv(vars(args)) print("action space: ",env.action_space()) model = Policy(env.observation_space(),env.action_space_n()) cnn = CNN(env.classification_n()) if args.gpu and torch.cuda.is_available(): model.cuda() cnn.cuda() if args.model_path: if os.path.exists(args.model_path+"/model.pkl"): print("loading pretrained models") model.load_state_dict(torch.load(args.model_path+"/model.pkl")) cnn.load_state_dict(torch.load(args.model_path+"/cnn.pkl")) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) classifier_criterion = nn.CrossEntropyLoss() classifier_optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001) running_reward = 0 batch = [] labels = [] total_steps = 0 if args.mode == "train" or args.mode == "all": for i_episode in count(1000): observation = env.reset() print("episode: ", i_episode) for t in range(1000): action = select_action(observation,env.action_space_n(),args.epsilon) observation, reward, done, info = env.step(action) model.rewards.append(reward) if env.is_touching(): print("touching!") #print("batch size", len(batch)) if len(batch) > args.batch_size: #TODO GPU support #batch = torch.from_numpy(np.asarray(batch)) batch = torch.LongTensor(torch.from_numpy(np.asarray(batch))) labels = torch.from_numpy(np.asarray(labels)) #labels = torch.LongTensor(torch.from_numpy(np.asarray(labels))) if args.gpu and torch.cuda.is_available(): batch = batch.cuda() labels = labels.cuda() batch = Variable(batch) labels = Variable(labels) classifier_optimizer.zero_grad() outputs = cnn(batch) loss = classifier_criterion(outputs, labels) loss.backward() classifier_optimizer.step() print ('Loss: %.4f' %(loss.data[0])) if args.log: writer.add_scalar(args.log + "/loss",loss.data[0],total_steps) batch = [] labels = [] else: batch.append(observation.reshape(200,200)) labels.append(env.class_label) if done: break running_reward = running_reward * 0.99 + t * 0.01 print("running reward ", running_reward) total_steps +=1 finish_episode() if i_episode % args.log_interval == 0: if args.log: writer.add_scalar(args.log+"/reward",running_reward,total_steps) print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format(i_episode, t, running_reward)) if running_reward > 5000: #env.spec.reward_threshold: print("Solved! Running reward is now {} and the last episode runs to {} time steps!".format(running_reward, t)) break if args.model_path: torch.save(model.state_dict(), os.path.join(args.model_path, 'policy.pkl' )) torch.save(model.state_dict(), os.path.join(args.model_path, 'cnn.pkl' )) elif args.mode == "test" or args.mode == "all": #test test_labels = [] predicted_labels = [] steps_to_guess = [] correct = 0 total = 0 max_steps = 500 for i_episode in range(100): guesses = [] print("testing on a new object") observation = env.reset() for t in range(max_steps): action = select_action(observation,env.action_space_n(),args.epsilon) observation, reward, done, info = env.step(action) model.rewards.append(reward) #if confidence over 90%, then use it if (t >= max_steps-1 and len(guesses) == 0) or env.is_touching: x = [observation.reshape(200,200)] x = torch.LongTensor(torch.from_numpy(np.asarray(x))) x = Variable(x) output = cnn(x) prob, predicted = torch.max(output.data, 1) correct += int(predicted[0][0] == env.class_label) total += 1 print("predicted ", predicted[0][0], " with prob ", prob[0][0], " correct answer is: ",env.class_label) print('Accuracy of the network: %d %%' % (100 * correct / total )) else: for i_episode in range(100): observation = env.reset() for t in range(1000): env.render() action = np.random.choice(env.action_space_n()) observation,reward,done,info = env.step(action) print(observation)
[ "torch.nn.ReLU", "torch.nn.CrossEntropyLoss", "numpy.random.rand", "torch.max", "torch.from_numpy", "torch.nn.MSELoss", "torch.cuda.is_available", "torch.nn.functional.softmax", "os.path.exists", "torch.nn.BatchNorm2d", "tensorboardX.SummaryWriter", "argparse.ArgumentParser", "numpy.asarray", "torch.autograd.Variable", "collections.namedtuple", "numpy.random.choice", "torch.Tensor", "numpy.finfo", "torch.autograd.backward", "torch.load", "os.path.join", "torch.nn.Conv2d", "itertools.count", "torch.nn.MaxPool2d", "torch.nn.Linear", "torch.ones" ]
[((408, 423), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (421, 423), False, 'from tensorboardX import SummaryWriter\n'), ((438, 484), 'collections.namedtuple', 'namedtuple', (['"""SavedAction"""', "['action', 'value']"], {}), "('SavedAction', ['action', 'value'])\n", (448, 484), False, 'from collections import namedtuple\n'), ((2076, 2144), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""SenseNet actor-critic example"""'}), "(description='SenseNet actor-critic example')\n", (2099, 2144), False, 'import time, os, math, inspect, re, sys, random, argparse\n'), ((4852, 4864), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (4862, 4864), True, 'import torch.nn as nn\n'), ((4948, 4969), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (4967, 4969), True, 'import torch.nn as nn\n'), ((3782, 3803), 'torch.Tensor', 'torch.Tensor', (['rewards'], {}), '(rewards)\n', (3794, 3803), False, 'import torch\n'), ((4240, 4281), 'torch.autograd.backward', 'autograd.backward', (['final_nodes', 'gradients'], {}), '(final_nodes, gradients)\n', (4257, 4281), True, 'import torch.autograd as autograd\n'), ((4542, 4567), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4565, 4567), False, 'import torch\n'), ((4622, 4668), 'os.path.exists', 'os.path.exists', (["(args.model_path + '/model.pkl')"], {}), "(args.model_path + '/model.pkl')\n", (4636, 4668), False, 'import time, os, math, inspect, re, sys, random, argparse\n'), ((5163, 5174), 'itertools.count', 'count', (['(1000)'], {}), '(1000)\n', (5168, 5174), False, 'from itertools import count\n'), ((621, 656), 'torch.nn.Linear', 'nn.Linear', (['observation_space_n', '(256)'], {}), '(observation_space_n, 256)\n', (630, 656), True, 'import torch.nn as nn\n'), ((676, 695), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(128)'], {}), '(256, 128)\n', (685, 695), True, 'import torch.nn as nn\n'), ((714, 733), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(128)'], {}), '(256, 128)\n', (723, 733), True, 'import torch.nn as nn\n'), ((757, 787), 'torch.nn.Linear', 'nn.Linear', (['(128)', 'action_space_n'], {}), '(128, action_space_n)\n', (766, 787), True, 'import torch.nn as nn\n'), ((810, 827), 'torch.nn.Linear', 'nn.Linear', (['(128)', '(1)'], {}), '(128, 1)\n', (819, 827), True, 'import torch.nn as nn\n'), ((1770, 1804), 'torch.nn.Linear', 'nn.Linear', (['(80000)', 'classification_n'], {}), '(80000, classification_n)\n', (1779, 1804), True, 'import torch.nn as nn\n'), ((3278, 3294), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3292, 3294), True, 'import numpy as np\n'), ((3317, 3344), 'numpy.random.choice', 'np.random.choice', (['n_actions'], {}), '(n_actions)\n', (3333, 3344), True, 'import numpy as np\n'), ((1288, 1312), 'torch.nn.functional.softmax', 'F.softmax', (['action_scores'], {}), '(action_scores)\n', (1297, 1312), True, 'import torch.nn.functional as F\n'), ((1460, 1502), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', '(16)'], {'kernel_size': '(5)', 'padding': '(2)'}), '(1, 16, kernel_size=5, padding=2)\n', (1469, 1502), True, 'import torch.nn as nn\n'), ((1510, 1528), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(16)'], {}), '(16)\n', (1524, 1528), True, 'import torch.nn as nn\n'), ((1536, 1545), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1543, 1545), True, 'import torch.nn as nn\n'), ((1553, 1568), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)'], {}), '(2)\n', (1565, 1568), True, 'import torch.nn as nn\n'), ((1609, 1652), 'torch.nn.Conv2d', 'nn.Conv2d', (['(16)', '(32)'], {'kernel_size': '(5)', 'padding': '(2)'}), '(16, 32, kernel_size=5, padding=2)\n', (1618, 1652), True, 'import torch.nn as nn\n'), ((1660, 1678), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(32)'], {}), '(32)\n', (1674, 1678), True, 'import torch.nn as nn\n'), ((1686, 1695), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1693, 1695), True, 'import torch.nn as nn\n'), ((1703, 1718), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)'], {}), '(2)\n', (1715, 1718), True, 'import torch.nn as nn\n'), ((3441, 3456), 'torch.autograd.Variable', 'Variable', (['state'], {}), '(state)\n', (3449, 3456), False, 'from torch.autograd import Variable\n'), ((4193, 4206), 'torch.ones', 'torch.ones', (['(1)'], {}), '(1)\n', (4203, 4206), False, 'import torch\n'), ((4733, 4775), 'torch.load', 'torch.load', (["(args.model_path + '/model.pkl')"], {}), "(args.model_path + '/model.pkl')\n", (4743, 4775), False, 'import torch\n'), ((4799, 4839), 'torch.load', 'torch.load', (["(args.model_path + '/cnn.pkl')"], {}), "(args.model_path + '/cnn.pkl')\n", (4809, 4839), False, 'import torch\n'), ((3862, 3882), 'numpy.finfo', 'np.finfo', (['np.float32'], {}), '(np.float32)\n', (3870, 3882), True, 'import numpy as np\n'), ((4058, 4075), 'torch.Tensor', 'torch.Tensor', (['[r]'], {}), '([r])\n', (4070, 4075), False, 'import torch\n'), ((7205, 7248), 'os.path.join', 'os.path.join', (['args.model_path', '"""policy.pkl"""'], {}), "(args.model_path, 'policy.pkl')\n", (7217, 7248), False, 'import time, os, math, inspect, re, sys, random, argparse\n'), ((7288, 7328), 'os.path.join', 'os.path.join', (['args.model_path', '"""cnn.pkl"""'], {}), "(args.model_path, 'cnn.pkl')\n", (7300, 7328), False, 'import time, os, math, inspect, re, sys, random, argparse\n'), ((6003, 6018), 'torch.autograd.Variable', 'Variable', (['batch'], {}), '(batch)\n', (6011, 6018), False, 'from torch.autograd import Variable\n'), ((6038, 6054), 'torch.autograd.Variable', 'Variable', (['labels'], {}), '(labels)\n', (6046, 6054), False, 'from torch.autograd import Variable\n'), ((8040, 8051), 'torch.autograd.Variable', 'Variable', (['x'], {}), '(x)\n', (8048, 8051), False, 'from torch.autograd import Variable\n'), ((8102, 8127), 'torch.max', 'torch.max', (['output.data', '(1)'], {}), '(output.data, 1)\n', (8111, 8127), False, 'import torch\n'), ((3365, 3388), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (3381, 3388), False, 'import torch\n'), ((5769, 5787), 'numpy.asarray', 'np.asarray', (['labels'], {}), '(labels)\n', (5779, 5787), True, 'import numpy as np\n'), ((5890, 5915), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5913, 5915), False, 'import torch\n'), ((5713, 5730), 'numpy.asarray', 'np.asarray', (['batch'], {}), '(batch)\n', (5723, 5730), True, 'import numpy as np\n'), ((8012, 8025), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (8022, 8025), True, 'import numpy as np\n')]
import numpy as np from sklearn import svm class character: def __init__(self, raw_character): self.identity = None def recognize(characters, classifier): for char in characters: data = np.reshape(char.image_centered, np.prod(char.image_centered.shape)).reshape(1, -1) char.identity = classifier.predict(data) return characters
[ "numpy.prod" ]
[((253, 287), 'numpy.prod', 'np.prod', (['char.image_centered.shape'], {}), '(char.image_centered.shape)\n', (260, 287), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from skimage.viewer import utils from skimage.viewer.utils import dialogs from skimage.viewer.qt import QtCore, QtGui, has_qt from numpy.testing.decorators import skipif @skipif(not has_qt) def test_event_loop(): utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(10, QtGui.QApplication.quit) utils.start_qtapp() @skipif(not has_qt) def test_format_filename(): fname = dialogs._format_filename(('apple', 2)) assert fname == 'apple' fname = dialogs._format_filename('') assert fname is None @skipif(not has_qt) def test_open_file_dialog(): utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QtGui.QApplication.quit()) filename = dialogs.open_file_dialog() assert filename is None @skipif(not has_qt) def test_save_file_dialog(): utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QtGui.QApplication.quit()) filename = dialogs.save_file_dialog() assert filename is None
[ "skimage.viewer.utils.init_qtapp", "numpy.testing.decorators.skipif", "skimage.viewer.utils.dialogs._format_filename", "skimage.viewer.utils.dialogs.open_file_dialog", "skimage.viewer.qt.QtCore.QTimer", "skimage.viewer.utils.dialogs.save_file_dialog", "skimage.viewer.utils.start_qtapp", "skimage.viewer.qt.QtGui.QApplication.quit" ]
[((197, 215), 'numpy.testing.decorators.skipif', 'skipif', (['(not has_qt)'], {}), '(not has_qt)\n', (203, 215), False, 'from numpy.testing.decorators import skipif\n'), ((367, 385), 'numpy.testing.decorators.skipif', 'skipif', (['(not has_qt)'], {}), '(not has_qt)\n', (373, 385), False, 'from numpy.testing.decorators import skipif\n'), ((562, 580), 'numpy.testing.decorators.skipif', 'skipif', (['(not has_qt)'], {}), '(not has_qt)\n', (568, 580), False, 'from numpy.testing.decorators import skipif\n'), ((795, 813), 'numpy.testing.decorators.skipif', 'skipif', (['(not has_qt)'], {}), '(not has_qt)\n', (801, 813), False, 'from numpy.testing.decorators import skipif\n'), ((243, 261), 'skimage.viewer.utils.init_qtapp', 'utils.init_qtapp', ([], {}), '()\n', (259, 261), False, 'from skimage.viewer import utils\n'), ((274, 289), 'skimage.viewer.qt.QtCore.QTimer', 'QtCore.QTimer', ([], {}), '()\n', (287, 289), False, 'from skimage.viewer.qt import QtCore, QtGui, has_qt\n'), ((344, 363), 'skimage.viewer.utils.start_qtapp', 'utils.start_qtapp', ([], {}), '()\n', (361, 363), False, 'from skimage.viewer import utils\n'), ((426, 464), 'skimage.viewer.utils.dialogs._format_filename', 'dialogs._format_filename', (["('apple', 2)"], {}), "(('apple', 2))\n", (450, 464), False, 'from skimage.viewer.utils import dialogs\n'), ((505, 533), 'skimage.viewer.utils.dialogs._format_filename', 'dialogs._format_filename', (['""""""'], {}), "('')\n", (529, 533), False, 'from skimage.viewer.utils import dialogs\n'), ((614, 632), 'skimage.viewer.utils.init_qtapp', 'utils.init_qtapp', ([], {}), '()\n', (630, 632), False, 'from skimage.viewer import utils\n'), ((645, 660), 'skimage.viewer.qt.QtCore.QTimer', 'QtCore.QTimer', ([], {}), '()\n', (658, 660), False, 'from skimage.viewer.qt import QtCore, QtGui, has_qt\n'), ((737, 763), 'skimage.viewer.utils.dialogs.open_file_dialog', 'dialogs.open_file_dialog', ([], {}), '()\n', (761, 763), False, 'from skimage.viewer.utils import dialogs\n'), ((847, 865), 'skimage.viewer.utils.init_qtapp', 'utils.init_qtapp', ([], {}), '()\n', (863, 865), False, 'from skimage.viewer import utils\n'), ((878, 893), 'skimage.viewer.qt.QtCore.QTimer', 'QtCore.QTimer', ([], {}), '()\n', (891, 893), False, 'from skimage.viewer.qt import QtCore, QtGui, has_qt\n'), ((970, 996), 'skimage.viewer.utils.dialogs.save_file_dialog', 'dialogs.save_file_dialog', ([], {}), '()\n', (994, 996), False, 'from skimage.viewer.utils import dialogs\n'), ((695, 720), 'skimage.viewer.qt.QtGui.QApplication.quit', 'QtGui.QApplication.quit', ([], {}), '()\n', (718, 720), False, 'from skimage.viewer.qt import QtCore, QtGui, has_qt\n'), ((928, 953), 'skimage.viewer.qt.QtGui.QApplication.quit', 'QtGui.QApplication.quit', ([], {}), '()\n', (951, 953), False, 'from skimage.viewer.qt import QtCore, QtGui, has_qt\n')]
from aoi_envs.MultiAgent import MultiAgentEnv import numpy as np class MobileEnv(MultiAgentEnv): def __init__(self, agent_velocity=1.0, initialization='Random', biased_velocities=False, flocking=False, random_acceleration=True, aoi_reward=True, flocking_position_control=False, num_agents=40): super().__init__(eavesdropping=True, fractional_power_levels=[0.25, 0.0], initialization=initialization, aoi_reward=aoi_reward, num_agents=num_agents) self.ts_length = 0.1 self.max_velocity = agent_velocity * self.distance_scale / self.ts_length / self.episode_length self.max_acceleration = 10.0 self.gain = 1.0 self.recompute_solution = True self.mobile_agents = True self.flocking = flocking self.flocking_position_control = flocking_position_control self.random_acceleration = random_acceleration self.biased_velocities = biased_velocities def reset(self): super().reset() if self.random_acceleration or (self.flocking and not self.biased_velocities): self.x[:, 2:4] = np.random.uniform(-self.max_velocity, self.max_velocity, size=(self.n_agents, 2)) elif self.flocking and self.biased_velocities: self.x[:, 2:4] = np.random.uniform(0.5 * -self.max_velocity, 0.5 * self.max_velocity, size=(self.n_agents, 2)) self.x[:, 2:4] = self.x[:, 2:4] + np.random.uniform(0.5 * -self.max_velocity, 0.5 * self.max_velocity, size=(1, 2)) else: angle = np.pi * np.random.uniform(0, 2, size=(self.n_agents,)) self.x[:, 2] = self.max_velocity * np.cos(angle) self.x[:, 3] = self.max_velocity * np.sin(angle) self.network_buffer[:, :, 4:6] = np.where(self.diag, self.x[:, 2:4].reshape(self.n_agents, 1, 2), self.network_buffer[:, :, 4:6]) return self.get_relative_network_buffer_as_dict() def step(self, attempted_transmissions): self.move_agents() return super().step(attempted_transmissions) def potential_grad(self, pos_diff, r2): grad = -2.0 * np.divide(pos_diff, np.multiply(r2, r2)) + 2 * np.divide(pos_diff, r2) return grad def move_agents(self): new_pos = self.x[:, 0:2] + self.x[:, 2:4] * self.ts_length if self.flocking or self.random_acceleration: if self.flocking: known_velocities = np.copy(self.network_buffer[:, :, 4:6]) known_velocities[known_velocities == 0] = np.nan known_velocities -= (self.x[:, 2:4])[:, np.newaxis, :] acceleration = np.nanmean(known_velocities, axis=1) if self.flocking_position_control: steady_state_scale = self.r_max / 5.0 known_positions = np.copy(self.network_buffer[:, :, 2:4]) known_positions[known_positions == 0] = np.nan known_positions = (known_positions - (self.x[:, 2:4])[:, np.newaxis, :]) / steady_state_scale r2 = np.sum(known_positions ** 2, axis=2)[:, :, np.newaxis] grad = -2.0 * np.divide(known_positions, np.multiply(r2, r2)) + 2 * np.divide(known_positions, r2) acceleration += np.nansum(grad, axis=1) * steady_state_scale else: # acceleration = np.random.uniform(-self.max_acceleration, self.max_acceleration, size=(self.n_agents, 2)) acceleration = np.random.normal(0., self.max_acceleration / 3.0, size=(self.n_agents, 2)) acceleration = np.clip(acceleration, -self.max_acceleration, self.max_acceleration) self.x[:, 2:4] += self.gain * self.ts_length * acceleration self.x[:, 2:4] = np.clip(self.x[:, 2:4], -self.max_velocity, self.max_velocity) if self.flocking: self.x[:, 0:2] = new_pos else: self.x[:, 0:2] = np.clip(new_pos[:, 0:2], -self.r_max, self.r_max) self.x[:, 2:4] = np.where((self.x[:, 0:2] - new_pos[:, 0:2]) == 0, self.x[:, 2:4], -self.x[:, 2:4]) self.network_buffer[:, :, 2:6] = np.where(self.diag, self.x[:, 0:4].reshape(self.n_agents, 1, 4), self.network_buffer[:, :, 2:6])
[ "numpy.clip", "numpy.copy", "numpy.random.normal", "numpy.multiply", "numpy.where", "numpy.nanmean", "numpy.sum", "numpy.cos", "numpy.random.uniform", "numpy.sin", "numpy.nansum", "numpy.divide" ]
[((1140, 1226), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_velocity)', 'self.max_velocity'], {'size': '(self.n_agents, 2)'}), '(-self.max_velocity, self.max_velocity, size=(self.\n n_agents, 2))\n', (1157, 1226), True, 'import numpy as np\n'), ((3705, 3773), 'numpy.clip', 'np.clip', (['acceleration', '(-self.max_acceleration)', 'self.max_acceleration'], {}), '(acceleration, -self.max_acceleration, self.max_acceleration)\n', (3712, 3773), True, 'import numpy as np\n'), ((3875, 3937), 'numpy.clip', 'np.clip', (['self.x[:, 2:4]', '(-self.max_velocity)', 'self.max_velocity'], {}), '(self.x[:, 2:4], -self.max_velocity, self.max_velocity)\n', (3882, 3937), True, 'import numpy as np\n'), ((4045, 4094), 'numpy.clip', 'np.clip', (['new_pos[:, 0:2]', '(-self.r_max)', 'self.r_max'], {}), '(new_pos[:, 0:2], -self.r_max, self.r_max)\n', (4052, 4094), True, 'import numpy as np\n'), ((4124, 4209), 'numpy.where', 'np.where', (['(self.x[:, 0:2] - new_pos[:, 0:2] == 0)', 'self.x[:, 2:4]', '(-self.x[:, 2:4])'], {}), '(self.x[:, 0:2] - new_pos[:, 0:2] == 0, self.x[:, 2:4], -self.x[:, 2:4]\n )\n', (4132, 4209), True, 'import numpy as np\n'), ((1306, 1404), 'numpy.random.uniform', 'np.random.uniform', (['(0.5 * -self.max_velocity)', '(0.5 * self.max_velocity)'], {'size': '(self.n_agents, 2)'}), '(0.5 * -self.max_velocity, 0.5 * self.max_velocity, size=(\n self.n_agents, 2))\n', (1323, 1404), True, 'import numpy as np\n'), ((2277, 2300), 'numpy.divide', 'np.divide', (['pos_diff', 'r2'], {}), '(pos_diff, r2)\n', (2286, 2300), True, 'import numpy as np\n'), ((2536, 2575), 'numpy.copy', 'np.copy', (['self.network_buffer[:, :, 4:6]'], {}), '(self.network_buffer[:, :, 4:6])\n', (2543, 2575), True, 'import numpy as np\n'), ((2743, 2779), 'numpy.nanmean', 'np.nanmean', (['known_velocities'], {'axis': '(1)'}), '(known_velocities, axis=1)\n', (2753, 2779), True, 'import numpy as np\n'), ((3602, 3677), 'numpy.random.normal', 'np.random.normal', (['(0.0)', '(self.max_acceleration / 3.0)'], {'size': '(self.n_agents, 2)'}), '(0.0, self.max_acceleration / 3.0, size=(self.n_agents, 2))\n', (3618, 3677), True, 'import numpy as np\n'), ((1446, 1532), 'numpy.random.uniform', 'np.random.uniform', (['(0.5 * -self.max_velocity)', '(0.5 * self.max_velocity)'], {'size': '(1, 2)'}), '(0.5 * -self.max_velocity, 0.5 * self.max_velocity, size=(\n 1, 2))\n', (1463, 1532), True, 'import numpy as np\n'), ((1570, 1616), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2)'], {'size': '(self.n_agents,)'}), '(0, 2, size=(self.n_agents,))\n', (1587, 1616), True, 'import numpy as np\n'), ((1664, 1677), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1670, 1677), True, 'import numpy as np\n'), ((1725, 1738), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1731, 1738), True, 'import numpy as np\n'), ((2250, 2269), 'numpy.multiply', 'np.multiply', (['r2', 'r2'], {}), '(r2, r2)\n', (2261, 2269), True, 'import numpy as np\n'), ((2928, 2967), 'numpy.copy', 'np.copy', (['self.network_buffer[:, :, 2:4]'], {}), '(self.network_buffer[:, :, 2:4])\n', (2935, 2967), True, 'import numpy as np\n'), ((3174, 3210), 'numpy.sum', 'np.sum', (['(known_positions ** 2)'], {'axis': '(2)'}), '(known_positions ** 2, axis=2)\n', (3180, 3210), True, 'import numpy as np\n'), ((3384, 3407), 'numpy.nansum', 'np.nansum', (['grad'], {'axis': '(1)'}), '(grad, axis=1)\n', (3393, 3407), True, 'import numpy as np\n'), ((3317, 3347), 'numpy.divide', 'np.divide', (['known_positions', 'r2'], {}), '(known_positions, r2)\n', (3326, 3347), True, 'import numpy as np\n'), ((3290, 3309), 'numpy.multiply', 'np.multiply', (['r2', 'r2'], {}), '(r2, r2)\n', (3301, 3309), True, 'import numpy as np\n')]
from torch.autograd import Variable import torch.nn.functional as F import scripts.utils as utils import torch.nn as nn import numpy as np import torch class CrossEntropy2d(nn.Module): def __init__(self, size_average=True, ignore_label=255): super(CrossEntropy2d, self).__init__() self.size_average = size_average self.ignore_label = ignore_label def forward(self, predict, target, weight=None): """ Args: predict:(n, c, h, w) target:(n, h, w) weight (Tensor, optional): a manual rescaling weight given to each class. If given, has to be a Tensor of size "nclasses" """ assert not target.requires_grad assert predict.dim() == 4 assert target.dim() == 3 assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1)) assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3)) n, c, h, w = predict.size() target_mask = (target >= 0) * (target != self.ignore_label) target = target[target_mask] predict = predict.transpose(1, 2).transpose(2, 3).contiguous() predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) loss = F.cross_entropy(predict, target, weight=weight, size_average=self.size_average) return loss def cross_entropy2d(input, target, weight=None, size_average=True): # 1. input: (n, c, h, w), target: (n, h, w) n, c, h, w = input.size() # 2. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 3. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 4. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, ignore_index=250, weight=weight, size_average=False) if size_average: loss /= mask.data.sum() # loss /= mask.sum().data[0] return loss def bootstrapped_cross_entropy2d(input, target, K, weight=None, size_average=False): """A categorical cross entropy loss for 4D tensors. We assume the following layout: (batch, classes, height, width) Args: input: The outputs. target: The predictions. K: The number of pixels to select in the bootstrapping process. The total number of pixels is determined as 512 * multiplier. Returns: The pixel-bootstrapped cross entropy loss. """ batch_size = input.size()[0] def _bootstrap_xentropy_single(input, target, K, weight=None, size_average=False): n, c, h, w = input.size() # 1. The log softmax. log_p: (n, c, h, w) log_p = F.log_softmax(input, dim=1) # 2. log_p: (n*h*w, c) - contiguous() required if transpose() is used before view(). log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) log_p = log_p[target.view(n * h * w, 1).repeat(1, c) >= 0] log_p = log_p.view(-1, c) # 3. target: (n*h*w,) mask = target >= 0 target = target[mask] loss = F.nll_loss(log_p, target, weight=weight, ignore_index=250, reduce=False, size_average=size_average) # For each element in the batch, collect the top K worst predictions topk_loss, _ = loss.topk(K) reduced_topk_loss = topk_loss.sum() / K return reduced_topk_loss loss = 0.0 # Bootstrap from each image not entire batch for i in range(batch_size): loss += _bootstrap_xentropy_single(input=torch.unsqueeze(input[i], 0), target=torch.unsqueeze(target[i], 0), K=K, weight=weight, size_average=size_average) return loss / float(batch_size) class FocalLoss2D(nn.Module): """ Focal Loss, which is proposed in: "Focal Loss for Dense Object Detection (https://arxiv.org/abs/1708.02002v2)" """ def __init__(self, num_classes=19, ignore_label=250, alpha=0.25, gamma=2, size_average=True): """ Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class]) :param num_classes: (int) num of the classes :param ignore_label: (int) ignore label :param alpha: (1D Tensor or Variable) the scalar factor :param gamma: (float) gamma > 0; reduces the relative loss for well-classified examples (probabilities > .5), putting more focus on hard, mis-classified examples :param size_average: (bool): By default, the losses are averaged over observations for each mini-batch. If the size_average is set to False, the losses are instead summed for each mini-batch. """ super(FocalLoss2D, self).__init__() self.alpha = alpha self.gamma = gamma self.num_classes = num_classes self.ignore_label = ignore_label self.size_average = size_average self.one_hot = Variable(torch.eye(self.num_classes)) def forward(self, cls_preds, cls_targets): """ :param cls_preds: (n, c, h, w) :param cls_targets: (n, h, w) :return: """ assert not cls_targets.requires_grad assert cls_targets.dim() == 3 assert cls_preds.size(0) == cls_targets.size(0), "{0} vs {1} ".format(cls_preds.size(0), cls_targets.size(0)) assert cls_preds.size(2) == cls_targets.size(1), "{0} vs {1} ".format(cls_preds.size(2), cls_targets.size(1)) assert cls_preds.size(3) == cls_targets.size(2), "{0} vs {1} ".format(cls_preds.size(3), cls_targets.size(3)) if cls_preds.is_cuda: self.one_hot = self.one_hot.cuda() n, c, h, w = cls_preds.size() # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1. target reshape and one-hot encode # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 1.1. target: (n*h*w,) cls_targets = cls_targets.view(n * h * w, 1) target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = cls_targets[target_mask] cls_targets = self.one_hot.index_select(dim=0, index=cls_targets) # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2. compute focal loss for multi-classification # +++++++++++++++++++++++++++++++++++++++++++++++++++ # # 2.1. The softmax. prob: (n, c, h, w) prob = F.softmax(cls_preds, dim=1) # 2.2. prob: (n*h*w, c) - contiguous() required if transpose() is used before view(). prob = prob.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) prob = prob[target_mask.repeat(1, c)] prob = prob.view(-1, c) # (n*h*w, c) probs = torch.clamp((prob * cls_targets).sum(1).view(-1, 1), min=1e-8, max=1.0) batch_loss = -self.alpha * (torch.pow((1 - probs), self.gamma)) * probs.log() if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss class SemanticEncodingLoss(nn.Module): def __init__(self, num_classes=19, ignore_label=250, alpha=0.25): super(SemanticEncodingLoss, self).__init__() self.alpha = alpha self.num_classes = num_classes self.ignore_label = ignore_label def unique_encode(self, cls_targets): batch_size, _, _ = cls_targets.size() target_mask = (cls_targets >= 0) * (cls_targets != self.ignore_label) cls_targets = [cls_targets[idx].masked_select(target_mask[idx]) for idx in np.arange(batch_size)] # unique_cls = [np.unique(label.numpy(), return_counts=True) for label in cls_targets] unique_cls = [np.unique(label.numpy()) for label in cls_targets] encode = np.zeros((batch_size, self.num_classes), dtype=np.uint8) for idx in np.arange(batch_size): np.put(encode[idx], unique_cls[idx], 1) return torch.from_numpy(encode).float() def forward(self, predicts, enc_cls_target, size_average=True): se_loss = F.binary_cross_entropy_with_logits(predicts, enc_cls_target, weight=None, size_average=size_average) return self.alpha * se_loss # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Lovasz-Softmax # <NAME> 2018 ESAT-PSI KU Leuven # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / union ious.append(iou) iou = utils.mean(ious) # mean accross images if per_image return 100 * iou def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / union) ious.append(iou) ious = map(utils.mean, zip(*ious)) # mean accross images if per_image return 100 * np.array(ious) def lovasz_softmax(probas, labels, only_present=False, per_image=False, ignore=None): """ Multi-class Lovasz-Softmax loss probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1) labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth per_image: compute the loss per image instead of per batch ignore: void class labels """ if per_image: loss = utils.mean(lovasz_softmax_flat(*flatten_probas(prob, lab, ignore), only_present=only_present) for prob, lab in zip(probas, labels)) else: loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), only_present=only_present) return loss def lovasz_softmax_flat(probas, labels, only_present=False): """ Multi-class Lovasz-Softmax loss probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) only_present: average only on classes present in ground truth """ C = probas.size(1) losses = [] for c in range(C): fg = (labels == c).float() # foreground for class c if only_present and fg.sum() == 0: continue errors = (fg - probas[:, c]).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] losses.append(torch.dot(errors_sorted, lovasz_grad(fg_sorted))) return utils.mean(losses) def flatten_probas(scores, labels, ignore=None): """ Flattens predictions in the batch """ B, C, H, W = scores.size() scores = scores.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid.nonzero().squeeze()] vlabels = labels[valid] return vscores, vlabels if __name__ == "__main__": from torch.autograd import Variable while True: dummy_in = Variable(torch.randn(2, 3, 32, 32), requires_grad=True) dummy_gt = Variable(torch.LongTensor(2, 32, 32).random_(0, 3)) dummy_in = F.softmax(dummy_in, dim=1) loss = lovasz_softmax(dummy_in, dummy_gt, ignore=255) print(loss.data[0])
[ "torch.sort", "torch.nn.functional.nll_loss", "numpy.put", "torch.eye", "torch.unsqueeze", "torch.LongTensor", "scripts.utils.mean", "torch.pow", "torch.from_numpy", "torch.randn", "numpy.array", "numpy.zeros", "torch.nn.functional.cross_entropy", "torch.nn.functional.log_softmax", "torch.nn.functional.softmax", "numpy.arange", "torch.nn.functional.binary_cross_entropy_with_logits" ]
[((1750, 1777), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['input'], {'dim': '(1)'}), '(input, dim=1)\n', (1763, 1777), True, 'import torch.nn.functional as F\n'), ((2124, 2202), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['log_p', 'target'], {'ignore_index': '(250)', 'weight': 'weight', 'size_average': '(False)'}), '(log_p, target, ignore_index=250, weight=weight, size_average=False)\n', (2134, 2202), True, 'import torch.nn.functional as F\n'), ((10048, 10064), 'scripts.utils.mean', 'utils.mean', (['ious'], {}), '(ious)\n', (10058, 10064), True, 'import scripts.utils as utils\n'), ((12524, 12542), 'scripts.utils.mean', 'utils.mean', (['losses'], {}), '(losses)\n', (12534, 12542), True, 'import scripts.utils as utils\n'), ((1460, 1539), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['predict', 'target'], {'weight': 'weight', 'size_average': 'self.size_average'}), '(predict, target, weight=weight, size_average=self.size_average)\n', (1475, 1539), True, 'import torch.nn.functional as F\n'), ((3062, 3089), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['input'], {'dim': '(1)'}), '(input, dim=1)\n', (3075, 3089), True, 'import torch.nn.functional as F\n'), ((3468, 3571), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['log_p', 'target'], {'weight': 'weight', 'ignore_index': '(250)', 'reduce': '(False)', 'size_average': 'size_average'}), '(log_p, target, weight=weight, ignore_index=250, reduce=False,\n size_average=size_average)\n', (3478, 3571), True, 'import torch.nn.functional as F\n'), ((7059, 7086), 'torch.nn.functional.softmax', 'F.softmax', (['cls_preds'], {'dim': '(1)'}), '(cls_preds, dim=1)\n', (7068, 7086), True, 'import torch.nn.functional as F\n'), ((8396, 8452), 'numpy.zeros', 'np.zeros', (['(batch_size, self.num_classes)'], {'dtype': 'np.uint8'}), '((batch_size, self.num_classes), dtype=np.uint8)\n', (8404, 8452), True, 'import numpy as np\n'), ((8473, 8494), 'numpy.arange', 'np.arange', (['batch_size'], {}), '(batch_size)\n', (8482, 8494), True, 'import numpy as np\n'), ((8684, 8788), 'torch.nn.functional.binary_cross_entropy_with_logits', 'F.binary_cross_entropy_with_logits', (['predicts', 'enc_cls_target'], {'weight': 'None', 'size_average': 'size_average'}), '(predicts, enc_cls_target, weight=None,\n size_average=size_average)\n', (8718, 8788), True, 'import torch.nn.functional as F\n'), ((10942, 10956), 'numpy.array', 'np.array', (['ious'], {}), '(ious)\n', (10950, 10956), True, 'import numpy as np\n'), ((12348, 12386), 'torch.sort', 'torch.sort', (['errors', '(0)'], {'descending': '(True)'}), '(errors, 0, descending=True)\n', (12358, 12386), False, 'import torch\n'), ((13236, 13262), 'torch.nn.functional.softmax', 'F.softmax', (['dummy_in'], {'dim': '(1)'}), '(dummy_in, dim=1)\n', (13245, 13262), True, 'import torch.nn.functional as F\n'), ((5597, 5624), 'torch.eye', 'torch.eye', (['self.num_classes'], {}), '(self.num_classes)\n', (5606, 5624), False, 'import torch\n'), ((8508, 8547), 'numpy.put', 'np.put', (['encode[idx]', 'unique_cls[idx]', '(1)'], {}), '(encode[idx], unique_cls[idx], 1)\n', (8514, 8547), True, 'import numpy as np\n'), ((13098, 13123), 'torch.randn', 'torch.randn', (['(2)', '(3)', '(32)', '(32)'], {}), '(2, 3, 32, 32)\n', (13109, 13123), False, 'import torch\n'), ((3936, 3964), 'torch.unsqueeze', 'torch.unsqueeze', (['input[i]', '(0)'], {}), '(input[i], 0)\n', (3951, 3964), False, 'import torch\n'), ((4016, 4045), 'torch.unsqueeze', 'torch.unsqueeze', (['target[i]', '(0)'], {}), '(target[i], 0)\n', (4031, 4045), False, 'import torch\n'), ((7475, 7507), 'torch.pow', 'torch.pow', (['(1 - probs)', 'self.gamma'], {}), '(1 - probs, self.gamma)\n', (7484, 7507), False, 'import torch\n'), ((8186, 8207), 'numpy.arange', 'np.arange', (['batch_size'], {}), '(batch_size)\n', (8195, 8207), True, 'import numpy as np\n'), ((8564, 8588), 'torch.from_numpy', 'torch.from_numpy', (['encode'], {}), '(encode)\n', (8580, 8588), False, 'import torch\n'), ((13173, 13200), 'torch.LongTensor', 'torch.LongTensor', (['(2)', '(32)', '(32)'], {}), '(2, 32, 32)\n', (13189, 13200), False, 'import torch\n')]
import logging import tflite import numpy as np from tflite2onnx import mapping from tflite2onnx.op.common import Operator from tflite2onnx.op.binary import PowerWrapper logger = logging.getLogger('tflite2onnx') class Rsqrt(Operator): # use square root as input operator and propagate output to power TypeMapping = { tflite.BuiltinOperator.RSQRT: 'Sqrt', } def __init__(self, TFactory, index): super().__init__(TFactory, index) self.setInited() @property def type(self): if self.status.uninitialized: return 'Sqrt' else: op = self.tflite opcode = self.model.OperatorCodes(op.OpcodeIndex()).BuiltinCode() assert(opcode in self.TypeMapping) return self.TypeMapping[opcode] def parse(self): logger.debug("Parsing %s...", self.type) op = self.tflite opcode = self.model.OperatorCodes(op.OpcodeIndex()).BuiltinCode() assert(opcode in self.TypeMapping) assert(op.InputsLength() == 1) assert(op.OutputsLength() == 1) self.parseInput(0) self.parseOutput(0) # invert square root result self.appendInvert() self.setParsed() def propagatableTensors(self): return self.inputs + self.outputs def transform(self): pass def appendInvert(self): invert = PowerWrapper(self.TFactory, -1) invert_name = 'TFLITE2ONNX_Invert_%s' % self.outputs[0].name invert_t = self.TFactory.getWithRef(self.outputs[0], invert_name, True) invert_t.setParsed() invert_t.addProducer(self) invert_t.addConsumer(invert) pow_t = 'TFLITE2ONNX_PowData_%s' % self.outputs[0].name pow_t = self.TFactory.getWithRef(self.outputs[0], pow_t, True) pow_dtype = mapping.DTYPE_ONNX2NAME[pow_t.dtype] pow_t.data = np.full(shape=pow_t.shape, fill_value=-1, dtype=pow_dtype) pow_t.setParsed() pow_t.addConsumer(invert) invert.inputs.append(invert_t) invert.inputs.append(pow_t) invert.outputs.append(self.outputs[0]) self.replaceOutput(self.outputs[0], invert_t) invert.setParsed() self.post.append(invert)
[ "logging.getLogger", "tflite2onnx.op.binary.PowerWrapper", "numpy.full" ]
[((181, 213), 'logging.getLogger', 'logging.getLogger', (['"""tflite2onnx"""'], {}), "('tflite2onnx')\n", (198, 213), False, 'import logging\n'), ((1405, 1436), 'tflite2onnx.op.binary.PowerWrapper', 'PowerWrapper', (['self.TFactory', '(-1)'], {}), '(self.TFactory, -1)\n', (1417, 1436), False, 'from tflite2onnx.op.binary import PowerWrapper\n'), ((1902, 1960), 'numpy.full', 'np.full', ([], {'shape': 'pow_t.shape', 'fill_value': '(-1)', 'dtype': 'pow_dtype'}), '(shape=pow_t.shape, fill_value=-1, dtype=pow_dtype)\n', (1909, 1960), True, 'import numpy as np\n')]
""" ******************************************************************************** main file to execute ******************************************************************************** """ import time import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from pinn import PINN from config_gpu import config_gpu from params import params from prp_dat import prp_dat from plot_sol import * from fdm import FDM def main(): # gpu confiuration config_gpu(gpu_flg = 1) # params f_in, f_out, width, depth, \ w_init, b_init, act, \ lr, opt, \ f_scl, laaf, c, \ w_ini, w_bnd, w_pde, BC, \ f_mntr, r_seed, \ n_epch, n_btch, c_tol = params() # domain tmin = 0.; tmax = 10.; nt = int(5e2) + 1 xmin = 0.; xmax = 5.; nx = int(1e2) + 1 ymin = 0.; ymax = 5.; ny = int(1e2) + 1 t_ = np.linspace(tmin, tmax, nt) x_ = np.linspace(xmin, xmax, nx) y_ = np.linspace(ymin, ymax, ny) dt = t_[1] - t_[0] dx = x_[1] - x_[0] dy = y_[1] - y_[0] cfl = c * dt / dx print("CFL number:", cfl) x, y = np.meshgrid(x_, y_) u = np.empty((nt, nx, ny)) print("tmin: %.3f, tmax: %.3f, nt: %d, dt: %.3e" % (tmin, tmax, nt, dt)) print("xmin: %.3f, xmax: %.3f, nx: %d, dx: %.3e" % (xmin, xmax, nx, dx)) print("ymin: %.3f, ymax: %.3f, ny: %d, dy: %.3e" % (ymin, ymax, ny, dy)) # FDM simulation u_FDM = FDM(xmin, xmax, nx, dx, ymin, ymax, ny, dy, nt, dt, x, y, u, c, BC) # prep data TX, lb, ub, \ t_ini, x_ini, y_ini, u_ini, \ t_bnd, x_bnd, y_bnd, \ t_pde, x_pde, y_pde = prp_dat(t_, x_, y_, N_ini = int(5e3), N_bnd = int(1e4), N_pde = int(3e4)) pinn = PINN(t_ini, x_ini, y_ini, u_ini, t_bnd, x_bnd, y_bnd, t_pde, x_pde, y_pde, f_in, f_out, width, depth, w_init, b_init, act, lr, opt, f_scl, laaf, c, w_ini, w_bnd, w_pde, BC, f_mntr, r_seed) t0 = time.time() with tf.device("/device:GPU:0"): pinn.train(epoch = n_epch, batch = n_btch, tol = c_tol) t1 = time.time() elps = t1 - t0 print(">>>>> elapse time for training (sec):", elps) print(">>>>> elapse time for training (min):", elps / 60.) # inference x_inf, y_inf = np.meshgrid(x_, y_) x_inf, y_inf = x_inf.reshape(-1, 1), y_inf.reshape(-1, 1) elps = 0 for t in t_: t_inf = np.ones_like(x_inf) * t t0 = time.time() u_, gv_ = pinn.infer(t_inf, x_inf, y_inf) t1 = time.time() temp = t1 - t0 elps += temp print(">>>>> elapse time for inference (sec):", elps) print(">>>>> elapse time for inference (min):", elps / 60.) # x_inf = np.unique(TX[:,1:2]) # y_inf = np.unique(TX[:,2:3]) # x_inf, y_inf = np.meshgrid(x_inf, y_inf) # x_inf, y_inf = x_inf.reshape(-1, 1), y_inf.reshape(-1, 1) # elps = 0. # for n in range(nt): # if n % 100 == 0: # print("currently", n) # t = n * dt # convert to real time # u_fdm = u_FDM[n,:,:] # n = np.array([n]) # t_inf = np.unique(TX[:,0:1]) # t_inf = np.tile(t_inf.reshape(-1, 1), (1, x_inf.shape[0])).T[:,n] # t0 = time.time() # u_, gv_ = pinn.infer(t_inf, x_inf, y_inf) # t1 = time.time() # temp = t1 - t0 # elps += temp # print(">>>>> elapse time for inference (sec):", elps) # print(">>>>> elapse time for inference (min):", elps / 60.) plt.figure(figsize = (8, 4)) plt.plot(pinn.ep_log, pinn.loss_log, alpha = .7, linestyle = "-", label = "loss", c = "k") plt.plot(pinn.ep_log, pinn.loss_ini_log, alpha = .5, linestyle = "--", label = "loss_ini") plt.plot(pinn.ep_log, pinn.loss_bnd_log, alpha = .5, linestyle = "--", label = "loss_bnd") plt.plot(pinn.ep_log, pinn.loss_pde_log, alpha = .5, linestyle = "--", label = "loss_pde") plt.yscale("log") plt.xlabel("epoch") plt.ylabel("loss") plt.legend(loc = "upper right") plt.grid(alpha = .5) plt.show() for n in range(nt): if n % (int(nt / 20)) == 0: t = n * dt # convert to real time u_fdm = u_FDM[n,:,:] n = np.array([n]) t_inf = np.unique(TX[:,0:1]) x_inf = np.unique(TX[:,1:2]) y_inf = np.unique(TX[:,2:3]) x_inf, y_inf = np.meshgrid(x_inf, y_inf) x_inf, y_inf = x_inf.reshape(-1, 1), y_inf.reshape(-1, 1) t_inf = np.tile(t_inf.reshape(-1, 1), (1, x_inf.shape[0])).T[:,n] u_, gv_ = pinn.infer(t_inf, x_inf, y_inf) fig = plt.figure(figsize=(16, 4)) ax = fig.add_subplot(1, 1, 1, projection = "3d") ax.plot_surface(x, y, u_fdm, vmin = -1., vmax = 1.) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_zlim(-1., 1.) ax = fig.add_subplot(1, 2, 2, projection = "3d") ax.plot_surface(x, y, u_.numpy().reshape(nx, ny), vmin = -1., vmax = 1.) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_zlim(-1., 1.) u_diff = u_fdm - u_.numpy().reshape(nx, ny) u_l2 = np.linalg.norm(u_diff, ord=2) / np.linalg.norm(u_fdm, ord=2) u_mse = np.mean(np.square(u_diff)) / np.sqrt(nx * ny) u_sem = np.std (np.square(u_diff), ddof = 1) / np.sqrt(nx * ny) print("t: %.3f, l2: %.3e, mse: %.3e, sem: %.3e" % (t, u_l2, u_mse, u_sem)) if __name__ == "__main__": main()
[ "matplotlib.pyplot.grid", "numpy.sqrt", "matplotlib.pyplot.ylabel", "numpy.array", "numpy.linalg.norm", "fdm.FDM", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.linspace", "numpy.empty", "params.params", "numpy.meshgrid", "matplotlib.pyplot.yscale", "tensorflow.device", "pinn.PINN", "numpy.square", "time.time", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "numpy.ones_like", "numpy.unique", "config_gpu.config_gpu", "matplotlib.pyplot.figure" ]
[((473, 494), 'config_gpu.config_gpu', 'config_gpu', ([], {'gpu_flg': '(1)'}), '(gpu_flg=1)\n', (483, 494), False, 'from config_gpu import config_gpu\n'), ((689, 697), 'params.params', 'params', ([], {}), '()\n', (695, 697), False, 'from params import params\n'), ((856, 883), 'numpy.linspace', 'np.linspace', (['tmin', 'tmax', 'nt'], {}), '(tmin, tmax, nt)\n', (867, 883), True, 'import numpy as np\n'), ((893, 920), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', 'nx'], {}), '(xmin, xmax, nx)\n', (904, 920), True, 'import numpy as np\n'), ((930, 957), 'numpy.linspace', 'np.linspace', (['ymin', 'ymax', 'ny'], {}), '(ymin, ymax, ny)\n', (941, 957), True, 'import numpy as np\n'), ((1091, 1110), 'numpy.meshgrid', 'np.meshgrid', (['x_', 'y_'], {}), '(x_, y_)\n', (1102, 1110), True, 'import numpy as np\n'), ((1122, 1144), 'numpy.empty', 'np.empty', (['(nt, nx, ny)'], {}), '((nt, nx, ny))\n', (1130, 1144), True, 'import numpy as np\n'), ((1410, 1477), 'fdm.FDM', 'FDM', (['xmin', 'xmax', 'nx', 'dx', 'ymin', 'ymax', 'ny', 'dy', 'nt', 'dt', 'x', 'y', 'u', 'c', 'BC'], {}), '(xmin, xmax, nx, dx, ymin, ymax, ny, dy, nt, dt, x, y, u, c, BC)\n', (1413, 1477), False, 'from fdm import FDM\n'), ((1774, 1970), 'pinn.PINN', 'PINN', (['t_ini', 'x_ini', 'y_ini', 'u_ini', 't_bnd', 'x_bnd', 'y_bnd', 't_pde', 'x_pde', 'y_pde', 'f_in', 'f_out', 'width', 'depth', 'w_init', 'b_init', 'act', 'lr', 'opt', 'f_scl', 'laaf', 'c', 'w_ini', 'w_bnd', 'w_pde', 'BC', 'f_mntr', 'r_seed'], {}), '(t_ini, x_ini, y_ini, u_ini, t_bnd, x_bnd, y_bnd, t_pde, x_pde, y_pde,\n f_in, f_out, width, depth, w_init, b_init, act, lr, opt, f_scl, laaf, c,\n w_ini, w_bnd, w_pde, BC, f_mntr, r_seed)\n', (1778, 1970), False, 'from pinn import PINN\n'), ((2109, 2120), 'time.time', 'time.time', ([], {}), '()\n', (2118, 2120), False, 'import time\n'), ((2231, 2242), 'time.time', 'time.time', ([], {}), '()\n', (2240, 2242), False, 'import time\n'), ((2418, 2437), 'numpy.meshgrid', 'np.meshgrid', (['x_', 'y_'], {}), '(x_, y_)\n', (2429, 2437), True, 'import numpy as np\n'), ((3628, 3654), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 4)'}), '(figsize=(8, 4))\n', (3638, 3654), True, 'import matplotlib.pyplot as plt\n'), ((3661, 3748), 'matplotlib.pyplot.plot', 'plt.plot', (['pinn.ep_log', 'pinn.loss_log'], {'alpha': '(0.7)', 'linestyle': '"""-"""', 'label': '"""loss"""', 'c': '"""k"""'}), "(pinn.ep_log, pinn.loss_log, alpha=0.7, linestyle='-', label='loss',\n c='k')\n", (3669, 3748), True, 'import matplotlib.pyplot as plt\n'), ((3761, 3851), 'matplotlib.pyplot.plot', 'plt.plot', (['pinn.ep_log', 'pinn.loss_ini_log'], {'alpha': '(0.5)', 'linestyle': '"""--"""', 'label': '"""loss_ini"""'}), "(pinn.ep_log, pinn.loss_ini_log, alpha=0.5, linestyle='--', label=\n 'loss_ini')\n", (3769, 3851), True, 'import matplotlib.pyplot as plt\n'), ((3856, 3946), 'matplotlib.pyplot.plot', 'plt.plot', (['pinn.ep_log', 'pinn.loss_bnd_log'], {'alpha': '(0.5)', 'linestyle': '"""--"""', 'label': '"""loss_bnd"""'}), "(pinn.ep_log, pinn.loss_bnd_log, alpha=0.5, linestyle='--', label=\n 'loss_bnd')\n", (3864, 3946), True, 'import matplotlib.pyplot as plt\n'), ((3951, 4041), 'matplotlib.pyplot.plot', 'plt.plot', (['pinn.ep_log', 'pinn.loss_pde_log'], {'alpha': '(0.5)', 'linestyle': '"""--"""', 'label': '"""loss_pde"""'}), "(pinn.ep_log, pinn.loss_pde_log, alpha=0.5, linestyle='--', label=\n 'loss_pde')\n", (3959, 4041), True, 'import matplotlib.pyplot as plt\n'), ((4046, 4063), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (4056, 4063), True, 'import matplotlib.pyplot as plt\n'), ((4068, 4087), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (4078, 4087), True, 'import matplotlib.pyplot as plt\n'), ((4092, 4110), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (4102, 4110), True, 'import matplotlib.pyplot as plt\n'), ((4115, 4144), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (4125, 4144), True, 'import matplotlib.pyplot as plt\n'), ((4151, 4170), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'alpha': '(0.5)'}), '(alpha=0.5)\n', (4159, 4170), True, 'import matplotlib.pyplot as plt\n'), ((4176, 4186), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4184, 4186), True, 'import matplotlib.pyplot as plt\n'), ((2130, 2156), 'tensorflow.device', 'tf.device', (['"""/device:GPU:0"""'], {}), "('/device:GPU:0')\n", (2139, 2156), True, 'import tensorflow as tf\n'), ((2583, 2594), 'time.time', 'time.time', ([], {}), '()\n', (2592, 2594), False, 'import time\n'), ((2658, 2669), 'time.time', 'time.time', ([], {}), '()\n', (2667, 2669), False, 'import time\n'), ((2546, 2565), 'numpy.ones_like', 'np.ones_like', (['x_inf'], {}), '(x_inf)\n', (2558, 2565), True, 'import numpy as np\n'), ((4345, 4358), 'numpy.array', 'np.array', (['[n]'], {}), '([n])\n', (4353, 4358), True, 'import numpy as np\n'), ((4379, 4400), 'numpy.unique', 'np.unique', (['TX[:, 0:1]'], {}), '(TX[:, 0:1])\n', (4388, 4400), True, 'import numpy as np\n'), ((4420, 4441), 'numpy.unique', 'np.unique', (['TX[:, 1:2]'], {}), '(TX[:, 1:2])\n', (4429, 4441), True, 'import numpy as np\n'), ((4461, 4482), 'numpy.unique', 'np.unique', (['TX[:, 2:3]'], {}), '(TX[:, 2:3])\n', (4470, 4482), True, 'import numpy as np\n'), ((4509, 4534), 'numpy.meshgrid', 'np.meshgrid', (['x_inf', 'y_inf'], {}), '(x_inf, y_inf)\n', (4520, 4534), True, 'import numpy as np\n'), ((4756, 4783), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 4)'}), '(figsize=(16, 4))\n', (4766, 4783), True, 'import matplotlib.pyplot as plt\n'), ((5343, 5372), 'numpy.linalg.norm', 'np.linalg.norm', (['u_diff'], {'ord': '(2)'}), '(u_diff, ord=2)\n', (5357, 5372), True, 'import numpy as np\n'), ((5375, 5403), 'numpy.linalg.norm', 'np.linalg.norm', (['u_fdm'], {'ord': '(2)'}), '(u_fdm, ord=2)\n', (5389, 5403), True, 'import numpy as np\n'), ((5453, 5469), 'numpy.sqrt', 'np.sqrt', (['(nx * ny)'], {}), '(nx * ny)\n', (5460, 5469), True, 'import numpy as np\n'), ((5529, 5545), 'numpy.sqrt', 'np.sqrt', (['(nx * ny)'], {}), '(nx * ny)\n', (5536, 5545), True, 'import numpy as np\n'), ((5432, 5449), 'numpy.square', 'np.square', (['u_diff'], {}), '(u_diff)\n', (5441, 5449), True, 'import numpy as np\n'), ((5498, 5515), 'numpy.square', 'np.square', (['u_diff'], {}), '(u_diff)\n', (5507, 5515), True, 'import numpy as np\n')]
import os, sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import skimage.io from skimage.transform import resize from imgaug import augmenters as iaa from random import randint import PIL from PIL import Image import cv2 from sklearn.utils import class_weight, shuffle import keras import warnings from keras.utils import Sequence import tensorflow as tf warnings.filterwarnings("ignore") SIZE = 256 SEED = 777 THRESHOLD = 0.2 # Load dataset info DIR = '../input/' # data = pd.read_csv('../input/train.csv') def getTrainDataset(): path_to_train = DIR + '/train/' data = pd.read_csv(DIR + '/train.csv') paths = [] labels = [] for name, lbl in zip(data['Id'], data['Target'].str.split(' ')): y = np.zeros(28) for key in lbl: y[int(key)] = 1 paths.append(os.path.join(path_to_train, name)) labels.append(y) return np.array(paths[:5000]), np.array(labels[:5000]) def getTestDataset(): path_to_test = DIR + '/test/' data = pd.read_csv(DIR + '/sample_submission.csv') paths = [] labels = [] for name in data['Id']: y = np.ones(28) paths.append(os.path.join(path_to_test, name)) labels.append(y) return np.array(paths), np.array(labels) # paths, labels = getTrainDataset() # credits: https://github.com/keras-team/keras/blob/master/keras/utils/data_utils.py#L302 # credits: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly class ProteinDataGenerator(keras.utils.Sequence): def __init__(self, paths, labels, batch_size, shape, channels = [], shuffle = False, use_cache = False, augmentor = False): self.paths, self.labels = paths, labels self.batch_size = batch_size self.shape = shape self.shuffle = shuffle self.use_cache = use_cache self.channels = channels self.augmentor = augmentor self.clahe = cv2.createCLAHE() if use_cache == True: self.cache = np.zeros((paths.shape[0], shape[0], shape[1], len(channels))) self.is_cached = np.zeros((paths.shape[0])) self.on_epoch_end() def __len__(self): return int(np.ceil(len(self.paths) / float(self.batch_size))) def __getitem__(self, idx): indexes = self.indexes[idx * self.batch_size : (idx+1) * self.batch_size] paths = self.paths[indexes] X = np.zeros((paths.shape[0], self.shape[0], self.shape[1], self.shape[2])) # Generate data if self.use_cache == True: X = self.cache[indexes] for i, path in enumerate(paths[np.where(self.is_cached[indexes] == 0)]): image = self.__load_image(path) self.is_cached[indexes[i]] = 1 self.cache[indexes[i]] = image X[i] = image else: for i, path in enumerate(paths): X[i] = self.__load_image(path) if self.augmentor == True: for i, item in enumerate(X): X[i] = self.augment(item) y = self.labels[indexes] return X, y def on_epoch_end(self): # Updates indexes after each epoch self.indexes = np.arange(len(self.paths)) if self.shuffle == True: np.random.shuffle(self.indexes) def __iter__(self): """Create a generator that iterate over the Sequence.""" for item in (self[i] for i in range(len(self))): yield item def __load_image(self, path): images = [] for channel in self.channels: im = np.array(Image.open(path + '_' + channel + '.png')) # im = clahe.apply(im) images.append(im) if len(self.channels) >= 2: im = np.stack(( images ), -1) im = cv2.resize(im, (SIZE,SIZE)) im = np.divide(im, 255) else: im = images[0] im = cv2.resize(im, (SIZE,SIZE)) im = np.divide(im, 255) im = np.expand_dims(im, 2) return im def augment(self, image): if randint(0,1) == 1: augment_img = iaa.Sequential([ iaa.OneOf([ iaa.Fliplr(0.5), # horizontal flips iaa.Flipud(0.5), # horizontal flips iaa.Crop(percent=(0, 0.1)), # random crops # Small gaussian blur with random sigma between 0 and 0.5. # But we only blur about 50% of all images. iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 0.5)) ), # Make some images brighter and some darker. # In 20% of all cases, we sample the multiplier once per channel, # which can end up changing the color of the images. iaa.Multiply((0.8, 1.2), per_channel=0.2), # Apply affine transformations to each image. # Scale/zoom them, translate/move them, rotate them and shear them. iaa.Affine( scale={"x": (0.9, 1.1), "y": (0.9, 1.1)}, translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}, rotate=(-180, 180), shear=(-4, 4) ) ])], random_order=True) image_aug = augment_img.augment_image(image) return image_aug else: return image from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, load_model from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D from keras.applications.inception_v3 import InceptionV3 from keras.callbacks import ModelCheckpoint from keras import metrics from keras.optimizers import Adam from keras import backend as K import keras from keras.models import Model from keras.utils import multi_gpu_model def f1(y_true, y_pred): y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), THRESHOLD), K.floatx()) tp = K.sum(K.cast(y_true*y_pred, 'float'), axis=0) tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0) fp = K.sum(K.cast((1-y_true)*y_pred, 'float'), axis=0) fn = K.sum(K.cast(y_true*(1-y_pred), 'float'), axis=0) p = tp / (tp + fp + K.epsilon()) r = tp / (tp + fn + K.epsilon()) f1 = 2*p*r / (p+r+K.epsilon()) f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1) return K.mean(f1) def f1_loss(y_true, y_pred): tp = K.sum(K.cast(y_true*y_pred, 'float'), axis=0) tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0) fp = K.sum(K.cast((1-y_true)*y_pred, 'float'), axis=0) fn = K.sum(K.cast(y_true*(1-y_pred), 'float'), axis=0) p = tp / (tp + fp + K.epsilon()) r = tp / (tp + fn + K.epsilon()) f1 = 2*p*r / (p+r+K.epsilon()) f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1) return 1-K.mean(f1) def focal_loss(gamma=2., alpha=.25): def focal_loss_fixed(y_true, y_pred): pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) pt_1 = K.clip(pt_1, 1e-3, .999) pt_0 = K.clip(pt_0, 1e-3, .999) return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1))-K.sum((1-alpha) * K.pow( pt_0, gamma) * K.log(1. - pt_0)) return focal_loss_fixed def create_model(input_shape, n_out, channels): input_tensor = Input(shape=(256,256,len(channels))) # print(len(channels)) bn = BatchNormalization()(input_tensor) base_model = InceptionV3(include_top=False, weights='imagenet') # base_model.summary() # base_model.get_layer(index=) # for idx, layer in enumerate(base_model.layers): # print(idx, layer.name) base_output = base_model.get_layer(index=132).output base_input = base_model.input base_model = Model(inputs=base_input, outputs=base_output) x = base_model(bn) x = Dropout(0.5)(x) x = Conv2D(128, kernel_size=(3,3), activation='relu')(x) x = Flatten()(x) x = Dropout(0.5)(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.5)(x) output = Dense(n_out, activation='sigmoid')(x) model = Model(input_tensor, output) return model ## Load data SHAPE = (256, 256, 3) channels = ["green", "blue", "red"] # create callbacks list from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau from sklearn.model_selection import train_test_split epochs = 10; batch_size = 64; VAL_RATIO = .1; DEBUG = False # split data into train, valid paths, labels = getTrainDataset() # divide to keys = np.arange(paths.shape[0], dtype=np.int) np.random.seed(SEED) np.random.shuffle(keys) lastTrainIndex = int((1-VAL_RATIO) * paths.shape[0]) if DEBUG == True: # use only small subset for debugging, Kaggle's RAM is limited pathsTrain = paths[0:256] labelsTrain = labels[0:256] pathsVal = paths[lastTrainIndex:lastTrainIndex+256] labelsVal = labels[lastTrainIndex:lastTrainIndex+256] use_cache = True else: pathsTrain = paths[0:lastTrainIndex] labelsTrain = labels[0:lastTrainIndex] pathsVal = paths[lastTrainIndex:] labelsVal = labels[lastTrainIndex:] use_cache = False use_cache = False # print(paths.shape, labels.shape) # print(pathsTrain.shape, labelsTrain.shape, pathsVal.shape, labelsVal.shape) tg = ProteinDataGenerator(pathsTrain, labelsTrain, batch_size, SHAPE, channels, use_cache=use_cache) vg = ProteinDataGenerator(pathsVal, labelsVal, batch_size, SHAPE, channels, use_cache=use_cache) checkpoint = ModelCheckpoint('../working/InceptionV3_3chan.h5', monitor='val_f1', verbose=1, save_best_only=True, mode='max', save_weights_only = False) reduceLROnPlat = ReduceLROnPlateau(monitor='val_f1', factor=0.5, patience=10, verbose=1, mode='max', epsilon=0.0001) early = EarlyStopping(monitor="val_f1", mode="max", patience=20) callbacks_list = [checkpoint, early, reduceLROnPlat] # warm up model import tensorflow as tf channels = ["green", "blue", "red"] # with tf.device('/cpu:0'): model = create_model( input_shape=(SIZE,SIZE,3), n_out=28, channels = channels) for layer in model.layers: layer.trainable = False for i in range(-6,2): model.layers[i].trainable = True model.summary() model.compile(loss="binary_crossentropy", optimizer=Adam(lr=1e-4), metrics=['accuracy', f1]) hist = model.fit_generator( tg, steps_per_epoch=np.ceil(float(len(pathsTrain)) / float(batch_size))/2, validation_data=vg, validation_steps=np.ceil(float(len(pathsVal)) / float(batch_size))/2, epochs=1, verbose=1, callbacks = callbacks_list) # Set all layers back to trainable for layer in model.layers: layer.trainable = True model.compile(loss="binary_crossentropy", optimizer=Adam(lr=1e-4), metrics=['accuracy', f1]) batch_size = 64 tg = ProteinDataGenerator(pathsTrain, labelsTrain, batch_size, SHAPE, channels, use_cache=use_cache) vg = ProteinDataGenerator(pathsVal, labelsVal, batch_size, SHAPE, channels, use_cache=use_cache) hist = model.fit_generator( tg, steps_per_epoch=np.ceil(float(len(pathsTrain)) / float(batch_size))/2, validation_data=vg, validation_steps=np.ceil(float(len(pathsVal)) / float(batch_size))/2, epochs=100, verbose=1, callbacks=callbacks_list) fig, ax = plt.subplots(1, 2, figsize=(15,5)) ax[0].set_title('loss') ax[0].plot(hist.epoch, hist.history["loss"], label="Train loss") ax[0].plot(hist.epoch, hist.history["val_loss"], label="Validation loss") ax[1].set_title('acc') ax[1].plot(hist.epoch, hist.history["f1"], label="Train F1") ax[1].plot(hist.epoch, hist.history["val_f1"], label="Validation F1") ax[0].legend() ax[1].legend() plt.show()
[ "keras.layers.Conv2D", "tensorflow.equal", "pandas.read_csv", "imgaug.augmenters.GaussianBlur", "keras.backend.floatx", "numpy.array", "tensorflow.is_nan", "keras.layers.Dense", "tensorflow.ones_like", "imgaug.augmenters.Fliplr", "numpy.arange", "numpy.divide", "imgaug.augmenters.Flipud", "imgaug.augmenters.Crop", "numpy.where", "keras.backend.clip", "keras.backend.pow", "numpy.stack", "numpy.random.seed", "keras.callbacks.EarlyStopping", "keras.models.Model", "keras.applications.inception_v3.InceptionV3", "tensorflow.zeros_like", "keras.backend.epsilon", "random.randint", "keras.optimizers.Adam", "keras.backend.cast", "numpy.ones", "keras.layers.Flatten", "keras.callbacks.ReduceLROnPlateau", "keras.backend.log", "imgaug.augmenters.Multiply", "keras.layers.BatchNormalization", "cv2.resize", "keras.layers.Dropout", "warnings.filterwarnings", "matplotlib.pyplot.show", "PIL.Image.open", "keras.callbacks.ModelCheckpoint", "keras.backend.mean", "imgaug.augmenters.Affine", "os.path.join", "cv2.createCLAHE", "numpy.zeros", "numpy.expand_dims", "matplotlib.pyplot.subplots", "numpy.random.shuffle" ]
[((384, 417), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (407, 417), False, 'import warnings\n'), ((8892, 8931), 'numpy.arange', 'np.arange', (['paths.shape[0]'], {'dtype': 'np.int'}), '(paths.shape[0], dtype=np.int)\n', (8901, 8931), True, 'import numpy as np\n'), ((8934, 8954), 'numpy.random.seed', 'np.random.seed', (['SEED'], {}), '(SEED)\n', (8948, 8954), True, 'import numpy as np\n'), ((8955, 8978), 'numpy.random.shuffle', 'np.random.shuffle', (['keys'], {}), '(keys)\n', (8972, 8978), True, 'import numpy as np\n'), ((9847, 9988), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['"""../working/InceptionV3_3chan.h5"""'], {'monitor': '"""val_f1"""', 'verbose': '(1)', 'save_best_only': '(True)', 'mode': '"""max"""', 'save_weights_only': '(False)'}), "('../working/InceptionV3_3chan.h5', monitor='val_f1',\n verbose=1, save_best_only=True, mode='max', save_weights_only=False)\n", (9862, 9988), False, 'from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau\n'), ((10034, 10137), 'keras.callbacks.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'monitor': '"""val_f1"""', 'factor': '(0.5)', 'patience': '(10)', 'verbose': '(1)', 'mode': '"""max"""', 'epsilon': '(0.0001)'}), "(monitor='val_f1', factor=0.5, patience=10, verbose=1,\n mode='max', epsilon=0.0001)\n", (10051, 10137), False, 'from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau\n'), ((10178, 10234), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_f1"""', 'mode': '"""max"""', 'patience': '(20)'}), "(monitor='val_f1', mode='max', patience=20)\n", (10191, 10234), False, 'from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau\n'), ((11820, 11855), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(15, 5)'}), '(1, 2, figsize=(15, 5))\n', (11832, 11855), True, 'import matplotlib.pyplot as plt\n'), ((12202, 12212), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12210, 12212), True, 'import matplotlib.pyplot as plt\n'), ((614, 645), 'pandas.read_csv', 'pd.read_csv', (["(DIR + '/train.csv')"], {}), "(DIR + '/train.csv')\n", (625, 645), True, 'import pandas as pd\n'), ((1043, 1086), 'pandas.read_csv', 'pd.read_csv', (["(DIR + '/sample_submission.csv')"], {}), "(DIR + '/sample_submission.csv')\n", (1054, 1086), True, 'import pandas as pd\n'), ((6670, 6680), 'keras.backend.mean', 'K.mean', (['f1'], {}), '(f1)\n', (6676, 6680), True, 'from keras import backend as K\n'), ((7802, 7852), 'keras.applications.inception_v3.InceptionV3', 'InceptionV3', ([], {'include_top': '(False)', 'weights': '"""imagenet"""'}), "(include_top=False, weights='imagenet')\n", (7813, 7852), False, 'from keras.applications.inception_v3 import InceptionV3\n'), ((8110, 8155), 'keras.models.Model', 'Model', ([], {'inputs': 'base_input', 'outputs': 'base_output'}), '(inputs=base_input, outputs=base_output)\n', (8115, 8155), False, 'from keras.models import Model\n'), ((8443, 8470), 'keras.models.Model', 'Model', (['input_tensor', 'output'], {}), '(input_tensor, output)\n', (8448, 8470), False, 'from keras.models import Model\n'), ((764, 776), 'numpy.zeros', 'np.zeros', (['(28)'], {}), '(28)\n', (772, 776), True, 'import numpy as np\n'), ((922, 944), 'numpy.array', 'np.array', (['paths[:5000]'], {}), '(paths[:5000])\n', (930, 944), True, 'import numpy as np\n'), ((946, 969), 'numpy.array', 'np.array', (['labels[:5000]'], {}), '(labels[:5000])\n', (954, 969), True, 'import numpy as np\n'), ((1164, 1175), 'numpy.ones', 'np.ones', (['(28)'], {}), '(28)\n', (1171, 1175), True, 'import numpy as np\n'), ((1268, 1283), 'numpy.array', 'np.array', (['paths'], {}), '(paths)\n', (1276, 1283), True, 'import numpy as np\n'), ((1285, 1301), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (1293, 1301), True, 'import numpy as np\n'), ((1972, 1989), 'cv2.createCLAHE', 'cv2.createCLAHE', ([], {}), '()\n', (1987, 1989), False, 'import cv2\n'), ((2457, 2528), 'numpy.zeros', 'np.zeros', (['(paths.shape[0], self.shape[0], self.shape[1], self.shape[2])'], {}), '((paths.shape[0], self.shape[0], self.shape[1], self.shape[2]))\n', (2465, 2528), True, 'import numpy as np\n'), ((6244, 6254), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (6252, 6254), True, 'from keras import backend as K\n'), ((6271, 6303), 'keras.backend.cast', 'K.cast', (['(y_true * y_pred)', '"""float"""'], {}), "(y_true * y_pred, 'float')\n", (6277, 6303), True, 'from keras import backend as K\n'), ((6326, 6370), 'keras.backend.cast', 'K.cast', (['((1 - y_true) * (1 - y_pred))', '"""float"""'], {}), "((1 - y_true) * (1 - y_pred), 'float')\n", (6332, 6370), True, 'from keras import backend as K\n'), ((6389, 6427), 'keras.backend.cast', 'K.cast', (['((1 - y_true) * y_pred)', '"""float"""'], {}), "((1 - y_true) * y_pred, 'float')\n", (6395, 6427), True, 'from keras import backend as K\n'), ((6448, 6486), 'keras.backend.cast', 'K.cast', (['(y_true * (1 - y_pred))', '"""float"""'], {}), "(y_true * (1 - y_pred), 'float')\n", (6454, 6486), True, 'from keras import backend as K\n'), ((6621, 6634), 'tensorflow.is_nan', 'tf.is_nan', (['f1'], {}), '(f1)\n', (6630, 6634), True, 'import tensorflow as tf\n'), ((6636, 6653), 'tensorflow.zeros_like', 'tf.zeros_like', (['f1'], {}), '(f1)\n', (6649, 6653), True, 'import tensorflow as tf\n'), ((6728, 6760), 'keras.backend.cast', 'K.cast', (['(y_true * y_pred)', '"""float"""'], {}), "(y_true * y_pred, 'float')\n", (6734, 6760), True, 'from keras import backend as K\n'), ((6783, 6827), 'keras.backend.cast', 'K.cast', (['((1 - y_true) * (1 - y_pred))', '"""float"""'], {}), "((1 - y_true) * (1 - y_pred), 'float')\n", (6789, 6827), True, 'from keras import backend as K\n'), ((6846, 6884), 'keras.backend.cast', 'K.cast', (['((1 - y_true) * y_pred)', '"""float"""'], {}), "((1 - y_true) * y_pred, 'float')\n", (6852, 6884), True, 'from keras import backend as K\n'), ((6905, 6943), 'keras.backend.cast', 'K.cast', (['(y_true * (1 - y_pred))', '"""float"""'], {}), "(y_true * (1 - y_pred), 'float')\n", (6911, 6943), True, 'from keras import backend as K\n'), ((7078, 7091), 'tensorflow.is_nan', 'tf.is_nan', (['f1'], {}), '(f1)\n', (7087, 7091), True, 'import tensorflow as tf\n'), ((7093, 7110), 'tensorflow.zeros_like', 'tf.zeros_like', (['f1'], {}), '(f1)\n', (7106, 7110), True, 'import tensorflow as tf\n'), ((7129, 7139), 'keras.backend.mean', 'K.mean', (['f1'], {}), '(f1)\n', (7135, 7139), True, 'from keras import backend as K\n'), ((7388, 7414), 'keras.backend.clip', 'K.clip', (['pt_1', '(0.001)', '(0.999)'], {}), '(pt_1, 0.001, 0.999)\n', (7394, 7414), True, 'from keras import backend as K\n'), ((7428, 7454), 'keras.backend.clip', 'K.clip', (['pt_0', '(0.001)', '(0.999)'], {}), '(pt_0, 0.001, 0.999)\n', (7434, 7454), True, 'from keras import backend as K\n'), ((7750, 7770), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7768, 7770), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8192, 8204), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (8199, 8204), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8216, 8266), 'keras.layers.Conv2D', 'Conv2D', (['(128)'], {'kernel_size': '(3, 3)', 'activation': '"""relu"""'}), "(128, kernel_size=(3, 3), activation='relu')\n", (8222, 8266), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8277, 8286), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (8284, 8286), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8298, 8310), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (8305, 8310), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8322, 8352), 'keras.layers.Dense', 'Dense', (['(1024)'], {'activation': '"""relu"""'}), "(1024, activation='relu')\n", (8327, 8352), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8364, 8376), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (8371, 8376), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((8393, 8427), 'keras.layers.Dense', 'Dense', (['n_out'], {'activation': '"""sigmoid"""'}), "(n_out, activation='sigmoid')\n", (8398, 8427), False, 'from keras.layers import Activation, Dropout, Flatten, Dense, GlobalMaxPooling2D, BatchNormalization, Input, Conv2D, MaxPooling2D\n'), ((10730, 10745), 'keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (10734, 10745), False, 'from keras.optimizers import Adam\n'), ((11239, 11254), 'keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.0001)'}), '(lr=0.0001)\n', (11243, 11254), False, 'from keras.optimizers import Adam\n'), ((850, 883), 'os.path.join', 'os.path.join', (['path_to_train', 'name'], {}), '(path_to_train, name)\n', (862, 883), False, 'import os, sys\n'), ((1197, 1229), 'os.path.join', 'os.path.join', (['path_to_test', 'name'], {}), '(path_to_test, name)\n', (1209, 1229), False, 'import os, sys\n'), ((2136, 2160), 'numpy.zeros', 'np.zeros', (['paths.shape[0]'], {}), '(paths.shape[0])\n', (2144, 2160), True, 'import numpy as np\n'), ((3346, 3377), 'numpy.random.shuffle', 'np.random.shuffle', (['self.indexes'], {}), '(self.indexes)\n', (3363, 3377), True, 'import numpy as np\n'), ((3866, 3886), 'numpy.stack', 'np.stack', (['images', '(-1)'], {}), '(images, -1)\n', (3874, 3886), True, 'import numpy as np\n'), ((3936, 3964), 'cv2.resize', 'cv2.resize', (['im', '(SIZE, SIZE)'], {}), '(im, (SIZE, SIZE))\n', (3946, 3964), False, 'import cv2\n'), ((3981, 3999), 'numpy.divide', 'np.divide', (['im', '(255)'], {}), '(im, 255)\n', (3990, 3999), True, 'import numpy as np\n'), ((4059, 4087), 'cv2.resize', 'cv2.resize', (['im', '(SIZE, SIZE)'], {}), '(im, (SIZE, SIZE))\n', (4069, 4087), False, 'import cv2\n'), ((4104, 4122), 'numpy.divide', 'np.divide', (['im', '(255)'], {}), '(im, 255)\n', (4113, 4122), True, 'import numpy as np\n'), ((4140, 4161), 'numpy.expand_dims', 'np.expand_dims', (['im', '(2)'], {}), '(im, 2)\n', (4154, 4161), True, 'import numpy as np\n'), ((4221, 4234), 'random.randint', 'randint', (['(0)', '(1)'], {}), '(0, 1)\n', (4228, 4234), False, 'from random import randint\n'), ((6210, 6230), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (6216, 6230), True, 'from keras import backend as K\n'), ((6517, 6528), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (6526, 6528), True, 'from keras import backend as K\n'), ((6554, 6565), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (6563, 6565), True, 'from keras import backend as K\n'), ((6590, 6601), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (6599, 6601), True, 'from keras import backend as K\n'), ((6974, 6985), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (6983, 6985), True, 'from keras import backend as K\n'), ((7011, 7022), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (7020, 7022), True, 'from keras import backend as K\n'), ((7047, 7058), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (7056, 7058), True, 'from keras import backend as K\n'), ((7245, 7264), 'tensorflow.equal', 'tf.equal', (['y_true', '(1)'], {}), '(y_true, 1)\n', (7253, 7264), True, 'import tensorflow as tf\n'), ((7274, 7294), 'tensorflow.ones_like', 'tf.ones_like', (['y_pred'], {}), '(y_pred)\n', (7286, 7294), True, 'import tensorflow as tf\n'), ((7320, 7339), 'tensorflow.equal', 'tf.equal', (['y_true', '(0)'], {}), '(y_true, 0)\n', (7328, 7339), True, 'import tensorflow as tf\n'), ((7349, 7370), 'tensorflow.zeros_like', 'tf.zeros_like', (['y_pred'], {}), '(y_pred)\n', (7362, 7370), True, 'import tensorflow as tf\n'), ((3679, 3720), 'PIL.Image.open', 'Image.open', (["(path + '_' + channel + '.png')"], {}), "(path + '_' + channel + '.png')\n", (3689, 3720), False, 'from PIL import Image\n'), ((2667, 2705), 'numpy.where', 'np.where', (['(self.is_cached[indexes] == 0)'], {}), '(self.is_cached[indexes] == 0)\n', (2675, 2705), True, 'import numpy as np\n'), ((7563, 7580), 'keras.backend.log', 'K.log', (['(1.0 - pt_0)'], {}), '(1.0 - pt_0)\n', (7568, 7580), True, 'from keras import backend as K\n'), ((7510, 7521), 'keras.backend.log', 'K.log', (['pt_1'], {}), '(pt_1)\n', (7515, 7521), True, 'from keras import backend as K\n'), ((7541, 7559), 'keras.backend.pow', 'K.pow', (['pt_0', 'gamma'], {}), '(pt_0, gamma)\n', (7546, 7559), True, 'from keras import backend as K\n'), ((4331, 4346), 'imgaug.augmenters.Fliplr', 'iaa.Fliplr', (['(0.5)'], {}), '(0.5)\n', (4341, 4346), True, 'from imgaug import augmenters as iaa\n'), ((4387, 4402), 'imgaug.augmenters.Flipud', 'iaa.Flipud', (['(0.5)'], {}), '(0.5)\n', (4397, 4402), True, 'from imgaug import augmenters as iaa\n'), ((4443, 4469), 'imgaug.augmenters.Crop', 'iaa.Crop', ([], {'percent': '(0, 0.1)'}), '(percent=(0, 0.1))\n', (4451, 4469), True, 'from imgaug import augmenters as iaa\n'), ((4992, 5033), 'imgaug.augmenters.Multiply', 'iaa.Multiply', (['(0.8, 1.2)'], {'per_channel': '(0.2)'}), '((0.8, 1.2), per_channel=0.2)\n', (5004, 5033), True, 'from imgaug import augmenters as iaa\n'), ((5209, 5356), 'imgaug.augmenters.Affine', 'iaa.Affine', ([], {'scale': "{'x': (0.9, 1.1), 'y': (0.9, 1.1)}", 'translate_percent': "{'x': (-0.1, 0.1), 'y': (-0.1, 0.1)}", 'rotate': '(-180, 180)', 'shear': '(-4, 4)'}), "(scale={'x': (0.9, 1.1), 'y': (0.9, 1.1)}, translate_percent={'x':\n (-0.1, 0.1), 'y': (-0.1, 0.1)}, rotate=(-180, 180), shear=(-4, 4))\n", (5219, 5356), True, 'from imgaug import augmenters as iaa\n'), ((7484, 7508), 'keras.backend.pow', 'K.pow', (['(1.0 - pt_1)', 'gamma'], {}), '(1.0 - pt_1, gamma)\n', (7489, 7508), True, 'from keras import backend as K\n'), ((4692, 4724), 'imgaug.augmenters.GaussianBlur', 'iaa.GaussianBlur', ([], {'sigma': '(0, 0.5)'}), '(sigma=(0, 0.5))\n', (4708, 4724), True, 'from imgaug import augmenters as iaa\n')]
import numpy as np from . import utils def tile_position(x0, y0, x1=None, y1=None): """Need doc string...""" if x1 is None and y1 is None: x1 = x0 y1 = y0 if (x0.size != y0.size) or (x1.size != y1.size): raise ValueError("x0 and y0 or x1 and y1 size do not match.") x0g = np.tile(x0.ravel()[:, np.newaxis], (1, x1.size)) y0g = np.tile(y0.ravel()[:, np.newaxis], (1, x1.size)) x1g = np.tile(x1.ravel()[np.newaxis, :], (x0.size, 1)) y1g = np.tile(y1.ravel()[np.newaxis, :], (x0.size, 1)) return x0g, y0g, x1g, y1g def xy_distance(x0, y0, x1=None, y1=None): """ Output x and y distance matrices. If x1 and y1 are not supplied we calculate the auto-distance matrices. """ if x1 is None and y1 is None: x1 = x0 y1 = y0 dx = x0.ravel()[:, np.newaxis] - x1.ravel()[np.newaxis, :] dy = y0.ravel()[:, np.newaxis] - y1.ravel()[np.newaxis, :] return dx, dy def r_distance(x0, y0, x1=None, y1=None, coords="cartesian"): """ Distance matrix. If x1 and y1 are not supplied we calculate the auto-distance matrix. """ if coords == "cartesian": dx, dy = xy_distance(x0, y0, x1, y1) r = np.sqrt(dx ** 2 + dy ** 2) elif coords == "latlon": r = utils.haversine_distance(*tile_position(x0, y0, x1, y1)) return r
[ "numpy.sqrt" ]
[((1225, 1251), 'numpy.sqrt', 'np.sqrt', (['(dx ** 2 + dy ** 2)'], {}), '(dx ** 2 + dy ** 2)\n', (1232, 1251), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 import sys sys.path.append("../") import pandas as pd import numpy as np import pathlib import pickle import os import itertools import argparse import logging import helpers.feature_helpers as fh from collections import Counter OUTPUT_DF_TR = 'df_steps_tr.csv' OUTPUT_DF_VAL = 'df_steps_val.csv' OUTPUT_DF_TRAIN = 'df_steps_train.csv' OUTPUT_DF_TEST = 'df_steps_test.csv' OUTPUT_DF_SESSIONS = 'df_sessions.csv' OUTPUT_ENCODING_DICT = 'enc_dicts_v02.pkl' OUTPUT_CONFIG = 'config.pkl' OUTPUT_NORMLIZATIONS_VAL = 'Dwell_normalizations_val.pkl' OUTPUT_NORMLIZATIONS_SUBM = 'Dwell_normalizations_submission.pkl' DEFAULT_FEATURES_DIR_NAME = 'nn_vnormal' DEFAULT_PREPROC_DIR_NAME = 'data_processed_vnormal' def setup_args_parser(): parser = argparse.ArgumentParser(description='Create cv features') parser.add_argument('--processed_data_dir_name', help='path to preprocessed data', default=DEFAULT_PREPROC_DIR_NAME) parser.add_argument('--features_dir_name', help='features directory name', default=DEFAULT_FEATURES_DIR_NAME) #parser.add_argument('--split_option', help='split type. Options: normal, future', default=DEFAULT_SPLIT) parser.add_argument('--debug', help='debug mode (verbose output and no saving)', action='store_true') return parser def setup_logger(debug): logger = logging.getLogger() logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) if debug: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) return logger def main(): parser = setup_args_parser() args = parser.parse_args() logger = setup_logger(args.debug) #logger.info('split option: %s' % args.split_option) logger.info(100*'-') logger.info('Running 013_Features_Dwell.py') logger.info(100*'-') logger.info('processed data directory name: %s' % args.processed_data_dir_name) logger.info('features directory name: %s' % args.features_dir_name) #Set up arguments # # split_option # if args.split_option=='normal': # SPLIT_OPTION = 'normal' # elif args.split_option=='future': # SPLIT_OPTION = 'leave_out_only_clickout_with_nans' # processed data path DATA_PATH = '../data/' + args.processed_data_dir_name + '/' #os.makedirs(DATA_PATH) if not os.path.exists(DATA_PATH) else None logger.info('processed data path: %s' % DATA_PATH) # features data path FEATURES_PATH = '../features/' + args.features_dir_name + '/' #os.makedirs(FEATURES_PATH) if not os.path.exists(FEATURES_PATH) else None logger.info('features path: %s' % FEATURES_PATH) # End of set up arguments config = pickle.load(open(DATA_PATH+OUTPUT_CONFIG, "rb" )) config # ### read data df_steps_tr = pd.read_csv(DATA_PATH+OUTPUT_DF_TR) df_steps_val = pd.read_csv(DATA_PATH+OUTPUT_DF_VAL) df_steps_train = pd.read_csv(DATA_PATH+OUTPUT_DF_TRAIN) df_steps_test = pd.read_csv(DATA_PATH+OUTPUT_DF_TEST) df_sessions = pd.read_csv(DATA_PATH+OUTPUT_DF_SESSIONS) enc_dict = pickle.load(open(DATA_PATH+OUTPUT_ENCODING_DICT, "rb" )) # ## Concatenate all data # #### validation df_tr = df_steps_tr.merge(df_sessions, on='session_id') df_val = df_steps_val.merge(df_sessions, on='session_id') df_all_cv = pd.concat([df_tr, df_val], axis=0).reset_index(drop=True) del df_tr, df_val, df_steps_tr, df_steps_val # #### all df_test_new = df_steps_test.merge(df_sessions, on='session_id') df_train_new = df_steps_train.merge(df_sessions, on='session_id') df_all = pd.concat([df_train_new, df_test_new], axis=0).reset_index(drop=True) del df_train_new, df_test_new, df_steps_train, df_steps_test del df_sessions # ### create a dataframe with impressions list¶ idx = df_all.action_type=='clickout item' df_all_imp_list = df_all.loc[idx,['session_id', 'step', 'impressions']].reset_index(drop=True) df_all_imp_list['impressions_list_enc'] = df_all_imp_list.impressions.fillna('').str.split('|') \ .apply(lambda s: [enc_dict['reference'].get(i) for i in s]) df_all_imp_list.drop('impressions', axis=1, inplace=True) # # Get Dwell VAR_GROUPBY = 'session_id' FEATURE_NAME = 'past_dwell_with_items_%s' % VAR_GROUPBY print (FEATURE_NAME) df_all_cv = df_all_cv.sort_values(['user_id', 'day','session_id', 'step', 'timestamp']).reset_index(drop=True) df_all = df_all.sort_values(['user_id', 'day','session_id', 'step', 'timestamp']).reset_index(drop=True) # ### validation VARS_ = ['session_id', 'step', 'timestamp', 'action_type', 'reference'] df = df_all_cv[VARS_].copy() FILE_NAME = 'Dcv_%s.gz' % FEATURE_NAME print (FILE_NAME) df['reference_enc'] = df.reference.apply(lambda s: str(enc_dict['reference'].get(s))) df = df.drop('reference', axis=1) df['next_timestamp'] = df.groupby('session_id').timestamp.shift(-1) df['duration'] = df.next_timestamp-df.timestamp df['duration'] = df['duration'].fillna(0) df = df.drop(['timestamp', 'next_timestamp'], axis=1) df['ref_dwell_dict'] = df.apply(lambda row: dict([(row.reference_enc, row.duration)]), axis=1).apply(Counter) df = df.drop(['reference_enc', 'duration'], axis=1) df['cumsum_dwell_dict'] = df.groupby('session_id').ref_dwell_dict.transform(pd.Series.cumsum) df['cumsum_dwell_dict_shift'] = df.groupby('session_id').cumsum_dwell_dict.shift() df = df.drop(['ref_dwell_dict', 'cumsum_dwell_dict'], axis=1) df_feat = df.merge(df_all_imp_list, on=['session_id', 'step']) df_feat[FEATURE_NAME] = df_feat.apply(lambda row: [row.cumsum_dwell_dict_shift.get(str(s), -1) for s in row.impressions_list_enc] \ if pd.notnull(row.cumsum_dwell_dict_shift) else [-1 for s in row.impressions_list_enc], axis=1) df_feat = df_feat[['session_id', 'step', FEATURE_NAME]] df_feat.to_csv(FEATURES_PATH+FILE_NAME, index=False, compression='gzip') print (FEATURES_PATH+FILE_NAME) def get_imp_means_and_stds(df_tr_=None, var_group = 'seq_num_new'): aux = df_tr_[[var_group]].reset_index(drop=True)[var_group] lista=list(itertools.chain.from_iterable(aux)) listasemnan = [s for s in lista if s!=-1] means = np.mean(listasemnan) stds = np.std(listasemnan) maxv = np.max(listasemnan) return means, stds, maxv def get_log_imp_means_and_stds(df_tr_=None, var_group = 'seq_num_new'): aux = df_tr_[[var_group]].reset_index(drop=True)[var_group] lista=list(itertools.chain.from_iterable(aux)) listasemnan = np.log(np.array([s for s in lista if s!=-1])+1.9) means = np.mean(listasemnan) stds = np.std(listasemnan) maxv = np.max(listasemnan) return means, stds,maxv normalizations_dict = {} normalizations_dict['dwell_times'] = {} means, stds, maxv = get_imp_means_and_stds(df_tr_=df_feat, var_group = 'past_dwell_with_items_session_id') normalizations_dict['dwell_times']['means'] = means normalizations_dict['dwell_times']['stds'] = stds normalizations_dict['dwell_times']['max'] = maxv normalizations_dict['dwell_times_log'] = {} means, stds, maxv = get_log_imp_means_and_stds(df_tr_=df_feat, var_group = 'past_dwell_with_items_session_id') normalizations_dict['dwell_times_log']['means'] = means normalizations_dict['dwell_times_log']['stds'] = stds normalizations_dict['dwell_times_log']['max'] = maxv with open(FEATURES_PATH+OUTPUT_NORMLIZATIONS_VAL, 'wb') as handle: pickle.dump(normalizations_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) # ### all VARS_ = ['session_id', 'step', 'timestamp', 'action_type', 'reference'] df = df_all[VARS_].copy() FILE_NAME = 'D_%s.gz' % FEATURE_NAME print (FILE_NAME) df['reference_enc'] = df.reference.apply(lambda s: str(enc_dict['reference'].get(s))) df = df.drop('reference', axis=1) df['next_timestamp'] = df.groupby('session_id').timestamp.shift(-1) df['duration'] = df.next_timestamp-df.timestamp df['duration'] = df['duration'].fillna(0) df = df.drop(['timestamp', 'next_timestamp'], axis=1) df['ref_dwell_dict'] = df.apply(lambda row: dict([(row.reference_enc, row.duration)]), axis=1).apply(Counter) df = df.drop(['reference_enc', 'duration'], axis=1) df['cumsum_dwell_dict'] = df.groupby('session_id').ref_dwell_dict.transform(pd.Series.cumsum) df['cumsum_dwell_dict_shift'] = df.groupby('session_id').cumsum_dwell_dict.shift() df = df.drop(['ref_dwell_dict', 'cumsum_dwell_dict'], axis=1) df_feat = df.merge(df_all_imp_list, on=['session_id', 'step']) df_feat[FEATURE_NAME] = df_feat.apply(lambda row: [row.cumsum_dwell_dict_shift.get(str(s), -1) for s in row.impressions_list_enc] \ if pd.notnull(row.cumsum_dwell_dict_shift) else [-1 for s in row.impressions_list_enc], axis=1) df_feat = df_feat[['session_id', 'step', FEATURE_NAME]] df_feat.to_csv(FEATURES_PATH+FILE_NAME, index=False, compression='gzip') print (FEATURES_PATH+FILE_NAME) normalizations_dict = {} normalizations_dict['dwell_times'] = {} means, stds, maxv = get_imp_means_and_stds(df_tr_=df_feat, var_group = 'past_dwell_with_items_session_id') normalizations_dict['dwell_times']['means'] = means normalizations_dict['dwell_times']['stds'] = stds normalizations_dict['dwell_times']['max'] = maxv normalizations_dict['dwell_times_log'] = {} means, stds, maxv = get_log_imp_means_and_stds(df_tr_=df_feat, var_group = 'past_dwell_with_items_session_id') normalizations_dict['dwell_times_log']['means'] = means normalizations_dict['dwell_times_log']['stds'] = stds normalizations_dict['dwell_times_log']['max'] = maxv with open(FEATURES_PATH+OUTPUT_NORMLIZATIONS_SUBM, 'wb') as handle: pickle.dump(normalizations_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": main()
[ "logging.getLogger", "logging.basicConfig", "numpy.mean", "pickle.dump", "argparse.ArgumentParser", "pandas.read_csv", "numpy.max", "itertools.chain.from_iterable", "numpy.array", "pandas.concat", "numpy.std", "pandas.notnull", "sys.path.append" ]
[((50, 72), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (65, 72), False, 'import sys\n'), ((785, 842), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Create cv features"""'}), "(description='Create cv features')\n", (808, 842), False, 'import argparse\n'), ((1351, 1370), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1368, 1370), False, 'import logging\n'), ((1375, 1467), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)s %(message)s"""', 'level': 'logging.INFO'}), "(format='%(asctime)s %(levelname)s %(message)s', level=\n logging.INFO)\n", (1394, 1467), False, 'import logging\n'), ((2813, 2850), 'pandas.read_csv', 'pd.read_csv', (['(DATA_PATH + OUTPUT_DF_TR)'], {}), '(DATA_PATH + OUTPUT_DF_TR)\n', (2824, 2850), True, 'import pandas as pd\n'), ((2868, 2906), 'pandas.read_csv', 'pd.read_csv', (['(DATA_PATH + OUTPUT_DF_VAL)'], {}), '(DATA_PATH + OUTPUT_DF_VAL)\n', (2879, 2906), True, 'import pandas as pd\n'), ((2926, 2966), 'pandas.read_csv', 'pd.read_csv', (['(DATA_PATH + OUTPUT_DF_TRAIN)'], {}), '(DATA_PATH + OUTPUT_DF_TRAIN)\n', (2937, 2966), True, 'import pandas as pd\n'), ((2985, 3024), 'pandas.read_csv', 'pd.read_csv', (['(DATA_PATH + OUTPUT_DF_TEST)'], {}), '(DATA_PATH + OUTPUT_DF_TEST)\n', (2996, 3024), True, 'import pandas as pd\n'), ((3041, 3084), 'pandas.read_csv', 'pd.read_csv', (['(DATA_PATH + OUTPUT_DF_SESSIONS)'], {}), '(DATA_PATH + OUTPUT_DF_SESSIONS)\n', (3052, 3084), True, 'import pandas as pd\n'), ((6359, 6379), 'numpy.mean', 'np.mean', (['listasemnan'], {}), '(listasemnan)\n', (6366, 6379), True, 'import numpy as np\n'), ((6396, 6415), 'numpy.std', 'np.std', (['listasemnan'], {}), '(listasemnan)\n', (6402, 6415), True, 'import numpy as np\n'), ((6431, 6450), 'numpy.max', 'np.max', (['listasemnan'], {}), '(listasemnan)\n', (6437, 6450), True, 'import numpy as np\n'), ((6775, 6795), 'numpy.mean', 'np.mean', (['listasemnan'], {}), '(listasemnan)\n', (6782, 6795), True, 'import numpy as np\n'), ((6812, 6831), 'numpy.std', 'np.std', (['listasemnan'], {}), '(listasemnan)\n', (6818, 6831), True, 'import numpy as np\n'), ((6847, 6866), 'numpy.max', 'np.max', (['listasemnan'], {}), '(listasemnan)\n', (6853, 6866), True, 'import numpy as np\n'), ((7671, 7745), 'pickle.dump', 'pickle.dump', (['normalizations_dict', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(normalizations_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (7682, 7745), False, 'import pickle\n'), ((9979, 10053), 'pickle.dump', 'pickle.dump', (['normalizations_dict', 'handle'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(normalizations_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)\n', (9990, 10053), False, 'import pickle\n'), ((3348, 3382), 'pandas.concat', 'pd.concat', (['[df_tr, df_val]'], {'axis': '(0)'}), '([df_tr, df_val], axis=0)\n', (3357, 3382), True, 'import pandas as pd\n'), ((3623, 3669), 'pandas.concat', 'pd.concat', (['[df_train_new, df_test_new]'], {'axis': '(0)'}), '([df_train_new, df_test_new], axis=0)\n', (3632, 3669), True, 'import pandas as pd\n'), ((6257, 6291), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['aux'], {}), '(aux)\n', (6286, 6291), False, 'import itertools\n'), ((6651, 6685), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['aux'], {}), '(aux)\n', (6680, 6685), False, 'import itertools\n'), ((5827, 5866), 'pandas.notnull', 'pd.notnull', (['row.cumsum_dwell_dict_shift'], {}), '(row.cumsum_dwell_dict_shift)\n', (5837, 5866), True, 'import pandas as pd\n'), ((6716, 6755), 'numpy.array', 'np.array', (['[s for s in lista if s != -1]'], {}), '([s for s in lista if s != -1])\n', (6724, 6755), True, 'import numpy as np\n'), ((8940, 8979), 'pandas.notnull', 'pd.notnull', (['row.cumsum_dwell_dict_shift'], {}), '(row.cumsum_dwell_dict_shift)\n', (8950, 8979), True, 'import pandas as pd\n')]
import copy import importlib import os import numpy as np import tensorflow as tf import logging tf.get_logger().setLevel(logging.ERROR) from client import Client from server import Server from model import ServerModel from baseline_constants import MAIN_PARAMS, MODEL_PARAMS from fedbayes_helper import * from fedbayes_tinyhelper import * import metrics.writer as metrics_writer STAT_METRICS_PATH = 'metrics/stat_metrics.csv' SYS_METRICS_PATH = 'metrics/sys_metrics.csv' #from utils.matching.pfnm import layer_group_descent as pdm_multilayer_group_descent from utils.matching.cnn_pfnm import layerwise_sampler from utils.matching.cnn_retrain import reconstruct_weights, local_train, combine_network_after_matching def print_metrics(metrics, weights): ordered_weights = [weights[c] for c in sorted(weights)] metric_names = metrics_writer.get_metrics_names(metrics) for metric in metric_names: ordered_metric = [metrics[c][metric] for c in sorted(metrics)] print('%s: %g, 10th percentile: %g, 90th percentile %g' \ % (metric, np.average(ordered_metric, weights=ordered_weights), np.percentile(ordered_metric, 10), np.percentile(ordered_metric, 90))) class Fedbayes_Sing_Trainer: def __init__(self, users, groups, train_data, test_data): # matching requires num of classes to be set during # model_config stage, or it can cause program failure self.users = users self.train_data = train_data self.test_data = test_data self.num_classes = 0 self.shape_func = None self.upd_collector = [] def recover_weights(self, weights, assignment, model_summary, model_meta_data): res_weights = [] conv_varname, dense_varname, weight_varname = "conv", "dense", "kernel" #print("checking len, model summ: {}, model meta data: {}".format(len(model_summary), len(model_meta_data))) for var_name, o, v in zip(model_summary, model_meta_data, weights): print("name {}, old shape is {}, new shape is {}".format(var_name, o, v.shape)) if var_name.startswith(conv_varname): if var_name.endswith(weight_varname): w = v.reshape(o) w = w.transpose((2, 3, 1, 0)) else: w = v elif var_name.startswith("batch"): w = np.ones(o) elif var_name.startswith(dense_varname): if var_name.endswith(weight_varname): w = v.transpose() else: w = v res_weights.append(w) # just change last layer, carefully, not sure how it works # do check the reason out after Jan, find a way to # improve it. res_weights[-2] = res_weights[-2].T return res_weights def train_model(self, client_model, train_data, weights, assignment, config): # what maintain by assignment is a dictionary of #{layer_name: [global_id]} # the meaning of it is a worker's all layer(except last) matching assignment epochs = config["epochs"] batch_size = config["batch-size"] client_model.set_params(weights) client_model.train(train_data, num_epochs=epochs, batch_size=batch_size) update = client_model.get_params() self.upd_collector.append(update) def model_config(self, config, dataset, my_model): shared_model = my_model model_path = '%s/%s.py' % (dataset, shared_model) if not os.path.exists(model_path): print('Please specify a valid dataset and a valid model.') model_path = '%s.%s' % (dataset, shared_model) print('############################## %s ##############################' % model_path) mod = importlib.import_module(model_path) ClientModel = getattr(mod, 'ClientModel') self.shape_func = getattr(mod, 'get_convolution_extractor_shape') # Suppress tf warnings tf.logging.set_verbosity(tf.logging.WARN) # Create 2 models model_params = MODEL_PARAMS[model_path] model_params_list = list(model_params) self.num_classes = model_params[1] # setting num_class to be a member of the trainer model_params_list.insert(0, config["seed"]) model_params_list[1] = config["lr"] model_params = tuple(model_params_list) tf.reset_default_graph() client_model = ClientModel(*model_params) # Create server server = Server(client_model) # Create clients _users = self.users groups = [[] for _ in _users] clients = [Client(u, g, self.train_data[u], self.test_data[u], client_model) \ for u, g in zip(_users, groups)] print('%d Clients in Total' % len(clients)) return clients, server, client_model def begins(self, config, args): clients, server, client_model = self.model_config(config, args.dataset, 'cnn') num_rounds = config["num-rounds"] eval_every = config["eval-every"] epochs_per_round = config['epochs'] batch_size = config['batch-size'] clients_per_round = config["clients-per-round"] state_dict = {} # Test untrained model on all clients # stat_metrics = server.test_model(clients) # all_ids, all_groups, all_num_samples = server.get_clients_info(clients) # print_metrics(stat_metrics, all_num_samples) model_summary = client_model.get_summary() model_meta_data = client_model.get_meta_data() # gl_weight = client_model.get_params() gl_weight = self.batch_BBPMAP(clients[:40], state_dict, client_model, config, args) gl_weight = self.recover_weights(gl_weight, [], model_summary, model_meta_data) server.model = gl_weight stat_metrics = server.test_model(clients[:40]) all_ids, all_groups, all_num_samples = server.get_clients_info(clients[:40]) print_metrics(stat_metrics, all_num_samples) first = True # for i in range(num_rounds): # print('--- Round %d of %d: Training %d Clients ---' % (i+1, num_rounds, clients_per_round)) # server.select_clients(clients, num_clients=clients_per_round) # batch_clients = server.selected_clients # if first: # cw = gl_weight # else: # cw = self.recover_weights(gl_weight, assignment, model_summary, model_meta_data) # for k in batch_clients: # if first or not (k.id in state_dict): # assignment = [] # else: # assignment = state_dict[k.id] # self.train_model(client_model, k.train_data, cw, assignment, config) # gl_weight = self.batch_BBPMAP(batch_clients, state_dict, client_model, config, args) # if (i + 1) % eval_every == 0 or (i + 1) == num_rounds: # cw = self.recover_weights(gl_weight, assignment, model_summary, model_meta_data) # server.model = cw # stat_metrics = server.test_model(clients) # print_metrics(stat_metrics, all_num_samples) # first = False client_model.close() def ends(self): print("experiment of Fedbayes finished.") return def batch_BBPMAP(self, batch_clients, state_dict, client_model, config, args): model_summary = client_model.get_summary() model_meta_data = client_model.get_meta_data() n_classes = self.num_classes # averaging_weights, cls_freqs = avg_cls_weights(batch_clients, args.dataset, n_classes) averaging_weights, cls_freqs = avg_cls_weights(args.dataset, n_classes) sigma=config["sigma"] sigma0=config["sigma0"] gamma=config["gamma"] it = config["sample-iter"] assignments_list = [] # param names explained: # C is the number of layers for model structure, no counting bias # J is the number of clients (workers) net_list = load_files() C = int(len(model_meta_data) / 2) J = len(net_list) matching_shapes = [] fc_pos = None apply_by_j = lambda j: load_local_model_weight_func(j, model_summary) batch_weights = list(map(apply_by_j, net_list)) batch_freqs = pdm_prepare_freq(cls_freqs, self.num_classes) for cur_l in range(1, C): layer_hungarian_weights, assignment, L_next = layerwise_sampler( batch_weights=batch_weights, layer_index=cur_l, sigma0_layers=sigma0, sigma_layers=sigma, batch_frequencies=batch_freqs, it=it, gamma_layers=gamma, model_meta_data=model_meta_data, model_layer_type= model_summary, n_layers= C, matching_shapes=matching_shapes, ) assignments_list.append(assignment) for client, a_val in zip(batch_clients, assignment): p_index = 2 * (cur_l -1) v_name = model_summary[p_index] if client.id in state_dict: cdict = state_dict[client.id] else: cdict = {} cdict.update({v_name: a_val}) state_dict.update({client.id : cdict}) print("Number of assignment: {}, L_next: {}, matched_weight shape: {} ".format( len(assignment), L_next, layer_hungarian_weights[0].shape) ) matching_shapes.append(L_next) temp_network_weg = combine_network_after_matching(batch_weights, cur_l, model_summary, model_meta_data, layer_hungarian_weights, L_next, assignment, matching_shapes, self.shape_func) old_data = client_model.get_params() gl_weights = [] for worker in range(J): j = worker gl_weights.append(reconstruct_weights(temp_network_weg[j], assignment[j], model_summary, old_data, model_summary[2 * cur_l - 2])) models = local_train(batch_clients, gl_weights, cur_l, config) batch_weights = list(map(apply_by_j, models)) ## we handle the last layer carefully here ... ## averaging the last layer matched_weights = [] last_layer_weights_collector = [] for worker in range(J): # firstly we combine last layer's weight and bias bias_shape = batch_weights[worker][-1].shape last_layer_bias = batch_weights[worker][-1].reshape((1, bias_shape[0])) last_layer_weights = np.concatenate((batch_weights[worker][-2].T, last_layer_bias), axis=0) # the directed normalization doesn't work well, let's try weighted averaging last_layer_weights_collector.append(last_layer_weights) last_layer_weights_collector = np.array(last_layer_weights_collector) avg_last_layer_weight = np.zeros(last_layer_weights_collector[0].shape, dtype=np.float32) for i in range(n_classes): avg_weight_collector = np.zeros(last_layer_weights_collector[0][:, 0].shape, dtype=np.float32) for j in range(J): avg_weight_collector += averaging_weights[j][i]*last_layer_weights_collector[j][:, i] avg_last_layer_weight[:, i] = avg_weight_collector #avg_last_layer_weight = np.mean(last_layer_weights_collector, axis=0) for i in range(C * 2): if i < (C * 2 - 2): matched_weights.append(batch_weights[0][i]) matched_weights.append(avg_last_layer_weight[0:-1, :]) matched_weights.append(avg_last_layer_weight[-1, :]) self.upd_collector = [] return matched_weights
[ "os.path.exists", "tensorflow.reset_default_graph", "importlib.import_module", "numpy.ones", "numpy.average", "tensorflow.logging.set_verbosity", "metrics.writer.get_metrics_names", "server.Server", "numpy.array", "numpy.zeros", "utils.matching.cnn_pfnm.layerwise_sampler", "utils.matching.cnn_retrain.local_train", "tensorflow.get_logger", "client.Client", "utils.matching.cnn_retrain.combine_network_after_matching", "numpy.concatenate", "numpy.percentile", "utils.matching.cnn_retrain.reconstruct_weights" ]
[((836, 877), 'metrics.writer.get_metrics_names', 'metrics_writer.get_metrics_names', (['metrics'], {}), '(metrics)\n', (868, 877), True, 'import metrics.writer as metrics_writer\n'), ((98, 113), 'tensorflow.get_logger', 'tf.get_logger', ([], {}), '()\n', (111, 113), True, 'import tensorflow as tf\n'), ((3894, 3929), 'importlib.import_module', 'importlib.import_module', (['model_path'], {}), '(model_path)\n', (3917, 3929), False, 'import importlib\n'), ((4093, 4134), 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.WARN'], {}), '(tf.logging.WARN)\n', (4117, 4134), True, 'import tensorflow as tf\n'), ((4510, 4534), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (4532, 4534), True, 'import tensorflow as tf\n'), ((4627, 4647), 'server.Server', 'Server', (['client_model'], {}), '(client_model)\n', (4633, 4647), False, 'from server import Server\n'), ((11589, 11627), 'numpy.array', 'np.array', (['last_layer_weights_collector'], {}), '(last_layer_weights_collector)\n', (11597, 11627), True, 'import numpy as np\n'), ((11661, 11726), 'numpy.zeros', 'np.zeros', (['last_layer_weights_collector[0].shape'], {'dtype': 'np.float32'}), '(last_layer_weights_collector[0].shape, dtype=np.float32)\n', (11669, 11726), True, 'import numpy as np\n'), ((3630, 3656), 'os.path.exists', 'os.path.exists', (['model_path'], {}), '(model_path)\n', (3644, 3656), False, 'import os\n'), ((4760, 4825), 'client.Client', 'Client', (['u', 'g', 'self.train_data[u]', 'self.test_data[u]', 'client_model'], {}), '(u, g, self.train_data[u], self.test_data[u], client_model)\n', (4766, 4825), False, 'from client import Client\n'), ((8814, 9106), 'utils.matching.cnn_pfnm.layerwise_sampler', 'layerwise_sampler', ([], {'batch_weights': 'batch_weights', 'layer_index': 'cur_l', 'sigma0_layers': 'sigma0', 'sigma_layers': 'sigma', 'batch_frequencies': 'batch_freqs', 'it': 'it', 'gamma_layers': 'gamma', 'model_meta_data': 'model_meta_data', 'model_layer_type': 'model_summary', 'n_layers': 'C', 'matching_shapes': 'matching_shapes'}), '(batch_weights=batch_weights, layer_index=cur_l,\n sigma0_layers=sigma0, sigma_layers=sigma, batch_frequencies=batch_freqs,\n it=it, gamma_layers=gamma, model_meta_data=model_meta_data,\n model_layer_type=model_summary, n_layers=C, matching_shapes=matching_shapes\n )\n', (8831, 9106), False, 'from utils.matching.cnn_pfnm import layerwise_sampler\n'), ((9998, 10169), 'utils.matching.cnn_retrain.combine_network_after_matching', 'combine_network_after_matching', (['batch_weights', 'cur_l', 'model_summary', 'model_meta_data', 'layer_hungarian_weights', 'L_next', 'assignment', 'matching_shapes', 'self.shape_func'], {}), '(batch_weights, cur_l, model_summary,\n model_meta_data, layer_hungarian_weights, L_next, assignment,\n matching_shapes, self.shape_func)\n', (10028, 10169), False, 'from utils.matching.cnn_retrain import reconstruct_weights, local_train, combine_network_after_matching\n'), ((10768, 10821), 'utils.matching.cnn_retrain.local_train', 'local_train', (['batch_clients', 'gl_weights', 'cur_l', 'config'], {}), '(batch_clients, gl_weights, cur_l, config)\n', (10779, 10821), False, 'from utils.matching.cnn_retrain import reconstruct_weights, local_train, combine_network_after_matching\n'), ((11320, 11390), 'numpy.concatenate', 'np.concatenate', (['(batch_weights[worker][-2].T, last_layer_bias)'], {'axis': '(0)'}), '((batch_weights[worker][-2].T, last_layer_bias), axis=0)\n', (11334, 11390), True, 'import numpy as np\n'), ((11798, 11869), 'numpy.zeros', 'np.zeros', (['last_layer_weights_collector[0][:, 0].shape'], {'dtype': 'np.float32'}), '(last_layer_weights_collector[0][:, 0].shape, dtype=np.float32)\n', (11806, 11869), True, 'import numpy as np\n'), ((1089, 1140), 'numpy.average', 'np.average', (['ordered_metric'], {'weights': 'ordered_weights'}), '(ordered_metric, weights=ordered_weights)\n', (1099, 1140), True, 'import numpy as np\n'), ((1159, 1192), 'numpy.percentile', 'np.percentile', (['ordered_metric', '(10)'], {}), '(ordered_metric, 10)\n', (1172, 1192), True, 'import numpy as np\n'), ((1211, 1244), 'numpy.percentile', 'np.percentile', (['ordered_metric', '(90)'], {}), '(ordered_metric, 90)\n', (1224, 1244), True, 'import numpy as np\n'), ((2444, 2454), 'numpy.ones', 'np.ones', (['o'], {}), '(o)\n', (2451, 2454), True, 'import numpy as np\n'), ((10524, 10638), 'utils.matching.cnn_retrain.reconstruct_weights', 'reconstruct_weights', (['temp_network_weg[j]', 'assignment[j]', 'model_summary', 'old_data', 'model_summary[2 * cur_l - 2]'], {}), '(temp_network_weg[j], assignment[j], model_summary,\n old_data, model_summary[2 * cur_l - 2])\n', (10543, 10638), False, 'from utils.matching.cnn_retrain import reconstruct_weights, local_train, combine_network_after_matching\n')]
import numpy as np import pyverilator import os from . import to_float, to_fix_point_int import taichi as ti from .all_python_functions import calc_next_pos_and_velocity, rectify_positions_and_velocities, \ rectify_positions_in_collision, calc_after_collision_velocity, two_ball_collides, normalize_vector def rectify_positions_in_collision_test(sim, ball1_pos, ball2_pos, radius): sim.io.rst = 0 sim.io.rst = 1 sim.io.rst = 0 sim.io.x0, sim.io.y0 = to_fix_point_int(ball1_pos) sim.io.x1, sim.io.y1 = to_fix_point_int(ball2_pos) sim.io.radius = to_fix_point_int(radius) done = bool(sim.io.done.value) while not done: sim.clock.tick() done = bool(sim.io.done.value) rectified_ball1_pos = to_float(np.array([sim.io.new_x0.value, sim.io.new_y0.value])) rectified_ball2_pos = to_float(np.array([sim.io.new_x1.value, sim.io.new_y1.value])) return rectified_ball1_pos, rectified_ball2_pos def test_rectifier(): os.chdir("./pyverilog") sim = pyverilator.PyVerilator.build("rectify_p_in_collision.v") ti.init(ti.cpu) resolution = (500, 500) fps = 60 g = 9.8 drag_coefficient = 0.001 # world space [0.0, 1.0] ^ 2 cue_ball_velocity_magnitude_wc = 1.0 ball_pixel_radius = 10 ball_radius_wc = 1.0 / resolution[0] * ball_pixel_radius gui = ti.GUI("billiard_game_dual_ball", resolution) gui.fps_limit = fps delta_t = 1.0 / fps cue_ball_velocity_wc, _ = normalize_vector(np.random.rand(2)) cue_ball_velocity_wc *= cue_ball_velocity_magnitude_wc cue_ball_pos_wc = np.ones(2) * 0.5 ball_pos_wc = np.array([0.25, 0.25]) ball_velocity_wc = np.zeros(2) boundary_begin = np.array([ [0.0, 0.0], [0.0, 0.0], [1.0, 1.0], [1.0, 1.0] ]) boundary_end = np.array([ [1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0] ]) virtual_bound_x = [ball_radius_wc, 1.0 - ball_radius_wc] virtual_bound_y = [ball_radius_wc, 1.0 - ball_radius_wc] while gui.running: gui.lines(begin=boundary_begin, end=boundary_end, radius=2) gui.circle(cue_ball_pos_wc, radius=ball_pixel_radius) gui.circle(ball_pos_wc, radius=ball_pixel_radius) gui.show() cue_ball_pos_wc, cue_ball_velocity_wc = calc_next_pos_and_velocity(cue_ball_pos_wc, cue_ball_velocity_wc, delta_t, drag_coefficient, g) cue_ball_pos_wc, cue_ball_velocity_wc = rectify_positions_and_velocities(virtual_bound_x[0], virtual_bound_x[1], virtual_bound_y[0], virtual_bound_y[1], cue_ball_pos_wc, cue_ball_velocity_wc) ball_pos_wc, ball_velocity_wc = calc_next_pos_and_velocity(ball_pos_wc, ball_velocity_wc, delta_t, drag_coefficient, g) ball_pos_wc, ball_velocity_wc = rectify_positions_and_velocities(virtual_bound_x[0], virtual_bound_x[1], virtual_bound_y[0], virtual_bound_y[1], ball_pos_wc, ball_velocity_wc) if two_ball_collides(cue_ball_pos_wc, ball_pos_wc, ball_radius_wc): old_cue_ball_pos_wc, old_ball_pos_wc = cue_ball_pos_wc, ball_pos_wc cue_ball_pos_wc_ref, ball_pos_wc_ref = rectify_positions_in_collision(old_cue_ball_pos_wc, old_ball_pos_wc, ball_radius_wc) cue_ball_pos_wc, ball_pos_wc = rectify_positions_in_collision_test(sim, old_cue_ball_pos_wc, old_ball_pos_wc, ball_radius_wc) assert np.allclose(cue_ball_pos_wc_ref, cue_ball_pos_wc, atol=0.0001) assert np.allclose(ball_pos_wc_ref, ball_pos_wc, atol=0.0001) cue_ball_velocity_wc, ball_velocity_wc = calc_after_collision_velocity(cue_ball_pos_wc, ball_pos_wc, cue_ball_velocity_wc, ball_velocity_wc)
[ "numpy.allclose", "pyverilator.PyVerilator.build", "numpy.random.rand", "numpy.ones", "taichi.init", "os.chdir", "numpy.array", "numpy.zeros", "taichi.GUI" ]
[((978, 1001), 'os.chdir', 'os.chdir', (['"""./pyverilog"""'], {}), "('./pyverilog')\n", (986, 1001), False, 'import os\n'), ((1012, 1069), 'pyverilator.PyVerilator.build', 'pyverilator.PyVerilator.build', (['"""rectify_p_in_collision.v"""'], {}), "('rectify_p_in_collision.v')\n", (1041, 1069), False, 'import pyverilator\n'), ((1075, 1090), 'taichi.init', 'ti.init', (['ti.cpu'], {}), '(ti.cpu)\n', (1082, 1090), True, 'import taichi as ti\n'), ((1348, 1393), 'taichi.GUI', 'ti.GUI', (['"""billiard_game_dual_ball"""', 'resolution'], {}), "('billiard_game_dual_ball', resolution)\n", (1354, 1393), True, 'import taichi as ti\n'), ((1625, 1647), 'numpy.array', 'np.array', (['[0.25, 0.25]'], {}), '([0.25, 0.25])\n', (1633, 1647), True, 'import numpy as np\n'), ((1671, 1682), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (1679, 1682), True, 'import numpy as np\n'), ((1705, 1763), 'numpy.array', 'np.array', (['[[0.0, 0.0], [0.0, 0.0], [1.0, 1.0], [1.0, 1.0]]'], {}), '([[0.0, 0.0], [0.0, 0.0], [1.0, 1.0], [1.0, 1.0]])\n', (1713, 1763), True, 'import numpy as np\n'), ((1822, 1880), 'numpy.array', 'np.array', (['[[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]]'], {}), '([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])\n', (1830, 1880), True, 'import numpy as np\n'), ((755, 807), 'numpy.array', 'np.array', (['[sim.io.new_x0.value, sim.io.new_y0.value]'], {}), '([sim.io.new_x0.value, sim.io.new_y0.value])\n', (763, 807), True, 'import numpy as np\n'), ((844, 896), 'numpy.array', 'np.array', (['[sim.io.new_x1.value, sim.io.new_y1.value]'], {}), '([sim.io.new_x1.value, sim.io.new_y1.value])\n', (852, 896), True, 'import numpy as np\n'), ((1490, 1507), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (1504, 1507), True, 'import numpy as np\n'), ((1590, 1600), 'numpy.ones', 'np.ones', (['(2)'], {}), '(2)\n', (1597, 1600), True, 'import numpy as np\n'), ((4149, 4211), 'numpy.allclose', 'np.allclose', (['cue_ball_pos_wc_ref', 'cue_ball_pos_wc'], {'atol': '(0.0001)'}), '(cue_ball_pos_wc_ref, cue_ball_pos_wc, atol=0.0001)\n', (4160, 4211), True, 'import numpy as np\n'), ((4231, 4285), 'numpy.allclose', 'np.allclose', (['ball_pos_wc_ref', 'ball_pos_wc'], {'atol': '(0.0001)'}), '(ball_pos_wc_ref, ball_pos_wc, atol=0.0001)\n', (4242, 4285), True, 'import numpy as np\n')]
import unittest from operator import attrgetter from typing import Dict import numpy as np from PIL import Image from _pytest._code import ExceptionInfo from lunavl.sdk.errors.errors import ErrorInfo from lunavl.sdk.faceengine.engine import VLFaceEngine from lunavl.sdk.image_utils.geometry import Rect from lunavl.sdk.image_utils.image import ColorFormat, VLImage from tests.resources import ONE_FACE class BaseTestClass(unittest.TestCase): faceEngine = VLFaceEngine() @classmethod def setup_class(cls): super().setUpClass() @classmethod def teardown_class(cls) -> None: super().tearDownClass() @staticmethod def assertLunaVlError(exceptionInfo: ExceptionInfo, expectedError: ErrorInfo): """ Assert LunaVl Error Args: exceptionInfo: response from service expectedError: expected error """ assert exceptionInfo.value.error.errorCode == expectedError.errorCode, exceptionInfo.value assert exceptionInfo.value.error.description == expectedError.description, exceptionInfo.value if expectedError.detail != "": assert exceptionInfo.value.error.detail == expectedError.detail, exceptionInfo.value @staticmethod def assertReceivedAndRawExpectedErrors(receivedError: ErrorInfo, expectedErrorEmptyDetail: ErrorInfo): """ Assert expected and received errors as dicts Args: receivedError: received error expectedErrorEmptyDetail: expected error with empty detail """ assert expectedErrorEmptyDetail.errorCode == receivedError.errorCode assert expectedErrorEmptyDetail.description == receivedError.description assert expectedErrorEmptyDetail.description == receivedError.detail @staticmethod def checkRectAttr(defaultRect: Rect): """ Validate attributes of Rect Args: defaultRect: rect object """ for rectType in ("coreRectI", "coreRectF"): assert all( isinstance( getattr(defaultRect.__getattribute__(rectType), f"{coordinate}"), float if rectType == "coreRectF" else int, ) for coordinate in ("x", "y", "height", "width") ) @staticmethod def generateColorToArrayMap() -> Dict[ColorFormat, np.ndarray]: """ Get images as ndarrays in all available color formats. Returns: color format to pixel ndarray map """ image = Image.open(ONE_FACE) R, G, B = np.array(image).T X = np.ndarray(B.shape, dtype=np.uint8) allImages = { ColorFormat.B8G8R8: np.array((B, G, R)).T, ColorFormat.B8G8R8X8: np.array((B, G, R, X)).T, ColorFormat.IR_X8X8X8: np.array(image, dtype=np.uint8), ColorFormat.R16: np.array(image.convert("L"), dtype=np.uint16), ColorFormat.R8: np.array(image.convert("L"), dtype=np.uint8), ColorFormat.R8G8B8: np.array(image), ColorFormat.R8G8B8X8: np.array((R, G, B, X)).T, } def _checksAllFormats(): _notImplementedFormats = set(ColorFormat) - set(allImages) - {ColorFormat.Unknown} if _notImplementedFormats: notImplementedFormatsList = list(map(attrgetter("name"), _notImplementedFormats)) raise RuntimeError(f"Add Image for {notImplementedFormatsList} color formats") def _checksArrayShapes(): for color, ndarray in allImages.items(): if ndarray.shape[:2] != allImages[ColorFormat.R8G8B8].shape[:2]: msg = ( f"'{color.name}' image has incorrect shape.\n" f"Expected:{allImages[ColorFormat.R8G8B8].shape}\n" f"Received:{ndarray.shape}" ) raise RuntimeError(msg) _checksAllFormats() _checksArrayShapes() return allImages @staticmethod def getColorToImageMap() -> Dict[ColorFormat, VLImage]: """ Get images as vl image in all available color formats. Returns: color format to vl image map """ return { color: VLImage.fromNumpyArray(ndarray, color) for color, ndarray in BaseTestClass.generateColorToArrayMap().items() }
[ "operator.attrgetter", "PIL.Image.open", "lunavl.sdk.faceengine.engine.VLFaceEngine", "numpy.array", "numpy.ndarray", "lunavl.sdk.image_utils.image.VLImage.fromNumpyArray" ]
[((463, 477), 'lunavl.sdk.faceengine.engine.VLFaceEngine', 'VLFaceEngine', ([], {}), '()\n', (475, 477), False, 'from lunavl.sdk.faceengine.engine import VLFaceEngine\n'), ((2576, 2596), 'PIL.Image.open', 'Image.open', (['ONE_FACE'], {}), '(ONE_FACE)\n', (2586, 2596), False, 'from PIL import Image\n'), ((2645, 2680), 'numpy.ndarray', 'np.ndarray', (['B.shape'], {'dtype': 'np.uint8'}), '(B.shape, dtype=np.uint8)\n', (2655, 2680), True, 'import numpy as np\n'), ((2615, 2630), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (2623, 2630), True, 'import numpy as np\n'), ((2854, 2885), 'numpy.array', 'np.array', (['image'], {'dtype': 'np.uint8'}), '(image, dtype=np.uint8)\n', (2862, 2885), True, 'import numpy as np\n'), ((3069, 3084), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (3077, 3084), True, 'import numpy as np\n'), ((4323, 4361), 'lunavl.sdk.image_utils.image.VLImage.fromNumpyArray', 'VLImage.fromNumpyArray', (['ndarray', 'color'], {}), '(ndarray, color)\n', (4345, 4361), False, 'from lunavl.sdk.image_utils.image import ColorFormat, VLImage\n'), ((2736, 2755), 'numpy.array', 'np.array', (['(B, G, R)'], {}), '((B, G, R))\n', (2744, 2755), True, 'import numpy as np\n'), ((2793, 2815), 'numpy.array', 'np.array', (['(B, G, R, X)'], {}), '((B, G, R, X))\n', (2801, 2815), True, 'import numpy as np\n'), ((3120, 3142), 'numpy.array', 'np.array', (['(R, G, B, X)'], {}), '((R, G, B, X))\n', (3128, 3142), True, 'import numpy as np\n'), ((3377, 3395), 'operator.attrgetter', 'attrgetter', (['"""name"""'], {}), "('name')\n", (3387, 3395), False, 'from operator import attrgetter\n')]
from pygame import init, display, time, event, draw, QUIT from numpy import arange def grid(janela, comprimento, tamanho_linha, tamanho_quadrado): def draw_grid(v): draw.line(janela, (255, 255, 255), (v * tamanho_quadrado, 0), (v * tamanho_quadrado, comprimento)) draw.line(janela, (255, 255, 255), (0, v * tamanho_quadrado), (comprimento, v * tamanho_quadrado)) # Iniciando o grid for x_c in arange(comprimento // tamanho_linha): draw_grid(x_c) def borda(janela, comprimento, tamanho, cor=(0, 0, 0), espaçamento=0, p_borda=12): def borda_vertical(lado='esquerdo'): for y in arange(comprimento // tamanho): draw.line(janela, cor, (y if lado == 'esquerdo' else y+comprimento-p_borda, espaçamento), (y if lado == 'esquerdo' else y+comprimento-p_borda, comprimento)) def borda_horizontal(lado='cima'): for x in arange(comprimento // tamanho): draw.line(janela, cor, (espaçamento, x if lado == 'cima' else x+comprimento-p_borda), (comprimento, x if lado == 'cima' else x+comprimento-p_borda)) # -------------------------- Bordas borda_vertical(lado='esquerdo') borda_vertical(lado='direita') borda_horizontal(lado='cima') borda_horizontal(lado='baixo') # ------------------ Programa init() tela_cheia = 600, 600 janela = display.set_mode(tela_cheia) janela.fill((0, 0, 0)) display.set_caption('Testes de grid') FPS = 60 Fps = time.Clock() def teste_grid(game): while 1: for evento in event.get(): if evento.type == QUIT: game = False grid(janela, 400, 42, 50) borda(janela, 600, 30, (80, 80, 80), 0, 20) display.flip() Fps.tick(FPS) if not game: break
[ "pygame.display.set_caption", "pygame.init", "pygame.draw.line", "pygame.event.get", "pygame.display.set_mode", "pygame.display.flip", "pygame.time.Clock", "numpy.arange" ]
[((1554, 1560), 'pygame.init', 'init', ([], {}), '()\n', (1558, 1560), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((1594, 1622), 'pygame.display.set_mode', 'display.set_mode', (['tela_cheia'], {}), '(tela_cheia)\n', (1610, 1622), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((1646, 1683), 'pygame.display.set_caption', 'display.set_caption', (['"""Testes de grid"""'], {}), "('Testes de grid')\n", (1665, 1683), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((1700, 1712), 'pygame.time.Clock', 'time.Clock', ([], {}), '()\n', (1710, 1712), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((496, 532), 'numpy.arange', 'arange', (['(comprimento // tamanho_linha)'], {}), '(comprimento // tamanho_linha)\n', (502, 532), False, 'from numpy import arange\n'), ((179, 281), 'pygame.draw.line', 'draw.line', (['janela', '(255, 255, 255)', '(v * tamanho_quadrado, 0)', '(v * tamanho_quadrado, comprimento)'], {}), '(janela, (255, 255, 255), (v * tamanho_quadrado, 0), (v *\n tamanho_quadrado, comprimento))\n', (188, 281), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((322, 424), 'pygame.draw.line', 'draw.line', (['janela', '(255, 255, 255)', '(0, v * tamanho_quadrado)', '(comprimento, v * tamanho_quadrado)'], {}), '(janela, (255, 255, 255), (0, v * tamanho_quadrado), (comprimento,\n v * tamanho_quadrado))\n', (331, 424), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((710, 740), 'numpy.arange', 'arange', (['(comprimento // tamanho)'], {}), '(comprimento // tamanho)\n', (716, 740), False, 'from numpy import arange\n'), ((1058, 1088), 'numpy.arange', 'arange', (['(comprimento // tamanho)'], {}), '(comprimento // tamanho)\n', (1064, 1088), False, 'from numpy import arange\n'), ((1772, 1783), 'pygame.event.get', 'event.get', ([], {}), '()\n', (1781, 1783), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((1946, 1960), 'pygame.display.flip', 'display.flip', ([], {}), '()\n', (1958, 1960), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((754, 926), 'pygame.draw.line', 'draw.line', (['janela', 'cor', "(y if lado == 'esquerdo' else y + comprimento - p_borda, espaçamento)", "(y if lado == 'esquerdo' else y + comprimento - p_borda, comprimento)"], {}), "(janela, cor, (y if lado == 'esquerdo' else y + comprimento -\n p_borda, espaçamento), (y if lado == 'esquerdo' else y + comprimento -\n p_borda, comprimento))\n", (763, 926), False, 'from pygame import init, display, time, event, draw, QUIT\n'), ((1102, 1266), 'pygame.draw.line', 'draw.line', (['janela', 'cor', "(espaçamento, x if lado == 'cima' else x + comprimento - p_borda)", "(comprimento, x if lado == 'cima' else x + comprimento - p_borda)"], {}), "(janela, cor, (espaçamento, x if lado == 'cima' else x +\n comprimento - p_borda), (comprimento, x if lado == 'cima' else x +\n comprimento - p_borda))\n", (1111, 1266), False, 'from pygame import init, display, time, event, draw, QUIT\n')]
from operator import truediv import cv2 from time import sleep import HandTrackingModule as htm import os import autopy import numpy as np import math import mediapipe as mp #import modules #variables frameR=20 #frame rduction frameR_x=800 frameR_y=110 wCam,hCam=1300 ,400 pTime=0 smoothening = 5 #need to tune plocX, plocY=0,0 clocX,clocY=0,0 ########## cap=cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam) detector=htm.handDetector(maxHands=1) wScr, hScr=autopy.screen.size() while True: #1. find hand landmarks success, img = cap.read() img= detector.findHands(img) lmList,bbox =detector.findPosition(img) #2. get the tip of the index and middle finger if len(lmList)!=0: x1,y1 =lmList[8][1:] x2, y2=lmList[12][1:] #print(x1,y1,x2,y2) #3. check which finger is up fingers=detector.fingersUp() cv2.rectangle(img, (frameR_x, frameR_y), (wCam-frameR_x,hCam-frameR_y),(255,0,0),2) #4. check if it is finger is in moving. index= moving, index and middle=clicking #convert the coordinates to get correct position if fingers[1]==1 and fingers[2]==0: #moving mode x3= np.interp(x1,(frameR,wCam-frameR_x),(0,wScr)) y3= np.interp(y1,(frameR,hCam-frameR_y),(0,hScr)) #5.smoothen the values clocX=plocX+(x3-plocX)/smoothening clocY=plocY+(y3-plocY)/smoothening #move the mouse #flip all existing values on x axis autopy.mouse.move(wScr-clocX,clocY) cv2.circle(img,(x1,y1),10,(0,255,0),cv2.FILLED) plocX,plocY=clocX,clocY #check if in clicking mode both middle and index gfiner are up if fingers[1]==1 and fingers[2]==1: length, img, lineinfo=detector.findDistance(8,12,img) #print(length) if length<40: cv2.circle(img, (lineinfo[4],lineinfo[5]),7,(0,200,0),cv2.FILLED) autopy.mouse.click() sleep(0.3) if fingers[1]==1 and fingers[2]==2 and fingers[3]==3: length, img, lineinfo=detector.findDistance(8,12,img) if length<40: print("true") #show image cv2.imshow("Image",img) cv2.waitKey(1)
[ "cv2.rectangle", "autopy.mouse.click", "autopy.screen.size", "HandTrackingModule.handDetector", "time.sleep", "cv2.imshow", "cv2.circle", "cv2.VideoCapture", "numpy.interp", "autopy.mouse.move", "cv2.waitKey" ]
[((360, 379), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (376, 379), False, 'import cv2\n'), ((423, 451), 'HandTrackingModule.handDetector', 'htm.handDetector', ([], {'maxHands': '(1)'}), '(maxHands=1)\n', (439, 451), True, 'import HandTrackingModule as htm\n'), ((463, 483), 'autopy.screen.size', 'autopy.screen.size', ([], {}), '()\n', (481, 483), False, 'import autopy\n'), ((2237, 2261), 'cv2.imshow', 'cv2.imshow', (['"""Image"""', 'img'], {}), "('Image', img)\n", (2247, 2261), False, 'import cv2\n'), ((2265, 2279), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2276, 2279), False, 'import cv2\n'), ((877, 973), 'cv2.rectangle', 'cv2.rectangle', (['img', '(frameR_x, frameR_y)', '(wCam - frameR_x, hCam - frameR_y)', '(255, 0, 0)', '(2)'], {}), '(img, (frameR_x, frameR_y), (wCam - frameR_x, hCam - frameR_y),\n (255, 0, 0), 2)\n', (890, 973), False, 'import cv2\n'), ((1211, 1262), 'numpy.interp', 'np.interp', (['x1', '(frameR, wCam - frameR_x)', '(0, wScr)'], {}), '(x1, (frameR, wCam - frameR_x), (0, wScr))\n', (1220, 1262), True, 'import numpy as np\n'), ((1273, 1324), 'numpy.interp', 'np.interp', (['y1', '(frameR, hCam - frameR_y)', '(0, hScr)'], {}), '(y1, (frameR, hCam - frameR_y), (0, hScr))\n', (1282, 1324), True, 'import numpy as np\n'), ((1518, 1556), 'autopy.mouse.move', 'autopy.mouse.move', (['(wScr - clocX)', 'clocY'], {}), '(wScr - clocX, clocY)\n', (1535, 1556), False, 'import autopy\n'), ((1566, 1620), 'cv2.circle', 'cv2.circle', (['img', '(x1, y1)', '(10)', '(0, 255, 0)', 'cv2.FILLED'], {}), '(img, (x1, y1), 10, (0, 255, 0), cv2.FILLED)\n', (1576, 1620), False, 'import cv2\n'), ((1899, 1970), 'cv2.circle', 'cv2.circle', (['img', '(lineinfo[4], lineinfo[5])', '(7)', '(0, 200, 0)', 'cv2.FILLED'], {}), '(img, (lineinfo[4], lineinfo[5]), 7, (0, 200, 0), cv2.FILLED)\n', (1909, 1970), False, 'import cv2\n'), ((1981, 2001), 'autopy.mouse.click', 'autopy.mouse.click', ([], {}), '()\n', (1999, 2001), False, 'import autopy\n'), ((2018, 2028), 'time.sleep', 'sleep', (['(0.3)'], {}), '(0.3)\n', (2023, 2028), False, 'from time import sleep\n')]
from abc import ABC, abstractmethod import numpy as np import matplotlib.pyplot as plt from heatlib.units import Time from heatlib.boundary_conditions import Boundary_Condition from heatlib.domains import Domain_Constant_1D, Domain_Variable_1D from heatlib.solvers import Solver_1D ################################################# # Models # ################################################# class Model_1D(ABC): @abstractmethod def __init__(self, **kwargs): assert isinstance( self.bc0, Boundary_Condition ), 'Second argument must be Boundary_Condition.' assert isinstance( self.bc1, Boundary_Condition ), 'Third argument must be Boundary_Condition.' self.time_unit = kwargs.get('time_unit', 's') # default plotting time units self.orientation = kwargs.get('orientation', 'vertical') # default plotting orientation self.figsize = kwargs.get('figsize', (9, 6)) # default figure size self.flipy = kwargs.get('flipy', True) # plot x as negative for vertical orientation self.T = None self._time_abs = 0.0 @property def time(self): return self._time_abs / abs(Time(1, self.time_unit)) def get_T(self, x): if self.T is not None: return np.interp(abs(x), self.domain.x, self.T) else: print('Model has not yet solution.') return None def __repr__(self): if self.T is None: return 'No solutions. Ready for initial one.' elif self._time_abs == 0.0: return 'Model with initial solution' else: return f'Model with evolutionary solution for time {self.time:g}{self.time_unit}' def info(self): print(self.bc0) print(self.domain.info()) print(self.bc1) def solve(self, solver, **kwargs): assert isinstance( solver, Solver_1D ), 'You have to use Solver_1D instance as argument.' solver.solve(self, **kwargs) def plot(self): if self.T is not None: fig, ax = plt.subplots(figsize=self.figsize) if self.orientation == 'vertical': multi = -1 if self.flipy else 1 ax.plot( self.T, multi * self.domain.x_units, label=f't={self.time:g}{self.time_unit}' ) ax.set_xlabel('Temperature [°C]') ax.set_ylabel(f'Depth [{self.domain.plot_unit}]') else: ax.plot( self.domain.x_units, self.T, label=f't={self.time:g}{self.time_unit}' ) ax.set_xlabel(f'Distance [{self.domain.plot_unit}]') ax.set_ylabel('Temperature [°C]') ax.legend(loc='best') plt.show() else: print('Model has not yet any solution.') class Model_Constant_1D(Model_1D): def __init__(self, domain, bc0, bc1, **kwargs): assert isinstance( domain, Domain_Constant_1D ), 'You have to use Domain_Constant_1D instance as argument.' self.domain = domain self.bc0 = bc0 self.bc1 = bc1 super().__init__(**kwargs) class Model_Variable_1D(Model_1D): def __init__(self, domain, bc0, bc1, **kwargs): assert isinstance( domain, Domain_Variable_1D ), 'You have to use Domain_Variable_1D instance as argument.' self.domain = domain self.bc0 = bc0 self.bc1 = bc1 super().__init__(**kwargs) @property def Tm(self): if self.T is not None: return np.interp(self.domain.xm, self.domain.x, self.T) else: print('Model has not yet solution.')
[ "heatlib.units.Time", "matplotlib.pyplot.subplots", "numpy.interp", "matplotlib.pyplot.show" ]
[((2137, 2171), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'self.figsize'}), '(figsize=self.figsize)\n', (2149, 2171), True, 'import matplotlib.pyplot as plt\n'), ((2840, 2850), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2848, 2850), True, 'import matplotlib.pyplot as plt\n'), ((3671, 3719), 'numpy.interp', 'np.interp', (['self.domain.xm', 'self.domain.x', 'self.T'], {}), '(self.domain.xm, self.domain.x, self.T)\n', (3680, 3719), True, 'import numpy as np\n'), ((1234, 1257), 'heatlib.units.Time', 'Time', (['(1)', 'self.time_unit'], {}), '(1, self.time_unit)\n', (1238, 1257), False, 'from heatlib.units import Time\n')]
# BSD 3-Clause License # # Copyright (c) 2016-21, University of Liverpool # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Parser module specific to rosetta NPZ distance predictions """ import numpy as np from conkit.io._parser import BinaryDistanceFileParser from conkit.core.distance import Distance from conkit.core.distogram import Distogram from conkit.core.distancefile import DistanceFile DISTANCE_BINS = ((0, 2), (2, 2.5), (2.5, 3), (3, 4), (4, 4.5), (4.5, 5), (5, 5.5), (5.5, 6), (6, 6.5), (6.5, 7), (7, 7.5), (7.5, 8), (8, 8.5), (8.5, 9), (9, 9.5), (9.5, 10), (10, 10.5), (10.5, 11), (11, 11.5), (11.5, 12), (12, 12.5), (12.5, 13), (13, 13.5), (13.5, 14), (14, 14.5), (14.5, 15), (15, 15.5), (15.5, 16), (16, 16.5), (16.5, 17), (17, 17.5), (17.5, 18), (18, 18.5), (18.5, 19), (19, 19.5), (19.5, 20), (20, np.inf)) class RosettaNpzParser(BinaryDistanceFileParser): """Parser class for rosetta NPZ distance prediction file""" def read(self, f_handle, f_id="rosettanpz"): """Read a distance prediction file Parameters ---------- f_handle Open file handle [read permissions] f_id : str, optional Unique contact file identifier Returns ------- :obj:`~conkit.core.distancefile.DistanceFile` """ hierarchy = DistanceFile(f_id) hierarchy.original_file_format = "ROSETTA_NPZ" _map = Distogram("distogram_1") hierarchy.add(_map) prediction = np.load(f_handle, allow_pickle=True) probs = prediction['dist'] # Bin #0 corresponds with d>20A & bins #1 ~ #36 correspond with 2A<d<20A in increments of 0.5A probs = probs[:, :, [x for x in range(1, 37)] + [0]] L = probs.shape[0] for i in range(L): for j in range(i, L): _distance = Distance(i + 1, j + 1, tuple(probs[i, j, :].tolist()), DISTANCE_BINS) _map.add(_distance) return hierarchy def write(self, f_handle, hierarchy): """Write a distance file instance to a file Raises ------ :exc:`NotImplementedError` Write function not available """ raise NotImplementedError("Write function not available yet")
[ "numpy.load", "conkit.core.distancefile.DistanceFile", "conkit.core.distogram.Distogram" ]
[((2857, 2875), 'conkit.core.distancefile.DistanceFile', 'DistanceFile', (['f_id'], {}), '(f_id)\n', (2869, 2875), False, 'from conkit.core.distancefile import DistanceFile\n'), ((2946, 2970), 'conkit.core.distogram.Distogram', 'Distogram', (['"""distogram_1"""'], {}), "('distogram_1')\n", (2955, 2970), False, 'from conkit.core.distogram import Distogram\n'), ((3021, 3057), 'numpy.load', 'np.load', (['f_handle'], {'allow_pickle': '(True)'}), '(f_handle, allow_pickle=True)\n', (3028, 3057), True, 'import numpy as np\n')]
from cv2 import cv2 from collections import Counter from PIL import Image, ImageDraw, ImageFont from scipy.fftpack import dct from sklearn.cluster import KMeans import matplotlib.pyplot as plt import gmpy2 import numpy as np import time import os """ Transparency If putting the pixel with RGBA = (Ra, Ga, Ba, Aa) over the pixel with RGBA = (Rb, Gb, Bb, 100%) we get the output color equal to (Ra*Aa + Rb*(100% - Aa), Ga*Aa + Gb*(100% - Aa), Ba*Aa + Bb*(100% - Aa), 100%) Tested with Adobe Photoshop :) Works there """ GENERATED_PATH = os.path.join('icons', 'generated') def phash(img, hash_size=8, factor=4): img = np.array(img, dtype=np.uint8) img = Image.fromarray(img) image_size = hash_size * factor img.convert('L').resize((image_size, image_size), Image.ANTIALIAS) img = np.asarray(img)[:, :, 0] dct_ = dct(dct(img, axis=0), axis=1) dct_ = dct_[:hash_size, :hash_size] med = np.median(dct_) diff = dct_ > med return sum((1 << i) * int(el) for i, el in enumerate(diff.flatten())) def cluster_icons(clusters, hash_size=8): img_count = len(os.listdir(GENERATED_PATH)) assert img_count > clusters, f'There are not enough images in "{GENERATED_PATH}"' X = np.zeros((img_count, hash_size * hash_size), dtype=np.uint8) names = [] for i, filepath in enumerate(os.listdir(GENERATED_PATH)): img = cv2.imread(os.path.join(GENERATED_PATH, filepath)) names.append(filepath) hashed = phash(img) X[i, :] = np.array( [(hashed >> i) & 1 for i in range(hash_size * hash_size - 1, -1, -1)], np.uint8) kmeans = KMeans(n_jobs=-1, n_clusters=clusters) X_dist = kmeans.fit_transform(X) representative_sign_idx = np.argmin(X_dist, axis=0) imgs = [] for idx in representative_sign_idx: read = plt.imread(os.path.join(GENERATED_PATH, names[idx])) img = np.zeros((read.shape[0], read.shape[1], 4)) img[:, :, :3] = read[:, :, :3] # add transparency (make PNG out of JPEG) if read.shape[-1] == 3: img[:, :, 3] = 1.0 else: img[:, :, 3] = read[:, :, 3] imgs.append(img) return imgs def icon_mapping(threads): counter = Counter(map(lambda thr: thr['number'], threads.flatten())) clusters = cluster_icons(len(counter)) return { number: img for (number, _), img in zip(counter.most_common(), clusters) } def draw_pattern(image, threads): icons = icon_mapping(threads) factor = 32 h, w = len(image), len(image[0]) new_h = h * factor + 2 * ((h * factor - 1) // (10 * factor)) new_w = w * factor + 2 * ((w * factor - 1) // (10 * factor)) pattern = np.zeros((new_h, new_w, 3)) t0 = time.time() for y in range(h): new_y = y * factor + (y//10) * 2 + 1 for x, rgb, thread in zip(range(w), image[y], threads[y]): new_x = x * factor + (x // 10) * 2 + 1 icon = (np.copy(icons[thread['number']]) * 255).astype(np.uint8) dark = not bool(np.mean(rgb[:3]) // 128) if dark: icon[:, :, :3] = 255 - icon[:, :, :3] for y_offset in range(factor - 2): for x_offset in range(factor - 2): alpha = icon[y_offset + 1, x_offset + 1, 3] / 255 pattern[new_y + y_offset, new_x + x_offset] = ( alpha * icon[y_offset + 1, x_offset + 1, :3] + rgb * (1 - alpha)) print("\nTime spent: ", round(time.time() - t0, 2)) return pattern, icons def draw_mapping(icons, threads): icons_count = len(icons) h_line = 36 h = icons_count * 36 w = 300 prj_path = os.path.dirname(os.path.dirname(__file__)) font_path = os.path.join(prj_path, 'fonts', 'arial.ttf') font = ImageFont.truetype(font_path, size=24) img = Image.new('RGBA', (w, h), (255, 255, 255, 255)) new_img = ImageDraw.Draw(img) for i, (number, icon) in enumerate(icons.items()): text = f'{number}' icon_w, icon_h = new_img.textsize(text, font) coords = (50, h_line * i + (h_line-icon_h) // 2) new_img.text(coords, text, fill=(0, 0, 0), font=font) img = np.array(img) def find_rgb(number): for thread in threads.flatten(): if number == thread['number']: return thread['rgb'] raise ValueError(f'No thread with number {number}') icon_h, icon_w = 32, 32 for i, (number, icon_) in enumerate(icons.items()): r, g, b = find_rgb(number) icon = np.array(Image.new('RGBA', (icon_w, icon_h), (r, g, b, 255))) alpha = icon_[:, :, 3:4] dark = not bool(np.mean([r, g, b]) // 128) if dark: icon_[:, :, :3] = 1 - icon_[:, :, :3] icon = alpha * 255 * icon_ + (1 - alpha) * icon icon = icon.astype(np.uint8) coords = (w - 50 - icon_w, h_line * i + (h_line - icon_h) // 2) img[coords[1]:coords[1]+icon_h, coords[0]:coords[0]+icon_w, :] = icon return img
[ "sklearn.cluster.KMeans", "numpy.mean", "PIL.Image.fromarray", "numpy.median", "os.listdir", "numpy.copy", "PIL.Image.new", "os.path.join", "PIL.ImageFont.truetype", "numpy.asarray", "numpy.array", "numpy.zeros", "PIL.ImageDraw.Draw", "scipy.fftpack.dct", "os.path.dirname", "numpy.argmin", "time.time" ]
[((540, 574), 'os.path.join', 'os.path.join', (['"""icons"""', '"""generated"""'], {}), "('icons', 'generated')\n", (552, 574), False, 'import os\n'), ((626, 655), 'numpy.array', 'np.array', (['img'], {'dtype': 'np.uint8'}), '(img, dtype=np.uint8)\n', (634, 655), True, 'import numpy as np\n'), ((666, 686), 'PIL.Image.fromarray', 'Image.fromarray', (['img'], {}), '(img)\n', (681, 686), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((920, 935), 'numpy.median', 'np.median', (['dct_'], {}), '(dct_)\n', (929, 935), True, 'import numpy as np\n'), ((1219, 1279), 'numpy.zeros', 'np.zeros', (['(img_count, hash_size * hash_size)'], {'dtype': 'np.uint8'}), '((img_count, hash_size * hash_size), dtype=np.uint8)\n', (1227, 1279), True, 'import numpy as np\n'), ((1634, 1672), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_jobs': '(-1)', 'n_clusters': 'clusters'}), '(n_jobs=-1, n_clusters=clusters)\n', (1640, 1672), False, 'from sklearn.cluster import KMeans\n'), ((1741, 1766), 'numpy.argmin', 'np.argmin', (['X_dist'], {'axis': '(0)'}), '(X_dist, axis=0)\n', (1750, 1766), True, 'import numpy as np\n'), ((2726, 2753), 'numpy.zeros', 'np.zeros', (['(new_h, new_w, 3)'], {}), '((new_h, new_w, 3))\n', (2734, 2753), True, 'import numpy as np\n'), ((2764, 2775), 'time.time', 'time.time', ([], {}), '()\n', (2773, 2775), False, 'import time\n'), ((3809, 3853), 'os.path.join', 'os.path.join', (['prj_path', '"""fonts"""', '"""arial.ttf"""'], {}), "(prj_path, 'fonts', 'arial.ttf')\n", (3821, 3853), False, 'import os\n'), ((3865, 3903), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font_path'], {'size': '(24)'}), '(font_path, size=24)\n', (3883, 3903), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3915, 3962), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', '(w, h)', '(255, 255, 255, 255)'], {}), "('RGBA', (w, h), (255, 255, 255, 255))\n", (3924, 3962), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3977, 3996), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img'], {}), '(img)\n', (3991, 3996), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4266, 4279), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (4274, 4279), True, 'import numpy as np\n'), ((804, 819), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (814, 819), True, 'import numpy as np\n'), ((844, 860), 'scipy.fftpack.dct', 'dct', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (847, 860), False, 'from scipy.fftpack import dct\n'), ((1096, 1122), 'os.listdir', 'os.listdir', (['GENERATED_PATH'], {}), '(GENERATED_PATH)\n', (1106, 1122), False, 'import os\n'), ((1333, 1359), 'os.listdir', 'os.listdir', (['GENERATED_PATH'], {}), '(GENERATED_PATH)\n', (1343, 1359), False, 'import os\n'), ((1904, 1947), 'numpy.zeros', 'np.zeros', (['(read.shape[0], read.shape[1], 4)'], {}), '((read.shape[0], read.shape[1], 4))\n', (1912, 1947), True, 'import numpy as np\n'), ((3766, 3791), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3781, 3791), False, 'import os\n'), ((1387, 1425), 'os.path.join', 'os.path.join', (['GENERATED_PATH', 'filepath'], {}), '(GENERATED_PATH, filepath)\n', (1399, 1425), False, 'import os\n'), ((1848, 1888), 'os.path.join', 'os.path.join', (['GENERATED_PATH', 'names[idx]'], {}), '(GENERATED_PATH, names[idx])\n', (1860, 1888), False, 'import os\n'), ((4632, 4683), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', '(icon_w, icon_h)', '(r, g, b, 255)'], {}), "('RGBA', (icon_w, icon_h), (r, g, b, 255))\n", (4641, 4683), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3567, 3578), 'time.time', 'time.time', ([], {}), '()\n', (3576, 3578), False, 'import time\n'), ((4743, 4761), 'numpy.mean', 'np.mean', (['[r, g, b]'], {}), '([r, g, b])\n', (4750, 4761), True, 'import numpy as np\n'), ((2995, 3027), 'numpy.copy', 'np.copy', (["icons[thread['number']]"], {}), "(icons[thread['number']])\n", (3002, 3027), True, 'import numpy as np\n'), ((3080, 3096), 'numpy.mean', 'np.mean', (['rgb[:3]'], {}), '(rgb[:3])\n', (3087, 3096), True, 'import numpy as np\n')]
# ====================================================================== # Copyright CERFACS (October 2018) # Contributor: <NAME> (<EMAIL>) # # This software is governed by the CeCILL-B license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/or redistribute the software under the terms of the # CeCILL-B license as circulated by CEA, CNRS and INRIA at the following # URL "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided # only with a limited warranty and the software's author, the holder of # the economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards # their requirements in conditions enabling the security of their # systems and/or data to be ensured and, more generally, to use and # operate it in the same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL-B license and that you accept its terms. # ====================================================================== """Implement the :py:class:`~.QuantumCircuitGroup` class used in GLOA. The :py:class:`~.QuantumCircuitGroup` class represents what the `original paper\ <https://arxiv.org/abs/1004.2242>`_ call a "group". It is a collection of entities (in this particular case "entities" refers to "instances of :py:class:`~.QuantumCircuit`") admitting a leader. """ import copy import typing import numpy import qtoolkit.data_structures.quantum_circuit.quantum_circuit as qcirc import qtoolkit.data_structures.quantum_circuit.quantum_operation as qop import qtoolkit.maths.matrix.distances as qdists import qtoolkit.maths.matrix.generation.quantum_circuit as qc_gen import qtoolkit.utils.types as qtypes class QuantumCircuitGroup: """A group of :py:class:`~.QuantumCircuit`. The instances of :py:class:`~.QuantumCircuit` are grouped into an instance of :py:class:`~.QuantumCircuitGroup` to factorise the code. """ def __init__( self, basis: typing.Sequence[qop.QuantumOperation], objective_unitary: qtypes.UnitaryMatrix, length: int, p: int, r: numpy.ndarray, correctness_weight: float, circuit_cost_weight: float, circuit_cost_func: qcirc.CircuitCostFunction, parameters_bounds: qtypes.Bounds = None, ) -> None: """Initialise the :py:class:`~.QuantumCircuitGroup` instance. A :py:class:`~.QuantumCircuitGroup` is a group composed of `p` instances of :py:class:`~.QuantumCircuit`. :param basis: a sequence of allowed operations. The operations can be "abstract" (i.e. with None entries, see the documentation for the :py:class:`~.QuantumOperation` class) or not (i.e. with specified entries). :param objective_unitary: unitary matrix we are trying to approximate. :param length: length of the sequences that will be generated. :param p: population of the group, i.e. number of gate sequences contained in this group. :param r: rates determining the portion of old (r[0]), leader (r[1]) and random (r[2]) that are used to generate new candidates. :param correctness_weight: scalar representing the importance attached to the correctness of the generated circuit. :param circuit_cost_weight: scalar representing the importance attached to the cost of the generated circuit. :param circuit_cost_func: a function that takes as input an instance of :py:class:`~.QuantumCircuit` and returns a float representing the cost of the given circuit. :param parameters_bounds: a list of bounds for each operation in the `basis`. A None value in this list means that the corresponding operation is not parametrised. A None value for the whole list (default value) means that no gate in `basis` is parametrised. """ self._qubit_number = objective_unitary.shape[0].bit_length() - 1 self._circuits = [ qc_gen.generate_random_quantum_circuit( self._qubit_number, basis, length, parameters_bounds ) for _ in range(p) ] self._basis = basis self._r = r self._length = length self._param_bounds = parameters_bounds if self._param_bounds is None: self._param_bounds = [None] * self._qubit_number self._correctness_weight = correctness_weight self._circuit_cost_weight = circuit_cost_weight self._circuit_cost_func = circuit_cost_func self._objective_unitary = objective_unitary self._costs = numpy.zeros((p,), dtype=numpy.float) self._update_costs() def _update_costs(self): """Update the cached costs. This method should be called after one or more sequence(s) of the group changed in order to update the cached costs. """ for i in range(len(self._circuits)): self._costs[i] = qdists.gloa_objective_function( self._circuits[i], self._objective_unitary, self._correctness_weight, self._circuit_cost_weight, self._circuit_cost_func, ) def get_leader(self) -> typing.Tuple[float, qcirc.QuantumCircuit]: """Get the best quantum circuit of the group. :return: the best sequence of the group along with its cost. """ idx: int = numpy.argmin(self._costs) return self._costs[idx], self._circuits[idx] def mutate_and_recombine(self) -> None: """Apply the mutate and recombine step of the GLOA. See the `GLOA paper <https://arxiv.org/abs/1004.2242>`_ for more precision on this step. """ # Pre-compute group leader data. _, leader = self.get_leader() # For each member of the group, mutate and recombine it and see if the # newly created member is better. for seq_idx, current in enumerate(self._circuits): new_circuit = qcirc.QuantumCircuit(self._qubit_number, cache_matrix=True) random = qc_gen.generate_random_quantum_circuit( self._qubit_number, self._basis, self._length, self._param_bounds ) for ops in zip(current.operations, leader.operations, random.operations): new_circuit.add_operation(self._combine_operations(ops)) new_cost = qdists.gloa_objective_function( new_circuit, self._objective_unitary, self._correctness_weight, self._circuit_cost_weight, self._circuit_cost_func, ) if new_cost < self._costs[seq_idx]: self._circuits[seq_idx] = new_circuit self._costs[seq_idx] = new_cost return def _combine_operations( self, operations: typing.Sequence[qop.QuantumOperation] ) -> qop.QuantumOperation: """Combine the 3 given operations into one operation. The combined operation is randomly chosen from the 3 given operations with the probability distribution `r` given at the instance construction and then randomly mutated with characteristics of the other operations. :param operations: A sequence of 3 :py:class:`~.QuantumOperation`. :return: a random merge of the 3 given operations. """ op1, op2, op3 = operations[0], operations[1], operations[2] new_operation = copy.copy(numpy.random.choice(operations, p=self._r)) control_number = len(new_operation.controls) new_operation.controls = [] new_operation.target = numpy.random.choice( [op1.target, op2.target, op3.target], p=self._r ) while len(new_operation.controls) < control_number: ctrl = numpy.random.randint(0, self._qubit_number) if ctrl != new_operation.target and ctrl not in new_operation.controls: new_operation.controls.append(ctrl) if new_operation.is_parametrised(): raise NotImplementedError( "Parametrised operations are not supported for the moment." ) return new_operation @property def circuits(self) -> typing.List[qcirc.QuantumCircuit]: """Getter for the stored list of :py:class:`~.QuantumCircuit`.""" return self._circuits @property def costs(self): """Getter for the pre-computed costs.""" return self._costs
[ "numpy.random.choice", "qtoolkit.data_structures.quantum_circuit.quantum_circuit.QuantumCircuit", "qtoolkit.maths.matrix.distances.gloa_objective_function", "numpy.zeros", "numpy.random.randint", "numpy.argmin", "qtoolkit.maths.matrix.generation.quantum_circuit.generate_random_quantum_circuit" ]
[((5397, 5433), 'numpy.zeros', 'numpy.zeros', (['(p,)'], {'dtype': 'numpy.float'}), '((p,), dtype=numpy.float)\n', (5408, 5433), False, 'import numpy\n'), ((6224, 6249), 'numpy.argmin', 'numpy.argmin', (['self._costs'], {}), '(self._costs)\n', (6236, 6249), False, 'import numpy\n'), ((8461, 8529), 'numpy.random.choice', 'numpy.random.choice', (['[op1.target, op2.target, op3.target]'], {'p': 'self._r'}), '([op1.target, op2.target, op3.target], p=self._r)\n', (8480, 8529), False, 'import numpy\n'), ((4772, 4868), 'qtoolkit.maths.matrix.generation.quantum_circuit.generate_random_quantum_circuit', 'qc_gen.generate_random_quantum_circuit', (['self._qubit_number', 'basis', 'length', 'parameters_bounds'], {}), '(self._qubit_number, basis, length,\n parameters_bounds)\n', (4810, 4868), True, 'import qtoolkit.maths.matrix.generation.quantum_circuit as qc_gen\n'), ((5749, 5910), 'qtoolkit.maths.matrix.distances.gloa_objective_function', 'qdists.gloa_objective_function', (['self._circuits[i]', 'self._objective_unitary', 'self._correctness_weight', 'self._circuit_cost_weight', 'self._circuit_cost_func'], {}), '(self._circuits[i], self._objective_unitary,\n self._correctness_weight, self._circuit_cost_weight, self.\n _circuit_cost_func)\n', (5779, 5910), True, 'import qtoolkit.maths.matrix.distances as qdists\n'), ((6812, 6871), 'qtoolkit.data_structures.quantum_circuit.quantum_circuit.QuantumCircuit', 'qcirc.QuantumCircuit', (['self._qubit_number'], {'cache_matrix': '(True)'}), '(self._qubit_number, cache_matrix=True)\n', (6832, 6871), True, 'import qtoolkit.data_structures.quantum_circuit.quantum_circuit as qcirc\n'), ((6893, 7002), 'qtoolkit.maths.matrix.generation.quantum_circuit.generate_random_quantum_circuit', 'qc_gen.generate_random_quantum_circuit', (['self._qubit_number', 'self._basis', 'self._length', 'self._param_bounds'], {}), '(self._qubit_number, self._basis,\n self._length, self._param_bounds)\n', (6931, 7002), True, 'import qtoolkit.maths.matrix.generation.quantum_circuit as qc_gen\n'), ((7213, 7364), 'qtoolkit.maths.matrix.distances.gloa_objective_function', 'qdists.gloa_objective_function', (['new_circuit', 'self._objective_unitary', 'self._correctness_weight', 'self._circuit_cost_weight', 'self._circuit_cost_func'], {}), '(new_circuit, self._objective_unitary, self.\n _correctness_weight, self._circuit_cost_weight, self._circuit_cost_func)\n', (7243, 7364), True, 'import qtoolkit.maths.matrix.distances as qdists\n'), ((8297, 8339), 'numpy.random.choice', 'numpy.random.choice', (['operations'], {'p': 'self._r'}), '(operations, p=self._r)\n', (8316, 8339), False, 'import numpy\n'), ((8632, 8675), 'numpy.random.randint', 'numpy.random.randint', (['(0)', 'self._qubit_number'], {}), '(0, self._qubit_number)\n', (8652, 8675), False, 'import numpy\n')]
from optparse import OptionParser import os import sys import time import numpy as np import pandas as pd import tensorflow as tf import utils import get_site_features import tf_utils np.set_printoptions(threshold=np.inf, linewidth=200) pd.options.mode.chained_assignment = None if __name__ == '__main__': parser = OptionParser() parser.add_option("--tpm_file", dest="TPM_FILE", help="tpm data") parser.add_option("--orf_file", dest="ORF_FILE", help="ORF sequences in tsv format") parser.add_option("--mirseqs", dest="MIR_SEQS", help="tsv with miRNAs and their sequences") parser.add_option("--mirlen", dest="MIRLEN", type=int) parser.add_option("-w", "--outfile", dest="OUTFILE", help="location for tfrecords") parser.add_option("--overlap_dist", dest="OVERLAP_DIST", help="minimum distance between neighboring sites", type=int) parser.add_option("--only_canon", dest="ONLY_CANON", help="only use canonical sites", default=False, action='store_true') (options, args) = parser.parse_args() ### READ miRNA DATA and filter for ones to keep ### MIRNAS = pd.read_csv(options.MIR_SEQS, sep='\t') MIRNAS = MIRNAS[MIRNAS['use_tpms']] ALL_GUIDES = sorted(list(MIRNAS['mir'].values)) MIR_DICT = {} for row in MIRNAS.iterrows(): guide_seq = row[1]['guide_seq'] pass_seq = row[1]['pass_seq'] MIR_DICT[row[1]['mir']] = { 'mirseq': guide_seq, 'site8': utils.rev_comp(guide_seq[1:8]) + 'A', 'one_hot': utils.one_hot_encode(guide_seq[:options.MIRLEN]) } MIR_DICT[row[1]['mir'] + '*'] = { 'mirseq': pass_seq, 'site8': utils.rev_comp(pass_seq[1:8]) + 'A', 'one_hot': utils.one_hot_encode(pass_seq[:options.MIRLEN]) } ### READ EXPRESSION DATA ### TPM = pd.read_csv(options.TPM_FILE, sep='\t', index_col=0).sort_index() for mir in ALL_GUIDES: if mir not in TPM.columns: raise ValueError('{} given in mirseqs file but not in TPM file.'.format(mir)) num_batches = 10 TPM['batch'] = [ix % num_batches for ix in TPM['ix']] print("Using mirs: {}".format(ALL_GUIDES)) # read in orf sequences ORF_SEQS = pd.read_csv(options.ORF_FILE, sep='\t', header=None, index_col=0) feature_names = ['mir', 'tpm', 'orf_guide_1hot', 'utr3_guide_1hot', 'orf_pass_1hot', 'utr3_pass_1hot'] with tf.python_io.TFRecordWriter(options.OUTFILE) as tfwriter: for ix, row in enumerate(TPM.iterrows()): # print progress if ix % 100 == 0: print("Processed {}/{} transcripts".format(ix, len(TPM))) transcript = row[0] utr3 = row[1]['sequence'] orf = ORF_SEQS.loc[transcript][2] transcript_sequence = orf + utr3 orf_length = len(orf) context_dict = tf.train.Features(feature={ 'transcript': tf_utils._bytes_feature(transcript.encode('utf-8')), 'batch': tf_utils._int64_feature([row[1]['batch']]) }) total_transcript_sites = 0 features = [[], [], [], [], [], []] for mir in ALL_GUIDES: site8 = MIR_DICT[mir]['site8'] mirseq = MIR_DICT[mir]['mirseq'] site8_star = MIR_DICT[mir + '*']['site8'] mirseq_star = MIR_DICT[mir + '*']['mirseq'] features[0].append(tf_utils._bytes_feature(mir.encode('utf-8'))) # mir features[1].append(tf_utils._float_feature([row[1][mir]])) # tpm # get sites for guide strand seqs, locs = get_site_features.get_sites_from_utr(transcript_sequence, site8, overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON) num_orf_sites = len([l for l in locs if l < orf_length]) orf_sites = utils.mir_site_pair_to_ints(mirseq[:options.MIRLEN], ''.join(seqs[:num_orf_sites])) utr3_sites = utils.mir_site_pair_to_ints(mirseq[:options.MIRLEN], ''.join(seqs[num_orf_sites:])) features[2].append(tf_utils._int64_feature(orf_sites)) features[3].append(tf_utils._int64_feature(utr3_sites)) total_transcript_sites += len(locs) # get sites for guide strand seqs, locs = get_site_features.get_sites_from_utr(transcript_sequence, site8_star, overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON) num_orf_sites = len([l for l in locs if l < orf_length]) orf_sites = utils.mir_site_pair_to_ints(mirseq_star[:options.MIRLEN], ''.join(seqs[:num_orf_sites])) utr3_sites = utils.mir_site_pair_to_ints(mirseq_star[:options.MIRLEN], ''.join(seqs[num_orf_sites:])) features[4].append(tf_utils._int64_feature(orf_sites)) features[5].append(tf_utils._int64_feature(utr3_sites)) total_transcript_sites += len(locs) # features[0].append(tf_utils._bytes_feature(mir.encode('utf-8'))) # mir # features[1].append(tf_utils._float_feature([row[1][mir]])) # tpm # features[2].append(tf_utils._int64_feature(utils.one_hot_encode(mirseq[:options.MIRLEN]))) # mirseq # assert len(utils.one_hot_encode(mirseq[:options.MIRLEN])) == 40 # # get sites for guide strand # seqs, locs = get_site_features.get_sites_from_utr(transcript_sequence, site8, overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON) # num_orf_sites = len([l for l in locs if l < orf_length]) # orf_sites = ''.join(seqs[:num_orf_sites]) # utr3_sites = ''.join(seqs[num_orf_sites:]) # features[3].append(tf_utils._int64_feature(utils.one_hot_encode(orf_sites))) # features[4].append(tf_utils._int64_feature(utils.one_hot_encode(orf_sites))) # total_transcript_sites += len(locs) # features[5].append(tf_utils._int64_feature(utils.one_hot_encode(mirseq_star[:options.MIRLEN]))) # mirseq* # assert len(utils.one_hot_encode(mirseq_star[:options.MIRLEN])) == 40 # # get sites for guide strand # seqs, locs = get_site_features.get_sites_from_utr(transcript_sequence, site8_star, overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON) # num_orf_sites = len([l for l in locs if l < orf_length]) # orf_sites = ''.join(seqs[:num_orf_sites]) # utr3_sites = ''.join(seqs[num_orf_sites:]) # features[6].append(tf_utils._int64_feature(utils.one_hot_encode(orf_sites))) # features[7].append(tf_utils._int64_feature(utils.one_hot_encode(orf_sites))) # total_transcript_sites += len(locs) print(total_transcript_sites) if total_transcript_sites > 0: feature_dict = tf.train.FeatureLists(feature_list={ feature_names[ix]: tf.train.FeatureList(feature=features[ix]) for ix in range(len(feature_names)) }) # Create the SequenceExample example = tf.train.SequenceExample(context=context_dict, feature_lists=feature_dict) tfwriter.write(example.SerializeToString()) else: print('Skipping {} because no sites found'.format(transcript))
[ "tf_utils._float_feature", "pandas.read_csv", "tf_utils._int64_feature", "optparse.OptionParser", "get_site_features.get_sites_from_utr", "utils.rev_comp", "tensorflow.train.FeatureList", "utils.one_hot_encode", "tensorflow.python_io.TFRecordWriter", "tensorflow.train.SequenceExample", "numpy.set_printoptions" ]
[((187, 239), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf', 'linewidth': '(200)'}), '(threshold=np.inf, linewidth=200)\n', (206, 239), True, 'import numpy as np\n'), ((325, 339), 'optparse.OptionParser', 'OptionParser', ([], {}), '()\n', (337, 339), False, 'from optparse import OptionParser\n'), ((1103, 1142), 'pandas.read_csv', 'pd.read_csv', (['options.MIR_SEQS'], {'sep': '"""\t"""'}), "(options.MIR_SEQS, sep='\\t')\n", (1114, 1142), True, 'import pandas as pd\n'), ((2224, 2289), 'pandas.read_csv', 'pd.read_csv', (['options.ORF_FILE'], {'sep': '"""\t"""', 'header': 'None', 'index_col': '(0)'}), "(options.ORF_FILE, sep='\\t', header=None, index_col=0)\n", (2235, 2289), True, 'import pandas as pd\n'), ((2430, 2474), 'tensorflow.python_io.TFRecordWriter', 'tf.python_io.TFRecordWriter', (['options.OUTFILE'], {}), '(options.OUTFILE)\n', (2457, 2474), True, 'import tensorflow as tf\n'), ((1517, 1565), 'utils.one_hot_encode', 'utils.one_hot_encode', (['guide_seq[:options.MIRLEN]'], {}), '(guide_seq[:options.MIRLEN])\n', (1537, 1565), False, 'import utils\n'), ((1732, 1779), 'utils.one_hot_encode', 'utils.one_hot_encode', (['pass_seq[:options.MIRLEN]'], {}), '(pass_seq[:options.MIRLEN])\n', (1752, 1779), False, 'import utils\n'), ((1834, 1886), 'pandas.read_csv', 'pd.read_csv', (['options.TPM_FILE'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(options.TPM_FILE, sep='\\t', index_col=0)\n", (1845, 1886), True, 'import pandas as pd\n'), ((1456, 1486), 'utils.rev_comp', 'utils.rev_comp', (['guide_seq[1:8]'], {}), '(guide_seq[1:8])\n', (1470, 1486), False, 'import utils\n'), ((1672, 1701), 'utils.rev_comp', 'utils.rev_comp', (['pass_seq[1:8]'], {}), '(pass_seq[1:8])\n', (1686, 1701), False, 'import utils\n'), ((3676, 3810), 'get_site_features.get_sites_from_utr', 'get_site_features.get_sites_from_utr', (['transcript_sequence', 'site8'], {'overlap_dist': 'options.OVERLAP_DIST', 'only_canon': 'options.ONLY_CANON'}), '(transcript_sequence, site8,\n overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON)\n', (3712, 3810), False, 'import get_site_features\n'), ((4375, 4514), 'get_site_features.get_sites_from_utr', 'get_site_features.get_sites_from_utr', (['transcript_sequence', 'site8_star'], {'overlap_dist': 'options.OVERLAP_DIST', 'only_canon': 'options.ONLY_CANON'}), '(transcript_sequence, site8_star,\n overlap_dist=options.OVERLAP_DIST, only_canon=options.ONLY_CANON)\n', (4411, 4514), False, 'import get_site_features\n'), ((7273, 7347), 'tensorflow.train.SequenceExample', 'tf.train.SequenceExample', ([], {'context': 'context_dict', 'feature_lists': 'feature_dict'}), '(context=context_dict, feature_lists=feature_dict)\n', (7297, 7347), True, 'import tensorflow as tf\n'), ((3554, 3592), 'tf_utils._float_feature', 'tf_utils._float_feature', (['[row[1][mir]]'], {}), '([row[1][mir]])\n', (3577, 3592), False, 'import tf_utils\n'), ((4140, 4174), 'tf_utils._int64_feature', 'tf_utils._int64_feature', (['orf_sites'], {}), '(orf_sites)\n', (4163, 4174), False, 'import tf_utils\n'), ((4211, 4246), 'tf_utils._int64_feature', 'tf_utils._int64_feature', (['utr3_sites'], {}), '(utr3_sites)\n', (4234, 4246), False, 'import tf_utils\n'), ((4854, 4888), 'tf_utils._int64_feature', 'tf_utils._int64_feature', (['orf_sites'], {}), '(orf_sites)\n', (4877, 4888), False, 'import tf_utils\n'), ((4925, 4960), 'tf_utils._int64_feature', 'tf_utils._int64_feature', (['utr3_sites'], {}), '(utr3_sites)\n', (4948, 4960), False, 'import tf_utils\n'), ((3032, 3074), 'tf_utils._int64_feature', 'tf_utils._int64_feature', (["[row[1]['batch']]"], {}), "([row[1]['batch']])\n", (3055, 3074), False, 'import tf_utils\n'), ((7103, 7145), 'tensorflow.train.FeatureList', 'tf.train.FeatureList', ([], {'feature': 'features[ix]'}), '(feature=features[ix])\n', (7123, 7145), True, 'import tensorflow as tf\n')]
""" Feature Selection Test 3 Random Forest, heatmap """ import matplotlib.pyplot as plt from mlxtend.plotting import scatterplotmatrix from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import train_test_split from mlxtend.plotting import heatmap import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler # Reading data df = pd.read_csv('NewBioDegWCols.csv') df.columns = ['SpMax_L','J_Dz','nHM','F01','F04','NssssC','nCb-','C%','nCp', 'n0','F03CN','SdssC','HyWi_B','LOC','SM6_L','F03CO','Me','Mi', 'nN-N','nArN02','nCRX3','SpPosA_B','nCIR','B01','B03','N-073', 'SpMax_A','Psi_i_1d','B04','Sd0','TI2_L','nCrt','c-026','F02', 'nHDon','SpMax_B','Psi_i_A','nN','SM6_B','nArCOOR','nX','TAR'] df['TAR'] = df['TAR'].replace(['RB', 'NRB'], [1, 0]) df.replace(to_replace='NaN', value=np.nan, regex=True, inplace=True) # df.mean(), df.median() df.fillna(df.mean(), inplace=True) X = df[[i for i in list(df.columns) if i != 'TAR']] y = df['TAR'] feat_labels = X.columns ## Random Forest Feature Selection ## stdsc = StandardScaler() X = stdsc.fit_transform(X) forest = RandomForestClassifier(n_estimators=500, random_state=1) forest.fit(X, y) importances = forest.feature_importances_ indices = np.argsort(importances)[::-1] for f in range(X.shape[1]): print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]])) plt.title('Feature Importance') plt.bar(range(X.shape[1]), importances[indices], align='center') plt.xticks(range(X.shape[1]), feat_labels[indices], rotation=90) plt.xlim([-1, X.shape[1]]) plt.tight_layout() plt.savefig("rf_selection.png") plt.show() sfm = SelectFromModel(forest, prefit=True) X_selected = sfm.transform(X) print('Number of features that meet this threshold criterion:', X_selected.shape[1]) print("Threshold %f" % np.mean(importances)) cols = [] for f in range(X_selected.shape[1]): cols.append(feat_labels[indices[f]]) print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]])) ## HEAT MAP using the above features ## cols.append('TAR') cm = np.corrcoef(df[cols].values.T) hm = heatmap(cm, row_names=cols, column_names=cols) plt.show()
[ "numpy.mean", "matplotlib.pyplot.savefig", "pandas.read_csv", "sklearn.feature_selection.SelectFromModel", "numpy.corrcoef", "sklearn.ensemble.RandomForestClassifier", "sklearn.preprocessing.StandardScaler", "numpy.argsort", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "mlxtend.plotting.heatmap", "matplotlib.pyplot.show" ]
[((442, 475), 'pandas.read_csv', 'pd.read_csv', (['"""NewBioDegWCols.csv"""'], {}), "('NewBioDegWCols.csv')\n", (453, 475), True, 'import pandas as pd\n'), ((1183, 1199), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1197, 1199), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1237, 1293), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': '(500)', 'random_state': '(1)'}), '(n_estimators=500, random_state=1)\n', (1259, 1293), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((1605, 1636), 'matplotlib.pyplot.title', 'plt.title', (['"""Feature Importance"""'], {}), "('Feature Importance')\n", (1614, 1636), True, 'import matplotlib.pyplot as plt\n'), ((1797, 1823), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-1, X.shape[1]]'], {}), '([-1, X.shape[1]])\n', (1805, 1823), True, 'import matplotlib.pyplot as plt\n'), ((1824, 1842), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1840, 1842), True, 'import matplotlib.pyplot as plt\n'), ((1843, 1874), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""rf_selection.png"""'], {}), "('rf_selection.png')\n", (1854, 1874), True, 'import matplotlib.pyplot as plt\n'), ((1875, 1885), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1883, 1885), True, 'import matplotlib.pyplot as plt\n'), ((1893, 1929), 'sklearn.feature_selection.SelectFromModel', 'SelectFromModel', (['forest'], {'prefit': '(True)'}), '(forest, prefit=True)\n', (1908, 1929), False, 'from sklearn.feature_selection import SelectFromModel\n'), ((2404, 2434), 'numpy.corrcoef', 'np.corrcoef', (['df[cols].values.T'], {}), '(df[cols].values.T)\n', (2415, 2434), True, 'import numpy as np\n'), ((2440, 2486), 'mlxtend.plotting.heatmap', 'heatmap', (['cm'], {'row_names': 'cols', 'column_names': 'cols'}), '(cm, row_names=cols, column_names=cols)\n', (2447, 2486), False, 'from mlxtend.plotting import heatmap\n'), ((2487, 2497), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2495, 2497), True, 'import matplotlib.pyplot as plt\n'), ((1397, 1420), 'numpy.argsort', 'np.argsort', (['importances'], {}), '(importances)\n', (1407, 1420), True, 'import numpy as np\n'), ((2075, 2095), 'numpy.mean', 'np.mean', (['importances'], {}), '(importances)\n', (2082, 2095), True, 'import numpy as np\n')]
import pandas as pd import matplotlib.pyplot as plt import matplotlib.style as style import numpy as np import os style.use('ggplot') grid_list = ['grid.168010.e', 'grid.1032.0', 'grid.7177.6', 'grid.194645.b', 'grid.6571.5'] dirname = os.getcwd() dirname = dirname + '/Data/' df_ARWU2018 = pd.read_csv(dirname + 'ARWU/ARWURanking_2018_grid.csv') df_ARWU2017 = pd.read_csv(dirname + 'ARWU/ARWURanking_2017_grid.csv') df_ARWU2016 = pd.read_csv(dirname + 'ARWU/ARWURanking_2016_grid.csv') df_ARWU2015 = pd.read_csv(dirname + 'ARWU/ARWURanking_2015_grid.csv') df_ARWU2014 = pd.read_csv(dirname + 'ARWU/ARWURanking_2014_grid.csv') df_ARWU2013 = pd.read_csv(dirname + 'ARWU/ARWURanking_2013_grid.csv') df_ARWU2012 = pd.read_csv(dirname + 'ARWU/ARWURanking_2012_grid.csv') ARWU_DATA = ["GRID_ID", "Alumni", "Award", "HiCi", "NS", "PUB"] df_ARWU2012 = df_ARWU2012[ARWU_DATA].dropna() df_ARWU2013 = df_ARWU2013[ARWU_DATA].dropna() df_ARWU2014 = df_ARWU2014[ARWU_DATA].dropna() df_ARWU2015 = df_ARWU2015[ARWU_DATA].dropna() df_ARWU2016 = df_ARWU2016[ARWU_DATA].dropna() df_ARWU2017 = df_ARWU2017[ARWU_DATA].dropna() df_ARWU2018 = df_ARWU2018[ARWU_DATA].dropna() df_THE2012 = pd.read_csv(dirname + 'THE/THERanking2013__grid.csv') df_THE2013 = pd.read_csv(dirname + 'THE/THERanking2014__grid.csv') df_THE2014 = pd.read_csv(dirname + 'THE/THERanking2015__grid.csv') df_THE2015 = pd.read_csv(dirname + 'THE/THERanking2016__grid.csv') df_THE2016 = pd.read_csv(dirname + 'THE/THERanking2017__grid.csv') df_THE2017 = pd.read_csv(dirname + 'THE/THERanking2018__grid.csv') df_THE2018 = pd.read_csv(dirname + 'THE/THERanking2019__grid.csv') THE_DATA = ["GRID_ID", "Teaching", "Rechearch", "Citations", "Industry_Income", "Internationals_Outlook"] df_THE2012 = df_THE2012[THE_DATA].dropna() df_THE2013 = df_THE2013[THE_DATA].dropna() df_THE2014 = df_THE2014[THE_DATA].dropna() df_THE2015 = df_THE2015[THE_DATA].dropna() df_THE2016 = df_THE2016[THE_DATA].dropna() df_THE2017 = df_THE2017[THE_DATA].dropna() df_THE2018 = df_THE2018[THE_DATA].dropna() df_QS2012 = pd.read_csv(dirname + 'QS/qs2013_grid.csv') df_QS2013 = pd.read_csv(dirname + 'QS/qs2014_grid.csv') df_QS2014 = pd.read_csv(dirname + 'QS/qs2015_grid.csv') df_QS2015 = pd.read_csv(dirname + 'QS/qs2016_grid.csv') df_QS2016 = pd.read_csv(dirname + 'QS/qs2017_grid.csv') df_QS2017 = pd.read_csv(dirname + 'QS/qs2018_grid.csv') df_QS2018 = pd.read_csv(dirname + 'QS/qs2019_grid.csv') QS_DATA = ["GRID_ID", "Academic_reputation", "Employer_reputation", "Faculty_Student", "International_Faculty", "International_Students", "Citations"] df_QS2018 = df_QS2018.replace(0, np.nan) df_QS2017 = df_QS2017.replace(0, np.nan) df_QS2016 = df_QS2016.replace(0, np.nan) df_QS2015 = df_QS2015.replace(0, np.nan) df_QS2014 = df_QS2014.replace(0, np.nan) df_QS2013 = df_QS2013.replace(0, np.nan) df_QS2012 = df_QS2012.replace(0, np.nan) df_QS2018 = df_QS2018[QS_DATA].dropna() df_QS2017 = df_QS2017[QS_DATA].dropna() df_QS2016 = df_QS2016[QS_DATA].dropna() df_QS2015 = df_QS2015[QS_DATA].dropna() df_QS2014 = df_QS2014[QS_DATA].dropna() df_QS2013 = df_QS2013[QS_DATA].dropna() df_QS2012 = df_QS2012[QS_DATA].dropna() def create_constructs(df_ARWU, df_THE, df_QS, year): df_ARWU['Reputation_ARWU'] = (df_ARWU['Alumni'] + df_ARWU['Award']) / 2 df_ARWU['Publication_ARWU'] = (df_ARWU['HiCi'] + df_ARWU['NS'] + df_ARWU['PUB']) / 3 df_ARWU = df_ARWU[['GRID_ID', 'Reputation_ARWU', 'Publication_ARWU']] df_ARWU['year'] = year df_ARWU = df_ARWU[['GRID_ID', 'year', 'Reputation_ARWU', 'Publication_ARWU']] df_ARWU.columns = ['GRID_ID', 'year', 'Reputation_ARWU', 'Publication_ARWU'] df_THE['Reputation_THE'] = (df_THE['Teaching'] + df_THE['Rechearch']) / 2 df_THE['Publication_THE'] = df_THE['Citations'] df_THE = df_THE[['GRID_ID', 'Reputation_THE', 'Publication_THE']] df_THE['year'] = year df_THE = df_THE[['GRID_ID', 'year', 'Reputation_THE', 'Publication_THE']] df_THE.columns = ['GRID_ID', 'year', 'Reputation_THE', 'Publication_THE'] df_QS['Reputation_QS'] = (df_QS['Academic_reputation'] + df_QS['Employer_reputation']) / 2 df_QS['Publication_QS'] = df_QS['Citations'] df_QS = df_QS[['GRID_ID', 'Reputation_QS', 'Publication_QS']] df_QS['year'] = year df_QS = df_QS[['GRID_ID', 'year', 'Reputation_QS', 'Publication_QS']] df_QS.columns = ['GRID_ID', 'year', 'Reputation_QS', 'Publication_QS'] return df_ARWU, df_THE, df_QS def add_arrow(line, position=None, direction='right', size=20, color=None): if color is None: color = line.get_color() xdata = line.get_xdata() ydata = line.get_ydata() for i in range(len(xdata) -1): position = xdata[i] start_ind = np.argmin(np.absolute(xdata - position)) if direction == 'right': end_ind = start_ind + 1 else: end_ind = start_ind - 1 line.axes.annotate('', xytext=(xdata[start_ind], ydata[start_ind]), xy=(xdata[end_ind], ydata[end_ind]), arrowprops=dict(arrowstyle="-|>", color=color), size=size ) df_ARWU2018, df_THE2018, df_QS2018 = create_constructs(df_ARWU2018, df_THE2018, df_QS2018, '2018') df_ARWU2017, df_THE2017, df_QS2017 = create_constructs(df_ARWU2017, df_THE2017, df_QS2017, '2017') df_ARWU2016, df_THE2016, df_QS2016 = create_constructs(df_ARWU2016, df_THE2016, df_QS2016, '2016') df_ARWU2015, df_THE2015, df_QS2015 = create_constructs(df_ARWU2015, df_THE2015, df_QS2015, '2015') df_ARWU2014, df_THE2014, df_QS2014 = create_constructs(df_ARWU2014, df_THE2014, df_QS2014, '2014') df_ARWU2013, df_THE2013, df_QS2013 = create_constructs(df_ARWU2013, df_THE2013, df_QS2013, '2013') df_ARWU2012, df_THE2012, df_QS2012 = create_constructs(df_ARWU2012, df_THE2012, df_QS2012, '2012') df_ARWU = df_ARWU2018 listARWU = [df_ARWU2017, df_ARWU2016, df_ARWU2015, df_ARWU2014, df_ARWU2013, df_ARWU2012] for i in listARWU: df_ARWU = df_ARWU.append(i) df_THE = df_THE2018 listTHE = [df_THE2017, df_THE2016, df_THE2015, df_THE2014, df_THE2013, df_THE2012] for i in listTHE: df_THE = df_THE.append(i) df_QS = df_QS2018 listQS = [df_QS2017, df_QS2016, df_QS2015, df_QS2014, df_QS2013, df_QS2012] for i in listQS: df_QS = df_QS.append(i) def create_uni_df(ARWU, THE, QS, GRID): ARWU = ARWU[ARWU['GRID_ID'] == GRID] THE = THE[THE['GRID_ID'] == GRID] QS = QS[QS['GRID_ID'] == GRID] return ARWU, THE, QS fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) for i in grid_list: df_stanford_ARWU, df_stanford_THE, df_stanford_QS = create_uni_df(df_ARWU, df_THE, df_QS, i) line = ax1.plot(df_stanford_ARWU['Reputation_ARWU'], df_stanford_ARWU['Publication_ARWU'])[0] add_arrow(line) line = ax2.plot(df_stanford_THE['Reputation_THE'], df_stanford_THE['Publication_THE'])[0] add_arrow(line) line = ax3.plot(df_stanford_QS['Reputation_QS'], df_stanford_QS['Publication_QS'])[0] add_arrow(line) ax1.set_title('ARWU') ax2.set_title('THE') ax3.set_title('QS') fig.text(0.5, 0.04, 'Reputation', ha='center', va='center', fontsize=15) fig.text(0.09, 0.5, 'Publication', ha='center', va='center', rotation='vertical', fontsize=15) ax3.legend(grid_list, loc='right', bbox_to_anchor=(1.5, 0.5), ncol=1, fontsize='large', frameon=False) plt.show()
[ "pandas.read_csv", "numpy.absolute", "os.getcwd", "matplotlib.style.use", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((115, 134), 'matplotlib.style.use', 'style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (124, 134), True, 'import matplotlib.style as style\n'), ((239, 250), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (248, 250), False, 'import os\n'), ((295, 350), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2018_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2018_grid.csv')\n", (306, 350), True, 'import pandas as pd\n'), ((365, 420), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2017_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2017_grid.csv')\n", (376, 420), True, 'import pandas as pd\n'), ((435, 490), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2016_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2016_grid.csv')\n", (446, 490), True, 'import pandas as pd\n'), ((505, 560), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2015_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2015_grid.csv')\n", (516, 560), True, 'import pandas as pd\n'), ((575, 630), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2014_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2014_grid.csv')\n", (586, 630), True, 'import pandas as pd\n'), ((645, 700), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2013_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2013_grid.csv')\n", (656, 700), True, 'import pandas as pd\n'), ((715, 770), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'ARWU/ARWURanking_2012_grid.csv')"], {}), "(dirname + 'ARWU/ARWURanking_2012_grid.csv')\n", (726, 770), True, 'import pandas as pd\n'), ((1173, 1226), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2013__grid.csv')"], {}), "(dirname + 'THE/THERanking2013__grid.csv')\n", (1184, 1226), True, 'import pandas as pd\n'), ((1240, 1293), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2014__grid.csv')"], {}), "(dirname + 'THE/THERanking2014__grid.csv')\n", (1251, 1293), True, 'import pandas as pd\n'), ((1307, 1360), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2015__grid.csv')"], {}), "(dirname + 'THE/THERanking2015__grid.csv')\n", (1318, 1360), True, 'import pandas as pd\n'), ((1374, 1427), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2016__grid.csv')"], {}), "(dirname + 'THE/THERanking2016__grid.csv')\n", (1385, 1427), True, 'import pandas as pd\n'), ((1441, 1494), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2017__grid.csv')"], {}), "(dirname + 'THE/THERanking2017__grid.csv')\n", (1452, 1494), True, 'import pandas as pd\n'), ((1508, 1561), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2018__grid.csv')"], {}), "(dirname + 'THE/THERanking2018__grid.csv')\n", (1519, 1561), True, 'import pandas as pd\n'), ((1575, 1628), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'THE/THERanking2019__grid.csv')"], {}), "(dirname + 'THE/THERanking2019__grid.csv')\n", (1586, 1628), True, 'import pandas as pd\n'), ((2051, 2094), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2013_grid.csv')"], {}), "(dirname + 'QS/qs2013_grid.csv')\n", (2062, 2094), True, 'import pandas as pd\n'), ((2107, 2150), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2014_grid.csv')"], {}), "(dirname + 'QS/qs2014_grid.csv')\n", (2118, 2150), True, 'import pandas as pd\n'), ((2163, 2206), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2015_grid.csv')"], {}), "(dirname + 'QS/qs2015_grid.csv')\n", (2174, 2206), True, 'import pandas as pd\n'), ((2219, 2262), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2016_grid.csv')"], {}), "(dirname + 'QS/qs2016_grid.csv')\n", (2230, 2262), True, 'import pandas as pd\n'), ((2275, 2318), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2017_grid.csv')"], {}), "(dirname + 'QS/qs2017_grid.csv')\n", (2286, 2318), True, 'import pandas as pd\n'), ((2331, 2374), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2018_grid.csv')"], {}), "(dirname + 'QS/qs2018_grid.csv')\n", (2342, 2374), True, 'import pandas as pd\n'), ((2387, 2430), 'pandas.read_csv', 'pd.read_csv', (["(dirname + 'QS/qs2019_grid.csv')"], {}), "(dirname + 'QS/qs2019_grid.csv')\n", (2398, 2430), True, 'import pandas as pd\n'), ((6482, 6517), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(15, 5)'}), '(1, 3, figsize=(15, 5))\n', (6494, 6517), True, 'import matplotlib.pyplot as plt\n'), ((7330, 7340), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7338, 7340), True, 'import matplotlib.pyplot as plt\n'), ((4736, 4765), 'numpy.absolute', 'np.absolute', (['(xdata - position)'], {}), '(xdata - position)\n', (4747, 4765), True, 'import numpy as np\n')]
#!/bin/python3 # encoding: utf-8 import sys import numpy as np from time import time ''' x [0, 2] => idx start 0, end 3 [3, 5] => idx start 3, end 6 [6, 8] => idx start 6, end 9 ((0 + (r_idx // 3 * 3)): (3 + (r_idx // 3 * 3)), (0 + (c_idx // 3 * 3)): (3 + (c_idx // 3 * 3))) np.random.randint(1, 10) ''' sys.setrecursionlimit(10 ** 7) np.random.seed(int(time() % 1000)) TRIALS = [(0, 0, 0)] def padding(input_values, rollback=False): MAX_ROW, MAX_COL = input_values.shape # if it is rollback if rollback: if len(TRIALS) == 0: raise Exception('No possible result!') i, j, prev_val = TRIALS.pop() valid_digit = False for num in range(prev_val+1, 10): input_values[i, j] = num valid_digit = value_chk(input_values, i, j) if valid_digit: # if value fits current position TRIALS.append((i, j, num)) return padding(input_values) if not valid_digit: # if not updated # clear value input_values[i, j] = 0 # and rollback again return padding(input_values, True) else: # if new position for i in range(MAX_ROW): for j in range(MAX_COL): if input_values[i, j] == 0: valid_digit = False for num in range(1, 10): input_values[i, j] = num valid_digit = value_chk(input_values, i, j) if valid_digit: # if value fits current position TRIALS.append((i, j, num)) return padding(input_values) # if no digit fits, rollback if not valid_digit: input_values[i, j] = 0 return padding(input_values, True) return input_values def value_chk(val_mtx, row_idx, col_idx): val = val_mtx[row_idx, col_idx] return (dup_cnt(val_mtx[row_idx, :], val) == 1 and dup_cnt(val_mtx[:, col_idx], val) == 1 and dup_cnt(val_mtx[(0 + (row_idx // 3 * 3)): (3 + (row_idx // 3 * 3)), (0 + (col_idx // 3 * 3)): (3 + (col_idx // 3 * 3))].flatten(), val) == 1) def dup_cnt(tar_arr, val): cnt = 0 for e in tar_arr: if e == val: cnt += 1 return cnt if __name__ == '__main__': i1 = np.array([ [5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9] ]) print('Original input:\n', i1) result = padding(i1) print('Result:\n', result) # result check for i in range(result.shape[0]): for j in range(result.shape[1]): if not value_chk(result, i, j): raise Exception("Unvalid result! ({}, {})".format(i, j))
[ "sys.setrecursionlimit", "numpy.array", "time.time" ]
[((309, 339), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(10 ** 7)'], {}), '(10 ** 7)\n', (330, 339), False, 'import sys\n'), ((2394, 2678), 'numpy.array', 'np.array', (['[[5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, \n 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1],\n [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, \n 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9]]'], {}), '([[5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, \n 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0,\n 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0,\n 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9]])\n', (2402, 2678), True, 'import numpy as np\n'), ((360, 366), 'time.time', 'time', ([], {}), '()\n', (364, 366), False, 'from time import time\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ **Project Name:** MakeHuman **Product Home Page:** http://www.makehumancommunity.org/ **Github Code Home Page:** https://github.com/makehumancommunity/ **Authors:** <NAME>, <NAME> **Copyright(c):** MakeHuman Team 2001-2019 **Licensing:** AGPL3 This file is part of MakeHuman Community (www.makehumancommunity.org). This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Abstract -------- TODO """ import os import io import math import numpy as np from core import G import getpath import log from collections import OrderedDict import makehuman import material import json # # Proxy types. Loop over simple proxy types to do all proxies. # Some code use lowercase proxy types instead. # SimpleProxyTypes = ['Hair', 'Eyes', 'Eyebrows', 'Eyelashes', 'Teeth', 'Tongue'] ProxyTypes = ['Proxymeshes', 'Clothes'] + SimpleProxyTypes SimpleProxyTypesLower = [] for name in SimpleProxyTypes: SimpleProxyTypesLower.append(name.lower()) _A7converter = None Unit3 = np.identity(3,float) class Proxy: def __init__(self, file, type, human): log.debug("Loading proxy file: %s.", file) import makehuman name = os.path.splitext(os.path.basename(file))[0] self.name = name.capitalize().replace(" ","_") self.license = makehuman.getAssetLicense() self.description = "" self.type = type self.object = None self.human = human if not human: raise RuntimeError("Proxy constructor expects a valid human object.") self.file = file if file: self.mtime = os.path.getmtime(file) else: self.mtime = None self.uuid = None self.basemesh = makehuman.getBasemeshVersion() self.tags = [] self.version = 110 self.ref_vIdxs = None # (Vidx1,Vidx2,Vidx3) list with references to human vertex indices, indexed by proxy vert self.weights = None # (w1,w2,w3) list, with weights per human vertex (mapped by ref_vIdxs), indexed by proxy vert self.vertWeights = {} # (proxy-vert, weight) list for each parent vert (reverse mapping of self.weights, indexed by human vertex) self.offsets = None # (x,y,z) list of vertex offsets, indexed by proxy vert self.vertexBoneWeights = None # Explicitly defined custom vertex-to-bone weights, connecting the proxy mesh to the reference skeleton (optional) # Not to be confused with the vertex weights assigned for mapping the proxy mesh geometry to the base mesh self.tmatrix = TMatrix() # Offset transformation matrix. Replaces scale self.z_depth = -1 # Render order depth for the proxy object. Also used to determine which proxy object should mask others (delete faces) self.max_pole = None # Signifies the maximum number of faces per vertex on the mesh topology. Set to none for default. self.special_pose = {} # Special poses that should be set on the human when this proxy is active to make it look good self.uvLayers = {} # TODO what is this used for? self.material = material.Material(self.name) self._obj_file = None self._vertexBoneWeights_file = None self._material_file = None self.deleteVerts = np.zeros(human.meshData.getVertexCount(), bool) self.weightsCache = None self.cacheSkel = None @property def material_file(self): folder = os.path.dirname(self.file) if self.file else None return _getFilePath(self._material_file, folder) @property def obj_file(self): folder = os.path.dirname(self.file) if self.file else None return _getFilePath(self._obj_file, folder, ['npz', 'obj']) @property def vertexBoneWeights_file(self): folder = os.path.dirname(self.file) if self.file else None return _getFilePath(self._vertexBoneWeights_file, folder) def __repr__(self): return ("<Proxy %s %s %s %s>" % (self.name, self.type, self.file, self.uuid)) def getSeedMesh(self): for pxy in self.human.getProxies(): if self == pxy: return pxy.object.getSeedMesh() if self.type == "Proxymeshes": if not self.human.proxy: return None return self.human.getProxyMesh() elif self.type in ["Converter"]: return None else: raise NameError("Unknown proxy type %s" % self.type) def getMesh(self): if not self.object: return None return self.object.mesh def loadMeshAndObject(self, human): import files3d import guicommon obj = False mesh = files3d.loadMesh(self.obj_file, maxFaces = self.max_pole) if not mesh: log.error("Failed to load %s", self.obj_file) else: mesh.priority = self.z_depth # Set render order mesh.setCameraProjection(0) # Set to model camera obj = self.object = guicommon.Object(mesh, human.getPosition()) obj.proxy = self obj.material = self.material obj.setRotation(human.getRotation()) obj.setSolid(human.solid) # Set to wireframe if human is in wireframe # TODO perhaps other properties should be copied from human to object, such as subdivision state. For other hints, and duplicate code, see guicommon Object.setProxy() # TODO why return both obj and mesh if you can access the mesh easily through obj.mesh? return mesh,obj def _finalize(self, refVerts): """ Final step in parsing/loading a proxy file. Initializes numpy structures for performance improvement. """ self.weights = np.asarray([v._weights for v in refVerts], dtype=np.float32) self.ref_vIdxs = np.asarray([v._verts for v in refVerts], dtype=np.uint32) self.offsets = np.asarray([v._offset for v in refVerts], dtype=np.float32) def _reloadReverseMapping(self): """ Reconstruct reverse vertex (and weights) mapping """ self.vertWeights = {} for pxy_vIdx in range(self.ref_vIdxs.shape[0]): _addProxyVertWeight(self.vertWeights, self.ref_vIdxs[pxy_vIdx, 0], pxy_vIdx, self.weights[pxy_vIdx, 0]) _addProxyVertWeight(self.vertWeights, self.ref_vIdxs[pxy_vIdx, 1], pxy_vIdx, self.weights[pxy_vIdx, 1]) _addProxyVertWeight(self.vertWeights, self.ref_vIdxs[pxy_vIdx, 2], pxy_vIdx, self.weights[pxy_vIdx, 2]) def getCoords(self, fit_to_posed=False): if fit_to_posed: hcoord = self.human.meshData.coord else: hcoord = self.human.getRestposeCoordinates() matrix = self.tmatrix.getMatrix(hcoord) ref_vIdxs = self.ref_vIdxs weights = self.weights coord = ( hcoord[ref_vIdxs[:,0]] * weights[:,0,None] + hcoord[ref_vIdxs[:,1]] * weights[:,1,None] + hcoord[ref_vIdxs[:,2]] * weights[:,2,None] + np.dot(matrix, self.offsets.transpose()).transpose() ) return coord def update(self, mesh, fit_to_posed=False): #log.debug("Updating proxy %s.", self.name) coords = self.getCoords(fit_to_posed) mesh.changeCoords(coords) mesh.calcNormals() def getUuid(self): if self.uuid: return self.uuid else: return self.name def hasCustomVertexWeights(self): """ Determines whether this proxy explicitly defines its own set of vertex to bone weights (defined on the bones of the reference skeleton). Returns True if this proxy has custom vertex weights, False if it does not, in which case vertex weights will be derived from the weights of the basemesh, mapped through the vertex mapping of the proxy. """ return self.vertexBoneWeights is not None def getVertexWeights(self, humanWeights, skel=None, allowCache=False): """ Map armature weights mapped to the human to the proxy mesh through the proxy mapping. humanWeights is expected to be an animation.VertexBoneWeights object. Only when this proxy has custom weights: Optionally remaps the weights to fit a user-selected skeleton when a skel is supplied as argument. If no skel argument is provided, the weights for the base skeleton are returned. Note: these vertex weights are intended for rigging and are not to be confused with getWeights() which returns the weights of the proxy mapping to the basemesh. """ # Override proxy weights mapping behaviour if this proxy has its own # bone weights defined explicitly. # This requires remapping the vertex weights of the proxy, defined on # the bones of the reference skeleton, to those of the current skeleton. # The current skeleton is retrieved from the human object linked to this # proxy. import time import log if self.hasCustomVertexWeights(): # TODO we could introduce caching of weights here as long as the skeleton is not changed if skel is None: return self.human.getBaseSkeleton().getVertexWeights(self.vertexBoneWeights, force_remap=True) else: return skel.getVertexWeights(self.vertexBoneWeights, force_remap=True) # Remap weights through proxy mapping WEIGHT_THRESHOLD = 1e-4 # Threshold for including bone weight recalculate = True weights = OrderedDict() if not allowCache: pass #print("Caching not allowed") else: if self.weightsCache is None: pass #print("There is no cache") else: if not skel is None: if skel == self.cacheSkel: recalculate = False else: log.debug("The skeleton is different") if recalculate: log.debug("remapping weights for proxy " + self.name) start = time.perf_counter() for bname, (indxs, wghts) in list(humanWeights.data.items()): vgroup = [] empty = True for (v,wt) in zip(indxs, wghts): try: vlist = self.vertWeights[v] except KeyError: vlist = [] for (pv, w) in vlist: pw = w*wt if (pw > WEIGHT_THRESHOLD): vgroup.append((pv, pw)) empty = False if not empty: weights[bname] = vgroup stop = time.perf_counter() hw = humanWeights.create(weights) if allowCache: self.weightsCache = hw self.cacheSkel = skel else: self.weightsCache = None self.cacheSkel = None log.debug("remapping weights for %s took %.5f seconds", self.name, stop - start) else: hw = self.weightsCache return hw doRefVerts = 1 doWeights = 2 doDeleteVerts = 3 def loadProxy(human, path, type="Clothes"): try: npzpath = os.path.splitext(path)[0] + '.mhpxy' asciipath = os.path.splitext(path)[0] + getAsciiFileExtension(type) try: if not os.path.isfile(npzpath): log.message('compiled proxy file missing: %s', npzpath) raise RuntimeError('compiled proxy file missing: %s', npzpath) if os.path.isfile(asciipath) and os.path.getmtime(asciipath) > os.path.getmtime(npzpath): log.message('compiled proxy file out of date: %s', npzpath) raise RuntimeError('compiled file out of date: %s', npzpath) proxy = loadBinaryProxy(npzpath, human, type) except Exception as e: showTrace = not isinstance(e, RuntimeError) log.warning("Problem loading binary proxy: %s", e, exc_info=showTrace) proxy = loadTextProxy(human, asciipath, type) # TODO perhaps proxy type should be stored in .mhclo file too if getpath.isSubPath(npzpath, getpath.getPath()): # Only write compiled binary proxies to user data path try: log.message('Compiling binary proxy file %s', npzpath) saveBinaryProxy(proxy, npzpath) except Exception: log.notice('unable to save compiled proxy: %s', npzpath, exc_info=True) if os.path.isfile(npzpath): # Remove file again, in case an empty file is left try: os.remove(npzpath) except Exception as e: log.warning("Could not remove empty file %s that was left behind (%s).", npzpath, e) else: log.debug('Not writing compiled proxies to system paths (%s).', npzpath) except: log.error('Unable to load proxy file: %s', path, exc_info=True) return None return proxy def loadTextProxy(human, filepath, type="Clothes"): import io try: fp = io.open(filepath, "r", encoding="utf-8") except IOError: log.error("*** Cannot open %s", filepath) return None folder = os.path.realpath(os.path.expanduser(os.path.dirname(filepath))) proxy = Proxy(filepath, type, human) proxy.max_pole = 8; refVerts = [] status = 0 vnum = 0 for line in fp: words = line.split() if len(words) == 0: # Reset status on empty line #status = 0 continue if words[0].startswith('#'): # Comment # Try interpreting comment attributes as license info proxy.license.updateFromComment(line) continue key = words[0] if key == 'name': proxy.name = " ".join(words[1:]) elif key == 'uuid': proxy.uuid = " ".join(words[1:]) elif key == 'description': proxy.description = " ".join(words[1:]) elif key in ['author', 'license', 'homepage']: proxy.license.updateFromComment(words) elif key == 'tag': proxy.tags.append( " ".join(words[1:]).lower() ) elif key == 'version': proxy.version = int(words[1]) elif key == 'z_depth': proxy.z_depth = int(words[1]) elif key == 'max_pole': proxy.max_pole = int(words[1]) elif key == 'special_pose': proxy.special_pose[words[1]] = words[2] elif key == 'verts': status = doRefVerts elif key == 'weights': status = doWeights if proxy.weights is None: proxy.weights = {} weights = [] proxy.weights[words[1]] = weights elif key == "delete_verts": status = doDeleteVerts elif key == 'obj_file': proxy._obj_file = _getFileName(folder, words[1], ".obj") elif key == 'material': matFile = _getFileName(folder, words[1], ".mhmat") proxy._material_file = matFile proxy.material.fromFile(proxy.material_file) elif key == 'vertexboneweights_file': from animation import VertexBoneWeights proxy._vertexBoneWeights_file = _getFileName(folder, words[1], ".jsonw") proxy.vertexBoneWeights = VertexBoneWeights.fromFile(proxy.vertexBoneWeights_file) elif key == 'backface_culling': # TODO remove in future log.warning('Deprecated parameter "backface_culling" used in proxy file. Set property backfaceCull in material instead.') elif key == 'transparent': # TODO remove in future log.warning('Deprecated parameter "transparent" used in proxy file. Set property in material file instead.') elif key == 'uvLayer': # TODO is this still used? if len(words) > 2: layer = int(words[1]) uvFile = words[2] else: layer = 0 uvFile = words[1] #uvMap = material.UVMap(proxy.name+"UV"+str(layer)) #uvMap.read(proxy.mesh, _getFileName(folder, uvFile, ".mhuv")) # Delayed load, only store path here proxy.uvLayers[layer] = _getFileName(folder, uvFile, ".mhuv") elif key == 'x_scale': proxy.tmatrix.getScaleData(words, 0) elif key == 'y_scale': proxy.tmatrix.getScaleData(words, 1) elif key == 'z_scale': proxy.tmatrix.getScaleData(words, 2) elif key == 'shear_x': proxy.tmatrix.getShearData(words, 0, None) elif key == 'shear_y': proxy.tmatrix.getShearData(words, 1, None) elif key == 'shear_z': proxy.tmatrix.getShearData(words, 2, None) elif key == 'l_shear_x': proxy.tmatrix.getShearData(words, 0, 'Left') elif key == 'l_shear_y': proxy.tmatrix.getShearData(words, 1, 'Left') elif key == 'l_shear_z': proxy.tmatrix.getShearData(words, 2, 'Left') elif key == 'r_shear_x': proxy.tmatrix.getShearData(words, 0, 'Right') elif key == 'r_shear_y': proxy.tmatrix.getShearData(words, 1, 'Right') elif key == 'r_shear_z': proxy.tmatrix.getShearData(words, 2, 'Right') elif key == 'basemesh': proxy.basemesh = words[1] elif key in ['shapekey', 'subsurf', 'shrinkwrap', 'solidify', 'objfile_layer', 'uvtex_layer', 'use_projection', 'mask_uv_layer', 'texture_uv_layer', 'delete', 'vertexgroup_file']: log.warning('Deprecated parameter "%s" used in proxy file. Please remove.', key) elif status == doRefVerts: refVert = ProxyRefVert(human) refVerts.append(refVert) if len(words) == 1: refVert.fromSingle(words, vnum, proxy.vertWeights) else: refVert.fromTriple(words, vnum, proxy.vertWeights) vnum += 1 elif status == doWeights: v = int(words[0]) w = float(words[1]) weights.append((v,w)) elif status == doDeleteVerts: sequence = False for v in words: if v == "-": sequence = True else: v1 = int(v) if sequence: for vn in range(v0,v1+1): proxy.deleteVerts[vn] = True sequence = False else: proxy.deleteVerts[v1] = True v0 = v1 else: log.warning('Unknown keyword %s found in proxy file %s', key, filepath) if proxy.z_depth == -1: log.warning('Proxy file %s does not specify a Z depth. Using 50.', filepath) proxy.z_depth = 50 # since max-pole is used for the calculation of neighboring planes we have to double it initially proxy.max_pole *= 2 proxy._finalize(refVerts) return proxy def saveBinaryProxy(proxy, path): def _properPath(path): return getpath.getJailedPath(path, folder) fp = io.open(path, 'wb') tagStr, tagIdx = _packStringList(proxy.tags) uvStr,uvIdx = _packStringList([ _properPath(proxy.uvLayers[k]) for k in sorted(proxy.uvLayers.keys()) ]) licStr, licIdx = proxy.license.toNumpyString() folder = os.path.dirname(path) vars_ = dict( #proxyType = np.fromstring(proxy.type, dtype='S1'), # TODO store proxy type? name = np.fromstring(proxy.name, dtype='S1'), uuid = np.fromstring(proxy.uuid, dtype='S1'), description = np.fromstring(proxy.description, dtype='S1'), basemesh = np.fromstring(proxy.basemesh, dtype='S1'), tags_str = tagStr, tags_idx = tagIdx, lic_str = licStr, lic_idx = licIdx, uvLayers_str = uvStr, uvLayers_idx = uvIdx, obj_file = np.fromstring(_properPath(proxy.obj_file), dtype='S1'), version = np.asarray(proxy.version, dtype=np.int32) ) if proxy.material_file: vars_["material_file"] = np.fromstring(_properPath(proxy.material_file), dtype='S1') if np.any(proxy.deleteVerts): vars_["deleteVerts"] = proxy.deleteVerts if proxy.z_depth is not None and proxy.z_depth != -1: vars_["z_depth"] = np.asarray(proxy.z_depth, dtype=np.int32) if proxy.max_pole: vars_["max_pole"] = np.asarray(proxy.max_pole, dtype=np.uint32) proxy.tmatrix.toNumpyStruct(vars_) special_poses = [] for posetype, posename in list(proxy.special_pose.items()): special_poses.append(posetype) special_poses.append(posename) specialposeStr, specialposeIdx = _packStringList(special_poses) vars_["special_pose_str"] = specialposeStr vars_["special_pose_idx"] = specialposeIdx if proxy.weights[:,1:].any(): # 3 ref verts used in this proxy num_refverts = 3 vars_["ref_vIdxs"] = proxy.ref_vIdxs vars_["offsets"] = proxy.offsets vars_["weights"] = proxy.weights else: # Proxy uses exact fitting exclusively: store npz file more compactly num_refverts = 1 vars_["ref_vIdxs"] = proxy.ref_vIdxs[:,0] vars_["weights"] = proxy.weights[:,0] vars_['num_refverts'] = np.asarray(num_refverts, dtype=np.int32) if proxy.vertexBoneWeights_file: vars_['vertexBoneWeights_file'] = np.fromstring(_properPath(proxy.vertexBoneWeights_file), dtype='S1') np.savez_compressed(fp, **vars_) fp.close() os.utime(path, None) # Ensure modification time is updated def loadBinaryProxy(path, human, type): log.debug("Loading binary proxy %s.", path) npzfile = np.load(path) #if type is None: # proxyType = npzfile['proxyType'].tostring() #else: proxyType = type proxy = Proxy(path, proxyType, human) proxy.name = str(npzfile['name'].tostring(), 'utf8') proxy.uuid = str(npzfile['uuid'].tostring(), 'utf8') proxy.basemesh = str(npzfile['basemesh'].tostring(), 'utf8') if 'description' in npzfile: proxy.description = str(npzfile['description'].tostring(), 'utf8') if 'version' in npzfile: proxy.version = int(npzfile['version']) if 'lic_str' in npzfile and 'lic_idx' in npzfile: proxy.license.fromNumpyString(npzfile['lic_str'], npzfile['lic_idx']) proxy.tags = set(_unpackStringList(npzfile['tags_str'], npzfile['tags_idx'])) if 'z_depth' in npzfile: proxy.z_depth = int(npzfile['z_depth']) if 'max_pole' in npzfile: proxy.max_pole = int(npzfile['max_pole']) if 'special_pose_str' in npzfile: special_poses = _unpackStringList(npzfile['special_pose_str'], npzfile['special_pose_idx']) for idx in range(0, len(special_poses), 2): proxy.special_pose[special_poses[idx]] = special_poses[idx+1] num_refverts = int(npzfile['num_refverts']) if num_refverts == 3: proxy.ref_vIdxs = npzfile['ref_vIdxs'] proxy.offsets = npzfile['offsets'] proxy.weights = npzfile['weights'] else: num_refs = npzfile['ref_vIdxs'].shape[0] proxy.ref_vIdxs = np.zeros((num_refs,3), dtype=np.uint32) proxy.ref_vIdxs[:,0] = npzfile['ref_vIdxs'] proxy.offsets = np.zeros((num_refs,3), dtype=np.float32) proxy.weights = np.zeros((num_refs,3), dtype=np.float32) proxy.weights[:,0] = npzfile['weights'] if "deleteVerts" in npzfile: proxy.deleteVerts = npzfile['deleteVerts'] # Reconstruct reverse vertex (and weights) mapping proxy._reloadReverseMapping() proxy.tmatrix.fromNumpyStruct(npzfile) proxy.uvLayers = {} for uvIdx, uvName in enumerate(_unpackStringList(npzfile['uvLayers_str'], npzfile['uvLayers_idx'])): proxy.uvLayers[uvIdx] = uvName proxy.material = material.Material(proxy.name) if 'material_file' in npzfile: proxy._material_file = str(npzfile['material_file'].tostring(), 'utf8') if proxy.material_file: proxy.material.fromFile(proxy.material_file) proxy._obj_file = str(npzfile['obj_file'].tostring(), 'utf8') if 'vertexBoneWeights_file' in npzfile: proxy._vertexBoneWeights_file = str(npzfile['vertexBoneWeights_file'].tostring(), 'utf8') if proxy.vertexBoneWeights_file: from animation import VertexBoneWeights proxy.vertexBoneWeights = VertexBoneWeights.fromFile(proxy.vertexBoneWeights_file) if proxy.z_depth == -1: log.warning('Proxy file %s does not specify a Z depth. Using 50.', path) proxy.z_depth = 50 return proxy # # class ProxyRefVert: # class ProxyRefVert: def __init__(self, human): self.human = human def fromSingle(self, words, vnum, vertWeights): # TODO store the number of reference verts in proxy so that we can efficiently save and load them. v0 = int(words[0]) self._verts = (v0,0,1) self._weights = (1.0,0.0,0.0) self._offset = np.zeros(3, float) _addProxyVertWeight(vertWeights, v0, vnum, 1) return self def fromTriple(self, words, vnum, vertWeights): v0 = int(words[0]) v1 = int(words[1]) v2 = int(words[2]) w0 = float(words[3]) w1 = float(words[4]) w2 = float(words[5]) if len(words) > 6: d0 = float(words[6]) d1 = float(words[7]) d2 = float(words[8]) else: (d0,d1,d2) = (0,0,0) self._verts = (v0,v1,v2) self._weights = (w0,w1,w2) self._offset = np.array((d0,d1,d2), float) _addProxyVertWeight(vertWeights, v0, vnum, w0) _addProxyVertWeight(vertWeights, v1, vnum, w1) _addProxyVertWeight(vertWeights, v2, vnum, w2) return self def getWeights(self): return self._weights def getCoord(self, matrix): hcoord = self.human.getRestposeCoordinates() return ( np.dot(hcoord[self._verts], self._weights) + np.dot(matrix, self._offset) ) def _addProxyVertWeight(vertWeights, v, pv, w): try: vertWeights[v].append((pv, w)) except KeyError: vertWeights[v] = [(pv,w)] return # # class TMatrix: # Transformation matrix. Replaces previous scale # class TMatrix: def __init__(self): self.scaleData = None self.shearData = None self.lShearData = None self.rShearData = None def toNumpyStruct(self, npzfile, prefix=""): """Serialize TMatrix in npz file""" def _nan_array(size): return np.repeat(float('nan'), size).astype(np.float32) def _pack_scales(scaleData): scales = list() vidxs = list() for e_idx, entry in enumerate(scaleData): # Should be 3 entries if entry is None: scales.append(float('nan')) vidxs.extend([0, 0]) else: vidx1, vidx2, scale = entry scales.append(scale) vidxs.extend([vidx1, vidx2]) return (np.asarray(scales, dtype=np.float32), np.asarray(vidxs, dtype=np.uint32)) def _pack_shears(shearData): shears = list() vidxs = list() for e_idx, entry in enumerate(shearData): # Should be 3 entries if entry is None: shears.extend([float('nan'), float('nan')]) vidxs.extend([0, 0]) else: vidx1, vidx2, shear1, shear2 = entry shears.extend([shear1, shear2]) vidxs.extend([vidx1, vidx2]) return (np.asarray(shears, dtype=np.float32), np.asarray(vidxs, dtype=np.uint32)) if prefix: prefix += "_" if self.scaleData: scales, vidxs = _pack_scales(self.scaleData) npzfile[prefix+"tmat_scale"] = scales npzfile[prefix+"tmat_scale_idx"] = vidxs if self.shearData: shears, vidxs = _pack_shears(self.shearData) npzfile[prefix+"tmat_shear"] = shears npzfile[prefix+"tmat_shear_idx"] = vidxs if self.lShearData: shears, vidxs = _pack_shears(self.lShearData) npzfile[prefix+"tmat_lshear"] = shears npzfile[prefix+"tmat_lshear_idx"] = vidxs if self.rShearData: shears, vidxs = _pack_shears(self.rShearData) npzfile[prefix+"tmat_rshear"] = shears npzfile[prefix+"tmat_rshear_idx"] = vidxs def fromNumpyStruct(self, npzfile, prefix=""): """Deserialize TMatrix from npz file""" def _unpack_scales(scales, vidxs): scaleData = [None, None, None] for i in range(3): if i >= min(len(scales), len(vidxs)//2): break scale = scales[i] if not math.isnan(scale): vidx1, vidx2 = vidxs[i*2], vidxs[i*2+1] scaleData[i] = (int(vidx1), int(vidx2), float(scale)) return scaleData def _unpack_shears(shears, vidxs): shearData = [None, None, None] for i in range(3): if i >= min(len(shears)//2, len(vidxs)//2): break shear1, shear2 = shears[i*2], shears[i*2+1] vidx1, vidx2 = vidxs[i*2], vidxs[i*2+1] shearData[i] = (int(vidx1), int(vidx2), float(shear1), float(shear2)) return shearData if prefix: prefix += "_" if prefix+'tmat_scale' in npzfile and prefix+'tmat_scale_idx' in npzfile: scales = npzfile[prefix+'tmat_scale'] vidxs = npzfile[prefix+'tmat_scale_idx'] self.scaleData = _unpack_scales(scales, vidxs) if prefix+'tmat_shear' in npzfile and prefix+'tmat_shear_idx' in npzfile: shears = npzfile[prefix+'tmat_shear'] vidxs = npzfile[prefix+'tmat_shear_idx'] self.shearData = _unpack_shears(shears, vidxs) if prefix+'tmat_lshear' in npzfile and prefix+'tmat_lshear_idx' in npzfile: shears = npzfile[prefix+'tmat_lshear'] vidxs = npzfile[prefix+'tmat_lshear_idx'] self.lShearData = _unpack_shears(shears, vidxs) if prefix+'tmat_rshear' in npzfile and prefix+'tmat_rshear_idx' in npzfile: shears = npzfile[prefix+'tmat_rshear'] vidxs = npzfile[prefix+'tmat_rshear_idx'] self.rShearData = _unpack_shears(shears, vidxs) def getScaleData(self, words, idx): vn1 = int(words[1]) vn2 = int(words[2]) den = float(words[3]) if not self.scaleData: self.scaleData = [None, None, None] self.scaleData[idx] = (vn1, vn2, den) def getShearData(self, words, idx, side): vn1 = int(words[1]) vn2 = int(words[2]) x1 = float(words[3]) x2 = float(words[4]) bbdata = (vn1, vn2, x1, x2) if side == "Left": if not self.lShearData: self.lShearData = [None, None, None] self.lShearData[idx] = bbdata elif side == "Right": if not self.rShearData: self.rShearData = [None, None, None] self.rShearData[idx] = bbdata else: if not self.shearData: self.shearData = [None, None, None] self.shearData[idx] = bbdata def getMatrix(self, hcoord): if self.scaleData: matrix = np.identity(3, float) for n in range(3): (vn1, vn2, den) = self.scaleData[n] co1 = hcoord[vn1] co2 = hcoord[vn2] num = abs(co1[n] - co2[n]) matrix[n][n] = (num/den) return matrix elif self.shearData: return self.matrixFromShear(self.shearData, hcoord) elif self.lShearData: return self.matrixFromShear(self.lShearData, hcoord) elif self.rShearData: return self.matrixFromShear(self.rShearData, hcoord) else: return Unit3 def matrixFromShear(self, shear, hcoord): from transformations import affine_matrix_from_points # sfaces and tfaces are the face coordinates sfaces = np.zeros((3,2), float) tfaces = np.zeros((3,2), float) for n in range(3): (vn1, vn2, sfaces[n,0], sfaces[n,1]) = shear[n] tfaces[n,0] = hcoord[vn1][n] tfaces[n,1] = hcoord[vn2][n] # sverts and tverts are the vertex coordinates sverts = [] tverts = [] for i in [0,1]: for j,k in [(0,0),(0,1),(1,1),(1,0)]: sverts.append( np.array((sfaces[0,i], sfaces[1,j], sfaces[2,k])) ) tverts.append( np.array((tfaces[0,i], tfaces[1,j], tfaces[2,k])) ) sbox = vertsToNumpy(sverts) tbox = vertsToNumpy(tverts) mat = affine_matrix_from_points(sbox, tbox) return mat[:3,:3] def vertsToNumpy(verts): result = np.asarray(verts) return np.asarray([result[:,0], result[:,1], result[:,2]], dtype=np.float32) def _getFileName(folder, file, suffix): (name, ext) = os.path.split(file) if ext: return os.path.join(folder, file) else: return os.path.join(folder, file+suffix) def transferVertexMaskToProxy(vertsMask, proxy): """ Transfer a vertex mask defined on the parent mesh to a proxy using the proxy mapping to this parent mesh. A vertex mask defines for each vertex if it should be hidden, only faces that have all vertices hidden will be hidden. True in vertex mask means: show vertex, false means hide (masked) """ # Convert basemesh vertex mask to local mask for proxy vertices proxyVertMask = np.ones(len(proxy.ref_vIdxs), dtype=bool) # Proxy verts that use exact mapping exact_mask = ~np.any(proxy.weights[:,1:], axis=1) # Faster numpy implementation of the above: unmasked_row_col = np.nonzero(vertsMask[proxy.ref_vIdxs]) unmasked_rows = unmasked_row_col[0] if len(unmasked_rows) > 0: unmasked_count = np.bincount(unmasked_rows) # count number of unmasked verts per row # only hide/mask a vertex if at least two referenced body verts are hidden/masked masked_idxs = np.nonzero(unmasked_count < 2) proxyVertMask[masked_idxs] = False else: # All verts are masked proxyVertMask[:] = False # Directly map exactly mapped proxy verts proxyVertMask[exact_mask] = vertsMask[proxy.ref_vIdxs[exact_mask,0]] return proxyVertMask def getAsciiFileExtension(proxyType): """ The file extension used for ASCII (non-compiled) proxy source files for the proxies of specified type. """ return '.proxy' if proxyType == 'Proxymeshes' else '.mhclo' def peekMetadata(proxyFilePath, proxyType=None): """ Read UUID and tags from proxy file, and return as soon as vertex data begins. Reads only the necessary lines of the proxy file from disk, not the entire proxy file is loaded in memory. """ #import zipfile #if zipfile.is_zipfile(proxyFilePath): # Using the filename extension is faster (and will have to do): if os.path.splitext(proxyFilePath)[1][1:].lower() == 'mhpxy': try: if proxyType is not None: asciipath = os.path.splitext(proxyFilePath)[0] + getAsciiFileExtension(proxyType) if os.path.isfile(asciipath) and os.path.getmtime(asciipath) > os.path.getmtime(proxyFilePath): _npzpath = proxyFilePath proxyFilePath = asciipath raise RuntimeError('compiled file out of date: %s', _npzpath) # Binary proxy file npzfile = np.load(proxyFilePath) uuid = str(npzfile['uuid'].tostring(), 'utf8') tags = set(_unpackStringList(npzfile['tags_str'], npzfile['tags_idx'])) return (uuid, tags) except Exception as e: showTrace = not isinstance(e, RuntimeError) log.warning("Problem loading metadata from binary proxy, trying ASCII file: %s", e, exc_info=showTrace) # ASCII proxy file import io fp = io.open(proxyFilePath, 'r', encoding="utf-8") uuid = None tags = set() for line in fp: words = line.split() if len(words) == 0: pass elif words[0] == 'uuid': uuid = words[1] elif words[0] == 'tag': tags.add(" ".join(words[1:]).lower()) elif words[0] == 'verts': break fp.close() return (uuid, tags) def _packStringList(strings): text = '' index = [] for string in strings: asbytes = bytearray(text,'utf-8') index.append(len(asbytes)) text += string text = np.fromstring(text, dtype='S1') index = np.array(index, dtype=np.uint32) return text, index def _unpackStringList(text, index): strings = [] last = None for i in index: if last is not None: name = str(text[last:i].tostring(), 'utf8') strings.append(name) last = i if last is not None: name = str(text[last:].tostring(), 'utf8') strings.append(name) return strings def _getFilePath(filename, folder = None, altExtensions=None): import getpath if altExtensions is not None: # Search for existing path with alternative file extension for aExt in altExtensions: if aExt.startswith('.'): aExt = aExt[1:] aFile = os.path.splitext(filename)[0]+'.'+aExt aPath = _getFilePath(aFile, folder, altExtensions=None) if os.path.isfile(aPath): # Path found, return result with original extension orgExt = os.path.splitext(filename)[1] path = os.path.splitext(aPath)[0]+orgExt return getpath.formatPath(path) if not filename or not isinstance(filename, str): return filename searchPaths = [] # Search within current folder if folder: searchPaths.append(folder) return getpath.thoroughFindFile(filename, searchPaths)
[ "getpath.thoroughFindFile", "transformations.affine_matrix_from_points", "material.Material", "io.open", "numpy.array", "makehuman.getAssetLicense", "getpath.formatPath", "animation.VertexBoneWeights.fromFile", "os.remove", "log.notice", "numpy.asarray", "time.perf_counter", "os.path.split", "math.isnan", "numpy.dot", "getpath.getPath", "numpy.savez_compressed", "numpy.fromstring", "log.message", "numpy.identity", "getpath.getJailedPath", "collections.OrderedDict", "log.warning", "log.error", "os.path.splitext", "numpy.any", "os.path.isfile", "os.path.dirname", "numpy.nonzero", "os.path.getmtime", "numpy.bincount", "makehuman.getBasemeshVersion", "os.path.join", "os.utime", "log.debug", "numpy.zeros", "os.path.basename", "numpy.load", "files3d.loadMesh" ]
[((1684, 1705), 'numpy.identity', 'np.identity', (['(3)', 'float'], {}), '(3, float)\n', (1695, 1705), True, 'import numpy as np\n'), ((20405, 20424), 'io.open', 'io.open', (['path', '"""wb"""'], {}), "(path, 'wb')\n", (20412, 20424), False, 'import io\n'), ((20649, 20670), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (20664, 20670), False, 'import os\n'), ((21455, 21480), 'numpy.any', 'np.any', (['proxy.deleteVerts'], {}), '(proxy.deleteVerts)\n', (21461, 21480), True, 'import numpy as np\n'), ((22588, 22628), 'numpy.asarray', 'np.asarray', (['num_refverts'], {'dtype': 'np.int32'}), '(num_refverts, dtype=np.int32)\n', (22598, 22628), True, 'import numpy as np\n'), ((22783, 22815), 'numpy.savez_compressed', 'np.savez_compressed', (['fp'], {}), '(fp, **vars_)\n', (22802, 22815), True, 'import numpy as np\n'), ((22835, 22855), 'os.utime', 'os.utime', (['path', 'None'], {}), '(path, None)\n', (22843, 22855), False, 'import os\n'), ((22940, 22983), 'log.debug', 'log.debug', (['"""Loading binary proxy %s."""', 'path'], {}), "('Loading binary proxy %s.', path)\n", (22949, 22983), False, 'import log\n'), ((22999, 23012), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (23006, 23012), True, 'import numpy as np\n'), ((25144, 25173), 'material.Material', 'material.Material', (['proxy.name'], {}), '(proxy.name)\n', (25161, 25173), False, 'import material\n'), ((34523, 34540), 'numpy.asarray', 'np.asarray', (['verts'], {}), '(verts)\n', (34533, 34540), True, 'import numpy as np\n'), ((34552, 34624), 'numpy.asarray', 'np.asarray', (['[result[:, 0], result[:, 1], result[:, 2]]'], {'dtype': 'np.float32'}), '([result[:, 0], result[:, 1], result[:, 2]], dtype=np.float32)\n', (34562, 34624), True, 'import numpy as np\n'), ((34683, 34702), 'os.path.split', 'os.path.split', (['file'], {}), '(file)\n', (34696, 34702), False, 'import os\n'), ((35492, 35530), 'numpy.nonzero', 'np.nonzero', (['vertsMask[proxy.ref_vIdxs]'], {}), '(vertsMask[proxy.ref_vIdxs])\n', (35502, 35530), True, 'import numpy as np\n'), ((37731, 37776), 'io.open', 'io.open', (['proxyFilePath', '"""r"""'], {'encoding': '"""utf-8"""'}), "(proxyFilePath, 'r', encoding='utf-8')\n", (37738, 37776), False, 'import io\n'), ((38337, 38368), 'numpy.fromstring', 'np.fromstring', (['text'], {'dtype': '"""S1"""'}), "(text, dtype='S1')\n", (38350, 38368), True, 'import numpy as np\n'), ((38381, 38413), 'numpy.array', 'np.array', (['index'], {'dtype': 'np.uint32'}), '(index, dtype=np.uint32)\n', (38389, 38413), True, 'import numpy as np\n'), ((39667, 39714), 'getpath.thoroughFindFile', 'getpath.thoroughFindFile', (['filename', 'searchPaths'], {}), '(filename, searchPaths)\n', (39691, 39714), False, 'import getpath\n'), ((1771, 1813), 'log.debug', 'log.debug', (['"""Loading proxy file: %s."""', 'file'], {}), "('Loading proxy file: %s.', file)\n", (1780, 1813), False, 'import log\n'), ((1977, 2004), 'makehuman.getAssetLicense', 'makehuman.getAssetLicense', ([], {}), '()\n', (2002, 2004), False, 'import makehuman\n'), ((2401, 2431), 'makehuman.getBasemeshVersion', 'makehuman.getBasemeshVersion', ([], {}), '()\n', (2429, 2431), False, 'import makehuman\n'), ((3856, 3884), 'material.Material', 'material.Material', (['self.name'], {}), '(self.name)\n', (3873, 3884), False, 'import material\n'), ((5452, 5507), 'files3d.loadMesh', 'files3d.loadMesh', (['self.obj_file'], {'maxFaces': 'self.max_pole'}), '(self.obj_file, maxFaces=self.max_pole)\n', (5468, 5507), False, 'import files3d\n'), ((6538, 6598), 'numpy.asarray', 'np.asarray', (['[v._weights for v in refVerts]'], {'dtype': 'np.float32'}), '([v._weights for v in refVerts], dtype=np.float32)\n', (6548, 6598), True, 'import numpy as np\n'), ((6624, 6681), 'numpy.asarray', 'np.asarray', (['[v._verts for v in refVerts]'], {'dtype': 'np.uint32'}), '([v._verts for v in refVerts], dtype=np.uint32)\n', (6634, 6681), True, 'import numpy as np\n'), ((6705, 6764), 'numpy.asarray', 'np.asarray', (['[v._offset for v in refVerts]'], {'dtype': 'np.float32'}), '([v._offset for v in refVerts], dtype=np.float32)\n', (6715, 6764), True, 'import numpy as np\n'), ((10438, 10451), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (10449, 10451), False, 'from collections import OrderedDict\n'), ((14240, 14280), 'io.open', 'io.open', (['filepath', '"""r"""'], {'encoding': '"""utf-8"""'}), "(filepath, 'r', encoding='utf-8')\n", (14247, 14280), False, 'import io\n'), ((20002, 20078), 'log.warning', 'log.warning', (['"""Proxy file %s does not specify a Z depth. Using 50."""', 'filepath'], {}), "('Proxy file %s does not specify a Z depth. Using 50.', filepath)\n", (20013, 20078), False, 'import log\n'), ((20359, 20394), 'getpath.getJailedPath', 'getpath.getJailedPath', (['path', 'folder'], {}), '(path, folder)\n', (20380, 20394), False, 'import getpath\n'), ((21617, 21658), 'numpy.asarray', 'np.asarray', (['proxy.z_depth'], {'dtype': 'np.int32'}), '(proxy.z_depth, dtype=np.int32)\n', (21627, 21658), True, 'import numpy as np\n'), ((21711, 21754), 'numpy.asarray', 'np.asarray', (['proxy.max_pole'], {'dtype': 'np.uint32'}), '(proxy.max_pole, dtype=np.uint32)\n', (21721, 21754), True, 'import numpy as np\n'), ((24464, 24504), 'numpy.zeros', 'np.zeros', (['(num_refs, 3)'], {'dtype': 'np.uint32'}), '((num_refs, 3), dtype=np.uint32)\n', (24472, 24504), True, 'import numpy as np\n'), ((24580, 24621), 'numpy.zeros', 'np.zeros', (['(num_refs, 3)'], {'dtype': 'np.float32'}), '((num_refs, 3), dtype=np.float32)\n', (24588, 24621), True, 'import numpy as np\n'), ((24645, 24686), 'numpy.zeros', 'np.zeros', (['(num_refs, 3)'], {'dtype': 'np.float32'}), '((num_refs, 3), dtype=np.float32)\n', (24653, 24686), True, 'import numpy as np\n'), ((25806, 25878), 'log.warning', 'log.warning', (['"""Proxy file %s does not specify a Z depth. Using 50."""', 'path'], {}), "('Proxy file %s does not specify a Z depth. Using 50.', path)\n", (25817, 25878), False, 'import log\n'), ((26313, 26331), 'numpy.zeros', 'np.zeros', (['(3)', 'float'], {}), '(3, float)\n', (26321, 26331), True, 'import numpy as np\n'), ((26892, 26921), 'numpy.array', 'np.array', (['(d0, d1, d2)', 'float'], {}), '((d0, d1, d2), float)\n', (26900, 26921), True, 'import numpy as np\n'), ((33764, 33787), 'numpy.zeros', 'np.zeros', (['(3, 2)', 'float'], {}), '((3, 2), float)\n', (33772, 33787), True, 'import numpy as np\n'), ((33804, 33827), 'numpy.zeros', 'np.zeros', (['(3, 2)', 'float'], {}), '((3, 2), float)\n', (33812, 33827), True, 'import numpy as np\n'), ((34419, 34456), 'transformations.affine_matrix_from_points', 'affine_matrix_from_points', (['sbox', 'tbox'], {}), '(sbox, tbox)\n', (34444, 34456), False, 'from transformations import affine_matrix_from_points\n'), ((34730, 34756), 'os.path.join', 'os.path.join', (['folder', 'file'], {}), '(folder, file)\n', (34742, 34756), False, 'import os\n'), ((34782, 34817), 'os.path.join', 'os.path.join', (['folder', '(file + suffix)'], {}), '(folder, file + suffix)\n', (34794, 34817), False, 'import os\n'), ((35384, 35420), 'numpy.any', 'np.any', (['proxy.weights[:, 1:]'], {'axis': '(1)'}), '(proxy.weights[:, 1:], axis=1)\n', (35390, 35420), True, 'import numpy as np\n'), ((35627, 35653), 'numpy.bincount', 'np.bincount', (['unmasked_rows'], {}), '(unmasked_rows)\n', (35638, 35653), True, 'import numpy as np\n'), ((35807, 35837), 'numpy.nonzero', 'np.nonzero', (['(unmasked_count < 2)'], {}), '(unmasked_count < 2)\n', (35817, 35837), True, 'import numpy as np\n'), ((2285, 2307), 'os.path.getmtime', 'os.path.getmtime', (['file'], {}), '(file)\n', (2301, 2307), False, 'import os\n'), ((4196, 4222), 'os.path.dirname', 'os.path.dirname', (['self.file'], {}), '(self.file)\n', (4211, 4222), False, 'import os\n'), ((4359, 4385), 'os.path.dirname', 'os.path.dirname', (['self.file'], {}), '(self.file)\n', (4374, 4385), False, 'import os\n'), ((4547, 4573), 'os.path.dirname', 'os.path.dirname', (['self.file'], {}), '(self.file)\n', (4562, 4573), False, 'import os\n'), ((5543, 5588), 'log.error', 'log.error', (['"""Failed to load %s"""', 'self.obj_file'], {}), "('Failed to load %s', self.obj_file)\n", (5552, 5588), False, 'import log\n'), ((10932, 10985), 'log.debug', 'log.debug', (["('remapping weights for proxy ' + self.name)"], {}), "('remapping weights for proxy ' + self.name)\n", (10941, 10985), False, 'import log\n'), ((11006, 11025), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (11023, 11025), False, 'import time\n'), ((11670, 11689), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (11687, 11689), False, 'import time\n'), ((11951, 12036), 'log.debug', 'log.debug', (['"""remapping weights for %s took %.5f seconds"""', 'self.name', '(stop - start)'], {}), "('remapping weights for %s took %.5f seconds', self.name, stop - start\n )\n", (11960, 12036), False, 'import log\n'), ((14049, 14112), 'log.error', 'log.error', (['"""Unable to load proxy file: %s"""', 'path'], {'exc_info': '(True)'}), "('Unable to load proxy file: %s', path, exc_info=True)\n", (14058, 14112), False, 'import log\n'), ((14309, 14350), 'log.error', 'log.error', (['"""*** Cannot open %s"""', 'filepath'], {}), "('*** Cannot open %s', filepath)\n", (14318, 14350), False, 'import log\n'), ((14421, 14446), 'os.path.dirname', 'os.path.dirname', (['filepath'], {}), '(filepath)\n', (14436, 14446), False, 'import os\n'), ((20795, 20832), 'numpy.fromstring', 'np.fromstring', (['proxy.name'], {'dtype': '"""S1"""'}), "(proxy.name, dtype='S1')\n", (20808, 20832), True, 'import numpy as np\n'), ((20849, 20886), 'numpy.fromstring', 'np.fromstring', (['proxy.uuid'], {'dtype': '"""S1"""'}), "(proxy.uuid, dtype='S1')\n", (20862, 20886), True, 'import numpy as np\n'), ((20910, 20954), 'numpy.fromstring', 'np.fromstring', (['proxy.description'], {'dtype': '"""S1"""'}), "(proxy.description, dtype='S1')\n", (20923, 20954), True, 'import numpy as np\n'), ((20975, 21016), 'numpy.fromstring', 'np.fromstring', (['proxy.basemesh'], {'dtype': '"""S1"""'}), "(proxy.basemesh, dtype='S1')\n", (20988, 21016), True, 'import numpy as np\n'), ((21277, 21318), 'numpy.asarray', 'np.asarray', (['proxy.version'], {'dtype': 'np.int32'}), '(proxy.version, dtype=np.int32)\n', (21287, 21318), True, 'import numpy as np\n'), ((25711, 25767), 'animation.VertexBoneWeights.fromFile', 'VertexBoneWeights.fromFile', (['proxy.vertexBoneWeights_file'], {}), '(proxy.vertexBoneWeights_file)\n', (25737, 25767), False, 'from animation import VertexBoneWeights\n'), ((27277, 27319), 'numpy.dot', 'np.dot', (['hcoord[self._verts]', 'self._weights'], {}), '(hcoord[self._verts], self._weights)\n', (27283, 27319), True, 'import numpy as np\n'), ((27334, 27362), 'numpy.dot', 'np.dot', (['matrix', 'self._offset'], {}), '(matrix, self._offset)\n', (27340, 27362), True, 'import numpy as np\n'), ((32977, 32998), 'numpy.identity', 'np.identity', (['(3)', 'float'], {}), '(3, float)\n', (32988, 32998), True, 'import numpy as np\n'), ((37282, 37304), 'numpy.load', 'np.load', (['proxyFilePath'], {}), '(proxyFilePath)\n', (37289, 37304), True, 'import numpy as np\n'), ((39217, 39238), 'os.path.isfile', 'os.path.isfile', (['aPath'], {}), '(aPath)\n', (39231, 39238), False, 'import os\n'), ((1872, 1894), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (1888, 1894), False, 'import os\n'), ((12229, 12251), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (12245, 12251), False, 'import os\n'), ((12286, 12308), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (12302, 12308), False, 'import os\n'), ((12374, 12397), 'os.path.isfile', 'os.path.isfile', (['npzpath'], {}), '(npzpath)\n', (12388, 12397), False, 'import os\n'), ((12415, 12470), 'log.message', 'log.message', (['"""compiled proxy file missing: %s"""', 'npzpath'], {}), "('compiled proxy file missing: %s', npzpath)\n", (12426, 12470), False, 'import log\n'), ((12565, 12590), 'os.path.isfile', 'os.path.isfile', (['asciipath'], {}), '(asciipath)\n', (12579, 12590), False, 'import os\n'), ((12668, 12727), 'log.message', 'log.message', (['"""compiled proxy file out of date: %s"""', 'npzpath'], {}), "('compiled proxy file out of date: %s', npzpath)\n", (12679, 12727), False, 'import log\n'), ((12962, 13032), 'log.warning', 'log.warning', (['"""Problem loading binary proxy: %s"""', 'e'], {'exc_info': 'showTrace'}), "('Problem loading binary proxy: %s', e, exc_info=showTrace)\n", (12973, 13032), False, 'import log\n'), ((28458, 28494), 'numpy.asarray', 'np.asarray', (['scales'], {'dtype': 'np.float32'}), '(scales, dtype=np.float32)\n', (28468, 28494), True, 'import numpy as np\n'), ((28517, 28551), 'numpy.asarray', 'np.asarray', (['vidxs'], {'dtype': 'np.uint32'}), '(vidxs, dtype=np.uint32)\n', (28527, 28551), True, 'import numpy as np\n'), ((29077, 29113), 'numpy.asarray', 'np.asarray', (['shears'], {'dtype': 'np.float32'}), '(shears, dtype=np.float32)\n', (29087, 29113), True, 'import numpy as np\n'), ((29136, 29170), 'numpy.asarray', 'np.asarray', (['vidxs'], {'dtype': 'np.uint32'}), '(vidxs, dtype=np.uint32)\n', (29146, 29170), True, 'import numpy as np\n'), ((37580, 37688), 'log.warning', 'log.warning', (['"""Problem loading metadata from binary proxy, trying ASCII file: %s"""', 'e'], {'exc_info': 'showTrace'}), "('Problem loading metadata from binary proxy, trying ASCII file: %s'\n , e, exc_info=showTrace)\n", (37591, 37688), False, 'import log\n'), ((39443, 39467), 'getpath.formatPath', 'getpath.formatPath', (['path'], {}), '(path)\n', (39461, 39467), False, 'import getpath\n'), ((12595, 12622), 'os.path.getmtime', 'os.path.getmtime', (['asciipath'], {}), '(asciipath)\n', (12611, 12622), False, 'import os\n'), ((12625, 12650), 'os.path.getmtime', 'os.path.getmtime', (['npzpath'], {}), '(npzpath)\n', (12641, 12650), False, 'import os\n'), ((13198, 13215), 'getpath.getPath', 'getpath.getPath', ([], {}), '()\n', (13213, 13215), False, 'import getpath\n'), ((13956, 14028), 'log.debug', 'log.debug', (['"""Not writing compiled proxies to system paths (%s)."""', 'npzpath'], {}), "('Not writing compiled proxies to system paths (%s).', npzpath)\n", (13965, 14028), False, 'import log\n'), ((30332, 30349), 'math.isnan', 'math.isnan', (['scale'], {}), '(scale)\n', (30342, 30349), False, 'import math\n'), ((34197, 34249), 'numpy.array', 'np.array', (['(sfaces[0, i], sfaces[1, j], sfaces[2, k])'], {}), '((sfaces[0, i], sfaces[1, j], sfaces[2, k]))\n', (34205, 34249), True, 'import numpy as np\n'), ((34280, 34332), 'numpy.array', 'np.array', (['(tfaces[0, i], tfaces[1, j], tfaces[2, k])'], {}), '((tfaces[0, i], tfaces[1, j], tfaces[2, k]))\n', (34288, 34332), True, 'import numpy as np\n'), ((36961, 36986), 'os.path.isfile', 'os.path.isfile', (['asciipath'], {}), '(asciipath)\n', (36975, 36986), False, 'import os\n'), ((39333, 39359), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (39349, 39359), False, 'import os\n'), ((10856, 10894), 'log.debug', 'log.debug', (['"""The skeleton is different"""'], {}), "('The skeleton is different')\n", (10865, 10894), False, 'import log\n'), ((13330, 13384), 'log.message', 'log.message', (['"""Compiling binary proxy file %s"""', 'npzpath'], {}), "('Compiling binary proxy file %s', npzpath)\n", (13341, 13384), False, 'import log\n'), ((36734, 36765), 'os.path.splitext', 'os.path.splitext', (['proxyFilePath'], {}), '(proxyFilePath)\n', (36750, 36765), False, 'import os\n'), ((36872, 36903), 'os.path.splitext', 'os.path.splitext', (['proxyFilePath'], {}), '(proxyFilePath)\n', (36888, 36903), False, 'import os\n'), ((36991, 37018), 'os.path.getmtime', 'os.path.getmtime', (['asciipath'], {}), '(asciipath)\n', (37007, 37018), False, 'import os\n'), ((37021, 37052), 'os.path.getmtime', 'os.path.getmtime', (['proxyFilePath'], {}), '(proxyFilePath)\n', (37037, 37052), False, 'import os\n'), ((39095, 39121), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (39111, 39121), False, 'import os\n'), ((39386, 39409), 'os.path.splitext', 'os.path.splitext', (['aPath'], {}), '(aPath)\n', (39402, 39409), False, 'import os\n'), ((13491, 13562), 'log.notice', 'log.notice', (['"""unable to save compiled proxy: %s"""', 'npzpath'], {'exc_info': '(True)'}), "('unable to save compiled proxy: %s', npzpath, exc_info=True)\n", (13501, 13562), False, 'import log\n'), ((13586, 13609), 'os.path.isfile', 'os.path.isfile', (['npzpath'], {}), '(npzpath)\n', (13600, 13609), False, 'import os\n'), ((13743, 13761), 'os.remove', 'os.remove', (['npzpath'], {}), '(npzpath)\n', (13752, 13761), False, 'import os\n'), ((13837, 13925), 'log.warning', 'log.warning', (['"""Could not remove empty file %s that was left behind (%s)."""', 'npzpath', 'e'], {}), "('Could not remove empty file %s that was left behind (%s).',\n npzpath, e)\n", (13848, 13925), False, 'import log\n'), ((16540, 16596), 'animation.VertexBoneWeights.fromFile', 'VertexBoneWeights.fromFile', (['proxy.vertexBoneWeights_file'], {}), '(proxy.vertexBoneWeights_file)\n', (16566, 16596), False, 'from animation import VertexBoneWeights\n'), ((16686, 16817), 'log.warning', 'log.warning', (['"""Deprecated parameter "backface_culling" used in proxy file. Set property backfaceCull in material instead."""'], {}), '(\n \'Deprecated parameter "backface_culling" used in proxy file. Set property backfaceCull in material instead.\'\n )\n', (16697, 16817), False, 'import log\n'), ((16891, 17009), 'log.warning', 'log.warning', (['"""Deprecated parameter "transparent" used in proxy file. Set property in material file instead."""'], {}), '(\n \'Deprecated parameter "transparent" used in proxy file. Set property in material file instead.\'\n )\n', (16902, 17009), False, 'import log\n'), ((18829, 18914), 'log.warning', 'log.warning', (['"""Deprecated parameter "%s" used in proxy file. Please remove."""', 'key'], {}), '(\'Deprecated parameter "%s" used in proxy file. Please remove.\', key\n )\n', (18840, 18914), False, 'import log\n'), ((19893, 19964), 'log.warning', 'log.warning', (['"""Unknown keyword %s found in proxy file %s"""', 'key', 'filepath'], {}), "('Unknown keyword %s found in proxy file %s', key, filepath)\n", (19904, 19964), False, 'import log\n')]
import numpy as np import unittest import pytest from pysph.base.particle_array import ParticleArray import pysph.tools.mesh_tools as G from pysph.base.utils import get_particle_array # Data of a unit length cube def cube_data(): points = np.array([[0., 0., 0.], [0., 1., 0.], [1., 1., 0.], [1., 0., 0.], [0., 0., 1.], [0., 1., 1.], [1., 0., 1.], [1., 1., 1.]]) x_cube, y_cube, z_cube = points.T cells = np.array([[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4], [4, 6, 7], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]]) normals = np.array([[0., 0., -1.], [0., 0., -1.], [-1., 0., 0.], [-1., 0., 0.], [0., -1., 0.], [0., -1., 0.], [0., 0., 1.], [0., 0., 1.], [1., 0., 0.], [1., 0., 0.], [0., 1., 0.], [0., 1., 0.]]) vectors = np.zeros((len(cells), 3, 3)) for i, cell in enumerate(cells): idx1, idx2, idx3 = cell vector = np.array([[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube[idx2], z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]]) vectors[i] = vector return x_cube, y_cube, z_cube, cells, normals, vectors class TestGeometry(unittest.TestCase): def test_in_triangle(self): assert(G._in_triangle(0.5, 0.5, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5) is True) assert(G._in_triangle(1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0) is False) def test_interp_2d(self): # Check interpolation between two points on line y=x dx = 0.1 r = G._interp_2d(np.array([0., 0.]), np.array([1., 1.]), dx) # Check if all points satisfy y=x np.testing.assert_array_almost_equal( r[:, 0] - r[:, 1], np.zeros(r.shape[0])) # Check if distance between consecutive points is lesser than dx np.testing.assert_array_less(np.linalg.norm(r[1:] - r[0:-1], axis=1), np.ones(r.shape[0] - 1) * dx) def test_fill_triangle(self): triangle = np.array([[0., 0., 0.], [1., 0., 0.], [0., 1., 0.]]) dx_triangle = 0.1 x, y, z = G._fill_triangle(triangle, dx_triangle) EPS = np.finfo(float).eps np.testing.assert_array_less(-x, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-y, np.zeros(x.shape[0]) + EPS) np.testing.assert_array_less(-(x + y), np.ones(x.shape[0]) + EPS) np.testing.assert_almost_equal(z, np.zeros(x.shape[0])) def test_fill_triangle_throws_zero_area_triangle_exception(self): self.assertRaises(G.ZeroAreaTriangleException, G._fill_triangle, np.zeros((3, 3)), 0.5) def test_fill_triangle_throws_polygon_mesh_error(self): self.assertRaises(G.PolygonMeshError, G._fill_triangle, np.zeros((4, 3)), 0.5) def test_get_points_from_mgrid(self): """Find neighbouring particles around a unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z, x_list, y_list, z_list, vectors = \ G._get_surface_mesh(x_cube, y_cube, z_cube, cells, h, uniform=True) pa_mesh = ParticleArray(name='mesh', x=x, y=y, z=z, h=h) offset = h x_grid, y_grid, z_grid = np.meshgrid( np.arange(x.min() - offset, x.max() + offset, h), np.arange(y.min() - offset, y.max() + offset, h), np.arange(z.min() - offset, z.max() + offset, h)) pa_grid = ParticleArray(name='grid', x=x_grid, y=y_grid, z=z_grid, h=h) x_grid, y_grid, z_grid = G.get_points_from_mgrid( pa_grid, pa_mesh, x_list, y_list, z_list, 1, h, vectors, normals ) for i in range(x.shape[0]): assert((x[i] ** 2 + y[i] ** 2 + z[i] ** 2) <= 4) def _cube_assert(self, x, y, z, h): """Check if x,y,z lie within surface of thickness `h` of a unit cube""" def surface1(x, y, z): return min(abs(x), abs(1 - x)) < h and \ y > -h and y < 1 + h and z > -h and z < 1 + h def on_surface(x, y, z): return surface1(x, y, z) or \ surface1(y, x, z) or surface1(z, x, y) for i in range(x.shape[0]): assert on_surface(x[i], y[i], z[i]) def test_get_surface_mesh(self): """Check if mesh is generated correctly for unit cube""" x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G._get_surface_mesh(x_cube, y_cube, z_cube, cells, 0.1) h = np.finfo(float).eps self._cube_assert(x, y, z, h) def test_get_surface_points(self): """Check if surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surface_points(x_cube, y_cube, z_cube, cells, h) self._cube_assert(x, y, z, h) def test_get_surface_points_uniform(self): """Check if uniform surface is generated correctly for unit cube""" h = 0.1 x_cube, y_cube, z_cube, cells, normals, vectors = cube_data() x, y, z = G.surf_points_uniform(x_cube, y_cube, z_cube, cells, normals, 1.0, 1.0) self._cube_assert(x, y, z, h) def test_prism(self): tri_normal = np.array([0, -1, 0]) tri_points = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 1]]) h = 1/1.5 prism_normals, prism_points, prism_face_centres = \ G.prism(tri_normal, tri_points, h) assert np.array([-1, 0, 0]) in prism_normals assert np.array([0, 1, 0]) in prism_points assert np.array([0.5, 0.5, 0]) in prism_face_centres if __name__ == "__main__": unittest.main()
[ "pysph.tools.mesh_tools.get_points_from_mgrid", "numpy.ones", "pysph.tools.mesh_tools.prism", "pysph.tools.mesh_tools.surface_points", "pysph.base.particle_array.ParticleArray", "pysph.tools.mesh_tools.surf_points_uniform", "pysph.tools.mesh_tools._get_surface_mesh", "pysph.tools.mesh_tools._in_triangle", "numpy.array", "numpy.zeros", "pysph.tools.mesh_tools._fill_triangle", "numpy.linalg.norm", "unittest.main", "numpy.finfo" ]
[((245, 396), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, \n 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [1.0, 1.0, 1.0]]'], {}), '([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0\n ], [0.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [1.0, 1.0, 1.0]])\n', (253, 396), True, 'import numpy as np\n'), ((581, 727), 'numpy.array', 'np.array', (['[[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4], [4, 6, 7\n ], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]]'], {}), '([[0, 1, 2], [0, 2, 3], [0, 4, 5], [0, 5, 1], [0, 3, 6], [0, 6, 4],\n [4, 6, 7], [4, 7, 5], [3, 2, 7], [3, 7, 6], [1, 5, 7], [1, 7, 2]])\n', (589, 727), True, 'import numpy as np\n'), ((981, 1210), 'numpy.array', 'np.array', (['[[0.0, 0.0, -1.0], [0.0, 0.0, -1.0], [-1.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [\n 0.0, -1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [\n 1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]]'], {}), '([[0.0, 0.0, -1.0], [0.0, 0.0, -1.0], [-1.0, 0.0, 0.0], [-1.0, 0.0,\n 0.0], [0.0, -1.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, \n 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]])\n', (989, 1210), True, 'import numpy as np\n'), ((6425, 6440), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6438, 6440), False, 'import unittest\n'), ((1581, 1728), 'numpy.array', 'np.array', (['[[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube[idx2],\n z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]]'], {}), '([[x_cube[idx1], y_cube[idx1], z_cube[idx1]], [x_cube[idx2], y_cube\n [idx2], z_cube[idx2]], [x_cube[idx3], y_cube[idx3], z_cube[idx3]]])\n', (1589, 1728), True, 'import numpy as np\n'), ((2689, 2750), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])\n', (2697, 2750), True, 'import numpy as np\n'), ((2844, 2883), 'pysph.tools.mesh_tools._fill_triangle', 'G._fill_triangle', (['triangle', 'dx_triangle'], {}), '(triangle, dx_triangle)\n', (2860, 2883), True, 'import pysph.tools.mesh_tools as G\n'), ((3813, 3880), 'pysph.tools.mesh_tools._get_surface_mesh', 'G._get_surface_mesh', (['x_cube', 'y_cube', 'z_cube', 'cells', 'h'], {'uniform': '(True)'}), '(x_cube, y_cube, z_cube, cells, h, uniform=True)\n', (3832, 3880), True, 'import pysph.tools.mesh_tools as G\n'), ((3899, 3945), 'pysph.base.particle_array.ParticleArray', 'ParticleArray', ([], {'name': '"""mesh"""', 'x': 'x', 'y': 'y', 'z': 'z', 'h': 'h'}), "(name='mesh', x=x, y=y, z=z, h=h)\n", (3912, 3945), False, 'from pysph.base.particle_array import ParticleArray\n'), ((4215, 4276), 'pysph.base.particle_array.ParticleArray', 'ParticleArray', ([], {'name': '"""grid"""', 'x': 'x_grid', 'y': 'y_grid', 'z': 'z_grid', 'h': 'h'}), "(name='grid', x=x_grid, y=y_grid, z=z_grid, h=h)\n", (4228, 4276), False, 'from pysph.base.particle_array import ParticleArray\n'), ((4310, 4403), 'pysph.tools.mesh_tools.get_points_from_mgrid', 'G.get_points_from_mgrid', (['pa_grid', 'pa_mesh', 'x_list', 'y_list', 'z_list', '(1)', 'h', 'vectors', 'normals'], {}), '(pa_grid, pa_mesh, x_list, y_list, z_list, 1, h,\n vectors, normals)\n', (4333, 4403), True, 'import pysph.tools.mesh_tools as G\n'), ((5163, 5218), 'pysph.tools.mesh_tools._get_surface_mesh', 'G._get_surface_mesh', (['x_cube', 'y_cube', 'z_cube', 'cells', '(0.1)'], {}), '(x_cube, y_cube, z_cube, cells, 0.1)\n', (5182, 5218), True, 'import pysph.tools.mesh_tools as G\n'), ((5501, 5551), 'pysph.tools.mesh_tools.surface_points', 'G.surface_points', (['x_cube', 'y_cube', 'z_cube', 'cells', 'h'], {}), '(x_cube, y_cube, z_cube, cells, h)\n', (5517, 5551), True, 'import pysph.tools.mesh_tools as G\n'), ((5818, 5889), 'pysph.tools.mesh_tools.surf_points_uniform', 'G.surf_points_uniform', (['x_cube', 'y_cube', 'z_cube', 'cells', 'normals', '(1.0)', '(1.0)'], {}), '(x_cube, y_cube, z_cube, cells, normals, 1.0, 1.0)\n', (5839, 5889), True, 'import pysph.tools.mesh_tools as G\n'), ((6016, 6036), 'numpy.array', 'np.array', (['[0, -1, 0]'], {}), '([0, -1, 0])\n', (6024, 6036), True, 'import numpy as np\n'), ((6058, 6101), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 0], [0, 0, 1]]'], {}), '([[0, 0, 0], [1, 0, 0], [0, 0, 1]])\n', (6066, 6101), True, 'import numpy as np\n'), ((6192, 6226), 'pysph.tools.mesh_tools.prism', 'G.prism', (['tri_normal', 'tri_points', 'h'], {}), '(tri_normal, tri_points, h)\n', (6199, 6226), True, 'import pysph.tools.mesh_tools as G\n'), ((1954, 2008), 'pysph.tools.mesh_tools._in_triangle', 'G._in_triangle', (['(0.5)', '(0.5)', '(0.0)', '(0.0)', '(1.5)', '(0.0)', '(0.0)', '(1.5)'], {}), '(0.5, 0.5, 0.0, 0.0, 1.5, 0.0, 0.0, 1.5)\n', (1968, 2008), True, 'import pysph.tools.mesh_tools as G\n'), ((2033, 2087), 'pysph.tools.mesh_tools._in_triangle', 'G._in_triangle', (['(1.0)', '(1.0)', '(0.0)', '(0.0)', '(1.0)', '(0.0)', '(0.0)', '(1.0)'], {}), '(1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)\n', (2047, 2087), True, 'import pysph.tools.mesh_tools as G\n'), ((2232, 2252), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (2240, 2252), True, 'import numpy as np\n'), ((2252, 2272), 'numpy.array', 'np.array', (['[1.0, 1.0]'], {}), '([1.0, 1.0])\n', (2260, 2272), True, 'import numpy as np\n'), ((2395, 2415), 'numpy.zeros', 'np.zeros', (['r.shape[0]'], {}), '(r.shape[0])\n', (2403, 2415), True, 'import numpy as np\n'), ((2527, 2566), 'numpy.linalg.norm', 'np.linalg.norm', (['(r[1:] - r[0:-1])'], {'axis': '(1)'}), '(r[1:] - r[0:-1], axis=1)\n', (2541, 2566), True, 'import numpy as np\n'), ((2898, 2913), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (2906, 2913), True, 'import numpy as np\n'), ((3172, 3192), 'numpy.zeros', 'np.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (3180, 3192), True, 'import numpy as np\n'), ((3364, 3380), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (3372, 3380), True, 'import numpy as np\n'), ((3538, 3554), 'numpy.zeros', 'np.zeros', (['(4, 3)'], {}), '((4, 3))\n', (3546, 3554), True, 'import numpy as np\n'), ((5231, 5246), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (5239, 5246), True, 'import numpy as np\n'), ((6242, 6262), 'numpy.array', 'np.array', (['[-1, 0, 0]'], {}), '([-1, 0, 0])\n', (6250, 6262), True, 'import numpy as np\n'), ((6295, 6314), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (6303, 6314), True, 'import numpy as np\n'), ((6346, 6369), 'numpy.array', 'np.array', (['[0.5, 0.5, 0]'], {}), '([0.5, 0.5, 0])\n', (6354, 6369), True, 'import numpy as np\n'), ((2605, 2628), 'numpy.ones', 'np.ones', (['(r.shape[0] - 1)'], {}), '(r.shape[0] - 1)\n', (2612, 2628), True, 'import numpy as np\n'), ((2959, 2979), 'numpy.zeros', 'np.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (2967, 2979), True, 'import numpy as np\n'), ((3028, 3048), 'numpy.zeros', 'np.zeros', (['x.shape[0]'], {}), '(x.shape[0])\n', (3036, 3048), True, 'import numpy as np\n'), ((3103, 3122), 'numpy.ones', 'np.ones', (['x.shape[0]'], {}), '(x.shape[0])\n', (3110, 3122), True, 'import numpy as np\n')]
import xarray as xr import pandas as pd import cartopy import cartopy.crs as ccrs import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import numpy as np from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import shapely.geometry as sgeom import cartopy.feature as cfeature from copy import copy # Define functions for plotting def find_side(ls, side): """ Given a shapely LineString which is assumed to be rectangular, return the line corresponding to a given side of the rectangle. """ minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(minx, maxy), (maxx, maxy)],} return sgeom.LineString(points[side]) def lambert_xticks(ax, ticks): """ Draw ticks on the bottom x-axis of a Lambert Conformal projection. """ te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels]) def lambert_yticks(ax, ticks): """ Draw ticks on the left y-axis of a Lambert Conformal projection. """ te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels]) def _lambert_ticks(ax, ticks, tick_location, line_constructor, tick_extractor): """ Get the tick locations and labels for an axis of a Lambert Conformal projection. """ outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) # Remove ticks that aren't visible: ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels def plot_250hPa_winds(lon, lat, u, v, wspd, mode): """ Plot filled contours overlayed with vectors Input ------- lon = lon values extracted from xarray dataset (1-D) lat = lat values extracted from xarray dataset (1-D) u = U-wind at 250 hPa, shape = lon X lat v = V-wind at 250 hPa, shape = lon X lat wspd = Wind speed at 250 hPa, shape = lon X lat mode = 'A' for anomaly data, 'LM' for long term means, and 'EM' for extreme precipitation days Output -------- matplotlib figure with filled contours of wind speed overlayed with wind vectors """ # change data and lon to cyclic coordinates u, lon_new = add_cyclic_point(u.values, coord = lon.values) v, lon_new = add_cyclic_point(v.values, coord = lon.values) wspd, lon = add_cyclic_point(wspd.values, coord = lon.values) # Create a figure fig = plt.figure(figsize = (10, 5)) # Set the GeoAxes to the PlateCarree projection ax = plt.axes(projection = ccrs.PlateCarree()) # Add coastlines ax.coastlines('50m', linewidth = 0.8) # Assign data for filled contour data = wspd if mode == 'EM' or mode == 'LM': # Plot filled contours plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), cmap = get_cmap("viridis")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('m/s', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 20., label = '20 m/s', coordinates='axes', labelpos='E') elif mode == 'A': # Plot filled contours maxval, minval = np.abs(np.amax(data)), np.abs(np.amin(data)) normmax = np.amax([maxval, minval]) norm = mpl.colors.Normalize(vmin = -normmax, vmax = normmax) plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), norm = norm, cmap = get_cmap("RdBu_r")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('m/s', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 3., label = '3 m/s', coordinates = 'axes', labelpos = 'E') # *must* call draw in order to get the axis boundary used to add ticks: fig.canvas.draw() # Add the tick marks xticks = np.arange(0., 360., 30.) yticks = np.arange(-90., 100., 15.) # Label the end-points of the gridlines using the custom tick makers: ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) ax.yaxis.set_major_formatter(LATITUDE_FORMATTER) lambert_xticks(ax, xticks) lambert_yticks(ax, yticks) # Set title and figure name if mode == 'LM': plt.title('250 hPa Winds'+'\n'+'long term mean', fontsize=18) pname = 'p250_longterm.png' elif mode == 'EM': plt.title('250 hPa Winds'+'\n'+'extreme precipitation days', fontsize=18) pname = 'p250_extreme.png' elif mode == 'A': plt.title('250 hPa Winds'+'\n'+'anomaly fields', fontsize=18) pname = 'p250_anom.png' ax.set_global(); ax.gridlines(); plt.tight_layout() #plot_dir = '/mnt/a/u/sciteam/chug/Laplata_tracers/plots/dipole_assessment/' #pname = plot_dir + name + '.png' plt.savefig(pname, bbox_inches = 'tight') plt.show() def plot_500hPa_winds_geopot(lon, lat, u, v, z, mode): """ Plot filled contours overlayed with vectors Input ------- lon = lon values extracted from xarray dataset (1-D) lat = lat values extracted from xarray dataset (1-D) u = U-wind at 500 hPa, shape = lon X lat v = V-wind at 500 hPa, shape = lon X lat z = Geopotential height at 500 hPa, shape = lon X lat mode = 'A' for anomaly data, 'LM' for long term means, and 'EM' for extreme precipitation days Output -------- matplotlib figure with filled contours of geopotential height overlayed with wind vectors """ # change data and lon to cyclic coordinates u, lon_new = add_cyclic_point(u.values, coord = lon.values) v, lon_new = add_cyclic_point(v.values, coord = lon.values) z, lon = add_cyclic_point(z.values, coord = lon.values) # Create a figure fig = plt.figure(figsize = (10, 5)) # Set the GeoAxes to the PlateCarree projection ax = plt.axes(projection = ccrs.PlateCarree()) # Add coastlines ax.coastlines('50m', linewidth=0.8) # Assign data for filled contour data = z if mode == 'EM' or mode == 'LM': # Plot filled contours plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), cmap = get_cmap("viridis")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('m', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 10., label = '10 m/s', coordinates = 'axes', labelpos = 'E') elif mode == 'A': # Plot filled contours maxval, minval = np.abs(np.amax(data)), np.abs(np.amin(data)) normmax = np.amax([maxval, minval]) norm = mpl.colors.Normalize(vmin = -normmax, vmax = normmax) plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), norm = norm, cmap = get_cmap("RdBu_r")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('m', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 3., label = '3 m/s', coordinates = 'axes', labelpos = 'E') # *must* call draw in order to get the axis boundary used to add ticks: fig.canvas.draw() # Add the tick marks xticks = np.arange(0., 360., 30.) yticks = np.arange(-90., 100., 15.) # Label the end-points of the gridlines using the custom tick makers: ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) ax.yaxis.set_major_formatter(LATITUDE_FORMATTER) lambert_xticks(ax, xticks) lambert_yticks(ax, yticks) #Set title and figure name if mode == 'LM': plt.title('500 hPa Winds, GPH'+'\n'+'long term mean', fontsize=18) pname = 'p500_longterm.png' elif mode == 'EM': plt.title('500 hPa Winds, GPH'+'\n'+'extreme precipitation days', fontsize=18) pname = 'p500_extreme.png' elif mode == 'A': plt.title('500 hPa Winds, GPH'+'\n'+'anomaly fields', fontsize=18) pname = 'p500_anom.png' ax.set_global(); ax.gridlines(); plt.tight_layout() #plot_dir = '/mnt/a/u/sciteam/chug/Laplata_tracers/plots/dipole_assessment/' #pname = plot_dir + name + '.png' plt.savefig(pname, bbox_inches = 'tight') plt.show() def plot_850hPa(lon, lat, u, v, t, q, mode): """ Plot filled contours overlayed with contours and vectors Input ------- lon = lon values extracted from xarray dataset (1-D) lat = lat values extracted from xarray dataset (1-D) u = U-wind at 850 hPa, shape = lon X lat v = V-wind at 850 hPa, shape = lon X lat t = Temperature at 850 hPa, shape = lon X lat q = Specific humidity at 850 hPa, shape = lon X lat mode = 'A' for anomaly data, 'LM' for long term means, and 'EM' for extreme precipitation days Output -------- matplotlib figure with filled contours of temperature overlayed with contours of spec humidity and wind vectors """ # change data and lon to cyclic coordinates u, lon_new = add_cyclic_point(u.values, coord = lon.values) v, lon_new = add_cyclic_point(v.values, coord = lon.values) q, lon_new = add_cyclic_point(q.values, coord = lon.values) t, lon = add_cyclic_point(t.values, coord = lon.values) # Create a figure fig = plt.figure(figsize = (10, 5)) # Set the GeoAxes to the PlateCarree projection ax = plt.axes(projection = ccrs.PlateCarree()) # Add coastlines ax.coastlines('50m', linewidth = 0.8) # Assign data for filled contour data = t if mode == 'EM' or mode == 'LM': # Plot filled contours plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), cmap = get_cmap("viridis")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$^{o}C$', fontsize = 18) # Plot contours plt.contour(lon, lat, q, transform = ccrs.PlateCarree(), colors = 'w') # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 8., label = '8 m/s', coordinates = 'axes', labelpos = 'E') elif mode == 'A': # Plot filled contours maxval, minval = np.abs(np.amax(data)), np.abs(np.amin(data)) normmax = np.amax([maxval, minval]) norm = mpl.colors.Normalize(vmin = -normmax, vmax = normmax) plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), norm = norm, cmap = get_cmap("RdBu_r")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$^{o}C$', fontsize = 18) # Plot contours plt.contour(lon, lat, q, transform = ccrs.PlateCarree()) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lon[::rd], lat[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 3., label = '3 m/s', coordinates = 'axes', labelpos = 'E') # *must* call draw in order to get the axis boundary used to add ticks: fig.canvas.draw() # Add the tick marks xticks = np.arange(0., 360., 30.) yticks = np.arange(-90., 100., 15.) # Label the end-points of the gridlines using the custom tick makers: ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) ax.yaxis.set_major_formatter(LATITUDE_FORMATTER) lambert_xticks(ax, xticks) lambert_yticks(ax, yticks) # Set title and figure name if mode == 'LM': plt.title('850 hPa Winds, Temp, Humidity'+'\n'+'long term mean', fontsize = 18) pname = 'p850_longterm.png' elif mode == 'EM': plt.title('850 hPa Winds, Temp, Humidity'+'\n'+'extreme precipitation days', fontsize = 18) pname = 'p850_extreme.png' elif mode == 'A': plt.title('850 hPa Winds, Temp, Humidity'+'\n'+'anomaly fields', fontsize = 18) pname = 'p850_anom.png' ax.set_global(); ax.gridlines(); plt.tight_layout() #plot_dir = '/mnt/a/u/sciteam/chug/Laplata_tracers/plots/dipole_assessment/' #pname = plot_dir + name + '.png' plt.savefig(pname, bbox_inches = 'tight') plt.show() def plot_sfc_winds_skt(lonu, latu, u, v, lont, latt, t, mode): """ Plot filled contours overlayed with contours and vectors Input ------- lonu = lon values extracted from wind dataset (1-D) latu = lat values extracted from wind dataset (1-D) u = U-wind at surface, shape = lonu X latu v = V-wind at surface, shape = lonu X latu lont = lon values extracted from skin temperature dataset (1-D) latt = lat values extracted from skin temperature dataset (1-D) t = Skin temperature, shape = lont X latt mode = 'A' for anomaly data, 'LM' for long term means, and 'EM' for extreme precipitation days Output -------- matplotlib figure with filled contours of skin temperature overlayed with wind vectors """ # change data and lon to cyclic coordinates u, lonu_new = add_cyclic_point(u.values, coord = lonu.values) v, lonu = add_cyclic_point(v.values, coord = lonu.values) t, lont = add_cyclic_point(t.values, coord = lont.values) # Create a figure fig = plt.figure(figsize=(10, 5)) # Set the GeoAxes to the PlateCarree projection ax = plt.axes(projection = ccrs.PlateCarree()) # Add coastlines ax.coastlines('50m', linewidth = 0.8) # Assign data for filled contour data = t if mode == 'EM' or mode == 'LM': # Plot filled contours plt.contourf(lont, latt, data, 20, transform = ccrs.PlateCarree(), cmap = get_cmap("viridis")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$^{o}C$', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lonu[::rd], latu[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 5., label = '5 m/s', coordinates = 'axes', labelpos = 'E') elif mode == 'A': # Plot filled contours maxval, minval = np.abs(np.amax(data)), np.abs(np.amin(data)) normmax = np.amax([maxval, minval]) norm = mpl.colors.Normalize(vmin = -normmax, vmax = normmax) plt.contourf(lont, latt, data, 20, transform = ccrs.PlateCarree(), norm = norm, cmap = get_cmap("RdBu_r")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$^{o}C$', fontsize = 18) # Plot the vectors and reference vector rd = 5 #regrid_delta quiver = plt.quiver(lonu[::rd], latu[::rd], u[::rd, ::rd], v[::rd, ::rd], transform = ccrs.PlateCarree(), headwidth = 5., headlength = 5.) ax.quiverkey(quiver, X = 0.9, Y = 1.03, U = 3., label = '3 m/s', coordinates = 'axes', labelpos = 'E') # *must* call draw in order to get the axis boundary used to add ticks: fig.canvas.draw() # Add the tick marks xticks = np.arange(0., 360., 30.) yticks = np.arange(-80., 80., 20.) # Label the end-points of the gridlines using the custom tick makers: ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) ax.yaxis.set_major_formatter(LATITUDE_FORMATTER) lambert_xticks(ax, xticks) lambert_yticks(ax, yticks) # Set title and figure name if mode == 'LM': plt.title('Surface Winds, Skin temp'+'\n'+'long term mean', fontsize = 18) pname = 'sfc_longterm.png' elif mode == 'EM': plt.title('Surface Winds, Skin temp'+'\n'+'extreme precipitation days', fontsize = 18) pname = 'sfc_extreme.png' elif mode == 'A': plt.title('Surface Winds, Skin temp'+'\n'+'anomaly fields', fontsize = 18) pname = 'sfc_anom.png' ax.set_global(); ax.gridlines(); plt.tight_layout() #plot_dir = '/mnt/a/u/sciteam/chug/Laplata_tracers/plots/dipole_assessment/' #pname = plot_dir + name + '.png' plt.savefig(pname, bbox_inches = 'tight') plt.show() def plot_TCWV(lon, lat, q, mode): """ Plot filled contours of total column water vapor Input ------- lon = lon values extracted from xarray dataset (1-D) lat = lat values extracted from xarray dataset (1-D) q = Total column water vapor, shape = lon X lat mode = 'A' for anomaly data, 'LM' for long term means, and 'EM' for extreme precipitation days Output -------- matplotlib figure with filled contours of total column water vapor """ # change data and lon to cyclic coordinates q, lon = add_cyclic_point(q.values, coord = lon.values) # Create a figure fig = plt.figure(figsize=(10, 5)) # Set the GeoAxes to the PlateCarree projection ax = plt.axes(projection = ccrs.PlateCarree()) # Add coastlines ax.coastlines('50m', linewidth = 0.8) # Assign data for filled contour data = q if mode == 'EM' or mode == 'LM': data[data > 80.] = 80. # Plot filled contours plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), cmap = get_cmap("viridis")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$mm$', fontsize = 18) elif mode == 'A': maxval, minval = np.abs(np.amax(data)), np.abs(np.amin(data)) normmax = np.amax([maxval, minval]) norm = mpl.colors.Normalize(vmin = -normmax, vmax = normmax) plt.contourf(lon, lat, data, 20, transform = ccrs.PlateCarree(), norm = norm, cmap = get_cmap("RdBu_r")) # Add a color bar cbar = plt.colorbar(ax = ax, shrink = .75) cbar.ax.set_ylabel('$mm$', fontsize = 18) # *must* call draw in order to get the axis boundary used to add ticks: fig.canvas.draw() # Add the tick marks xticks = np.arange(0., 360., 30.) yticks = np.arange(-80., 80., 20.) # Label the end-points of the gridlines using the custom tick makers: ax.xaxis.set_major_formatter(LONGITUDE_FORMATTER) ax.yaxis.set_major_formatter(LATITUDE_FORMATTER) lambert_xticks(ax, xticks) lambert_yticks(ax, yticks) # Set title and figure name if mode == 'LM': plt.title('Total column water vapor'+'\n'+'long term mean', fontsize = 18) pname = 'tcwv_longterm.png' elif mode == 'EM': plt.title('Total column water vapor'+'\n'+'extreme precipitation days',fontsize = 18) pname = 'tcwv_extreme.png' elif mode == 'A': plt.title('Total column water vapor'+'\n'+'anomaly field',fontsize = 18) pname = 'tcwv_anom.png' ax.set_global(); ax.gridlines(); plt.tight_layout() #plot_dir = '/mnt/a/u/sciteam/chug/Laplata_tracers/plots/dipole_assessment/' #pname = plot_dir + name + '.png' plt.savefig(pname, bbox_inches = 'tight') plt.show() ############################### # Open datasets and plot data # # Set path to netcdf files path = 'atms597_proj3/data/' # First let's plot the anomalies # 250 hPa anomalies xrdata = xr.open_dataset(path+'pressure_anomaly.nc') lat = xrdata['lat'] lon = xrdata['lon'] u = xrdata['u_wind_250'] v = xrdata['v_wind_250'] xrdata = xr.open_dataset('atms597_proj3/data/pressure_anomaly_new.nc') wspd = xrdata['wind_spd_250'] plot_250hPa_winds(lon, lat, u, v, wspd, 'A') # 500 hPa anomalies u = xrdata['u_wind_500'] v = xrdata['v_wind_500'] z = xrdata['height_500'] plot_500hPa_winds_geopot(lon, lat, u, v, z, 'A') # 850 hPa anomalies u = xrdata['u_wind_850'] v = xrdata['v_wind_850'] t = xrdata['temp_850'] q = xrdata['q_850'] plot_850hPa(lon, lat, u, v, t, q, 'A') # Next we move to surface anomalies xrdata = xr.open_dataset(path+'surface_anomaly.nc') latu = xrdata['lat'] lonu = xrdata['lon'] u = xrdata['sfc_u_wind_surface'] v = xrdata['sfc_v_wind_surface'] xrdata = xr.open_dataset(path+'surface_gauss_anomaly.nc') t = xrdata['skin_temp_surface']-273 #convert to Celcius latt = xrdata['lat'] lont = xrdata['lon'] plot_sfc_winds_skt(lonu, latu, u, v, lont, latt, t, 'A') # TCWV anomalies xrdata = xr.open_dataset(path+'total_column_anomaly.nc') lat = xrdata['lat'] lon = xrdata['lon'] q = xrdata['total_column_q'] plot_TCWV(lon, lat, q, 'A') # Next we plot the long term means # 250 hPa long term means xrdata = xr.open_dataset(path+'pressure_long_term_mean.nc') lat = xrdata['lat'] lon = xrdata['lon'] u = xrdata['u_wind_250'] v = xrdata['v_wind_250'] wspd = np.sqrt(np.multiply(u, u) + np.multiply(v, v)) plot_250hPa_winds(lon, lat, u, v, wspd, 'LM') # 500 hPa long term means u = xrdata['u_wind_500'] v = xrdata['v_wind_500'] z = xrdata['height_500'] plot_500hPa_winds_geopot(lon, lat, u, v, z, 'LM') # 850 hPa long term means u = xrdata['u_wind_850'] v = xrdata['v_wind_850'] t = xrdata['temp_850'] q = xrdata['q_850'] plot_850hPa(lon, lat, u, v, t, q, 'LM') # surface long term means xrdata = xr.open_dataset(path+'surface_long_term_mean.nc') latu = xrdata['lat'] lonu = xrdata['lon'] u = xrdata['sfc_u_wind_surface'] v = xrdata['sfc_v_wind_surface'] xrdata = xr.open_dataset(path+'surface_gauss_long_term_mean.nc') t = xrdata['skin_temp_surface'] latt = xrdata['lat'] lont = xrdata['lon'] plot_sfc_winds_skt(lonu, latu, u, v, lont, latt, t, 'LM') # TCWV long term means xrdata = xr.open_dataset(path+'total_column_long_term_mean.nc') lat = xrdata['lat'] lon = xrdata['lon'] q = xrdata['total_column_q'] plot_TCWV(lon, lat, q, 'LM') # Finally we plot the mean of extreme precipitation days # 250 hPa extreme means xrdata = xr.open_dataset(path+'pressure_extreme_precip_mean.nc') lat = xrdata['lat'] lon = xrdata['lon'] u = xrdata['u_wind_250'] v = xrdata['v_wind_250'] wspd = np.sqrt(np.multiply(u, u) + np.multiply(v, v)) plot_250hPa_winds(lon, lat, u, v, wspd, 'EM') # 500 hPa extreme means u = xrdata['u_wind_500'] v = xrdata['v_wind_500'] z = xrdata['height_500'] plot_500hPa_winds_geopot(lon, lat, u, v, z, 'EM') # 850 hPa extreme means u = xrdata['u_wind_850'] v = xrdata['v_wind_850'] t = xrdata['temp_850'] q = xrdata['q_850'] plot_850hPa(lon, lat, u, v, t, q, 'EM') # surface extreme means xrdata = xr.open_dataset(path+'surface_extreme_precip_mean.nc') latu = xrdata['lat'] lonu = xrdata['lon'] u = xrdata['sfc_u_wind_surface'] v = xrdata['sfc_v_wind_surface'] xrdata = xr.open_dataset(path+'surface_gauss_extreme_precip_mean.nc') t = xrdata['skin_temp_surface']-273 latt = xrdata['lat'] lont = xrdata['lon'] plot_sfc_winds_skt(lonu, latu, u, v, lont, latt, t, 'EM') # TCWV extreme means xrdata = xr.open_dataset(path+'total_column_extreme_precip_mean.nc') lat = xrdata['lat'] lon = xrdata['lon'] q = xrdata['total_column_q'] plot_TCWV(lon, lat, q, 'EM')
[ "copy.copy", "numpy.arange", "numpy.multiply", "numpy.linspace", "matplotlib.cm.get_cmap", "matplotlib.pyplot.savefig", "numpy.amin", "cartopy.crs.PlateCarree", "shapely.geometry.LineString", "matplotlib.colors.Normalize", "matplotlib.pyplot.title", "xarray.open_dataset", "cartopy.crs.Geodetic", "matplotlib.pyplot.show", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.figure", "numpy.zeros", "matplotlib.pyplot.tight_layout", "numpy.amax" ]
[((22322, 22367), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'pressure_anomaly.nc')"], {}), "(path + 'pressure_anomaly.nc')\n", (22337, 22367), True, 'import xarray as xr\n'), ((22465, 22526), 'xarray.open_dataset', 'xr.open_dataset', (['"""atms597_proj3/data/pressure_anomaly_new.nc"""'], {}), "('atms597_proj3/data/pressure_anomaly_new.nc')\n", (22480, 22526), True, 'import xarray as xr\n'), ((22946, 22990), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_anomaly.nc')"], {}), "(path + 'surface_anomaly.nc')\n", (22961, 22990), True, 'import xarray as xr\n'), ((23106, 23156), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_gauss_anomaly.nc')"], {}), "(path + 'surface_gauss_anomaly.nc')\n", (23121, 23156), True, 'import xarray as xr\n'), ((23337, 23386), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'total_column_anomaly.nc')"], {}), "(path + 'total_column_anomaly.nc')\n", (23352, 23386), True, 'import xarray as xr\n'), ((23554, 23606), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'pressure_long_term_mean.nc')"], {}), "(path + 'pressure_long_term_mean.nc')\n", (23569, 23606), True, 'import xarray as xr\n'), ((24143, 24194), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_long_term_mean.nc')"], {}), "(path + 'surface_long_term_mean.nc')\n", (24158, 24194), True, 'import xarray as xr\n'), ((24310, 24367), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_gauss_long_term_mean.nc')"], {}), "(path + 'surface_gauss_long_term_mean.nc')\n", (24325, 24367), True, 'import xarray as xr\n'), ((24531, 24587), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'total_column_long_term_mean.nc')"], {}), "(path + 'total_column_long_term_mean.nc')\n", (24546, 24587), True, 'import xarray as xr\n'), ((24776, 24833), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'pressure_extreme_precip_mean.nc')"], {}), "(path + 'pressure_extreme_precip_mean.nc')\n", (24791, 24833), True, 'import xarray as xr\n'), ((25364, 25420), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_extreme_precip_mean.nc')"], {}), "(path + 'surface_extreme_precip_mean.nc')\n", (25379, 25420), True, 'import xarray as xr\n'), ((25536, 25598), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'surface_gauss_extreme_precip_mean.nc')"], {}), "(path + 'surface_gauss_extreme_precip_mean.nc')\n", (25551, 25598), True, 'import xarray as xr\n'), ((25764, 25825), 'xarray.open_dataset', 'xr.open_dataset', (["(path + 'total_column_extreme_precip_mean.nc')"], {}), "(path + 'total_column_extreme_precip_mean.nc')\n", (25779, 25825), True, 'import xarray as xr\n'), ((833, 863), 'shapely.geometry.LineString', 'sgeom.LineString', (['points[side]'], {}), '(points[side])\n', (849, 863), True, 'import shapely.geometry as sgeom\n'), ((2624, 2635), 'copy.copy', 'copy', (['ticks'], {}), '(ticks)\n', (2628, 2635), False, 'from copy import copy\n'), ((3740, 3767), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (3750, 3767), True, 'import matplotlib.pyplot as plt\n'), ((5793, 5820), 'numpy.arange', 'np.arange', (['(0.0)', '(360.0)', '(30.0)'], {}), '(0.0, 360.0, 30.0)\n', (5802, 5820), True, 'import numpy as np\n'), ((5831, 5860), 'numpy.arange', 'np.arange', (['(-90.0)', '(100.0)', '(15.0)'], {}), '(-90.0, 100.0, 15.0)\n', (5840, 5860), True, 'import numpy as np\n'), ((6585, 6603), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6601, 6603), True, 'import matplotlib.pyplot as plt\n'), ((6727, 6766), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pname'], {'bbox_inches': '"""tight"""'}), "(pname, bbox_inches='tight')\n", (6738, 6766), True, 'import matplotlib.pyplot as plt\n'), ((6773, 6783), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6781, 6783), True, 'import matplotlib.pyplot as plt\n'), ((7707, 7734), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (7717, 7734), True, 'import matplotlib.pyplot as plt\n'), ((9738, 9765), 'numpy.arange', 'np.arange', (['(0.0)', '(360.0)', '(30.0)'], {}), '(0.0, 360.0, 30.0)\n', (9747, 9765), True, 'import numpy as np\n'), ((9776, 9805), 'numpy.arange', 'np.arange', (['(-90.0)', '(100.0)', '(15.0)'], {}), '(-90.0, 100.0, 15.0)\n', (9785, 9805), True, 'import numpy as np\n'), ((10544, 10562), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10560, 10562), True, 'import matplotlib.pyplot as plt\n'), ((10686, 10725), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pname'], {'bbox_inches': '"""tight"""'}), "(pname, bbox_inches='tight')\n", (10697, 10725), True, 'import matplotlib.pyplot as plt\n'), ((10732, 10742), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10740, 10742), True, 'import matplotlib.pyplot as plt\n'), ((11803, 11830), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (11813, 11830), True, 'import matplotlib.pyplot as plt\n'), ((14056, 14083), 'numpy.arange', 'np.arange', (['(0.0)', '(360.0)', '(30.0)'], {}), '(0.0, 360.0, 30.0)\n', (14065, 14083), True, 'import numpy as np\n'), ((14094, 14123), 'numpy.arange', 'np.arange', (['(-90.0)', '(100.0)', '(15.0)'], {}), '(-90.0, 100.0, 15.0)\n', (14103, 14123), True, 'import numpy as np\n'), ((14902, 14920), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14918, 14920), True, 'import matplotlib.pyplot as plt\n'), ((15044, 15083), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pname'], {'bbox_inches': '"""tight"""'}), "(pname, bbox_inches='tight')\n", (15055, 15083), True, 'import matplotlib.pyplot as plt\n'), ((15090, 15100), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15098, 15100), True, 'import matplotlib.pyplot as plt\n'), ((16171, 16198), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (16181, 16198), True, 'import matplotlib.pyplot as plt\n'), ((18203, 18230), 'numpy.arange', 'np.arange', (['(0.0)', '(360.0)', '(30.0)'], {}), '(0.0, 360.0, 30.0)\n', (18212, 18230), True, 'import numpy as np\n'), ((18241, 18269), 'numpy.arange', 'np.arange', (['(-80.0)', '(80.0)', '(20.0)'], {}), '(-80.0, 80.0, 20.0)\n', (18250, 18269), True, 'import numpy as np\n'), ((19030, 19048), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (19046, 19048), True, 'import matplotlib.pyplot as plt\n'), ((19172, 19211), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pname'], {'bbox_inches': '"""tight"""'}), "(pname, bbox_inches='tight')\n", (19183, 19211), True, 'import matplotlib.pyplot as plt\n'), ((19218, 19228), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19226, 19228), True, 'import matplotlib.pyplot as plt\n'), ((19869, 19896), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (19879, 19896), True, 'import matplotlib.pyplot as plt\n'), ((21109, 21136), 'numpy.arange', 'np.arange', (['(0.0)', '(360.0)', '(30.0)'], {}), '(0.0, 360.0, 30.0)\n', (21118, 21136), True, 'import numpy as np\n'), ((21147, 21175), 'numpy.arange', 'np.arange', (['(-80.0)', '(80.0)', '(20.0)'], {}), '(-80.0, 80.0, 20.0)\n', (21156, 21175), True, 'import numpy as np\n'), ((21936, 21954), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (21952, 21954), True, 'import matplotlib.pyplot as plt\n'), ((22078, 22117), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pname'], {'bbox_inches': '"""tight"""'}), "(pname, bbox_inches='tight')\n", (22089, 22117), True, 'import matplotlib.pyplot as plt\n'), ((22124, 22134), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22132, 22134), True, 'import matplotlib.pyplot as plt\n'), ((2122, 2140), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (2138, 2140), True, 'import cartopy.crs as ccrs\n'), ((4263, 4295), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (4275, 4295), True, 'import matplotlib.pyplot as plt\n'), ((6173, 6238), 'matplotlib.pyplot.title', 'plt.title', (["('250 hPa Winds' + '\\n' + 'long term mean')"], {'fontsize': '(18)'}), "('250 hPa Winds' + '\\n' + 'long term mean', fontsize=18)\n", (6182, 6238), True, 'import matplotlib.pyplot as plt\n'), ((8216, 8248), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (8228, 8248), True, 'import matplotlib.pyplot as plt\n'), ((10117, 10187), 'matplotlib.pyplot.title', 'plt.title', (["('500 hPa Winds, GPH' + '\\n' + 'long term mean')"], {'fontsize': '(18)'}), "('500 hPa Winds, GPH' + '\\n' + 'long term mean', fontsize=18)\n", (10126, 10187), True, 'import matplotlib.pyplot as plt\n'), ((12314, 12346), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (12326, 12346), True, 'import matplotlib.pyplot as plt\n'), ((14436, 14521), 'matplotlib.pyplot.title', 'plt.title', (["('850 hPa Winds, Temp, Humidity' + '\\n' + 'long term mean')"], {'fontsize': '(18)'}), "('850 hPa Winds, Temp, Humidity' + '\\n' + 'long term mean',\n fontsize=18)\n", (14445, 14521), True, 'import matplotlib.pyplot as plt\n'), ((16673, 16705), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (16685, 16705), True, 'import matplotlib.pyplot as plt\n'), ((18582, 18658), 'matplotlib.pyplot.title', 'plt.title', (["('Surface Winds, Skin temp' + '\\n' + 'long term mean')"], {'fontsize': '(18)'}), "('Surface Winds, Skin temp' + '\\n' + 'long term mean', fontsize=18)\n", (18591, 18658), True, 'import matplotlib.pyplot as plt\n'), ((20400, 20432), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (20412, 20432), True, 'import matplotlib.pyplot as plt\n'), ((21488, 21564), 'matplotlib.pyplot.title', 'plt.title', (["('Total column water vapor' + '\\n' + 'long term mean')"], {'fontsize': '(18)'}), "('Total column water vapor' + '\\n' + 'long term mean', fontsize=18)\n", (21497, 21564), True, 'import matplotlib.pyplot as plt\n'), ((23710, 23727), 'numpy.multiply', 'np.multiply', (['u', 'u'], {}), '(u, u)\n', (23721, 23727), True, 'import numpy as np\n'), ((23730, 23747), 'numpy.multiply', 'np.multiply', (['v', 'v'], {}), '(v, v)\n', (23741, 23747), True, 'import numpy as np\n'), ((24937, 24954), 'numpy.multiply', 'np.multiply', (['u', 'u'], {}), '(u, u)\n', (24948, 24954), True, 'import numpy as np\n'), ((24957, 24974), 'numpy.multiply', 'np.multiply', (['v', 'v'], {}), '(v, v)\n', (24968, 24974), True, 'import numpy as np\n'), ((2278, 2293), 'cartopy.crs.Geodetic', 'ccrs.Geodetic', ([], {}), '()\n', (2291, 2293), True, 'import cartopy.crs as ccrs\n'), ((3858, 3876), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (3874, 3876), True, 'import cartopy.crs as ccrs\n'), ((4893, 4918), 'numpy.amax', 'np.amax', (['[maxval, minval]'], {}), '([maxval, minval])\n', (4900, 4918), True, 'import numpy as np\n'), ((4934, 4983), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(-normmax)', 'vmax': 'normmax'}), '(vmin=-normmax, vmax=normmax)\n', (4954, 4983), True, 'import matplotlib as mpl\n'), ((5173, 5205), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (5185, 5205), True, 'import matplotlib.pyplot as plt\n'), ((6302, 6379), 'matplotlib.pyplot.title', 'plt.title', (["('250 hPa Winds' + '\\n' + 'extreme precipitation days')"], {'fontsize': '(18)'}), "('250 hPa Winds' + '\\n' + 'extreme precipitation days', fontsize=18)\n", (6311, 6379), True, 'import matplotlib.pyplot as plt\n'), ((7825, 7843), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (7841, 7843), True, 'import cartopy.crs as ccrs\n'), ((8840, 8865), 'numpy.amax', 'np.amax', (['[maxval, minval]'], {}), '([maxval, minval])\n', (8847, 8865), True, 'import numpy as np\n'), ((8881, 8930), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(-normmax)', 'vmax': 'normmax'}), '(vmin=-normmax, vmax=normmax)\n', (8901, 8930), True, 'import matplotlib as mpl\n'), ((9120, 9152), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (9132, 9152), True, 'import matplotlib.pyplot as plt\n'), ((10251, 10337), 'matplotlib.pyplot.title', 'plt.title', (["('500 hPa Winds, GPH' + '\\n' + 'extreme precipitation days')"], {'fontsize': '(18)'}), "('500 hPa Winds, GPH' + '\\n' + 'extreme precipitation days',\n fontsize=18)\n", (10260, 10337), True, 'import matplotlib.pyplot as plt\n'), ((11921, 11939), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (11937, 11939), True, 'import cartopy.crs as ccrs\n'), ((13054, 13079), 'numpy.amax', 'np.amax', (['[maxval, minval]'], {}), '([maxval, minval])\n', (13061, 13079), True, 'import numpy as np\n'), ((13095, 13144), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(-normmax)', 'vmax': 'normmax'}), '(vmin=-normmax, vmax=normmax)\n', (13115, 13144), True, 'import matplotlib as mpl\n'), ((13334, 13366), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (13346, 13366), True, 'import matplotlib.pyplot as plt\n'), ((14583, 14680), 'matplotlib.pyplot.title', 'plt.title', (["('850 hPa Winds, Temp, Humidity' + '\\n' + 'extreme precipitation days')"], {'fontsize': '(18)'}), "('850 hPa Winds, Temp, Humidity' + '\\n' +\n 'extreme precipitation days', fontsize=18)\n", (14592, 14680), True, 'import matplotlib.pyplot as plt\n'), ((16287, 16305), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (16303, 16305), True, 'import cartopy.crs as ccrs\n'), ((17303, 17328), 'numpy.amax', 'np.amax', (['[maxval, minval]'], {}), '([maxval, minval])\n', (17310, 17328), True, 'import numpy as np\n'), ((17344, 17393), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(-normmax)', 'vmax': 'normmax'}), '(vmin=-normmax, vmax=normmax)\n', (17364, 17393), True, 'import matplotlib as mpl\n'), ((17585, 17617), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (17597, 17617), True, 'import matplotlib.pyplot as plt\n'), ((18723, 18815), 'matplotlib.pyplot.title', 'plt.title', (["('Surface Winds, Skin temp' + '\\n' + 'extreme precipitation days')"], {'fontsize': '(18)'}), "('Surface Winds, Skin temp' + '\\n' + 'extreme precipitation days',\n fontsize=18)\n", (18732, 18815), True, 'import matplotlib.pyplot as plt\n'), ((19985, 20003), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (20001, 20003), True, 'import cartopy.crs as ccrs\n'), ((20601, 20626), 'numpy.amax', 'np.amax', (['[maxval, minval]'], {}), '([maxval, minval])\n', (20608, 20626), True, 'import numpy as np\n'), ((20642, 20691), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(-normmax)', 'vmax': 'normmax'}), '(vmin=-normmax, vmax=normmax)\n', (20662, 20691), True, 'import matplotlib as mpl\n'), ((20881, 20913), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ax': 'ax', 'shrink': '(0.75)'}), '(ax=ax, shrink=0.75)\n', (20893, 20913), True, 'import matplotlib.pyplot as plt\n'), ((21630, 21722), 'matplotlib.pyplot.title', 'plt.title', (["('Total column water vapor' + '\\n' + 'extreme precipitation days')"], {'fontsize': '(18)'}), "('Total column water vapor' + '\\n' + 'extreme precipitation days',\n fontsize=18)\n", (21639, 21722), True, 'import matplotlib.pyplot as plt\n'), ((4143, 4161), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (4159, 4161), True, 'import cartopy.crs as ccrs\n'), ((4192, 4211), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (4200, 4211), False, 'from matplotlib.cm import get_cmap\n'), ((4555, 4573), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (4571, 4573), True, 'import cartopy.crs as ccrs\n'), ((6441, 6506), 'matplotlib.pyplot.title', 'plt.title', (["('250 hPa Winds' + '\\n' + 'anomaly fields')"], {'fontsize': '(18)'}), "('250 hPa Winds' + '\\n' + 'anomaly fields', fontsize=18)\n", (6450, 6506), True, 'import matplotlib.pyplot as plt\n'), ((8096, 8114), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (8112, 8114), True, 'import cartopy.crs as ccrs\n'), ((8145, 8164), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (8153, 8164), False, 'from matplotlib.cm import get_cmap\n'), ((8506, 8524), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (8522, 8524), True, 'import cartopy.crs as ccrs\n'), ((10395, 10465), 'matplotlib.pyplot.title', 'plt.title', (["('500 hPa Winds, GPH' + '\\n' + 'anomaly fields')"], {'fontsize': '(18)'}), "('500 hPa Winds, GPH' + '\\n' + 'anomaly fields', fontsize=18)\n", (10404, 10465), True, 'import matplotlib.pyplot as plt\n'), ((12194, 12212), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (12210, 12212), True, 'import cartopy.crs as ccrs\n'), ((12243, 12262), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (12251, 12262), False, 'from matplotlib.cm import get_cmap\n'), ((12481, 12499), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (12497, 12499), True, 'import cartopy.crs as ccrs\n'), ((12722, 12740), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (12738, 12740), True, 'import cartopy.crs as ccrs\n'), ((14740, 14825), 'matplotlib.pyplot.title', 'plt.title', (["('850 hPa Winds, Temp, Humidity' + '\\n' + 'anomaly fields')"], {'fontsize': '(18)'}), "('850 hPa Winds, Temp, Humidity' + '\\n' + 'anomaly fields',\n fontsize=18)\n", (14749, 14825), True, 'import matplotlib.pyplot as plt\n'), ((16562, 16580), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (16578, 16580), True, 'import cartopy.crs as ccrs\n'), ((16611, 16630), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (16619, 16630), False, 'from matplotlib.cm import get_cmap\n'), ((16971, 16989), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (16987, 16989), True, 'import cartopy.crs as ccrs\n'), ((18874, 18950), 'matplotlib.pyplot.title', 'plt.title', (["('Surface Winds, Skin temp' + '\\n' + 'anomaly fields')"], {'fontsize': '(18)'}), "('Surface Winds, Skin temp' + '\\n' + 'anomaly fields', fontsize=18)\n", (18883, 18950), True, 'import matplotlib.pyplot as plt\n'), ((20289, 20307), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (20305, 20307), True, 'import cartopy.crs as ccrs\n'), ((20338, 20357), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (20346, 20357), False, 'from matplotlib.cm import get_cmap\n'), ((21781, 21856), 'matplotlib.pyplot.title', 'plt.title', (["('Total column water vapor' + '\\n' + 'anomaly field')"], {'fontsize': '(18)'}), "('Total column water vapor' + '\\n' + 'anomaly field', fontsize=18)\n", (21790, 21856), True, 'import matplotlib.pyplot as plt\n'), ((1068, 1094), 'numpy.linspace', 'np.linspace', (['b[2]', 'b[3]', 'n'], {}), '(b[2], b[3], n)\n', (1079, 1094), True, 'import numpy as np\n'), ((1500, 1526), 'numpy.linspace', 'np.linspace', (['b[0]', 'b[1]', 'n'], {}), '(b[0], b[1], n)\n', (1511, 1526), True, 'import numpy as np\n'), ((4837, 4850), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (4844, 4850), True, 'import numpy as np\n'), ((4860, 4873), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (4867, 4873), True, 'import numpy as np\n'), ((5041, 5059), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (5057, 5059), True, 'import cartopy.crs as ccrs\n'), ((5103, 5121), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""RdBu_r"""'], {}), "('RdBu_r')\n", (5111, 5121), False, 'from matplotlib.cm import get_cmap\n'), ((5465, 5483), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (5481, 5483), True, 'import cartopy.crs as ccrs\n'), ((8784, 8797), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (8791, 8797), True, 'import numpy as np\n'), ((8807, 8820), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (8814, 8820), True, 'import numpy as np\n'), ((8988, 9006), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (9004, 9006), True, 'import cartopy.crs as ccrs\n'), ((9050, 9068), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""RdBu_r"""'], {}), "('RdBu_r')\n", (9058, 9068), False, 'from matplotlib.cm import get_cmap\n'), ((9410, 9428), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (9426, 9428), True, 'import cartopy.crs as ccrs\n'), ((12998, 13011), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (13005, 13011), True, 'import numpy as np\n'), ((13021, 13034), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (13028, 13034), True, 'import numpy as np\n'), ((13202, 13220), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (13218, 13220), True, 'import cartopy.crs as ccrs\n'), ((13264, 13282), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""RdBu_r"""'], {}), "('RdBu_r')\n", (13272, 13282), False, 'from matplotlib.cm import get_cmap\n'), ((13501, 13519), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (13517, 13519), True, 'import cartopy.crs as ccrs\n'), ((13728, 13746), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (13744, 13746), True, 'import cartopy.crs as ccrs\n'), ((17247, 17260), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (17254, 17260), True, 'import numpy as np\n'), ((17270, 17283), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (17277, 17283), True, 'import numpy as np\n'), ((17453, 17471), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (17469, 17471), True, 'import cartopy.crs as ccrs\n'), ((17515, 17533), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""RdBu_r"""'], {}), "('RdBu_r')\n", (17523, 17533), False, 'from matplotlib.cm import get_cmap\n'), ((17875, 17893), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (17891, 17893), True, 'import cartopy.crs as ccrs\n'), ((20545, 20558), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (20552, 20558), True, 'import numpy as np\n'), ((20568, 20581), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (20575, 20581), True, 'import numpy as np\n'), ((20749, 20767), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (20765, 20767), True, 'import cartopy.crs as ccrs\n'), ((20811, 20829), 'matplotlib.cm.get_cmap', 'get_cmap', (['"""RdBu_r"""'], {}), "('RdBu_r')\n", (20819, 20829), False, 'from matplotlib.cm import get_cmap\n'), ((1051, 1062), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1059, 1062), True, 'import numpy as np\n'), ((1528, 1539), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1536, 1539), True, 'import numpy as np\n')]
#!/usr/bin/python # coding: utf-8 import numpy as np from .facet import Facet class PosRegion(): """ Implement the convex polytope """ def __init__(self, pos_samples): """ Params: pos_samples (np.array): dim+1 positive samples to create the (dim)-polytope. """ self.dim = pos_samples.shape[1] if (self.dim+1) != pos_samples.shape[0]: raise ValueError("Wrong number of samples") self.vertices = pos_samples self.facets = [] self.create_facets() def create_facets(self): """ Create the facets of the polytope """ # For each sample in the set of vertices, create the facet that does # not contain this sample for sample_id in range(self.vertices.shape[0]): facet_points = np.delete(self.vertices, (sample_id), axis=0) self.facets.append( Facet(facet_points, self.vertices[sample_id, :]) ) def contain(self, point): """ Check if a point is inside the positive region. A point is inside the positive region if it is not visible by any of the facets of the positive region. Params: point (np.array): point to check. Return: (boolean): True if point is inside the positive region. """ contain = True for facet in self.facets: if facet.is_visible(point): contain = False break return contain def add_vertex(self, point): """ Add a new vertex on the positive region. Params: point (np.array): point to add to the positive region. """ # Step 1: Find visible facets visible_facets = [] for facet in self.facets: if facet.is_visible(point): visible_facets.append(facet) # If there is no visible facets, the point is inside the positive # region, do don't do anything. if not visible_facets: return None # Step 2: find ridges that connect a visible facet and a hidden facet. # They are also the ridges that only occurs once in the set of visible # facets. horizon_ridges = [] hash_horizon_ridges = [] # Use hash to skip arrays comparison horizon_ridges = [] # Work first with hash to skip array comparing issues hash_horizon_ridges = [] for facet in visible_facets: self.facets.remove(facet) for ridge in facet.get_ridges(): if hash(ridge.tostring()) in hash_horizon_ridges: hash_horizon_ridges.remove(hash(ridge.tostring())) else: hash_horizon_ridges.append(hash(ridge.tostring())) # Finally, use ridge for facet in visible_facets: for ridge in facet.get_ridges(): if hash(ridge.tostring()) in hash_horizon_ridges: horizon_ridges.append(ridge) # Step 3: Add facets with the new points and horizon ridges for ridge in horizon_ridges: for point_id in range(self.vertices.shape[0]): if self.vertices[point_id, :] not in ridge: ref = self.vertices[point_id, :] break self.facets.append( Facet(np.vstack((ridge, point)), ref) ) # Finally, update the vertices of this region self.vertices = np.vstack(( self.vertices, point.reshape((1, -1)), )) self.clean_vertices() def clean_vertices(self): """ Remove vertices that are not on a facet """ to_remove = [] for vertex_id in range(self.vertices.shape[0]): current_vertex = self.vertices[vertex_id, :] is_useful = False for facet in self.facets: if current_vertex in facet.vertices: is_useful = True if not is_useful: to_remove.append(vertex_id) self.vertices = np.delete(self.vertices, to_remove, 0)
[ "numpy.delete", "numpy.vstack" ]
[((4221, 4259), 'numpy.delete', 'np.delete', (['self.vertices', 'to_remove', '(0)'], {}), '(self.vertices, to_remove, 0)\n', (4230, 4259), True, 'import numpy as np\n'), ((862, 905), 'numpy.delete', 'np.delete', (['self.vertices', 'sample_id'], {'axis': '(0)'}), '(self.vertices, sample_id, axis=0)\n', (871, 905), True, 'import numpy as np\n'), ((3462, 3487), 'numpy.vstack', 'np.vstack', (['(ridge, point)'], {}), '((ridge, point))\n', (3471, 3487), True, 'import numpy as np\n')]
import gym import gym_sokoban import torch import numpy as np import random import time from utilities.channelConverter import hwc2chw from experts.utils import get_distance from external_actions import get_astar_action import warnings warnings.simplefilter("ignore", UserWarning) def test_the_agent(agent, data_path, USE_CUDA, eval_num, args=None, display=False, deter=False, Variable=None): solved = [] rewards = [] #specify the environment you wanna use; v0 means sample sub-cases randomly, and v1 only sample targeted sub-cases; #env = gym.make('Curriculum-Sokoban-v2', data_path = data_path, seed=random.randint(0,100)) env = gym.make('Curriculum-Sokoban-v2', data_path = data_path) solved_maps = [] unsolved_maps = [] for i in range(eval_num): episode_reward = 0 state = env.reset() if display: print('#### Start ####') print(env.room_state) print('{} steps towards the goal state'.format(get_distance(env.room_state))) time.sleep(1) state = hwc2chw(state, test=True) if USE_CUDA: state = state.cuda() action = agent.select_action(state.unsqueeze(0), test=1, determinisitc=deter) next_state, reward, done, _ = env.step(action.item()) episode_reward += reward next_state = hwc2chw(next_state, test=True) if display: print('#### action taken ####') print('taken action is {}, expert action is {}'.format(action.item(), get_astar_action(env.room_state))) print(env.room_state) print('{} steps towards the goal state'.format(get_distance(env.room_state))) time.sleep(1) i = 1 while not done: state = next_state if USE_CUDA: state = state.cuda() with torch.no_grad(): action = agent.select_action(state.unsqueeze(0), test=1, determinisitc=deter) if display: print('#### action taken ####') print('taken action is {}, expert action is {}'.format(action.item(), get_astar_action(env.room_state))) print(env.room_state) print('{} steps towards the goal state'.format(get_distance(env.room_state))) time.sleep(1) next_state, reward, done, _ = env.step(action.item()) if get_distance(env.room_state) == -1: if display: print('The game is unsolvable now') time.sleep(2) break episode_reward += reward next_state = hwc2chw(next_state, test=True) i += 1 if i < env.max_steps and get_distance(env.room_state) != -1: solved.append(1) solved_maps.append(env.selected_map) else: unsolved_maps.append(env.selected_map) rewards.append(episode_reward) return np.sum(solved)/eval_num
[ "external_actions.get_astar_action", "experts.utils.get_distance", "time.sleep", "numpy.sum", "utilities.channelConverter.hwc2chw", "warnings.simplefilter", "torch.no_grad", "gym.make" ]
[((239, 283), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (260, 283), False, 'import warnings\n'), ((660, 714), 'gym.make', 'gym.make', (['"""Curriculum-Sokoban-v2"""'], {'data_path': 'data_path'}), "('Curriculum-Sokoban-v2', data_path=data_path)\n", (668, 714), False, 'import gym\n'), ((1072, 1097), 'utilities.channelConverter.hwc2chw', 'hwc2chw', (['state'], {'test': '(True)'}), '(state, test=True)\n', (1079, 1097), False, 'from utilities.channelConverter import hwc2chw\n'), ((1354, 1384), 'utilities.channelConverter.hwc2chw', 'hwc2chw', (['next_state'], {'test': '(True)'}), '(next_state, test=True)\n', (1361, 1384), False, 'from utilities.channelConverter import hwc2chw\n'), ((2971, 2985), 'numpy.sum', 'np.sum', (['solved'], {}), '(solved)\n', (2977, 2985), True, 'import numpy as np\n'), ((1042, 1055), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1052, 1055), False, 'import time\n'), ((1702, 1715), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1712, 1715), False, 'import time\n'), ((2648, 2678), 'utilities.channelConverter.hwc2chw', 'hwc2chw', (['next_state'], {'test': '(True)'}), '(next_state, test=True)\n', (2655, 2678), False, 'from utilities.channelConverter import hwc2chw\n'), ((1866, 1881), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1879, 1881), False, 'import torch\n'), ((2318, 2331), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2328, 2331), False, 'import time\n'), ((2413, 2441), 'experts.utils.get_distance', 'get_distance', (['env.room_state'], {}), '(env.room_state)\n', (2425, 2441), False, 'from experts.utils import get_distance\n'), ((2549, 2562), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (2559, 2562), False, 'import time\n'), ((2732, 2760), 'experts.utils.get_distance', 'get_distance', (['env.room_state'], {}), '(env.room_state)\n', (2744, 2760), False, 'from experts.utils import get_distance\n'), ((999, 1027), 'experts.utils.get_distance', 'get_distance', (['env.room_state'], {}), '(env.room_state)\n', (1011, 1027), False, 'from experts.utils import get_distance\n'), ((1531, 1563), 'external_actions.get_astar_action', 'get_astar_action', (['env.room_state'], {}), '(env.room_state)\n', (1547, 1563), False, 'from external_actions import get_astar_action\n'), ((1659, 1687), 'experts.utils.get_distance', 'get_distance', (['env.room_state'], {}), '(env.room_state)\n', (1671, 1687), False, 'from experts.utils import get_distance\n'), ((2135, 2167), 'external_actions.get_astar_action', 'get_astar_action', (['env.room_state'], {}), '(env.room_state)\n', (2151, 2167), False, 'from external_actions import get_astar_action\n'), ((2271, 2299), 'experts.utils.get_distance', 'get_distance', (['env.room_state'], {}), '(env.room_state)\n', (2283, 2299), False, 'from experts.utils import get_distance\n')]
""" Test `sinethesizer.effects.equalizer` module. Author: <NAME> """ from typing import Any, Dict, List import numpy as np import pytest from scipy.signal import spectrogram from sinethesizer.effects.equalizer import apply_equalizer from sinethesizer.synth.core import Event from sinethesizer.oscillators import generate_mono_wave @pytest.mark.parametrize( "frequencies, frame_rate, kind, kwargs, spectrogram_params, expected", [ ( # `frequencies` [100 * x for x in range(1, 20)], # `frame_rate` 10000, # `kind` 'absolute', # `kwargs` { 'breakpoint_frequencies': [300, 700], 'gains': [0.2, 1.0], }, # `spectrogram_params` {'nperseg': 100}, # `expected` # In this test case, `expected` contains summed over time power # for frequencies 0, 100, 200, ..., 1900 respectively. np.array( [ 0.0021011, 0.0249528, 0.0277226, 0.0387388, 0.0996291, 0.2081294, 0.3571571, 0.5181565, 0.55258, 0.557289, 0.5601418, 0.5615491, 0.5621033, 0.5622196, 0.5619461, 0.5608991, 0.5583538, 0.5535695, 0.5462548, 0.536942 ] ) ), ( # `frequencies` [100 * x for x in range(1, 20)], # `frame_rate` 10000, # `kind` 'absolute', # `kwargs` { 'breakpoint_frequencies': [0, 500, 1200, 1900], 'gains': [0, 1.0, 0.1, 1.0], }, # `spectrogram_params` {'nperseg': 100}, # `expected` # In this test case, `expected` contains summed over time power # for frequencies 0, 100, 200, ..., 1900 respectively. np.array( [ 0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, 0.4070148, 0.5069672 ] ) ), ( # `frequencies` [100 * x for x in range(1, 20)], # `frame_rate` 10000, # `kind` 'absolute', # `kwargs` { 'breakpoint_frequencies': [0, 500, 1200, 1900, 5000], 'gains': [0, 1.0, 0.1, 1.0, 1.0], }, # `spectrogram_params` {'nperseg': 100}, # `expected` # In this test case, `expected` contains summed over time power # for frequencies 0, 100, 200, ..., 1900 respectively. np.array( [ 0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, 0.4070148, 0.5069672 ] ) ), ( # `frequencies` [100 * x for x in range(1, 20)], # `frame_rate` 10000, # `kind` 'relative', # `kwargs` { 'breakpoint_frequencies_ratios': [0, 5, 12, 19, 50], 'gains': [0, 1.0, 0.1, 1.0, 1.0], }, # `spectrogram_params` {'nperseg': 100}, # `expected` # In this test case, `expected` contains summed over time power # for frequencies 0, 100, 200, ..., 1900 respectively. np.array( [ 0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, 0.4070148, 0.5069672 ] ) ), ] ) def test_apply_equalizer( frequencies: List[float], frame_rate: int, kind: str, kwargs: Dict[str, Any], spectrogram_params: Dict[str, Any], expected: np.ndarray ) -> None: """Test `apply_equalizer` function.""" waves = [ generate_mono_wave( 'sine', frequency, np.ones(frame_rate), frame_rate ) for frequency in frequencies ] sound = sum(waves) sound = np.vstack((sound, sound)) event = Event( instrument='any_instrument', start_time=0, duration=1, frequency=min(frequencies), velocity=1, effects='', frame_rate=frame_rate ) sound = apply_equalizer(sound, event, kind, **kwargs) spc = spectrogram(sound[0], frame_rate, **spectrogram_params)[2] result = spc.sum(axis=1)[:len(expected)] np.testing.assert_almost_equal(result, expected)
[ "sinethesizer.effects.equalizer.apply_equalizer", "numpy.ones", "scipy.signal.spectrogram", "numpy.testing.assert_almost_equal", "numpy.array", "numpy.vstack" ]
[((4672, 4697), 'numpy.vstack', 'np.vstack', (['(sound, sound)'], {}), '((sound, sound))\n', (4681, 4697), True, 'import numpy as np\n'), ((4920, 4965), 'sinethesizer.effects.equalizer.apply_equalizer', 'apply_equalizer', (['sound', 'event', 'kind'], {}), '(sound, event, kind, **kwargs)\n', (4935, 4965), False, 'from sinethesizer.effects.equalizer import apply_equalizer\n'), ((5084, 5132), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['result', 'expected'], {}), '(result, expected)\n', (5114, 5132), True, 'import numpy as np\n'), ((4976, 5031), 'scipy.signal.spectrogram', 'spectrogram', (['sound[0]', 'frame_rate'], {}), '(sound[0], frame_rate, **spectrogram_params)\n', (4987, 5031), False, 'from scipy.signal import spectrogram\n'), ((4552, 4571), 'numpy.ones', 'np.ones', (['frame_rate'], {}), '(frame_rate)\n', (4559, 4571), True, 'import numpy as np\n'), ((1007, 1247), 'numpy.array', 'np.array', (['[0.0021011, 0.0249528, 0.0277226, 0.0387388, 0.0996291, 0.2081294, \n 0.3571571, 0.5181565, 0.55258, 0.557289, 0.5601418, 0.5615491, \n 0.5621033, 0.5622196, 0.5619461, 0.5608991, 0.5583538, 0.5535695, \n 0.5462548, 0.536942]'], {}), '([0.0021011, 0.0249528, 0.0277226, 0.0387388, 0.0996291, 0.2081294,\n 0.3571571, 0.5181565, 0.55258, 0.557289, 0.5601418, 0.5615491, \n 0.5621033, 0.5622196, 0.5619461, 0.5608991, 0.5583538, 0.5535695, \n 0.5462548, 0.536942])\n', (1015, 1247), True, 'import numpy as np\n'), ((1953, 2193), 'numpy.array', 'np.array', (['[0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, \n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672]'], {}), '([0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824,\n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672])\n', (1961, 2193), True, 'import numpy as np\n'), ((2910, 3150), 'numpy.array', 'np.array', (['[0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, \n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672]'], {}), '([0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824,\n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672])\n', (2918, 3150), True, 'import numpy as np\n'), ((3866, 4106), 'numpy.array', 'np.array', (['[0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824, \n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672]'], {}), '([0.0062764, 0.0342341, 0.0986968, 0.2045612, 0.3501325, 0.4880824,\n 0.4132437, 0.306272, 0.2138001, 0.1371348, 0.0776751, 0.03646, \n 0.0184661, 0.0364665, 0.0775099, 0.136432, 0.2119483, 0.3025262, \n 0.4070148, 0.5069672])\n', (3874, 4106), True, 'import numpy as np\n')]
from __future__ import annotations import datetime import json from abc import ABC, abstractmethod from collections import defaultdict, deque, namedtuple from typing import ( Any, Deque, Dict, Iterator, List, Mapping, Optional, Set, TextIO, Tuple, ) import numpy as np import scipy.sparse from . import labeler, ontology, timeline, utils ColumnValue = namedtuple("ColumnValue", ["column", "value"]) """A value for a particular column .. py:attribute:: column The index for the column .. py:attribute:: value The value for that column """ class FeaturizerList: """ Featurizer list consists of a list of featurizers to be used to featurize data. It enables training, featurization, column name extraction and serialization/deserialization. """ def __init__(self, featurizers: List[Featurizer]): """Create the FeaturizerList from a sequence of featurizers. Args: featurizers (list of :class:`Featurizer`): The featurizers to use for transforming the patients. """ self.featurizers = featurizers def train_featurizers( self, timelines: timeline.TimelineReader, labeler: labeler.Labeler, end_date: Optional[datetime.date] = None, ) -> None: """ Train a list of featurizers on the provided patients using the given labeler. Args: timelines (:class:`stride_ml.timeline.TimelineReader`): The timelines to read from. labeler (:class:`stride_ml.labeler.Labeler`): The labeler to train with. end_date (datetime.date): An optional date used to filter data off the end of the timeline. """ any_needs_training = any( featurizer.needs_training() for featurizer in self.featurizers ) if not any_needs_training: return all_patients = labeler.get_all_patient_ids() for patient_id in timelines.get_patient_ids(): if all_patients is not None and patient_id not in all_patients: continue patient = timelines.get_patient(patient_id, end_date=end_date) labels = labeler.label(patient) if len(labels) == 0: continue label_indices = {label.day_index for label in labels} for featurizer in self.featurizers: if featurizer.needs_training(): featurizer.train(patient, label_indices) for featurizer in self.featurizers: featurizer.finalize_training() def featurize( self, timelines: timeline.TimelineReader, labeler: labeler.Labeler, end_date: Optional[datetime.date] = None, ) -> Tuple[Any, Any, Any, Any]: """ Apply a list of featurizers to obtain a feature matrix and label vector for the given patients. Args: timelines (:class:`stride_ml.timeline.TimelineReader`): The timelines to read from. labeler (:class:`stride_ml.labeler.Labeler`): The labeler to compute labels with. end_date (datetime.date): An optional date used to filter data off the end of the timeline. Returns: This returns a tuple (data_matrix, labels, patient_ids, patient_day_indices). data_matrix is a sparse matrix of all the features of all the featurizers. labels is a list of boolean values representing the labels for each row in the matrix. patient_ids is a list of the patient ids for each row. patient_day_indices is a list of the day indices for each row. """ data = [] indices: List[int] = [] indptr = [] result_labels = [] patient_ids = [] patient_day_indices = [] all_patients = labeler.get_all_patient_ids() for patient_id in timelines.get_patient_ids(): if all_patients is not None and patient_id not in all_patients: continue patient = timelines.get_patient(patient_id, end_date=end_date) labels = labeler.label(patient) if len(labels) == 0: continue label_indices = set() for label in labels: if label.day_index in label_indices: raise ValueError( "The provided labeler is invalid as it contains multiple labels " f"for patient {patient.patient_id} at day index {label.day_index}" ) label_indices.add(label.day_index) columns_by_featurizer = [] for featurizer in self.featurizers: columns = featurizer.transform(patient, label_indices) assert len(columns) == len(label_indices), ( f"The featurizer {featurizer} didn't provide enough rows for {labeler}" " on patient {patient_id} ({len(columns)} != {len(label_indices)})" ) columns_by_featurizer.append(columns) for i, label in enumerate(labels): indptr.append(len(indices)) result_labels.append(label.is_positive) patient_ids.append(patient.patient_id) patient_day_indices.append(label.day_index) column_offset = 0 for j, feature_columns in enumerate(columns_by_featurizer): for column, value in feature_columns[i]: assert ( 0 <= column < self.featurizers[j].num_columns() ), ( f"The featurizer {self.featurizers[j]} provided an out of bounds column for " f"{labeler} on patient {patient.patient_id} ({column} should be between 0 and " f"{self.featurizers[j].num_columns()})" ) indices.append(column_offset + column) data.append(value) column_offset += self.featurizers[j].num_columns() total_columns = sum( featurizer.num_columns() for featurizer in self.featurizers ) indptr.append(len(indices)) data = np.array(data, dtype=np.float32) indices = np.array(indices, dtype=np.int32) indptr = np.array(indptr, dtype=np.int32) data_matrix = scipy.sparse.csr_matrix( (data, indices, indptr), shape=(len(result_labels), total_columns) ) return ( data_matrix, np.array(result_labels, dtype=np.float32), np.array(patient_ids, dtype=np.int32), np.array(patient_day_indices, dtype=np.int32), ) def get_column_name(self, column_index: int) -> str: offset = 0 for featurizer in self.featurizers: if offset <= column_index < (offset + featurizer.num_columns()): return f"Featurizer {featurizer}, {featurizer.get_column_name(column_index - offset)}" offset += featurizer.num_columns() assert False, "This should never happen" def save(self, fp: TextIO) -> None: json.dump([featurizer.to_dict() for featurizer in self.featurizers], fp) def load(self, fp: TextIO) -> None: for data_for_featurizer, featurizer in zip( json.load(fp), self.featurizers ): featurizer.from_dict(data_for_featurizer) class Featurizer(ABC): def train(self, patient: timeline.Patient, label_indices: Set[int]) -> None: """ Train the featurizer on the given patients and label indices. This should do nothing if the featurizer doesn't need training. Args: patient: A patient to train on. label_indices (:obj:set: of int): The set of indices for that patient. """ pass def finalize_training(self) -> None: """ Finish the featurizer at the end of training. This is not needed for every featurizer, but does become necessary for things like verifying counts, etc. """ pass # The default version does nothing @abstractmethod def num_columns(self) -> int: """ Returns: The number of columns that this featurizer creates. """ @abstractmethod def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: """ Transform a patient into a series of rows using the specified timepoints. Args: patient: The patient to train on. label_indices (:obj:set of int): The indices which will be labeled. Returns: A list of rows. Each row in turn is a list of :class:`ColumnValues<ColumnValue>` for the values in each column. """ def to_dict(self) -> Dict[str, Any]: """ Serialize the featurizer to a JSON compatible dict Returns: A JSON compatible dict. """ return {} def from_dict(self, data: Mapping[str, Any]) -> None: """ Restore the state of the featurizer from a JSON compatible dict. Args: data: A JSON compatible dict from to_dict """ pass def get_column_name(self, column_index: int) -> str: """ An optional method that enables the user to get the name of a column. Args: column_index: The index of the column """ return "no name" def needs_training(self) -> bool: return False ########################################### # Useful featurizers ########################################### class AgeFeaturizer(Featurizer): """ Produces the (possibly normalized) age at the prediction timepoint. """ def __init__(self, normalize: bool = True): self.normalize = normalize self.age_statistics = utils.OnlineStatistics() def train(self, patient: timeline.Patient, label_indices: Set[int]) -> None: if self.normalize: for i, day in enumerate(patient.days): if i in label_indices: self.age_statistics.add(day.age) def num_columns(self) -> int: return 1 def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: all_columns = [] for i, day in enumerate(patient.days): if i in label_indices: if self.normalize: standardized_age = ( day.age - self.age_statistics.mean() ) / self.age_statistics.standard_deviation() all_columns.append([ColumnValue(0, standardized_age)]) else: all_columns.append([ColumnValue(0, day.age)]) return all_columns def to_dict(self) -> Dict[str, Any]: return {"age_statistics": self.age_statistics.to_dict()} def from_dict(self, data: Mapping[str, Any]) -> None: self.age_statistics = utils.OnlineStatistics(data["age_statistics"]) def needs_training(self) -> bool: return self.normalize class IsIcd10Era(Featurizer): """ Produces the (possibly normalized) age at the prediction timepoint. """ def num_columns(self) -> int: return 1 def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: all_columns = [] for i, day in enumerate(patient.days): if i in label_indices: all_columns.append([ColumnValue(0, day.date.year >= 2016)]) return all_columns class CountFeaturizer(Featurizer): """ Produces one column per each diagnosis code, procedure code or prescription code. The value in each column is the count of how many times that code appears in the patient record up until the prediction time. Note: time_bins should be a list optionally ending with None Each integer in time_bins represents the end point for a particular bin. A final bin with None represents a final bin which enables codes from any point in history. """ def __init__( self, timelines: timeline.TimelineReader, ontologies: ontology.OntologyReader, rollup: bool = False, exclusion_codes: List[int] = [], time_bins: Optional[List[Optional[int]]] = None, ): self.patient_codes: utils.Dictionary[int] = utils.Dictionary() self.recorded_date_codes = set(ontologies.get_recorded_date_codes()) self.exclusion_codes = set(exclusion_codes) self.time_bins = time_bins self.ontologies = ontologies self.rollup = rollup def get_codes(self, day: timeline.PatientDay) -> Iterator[int]: for code in day.observations: if (code in self.recorded_date_codes) and ( code not in self.exclusion_codes ): if self.rollup: for subcode in self.ontologies.get_subwords(code): yield subcode else: yield code def train(self, patient: timeline.Patient, label_indices: Set[int]) -> None: for day in patient.days: for code in self.get_codes(day): self.patient_codes.add(code) def num_columns(self) -> int: if self.time_bins is None: return len(self.patient_codes) else: return len(self.time_bins) * len(self.patient_codes) def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: all_columns = [] if self.time_bins is None: current_codes: Dict[int, int] = defaultdict(int) for i, day in enumerate(patient.days): for code in self.get_codes(day): if code in self.patient_codes: current_codes[self.patient_codes.transform(code)] += 1 if i in label_indices: all_columns.append( [ ColumnValue(column, count) for column, count in current_codes.items() ] ) else: codes_per_bin: Dict[int, Deque[Tuple[int, datetime.date]]] = { i: deque() for i in range(len(self.time_bins)) } code_counts_per_bin: Dict[int, Dict[int, int]] = { i: defaultdict(int) for i in range(len(self.time_bins)) } for day_index, day in enumerate(patient.days): python_date = datetime.date( day.date.year, day.date.month, day.date.day ) for code in self.get_codes(day): if code in self.patient_codes: codes_per_bin[0].append((code, python_date)) code_counts_per_bin[0][code] += 1 for i, max_time in enumerate(self.time_bins): if max_time is None: # This means that this bin accepts everything continue while len(codes_per_bin[i]) > 0: next_code, next_date = codes_per_bin[i][0] if (python_date - next_date).days <= max_time: break else: codes_per_bin[i + 1].append( codes_per_bin[i].popleft() ) code_counts_per_bin[i][next_code] -= 1 if code_counts_per_bin[i][next_code] == 0: del code_counts_per_bin[i][next_code] code_counts_per_bin[i + 1][next_code] += 1 if day_index in label_indices: all_columns.append( [ ColumnValue( self.patient_codes.transform(code) + i * len(self.patient_codes), count, ) for i in range(len(self.time_bins)) for code, count in code_counts_per_bin[i].items() ] ) return all_columns def to_dict(self) -> Dict[str, Any]: return {"patient_codes": self.patient_codes.to_dict()} def from_dict(self, data: Mapping[str, Any]) -> None: self.patient_codes = utils.Dictionary(data["patient_codes"]) def needs_training(self) -> bool: return True class BinaryFeaturizer(CountFeaturizer): """ Behaves like CountFeaturizer except all non-zero counts receive a value of 1. """ def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: all_columns = [] current_codes = defaultdict(int) for i, day in enumerate(patient.days): for code in self.get_codes(day): if code in self.patient_codes: current_codes[self.patient_codes.transform(code)] = 1 if i in label_indices: all_columns.append( [ ColumnValue(column, count) for column, count in current_codes.items() ] ) return all_columns class LabelerDerivedFeaturizer(Featurizer): def __init__(self, label: labeler.Labeler): self.label = label def num_columns(self) -> int: return 1 def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: result = [] my_labels = self.label.label(patient) label_dict = { my_label.day_index: my_label.is_positive for my_label in my_labels } for i, day in enumerate(patient.days): if i in label_indices: feature = label_dict[i] result.append([ColumnValue(0, feature)]) return result class ConstantValueFeaturizer(Featurizer): """ This featurizer returns a constant value for each item. It has only one column. """ def __init__(self, value: float): self.value = value def num_columns(self) -> int: return 1 def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: result = [] for i, day in enumerate(patient.days): if i in label_indices: result.append([ColumnValue(0, self.value)]) return result class PreprocessedFeaturizer(Featurizer): def __init__(self, value_map: Mapping[Tuple[int, int], float]): self.value_map = value_map def num_columns(self) -> int: return 1 def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: result = [] for i, day in enumerate(patient.days): if i in label_indices: value = self.value_map[(patient.patient_id, i)] result.append([ColumnValue(0, value)]) return result class NumericObservationWithValueFeaturizer(Featurizer): """ This featurizer transforms numeric lab values into binned counts. The basic idea is that we do a pass over the training data to compute percentiles for the values and then we use those percentiles to create bins for each lab. """ def __init__( self, timelines: timeline.TimelineReader, ontologies: ontology.OntologyReader, min_labs_per_bin: int = 1, num_bins: int = 10, ): self.recorded_date_codes = set(ontologies.get_recorded_date_codes()) self.observedNumericValues: Dict[int, List[float]] = defaultdict(list) self.min_labs_per_bin = min_labs_per_bin self.num_bins = num_bins def train(self, patient: timeline.Patient, label_indices: Set[int]) -> None: for day in patient.days: for codeWithValue in day.observations_with_values: if codeWithValue.code in self.recorded_date_codes: if not codeWithValue.is_text: self.observedNumericValues[codeWithValue.code].append( codeWithValue.numeric_value ) def needs_training(self) -> bool: return True def get_percentile(self, item: float, percentiles: List[float]) -> int: """Get the index for the given percentiles. Note: There is one bin for each value in percentiles that starts at that value """ for i, p in enumerate(percentiles): if item < p: return i - 1 return len(percentiles) - 1 def finalize_training(self) -> None: self.code_numeric_dictionary = {} self.next_index = 0 for code, values in self.observedNumericValues.items(): values.sort() percentiles = [-float("inf")] for i in range(self.num_bins - 1): next_value = values[ min( round((len(values) - 1) * (i + 1) / self.num_bins), len(values) - 1, ) ] percentiles.append(next_value) counts = [0 for _ in range(len(percentiles))] for item in values: counts[self.get_percentile(item, percentiles)] += 1 filtered_percentiles = [] current_low: Optional[float] = None for i, p in enumerate(percentiles): if counts[i] >= self.min_labs_per_bin: if current_low is not None: filtered_percentiles.append(current_low) current_low = None else: filtered_percentiles.append(p) elif counts[i] < self.min_labs_per_bin: # We are skipping this one as there are too few counts if current_low is None: current_low = p if (i + 1) < len(percentiles): counts[i + 1] += counts[i] if len(filtered_percentiles) == 0: continue indices_for_percentiles = list( range( self.next_index, self.next_index + len(filtered_percentiles) ) ) self.next_index += len(filtered_percentiles) self.code_numeric_dictionary[code] = ( filtered_percentiles, indices_for_percentiles, ) def num_columns(self) -> int: return self.next_index def transform( self, patient: timeline.Patient, label_indices: Set[int] ) -> List[List[ColumnValue]]: all_columns = [] current_codes: Dict[int, int] = defaultdict(int) for i, day in enumerate(patient.days): for codeWithValue in day.observations_with_values: if codeWithValue.code in self.code_numeric_dictionary: if not codeWithValue.is_text: ( percentiles, indices_for_percentiles, ) = self.code_numeric_dictionary[codeWithValue.code] offset = self.get_percentile( codeWithValue.numeric_value, percentiles ) current_codes[indices_for_percentiles[offset]] += 1 if i in label_indices: all_columns.append( [ ColumnValue(column, count) for column, count in current_codes.items() ] ) return all_columns def to_dict(self) -> Dict[str, Any]: return { "next_index": self.next_index, "code_numeric_dictionary": list( self.code_numeric_dictionary.items() ), } def from_dict(self, data: Mapping[str, Any]) -> None: self.next_index = data["next_index"] self.code_numeric_dictionary = { code: values for code, values in data["code_numeric_dictionary"] }
[ "collections.namedtuple", "collections.deque", "numpy.array", "collections.defaultdict", "datetime.date", "json.load" ]
[((396, 442), 'collections.namedtuple', 'namedtuple', (['"""ColumnValue"""', "['column', 'value']"], {}), "('ColumnValue', ['column', 'value'])\n", (406, 442), False, 'from collections import defaultdict, deque, namedtuple\n'), ((6342, 6374), 'numpy.array', 'np.array', (['data'], {'dtype': 'np.float32'}), '(data, dtype=np.float32)\n', (6350, 6374), True, 'import numpy as np\n'), ((6393, 6426), 'numpy.array', 'np.array', (['indices'], {'dtype': 'np.int32'}), '(indices, dtype=np.int32)\n', (6401, 6426), True, 'import numpy as np\n'), ((6444, 6476), 'numpy.array', 'np.array', (['indptr'], {'dtype': 'np.int32'}), '(indptr, dtype=np.int32)\n', (6452, 6476), True, 'import numpy as np\n'), ((17250, 17266), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (17261, 17266), False, 'from collections import defaultdict, deque, namedtuple\n'), ((20214, 20231), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (20225, 20231), False, 'from collections import defaultdict, deque, namedtuple\n'), ((23364, 23380), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (23375, 23380), False, 'from collections import defaultdict, deque, namedtuple\n'), ((6669, 6710), 'numpy.array', 'np.array', (['result_labels'], {'dtype': 'np.float32'}), '(result_labels, dtype=np.float32)\n', (6677, 6710), True, 'import numpy as np\n'), ((6724, 6761), 'numpy.array', 'np.array', (['patient_ids'], {'dtype': 'np.int32'}), '(patient_ids, dtype=np.int32)\n', (6732, 6761), True, 'import numpy as np\n'), ((6775, 6820), 'numpy.array', 'np.array', (['patient_day_indices'], {'dtype': 'np.int32'}), '(patient_day_indices, dtype=np.int32)\n', (6783, 6820), True, 'import numpy as np\n'), ((7459, 7472), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (7468, 7472), False, 'import json\n'), ((13923, 13939), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (13934, 13939), False, 'from collections import defaultdict, deque, namedtuple\n'), ((14559, 14566), 'collections.deque', 'deque', ([], {}), '()\n', (14564, 14566), False, 'from collections import defaultdict, deque, namedtuple\n'), ((14700, 14716), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (14711, 14716), False, 'from collections import defaultdict, deque, namedtuple\n'), ((14857, 14915), 'datetime.date', 'datetime.date', (['day.date.year', 'day.date.month', 'day.date.day'], {}), '(day.date.year, day.date.month, day.date.day)\n', (14870, 14915), False, 'import datetime\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np alpha = np.random.rand(7) alpha /= np.linalg.norm(alpha, 1) n = 40 def index_to_position(index): p = 0 a, b, c, d, e, f = index index = [a, d, b, e, c, f] for i in index: p = p * n + i return p if __name__ == "__main__": with open("fdm.tsv", "w") as f: for i in range(n): for j in range(n): for k in range(n): alpha = np.random.rand(7) alpha /= np.linalg.norm(alpha, 1) p = index_to_position([i, j, k, i, j, k]) print("{}\t{}".format(p, alpha[0]), file=f) if i - 1 >= 0: p = index_to_position([i, j, k, i - 1, j, k]) print("{}\t{}".format(p, alpha[1]), file=f) if i + 1 < n: p = index_to_position([i, j, k, i + 1, j, k]) print("{}\t{}".format(p, alpha[2]), file=f) if j - 1 >= 0: p = index_to_position([i, j, k, i, j - 1, k]) print("{}\t{}".format(p, alpha[3]), file=f) if j + 1 < n: p = index_to_position([i, j, k, i, j + 1, k]) print("{}\t{}".format(p, alpha[4]), file=f) if k - 1 >= 0: p = index_to_position([i, j, k, i, j, k - 1]) print("{}\t{}".format(p, alpha[5]), file=f) if k + 1 < n: p = index_to_position([i, j, k, i, j, k + 1]) print("{}\t{}".format(p, alpha[6]), file=f)
[ "numpy.random.rand", "numpy.linalg.norm" ]
[((76, 93), 'numpy.random.rand', 'np.random.rand', (['(7)'], {}), '(7)\n', (90, 93), True, 'import numpy as np\n'), ((103, 127), 'numpy.linalg.norm', 'np.linalg.norm', (['alpha', '(1)'], {}), '(alpha, 1)\n', (117, 127), True, 'import numpy as np\n'), ((476, 493), 'numpy.random.rand', 'np.random.rand', (['(7)'], {}), '(7)\n', (490, 493), True, 'import numpy as np\n'), ((523, 547), 'numpy.linalg.norm', 'np.linalg.norm', (['alpha', '(1)'], {}), '(alpha, 1)\n', (537, 547), True, 'import numpy as np\n')]
import torch import torch.optim as optim from torch import autograd import numpy as np from tqdm import trange import trimesh from skimage import measure import warnings import time from pipelines.utils.point_utils import sample_points_from_ray, np_get_occupied_idx, occupancy_sparse_to_dense from pipelines.utils.postprocess_utils import remove_backface class Generator3D(object): ''' Generator class for Local implicit grid Networks. It provides functions to generate the final mesh as well refining options. Args: model (nn.Module): trained Local implicit grid model optimizer (object): optimization utility class for optimizing latent grid part_size (float): size of a part num_optim_samples (int): number of points to sample at each optimization step res_per_part (int): how many parts we split a grid into overlap (bool): whether we use overlapping grids device (device): pytorch device points_batch (int): number of points we evaluate sdf values each time conservative (bool): whether we evaluate a grid when all of its 8 neighbors contain points postprocess (bool): whether to use post process to remove back faces ''' def __init__(self, model, optimizer, part_size=0.25, num_optim_samples=2048, res_per_part=0, overlap=True, device=None, points_batch=20000, conservative=False, postprocess=True): self.model = model.to(device) self.optimizer = optimizer self.part_size = part_size self.num_optim_samples = num_optim_samples if res_per_part == 0: self.res_per_part = int(64 * self.part_size) else: self.res_per_part = res_per_part self.overlap = overlap self.device = device self.points_batch = points_batch self.conservative = conservative self.postprocess = postprocess def generate_mesh(self, data, return_stats=True): ''' Generates the output mesh from inputs loaded from dataset. Args: data (tensor): data tensor return_stats (bool): whether stats should be returned ''' stats_dict = {} v = data.get('inputs', torch.empty(1, 0)).squeeze(0).cpu().numpy() n = data.get('inputs.normals', torch.empty(1, 0)).squeeze(0).cpu().numpy() mesh = self.generate_single_obj_mesh(v, n) return mesh def generate_single_obj_mesh(self, v, n): ''' Generates the output mesh of user specified single object. Args: v (numpy array): [#v, 3], input point cloud. n (numpy array): [#v, 3], normals of the input point cloud. Returns: mesh (trimesh.Trimesh obj): output mesh object. ''' device = self.device surface_points = np.concatenate([v, n], axis=1) xmin = np.min(v, axis=0) xmax = np.max(v, axis=0) # check if part size is too large min_bb = np.min(xmax - xmin) if self.part_size > 0.25 * min_bb: warnings.warn( 'WARNING: part_size seems too large. Recommend using a part_size < ' '{:.2f} for this shape.'.format(0.25 * min_bb), UserWarning) # add some extra slack to xmin and xmax xmin -= self.part_size xmax += self.part_size ######################################################################### # generate sdf samples from pc point_samples, sdf_values = sample_points_from_ray(v, n, sample_factor=10, std=0.01) # shuffle shuffle_index = np.random.permutation(point_samples.shape[0]) point_samples = point_samples[shuffle_index] sdf_values = sdf_values[shuffle_index] ######################################################################### ################### only evaluated at sparse grid location ############## ######################################################################### # get valid girds (we only evaluate on sparse locations) # _.shape==(total_ncrops, ntarget, v.shape[1]) points within voxel # occ_idx.shape==(total_ncrops, 3) index of each voxel # grid_shape == (rr[0], rr[1], rr[2]) _, occ_idx, grid_shape = np_get_occupied_idx( point_samples[:100000, :3], # point_samples[:, :3], xmin=xmin - 0.5 * self.part_size, xmax=xmax + 0.5 * self.part_size, crop_size=self.part_size, ntarget=1, # we do not require `point_crops` (i.e. `_` in returns), so we set it to 1 overlap=self.overlap, normalize_crops=False, return_shape=True) print('LIG shape: {}'.format(grid_shape)) ######################################################################### # treat as one batch point_samples = torch.from_numpy(point_samples).to(device) sdf_values = torch.from_numpy(sdf_values).to(device) occ_idx_tensor = torch.from_numpy(occ_idx).to(device) point_samples = point_samples.unsqueeze(0) # shape==(1, npoints, 3) sdf_values = sdf_values.unsqueeze(0) # shape==(1, npoints, 1) occ_idx_tensor = occ_idx_tensor.unsqueeze(0) # shape==(1, total_ncrops, 3) # set range for computation true_shape = ((np.array(grid_shape) - 1) / (2.0 if self.overlap else 1.0)).astype(np.int32) self.model.set_xrange(xmin=xmin, xmax=xmin + true_shape * self.part_size) # Clip the point position xmin_ = self.model.grid_interp_layer.xmin xmax_ = self.model.grid_interp_layer.xmax x = point_samples[:, :, 0].clamp(xmin_[0], xmax_[0]) y = point_samples[:, :, 1].clamp(xmin_[1], xmax_[1]) z = point_samples[:, :, 2].clamp(xmin_[2], xmax_[2]) point_samples = torch.stack([x, y, z], dim=2) # get label (inside==-1, outside==+1) point_values = torch.sign(sdf_values) ######################################################################### ###################### Build/Optimize latent grid ####################### ######################################################################### # optimize latent grids, shape==(1, *grid_shape, code_len) print('Optimizing latent codes in LIG...') latent_grid = self.optimizer.optimize_latent_code(point_samples, point_values, occ_idx_tensor, grid_shape) ######################################################################### ##################### Evaluation (Marching Cubes) ####################### ######################################################################### # sparse occ index to dense occ grids # (total_ncrops, 3) --> (*grid_shape, ) bool occ_mask = occupancy_sparse_to_dense(occ_idx, grid_shape) # points shape to be evaluated output_grid_shape = list(self.res_per_part * true_shape) # output_grid is ones, shape==(?, ) # xyz is points to be evaluated (dense, shape==(?, 3)) output_grid, xyz = self.get_eval_grid(xmin=xmin, xmax=xmin + true_shape * self.part_size, output_grid_shape=output_grid_shape) # we only evaluate eval_points # out_mask is for xyz, i.e. eval_points = xyz[occ_mask] eval_points, out_mask = self.get_eval_inputs(xyz, xmin, occ_mask) eval_points = torch.from_numpy(eval_points).to(device) # evaluate dense grid for marching cubes (on sparse grids) output_grid = self.generate_occ_grid(latent_grid, eval_points, output_grid, out_mask) output_grid = output_grid.reshape(*output_grid_shape) v, f, _, _ = measure.marching_cubes_lewiner(output_grid, 0) # logits==0 v *= (self.part_size / float(self.res_per_part) * (np.array(output_grid.shape, dtype=np.float32) / (np.array(output_grid.shape, dtype=np.float32) - 1))) v += xmin # Create mesh mesh = trimesh.Trimesh(v, f) # Post-process the generated mesh to prevent artifacts if self.postprocess: print('Postprocessing generated mesh...') mesh = remove_backface(mesh, surface_points) return mesh def get_eval_grid(self, xmin, xmax, output_grid_shape): """Initialize the eval output grid and its corresponding grid points. Args: xmin (numpy array): [3], minimum xyz values of the entire space. xmax (numpy array): [3], maximum xyz values of the entire space. output_grid_shape (list): [3], latent grid shape. Returns: output_grid (numpy array): [d*h*w] output grid sdf values. xyz (numpy array): [d*h*w, 3] grid point xyz coordinates. """ # setup grid eps = 1e-6 l = [np.linspace(xmin[i] + eps, xmax[i] - eps, output_grid_shape[i]) for i in range(3)] xyz = np.stack(np.meshgrid(l[0], l[1], l[2], indexing='ij'), axis=-1).astype(np.float32) output_grid = np.ones(output_grid_shape, dtype=np.float32) xyz = xyz.reshape(-1, 3) output_grid = output_grid.reshape(-1) return output_grid, xyz def get_eval_inputs(self, xyz, xmin, occ_mask): """Gathers the points within the grids that any/all of its 8 neighbors contains points. If self.conservative is True, gathers the points within the grids that any of its 8 neighbors contains points. If self.conservative is False, gathers the points within the grids that all of its 8 neighbors contains points. Returns the points need to be evaluate and the mask of the points and the output grid. Args: xyz (numpy array): [h*w*d, 3] xmin (numpy array): [3] minimum value of the entire space. occ_mask (numpy array): latent grid occupancy mask. Returns: eval_points (numpy array): [neval, 3], points to be evaluated. out_mask (numpy array): [h*w*d], 0 1 value eval mask of the final sdf grid. """ mask = occ_mask.astype(np.bool) if self.overlap: mask = np.stack([ mask[:-1, :-1, :-1], mask[:-1, :-1, 1:], mask[:-1, 1:, :-1], mask[:-1, 1:, 1:], mask[1:, :-1, :-1], mask[1:, :-1, 1:], mask[1:, 1:, :-1], mask[1:, 1:, 1:] ], axis=-1) if self.conservative: mask = np.any(mask, axis=-1) else: mask = np.all(mask, axis=-1) g = np.stack(np.meshgrid(np.arange(mask.shape[0]), np.arange(mask.shape[1]), np.arange(mask.shape[2]), indexing='ij'), axis=-1).reshape(-1, 3) g = g[:, 0] * (mask.shape[1] * mask.shape[2]) + g[:, 1] * mask.shape[2] + g[:, 2] g_valid = g[mask.ravel()] # valid grid index if self.overlap: ijk = np.floor((xyz - xmin) / self.part_size * 2).astype(np.int32) else: ijk = np.floor((xyz - xmin + 0.5 * self.part_size) / self.part_size).astype(np.int32) ijk_idx = (ijk[:, 0] * (mask.shape[1] * mask.shape[2]) + ijk[:, 1] * mask.shape[2] + ijk[:, 2]) out_mask = np.isin(ijk_idx, g_valid) eval_points = xyz[out_mask] return eval_points, out_mask def generate_occ_grid(self, latent_grid, eval_points, output_grid, out_mask): """Gets the final output occ grid. Args: latent_grid (tensor): [1, *grid_shape, latent_size], optimized latent grid. eval_points (tensor): [neval, 3], points to be evaluated. output_grid (numpy array): [d*h*w], final output occ grid. out_mask (numpy array): [d*h*w], mask indicating the grids evaluated. Returns: output_grid (numpy array): [d*h*w], final output occ grid flattened. """ interp_old = self.model.interp self.model.interp = True split = int(np.ceil(eval_points.shape[0] / self.points_batch)) occ_val_list = [] self.model.eval() with torch.no_grad(): for s in range(split): sid = s * self.points_batch eid = min((s + 1) * self.points_batch, eval_points.shape[0]) eval_points_slice = eval_points[sid:eid, :] occ_vals = self.model.decode(latent_grid, eval_points_slice.unsqueeze(0)) occ_vals = occ_vals.squeeze(0).squeeze(1).cpu().numpy() occ_val_list.append(occ_vals) occ_vals = np.concatenate(occ_val_list, axis=0) output_grid[out_mask] = occ_vals self.model.interp = interp_old return output_grid
[ "skimage.measure.marching_cubes_lewiner", "numpy.isin", "torch.from_numpy", "numpy.array", "numpy.arange", "pipelines.utils.point_utils.sample_points_from_ray", "pipelines.utils.postprocess_utils.remove_backface", "numpy.max", "numpy.stack", "numpy.linspace", "numpy.concatenate", "numpy.min", "numpy.meshgrid", "numpy.random.permutation", "numpy.ceil", "numpy.ones", "numpy.floor", "torch.sign", "numpy.any", "trimesh.Trimesh", "torch.empty", "pipelines.utils.point_utils.occupancy_sparse_to_dense", "torch.stack", "torch.no_grad", "numpy.all", "pipelines.utils.point_utils.np_get_occupied_idx" ]
[((2985, 3015), 'numpy.concatenate', 'np.concatenate', (['[v, n]'], {'axis': '(1)'}), '([v, n], axis=1)\n', (2999, 3015), True, 'import numpy as np\n'), ((3032, 3049), 'numpy.min', 'np.min', (['v'], {'axis': '(0)'}), '(v, axis=0)\n', (3038, 3049), True, 'import numpy as np\n'), ((3065, 3082), 'numpy.max', 'np.max', (['v'], {'axis': '(0)'}), '(v, axis=0)\n', (3071, 3082), True, 'import numpy as np\n'), ((3143, 3162), 'numpy.min', 'np.min', (['(xmax - xmin)'], {}), '(xmax - xmin)\n', (3149, 3162), True, 'import numpy as np\n'), ((3664, 3720), 'pipelines.utils.point_utils.sample_points_from_ray', 'sample_points_from_ray', (['v', 'n'], {'sample_factor': '(10)', 'std': '(0.01)'}), '(v, n, sample_factor=10, std=0.01)\n', (3686, 3720), False, 'from pipelines.utils.point_utils import sample_points_from_ray, np_get_occupied_idx, occupancy_sparse_to_dense\n'), ((3764, 3809), 'numpy.random.permutation', 'np.random.permutation', (['point_samples.shape[0]'], {}), '(point_samples.shape[0])\n', (3785, 3809), True, 'import numpy as np\n'), ((4459, 4684), 'pipelines.utils.point_utils.np_get_occupied_idx', 'np_get_occupied_idx', (['point_samples[:100000, :3]'], {'xmin': '(xmin - 0.5 * self.part_size)', 'xmax': '(xmax + 0.5 * self.part_size)', 'crop_size': 'self.part_size', 'ntarget': '(1)', 'overlap': 'self.overlap', 'normalize_crops': '(False)', 'return_shape': '(True)'}), '(point_samples[:100000, :3], xmin=xmin - 0.5 * self.\n part_size, xmax=xmax + 0.5 * self.part_size, crop_size=self.part_size,\n ntarget=1, overlap=self.overlap, normalize_crops=False, return_shape=True)\n', (4478, 4684), False, 'from pipelines.utils.point_utils import sample_points_from_ray, np_get_occupied_idx, occupancy_sparse_to_dense\n'), ((6031, 6060), 'torch.stack', 'torch.stack', (['[x, y, z]'], {'dim': '(2)'}), '([x, y, z], dim=2)\n', (6042, 6060), False, 'import torch\n'), ((6131, 6153), 'torch.sign', 'torch.sign', (['sdf_values'], {}), '(sdf_values)\n', (6141, 6153), False, 'import torch\n'), ((7000, 7046), 'pipelines.utils.point_utils.occupancy_sparse_to_dense', 'occupancy_sparse_to_dense', (['occ_idx', 'grid_shape'], {}), '(occ_idx, grid_shape)\n', (7025, 7046), False, 'from pipelines.utils.point_utils import sample_points_from_ray, np_get_occupied_idx, occupancy_sparse_to_dense\n'), ((7973, 8019), 'skimage.measure.marching_cubes_lewiner', 'measure.marching_cubes_lewiner', (['output_grid', '(0)'], {}), '(output_grid, 0)\n', (8003, 8019), False, 'from skimage import measure\n'), ((8309, 8330), 'trimesh.Trimesh', 'trimesh.Trimesh', (['v', 'f'], {}), '(v, f)\n', (8324, 8330), False, 'import trimesh\n'), ((9354, 9398), 'numpy.ones', 'np.ones', (['output_grid_shape'], {'dtype': 'np.float32'}), '(output_grid_shape, dtype=np.float32)\n', (9361, 9398), True, 'import numpy as np\n'), ((11635, 11660), 'numpy.isin', 'np.isin', (['ijk_idx', 'g_valid'], {}), '(ijk_idx, g_valid)\n', (11642, 11660), True, 'import numpy as np\n'), ((12965, 13001), 'numpy.concatenate', 'np.concatenate', (['occ_val_list'], {'axis': '(0)'}), '(occ_val_list, axis=0)\n', (12979, 13001), True, 'import numpy as np\n'), ((8497, 8534), 'pipelines.utils.postprocess_utils.remove_backface', 'remove_backface', (['mesh', 'surface_points'], {}), '(mesh, surface_points)\n', (8512, 8534), False, 'from pipelines.utils.postprocess_utils import remove_backface\n'), ((9151, 9214), 'numpy.linspace', 'np.linspace', (['(xmin[i] + eps)', '(xmax[i] - eps)', 'output_grid_shape[i]'], {}), '(xmin[i] + eps, xmax[i] - eps, output_grid_shape[i])\n', (9162, 9214), True, 'import numpy as np\n'), ((10487, 10671), 'numpy.stack', 'np.stack', (['[mask[:-1, :-1, :-1], mask[:-1, :-1, 1:], mask[:-1, 1:, :-1], mask[:-1, 1:,\n 1:], mask[1:, :-1, :-1], mask[1:, :-1, 1:], mask[1:, 1:, :-1], mask[1:,\n 1:, 1:]]'], {'axis': '(-1)'}), '([mask[:-1, :-1, :-1], mask[:-1, :-1, 1:], mask[:-1, 1:, :-1], mask\n [:-1, 1:, 1:], mask[1:, :-1, :-1], mask[1:, :-1, 1:], mask[1:, 1:, :-1],\n mask[1:, 1:, 1:]], axis=-1)\n', (10495, 10671), True, 'import numpy as np\n'), ((12389, 12438), 'numpy.ceil', 'np.ceil', (['(eval_points.shape[0] / self.points_batch)'], {}), '(eval_points.shape[0] / self.points_batch)\n', (12396, 12438), True, 'import numpy as np\n'), ((12505, 12520), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12518, 12520), False, 'import torch\n'), ((5072, 5103), 'torch.from_numpy', 'torch.from_numpy', (['point_samples'], {}), '(point_samples)\n', (5088, 5103), False, 'import torch\n'), ((5136, 5164), 'torch.from_numpy', 'torch.from_numpy', (['sdf_values'], {}), '(sdf_values)\n', (5152, 5164), False, 'import torch\n'), ((5201, 5226), 'torch.from_numpy', 'torch.from_numpy', (['occ_idx'], {}), '(occ_idx)\n', (5217, 5226), False, 'import torch\n'), ((7686, 7715), 'torch.from_numpy', 'torch.from_numpy', (['eval_points'], {}), '(eval_points)\n', (7702, 7715), False, 'import torch\n'), ((8092, 8137), 'numpy.array', 'np.array', (['output_grid.shape'], {'dtype': 'np.float32'}), '(output_grid.shape, dtype=np.float32)\n', (8100, 8137), True, 'import numpy as np\n'), ((10794, 10815), 'numpy.any', 'np.any', (['mask'], {'axis': '(-1)'}), '(mask, axis=-1)\n', (10800, 10815), True, 'import numpy as np\n'), ((10857, 10878), 'numpy.all', 'np.all', (['mask'], {'axis': '(-1)'}), '(mask, axis=-1)\n', (10863, 10878), True, 'import numpy as np\n'), ((8200, 8245), 'numpy.array', 'np.array', (['output_grid.shape'], {'dtype': 'np.float32'}), '(output_grid.shape, dtype=np.float32)\n', (8208, 8245), True, 'import numpy as np\n'), ((9257, 9301), 'numpy.meshgrid', 'np.meshgrid', (['l[0]', 'l[1]', 'l[2]'], {'indexing': '"""ij"""'}), "(l[0], l[1], l[2], indexing='ij')\n", (9268, 9301), True, 'import numpy as np\n'), ((11339, 11382), 'numpy.floor', 'np.floor', (['((xyz - xmin) / self.part_size * 2)'], {}), '((xyz - xmin) / self.part_size * 2)\n', (11347, 11382), True, 'import numpy as np\n'), ((11432, 11494), 'numpy.floor', 'np.floor', (['((xyz - xmin + 0.5 * self.part_size) / self.part_size)'], {}), '((xyz - xmin + 0.5 * self.part_size) / self.part_size)\n', (11440, 11494), True, 'import numpy as np\n'), ((5530, 5550), 'numpy.array', 'np.array', (['grid_shape'], {}), '(grid_shape)\n', (5538, 5550), True, 'import numpy as np\n'), ((10913, 10937), 'numpy.arange', 'np.arange', (['mask.shape[0]'], {}), '(mask.shape[0])\n', (10922, 10937), True, 'import numpy as np\n'), ((10972, 10996), 'numpy.arange', 'np.arange', (['mask.shape[1]'], {}), '(mask.shape[1])\n', (10981, 10996), True, 'import numpy as np\n'), ((11031, 11055), 'numpy.arange', 'np.arange', (['mask.shape[2]'], {}), '(mask.shape[2])\n', (11040, 11055), True, 'import numpy as np\n'), ((2381, 2398), 'torch.empty', 'torch.empty', (['(1)', '(0)'], {}), '(1, 0)\n', (2392, 2398), False, 'import torch\n'), ((2464, 2481), 'torch.empty', 'torch.empty', (['(1)', '(0)'], {}), '(1, 0)\n', (2475, 2481), False, 'import torch\n')]
import numpy as np from time import time from typing import List, Tuple from tsp_heuristics.heuristics.utils import get_tour_distance def nn_algo( dist_matrix: np.array, start: int = 0 ) -> Tuple[List, float]: """ From a start city index, get an Tour according to the Nearest Neighbor algorithm from the collection of the cities indexes. Args: dist_matrix (np.array) start (int, optional): The first city that we will begin the Tour and eventually return. Defaults to 0. Returns: np.array: Array of indexes representing the city Tour. float: Time to complete the algorithm. """ t0 = time() Tour = [start] dist_matrix = dist_matrix.astype(float) # Making the distance to go to the same # city impossible. for i in range(dist_matrix.shape[0]): dist_matrix[i][i] = np.Inf for _ in range(dist_matrix.shape[0] - 1): # Finding the best next city. min_index = np.argmin(dist_matrix[Tour[-1]]) # Making sure that we won't revisit # the same city. for t in Tour: dist_matrix[min_index][t] = np.Inf dist_matrix[t][min_index] = np.Inf Tour.append(min_index) return Tour, get_tour_distance(Tour, dist_matrix), (time() - t0)
[ "numpy.argmin", "time.time", "tsp_heuristics.heuristics.utils.get_tour_distance" ]
[((666, 672), 'time.time', 'time', ([], {}), '()\n', (670, 672), False, 'from time import time\n'), ((994, 1026), 'numpy.argmin', 'np.argmin', (['dist_matrix[Tour[-1]]'], {}), '(dist_matrix[Tour[-1]])\n', (1003, 1026), True, 'import numpy as np\n'), ((1266, 1302), 'tsp_heuristics.heuristics.utils.get_tour_distance', 'get_tour_distance', (['Tour', 'dist_matrix'], {}), '(Tour, dist_matrix)\n', (1283, 1302), False, 'from tsp_heuristics.heuristics.utils import get_tour_distance\n'), ((1305, 1311), 'time.time', 'time', ([], {}), '()\n', (1309, 1311), False, 'from time import time\n')]
import os import numpy as np from sys import platform, path if platform == "linux" or platform == "linux2": path.insert(1, os.path.dirname(os.getcwd()) + "/src") FILE_NAME = os.path.dirname(os.getcwd()) + "/data" + "/xAPI-Edu-Data-Edited.csv" elif platform == "win32": path.insert(1, os.path.dirname(os.getcwd()) + "\\src") FILE_NAME = os.path.dirname(os.getcwd()) + "\\data" + "\\xAPI-Edu-Data-Edited.csv" elif platform == "darwin": path.insert(1, os.path.dirname(os.getcwd()) + "/src") FILE_NAME = os.path.dirname(os.getcwd()) + "/data" + "/xAPI-Edu-Data-Edited.csv" from DataPreprocessing import Preprocess, FeaturePreprocess from DataProcessing import ModelTuning, ModelValidating, save_file, load_file CATEGORICAL_COLUMNS = ["Gender", "Nationality", "PlaceofBirth", "StageID", "GradeID", "SectionID", "Topic", "Semester", "Relation", "ParentAnsweringSurvey", "ParentSchoolSatisfaction", "StudentAbsenceDays"] PREFIXES = ["Gender", "Nationality", "PlaceofBirth", "Stage", "Grade", "Section", "Topic", "Semester", "Relation", "Survey", "ParentSatisfaction", "Absence"] REMOVE_VALUES = ["G-05", "G-09"] def preprocess_data(count_missing=False, replace_values=True, remove_values=False, encode=True, categorical_columns=CATEGORICAL_COLUMNS, prefixes=PREFIXES): """Preprocesses the raw dataset Parameters ---------- count_missing : bool, default=False Counts all missing values in the dataset replace_values : bool, default=True Replaces non significative values in the columns "Nationality" and "PlaceofBirth" with "Other" remove_values : bool, default=False Replaces rows with non significative values in the columns "GradeID" encode : bool, default=True One Hot encodes categorical columns categorical_columns : list of str, defaut=(categorical columns of the dataset) Columns to apply one hot encode to prefixes : list of str, default="["Gender", "Nationality", "PlaceofBirth", "Stage", "Grade", "Section", "Topic", "Semester", "Relation", "Survey", "ParentSatisfaction", "Absence"]" Prefixes for one hot encoding Returns ---------- X_data : pandas df feature columns y_data : pandas df target columns y_labels : {ndarray, sparse matrix} class labels """ preprocess = Preprocess(data=FILE_NAME) if count_missing: print(f"Number of rows missing values: {preprocess.check_missing_values()}") if replace_values: preprocess.replace_values("Nationality", ["Lybia", "Iraq", "Lebanon", "Tunisia", "SaudiArabia", "Egypt", "USA", "Venezuela", "Iran", "Morocco", "Syria", "Palestine"], "Other") preprocess.replace_values("PlaceofBirth", ["Lybia", "Iraq", "Lebanon", "Tunisia", "SaudiArabia", "Egypt", "USA", "Venezuela", "Iran", "Morocco", "Syria", "Palestine"], "Other") if remove_values: preprocess.remove_values("GradeID", REMOVE_VALUES) if encode: preprocess.target_encode() preprocess.one_hot_encode(columns=categorical_columns, prefix=prefixes) X_data, y_data = preprocess.get_data() y_labels = preprocess.target_decode() return X_data, y_data, y_labels X_data, y_data = preprocess.get_data() return X_data, y_data def preprocess_features(X_data, scaler_type="standard", n_components=None, plot_pca=False, threshold=0.85, savefig=True): """ processes feature columns with a scaler and pca Parameters ---------- X_data : pandas df feature Columns scaler_type : str, default="standard" scalar to use ('standard'/'min_max') n_components : int, default=None pca components to use, if 'None' uses all components plot_pca : bool, defaut=True specifies if pca should be plotted threshold : float range(0,1), default=0.85 pca variance threshold to plot vertical line at savefig : bool, default=True specifies if pca plot should be saved Returns ---------- X_transformed : ndarray preprocessed feature columns feature_preprocess : feature_preprocess object feature_preprocess object used (for the pipeline) """ if n_components is None: n_components = len(X_data.columns) feature_preprocess = FeaturePreprocess(X_data, n_components=n_components, scaler_type=scaler_type) X_transformed = feature_preprocess.transform_data() if plot_pca: feature_preprocess.plot_pca(threshold=threshold, savefig=savefig) return X_transformed, feature_preprocess def create_estimators(X_data, y_data, train_size=0.7, hyperparam_tune=True, boosting=True, random_state=42, verbose=1): """Splits the data in train, test and val, trains three different estimators: Decision Tree, Support Vector Machine and Random Forest, can also tune the hyper parameters and boost the estimators with Adaboost Parameters ---------- X_data : pandas df feature Columns y_data : pandas df target column train_size : float Percentage for train hyperparam_tune : bool, default=True specifies if hyper params should be tuned boosting : bool, default=True specifies if estimators should be boosted random_state : int, default=42 random state verbose : int, default=1 verbosity level Returns ---------- estimators : list of estimators trained estimators mt : ModelTuning object ModelTuning object used (for validation set) """ estimators = [] mt = ModelTuning(X_data, y_data, train_size, random_state=random_state) if verbose > 0: print("Creating Basic Estimators...\n") dt = mt.create_weak_learner(random_state, verbose, model_type="dt", ) svm = mt.create_weak_learner(random_state, verbose, model_type="svm") rf = mt.create_random_forest(random_state, verbose) estimators.extend([dt, svm, rf]) if hyperparam_tune: if verbose > 0: print("Tunning Hyperparams...\n") tuned_dt = mt.tune_hyperparam(dt, random_state, verbose) tuned_svm = mt.tune_hyperparam(svm, random_state, verbose) tuned_rf = mt.tune_hyperparam(rf, random_state, verbose) estimators.extend([tuned_dt, tuned_svm, tuned_rf]) if boosting: if verbose > 0: print("Boosting...\n") print("Boosted dt:") boosted_dt = mt.boost_weak_learners(tuned_dt, random_state, verbose) if verbose > 0: print("Boosted svm:") boosted_svm = mt.boost_weak_learners(tuned_svm, random_state, verbose) if verbose > 0: print("Boosted rf:") boosted_rf = mt.boost_weak_learners(tuned_rf, random_state, verbose) estimators.extend([boosted_dt, boosted_svm, boosted_rf]) return estimators, mt def get_x_y_set(mt, type="test"): """Gets data set from ModelTuning object Parameters ---------- mt : ModelTuning object ModelTuning object used type : str, default="test" specifies which set to return ('train'/'test'/'val') Returns ---------- X_data, y_data : ndarray """ if type == "val": return mt.get_validation_set() if type == "train": return mt.get_train_set() if type == "test": return mt.get_test_set() def validate_estimators(estimators, X_val, y_val, y_labels, scaler_type="", plot_cf=True, clas_report=True, savefig=True): """Validates estimators Parameters ---------- estimators : list of estimators estimators to validate X_val : ndarray validation data y_val : ndarray validation labels y_labels : {ndarray, sparse matrix} decoded labels scaler_type : str, optional scaler used ('standard'/'min_max') (for plots) plot_cf : bool, default=True specifies if confusion matrix should be plot clas_report : bool, default=True specifies if Classification Report should be printed savefig : bool, default=True specifies if confusion matrix should be saved as .png """ for est in estimators: mv = ModelValidating(est, X_val, y_val, y_labels=y_labels, scaler=scaler_type) if plot_cf: mv.plot_confusion_matrix(savefig=savefig) if clas_report: report = mv.classification_report() print(f"Classification Report: {est}\n{report}") def get_n_best(estimators, X_val, y_val, y_labels, best_n=3, score="f1_score"): """Gets best estimators from list Parameters ---------- estimators : list of estimators list of trained estimators X_val : ndarray validation data y_val : ndarray validation labels y_labels : {ndarray, sparse matrix} decoded labels best_n : int, default=3 number of estimators to pick score : str, default="f1_score" metric to use for picking best estimators ('accuracy'/'f1_score') Returns ---------- best_est : list of estimators of len=´best_n´ """ best_scores = [] for est in estimators: mv = ModelValidating(est, X_val, y_val, y_labels=y_labels, scaler="") indv_scores = mv.get_scores() if score == "accuracy": best_scores.append(indv_scores[0]) if score == "f1_score": best_scores.append(indv_scores[1]) best_idx = np.argpartition(best_scores, -best_n)[-best_n:] best_est = [] for index in best_idx: best_est.append(estimators[index]) return best_est def save(models, file_name=None, suffix=None): """Saves estimator Parameters ---------- file_name : str, optional name for the file if None model will be saved with suffix suffix : str, optional suffix to be added """ if file_name is None: for model in models: save_file(model, suffix=suffix) else: save_file(models, file_name=file_name) def load(model_name): """Loads and returns pickle File """ return load_file(model_name)
[ "numpy.argpartition", "DataPreprocessing.FeaturePreprocess", "os.getcwd", "DataProcessing.save_file", "DataProcessing.load_file", "DataProcessing.ModelValidating", "DataPreprocessing.Preprocess", "DataProcessing.ModelTuning" ]
[((2478, 2504), 'DataPreprocessing.Preprocess', 'Preprocess', ([], {'data': 'FILE_NAME'}), '(data=FILE_NAME)\n', (2488, 2504), False, 'from DataPreprocessing import Preprocess, FeaturePreprocess\n'), ((4600, 4677), 'DataPreprocessing.FeaturePreprocess', 'FeaturePreprocess', (['X_data'], {'n_components': 'n_components', 'scaler_type': 'scaler_type'}), '(X_data, n_components=n_components, scaler_type=scaler_type)\n', (4617, 4677), False, 'from DataPreprocessing import Preprocess, FeaturePreprocess\n'), ((5903, 5969), 'DataProcessing.ModelTuning', 'ModelTuning', (['X_data', 'y_data', 'train_size'], {'random_state': 'random_state'}), '(X_data, y_data, train_size, random_state=random_state)\n', (5914, 5969), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((10446, 10467), 'DataProcessing.load_file', 'load_file', (['model_name'], {}), '(model_name)\n', (10455, 10467), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((8534, 8607), 'DataProcessing.ModelValidating', 'ModelValidating', (['est', 'X_val', 'y_val'], {'y_labels': 'y_labels', 'scaler': 'scaler_type'}), '(est, X_val, y_val, y_labels=y_labels, scaler=scaler_type)\n', (8549, 8607), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((9514, 9578), 'DataProcessing.ModelValidating', 'ModelValidating', (['est', 'X_val', 'y_val'], {'y_labels': 'y_labels', 'scaler': '""""""'}), "(est, X_val, y_val, y_labels=y_labels, scaler='')\n", (9529, 9578), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((9792, 9829), 'numpy.argpartition', 'np.argpartition', (['best_scores', '(-best_n)'], {}), '(best_scores, -best_n)\n', (9807, 9829), True, 'import numpy as np\n'), ((10327, 10365), 'DataProcessing.save_file', 'save_file', (['models'], {'file_name': 'file_name'}), '(models, file_name=file_name)\n', (10336, 10365), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((10277, 10308), 'DataProcessing.save_file', 'save_file', (['model'], {'suffix': 'suffix'}), '(model, suffix=suffix)\n', (10286, 10308), False, 'from DataProcessing import ModelTuning, ModelValidating, save_file, load_file\n'), ((144, 155), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (153, 155), False, 'import os\n'), ((199, 210), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (208, 210), False, 'import os\n'), ((313, 324), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (322, 324), False, 'import os\n'), ((369, 380), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (378, 380), False, 'import os\n'), ((486, 497), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (495, 497), False, 'import os\n'), ((541, 552), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (550, 552), False, 'import os\n')]
import gym from baselines import deepq from baselines.common.atari_wrappers_deprecated import wrap_dqn, ScaledFloatFrame from cloud_environment import CloudEnvironment import numpy as np import collections import os import csv import pandas as pd #Logging def logger_callback(locals,globals): done = locals['done'] num_episodes = locals['num_episodes'] log_action_l = locals['log_action_l'] # actions chosen in current episode step log_action_l.append(locals['action']) if done: action_counter = collections.Counter(log_action_l).items() reward_sum = np.sum(locals['episode_rewards']) reward_mean = np.mean(locals['episode_rewards']) c_reward_sum = np.sum(locals['cumulative_episode_rewards']) c_reward_mean = np.mean(locals['cumulative_episode_rewards']) path = locals['test_file_path'] print("Writing episode {} log to ".format(num_episodes), path) with open(path, 'a') as f: env = locals['env'] actions_np = np.zeros(env.action_space.n) for k, v in action_counter: actions_np[k] = v action_count_header = ['action_count{}'.format(i) for i in range(env.action_space.n)] #action_q_header = ['mean_action_q{}'.format(i) for i in range(len(episode_q_t.tolist()))] headers = ['episode','reward_sum','reward_mean','c_reward_sum','c_reward_mean'] #headers = headers + action_q_header+action_count_header headers = headers + action_count_header action_counts = list(actions_np) #actions_qs = [q for q in episode_q_t.tolist()] #output_list = [num_episodes]+[steps]+[rew100]+[rew50]+[rew10]+[episode_q_t_selected]+[episode_q_t_targets]+[episode_td_errors]+[episode_errors]+ actions_qs+action_counts output_list = [num_episodes] + [reward_sum] + [reward_mean] + [c_reward_sum] + [c_reward_mean] + action_counts print(headers) print(output_list) w = csv.writer(f) if os.stat(path).st_size == 0: w.writerow(headers) w.writerow(output_list) return False def result_callback(ci_list,episode_list,locals,globals): nps = len(episode_list[0])-len(ci_list[0]) cis_l = [[np.nan]*nps + cil for cil in ci_list] e_df = pd.concat(episode_list,axis=0).reset_index(drop=True) ci_df = pd.DataFrame(np.concatenate(cis_l),columns=['ci']).reset_index(drop=True) output_df = pd.concat([e_df,ci_df],axis=1) output_df.dropna(inplace=True) output_df = output_df.reset_index(drop=True) output_df.to_csv('eval_predictions.csv') def main(): load_cpk="/home/nox/Masterarbeit/thesis_data/baseline_rl/simple_rl/7_unbalanced_test/experiments_unbalanced/cloud_model.pkl" channels=3 seq_length=2 img_size=84 env = CloudEnvironment(img_size=img_size,radius=[12,13],sequence_stride=1,channels=channels,sequence_length=seq_length,ramp_step=0.1,action_type=1,action_nr=3,stochastic_irradiance=True,save_images=True) #Note: cloud speed can be changes but may also require different ramps.. default, speed of cloud per frame at least 1 pixel in y direction model = deepq.models.cnn_to_mlp( convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], hiddens=[256], dueling=True, channels=channels, seq_length=seq_length, img_size=img_size ) deepq.test(load_cpk=load_cpk, result_callback=result_callback, env=env, q_func=model, log_callback=logger_callback, episode_n=1 ) if __name__ == '__main__': main()
[ "numpy.mean", "cloud_environment.CloudEnvironment", "csv.writer", "baselines.deepq.test", "numpy.sum", "numpy.zeros", "collections.Counter", "baselines.deepq.models.cnn_to_mlp", "numpy.concatenate", "os.stat", "pandas.concat" ]
[((2638, 2670), 'pandas.concat', 'pd.concat', (['[e_df, ci_df]'], {'axis': '(1)'}), '([e_df, ci_df], axis=1)\n', (2647, 2670), True, 'import pandas as pd\n'), ((3001, 3216), 'cloud_environment.CloudEnvironment', 'CloudEnvironment', ([], {'img_size': 'img_size', 'radius': '[12, 13]', 'sequence_stride': '(1)', 'channels': 'channels', 'sequence_length': 'seq_length', 'ramp_step': '(0.1)', 'action_type': '(1)', 'action_nr': '(3)', 'stochastic_irradiance': '(True)', 'save_images': '(True)'}), '(img_size=img_size, radius=[12, 13], sequence_stride=1,\n channels=channels, sequence_length=seq_length, ramp_step=0.1,\n action_type=1, action_nr=3, stochastic_irradiance=True, save_images=True)\n', (3017, 3216), False, 'from cloud_environment import CloudEnvironment\n'), ((3355, 3521), 'baselines.deepq.models.cnn_to_mlp', 'deepq.models.cnn_to_mlp', ([], {'convs': '[(32, 8, 4), (64, 4, 2), (64, 3, 1)]', 'hiddens': '[256]', 'dueling': '(True)', 'channels': 'channels', 'seq_length': 'seq_length', 'img_size': 'img_size'}), '(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], hiddens\n =[256], dueling=True, channels=channels, seq_length=seq_length,\n img_size=img_size)\n', (3378, 3521), False, 'from baselines import deepq\n'), ((3571, 3703), 'baselines.deepq.test', 'deepq.test', ([], {'load_cpk': 'load_cpk', 'result_callback': 'result_callback', 'env': 'env', 'q_func': 'model', 'log_callback': 'logger_callback', 'episode_n': '(1)'}), '(load_cpk=load_cpk, result_callback=result_callback, env=env,\n q_func=model, log_callback=logger_callback, episode_n=1)\n', (3581, 3703), False, 'from baselines import deepq\n'), ((611, 644), 'numpy.sum', 'np.sum', (["locals['episode_rewards']"], {}), "(locals['episode_rewards'])\n", (617, 644), True, 'import numpy as np\n'), ((671, 705), 'numpy.mean', 'np.mean', (["locals['episode_rewards']"], {}), "(locals['episode_rewards'])\n", (678, 705), True, 'import numpy as np\n'), ((733, 777), 'numpy.sum', 'np.sum', (["locals['cumulative_episode_rewards']"], {}), "(locals['cumulative_episode_rewards'])\n", (739, 777), True, 'import numpy as np\n'), ((806, 851), 'numpy.mean', 'np.mean', (["locals['cumulative_episode_rewards']"], {}), "(locals['cumulative_episode_rewards'])\n", (813, 851), True, 'import numpy as np\n'), ((1080, 1108), 'numpy.zeros', 'np.zeros', (['env.action_space.n'], {}), '(env.action_space.n)\n', (1088, 1108), True, 'import numpy as np\n'), ((2147, 2160), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (2157, 2160), False, 'import csv\n'), ((2480, 2511), 'pandas.concat', 'pd.concat', (['episode_list'], {'axis': '(0)'}), '(episode_list, axis=0)\n', (2489, 2511), True, 'import pandas as pd\n'), ((543, 576), 'collections.Counter', 'collections.Counter', (['log_action_l'], {}), '(log_action_l)\n', (562, 576), False, 'import collections\n'), ((2560, 2581), 'numpy.concatenate', 'np.concatenate', (['cis_l'], {}), '(cis_l)\n', (2574, 2581), True, 'import numpy as np\n'), ((2181, 2194), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (2188, 2194), False, 'import os\n')]
#!/usr/bin/env python from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import numpy as np import scipy.io import glob import os import csv import random import tensorflow as tf import transition_model_common as tm # import sys # sys.path.append('./tensorflow_hmm') # import tensorflow_hmm.hmm as hmm def train_model(): dl = tm.DataLoader() n_examples = dl.num_examples n_input = dl.feature_len n_classes = dl.num_labels # Parameters learning_rate = 0.01 training_epochs = 5000 batch_size = 100 display_step = 50 tmm = tm.create_model(n_input, n_classes, train=True) # Define loss and optimizer # residual_pre = tf.reduce_mean(tf.squared_difference(x_pre, ae_pre_out)) residual_post = tf.reduce_mean(tf.squared_difference(tmm.x_post, tmm.ae_post_out)) # cost_current = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred_current, labels=y_current)) cost_next = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=tmm.pred_next, labels=tmm.y_next)) regularizer = tf.nn.l2_loss(tmm.pred_weights[0]) for i in range(1, len(tmm.pred_weights)): regularizer += tf.nn.l2_loss(tmm.pred_weights[i]) # total_loss = 0.01 * (residual_pre + residual_post) + cost_current + cost_next total_loss = 0.01 * (residual_post) + cost_next + 0.001 * regularizer # total_loss = cost_next + cost_current optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss) # Initializing the variables init = tf.global_variables_initializer() # Calculate accuracy # correct_pred_current = tf.equal(tf.argmax(pred_current, 1), tf.argmax(y_current, 1)) correct_pred_next = tf.equal(tf.argmax(tmm.pred_next, 1), tf.argmax(tmm.y_next, 1)) # accuracy_current = tf.reduce_mean(tf.cast(correct_pred_current, 'float')) accuracy_next = tf.reduce_mean(tf.cast(correct_pred_next, 'float')) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter("tensorboard/train", sess.graph) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_examples/batch_size) # Loop over all batches for i in range(total_batch): x_pre_batch, x_post_batch, y_current_batch, y_next_batch = dl.next_training_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) # feed = {x_pre: x_pre_batch, x_post: x_post_batch, y_current: y_current_batch, y_next: y_next_batch } feed = {tmm.x_post: x_post_batch, tmm.y_current: y_current_batch, tmm.y_next: y_next_batch, tmm.keep_prob: 0.7} _, c = sess.run([optimizer, total_loss], feed_dict=feed) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if epoch % display_step == 0: print('Epoch: {:04d} cost: {:.9f}'.format(epoch, avg_cost)) # print(' train accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.training_post_data, y_next: dl.training_next_action}))) # print(' test accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.testing_post_data, y_next: dl.testing_next_action}))) print(' train accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.training_post_data, tmm.y_current: dl.training_current_action, tmm.y_next: dl.training_next_action, tmm.keep_prob: 1.0}))) print(' test accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.testing_post_data, tmm.y_current: dl.testing_current_action, tmm.y_next: dl.testing_next_action, tmm.keep_prob: 1.0}))) # print(' train accuracy (current): {:.9f}'.format(accuracy_current.eval({x_pre: dl.training_pre_data, tmm.x_post: dl.training_post_data, y_current: dl.training_current_action}))) # print(' test accuracy (current): {:.9f}'.format(accuracy_current.eval({x_pre: dl.testing_pre_data, tmm.x_post: dl.testing_post_data, y_current: dl.testing_current_action}))) test_action_accuracy(accuracy_next, tmm, dl, training=False) print("Optimization Finished!") if not os.path.exists('./models/transition'): os.mkdir('./models/transition') saver.save(sess, './models/transition/model.ckpt') writer.close() def train_mapping(): dl = tm.DataLoader() n_input = dl.feature_len n_classes = dl.num_labels tmm = tm.create_model(n_input, n_classes, train=True) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/transition/model.ckpt') rdl = tm.RobotDataLoader(dl, tmm.x_post, tmm.ae_post_enc, tmm.keep_prob) robot_test_data, human_test_data, y_current_test_data, y_next_test_data = rdl.extract_data_as_arrays(train=False) n_dim1 = rdl.human_enc_dim n_dim2 = rdl.robot_dim # tf Graph input # x = tf.placeholder('float', [None, n_dim2], name='x_robot_enc') y_gt = tf.placeholder('float', [None, n_dim1], name='y_human_gt') # y = create_mapping_model(x, n_dim2, n_dim1, train=True) x = tmm.x_map_input y = tmm.y_map_output # Parameters learning_rate = 0.001 training_epochs = 10000 batch_size = 100 display_step = 50 total_batch = 20 # Define loss and optimizer # cost_next = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred_next, labels=y_next)) residual = tf.reduce_mean(tf.squared_difference(y, y_gt)) regularizers = tf.nn.l2_loss(tmm.mapping_weights[0]) for i in range(1, len(tmm.mapping_weights)): regularizers += tf.nn.l2_loss(tmm.mapping_weights[i]) total_loss = residual + 0.001 * regularizers # total_loss = residual # total_loss = 0.01 * residual + cost_next # optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss, var_list=[ae_post_out, y_current, y_next, x, y_gt, keep_prob]) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(total_loss) new_vars = [] for var in tf.global_variables(): if 'mapping' in var.name or 'beta' in var.name: new_vars.append(var) # Initializing the variables #init = tf.global_variables_initializer() # init = tf.initialize_variables(new_vars) init = tf.variables_initializer(new_vars) # Launch the graph sess.run(init) writer = tf.summary.FileWriter("tensorboard/map", sess.graph) # Calculate accuracy # correct_pred_current = tf.equal(tf.argmax(pred_current, 1), tf.argmax(y_current, 1)) correct_pred_next = tf.equal(tf.argmax(tmm.pred_next, 1), tf.argmax(tmm.y_next, 1)) # accuracy_current = tf.reduce_mean(tf.cast(correct_pred_current, 'float')) accuracy_next = tf.reduce_mean(tf.cast(correct_pred_next, 'float')) num_training = training_epochs * total_batch * batch_size # robot data projected to human subspace mapped_robot_data = np.zeros((num_training, n_dim1), dtype=np.float) action_idx_data = np.full((num_training, len(dl.index_name)), -2, dtype=np.int) next_action_idx_data = np.full((num_training, len(dl.index_name)), -2, dtype=np.int) data_idx = 0 # Training cycle for epoch in range(training_epochs): avg_cost = 0. # Loop over all batches for i in range(total_batch): x_batch, y_batch, action_idx_batch, next_action_idx_batch = rdl.next_training_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) feed = {x: x_batch, y_gt: y_batch, tmm.keep_prob: 0.7} _, c = sess.run([optimizer, total_loss], feed_dict=feed) # Compute average loss avg_cost += c / total_batch # collect data to feed to accuracy eval (testing) mapped_robot_enc_test = tmm.y_map_output.eval({tmm.x_map_input: robot_test_data, tmm.keep_prob: 1.0}) action_idx_test = dl.one_hot(y_current_test_data, len(dl.index_name)) next_action_idx_test = dl.one_hot(y_next_test_data, len(dl.index_name)) # collect data to feed to accuracy eval (training) mapped_robot_enc = tmm.y_map_output.eval({tmm.x_map_input: x_batch, tmm.keep_prob: 1.0}) action_idx = dl.one_hot(action_idx_batch, len(dl.index_name)) next_action_idx = dl.one_hot(next_action_idx_batch, len(dl.index_name)) mapped_robot_data[data_idx:data_idx+batch_size,:] = mapped_robot_enc action_idx_data[data_idx:data_idx+batch_size,:] = action_idx next_action_idx_data[data_idx:data_idx+batch_size,:] = next_action_idx data_idx += batch_size # Display logs per epoch step if epoch % display_step == 0: print('Epoch: {:04d} cost: {:.9f}'.format(epoch, avg_cost)) print(' accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.ae_post_enc: mapped_robot_data[0:data_idx], tmm.y_current: action_idx_data[0:data_idx], tmm.y_next: next_action_idx_data[0:data_idx]}))) # test_action_accuracy_map(accuracy_next, ae_post_enc, y_current, y_next, # mapped_robot_data[0:data_idx], action_idx_data[0:data_idx], # next_action_idx_data[0:data_idx], dl, train=True) test_action_accuracy_map(accuracy_next, tmm, mapped_robot_enc_test, action_idx_test, next_action_idx_test, dl, False) print("Optimization Finished!") if not os.path.exists('./models/map'): os.mkdir('./models/map') saver.save(sess, './models/map/model.ckpt') writer.close() ''' Map from robot state to human (encoded) state ''' def run_mapping(): dl = tm.DataLoader() n_input = dl.feature_len n_classes = dl.num_labels n_dim1 = 6 n_dim2 = 7 tmm = tm.create_model(n_input, n_classes, train=True) pred_next_sm = tf.nn.softmax(tmm.pred_next) # pred_current_sm = tf.nn.softmax(pred_current) # tf Graph input # x = tf.placeholder('float', [None, n_dim2], name='x_robot_enc') # y = create_mapping_model(x, n_dim2, n_dim1, train=False) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/map/model.ckpt') rdl = tm.RobotDataLoader(dl, tmm.x_post, tmm.ae_post_enc) for i in range(10): y_human, x_robot, action_idx, next_action_idx = rdl.get_random_pair() # y_output_pre = y_map_output.eval({x_map_input: np.expand_dims(x_robot[0], axis=0)}) y_action = dl.one_hot(np.full((1,), action_idx), len(dl.index_name)) y_output_post = tmm.y_map_output.eval({tmm.x_map_input: np.reshape(x_robot, (1,7)), tmm.keep_prob: 1.0}) # res_current = pred_current_sm.eval({ae_pre_enc: y_output_pre, ae_post_enc: y_output_post}) res_next = pred_next_sm.eval({tmm.ae_post_enc: y_output_post, tmm.y_current: y_action, tmm.keep_prob: 1.0}) # res_current_idx = np.argmax(res_current) res_next_idx = np.argmax(res_next) print('Prediction next: {} {}, true {} {}'.format(res_next_idx, dl.index_name[res_next_idx], next_action_idx, dl.index_name[next_action_idx])) print(' Probabilities (next):') for j in range(len(dl.index_name)): name = dl.index_name[j] tab_str = get_tab_str(name) print(' {}{}{:.6f}'.format(name, tab_str, res_next[0,j])) def run_demo(): index_name = ['end', 'approach', 'move', 'grasp_left', 'grasp_right', 'ungrasp_left', 'ungrasp_right', 'twist', 'push', 'neutral', 'pull', 'pinch', 'unpinch'] n_input = 159 n_classes = 13 n_dim1 = 6 n_dim2 = 7 tmm = tm.create_model(n_input, n_classes, train=True) pred_next_sm = tf.nn.softmax(tmm.pred_next) # pred_current_sm = tf.nn.softmax(pred_current) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/map/model.ckpt') # INSERT ACTUAL ROBOT MEASUREMENTS HERE # NOTE: if running from actual robot data, don't forget to divide the gripper # state by 255 (last dimension of feature vector) x_robot_pre = np.random.normal(size=(1,7)) x_robot_post = np.random.normal(size=(1,7)) action = np.full((1,), random.randint(1,13)) y_action = tm.DataLoader.one_hot(action, 13) # y_output_pre = y_map_output.eval({x_map_input: x_robot_pre}) y_output_post = tmm.y_map_output.eval({tmm.x_map_input: x_robot_post, tmm.y_current: y_action, tmm.keep_prob: 1.0}) # res_current = pred_current_sm.eval({ae_pre_enc: y_output_pre, ae_post_enc: y_output_post}) res_next = pred_next_sm.eval({tmm.ae_post_enc: y_output_post, tmm.y_current: y_action, tmm.keep_prob: 1.0}) # res_current_idx = np.argmax(res_current) res_next_idx = np.argmax(res_next) print('Prediction next: {} {}'.format(res_next_idx, index_name[res_next_idx])) print(' Probabilities (next):') for j in range(len(index_name)): name = index_name[j] tab_str = get_tab_str(name) print(' {}{}{:.6f}'.format(name, tab_str, res_next[0,j])) ''' Tests the accuracy of a single action's encoding/decoding ''' def test_action_accuracy(accuracy_next, tmm, dl=tm.DataLoader(), training=False): if training: # pre_data = dl.training_pre_data post_data = dl.training_post_data current_action = dl.training_current_action next_action = dl.training_next_action type_str = 'training' else: # pre_data = dl.testing_pre_data post_data = dl.testing_post_data current_action = dl.testing_current_action next_action = dl.testing_next_action type_str = 'testing' for action_idx in range(1, len(dl.index_name)): # find matching indicies for this action index_arr = np.full((1, 1), action_idx) action_one_hot = dl.one_hot(index_arr, len(dl.index_name)) action_indices = np.where((current_action == action_one_hot).all(axis=1))[0] tab_str = get_tab_str(dl.index_name[action_idx]) print(' {}:{} {} accuracy (next): {:.9f}'.format(dl.index_name[action_idx], tab_str, type_str, accuracy_next.eval({tmm.x_post: post_data[action_indices,:], tmm.y_current: current_action[action_indices,:], tmm.y_next: next_action[action_indices,:], tmm.keep_prob: 1.0}))) ''' Tests the accuracy of a single action's encoding/decoding during mapping ''' def test_action_accuracy_map(accuracy_next, tmm, mapped_robot_data, action_idx_data, next_action_idx_data, dl=tm.DataLoader(), train=False): for action_idx in range(1, len(dl.index_name)): # find matching indicies for this action index_arr = np.full((1, 1), action_idx) action_one_hot = dl.one_hot(index_arr, len(dl.index_name)) action_indices = np.where((action_idx_data == action_one_hot).all(axis=1))[0] if train: type_str = 'training' else: type_str = 'testing' tab_str = get_tab_str(dl.index_name[action_idx]) print(' {}:{} {} accuracy (next): {:.9f}'.format(dl.index_name[action_idx], tab_str, type_str, accuracy_next.eval({tmm.ae_post_enc: mapped_robot_data[action_indices,:], tmm.y_current: action_idx_data[action_indices,:], tmm.y_next: next_action_idx_data[action_indices,:], tmm.keep_prob: 1.0}))) def test_model(): dl = tm.DataLoader() n_input = dl.feature_len n_classes = dl.num_labels tmm = tm.create_model(n_input, n_classes) # Calculate accuracy # correct_pred_current = tf.equal(tf.argmax(pred_current, 1), tf.argmax(y_current, 1)) correct_pred_next = tf.equal(tf.argmax(tmm.pred_next, 1), tf.argmax(tmm.y_next, 1)) # accuracy_current = tf.reduce_mean(tf.cast(correct_pred_current, 'float')) accuracy_next = tf.reduce_mean(tf.cast(correct_pred_next, 'float')) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/map/model.ckpt') print(' train accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.training_post_data, tmm.y_current: dl.training_current_action, tmm.y_next: dl.training_next_action}))) print(' test accuracy (next): {:.9f}'.format(accuracy_next.eval({tmm.x_post: dl.testing_post_data, tmm.y_current: dl.testing_current_action, tmm.y_next: dl.testing_next_action}))) # print(' train accuracy (current): {:.9f}'.format(accuracy_current.eval({x_pre: dl.training_pre_data, tmm.x_post: dl.training_post_data, y_current: dl.training_current_action}))) # print(' test accuracy (current): {:.9f}'.format(accuracy_current.eval({x_pre: dl.testing_pre_data, tmm.x_post: dl.testing_post_data, y_current: dl.testing_current_action}))) ''' Print out the probability tables of the current pre and post-condition observations ''' def test_sequence(): dl = tm.DataLoader() n_input = dl.feature_len n_classes = dl.num_labels tmm = tm.create_model(n_input, n_classes) pred_next_sm = tf.nn.softmax(tmm.pred_next) # pred_current_sm = tf.nn.softmax(pred_current) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/transition/model.ckpt') for i in range(dl.training_pre_data.shape[0]): x_pre_data = np.expand_dims(dl.training_pre_data[i,:], axis=0) x_post_data = np.expand_dims(dl.training_post_data[i,:], axis=0) y_action = np.reshape(dl.training_current_action[i,:], (1, len(dl.index_name))) # res_current = pred_current_sm.eval({x_pre: x_pre_data, tmm.x_post: x_post_data}) # res_next = pred_next_sm.eval({x_pre: x_pre_data, tmm.x_post: x_post_data}) res_next = pred_next_sm.eval({tmm.x_post: x_post_data, tmm.y_current: y_action}) # res_current_idx = np.argmax(res_current) res_next_idx = np.argmax(res_next) print('Prediction next: {} {}'.format(res_next_idx, dl.index_name[res_next_idx])) print(' Probabilities (next):') for j in range(len(dl.index_name)): name = dl.index_name[j] tab_str = get_tab_str(name) print(' {}:{}{:.6f}'.format(name, tab_str, res_next[0,j])) break ''' Encode the human measurements into low-dimensional subspace ''' def encode_human(): dl = tm.DataLoader() n_input = dl.feature_len n_classes = dl.num_labels tmm = tm.create_model(n_input, n_classes) # Launch the graph saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, './models/transition/model.ckpt') for i in range(dl.training_pre_data.shape[0]): x_pre_data = np.expand_dims(dl.training_pre_data[i,:], axis=0) x_post_data = np.expand_dims(dl.training_post_data[i,:], axis=0) # y_enc_pre = tmm.ae_pre_enc.eval({tmm.x_pre: x_pre_data}) y_enc_post = tmm.ae_post_enc.eval({tmm.x_post: x_post_data}) # Print the 6-dimensional representation # print(y_enc_pre.tolist()) print(y_enc_post.tolist()) break def get_tab_str(action_name): if len(action_name) < 7: tab_str = '\t\t\t' elif len(action_name) >= 7 and len(action_name) < 10: tab_str = '\t\t' else: tab_str = '\t' return tab_str def parse_args(): # Parse input arguments parser = ArgumentParser(description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('mode', default=None, help='train | trainmap | runmap | test | seq | encode') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if args.mode == 'train': train_model() elif args.mode == 'test': test_model() elif args.mode == 'seq': test_sequence() elif args.mode == 'encode': encode_human() elif args.mode == 'trainmap': train_mapping() elif args.mode == 'runmap': run_mapping() elif args.mode == 'demo': run_demo()
[ "tensorflow.nn.softmax", "transition_model_common.create_model", "tensorflow.cast", "tensorflow.variables_initializer", "transition_model_common.RobotDataLoader", "os.path.exists", "numpy.reshape", "argparse.ArgumentParser", "tensorflow.squared_difference", "tensorflow.Session", "tensorflow.placeholder", "tensorflow.nn.softmax_cross_entropy_with_logits", "os.mkdir", "tensorflow.train.AdamOptimizer", "random.randint", "numpy.random.normal", "tensorflow.nn.l2_loss", "tensorflow.global_variables", "numpy.argmax", "tensorflow.summary.FileWriter", "transition_model_common.DataLoader", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.argmax", "numpy.zeros", "numpy.expand_dims", "transition_model_common.DataLoader.one_hot", "numpy.full" ]
[((350, 365), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (363, 365), True, 'import transition_model_common as tm\n'), ((583, 630), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {'train': '(True)'}), '(n_input, n_classes, train=True)\n', (598, 630), True, 'import transition_model_common as tm\n'), ((1076, 1110), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['tmm.pred_weights[0]'], {}), '(tmm.pred_weights[0])\n', (1089, 1110), True, 'import tensorflow as tf\n'), ((1553, 1586), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1584, 1586), True, 'import tensorflow as tf\n'), ((1980, 1996), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1994, 1996), True, 'import tensorflow as tf\n'), ((5130, 5145), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (5143, 5145), True, 'import transition_model_common as tm\n'), ((5216, 5263), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {'train': '(True)'}), '(n_input, n_classes, train=True)\n', (5231, 5263), True, 'import transition_model_common as tm\n'), ((5300, 5316), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5314, 5316), True, 'import tensorflow as tf\n'), ((11028, 11043), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (11041, 11043), True, 'import transition_model_common as tm\n'), ((11144, 11191), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {'train': '(True)'}), '(n_input, n_classes, train=True)\n', (11159, 11191), True, 'import transition_model_common as tm\n'), ((11211, 11239), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['tmm.pred_next'], {}), '(tmm.pred_next)\n', (11224, 11239), True, 'import tensorflow as tf\n'), ((11483, 11499), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (11497, 11499), True, 'import tensorflow as tf\n'), ((13273, 13320), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {'train': '(True)'}), '(n_input, n_classes, train=True)\n', (13288, 13320), True, 'import transition_model_common as tm\n'), ((13340, 13368), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['tmm.pred_next'], {}), '(tmm.pred_next)\n', (13353, 13368), True, 'import tensorflow as tf\n'), ((13457, 13473), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (13471, 13473), True, 'import tensorflow as tf\n'), ((15068, 15083), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (15081, 15083), True, 'import transition_model_common as tm\n'), ((16836, 16851), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (16849, 16851), True, 'import transition_model_common as tm\n'), ((18056, 18071), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (18069, 18071), True, 'import transition_model_common as tm\n'), ((18143, 18178), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {}), '(n_input, n_classes)\n', (18158, 18178), True, 'import transition_model_common as tm\n'), ((18572, 18588), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (18586, 18588), True, 'import tensorflow as tf\n'), ((19848, 19863), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (19861, 19863), True, 'import transition_model_common as tm\n'), ((19935, 19970), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {}), '(n_input, n_classes)\n', (19950, 19970), True, 'import transition_model_common as tm\n'), ((19991, 20019), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['tmm.pred_next'], {}), '(tmm.pred_next)\n', (20004, 20019), True, 'import tensorflow as tf\n'), ((20108, 20124), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (20122, 20124), True, 'import tensorflow as tf\n'), ((21405, 21420), 'transition_model_common.DataLoader', 'tm.DataLoader', ([], {}), '()\n', (21418, 21420), True, 'import transition_model_common as tm\n'), ((21492, 21527), 'transition_model_common.create_model', 'tm.create_model', (['n_input', 'n_classes'], {}), '(n_input, n_classes)\n', (21507, 21527), True, 'import transition_model_common as tm\n'), ((21564, 21580), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (21578, 21580), True, 'import tensorflow as tf\n'), ((22464, 22551), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'ArgumentDefaultsHelpFormatter'}), '(description=__doc__, formatter_class=\n ArgumentDefaultsHelpFormatter)\n', (22478, 22551), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter\n'), ((777, 827), 'tensorflow.squared_difference', 'tf.squared_difference', (['tmm.x_post', 'tmm.ae_post_out'], {}), '(tmm.x_post, tmm.ae_post_out)\n', (798, 827), True, 'import tensorflow as tf\n'), ((976, 1061), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'tmm.pred_next', 'labels': 'tmm.y_next'}), '(logits=tmm.pred_next, labels=tmm.y_next\n )\n', (1015, 1061), True, 'import tensorflow as tf\n'), ((1180, 1214), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['tmm.pred_weights[i]'], {}), '(tmm.pred_weights[i])\n', (1193, 1214), True, 'import tensorflow as tf\n'), ((1737, 1764), 'tensorflow.argmax', 'tf.argmax', (['tmm.pred_next', '(1)'], {}), '(tmm.pred_next, 1)\n', (1746, 1764), True, 'import tensorflow as tf\n'), ((1766, 1790), 'tensorflow.argmax', 'tf.argmax', (['tmm.y_next', '(1)'], {}), '(tmm.y_next, 1)\n', (1775, 1790), True, 'import tensorflow as tf\n'), ((1907, 1942), 'tensorflow.cast', 'tf.cast', (['correct_pred_next', '"""float"""'], {}), "(correct_pred_next, 'float')\n", (1914, 1942), True, 'import tensorflow as tf\n'), ((2006, 2018), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2016, 2018), True, 'import tensorflow as tf\n'), ((2069, 2123), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""tensorboard/train"""', 'sess.graph'], {}), "('tensorboard/train', sess.graph)\n", (2090, 2123), True, 'import tensorflow as tf\n'), ((5326, 5338), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5336, 5338), True, 'import tensorflow as tf\n'), ((5425, 5491), 'transition_model_common.RobotDataLoader', 'tm.RobotDataLoader', (['dl', 'tmm.x_post', 'tmm.ae_post_enc', 'tmm.keep_prob'], {}), '(dl, tmm.x_post, tmm.ae_post_enc, tmm.keep_prob)\n', (5443, 5491), True, 'import transition_model_common as tm\n'), ((5797, 5855), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[None, n_dim1]'], {'name': '"""y_human_gt"""'}), "('float', [None, n_dim1], name='y_human_gt')\n", (5811, 5855), True, 'import tensorflow as tf\n'), ((6376, 6413), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['tmm.mapping_weights[0]'], {}), '(tmm.mapping_weights[0])\n', (6389, 6413), True, 'import tensorflow as tf\n'), ((6963, 6984), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (6982, 6984), True, 'import tensorflow as tf\n'), ((7237, 7271), 'tensorflow.variables_initializer', 'tf.variables_initializer', (['new_vars'], {}), '(new_vars)\n', (7261, 7271), True, 'import tensorflow as tf\n'), ((7341, 7393), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""tensorboard/map"""', 'sess.graph'], {}), "('tensorboard/map', sess.graph)\n", (7362, 7393), True, 'import tensorflow as tf\n'), ((7915, 7963), 'numpy.zeros', 'np.zeros', (['(num_training, n_dim1)'], {'dtype': 'np.float'}), '((num_training, n_dim1), dtype=np.float)\n', (7923, 7963), True, 'import numpy as np\n'), ((11509, 11521), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (11519, 11521), True, 'import tensorflow as tf\n'), ((11601, 11652), 'transition_model_common.RobotDataLoader', 'tm.RobotDataLoader', (['dl', 'tmm.x_post', 'tmm.ae_post_enc'], {}), '(dl, tmm.x_post, tmm.ae_post_enc)\n', (11619, 11652), True, 'import transition_model_common as tm\n'), ((13483, 13495), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (13493, 13495), True, 'import tensorflow as tf\n'), ((13775, 13804), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 7)'}), '(size=(1, 7))\n', (13791, 13804), True, 'import numpy as np\n'), ((13827, 13856), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 7)'}), '(size=(1, 7))\n', (13843, 13856), True, 'import numpy as np\n'), ((13928, 13961), 'transition_model_common.DataLoader.one_hot', 'tm.DataLoader.one_hot', (['action', '(13)'], {}), '(action, 13)\n', (13949, 13961), True, 'import transition_model_common as tm\n'), ((14621, 14640), 'numpy.argmax', 'np.argmax', (['res_next'], {}), '(res_next)\n', (14630, 14640), True, 'import numpy as np\n'), ((15695, 15722), 'numpy.full', 'np.full', (['(1, 1)', 'action_idx'], {}), '((1, 1), action_idx)\n', (15702, 15722), True, 'import numpy as np\n'), ((16989, 17016), 'numpy.full', 'np.full', (['(1, 1)', 'action_idx'], {}), '((1, 1), action_idx)\n', (16996, 17016), True, 'import numpy as np\n'), ((18329, 18356), 'tensorflow.argmax', 'tf.argmax', (['tmm.pred_next', '(1)'], {}), '(tmm.pred_next, 1)\n', (18338, 18356), True, 'import tensorflow as tf\n'), ((18358, 18382), 'tensorflow.argmax', 'tf.argmax', (['tmm.y_next', '(1)'], {}), '(tmm.y_next, 1)\n', (18367, 18382), True, 'import tensorflow as tf\n'), ((18499, 18534), 'tensorflow.cast', 'tf.cast', (['correct_pred_next', '"""float"""'], {}), "(correct_pred_next, 'float')\n", (18506, 18534), True, 'import tensorflow as tf\n'), ((18598, 18610), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (18608, 18610), True, 'import tensorflow as tf\n'), ((20134, 20146), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (20144, 20146), True, 'import tensorflow as tf\n'), ((21590, 21602), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (21600, 21602), True, 'import tensorflow as tf\n'), ((1435, 1486), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (1457, 1486), True, 'import tensorflow as tf\n'), ((4932, 4969), 'os.path.exists', 'os.path.exists', (['"""./models/transition"""'], {}), "('./models/transition')\n", (4946, 4969), False, 'import os\n'), ((4983, 5014), 'os.mkdir', 'os.mkdir', (['"""./models/transition"""'], {}), "('./models/transition')\n", (4991, 5014), False, 'import os\n'), ((6321, 6351), 'tensorflow.squared_difference', 'tf.squared_difference', (['y', 'y_gt'], {}), '(y, y_gt)\n', (6342, 6351), True, 'import tensorflow as tf\n'), ((6495, 6532), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['tmm.mapping_weights[i]'], {}), '(tmm.mapping_weights[i])\n', (6508, 6532), True, 'import tensorflow as tf\n'), ((7556, 7583), 'tensorflow.argmax', 'tf.argmax', (['tmm.pred_next', '(1)'], {}), '(tmm.pred_next, 1)\n', (7565, 7583), True, 'import tensorflow as tf\n'), ((7585, 7609), 'tensorflow.argmax', 'tf.argmax', (['tmm.y_next', '(1)'], {}), '(tmm.y_next, 1)\n', (7594, 7609), True, 'import tensorflow as tf\n'), ((7734, 7769), 'tensorflow.cast', 'tf.cast', (['correct_pred_next', '"""float"""'], {}), "(correct_pred_next, 'float')\n", (7741, 7769), True, 'import tensorflow as tf\n'), ((10798, 10828), 'os.path.exists', 'os.path.exists', (['"""./models/map"""'], {}), "('./models/map')\n", (10812, 10828), False, 'import os\n'), ((10842, 10866), 'os.mkdir', 'os.mkdir', (['"""./models/map"""'], {}), "('./models/map')\n", (10850, 10866), False, 'import os\n'), ((12506, 12525), 'numpy.argmax', 'np.argmax', (['res_next'], {}), '(res_next)\n', (12515, 12525), True, 'import numpy as np\n'), ((13887, 13908), 'random.randint', 'random.randint', (['(1)', '(13)'], {}), '(1, 13)\n', (13901, 13908), False, 'import random\n'), ((20299, 20349), 'numpy.expand_dims', 'np.expand_dims', (['dl.training_pre_data[i, :]'], {'axis': '(0)'}), '(dl.training_pre_data[i, :], axis=0)\n', (20313, 20349), True, 'import numpy as np\n'), ((20375, 20426), 'numpy.expand_dims', 'np.expand_dims', (['dl.training_post_data[i, :]'], {'axis': '(0)'}), '(dl.training_post_data[i, :], axis=0)\n', (20389, 20426), True, 'import numpy as np\n'), ((20921, 20940), 'numpy.argmax', 'np.argmax', (['res_next'], {}), '(res_next)\n', (20930, 20940), True, 'import numpy as np\n'), ((21755, 21805), 'numpy.expand_dims', 'np.expand_dims', (['dl.training_pre_data[i, :]'], {'axis': '(0)'}), '(dl.training_pre_data[i, :], axis=0)\n', (21769, 21805), True, 'import numpy as np\n'), ((21831, 21882), 'numpy.expand_dims', 'np.expand_dims', (['dl.training_post_data[i, :]'], {'axis': '(0)'}), '(dl.training_post_data[i, :], axis=0)\n', (21845, 21882), True, 'import numpy as np\n'), ((6848, 6899), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (6870, 6899), True, 'import tensorflow as tf\n'), ((11898, 11923), 'numpy.full', 'np.full', (['(1,)', 'action_idx'], {}), '((1,), action_idx)\n', (11905, 11923), True, 'import numpy as np\n'), ((12013, 12040), 'numpy.reshape', 'np.reshape', (['x_robot', '(1, 7)'], {}), '(x_robot, (1, 7))\n', (12023, 12040), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np sns.set() path = r'C:\Users\HP\PycharmProjects\Operaciones_Calor\Data.xlsx' df = pd.read_excel("Data.xlsx") df2 = pd.read_excel("time.xlsx") df3 = np.transpose(df) ax = sns.heatmap(data=df3) plt.show()
[ "seaborn.set", "seaborn.heatmap", "pandas.read_excel", "numpy.transpose", "matplotlib.pyplot.show" ]
[((94, 103), 'seaborn.set', 'sns.set', ([], {}), '()\n', (101, 103), True, 'import seaborn as sns\n'), ((175, 201), 'pandas.read_excel', 'pd.read_excel', (['"""Data.xlsx"""'], {}), "('Data.xlsx')\n", (188, 201), True, 'import pandas as pd\n'), ((208, 234), 'pandas.read_excel', 'pd.read_excel', (['"""time.xlsx"""'], {}), "('time.xlsx')\n", (221, 234), True, 'import pandas as pd\n'), ((241, 257), 'numpy.transpose', 'np.transpose', (['df'], {}), '(df)\n', (253, 257), True, 'import numpy as np\n'), ((264, 285), 'seaborn.heatmap', 'sns.heatmap', ([], {'data': 'df3'}), '(data=df3)\n', (275, 285), True, 'import seaborn as sns\n'), ((286, 296), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (294, 296), True, 'import matplotlib.pyplot as plt\n')]
""" This module deals with querying and downloading LAT FITS files. """ # Scientific Library import numpy as np import pandas as pd # Requests Urls and Manupilate Files from astropy.utils.data import download_files_in_parallel, download_file from astroquery import fermi from tqdm import tqdm import requests import shutil import os # import pathlib import functools # Logging import logging # logger_info = logging.getLogger().setLevel(logging.INFO) logging.basicConfig(level=logging.WARNING) # from retry import retry from retry.api import retry_call # See https://stackoverflow.com/questions/492519/timeout-on-a-function-call import signal class Download: MISSING = pd.NA NAME = 'GCNNAME' DONE = 'DONE' WAIT = 2 TBUFF = 30. INFOPRE = "https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/QueryResults.cgi?id=" TRIES = 3 def __init__(self, grbs): self.grbs = grbs # Transform a method into a static method. A static method does not receive an implicit first argument. # https://docs.python.org/3/library/functions.html#staticmethod @staticmethod def Filename(path, sep="/"): """Retrieve the file name (without directory) from a full path. Parameters ---------- path : str Path to a GRB FITS file. sep : str, optional Seperator of directory, by default '/' (in Unix). Returns ------- str File name without directory. """ return path.rsplit(sep, 1)[1] def GRB_record(self, row: int, col: str, value): """Record information for the for the given grb. Parameters ---------- row : int Row index of the given GRB. col : str Colume index of the given GRB. value Any value to save to the unit. """ try: self.grbs.at[row, col] = value except Exception as e: print("Fail to record: ", e) print(type(value), value) def Missing(self, row: int, col: str): """Check if the data in the give unit is missing. Parameters ---------- row : int Row index of the given GRB. col : str Colume index of the given GRB. Returns ------- bool True if missing; else, False. """ res = pd.isna(self.grbs.at[row, col]) return np.any(res) def Urls_resolve(self, row): """Retrive urls from the given row. Parameters ---------- row : int Row index of the given GRB. Returns ------- list of str, or None Urls for a given LAT GRB FITS photon (PH) and spacecraft (SC) files. """ try: urls = eval(self.grbs.at[row, 'urls']) return urls except Exception as e: print("Fail to resolve urls: ", e) print(self.grbs._repr_html_) ''' functions for single DataFrame GRB ''' def Query_url(self, row: int, period: float, E_MeV_i: float, E_MeV_f: float, trigtime: str, tpeak: str, timeout: float=-1.): """Query urls for downloading. Parameters ---------- row : int Row index of the given GRB. period : float Period after initial time in second. E_MeV_i : float Start energy in MeV. E_MeV_f : float End energy in MeV. trigtime : str Mission Elapsed Time in second. tpeak : str First low peak time in second. timeout : float, optional Time for timeout in second, by default -1 (no timeout). """ col = 'urls' timesys = 'MET' name = self.grbs.at[row, self.NAME] missing = self.Missing(row, col) if not missing: logging.info('{}query already done'.format(' ' * 9)) return self.DONE grb_name = 'GRB' + name met_i = self.grbs.at[row, trigtime] delta_t = self.grbs.at[row, tpeak] met_f = met_i + delta_t + period # "window of 90 seconds" as apears in XHW2018. start = met_i - self.TBUFF stop = met_f + self.TBUFF met = '{}, {}'.format(start, stop) E_MeV = '{}, {}'.format(E_MeV_i, E_MeV_f) if timeout > 0: signal.alarm(timeout) try: fits_urls = retry_call( fermi.FermiLAT.query_object, fargs=[grb_name], fkwargs={ 'energyrange_MeV': E_MeV, 'obsdates': met, 'timesys': timesys}, tries=self.TRIES) except Exception as e: self.GRB_record(row, col, self.MISSING) logging.warning('{}Query_url failed while receiving:\n{}'.format(' ' * 9, e)) return self.MISSING #! save urls (list) as str; Please extract urls with eval() later self.GRB_record(row, col, str(fits_urls)) print(self) logging.info('{}query finished'.format(' ' * 9)) def Download_fits(self, row: int, out_dir, timeout: float=-1.): """Download fits files provided in urls and save to out_dir. Parameters ---------- row : int Row index of the given GRB. out_dir : [type] Output directory for FITS file. timeout : float, optional Time for timeout in second, by default -1 (no timeout). Returns ------- self.DONE or self.MISSING self.DONE: if succeeded; self.MISSING: if failed """ urls = self.Urls_resolve(row) # urls = eval(self.grbs.at[row, 'urls']) col = 'fits' name = self.grbs.at[row, self.NAME] if not self.Missing(row, col): logging.info('{}fits already saved'.format(' ' * 9)) return self.DONE if timeout > 0: signal.alarm(timeout) # for url in urls: try: file_list = retry_call( # astropy.utils.data.download_files_in_parallel download_files_in_parallel, fargs=[urls], tries=self.TRIES) except: try: file_list = [] for url in urls: file_list.append( retry_call( # astropy.utils.data.download_file download_file, fargs=[url], tries=self.TRIES) ) except Exception as e: self.GRB_record(row, col, self.MISSING) logging.warning("{}while downloading fits got:\n{}".format(' ' * 9, e)) print("urls failed to download: ", urls) return self.MISSING # Following https://stackoverflow.com/questions/12517451/automatically-creating-directories-with-file-output os.makedirs(out_dir, exist_ok=True) for i, url in enumerate(urls): filename = self.Filename(url) filename = out_dir / filename # filename = out_dir + "/" + filename if filename.exists(): continue try: # filename2 = wget.download(url, out_dir) # Following https://stackoverflow.com/questions/7243750/download-file-from-web-in-python-3 shutil.copyfile(file_list[i], filename) logging.info(filename.as_posix() + ' saved') # logging.info(filename + ' saved as ' + filename2) except Exception as e: logging.warning(e) self.GRB_record(row, col, self.DONE) return self.DONE def Download_info(self, row, out_dir, pre=INFOPRE, wait=WAIT, timeout: float=-1.): """Request query page in url, and save tables to out_dir. Parameters ---------- row : int Row index of the given GRB. out_dir : str Output directory for FITS file. pre : str, optional prefix in url, by default INFOPRE wait : int or float, optional Wait time in second, by default WAIT timeout : float, optional Time for timeout in second, by default -1 (no timeout). Returns ------- self.DONE or self.MISSING self.DONE: if succeeded; self.MISSING: if failed """ col = 'info' if not self.Missing(row, col): name = self.grbs.at[row, self.NAME] logging.info('{}info already saved'.format(' ' * 9)) return self.DONE urls = self.Urls_resolve(row) # urls = self.grbs.at[row, 'urls'] try: url = urls[0] except: logging.info("{}urls missing".format(' ' * 9)) return self.MISSING ID = self.Filename(url).split("_")[0] query_url = pre + ID wait_times = 0 if timeout > 0: signal.alarm(timeout) try: r = retry_call( requests.get, fargs=[query_url], tries=self.TRIES) except: self.GRB_record(row, col, self.MISSING) logging.info("{}query page downloading failed".format(' ' * 9)) return self.MISSING query_info = r.text dfs = pd.read_html(query_info) status = dfs[1] position_in_queue = status['Position in Queue'] if any(position_in_queue != 'Query complete'): logging.info("{}Query incomplete.".format(' ' * 9)) return self.MISSING else: criteria = dfs[0] filename = out_dir / 'criteria.csv' # filename = out_dir + '/criteria.csv' os.makedirs(os.path.dirname(filename), exist_ok=True) criteria.to_csv(filename) info = dfs[2] filename = out_dir / 'info.csv' # filename = out_dir + '/info.csv' info.to_csv(filename) self.GRB_record(row, col, self.DONE) logging.info("{}query page downloaded".format(' ' * 9)) return self.DONE class Query(Download): FAKE = 'fake' PERIOD = 90. EMIN = 1e2 # 1e3 MeV / 10, as 1 + z < 10 EMAX = 5e5 # The highest energy available in LAT TIMESYS = 'MET' def __init__(self, grbs, out_dir, init=False, retry=True, timeout: float=-1.): self.grbs = grbs self.out_dir = out_dir self.init = init self.timeout = timeout if self.init != False: self.Reset(self.init) self.Main_loop(outer_dir=out_dir) if retry and np.sum(self._Which_missing()) > 0: logging.info("Querying for missing information") self.Requery() def _repr_html_(self): return self.grbs._repr_html_() def Row_index(self, name): '''Return index of the given name''' index_np = self.grbs[self.grbs[self.NAME] == name].index index = index_np[0] return index def _Which_missing(self): """Find locations of missing information. Returns ------- list of bool Where the information is missing, the location of it will be True. """ urls = self.grbs['urls'].isna() fits = self.grbs['fits'].isna() info = self.grbs['info'].isna() where = functools.reduce(np.logical_or, [urls, fits, info]) num = np.sum(where) if num > 0: print("{}\n{} GRB{} missing".format('-' * 15, num, 's' if num > 1 else '')) print("Please Run .Requery() with(out) .Reset(init) for several times.\nIf those do not help, please download missing files manually.") return where def Which_missing(self): """Find GRBs with missing information. Returns ------- pandas.DataFrame or astropy.table.table.Table GRBs with missing information. """ return self.grbs[self._Which_missing()] def Main_loop(self, outer_dir): """Main loop to download all required data. Parameters ---------- outer_dir : pathlib.PosixPath Output directory. """ period = self.PERIOD E_MeV_i = self.EMIN E_MeV_f = self.EMAX timesys = self.TIMESYS row_index = self.grbs.index for row in tqdm(row_index): name = self.grbs.at[row, self.NAME] urls = self.grbs.at[row, 'urls'] out_dir = outer_dir / name[:6] # out_dir = outer_dir + '/' + name[:6] timeout = self.timeout logging.info(name + ':') # status = self.Query_url(row=row, period=period, E_MeV_i=E_MeV_i, E_MeV_f=E_MeV_f, trigtime='GBM_MET', tpeak='tpeak_ref') self.Query_url(row=row, period=period, E_MeV_i=E_MeV_i, E_MeV_f=E_MeV_f, trigtime='GBM_MET', tpeak='tpeak_ref', timeout=timeout) status = self.grbs.at[row, 'urls'] if status is not self.MISSING: self.Download_info(row=row, out_dir=out_dir, timeout=timeout) self.Download_fits(row=row, out_dir=out_dir, timeout=timeout) rows = self._Which_missing() if np.sum(rows) > 0: # pretty printing in jupyter-notebook, following https://stackoverflow.com/questions/19124601/pretty-print-an-entire-pandas-series-dataframe display(self.grbs.loc[rows]) else: logging.info("Congratulations! All information downloaded successfully") def Reset(self, init=False): """Initialize urls of grbs with missing fits or info. Parameters ---------- init : bool, optional Whether to initialize the table, by default False. """ rows = self._Which_missing() if init==False else self.grbs.index self.grbs.loc[rows, ('urls', 'fits', 'info')] = self.MISSING def Requery(self): """Remove queried urls and run Main_loop for missing grbs.""" self.Main_loop(outer_dir=self.out_dir)
[ "logging.basicConfig", "os.makedirs", "functools.reduce", "tqdm.tqdm", "logging.warning", "numpy.any", "numpy.sum", "shutil.copyfile", "os.path.dirname", "signal.alarm", "retry.api.retry_call", "pandas.read_html", "pandas.isna", "logging.info" ]
[((457, 499), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.WARNING'}), '(level=logging.WARNING)\n', (476, 499), False, 'import logging\n'), ((2439, 2470), 'pandas.isna', 'pd.isna', (['self.grbs.at[row, col]'], {}), '(self.grbs.at[row, col])\n', (2446, 2470), True, 'import pandas as pd\n'), ((2486, 2497), 'numpy.any', 'np.any', (['res'], {}), '(res)\n', (2492, 2497), True, 'import numpy as np\n'), ((7176, 7211), 'os.makedirs', 'os.makedirs', (['out_dir'], {'exist_ok': '(True)'}), '(out_dir, exist_ok=True)\n', (7187, 7211), False, 'import os\n'), ((9658, 9682), 'pandas.read_html', 'pd.read_html', (['query_info'], {}), '(query_info)\n', (9670, 9682), True, 'import pandas as pd\n'), ((11805, 11856), 'functools.reduce', 'functools.reduce', (['np.logical_or', '[urls, fits, info]'], {}), '(np.logical_or, [urls, fits, info])\n', (11821, 11856), False, 'import functools\n'), ((11871, 11884), 'numpy.sum', 'np.sum', (['where'], {}), '(where)\n', (11877, 11884), True, 'import numpy as np\n'), ((12855, 12870), 'tqdm.tqdm', 'tqdm', (['row_index'], {}), '(row_index)\n', (12859, 12870), False, 'from tqdm import tqdm\n'), ((4497, 4518), 'signal.alarm', 'signal.alarm', (['timeout'], {}), '(timeout)\n', (4509, 4518), False, 'import signal\n'), ((4556, 4714), 'retry.api.retry_call', 'retry_call', (['fermi.FermiLAT.query_object'], {'fargs': '[grb_name]', 'fkwargs': "{'energyrange_MeV': E_MeV, 'obsdates': met, 'timesys': timesys}", 'tries': 'self.TRIES'}), "(fermi.FermiLAT.query_object, fargs=[grb_name], fkwargs={\n 'energyrange_MeV': E_MeV, 'obsdates': met, 'timesys': timesys}, tries=\n self.TRIES)\n", (4566, 4714), False, 'from retry.api import retry_call\n'), ((6138, 6159), 'signal.alarm', 'signal.alarm', (['timeout'], {}), '(timeout)\n', (6150, 6159), False, 'import signal\n'), ((6224, 6294), 'retry.api.retry_call', 'retry_call', (['download_files_in_parallel'], {'fargs': '[urls]', 'tries': 'self.TRIES'}), '(download_files_in_parallel, fargs=[urls], tries=self.TRIES)\n', (6234, 6294), False, 'from retry.api import retry_call\n'), ((9277, 9298), 'signal.alarm', 'signal.alarm', (['timeout'], {}), '(timeout)\n', (9289, 9298), False, 'import signal\n'), ((9328, 9389), 'retry.api.retry_call', 'retry_call', (['requests.get'], {'fargs': '[query_url]', 'tries': 'self.TRIES'}), '(requests.get, fargs=[query_url], tries=self.TRIES)\n', (9338, 9389), False, 'from retry.api import retry_call\n'), ((11080, 11128), 'logging.info', 'logging.info', (['"""Querying for missing information"""'], {}), "('Querying for missing information')\n", (11092, 11128), False, 'import logging\n'), ((13106, 13130), 'logging.info', 'logging.info', (["(name + ':')"], {}), "(name + ':')\n", (13118, 13130), False, 'import logging\n'), ((13719, 13731), 'numpy.sum', 'np.sum', (['rows'], {}), '(rows)\n', (13725, 13731), True, 'import numpy as np\n'), ((13957, 14029), 'logging.info', 'logging.info', (['"""Congratulations! All information downloaded successfully"""'], {}), "('Congratulations! All information downloaded successfully')\n", (13969, 14029), False, 'import logging\n'), ((7645, 7684), 'shutil.copyfile', 'shutil.copyfile', (['file_list[i]', 'filename'], {}), '(file_list[i], filename)\n', (7660, 7684), False, 'import shutil\n'), ((10107, 10132), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (10122, 10132), False, 'import os\n'), ((7865, 7883), 'logging.warning', 'logging.warning', (['e'], {}), '(e)\n', (7880, 7883), False, 'import logging\n'), ((6567, 6623), 'retry.api.retry_call', 'retry_call', (['download_file'], {'fargs': '[url]', 'tries': 'self.TRIES'}), '(download_file, fargs=[url], tries=self.TRIES)\n', (6577, 6623), False, 'from retry.api import retry_call\n')]
# Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from typing import Dict, Optional, Sequence import numpy as np import torch as to from init_args_serializer import Serializable from torch import nn as nn from torch.functional import Tensor from tqdm import tqdm import pyrado from pyrado.algorithms.base import Algorithm from pyrado.algorithms.step_based.svpg import SVPGBuilder, SVPGHyperparams from pyrado.domain_randomization.domain_parameter import DomainParam from pyrado.environment_wrappers.base import EnvWrapper from pyrado.environment_wrappers.utils import inner_env from pyrado.environments.base import Env from pyrado.logger.step import StepLogger from pyrado.policies.base import Policy from pyrado.policies.recurrent.rnn import LSTMPolicy from pyrado.sampling.parallel_evaluation import eval_domain_params from pyrado.sampling.sampler_pool import SamplerPool from pyrado.sampling.step_sequence import StepSequence from pyrado.spaces.base import Space from pyrado.spaces.box import BoxSpace from pyrado.utils.data_types import EnvSpec class ADR(Algorithm): """ Active Domain Randomization (ADR) .. seealso:: [1] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "Active Domain Randomization", arXiv, 2019 """ name: str = "adr" def __init__( self, ex_dir: pyrado.PathLike, env: Env, subrtn: Algorithm, adr_hp: Dict, svpg_hp: SVPGHyperparams, reward_generator_hp: Dict, max_iter: int, num_discriminator_epoch: int, batch_size: int, svpg_warmup: int = 0, num_workers: int = 4, num_trajs_per_config: int = 8, log_exploration: bool = False, randomized_params: Sequence[str] = None, logger: Optional[StepLogger] = None, ): """ Constructor :param save_dir: directory to save the snapshots i.e. the results in :param env: the environment to train in :param subrtn: algorithm which performs the policy / value-function optimization :param max_iter: maximum number of iterations :param svpg_particle_hparam: SVPG particle hyperparameters :param num_svpg_particles: number of SVPG particles :param num_discriminator_epoch: epochs in discriminator training :param batch_size: batch size for training :param svpg_learning_rate: SVPG particle optimizers' learning rate :param svpg_temperature: SVPG temperature coefficient (how strong is the influence of the particles on each other) :param svpg_evaluation_steps: how many configurations to sample between training :param svpg_horizon: how many steps until the particles are reset :param svpg_kl_factor: kl reward coefficient :param svpg_warmup: number of iterations without SVPG training in the beginning :param svpg_serial: serial mode (see SVPG) :param num_workers: number of environments for parallel sampling :param num_trajs_per_config: number of trajectories to sample from each config :param max_step_length: maximum change of physics parameters per step :param randomized_params: which parameters to randomize :param logger: logger for every step of the algorithm, if `None` the default logger will be created """ if not isinstance(env, Env): raise pyrado.TypeErr(given=env, expected_type=Env) if not isinstance(subrtn, Algorithm): raise pyrado.TypeErr(given=subrtn, expected_type=Algorithm) if not isinstance(subrtn.policy, Policy): raise pyrado.TypeErr(given=subrtn.policy, expected_type=Policy) # Call Algorithm's constructor super().__init__(ex_dir, max_iter, subrtn.policy, logger) self.log_loss = True # Store the inputs self.env = env self._subrtn = subrtn self._subrtn.save_name = "subrtn" self.num_discriminator_epoch = num_discriminator_epoch self.batch_size = batch_size self.num_trajs_per_config = num_trajs_per_config self.warm_up_time = svpg_warmup self.log_exploration = log_exploration self.curr_time_step = 0 randomized_params = adr_hp["randomized_params"] # Get the number of params if isinstance(randomized_params, list) and len(randomized_params) == 0: randomized_params = inner_env(self.env).get_nominal_domain_param().keys() self.params = [DomainParam(param, 1) for param in randomized_params] self.num_params = len(self.params) # Initialize reward generator self.reward_generator = RewardGenerator(env.spec, logger=self.logger, **reward_generator_hp) # Initialize logbook self.sim_instances_full_horizon = np.random.random_sample( ( svpg_hp["algo"]["num_particles"], svpg_hp["algo"]["horizon"], adr_hp["evaluation_steps"], self.num_params, ) ) # Initialize SVPG adapter self.svpg_wrapper = SVPGAdapter( env, self.params, subrtn.expl_strat, self.reward_generator, svpg_hp["algo"]["num_particles"], horizon=svpg_hp["algo"]["horizon"], num_rollouts_per_config=self.num_trajs_per_config, step_length=adr_hp["step_length"], num_workers=num_workers, ) # Generate SVPG with default architecture using SVPGBuilder self.svpg = SVPGBuilder(ex_dir, self.svpg_wrapper, svpg_hp).svpg @property def sample_count(self) -> int: return self._subrtn.sample_count def compute_params(self, sim_instances: to.Tensor, t: int): """ Compute the parameters. :param sim_instances: Physics configurations rollout :param t: time step to chose :return: parameters at the time """ nominal = self.svpg_wrapper.nominal_dict() keys = nominal.keys() assert len(keys) == sim_instances[t][0].shape[0] params = [] for sim_instance in sim_instances[t]: d = {k: (sim_instance[i] + 0.5) * (nominal[k]) for i, k in enumerate(keys)} params.append(d) return params def step(self, snapshot_mode: str, meta_info: dict = None): rand_trajs = [] ref_trajs = [] ros = [] for i, p in enumerate(self.svpg.iter_particles): done = False svpg_env = self.svpg_wrapper state = svpg_env.reset(i) states = [] actions = [] rewards = [] infos = [] rand_trajs_now = [] exploration_logbook = [] with to.no_grad(): while not done: action = p.expl_strat(to.as_tensor(state, dtype=to.get_default_dtype())).detach().cpu().numpy() state, reward, done, info = svpg_env.step(action, i) state_dict = svpg_env.array_to_dict((state + 0.5) * svpg_env.nominal()) print(state_dict, " => ", reward) # Log visited states as dict if self.log_exploration: exploration_logbook.append(state_dict) # Store rollout results states.append(state) rewards.append(reward) actions.append(action) infos.append(info) # Extract trajectories from info rand_trajs_now.extend(info["rand"]) rand_trajs += info["rand"] ref_trajs += info["ref"] ros.append(StepSequence(observations=states, actions=actions, rewards=rewards)) self.logger.add_value(f"SVPG_agent_{i}_mean_reward", np.mean(rewards)) ros[i].torch(data_type=to.DoubleTensor) # rand_trajs_now = StepSequence.concat(rand_trajs_now) for rt in rand_trajs_now: self.convert_and_detach(rt) self._subrtn.update(rand_trajs_now) # Logging rets = [ro.undiscounted_return() for ro in rand_trajs] ret_avg = np.mean(rets) ret_med = np.median(rets) ret_std = np.std(rets) self.logger.add_value("avg rollout len", np.mean([ro.length for ro in rand_trajs])) self.logger.add_value("avg return", ret_avg) self.logger.add_value("median return", ret_med) self.logger.add_value("std return", ret_std) # Flatten and combine all randomized and reference trajectories for discriminator flattened_randomized = StepSequence.concat(rand_trajs) flattened_randomized.torch(data_type=to.double) flattened_reference = StepSequence.concat(ref_trajs) flattened_reference.torch(data_type=to.double) self.reward_generator.train(flattened_reference, flattened_randomized, self.num_discriminator_epoch) pyrado.save( self.reward_generator.discriminator, "discriminator.pt", self.save_dir, prefix="adr", use_state_dict=True ) if self.curr_time_step > self.warm_up_time: # Update the particles # List of lists to comply with interface self.svpg.update(list(map(lambda x: [x], ros))) self.convert_and_detach(flattened_randomized) # np.save(f'{self.save_dir}actions{self.curr_iter}', flattened_randomized.actions) self.make_snapshot(snapshot_mode, float(ret_avg), meta_info) self._subrtn.make_snapshot(snapshot_mode="best", curr_avg_ret=float(ret_avg)) self.curr_time_step += 1 def convert_and_detach(self, arg0): arg0.torch(data_type=to.float) arg0.observations = arg0.observations.float().detach() arg0.actions = arg0.actions.float().detach() def save_snapshot(self, meta_info: dict = None): super().save_snapshot(meta_info) if meta_info is not None: raise pyrado.ValueErr(msg=f"{self.name} is not supposed be run as a subrtn!") # This algorithm instance is not a subrtn of another algorithm pyrado.save(self.env, "env.pkl", self.save_dir) self._subrtn.save_snapshot(meta_info=meta_info) # self.svpg.save_snapshot(meta_info) class SVPGAdapter(EnvWrapper, Serializable): """Wrapper to encapsulate the domain parameter search as an RL task.""" def __init__( self, wrapped_env: Env, parameters: Sequence[DomainParam], inner_policy: Policy, discriminator, num_particles: int, step_length: float = 0.01, horizon: int = 50, num_rollouts_per_config: int = 8, num_workers: int = 4, max_steps: int = 8, ): """ Constructor :param wrapped_env: the environment to wrap :param parameters: which physics parameters should be randomized :param inner_policy: the policy to train the subrtn on :param discriminator: the discriminator to distinguish reference environments from randomized ones :param step_length: the step size :param horizon: an svpg horizon :param num_rollouts_per_config: number of trajectories to sample per physics configuration :param num_workers: number of environments for parallel sampling """ Serializable._init(self, locals()) EnvWrapper.__init__(self, wrapped_env) self.parameters: Sequence[DomainParam] = parameters try: self.pool = SamplerPool(num_workers) except AssertionError: Warning("THIS IS NOT MEANT TO BE PARALLEL SAMPLED") self.inner_policy = inner_policy self.num_particles = num_particles self.inner_parameter_state: np.ndarray = np.zeros((self.num_particles, len(self.parameters))) self.count = np.zeros(self.num_particles) self.num_trajs = num_rollouts_per_config self.svpg_max_step_length = step_length self.discriminator = discriminator self.max_steps = max_steps self._adapter_obs_space = BoxSpace(-np.ones(len(parameters)), np.ones(len(parameters))) self._adapter_act_space = BoxSpace(-np.ones(len(parameters)), np.ones(len(parameters))) self.horizon = horizon self.horizon_count = 0 self.reset() @property def obs_space(self) -> Space: return self._adapter_obs_space @property def act_space(self) -> Space: return self._adapter_act_space def reset(self, i=None, init_state: np.ndarray = None, domain_param: dict = None) -> np.ndarray: if i is not None: assert domain_param is None self.count[i] = 0 if init_state is None: self.inner_parameter_state[i] = np.random.random_sample(len(self.parameters)) else: self.inner_parameter_state[i] = init_state return self.inner_parameter_state[i] assert domain_param is None self.count = np.zeros(self.num_particles) if init_state is None: self.inner_parameter_state = np.random.random_sample((self.num_particles, len(self.parameters))) else: self.inner_parameter_state = init_state return self.inner_parameter_state def step(self, act: np.ndarray, i: int) -> tuple: if i is not None: # Clip the action according to the maximum step length action = np.clip(act, -1, 1) * self.svpg_max_step_length # Perform step by moving into direction of action self.inner_parameter_state[i] = np.clip(self.inner_parameter_state[i] + action, 0, 1) param_norm = self.inner_parameter_state[i] + 0.5 random_parameters = [self.array_to_dict(param_norm * self.nominal())] * self.num_trajs nominal_parameters = [self.nominal_dict()] * self.num_trajs # Sample trajectories from random and reference environments rand = eval_domain_params(self.pool, self.wrapped_env, self.inner_policy, random_parameters) ref = eval_domain_params(self.pool, self.wrapped_env, self.inner_policy, nominal_parameters) # Calculate the rewards for each trajectory rewards = [self.discriminator.get_reward(traj) for traj in rand] reward = np.mean(rewards) info = dict(rand=rand, ref=ref) # Handle step count management done = self.count[i] >= self.max_steps - 1 self.count[i] += 1 self.horizon_count += 1 if self.count[i] % self.horizon == 0: self.inner_parameter_state[i] = np.random.random_sample(len(self.parameters)) return self.inner_parameter_state[i], reward, done, info raise NotImplementedError("Not parallelizable") def eval_states(self, states: Sequence[np.ndarray]): """ Evaluate the states. :param states: the states to evaluate :return: respective rewards and according trajectories """ flatten = lambda l: [item for sublist in l for item in sublist] sstates = flatten([[self.array_to_dict((state + 0.5) * self.nominal())] * self.num_trajs for state in states]) rand = eval_domain_params(self.pool, self.wrapped_env, self.inner_policy, sstates) ref = eval_domain_params( self.pool, self.wrapped_env, self.inner_policy, [self.nominal_dict()] * (self.num_trajs * len(states)) ) rewards = [self.discriminator.get_reward(traj) for traj in rand] rewards = [np.mean(rewards[i * self.num_trajs : (i + 1) * self.num_trajs]) for i in range(len(states))] return rewards, rand, ref def params(self): return [param.name for param in self.parameters] def nominal(self): return [inner_env(self.wrapped_env).get_nominal_domain_param()[k] for k in self.params()] def nominal_dict(self): return {k: inner_env(self.wrapped_env).get_nominal_domain_param()[k] for k in self.params()} def array_to_dict(self, arr): return {k: a for k, a in zip(self.params(), arr)} class RewardGenerator: """Class for generating the discriminator rewards in ADR. Generates a reward using a trained discriminator network.""" def __init__( self, env_spec: EnvSpec, batch_size: int, reward_multiplier: float, lr: float = 3e-3, hidden_size=256, logger: StepLogger = None, device: str = "cuda" if to.cuda.is_available() else "cpu", ): """ Constructor :param env_spec: environment specification :param batch_size: batch size for each update step :param reward_multiplier: factor for the predicted probability :param lr: learning rate :param logger: logger for every step of the algorithm, if `None` the default logger will be created """ self.device = device self.batch_size = batch_size self.reward_multiplier = reward_multiplier self.lr = lr spec = EnvSpec( obs_space=BoxSpace.cat([env_spec.obs_space, env_spec.act_space]), act_space=BoxSpace(bound_lo=[0], bound_up=[1]), ) self.discriminator = LSTMPolicy( spec=spec, hidden_size=hidden_size, num_recurrent_layers=1, output_nonlin=to.sigmoid ) self.loss_fcn = nn.BCELoss() self.optimizer = to.optim.Adam(self.discriminator.parameters(), lr=lr, eps=1e-5) self.logger = logger def get_reward(self, traj: StepSequence) -> to.Tensor: """Compute the reward of a trajectory. Trajectories considered as not fixed yield a high reward. :param traj: trajectory to evaluate :return: a score :rtype: to.Tensor """ traj = preprocess_rollout(traj) with to.no_grad(): reward = self.discriminator.forward(traj)[0] return to.log(reward.mean()) * self.reward_multiplier def train( self, reference_trajectory: StepSequence, randomized_trajectory: StepSequence, num_epoch: int ) -> to.Tensor: reference_batch_generator = reference_trajectory.iterate_rollouts() random_batch_generator = randomized_trajectory.iterate_rollouts() loss = None for _ in tqdm(range(num_epoch), "Discriminator Epoch", num_epoch): for reference_batch, random_batch in zip(reference_batch_generator, random_batch_generator): reference_batch = preprocess_rollout(reference_batch).float() random_batch = preprocess_rollout(random_batch).float() random_results = self.discriminator(random_batch)[0] reference_results = self.discriminator(reference_batch)[0] self.optimizer.zero_grad() loss = self.loss_fcn(random_results, to.ones(random_results.shape[0], 1)) + self.loss_fcn( reference_results, to.zeros(reference_results.shape[0], 1) ) loss.backward() self.optimizer.step() # Logging if self.logger is not None: self.logger.add_value("discriminator_loss", loss) return loss def preprocess_rollout(rollout: StepSequence) -> Tensor: """ Extract observations and actions from a `StepSequence` and packs them into a PyTorch tensor. :param rollout: a `StepSequence` instance containing a trajectory :return: a PyTorch tensor` containing the trajectory """ if not isinstance(rollout, StepSequence): raise pyrado.TypeErr(given=rollout, expected_type=StepSequence) # Convert data type rollout.torch(to.get_default_dtype()) # Extract the data state = rollout.get_data_values("observations")[:-1] next_state = rollout.get_data_values("observations")[1:] action = rollout.get_data_values("actions").narrow(0, 0, next_state.shape[0]) return to.cat((state, action), 1)
[ "numpy.clip", "pyrado.policies.recurrent.rnn.LSTMPolicy", "pyrado.environment_wrappers.base.EnvWrapper.__init__", "torch.cuda.is_available", "pyrado.algorithms.step_based.svpg.SVPGBuilder", "pyrado.save", "pyrado.sampling.parallel_evaluation.eval_domain_params", "numpy.mean", "pyrado.sampling.sampler_pool.SamplerPool", "pyrado.ValueErr", "pyrado.TypeErr", "numpy.random.random_sample", "pyrado.domain_randomization.domain_parameter.DomainParam", "numpy.std", "pyrado.sampling.step_sequence.StepSequence", "pyrado.environment_wrappers.utils.inner_env", "pyrado.spaces.box.BoxSpace", "pyrado.sampling.step_sequence.StepSequence.concat", "torch.cat", "torch.get_default_dtype", "numpy.median", "pyrado.spaces.box.BoxSpace.cat", "numpy.zeros", "torch.nn.BCELoss", "torch.no_grad", "torch.zeros", "torch.ones" ]
[((21755, 21781), 'torch.cat', 'to.cat', (['(state, action)', '(1)'], {}), '((state, action), 1)\n', (21761, 21781), True, 'import torch as to\n'), ((6471, 6608), 'numpy.random.random_sample', 'np.random.random_sample', (["(svpg_hp['algo']['num_particles'], svpg_hp['algo']['horizon'], adr_hp[\n 'evaluation_steps'], self.num_params)"], {}), "((svpg_hp['algo']['num_particles'], svpg_hp['algo'][\n 'horizon'], adr_hp['evaluation_steps'], self.num_params))\n", (6494, 6608), True, 'import numpy as np\n'), ((9932, 9945), 'numpy.mean', 'np.mean', (['rets'], {}), '(rets)\n', (9939, 9945), True, 'import numpy as np\n'), ((9964, 9979), 'numpy.median', 'np.median', (['rets'], {}), '(rets)\n', (9973, 9979), True, 'import numpy as np\n'), ((9998, 10010), 'numpy.std', 'np.std', (['rets'], {}), '(rets)\n', (10004, 10010), True, 'import numpy as np\n'), ((10387, 10418), 'pyrado.sampling.step_sequence.StepSequence.concat', 'StepSequence.concat', (['rand_trajs'], {}), '(rand_trajs)\n', (10406, 10418), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((10505, 10535), 'pyrado.sampling.step_sequence.StepSequence.concat', 'StepSequence.concat', (['ref_trajs'], {}), '(ref_trajs)\n', (10524, 10535), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((10708, 10831), 'pyrado.save', 'pyrado.save', (['self.reward_generator.discriminator', '"""discriminator.pt"""', 'self.save_dir'], {'prefix': '"""adr"""', 'use_state_dict': '(True)'}), "(self.reward_generator.discriminator, 'discriminator.pt', self.\n save_dir, prefix='adr', use_state_dict=True)\n", (10719, 10831), False, 'import pyrado\n'), ((11879, 11926), 'pyrado.save', 'pyrado.save', (['self.env', '"""env.pkl"""', 'self.save_dir'], {}), "(self.env, 'env.pkl', self.save_dir)\n", (11890, 11926), False, 'import pyrado\n'), ((13149, 13187), 'pyrado.environment_wrappers.base.EnvWrapper.__init__', 'EnvWrapper.__init__', (['self', 'wrapped_env'], {}), '(self, wrapped_env)\n', (13168, 13187), False, 'from pyrado.environment_wrappers.base import EnvWrapper\n'), ((13613, 13641), 'numpy.zeros', 'np.zeros', (['self.num_particles'], {}), '(self.num_particles)\n', (13621, 13641), True, 'import numpy as np\n'), ((14780, 14808), 'numpy.zeros', 'np.zeros', (['self.num_particles'], {}), '(self.num_particles)\n', (14788, 14808), True, 'import numpy as np\n'), ((17031, 17106), 'pyrado.sampling.parallel_evaluation.eval_domain_params', 'eval_domain_params', (['self.pool', 'self.wrapped_env', 'self.inner_policy', 'sstates'], {}), '(self.pool, self.wrapped_env, self.inner_policy, sstates)\n', (17049, 17106), False, 'from pyrado.sampling.parallel_evaluation import eval_domain_params\n'), ((19044, 19144), 'pyrado.policies.recurrent.rnn.LSTMPolicy', 'LSTMPolicy', ([], {'spec': 'spec', 'hidden_size': 'hidden_size', 'num_recurrent_layers': '(1)', 'output_nonlin': 'to.sigmoid'}), '(spec=spec, hidden_size=hidden_size, num_recurrent_layers=1,\n output_nonlin=to.sigmoid)\n', (19054, 19144), False, 'from pyrado.policies.recurrent.rnn import LSTMPolicy\n'), ((19187, 19199), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (19197, 19199), True, 'from torch import nn as nn\n'), ((21394, 21451), 'pyrado.TypeErr', 'pyrado.TypeErr', ([], {'given': 'rollout', 'expected_type': 'StepSequence'}), '(given=rollout, expected_type=StepSequence)\n', (21408, 21451), False, 'import pyrado\n'), ((21495, 21517), 'torch.get_default_dtype', 'to.get_default_dtype', ([], {}), '()\n', (21515, 21517), True, 'import torch as to\n'), ((5056, 5100), 'pyrado.TypeErr', 'pyrado.TypeErr', ([], {'given': 'env', 'expected_type': 'Env'}), '(given=env, expected_type=Env)\n', (5070, 5100), False, 'import pyrado\n'), ((5165, 5218), 'pyrado.TypeErr', 'pyrado.TypeErr', ([], {'given': 'subrtn', 'expected_type': 'Algorithm'}), '(given=subrtn, expected_type=Algorithm)\n', (5179, 5218), False, 'import pyrado\n'), ((5287, 5344), 'pyrado.TypeErr', 'pyrado.TypeErr', ([], {'given': 'subrtn.policy', 'expected_type': 'Policy'}), '(given=subrtn.policy, expected_type=Policy)\n', (5301, 5344), False, 'import pyrado\n'), ((6162, 6183), 'pyrado.domain_randomization.domain_parameter.DomainParam', 'DomainParam', (['param', '(1)'], {}), '(param, 1)\n', (6173, 6183), False, 'from pyrado.domain_randomization.domain_parameter import DomainParam\n'), ((7230, 7277), 'pyrado.algorithms.step_based.svpg.SVPGBuilder', 'SVPGBuilder', (['ex_dir', 'self.svpg_wrapper', 'svpg_hp'], {}), '(ex_dir, self.svpg_wrapper, svpg_hp)\n', (7241, 7277), False, 'from pyrado.algorithms.step_based.svpg import SVPGBuilder, SVPGHyperparams\n'), ((10060, 10101), 'numpy.mean', 'np.mean', (['[ro.length for ro in rand_trajs]'], {}), '([ro.length for ro in rand_trajs])\n', (10067, 10101), True, 'import numpy as np\n'), ((11727, 11798), 'pyrado.ValueErr', 'pyrado.ValueErr', ([], {'msg': 'f"""{self.name} is not supposed be run as a subrtn!"""'}), "(msg=f'{self.name} is not supposed be run as a subrtn!')\n", (11742, 11798), False, 'import pyrado\n'), ((13286, 13310), 'pyrado.sampling.sampler_pool.SamplerPool', 'SamplerPool', (['num_workers'], {}), '(num_workers)\n', (13297, 13310), False, 'from pyrado.sampling.sampler_pool import SamplerPool\n'), ((15381, 15434), 'numpy.clip', 'np.clip', (['(self.inner_parameter_state[i] + action)', '(0)', '(1)'], {}), '(self.inner_parameter_state[i] + action, 0, 1)\n', (15388, 15434), True, 'import numpy as np\n'), ((15760, 15849), 'pyrado.sampling.parallel_evaluation.eval_domain_params', 'eval_domain_params', (['self.pool', 'self.wrapped_env', 'self.inner_policy', 'random_parameters'], {}), '(self.pool, self.wrapped_env, self.inner_policy,\n random_parameters)\n', (15778, 15849), False, 'from pyrado.sampling.parallel_evaluation import eval_domain_params\n'), ((15864, 15954), 'pyrado.sampling.parallel_evaluation.eval_domain_params', 'eval_domain_params', (['self.pool', 'self.wrapped_env', 'self.inner_policy', 'nominal_parameters'], {}), '(self.pool, self.wrapped_env, self.inner_policy,\n nominal_parameters)\n', (15882, 15954), False, 'from pyrado.sampling.parallel_evaluation import eval_domain_params\n'), ((16106, 16122), 'numpy.mean', 'np.mean', (['rewards'], {}), '(rewards)\n', (16113, 16122), True, 'import numpy as np\n'), ((17358, 17419), 'numpy.mean', 'np.mean', (['rewards[i * self.num_trajs:(i + 1) * self.num_trajs]'], {}), '(rewards[i * self.num_trajs:(i + 1) * self.num_trajs])\n', (17365, 17419), True, 'import numpy as np\n'), ((18295, 18317), 'torch.cuda.is_available', 'to.cuda.is_available', ([], {}), '()\n', (18315, 18317), True, 'import torch as to\n'), ((19652, 19664), 'torch.no_grad', 'to.no_grad', ([], {}), '()\n', (19662, 19664), True, 'import torch as to\n'), ((8452, 8464), 'torch.no_grad', 'to.no_grad', ([], {}), '()\n', (8462, 8464), True, 'import torch as to\n'), ((9565, 9581), 'numpy.mean', 'np.mean', (['rewards'], {}), '(rewards)\n', (9572, 9581), True, 'import numpy as np\n'), ((15226, 15245), 'numpy.clip', 'np.clip', (['act', '(-1)', '(1)'], {}), '(act, -1, 1)\n', (15233, 15245), True, 'import numpy as np\n'), ((18889, 18943), 'pyrado.spaces.box.BoxSpace.cat', 'BoxSpace.cat', (['[env_spec.obs_space, env_spec.act_space]'], {}), '([env_spec.obs_space, env_spec.act_space])\n', (18901, 18943), False, 'from pyrado.spaces.box import BoxSpace\n'), ((18967, 19003), 'pyrado.spaces.box.BoxSpace', 'BoxSpace', ([], {'bound_lo': '[0]', 'bound_up': '[1]'}), '(bound_lo=[0], bound_up=[1])\n', (18975, 19003), False, 'from pyrado.spaces.box import BoxSpace\n'), ((9431, 9498), 'pyrado.sampling.step_sequence.StepSequence', 'StepSequence', ([], {'observations': 'states', 'actions': 'actions', 'rewards': 'rewards'}), '(observations=states, actions=actions, rewards=rewards)\n', (9443, 9498), False, 'from pyrado.sampling.step_sequence import StepSequence\n'), ((17605, 17632), 'pyrado.environment_wrappers.utils.inner_env', 'inner_env', (['self.wrapped_env'], {}), '(self.wrapped_env)\n', (17614, 17632), False, 'from pyrado.environment_wrappers.utils import inner_env\n'), ((17735, 17762), 'pyrado.environment_wrappers.utils.inner_env', 'inner_env', (['self.wrapped_env'], {}), '(self.wrapped_env)\n', (17744, 17762), False, 'from pyrado.environment_wrappers.utils import inner_env\n'), ((20669, 20704), 'torch.ones', 'to.ones', (['random_results.shape[0]', '(1)'], {}), '(random_results.shape[0], 1)\n', (20676, 20704), True, 'import torch as to\n'), ((20762, 20801), 'torch.zeros', 'to.zeros', (['reference_results.shape[0]', '(1)'], {}), '(reference_results.shape[0], 1)\n', (20770, 20801), True, 'import torch as to\n'), ((6085, 6104), 'pyrado.environment_wrappers.utils.inner_env', 'inner_env', (['self.env'], {}), '(self.env)\n', (6094, 6104), False, 'from pyrado.environment_wrappers.utils import inner_env\n'), ((8566, 8588), 'torch.get_default_dtype', 'to.get_default_dtype', ([], {}), '()\n', (8586, 8588), True, 'import torch as to\n')]
""" Stats stuff! """ import textwrap import numpy as np import pandas as pd from scipy import stats from IPython.display import display from .boxes import * from .table_display import * __DEBUG__ = False def debug(*args, **kwargs): if __DEBUG__: print(*args, **kwargs) class Chi2Result(object): """Chi2 result class. Primarily used for pretty-printing results. """ def __init__(self, name1: str, name2: str, xs: pd.DataFrame, dof: int, p: float, alpha=0.05): """Create a new Chi2Result instance.""" self.name1 = name1 self.name2 = name2 self.xs = xs self.dof = dof self.p = p self.alpha = alpha def __repr__(self): """Return a string representation of this result.""" if self.p <= self.alpha: p_conclusion = f'p ≤ {self.alpha}' else: p_conclusion = f'p > {self.alpha}' s = f""" Chi2 analysis between {self.name1} and {self.name2} p = {self.p:.4f} with {self.dof} degree(s) of freedom. {p_conclusion} """ return textwrap.dedent(s) def _repr_html_(self): """Return an HTML representation of this result.""" if self.p <= self.alpha: p_conclusion = f'p ≤ {self.alpha}' else: p_conclusion = f'p > {self.alpha}' tpl = f""" <div style="font-family: courier; padding: 0px 10px;"> <div style="text-align:center"> Chi&#x00B2; analysis between <b>{self.name1}</b> and <b>{self.name2}</b></div> <div>p-value: <b>{self.p:.4f}</b> with <b>{self.dof}</b> degree(s) of freedom.</div> <div>{p_conclusion}</div> </div> """ if self.p <= self.alpha: return info(tpl, raw=True) return box(tpl, '#efefef', '#cfcfcf', raw=True) def Chi2(col1: pd.Series, col2: pd.Series, show_crosstab=False) -> Chi2Result: """Compute the Chi2 statistic.""" xs = pd.crosstab(col1, col2) _, p, dof, expected = stats.chi2_contingency(xs) if show_crosstab: display(xs) return Chi2Result(col1.name, col2.name, xs, dof, p) class CMHResult(object): """Represents the result of a Cochran-Mantel-Haenszel Chi2 analysis.""" def __init__(self, STATISTIC, df, p, var1, var2, stratifier, alpha=0.05): """ Initialize a new CMHResult. STATISTIC: X2 statistic df: degrees of freedom p: p-value """ self.STATISTIC = STATISTIC self.df = df self.p = p self.var1 = var1 self.var2 = var2 self.stratifier = stratifier self.alpha = alpha def __repr__(self): stat = round(self.STATISTIC, 5) pval = round(self.p, 4) df = self.df return textwrap.dedent(f""" Cochran-Mantel-Haenszel Chi2 test "{self.var1}" x "{self.var2}", stratified by "{self.stratifier}" Cochran-Mantel-Haenszel M^2 = {stat}, df = {df}, p-value = {pval} """) def _repr_html_(self): stat = round(self.STATISTIC, 5) pval = round(self.p, 4) df = self.df tpl = f""" <div style="font-family: courier; font-size: 10pt; padding: 0px 10px;"> <div style="text-align:center"> Cochran-Mantel-Haenszel Chi&#x00B2; test </div> <div> <b>{self.var1}</b> x <b>{self.var2}</b>, stratified by <b>{self.stratifier}</b> </div> <div> Cochran-Mantel-Haenszel M^2 = {stat}, df = {df}, p-value = <b>{pval}</b> </div> </div> """ if pval > self.alpha: return box(tpl, '#efefef', '#cfcfcf') return box(tpl, '#b0cbe9', '#4393e1') def CMH(df: pd.DataFrame, var: str, outcome: str, stratifier: str, raw=False): """Compute the CMH statistic. Based on "Categorical Data Analysis", page 295 by Agresti (2002) and R implementation of mantelhaen.test(). """ df = df.copy() df[outcome] = df[outcome].astype('category') df[var] = df[var].astype('category') df[stratifier] = df[stratifier].astype('category') # Compute contingency table size KxIxJ I = len(df[outcome].cat.categories) J = len(df[var].cat.categories) K = len(df[stratifier].cat.categories) contingency_tables = np.zeros((I, J, K), dtype='float') # Create stratified contingency tables for k in range(K): cat = df[stratifier].cat.categories[k] subset = df.loc[df[stratifier] == cat, [var, outcome]] xs = pd.crosstab(subset[outcome], subset[var], dropna=False) contingency_tables[:, :, k] = xs # Compute the actual CMH STATISTIC, df, pval = CMH_numpy(contingency_tables) if raw: return STATISTIC, df, pval return CMHResult(STATISTIC, df, pval, var, outcome, stratifier) def CMH_numpy(X): """Compute the CMH statistic. Based on "Categorical Data Analysis", page 295 by Agresti (2002) and R implementation of mantelhaen.test(). """ # I: nr. of rows # J: nr. of columns # K: nr. of strata # ⚠️ Note: this does *not* match the format used when printing! I, J, K = X.shape debug(f"I: {I}, J: {J}, K: {K}") debug() df = (I - 1) * (J - 1) debug(f'{df} degree(s) of freedom') # Initialize m and n to a vector(0) of length df n = np.zeros(df) m = np.zeros(df) V = np.zeros((df, df)) # iterate over the strata for k in range(K): debug(f'partial {k}') # f holds partial contigency table k f = X[:, :, k] # debuggin' debug(' f:') debug(f) debug() # Sum of *all* values in the partial table ntot = f.sum() debug(f' ntot: {ntot}') # Compute the sum over all row/column entries *excluding* the last # entry. The last entries are excluded, as they hold redundant # information in combination with the row/column totals. colsums = f.sum(axis=0)[:-1] rowsums = f.sum(axis=1)[:-1] debug(' rowsums:', rowsums) debug(' colsums:', colsums) # f[-I, -J] holds the partial matrix, excluding the last row & column. # The result is reshaped into a vector. debug(' f[:-1, :-1].reshape(-1): ', f[:-1, :-1].reshape(-1)) n = n + f[:-1, :-1].reshape(-1) # Take the outer product of the row- and colsums, divide it by the # total of the partial table. Yields a vector of length df. This holds # the expected value under the assumption of conditional independence. m_k = (np.outer(rowsums, colsums) / ntot).reshape(-1) m = m + m_k debug(' m_k:', m_k) debug() # V_k holds the null covariance matrix (matrices). k1 = np.diag(ntot * colsums)[:J, :J] - np.outer(colsums, colsums) k2 = np.diag(ntot * rowsums)[:I, :I] - np.outer(rowsums, rowsums) debug('np.kron(k1, k2):') debug(np.kron(k1, k2)) debug() V_k = np.kron(k1, k2) / (ntot**2 * (ntot - 1)) debug(' V_k:') debug(V_k) V = V + V_k debug() # Subtract the mean from the entries n = n - m debug(f'n: {n}') debug() debug('np.linalg.solve(V, n):') debug(np.linalg.solve(V, n)) debug() STATISTIC = np.inner(n, np.linalg.solve(V, n).transpose()) debug('STATISTIC:', STATISTIC) pval = 1 - stats.chi2.cdf(STATISTIC, df) return STATISTIC, df, pval def table1(df, vars, outcome, p_name='p', p_precision=None, title=''): """Prepare Table 1""" def replace(string, dict_): for key, replacement in dict_.items(): if string == key: return replacement return string # We're going to create multiple tables, one for each variable. tables = [] col2 = df[outcome] totals = col2.value_counts() headers = { header: f'{header} (n={total})' for header, total in totals.iteritems() } # Iterate over the variables for v in vars: col1 = df[v] # Crosstab with absolute numbers x1 = pd.crosstab(col1, col2) # Crosstab with percentages x2 = pd.crosstab(col1, col2, normalize='columns') x2 = (x2 * 100).round(1) # Chi2 is calculated using absolute nrs. chi2, p, dof, expected = stats.chi2_contingency(x1) # Combine absolute nrs. with percentages in a single cell. xs = x1.astype('str') + ' (' + x2.applymap('{:3.1f}'.format) + ')' # Add the totals ('n={total}') to the headers xs.columns = [replace(h, headers) for h in list(xs.columns)] # If title is provided, we'll add a level to the column index and put # it there (on top). if title: colidx = pd.MultiIndex.from_product( [[title, ], list(xs.columns)], ) xs.columns = colidx # Add the p-value in a new column, but only in the top row. xs[p_name] = '' if p_precision: p_tpl = f"{{:.{p_precision}f}}" xs.iloc[0, len(xs.columns) - 1] = p_tpl.format(p) else: xs[p_name] = np.nan xs.iloc[0, len(xs.columns) - 1] = p # Prepend the name of the current variable to the row index, so we can # concat the tables later ... xs.index = pd.MultiIndex.from_product( [[v, ], list(xs.index)], names=['variable', 'values'] ) tables.append(xs) return pd.concat(tables)
[ "textwrap.dedent", "IPython.display.display", "numpy.linalg.solve", "scipy.stats.chi2.cdf", "scipy.stats.chi2_contingency", "pandas.crosstab", "numpy.diag", "numpy.kron", "numpy.zeros", "numpy.outer", "pandas.concat" ]
[((2089, 2112), 'pandas.crosstab', 'pd.crosstab', (['col1', 'col2'], {}), '(col1, col2)\n', (2100, 2112), True, 'import pandas as pd\n'), ((2139, 2165), 'scipy.stats.chi2_contingency', 'stats.chi2_contingency', (['xs'], {}), '(xs)\n', (2161, 2165), False, 'from scipy import stats\n'), ((4582, 4616), 'numpy.zeros', 'np.zeros', (['(I, J, K)'], {'dtype': '"""float"""'}), "((I, J, K), dtype='float')\n", (4590, 4616), True, 'import numpy as np\n'), ((5626, 5638), 'numpy.zeros', 'np.zeros', (['df'], {}), '(df)\n', (5634, 5638), True, 'import numpy as np\n'), ((5647, 5659), 'numpy.zeros', 'np.zeros', (['df'], {}), '(df)\n', (5655, 5659), True, 'import numpy as np\n'), ((5668, 5686), 'numpy.zeros', 'np.zeros', (['(df, df)'], {}), '((df, df))\n', (5676, 5686), True, 'import numpy as np\n'), ((9807, 9824), 'pandas.concat', 'pd.concat', (['tables'], {}), '(tables)\n', (9816, 9824), True, 'import pandas as pd\n'), ((1136, 1154), 'textwrap.dedent', 'textwrap.dedent', (['s'], {}), '(s)\n', (1151, 1154), False, 'import textwrap\n'), ((2197, 2208), 'IPython.display.display', 'display', (['xs'], {}), '(xs)\n', (2204, 2208), False, 'from IPython.display import display\n'), ((2926, 3168), 'textwrap.dedent', 'textwrap.dedent', (['f"""\n Cochran-Mantel-Haenszel Chi2 test\n\n "{self.var1}" x "{self.var2}", stratified by "{self.stratifier}"\n\n Cochran-Mantel-Haenszel M^2 = {stat}, df = {df}, p-value = {pval}\n """'], {}), '(\n f"""\n Cochran-Mantel-Haenszel Chi2 test\n\n "{self.var1}" x "{self.var2}", stratified by "{self.stratifier}"\n\n Cochran-Mantel-Haenszel M^2 = {stat}, df = {df}, p-value = {pval}\n """\n )\n', (2941, 3168), False, 'import textwrap\n'), ((4808, 4863), 'pandas.crosstab', 'pd.crosstab', (['subset[outcome]', 'subset[var]'], {'dropna': '(False)'}), '(subset[outcome], subset[var], dropna=False)\n', (4819, 4863), True, 'import pandas as pd\n'), ((7547, 7568), 'numpy.linalg.solve', 'np.linalg.solve', (['V', 'n'], {}), '(V, n)\n', (7562, 7568), True, 'import numpy as np\n'), ((7697, 7726), 'scipy.stats.chi2.cdf', 'stats.chi2.cdf', (['STATISTIC', 'df'], {}), '(STATISTIC, df)\n', (7711, 7726), False, 'from scipy import stats\n'), ((8399, 8422), 'pandas.crosstab', 'pd.crosstab', (['col1', 'col2'], {}), '(col1, col2)\n', (8410, 8422), True, 'import pandas as pd\n'), ((8473, 8517), 'pandas.crosstab', 'pd.crosstab', (['col1', 'col2'], {'normalize': '"""columns"""'}), "(col1, col2, normalize='columns')\n", (8484, 8517), True, 'import pandas as pd\n'), ((8634, 8660), 'scipy.stats.chi2_contingency', 'stats.chi2_contingency', (['x1'], {}), '(x1)\n', (8656, 8660), False, 'from scipy import stats\n'), ((7090, 7116), 'numpy.outer', 'np.outer', (['colsums', 'colsums'], {}), '(colsums, colsums)\n', (7098, 7116), True, 'import numpy as np\n'), ((7164, 7190), 'numpy.outer', 'np.outer', (['rowsums', 'rowsums'], {}), '(rowsums, rowsums)\n', (7172, 7190), True, 'import numpy as np\n'), ((7240, 7255), 'numpy.kron', 'np.kron', (['k1', 'k2'], {}), '(k1, k2)\n', (7247, 7255), True, 'import numpy as np\n'), ((7288, 7303), 'numpy.kron', 'np.kron', (['k1', 'k2'], {}), '(k1, k2)\n', (7295, 7303), True, 'import numpy as np\n'), ((7056, 7079), 'numpy.diag', 'np.diag', (['(ntot * colsums)'], {}), '(ntot * colsums)\n', (7063, 7079), True, 'import numpy as np\n'), ((7130, 7153), 'numpy.diag', 'np.diag', (['(ntot * rowsums)'], {}), '(ntot * rowsums)\n', (7137, 7153), True, 'import numpy as np\n'), ((7611, 7632), 'numpy.linalg.solve', 'np.linalg.solve', (['V', 'n'], {}), '(V, n)\n', (7626, 7632), True, 'import numpy as np\n'), ((6871, 6897), 'numpy.outer', 'np.outer', (['rowsums', 'colsums'], {}), '(rowsums, colsums)\n', (6879, 6897), True, 'import numpy as np\n')]
import os import numpy as np import matplotlib.pyplot as plt from .kshell_utilities import atomic_numbers, loadtxt from .general_utilities import create_spin_parity_list, gamma_strength_function_average class LEE: def __init__(self, directory): self.bin_width = 0.2 self.E_max = 30 self.Ex_min = 0 # Lower limit for emitted gamma energy [MeV]. self.Ex_max = 30 # Upper limit for emitted gamma energy [MeV]. n_bins = int(np.ceil(self.E_max/self.bin_width)) E_max_adjusted = self.bin_width*n_bins bins = np.linspace(0, E_max_adjusted, n_bins + 1) self.bins_middle = (bins[0: -1] + bins[1:])/2 self.all_fnames = {} self.directory = directory for element in sorted(os.listdir(self.directory)): """ List all content in self.directory. """ if os.path.isdir(f"{self.directory}/{element}"): """ If element is a directory, enter it to find data files. """ self.all_fnames[element] = [] # Create blank entry in dict for current element. for isotope in os.listdir(f"{self.directory}/{element}"): """ List all content in the element directory. """ if isotope.startswith("summary"): """ Extract summary data files. """ try: """ Example: O16. """ n_neutrons = int(isotope[9:11]) except ValueError: """ Example: Ne20. """ n_neutrons = int(isotope[10:12]) n_neutrons -= atomic_numbers[element.split("_")[1]] self.all_fnames[element].append([f"{element}/{isotope}", n_neutrons]) for key in self.all_fnames: """ Sort each list in the dict by the number of neutrons. """ self.all_fnames[key].sort(key=lambda tup: tup[1]) # Why not do this when directory is listed? # def plot_gsf(self, isotope_name): # """ # Plot the gamma strength function for a single isotope. # isotope_name : string # Examples: S24, Ne30. # Raises # ------ # ValueError # If isotope_name cannot be found in the calculated data # files. # """ # fname = None # for fnames in self.fnames_combined: # for i in range(len(fnames)): # if isotope_name in fnames[i][0]: # fname = fnames[i][0] # if fname is None: # msg = f"Isotope name '{isotope_name}' is not a valid name." # raise ValueError(msg) # res = loadtxt(self.directory + fname) # _, ax = plt.subplots() # Jpi_list = create_jpi_list(res.levels[:, 1], None) # E_gs = res.levels[0, 0] # res.transitions[:, 2] += E_gs # Add ground state energy for compatibility with Jørgen. # gsf = strength_function_average( # levels = res.levels, # transitions = res.transitions, # Jpi_list = Jpi_list, # bin_width = self.bin_width, # Ex_min = self.Ex_min, # [MeV]. # Ex_max = self.Ex_max, # [MeV]. # multipole_type = "M1" # ) # bin_slice = self.bins_middle[0:len(gsf)] # ax.plot(bin_slice, gsf, label=fname) # ax.legend() # ax.set_xlabel(r"$E_{\gamma}$ [MeV]") # ax.set_ylabel(r"gsf [MeV$^{-3}$]") # plt.show() def calculate_low_energy_enhancement(self, filter=None): """ Recreate the figure from Jørgens article. """ self.labels = [] # Suggested labels for plotting. self.ratios = [] self.n_neutrons = [] for key in self.all_fnames: """ Loop over all elements (grunnstoff). """ fnames = self.all_fnames[key] # For compatibility with old code. if filter is not None: if key.split("_")[1] not in filter: """ Skip elements not in filter. """ continue ratios = [] # Reset ratio for every new element. for i in range(len(fnames)): """ Loop over all isotopes per element. """ try: res = loadtxt(f"{self.directory}/{fnames[i][0]}") except FileNotFoundError: print(f"File {fnames[i][0]} skipped! File not found.") ratios.append(None) # Maintain correct list length for plotting. continue Jpi_list = create_spin_parity_list( spins = res.levels[:, 1], parities = res.levels[:, 2] ) E_gs = res.levels[0, 0] try: res.transitions[:, 2] += E_gs # Add ground state energy for compatibility with Jørgen. except IndexError: print(f"File {fnames[i][0]} skipped! Too few / no energy levels are present in this data file.") ratios.append(None) # Maintain correct list length for plotting. continue try: gsf = strength_function_average( levels = res.levels, transitions = res.transitions, Jpi_list = Jpi_list, bin_width = self.bin_width, Ex_min = self.Ex_min, # [MeV]. Ex_max = self.Ex_max, # [MeV]. multipole_type = "M1" ) except IndexError: print(f"File {fnames[i][0]} skipped! That unknown index out of bounds error in ksutil.") ratios.append(None) continue # Sum gsf for low and high energy range and take the ratio. bin_slice = self.bins_middle[0:len(gsf)] low_idx = (bin_slice <= 2) high_idx = (bin_slice <= 6) == (2 <= bin_slice) low = np.sum(gsf[low_idx]) high = np.sum(gsf[high_idx]) low_high_ratio = low/high ratios.append(low_high_ratio) print(f"{fnames[i][0]} loaded") if all(elem is None for elem in ratios): """ Skip current element if no ratios are calculated. """ continue self.labels.append(fnames[0][0][:fnames[0][0].index("/")]) self.n_neutrons.append([n_neutrons for _, n_neutrons in fnames]) self.ratios.append(ratios) def quick_plot(self): fig, ax = plt.subplots() for i in range(len(self.n_neutrons)): ax.plot(self.n_neutrons[i], self.ratios[i], ".--", label=self.labels[i]) ax.set_yscale("log") ax.set_xlabel("N") ax.set_ylabel("Rel. amount of low-energy strength") ax.legend() plt.show() def low_energy_enhancement(directory): """ Wrapper for easier usage. Parameters ---------- directory : string Directory containing subfolders with KSHELL data. Returns ------- res : kshell_utilities.low_energy_enhancement.LEE Class instance containing LEE data. """ res = LEE(directory) res.calculate_low_energy_enhancement() return res
[ "numpy.ceil", "os.listdir", "numpy.sum", "numpy.linspace", "os.path.isdir", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((563, 605), 'numpy.linspace', 'np.linspace', (['(0)', 'E_max_adjusted', '(n_bins + 1)'], {}), '(0, E_max_adjusted, n_bins + 1)\n', (574, 605), True, 'import numpy as np\n'), ((7272, 7286), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (7284, 7286), True, 'import matplotlib.pyplot as plt\n'), ((7579, 7589), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7587, 7589), True, 'import matplotlib.pyplot as plt\n'), ((465, 501), 'numpy.ceil', 'np.ceil', (['(self.E_max / self.bin_width)'], {}), '(self.E_max / self.bin_width)\n', (472, 501), True, 'import numpy as np\n'), ((757, 783), 'os.listdir', 'os.listdir', (['self.directory'], {}), '(self.directory)\n', (767, 783), False, 'import os\n'), ((881, 925), 'os.path.isdir', 'os.path.isdir', (['f"""{self.directory}/{element}"""'], {}), "(f'{self.directory}/{element}')\n", (894, 925), False, 'import os\n'), ((1169, 1210), 'os.listdir', 'os.listdir', (['f"""{self.directory}/{element}"""'], {}), "(f'{self.directory}/{element}')\n", (1179, 1210), False, 'import os\n'), ((6638, 6658), 'numpy.sum', 'np.sum', (['gsf[low_idx]'], {}), '(gsf[low_idx])\n', (6644, 6658), True, 'import numpy as np\n'), ((6682, 6703), 'numpy.sum', 'np.sum', (['gsf[high_idx]'], {}), '(gsf[high_idx])\n', (6688, 6703), True, 'import numpy as np\n')]
"""Tests for Pipeline class""" import pytest from cognigraph.nodes.pipeline import Pipeline import numpy as np from numpy.testing import assert_array_equal from cognigraph.tests.prepare_pipeline_tests import ( create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput, ) @pytest.fixture(scope="function") def pipeline(): source = ConcreteSource() processor = ConcreteProcessor() output = ConcreteOutput() pipeline = Pipeline() pipeline.add_child(source) source.add_child(processor) processor.add_child(output) return pipeline def test_pipeline_initialization(pipeline): pipeline.chain_initialize() source = pipeline._children[0] processor = source._children[0] output = processor._children[0] assert source._initialized assert source.mne_info is not None assert source.mne_info["nchan"] == source.nchan assert processor._initialized assert output._initialized def test_pipeline_update(pipeline): """Update all pipeline nodes twice and check outputs""" pipeline.chain_initialize() src = pipeline._children[0] proc = src._children[0] out = proc._children[0] nch = src.nchan nsamp = src.nsamp pr_inc = proc.increment out_inc = out.increment pipeline.update() assert_array_equal(src.output, np.zeros([nch, nsamp])) assert_array_equal(proc.output, np.zeros([nch, nsamp]) + pr_inc) assert_array_equal(out.output, proc.output + out_inc) pipeline.update() assert_array_equal(src.output, np.ones([nch, nsamp])) assert_array_equal(proc.output, np.ones([nch, nsamp]) + pr_inc * 2) assert_array_equal(out.output, proc.output + out_inc * 2) def test_reset_mechanics(pipeline): """ Test if upstream output shape changes when changing number of channels in source via _mne_info, test if src._on_critical_attr_changed is called when this happens, test if it triggers reinitialization for node for which _mne_info is in UPSTREAM_CHANGES_IN_THESE_REQUIRE_REINITIALIZATION, finally test if history invalidation mechanics works. """ src = pipeline._children[0] proc = src._children[0] out = proc._children[0] pipeline.chain_initialize() pipeline.update() new_nchan = 43 new_info = create_dummy_info(nchan=new_nchan) assert src.n_resets == 0 assert proc.n_initializations == 1 assert proc.n_hist_invalidations == 0 src._mne_info = new_info pipeline.update() assert src.n_resets == 1 for i in range(3): pipeline.update() pipeline.update() assert np.all(out.output) assert out.output.shape[0] == new_nchan assert proc.n_initializations == 2 assert proc.n_hist_invalidations == 1 def test_add_child_on_the_fly(pipeline): src = pipeline._children[0] pipeline.chain_initialize() pipeline.update() new_processor = ConcreteProcessor(increment=0.2) src.add_child(new_processor, initialize=True) pipeline.update() nch = src.nchan nsamp = src.nsamp assert_array_equal( new_processor.output, np.ones([nch, nsamp]) + new_processor.increment ) assert new_processor._root is pipeline # def test_critical_upstream_change_happened(pipeline): # src = pipeline._children[0] # proc = src._children[0] # pipeline.chain_initialize() # pipeline.update()
[ "cognigraph.tests.prepare_pipeline_tests.ConcreteSource", "cognigraph.tests.prepare_pipeline_tests.create_dummy_info", "numpy.ones", "cognigraph.tests.prepare_pipeline_tests.ConcreteProcessor", "cognigraph.tests.prepare_pipeline_tests.ConcreteOutput", "numpy.zeros", "pytest.fixture", "numpy.all", "cognigraph.nodes.pipeline.Pipeline", "numpy.testing.assert_array_equal" ]
[((301, 333), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (315, 333), False, 'import pytest\n'), ((363, 379), 'cognigraph.tests.prepare_pipeline_tests.ConcreteSource', 'ConcreteSource', ([], {}), '()\n', (377, 379), False, 'from cognigraph.tests.prepare_pipeline_tests import create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput\n'), ((396, 415), 'cognigraph.tests.prepare_pipeline_tests.ConcreteProcessor', 'ConcreteProcessor', ([], {}), '()\n', (413, 415), False, 'from cognigraph.tests.prepare_pipeline_tests import create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput\n'), ((429, 445), 'cognigraph.tests.prepare_pipeline_tests.ConcreteOutput', 'ConcreteOutput', ([], {}), '()\n', (443, 445), False, 'from cognigraph.tests.prepare_pipeline_tests import create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput\n'), ((461, 471), 'cognigraph.nodes.pipeline.Pipeline', 'Pipeline', ([], {}), '()\n', (469, 471), False, 'from cognigraph.nodes.pipeline import Pipeline\n'), ((1432, 1485), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['out.output', '(proc.output + out_inc)'], {}), '(out.output, proc.output + out_inc)\n', (1450, 1485), False, 'from numpy.testing import assert_array_equal\n'), ((1644, 1701), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['out.output', '(proc.output + out_inc * 2)'], {}), '(out.output, proc.output + out_inc * 2)\n', (1662, 1701), False, 'from numpy.testing import assert_array_equal\n'), ((2295, 2329), 'cognigraph.tests.prepare_pipeline_tests.create_dummy_info', 'create_dummy_info', ([], {'nchan': 'new_nchan'}), '(nchan=new_nchan)\n', (2312, 2329), False, 'from cognigraph.tests.prepare_pipeline_tests import create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput\n'), ((2603, 2621), 'numpy.all', 'np.all', (['out.output'], {}), '(out.output)\n', (2609, 2621), True, 'import numpy as np\n'), ((2896, 2928), 'cognigraph.tests.prepare_pipeline_tests.ConcreteProcessor', 'ConcreteProcessor', ([], {'increment': '(0.2)'}), '(increment=0.2)\n', (2913, 2928), False, 'from cognigraph.tests.prepare_pipeline_tests import create_dummy_info, ConcreteSource, ConcreteProcessor, ConcreteOutput\n'), ((1335, 1357), 'numpy.zeros', 'np.zeros', (['[nch, nsamp]'], {}), '([nch, nsamp])\n', (1343, 1357), True, 'import numpy as np\n'), ((1545, 1566), 'numpy.ones', 'np.ones', (['[nch, nsamp]'], {}), '([nch, nsamp])\n', (1552, 1566), True, 'import numpy as np\n'), ((1395, 1417), 'numpy.zeros', 'np.zeros', (['[nch, nsamp]'], {}), '([nch, nsamp])\n', (1403, 1417), True, 'import numpy as np\n'), ((1604, 1625), 'numpy.ones', 'np.ones', (['[nch, nsamp]'], {}), '([nch, nsamp])\n', (1611, 1625), True, 'import numpy as np\n'), ((3098, 3119), 'numpy.ones', 'np.ones', (['[nch, nsamp]'], {}), '([nch, nsamp])\n', (3105, 3119), True, 'import numpy as np\n')]
#!/usr/bin/env python '''Testing for read_rockstar.py @author: <NAME> @contact: <EMAIL> @status: Development ''' import glob from mock import call, patch import numpy as np import numpy.testing as npt import os import pdb import pytest import unittest import galaxy_dive.read_data.rockstar as read_rockstar import galaxy_dive.utils.utilities as utilities ######################################################################## ######################################################################## class TestRockstarReader( unittest.TestCase ): def setUp( self ): self.rockstar_reader = read_rockstar.RockstarReader( './tests/data/rockstar_dir', ) ######################################################################## def test_get_halos( self ): self.rockstar_reader.get_halos( 600 ) expected = 51 actual = self.rockstar_reader.halos['Np'][6723] npt.assert_allclose( expected, actual )
[ "numpy.testing.assert_allclose", "galaxy_dive.read_data.rockstar.RockstarReader" ]
[((603, 660), 'galaxy_dive.read_data.rockstar.RockstarReader', 'read_rockstar.RockstarReader', (['"""./tests/data/rockstar_dir"""'], {}), "('./tests/data/rockstar_dir')\n", (631, 660), True, 'import galaxy_dive.read_data.rockstar as read_rockstar\n'), ((901, 938), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (['expected', 'actual'], {}), '(expected, actual)\n', (920, 938), True, 'import numpy.testing as npt\n')]
from typing import Union, Optional, Sequence, Any, Mapping, List, Tuple, Callable from collections.abc import Iterable import operator import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.axes import Axes def pie_marker( ratios: Sequence[float], res: int = 50, direction: str = "+", start: float = 0.0, ) -> Tuple[list, list]: """ Create each slice of pie as a separate marker. Parameters: ratios(list): List of ratios that add up to 1. res: Number of points around the circle. direction: '+' for counter-clockwise, or '-' for clockwise. start: Starting position in radians. Returns: xys, ss: Tuple of list of xy points and sizes of each slice in the pie marker. """ if np.abs(np.sum(ratios) - 1) > 0.01: print("Warning: Ratios do not add up to 1.") if direction == '+': op = operator.add elif direction == '-': op = operator.sub xys = [] # list of xy points of each slice ss = [] # list of size of each slice start = float(start) for ratio in ratios: # points on the circle including the origin (0,0) and the slice end = op(start, 2 * np.pi * ratio) n = round(ratio * res) # number of points forming the arc x = [0] + np.cos(np.linspace(start, end, n)).tolist() y = [0] + np.sin(np.linspace(start, end, n)).tolist() xy = np.column_stack([x, y]) xys.append(xy) ss.append(np.abs(xy).max()) start = end return xys, ss def scatter_pie( x: Union[int, float, Sequence[int], Sequence[float]], y: Union[int, float, Sequence[int], Sequence[float]], ratios: Union[Sequence[float], Sequence[Sequence[float]]], colors: Union[List, str] = "tab10", res: int = 50, direction: str = "+", start: float = 0.0, ax=None, size=100, edgecolor="none", **kwargs) -> Axes: """ Plot scatter pie plots. Parameters: x: list/array of x values y: list/array of y values ratios: List of lists of ratios that add up to 1. colors: List of colors in order, or name of colormap. res: Number of points around the circle. direction: '+' for counter-clockwise, or '-' for clockwise. start: Starting position in radians. kwargs: Arguments passed to :func:`matplotlib.pyplot.scatter` Returns: A :class:`~matplotlib.axes.Axes` """ if ax is None: _, ax = plt.subplots() # convert arguments to interables when there is only one point if (not isinstance(x, Iterable)) and type(ratios[0]==float): print("Plotting single point") x = [x] y = [y] ratios = [ratios] # Set colors if type(colors) == str: cmap = plt.get_cmap(colors) colors = [cmap(i) for i in range(len(ratios[0]))] # make pie marker for each unique set of ratios df = pd.DataFrame({'x':x, 'y':y, 'ratios':ratios}) df.ratios = df.ratios.apply(tuple) gb = df.groupby("ratios") for ratio in gb.groups: group = gb.get_group(ratio) xys, ss = pie_marker(ratio, res=res, direction=direction, start=start) for xy, s, color in zip(xys, ss, colors): # plot non-zero slices if s != 0: ax.scatter(group.x, group.y, marker=xy, s=[s*s*size], facecolor=color, edgecolor=edgecolor, **kwargs) return ax def get_palette(categories, cmap): """ Generate dictionary mapping categories to color. """ cc = plt.get_cmap(cmap) if len(categories) > len(cc.colors): raise ValueError("Number of categories more than number of colors in cmap.") palette = {x: cc(i) for i, x in enumerate(categories)} return palette def scatter_pie_from_df( df: pd.DataFrame, x: str, y: str, cols: Optional[list] = [], normalize: bool = True, return_df: bool = False, palette: Optional[dict] = None, cmap: Optional[str] = "tab10", **kwargs, ) -> Axes: """ Plot scatter pie based on columns in a DataFrame. Parameters: df: Dataframe containing x, y, and additional count columns. x: Column to use as x-values. y: Column to use as y-values. cols: List of columns in dataframe to use as ratios and plotting. If [], uses all columns besides x and y. normalize: If True, calculate ratios using selected columns. return_df: If True, also return normalized dataframe. palette: Dictionary mapping column name to color. If None, create mapping using cmap. cmap: Name of colormap to use if palette not provided. kwargs: Arguments passed to :func:`scatter_pie` Returns: A :class:`~matplotlib.axes.Axes` and normalized df if `return_df` is True. """ # make copy of dataframe and set xy as index df = df.copy().set_index([x, y]) if (type(cols)==list) & (len(cols) > 1): # used specified list of columns df = df.loc[:, cols] elif cols!=[]: raise ValueError("cols must be a list of more than one column headers") # row normalize categories = df.columns df = df.div(df.sum(axis=1), axis=0).fillna(0) df = df.reset_index() # generate mapping of category to color if palette == None: palette = get_palette(categories, cmap) ratios = df[categories].to_records(index=False).tolist() colors = [palette[cat] for cat in categories] ax = scatter_pie(df[x].values, df[y].values, ratios, colors, **kwargs) # generate legend as separate figure if return_df: return ax, df return ax def scatter_legend(ax, labels, palette, **kwargs): handles = [plt.scatter([], [], color=palette[l], label=l) for l in labels] ax.legend(handles=handles, **kwargs) def expand_xlim(ax, percent=0.1): lim = ax.get_xlim() length = lim[1] - lim[0] change = length * percent lower = lim[0] - change upper = lim[1] + change ax.set_xlim(lower, upper) return def expand_ylim(ax, percent=0.1): lim = ax.get_ylim() length = lim[1] - lim[0] change = length * percent lower = lim[0] - change upper = lim[1] + change ax.set_ylim(lower, upper) return
[ "numpy.abs", "numpy.column_stack", "numpy.sum", "numpy.linspace", "matplotlib.pyplot.scatter", "pandas.DataFrame", "matplotlib.pyplot.subplots", "matplotlib.pyplot.get_cmap" ]
[((3013, 3061), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': x, 'y': y, 'ratios': ratios}"], {}), "({'x': x, 'y': y, 'ratios': ratios})\n", (3025, 3061), True, 'import pandas as pd\n'), ((3646, 3664), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['cmap'], {}), '(cmap)\n', (3658, 3664), True, 'import matplotlib.pyplot as plt\n'), ((1471, 1494), 'numpy.column_stack', 'np.column_stack', (['[x, y]'], {}), '([x, y])\n', (1486, 1494), True, 'import numpy as np\n'), ((2562, 2576), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2574, 2576), True, 'import matplotlib.pyplot as plt\n'), ((2872, 2892), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['colors'], {}), '(colors)\n', (2884, 2892), True, 'import matplotlib.pyplot as plt\n'), ((5854, 5900), 'matplotlib.pyplot.scatter', 'plt.scatter', (['[]', '[]'], {'color': 'palette[l]', 'label': 'l'}), '([], [], color=palette[l], label=l)\n', (5865, 5900), True, 'import matplotlib.pyplot as plt\n'), ((824, 838), 'numpy.sum', 'np.sum', (['ratios'], {}), '(ratios)\n', (830, 838), True, 'import numpy as np\n'), ((1536, 1546), 'numpy.abs', 'np.abs', (['xy'], {}), '(xy)\n', (1542, 1546), True, 'import numpy as np\n'), ((1359, 1385), 'numpy.linspace', 'np.linspace', (['start', 'end', 'n'], {}), '(start, end, n)\n', (1370, 1385), True, 'import numpy as np\n'), ((1421, 1447), 'numpy.linspace', 'np.linspace', (['start', 'end', 'n'], {}), '(start, end, n)\n', (1432, 1447), True, 'import numpy as np\n')]
""" Test script for data.py classes. """ import os import numpy as np import pytest from bilby.core.prior import PriorDict, Uniform from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood class TestTargetedPulsarLikelhood(object): """ Tests for the TargetedPulsarLikelihood class. """ parfile = "J0123+3456.par" times = np.linspace(1000000000.0, 1000086340.0, 1440) data = np.random.normal(0.0, 1e-25, size=(1440, 2)) onesdata = np.ones((1440, 2)) detector = "H1" @classmethod def setup_class(cls): # create a pulsar parameter file parcontent = """\ PSRJ J0123+3456 RAJ 01:23:45.6789 DECJ 34:56:54.321 F0 567.89 F1 -1.2e-12 PEPOCH 56789 H0 9.87e-26 COSIOTA 0.3 PSI 1.1 PHI0 2.4 """ # add content to the par file with open("J0123+3456.par", "w") as fp: fp.write(parcontent) @classmethod def teardown_class(cls): os.remove("J0123+3456.par") def test_wrong_inputs(self): """ Test that exceptions are raised for incorrect inputs to the TargetedPulsarLikelihood. """ with pytest.raises(TypeError): TargetedPulsarLikelihood(None, None) # create HeterodynedData object (no par file) het = HeterodynedData(self.data, times=self.times, detector=self.detector) priors = dict() priors["h0"] = Uniform(0.0, 1.0e-23, "h0") # error with no par file with pytest.raises(ValueError): TargetedPulsarLikelihood(het, PriorDict(priors)) het = HeterodynedData( self.data, times=self.times, detector=self.detector, par=self.parfile ) mhet = MultiHeterodynedData(het) # multihet object for testing with pytest.raises(TypeError): TargetedPulsarLikelihood(het, None) with pytest.raises(TypeError): TargetedPulsarLikelihood(mhet, None) def test_priors(self): """ Test the parsed priors. """ # bad priors (unexpected parameter names) priors = dict() priors["a"] = Uniform(0.0, 1.0, "blah") priors["b"] = 2.0 het = HeterodynedData( self.data, times=self.times, detector=self.detector, par=self.parfile ) with pytest.raises(ValueError): _ = TargetedPulsarLikelihood(het, PriorDict(priors)) def test_wrong_likelihood(self): """ Test with a bad likelihood name. """ het = HeterodynedData( self.data, times=self.times, detector=self.detector, par=self.parfile ) priors = dict() priors["h0"] = Uniform(0.0, 1.0e-23, "h0") with pytest.raises(ValueError): _ = TargetedPulsarLikelihood(het, PriorDict(priors), likelihood="blah") def test_likelihood_null_likelihood(self): """ Test likelihood and null likelihood. """ het = HeterodynedData( self.data, times=self.times, detector=self.detector, par=self.parfile ) priors = dict() priors["h0"] = Uniform(0.0, 1.0e-23, "h0") for likelihood in ["gaussian", "studentst"]: like = TargetedPulsarLikelihood( het, PriorDict(priors), likelihood=likelihood ) like.parameters = {"h0": 0.0} assert like.log_likelihood() == like.noise_log_likelihood() def test_numba_likelihood(self): """ Test likelihood using numba against the standard likelihood. """ het = HeterodynedData( self.data, times=self.times, detector=self.detector, par=self.parfile ) priors = dict() priors["h0"] = Uniform(0.0, 1.0e-23, "h0") for likelihood in ["gaussian", "studentst"]: like1 = TargetedPulsarLikelihood( het, PriorDict(priors), likelihood=likelihood ) like1.parameters = {"h0": 1e-24} like2 = TargetedPulsarLikelihood( het, PriorDict(priors), likelihood=likelihood, numba=True ) like2.parameters = {"h0": 1e-24} assert np.allclose( [like1.log_likelihood()], [like2.log_likelihood()], atol=1e-10, rtol=0.0 )
[ "numpy.random.normal", "cwinpy.HeterodynedData", "numpy.ones", "cwinpy.MultiHeterodynedData", "cwinpy.TargetedPulsarLikelihood", "numpy.linspace", "pytest.raises", "bilby.core.prior.PriorDict", "bilby.core.prior.Uniform", "os.remove" ]
[((372, 417), 'numpy.linspace', 'np.linspace', (['(1000000000.0)', '(1000086340.0)', '(1440)'], {}), '(1000000000.0, 1000086340.0, 1440)\n', (383, 417), True, 'import numpy as np\n'), ((429, 473), 'numpy.random.normal', 'np.random.normal', (['(0.0)', '(1e-25)'], {'size': '(1440, 2)'}), '(0.0, 1e-25, size=(1440, 2))\n', (445, 473), True, 'import numpy as np\n'), ((489, 507), 'numpy.ones', 'np.ones', (['(1440, 2)'], {}), '((1440, 2))\n', (496, 507), True, 'import numpy as np\n'), ((989, 1016), 'os.remove', 'os.remove', (['"""J0123+3456.par"""'], {}), "('J0123+3456.par')\n", (998, 1016), False, 'import os\n'), ((1335, 1403), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector'}), '(self.data, times=self.times, detector=self.detector)\n', (1350, 1403), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((1452, 1477), 'bilby.core.prior.Uniform', 'Uniform', (['(0.0)', '(1e-23)', '"""h0"""'], {}), "(0.0, 1e-23, 'h0')\n", (1459, 1477), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((1630, 1721), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector', 'par': 'self.parfile'}), '(self.data, times=self.times, detector=self.detector, par=\n self.parfile)\n', (1645, 1721), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((1754, 1779), 'cwinpy.MultiHeterodynedData', 'MultiHeterodynedData', (['het'], {}), '(het)\n', (1774, 1779), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((2169, 2194), 'bilby.core.prior.Uniform', 'Uniform', (['(0.0)', '(1.0)', '"""blah"""'], {}), "(0.0, 1.0, 'blah')\n", (2176, 2194), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((2236, 2327), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector', 'par': 'self.parfile'}), '(self.data, times=self.times, detector=self.detector, par=\n self.parfile)\n', (2251, 2327), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((2569, 2660), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector', 'par': 'self.parfile'}), '(self.data, times=self.times, detector=self.detector, par=\n self.parfile)\n', (2584, 2660), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((2726, 2751), 'bilby.core.prior.Uniform', 'Uniform', (['(0.0)', '(1e-23)', '"""h0"""'], {}), "(0.0, 1e-23, 'h0')\n", (2733, 2751), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((3011, 3102), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector', 'par': 'self.parfile'}), '(self.data, times=self.times, detector=self.detector, par=\n self.parfile)\n', (3026, 3102), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((3168, 3193), 'bilby.core.prior.Uniform', 'Uniform', (['(0.0)', '(1e-23)', '"""h0"""'], {}), "(0.0, 1e-23, 'h0')\n", (3175, 3193), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((3632, 3723), 'cwinpy.HeterodynedData', 'HeterodynedData', (['self.data'], {'times': 'self.times', 'detector': 'self.detector', 'par': 'self.parfile'}), '(self.data, times=self.times, detector=self.detector, par=\n self.parfile)\n', (3647, 3723), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((3789, 3814), 'bilby.core.prior.Uniform', 'Uniform', (['(0.0)', '(1e-23)', '"""h0"""'], {}), "(0.0, 1e-23, 'h0')\n", (3796, 3814), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((1191, 1215), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1204, 1215), False, 'import pytest\n'), ((1229, 1265), 'cwinpy.TargetedPulsarLikelihood', 'TargetedPulsarLikelihood', (['None', 'None'], {}), '(None, None)\n', (1253, 1265), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((1527, 1552), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1540, 1552), False, 'import pytest\n'), ((1825, 1849), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1838, 1849), False, 'import pytest\n'), ((1863, 1898), 'cwinpy.TargetedPulsarLikelihood', 'TargetedPulsarLikelihood', (['het', 'None'], {}), '(het, None)\n', (1887, 1898), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((1913, 1937), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1926, 1937), False, 'import pytest\n'), ((1951, 1987), 'cwinpy.TargetedPulsarLikelihood', 'TargetedPulsarLikelihood', (['mhet', 'None'], {}), '(mhet, None)\n', (1975, 1987), False, 'from cwinpy import HeterodynedData, MultiHeterodynedData, TargetedPulsarLikelihood\n'), ((2359, 2384), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2372, 2384), False, 'import pytest\n'), ((2768, 2793), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2781, 2793), False, 'import pytest\n'), ((1596, 1613), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (1605, 1613), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((2432, 2449), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (2441, 2449), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((2841, 2858), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (2850, 2858), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((3316, 3333), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (3325, 3333), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((3938, 3955), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (3947, 3955), False, 'from bilby.core.prior import PriorDict, Uniform\n'), ((4106, 4123), 'bilby.core.prior.PriorDict', 'PriorDict', (['priors'], {}), '(priors)\n', (4115, 4123), False, 'from bilby.core.prior import PriorDict, Uniform\n')]
############################################################################### # mockDensData.py: generate mock data following a given density ############################################################################### import os, os.path import pickle import multiprocessing from optparse import OptionParser import numpy from scipy import ndimage import fitsio from galpy.util import bovy_coords, multi import mwdust import define_rcsample import fitDens import densprofiles dmap= None dmapg15= None apo= None def generate(locations, type='exp', sample='lowlow', extmap='green15', nls=101, nmock=1000, H0=-1.49, _dmapg15=None, ncpu=1): """ NAME: generate PURPOSE: generate mock data following a given density INPUT: locations - locations to be included in the sample type= ('exp') type of density profile to sample from sample= ('lowlow') for selecting mock parameters extmap= ('green15') extinction map to use ('marshall06' and others use Green15 to fill in unobserved regions) nls= (101) number of longitude bins to use for each field nmock= (1000) number of mock data points to generate H0= (-1.49) absolute magnitude (can be array w/ sampling spread) ncpu= (1) number of cpus to use to compute the probability OUTPUT: mockdata recarray with tags 'RC_GALR_H', 'RC_GALPHI_H', 'RC_GALZ_H' HISTORY: 2015-04-03 - Written - Bovy (IAS) """ if isinstance(H0,float): H0= [H0] # Setup the density function and its initial parameters rdensfunc= fitDens._setup_densfunc(type) mockparams= _setup_mockparams_densfunc(type,sample) densfunc= lambda x,y,z: rdensfunc(x,y,z,params=mockparams) # Setup the extinction map global dmap global dmapg15 if _dmapg15 is None: dmapg15= mwdust.Green15(filter='2MASS H') else: dmapg15= _dmapg15 if isinstance(extmap,mwdust.DustMap3D.DustMap3D): dmap= extmap elif extmap.lower() == 'green15': dmap= dmapg15 elif extmap.lower() == 'marshall06': dmap= mwdust.Marshall06(filter='2MASS H') elif extmap.lower() == 'sale14': dmap= mwdust.Sale14(filter='2MASS H') elif extmap.lower() == 'drimmel03': dmap= mwdust.Drimmel03(filter='2MASS H') # Use brute-force rejection sampling to make no approximations # First need to estimate the max probability to use in rejection; # Loop through all locations and compute sampling probability on grid in # (l,b,D) # First restore the APOGEE selection function (assumed pre-computed) global apo selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) # Now compute the necessary coordinate transformations and evaluate the # maximum probability distmods= numpy.linspace(7.,15.5,301) ds= 10.**(distmods/5-2.) nbs= nls lnprobs= numpy.empty((len(locations),len(distmods),nbs,nls)) radii= [] lcens, bcens= [], [] lnprobs= multi.parallel_map(lambda x: _calc_lnprob(locations[x],nls,nbs, ds,distmods, H0, densfunc), range(len(locations)), numcores=numpy.amin([len(locations), multiprocessing.cpu_count(),ncpu])) lnprobs= numpy.array(lnprobs) for ll, loc in enumerate(locations): lcen, bcen= apo.glonGlat(loc) rad= apo.radius(loc) radii.append(rad) # save for later lcens.append(lcen[0]) bcens.append(bcen[0]) maxp= (numpy.exp(numpy.nanmax(lnprobs))-10.**-8.)*1.1 # Just to be sure # Now generate mock data using rejection sampling nout= 0 arlocations= numpy.array(locations) arradii= numpy.array(radii) arlcens= numpy.array(lcens) arbcens= numpy.array(bcens) out= numpy.recarray((nmock,), dtype=[('RC_DIST_H','f8'), ('RC_DM_H','f8'), ('RC_GALR_H','f8'), ('RC_GALPHI_H','f8'), ('RC_GALZ_H','f8')]) while nout < nmock: nnew= 2*(nmock-nout) # nnew new locations locIndx= numpy.floor(numpy.random.uniform(size=nnew)*len(locations)).astype('int') newlocations= arlocations[locIndx] # Point within these locations newds_coord= numpy.random.uniform(size=nnew) newds= 10.**((newds_coord*(numpy.amax(distmods)-numpy.amin(distmods))\ +numpy.amin(distmods))/5.-2.) newdls_coord= numpy.random.uniform(size=nnew) newdls= newdls_coord*2.*arradii[locIndx]\ -arradii[locIndx] newdbs_coord= numpy.random.uniform(size=nnew) newdbs= newdbs_coord*2.*arradii[locIndx]\ -arradii[locIndx] newr2s= newdls**2.+newdbs**2. keepIndx= newr2s < arradii[locIndx]**2. newlocations= newlocations[keepIndx] newds_coord= newds_coord[keepIndx] newdls_coord= newdls_coord[keepIndx] newdbs_coord= newdbs_coord[keepIndx] newds= newds[keepIndx] newdls= newdls[keepIndx] newdbs= newdbs[keepIndx] newls= newdls+arlcens[locIndx][keepIndx] newbs= newdbs+arbcens[locIndx][keepIndx] # Reject? tps= numpy.zeros_like(newds) for nloc in list(set(newlocations)): lindx= newlocations == nloc pindx= arlocations == nloc coord= numpy.array([newds_coord[lindx]*(len(distmods)-1.), newdbs_coord[lindx]*(nbs-1.), newdls_coord[lindx]*(nls-1.)]) tps[lindx]= \ numpy.exp(ndimage.interpolation.map_coordinates(\ lnprobs[pindx][0], coord,cval=-10., order=1))-10.**-8. XYZ= bovy_coords.lbd_to_XYZ(newls,newbs,newds,degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rcsample._R0, Ysun=0., Zsun=define_rcsample._Z0) testp= numpy.random.uniform(size=len(newds))*maxp keepIndx= tps > testp if numpy.sum(keepIndx) > nmock-nout: rangeIndx= numpy.zeros(len(keepIndx),dtype='int') rangeIndx[keepIndx]= numpy.arange(numpy.sum(keepIndx)) keepIndx*= (rangeIndx < nmock-nout) out['RC_DIST_H'][nout:nout+numpy.sum(keepIndx)]= newds[keepIndx] out['RC_DM_H'][nout:nout+numpy.sum(keepIndx)]= newds_coord[keepIndx]*(numpy.amax(distmods)-numpy.amin(distmods))\ +numpy.amin(distmods) out['RC_GALR_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[0][keepIndx] out['RC_GALPHI_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[1][keepIndx] out['RC_GALZ_H'][nout:nout+numpy.sum(keepIndx)]= Rphiz[2][keepIndx] nout= nout+numpy.sum(keepIndx) return (out,lnprobs) def _setup_mockparams_densfunc(type,sample): """Return the parameters of the mock density for this type""" if type.lower() == 'exp': if sample.lower() == 'lowlow': return [0.,1./0.3] elif sample.lower() == 'solar': return [1./3.,1./0.3] else: return [1./3.,1./0.3] elif type.lower() == 'expplusconst': if sample.lower() == 'lowlow': return [0.,1./0.3,numpy.log(0.1)] else: return [1./3.,1./0.3,numpy.log(0.1)] elif type.lower() == 'twoexp': return [1./3.,1./0.3,1./4.,1./0.5,densprofiles.logit(0.5)] elif type.lower() == 'brokenexp': if sample.lower() == 'lowlow': return [-0.2,1./.3,0.2,numpy.log(11.)] elif sample.lower() == 'solar': return [-1./6.,1./0.3,1./2.,numpy.log(8.)] else: return [-1./6.,1./0.3,1./2.,numpy.log(6.)] elif type.lower() == 'brokenexpflare': if sample.lower() == 'lowlow': return [-0.2,1./.3,0.2,numpy.log(11.),-0.1] elif sample.lower() == 'solar': return [-1./6.,1./0.3,1./2.,numpy.log(8.),-0.1] else: return [-1./6.,1./0.3,1./2.,numpy.log(6.),-0.1] elif type.lower() == 'gaussexp': if sample.lower() == 'lowlow': return [.4,1./0.3,numpy.log(11.)] else: return [1./3.,1./0.3,numpy.log(10.)] def _calc_lnprob(loc,nls,nbs,ds,distmods,H0,densfunc): lcen, bcen= apo.glonGlat(loc) rad= apo.radius(loc) ls= numpy.linspace(lcen-rad,lcen+rad,nls) bs= numpy.linspace(bcen-rad,bcen+rad,nbs) # Tile these tls= numpy.tile(ls,(len(ds),len(bs),1)) tbs= numpy.swapaxes(numpy.tile(bs,(len(ds),len(ls),1)),1,2) tds= numpy.tile(ds,(len(ls),len(bs),1)).T XYZ= bovy_coords.lbd_to_XYZ(tls.flatten(), tbs.flatten(), tds.flatten(), degree=True) Rphiz= bovy_coords.XYZ_to_galcencyl(XYZ[:,0],XYZ[:,1],XYZ[:,2], Xsun=define_rcsample._R0, Ysun=0., Zsun=define_rcsample._Z0) # Evaluate probability density tH= numpy.tile(distmods.T,(1,len(ls),len(bs),1))[0].T for ii in range(tH.shape[1]): for jj in range(tH.shape[2]): try: tH[:,ii,jj]+= dmap(ls[jj],bs[ii],ds) except (IndexError, TypeError,ValueError): try: tH[:,ii,jj]+= dmapg15(ls[jj],bs[ii],ds) except IndexError: # assume zero outside pass tH= tH.flatten()+H0[0] ps= densfunc(Rphiz[0],Rphiz[1],Rphiz[2])*apo(loc,tH)\ *numpy.fabs(numpy.cos(tbs.flatten()/180.*numpy.pi))\ *tds.flatten()**3. return numpy.log(numpy.reshape(ps,(len(distmods),nbs,nls))\ +10.**-8.) def get_options(): usage = "usage: %prog [options] <savefilename>\n\nsavefilename= name of the file that the mock data will be saved to" parser = OptionParser(usage=usage) parser.add_option("--type",dest='type',default='exp', help="Type of density profile") parser.add_option("--sample",dest='sample',default='lowlow', help="Sample parameter for mock parameters") parser.add_option("--H0",dest='H0',default=-1.49,type='float', help="RC absolute magnitude") parser.add_option("--nls",dest='nls',default=101,type='int', help="Number of longitudes to bin each field in") parser.add_option("--nmock",dest='nmock',default=20000,type='int', help="Number of mock samples to generate") # Dust map to use parser.add_option("--extmap",dest='extmap',default='green15', help="Dust map to use ('Green15', 'Marshall03', 'Drimmel03', 'Sale14', or 'zero'") # Multiprocessing? parser.add_option("-m","--multi",dest='multi',default=1,type='int', help="number of cpus to use") return parser if __name__ == '__main__': parser= get_options() options, args= parser.parse_args() data= define_rcsample.get_rcsample() locations= list(set(list(data['LOCATION_ID']))) #locations= [4240,4242] out= generate(locations, type=options.type, sample=options.sample, extmap=options.extmap, nls=options.nls, nmock=options.nmock, H0=options.H0, ncpu=options.multi) fitsio.write(args[0],out[0],clobber=True)
[ "mwdust.Drimmel03", "define_rcsample.get_rcsample", "densprofiles.logit", "numpy.log", "multiprocessing.cpu_count", "numpy.array", "mwdust.Green15", "os.path.exists", "numpy.linspace", "numpy.nanmax", "numpy.amax", "numpy.amin", "mwdust.Marshall06", "pickle.load", "galpy.util.bovy_coords.XYZ_to_galcencyl", "mwdust.Sale14", "scipy.ndimage.interpolation.map_coordinates", "fitsio.write", "optparse.OptionParser", "fitDens._setup_densfunc", "galpy.util.bovy_coords.lbd_to_XYZ", "numpy.sum", "numpy.recarray", "numpy.random.uniform", "numpy.zeros_like" ]
[((1685, 1714), 'fitDens._setup_densfunc', 'fitDens._setup_densfunc', (['type'], {}), '(type)\n', (1708, 1714), False, 'import fitDens\n'), ((2767, 2793), 'os.path.exists', 'os.path.exists', (['selectFile'], {}), '(selectFile)\n', (2781, 2793), False, 'import os, os.path\n'), ((2999, 3029), 'numpy.linspace', 'numpy.linspace', (['(7.0)', '(15.5)', '(301)'], {}), '(7.0, 15.5, 301)\n', (3013, 3029), False, 'import numpy\n'), ((3669, 3689), 'numpy.array', 'numpy.array', (['lnprobs'], {}), '(lnprobs)\n', (3680, 3689), False, 'import numpy\n'), ((4060, 4082), 'numpy.array', 'numpy.array', (['locations'], {}), '(locations)\n', (4071, 4082), False, 'import numpy\n'), ((4096, 4114), 'numpy.array', 'numpy.array', (['radii'], {}), '(radii)\n', (4107, 4114), False, 'import numpy\n'), ((4128, 4146), 'numpy.array', 'numpy.array', (['lcens'], {}), '(lcens)\n', (4139, 4146), False, 'import numpy\n'), ((4160, 4178), 'numpy.array', 'numpy.array', (['bcens'], {}), '(bcens)\n', (4171, 4178), False, 'import numpy\n'), ((4188, 4330), 'numpy.recarray', 'numpy.recarray', (['(nmock,)'], {'dtype': "[('RC_DIST_H', 'f8'), ('RC_DM_H', 'f8'), ('RC_GALR_H', 'f8'), (\n 'RC_GALPHI_H', 'f8'), ('RC_GALZ_H', 'f8')]"}), "((nmock,), dtype=[('RC_DIST_H', 'f8'), ('RC_DM_H', 'f8'), (\n 'RC_GALR_H', 'f8'), ('RC_GALPHI_H', 'f8'), ('RC_GALZ_H', 'f8')])\n", (4202, 4330), False, 'import numpy\n'), ((8910, 8953), 'numpy.linspace', 'numpy.linspace', (['(lcen - rad)', '(lcen + rad)', 'nls'], {}), '(lcen - rad, lcen + rad, nls)\n', (8924, 8953), False, 'import numpy\n'), ((8956, 8999), 'numpy.linspace', 'numpy.linspace', (['(bcen - rad)', '(bcen + rad)', 'nbs'], {}), '(bcen - rad, bcen + rad, nbs)\n', (8970, 8999), False, 'import numpy\n'), ((9362, 9490), 'galpy.util.bovy_coords.XYZ_to_galcencyl', 'bovy_coords.XYZ_to_galcencyl', (['XYZ[:, 0]', 'XYZ[:, 1]', 'XYZ[:, 2]'], {'Xsun': 'define_rcsample._R0', 'Ysun': '(0.0)', 'Zsun': 'define_rcsample._Z0'}), '(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Xsun=\n define_rcsample._R0, Ysun=0.0, Zsun=define_rcsample._Z0)\n', (9390, 9490), False, 'from galpy.util import bovy_coords, multi\n'), ((10481, 10506), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (10493, 10506), False, 'from optparse import OptionParser\n'), ((11604, 11634), 'define_rcsample.get_rcsample', 'define_rcsample.get_rcsample', ([], {}), '()\n', (11632, 11634), False, 'import define_rcsample\n'), ((12012, 12055), 'fitsio.write', 'fitsio.write', (['args[0]', 'out[0]'], {'clobber': '(True)'}), '(args[0], out[0], clobber=True)\n', (12024, 12055), False, 'import fitsio\n'), ((1937, 1969), 'mwdust.Green15', 'mwdust.Green15', ([], {'filter': '"""2MASS H"""'}), "(filter='2MASS H')\n", (1951, 1969), False, 'import mwdust\n'), ((4745, 4776), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': 'nnew'}), '(size=nnew)\n', (4765, 4776), False, 'import numpy\n'), ((4920, 4951), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': 'nnew'}), '(size=nnew)\n', (4940, 4951), False, 'import numpy\n'), ((5054, 5085), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': 'nnew'}), '(size=nnew)\n', (5074, 5085), False, 'import numpy\n'), ((5656, 5679), 'numpy.zeros_like', 'numpy.zeros_like', (['newds'], {}), '(newds)\n', (5672, 5679), False, 'import numpy\n'), ((6220, 6276), 'galpy.util.bovy_coords.lbd_to_XYZ', 'bovy_coords.lbd_to_XYZ', (['newls', 'newbs', 'newds'], {'degree': '(True)'}), '(newls, newbs, newds, degree=True)\n', (6242, 6276), False, 'from galpy.util import bovy_coords, multi\n'), ((6289, 6417), 'galpy.util.bovy_coords.XYZ_to_galcencyl', 'bovy_coords.XYZ_to_galcencyl', (['XYZ[:, 0]', 'XYZ[:, 1]', 'XYZ[:, 2]'], {'Xsun': 'define_rcsample._R0', 'Ysun': '(0.0)', 'Zsun': 'define_rcsample._Z0'}), '(XYZ[:, 0], XYZ[:, 1], XYZ[:, 2], Xsun=\n define_rcsample._R0, Ysun=0.0, Zsun=define_rcsample._Z0)\n', (6317, 6417), False, 'from galpy.util import bovy_coords, multi\n'), ((2860, 2881), 'pickle.load', 'pickle.load', (['savefile'], {}), '(savefile)\n', (2871, 2881), False, 'import pickle\n'), ((6639, 6658), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (6648, 6658), False, 'import numpy\n'), ((7058, 7078), 'numpy.amin', 'numpy.amin', (['distmods'], {}), '(distmods)\n', (7068, 7078), False, 'import numpy\n'), ((7328, 7347), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (7337, 7347), False, 'import numpy\n'), ((2188, 2223), 'mwdust.Marshall06', 'mwdust.Marshall06', ([], {'filter': '"""2MASS H"""'}), "(filter='2MASS H')\n", (2205, 2223), False, 'import mwdust\n'), ((3922, 3943), 'numpy.nanmax', 'numpy.nanmax', (['lnprobs'], {}), '(lnprobs)\n', (3934, 3943), False, 'import numpy\n'), ((6781, 6800), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (6790, 6800), False, 'import numpy\n'), ((2275, 2306), 'mwdust.Sale14', 'mwdust.Sale14', ([], {'filter': '"""2MASS H"""'}), "(filter='2MASS H')\n", (2288, 2306), False, 'import mwdust\n'), ((3620, 3647), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (3645, 3647), False, 'import multiprocessing\n'), ((6052, 6140), 'scipy.ndimage.interpolation.map_coordinates', 'ndimage.interpolation.map_coordinates', (['lnprobs[pindx][0]', 'coord'], {'cval': '(-10.0)', 'order': '(1)'}), '(lnprobs[pindx][0], coord, cval=-10.0,\n order=1)\n', (6089, 6140), False, 'from scipy import ndimage\n'), ((6885, 6904), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (6894, 6904), False, 'import numpy\n'), ((6956, 6975), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (6965, 6975), False, 'import numpy\n'), ((7001, 7021), 'numpy.amax', 'numpy.amax', (['distmods'], {}), '(distmods)\n', (7011, 7021), False, 'import numpy\n'), ((7022, 7042), 'numpy.amin', 'numpy.amin', (['distmods'], {}), '(distmods)\n', (7032, 7042), False, 'import numpy\n'), ((7114, 7133), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (7123, 7133), False, 'import numpy\n'), ((7192, 7211), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (7201, 7211), False, 'import numpy\n'), ((7268, 7287), 'numpy.sum', 'numpy.sum', (['keepIndx'], {}), '(keepIndx)\n', (7277, 7287), False, 'import numpy\n'), ((7817, 7831), 'numpy.log', 'numpy.log', (['(0.1)'], {}), '(0.1)\n', (7826, 7831), False, 'import numpy\n'), ((7880, 7894), 'numpy.log', 'numpy.log', (['(0.1)'], {}), '(0.1)\n', (7889, 7894), False, 'import numpy\n'), ((7973, 7996), 'densprofiles.logit', 'densprofiles.logit', (['(0.5)'], {}), '(0.5)\n', (7991, 7996), False, 'import densprofiles\n'), ((2361, 2395), 'mwdust.Drimmel03', 'mwdust.Drimmel03', ([], {'filter': '"""2MASS H"""'}), "(filter='2MASS H')\n", (2377, 2395), False, 'import mwdust\n'), ((4580, 4611), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': 'nnew'}), '(size=nnew)\n', (4600, 4611), False, 'import numpy\n'), ((4869, 4889), 'numpy.amin', 'numpy.amin', (['distmods'], {}), '(distmods)\n', (4879, 4889), False, 'import numpy\n'), ((8110, 8125), 'numpy.log', 'numpy.log', (['(11.0)'], {}), '(11.0)\n', (8119, 8125), False, 'import numpy\n'), ((4812, 4832), 'numpy.amax', 'numpy.amax', (['distmods'], {}), '(distmods)\n', (4822, 4832), False, 'import numpy\n'), ((4833, 4853), 'numpy.amin', 'numpy.amin', (['distmods'], {}), '(distmods)\n', (4843, 4853), False, 'import numpy\n'), ((8206, 8220), 'numpy.log', 'numpy.log', (['(8.0)'], {}), '(8.0)\n', (8215, 8220), False, 'import numpy\n'), ((8275, 8289), 'numpy.log', 'numpy.log', (['(6.0)'], {}), '(6.0)\n', (8284, 8289), False, 'import numpy\n'), ((8407, 8422), 'numpy.log', 'numpy.log', (['(11.0)'], {}), '(11.0)\n', (8416, 8422), False, 'import numpy\n'), ((8508, 8522), 'numpy.log', 'numpy.log', (['(8.0)'], {}), '(8.0)\n', (8517, 8522), False, 'import numpy\n'), ((8582, 8596), 'numpy.log', 'numpy.log', (['(6.0)'], {}), '(6.0)\n', (8591, 8596), False, 'import numpy\n'), ((8708, 8723), 'numpy.log', 'numpy.log', (['(11.0)'], {}), '(11.0)\n', (8717, 8723), False, 'import numpy\n'), ((8771, 8786), 'numpy.log', 'numpy.log', (['(10.0)'], {}), '(10.0)\n', (8780, 8786), False, 'import numpy\n')]
import os import numpy as np import pandas as pd import yaml from . import model as model_lib from . import training, tensorize, io_local def main(): #Turn off warnings: os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" ###Load training data - Put the path to your own data here training_data_path = "/root/training/training_preprocessed.csv" training_df = pd.read_csv(training_data_path) ###Dump all Peptides containing selenocystein training_df = training_df.loc[~training_df.modified_sequence.str.contains("U")] print("CSV Loaded, shape is {}.".format(training_df.shape)) ###Load Untrained Retention Time Model and prepare its training data iRT_model_dir = "/root/training/iRT/" iRT_model, iRT_config = model_lib.load(iRT_model_dir, trained=False) iRT_callbacks = training.get_callbacks(iRT_model_dir) iRT_raw_mean = training_df.uRT.mean() iRT_raw_var = training_df.uRT.var() iRT_config['iRT_rescaling_mean'] = float(iRT_raw_mean) iRT_config['iRT_rescaling_var'] = float(iRT_raw_var) with open(iRT_model_dir + "config_new.yml", "w") as config_outfile: yaml.dump(iRT_config, config_outfile) ###Load Untrained Fragmentation Model and prepare its training data msms_model_dir = "/root/training/msms/" msms_model, msms_config = model_lib.load(msms_model_dir, trained=False) msms_callbacks = training.get_callbacks(msms_model_dir) #The intensity lists are already in proper order, but might have some missing values and need to be padded to the correct length #(Only a peptide of the maximal length 29 will have 522 values, but all lists need to be of this length) intensities_length = 522 print("iRT and Fragmentation Intensity Models Loaded.") #Compile the models once, and then call fit separately - useful if you lack memory or space and have to partition your training data training.compile_model(iRT_model, iRT_config) training.compile_model(msms_model, msms_config) training_tensorized = tensorize.csv(training_df[['modified_sequence', 'collision_energy', 'precursor_charge']], nlosses=3) print("CSV Tensorized.") training_tensorized['prediction'] = np.reshape( np.asarray((training_df.uRT - iRT_raw_mean) / np.sqrt(iRT_raw_var)), (-1,1)) training_df.relative_intensities = training_df.relative_intensities.apply(eval) training_df.relative_intensities = training_df.relative_intensities.apply( lambda ls: np.nan_to_num(np.pad(ls, pad_width=(0,intensities_length-len(ls)),constant_values=-1, mode="constant"),-1)) training_tensorized['intensities_raw'] = np.stack(training_df.relative_intensities) ###Write and reload training data in hdf5 format hdf5_path = "/root/training/training_data.hdf5" io_local.to_hdf5(training_tensorized,hdf5_path) print("Training Data Written to HDF5 File.") #Load the hdf5 again training_loaded = io_local.from_hdf5(hdf5_path) print("Training Data Reloaded from HDF5 File.\nCommencing Training of iRT Model...") ###Train both models iRT_history = training.train_model(training_loaded, iRT_model, iRT_config, iRT_callbacks) iRT_epochs = len(iRT_history.history['val_loss']) iRT_val_loss = iRT_history.history['val_loss'][-1] iRT_weights_filename = "{}/weight_{:02d}_{:.5f}.hdf5".format(iRT_model_dir, iRT_epochs, iRT_val_loss) iRT_model.save_weights(iRT_weights_filename) print("Training of iRT Model Complete.\nCommencing Training of Fragmentation Intensity Model...") msms_history = training.train_model(training_loaded, msms_model, msms_config, msms_callbacks) #Save the weights to a file named by the val_loss and the epochs msms_epochs = len(msms_history.history['val_loss']) msms_val_loss = msms_history.history['val_loss'][-1] msms_weights_filename = "{}/weight_{:02d}_{:.5f}.hdf5".format(msms_model_dir, msms_epochs, msms_val_loss) msms_model.save_weights(msms_weights_filename) print("Training of Fragmentation Intensity Model Complete.") print("Done! You may now use these models for your predictions.") if __name__ == '__main__': main()
[ "numpy.stack", "numpy.sqrt", "pandas.read_csv", "yaml.dump" ]
[((368, 399), 'pandas.read_csv', 'pd.read_csv', (['training_data_path'], {}), '(training_data_path)\n', (379, 399), True, 'import pandas as pd\n'), ((2552, 2594), 'numpy.stack', 'np.stack', (['training_df.relative_intensities'], {}), '(training_df.relative_intensities)\n', (2560, 2594), True, 'import numpy as np\n'), ((1097, 1134), 'yaml.dump', 'yaml.dump', (['iRT_config', 'config_outfile'], {}), '(iRT_config, config_outfile)\n', (1106, 1134), False, 'import yaml\n'), ((2194, 2214), 'numpy.sqrt', 'np.sqrt', (['iRT_raw_var'], {}), '(iRT_raw_var)\n', (2201, 2214), True, 'import numpy as np\n')]
from time import perf_counter import numpy as np from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.metrics import * from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt from hpsklearn import HyperoptEstimator, svc, random_forest, knn from hyperopt import tpe from sklearn.metrics import f1_score def scorer(yt, yp): return 1 - f1_score(yt, yp, average='macro') if __name__=='__main__': np.random.seed(42) train_X = np.load('data/train_X.npy') test_X = np.load('data/test_X.npy') train_Y = np.load('data/train_Y.npy') test_Y = np.load('data/test_Y.npy') estim = HyperoptEstimator(classifier=random_forest('rf'),algo=tpe.suggest,loss_fn=scorer,max_evals=200,trial_timeout=1200) estim.fit(train_X, train_Y) yp = estim.predict(test_X) print(f1_score(test_Y, yp, average='macro'))
[ "sklearn.metrics.f1_score", "numpy.load", "numpy.random.seed", "hpsklearn.random_forest" ]
[((545, 563), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (559, 563), True, 'import numpy as np\n'), ((578, 605), 'numpy.load', 'np.load', (['"""data/train_X.npy"""'], {}), "('data/train_X.npy')\n", (585, 605), True, 'import numpy as np\n'), ((619, 645), 'numpy.load', 'np.load', (['"""data/test_X.npy"""'], {}), "('data/test_X.npy')\n", (626, 645), True, 'import numpy as np\n'), ((660, 687), 'numpy.load', 'np.load', (['"""data/train_Y.npy"""'], {}), "('data/train_Y.npy')\n", (667, 687), True, 'import numpy as np\n'), ((701, 727), 'numpy.load', 'np.load', (['"""data/test_Y.npy"""'], {}), "('data/test_Y.npy')\n", (708, 727), True, 'import numpy as np\n'), ((481, 514), 'sklearn.metrics.f1_score', 'f1_score', (['yt', 'yp'], {'average': '"""macro"""'}), "(yt, yp, average='macro')\n", (489, 514), False, 'from sklearn.metrics import f1_score\n'), ((929, 966), 'sklearn.metrics.f1_score', 'f1_score', (['test_Y', 'yp'], {'average': '"""macro"""'}), "(test_Y, yp, average='macro')\n", (937, 966), False, 'from sklearn.metrics import f1_score\n'), ((770, 789), 'hpsklearn.random_forest', 'random_forest', (['"""rf"""'], {}), "('rf')\n", (783, 789), False, 'from hpsklearn import HyperoptEstimator, svc, random_forest, knn\n')]
import numpy as np from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) print(np.sqrt(eigvals[-1])) print(np.sqrt(eigvals[-2])) # Collect the top k eigenvectors (projected samples) #X_pc = np.column_stack((eigvecs[:, -i] # for i in range(1, n_components + 1))) # scikit-learnの結果と比べてみても, たぶんこれが正しい気がする # ただ結局各成分にスケール因子が入るだけなので、 # 学習という意味ではどちらでも良いのかもしれない X_pc = np.column_stack((np.sqrt(eigvals[-i]) * eigvecs[:, -i] for i in range(1, n_components + 1))) # PCA固有ベクトルvをデータサンプルに直すには X v とする必要がある # ここで正規化された特異ベクトルの間の関係を使う。 # X v_i = sigma_i a_i (sigma_i = sqrt(lambda_i)) # よって sqrt(lambda_i) a_i で主成分方向に基底変換したデータサンプルになる。 return X_pc ## # 本文の後で出てくるバージョン # 計算は一緒で返すものが違うだけ # 固有値と固有ベクトルを返す # def rbf_kernel_pca2(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas import numpy as np from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh ## # カーネルを線形にしてみた # test_kpca.py で使う # def linear_kernel_pca(X, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # 線形カーネル関数は内積(x_i, x_j)とする N = X.shape[0] K = np.ones((N, N)) for i in range(N): for j in range(N): K[i, j] = np.dot(X[i, :], X[j, :]) print(K.shape) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) print(np.sqrt(eigvals[-1])) print(np.sqrt(eigvals[-2])) # Collect the top k eigenvectors (projected samples) #X_pc = np.column_stack((eigvecs[:, -i] # for i in range(1, n_components + 1))) # scikit-learnの結果と比べてみても, たぶんこれが正しい気がする # ただ結局各成分にスケール因子が入るだけなので、 # 学習という意味ではどちらでも良いのかもしれない X_pc = np.column_stack((np.sqrt(eigvals[-i]) * eigvecs[:, -i] for i in range(1, n_components + 1))) # PCA固有ベクトルvをデータサンプルに直すには X v とする必要がある # ここで正規化された特異ベクトルの間の関係を使う。 # X v_i = sigma_i a_i (sigma_i = sqrt(lambda_i)) # よって sqrt(lambda_i) a_i で主成分方向に基底変換したデータサンプルになる。 return X_pc
[ "scipy.linalg.eigh", "scipy.spatial.distance.squareform", "numpy.sqrt", "numpy.ones", "scipy.exp", "scipy.spatial.distance.pdist", "numpy.dot" ]
[((660, 683), 'scipy.spatial.distance.pdist', 'pdist', (['X', '"""sqeuclidean"""'], {}), "(X, 'sqeuclidean')\n", (665, 683), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((759, 779), 'scipy.spatial.distance.squareform', 'squareform', (['sq_dists'], {}), '(sq_dists)\n', (769, 779), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((832, 858), 'scipy.exp', 'exp', (['(-gamma * mat_sq_dists)'], {}), '(-gamma * mat_sq_dists)\n', (835, 858), False, 'from scipy import exp\n'), ((1138, 1145), 'scipy.linalg.eigh', 'eigh', (['K'], {}), '(K)\n', (1142, 1145), False, 'from scipy.linalg import eigh\n'), ((2460, 2483), 'scipy.spatial.distance.pdist', 'pdist', (['X', '"""sqeuclidean"""'], {}), "(X, 'sqeuclidean')\n", (2465, 2483), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((2559, 2579), 'scipy.spatial.distance.squareform', 'squareform', (['sq_dists'], {}), '(sq_dists)\n', (2569, 2579), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((2632, 2658), 'scipy.exp', 'exp', (['(-gamma * mat_sq_dists)'], {}), '(-gamma * mat_sq_dists)\n', (2635, 2658), False, 'from scipy import exp\n'), ((2938, 2945), 'scipy.linalg.eigh', 'eigh', (['K'], {}), '(K)\n', (2942, 2945), False, 'from scipy.linalg import eigh\n'), ((3906, 3921), 'numpy.ones', 'np.ones', (['(N, N)'], {}), '((N, N))\n', (3913, 3921), True, 'import numpy as np\n'), ((4317, 4324), 'scipy.linalg.eigh', 'eigh', (['K'], {}), '(K)\n', (4321, 4324), False, 'from scipy.linalg import eigh\n'), ((923, 938), 'numpy.ones', 'np.ones', (['(N, N)'], {}), '((N, N))\n', (930, 938), True, 'import numpy as np\n'), ((1156, 1176), 'numpy.sqrt', 'np.sqrt', (['eigvals[-1]'], {}), '(eigvals[-1])\n', (1163, 1176), True, 'import numpy as np\n'), ((1188, 1208), 'numpy.sqrt', 'np.sqrt', (['eigvals[-2]'], {}), '(eigvals[-2])\n', (1195, 1208), True, 'import numpy as np\n'), ((2723, 2738), 'numpy.ones', 'np.ones', (['(N, N)'], {}), '((N, N))\n', (2730, 2738), True, 'import numpy as np\n'), ((4102, 4117), 'numpy.ones', 'np.ones', (['(N, N)'], {}), '((N, N))\n', (4109, 4117), True, 'import numpy as np\n'), ((4335, 4355), 'numpy.sqrt', 'np.sqrt', (['eigvals[-1]'], {}), '(eigvals[-1])\n', (4342, 4355), True, 'import numpy as np\n'), ((4367, 4387), 'numpy.sqrt', 'np.sqrt', (['eigvals[-2]'], {}), '(eigvals[-2])\n', (4374, 4387), True, 'import numpy as np\n'), ((3994, 4018), 'numpy.dot', 'np.dot', (['X[i, :]', 'X[j, :]'], {}), '(X[i, :], X[j, :])\n', (4000, 4018), True, 'import numpy as np\n'), ((1516, 1536), 'numpy.sqrt', 'np.sqrt', (['eigvals[-i]'], {}), '(eigvals[-i])\n', (1523, 1536), True, 'import numpy as np\n'), ((4695, 4715), 'numpy.sqrt', 'np.sqrt', (['eigvals[-i]'], {}), '(eigvals[-i])\n', (4702, 4715), True, 'import numpy as np\n')]
# %% import timeit import tqdm from os import path import inspect import numpy as np import dill import init import fastg3.crisp as g3crisp from plot_utils import plot_bench from constants import N_REPEATS, N_STEPS, DILL_FOLDER from number_utils import format_number from dataset_utils import AVAILABLE_DATASETS, load_dataset MAX_SYN = 100000000 def gen_setup(dataset_name, f): return f''' import init import fastg3.crisp as g3crisp from sql_utils import g3_sql_bench from dataset_utils import load_dataset df, X, Y = load_dataset('{dataset_name}', n_tuples_syn={MAX_SYN}) df = df.sample(frac={str(f)}, replace=False, random_state=27) ''' def time_test(dataset_name, frac_samples): to_benchmark, labels = init.gen_time_benchmark() for f in tqdm.tqdm(frac_samples): setup=gen_setup(dataset_name, f) for cmd in to_benchmark: if cmd != 'G3_SQL': duration_mean = timeit.timeit(cmd, setup=setup, number=N_REPEATS)/N_REPEATS*1000 to_benchmark[cmd].append(duration_mean) else: exec(setup) to_benchmark[cmd].append(1000*eval(f'g3_sql_bench(df, X, Y, n_repeats={N_REPEATS})')) yaxis_name=f"Average time on {str(N_REPEATS)} runs (ms)" return to_benchmark, labels, yaxis_name def approx_test(dataset_name, frac_samples): to_benchmark, labels = init.gen_sampling_benchmark() for f in tqdm.tqdm(frac_samples): setup=gen_setup(dataset_name, f) exec(setup) true_g3=eval('g3crisp.g3_hash(df, X, Y)') for cmd in to_benchmark: to_benchmark[cmd].append(abs(true_g3-eval(cmd))) yaxis_name=f"Absolute error"# mean on {str(N_REPEATS)} runs" return to_benchmark, labels, yaxis_name if __name__ == '__main__': STEP=1/N_STEPS frac_samples = list(np.arange(STEP, 1+STEP, STEP)) for dataset_name in AVAILABLE_DATASETS: for test_name in ['time', 'approx']: script_name = inspect.stack()[0].filename.split('.')[0] file_path = './'+path.join(DILL_FOLDER, f'{script_name}_{test_name}_{dataset_name}.d') if path.isfile(file_path): print(f'{file_path} found! Skipping...') continue else: print(f'{file_path} in progress...') if test_name=='time': to_benchmark, labels, yaxis_name = time_test(dataset_name, frac_samples) else: to_benchmark, labels, yaxis_name = approx_test(dataset_name, frac_samples) fig, ax = plot_bench(to_benchmark, frac_samples, labels, xlabel="Number of tuples", ylabel=yaxis_name, logy=False, savefig=False ) if dataset_name=='syn': dataset_size=MAX_SYN else: dataset_size = len(load_dataset(dataset_name)[0].index) ax.xaxis.set_major_formatter(lambda x, pos: format_number(x*dataset_size)) dill.dump((fig, {"dataset_size": dataset_size}), open(file_path, "wb"))
[ "init.gen_sampling_benchmark", "number_utils.format_number", "inspect.stack", "tqdm.tqdm", "os.path.join", "os.path.isfile", "dataset_utils.load_dataset", "timeit.timeit", "plot_utils.plot_bench", "numpy.arange", "init.gen_time_benchmark" ]
[((718, 743), 'init.gen_time_benchmark', 'init.gen_time_benchmark', ([], {}), '()\n', (741, 743), False, 'import init\n'), ((757, 780), 'tqdm.tqdm', 'tqdm.tqdm', (['frac_samples'], {}), '(frac_samples)\n', (766, 780), False, 'import tqdm\n'), ((1367, 1396), 'init.gen_sampling_benchmark', 'init.gen_sampling_benchmark', ([], {}), '()\n', (1394, 1396), False, 'import init\n'), ((1410, 1433), 'tqdm.tqdm', 'tqdm.tqdm', (['frac_samples'], {}), '(frac_samples)\n', (1419, 1433), False, 'import tqdm\n'), ((1824, 1855), 'numpy.arange', 'np.arange', (['STEP', '(1 + STEP)', 'STEP'], {}), '(STEP, 1 + STEP, STEP)\n', (1833, 1855), True, 'import numpy as np\n'), ((2126, 2148), 'os.path.isfile', 'path.isfile', (['file_path'], {}), '(file_path)\n', (2137, 2148), False, 'from os import path\n'), ((2558, 2681), 'plot_utils.plot_bench', 'plot_bench', (['to_benchmark', 'frac_samples', 'labels'], {'xlabel': '"""Number of tuples"""', 'ylabel': 'yaxis_name', 'logy': '(False)', 'savefig': '(False)'}), "(to_benchmark, frac_samples, labels, xlabel='Number of tuples',\n ylabel=yaxis_name, logy=False, savefig=False)\n", (2568, 2681), False, 'from plot_utils import plot_bench\n'), ((2041, 2110), 'os.path.join', 'path.join', (['DILL_FOLDER', 'f"""{script_name}_{test_name}_{dataset_name}.d"""'], {}), "(DILL_FOLDER, f'{script_name}_{test_name}_{dataset_name}.d')\n", (2050, 2110), False, 'from os import path\n'), ((3010, 3041), 'number_utils.format_number', 'format_number', (['(x * dataset_size)'], {}), '(x * dataset_size)\n', (3023, 3041), False, 'from number_utils import format_number\n'), ((920, 969), 'timeit.timeit', 'timeit.timeit', (['cmd'], {'setup': 'setup', 'number': 'N_REPEATS'}), '(cmd, setup=setup, number=N_REPEATS)\n', (933, 969), False, 'import timeit\n'), ((2917, 2943), 'dataset_utils.load_dataset', 'load_dataset', (['dataset_name'], {}), '(dataset_name)\n', (2929, 2943), False, 'from dataset_utils import AVAILABLE_DATASETS, load_dataset\n'), ((1970, 1985), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (1983, 1985), False, 'import inspect\n')]
# -*- coding: utf-8 -*- # Copyright 2018 <NAME> & <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- import numpy as np from ..utils import to_categorical from .activations import softmax, sigmoid # softmax交叉熵 def softmax_cross_entropy(out, label): # out:神经元的输出值 # label:实际类别或one-hot编码 out, label = np.array(out), np.array(label) assert len(out.shape) == 2 # 输出形状错误 assert len(label.shape) == 1 or len(label.shape) == 2 # 标签形状错误 if len(label.shape) == 1: # 转化为one-hot编码 y = to_categorical(label, num_classes=out.shape[1]) else: if label.shape[1] == 1: y = to_categorical(label.squeeze(), num_classes=out.shape[1]) else: assert label.max() == 1 and label.sum(1).mean() == 1 # 标签one-hot编码错误 y = label yhat = softmax(out) return -np.mean(y * np.log(yhat)) # 交叉熵 def cross_entropy(out, label): # out:神经元的输出值 # label:实际类别或one-hot编码 yhat, label = np.array(out), np.array(label) assert len(out.shape) == 2 # 输出形状错误 assert len(label.shape) == 1 or len(label.shape) == 2 # 标签形状错误 if len(label.shape) == 1: # 转化为one-hot编码 y = to_categorical(label, num_classes=out.shape[1]) else: if label.shape[1] == 1: y = to_categorical(label.squeeze(), num_classes=out.shape[1]) else: assert label.max() == 1 and label.sum(1).mean() == 1 # 标签one-hot编码错误 y = label return -np.mean(y * np.log(yhat)) # 二分类 def sigmoid_binary_cross_entropy(out, label): # out:神经元的输出值 # label:实际类别或one-hot编码 out, y = np.array(out), np.array(label) assert len(out.shape) == 2 and out.shape[1] == 1 # 输出形状错误 assert len(y.shape) == 1 # 标签形状错误 yhat = sigmoid(out) return -np.mean(y * np.log(yhat) + (1 - y) * np.log(1 - yhat)) # 二分类 def binary_cross_entropy(out, label): # out:神经元的输出值 # label:实际类别或one-hot编码 yhat, y = np.array(out), np.array(label) assert len(yhat.shape) == 2 and out.shape[1] == 1 # 输出形状错误 assert len(y.shape) == 1 # 标签形状错误 return -np.mean(y * np.log(yhat) + (1 - y) * np.log(1 - yhat)) # 最小二乘损失 def square_loss(prediction, y): # prediction:预测值 # y:实际值 prediction, y = np.array(prediction), np.array(y) assert (len(prediction.shape) == 2 and prediction.shape[1] == 1) or len(prediction.shape) == 1 # 输出形状错误 assert len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1) # 真实值形状错误 return np.sum(np.sum(np.square(prediction.reshape(-1, 1) - y.reshape(-1, 1)), 1)) # 均方误差 def mse(prediction, y): # prediction:预测值 # y:实际值 prediction, y = np.array(prediction), np.array(y) assert (len(prediction.shape) == 2 and prediction.shape[1] == 1) or len(prediction.shape) == 1 # 输出形状错误 assert len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1) # 真实值形状错误 return np.mean(np.sum(np.square(prediction.reshape(-1, 1) - y.reshape(-1, 1)), 1))
[ "numpy.array", "numpy.log" ]
[((888, 901), 'numpy.array', 'np.array', (['out'], {}), '(out)\n', (896, 901), True, 'import numpy as np\n'), ((903, 918), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (911, 918), True, 'import numpy as np\n'), ((1551, 1564), 'numpy.array', 'np.array', (['out'], {}), '(out)\n', (1559, 1564), True, 'import numpy as np\n'), ((1566, 1581), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (1574, 1581), True, 'import numpy as np\n'), ((2199, 2212), 'numpy.array', 'np.array', (['out'], {}), '(out)\n', (2207, 2212), True, 'import numpy as np\n'), ((2214, 2229), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (2222, 2229), True, 'import numpy as np\n'), ((2539, 2552), 'numpy.array', 'np.array', (['out'], {}), '(out)\n', (2547, 2552), True, 'import numpy as np\n'), ((2554, 2569), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (2562, 2569), True, 'import numpy as np\n'), ((2846, 2866), 'numpy.array', 'np.array', (['prediction'], {}), '(prediction)\n', (2854, 2866), True, 'import numpy as np\n'), ((2868, 2879), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2876, 2879), True, 'import numpy as np\n'), ((3254, 3274), 'numpy.array', 'np.array', (['prediction'], {}), '(prediction)\n', (3262, 3274), True, 'import numpy as np\n'), ((3276, 3287), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (3284, 3287), True, 'import numpy as np\n'), ((1428, 1440), 'numpy.log', 'np.log', (['yhat'], {}), '(yhat)\n', (1434, 1440), True, 'import numpy as np\n'), ((2066, 2078), 'numpy.log', 'np.log', (['yhat'], {}), '(yhat)\n', (2072, 2078), True, 'import numpy as np\n'), ((2384, 2396), 'numpy.log', 'np.log', (['yhat'], {}), '(yhat)\n', (2390, 2396), True, 'import numpy as np\n'), ((2409, 2425), 'numpy.log', 'np.log', (['(1 - yhat)'], {}), '(1 - yhat)\n', (2415, 2425), True, 'import numpy as np\n'), ((2700, 2712), 'numpy.log', 'np.log', (['yhat'], {}), '(yhat)\n', (2706, 2712), True, 'import numpy as np\n'), ((2725, 2741), 'numpy.log', 'np.log', (['(1 - yhat)'], {}), '(1 - yhat)\n', (2731, 2741), True, 'import numpy as np\n')]
#!/usr/bin/env python from __future__ import division, print_function try: range = xrange except NameError: pass import os import sys import h5py import json import time import numpy import ctypes import signal import logging import argparse import threading from functools import reduce from datetime import datetime, timedelta from mnc.common import * from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client from station import ovro from reductions import * from operations import FileOperationsQueue from monitoring import GlobalLogger from control import VisibilityCommandProcessor from lwams import get_zenith_uvw from bifrost.address import Address from bifrost.udp_socket import UDPSocket from bifrost.packet_capture import PacketCaptureCallback, UDPCapture, DiskReader from bifrost.ring import Ring import bifrost.affinity as cpu_affinity import bifrost.ndarray as BFArray from bifrost.ndarray import copy_array from bifrost.libbifrost import bf from bifrost.proclog import ProcLog from bifrost.memory import memcpy as BFMemCopy, memset as BFMemSet from bifrost import asarray as BFAsArray import PIL.Image, PIL.ImageDraw, PIL.ImageFont BASE_PATH = os.path.dirname(os.path.abspath(__file__)) QUEUE = FileOperationsQueue() class CaptureOp(object): def __init__(self, log, sock, oring, nbl, ntime_gulp=1, slot_ntime=6, fast=False, shutdown_event=None, core=None): self.log = log self.sock = sock self.oring = oring self.nbl = nbl self.ntime_gulp = ntime_gulp self.slot_ntime = slot_ntime self.fast = fast if shutdown_event is None: shutdown_event = threading.Event() self.shutdown_event = shutdown_event self.core = core def shutdown(self): self.shutdown_event.set() def seq_callback(self, seq0, time_tag, chan0, nchan, navg, nsrc, hdr_ptr, hdr_size_ptr): print("++++++++++++++++ seq0 =", seq0) print(" time_tag =", time_tag) hdr = {'time_tag': time_tag, 'seq0': seq0, 'chan0': chan0, 'cfreq': chan0*CHAN_BW, 'nchan': nchan, 'bw': nchan*CHAN_BW*(4 if self.fast else 1), 'navg': navg, 'nstand': int(numpy.sqrt(8*nsrc+1)-1)//2, 'npol': 4, 'nbl': nsrc, 'complex': True, 'nbit': 32} print("******** CFREQ:", hdr['cfreq']) hdr_str = json.dumps(hdr).encode() # TODO: Can't pad with NULL because returned as C-string #hdr_str = json.dumps(hdr).ljust(4096, '\0') #hdr_str = json.dumps(hdr).ljust(4096, ' ') header_buf = ctypes.create_string_buffer(hdr_str) hdr_ptr[0] = ctypes.cast(header_buf, ctypes.c_void_p) hdr_size_ptr[0] = len(hdr_str) return 0 def main(self): seq_callback = PacketCaptureCallback() seq_callback.set_cor(self.seq_callback) with UDPCapture("cor", self.sock, self.oring, self.nbl, 1, 9000, self.ntime_gulp, self.slot_ntime, sequence_callback=seq_callback, core=self.core) as capture: while not self.shutdown_event.is_set(): status = capture.recv() if status in (1,4,5,6): break del capture class DummyOp(object): def __init__(self, log, sock, oring, nbl, ntime_gulp=1, slot_ntime=6, fast=False, shutdown_event=None, core=None): self.log = log self.sock = sock self.oring = oring self.nbl = nbl self.ntime_gulp = ntime_gulp self.slot_ntime = slot_ntime self.fast = fast if shutdown_event is None: shutdown_event = threading.Event() self.shutdown_event = shutdown_event self.core = core self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.out_proclog = ProcLog(type(self).__name__+"/out") self.size_proclog = ProcLog(type(self).__name__+"/size") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.out_proclog.update( {'nring':1, 'ring0':self.oring.name}) self.size_proclog.update({'nseq_per_gulp': self.ntime_gulp}) def shutdown(self): self.shutdown_event.set() def main(self): with self.oring.begin_writing() as oring: navg = 2400 if self.fast else 240000 tint = navg / CHAN_BW tgulp = tint * self.ntime_gulp nsrc = self.nbl nbl = self.nbl chan0 = 1234 nchan = 192 // (4 if self.fast else 1) npol = 4 # Try to load model visibilities try: vis_base = numpy.load('utils/sky.npy') except: self.log.warn("Could not load model visibilities from utils/sky.py, using random data") vis_base = numpy.zeros((nbl, nchan, npol), dtype=numpy.complex64) assert(vis_base.shape[0] >= nbl) assert(vis_base.shape[1] >= nchan) assert(vis_base.shape[2] == npol) vis_base = vis_base[:self.nbl,::(4 if self.fast else 1),:] vis_base_r = (vis_base.real*1000).astype(numpy.int32) vis_base_i = (vis_base.imag*1000).astype(numpy.int32) vis_base = numpy.zeros((nbl, nchan, npol, 2), dtype=numpy.int32) vis_base[...,0] = vis_base_r vis_base[...,1] = vis_base_i ohdr = {'time_tag': int(int(time.time())*FS), 'seq0': 0, 'chan0': chan0, 'cfreq': chan0*CHAN_BW, 'nchan': nchan, 'bw': nchan*CHAN_BW*(4 if self.fast else 1), 'navg': navg*8192, 'nstand': int(numpy.sqrt(8*nsrc+1)-1)//2, 'npol': npol, 'nbl': nbl, 'complex': True, 'nbit': 32} ohdr_str = json.dumps(ohdr) ogulp_size = self.ntime_gulp*nbl*nchan*npol*8 # ci32 oshape = (self.ntime_gulp,nbl,nchan,npol) self.oring.resize(ogulp_size) prev_time = time.time() with oring.begin_sequence(time_tag=ohdr['time_tag'], header=ohdr_str) as oseq: while not self.shutdown_event.is_set(): with oseq.reserve(ogulp_size) as ospan: curr_time = time.time() reserve_time = curr_time - prev_time prev_time = curr_time odata = ospan.data_view(numpy.int32).reshape(oshape+(2,)) temp = vis_base + (1000*0.01*numpy.random.randn(*odata.shape)).astype(numpy.int32) odata[...] = temp curr_time = time.time() while curr_time - prev_time < tgulp: time.sleep(0.01) curr_time = time.time() curr_time = time.time() process_time = curr_time - prev_time prev_time = curr_time self.perf_proclog.update({'acquire_time': -1, 'reserve_time': reserve_time, 'process_time': process_time,}) class SpectraOp(object): def __init__(self, log, id, iring, ntime_gulp=1, guarantee=True, core=-1): self.log = log self.iring = iring self.ntime_gulp = ntime_gulp self.guarantee = guarantee self.core = core self.client = Client(id) self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update({'nring':1, 'ring0':self.iring.name}) def _plot_spectra(self, time_tag, freq, specs): # Plotting setup nchan = freq.size nstand = specs.shape[0] try: minval = numpy.min(specs[numpy.where(numpy.isfinite(specs))]) maxval = numpy.max(specs[numpy.where(numpy.isfinite(specs))]) except ValueError: minval = 0.0 maxval = 1.0 # Image setup width = 20 height = 18 im = PIL.Image.new('RGB', (width * 65 + 1, height * 65 + 21), '#FFFFFF') draw = PIL.ImageDraw.Draw(im) font = PIL.ImageFont.load(os.path.join(BASE_PATH, 'fonts', 'helvB10.pil')) # Axes boxes for i in range(width + 1): draw.line([i * 65, 0, i * 65, height * 65], fill = '#000000') for i in range(height + 1): draw.line([(0, i * 65), (im.size[0], i * 65)], fill = '#000000') # Power as a function of frequency for all antennas x = numpy.arange(nchan) * 64 // nchan for s in range(nstand): if s >= height * width: break x0, y0 = (s % width) * 65 + 1, (s // width + 1) * 65 draw.text((x0 + 5, y0 - 60), str(s+1), font=font, fill='#000000') ## XX c = '#1F77B4' y = ((54.0 / (maxval - minval)) * (specs[s,:,0] - minval)).clip(0, 54) draw.point(list(zip(x0 + x, y0 - y)), fill=c) ## YY c = '#FF7F0E' y = ((54.0 / (maxval - minval)) * (specs[s,:,1] - minval)).clip(0, 54) draw.point(list(zip(x0 + x, y0 - y)), fill=c) # Summary ySummary = height * 65 + 2 timeStr = datetime.utcfromtimestamp(time_tag / FS) timeStr = timeStr.strftime("%Y/%m/%d %H:%M:%S UTC") draw.text((5, ySummary), timeStr, font = font, fill = '#000000') rangeStr = 'range shown: %.3f to %.3f dB' % (minval, maxval) draw.text((210, ySummary), rangeStr, font = font, fill = '#000000') x = im.size[0] + 15 for label, c in reversed(list(zip(('XX', 'YY'), ('#1F77B4','#FF7F0E')))): x -= draw.textsize(label, font = font)[0] + 20 draw.text((x, ySummary), label, font = font, fill = c) return im def main(self): cpu_affinity.set_core(self.core) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(),}) for iseq in self.iring.read(guarantee=self.guarantee): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info("Spectra: Start of new sequence: %s", str(ihdr)) # Setup the ring metadata and gulp sizes time_tag = ihdr['time_tag'] navg = ihdr['navg'] nbl = ihdr['nbl'] nstand = ihdr['nstand'] chan0 = ihdr['chan0'] nchan = ihdr['nchan'] chan_bw = ihdr['bw'] / nchan npol = ihdr['npol'] igulp_size = self.ntime_gulp*nbl*nchan*npol*8 # ci32 ishape = (self.ntime_gulp,nbl,nchan,npol) # Setup the arrays for the frequencies and auto-correlations freq = chan0*chan_bw + numpy.arange(nchan)*chan_bw autos = [i*(2*(nstand-1)+1-i)//2 + i for i in range(nstand)] last_save = 0.0 prev_time = time.time() for ispan in iseq.read(igulp_size): if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## Setup and load idata = ispan.data_view('ci32').reshape(ishape) if time.time() - last_save > 60: ## Timestamp tt = LWATime(time_tag, format='timetag') ts = tt.unix ## Pull out the auto-correlations adata = idata.view(numpy.int32) adata = adata.reshape(ishape+(2,)) adata = adata[0,autos,:,:,0] adata = adata[:,:,[0,3]] ## Plot im = self._plot_spectra(time_tag, freq, 10*numpy.log10(adata)) ## Save mp = ImageMonitorPoint.from_image(im) self.client.write_monitor_point('diagnostics/spectra', mp, timestamp=ts) if True: ## Save again, this time to disk mjd, dt = tt.mjd, tt.datetime mjd = int(mjd) h, m, s = dt.hour, dt.minute, dt.second filename = '%06i_%02i%02i%02i_spectra.png' % (mjd, h, m, s) mp.to_file(filename) ### Save the raw spectra for comparison purposes #filename = '%06i_%02i%02i%02i_spectra.npy' % (mjd, h, m, s) #numpy.save(filename, adata) # ### Save everything for comparison purposes #odata = idata.view(numpy.int32) #odata = odata.reshape(ishape+(2,)) #filename = '%06i_%02i%02i%02i_everything.npy' % (mjd, h, m, s) #numpy.save(filename, odata) last_save = time.time() time_tag += navg * self.ntime_gulp curr_time = time.time() process_time = curr_time - prev_time prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': 0.0, 'process_time': process_time,}) self.log.info("SpectraOp - Done") class BaselineOp(object): def __init__(self, log, id, station, iring, ntime_gulp=1, guarantee=True, core=-1): self.log = log self.station = station self.iring = iring self.ntime_gulp = ntime_gulp self.guarantee = guarantee self.core = core self.client = Client(id) self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update({'nring':1, 'ring0':self.iring.name}) def _plot_baselines(self, time_tag, freq, dist, baselines, valid): # Plotting setup nchan = freq.size nbl = baselines.shape[0] freq = freq[nchan//2] baselines = baselines[valid,nchan//2,:] baselines = numpy.abs(baselines[:,[0,1,3]]) minval = numpy.min(baselines) maxval = numpy.max(baselines) if minval == maxval: maxval = minval + 1.0 mindst = 0.0 maxdst = numpy.max(dist) # Image setup im = PIL.Image.new('RGB', (601, 421), '#FFFFFF') draw = PIL.ImageDraw.Draw(im) font = PIL.ImageFont.load(os.path.join(BASE_PATH, 'fonts', 'helvB10.pil')) # Axes boxes for i in range(2): draw.line([i * 600, 0, i * 600, 400], fill = '#000000') for i in range(2): draw.line([(0, i * 400), (im.size[0], i * 400)], fill = '#000000') # Visiblity amplitudes as a function of (u,v) distance x0, y0 = 1, 400 draw.text((x0 + 500, y0 - 395), '%.3f MHz' % (freq/1e6,), font=font, fill='#000000') ## (u,v) distance x = ((599.0 / (maxdst - mindst)) * (dist - mindst)).clip(0, 599) ## XX y = ((399.0 / (maxval - minval)) * (baselines[:,0] - minval)).clip(0, 399) draw.point(list(zip(x0 + x, y0 - y)), fill='#1F77B4') ## YY y = ((399.0 / (maxval - minval)) * (baselines[:,2] - minval)).clip(0, 399) draw.point(list(zip(x0 + x, y0 - y)), fill='#FF7F0E') ### XY #y = ((399.0 / (maxval - minval)) * (baselines[:,1] - minval)).clip(0, 399) #draw.point(list(zip(x0 + x, y0 - y)), fill='#A00000') # Details and labels ySummary = 402 timeStr = datetime.utcfromtimestamp(time_tag / FS) timeStr = timeStr.strftime("%Y/%m/%d %H:%M:%S UTC") draw.text((5, ySummary), timeStr, font = font, fill = '#000000') rangeStr = 'range shown: %.6f - %.6f' % (minval, maxval) draw.text((210, ySummary), rangeStr, font = font, fill = '#000000') x = im.size[0] + 15 #for label, c in reversed(list(zip(('XX','XY','YY'), ('#1F77B4','#A00000','#FF7F0E')))): for label, c in reversed(list(zip(('XX','YY'), ('#1F77B4','#FF7F0E')))): x -= draw.textsize(label, font = font)[0] + 20 draw.text((x, ySummary), label, font = font, fill = c) return im def main(self): cpu_affinity.set_core(self.core) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(),}) for iseq in self.iring.read(guarantee=self.guarantee): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info("Baseline: Start of new sequence: %s", str(ihdr)) # Setup the ring metadata and gulp sizes time_tag = ihdr['time_tag'] navg = ihdr['navg'] nbl = ihdr['nbl'] nstand = ihdr['nstand'] chan0 = ihdr['chan0'] nchan = ihdr['nchan'] chan_bw = ihdr['bw'] / nchan npol = ihdr['npol'] igulp_size = self.ntime_gulp*nbl*nchan*npol*8 ishape = (self.ntime_gulp,nbl,nchan,npol) self.iring.resize(igulp_size) # Setup the arrays for the frequencies and baseline lenghts freq = chan0*chan_bw + numpy.arange(nchan)*chan_bw uvw = get_zenith_uvw(self.station, LWATime(time_tag, format='timetag')) uvw[:,2] = 0 dist = numpy.sqrt((uvw**2).sum(axis=1)) valid = numpy.where(dist > 0.1)[0] last_save = 0.0 prev_time = time.time() for ispan in iseq.read(igulp_size): if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## Setup and load idata = ispan.data_view('ci32').reshape(ishape) if time.time() - last_save > 60: ## Timestamp tt = LWATime(time_tag, format='timetag') ts = tt.unix ## Plot bdata = idata[0,...] bdata = bdata.view(numpy.int32) bdata = bdata.reshape(ishape+(2,)) bdata = bdata[0,:,:,:,0] + 1j*bdata[0,:,:,:,1] bdata = bdata.astype(numpy.complex64) im = self._plot_baselines(time_tag, freq, dist, bdata, valid) ## Save mp = ImageMonitorPoint.from_image(im) self.client.write_monitor_point('diagnostics/baselines', mp, timestamp=ts) if True: ## Save again, this time to disk mjd, dt = tt.mjd, tt.datetime mjd = int(mjd) h, m, s = dt.hour, dt.minute, dt.second filename = '%06i_%02i%02i%02i_baselines.png' % (mjd, h, m, s) mp.to_file(filename) last_save = time.time() time_tag += navg * self.ntime_gulp curr_time = time.time() process_time = curr_time - prev_time prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': 0.0, 'process_time': process_time,}) self.log.info("BaselineOp - Done") class StatisticsOp(object): def __init__(self, log, id, iring, ntime_gulp=1, guarantee=True, core=None): self.log = log self.iring = iring self.ntime_gulp = ntime_gulp self.guarantee = guarantee self.core = core self.client = Client(id) self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update( {'nring':1, 'ring0':self.iring.name}) self.size_proclog.update({'nseq_per_gulp': self.ntime_gulp}) def main(self): if self.core is not None: cpu_affinity.set_core(self.core) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(),}) for iseq in self.iring.read(guarantee=self.guarantee): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info("Statistics: Start of new sequence: %s", str(ihdr)) # Setup the ring metadata and gulp sizes time_tag = ihdr['time_tag'] navg = ihdr['navg'] nbl = ihdr['nbl'] nstand = ihdr['nstand'] chan0 = ihdr['chan0'] nchan = ihdr['nchan'] chan_bw = ihdr['bw'] / nchan npol = ihdr['npol'] igulp_size = self.ntime_gulp*nbl*nchan*npol*8 # ci32 ishape = (self.ntime_gulp,nbl,nchan,npol) autos = [i*(2*(nstand-1)+1-i)//2 + i for i in range(nstand)] data_pols = ['XX', 'YY'] last_save = 0.0 prev_time = time.time() iseq_spans = iseq.read(igulp_size) for ispan in iseq_spans: if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## Setup and load idata = ispan.data_view('ci32').reshape(ishape) if time.time() - last_save > 60: ## Timestamp tt = LWATime(time_tag, format='timetag') ts = tt.unix ## Pull out the auto-correlations adata = idata.view(numpy.int32) adata = adata.reshape(ishape+(2,)) adata = adata[0,autos,:,:,0] adata = adata[:,:,[0,3]] ## Run the statistics over all times/channels ## * only really works for ntime_gulp=1 data_min = numpy.min(adata, axis=1) data_max = numpy.max(adata, axis=1) data_avg = numpy.mean(adata, axis=1) ## Save for data,name in zip((data_min,data_avg,data_max), ('min','avg','max')): value = MultiMonitorPoint([data[:,i].tolist() for i in range(data.shape[1])], timestamp=ts, field=data_pols) self.client.write_monitor_point('statistics/%s' % name, value) last_save = time.time() time_tag += navg * self.ntime_gulp curr_time = time.time() process_time = curr_time - prev_time prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': -1, 'process_time': process_time,}) self.log.info("StatisticsOp - Done") class WriterOp(object): def __init__(self, log, station, iring, ntime_gulp=1, fast=False, guarantee=True, core=None): self.log = log self.station = station self.iring = iring self.ntime_gulp = ntime_gulp self.fast = fast self.guarantee = guarantee self.core = core self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update( {'nring':1, 'ring0':self.iring.name}) self.size_proclog.update({'nseq_per_gulp': self.ntime_gulp}) def main(self): global QUEUE if self.core is not None: cpu_affinity.set_core(self.core) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(),}) for iseq in self.iring.read(guarantee=self.guarantee): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info("Writer: Start of new sequence: %s", str(ihdr)) # Setup the ring metadata and gulp sizes time_tag = ihdr['time_tag'] navg = ihdr['navg'] nbl = ihdr['nbl'] chan0 = ihdr['chan0'] nchan = ihdr['nchan'] chan_bw = ihdr['bw'] / nchan npol = ihdr['npol'] pols = ['XX','XY','YX','YY'] igulp_size = self.ntime_gulp*nbl*nchan*npol*8 # ci32 ishape = (self.ntime_gulp,nbl,nchan,npol) self.iring.resize(igulp_size, 10*igulp_size*(4 if self.fast else 1)) norm_factor = navg // (2*NCHAN) first_gulp = True was_active = False prev_time = time.time() iseq_spans = iseq.read(igulp_size) for ispan in iseq_spans: if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## On our first span, update the pipeline lag for the queue ## so that we start recording at the right times if first_gulp: QUEUE.update_lag(LWATime(time_tag, format='timetag').datetime) self.log.info("Current pipeline lag is %s", QUEUE.lag) first_gulp = False ## Setup and load idata = ispan.data_view('ci32').reshape(ishape) idata = idata.view(numpy.int32) idata = idata.reshape(ishape+(2,)) idata = idata[...,0] + 1j*idata[...,1] idata /= norm_factor idata = idata.astype(numpy.complex64) ## Determine what to do if QUEUE.active is not None: ### Recording active - write if not QUEUE.active.is_started: self.log.info("Started operation - %s", QUEUE.active) QUEUE.active.start(self.station, chan0, navg, nchan, chan_bw, npol, pols) was_active = True QUEUE.active.write(time_tag, idata) elif was_active: ### Recording just finished #### Clean was_active = False QUEUE.clean() #### Close self.log.info("Ended operation - %s", QUEUE.previous) QUEUE.previous.stop() time_tag += navg curr_time = time.time() process_time = curr_time - prev_time prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': -1, 'process_time': process_time,}) self.log.info("WriterOp - Done") def main(argv): global QUEUE parser = argparse.ArgumentParser( description="Data recorder for slow/fast visibility data" ) parser.add_argument('-a', '--address', type=str, default='127.0.0.1', help='IP address to listen to') parser.add_argument('-p', '--port', type=int, default=10000, help='UDP port to receive data on') parser.add_argument('-o', '--offline', action='store_true', help='run in offline using the specified file to read from') parser.add_argument('-c', '--cores', type=str, default='0,1,2,3,4,5', help='comma separated list of cores to bind to') parser.add_argument('-g', '--gulp-size', type=int, default=1, help='gulp size for ring buffers') parser.add_argument('-l', '--logfile', type=str, help='file to write logging to') parser.add_argument('-r', '--record-directory', type=str, default=os.path.abspath('.'), help='directory to save recorded files to') parser.add_argument('-t', '--record-directory-quota', type=quota_size, default=0, help='quota for the recording directory, 0 disables the quota') parser.add_argument('-q', '--quick', action='store_true', help='run in fast visibiltiy mode') parser.add_argument('-i', '--nint-per-file', type=int, default=1, help='number of integrations to write per measurement set') parser.add_argument('-n', '--no-tar', action='store_true', help='do not store the measurement sets inside a tar file') parser.add_argument('-f', '--fork', action='store_true', help='fork and run in the background') args = parser.parse_args() # Process the -q/--quick option station = ovro if args.quick: args.nint_per_file = max([10, args.nint_per_file]) station = ovro.select_subset(list(range(1, 48+1))) # Fork, if requested if args.fork: stderr = '/tmp/%s_%i.stderr' % (os.path.splitext(os.path.basename(__file__))[0], args.port) daemonize(stdin='/dev/null', stdout='/dev/null', stderr=stderr) # Setup logging log = logging.getLogger(__name__) logFormat = logging.Formatter('%(asctime)s [%(levelname)-8s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') logFormat.converter = time.gmtime if args.logfile is None: logHandler = logging.StreamHandler(sys.stdout) else: logHandler = LogFileHandler(args.logfile) logHandler.setFormatter(logFormat) log.addHandler(logHandler) log.setLevel(logging.DEBUG) log.info("Starting %s with PID %i", os.path.basename(__file__), os.getpid()) log.info("Cmdline args:") for arg in vars(args): log.info(" %s: %s", arg, getattr(args, arg)) # Setup the subsystem ID mcs_id = 'drv' if args.quick: mcs_id += 'f' else: mcs_id += 's' base_ip = int(args.address.split('.')[-1], 10) base_port = args.port % 100 mcs_id += str(base_ip*100 + base_port) # Setup the cores and GPUs to use cores = [int(v, 10) for v in args.cores.split(',')] log.info("CPUs: %s", ' '.join([str(v) for v in cores])) # Setup the socket, if needed isock = None if not args.offline: iaddr = Address(args.address, args.port) isock = UDPSocket() isock.bind(iaddr) # Setup the rings capture_ring = Ring(name="capture") # Setup antennas nant = len(station.antennas) nbl = nant*(nant+1)//2 # Setup the recording directory, if needed if not os.path.exists(args.record_directory): status = os.system('mkdir -p %s' % args.record_directory) if status != 0: raise RuntimeError("Unable to create directory: %s" % args.record_directory) else: if not os.path.isdir(os.path.realpath(args.record_directory)): raise RuntimeError("Cannot record to a non-directory: %s" % args.record_directory) # Setup the blocks ops = [] if args.offline: ops.append(DummyOp(log, isock, capture_ring, (NPIPELINE//16)*nbl, ntime_gulp=args.gulp_size, slot_ntime=(10 if args.quick else 6), fast=args.quick, core=cores.pop(0))) else: ops.append(CaptureOp(log, isock, capture_ring, (NPIPELINE//16)*nbl, # two pipelines/recorder ntime_gulp=args.gulp_size, slot_ntime=(10 if args.quick else 6), fast=args.quick, core=cores.pop(0))) if not args.quick: ops.append(SpectraOp(log, mcs_id, capture_ring, ntime_gulp=args.gulp_size, core=cores.pop(0))) ops.append(BaselineOp(log, mcs_id, station, capture_ring, ntime_gulp=args.gulp_size, core=cores.pop(0))) ops.append(StatisticsOp(log, mcs_id, capture_ring, ntime_gulp=args.gulp_size, core=cores.pop(0))) ops.append(WriterOp(log, station, capture_ring, ntime_gulp=args.gulp_size, fast=args.quick, core=cores.pop(0))) ops.append(GlobalLogger(log, mcs_id, args, QUEUE, quota=args.record_directory_quota)) ops.append(VisibilityCommandProcessor(log, mcs_id, args.record_directory, QUEUE, nint_per_file=args.nint_per_file, is_tarred=not args.no_tar)) # Setup the threads threads = [threading.Thread(target=op.main) for op in ops] # Setup signal handling shutdown_event = setup_signal_handling(ops) ops[0].shutdown_event = shutdown_event ops[-2].shutdown_event = shutdown_event ops[-1].shutdown_event = shutdown_event # Launch! log.info("Launching %i thread(s)", len(threads)) for thread in threads: #thread.daemon = True thread.start() t_now = LWATime(datetime.utcnow() + timedelta(seconds=15), format='datetime', scale='utc') mjd_now = int(t_now.mjd) mpm_now = int((t_now.mjd - mjd_now)*86400.0*1000.0) c = Client() r = c.send_command(mcs_id, 'start', start_mjd=mjd_now, start_mpm=mpm_now) print('III', r) t_now = LWATime(datetime.utcnow() + timedelta(seconds=75), format='datetime', scale='utc') mjd_now = int(t_now.mjd) mpm_now = int((t_now.mjd - mjd_now)*86400.0*1000.0) r = c.send_command(mcs_id, 'stop', stop_mjd=mjd_now, stop_mpm=mpm_now) print('III', r) while not shutdown_event.is_set(): signal.pause() log.info("Shutdown, waiting for threads to join") for thread in threads: thread.join() log.info("All done") return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
[ "logging.getLogger", "datetime.datetime.utcfromtimestamp", "logging.StreamHandler", "numpy.sqrt", "bifrost.packet_capture.PacketCaptureCallback", "numpy.log10", "bifrost.affinity.get_core", "ctypes.create_string_buffer", "time.sleep", "numpy.isfinite", "datetime.timedelta", "mnc.mcs.Client", "bifrost.ring.Ring", "numpy.arange", "os.path.exists", "numpy.mean", "bifrost.packet_capture.UDPCapture", "argparse.ArgumentParser", "monitoring.GlobalLogger", "numpy.where", "json.dumps", "numpy.max", "ctypes.cast", "os.getpid", "numpy.min", "bifrost.affinity.set_core", "control.VisibilityCommandProcessor", "numpy.abs", "signal.pause", "bifrost.udp_socket.UDPSocket", "mnc.mcs.ImageMonitorPoint.from_image", "threading.Thread", "time.time", "numpy.random.randn", "operations.FileOperationsQueue", "bifrost.address.Address", "datetime.datetime.utcnow", "logging.Formatter", "os.path.join", "threading.Event", "os.path.realpath", "numpy.zeros", "os.path.basename", "os.path.abspath", "os.system", "numpy.load" ]
[((1240, 1261), 'operations.FileOperationsQueue', 'FileOperationsQueue', ([], {}), '()\n', (1259, 1261), False, 'from operations import FileOperationsQueue\n'), ((1203, 1228), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1218, 1228), False, 'import os\n'), ((30595, 30682), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Data recorder for slow/fast visibility data"""'}), "(description=\n 'Data recorder for slow/fast visibility data')\n", (30618, 30682), False, 'import argparse\n'), ((32872, 32899), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (32889, 32899), False, 'import logging\n'), ((32916, 33012), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s [%(levelname)-8s] %(message)s"""'], {'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "('%(asctime)s [%(levelname)-8s] %(message)s', datefmt=\n '%Y-%m-%d %H:%M:%S')\n", (32933, 33012), False, 'import logging\n'), ((34180, 34200), 'bifrost.ring.Ring', 'Ring', ([], {'name': '"""capture"""'}), "(name='capture')\n", (34184, 34200), False, 'from bifrost.ring import Ring\n'), ((36859, 36867), 'mnc.mcs.Client', 'Client', ([], {}), '()\n', (36865, 36867), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((2815, 2851), 'ctypes.create_string_buffer', 'ctypes.create_string_buffer', (['hdr_str'], {}), '(hdr_str)\n', (2842, 2851), False, 'import ctypes\n'), ((2878, 2918), 'ctypes.cast', 'ctypes.cast', (['header_buf', 'ctypes.c_void_p'], {}), '(header_buf, ctypes.c_void_p)\n', (2889, 2918), False, 'import ctypes\n'), ((3028, 3051), 'bifrost.packet_capture.PacketCaptureCallback', 'PacketCaptureCallback', ([], {}), '()\n', (3049, 3051), False, 'from bifrost.packet_capture import PacketCaptureCallback, UDPCapture, DiskReader\n'), ((8103, 8113), 'mnc.mcs.Client', 'Client', (['id'], {}), '(id)\n', (8109, 8113), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((10274, 10314), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['(time_tag / FS)'], {}), '(time_tag / FS)\n', (10299, 10314), False, 'from datetime import datetime, timedelta\n'), ((10943, 10975), 'bifrost.affinity.set_core', 'cpu_affinity.set_core', (['self.core'], {}), '(self.core)\n', (10964, 10975), True, 'import bifrost.affinity as cpu_affinity\n'), ((15294, 15304), 'mnc.mcs.Client', 'Client', (['id'], {}), '(id)\n', (15300, 15304), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((15986, 16020), 'numpy.abs', 'numpy.abs', (['baselines[:, [0, 1, 3]]'], {}), '(baselines[:, [0, 1, 3]])\n', (15995, 16020), False, 'import numpy\n'), ((16035, 16055), 'numpy.min', 'numpy.min', (['baselines'], {}), '(baselines)\n', (16044, 16055), False, 'import numpy\n'), ((16073, 16093), 'numpy.max', 'numpy.max', (['baselines'], {}), '(baselines)\n', (16082, 16093), False, 'import numpy\n'), ((16208, 16223), 'numpy.max', 'numpy.max', (['dist'], {}), '(dist)\n', (16217, 16223), False, 'import numpy\n'), ((17551, 17591), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['(time_tag / FS)'], {}), '(time_tag / FS)\n', (17576, 17591), False, 'from datetime import datetime, timedelta\n'), ((18266, 18298), 'bifrost.affinity.set_core', 'cpu_affinity.set_core', (['self.core'], {}), '(self.core)\n', (18287, 18298), True, 'import bifrost.affinity as cpu_affinity\n'), ((22159, 22169), 'mnc.mcs.Client', 'Client', (['id'], {}), '(id)\n', (22165, 22169), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((33130, 33163), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (33151, 33163), False, 'import logging\n'), ((33371, 33397), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (33387, 33397), False, 'import os\n'), ((33399, 33410), 'os.getpid', 'os.getpid', ([], {}), '()\n', (33408, 33410), False, 'import os\n'), ((34043, 34075), 'bifrost.address.Address', 'Address', (['args.address', 'args.port'], {}), '(args.address, args.port)\n', (34050, 34075), False, 'from bifrost.address import Address\n'), ((34092, 34103), 'bifrost.udp_socket.UDPSocket', 'UDPSocket', ([], {}), '()\n', (34101, 34103), False, 'from bifrost.udp_socket import UDPSocket\n'), ((34350, 34387), 'os.path.exists', 'os.path.exists', (['args.record_directory'], {}), '(args.record_directory)\n', (34364, 34387), False, 'import os\n'), ((34406, 34454), 'os.system', 'os.system', (["('mkdir -p %s' % args.record_directory)"], {}), "('mkdir -p %s' % args.record_directory)\n", (34415, 34454), False, 'import os\n'), ((35900, 35973), 'monitoring.GlobalLogger', 'GlobalLogger', (['log', 'mcs_id', 'args', 'QUEUE'], {'quota': 'args.record_directory_quota'}), '(log, mcs_id, args, QUEUE, quota=args.record_directory_quota)\n', (35912, 35973), False, 'from monitoring import GlobalLogger\n'), ((35990, 36124), 'control.VisibilityCommandProcessor', 'VisibilityCommandProcessor', (['log', 'mcs_id', 'args.record_directory', 'QUEUE'], {'nint_per_file': 'args.nint_per_file', 'is_tarred': '(not args.no_tar)'}), '(log, mcs_id, args.record_directory, QUEUE,\n nint_per_file=args.nint_per_file, is_tarred=not args.no_tar)\n', (36016, 36124), False, 'from control import VisibilityCommandProcessor\n'), ((36250, 36282), 'threading.Thread', 'threading.Thread', ([], {'target': 'op.main'}), '(target=op.main)\n', (36266, 36282), False, 'import threading\n'), ((37344, 37358), 'signal.pause', 'signal.pause', ([], {}), '()\n', (37356, 37358), False, 'import signal\n'), ((1702, 1719), 'threading.Event', 'threading.Event', ([], {}), '()\n', (1717, 1719), False, 'import threading\n'), ((3122, 3267), 'bifrost.packet_capture.UDPCapture', 'UDPCapture', (['"""cor"""', 'self.sock', 'self.oring', 'self.nbl', '(1)', '(9000)', 'self.ntime_gulp', 'self.slot_ntime'], {'sequence_callback': 'seq_callback', 'core': 'self.core'}), "('cor', self.sock, self.oring, self.nbl, 1, 9000, self.ntime_gulp,\n self.slot_ntime, sequence_callback=seq_callback, core=self.core)\n", (3132, 3267), False, 'from bifrost.packet_capture import PacketCaptureCallback, UDPCapture, DiskReader\n'), ((3941, 3958), 'threading.Event', 'threading.Event', ([], {}), '()\n', (3956, 3958), False, 'import threading\n'), ((5594, 5647), 'numpy.zeros', 'numpy.zeros', (['(nbl, nchan, npol, 2)'], {'dtype': 'numpy.int32'}), '((nbl, nchan, npol, 2), dtype=numpy.int32)\n', (5605, 5647), False, 'import numpy\n'), ((6312, 6328), 'json.dumps', 'json.dumps', (['ohdr'], {}), '(ohdr)\n', (6322, 6328), False, 'import json\n'), ((6545, 6556), 'time.time', 'time.time', ([], {}), '()\n', (6554, 6556), False, 'import time\n'), ((9142, 9189), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""fonts"""', '"""helvB10.pil"""'], {}), "(BASE_PATH, 'fonts', 'helvB10.pil')\n", (9154, 9189), False, 'import os\n'), ((12155, 12166), 'time.time', 'time.time', ([], {}), '()\n', (12164, 12166), False, 'import time\n'), ((16384, 16431), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""fonts"""', '"""helvB10.pil"""'], {}), "(BASE_PATH, 'fonts', 'helvB10.pil')\n", (16396, 16431), False, 'import os\n'), ((19646, 19657), 'time.time', 'time.time', ([], {}), '()\n', (19655, 19657), False, 'import time\n'), ((22735, 22767), 'bifrost.affinity.set_core', 'cpu_affinity.set_core', (['self.core'], {}), '(self.core)\n', (22756, 22767), True, 'import bifrost.affinity as cpu_affinity\n'), ((23856, 23867), 'time.time', 'time.time', ([], {}), '()\n', (23865, 23867), False, 'import time\n'), ((27000, 27032), 'bifrost.affinity.set_core', 'cpu_affinity.set_core', (['self.core'], {}), '(self.core)\n', (27021, 27032), True, 'import bifrost.affinity as cpu_affinity\n'), ((28172, 28183), 'time.time', 'time.time', ([], {}), '()\n', (28181, 28183), False, 'import time\n'), ((31570, 31590), 'os.path.abspath', 'os.path.abspath', (['"""."""'], {}), "('.')\n", (31585, 31590), False, 'import os\n'), ((36691, 36708), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (36706, 36708), False, 'from datetime import datetime, timedelta\n'), ((36711, 36732), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(15)'}), '(seconds=15)\n', (36720, 36732), False, 'from datetime import datetime, timedelta\n'), ((37014, 37031), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (37029, 37031), False, 'from datetime import datetime, timedelta\n'), ((37034, 37055), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(75)'}), '(seconds=75)\n', (37043, 37055), False, 'from datetime import datetime, timedelta\n'), ((2599, 2614), 'json.dumps', 'json.dumps', (['hdr'], {}), '(hdr)\n', (2609, 2614), False, 'import json\n'), ((4983, 5010), 'numpy.load', 'numpy.load', (['"""utils/sky.npy"""'], {}), "('utils/sky.npy')\n", (4993, 5010), False, 'import numpy\n'), ((9527, 9546), 'numpy.arange', 'numpy.arange', (['nchan'], {}), '(nchan)\n', (9539, 9546), False, 'import numpy\n'), ((11066, 11089), 'bifrost.affinity.get_core', 'cpu_affinity.get_core', ([], {}), '()\n', (11087, 11089), True, 'import bifrost.affinity as cpu_affinity\n'), ((12336, 12347), 'time.time', 'time.time', ([], {}), '()\n', (12345, 12347), False, 'import time\n'), ((14574, 14585), 'time.time', 'time.time', ([], {}), '()\n', (14583, 14585), False, 'import time\n'), ((18389, 18412), 'bifrost.affinity.get_core', 'cpu_affinity.get_core', ([], {}), '()\n', (18410, 18412), True, 'import bifrost.affinity as cpu_affinity\n'), ((19554, 19577), 'numpy.where', 'numpy.where', (['(dist > 0.1)'], {}), '(dist > 0.1)\n', (19565, 19577), False, 'import numpy\n'), ((19827, 19838), 'time.time', 'time.time', ([], {}), '()\n', (19836, 19838), False, 'import time\n'), ((21477, 21488), 'time.time', 'time.time', ([], {}), '()\n', (21486, 21488), False, 'import time\n'), ((22858, 22881), 'bifrost.affinity.get_core', 'cpu_affinity.get_core', ([], {}), '()\n', (22879, 22881), True, 'import bifrost.affinity as cpu_affinity\n'), ((24073, 24084), 'time.time', 'time.time', ([], {}), '()\n', (24082, 24084), False, 'import time\n'), ((25675, 25686), 'time.time', 'time.time', ([], {}), '()\n', (25684, 25686), False, 'import time\n'), ((27123, 27146), 'bifrost.affinity.get_core', 'cpu_affinity.get_core', ([], {}), '()\n', (27144, 27146), True, 'import bifrost.affinity as cpu_affinity\n'), ((28389, 28400), 'time.time', 'time.time', ([], {}), '()\n', (28398, 28400), False, 'import time\n'), ((30171, 30182), 'time.time', 'time.time', ([], {}), '()\n', (30180, 30182), False, 'import time\n'), ((34607, 34646), 'os.path.realpath', 'os.path.realpath', (['args.record_directory'], {}), '(args.record_directory)\n', (34623, 34646), False, 'import os\n'), ((5162, 5216), 'numpy.zeros', 'numpy.zeros', (['(nbl, nchan, npol)'], {'dtype': 'numpy.complex64'}), '((nbl, nchan, npol), dtype=numpy.complex64)\n', (5173, 5216), False, 'import numpy\n'), ((7467, 7478), 'time.time', 'time.time', ([], {}), '()\n', (7476, 7478), False, 'import time\n'), ((11989, 12008), 'numpy.arange', 'numpy.arange', (['nchan'], {}), '(nchan)\n', (12001, 12008), False, 'import numpy\n'), ((13229, 13261), 'mnc.mcs.ImageMonitorPoint.from_image', 'ImageMonitorPoint.from_image', (['im'], {}), '(im)\n', (13257, 13261), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((14445, 14456), 'time.time', 'time.time', ([], {}), '()\n', (14454, 14456), False, 'import time\n'), ((19345, 19364), 'numpy.arange', 'numpy.arange', (['nchan'], {}), '(nchan)\n', (19357, 19364), False, 'import numpy\n'), ((20716, 20748), 'mnc.mcs.ImageMonitorPoint.from_image', 'ImageMonitorPoint.from_image', (['im'], {}), '(im)\n', (20744, 20748), False, 'from mnc.mcs import ImageMonitorPoint, MultiMonitorPoint, Client\n'), ((21348, 21359), 'time.time', 'time.time', ([], {}), '()\n', (21357, 21359), False, 'import time\n'), ((24939, 24963), 'numpy.min', 'numpy.min', (['adata'], {'axis': '(1)'}), '(adata, axis=1)\n', (24948, 24963), False, 'import numpy\n'), ((24995, 25019), 'numpy.max', 'numpy.max', (['adata'], {'axis': '(1)'}), '(adata, axis=1)\n', (25004, 25019), False, 'import numpy\n'), ((25051, 25076), 'numpy.mean', 'numpy.mean', (['adata'], {'axis': '(1)'}), '(adata, axis=1)\n', (25061, 25076), False, 'import numpy\n'), ((25546, 25557), 'time.time', 'time.time', ([], {}), '()\n', (25555, 25557), False, 'import time\n'), ((2379, 2403), 'numpy.sqrt', 'numpy.sqrt', (['(8 * nsrc + 1)'], {}), '(8 * nsrc + 1)\n', (2389, 2403), False, 'import numpy\n'), ((6800, 6811), 'time.time', 'time.time', ([], {}), '()\n', (6809, 6811), False, 'import time\n'), ((7236, 7247), 'time.time', 'time.time', ([], {}), '()\n', (7245, 7247), False, 'import time\n'), ((8739, 8760), 'numpy.isfinite', 'numpy.isfinite', (['specs'], {}), '(specs)\n', (8753, 8760), False, 'import numpy\n'), ((8813, 8834), 'numpy.isfinite', 'numpy.isfinite', (['specs'], {}), '(specs)\n', (8827, 8834), False, 'import numpy\n'), ((12590, 12601), 'time.time', 'time.time', ([], {}), '()\n', (12599, 12601), False, 'import time\n'), ((20081, 20092), 'time.time', 'time.time', ([], {}), '()\n', (20090, 20092), False, 'import time\n'), ((24327, 24338), 'time.time', 'time.time', ([], {}), '()\n', (24336, 24338), False, 'import time\n'), ((32718, 32744), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (32734, 32744), False, 'import os\n'), ((5783, 5794), 'time.time', 'time.time', ([], {}), '()\n', (5792, 5794), False, 'import time\n'), ((6112, 6136), 'numpy.sqrt', 'numpy.sqrt', (['(8 * nsrc + 1)'], {}), '(8 * nsrc + 1)\n', (6122, 6136), False, 'import numpy\n'), ((7337, 7353), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (7347, 7353), False, 'import time\n'), ((7394, 7405), 'time.time', 'time.time', ([], {}), '()\n', (7403, 7405), False, 'import time\n'), ((13135, 13153), 'numpy.log10', 'numpy.log10', (['adata'], {}), '(adata)\n', (13146, 13153), False, 'import numpy\n'), ((7079, 7111), 'numpy.random.randn', 'numpy.random.randn', (['*odata.shape'], {}), '(*odata.shape)\n', (7097, 7111), False, 'import numpy\n')]
import copy import numpy as np import pandas as pd import os import contextlib from sklearn.metrics import f1_score, accuracy_score from sklearn.model_selection import StratifiedKFold from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler SEED = 0 NFOLDS = 4 KFOLD = StratifiedKFold(n_splits=NFOLDS, shuffle=True, random_state=SEED) def skl_macro_f1(y_true, y_hat): """Early stopping by macro F1-score, callback function for LightGBM sklearn API.""" y_hat = np.where(y_hat > 0.5, 1, 0) return 'f1', f1_score(y_true, y_hat, average='macro'), True class SklearnWrapper(object): """Wapper object for Sklearn classifiers.""" def __init__(self, clf, seed=SEED, params=None, scale=False): if scale: if params is None: self.clf = make_pipeline(StandardScaler(), clf) else: self.clf = make_pipeline(StandardScaler(), clf(**params)) else: if params is None: self.clf = clf else: self.clf = clf(**params) self.clftype = type(clf) def train(self, x_train, y_train, x_val=None, y_val=None): self.clf.fit(X=x_train, y=y_train) def predict(self, x): return self.clf.predict_proba(x)[:, 1] def __str__(self): return str(self.clftype).split(".")[-1][:-2] class LightGBMWrapper(object): """Wrapper object for LightGBMClassifier.""" def __init__(self, clf, seed=SEED, params=None): params['feature_fraction_seed'] = seed params['bagging_seed'] = seed self.params = params self.clf = clf(**params, n_estimators=10000) def train(self, x_train, y_train, x_val, y_val): self.clf.fit(X=x_train, y=y_train, eval_set=(x_val, y_val), verbose=0, early_stopping_rounds=250, eval_metric=skl_macro_f1) def predict(self, x): return self.clf.predict_proba(x)[:, 1] def __str__(self): return str(type(self.clf)).split(".")[-1][:-2] def get_oof(clf, x_train, y_train, x_test, y_test): """Get stacked out-of-fold predictions on training data and save classifiers for future predictions.""" oof_train = np.zeros((x_train.shape[0],)) oof_test = np.zeros((x_test.shape[0],)) oof_test_skf = np.empty((NFOLDS, x_test.shape[0])) models = [] for i, (train_index, val_index) in enumerate(KFOLD.split(x_train, y_train)): x_train_fold = x_train[train_index, :] y_train_fold = y_train[train_index] x_val_fold = x_train[val_index, :] y_val_fold = y_train[val_index] clf.train(x_train_fold, y_train_fold, x_val_fold, y_val_fold) train_pred = clf.predict(x_train_fold) oof_pred = clf.predict(x_val_fold) test_pred = clf.predict(x_test) oof_train[val_index] = oof_pred oof_test_skf[i, :] = test_pred with open(os.devnull, "w") as f, contextlib.redirect_stdout(f): models.append(copy.deepcopy(clf)) train_f1 = f1_score(y_train_fold, np.round(train_pred), average='macro') val_f1 = f1_score(y_val_fold, np.round(oof_pred), average='macro') test_f1 = f1_score(y_test, np.round(test_pred), average='macro') print(f'Fold {i + 1}/{NFOLDS}, {clf}, train macro-F1: {train_f1:.3f}, oof macro-F1: {val_f1:.3f}, ' f'macro-F1: {test_f1:.3f}') oof_test[:] = oof_test_skf.mean(axis=0) return oof_train.reshape(-1, 1).ravel(), oof_test.reshape(-1, 1).ravel(), models class StackingEnsemble: """Stacking ensemble classifier. To add classifiers, call 'add_to_ensemble' and provide a list of wrappers, a training set for oof predictions, and test set for validation. The feature set needs a name when training parts of the ensemble on different sets. After adding classifiers, 'train_meta_learner' needs to be called to train on out-of-fold training predictions. Predictions can be made on new data provided a list of the same features that was used during training classifiers. """ def __init__(self): self.initialised = False self.ready_for_meta_learning = False self.oof_train = pd.DataFrame() self.oof_test = pd.DataFrame() self.y_train = None self.y_test = None self.clf_count = 0 self.feature_set_count = 0 self.clf_feature_set_ids = [] self.feature_sets = dict() self.models = [] self.metalearner = None def add_to_ensemble(self, clf_wrapper_list, x_train, y_train, x_test, y_test, feature_set_name): """Train classifiers on provided feature set, add and save to ensemble object.""" print(f"\nAdding to ensemble, {len(clf_wrapper_list)} classifiers trained on input {x_train.shape}:\n") if feature_set_name in self.feature_sets: feature_set_id = self.feature_sets['feature_set_name'] else: feature_set_id = self.feature_set_count self.feature_sets['feature_set_name'] = self.feature_set_count self.feature_set_count += 1 if self.initialised: assert (self.y_train == y_train).all() and (self.y_test == y_test).all(), "provided dataset is different to previously fitted set" else: self.initialised = True self.y_train = y_train self.y_test = y_test for clf in clf_wrapper_list: oof_train, oof_test, models = get_oof(clf, x_train, y_train, x_test, y_test) self.oof_train[f'{self.feature_set_count}_{self.clf_count}'] = oof_train self.oof_test[f'{self.feature_set_count}_{self.clf_count}'] = oof_test self.models.append(models) self.clf_count += 1 self.clf_feature_set_ids.append(feature_set_id) self.ready_for_meta_learning = True def train_meta_learner(self): """Train meta-learner on out-of-fold predictions. Can only be called after having called 'add_to_ensemble'.""" assert self.ready_for_meta_learning is True print(f"\nTraining meta-learner on ensemble of {self.clf_count} classifiers:") self.metalearner = LogisticRegression() self.metalearner.fit(self.oof_train, self.y_train) preds = self.metalearner.predict(self.oof_train) ac = accuracy_score(self.y_train, preds) f1 = f1_score(self.y_train, preds, average='macro') print(f"Train: accuracy {ac:0.3f}, macro-F1 {f1:0.3f}") preds = self.metalearner.predict(self.oof_test) ac = accuracy_score(self.y_test, preds) f1 = f1_score(self.y_test, preds, average='macro') print(f"Valid: accuracy {ac:0.3f}, macro-F1 {f1:0.3f} ") def predict_proba(self, fs_list): """Predict probabilities on a list of feature sets, the same used when training the ensemble.""" assert self.metalearner is not None basepreds = pd.DataFrame() for i, clf_models in enumerate(self.models): fs_id = self.clf_feature_set_ids[i] clf_preds = np.zeros((fs_list[fs_id].shape[0],)) preds_skf = np.empty((NFOLDS, fs_list[fs_id].shape[0])) for j, clf in enumerate(clf_models): pred = clf.predict(fs_list[fs_id]) preds_skf[j, :] = pred clf_preds[:] = preds_skf.mean(axis=0) basepreds[i] = clf_preds preds_prob = self.metalearner.predict_proba(basepreds)[:, 1] return preds_prob def predict(self, fs_list): """Predict binary classes for a list of feature sets, the same used when training the ensemble.""" assert self.metalearner is not None basepreds = pd.DataFrame() for i, clf_models in enumerate(self.models): fs_id = self.clf_feature_set_ids[i] clf_preds = np.zeros((fs_list[fs_id].shape[0],)) preds_skf = np.empty((NFOLDS, fs_list[fs_id].shape[0])) for j, clf in enumerate(clf_models): pred = clf.predict(fs_list[fs_id]) preds_skf[j, :] = pred clf_preds[:] = preds_skf.mean(axis=0) basepreds[i] = clf_preds preds = self.metalearner.predict(basepreds) return preds def evaluate(self, fs_list, y): """Evaluate ensemble given a list of feature sets and labels.""" preds = self.predict(fs_list) ac = accuracy_score(y, preds) f1 = f1_score(y, preds, average='macro') print(f"Evaluation: accuracy {ac:0.4f}, macro-F1 {f1:0.4f}")
[ "contextlib.redirect_stdout", "sklearn.metrics.f1_score", "numpy.where", "sklearn.linear_model.LogisticRegression", "sklearn.model_selection.StratifiedKFold", "sklearn.preprocessing.StandardScaler", "numpy.zeros", "numpy.empty", "copy.deepcopy", "pandas.DataFrame", "sklearn.metrics.accuracy_score", "numpy.round" ]
[((358, 423), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'NFOLDS', 'shuffle': '(True)', 'random_state': 'SEED'}), '(n_splits=NFOLDS, shuffle=True, random_state=SEED)\n', (373, 423), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((559, 586), 'numpy.where', 'np.where', (['(y_hat > 0.5)', '(1)', '(0)'], {}), '(y_hat > 0.5, 1, 0)\n', (567, 586), True, 'import numpy as np\n'), ((2278, 2307), 'numpy.zeros', 'np.zeros', (['(x_train.shape[0],)'], {}), '((x_train.shape[0],))\n', (2286, 2307), True, 'import numpy as np\n'), ((2323, 2351), 'numpy.zeros', 'np.zeros', (['(x_test.shape[0],)'], {}), '((x_test.shape[0],))\n', (2331, 2351), True, 'import numpy as np\n'), ((2371, 2406), 'numpy.empty', 'np.empty', (['(NFOLDS, x_test.shape[0])'], {}), '((NFOLDS, x_test.shape[0]))\n', (2379, 2406), True, 'import numpy as np\n'), ((604, 644), 'sklearn.metrics.f1_score', 'f1_score', (['y_true', 'y_hat'], {'average': '"""macro"""'}), "(y_true, y_hat, average='macro')\n", (612, 644), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((4263, 4277), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4275, 4277), True, 'import pandas as pd\n'), ((4302, 4316), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4314, 4316), True, 'import pandas as pd\n'), ((6262, 6282), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (6280, 6282), False, 'from sklearn.linear_model import LogisticRegression\n'), ((6413, 6448), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['self.y_train', 'preds'], {}), '(self.y_train, preds)\n', (6427, 6448), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((6462, 6508), 'sklearn.metrics.f1_score', 'f1_score', (['self.y_train', 'preds'], {'average': '"""macro"""'}), "(self.y_train, preds, average='macro')\n", (6470, 6508), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((6643, 6677), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['self.y_test', 'preds'], {}), '(self.y_test, preds)\n', (6657, 6677), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((6691, 6736), 'sklearn.metrics.f1_score', 'f1_score', (['self.y_test', 'preds'], {'average': '"""macro"""'}), "(self.y_test, preds, average='macro')\n", (6699, 6736), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((7011, 7025), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7023, 7025), True, 'import pandas as pd\n'), ((7788, 7802), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7800, 7802), True, 'import pandas as pd\n'), ((8500, 8524), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y', 'preds'], {}), '(y, preds)\n', (8514, 8524), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((8538, 8573), 'sklearn.metrics.f1_score', 'f1_score', (['y', 'preds'], {'average': '"""macro"""'}), "(y, preds, average='macro')\n", (8546, 8573), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((3004, 3033), 'contextlib.redirect_stdout', 'contextlib.redirect_stdout', (['f'], {}), '(f)\n', (3030, 3033), False, 'import contextlib\n'), ((3124, 3144), 'numpy.round', 'np.round', (['train_pred'], {}), '(train_pred)\n', (3132, 3144), True, 'import numpy as np\n'), ((3201, 3219), 'numpy.round', 'np.round', (['oof_pred'], {}), '(oof_pred)\n', (3209, 3219), True, 'import numpy as np\n'), ((3273, 3292), 'numpy.round', 'np.round', (['test_pred'], {}), '(test_pred)\n', (3281, 3292), True, 'import numpy as np\n'), ((7154, 7190), 'numpy.zeros', 'np.zeros', (['(fs_list[fs_id].shape[0],)'], {}), '((fs_list[fs_id].shape[0],))\n', (7162, 7190), True, 'import numpy as np\n'), ((7215, 7258), 'numpy.empty', 'np.empty', (['(NFOLDS, fs_list[fs_id].shape[0])'], {}), '((NFOLDS, fs_list[fs_id].shape[0]))\n', (7223, 7258), True, 'import numpy as np\n'), ((7931, 7967), 'numpy.zeros', 'np.zeros', (['(fs_list[fs_id].shape[0],)'], {}), '((fs_list[fs_id].shape[0],))\n', (7939, 7967), True, 'import numpy as np\n'), ((7992, 8035), 'numpy.empty', 'np.empty', (['(NFOLDS, fs_list[fs_id].shape[0])'], {}), '((NFOLDS, fs_list[fs_id].shape[0]))\n', (8000, 8035), True, 'import numpy as np\n'), ((3061, 3079), 'copy.deepcopy', 'copy.deepcopy', (['clf'], {}), '(clf)\n', (3074, 3079), False, 'import copy\n'), ((890, 906), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (904, 906), False, 'from sklearn.preprocessing import StandardScaler\n'), ((972, 988), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (986, 988), False, 'from sklearn.preprocessing import StandardScaler\n')]
import numpy as np import yt from matplotlib import rc fsize = 17 rc('text', usetex=False) rc('font', size=fsize)#, ftype=42) line_width = 3 point_size = 30 import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from galaxy_analysis.particle_analysis import particle_types as pdef def plot_dtd(ds): data = ds.all_data() snIa = pdef.snIa(ds, data) WD = pdef.white_dwarfs(ds, data) WD_death = data['dynamical_time'][WD] # + data['creation_time'][WD] SNIa_death = data['dynamical_time'][snIa] # + data['creation_time'][snIa] WD_death = list(WD_death.convert_to_units("Gyr").value) SNIa_death = list(SNIa_death.convert_to_units("Gyr").value) fig, ax = plt.subplots() all = np.array( WD_death + SNIa_death) hist, bins = np.histogram(all, bins = np.arange(0,14.25,0.5)) x = 0.5 * (bins[1:] + bins[:-1]) ax.plot(x, hist, lw = 3, color = 'black', ls = '-') y = x**(-1.0* ds.parameters['IndividualStarDTDSlope']) norm = hist[0] / y[0] ax.plot(x, norm*y, lw = 3, color = 'black', ls='--') ax.plot(x, hist[0]/((x[0])**(-1.01)) * x**(-1.01),lw =3, color = 'black',ls=':') ax.set_xlabel(r'Time (Gyr)') ax.set_ylabel(r'Binned SNIa (counts)') ax.loglog() fig.set_size_inches(8,8) plt.tight_layout() plt.minorticks_on() fig.savefig('dtd.png') plt.close() return if __name__ == "__main__": ds = yt.load('DD0205/DD0205') data = ds.all_data() plot_dtd(ds)
[ "matplotlib.use", "galaxy_analysis.particle_analysis.particle_types.snIa", "matplotlib.pyplot.minorticks_on", "matplotlib.pyplot.close", "numpy.array", "galaxy_analysis.particle_analysis.particle_types.white_dwarfs", "yt.load", "matplotlib.rc", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplots", "numpy.arange" ]
[((66, 90), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(False)'}), "('text', usetex=False)\n", (68, 90), False, 'from matplotlib import rc\n'), ((91, 113), 'matplotlib.rc', 'rc', (['"""font"""'], {'size': 'fsize'}), "('font', size=fsize)\n", (93, 113), False, 'from matplotlib import rc\n'), ((182, 196), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (189, 196), True, 'import matplotlib as mpl\n'), ((355, 374), 'galaxy_analysis.particle_analysis.particle_types.snIa', 'pdef.snIa', (['ds', 'data'], {}), '(ds, data)\n', (364, 374), True, 'from galaxy_analysis.particle_analysis import particle_types as pdef\n'), ((386, 413), 'galaxy_analysis.particle_analysis.particle_types.white_dwarfs', 'pdef.white_dwarfs', (['ds', 'data'], {}), '(ds, data)\n', (403, 413), True, 'from galaxy_analysis.particle_analysis import particle_types as pdef\n'), ((710, 724), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (722, 724), True, 'import matplotlib.pyplot as plt\n'), ((735, 766), 'numpy.array', 'np.array', (['(WD_death + SNIa_death)'], {}), '(WD_death + SNIa_death)\n', (743, 766), True, 'import numpy as np\n'), ((1282, 1300), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1298, 1300), True, 'import matplotlib.pyplot as plt\n'), ((1305, 1324), 'matplotlib.pyplot.minorticks_on', 'plt.minorticks_on', ([], {}), '()\n', (1322, 1324), True, 'import matplotlib.pyplot as plt\n'), ((1356, 1367), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1365, 1367), True, 'import matplotlib.pyplot as plt\n'), ((1419, 1443), 'yt.load', 'yt.load', (['"""DD0205/DD0205"""'], {}), "('DD0205/DD0205')\n", (1426, 1443), False, 'import yt\n'), ((811, 835), 'numpy.arange', 'np.arange', (['(0)', '(14.25)', '(0.5)'], {}), '(0, 14.25, 0.5)\n', (820, 835), True, 'import numpy as np\n')]
"""Tests cac.models.classification.ClassificationModel""" import os from os.path import dirname, join, exists from copy import deepcopy import torch import wandb import unittest from tqdm import tqdm import numpy as np from torch import optim from cac.config import Config from cac.utils.logger import set_logger, color from cac.models.classification import ClassificationModel class ClassificationModelTestCase(unittest.TestCase): """Class to check the creation of ClassificationModel""" @classmethod def setUpClass(cls): version = 'default.yml' cls.cfg = Config(version) cls.cfg.data['dataset']['params']['val']['fraction'] = 0.1 cls.cfg.num_workers = 1 if torch.cuda.is_available() else 10 # def test_1_model_fitting(self): # """Test model.fit()""" # set_logger(join(self.cfg.log_dir, 'train.log')) # tester_cfg = deepcopy(self.cfg) # tester_cfg.model['epochs'] = 1 # classifier = ClassificationModel(tester_cfg) # classifier.fit(debug=True, use_wandb=False) def test_optimizer(self): """Test model.fit()""" set_logger(join(self.cfg.log_dir, 'train.log')) tester_cfg = deepcopy(self.cfg) tester_cfg.model['epochs'] = 1 classifier = ClassificationModel(tester_cfg) self.assertIsInstance(classifier.optimizer, optim.SGD) self.assertIsInstance( classifier.scheduler, optim.lr_scheduler.ReduceLROnPlateau) def test_with_frames(self): """Test models/lassification.py with fixed frames""" cfg = Config('defaults/with-frames.yml') cfg.data['dataset']['params']['train']['fraction'] = 0.01 cfg.data['dataset']['params']['val']['fraction'] = 0.03 cfg.model['batch_size'] = 4 # to make it work on small CPU machines cfg.num_workers = 1 set_logger(join(cfg.log_dir, 'train.log')) tester_cfg = deepcopy(cfg) tester_cfg.model['epochs'] = 1 classifier = ClassificationModel(tester_cfg) classifier.fit(debug=True, use_wandb=False) def test_with_label_smoothing(self): """Test model.fit() with label smoothing""" tester_cfg = Config('defaults/label-smoothing-random.yml') set_logger(join(tester_cfg.log_dir, 'train.log')) tester_cfg.data['dataset']['params']['train']['fraction'] = 0.01 tester_cfg.data['dataset']['params']['val']['fraction'] = 0.03 tester_cfg.model['batch_size'] = 4 # to make it work on small CPU machines tester_cfg.num_workers = 1 tester_cfg.model['epochs'] = 1 classifier = ClassificationModel(tester_cfg) classifier.fit(use_wandb=False) def test_get_unique_paths(self): """Tests getting unique paths with order preserved (Used in _aggregate_data())""" # input paths paths = ['b', 'b', 'a', 'a', 'c', 'c', 'c', 'c'] # expected unique outputs with preserved order exp_output = np.array(['b', 'a', 'c']) _, idx = np.unique(paths, return_index=True) unique_paths = np.take(paths, np.sort(idx)) self.assertTrue((unique_paths == exp_output).all()) if __name__ == "__main__": unittest.main()
[ "numpy.unique", "numpy.sort", "os.path.join", "numpy.array", "torch.cuda.is_available", "copy.deepcopy", "unittest.main", "cac.models.classification.ClassificationModel", "cac.config.Config" ]
[((3251, 3266), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3264, 3266), False, 'import unittest\n'), ((587, 602), 'cac.config.Config', 'Config', (['version'], {}), '(version)\n', (593, 602), False, 'from cac.config import Config\n'), ((1202, 1220), 'copy.deepcopy', 'deepcopy', (['self.cfg'], {}), '(self.cfg)\n', (1210, 1220), False, 'from copy import deepcopy\n'), ((1281, 1312), 'cac.models.classification.ClassificationModel', 'ClassificationModel', (['tester_cfg'], {}), '(tester_cfg)\n', (1300, 1312), False, 'from cac.models.classification import ClassificationModel\n'), ((1587, 1621), 'cac.config.Config', 'Config', (['"""defaults/with-frames.yml"""'], {}), "('defaults/with-frames.yml')\n", (1593, 1621), False, 'from cac.config import Config\n'), ((1929, 1942), 'copy.deepcopy', 'deepcopy', (['cfg'], {}), '(cfg)\n', (1937, 1942), False, 'from copy import deepcopy\n'), ((2003, 2034), 'cac.models.classification.ClassificationModel', 'ClassificationModel', (['tester_cfg'], {}), '(tester_cfg)\n', (2022, 2034), False, 'from cac.models.classification import ClassificationModel\n'), ((2202, 2247), 'cac.config.Config', 'Config', (['"""defaults/label-smoothing-random.yml"""'], {}), "('defaults/label-smoothing-random.yml')\n", (2208, 2247), False, 'from cac.config import Config\n'), ((2628, 2659), 'cac.models.classification.ClassificationModel', 'ClassificationModel', (['tester_cfg'], {}), '(tester_cfg)\n', (2647, 2659), False, 'from cac.models.classification import ClassificationModel\n'), ((3010, 3035), 'numpy.array', 'np.array', (["['b', 'a', 'c']"], {}), "(['b', 'a', 'c'])\n", (3018, 3035), True, 'import numpy as np\n'), ((3062, 3097), 'numpy.unique', 'np.unique', (['paths'], {'return_index': '(True)'}), '(paths, return_index=True)\n', (3071, 3097), True, 'import numpy as np\n'), ((705, 730), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (728, 730), False, 'import torch\n'), ((1143, 1178), 'os.path.join', 'join', (['self.cfg.log_dir', '"""train.log"""'], {}), "(self.cfg.log_dir, 'train.log')\n", (1147, 1178), False, 'from os.path import dirname, join, exists\n'), ((1875, 1905), 'os.path.join', 'join', (['cfg.log_dir', '"""train.log"""'], {}), "(cfg.log_dir, 'train.log')\n", (1879, 1905), False, 'from os.path import dirname, join, exists\n'), ((2267, 2304), 'os.path.join', 'join', (['tester_cfg.log_dir', '"""train.log"""'], {}), "(tester_cfg.log_dir, 'train.log')\n", (2271, 2304), False, 'from os.path import dirname, join, exists\n'), ((3136, 3148), 'numpy.sort', 'np.sort', (['idx'], {}), '(idx)\n', (3143, 3148), True, 'import numpy as np\n')]
import numpy as np from numba import jit from numba.core import types from numba.tests.support import TestCase, tag import unittest # Array overlaps involving a displacement def array_overlap1(src, dest, k=1): assert src.shape == dest.shape dest[k:] = src[:-k] def array_overlap2(src, dest, k=1): assert src.shape == dest.shape dest[:-k] = src[k:] def array_overlap3(src, dest, k=1): assert src.shape == dest.shape dest[:,:-k] = src[:,k:] def array_overlap4(src, dest, k=1): assert src.shape == dest.shape dest[:,k:] = src[:,:-k] def array_overlap5(src, dest, k=1): assert src.shape == dest.shape dest[...,:-k] = src[...,k:] def array_overlap6(src, dest, k=1): assert src.shape == dest.shape dest[...,k:] = src[...,:-k] # Array overlaps involving an in-place reversal def array_overlap11(src, dest): assert src.shape == dest.shape dest[::-1] = src def array_overlap12(src, dest): assert src.shape == dest.shape dest[:] = src[::-1] def array_overlap13(src, dest): assert src.shape == dest.shape dest[:,::-1] = src def array_overlap14(src, dest): assert src.shape == dest.shape dest[:] = src[:,::-1] def array_overlap15(src, dest): assert src.shape == dest.shape dest[...,::-1] = src def array_overlap16(src, dest): assert src.shape == dest.shape dest[:] = src[...,::-1] class TestArrayOverlap(TestCase): def check_overlap(self, pyfunc, min_ndim, have_k_argument=False): N = 4 def vary_layouts(orig): yield orig.copy(order='C') yield orig.copy(order='F') a = orig[::-1].copy()[::-1] assert not a.flags.c_contiguous and not a.flags.f_contiguous yield a def check(pyfunc, cfunc, pydest, cdest, kwargs): pyfunc(pydest, pydest, **kwargs) cfunc(cdest, cdest, **kwargs) self.assertPreciseEqual(pydest, cdest) cfunc = jit(nopython=True)(pyfunc) # Check for up to 3d arrays for ndim in range(min_ndim, 4): shape = (N,) * ndim orig = np.arange(0, N**ndim).reshape(shape) # Note we cannot copy a 'A' layout array exactly (bitwise), # so instead we call vary_layouts() twice for pydest, cdest in zip(vary_layouts(orig), vary_layouts(orig)): if have_k_argument: for k in range(1, N): check(pyfunc, cfunc, pydest, cdest, dict(k=k)) else: check(pyfunc, cfunc, pydest, cdest, {}) def check_overlap_with_k(self, pyfunc, min_ndim): self.check_overlap(pyfunc, min_ndim=min_ndim, have_k_argument=True) def test_overlap1(self): self.check_overlap_with_k(array_overlap1, min_ndim=1) def test_overlap2(self): self.check_overlap_with_k(array_overlap2, min_ndim=1) def test_overlap3(self): self.check_overlap_with_k(array_overlap3, min_ndim=2) def test_overlap4(self): self.check_overlap_with_k(array_overlap4, min_ndim=2) def test_overlap5(self): self.check_overlap_with_k(array_overlap5, min_ndim=1) def test_overlap6(self): self.check_overlap_with_k(array_overlap6, min_ndim=1) def test_overlap11(self): self.check_overlap(array_overlap11, min_ndim=1) def test_overlap12(self): self.check_overlap(array_overlap12, min_ndim=1) def test_overlap13(self): self.check_overlap(array_overlap13, min_ndim=2) def test_overlap14(self): self.check_overlap(array_overlap14, min_ndim=2) def test_overlap15(self): self.check_overlap(array_overlap15, min_ndim=1) def test_overlap16(self): self.check_overlap(array_overlap16, min_ndim=1) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numba.jit", "numpy.arange" ]
[((3823, 3838), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3836, 3838), False, 'import unittest\n'), ((1959, 1977), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (1962, 1977), False, 'from numba import jit\n'), ((2113, 2136), 'numpy.arange', 'np.arange', (['(0)', '(N ** ndim)'], {}), '(0, N ** ndim)\n', (2122, 2136), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from copy import deepcopy import warnings from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import cross_val_predict from sklearn.model_selection import KFold, StratifiedKFold from sklearn.externals.joblib import Parallel, delayed from gravity_learn.utils import (force_array, check_cv, fit_model, check_is_fitted) __all__ = ['EnsemblerClassifier', 'QuickStackClassifier', 'FullStackClassifier'] class EnsemblerClassifier(BaseEstimator, TransformerMixin): # TODO: require df? how to pass Yfactory in """ This is a class to ensemble a set of given base models. The assumption is that those models are tuned (hyperparameters chosen). It works as follows. It accepts a dictionary of base models, the ensembler to combine them, a number of folds (to be used in the cross validation strategy) and a random state (to be used in the cross val strategy) The fit method: The ensemblers iterates through the base models, doing two things: - determining out of sample predictions (so n_folds fit-predict combinations). This is used for fitting the ensembler next. - fit the base model to the full data, which is used for the ensemblers predict method Notice this implies we have n_folds + 1 fits for each base model. With these out of sample predictions, it determines the parameters of the ensemblers. The predict method: Determines the predictions of each of the base models and then combines them with the fitted ensembler. """ def __init__(self, base_models, ensembler_est, n_folds, random_state=0): """ Parameters ---------- base_models : a dictionary of model name/model pairs ensembler_est : an ensembler to combine the outputs of the base model n_folds : the number of folds to use when estimating the parameters of the ensemblers. Note: Ideally, n_folds should be high, because it makes the size of the base model fit for predictions and the base model fit for ensembler calibration more similar. random_state : the random state to use in the cross validaiton strategy """ self.base_models = base_models self.ensembler_est = ensembler_est self.n_folds = n_folds self.random_state = random_state self.fitted_base_models = {} self.model_order = [] warnings.warn('EnsemblerClassifier is deprecated, ' 'please use FullStackClassifier instead', DeprecationWarning) def fit(self, X, y): cv = StratifiedKFold( n_splits=self.n_folds, shuffle=True, random_state=self.random_state ) base_predictions = {} for name, model in self.base_models.items(): # This is for determining the ensembler parameters base_predictions[name] = cross_val_predict( model, X, y, cv=cv, method='predict_proba' )[:, 1] # This for the ensembler.predict method self.fitted_base_models[name] = model.fit(X, y) self.model_order.append(name) base_predictions = pd.DataFrame( base_predictions, index=X.index )[self.model_order] self.ensembler_est.fit(base_predictions, y) return self def predict_proba(self, X): base_predictions = {} for name, model in self.fitted_base_models.items(): base_predictions[name] = model.predict_proba(X)[:, 1] base_predictions = pd.DataFrame( base_predictions, index=X.index )[self.model_order] return self.ensembler_est.predict_proba(base_predictions) class QuickStackClassifier(BaseEstimator): """ This class has a similar stacking structure but also is scalable, which means, it's objective to save computing run time on training in-sample-fold and outputing out-of-fold predictions for fitting ensembler Instead of doing K-fold training for each base model, it does only one-fold To have a good performance, it requires ensembler to be a simple model with only a few parameters to tune Parameters ---------- base_models : list of (string, base_model) tuples. The first half of each tuple is the group name of the pipeline. ensembler : an ensembler to combine the outputs of the base models proba : bool, if True, model will implement predict_proba when it gets called full_train : bool, if True, its base models are trained with 100% data again and they are used for generating probas for new data Default is True cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. """ def __init__(self, base_models, ensembler, proba=True, full_train=True, cv=None, n_jobs=1, verbose=0): self.base_models = list(base_models) self.ensembler = ensembler self.proba = proba self.full_train = full_train self.cv = cv self.n_jobs = n_jobs self.verbose = verbose if self.cv is None: self.cv = KFold(n_splits=3, shuffle=True) warnings.warn('QuickStackClassifier is deprecated, ' 'please use FullStackClassifier instead', DeprecationWarning) def get_params(self, deep=True): return self.ensembler.get_params(deep=deep) def set_params(self, **params): return self.ensembler.set_params(**params) def _fit(self, X, y, *args, **kwargs): """ private method to train n base models for last fold of cv """ # get list of folds of indices self.last_fold = list(check_cv(self.cv).split(X, y))[-1] self.in_fold = self.last_fold[0] self.out_of_fold = self.last_fold[-1] # Paralellization parallel = Parallel(n_jobs=self.n_jobs, verbose=self.verbose) if isinstance(X, pd.DataFrame): if not isinstance(y, (pd.Series, pd.DataFrame)): y = pd.DataFrame(y) self.fitted_models = parallel(delayed(fit_model)( model=deepcopy(model), X=X.iloc[self.in_fold], y=y.iloc[self.in_fold], *args, **kwargs ) for (_, model) in self.base_models ) else: # X is not a dataframe self.fitted_models = parallel(delayed(fit_model)( model=deepcopy(model), X=X[self.in_fold], y=force_array(y)[self.in_fold], *args, **kwargs ) for (_, model) in self.base_models ) # train model with full 100% data if self.full_train: self.full_fitted_models = parallel(delayed(fit_model)( model=deepcopy(model), X=X, y=y, *args, **kwargs ) for (_, model) in self.base_models ) def fit(self, X, y, *args, **kwargs): """ fit method is the method for fitting the ensembler and the trainning data is out-of-fold predictions from base_models """ # call _fit self._fit(X, y, *args, **kwargs) # generate out-of-sample predictions and reserve same order!! proba_dfs = [] if isinstance(X, pd.DataFrame): for i, model in enumerate(self.fitted_models): df_proba = pd.DataFrame( {'proba_{}'.format(i): model.predict_proba(X.iloc[self.out_of_fold])[:, 1]}, # noqa index=self.out_of_fold ) proba_dfs.append(df_proba) else: # X is not a dataframe for i, model in enumerate(self.fitted_models): df_proba = pd.DataFrame( {'proba_{}'.format(i): model.predict_proba(X[self.out_of_fold])[:, 1]}, # noqa index=self.out_of_fold ) proba_dfs.append(df_proba) # horizontal concat dfs and revert to origin order df_out_of_fold_pred = pd.concat(proba_dfs, axis=1) # if need to convert to predict if not self.proba: df_out_of_fold_pred = df_out_of_fold_pred >= 0.5 # Now train ensembler if not isinstance(y, (pd.Series, pd.DataFrame)): y = pd.DataFrame(y) self.ensembler.fit( X=df_out_of_fold_pred, y=y.iloc[self.out_of_fold], *args, **kwargs ) # signal done fitting self.fitted = True return self def predict_proba(self, X, *args, **kwargs): check_is_fitted(self, 'fitted') # use full_trained model or not if self.full_train: base_models_list = self.full_fitted_models else: base_models_list = self.fitted_models # get pred from all base models proba_dfs = [] for i, model in enumerate(base_models_list): df_proba = pd.DataFrame( {'proba_{}'.format(i): model.predict_proba(X)[:, 1]} ) proba_dfs.append(df_proba) # horizontal concat P1 from all base models df_base_pred = pd.concat(proba_dfs, axis=1) if not self.proba: df_base_pred = df_base_pred >= 0.5 # ensembler make predictions return self.ensembler.predict_proba(df_base_pred, *args, **kwargs) def predict(self, X, *args, **kwargs): df_proba = self.predict_proba(X, *args, **kwargs)[:, 1] df_pred = df_proba >= 0.5 return force_array(df_pred) def _base_model_cross_val(model, X, y, cv=None, proba=True, *args, **kwargs): """ A private function that trains each base model for each fold and outputs fitted base models, its out-of-fold predictions, and array of y (in same order of out-of-fold predictions) for fitting ensembler Parameters ---------- model : object, base model X : array-like, or dataframe y : array-like, or dataframe cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. proba : bool, if True, model will implement predict_proba when it gets called Returns ------- list of fitted model for each fold, Xt(out-of-fold pred), y(matched with Xt) """ # get list of folds of indices all_folds = list(check_cv(cv).split(X, y)) # check data type if not isinstance(X, (pd.DataFrame, pd.Series)): X = pd.DataFrame(force_array(X)) if not isinstance(y, (pd.DataFrame, pd.Series)): y = pd.DataFrame(force_array(y)) # iterate each train-fold and fit base model fitted_models = [ fit_model( model=deepcopy(model), X=X.iloc[train], y=y.iloc[train], *args, **kwargs ) for train, test in all_folds ] # generate out-of-sample predictions and reserve same order!! proba_dfs = [] for i, (train, test) in enumerate(all_folds): df_proba = pd.DataFrame( {'proba': fitted_models[i].predict_proba(X.iloc[test])[:, 1]}, # noqa index=test ) proba_dfs.append(df_proba) # concat dfs, sort index, and record index df_out_of_sample = pd.concat(proba_dfs).sort_index() idx = df_out_of_sample.index.values # get pred_out_of_sample pred_out_of_sample = \ force_array(df_out_of_sample).reshape((len(df_out_of_sample), 1)) # if need to convert to predict if not proba: pred_out_of_sample = pred_out_of_sample > 0.5 # get y matched with pred_out_of_sample y_out_of_sample = y.iloc[idx] return fitted_models, pred_out_of_sample, y_out_of_sample class FullStackClassifier(BaseEstimator): """ This class is a full version of QuickStackClassifier, in other words, QuickStackClassifier is a sub-instance of FullStackClassifier Its objective is outputing out-of-fold predictions to fit ensembler Instead of passing Xt, y (keep same shape) to ensembler, this class is meant to allow Xt, y (modified shape due to specific CV strat) to ensembler Parameters ---------- base_models : list of (string, base_model) tuples. The first half of each tuple is the group name of the pipeline. ensembler : an ensembler to combine the outputs of the base models proba : bool, if True, model will implement predict_proba when it gets called full_train : bool, if True, its base models are trained with 100% data again and they are used for generating probas for new data Default is True quick_stack : bool, if True, base models predict only on the last fold to output out-of-sample predictions for ensembler to fit. Default is False cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross validation, - integer, to specify the number of folds in a `(Stratified)KFold`, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. """ def __init__(self, base_models, ensembler, proba=True, full_train=True, quick_stack=False, cv=None, n_jobs=1, verbose=0): self.base_models = list(base_models) self.ensembler = ensembler self.proba = proba self.full_train = full_train self.quick_stack = quick_stack self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def get_params(self, deep=True): return self.ensembler.get_params(deep=deep) def set_params(self, **params): return self.ensembler.set_params(**params) @property def get_fitted_models_(self): check_is_fitted(self, 'fitted') if self.full_train: fitted_models = self.full_fitted_models else: fitted_models = self.fitted_models return fitted_models @property def get_fitted_ensembler_(self): check_is_fitted(self, 'fitted') return self.ensembler def fit(self, X, y, *args, **kwargs): """ fit method is the method for fitting the ensembler and the trainning data is out-of-fold predictions from base_models """ # cv has to be deterministic cv = list(check_cv(self.cv).split(X, y)) # check quick_stack if self.quick_stack: cv = [cv[-1]] # parallel iterating thru models to output out-of-fold pred parallel = Parallel(n_jobs=self.n_jobs, verbose=self.verbose) result = parallel(delayed(_base_model_cross_val)( model=deepcopy(model), X=X, y=y, cv=cv, proba=self.proba, *args, **kwargs ) for (_, model) in self.base_models ) # post process fitted_models, pred_out_of_sample, y_out_of_sample = zip(*result) self.fitted_models = \ [ (self.base_models[i][0], models) for i, models in enumerate(fitted_models) ] # assume all y_out_of_sample are the same, which they should be y_out_of_sample = y_out_of_sample[0] # prepare out_of_sample to fit ensembler pred_out_of_sample = np.hstack(pred_out_of_sample) # Now train ensembler self.ensembler.fit( X=pred_out_of_sample, y=y_out_of_sample, *args, **kwargs ) # check full_train if self.full_train: self.full_fitted_models = parallel(delayed(fit_model)( model=deepcopy(model), X=X, y=y, *args, **kwargs ) for (_, model) in self.base_models ) # post process self.full_fitted_models = \ [ (self.base_models[i][0], models) for i, models in enumerate(self.full_fitted_models) ] # signal done fitting self.fitted = True return self def predict_proba(self, X, *args, **kwargs): check_is_fitted(self, 'fitted') # use full_trained model or not proba_dfs = [] if self.full_train: for name, model in self.full_fitted_models: df_proba = pd.DataFrame( {'proba_{}'.format(name): model.predict_proba(X)[:, 1]} ) proba_dfs.append(df_proba) else: for name, models in self.fitted_models: avg_proba = np.average( np.hstack( [ model.predict_proba(X)[:, 1].reshape((len(X), 1)) for model in models ] ), axis=1 ) df_proba = pd.DataFrame({'proba_{}'.format(name): avg_proba}) proba_dfs.append(df_proba) # horizontal concat P1 from all base models df_base_pred = pd.concat(proba_dfs, axis=1) if not self.proba: df_base_pred = df_base_pred > 0.5 # ensembler make predictions return self.ensembler.predict_proba(df_base_pred, *args, **kwargs) def predict(self, X, *args, **kwargs): df_proba = self.predict_proba(X, *args, **kwargs)[:, 1] df_pred = df_proba > 0.5 return force_array(df_pred)
[ "copy.deepcopy", "sklearn.externals.joblib.delayed", "pandas.DataFrame", "numpy.hstack", "gravity_learn.utils.force_array", "sklearn.model_selection.StratifiedKFold", "gravity_learn.utils.check_is_fitted", "sklearn.externals.joblib.Parallel", "sklearn.model_selection.cross_val_predict", "gravity_learn.utils.check_cv", "warnings.warn", "sklearn.model_selection.KFold", "pandas.concat" ]
[((2660, 2780), 'warnings.warn', 'warnings.warn', (['"""EnsemblerClassifier is deprecated, please use FullStackClassifier instead"""', 'DeprecationWarning'], {}), "(\n 'EnsemblerClassifier is deprecated, please use FullStackClassifier instead'\n , DeprecationWarning)\n", (2673, 2780), False, 'import warnings\n'), ((2857, 2946), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'self.n_folds', 'shuffle': '(True)', 'random_state': 'self.random_state'}), '(n_splits=self.n_folds, shuffle=True, random_state=self.\n random_state)\n', (2872, 2946), False, 'from sklearn.model_selection import KFold, StratifiedKFold\n'), ((6009, 6130), 'warnings.warn', 'warnings.warn', (['"""QuickStackClassifier is deprecated, please use FullStackClassifier instead"""', 'DeprecationWarning'], {}), "(\n 'QuickStackClassifier is deprecated, please use FullStackClassifier instead'\n , DeprecationWarning)\n", (6022, 6130), False, 'import warnings\n'), ((6716, 6766), 'sklearn.externals.joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs', 'verbose': 'self.verbose'}), '(n_jobs=self.n_jobs, verbose=self.verbose)\n', (6724, 6766), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((9010, 9038), 'pandas.concat', 'pd.concat', (['proba_dfs'], {'axis': '(1)'}), '(proba_dfs, axis=1)\n', (9019, 9038), True, 'import pandas as pd\n'), ((9562, 9593), 'gravity_learn.utils.check_is_fitted', 'check_is_fitted', (['self', '"""fitted"""'], {}), "(self, 'fitted')\n", (9577, 9593), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((10131, 10159), 'pandas.concat', 'pd.concat', (['proba_dfs'], {'axis': '(1)'}), '(proba_dfs, axis=1)\n', (10140, 10159), True, 'import pandas as pd\n'), ((10503, 10523), 'gravity_learn.utils.force_array', 'force_array', (['df_pred'], {}), '(df_pred)\n', (10514, 10523), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((15338, 15369), 'gravity_learn.utils.check_is_fitted', 'check_is_fitted', (['self', '"""fitted"""'], {}), "(self, 'fitted')\n", (15353, 15369), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((15600, 15631), 'gravity_learn.utils.check_is_fitted', 'check_is_fitted', (['self', '"""fitted"""'], {}), "(self, 'fitted')\n", (15615, 15631), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((16119, 16169), 'sklearn.externals.joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs', 'verbose': 'self.verbose'}), '(n_jobs=self.n_jobs, verbose=self.verbose)\n', (16127, 16169), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((16891, 16920), 'numpy.hstack', 'np.hstack', (['pred_out_of_sample'], {}), '(pred_out_of_sample)\n', (16900, 16920), True, 'import numpy as np\n'), ((17763, 17794), 'gravity_learn.utils.check_is_fitted', 'check_is_fitted', (['self', '"""fitted"""'], {}), "(self, 'fitted')\n", (17778, 17794), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((18699, 18727), 'pandas.concat', 'pd.concat', (['proba_dfs'], {'axis': '(1)'}), '(proba_dfs, axis=1)\n', (18708, 18727), True, 'import pandas as pd\n'), ((19069, 19089), 'gravity_learn.utils.force_array', 'force_array', (['df_pred'], {}), '(df_pred)\n', (19080, 19089), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((3453, 3498), 'pandas.DataFrame', 'pd.DataFrame', (['base_predictions'], {'index': 'X.index'}), '(base_predictions, index=X.index)\n', (3465, 3498), True, 'import pandas as pd\n'), ((3843, 3888), 'pandas.DataFrame', 'pd.DataFrame', (['base_predictions'], {'index': 'X.index'}), '(base_predictions, index=X.index)\n', (3855, 3888), True, 'import pandas as pd\n'), ((5969, 6000), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(3)', 'shuffle': '(True)'}), '(n_splits=3, shuffle=True)\n', (5974, 6000), False, 'from sklearn.model_selection import KFold, StratifiedKFold\n'), ((9270, 9285), 'pandas.DataFrame', 'pd.DataFrame', (['y'], {}), '(y)\n', (9282, 9285), True, 'import pandas as pd\n'), ((11773, 11787), 'gravity_learn.utils.force_array', 'force_array', (['X'], {}), '(X)\n', (11784, 11787), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((11867, 11881), 'gravity_learn.utils.force_array', 'force_array', (['y'], {}), '(y)\n', (11878, 11881), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((12545, 12565), 'pandas.concat', 'pd.concat', (['proba_dfs'], {}), '(proba_dfs)\n', (12554, 12565), True, 'import pandas as pd\n'), ((12683, 12712), 'gravity_learn.utils.force_array', 'force_array', (['df_out_of_sample'], {}), '(df_out_of_sample)\n', (12694, 12712), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((3173, 3234), 'sklearn.model_selection.cross_val_predict', 'cross_val_predict', (['model', 'X', 'y'], {'cv': 'cv', 'method': '"""predict_proba"""'}), "(model, X, y, cv=cv, method='predict_proba')\n", (3190, 3234), False, 'from sklearn.model_selection import cross_val_predict\n'), ((6888, 6903), 'pandas.DataFrame', 'pd.DataFrame', (['y'], {}), '(y)\n', (6900, 6903), True, 'import pandas as pd\n'), ((11647, 11659), 'gravity_learn.utils.check_cv', 'check_cv', (['cv'], {}), '(cv)\n', (11655, 11659), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((11991, 12006), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (11999, 12006), False, 'from copy import deepcopy\n'), ((15918, 15935), 'gravity_learn.utils.check_cv', 'check_cv', (['self.cv'], {}), '(self.cv)\n', (15926, 15935), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((16196, 16226), 'sklearn.externals.joblib.delayed', 'delayed', (['_base_model_cross_val'], {}), '(_base_model_cross_val)\n', (16203, 16226), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((6549, 6566), 'gravity_learn.utils.check_cv', 'check_cv', (['self.cv'], {}), '(self.cv)\n', (6557, 6566), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n'), ((6946, 6964), 'sklearn.externals.joblib.delayed', 'delayed', (['fit_model'], {}), '(fit_model)\n', (6953, 6964), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((7280, 7298), 'sklearn.externals.joblib.delayed', 'delayed', (['fit_model'], {}), '(fit_model)\n', (7287, 7298), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((7654, 7672), 'sklearn.externals.joblib.delayed', 'delayed', (['fit_model'], {}), '(fit_model)\n', (7661, 7672), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((16246, 16261), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (16254, 16261), False, 'from copy import deepcopy\n'), ((17184, 17202), 'sklearn.externals.joblib.delayed', 'delayed', (['fit_model'], {}), '(fit_model)\n', (17191, 17202), False, 'from sklearn.externals.joblib import Parallel, delayed\n'), ((6988, 7003), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (6996, 7003), False, 'from copy import deepcopy\n'), ((7322, 7337), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (7330, 7337), False, 'from copy import deepcopy\n'), ((7696, 7711), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (7704, 7711), False, 'from copy import deepcopy\n'), ((17226, 17241), 'copy.deepcopy', 'deepcopy', (['model'], {}), '(model)\n', (17234, 17241), False, 'from copy import deepcopy\n'), ((7392, 7406), 'gravity_learn.utils.force_array', 'force_array', (['y'], {}), '(y)\n', (7403, 7406), False, 'from gravity_learn.utils import force_array, check_cv, fit_model, check_is_fitted\n')]
import numpy as np from sklearn.exceptions import NotFittedError from sklearn.linear_model import SGDClassifier from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils import check_array import faiss def _default_index(d): index = faiss.index_factory(d, "IVF2048,Flat", faiss.METRIC_INNER_PRODUCT) index.nprobe = 256 return index class ApproximateClassifierMixin(LinearClassifierMixin): def decision_function(self, X): if not hasattr(self, 'coef_') or self.coef_ is None: raise NotFittedError("This %(name)s instance is not fitted " "yet" % {'name': type(self).__name__}) self._train_index() X = check_array(X, accept_sparse=False) n_features = self.coef_.shape[1] if X.shape[1] != n_features: raise ValueError("X has %d features per sample; expecting %d" % (X.shape[1], n_features)) D, I = self.index_.search(X.astype(np.float32), 1) return D, I def _train_index(self): if not hasattr(self, 'index_'): self.index_ = _default_index(self.coef_.shape[1]) self.coef_ = np.ascontiguousarray(self.coef_, dtype=np.float32) self.index_.train(self.coef_) self.index_.add(self.coef_) return self def fast(cls): assert LinearClassifierMixin in cls.mro(), "Can only speed up linear classifiers" return type(cls.__name__, (ApproximateClassifierMixin,) + cls.__bases__, dict(cls.__dict__))
[ "faiss.index_factory", "sklearn.utils.check_array", "numpy.ascontiguousarray" ]
[((261, 327), 'faiss.index_factory', 'faiss.index_factory', (['d', '"""IVF2048,Flat"""', 'faiss.METRIC_INNER_PRODUCT'], {}), "(d, 'IVF2048,Flat', faiss.METRIC_INNER_PRODUCT)\n", (280, 327), False, 'import faiss\n'), ((713, 748), 'sklearn.utils.check_array', 'check_array', (['X'], {'accept_sparse': '(False)'}), '(X, accept_sparse=False)\n', (724, 748), False, 'from sklearn.utils import check_array\n'), ((1196, 1246), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['self.coef_'], {'dtype': 'np.float32'}), '(self.coef_, dtype=np.float32)\n', (1216, 1246), True, 'import numpy as np\n')]
""" Created on Thursday Mar 26 2020 <NAME> based on https://www.kaggle.com/bardor/covid-19-growing-rate https://github.com/CSSEGISandData/COVID-19 https://github.com/imdevskp https://www.kaggle.com/yamqwe/covid-19-status-israel """ import datetime import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import plotly.graph_objs as go import matplotlib.pyplot as plt from plotly.subplots import make_subplots import folium import plotly import os import time import matplotlib.dates as mdates plt.style.use('dark_background') # Write Log file class MyWriter: def __init__(self, *writers): self.writers = writers def write(self, text): for w in self.writers: w.write(text) def flush(self): for w in self.writers: w.flush() # bar plot def bar_country_plot(full_data, groupby='Date', inputs=['Confirmed', 'Active', 'Recovered', 'Deaths'], fname='_cases_bars', log=False): # Confirmed vs Recovered and Death if isinstance(full_data.Date.max(), str): day = datetime.datetime.strptime(full_data.Date.max(), '%m/%d/%y').strftime('%d%m%y') else: day = full_data.Date.max().strftime('%d%m%y') title_string = full_data.State + ' Cases' + ' for' + day with open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), day + '_' + full_data.State + '_' + fname + '.html'), 'a') as ff: fig = px.bar(full_data, x=groupby, y=inputs, color=inputs, template='ggplot2', log_y=True, title=title_string, hover_name=inputs) fig.layout.template = 'plotly_dark' # fig.show() ff.write(fig.to_html(full_html=False, include_plotlyjs='cdn', default_width='100%')) f = plt.figure(figsize=(9, 7)) colors = ['blue', 'green', 'cyan', 'magenta', 'cyan', 'red', 'black'] alphas = [1, 0.75, 0.75, 1] title_string = str() for cnt in range(len(inputs)): k = inputs[cnt] plt.bar(full_data[groupby], full_data[k], label=k, alpha=alphas[cnt], log=log, color=colors[cnt]) title_string = title_string + k + ' vs ' plt.xlabel('Date') plt.ylabel("Count") plt.legend(frameon=True, fontsize=12) plt.title(title_string[:-4], fontsize=30) f.autofmt_xdate() plt.show() plt.savefig(os.path.join(os.getcwd(), day + '_' + str(full_data['Country'].unique().values) + '.png')) return f ############################################################################################## # Normalise def normalise_func(input_data, inputs=['Confirmed', 'Deaths', 'Recovered', 'Active'], name='NormPop', normaliseTo='Population', factor=1e6, toRound=False): for cnt in range(len(inputs)): k = inputs[cnt] new_name = name+k input_data.loc[:, new_name] = 0 # Normalise to Population with factor of 1M input_data.loc[:, new_name] = (input_data[k].values * factor / (input_data[normaliseTo].values + 1e-6)).clip(0) if toRound: input_data.loc[input_data.loc[:, new_name] > 1, new_name] = input_data.loc[input_data.loc[:, new_name] > 1, new_name].astype(int) return input_data ############################################################################################################ # Events def add_events(input_data, events): input_data.loc[:, 'Event'] = '' for cnt in range(events.shape[0]): input_data.loc[input_data['Date'] == events.Date[cnt], 'Event'] = events.Event[cnt] return input_data ###################################################################################################### # Growth def growth_func(input_data, inputs, numDays=1, name='Growth', normalise=True, prediction_Range=1): for cnt in range(len(inputs)): k = inputs[cnt] input_data.loc[:, name+k] = 0 if normalise: input_data.loc[:, name+k] = ((input_data[k] / input_data[k].shift(numDays)) ** prediction_Range - 1) * 100.0 # .clip(0) input_data.loc[input_data[k].shift(-numDays) == 0, name+k] = 0 else: input_data[name+k] = (input_data[k] - input_data[k].shift(numDays)) # .clip(0) return input_data ############################################################################################################ # add the population and age columns for the given data def add_pop_age_data(input_data, world_population): world_pop = None input_data.loc[:, 'Population'] = np.nan input_data.loc[:, 'Age'] = np.nan for val in input_data.Country.unique(): curr = world_population[world_population['Country'] == val] cntries = input_data.Country == val try: input_data.loc[cntries, 'Population'] = curr['Population'].values input_data.loc[cntries, 'Age'] = curr['Age'].values if world_pop is not None: world_pop = pd.concat([world_pop, curr], axis=0, sort=False) else: world_pop = curr except ValueError: pass return input_data, world_pop ######################################################################################### # extract data according to group(Date and State) and if flag add_value is True add the country value to string of State def group_extract_data(full_data, world_population, groupby=['Date', 'State', 'Country'], inputs=['Confirmed'], threshould=5000, add_value=True): sorted_data = full_data.sort_values(groupby) group = sorted_data[groupby[1]].unique() latest = sorted_data[sorted_data.Date == sorted_data.Date.max()] remain_data = latest[latest[inputs] > threshould][groupby[1]].unique() relevant = sorted_data.copy() for val in group: if (remain_data != val).all(): relevant = relevant[relevant[groupby[1]].str.endswith(val) != True] elif not relevant[groupby[2]].str.endswith(val).any() and add_value: relevant.loc[relevant[groupby[1]].str.endswith(val), groupby[1]] = \ relevant.loc[relevant[groupby[1]].str.endswith(val), groupby[2]].values[0] + \ '_' + val relevant, world_pop = add_pop_age_data(relevant, world_population) return relevant, world_pop ################################################################################################ # Create Sum Table def create_table(indata, day, inputs=['Confirmed', 'Deaths', 'Recovered', 'Active'], h_columns=['Current Day', 'Total', 'Max Value'], title_string='', height='100%', fname='_World_Daily_Situation_Summarise_Table'): head = indata[inputs].keys().values.tolist() head.insert(0, h_columns[0]) body = [h_columns[1:]] for cnt in range(len(inputs)): body.append(indata[inputs[cnt]].values) with open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), day.strftime('%d%m%y') + fname + '.html'), 'a') as f: fig = go.Figure(data=[go.Table(header=dict(values=head, height=35, align=['left', 'center']), cells=dict(values=body, height=28, align='left'))]) fig.layout.template = 'plotly_dark' fig.layout.title = day.strftime('%d/%m/%y ') + title_string # fig.show() f.write(fig.to_html(full_html=False, include_plotlyjs='cdn', default_height=height)) ######################################################################################################## # Create countries bar def countries_bar(indata, day, groupby=['Country'], inputs=None, count=30, fname='_World_Daily_Situation'): if inputs is None: inputs = indata.keys()[1:].values with open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), day.strftime('%d%m%y') + fname + '.html'), 'a') as f: for cnt in range(len(inputs)-1, -1, -1): k = inputs[cnt] cur_data = indata.sort_values(k, ascending=0).reset_index() cur_data = cur_data[:count] if k == 'Population' or k == 'Age': add_str = '' else: add_str = ' Cases' if cnt in range(4): f_str = 'Total ' else: f_str = '' title_string = f_str + k + add_str + ' for ' + day.strftime('%d/%m/%y') + ': ' + str(count) \ + ' countries from ' + str(indata.shape[0]) fig = px.bar(cur_data, x=groupby[0], y=k, color=groupby[0], text=k, template='ggplot2', log_y=True, title=title_string) # , hover_name=groupby[0]) fig.layout.template = 'plotly_dark' fig.update_traces(texttemplate='%{text:.2s}', textposition='outside') fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') # fig.show() f.write(fig.to_html(full_html=False, include_plotlyjs='cdn')) # Create World Map def create_map(data, world_pop, location=[31, 35]): # Israel location start # Affected place in world map including Confirm , Active, Deaths and Recovery worldmap = folium.Map(location=location, zoom_start=4, tiles='Stamen Terrain') for lat, long, country, state, conf, death, recover, active in zip(data['Lat'], data['Long'], data['Country'], data['State'], data['Confirmed'], data['Deaths'], data['Recovered'], data['Active']): cur_pop = world_pop[world_pop['Country'] == country].reset_index() if isinstance(state, str) and state != country or not cur_pop.sum().any(): popup_str = str(country) + '<br>' + 'State: ' + str(state) + '<br>' +\ 'PositiveCases:' + str(conf) + '<br>' +\ 'Active:' + str(int(active)) + '<br>' +\ 'Recovered:' + str(int(recover)) + '<br>' +\ 'Deaths:' + str(death) + '<br>' elif np.isnan(cur_pop['Age'][0]): popup_str = str(country) + ' Population:' + str(cur_pop['Population'][0]) + '<br>'\ 'Positive:' + str(conf) + '<br>' + \ 'Active:' + str(int(active)) + '<br>' + \ 'Recovered:' + str(int(recover)) + '<br>' + \ 'Deaths:' + str(death) + '<br>' else: popup_str = str(country) + ' Population:' + str(cur_pop['Population'][0]) + \ ' Median Age:' + str(int(cur_pop['Age'][0])) + '<br>' + \ 'Positive:' + str(conf) + '<br>' + \ 'Active:' + str(int(active)) + '<br>' + \ 'Recovered:' + str(int(recover)) + '<br>' + \ 'Deaths:' + str(death) + '<br>' folium.CircleMarker([lat, long], radius=5, color='red', popup=popup_str, fill_color='red', fill_opacity=0.7).add_to(worldmap) # in IPython Notebook, Jupyter worldmap day = data.Date.max().strftime('%d%m%y') worldmap.save(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), day + '_WorldMap.html')) ################################################################################################### # bar plot according to cases def case_groupby_bar(full_data, world_population, groupby=['Date', 'State', 'Country'], inputs=['Confirmed', 'Recovered', 'Deaths', 'Active'], threshould=[10000, 1000, 100, 10000], normalise=True, fname='_Cases_WorldData_Bars', factor=1e6): daily = full_data.sort_values(groupby) states = daily[groupby[1]].unique() day = full_data.Date.max().strftime('%d/%m/%y') array_relevant = [] for cnt in range(len(inputs)): k = inputs[cnt] with open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), full_data.Date.max().strftime('%d%m%y') + '_' + k + fname + '.html'), 'a') as f: relevant, world_pop = group_extract_data(daily, world_population, groupby, k, threshould[cnt]) array_relevant.append(relevant) srelevant = relevant.sort_values([groupby[0], groupby[1], k], ascending=[1, 1, 0]) srelevant.Date = [datetime.datetime.strftime(d, '%d/%m/%Y') for d in srelevant.Date] num_contries = len(relevant[groupby[1]].unique()) title_string = k + ' Cases' + ' over ' + str(threshould[cnt]) + ' for ' + day + ': ' \ + str(num_contries) + ' items from ' + str(len(states)) fig = px.bar(srelevant, y=groupby[1], x=k, color=groupby[1], template='ggplot2', orientation='h', log_x=True, title=title_string, hover_name=groupby[1], animation_frame=groupby[0], animation_group=groupby[1]) fig.layout.template = 'plotly_dark' # soup = BeautifulSoup(ff) height = str(np.max([100, num_contries/25 * 100])) + '%' f.write(fig.to_html(full_html=False, include_plotlyjs='cdn', default_width='100%', default_height=height)) # in IPython Notebook, Jupyter, etc # fig.show() # Another way to save # fig.write_html(os.path.join(os.getcwd(), full_data.Date.max().strftime('%d%m%y') + '_WorldData.html')) del fig if normalise: # Normalise to Population with factor of 1M norm_srelevant = srelevant.copy() norm_srelevant.loc[:, k] = (norm_srelevant[k].values * factor / norm_srelevant['Population'].values).clip(0) norm_srelevant.loc[norm_srelevant.loc[:, k] > 1, k] = norm_srelevant.loc[norm_srelevant.loc[:, k] > 1, k].astype(int) num_contries = len(relevant[groupby[1]].unique()) title_string = k + ' Cases' + ' over ' + str(threshould[cnt]) + ' Normalized to ' + str(int(factor/1e6)) \ + 'M population' + ' for ' + day + ': ' + str(num_contries) + ' items from ' \ + str(len(states)) fig = px.bar(norm_srelevant, y=groupby[1], x=k, color=groupby[1], template='ggplot2', log_x=True, orientation='h', title=title_string, hover_name=groupby[1], animation_frame=groupby[0], animation_group=groupby[1]) fig.layout.template = 'plotly_dark' height = str(np.max([100, num_contries/25 * 100])) + '%' f.write(fig.to_html(full_html=False, include_plotlyjs='cdn', default_width='100%', default_height=height)) del fig # Normalised to inputs[0]: Confirmed if cnt > 0: # probability of dying/ recovered if infected by the virus (%) norm_srelevant = srelevant.copy() norm_srelevant.loc[:, k] = (norm_srelevant[k].values / (norm_srelevant[inputs[0]].values + 1e-6)).clip(0) norm_srelevant.loc[norm_srelevant[k] > 1, k] = 1 num_contries = len(relevant[groupby[1]].unique()) title_string = k + ' Cases' + ' over ' + str(threshould[cnt]) + ' Normalized to ' + inputs[0] \ + ' for ' + day + ': ' + str(num_contries) + ' items from ' + str(len(states))\ + '<br>"Probability" of ' + k + ' If Infected by the Virus' fig = px.bar(norm_srelevant, y=groupby[1], x=k, color=groupby[1], template='ggplot2', orientation='h', title=title_string, hover_name=groupby[1], animation_frame=groupby[0], animation_group=groupby[1]) fig.layout.template = 'plotly_dark' height = str(np.max([100, num_contries/25 * 100])) + '%' f.write(fig.to_html(full_html=False, include_plotlyjs='cdn', default_width='100%', default_height=height)) del fig ################################################################################################# # scatter plot def scatter_country_plot(full_data, inputs=['Confirmed', 'Recovered', 'Deaths', 'Active'], base='Date', prefix='', fname=' Total Cases ', add_growth_rates=False, num_days_for_rate=14, annotations=None, add_events_text=False, factor=1.0, mat_plt=False, day=''): if not day: if isinstance(full_data.Date.max(), str): day = datetime.datetime.strptime(full_data.Date.max(), '%m/%d/%y').strftime('%d%m%y') else: day = full_data.Date.max().strftime('%d/%m/%y') try: not_country = 0 country = full_data['Country'].unique() state = full_data['State'].unique() except: not_country = 1 if not_country or country.shape[0] > 1: title_string = day + fname + 'Various Cases' save_string = full_data.Date.max().strftime('%d%m%y') + fname + '.png' elif state != country: title_string = country[0] + ' -- ' + state[0] + ' - ' + day + ' ' + fname save_string = full_data.Date.max().strftime('%d%m%y') + '_' + country[0] + '_' + state[0] + '_' +\ fname.replace(' ', '_') +'.png' else: title_string = state[0] + ' - ' + day + ' - ' + fname save_string = full_data.Date.max().strftime('%d%m%y') + '_' + state[0] + '_' + fname.replace(' ', '_') +'.png' # colors = plotly.colors.DEFAULT_PLOTLY_COLORS colors = plotly.colors.qualitative.Light24 if '#FED4C4' in colors: colors.remove('#FED4C4') fig = make_subplots(rows=1, cols=2, subplot_titles=("Linear Plot", "Log Plot")) fig_cnt = -1 customdata = None for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k y = (full_data[k] * factor).fillna(0) # y[np.isinf(y)] = 0 if base != 'Date': customdata = full_data.Date if add_events_text: trace = go.Scatter(x=full_data[base], y=y, mode="markers+lines+text", name=case_k, customdata=customdata, text=full_data.Event, marker=dict(size=8, color=colors[cnt])) else: trace = go.Scatter(x=full_data[base], y=y, mode="markers+lines", name=case_k, customdata=customdata, marker=dict(size=8, color=colors[cnt])) fig.add_trace(trace, row=1, col=1) fig_cnt +=1 fig.add_trace(trace, row=1, col=2) fig_cnt += 1 if fig_cnt % 2 == 1: fig.data[fig_cnt-1].update(showlegend=False) fig.update_traces(mode="markers+lines", hovertemplate=None) if base != 'Date': fig.update_traces(hovertemplate='%{y}<br>%{customdata| %_d %b %Y}') if add_growth_rates: len_rate = full_data[k].shape[0] grows_rate = full_data['Growth' + base].fillna(0).values / 100.0 grows_rate[np.isinf(grows_rate)] = 0 vec = np.arange(0, round(len_rate*1/3)) one_third = grows_rate[vec].mean() if one_third > 0: grow_one_third = one_third * full_data[base] + full_data[k][vec[0]] * factor add_trace1 = go.Scatter(x=full_data[base], y=grow_one_third, mode="lines", name='Linear estimation: ' + str(full_data[k][vec[0]]) + ' + ' + str(round(one_third, 3)) + '*' + base + '<br>' + str(round(one_third, 3)) + ' - estim on first onethird of ' + base, line=dict(dash="dash", width=3)) fig.add_trace(add_trace1, row=1, col=1) fig.add_trace(add_trace1, row=1, col=2) # estimation for two last weeks vec = np.arange(np.max([1, len_rate-num_days_for_rate]), len_rate) last_week = (full_data[k][vec[-1]] - full_data[k][vec[0]]) \ / np.max([1e-6, (full_data[base][vec[-1]] - full_data[base][vec[0]])]) if not np.isinf(last_week) and last_week > 0: bias = int(full_data[k][vec[-1]] - full_data[base][vec[-1]] * last_week) grow_one_third = last_week * full_data[base] + bias * factor add_trace2 = go.Scatter(x=full_data[base][round(len_rate*1/3):], y=grow_one_third[round(len_rate*1/3):], mode="lines", name='Linear estimation: ' + str(bias) + ' + ' + str(round(last_week, 3)) + '*' + base + '<br>' + str(round(last_week, 3)) + ' - estim on ' + str(num_days_for_rate) + ' last days from ' + base, line=dict(dash="dash", width=3)) fig.add_trace(add_trace2, row=1, col=1) fig.add_trace(add_trace2, row=1, col=2) fig.update_yaxes(range=[full_data[k][0], full_data[k][len_rate-1]], row=1, col=1) if annotations is not None: fig.update_annotations(annotations) fig.update_layout(template='plotly_dark', hovermode="x", title=title_string, yaxis=dict(title=fname), xaxis=dict(title=base), yaxis2=dict(title=fname, type='log'), xaxis2=dict(title=base)) # fig.show() if mat_plt: fig_mat, ax = plt.subplots(figsize=(8, 6)) colors = ['blue', 'green', 'yellow', 'magenta', 'cyan', 'red', 'black'] max_values = [] for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k full_data[k] = full_data[k].fillna(0) ax = sns.scatterplot(x=base, y=k, data=full_data, color=colors[cnt]) plt.plot(full_data[base], full_data[k], zorder=1, color=colors[cnt], label=k) if not np.isinf(max(full_data[k])): max_values.append(max(full_data[k])) ax.set_xlim([full_data['Date'].iloc[0], full_data['Date'].iloc[-1] + datetime.timedelta(days=1)]) if max(full_data[prefix + inputs[0]]) > 1: max_value = max(max_values) + np.diff(full_data[k]).max() min_value = -1 else: max_value = max(max_values) + np.diff(full_data[k]).max() min_value = 0 ax.set_ylim([min_value, max_value]) plt.legend(frameon=True, fontsize=12) plt.grid() plt.ylabel(fname) plt.title(title_string, fontsize=16) fig_mat.autofmt_xdate() plt.savefig(os.path.join(os.getcwd(), save_string)) return fig ################################################################################################################### # country analysis script def country_analysis(clean_db, world_pop, country='China', state='Hubei', plt=False, fromFirstConfirm=False, events=None, num_days_for_rate=14): if isinstance(clean_db.Date.max(), str): day = datetime.datetime.strptime(clean_db.Date.max(), '%m%d%y').strftime('%d%m%y') else: day = clean_db.Date.max().strftime('%d%m%y') data = clean_db[clean_db['Country'] == country] data = data.sort_values(by='Date', ascending=1) today = data.Date.iloc[-1].strftime('%d.%m.%y') if state: data = data[data['State'] == state] elif (data.State.unique() == country).any(): data = data[data['State'] == country] else: data = data.groupby(['Date', 'Country']).sum() if fromFirstConfirm: data = (data.loc[data.loc[:, 'Confirmed'] > 0, :]).reset_index() else: data = data.reset_index() data['Active'] = (data['Confirmed'] - data['Recovered'] - data['Deaths']).astype(int) # .clip(0) inputs = ['Confirmed', 'Recovered', 'Deaths', 'Active'] data = growth_func(data, inputs, numDays=1, name='New', normalise=False) data = growth_func(data, inputs, numDays=1, name='Growth', normalise=True) cur_pop_data = world_pop[world_pop['Country'] == country].reset_index() data.loc[:, 'Population'] = cur_pop_data['Population'].values[0] data.loc[:, 'Age'] = cur_pop_data['Age'].values[0] data = normalise_func(data, name='NormPop', normaliseTo='Population', factor=1e6, toRound=True) data = normalise_func(data, inputs=['Deaths', 'Recovered', 'Active'], name='NormConfirm', normaliseTo='Confirmed', factor=1, toRound=True) add_event = False if events is not None: data = add_events(data, events) add_event = True # Growth Rate # last_days = data['Confirmed'].shift()[-3:] # gr = data['Confirmed'][-3:] / last_days # gr[last_days == 0] = 0 growth_rate = (data['Confirmed'][-3:] / data['Confirmed'].shift()[-3:]).fillna(0).mean() growth_death = (data['Deaths'][-3:] / data['Deaths'].shift()[-3:]).fillna(0).mean() growth_recovered = (data['Recovered'][-3:] / data['Recovered'].shift()[-3:]).fillna(0).mean() prediction_cnfm = 0 prediction_dth = 0 prediction_rcv = 0 expected_cnfrm = 0 expected_dth = 0 expected_rcv = 0 if growth_rate != 0 and growth_rate != 1 and not np.isinf(growth_rate): prediction_cnfm = (np.log(2)/np.log(growth_rate)).clip(0).astype(int) expected_cnfrm = (data['Confirmed'].iloc[-1] * growth_rate).astype(int) if growth_death != 0 and growth_death != 1 and not np.isinf(growth_death): prediction_dth = (np.log(2)/np.log(growth_death)).clip(0).astype(int) expected_dth = (data['Deaths'].iloc[-1] * growth_death).astype(int) if growth_recovered != 0 and growth_recovered != 1 and not np.isinf(growth_recovered): prediction_rcv = (np.log(2)/np.log(growth_recovered)).clip(0).astype(int) expected_rcv = (data['Recovered'].iloc[-1] * growth_recovered).astype(int) print('\n', country) print('Mean Growth Rate for 3 last days : Confirmed %.2f%%, Deaths %.2f%%, Recovered %.2f%%' % (round((growth_rate-1)*100.0, 2), round((growth_death-1)*100.0, 2), round((growth_recovered-1)*100.0, 2))) print('Today\'s %s [confirmed, death, recovered] : %d, %d, %d ' % (today, data['Confirmed'].iloc[-1], data['Deaths'].iloc[-1], data['Recovered'].iloc[-1])) print('Expected Tomorrow [confirmed, death, recovered] : %d, %d, %d ' % (expected_cnfrm, expected_dth, expected_rcv)) # logarithm of x to the given base, calculated as log(x)/log(base) days = [prediction_cnfm, prediction_dth, prediction_rcv] print('Twice the number of cases given the current growth rate in %s days' % days) annot = dict(xref='paper', yref='paper', x=0.2, y=0.95, align='left', font=dict(size=12), text='Mean Growth Rate for 3 last days: Confirmed ' + str(round((growth_rate-1)*100.0, 2)) + '%, Deaths ' + str(round((growth_death-1)*100.0, 2)) + '%, Recovered ' + str(round((growth_recovered-1)*100.0, 2)) + '%<br>Today\'s ' + str(today) + ' [confirmed, death, recovered] : ' + str(data['Confirmed'].iloc[-1]) + ' ' + str(data['Deaths'].iloc[-1]) + ' ' + str(data['Recovered'].iloc[-1].astype(int)) + '<br>Expected Tomorrow [confirmed, death, recovered] : ' + str(expected_cnfrm) + ' ' + str(expected_dth) + ' ' + str(expected_rcv) + '<br>Twice the number of cases given the current growth rate in ' + str(prediction_cnfm) + ' ' + str(prediction_dth) + ' ' + str(prediction_rcv) + ' days') if plt: if country[-1] == '*': country = country[:-1] with open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), day + '_' + country + '_Various_Cases.html'), 'a') as f: fsc1 = scatter_country_plot(data, add_events_text=add_event) fsc2 = scatter_country_plot(data, prefix='New', fname='Daily New Cases', add_events_text=add_event) fsc3 = scatter_country_plot(data, prefix='NormPop', fname='Total Cases Normalised for 1M Population', add_events_text=add_event) fsc4 = scatter_country_plot(data, inputs=['Deaths', 'Recovered', 'Active'], prefix='NormConfirm', factor=100.0, add_events_text=add_event, fname='Normalised for Total Confirmed Cases - ' 'Probability to Case If infected by the virus (%)') fsc5 = scatter_country_plot(data, prefix='Growth', add_events_text=add_event, fname='Growing rate in % a day', annotations=annot) fsc6 = scatter_country_plot(data, inputs=['Deaths'], add_events_text=add_event, base='Recovered', add_growth_rates=True, num_days_for_rate=num_days_for_rate, fname='Cases Ratio: Deaths vs Recovered') f.write(fsc1.to_html(full_html=False, include_plotlyjs='cdn')) f.write(fsc2.to_html(full_html=False, include_plotlyjs='cdn')) f.write(fsc3.to_html(full_html=False, include_plotlyjs='cdn')) f.write(fsc4.to_html(full_html=False, include_plotlyjs='cdn')) f.write(fsc5.to_html(full_html=False, include_plotlyjs='cdn')) f.write(fsc6.to_html(full_html=False, include_plotlyjs='cdn')) return data ########################################################################################################### # plot with threshoulds on cases def case_thresh_plot(full_data, threshDays=[10, 10], inputs=['Confirmed', 'Deaths'], prefix='', ref_cntry='Israel', base='Date', factor=1.0, fname=' Corona virus situation since the ', annotations=[], log=False, add_growth_rates=False, threshValues=[1, 1]): if isinstance(full_data.Date.max(), str): day = datetime.datetime.strptime(full_data.Date.max(), '%m/%d/%y').strftime('%d%m%y') else: day = full_data.Date.max().strftime('%d%m%y') countries = full_data.Country.unique() today = full_data.Date.iloc[-1].strftime('%d.%m.%y') title_string = full_data.Date.max().strftime('%d/%m/%y') + ' - ' + str(len(countries)) + ' ' + fname colors = plotly.colors.qualitative.Light24 if '#FED4C4' in colors: colors.remove('#FED4C4') ref_db = full_data[full_data.Country == ref_cntry] ref_db = ref_db.sort_values([base]) fig = make_subplots(rows=1, cols=2, subplot_titles=(prefix + ' ' + inputs[0] + ' Cases', prefix + ' ' + inputs[1] + ' Cases')) showlegend = True for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k threshDay = threshDays[cnt] threshValue = threshValues[cnt] max_value = [] customdata = None if cnt % 2: showlegend = False for cntry in range(len(countries)): curr = full_data[full_data.Country == countries[cntry]] thresh_data = curr.loc[curr.loc[:, k] * factor > threshValue, :] thresh_data = thresh_data[threshDay:] if thresh_data.values.any(): thresh_data = thresh_data.sort_values([base, k]) max_value.append(thresh_data[k].max()) customdata = thresh_data[base] since_days = np.arange(0, thresh_data.shape[0]) trace = go.Scatter(x=since_days, y=thresh_data[k], mode="markers+lines", name=countries[cntry], marker=dict(size=10, color=colors[cntry]), showlegend=showlegend, customdata=customdata) fig.add_trace(trace, row=1, col=cnt+1) fig.update_traces(hovertemplate=None) fig.update_traces(hovertemplate='%{y}<br>%{customdata| %_d %b %Y}') if add_growth_rates: for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k threshDay = threshDays[cnt] threshValue = threshValues[cnt] showlegend = True if cnt % 2: showlegend = False threshed_ref_db = ref_db.loc[ref_db.loc[:, k] * factor > threshValue, :] threshed_ref_db = threshed_ref_db[threshDay:] if threshed_ref_db.values.any(): if 'Growth' + k not in threshed_ref_db.keys(): threshed_ref_db = growth_func(threshed_ref_db, [k]) grows_rate = threshed_ref_db['Growth' + k].fillna(0).values / 100.0 + 1 grows_rate[np.isinf(grows_rate)] = 0 growth_rate_mean = grows_rate[-3:].mean() else: threshed_ref_db = thresh_data.copy() growth_rate_mean = (threshed_ref_db[k][-3:] / threshed_ref_db[k].shift()[-3:]).fillna(0).mean() # .clip(0) if growth_rate_mean != 0 and growth_rate_mean != 1 and not np.isinf(growth_rate_mean) and not np.isnan(growth_rate_mean): gr_days = (np.log(2) / np.log(growth_rate_mean)).astype(int) prev_value = threshed_ref_db[k].iloc[-2].astype(int) next_value = (threshed_ref_db[k].iloc[-1] * growth_rate_mean).astype(int) else: gr_days = 0 prev_value = 0 next_value = 0 growth_rate_mean = 0 if gr_days: annot = dict(xref='paper', yref='paper', x=0.2 + cnt*0.55, y=0.87, align='left', font=dict(size=13), text='Mean Growth Rate for 3 last days in ' + threshed_ref_db.Country.values[0] + ' : ' + str(round((growth_rate_mean - 1) * 100.0, 2)) + '%<br>Today\'s ' + str(today) + ' ' + inputs[cnt] + ': ' + str(prev_value) + '<br>Expected Tomorrow: ' + str(next_value) + '<br>Twice the number of cases given the current growth rate in ' + str(gr_days) + ' days') fig.add_annotation(annot) num_dates = threshed_ref_db[base].shape[0] if num_dates: since_days = np.arange(0, threshed_ref_db.shape[0]) max_value.append(threshed_ref_db[k].max()) thresh = threshed_ref_db[k].values[0] grow15 = np.clip(thresh * (1.15 ** (np.linspace(1, num_dates, num_dates, endpoint=True))), 0, max(max_value)).astype(int) fig.add_trace(go.Scatter(x=since_days, y=grow15, mode="lines", name='Grows 15% a day', line=dict(dash="dash", width=3, color=colors[cntry+1]), showlegend=showlegend), row=1, col=cnt+1) # threshed_ref_db[base] grow08 = np.clip(thresh * (1.08 ** (np.linspace(1, num_dates, num_dates, endpoint=True))), 0, max(max_value)).astype(int) fig.add_trace(go.Scatter(x=since_days, y=grow08, mode="lines", name='Grows 8% a day', line=dict(dash="dashdot", width=3, color=colors[cntry+2]), showlegend=showlegend), row=1, col=cnt+1) if growth_rate_mean: cur_value = threshed_ref_db[k].values[-3] if cur_value > 0.8*max(max_value): cur_value = min(max_value) grow_cur = np.clip(cur_value * (growth_rate_mean ** (np.linspace(1, num_dates, num_dates, endpoint=True))), 0, max(max_value)).astype(int) gr = int((growth_rate_mean - 1) * 100.0) fig.add_trace(go.Scatter(x=since_days, y=grow_cur, mode="lines", name='Grows ' + str(gr) + '% a day from last 3 days', showlegend=showlegend, line=dict(dash="dot", width=3, color=colors[cntry+3])), row=1, col=cnt+1) xaxis2 = 'Days since the ' + str(threshDays[1]) + 'th from the ' + str(threshValues[1]) + 'th case value' xaxis1 = 'Days since the ' + str(threshDays[0]) + 'th from the ' + str(threshValues[0]) + 'th case value' if log: fig.update_layout(hovermode="x", title=title_string, template='plotly_dark', xaxis=dict(title=xaxis1), xaxis2=dict(title=xaxis2), yaxis=dict(title=prefix + ' ' + inputs[0] + ' Cases', type='log'), yaxis2=dict(title=prefix + ' ' + inputs[1] + ' Cases', type='log')) else: fig.update_layout(hovermode="x", title=title_string, template='plotly_dark', xaxis=dict(title=xaxis1), xaxis2=dict(title=xaxis2), yaxis=dict(title=prefix + ' ' + inputs[0] + ' Cases'), yaxis2=dict(title=prefix + ' ' + inputs[1] + ' Cases')) return fig ################################################################################################################### # line plot def line_country_plot(full_data, inputs=['Confirmed', 'Recovered', 'Deaths', 'Active'], base='Date', prefixes=[''], fname=' Total Cases ', add_growth_rates=False, annotations=None, add_events_text=False, factor=1.0, mat_plt=False, day=''): if not day: if isinstance(full_data.Date.max(), str): day = datetime.datetime.strptime(full_data.Date.max(), '%m/%d/%y').strftime('%d%m%y') else: day = full_data.Date.max().strftime('%d/%m/%y') try: not_country = 0 country = full_data['Country'].unique() state = full_data['State'].unique() except: not_country = 1 if not_country or country.shape[0] > 1: title_string = day + fname + 'Various Cases' save_string = full_data.Date.max().strftime('%d%m%y') + fname + '.png' elif state != country: title_string = country[0] + ' -- ' + state[0] + ' - ' + day + ' ' + fname save_string = full_data.Date.max().strftime('%d%m%y') + '_' + country[0] + '_' + state[0] + '_' +\ fname.replace(' ', '_') +'.png' else: title_string = state[0] + ' - ' + day + ' - ' + fname save_string = full_data.Date.max().strftime('%d%m%y') + '_' + state[0] + '_' + fname.replace(' ', '_') +'.png' fig = make_subplots(rows=1, cols=2, subplot_titles=("Linear Plot", "Log Plot")) fig_cnt = -1 customdata = None for pr_cnt in range(len(prefixes)): prefix = prefixes[pr_cnt] if prefix: colors = ['blue', 'yellow', 'green', 'magenta', 'cyan', 'red', 'black'] else: colors = plotly.colors.DEFAULT_PLOTLY_COLORS for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k if k in full_data.keys(): y = (full_data[k] * factor).fillna(0) # y[np.isinf(y)] = 0 if base != 'Date': customdata = full_data.Date if add_events_text: trace = go.Scatter(x=full_data[base], y=y, mode="markers+lines+text", name=k, customdata=customdata, text=full_data.Event, marker=dict(size=4, color=colors[cnt])) else: trace = go.Scatter(x=full_data[base], y=y, mode="markers+lines", name=k, customdata=customdata, marker=dict(size=4, color=colors[cnt])) fig.add_trace(trace, row=1, col=1) fig_cnt +=1 fig.add_trace(trace, row=1, col=2) fig_cnt += 1 if fig_cnt % 2 == 1: fig.data[fig_cnt-1].update(showlegend=False) fig.update_traces(mode="markers+lines", hovertemplate=None) if base != 'Date': fig.update_traces(hovertemplate='%{y}<br>%{customdata| %_d %b %Y}') if add_growth_rates: grows_rate = full_data['Growth' + base].fillna(0).values / 100.0 grows_rate[np.isinf(grows_rate)] = 0 len_rate = len(grows_rate) vec = np.arange(0, round(len_rate*1/3)) one_third = grows_rate[vec].mean() if one_third > 0: grow_one_third = one_third * full_data[base] + full_data[k][vec[0]] * factor add_trace1 = go.Scatter(x=full_data[base], y=grow_one_third, mode="lines", name='Linear estimation: ' + str(full_data[k][vec[0]]) + ' + ' + str(round(one_third, 2)) + '*' + base + '<br>' + str(round(one_third, 2)) + ' - estim on first onethird of ' + base, line=dict(dash="dash", width=3)) fig.add_trace(add_trace1, row=1, col=1) fig.add_trace(add_trace1, row=1, col=2) grows_rate = full_data['GrowthConfirmed'].fillna(0).values / 100.0 grows_rate[np.isinf(grows_rate)] = 0 len_rate = len(grows_rate) vec = np.arange(round(0.9*len_rate), len_rate) one_third = grows_rate[vec].mean() if one_third > 0: grow_one_third = one_third * full_data[base] + full_data[k][vec[0]-round(0.1*len_rate)] * factor add_trace2 = go.Scatter(x=full_data[base][round(len_rate*1/3):], y=grow_one_third[round(len_rate*1/3):], mode="lines", name='Linear estimation: ' + str(full_data[k][vec[0]-round(0.1*len_rate)]) + ' + ' + str(round(one_third, 2)) + '*' + base + '<br>' + str(round(one_third, 2)) + ' - estim on 0.1 last from Confirmed', line=dict(dash="dash", width=3)) fig.add_trace(add_trace2, row=1, col=1) fig.add_trace(add_trace2, row=1, col=2) fig.update_yaxes(range=[full_data[k][0], full_data[k][len_rate-1]], row=1, col=1) if annotations is not None: fig.update_annotations(annotations) fig.update_layout(template='plotly_dark', hovermode="x", title=title_string, yaxis=dict(title=fname), xaxis=dict(title=base), yaxis2=dict(title=fname, type='log'), xaxis2=dict(title=base)) if mat_plt: fig_mat, ax = plt.subplots(figsize=(8, 6)) colors = ['blue', 'green', 'yellow', 'magenta', 'cyan', 'red', 'black'] max_values = [] for cnt in range(len(inputs)): case_k = inputs[cnt] k = prefix + case_k full_data[k] = full_data[k].fillna(0) ax = sns.scatterplot(x=base, y=k, data=full_data, color=colors[cnt]) plt.plot(full_data[base], full_data[k], zorder=1, color=colors[cnt], label=k) if not np.isinf(max(full_data[k])): max_values.append(max(full_data[k])) ax.set_xlim([full_data['Date'].iloc[0], full_data['Date'].iloc[-1] + datetime.timedelta(days=1)]) if max(full_data[prefix + inputs[0]]) > 1: max_value = max(max_values) + np.diff(full_data[k]).max() min_value = -1 else: max_value = max(max_values) + np.diff(full_data[k]).max() min_value = 0 ax.set_ylim([min_value, max_value]) plt.legend(frameon=True, fontsize=12) plt.grid() plt.ylabel(fname) plt.title(title_string, fontsize=16) fig_mat.autofmt_xdate() plt.savefig(os.path.join(os.getcwd(), save_string)) return fig ###################################################################################################################
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.ylabel", "numpy.log", "seaborn.scatterplot", "datetime.timedelta", "folium.CircleMarker", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.style.use", "numpy.diff", "folium.Map", "numpy.max", "numpy.linspace", "numpy.isinf", "plotly.subplots.make_subplots", "numpy.isnan", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "plotly.express.bar", "time.strftime", "os.getcwd", "matplotlib.pyplot.figure", "matplotlib.pyplot.bar", "datetime.datetime.strftime", "pandas.concat", "matplotlib.pyplot.subplots" ]
[((554, 586), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""dark_background"""'], {}), "('dark_background')\n", (567, 586), True, 'import matplotlib.pyplot as plt\n'), ((1813, 1839), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 7)'}), '(figsize=(9, 7))\n', (1823, 1839), True, 'import matplotlib.pyplot as plt\n'), ((2201, 2219), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Date"""'], {}), "('Date')\n", (2211, 2219), True, 'import matplotlib.pyplot as plt\n'), ((2225, 2244), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Count"""'], {}), "('Count')\n", (2235, 2244), True, 'import matplotlib.pyplot as plt\n'), ((2250, 2287), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(True)', 'fontsize': '(12)'}), '(frameon=True, fontsize=12)\n', (2260, 2287), True, 'import matplotlib.pyplot as plt\n'), ((2293, 2334), 'matplotlib.pyplot.title', 'plt.title', (['title_string[:-4]'], {'fontsize': '(30)'}), '(title_string[:-4], fontsize=30)\n', (2302, 2334), True, 'import matplotlib.pyplot as plt\n'), ((2363, 2373), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2371, 2373), True, 'import matplotlib.pyplot as plt\n'), ((9303, 9370), 'folium.Map', 'folium.Map', ([], {'location': 'location', 'zoom_start': '(4)', 'tiles': '"""Stamen Terrain"""'}), "(location=location, zoom_start=4, tiles='Stamen Terrain')\n", (9313, 9370), False, 'import folium\n'), ((18121, 18194), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'subplot_titles': "('Linear Plot', 'Log Plot')"}), "(rows=1, cols=2, subplot_titles=('Linear Plot', 'Log Plot'))\n", (18134, 18194), False, 'from plotly.subplots import make_subplots\n'), ((31423, 31547), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'subplot_titles': "(prefix + ' ' + inputs[0] + ' Cases', prefix + ' ' + inputs[1] + ' Cases')"}), "(rows=1, cols=2, subplot_titles=(prefix + ' ' + inputs[0] +\n ' Cases', prefix + ' ' + inputs[1] + ' Cases'))\n", (31436, 31547), False, 'from plotly.subplots import make_subplots\n'), ((39469, 39542), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(2)', 'subplot_titles': "('Linear Plot', 'Log Plot')"}), "(rows=1, cols=2, subplot_titles=('Linear Plot', 'Log Plot'))\n", (39482, 39542), False, 'from plotly.subplots import make_subplots\n'), ((1495, 1622), 'plotly.express.bar', 'px.bar', (['full_data'], {'x': 'groupby', 'y': 'inputs', 'color': 'inputs', 'template': '"""ggplot2"""', 'log_y': '(True)', 'title': 'title_string', 'hover_name': 'inputs'}), "(full_data, x=groupby, y=inputs, color=inputs, template='ggplot2',\n log_y=True, title=title_string, hover_name=inputs)\n", (1501, 1622), True, 'import plotly.express as px\n'), ((2046, 2148), 'matplotlib.pyplot.bar', 'plt.bar', (['full_data[groupby]', 'full_data[k]'], {'label': 'k', 'alpha': 'alphas[cnt]', 'log': 'log', 'color': 'colors[cnt]'}), '(full_data[groupby], full_data[k], label=k, alpha=alphas[cnt], log=\n log, color=colors[cnt])\n', (2053, 2148), True, 'import matplotlib.pyplot as plt\n'), ((22081, 22109), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (22093, 22109), True, 'import matplotlib.pyplot as plt\n'), ((23078, 23115), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(True)', 'fontsize': '(12)'}), '(frameon=True, fontsize=12)\n', (23088, 23115), True, 'import matplotlib.pyplot as plt\n'), ((23125, 23135), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (23133, 23135), True, 'import matplotlib.pyplot as plt\n'), ((23145, 23162), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['fname'], {}), '(fname)\n', (23155, 23162), True, 'import matplotlib.pyplot as plt\n'), ((23172, 23208), 'matplotlib.pyplot.title', 'plt.title', (['title_string'], {'fontsize': '(16)'}), '(title_string, fontsize=16)\n', (23181, 23208), True, 'import matplotlib.pyplot as plt\n'), ((43865, 43893), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (43877, 43893), True, 'import matplotlib.pyplot as plt\n'), ((44862, 44899), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(True)', 'fontsize': '(12)'}), '(frameon=True, fontsize=12)\n', (44872, 44899), True, 'import matplotlib.pyplot as plt\n'), ((44909, 44919), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (44917, 44919), True, 'import matplotlib.pyplot as plt\n'), ((44929, 44946), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['fname'], {}), '(fname)\n', (44939, 44946), True, 'import matplotlib.pyplot as plt\n'), ((44956, 44992), 'matplotlib.pyplot.title', 'plt.title', (['title_string'], {'fontsize': '(16)'}), '(title_string, fontsize=16)\n', (44965, 44992), True, 'import matplotlib.pyplot as plt\n'), ((2406, 2417), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2415, 2417), False, 'import os\n'), ((8615, 8733), 'plotly.express.bar', 'px.bar', (['cur_data'], {'x': 'groupby[0]', 'y': 'k', 'color': 'groupby[0]', 'text': 'k', 'template': '"""ggplot2"""', 'log_y': '(True)', 'title': 'title_string'}), "(cur_data, x=groupby[0], y=k, color=groupby[0], text=k, template=\n 'ggplot2', log_y=True, title=title_string)\n", (8621, 8733), True, 'import plotly.express as px\n'), ((10238, 10265), 'numpy.isnan', 'np.isnan', (["cur_pop['Age'][0]"], {}), "(cur_pop['Age'][0])\n", (10246, 10265), True, 'import numpy as np\n'), ((11359, 11370), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (11368, 11370), False, 'import os\n'), ((11372, 11395), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (11385, 11395), False, 'import time\n'), ((12838, 13048), 'plotly.express.bar', 'px.bar', (['srelevant'], {'y': 'groupby[1]', 'x': 'k', 'color': 'groupby[1]', 'template': '"""ggplot2"""', 'orientation': '"""h"""', 'log_x': '(True)', 'title': 'title_string', 'hover_name': 'groupby[1]', 'animation_frame': 'groupby[0]', 'animation_group': 'groupby[1]'}), "(srelevant, y=groupby[1], x=k, color=groupby[1], template='ggplot2',\n orientation='h', log_x=True, title=title_string, hover_name=groupby[1],\n animation_frame=groupby[0], animation_group=groupby[1])\n", (12844, 13048), True, 'import plotly.express as px\n'), ((22392, 22455), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'base', 'y': 'k', 'data': 'full_data', 'color': 'colors[cnt]'}), '(x=base, y=k, data=full_data, color=colors[cnt])\n', (22407, 22455), True, 'import seaborn as sns\n'), ((22469, 22546), 'matplotlib.pyplot.plot', 'plt.plot', (['full_data[base]', 'full_data[k]'], {'zorder': '(1)', 'color': 'colors[cnt]', 'label': 'k'}), '(full_data[base], full_data[k], zorder=1, color=colors[cnt], label=k)\n', (22477, 22546), True, 'import matplotlib.pyplot as plt\n'), ((25917, 25938), 'numpy.isinf', 'np.isinf', (['growth_rate'], {}), '(growth_rate)\n', (25925, 25938), True, 'import numpy as np\n'), ((26156, 26178), 'numpy.isinf', 'np.isinf', (['growth_death'], {}), '(growth_death)\n', (26164, 26178), True, 'import numpy as np\n'), ((26400, 26426), 'numpy.isinf', 'np.isinf', (['growth_recovered'], {}), '(growth_recovered)\n', (26408, 26426), True, 'import numpy as np\n'), ((44176, 44239), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'base', 'y': 'k', 'data': 'full_data', 'color': 'colors[cnt]'}), '(x=base, y=k, data=full_data, color=colors[cnt])\n', (44191, 44239), True, 'import seaborn as sns\n'), ((44253, 44330), 'matplotlib.pyplot.plot', 'plt.plot', (['full_data[base]', 'full_data[k]'], {'zorder': '(1)', 'color': 'colors[cnt]', 'label': 'k'}), '(full_data[base], full_data[k], zorder=1, color=colors[cnt], label=k)\n', (44261, 44330), True, 'import matplotlib.pyplot as plt\n'), ((1376, 1387), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1385, 1387), False, 'import os\n'), ((1389, 1412), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (1402, 1412), False, 'import time\n'), ((5038, 5086), 'pandas.concat', 'pd.concat', (['[world_pop, curr]'], {'axis': '(0)', 'sort': '(False)'}), '([world_pop, curr], axis=0, sort=False)\n', (5047, 5086), True, 'import pandas as pd\n'), ((7023, 7034), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7032, 7034), False, 'import os\n'), ((7036, 7059), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (7049, 7059), False, 'import time\n'), ((7878, 7889), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7887, 7889), False, 'import os\n'), ((7891, 7914), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (7904, 7914), False, 'import time\n'), ((11076, 11188), 'folium.CircleMarker', 'folium.CircleMarker', (['[lat, long]'], {'radius': '(5)', 'color': '"""red"""', 'popup': 'popup_str', 'fill_color': '"""red"""', 'fill_opacity': '(0.7)'}), "([lat, long], radius=5, color='red', popup=popup_str,\n fill_color='red', fill_opacity=0.7)\n", (11095, 11188), False, 'import folium\n'), ((12503, 12544), 'datetime.datetime.strftime', 'datetime.datetime.strftime', (['d', '"""%d/%m/%Y"""'], {}), "(d, '%d/%m/%Y')\n", (12529, 12544), False, 'import datetime\n'), ((14448, 14665), 'plotly.express.bar', 'px.bar', (['norm_srelevant'], {'y': 'groupby[1]', 'x': 'k', 'color': 'groupby[1]', 'template': '"""ggplot2"""', 'log_x': '(True)', 'orientation': '"""h"""', 'title': 'title_string', 'hover_name': 'groupby[1]', 'animation_frame': 'groupby[0]', 'animation_group': 'groupby[1]'}), "(norm_srelevant, y=groupby[1], x=k, color=groupby[1], template=\n 'ggplot2', log_x=True, orientation='h', title=title_string, hover_name=\n groupby[1], animation_frame=groupby[0], animation_group=groupby[1])\n", (14454, 14665), True, 'import plotly.express as px\n'), ((19501, 19521), 'numpy.isinf', 'np.isinf', (['grows_rate'], {}), '(grows_rate)\n', (19509, 19521), True, 'import numpy as np\n'), ((20419, 20460), 'numpy.max', 'np.max', (['[1, len_rate - num_days_for_rate]'], {}), '([1, len_rate - num_days_for_rate])\n', (20425, 20460), True, 'import numpy as np\n'), ((20571, 20638), 'numpy.max', 'np.max', (['[1e-06, full_data[base][vec[-1]] - full_data[base][vec[0]]]'], {}), '([1e-06, full_data[base][vec[-1]] - full_data[base][vec[0]]])\n', (20577, 20638), True, 'import numpy as np\n'), ((23276, 23287), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (23285, 23287), False, 'import os\n'), ((32394, 32428), 'numpy.arange', 'np.arange', (['(0)', 'thresh_data.shape[0]'], {}), '(0, thresh_data.shape[0])\n', (32403, 32428), True, 'import numpy as np\n'), ((35288, 35326), 'numpy.arange', 'np.arange', (['(0)', 'threshed_ref_db.shape[0]'], {}), '(0, threshed_ref_db.shape[0])\n', (35297, 35326), True, 'import numpy as np\n'), ((45060, 45071), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (45069, 45071), False, 'import os\n'), ((12104, 12115), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (12113, 12115), False, 'import os\n'), ((12117, 12140), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (12130, 12140), False, 'import time\n'), ((13208, 13246), 'numpy.max', 'np.max', (['[100, num_contries / 25 * 100]'], {}), '([100, num_contries / 25 * 100])\n', (13214, 13246), True, 'import numpy as np\n'), ((15893, 16097), 'plotly.express.bar', 'px.bar', (['norm_srelevant'], {'y': 'groupby[1]', 'x': 'k', 'color': 'groupby[1]', 'template': '"""ggplot2"""', 'orientation': '"""h"""', 'title': 'title_string', 'hover_name': 'groupby[1]', 'animation_frame': 'groupby[0]', 'animation_group': 'groupby[1]'}), "(norm_srelevant, y=groupby[1], x=k, color=groupby[1], template=\n 'ggplot2', orientation='h', title=title_string, hover_name=groupby[1],\n animation_frame=groupby[0], animation_group=groupby[1])\n", (15899, 16097), True, 'import plotly.express as px\n'), ((20660, 20679), 'numpy.isinf', 'np.isinf', (['last_week'], {}), '(last_week)\n', (20668, 20679), True, 'import numpy as np\n'), ((22729, 22755), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (22747, 22755), False, 'import datetime\n'), ((28534, 28545), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (28543, 28545), False, 'import os\n'), ((28547, 28570), 'time.strftime', 'time.strftime', (['"""%d%m%Y"""'], {}), "('%d%m%Y')\n", (28560, 28570), False, 'import time\n'), ((33972, 33998), 'numpy.isinf', 'np.isinf', (['growth_rate_mean'], {}), '(growth_rate_mean)\n', (33980, 33998), True, 'import numpy as np\n'), ((34007, 34033), 'numpy.isnan', 'np.isnan', (['growth_rate_mean'], {}), '(growth_rate_mean)\n', (34015, 34033), True, 'import numpy as np\n'), ((41250, 41270), 'numpy.isinf', 'np.isinf', (['grows_rate'], {}), '(grows_rate)\n', (41258, 41270), True, 'import numpy as np\n'), ((42294, 42314), 'numpy.isinf', 'np.isinf', (['grows_rate'], {}), '(grows_rate)\n', (42302, 42314), True, 'import numpy as np\n'), ((44513, 44539), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (44531, 44539), False, 'import datetime\n'), ((14799, 14837), 'numpy.max', 'np.max', (['[100, num_contries / 25 * 100]'], {}), '([100, num_contries / 25 * 100])\n', (14805, 14837), True, 'import numpy as np\n'), ((22855, 22876), 'numpy.diff', 'np.diff', (['full_data[k]'], {}), '(full_data[k])\n', (22862, 22876), True, 'import numpy as np\n'), ((22969, 22990), 'numpy.diff', 'np.diff', (['full_data[k]'], {}), '(full_data[k])\n', (22976, 22990), True, 'import numpy as np\n'), ((33611, 33631), 'numpy.isinf', 'np.isinf', (['grows_rate'], {}), '(grows_rate)\n', (33619, 33631), True, 'import numpy as np\n'), ((44639, 44660), 'numpy.diff', 'np.diff', (['full_data[k]'], {}), '(full_data[k])\n', (44646, 44660), True, 'import numpy as np\n'), ((44753, 44774), 'numpy.diff', 'np.diff', (['full_data[k]'], {}), '(full_data[k])\n', (44760, 44774), True, 'import numpy as np\n'), ((16248, 16286), 'numpy.max', 'np.max', (['[100, num_contries / 25 * 100]'], {}), '([100, num_contries / 25 * 100])\n', (16254, 16286), True, 'import numpy as np\n'), ((25968, 25977), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (25974, 25977), True, 'import numpy as np\n'), ((25978, 25997), 'numpy.log', 'np.log', (['growth_rate'], {}), '(growth_rate)\n', (25984, 25997), True, 'import numpy as np\n'), ((26207, 26216), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (26213, 26216), True, 'import numpy as np\n'), ((26217, 26237), 'numpy.log', 'np.log', (['growth_death'], {}), '(growth_death)\n', (26223, 26237), True, 'import numpy as np\n'), ((26455, 26464), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (26461, 26464), True, 'import numpy as np\n'), ((26465, 26489), 'numpy.log', 'np.log', (['growth_recovered'], {}), '(growth_recovered)\n', (26471, 26489), True, 'import numpy as np\n'), ((34063, 34072), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (34069, 34072), True, 'import numpy as np\n'), ((34075, 34099), 'numpy.log', 'np.log', (['growth_rate_mean'], {}), '(growth_rate_mean)\n', (34081, 34099), True, 'import numpy as np\n'), ((35495, 35546), 'numpy.linspace', 'np.linspace', (['(1)', 'num_dates', 'num_dates'], {'endpoint': '(True)'}), '(1, num_dates, num_dates, endpoint=True)\n', (35506, 35546), True, 'import numpy as np\n'), ((35936, 35987), 'numpy.linspace', 'np.linspace', (['(1)', 'num_dates', 'num_dates'], {'endpoint': '(True)'}), '(1, num_dates, num_dates, endpoint=True)\n', (35947, 35987), True, 'import numpy as np\n'), ((36564, 36615), 'numpy.linspace', 'np.linspace', (['(1)', 'num_dates', 'num_dates'], {'endpoint': '(True)'}), '(1, num_dates, num_dates, endpoint=True)\n', (36575, 36615), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2021 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA_MCCNN # # https://github.com/CNES/Pandora_MCCNN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains all functions to generate the training and testing dataset on the Data Fusion Contest generated with Beefrost """ import os import glob import argparse import numpy as np import h5py import rasterio from numba import njit @njit() def compute_mask(disp_map, mask_ref, mask_sec, patch_size): """ Masks invalid pixels : pixel outside epipolar image :param disp_map: disparity map :type disp_map: 2D numpy array :param mask_ref: left epipolar image mask : with the convention 0 is valid pixel in epipolar image :type mask_ref: 2D numpy array :param mask_sec: right epipolar image mask : with the convention 0 is valid pixel in epipolar image :type mask_sec: 2D numpy array :param patch_size: patch size :type patch_size: int :return: the disparity map with invalid pixels = -9999 :rtype: 2D numpy array """ radius = int(patch_size / 2) nb_row, nb_col = disp_map.shape for row in range(radius, nb_row - radius): for col in range(radius, nb_col - radius): disp = disp_map[row, col] # Matching in the right image match = int(col + disp) # Negative matching for training, with maximum negative displacement for creating negative example neg_match = match - 6 # If negative example is inside right epipolar image if radius < neg_match < (nb_col - radius) and radius < neg_match < (nb_row - radius): patch_ref = mask_ref[(row - radius) : (row + radius + 1), (col - radius) : (col + radius + 1)] patch_sec = mask_sec[(row - radius) : (row + radius + 1), (match - radius) : (match + radius + 1)] # Invalid patch : outside left epipolar image if np.sum(patch_ref != 0) != 0: disp_map[row, col] = -9999 # Invalid patch : outside right epipolar image if np.sum(patch_sec != 0) != 0: disp_map[row, col] = -9999 neg_patch_sec = mask_sec[ (row - radius) : (row + radius + 1), (neg_match - radius) : (neg_match + radius + 1) ] # Invalid patch : outside right epipolar image if np.sum(neg_patch_sec != 0) != 0: disp_map[row, col] = -9999 # Negative example cannot be created else: disp_map[row, col] = -9999 return disp_map def save_dataset(img, sample, img_name, img_file, sample_file): """ Save the sample in hdf5 files : - images are saved in the img_file file: creation of a dataset for each image pair - sample are saved in the sample_file file : creation of dataset containing valid pixels The dataset name is the ground truth file ( exemple : JAX_004_009_007_LEFT_DSP.tif ) :param img: images :type img: np.array (2, 1024, 1024, 3) ( 2 = left image, right image) :param sample: samples of the image :type sample: np.array(number of valid pixels for all the images, 4). The last dimension is : number of the image, row, col, disparity for the pixel p(row, col) :param img_name: name of the current image pair ( name of the gt disparity ) :type img_name: string :param img_file: image database file :type img_file: hdf5 file :param sample_file: training or testing database file :type sample_file: hdf5 file """ sample_file.create_dataset(img_name, data=sample) img_file.create_dataset(img_name, data=img) def fusion_contest(input_dir, output): """ Preprocess and create data fusion contest hdf5 database :param input_dir: path to the input directory :type input_dir: string :param output: output directory :type output: string """ img_file = h5py.File(os.path.join(output, "images_training_dataset_fusion_contest.hdf5"), "w") training_file = h5py.File(os.path.join(output, "training_dataset_fusion_contest.hdf5"), "w") img_testing_file = h5py.File(os.path.join(output, "images_testing_dataset_fusion_contest.hdf5"), "w") testing_file = h5py.File(os.path.join(output, "testing_dataset_fusion_contest.hdf5"), "w") gt = glob.glob(input_dir + "/*/left_epipolar_disp.tif") nb_img = len(gt) # Shuffle the file list indices = np.arange(nb_img) np.random.seed(0) np.random.shuffle(indices) gt = [gt[i] for i in indices] # 90 % Training, 10 % Testing end_training = int(nb_img * 0.9) for num_image in range(nb_img): name_image = gt[num_image].split(input_dir)[1].split("/")[1] path_image = gt[num_image].split("left_epipolar_disp.tif")[0] # Read images left = rasterio.open(os.path.join(path_image, "left_epipolar_image.tif")).read(1) left_mask = rasterio.open(os.path.join(path_image, "left_epipolar_mask.tif")).read(1) right = rasterio.open(os.path.join(path_image, "right_epipolar_image.tif")).read(1) right_mask = rasterio.open(os.path.join(path_image, "right_epipolar_mask.tif")).read(1) dsp = rasterio.open(gt[num_image]).read(1) mask_dsp = rasterio.open(os.path.join(path_image, "left_epipolar_disp_mask.tif")).read(1) cross_checking = rasterio.open(os.path.join(path_image, "valid_disp.tif")).read(1) # Mask disparities mask_disp = compute_mask(dsp, left_mask, right_mask, 11) # Remove invalid pixels : invalidated by cross-checking mask and with invalid disparity mask_disp[np.where(cross_checking == 255)] = -9999 mask_disp[np.where(mask_dsp == 255)] = -9999 # Change the disparity convention to ref(x,y) = sec(x-d,y) mask_disp *= -1 # Remove invalid disparity valid_row, valid_col = np.where(mask_disp != 9999) # Red band selection left = np.squeeze(left[0, :, :]) right = np.squeeze(right[0, :, :]) # Normalization valid_left = np.where(left_mask == 0) valid_right = np.where(right_mask == 0) left[valid_left] = (left[valid_left] - left[valid_left].mean()) / left[valid_left].std() right[valid_right] = (right[valid_right] - right[valid_right].mean()) / right[valid_right].std() # data np.array of shape ( number of valid pixels the current image, 4 ) # 4 = number of the image, row, col, disparity for the pixel p(row, col) valid_disp = np.column_stack( (np.zeros_like(valid_row) + num_image, valid_row, valid_col, mask_disp[valid_row, valid_col]) ).astype(np.float32) # img of shape (2, 2048, 2048, 3) img = np.stack((left, right), axis=0) if num_image > end_training: save_dataset(img, valid_disp, name_image, img_testing_file, testing_file) else: save_dataset(img, valid_disp, name_image, img_file, training_file) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Script for creating the training data fusion contest database. " "it will create the following files: " "- training_dataset_fusion_contest.hdf5, which contains training" " coordinates of the valid pixels and their disparity." "- testing_dataset_fusion_contest.hdf5, which contains testing " "coordinates of the valid pixels and their disparity." "- images_training_dataset_fusion_contest.hdf5, which contains the red" " band normalized training images" "- images_testing_dataset_fusion_contest.hdf5, which contains the red" " band normalized testing images" ) parser.add_argument("input_data", help="Path to the input directory containing the data") parser.add_argument("output_dir", help="Path to the output directory ") args = parser.parse_args() fusion_contest(args.input_data, args.output_dir)
[ "argparse.ArgumentParser", "numpy.arange", "numpy.where", "rasterio.open", "numba.njit", "os.path.join", "numpy.squeeze", "numpy.stack", "numpy.sum", "numpy.random.seed", "numpy.zeros_like", "glob.glob", "numpy.random.shuffle" ]
[((987, 993), 'numba.njit', 'njit', ([], {}), '()\n', (991, 993), False, 'from numba import njit\n'), ((4961, 5011), 'glob.glob', 'glob.glob', (["(input_dir + '/*/left_epipolar_disp.tif')"], {}), "(input_dir + '/*/left_epipolar_disp.tif')\n", (4970, 5011), False, 'import glob\n'), ((5076, 5093), 'numpy.arange', 'np.arange', (['nb_img'], {}), '(nb_img)\n', (5085, 5093), True, 'import numpy as np\n'), ((5098, 5115), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (5112, 5115), True, 'import numpy as np\n'), ((5120, 5146), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (5137, 5146), True, 'import numpy as np\n'), ((7669, 8247), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Script for creating the training data fusion contest database. it will create the following files: - training_dataset_fusion_contest.hdf5, which contains training coordinates of the valid pixels and their disparity.- testing_dataset_fusion_contest.hdf5, which contains testing coordinates of the valid pixels and their disparity.- images_training_dataset_fusion_contest.hdf5, which contains the red band normalized training images- images_testing_dataset_fusion_contest.hdf5, which contains the red band normalized testing images"""'}), "(description=\n 'Script for creating the training data fusion contest database. it will create the following files: - training_dataset_fusion_contest.hdf5, which contains training coordinates of the valid pixels and their disparity.- testing_dataset_fusion_contest.hdf5, which contains testing coordinates of the valid pixels and their disparity.- images_training_dataset_fusion_contest.hdf5, which contains the red band normalized training images- images_testing_dataset_fusion_contest.hdf5, which contains the red band normalized testing images'\n )\n", (7692, 8247), False, 'import argparse\n'), ((4579, 4646), 'os.path.join', 'os.path.join', (['output', '"""images_training_dataset_fusion_contest.hdf5"""'], {}), "(output, 'images_training_dataset_fusion_contest.hdf5')\n", (4591, 4646), False, 'import os\n'), ((4683, 4743), 'os.path.join', 'os.path.join', (['output', '"""training_dataset_fusion_contest.hdf5"""'], {}), "(output, 'training_dataset_fusion_contest.hdf5')\n", (4695, 4743), False, 'import os\n'), ((4783, 4849), 'os.path.join', 'os.path.join', (['output', '"""images_testing_dataset_fusion_contest.hdf5"""'], {}), "(output, 'images_testing_dataset_fusion_contest.hdf5')\n", (4795, 4849), False, 'import os\n'), ((4885, 4944), 'os.path.join', 'os.path.join', (['output', '"""testing_dataset_fusion_contest.hdf5"""'], {}), "(output, 'testing_dataset_fusion_contest.hdf5')\n", (4897, 4944), False, 'import os\n'), ((6523, 6550), 'numpy.where', 'np.where', (['(mask_disp != 9999)'], {}), '(mask_disp != 9999)\n', (6531, 6550), True, 'import numpy as np\n'), ((6596, 6621), 'numpy.squeeze', 'np.squeeze', (['left[0, :, :]'], {}), '(left[0, :, :])\n', (6606, 6621), True, 'import numpy as np\n'), ((6638, 6664), 'numpy.squeeze', 'np.squeeze', (['right[0, :, :]'], {}), '(right[0, :, :])\n', (6648, 6664), True, 'import numpy as np\n'), ((6711, 6735), 'numpy.where', 'np.where', (['(left_mask == 0)'], {}), '(left_mask == 0)\n', (6719, 6735), True, 'import numpy as np\n'), ((6758, 6783), 'numpy.where', 'np.where', (['(right_mask == 0)'], {}), '(right_mask == 0)\n', (6766, 6783), True, 'import numpy as np\n'), ((7379, 7410), 'numpy.stack', 'np.stack', (['(left, right)'], {'axis': '(0)'}), '((left, right), axis=0)\n', (7387, 7410), True, 'import numpy as np\n'), ((6271, 6302), 'numpy.where', 'np.where', (['(cross_checking == 255)'], {}), '(cross_checking == 255)\n', (6279, 6302), True, 'import numpy as np\n'), ((6330, 6355), 'numpy.where', 'np.where', (['(mask_dsp == 255)'], {}), '(mask_dsp == 255)\n', (6338, 6355), True, 'import numpy as np\n'), ((5838, 5866), 'rasterio.open', 'rasterio.open', (['gt[num_image]'], {}), '(gt[num_image])\n', (5851, 5866), False, 'import rasterio\n'), ((2522, 2544), 'numpy.sum', 'np.sum', (['(patch_ref != 0)'], {}), '(patch_ref != 0)\n', (2528, 2544), True, 'import numpy as np\n'), ((2681, 2703), 'numpy.sum', 'np.sum', (['(patch_sec != 0)'], {}), '(patch_sec != 0)\n', (2687, 2703), True, 'import numpy as np\n'), ((3006, 3032), 'numpy.sum', 'np.sum', (['(neg_patch_sec != 0)'], {}), '(neg_patch_sec != 0)\n', (3012, 3032), True, 'import numpy as np\n'), ((5481, 5532), 'os.path.join', 'os.path.join', (['path_image', '"""left_epipolar_image.tif"""'], {}), "(path_image, 'left_epipolar_image.tif')\n", (5493, 5532), False, 'import os\n'), ((5576, 5626), 'os.path.join', 'os.path.join', (['path_image', '"""left_epipolar_mask.tif"""'], {}), "(path_image, 'left_epipolar_mask.tif')\n", (5588, 5626), False, 'import os\n'), ((5666, 5718), 'os.path.join', 'os.path.join', (['path_image', '"""right_epipolar_image.tif"""'], {}), "(path_image, 'right_epipolar_image.tif')\n", (5678, 5718), False, 'import os\n'), ((5763, 5814), 'os.path.join', 'os.path.join', (['path_image', '"""right_epipolar_mask.tif"""'], {}), "(path_image, 'right_epipolar_mask.tif')\n", (5775, 5814), False, 'import os\n'), ((5908, 5963), 'os.path.join', 'os.path.join', (['path_image', '"""left_epipolar_disp_mask.tif"""'], {}), "(path_image, 'left_epipolar_disp_mask.tif')\n", (5920, 5963), False, 'import os\n'), ((6012, 6054), 'os.path.join', 'os.path.join', (['path_image', '"""valid_disp.tif"""'], {}), "(path_image, 'valid_disp.tif')\n", (6024, 6054), False, 'import os\n'), ((7200, 7224), 'numpy.zeros_like', 'np.zeros_like', (['valid_row'], {}), '(valid_row)\n', (7213, 7224), True, 'import numpy as np\n')]
import numpy as np # NOTE: these all assume a sample rate of 1000Hz and 0-centered(ish) BUTTER2_45_55_NOTCH = [[0.95654323, -1.82035157, 0.95654323, 1., -1.84458768, 0.9536256 ], [1. , -1.90305207, 1. , 1., -1.87701816, 0.95947072]] BUTTER4_45_55_NOTCH = [[0.92117099, -1.75303637, 0.92117099, 1., -1.83993124, 0.94153282], [1. , -1.90305207, 1. , 1., -1.85827897, 0.94562794], [1. , -1.90305207, 1. , 1., -1.85916949, 0.9741553 ], [1. , -1.90305207, 1. , 1., -1.89861232, 0.9783552 ]] BUTTER8_45_55_NOTCH = [[0.85123494, -1.61994442, 0.85123494, 1., -1.84135423, 0.93909556], [1. , -1.90305207, 1. , 1., -1.85081373, 0.94130689], [1. , -1.90305207, 1. , 1., -1.84098214, 0.94640431], [1. , -1.90305207, 1. , 1., -1.86712758, 0.95177517], [1. , -1.90305207, 1. , 1., -1.85070766, 0.96298756], [1. , -1.90305207, 1. , 1., -1.88761855, 0.96842656], [1. , -1.90305207, 1. , 1., -1.86966575, 0.98667654], [1. , -1.90305207, 1. , 1., -1.90969867, 0.98897339]] BUTTER2_55_65_NOTCH = [[0.95654323, -1.77962093, 0.95654323, 1., -1.80093517, 0.95415195], [1. , -1.860471 , 1. , 1., -1.83739919, 0.95894143]] BUTTER4_55_65_NOTCH = [[0.92117099, -1.71381192, 0.92117099, 1., -1.79756457, 0.94190374], [1. , -1.860471 , 1. , 1., -1.81789764, 0.94525555], [1. , -1.860471 , 1. , 1., -1.81413419, 0.97453194], [1. , -1.860471 , 1. , 1., -1.8595667 , 0.97797707]] BUTTER8_55_65_NOTCH = [[0.85123494, -1.58369793, 0.85123494, 1., -1.799555 , 0.93929634], [1. , -1.860471 , 1. , 1., -1.81000016, 0.94110568], [1. , -1.860471 , 1. , 1., -1.79799514, 0.94688937], [1. , -1.860471 , 1. , 1., -1.82714508, 0.95128761], [1. , -1.860471 , 1. , 1., -1.80636275, 0.96347614], [1. , -1.860471 , 1. , 1., -1.84831785, 0.96793547], [1. , -1.860471 , 1. , 1., -1.82397995, 0.98688239], [1. , -1.860471 , 1. , 1., -1.87082063, 0.9887671 ]] class ButterworthFilter(): def __init__(self, coeffs): self.order = len(coeffs) self.coeffs = np.array(coeffs) self.z = np.array([[0.0]*2]*self.order) # order x 2 array of zeros def next_sample(self, xn): for s in range(self.order): xn_tmp = xn # make a temp copy xn = self.coeffs[s, 0] * xn_tmp + self.z[s, 0] self.z[s, 0] = (self.coeffs[s, 1] * xn_tmp - self.coeffs[s, 4] * xn + self.z[s, 1]) self.z[s, 1] = (self.coeffs[s, 2] * xn_tmp - self.coeffs[s, 5] * xn) return xn
[ "numpy.array" ]
[((2752, 2768), 'numpy.array', 'np.array', (['coeffs'], {}), '(coeffs)\n', (2760, 2768), True, 'import numpy as np\n'), ((2786, 2820), 'numpy.array', 'np.array', (['([[0.0] * 2] * self.order)'], {}), '([[0.0] * 2] * self.order)\n', (2794, 2820), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue May 12 08:23:58 2020 @author: sumanth """ import numpy as np import cv2 from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array def pre_dect(frame,faceNet,model): (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),(104.0, 177.0, 123.0)) faceNet.setInput(blob) detections = faceNet.forward() faces = [] locs = [] preds = [] for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence >= 0.168: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) face = frame[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) faces.append(face) locs.append((startX, startY, endX, endY)) for k in faces: preds.append(model.predict(k)) return (locs, preds)
[ "cv2.dnn.blobFromImage", "numpy.array", "tensorflow.keras.applications.mobilenet_v2.preprocess_input", "cv2.cvtColor", "numpy.expand_dims", "tensorflow.keras.preprocessing.image.img_to_array", "cv2.resize" ]
[((341, 409), 'cv2.dnn.blobFromImage', 'cv2.dnn.blobFromImage', (['frame', '(1.0)', '(300, 300)', '(104.0, 177.0, 123.0)'], {}), '(frame, 1.0, (300, 300), (104.0, 177.0, 123.0))\n', (362, 409), False, 'import cv2\n'), ((976, 1013), 'cv2.cvtColor', 'cv2.cvtColor', (['face', 'cv2.COLOR_BGR2RGB'], {}), '(face, cv2.COLOR_BGR2RGB)\n', (988, 1013), False, 'import cv2\n'), ((1034, 1062), 'cv2.resize', 'cv2.resize', (['face', '(224, 224)'], {}), '(face, (224, 224))\n', (1044, 1062), False, 'import cv2\n'), ((1083, 1101), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['face'], {}), '(face)\n', (1095, 1101), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((1122, 1144), 'tensorflow.keras.applications.mobilenet_v2.preprocess_input', 'preprocess_input', (['face'], {}), '(face)\n', (1138, 1144), False, 'from tensorflow.keras.applications.mobilenet_v2 import preprocess_input\n'), ((1165, 1193), 'numpy.expand_dims', 'np.expand_dims', (['face'], {'axis': '(0)'}), '(face, axis=0)\n', (1179, 1193), True, 'import numpy as np\n'), ((689, 711), 'numpy.array', 'np.array', (['[w, h, w, h]'], {}), '([w, h, w, h])\n', (697, 711), True, 'import numpy as np\n')]
import shutil import subprocess # nosec # have to use subprocess import warnings from collections import Counter from copy import deepcopy from os import listdir, makedirs from os.path import abspath, basename, dirname, exists, isfile, join from subprocess import PIPE # nosec # have to use subprocess from tempfile import mkdtemp import f90nml import numpy as np import pandas as pd from dateutil.relativedelta import relativedelta from openscm_units import unit_registry from scmdata import run_append from .config import _wine_installed, config from .errors import InvalidTemporalResError, NoReaderWriterError from .io import MAGICCData, read_cfg_file from .io.utils import _get_openscm_var_from_filepath from .scenarios import zero_emissions from .utils import get_date_time_string IS_WINDOWS = config["is_windows"] class WineNotInstalledError(Exception): """Exception raised if wine is not installed but is required""" def _copy_files(source, target, recursive=False): """ Copy all the files in source directory to target. If ``recursive``, include subdirectories, otherwise ignores subdirectories. """ if recursive: shutil.copytree(source, target) return source_files = listdir(source) if not exists(target): makedirs(target) for filename in source_files: full_filename = join(source, filename) if isfile(full_filename): shutil.copy(full_filename, target) def _clean_value(v): if isinstance(v, str): return v.strip() elif isinstance(v, list): if isinstance(v[0], str): return [i.replace("\0", "").strip().replace("\n", "") for i in v] return v class MAGICCBase(object): """ Provides access to the MAGICC binary and configuration. To enable multiple MAGICC 'setups' to be configured independently, the MAGICC directory containing the input files, configuration and binary is copied to a new folder. The configuration in this MAGICC copy can then be edited without impacting other instances or your original MAGICC distribution. A ``MAGICC`` instance first has to be setup by calling ``create_copy``. If many model runs are being performed this step only has to be performed once. The ``run`` method can then be called many times without re-copying the files each time. Between each call to ``run``, the configuration files can be updated to perform runs with different configurations. Parameters ---------- root_dir : str If ``root_dir`` is supplied, an existing MAGICC 'setup' is used. """ version = None _scen_file_name = "SCENARIO.SCEN7" def __init__(self, root_dir=None, strict=True): """ Initialise Parameters ---------- root_dir : str Root directory of the MAGICC package. If ``None``, a temporary copy of MAGICC is made based on the result of ` `self.get_exectuable()``. strict: bool If True, enforce the configuration checks, otherwise a warning is raised if any invalid configuration is found and the run is continued. Setting ``strict=False`` is only recommended for experienced users of MAGICC. """ self.root_dir = root_dir self.config = None self.executable = self.get_executable() self.strict = strict if root_dir is not None: self.is_temp = False else: # Create a temp directory self.is_temp = True def __enter__(self): if self.is_temp and self.run_dir is None: self.create_copy() return self def __exit__(self, *args, **kwargs): self.remove_temp_copy() def create_copy(self): """ Initialises a temporary directory structure and copy of MAGICC configuration files and binary. The root folder and ``bin`` folders are copied (not recursively). The ``run`` folder is copied recursively. """ if self.executable is None or not isfile(self.executable): raise FileNotFoundError( "Could not find MAGICC{} executable: {}".format( self.version, self.executable ) ) if self.is_temp: if self.root_dir is not None: raise AssertionError( "A temp copy for this instance has already been created" ) self.root_dir = mkdtemp(prefix="pymagicc-") if exists(self.run_dir): raise Exception("A copy of MAGICC has already been created.") if not exists(self.root_dir): makedirs(self.root_dir) exec_dir = basename(self.original_dir) # Copy a subset of folders from the MAGICC `original_dir` # Also copy anything which is in the root of the MAGICC distribution # Assumes that the MAGICC binary is in a folder one level below the root # of the MAGICC distribution. i.e. /run/magicc.exe or /bin/magicc dirs_to_copy = [".", "bin"] dirs_to_copy_recursive = ["run"] # Check that the executable is in a valid sub directory if exec_dir not in dirs_to_copy + dirs_to_copy_recursive: raise AssertionError("binary must be in bin/ or run/ directory") for d in dirs_to_copy + dirs_to_copy_recursive: source_dir = abspath(join(self.original_dir, "..", d)) if exists(source_dir): _copy_files( source_dir, join(self.root_dir, d), recursive=d in dirs_to_copy_recursive, ) # Create an empty out dir # MAGICC assumes that the 'out' directory already exists makedirs(join(self.root_dir, "out")) # Create basic configuration files so magicc can run self.set_years() self.set_config() @property def binary_name(self): """ Name of the MAGICC binary file Returns ------- str Name of the binary file """ return basename(self.executable) @property def original_dir(self): """ Directory of the MAGICC package. This is the directory which contains the ``run`` and ``out`` folders. Returns ------- str Path of the MAGICC package """ return dirname(self.executable) @property def run_dir(self): """ Run directory of the MAGICC package. This path always ends in ``run``. Returns ------- str Path of the run directory """ if self.root_dir is None: return None return join(self.root_dir, "run") @property def out_dir(self): """ Output directory of the MAGICC package. This path always ends in ``out``. Returns ------- str Path of the output directory """ if self.root_dir is None: return None return join(self.root_dir, "out") @property def default_config(self): """ Default configuration for a run Returns ------- :obj:`f90nml.Namelist` Namelist object containing the default configuration """ base = f90nml.read(join(self.run_dir, "MAGCFG_DEFAULTALL.CFG")) user = f90nml.read(join(self.run_dir, "MAGCFG_USER.CFG")) self._default_config = deepcopy(base) def _deep_update(b, o): for k, v in o.items(): if isinstance(v, dict): _deep_update(b[k], v) else: b.update(o) _deep_update(self._default_config, user) return self._default_config def run(self, scenario=None, only=None, debug=False, **kwargs): """ Run MAGICC and parse the output. As a reminder, putting ``out_parameters=1`` will cause MAGICC to write out its parameters into ``out/PARAMETERS.OUT`` and they will then be read into ``output.metadata["parameters"]`` where ``output`` is the returned object. Any logged output from running magicc will be in``output.metadata["stderr"]``. For MAGICC7 and above, The level of logging can be controlled with the ``debug`` argument. Any subannual files output by MAGICC will be ignored by this function. These files can be read in manually using :class:`pymagicc.io.MAGICCData` directly. Parameters ---------- scenario : :obj:`pymagicc.io.MAGICCData` Scenario to run. If None MAGICC will simply run with whatever config has already been set. only : list of str If not None, only extract variables in this list. debug: {True, False, "verbose"} If true, MAGICC will run in debug mode with the maximum amount of logging. If "verbose", MAGICC will be run in verbose mode. kwargs Other config values to pass to MAGICC for the run Returns ------- :obj:`pymagicc.io.MAGICCData` MAGICCData object containing that data in its ``df`` attribute and metadata and parameters (depending on the value of ``include_parameters``) in its ``metadata`` attribute. Raises ------ ValueError If no output is found which matches the list specified in ``only``. subprocess.CalledProcessError If MAGICC fails to run. Check the 'stderr' key of the result's `metadata` attribute to inspect the results output from MAGICC. ValueError The user attempts to use ``debug`` with MAGICC6 """ if not exists(self.root_dir): raise FileNotFoundError(self.root_dir) if self.executable is None: raise ValueError( "MAGICC executable not found, try setting an environment variable `MAGICC_EXECUTABLE_{}=/path/to/binary`".format( self.version ) ) if scenario is not None: kwargs = self.set_emission_scenario_setup(scenario, kwargs) yr_config = {} if "startyear" in kwargs: yr_config["startyear"] = kwargs.pop("startyear") if "endyear" in kwargs: yr_config["endyear"] = kwargs.pop("endyear") if yr_config: self.set_years(**yr_config) # should be able to do some other nice metadata stuff re how magicc was run # etc. here kwargs.setdefault("rundate", get_date_time_string()) self.update_config(**kwargs) self.check_config() exec_dir = basename(self.original_dir) command = [join(self.root_dir, exec_dir, self.binary_name)] if self.version >= 7: if debug == "verbose": command.append("--verbose") elif debug: command.append("--debug") elif debug: raise ValueError("MAGICC6 has no debug capability") if not IS_WINDOWS and self.binary_name.endswith(".exe"): # pragma: no cover if not _wine_installed: raise WineNotInstalledError( "Wine is not installed but is required to run `.exe` binaries" ) command.insert(0, "wine") try: res = subprocess.run( # nosec # on Windows shell=True is required command, check=True, # thank you https://stackoverflow.com/a/53209196 for Python 3.6 hack stdout=PIPE, stderr=PIPE, cwd=self.run_dir, shell=IS_WINDOWS, ) except subprocess.CalledProcessError as exc: print("stderr:\n{}".format(exc.stderr.decode())) raise exc outfiles = self._get_output_filenames() read_cols = {"climate_model": ["MAGICC{}".format(self.version)]} if scenario is not None: read_cols["model"] = scenario["model"].unique().tolist() read_cols["scenario"] = scenario["scenario"].unique().tolist() else: read_cols.setdefault("model", ["unspecified"]) read_cols.setdefault("scenario", ["unspecified"]) mdata = [] for filepath in outfiles: if filepath.startswith("DAT_VOLCANIC_RF.") or "SUBANN" in filepath: warnings.warn( "Not reading file: {}. Monthly data are not read in automatically by `run`. " "Use `MAGICCData` instead.".format(filepath) ) continue try: openscm_var = _get_openscm_var_from_filepath(filepath) if only is None or openscm_var in only: tempdata = MAGICCData( join(self.out_dir, filepath), columns=deepcopy(read_cols) ) mdata.append(tempdata) except (NoReaderWriterError, InvalidTemporalResError): # TODO: something like warnings.warn("Could not read {}".format(filepath)) continue if not mdata and only is not None: raise ValueError("No output found for only={}".format(only)) if not mdata: if self.strict: raise ValueError("No output found. Check configuration") else: # No data was loaded return an empty MAGICCData object mdata = MAGICCData( data={}, columns={ "model": [], "unit": [], "variable": [], "region": [], "scenario": [], }, ) else: mdata = run_append(mdata) try: run_paras = self.read_parameters() self.config = run_paras mdata.metadata["parameters"] = run_paras except FileNotFoundError: pass mdata.metadata["stderr"] = res.stderr.decode("ascii") levels_to_warn = ["WARNING", "ERROR", "FATAL"] for level in levels_to_warn: if "<{}>".format(level) in mdata.metadata["stderr"]: warnings.warn( "magicc logged a {} message. Check the 'stderr' key of the " "result's `metadata` attribute.".format(level) ) return mdata def _get_output_filenames(self): outfiles = [f for f in listdir(self.out_dir) if f != "PARAMETERS.OUT"] bin_out = [ f.split(".")[0] for f in outfiles if f.startswith("DAT_") and f.endswith(".BINOUT") ] extras = [] for f in outfiles: var_name, ext = f.split(".") if ext != "BINOUT" and var_name not in bin_out: extras.append(f) return [f + ".BINOUT" for f in bin_out] + extras def _check_failed(self, msg): if self.strict: raise ValueError(msg) else: warnings.warn(msg) def check_config(self): """Check that our MAGICC ``.CFG`` files are set to safely work with PYMAGICC For further detail about why this is required, please see :ref:`MAGICC flags`. Raises ------ ValueError If we are not certain that the config written by PYMAGICC will overwrite all other config i.e. that there will be no unexpected behaviour. A ValueError will also be raised if the user tries to use more than one scenario file. """ cfg_error_msg = ( "PYMAGICC is not the only tuning model that will be used by " "`MAGCFG_USER.CFG`: your run is likely to fail/do odd things" ) emisscen_error_msg = ( "You have more than one `FILE_EMISSCEN_X` flag set. Using more than " "one emissions scenario is hard to debug and unnecessary with " "Pymagicc's Dataframe scenario input. Please combine all your " "scenarios into one Dataframe with Pymagicc and Pandas, then feed " "this single Dataframe into Pymagicc's run API." ) nml_to_check = "nml_allcfgs" usr_cfg = read_cfg_file(join(self.run_dir, "MAGCFG_USER.CFG")) for k in usr_cfg[nml_to_check]: if k.startswith("file_tuningmodel"): first_tuningmodel = k in ["file_tuningmodel", "file_tuningmodel_1"] if first_tuningmodel: if usr_cfg[nml_to_check][k] != "PYMAGICC": self._check_failed(cfg_error_msg) elif usr_cfg[nml_to_check][k] not in ["USER", ""]: self._check_failed(cfg_error_msg) elif k.startswith("file_emisscen_"): if usr_cfg[nml_to_check][k] not in ["NONE", ""]: self._check_failed(emisscen_error_msg) self._check_config() def write(self, mdata, name): """Write an input file to disk Parameters ---------- mdata : :obj:`pymagicc.io.MAGICCData` A MAGICCData instance with the data to write name : str The name of the file to write. The file will be written to the MAGICC instance's run directory i.e. ``self.run_dir`` """ mdata.write(join(self.run_dir, name), self.version) def read_parameters(self): """ Read a parameters.out file Returns ------- dict A dictionary containing all the configuration used by MAGICC """ param_fname = join(self.out_dir, "PARAMETERS.OUT") if not exists(param_fname): raise FileNotFoundError("No PARAMETERS.OUT found") with open(param_fname) as nml_file: parameters = dict(f90nml.read(nml_file)) for group in ["nml_years", "nml_allcfgs", "nml_outputcfgs"]: parameters[group] = dict(parameters[group]) for k, v in parameters[group].items(): parameters[group][k] = _clean_value(v) parameters[group.replace("nml_", "")] = parameters.pop(group) self.config = parameters return parameters def remove_temp_copy(self): """ Removes a temporary copy of the MAGICC version shipped with Pymagicc. """ if self.is_temp and self.root_dir is not None: shutil.rmtree(self.root_dir) self.root_dir = None def set_config( self, filename="MAGTUNE_PYMAGICC.CFG", top_level_key="<KEY>", conflict="warn", **kwargs, ): """ Create a configuration file for MAGICC. Writes a fortran namelist in run_dir. Parameters ---------- filename : str Name of configuration file to write top_level_key : str Name of namelist to be written in the configuration file conflict : {'warn', 'ignore'} If 'warn', when a flag needs to be replaced by a different name (because, for example, the flag name changed between MAGICC versions), a warning is raised. If 'ignore', no warning is raised when a replacement is required. kwargs Other parameters to pass to the configuration file. No validation on the parameters is performed. Returns ------- dict The contents of the namelist which was written to file Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ kwargs = self._check_and_format_config(kwargs) fname = join(self.run_dir, filename) conf = {top_level_key: kwargs} conf = self._fix_legacy_keys(conf, conflict=conflict) f90nml.write(conf, fname, force=True) return conf def update_config( self, filename="MAGTUNE_PYMAGICC.CFG", top_level_key="<KEY>", conflict="warn", **kwargs, ): """Updates a configuration file for MAGICC Updates the contents of a fortran namelist in the run directory, creating a new namelist if none exists. Parameters ---------- filename : str Name of configuration file to write top_level_key : str Name of namelist to be written in the configuration file conflict : {'warn', 'ignore'} If 'warn', when a flag needs to be replaced by a different name (because, for example, the flag name changed between MAGICC versions), a warning is raised. If 'ignore', no warning is raised when a replacement is required. kwargs Other parameters to pass to the configuration file. No validation on the parameters is performed. Returns ------- dict The contents of the namelist which was written to file Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ kwargs = self._check_and_format_config(kwargs) fname = join(self.run_dir, filename) if exists(fname): conf = f90nml.read(fname) else: conf = {top_level_key: {}} conf[top_level_key].update(kwargs) conf = self._fix_legacy_keys(conf, conflict=conflict) f90nml.write(conf, fname, force=True) return conf def _fix_legacy_keys(self, conf, conflict="warn"): """ Go through config and fix any keys which are misnamed. For example, fix any keys which have been renamed between MAGICC versions to match the new names. Parameters ---------- conf :obj:`f90nml.Namelist` Configuration to check conflict : {'warn', 'ignore'} If 'warn', when a conflict is found, a warning is raised. If 'ignore', no warning is raised when a conflict is found. Returns ------- :obj:`f90nml.Namelist` Configuration with updated keys Warning ------- If a key is renamed, a warning is raised Raises ------ ValueError An invalid value for ``conflict`` is supplied """ valid_conflicts = ["warn", "ignore"] if conflict not in valid_conflicts: raise ValueError("`conflict` must be one of: {}".format(valid_conflicts)) cfg_key = "<KEY>" if cfg_key not in conf: return conf new_conf = deepcopy(conf) for wrong_key, right_key in self._config_renamings.items(): if wrong_key in new_conf[cfg_key]: new_conf[cfg_key][right_key] = new_conf[cfg_key].pop(wrong_key) if conflict == "warn": warnings.warn( "Altering config flag {} to {}".format(wrong_key, right_key) ) return new_conf def set_zero_config(self): """Set config such that radiative forcing and temperature output will be zero This method is intended as a convenience only, it does not handle everything in an obvious way. Adjusting the parameter settings still requires great care and may behave unepexctedly. """ # zero_emissions is imported from scenarios module # TODO: setup MAGICC6 so it puts extra variables in right place and hence # warning about ignoring some data disappears zero_emissions.write(join(self.run_dir, self._scen_file_name), self.version) time = zero_emissions.filter(variable="Emissions|CH4", region="World")[ "time" ].values no_timesteps = len(time) # value doesn't actually matter as calculations are done from difference but # chose sensible value nonetheless co2_conc_pi = 722 co2_conc = co2_conc_pi * np.ones(no_timesteps) co2_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": "Atmospheric Concentrations|CO2", "unit": "ppm", "todo": "SET", "region": "World", "value": co2_conc, } ) co2_conc_writer = MAGICCData(co2_conc_df) co2_conc_filename = "HIST_CONSTANT_CO2_CONC.IN" co2_conc_writer.metadata = { "header": "Constant pre-industrial CO2 concentrations" } co2_conc_writer.write(join(self.run_dir, co2_conc_filename), self.version) ch4_conc_pi = 722 ch4_conc = ch4_conc_pi * np.ones(no_timesteps) ch4_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": "Atmospheric Concentrations|CH4", "unit": "ppb", "todo": "SET", "region": "World", "value": ch4_conc, } ) ch4_conc_writer = MAGICCData(ch4_conc_df) ch4_conc_filename = "HIST_CONSTANT_CH4_CONC.IN" ch4_conc_writer.metadata = { "header": "Constant pre-industrial CH4 concentrations" } ch4_conc_writer.write(join(self.run_dir, ch4_conc_filename), self.version) fgas_conc_pi = 0 fgas_conc = fgas_conc_pi * np.ones(no_timesteps) varname = "FGAS_CONC" fgas_conc_df = pd.DataFrame( { "time": time, "scenario": "idealised", "model": "unspecified", "climate_model": "unspecified", "variable": varname, "unit": "ppt", "todo": "SET", "region": "World", "value": fgas_conc, } ) fgas_conc_writer = MAGICCData(fgas_conc_df) fgas_conc_filename = "HIST_ZERO_{}.IN".format(varname) fgas_conc_writer.metadata = {"header": "Zero concentrations"} fgas_conc_writer.write(join(self.run_dir, fgas_conc_filename), self.version) def_config = self.default_config tmp_nml = f90nml.Namelist({"nml_allcfgs": {"fgas_files_conc": 1}}) fgas_files_conc_flag = list( self._fix_legacy_keys(tmp_nml, conflict="ignore")["nml_allcfgs"].keys() )[0] fgas_conc_files = [fgas_conc_filename] * len( def_config["nml_allcfgs"][fgas_files_conc_flag] ) self.set_config( conflict="ignore", file_emisscen=self._scen_file_name, rf_initialization_method="ZEROSTARTSHIFT", rf_total_constantafteryr=10000, file_co2i_emis="", file_co2b_emis="", file_co2_conc=co2_conc_filename, co2_switchfromconc2emis_year=10000, file_ch4i_emis="", file_ch4b_emis="", file_ch4n_emis="", file_ch4_conc=ch4_conc_filename, ch4_switchfromconc2emis_year=10000, file_n2oi_emis="", file_n2ob_emis="", file_n2on_emis="", file_n2o_conc="", n2o_switchfromconc2emis_year=1750, file_noxi_emis="", file_noxb_emis="", file_noxi_ot="", file_noxb_ot="", file_noxt_rf="", file_soxnb_ot="", file_soxi_ot="", file_soxt_rf="", file_soxi_emis="", file_soxb_emis="", file_soxn_emis="", file_oci_emis="", file_ocb_emis="", file_oci_ot="", file_ocb_ot="", file_oci_rf="", file_ocb_rf="", file_bci_emis="", file_bcb_emis="", file_bci_ot="", file_bcb_ot="", file_bci_rf="", file_bcb_rf="", bcoc_switchfromrf2emis_year=1750, file_nh3i_emis="", file_nh3b_emis="", file_nmvoci_emis="", file_nmvocb_emis="", file_coi_emis="", file_cob_emis="", file_mineraldust_rf="", file_landuse_rf="", file_bcsnow_rf="", # rf_fgassum_scale=0, # this appears to do nothing, hence the next two lines fgas_switchfromconc2emis_year=10000, rf_mhalosum_scale=0, stratoz_o3scale=0, rf_volcanic_scale=0, rf_solar_scale=0, mhalo_switchfromconc2emis_year=1750, fgas_files_conc=fgas_conc_files, ) def _check_and_format_config(self, config_dict): self._check_for_duplicate_keys(config_dict) config_dict = self._convert_out_config_flags_to_integers(config_dict) return config_dict @staticmethod def _check_for_duplicate_keys(config_dict): keys_lower = [v.lower() for v in config_dict.keys()] counts = Counter(keys_lower) if any([v > 1 for v in counts.values()]): duplicate_keys = [ [ck for ck in config_dict.keys() if ck.lower() == k.lower()] for k, v in counts.items() if v > 1 ] error_msg = ( "The following configuration keys clash because configs are " "case insensitive: {}".format( ", ".join([str(v) for v in duplicate_keys]) ) ) raise ValueError(error_msg) @staticmethod def _convert_out_config_flags_to_integers(config_dict): valid_out_flags = [ "out_emissions", "out_gwpemissions", "out_sum_gwpemissions", "out_concentrations", "out_carboncycle", "out_forcing", "out_forcing_subannual", "out_temperature", "out_temperature_subannual", "out_sealevel", "out_parameters", "out_misc", "out_lifetimes", "out_timeseriesmix", "out_rcpdata", "out_summaryidx", "out_tempoceanlayers", "out_oceanarea", "out_heatuptake", "out_warnings", "out_precipinput", "out_aogcmtuning", "out_ccycletuning", "out_observationaltuning", "out_keydata_1", "out_keydata_2", "out_inverseemis", "out_surfaceforcing", "out_permafrost", "out_allowanydynamicvars", ] for key in valid_out_flags: if key in config_dict: # MAGICC expects 1 and 0 instead of True/False config_dict[key] = 1 if config_dict[key] else 0 return config_dict def set_years(self, startyear=1765, endyear=2100): """ Set the start and end dates of the simulations. Parameters ---------- startyear : int Start year of the simulation endyear : int End year of the simulation Returns ------- dict The contents of the namelist """ # TODO: test altering stepsperyear, I think 1, 2 and 24 should all work return self.set_config( "MAGCFG_NMLYEARS.CFG", "nml_years", endyear=endyear, startyear=startyear, stepsperyear=12, ) def set_output_variables(self, write_ascii=True, write_binary=False, **kwargs): """Set the output configuration, minimising output as much as possible There are a number of configuration parameters which control which variables are written to file and in which format. Limiting the variables that are written to file can greatly speed up the running of MAGICC. By default, calling this function without specifying any variables will disable all output by setting all of MAGICC's ``out_xx`` flags to ``0``. This convenience function should not be confused with ``set_config`` or ``update_config`` which allow the user to set/update the configuration flags directly, without the more convenient syntax and default behaviour provided by this function. Parameters ---------- write_ascii : bool If true, MAGICC is configured to write output files as human readable ascii files. write_binary : bool If true, MAGICC is configured to write binary output files. These files are much faster to process and write, but are not human readable. **kwargs: List of variables to write out. A list of possible options are as follows. This may not be a complete list. 'emissions', 'gwpemissions', 'sum_gwpemissions', 'concentrations', 'carboncycle', 'forcing', 'surfaceforcing', 'permafrost', 'temperature', 'sealevel', 'parameters', 'misc', 'lifetimes', 'timeseriesmix', 'rcpdata', 'summaryidx', 'inverseemis', 'tempoceanlayers', 'oceanarea', 'heatuptake', 'warnings', 'precipinput', 'aogcmtuning', 'ccycletuning', 'observationaltuning', 'keydata_1', 'keydata_2' """ if not (write_ascii or write_binary): raise AssertionError("write_binary and/or write_ascii must be configured") if write_binary and write_ascii: ascii_binary = "BOTH" elif write_ascii: ascii_binary = "ASCII" else: ascii_binary = "BINARY" # defaults outconfig = { "out_emissions": 0, "out_gwpemissions": 0, "out_sum_gwpemissions": 0, "out_concentrations": 0, "out_carboncycle": 0, "out_forcing": 0, "out_surfaceforcing": 0, "out_permafrost": 0, "out_temperature": 0, "out_sealevel": 0, "out_parameters": 0, "out_misc": 0, "out_timeseriesmix": 0, "out_rcpdata": 0, "out_summaryidx": 0, "out_inverseemis": 0, "out_tempoceanlayers": 0, "out_heatuptake": 0, "out_ascii_binary": ascii_binary, "out_warnings": 0, "out_precipinput": 0, "out_aogcmtuning": 0, "out_ccycletuning": 0, "out_observationaltuning": 0, "out_keydata_1": 0, "out_keydata_2": 0, } if self.version == 7: outconfig["out_oceanarea"] = 0 outconfig["out_lifetimes"] = 0 for kw in kwargs: val = 1 if kwargs[kw] else 0 # convert values to 0/1 instead of booleans outconfig["out_" + kw.lower()] = val self.update_config(**outconfig) def get_executable(self): """ Get path to MAGICC executable being used Returns ------- str Path to MAGICC executable being used """ return config["executable_{}".format(self.version)] def diagnose_tcr_ecs_tcre(self, **kwargs): """ Diagnose TCR, ECS and TCRE The transient climate response (TCR), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in an experiment where atmospheric |CO2| concentrations are increased at 1% per year from pre-industrial levels (1pctCO2 experiment). The equilibrium climate sensitivity (ECS), is the equilibrium global-mean temperature response to an instantaneous doubling of atmospheric |CO2| concentrations (abrupt-2xCO2 experiment). The transient climate response to emissions (TCRE), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in the 1pctCO2 experiment. Please note that sometimes the run length won't be long enough to allow MAGICC's oceans to fully equilibrate and hence the ECS value might not be what you expect (it should match the value of ``core_climatesensitivity``). Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "ecs" - the diagnosed ECS; "tcr" - the diagnosed TCR; "tcre" - the diagnosed TCRE; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ ecs_res = self.diagnose_ecs(**kwargs) tcr_tcre_res = self.diagnose_tcr_tcre(**kwargs) out = {**ecs_res, **tcr_tcre_res} out["timeseries"] = run_append( [ecs_res["timeseries"], tcr_tcre_res["timeseries"]] ) return out def diagnose_ecs(self, **kwargs): """ Diagnose ECS The equilibrium climate sensitivity (ECS), is the equilibrium global-mean temperature response to an instantaneous doubling of atmospheric |CO2| concentrations (abrupt-2xCO2 experiment). Please note that sometimes the run length won't be long enough to allow MAGICC's oceans to fully equilibrate and hence the ECS value might not be what you expect (it should match the value of ``core_climatesensitivity``). Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "ecs" - the diagnosed ECS; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ self._diagnose_ecs_config_setup(**kwargs) timeseries = self.run( scenario=None, only=[ "Atmospheric Concentrations|CO2", "Radiative Forcing", "Surface Temperature", ], ) timeseries["scenario"] = "abrupt-2xCO2" ecs = self.get_ecs_from_diagnosis_results(timeseries) return {"ecs": ecs, "timeseries": timeseries} def diagnose_tcr_tcre(self, **kwargs): """ Diagnose TCR and TCRE The transient climate response (TCR), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in an experiment where atmospheric |CO2| concentrations are increased at 1% per year from pre-industrial levels (1pctCO2 experiment). The transient climate response to emissions (TCRE), is the global-mean temperature response per unit cumulative |CO2| emissions at the time at which atmospheric |CO2| concentrations double in the 1pctCO2 experiment. Parameters ---------- **kwargs parameter values to use in the diagnosis e.g. ``core_climatesensitivity=4`` Returns ------- dict Dictionary with keys: "tcr" - the diagnosed TCR; "tcre" - the diagnosed TCRE; "timeseries" - the relevant model input and output timeseries used in the experiment i.e. atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and global-mean surface temperature """ self._diagnose_tcr_tcre_config_setup(**kwargs) timeseries = self.run( scenario=None, only=[ "Atmospheric Concentrations|CO2", "INVERSEEMIS", "Radiative Forcing", "Surface Temperature", ], ) # drop all the irrelevant inverse emissions timeseries = timeseries.filter( variable="Inverse Emissions*", level=1, keep=False ) # drop the final year as concs stay constant from some reason, # MAGICC bug... timeseries = timeseries.filter(time=timeseries["time"].max(), keep=False) timeseries["scenario"] = "1pctCO2" tcr, tcre = self.get_tcr_tcre_from_diagnosis_results(timeseries) return {"tcr": tcr, "tcre": tcre, "timeseries": timeseries} def _diagnose_ecs_config_setup(self, **kwargs): self.set_years( startyear=1750, endyear=4200 ) # 4200 seems to be the max I can push too without an error self.update_config( FILE_CO2_CONC="ABRUPT2XCO2_CO2_CONC.IN", CO2_SWITCHFROMCONC2EMIS_YEAR=30000, RF_TOTAL_RUNMODUS="CO2", RF_TOTAL_CONSTANTAFTERYR=2000, **kwargs, ) def _diagnose_tcr_tcre_config_setup(self, **kwargs): self.set_years(startyear=1750, endyear=2020) self.update_config( FILE_CO2_CONC="1PCTCO2_CO2_CONC.IN", CO2_SWITCHFROMCONC2EMIS_YEAR=30000, RF_TOTAL_RUNMODUS="CO2", RF_TOTAL_CONSTANTAFTERYR=3000, OUT_INVERSEEMIS=1, **kwargs, ) def get_ecs_from_diagnosis_results(self, results_ecs_run): """ Diagnose ECS from the results of the abrupt-2xCO2 experiment Parameters ---------- results_ecs_run : :obj:`ScmRun` Results of the abrupt-2xCO2 experiment, must contain atmospheric |CO2| concentrations, total radiative forcing and surface temperature. Returns ------- ecs : :obj:`pint.quantity.Quantity` ECS diagnosed from ``results_ecs_run`` """ global_co2_concs = results_ecs_run.filter( variable="Atmospheric Concentrations|CO2", region="World" ) ecs_time, ecs_start_time = self._get_ecs_ecs_start_yr_from_CO2_concs( global_co2_concs ) global_total_rf = results_ecs_run.filter( variable="Radiative Forcing", region="World" ) self._check_ecs_total_RF(global_total_rf, jump_time=ecs_start_time) global_temp = results_ecs_run.filter( variable="Surface Temperature", region="World" ) self._check_ecs_temp(global_temp) ecs = float(global_temp.filter(time=ecs_time).values.squeeze()) unit = global_temp.get_unique_meta("unit", no_duplicates=True) ecs = ecs * unit_registry(unit) return ecs def get_tcr_tcre_from_diagnosis_results(self, results_tcr_tcre_run): """ Diagnose TCR and TCRE from the results of the 1pctCO2 experiment Parameters ---------- results_tcr_tcre_run : :obj:`ScmRun` Results of the 1pctCO2 experiment, must contain atmospheric |CO2| concentrations, inverse |CO2| emissions, total radiative forcing and surface temperature. Returns ------- tcr, tcre : :obj:`pint.quantity.Quantity`, :obj:`pint.quantity.Quantity` TCR and TCRE diagnosed from ``results_tcr_tcre_run`` """ global_co2_concs = results_tcr_tcre_run.filter( variable="Atmospheric Concentrations|CO2", region="World" ) (tcr_time, tcr_start_time,) = self._get_tcr_tcr_start_yr_from_CO2_concs( global_co2_concs ) if tcr_time.year != tcr_start_time.year + 70: # pragma: no cover # emergency raise AssertionError("Has the definition of TCR and TCRE changed?") global_inverse_co2_emms = results_tcr_tcre_run.filter( variable="Inverse Emissions|CO2|MAGICC Fossil and Industrial", region="World", ) global_total_rf = results_tcr_tcre_run.filter( variable="Radiative Forcing", region="World" ) self._check_tcr_tcre_total_RF(global_total_rf, tcr_time=tcr_time) global_temp = results_tcr_tcre_run.filter( variable="Surface Temperature", region="World" ) self._check_tcr_tcre_temp(global_temp) tcr = float(global_temp.filter(time=tcr_time).values.squeeze()) tcr_unit = global_temp.get_unique_meta("unit", no_duplicates=True) tcr = tcr * unit_registry(tcr_unit) tcre_cumulative_emms = float( global_inverse_co2_emms.filter( year=range(tcr_start_time.year, tcr_time.year) ).values.sum() ) emms_unit = global_inverse_co2_emms.get_unique_meta("unit", no_duplicates=True) years = global_inverse_co2_emms["year"].values.squeeze() if not np.all((years[1:] - years[:-1]) == 1): # pragma: no cover raise AssertionError( "TCR/TCRE diagnosis assumed to be on annual timestep. Please " "raise an issue at " "https://github.com/openscm/pymagicc/issues to discuss " "your use case" ) # can now safely assume that our simple sum has done the right thing tcre_cumulative_emms_unit = unit_registry(emms_unit) * unit_registry("yr") tcre_cumulative_emms = tcre_cumulative_emms * tcre_cumulative_emms_unit tcre = tcr / tcre_cumulative_emms return tcr, tcre def _get_ecs_ecs_start_yr_from_CO2_concs(self, df_co2_concs): co2_concs = df_co2_concs.timeseries() co2_conc_0 = co2_concs.iloc[0, 0] t_start = co2_concs.columns.min() t_end = co2_concs.columns.max() ecs_start_time = co2_concs.iloc[ :, co2_concs.values.squeeze() > co2_conc_0 ].columns[0] spin_up_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: t_start <= x < ecs_start_time) .timeseries() .values.squeeze() ) if not (spin_up_co2_concs == co2_conc_0).all(): raise ValueError( "The ECS CO2 concs look wrong, they are not constant before they start rising" ) co2_conc_final = 2 * co2_conc_0 eqm_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: ecs_start_time <= x <= t_end) .timeseries() .values.squeeze() ) if not np.isclose(eqm_co2_concs, co2_conc_final).all(): raise ValueError( "The ECS CO2 concs look wrong, they are not constant after doubling" ) ecs_time = df_co2_concs["time"].iloc[-1] return ecs_time, ecs_start_time def _get_tcr_tcr_start_yr_from_CO2_concs(self, df_co2_concs): co2_concs = df_co2_concs.timeseries() co2_conc_0 = co2_concs.iloc[0, 0] t_start = co2_concs.columns.min() t_end = co2_concs.columns.max() tcr_start_time = co2_concs.iloc[ :, co2_concs.values.squeeze() > co2_conc_0 ].columns[0] - relativedelta(years=1) tcr_time = tcr_start_time + relativedelta(years=70) spin_up_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: t_start <= x <= tcr_start_time) .timeseries() .values.squeeze() ) if not (spin_up_co2_concs == co2_conc_0).all(): raise ValueError( "The TCR/TCRE CO2 concs look wrong, they are not constant before they start rising" ) actual_rise_co2_concs = ( _filter_time_range(df_co2_concs, lambda x: tcr_start_time <= x <= t_end) .timeseries() .values.squeeze() ) # this will blow up if we switch to diagnose tcr/ecs with a monthly run... expected_rise_co2_concs = co2_conc_0 * 1.01 ** np.arange( len(actual_rise_co2_concs) ) rise_co2_concs_correct = np.isclose( actual_rise_co2_concs, expected_rise_co2_concs ).all() if not rise_co2_concs_correct: raise ValueError("The TCR/TCRE CO2 concs look wrong during the rise period") return tcr_time, tcr_start_time def _check_ecs_total_RF(self, df_total_rf, jump_time): total_rf = df_total_rf.timeseries() total_rf_max = total_rf.values.squeeze().max() t_start = total_rf.columns.min() t_end = total_rf.columns.max() spin_up_rf = ( _filter_time_range(df_total_rf, lambda x: t_start <= x < jump_time) .timeseries() .values.squeeze() ) if not (spin_up_rf == 0).all(): raise ValueError( "The ECS total radiative forcing looks wrong, it is not all zero before concentrations start rising" ) eqm_rf = ( _filter_time_range(df_total_rf, lambda x: jump_time <= x <= t_end) .timeseries() .values.squeeze() ) if not (eqm_rf == total_rf_max).all(): raise ValueError( "The ECS total radiative forcing looks wrong, it is not constant after concentrations double" ) def _check_tcr_tcre_total_RF(self, df_total_rf, tcr_time): total_rf = df_total_rf.timeseries() t_start = total_rf.columns.min() tcr_start_time = tcr_time - relativedelta(years=70) spin_up_rf = ( _filter_time_range(df_total_rf, lambda x: t_start <= x <= tcr_start_time) .timeseries() .values.squeeze() ) if not (spin_up_rf == 0).all(): raise ValueError( "The TCR/TCRE total radiative forcing looks wrong, it is not all zero before concentrations start rising" ) rf_vls = total_rf.values.squeeze() rf_minus_previous_yr = rf_vls[1:] - rf_vls[:-1] if not np.all(rf_minus_previous_yr >= 0): raise ValueError( "The TCR/TCRE total radiative forcing looks wrong, it is not rising after concentrations start rising" ) def _check_ecs_temp(self, df_temp): self._check_tcr_ecs_tcre_temp( df_temp, "The ECS surface temperature looks wrong, it decreases" ) def _check_tcr_tcre_temp(self, df_temp): self._check_tcr_ecs_tcre_temp( df_temp, "The TCR/TCRE surface temperature looks wrong, it decreases" ) def _check_tcr_ecs_tcre_temp(self, df_temp, message): tmp_vls = df_temp.timeseries().values.squeeze() tmp_minus_previous_yr = tmp_vls[1:] - tmp_vls[:-1] if not np.all(tmp_minus_previous_yr >= 0): raise ValueError(message) def set_emission_scenario_setup(self, scenario, config_dict): """Set the emissions flags correctly. Parameters ---------- scenario : :obj:`pymagicc.io.MAGICCData` Scenario to run. config_dict : dict Dictionary with current input configurations which is to be validated and updated where necessary. Returns ------- dict Updated configuration """ self.write(scenario, self._scen_file_name) emis_flag = list( self._fix_legacy_keys( f90nml.Namelist({"nml_allcfgs": {"file_emisscen": "junk"}}), conflict="ignore", )["nml_allcfgs"].keys() )[0] config_dict[emis_flag] = self._scen_file_name return config_dict def _check_config(self): """ Check config above and beyond those checked by ``self.check_config`` """ pass class MAGICC6(MAGICCBase): version = 6 _scen_file_name = "SCENARIO.SCEN" _config_renamings = { "file_emisscen": "file_emissionscenario", "fgas_files_conc": "file_fgas_conc", "mhalo_switchfromconc2emis_year": "mhalo_switch_conc2emis_yr", } @property def default_config(self): """ Default configuration to use in a run """ base = f90nml.read(join(self.run_dir, "MAGCFG_DEFAULTALL_69.CFG")) user = f90nml.read(join(self.run_dir, "MAGCFG_USER.CFG")) self._default_config = deepcopy(base) self._default_config.update(user) return self._default_config def _check_tcr_ecs_tcre_total_RF(self, df_total_rf, tcr_time, ecs_time): super()._check_tcr_ecs_tcre_total_RF(df_total_rf, tcr_time, ecs_time) # can be more careful with checks MAGICC6 only has logarithmic CO2 forcing # i.e. linear rise in forcing total_rf = df_total_rf.timeseries() total_rf_max = total_rf.values.squeeze().max() tcre_start_time = tcr_time - relativedelta(years=70) actual_rise_rf = ( _filter_time_range(df_total_rf, lambda x: tcre_start_time <= x <= tcr_time) .timeseries() .values.squeeze() ) # this will blow up if we switch to diagnose tcr/ecs with a monthly run... expected_rise_rf = total_rf_max / 70.0 * np.arange(71) rise_rf_correct = np.isclose(actual_rise_rf, expected_rise_rf).all() if not rise_rf_correct: raise ValueError( "The TCR/ECS/TCRE total radiative forcing looks wrong during the rise period" ) def _check_config(self): cfg = self.update_config() if "file_emissionscenario" in cfg["nml_allcfgs"]: if cfg["nml_allcfgs"]["file_emissionscenario"].endswith("SCEN7"): self._check_failed("MAGICC6 cannot run SCEN7 files") class MAGICC7(MAGICCBase): version = 7 _config_renamings = { "file_emissionscenario": "file_emisscen", "file_fgas_conc": "fgas_files_conc", "mhalo_switch_conc2emis_yr": "mhalo_switchfromconc2emis_year", } def create_copy(self): """ Initialises a temporary directory structure and copy of MAGICC configuration files and binary. This will also overwrite the value of all ``file_tuningmodel_x`` flags to ensure that Pymagicc's configurations will be read. If ``self.strict``, this will also overwrite the value of all ``file_emisscen_x`` flags to ensure that only Pymagicc's scenario input is used. This overwrite behaviour can be removed once the MAGICC7 binary is publicly released as we can then create a Pymagicc specific MAGCFG_USER.CFG rather than relying on whatever is in the user's current copy. """ super(MAGICC7, self).create_copy() self.update_config( "MAGCFG_USER.CFG", **{ "file_tuningmodel_1": "PYMAGICC", "file_tuningmodel_2": "USER", "file_tuningmodel_3": "USER", "file_tuningmodel_4": "USER", "file_tuningmodel_5": "USER", "file_tuningmodel_6": "USER", "file_tuningmodel_7": "USER", "file_tuningmodel_8": "USER", "file_tuningmodel_9": "USER", "file_tuningmodel_10": "USER", }, ) if self.strict: self.update_config( "MAGCFG_USER.CFG", **{ "file_emisscen_2": "NONE", "file_emisscen_3": "NONE", "file_emisscen_4": "NONE", "file_emisscen_5": "NONE", "file_emisscen_6": "NONE", "file_emisscen_7": "NONE", "file_emisscen_8": "NONE", }, ) def _diagnose_tcr_ecs_tcre_config_setup(self, **kwargs): super()._diagnose_tcr_ecs_tcre_config_setup(**kwargs) # also need to lock CH4 and N2O in case OLBL forcing mode is being used self.update_config( FILE_CH4_CONC="TCRECS_CH4_CONC.IN", CH4_SWITCHFROMCONC2EMIS_YEAR=30000, FILE_N2O_CONC="TCRECS_N2O_CONC.IN", N2O_SWITCHFROMCONC2EMIS_YEAR=30000, ) def _check_config(self): pass def _filter_time_range(scmdf, filter_func): # TODO: move into openscm tdf = scmdf.timeseries() tdf = tdf.iloc[:, tdf.columns.map(filter_func)] return MAGICCData(tdf)
[ "f90nml.write", "dateutil.relativedelta.relativedelta", "f90nml.Namelist", "copy.deepcopy", "numpy.arange", "os.path.exists", "os.listdir", "subprocess.run", "pandas.DataFrame", "warnings.warn", "numpy.ones", "openscm_units.unit_registry", "os.path.isfile", "os.path.dirname", "scmdata.run_append", "tempfile.mkdtemp", "shutil.copy", "f90nml.read", "numpy.isclose", "os.makedirs", "os.path.join", "shutil.copytree", "collections.Counter", "os.path.basename", "shutil.rmtree", "numpy.all" ]
[((1232, 1247), 'os.listdir', 'listdir', (['source'], {}), '(source)\n', (1239, 1247), False, 'from os import listdir, makedirs\n'), ((1164, 1195), 'shutil.copytree', 'shutil.copytree', (['source', 'target'], {}), '(source, target)\n', (1179, 1195), False, 'import shutil\n'), ((1260, 1274), 'os.path.exists', 'exists', (['target'], {}), '(target)\n', (1266, 1274), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((1284, 1300), 'os.makedirs', 'makedirs', (['target'], {}), '(target)\n', (1292, 1300), False, 'from os import listdir, makedirs\n'), ((1360, 1382), 'os.path.join', 'join', (['source', 'filename'], {}), '(source, filename)\n', (1364, 1382), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((1394, 1415), 'os.path.isfile', 'isfile', (['full_filename'], {}), '(full_filename)\n', (1400, 1415), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((4600, 4620), 'os.path.exists', 'exists', (['self.run_dir'], {}), '(self.run_dir)\n', (4606, 4620), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((4791, 4818), 'os.path.basename', 'basename', (['self.original_dir'], {}), '(self.original_dir)\n', (4799, 4818), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((6202, 6227), 'os.path.basename', 'basename', (['self.executable'], {}), '(self.executable)\n', (6210, 6227), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((6514, 6538), 'os.path.dirname', 'dirname', (['self.executable'], {}), '(self.executable)\n', (6521, 6538), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((6845, 6871), 'os.path.join', 'join', (['self.root_dir', '"""run"""'], {}), "(self.root_dir, 'run')\n", (6849, 6871), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((7184, 7210), 'os.path.join', 'join', (['self.root_dir', '"""out"""'], {}), "(self.root_dir, 'out')\n", (7188, 7210), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((7618, 7632), 'copy.deepcopy', 'deepcopy', (['base'], {}), '(base)\n', (7626, 7632), False, 'from copy import deepcopy\n'), ((10896, 10923), 'os.path.basename', 'basename', (['self.original_dir'], {}), '(self.original_dir)\n', (10904, 10923), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((17967, 18003), 'os.path.join', 'join', (['self.out_dir', '"""PARAMETERS.OUT"""'], {}), "(self.out_dir, 'PARAMETERS.OUT')\n", (17971, 18003), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((20164, 20192), 'os.path.join', 'join', (['self.run_dir', 'filename'], {}), '(self.run_dir, filename)\n', (20168, 20192), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((20302, 20339), 'f90nml.write', 'f90nml.write', (['conf', 'fname'], {'force': '(True)'}), '(conf, fname, force=True)\n', (20314, 20339), False, 'import f90nml\n'), ((21739, 21767), 'os.path.join', 'join', (['self.run_dir', 'filename'], {}), '(self.run_dir, filename)\n', (21743, 21767), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((21780, 21793), 'os.path.exists', 'exists', (['fname'], {}), '(fname)\n', (21786, 21793), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((22000, 22037), 'f90nml.write', 'f90nml.write', (['conf', 'fname'], {'force': '(True)'}), '(conf, fname, force=True)\n', (22012, 22037), False, 'import f90nml\n'), ((23188, 23202), 'copy.deepcopy', 'deepcopy', (['conf'], {}), '(conf)\n', (23196, 23202), False, 'from copy import deepcopy\n'), ((24604, 24839), 'pandas.DataFrame', 'pd.DataFrame', (["{'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable':\n 'Atmospheric Concentrations|CO2', 'unit': 'ppm', 'todo': 'SET',\n 'region': 'World', 'value': co2_conc}"], {}), "({'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable':\n 'Atmospheric Concentrations|CO2', 'unit': 'ppm', 'todo': 'SET',\n 'region': 'World', 'value': co2_conc})\n", (24616, 24839), True, 'import pandas as pd\n'), ((25416, 25651), 'pandas.DataFrame', 'pd.DataFrame', (["{'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable':\n 'Atmospheric Concentrations|CH4', 'unit': 'ppb', 'todo': 'SET',\n 'region': 'World', 'value': ch4_conc}"], {}), "({'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable':\n 'Atmospheric Concentrations|CH4', 'unit': 'ppb', 'todo': 'SET',\n 'region': 'World', 'value': ch4_conc})\n", (25428, 25651), True, 'import pandas as pd\n'), ((26261, 26468), 'pandas.DataFrame', 'pd.DataFrame', (["{'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable': varname, 'unit': 'ppt',\n 'todo': 'SET', 'region': 'World', 'value': fgas_conc}"], {}), "({'time': time, 'scenario': 'idealised', 'model': 'unspecified',\n 'climate_model': 'unspecified', 'variable': varname, 'unit': 'ppt',\n 'todo': 'SET', 'region': 'World', 'value': fgas_conc})\n", (26273, 26468), True, 'import pandas as pd\n'), ((26972, 27028), 'f90nml.Namelist', 'f90nml.Namelist', (["{'nml_allcfgs': {'fgas_files_conc': 1}}"], {}), "({'nml_allcfgs': {'fgas_files_conc': 1}})\n", (26987, 27028), False, 'import f90nml\n'), ((29737, 29756), 'collections.Counter', 'Counter', (['keys_lower'], {}), '(keys_lower)\n', (29744, 29756), False, 'from collections import Counter\n'), ((38037, 38100), 'scmdata.run_append', 'run_append', (["[ecs_res['timeseries'], tcr_tcre_res['timeseries']]"], {}), "([ecs_res['timeseries'], tcr_tcre_res['timeseries']])\n", (38047, 38100), False, 'from scmdata import run_append\n'), ((53343, 53357), 'copy.deepcopy', 'deepcopy', (['base'], {}), '(base)\n', (53351, 53357), False, 'from copy import deepcopy\n'), ((1429, 1463), 'shutil.copy', 'shutil.copy', (['full_filename', 'target'], {}), '(full_filename, target)\n', (1440, 1463), False, 'import shutil\n'), ((4560, 4587), 'tempfile.mkdtemp', 'mkdtemp', ([], {'prefix': '"""pymagicc-"""'}), "(prefix='pymagicc-')\n", (4567, 4587), False, 'from tempfile import mkdtemp\n'), ((4712, 4733), 'os.path.exists', 'exists', (['self.root_dir'], {}), '(self.root_dir)\n', (4718, 4733), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((4747, 4770), 'os.makedirs', 'makedirs', (['self.root_dir'], {}), '(self.root_dir)\n', (4755, 4770), False, 'from os import listdir, makedirs\n'), ((5541, 5559), 'os.path.exists', 'exists', (['source_dir'], {}), '(source_dir)\n', (5547, 5559), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((5860, 5886), 'os.path.join', 'join', (['self.root_dir', '"""out"""'], {}), "(self.root_dir, 'out')\n", (5864, 5886), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((7476, 7519), 'os.path.join', 'join', (['self.run_dir', '"""MAGCFG_DEFAULTALL.CFG"""'], {}), "(self.run_dir, 'MAGCFG_DEFAULTALL.CFG')\n", (7480, 7519), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((7548, 7585), 'os.path.join', 'join', (['self.run_dir', '"""MAGCFG_USER.CFG"""'], {}), "(self.run_dir, 'MAGCFG_USER.CFG')\n", (7552, 7585), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((9931, 9952), 'os.path.exists', 'exists', (['self.root_dir'], {}), '(self.root_dir)\n', (9937, 9952), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((10943, 10990), 'os.path.join', 'join', (['self.root_dir', 'exec_dir', 'self.binary_name'], {}), '(self.root_dir, exec_dir, self.binary_name)\n', (10947, 10990), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((11589, 11691), 'subprocess.run', 'subprocess.run', (['command'], {'check': '(True)', 'stdout': 'PIPE', 'stderr': 'PIPE', 'cwd': 'self.run_dir', 'shell': 'IS_WINDOWS'}), '(command, check=True, stdout=PIPE, stderr=PIPE, cwd=self.\n run_dir, shell=IS_WINDOWS)\n', (11603, 11691), False, 'import subprocess\n'), ((14078, 14095), 'scmdata.run_append', 'run_append', (['mdata'], {}), '(mdata)\n', (14088, 14095), False, 'from scmdata import run_append\n'), ((15363, 15381), 'warnings.warn', 'warnings.warn', (['msg'], {}), '(msg)\n', (15376, 15381), False, 'import warnings\n'), ((16590, 16627), 'os.path.join', 'join', (['self.run_dir', '"""MAGCFG_USER.CFG"""'], {}), "(self.run_dir, 'MAGCFG_USER.CFG')\n", (16594, 16627), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((17695, 17719), 'os.path.join', 'join', (['self.run_dir', 'name'], {}), '(self.run_dir, name)\n', (17699, 17719), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((18020, 18039), 'os.path.exists', 'exists', (['param_fname'], {}), '(param_fname)\n', (18026, 18039), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((18792, 18820), 'shutil.rmtree', 'shutil.rmtree', (['self.root_dir'], {}), '(self.root_dir)\n', (18805, 18820), False, 'import shutil\n'), ((21814, 21832), 'f90nml.read', 'f90nml.read', (['fname'], {}), '(fname)\n', (21825, 21832), False, 'import f90nml\n'), ((24167, 24207), 'os.path.join', 'join', (['self.run_dir', 'self._scen_file_name'], {}), '(self.run_dir, self._scen_file_name)\n', (24171, 24207), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((24560, 24581), 'numpy.ones', 'np.ones', (['no_timesteps'], {}), '(no_timesteps)\n', (24567, 24581), True, 'import numpy as np\n'), ((25259, 25296), 'os.path.join', 'join', (['self.run_dir', 'co2_conc_filename'], {}), '(self.run_dir, co2_conc_filename)\n', (25263, 25296), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((25372, 25393), 'numpy.ones', 'np.ones', (['no_timesteps'], {}), '(no_timesteps)\n', (25379, 25393), True, 'import numpy as np\n'), ((26071, 26108), 'os.path.join', 'join', (['self.run_dir', 'ch4_conc_filename'], {}), '(self.run_dir, ch4_conc_filename)\n', (26075, 26108), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((26185, 26206), 'numpy.ones', 'np.ones', (['no_timesteps'], {}), '(no_timesteps)\n', (26192, 26206), True, 'import numpy as np\n'), ((26858, 26896), 'os.path.join', 'join', (['self.run_dir', 'fgas_conc_filename'], {}), '(self.run_dir, fgas_conc_filename)\n', (26862, 26896), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((43770, 43789), 'openscm_units.unit_registry', 'unit_registry', (['unit'], {}), '(unit)\n', (43783, 43789), False, 'from openscm_units import unit_registry\n'), ((45568, 45591), 'openscm_units.unit_registry', 'unit_registry', (['tcr_unit'], {}), '(tcr_unit)\n', (45581, 45591), False, 'from openscm_units import unit_registry\n'), ((45943, 45978), 'numpy.all', 'np.all', (['(years[1:] - years[:-1] == 1)'], {}), '(years[1:] - years[:-1] == 1)\n', (45949, 45978), True, 'import numpy as np\n'), ((46385, 46409), 'openscm_units.unit_registry', 'unit_registry', (['emms_unit'], {}), '(emms_unit)\n', (46398, 46409), False, 'from openscm_units import unit_registry\n'), ((46412, 46431), 'openscm_units.unit_registry', 'unit_registry', (['"""yr"""'], {}), "('yr')\n", (46425, 46431), False, 'from openscm_units import unit_registry\n'), ((48173, 48195), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(1)'}), '(years=1)\n', (48186, 48195), False, 'from dateutil.relativedelta import relativedelta\n'), ((48232, 48255), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(70)'}), '(years=70)\n', (48245, 48255), False, 'from dateutil.relativedelta import relativedelta\n'), ((50476, 50499), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(70)'}), '(years=70)\n', (50489, 50499), False, 'from dateutil.relativedelta import relativedelta\n'), ((50997, 51030), 'numpy.all', 'np.all', (['(rf_minus_previous_yr >= 0)'], {}), '(rf_minus_previous_yr >= 0)\n', (51003, 51030), True, 'import numpy as np\n'), ((51728, 51762), 'numpy.all', 'np.all', (['(tmp_minus_previous_yr >= 0)'], {}), '(tmp_minus_previous_yr >= 0)\n', (51734, 51762), True, 'import numpy as np\n'), ((53198, 53244), 'os.path.join', 'join', (['self.run_dir', '"""MAGCFG_DEFAULTALL_69.CFG"""'], {}), "(self.run_dir, 'MAGCFG_DEFAULTALL_69.CFG')\n", (53202, 53244), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((53273, 53310), 'os.path.join', 'join', (['self.run_dir', '"""MAGCFG_USER.CFG"""'], {}), "(self.run_dir, 'MAGCFG_USER.CFG')\n", (53277, 53310), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((53851, 53874), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'years': '(70)'}), '(years=70)\n', (53864, 53874), False, 'from dateutil.relativedelta import relativedelta\n'), ((54190, 54203), 'numpy.arange', 'np.arange', (['(71)'], {}), '(71)\n', (54199, 54203), True, 'import numpy as np\n'), ((4122, 4145), 'os.path.isfile', 'isfile', (['self.executable'], {}), '(self.executable)\n', (4128, 4145), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((5492, 5524), 'os.path.join', 'join', (['self.original_dir', '""".."""', 'd'], {}), "(self.original_dir, '..', d)\n", (5496, 5524), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((14805, 14826), 'os.listdir', 'listdir', (['self.out_dir'], {}), '(self.out_dir)\n', (14812, 14826), False, 'from os import listdir, makedirs\n'), ((18179, 18200), 'f90nml.read', 'f90nml.read', (['nml_file'], {}), '(nml_file)\n', (18190, 18200), False, 'import f90nml\n'), ((49057, 49115), 'numpy.isclose', 'np.isclose', (['actual_rise_co2_concs', 'expected_rise_co2_concs'], {}), '(actual_rise_co2_concs, expected_rise_co2_concs)\n', (49067, 49115), True, 'import numpy as np\n'), ((54230, 54274), 'numpy.isclose', 'np.isclose', (['actual_rise_rf', 'expected_rise_rf'], {}), '(actual_rise_rf, expected_rise_rf)\n', (54240, 54274), True, 'import numpy as np\n'), ((5642, 5664), 'os.path.join', 'join', (['self.root_dir', 'd'], {}), '(self.root_dir, d)\n', (5646, 5664), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((47547, 47588), 'numpy.isclose', 'np.isclose', (['eqm_co2_concs', 'co2_conc_final'], {}), '(eqm_co2_concs, co2_conc_final)\n', (47557, 47588), True, 'import numpy as np\n'), ((13080, 13108), 'os.path.join', 'join', (['self.out_dir', 'filepath'], {}), '(self.out_dir, filepath)\n', (13084, 13108), False, 'from os.path import abspath, basename, dirname, exists, isfile, join\n'), ((13118, 13137), 'copy.deepcopy', 'deepcopy', (['read_cols'], {}), '(read_cols)\n', (13126, 13137), False, 'from copy import deepcopy\n'), ((52403, 52462), 'f90nml.Namelist', 'f90nml.Namelist', (["{'nml_allcfgs': {'file_emisscen': 'junk'}}"], {}), "({'nml_allcfgs': {'file_emisscen': 'junk'}})\n", (52418, 52462), False, 'import f90nml\n')]
import json import json import boto3 import re import json import collections import os import pandas as pd import csv from csv import writer # boto3 S3 initialization s3_client = boto3.client("s3") import numpy as np def lambda_handler(event, context): # TODO implement bucketname = 'sourcedatab00870639' # event contains all information about uploaded object print("Event :", event) # Bucket Name where file was uploaded sourcebucket = event['Records'][0]['s3']['bucket']['name'] # Filename of object (with path) file_key_name = event['Records'][0]['s3']['object']['key'] input_file = os.path.join(sourcebucket, file_key_name) # Start the function that processes the incoming data. bucket = bucketname key = file_key_name response = s3_client.get_object(Bucket=sourcebucket, Key=file_key_name) content = response['Body'].read().decode('utf-8') x = content.split() stopwords = ['ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there', 'about', 'once', 'during', 'out', 'very', 'having', 'with', 'they', 'own', 'an', 'be', 'some', 'for', 'do', 'its', 'yours', 'such', 'into', 'of', 'most', 'itself', 'other', 'off', 'is', 's', 'am', 'or', 'who', 'as', 'from', 'him', 'each', 'the', 'themselves', 'until', 'below', 'are', 'we', 'these', 'your', 'his', 'through', 'don', 'nor', 'me', 'were', 'her', 'more', 'himself', 'this', 'down', 'should', 'our', 'their', 'while', 'above', 'both', 'up', 'to', 'ours', 'had', 'she', 'all', 'no', 'when', 'at', 'any', 'before', 'them', 'same', 'and', 'been', 'have', 'in', 'will', 'on', 'does', 'yourselves', 'then', 'that', 'because', 'what', 'over', 'why', 'so', 'can', 'did', 'not', 'now', 'under', 'he', 'you', 'herself', 'has', 'just', 'where', 'too', 'only', 'myself', 'which', 'those', 'i', 'after', 'few', 'whom', 't', 'being', 'if', 'theirs', 'my', 'against', 'a', 'by', 'doing', 'it', 'how', 'further', 'was', 'here', 'than'] stop_words = set(stopwords) tokens_without_sw = [w for w in x if w not in stop_words] current_word = [] next_word = [] data_list = [['Current_Word', 'Next_Word', 'Levenshtein_distance']] def levenshteindistance(var1, var2): size_x = len(var1) + 1 size_y = len(var2) + 1 matrix = np.zeros((size_x, size_y)) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x - 1] == seq2[y - 1]: matrix[x, y] = min(matrix[x - 1, y] + 1, matrix[x - 1, y - 1], matrix[x, y - 1] + 1) else: matrix[x, y] = min(matrix[x - 1, y] + 1, matrix[x - 1, y - 1] + 1, matrix[x, y - 1] + 1) return (matrix[size_x - 1, size_y - 1]) for i in range(len(tokens_without_sw) - 1): data_list.append([tokens_without_sw[i], tokens_without_sw[i + 1], levenshteindistance(tokens_without_sw[i], tokens_without_sw[i + 1])]) print(tokens_without_sw) df = pd.DataFrame(data_list) bytes_to_write = df.to_csv(None, header=None, index=False).encode() file_name = "testVector.csv" s3 = boto3.resource('s3') bucket = s3.Bucket(bucketname) key = file_name ans = [] current_data = s3_client.get_object(Bucket=bucketname, Key=file_name) lines = csv.reader(current_data) for row in lines: ans.append(row) for d in data_list: ans.append(d) file_name = "trainVector.csv" resfile = s3.get_object(Bucket="sourcedatab00870639", Key=file_name) restext = resfile["Body"].read().decode('utf-8') updated_data = restext + "\n" + "\n".join(str(item).strip('[]') for item in words_list) s3.put_object(Body=updated_data, Bucket="sourcedatab00870639 ", Key=file_name) print(updated_data)
[ "boto3.client", "os.path.join", "numpy.zeros", "boto3.resource", "pandas.DataFrame", "csv.reader" ]
[((181, 199), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (193, 199), False, 'import boto3\n'), ((625, 666), 'os.path.join', 'os.path.join', (['sourcebucket', 'file_key_name'], {}), '(sourcebucket, file_key_name)\n', (637, 666), False, 'import os\n'), ((2414, 2440), 'numpy.zeros', 'np.zeros', (['(size_x, size_y)'], {}), '((size_x, size_y))\n', (2422, 2440), True, 'import numpy as np\n'), ((3336, 3356), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (3350, 3356), False, 'import boto3\n'), ((3512, 3536), 'csv.reader', 'csv.reader', (['current_data'], {}), '(current_data)\n', (3522, 3536), False, 'import csv\n'), ((3189, 3212), 'pandas.DataFrame', 'pd.DataFrame', (['data_list'], {}), '(data_list)\n', (3201, 3212), True, 'import pandas as pd\n')]
""" Friends-of-Friends (FOF) for N-body simulations <NAME> - Oct 2016 """ from __future__ import absolute_import, print_function from lizard.periodic import pad_unitcube from scipy.spatial import Delaunay from scipy.sparse import csr_matrix, csgraph from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, \ arange, searchsorted, bincount, sort, diff, int8, argsort, array from lizard.log import MarkUp, null_log def fof_groups(pos, b, log=null_log): """ Friends-of-Friends on the period unit cube pos - (n,ndim) positions in [0,1]^ndim b - linking length returns labels - (n,) array of integers for each connected component. This FoF algorithm computes the fixed radius connectivity by computing the Delaunay tesselation (DT) for each link and then breaking those links that are too long. The reason this works is that the Relative Neighbourhood Graph (RNG) is a subgraph of the DT, and so any pair of points separated by a distance R will be connected by links of <R, and so it is enough to use the DT to establish connectivity. """ print('Padding the unit cube', file=log) pad_idx, pad_pos = pad_unitcube(pos, b) all_pos = concatenate((pos, pad_pos), axis=0) + b all_pos *= 1.0/(1+2*b) b_scaled = b/(1+2*b) print('Added {:,} points, performing'.format(len(pad_idx)), MarkUp.OKBLUE+'Delaunay tesselation'+MarkUp.ENDC, 'of {:,} points'.format(len(all_pos)), file=log) dlny = Delaunay(all_pos) # construct list of links indptr, indices = dlny.vertex_neighbor_vertices idx1 = zeros_like(indices) idx1[indptr[1:-1]] = 1 idx1 = cumsum(idx1) idx2 = indices print('{:,} links, disconnecting those with r>%.5f'.format(len(indices))%b, file=log) # find all links < b using square distance dist2 = square(all_pos[idx1] - all_pos[idx2]).sum(1) del dlny keep = flatnonzero(dist2<float(b_scaled*b_scaled)) idx1, idx2 = idx1[keep], idx2[keep] print('{:,} links left, removing periodic images'.format(len(idx1)), file=log) # Make the map back to the original IDs old_id = arange(len(all_pos)) old_id[len(pos):] = pad_idx idx1, idx2 = old_id[idx1], old_id[idx2] # remove repeats idx_sort = argsort(idx1*len(pos)+idx2) idx1,idx2 = idx1[idx_sort], idx2[idx_sort] if len(idx1)>0: keep = array([0] + list(flatnonzero(diff(idx1) | diff(idx2))+1), dtype=idx2.dtype) idx1, idx2 = idx1[keep], idx2[keep] # make a sparse matrix of connectivity print('{:,} links, building sparse matrix'.format(len(idx1)), file=log) indices = idx2 indptr = searchsorted(idx1, arange(len(pos)+1)) mat = csr_matrix((ones(len(indices), dtype=int8), indices, indptr), shape=(len(pos), len(pos))) print('Finding connected components',file=log) n_comps, labels = csgraph.connected_components(mat, directed=False) print('From {:,} links between {:,} points found {:,} connected components'.format(len(idx1), len(pos), n_comps), file=log) show_largest = min(n_comps, 3) npts = sort(bincount(labels))[-show_largest:] print('{:,} largest'.format(show_largest), MarkUp.OKBLUE+'FoF groups'+MarkUp.ENDC, 'have', MarkUp.OKBLUE+' '.join('{:,}'.format(i) for i in npts), 'points'+MarkUp.ENDC, file=log) return labels def test_labels(): """ Test with some 64^3 data """ from lizard.log import VerboseTimingLog log = VerboseTimingLog() import numpy as np parts = np.load('/mainvol/peter.creasey/bigdata/runs/test_const_pmkick/out/lizard_snap_134.npz') pos = parts['pos'] boxsize = 5600 nbox = len(pos)**(1.0/3.0) print(pos.max(axis=0), boxsize, nbox, file=log) labels = fof_groups(pos*(1.0/boxsize), b=0.2/nbox, log=log) print('labels in', labels.min(), labels.max(), file=log) bins = np.bincount(labels) part_lim = 20 # ignore anything with < part_lim particles NO_FOF = labels.max()+1 newlab = np.where(bins[labels]<part_lim, NO_FOF, np.arange(len(bins))[labels]) bins = bincount(newlab) halo_counts = sort(bins[:NO_FOF-1]) print('halo counts', halo_counts[-10:][::-1], file=log) # Top 10 idx = [] lab_sort = np.argsort(bins[:NO_FOF-1]) import pylab as pl for i in range(50): lab = lab_sort[-i-1] idx_i = np.flatnonzero(labels==lab) pl.plot(pos[idx_i][:,2], pos[idx_i][:,1], marker=',', ls='none') pl.xlim(0,5600) pl.ylim(0,5600) pl.show() def test_random_dist(n=64): """ Random n^3 point placement """ from lizard.log import VerboseTimingLog log = VerboseTimingLog() from numpy.random import RandomState rs = RandomState(seed=123) pos = rs.rand(3*(n**3)).reshape((n**3,3)) fof_labels = fof_groups(pos, b=0.2/n, log=log) if __name__=='__main__': # test_labels() test_random_dist(n=100)
[ "numpy.argsort", "numpy.random.RandomState", "pylab.ylim", "lizard.periodic.pad_unitcube", "pylab.plot", "numpy.sort", "numpy.flatnonzero", "numpy.diff", "lizard.log.VerboseTimingLog", "pylab.xlim", "numpy.concatenate", "numpy.square", "numpy.bincount", "pylab.show", "scipy.sparse.csgraph.connected_components", "scipy.spatial.Delaunay", "numpy.cumsum", "numpy.load", "numpy.zeros_like" ]
[((1200, 1220), 'lizard.periodic.pad_unitcube', 'pad_unitcube', (['pos', 'b'], {}), '(pos, b)\n', (1212, 1220), False, 'from lizard.periodic import pad_unitcube\n'), ((1523, 1540), 'scipy.spatial.Delaunay', 'Delaunay', (['all_pos'], {}), '(all_pos)\n', (1531, 1540), False, 'from scipy.spatial import Delaunay\n'), ((1635, 1654), 'numpy.zeros_like', 'zeros_like', (['indices'], {}), '(indices)\n', (1645, 1654), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((1693, 1705), 'numpy.cumsum', 'cumsum', (['idx1'], {}), '(idx1)\n', (1699, 1705), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((2927, 2976), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['mat'], {'directed': '(False)'}), '(mat, directed=False)\n', (2955, 2976), False, 'from scipy.sparse import csr_matrix, csgraph\n'), ((3534, 3552), 'lizard.log.VerboseTimingLog', 'VerboseTimingLog', ([], {}), '()\n', (3550, 3552), False, 'from lizard.log import VerboseTimingLog\n'), ((3588, 3686), 'numpy.load', 'np.load', (['"""/mainvol/peter.creasey/bigdata/runs/test_const_pmkick/out/lizard_snap_134.npz"""'], {}), "(\n '/mainvol/peter.creasey/bigdata/runs/test_const_pmkick/out/lizard_snap_134.npz'\n )\n", (3595, 3686), True, 'import numpy as np\n'), ((3941, 3960), 'numpy.bincount', 'np.bincount', (['labels'], {}), '(labels)\n', (3952, 3960), True, 'import numpy as np\n'), ((4150, 4166), 'numpy.bincount', 'bincount', (['newlab'], {}), '(newlab)\n', (4158, 4166), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((4185, 4208), 'numpy.sort', 'sort', (['bins[:NO_FOF - 1]'], {}), '(bins[:NO_FOF - 1])\n', (4189, 4208), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((4309, 4338), 'numpy.argsort', 'np.argsort', (['bins[:NO_FOF - 1]'], {}), '(bins[:NO_FOF - 1])\n', (4319, 4338), True, 'import numpy as np\n'), ((4543, 4559), 'pylab.xlim', 'pl.xlim', (['(0)', '(5600)'], {}), '(0, 5600)\n', (4550, 4559), True, 'import pylab as pl\n'), ((4563, 4579), 'pylab.ylim', 'pl.ylim', (['(0)', '(5600)'], {}), '(0, 5600)\n', (4570, 4579), True, 'import pylab as pl\n'), ((4583, 4592), 'pylab.show', 'pl.show', ([], {}), '()\n', (4590, 4592), True, 'import pylab as pl\n'), ((4715, 4733), 'lizard.log.VerboseTimingLog', 'VerboseTimingLog', ([], {}), '()\n', (4731, 4733), False, 'from lizard.log import VerboseTimingLog\n'), ((4785, 4806), 'numpy.random.RandomState', 'RandomState', ([], {'seed': '(123)'}), '(seed=123)\n', (4796, 4806), False, 'from numpy.random import RandomState\n'), ((1235, 1270), 'numpy.concatenate', 'concatenate', (['(pos, pad_pos)'], {'axis': '(0)'}), '((pos, pad_pos), axis=0)\n', (1246, 1270), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((4429, 4458), 'numpy.flatnonzero', 'np.flatnonzero', (['(labels == lab)'], {}), '(labels == lab)\n', (4443, 4458), True, 'import numpy as np\n'), ((4474, 4540), 'pylab.plot', 'pl.plot', (['pos[idx_i][:, 2]', 'pos[idx_i][:, 1]'], {'marker': '""","""', 'ls': '"""none"""'}), "(pos[idx_i][:, 2], pos[idx_i][:, 1], marker=',', ls='none')\n", (4481, 4540), True, 'import pylab as pl\n'), ((1876, 1913), 'numpy.square', 'square', (['(all_pos[idx1] - all_pos[idx2])'], {}), '(all_pos[idx1] - all_pos[idx2])\n', (1882, 1913), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((3158, 3174), 'numpy.bincount', 'bincount', (['labels'], {}), '(labels)\n', (3166, 3174), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((2446, 2456), 'numpy.diff', 'diff', (['idx1'], {}), '(idx1)\n', (2450, 2456), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n'), ((2459, 2469), 'numpy.diff', 'diff', (['idx2'], {}), '(idx2)\n', (2463, 2469), False, 'from numpy import square, flatnonzero, ones, zeros_like, cumsum, concatenate, arange, searchsorted, bincount, sort, diff, int8, argsort, array\n')]
import numpy as np from numpy.core.fromnumeric import size class BrownionPathGen: def __init__(self, NumPaths, Maturity): self.NumPaths = NumPaths self.Maturity = Maturity # this is in days # this is not optimal lets make a matrix of the std normal and then perform the operation to # change its mean and std but for now lets leave it as it is def GenerateCrossSection(self, Last_Mean, DiffTime): Normals = np.random.standard_normal(size=[self.NumPaths, 1]) # have to adjust for leap year # between two crosssection the time spend it difftime so var is also proportional to diff time Var = DiffTime/365 Std = Var**0.5 # so basically the next cross-section will be data which was produced by last cross secion + # std*RN . this can be proved to produce normal dist with mean given by last cross section and std . Adjusted_Normals = Std*Normals+Last_Mean return Adjusted_Normals def GeneratePaths(self): Path = np.zeros([self.NumPaths, 1]) Paths = [Path] # lets find out a matrix operation to do this . will be much faster # Maturity is a number for now but should be a date which should be compared to the global date for i in range(0, self.Maturity - 1): # this difftime is for now 1 but we may change it in future to make it more advance Paths.append(self.GenerateCrossSection( Last_Mean=Paths[i], DiffTime=1)) return Paths
[ "numpy.random.standard_normal", "numpy.zeros" ]
[((453, 503), 'numpy.random.standard_normal', 'np.random.standard_normal', ([], {'size': '[self.NumPaths, 1]'}), '(size=[self.NumPaths, 1])\n', (478, 503), True, 'import numpy as np\n'), ((1037, 1065), 'numpy.zeros', 'np.zeros', (['[self.NumPaths, 1]'], {}), '([self.NumPaths, 1])\n', (1045, 1065), True, 'import numpy as np\n')]
""" Module defining transfer functions """ from typing import List, Optional, Dict, Any, Union from pydantic import validator, constr import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots from resistics.common import Metadata class Component(Metadata): """ Data class for a single component in a Transfer function Example ------- >>> from resistics.transfunc import Component >>> component = Component(real=[1, 2, 3, 4, 5], imag=[-5, -4, -3, -2 , -1]) >>> component.get_value(0) (1-5j) >>> component.to_numpy() array([1.-5.j, 2.-4.j, 3.-3.j, 4.-2.j, 5.-1.j]) """ real: List[float] """The real part of the component""" imag: List[float] """The complex part of the component""" def get_value(self, eval_idx: int) -> complex: """Get the value for an evaluation frequency""" return self.real[eval_idx] + 1j * self.imag[eval_idx] def to_numpy(self) -> np.ndarray: """Get the component as a numpy complex array""" return np.array(self.real) + 1j * np.array(self.imag) def get_component_key(out_chan: str, in_chan: str) -> str: """ Get key for out channel and in channel combination in the solution Parameters ---------- out_chan : str The output channel in_chan : str The input channel Returns ------- str The component key Examples -------- >>> from resistics.regression import get_component_key >>> get_component_key("Ex", "Hy") 'ExHy' """ return f"{out_chan}{in_chan}" class TransferFunction(Metadata): """ Define a generic transfer function This class is a describes generic transfer function, including: - The output channels for the transfer function - The input channels for the transfer function - The cross channels for the transfer function The cross channels are the channels that will be used to calculate out the cross powers for the regression. This generic parent class has no implemented plotting function. However, child classes may have a plotting function as different transfer functions may need different types of plots. .. note:: Users interested in writing a custom transfer function should inherit from this generic Transfer function See Also -------- ImpandanceTensor : Transfer function for the MT impedance tensor Tipper : Transfer function for the MT tipper Examples -------- A generic example >>> tf = TransferFunction(variation="example", out_chans=["bye", "see you", "ciao"], in_chans=["hello", "hi_there"]) >>> print(tf.to_string()) | bye | | bye_hello bye_hi_there | | hello | | see you | = | see you_hello see you_hi_there | | hi_there | | ciao | | ciao_hello ciao_hi_there | Combining the impedance tensor and the tipper into one TransferFunction >>> tf = TransferFunction(variation="combined", out_chans=["Ex", "Ey"], in_chans=["Hx", "Hy", "Hz"]) >>> print(tf.to_string()) | Ex | | Ex_Hx Ex_Hy Ex_Hz | | Hx | | Ey | = | Ey_Hx Ey_Hy Ey_Hz | | Hy | | Hz | """ _types: Dict[str, type] = {} """Store types which will help automatic instantiation""" name: Optional[str] = None """The name of the transfer function, this will be set automatically""" variation: constr(max_length=16) = "generic" """A short additional bit of information about this variation""" out_chans: List[str] """The output channels""" in_chans: List[str] """The input channels""" cross_chans: Optional[List[str]] = None """The channels to use for calculating the cross spectra""" n_out: Optional[int] = None """The number of output channels""" n_in: Optional[int] = None """The number of input channels""" n_cross: Optional[int] = None """The number of cross power channels""" def __init_subclass__(cls) -> None: """ Used to automatically register child transfer functions in `_types` When a TransferFunction child class is imported, it is added to the base TransferFunction _types variable. Later, this dictionary of class types can be used to initialise a specific child transfer function from a dictonary as long as that specific child transfer fuction has already been imported and it is called from a pydantic class that will validate the inputs. The intention of this method is to support initialising transfer functions from JSON files. This is a similar approach to ResisticsProcess. """ cls._types[cls.__name__] = cls @classmethod def __get_validators__(cls): """Get the validators that will be used by pydantic""" yield cls.validate @classmethod def validate( cls, value: Union["TransferFunction", Dict[str, Any]] ) -> "TransferFunction": """ Validate a TransferFunction Parameters ---------- value : Union[TransferFunction, Dict[str, Any]] A TransferFunction child class or a dictionary Returns ------- TransferFunction A TransferFunction or TransferFunction child class Raises ------ ValueError If the value is neither a TransferFunction or a dictionary KeyError If name is not in the dictionary ValueError If initialising from dictionary fails Examples -------- The following example will show how a child TransferFunction class can be instantiated using a dictionary and the parent TransferFunction (but only as long as that child class has been imported). >>> from resistics.transfunc import TransferFunction Show known TransferFunction types in built into resistics >>> for entry in TransferFunction._types.items(): ... print(entry) ('ImpedanceTensor', <class 'resistics.transfunc.ImpedanceTensor'>) ('Tipper', <class 'resistics.transfunc.Tipper'>) Now let's initialise an ImpedanceTensor from the base TransferFunction and a dictionary. >>> mytf = {"name": "ImpedanceTensor", "variation": "ecross", "cross_chans": ["Ex", "Ey"]} >>> test = TransferFunction(**mytf) Traceback (most recent call last): ... KeyError: 'out_chans' This is not quite what we were expecting. The generic TransferFunction requires out_chans to be defined, but they are not in the dictionary as the ImpedanceTensor child class defaults these. To get this to work, instead use the validate class method. This is the class method used by pydantic when instantiating. >>> mytf = {"name": "ImpedanceTensor", "variation": "ecross", "cross_chans": ["Ex", "Ey"]} >>> test = TransferFunction.validate(mytf) >>> test.summary() { 'name': 'ImpedanceTensor', 'variation': 'ecross', 'out_chans': ['Ex', 'Ey'], 'in_chans': ['Hx', 'Hy'], 'cross_chans': ['Ex', 'Ey'], 'n_out': 2, 'n_in': 2, 'n_cross': 2 } That's more like it. This will raise errors if an unknown type of TransferFunction is received. >>> mytf = {"name": "NewTF", "cross_chans": ["Ex", "Ey"]} >>> test = TransferFunction.validate(mytf) Traceback (most recent call last): ... ValueError: Unable to initialise NewTF from dictionary Or if the dictionary does not have a name key >>> mytf = {"cross_chans": ["Ex", "Ey"]} >>> test = TransferFunction.validate(mytf) Traceback (most recent call last): ... KeyError: 'No name provided for initialisation of TransferFunction' Unexpected inputs will also raise an error >>> test = TransferFunction.validate(5) Traceback (most recent call last): ... ValueError: TransferFunction unable to initialise from <class 'int'> """ if isinstance(value, TransferFunction): return value if not isinstance(value, dict): raise ValueError( f"TransferFunction unable to initialise from {type(value)}" ) if "name" not in value: raise KeyError("No name provided for initialisation of TransferFunction") # check if it is a TransferFunction name = value.pop("name") if name == "TransferFunction": return cls(**value) # check other known Transfer Functions try: return cls._types[name](**value) except Exception: raise ValueError(f"Unable to initialise {name} from dictionary") @validator("name", always=True) def validate_name(cls, value: Union[str, None]) -> str: """Inialise the name attribute of the transfer function""" if value is None: return cls.__name__ return value @validator("cross_chans", always=True) def validate_cross_chans( cls, value: Union[None, List[str]], values: Dict[str, Any] ) -> List[str]: """Validate cross spectra channels""" if value is None: return values["in_chans"] return value @validator("n_out", always=True) def validate_n_out(cls, value: Union[None, int], values: Dict[str, Any]) -> int: """Validate number of output channels""" if value is None: return len(values["out_chans"]) return value @validator("n_in", always=True) def validate_n_in(cls, value: Union[None, int], values: Dict[str, Any]) -> int: """Validate number of input channels""" if value is None: return len(values["in_chans"]) return value @validator("n_cross", always=True) def validate_n_cross(cls, value: Union[None, int], values: Dict[str, Any]) -> int: """Validate number of cross channels""" if value is None: return len(values["cross_chans"]) return value def n_eqns_per_output(self) -> int: """Get the number of equations per output""" return len(self.cross_chans) def n_regressors(self) -> int: """Get the number of regressors""" return self.n_in def to_string(self): """Get the transfer function as as string""" n_lines = max(len(self.in_chans), len(self.out_chans)) lens = [len(x) for x in self.in_chans] + [len(x) for x in self.out_chans] max_len = max(lens) line_equals = (n_lines - 1) // 2 outstr = "" for il in range(n_lines): out_chan = self._out_chan_string(il, max_len) in_chan = self._in_chan_string(il, max_len) tensor = self._tensor_string(il, max_len) eq = "=" if il == line_equals else " " outstr += f"{out_chan} {eq} {tensor} {in_chan}\n" return outstr.rstrip("\n") def _out_chan_string(self, il: int, max_len: int) -> str: """Get the out channels string""" if il >= self.n_out: empty_len = max_len + 4 return f"{'':{empty_len}s}" return f"| { self.out_chans[il]:{max_len}s} |" def _in_chan_string(self, il: int, max_len: int) -> str: """Get the in channel string""" if il >= self.n_in: return "" return f"| { self.in_chans[il]:{max_len}s} |" def _tensor_string(self, il: int, max_len: int) -> str: """Get the tensor string""" if il >= self.n_out: element_len = ((max_len * 2 + 1) + 1) * self.n_in + 3 return f"{'':{element_len}s}" elements = "| " for chan in self.in_chans: component = f"{self.out_chans[il]}_{chan}" elements += f"{component:{2*max_len + 1}s} " elements += "|" return elements class ImpedanceTensor(TransferFunction): """ Standard magnetotelluric impedance tensor Notes ----- Information about data units - Magnetic permeability in nT . m / A - Electric (E) data is in mV/m - Magnetic (H) data is in nT - Z = E/H is in mV / m . nT - Units of resistance = Ohm = V / A Examples -------- >>> from resistics.transfunc import ImpedanceTensor >>> tf = ImpedanceTensor() >>> print(tf.to_string()) | Ex | = | Ex_Hx Ex_Hy | | Hx | | Ey | | Ey_Hx Ey_Hy | | Hy | """ variation: constr(max_length=16) = "default" out_chans: List[str] = ["Ex", "Ey"] in_chans: List[str] = ["Hx", "Hy"] @staticmethod def get_resistivity(periods: np.ndarray, component: Component) -> np.ndarray: """ Get apparent resistivity for a component Parameters ---------- periods : np.ndarray The periods of the component component : Component The component values Returns ------- np.ndarray Apparent resistivity """ squared = np.power(np.absolute(component.to_numpy()), 2) return 0.2 * periods * squared @staticmethod def get_phase(key: str, component: Component) -> np.ndarray: """ Get the phase for the component .. note:: Components ExHx and ExHy are wrapped around in [0,90] Parameters ---------- key : str The component name component : Component The component values Returns ------- np.ndarray The phase values """ phase = np.angle(component.to_numpy()) # unwrap into specific quadrant and convert to degrees phase = np.unwrap(phase) * 180 / np.pi if key == "ExHx" or key == "ExHy": phase = np.mod(phase, 360) - 180 return phase @staticmethod def get_fig( x_lim: Optional[List[float]] = None, res_lim: Optional[List[float]] = None, phs_lim: Optional[List[float]] = None, ) -> go.Figure: """ Get a figure for plotting the ImpedanceTensor Parameters ---------- x_lim : Optional[List[float]], optional The x limits, to be provided as powers of 10, by default None. For example, for 0.001, use -3 res_lim : Optional[List[float]], optional The y limits for resistivity, to be provided as powers of 10, by default None. For example, for 1000, use 3 phs_lim : Optional[List[float]], optional The phase limits, by default None Returns ------- go.Figure Plotly figure """ from resistics.plot import PLOTLY_MARGIN, PLOTLY_TEMPLATE fig = make_subplots( rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.08, subplot_titles=["Apparent resistivity", "Phase"], ) # apparent resistivity axes fig.update_xaxes(type="log", showticklabels=True, row=1, col=1) fig.update_yaxes(title_text="App. resistivity (Ohm m)", row=1, col=1) fig.update_yaxes(type="log", row=1, col=1) if x_lim is not None: fig.update_xaxes(range=x_lim, row=1, col=1) if res_lim is not None: fig.update_yaxes(range=res_lim, row=1, col=1) # phase axes fig.update_xaxes(title_text="Period (s)", type="log", row=2, col=1) fig.update_xaxes(showticklabels=True, row=2, col=1) # fig.update_yaxes(scaleanchor="x", scaleratio=1, row=1, col=1) fig.update_yaxes(title_text="Phase (degrees)", row=2, col=1) if phs_lim is not None: fig.update_yaxes(range=phs_lim, row=2, col=1) # update the layout fig.update_layout(template=PLOTLY_TEMPLATE, margin=dict(PLOTLY_MARGIN)) return fig @staticmethod def plot( freqs: List[float], components: Dict[str, Component], fig: Optional[go.Figure] = None, to_plot: Optional[List[str]] = None, legend: str = "Impedance tensor", x_lim: Optional[List[float]] = None, res_lim: Optional[List[float]] = None, phs_lim: Optional[List[float]] = None, symbol: Optional[str] = "circle", ) -> go.Figure: """ Plot the Impedance tensor Parameters ---------- freqs : List[float] The frequencies where the impedance tensor components have been calculated components : Dict[str, Component] The component data fig : Optional[go.Figure], optional Figure to add to, by default None to_plot : Optional[List[str]], optional The components to plot, by default all of the components of the impedance tensor legend : str, optional Legend prefix for the components, by default "Impedance tensor" x_lim : Optional[List[float]], optional The x limits, to be provided as powers of 10, by default None. For example, for 0.001, use -3. Only used when a figure is not provided. res_lim : Optional[List[float]], optional The y limits for resistivity, to be provided as powers of 10, by default None. For example, for 1000, use 3. Only used when a figure is not provided. phs_lim : Optional[List[float]], optional The phase limits, by default None. Only used when a figure is not provided. symbol : Optional[str], optional The marker symbol to use, by default "circle" Returns ------- go.Figure [description] """ if fig is None: fig = ImpedanceTensor.get_fig(x_lim=x_lim, res_lim=res_lim, phs_lim=phs_lim) if to_plot is None: to_plot = ["ExHy", "EyHx", "ExHx", "EyHy"] periods = np.reciprocal(freqs) colors = {"ExHx": "orange", "EyHy": "green", "ExHy": "red", "EyHx": "blue"} for comp in to_plot: res = ImpedanceTensor.get_resistivity(periods, components[comp]) phs = ImpedanceTensor.get_phase(comp, components[comp]) comp_legend = f"{legend} - {comp}" scatter = go.Scatter( x=periods, y=res, mode="lines+markers", marker=dict(color=colors[comp], symbol=symbol), line=dict(color=colors[comp]), name=comp_legend, legendgroup=comp_legend, ) fig.add_trace(scatter, row=1, col=1) scatter = go.Scatter( x=periods, y=phs, mode="lines+markers", marker=dict(color=colors[comp], symbol=symbol), line=dict(color=colors[comp]), name=comp_legend, legendgroup=comp_legend, showlegend=False, ) fig.add_trace(scatter, row=2, col=1) return fig class Tipper(TransferFunction): """ Magnetotelluric tipper The tipper components are Tx = HzHx and Ty = HzHy The tipper length is sqrt(Re(Tx)^2 + Re(Ty)^2) The tipper angle is arctan (Re(Ty)/Re(Tx)) Notes ----- Information about units - Tipper T = H/H is dimensionless Examples -------- >>> from resistics.transfunc import Tipper >>> tf = Tipper() >>> print(tf.to_string()) | Hz | = | Hz_Hx Hz_Hy | | Hx | | Hy | """ variation: constr(max_length=16) = "default" out_chans: List[str] = ["Hz"] in_chans: List[str] = ["Hx", "Hy"] def get_length(self, components: Dict[str, Component]) -> np.ndarray: """Get the tipper length""" txRe = components["HzHx"].real tyRe = components["HzHy"].real return np.sqrt(np.power(txRe, 2) + np.power(tyRe, 2)) def get_real_angle(self, components: Dict[str, Component]) -> np.ndarray: """Get the real angle""" txRe = np.array(components["HzHx"].real) tyRe = np.array(components["HzHy"].real) return np.arctan(tyRe / txRe) * 180 / np.pi def get_imag_angle(self, components: Dict[str, Component]) -> np.ndarray: """Get the imaginary angle""" txIm = np.array(components["HzHx"].imag) tyIm = np.array(components["HzHy"].imag) return np.arctan(tyIm / txIm) * 180 / np.pi def plot( self, freqs: List[float], components: Dict[str, Component], x_lim: Optional[List[float]] = None, len_lim: Optional[List[float]] = None, ang_lim: Optional[List[float]] = None, ) -> go.Figure: """ Plot the impedance tensor .. warning:: This probably needs further checking and verification Parameters ---------- freqs : List[float] The x axis frequencies components : Dict[str, Component] The component data x_lim : Optional[List[float]], optional The x limits, to be provided as powers of 10, by default None. For example, for 0.001, use -3 len_lim : Optional[List[float]], optional The y limits for tipper length, to be provided as powers of 10, by default None. For example, for 1000, use 3 ang_lim : Optional[List[float]], optional The angle limits, by default None Returns ------- go.Figure Plotly figure """ import warnings from plotly.subplots import make_subplots warnings.warn("Plotting of tippers needs further verification") periods = np.reciprocal(freqs) if x_lim is None: x_lim = [-3, 5] if len_lim is None: len_lim = [-2, 6] if ang_lim is None: ang_lim = [-10, 100] fig = make_subplots( rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.08, subplot_titles=["Length", "Angles"], ) fig.update_layout(width=1000, autosize=True) # x axes fig.update_xaxes(title_text="Period (s)", type="log", range=x_lim, row=1, col=1) fig.update_xaxes(showticklabels=True, row=1, col=1) fig.update_xaxes(title_text="Period (s)", type="log", range=x_lim, row=2, col=1) fig.update_xaxes(showticklabels=True, row=2, col=1) # y axes fig.update_yaxes(title_text="Tipper length", row=1, col=1) # fig.update_yaxes(type="log", row=1, col=1) # fig.update_yaxes(scaleanchor="x", scaleratio=1, row=1, col=1) fig.update_yaxes(title_text="Angle (degrees)", row=2, col=1) # plot the tipper length scatter = go.Scatter( x=periods, y=self.get_length(components), mode="lines+markers", marker=dict(color="red"), line=dict(color="red"), name="Tipper length", ) fig.add_trace(scatter, row=1, col=1) # plot the real angle scatter = go.Scatter( x=periods, y=self.get_real_angle(components), mode="lines+markers", marker=dict(color="green"), line=dict(color="green"), name="Real angle", ) fig.add_trace(scatter, row=2, col=1) # plot the imag angle scatter = go.Scatter( x=periods, y=self.get_imag_angle(components), mode="lines+markers", marker=dict(color="blue"), line=dict(color="blue"), name="Imag angle", ) fig.add_trace(scatter, row=2, col=1) return fig
[ "plotly.subplots.make_subplots", "pydantic.validator", "numpy.reciprocal", "numpy.power", "pydantic.constr", "numpy.unwrap", "numpy.array", "warnings.warn", "numpy.mod", "numpy.arctan" ]
[((3479, 3500), 'pydantic.constr', 'constr', ([], {'max_length': '(16)'}), '(max_length=16)\n', (3485, 3500), False, 'from pydantic import validator, constr\n'), ((8972, 9002), 'pydantic.validator', 'validator', (['"""name"""'], {'always': '(True)'}), "('name', always=True)\n", (8981, 9002), False, 'from pydantic import validator, constr\n'), ((9215, 9252), 'pydantic.validator', 'validator', (['"""cross_chans"""'], {'always': '(True)'}), "('cross_chans', always=True)\n", (9224, 9252), False, 'from pydantic import validator, constr\n'), ((9507, 9538), 'pydantic.validator', 'validator', (['"""n_out"""'], {'always': '(True)'}), "('n_out', always=True)\n", (9516, 9538), False, 'from pydantic import validator, constr\n'), ((9770, 9800), 'pydantic.validator', 'validator', (['"""n_in"""'], {'always': '(True)'}), "('n_in', always=True)\n", (9779, 9800), False, 'from pydantic import validator, constr\n'), ((10029, 10062), 'pydantic.validator', 'validator', (['"""n_cross"""'], {'always': '(True)'}), "('n_cross', always=True)\n", (10038, 10062), False, 'from pydantic import validator, constr\n'), ((12687, 12708), 'pydantic.constr', 'constr', ([], {'max_length': '(16)'}), '(max_length=16)\n', (12693, 12708), False, 'from pydantic import validator, constr\n'), ((19821, 19842), 'pydantic.constr', 'constr', ([], {'max_length': '(16)'}), '(max_length=16)\n', (19827, 19842), False, 'from pydantic import validator, constr\n'), ((14981, 15106), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(2)', 'cols': '(1)', 'shared_xaxes': '(True)', 'vertical_spacing': '(0.08)', 'subplot_titles': "['Apparent resistivity', 'Phase']"}), "(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.08,\n subplot_titles=['Apparent resistivity', 'Phase'])\n", (14994, 15106), False, 'from plotly.subplots import make_subplots\n'), ((18166, 18186), 'numpy.reciprocal', 'np.reciprocal', (['freqs'], {}), '(freqs)\n', (18179, 18186), True, 'import numpy as np\n'), ((20306, 20339), 'numpy.array', 'np.array', (["components['HzHx'].real"], {}), "(components['HzHx'].real)\n", (20314, 20339), True, 'import numpy as np\n'), ((20355, 20388), 'numpy.array', 'np.array', (["components['HzHy'].real"], {}), "(components['HzHy'].real)\n", (20363, 20388), True, 'import numpy as np\n'), ((20573, 20606), 'numpy.array', 'np.array', (["components['HzHx'].imag"], {}), "(components['HzHx'].imag)\n", (20581, 20606), True, 'import numpy as np\n'), ((20622, 20655), 'numpy.array', 'np.array', (["components['HzHy'].imag"], {}), "(components['HzHy'].imag)\n", (20630, 20655), True, 'import numpy as np\n'), ((21894, 21957), 'warnings.warn', 'warnings.warn', (['"""Plotting of tippers needs further verification"""'], {}), "('Plotting of tippers needs further verification')\n", (21907, 21957), False, 'import warnings\n'), ((21977, 21997), 'numpy.reciprocal', 'np.reciprocal', (['freqs'], {}), '(freqs)\n', (21990, 21997), True, 'import numpy as np\n'), ((22186, 22298), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(2)', 'cols': '(1)', 'shared_xaxes': '(True)', 'vertical_spacing': '(0.08)', 'subplot_titles': "['Length', 'Angles']"}), "(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.08,\n subplot_titles=['Length', 'Angles'])\n", (22199, 22298), False, 'from plotly.subplots import make_subplots\n'), ((1063, 1082), 'numpy.array', 'np.array', (['self.real'], {}), '(self.real)\n', (1071, 1082), True, 'import numpy as np\n'), ((1090, 1109), 'numpy.array', 'np.array', (['self.imag'], {}), '(self.imag)\n', (1098, 1109), True, 'import numpy as np\n'), ((13927, 13943), 'numpy.unwrap', 'np.unwrap', (['phase'], {}), '(phase)\n', (13936, 13943), True, 'import numpy as np\n'), ((14021, 14039), 'numpy.mod', 'np.mod', (['phase', '(360)'], {}), '(phase, 360)\n', (14027, 14039), True, 'import numpy as np\n'), ((20140, 20157), 'numpy.power', 'np.power', (['txRe', '(2)'], {}), '(txRe, 2)\n', (20148, 20157), True, 'import numpy as np\n'), ((20160, 20177), 'numpy.power', 'np.power', (['tyRe', '(2)'], {}), '(tyRe, 2)\n', (20168, 20177), True, 'import numpy as np\n'), ((20404, 20426), 'numpy.arctan', 'np.arctan', (['(tyRe / txRe)'], {}), '(tyRe / txRe)\n', (20413, 20426), True, 'import numpy as np\n'), ((20671, 20693), 'numpy.arctan', 'np.arctan', (['(tyIm / txIm)'], {}), '(tyIm / txIm)\n', (20680, 20693), True, 'import numpy as np\n')]
import numpy import pytest import orthopy import quadpy from helpers import check_degree_ortho schemes = [ quadpy.e2r2.haegemans_piessens_a(), quadpy.e2r2.haegemans_piessens_b(), quadpy.e2r2.rabinowitz_richter_1(), quadpy.e2r2.rabinowitz_richter_2(), quadpy.e2r2.rabinowitz_richter_3(), quadpy.e2r2.rabinowitz_richter_4(), quadpy.e2r2.rabinowitz_richter_5(), quadpy.e2r2.stroud_4_1(), quadpy.e2r2.stroud_5_1(), quadpy.e2r2.stroud_5_2(), quadpy.e2r2.stroud_7_1(), quadpy.e2r2.stroud_7_2(), quadpy.e2r2.stroud_9_1(), quadpy.e2r2.stroud_11_1(), quadpy.e2r2.stroud_11_2(), quadpy.e2r2.stroud_13_1(), quadpy.e2r2.stroud_15_1(), quadpy.e2r2.stroud_secrest_5(), quadpy.e2r2.stroud_secrest_6(), ] @pytest.mark.parametrize("scheme", schemes) def test_scheme(scheme, tol=1.0e-14): assert scheme.points.dtype == numpy.float64, scheme.name assert scheme.weights.dtype == numpy.float64, scheme.name # degree = check_degree( # lambda poly: scheme.integrate(poly), # integrate_monomial_over_enr2, # 2, # scheme.degree + 1, # tol=tol, # ) # assert degree == scheme.degree, "{} Observed: {} expected: {}".format( # scheme.name, degree, scheme.degree # ) def eval_orthopolys(x): return numpy.concatenate( orthopy.e2r2.tree(x, scheme.degree + 1, symbolic=False) ) vals = scheme.integrate(eval_orthopolys) # Put vals back into the tree structure: # len(approximate[k]) == k+1 approximate = [ vals[k * (k + 1) // 2 : (k + 1) * (k + 2) // 2] for k in range(scheme.degree + 2) ] exact = [numpy.zeros(k + 1) for k in range(scheme.degree + 2)] exact[0][0] = numpy.sqrt(numpy.pi) degree = check_degree_ortho(approximate, exact, abs_tol=tol) assert degree >= scheme.degree, "{} -- Observed: {}, expected: {}".format( scheme.name, degree, scheme.degree ) return @pytest.mark.parametrize("scheme", [quadpy.e2r2.rabinowitz_richter_1()]) def test_show(scheme): scheme.show() return if __name__ == "__main__": # scheme_ = quadpy.e2r2.Stroud["7-2"]() # test_scheme(scheme_, 1.0e-14) # test_show(scheme_) from helpers import find_equal find_equal(schemes)
[ "quadpy.e2r2.rabinowitz_richter_3", "quadpy.e2r2.rabinowitz_richter_4", "quadpy.e2r2.stroud_15_1", "numpy.sqrt", "quadpy.e2r2.haegemans_piessens_b", "quadpy.e2r2.rabinowitz_richter_1", "quadpy.e2r2.stroud_4_1", "quadpy.e2r2.rabinowitz_richter_2", "quadpy.e2r2.rabinowitz_richter_5", "quadpy.e2r2.haegemans_piessens_a", "quadpy.e2r2.stroud_5_1", "quadpy.e2r2.stroud_secrest_6", "quadpy.e2r2.stroud_13_1", "quadpy.e2r2.stroud_5_2", "quadpy.e2r2.stroud_7_1", "quadpy.e2r2.stroud_7_2", "helpers.check_degree_ortho", "quadpy.e2r2.stroud_11_2", "quadpy.e2r2.stroud_9_1", "quadpy.e2r2.stroud_11_1", "quadpy.e2r2.stroud_secrest_5", "helpers.find_equal", "pytest.mark.parametrize", "numpy.zeros", "orthopy.e2r2.tree" ]
[((770, 812), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""scheme"""', 'schemes'], {}), "('scheme', schemes)\n", (793, 812), False, 'import pytest\n'), ((113, 147), 'quadpy.e2r2.haegemans_piessens_a', 'quadpy.e2r2.haegemans_piessens_a', ([], {}), '()\n', (145, 147), False, 'import quadpy\n'), ((153, 187), 'quadpy.e2r2.haegemans_piessens_b', 'quadpy.e2r2.haegemans_piessens_b', ([], {}), '()\n', (185, 187), False, 'import quadpy\n'), ((193, 227), 'quadpy.e2r2.rabinowitz_richter_1', 'quadpy.e2r2.rabinowitz_richter_1', ([], {}), '()\n', (225, 227), False, 'import quadpy\n'), ((233, 267), 'quadpy.e2r2.rabinowitz_richter_2', 'quadpy.e2r2.rabinowitz_richter_2', ([], {}), '()\n', (265, 267), False, 'import quadpy\n'), ((273, 307), 'quadpy.e2r2.rabinowitz_richter_3', 'quadpy.e2r2.rabinowitz_richter_3', ([], {}), '()\n', (305, 307), False, 'import quadpy\n'), ((313, 347), 'quadpy.e2r2.rabinowitz_richter_4', 'quadpy.e2r2.rabinowitz_richter_4', ([], {}), '()\n', (345, 347), False, 'import quadpy\n'), ((353, 387), 'quadpy.e2r2.rabinowitz_richter_5', 'quadpy.e2r2.rabinowitz_richter_5', ([], {}), '()\n', (385, 387), False, 'import quadpy\n'), ((393, 417), 'quadpy.e2r2.stroud_4_1', 'quadpy.e2r2.stroud_4_1', ([], {}), '()\n', (415, 417), False, 'import quadpy\n'), ((423, 447), 'quadpy.e2r2.stroud_5_1', 'quadpy.e2r2.stroud_5_1', ([], {}), '()\n', (445, 447), False, 'import quadpy\n'), ((453, 477), 'quadpy.e2r2.stroud_5_2', 'quadpy.e2r2.stroud_5_2', ([], {}), '()\n', (475, 477), False, 'import quadpy\n'), ((483, 507), 'quadpy.e2r2.stroud_7_1', 'quadpy.e2r2.stroud_7_1', ([], {}), '()\n', (505, 507), False, 'import quadpy\n'), ((513, 537), 'quadpy.e2r2.stroud_7_2', 'quadpy.e2r2.stroud_7_2', ([], {}), '()\n', (535, 537), False, 'import quadpy\n'), ((543, 567), 'quadpy.e2r2.stroud_9_1', 'quadpy.e2r2.stroud_9_1', ([], {}), '()\n', (565, 567), False, 'import quadpy\n'), ((573, 598), 'quadpy.e2r2.stroud_11_1', 'quadpy.e2r2.stroud_11_1', ([], {}), '()\n', (596, 598), False, 'import quadpy\n'), ((604, 629), 'quadpy.e2r2.stroud_11_2', 'quadpy.e2r2.stroud_11_2', ([], {}), '()\n', (627, 629), False, 'import quadpy\n'), ((635, 660), 'quadpy.e2r2.stroud_13_1', 'quadpy.e2r2.stroud_13_1', ([], {}), '()\n', (658, 660), False, 'import quadpy\n'), ((666, 691), 'quadpy.e2r2.stroud_15_1', 'quadpy.e2r2.stroud_15_1', ([], {}), '()\n', (689, 691), False, 'import quadpy\n'), ((697, 727), 'quadpy.e2r2.stroud_secrest_5', 'quadpy.e2r2.stroud_secrest_5', ([], {}), '()\n', (725, 727), False, 'import quadpy\n'), ((733, 763), 'quadpy.e2r2.stroud_secrest_6', 'quadpy.e2r2.stroud_secrest_6', ([], {}), '()\n', (761, 763), False, 'import quadpy\n'), ((1770, 1790), 'numpy.sqrt', 'numpy.sqrt', (['numpy.pi'], {}), '(numpy.pi)\n', (1780, 1790), False, 'import numpy\n'), ((1805, 1856), 'helpers.check_degree_ortho', 'check_degree_ortho', (['approximate', 'exact'], {'abs_tol': 'tol'}), '(approximate, exact, abs_tol=tol)\n', (1823, 1856), False, 'from helpers import check_degree_ortho\n'), ((2298, 2317), 'helpers.find_equal', 'find_equal', (['schemes'], {}), '(schemes)\n', (2308, 2317), False, 'from helpers import find_equal\n'), ((1698, 1716), 'numpy.zeros', 'numpy.zeros', (['(k + 1)'], {}), '(k + 1)\n', (1709, 1716), False, 'import numpy\n'), ((2035, 2069), 'quadpy.e2r2.rabinowitz_richter_1', 'quadpy.e2r2.rabinowitz_richter_1', ([], {}), '()\n', (2067, 2069), False, 'import quadpy\n'), ((1370, 1425), 'orthopy.e2r2.tree', 'orthopy.e2r2.tree', (['x', '(scheme.degree + 1)'], {'symbolic': '(False)'}), '(x, scheme.degree + 1, symbolic=False)\n', (1387, 1425), False, 'import orthopy\n')]
""" Displays FISH data, raw and deconvolved, with spots detected using starFISH """ from skimage.io import imread import numpy as np from napari import Viewer, gui_qt raw = imread('data-njs/smFISH/raw.tif') deconvolved = imread('data-njs/smFISH/deconvolved.tif') spots = np.loadtxt('data-njs/smFISH/spots.csv', delimiter=',') print(raw.shape) with gui_qt(): # create an empty viewer viewer = Viewer() # add the raw images raw_layer = viewer.add_image(raw, name='images', colormap='gray', contrast_limits=(140.0, 1300.0)) decon_layer = viewer.add_image(deconvolved, name='deconvolved', colormap='gray', contrast_limits=(0.0, 0.2)) decon_layer.visible = False spots_layer = viewer.add_points(spots, face_color='red', edge_color='red', symbol='ring', size=8, n_dimensional=True, name='spots') spots_layer.opacity = 0.5 @viewer.bind_key('s') def swap(viewer): """Swaps dims """ viewer.dims.order = np.roll(viewer.dims.order, 1)
[ "napari.Viewer", "numpy.roll", "napari.gui_qt", "skimage.io.imread", "numpy.loadtxt" ]
[((175, 208), 'skimage.io.imread', 'imread', (['"""data-njs/smFISH/raw.tif"""'], {}), "('data-njs/smFISH/raw.tif')\n", (181, 208), False, 'from skimage.io import imread\n'), ((223, 264), 'skimage.io.imread', 'imread', (['"""data-njs/smFISH/deconvolved.tif"""'], {}), "('data-njs/smFISH/deconvolved.tif')\n", (229, 264), False, 'from skimage.io import imread\n'), ((273, 327), 'numpy.loadtxt', 'np.loadtxt', (['"""data-njs/smFISH/spots.csv"""'], {'delimiter': '""","""'}), "('data-njs/smFISH/spots.csv', delimiter=',')\n", (283, 327), True, 'import numpy as np\n'), ((352, 360), 'napari.gui_qt', 'gui_qt', ([], {}), '()\n', (358, 360), False, 'from napari import Viewer, gui_qt\n'), ((404, 412), 'napari.Viewer', 'Viewer', ([], {}), '()\n', (410, 412), False, 'from napari import Viewer, gui_qt\n'), ((1041, 1070), 'numpy.roll', 'np.roll', (['viewer.dims.order', '(1)'], {}), '(viewer.dims.order, 1)\n', (1048, 1070), True, 'import numpy as np\n')]
import numpy as np from scipy.spatial.distance import pdist, squareform import scipy.cluster.hierarchy as hy import matplotlib.pyplot as plt # Creating a cluster of clusters function def clusters(number=20, cnumber=5, csize=10): # Note that the way the clusters are positioned is Gaussian randomness. rnum = np.random.rand(cnumber, 2) rn = rnum[:, 0] * number rn = rn.astype(int) rn[np.where(rn < 5)] = 5 rn[np.where(rn > number / 2.)] = round(number / 2., 0) ra = rnum[:, 1] * 2.9 ra[np.where(ra < 1.5)] = 1.5 cls = np.random.randn(number, 3) * csize # Random multipliers for central point of cluster rxyz = np.random.randn(cnumber - 1, 3) for i in xrange(cnumber - 1): tmp = np.random.randn(rn[i + 1], 3) x = tmp[:, 0] + (rxyz[i, 0] * csize) y = tmp[:, 1] + (rxyz[i, 1] * csize) z = tmp[:, 2] + (rxyz[i, 2] * csize) tmp = np.column_stack([x, y, z]) cls = np.vstack([cls, tmp]) return cls # Generate a cluster of clusters and distance matrix. cls = clusters() D = pdist(cls[:, 0:2]) D = squareform(D) # Compute and plot first dendrogram. fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6]) Y1 = hy.linkage(D, method='complete') cutoff = 0.3 * np.max(Y1[:, 2]) Z1 = hy.dendrogram(Y1, orientation='right', color_threshold=cutoff) ax1.xaxis.set_visible(False) ax1.yaxis.set_visible(False) # Compute and plot second dendrogram. ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2]) Y2 = hy.linkage(D, method='average') cutoff = 0.3 * np.max(Y2[:, 2]) Z2 = hy.dendrogram(Y2, color_threshold=cutoff) ax2.xaxis.set_visible(False) ax2.yaxis.set_visible(False) # Plot distance matrix. ax3 = fig.add_axes([0.3, 0.1, 0.6, 0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = D[idx1, :] D = D[:, idx2] ax3.matshow(D, aspect='auto', origin='lower', cmap=plt.cm.YlGnBu) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) # Plot colorbar. fig.savefig('scipy_352_ex1.pdf', bbox='tight')
[ "scipy.spatial.distance.squareform", "scipy.cluster.hierarchy.dendrogram", "numpy.random.rand", "numpy.where", "scipy.spatial.distance.pdist", "numpy.column_stack", "numpy.max", "matplotlib.pyplot.figure", "scipy.cluster.hierarchy.linkage", "numpy.vstack", "numpy.random.randn" ]
[((1070, 1088), 'scipy.spatial.distance.pdist', 'pdist', (['cls[:, 0:2]'], {}), '(cls[:, 0:2])\n', (1075, 1088), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((1093, 1106), 'scipy.spatial.distance.squareform', 'squareform', (['D'], {}), '(D)\n', (1103, 1106), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((1151, 1177), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (1161, 1177), True, 'import matplotlib.pyplot as plt\n'), ((1225, 1257), 'scipy.cluster.hierarchy.linkage', 'hy.linkage', (['D'], {'method': '"""complete"""'}), "(D, method='complete')\n", (1235, 1257), True, 'import scipy.cluster.hierarchy as hy\n'), ((1295, 1357), 'scipy.cluster.hierarchy.dendrogram', 'hy.dendrogram', (['Y1'], {'orientation': '"""right"""', 'color_threshold': 'cutoff'}), "(Y1, orientation='right', color_threshold=cutoff)\n", (1308, 1357), True, 'import scipy.cluster.hierarchy as hy\n'), ((1502, 1533), 'scipy.cluster.hierarchy.linkage', 'hy.linkage', (['D'], {'method': '"""average"""'}), "(D, method='average')\n", (1512, 1533), True, 'import scipy.cluster.hierarchy as hy\n'), ((1571, 1612), 'scipy.cluster.hierarchy.dendrogram', 'hy.dendrogram', (['Y2'], {'color_threshold': 'cutoff'}), '(Y2, color_threshold=cutoff)\n', (1584, 1612), True, 'import scipy.cluster.hierarchy as hy\n'), ((318, 344), 'numpy.random.rand', 'np.random.rand', (['cnumber', '(2)'], {}), '(cnumber, 2)\n', (332, 344), True, 'import numpy as np\n'), ((657, 688), 'numpy.random.randn', 'np.random.randn', (['(cnumber - 1)', '(3)'], {}), '(cnumber - 1, 3)\n', (672, 688), True, 'import numpy as np\n'), ((1273, 1289), 'numpy.max', 'np.max', (['Y1[:, 2]'], {}), '(Y1[:, 2])\n', (1279, 1289), True, 'import numpy as np\n'), ((1549, 1565), 'numpy.max', 'np.max', (['Y2[:, 2]'], {}), '(Y2[:, 2])\n', (1555, 1565), True, 'import numpy as np\n'), ((405, 421), 'numpy.where', 'np.where', (['(rn < 5)'], {}), '(rn < 5)\n', (413, 421), True, 'import numpy as np\n'), ((434, 461), 'numpy.where', 'np.where', (['(rn > number / 2.0)'], {}), '(rn > number / 2.0)\n', (442, 461), True, 'import numpy as np\n'), ((519, 537), 'numpy.where', 'np.where', (['(ra < 1.5)'], {}), '(ra < 1.5)\n', (527, 537), True, 'import numpy as np\n'), ((556, 582), 'numpy.random.randn', 'np.random.randn', (['number', '(3)'], {}), '(number, 3)\n', (571, 582), True, 'import numpy as np\n'), ((737, 766), 'numpy.random.randn', 'np.random.randn', (['rn[i + 1]', '(3)'], {}), '(rn[i + 1], 3)\n', (752, 766), True, 'import numpy as np\n'), ((916, 942), 'numpy.column_stack', 'np.column_stack', (['[x, y, z]'], {}), '([x, y, z])\n', (931, 942), True, 'import numpy as np\n'), ((957, 978), 'numpy.vstack', 'np.vstack', (['[cls, tmp]'], {}), '([cls, tmp])\n', (966, 978), True, 'import numpy as np\n')]
from unittest import mock import gym import numpy as np from tests.fixtures.envs.dummy import DummyEnv class DummyDiscretePixelEnv(DummyEnv): """ A dummy discrete pixel environment. It follows Atari game convention, where actions are 'NOOP', 'FIRE', ... It also contains self.unwrapped.ale.lives, get_action_meanings for testing. Several properties are made for testing purpose as following: -Observations are after reset : np.ones(self._shape). action 1 (FIRE): np.full(self._shape, 2). otherwise : random if self.random is True, otherwise previous state + action. -The environment has 5 lives. -Done will be True if -all 5 lives are exhausted -env.step(2), followed by env.step(1) """ def __init__(self, random=True): super().__init__(random, obs_dim=(10, 10, 3), action_dim=5) self.unwrapped.get_action_meanings = self._get_action_meanings self.unwrapped.ale = mock.Mock() self.unwrapped.ale.lives = self.get_lives self._observation_space = gym.spaces.Box( low=0, high=255, shape=self._obs_dim, dtype=np.uint8) self.step_called = 0 self._prev_action = None @property def observation_space(self): """Return an observation space.""" return self._observation_space @observation_space.setter def observation_space(self, observation_space): self._observation_space = observation_space @property def action_space(self): """Return an action space.""" return gym.spaces.Discrete(self._action_dim) def _get_action_meanings(self): return ['NOOP', 'FIRE', 'SLEEP', 'EAT', 'PLAY'] def get_lives(self): """Get number of lives.""" return self._lives def reset(self): """Reset the environment.""" self.state = np.ones(self._obs_dim, dtype=np.uint8) self._lives = 5 self.step_called = 0 return self.state def step(self, action): """ Step the environment. Before gym fixed overflow issue for sample() in np.uint8 environment, we will handle the sampling here. We need high=256 since np.random.uniform sample from [low, high) (includes low, but excludes high). """ done = False if self.state is not None: # Simulating FIRE action if action == 1: if self._prev_action == 2: done = True obs = np.full(self._obs_dim, 2, dtype=np.uint8) else: if self.random: obs = np.random.uniform( low=0, high=256, size=self._obs_dim).astype(np.uint8) else: obs = self.state + action if self._lives == 0: raise RuntimeError("DummyEnv: Cannot step when lives = 0!") self._lives -= 1 if self._lives == 0: done = True else: raise RuntimeError( "DummyEnv: reset() must be called before step()!") self.step_called += 1 self._prev_action = action return obs, 0, done, {'ale.lives': self._lives}
[ "unittest.mock.Mock", "numpy.ones", "gym.spaces.Discrete", "gym.spaces.Box", "numpy.random.uniform", "numpy.full" ]
[((1029, 1040), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (1038, 1040), False, 'from unittest import mock\n'), ((1127, 1195), 'gym.spaces.Box', 'gym.spaces.Box', ([], {'low': '(0)', 'high': '(255)', 'shape': 'self._obs_dim', 'dtype': 'np.uint8'}), '(low=0, high=255, shape=self._obs_dim, dtype=np.uint8)\n', (1141, 1195), False, 'import gym\n'), ((1649, 1686), 'gym.spaces.Discrete', 'gym.spaces.Discrete', (['self._action_dim'], {}), '(self._action_dim)\n', (1668, 1686), False, 'import gym\n'), ((1959, 1997), 'numpy.ones', 'np.ones', (['self._obs_dim'], {'dtype': 'np.uint8'}), '(self._obs_dim, dtype=np.uint8)\n', (1966, 1997), True, 'import numpy as np\n'), ((2635, 2676), 'numpy.full', 'np.full', (['self._obs_dim', '(2)'], {'dtype': 'np.uint8'}), '(self._obs_dim, 2, dtype=np.uint8)\n', (2642, 2676), True, 'import numpy as np\n'), ((2756, 2810), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0)', 'high': '(256)', 'size': 'self._obs_dim'}), '(low=0, high=256, size=self._obs_dim)\n', (2773, 2810), True, 'import numpy as np\n')]
import torch import numpy as np from ctc_decoders import Scorer, ctc_beam_search_decoder_batch """ # 安装语言模型 sudo apt-get install build-essential libboost-all-dev cmake zlib1g-dev libbz2-dev liblzma-dev git clone https://github.com/NVIDIA/OpenSeq2Seq -b ctc-decoders mv OpenSeq2Seq/decoders . rm -rf OpenSeq2Seq cd decoders ./setup.sh cd .. """ class BeamSearchDecoderWithLM(torch.nn.Module): def __init__( self, vocab, beam_width, alpha, beta, lm_path, num_cpus, cutoff_prob=1.0, cutoff_top_n=40): if lm_path is not None: self.scorer = Scorer(alpha, beta, model_path=lm_path, vocabulary=vocab) else: self.scorer = None self.vocab = vocab self.beam_width = beam_width self.num_cpus = num_cpus self.cutoff_prob = cutoff_prob self.cutoff_top_n = cutoff_top_n @torch.no_grad() def forward(self, log_probs, log_probs_length): probs = self.revert_softmax(log_probs) probs_list = [] for i, prob in enumerate(probs): probs_list.append(prob[: log_probs_length[i], :]) results = ctc_beam_search_decoder_batch( probs_list, self.vocab, beam_size=self.beam_width, num_processes=self.num_cpus, ext_scoring_func=self.scorer, cutoff_prob=self.cutoff_prob, cutoff_top_n=self.cutoff_top_n, ) result = [item[0][1] for item in results] return result def revert_softmax(self, logits): """ 对对数概率还原其softmax值,用于计算语言模型分数 """ result = np.zeros_like(logits) for i in range(logits.shape[0]): item = logits[i] e = np.exp(item - np.max(item)) result[i] = e / e.sum(axis=-1).reshape([item.shape[0], 1]) return result if __name__ == '__main__': vocab = [c.strip() for c in open("data/aishell1-vocab.txt", 'r').readlines()] lm_path = "/data/chenc/asr/minhang/atc-service/asr/checkpoints/kenlm/cn.arpa" decoder = BeamSearchDecoderWithLM(vocab=vocab, beam_width=40, alpha=1., beta=1., lm_path=lm_path, num_cpus=6, cutoff_prob=1, cutoff_top_n=40) log_prob = torch.randn((2,1000,4334), dtype=torch.float32) log_prob = torch.log_softmax(log_prob, dim=-1).numpy() lengths = torch.IntTensor([100,200]).numpy() out = decoder.forward(log_probs=log_prob, log_probs_length=lengths) print()
[ "torch.log_softmax", "ctc_decoders.ctc_beam_search_decoder_batch", "numpy.max", "ctc_decoders.Scorer", "torch.no_grad", "numpy.zeros_like", "torch.randn", "torch.IntTensor" ]
[((859, 874), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (872, 874), False, 'import torch\n'), ((2354, 2403), 'torch.randn', 'torch.randn', (['(2, 1000, 4334)'], {'dtype': 'torch.float32'}), '((2, 1000, 4334), dtype=torch.float32)\n', (2365, 2403), False, 'import torch\n'), ((1119, 1329), 'ctc_decoders.ctc_beam_search_decoder_batch', 'ctc_beam_search_decoder_batch', (['probs_list', 'self.vocab'], {'beam_size': 'self.beam_width', 'num_processes': 'self.num_cpus', 'ext_scoring_func': 'self.scorer', 'cutoff_prob': 'self.cutoff_prob', 'cutoff_top_n': 'self.cutoff_top_n'}), '(probs_list, self.vocab, beam_size=self.\n beam_width, num_processes=self.num_cpus, ext_scoring_func=self.scorer,\n cutoff_prob=self.cutoff_prob, cutoff_top_n=self.cutoff_top_n)\n', (1148, 1329), False, 'from ctc_decoders import Scorer, ctc_beam_search_decoder_batch\n'), ((1604, 1625), 'numpy.zeros_like', 'np.zeros_like', (['logits'], {}), '(logits)\n', (1617, 1625), True, 'import numpy as np\n'), ((573, 630), 'ctc_decoders.Scorer', 'Scorer', (['alpha', 'beta'], {'model_path': 'lm_path', 'vocabulary': 'vocab'}), '(alpha, beta, model_path=lm_path, vocabulary=vocab)\n', (579, 630), False, 'from ctc_decoders import Scorer, ctc_beam_search_decoder_batch\n'), ((2417, 2452), 'torch.log_softmax', 'torch.log_softmax', (['log_prob'], {'dim': '(-1)'}), '(log_prob, dim=-1)\n', (2434, 2452), False, 'import torch\n'), ((2475, 2502), 'torch.IntTensor', 'torch.IntTensor', (['[100, 200]'], {}), '([100, 200])\n', (2490, 2502), False, 'import torch\n'), ((1726, 1738), 'numpy.max', 'np.max', (['item'], {}), '(item)\n', (1732, 1738), True, 'import numpy as np\n')]
from datetime import datetime, date, timedelta import pandas as pd import networkx as nx from itertools import combinations import numpy as np class TeamworkStudyRunner: def __init__(self, notes, window_in_days, step_in_days): notes.sort_values('date', inplace=True) self.notes = notes self.DELTA = np.timedelta64(window_in_days, 'D') self.STEP = np.timedelta64(step_in_days, 'D') first_date = notes['date'].iloc[0] last_date = notes['date'].iloc[-1] self.date_range = np.arange(first_date, last_date - self.DELTA, self.STEP) def __iter__(self): for start_date in self.date_range: end_date = start_date + self.DELTA date_of_care = end_date + self.STEP notes_in_window = self.notes.query('date >= @start_date & date <= @end_date') notes_for_care_date = self.notes.query('date > @end_date & date <= @date_of_care') num_rows = len(notes_for_care_date.index) if num_rows == 0: continue yield CareDate(notes_in_window, notes_for_care_date) class CareDate: def __init__(self, notes_in_window, notes_for_care_date): self.notes_in_window = notes_in_window self.notes_for_care_date = notes_for_care_date self.care_team_dict = {} self.__populate_care_team_dict() def __populate_care_team_dict(self): discharge_ids_for_date = self.notes_for_care_date.discharge_id.unique() for discharge_id in discharge_ids_for_date: drs_for_discharge_id = self.notes_for_care_date.query('discharge_id == @discharge_id').dr.unique() self.care_team_dict[discharge_id] = drs_for_discharge_id def __iter__(self): for discharge_id, care_team in self.care_team_dict.items(): yield CareTeam(self.notes_in_window, discharge_id, care_team) class CareTeam: def __init__(self, notes_in_window, discharge_id, care_team): self.notes_in_window = notes_in_window self.discharge_id = discharge_id self.care_team = care_team self.care_team_edges = [sorted(edge) for edge in list(combinations(care_team, 2))] self.G = nx.Graph() self.unique_dates = notes_in_window.date.unique() self.__create_graph() def __create_graph(self): for note_date in self.unique_dates: notes_for_date = self.notes_in_window.query('date == @note_date') discharge_ids_for_date = notes_for_date.discharge_id.unique() for discharge_id in discharge_ids_for_date: drs_for_discharge_id = notes_for_date.query('discharge_id == @discharge_id').dr.unique() care_team_edges_for_discharge_id = [edge for edge in list(combinations(drs_for_discharge_id, 2)) if sorted(edge) in self.care_team_edges] for edge in care_team_edges_for_discharge_id: self.__add_edge_to_G(edge) def __add_edge_to_G(self, edge): data = self.G.get_edge_data(*edge, default=None) weight = 1 if data is None else data['weight'] + 1 self.G.add_edge(*edge, weight=weight)
[ "numpy.timedelta64", "itertools.combinations", "networkx.Graph", "numpy.arange" ]
[((330, 365), 'numpy.timedelta64', 'np.timedelta64', (['window_in_days', '"""D"""'], {}), "(window_in_days, 'D')\n", (344, 365), True, 'import numpy as np\n'), ((386, 419), 'numpy.timedelta64', 'np.timedelta64', (['step_in_days', '"""D"""'], {}), "(step_in_days, 'D')\n", (400, 419), True, 'import numpy as np\n'), ((533, 589), 'numpy.arange', 'np.arange', (['first_date', '(last_date - self.DELTA)', 'self.STEP'], {}), '(first_date, last_date - self.DELTA, self.STEP)\n', (542, 589), True, 'import numpy as np\n'), ((2234, 2244), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (2242, 2244), True, 'import networkx as nx\n'), ((2188, 2214), 'itertools.combinations', 'combinations', (['care_team', '(2)'], {}), '(care_team, 2)\n', (2200, 2214), False, 'from itertools import combinations\n'), ((2799, 2836), 'itertools.combinations', 'combinations', (['drs_for_discharge_id', '(2)'], {}), '(drs_for_discharge_id, 2)\n', (2811, 2836), False, 'from itertools import combinations\n')]
# nodenet/utilities/commons.py # Description: # "commons.py" provide commons utilities that can be use widely. # Copyright 2018 NOOXY. All Rights Reserved. from nodenet.imports.commons import * import numpy as np2 # np2 for cupy compabable def cut_dataset_by_ratio_ramdom(datasets, cut_ratio = 0.1): dimension = len(datasets[0].shape) valid_data_size = int(len(datasets[0])*cut_ratio) input_data = np2.array(datasets[0].tolist()) output_data = np2.array(datasets[1].tolist()) input_data_valid = np2.empty([0]+list(input_data.shape[1:len(input_data.shape)])) output_data_valid = np2.empty([0]+list(output_data.shape[1:len(output_data.shape)])) for x in range(valid_data_size): index = np2.random.randint(len(input_data)) input_data_valid = np2.concatenate((input_data_valid, np2.array(([input_data[index].tolist()]))), axis=0) output_data_valid = np2.concatenate((output_data_valid, np2.array(([output_data[index].tolist()]))), axis=0) input_data = np2.delete(input_data, index, axis=0) output_data = np2.delete(output_data, index, axis=0) input_data = np.array(input_data.tolist()) output_data = np.array(output_data.tolist()) input_data_valid = np.array(input_data_valid.tolist()) output_data_valid = np.array(output_data_valid.tolist()) return [input_data, output_data, input_data_valid, output_data_valid] def shuffle_datasets(datasets): a = np2.array(datasets[0].tolist()) b = np2.array(datasets[1].tolist()) assert len(a) == len(b) order = np2.random.permutation(len(a)) return [np.array(a[order].tolist()), np.array(b[order].tolist())] def get_mini_batch_ramdom(datasets, mini_batch_size): input_data = datasets[0] output_data = datasets[1] rand_range = len(input_data)-mini_batch_size start_index = 0 if rand_range != 0: start_index = int(np.random.randint(len(input_data)-mini_batch_size)) return [input_data[start_index:start_index+mini_batch_size], output_data[start_index:start_index+mini_batch_size]] def get_mini_batch_ramdom2(datasets, mini_batch_size): dimension = len(datasets[0].shape) data_size = mini_batch_size input_data = datasets[0] output_data = datasets[1] index_list = [] input_data_result = np.empty([0]+list(input_data.shape[1:len(input_data.shape)])) output_data_result = np.empty([0]+list(input_data.shape[1:len(input_data.shape)])) index = np.random.randint(len(input_data)) for x in range(data_size): while index in index_list: index = np.random.randint(len(input_data)) index_list.append(index) input_data_result = np.concatenate((input_data_result, [input_data[index]])) output_data_result = np.concatenate((output_data_result, [output_data[index]])) return [input_data_result, output_data_result]
[ "numpy.delete" ]
[((1010, 1047), 'numpy.delete', 'np2.delete', (['input_data', 'index'], {'axis': '(0)'}), '(input_data, index, axis=0)\n', (1020, 1047), True, 'import numpy as np2\n'), ((1070, 1108), 'numpy.delete', 'np2.delete', (['output_data', 'index'], {'axis': '(0)'}), '(output_data, index, axis=0)\n', (1080, 1108), True, 'import numpy as np2\n')]
import tensorflow as tf import csv import time from datetime import timedelta import sys import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib import slim from tensorflow.python.ops import variables as tf_variables from ..configuration import * from .. import trainer, evaluator, metrics from ..task_spec import get_task_spec from .text_classification_dataset import TextClassificationDataset def _load_embeddings(vocabulary_size, embeddings_size, filename_prefix='embeddings', from_dir=DIR_DATA_WORD2VEC): embeddings = [] embeddings_file = '{}_{}_{}'.format(filename_prefix, vocabulary_size, embeddings_size) with open(os.path.join(from_dir, embeddings_file), 'r') as file: reader = csv.reader(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for row in reader: embeddings.append([float(r) for r in row]) return embeddings class TextClassificationTrainer(trainer.Trainer): """ Helper class to run the training and create the model for the training. See trainer.Trainer for more details. """ def __init__(self, dataset, text_classification_model, log_dir=DIR_TC_LOGDIR, use_end_sequence=False, task_spec=None, max_steps=None): self.text_classification_model = text_classification_model self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTrainer, self).__init__(log_dir=log_dir, dataset=dataset, task_spec=task_spec, max_steps=max_steps, monitored_training_session_config=config) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) self.loss = self.text_classification_model.loss(targets, outputs) tf.summary.scalar('loss', self.loss) # learning rate self.optimizer, self.learning_rate = \ self.text_classification_model.optimize(self.loss, self.global_step) if self.learning_rate is not None: tf.summary.scalar('learning_rate', self.learning_rate) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets) # saver to save the model self.saver = tf.train.Saver() # check a nan value in the loss self.loss = tf.check_numerics(self.loss, 'loss is nan') return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) def step(self, session, graph_data): lr, _, loss, step, metrics = \ session.run([self.learning_rate, self.optimizer, self.loss, self.global_step, self.metrics]) if self.is_chief and time.time() > self.print_timestamp + 5 * 60: self.print_timestamp = time.time() elapsed_time = str(timedelta(seconds=time.time() - self.init_time)) m = 'step: {} loss: {:0.4f} learning_rate = {:0.6f} elapsed seconds: {} ' \ 'precision: {} recall: {} accuracy: {}' logging.info(m.format(step, loss, lr, elapsed_time, metrics['precision'], metrics['recall'], metrics['accuracy'])) def after_create_session(self, session, coord): self.init_time = time.time() self.print_timestamp = time.time() class TextClassificationTest(evaluator.Evaluator): """Evaluator for distributed training""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False,max_steps=None): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationTest, self).__init__(checkpoints_dir=log_dir, dataset=dataset, output_path=output_path, max_steps=max_steps, singular_monitored_session_config=config) self.text_classification_model = text_classification_model self.eval_writer = tf.summary.FileWriter(log_dir) def model(self, input_text_begin, input_text_end, gene, variation, expected_labels, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # model with slim.arg_scope(self.text_classification_model.model_arg_scope()): outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # loss targets = self.text_classification_model.targets(expected_labels, output_classes) loss = self.text_classification_model.loss(targets, outputs) self.accumulated_loss = tf.Variable(0.0, dtype=tf.float32, name='accumulated_loss', trainable=False) self.accumulated_loss = tf.assign_add(self.accumulated_loss, loss) step = tf.Variable(0, dtype=tf.int32, name='eval_step', trainable=False) step_increase = tf.assign_add(step, 1) self.loss = self.accumulated_loss / tf.cast(step_increase, dtype=tf.float32) tf.summary.scalar('loss', self.loss) # metrics self.metrics = metrics.single_label(outputs['prediction'], targets, moving_average=False) return None def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation, expected_labels = dataset_tensor if not self.use_end_sequence: input_text_end = None graph_data = self.model(input_text_begin, input_text_end, gene, variation, expected_labels, batch_size) return graph_data def step(self, session, graph_data, summary_op): summary, self.loss_result, self.metrics_results = \ session.run([summary_op, self.loss, self.metrics]) return summary def end(self, session): super(TextClassificationTest, self).end(session) chk_step = int(self.lastest_checkpoint.split('-')[-1]) m = 'step: {} loss: {:0.4f} precision: {} recall: {} accuracy: {}' logging.info(m.format(chk_step, self.loss_result, self.metrics_results['precision'], self.metrics_results['recall'], self.metrics_results['accuracy'])) def after_create_session(self, session, coord): # checkpoints_file = os.path.join(self.checkpoints_dir, 'checkpoint') # alt_checkpoints_dir = '{}_tp'.format(self.checkpoints_dir) # import glob # files = glob.glob('{}/model.ckpt-*.data-*'.format(alt_checkpoints_dir)) # chk_step = 0 # for f in files: # num = f.split('model.ckpt-')[1].split('.')[0] # num = int(num) # if chk_step == 0 or num < chk_step: # chk_step = num # if chk_step != 0: # ckpt_files = glob.glob('{}/model.ckpt-{}.data-*'.format(alt_checkpoints_dir, chk_step)) # ckpt_files = [x.split('/')[-1] for x in ckpt_files] # for f in ckpt_files + ['model.ckpt-{}.index', 'model.ckpt-{}.meta']: # f = f.format(chk_step) # os.rename(os.path.join(alt_checkpoints_dir, f), os.path.join(self.checkpoints_dir, f)) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-{}"\n'.format(chk_step)) # f.write('all_model_checkpoint_paths: "./model.ckpt-{}"\n'.format(chk_step)) super(TextClassificationTest, self).after_create_session(session, coord) # with open(checkpoints_file, 'wb') as f: # f.write('model_checkpoint_path: "./model.ckpt-"\n') # f.write('all_model_checkpoint_paths: "./model.ckpt-"\n') class TextClassificationEval(evaluator.Evaluator): """Evaluator for text classification""" def __init__(self, dataset, text_classification_model, output_path, log_dir=DIR_TC_LOGDIR, use_end_sequence=False): self.use_end_sequence = use_end_sequence config = tf.ConfigProto() config.gpu_options.allow_growth = True super(TextClassificationEval, self).__init__(checkpoints_dir=log_dir, output_path=output_path, infinite_loop=False, singular_monitored_session_config=config) self.dataset = dataset self.text_classification_model = text_classification_model def model(self, input_text_begin, input_text_end, gene, variation, batch_size, vocabulary_size=VOCABULARY_SIZE, embeddings_size=EMBEDDINGS_SIZE, output_classes=9): # embeddings embeddings = _load_embeddings(vocabulary_size, embeddings_size) # global step self.global_step = training_util.get_or_create_global_step() self.global_step = tf.assign_add(self.global_step, 1) # model with tf.control_dependencies([self.global_step]): with slim.arg_scope(self.text_classification_model.model_arg_scope()): self.outputs = self.text_classification_model.model(input_text_begin, input_text_end, gene, variation, output_classes, embeddings=embeddings, batch_size=batch_size, training=False) # restore only the trainable variables self.saver = tf.train.Saver(var_list=tf_variables.trainable_variables()) return self.outputs def create_graph(self, dataset_tensor, batch_size): input_text_begin, input_text_end, gene, variation = dataset_tensor if not self.use_end_sequence: input_text_end = None return self.model(input_text_begin, input_text_end, gene, variation, batch_size) def after_create_session(self, session, coord): super(TextClassificationEval, self).after_create_session(session, coord) print('ID,class1,class2,class3,class4,class5,class6,class7,class8,class9') def step(self, session, graph_data, summary_op): step, predictions = session.run([self.global_step, self.outputs['prediction']]) predictions = predictions[0] predictions = [p + 0.01 for p in predictions] # penalize less the mistakes sum = np.sum(predictions) predictions = [p / sum for p in predictions] print('{},{}'.format(step, ','.join(['{:.3f}'.format(x) for x in predictions]))) return None import logging def main(model, name, sentence_split=False, end_sequence=USE_END_SEQUENCE, batch_size=TC_BATCH_SIZE): """ Main method to execute the text_classification models :param ModelSimple model: object model based on ModelSimple :param str name: name of the model :param bool sentence_split: whether to split the dataset in sentneces or not, only used for hatt model :param bool end_sequence: whether to use or not the end of the sequences in the models :param int batch_size: batch size of the models """ logging.getLogger().setLevel(logging.INFO) log_dir = '{}_{}'.format(DIR_TC_LOGDIR, name) if len(sys.argv) > 1 and sys.argv[1] == 'test': # execute the test with the train dataset dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_trainset'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'validate': dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'validate'), use_end_sequence=end_sequence) tester.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test'), use_end_sequence=end_sequence) evaluator.run() elif len(sys.argv) > 1 and sys.argv[1] == 'eval_stage2': # evaluate the data of the test dataset. We submit this output to kaggle dataset = TextClassificationDataset(type='stage2_test', sentence_split=sentence_split) evaluator = TextClassificationEval(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'test_stage2'), use_end_sequence=end_sequence) evaluator.run() else: # training task_spec = get_task_spec(with_evaluator=USE_LAST_WORKER_FOR_VALIDATION) if task_spec.join_if_ps(): # join if it is a parameters server and do nothing else return with(tf.gfile.Open(os.path.join(DIR_DATA_TEXT_CLASSIFICATION, 'train_set'))) as f: max_steps = int(TC_EPOCHS * len(f.readlines()) / batch_size) if task_spec.is_evaluator(): dataset = TextClassificationDataset(type='val', sentence_split=sentence_split) # evaluator running in the last worker tester = TextClassificationTest(dataset=dataset, text_classification_model=model, log_dir=log_dir, output_path=os.path.join(log_dir, 'val'), use_end_sequence=end_sequence, max_steps=max_steps) tester.run() else: dataset = TextClassificationDataset(type='train', sentence_split=sentence_split) trainer = TextClassificationTrainer(dataset=dataset, text_classification_model=model, log_dir=log_dir, use_end_sequence=end_sequence, task_spec=task_spec, max_steps=max_steps) trainer.run(epochs=TC_EPOCHS, batch_size=batch_size)
[ "tensorflow.cast", "logging.getLogger", "tensorflow.python.training.training_util.get_or_create_global_step", "tensorflow.check_numerics", "tensorflow.Variable", "tensorflow.train.Saver", "numpy.sum", "tensorflow.control_dependencies", "tensorflow.assign_add", "time.time", "tensorflow.python.ops.variables.trainable_variables", "tensorflow.ConfigProto", "tensorflow.summary.scalar", "tensorflow.summary.FileWriter", "csv.reader" ]
[((769, 842), 'csv.reader', 'csv.reader', (['file'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(file, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_MINIMAL)\n', (779, 842), False, 'import csv\n'), ((1423, 1439), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (1437, 1439), True, 'import tensorflow as tf\n'), ((2116, 2157), 'tensorflow.python.training.training_util.get_or_create_global_step', 'training_util.get_or_create_global_step', ([], {}), '()\n', (2155, 2157), False, 'from tensorflow.python.training import training_util\n'), ((2791, 2827), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'self.loss'], {}), "('loss', self.loss)\n", (2808, 2827), True, 'import tensorflow as tf\n'), ((3242, 3258), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3256, 3258), True, 'import tensorflow as tf\n'), ((3319, 3362), 'tensorflow.check_numerics', 'tf.check_numerics', (['self.loss', '"""loss is nan"""'], {}), "(self.loss, 'loss is nan')\n", (3336, 3362), True, 'import tensorflow as tf\n'), ((4512, 4523), 'time.time', 'time.time', ([], {}), '()\n', (4521, 4523), False, 'import time\n'), ((4555, 4566), 'time.time', 'time.time', ([], {}), '()\n', (4564, 4566), False, 'import time\n'), ((4884, 4900), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (4898, 4900), True, 'import tensorflow as tf\n'), ((5331, 5361), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['log_dir'], {}), '(log_dir)\n', (5352, 5361), True, 'import tensorflow as tf\n'), ((6380, 6456), 'tensorflow.Variable', 'tf.Variable', (['(0.0)'], {'dtype': 'tf.float32', 'name': '"""accumulated_loss"""', 'trainable': '(False)'}), "(0.0, dtype=tf.float32, name='accumulated_loss', trainable=False)\n", (6391, 6456), True, 'import tensorflow as tf\n'), ((6533, 6575), 'tensorflow.assign_add', 'tf.assign_add', (['self.accumulated_loss', 'loss'], {}), '(self.accumulated_loss, loss)\n', (6546, 6575), True, 'import tensorflow as tf\n'), ((6591, 6656), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'dtype': 'tf.int32', 'name': '"""eval_step"""', 'trainable': '(False)'}), "(0, dtype=tf.int32, name='eval_step', trainable=False)\n", (6602, 6656), True, 'import tensorflow as tf\n'), ((6681, 6703), 'tensorflow.assign_add', 'tf.assign_add', (['step', '(1)'], {}), '(step, 1)\n', (6694, 6703), True, 'import tensorflow as tf\n'), ((6797, 6833), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'self.loss'], {}), "('loss', self.loss)\n", (6814, 6833), True, 'import tensorflow as tf\n'), ((9735, 9751), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (9749, 9751), True, 'import tensorflow as tf\n'), ((10547, 10588), 'tensorflow.python.training.training_util.get_or_create_global_step', 'training_util.get_or_create_global_step', ([], {}), '()\n', (10586, 10588), False, 'from tensorflow.python.training import training_util\n'), ((10616, 10650), 'tensorflow.assign_add', 'tf.assign_add', (['self.global_step', '(1)'], {}), '(self.global_step, 1)\n', (10629, 10650), True, 'import tensorflow as tf\n'), ((12220, 12239), 'numpy.sum', 'np.sum', (['predictions'], {}), '(predictions)\n', (12226, 12239), True, 'import numpy as np\n'), ((3036, 3090), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""learning_rate"""', 'self.learning_rate'], {}), "('learning_rate', self.learning_rate)\n", (3053, 3090), True, 'import tensorflow as tf\n'), ((4031, 4042), 'time.time', 'time.time', ([], {}), '()\n', (4040, 4042), False, 'import time\n'), ((6748, 6788), 'tensorflow.cast', 'tf.cast', (['step_increase'], {'dtype': 'tf.float32'}), '(step_increase, dtype=tf.float32)\n', (6755, 6788), True, 'import tensorflow as tf\n'), ((10680, 10723), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[self.global_step]'], {}), '([self.global_step])\n', (10703, 10723), True, 'import tensorflow as tf\n'), ((12958, 12977), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (12975, 12977), False, 'import logging\n'), ((3951, 3962), 'time.time', 'time.time', ([], {}), '()\n', (3960, 3962), False, 'import time\n'), ((11369, 11403), 'tensorflow.python.ops.variables.trainable_variables', 'tf_variables.trainable_variables', ([], {}), '()\n', (11401, 11403), True, 'from tensorflow.python.ops import variables as tf_variables\n'), ((4092, 4103), 'time.time', 'time.time', ([], {}), '()\n', (4101, 4103), False, 'import time\n')]
# -*- coding: utf-8 -*- """ Created on Fri Aug 27 15:16:34 2021 @author: ag """ import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import matplotlib.transforms as transforms import re def confidence_ellipse(x, y, n_std=1.0, weights=None, ax=None, facecolor='none', **kwargs): """ Create a plot of the covariance confidence ellipse of *x* and *y*. Parameters ---------- x, y : array-like, shape (n, ) Input data. ax : matplotlib.axes.Axes The axes object to draw the ellipse into. n_std : float The number of standard deviations to determine the ellipse's radiuses. **kwargs Forwarded to `~matplotlib.patches.Ellipse` Returns ------- matplotlib.patches.Ellipse """ if x.size != y.size: raise ValueError("x and y must be the same size") if not ax: ax = plt.gca() if 'label' in kwargs: kwargs['label'] = re.sub(r'SSP(\d)(\d)(\d)',r'SSP\1-\2.\3', kwargs['label']) if weights is None: cov = np.cov(x, y) mean_x = np.mean(x) mean_y = np.mean(y) else: cov = np.cov(x, y, aweights = weights) sumw = np.sum(weights) mean_x = np.sum(x*weights)/sumw mean_y = np.sum(y*weights)/sumw pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1]) # Using a special case to obtain the eigenvalues of this # two-dimensionl dataset. ell_radius_x = np.sqrt(1 + pearson) ell_radius_y = np.sqrt(1 - pearson) ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor=f'{facecolor}22', edgecolor=f'{facecolor}', **kwargs) # Calculating the stdandard deviation of x from # the squareroot of the variance and multiplying # with the given number of standard deviations. scale_x = np.sqrt(cov[0, 0]) * n_std # calculating the stdandard deviation of y ... scale_y = np.sqrt(cov[1, 1]) * n_std transf = transforms.Affine2D() \ .rotate_deg(45) \ .scale(scale_x, scale_y) \ .translate(mean_x, mean_y) ellipse.set_transform(transf + ax.transData) return ax.add_patch(ellipse) #FROM https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy def weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False): """ Very close to numpy.percentile, but supports weights. NOTE: quantiles should be in [0, 1]! :param values: numpy.array with data :param quantiles: array-like with many quantiles needed :param sample_weight: array-like of the same length as `array` :param values_sorted: bool, if True, then will avoid sorting of initial array :param old_style: if True, will correct output to be consistent with numpy.percentile. :return: numpy.array with computed quantiles. """ values = np.array(values) quantiles = np.array(quantiles) if sample_weight is None: sample_weight = np.ones(len(values)) sample_weight = np.array(sample_weight) assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \ 'quantiles should be in [0, 1]' if not values_sorted: sorter = np.argsort(values) values = values[sorter] sample_weight = sample_weight[sorter] weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight if old_style: # To be convenient with numpy.percentile weighted_quantiles -= weighted_quantiles[0] weighted_quantiles /= weighted_quantiles[-1] else: weighted_quantiles /= np.sum(sample_weight) return np.interp(quantiles, weighted_quantiles, values)
[ "numpy.mean", "numpy.all", "numpy.sqrt", "matplotlib.pyplot.gca", "numpy.argsort", "numpy.array", "numpy.sum", "numpy.cov", "matplotlib.transforms.Affine2D", "numpy.cumsum", "numpy.interp", "re.sub", "matplotlib.patches.Ellipse" ]
[((1466, 1486), 'numpy.sqrt', 'np.sqrt', (['(1 + pearson)'], {}), '(1 + pearson)\n', (1473, 1486), True, 'import numpy as np\n'), ((1506, 1526), 'numpy.sqrt', 'np.sqrt', (['(1 - pearson)'], {}), '(1 - pearson)\n', (1513, 1526), True, 'import numpy as np\n'), ((1541, 1674), 'matplotlib.patches.Ellipse', 'Ellipse', (['(0, 0)'], {'width': '(ell_radius_x * 2)', 'height': '(ell_radius_y * 2)', 'facecolor': 'f"""{facecolor}22"""', 'edgecolor': 'f"""{facecolor}"""'}), "((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor=\n f'{facecolor}22', edgecolor=f'{facecolor}', **kwargs)\n", (1548, 1674), False, 'from matplotlib.patches import Ellipse\n'), ((2940, 2956), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (2948, 2956), True, 'import numpy as np\n'), ((2973, 2992), 'numpy.array', 'np.array', (['quantiles'], {}), '(quantiles)\n', (2981, 2992), True, 'import numpy as np\n'), ((3088, 3111), 'numpy.array', 'np.array', (['sample_weight'], {}), '(sample_weight)\n', (3096, 3111), True, 'import numpy as np\n'), ((3675, 3723), 'numpy.interp', 'np.interp', (['quantiles', 'weighted_quantiles', 'values'], {}), '(quantiles, weighted_quantiles, values)\n', (3684, 3723), True, 'import numpy as np\n'), ((902, 911), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (909, 911), True, 'import matplotlib.pyplot as plt\n'), ((965, 1028), 're.sub', 're.sub', (['"""SSP(\\\\d)(\\\\d)(\\\\d)"""', '"""SSP\\\\1-\\\\2.\\\\3"""', "kwargs['label']"], {}), "('SSP(\\\\d)(\\\\d)(\\\\d)', 'SSP\\\\1-\\\\2.\\\\3', kwargs['label'])\n", (971, 1028), False, 'import re\n'), ((1063, 1075), 'numpy.cov', 'np.cov', (['x', 'y'], {}), '(x, y)\n', (1069, 1075), True, 'import numpy as np\n'), ((1093, 1103), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (1100, 1103), True, 'import numpy as np\n'), ((1121, 1131), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (1128, 1131), True, 'import numpy as np\n'), ((1156, 1186), 'numpy.cov', 'np.cov', (['x', 'y'], {'aweights': 'weights'}), '(x, y, aweights=weights)\n', (1162, 1186), True, 'import numpy as np\n'), ((1204, 1219), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (1210, 1219), True, 'import numpy as np\n'), ((1325, 1355), 'numpy.sqrt', 'np.sqrt', (['(cov[0, 0] * cov[1, 1])'], {}), '(cov[0, 0] * cov[1, 1])\n', (1332, 1355), True, 'import numpy as np\n'), ((1864, 1882), 'numpy.sqrt', 'np.sqrt', (['cov[0, 0]'], {}), '(cov[0, 0])\n', (1871, 1882), True, 'import numpy as np\n'), ((1957, 1975), 'numpy.sqrt', 'np.sqrt', (['cov[1, 1]'], {}), '(cov[1, 1])\n', (1964, 1975), True, 'import numpy as np\n'), ((3123, 3145), 'numpy.all', 'np.all', (['(quantiles >= 0)'], {}), '(quantiles >= 0)\n', (3129, 3145), True, 'import numpy as np\n'), ((3150, 3172), 'numpy.all', 'np.all', (['(quantiles <= 1)'], {}), '(quantiles <= 1)\n', (3156, 3172), True, 'import numpy as np\n'), ((3260, 3278), 'numpy.argsort', 'np.argsort', (['values'], {}), '(values)\n', (3270, 3278), True, 'import numpy as np\n'), ((3383, 3407), 'numpy.cumsum', 'np.cumsum', (['sample_weight'], {}), '(sample_weight)\n', (3392, 3407), True, 'import numpy as np\n'), ((3642, 3663), 'numpy.sum', 'np.sum', (['sample_weight'], {}), '(sample_weight)\n', (3648, 3663), True, 'import numpy as np\n'), ((1237, 1256), 'numpy.sum', 'np.sum', (['(x * weights)'], {}), '(x * weights)\n', (1243, 1256), True, 'import numpy as np\n'), ((1277, 1296), 'numpy.sum', 'np.sum', (['(y * weights)'], {}), '(y * weights)\n', (1283, 1296), True, 'import numpy as np\n'), ((1998, 2019), 'matplotlib.transforms.Affine2D', 'transforms.Affine2D', ([], {}), '()\n', (2017, 2019), True, 'import matplotlib.transforms as transforms\n')]
import sys import numpy as np rng = np.random.default_rng() # dt = np.dtype('i,i,i,i,i,i,i,i,i,i,U16,U16,U16,U16,f,f,f,f,f,f,f,f') nrows = 2000000 filename = 'data/bigmixed.csv' print("Generating {}".format(filename)) with open(filename, 'w') as f: for k in range(nrows): values1 = rng.integers(1, 1000, size=10).tolist() values2 = rng.choice(['abc', 'def', 'αβγ', 'apple', 'orange'], size=4).tolist() values3 = (rng.integers(0, 100, size=8)/8).tolist() values = values1 + values2 + values3 s = ','.join(f'{v}' for v in values) + '\n' f.write(s) q, r = divmod(100*(k+1), nrows) if r == 0: print("\r{:3d}%".format(q), end='') sys.stdout.flush() print()
[ "sys.stdout.flush", "numpy.random.default_rng" ]
[((39, 62), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (60, 62), True, 'import numpy as np\n'), ((723, 741), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (739, 741), False, 'import sys\n')]
#!/usr/bin/env python3 import argparse import re import sys import zipfile import numpy as np import bert_wrapper if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("input_conllu", type=str, help="Input CoNLL-U file") parser.add_argument("output_npz", type=str, help="Output NPZ file") parser.add_argument("--batch_size", default=16, type=int, help="Batch size") parser.add_argument("--casing", default=bert_wrapper.BertWrapper.CASING_UNCASED, help="Bert model casing") parser.add_argument("--language", default=bert_wrapper.BertWrapper.LANGUAGE_MULTILINGUAL, help="Bert model language") parser.add_argument("--layer_indices", default="-1,-2,-3,-4", type=str, help="Bert model layers to average") parser.add_argument("--size", default=bert_wrapper.BertWrapper.SIZE_BASE, help="Bert model size") parser.add_argument("--threads", default=4, type=int, help="Threads to use") parser.add_argument("--with_cls", default=False, action="store_true", help="Return also CLS embedding") args = parser.parse_args() args.layer_indices = list(map(int, args.layer_indices.split(","))) # Load CoNLL-U file sentences = [] with open(args.input_conllu, mode="r", encoding="utf-8") as conllu_file: in_sentence = False for line in conllu_file: line = line.rstrip("\n") if line: if not in_sentence: sentences.append([]) in_sentence = True if re.match(r"^[0-9]*\t", line): columns = line.split("\t") assert len(columns) == 10 sentences[-1].append(columns[1]) else: in_sentence = False if line.startswith("#"): continue print("Loaded CoNLL-U file with {} sentences and {} words.".format(len(sentences), sum(map(len, sentences))), file=sys.stderr) bert = bert_wrapper.BertWrapper(language=args.language, size=args.size, casing=args.casing, layer_indices=args.layer_indices, with_cls=args.with_cls, threads=args.threads, batch_size=args.batch_size) with zipfile.ZipFile(args.output_npz, mode="w", compression=zipfile.ZIP_STORED) as output_npz: for i, embeddings in enumerate(bert.bert_embeddings(sentences)): if (i + 1) % 100 == 0: print("Processed {}/{} sentences.".format(i + 1, len(sentences)), file=sys.stderr) with output_npz.open("arr_{}".format(i), mode="w") as embeddings_file: np.save(embeddings_file, embeddings) print("Done, all embeddings saved.", file=sys.stderr)
[ "zipfile.ZipFile", "argparse.ArgumentParser", "bert_wrapper.BertWrapper", "re.match", "numpy.save" ]
[((157, 182), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (180, 182), False, 'import argparse\n'), ((1946, 2147), 'bert_wrapper.BertWrapper', 'bert_wrapper.BertWrapper', ([], {'language': 'args.language', 'size': 'args.size', 'casing': 'args.casing', 'layer_indices': 'args.layer_indices', 'with_cls': 'args.with_cls', 'threads': 'args.threads', 'batch_size': 'args.batch_size'}), '(language=args.language, size=args.size, casing=\n args.casing, layer_indices=args.layer_indices, with_cls=args.with_cls,\n threads=args.threads, batch_size=args.batch_size)\n', (1970, 2147), False, 'import bert_wrapper\n'), ((2184, 2258), 'zipfile.ZipFile', 'zipfile.ZipFile', (['args.output_npz'], {'mode': '"""w"""', 'compression': 'zipfile.ZIP_STORED'}), "(args.output_npz, mode='w', compression=zipfile.ZIP_STORED)\n", (2199, 2258), False, 'import zipfile\n'), ((1527, 1555), 're.match', 're.match', (['"""^[0-9]*\\\\t"""', 'line'], {}), "('^[0-9]*\\\\t', line)\n", (1535, 1555), False, 'import re\n'), ((2564, 2600), 'numpy.save', 'np.save', (['embeddings_file', 'embeddings'], {}), '(embeddings_file, embeddings)\n', (2571, 2600), True, 'import numpy as np\n')]
import sys, math, numpy, struct import matplotlib.pyplot as plt class readBinaryModels(object): '''Class for reading binary models''' def __init__(self, fil): '''Initialize''' super(readBinaryModels, self).__init__() self.fread = open(fil, "rb") self.head = None self.model = None def close(self): '''Close file''' self.fread.close() def __readHeader(self): '''Return header''' head = [] byte = self.fread.read(4) if len(byte) == 0: return None head.append(*struct.unpack('i', byte)) head.append(*struct.unpack('d', self.fread.read(8))) head.append(*struct.unpack('d', self.fread.read(8))) head.append(*struct.unpack('i', self.fread.read(4))) head.append(*struct.unpack('i', self.fread.read(4))) return head def nextModel(self): '''Calculate next model, unpacked''' # Read header self.head = self.__readHeader() if self.head is None: return False self.model = [] for ii in range(self.head[3]): s = [] for jj in range(self.head[4]): s.append(*struct.unpack('d', self.fread.read(8))) self.model.append(s) return True def readOnlyHeader(self): '''Look only for the header and skip the rest''' # Read header self.head = self.__readHeader() if self.head is None: return False # Skip file for ii in range(head[3]): for jj in range(head[4]): self.fread.read(8) return True def main(): '''Get evolution of one element in epsilon or [X/Fe]''' # Check arguments if len(sys.argv) < 4: print("Usage python {} <(eps|xfe|massf)> <model>".format(sys.argv[0]), end = " ") print("<elem1> [elem2, elem3, ...]") return 1 data = "../../data/species.dat" mode = sys.argv[1] archivo = sys.argv[2] elms = sys.argv[3:] solarH = 0.7381 # Read "species.dat" and store all the values in lists species = "../../data/species.dat" atomicNum = []; atomicMass = []; namesZ = {} with open(species, "r") as fread: for line in fread: lnlst = line.split() # Correct special names if lnlst[1] == "d" or lnlst[2] == "0": lnlst[1] = "h" # Now relate positions with atomic numbers, atomic masses, and names zNum = int(lnlst[0]) - int(lnlst[2]) atomicNum.append(zNum) atomicMass.append(int(lnlst[0])) namesZ[lnlst[1]] = zNum # Read all initial solar values solar = "../../data/solarVals.dat" solarValues = {} with open(solar, "r") as fread: for line in fread: lnlst = line.split() isotName = lnlst[0] + lnlst[2] # Add mass fraction value per atomic number key = namesZ[lnlst[0]]; val = float(lnlst[1])*float(lnlst[2]) solarValues[key] = solarValues.get(key, 0) + val # Now go model by model, calculating everything for every element modelObj = readBinaryModels(archivo) # Each line has mass, temperature, rho, radiat # and elements in number fraction ages = []; evolEps = []; evolXFe = []; evolMassF = [] while True: isNewModel = modelObj.nextModel() if not isNewModel: break header = modelObj.head model = modelObj.model # Get the age age = 10**(header[2] - 3) if len(ages) == 0: ages.append(age) else: ages.append(age - ages[0]) # Report some progress print(len(ages)) # Find the surface for this model for ii in range(1, len(model)): mass = (model[ii - 1][0] + model[ii][0])*0.5 # If found surface, extract information if mass >= 0.85: prevLine = model[ii - 1] newLine = model[ii] # Take all abundances dens = [(x + y)*0.5 for (x, y) in zip(prevLine[4:], newLine[4:])] epsVals = {}; xFeVals = {}; mFVals = {} # Add the values for each element for ii in range(len(atomicNum)): key = atomicNum[ii] epsVals[key] = epsVals.get(key, 0) + dens[ii] mFVals[key] = mFVals.get(key, 0) + dens[ii]*atomicMass[ii] xFeVals[key] = mFVals[key] # Now calculate values of interest feVal = xFeVals[namesZ["fe"]] sunFeVal = solarValues[namesZ["fe"]] selectedEps = []; selectedFe = []; selectedMassF = [] for elem in elms: try: val = epsVals[namesZ[elem]]/solarH + 1e-100 except KeyError: print("{} is not on the list".format(elem)) except: raise val = math.log10(val) + 12 selectedEps.append(val) try: val = xFeVals[namesZ[elem]]/feVal + 1e-100 except KeyError: print("{} is not on the list".format(elem)) except: raise sunVal = solarValues.get(namesZ[elem], 1e-100)/sunFeVal val = math.log10(val) - math.log10(sunVal) selectedFe.append(val) try: val = mFVals[namesZ[elem]] + 1e-100 except KeyError: print("{} is not on the list".format(elem)) except: raise selectedMassF.append(val) break evolEps.append(selectedEps) evolXFe.append(selectedFe) evolMassF.append(selectedMassF) # Transform age and evol values to something plottable ages[0] = 0 evolEps = numpy.transpose(numpy.array(evolEps)) evolXFe = numpy.transpose(numpy.array(evolXFe)) evolMassF = numpy.transpose(numpy.array(evolMassF)) # Now plot values if mode == "eps": for ii in range(len(elms)): evEps = evolEps[ii] minLen = min(len(ages), len(evEps)) plt.plot(ages[0:minLen], evEps[0:minLen], label = elms[ii], lw = 2) plt.xlabel("TP-AGB time in ky") plt.ylabel("Log epsilon") #plt.ylim([-2, 5]) plt.ylim([0, 5]) elif mode == "xfe": for ii in range(len(elms)): evXFe = evolXFe[ii] minLen = min(len(ages), len(evXFe)) plt.plot(ages[0:minLen], evXFe[0:minLen], label = elms[ii], lw = 2) plt.xlabel("TP-AGB time in ky") plt.ylabel("[X/Fe]") plt.ylim([-0.2, 2]) elif mode == "massf": for ii in range(len(elms)): evMassF = evolMassF[ii] minLen = min(len(ages), len(evMassF)) plt.plot(ages[0:minLen], evMassF[0:minLen], label = elms[ii], lw = 2) plt.xlabel("TP-AGB time in ky") plt.ylabel("Mass fraction") plt.yscale("log") #plt.legend(loc = 0) plt.show() return 0 if __name__ == "__main__": main()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.array", "struct.unpack", "matplotlib.pyplot.ylim", "math.log10", "matplotlib.pyplot.yscale", "matplotlib.pyplot.show" ]
[((7333, 7343), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7341, 7343), True, 'import matplotlib.pyplot as plt\n'), ((6152, 6172), 'numpy.array', 'numpy.array', (['evolEps'], {}), '(evolEps)\n', (6163, 6172), False, 'import sys, math, numpy, struct\n'), ((6204, 6224), 'numpy.array', 'numpy.array', (['evolXFe'], {}), '(evolXFe)\n', (6215, 6224), False, 'import sys, math, numpy, struct\n'), ((6258, 6280), 'numpy.array', 'numpy.array', (['evolMassF'], {}), '(evolMassF)\n', (6269, 6280), False, 'import sys, math, numpy, struct\n'), ((6532, 6563), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""TP-AGB time in ky"""'], {}), "('TP-AGB time in ky')\n", (6542, 6563), True, 'import matplotlib.pyplot as plt\n'), ((6572, 6597), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Log epsilon"""'], {}), "('Log epsilon')\n", (6582, 6597), True, 'import matplotlib.pyplot as plt\n'), ((6633, 6649), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 5]'], {}), '([0, 5])\n', (6641, 6649), True, 'import matplotlib.pyplot as plt\n'), ((6455, 6518), 'matplotlib.pyplot.plot', 'plt.plot', (['ages[0:minLen]', 'evEps[0:minLen]'], {'label': 'elms[ii]', 'lw': '(2)'}), '(ages[0:minLen], evEps[0:minLen], label=elms[ii], lw=2)\n', (6463, 6518), True, 'import matplotlib.pyplot as plt\n'), ((6880, 6911), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""TP-AGB time in ky"""'], {}), "('TP-AGB time in ky')\n", (6890, 6911), True, 'import matplotlib.pyplot as plt\n'), ((6920, 6940), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""[X/Fe]"""'], {}), "('[X/Fe]')\n", (6930, 6940), True, 'import matplotlib.pyplot as plt\n'), ((6949, 6968), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-0.2, 2]'], {}), '([-0.2, 2])\n', (6957, 6968), True, 'import matplotlib.pyplot as plt\n'), ((590, 614), 'struct.unpack', 'struct.unpack', (['"""i"""', 'byte'], {}), "('i', byte)\n", (603, 614), False, 'import sys, math, numpy, struct\n'), ((6803, 6866), 'matplotlib.pyplot.plot', 'plt.plot', (['ages[0:minLen]', 'evXFe[0:minLen]'], {'label': 'elms[ii]', 'lw': '(2)'}), '(ages[0:minLen], evXFe[0:minLen], label=elms[ii], lw=2)\n', (6811, 6866), True, 'import matplotlib.pyplot as plt\n'), ((7209, 7240), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""TP-AGB time in ky"""'], {}), "('TP-AGB time in ky')\n", (7219, 7240), True, 'import matplotlib.pyplot as plt\n'), ((7249, 7276), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mass fraction"""'], {}), "('Mass fraction')\n", (7259, 7276), True, 'import matplotlib.pyplot as plt\n'), ((7285, 7302), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (7295, 7302), True, 'import matplotlib.pyplot as plt\n'), ((7130, 7195), 'matplotlib.pyplot.plot', 'plt.plot', (['ages[0:minLen]', 'evMassF[0:minLen]'], {'label': 'elms[ii]', 'lw': '(2)'}), '(ages[0:minLen], evMassF[0:minLen], label=elms[ii], lw=2)\n', (7138, 7195), True, 'import matplotlib.pyplot as plt\n'), ((5113, 5128), 'math.log10', 'math.log10', (['val'], {}), '(val)\n', (5123, 5128), False, 'import sys, math, numpy, struct\n'), ((5536, 5551), 'math.log10', 'math.log10', (['val'], {}), '(val)\n', (5546, 5551), False, 'import sys, math, numpy, struct\n'), ((5554, 5572), 'math.log10', 'math.log10', (['sunVal'], {}), '(sunVal)\n', (5564, 5572), False, 'import sys, math, numpy, struct\n')]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import mean_squared_error, r2_score from sklearn.pipeline import make_pipeline import matplotlib.pyplot as plt import numpy as np import random #===============================================================================================# # Number of cases per day of covid 19 in the US for 218 days cases = [ 1,0,1,0,3,0,0,0,0,2,1,0,3,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,8,6,23,25, 20,66,47,64,147,225,290,278,414,267,338,1237,755,2797,3419,4777,3528,5836,8821,10934, 10115,13987,16916,17965,19332,18251,22635,22562,27043,26135,34864,30683,26065,43438, 21597,31534,31705,33251,33288,29145,24156,26385,27158,29164,29002,29916,25995,29468, 26490,25858,37144,29873,33161,29256,23371,23901,25512,31787,30369,29794,29763,19138, 22303,23366,30861,25996,26660,23792,18106,21467,20869,27191,22977,31967,13284,24481, 23405,22860,20522,24268,26229,15342,24958,16429,19680,21304,18123,23553,26177,14790, 24955,14676,20555,29034,29214,17919,17598,17376,20486,21744,22317,25468,21957,18577, 28392,22834,27828,32218,32411,27616,26657,34313,37667,40588,44602,44703,41390,35664, 43644,54357,52730,57718,52228,44361,46329,50304,64771,59260,66281,62918,60469,58858, 60971,67404,72045,74710,67574,63201,57777,63028,70106,72219,74818,64582,61795,54448, 59862,65935,68042,68605,58947,47576,49716,49988,53685,55836,62042,54590,48690,40522, 55540,56307,52799,56729,54686,41893,38986,39318,46500,44864,46754,45265,38679,33076, 37086,46393 ] days = list(range(len(cases))) print(len(days)) days = np.asarray(days) cases = np.asarray(cases) days = days[:, np.newaxis] cases = cases[:, np.newaxis] plt.scatter(days, cases) plt.show() xseq = np.linspace(days.min(), days.max(), 300).reshape(-1,1) regr = make_pipeline(PolynomialFeatures(12), LinearRegression()) regr.fit(days, cases) plt.scatter(days, cases) plt.plot(xseq, regr.predict(xseq), color = "red") plt.show() #===============================================================================================# # Ref # https://espanol.cdc.gov/coronavirus/2019-ncov/cases-updates/previouscases.html
[ "sklearn.preprocessing.PolynomialFeatures", "numpy.asarray", "matplotlib.pyplot.scatter", "sklearn.linear_model.LinearRegression", "matplotlib.pyplot.show" ]
[((1680, 1696), 'numpy.asarray', 'np.asarray', (['days'], {}), '(days)\n', (1690, 1696), True, 'import numpy as np\n'), ((1705, 1722), 'numpy.asarray', 'np.asarray', (['cases'], {}), '(cases)\n', (1715, 1722), True, 'import numpy as np\n'), ((1782, 1806), 'matplotlib.pyplot.scatter', 'plt.scatter', (['days', 'cases'], {}), '(days, cases)\n', (1793, 1806), True, 'import matplotlib.pyplot as plt\n'), ((1807, 1817), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1815, 1817), True, 'import matplotlib.pyplot as plt\n'), ((1970, 1994), 'matplotlib.pyplot.scatter', 'plt.scatter', (['days', 'cases'], {}), '(days, cases)\n', (1981, 1994), True, 'import matplotlib.pyplot as plt\n'), ((2045, 2055), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2053, 2055), True, 'import matplotlib.pyplot as plt\n'), ((1903, 1925), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', (['(12)'], {}), '(12)\n', (1921, 1925), False, 'from sklearn.preprocessing import PolynomialFeatures\n'), ((1927, 1945), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (1943, 1945), False, 'from sklearn.linear_model import LinearRegression\n')]
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test cases for Poisson distribution""" import numpy as np from scipy import stats import mindspore.context as context import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import Tensor from mindspore import dtype context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Prob(nn.Cell): """ Test class: probability of Poisson distribution. """ def __init__(self): super(Prob, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.prob(x_) def test_pdf(): """ Test pdf. """ poisson_benchmark = stats.poisson(mu=0.5) expect_pdf = poisson_benchmark.pmf([-1.0, 0.0, 1.0]).astype(np.float32) pdf = Prob() x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) output = pdf(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_pdf) < tol).all() class LogProb(nn.Cell): """ Test class: log probability of Poisson distribution. """ def __init__(self): super(LogProb, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.log_prob(x_) def test_log_likelihood(): """ Test log_pdf. """ poisson_benchmark = stats.poisson(mu=0.5) expect_logpdf = poisson_benchmark.logpmf([1.0, 2.0]).astype(np.float32) logprob = LogProb() x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32) output = logprob(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all() class Basics(nn.Cell): """ Test class: mean/sd/mode of Poisson distribution. """ def __init__(self): super(Basics, self).__init__() self.p = msd.Poisson([1.44], dtype=dtype.float32) def construct(self): return self.p.mean(), self.p.sd(), self.p.mode() def test_basics(): """ Test mean/standard/mode deviation. """ basics = Basics() mean, sd, mode = basics() expect_mean = 1.44 expect_sd = 1.2 expect_mode = 1 tol = 1e-6 assert (np.abs(mean.asnumpy() - expect_mean) < tol).all() assert (np.abs(sd.asnumpy() - expect_sd) < tol).all() assert (np.abs(mode.asnumpy() - expect_mode) < tol).all() class Sampling(nn.Cell): """ Test class: sample of Poisson distribution. """ def __init__(self, shape, seed=0): super(Sampling, self).__init__() self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32) self.shape = shape def construct(self, rate=None): return self.p.sample(self.shape, rate) def test_sample(): """ Test sample. """ shape = (2, 3) seed = 10 rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32) sample = Sampling(shape, seed=seed) output = sample(rate) assert output.shape == (2, 3, 3) class CDF(nn.Cell): """ Test class: cdf of Poisson distribution. """ def __init__(self): super(CDF, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.cdf(x_) def test_cdf(): """ Test cdf. """ poisson_benchmark = stats.poisson(mu=0.5) expect_cdf = poisson_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32) cdf = CDF() x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) output = cdf(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_cdf) < tol).all() class LogCDF(nn.Cell): """ Test class: log_cdf of Poisson distribution. """ def __init__(self): super(LogCDF, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.log_cdf(x_) def test_log_cdf(): """ Test log_cdf. """ poisson_benchmark = stats.poisson(mu=0.5) expect_logcdf = poisson_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32) logcdf = LogCDF() x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32) output = logcdf(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all() class SF(nn.Cell): """ Test class: survival function of Poisson distribution. """ def __init__(self): super(SF, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.survival_function(x_) def test_survival(): """ Test survival function. """ poisson_benchmark = stats.poisson(mu=0.5) expect_survival = poisson_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32) survival = SF() x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) output = survival(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_survival) < tol).all() class LogSF(nn.Cell): """ Test class: log survival function of Poisson distribution. """ def __init__(self): super(LogSF, self).__init__() self.p = msd.Poisson([0.5], dtype=dtype.float32) def construct(self, x_): return self.p.log_survival(x_) def test_log_survival(): """ Test log survival function. """ poisson_benchmark = stats.poisson(mu=0.5) expect_logsurvival = poisson_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32) logsurvival = LogSF() x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) output = logsurvival(x_) tol = 1e-6 assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()
[ "mindspore.context.set_context", "numpy.array", "scipy.stats.poisson", "mindspore.nn.probability.distribution.Poisson", "mindspore.Tensor" ]
[((924, 992), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE', 'device_target': '"""Ascend"""'}), "(mode=context.GRAPH_MODE, device_target='Ascend')\n", (943, 992), True, 'import mindspore.context as context\n'), ((1334, 1355), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (1347, 1355), False, 'from scipy import stats\n'), ((2002, 2023), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (2015, 2023), False, 'from scipy import stats\n'), ((3448, 3492), 'mindspore.Tensor', 'Tensor', (['[1.0, 2.0, 3.0]'], {'dtype': 'dtype.float32'}), '([1.0, 2.0, 3.0], dtype=dtype.float32)\n', (3454, 3492), False, 'from mindspore import Tensor\n'), ((3926, 3947), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (3939, 3947), False, 'from scipy import stats\n'), ((4575, 4596), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (4588, 4596), False, 'from scipy import stats\n'), ((5263, 5284), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (5276, 5284), False, 'from scipy import stats\n'), ((5966, 5987), 'scipy.stats.poisson', 'stats.poisson', ([], {'mu': '(0.5)'}), '(mu=0.5)\n', (5979, 5987), False, 'from scipy import stats\n'), ((1162, 1201), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (1173, 1201), True, 'import mindspore.nn.probability.distribution as msd\n'), ((1811, 1850), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (1822, 1850), True, 'import mindspore.nn.probability.distribution as msd\n'), ((2482, 2522), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[1.44]'], {'dtype': 'dtype.float32'}), '([1.44], dtype=dtype.float32)\n', (2493, 2522), True, 'import mindspore.nn.probability.distribution as msd\n'), ((3180, 3239), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[[1.0], [0.5]]'], {'seed': 'seed', 'dtype': 'dtype.float32'}), '([[1.0], [0.5]], seed=seed, dtype=dtype.float32)\n', (3191, 3239), True, 'import mindspore.nn.probability.distribution as msd\n'), ((3755, 3794), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (3766, 3794), True, 'import mindspore.nn.probability.distribution as msd\n'), ((4392, 4431), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (4403, 4431), True, 'import mindspore.nn.probability.distribution as msd\n'), ((5059, 5098), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (5070, 5098), True, 'import mindspore.nn.probability.distribution as msd\n'), ((5759, 5798), 'mindspore.nn.probability.distribution.Poisson', 'msd.Poisson', (['[0.5]'], {'dtype': 'dtype.float32'}), '([0.5], dtype=dtype.float32)\n', (5770, 5798), True, 'import mindspore.nn.probability.distribution as msd\n'), ((1465, 1491), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0]'], {}), '([-1.0, 0.0, 1.0])\n', (1473, 1491), True, 'import numpy as np\n'), ((2140, 2160), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (2148, 2160), True, 'import numpy as np\n'), ((4056, 4082), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0]'], {}), '([-1.0, 0.0, 1.0])\n', (4064, 4082), True, 'import numpy as np\n'), ((4716, 4741), 'numpy.array', 'np.array', (['[0.5, 1.0, 2.5]'], {}), '([0.5, 1.0, 2.5])\n', (4724, 4741), True, 'import numpy as np\n'), ((5401, 5427), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0]'], {}), '([-1.0, 0.0, 1.0])\n', (5409, 5427), True, 'import numpy as np\n'), ((6116, 6142), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0]'], {}), '([-1.0, 0.0, 1.0])\n', (6124, 6142), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from nltk.tokenize import TweetTokenizer from nltk.stem.snowball import SnowballStemmer import numpy as np from collections import defaultdict,Counter import logging as logger from nortok.stopwords import get_norwegian_stopwords import pickle import gzip def dd_def(): return 0 def _fit_tokenizer(texts,tokfunc,max_length=None): """ Makes word dictionaries based on text. Zero (0) is reserved. """ doc_count=0 wordcount=Counter() ind2word={} word2ind=defaultdict(dd_def) maxInd=0 for text in texts: out=tokfunc(text,max_length=max_length) for c in out: wordcount[c]+=1 os=set(out) for c in os: if c not in word2ind: maxInd+=1 word2ind[c]=maxInd ind2word[maxInd]=c return word2ind,ind2word,wordcount def _max_word_vocab(word2ind,ind2word,wcs,max_words=None): if max_words is None: return word2ind,ind2word if len(word2ind)<max_words: logger.info('len(word2ind)<=max_words:{0}'.format(max_words)) return word2ind,ind2word w2i=defaultdict(dd_def) i2w={} wordInd=1 for w in wcs: word=w[0] if wordInd>=max_words: break w2i[word]=wordInd i2w[wordInd]=word wordInd+=1 return w2i,i2w def _texts_to_seqs(texts,tokfunc,word2ind,max_len,n_texts=None): if n_texts is None: n_texts=len(texts) seqs=np.zeros((n_texts,max_len),dtype='int32') for iii,txt in enumerate(texts): toks=tokfunc(txt,max_len) ml=min(max_len,len(toks)) seqs[iii,:ml]=[word2ind[tok] for tok in toks] return seqs def texts_to_seqs_var(texts,tokfunc,word2ind,max_len=None): for txt in texts: toks=tokfunc(txt,max_length=max_len) yield [word2ind[tok] for tok in toks] class BaseTokenizer(object): def __init__(self,word2ind=None,max_words=None,min_frequency=2,**kwargs): if word2ind is not None: self.document_count=1 self.word2ind=defaultdict(dd_def,word2ind) self.min_frequency=min_frequency def tokenize(self,text,max_length=None): toks=text.split() if max_length: toks=toks[:max_length] return toks def texts_to_sequences(self,texts,max_len,n_texts=None): seqs=_texts_to_seqs(texts,self.tokenize,self.word2ind,max_len,n_texts) return seqs def var_length_texts_to_sequences(self,texts): return texts_to_seqs_var(texts,self.tokenize,self.word2ind) def fit_tokenizer(self,texts,max_length,max_words=None): word2ind,ind2word,wordcount=_fit_tokenizer(texts,self.tokenize,max_length=max_length) wordcount=dict((q,r) for q,r in wordcount.items() if r>=self.min_frequency) def skey(x): return x[1] wcs=list(wordcount.items()) wcs.sort(key=skey,reverse=True) self.wordcount=wcs self.word2ind,self.ind2word=_max_word_vocab(word2ind,ind2word,self.wordcount,max_words) self.max_words=max_words def prune_vocab(self,max_words=None): if max_words>=self.max_words: raise ValueError("Can't prune with larger vocabulary.") self.word2ind,self.ind2word=_max_word_vocab(self.word2ind,self.ind2word,self.wordcount,max_words) self.max_words=max_words def save_tokenizer(self,savepath,extraobjs=None): w2i=list(self.word2ind.items()) i2w=list(self.ind2word.items()) outdict={'word2ind':w2i,'ind2word':i2w,'max_words':self.max_words} if extraobjs: outdict.update(extraobjs) with gzip.open(savepath,'wb') as ff: pickle.dump(outdict,ff) @staticmethod def load_tokenizer(savepath,initClass=None): with gzip.open(savepath,'rb') as ff: indict=pickle.load(ff) indict['word2ind']=defaultdict(dd_def,indict['word2ind']) indict['ind2word']=dict(indict['ind2word']) tok=initClass(indict) for k,v in indict.items(): setattr(tok,k,v) return tok class WordTokenizer(BaseTokenizer): def __init__(self,word2ind=None,use_stopwords=False,use_stemmer=False,max_words=None,**kwargs): self.strip_handles=False super(WordTokenizer, self).__init__(**kwargs) self.tweetok=TweetTokenizer(**kwargs) if use_stopwords: if isinstance(use_stopwords,set): self.stopwords=use_stopwords else: self.stopwords=get_norwegian_stopwords() else: self.stopwords=False self.use_stemmer=use_stemmer if use_stemmer==True: self.stemmer=SnowballStemmer('norwegian') def def_eobjs(self): return {'use_stemmer':self.use_stemmer,'stopwords':self.stopwords} def tokenize(self,text,max_length=None): toks=self.tweetok.tokenize(text) if max_length: toks=toks[:max_length] if self.stopwords and (not self.use_stemmer): toks=[t for t in toks if t not in self.stopwords] elif self.stopwords and self.use_stemmer: toks=[self.stemmer.stem(t) for t in toks if t not in self.stopwords] elif (not self.stopwords) and self.use_stemmer: toks=[self.stemmer.stem(t) for t in toks] return toks def save_tokenizer(self,savepath): eobjs=self.def_eobjs() super(WordTokenizer, self).save_tokenizer(savepath=savepath,extraobjs=eobjs) class RawCharTokenizer(BaseTokenizer): def __init__(self,word2ind=None,max_words=None): self.max_words=max_words def tokenize(self,text,max_length=None): toks=list(text.lower()) if max_length: toks=toks[:max_length] return toks class HierarchicalTokenizer(BaseTokenizer): def __init__(self,word2ind=None,max_words=None): self.max_words=max_words self.wordtok=WordTokenizer() self.chartok=RawCharTokenizer(max_words=max_words) def tokenize(self,text,max_len_words=512,max_len_chars=20): wds=self.wordtok.tokenize(text,max_length=max_len_words) toks=[self.chartok.tokenize(wd,max_length=max_len_chars)] return toks
[ "nltk.tokenize.TweetTokenizer", "pickle.dump", "gzip.open", "pickle.load", "collections.Counter", "nltk.stem.snowball.SnowballStemmer", "numpy.zeros", "collections.defaultdict", "nortok.stopwords.get_norwegian_stopwords" ]
[((494, 503), 'collections.Counter', 'Counter', ([], {}), '()\n', (501, 503), False, 'from collections import defaultdict, Counter\n'), ((533, 552), 'collections.defaultdict', 'defaultdict', (['dd_def'], {}), '(dd_def)\n', (544, 552), False, 'from collections import defaultdict, Counter\n'), ((1159, 1178), 'collections.defaultdict', 'defaultdict', (['dd_def'], {}), '(dd_def)\n', (1170, 1178), False, 'from collections import defaultdict, Counter\n'), ((1506, 1549), 'numpy.zeros', 'np.zeros', (['(n_texts, max_len)'], {'dtype': '"""int32"""'}), "((n_texts, max_len), dtype='int32')\n", (1514, 1549), True, 'import numpy as np\n'), ((3933, 3972), 'collections.defaultdict', 'defaultdict', (['dd_def', "indict['word2ind']"], {}), "(dd_def, indict['word2ind'])\n", (3944, 3972), False, 'from collections import defaultdict, Counter\n'), ((4382, 4406), 'nltk.tokenize.TweetTokenizer', 'TweetTokenizer', ([], {}), '(**kwargs)\n', (4396, 4406), False, 'from nltk.tokenize import TweetTokenizer\n'), ((2098, 2127), 'collections.defaultdict', 'defaultdict', (['dd_def', 'word2ind'], {}), '(dd_def, word2ind)\n', (2109, 2127), False, 'from collections import defaultdict, Counter\n'), ((3690, 3715), 'gzip.open', 'gzip.open', (['savepath', '"""wb"""'], {}), "(savepath, 'wb')\n", (3699, 3715), False, 'import gzip\n'), ((3734, 3758), 'pickle.dump', 'pickle.dump', (['outdict', 'ff'], {}), '(outdict, ff)\n', (3745, 3758), False, 'import pickle\n'), ((3839, 3864), 'gzip.open', 'gzip.open', (['savepath', '"""rb"""'], {}), "(savepath, 'rb')\n", (3848, 3864), False, 'import gzip\n'), ((3890, 3905), 'pickle.load', 'pickle.load', (['ff'], {}), '(ff)\n', (3901, 3905), False, 'import pickle\n'), ((4739, 4767), 'nltk.stem.snowball.SnowballStemmer', 'SnowballStemmer', (['"""norwegian"""'], {}), "('norwegian')\n", (4754, 4767), False, 'from nltk.stem.snowball import SnowballStemmer\n'), ((4573, 4598), 'nortok.stopwords.get_norwegian_stopwords', 'get_norwegian_stopwords', ([], {}), '()\n', (4596, 4598), False, 'from nortok.stopwords import get_norwegian_stopwords\n')]
import numpy.testing as test import numpy as np from unittest import TestCase from PyFVCOM.ocean import * class OceanToolsTest(TestCase): def setUp(self): """ Make a set of data for the various ocean tools functions """ self.lat = 30 self.z = np.array(9712.02) self.t = np.array(40) self.s = np.array(40) self.p = np.array(10000) self.pr = np.array(0) self.c = np.array(1.888091) self.td = np.array(20) # for dens_jackett self.sd = np.array(20) # for dens_jackett self.pd = np.array(1000) # for dens_jackett self.cond = np.array(53000) # for cond2salt self.h = np.array((10, 20, 30, 100)) # depths for stokes self.U = 0.25 # U for stokes and dissipation self.omega = 1 / 44714.1647021416 # omega for stokes self.z0 = np.array((0.0025)) # z0 for stokes self.rho = 1025 self.temp = np.arange(-20, 50, 10) self.dew = np.linspace(0, 20, len(self.temp)) # Use some of the Fofonoff and Millard (1983) checks. def test_sw_svan(self): """ Specific volume anomaly """ test_svan = 9.8130210e-6 res_svan = sw_svan(self.t, self.s, self.p) test.assert_almost_equal(res_svan, test_svan, decimal=1) def test_res_z(self): """ Pressure to depth """ test_z = 9712.02 res_z = pressure2depth(self.p, self.lat) # Hmmm, not very accurate! test.assert_almost_equal(res_z, test_z, decimal=-1) # The return to depth is a bit inaccurate, not sure why. def test_depth2pressure(self): """ Depth to pressure """ test_p = 9712.653 res_pres = depth2pressure(self.z, self.lat) # Hmmm, horribly inaccurate! test.assert_almost_equal(res_pres, test_p, decimal=-4) def test_cp_sw(self): """ Specific heat of seawater """ test_cp = 3849.5 res_cp = cp_sw(self.t, self.s, self.p) test.assert_almost_equal(res_cp, test_cp, decimal=1) def test_dT_adiab_sw(self): """ Adiabatic temperature gradient """ test_atg = 0.0003255976 res_atg = dT_adiab_sw(self.t, self.s, self.p) test.assert_almost_equal(res_atg, test_atg, decimal=6) def test_theta_sw(self): """ Potential temperature for sea water """ test_theta = 36.89073 res_theta = theta_sw(self.t, self.s, self.p, self.pr) test.assert_almost_equal(res_theta, test_theta, decimal=2) def test_sw_sal78(self): """ Salinity from conductivity, temperature and pressure (sw_sal78) """ test_salinity = 40 res_sal78 = sw_sal78(self.c, self.t, self.p) test.assert_almost_equal(res_sal78, test_salinity, decimal=5) def test_dens_jackett(self): """ Density from temperature, salinity and pressure """ test_dens = 1017.728868019642 res_dens = dens_jackett(self.td, self.sd, self.pd) test.assert_equal(res_dens, test_dens) def test_cond2salt(self): """ Conductivity to salinity """ test_salt = 34.935173507811783 res_salt = cond2salt(self.cond) test.assert_equal(res_salt, test_salt) # def test_stokes(self): # """ Stokes number """ # test_stokes, test_u_star, test_delta = np.nan, np.nan, np.nan # res_stokes, res_u_star, res_delta = stokes(self.h, self.U, self.omega, self.z0, U_star=True, delta=True) # test.assert_equal(res_stokes, test_stokes) # test.assert_equal(res_u_star, test_u_star) # test.assert_equal(res_delta, test_delta) def test_dissipation(self): """ Tidal dissipation for a given tidal harmonic """ test_dissipation = 0.0400390625 res_dissipation = dissipation(self.rho, self.U) test.assert_equal(res_dissipation, test_dissipation) def test_rhum(self): """ Relative humidity from dew temperature and air temperature """ test_rhum = np.array((487.36529085, 270.83391406, 160.16590946, 100.0, 65.47545095, 44.70251971, 31.67003471)) res_rhum = rhum(self.dew, self.temp) test.assert_almost_equal(res_rhum, test_rhum)
[ "numpy.array", "numpy.testing.assert_equal", "numpy.arange", "numpy.testing.assert_almost_equal" ]
[((275, 292), 'numpy.array', 'np.array', (['(9712.02)'], {}), '(9712.02)\n', (283, 292), True, 'import numpy as np\n'), ((310, 322), 'numpy.array', 'np.array', (['(40)'], {}), '(40)\n', (318, 322), True, 'import numpy as np\n'), ((340, 352), 'numpy.array', 'np.array', (['(40)'], {}), '(40)\n', (348, 352), True, 'import numpy as np\n'), ((370, 385), 'numpy.array', 'np.array', (['(10000)'], {}), '(10000)\n', (378, 385), True, 'import numpy as np\n'), ((404, 415), 'numpy.array', 'np.array', (['(0)'], {}), '(0)\n', (412, 415), True, 'import numpy as np\n'), ((433, 451), 'numpy.array', 'np.array', (['(1.888091)'], {}), '(1.888091)\n', (441, 451), True, 'import numpy as np\n'), ((470, 482), 'numpy.array', 'np.array', (['(20)'], {}), '(20)\n', (478, 482), True, 'import numpy as np\n'), ((521, 533), 'numpy.array', 'np.array', (['(20)'], {}), '(20)\n', (529, 533), True, 'import numpy as np\n'), ((572, 586), 'numpy.array', 'np.array', (['(1000)'], {}), '(1000)\n', (580, 586), True, 'import numpy as np\n'), ((627, 642), 'numpy.array', 'np.array', (['(53000)'], {}), '(53000)\n', (635, 642), True, 'import numpy as np\n'), ((677, 704), 'numpy.array', 'np.array', (['(10, 20, 30, 100)'], {}), '((10, 20, 30, 100))\n', (685, 704), True, 'import numpy as np\n'), ((860, 876), 'numpy.array', 'np.array', (['(0.0025)'], {}), '(0.0025)\n', (868, 876), True, 'import numpy as np\n'), ((940, 962), 'numpy.arange', 'np.arange', (['(-20)', '(50)', '(10)'], {}), '(-20, 50, 10)\n', (949, 962), True, 'import numpy as np\n'), ((1236, 1292), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_svan', 'test_svan'], {'decimal': '(1)'}), '(res_svan, test_svan, decimal=1)\n', (1260, 1292), True, 'import numpy.testing as test\n'), ((1471, 1522), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_z', 'test_z'], {'decimal': '(-1)'}), '(res_z, test_z, decimal=-1)\n', (1495, 1522), True, 'import numpy.testing as test\n'), ((1777, 1831), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_pres', 'test_p'], {'decimal': '(-4)'}), '(res_pres, test_p, decimal=-4)\n', (1801, 1831), True, 'import numpy.testing as test\n'), ((1981, 2033), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_cp', 'test_cp'], {'decimal': '(1)'}), '(res_cp, test_cp, decimal=1)\n', (2005, 2033), True, 'import numpy.testing as test\n'), ((2208, 2262), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_atg', 'test_atg'], {'decimal': '(6)'}), '(res_atg, test_atg, decimal=6)\n', (2232, 2262), True, 'import numpy.testing as test\n'), ((2445, 2503), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_theta', 'test_theta'], {'decimal': '(2)'}), '(res_theta, test_theta, decimal=2)\n', (2469, 2503), True, 'import numpy.testing as test\n'), ((2702, 2763), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_sal78', 'test_salinity'], {'decimal': '(5)'}), '(res_sal78, test_salinity, decimal=5)\n', (2726, 2763), True, 'import numpy.testing as test\n'), ((2967, 3005), 'numpy.testing.assert_equal', 'test.assert_equal', (['res_dens', 'test_dens'], {}), '(res_dens, test_dens)\n', (2984, 3005), True, 'import numpy.testing as test\n'), ((3165, 3203), 'numpy.testing.assert_equal', 'test.assert_equal', (['res_salt', 'test_salt'], {}), '(res_salt, test_salt)\n', (3182, 3203), True, 'import numpy.testing as test\n'), ((3808, 3860), 'numpy.testing.assert_equal', 'test.assert_equal', (['res_dissipation', 'test_dissipation'], {}), '(res_dissipation, test_dissipation)\n', (3825, 3860), True, 'import numpy.testing as test\n'), ((3982, 4085), 'numpy.array', 'np.array', (['(487.36529085, 270.83391406, 160.16590946, 100.0, 65.47545095, 44.70251971,\n 31.67003471)'], {}), '((487.36529085, 270.83391406, 160.16590946, 100.0, 65.47545095, \n 44.70251971, 31.67003471))\n', (3990, 4085), True, 'import numpy as np\n'), ((4134, 4179), 'numpy.testing.assert_almost_equal', 'test.assert_almost_equal', (['res_rhum', 'test_rhum'], {}), '(res_rhum, test_rhum)\n', (4158, 4179), True, 'import numpy.testing as test\n')]
from torch.utils.data import Sampler import numpy as np def get_chunks(l, n): for i in range(0, len(l), n): yield l[i:i + n] def flatten(l): return [item for sublist in l for item in sublist] class LengthSortSampler(Sampler): def __init__(self, data_source, bs): super().__init__(data_source) self.data_source = data_source self.bs = bs try: int(self.data_source[0]) lengths = self.data_source except TypeError: lengths = [len(x) for x in self.data_source] inds = np.argsort(lengths)[::-1] chunks = list(get_chunks(inds, bs)) chunk_inds = list(range(len(chunks) - 1)) np.random.shuffle(chunk_inds) chunk_inds = list(chunk_inds) + [len(chunk_inds)] self.inds = flatten([chunks[i] for i in chunk_inds]) def __len__(self): return len(self.data_source) def __iter__(self): return iter(self.inds)
[ "numpy.argsort", "numpy.random.shuffle" ]
[((704, 733), 'numpy.random.shuffle', 'np.random.shuffle', (['chunk_inds'], {}), '(chunk_inds)\n', (721, 733), True, 'import numpy as np\n'), ((576, 595), 'numpy.argsort', 'np.argsort', (['lengths'], {}), '(lengths)\n', (586, 595), True, 'import numpy as np\n')]
import math import numpy as np class Strategy: """Options strategy class. Takes in a number of `StrategyLeg`'s (option contracts), and filters that determine entry and exit conditions. """ def __init__(self, schema): self.schema = schema self.legs = [] self.conditions = [] self.exit_thresholds = (math.inf, math.inf) def add_leg(self, leg): """Adds leg to the strategy""" assert self.schema == leg.schema leg.name = "leg_{}".format(len(self.legs) + 1) self.legs.append(leg) return self def add_legs(self, legs): """Adds legs to the strategy""" for leg in legs: self.add_leg(leg) return self def remove_leg(self, leg_number): """Removes leg from the strategy""" self.legs.pop(leg_number) return self def clear_legs(self): """Removes *all* legs from the strategy""" self.legs = [] return self def add_exit_thresholds(self, profit_pct=math.inf, loss_pct=math.inf): """Adds maximum profit/loss thresholds. Both **must** be >= 0.0 Args: profit_pct (float, optional): Max profit level. Defaults to math.inf loss_pct (float, optional): Max loss level. Defaults to math.inf """ assert profit_pct >= 0 assert loss_pct >= 0 self.exit_thresholds = (profit_pct, loss_pct) def filter_thresholds(self, entry_cost, current_cost): """Returns a `pd.Series` of booleans indicating where profit (loss) levels exceed the given thresholds. Args: entry_cost (pd.Series): Total _entry_ cost of inventory row. current_cost (pd.Series): Present cost of inventory row. Returns: pd.Series: Indicator series with `True` for every row that exceeds the specified profit/loss thresholds. """ profit_pct, loss_pct = self.exit_thresholds excess_return = (current_cost / entry_cost + 1) * -np.sign(entry_cost) return (excess_return >= profit_pct) | (excess_return <= -loss_pct) def __repr__(self): return "Strategy(legs={}, exit_thresholds={})".format(self.legs, self.exit_thresholds)
[ "numpy.sign" ]
[((2077, 2096), 'numpy.sign', 'np.sign', (['entry_cost'], {}), '(entry_cost)\n', (2084, 2096), True, 'import numpy as np\n')]
import os, math import numpy as np import pandas as pd import matplotlib.pyplot as plt #from matplotlib.collections import PatchCollection from sklearn import linear_model from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from importlib import reload # Constants #files = ['time_series_19-covid-Confirmed', 'time_series_19-covid-Deaths', 'time_series_19-covid-Recovered'] #labels = ['Confirmed', 'Deaths', 'Recovered']# until 23 March 2020 # Since 24 March 2020 #files = ['time_series_covid19_confirmed_global', 'time_series_covid19_deaths_global'] #labels = ['confirmed', 'deaths'] # Since 28 March 2020 files = ['time_series_covid19_confirmed_global', 'time_series_covid19_deaths_global', 'time_series_covid19_recovered_global'] labels = ['confirmed', 'deaths', 'recovered'] def open_csvs(): ''' Finding and opening your most recent data download if timestamp == None. Alternatively, specify a substring of requested timestamp to select which files to open. ''' timestamp = None #timestamp = '20200330_15-26' df=dict() lists = list([list(), list(), list()]) with os.scandir() as it: for entry in it: for i in range(3): if (timestamp==None or timestamp in entry.name) and files[i] in entry.name\ and entry.is_file(): lists[i].append(entry.name) for i in range(3): lists[i].sort() df[labels[i]] = pd.read_csv(lists[i][-1]) return df def data_preparation(df, country, output): ''' This is used for the JHU CSSE dataset. output can be 'confirmed', 'deaths', 'recovered', 'active' or 'all' 'active' returns dft['confirmed']-dft['deaths']-dft['recovered'] 'all' returns all three as columns in a DataFrame as used in death_over_cases.py ''' sets = dict({'EU': ['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden']})#, #'China': [['Anhui', 'China'], ['Beijing', 'China'], ['Chongqing', 'China'], ['Fujian', 'China'], ['Gansu', 'China'], ['Guangdong', 'China'], ['Guangxi', 'China'], ['Guizhou', 'China'], ['Hainan', 'China'], ['Hebei', 'China'], ['Heilongjiang', 'China'], ['Henan', 'China'], ['Hong Kong', 'China'], ['Hubei', 'China'], ['Hunan', 'China'], ['Inner Mongolia', 'China'], ['Jiangsu', 'China'], ['Jiangxi', 'China'], ['Jilin', 'China'], ['Liaoning', 'China'], ['Macau', 'China'], ['Ningxia', 'China'], ['Qinghai', 'China'], ['Shaanxi', 'China'], ['Shandong', 'China'], ['Shanghai', 'China'], ['Shanxi', 'China'], ['Sichuan', 'China'], ['Tianjin', 'China'], ['Tibet', 'China'], ['Xinjiang', 'China'], ['Yunnan', 'China'], ['Zhejiang', 'China']]}) #sets = dict({'EU': ['Croatia', 'Hungary']}) # test only l = list() if country == 'EU' or country == 'China' or country == 'Australia': ''' First, recursive implementation l_members = list() for member in sets[country]: l_members.append(data_preparation(df, member, only_cases)) dft_members = pd.concat(l_members, axis=1) return dft_members.sum(axis=1) ''' M = dict() # these matrices are the booleans of selections for each Province/State, we take their multiple for i in range(3): k = labels[i] M[k] = list() if country == 'China' or country == 'Australia': M[k].append((df[k]['Province/State'].notna()) & (df[k]['Country/Region']==country)) l.append(df[k][M[k][0]].iloc[:,4:].sum(axis=0)) else: # country == 'EU' for member in sets[country]: #print(member) if isinstance(member, str): M[k].append((df[k]['Province/State'].isna()) & (df[k]['Country/Region']==member)) elif len(member)==2: # if it's a pair of [Province/State, Country/Region] M[k].append((df[k]['Province/State']==member[0]) & (df[k]['Country/Region']==member[1])) l.append(df[k][np.sum(np.array(M[k]), axis=0)>=1].iloc[:,4:].sum(axis=0)) dft = pd.concat(l, ignore_index=True, axis=1) #dft.rename(columns={i: labels[i] for i in range(3)}, inplace=True) else: for i in range(3): k = labels[i] if isinstance(country, str): l.append(df[k][np.logical_and(df[k]['Province/State'].isna(), df[k]['Country/Region']==country)].iloc[:,4:]) elif len(country)==2: # if it's a pair of [Province/State, Country/Region] l.append(df[k][np.logical_and(df[k]['Province/State']==country[0], df[k]['Country/Region']==country[1])].iloc[:,4:]) dft = pd.concat(l, ignore_index=True, axis=0).transpose() #print(dft) dft.rename(columns={i: labels[i] for i in range(3)}, inplace=True) #print(dft) if output=='all': df_ts = dft elif output=='active': print('Number of recovered in the past eight days:') print(dft['recovered'][-8:]) df_ts = dft['confirmed']-dft['deaths']-dft['recovered'] # On 24 March 2020, recovered is not available; on 28 March 2020 it is there again. else: df_ts = dft[output] #print(df_ts) #df_ts.rename(index={df_ts.index[i]: pd.to_datetime(df_ts.index)[i] for i in range(len(df_ts.index))}, inplace=True) df_ts.rename(index=pd.Series(df_ts.index, index=df_ts.index).apply(lambda x: pd.to_datetime(x)), inplace=True) #print(df_ts) return df_ts def rm_early_zeros(ts): ''' Removes early zeros and NaNs from a pandas time series. It finds last (most recent) zero or NaN in time series and omits all elements before and including this last zero or NaN. Returns the remaining time series which is free of zeros and NaN. pd.Series([0,0,0,0,1,2,0,0,3,6]) -> pd.Series([3,6]) ''' zeroindices = ts[(ts==0) | ts.isna()].index if len(zeroindices)==0: return ts else: successor = np.nonzero((ts.index==zeroindices.max()))[0][0] + 1 return ts[successor:] def rm_consecutive_early_zeros(ts, keep=1): ''' Removes first consecutive subsequence of early zeros from a pandas time series except for the last keep if there are that many. rm_consecutive_early_zeros(pd.Series([0,0,0,0,1,2,3,6]), 2) -> pd.Series([0,0,1,2,3,6]) ''' zeroindices = ts[ts==0].index if len(zeroindices)==0: return ts else: first_pos_index = np.nonzero((ts.index==ts[ts>0].index[0]))[0][0] if first_pos_index <= keep: return ts else: return ts[first_pos_index-keep:] def separated(s, lang='en', k=3): ''' Input must be a string. Puts a comma between blocks of k=3 digits: '1000000' -> '1,000,000' ''' if lang == 'de': chr = '.' else: chr = ',' if len(s)>=5: l=list() for i in range(len(s)//k): l.insert(0, s[len(s)-(i+1)*k:len(s)-i*k]) if len(s) % k !=0: l.insert(0, s[:len(s)-(i+1)*k]) return chr.join(l) else: return s def x2str(x, width): ''' Rounds a number to tenths. If width is greater than its length, then it pads it with space. If width<0, then it does no padding. ''' #if x<0.1 and x>-0.1 and width>=6: # s = '{:.3f}'.format(x) #str(round(x*1000)/1000) if x<1 and x>-1 and width>=5: s = '{:.2f}'.format(x) #str(round(x*100)/100) elif x<10 and x>-10 and width>=4: s = '{:.1f}'.format(x) #str(round(x*10)/10) else: s = '{:.0f}'.format(x) #str(int(round(x))) if width > len(s): return s.rjust(width) else: return s def n2str(n, width): ''' Takes integers. If width is greater than its length, then it pads it with space. If width<0, then it does no padding. ''' s = str(n) if width > len(s): return s.rjust(width) else: return s def interpolate(df_ts, window_length): ''' This returns (or interpolates, if not found) from the cumulatives' time series the entry at last entry minus (window_length-1) days. ''' # date of interest: doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if doi in df_ts.index: return df_ts.loc[doi] else: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days return c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] elif len(nxt)>0: return nxt.iloc[0] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. return prv.iloc[-1] ''' def truncate_before(df_ts, window_length): #This returns (or interpolates, if not found) from the time series the entry at last entry minus # (window_length-1) days. # date of interest: doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if doi in df_ts.index: return df_ts.loc[doi:] else: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days df_ts.loc[doi] = c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] elif len(nxt)>0: df_ts.loc[doi] = nxt.iloc[0] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. df_ts.loc[doi] = prv.iloc[-1] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] ''' def truncate_before(df_ts, window_length, fill_all_missing): ''' This returns (or interpolates, if not found) from the cumulatives' time series the entries from (last entry minus (window_length-1) days) until the last entry. When some days are missing from the cumulative time series df_ts, then I could assign them zero increments and assign all increments to the first day after the gap. Instead, I spread out the growth uniformly across the missing days. The first solution (0, 0, all increment) would give the fitting a tendency to see quickly growing cumulatives. ''' df_ts_new = df_ts.copy() r = range(window_length-1, 0, -1) if fill_all_missing else [window_length-1] for i in r: # date of interest: #doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') doi = df_ts.index[-1]-pd.Timedelta(f'{i} days') if doi not in df_ts.index: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days df_ts_new.loc[doi] = c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] elif len(nxt)>0: df_ts_new.loc[doi] = nxt.iloc[0] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. df_ts_new.loc[doi] = prv.iloc[-1] df_ts_new = df_ts_new.sort_index(inplace=False) return df_ts_new.loc[df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days'):] def analysis(df_ts, window_length, exp_or_lin, extent='full'): ''' df_ts: pd.Series, it is a time series, can be totals or no. per e.g. 100,000 ppl window_length: int exp_or_lin in ['exp', 'lin'] For 'exp', because of log2, this requires all entries in df_ts to be positive. For 'lin', because of log2, this requires last entry in df_ts to be positive. extent in ['full', 'minimal'] 'minimal' doesn't compute predictions. output: results = [ daily increment in natural units (units of df_ts): float, daily growth rate in percentage: float, doubling time in days: float or 0 for 'minimal', current cases (df_ts.iloc[-1]), projection_lower: type(df_ts.dtype) or 0 for 'minimal', projection_upper: type(df_ts.dtype) or 0 for 'minimal', model_score=R^2: float, difference of model fit on last date and last data point in log space: float ] model: sklearn.linear_model #failure: 0 or 1; 1 if it failed due to nonpositive number in exponential fit or too short time series ''' i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments #if len(i_ts)<window_length:# or (exp_or_lin=='exp' and (i_ts.iloc[-window_length:]<=0).sum()>=5): if len(i_ts)==0 or (i_ts.index[-1]-i_ts.index[0]).days<window_length-1: results = 8 * [0] results[-1] = 100 return results, None intl_lo_days = 4 intl_hi_days = 6 results = [None] * 8 results[3] = df_ts.iloc[-1] model = linear_model.LinearRegression(fit_intercept=True) if exp_or_lin=='exp': df_ts_orig = df_ts.copy() df_ts_0 = truncate_before(df_ts_orig, window_length+1, fill_all_missing=False) # For the fit to increments. df_ts = truncate_before(df_ts, window_length+1, fill_all_missing=True) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments i_ts[i_ts<=0] = 1 y = i_ts.values ylog = np.log(y) model.fit((i_ts.index-i_ts.index[-1]).days.values.reshape(-1, 1), ylog) results[0] = math.exp(model.intercept_) # For doubling, the area of the increments is equal to df_ts[-1] # cf. https://www.wolframalpha.com/input/?i=integrate+%28exp%28a+t+%2Bb%29+dt%29+from+t%3D0+to+x if model.coef_[0]!=0: temp2 = math.exp(model.intercept_)/model.coef_[0] temp = model.coef_[0]*df_ts.iloc[-1]/math.exp(model.intercept_) + 1 if temp>0: results[2] = math.log(temp)/model.coef_[0] else: results[2] = np.inf else: results[2] = df_ts.iloc[-1]/math.exp(model.intercept_) if extent == 'full': if model.coef_[0]!=0: results[4] = (math.exp(model.coef_[0]*intl_lo_days)-1)*temp2 + df_ts.iloc[-1] results[5] = (math.exp(model.coef_[0]*intl_hi_days)-1)*temp2 + df_ts.iloc[-1] else: results[4] = math.exp(model.intercept_)*intl_lo_days + df_ts.iloc[-1] results[5] = math.exp(model.intercept_)*intl_hi_days + df_ts.iloc[-1] #if (i_ts_orig.iloc[-window_length:]>0).all(): #if (truncate_before(i_ts_orig, window_length, fill_all_missing=False)>0).all(): i_ts_0 = (df_ts_0 - df_ts_0.shift(1))[1:] if (i_ts_0>0).all(): #results[6] = model.score(np.arange(-window_length+1, 1).reshape(-1, 1), ylog) results[6] = model.score((i_ts_0.index-i_ts_0.index[-1]).days.values.reshape(-1, 1), ylog) else: results[6] = 0 #if df_ts.iloc[-1]==df_ts.iloc[-window_length]: #if df_ts.iloc[-1]==interpolate(df_ts, window_length): # If there is no growth, then exp is not good approx. first_day = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if df_ts.iloc[-1]==df_ts.loc[first_day]: # If there is no growth, then exp is not good approx. results[7] = 100 # Exp overestimates growth by a factor of infinity. else: if model.coef_[0]!=0: #results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 #results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-interpolate(df_ts, window_length))-1 results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 else: #results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 #results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-interpolate(df_ts, window_length))-1 results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 elif exp_or_lin=='lin': df_ts_orig = df_ts.copy() df_ts_0 = truncate_before(df_ts_orig, window_length+1, fill_all_missing=False) # For the fit to increments. df_ts = truncate_before(df_ts, window_length+1, fill_all_missing=True) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments y = i_ts.values model.fit((i_ts.index-i_ts.index[-1]).days.values.reshape(-1, 1), y) results[0] = model.intercept_ if model.coef_[0]!=0: if 2*model.coef_[0]*df_ts.iloc[-1] >= - model.intercept_*model.intercept_: results[2] = (-model.intercept_ + math.sqrt(model.intercept_*model.intercept_ + 2*model.coef_[0]*df_ts.iloc[-1]))/model.coef_[0] else: results[2] = np.inf else: if model.intercept_!=0: results[2] = df_ts.iloc[-1]/model.intercept_ else: if df_ts.iloc[-1]!=0: results[2] = np.inf else: results[2] = 0 # model.coef_[0]==model.intercept_==0 if extent == 'full': if model.coef_[0]*model.intercept_<0 and\ ((model.coef_[0]>0 and -model.intercept_<intl_lo_days*model.coef_)\ or (model.coef_[0]<0 and -model.intercept_>intl_lo_days*model.coef_)): # there is a zero-crossing until intl_lo_days results[4] = -model.intercept_*model.intercept_/(2*model.coef_[0]) + df_ts.iloc[-1] results[5] = results[4] elif model.coef_[0]*model.intercept_<0 and\ ((model.coef_[0]>0 and -model.intercept_<intl_hi_days*model.coef_)\ or (model.coef_[0]<0 and -model.intercept_>intl_hi_days*model.coef_)): # there is a zero-crossing after intl_lo_days, before intl_hi_days results[5] = -model.intercept_*model.intercept_/(2*model.coef_[0]) + df_ts.iloc[-1] if results[4] is None: results[4] = (model.coef_[0]*intl_lo_days/2+model.intercept_)*intl_lo_days + df_ts.iloc[-1] if results[5] is None: results[5] = (model.coef_[0]*intl_hi_days/2+model.intercept_)*intl_hi_days + df_ts.iloc[-1] #results[6] = model.score(np.arange(-window_length+1, 1).reshape(-1, 1), y) i_ts_0 = (df_ts_0 - df_ts_0.shift(1))[1:] results[6] = model.score((i_ts_0.index-i_ts_0.index[-1]).days.values.reshape(-1, 1), y) #if df_ts.iloc[-1]==df_ts.iloc[-window_length]: first_day = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if df_ts.iloc[-1]==df_ts.loc[first_day]: # If there is no growth, then if model.coef_[0]==0 and model.intercept_==0: results[7] = 0 else: results[7] = 100 # a nonzero linear function overestimates growth by a factor of infinity. else: #print(model.coef_[0], model.intercept_, '\n', df_ts.iloc[-window_length:]) #print(-(model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1)) #print(df_ts.iloc[-1]-df_ts.iloc[-window_length]) #results[7] = -(model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 # From the integral #results[7] = -(model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-interpolate(df_ts, window_length))-1 # From the integral results[7] = -(model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 # From the integral #print(df_ts.iloc[-1], df_ts.loc[first_day], results[7]) #print(window_length*(2*model.intercept_+model.coef_[0]*(-window_length+1))/(2*(df_ts.iloc[-1]-df_ts.iloc[-window_length]))-1) # From summing #print((-model.coef_[0]*(-window_length+1)*(-window_length+1)/2+(model.coef_[0]/2-model.intercept_)*(-window_length+1)+model.intercept_)/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1) # From summing #results[7] = np.sum(model.coef_[0]*np.arange(-window_length+1, 1)+model.intercept_)/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 # From summing #print(results[7]) elif exp_or_lin=='mean': df_ts_orig = df_ts.copy() df_ts_0 = truncate_before(df_ts_orig, window_length+1, fill_all_missing=False) # For the fit to increments. df_ts = truncate_before(df_ts, window_length+1, fill_all_missing=True) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments #y = i_ts.values i_mean = i_ts.mean() results[0] = i_mean if results[0]!=0: results[2] = df_ts.iloc[-1]/i_mean else: if df_ts.iloc[-1]!=0: results[2] = np.inf else: results[2] = 0 # df_ts.iloc[-1]==i_ts.mean()==0 if extent == 'full': results[4] = i_mean*intl_lo_days + df_ts.iloc[-1] results[5] = i_mean*intl_hi_days + df_ts.iloc[-1] results[6] = 0 # coefficient of determination R^2 first_day = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if df_ts.iloc[-1]==df_ts.loc[first_day]: # If there is no growth, then if i_mean==0: results[7] = 0 else: results[7] = 100 # a nonzero linear function overestimates growth by a factor of infinity. else: results[7] = -i_mean*(-window_length+1)/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 # From the integral class SkeletonModel(): def __init__(self, intercept): self.coef_ = [0] self.intercept_ = intercept model = SkeletonModel(results[0]) if results[2]!=np.inf and results[2]!=0 and results[0]>0: #print(window_length, df_ts.iloc[-window_length-1:], y, model.coef_[0], model.intercept_, results, 1/results[2]) results[1] = (math.pow(2, 1/results[2])-1)*100 else: #y_last = (df_ts.iloc[-1]+df_ts.iloc[-2]+df_ts.iloc[-3])/3 # smoothening to lessen the impact of penultimate data point y_last = (df_ts.iloc[-1]+df_ts.iloc[-2])/2 # smoothening to lessen the impact of penultimate data point if y_last!=0: results[1] = results[0]*100 / y_last elif model.coef_[0]==0 and model.intercept_==0: results[1] = 0 else: results[1] = np.inf if extent == 'minimal': #results[2] = 0 results[4] = 0 results[5] = 0 #print(model.coef_[0], model.intercept_, results[6], results[7]) #print(window_length, results) return results, model def select_window_length(R, round_output): ''' This selects the window length that is good on two aspects: R^2 and matching last value round_output: boolean. If True, then it returns current and two projected case numbers as int. ''' nr_col = R.shape[1] if nr_col==8: # If we're calling this from pick_exp_vs_lin() with window_selection, then we already have this so no need to compute it again and add it as new column. # We take l_2 norm of 10*(1-R^2) and distance column: R.insert(nr_col, nr_col, R[6].apply(lambda x: (10*(1-x))**2) + R[7].apply(lambda x: x**2)) # Sort and return the row (corresponding to a window_length) with lowest l_2 norm: #return R.sort_values(7, axis=0, ascending=True).iloc[0:1,:] if R.shape[0]>1: R = R.sort_values(8, axis=0, ascending=True) #print(R) output = list() if round_output==True: for i in range(R.shape[1]): output.append(int(round(R.iloc[0,i])) if i in [3, 4, 5] else R.iloc[0,i]) else: output = [R.iloc[0,i] for i in range(R.shape[1])] return output, R.index[0] #return [R.iloc[0,i] for i in range(nr_col+1)], R.index[0] # This maintains integer elements as integers, R.iloc[0,:] would cast them as float bc it creates a pd.Series with a shared type. def pick_exp_vs_lin(r_exp, m_exp, r_lin, m_lin): r_exp = pd.DataFrame(r_exp).T r_exp, _ = select_window_length(r_exp, round_output=False) r_lin = pd.DataFrame(r_lin).T r_lin, _ = select_window_length(r_lin, round_output=False) if r_exp[-1] < r_lin[-1]: return r_exp[:-1], m_exp, 'exp' else: return r_lin[:-1], m_lin, 'lin' #TODO this should have a switch that it should compute in densities when population size is available def process_geounit(df_ts, window_length, exp_or_lin='both', running_extent='full'): ''' This processes one geographical unit. df_ts is the time series. ''' #df_ts = rm_early_zeros(df_ts) if exp_or_lin=='mean' and not window_length > 0: window_length = 7 if window_length > 0: selected_window_length = window_length if exp_or_lin=='both': results_e, model_e = analysis(df_ts, window_length, 'exp', running_extent) results_l, model_l = analysis(df_ts, window_length, 'lin', running_extent) results, model, exp_or_lin = pick_exp_vs_lin(results_e, model_e, results_l, model_l) #print(results_e) #print(results_l) elif exp_or_lin=='exp': results, model = analysis(df_ts, window_length, 'exp', running_extent) elif exp_or_lin=='lin': results, model = analysis(df_ts, window_length, 'lin', running_extent) elif exp_or_lin=='mean': results, model = analysis(df_ts, window_length, 'mean', running_extent) else: # do a search over window_lengths for best possible fit # minimum and maximum allowed window lengths; we test all in this closed interval wl_lo = 7 wl_hi = 15 # this end point is not included # Rule out zeros because we take logarithm; rule out windows longer than the time series df_ts. #wl_hi = min(wl_hi, 1+len(df_ts[df_ts[df_ts>0].idxmin():]), 1+len(df_ts)) wl_hi = min(wl_hi, 1+len(df_ts)) if wl_hi <= wl_lo: # then abort results, model = analysis(pd.Series([]), 1, 'exp', running_extent) #return results, model, window_length, exp_or_lin return pd.DataFrame([results+[window_length, exp_or_lin]]), model ''' R = pd.DataFrame(np.zeros((wl_hi-wl_lo, 7)), index=range(wl_lo, wl_hi)) models = dict() for wl in range(wl_lo, wl_hi): # last wl_hi-1 points must be available and positive <== result_wl, model = analysis_exp(df_ts, wl) # last wl points must be available and positive R.iloc[wl-wl_lo, :] = result_wl models[wl] = model R = R.astype({2: int, 3: int, 4: int}) results, selected_window_length = select_window_length(R) model = models[selected_window_length] ''' if exp_or_lin in ['exp', 'both']: R_e = pd.DataFrame(np.zeros((wl_hi-wl_lo, 8)), index=range(wl_lo, wl_hi)) models_e = dict() if exp_or_lin in ['lin', 'both']: R_l = pd.DataFrame(np.zeros((wl_hi-wl_lo, 8)), index=range(wl_lo, wl_hi)) models_l = dict() for wl in range(wl_lo, wl_hi): # last wl_hi-1 points must be available and positive <== if exp_or_lin in ['exp', 'both']: result_wl, model = analysis(df_ts, wl, 'exp', running_extent) # last wl points must be available and positive R_e.iloc[wl-wl_lo, :] = result_wl models_e[wl] = model if exp_or_lin in ['lin', 'both']: result_wl, model = analysis(df_ts, wl, 'lin', running_extent) R_l.iloc[wl-wl_lo, :] = result_wl models_l[wl] = model if exp_or_lin in ['exp', 'both']: results_e, selected_window_length_e = select_window_length(R_e, round_output=False) model_e = models_e[selected_window_length_e] if exp_or_lin in ['lin', 'both']: results_l, selected_window_length_l = select_window_length(R_l, round_output=False) model_l = models_l[selected_window_length_l] if exp_or_lin == 'exp': results, model, selected_window_length = results_e[:-1], model_e, selected_window_length_e if exp_or_lin == 'lin': results, model, selected_window_length = results_l[:-1], model_l, selected_window_length_l if exp_or_lin == 'both': results, model, exp_or_lin = pick_exp_vs_lin(results_e, model_e, results_l, model_l) selected_window_length = selected_window_length_e if exp_or_lin=='exp'\ else selected_window_length_l return pd.DataFrame([results+[selected_window_length, exp_or_lin]]), model def print_header(normalise_by, population_csv=None): print('The number of cases increases daily by /') if population_csv is not None: print('The number of cases per {} people increases daily by /'.format(separated(str(int(normalise_by))))) print('The number of cases increases daily by (%)/') print('Time it takes for the number of cases to double /') print('Latest reported number of cases /') if population_csv is not None: print('Latest reported number of cases per {} people /'.format(separated(str(int(normalise_by))))) print('My estimation for number of cases per {} people at present /'.format(separated(str(int(normalise_by))))) else: print('My estimation for number of cases at present /') print('R^2 /') print('Tail difference /') print('Window length /') print('Exponential (e) or linear (l) approximation\n') def print_results(country, results, normalise_by, population_csv, wl, exp_or_lin, frmt='normal', lang='en'): ''' frmt (format) can be 'deaths' or other. For 'deaths', there is one more decimal digit displayed for cases per 100,000 and estimate interval is not displayed. ''' country_width = 23 if frmt!='deaths' else 24 interval_width = 14 #if country in ['Baden-Württemberg', 'Bayern', 'Berlin', 'Brandenburg', 'Bremen', #'Hamburg', 'Hessen', 'Mecklenburg-Vorpommern', 'Niedersachsen', #'Nordrhein-Westfalen', 'Rheinland-Pfalz', 'Saarland', 'Sachsen', #'Sachsen-Anhalt', 'Schleswig-Holstein', 'Thüringen', #'Deutschland']: if population_csv=='DEU': pop = load_population_DEU() elif population_csv=='world': pop = load_population_world() elif population_csv=='BW': pop = load_population_BW() else: pop = normalise_by # We don't normalise. if not isinstance(country, str): # If it's a province or state of a country or region. country = country[0] if frmt!='active': # If input is a cumulative number, then don't display negative estimates. if results[0]<0: results[0]=0 if results[1]<0: results[1]=0 if population_csv is not None: incr_per_ppl = x2str(normalise_by*results[0]/pop[country], 4 if frmt!='deaths' else 6) else: incr_per_ppl = ' ' * 4 if frmt!='deaths' else ' ' * 6 #if ((results[6]>=0.95 and results[7]<=0.5) or (results[7]>=-0.2 and results[7]<=0.1)) and\ # results[0]>0 and frmt!='deaths': if ((results[6]>=0.75 and results[7]<=0.5) or (results[7]>=-0.3 and results[7]<=0.3)) and\ results[0]>0 and frmt!='deaths': if population_csv is not None: nr_cases_per_ppl = x2str(normalise_by*results[3]/pop[country], int(math.log10(normalise_by))+1) est_lo_per_ppl = normalise_by*results[4]/pop[country] est_hi_per_ppl = normalise_by*results[5]/pop[country] else: nr_cases_per_ppl = ' ' * int(math.log10(normalise_by)) est_lo_per_ppl = results[4] est_hi_per_ppl = results[5] est_per_ppl_min = min(est_lo_per_ppl, est_hi_per_ppl) est_per_ppl_max = max(est_lo_per_ppl, est_hi_per_ppl) interval = ('[' + x2str(est_per_ppl_min, -1) +', '\ + x2str(est_per_ppl_max, -1) + ']').rjust(interval_width) else: if population_csv is not None: nr_cases_per_ppl = x2str(normalise_by*results[3]/pop[country], int(math.log10(normalise_by))+1) else: nr_cases_per_ppl = ' ' * int(math.log10(normalise_by)) if frmt!='deaths': interval = ' ' * interval_width else: interval = ' ' if exp_or_lin=='exp': letter = 'e' elif exp_or_lin=='lin': letter = 'l' elif exp_or_lin=='mean': letter = 'm' print('{0} {1} {2} {3:5.1f}% {4:7.1f} {5} {6} {7} {8} {9:4.2f} {10:5.2f} {11} {12}'.format( country[:country_width].ljust(country_width), x2str(results[0], 6), incr_per_ppl, results[1], results[2] if results[0]>=0 else np.NaN, # if results[1]>=0 else np.NaN, 'Tage' if lang=='de' else 'days', n2str(int(results[3]), 7), nr_cases_per_ppl, interval, results[6], results[7] if results[7]<100 else np.nan, str(wl).rjust(2), letter).replace('.', ',' if lang=='de' else '.')) def plotting(df_ts, model, save_not_show, country, window_length, exp_or_lin, lang='en', panels=2): if not isinstance(country, str): # If it's a province or state of a country or region. country = country[0] if panels==2: fig, (ax0, ax1) = plt.subplots(1,2, figsize=(14.4, 4.8)) elif panels==3: fig, (ax0, ax1, ax2) = plt.subplots(1,3, figsize=(14.4, 4.8)) if lang=='de': line0 = 'Beobachtungen' #line1 = 'Exponentielle Annäherung' if exp_or_lin=='exp' else 'Lineare Annäherung' if exp_or_lin=='exp': line1 = 'Exponentielle Annäherung' elif exp_or_lin=='lin': line1 = 'Lineare Annäherung' elif exp_or_lin=='mean': line1 = 'Annäherung mit Durchschnitt' fig.suptitle(country + ', Stand ' + df_ts.index[-1].strftime('%d.%m.%Y')) #plt.gcf().text(0.905, 0.86, "© <NAME>, 2020. http://COVID19de.Melykuti.Be", fontsize=8, color='lightgray', rotation=90) plt.gcf().text(0.905, 0.242, "© <NAME>, 2021. http://COVID19de.Melykuti.Be", fontsize=8, color='lightgray', rotation=90) else: line0 = 'Observations' #line1 = 'Exponential approximation' if exp_or_lin=='exp' else 'Linear approximation' if exp_or_lin=='exp': line1 = 'Exponential approximation' elif exp_or_lin=='lin': line1 = 'Linear approximation' elif exp_or_lin=='mean': line1 = 'Approximation with mean' fig.suptitle(country + ', ' + df_ts.index[-1].strftime('%d %B %Y').lstrip('0')) #plt.gcf().text(0.905, 0.862, "© <NAME>, 2020. http://COVID19.Melykuti.Be", fontsize=8, color='lightgray', rotation=90) plt.gcf().text(0.905, 0.27, "© <NAME>, 2021. http://COVID19.Melykuti.Be", fontsize=8, color='lightgray', rotation=90) #fig.tight_layout() fig.subplots_adjust(bottom=0.2) #ax1.plot(df_ts[df_ts>0], label=line0) #ax1.plot(df_ts[df_ts>0].iloc[-window_length:].index, np.power(2, np.arange(0, window_length)*model.coef_ + model.intercept_), label=line1) #plot_x = df_ts.iloc[-window_length:].index plot_x = pd.date_range(df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days'), df_ts.index[-1]) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments ax0.bar(df_ts[1:].index, i_ts[-len(df_ts)+1:], color='tab:blue') #df_ts_no0 = rm_consecutive_early_zeros(df_ts) #df_ts_no0 = df_ts if exp_or_lin=='exp': if model is not None: ax0.plot(plot_x, np.exp(model.coef_[0]*np.arange(-window_length+1, 1) + model.intercept_), color='tab:orange', linewidth=3) if model.coef_[0]!=0: temp2 = math.exp(model.intercept_)/model.coef_[0] #plot_y = (np.exp(model.coef_[0]*np.arange(-window_length+1, 1)) - math.exp(model.coef_[0] * (-window_length+1)))*temp2 + df_ts.iloc[-window_length] plot_y = (np.exp(model.coef_[0]*np.arange(-window_length+1, 1)) - math.exp(model.coef_[0] * (-window_length+1)))*temp2 + interpolate(df_ts, window_length) else: #plot_y = math.exp(model.intercept_)*(np.arange(-window_length+1, 1) - (-window_length+1)) + df_ts.iloc[-window_length] plot_y = math.exp(model.intercept_)*(np.arange(-window_length+1, 1) - (-window_length+1)) + interpolate(df_ts, window_length) ax1.plot(plot_x, plot_y, label=line1, color='tab:orange', linewidth=3) if panels==3: ax2.plot(plot_x, plot_y, label=line1, color='tab:orange', linewidth=3) elif exp_or_lin=='lin' or exp_or_lin=='mean': ax0.plot(plot_x, model.coef_[0]*np.arange(-window_length+1, 1) + model.intercept_, color='tab:pink', linewidth=3) #plot_y = np.arange(0, window_length)*model.coef_ + model.intercept_ #plot_y = (model.coef_[0]*np.arange(-window_length+1, 1)/2+model.intercept_)*np.arange(-window_length+1, 1) + df_ts.iloc[-1] # plot_y = (model.coef_[0]*np.arange(0, window_length)/2+model.intercept_)*np.arange(0, window_length) + df_ts.iloc[-window_length] #plot_y = (model.coef_[0]*np.arange(-window_length+1, 1)/2+model.intercept_)*np.arange(-window_length+1, 1) - (model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1) + df_ts.iloc[-window_length] plot_y = (model.coef_[0]*np.arange(-window_length+1, 1)/2+model.intercept_)*np.arange(-window_length+1, 1) - (model.coef_[0]*(-window_length+1)/2+model.intercept_)*(-window_length+1) + interpolate(df_ts, window_length) ax1.plot(plot_x, plot_y, label=line1, color='tab:pink', linewidth=3) if panels==3: ax2.plot(plot_x, plot_y, label=line1, color='tab:pink', linewidth=3) ax1.plot(df_ts, label=line0, color='tab:blue') if panels==3: ax2.plot(df_ts, label=line0, color='tab:blue') ax2.set_yscale("log") for tick in ax0.get_xticklabels(): tick.set_rotation(80) for tick in ax1.get_xticklabels(): tick.set_rotation(80) if panels==3: for tick in ax2.get_xticklabels(): tick.set_rotation(80) handles, labs = ax1.get_legend_handles_labels() if model is not None: ax1.legend((handles[1], handles[0]), (labs[1], labs[0])) else: ax1.legend([handles[0]], [labs[0]]) if save_not_show==0: plt.show() elif save_not_show==1: imgfile = country.replace(',', '_').replace(' ', '_').replace('(', '_').replace(')', '_')\ + '_' + df_ts.index[-1].strftime('%Y-%m-%d') + '.png' plt.savefig(imgfile) plt.close(fig) def load_population_world(): pop = pd.read_csv('population_world.csv', sep='\t') pop_ser=pd.Series(pop.Population.apply(lambda x: int(x.replace(',', ''))).values, index=pop.Country) countries = dict() for country in pop_ser.index: country_new = country.strip() countries[country_new] = pop_ser.loc[country] return countries def load_population_DEU(): pop = pd.read_csv('population_DEU.csv', sep='\t') pop_ser=pd.Series(pop.insgesamt.values, index=pop.Bundesland) countries = dict() for country in pop_ser.index: country_new = country.strip() countries[country_new] = pop_ser.loc[country] return countries def load_population_BW(incl_density=False): pop = pd.read_csv('population_BW.csv', sep=',') pop_ser=pd.Series(pop['Bevölkerung insgesamt'].values, index=pop.Regionalname) countries = dict() for country in pop_ser.index: countries[country] = pop_ser.loc[country] if incl_density: pop.rename(index=pop.Regionalname, inplace=True) return pop.drop('Regionalname', axis=1, inplace=False) else: return countries
[ "pandas.read_csv", "numpy.log", "math.sqrt", "math.log", "numpy.array", "pandas.plotting.register_matplotlib_converters", "math.exp", "math.log10", "pandas.to_datetime", "numpy.arange", "matplotlib.pyplot.close", "pandas.DataFrame", "matplotlib.pyplot.savefig", "matplotlib.pyplot.gcf", "os.scandir", "numpy.nonzero", "sklearn.linear_model.LinearRegression", "matplotlib.pyplot.show", "pandas.Series", "numpy.logical_and", "math.pow", "pandas.Timedelta", "numpy.zeros", "pandas.concat", "matplotlib.pyplot.subplots" ]
[((231, 263), 'pandas.plotting.register_matplotlib_converters', 'register_matplotlib_converters', ([], {}), '()\n', (261, 263), False, 'from pandas.plotting import register_matplotlib_converters\n'), ((13594, 13643), 'sklearn.linear_model.LinearRegression', 'linear_model.LinearRegression', ([], {'fit_intercept': '(True)'}), '(fit_intercept=True)\n', (13623, 13643), False, 'from sklearn import linear_model\n'), ((39619, 39664), 'pandas.read_csv', 'pd.read_csv', (['"""population_world.csv"""'], {'sep': '"""\t"""'}), "('population_world.csv', sep='\\t')\n", (39630, 39664), True, 'import pandas as pd\n'), ((39978, 40021), 'pandas.read_csv', 'pd.read_csv', (['"""population_DEU.csv"""'], {'sep': '"""\t"""'}), "('population_DEU.csv', sep='\\t')\n", (39989, 40021), True, 'import pandas as pd\n'), ((40034, 40087), 'pandas.Series', 'pd.Series', (['pop.insgesamt.values'], {'index': 'pop.Bundesland'}), '(pop.insgesamt.values, index=pop.Bundesland)\n', (40043, 40087), True, 'import pandas as pd\n'), ((40313, 40354), 'pandas.read_csv', 'pd.read_csv', (['"""population_BW.csv"""'], {'sep': '""","""'}), "('population_BW.csv', sep=',')\n", (40324, 40354), True, 'import pandas as pd\n'), ((40367, 40437), 'pandas.Series', 'pd.Series', (["pop['Bevölkerung insgesamt'].values"], {'index': 'pop.Regionalname'}), "(pop['Bevölkerung insgesamt'].values, index=pop.Regionalname)\n", (40376, 40437), True, 'import pandas as pd\n'), ((1146, 1158), 'os.scandir', 'os.scandir', ([], {}), '()\n', (1156, 1158), False, 'import os, math\n'), ((1474, 1499), 'pandas.read_csv', 'pd.read_csv', (['lists[i][-1]'], {}), '(lists[i][-1])\n', (1485, 1499), True, 'import pandas as pd\n'), ((4375, 4414), 'pandas.concat', 'pd.concat', (['l'], {'ignore_index': '(True)', 'axis': '(1)'}), '(l, ignore_index=True, axis=1)\n', (4384, 4414), True, 'import pandas as pd\n'), ((8537, 8578), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (8549, 8578), True, 'import pandas as pd\n'), ((14027, 14036), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (14033, 14036), True, 'import numpy as np\n'), ((14138, 14164), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (14146, 14164), False, 'import os, math\n'), ((24964, 24983), 'pandas.DataFrame', 'pd.DataFrame', (['r_exp'], {}), '(r_exp)\n', (24976, 24983), True, 'import pandas as pd\n'), ((25061, 25080), 'pandas.DataFrame', 'pd.DataFrame', (['r_lin'], {}), '(r_lin)\n', (25073, 25080), True, 'import pandas as pd\n'), ((29546, 29608), 'pandas.DataFrame', 'pd.DataFrame', (['[results + [selected_window_length, exp_or_lin]]'], {}), '([results + [selected_window_length, exp_or_lin]])\n', (29558, 29608), True, 'import pandas as pd\n'), ((34280, 34319), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(14.4, 4.8)'}), '(1, 2, figsize=(14.4, 4.8))\n', (34292, 34319), True, 'import matplotlib.pyplot as plt\n'), ((39318, 39328), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (39326, 39328), True, 'import matplotlib.pyplot as plt\n'), ((11243, 11268), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{i} days"""'], {}), "(f'{i} days')\n", (11255, 11268), True, 'import pandas as pd\n'), ((15841, 15882), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (15853, 15882), True, 'import pandas as pd\n'), ((34370, 34409), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(14.4, 4.8)'}), '(1, 3, figsize=(14.4, 4.8))\n', (34382, 34409), True, 'import matplotlib.pyplot as plt\n'), ((36171, 36212), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (36183, 36212), True, 'import pandas as pd\n'), ((39535, 39555), 'matplotlib.pyplot.savefig', 'plt.savefig', (['imgfile'], {}), '(imgfile)\n', (39546, 39555), True, 'import matplotlib.pyplot as plt\n'), ((39564, 39578), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (39573, 39578), True, 'import matplotlib.pyplot as plt\n'), ((5046, 5085), 'pandas.concat', 'pd.concat', (['l'], {'ignore_index': '(True)', 'axis': '(0)'}), '(l, ignore_index=True, axis=0)\n', (5055, 5085), True, 'import pandas as pd\n'), ((6808, 6851), 'numpy.nonzero', 'np.nonzero', (['(ts.index == ts[ts > 0].index[0])'], {}), '(ts.index == ts[ts > 0].index[0])\n', (6818, 6851), True, 'import numpy as np\n'), ((12031, 12072), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (12043, 12072), True, 'import pandas as pd\n'), ((14393, 14419), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (14401, 14419), False, 'import os, math\n'), ((14705, 14731), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (14713, 14731), False, 'import os, math\n'), ((19414, 19455), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (19426, 19455), True, 'import pandas as pd\n'), ((22846, 22873), 'math.pow', 'math.pow', (['(2)', '(1 / results[2])'], {}), '(2, 1 / results[2])\n', (22854, 22873), False, 'import os, math\n'), ((26969, 26982), 'pandas.Series', 'pd.Series', (['[]'], {}), '([])\n', (26978, 26982), True, 'import pandas as pd\n'), ((27091, 27144), 'pandas.DataFrame', 'pd.DataFrame', (['[results + [window_length, exp_or_lin]]'], {}), '([results + [window_length, exp_or_lin]])\n', (27103, 27144), True, 'import pandas as pd\n'), ((27785, 27813), 'numpy.zeros', 'np.zeros', (['(wl_hi - wl_lo, 8)'], {}), '((wl_hi - wl_lo, 8))\n', (27793, 27813), True, 'import numpy as np\n'), ((27943, 27971), 'numpy.zeros', 'np.zeros', (['(wl_hi - wl_lo, 8)'], {}), '((wl_hi - wl_lo, 8))\n', (27951, 27971), True, 'import numpy as np\n'), ((35003, 35012), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (35010, 35012), True, 'import matplotlib.pyplot as plt\n'), ((35715, 35724), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (35722, 35724), True, 'import matplotlib.pyplot as plt\n'), ((5716, 5757), 'pandas.Series', 'pd.Series', (['df_ts.index'], {'index': 'df_ts.index'}), '(df_ts.index, index=df_ts.index)\n', (5725, 5757), True, 'import pandas as pd\n'), ((5774, 5791), 'pandas.to_datetime', 'pd.to_datetime', (['x'], {}), '(x)\n', (5788, 5791), True, 'import pandas as pd\n'), ((14484, 14510), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (14492, 14510), False, 'import os, math\n'), ((14567, 14581), 'math.log', 'math.log', (['temp'], {}), '(temp)\n', (14575, 14581), False, 'import os, math\n'), ((22019, 22060), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{window_length - 1} days"""'], {}), "(f'{window_length - 1} days')\n", (22031, 22060), True, 'import pandas as pd\n'), ((32572, 32596), 'math.log10', 'math.log10', (['normalise_by'], {}), '(normalise_by)\n', (32582, 32596), False, 'import os, math\n'), ((33149, 33173), 'math.log10', 'math.log10', (['normalise_by'], {}), '(normalise_by)\n', (33159, 33173), False, 'import os, math\n'), ((36681, 36707), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (36689, 36707), False, 'import os, math\n'), ((15030, 15056), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (15038, 15056), False, 'import os, math\n'), ((15116, 15142), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (15124, 15142), False, 'import os, math\n'), ((32356, 32380), 'math.log10', 'math.log10', (['normalise_by'], {}), '(normalise_by)\n', (32366, 32380), False, 'import os, math\n'), ((33065, 33089), 'math.log10', 'math.log10', (['normalise_by'], {}), '(normalise_by)\n', (33075, 33089), False, 'import os, math\n'), ((37238, 37264), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (37246, 37264), False, 'import os, math\n'), ((37641, 37673), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (37650, 37673), True, 'import numpy as np\n'), ((38377, 38409), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (38386, 38409), True, 'import numpy as np\n'), ((14825, 14864), 'math.exp', 'math.exp', (['(model.coef_[0] * intl_lo_days)'], {}), '(model.coef_[0] * intl_lo_days)\n', (14833, 14864), False, 'import os, math\n'), ((14919, 14958), 'math.exp', 'math.exp', (['(model.coef_[0] * intl_hi_days)'], {}), '(model.coef_[0] * intl_hi_days)\n', (14927, 14958), False, 'import os, math\n'), ((16801, 16827), 'math.exp', 'math.exp', (['model.intercept_'], {}), '(model.intercept_)\n', (16809, 16827), False, 'import os, math\n'), ((17513, 17602), 'math.sqrt', 'math.sqrt', (['(model.intercept_ * model.intercept_ + 2 * model.coef_[0] * df_ts.iloc[-1])'], {}), '(model.intercept_ * model.intercept_ + 2 * model.coef_[0] * df_ts.\n iloc[-1])\n', (17522, 17602), False, 'import os, math\n'), ((36538, 36570), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (36547, 36570), True, 'import numpy as np\n'), ((36970, 37017), 'math.exp', 'math.exp', (['(model.coef_[0] * (-window_length + 1))'], {}), '(model.coef_[0] * (-window_length + 1))\n', (36978, 37017), False, 'import os, math\n'), ((37266, 37298), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (37275, 37298), True, 'import numpy as np\n'), ((16418, 16465), 'math.exp', 'math.exp', (['(model.coef_[0] * (-window_length + 1))'], {}), '(model.coef_[0] * (-window_length + 1))\n', (16426, 16465), False, 'import os, math\n'), ((4884, 4981), 'numpy.logical_and', 'np.logical_and', (["(df[k]['Province/State'] == country[0])", "(df[k]['Country/Region'] == country[1])"], {}), "(df[k]['Province/State'] == country[0], df[k][\n 'Country/Region'] == country[1])\n", (4898, 4981), True, 'import numpy as np\n'), ((36936, 36968), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (36945, 36968), True, 'import numpy as np\n'), ((38326, 38358), 'numpy.arange', 'np.arange', (['(-window_length + 1)', '(1)'], {}), '(-window_length + 1, 1)\n', (38335, 38358), True, 'import numpy as np\n'), ((4309, 4323), 'numpy.array', 'np.array', (['M[k]'], {}), '(M[k])\n', (4317, 4323), True, 'import numpy as np\n')]
#importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import os import pickle import glob import sys class ParameterFinder: def __init__(self, image, _h_channel_low=0, _h_channel_high=255, _l_channel_low=0, _l_channel_high=255, sobelx_filter=1, sobelx_low=0, sobelx_high=0, sobely_filter=1, sobely_low=0, sobely_high=0, magn_filter=1, magn_low=0, magn_high=0, direction_filter=1, direction_low=0, direction_high=0, direction_avg_filter=3, direction_thresh=0, load_params_path= "do_not_load"): self.image = image self._h_channel_low = _h_channel_low self._h_channel_high = _h_channel_high self._l_channel_low = _l_channel_low self._l_channel_high = _l_channel_high self._sobelx_filter = sobelx_filter self._sobelx_low = sobelx_low self._sobelx_high = sobelx_high self._sobely_filter = sobely_filter self._sobely_low = sobely_low self._sobely_high = sobely_high self._magn_filter = magn_filter self._magn_low = magn_low self._magn_high = magn_high self._direction_filter = direction_filter self._direction_low = direction_low self._direction_high = direction_high self._direction_avg_filter = direction_avg_filter self._direction_thresh = direction_thresh self._post_avg_filter = 1 self._post_thresh = 1 if load_params_path != "do_not_load": [self._sobelx_filter, self._sobelx_low, self._sobelx_high, self._sobely_filter, self._sobely_low, self._sobely_high, self._magn_filter, self._magn_low, self._magn_high, self._direction_filter, self._direction_low, self._direction_high, self._direction_avg_filter, self._direction_thresh] = self.load_params(load_params_path, [self._sobelx_filter, self._sobelx_low, self._sobelx_high, self._sobely_filter, self._sobely_low, self._sobely_high, self._magn_filter, self._magn_low, self._magn_high, self._direction_filter, self._direction_low, self._direction_high, self._direction_avg_filter, self._direction_thresh]) print("self._sobelx_filter: ", self._sobelx_filter) def onchange_h_channel_low(pos): self._h_channel_low = pos self._render() def onchange_h_channel_high(pos): self._h_channel_high = pos self._render() def onchange_l_channel_low(pos): self._l_channel_low = pos self._render() def onchange_l_channel_high(pos): self._l_channel_high = pos self._render() def onchange_sobelx_low(pos): self._sobelx_low = pos self._render() def onchange_sobelx_high(pos): self._sobelx_high = pos self._render() def onchange_sobelx_filter(pos): self._sobelx_filter = pos self._sobelx_filter += (self._sobelx_filter + 1) % 2 self._render() def onchange_sobely_low(pos): self._sobely_low = pos self._render() def onchange_sobely_high(pos): self._sobely_high = pos self._render() def onchange_sobely_filter(pos): self._sobely_filter = pos self._sobely_filter += (self._sobely_filter + 1) % 2 self._render() def onchange_magn_low(pos): self._magn_low = pos self._render() def onchange_magn_high(pos): self._magn_high = pos self._render() def onchange_magn_filter(pos): self._magn_filter = pos self._magn_filter += (self._magn_filter + 1) % 2 self._render() def onchange_direction_low(pos): self._direction_low = (pos/100)-(np.pi/2) self._render() def onchange_direction_high(pos): self._direction_high = (pos/100)-(np.pi/2) self._render() def onchange_direction_filter(pos): self._direction_filter = pos self._direction_filter += (self._direction_filter + 1) % 2 self._render() def onchange_direction_avg_filter(pos): self._direction_avg_filter = pos self._direction_avg_filter += (self._direction_avg_filter + 1) % 2 self._render() def onchange_direction_thresh(pos): self._direction_thresh = pos self._render() def onchange_post_avg_filter(pos): self._post_avg_filter = pos self._post_avg_filter += (self._post_avg_filter + 1) % 2 self._render() def onchange_post_thresh(pos): self._post_thresh = pos self._render() cv2.namedWindow('output') cv2.createTrackbar('h_channel_low', 'output', self._h_channel_low, 255, onchange_h_channel_low) cv2.createTrackbar('h_channel_high', 'output', self._h_channel_high, 255, onchange_h_channel_high) cv2.createTrackbar('l_channel_low', 'output', self._l_channel_low, 255, onchange_l_channel_low) cv2.createTrackbar('l_channel_high', 'output', self._l_channel_high, 255, onchange_l_channel_high) cv2.createTrackbar('sobelx_low', 'output', self._sobelx_low, 255, onchange_sobelx_low) cv2.createTrackbar('sobelx_high', 'output', self._sobelx_high, 255, onchange_sobelx_high) cv2.createTrackbar('sobelx_filter', 'output', self._sobelx_filter, 21, onchange_sobelx_filter) cv2.createTrackbar('sobely_low', 'output', self._sobely_low, 255, onchange_sobely_low) cv2.createTrackbar('sobely_high', 'output', self._sobely_high, 255, onchange_sobely_high) cv2.createTrackbar('sobely_filter', 'output', self._sobely_filter, 21, onchange_sobely_filter) cv2.createTrackbar('magn_low', 'output', self._magn_low, 255, onchange_magn_low) cv2.createTrackbar('magn_high', 'output', self._magn_high, 255, onchange_magn_high) cv2.createTrackbar('magn_filter', 'output', self._magn_filter, 21, onchange_magn_filter) cv2.createTrackbar('direction_low(rad)', 'output', self._direction_low, 314, onchange_direction_low) cv2.createTrackbar('direction_high(rad)', 'output', self._direction_high, 314, onchange_direction_high) cv2.createTrackbar('direction_filter', 'output', self._direction_filter, 21, onchange_direction_filter) cv2.createTrackbar('direction_avg_filter', 'output', self._direction_avg_filter, 21, onchange_direction_avg_filter) cv2.createTrackbar('direction_thresh', 'output', self._direction_thresh, 255, onchange_direction_thresh) cv2.createTrackbar('post_avg_filter', 'output', self._post_avg_filter, 21, onchange_post_avg_filter) cv2.createTrackbar('post_thresh', 'output', self._post_thresh, 255, onchange_post_thresh) self._render() print("Adjust the parameters as desired. Hit any key to close.") cv2.waitKey(0) cv2.destroyWindow('output') self.save_params([self._sobelx_filter, self._sobelx_low, self._sobelx_high, self._sobely_filter, self._sobely_low, self._sobely_high, self._magn_filter, self._magn_low, self._magn_high, self._direction_filter, self._direction_low, self._direction_high, self._direction_avg_filter, self._direction_thresh]) def sobelx_low(self): return self._sobelx_low def sobelx_high(self): return self._sobelx_high def sobelx_filter(self): return self._sobelx_filter def sobely_low(self): return self._sobely_low def sobely_high(self): return self._sobely_high def sobely_filter(self): return self._sobely_filter def magn_low(self): return self._magn_low def magn_high(self): return self._magn_high def magn_filter(self): return self._magn_filter def direction_low(self): return self._direction_low def direction_high(self): return self._direction_high def direction_filter(self): return self._direction_filter def direction_avg_filter(self): return self._direction_avg_filter def direction_thresh(self): return self._direction_thresh def sobelxImage(self): return self._sobelx_binary def sobelyImage(self): return self._sobely_binary def magImage(self): return self._mag_binary def dirImage(self): return self._dir_binary def averageImg(self): return self._avg_img def thresholdImg(self): return self._thres_img def postAverageImg(self): return self._post_avg_img def postThresholdImg(self): return self._post_thres_img def setImage(self, img): self.image = img def extract_single_color(self, img, channel='gray'): hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) if(channel == 'r'): return img[:,:,0] elif(channel == 'g'): return img[:,:,1] elif(channel == 'b'): return img[:,:,2] elif(channel == 'gray'): return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) elif(channel == 'h'): return hls[:,:,0] elif(channel == 'l'): return hls[:,:,1] elif(channel == 's'): return hls[:,:,2] def abs_sobel_thresh(self, image_binary, orient='x', sobel_kernel=3, thresh=(0, 255)): self.image_binary = image_binary self.orient = orient self.sobel_kernel = sobel_kernel self.thresh = thresh # Calculate directional gradient if orient == 'x': sobel_orient = cv2.Sobel(image_binary, cv2.CV_64F, 1, 0, ksize=sobel_kernel) elif orient == 'y': sobel_orient = cv2.Sobel(image_binary, cv2.CV_64F, 0, 1, ksize=sobel_kernel) abs_sobel = np.absolute(sobel_orient) scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) # Apply threshold grad_binary = np.zeros_like(scaled_sobel) grad_binary[(scaled_sobel > thresh[0]) & (scaled_sobel < thresh[1])] = 255 #imshow accepts 1 not! return grad_binary def abs_magn_thresh(self, image_binary, magn_sobel_kernel=3, thresh_2=(0, 255)): # Calculate gradient magnitude self.image_binary = image_binary self.magn_sobel_kernel = magn_sobel_kernel self.thresh_2 = thresh_2 sobel_x = cv2.Sobel(image_binary, cv2.CV_64F, 1, 0, ksize=magn_sobel_kernel()) sobel_y = cv2.Sobel(image_binary, cv2.CV_64F, 0, 1, ksize=magn_sobel_kernel()) # magn = np.sqrt(sobel_x * sobel_x + sobel_y * sobel_y) magn = np.sqrt(np.power(sobel_x,2) + np.power(sobel_y,2)) scaled_magn = np.uint8(255*magn/np.max(magn)) # Apply threshold magn_binary = np.zeros_like(scaled_magn) magn_binary[(scaled_magn > (thresh_2[0])) & (scaled_magn < thresh_2[1])] = 255 return magn_binary def abs_dir_threshold(self, image_binary, dir_sobel_kernel=3, dir_thresh=(-np.pi/2, np.pi/2)): self.image_binary = image_binary self.dir_sobel_kernel = dir_sobel_kernel self.dir_thresh = dir_thresh # Calculate gradient direction sobel_x = cv2.Sobel(image_binary, cv2.CV_64F, 1, 0, ksize=dir_sobel_kernel) sobel_y = cv2.Sobel(image_binary, cv2.CV_64F, 0, 1, ksize=dir_sobel_kernel) abs_grad_x = np.absolute(sobel_x) abs_grad_y = np.absolute(sobel_y) direction_grad = np.arctan2(abs_grad_y, abs_grad_x) # Apply threshold dir_binary = np.zeros_like(direction_grad) dir_binary[(direction_grad > dir_thresh[0]) & (direction_grad < dir_thresh[1])] = 1 return dir_binary def abs_average(self, binary_image, filter_size=3): # non_binary= np.zeros_like(binary_image) # non_binary[(binary_image > 0)] = 255 # binary_image.convertTo(binary_image,CV_8U, 1/255) # non_binary = binary_image.view('float32') # non_binary[:] = binary_image np.set_printoptions(threshold=sys.maxsize) # print("binary_image: ", binary_image) non_binary = np.zeros_like(binary_image) non_binary[binary_image > 0] = 255 non_binary[binary_image == 0] = 1 # print("non_binary: ", non_binary) # non_binary = zeros output_image = cv2.blur(non_binary, (filter_size, filter_size)) # output_image = cv2.medianBlur(binary_image, filter_size) return output_image def abs_threshold(self, image, thres_low, thres_high=255): binary_image = np.zeros_like(image) binary_image[(image > thres_low) & (image < thres_high)] = 255 return binary_image def _render(self, save_name="no_file_name"): single_channel_h = self.extract_single_color(self.image, 'h') single_channel_l = self.extract_single_color(self.image, 'l') binary_channel_h = self.abs_threshold(single_channel_h, self._h_channel_low, self._h_channel_high) binary_channel_l = self.abs_threshold(single_channel_l, self._l_channel_low, self._l_channel_high) channels_binary = np.zeros_like(binary_channel_h) channels_binary[(binary_channel_h > 0) | (binary_channel_l > 0)] = 255 self._sobelx_binary = self.abs_sobel_thresh(self.image, 'x', self._sobelx_filter, (self._sobelx_low, self._sobelx_high)) self._sobely_binary = self.abs_sobel_thresh(self.image, 'y', self._sobely_filter, (self._sobely_low, self._sobely_high)) self._mag_binary = self.abs_magn_thresh(self.image, self.magn_filter, (self._magn_low, self._magn_high)) self._dir_binary = self.abs_dir_threshold(self.image, self._direction_filter, (self._direction_low, self._direction_high)) self._avg_img = self.abs_average(self._dir_binary, self._direction_avg_filter) self._thres_img = self.abs_threshold(self._avg_img, self._direction_thresh) self.combined = np.zeros_like(self._sobelx_binary) # self.combined[((self._sobelx_binary == 255) & (self._sobely_binary == 255)) | ((self._mag_binary == 255) & (self._thres_img == 255))] = 255 # self.combined[((self._sobelx_binary == 255) & (self._sobely_binary == 255)) | ((self._thres_img == 255))] = 255 self.combined[((self._sobelx_binary == 255) & (self._sobely_binary == 255)) | (self._mag_binary == 255) | (self._thres_img == 255)] = 255 # self.combined[((self._sobelx_binary == 255) & (self._sobely_binary == 255)) | (self._mag_binary == 255)] = 255 self._post_avg_img = self.abs_average(channels_binary, self._post_avg_filter) self._post_thres_img = self.abs_threshold(self._post_avg_img, self._post_thresh) if save_name == "no_file_name": cv2.imshow('sobelx_binary', self._sobelx_binary) cv2.imshow('sobely_binary', self._sobely_binary) cv2.imshow('mag_binary', self._mag_binary) cv2.imshow('direction_binary', self._dir_binary) cv2.imshow('direction_&_avg', self._avg_img) cv2.imshow('direction_&_avg_thresh', self._thres_img) cv2.imshow('channels_binary', channels_binary) self.color_binary = np.dstack(( np.zeros_like(self._sobelx_binary),((self._sobelx_binary == 255) & (self._sobely_binary == 255)), ((self._mag_binary == 255) & (self._thres_img == 255)))) * 255 if save_name == "no_file_name": cv2.imshow('output', channels_binary) else: cv2.imwrite(f"test_output/{save_name}_output",channels_binary) # cv2.imshow('output', self.color_binary) def save_params(self, var_list): with open("store_params/params_new",'wb') as f: pickle.dump(var_list, f) def load_params(self, param_file, var_list): with open(param_file, 'rb') as f: var_list = pickle.load(f) return var_list if __name__ == "__main__": # parser = argparse.ArgumentParser(description='Visualizes the line for hough transform.') # parser.add_argument('FILENAME') # args = parser.parse_args() WORKING_DIR = "/home/nbenndo/Documents/Programming/Udacity/SelfDrivingCarND/CarND-Advanced-Lane-Lines/" os.chdir(WORKING_DIR) FILENAME = 'test_images/test4.jpg' IMG = cv2.imread(FILENAME)#, cv2.IMREAD_GRAYSCALE) # crop_y_border = IMG.shape[0]//2 + 120 # img_crop_top = IMG[0:crop_y_border-1, 0:IMG.shape[1]] # img_crop_bottom = IMG[crop_y_border:IMG.shape[0], 0:IMG.shape[1]] # IMG = np.concatenate((img_crop_top, img_crop_bottom), axis=0) cv2.imshow('input', IMG) # cv2.waitKey(0) param_finder = ParameterFinder(IMG, _h_channel_low=96, _h_channel_high=102, _l_channel_low=220, _l_channel_high=255, sobelx_filter=3, sobelx_low=16, sobelx_high=255, sobely_filter=3, sobely_low=36, sobely_high=255, magn_filter=3, magn_low=15, magn_high=255, direction_filter=15, direction_low=229, direction_high=287, direction_avg_filter=11, direction_thresh=143)#, load_params_path="store_params/params_new") # calculate all images with last parameter os.chdir(f"{WORKING_DIR}/test_images") images_test = glob.glob('*.jpg', recursive=False) os.chdir(WORKING_DIR) for image_path in images_test: image = cv2.imread(f"test_images/{image_path}") param_finder.setImage(image) param_finder._render(image_path) # print("Edge parameters:") # print("GaussianBlur Filter Size: %f" % param_finder.filterSize()) # print("Threshold1: %f" % param_finder.threshold1()) # print("Threshold2: %f" % param_finder.threshold2()) # (head, tail) = os.path.split(args.FILENAME) # (root, ext) = os.path.splitext(tail) # smoothed_filename = os.path.join("output_images", root + "-smoothed" + ext) # edge_filename = os.path.join("output_images", root + "-edges" + ext) # cv2.imwrite(smoothed_filename, param_finder.smoothedImage()) # cv2.imwrite(edge_filename, param_finder.edgeImage()) cv2.destroyAllWindows()
[ "cv2.imshow", "cv2.destroyAllWindows", "numpy.arctan2", "numpy.max", "cv2.waitKey", "cv2.blur", "glob.glob", "pickle.load", "cv2.cvtColor", "cv2.createTrackbar", "cv2.imread", "cv2.namedWindow", "numpy.set_printoptions", "cv2.imwrite", "pickle.dump", "numpy.power", "cv2.destroyWindow", "numpy.absolute", "os.chdir", "numpy.zeros_like", "cv2.Sobel" ]
[((16370, 16391), 'os.chdir', 'os.chdir', (['WORKING_DIR'], {}), '(WORKING_DIR)\n', (16378, 16391), False, 'import os\n'), ((16442, 16462), 'cv2.imread', 'cv2.imread', (['FILENAME'], {}), '(FILENAME)\n', (16452, 16462), False, 'import cv2\n'), ((16743, 16767), 'cv2.imshow', 'cv2.imshow', (['"""input"""', 'IMG'], {}), "('input', IMG)\n", (16753, 16767), False, 'import cv2\n'), ((17461, 17499), 'os.chdir', 'os.chdir', (['f"""{WORKING_DIR}/test_images"""'], {}), "(f'{WORKING_DIR}/test_images')\n", (17469, 17499), False, 'import os\n'), ((17518, 17553), 'glob.glob', 'glob.glob', (['"""*.jpg"""'], {'recursive': '(False)'}), "('*.jpg', recursive=False)\n", (17527, 17553), False, 'import glob\n'), ((17558, 17579), 'os.chdir', 'os.chdir', (['WORKING_DIR'], {}), '(WORKING_DIR)\n', (17566, 17579), False, 'import os\n'), ((18356, 18379), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (18377, 18379), False, 'import cv2\n'), ((4871, 4896), 'cv2.namedWindow', 'cv2.namedWindow', (['"""output"""'], {}), "('output')\n", (4886, 4896), False, 'import cv2\n'), ((4906, 5005), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""h_channel_low"""', '"""output"""', 'self._h_channel_low', '(255)', 'onchange_h_channel_low'], {}), "('h_channel_low', 'output', self._h_channel_low, 255,\n onchange_h_channel_low)\n", (4924, 5005), False, 'import cv2\n'), ((5010, 5112), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""h_channel_high"""', '"""output"""', 'self._h_channel_high', '(255)', 'onchange_h_channel_high'], {}), "('h_channel_high', 'output', self._h_channel_high, 255,\n onchange_h_channel_high)\n", (5028, 5112), False, 'import cv2\n'), ((5126, 5225), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""l_channel_low"""', '"""output"""', 'self._l_channel_low', '(255)', 'onchange_l_channel_low'], {}), "('l_channel_low', 'output', self._l_channel_low, 255,\n onchange_l_channel_low)\n", (5144, 5225), False, 'import cv2\n'), ((5230, 5332), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""l_channel_high"""', '"""output"""', 'self._l_channel_high', '(255)', 'onchange_l_channel_high'], {}), "('l_channel_high', 'output', self._l_channel_high, 255,\n onchange_l_channel_high)\n", (5248, 5332), False, 'import cv2\n'), ((5339, 5429), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobelx_low"""', '"""output"""', 'self._sobelx_low', '(255)', 'onchange_sobelx_low'], {}), "('sobelx_low', 'output', self._sobelx_low, 255,\n onchange_sobelx_low)\n", (5357, 5429), False, 'import cv2\n'), ((5434, 5527), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobelx_high"""', '"""output"""', 'self._sobelx_high', '(255)', 'onchange_sobelx_high'], {}), "('sobelx_high', 'output', self._sobelx_high, 255,\n onchange_sobelx_high)\n", (5452, 5527), False, 'import cv2\n'), ((5532, 5630), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobelx_filter"""', '"""output"""', 'self._sobelx_filter', '(21)', 'onchange_sobelx_filter'], {}), "('sobelx_filter', 'output', self._sobelx_filter, 21,\n onchange_sobelx_filter)\n", (5550, 5630), False, 'import cv2\n'), ((5636, 5726), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobely_low"""', '"""output"""', 'self._sobely_low', '(255)', 'onchange_sobely_low'], {}), "('sobely_low', 'output', self._sobely_low, 255,\n onchange_sobely_low)\n", (5654, 5726), False, 'import cv2\n'), ((5731, 5824), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobely_high"""', '"""output"""', 'self._sobely_high', '(255)', 'onchange_sobely_high'], {}), "('sobely_high', 'output', self._sobely_high, 255,\n onchange_sobely_high)\n", (5749, 5824), False, 'import cv2\n'), ((5829, 5927), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""sobely_filter"""', '"""output"""', 'self._sobely_filter', '(21)', 'onchange_sobely_filter'], {}), "('sobely_filter', 'output', self._sobely_filter, 21,\n onchange_sobely_filter)\n", (5847, 5927), False, 'import cv2\n'), ((5933, 6018), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""magn_low"""', '"""output"""', 'self._magn_low', '(255)', 'onchange_magn_low'], {}), "('magn_low', 'output', self._magn_low, 255, onchange_magn_low\n )\n", (5951, 6018), False, 'import cv2\n'), ((6022, 6109), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""magn_high"""', '"""output"""', 'self._magn_high', '(255)', 'onchange_magn_high'], {}), "('magn_high', 'output', self._magn_high, 255,\n onchange_magn_high)\n", (6040, 6109), False, 'import cv2\n'), ((6114, 6206), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""magn_filter"""', '"""output"""', 'self._magn_filter', '(21)', 'onchange_magn_filter'], {}), "('magn_filter', 'output', self._magn_filter, 21,\n onchange_magn_filter)\n", (6132, 6206), False, 'import cv2\n'), ((6220, 6324), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""direction_low(rad)"""', '"""output"""', 'self._direction_low', '(314)', 'onchange_direction_low'], {}), "('direction_low(rad)', 'output', self._direction_low, 314,\n onchange_direction_low)\n", (6238, 6324), False, 'import cv2\n'), ((6329, 6437), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""direction_high(rad)"""', '"""output"""', 'self._direction_high', '(314)', 'onchange_direction_high'], {}), "('direction_high(rad)', 'output', self._direction_high, \n 314, onchange_direction_high)\n", (6347, 6437), False, 'import cv2\n'), ((6441, 6548), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""direction_filter"""', '"""output"""', 'self._direction_filter', '(21)', 'onchange_direction_filter'], {}), "('direction_filter', 'output', self._direction_filter, 21,\n onchange_direction_filter)\n", (6459, 6548), False, 'import cv2\n'), ((6553, 6673), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""direction_avg_filter"""', '"""output"""', 'self._direction_avg_filter', '(21)', 'onchange_direction_avg_filter'], {}), "('direction_avg_filter', 'output', self.\n _direction_avg_filter, 21, onchange_direction_avg_filter)\n", (6571, 6673), False, 'import cv2\n'), ((6677, 6786), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""direction_thresh"""', '"""output"""', 'self._direction_thresh', '(255)', 'onchange_direction_thresh'], {}), "('direction_thresh', 'output', self._direction_thresh, \n 255, onchange_direction_thresh)\n", (6695, 6786), False, 'import cv2\n'), ((6792, 6896), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""post_avg_filter"""', '"""output"""', 'self._post_avg_filter', '(21)', 'onchange_post_avg_filter'], {}), "('post_avg_filter', 'output', self._post_avg_filter, 21,\n onchange_post_avg_filter)\n", (6810, 6896), False, 'import cv2\n'), ((6901, 6994), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""post_thresh"""', '"""output"""', 'self._post_thresh', '(255)', 'onchange_post_thresh'], {}), "('post_thresh', 'output', self._post_thresh, 255,\n onchange_post_thresh)\n", (6919, 6994), False, 'import cv2\n'), ((7107, 7121), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (7118, 7121), False, 'import cv2\n'), ((7131, 7158), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""output"""'], {}), "('output')\n", (7148, 7158), False, 'import cv2\n'), ((8986, 9022), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2HLS'], {}), '(img, cv2.COLOR_RGB2HLS)\n', (8998, 9022), False, 'import cv2\n'), ((10003, 10028), 'numpy.absolute', 'np.absolute', (['sobel_orient'], {}), '(sobel_orient)\n', (10014, 10028), True, 'import numpy as np\n'), ((10142, 10169), 'numpy.zeros_like', 'np.zeros_like', (['scaled_sobel'], {}), '(scaled_sobel)\n', (10155, 10169), True, 'import numpy as np\n'), ((10967, 10993), 'numpy.zeros_like', 'np.zeros_like', (['scaled_magn'], {}), '(scaled_magn)\n', (10980, 10993), True, 'import numpy as np\n'), ((11403, 11468), 'cv2.Sobel', 'cv2.Sobel', (['image_binary', 'cv2.CV_64F', '(1)', '(0)'], {'ksize': 'dir_sobel_kernel'}), '(image_binary, cv2.CV_64F, 1, 0, ksize=dir_sobel_kernel)\n', (11412, 11468), False, 'import cv2\n'), ((11487, 11552), 'cv2.Sobel', 'cv2.Sobel', (['image_binary', 'cv2.CV_64F', '(0)', '(1)'], {'ksize': 'dir_sobel_kernel'}), '(image_binary, cv2.CV_64F, 0, 1, ksize=dir_sobel_kernel)\n', (11496, 11552), False, 'import cv2\n'), ((11574, 11594), 'numpy.absolute', 'np.absolute', (['sobel_x'], {}), '(sobel_x)\n', (11585, 11594), True, 'import numpy as np\n'), ((11616, 11636), 'numpy.absolute', 'np.absolute', (['sobel_y'], {}), '(sobel_y)\n', (11627, 11636), True, 'import numpy as np\n'), ((11662, 11696), 'numpy.arctan2', 'np.arctan2', (['abs_grad_y', 'abs_grad_x'], {}), '(abs_grad_y, abs_grad_x)\n', (11672, 11696), True, 'import numpy as np\n'), ((11744, 11773), 'numpy.zeros_like', 'np.zeros_like', (['direction_grad'], {}), '(direction_grad)\n', (11757, 11773), True, 'import numpy as np\n'), ((12211, 12253), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'sys.maxsize'}), '(threshold=sys.maxsize)\n', (12230, 12253), True, 'import numpy as np\n'), ((12323, 12350), 'numpy.zeros_like', 'np.zeros_like', (['binary_image'], {}), '(binary_image)\n', (12336, 12350), True, 'import numpy as np\n'), ((12533, 12581), 'cv2.blur', 'cv2.blur', (['non_binary', '(filter_size, filter_size)'], {}), '(non_binary, (filter_size, filter_size))\n', (12541, 12581), False, 'import cv2\n'), ((12775, 12795), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (12788, 12795), True, 'import numpy as np\n'), ((13326, 13357), 'numpy.zeros_like', 'np.zeros_like', (['binary_channel_h'], {}), '(binary_channel_h)\n', (13339, 13357), True, 'import numpy as np\n'), ((14135, 14169), 'numpy.zeros_like', 'np.zeros_like', (['self._sobelx_binary'], {}), '(self._sobelx_binary)\n', (14148, 14169), True, 'import numpy as np\n'), ((17631, 17670), 'cv2.imread', 'cv2.imread', (['f"""test_images/{image_path}"""'], {}), "(f'test_images/{image_path}')\n", (17641, 17670), False, 'import cv2\n'), ((9804, 9865), 'cv2.Sobel', 'cv2.Sobel', (['image_binary', 'cv2.CV_64F', '(1)', '(0)'], {'ksize': 'sobel_kernel'}), '(image_binary, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n', (9813, 9865), False, 'import cv2\n'), ((14938, 14986), 'cv2.imshow', 'cv2.imshow', (['"""sobelx_binary"""', 'self._sobelx_binary'], {}), "('sobelx_binary', self._sobelx_binary)\n", (14948, 14986), False, 'import cv2\n'), ((14999, 15047), 'cv2.imshow', 'cv2.imshow', (['"""sobely_binary"""', 'self._sobely_binary'], {}), "('sobely_binary', self._sobely_binary)\n", (15009, 15047), False, 'import cv2\n'), ((15060, 15102), 'cv2.imshow', 'cv2.imshow', (['"""mag_binary"""', 'self._mag_binary'], {}), "('mag_binary', self._mag_binary)\n", (15070, 15102), False, 'import cv2\n'), ((15115, 15163), 'cv2.imshow', 'cv2.imshow', (['"""direction_binary"""', 'self._dir_binary'], {}), "('direction_binary', self._dir_binary)\n", (15125, 15163), False, 'import cv2\n'), ((15176, 15220), 'cv2.imshow', 'cv2.imshow', (['"""direction_&_avg"""', 'self._avg_img'], {}), "('direction_&_avg', self._avg_img)\n", (15186, 15220), False, 'import cv2\n'), ((15233, 15286), 'cv2.imshow', 'cv2.imshow', (['"""direction_&_avg_thresh"""', 'self._thres_img'], {}), "('direction_&_avg_thresh', self._thres_img)\n", (15243, 15286), False, 'import cv2\n'), ((15299, 15345), 'cv2.imshow', 'cv2.imshow', (['"""channels_binary"""', 'channels_binary'], {}), "('channels_binary', channels_binary)\n", (15309, 15345), False, 'import cv2\n'), ((15599, 15636), 'cv2.imshow', 'cv2.imshow', (['"""output"""', 'channels_binary'], {}), "('output', channels_binary)\n", (15609, 15636), False, 'import cv2\n'), ((15664, 15727), 'cv2.imwrite', 'cv2.imwrite', (['f"""test_output/{save_name}_output"""', 'channels_binary'], {}), "(f'test_output/{save_name}_output', channels_binary)\n", (15675, 15727), False, 'import cv2\n'), ((15883, 15907), 'pickle.dump', 'pickle.dump', (['var_list', 'f'], {}), '(var_list, f)\n', (15894, 15907), False, 'import pickle\n'), ((16023, 16037), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (16034, 16037), False, 'import pickle\n'), ((9921, 9982), 'cv2.Sobel', 'cv2.Sobel', (['image_binary', 'cv2.CV_64F', '(0)', '(1)'], {'ksize': 'sobel_kernel'}), '(image_binary, cv2.CV_64F, 0, 1, ksize=sobel_kernel)\n', (9930, 9982), False, 'import cv2\n'), ((10075, 10092), 'numpy.max', 'np.max', (['abs_sobel'], {}), '(abs_sobel)\n', (10081, 10092), True, 'import numpy as np\n'), ((10822, 10842), 'numpy.power', 'np.power', (['sobel_x', '(2)'], {}), '(sobel_x, 2)\n', (10830, 10842), True, 'import numpy as np\n'), ((10844, 10864), 'numpy.power', 'np.power', (['sobel_y', '(2)'], {}), '(sobel_y, 2)\n', (10852, 10864), True, 'import numpy as np\n'), ((10905, 10917), 'numpy.max', 'np.max', (['magn'], {}), '(magn)\n', (10911, 10917), True, 'import numpy as np\n'), ((15386, 15420), 'numpy.zeros_like', 'np.zeros_like', (['self._sobelx_binary'], {}), '(self._sobelx_binary)\n', (15399, 15420), True, 'import numpy as np\n'), ((9255, 9292), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2GRAY'], {}), '(img, cv2.COLOR_RGB2GRAY)\n', (9267, 9292), False, 'import cv2\n')]
#!/usr/bin/env python3 # Copyright (c) 2021 <NAME> # # This software is released under the MIT License. # https://opensource.org/licenses/MIT """This module does comparison of two images""" import argparse import os from io import BytesIO from typing import Union, List, Tuple from pathlib import Path import numpy as np from PIL import Image from cv2 import cv2 import face_recognition from emrtd_face_access.print_to_sg import SetInterval print = SetInterval().print def opencv_dnn_detector() -> cv2.dnn_Net: """Create face detection network""" if "net" in opencv_dnn_detector.__dict__: return opencv_dnn_detector.net print("[+] Creating face detector network...") # downloaded from # https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel model_file = "face_detection/res10_300x300_ssd_iter_140000_fp16.caffemodel" # downloaded from # https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt config_file = "face_detection/deploy.prototxt" opencv_dnn_detector.net = cv2.dnn.readNetFromCaffe(config_file, model_file) return opencv_dnn_detector.net def get_bounding_boxes( image: np.ndarray, conf_threshold: float = 0.5, scale_size: Tuple[int, int] = (-1, -1) ) -> List[Tuple[int, ...]]: """Image is expected in opencv format (BGR) takes image and returns face bounding boxes scale_size: Tuple[int, int] (height, width)""" # https://learnopencv.com/face-detection-opencv-dlib-and-deep-learning-c-python/ net = opencv_dnn_detector() face_locations: List[Tuple[int, ...]] = [] blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), [104, 117, 123], False, False) net.setInput(blob) detections = net.forward() for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > conf_threshold: x1 = detections[0, 0, i, 3] y1 = detections[0, 0, i, 4] x2 = detections[0, 0, i, 5] y2 = detections[0, 0, i, 6] if scale_size == (-1, -1): x1 = int(x1 * image.shape[1]) y1 = int(y1 * image.shape[0]) x2 = int(x2 * image.shape[1]) y2 = int(y2 * image.shape[0]) else: x1 = int(x1 * scale_size[1]) y1 = int(y1 * scale_size[0]) x2 = int(x2 * scale_size[1]) y2 = int(y2 * scale_size[0]) face_locations.append((y1, x2, y2, x1)) return face_locations def compare_faces( id_image: bytes, cam_image: np.ndarray, face_location: List[Tuple[int, ...]], save_dest: Union[Path, None] = None, ) -> bool: """ Compare two images. First one should be jpeg, the second one should be opencv image (numpy) face_location is the location of the face in the second image :returns: True if they are the same person, False otherwise. """ im1 = bytes_to_np(id_image) im1 = im1[:, :, ::-1] id_face_loc = get_bounding_boxes(im1) im1 = im1[:, :, ::-1] face_encodings = face_recognition.face_encodings(im1, id_face_loc, 10, "large")[0] im2 = cam_image[:, :, ::-1] face_encodings2 = face_recognition.face_encodings(im2, face_location, 10, "large")[0] if save_dest: Image.fromarray(im1).save(os.path.join(save_dest, "face_one.jpeg")) Image.fromarray(im2).save(os.path.join(save_dest, "face_two.jpeg")) dist = face_recognition.face_distance([face_encodings], face_encodings2)[0] print("[i] Decision threshold is 0.5.") if dist <= 0.5: print( f"[+] Distance between the images is {dist}" "\n[+] These images are of the same people!" ) return True else: print( f"[-] Distance between the images is {dist}\n" "[-] These images are of two different people!" ) return False def bytes_to_np(img: bytes) -> np.ndarray: """ Converts bytes image (PIL) to numpy image (opencv) """ im = Image.open(BytesIO(img)) im = im.convert("RGB") return np.array(im) def jpeg_to_png(img: bytes) -> bytes: """ Converts a JPEG to a PNG """ im = Image.open(BytesIO(img)) width = 240 height = int(im.size[1] * (240 / im.size[0])) im = im.convert("RGB").resize((width, height)) stream = BytesIO() im.save(stream, format="PNG") return stream.getvalue() def main(im1_filename: Path, im2_filename: Path) -> None: """ Compare two persons images. """ im1 = np.array(Image.open(im1_filename).convert("RGB")) im2 = np.array(Image.open(im2_filename).convert("RGB")) im1 = im1[:, :, ::-1] id_face_loc = get_bounding_boxes(im1) im1 = im1[:, :, ::-1] face_encodings = face_recognition.face_encodings(im1, id_face_loc, 10, "large")[0] im2 = im2[:, :, ::-1] cam_face_loc = get_bounding_boxes(im2) im2 = im2[:, :, ::-1] face_encodings2 = face_recognition.face_encodings(im2, cam_face_loc, 10, "large")[0] dist = face_recognition.face_distance([face_encodings], face_encodings2)[0] if dist < 0.5: print(f"[+] These images belong to the same person! ({dist})") else: print(f"[-] These images do not belong to the same person! ({dist})") if __name__ == "__main__": def raise_(ex): """https://stackoverflow.com/a/8294654/6077951""" raise ex parser = argparse.ArgumentParser(description="Find if two images are of the same people.") parser.add_argument( "image_one", type=lambda x: x if os.path.isfile(x) else raise_(FileNotFoundError(x)), help="Path to image one", ) parser.add_argument( "image_two", type=lambda x: x if os.path.isfile(x) else raise_(FileNotFoundError(x)), help="Path to image two", ) args = parser.parse_args() main(Path(args.image_one), Path(args.image_two))
[ "PIL.Image.fromarray", "PIL.Image.open", "emrtd_face_access.print_to_sg.SetInterval", "argparse.ArgumentParser", "pathlib.Path", "io.BytesIO", "os.path.join", "os.path.isfile", "numpy.array", "face_recognition.face_distance", "face_recognition.face_encodings", "cv2.cv2.dnn.blobFromImage", "cv2.cv2.dnn.readNetFromCaffe" ]
[((455, 468), 'emrtd_face_access.print_to_sg.SetInterval', 'SetInterval', ([], {}), '()\n', (466, 468), False, 'from emrtd_face_access.print_to_sg import SetInterval\n'), ((1153, 1202), 'cv2.cv2.dnn.readNetFromCaffe', 'cv2.dnn.readNetFromCaffe', (['config_file', 'model_file'], {}), '(config_file, model_file)\n', (1177, 1202), False, 'from cv2 import cv2\n'), ((1707, 1783), 'cv2.cv2.dnn.blobFromImage', 'cv2.dnn.blobFromImage', (['image', '(1.0)', '(300, 300)', '[104, 117, 123]', '(False)', '(False)'], {}), '(image, 1.0, (300, 300), [104, 117, 123], False, False)\n', (1728, 1783), False, 'from cv2 import cv2\n'), ((4203, 4215), 'numpy.array', 'np.array', (['im'], {}), '(im)\n', (4211, 4215), True, 'import numpy as np\n'), ((4465, 4474), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (4472, 4474), False, 'from io import BytesIO\n'), ((5531, 5617), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Find if two images are of the same people."""'}), "(description=\n 'Find if two images are of the same people.')\n", (5554, 5617), False, 'import argparse\n'), ((3176, 3238), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['im1', 'id_face_loc', '(10)', '"""large"""'], {}), "(im1, id_face_loc, 10, 'large')\n", (3207, 3238), False, 'import face_recognition\n'), ((3297, 3361), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['im2', 'face_location', '(10)', '"""large"""'], {}), "(im2, face_location, 10, 'large')\n", (3328, 3361), False, 'import face_recognition\n'), ((3548, 3613), 'face_recognition.face_distance', 'face_recognition.face_distance', (['[face_encodings]', 'face_encodings2'], {}), '([face_encodings], face_encodings2)\n', (3578, 3613), False, 'import face_recognition\n'), ((4151, 4163), 'io.BytesIO', 'BytesIO', (['img'], {}), '(img)\n', (4158, 4163), False, 'from io import BytesIO\n'), ((4321, 4333), 'io.BytesIO', 'BytesIO', (['img'], {}), '(img)\n', (4328, 4333), False, 'from io import BytesIO\n'), ((4882, 4944), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['im1', 'id_face_loc', '(10)', '"""large"""'], {}), "(im1, id_face_loc, 10, 'large')\n", (4913, 4944), False, 'import face_recognition\n'), ((5066, 5129), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['im2', 'cam_face_loc', '(10)', '"""large"""'], {}), "(im2, cam_face_loc, 10, 'large')\n", (5097, 5129), False, 'import face_recognition\n'), ((5145, 5210), 'face_recognition.face_distance', 'face_recognition.face_distance', (['[face_encodings]', 'face_encodings2'], {}), '([face_encodings], face_encodings2)\n', (5175, 5210), False, 'import face_recognition\n'), ((5988, 6008), 'pathlib.Path', 'Path', (['args.image_one'], {}), '(args.image_one)\n', (5992, 6008), False, 'from pathlib import Path\n'), ((6010, 6030), 'pathlib.Path', 'Path', (['args.image_two'], {}), '(args.image_two)\n', (6014, 6030), False, 'from pathlib import Path\n'), ((3418, 3458), 'os.path.join', 'os.path.join', (['save_dest', '"""face_one.jpeg"""'], {}), "(save_dest, 'face_one.jpeg')\n", (3430, 3458), False, 'import os\n'), ((3494, 3534), 'os.path.join', 'os.path.join', (['save_dest', '"""face_two.jpeg"""'], {}), "(save_dest, 'face_two.jpeg')\n", (3506, 3534), False, 'import os\n'), ((3392, 3412), 'PIL.Image.fromarray', 'Image.fromarray', (['im1'], {}), '(im1)\n', (3407, 3412), False, 'from PIL import Image\n'), ((3468, 3488), 'PIL.Image.fromarray', 'Image.fromarray', (['im2'], {}), '(im2)\n', (3483, 3488), False, 'from PIL import Image\n'), ((4665, 4689), 'PIL.Image.open', 'Image.open', (['im1_filename'], {}), '(im1_filename)\n', (4675, 4689), False, 'from PIL import Image\n'), ((4725, 4749), 'PIL.Image.open', 'Image.open', (['im2_filename'], {}), '(im2_filename)\n', (4735, 4749), False, 'from PIL import Image\n'), ((5687, 5704), 'os.path.isfile', 'os.path.isfile', (['x'], {}), '(x)\n', (5701, 5704), False, 'import os\n'), ((5854, 5871), 'os.path.isfile', 'os.path.isfile', (['x'], {}), '(x)\n', (5868, 5871), False, 'import os\n')]
from typing import NoReturn from ...base import BaseEstimator import numpy as np from numpy.linalg import det, inv from scipy.stats import multivariate_normal class LDA(BaseEstimator): """ Linear Discriminant Analysis (LDA) classifier Attributes ---------- self.classes_ : np.ndarray of shape (n_classes,) The different labels classes. To be set in `LDA.fit` self.mu_ : np.ndarray of shape (n_classes,n_features) The estimated features means for each class. To be set in `LDA.fit` self.cov_ : np.ndarray of shape (n_features,n_features) The estimated features' covariance. To be set in `LDA.fit` self._cov_inv : np.ndarray of shape (n_features,n_features) The inverse of the estimated features covariance. To be set in `LDA.fit` self.pi_: np.ndarray of shape (n_classes) The estimated class probabilities. To be set in `GaussianNaiveBayes.fit` """ def __init__(self): """ Instantiate an LDA classifier """ super().__init__() self.classes_, self.mu_, self.cov_, self._cov_inv, self.pi_ = None, None, None, None, None def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ fits an LDA model. Estimates gaussian for each label class - Different mean vector, same covariance matrix with dependent features. Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to """ self.classes_, counts = np.unique(y, return_counts=True) self.pi_ = counts / sum(counts) self.mu_ = np.zeros((len(self.classes_), X.shape[1])) label_index_dict = {} # map label to its index: for i, k in enumerate(self.classes_): label_index_dict[k] = i # sum label's samples: for index, label in enumerate(y): self.mu_[label_index_dict[label]] += X[index] # divide by number of samples of each class: self.mu_ /= counts.reshape(-1, 1) # calculating self.cov: self.cov_ = np.zeros((X.shape[1], X.shape[1])) for index, label in enumerate(y): error = np.array(X[index] - self.mu_[label_index_dict[label]]) self.cov_ += np.outer(error, error) self.cov_ /= (X.shape[0] - len(self.classes_)) self._cov_inv = inv(self.cov_) def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples """ ak_matrix = self._cov_inv @ self.mu_.transpose() # num_features X num_classes bk_vec = np.log(self.pi_) - (0.5 * (np.diag(self.mu_ @ self._cov_inv @ self.mu_.transpose()))) # num_classes classes_indexes = ((X @ ak_matrix) + bk_vec).argmax(1) classes_indexes = self.classes_[classes_indexes] prediction = np.zeros((X.shape[0],)) for index, row in enumerate(classes_indexes): prediction[index] = self.classes_[row] return prediction def likelihood(self, X: np.ndarray) -> np.ndarray: """ Calculate the likelihood of a given data over the estimated model Parameters ---------- X : np.ndarray of shape (n_samples, n_features) Input data to calculate its likelihood over the different classes. Returns ------- likelihoods : np.ndarray of shape (n_samples, n_classes) The likelihood for each sample under each of the classes """ if not self.fitted_: raise ValueError("Estimator must first be fitted before calling `likelihood` function") likelihood = np.zeros((X.shape[0], len(self.classes_))) for index, row in enumerate(self.mu_): likelihood[:, index] = multivariate_normal.pdf(X, mean=row, cov=self.cov_)*self.pi_[index] return likelihood def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under misclassification loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under missclassification loss function """ from ...metrics import misclassification_error return misclassification_error(y, self._predict(X))
[ "numpy.unique", "scipy.stats.multivariate_normal.pdf", "numpy.log", "numpy.array", "numpy.zeros", "numpy.linalg.inv", "numpy.outer" ]
[((1651, 1683), 'numpy.unique', 'np.unique', (['y'], {'return_counts': '(True)'}), '(y, return_counts=True)\n', (1660, 1683), True, 'import numpy as np\n'), ((2212, 2246), 'numpy.zeros', 'np.zeros', (['(X.shape[1], X.shape[1])'], {}), '((X.shape[1], X.shape[1]))\n', (2220, 2246), True, 'import numpy as np\n'), ((2491, 2505), 'numpy.linalg.inv', 'inv', (['self.cov_'], {}), '(self.cov_)\n', (2494, 2505), False, 'from numpy.linalg import det, inv\n'), ((3322, 3345), 'numpy.zeros', 'np.zeros', (['(X.shape[0],)'], {}), '((X.shape[0],))\n', (3330, 3345), True, 'import numpy as np\n'), ((2309, 2363), 'numpy.array', 'np.array', (['(X[index] - self.mu_[label_index_dict[label]])'], {}), '(X[index] - self.mu_[label_index_dict[label]])\n', (2317, 2363), True, 'import numpy as np\n'), ((2389, 2411), 'numpy.outer', 'np.outer', (['error', 'error'], {}), '(error, error)\n', (2397, 2411), True, 'import numpy as np\n'), ((3028, 3044), 'numpy.log', 'np.log', (['self.pi_'], {}), '(self.pi_)\n', (3034, 3044), True, 'import numpy as np\n'), ((4249, 4300), 'scipy.stats.multivariate_normal.pdf', 'multivariate_normal.pdf', (['X'], {'mean': 'row', 'cov': 'self.cov_'}), '(X, mean=row, cov=self.cov_)\n', (4272, 4300), False, 'from scipy.stats import multivariate_normal\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 1 08:04:50 2019 @author: alexandradarmon """ import random import numpy as np import seaborn as sns import matplotlib.pyplot as plt from punctuation.config import options from punctuation.visualisation.heatmap_functions import heatmap, annotate_heatmap from webcolors import hex_to_rgb color_vector = ['#2764A2','#EC7428','#438823', '#B9312B', '#785BAD','#72473D', '#CA6FB6', '#6C6C6C','#B1AC27', '#44ADC1'] markers = {'o': 'circle','D': 'diamond', 'p': 'pentagon', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', 's': 'square', '*': 'star','x': 'x', '_': 'hline', 'p': 'pentagon', 'h': 'hexagon1', 'H': 'hexagon2', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '+': 'plus', 'P': 'plus_filled', 'X': 'x_filled', 0: 'tickleft', 1: 'tickright', 2: 'tickup', 3: 'tickdown', 4: 'caretleft', 5: 'caretright', 6: 'caretup', 7: 'caretdown', 8: 'caretleftbase', '*': 'star', 9: 'caretrightbase', 10: 'caretupbase', 11: 'caretdownbase', 'None': 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing'} marker_vector = list(markers.keys()) rgb_color_vector = [hex_to_rgb(i) for i in color_vector] def get_overall_kdeplot(df,subfile, punctuation_vector=options.punctuation_vector, freq_pun_col=options.freq_pun_col, with_pairs=False): for col1, pun1 in zip(freq_pun_col, punctuation_vector): sns.kdeplot(df[col1], label='{}'.format(pun1), color='black') plt.legend(loc=0) plt.savefig('results/stats_corpus/{}/kdeplot_{}.png'.format(subfile,col1)) plt.show() if with_pairs: for col2, pun2 in zip(freq_pun_col[freq_pun_col.index(col1)+1:], punctuation_vector[punctuation_vector.index(pun1)+1:]): sns.kdeplot(df[col1], df[col2], label='{},{}'.format(pun1,pun2)) plt.legend(loc=0) plt.savefig('results/stats_corpus/{}/kdeplot_{}_{}.png'.format(subfile, col1, col2)) plt.show() def get_overall_hist(df,subfile, punctuation_vector=options.punctuation_vector, freq_pun_col=options.freq_pun_col): bins = np.arange(0,1,0.01) for col1, pun1 in zip(freq_pun_col, punctuation_vector): ax = plt.subplot(111) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) plt.hist(df[col1], bins=bins, label=pun1, color='blue') plt.legend(loc=0, fontsize=options.font_size) plt.xlabel('punctuation frequency') plt.ylabel('number of documents') plt.savefig('results/stats_corpus/{}/hist_{}.png'.format(subfile,col1)) plt.show() def show_weapon_hist(kl_within_author_samples, kl_between_author_samples, type_compute_baseline,path_res,feature_name, baseline_between=None, baseline_within=None, bins=100, to_show=True): bin_size = 0.1 bins = np.arange(0,2, bin_size) x_bins = np.arange(0,2+bin_size, 4*bin_size) ax = plt.subplot(111) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) y1, bin_edges1=np.histogram(kl_within_author_samples,bins=bins) y1 = list(map(lambda x: x/sum(y1), y1)) bincenters1 = 0.5*(bin_edges1[1:]+bin_edges1[:-1]) y2, bin_edges2=np.histogram(kl_between_author_samples,bins=bins) y2 = list(map(lambda x: x/sum(y2), y2)) bincenters2 = 0.5*(bin_edges2[1:]+bin_edges2[:-1]) # plt.hist(kl_within_author_samples, bins=bins, color='black', # alpha=0.4,) plt.bar(bincenters1, y1, width=bin_size, color='black',alpha=0.3,) plt.plot(bincenters1,y1,'-', color='black') plt.bar(bincenters1, y2, width=bin_size, color='blue',alpha=0.3,) plt.plot(bincenters2, y2, '-', color='blue') if type_compute_baseline: plt.axvline(baseline_between, color='blue', linestyle=':') plt.axvline(baseline_within, color='black', linestyle=':') plt.xlim(min(min(kl_within_author_samples), min(kl_between_author_samples)),2) plt.ylim(0,1) plt.yticks([0,0.5,1]) plt.xticks(x_bins) plt.xlabel('KL divergence') plt.ylabel('frequency') plt.legend('') plt.savefig('{}/kl_hist_comparison_{}.png'.format(path_res,feature_name)) if to_show: plt.show() ## CUMSUM REPRESENTATION #y1_cum_sum = pd.Series(y1).cumsum() #y1_cum_sum = y1_cum_sum.tolist() # #y2_cum_sum = pd.Series(y2).cumsum() #y2_cum_sum = y2_cum_sum.tolist() # # #plt.plot(bincenters1, y1_cum_sum, color='black', label='within') #plt.plot(bincenters1, y2_cum_sum, color='blue', label='between') #plt.legend() def plot_list_class(df, class_name='author'): res = df.groupby([class_name],as_index=False)\ ['book_id'].count().rename(columns={'book_id':'nb_books'}).sort_values('nb_books',ascending=False) # list_author = list(res[class_name]) # list_nb_books = list(res['nb_books']) # # plt.bar(list(range(0,len(list_author))), list_nb_books) # plt.xticks([10,50,100,150,200],fontsize=options.font_size) # plt.yticks([0,20,40,60],fontsize=options.font_size) # plt.xlim([10,230]) # plt.xlabel('Number of documents',fontsize=options.font_size) # plt.ylabel('Number of {}s'.format(class_name),fontsize=options.font_size) # plt.bar(list_nb_books, list_nb_authors,width=3, color='blue') # res = res[[class_name,'nb_books']].\ groupby('nb_books',as_index=False)[class_name].count() list_nb_authors = list(res[class_name]) list_nb_books = list(res['nb_books']) ax = plt.subplot(111, ) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) ax.set_xlim([10,230]) plt.xticks([10,50,100,150,200],fontsize=options.font_size) plt.yticks([0,20,40,60],fontsize=options.font_size) plt.xlim([10,230]) plt.xlabel('number of documents',fontsize=options.font_size) plt.ylabel('number of {}s'.format(class_name),fontsize=options.font_size) plt.bar(list_nb_books, list_nb_authors,width=3, color='blue') plt.show() def plot_hist_punc(freq, punctuation_vector=options.punctuation_vector): y = freq x = list(range(0,10)) ax = plt.subplot(111) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) ax.bar(x, y, align='center', color='b') #< added align keyword ax.xaxis_date() ax.set_ylim(bottom=0, top=0.7) plt.xticks(list(range(0,10)), punctuation_vector[:-1]+['...']) plt.show() def plot_hist_words(freq): ax = plt.subplot(111, ) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) plt.rcParams.update({'font.size': options.font_size}) plt.bar(list(range(0,len(freq))), freq, color='magenta', align='center') ax.set_ylim(bottom=0, top=0.4) #plt.xticks(list(range(0,len(freq))), punctuation_vector) plt.show() def func(x, pos): return "{:.2f}".format(x).replace("0.", ".").replace("1.00", "") def plot_trans_mat(mat_nb_words, punctuation_vector=options.punctuation_vector): vegetables = punctuation_vector[:-1]+['...'] farmers = punctuation_vector[:-1]+['...'] harvest = np.array(mat_nb_words) fig, ax = plt.subplots() im, _ = heatmap(harvest, vegetables, farmers, ax=ax, ) annotate_heatmap(im, valfmt="{x:.1f}", size=7) plt.tight_layout() plt.show() def plot_scatter_freqs(df, title1=None, title2=None, freq1=None, freq2=None, font_size=options.font_size, ): if title1 is None: title1 = random.choice(df['title'].tolist()) if title2 is None: title2 = random.choice(df['title'].tolist()) if freq1 is None: freq1 = df[df['title']==title1]['freq_pun'].iloc[0] if freq2 is None: freq2 = df[df['title']==title2]['freq_pun'].iloc[0] ax = plt.subplot(111, ) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(options.font_size) plt.xlabel('$\it{'+title1.replace(' ','\ ')+'}$', fontsize=options.font_size) plt.ylabel('$\it{'+title2.replace(' ','\ ')+'}$', fontsize=options.font_size) plt.gca().set_aspect('equal', adjustable='box') vect = np.linspace(-0, 0.5, 10) plt.xticks([-0.,0.25,0.5], ['0', '0.25', '0.5'], fontsize=options.font_size) plt.yticks([-0,0.25,0.5],['0', '0.25', '0.5'], fontsize=options.font_size) for i in range(0,len(color_vector)): plt.plot(freq1[i], freq2[i], color=color_vector[i], marker="o") plt.plot(vect, vect, color = 'black', alpha=0.2) plt.show()
[ "matplotlib.pyplot.hist", "matplotlib.pyplot.ylabel", "numpy.array", "matplotlib.pyplot.axvline", "numpy.arange", "numpy.histogram", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "webcolors.hex_to_rgb", "numpy.linspace", "matplotlib.pyplot.yticks", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xticks", "matplotlib.pyplot.gca", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.bar", "punctuation.visualisation.heatmap_functions.annotate_heatmap", "matplotlib.pyplot.tight_layout", "punctuation.visualisation.heatmap_functions.heatmap", "matplotlib.pyplot.subplot", "matplotlib.pyplot.subplots" ]
[((1343, 1356), 'webcolors.hex_to_rgb', 'hex_to_rgb', (['i'], {}), '(i)\n', (1353, 1356), False, 'from webcolors import hex_to_rgb\n'), ((2515, 2536), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.01)'], {}), '(0, 1, 0.01)\n', (2524, 2536), True, 'import numpy as np\n'), ((3412, 3437), 'numpy.arange', 'np.arange', (['(0)', '(2)', 'bin_size'], {}), '(0, 2, bin_size)\n', (3421, 3437), True, 'import numpy as np\n'), ((3450, 3490), 'numpy.arange', 'np.arange', (['(0)', '(2 + bin_size)', '(4 * bin_size)'], {}), '(0, 2 + bin_size, 4 * bin_size)\n', (3459, 3490), True, 'import numpy as np\n'), ((3500, 3516), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (3511, 3516), True, 'import matplotlib.pyplot as plt\n'), ((3715, 3764), 'numpy.histogram', 'np.histogram', (['kl_within_author_samples'], {'bins': 'bins'}), '(kl_within_author_samples, bins=bins)\n', (3727, 3764), True, 'import numpy as np\n'), ((3887, 3937), 'numpy.histogram', 'np.histogram', (['kl_between_author_samples'], {'bins': 'bins'}), '(kl_between_author_samples, bins=bins)\n', (3899, 3937), True, 'import numpy as np\n'), ((4144, 4210), 'matplotlib.pyplot.bar', 'plt.bar', (['bincenters1', 'y1'], {'width': 'bin_size', 'color': '"""black"""', 'alpha': '(0.3)'}), "(bincenters1, y1, width=bin_size, color='black', alpha=0.3)\n", (4151, 4210), True, 'import matplotlib.pyplot as plt\n'), ((4228, 4273), 'matplotlib.pyplot.plot', 'plt.plot', (['bincenters1', 'y1', '"""-"""'], {'color': '"""black"""'}), "(bincenters1, y1, '-', color='black')\n", (4236, 4273), True, 'import matplotlib.pyplot as plt\n'), ((4281, 4346), 'matplotlib.pyplot.bar', 'plt.bar', (['bincenters1', 'y2'], {'width': 'bin_size', 'color': '"""blue"""', 'alpha': '(0.3)'}), "(bincenters1, y2, width=bin_size, color='blue', alpha=0.3)\n", (4288, 4346), True, 'import matplotlib.pyplot as plt\n'), ((4364, 4408), 'matplotlib.pyplot.plot', 'plt.plot', (['bincenters2', 'y2', '"""-"""'], {'color': '"""blue"""'}), "(bincenters2, y2, '-', color='blue')\n", (4372, 4408), True, 'import matplotlib.pyplot as plt\n'), ((4679, 4693), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (4687, 4693), True, 'import matplotlib.pyplot as plt\n'), ((4697, 4720), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0, 0.5, 1]'], {}), '([0, 0.5, 1])\n', (4707, 4720), True, 'import matplotlib.pyplot as plt\n'), ((4723, 4741), 'matplotlib.pyplot.xticks', 'plt.xticks', (['x_bins'], {}), '(x_bins)\n', (4733, 4741), True, 'import matplotlib.pyplot as plt\n'), ((4751, 4778), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""KL divergence"""'], {}), "('KL divergence')\n", (4761, 4778), True, 'import matplotlib.pyplot as plt\n'), ((4783, 4806), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency"""'], {}), "('frequency')\n", (4793, 4806), True, 'import matplotlib.pyplot as plt\n'), ((4816, 4830), 'matplotlib.pyplot.legend', 'plt.legend', (['""""""'], {}), "('')\n", (4826, 4830), True, 'import matplotlib.pyplot as plt\n'), ((6202, 6218), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (6213, 6218), True, 'import matplotlib.pyplot as plt\n'), ((6426, 6489), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[10, 50, 100, 150, 200]'], {'fontsize': 'options.font_size'}), '([10, 50, 100, 150, 200], fontsize=options.font_size)\n', (6436, 6489), True, 'import matplotlib.pyplot as plt\n'), ((6489, 6544), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0, 20, 40, 60]'], {'fontsize': 'options.font_size'}), '([0, 20, 40, 60], fontsize=options.font_size)\n', (6499, 6544), True, 'import matplotlib.pyplot as plt\n'), ((6545, 6564), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[10, 230]'], {}), '([10, 230])\n', (6553, 6564), True, 'import matplotlib.pyplot as plt\n'), ((6568, 6629), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""number of documents"""'], {'fontsize': 'options.font_size'}), "('number of documents', fontsize=options.font_size)\n", (6578, 6629), True, 'import matplotlib.pyplot as plt\n'), ((6711, 6773), 'matplotlib.pyplot.bar', 'plt.bar', (['list_nb_books', 'list_nb_authors'], {'width': '(3)', 'color': '"""blue"""'}), "(list_nb_books, list_nb_authors, width=3, color='blue')\n", (6718, 6773), True, 'import matplotlib.pyplot as plt\n'), ((6777, 6787), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6785, 6787), True, 'import matplotlib.pyplot as plt\n'), ((6916, 6932), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (6927, 6932), True, 'import matplotlib.pyplot as plt\n'), ((7309, 7319), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7317, 7319), True, 'import matplotlib.pyplot as plt\n'), ((7358, 7374), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (7369, 7374), True, 'import matplotlib.pyplot as plt\n'), ((7551, 7604), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': options.font_size}"], {}), "({'font.size': options.font_size})\n", (7570, 7604), True, 'import matplotlib.pyplot as plt\n'), ((7783, 7793), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7791, 7793), True, 'import matplotlib.pyplot as plt\n'), ((8098, 8120), 'numpy.array', 'np.array', (['mat_nb_words'], {}), '(mat_nb_words)\n', (8106, 8120), True, 'import numpy as np\n'), ((8145, 8159), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8157, 8159), True, 'import matplotlib.pyplot as plt\n'), ((8172, 8216), 'punctuation.visualisation.heatmap_functions.heatmap', 'heatmap', (['harvest', 'vegetables', 'farmers'], {'ax': 'ax'}), '(harvest, vegetables, farmers, ax=ax)\n', (8179, 8216), False, 'from punctuation.visualisation.heatmap_functions import heatmap, annotate_heatmap\n'), ((8248, 8294), 'punctuation.visualisation.heatmap_functions.annotate_heatmap', 'annotate_heatmap', (['im'], {'valfmt': '"""{x:.1f}"""', 'size': '(7)'}), "(im, valfmt='{x:.1f}', size=7)\n", (8264, 8294), False, 'from punctuation.visualisation.heatmap_functions import heatmap, annotate_heatmap\n'), ((8299, 8317), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8315, 8317), True, 'import matplotlib.pyplot as plt\n'), ((8322, 8332), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8330, 8332), True, 'import matplotlib.pyplot as plt\n'), ((8858, 8874), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (8869, 8874), True, 'import matplotlib.pyplot as plt\n'), ((9288, 9312), 'numpy.linspace', 'np.linspace', (['(-0)', '(0.5)', '(10)'], {}), '(-0, 0.5, 10)\n', (9299, 9312), True, 'import numpy as np\n'), ((9317, 9396), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[-0.0, 0.25, 0.5]', "['0', '0.25', '0.5']"], {'fontsize': 'options.font_size'}), "([-0.0, 0.25, 0.5], ['0', '0.25', '0.5'], fontsize=options.font_size)\n", (9327, 9396), True, 'import matplotlib.pyplot as plt\n'), ((9398, 9475), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[-0, 0.25, 0.5]', "['0', '0.25', '0.5']"], {'fontsize': 'options.font_size'}), "([-0, 0.25, 0.5], ['0', '0.25', '0.5'], fontsize=options.font_size)\n", (9408, 9475), True, 'import matplotlib.pyplot as plt\n'), ((9594, 9640), 'matplotlib.pyplot.plot', 'plt.plot', (['vect', 'vect'], {'color': '"""black"""', 'alpha': '(0.2)'}), "(vect, vect, color='black', alpha=0.2)\n", (9602, 9640), True, 'import matplotlib.pyplot as plt\n'), ((9647, 9657), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9655, 9657), True, 'import matplotlib.pyplot as plt\n'), ((1735, 1752), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0)'}), '(loc=0)\n', (1745, 1752), True, 'import matplotlib.pyplot as plt\n'), ((1844, 1854), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1852, 1854), True, 'import matplotlib.pyplot as plt\n'), ((2609, 2625), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (2620, 2625), True, 'import matplotlib.pyplot as plt\n'), ((2807, 2862), 'matplotlib.pyplot.hist', 'plt.hist', (['df[col1]'], {'bins': 'bins', 'label': 'pun1', 'color': '"""blue"""'}), "(df[col1], bins=bins, label=pun1, color='blue')\n", (2815, 2862), True, 'import matplotlib.pyplot as plt\n'), ((2871, 2916), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0)', 'fontsize': 'options.font_size'}), '(loc=0, fontsize=options.font_size)\n', (2881, 2916), True, 'import matplotlib.pyplot as plt\n'), ((2925, 2960), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""punctuation frequency"""'], {}), "('punctuation frequency')\n", (2935, 2960), True, 'import matplotlib.pyplot as plt\n'), ((2969, 3002), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""number of documents"""'], {}), "('number of documents')\n", (2979, 3002), True, 'import matplotlib.pyplot as plt\n'), ((3091, 3101), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3099, 3101), True, 'import matplotlib.pyplot as plt\n'), ((4448, 4506), 'matplotlib.pyplot.axvline', 'plt.axvline', (['baseline_between'], {'color': '"""blue"""', 'linestyle': '""":"""'}), "(baseline_between, color='blue', linestyle=':')\n", (4459, 4506), True, 'import matplotlib.pyplot as plt\n'), ((4515, 4573), 'matplotlib.pyplot.axvline', 'plt.axvline', (['baseline_within'], {'color': '"""black"""', 'linestyle': '""":"""'}), "(baseline_within, color='black', linestyle=':')\n", (4526, 4573), True, 'import matplotlib.pyplot as plt\n'), ((4925, 4935), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4933, 4935), True, 'import matplotlib.pyplot as plt\n'), ((9525, 9588), 'matplotlib.pyplot.plot', 'plt.plot', (['freq1[i]', 'freq2[i]'], {'color': 'color_vector[i]', 'marker': '"""o"""'}), "(freq1[i], freq2[i], color=color_vector[i], marker='o')\n", (9533, 9588), True, 'import matplotlib.pyplot as plt\n'), ((9224, 9233), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (9231, 9233), True, 'import matplotlib.pyplot as plt\n'), ((2136, 2153), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(0)'}), '(loc=0)\n', (2146, 2153), True, 'import matplotlib.pyplot as plt\n'), ((2327, 2337), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2335, 2337), True, 'import matplotlib.pyplot as plt\n')]
import argparse import os import numpy as np import torch import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from torchvision import transforms from torchvision import datasets from utils.lib import * from utils.pgd_attack import * from models.resnet import ResNet def test(model, dataloader): model.eval() n_correct, n_total = 0, 0 for img, label in iter(dataloader): batch_size = len(label) img, label = img.cuda(), label.cuda() with torch.no_grad(): class_output = model(img) pred = class_output.data.max(1, keepdim=True)[1] n_correct += pred.eq(label.data.view_as(pred)).cpu().sum() n_total += batch_size acc = n_correct.double() / n_total return acc if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate augmented training dataset and extract features') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--model-type', default='nat_model', choices=['nat_model', 'adv_model'], type=str, help='model type') parser.add_argument('--save-dir', default='./generate_data/', type=str, help='dir to save data') parser.add_argument('--model-dir', default='./checkpoints/', type=str, help='dir to saved model') # args parse args = parser.parse_args() # Set random seed set_seed(args.seed) model_type = args.model_type save_dir = os.path.join(args.save_dir, model_type) if not os.path.exists(save_dir): os.makedirs(save_dir) model_path = os.path.join(args.model_dir, model_type, "checkpoint.pth") batch_size = 128 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) transform_test = transforms.Compose([ transforms.ToTensor(), ]) mean = [x/255.0 for x in [125.3, 123.0, 113.9]] std = [x/255.0 for x in [63.0, 62.1, 66.7]] train_dataset = datasets.CIFAR10('./datasets/cifar10', train=True, download=True, transform=transform_train) train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False, num_workers=2) test_dataset = datasets.CIFAR10('./datasets/cifar10', train=False, transform=transform_test) test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) # Model Setup model = torch.load(model_path).cuda() model.eval() attacker = LinfPGDAttack(model, eps=8/255.0, nb_iter=40, eps_iter=1/255.0, rand_init=True, clip_min=0., clip_max=1., targeted=False, num_classes=10, elementwise_best=True) augment_data = [] augment_label = [] for batch_x, batch_y in train_dataloader: augment_data.extend(batch_x.numpy()) augment_label.extend(batch_y.numpy()) correct = 0.0 count = 0.0 for j in range(4): for batch_x, batch_y in train_dataloader: batch_x = batch_x.cuda() batch_y = batch_y.cuda() adv_batch_x = attacker.perturb(batch_x, batch_y) augment_data.extend(adv_batch_x.cpu().numpy()) augment_label.extend(batch_y.cpu().numpy()) with torch.no_grad(): outputs = model(adv_batch_x) preds = torch.argmax(outputs, axis=1) correct += torch.sum(preds==batch_y) count += batch_x.shape[0] print("Adv acc: {:.2f}%".format((correct/count)*100)) augment_data = np.array(augment_data) augment_label = np.array(augment_label) np.save(os.path.join(save_dir, "augment_data.npy"), augment_data) np.save(os.path.join(save_dir, "augment_label.npy"), augment_label) augment_data = torch.Tensor(augment_data) augment_label = torch.Tensor(augment_label).long() augment_dataset = TensorDataset(augment_data, augment_label) augment_dataloader = DataLoader(augment_dataset, batch_size=batch_size, shuffle=False) augment_features = [] for batch_x, batch_y in augment_dataloader: batch_x = batch_x.cuda() with torch.no_grad(): feature = model.get_feature(batch_x) augment_features.extend(feature.cpu().numpy()) augment_features = np.array(augment_features) np.save(os.path.join(save_dir, "augment_feature.npy"), augment_features)
[ "os.path.exists", "argparse.ArgumentParser", "os.makedirs", "torch.load", "os.path.join", "torch.Tensor", "torch.utils.data.TensorDataset", "torchvision.transforms.RandomHorizontalFlip", "torchvision.transforms.RandomCrop", "numpy.array", "torchvision.datasets.CIFAR10", "torch.sum", "torch.utils.data.DataLoader", "torch.no_grad", "torchvision.transforms.ToTensor", "torch.argmax" ]
[((813, 913), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate augmented training dataset and extract features"""'}), "(description=\n 'Generate augmented training dataset and extract features')\n", (836, 913), False, 'import argparse\n'), ((1467, 1506), 'os.path.join', 'os.path.join', (['args.save_dir', 'model_type'], {}), '(args.save_dir, model_type)\n', (1479, 1506), False, 'import os\n'), ((1592, 1650), 'os.path.join', 'os.path.join', (['args.model_dir', 'model_type', '"""checkpoint.pth"""'], {}), "(args.model_dir, model_type, 'checkpoint.pth')\n", (1604, 1650), False, 'import os\n'), ((2053, 2150), 'torchvision.datasets.CIFAR10', 'datasets.CIFAR10', (['"""./datasets/cifar10"""'], {'train': '(True)', 'download': '(True)', 'transform': 'transform_train'}), "('./datasets/cifar10', train=True, download=True, transform\n =transform_train)\n", (2069, 2150), False, 'from torchvision import datasets\n'), ((2169, 2259), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_dataset', 'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)'}), '(dataset=train_dataset, batch_size=batch_size, shuffle=False,\n num_workers=2)\n', (2179, 2259), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((2275, 2352), 'torchvision.datasets.CIFAR10', 'datasets.CIFAR10', (['"""./datasets/cifar10"""'], {'train': '(False)', 'transform': 'transform_test'}), "('./datasets/cifar10', train=False, transform=transform_test)\n", (2291, 2352), False, 'from torchvision import datasets\n'), ((2375, 2464), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'test_dataset', 'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': '(2)'}), '(dataset=test_dataset, batch_size=batch_size, shuffle=False,\n num_workers=2)\n', (2385, 2464), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((3597, 3619), 'numpy.array', 'np.array', (['augment_data'], {}), '(augment_data)\n', (3605, 3619), True, 'import numpy as np\n'), ((3640, 3663), 'numpy.array', 'np.array', (['augment_label'], {}), '(augment_label)\n', (3648, 3663), True, 'import numpy as np\n'), ((3827, 3853), 'torch.Tensor', 'torch.Tensor', (['augment_data'], {}), '(augment_data)\n', (3839, 3853), False, 'import torch\n'), ((3932, 3974), 'torch.utils.data.TensorDataset', 'TensorDataset', (['augment_data', 'augment_label'], {}), '(augment_data, augment_label)\n', (3945, 3974), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((4000, 4065), 'torch.utils.data.DataLoader', 'DataLoader', (['augment_dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)'}), '(augment_dataset, batch_size=batch_size, shuffle=False)\n', (4010, 4065), False, 'from torch.utils.data import DataLoader, TensorDataset\n'), ((4333, 4359), 'numpy.array', 'np.array', (['augment_features'], {}), '(augment_features)\n', (4341, 4359), True, 'import numpy as np\n'), ((1518, 1542), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (1532, 1542), False, 'import os\n'), ((1552, 1573), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (1563, 1573), False, 'import os\n'), ((3677, 3719), 'os.path.join', 'os.path.join', (['save_dir', '"""augment_data.npy"""'], {}), "(save_dir, 'augment_data.npy')\n", (3689, 3719), False, 'import os\n'), ((3747, 3790), 'os.path.join', 'os.path.join', (['save_dir', '"""augment_label.npy"""'], {}), "(save_dir, 'augment_label.npy')\n", (3759, 3790), False, 'import os\n'), ((4372, 4417), 'os.path.join', 'os.path.join', (['save_dir', '"""augment_feature.npy"""'], {}), "(save_dir, 'augment_feature.npy')\n", (4384, 4417), False, 'import os\n'), ((507, 522), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (520, 522), False, 'import torch\n'), ((1724, 1760), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['(32)'], {'padding': '(4)'}), '(32, padding=4)\n', (1745, 1760), False, 'from torchvision import transforms\n'), ((1770, 1803), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (1801, 1803), False, 'from torchvision import transforms\n'), ((1813, 1834), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1832, 1834), False, 'from torchvision import transforms\n'), ((1897, 1918), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1916, 1918), False, 'from torchvision import transforms\n'), ((2496, 2518), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (2506, 2518), False, 'import torch\n'), ((3401, 3430), 'torch.argmax', 'torch.argmax', (['outputs'], {'axis': '(1)'}), '(outputs, axis=1)\n', (3413, 3430), False, 'import torch\n'), ((3455, 3482), 'torch.sum', 'torch.sum', (['(preds == batch_y)'], {}), '(preds == batch_y)\n', (3464, 3482), False, 'import torch\n'), ((3875, 3902), 'torch.Tensor', 'torch.Tensor', (['augment_label'], {}), '(augment_label)\n', (3887, 3902), False, 'import torch\n'), ((4188, 4203), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4201, 4203), False, 'import torch\n'), ((3306, 3321), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3319, 3321), False, 'import torch\n')]