code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
""" Functions for explaining classifiers that use tabular data (matrices). """ import collections import json import copy import numpy as np import sklearn import sklearn.preprocessing from . import lime_base from . import explanation class TableDomainMapper(explanation.DomainMapper): """Maps feature ids to names, generates table views, etc""" def __init__(self, feature_names, feature_values, scaled_row, categorical_features, discretized_feature_names=None): """Init. Args: feature_names: list of feature names, in order feature_values: list of strings with the values of the original row scaled_row: scaled row categorical_featuers: list of categorical features ids (ints) """ self.exp_feature_names = feature_names if discretized_feature_names is not None: self.exp_feature_names = discretized_feature_names self.feature_names = feature_names self.feature_values = feature_values self.scaled_row = scaled_row self.all_categorical = len(categorical_features) == len(scaled_row) self.categorical_features = categorical_features def map_exp_ids(self, exp): """Maps ids to feature names. Args: exp: list of tuples [(id, weight), (id,weight)] Returns: list of tuples (feature_name, weight) """ return [(self.exp_feature_names[x[0]], x[1]) for x in exp] def visualize_instance_html(self, exp, label, random_id, show_table=True, show_contributions=None, show_scaled=None, show_all=False): """Shows the current example in a table format. Args: exp: list of tuples [(id, weight), (id,weight)] label: label id (integer) random_id: random_id being used, appended to div ids and etc in html. show_table: if False, don't show table visualization. show_contributions: if True, add an aditional bar plot with weights multiplied by example. By default, this is true if there are any continuous features. show_scaled: if True, display scaled values in table. show_all: if True, show zero-weighted features in the table. """ if show_contributions is None: show_contributions = not self.all_categorical if show_scaled is None: show_scaled = not self.all_categorical show_scaled = json.dumps(show_scaled) weights = [0] * len(self.feature_names) scaled_exp = [] for i, value in exp: weights[i] = value * self.scaled_row[i] scaled_exp.append((i, value * self.scaled_row[i])) scaled_exp = json.dumps(self.map_exp_ids(scaled_exp)) row = ['%.2f' % a if i not in self.categorical_features else 'N/A' for i, a in enumerate(self.scaled_row)] out_list = list(zip(self.feature_names, self.feature_values, row, weights)) if not show_all: out_list = [out_list[x[0]] for x in exp] out = u'' if show_contributions: out += u'''<script> var cur_width = parseInt(d3.select('#model%s').select('svg').style('width')); console.log(cur_width); var svg_contrib = d3.select('#model%s').append('svg'); exp.ExplainFeatures(svg_contrib, %d, %s, '%s', true); cur_width = Math.max(cur_width, parseInt(svg_contrib.style('width'))) + 'px'; d3.select('#model%s').style('width', cur_width); </script> ''' % (random_id, random_id, label, scaled_exp, 'Feature contributions', random_id) if show_table: out += u'<div id="mytable%s"></div>' % random_id out += u'''<script> var tab = d3.select('#mytable%s'); exp.ShowTable(tab, %s, %d, %s); </script> ''' % (random_id, json.dumps(out_list), label, show_scaled) return out class LimeTabularExplainer(object): """Explains predictions on tabular (i.e. matrix) data. For numerical features, perturb them by sampling from a Normal(0,1) and doing the inverse operation of mean-centering and scaling, according to the means and stds in the training data. For categorical features, perturb by sampling according to the training distribution, and making a binary feature that is 1 when the value is the same as the instance being explained.""" def __init__(self, training_data, feature_names=None, categorical_features=None, categorical_names=None, kernel_width=3, verbose=False, class_names=None, feature_selection='auto', discretize_continuous=True): """Init function. Args: training_data: numpy 2d array feature_names: list of names (strings) corresponding to the columns in the training data. categorical_features: list of indices (ints) corresponding to the categorical columns. Everything else will be considered continuous. categorical_names: map from int to list of names, where categorical_names[x][y] represents the name of the yth value of column x. kernel_width: kernel width for the exponential kernel verbose: if true, print local prediction values from linear model class_names: list of class names, ordered according to whatever the classifier is using. If not present, class names will be '0', '1', ... feature_selection: feature selection method. can be 'forward_selection', 'lasso_path', 'none' or 'auto'. See function 'explain_instance_with_data' in lime_base.py for details on what each of the options does. discretize_continuous: if True, all non-categorical features will be discretized into quartiles. """ self.categorical_names = categorical_names self.categorical_features = categorical_features if self.categorical_names is None: self.categorical_names = {} if self.categorical_features is None: self.categorical_features = [] self.discretizer = None if discretize_continuous: self.discretizer = QuartileDiscretizer(training_data, categorical_features, feature_names) categorical_features = range(training_data.shape[1]) discretized_training_data = self.discretizer.discretize(training_data) kernel = lambda d: np.sqrt(np.exp(-(d**2) / kernel_width ** 2)) self.feature_selection = feature_selection self.base = lime_base.LimeBase(kernel, verbose) self.scaler = None self.class_names = class_names self.feature_names = feature_names self.scaler = sklearn.preprocessing.StandardScaler(with_mean=False) self.scaler.fit(training_data) self.feature_values = {} self.feature_frequencies = {} for feature in categorical_features: feature_count = collections.defaultdict(lambda: 0.0) column = training_data[:, feature] if self.discretizer is not None: column = discretized_training_data[:, feature] feature_count[0] = 0. feature_count[1] = 0. feature_count[2] = 0. feature_count[3] = 0. for value in column: feature_count[value] += 1 values, frequencies = map(list, zip(*(feature_count.items()))) #print feature, values, frequencies self.feature_values[feature] = values self.feature_frequencies[feature] = (np.array(frequencies) / sum(frequencies)) self.scaler.mean_[feature] = 0 self.scaler.scale_[feature] = 1 #print self.feature_frequencies def explain_instance(self, data_row, classifier_fn, labels=(1,), top_labels=None, num_features=10, num_samples=5000): """Generates explanations for a prediction. First, we generate neighborhood data by randomly perturbing features from the instance (see __data_inverse). We then learn locally weighted linear models on this neighborhood data to explain each of the classes in an interpretable way (see lime_base.py). Args: data_row: 1d numpy array, corresponding to a row classifier_fn: classifier prediction probability function, which takes a string and outputs prediction probabilities. For ScikitClassifiers , this is classifier.predict_proba. labels: iterable with labels to be explained. top_labels: if not None, ignore labels and produce explanations for the K labels with highest prediction probabilities, where K is this parameter. num_features: maximum number of features present in explanation num_samples: size of the neighborhood to learn the linear model Returns: An Explanation object (see explanation.py) with the corresponding explanations. """ data, inverse = self.__data_inverse(data_row, num_samples) scaled_data = (data - self.scaler.mean_) / self.scaler.scale_ distances = np.sqrt(np.sum((scaled_data - scaled_data[0]) ** 2, axis=1)) yss = classifier_fn(inverse) if self.class_names is None: self.class_names = [str(x) for x in range(yss[0].shape[0])] else: self.class_names = list(self.class_names) feature_names = copy.deepcopy(self.feature_names) if feature_names is None: feature_names = [str(x) for x in range(data_row.shape[0])] round_stuff = lambda x: ['%.2f' % a for a in x] values = round_stuff(data_row) for i in self.categorical_features: name = int(data_row[i]) if i in self.categorical_names: name = self.categorical_names[i][name] feature_names[i] = '%s=%s' % (feature_names[i], name) values[i] = 'True' categorical_features = self.categorical_features discretized_feature_names=None if self.discretizer is not None: categorical_features = range(data.shape[1]) discretized_instance = self.discretizer.discretize(data_row) discretized_feature_names = copy.deepcopy(feature_names) for f in self.discretizer.names: discretized_feature_names[f] = self.discretizer.names[f][int(discretized_instance[f])] #values[f] = 'True' domain_mapper = TableDomainMapper( feature_names, values, scaled_data[0], categorical_features=categorical_features, discretized_feature_names=discretized_feature_names) ret_exp = explanation.Explanation(domain_mapper=domain_mapper, class_names=self.class_names) ret_exp.predict_proba = yss[0] if top_labels: labels = np.argsort(yss[0])[-top_labels:] ret_exp.top_labels = list(labels) ret_exp.top_labels.reverse() for label in labels: ret_exp.intercept[label], ret_exp.local_exp[label] = self.base.explain_instance_with_data( scaled_data, yss, distances, label, num_features, feature_selection=self.feature_selection) return ret_exp def __data_inverse(self, data_row, num_samples): """Generates a neighborhood around a prediction. For numerical features, perturb them by sampling from a Normal(0,1) and doing the inverse operation of mean-centering and scaling, according to the means and stds in the training data. For categorical features, perturb by sampling according to the training distribution, and making a binary feature that is 1 when the value is the same as the instance being explained. Args: data_row: 1d numpy array, corresponding to a row num_samples: size of the neighborhood to learn the linear model Returns: A tuple (data, inverse), where: data: dense num_samples * K matrix, where categorical features are encoded with either 0 (not equal to the corresponding value in data_row) or 1. The first row is the original instance. inverse: same as data, except the categorical features are not binary, but categorical (as the original data) """ data = np.zeros((num_samples, data_row.shape[0])) categorical_features = range(data_row.shape[0]) if self.discretizer is None: data = np.random.normal(0, 1, num_samples * data_row.shape[0]).reshape( num_samples, data_row.shape[0]) data = data * self.scaler.scale_ + self.scaler.mean_ categorical_features = self.categorical_features first_row = data_row else: first_row = self.discretizer.discretize(data_row) data[0] = data_row.copy() inverse = data.copy() for column in categorical_features: values = self.feature_values[column] freqs = self.feature_frequencies[column] #print self.feature_frequencies[column], column inverse_column = np.random.choice(values, size=num_samples, replace=True, p=freqs) binary_column = np.array([1 if x == first_row[column] else 0 for x in inverse_column]) binary_column[0] = 1 inverse_column[0] = data[0, column] data[:, column] = binary_column inverse[:, column] = inverse_column # if column not in self.categorical_features: # print values, column, # print inverse[1:, column] if self.discretizer is not None: inverse[1:] = self.discretizer.undiscretize(inverse[1:]) #print zip(inverse[:,10], data[:,10]) return data, inverse class QuartileDiscretizer: """Discretizes data into quartiles.""" def __init__(self, data, categorical_features, feature_names): """Initializer Args: data: numpy 2d array categorical_features: list of indices (ints) corresponding to the categorical columns. These features will not be discretized. Everything else will be considered continuous, and will be discretized. categorical_names: map from int to list of names, where categorical_names[x][y] represents the name of the yth value of column x. feature_names: list of names (strings) corresponding to the columns in the training data. """ to_discretize = [x for x in range(data.shape[1]) if x not in categorical_features] self.names = {} self.lambdas = {} self.ranges = {} self.means = {} self.stds = {} self.mins = {} self.maxs = {} for feature in to_discretize: qts = np.percentile(data[:,feature], [25, 50, 75]) boundaries = np.min(data[:, feature]), np.max(data[:, feature]) name = feature_names[feature] self.names[feature] = ['%s <= %.2f' % (name, qts[0]), '%.2f < %s <= %.2f' % (qts[0], name, qts[1]), '%.2f < %s <= %.2f' % (qts[1], name, qts[2]), '%s > %.2f' % (name, qts[2])] self.lambdas[feature] = lambda x, qts=qts: np.searchsorted(qts, x) discretized = self.lambdas[feature](data[:, feature]) self.means[feature] = [np.mean(data[discretized == x, feature]) for x in range(4)] self.stds[feature] = [np.std(data[discretized == x, feature]) + 0.000000000001 for x in range(4)] self.mins[feature] = [boundaries[0], qts[0], qts[1], qts[2]] self.maxs[feature] = [qts[0], qts[1],qts[2], boundaries[1]] def discretize(self, data): """Discretizes the data. Args: data: numpy 2d or 1d array Returns: numpy array of same dimension, discretized. """ ret = data.copy() for feature in self.lambdas: if len(data.shape) == 1: ret[feature] = int(self.lambdas[feature](ret[feature])) else: ret[:,feature] = self.lambdas[feature](ret[:,feature]).astype(int) return ret def undiscretize(self, data): ret = data.copy() for feature in self.means: mins = self.mins[feature] maxs = self.maxs[feature] means = self.means[feature] stds = self.stds[feature] get_inverse = lambda q: max(mins[q], min(np.random.normal(means[q], stds[q]), maxs[q])) if len(data.shape) == 1: q = int(ret[feature]) ret[feature] = get_inverse(q) else: ret[:,feature] = [get_inverse(int(x)) for x in ret[:, feature]] return ret
[ "numpy.random.normal", "numpy.mean", "numpy.random.choice", "numpy.searchsorted", "numpy.std", "json.dumps", "numpy.min", "numpy.max", "sklearn.preprocessing.StandardScaler", "numpy.sum", "numpy.zeros", "numpy.array", "collections.defaultdict", "numpy.exp", "numpy.argsort", "copy.deepcopy", "numpy.percentile" ]
[((2727, 2750), 'json.dumps', 'json.dumps', (['show_scaled'], {}), '(show_scaled)\n', (2737, 2750), False, 'import json\n'), ((7312, 7365), 'sklearn.preprocessing.StandardScaler', 'sklearn.preprocessing.StandardScaler', ([], {'with_mean': '(False)'}), '(with_mean=False)\n', (7348, 7365), False, 'import sklearn\n'), ((10183, 10216), 'copy.deepcopy', 'copy.deepcopy', (['self.feature_names'], {}), '(self.feature_names)\n', (10196, 10216), False, 'import copy\n'), ((13244, 13286), 'numpy.zeros', 'np.zeros', (['(num_samples, data_row.shape[0])'], {}), '((num_samples, data_row.shape[0]))\n', (13252, 13286), True, 'import numpy as np\n'), ((7549, 7586), 'collections.defaultdict', 'collections.defaultdict', (['(lambda : 0.0)'], {}), '(lambda : 0.0)\n', (7572, 7586), False, 'import collections\n'), ((9892, 9943), 'numpy.sum', 'np.sum', (['((scaled_data - scaled_data[0]) ** 2)'], {'axis': '(1)'}), '((scaled_data - scaled_data[0]) ** 2, axis=1)\n', (9898, 9943), True, 'import numpy as np\n'), ((10999, 11027), 'copy.deepcopy', 'copy.deepcopy', (['feature_names'], {}), '(feature_names)\n', (11012, 11027), False, 'import copy\n'), ((14046, 14111), 'numpy.random.choice', 'np.random.choice', (['values'], {'size': 'num_samples', 'replace': '(True)', 'p': 'freqs'}), '(values, size=num_samples, replace=True, p=freqs)\n', (14062, 14111), True, 'import numpy as np\n'), ((14140, 14212), 'numpy.array', 'np.array', (['[(1 if x == first_row[column] else 0) for x in inverse_column]'], {}), '([(1 if x == first_row[column] else 0) for x in inverse_column])\n', (14148, 14212), True, 'import numpy as np\n'), ((15798, 15843), 'numpy.percentile', 'np.percentile', (['data[:, feature]', '[25, 50, 75]'], {}), '(data[:, feature], [25, 50, 75])\n', (15811, 15843), True, 'import numpy as np\n'), ((7037, 7072), 'numpy.exp', 'np.exp', (['(-d ** 2 / kernel_width ** 2)'], {}), '(-d ** 2 / kernel_width ** 2)\n', (7043, 7072), True, 'import numpy as np\n'), ((8190, 8211), 'numpy.array', 'np.array', (['frequencies'], {}), '(frequencies)\n', (8198, 8211), True, 'import numpy as np\n'), ((11653, 11671), 'numpy.argsort', 'np.argsort', (['yss[0]'], {}), '(yss[0])\n', (11663, 11671), True, 'import numpy as np\n'), ((15868, 15892), 'numpy.min', 'np.min', (['data[:, feature]'], {}), '(data[:, feature])\n', (15874, 15892), True, 'import numpy as np\n'), ((15894, 15918), 'numpy.max', 'np.max', (['data[:, feature]'], {}), '(data[:, feature])\n', (15900, 15918), True, 'import numpy as np\n'), ((16204, 16227), 'numpy.searchsorted', 'np.searchsorted', (['qts', 'x'], {}), '(qts, x)\n', (16219, 16227), True, 'import numpy as np\n'), ((16329, 16369), 'numpy.mean', 'np.mean', (['data[discretized == x, feature]'], {}), '(data[discretized == x, feature])\n', (16336, 16369), True, 'import numpy as np\n'), ((4304, 4324), 'json.dumps', 'json.dumps', (['out_list'], {}), '(out_list)\n', (4314, 4324), False, 'import json\n'), ((13399, 13454), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(num_samples * data_row.shape[0])'], {}), '(0, 1, num_samples * data_row.shape[0])\n', (13415, 13454), True, 'import numpy as np\n'), ((16423, 16462), 'numpy.std', 'np.std', (['data[discretized == x, feature]'], {}), '(data[discretized == x, feature])\n', (16429, 16462), True, 'import numpy as np\n'), ((17443, 17478), 'numpy.random.normal', 'np.random.normal', (['means[q]', 'stds[q]'], {}), '(means[q], stds[q])\n', (17459, 17478), True, 'import numpy as np\n')]
import os import numpy as np import pandas as pd from databroker.assets.handlers_base import HandlerBase class APBBinFileHandler(HandlerBase): "Read electrometer *.bin files" def __init__(self, fpath): # It's a text config file, which we don't store in the resources yet, parsing for now fpath_txt = f"{os.path.splitext(fpath)[0]}.txt" with open(fpath_txt, "r") as fp: content = fp.readlines() content = [x.strip() for x in content] _ = int(content[0].split(":")[1]) # Gains = [int(x) for x in content[1].split(":")[1].split(",")] # Offsets = [int(x) for x in content[2].split(":")[1].split(",")] # FAdiv = float(content[3].split(":")[1]) # FArate = float(content[4].split(":")[1]) # trigger_timestamp = float(content[5].split(":")[1].strip().replace(",", ".")) raw_data = np.fromfile(fpath, dtype=np.int32) columns = ["timestamp", "i0", "it", "ir", "iff", "aux1", "aux2", "aux3", "aux4"] num_columns = len(columns) + 1 # TODO: figure out why 1 raw_data = raw_data.reshape((raw_data.size // num_columns, num_columns)) derived_data = np.zeros((raw_data.shape[0], raw_data.shape[1] - 1)) derived_data[:, 0] = ( raw_data[:, -2] + raw_data[:, -1] * 8.0051232 * 1e-9 ) # Unix timestamp with nanoseconds for i in range(num_columns - 2): derived_data[:, i + 1] = raw_data[:, i] # ((raw_data[:, i] ) - Offsets[i]) / Gains[i] self.df = pd.DataFrame(data=derived_data, columns=columns) self.raw_data = raw_data def __call__(self): return self.df
[ "pandas.DataFrame", "numpy.fromfile", "os.path.splitext", "numpy.zeros" ]
[((892, 926), 'numpy.fromfile', 'np.fromfile', (['fpath'], {'dtype': 'np.int32'}), '(fpath, dtype=np.int32)\n', (903, 926), True, 'import numpy as np\n'), ((1187, 1239), 'numpy.zeros', 'np.zeros', (['(raw_data.shape[0], raw_data.shape[1] - 1)'], {}), '((raw_data.shape[0], raw_data.shape[1] - 1))\n', (1195, 1239), True, 'import numpy as np\n'), ((1540, 1588), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'derived_data', 'columns': 'columns'}), '(data=derived_data, columns=columns)\n', (1552, 1588), True, 'import pandas as pd\n'), ((331, 354), 'os.path.splitext', 'os.path.splitext', (['fpath'], {}), '(fpath)\n', (347, 354), False, 'import os\n')]
import numpy as np import pandas as pd import sys import re # question type definition S = 0 # [S, col, corr [,rate]] MS = 1 # [MS, [cols,..], [corr,..] [,rate]] Num = 2 # [Num, [cols,..], [corr,..] [,rate]] SS = 3 # [SS, [start,end], [corr,...] [,rate]] # the list of question type and reference # [type, column, answer[, num_candidate]] QuestionReferences = None def get_num_squestions(qref): numq = 0 for q in qref: if q[0] == MS: numq += len(q[1]) elif q[0] == SS: numq += q[1][1]-q[1][0]+1 else: numq += 1 return numq def ascoringS(answer, q): if answer[q[1]] == q[2]: return 1 else: return 0 def ascoringMS(answer, columns, i, ref): ans = answer[columns] if ref[i] in ans: return 1 else: return 0 def ascoringSS(answer, i, columns, ref): ans = answer[columns[0]+i] if ans == ref[i]: return 1 else: return 0 def ascoringNum(answer, columns, ref): for i,p in enumerate(columns): if answer[p] != ref[i]: return 0 return 1 def ascoring(df, q): if q[0] == S: return df.apply(ascoringS, axis=1, raw=True, args=(q,)) elif q[0] == MS: res = None for i in range(len(q[2])): rr = df.apply(ascoringMS, axis=1, raw=True, args=(q[1], i,q[2])) if res is None: res = rr else: res = pd.concat([res, rr], axis=1) return res elif q[0] == Num: return df.apply(ascoringNum, axis=1, raw=True, args=(q[1], q[2])) elif q[0] == SS: res = None for i in range(q[1][1]-q[1][0]+1): rr = df.apply(ascoringSS, axis=1, raw=True, args=(i, q[1], q[2])) if res is None: res = rr else: res = pd.concat([res, rr], axis=1) return res else: print(f"ERROR: Undefined question type: {q[0]}") exit() def get_maxcolms(qref): maxcol = 0 for q in qref: if q[0] == S: if maxcol < q[1]: maxcol = q[1] else: if maxcol < max(q[1]): maxcol = max(q[1]) return maxcol def get_sq2p(qref): num_squestions = get_num_squestions(qref) sq2p = np.zeros(num_squestions, dtype=np.int) numq = 0 numsq = 0 for q in qref: if q[0] == MS: for i in q[1]: sq2p[numsq] = numq numsq += 1 elif q[0] == SS: for i in range(q[1][1]-q[1][0]+1): sq2p[numsq] = numq numsq += 1 else: sq2p[numsq] = numq numsq += 1 numq += 1 return sq2p def correctRate(scorelist_v): return sum(scorelist_v) / len(scorelist_v) def print_crate(marubatu, points_alloc): print("====================================", file=sys.stderr) print("Correct rate for each small question", file=sys.stderr) print(" and allocation of points", file=sys.stderr) print(" No: rate, points, q_type", file=sys.stderr) print("------------------------------------", file=sys.stderr) crate = marubatu.iloc[:,1:].apply(correctRate, raw=True) sq2p = get_sq2p(QuestionReferences) for i,rate in enumerate(crate): q = QuestionReferences[sq2p[i]] if q[0] == S: kind = f' S[{q[1]}]' elif q[0] == MS: kind = f' MS{q[1]}' elif q[0] == SS: kind = f' SS{q[1]}' else: kind = f'Num{q[1]}' print(f"{i+1:3d}:{rate*100.0:3.0f}%, {points_alloc[i]:2}, {kind:}", file=sys.stderr) def totalscore(scorelist, points_alloc): if len(scorelist) != len(points_alloc)+1: print("ERROR: in totalscore()", file=sys.stderr) print(scorelist, file=sys.stderr) print(points_alloc, file=sys.stderr) exit() return sum(scorelist[1:] * points_alloc) # return sum(scorelist[1:]) * 3 def get_points_alloc(qref, desired_pscore): num_squestions = get_num_squestions(qref) points_alloc = np.zeros(num_squestions, dtype=np.int) num = 0 sum_palloc = 0 for q in qref: weight = 100 if len(q) >= 4: weight = q[3] if q[0] == MS: inum = len(q[1]) elif q[0] == SS: inum = q[1][1]-q[1][0]+1 else: inum = 1 for i in range(inum): points_alloc[num] = weight sum_palloc += weight num += 1 basic_unit_float = desired_pscore * 100.0 / sum_palloc for i in range(num_squestions): points_float = desired_pscore * points_alloc[i] / sum_palloc points = round(points_float) if points <= 0: points = 1 points_alloc[i] = points return points_alloc, basic_unit_float def marksheetScoring(filename, crate, desired_pscore): maxcolms = get_maxcolms(QuestionReferences) df = pd.read_csv(filename, header=None, dtype=object, skipinitialspace=True, usecols=list(range(maxcolms+1))) df.fillna('-1', inplace=True) df.replace('*', -1, inplace=True) # multi-mark col. df = df.astype('int') df[0] = df[0]+200000000 df = df.sort_values(by=0, ascending=True) print(f"Marksheet-answer: #students={df.shape[0]}, #columns={df.shape[1]}(including id-number)", file=sys.stderr) marubatu = df[[0]] for q in QuestionReferences: ascore = ascoring(df, q) marubatu = pd.concat([marubatu, ascore], axis=1, ignore_index=True) marubatu.to_csv(filename+'.marubatu', index=False, header=False) points_alloc, basic_unit_float = get_points_alloc(QuestionReferences, desired_pscore) perfect_score = sum(points_alloc) print(f"#Small_questions={len(points_alloc)}", file=sys.stderr) print(f"Perfect_score={perfect_score} (desired_perfect_score={desired_pscore})", file=sys.stderr) basic_point_unit = round(basic_unit_float) basic_point_unit = basic_point_unit if basic_point_unit >= 1 else 1 print(f"Basic_points_unit(weight=100)={basic_point_unit}, (float_unit = {basic_unit_float:5.2f})", file=sys.stderr) if crate: print_crate(marubatu, points_alloc) id_scores = pd.concat([marubatu[0], marubatu.apply(totalscore, axis=1, raw=True, args=(points_alloc,))], axis=1, ignore_index=True) # scores = marubatu.apply(totalscore, axis=1, raw=True, args=(points_alloc)) # print(scores, file=sys.stderr) # id_scores = pd.concat([marubatu[0], scores], axis=1, ignore_index=True) return id_scores ### for Twins upload file def read_twins_upload_file(twinsfilename): twins = pd.read_csv(twinsfilename, skiprows=1, header=None, skipinitialspace=True) twins.columns=['科目番号', '学籍番号', '学期区分', '学期評価', '総合評価'] twins['総合評価'].fillna('0', inplace=True) # scores = twins['総合評価'].astype(int, inplace=True) # inplaceは働かない scores = twins['総合評価'].astype(int) del twins['総合評価'] twins = pd.concat([twins, scores], axis=1, ignore_index=True) twins.columns=['科目番号', '学籍番号', '学期区分', '学期評価', '総合評価'] id_scores = pd.concat([twins['学籍番号'], twins['総合評価']], axis=1, ignore_index=True) return id_scores, twins ### ajusting # adjust def point_adjust(point, xp, yp, xmax): gradient1 = yp / xp gradient2 = (xmax - yp)/(xmax - xp) if point <= xp: point = gradient1 * point elif point <= xmax: point = gradient2 * point + (xmax * (1.0-gradient2)) return point def adjust(id_scores, params): xp, yp, xmax = params adjustfunc = lambda p: point_adjust(p, xp, yp, xmax) id_scores = pd.concat([id_scores[0], id_scores[1].map(adjustfunc).astype(int)], axis=1, ignore_index=True) return id_scores # a2djust def get_points_abcd(params, id_scores): score_list = np.sort(id_scores[1])[::-1] num = len(score_list) points_list = [score_list[0]] cp = 0 for p in params: cp += p points_list.append(score_list[round(num * cp / 100.0)]) return points_list def point_a2djust(p, p_max, p_ap, p_a, p_b, p_c): if p >= p_ap: newpoint = 90 + (10/(p_max-p_ap)) * (p-p_ap) elif p >= p_a: newpoint = 80 + (10/(p_ap-p_a)) * (p-p_a) elif p >= p_b: newpoint = 70 + (10/(p_a-p_b)) * (p-p_b) elif p >= p_c: newpoint = 60 + (10/(p_b-p_c)) * (p-p_c) else: newpoint = (60.0/p_c) * p return round(newpoint) def a2djust(id_scores, params): # rate_ap, rate_a, rate_b, rate_c = params p_max, p_ap, p_a, p_b, p_c = get_points_abcd(params, id_scores) print(f"A2djust: rate_ap={params[0]}, rate_a={params[1]}, rate_b={params[2]}, rate_c={params[3]}", file=sys.stderr) print(f"A2djust: p_max={p_max}, p_ap={p_ap}, p_a={p_a}, p_b={p_b}, p_c={p_c}", file=sys.stderr) a2djustfunc = lambda p: point_a2djust(p, p_max, p_ap, p_a, p_b, p_c) new_id_scores = pd.concat([id_scores[0], id_scores[1].map(a2djustfunc).astype(int)], axis=1, ignore_index=True) return new_id_scores # interval def finterval(x, minval, maxval): if x < minval: return minval elif x > maxval: return maxval else: return x def interval(id_scores, minmax): min, max = minmax func = lambda x: finterval(x, min, max) scores = id_scores.iloc[:,1].map(func).astype(int) id_scores = pd.concat([id_scores[0], scores], axis=1, ignore_index=True) return id_scores #### print statistics Pgakuruimei = re.compile(r'.*学群(.+学類).*') def ex_gakuruimei(str): mobj = Pgakuruimei.match(str) if mobj: return mobj.group(1) if str.find('体育専門学群') != -1: return '体育専門学群' if str.find('芸術専門学群') != -1: return '芸術専門学群' return '不明学類' def read_meibo(filename): meibo = pd.read_csv(filename, skiprows=4, header=None, skipinitialspace=True) if meibo[0][0] != 1: print("Score Error in reading meibo file.", file=sys.stderr) exit() meibo = meibo[[3,1,2,4,5]] meibo.columns = ['学籍番号', '所属学類', '学年', '氏名', '氏名カナ'] meibo['所属学類'] = meibo['所属学類'].map(ex_gakuruimei) return meibo def mk_gakurui_dicset(meibo): dicset = {} for i in range(meibo.shape[0]): # gakuruimei = ex_gakuruimei(meibo['所属学類'][i]) gakuruimei = meibo['所属学類'][i] if gakuruimei in dicset: dicset[gakuruimei].add(meibo['学籍番号'][i]) else: dicset[gakuruimei] = set([meibo['学籍番号'][i]]) return dicset def gakurui_statistics(id_scores, meibofilename): meibo = read_meibo(meibofilename) gdicset = mk_gakurui_dicset(meibo) res = [] for gname in gdicset: aset = gdicset[gname] selectstudents = [no in aset for no in id_scores.iloc[:,0]] scores = id_scores.iloc[:,1][selectstudents] res.append([gname, scores.describe()]) return res def print_stat(scores): print("==================", file=sys.stderr) print("Score statistics", file=sys.stderr) print("------------------", file=sys.stderr) print(scores.describe(), file=sys.stderr) def print_stat_gakurui(id_scores, meibofilename): gakurui_sta_list = gakurui_statistics(id_scores, meibofilename) print("==================", file=sys.stderr) print("Gakurui statistics", file=sys.stderr) print("------------------", file=sys.stderr) notfirst = False for gakuruiinfo in gakurui_sta_list: if notfirst: print('-------', file=sys.stderr) else: notfirst = True print(gakuruiinfo[0], file=sys.stderr) print(gakuruiinfo[1], file=sys.stderr) def print_abcd(scores): all = len(scores) aplus = scores[scores>=90] a = scores[scores<90] aa = a[a>=80] b = scores[scores<80] bb = b[b>=70] c = scores[scores<70] cc = c[c>=60] d = scores[scores<60] print("=================", file=sys.stderr) print("ABCD distribution", file=sys.stderr) print("-----------------", file=sys.stderr) print(f"a+ = {len(aplus)}, {len(aplus)*100/all:4.1f}%", file=sys.stderr) print(f"a = {len(aa)}, {len(aa)*100/all:4.1f}%", file=sys.stderr) print(f"b = {len(bb)}, {len(bb)*100/all:4.1f}%", file=sys.stderr) print(f"c = {len(cc)}, {len(cc)*100/all:4.1f}%", file=sys.stderr) print(f"d = {len(d)}, {len(d)*100/all:4.1f}%", file=sys.stderr) def print_distribution(scores): maxscores = max(scores) numinterval = maxscores // 10 + 1 counts = np.zeros(numinterval, dtype=np.int) for c in scores: cat = c // 10 counts[cat] += 1 print("==================", file=sys.stderr) print("Score distribution", file=sys.stderr) print("------------------", file=sys.stderr) print("L.score: num:", file=sys.stderr) maxcount = max(counts) if maxcount > 80: unit = 80.0/maxcount else: unit = 1.0 for i in range(numinterval): cat = numinterval - i - 1 print(f"{10*cat:5}- :{counts[cat]:4}: ", end="", file=sys.stderr) for x in range(int(counts[cat]*unit)): print("*", end="", file=sys.stderr) print("", file=sys.stderr) #### join def print_only_ids(df, idlabel, ncol): num = 0 for i in df[idlabel]: if num == 0: print(" ", end="", file=sys.stderr) elif num%ncol == 0: print(", \n ", end="", file=sys.stderr) else: print(", ", end="", file=sys.stderr) print(f"{i}", end="", file=sys.stderr) num += 1 print("", file=sys.stderr) def join(id_scores, joinfilename, how): # id_scores_join = pd.read_csv(joinfilename, header=None, dtype=int, skipinitialspace=True) id_scores_join = pd.read_csv(joinfilename, header=None, dtype=object, skipinitialspace=True) id_scores_join.fillna('0', inplace=True) id_scores_join = id_scores_join.astype('int') new_id_scores = pd.merge(id_scores, id_scores_join, on=0, how=how) outer_id_scores = pd.merge(id_scores, id_scores_join, on=0, how='outer', indicator='from') nrow_left = id_scores.shape[0] nrow_right = id_scores_join.shape[0] nrow_new = new_id_scores.shape[0] nrow_outer = outer_id_scores.shape[0] print(f"Join({how}): left({nrow_left}) + right({nrow_right}) = {how}-join({nrow_new})", file=sys.stderr) left_only = outer_id_scores[outer_id_scores['from']=='left_only'] right_only = outer_id_scores[outer_id_scores['from']=='right_only'] print(f" #left_only = {left_only.shape[0]}: keep left scores", file=sys.stderr) if left_only.shape[0] > 0: print_only_ids(left_only, 0, 5) if how == 'left': print(f" #right_only = {right_only.shape[0]}: ignored by 'left-join'", file=sys.stderr) else: print(f" #right_only = {right_only.shape[0]}: keep right scores", file=sys.stderr) if right_only.shape[0] > 0: print_only_ids(right_only, 0, 5) scores_sum = new_id_scores.iloc[:,1:].fillna(0).apply(sum, axis=1, raw=True) joined_new_id_scores = pd.concat([new_id_scores.iloc[:,0], scores_sum], axis=1, ignore_index=True) joined_new_id_scores.fillna(0, inplace=True) # joined_new_id_scores.astype(int, inplace=True) # inplace optoin is ineffective joined_new_id_scores = joined_new_id_scores.astype(int) return joined_new_id_scores def twinsjoin(twins, id_scores, joinfilename): del twins['総合評価'] id_scores.columns=['学籍番号', '総合評価'] newtwins = pd.merge(twins, id_scores, on='学籍番号', how='left') # check correctness twins_outer = pd.merge(twins, id_scores, on='学籍番号', how='outer', indicator='from') left_only = twins_outer[twins_outer['from']=='left_only'] right_only = twins_outer[twins_outer['from']=='right_only'] if left_only.shape[0] > 0 or right_only.shape[0] > 0: print("WARNING!!: occur something wrongs in 'twinsjoin'", file=sys.stderr) print("WARNING!!: occur something wrongs in 'twinsjoin'", file=sys.stderr) """ nrow_left = twins.shape[0] nrow_right = id_scores.shape[0] nrow_new = newtwins.shape[0] nrow_outer = twins_outer.shape[0] print(f"Join(for Twins file): left({nrow_left}) + right({nrow_right}) = LEFT-join({nrow_new})", file=sys.stderr) print(f" #left_only = {left_only.shape[0]}: keep twins scores (or put a zero score)", file=sys.stderr) if left_only.shape[0] > 0: print_only_ids(left_only, '学籍番号', 5) print(f" #right_only = {right_only.shape[0]}: ignored", file=sys.stderr) if right_only.shape[0] > 0: print_only_ids(right_only, '学籍番号', 5) """ newtwins['総合評価'].fillna(0, inplace=True) newscores = newtwins['総合評価'].astype('int') del newtwins['総合評価'] newtwins = pd.concat([twins, newscores], axis=1, ignore_index=True) newtwins.columns=['科目番号', '学籍番号', '学期区分', '学期評価', '総合評価'] new_id_scores = newtwins[['学籍番号', '総合評価']] return newtwins, new_id_scores #### record def record(meibofilename, csvfilename2s): df = read_meibo(meibofilename) df.rename(columns={'学籍番号':0}, inplace=True) for csvfilename2 in csvfilename2s: df2 = pd.read_csv(csvfilename2, header=None, skipinitialspace=True) df = pd.merge(df, df2, on=0, how='outer') df.rename(columns={0:'学籍番号'}, inplace=True) df = df.sort_values(by=['所属学類','学籍番号'], ascending=True) return df if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='support tools of scoring for performance evaluation', prog='score') parser.add_argument('csvfile') parser.add_argument('-marksheet', nargs=2, default=None, metavar=('ref', 'desired_pscore')) parser.add_argument('-crate', action='store_true', default=False) parser.add_argument('-join', default=None, metavar='csvfile2') parser.add_argument('-record', nargs='+', default=None, metavar=('csvfile2')) parser.add_argument('-twins', action='store_true', default=False) parser.add_argument('-adjust', nargs=3, type=float, default=None, metavar=('x', 'y', 'xmax')) parser.add_argument('-a2djust', nargs=4, type=float, default=None, metavar=('A+', 'A', 'B', 'C')) parser.add_argument('-interval', nargs=2, type=int, default=None, metavar=('min', 'max')) parser.add_argument('-distribution', action='store_true', default=False) parser.add_argument('-abcd', action='store_true', default=False) parser.add_argument('-statistics', action='store_true', default=False) parser.add_argument('-gakuruistat', default=None, metavar='csv-meibo-utf8') parser.add_argument('-nostdout', action='store_true', default=False) parser.add_argument('-output', default=None, metavar='filename') args = parser.parse_args() if args.marksheet and args.twins: print("scoring error: exclusive options: -marksheet and -twins", file=sys.stderr) exit() if args.record and args.twins: print("scoring error: exclusive options: -record and -twins", file=sys.stderr) exit() if args.record: print("NOTICE:", file=sys.stderr) print("-record option ignores all other options but -output option", file=sys.stderr) df = record(args.csvfile, args.record) if args.output: df.to_excel(args.output, index=False) else: df.to_csv(sys.stdout, index=False) exit() if args.marksheet: QuestionReferences = eval(open(args.marksheet[0]).read()) id_scores = marksheetScoring(args.csvfile, args.crate, int(args.marksheet[1])) else: if args.twins: id_scores, twins = read_twins_upload_file(args.csvfile) else: # id_scores = pd.read_csv(args.csvfile, header=None, dtype=int, skipinitialspace=True) id_scores = pd.read_csv(args.csvfile, header=None, dtype=object, skipinitialspace=True) id_scores.fillna('0', inplace=True) id_scores = id_scores.astype('int') if args.join: if args.twins: id_scores = join(id_scores, args.join, 'left') else: id_scores = join(id_scores, args.join, 'outer') if args.adjust: id_scores = adjust(id_scores, args.adjust) if args.a2djust: id_scores = a2djust(id_scores, args.a2djust) if args.interval: id_scores = interval(id_scores, args.interval) if args.twins: twins, id_scores = twinsjoin(twins, id_scores, args.join) if args.statistics: print_stat(id_scores.iloc[:,1]) if args.abcd: print_abcd(id_scores.iloc[:,1]) if args.gakuruistat: print_stat_gakurui(id_scores, args.gakuruistat) if args.distribution: print_distribution(id_scores.iloc[:,1]) if not args.nostdout or args.output: if args.output: output = args.output else: output = sys.stdout if args.twins: twins.to_csv(output, index=False, encoding='cp932') else: id_scores.to_csv(output, index=False, header=False)
[ "pandas.read_csv", "re.compile", "argparse.ArgumentParser", "pandas.merge", "numpy.sort", "numpy.zeros", "pandas.concat" ]
[((9321, 9347), 're.compile', 're.compile', (['""".*学群(.+学類).*"""'], {}), "('.*学群(.+学類).*')\n", (9331, 9347), False, 'import re\n'), ((2271, 2309), 'numpy.zeros', 'np.zeros', (['num_squestions'], {'dtype': 'np.int'}), '(num_squestions, dtype=np.int)\n', (2279, 2309), True, 'import numpy as np\n'), ((4017, 4055), 'numpy.zeros', 'np.zeros', (['num_squestions'], {'dtype': 'np.int'}), '(num_squestions, dtype=np.int)\n', (4025, 4055), True, 'import numpy as np\n'), ((6548, 6622), 'pandas.read_csv', 'pd.read_csv', (['twinsfilename'], {'skiprows': '(1)', 'header': 'None', 'skipinitialspace': '(True)'}), '(twinsfilename, skiprows=1, header=None, skipinitialspace=True)\n', (6559, 6622), True, 'import pandas as pd\n'), ((6868, 6921), 'pandas.concat', 'pd.concat', (['[twins, scores]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([twins, scores], axis=1, ignore_index=True)\n', (6877, 6921), True, 'import pandas as pd\n'), ((6997, 7065), 'pandas.concat', 'pd.concat', (["[twins['学籍番号'], twins['総合評価']]"], {'axis': '(1)', 'ignore_index': '(True)'}), "([twins['学籍番号'], twins['総合評価']], axis=1, ignore_index=True)\n", (7006, 7065), True, 'import pandas as pd\n'), ((9200, 9260), 'pandas.concat', 'pd.concat', (['[id_scores[0], scores]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([id_scores[0], scores], axis=1, ignore_index=True)\n', (9209, 9260), True, 'import pandas as pd\n'), ((9620, 9689), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'skiprows': '(4)', 'header': 'None', 'skipinitialspace': '(True)'}), '(filename, skiprows=4, header=None, skipinitialspace=True)\n', (9631, 9689), True, 'import pandas as pd\n'), ((12285, 12320), 'numpy.zeros', 'np.zeros', (['numinterval'], {'dtype': 'np.int'}), '(numinterval, dtype=np.int)\n', (12293, 12320), True, 'import numpy as np\n'), ((13517, 13592), 'pandas.read_csv', 'pd.read_csv', (['joinfilename'], {'header': 'None', 'dtype': 'object', 'skipinitialspace': '(True)'}), '(joinfilename, header=None, dtype=object, skipinitialspace=True)\n', (13528, 13592), True, 'import pandas as pd\n'), ((13708, 13758), 'pandas.merge', 'pd.merge', (['id_scores', 'id_scores_join'], {'on': '(0)', 'how': 'how'}), '(id_scores, id_scores_join, on=0, how=how)\n', (13716, 13758), True, 'import pandas as pd\n'), ((13781, 13853), 'pandas.merge', 'pd.merge', (['id_scores', 'id_scores_join'], {'on': '(0)', 'how': '"""outer"""', 'indicator': '"""from"""'}), "(id_scores, id_scores_join, on=0, how='outer', indicator='from')\n", (13789, 13853), True, 'import pandas as pd\n'), ((14819, 14895), 'pandas.concat', 'pd.concat', (['[new_id_scores.iloc[:, 0], scores_sum]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([new_id_scores.iloc[:, 0], scores_sum], axis=1, ignore_index=True)\n', (14828, 14895), True, 'import pandas as pd\n'), ((15244, 15293), 'pandas.merge', 'pd.merge', (['twins', 'id_scores'], {'on': '"""学籍番号"""', 'how': '"""left"""'}), "(twins, id_scores, on='学籍番号', how='left')\n", (15252, 15293), True, 'import pandas as pd\n'), ((15336, 15404), 'pandas.merge', 'pd.merge', (['twins', 'id_scores'], {'on': '"""学籍番号"""', 'how': '"""outer"""', 'indicator': '"""from"""'}), "(twins, id_scores, on='学籍番号', how='outer', indicator='from')\n", (15344, 15404), True, 'import pandas as pd\n'), ((16498, 16554), 'pandas.concat', 'pd.concat', (['[twins, newscores]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([twins, newscores], axis=1, ignore_index=True)\n', (16507, 16554), True, 'import pandas as pd\n'), ((17186, 17295), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""support tools of scoring for performance evaluation"""', 'prog': '"""score"""'}), "(description=\n 'support tools of scoring for performance evaluation', prog='score')\n", (17209, 17295), False, 'import argparse\n'), ((5394, 5450), 'pandas.concat', 'pd.concat', (['[marubatu, ascore]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([marubatu, ascore], axis=1, ignore_index=True)\n', (5403, 5450), True, 'import pandas as pd\n'), ((7693, 7714), 'numpy.sort', 'np.sort', (['id_scores[1]'], {}), '(id_scores[1])\n', (7700, 7714), True, 'import numpy as np\n'), ((16890, 16951), 'pandas.read_csv', 'pd.read_csv', (['csvfilename2'], {'header': 'None', 'skipinitialspace': '(True)'}), '(csvfilename2, header=None, skipinitialspace=True)\n', (16901, 16951), True, 'import pandas as pd\n'), ((16965, 17001), 'pandas.merge', 'pd.merge', (['df', 'df2'], {'on': '(0)', 'how': '"""outer"""'}), "(df, df2, on=0, how='outer')\n", (16973, 17001), True, 'import pandas as pd\n'), ((19531, 19606), 'pandas.read_csv', 'pd.read_csv', (['args.csvfile'], {'header': 'None', 'dtype': 'object', 'skipinitialspace': '(True)'}), '(args.csvfile, header=None, dtype=object, skipinitialspace=True)\n', (19542, 19606), True, 'import pandas as pd\n'), ((1454, 1482), 'pandas.concat', 'pd.concat', (['[res, rr]'], {'axis': '(1)'}), '([res, rr], axis=1)\n', (1463, 1482), True, 'import pandas as pd\n'), ((1852, 1880), 'pandas.concat', 'pd.concat', (['[res, rr]'], {'axis': '(1)'}), '([res, rr], axis=1)\n', (1861, 1880), True, 'import pandas as pd\n')]
"""Generalized Gell-Mann matrices.""" from typing import Union from scipy import sparse import numpy as np def gen_gell_mann( ind_1: int, ind_2: int, dim: int, is_sparse: bool = False ) -> Union[np.ndarray, sparse.lil_matrix]: r""" Produce a generalized Gell-Mann operator [WikGM2]_. Construct a :code:`dim`-by-:code:`dim` Hermitian operator. These matrices span the entire space of :code:`dim`-by-:code:`dim` matrices as :code:`ind_1` and :code:`ind_2` range from 0 to :code:`dim-1`, inclusive, and they generalize the Pauli operators when :code:`dim = 2` and the Gell-Mann operators when :code:`dim = 3`. Examples ========== The generalized Gell-Mann matrix for :code:`ind_1 = 0`, :code:`ind_2 = 1` and :code:`dim = 2` is given as .. math:: G_{0, 1, 2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. This can be obtained in :code:`toqito` as follows. >>> from toqito.matrices import gen_gell_mann >>> gen_gell_mann(0, 1, 2) [[0., 1.], [1., 0.]]) The generalized Gell-Mann matrix :code:`ind_1 = 2`, :code:`ind_2 = 3`, and :code:`dim = 4` is given as .. math:: G_{2, 3, 4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}. This can be obtained in :code:`toqito` as follows. >>> from toqito.matrices import gen_gell_mann >>> gen_gell_mann(2, 3, 4) [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.], [0., 0., 1., 0.]]) References ========== .. [WikGM2] Wikipedia: Gell-Mann matrices, https://en.wikipedia.org/wiki/Gell-Mann_matrices :param ind_1: A non-negative integer from 0 to :code:`dim-1` (inclusive). :param ind_2: A non-negative integer from 0 to :code:`dim-1` (inclusive). :param dim: The dimension of the Gell-Mann operator. :param is_sparse: If set to :code:`True`, the returned Gell-Mann operator is a sparse lil_matrix and if set to :code:`False`, the returned Gell-Mann operator is a dense :code:`numpy` array. :return: The generalized Gell-Mann operator. """ if ind_1 == ind_2: if ind_1 == 0: gm_op = sparse.eye(dim) else: scalar = np.sqrt(2 / (ind_1 * (ind_1 + 1))) diag = np.ones((ind_1, 1)) diag = np.append(diag, -ind_1) diag = scalar * np.append(diag, np.zeros((dim - ind_1 - 1, 1))) gm_op = sparse.lil_matrix((dim, dim)) gm_op.setdiag(diag) else: e_mat = sparse.lil_matrix((dim, dim)) e_mat[ind_1, ind_2] = 1 if ind_1 < ind_2: gm_op = e_mat + e_mat.conj().T else: gm_op = 1j * e_mat - 1j * e_mat.conj().T if not is_sparse: return gm_op.todense() return gm_op
[ "scipy.sparse.lil_matrix", "numpy.sqrt", "numpy.ones", "scipy.sparse.eye", "numpy.append", "numpy.zeros" ]
[((2791, 2820), 'scipy.sparse.lil_matrix', 'sparse.lil_matrix', (['(dim, dim)'], {}), '((dim, dim))\n', (2808, 2820), False, 'from scipy import sparse\n'), ((2437, 2452), 'scipy.sparse.eye', 'sparse.eye', (['dim'], {}), '(dim)\n', (2447, 2452), False, 'from scipy import sparse\n'), ((2488, 2522), 'numpy.sqrt', 'np.sqrt', (['(2 / (ind_1 * (ind_1 + 1)))'], {}), '(2 / (ind_1 * (ind_1 + 1)))\n', (2495, 2522), True, 'import numpy as np\n'), ((2542, 2561), 'numpy.ones', 'np.ones', (['(ind_1, 1)'], {}), '((ind_1, 1))\n', (2549, 2561), True, 'import numpy as np\n'), ((2581, 2604), 'numpy.append', 'np.append', (['diag', '(-ind_1)'], {}), '(diag, -ind_1)\n', (2590, 2604), True, 'import numpy as np\n'), ((2702, 2731), 'scipy.sparse.lil_matrix', 'sparse.lil_matrix', (['(dim, dim)'], {}), '((dim, dim))\n', (2719, 2731), False, 'from scipy import sparse\n'), ((2649, 2679), 'numpy.zeros', 'np.zeros', (['(dim - ind_1 - 1, 1)'], {}), '((dim - ind_1 - 1, 1))\n', (2657, 2679), True, 'import numpy as np\n')]
import matplotlib.widgets as mwidgets class Slider(mwidgets.Slider): """Slider widget to select a value from a floating point range. Parameters ---------- ax : :class:`~matplotlib.axes.Axes` instance The parent axes for the widget value_range : (float, float) (min, max) value allowed for value. label : str The slider label. value : float Initial value. If None, set to value in middle of value range. on_slide : function Callback function for slide event. Function should expect slider value. value_fmt : str Format string for formatting the slider text. slidermin, slidermax : float Used to contrain the value of this slider to the values of other sliders. dragging : bool If True, slider is responsive to mouse. pad : float Padding (in axes coordinates) between `label`/`value_fmt` and slider. Attributes ---------- value : float Current slider value. """ def __init__(self, ax, value_range, label='', value=None, on_slide=None, value_fmt='%1.2f', slidermin=None, slidermax=None, dragging=True, pad=0.02): mwidgets.AxesWidget.__init__(self, ax) self.valmin, self.valmax = value_range if value is None: value = 0.5 * (self.valmin + self.valmax) self.val = value self.valinit = value self.valfmt = value_fmt y0 = 0.5 x_low = [self.valmin, value] x_high = [value, self.valmax] self.line_low, = ax.plot(x_low, [y0, y0], color='0.5', lw=2) self.line_high, = ax.plot(x_high, [y0, y0], color='0.7', lw=2) self.val_handle, = ax.plot(value, y0, 'o', mec='0.4', mfc='0.6', markersize=8) ax.set_xlim(value_range) ax.set_navigate(False) ax.set_axis_off() self.connect_event('button_press_event', self._update) self.connect_event('button_release_event', self._update) if dragging: self.connect_event('motion_notify_event', self._update) self.label = ax.text(-pad, y0, label, transform=ax.transAxes, verticalalignment='center', horizontalalignment='right') self.show_value = False if value_fmt is None else True if self.show_value: self.valtext = ax.text(1 + pad, y0, value_fmt % value, transform=ax.transAxes, verticalalignment='center', horizontalalignment='left') self.slidermin = slidermin self.slidermax = slidermax self.drag_active = False self.cnt = 0 self.observers = {} if on_slide is not None: self.on_changed(on_slide) # Attributes for matplotlib.widgets.Slider compatibility self.closedmin = self.closedmax = True @property def value(self): return self.val @value.setter def value(self, value): self.val = value self.line_low.set_xdata([self.valmin, value]) self.line_high.set_xdata([value, self.valmax]) self.val_handle.set_xdata([value]) if self.show_value: self.valtext.set_text(self.valfmt % value) def set_val(self, value): """Set value of slider.""" # Override matplotlib.widgets.Slider to update graphics objects. self.value = value if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(value) if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt ax = plt.subplot2grid((10, 1), (0, 0), rowspan=8) ax_slider = plt.subplot2grid((10, 1), (9, 0)) a0 = 5 x = np.arange(0.0, 1.0, 0.001) y = np.sin(6 * np.pi * x) line, = ax.plot(x, a0 * y, lw=2, color='red') ax.axis([x.min(), x.max(), -10, 10]) def update(val): amp = samp.value line.set_ydata(amp * y) samp = Slider(ax_slider, (0.1, 10.0), on_slide=update, label='Amplitude:', value=a0) plt.show()
[ "numpy.sin", "matplotlib.widgets.AxesWidget.__init__", "matplotlib.pyplot.subplot2grid", "numpy.arange", "matplotlib.pyplot.show" ]
[((3822, 3866), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(10, 1)', '(0, 0)'], {'rowspan': '(8)'}), '((10, 1), (0, 0), rowspan=8)\n', (3838, 3866), True, 'import matplotlib.pyplot as plt\n'), ((3883, 3916), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(10, 1)', '(9, 0)'], {}), '((10, 1), (9, 0))\n', (3899, 3916), True, 'import matplotlib.pyplot as plt\n'), ((3937, 3963), 'numpy.arange', 'np.arange', (['(0.0)', '(1.0)', '(0.001)'], {}), '(0.0, 1.0, 0.001)\n', (3946, 3963), True, 'import numpy as np\n'), ((3972, 3993), 'numpy.sin', 'np.sin', (['(6 * np.pi * x)'], {}), '(6 * np.pi * x)\n', (3978, 3993), True, 'import numpy as np\n'), ((4278, 4288), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4286, 4288), True, 'import matplotlib.pyplot as plt\n'), ((1215, 1253), 'matplotlib.widgets.AxesWidget.__init__', 'mwidgets.AxesWidget.__init__', (['self', 'ax'], {}), '(self, ax)\n', (1243, 1253), True, 'import matplotlib.widgets as mwidgets\n')]
# -*- coding: utf-8 -*- from __future__ import print_function,division,absolute_import import logging log = logging.getLogger(__name__) # __name__ is "foo.bar" here import numpy as np import numbers np.seterr(all='ignore') def findSlice(array,lims): start = np.ravel(np.argwhere(array>lims[0]))[0] stop = np.ravel(np.argwhere(array<lims[1]))[-1] return slice(int(start),int(stop)) def approx(values,approx_values): """ returns array where every value is replaced by the closest in approx_values This funciton is useful for rebinning; careful, can be slow with many bins... Example: ------- approx( np.arange(0,1,0.1), [0,0.3,0.7] ) array([ 0. , 0. , 0.3, 0.3, 0.3, 0.7, 0.7, 0.7, 0.7, 0.7]) """ # make sure they are arrays values = np.asarray(values) approx_values = np.asarray(approx_values) # create outter difference diff = np.abs(values[:,np.newaxis] - approx_values) args = np.argmin(diff,axis=1) values = approx_values[args] #values = np.asarray( [ approx_values[np.argmin(np.abs(v-approx_values))] for v in values] ) return values def rebin(values,bins): """ returns array where every value is replaced by the closest in approx_values This funciton is useful for rebinning Example: ------- approx( np.arange(0,1,0.1), [0,0.3,0.7] ) array([ 0. , 0. , 0.3, 0.3, 0.3, 0.7, 0.7, 0.7, 0.7, 0.7]) """ # make sure they are arrays bins = np.asarray(bins) idx = np.digitize(values,bins) idx[idx > bins.shape[0]-1] = bins.shape[0]-1 return (bins[idx]+bins[idx-1])/2 def reshapeToBroadcast(what,ref): """ expand the 1d array 'what' to allow broadbasting to match multidimentional array 'ref'. The two arrays have to same the same dimensions along the first axis """ if what.shape == ref.shape: return what assert what.shape[0] == ref.shape[0],\ "automatic reshaping requires same first dimention" shape = [ref.shape[0],] + [1,]*(ref.ndim-1) return what.reshape(shape) def removeBackground(x,data,xlims=None,max_iter=100,background_regions=[],**kw): from dualtree import dualtree if data.ndim == 1: data = data[np.newaxis,:] if xlims is not None: idx = findSlice(x,xlims) x = x[idx] data = data[:,idx].copy() else: data = data.copy(); # create local copy # has to be a list of lists .. if background_regions != [] and isinstance(background_regions[0],numbers.Real): background_regions = [background_regions,] background_regions = [findSlice(x,brange) for brange in background_regions] for i in range(len(data)): data[i] = data[i] - dualtree.baseline(data[i],max_iter=max_iter, background_regions=background_regions,**kw) return x,np.squeeze(data) def find_hist_ranges(hist,x=None,max_frac=0.1): high_idx = np.squeeze( np.argwhere(hist>np.nanmax(hist)*max_frac) ) # remove consecutive indices edges = high_idx[ np.gradient(high_idx).astype(int) != 1 ] edges = [high_idx[0],] + list(edges) + [high_idx[-1],] if x is not None: edges = x[edges] if len(edges)%2 == 1: edges = edges[:-1] n_ranges = int(len(edges)/2) ranges = edges.reshape( (n_ranges,2) ) return ranges
[ "logging.getLogger", "numpy.abs", "numpy.digitize", "numpy.asarray", "numpy.squeeze", "numpy.argwhere", "numpy.nanmax", "numpy.argmin", "dualtree.dualtree.baseline", "numpy.gradient", "numpy.seterr" ]
[((109, 136), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (126, 136), False, 'import logging\n'), ((202, 225), 'numpy.seterr', 'np.seterr', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (211, 225), True, 'import numpy as np\n'), ((815, 833), 'numpy.asarray', 'np.asarray', (['values'], {}), '(values)\n', (825, 833), True, 'import numpy as np\n'), ((854, 879), 'numpy.asarray', 'np.asarray', (['approx_values'], {}), '(approx_values)\n', (864, 879), True, 'import numpy as np\n'), ((922, 967), 'numpy.abs', 'np.abs', (['(values[:, np.newaxis] - approx_values)'], {}), '(values[:, np.newaxis] - approx_values)\n', (928, 967), True, 'import numpy as np\n'), ((978, 1001), 'numpy.argmin', 'np.argmin', (['diff'], {'axis': '(1)'}), '(diff, axis=1)\n', (987, 1001), True, 'import numpy as np\n'), ((1521, 1537), 'numpy.asarray', 'np.asarray', (['bins'], {}), '(bins)\n', (1531, 1537), True, 'import numpy as np\n'), ((1548, 1573), 'numpy.digitize', 'np.digitize', (['values', 'bins'], {}), '(values, bins)\n', (1559, 1573), True, 'import numpy as np\n'), ((2820, 2836), 'numpy.squeeze', 'np.squeeze', (['data'], {}), '(data)\n', (2830, 2836), True, 'import numpy as np\n'), ((273, 301), 'numpy.argwhere', 'np.argwhere', (['(array > lims[0])'], {}), '(array > lims[0])\n', (284, 301), True, 'import numpy as np\n'), ((323, 351), 'numpy.argwhere', 'np.argwhere', (['(array < lims[1])'], {}), '(array < lims[1])\n', (334, 351), True, 'import numpy as np\n'), ((2696, 2791), 'dualtree.dualtree.baseline', 'dualtree.baseline', (['data[i]'], {'max_iter': 'max_iter', 'background_regions': 'background_regions'}), '(data[i], max_iter=max_iter, background_regions=\n background_regions, **kw)\n', (2713, 2791), False, 'from dualtree import dualtree\n'), ((2932, 2947), 'numpy.nanmax', 'np.nanmax', (['hist'], {}), '(hist)\n', (2941, 2947), True, 'import numpy as np\n'), ((3017, 3038), 'numpy.gradient', 'np.gradient', (['high_idx'], {}), '(high_idx)\n', (3028, 3038), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') m_f = np.load('objects/simulation_model_freq.npy')[:50] m_p = np.load('objects/simulation_model_power.npy')[:50] eeg_f = np.load('objects/real_eeg_freq.npy0.npy')[:50] eeg_p = np.load('objects/real_eeg_power_0.npy')[:50] plt.figure() plt.semilogy(eeg_f, eeg_p,linewidth=2.0,c = 'b') plt.xlabel('frequency [Hz]') plt.ylabel('Linear spectrum [V RMS]') plt.title('Power spectrum (scipy.signal.welch)') plt.show()
[ "matplotlib.pyplot.semilogy", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "matplotlib.pyplot.title", "numpy.load", "matplotlib.pyplot.show" ]
[((53, 76), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (66, 76), True, 'import matplotlib.pyplot as plt\n'), ((301, 313), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (311, 313), True, 'import matplotlib.pyplot as plt\n'), ((314, 362), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['eeg_f', 'eeg_p'], {'linewidth': '(2.0)', 'c': '"""b"""'}), "(eeg_f, eeg_p, linewidth=2.0, c='b')\n", (326, 362), True, 'import matplotlib.pyplot as plt\n'), ((363, 391), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""frequency [Hz]"""'], {}), "('frequency [Hz]')\n", (373, 391), True, 'import matplotlib.pyplot as plt\n'), ((392, 429), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Linear spectrum [V RMS]"""'], {}), "('Linear spectrum [V RMS]')\n", (402, 429), True, 'import matplotlib.pyplot as plt\n'), ((430, 478), 'matplotlib.pyplot.title', 'plt.title', (['"""Power spectrum (scipy.signal.welch)"""'], {}), "('Power spectrum (scipy.signal.welch)')\n", (439, 478), True, 'import matplotlib.pyplot as plt\n'), ((479, 489), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (487, 489), True, 'import matplotlib.pyplot as plt\n'), ((84, 128), 'numpy.load', 'np.load', (['"""objects/simulation_model_freq.npy"""'], {}), "('objects/simulation_model_freq.npy')\n", (91, 128), True, 'import numpy as np\n'), ((140, 185), 'numpy.load', 'np.load', (['"""objects/simulation_model_power.npy"""'], {}), "('objects/simulation_model_power.npy')\n", (147, 185), True, 'import numpy as np\n'), ((199, 240), 'numpy.load', 'np.load', (['"""objects/real_eeg_freq.npy0.npy"""'], {}), "('objects/real_eeg_freq.npy0.npy')\n", (206, 240), True, 'import numpy as np\n'), ((254, 293), 'numpy.load', 'np.load', (['"""objects/real_eeg_power_0.npy"""'], {}), "('objects/real_eeg_power_0.npy')\n", (261, 293), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.magic.tools.statistics Provides statistical functions. # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import absolute_import, division, print_function # Import standard modules import copy import numpy as np # Import astronomical modules from astropy.stats import sigma_clip, sigma_clipped_stats # Import the relevant PTS classes and modules from . import general from ..basics.mask import Mask # ----------------------------------------------------------------- # Calculate sigma-to-FWHM and FWHM-to-sigma conversion factors sigma_to_fwhm = (8 * np.log(2))**0.5 fwhm_to_sigma = 1.0 / sigma_to_fwhm # ----------------------------------------------------------------- def sigma_clip_mask_list(data, sigma=3.0, mask=None): """ This function ... :param data: :param sigma: :param mask: :return: """ masked_list = sigma_clip(data, sigma=sigma, iters=None, copy=False) new_mask = copy.deepcopy(mask) if mask is not None else [0]*len(data) for i, masked in enumerate(masked_list.mask): if masked: new_mask[i] = True # Return the new or updated mask return new_mask # ----------------------------------------------------------------- def sigma_clip_mask(data, sigma_level=3.0, mask=None): """ This function ... :param data: :param sigma_level: :param mask: :return: """ # Split the x, y and z values of the data, without the masked values x_values, y_values, z_values = general.split_xyz(data, mask=mask) # Sigma-clip z-values that are outliers masked_z_values = sigma_clip(z_values, sigma=sigma_level, iters=None, copy=False) # Copy the mask or create a new one if none was provided new_mask = copy.deepcopy(mask) if mask is not None else Mask(np.zeros_like(data)) for i, masked in enumerate(masked_z_values.mask): if masked: x = x_values[i] y = y_values[i] new_mask[y,x] = True #if not isinstance(new_mask, Mask): print(new_mask, mask) # Assert the mask is of type 'Mask' assert isinstance(new_mask, Mask) # Return the new or updated mask return new_mask # ----------------------------------------------------------------- def sigma_clipped_median(data, sigma=3.0, mask=None): """ This function ... :param data: :param sigma: :param mask: :return: """ # Calculate the sigma-clipped mean and median _, median, _ = sigma_clipped_stats(data, mask=mask, sigma=sigma) # Return the median value return median # ----------------------------------------------------------------- def sigma_clipped_statistics(data, sigma=3.0, mask=None): """ This function ... :param data: :param sigma: :param mask: :return: """ # Calculate the sigma-clipped mean and median mean, median, stddev = sigma_clipped_stats(data, mask=mask, sigma=sigma) # Return the statistical parameters return mean, median, stddev # ----------------------------------------------------------------- def sigma_clip_split(input_list, criterion, sigma=3.0, only_high=False, only_low=False, nans="low"): """ This function ... :param input_list: :param criterion: :param sigma: :param only_high: :param only_low: :param nans: :return: """ # Initialize an empty list of widths determinants = [] # Loop over all the star candidates and calculate their width for item in input_list: determinants.append(criterion(item)) # Use sigma clipping to seperate stars and unidentified objects mask = sigma_clip_mask_list(determinants, sigma=sigma) # Calculate the mean value of the determinants that are not masked mean = np.ma.mean(np.ma.masked_array(determinants, mask=mask)) # Create a seperate list for the stars and for the ufos valid_list = [] invalid_list = [] # Loop over all items in the input list, putting them in either the valid or invalid list for index, item in enumerate(input_list): value = criterion(item) if only_high: if mask[index] and value > mean: invalid_list.append(item) else: valid_list.append(item) elif only_low: if mask[index] and value < mean: invalid_list.append(item) else: valid_list.append(item) else: if mask[index]: invalid_list.append(item) else: valid_list.append(item) # Return the valid and invalid lists return valid_list, invalid_list # ----------------------------------------------------------------- def cutoff(values, method, limit): """ This function ... :param values: :param method: :param limit: """ # Percentage method if method == "percentage": # Create a sorted list for the input values sorted_values = sorted(values) # Determine the splitting point split = (1.0-limit) * len(sorted_values) index = int(round(split)) # Return the corresponding value in the sorted list return sorted_values[index] # Sigma-clipping method elif method == "sigma_clip": # Perform sigma clipping on the input list masked_values = sigma_clip(np.array(values), sigma=limit, iters=None, copy=False) # Calculate the maximum of the masked array return np.ma.max(masked_values) else: raise ValueError("Invalid cutoff method (must be 'percentage' or 'sigma_clip'") # -----------------------------------------------------------------
[ "numpy.ma.max", "astropy.stats.sigma_clip", "numpy.log", "numpy.array", "copy.deepcopy", "numpy.ma.masked_array", "astropy.stats.sigma_clipped_stats", "numpy.zeros_like" ]
[((1256, 1309), 'astropy.stats.sigma_clip', 'sigma_clip', (['data'], {'sigma': 'sigma', 'iters': 'None', 'copy': '(False)'}), '(data, sigma=sigma, iters=None, copy=False)\n', (1266, 1309), False, 'from astropy.stats import sigma_clip, sigma_clipped_stats\n'), ((1979, 2042), 'astropy.stats.sigma_clip', 'sigma_clip', (['z_values'], {'sigma': 'sigma_level', 'iters': 'None', 'copy': '(False)'}), '(z_values, sigma=sigma_level, iters=None, copy=False)\n', (1989, 2042), False, 'from astropy.stats import sigma_clip, sigma_clipped_stats\n'), ((2854, 2903), 'astropy.stats.sigma_clipped_stats', 'sigma_clipped_stats', (['data'], {'mask': 'mask', 'sigma': 'sigma'}), '(data, mask=mask, sigma=sigma)\n', (2873, 2903), False, 'from astropy.stats import sigma_clip, sigma_clipped_stats\n'), ((3263, 3312), 'astropy.stats.sigma_clipped_stats', 'sigma_clipped_stats', (['data'], {'mask': 'mask', 'sigma': 'sigma'}), '(data, mask=mask, sigma=sigma)\n', (3282, 3312), False, 'from astropy.stats import sigma_clip, sigma_clipped_stats\n'), ((957, 966), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (963, 966), True, 'import numpy as np\n'), ((1326, 1345), 'copy.deepcopy', 'copy.deepcopy', (['mask'], {}), '(mask)\n', (1339, 1345), False, 'import copy\n'), ((2120, 2139), 'copy.deepcopy', 'copy.deepcopy', (['mask'], {}), '(mask)\n', (2133, 2139), False, 'import copy\n'), ((4150, 4193), 'numpy.ma.masked_array', 'np.ma.masked_array', (['determinants'], {'mask': 'mask'}), '(determinants, mask=mask)\n', (4168, 4193), True, 'import numpy as np\n'), ((2170, 2189), 'numpy.zeros_like', 'np.zeros_like', (['data'], {}), '(data)\n', (2183, 2189), True, 'import numpy as np\n'), ((5778, 5802), 'numpy.ma.max', 'np.ma.max', (['masked_values'], {}), '(masked_values)\n', (5787, 5802), True, 'import numpy as np\n'), ((5655, 5671), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (5663, 5671), True, 'import numpy as np\n')]
import sys import numpy as np from skimage.measure import label def getSegType(mid): m_type = np.uint64 if mid<2**8: m_type = np.uint8 elif mid<2**16: m_type = np.uint16 elif mid<2**32: m_type = np.uint32 return m_type def seg2Count(seg,do_sort=True,rm_zero=False): sm = seg.max() if sm==0: return None,None if sm>1: segIds,segCounts = np.unique(seg,return_counts=True) if rm_zero: segCounts = segCounts[segIds>0] segIds = segIds[segIds>0] if do_sort: sort_id = np.argsort(-segCounts) segIds=segIds[sort_id] segCounts=segCounts[sort_id] else: segIds=np.array([1]) segCounts=np.array([np.count_nonzero(seg)]) return segIds, segCounts def removeSeg(seg, did, invert=False): sm = seg.max() did = did[did<=sm] if invert: rl = np.zeros(1+sm).astype(seg.dtype) rl[did] = did else: rl = np.arange(1+sm).astype(seg.dtype) rl[did] = 0 return rl[seg] def remove_small(seg, thres=100,bid=None): if thres>0: if bid is None: uid, uc = np.unique(seg, return_counts=True) bid = uid[uc<thres] if len(bid)>0: sz = seg.shape seg = removeSeg(seg,bid) return seg def relabel(seg, uid=None,nid=None,do_sort=False,do_type=False): if seg is None or seg.max()==0: return seg if do_sort: uid,_ = seg2Count(seg,do_sort=True) else: # get the unique labels if uid is None: uid = np.unique(seg) else: uid = np.array(uid) uid = uid[uid>0] # leave 0 as 0, the background seg-id # get the maximum label for the segment mid = int(max(uid)) + 1 # create an array from original segment id to reduced id # format opt m_type = seg.dtype if do_type: mid2 = len(uid) if nid is None else max(nid)+1 m_type = getSegType(mid2) mapping = np.zeros(mid, dtype=m_type) if nid is None: mapping[uid] = np.arange(1,1+len(uid), dtype=m_type) else: mapping[uid] = nid.astype(m_type) # if uid is given, need to remove bigger seg id seg[seg>=mid] = 0 return mapping[seg] def get_bb(seg, do_count=False): dim = len(seg.shape) a=np.where(seg>0) if len(a[0])==0: return [-1]*dim*2 out=[] for i in range(dim): out+=[a[i].min(), a[i].max()] if do_count: out+=[len(a[0])] return out def label_chunk(get_chunk, numC, rr=1, rm_sz=0, m_type=np.uint64): # label chunks or slices mid = 0 seg = [None]*numC for zi in range(numC): print('%d/%d [%d], '%(zi,numC,mid)), sys.stdout.flush() tmp = get_chunk(zi)>0 sz = tmp.shape numD = len(sz) if numD==2: tmp = tmp[np.newaxis] seg_c = np.zeros(sz).astype(m_type) bb=get_bb(tmp) print(bb) seg_c[bb[0]:bb[1]+1,bb[2]:bb[3]+1,bb[4]:bb[5]+1] = \ label(tmp[bb[0]:bb[1]+1,bb[2]:bb[3]+1,bb[4]:bb[5]+1]).astype(m_type) if rm_sz>0: # preserve continuous id seg_c = remove_small(seg_c, rm_sz) seg_c = relabel(seg_c).astype(m_type) if zi == 0: # first seg, relabel seg index print('_%d_'%0) slice_b = seg_c[-1] seg[zi] = seg_c[:,::rr,::rr] # save a low-res one mid += seg[zi].max() rlA = np.arange(mid+1,dtype=m_type) else: # link to previous slice slice_t = seg_c[0] slices = label(np.stack([slice_b>0, slice_t>0],axis=0)).astype(m_type) # create mapping for seg cur lc = np.unique(seg_c);lc=lc[lc>0] rl_c = np.zeros(int(lc.max())+1, dtype=int) # merge curr seg # for 1 pre seg id -> slices id -> cur seg ids l0_p = np.unique(slice_b*(slices[0]>0)) bbs = get_bb_label2d_v2(slice_b,uid=l0_p)[:,1:] #bbs2 = get_bb_label2d_v2(slices[1]) print('_%d_'%len(l0_p)) for i,l in enumerate(l0_p): bb = bbs[i] sid = np.unique(slices[0,bb[0]:bb[1]+1,bb[2]:bb[3]+1]*(slice_b[bb[0]:bb[1]+1,bb[2]:bb[3]+1]==l)) sid = sid[sid>0] # multiple ids if len(sid)==1: #bb = bbs2[bbs2[:,0]==sid,1:] #cid = np.unique(slice_t[bb[0]:bb[1]+1,bb[2]:bb[3]+1]*(slices[1,bb[0]:bb[1]+1,bb[2]:bb[3]+1]==sid)) cid = np.unique(slice_t*(slices[1]==sid)) else: cid = np.unique(slice_t*np.in1d(slices[1].reshape(-1),sid).reshape(sz[-2:])) rl_c[cid[cid>0]] = l # new id new_num = np.where(rl_c==0)[0][1:] # except the first one new_id = np.arange(mid+1,mid+1+len(new_num),dtype=m_type) rl_c[new_num] = new_id slice_b = rl_c[seg_c[-1]] # save a high-res seg[zi] = rl_c[seg_c[:,::rr,::rr]] mid += len(new_num) # update global id rlA = np.hstack([rlA,new_id]) # merge prev seg # for 1 cur seg id -> slices id -> prev seg ids l1_c = np.unique(slice_t*(slices[1]>0)) for l in l1_c: sid = np.unique(slices[1]*(slice_t==l)) sid = sid[sid>0] pid = np.unique(slice_b*np.in1d(slices[0].reshape(-1),sid).reshape(sz[-2:])) pid = pid[pid>0] # get all previous m-to-1 labels pid_p = np.where(np.in1d(rlA,rlA[pid]))[0] if len(pid_p)>1: rlA[pid_p] = pid.max() # memory reduction: each seg m2_type = getSegType(seg[zi].max()) seg[zi] = seg[zi].astype(m2_type) # memory reduction: final output m2_type = getSegType(rlA.max()) rlA = rlA.astype(m2_type) print('output type:',m2_type) return rlA[np.vstack(seg)] def get_bb_label3d_v2(seg,do_count=False, uid=None): sz = seg.shape assert len(sz)==3 if uid is None: uid = np.unique(seg) uid = uid[uid>0] um = int(uid.max()) out = np.zeros((1+um,7+do_count),dtype=np.uint32) out[:,0] = np.arange(out.shape[0]) out[:,1] = sz[0] out[:,3] = sz[1] out[:,5] = sz[2] # for each slice zids = np.where((seg>0).sum(axis=1).sum(axis=1)>0)[0] for zid in zids: sid = np.unique(seg[zid]) sid = sid[(sid>0)*(sid<=um)] out[sid,1] = np.minimum(out[sid,1],zid) out[sid,2] = np.maximum(out[sid,2],zid) # for each row rids = np.where((seg>0).sum(axis=0).sum(axis=1)>0)[0] for rid in rids: sid = np.unique(seg[:,rid]) sid = sid[(sid>0)*(sid<=um)] out[sid,3] = np.minimum(out[sid,3],rid) out[sid,4] = np.maximum(out[sid,4],rid) # for each col cids = np.where((seg>0).sum(axis=0).sum(axis=0)>0)[0] for cid in cids: sid = np.unique(seg[:,:,cid]) sid = sid[(sid>0)*(sid<=um)] out[sid,5] = np.minimum(out[sid,5],cid) out[sid,6] = np.maximum(out[sid,6],cid) if do_count: ui,uc = np.unique(seg,return_counts=True) out[ui[ui<=um],-1]=uc[ui<=um] return out[uid]
[ "numpy.unique", "numpy.minimum", "numpy.hstack", "numpy.where", "numpy.in1d", "numpy.argsort", "numpy.array", "numpy.zeros", "numpy.count_nonzero", "numpy.stack", "numpy.vstack", "skimage.measure.label", "numpy.maximum", "sys.stdout.flush", "numpy.arange" ]
[((2022, 2049), 'numpy.zeros', 'np.zeros', (['mid'], {'dtype': 'm_type'}), '(mid, dtype=m_type)\n', (2030, 2049), True, 'import numpy as np\n'), ((2348, 2365), 'numpy.where', 'np.where', (['(seg > 0)'], {}), '(seg > 0)\n', (2356, 2365), True, 'import numpy as np\n'), ((6322, 6371), 'numpy.zeros', 'np.zeros', (['(1 + um, 7 + do_count)'], {'dtype': 'np.uint32'}), '((1 + um, 7 + do_count), dtype=np.uint32)\n', (6330, 6371), True, 'import numpy as np\n'), ((6381, 6404), 'numpy.arange', 'np.arange', (['out.shape[0]'], {}), '(out.shape[0])\n', (6390, 6404), True, 'import numpy as np\n'), ((410, 444), 'numpy.unique', 'np.unique', (['seg'], {'return_counts': '(True)'}), '(seg, return_counts=True)\n', (419, 444), True, 'import numpy as np\n'), ((712, 725), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (720, 725), True, 'import numpy as np\n'), ((2758, 2776), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2774, 2776), False, 'import sys\n'), ((6101, 6115), 'numpy.vstack', 'np.vstack', (['seg'], {}), '(seg)\n', (6110, 6115), True, 'import numpy as np\n'), ((6248, 6262), 'numpy.unique', 'np.unique', (['seg'], {}), '(seg)\n', (6257, 6262), True, 'import numpy as np\n'), ((6583, 6602), 'numpy.unique', 'np.unique', (['seg[zid]'], {}), '(seg[zid])\n', (6592, 6602), True, 'import numpy as np\n'), ((6661, 6689), 'numpy.minimum', 'np.minimum', (['out[sid, 1]', 'zid'], {}), '(out[sid, 1], zid)\n', (6671, 6689), True, 'import numpy as np\n'), ((6709, 6737), 'numpy.maximum', 'np.maximum', (['out[sid, 2]', 'zid'], {}), '(out[sid, 2], zid)\n', (6719, 6737), True, 'import numpy as np\n'), ((6849, 6871), 'numpy.unique', 'np.unique', (['seg[:, rid]'], {}), '(seg[:, rid])\n', (6858, 6871), True, 'import numpy as np\n'), ((6929, 6957), 'numpy.minimum', 'np.minimum', (['out[sid, 3]', 'rid'], {}), '(out[sid, 3], rid)\n', (6939, 6957), True, 'import numpy as np\n'), ((6977, 7005), 'numpy.maximum', 'np.maximum', (['out[sid, 4]', 'rid'], {}), '(out[sid, 4], rid)\n', (6987, 7005), True, 'import numpy as np\n'), ((7121, 7146), 'numpy.unique', 'np.unique', (['seg[:, :, cid]'], {}), '(seg[:, :, cid])\n', (7130, 7146), True, 'import numpy as np\n'), ((7203, 7231), 'numpy.minimum', 'np.minimum', (['out[sid, 5]', 'cid'], {}), '(out[sid, 5], cid)\n', (7213, 7231), True, 'import numpy as np\n'), ((7251, 7279), 'numpy.maximum', 'np.maximum', (['out[sid, 6]', 'cid'], {}), '(out[sid, 6], cid)\n', (7261, 7279), True, 'import numpy as np\n'), ((7312, 7346), 'numpy.unique', 'np.unique', (['seg'], {'return_counts': '(True)'}), '(seg, return_counts=True)\n', (7321, 7346), True, 'import numpy as np\n'), ((588, 610), 'numpy.argsort', 'np.argsort', (['(-segCounts)'], {}), '(-segCounts)\n', (598, 610), True, 'import numpy as np\n'), ((1174, 1208), 'numpy.unique', 'np.unique', (['seg'], {'return_counts': '(True)'}), '(seg, return_counts=True)\n', (1183, 1208), True, 'import numpy as np\n'), ((1608, 1622), 'numpy.unique', 'np.unique', (['seg'], {}), '(seg)\n', (1617, 1622), True, 'import numpy as np\n'), ((1655, 1668), 'numpy.array', 'np.array', (['uid'], {}), '(uid)\n', (1663, 1668), True, 'import numpy as np\n'), ((3527, 3559), 'numpy.arange', 'np.arange', (['(mid + 1)'], {'dtype': 'm_type'}), '(mid + 1, dtype=m_type)\n', (3536, 3559), True, 'import numpy as np\n'), ((3780, 3796), 'numpy.unique', 'np.unique', (['seg_c'], {}), '(seg_c)\n', (3789, 3796), True, 'import numpy as np\n'), ((3972, 4008), 'numpy.unique', 'np.unique', (['(slice_b * (slices[0] > 0))'], {}), '(slice_b * (slices[0] > 0))\n', (3981, 4008), True, 'import numpy as np\n'), ((5234, 5258), 'numpy.hstack', 'np.hstack', (['[rlA, new_id]'], {}), '([rlA, new_id])\n', (5243, 5258), True, 'import numpy as np\n'), ((5366, 5402), 'numpy.unique', 'np.unique', (['(slice_t * (slices[1] > 0))'], {}), '(slice_t * (slices[1] > 0))\n', (5375, 5402), True, 'import numpy as np\n'), ((754, 775), 'numpy.count_nonzero', 'np.count_nonzero', (['seg'], {}), '(seg)\n', (770, 775), True, 'import numpy as np\n'), ((917, 933), 'numpy.zeros', 'np.zeros', (['(1 + sm)'], {}), '(1 + sm)\n', (925, 933), True, 'import numpy as np\n'), ((995, 1012), 'numpy.arange', 'np.arange', (['(1 + sm)'], {}), '(1 + sm)\n', (1004, 1012), True, 'import numpy as np\n'), ((2924, 2936), 'numpy.zeros', 'np.zeros', (['sz'], {}), '(sz)\n', (2932, 2936), True, 'import numpy as np\n'), ((3070, 3131), 'skimage.measure.label', 'label', (['tmp[bb[0]:bb[1] + 1, bb[2]:bb[3] + 1, bb[4]:bb[5] + 1]'], {}), '(tmp[bb[0]:bb[1] + 1, bb[2]:bb[3] + 1, bb[4]:bb[5] + 1])\n', (3075, 3131), False, 'from skimage.measure import label\n'), ((4241, 4351), 'numpy.unique', 'np.unique', (['(slices[0, bb[0]:bb[1] + 1, bb[2]:bb[3] + 1] * (slice_b[bb[0]:bb[1] + 1, bb\n [2]:bb[3] + 1] == l))'], {}), '(slices[0, bb[0]:bb[1] + 1, bb[2]:bb[3] + 1] * (slice_b[bb[0]:bb[1\n ] + 1, bb[2]:bb[3] + 1] == l))\n', (4250, 4351), True, 'import numpy as np\n'), ((5448, 5485), 'numpy.unique', 'np.unique', (['(slices[1] * (slice_t == l))'], {}), '(slices[1] * (slice_t == l))\n', (5457, 5485), True, 'import numpy as np\n'), ((4624, 4663), 'numpy.unique', 'np.unique', (['(slice_t * (slices[1] == sid))'], {}), '(slice_t * (slices[1] == sid))\n', (4633, 4663), True, 'import numpy as np\n'), ((4872, 4891), 'numpy.where', 'np.where', (['(rl_c == 0)'], {}), '(rl_c == 0)\n', (4880, 4891), True, 'import numpy as np\n'), ((3666, 3710), 'numpy.stack', 'np.stack', (['[slice_b > 0, slice_t > 0]'], {'axis': '(0)'}), '([slice_b > 0, slice_t > 0], axis=0)\n', (3674, 3710), True, 'import numpy as np\n'), ((5723, 5745), 'numpy.in1d', 'np.in1d', (['rlA', 'rlA[pid]'], {}), '(rlA, rlA[pid])\n', (5730, 5745), True, 'import numpy as np\n')]
""" LFW dataloading """ import argparse import time import numpy as np import torch from PIL import Image from torch.utils.data import DataLoader, Dataset from torchvision import transforms import os import glob import matplotlib.pyplot as plt class LFWDataset(Dataset): def __init__(self, path_to_folder: str, transform) -> None: self.imgs_path = path_to_folder file_list = glob.glob(self.imgs_path + "*") # print(file_list) self.data = [] for class_path in file_list: class_name = class_path.split("\\")[-1] for img_path in glob.glob(class_path + "\\*.jpg"): self.data.append([img_path, class_name]) self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, index: int) -> torch.Tensor: entry = self.data[index] image = Image.open(entry[0]) label = entry[1] return self.transform(image), label if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-path_to_folder', default='lfw/', type=str) parser.add_argument('-batch_size', default=1028, type=int) parser.add_argument('-num_workers', default=0, type=int) parser.add_argument('-visualize_batch', action='store_true') parser.add_argument('-get_timing', action='store_true') parser.add_argument('-batches_to_check', default=5, type=int) args = parser.parse_args() lfw_trans = transforms.Compose([ transforms.RandomAffine(5, (0.1, 0.1), (0.5, 2.0)), transforms.ToTensor() ]) # Define dataset dataset = LFWDataset(args.path_to_folder, lfw_trans) # Define dataloader dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers ) if args.visualize_batch: # TODO: visualize a batch of images figure = plt.figure(figsize=(14, 8)) cols, rows = int(len(dataloader)/2), 2 batch = next(iter(dataloader)) images = batch[0] labels = batch[1] for i in range(1, cols * rows + 1): img, label = images[i - 1], labels[i - 1] figure.add_subplot(rows, cols, i) plt.title(label) plt.axis("off") plt.imshow(img.permute(1,2,0), cmap="gray") plt.savefig("visualization.jpg") if args.get_timing: # lets do some repetitions res = [ ] for _ in range(5): start = time.time() for batch_idx, batch in enumerate(dataloader): if batch_idx > args.batches_to_check: break end = time.time() res.append(end - start) res = np.array(res) print(f'Timing: {np.mean(res)}+-{np.std(res)}')
[ "numpy.mean", "PIL.Image.open", "matplotlib.pyplot.savefig", "torchvision.transforms.RandomAffine", "argparse.ArgumentParser", "numpy.std", "matplotlib.pyplot.axis", "numpy.array", "matplotlib.pyplot.figure", "torch.utils.data.DataLoader", "matplotlib.pyplot.title", "torchvision.transforms.ToTensor", "time.time", "glob.glob" ]
[((1044, 1069), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1067, 1069), False, 'import argparse\n'), ((1762, 1859), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.num_workers'}), '(dataset, batch_size=args.batch_size, shuffle=False, num_workers=\n args.num_workers)\n', (1772, 1859), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((398, 429), 'glob.glob', 'glob.glob', (["(self.imgs_path + '*')"], {}), "(self.imgs_path + '*')\n", (407, 429), False, 'import glob\n'), ((895, 915), 'PIL.Image.open', 'Image.open', (['entry[0]'], {}), '(entry[0])\n', (905, 915), False, 'from PIL import Image\n'), ((1990, 2017), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 8)'}), '(figsize=(14, 8))\n', (2000, 2017), True, 'import matplotlib.pyplot as plt\n'), ((2421, 2453), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""visualization.jpg"""'], {}), "('visualization.jpg')\n", (2432, 2453), True, 'import matplotlib.pyplot as plt\n'), ((2840, 2853), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (2848, 2853), True, 'import numpy as np\n'), ((597, 630), 'glob.glob', 'glob.glob', (["(class_path + '\\\\*.jpg')"], {}), "(class_path + '\\\\*.jpg')\n", (606, 630), False, 'import glob\n'), ((1540, 1590), 'torchvision.transforms.RandomAffine', 'transforms.RandomAffine', (['(5)', '(0.1, 0.1)', '(0.5, 2.0)'], {}), '(5, (0.1, 0.1), (0.5, 2.0))\n', (1563, 1590), False, 'from torchvision import transforms\n'), ((1600, 1621), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1619, 1621), False, 'from torchvision import transforms\n'), ((2312, 2328), 'matplotlib.pyplot.title', 'plt.title', (['label'], {}), '(label)\n', (2321, 2328), True, 'import matplotlib.pyplot as plt\n'), ((2341, 2356), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2349, 2356), True, 'import matplotlib.pyplot as plt\n'), ((2595, 2606), 'time.time', 'time.time', ([], {}), '()\n', (2604, 2606), False, 'import time\n'), ((2764, 2775), 'time.time', 'time.time', ([], {}), '()\n', (2773, 2775), False, 'import time\n'), ((2879, 2891), 'numpy.mean', 'np.mean', (['res'], {}), '(res)\n', (2886, 2891), True, 'import numpy as np\n'), ((2895, 2906), 'numpy.std', 'np.std', (['res'], {}), '(res)\n', (2901, 2906), True, 'import numpy as np\n')]
import numpy as np import pytest from rsgeo.geometry import Polygon # noqa class TestPolygon: def setup_method(self): self.p = Polygon([(0, 0), (1, 1), (1, 0), (0, 0)]) def test_repr(self): str_repr = str(self.p) exp = "Polygon([(0, 0), (1, 1), (1, 0), (0, 0)])" assert str_repr == exp def test_seq_to_2darray(self): seq = [(1, 2), (3, 4)] res = self.p._seq_to_2darray(seq) np.testing.assert_array_equal(res, np.array([[1, 2], [3, 4]])) def test_seq_to_2darray_sad_case(self): seq = [(1, 2, 3), (4, 5, 6)] with pytest.raises(ValueError): _ = self.p._seq_to_2darray(seq) @pytest.mark.parametrize("x, expected", [ (np.array([1, 2, 3]), np.array([1, 2, 3])), (np.array([[1], [2], [3]]), np.array([1, 2, 3])), ]) def test_to_1d(self, x, expected): result = self.p._to_1d(x) np.testing.assert_array_equal(result, expected) def test_to_1d_sad_case(self): x = np.array([(1, 2, 3), (4, 5, 6)]) with pytest.raises(ValueError): _ = self.p._to_1d(x) def test_contains(self, xs, ys): res = self.p.contains(xs, ys) np.testing.assert_array_equal(res, np.array([False, False, False, True])) def test_distance(self, xs, ys): result = self.p.distance(xs, ys) np.testing.assert_array_equal(result, np.array([0, 0, 1.4142135623730951, 0]))
[ "numpy.testing.assert_array_equal", "numpy.array", "pytest.raises", "rsgeo.geometry.Polygon" ]
[((143, 184), 'rsgeo.geometry.Polygon', 'Polygon', (['[(0, 0), (1, 1), (1, 0), (0, 0)]'], {}), '([(0, 0), (1, 1), (1, 0), (0, 0)])\n', (150, 184), False, 'from rsgeo.geometry import Polygon\n'), ((922, 969), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['result', 'expected'], {}), '(result, expected)\n', (951, 969), True, 'import numpy as np\n'), ((1018, 1050), 'numpy.array', 'np.array', (['[(1, 2, 3), (4, 5, 6)]'], {}), '([(1, 2, 3), (4, 5, 6)])\n', (1026, 1050), True, 'import numpy as np\n'), ((483, 509), 'numpy.array', 'np.array', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (491, 509), True, 'import numpy as np\n'), ((606, 631), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (619, 631), False, 'import pytest\n'), ((1064, 1089), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1077, 1089), False, 'import pytest\n'), ((1243, 1280), 'numpy.array', 'np.array', (['[False, False, False, True]'], {}), '([False, False, False, True])\n', (1251, 1280), True, 'import numpy as np\n'), ((1407, 1446), 'numpy.array', 'np.array', (['[0, 0, 1.4142135623730951, 0]'], {}), '([0, 0, 1.4142135623730951, 0])\n', (1415, 1446), True, 'import numpy as np\n'), ((733, 752), 'numpy.array', 'np.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (741, 752), True, 'import numpy as np\n'), ((754, 773), 'numpy.array', 'np.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (762, 773), True, 'import numpy as np\n'), ((785, 810), 'numpy.array', 'np.array', (['[[1], [2], [3]]'], {}), '([[1], [2], [3]])\n', (793, 810), True, 'import numpy as np\n'), ((812, 831), 'numpy.array', 'np.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (820, 831), True, 'import numpy as np\n')]
import numpy as np from sim.sim2d import sim_run # Simulator options. options = {} options['FIG_SIZE'] = [8,8] options['OBSTACLES'] = True class ModelPredictiveControl: def __init__(self): self.horizon = 20 self.dt = 0.2 # Reference or set point the controller will achieve. self.reference1 = [10, 0, 45*3.14/180] self.reference2 = None self.x_obs = 5 self.y_obs = 0.1 def plant_model(self,prev_state, dt, pedal, steering): x_t = prev_state[0] y_t = prev_state[1] psi_t = prev_state[2] v_t = prev_state[3] v_t = v_t + dt * pedal - v_t/25.0 x_t = x_t + dt * v_t * np.cos(psi_t) y_t = y_t + dt * v_t * np.sin(psi_t) psi_t += dt * v_t *np.tan(steering)/2.5 return [x_t, y_t, psi_t, v_t] def cost_function(self,u, *args): state = args[0] ref = args[1] cost = 0.0 for k in range(self.horizon): v_start = state[3] state = self.plant_model(state, self.dt, u[k*2], u[k*2+1]) x_diff = abs(state[0] - ref[0]) y_diff = abs(state[1] - ref[1]) psi_diff = abs(state[2] - ref[2]) obs_dist_x = abs(state[0] - self.x_obs) obs_dist_y = abs(state[1] - self.y_obs) obs_dist = np.sqrt(obs_dist_x**2 + obs_dist_y**2) cost += np.sqrt(x_diff**2+y_diff**2 + psi_diff**2 + (state[3] - v_start)**2) cost += 1/obs_dist**2*10 speed_kph = state[3]*3.6 if speed_kph > 10.0: cost += speed_kph * 100 return cost sim_run(options, ModelPredictiveControl)
[ "numpy.sqrt", "numpy.tan", "sim.sim2d.sim_run", "numpy.cos", "numpy.sin" ]
[((1671, 1711), 'sim.sim2d.sim_run', 'sim_run', (['options', 'ModelPredictiveControl'], {}), '(options, ModelPredictiveControl)\n', (1678, 1711), False, 'from sim.sim2d import sim_run\n'), ((1370, 1412), 'numpy.sqrt', 'np.sqrt', (['(obs_dist_x ** 2 + obs_dist_y ** 2)'], {}), '(obs_dist_x ** 2 + obs_dist_y ** 2)\n', (1377, 1412), True, 'import numpy as np\n'), ((1431, 1509), 'numpy.sqrt', 'np.sqrt', (['(x_diff ** 2 + y_diff ** 2 + psi_diff ** 2 + (state[3] - v_start) ** 2)'], {}), '(x_diff ** 2 + y_diff ** 2 + psi_diff ** 2 + (state[3] - v_start) ** 2)\n', (1438, 1509), True, 'import numpy as np\n'), ((690, 703), 'numpy.cos', 'np.cos', (['psi_t'], {}), '(psi_t)\n', (696, 703), True, 'import numpy as np\n'), ((735, 748), 'numpy.sin', 'np.sin', (['psi_t'], {}), '(psi_t)\n', (741, 748), True, 'import numpy as np\n'), ((777, 793), 'numpy.tan', 'np.tan', (['steering'], {}), '(steering)\n', (783, 793), True, 'import numpy as np\n')]
import numpy as np import random import cv2 import os import json from csv_utils import load_csv import rect import mask def plot_one_box(x, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. arguments: x(list): a box likes [x1,y1,x2,y2] img(np array): a opencv image object in BGR format color(tuple): color to draw rectangle, such as (0,255,0) label(str): the class name line_thickness(int): the thickness of the line return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) def plot_one_polygon(pts, img, color=None, label=None, line_thickness=None): """ description: Plots one bounding box on image img, this function comes from YoLov5 project. arguments: pts(np array): a numpy array of size [1,1,2] img(np array): a opencv image object in BGR format color(tuple): color to draw rectangle, such as (0,255,0) label(str): the class name line_thickness(int): the thickness of the line return: no return """ tl = ( line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 ) # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] cv2.polylines(img, [pts], isClosed=True, color=color, thickness=tl) if label: c1 = (int(np.min(pts[:,:,0])), int(np.min(pts[:,:,1]))) tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) if __name__ == '__main__': import argparse ap = argparse.ArgumentParser() ap.add_argument('--path_imgs', required=True, help='the path to the input image folder') ap.add_argument('--path_out', required=True, help='the path to the output folder') ap.add_argument('--path_csv', default='labels.csv', help='[optinal] the path of a csv file that corresponds to path_imgs, default="labels.csv" in path_imgs') ap.add_argument('--class_map_json', default=None, help='[optinal] the path of a class map json file') args = vars(ap.parse_args()) path_imgs = args['path_imgs'] path_csv = args['path_csv'] if args['path_csv']!='labels.csv' else os.path.join(path_imgs, args['path_csv']) output_path = args['path_out'] if args['class_map_json']: with open(args['class_map_json']) as f: class_map = json.load(f) print(f'loaded class map: {class_map}') else: class_map = None if not os.path.isfile(path_csv): raise Exception(f'Not found file: {path_csv}') assert path_imgs!=output_path, 'output path must be different with input path' if not os.path.isdir(output_path): os.makedirs(output_path) fname_to_shape, class_map = load_csv(path_csv, path_imgs, class_map) min_id = min(class_map.values()) colors = [(0,0,255),(255,0,0),(0,255,0),(102,51,153),(255,140,0),(105,105,105),(127,25,27),(9,200,100)] color_map = {} for cls in class_map: i = class_map[cls] if min_id != 0: i -= 1 if i < len(colors): color_map[cls] = colors[i] else: color_map[cls] = tuple([random.randint(0,255) for _ in range(3)]) for im_name in fname_to_shape: print(f'[FILE] {im_name}') shapes = fname_to_shape[im_name] im = cv2.imread(shapes[0].fullpath) for shape in shapes: if isinstance(shape, rect.Rect): box = shape.up_left + shape.bottom_right plot_one_box(box, im, label=shape.category, color=color_map[shape.category]) elif isinstance(shape, mask.Mask): pts = np.array([[x,y] for x,y in zip(shape.X,shape.Y)]) pts = pts.reshape((-1, 1, 2)) plot_one_polygon(pts, im, label=shape.category, color=color_map[shape.category]) outname = os.path.join(output_path, im_name) cv2.imwrite(outname, im)
[ "cv2.rectangle", "cv2.imwrite", "argparse.ArgumentParser", "os.makedirs", "cv2.polylines", "csv_utils.load_csv", "os.path.join", "cv2.putText", "os.path.isfile", "os.path.isdir", "numpy.min", "json.load", "cv2.getTextSize", "cv2.imread", "random.randint" ]
[((882, 951), 'cv2.rectangle', 'cv2.rectangle', (['img', 'c1', 'c2', 'color'], {'thickness': 'tl', 'lineType': 'cv2.LINE_AA'}), '(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)\n', (895, 951), False, 'import cv2\n'), ((2169, 2236), 'cv2.polylines', 'cv2.polylines', (['img', '[pts]'], {'isClosed': '(True)', 'color': 'color', 'thickness': 'tl'}), '(img, [pts], isClosed=True, color=color, thickness=tl)\n', (2182, 2236), False, 'import cv2\n'), ((2843, 2868), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2866, 2868), False, 'import argparse\n'), ((4015, 4055), 'csv_utils.load_csv', 'load_csv', (['path_csv', 'path_imgs', 'class_map'], {}), '(path_csv, path_imgs, class_map)\n', (4023, 4055), False, 'from csv_utils import load_csv\n'), ((1152, 1202), 'cv2.rectangle', 'cv2.rectangle', (['img', 'c1', 'c2', 'color', '(-1)', 'cv2.LINE_AA'], {}), '(img, c1, c2, color, -1, cv2.LINE_AA)\n', (1165, 1202), False, 'import cv2\n'), ((1221, 1332), 'cv2.putText', 'cv2.putText', (['img', 'label', '(c1[0], c1[1] - 2)', '(0)', '(tl / 3)', '[225, 255, 255]'], {'thickness': 'tf', 'lineType': 'cv2.LINE_AA'}), '(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255],\n thickness=tf, lineType=cv2.LINE_AA)\n', (1232, 1332), False, 'import cv2\n'), ((2501, 2551), 'cv2.rectangle', 'cv2.rectangle', (['img', 'c1', 'c2', 'color', '(-1)', 'cv2.LINE_AA'], {}), '(img, c1, c2, color, -1, cv2.LINE_AA)\n', (2514, 2551), False, 'import cv2\n'), ((2570, 2681), 'cv2.putText', 'cv2.putText', (['img', 'label', '(c1[0], c1[1] - 2)', '(0)', '(tl / 3)', '[225, 255, 255]'], {'thickness': 'tf', 'lineType': 'cv2.LINE_AA'}), '(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255],\n thickness=tf, lineType=cv2.LINE_AA)\n', (2581, 2681), False, 'import cv2\n'), ((3456, 3497), 'os.path.join', 'os.path.join', (['path_imgs', "args['path_csv']"], {}), "(path_imgs, args['path_csv'])\n", (3468, 3497), False, 'import os\n'), ((3744, 3768), 'os.path.isfile', 'os.path.isfile', (['path_csv'], {}), '(path_csv)\n', (3758, 3768), False, 'import os\n'), ((3921, 3947), 'os.path.isdir', 'os.path.isdir', (['output_path'], {}), '(output_path)\n', (3934, 3947), False, 'import os\n'), ((3957, 3981), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (3968, 3981), False, 'import os\n'), ((4600, 4630), 'cv2.imread', 'cv2.imread', (['shapes[0].fullpath'], {}), '(shapes[0].fullpath)\n', (4610, 4630), False, 'import cv2\n'), ((5135, 5169), 'os.path.join', 'os.path.join', (['output_path', 'im_name'], {}), '(output_path, im_name)\n', (5147, 5169), False, 'import os\n'), ((5178, 5202), 'cv2.imwrite', 'cv2.imwrite', (['outname', 'im'], {}), '(outname, im)\n', (5189, 5202), False, 'import cv2\n'), ((776, 798), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (790, 798), False, 'import random\n'), ((1029, 1086), 'cv2.getTextSize', 'cv2.getTextSize', (['label', '(0)'], {'fontScale': '(tl / 3)', 'thickness': 'tf'}), '(label, 0, fontScale=tl / 3, thickness=tf)\n', (1044, 1086), False, 'import cv2\n'), ((2123, 2145), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (2137, 2145), False, 'import random\n'), ((2378, 2435), 'cv2.getTextSize', 'cv2.getTextSize', (['label', '(0)'], {'fontScale': '(tl / 3)', 'thickness': 'tf'}), '(label, 0, fontScale=tl / 3, thickness=tf)\n', (2393, 2435), False, 'import cv2\n'), ((3636, 3648), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3645, 3648), False, 'import json\n'), ((2269, 2289), 'numpy.min', 'np.min', (['pts[:, :, 0]'], {}), '(pts[:, :, 0])\n', (2275, 2289), True, 'import numpy as np\n'), ((2294, 2314), 'numpy.min', 'np.min', (['pts[:, :, 1]'], {}), '(pts[:, :, 1])\n', (2300, 2314), True, 'import numpy as np\n'), ((4433, 4455), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (4447, 4455), False, 'import random\n')]
""" This is a modified version of simple.py script bundled with Read Until API""" import argparse import logging import sys import traceback import time import numpy import read_until import cffi import os import h5py import glob import concurrent.futures import dyss def _get_parser(): parser = argparse.ArgumentParser('Dyss -- a tiny program for selective sequencing on MinION') parser.add_argument('--port', type=int, default=8000, help='MinKNOW server port.') parser.add_argument('--analysis_delay', type=int, default=1, help='Period to wait before starting analysis.') parser.add_argument('--run_time', type=int, default=900, help='Period to run the analysis.') parser.add_argument('--min_chunk_size', type=int, default=3500, help='Minimum read chunk size to receive.') parser.add_argument('--control_group', default=2, type=int, help='Inverse proportion of channels in control group.') parser.add_argument('--batch_size', default=30, type=int, help='Inverse proportion of channels in control group.') parser.add_argument( '--debug', help="Print all debugging information", action="store_const", dest="log_level", const=logging.DEBUG, default=logging.WARNING, ) parser.add_argument( '--verbose', help="Print verbose messaging.", action="store_const", dest="log_level", const=logging.INFO, ) parser.add_argument('--num_scouts', default=14, type=int, help='number of scouts. Default is 14') parser.add_argument('--num_packs', default=3, type=int, help='number of packs. Default is 3') parser.add_argument('--reference', required=True, help='reference seqence to be amplified. Currently reference size is bounded by 100Kbp.') parser.add_argument('--model', required=True, help='model file.') parser.add_argument('--param', required=True, help='training data.') parser.add_argument('--power', default=9, type=int, help='chunking power. Integer type. Default is 9.') parser.add_argument('--referencesize', default=400000, type=int, help='Reference size(Event num = 2*bp). Default is 400000') return parser def signal_based_analysis(client, classifier, batch_size=30, delay=1, throttle=0.5, control_group=16): """A tiny analysis function based on raw signal comparison. :param client: an instance of a `ReadUntilClient` object. :param batch_size: number of reads to pull from `client` at a time. :param delay: number of seconds to wait before starting analysis. :param throttle: minimum interval between requests to `client`. :param dyss: an instance of Dyss object constructed by libdyss.construct_dyss(). :param debug: flag whether or not output every query into stdout. """ logger = logging.getLogger('Dyss') logger.warn( 'Initialization of Dyss classification' 'When debug and verbose flag is on, it generates literaly all inputs.' 'If you want to apply this application to real sequencing experiment,' 'it is highly recommended to turn these flags off.' ) # we sleep a little simply to ensure the client has started initialised logger.info('Starting analysis of reads in {}s.'.format(delay)) time.sleep(delay) while client.is_running: # If thre are too many queries, reject them all. if client.queue_length > 300: read_batch = client.get_read_chunks(batch_size = client.queue_length, last = True) for (channel, read) in read_batch: read.raw_data = read_until.NullRaw if channel % control_group != 0: client.unblock_read(channel, read.number) client.stop_receiving_read(channel, read.number) t0 = time.time() # Then, running usual classification step read_batch = client.get_read_chunks(batch_size=batch_size, last=True) # convert the read data into a numpy array of correct type queries = [(read.id, channel,read.number, numpy.fromstring(read.raw_data, client.signal_dtype).tolist() ) for (channel,read) in read_batch if channel % control_group != 0] querylen = len(queries) # clear the raw reads from allocated memory for (channel,read) in read_batch: read.raw_data = read_until.NullRaw if channel % control_group == 0: client.stop_receiving_read(channel, read.number) result = classifier.batch_classify(queries) if result is not None: for (status,channel,number,id) in result: if status == 0: # The i th read doesn't seems to be in the target region. Reject it. client.unblock_read(channel, number) client.stop_receiving_read(channel, number) logger.info('Rejected {} {} {}'.format(id,channel,number)) elif status == 1: # The i th read seems to be in the target region. client.stop_receiving_read(channel, number) logger.info('Accepted {} {} {}'.format(id,channel,number)) else: logger.info('Chunked {} {} {}'.format(id,channel, number)) # else, the i th read didn't have enough signal. Keep going. # limit the rate at which we make requests t1 = time.time() if t0 + throttle > t1: time.sleep(throttle + t0 - t1) logger.info('process {} reads in {}.'.format(querylen, t1-t0)) logger.info('Finished analysis of reads.') classifier.free() def main(): args = _get_parser().parse_args() logging.basicConfig(format='[%(asctime)s - %(name)s] %(message)s', datefmt='%H:%M:%S', level=args.log_level) logger = logging.getLogger('Manager') classifier = dyss.Dyss(num_scouts=args.num_scouts, num_packs=args.num_packs, reference=args.reference, model=args.model, param=args.param, power=args.power, referencesize=args.referencesize) read_until_client = read_until.ReadUntilClient( mk_port=args.port, one_chunk=False, filter_strands=True ) with concurrent.futures.ThreadPoolExecutor() as executor: futures = list() futures.append(executor.submit( read_until_client.run, runner_kwargs={ 'run_time':args.run_time, 'min_chunk_size':args.min_chunk_size } )) futures.append(executor.submit( signal_based_analysis, read_until_client, classifier, batch_size=args.batch_size, delay=args.analysis_delay,control_group=args.control_group )) for f in concurrent.futures.as_completed(futures): if f.exception() is not None: logger.warning(f.exception()) if __name__=="__main__": main()
[ "logging.getLogger", "logging.basicConfig", "argparse.ArgumentParser", "dyss.Dyss", "time.sleep", "read_until.ReadUntilClient", "numpy.fromstring", "time.time" ]
[((301, 390), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Dyss -- a tiny program for selective sequencing on MinION"""'], {}), "(\n 'Dyss -- a tiny program for selective sequencing on MinION')\n", (324, 390), False, 'import argparse\n'), ((3065, 3090), 'logging.getLogger', 'logging.getLogger', (['"""Dyss"""'], {}), "('Dyss')\n", (3082, 3090), False, 'import logging\n'), ((3528, 3545), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3538, 3545), False, 'import time\n'), ((6012, 6125), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""[%(asctime)s - %(name)s] %(message)s"""', 'datefmt': '"""%H:%M:%S"""', 'level': 'args.log_level'}), "(format='[%(asctime)s - %(name)s] %(message)s', datefmt=\n '%H:%M:%S', level=args.log_level)\n", (6031, 6125), False, 'import logging\n'), ((6158, 6186), 'logging.getLogger', 'logging.getLogger', (['"""Manager"""'], {}), "('Manager')\n", (6175, 6186), False, 'import logging\n'), ((6204, 6390), 'dyss.Dyss', 'dyss.Dyss', ([], {'num_scouts': 'args.num_scouts', 'num_packs': 'args.num_packs', 'reference': 'args.reference', 'model': 'args.model', 'param': 'args.param', 'power': 'args.power', 'referencesize': 'args.referencesize'}), '(num_scouts=args.num_scouts, num_packs=args.num_packs, reference=\n args.reference, model=args.model, param=args.param, power=args.power,\n referencesize=args.referencesize)\n', (6213, 6390), False, 'import dyss\n'), ((6533, 6620), 'read_until.ReadUntilClient', 'read_until.ReadUntilClient', ([], {'mk_port': 'args.port', 'one_chunk': '(False)', 'filter_strands': '(True)'}), '(mk_port=args.port, one_chunk=False,\n filter_strands=True)\n', (6559, 6620), False, 'import read_until\n'), ((4057, 4068), 'time.time', 'time.time', ([], {}), '()\n', (4066, 4068), False, 'import time\n'), ((5720, 5731), 'time.time', 'time.time', ([], {}), '()\n', (5729, 5731), False, 'import time\n'), ((5775, 5805), 'time.sleep', 'time.sleep', (['(throttle + t0 - t1)'], {}), '(throttle + t0 - t1)\n', (5785, 5805), False, 'import time\n'), ((4335, 4387), 'numpy.fromstring', 'numpy.fromstring', (['read.raw_data', 'client.signal_dtype'], {}), '(read.raw_data, client.signal_dtype)\n', (4351, 4387), False, 'import numpy\n')]
import numpy as np import xarray as xr from numpy import asarray import scipy.sparse from itertools import product from .util import get_shape_of_data from .grid_stretching_transforms import scs_transform from .constants import R_EARTH_m def get_troposphere_mask(ds): """ Returns a mask array for picking out the tropospheric grid boxes. Args: ds: xarray Dataset Dataset containing certain met field variables (i.e. Met_TropLev, Met_BXHEIGHT). Returns: tropmask: numpy ndarray Tropospheric mask. False denotes grid boxes that are in the troposphere and True in the stratosphere (as per Python masking logic). """ # ================================================================== # Initialization # ================================================================== # Make sure ds is an xarray Dataset object if not isinstance(ds, xr.Dataset): raise TypeError("The ds argument must be an xarray Dataset!") # Make sure certain variables are found if "Met_BXHEIGHT" not in ds.data_vars.keys(): raise ValueError("Met_BXHEIGHT could not be found!") if "Met_TropLev" not in ds.data_vars.keys(): raise ValueError("Met_TropLev could not be found!") # Mask of tropospheric grid boxes in the Ref dataset shape = get_shape_of_data(np.squeeze(ds["Met_BXHEIGHT"])) # Determine if this is GCHP data is_gchp = "nf" in ds["Met_BXHEIGHT"].dims # ================================================================== # Create the mask arrays for the troposphere # # Convert the Met_TropLev DataArray objects to numpy ndarrays of # integer. Also subtract 1 to convert from Fortran to Python # array index notation. # ================================================================== multi_time_slices = (is_gchp and len(shape) == 5) or \ (not is_gchp and len(shape) == 4) if multi_time_slices: # -------------------------------------------------------------- # GCC: There are multiple time slices # -------------------------------------------------------------- # Create the tropmask array with dims # (time, lev, nf*lat*lon) for GCHP, or # (time, lev, lat*lon ) for GCC tropmask = np.ones((shape[0], shape[1], np.prod(np.array(shape[2:]))), bool) # Loop over each time for t in range(tropmask.shape[0]): # Pick the tropopause level and make a 1-D array values = ds["Met_TropLev"].isel(time=t).values lev = np.int_(np.squeeze(values) - 1) lev_1d = lev.flatten() # Create the tropospheric mask array for x in range(tropmask.shape[2]): tropmask[t, 0: lev_1d[x], x] = False else: # -------------------------------------------------------------- # There is only one time slice # -------------------------------------------------------------- # Create the tropmask array with dims (lev, lat*lon) tropmask = np.ones((shape[0], np.prod(np.array(shape[1:]))), bool) # Pick the tropopause level and make a 1-D array values = ds["Met_TropLev"].values lev = np.int_(np.squeeze(values) - 1) lev_1d = lev.flatten() # Create the tropospheric mask array for x in range(tropmask.shape[1]): tropmask[0: lev_1d[x], x] = False # Reshape into the same shape as Met_BxHeight return tropmask.reshape(shape) def get_input_res(data): """ Returns resolution of dataset passed to compare_single_level or compare_zonal_means Args: data: xarray Dataset Input GEOS-Chem dataset Returns: res: str or int Lat/lon res of the form 'latresxlonres' or cubed-sphere resolution gridtype: str 'll' for lat/lon or 'cs' for cubed-sphere """ vdims = data.dims if "lat" in vdims and "lon" in vdims: lat = data["lat"].values lon = data["lon"].values if lat.size / 6 == lon.size: return lon.size, "cs" else: lat.sort() lon.sort() # use increment of second and third coordinates # to avoid polar mischief lat_res = np.abs(lat[2] - lat[1]) lon_res = np.abs(lon[2] - lon[1]) return str(lat_res) + "x" + str(lon_res), "ll" else: #print("grid is cs: ", vdims) # GCHP data using MAPL v1.0.0+ has dims time, lev, nf, Ydim, and Xdim if isinstance(data.dims, tuple): return len(data["Xdim"].values), "cs" else: return data.dims["Xdim"], "cs" def call_make_grid(res, gridtype, in_extent=[-180, 180, -90, 90], out_extent=[-180, 180, -90, 90], sg_params=[1, 170, -90]): """ Create a mask with NaN values removed from an input array Args: res: str or int Resolution of grid (format 'latxlon' or csres) gridtype: str 'll' for lat/lon or 'cs' for cubed-sphere Keyword Args (optional): in_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of input data in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] out_extent: list[float, float, float, float] Desired minimum and maximum latitude and longitude of output grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] sg_params: list[float, float, float] (stretch_factor, target_longitude, target_latitude) Desired stretched-grid parameters in the format [stretch_factor, target_longitude, target_latitude]. Will trigger stretched-grid creation if not default values. Default value: [1, 170, -90] (no stretching) Returns: [grid, grid_list]: list(dict, list(dict)) Returns the created grid. grid_list is a list of grids if gridtype is 'cs', else it is None """ # call appropriate make_grid function and return new grid if gridtype == "ll": return [make_grid_LL(res, in_extent, out_extent), None] elif sg_params == [1, 170, -90]: # standard CS return make_grid_CS(res) else: return make_grid_SG(res, *sg_params) def get_grid_extents(data, edges=True): """ Get min and max lat and lon from an input GEOS-Chem xarray dataset or grid dict Args: data: xarray Dataset or dict A GEOS-Chem dataset or a grid dict edges (optional): bool Whether grid extents should use cell edges instead of centers Default value: True Returns: minlon: float Minimum longitude of data grid maxlon: float Maximum longitude of data grid minlat: float Minimum latitude of data grid maxlat: float Maximum latitude of data grid """ if isinstance(data, dict): if "lon_b" in data and edges: return np.min( data["lon_b"]), np.max( data["lon_b"]), np.min( data["lat_b"]), np.max( data["lat_b"]) elif not edges: return np.min( data["lon"]), np.max( data["lon"]), np.min( data["lat"]), np.max( data["lat"]) else: return -180, 180, -90, 90 elif "lat" in data.dims and "lon" in data.dims: lat = data["lat"].values lon = data["lon"].values if lat.size / 6 == lon.size: # No extents for CS plots right now return -180, 180, -90, 90 else: lat = np.sort(lat) minlat = np.min(lat) if abs(abs(lat[1]) - abs(lat[0]) ) != abs(abs(lat[2]) - abs(lat[1])): #pole is cutoff minlat = minlat - 1 maxlat = np.max(lat) if abs(abs(lat[-1]) - abs(lat[-2]) ) != abs(abs(lat[-2]) - abs(lat[-3])): maxlat = maxlat + 1 # add longitude res to max longitude lon = np.sort(lon) minlon = np.min(lon) maxlon = np.max(lon) + abs(abs(lon[-1]) - abs(lon[-2])) return minlon, maxlon, minlat, maxlat else: # GCHP data using MAPL v1.0.0+ has dims time, lev, nf, Ydim, and Xdim return -180, 180, -90, 90 def get_vert_grid(dataset, AP=[], BP=[]): """ Determine vertical grid of input dataset Args: dataset: xarray Dataset A GEOS-Chem output dataset Keyword Args (optional): AP: list-like type Hybrid grid parameter A in hPa Default value: [] BP: list-like type Hybrid grid parameter B (unitless) Default value: [] Returns: p_edge: numpy array Edge pressure values for vertical grid p_mid: numpy array Midpoint pressure values for vertical grid nlev: int Number of levels in vertical grid """ if dataset.sizes["lev"] in (72, 73): return GEOS_72L_grid.p_edge(), GEOS_72L_grid.p_mid(), 72 elif dataset.sizes["lev"] in (47, 48): return GEOS_47L_grid.p_edge(), GEOS_47L_grid.p_mid(), 47 elif AP == [] or BP == []: if dataset.sizes["lev"] == 1: AP = [1, 1] BP = [1] new_grid = vert_grid(AP, BP) return new_grid.p_edge(), new_grid.p_mid(), np.size(AP) else: raise ValueError( "Only 72/73 or 47/48 level vertical grids are automatically determined" + "from input dataset by get_vert_grid(), please pass grid parameters AP and BP" + "as keyword arguments") else: new_grid = vert_grid(AP, BP) return new_grid.p_edge(), new_grid.p_mid(), np.size(AP) def get_pressure_indices(pedge, pres_range): """ Get indices where edge pressure values are within a given pressure range Args: pedge: numpy array A GEOS-Chem output dataset pres_range: list(float, float) Contains minimum and maximum pressure Returns: numpy array Indices where edge pressure values are within a given pressure range """ return np.where( (pedge <= np.max(pres_range)) & ( pedge >= np.min(pres_range)))[0] def pad_pressure_edges(pedge_ind, max_ind, pmid_len): """ Add outer indices to edge pressure index list Args: pedge_ind: list List of edge pressure indices max_ind: int Maximum index pmid_len: int Length of pmid which should not be exceeded by indices Returns: pedge_ind: list List of edge pressure indices, possibly with new minimum and maximum indices """ if max_ind > pmid_len: # don't overstep array bounds for full array max_ind = max_ind - 1 if min(pedge_ind) != 0: pedge_ind = np.append(min(pedge_ind) - 1, pedge_ind) if max(pedge_ind) != max_ind: pedge_ind = np.append(pedge_ind, max(pedge_ind) + 1) return pedge_ind def get_ind_of_pres(dataset, pres): """ Get index of pressure level that contains the requested pressure value. Args: dataset: xarray Dataset GEOS-Chem dataset pres: int or float Desired pressure value Returns: index: int Index of level in dataset that corresponds to requested pressure """ pedge, pmid, _ = get_vert_grid(dataset) converted_dataset = convert_lev_to_pres(dataset, pmid, pedge) return np.argmin(np.abs(converted_dataset['lev'] - pres).values) def convert_lev_to_pres(dataset, pmid, pedge, lev_type='pmid'): """ Convert lev dimension to pressure in a GEOS-Chem dataset Args: dataset: xarray Dataset GEOS-Chem dataset pmid: np.array Midpoint pressure values pedge: np.array Edge pressure values lev_type (optional): str Denote whether lev is 'pedge' or 'pmid' if grid is not 72/73 or 47/48 levels Default value: 'pmid' Returns: dataset: xarray Dataset Input dataset with "lev" dimension values replaced with pressure values """ if dataset.sizes["lev"] in (72, 47): dataset["lev"] = pmid elif dataset.sizes["lev"] in (73, 48): dataset["lev"] = pedge elif lev_type == 'pmid': print('Warning: Assuming levels correspond with midpoint pressures') dataset["lev"] = pmid else: dataset["lev"] = pedge dataset["lev"].attrs["unit"] = "hPa" dataset["lev"].attrs["long_name"] = "level pressure" return dataset class vert_grid: def __init__(self, AP=None, BP=None, p_sfc=1013.25): if (len(AP) != len(BP)) or (AP is None): # Throw error? print('Inconsistent vertical grid specification') self.AP = np.array(AP) self.BP = np.array(BP) self.p_sfc = p_sfc def p_edge(self): # Calculate pressure edges using eta coordinate return self.AP + self.BP * self.p_sfc def p_mid(self): p_edge = self.p_edge() return (p_edge[1:] + p_edge[:-1]) / 2.0 # Standard vertical grids _GEOS_72L_AP = np.array([0.000000e+00, 4.804826e-02, 6.593752e+00, 1.313480e+01, 1.961311e+01, 2.609201e+01, 3.257081e+01, 3.898201e+01, 4.533901e+01, 5.169611e+01, 5.805321e+01, 6.436264e+01, 7.062198e+01, 7.883422e+01, 8.909992e+01, 9.936521e+01, 1.091817e+02, 1.189586e+02, 1.286959e+02, 1.429100e+02, 1.562600e+02, 1.696090e+02, 1.816190e+02, 1.930970e+02, 2.032590e+02, 2.121500e+02, 2.187760e+02, 2.238980e+02, 2.243630e+02, 2.168650e+02, 2.011920e+02, 1.769300e+02, 1.503930e+02, 1.278370e+02, 1.086630e+02, 9.236572e+01, 7.851231e+01, 6.660341e+01, 5.638791e+01, 4.764391e+01, 4.017541e+01, 3.381001e+01, 2.836781e+01, 2.373041e+01, 1.979160e+01, 1.645710e+01, 1.364340e+01, 1.127690e+01, 9.292942e+00, 7.619842e+00, 6.216801e+00, 5.046801e+00, 4.076571e+00, 3.276431e+00, 2.620211e+00, 2.084970e+00, 1.650790e+00, 1.300510e+00, 1.019440e+00, 7.951341e-01, 6.167791e-01, 4.758061e-01, 3.650411e-01, 2.785261e-01, 2.113490e-01, 1.594950e-01, 1.197030e-01, 8.934502e-02, 6.600001e-02, 4.758501e-02, 3.270000e-02, 2.000000e-02, 1.000000e-02]) _GEOS_72L_BP = np.array([1.000000e+00, 9.849520e-01, 9.634060e-01, 9.418650e-01, 9.203870e-01, 8.989080e-01, 8.774290e-01, 8.560180e-01, 8.346609e-01, 8.133039e-01, 7.919469e-01, 7.706375e-01, 7.493782e-01, 7.211660e-01, 6.858999e-01, 6.506349e-01, 6.158184e-01, 5.810415e-01, 5.463042e-01, 4.945902e-01, 4.437402e-01, 3.928911e-01, 3.433811e-01, 2.944031e-01, 2.467411e-01, 2.003501e-01, 1.562241e-01, 1.136021e-01, 6.372006e-02, 2.801004e-02, 6.960025e-03, 8.175413e-09, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00]) GEOS_72L_grid = vert_grid(_GEOS_72L_AP, _GEOS_72L_BP) # Reduced grid _GEOS_47L_AP = np.zeros(48) _GEOS_47L_BP = np.zeros(48) # Fill in the values for the surface _GEOS_47L_AP[0] = _GEOS_72L_AP[0] _GEOS_47L_BP[0] = _GEOS_72L_BP[0] # Build the GEOS 72-layer to 47-layer mapping matrix at the same time _xmat_i = np.zeros((72)) _xmat_j = np.zeros((72)) _xmat_s = np.zeros((72)) # Index here is the 1-indexed layer number for _i_lev in range(1, 37): # Map from 1-indexing to 0-indexing _x_lev = _i_lev - 1 # Sparse matrix for regridding # Below layer 37, it's 1:1 _xct = _x_lev _xmat_i[_xct] = _x_lev _xmat_j[_xct] = _x_lev _xmat_s[_xct] = 1.0 # Copy over the pressure edge for the top of the grid cell _GEOS_47L_AP[_i_lev] = _GEOS_72L_AP[_i_lev] _GEOS_47L_BP[_i_lev] = _GEOS_72L_BP[_i_lev] # Now deal with the lumped layers _skip_size_vec = [2, 4] _number_lumped = [4, 7] # Initialize _i_lev = 36 _i_lev_72 = 36 for _lump_seg in range(2): _skip_size = _skip_size_vec[_lump_seg] # 1-indexed starting point in the 47-layer grid _first_lev_47 = _i_lev + 1 _first_lev_72 = _i_lev_72 + 1 # Loop over the coarse vertical levels (47-layer grid) for _i_lev_offset in range(_number_lumped[_lump_seg]): # i_lev is the index for the current level on the 47-level grid _i_lev = _first_lev_47 + _i_lev_offset # Map from 1-indexing to 0-indexing _x_lev = _i_lev - 1 # Get the 1-indexed location of the last layer in the 72-layer grid # which is below the start of the current lumping region _i_lev_72_base = _first_lev_72 + (_i_lev_offset * _skip_size) - 1 # Get the 1-indexed location of the uppermost level in the 72-layer # grid which is within the target layer on the 47-layer grid _i_lev_72 = _i_lev_72_base + _skip_size # Do the pressure edges first # These are the 0-indexed locations of the upper edge for the # target layers in 47- and 72-layer grids _GEOS_47L_AP[_i_lev] = _GEOS_72L_AP[_i_lev_72] _GEOS_47L_BP[_i_lev] = _GEOS_72L_BP[_i_lev_72] # Get the total pressure delta across the layer on the lumped grid # We are within the fixed pressure levels so don't need to account # for variations in surface pressure _dp_total = _GEOS_47L_AP[_i_lev - 1] - _GEOS_47L_AP[_i_lev] # Now figure out the mapping for _i_lev_offset_72 in range(_skip_size): # Source layer in the 72 layer grid (0-indexed) _x_lev_72 = _i_lev_72_base + _i_lev_offset_72 _xct = _x_lev_72 _xmat_i[_xct] = _x_lev_72 # Target in the 47 layer grid _xmat_j[_xct] = _x_lev # Proportion of 72-layer grid cell, by pressure, within expanded # layer _xmat_s[_xct] = (_GEOS_72L_AP[_x_lev_72] - _GEOS_72L_AP[_x_lev_72 + 1]) / _dp_total _start_pt = _i_lev # Do last entry separately (no layer to go with it) _xmat_72to47 = scipy.sparse.coo_matrix( (_xmat_s, (_xmat_i, _xmat_j)), shape=(72, 47)) GEOS_47L_grid = vert_grid(_GEOS_47L_AP, _GEOS_47L_BP) # CAM 26-layer grid _CAM_26L_AP = np.flip(np.array([219.4067, 489.5209, 988.2418, 1805.201, 2983.724, 4462.334, 6160.587, 7851.243, 7731.271, 7590.131, 7424.086, 7228.744, 6998.933, 6728.574, 6410.509, 6036.322, 5596.111, 5078.225, 4468.96, 3752.191, 2908.949, 2084.739, 1334.443, 708.499, 252.136, 0., 0.]), axis=0) * 0.01 _CAM_26L_BP = np.flip(np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.01505309, 0.03276228, 0.05359622, 0.07810627, 0.1069411, 0.14086370, 0.180772, 0.227722, 0.2829562, 0.3479364, 0.4243822, 0.5143168, 0.6201202, 0.7235355, 0.8176768, 0.8962153, 0.9534761, 0.9851122, 1.]), axis=0) CAM_26L_grid = vert_grid(_CAM_26L_AP, _CAM_26L_BP) def make_grid_LL(llres, in_extent=[-180, 180, -90, 90], out_extent=[]): """ Creates a lat/lon grid description. Args: llres: str lat/lon resolution in 'latxlon' format (e.g. '4x5') Keyword Args (optional): in_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of initial grid in the format [minlon, maxlon, minlat, maxlat] Default value: [-180, 180, -90, 90] out_extent: list[float, float, float, float] Describes minimum and maximum latitude and longitude of target grid in the format [minlon, maxlon, minlat, maxlat]. Needed when intending to use grid to trim extent of input data Default value: [] (assumes value of in_extent) Returns: llgrid: dict dict grid description of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} """ # get initial bounds of grid [minlon, maxlon, minlat, maxlat] = in_extent [dlat, dlon] = list(map(float, llres.split('x'))) lon_b = np.linspace(minlon - dlon / 2, maxlon - dlon / 2, int((maxlon - minlon) / dlon) + 1) lat_b = np.linspace(minlat - dlat / 2, maxlat + dlat / 2, int((maxlat - minlat) / dlat) + 2) if minlat <= -90: lat_b = lat_b.clip(-90, None) if maxlat >= 90: lat_b = lat_b.clip(None, 90) lat = (lat_b[1:] + lat_b[:-1]) / 2 lon = (lon_b[1:] + lon_b[:-1]) / 2 # trim grid bounds when your desired extent is not the same as your # initial grid extent if out_extent == []: out_extent = in_extent if out_extent != in_extent: [minlon, maxlon, minlat, maxlat] = out_extent minlon_ind = np.nonzero(lon >= minlon) maxlon_ind = np.nonzero(lon <= maxlon) lon_inds = np.intersect1d(minlon_ind, maxlon_ind) lon = lon[lon_inds] # make sure to get edges of grid correctly lon_inds = np.append(lon_inds, np.max(lon_inds) + 1) lon_b = lon_b[lon_inds] minlat_ind = np.nonzero(lat >= minlat) maxlat_ind = np.nonzero(lat <= maxlat) lat_inds = np.intersect1d(minlat_ind, maxlat_ind) lat = lat[lat_inds] # make sure to get edges of grid correctly lat_inds = np.append(lat_inds, np.max(lat_inds) + 1) lat_b = lat_b[lat_inds] llgrid = {'lat': lat, 'lon': lon, 'lat_b': lat_b, 'lon_b': lon_b} return llgrid def make_grid_CS(csres): """ Creates a cubed-sphere grid description. Args: csres: int cubed-sphere resolution of target grid Returns: [csgrid, csgrid_list]: list[dict, list[dict]] csgrid is a dict of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} where each value has an extra face dimension of length 6. csgrid_list is a list of dicts separated by face index """ csgrid = csgrid_GMAO(csres) csgrid_list = [None] * 6 for i in range(6): csgrid_list[i] = {'lat': csgrid['lat'][i], 'lon': csgrid['lon'][i], 'lat_b': csgrid['lat_b'][i], 'lon_b': csgrid['lon_b'][i]} return [csgrid, csgrid_list] def make_grid_SG(csres, stretch_factor, target_lon, target_lat): """ Creates a stretched-grid grid description. Args: csres: int cubed-sphere resolution of target grid stretch_factor: float stretch factor of target grid target_lon: float target stretching longitude of target grid target_lon: float target stretching latitude of target grid Returns: [csgrid, csgrid_list]: list[dict, list[dict]] csgrid is a dict of format {'lat' : lat midpoints, 'lon' : lon midpoints, 'lat_b' : lat edges, 'lon_b' : lon edges} where each value has an extra face dimension of length 6. csgrid_list is a list of dicts separated by face index """ csgrid = csgrid_GMAO(csres, offset=0) csgrid_list = [None] * 6 for i in range(6): lat = csgrid['lat'][i].flatten() lon = csgrid['lon'][i].flatten() lon, lat = scs_transform( lon, lat, stretch_factor, target_lon, target_lat) lat = lat.reshape((csres, csres)) lon = lon.reshape((csres, csres)) lat_b = csgrid['lat_b'][i].flatten() lon_b = csgrid['lon_b'][i].flatten() lon_b, lat_b = scs_transform( lon_b, lat_b, stretch_factor, target_lon, target_lat) lat_b = lat_b.reshape((csres + 1, csres + 1)) lon_b = lon_b.reshape((csres + 1, csres + 1)) csgrid_list[i] = {'lat': lat, 'lon': lon, 'lat_b': lat_b, 'lon_b': lon_b} for i in range(6): csgrid['lat'][i] = csgrid_list[i]['lat'] csgrid['lon'][i] = csgrid_list[i]['lon'] csgrid['lat_b'][i] = csgrid_list[i]['lat_b'] csgrid['lon_b'][i] = csgrid_list[i]['lon_b'] return [csgrid, csgrid_list] def calc_rectilinear_lon_edge(lon_stride, center_at_180): """ Compute longitude edge vector for a rectilinear grid. Parameters ---------- lon_stride: float Stride length in degrees. For example, for a standard GEOS-Chem Classic 4x5 grid, lon_stride would be 5. center_at_180: bool Whether or not the grid should have a cell center at 180 degrees (i.e. on the date line). If true, the first grid cell is centered on the date line; if false, the first grid edge is on the date line. Returns ------- Longitudes of cell edges in degrees East. Notes ----- All values are forced to be between [-180,180]. For a grid with N cells in each band, N+1 edges will be returned, with the first and last value being duplicates. Examples -------- >>> from gcpy.grid.horiz import calc_rectilinear_lon_edge >>> calc_rectilinear_lon_edge(5.0,true) np.array([177.5,-177.5,-172.5,...,177.5]) See Also -------- [NONE] """ n_lon = np.round(360.0 / lon_stride) lon_edge = np.linspace(-180.0, 180.0, num=n_lon + 1) if center_at_180: lon_edge = lon_edge - (lon_stride / 2.0) lon_edge[lon_edge < -180.0] = lon_edge[lon_edge < -180] + 360.0 lon_edge[lon_edge > 180.0] = lon_edge[lon_edge > 180.0] - 360.0 return lon_edge def calc_rectilinear_lat_edge(lat_stride, half_polar_grid): """ Compute latitude edge vector for a rectilinear grid. Parameters ---------- lat_stride: float Stride length in degrees. For example, for a standard GEOS-Chem Classic 4x5 grid, lat_stride would be 4. half_polar_grid: bool Whether or not the grid should be "half-polar" (i.e. bands at poles are half the size). In either case the grid will start and end at -/+ 90, but when half_polar_grid is True, the first and last bands will have a width of 1/2 the normal lat_stride. Returns ------- Latitudes of cell edges in degrees North. Notes ----- All values are forced to be between [-90,90]. For a grid with N cells in each band, N+1 edges will be returned, with the first and last value being duplicates. Examples -------- >>> from gcpy.grid.horiz import calc_rectilinear_lat_edge >>> calc_rectilinear_lat_edge(4.0,true) np.array([-90,-88,-84,-80,...,84,88,90]) See Also -------- [NONE] """ if half_polar_grid: start_pt = 90.0 + (lat_stride / 2.0) else: start_pt = 90.0 lat_edge = np.linspace(-1.0 * start_pt, start_pt, num=1 + np.round(2.0 * start_pt / lat_stride)) # Force back onto +/- 90 lat_edge[lat_edge > 90.0] = 90.0 lat_edge[lat_edge < -90.0] = -90.0 return lat_edge def calc_rectilinear_grid_area(lon_edge, lat_edge): """ Compute grid cell areas (in m2) for a rectilinear grid. Parameters ---------- #TODO Returns ------- #TODO Notes ----- #TODO Examples -------- #TODO See Also -------- [NONE] """ # Convert from km to m _radius_earth_m = R_EARTH_m lon_edge = asarray(lon_edge, dtype=float) lat_edge = asarray(lat_edge, dtype=float) n_lon = (lon_edge.size) - 1 n_lat = (lat_edge.size) - 1 grid_area = np.zeros((n_lat, n_lon)) sfc_area_const = 2.0 * np.pi * _radius_earth_m * _radius_earth_m # Longitudes loop, so need to be careful lon_delta = calc_delta_lon(lon_edge) # Convert into weights relative to the total circle lon_delta = lon_delta / 360.0 # Precalculate this sin_lat_edge = np.sin(np.deg2rad(lat_edge)) for i_lat in range(0, n_lat): sin_diff = sin_lat_edge[i_lat + 1] - sin_lat_edge[i_lat] grid_area[i_lat, :] = sin_diff * sfc_area_const * lon_delta return grid_area def calc_delta_lon(lon_edge): """ Compute grid cell longitude widths from an edge vector. Parameters ---------- lon_edge: float Vector of longitude edges, in degrees East. Returns ------- Width of each cell, degrees East Notes ----- Accounts for looping over the domain. Examples -------- #TODO """ n_lon = (lon_edge.size) - 1 lon_edge = asarray(lon_edge) # Set up output array lon_delta = np.zeros((n_lon)) offset = 0.0 next_lon = lon_edge[0] for i_lon in range(0, n_lon): last_lon = next_lon next_lon = lon_edge[i_lon + 1] + offset while next_lon < last_lon: offset = offset + 360.0 next_lon = next_lon + 360.0 lon_delta[i_lon] = next_lon - last_lon return lon_delta def csgrid_GMAO(res, offset=-10): """ Return cubedsphere coordinates with GMAO face orientation Parameters ---------- res: cubed-sphere Resolution This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ CS = CSGrid(res, offset=offset) lon = CS.lon_center.transpose(2, 0, 1) lon_b = CS.lon_edge.transpose(2, 0, 1) lat = CS.lat_center.transpose(2, 0, 1) lat_b = CS.lat_edge.transpose(2, 0, 1) lon[lon < 0] += 360 lon_b[lon_b < 0] += 360 for a in [lon, lon_b, lat, lat_b]: for tile in [0, 1, 3, 4]: a[tile] = a[tile].T for tile in [3, 4]: a[tile] = np.flip(a[tile], 1) for tile in [3, 4, 2, 5]: a[tile] = np.flip(a[tile], 0) a[2], a[5] = a[5].copy(), a[2].copy() # swap north&south pole return {'lon': lon, 'lat': lat, 'lon_b': lon_b, 'lat_b': lat_b} _INV_SQRT_3 = 1.0 / np.sqrt(3.0) _ASIN_INV_SQRT_3 = np.arcsin(_INV_SQRT_3) class CSGrid(object): """Generator for cubed-sphere grid geometries. CSGrid computes the latitutde and longitudes of cell centers and edges on a cubed-sphere grid, providing a way to retrieve these geometries on-the-fly if your model output data does not include them. Attributes ---------- {lon,lat}_center: np.ndarray lat/lon coordinates for each cell center along the cubed-sphere mesh {lon,lat}_edge: np.ndarray lat/lon coordinates for the midpoint of the edges separating each element on the cubed-sphere mesh. xyz_{center,edge}: np.ndarray As above, except coordinates are projected into a 3D cartesian space with common origin to the original lat/lon coordinate system, assuming a unit sphere. This class was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ def __init__(self, c, offset=None): """ Parameters ---------- c: int Number edges along each cubed-sphere edge. ======= ==================== C Lat/Lon Resolution ------- -------------------- 24 4 deg x 5 deg 48,45 2 deg x 2.5 deg 96,90 1 deg x 1.25 deg 192,180 0.5 deg x 0.625 deg 384,360 0.25 deg x 0.3125 deg 720 0.12g deg x 0.15625 deg offset: float (optional) Degrees to offset the first faces' edge in the latitudinal direction. If not passed, then the western edge of the first face will align with the prime meridian. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ self.c = c self.delta_y = 2. * _ASIN_INV_SQRT_3 / c self.nx = self.ny = c + 1 self.offset = offset self._initialize() def _initialize(self): c = self.c nx, ny = self.nx, self.ny lambda_rad = np.zeros((nx, ny)) lambda_rad[0, :] = 3. * np.pi / 4. # West edge lambda_rad[-1, :] = 5. * np.pi / 4. # East edge theta_rad = np.zeros((nx, ny)) theta_rad[0, :] = -_ASIN_INV_SQRT_3 + \ (self.delta_y * np.arange(c + 1)) # West edge theta_rad[-1, :] = theta_rad[0, :] # East edge # Cache the reflection points - our upper-left and lower-right corners lonMir1, lonMir2 = lambda_rad[0, 0], lambda_rad[-1, -1] latMir1, latMir2 = theta_rad[0, 0], theta_rad[-1, -1] xyzMir1 = latlon_to_cartesian(lonMir1, latMir1) xyzMir2 = latlon_to_cartesian(lonMir2, latMir2) xyzCross = np.cross(xyzMir1, xyzMir2) norm = np.sqrt(np.sum(xyzCross**2)) xyzCross /= norm for i in range(1, c): lonRef, latRef = lambda_rad[0, i], theta_rad[0, i] xyzRef = np.asarray(latlon_to_cartesian(lonRef, latRef, )) xyzDot = np.sum(xyzCross * xyzRef) xyzImg = xyzRef - (2. * xyzDot * xyzCross) xsImg, ysImg, zsImg = xyzImg lonImg, latImg = cartesian_to_latlon(xsImg, ysImg, zsImg) lambda_rad[i, 0] = lonImg lambda_rad[i, -1] = lonImg theta_rad[i, 0] = latImg theta_rad[i, -1] = -latImg pp = np.zeros([3, c + 1, c + 1]) # Set the four corners # print("CORNERS") for i, j in product([0, -1], [0, -1]): # print(i, j) pp[:, i, j] = latlon_to_cartesian( lambda_rad[i, j], theta_rad[i, j]) # Map the edges on the sphere back to the cube. #Note that all intersections are at x = -rsq3 # print("EDGES") for ij in range(1, c + 1): # print(ij) pp[:, 0, ij] = latlon_to_cartesian( lambda_rad[0, ij], theta_rad[0, ij]) pp[1, 0, ij] = -pp[1, 0, ij] * _INV_SQRT_3 / pp[0, 0, ij] pp[2, 0, ij] = -pp[2, 0, ij] * _INV_SQRT_3 / pp[0, 0, ij] pp[:, ij, 0] = latlon_to_cartesian( lambda_rad[ij, 0], theta_rad[ij, 0]) pp[1, ij, 0] = -pp[1, ij, 0] * _INV_SQRT_3 / pp[0, ij, 0] pp[2, ij, 0] = -pp[2, ij, 0] * _INV_SQRT_3 / pp[0, ij, 0] # # Map interiors pp[0, :, :] = -_INV_SQRT_3 # print("INTERIOR") for i in range(1, c + 1): for j in range(1, c + 1): # Copy y-z face of the cube along j=1 pp[1, i, j] = pp[1, i, 0] # Copy along i=1 pp[2, i, j] = pp[2, 0, j] _pp = pp.copy() llr, ttr = vec_cartesian_to_latlon(_pp[0], _pp[1], _pp[2]) lambda_rad, theta_rad = llr.copy(), ttr.copy() # Make grid symmetrical to i = im/2 + 1 for j in range(1, c + 1): for i in range(1, c + 1): # print("({}, {}) -> ({}, {})".format(i, 0, i, j)) lambda_rad[i, j] = lambda_rad[i, 0] for j in range(c + 1): for i in range(c // 2): isymm = c - i # print(isymm) avgPt = 0.5 * (lambda_rad[i, j] - lambda_rad[isymm, j]) # print(lambda_rad[i, j], lambda_rad[isymm, j], avgPt) lambda_rad[i, j] = avgPt + np.pi lambda_rad[isymm, j] = np.pi - avgPt avgPt = 0.5 * (theta_rad[i, j] + theta_rad[isymm, j]) theta_rad[i, j] = avgPt theta_rad[isymm, j] = avgPt # Make grid symmetrical to j = im/2 + 1 for j in range(c // 2): jsymm = c - j for i in range(1, c + 1): avgPt = 0.5 * (lambda_rad[i, j] + lambda_rad[i, jsymm]) lambda_rad[i, j] = avgPt lambda_rad[i, jsymm] = avgPt avgPt = 0.5 * (theta_rad[i, j] - theta_rad[i, jsymm]) theta_rad[i, j] = avgPt theta_rad[i, jsymm] = -avgPt # Final correction lambda_rad -= np.pi llr, ttr = lambda_rad.copy(), theta_rad.copy() ####################################################################### # MIRROR GRIDS ####################################################################### new_xgrid = np.zeros((c + 1, c + 1, 6)) new_ygrid = np.zeros((c + 1, c + 1, 6)) xgrid = llr.copy() ygrid = ttr.copy() new_xgrid[..., 0] = xgrid.copy() new_ygrid[..., 0] = ygrid.copy() # radius = 6370.0e3 radius = 1. for face in range(1, 6): for j in range(c + 1): for i in range(c + 1): x = xgrid[i, j] y = ygrid[i, j] z = radius if face == 1: # Rotate about z only new_xyz = rotate_sphere_3D(x, y, z, -np.pi / 2., 'z') elif face == 2: # Rotate about z, then x temp_xyz = rotate_sphere_3D(x, y, z, -np.pi / 2., 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'x') elif face == 3: temp_xyz = rotate_sphere_3D(x, y, z, np.pi, 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'x') if ((c % 2) != 0) and (j == c // 2 - 1): print(i, j, face) new_xyz = (np.pi, *new_xyz) elif face == 4: temp_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'z') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'y') elif face == 5: temp_xyz = rotate_sphere_3D(x, y, z, np.pi / 2., 'y') x, y, z = temp_xyz[:] new_xyz = rotate_sphere_3D(x, y, z, 0., 'z') # print((x, y, z), "\n", new_xyz, "\n" + "--"*40) new_x, new_y, _ = new_xyz new_xgrid[i, j, face] = new_x new_ygrid[i, j, face] = new_y lon_edge, lat_edge = new_xgrid.copy(), new_ygrid.copy() ####################################################################### # CLEANUP GRID ####################################################################### for i, j, f in product(range(c + 1), range(c + 1), range(6)): new_lon = lon_edge[i, j, f] if new_lon < 0: new_lon += 2 * np.pi if np.abs(new_lon) < 1e-10: new_lon = 0. lon_edge[i, j, f] = new_lon if np.abs(lat_edge[i, j, f]) < 1e-10: lat_edge[i, j, f] = 0. lon_edge_deg = np.rad2deg(lon_edge) lat_edge_deg = np.rad2deg(lat_edge) ####################################################################### # COMPUTE CELL CENTROIDS ####################################################################### lon_ctr = np.zeros((c, c, 6)) lat_ctr = np.zeros((c, c, 6)) xyz_ctr = np.zeros((3, c, c, 6)) xyz_edge = np.zeros((3, c + 1, c + 1, 6)) for f in range(6): for i in range(c): last_x = (i == (c - 1)) for j in range(c): last_y = (j == (c - 1)) # Get the four corners lat_corner = [ lat_edge[i, j, f], lat_edge[i + 1, j, f], lat_edge[i + 1, j + 1, f], lat_edge[i, j + 1, f]] lon_corner = [ lon_edge[i, j, f], lon_edge[i + 1, j, f], lon_edge[i + 1, j + 1, f], lon_edge[i, j + 1, f]] # Convert from lat-lon back to cartesian xyz_corner = np.asarray( vec_latlon_to_cartesian( lon_corner, lat_corner)) # Store the edge information xyz_edge[:, i, j, f] = xyz_corner[:, 0] if last_x: xyz_edge[:, i + 1, j, f] = xyz_corner[:, 1] if last_x or last_y: xyz_edge[:, i + 1, j + 1, f] = xyz_corner[:, 2] if last_y: xyz_edge[:, i, j + 1, f] = xyz_corner[:, 3] e_mid = np.sum(xyz_corner, axis=1) e_abs = np.sqrt(np.sum(e_mid * e_mid)) if e_abs > 0: e_mid = e_mid / e_abs xyz_ctr[:, i, j, f] = e_mid _lon, _lat = cartesian_to_latlon(*e_mid) lon_ctr[i, j, f] = _lon lat_ctr[i, j, f] = _lat lon_ctr_deg = np.rad2deg(lon_ctr) lat_ctr_deg = np.rad2deg(lat_ctr) if self.offset is not None: lon_edge_deg += self.offset lon_ctr_deg += self.offset ####################################################################### # CACHE ####################################################################### self.lon_center = lon_ctr_deg self.lat_center = lat_ctr_deg self.lon_edge = lon_edge_deg self.lat_edge = lat_edge_deg self.xyz_center = xyz_ctr self.xyz_edge = xyz_edge def latlon_to_cartesian(lon, lat): """ Convert latitude/longitude coordinates along the unit sphere to cartesian coordinates defined by a vector pointing from the sphere's center to its surface. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ x = np.cos(lat) * np.cos(lon) y = np.cos(lat) * np.sin(lon) z = np.sin(lat) return x, y, z vec_latlon_to_cartesian = np.vectorize(latlon_to_cartesian) def cartesian_to_latlon(x, y, z, ret_xyz=False): """ Convert a cartesian coordinate to latitude/longitude coordinates. Optionally return the original cartesian coordinate as a tuple. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ xyz = np.array([x, y, z]) vector_length = np.sqrt(np.sum(xyz * xyz, axis=0)) xyz /= vector_length x, y, z = xyz if (np.abs(x) + np.abs(y)) < 1e-20: lon = 0. else: lon = np.arctan2(y, x) if lon < 0.: lon += 2 * np.pi lat = np.arcsin(z) # If not normalizing vector, take lat = np.arcsin(z/vector_length) if ret_xyz: return lon, lat, xyz else: return lon, lat vec_cartesian_to_latlon = np.vectorize(cartesian_to_latlon) def spherical_to_cartesian(theta, phi, r=1): """ Convert spherical coordinates in the form (theta, phi[, r]) to cartesian, with the origin at the center of the original spherical coordinate system. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ x = r * np.cos(phi) * np.cos(theta) y = r * np.cos(phi) * np.sin(theta) z = r * np.sin(phi) return x, y, z vec_spherical_to_cartesian = np.vectorize(spherical_to_cartesian) def cartesian_to_spherical(x, y, z): """ Convert cartesian coordinates to spherical in the form (theta, phi[, r]) with the origin remaining at the center of the original spherical coordinate system. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ r = np.sqrt(x**2 + y**2 + z**2) #theta = np.arccos(z / r) theta = np.arctan2(y, x) phi = np.arctan2(z, np.sqrt(x**2 + y**2)) # if np.abs(x) < 1e-16: # phi = np.pi # else: # phi = np.arctan(y / x) return theta, phi, r vec_cartesian_to_spherical = np.vectorize(cartesian_to_spherical) def rotate_sphere_3D(theta, phi, r, rot_ang, rot_axis='x'): """ Rotate a spherical coordinate in the form (theta, phi[, r]) about the indicating axis, 'rot_axis'. This method accomplishes the rotation by projecting to a cartesian coordinate system and performing a solid body rotation around the requested axis. This function was originally written by <NAME> and included in package cubedsphere: https://github.com/JiaweiZhuang/cubedsphere """ cos_ang = np.cos(rot_ang) sin_ang = np.sin(rot_ang) x, y, z = spherical_to_cartesian(theta, phi, r) if rot_axis == 'x': x_new = x y_new = cos_ang * y + sin_ang * z z_new = -sin_ang * y + cos_ang * z elif rot_axis == 'y': x_new = cos_ang * x - sin_ang * z y_new = y z_new = sin_ang * x + cos_ang * z elif rot_axis == 'z': x_new = cos_ang * x + sin_ang * y y_new = -sin_ang * x + cos_ang * y z_new = z theta_new, phi_new, r_new = cartesian_to_spherical(x_new, y_new, z_new) return theta_new, phi_new, r_new
[ "numpy.sqrt", "numpy.array", "numpy.arctan2", "numpy.sin", "numpy.arange", "numpy.flip", "numpy.cross", "numpy.sort", "itertools.product", "numpy.asarray", "numpy.max", "numpy.linspace", "numpy.min", "numpy.rad2deg", "numpy.round", "numpy.abs", "numpy.size", "numpy.squeeze", "numpy.deg2rad", "numpy.cos", "numpy.nonzero", "numpy.vectorize", "numpy.intersect1d", "numpy.arcsin", "numpy.sum", "numpy.zeros" ]
[((13666, 14423), 'numpy.array', 'np.array', (['[0.0, 0.04804826, 6.593752, 13.1348, 19.61311, 26.09201, 32.57081, 38.98201,\n 45.33901, 51.69611, 58.05321, 64.36264, 70.62198, 78.83422, 89.09992, \n 99.36521, 109.1817, 118.9586, 128.6959, 142.91, 156.26, 169.609, \n 181.619, 193.097, 203.259, 212.15, 218.776, 223.898, 224.363, 216.865, \n 201.192, 176.93, 150.393, 127.837, 108.663, 92.36572, 78.51231, \n 66.60341, 56.38791, 47.64391, 40.17541, 33.81001, 28.36781, 23.73041, \n 19.7916, 16.4571, 13.6434, 11.2769, 9.292942, 7.619842, 6.216801, \n 5.046801, 4.076571, 3.276431, 2.620211, 2.08497, 1.65079, 1.30051, \n 1.01944, 0.7951341, 0.6167791, 0.4758061, 0.3650411, 0.2785261, \n 0.211349, 0.159495, 0.119703, 0.08934502, 0.06600001, 0.04758501, \n 0.0327, 0.02, 0.01]'], {}), '([0.0, 0.04804826, 6.593752, 13.1348, 19.61311, 26.09201, 32.57081,\n 38.98201, 45.33901, 51.69611, 58.05321, 64.36264, 70.62198, 78.83422, \n 89.09992, 99.36521, 109.1817, 118.9586, 128.6959, 142.91, 156.26, \n 169.609, 181.619, 193.097, 203.259, 212.15, 218.776, 223.898, 224.363, \n 216.865, 201.192, 176.93, 150.393, 127.837, 108.663, 92.36572, 78.51231,\n 66.60341, 56.38791, 47.64391, 40.17541, 33.81001, 28.36781, 23.73041, \n 19.7916, 16.4571, 13.6434, 11.2769, 9.292942, 7.619842, 6.216801, \n 5.046801, 4.076571, 3.276431, 2.620211, 2.08497, 1.65079, 1.30051, \n 1.01944, 0.7951341, 0.6167791, 0.4758061, 0.3650411, 0.2785261, \n 0.211349, 0.159495, 0.119703, 0.08934502, 0.06600001, 0.04758501, \n 0.0327, 0.02, 0.01])\n', (13674, 14423), True, 'import numpy as np\n'), ((16515, 17115), 'numpy.array', 'np.array', (['[1.0, 0.984952, 0.963406, 0.941865, 0.920387, 0.898908, 0.877429, 0.856018,\n 0.8346609, 0.8133039, 0.7919469, 0.7706375, 0.7493782, 0.721166, \n 0.6858999, 0.6506349, 0.6158184, 0.5810415, 0.5463042, 0.4945902, \n 0.4437402, 0.3928911, 0.3433811, 0.2944031, 0.2467411, 0.2003501, \n 0.1562241, 0.1136021, 0.06372006, 0.02801004, 0.006960025, 8.175413e-09,\n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]'], {}), '([1.0, 0.984952, 0.963406, 0.941865, 0.920387, 0.898908, 0.877429, \n 0.856018, 0.8346609, 0.8133039, 0.7919469, 0.7706375, 0.7493782, \n 0.721166, 0.6858999, 0.6506349, 0.6158184, 0.5810415, 0.5463042, \n 0.4945902, 0.4437402, 0.3928911, 0.3433811, 0.2944031, 0.2467411, \n 0.2003501, 0.1562241, 0.1136021, 0.06372006, 0.02801004, 0.006960025, \n 8.175413e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0])\n', (16523, 17115), True, 'import numpy as np\n'), ((19434, 19446), 'numpy.zeros', 'np.zeros', (['(48)'], {}), '(48)\n', (19442, 19446), True, 'import numpy as np\n'), ((19462, 19474), 'numpy.zeros', 'np.zeros', (['(48)'], {}), '(48)\n', (19470, 19474), True, 'import numpy as np\n'), ((19662, 19674), 'numpy.zeros', 'np.zeros', (['(72)'], {}), '(72)\n', (19670, 19674), True, 'import numpy as np\n'), ((19687, 19699), 'numpy.zeros', 'np.zeros', (['(72)'], {}), '(72)\n', (19695, 19699), True, 'import numpy as np\n'), ((19712, 19724), 'numpy.zeros', 'np.zeros', (['(72)'], {}), '(72)\n', (19720, 19724), True, 'import numpy as np\n'), ((34976, 34998), 'numpy.arcsin', 'np.arcsin', (['_INV_SQRT_3'], {}), '(_INV_SQRT_3)\n', (34985, 34998), True, 'import numpy as np\n'), ((47239, 47272), 'numpy.vectorize', 'np.vectorize', (['latlon_to_cartesian'], {}), '(latlon_to_cartesian)\n', (47251, 47272), True, 'import numpy as np\n'), ((48083, 48116), 'numpy.vectorize', 'np.vectorize', (['cartesian_to_latlon'], {}), '(cartesian_to_latlon)\n', (48095, 48116), True, 'import numpy as np\n'), ((48627, 48663), 'numpy.vectorize', 'np.vectorize', (['spherical_to_cartesian'], {}), '(spherical_to_cartesian)\n', (48639, 48663), True, 'import numpy as np\n'), ((49314, 49350), 'numpy.vectorize', 'np.vectorize', (['cartesian_to_spherical'], {}), '(cartesian_to_spherical)\n', (49326, 49350), True, 'import numpy as np\n'), ((23083, 23353), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01505309, 0.03276228, 0.05359622,\n 0.07810627, 0.1069411, 0.1408637, 0.180772, 0.227722, 0.2829562, \n 0.3479364, 0.4243822, 0.5143168, 0.6201202, 0.7235355, 0.8176768, \n 0.8962153, 0.9534761, 0.9851122, 1.0]'], {}), '([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.01505309, 0.03276228, \n 0.05359622, 0.07810627, 0.1069411, 0.1408637, 0.180772, 0.227722, \n 0.2829562, 0.3479364, 0.4243822, 0.5143168, 0.6201202, 0.7235355, \n 0.8176768, 0.8962153, 0.9534761, 0.9851122, 1.0])\n', (23091, 23353), True, 'import numpy as np\n'), ((30288, 30316), 'numpy.round', 'np.round', (['(360.0 / lon_stride)'], {}), '(360.0 / lon_stride)\n', (30296, 30316), True, 'import numpy as np\n'), ((30332, 30373), 'numpy.linspace', 'np.linspace', (['(-180.0)', '(180.0)'], {'num': '(n_lon + 1)'}), '(-180.0, 180.0, num=n_lon + 1)\n', (30343, 30373), True, 'import numpy as np\n'), ((32429, 32459), 'numpy.asarray', 'asarray', (['lon_edge'], {'dtype': 'float'}), '(lon_edge, dtype=float)\n', (32436, 32459), False, 'from numpy import asarray\n'), ((32475, 32505), 'numpy.asarray', 'asarray', (['lat_edge'], {'dtype': 'float'}), '(lat_edge, dtype=float)\n', (32482, 32505), False, 'from numpy import asarray\n'), ((32588, 32612), 'numpy.zeros', 'np.zeros', (['(n_lat, n_lon)'], {}), '((n_lat, n_lon))\n', (32596, 32612), True, 'import numpy as np\n'), ((33538, 33555), 'numpy.asarray', 'asarray', (['lon_edge'], {}), '(lon_edge)\n', (33545, 33555), False, 'from numpy import asarray\n'), ((33599, 33614), 'numpy.zeros', 'np.zeros', (['n_lon'], {}), '(n_lon)\n', (33607, 33614), True, 'import numpy as np\n'), ((34944, 34956), 'numpy.sqrt', 'np.sqrt', (['(3.0)'], {}), '(3.0)\n', (34951, 34956), True, 'import numpy as np\n'), ((47179, 47190), 'numpy.sin', 'np.sin', (['lat'], {}), '(lat)\n', (47185, 47190), True, 'import numpy as np\n'), ((47621, 47640), 'numpy.array', 'np.array', (['[x, y, z]'], {}), '([x, y, z])\n', (47629, 47640), True, 'import numpy as np\n'), ((47891, 47903), 'numpy.arcsin', 'np.arcsin', (['z'], {}), '(z)\n', (47900, 47903), True, 'import numpy as np\n'), ((49029, 49062), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2 + z ** 2)'], {}), '(x ** 2 + y ** 2 + z ** 2)\n', (49036, 49062), True, 'import numpy as np\n'), ((49099, 49115), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (49109, 49115), True, 'import numpy as np\n'), ((49843, 49858), 'numpy.cos', 'np.cos', (['rot_ang'], {}), '(rot_ang)\n', (49849, 49858), True, 'import numpy as np\n'), ((49873, 49888), 'numpy.sin', 'np.sin', (['rot_ang'], {}), '(rot_ang)\n', (49879, 49888), True, 'import numpy as np\n'), ((1392, 1422), 'numpy.squeeze', 'np.squeeze', (["ds['Met_BXHEIGHT']"], {}), "(ds['Met_BXHEIGHT'])\n", (1402, 1422), True, 'import numpy as np\n'), ((13326, 13338), 'numpy.array', 'np.array', (['AP'], {}), '(AP)\n', (13334, 13338), True, 'import numpy as np\n'), ((13357, 13369), 'numpy.array', 'np.array', (['BP'], {}), '(BP)\n', (13365, 13369), True, 'import numpy as np\n'), ((22587, 22869), 'numpy.array', 'np.array', (['[219.4067, 489.5209, 988.2418, 1805.201, 2983.724, 4462.334, 6160.587, \n 7851.243, 7731.271, 7590.131, 7424.086, 7228.744, 6998.933, 6728.574, \n 6410.509, 6036.322, 5596.111, 5078.225, 4468.96, 3752.191, 2908.949, \n 2084.739, 1334.443, 708.499, 252.136, 0.0, 0.0]'], {}), '([219.4067, 489.5209, 988.2418, 1805.201, 2983.724, 4462.334, \n 6160.587, 7851.243, 7731.271, 7590.131, 7424.086, 7228.744, 6998.933, \n 6728.574, 6410.509, 6036.322, 5596.111, 5078.225, 4468.96, 3752.191, \n 2908.949, 2084.739, 1334.443, 708.499, 252.136, 0.0, 0.0])\n', (22595, 22869), True, 'import numpy as np\n'), ((25549, 25574), 'numpy.nonzero', 'np.nonzero', (['(lon >= minlon)'], {}), '(lon >= minlon)\n', (25559, 25574), True, 'import numpy as np\n'), ((25596, 25621), 'numpy.nonzero', 'np.nonzero', (['(lon <= maxlon)'], {}), '(lon <= maxlon)\n', (25606, 25621), True, 'import numpy as np\n'), ((25641, 25679), 'numpy.intersect1d', 'np.intersect1d', (['minlon_ind', 'maxlon_ind'], {}), '(minlon_ind, maxlon_ind)\n', (25655, 25679), True, 'import numpy as np\n'), ((25874, 25899), 'numpy.nonzero', 'np.nonzero', (['(lat >= minlat)'], {}), '(lat >= minlat)\n', (25884, 25899), True, 'import numpy as np\n'), ((25921, 25946), 'numpy.nonzero', 'np.nonzero', (['(lat <= maxlat)'], {}), '(lat <= maxlat)\n', (25931, 25946), True, 'import numpy as np\n'), ((25966, 26004), 'numpy.intersect1d', 'np.intersect1d', (['minlat_ind', 'maxlat_ind'], {}), '(minlat_ind, maxlat_ind)\n', (25980, 26004), True, 'import numpy as np\n'), ((32912, 32932), 'numpy.deg2rad', 'np.deg2rad', (['lat_edge'], {}), '(lat_edge)\n', (32922, 32932), True, 'import numpy as np\n'), ((37095, 37113), 'numpy.zeros', 'np.zeros', (['(nx, ny)'], {}), '((nx, ny))\n', (37103, 37113), True, 'import numpy as np\n'), ((37248, 37266), 'numpy.zeros', 'np.zeros', (['(nx, ny)'], {}), '((nx, ny))\n', (37256, 37266), True, 'import numpy as np\n'), ((37769, 37795), 'numpy.cross', 'np.cross', (['xyzMir1', 'xyzMir2'], {}), '(xyzMir1, xyzMir2)\n', (37777, 37795), True, 'import numpy as np\n'), ((38414, 38441), 'numpy.zeros', 'np.zeros', (['[3, c + 1, c + 1]'], {}), '([3, c + 1, c + 1])\n', (38422, 38441), True, 'import numpy as np\n'), ((38521, 38546), 'itertools.product', 'product', (['[0, -1]', '[0, -1]'], {}), '([0, -1], [0, -1])\n', (38528, 38546), False, 'from itertools import product\n'), ((41377, 41404), 'numpy.zeros', 'np.zeros', (['(c + 1, c + 1, 6)'], {}), '((c + 1, c + 1, 6))\n', (41385, 41404), True, 'import numpy as np\n'), ((41425, 41452), 'numpy.zeros', 'np.zeros', (['(c + 1, c + 1, 6)'], {}), '((c + 1, c + 1, 6))\n', (41433, 41452), True, 'import numpy as np\n'), ((44033, 44053), 'numpy.rad2deg', 'np.rad2deg', (['lon_edge'], {}), '(lon_edge)\n', (44043, 44053), True, 'import numpy as np\n'), ((44077, 44097), 'numpy.rad2deg', 'np.rad2deg', (['lat_edge'], {}), '(lat_edge)\n', (44087, 44097), True, 'import numpy as np\n'), ((44311, 44330), 'numpy.zeros', 'np.zeros', (['(c, c, 6)'], {}), '((c, c, 6))\n', (44319, 44330), True, 'import numpy as np\n'), ((44349, 44368), 'numpy.zeros', 'np.zeros', (['(c, c, 6)'], {}), '((c, c, 6))\n', (44357, 44368), True, 'import numpy as np\n'), ((44387, 44409), 'numpy.zeros', 'np.zeros', (['(3, c, c, 6)'], {}), '((3, c, c, 6))\n', (44395, 44409), True, 'import numpy as np\n'), ((44429, 44459), 'numpy.zeros', 'np.zeros', (['(3, c + 1, c + 1, 6)'], {}), '((3, c + 1, c + 1, 6))\n', (44437, 44459), True, 'import numpy as np\n'), ((46174, 46193), 'numpy.rad2deg', 'np.rad2deg', (['lon_ctr'], {}), '(lon_ctr)\n', (46184, 46193), True, 'import numpy as np\n'), ((46216, 46235), 'numpy.rad2deg', 'np.rad2deg', (['lat_ctr'], {}), '(lat_ctr)\n', (46226, 46235), True, 'import numpy as np\n'), ((47111, 47122), 'numpy.cos', 'np.cos', (['lat'], {}), '(lat)\n', (47117, 47122), True, 'import numpy as np\n'), ((47125, 47136), 'numpy.cos', 'np.cos', (['lon'], {}), '(lon)\n', (47131, 47136), True, 'import numpy as np\n'), ((47145, 47156), 'numpy.cos', 'np.cos', (['lat'], {}), '(lat)\n', (47151, 47156), True, 'import numpy as np\n'), ((47159, 47170), 'numpy.sin', 'np.sin', (['lon'], {}), '(lon)\n', (47165, 47170), True, 'import numpy as np\n'), ((47669, 47694), 'numpy.sum', 'np.sum', (['(xyz * xyz)'], {'axis': '(0)'}), '(xyz * xyz, axis=0)\n', (47675, 47694), True, 'import numpy as np\n'), ((47821, 47837), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (47831, 47837), True, 'import numpy as np\n'), ((48499, 48512), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (48505, 48512), True, 'import numpy as np\n'), ((48539, 48552), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (48545, 48552), True, 'import numpy as np\n'), ((48565, 48576), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (48571, 48576), True, 'import numpy as np\n'), ((49140, 49164), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (49147, 49164), True, 'import numpy as np\n'), ((4402, 4425), 'numpy.abs', 'np.abs', (['(lat[2] - lat[1])'], {}), '(lat[2] - lat[1])\n', (4408, 4425), True, 'import numpy as np\n'), ((4448, 4471), 'numpy.abs', 'np.abs', (['(lon[2] - lon[1])'], {}), '(lon[2] - lon[1])\n', (4454, 4471), True, 'import numpy as np\n'), ((11987, 12026), 'numpy.abs', 'np.abs', (["(converted_dataset['lev'] - pres)"], {}), "(converted_dataset['lev'] - pres)\n", (11993, 12026), True, 'import numpy as np\n'), ((34685, 34704), 'numpy.flip', 'np.flip', (['a[tile]', '(1)'], {}), '(a[tile], 1)\n', (34692, 34704), True, 'import numpy as np\n'), ((34761, 34780), 'numpy.flip', 'np.flip', (['a[tile]', '(0)'], {}), '(a[tile], 0)\n', (34768, 34780), True, 'import numpy as np\n'), ((37819, 37840), 'numpy.sum', 'np.sum', (['(xyzCross ** 2)'], {}), '(xyzCross ** 2)\n', (37825, 37840), True, 'import numpy as np\n'), ((38053, 38078), 'numpy.sum', 'np.sum', (['(xyzCross * xyzRef)'], {}), '(xyzCross * xyzRef)\n', (38059, 38078), True, 'import numpy as np\n'), ((47748, 47757), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (47754, 47757), True, 'import numpy as np\n'), ((47760, 47769), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (47766, 47769), True, 'import numpy as np\n'), ((48485, 48496), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (48491, 48496), True, 'import numpy as np\n'), ((48525, 48536), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (48531, 48536), True, 'import numpy as np\n'), ((3344, 3362), 'numpy.squeeze', 'np.squeeze', (['values'], {}), '(values)\n', (3354, 3362), True, 'import numpy as np\n'), ((7272, 7293), 'numpy.min', 'np.min', (["data['lon_b']"], {}), "(data['lon_b'])\n", (7278, 7293), True, 'import numpy as np\n'), ((7312, 7333), 'numpy.max', 'np.max', (["data['lon_b']"], {}), "(data['lon_b'])\n", (7318, 7333), True, 'import numpy as np\n'), ((7352, 7373), 'numpy.min', 'np.min', (["data['lat_b']"], {}), "(data['lat_b'])\n", (7358, 7373), True, 'import numpy as np\n'), ((7392, 7413), 'numpy.max', 'np.max', (["data['lat_b']"], {}), "(data['lat_b'])\n", (7398, 7413), True, 'import numpy as np\n'), ((7950, 7962), 'numpy.sort', 'np.sort', (['lat'], {}), '(lat)\n', (7957, 7962), True, 'import numpy as np\n'), ((7984, 7995), 'numpy.min', 'np.min', (['lat'], {}), '(lat)\n', (7990, 7995), True, 'import numpy as np\n'), ((8186, 8197), 'numpy.max', 'np.max', (['lat'], {}), '(lat)\n', (8192, 8197), True, 'import numpy as np\n'), ((8406, 8418), 'numpy.sort', 'np.sort', (['lon'], {}), '(lon)\n', (8413, 8418), True, 'import numpy as np\n'), ((8440, 8451), 'numpy.min', 'np.min', (['lon'], {}), '(lon)\n', (8446, 8451), True, 'import numpy as np\n'), ((25798, 25814), 'numpy.max', 'np.max', (['lon_inds'], {}), '(lon_inds)\n', (25804, 25814), True, 'import numpy as np\n'), ((26123, 26139), 'numpy.max', 'np.max', (['lat_inds'], {}), '(lat_inds)\n', (26129, 26139), True, 'import numpy as np\n'), ((31884, 31921), 'numpy.round', 'np.round', (['(2.0 * start_pt / lat_stride)'], {}), '(2.0 * start_pt / lat_stride)\n', (31892, 31921), True, 'import numpy as np\n'), ((37343, 37359), 'numpy.arange', 'np.arange', (['(c + 1)'], {}), '(c + 1)\n', (37352, 37359), True, 'import numpy as np\n'), ((43825, 43840), 'numpy.abs', 'np.abs', (['new_lon'], {}), '(new_lon)\n', (43831, 43840), True, 'import numpy as np\n'), ((43935, 43960), 'numpy.abs', 'np.abs', (['lat_edge[i, j, f]'], {}), '(lat_edge[i, j, f])\n', (43941, 43960), True, 'import numpy as np\n'), ((2430, 2449), 'numpy.array', 'np.array', (['shape[2:]'], {}), '(shape[2:])\n', (2438, 2449), True, 'import numpy as np\n'), ((2680, 2698), 'numpy.squeeze', 'np.squeeze', (['values'], {}), '(values)\n', (2690, 2698), True, 'import numpy as np\n'), ((3193, 3212), 'numpy.array', 'np.array', (['shape[1:]'], {}), '(shape[1:])\n', (3201, 3212), True, 'import numpy as np\n'), ((7474, 7493), 'numpy.min', 'np.min', (["data['lon']"], {}), "(data['lon'])\n", (7480, 7493), True, 'import numpy as np\n'), ((7512, 7531), 'numpy.max', 'np.max', (["data['lon']"], {}), "(data['lon'])\n", (7518, 7531), True, 'import numpy as np\n'), ((7550, 7569), 'numpy.min', 'np.min', (["data['lat']"], {}), "(data['lat'])\n", (7556, 7569), True, 'import numpy as np\n'), ((7588, 7607), 'numpy.max', 'np.max', (["data['lat']"], {}), "(data['lat'])\n", (7594, 7607), True, 'import numpy as np\n'), ((8473, 8484), 'numpy.max', 'np.max', (['lon'], {}), '(lon)\n', (8479, 8484), True, 'import numpy as np\n'), ((10160, 10171), 'numpy.size', 'np.size', (['AP'], {}), '(AP)\n', (10167, 10171), True, 'import numpy as np\n'), ((10633, 10651), 'numpy.max', 'np.max', (['pres_range'], {}), '(pres_range)\n', (10639, 10651), True, 'import numpy as np\n'), ((10678, 10696), 'numpy.min', 'np.min', (['pres_range'], {}), '(pres_range)\n', (10684, 10696), True, 'import numpy as np\n'), ((45787, 45813), 'numpy.sum', 'np.sum', (['xyz_corner'], {'axis': '(1)'}), '(xyz_corner, axis=1)\n', (45793, 45813), True, 'import numpy as np\n'), ((9778, 9789), 'numpy.size', 'np.size', (['AP'], {}), '(AP)\n', (9785, 9789), True, 'import numpy as np\n'), ((45850, 45871), 'numpy.sum', 'np.sum', (['(e_mid * e_mid)'], {}), '(e_mid * e_mid)\n', (45856, 45871), True, 'import numpy as np\n')]
#! /usr/bin/env python """ InstrumentData Class -- defines data format, wavelength info, mask geometry Instruments/masks supported: NIRISS AMI GPI, VISIR, NIRC2 removed - too much changed for the JWST NIRISS class """ # Standard Imports import numpy as np from astropy.io import fits import os, sys, time import copy # Module imports import synphot # import stsynphot # mask geometries, GPI, NIRISS, VISIR supported... from nrm_analysis.misctools.mask_definitions import NRM_mask_definitions from nrm_analysis.misctools import utils from nrm_analysis.misctools import lpl_ianc um = 1.0e-6 # utility routines for InstrumentData classes def show_cvsupport_threshold(instr): """ Show threshold for where 'splodge' data in CV space contains signal """ print("InstrumentData: ", "cvsupport_threshold is: ", instr.cvsupport_threshold) print("InstrumentData: ", instr.cvsupport_threshold) def set_cvsupport_threshold(instr, k, v): """ Set threshold for where 'splodge' data in CV space contains signal Parameters ---------- instr: InstrumentData instance thresh: Threshold for the absolute value of the FT(interferogram). Normalize abs(CV = FT(a)) for unity peak, and define the support of "good" CV when this is above threshold """ instr.cvsupport_threshold[k] = v print("InstrumentData: ", "New cvsupport_threshold is: ", instr.cvsupport_threshold) class NIRISS: def __init__(self, filt, objname="obj", src='A0V', chooseholes=None, affine2d=None, bandpass=None, nbadpix=4, usebp=True, firstfew=None, nspecbin=None, **kwargs): """ Initialize NIRISS class ARGUMENTS: kwargs: UTR Or just look at the file structure Either user has webbpsf and filter file can be read, or... chooseholes: None, or e.g. ['B2', 'B4', 'B5', 'B6'] for a four-hole mask filt: Filter name string like "F480M" bandpass: None or [(wt,wlen),(wt,wlen),...]. Monochromatic would be e.g. [(1.0, 4.3e-6)] Explicit bandpass arg will replace *all* niriss filter-specific variables with the given bandpass (src, nspecbin, filt), so you can simulate 21cm psfs through something called "F430M". Can also be synphot.spectrum.SourceSpectrum object. firstfew: None or the number of slices to truncate input cube to in memory, the latter for fast developmpent nbadpix: Number of good pixels to use when fixing bad pixels DEPRECATED usebp: Convert to usedq during initialization Internally this is changed to sellf.usedq = usebp immediately for code clarity True (default) do not use DQ with DO_NOT_USE flag in input MAST data when fitting data with model. False: Assume no bad pixels in input noise: standard deviation of noise added to perfect images to enable candid plots without crashing on np.inf limits! Image assumed to be in (np.float64) dn. Suggested noise: 1e-6. src: source spectral type string e.g. "A0V" OR user-defined synphot.spectrum.SourceSpectrum object nspecbin: Number of wavelength bins to use across the bandpass. Replaces deprecated `usespecbin` which set **number of wavelengths to into each bin**, not nbins. """ self.verbose = False if "verbose" in kwargs: self.verbose = kwargs["verbose"] self.noise = None if "noise" in kwargs: self.noise = kwargs["noise"] if "usespecbin" in kwargs: # compatability with previous arg # but not really, usespecbin was binning factor, not number of bins nspecbin = kwargs["usespecbin"] # change how many wavelength bins will be used across the bandpass if nspecbin is None: nspecbin = 19 self.lam_bin = nspecbin # src can be either a spectral type string or a user-defined synphot spectrum object if isinstance(src, synphot.spectrum.SourceSpectrum): print("Using user-defined synphot SourceSpectrum") if chooseholes: print("InstrumentData.NIRISS: ", chooseholes) self.chooseholes = chooseholes # USEBP is USEDQ in the rest of code - use self.usedq = usebp print("Fitting omits bad pixels (identified by DO_NOT_USE value in the DQ extension)") self.jwst_dqflags() # creates dicts self.bpval, self.bpgroup # self.bpexist set True/False if DQ fits image extension exists/doesn't self.firstfew = firstfew if firstfew is not None: print("InstrumentData.NIRISS: analysing firstfew={:d} slices".format(firstfew)) self.objname = objname self.filt = filt if bandpass is not None: print("InstrumentData.NIRISS: OVERRIDING BANDPASS WITH USER-SUPPLIED VALUES.") print("\t src, filt, nspecbin parameters will not be used") # check type of bandpass. can be synphot spectrum # if so, get throughput and wavelength arrays if isinstance(bandpass, synphot.spectrum.SpectralElement): wl, wt = bandpass._get_arrays(bandpass.waveset) self.throughput = np.array((wt,wl)).T else: self.throughput = np.array(bandpass) # type simplification else: filt_spec = utils.get_filt_spec(self.filt) src_spec = utils.get_src_spec(src) # **NOTE**: As of WebbPSF version 1.0.0 filter is trimmed to where throughput is 10% of peak # For consistency with WebbPSF simultions, use trim=0.1 self.throughput = utils.combine_src_filt(filt_spec, src_spec, trim=0.01, nlambda=nspecbin, verbose=self.verbose, plot=False) self.lam_c, self.lam_w = utils.get_cw_beta(self.throughput) if self.verbose: print("InstrumentData.NIRISS: ", self.filt, ": central wavelength {:.4e} microns, ".format(self.lam_c/um), end="") if self.verbose: print("InstrumentData.NIRISS: ", "fractional bandpass {:.3f}".format(self.lam_w)) self.wls = [self.throughput,] if self.verbose: print("self.throughput:\n", self.throughput) # Wavelength info for NIRISS bands F277W, F380M, F430M, or F480M self.wavextension = ([self.lam_c,], [self.lam_w,]) self.nwav=1 # these are 'slices' if the data is pure imaging integrations - # nwav is old nomenclature from GPI IFU data. Refactor one day... ############################# # only one NRM on JWST: self.telname = "JWST" self.instrument = "NIRISS" self.arrname = "jwst_g7s6c" # implaneia mask set with this - unify to short form later self.holeshape="hex" self.mask = NRM_mask_definitions(maskname=self.arrname, chooseholes=chooseholes, holeshape=self.holeshape ) # save affine deformation of pupil object or create a no-deformation object. # We apply this when sampling the PSF, not to the pupil geometry. # This will set a default Ideal or a measured rotation, for example, # and include pixel scale changes due to pupil distortion. # Separating detector tilt pixel scale effects from pupil distortion effects is # yet to be determined... see comments in Affine class definition. # AS AZG 2018 08 15 <NAME> if affine2d is None: self.affine2d = utils.Affine2d(mx=1.0,my=1.0, sx=0.0,sy=0.0, xo=0.0,yo=0.0, name="Ideal") else: self.affine2d = affine2d # finding centroid from phase slope only considered cv_phase data # when cv_abs data exceeds this cvsupport_threshold. # Absolute value of cv data normalized to unity maximum # for the threshold application. # Data reduction gurus: tweak the threshold value with experience... # Gurus: tweak cvsupport with use... self.cvsupport_threshold = {"F277W":0.02, "F380M": 0.02, "F430M": 0.02, "F480M": 0.02} if self.verbose: show_cvsupport_threshold(self) self.threshold = self.cvsupport_threshold[filt] def set_pscale(self, pscalex_deg=None, pscaley_deg=None): """ Override pixel scale in header """ if pscalex_deg is not None: self.pscalex_deg = pscalex_deg if pscaley_deg is not None: self.pscaley_deg = pscaley_deg self.pscale_mas = 0.5 * (pscalex_deg + pscaley_deg) * (60*60*1000) self.pscale_rad = utils.mas2rad(self.pscale_mas) def read_data(self, fn, mode="slice"): # mode options are slice or UTR # for single slice data, need to read as 3D (1, npix, npix) # for utr data, need to read as 3D (ngroup, npix, npix) # fix bad pixels using DQ extension and LPL local averaging, # but send bad pixel array down to where fringes are fit so they can be ignored. # For perfectly noiseless data we add GFaussian zero mean self.noise std dev # to imagge data. Then std devs don't cause plot crashes with limits problems. with fits.open(fn, memmap=False, do_not_scale_image_data=True) as fitsfile: # use context manager, memmap=False, deepcopy to avoid memory leaks scidata = copy.deepcopy(fitsfile[1].data) if self.noise is not None: scidata += np.random.normal(0, self.noise, scidata.shape) # usually DQ ext in MAST file... make it non-fatal for DQ to be missing try: bpdata=copy.deepcopy(fitsfile['DQ'].data).astype(np.uint32) # bad pixel extension, forced to uint32 self.bpexist = True dqmask = bpdata & self.bpval["DO_NOT_USE"] == self.bpval["DO_NOT_USE"] # del bpdata # free memory # True => driver wants to omit using pixels with dqflag raised in fit, if self.usedq == True: print('InstrumentData.NIRISS.read_data: will not use flagged DQ pixels in fit') except Exception as e: print('InstrumentData.NIRISS.read_data: raised exception', e) self.bpexist = False dqmask = np.zeros(scidata.shape, dtype=np.uint32) # so it doesn't break if issues with DQ data if scidata.ndim == 3: #len(scidata.shape)==3: print("read_data() input: 3D cube") # Truncate all but the first few slices od data and DQ array for rapid development if self.firstfew is not None: if scidata.shape[0] > self.firstfew: scidata = scidata[:self.firstfew, :, :] dqmask = dqmask[:self.firstfew, :, :] # 'nwav' name (historical) is actually number of data slices in the 3Dimage cube self.nwav=scidata.shape[0] [self.wls.append(self.wls[0]) for f in range(self.nwav-1)] elif len(scidata.shape)==2: # 'cast' 2d array to 3d with shape[0]=1 print("'InstrumentData.NIRISS.read_data: 2D data array converting to 3D one-slice cube") scidata = np.array([scidata,]) dqmask = np.array([dqmask,]) else: sys.exit("InstrumentData.NIRISS.read_data: invalid data dimensions for NIRISS. \nShould have dimensionality of 2 or 3.") # refpix removal by trimming scidata = scidata[:,4:, :] # [all slices, imaxis[0], imaxis[1]] print('\tRefpix-trimmed scidata:', scidata.shape) #### fix pix using bad pixel map - runs now. Need to sanity-check. if self.bpexist: # refpix removal by trimming to match image trim dqmask = dqmask[:,4:, :] # dqmask bool array to match image trimmed shape print('\tRefpix-trimmed dqmask: ', dqmask.shape) prihdr=fitsfile[0].header scihdr=fitsfile[1].header # MAST header or similar kwds info for oifits writer: self.updatewithheaderinfo(prihdr, scihdr) # Directory name into which to write txt observables & optional fits diagnostic files # The input fits image or cube of images file rootname is used to create the output # text&fits dir, using the data file's root name as the directory name: for example, # /abc/.../imdir/xyz_calints.fits results in a directory /abc/.../imdir/xyz_calints/ self.rootfn = fn.split('/')[-1].replace('.fits', '') return prihdr, scihdr, scidata, dqmask def cdmatrix_to_sky(self, vec, cd11, cd12, cd21, cd22): """ use the global header values explicitly, for clarity vec is 2d, units of pixels cdij 4 scalars, conceptually 2x2 array in units degrees/pixel """ return np.array((cd11*vec[0] + cd12*vec[1], cd21*vec[0] + cd22*vec[1])) def degrees_per_pixel(self, hdr): """ input: hdr: fits data file's header with or without CDELT1, CDELT2 (degrees per pixel) returns: cdelt1, cdelt2: tuple, degrees per pixel along axes 1, 2 EITHER: read from header CDELT[12] keywords OR: calculated using CD matrix (Jacobian of RA-TAN, DEC-TAN degrees to pixel directions 1,2. No deformation included in this routine, but the CD matric includes non-linear field distortion. No pupil distortion or rotation here. MISSING: If keywords are missing default hardcoded cdelts are returned. The exact algorithm may substitute this later. Below seems good to ~5th significant figure when compared to cdelts header values prior to replacement by cd matrix approach. N.D. at stsci 11 Mar 20212 We start in Level 1 with the PC matrix and CDELT. CDELTs come from the SIAF. The PC matrix is computed from the roll angle, V3YANG and the parity. The code is here https://github.com/spacetelescope/jwst/blob/master/jwst/assign_wcs/util.py#L153 In the level 2 imaging pipeline, assign_wcs adds the distortion to the files. At the end it computes an approximation of the entire distortion transformation by fitting a polynomial. This approximated distortion is represented as SIP polynomials in the FITS headers. Because SIP, by definition, uses a CD matrix, the PC + CDELT are replaced by CD. How to get CDELTs back? I think once the rotation, skew and scale are in the CD matrix it's very hard to disentangle them. The best way IMO is to calculate the local scale using three point difference. There is a function in jwst that does this. Using a NIRISS image as an example: from jwst.assign_wcs import util from jwst import datamodels im=datamodels.open('niriss_image_assign_wcs.fits') util.compute_scale(im.meta.wcs, (im.meta.wcsinfo.ra_ref, im.meta.wcsinfo.dec_ref)) 1.823336635353374e-05 The function returns a constant scale. Is this sufficient for what you need or do you need scales and sheer along each axis? The code in util.compute_scale can help with figuring out how to get scales along each axis. I hope this answers your question. """ if 'CD1_1' in hdr.keys() and 'CD1_2' in hdr.keys() and \ 'CD2_1' in hdr.keys() and 'CD2_2' in hdr.keys(): cd11 = hdr['CD1_1'] cd12 = hdr['CD1_2'] cd21 = hdr['CD2_1'] cd22 = hdr['CD2_2'] # Create unit vectors in detector pixel X and Y directions, units: detector pixels dxpix = np.array((1.0, 0.0)) # axis 1 step dypix = np.array((0.0, 1.0)) # axis 2 step # transform pixel x and y steps to RA-tan, Dec-tan degrees dxsky = self.cdmatrix_to_sky(dxpix, cd11, cd12, cd21, cd22) dysky = self.cdmatrix_to_sky(dypix, cd11, cd12, cd21, cd22) print("Used CD matrix for pixel scales") return np.linalg.norm(dxsky, ord=2), np.linalg.norm(dysky, ord=2) elif 'CDELT1' in hdr.keys() and 'CDELT2' in hdr.keys(): return hdr['CDELT1'], hdr['CDELT2'] print("Used CDDELT[12] for pixel scales") else: print('InstrumentData.NIRISS: Warning: NIRISS pixel scales not in header. Using 65.6 mas in deg/pix') return 65.6/(60.0*60.0*1000), 65.6/(60.0*60.0*1000) def updatewithheaderinfo(self, ph, sh): """ input: primary header, science header MAST""" # The info4oif_dict will get pickled to disk when we write txt files of results. # That way we don't drag in objects like InstrumentData into code that reads text results # and writes oifits files - a simple built-in dictionary is the only object used in this transfer. info4oif_dict = {} info4oif_dict['telname'] = self.telname info4oif_dict['filt'] = self.filt info4oif_dict['lam_c'] = self.lam_c info4oif_dict['lam_w'] = self.lam_w info4oif_dict['lam_bin'] = self.lam_bin # Target information - 5/21 targname UNKNOWN in nis019 rehearsal data # Name in the proposal always non-trivial, targname still UNKNOWN...: if ph["TARGNAME"] == 'UNKNOWN': objname = ph['TARGPROP'] else: objname = ph['TARGNAME'] # allegedly apt name for archive, standard form # # if target name has confusing-to-astroquery dash self.objname = objname.replace('-', ' '); info4oif_dict['objname'] = self.objname # AB Dor, ab dor, AB DOR, ab dor are all acceptable. # self.ra = ph["TARG_RA"]; info4oif_dict['ra'] = self.ra self.dec = ph["TARG_DEC"]; info4oif_dict['dec'] = self.dec # / axis 1 DS9 coordinate of the reference pixel (always POS1) # / axis 2 DS9 coordinate of the reference pixel (always POS1) self.crpix1 = sh["CRPIX1"]; info4oif_dict['crpix1'] = self.crpix1 self.crpix2 = sh["CRPIX2"]; info4oif_dict['crpix2'] = self.crpix2 # need <NAME>'s table for actual crval[1,2] for true pointing to detector pixel coords (DS9) self.instrument = ph["INSTRUME"]; info4oif_dict['instrument'] = self.instrument self.pupil = ph["PUPIL"]; info4oif_dict['pupil'] = self.pupil # "ImPlaneIA internal mask name" - oifwriter looks for 'mask'... self.arrname = "jwst_g7s6c" # implaneia internal name - historical info4oif_dict['arrname'] = 'g7s6' # for oif info4oif_dict['mask'] = info4oif_dict['arrname'] # Soulain mask goes into oif arrname # if data was generated on the average pixel scale of the header # then this is the right value that gets read in, and used in fringe fitting pscalex_deg, pscaley_deg = self.degrees_per_pixel(sh) # info4oif_dict['pscalex_deg'] = pscalex_deg info4oif_dict['pscaley_deg'] = pscaley_deg # Whatever we did set is averaged for isotropic pixel scale here self.pscale_mas = 0.5 * (pscalex_deg + pscaley_deg) * (60*60*1000); \ info4oif_dict['pscale_mas'] = self.pscale_mas self.pscale_rad = utils.mas2rad(self.pscale_mas); info4oif_dict['pscale_rad'] = self.pscale_rad self.mask = NRM_mask_definitions(maskname=self.arrname, chooseholes=self.chooseholes, holeshape=self.holeshape) # for STAtions x y in oifs self.date = ph["DATE-OBS"] + "T" + ph["TIME-OBS"]; info4oif_dict['date'] = self.date datestr = ph["DATE-OBS"] self.year = datestr[:4]; info4oif_dict['year'] = self.year self.month = datestr[5:7]; info4oif_dict['month'] = self.month self.day = datestr[8:10]; info4oif_dict['day'] = self.day self.parangh= sh["ROLL_REF"]; info4oif_dict['parangh'] = self.parangh self.pa = sh["PA_V3"]; info4oif_dict['pa'] = self.pa self.vparity = sh["VPARITY"]; info4oif_dict['vparity'] = self.vparity # An INTegration is NGROUPS "frames", not relevant here but context info. # 2d => "cal" file combines all INTegrations (ramps) # 3d=> "calints" file is a cube of all INTegrations (ramps) if sh["NAXIS"] == 2: # all INTegrations or 'ramps' self.itime = ph["EFFINTTM"] * ph["NINTS"]; info4oif_dict['itime'] = self.itime elif sh["NAXIS"] == 3: # each slice is one INTegration or 'ramp' self.itime = ph["EFFINTTM"]; info4oif_dict['itime'] = self.itime np.set_printoptions(precision=5, suppress=True, linewidth=160, formatter={'float': lambda x: "%10.5f," % x}) self.v3i_yang = sh['V3I_YANG'] # Angle from V3 axis to Ideal y axis (deg) # rotate mask hole center coords by PAV3 # RAC 2021 ctrs_sky = self.mast2sky() oifctrs = np.zeros(self.mask.ctrs.shape) oifctrs[:,0] = ctrs_sky[:,1].copy() * -1 oifctrs[:,1] = ctrs_sky[:,0].copy() * -1 info4oif_dict['ctrs_eqt'] = oifctrs # mask centers rotated by PAV3 (equatorial coords) info4oif_dict['ctrs_inst'] = self.mask.ctrs # as-built instrument mask centers info4oif_dict['hdia'] = self.mask.hdia info4oif_dict['nslices'] = self.nwav # nwav: number of image slices or IFU cube slices - AMI is imager self.info4oif_dict = info4oif_dict # save it when writing extracted observables txt # rather than calling InstrumentData in the niriss example just to reset just call this routine def reset_nwav(self, nwav): print("InstrumentData.NIRISS: ", "Resetting InstrumentData instantiation's nwave to", nwav) self.nwav = nwav def jwst_dqflags(self): """ dqdata is a 2d (32-bit U?)INT array from the DQ extension of the input file. We ignore all data with a non-zero DQ flag. I copied all values from a 7.5 build jwst... but we ignore any non-zero flag meaning, and ignore the pixel in fringe-fitting The refpix are non-zero DQ, btw... I changed "pixel" to self.pbval and "group" to self.bpgroup. We may use these later, so here they are but initially we just discriminate between good (zero value) and non-good. """ """ JWST Data Quality Flags The definitions are documented in the JWST RTD: https://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags """ """ JWST Data Quality Flags The definitions are documented in the JWST RTD: https://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags Implementation ------------- The flags are implemented as "bit flags": Each flag is assigned a bit position in a byte, or multi-byte word, of memory. If that bit is set, the flag assigned to that bit is interpreted as being set or active. The data structure that stores bit flags is just the standard Python `int`, which provides 32 bits. Bits of an integer are most easily referred to using the formula `2**bit_number` where `bit_number` is the 0-index bit of interest. 2**n is gauche but not everyone loves 1<<n Rachel uses: from jwst.datamodels import dqflags DO_NOT_USE = dqflags.pixel["DO_NOT_USE"] dqmask = pxdq0 & DO_NOT_USE == DO_NOT_USE pxdq = np.where(dqmask, pxdq0, 0) """ # Pixel-specific flags self.bpval = { 'GOOD': 0, # No bits set, all is good 'DO_NOT_USE': 2**0, # Bad pixel. Do not use. 'SATURATED': 2**1, # Pixel saturated during exposure 'JUMP_DET': 2**2, # Jump detected during exposure 'DROPOUT': 2**3, # Data lost in transmission 'OUTLIER': 2**4, # Flagged by outlier detection. Was RESERVED_1 'RESERVED_2': 2**5, # 'RESERVED_3': 2**6, # 'RESERVED_4': 2**7, # 'UNRELIABLE_ERROR': 2**8, # Uncertainty exceeds quoted error 'NON_SCIENCE': 2**9, # Pixel not on science portion of detector 'DEAD': 2**10, # Dead pixel 'HOT': 2**11, # Hot pixel 'WARM': 2**12, # Warm pixel 'LOW_QE': 2**13, # Low quantum efficiency 'RC': 2**14, # RC pixel 'TELEGRAPH': 2**15, # Telegraph pixel 'NONLINEAR': 2**16, # Pixel highly nonlinear 'BAD_REF_PIXEL': 2**17, # Reference pixel cannot be used 'NO_FLAT_FIELD': 2**18, # Flat field cannot be measured 'NO_GAIN_VALUE': 2**19, # Gain cannot be measured 'NO_LIN_CORR': 2**20, # Linearity correction not available 'NO_SAT_CHECK': 2**21, # Saturation check not available 'UNRELIABLE_BIAS': 2**22, # Bias variance large 'UNRELIABLE_DARK': 2**23, # Dark variance large 'UNRELIABLE_SLOPE': 2**24, # Slope variance large (i.e., noisy pixel) 'UNRELIABLE_FLAT': 2**25, # Flat variance large 'OPEN': 2**26, # Open pixel (counts move to adjacent pixels) 'ADJ_OPEN': 2**27, # Adjacent to open pixel 'UNRELIABLE_RESET': 2**28, # Sensitive to reset anomaly 'MSA_FAILED_OPEN': 2**29, # Pixel sees light from failed-open shutter 'OTHER_BAD_PIXEL': 2**30, # A catch-all flag 'REFERENCE_PIXEL': 2**31, # Pixel is a reference pixel } # Group-specific flags. Once groups are combined, these flags # are equivalent to the pixel-specific flags. self.bpgroup = { 'GOOD': self.bpval['GOOD'], 'DO_NOT_USE': self.bpval['DO_NOT_USE'], 'SATURATED': self.bpval['SATURATED'], 'JUMP_DET': self.bpval['JUMP_DET'], 'DROPOUT': self.bpval['DROPOUT'], } def mast2sky(self): """ Rotate hole center coordinates: Clockwise by the V3 position angle - V3I_YANG from north in degrees if VPARITY = -1 Counterclockwise by the V3 position angle - V3I_YANG from north in degrees if VPARITY = 1 Hole center coords are in the V2, V3 plane in meters. Return rotated coordinates to be put in info4oif_dict. implane2oifits.ObservablesFromText uses these to calculate baselines. """ pa = self.pa mask_ctrs = copy.deepcopy(self.mask.ctrs) # rotate by an extra 90 degrees (RAC 9/21) # these coords are just used to orient output in OIFITS files # NOT used for the fringe fitting itself mask_ctrs = utils.rotate2dccw(mask_ctrs,np.pi/2.) vpar = self.vparity # Relative sense of rotation between Ideal xy and V2V3 v3iyang = self.v3i_yang rot_ang = pa - v3iyang # subject to change! if pa != 0.0: # Using rotate2sccw, which rotates **vectors** CCW in a fixed coordinate system, # so to rotate coord system CW instead of the vector, reverse sign of rotation angle. Double-check comment if vpar == -1: # rotate clockwise <rotate coords clockwise?> ctrs_rot = utils.rotate2dccw(mask_ctrs, np.deg2rad(-rot_ang)) print(f'InstrumentData.mast2sky: Rotating mask hole centers clockwise by {rot_ang:.3f} degrees') else: # counterclockwise <rotate coords counterclockwise?> ctrs_rot = utils.rotate2dccw(mask_ctrs, np.deg2rad(rot_ang)) print('InstrumentData.mast2sky: Rotating mask hole centers counterclockwise by {rot_ang:.3f} degrees') else: ctrs_rot = mask_ctrs return ctrs_rot
[ "numpy.random.normal", "nrm_analysis.misctools.utils.get_src_spec", "nrm_analysis.misctools.mask_definitions.NRM_mask_definitions", "nrm_analysis.misctools.utils.Affine2d", "nrm_analysis.misctools.utils.get_filt_spec", "sys.exit", "nrm_analysis.misctools.utils.combine_src_filt", "numpy.linalg.norm", "nrm_analysis.misctools.utils.get_cw_beta", "astropy.io.fits.open", "numpy.array", "numpy.zeros", "numpy.deg2rad", "nrm_analysis.misctools.utils.rotate2dccw", "copy.deepcopy", "nrm_analysis.misctools.utils.mas2rad", "numpy.set_printoptions" ]
[((6375, 6409), 'nrm_analysis.misctools.utils.get_cw_beta', 'utils.get_cw_beta', (['self.throughput'], {}), '(self.throughput)\n', (6392, 6409), False, 'from nrm_analysis.misctools import utils\n'), ((7371, 7469), 'nrm_analysis.misctools.mask_definitions.NRM_mask_definitions', 'NRM_mask_definitions', ([], {'maskname': 'self.arrname', 'chooseholes': 'chooseholes', 'holeshape': 'self.holeshape'}), '(maskname=self.arrname, chooseholes=chooseholes,\n holeshape=self.holeshape)\n', (7391, 7469), False, 'from nrm_analysis.misctools.mask_definitions import NRM_mask_definitions\n'), ((9243, 9273), 'nrm_analysis.misctools.utils.mas2rad', 'utils.mas2rad', (['self.pscale_mas'], {}), '(self.pscale_mas)\n', (9256, 9273), False, 'from nrm_analysis.misctools import utils\n'), ((13596, 13668), 'numpy.array', 'np.array', (['(cd11 * vec[0] + cd12 * vec[1], cd21 * vec[0] + cd22 * vec[1])'], {}), '((cd11 * vec[0] + cd12 * vec[1], cd21 * vec[0] + cd22 * vec[1]))\n', (13604, 13668), True, 'import numpy as np\n'), ((20287, 20317), 'nrm_analysis.misctools.utils.mas2rad', 'utils.mas2rad', (['self.pscale_mas'], {}), '(self.pscale_mas)\n', (20300, 20317), False, 'from nrm_analysis.misctools import utils\n'), ((20386, 20489), 'nrm_analysis.misctools.mask_definitions.NRM_mask_definitions', 'NRM_mask_definitions', ([], {'maskname': 'self.arrname', 'chooseholes': 'self.chooseholes', 'holeshape': 'self.holeshape'}), '(maskname=self.arrname, chooseholes=self.chooseholes,\n holeshape=self.holeshape)\n', (20406, 20489), False, 'from nrm_analysis.misctools.mask_definitions import NRM_mask_definitions\n'), ((21648, 21761), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(5)', 'suppress': '(True)', 'linewidth': '(160)', 'formatter': "{'float': lambda x: '%10.5f,' % x}"}), "(precision=5, suppress=True, linewidth=160, formatter={\n 'float': lambda x: '%10.5f,' % x})\n", (21667, 21761), True, 'import numpy as np\n'), ((21982, 22012), 'numpy.zeros', 'np.zeros', (['self.mask.ctrs.shape'], {}), '(self.mask.ctrs.shape)\n', (21990, 22012), True, 'import numpy as np\n'), ((28017, 28046), 'copy.deepcopy', 'copy.deepcopy', (['self.mask.ctrs'], {}), '(self.mask.ctrs)\n', (28030, 28046), False, 'import copy\n'), ((28237, 28278), 'nrm_analysis.misctools.utils.rotate2dccw', 'utils.rotate2dccw', (['mask_ctrs', '(np.pi / 2.0)'], {}), '(mask_ctrs, np.pi / 2.0)\n', (28254, 28278), False, 'from nrm_analysis.misctools import utils\n'), ((5739, 5769), 'nrm_analysis.misctools.utils.get_filt_spec', 'utils.get_filt_spec', (['self.filt'], {}), '(self.filt)\n', (5758, 5769), False, 'from nrm_analysis.misctools import utils\n'), ((5793, 5816), 'nrm_analysis.misctools.utils.get_src_spec', 'utils.get_src_spec', (['src'], {}), '(src)\n', (5811, 5816), False, 'from nrm_analysis.misctools import utils\n'), ((6020, 6130), 'nrm_analysis.misctools.utils.combine_src_filt', 'utils.combine_src_filt', (['filt_spec', 'src_spec'], {'trim': '(0.01)', 'nlambda': 'nspecbin', 'verbose': 'self.verbose', 'plot': '(False)'}), '(filt_spec, src_spec, trim=0.01, nlambda=nspecbin,\n verbose=self.verbose, plot=False)\n', (6042, 6130), False, 'from nrm_analysis.misctools import utils\n'), ((8070, 8146), 'nrm_analysis.misctools.utils.Affine2d', 'utils.Affine2d', ([], {'mx': '(1.0)', 'my': '(1.0)', 'sx': '(0.0)', 'sy': '(0.0)', 'xo': '(0.0)', 'yo': '(0.0)', 'name': '"""Ideal"""'}), "(mx=1.0, my=1.0, sx=0.0, sy=0.0, xo=0.0, yo=0.0, name='Ideal')\n", (8084, 8146), False, 'from nrm_analysis.misctools import utils\n'), ((9844, 9901), 'astropy.io.fits.open', 'fits.open', (['fn'], {'memmap': '(False)', 'do_not_scale_image_data': '(True)'}), '(fn, memmap=False, do_not_scale_image_data=True)\n', (9853, 9901), False, 'from astropy.io import fits\n'), ((10017, 10048), 'copy.deepcopy', 'copy.deepcopy', (['fitsfile[1].data'], {}), '(fitsfile[1].data)\n', (10030, 10048), False, 'import copy\n'), ((16749, 16769), 'numpy.array', 'np.array', (['(1.0, 0.0)'], {}), '((1.0, 0.0))\n', (16757, 16769), True, 'import numpy as np\n'), ((16806, 16826), 'numpy.array', 'np.array', (['(0.0, 1.0)'], {}), '((0.0, 1.0))\n', (16814, 16826), True, 'import numpy as np\n'), ((5659, 5677), 'numpy.array', 'np.array', (['bandpass'], {}), '(bandpass)\n', (5667, 5677), True, 'import numpy as np\n'), ((10099, 10145), 'numpy.random.normal', 'np.random.normal', (['(0)', 'self.noise', 'scidata.shape'], {}), '(0, self.noise, scidata.shape)\n', (10115, 10145), True, 'import numpy as np\n'), ((17128, 17156), 'numpy.linalg.norm', 'np.linalg.norm', (['dxsky'], {'ord': '(2)'}), '(dxsky, ord=2)\n', (17142, 17156), True, 'import numpy as np\n'), ((17158, 17186), 'numpy.linalg.norm', 'np.linalg.norm', (['dysky'], {'ord': '(2)'}), '(dysky, ord=2)\n', (17172, 17186), True, 'import numpy as np\n'), ((5587, 5605), 'numpy.array', 'np.array', (['(wt, wl)'], {}), '((wt, wl))\n', (5595, 5605), True, 'import numpy as np\n'), ((10940, 10980), 'numpy.zeros', 'np.zeros', (['scidata.shape'], {'dtype': 'np.uint32'}), '(scidata.shape, dtype=np.uint32)\n', (10948, 10980), True, 'import numpy as np\n'), ((11894, 11913), 'numpy.array', 'np.array', (['[scidata]'], {}), '([scidata])\n', (11902, 11913), True, 'import numpy as np\n'), ((11940, 11958), 'numpy.array', 'np.array', (['[dqmask]'], {}), '([dqmask])\n', (11948, 11958), True, 'import numpy as np\n'), ((11994, 12127), 'sys.exit', 'sys.exit', (['"""InstrumentData.NIRISS.read_data: invalid data dimensions for NIRISS. \nShould have dimensionality of 2 or 3."""'], {}), '(\n """InstrumentData.NIRISS.read_data: invalid data dimensions for NIRISS. \nShould have dimensionality of 2 or 3."""\n )\n', (12002, 12127), False, 'import os, sys, time\n'), ((28824, 28844), 'numpy.deg2rad', 'np.deg2rad', (['(-rot_ang)'], {}), '(-rot_ang)\n', (28834, 28844), True, 'import numpy as np\n'), ((29103, 29122), 'numpy.deg2rad', 'np.deg2rad', (['rot_ang'], {}), '(rot_ang)\n', (29113, 29122), True, 'import numpy as np\n'), ((10279, 10313), 'copy.deepcopy', 'copy.deepcopy', (["fitsfile['DQ'].data"], {}), "(fitsfile['DQ'].data)\n", (10292, 10313), False, 'import copy\n')]
# load .t7 file and save as .pkl data import torchfile import cv2 import numpy as np import scipy.io as sio import pickle import time data_path = './data/test_PC/' # panoContext #img_tr = torchfile.load('./data/panoContext_img_train.t7') #print(img_tr.shape) #lne_tr = torchfile.load('./data/panoContext_line_train.t7') #print(lne_tr.shape) #edg_tr = torchfile.load('./data/panoContext_edge_train.t7') #print(edg_tr.shape) #junc_tr = torchfile.load('./data/panoContext_cor_train.t7') #print(junc_tr.shape) #print('done') #img_tr = torchfile.load('./data/panoContext_img_val.t7') #print(img_tr.shape) #lne_tr = torchfile.load('./data/panoContext_line_val.t7') #print(lne_tr.shape) #edg_tr = torchfile.load('./data/panoContext_edge_val.t7') #print(edg_tr.shape) #junc_tr = torchfile.load('./data/panoContext_cor_val.t7') #print(junc_tr.shape) #print('done') img_tr = torchfile.load('./data/panoContext_img_test.t7') print(img_tr.shape) lne_tr = torchfile.load('./data/panoContext_line_test.t7') print(lne_tr.shape) edg_tr = torchfile.load('./data/panoContext_edge_test.t7') print(edg_tr.shape) junc_tr = torchfile.load('./data/panoContext_cor_test.t7') print(junc_tr.shape) print('done') # stanford #img_tr = torchfile.load('./data/stanford2d-3d_img_area_5.t7') #print(img_tr.shape) #lne_tr = torchfile.load('./data/stanford2d-3d_line_area_5.t7') #print(lne_tr.shape) #edg_tr = torchfile.load('./data/stanford2d-3d_edge_area_5.t7') #print(edg_tr.shape) #junc_tr = torchfile.load('./data/stanford2d-3d_cor_area_5.t7') #print(junc_tr.shape) #print('done') gt_txt_path = './data/panoContext_testmap.txt' gt_path = './data/layoutnet_dataset/test/label_cor/' # Load data namelist = [] id_num = [] with open(gt_txt_path, 'r') as f: while(True): line = f.readline().strip() if not line: break id_num0 = line.split() id_num0 = int(id_num0[1]) id_num.append(id_num0) namelist.append(line) id_num = np.array(id_num) cnt = 0 for num in range(img_tr.shape[0]): print(num) image = img_tr[num] image = np.transpose(image, (1,2,0))#*255.0 line = lne_tr[num] line = np.transpose(line, (1,2,0)) edge = edg_tr[num] edge = np.transpose(edge, (1,2,0)) junc = junc_tr[num] junc = np.transpose(junc, (1,2,0)) # corner gt idn = np.where(id_num == num) idn = idn[0][0] filename = namelist[idn] filename = filename.split() filename = gt_path+filename[0][:-4]+'.txt'#'.mat' cnt+=1 cor = np.loadtxt(filename) cor_sum = 0 for cor_num in range(cor.shape[0]): cor_sum+=junc[int(cor[cor_num,1]),int(cor[cor_num,0]),0] #print(cor_sum) #time.sleep(0.5) # pickle.dump({'image':image, 'line':line, 'edge':edge, 'junc':junc, 'cor':cor, 'filename':filename[:-4]}, open(data_path+'PC_'+"{:04d}".format(num)+'.pkl', "wb" ) ) pickle.dump({'image':image, 'line':line, 'edge':edge, 'junc':junc, 'cor':cor, 'filename':filename[:-4]}, open(data_path+'PCts_'+"{:04d}".format(num)+'.pkl', "wb" ) ) # pickle.dump({'image':image, 'line':line, 'edge':edge, 'junc':junc, 'cor':cor, 'filename':filename[:-4]}, open(data_path+'PCval_'+"{:04d}".format(num)+'.pkl', "wb" ) ) # pickle.dump({'image':image, 'line':line, 'edge':edge, 'junc':junc, 'cor':cor, 'filename':filename[:-4]}, open(data_path+'area5_'+"{:04d}".format(num)+'.pkl', "wb" ) )
[ "numpy.where", "torchfile.load", "numpy.array", "numpy.loadtxt", "numpy.transpose" ]
[((870, 918), 'torchfile.load', 'torchfile.load', (['"""./data/panoContext_img_test.t7"""'], {}), "('./data/panoContext_img_test.t7')\n", (884, 918), False, 'import torchfile\n'), ((948, 997), 'torchfile.load', 'torchfile.load', (['"""./data/panoContext_line_test.t7"""'], {}), "('./data/panoContext_line_test.t7')\n", (962, 997), False, 'import torchfile\n'), ((1027, 1076), 'torchfile.load', 'torchfile.load', (['"""./data/panoContext_edge_test.t7"""'], {}), "('./data/panoContext_edge_test.t7')\n", (1041, 1076), False, 'import torchfile\n'), ((1107, 1155), 'torchfile.load', 'torchfile.load', (['"""./data/panoContext_cor_test.t7"""'], {}), "('./data/panoContext_cor_test.t7')\n", (1121, 1155), False, 'import torchfile\n'), ((1959, 1975), 'numpy.array', 'np.array', (['id_num'], {}), '(id_num)\n', (1967, 1975), True, 'import numpy as np\n'), ((2079, 2109), 'numpy.transpose', 'np.transpose', (['image', '(1, 2, 0)'], {}), '(image, (1, 2, 0))\n', (2091, 2109), True, 'import numpy as np\n'), ((2149, 2178), 'numpy.transpose', 'np.transpose', (['line', '(1, 2, 0)'], {}), '(line, (1, 2, 0))\n', (2161, 2178), True, 'import numpy as np\n'), ((2211, 2240), 'numpy.transpose', 'np.transpose', (['edge', '(1, 2, 0)'], {}), '(edge, (1, 2, 0))\n', (2223, 2240), True, 'import numpy as np\n'), ((2274, 2303), 'numpy.transpose', 'np.transpose', (['junc', '(1, 2, 0)'], {}), '(junc, (1, 2, 0))\n', (2286, 2303), True, 'import numpy as np\n'), ((2328, 2351), 'numpy.where', 'np.where', (['(id_num == num)'], {}), '(id_num == num)\n', (2336, 2351), True, 'import numpy as np\n'), ((2511, 2531), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {}), '(filename)\n', (2521, 2531), True, 'import numpy as np\n')]
# # BSD 3-Clause License # # Copyright (c) 2022 University of Wisconsin - Madison # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.# import rclpy from rclpy.node import Node from art_msgs.msg import VehicleState from art_perception_msgs.msg import ObjectArray, Object from sensor_msgs.msg import Image from ament_index_python.packages import get_package_share_directory from geometry_msgs.msg import PoseStamped from nav_msgs.msg import Path from rclpy.qos import QoSHistoryPolicy from rclpy.qos import QoSProfile import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches from scipy.interpolate import interp1d,splev,splprep import os import json class PathPlanningNode(Node): def __init__(self): super().__init__('path_planning_node') #update frequency of this node self.freq = 10.0 # READ IN SHARE DIRECTORY LOCATION package_share_directory = get_package_share_directory('path_planning') # READ IN PARAMETERS self.declare_parameter('vis', False) self.vis = self.get_parameter('vis').get_parameter_value().bool_value self.declare_parameter('lookahead', 2.0) self.lookahead = self.get_parameter('lookahead').get_parameter_value().double_value #data that will be used by this class self.state = VehicleState() self.path = Path() # self.objects = ObjectArray() self.green_cones = np.array([]) self.red_cones = np.array([]) self.go = False #subscribers qos_profile = QoSProfile(depth=1) qos_profile.history = QoSHistoryPolicy.KEEP_LAST self.sub_state = self.create_subscription(VehicleState, '~/input/vehicle_state', self.state_callback, qos_profile) self.sub_objects = self.create_subscription(ObjectArray, '~/input/objects', self.objects_callback, qos_profile) if self.vis: matplotlib.use("TKAgg") self.fig, self.ax = plt.subplots() plt.title("Path Planning") self.patches = [] self.ax.set_xlim((-1,11)) self.ax.set_ylim((-6,6)) self.left_boundary = None self.right_boundary = None #publishers self.pub_path = self.create_publisher(Path, '~/output/path', 10) self.timer = self.create_timer(1/self.freq, self.pub_callback) #function to process data this class subscribes to def state_callback(self, msg): # self.get_logger().info("Received '%s'" % msg) self.state = msg def objects_callback(self, msg): # self.get_logger().info("Received '%s'" % msg) # self.objects = msg self.go = True self.green_cones = [] self.red_cones = [] # self.get_logger().info("Detected cones: %s" % (str(len(msg.objects)))) for obj in msg.objects: pos = [obj.pose.position.x,obj.pose.position.y,obj.pose.position.z] id = obj.classification.classification #calculate position from camera parameters, rect, and distance if(id == 1): self.red_cones.append(pos) elif(id == 2): self.green_cones.append(pos) else: self.get_logger().info("Object with unknown label detected {}".format(id)) def order_cones(self,cones,start): ordered_cones = [start] ego = start for i in range(len(cones)): dist_2 = np.sum((cones - ego)**2, axis=1) id = np.argmin(dist_2) ordered_cones.append(cones[id,:]) cones = np.delete(cones,id,axis=0) ordered_cones = np.asarray(ordered_cones) total_dist = 0 for i in range(len(ordered_cones)-1): total_dist += np.linalg.norm(ordered_cones[i,:] - ordered_cones[i+1,:]) return ordered_cones, total_dist def plan_path(self): self.red_cones = np.asarray(self.red_cones) self.green_cones = np.asarray(self.green_cones) if(len(self.red_cones) == 0): self.red_cones = np.asarray([1,-1.5,0]) #phantom cone to right if none are seen if(len(self.green_cones) == 0): self.green_cones = np.asarray([1,1.5,0]) #phantom cone to right if none are seen self.red_cones = self.red_cones.reshape((-1,3)) self.green_cones = self.green_cones.reshape((-1,3)) left, l_dist = self.order_cones(self.green_cones,np.array([0.0,.5,0])) right, r_dist = self.order_cones(self.red_cones,np.array([0.0,-.5,0])) max_dist = 4 left_spline,u = splprep(left[:,0:2].transpose(),k=max(1,min(int(len(left)/2),5))) left_samples = np.linspace(0, max_dist / l_dist, 100) b_left = splev(left_samples,left_spline) right_spline,u = splprep(right[:,0:2].transpose(),k=max(1,min(int(len(right)/2),5))) right_samples = np.linspace(0, max_dist / r_dist, 100) b_right = splev(right_samples,right_spline) center_line = np.array([(b_left[0] + b_right[0]) / 2, (b_left[1] + b_right[1]) / 2]) # center_line = center_line[:,min(len(b_right[0]),len(b_left[0]))] distances = np.sum((center_line)**2, axis=0) id = np.argmin(np.abs(distances - self.lookahead**2)) target_pt = center_line[:,id] # self.get_logger().info("B Left Spline: %s" % (str(len(b_left)))) if(self.vis): [p.remove() for p in self.patches] self.patches.clear() if(self.left_boundary == None): self.left_boundary, = self.ax.plot(b_left[0],b_left[1],c='g') else: self.left_boundary.set_data(b_left[0],b_left[1]) if(self.right_boundary == None): self.right_boundary, = self.ax.plot(b_right[0],b_right[1],c='r') else: self.right_boundary.set_data(b_right[0],b_right[1]) for pos in right: circ = patches.Circle(pos[0:2],radius=.1,color='r') self.ax.add_patch(circ) self.patches.append(circ) for pos in left: circ = patches.Circle(pos[0:2],radius=.1,color='g') self.ax.add_patch(circ) self.patches.append(circ) circ = patches.Circle(target_pt,radius=.1,color='b') self.ax.add_patch(circ) self.patches.append(circ) return target_pt #callback to run a loop and publish data this class generates def pub_callback(self): if(not self.go): return msg = Path() target_pt = self.plan_path() #calculate path from current cone locations if(self.vis): plt.draw() plt.pause(0.0001) pt = PoseStamped() pt.pose.position.x = target_pt[0] pt.pose.position.y = target_pt[1] msg.poses.append(pt) self.pub_path.publish(msg) def main(args=None): # print("=== Starting Path Planning Node ===") rclpy.init(args=args) planner = PathPlanningNode() rclpy.spin(planner) planner.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
[ "numpy.array", "numpy.linalg.norm", "rclpy.init", "numpy.delete", "numpy.asarray", "ament_index_python.packages.get_package_share_directory", "numpy.linspace", "scipy.interpolate.splev", "numpy.argmin", "rclpy.shutdown", "matplotlib.patches.Circle", "numpy.abs", "matplotlib.use", "matplotlib.pyplot.pause", "matplotlib.pyplot.title", "matplotlib.pyplot.draw", "rclpy.qos.QoSProfile", "rclpy.spin", "nav_msgs.msg.Path", "art_msgs.msg.VehicleState", "numpy.sum", "geometry_msgs.msg.PoseStamped", "matplotlib.pyplot.subplots" ]
[((8571, 8592), 'rclpy.init', 'rclpy.init', ([], {'args': 'args'}), '(args=args)\n', (8581, 8592), False, 'import rclpy\n'), ((8630, 8649), 'rclpy.spin', 'rclpy.spin', (['planner'], {}), '(planner)\n', (8640, 8649), False, 'import rclpy\n'), ((8681, 8697), 'rclpy.shutdown', 'rclpy.shutdown', ([], {}), '()\n', (8695, 8697), False, 'import rclpy\n'), ((2396, 2440), 'ament_index_python.packages.get_package_share_directory', 'get_package_share_directory', (['"""path_planning"""'], {}), "('path_planning')\n", (2423, 2440), False, 'from ament_index_python.packages import get_package_share_directory\n'), ((2812, 2826), 'art_msgs.msg.VehicleState', 'VehicleState', ([], {}), '()\n', (2824, 2826), False, 'from art_msgs.msg import VehicleState\n'), ((2847, 2853), 'nav_msgs.msg.Path', 'Path', ([], {}), '()\n', (2851, 2853), False, 'from nav_msgs.msg import Path\n'), ((2921, 2933), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2929, 2933), True, 'import numpy as np\n'), ((2959, 2971), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2967, 2971), True, 'import numpy as np\n'), ((3041, 3060), 'rclpy.qos.QoSProfile', 'QoSProfile', ([], {'depth': '(1)'}), '(depth=1)\n', (3051, 3060), False, 'from rclpy.qos import QoSProfile\n'), ((5170, 5195), 'numpy.asarray', 'np.asarray', (['ordered_cones'], {}), '(ordered_cones)\n', (5180, 5195), True, 'import numpy as np\n'), ((5452, 5478), 'numpy.asarray', 'np.asarray', (['self.red_cones'], {}), '(self.red_cones)\n', (5462, 5478), True, 'import numpy as np\n'), ((5506, 5534), 'numpy.asarray', 'np.asarray', (['self.green_cones'], {}), '(self.green_cones)\n', (5516, 5534), True, 'import numpy as np\n'), ((6219, 6257), 'numpy.linspace', 'np.linspace', (['(0)', '(max_dist / l_dist)', '(100)'], {}), '(0, max_dist / l_dist, 100)\n', (6230, 6257), True, 'import numpy as np\n'), ((6275, 6307), 'scipy.interpolate.splev', 'splev', (['left_samples', 'left_spline'], {}), '(left_samples, left_spline)\n', (6280, 6307), False, 'from scipy.interpolate import interp1d, splev, splprep\n'), ((6425, 6463), 'numpy.linspace', 'np.linspace', (['(0)', '(max_dist / r_dist)', '(100)'], {}), '(0, max_dist / r_dist, 100)\n', (6436, 6463), True, 'import numpy as np\n'), ((6482, 6516), 'scipy.interpolate.splev', 'splev', (['right_samples', 'right_spline'], {}), '(right_samples, right_spline)\n', (6487, 6516), False, 'from scipy.interpolate import interp1d, splev, splprep\n'), ((6539, 6609), 'numpy.array', 'np.array', (['[(b_left[0] + b_right[0]) / 2, (b_left[1] + b_right[1]) / 2]'], {}), '([(b_left[0] + b_right[0]) / 2, (b_left[1] + b_right[1]) / 2])\n', (6547, 6609), True, 'import numpy as np\n'), ((6714, 6746), 'numpy.sum', 'np.sum', (['(center_line ** 2)'], {'axis': '(0)'}), '(center_line ** 2, axis=0)\n', (6720, 6746), True, 'import numpy as np\n'), ((8133, 8139), 'nav_msgs.msg.Path', 'Path', ([], {}), '()\n', (8137, 8139), False, 'from nav_msgs.msg import Path\n'), ((8332, 8345), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (8343, 8345), False, 'from geometry_msgs.msg import PoseStamped\n'), ((3395, 3418), 'matplotlib.use', 'matplotlib.use', (['"""TKAgg"""'], {}), "('TKAgg')\n", (3409, 3418), False, 'import matplotlib\n'), ((3451, 3465), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3463, 3465), True, 'import matplotlib.pyplot as plt\n'), ((3478, 3504), 'matplotlib.pyplot.title', 'plt.title', (['"""Path Planning"""'], {}), "('Path Planning')\n", (3487, 3504), True, 'import matplotlib.pyplot as plt\n'), ((4976, 5010), 'numpy.sum', 'np.sum', (['((cones - ego) ** 2)'], {'axis': '(1)'}), '((cones - ego) ** 2, axis=1)\n', (4982, 5010), True, 'import numpy as np\n'), ((5026, 5043), 'numpy.argmin', 'np.argmin', (['dist_2'], {}), '(dist_2)\n', (5035, 5043), True, 'import numpy as np\n'), ((5110, 5138), 'numpy.delete', 'np.delete', (['cones', 'id'], {'axis': '(0)'}), '(cones, id, axis=0)\n', (5119, 5138), True, 'import numpy as np\n'), ((5291, 5352), 'numpy.linalg.norm', 'np.linalg.norm', (['(ordered_cones[i, :] - ordered_cones[i + 1, :])'], {}), '(ordered_cones[i, :] - ordered_cones[i + 1, :])\n', (5305, 5352), True, 'import numpy as np\n'), ((5603, 5627), 'numpy.asarray', 'np.asarray', (['[1, -1.5, 0]'], {}), '([1, -1.5, 0])\n', (5613, 5627), True, 'import numpy as np\n'), ((5737, 5760), 'numpy.asarray', 'np.asarray', (['[1, 1.5, 0]'], {}), '([1, 1.5, 0])\n', (5747, 5760), True, 'import numpy as np\n'), ((5974, 5997), 'numpy.array', 'np.array', (['[0.0, 0.5, 0]'], {}), '([0.0, 0.5, 0])\n', (5982, 5997), True, 'import numpy as np\n'), ((6052, 6076), 'numpy.array', 'np.array', (['[0.0, -0.5, 0]'], {}), '([0.0, -0.5, 0])\n', (6060, 6076), True, 'import numpy as np\n'), ((6770, 6809), 'numpy.abs', 'np.abs', (['(distances - self.lookahead ** 2)'], {}), '(distances - self.lookahead ** 2)\n', (6776, 6809), True, 'import numpy as np\n'), ((7834, 7882), 'matplotlib.patches.Circle', 'patches.Circle', (['target_pt'], {'radius': '(0.1)', 'color': '"""b"""'}), "(target_pt, radius=0.1, color='b')\n", (7848, 7882), True, 'import matplotlib.patches as patches\n'), ((8277, 8287), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (8285, 8287), True, 'import matplotlib.pyplot as plt\n'), ((8300, 8317), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.0001)'], {}), '(0.0001)\n', (8309, 8317), True, 'import matplotlib.pyplot as plt\n'), ((7507, 7554), 'matplotlib.patches.Circle', 'patches.Circle', (['pos[0:2]'], {'radius': '(0.1)', 'color': '"""r"""'}), "(pos[0:2], radius=0.1, color='r')\n", (7521, 7554), True, 'import matplotlib.patches as patches\n'), ((7687, 7734), 'matplotlib.patches.Circle', 'patches.Circle', (['pos[0:2]'], {'radius': '(0.1)', 'color': '"""g"""'}), "(pos[0:2], radius=0.1, color='g')\n", (7701, 7734), True, 'import matplotlib.patches as patches\n')]
from __future__ import absolute_import import os.path import argparse import logging import json from six import iteritems import numpy as np from sklearn.model_selection import train_test_split from sklearn.externals import joblib from keras.models import load_model from tensorflow.python.client import device_lib from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity from features import catboost_features from preprocessing import clean_text, convert_text2seq, split_data, parse_seq from models import cnn, dense, rnn, TFIDF, CatBoost, save_predictions from train import train from metrics import get_metrics, print_metrics def get_kwargs(kwargs): parser = argparse.ArgumentParser(description='-f TRAIN_FILE -t TEST_FILE -o OUTPUT_FILE -e EMBEDS_FILE [-l LOGGER_FILE] [--swear-words SWEAR_FILE] [--wrong-words WRONG_WORDS_FILE] [--format-embeds FALSE]') parser.add_argument('-f', '--train', dest='train', action='store', help='/path/to/trian_file', type=str) parser.add_argument('-t', '--test', dest='test', action='store', help='/path/to/test_file', type=str) parser.add_argument('-o', '--output', dest='output', action='store', help='/path/to/output_file', type=str) parser.add_argument('-we', '--word_embeds', dest='word_embeds', action='store', help='/path/to/embeds_file', type=str) parser.add_argument('-ce', '--char_embeds', dest='char_embeds', action='store', help='/path/to/embeds_file', type=str) parser.add_argument('-c','--config', dest='config', action='store', help='/path/to/config.json', type=str) parser.add_argument('-l', '--logger', dest='logger', action='store', help='/path/to/log_file', type=str, default=None) parser.add_argument('--mode', dest='mode', action='store', help='preprocess / train / validate / all', type=str, default='all') parser.add_argument('--max-words', dest='max_words', action='store', type=int, default=300000) parser.add_argument('--use-only-exists-words', dest='use_only_exists_words', action='store_true') parser.add_argument('--swear-words', dest='swear_words', action='store', help='/path/to/swear_words_file', type=str, default=None) parser.add_argument('--wrong-words', dest='wrong_words', action='store', help='/path/to/wrong_words_file', type=str, default=None) parser.add_argument('--format-embeds', dest='format_embeds', action='store', help='file | json | pickle | binary', type=str, default='raw') parser.add_argument('--output-dir', dest='output_dir', action='store', help='/path/to/dir', type=str, default='.') parser.add_argument('--norm-prob', dest='norm_prob', action='store_true') parser.add_argument('--norm-prob-koef', dest='norm_prob_koef', action='store', type=float, default=1) parser.add_argument('--gpus', dest='gpus', action='store', help='count GPUs', type=int, default=0) for key, value in iteritems(parser.parse_args().__dict__): kwargs[key] = value def main(*kargs, **kwargs): get_kwargs(kwargs) train_fname = kwargs['train'] test_fname = kwargs['test'] result_fname = kwargs['output'] word_embeds_fname = kwargs['word_embeds'] char_embeds_fname = kwargs['char_embeds'] logger_fname = kwargs['logger'] mode = kwargs['mode'] max_words = kwargs['max_words'] use_only_exists_words = kwargs['use_only_exists_words'] swear_words_fname = kwargs['swear_words'] wrong_words_fname = kwargs['wrong_words'] embeds_format = kwargs['format_embeds'] config = kwargs['config'] output_dir = kwargs['output_dir'] norm_prob = kwargs['norm_prob'] norm_prob_koef = kwargs['norm_prob_koef'] gpus = kwargs['gpus'] seq_col_name_words = 'comment_seq_lw_use_exist{}_{}k'.format(int(use_only_exists_words), int(max_words/1000)) seq_col_name_ll3 = 'comment_seq_ll3_use_exist{}_{}k'.format(int(use_only_exists_words), int(max_words/1000)) model_file = { 'dense': os.path.join(output_dir, 'dense.h5'), 'cnn': os.path.join(output_dir, 'cnn.h5'), 'lstm': os.path.join(output_dir, 'lstm.h5'), 'lr': os.path.join(output_dir, '{}_logreg.bin'), 'catboost': os.path.join(output_dir, '{}_catboost.bin') } # ====Create logger==== logger = Logger(logging.getLogger(), logger_fname) # ====Detect GPUs==== logger.debug(device_lib.list_local_devices()) # ====Load data==== logger.info('Loading data...') train_df = load_data(train_fname) test_df = load_data(test_fname) target_labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] num_classes = len(target_labels) # ====Load additional data==== logger.info('Loading additional data...') swear_words = load_data(swear_words_fname, func=lambda x: set(x.T[0]), header=None) wrong_words_dict = load_data(wrong_words_fname, func=lambda x: {val[0] : val[1] for val in x}) # ====Load word vectors==== logger.info('Loading embeddings...') embeds_word = Embeds().load(word_embeds_fname, embeds_format) embeds_ll3 = Embeds().load(char_embeds_fname, embeds_format) # ====Clean texts==== if mode in ('preprocess', 'all'): logger.info('Cleaning text...') train_df['comment_text_clear'] = clean_text(train_df['comment_text'], wrong_words_dict, autocorrect=True) test_df['comment_text_clear'] = clean_text(test_df['comment_text'], wrong_words_dict, autocorrect=True) train_df.to_csv(os.path.join(output_dir, 'train_clear.csv'), index=False) test_df.to_csv(os.path.join(output_dir, 'test_clear.csv'), index=False) # ====Calculate maximum seq length==== logger.info('Calc text length...') train_df.fillna('__NA__', inplace=True) test_df.fillna('__NA__', inplace=True) train_df['text_len'] = train_df['comment_text_clear'].apply(lambda words: len(words.split())) test_df['text_len'] = test_df['comment_text_clear'].apply(lambda words: len(words.split())) max_seq_len = np.round(train_df['text_len'].mean() + 3*train_df['text_len'].std()).astype(int) max_char_seq_len = 2000 # empirical logger.debug('Max seq length = {}'.format(max_seq_len)) # ====Prepare data to NN==== logger.info('Converting texts to sequences...') if mode in ('preprocess', 'all'): train_df[seq_col_name_words], test_df[seq_col_name_words], word_index, train_df[seq_col_name_ll3], test_df[seq_col_name_ll3], ll3_index = convert_text2seq( train_df['comment_text_clear'].tolist(), test_df['comment_text_clear'].tolist(), max_words, max_seq_len, max_char_seq_len, embeds_word, lower=True, oov_token='__<PASSWORD>', uniq=False, use_only_exists_words=use_only_exists_words) logger.debug('Dictionary size use_exist{} = {}'.format(int(use_only_exists_words), len(word_index))) logger.debug('Char dict size use_exist{} = {}'.format(int(use_only_exists_words), len(ll3_index))) logger.info('Preparing embedding matrix...') words_not_found = embeds_word.set_matrix(max_words, word_index) embeds_ll3.matrix = np.random.normal(size=(len(ll3_index), embeds_word.shape[1])) embeds_ll3.word_index = ll3_index embeds_ll3.word_index_reverse = {val: key for key, val in ll3_index.items()} embeds_ll3.shape = np.shape(embeds_ll3.matrix) embeds_word.save(os.path.join(output_dir, 'wiki.embeds_lw.{}k'.format(int(max_words/1000)))) embeds_ll3.save(os.path.join(output_dir, 'wiki.embeds_ll3.{}k'.format(int(max_words/1000)))) # ====Get text vector==== pooling = { 'max': {'func': np.max}, 'avg': {'func': np.sum, 'normalize': True}, 'sum': {'func': np.sum, 'normalize': False} } for p in ['max', 'avg', 'sum']: train_df['comment_vec_{}'.format(p)] = train_df[seq_col_name_words].apply(lambda x: embed_aggregate(x, embeds_word, **pooling[p])) test_df['comment_vec_{}'.format(p)] = test_df[seq_col_name_words].apply(lambda x: embed_aggregate(x, embeds_word, **pooling[p])) train_df.to_csv(os.path.join(output_dir, 'train_clear1.csv'), index=False) test_df.to_csv(os.path.join(output_dir, 'test_clear1.csv'), index=False) else: for col in train_df.columns: if col.startswith('comment_seq'): train_df[col] = train_df[col].apply(lambda x: parse_seq(x, int)) test_df[col] = test_df[col].apply(lambda x: parse_seq(x, int)) elif col.startswith('comment_vec'): train_df[col] = train_df[col].apply(lambda x: parse_seq(x, float)) test_df[col] = test_df[col].apply(lambda x: parse_seq(x, float)) logger.debug('Embedding matrix shape = {}'.format(embeds_word.shape)) logger.debug('Number of null word embeddings = {}'.format(np.sum(np.sum(embeds_word.matrix, axis=1) == 0))) # ====END OF `PREPROCESS`==== if mode == 'preprocess': return True # ====Train/test split data==== x = np.array(train_df[seq_col_name_words].values.tolist()) y = np.array(train_df[target_labels].values.tolist()) x_train_nn, x_val_nn, y_train, y_val, train_idxs, val_idxs = split_data(x, y, test_size=0.2, shuffle=True, random_state=42) x_test_nn = np.array(test_df[seq_col_name_words].values.tolist()) x_char = np.array(train_df[seq_col_name_ll3].values.tolist()) x_char_train_nn = x_char[train_idxs] x_char_val_nn = x_char[val_idxs] x_char_test_nn = np.array(test_df[seq_col_name_ll3].values.tolist()) x_train_tfidf = train_df['comment_text_clear'].values[train_idxs] x_val_tfidf = train_df['comment_text_clear'].values[val_idxs] x_test_tfidf = test_df['comment_text_clear'].values catboost_cols = catboost_features(train_df, test_df) x_train_cb = train_df[catboost_cols].values[train_idxs].T x_val_cb = train_df[catboost_cols].values[val_idxs].T x_test_cb = test_df[catboost_cols].values.T # ====Train models==== nn_models = { 'cnn': cnn, 'dense': dense, 'rnn': rnn } params = Params(config) metrics = {} predictions = {} for param in params['models']: for model_label, model_params in param.items(): if model_params.get('common', {}).get('warm_start', False) and os.path.exists(model_params.get('common', {}).get('model_file', '')): logger.info('{} warm starting...'.format(model_label)) model = load_model(model_params.get('common', {}).get('model_file', None)) elif model_label in nn_models: model = nn_models[model_label]( embeds_word.matrix, embeds_ll3.matrix, num_classes, max_seq_len, max_char_seq_len, gpus=gpus, **model_params['init']) model_alias = model_params.get('common', {}).get('alias', None) if model_alias is None or not model_alias: model_alias = '{}_{}'.format(model_label, i) logger.info("training {} ...".format(model_label)) if model_label == 'dense': x_tr = [x_train_nn, x_char_train_nn] x_val = [x_val_nn, x_char_val_nn] x_test = [x_test_nn, x_char_test_nn] else: x_tr = x_train_nn x_val = x_val_nn x_test = x_test_nn hist = train(x_tr, y_train, model, logger=logger, **model_params['train']) predictions[model_alias] = model.predict(x_val) save_predictions(test_df, model.predict(x_test), target_labels, model_alias) elif model_label == 'tfidf': model = TFIDF(target_labels, **model_params['init']) model.fit(x_train_tfidf, y_train, **model_params['train']) predictions[model_alias] = model.predict(x_val_tfidf) save_predictions(test_df, model.predict(x_test_tfidf), target_labels, model_alias) elif model_label == 'catboost': model = CatBoost(target_labels, **model_params['init']) model.fit(x_train_cb, y_train, eval_set=(x_val_cb, y_val), use_best_model=True) predictions[model_alias] = model.predict_proba(x_val_cb) save_predictions(test_df, model.predict_proba(x_test_cb), target_labels, model_alias) metrics[model_alias] = get_metrics(y_val, predictions[model_alias], target_labels) logger.debug('{} params:\n{}'.format(model_alias, model_params)) logger.debug('{} metrics:\n{}'.format(model_alias, print_metrics(metrics[model_alias]))) model.save(os.path.join(output_dir, model_params['common']['model_file'])) logger.info('Saving metrics...') with open(os.path.join(output_dir, 'metrics.json'), 'w') as f: f.write(json.dumps(metrics)) # ====END OF `VALIDATE`==== if mode == 'validate': return True # Meta catboost logger.info('training catboost as metamodel...') x_meta = [predictions[model_alias] for model_alias in sorted(predictions.keys())] x_meta = np.array(x_train_meta).T x_train_meta, x_val_meta, y_train_meta, y_val_meta = train_test_split(x_meta, y_val, test_size=0.20, random_state=42) meta_model = CatBoost(target_labels, loss_function='Logloss', iterations=1000, depth=6, learning_rate=0.03, rsm=1 ) meta_model.fit(x_train_meta, y_train_meta, eval_set=(x_val_meta, y_val_meta), use_best_model=True) y_hat_meta = meta_model.predict_proba(x_val_meta) metrics_meta = get_metrics(y_val_meta, y_hat_meta, target_labels) #model.save(os.path.join(output_dir, 'meta.catboost') logger.debug('{} metrics:\n{}'.format('META', print_metrics(metrics_meta))) # ====Predict==== logger.info('Applying models...') test_cols = [] for model_alias in sorted(predictions.keys()): for label in target_labels: test_cols.append('{}_{}'.format(model_alias, label)) x_test = test_df[test_cols].values preds = meta_model.predict_proba(x_test) for i, label in enumerate(target_labels): test_df[label] = preds[:, i] # ====Normalize probabilities==== if norm_prob: for label in target_labels: test_df[label] = norm_prob_koef * test_df[label] # ====Save results==== logger.info('Saving results...') test_df[['id', 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].to_csv(result_fname, index=False, header=True) test_df.to_csv('{}_tmp'.format(result_fname), index=False, header=True) if __name__=='__main__': main()
[ "preprocessing.split_data", "logging.getLogger", "tensorflow.python.client.device_lib.list_local_devices", "utils.load_data", "numpy.array", "models.CatBoost", "preprocessing.clean_text", "argparse.ArgumentParser", "json.dumps", "metrics.get_metrics", "features.catboost_features", "utils.embed_aggregate", "sklearn.model_selection.train_test_split", "models.TFIDF", "utils.Params", "numpy.shape", "train.train", "metrics.print_metrics", "preprocessing.parse_seq", "numpy.sum", "utils.Embeds" ]
[((697, 903), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""-f TRAIN_FILE -t TEST_FILE -o OUTPUT_FILE -e EMBEDS_FILE [-l LOGGER_FILE] [--swear-words SWEAR_FILE] [--wrong-words WRONG_WORDS_FILE] [--format-embeds FALSE]"""'}), "(description=\n '-f TRAIN_FILE -t TEST_FILE -o OUTPUT_FILE -e EMBEDS_FILE [-l LOGGER_FILE] [--swear-words SWEAR_FILE] [--wrong-words WRONG_WORDS_FILE] [--format-embeds FALSE]'\n )\n", (720, 903), False, 'import argparse\n'), ((4432, 4454), 'utils.load_data', 'load_data', (['train_fname'], {}), '(train_fname)\n', (4441, 4454), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((4469, 4490), 'utils.load_data', 'load_data', (['test_fname'], {}), '(test_fname)\n', (4478, 4490), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((4817, 4891), 'utils.load_data', 'load_data', (['wrong_words_fname'], {'func': '(lambda x: {val[0]: val[1] for val in x})'}), '(wrong_words_fname, func=lambda x: {val[0]: val[1] for val in x})\n', (4826, 4891), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((9974, 10036), 'preprocessing.split_data', 'split_data', (['x', 'y'], {'test_size': '(0.2)', 'shuffle': '(True)', 'random_state': '(42)'}), '(x, y, test_size=0.2, shuffle=True, random_state=42)\n', (9984, 10036), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((10539, 10575), 'features.catboost_features', 'catboost_features', (['train_df', 'test_df'], {}), '(train_df, test_df)\n', (10556, 10575), False, 'from features import catboost_features\n'), ((10873, 10887), 'utils.Params', 'Params', (['config'], {}), '(config)\n', (10879, 10887), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((14293, 14356), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_meta', 'y_val'], {'test_size': '(0.2)', 'random_state': '(42)'}), '(x_meta, y_val, test_size=0.2, random_state=42)\n', (14309, 14356), False, 'from sklearn.model_selection import train_test_split\n'), ((14375, 14480), 'models.CatBoost', 'CatBoost', (['target_labels'], {'loss_function': '"""Logloss"""', 'iterations': '(1000)', 'depth': '(6)', 'learning_rate': '(0.03)', 'rsm': '(1)'}), "(target_labels, loss_function='Logloss', iterations=1000, depth=6,\n learning_rate=0.03, rsm=1)\n", (14383, 14480), False, 'from models import cnn, dense, rnn, TFIDF, CatBoost, save_predictions\n'), ((14783, 14833), 'metrics.get_metrics', 'get_metrics', (['y_val_meta', 'y_hat_meta', 'target_labels'], {}), '(y_val_meta, y_hat_meta, target_labels)\n', (14794, 14833), False, 'from metrics import get_metrics, print_metrics\n'), ((4245, 4264), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (4262, 4264), False, 'import logging\n'), ((4324, 4355), 'tensorflow.python.client.device_lib.list_local_devices', 'device_lib.list_local_devices', ([], {}), '()\n', (4353, 4355), False, 'from tensorflow.python.client import device_lib\n'), ((5244, 5316), 'preprocessing.clean_text', 'clean_text', (["train_df['comment_text']", 'wrong_words_dict'], {'autocorrect': '(True)'}), "(train_df['comment_text'], wrong_words_dict, autocorrect=True)\n", (5254, 5316), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((5357, 5428), 'preprocessing.clean_text', 'clean_text', (["test_df['comment_text']", 'wrong_words_dict'], {'autocorrect': '(True)'}), "(test_df['comment_text'], wrong_words_dict, autocorrect=True)\n", (5367, 5428), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((8070, 8097), 'numpy.shape', 'np.shape', (['embeds_ll3.matrix'], {}), '(embeds_ll3.matrix)\n', (8078, 8097), True, 'import numpy as np\n'), ((14210, 14232), 'numpy.array', 'np.array', (['x_train_meta'], {}), '(x_train_meta)\n', (14218, 14232), True, 'import numpy as np\n'), ((4985, 4993), 'utils.Embeds', 'Embeds', ([], {}), '()\n', (4991, 4993), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((5050, 5058), 'utils.Embeds', 'Embeds', ([], {}), '()\n', (5056, 5058), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((13488, 13547), 'metrics.get_metrics', 'get_metrics', (['y_val', 'predictions[model_alias]', 'target_labels'], {}), '(y_val, predictions[model_alias], target_labels)\n', (13499, 13547), False, 'from metrics import get_metrics, print_metrics\n'), ((13934, 13953), 'json.dumps', 'json.dumps', (['metrics'], {}), '(metrics)\n', (13944, 13953), False, 'import json\n'), ((14942, 14969), 'metrics.print_metrics', 'print_metrics', (['metrics_meta'], {}), '(metrics_meta)\n', (14955, 14969), False, 'from metrics import get_metrics, print_metrics\n'), ((8662, 8707), 'utils.embed_aggregate', 'embed_aggregate', (['x', 'embeds_word'], {}), '(x, embeds_word, **pooling[p])\n', (8677, 8707), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((8803, 8848), 'utils.embed_aggregate', 'embed_aggregate', (['x', 'embeds_word'], {}), '(x, embeds_word, **pooling[p])\n', (8818, 8848), False, 'from utils import load_data, Embeds, Logger, Params, embed_aggregate, similarity\n'), ((9624, 9658), 'numpy.sum', 'np.sum', (['embeds_word.matrix'], {'axis': '(1)'}), '(embeds_word.matrix, axis=1)\n', (9630, 9658), True, 'import numpy as np\n'), ((12371, 12438), 'train.train', 'train', (['x_tr', 'y_train', 'model'], {'logger': 'logger'}), "(x_tr, y_train, model, logger=logger, **model_params['train'])\n", (12376, 12438), False, 'from train import train\n'), ((13688, 13723), 'metrics.print_metrics', 'print_metrics', (['metrics[model_alias]'], {}), '(metrics[model_alias])\n', (13701, 13723), False, 'from metrics import get_metrics, print_metrics\n'), ((9169, 9186), 'preprocessing.parse_seq', 'parse_seq', (['x', 'int'], {}), '(x, int)\n', (9178, 9186), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((9248, 9265), 'preprocessing.parse_seq', 'parse_seq', (['x', 'int'], {}), '(x, int)\n', (9257, 9265), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((12777, 12821), 'models.TFIDF', 'TFIDF', (['target_labels'], {}), "(target_labels, **model_params['init'])\n", (12782, 12821), False, 'from models import cnn, dense, rnn, TFIDF, CatBoost, save_predictions\n'), ((9377, 9396), 'preprocessing.parse_seq', 'parse_seq', (['x', 'float'], {}), '(x, float)\n', (9386, 9396), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((9458, 9477), 'preprocessing.parse_seq', 'parse_seq', (['x', 'float'], {}), '(x, float)\n', (9467, 9477), False, 'from preprocessing import clean_text, convert_text2seq, split_data, parse_seq\n'), ((13134, 13181), 'models.CatBoost', 'CatBoost', (['target_labels'], {}), "(target_labels, **model_params['init'])\n", (13142, 13181), False, 'from models import cnn, dense, rnn, TFIDF, CatBoost, save_predictions\n')]
#!/usr/bin/env python #import standard libraries import obspy.imaging.beachball import datetime import os import csv import pandas as pd import numpy as np import fnmatch from geopy.distance import geodesic from math import * #from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from matplotlib import path class NewFile: '''Creates a file object with associated uncertainty and event type''' def __init__(self, filename, unc, event_type, source): self.filename = filename self.event_type = event_type self.unc = unc self.name = source def maketime(timestring): '''Used in argument parser below. Makes a datetime object from a timestring.''' TIMEFMT = '%Y-%m-%dT%H:%M:%S' DATEFMT = '%Y-%m-%d' TIMEFMT2 = '%m-%d-%YT%H:%M:%S.%f' outtime = None try: outtime = datetime.strptime(timestring, TIMEFMT) except: try: outtime = datetime.strptime(timestring, DATEFMT) except: try: outtime = datetime.strptime(timestring, TIMEFMT2) except: print('Could not parse time or date from %s' % timestring) print (outtime) return outtime def infile(s): '''Stores filename, event type, and uncertainty where provided from comma separated string.''' default_uncertainty = 15 try: infile,unc,etype = s.split(',') unc = float(unc) return (infile, unc, etype) except: try: s = s.split(',') infile, unc, etype = s[0], default_uncertainty, s[1] return (infile, unc, etype) except: raise argparse.ArgumentTypeError('Input file information must be \ given as infile,unc,etype or as infile,etype') def datelinecross(x): ''' Arguments: x - longitude value (positive or negative) Returns: x - a positive longitude. Stays the same if the input was positive, is changed to positive if the input was negative ''' if x<0: return x+360 else: return x ############################################### ### 9 ### ############################################### ## Written GLM def meridiancross(x): ''' Arguments: x - longitude value (positive or negative) Returns: x - a longitude in the -180/180 domain ''' if x>180: return x-360 else: return x def northcross(x): ''' Arguments: x - longitude value (positive or negative) Returns: x - a longitude in the -180/180 domain ''' if x<90: return x+360 else: return x def unnorthcross(x): ''' Arguments: x - longitude value (positive or negative) Returns: x - a longitude in the -180/180 domain ''' if x>360: return x-360 else: return x def zerothreesixty(data): data['lon']=data.apply(lambda row: datelinecross(row['lon']),axis=1) return data def oneeighty(data): data['lon']=data.apply(lambda row: meridiancross(row['lon']),axis=1) return data def northernaz(data): data['az']=data.apply(lambda row: northcross(row['az']),axis=1) return data def notnorthanymore(data): data['az']=data.apply(lambda row: unnorthcross(row['az']),axis=1) return data def writetofile(input_file, output_file, event_type, uncertainty, args, catalogs, file_no, seismo_thick, slabname, name): ''' Writes an input file object to the given output file. Acquires the necessary columns from the file, calculates moment tensor information. Eliminates rows of data that do not fall within the specified bounds (date, magnitude, & location). If the event type is an earthquake, the catalog is compared to all previously entered catalogs. Duplicate events are removed from the subsequent entries (prioritization is determined by the order in which catalogs are entered). Writes filtered dataframe to output file and prints progress to console. Arguments: input_file - input file from input or slab2database output_file - file where new dataset will be written event_type - two letter ID that indicates the type of data (AS, EQ, BA, etc) uncertainty - the default uncertainty associated with this file or event type args - arguments provided from command line (bounds, magnitude limits, etc) catalogs - a list of EQ catalogs that are being written to this file file_no - file number, used for making event IDs ''' in_file = open(input_file) fcsv = (input_file[:-4]+'.csv') # Reading .csv file into dataframe - all files must be in .csv format try: if input_file.endswith('.csv'): data = pd.read_csv(input_file, low_memory=False) else: print ('Input file %s was not written to file. MUST BE IN .CSV FORMAT' % input_file) pass except: print ('Could not read file %s. A header line of column labels \ followed by a deliminated dataset is expected. Check file format to ensure this \ is such. All files must be in .csv format.' % input_file) if 'ID' in data.columns: pass elif 'id_no' in data.columns: data['ID'] = data['id_no'].values else: start_ID = file_no*100000 stop_ID = start_ID + len(data) ID = np.arange(start_ID, stop_ID, 1) data['ID'] = ID data = makeframe(data, fcsv, event_type, uncertainty, args, seismo_thick,slabname) data = inbounds(args, data, slabname) #If option is chosen at command line, removes duplicate entries for the same event #alternate preference for global or regional catalogues depending upon input arguments try: regional_pref except NameError: pass else: try: tup = (data, fcsv) if len(catalogs) > 0: for idx, row in enumerate(catalogs): if fnmatch.fnmatch(row, '*global*'): position = idx name_of_file = row if regional_pref == 0 and position != 0: first_file = catalogs[0] catalogs[position] = first_file catalogs[0] = name_of_file elif regional_pref == 1 and position != (len(catalogs)-1): last_file = catalogs[(len(catalogs)-1)] catalogs[position] = first_file catalogs[(len(catalogs)-1)] = name_of_file else: pass for cat in catalogs: data = rid_matches(cat[0], data, cat[1], fcsv) elif len(catalogs) == 0: catalogs.append(tup) except: print ('If file contains earthquake information (event-type = EQ), \ required columns include: lat,lon,depth,mag,time. The columns of the current \ file: %s. Check file format to ensure these columns are present and properly \ labeled.' % data.columns) #MF 8.9.16 add source to output file try: listints = data['ID'].values.astype(int) except: start_ID = file_no*100000 stop_ID = start_ID + len(data) ID = np.arange(start_ID, stop_ID, 1) data['id_no'] = data['ID'].values data['ID'] = ID data['src'] = name write_data(data, output_file) print ('The file: %s was written to %s' % (input_file, output_file)) print ('---------------------------------------------------------------------------------') def castfloats(data): '''Casts all numerical and nan values to floats to avoid error in calculations''' data[['lat']] = data[['lat']].astype(float) data[['lon']] = data[['lon']].astype(float) data[['depth']] = data[['depth']].astype(float) data[['unc']] = data[['unc']].astype(float) if 'mag' in data.columns: data[['mag']] = data[['mag']].astype(float) if 'mrr' in data.columns: data[['mrr']] = data[['mrr']].astype(float) data[['mtt']] = data[['mtt']].astype(float) data[['mpp']] = data[['mpp']].astype(float) data[['mrt']] = data[['mrt']].astype(float) data[['mrp']] = data[['mrp']].astype(float) data[['mtp']] = data[['mtp']].astype(float) if 'Paz' in data.columns and 'Ppl' in data.columns: data[['Paz']] = data[['Paz']].astype(float) data[['Ppl']] = data[['Ppl']].astype(float) data[['Taz']] = data[['Taz']].astype(float) data[['Tpl']] = data[['Tpl']].astype(float) data[['S1']] = data[['S1']].astype(float) data[['D1']] = data[['D1']].astype(float) data[['R1']] = data[['R1']].astype(float) data[['S2']] = data[['S2']].astype(float) data[['D2']] = data[['D2']].astype(float) data[['R2']] = data[['R2']].astype(float) return data def rid_nans(df): '''Removes points where lat,lon,depth, or uncertainty values are not provided.''' df = df[np.isfinite(df['lat'])] df = df[np.isfinite(df['lon'])] df = df[np.isfinite(df['depth'])] df = df[np.isfinite(df['unc'])] return df def write_data(df, output_file): ''' Arguments: df - filtered dataframe to be written to file output_file - output file where data is to be written ''' # If file name does not exist, creates file and writes filtered dataframe to it df = castfloats(df) df = rid_nans(df) if not os.path.isfile(output_file): with open(output_file, 'w') as f: df.to_csv(f, header=True, index=False, float_format='%0.3f', na_rep = float('nan')) # If the output file already exists, new filtered data points are appended to # existing information else: old = pd.read_csv(output_file) all = pd.concat([old,df],sort=True) all = castfloats(all) all = rid_nans(all) if len(df.columns) > len(old.columns): all = all[df.columns] else: all = all[old.columns] # Writes desired columns of a filtered dataframe to the output file with open(output_file, 'w') as f: all.to_csv(f, header=True, index=False, float_format='%0.3f', na_rep = float('nan')) def inbounds(args, data, slab): ''' Originally written by Ginvera, modified by MAF July 2016 ''' ''' Arguments: args - input arguments provided from command line arguments data - dataframe to be filtered based on bounds Returns: data - filtered dataframe based on bounds ''' # Eliminates data points that are not within specified bounds where provided if 'time' in data.columns: try: data['time'] = pd.to_datetime(data['time']) except: try: data['time'] = pd.to_datetime(data['time'],format='%m-%d-%YT%H:%M:%S') except: try: data['time'] = pd.to_datetime(data['time'],format='%m-%d-%YT%H:%M:%S.%f') except: data = data[data.time != '9-14-2012T29:54:59.53'] data = data.reset_index(drop=True) for index,row in data.iterrows(): print (row['time']) try: row['time'] = pd.to_datetime(row['time'],format='%m-%d-%YT%H:%M:%S') except: try: row['time'] = pd.to_datetime(row['time'],format='%m-%d-%YT%H:%M:%S.%f') except: print ('this row could not be added, invalid time') print ('lon,lat,depth,mag,time') print (row['lon'],row['lat'],row['depth'],row['mag'],row['time']) data.drop(index, inplace=True) stime = datetime.datetime(1900,1,1) etime = datetime.datetime.utcnow() if args.startTime and args.endTime and args.startTime >= args.endTime: print ('End time must be greater than start time. Your inputs: Start %s \ End %s' % (args.startTime, args.endTime)) sys.exit(1) if args.bounds is not None: lonmin = args.bounds[0] lonmax = args.bounds[1] latmin = args.bounds[2] latmax = args.bounds[3] minwest = lonmin > 0 and lonmin < 180 maxeast = lonmax < 0 and lonmax > -180 if minwest and maxeast: data = data[(data.lon >= lonmin) | (data.lon <= lonmax)] else: data = data[(data.lon >= lonmin) & (data.lon <= lonmax)] data = data[(data.lat >= latmin) & (data.lat <= latmax)] else: #first filter data within the slab outline (just gets locations though - doesn't filter by rest of info!) #also, original data was a dataframe data = getDataInRect(slab,data) if len(data) > 0: data_lon = data['lon'] data_lat = data['lat'] data_coords = list(zip(data_lon,data_lat)) indexes_of_bad_data = getDataInPolygon(slab,data_coords) data_to_keep = data.drop(data.index[indexes_of_bad_data]) data = data_to_keep else: return data if args.startTime is not None and 'time' in data.columns: stime = args.startTime data = data[data.time >= stime] if args.endTime is not None and 'time' in data.columns: etime = args.endTime data = data[data.time <= etime] if args.magRange is not None and 'mag' in data.columns: magmin = args.magRange[0] magmax = args.magRange[1] data = data[(data.mag >= magmin) & (data.mag <= magmax)] return data def slabpolygon(slabname): ##################################### #written by <NAME>, 7/19/2016# ##################################### ''' inputting the slabname (3 character code) will return the polygon boundaries ''' #load file with slab polygon boundaries slabfile = 'library/misc/slab_polygons.txt' filerows = [] with open(slabfile) as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: filerows.append(row) csvfile.close() #iterate through list to match the slabname and retrieve coordinates slabbounds = [] for i in range(len(filerows)): if slabname == filerows[i][0]: slabbounds = filerows[i][1:] slabbounds.append(slabbounds) return slabbounds def determine_polygon_extrema(slabname): ##################################### #written by <NAME>, 7/18/2016# ##################################### ''' inputs: slabname to be referenced against stored slab coordinates outputs: the maximum and minimum latitude and longitude values for the input slab ''' #calls slabpolygon function to get bounds for this slab region slabbounds = slabpolygon(slabname) #slabbbounds come in lon1,lat1,lon2,lat2... format #even numbers are then longitudes while odds are latitudes coords = np.size(slabbounds) #simple even/odd function def is_odd(num): return num & 0x1 lons = [] lats = [] for i in range(coords): val = slabbounds[i] if is_odd(i): lats.append(val) else: lons.append(val) x1 = int(min(lons)) x2 = int(max(lons)) y1 = int(min(lats)) y2 = int(max(lats)) return x1,x2,y1,y2 def create_grid_nodes(grd_space,slabname): ##################################### #written by <NAME>, 7/18/2016# ##################################### ''' inputs: grid spacing between nodes of regular grid (must be an integer), slab code outputs: coordinates of each node (corner/intersection) within the regular grid (numpy array) ''' xmin,xmax,ymin,ymax = determine_polygon_extrema(slabname) total_degrees_lon = xmax-xmin total_degrees_lat = ymax-ymin #max_iter represents max number of iterations in the y direction (longitude direction) max_iter = total_degrees_lon/grd_space #define a grid to divide the area #accounts for a non-even division q1, r1 = divmod(total_degrees_lat, grd_space) q2, r2 = divmod(total_degrees_lon, grd_space) if r1 > 0: grid_y = total_degrees_lat/grd_space else: grid_y = total_degrees_lat/grd_space + 1 if r2 > 0: grid_x = total_degrees_lon/grd_space else: grid_x = total_degrees_lon/grd_space + 1 #the total number of grids boxes = grid_y*grid_x #initialize array to save time boundaries = np.zeros([boxes,4]) ''' count keeps track of iterations of longitude holds latmin/latmax steady while lonmin/lonmax changes across when max iterations in longitude have completed (gone across area) the latmin/latmix will adjust and lonmin/lonmax will also be reset. This process will continue until the number of boxes has been reached. ''' count = 0 for i in range(boxes): if count == max_iter-1: lonmax = xmax + grd_space*count lonmin = xmin + grd_space*count count = 0 latmax = ymax latmin = ymin boundaries[i,0] = lonmin boundaries[i,1] = lonmax boundaries[i,2] = latmin boundaries[i,3] = latmax ymax = ymax - grd_space ymin = ymin - grd_space else: lonmax = xmax + grd_space*count lonmin = xmin + grd_space*count count = count+1 latmax = ymax latmin = ymin boundaries[i,0] = lonmin boundaries[i,1] = lonmax boundaries[i,2] = latmin boundaries[i,3] = latmax return boundaries def getDataInPolygon(slabname,data): ##################################### #written by <NAME>, 7/20/2016# ##################################### ''' creates a grid of 1 or nan based on if they are within a clipping mask or not. DEP.6.29.16 ''' ''' modified to fit this script by MAF 7/18/16 ''' ### Input: # slabname: a 3 digit character code identifying a slab region #data: the input data which may or may not be within the polygon ### Output: #contained_data: an array of coordinate pairs (lon,lat) that reside within the polygon region #check if slabbounds are already defined. If not, acquire them slabbounds = slabpolygon(slabname) #slabbbounds come in lon1,lat1,lon2,lat2... format #even numbers are then longitudes while odds are latitudes coords = np.size(slabbounds) #simple even/odd function def is_odd(num): return num & 0x1 lons = [] lats = [] for i in range(coords): val = slabbounds[i][1:] if is_odd(i): lats.append(val) else: lons.append(val) #create tuple of locations (with zip) to use in contains_points xy = list(zip(lons,lats)) poly = path.Path(xy) temp = poly.contains_points(data[:]) mask = np.zeros(len(temp),)*np.nan mask[temp] = 1 keepers = [] for i in range(len(data)): points_in_poly = np.dot(mask[i],data[i]) if i > 0: keepers = np.vstack((keepers,points_in_poly)) else: keepers = points_in_poly rows_to_drop = [] for i in range(len(keepers)): if np.isnan(keepers[i][0]) == True: rows_to_drop.append(i) return rows_to_drop def getDataInRect(slabname,data1): ##################################### #written by <NAME>, 7/20/2016# ##################################### ''' creates a grid of 1 or nan based on if they are within a clipping mask or not. DEP.6.29.16 ''' ''' modified to fit this script by MAF 7/18/16 ''' ### Input: # slabname: a 3 digit character code identifying a slab region #data: the input data which may or may not be within the polygon ### Output: #contained_data: an array of coordinate pairs (lon,lat) that reside within the polygon region #check if slabbounds are already defined. If not, acquire them slabbounds = slabpolygon(slabname) #slabbbounds come in lon1,lat1,lon2,lat2... format #even numbers are then longitudes while odds are latitudes coords = np.size(slabbounds) #simple even/odd function def is_odd(num): return num & 0x1 lons = [] lats = [] for i in range(coords): val = slabbounds[i][1:] try: val = float(val) except: break if is_odd(i): lats.append(val) else: lons.append(val) lonmin = min(lons) lonmax = max(lons) latmin = min(lats) latmax = max(lats) if lonmin < 0 and lonmax < 0: data1 = oneeighty(data1) else: data1 = zerothreesixty(data1) data1 = data1[(data1.lon > lonmin) & (data1.lon < lonmax) &(data1.lat > latmin) &(data1.lat < latmax)] return data1 def cmtfilter(data,seismo_thick): ''' Arguments: data - data with all shallow/nonshallow and thrust/nonthrust earthquake Returns: filtered - fitered dataframe which DEPENDS ON WHAT YOU DO/DONT COMMENT OUT (1) filters only shallow earthquakes that have MT criteria which are non thrust all other shallow earthquakes WITHOUT MT info are NOT filtered OR (2) filters ALL shallow earthquakes UNLESS they have MT info and that MT info has the criteria of a thrust event. ''' # Removes non-thrust events from depths shallower than seismogenic zone deep_data = data[data.depth >= seismo_thick] # Includes shallow data without MT info (1) - comment out next two lines for (2) dfn = data[np.isnan(data['Paz'])] dfn = dfn[data.depth < seismo_thick] data = data[np.isfinite(data['Paz'])] shallow_data = data[data.depth < seismo_thick] # Depending on which MT info are provided, filters non-thrust, shallow events if 'Ndip' in shallow_data.columns: thrust_rake = (shallow_data.Tpl>50) & (shallow_data.Ndip<=30) else: thrust_rake = ((shallow_data.R1>30) & (shallow_data.R2>30) & (shallow_data.R1<150) & (shallow_data.R2<150)) shallow_data = shallow_data[thrust_rake] # Includes shallow data without MT info (1) - comment out next line for (2) filtered = pd.concat([deep_data, shallow_data, dfn],sort=True) # Only includes shallow thrust events (2) - uncomment line below for (2) and comment necessary lines above # filtered = pd.concat([deep_data, shallow_data],sort=True) # Rearranges columns / filters out unecessary columns filtered=filtered[['lat','lon','depth','unc','ID','etype','mag','time', 'Paz','Ppl','Taz','Tpl','S1','D1','R1','S2','D2','R2','mlon','mlat','mdep']] return filtered def make_moment_tensor(mrr,mtt,mpp,mrt,mrp,mtp): #r,t,p = x,y,z '''Used in m_to_planes below. Makes a moment tensor object from moment tensor components''' return obspy.imaging.beachball.MomentTensor(mrr,mtt,mpp,mrt,mrp,mtp,1) def m_to_planes(mrr,mtt,mpp,mrt,mrp,mtp,n): '''Takes a moment tensor and calculates the P, N, and T axes and nodal plane information. Used in moment_calc below. Returns one of these values as specified by input (n). The integer input specifies which index of the array of outputs to return. ''' mt = make_moment_tensor(mrr,mtt,mpp,mrt,mrp,mtp) #axes = obspy.imaging.beachball.MT2Axes(mt) #returns T, N, P #fplane = obspy.imaging.beachball.MT2Plane(mt)#returns strike, dip, rake #aplane = obspy.imaging.beachball.AuxPlane(fplane.strike, fplane.dip, fplane.rake) #MAF changed because functions use lowercase, and aux_plane name includes underscore axes = obspy.imaging.beachball.mt2axes(mt) #returns T, N, P fplane = obspy.imaging.beachball.mt2plane(mt)#returns strike, dip, rake aplane = obspy.imaging.beachball.aux_plane(fplane.strike, fplane.dip, fplane.rake) Tstrike = axes[0].strike Tdip = axes[0].dip Pstrike = axes[2].strike Pdip = axes[2].dip S1 = fplane.strike D1 = fplane.dip R1 = fplane.rake S2 = aplane[0] D2 = aplane[1] R2 = aplane[2] mplanes = [Pstrike,Pdip,Tstrike,Tdip,S1,D1,R1,S2,D2,R2] return mplanes[n] def moment_calc(df, args, seismo_thick,slabname): ''' Creates and appends columns with Principal Axis and Nodal Plane information. Used in makeframe below. Takes moment tensor information from input dataframe columns and creates 11 new columns with information used to distinguish between thrust and non-thrust earthquakes. Arguments: df - dataframe with mt information in the form mrr,mtt,mpp,mrt,mrp,mtp args - input arguments provided from command line arguments Returns: df - dataframe with mt information in the form Paz,Ppl,Taz,Tpl,S1,D1,R1,S2,D2,R2 ''' #try: # Only calculates MT info where it exists in EQ datasets df = inbounds(args, df, slabname) dfm = df[np.isfinite(df['mrr'])] dfn = df[df['mrr'].isnull()] #except: # raise Exception,'If file contains earthquake information (event-type = EQ), \ # required columns include: lat,lon,depth,mag,time. The columns of the current \ # file: %s. Check file format to ensure these columns are present and properly \ # labeled.' % df.columns # Calculates each new column of MT info try: dfm['Paz']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],0),axis=1) dfm['Ppl']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],1),axis=1) dfm['Taz']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],2),axis=1) dfm['Tpl']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],3),axis=1) dfm['S1']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],4),axis=1) dfm['D1']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],5),axis=1) dfm['R1']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],6),axis=1) dfm['S2']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],7),axis=1) dfm['D2']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],8),axis=1) dfm['R2']=dfm.apply(lambda row: m_to_planes(row['mrr'], row['mtt'], row['mpp'], row['mrt'], row['mrp'], row['mtp'],9),axis=1) # Concatenates events with and without MT info #dfm = cmtfilter(dfm,seismo_thick) df = pd.concat([dfm,dfn],sort=True) # Rearranges columns and returns if 'mlon' in df.columns: df = df[['lat','lon','depth','unc','ID','etype','mag','time', 'Paz','Ppl','Taz','Tpl','S1','D1','R1','S2','D2','R2','mlon','mlat','mdep']] else: df = df[['lat','lon','depth','unc','ID','etype','mag','time', 'Paz','Ppl','Taz','Tpl','S1','D1','R1','S2','D2','R2']] df['mlon'] = df['lon'].values*1.0 df['mlat'] = df['lat'].values*1.0 df['mdep'] = df['depth'].values*1.0 return df except: # if exception is caught, try to return only events without MT info try: if len(dfm) == 0: return dfn except: print('Where moment tensor information is available, columns \ must be labeled: mrr,mpp,mtt,mrp,mrt,mtp') def ymdhmsparse(input_file): '''Parses Yr Mo Day Hr Min Sec into one datetime object when provided in distinguished columns. Used in makeframe below. Returns a new dataframe with parsed datetimes. ''' ymdhms = {'time':['year','month','day','hour','min','sec']} dparse = lambda x: pd.datetime.strptime(x, '%Y %m %d %H %M %S') cols = ['year','month','day','hour','min','sec','lat','lon','depth','mag'] data = pd.read_csv(input_file, parse_dates=ymdhms, usecols=cols, date_parser=dparse) return data def raiseUnc(x): ''' Raises unreasonably low uncertainties for earthquakes to a value greater than that of average active source data points (which is 5 km). ''' if x < 6: return 6 else: return x def makeframe(data, fcsv, event_type, uncertainty, args, seismo_thick,slabname): ''' Arguments: data - semi-filtered data frame to be filtered more and written to file fcsv - filename of output file event_type - kind of data i.e. BA, EQ, ER, TO etc uncertainty - unc value provided in command line or set by default for etype args - input arguments provided from command line arguments Returns: data - fully filtered dataset to be written to output file ''' # Parses Yr Mo Day Hr Min Sec into one datetime object when provided in distinguished columns if 'year' in data.columns and 'sec' in data.columns and 'mag' in data.columns: data = ymdhmsparse(fcsv) # If ISC-GEM data is provided, high quality, low uncertainties are included in place of # the default values assigned in s2d.py main method. if 'unc' in data.columns and 'q' in data.columns: try: data = data[(data.uq != 'C') & (data.unc < uncertainty)] except: print ('When adding a file with uncertainty quality, the column \ representing that quality must be labeled as uq') # uses OG uncertainties where provided. Raises them if they are unreasonably low elif 'unc' in data.columns: uncert = data['unc'].values try: if isnan(uncert[1]): data['unc'] = uncertainty elif event_type == 'EQ': data['unc'] = data.apply(lambda row: raiseUnc(row['unc']),axis=1) else: pass except: data['unc'] = uncertainty # If no uncertainty column is included, the one provided in command line arguments is # used to add a new column to the data, alternatively, the default value assigned in s2d.py is used else: data['unc'] = uncertainty pd.options.mode.chained_assignment = None # A new column marking the event type is added to the data. Everything is cast as a float data['etype'] = event_type data = castfloats(data) # Calculates moment tensor info where applicable and removes shallow, non-thrust events if 'mrr' in data.columns: data = moment_calc(data, args, seismo_thick,slabname) elif 'time' in data.columns and 'mag' in data.columns: data = data[['lat','lon','depth','unc','ID','etype','mag','time']] else: pass return data ########################################################################################################## #The following serves to create a rough plot of the data types compiled with s2d.py. ########################################################################################################## def plot_map(lons, lats, c, legend_label, projection='mill', llcrnrlat=-80, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180, resolution='i'): ''' Optional Arguments: projection - map projection, default set as 'mill' llcrnrlat - lower left corner latitude value, default is -80 urcrnrlat - upper right corner latitude value, default is 90 llcrnrlon - lower left corner longitude value, default is -180 urcrnrlon - upper right corner longitude value, default is 180 resolution - the resolution of the plot, default is 'i' Required Arguments: lons - list of longitude values to be plotted lats - list of latitude values to be plotted c - the color of the points to be plotted legend_label - how this set of points will be labeled on the legend Returns: m - a basemap object defined by input bounds with input points included ''' # Creates a basic plot of a series of lat,lon points over a defined region m = Basemap(projection=projection, llcrnrlat=llcrnrlat, urcrnrlat=urcrnrlat, llcrnrlon=llcrnrlon, urcrnrlon=urcrnrlon, resolution=resolution) m.drawcoastlines() m.drawmapboundary() m.drawcountries() m.etopo() m.drawmeridians(np.arange(llcrnrlon, urcrnrlon, 5), labels=[0,0,0,1], fontsize=10) m.drawparallels(np.arange(llcrnrlat, urcrnrlat, 5), labels=[1,0,0,0], fontsize=10) x,y = m(lons, lats) m.scatter(x, y, color=c, label=legend_label, marker='o', edgecolor='none', s=10) return m def datelinecross(x): '''Converts negative longitudes to their positive equivalent for the sake of plotting.''' if x<0: return x+360 else: return x ############################################################################################## #Everything below this point serves the purpose of identifying and #eliminating duplicate events between multiple earthquake catalog entries. ############################################################################################## class Earthquake: '''Creates an earthquake object from which event information can be extracted''' def __init__(self,time,coords,depth,lat,lon,mag,catalog): self.time = time self.coords = coords self.depth = depth self.lat = lat self.lon = lon self.mag = mag self.catalog = catalog def getvals(row): '''Gathers time, lat, lon, depth, mag, information from row in dataframe.''' time = row['time'] lat = row['lat'] lon = row['lon'] depth = row['depth'] mag = row['mag'] ep = (lat,lon) return time,ep,depth,lat,lon,mag def boundtrim(cat1, cat2): ''' Arguments: cat1 - an earthquake catalog to be compared with cat2 cat2 - an earthquake catalog to be compared to cat1 Returns: cat1, cat2 - trimmed earthquake catalogs that only extend across bounds where they both exist. Reduces processing time ''' # Trims two earthquake catalogs to fit over the same region lonmin1, lonmin2 = cat1['lon'].min(), cat2['lon'].min() latmin1, latmin2 = cat1['lat'].min(), cat2['lat'].min() lonmax1, lonmax2 = cat1['lon'].max(), cat2['lon'].max() latmax1, latmax2 = cat1['lat'].max(), cat2['lat'].max() minwest = (lonmax1 > 0 and lonmax1 < 180) or (lonmax2 > 0 and lonmax2 < 180) maxeast = (lonmin1 < 0 and lonmin1 > -180) or (lonmin2 < 0 and lonmin2 > -180) difference = abs(lonmin1-lonmax1)>180 or abs(lonmin2-lonmax2)>180 if minwest and maxeast and difference: pass else: cat1 = cat1[(cat1.lon >= lonmin2) & (cat1.lon <= lonmax2)] cat2 = cat2[(cat2.lon >= lonmin1) & (cat2.lon <= lonmax1)] cat1 = cat1[(cat1.lat >= latmin2) & (cat1.lat <= latmax2)] cat2 = cat2[(cat2.lat >= latmin1) & (cat2.lat <= latmax1)] return cat1, cat2 def timetrim(cat1, cat2): ''' Arguments: cat1 - an earthquake catalog to be compared with cat2 cat2 - an earthquake catalog to be compared to cat1 Returns: cat1, cat2 - trimmed earthquake catalogs that only extend across time frames where they both exist. Reduces processing time ''' # Trims two earthquake catalogs to fit over the same time range cat1['time'] = pd.to_datetime(cat1['time']) cat2['time'] = pd.to_datetime(cat2['time']) cat1min, cat1max = cat1['time'].min(), cat1['time'].max() cat2min, cat2max = cat2['time'].min(), cat2['time'].max() cat1 = cat1[(cat1.time >= cat2min) & (cat1.time <= cat2max)] cat2 = cat2[(cat2.time >= cat1min) & (cat2.time <= cat1max)] return cat1, cat2 def earthquake_string(eqo): ''' Puts earthquake information into a string to be written or printed Arguments: eqo - earthquake object Returns: eqos - a string of information stored in earthquake object input argument ''' eqos = (str(eqo.lat) + ',' + str(eqo.lon) + ',' + str(eqo.depth) + ',' + str(eqo.mag) + ',' + str(eqo.time) + ',' + eqo.catalog) return eqos def find_closest(eqo, eqm1, eqm2): '''Determines which of two potential matches in one catalog is closer to an event in another. Arguments: eqo - earthquake event in first catalog that matches two events in the second eqm1 - the first event in the second catalog that matches eqo eqm2 - the second event in the second catalog that matches eqo Returns: closest - the closest event weighting time first, then distance, then magnitude ''' # Prints information to console to make user aware of more than one match print ('-------------------------------------- lat %s lon %s depth %s mag %s time \ %s catlog' % (',',',',',',',',',')) print ('There is more than one match for event: %s' % earthquake_string(eqo)) print ('event1: %s' % earthquake_string(eqm1)) print ('event2: %s' % earthquake_string(eqm2)) # Gets distance between either event and the common match eqo darc1 = geodesic(eqo.coords, eqm1.coords).meters/1000 darc2 = geodesic(eqo.coords, eqm2.coords).meters/1000 dh1 = abs(eqo.depth - eqm1.depth) dh2 = abs(eqo.depth - eqm2.depth) dist1 = sqrt(darc1*darc1 + dh1*dh1) dist2 = sqrt(darc2*darc2 + dh2*dh2) # Gets magnitude and time differences between each event and the common match dtime1 = abs(eqo.time - eqm1.time) dtime2 = abs(eqo.time - eqm2.time) dmag1 = abs(eqo.mag - eqm1.mag) dmag2 = abs(eqo.mag - eqm2.mag) # Finds the closest match to eqo by checking time first, then distance, then magnitude if dtime1 < dtime2: closest = eqm1 elif dtime2 < dtime1: closest = eqm2 elif dtime1 == dtime2 and dist1 < dist2: closest = eqm1 elif dtime1 == dtime2 and dist2 < dist1: closest = eqm1 elif dmag1 == dmag2 and dist1 == dist2 and dmag1 < dmag2: closest = eqm1 elif dmag1 == dmag2 and dist1 == dist2 and dmag2 < dmag1: closest = eqm2 # If all things are equal, the first event is chosen as a match by default else: print ('The two events are equidistant to the match in time, space, and magnitude.\ The second event was therefore determined independent.') closest = eqm1 return closest print ('>>>>closest event: %s' % earthquake_string(closest)) return closest def removematches(dfo, dfm): '''Eliminates events in dfo (dataframe) that are found in dfm (dataframe) ''' ind = (dfo.time.isin(dfm.time) & dfo.lat.isin(dfm.lat) & dfo.lon.isin(dfm.lon) & dfo.mag.isin(dfm.mag) & dfo.depth.isin(dfm.depth)) dfo = dfo[~ind] return dfo def rid_matches(cat1, cat2, name1, name2): ''' Compares two catalogs, identifies and removes matching events from cat2. Arguments: cat1 - the first catalog (dataframe), no events are removed from this catalog cat2 - the second catalog (dataframe), events in this catalog that are close in space, time, and magnitude to those in cat1 are filtered out name1 - the name of the first catalog, used for printing/bookeeping purposes name2 - the name of the second catalog, used for printing/bookeeping purposes Returns: df - a filtered version of cat2 without events that match those in cat1 ''' # Setting constants that define matching criteria tdelta = 30 distdelta = 100 magdelta = 0.5 # Ensuring that all times are in datetime object format & trimming catalogs to only extend # accross the bounds and time constraints of the other cat1['time'] = pd.to_datetime(cat1['time']) cat2['time'] = pd.to_datetime(cat2['time']) cat1c,cat2c = timetrim(cat1, cat2) cat1c,cat2c = boundtrim(cat1c, cat2c) # Making dataframe/filename to store matching events for bookeeping try: name1w = name1[-10:] #this doesn't make sense, and seems to chop the file name inappropriately - will have to resolve this later. name2w = name2[-10:] except: name1w = name1[:-4] name2w = name2[:-4] matches = pd.DataFrame(columns = ['lat','lon','depth','mag','time','catalog']) count = 0 # Compares each event in cat2 to each event in cat1 for index,row in cat1c.iterrows(): n = 0 # Getting earthquake info from event and storing it in an Earthquake object (cat1) time1, ep1, depth1, lat1, lon1, mag1 = getvals(row) eq1 = Earthquake(time1, ep1, depth1, lat1, lon1, mag1, name1w) for index, r in cat2c.iterrows(): # Getting earthquake info from event and storing it in an Earthquake object (cat1) time2, ep2, depth2, lat2, lon2, mag2 = getvals(r) eq2 = Earthquake(time2, ep2, depth2, lat2, lon2, mag2, name2w) # If events are close in time, space, and magnitude add event from cat2 to match list if abs(time1-time2) < datetime.timedelta(seconds = tdelta): if vincenty(ep1,ep2).meters/1000 <= distdelta: if abs(mag1-mag2) < magdelta: # If there is already a match for this event, find the closest # The closest is stored and compared to third, fourth matches etc if they exist if n >= 1: match = find_closest(eq1, match, eq2) n += 1 if n == 0: match = eq2 n += 1 else: pass else: pass else: pass # Add matching events to match dataframe if n > 0: lat1,lon1,depth1,mag1,time1,name1 matches.loc[len(matches)+1] = [lat1, lon1, depth1, mag1, time1, name1w] matches.loc[len(matches)+1] = [match.lat, match.lon, match.depth, match.mag, match.time, name2w] count += 1 # Write matches to matching file matchfile = name1w + name2w + '-matches.csv' # Remove matches from cat2 df = removematches(cat2, matches) # Print general results to console print ('%i matches were found between the catalogs: %s and %s.' % (count, name1, name2)) if count > 0: with open(matchfile,'w') as f: matches.to_csv(f, header=True, index=False, float_format='%0.4f') print ('The pairs can be found in the file: ** %s **, which has been written added to the current directory.' % (name1w + name2w + '-matches.csv')) print ('Based on the order of entry, in the instance of duplicate events, the entries in ** %s ** were added to the slab file while the entries in ** %s ** were not added.' % (name1, name2)) # Return filtered catalog to be written to output file return df def rectangleIntersectsPolygon(x1,x2,y1,y2): #################################### #written by <NAME>, 8/4/2016# #################################### def is_odd(num): return num & 0x1 #create polygon from input rectangle rect = Polygon([(x1,y2),(x2,y2),(x2,y1),(x1,y1)]) #read in slab boundaries slabfile = 'slab_polygons.txt' filerows = [] with open(slabfile) as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: filerows.append(row) csvfile.close() #loop through the slabnames and slabboundaries by row to define each slab polygon #then verify whether the input rectangle overlaps any of the defined slabs slabbounds = [] slabname = [] slab = [] for i in range(len(filerows)-1): lats =[] lons = [] slabname = filerows[i][0] slabbounds = filerows[i][1:] slabbounds.append(slabbounds) for j in range(1,(len(filerows[i][:]))): val = float(filerows[i][j]) if is_odd(j): lons.append(val) else: lats.append(val) poly = list(zip(lons,lats)) if rect.overlaps(poly): slab.append(slabname) else: continue #if the input rectangle does not overlap with just one slab, let the user know if len(slab) == 0: print ('The input boundaries do not overlap any slabs. Please try again.') elif len(slab) > 1: response = raw_input('You have selected multiple slabs. Which slab would you like to model?: ' + str(lons) + ' Please enter a string: ') slab = response return slab
[ "pandas.read_csv", "pandas.datetime.strptime", "numpy.isfinite", "datetime.timedelta", "numpy.arange", "pandas.to_datetime", "datetime.datetime", "matplotlib.path.Path", "numpy.dot", "fnmatch.fnmatch", "numpy.vstack", "pandas.DataFrame", "csv.reader", "numpy.size", "os.path.isfile", "numpy.isnan", "datetime.strptime", "geopy.distance.geodesic", "datetime.datetime.utcnow", "numpy.zeros", "pandas.concat" ]
[((12234, 12263), 'datetime.datetime', 'datetime.datetime', (['(1900)', '(1)', '(1)'], {}), '(1900, 1, 1)\n', (12251, 12263), False, 'import datetime\n'), ((12274, 12300), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (12298, 12300), False, 'import datetime\n'), ((15450, 15469), 'numpy.size', 'np.size', (['slabbounds'], {}), '(slabbounds)\n', (15457, 15469), True, 'import numpy as np\n'), ((17029, 17049), 'numpy.zeros', 'np.zeros', (['[boxes, 4]'], {}), '([boxes, 4])\n', (17037, 17049), True, 'import numpy as np\n'), ((19042, 19061), 'numpy.size', 'np.size', (['slabbounds'], {}), '(slabbounds)\n', (19049, 19061), True, 'import numpy as np\n'), ((19440, 19453), 'matplotlib.path.Path', 'path.Path', (['xy'], {}), '(xy)\n', (19449, 19453), False, 'from matplotlib import path\n'), ((20769, 20788), 'numpy.size', 'np.size', (['slabbounds'], {}), '(slabbounds)\n', (20776, 20788), True, 'import numpy as np\n'), ((23054, 23106), 'pandas.concat', 'pd.concat', (['[deep_data, shallow_data, dfn]'], {'sort': '(True)'}), '([deep_data, shallow_data, dfn], sort=True)\n', (23063, 23106), True, 'import pandas as pd\n'), ((29568, 29645), 'pandas.read_csv', 'pd.read_csv', (['input_file'], {'parse_dates': 'ymdhms', 'usecols': 'cols', 'date_parser': 'dparse'}), '(input_file, parse_dates=ymdhms, usecols=cols, date_parser=dparse)\n', (29579, 29645), True, 'import pandas as pd\n'), ((37348, 37376), 'pandas.to_datetime', 'pd.to_datetime', (["cat1['time']"], {}), "(cat1['time'])\n", (37362, 37376), True, 'import pandas as pd\n'), ((37396, 37424), 'pandas.to_datetime', 'pd.to_datetime', (["cat2['time']"], {}), "(cat2['time'])\n", (37410, 37424), True, 'import pandas as pd\n'), ((41804, 41832), 'pandas.to_datetime', 'pd.to_datetime', (["cat1['time']"], {}), "(cat1['time'])\n", (41818, 41832), True, 'import pandas as pd\n'), ((41852, 41880), 'pandas.to_datetime', 'pd.to_datetime', (["cat2['time']"], {}), "(cat2['time'])\n", (41866, 41880), True, 'import pandas as pd\n'), ((42294, 42365), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['lat', 'lon', 'depth', 'mag', 'time', 'catalog']"}), "(columns=['lat', 'lon', 'depth', 'mag', 'time', 'catalog'])\n", (42306, 42365), True, 'import pandas as pd\n'), ((866, 904), 'datetime.strptime', 'datetime.strptime', (['timestring', 'TIMEFMT'], {}), '(timestring, TIMEFMT)\n', (883, 904), False, 'import datetime\n'), ((9305, 9327), 'numpy.isfinite', 'np.isfinite', (["df['lat']"], {}), "(df['lat'])\n", (9316, 9327), True, 'import numpy as np\n'), ((9341, 9363), 'numpy.isfinite', 'np.isfinite', (["df['lon']"], {}), "(df['lon'])\n", (9352, 9363), True, 'import numpy as np\n'), ((9377, 9401), 'numpy.isfinite', 'np.isfinite', (["df['depth']"], {}), "(df['depth'])\n", (9388, 9401), True, 'import numpy as np\n'), ((9415, 9437), 'numpy.isfinite', 'np.isfinite', (["df['unc']"], {}), "(df['unc'])\n", (9426, 9437), True, 'import numpy as np\n'), ((9775, 9802), 'os.path.isfile', 'os.path.isfile', (['output_file'], {}), '(output_file)\n', (9789, 9802), False, 'import os\n'), ((10077, 10101), 'pandas.read_csv', 'pd.read_csv', (['output_file'], {}), '(output_file)\n', (10088, 10101), True, 'import pandas as pd\n'), ((10116, 10147), 'pandas.concat', 'pd.concat', (['[old, df]'], {'sort': '(True)'}), '([old, df], sort=True)\n', (10125, 10147), True, 'import pandas as pd\n'), ((14487, 14521), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (14497, 14521), False, 'import csv\n'), ((19627, 19651), 'numpy.dot', 'np.dot', (['mask[i]', 'data[i]'], {}), '(mask[i], data[i])\n', (19633, 19651), True, 'import numpy as np\n'), ((22414, 22435), 'numpy.isnan', 'np.isnan', (["data['Paz']"], {}), "(data['Paz'])\n", (22422, 22435), True, 'import numpy as np\n'), ((22495, 22519), 'numpy.isfinite', 'np.isfinite', (["data['Paz']"], {}), "(data['Paz'])\n", (22506, 22519), True, 'import numpy as np\n'), ((25820, 25842), 'numpy.isfinite', 'np.isfinite', (["df['mrr']"], {}), "(df['mrr'])\n", (25831, 25842), True, 'import numpy as np\n'), ((28219, 28251), 'pandas.concat', 'pd.concat', (['[dfm, dfn]'], {'sort': '(True)'}), '([dfm, dfn], sort=True)\n', (28228, 28251), True, 'import pandas as pd\n'), ((29433, 29477), 'pandas.datetime.strptime', 'pd.datetime.strptime', (['x', '"""%Y %m %d %H %M %S"""'], {}), "(x, '%Y %m %d %H %M %S')\n", (29453, 29477), True, 'import pandas as pd\n'), ((34188, 34222), 'numpy.arange', 'np.arange', (['llcrnrlon', 'urcrnrlon', '(5)'], {}), '(llcrnrlon, urcrnrlon, 5)\n', (34197, 34222), True, 'import numpy as np\n'), ((34275, 34309), 'numpy.arange', 'np.arange', (['llcrnrlat', 'urcrnrlat', '(5)'], {}), '(llcrnrlat, urcrnrlat, 5)\n', (34284, 34309), True, 'import numpy as np\n'), ((45554, 45588), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (45564, 45588), False, 'import csv\n'), ((4939, 4980), 'pandas.read_csv', 'pd.read_csv', (['input_file'], {'low_memory': '(False)'}), '(input_file, low_memory=False)\n', (4950, 4980), True, 'import pandas as pd\n'), ((5565, 5596), 'numpy.arange', 'np.arange', (['start_ID', 'stop_ID', '(1)'], {}), '(start_ID, stop_ID, 1)\n', (5574, 5596), True, 'import numpy as np\n'), ((7548, 7579), 'numpy.arange', 'np.arange', (['start_ID', 'stop_ID', '(1)'], {}), '(start_ID, stop_ID, 1)\n', (7557, 7579), True, 'import numpy as np\n'), ((11049, 11077), 'pandas.to_datetime', 'pd.to_datetime', (["data['time']"], {}), "(data['time'])\n", (11063, 11077), True, 'import pandas as pd\n'), ((19691, 19727), 'numpy.vstack', 'np.vstack', (['(keepers, points_in_poly)'], {}), '((keepers, points_in_poly))\n', (19700, 19727), True, 'import numpy as np\n'), ((19847, 19870), 'numpy.isnan', 'np.isnan', (['keepers[i][0]'], {}), '(keepers[i][0])\n', (19855, 19870), True, 'import numpy as np\n'), ((39126, 39159), 'geopy.distance.geodesic', 'geodesic', (['eqo.coords', 'eqm1.coords'], {}), '(eqo.coords, eqm1.coords)\n', (39134, 39159), False, 'from geopy.distance import geodesic\n'), ((39184, 39217), 'geopy.distance.geodesic', 'geodesic', (['eqo.coords', 'eqm2.coords'], {}), '(eqo.coords, eqm2.coords)\n', (39192, 39217), False, 'from geopy.distance import geodesic\n'), ((952, 990), 'datetime.strptime', 'datetime.strptime', (['timestring', 'DATEFMT'], {}), '(timestring, DATEFMT)\n', (969, 990), False, 'import datetime\n'), ((43130, 43164), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'tdelta'}), '(seconds=tdelta)\n', (43148, 43164), False, 'import datetime\n'), ((6160, 6192), 'fnmatch.fnmatch', 'fnmatch.fnmatch', (['row', '"""*global*"""'], {}), "(row, '*global*')\n", (6175, 6192), False, 'import fnmatch\n'), ((11142, 11198), 'pandas.to_datetime', 'pd.to_datetime', (["data['time']"], {'format': '"""%m-%d-%YT%H:%M:%S"""'}), "(data['time'], format='%m-%d-%YT%H:%M:%S')\n", (11156, 11198), True, 'import pandas as pd\n'), ((1050, 1089), 'datetime.strptime', 'datetime.strptime', (['timestring', 'TIMEFMT2'], {}), '(timestring, TIMEFMT2)\n', (1067, 1089), False, 'import datetime\n'), ((11274, 11333), 'pandas.to_datetime', 'pd.to_datetime', (["data['time']"], {'format': '"""%m-%d-%YT%H:%M:%S.%f"""'}), "(data['time'], format='%m-%d-%YT%H:%M:%S.%f')\n", (11288, 11333), True, 'import pandas as pd\n'), ((11651, 11706), 'pandas.to_datetime', 'pd.to_datetime', (["row['time']"], {'format': '"""%m-%d-%YT%H:%M:%S"""'}), "(row['time'], format='%m-%d-%YT%H:%M:%S')\n", (11665, 11706), True, 'import pandas as pd\n'), ((11817, 11875), 'pandas.to_datetime', 'pd.to_datetime', (["row['time']"], {'format': '"""%m-%d-%YT%H:%M:%S.%f"""'}), "(row['time'], format='%m-%d-%YT%H:%M:%S.%f')\n", (11831, 11875), True, 'import pandas as pd\n')]
import numpy as np import matplotlib.pyplot as plt import math from scipy.optimize import linprog from cvxpy import * class CuttingPlaneModel: def __init__(self, dim, bounds): self.dim = dim self.bounds = bounds self.coefficients = np.empty((0,dim+1)) def __call__(self, x):#REMOVE y = [np.sum(np.multiply(coefficients_i, np.hstack((1,x)))) for coefficients_i in self.coefficients] return np.max(y), 0 def get_constraints(self): A_ub_x = np.asarray([[c[1],c[2]] for c in self.coefficients]) A_ub_y = np.asarray([-1 for i in range(self.coefficients.shape[0])]) b_ub = np.asarray([-c[0] for c in self.coefficients]) return A_ub_x, A_ub_y, b_ub def add_plane(self, f, g, x): c = f - np.sum(np.multiply(g,x)) new_plane = np.append(c,g) self.coefficients = np.append(self.coefficients, [new_plane], axis=0) def solve(self, lb, ub): A_ub_x, A_ub_y, b_ub = self.get_constraints() x = Variable(self.dim) y = Variable() #TODO: yp yn se non funziona per min negativo constraints = [] constraints.append(A_ub_x @ x + A_ub_y * y <= b_ub) objective = Minimize(y) problem = Problem(objective, constraints) problem.solve(verbose=False) #print("Problem status: ", problem.status) on_border = problem.status in ['unbounded', 'infeasible']# TODO infeasible fix se possibile if problem.status == 'infeasible': print("Warning: Infeasible problem") if on_border: lb_constraint = [lb]*self.dim # Rewrite as two variables ub_contraint = [ub]*self.dim constraints.append(lb_constraint <= x) constraints.append(x <= ub_contraint) problem = Problem(objective, constraints) problem.solve(verbose=False) #print("Problem status: ", problem.status) #print("MODEL min: ", x.value, y.value) return x.value, y.value, on_border def project_point(self, x0, level, max_distance_error=1e-2, verbose=False): n = len(x0) P = np.eye(n) q = np.multiply(x0, -2) x = cvxpy.Variable(n) y = cvxpy.Variable() A_ub_x, A_ub_y, b_ub = self.get_constraints() objective = cvxpy.quad_form(x, P) + q.T @ x constraints = [] constraints.append(A_ub_x @ x + A_ub_y * y <= b_ub) constraints.append(y == level) prob = cvxpy.Problem(cvxpy.Minimize(objective), constraints) prob.solve(verbose=verbose, max_iter=10**7, time_limit=5) #print("Solution = ", x.value, y.value) if np.abs(level-y.value) > max_distance_error: print("Warning, projection error above threshold: ", np.abs(level-y.value)) return x.value def plot(self, points=[], temp_points=[]): plt.figure() xaxis = np.linspace(-self.bounds, self.bounds, num=100) yaxis = np.linspace(-self.bounds, self.bounds, num=100) result = np.zeros((len(xaxis),len(yaxis))) for i, x in enumerate(xaxis): for j, y in enumerate(yaxis): result[j,i], _ = self.__call__([x,y]) c = plt.contour(xaxis, yaxis, result, 50) plt.colorbar() for p in temp_points: plt.plot(p[0], p[1], 'o', color='red'); for i, p in enumerate(points): plt.plot(p[0], p[1], 'o', color='black'); plt.text(p[0], p[1], str(i)) plt.show() class LevelMethod2d: def __init__(self, bounds=10, lambda_=0.29289, epsilon=0.001, max_iter=1000): self.bounds = bounds self.lambda_ = lambda_ self.epsilon = epsilon self.max_iter = 1000 self.function = None self.dim = None self.function_points = None self.current_iter = None # Algorithm data self.f_upstar = None self.f_substar = None self.x_upstar = None self.x_substar = None self.x = None def cache_points(self, xaxis=None, yaxis=None):# Todo, for x of dim n if xaxis is None: xaxis = np.linspace(-self.bounds, self.bounds, num=100) if yaxis is None: yaxis = np.linspace(-self.bounds, self.bounds, num=100) result = np.zeros((len(xaxis),len(yaxis))) for i, x in enumerate(xaxis): for j, y in enumerate(yaxis): result[j,i], _ = self.function([x,y]) self.function_points = result def plot(self, points=[], temp_points=[]): plt.figure() xaxis = np.linspace(-self.bounds, self.bounds, num=100) yaxis = np.linspace(-self.bounds, self.bounds, num=100) if self.function_points is None: self.cache_points(xaxis, yaxis) c = plt.contour(xaxis, yaxis, self.function_points, 50) plt.colorbar() for p in temp_points: plt.plot(p[0], p[1], 'o', color='red'); for i, p in enumerate(points): plt.plot(p[0], p[1], 'o', color='black'); plt.text(p[0], p[1], str(i)) plt.show() def solve(self, function, x, verbose=False, plot=False): self.function = function self.dim = len(x) self.x = x # Build the cutting plane model self.model = CuttingPlaneModel(self.dim, self.bounds) plot_points = [x] self.f_upstar = math.inf self.x_upstar = None gap = math.inf self.current_iter = 0 print(f"Iteration\tf*\t\tModel Min\t\tGap\t\tLevel\t Is on boder?") while gap > self.epsilon: # Oracle computes f and g current_f, current_g = function(self.x) # Update model self.model.add_plane(current_f, current_g, self.x) # Compute f_substar, f_upstar, x_upstar self.x_substar, self.f_substar, is_on_border = self.model.solve(-self.bounds,self.bounds) if self.f_upstar > current_f: self.f_upstar = current_f self.x_upstar = self.x # Project x onto level set gap = self.f_upstar - self.f_substar level = self.f_substar + self.lambda_ * gap if gap < -0.1: print("Warning: Negative gap ", gap) break if is_on_border: # Project x on the border, as target level is infinite. self.x = self.x_substar else: # Project x on the target level self.x = self.model.project_point(self.x, level, verbose=verbose) print(f"{self.current_iter}\t\t{self.f_upstar:.6f}\t{self.f_substar:.6f}\t\t{gap:.6f}\t{level:.6f} {is_on_border}") if plot: plot_points.append(self.x) self.model.plot(plot_points) self.plot(plot_points) self.current_iter += 1 if self.current_iter > self.max_iter: print("Warning: Maximum number of iterations reached.") break if __name__ == "__main__": from test_function import TestFunction f = LevelMethod2d(bounds = 20) f.solve(TestFunction(), [-1,-3], plot=False)
[ "numpy.abs", "numpy.eye", "numpy.multiply", "numpy.hstack", "matplotlib.pyplot.colorbar", "numpy.asarray", "matplotlib.pyplot.plot", "numpy.max", "numpy.append", "matplotlib.pyplot.contour", "matplotlib.pyplot.figure", "numpy.linspace", "numpy.empty", "test_function.TestFunction", "matplotlib.pyplot.show" ]
[((261, 283), 'numpy.empty', 'np.empty', (['(0, dim + 1)'], {}), '((0, dim + 1))\n', (269, 283), True, 'import numpy as np\n'), ((501, 554), 'numpy.asarray', 'np.asarray', (['[[c[1], c[2]] for c in self.coefficients]'], {}), '([[c[1], c[2]] for c in self.coefficients])\n', (511, 554), True, 'import numpy as np\n'), ((646, 694), 'numpy.asarray', 'np.asarray', (['[(-c[0]) for c in self.coefficients]'], {}), '([(-c[0]) for c in self.coefficients])\n', (656, 694), True, 'import numpy as np\n'), ((825, 840), 'numpy.append', 'np.append', (['c', 'g'], {}), '(c, g)\n', (834, 840), True, 'import numpy as np\n'), ((868, 917), 'numpy.append', 'np.append', (['self.coefficients', '[new_plane]'], {'axis': '(0)'}), '(self.coefficients, [new_plane], axis=0)\n', (877, 917), True, 'import numpy as np\n'), ((2142, 2151), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (2148, 2151), True, 'import numpy as np\n'), ((2164, 2183), 'numpy.multiply', 'np.multiply', (['x0', '(-2)'], {}), '(x0, -2)\n', (2175, 2183), True, 'import numpy as np\n'), ((2884, 2896), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2894, 2896), True, 'import matplotlib.pyplot as plt\n'), ((2914, 2961), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (2925, 2961), True, 'import numpy as np\n'), ((2978, 3025), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (2989, 3025), True, 'import numpy as np\n'), ((3226, 3263), 'matplotlib.pyplot.contour', 'plt.contour', (['xaxis', 'yaxis', 'result', '(50)'], {}), '(xaxis, yaxis, result, 50)\n', (3237, 3263), True, 'import matplotlib.pyplot as plt\n'), ((3272, 3286), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (3284, 3286), True, 'import matplotlib.pyplot as plt\n'), ((3513, 3523), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3521, 3523), True, 'import matplotlib.pyplot as plt\n'), ((4585, 4597), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4595, 4597), True, 'import matplotlib.pyplot as plt\n'), ((4619, 4666), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (4630, 4666), True, 'import numpy as np\n'), ((4687, 4734), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (4698, 4734), True, 'import numpy as np\n'), ((4846, 4897), 'matplotlib.pyplot.contour', 'plt.contour', (['xaxis', 'yaxis', 'self.function_points', '(50)'], {}), '(xaxis, yaxis, self.function_points, 50)\n', (4857, 4897), True, 'import matplotlib.pyplot as plt\n'), ((4910, 4924), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (4922, 4924), True, 'import matplotlib.pyplot as plt\n'), ((5175, 5185), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5183, 5185), True, 'import matplotlib.pyplot as plt\n'), ((7238, 7252), 'test_function.TestFunction', 'TestFunction', ([], {}), '()\n', (7250, 7252), False, 'from test_function import TestFunction\n'), ((439, 448), 'numpy.max', 'np.max', (['y'], {}), '(y)\n', (445, 448), True, 'import numpy as np\n'), ((2673, 2696), 'numpy.abs', 'np.abs', (['(level - y.value)'], {}), '(level - y.value)\n', (2679, 2696), True, 'import numpy as np\n'), ((3330, 3368), 'matplotlib.pyplot.plot', 'plt.plot', (['p[0]', 'p[1]', '"""o"""'], {'color': '"""red"""'}), "(p[0], p[1], 'o', color='red')\n", (3338, 3368), True, 'import matplotlib.pyplot as plt\n'), ((3421, 3461), 'matplotlib.pyplot.plot', 'plt.plot', (['p[0]', 'p[1]', '"""o"""'], {'color': '"""black"""'}), "(p[0], p[1], 'o', color='black')\n", (3429, 3461), True, 'import matplotlib.pyplot as plt\n'), ((4158, 4205), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (4169, 4205), True, 'import numpy as np\n'), ((4252, 4299), 'numpy.linspace', 'np.linspace', (['(-self.bounds)', 'self.bounds'], {'num': '(100)'}), '(-self.bounds, self.bounds, num=100)\n', (4263, 4299), True, 'import numpy as np\n'), ((4976, 5014), 'matplotlib.pyplot.plot', 'plt.plot', (['p[0]', 'p[1]', '"""o"""'], {'color': '"""red"""'}), "(p[0], p[1], 'o', color='red')\n", (4984, 5014), True, 'import matplotlib.pyplot as plt\n'), ((5075, 5115), 'matplotlib.pyplot.plot', 'plt.plot', (['p[0]', 'p[1]', '"""o"""'], {'color': '"""black"""'}), "(p[0], p[1], 'o', color='black')\n", (5083, 5115), True, 'import matplotlib.pyplot as plt\n'), ((787, 804), 'numpy.multiply', 'np.multiply', (['g', 'x'], {}), '(g, x)\n', (798, 804), True, 'import numpy as np\n'), ((2782, 2805), 'numpy.abs', 'np.abs', (['(level - y.value)'], {}), '(level - y.value)\n', (2788, 2805), True, 'import numpy as np\n'), ((364, 381), 'numpy.hstack', 'np.hstack', (['(1, x)'], {}), '((1, x))\n', (373, 381), True, 'import numpy as np\n')]
from gekko import GEKKO import numpy as np import matplotlib.pyplot as plt # generate training data x = np.linspace(0.0,2*np.pi,20) y = np.sin(x) # option for fitting function select = True # True / False if select: # Size with cosine function nin = 1 # inputs n1 = 1 # hidden layer 1 (linear) n2 = 1 # hidden layer 2 (nonlinear) n3 = 1 # hidden layer 3 (linear) nout = 1 # outputs else: # Size with hyperbolic tangent function nin = 1 # inputs n1 = 2 # hidden layer 1 (linear) n2 = 2 # hidden layer 2 (nonlinear) n3 = 2 # hidden layer 3 (linear) nout = 1 # outputs # Initialize gekko train = GEKKO() test = GEKKO() model = [train,test] for m in model: # input(s) m.inpt = m.Param() # layer 1 m.w1 = m.Array(m.FV, (nin,n1)) m.l1 = [m.Intermediate(m.w1[0,i]*m.inpt) for i in range(n1)] # layer 2 m.w2a = m.Array(m.FV, (n1,n2)) m.w2b = m.Array(m.FV, (n1,n2)) if select: m.l2 = [m.Intermediate(sum([m.cos(m.w2a[j,i]+m.w2b[j,i]*m.l1[j]) \ for j in range(n1)])) for i in range(n2)] else: m.l2 = [m.Intermediate(sum([m.tanh(m.w2a[j,i]+m.w2b[j,i]*m.l1[j]) \ for j in range(n1)])) for i in range(n2)] # layer 3 m.w3 = m.Array(m.FV, (n2,n3)) m.l3 = [m.Intermediate(sum([m.w3[j,i]*m.l2[j] \ for j in range(n2)])) for i in range(n3)] # output(s) m.outpt = m.CV() m.Equation(m.outpt==sum([m.l3[i] for i in range(n3)])) # flatten matrices m.w1 = m.w1.flatten() m.w2a = m.w2a.flatten() m.w2b = m.w2b.flatten() m.w3 = m.w3.flatten() # Fit parameter weights m = train m.inpt.value=x m.outpt.value=y m.outpt.FSTATUS = 1 for i in range(len(m.w1)): m.w1[i].FSTATUS=1 m.w1[i].STATUS=1 m.w1[i].MEAS=1.0 for i in range(len(m.w2a)): m.w2a[i].STATUS=1 m.w2b[i].STATUS=1 m.w2a[i].FSTATUS=1 m.w2b[i].FSTATUS=1 m.w2a[i].MEAS=1.0 m.w2b[i].MEAS=0.5 for i in range(len(m.w3)): m.w3[i].FSTATUS=1 m.w3[i].STATUS=1 m.w3[i].MEAS=1.0 m.options.IMODE = 2 m.options.SOLVER = 3 m.options.EV_TYPE = 2 m.solve(disp=False) # Test sample points m = test for i in range(len(m.w1)): m.w1[i].MEAS=train.w1[i].NEWVAL m.w1[i].FSTATUS = 1 print('w1['+str(i)+']: '+str(m.w1[i].MEAS)) for i in range(len(m.w2a)): m.w2a[i].MEAS=train.w2a[i].NEWVAL m.w2b[i].MEAS=train.w2b[i].NEWVAL m.w2a[i].FSTATUS = 1 m.w2b[i].FSTATUS = 1 print('w2a['+str(i)+']: '+str(m.w2a[i].MEAS)) print('w2b['+str(i)+']: '+str(m.w2b[i].MEAS)) for i in range(len(m.w3)): m.w3[i].MEAS=train.w3[i].NEWVAL m.w3[i].FSTATUS = 1 print('w3['+str(i)+']: '+str(m.w3[i].MEAS)) m.inpt.value=np.linspace(-2*np.pi,4*np.pi,100) m.options.IMODE = 2 m.options.SOLVER = 3 m.solve(disp=False) plt.figure() plt.plot(x,y,'bo',label='data') plt.plot(test.inpt.value,test.outpt.value,'r-',label='predict') plt.legend(loc='best') plt.ylabel('y') plt.xlabel('x') plt.show()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "gekko.GEKKO", "numpy.linspace", "matplotlib.pyplot.figure", "numpy.sin", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((107, 138), 'numpy.linspace', 'np.linspace', (['(0.0)', '(2 * np.pi)', '(20)'], {}), '(0.0, 2 * np.pi, 20)\n', (118, 138), True, 'import numpy as np\n'), ((139, 148), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (145, 148), True, 'import numpy as np\n'), ((660, 667), 'gekko.GEKKO', 'GEKKO', ([], {}), '()\n', (665, 667), False, 'from gekko import GEKKO\n'), ((676, 683), 'gekko.GEKKO', 'GEKKO', ([], {}), '()\n', (681, 683), False, 'from gekko import GEKKO\n'), ((2750, 2789), 'numpy.linspace', 'np.linspace', (['(-2 * np.pi)', '(4 * np.pi)', '(100)'], {}), '(-2 * np.pi, 4 * np.pi, 100)\n', (2761, 2789), True, 'import numpy as np\n'), ((2846, 2858), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2856, 2858), True, 'import matplotlib.pyplot as plt\n'), ((2859, 2893), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""bo"""'], {'label': '"""data"""'}), "(x, y, 'bo', label='data')\n", (2867, 2893), True, 'import matplotlib.pyplot as plt\n'), ((2891, 2957), 'matplotlib.pyplot.plot', 'plt.plot', (['test.inpt.value', 'test.outpt.value', '"""r-"""'], {'label': '"""predict"""'}), "(test.inpt.value, test.outpt.value, 'r-', label='predict')\n", (2899, 2957), True, 'import matplotlib.pyplot as plt\n'), ((2955, 2977), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (2965, 2977), True, 'import matplotlib.pyplot as plt\n'), ((2978, 2993), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (2988, 2993), True, 'import matplotlib.pyplot as plt\n'), ((2994, 3009), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (3004, 3009), True, 'import matplotlib.pyplot as plt\n'), ((3010, 3020), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3018, 3020), True, 'import matplotlib.pyplot as plt\n')]
import argparse import os import sys import numpy as np import pdb from tqdm import tqdm import cv2 import glob import numpy as np from numpy import * import matplotlib #matplotlib.use("Agg") #matplotlib.use("wx") #matplotlib.use('tkagg') import matplotlib.pyplot as plt import scipy from scipy.special import softmax import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset import torch.nn as nn from modeling.sync_batchnorm.replicate import patch_replication_callback from modeling.deeplab import * from PIL import Image # class load_data(Dataset): # def __init__(self,args,img_path): # super().__init__() # self.args = args # self.img_path = img_path # def __getitem__(self,img_path): # image = Image.open(self.img_path).convert('RGB') # image = np.array(image).astype(np.float32).transpose((2, 0, 1)) # image = torch.from_numpy(image).float() # return image def get_model(nclass,args): model = DeepLab(num_classes=nclass, backbone=args.backbone, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn) # Using cuda if args.cuda: model = torch.nn.DataParallel(model, device_ids=args.gpu_ids) patch_replication_callback(model) model = model.cuda() checkpoint = torch.load(args.resume) if args.cuda: model.module.load_state_dict(checkpoint['state_dict']) else: model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) return model def get_pred(img_path,model,args): model.eval() image = Image.open(img_path).convert('RGB') #image = image.resize((512,512), Image.ANTIALIAS) image = np.array(image).astype(np.float32).transpose((2, 0, 1)) image = np.expand_dims(image, axis=0) image = torch.from_numpy(image).float() if args.cuda: image = image.cuda() with torch.no_grad(): output = model(image) #pdb.set_trace() # normalize = nn.Softmax(dim=1) # output = normalize(output) pred = output.data.cpu().numpy() return pred def F1_loss(pred,target): N = np.logical_or(pred,target) # logical Tp = np.logical_and(pred,target) Fn = np.subtract(target,Tp) # element-wise subtraction in pytorch #Fn = np.bitwise_xor(target,Tp) Fp = np.subtract(pred,Tp) Tn = np.subtract(N,np.logical_or(Tp,Fp,Fn)) #pdb.set_trace() precision = np.sum(Tp)/(np.sum(Tp)+np.sum(Fp)) recall = np.sum(Tp)/(np.sum(Tp)+np.sum(Fn)) F1 = (2*np.sum(Tp))/(2*np.sum(Tp)+np.sum(Fn)+np.sum(Fp)) #F1 = np.true_divide(np.add(2*Tp,Fn,Fp),2*Tp) #F1 = np.true_divide(np.sum(np.multiply(2,Tp),Fn,Fp),np.multiply(2,Tp)) #F1 = np.true_divide(np.multiply(2,Tp),np.multiply(np.sum(Tp,Fn),np.sum(Tp,Fn))) #accuracy = np.true_divide(np.add(Tp,Tn),np.add(Tp,Tn,Fp,Fn)) accuracy = np.sum(Tp+Tn)/np.sum(N) return F1 , accuracy, precision, recall def F1_rwi(pred,target): #pred = pred[:,:,0] # using only the red channel #target = target[:,:,0] N = np.logical_or(pred, target) # logical Tp = np.logical_and(pred, target) Fn = np.bitwise_xor(target, Tp) # element-wise subtraction in pytorch Fp = np.bitwise_xor(pred, Tp) xx= np.logical_or(np.logical_or(Tp,Fp), Fn) Tn = np.bitwise_xor(N, xx) precision = Tp.sum()/(Tp.sum()+ Fp.sum() ) recall = Tp.sum()/(Tp.sum()+ Fn.sum()) F1 = 2*Tp.sum() /(2*Tp.sum()+ Fn.sum()+ Fp.sum()) accuracy = (Tp.sum()+Tn.sum())/N.sum() return F1, accuracy, precision, recall if __name__=='__main__': #### Parameters and paths: nclass = 2 save_rrc_res_path = "/path/to/deepLabV3Plus/deeplabv3plus_pixelWise/results/validation_images/B_260/" model_path = "/path/to/deepLabV3Plus/deeplabv3plus_pixelWise/results/icdar_models/run/icdar/deeplab-resnet/model_best.pth.tar" alphabet="#abcdefghijklmnopqrstuvwxyz1234567890@" img_path = "/path/to/GAN_text/data/text_segmentation/test/A/" gt_path = "/path/to/GAN_text/data/text_segmentation/test/B_gt_1chanel/" ### args parser = argparse.ArgumentParser(description="PyTorch DeeplabV3Plus Heatmap Prediction") parser.add_argument('--backbone', type=str, default='resnet', choices=['resnet', 'xception', 'drn', 'mobilenet'], help='backbone name (default: resnet)') parser.add_argument('--freeze-bn', type=bool, default=False, help='whether to freeze bn parameters (default: False)') parser.add_argument('--out-stride', type=int, default=16, help='network output stride (default: 8)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--gpu-ids', type=str, default='0', help='use which gpu to train, must be a \ comma-separated list of integers only (default=0)') parser.add_argument('--sync-bn', type=bool, default=None, help='whether to use sync bn (default: auto)') ##checking point parser.add_argument('--resume', type=str, default= model_path, help='put the path to resuming file if needed') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: try: args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')] except ValueError: raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only') if args.sync_bn is None: if args.cuda and len(args.gpu_ids) > 1: args.sync_bn = True else: args.sync_bn = False image_files = sorted(glob.glob(img_path+'*.png')) #'*.jpg')) trained_model = get_model(nclass,args) f1_all = [] accuracy_all = [] f1_all_rwi = [] accuracy_all_rwi = [] #for img_path in sys.argv[1:]: #for i in range(0,10): for i in range(0,len(image_files)): img_path = image_files[i] print("image path is: {}".format(img_path)) img_name = img_path.split('/')[-1].split('.')[0] gt = asarray(Image.open(gt_path+img_name+'.png')) #trained_model = get_model(nclass,args) #pdb.set_trace() # load_test_data = load_data(args,img_path) # dataloader = DataLoader(load_test_data) # for ii, img_test in enumerate(dataloader): pred = get_pred(img_path,trained_model,args) pred = softmax(pred, axis=1) #image_source = cv2.imread(img_path) #image_source = cv2.resize(image_source, (512, 512)) #pdb.set_trace() #fig = plt.figure() # plt.imshow(pred.squeeze()[1,:,:]) # plt.show() # res = pred.squeeze()[1,:,:]>0.3 #res = np.argmax(pred.squeeze(), axis=0) #pdb.set_trace() # plt.imshow(res) # plt.show() #ret,pred_bin = cv2.threshold(pred.squeeze()[1,:,:],0.2,255,cv2.THRESH_BINARY) pred_bin = np.argmax(pred.squeeze(), axis=0) #pdb.set_trace() f1, acc, prc, rcl = F1_loss(pred_bin>5,gt>5) print("F1 is {}, accuracy is {}, precision is {}, recall is {}".format(f1,acc,prc,rcl)) #pdb.set_trace() pred_bin_8 = pred_bin.astype(np.uint8) f1_rwi, acc_rwi, prc_rwi, rcl_rwi = F1_rwi(pred_bin_8>5,gt>5) print("F1_rwi is {}, accuracy_rwi is {}, precision_rwi is {}, recall_rwi is {}".format(f1_rwi,acc_rwi,prc_rwi,rcl_rwi)) f1_all.append(f1) accuracy_all.append(acc) f1_all_rwi.append(f1_rwi) accuracy_all_rwi.append(acc_rwi) print("the average of F1 is {}".format(np.mean(f1_all))) print("the average accuracy is {}".format(np.mean(accuracy_all))) print("the average of F1_rwi is {}".format(np.mean(f1_all_rwi))) print("the average accuracy_rwi is {}".format(np.mean(accuracy_all_rwi)))
[ "modeling.sync_batchnorm.replicate.patch_replication_callback", "numpy.mean", "PIL.Image.open", "numpy.logical_and", "argparse.ArgumentParser", "torch.load", "numpy.bitwise_xor", "numpy.logical_or", "numpy.subtract", "torch.nn.DataParallel", "torch.from_numpy", "numpy.sum", "numpy.array", "torch.cuda.is_available", "numpy.expand_dims", "torch.no_grad", "glob.glob", "scipy.special.softmax" ]
[((1440, 1463), 'torch.load', 'torch.load', (['args.resume'], {}), '(args.resume)\n', (1450, 1463), False, 'import torch\n'), ((1961, 1990), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (1975, 1990), True, 'import numpy as np\n'), ((2333, 2360), 'numpy.logical_or', 'np.logical_or', (['pred', 'target'], {}), '(pred, target)\n', (2346, 2360), True, 'import numpy as np\n'), ((2380, 2408), 'numpy.logical_and', 'np.logical_and', (['pred', 'target'], {}), '(pred, target)\n', (2394, 2408), True, 'import numpy as np\n'), ((2417, 2440), 'numpy.subtract', 'np.subtract', (['target', 'Tp'], {}), '(target, Tp)\n', (2428, 2440), True, 'import numpy as np\n'), ((2524, 2545), 'numpy.subtract', 'np.subtract', (['pred', 'Tp'], {}), '(pred, Tp)\n', (2535, 2545), True, 'import numpy as np\n'), ((3258, 3285), 'numpy.logical_or', 'np.logical_or', (['pred', 'target'], {}), '(pred, target)\n', (3271, 3285), True, 'import numpy as np\n'), ((3305, 3333), 'numpy.logical_and', 'np.logical_and', (['pred', 'target'], {}), '(pred, target)\n', (3319, 3333), True, 'import numpy as np\n'), ((3343, 3369), 'numpy.bitwise_xor', 'np.bitwise_xor', (['target', 'Tp'], {}), '(target, Tp)\n', (3357, 3369), True, 'import numpy as np\n'), ((3417, 3441), 'numpy.bitwise_xor', 'np.bitwise_xor', (['pred', 'Tp'], {}), '(pred, Tp)\n', (3431, 3441), True, 'import numpy as np\n'), ((3499, 3520), 'numpy.bitwise_xor', 'np.bitwise_xor', (['N', 'xx'], {}), '(N, xx)\n', (3513, 3520), True, 'import numpy as np\n'), ((4288, 4367), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch DeeplabV3Plus Heatmap Prediction"""'}), "(description='PyTorch DeeplabV3Plus Heatmap Prediction')\n", (4311, 4367), False, 'import argparse\n'), ((1297, 1350), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {'device_ids': 'args.gpu_ids'}), '(model, device_ids=args.gpu_ids)\n', (1318, 1350), False, 'import torch\n'), ((1359, 1392), 'modeling.sync_batchnorm.replicate.patch_replication_callback', 'patch_replication_callback', (['model'], {}), '(model)\n', (1385, 1392), False, 'from modeling.sync_batchnorm.replicate import patch_replication_callback\n'), ((2092, 2107), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2105, 2107), False, 'import torch\n'), ((2573, 2598), 'numpy.logical_or', 'np.logical_or', (['Tp', 'Fp', 'Fn'], {}), '(Tp, Fp, Fn)\n', (2586, 2598), True, 'import numpy as np\n'), ((2636, 2646), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2642, 2646), True, 'import numpy as np\n'), ((2684, 2694), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2690, 2694), True, 'import numpy as np\n'), ((3073, 3088), 'numpy.sum', 'np.sum', (['(Tp + Tn)'], {}), '(Tp + Tn)\n', (3079, 3088), True, 'import numpy as np\n'), ((3087, 3096), 'numpy.sum', 'np.sum', (['N'], {}), '(N)\n', (3093, 3096), True, 'import numpy as np\n'), ((3464, 3485), 'numpy.logical_or', 'np.logical_or', (['Tp', 'Fp'], {}), '(Tp, Fp)\n', (3477, 3485), True, 'import numpy as np\n'), ((5542, 5567), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5565, 5567), False, 'import torch\n'), ((6002, 6031), 'glob.glob', 'glob.glob', (["(img_path + '*.png')"], {}), "(img_path + '*.png')\n", (6011, 6031), False, 'import glob\n'), ((6794, 6815), 'scipy.special.softmax', 'softmax', (['pred'], {'axis': '(1)'}), '(pred, axis=1)\n', (6801, 6815), False, 'from scipy.special import softmax\n'), ((1791, 1811), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (1801, 1811), False, 'from PIL import Image\n'), ((2003, 2026), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (2019, 2026), False, 'import torch\n'), ((2648, 2658), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2654, 2658), True, 'import numpy as np\n'), ((2659, 2669), 'numpy.sum', 'np.sum', (['Fp'], {}), '(Fp)\n', (2665, 2669), True, 'import numpy as np\n'), ((2696, 2706), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2702, 2706), True, 'import numpy as np\n'), ((2707, 2717), 'numpy.sum', 'np.sum', (['Fn'], {}), '(Fn)\n', (2713, 2717), True, 'import numpy as np\n'), ((2732, 2742), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2738, 2742), True, 'import numpy as np\n'), ((2769, 2779), 'numpy.sum', 'np.sum', (['Fp'], {}), '(Fp)\n', (2775, 2779), True, 'import numpy as np\n'), ((6442, 6481), 'PIL.Image.open', 'Image.open', (["(gt_path + img_name + '.png')"], {}), "(gt_path + img_name + '.png')\n", (6452, 6481), False, 'from PIL import Image\n'), ((7978, 7993), 'numpy.mean', 'np.mean', (['f1_all'], {}), '(f1_all)\n', (7985, 7993), True, 'import numpy as np\n'), ((8046, 8067), 'numpy.mean', 'np.mean', (['accuracy_all'], {}), '(accuracy_all)\n', (8053, 8067), True, 'import numpy as np\n'), ((8122, 8141), 'numpy.mean', 'np.mean', (['f1_all_rwi'], {}), '(f1_all_rwi)\n', (8129, 8141), True, 'import numpy as np\n'), ((8198, 8223), 'numpy.mean', 'np.mean', (['accuracy_all_rwi'], {}), '(accuracy_all_rwi)\n', (8205, 8223), True, 'import numpy as np\n'), ((2758, 2768), 'numpy.sum', 'np.sum', (['Fn'], {}), '(Fn)\n', (2764, 2768), True, 'import numpy as np\n'), ((1893, 1908), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (1901, 1908), True, 'import numpy as np\n'), ((2747, 2757), 'numpy.sum', 'np.sum', (['Tp'], {}), '(Tp)\n', (2753, 2757), True, 'import numpy as np\n')]
import numpy as np from scipy.integrate import odeint class MorrisLecar: """ Creates a MorrisLecar model. """ def __init__(self, C=20, VL=-60, VCa=120, VK=-84, gL=2, gCa=4, gK=8, V1=-1.2, V2=18, V3=12, V4=17.4, phi=0.06): """ Initializes the model. Args: C (int, float): Capacitance of the membrane. VL (int, float): Potential L. VCa (int, float): Potential Ca. VK (int, float): Potential K. gL (int, float): Conductance L. gCa (int, float): Conductance Ca. gK (int, float): Conductance K. V1 (int, float): Potential at which Mss converges. V2 (int, float): Reciprocal of slope of Mss. V3 (int, float): Potential at which Nss converges. V4 (int, float): Reciprocal of slope of Nss. phi (int, float): Time scale recovery. """ self.C = C self.VL = VL self.VCa = VCa self.VK = VK self.gL = gL self.gCa = gCa self.gK = gK self.V1 = V1 self.V2 = V2 self.V3 = V3 self.V4 = V4 self.phi = phi self.t = None self.dt = None self.tvec = None self.V = None self.N = None def __repr__(self): """ Visualize model parameters when printing. """ return (f'MorrisLecar(C={self.C}, VL={self.VL}, VCa={self.VCa}, VK={self.VK}, ' f'gL={self.gL}, gCa={self.gCa}, gK={self.gK}, V1={self.V1}, V2={self.V2}, ' f'V3={self.V3}, V4={self.V4}, phi={self.phi})') def _system_equations(self, X, t, current): """ Defines the equations of the dynamical system for integration. """ Mss = (1 + np.tanh((X[0] - self.V1) / self.V2)) / 2 Nss = (1 + np.tanh((X[0] - self.V3) / self.V4)) / 2 tau = 1 / self.phi * (np.cosh((X[0] - self.V3) / (2 * self.V4))) return [(1 / self.C) * (current - self.gL * (X[0] - self.VL) - self.gCa * Mss * (X[0] - self.VCa) - self.gK * X[1] * (X[0] - self.VK)), (Nss - X[1]) / tau] def run(self, X0=[0, 0], current=1, t=100, dt=0.01): """ Runs the model. Args: X0 (list, optional): Initial values of V and N. Defaults to [0, 0]. current (int, optional): External current. Defaults to 1. t (int, optional): Total time for the simulation. Defaults to 100. dt (float, optional): Simulation step. Defaults to 0.01. """ self.current = current self.t = t self.dt = dt self.tvec = np.arange(0, self.t, self.dt) X = odeint(self._system_equations, X0, self.tvec, (current,)) self.V, self.N = X[:, 0], X[:, 1]
[ "scipy.integrate.odeint", "numpy.tanh", "numpy.cosh", "numpy.arange" ]
[((2678, 2707), 'numpy.arange', 'np.arange', (['(0)', 'self.t', 'self.dt'], {}), '(0, self.t, self.dt)\n', (2687, 2707), True, 'import numpy as np\n'), ((2720, 2777), 'scipy.integrate.odeint', 'odeint', (['self._system_equations', 'X0', 'self.tvec', '(current,)'], {}), '(self._system_equations, X0, self.tvec, (current,))\n', (2726, 2777), False, 'from scipy.integrate import odeint\n'), ((1944, 1985), 'numpy.cosh', 'np.cosh', (['((X[0] - self.V3) / (2 * self.V4))'], {}), '((X[0] - self.V3) / (2 * self.V4))\n', (1951, 1985), True, 'import numpy as np\n'), ((1813, 1848), 'numpy.tanh', 'np.tanh', (['((X[0] - self.V1) / self.V2)'], {}), '((X[0] - self.V1) / self.V2)\n', (1820, 1848), True, 'import numpy as np\n'), ((1873, 1908), 'numpy.tanh', 'np.tanh', (['((X[0] - self.V3) / self.V4)'], {}), '((X[0] - self.V3) / self.V4)\n', (1880, 1908), True, 'import numpy as np\n')]
import logging import numpy as np from .transformer import Transformer, FFTTransformer logger = logging.getLogger(__name__) class MapScaler: def __init__(self, xmap, scattering='xray'): self.xmap = xmap self.scattering = scattering self._model_map = xmap.zeros_like(xmap) def subtract(self, structure): if self.xmap.hkl is not None: hkl = self.xmap.hkl transformer = FFTTransformer( structure, self._model_map, hkl=hkl, scattering=self.scattering) else: transformer = Transformer( structure, self._model_map, simple=True, rmax=3, scattering=self.scattering) logger.info("Subtracting density.") transformer.density() self.xmap.array -= self._model_map.array def scale(self, structure, radius=1): if self.xmap.hkl is not None: hkl = self.xmap.hkl transformer = FFTTransformer(structure, self._model_map, hkl=hkl, scattering=self.scattering) else: transformer = Transformer(structure, self._model_map, simple=True, rmax=3, scattering=self.scattering) # Get all map coordinates of interest: transformer.mask(radius) mask = self._model_map.array > 0 # Calculate map based on structure: transformer.reset(full=True) transformer.density() # Get all map values of interest xmap_masked = self.xmap.array[mask] model_masked = self._model_map.array[mask] # Get the mean of masked observed and masked calculated map values xmap_masked_mean = xmap_masked.mean() model_masked_mean = model_masked.mean() # Get optimal scaling factor and mean-difference. xmap_masked -= xmap_masked_mean model_masked -= model_masked_mean s2 = np.dot(model_masked, xmap_masked) s1 = np.dot(xmap_masked, xmap_masked) scaling_factor = s2 / s1 k = model_masked_mean - scaling_factor * xmap_masked_mean logger.info(f"L2 scaling: S = {scaling_factor:.2f}\tk = {k:.2f}") # Scale the observed map to the calculated map self.xmap.array = scaling_factor * self.xmap.array + k transformer.reset(full=True) def cutoff(self, cutoff_value, value=-1): cutoff_mask = self.xmap.array < cutoff_value self.xmap.array[cutoff_mask] = value logger.info(f"Map absolute cutoff value: {cutoff_value:.2f}")
[ "logging.getLogger", "numpy.dot" ]
[((99, 126), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (116, 126), False, 'import logging\n'), ((1942, 1975), 'numpy.dot', 'np.dot', (['model_masked', 'xmap_masked'], {}), '(model_masked, xmap_masked)\n', (1948, 1975), True, 'import numpy as np\n'), ((1989, 2021), 'numpy.dot', 'np.dot', (['xmap_masked', 'xmap_masked'], {}), '(xmap_masked, xmap_masked)\n', (1995, 2021), True, 'import numpy as np\n')]
from robot.thymio_robot import ThymioII from robot.vrep_robot import VrepRobot from aseba.aseba import Aseba from utility.util_functions import normalize import numpy as np T_SEN_MIN = 0 T_SEN_MAX = 4500 class EvolvedRobot(VrepRobot, ThymioII): def __init__(self, name, client_id, id, op_mode, chromosome, robot_type): VrepRobot.__init__(self, client_id, id, op_mode, robot_type) ThymioII.__init__(self, name) self.chromosome = chromosome self.n_t_sensor_activation = np.array([]) self.t_sensor_activation = np.array([]) def t_read_prox(self): self.t_sensor_activation = np.array( super(EvolvedRobot, self).t_read_prox()) self.n_t_sensor_activation = np.array( [normalize(xi, T_SEN_MIN, T_SEN_MAX, 0.0, 1.0) for xi in self.t_sensor_activation]) return self.n_t_sensor_activation
[ "numpy.array", "robot.vrep_robot.VrepRobot.__init__", "utility.util_functions.normalize", "robot.thymio_robot.ThymioII.__init__" ]
[((335, 395), 'robot.vrep_robot.VrepRobot.__init__', 'VrepRobot.__init__', (['self', 'client_id', 'id', 'op_mode', 'robot_type'], {}), '(self, client_id, id, op_mode, robot_type)\n', (353, 395), False, 'from robot.vrep_robot import VrepRobot\n'), ((404, 433), 'robot.thymio_robot.ThymioII.__init__', 'ThymioII.__init__', (['self', 'name'], {}), '(self, name)\n', (421, 433), False, 'from robot.thymio_robot import ThymioII\n'), ((509, 521), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (517, 521), True, 'import numpy as np\n'), ((557, 569), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (565, 569), True, 'import numpy as np\n'), ((756, 801), 'utility.util_functions.normalize', 'normalize', (['xi', 'T_SEN_MIN', 'T_SEN_MAX', '(0.0)', '(1.0)'], {}), '(xi, T_SEN_MIN, T_SEN_MAX, 0.0, 1.0)\n', (765, 801), False, 'from utility.util_functions import normalize\n')]
# # Copyright The NOMAD Authors. # # This file is part of NOMAD. See https://nomad-lab.eu for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import numpy as np import ase.io from os import path from nomad.datamodel import EntryArchive from nomad.units import ureg as units from nomad.datamodel.metainfo.simulation.run import Run, Program, TimeRun from nomad.datamodel.metainfo.simulation.system import ( System, Atoms) from nomad.datamodel.metainfo.simulation.method import ( Method, Electronic, BasisSet) from nomad.datamodel.metainfo.simulation.calculation import ( Calculation, Dos, DosValues, Charges) from nomad.parsing.file_parser import TextParser, Quantity from .metainfo.lobster import x_lobster_section_cohp, x_lobster_section_coop ''' This is a LOBSTER code parser. ''' e = (1 * units.e).to_base_units().magnitude eV = (1 * units.eV).to_base_units().magnitude def parse_ICOXPLIST(fname, scc, method): def icoxp_line_split(string): tmp = string.split() # LOBSTER version 3 and above if len(tmp) == 8: return [tmp[1], tmp[2], float(tmp[3]), [int(tmp[4]), int(tmp[5]), int(tmp[6])], float(tmp[7])] # LOBSTER versions below 3 elif len(tmp) == 6: return [tmp[1], tmp[2], float(tmp[3]), float(tmp[4]), int(tmp[5])] icoxplist_parser = TextParser(quantities=[ Quantity('icoxpslist_for_spin', r'\s*CO[OH]P.*spin\s*\d\s*([^#]+[-\d\.]+)', repeats=True, sub_parser=TextParser(quantities=[ Quantity('line', # LOBSTER version 3 and above r'(\s*\d+\s+\w+\s+\w+\s+[\.\d]+\s+[-\d]+\s+[-\d]+\s+[-\d]+\s+[-\.\d]+\s*)|' # LOBSTER versions below 3 r'(\s*\d+\s+\w+\s+\w+\s+[\.\d]+\s+[-\.\d]+\s+[\d]+\s*)', repeats=True, str_operation=icoxp_line_split)]) ) ]) if not path.isfile(fname): return icoxplist_parser.mainfile = fname icoxplist_parser.parse() icoxp = [] for spin, icoxplist in enumerate(icoxplist_parser.get('icoxpslist_for_spin')): lines = icoxplist.get('line') if lines is None: break if type(lines[0][4]) is int: a1, a2, distances, tmp, bonds = zip(*lines) else: a1, a2, distances, v, tmp = zip(*lines) icoxp.append(0) icoxp[-1] = list(tmp) if spin == 0: if method == 'o': section = scc.m_create(x_lobster_section_coop) elif method == 'h': section = scc.m_create(x_lobster_section_cohp) setattr(section, "x_lobster_number_of_co{}p_pairs".format( method), len(list(a1))) setattr(section, "x_lobster_co{}p_atom1_labels".format( method), list(a1)) setattr(section, "x_lobster_co{}p_atom2_labels".format( method), list(a2)) setattr(section, "x_lobster_co{}p_distances".format( method), np.array(distances) * units.angstrom) # version specific entries if 'v' in locals(): setattr(section, "x_lobster_co{}p_translations".format( method), list(v)) if 'bonds' in locals(): setattr(section, "x_lobster_co{}p_number_of_bonds".format( method), list(bonds)) if len(icoxp) > 0: setattr(section, "x_lobster_integrated_co{}p_at_fermi_level".format( method), np.array(icoxp) * units.eV) def parse_COXPCAR(fname, scc, method, logger): coxpcar_parser = TextParser(quantities=[ Quantity('coxp_pairs', r'No\.\d+:(\w{1,2}\d+)->(\w{1,2}\d+)\(([\d\.]+)\)\s*?', repeats=True), Quantity('coxp_lines', r'\n\s*(-*\d+\.\d+(?:[ \t]+-*\d+\.\d+)+)', repeats=True) ]) if not path.isfile(fname): return coxpcar_parser.mainfile = fname coxpcar_parser.parse() if method == 'o': if not scc.x_lobster_section_coop: section = scc.m_create(x_lobster_section_coop) else: section = scc.x_lobster_section_coop elif method == 'h': if not scc.x_lobster_section_cohp: section = scc.m_create(x_lobster_section_cohp) else: section = scc.x_lobster_section_cohp pairs = coxpcar_parser.get('coxp_pairs') if pairs is None: logger.warning('No CO{}P values detected in CO{}PCAR.lobster.'.format( method.upper(), method.upper())) return a1, a2, distances = zip(*pairs) number_of_pairs = len(list(a1)) setattr(section, "x_lobster_number_of_co{}p_pairs".format( method), number_of_pairs) setattr(section, "x_lobster_co{}p_atom1_labels".format( method), list(a1)) setattr(section, "x_lobster_co{}p_atom2_labels".format( method), list(a2)) setattr(section, "x_lobster_co{}p_distances".format( method), np.array(distances) * units.angstrom) coxp_lines = coxpcar_parser.get('coxp_lines') if coxp_lines is None: logger.warning('No CO{}P values detected in CO{}PCAR.lobster.' 'The file is likely incomplete'.format( method.upper(), method.upper())) return coxp_lines = list(zip(*coxp_lines)) setattr(section, "x_lobster_number_of_co{}p_values".format( method), len(coxp_lines[0])) setattr(section, "x_lobster_co{}p_energies".format( method), np.array(coxp_lines[0]) * units.eV) if len(coxp_lines) == 2 * number_of_pairs + 3: coxp = [[x] for x in coxp_lines[3::2]] icoxp = [[x] for x in coxp_lines[4::2]] acoxp = [coxp_lines[1]] aicoxp = [coxp_lines[2]] elif len(coxp_lines) == 4 * number_of_pairs + 5: coxp = [x for x in zip(coxp_lines[5:number_of_pairs * 2 + 4:2], coxp_lines[number_of_pairs * 2 + 5: 4 * number_of_pairs + 4:2])] icoxp = [x for x in zip(coxp_lines[6:number_of_pairs * 2 + 5:2], coxp_lines[number_of_pairs * 2 + 6: 4 * number_of_pairs + 5:2])] acoxp = [coxp_lines[1], coxp_lines[3]] aicoxp = [coxp_lines[2], coxp_lines[4]] else: logger.warning('Unexpected number of columns {} ' 'in CO{}PCAR.lobster.'.format(len(coxp_lines), method.upper())) return # FIXME: correct magnitude? setattr(section, "x_lobster_co{}p_values".format( method), np.array(coxp)) setattr(section, "x_lobster_average_co{}p_values".format( method), np.array(acoxp)) setattr(section, "x_lobster_integrated_co{}p_values".format( method), np.array(icoxp) * units.eV) setattr(section, "x_lobster_average_integrated_co{}p_values".format( method), np.array(aicoxp) * units.eV) setattr(section, "x_lobster_integrated_co{}p_values".format( method), np.array(icoxp) * units.eV) def parse_CHARGE(fname, scc): charge_parser = TextParser(quantities=[ Quantity( 'charges', r'\s*\d+\s+[A-Za-z]{1,2}\s+([-\d\.]+)\s+([-\d\.]+)\s*', repeats=True) ]) if not path.isfile(fname): return charge_parser.mainfile = fname charge_parser.parse() charges = charge_parser.get('charges') if charges is not None: sec_charges = scc.m_create(Charges) sec_charges.analysis_method = "mulliken" sec_charges.kind = "integrated" sec_charges.value = np.array(list(zip(*charges))[0]) * units.elementary_charge sec_charges = scc.m_create(Charges) sec_charges.analysis_method = "loewdin" sec_charges.kind = "integrated" sec_charges.value = np.array(list(zip(*charges))[1]) * units.elementary_charge def parse_DOSCAR(fname, run, logger): def parse_species(run, atomic_numbers): """ If we don't have any structure from the underlying DFT code, we can at least figure out what atoms we have in the structure. The best place to get this info from is the DOSCAR.lobster """ if not run.system: system = run.m_create(System) system.atoms = Atoms(species=atomic_numbers, periodic=[True, True, True]) def translate_lm(lm): lm_dictionary = { 's': [0, 0], 'p_z': [1, 0], 'p_x': [1, 1], 'p_y': [1, 2], 'd_z^2': [2, 0], 'd_xz': [2, 1], 'd_yz': [2, 2], 'd_xy': [2, 3], 'd_x^2-y^2': [2, 4], 'z^3': [3, 0], 'xz^2': [3, 1], 'yz^2': [3, 2], 'xyz': [3, 3], 'z(x^2-y^2)': [3, 4], 'x(x^2-3y^2)': [3, 5], 'y(3x^2-y^2)': [3, 6], } return lm_dictionary.get(lm[1:]) if not path.isfile(fname): return energies = [] dos_values = [] integral_dos = [] atom_projected_dos_values = [] atom_index = 0 n_atoms = 0 n_dos = 0 atomic_numbers = [] lms = [] with open(fname) as f: for i, line in enumerate(f): if i == 0: n_atoms = int(line.split()[0]) if i == 1: _ = float(line.split()[0]) * units.angstrom**3 if i == 5: n_dos = int(line.split()[2]) if 'Z=' in line: atom_index += 1 atom_projected_dos_values.append([]) lms.append((line.split(';')[-1]).split()) atomic_numbers.append(int(line.split(';')[-2].split('=')[1])) continue if i > 5: line = [float(x) for x in line.split()] if atom_index == 0: energies.append(line[0]) if len(line) == 3: dos_values.append([line[1]]) integral_dos.append([line[2]]) elif len(line) == 5: dos_values.append([line[1], line[2]]) integral_dos.append([line[3], line[4]]) else: atom_projected_dos_values[-1].append(line[1:]) if len(atomic_numbers) > 0 and len(atomic_numbers) == n_atoms: parse_species(run, atomic_numbers) if n_dos == 0: return if len(dos_values) == n_dos: dos = run.calculation[0].m_create(Dos, Calculation.dos_electronic) dos.n_energies = n_dos dos.energies = energies * units.eV value = list(zip(*dos_values)) n_electrons = sum(atomic_numbers) index = (np.abs(energies)).argmin() # integrated dos at the Fermi level should be the number of electrons n_valence_electrons = int(round(sum(integral_dos[index]))) n_core_electrons = n_electrons - n_valence_electrons value_integrated = np.array(list(zip(*integral_dos))) + n_core_electrons / len(integral_dos[0]) for spin_i in range(len(value)): dos_total = dos.m_create(DosValues, Dos.total) dos_total.spin = spin_i dos_total.value = value[spin_i] * (1 / units.eV) dos_total.value_integrated = value_integrated[spin_i] else: logger.warning('Unable to parse total dos from DOSCAR.lobster, \ it doesn\'t contain enough dos values') return for atom_i, pdos in enumerate(atom_projected_dos_values): if len(pdos) != n_dos: logger.warning('Unable to parse atom lm-projected dos from DOSCAR.lobster, \ it doesn\'t contain enough dos values') continue if len(lms[atom_i]) == len(pdos[0]): # we have the same lm-projections for spin up and dn dos_values = np.array([[lmdos] for lmdos in zip(*pdos)]) / eV elif len(lms[atom_i]) * 2 == len(pdos[0]): pdos_up = list(zip(*pdos))[0::2] pdos_dn = list(zip(*pdos))[1::2] dos_values = np.array([[a, b] for a, b in zip(pdos_up, pdos_dn)]) / eV else: logger.warning('Unexpected number of columns in DOSCAR.lobster') return for lm_i, lm in enumerate(lms[atom_i]): for spin_i in range(len(dos_values[lm_i])): section_pdos = dos.m_create(DosValues, Dos.atom_projected) section_pdos.atom_index = atom_i section_pdos.spin = spin_i section_pdos.m_kind = 'real_orbital' section_pdos.lm = translate_lm(lm) section_pdos.value = dos_values[lm_i][spin_i] mainfile_parser = TextParser(quantities=[ Quantity('program_version', r'^LOBSTER\s*v([\d\.]+)\s*', repeats=False), Quantity('datetime', r'starting on host \S* on (\d{4}-\d\d-\d\d\sat\s\d\d:\d\d:\d\d)\s[A-Z]{3,4}', repeats=False), Quantity('x_lobster_code', r'detecting used PAW program... (.*)', repeats=False), Quantity('x_lobster_basis', r'setting up local basis functions...\s*((?:[a-zA-Z]{1,2}\s+\(.+\)(?:\s+\d\S+)+\s+)+)', repeats=False, sub_parser=TextParser(quantities=[ Quantity('x_lobster_basis_species', r'([a-zA-Z]+){1,2}\s+\((.+)\)((?:\s+\d\S+)+)\s+', repeats=True) ])), Quantity('spilling', r'((?:spillings|abs. tot)[\s\S]*?charge\s*spilling:\s*\d+\.\d+%)', repeats=True, sub_parser=TextParser(quantities=[ Quantity('abs_total_spilling', r'abs.\s*total\s*spilling:\s*(\d+\.\d+)%', repeats=False), Quantity('abs_charge_spilling', r'abs.\s*charge\s*spilling:\s*(\d+\.\d+)%', repeats=False) ])), Quantity('finished', r'finished in (\d)', repeats=False), ]) class LobsterParser: def __init__(self): pass def parse(self, mainfile: str, archive: EntryArchive, logger=None): mainfile_parser.mainfile = mainfile mainfile_path = path.dirname(mainfile) mainfile_parser.parse() run = archive.m_create(Run) run.program = Program( name='LOBSTER', version=str(mainfile_parser.get('program_version'))) # FIXME: There is a timezone info present as well, but datetime support for timezones # is bad and it doesn't support some timezones (for example CEST). # That leads to test failures, so ignore it for now. date = datetime.datetime.strptime(' '.join(mainfile_parser.get('datetime')), '%Y-%m-%d at %H:%M:%S') - datetime.datetime(1970, 1, 1) run.time_run = TimeRun(wall_start=date.total_seconds()) code = mainfile_parser.get('x_lobster_code') # parse structure if code is not None: if code == 'VASP': try: structure = ase.io.read(mainfile_path + '/CONTCAR', format="vasp") except FileNotFoundError: logger.warning('Unable to parse structure info, no CONTCAR detected') else: logger.warning('Parsing of {} structure is not supported'.format(code)) if 'structure' in locals(): system = run.m_create(System) system.atoms = Atoms( lattice_vectors=structure.get_cell() * units.angstrom, labels=structure.get_chemical_symbols(), periodic=structure.get_pbc(), positions=structure.get_positions() * units.angstrom) if mainfile_parser.get('finished') is not None: run.clean_end = True else: run.clean_end = False scc = run.m_create(Calculation) method = run.m_create(Method) scc.method_ref = method spilling = mainfile_parser.get('spilling') if spilling is not None: method.electronic = Electronic(n_spin_channels=len(spilling)) total_spilling = [] charge_spilling = [] for s in spilling: total_spilling.append(s.get('abs_total_spilling')) charge_spilling.append(s.get('abs_charge_spilling')) scc.x_lobster_abs_total_spilling = np.array(total_spilling) scc.x_lobster_abs_charge_spilling = np.array(charge_spilling) method_keys = [ 'x_lobster_code' ] for key in method_keys: val = mainfile_parser.get(key) if val is not None: setattr(method, key, val) basis = mainfile_parser.get('x_lobster_basis') if basis is not None: species = basis.get('x_lobster_basis_species') if species is not None: method.basis_set.append(BasisSet(name=species[0][1])) parse_ICOXPLIST(mainfile_path + '/ICOHPLIST.lobster', scc, 'h') parse_ICOXPLIST(mainfile_path + '/ICOOPLIST.lobster', scc, 'o') parse_COXPCAR(mainfile_path + '/COHPCAR.lobster', scc, 'h', logger) parse_COXPCAR(mainfile_path + '/COOPCAR.lobster', scc, 'o', logger) parse_CHARGE(mainfile_path + '/CHARGE.lobster', scc) parse_DOSCAR(mainfile_path + '/DOSCAR.lobster', run, logger) if run.system: scc.system_ref = run.system[0]
[ "datetime.datetime", "numpy.abs", "nomad.datamodel.metainfo.simulation.method.BasisSet", "os.path.isfile", "numpy.array", "os.path.dirname", "nomad.datamodel.metainfo.simulation.system.Atoms", "nomad.parsing.file_parser.Quantity" ]
[((2539, 2557), 'os.path.isfile', 'path.isfile', (['fname'], {}), '(fname)\n', (2550, 2557), False, 'from os import path\n'), ((4514, 4532), 'os.path.isfile', 'path.isfile', (['fname'], {}), '(fname)\n', (4525, 4532), False, 'from os import path\n'), ((7185, 7199), 'numpy.array', 'np.array', (['coxp'], {}), '(coxp)\n', (7193, 7199), True, 'import numpy as np\n'), ((7280, 7295), 'numpy.array', 'np.array', (['acoxp'], {}), '(acoxp)\n', (7288, 7295), True, 'import numpy as np\n'), ((7842, 7860), 'os.path.isfile', 'path.isfile', (['fname'], {}), '(fname)\n', (7853, 7860), False, 'from os import path\n'), ((9504, 9522), 'os.path.isfile', 'path.isfile', (['fname'], {}), '(fname)\n', (9515, 9522), False, 'from os import path\n'), ((14707, 14729), 'os.path.dirname', 'path.dirname', (['mainfile'], {}), '(mainfile)\n', (14719, 14729), False, 'from os import path\n'), ((5614, 5633), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (5622, 5633), True, 'import numpy as np\n'), ((6154, 6177), 'numpy.array', 'np.array', (['coxp_lines[0]'], {}), '(coxp_lines[0])\n', (6162, 6177), True, 'import numpy as np\n'), ((7379, 7394), 'numpy.array', 'np.array', (['icoxp'], {}), '(icoxp)\n', (7387, 7394), True, 'import numpy as np\n'), ((7497, 7513), 'numpy.array', 'np.array', (['aicoxp'], {}), '(aicoxp)\n', (7505, 7513), True, 'import numpy as np\n'), ((7608, 7623), 'numpy.array', 'np.array', (['icoxp'], {}), '(icoxp)\n', (7616, 7623), True, 'import numpy as np\n'), ((8863, 8921), 'nomad.datamodel.metainfo.simulation.system.Atoms', 'Atoms', ([], {'species': 'atomic_numbers', 'periodic': '[True, True, True]'}), '(species=atomic_numbers, periodic=[True, True, True])\n', (8868, 8921), False, 'from nomad.datamodel.metainfo.simulation.system import System, Atoms\n'), ((13315, 13389), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""program_version"""', '"""^LOBSTER\\\\s*v([\\\\d\\\\.]+)\\\\s*"""'], {'repeats': '(False)'}), "('program_version', '^LOBSTER\\\\s*v([\\\\d\\\\.]+)\\\\s*', repeats=False)\n", (13323, 13389), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((13392, 13528), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""datetime"""', '"""starting on host \\\\S* on (\\\\d{4}-\\\\d\\\\d-\\\\d\\\\d\\\\sat\\\\s\\\\d\\\\d:\\\\d\\\\d:\\\\d\\\\d)\\\\s[A-Z]{3,4}"""'], {'repeats': '(False)'}), "('datetime',\n 'starting on host \\\\S* on (\\\\d{4}-\\\\d\\\\d-\\\\d\\\\d\\\\sat\\\\s\\\\d\\\\d:\\\\d\\\\d:\\\\d\\\\d)\\\\s[A-Z]{3,4}'\n , repeats=False)\n", (13400, 13528), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((13524, 13603), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""x_lobster_code"""', '"""detecting used PAW program... (.*)"""'], {'repeats': '(False)'}), "('x_lobster_code', 'detecting used PAW program... (.*)', repeats=False)\n", (13532, 13603), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((14445, 14501), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""finished"""', '"""finished in (\\\\d)"""'], {'repeats': '(False)'}), "('finished', 'finished in (\\\\d)', repeats=False)\n", (14453, 14501), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((15307, 15336), 'datetime.datetime', 'datetime.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (15324, 15336), False, 'import datetime\n'), ((16930, 16954), 'numpy.array', 'np.array', (['total_spilling'], {}), '(total_spilling)\n', (16938, 16954), True, 'import numpy as np\n'), ((17003, 17028), 'numpy.array', 'np.array', (['charge_spilling'], {}), '(charge_spilling)\n', (17011, 17028), True, 'import numpy as np\n'), ((4149, 4164), 'numpy.array', 'np.array', (['icoxp'], {}), '(icoxp)\n', (4157, 4164), True, 'import numpy as np\n'), ((4279, 4389), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""coxp_pairs"""', '"""No\\\\.\\\\d+:(\\\\w{1,2}\\\\d+)->(\\\\w{1,2}\\\\d+)\\\\(([\\\\d\\\\.]+)\\\\)\\\\s*?"""'], {'repeats': '(True)'}), "('coxp_pairs',\n 'No\\\\.\\\\d+:(\\\\w{1,2}\\\\d+)->(\\\\w{1,2}\\\\d+)\\\\(([\\\\d\\\\.]+)\\\\)\\\\s*?',\n repeats=True)\n", (4287, 4389), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((4398, 4489), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""coxp_lines"""', '"""\\\\n\\\\s*(-*\\\\d+\\\\.\\\\d+(?:[ \\\\t]+-*\\\\d+\\\\.\\\\d+)+)"""'], {'repeats': '(True)'}), "('coxp_lines', '\\\\n\\\\s*(-*\\\\d+\\\\.\\\\d+(?:[ \\\\t]+-*\\\\d+\\\\.\\\\d+)+)',\n repeats=True)\n", (4406, 4489), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((7720, 7826), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""charges"""', '"""\\\\s*\\\\d+\\\\s+[A-Za-z]{1,2}\\\\s+([-\\\\d\\\\.]+)\\\\s+([-\\\\d\\\\.]+)\\\\s*"""'], {'repeats': '(True)'}), "('charges',\n '\\\\s*\\\\d+\\\\s+[A-Za-z]{1,2}\\\\s+([-\\\\d\\\\.]+)\\\\s+([-\\\\d\\\\.]+)\\\\s*',\n repeats=True)\n", (7728, 7826), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((11273, 11289), 'numpy.abs', 'np.abs', (['energies'], {}), '(energies)\n', (11279, 11289), True, 'import numpy as np\n'), ((3654, 3673), 'numpy.array', 'np.array', (['distances'], {}), '(distances)\n', (3662, 3673), True, 'import numpy as np\n'), ((17464, 17492), 'nomad.datamodel.metainfo.simulation.method.BasisSet', 'BasisSet', ([], {'name': 'species[0][1]'}), '(name=species[0][1])\n', (17472, 17492), False, 'from nomad.datamodel.metainfo.simulation.method import Method, Electronic, BasisSet\n'), ((13845, 13954), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""x_lobster_basis_species"""', '"""([a-zA-Z]+){1,2}\\\\s+\\\\((.+)\\\\)((?:\\\\s+\\\\d\\\\S+)+)\\\\s+"""'], {'repeats': '(True)'}), "('x_lobster_basis_species',\n '([a-zA-Z]+){1,2}\\\\s+\\\\((.+)\\\\)((?:\\\\s+\\\\d\\\\S+)+)\\\\s+', repeats=True)\n", (13853, 13954), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((14173, 14270), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""abs_total_spilling"""', '"""abs.\\\\s*total\\\\s*spilling:\\\\s*(\\\\d+\\\\.\\\\d+)%"""'], {'repeats': '(False)'}), "('abs_total_spilling',\n 'abs.\\\\s*total\\\\s*spilling:\\\\s*(\\\\d+\\\\.\\\\d+)%', repeats=False)\n", (14181, 14270), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((14306, 14405), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""abs_charge_spilling"""', '"""abs.\\\\s*charge\\\\s*spilling:\\\\s*(\\\\d+\\\\.\\\\d+)%"""'], {'repeats': '(False)'}), "('abs_charge_spilling',\n 'abs.\\\\s*charge\\\\s*spilling:\\\\s*(\\\\d+\\\\.\\\\d+)%', repeats=False)\n", (14314, 14405), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n'), ((2096, 2329), 'nomad.parsing.file_parser.Quantity', 'Quantity', (['"""line"""', '"""(\\\\s*\\\\d+\\\\s+\\\\w+\\\\s+\\\\w+\\\\s+[\\\\.\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\.\\\\d]+\\\\s*)|(\\\\s*\\\\d+\\\\s+\\\\w+\\\\s+\\\\w+\\\\s+[\\\\.\\\\d]+\\\\s+[-\\\\.\\\\d]+\\\\s+[\\\\d]+\\\\s*)"""'], {'repeats': '(True)', 'str_operation': 'icoxp_line_split'}), "('line',\n '(\\\\s*\\\\d+\\\\s+\\\\w+\\\\s+\\\\w+\\\\s+[\\\\.\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\d]+\\\\s+[-\\\\.\\\\d]+\\\\s*)|(\\\\s*\\\\d+\\\\s+\\\\w+\\\\s+\\\\w+\\\\s+[\\\\.\\\\d]+\\\\s+[-\\\\.\\\\d]+\\\\s+[\\\\d]+\\\\s*)'\n , repeats=True, str_operation=icoxp_line_split)\n", (2104, 2329), False, 'from nomad.parsing.file_parser import TextParser, Quantity\n')]
import numpy as np MAX = 10000 matrix = np.full((MAX, MAX), False) def pretty_print(matrix): print_matrix = np.full(matrix.shape, ".") print_matrix[matrix] = "#" for row in print_matrix: for symb in row: print(symb, end="") print() def fold_once(matrix, axis, value): if axis == "y": # top fold matrix = matrix.T assert matrix[:, value].sum() == 0 iter = matrix.shape[1] - value for i in range(iter): matrix[:, value-i] = np.logical_or(matrix[:, value-i], matrix[:, value+i]) matrix = matrix[:, :value] return matrix if axis == "x" else matrix.T max_x, max_y = float("-inf"), float("-inf") while inp := input(): # walrus y, x = [int(num) for num in inp.split(",")] matrix[x, y] = True max_x = max(x, max_x) max_y = max(y, max_y) if max_x % 2 != 0: max_x += 1 if max_y % 2 != 0: max_y += 1 first = False matrix = matrix[:max_x+1, :max_y+1] while inp := input(): axis, value = inp.split(" ")[-1].split("=") value = int(value) matrix = fold_once(matrix, axis, value) if not first: print("Part 1:", matrix.sum()) first = True print() print("PART 2") print("======") pretty_print(matrix)
[ "numpy.full", "numpy.logical_or" ]
[((41, 67), 'numpy.full', 'np.full', (['(MAX, MAX)', '(False)'], {}), '((MAX, MAX), False)\n', (48, 67), True, 'import numpy as np\n'), ((115, 141), 'numpy.full', 'np.full', (['matrix.shape', '"""."""'], {}), "(matrix.shape, '.')\n", (122, 141), True, 'import numpy as np\n'), ((502, 559), 'numpy.logical_or', 'np.logical_or', (['matrix[:, value - i]', 'matrix[:, value + i]'], {}), '(matrix[:, value - i], matrix[:, value + i])\n', (515, 559), True, 'import numpy as np\n')]
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument("filename", type=str) args = parser.parse_args() im = cv2.imread(args.filename) gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) ret, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) # hsv_blurred = cv2.GaussianBlur(hsv, (5, 5), 0) hsv_blurred = hsv ret, thresh_h = cv2.threshold(hsv_blurred[:, :, 0], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) ret, thresh_s = cv2.threshold(hsv_blurred[:, :, 1], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) ret, thresh_v = cv2.threshold(hsv_blurred[:, :, 2], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # threshold on each of the channels, see what happens img = gray.copy() cimg = im.copy() circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20, param1=50,param2=30,minRadius=0,maxRadius=0) circles = np.uint16(np.around(circles)) for i in circles[0,:]: # draw the outer circle cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3) cv2.imshow('detected circles',cimg) cv2.imshow("Image", im) cv2.imshow("thresh bw", thresh) cv2.imshow("thresh hue", thresh_h) cv2.imshow("thresh sat", thresh_s) cv2.imshow("thresh val", thresh_v) cv2.waitKey(0) cv2.destroyAllWindows()
[ "argparse.ArgumentParser", "cv2.threshold", "cv2.HoughCircles", "cv2.imshow", "cv2.waitKey", "cv2.circle", "cv2.destroyAllWindows", "numpy.around", "cv2.cvtColor", "cv2.GaussianBlur", "cv2.imread" ]
[((632, 657), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (655, 657), False, 'import argparse\n'), ((733, 758), 'cv2.imread', 'cv2.imread', (['args.filename'], {}), '(args.filename)\n', (743, 758), False, 'import cv2\n'), ((766, 802), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2GRAY'], {}), '(im, cv2.COLOR_BGR2GRAY)\n', (778, 802), False, 'import cv2\n'), ((813, 846), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(5, 5)', '(0)'], {}), '(gray, (5, 5), 0)\n', (829, 846), False, 'import cv2\n'), ((861, 928), 'cv2.threshold', 'cv2.threshold', (['blurred', '(0)', '(255)', '(cv2.THRESH_BINARY | cv2.THRESH_OTSU)'], {}), '(blurred, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)\n', (874, 928), False, 'import cv2\n'), ((944, 979), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2HSV'], {}), '(im, cv2.COLOR_BGR2HSV)\n', (956, 979), False, 'import cv2\n'), ((1064, 1149), 'cv2.threshold', 'cv2.threshold', (['hsv_blurred[:, :, 0]', '(0)', '(255)', '(cv2.THRESH_BINARY | cv2.THRESH_OTSU)'], {}), '(hsv_blurred[:, :, 0], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU\n )\n', (1077, 1149), False, 'import cv2\n'), ((1169, 1254), 'cv2.threshold', 'cv2.threshold', (['hsv_blurred[:, :, 1]', '(0)', '(255)', '(cv2.THRESH_BINARY | cv2.THRESH_OTSU)'], {}), '(hsv_blurred[:, :, 1], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU\n )\n', (1182, 1254), False, 'import cv2\n'), ((1274, 1359), 'cv2.threshold', 'cv2.threshold', (['hsv_blurred[:, :, 2]', '(0)', '(255)', '(cv2.THRESH_BINARY | cv2.THRESH_OTSU)'], {}), '(hsv_blurred[:, :, 2], 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU\n )\n', (1287, 1359), False, 'import cv2\n'), ((1463, 1563), 'cv2.HoughCircles', 'cv2.HoughCircles', (['img', 'cv2.HOUGH_GRADIENT', '(1)', '(20)'], {'param1': '(50)', 'param2': '(30)', 'minRadius': '(0)', 'maxRadius': '(0)'}), '(img, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30,\n minRadius=0, maxRadius=0)\n', (1479, 1563), False, 'import cv2\n'), ((1807, 1843), 'cv2.imshow', 'cv2.imshow', (['"""detected circles"""', 'cimg'], {}), "('detected circles', cimg)\n", (1817, 1843), False, 'import cv2\n'), ((1847, 1870), 'cv2.imshow', 'cv2.imshow', (['"""Image"""', 'im'], {}), "('Image', im)\n", (1857, 1870), False, 'import cv2\n'), ((1871, 1902), 'cv2.imshow', 'cv2.imshow', (['"""thresh bw"""', 'thresh'], {}), "('thresh bw', thresh)\n", (1881, 1902), False, 'import cv2\n'), ((1903, 1937), 'cv2.imshow', 'cv2.imshow', (['"""thresh hue"""', 'thresh_h'], {}), "('thresh hue', thresh_h)\n", (1913, 1937), False, 'import cv2\n'), ((1938, 1972), 'cv2.imshow', 'cv2.imshow', (['"""thresh sat"""', 'thresh_s'], {}), "('thresh sat', thresh_s)\n", (1948, 1972), False, 'import cv2\n'), ((1973, 2007), 'cv2.imshow', 'cv2.imshow', (['"""thresh val"""', 'thresh_v'], {}), "('thresh val', thresh_v)\n", (1983, 2007), False, 'import cv2\n'), ((2009, 2023), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (2020, 2023), False, 'import cv2\n'), ((2024, 2047), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2045, 2047), False, 'import cv2\n'), ((1602, 1620), 'numpy.around', 'np.around', (['circles'], {}), '(circles)\n', (1611, 1620), True, 'import numpy as np\n'), ((1678, 1730), 'cv2.circle', 'cv2.circle', (['cimg', '(i[0], i[1])', 'i[2]', '(0, 255, 0)', '(2)'], {}), '(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)\n', (1688, 1730), False, 'import cv2\n'), ((1764, 1813), 'cv2.circle', 'cv2.circle', (['cimg', '(i[0], i[1])', '(2)', '(0, 0, 255)', '(3)'], {}), '(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)\n', (1774, 1813), False, 'import cv2\n')]
from itertools import combinations import numpy as np from PlanningCore.core.constants import State from PlanningCore.core.physics import ( ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time, ) from PlanningCore.core.utils import get_rel_velocity def evolve(pockets, balls, dt): for ball in balls: rvw, state = evolve_ball_motion( pockets=pockets, state=ball.state, rvw=ball.rvw, t=dt, ) ball.set_rvw(rvw) ball.set_state(state) def resolve(collision, table): if collision['type'] == 'ball_ball': ball_id1, ball_id2 = collision['agents'] rvw1 = table.balls[ball_id1].rvw rvw2 = table.balls[ball_id2].rvw rvw1, rvw2 = ball_ball_collision(rvw1, rvw2) s1, s2 = State.sliding, State.sliding table.balls[ball_id1].set_rvw(rvw1) table.balls[ball_id1].set_state(s1) table.balls[ball_id2].set_rvw(rvw2) table.balls[ball_id2].set_state(s2) elif collision['type'] == 'ball_cushion': ball_id, cushion_id = collision['agents'] rvw = table.balls[ball_id].rvw normal = table.cushions[cushion_id]['normal'] rvw = ball_cushion_collision(rvw, normal) s = State.sliding table.balls[ball_id].set_rvw(rvw) table.balls[ball_id].set_state(s) def detect_collisions(table): collisions = [] for i, ball1 in enumerate(table.balls): for j, ball2 in enumerate(table.balls): if i >= j: continue if ball1.state == State.stationary and ball2.state == State.stationary: continue if np.linalg.norm(ball1.rvw[0] - ball2.rvw[0]) <= (ball1.radius + ball2.radius): collisions.append({ 'type': 'ball_ball', 'agents': (i, j), }) for i, ball in enumerate(table.balls): ball_x, ball_y = ball.pos if ball_x <= table.left + ball.radius: collisions.append({ 'type': 'ball_cushion', 'agents': (i, 'L'), }) elif ball_x >= table.right - ball.radius: collisions.append({ 'type': 'ball_cushion', 'agents': (i, 'R'), }) elif ball_y <= table.bottom + ball.radius: collisions.append({ 'type': 'ball_cushion', 'agents': (i, 'B'), }) elif ball_y >= table.top - ball.radius: collisions.append({ 'type': 'ball_cushion', 'agents': (i, 'T'), }) return collisions def get_min_motion_event_time(balls): t_min = np.inf ball_id = None motion_type = None for i, ball in enumerate(balls): if ball.state == State.rolling: t = get_roll_time(ball.rvw) tau_spin = get_spin_time(ball.rvw) event_type = 'rolling_spinning' if tau_spin > t else 'rolling_stationary' elif ball.state == State.sliding: t = get_slide_time(ball.rvw) event_type = 'sliding_rolling' elif ball.state == State.spinning: t = get_spin_time(ball.rvw) event_type = 'spinning_stationary' else: continue if t < t_min: t_min = t ball_id = i motion_type = event_type return t_min, (ball_id,), motion_type def get_min_ball_ball_event_time(balls): t_min = np.inf ball_ids = (None, None) for (i, ball1), (j, ball2) in combinations(enumerate(balls), 2): if ball1.state == State.pocketed or ball2.state == State.pocketed: continue if ball1.state == State.stationary and ball2.state == State.stationary: continue t = get_ball_ball_collision_time( rvw1=ball1.rvw, rvw2=ball2.rvw, s1=ball1.state, s2=ball2.state, ) if t < t_min: ball_ids = (i, j) t_min = t return t_min, ball_ids def get_min_ball_cushion_event_time(balls, cushions): """Returns minimum time until next ball-rail collision""" t_min = np.inf agents = (None, None) for ball_id, ball in enumerate(balls): if ball.state == State.stationary or ball.state == State.pocketed: continue for cushion_id, cushion in cushions.items(): t = get_ball_cushion_collision_time( rvw=ball.rvw, s=ball.state, lx=cushion['lx'], ly=cushion['ly'], l0=cushion['l0'], ) if t < t_min: agents = (ball_id, cushion_id) t_min = t return t_min, agents def get_next_event(table): t_min = np.inf agents = tuple() event_type = None t, ids, e = get_min_motion_event_time(table.balls) if t < t_min: t_min = t event_type = e agents = ids t, ids = get_min_ball_ball_event_time(table.balls) if t < t_min: t_min = t event_type = 'ball_ball' agents = ids t, ids = get_min_ball_cushion_event_time(table.balls, table.cushions) if t < t_min: t_min = t event_type = 'ball_cushion' agents = ids return Event(event_type=event_type, event_time=t_min, agents=agents) def simulate(table, dt=0.033, log=False, no_ball_cushion=False, return_once_pocket=False): while True: if return_once_pocket: for ball in table.balls: if ball.state == State.pocketed: return True if np.all([(ball.state == State.stationary or ball.state == State.pocketed) for ball in table.balls]): break evolve(table.pockets, table.balls, dt) if log: table.snapshot(dt) collisions = detect_collisions(table) for collision in collisions: if no_ball_cushion and collision['type'] == 'ball_cushion': return False resolve(collision, table) if log: table.snapshot(dt) return True def simulate_event_based(table, log=False, return_once_pocket=False): event = Event() while event.event_time < np.inf: event = get_next_event(table) if return_once_pocket: for ball in table.balls: if ball.state == State.pocketed: return True if np.all([(ball.state == State.stationary or ball.state == State.pocketed) for ball in table.balls]): break evolve(table.pockets, table.balls, dt=event.event_time) resolve(event.as_dict(), table) if log: table.snapshot(event.event_time) return True def shot(table, v_cue, phi, ball_index=0, theta=0, a=0, b=0): v, w = cue_strike(v_cue, phi, theta, a, b) rvw = table.balls[ball_index].rvw rvw[1] = v rvw[2] = w state = State.rolling if np.abs(np.sum(get_rel_velocity(rvw))) <= 1e-10 else State.sliding table.balls[ball_index].set_rvw(rvw) table.balls[ball_index].set_state(state) class Event(object): def __init__(self, event_type=None, event_time=0, agents=None): self.event_type = event_type self.event_time = event_time self.agents = agents def as_dict(self): return { 'type': self.event_type, 'time': self.event_time, 'agents': self.agents, }
[ "PlanningCore.core.utils.get_rel_velocity", "numpy.all", "PlanningCore.core.physics.get_ball_cushion_collision_time", "PlanningCore.core.physics.get_ball_ball_collision_time", "PlanningCore.core.physics.get_roll_time", "PlanningCore.core.physics.evolve_ball_motion", "PlanningCore.core.physics.get_slide_time", "PlanningCore.core.physics.cue_strike", "PlanningCore.core.physics.get_spin_time", "numpy.linalg.norm", "PlanningCore.core.physics.ball_ball_collision", "PlanningCore.core.physics.ball_cushion_collision" ]
[((7095, 7130), 'PlanningCore.core.physics.cue_strike', 'cue_strike', (['v_cue', 'phi', 'theta', 'a', 'b'], {}), '(v_cue, phi, theta, a, b)\n', (7105, 7130), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((497, 570), 'PlanningCore.core.physics.evolve_ball_motion', 'evolve_ball_motion', ([], {'pockets': 'pockets', 'state': 'ball.state', 'rvw': 'ball.rvw', 't': 'dt'}), '(pockets=pockets, state=ball.state, rvw=ball.rvw, t=dt)\n', (515, 570), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((914, 945), 'PlanningCore.core.physics.ball_ball_collision', 'ball_ball_collision', (['rvw1', 'rvw2'], {}), '(rvw1, rvw2)\n', (933, 945), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((4003, 4099), 'PlanningCore.core.physics.get_ball_ball_collision_time', 'get_ball_ball_collision_time', ([], {'rvw1': 'ball1.rvw', 'rvw2': 'ball2.rvw', 's1': 'ball1.state', 's2': 'ball2.state'}), '(rvw1=ball1.rvw, rvw2=ball2.rvw, s1=ball1.state,\n s2=ball2.state)\n', (4031, 4099), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((5850, 5952), 'numpy.all', 'np.all', (['[(ball.state == State.stationary or ball.state == State.pocketed) for ball in\n table.balls]'], {}), '([(ball.state == State.stationary or ball.state == State.pocketed) for\n ball in table.balls])\n', (5856, 5952), True, 'import numpy as np\n'), ((6702, 6804), 'numpy.all', 'np.all', (['[(ball.state == State.stationary or ball.state == State.pocketed) for ball in\n table.balls]'], {}), '([(ball.state == State.stationary or ball.state == State.pocketed) for\n ball in table.balls])\n', (6708, 6804), True, 'import numpy as np\n'), ((1375, 1410), 'PlanningCore.core.physics.ball_cushion_collision', 'ball_cushion_collision', (['rvw', 'normal'], {}), '(rvw, normal)\n', (1397, 1410), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((3035, 3058), 'PlanningCore.core.physics.get_roll_time', 'get_roll_time', (['ball.rvw'], {}), '(ball.rvw)\n', (3048, 3058), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((3082, 3105), 'PlanningCore.core.physics.get_spin_time', 'get_spin_time', (['ball.rvw'], {}), '(ball.rvw)\n', (3095, 3105), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((4632, 4750), 'PlanningCore.core.physics.get_ball_cushion_collision_time', 'get_ball_cushion_collision_time', ([], {'rvw': 'ball.rvw', 's': 'ball.state', 'lx': "cushion['lx']", 'ly': "cushion['ly']", 'l0': "cushion['l0']"}), "(rvw=ball.rvw, s=ball.state, lx=cushion['lx'\n ], ly=cushion['ly'], l0=cushion['l0'])\n", (4663, 4750), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((1840, 1883), 'numpy.linalg.norm', 'np.linalg.norm', (['(ball1.rvw[0] - ball2.rvw[0])'], {}), '(ball1.rvw[0] - ball2.rvw[0])\n', (1854, 1883), True, 'import numpy as np\n'), ((3250, 3274), 'PlanningCore.core.physics.get_slide_time', 'get_slide_time', (['ball.rvw'], {}), '(ball.rvw)\n', (3264, 3274), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((3377, 3400), 'PlanningCore.core.physics.get_spin_time', 'get_spin_time', (['ball.rvw'], {}), '(ball.rvw)\n', (3390, 3400), False, 'from PlanningCore.core.physics import ball_ball_collision, ball_cushion_collision, cue_strike, evolve_ball_motion, get_ball_ball_collision_time, get_ball_cushion_collision_time, get_roll_time, get_spin_time, get_slide_time\n'), ((7242, 7263), 'PlanningCore.core.utils.get_rel_velocity', 'get_rel_velocity', (['rvw'], {}), '(rvw)\n', (7258, 7263), False, 'from PlanningCore.core.utils import get_rel_velocity\n')]
""" The :mod:`fatf.utils.models.models` module holds custom models. The models implemented in this module are mainly used for used for FAT Forensics package testing and the examples in the documentation. """ # Author: <NAME> <<EMAIL>> # License: new BSD import abc from typing import Optional import numpy as np import fatf.utils.array.tools as fuat import fatf.utils.array.validation as fuav import fatf.utils.distances as fud from fatf.exceptions import (IncorrectShapeError, PrefittedModelError, UnfittedModelError) __all__ = ['KNN'] class Model(abc.ABC): """ An abstract class used to implement predictive models. This abstract class requires ``fit`` and ``predict`` methods and defines an optional ``predict_proba`` method. This is a scikit-learn-inspired model specification and it is being relied on through out this package. Raises ------ NotImplementedError Any of the required methods -- ``fit`` or ``predict`` -- is not implemented. """ # pylint: disable=invalid-name @abc.abstractmethod def __init__(self) -> None: """ Initialises the abstract model class. """ @abc.abstractmethod def fit(self, X: np.ndarray, y: np.ndarray) -> None: """ Fits this predictive model. Parameters ---------- X : numpy.ndarray A 2-dimensional numpy data array used to fit the model. y : numpy.ndarray A 1-dimensional numpy labels array used to fit the model. """ @abc.abstractmethod def predict(self, X: np.ndarray) -> None: """ Predicts labels of new data points using this model. Parameters ---------- X : numpy.ndarray A 2-dimensional numpy data array for which labels are predicted. """ def predict_proba(self, X: np.ndarray) -> None: """ Predicts probabilities of labels for new data points using this model. Parameters ---------- X : numpy.ndarray A 2-dimensional numpy data array for which labels probabilities are predicted. Raises ------ NotImplementedError By default this method is not required, hence it raises a ``NotImplementedError``. """ raise NotImplementedError class KNN(Model): """ A K-Nearest Neighbours model based on Euclidean distance. When the ``k`` parameter is set to 0 the model works as a majority class classifier. In case the count of neighbours (within ``k``) results in a tie the overall majority class for the whole training data is returned. Finally, when the training data contains categorical (i.e. non-numerical, e.g. strings) columns the distance for these columns is 0 when the value matches and 1 otherwise. This model can operate in two modes: *classifier* or *regressor*. The first one works for categorical and numerical targets and provides two predictive methods: ``predict`` -- for predicting labels and ``predict_proba`` for predicting probabilities of labels. The regressor mode, on the other hand, requires the target to be numerical and it only supports the ``predict`` method, which returns the average of the target value of the ``k`` neighbours for the queried data point. Parameters ---------- k : integer, optional (default=3) The number of neighbours used to make a prediction. Defaults to 3. mode : string, optional (default='classifier') The mode in which the model will operate. Either ``'classifier'`` (``'c'``) or ``'regressor'`` (``'r'``). In the latter case ``predict_proba`` method is disabled. Raises ------ PrefittedModelError Raised when trying to fit a model that has already been fitted. Usually raised when calling the ``fit`` method for the second time. Try using the ``clear`` method to reset the model before fitting it again. TypeError The ``k`` parameter is not an integer. UnfittedModelError Raised when trying to predict data with a model that has not been fitted yet. Try using the ``fit`` method to fit the model first. ValueError The ``k`` parameter is a negative number or the ``mode`` parameter does not have one of the allowed values: ``'c'``, ``'classifier'``, ``'r'`` or ``'regressor'``. Attributes ---------- _MODES : Set[string] Possible modes of the KNN model: ``'classifier'`` (``'c'``) or ``'regressor'`` (``'r'``). _k : integer The number of neighbours used to make a prediction. _is_classifier : boolean True when the model is initialised (and operates) as a classifier. False when it acts as a regressor. _is_fitted : boolean A Boolean variable indicating whether the model is fitted. _X : numpy.ndarray The KNN model training data. _y : numpy.ndarray The KNN model training labels. _X_n : integer The number of data points in the training set. _unique_y : numpy.ndarray An array with unique labels in the training labels set ordered lexicographically. _unique_y_counts : numpy.ndarray An array with counts of the unique labels in the training labels set. _unique_y_probabilities : numpy.ndarray Probabilities of labels calculated using their frequencies in the training data. _majority_label : Union[string, integer, float] The most common label in the training set. _is_structured : boolean A Boolean variable indicating whether the model has been fitted on a structured numpy array. _categorical_indices : numpy.ndarray An array with categorical indices in the training array. _numerical_indices : numpy.ndarray An array with numerical indices in the training array. """ # pylint: disable=too-many-instance-attributes _MODES = set(['classifier', 'c', 'regressor', 'r']) def __init__(self, k: int = 3, mode: Optional[str] = None) -> None: """ Initialises the KNN model with the selected ``k`` parameter. """ super().__init__() if not isinstance(k, int): raise TypeError('The k parameter has to be an integer.') if k < 0: raise ValueError('The k parameter has to be a positive integer.') if mode is None: self._is_classifier = True else: if mode in self._MODES: self._is_classifier = mode[0] == 'c' else: raise ValueError(('The mode parameter has to have one of the ' 'following values {}.').format(self._MODES)) self._k = k self._is_fitted = False self._X = np.ndarray((0, 0)) # pylint: disable=invalid-name self._y = np.ndarray((0, )) self._X_n = int() # pylint: disable=invalid-name self._unique_y = np.ndarray((0, )) self._unique_y_counts = np.ndarray((0, )) self._unique_y_probabilities = np.ndarray((0, )) self._majority_label = None self._is_structured = False self._categorical_indices = np.ndarray((0, )) self._numerical_indices = np.ndarray((0, )) def fit(self, X: np.ndarray, y: np.ndarray) -> None: """ Fits the model. Parameters ---------- X : numpy.ndarray The KNN training data. y : numpy.ndarray The KNN training labels. Raises ------ IncorrectShapeError Either the ``X`` array is not 2-dimensional, the ``y`` array is not 1-dimensional, the number of rows in ``X`` is not the same as the number of elements in ``y`` or the ``X`` array has 0 rows or 0 columns. PrefittedModelError Trying to fit the model when it has already been fitted. Usually raised when calling the ``fit`` method for the second time without clearing the model first. TypeError Trying to fit a KNN predictor in a regressor mode with non-numerical target variable. """ if self._is_fitted: raise PrefittedModelError('This model has already been fitted.') if not fuav.is_2d_array(X): raise IncorrectShapeError('The training data must be a 2-' 'dimensional array.') if not fuav.is_1d_array(y): raise IncorrectShapeError('The training data labels must be a 1-' 'dimensional array.') if X.shape[0] == 0: raise IncorrectShapeError('The data array has to have at least ' 'one data point.') # If the array is structured the fuav.is_2d_array function takes care # of checking whether there is at least one column if not fuav.is_structured_array(X) and X.shape[1] == 0: raise IncorrectShapeError('The data array has to have at least ' 'one feature.') if X.shape[0] != y.shape[0]: raise IncorrectShapeError('The number of samples in X must be the ' 'same as the number of labels in y.') if not self._is_classifier and not fuav.is_numerical_array(y): raise TypeError('Regressor can only be fitted for a numerical ' 'target vector.') numerical_indices, categorical_indices = fuat.indices_by_type(X) self._numerical_indices = numerical_indices self._categorical_indices = categorical_indices self._is_structured = fuav.is_structured_array(X) self._X = X self._y = y if self._is_classifier: unique_y, unique_y_counts = np.unique(self._y, return_counts=True) # Order labels lexicographically. unique_y_sort_index = np.argsort(unique_y) self._unique_y = unique_y[unique_y_sort_index] self._unique_y_counts = unique_y_counts[unique_y_sort_index] # How many other labels have the same count. top_y_index = self._unique_y_counts == np.max( self._unique_y_counts) top_y_unique_sorted = np.sort(self._unique_y[top_y_index]) self._majority_label = top_y_unique_sorted[0] self._unique_y_probabilities = ( self._unique_y_counts / self._y.shape[0]) else: self._majority_label = self._y.mean() self._unique_y = np.ndarray((0, )) self._unique_y_counts = np.ndarray((0, )) self._unique_y_probabilities = np.ndarray((0, )) self._X_n = self._X.shape[0] self._is_fitted = True def clear(self) -> None: """ Clears (unfits) the model. Raises ------ UnfittedModelError Raised when trying to clear a model that has not been fitted yet. Try using the fit method to ``fit`` the model first. """ if not self._is_fitted: raise UnfittedModelError('This model has not been fitted yet.') self._is_fitted = False self._X = np.ndarray((0, 0)) self._y = np.ndarray((0, )) self._X_n = int() self._unique_y = np.ndarray((0, )) self._unique_y_counts = np.ndarray((0, )) self._unique_y_probabilities = np.ndarray((0, )) self._majority_label = None self._is_structured = False self._categorical_indices = np.ndarray((0, )) self._numerical_indices = np.ndarray((0, )) def _get_distances(self, X: np.ndarray) -> np.ndarray: """ Gets distances for a mixture of numerical and categorical features. For numerical columns the distance is calculated as the Euclidean distance. For categorical columns (i.e. non-numerical, e.g. strings) the distance is 0 when the value matches and 1 otherwise. Parameters ---------- X : numpy.ndarray A data array for which distances to the training data will be calculated. Raises ------ AssertionError Raised when the model is not fitted, X is not a 2-dimensional array or X's dtype is different than training data's dtype. It is also raised when the distances matrix is not 2-dimensional. Returns ------- distances : numpy.ndarray An array of distances between X and the training data. """ # pylint: disable=invalid-name assert self._is_fitted, 'Cannot calculate distances on unfitted model.' assert fuav.is_2d_array(X), 'X must be a 2-dimensional array.' assert fuav.are_similar_dtype_arrays(X, self._X), \ 'X must have the same dtype as the training data.' distances_shape = (self._X.shape[0], X.shape[0]) categorical_distances = np.zeros(distances_shape) numerical_distances = np.zeros(distances_shape) if self._is_structured: if self._categorical_indices.size: categorical_distances = fud.binary_array_distance( self._X[self._categorical_indices], X[self._categorical_indices]) if self._numerical_indices.size: numerical_distances = fud.euclidean_array_distance( self._X[self._numerical_indices], X[self._numerical_indices]) else: if self._categorical_indices.size: categorical_distances = fud.binary_array_distance( self._X[:, self._categorical_indices], X[:, self._categorical_indices]) if self._numerical_indices.size: numerical_distances = fud.euclidean_array_distance( self._X[:, self._numerical_indices], X[:, self._numerical_indices]) assert categorical_distances.shape == numerical_distances.shape, \ 'Different number of point-wise distances for these feature types.' distances = categorical_distances + numerical_distances assert fuav.is_2d_array(distances), 'Distances matrix must be 2D.' return distances def predict(self, X: np.ndarray) -> np.ndarray: """ Predicts labels of new instances with the fitted model. Parameters ---------- X : numpy.ndarray The data for which labels will be predicted. Raises ------ IncorrectShapeError X is not a 2-dimensional array, it has 0 rows or it has a different number of columns than the training data. UnfittedModelError Raised when trying to predict data when the model has not been fitted yet. Try using the ``fit`` method to fit the model first. ValueError X has a different dtype than the data used to fit the model. Returns ------- predictions : numpy.ndarray Predicted class labels for each data point. """ # pylint: disable=too-many-locals,too-many-branches if not self._is_fitted: raise UnfittedModelError('This model has not been fitted yet.') if not fuav.is_2d_array(X): raise IncorrectShapeError('X must be a 2-dimensional array. If ' 'you want to predict a single data ' 'point please format it as a single row ' 'in a 2-dimensional array.') if not fuav.are_similar_dtype_arrays(X, self._X): raise ValueError('X must have the same dtype as the training ' 'data.') if not X.shape[0]: raise IncorrectShapeError('X must have at least one row.') # No need to check for columns in a structured array -> this is handled # by the dtype checker. if not fuav.is_structured_array(X): if X.shape[1] != self._X.shape[1]: raise IncorrectShapeError(('X must have the same number of ' 'columns as the training data ' '({}).').format(self._X.shape[1])) predictions = np.empty((X.shape[0], )) if self._k < self._X_n: distances = self._get_distances(X) # If there are 3 nearest neighbours within distances 1, 2 and 2 and # k is set to 2, then argpartition will always take the first # within distance 2. knn = np.argpartition(distances, self._k, axis=0) predictions = [] for column in knn.T: close_labels = self._y[column[:self._k]] if self._is_classifier: values, counts = np.unique( close_labels, return_counts=True) # If there is a tie in the counts take into consideration # the overall label count in the training data to resolve # it. top_label_index = counts == counts.max() top_label_unique_sorted = np.sort(values[top_label_index]) assert len(top_label_unique_sorted.shape) == 1, \ 'This should be a flat array.' if top_label_unique_sorted.shape[0] > 1: # Resolve the tie. # Get count of these label for the training data. labels_filter = np.array( self._unique_y.shape[0] * [False]) for top_prediction in top_label_unique_sorted: unique_y_filter = self._unique_y == top_prediction np.logical_or( labels_filter, unique_y_filter, out=labels_filter) g_top_label = self._unique_y[labels_filter] g_top_label_counts = ( self._unique_y_counts[labels_filter]) # What if any of the global labels have the same count? g_top_label_index = g_top_label_counts == np.max( g_top_label_counts) g_top_label_sorted = np.sort( g_top_label[g_top_label_index]) prediction = g_top_label_sorted[0] else: prediction = top_label_unique_sorted[0] else: prediction = close_labels.mean() predictions.append(prediction) predictions = np.array(predictions) else: predictions = np.array(X.shape[0] * [self._majority_label]) return predictions def predict_proba(self, X: np.ndarray) -> np.ndarray: """ Calculates label probabilities for new instances with the fitted model. Parameters ---------- X : numpy.ndarray The data for which labels probabilities will be predicted. Raises ------ IncorrectShapeError X is not a 2-dimensional array, it has 0 rows or it has a different number of columns than the training data. UnfittedModelError Raised when trying to predict data when the model has not been fitted yet. Try using the ``fit`` method to fit the model first. RuntimeError Raised when trying to use this method when the predictor is initialised as a regressor. ValueError X has a different dtype than the data used to fit the model. Returns ------- probabilities : numpy.ndarray Probabilities of each instance belonging to every class. The labels in the return array are ordered by lexicographic order. """ if not self._is_classifier: raise RuntimeError('This functionality is not available for a ' 'regressor.') if not self._is_fitted: raise UnfittedModelError('This model has not been fitted yet.') if not fuav.is_2d_array(X): raise IncorrectShapeError('X must be a 2-dimensional array. If ' 'you want to predict a single data ' 'point please format it as a single row ' 'in a 2-dimensional array.') if not fuav.are_similar_dtype_arrays(X, self._X): raise ValueError('X must have the same dtype as the training ' 'data.') if not X.shape[0]: raise IncorrectShapeError('X must have at least one row.') # No need to check for columns in a structured array -> this is handled # by the dtype checker. if not fuav.is_structured_array(X): if X.shape[1] != self._X.shape[1]: raise IncorrectShapeError(('X must have the same number of ' 'columns as the training data ' '({}).').format(self._X.shape[1])) probabilities = np.empty((X.shape[0], self._unique_y.shape[0])) if self._k < self._X_n: distances = self._get_distances(X) knn = np.argpartition(distances, self._k, axis=0) probabilities = [] for column in knn.T: close_labels = self._y[column[:self._k]] values, counts = np.unique(close_labels, return_counts=True) total_counts = np.sum(counts) probs = np.zeros((self._unique_y.shape[0], )) for i in range(values.shape[0]): ind = np.where(self._unique_y == values[i])[0] probs[ind] = counts[i] / total_counts probabilities.append(probs) probabilities = np.array(probabilities) else: probabilities = np.tile(self._unique_y_probabilities, (X.shape[0], 1)) return probabilities
[ "fatf.exceptions.IncorrectShapeError", "fatf.exceptions.UnfittedModelError", "fatf.utils.array.validation.is_structured_array", "numpy.argsort", "fatf.utils.array.validation.is_1d_array", "numpy.array", "fatf.utils.array.validation.is_2d_array", "fatf.exceptions.PrefittedModelError", "numpy.where", "numpy.sort", "fatf.utils.array.validation.is_numerical_array", "numpy.max", "numpy.empty", "numpy.tile", "fatf.utils.distances.binary_array_distance", "fatf.utils.array.validation.are_similar_dtype_arrays", "numpy.unique", "numpy.argpartition", "numpy.logical_or", "fatf.utils.distances.euclidean_array_distance", "numpy.zeros", "numpy.sum", "fatf.utils.array.tools.indices_by_type", "numpy.ndarray" ]
[((6935, 6953), 'numpy.ndarray', 'np.ndarray', (['(0, 0)'], {}), '((0, 0))\n', (6945, 6953), True, 'import numpy as np\n'), ((7004, 7020), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7014, 7020), True, 'import numpy as np\n'), ((7105, 7121), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7115, 7121), True, 'import numpy as np\n'), ((7155, 7171), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7165, 7171), True, 'import numpy as np\n'), ((7212, 7228), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7222, 7228), True, 'import numpy as np\n'), ((7338, 7354), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7348, 7354), True, 'import numpy as np\n'), ((7390, 7406), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (7400, 7406), True, 'import numpy as np\n'), ((9716, 9739), 'fatf.utils.array.tools.indices_by_type', 'fuat.indices_by_type', (['X'], {}), '(X)\n', (9736, 9739), True, 'import fatf.utils.array.tools as fuat\n'), ((9879, 9906), 'fatf.utils.array.validation.is_structured_array', 'fuav.is_structured_array', (['X'], {}), '(X)\n', (9903, 9906), True, 'import fatf.utils.array.validation as fuav\n'), ((11425, 11443), 'numpy.ndarray', 'np.ndarray', (['(0, 0)'], {}), '((0, 0))\n', (11435, 11443), True, 'import numpy as np\n'), ((11462, 11478), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11472, 11478), True, 'import numpy as np\n'), ((11531, 11547), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11541, 11547), True, 'import numpy as np\n'), ((11581, 11597), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11591, 11597), True, 'import numpy as np\n'), ((11638, 11654), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11648, 11654), True, 'import numpy as np\n'), ((11764, 11780), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11774, 11780), True, 'import numpy as np\n'), ((11816, 11832), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (11826, 11832), True, 'import numpy as np\n'), ((12921, 12940), 'fatf.utils.array.validation.is_2d_array', 'fuav.is_2d_array', (['X'], {}), '(X)\n', (12937, 12940), True, 'import fatf.utils.array.validation as fuav\n'), ((12992, 13033), 'fatf.utils.array.validation.are_similar_dtype_arrays', 'fuav.are_similar_dtype_arrays', (['X', 'self._X'], {}), '(X, self._X)\n', (13021, 13033), True, 'import fatf.utils.array.validation as fuav\n'), ((13190, 13215), 'numpy.zeros', 'np.zeros', (['distances_shape'], {}), '(distances_shape)\n', (13198, 13215), True, 'import numpy as np\n'), ((13246, 13271), 'numpy.zeros', 'np.zeros', (['distances_shape'], {}), '(distances_shape)\n', (13254, 13271), True, 'import numpy as np\n'), ((14436, 14463), 'fatf.utils.array.validation.is_2d_array', 'fuav.is_2d_array', (['distances'], {}), '(distances)\n', (14452, 14463), True, 'import fatf.utils.array.validation as fuav\n'), ((16602, 16625), 'numpy.empty', 'np.empty', (['(X.shape[0],)'], {}), '((X.shape[0],))\n', (16610, 16625), True, 'import numpy as np\n'), ((21675, 21722), 'numpy.empty', 'np.empty', (['(X.shape[0], self._unique_y.shape[0])'], {}), '((X.shape[0], self._unique_y.shape[0]))\n', (21683, 21722), True, 'import numpy as np\n'), ((8386, 8444), 'fatf.exceptions.PrefittedModelError', 'PrefittedModelError', (['"""This model has already been fitted."""'], {}), "('This model has already been fitted.')\n", (8405, 8444), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((8460, 8479), 'fatf.utils.array.validation.is_2d_array', 'fuav.is_2d_array', (['X'], {}), '(X)\n', (8476, 8479), True, 'import fatf.utils.array.validation as fuav\n'), ((8499, 8570), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""The training data must be a 2-dimensional array."""'], {}), "('The training data must be a 2-dimensional array.')\n", (8518, 8570), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((8627, 8646), 'fatf.utils.array.validation.is_1d_array', 'fuav.is_1d_array', (['y'], {}), '(y)\n', (8643, 8646), True, 'import fatf.utils.array.validation as fuav\n'), ((8666, 8744), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""The training data labels must be a 1-dimensional array."""'], {}), "('The training data labels must be a 1-dimensional array.')\n", (8685, 8744), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((8832, 8906), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""The data array has to have at least one data point."""'], {}), "('The data array has to have at least one data point.')\n", (8851, 8906), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((9167, 9238), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""The data array has to have at least one feature."""'], {}), "('The data array has to have at least one feature.')\n", (9186, 9238), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((9335, 9441), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""The number of samples in X must be the same as the number of labels in y."""'], {}), "(\n 'The number of samples in X must be the same as the number of labels in y.'\n )\n", (9354, 9441), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((10020, 10058), 'numpy.unique', 'np.unique', (['self._y'], {'return_counts': '(True)'}), '(self._y, return_counts=True)\n', (10029, 10058), True, 'import numpy as np\n'), ((10139, 10159), 'numpy.argsort', 'np.argsort', (['unique_y'], {}), '(unique_y)\n', (10149, 10159), True, 'import numpy as np\n'), ((10482, 10518), 'numpy.sort', 'np.sort', (['self._unique_y[top_y_index]'], {}), '(self._unique_y[top_y_index])\n', (10489, 10518), True, 'import numpy as np\n'), ((10774, 10790), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (10784, 10790), True, 'import numpy as np\n'), ((10828, 10844), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (10838, 10844), True, 'import numpy as np\n'), ((10889, 10905), 'numpy.ndarray', 'np.ndarray', (['(0,)'], {}), '((0,))\n', (10899, 10905), True, 'import numpy as np\n'), ((11316, 11373), 'fatf.exceptions.UnfittedModelError', 'UnfittedModelError', (['"""This model has not been fitted yet."""'], {}), "('This model has not been fitted yet.')\n", (11334, 11373), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((15484, 15541), 'fatf.exceptions.UnfittedModelError', 'UnfittedModelError', (['"""This model has not been fitted yet."""'], {}), "('This model has not been fitted yet.')\n", (15502, 15541), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((15557, 15576), 'fatf.utils.array.validation.is_2d_array', 'fuav.is_2d_array', (['X'], {}), '(X)\n', (15573, 15576), True, 'import fatf.utils.array.validation as fuav\n'), ((15596, 15763), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""X must be a 2-dimensional array. If you want to predict a single data point please format it as a single row in a 2-dimensional array."""'], {}), "(\n 'X must be a 2-dimensional array. If you want to predict a single data point please format it as a single row in a 2-dimensional array.'\n )\n", (15615, 15763), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((15892, 15933), 'fatf.utils.array.validation.are_similar_dtype_arrays', 'fuav.are_similar_dtype_arrays', (['X', 'self._X'], {}), '(X, self._X)\n', (15921, 15933), True, 'import fatf.utils.array.validation as fuav\n'), ((16093, 16145), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""X must have at least one row."""'], {}), "('X must have at least one row.')\n", (16112, 16145), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((16273, 16300), 'fatf.utils.array.validation.is_structured_array', 'fuav.is_structured_array', (['X'], {}), '(X)\n', (16297, 16300), True, 'import fatf.utils.array.validation as fuav\n'), ((16912, 16955), 'numpy.argpartition', 'np.argpartition', (['distances', 'self._k'], {'axis': '(0)'}), '(distances, self._k, axis=0)\n', (16927, 16955), True, 'import numpy as np\n'), ((19096, 19117), 'numpy.array', 'np.array', (['predictions'], {}), '(predictions)\n', (19104, 19117), True, 'import numpy as np\n'), ((19158, 19203), 'numpy.array', 'np.array', (['(X.shape[0] * [self._majority_label])'], {}), '(X.shape[0] * [self._majority_label])\n', (19166, 19203), True, 'import numpy as np\n'), ((20555, 20612), 'fatf.exceptions.UnfittedModelError', 'UnfittedModelError', (['"""This model has not been fitted yet."""'], {}), "('This model has not been fitted yet.')\n", (20573, 20612), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((20628, 20647), 'fatf.utils.array.validation.is_2d_array', 'fuav.is_2d_array', (['X'], {}), '(X)\n', (20644, 20647), True, 'import fatf.utils.array.validation as fuav\n'), ((20667, 20834), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""X must be a 2-dimensional array. If you want to predict a single data point please format it as a single row in a 2-dimensional array."""'], {}), "(\n 'X must be a 2-dimensional array. If you want to predict a single data point please format it as a single row in a 2-dimensional array.'\n )\n", (20686, 20834), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((20963, 21004), 'fatf.utils.array.validation.are_similar_dtype_arrays', 'fuav.are_similar_dtype_arrays', (['X', 'self._X'], {}), '(X, self._X)\n', (20992, 21004), True, 'import fatf.utils.array.validation as fuav\n'), ((21164, 21216), 'fatf.exceptions.IncorrectShapeError', 'IncorrectShapeError', (['"""X must have at least one row."""'], {}), "('X must have at least one row.')\n", (21183, 21216), False, 'from fatf.exceptions import IncorrectShapeError, PrefittedModelError, UnfittedModelError\n'), ((21344, 21371), 'fatf.utils.array.validation.is_structured_array', 'fuav.is_structured_array', (['X'], {}), '(X)\n', (21368, 21371), True, 'import fatf.utils.array.validation as fuav\n'), ((21821, 21864), 'numpy.argpartition', 'np.argpartition', (['distances', 'self._k'], {'axis': '(0)'}), '(distances, self._k, axis=0)\n', (21836, 21864), True, 'import numpy as np\n'), ((22417, 22440), 'numpy.array', 'np.array', (['probabilities'], {}), '(probabilities)\n', (22425, 22440), True, 'import numpy as np\n'), ((22483, 22537), 'numpy.tile', 'np.tile', (['self._unique_y_probabilities', '(X.shape[0], 1)'], {}), '(self._unique_y_probabilities, (X.shape[0], 1))\n', (22490, 22537), True, 'import numpy as np\n'), ((9100, 9127), 'fatf.utils.array.validation.is_structured_array', 'fuav.is_structured_array', (['X'], {}), '(X)\n', (9124, 9127), True, 'import fatf.utils.array.validation as fuav\n'), ((9516, 9542), 'fatf.utils.array.validation.is_numerical_array', 'fuav.is_numerical_array', (['y'], {}), '(y)\n', (9539, 9542), True, 'import fatf.utils.array.validation as fuav\n'), ((10401, 10430), 'numpy.max', 'np.max', (['self._unique_y_counts'], {}), '(self._unique_y_counts)\n', (10407, 10430), True, 'import numpy as np\n'), ((13392, 13488), 'fatf.utils.distances.binary_array_distance', 'fud.binary_array_distance', (['self._X[self._categorical_indices]', 'X[self._categorical_indices]'], {}), '(self._X[self._categorical_indices], X[self.\n _categorical_indices])\n', (13417, 13488), True, 'import fatf.utils.distances as fud\n'), ((13608, 13703), 'fatf.utils.distances.euclidean_array_distance', 'fud.euclidean_array_distance', (['self._X[self._numerical_indices]', 'X[self._numerical_indices]'], {}), '(self._X[self._numerical_indices], X[self.\n _numerical_indices])\n', (13636, 13703), True, 'import fatf.utils.distances as fud\n'), ((13841, 13943), 'fatf.utils.distances.binary_array_distance', 'fud.binary_array_distance', (['self._X[:, self._categorical_indices]', 'X[:, self._categorical_indices]'], {}), '(self._X[:, self._categorical_indices], X[:, self.\n _categorical_indices])\n', (13866, 13943), True, 'import fatf.utils.distances as fud\n'), ((14063, 14164), 'fatf.utils.distances.euclidean_array_distance', 'fud.euclidean_array_distance', (['self._X[:, self._numerical_indices]', 'X[:, self._numerical_indices]'], {}), '(self._X[:, self._numerical_indices], X[:, self\n ._numerical_indices])\n', (14091, 14164), True, 'import fatf.utils.distances as fud\n'), ((22019, 22062), 'numpy.unique', 'np.unique', (['close_labels'], {'return_counts': '(True)'}), '(close_labels, return_counts=True)\n', (22028, 22062), True, 'import numpy as np\n'), ((22094, 22108), 'numpy.sum', 'np.sum', (['counts'], {}), '(counts)\n', (22100, 22108), True, 'import numpy as np\n'), ((22133, 22169), 'numpy.zeros', 'np.zeros', (['(self._unique_y.shape[0],)'], {}), '((self._unique_y.shape[0],))\n', (22141, 22169), True, 'import numpy as np\n'), ((17152, 17195), 'numpy.unique', 'np.unique', (['close_labels'], {'return_counts': '(True)'}), '(close_labels, return_counts=True)\n', (17161, 17195), True, 'import numpy as np\n'), ((17510, 17542), 'numpy.sort', 'np.sort', (['values[top_label_index]'], {}), '(values[top_label_index])\n', (17517, 17542), True, 'import numpy as np\n'), ((17886, 17929), 'numpy.array', 'np.array', (['(self._unique_y.shape[0] * [False])'], {}), '(self._unique_y.shape[0] * [False])\n', (17894, 17929), True, 'import numpy as np\n'), ((18728, 18767), 'numpy.sort', 'np.sort', (['g_top_label[g_top_label_index]'], {}), '(g_top_label[g_top_label_index])\n', (18735, 18767), True, 'import numpy as np\n'), ((22246, 22283), 'numpy.where', 'np.where', (['(self._unique_y == values[i])'], {}), '(self._unique_y == values[i])\n', (22254, 22283), True, 'import numpy as np\n'), ((18137, 18201), 'numpy.logical_or', 'np.logical_or', (['labels_filter', 'unique_y_filter'], {'out': 'labels_filter'}), '(labels_filter, unique_y_filter, out=labels_filter)\n', (18150, 18201), True, 'import numpy as np\n'), ((18627, 18653), 'numpy.max', 'np.max', (['g_top_label_counts'], {}), '(g_top_label_counts)\n', (18633, 18653), True, 'import numpy as np\n')]
import cv2 import numpy as np import sys import haar_cascade as cascade from datetime import datetime import os.path output_dir = "../images" class SmileDetectStatus: def __init__(self): self.begin_take_photo = False self.face_found = False self.smile_detected = False self.restart = False self.completed = False self.photo_taken = False self.splash_screen = 0 self.no_smile_detect = 0 self.smile_detect = 0 class Image: def __init__(self, cap): self.cap = cap def capture_image(self): ret, img = self.cap.read() self.captured = cv2.flip(img, 1) self.annotated = np.copy(self.captured) class Detector: def __init__(self, image, status): self.image = image self.status = status def detect_smiles(self): faces = cascade.detect_faces(self.image.captured) eyes_detected = False mouth_detected = False now_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S") for (x,y,w,h) in faces: eyes = cascade.detect_eyes(self.image.captured, (x,y,w,h)) if len(eyes) == 2: eyes_detected = True mouth = cascade.detect_mouth(self.image.captured, (x,y,w,h)) if len(mouth) == 1: mouth_detected = True if self.status.smile_detected: color = (0, 255, 0) elif self.status.face_found: color = (0, 255, 255) else: color = (0,0,255) face = self.image.annotated[y:y+h, x:x+w] cv2.rectangle(self.image.annotated, (x, y), (x+w,y+h), color, 2) for (ex, ey, ew, eh) in eyes: cv2.rectangle(face, (ex,ey), (ex+ew, ey+eh), color) for (ex, ey, ew, eh) in mouth: cv2.rectangle(face, (ex,ey), (ex+ew, ey+eh), color) if self.status.begin_take_photo and not self.status.photo_taken: print('Taking image') cv2.imwrite(f'{output_dir}/img_{now_str}.jpg', self.image.captured) self.status.photo_taken = True if self.status.photo_taken: self.image.annotated[:] = 255 self.status.splash_screen += 1 if self.status.splash_screen > 5: self.status.completed = True self.status.restart = True if eyes_detected and mouth_detected and not self.status.photo_taken: self.status.smile_detect += 1 self.status.no_smile_detect = 0 if self.status.smile_detect >= 25: self.status.face_found = True if self.status.smile_detect >= 50: self.status.smile_detected = True if self.status.smile_detect >= 100: print("Smile detected") self.status.begin_take_photo = True else: self.status.no_smile_detect += 1 if self.status.no_smile_detect == 20: print("No smile was detected") if self.status.no_smile_detect > 50: self.status.restart = True if not self.status.begin_take_photo or len(faces) == 0 or self.status.photo_taken: cv2.imshow('Smile detector :)', self.image.annotated) if cv2.waitKey(1) & 0xFF == ord('q'): self.image.cap.release() cv2.destroyAllWindows() sys.exit() def main(): if not os.path.exists(output_dir): os.makedirs(output_dir) cap = cv2.VideoCapture(0) while True: status = SmileDetectStatus() while not status.begin_take_photo: status = SmileDetectStatus() image = Image(cap) detector = Detector(image, status) while not status.smile_detected: image.capture_image() detector.detect_smiles() if status.restart: print("Restarting...") break while status.smile_detected and not status.begin_take_photo: image.capture_image() detector.detect_smiles() if status.restart: print("Restarting...") break while not status.completed: image.capture_image() detector.detect_smiles() if status.restart: print("Restarting...") break if __name__ == '__main__': main()
[ "cv2.rectangle", "numpy.copy", "cv2.imwrite", "cv2.flip", "cv2.imshow", "haar_cascade.detect_faces", "datetime.datetime.now", "cv2.destroyAllWindows", "cv2.VideoCapture", "sys.exit", "haar_cascade.detect_mouth", "cv2.waitKey", "haar_cascade.detect_eyes" ]
[((3573, 3592), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (3589, 3592), False, 'import cv2\n'), ((645, 661), 'cv2.flip', 'cv2.flip', (['img', '(1)'], {}), '(img, 1)\n', (653, 661), False, 'import cv2\n'), ((687, 709), 'numpy.copy', 'np.copy', (['self.captured'], {}), '(self.captured)\n', (694, 709), True, 'import numpy as np\n'), ((872, 913), 'haar_cascade.detect_faces', 'cascade.detect_faces', (['self.image.captured'], {}), '(self.image.captured)\n', (892, 913), True, 'import haar_cascade as cascade\n'), ((1091, 1145), 'haar_cascade.detect_eyes', 'cascade.detect_eyes', (['self.image.captured', '(x, y, w, h)'], {}), '(self.image.captured, (x, y, w, h))\n', (1110, 1145), True, 'import haar_cascade as cascade\n'), ((1232, 1287), 'haar_cascade.detect_mouth', 'cascade.detect_mouth', (['self.image.captured', '(x, y, w, h)'], {}), '(self.image.captured, (x, y, w, h))\n', (1252, 1287), True, 'import haar_cascade as cascade\n'), ((1633, 1702), 'cv2.rectangle', 'cv2.rectangle', (['self.image.annotated', '(x, y)', '(x + w, y + h)', 'color', '(2)'], {}), '(self.image.annotated, (x, y), (x + w, y + h), color, 2)\n', (1646, 1702), False, 'import cv2\n'), ((2039, 2106), 'cv2.imwrite', 'cv2.imwrite', (['f"""{output_dir}/img_{now_str}.jpg"""', 'self.image.captured'], {}), "(f'{output_dir}/img_{now_str}.jpg', self.image.captured)\n", (2050, 2106), False, 'import cv2\n'), ((3263, 3316), 'cv2.imshow', 'cv2.imshow', (['"""Smile detector :)"""', 'self.image.annotated'], {}), "('Smile detector :)', self.image.annotated)\n", (3273, 3316), False, 'import cv2\n'), ((994, 1008), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1006, 1008), False, 'from datetime import datetime\n'), ((1756, 1812), 'cv2.rectangle', 'cv2.rectangle', (['face', '(ex, ey)', '(ex + ew, ey + eh)', 'color'], {}), '(face, (ex, ey), (ex + ew, ey + eh), color)\n', (1769, 1812), False, 'import cv2\n'), ((1867, 1923), 'cv2.rectangle', 'cv2.rectangle', (['face', '(ex, ey)', '(ex + ew, ey + eh)', 'color'], {}), '(face, (ex, ey), (ex + ew, ey + eh), color)\n', (1880, 1923), False, 'import cv2\n'), ((3424, 3447), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3445, 3447), False, 'import cv2\n'), ((3464, 3474), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3472, 3474), False, 'import sys\n'), ((3332, 3346), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3343, 3346), False, 'import cv2\n')]
import logging import time from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torch import torch.nn.functional as functional import numpy as np from DTI import models, dataset, cli, utils, analyse import os device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') def main(): utils.setup_seed(18) start_time = time.time() # 数据集加载 train_set = dataset.CreateDataset(dataset.get_hcp_s1200(), usage='train') val_set = dataset.CreateDataset(dataset.get_hcp_s1200(), usage='val') train_loader = DataLoader(train_set, batch_size=args.batch_size, drop_last=False, shuffle=True, pin_memory=True, num_workers=args.num_workers) val_loader = DataLoader(val_set, batch_size=args.batch_size, drop_last=True, shuffle=True, pin_memory=True, num_workers=args.num_workers) # 网络加载 # if args.MODEL == '1D-CNN': if args.INPUT_FEATURES != '4' and args.INPUT_FEATURES != 'all': c = 1 else: c = 4 if args.MODEL == '1D-CNN': model = models.HARmodel(c, args.NUM_CLASSES).to(device) elif args.MODEL == 'CAM-CNN': model = models.CAM_CNN(c, args.NUM_CLASSES).to(device) else: model = None if os.path.exists(args.LOAD_PATH): model.load_state_dict(torch.load(args.LOAD_PATH)) optimizer = torch.optim.SGD(model.parameters(), lr=args.LR) # 训练 val_loss = [] train_loss = [] val_acc = [] train_acc = [] val_precision = [] val_recall = [] # 打印训练信息 LOG.info("Args:{}".format(args)) for epoch in range(args.epochs): train_results = train(train_loader, model, optimizer, epoch) val_results = validation(model, val_loader) # 训练结果记录 train_loss.append(train_results['train_loss']) train_acc.append(train_results['train_acc']) val_loss.append(val_results['val_loss']) val_acc.append(val_results['val_acc']) val_precision.append(val_results['val_precision']) val_recall.append(val_results['val_recall']) # 训练结果存档 torch.save(model.state_dict(), '.\\LOG\\{}.pkl'.format(time.strftime("%Y%m%d-%H%M%S", time.localtime()))) f = open(args.RECORD_PATH, 'a+') f.writelines('args'+str(args)+'\n') f.writelines('train_loss'+str(train_loss)+'\n') f.writelines('train_acc' + str(train_acc)+'\n') f.writelines('val_loss' + str(val_loss)+'\n') f.writelines('val_acc' + str(val_acc)+'\n') f.writelines('val_precision' + str(val_precision)+'\n') f.writelines('val_recall' + str(val_recall)+'\n') f.close() LOG.info("--- main.py finish in %s seconds ---" % (time.time() - start_time)) def train(dataloader, model, optimizer, epoch): model.train() train_loss = 0 train_correct = 0 start_time = time.time() for batch_index, batch_samples in enumerate(dataloader): # 1.load data to CUDA x, y = batch_samples['x'].to(device), batch_samples['y'].to(device) if args.INPUT_FEATURES != '4' and args.INPUT_FEATURES != 'all': x = x.unsqueeze(1) else: x = x.transpose(1, 2) # 2.forward output = model(x) criteria = nn.CrossEntropyLoss() loss = criteria(output, y.long()) # 3.backward optimizer.zero_grad() # 把所有Variable的grad成员数值变为0 loss.backward() # 反向传播grad optimizer.step() # 每个Variable的grad都被计算出来后,更新每个Variable的数值(优化更新) # 6.result pred = output.argmax(dim=1, keepdim=True) train_correct += pred.eq(y.long().view_as(pred)).sum().item() train_loss += loss if batch_index % args.display_batch == 0: LOG.info("--- training progress rate {}/{} ---".format(batch_index, len(dataloader))) LOG.info("--- training epoch {} finish in {} seconds ---".format(epoch, (time.time() - start_time))) LOG.info('\tLoss:{}\tCorrect:{}/{}({})' .format(train_loss, train_correct, len(dataloader.dataset), train_correct / len(dataloader.dataset))) return { 'train_loss': round(train_loss.tolist(), 4), 'train_acc': round(train_correct / len(dataloader.dataset), 4) } def validation(model, val_loader): model.eval() test_loss = 0 correct = 0 start_time = time.time() with torch.no_grad(): pred_list = [] target_list = [] for batch_index, batch_samples in enumerate(val_loader): # 1.load data to CUDA x, y = batch_samples['x'].to('cuda'), batch_samples['y'].to('cuda') if args.INPUT_FEATURES != '4' and args.INPUT_FEATURES != 'all': x = x.unsqueeze(1) else: x = x.transpose(2, 1) # 2.forward output = model(x) pred = output.argmax(dim=1, keepdim=True) # 3.result criteria = nn.CrossEntropyLoss() test_loss += criteria(output, y) correct += pred.eq(y.view_as(pred)).sum().item() y = y.cpu().numpy() pred_list = np.append(pred_list, pred.cpu().numpy()) target_list = np.append(target_list, y) LOG.info("--- validation epoch finish in {} seconds --- Loss:{}\tCorrect:{}/{}({})" .format(time.time() - start_time, test_loss, correct, len(val_loader.dataset), correct / len(val_loader.dataset))) val_result = analyse.analyse_3class(target_list, pred_list) return { 'val_loss': round(test_loss.cpu().numpy().tolist(), 4), 'val_acc': round(correct / len(val_loader.dataset), 4), 'val_precision': val_result['precision'], 'val_recall': val_result['recall'], } if __name__ == '__main__': LOG = logging.getLogger('main') logging.basicConfig(level=logging.INFO) args = cli.create_parser().parse_args() main()
[ "logging.getLogger", "os.path.exists", "logging.basicConfig", "DTI.dataset.get_hcp_s1200", "DTI.models.HARmodel", "torch.nn.CrossEntropyLoss", "DTI.utils.setup_seed", "torch.load", "numpy.append", "torch.cuda.is_available", "DTI.analyse.analyse_3class", "DTI.cli.create_parser", "torch.utils.data.DataLoader", "DTI.models.CAM_CNN", "torch.no_grad", "time.localtime", "time.time" ]
[((381, 401), 'DTI.utils.setup_seed', 'utils.setup_seed', (['(18)'], {}), '(18)\n', (397, 401), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((419, 430), 'time.time', 'time.time', ([], {}), '()\n', (428, 430), False, 'import time\n'), ((615, 747), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set'], {'batch_size': 'args.batch_size', 'drop_last': '(False)', 'shuffle': '(True)', 'pin_memory': '(True)', 'num_workers': 'args.num_workers'}), '(train_set, batch_size=args.batch_size, drop_last=False, shuffle=\n True, pin_memory=True, num_workers=args.num_workers)\n', (625, 747), False, 'from torch.utils.data import DataLoader\n'), ((790, 919), 'torch.utils.data.DataLoader', 'DataLoader', (['val_set'], {'batch_size': 'args.batch_size', 'drop_last': '(True)', 'shuffle': '(True)', 'pin_memory': '(True)', 'num_workers': 'args.num_workers'}), '(val_set, batch_size=args.batch_size, drop_last=True, shuffle=\n True, pin_memory=True, num_workers=args.num_workers)\n', (800, 919), False, 'from torch.utils.data import DataLoader\n'), ((1326, 1356), 'os.path.exists', 'os.path.exists', (['args.LOAD_PATH'], {}), '(args.LOAD_PATH)\n', (1340, 1356), False, 'import os\n'), ((2890, 2901), 'time.time', 'time.time', ([], {}), '()\n', (2899, 2901), False, 'import time\n'), ((4388, 4399), 'time.time', 'time.time', ([], {}), '()\n', (4397, 4399), False, 'import time\n'), ((5490, 5536), 'DTI.analyse.analyse_3class', 'analyse.analyse_3class', (['target_list', 'pred_list'], {}), '(target_list, pred_list)\n', (5512, 5536), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((5818, 5843), 'logging.getLogger', 'logging.getLogger', (['"""main"""'], {}), "('main')\n", (5835, 5843), False, 'import logging\n'), ((5848, 5887), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (5867, 5887), False, 'import logging\n'), ((325, 350), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (348, 350), False, 'import torch\n'), ((482, 505), 'DTI.dataset.get_hcp_s1200', 'dataset.get_hcp_s1200', ([], {}), '()\n', (503, 505), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((558, 581), 'DTI.dataset.get_hcp_s1200', 'dataset.get_hcp_s1200', ([], {}), '()\n', (579, 581), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((3286, 3307), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3305, 3307), True, 'import torch.nn as nn\n'), ((4409, 4424), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4422, 4424), False, 'import torch\n'), ((1388, 1414), 'torch.load', 'torch.load', (['args.LOAD_PATH'], {}), '(args.LOAD_PATH)\n', (1398, 1414), False, 'import torch\n'), ((4978, 4999), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (4997, 4999), True, 'import torch.nn as nn\n'), ((5230, 5255), 'numpy.append', 'np.append', (['target_list', 'y'], {}), '(target_list, y)\n', (5239, 5255), True, 'import numpy as np\n'), ((5899, 5918), 'DTI.cli.create_parser', 'cli.create_parser', ([], {}), '()\n', (5916, 5918), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((1142, 1178), 'DTI.models.HARmodel', 'models.HARmodel', (['c', 'args.NUM_CLASSES'], {}), '(c, args.NUM_CLASSES)\n', (1157, 1178), False, 'from DTI import models, dataset, cli, utils, analyse\n'), ((2255, 2271), 'time.localtime', 'time.localtime', ([], {}), '()\n', (2269, 2271), False, 'import time\n'), ((2737, 2748), 'time.time', 'time.time', ([], {}), '()\n', (2746, 2748), False, 'import time\n'), ((3931, 3942), 'time.time', 'time.time', ([], {}), '()\n', (3940, 3942), False, 'import time\n'), ((5366, 5377), 'time.time', 'time.time', ([], {}), '()\n', (5375, 5377), False, 'import time\n'), ((1240, 1275), 'DTI.models.CAM_CNN', 'models.CAM_CNN', (['c', 'args.NUM_CLASSES'], {}), '(c, args.NUM_CLASSES)\n', (1254, 1275), False, 'from DTI import models, dataset, cli, utils, analyse\n')]
import numpy as np from io import BytesIO import wave import struct from dcase_models.util.gui import encode_audio #from .utils import save_model_weights,save_model_json, get_data_train, get_data_test #from .utils import init_model, evaluate_model, load_scaler, save, load #from .model import debugg_model, prototype_loss,prototypeCNN_maxpool #from .prototypes import Prototypes import os from keras.callbacks import ModelCheckpoint,CSVLogger from keras.optimizers import Adam import keras.backend as K import dash from dash.dependencies import Input, Output import dash_html_components as html import dash_core_components as dcc import dash_audio_components import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import librosa import sys from dcase_models.util.files import save_pickle, load_pickle from dcase_models.util.data import get_fold_val #from dcase_models.model.model import debugg_model, modelAPNet colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] class_names = (['air conditioner', 'car horn', 'children playing', 'dog bark', 'drilling', 'engine idling', 'gun shot', 'jack- hammer', 'siren', 'street music']) class_names2 = (['air<br>conditioner', 'car<br>horn', 'children<br>playing', 'dog<br>bark', 'drilling', 'engine<br>idling', 'gun<br>shot', 'jack-<br>hammer', 'siren', 'street<br>music']) class_names_av = ['AC', 'CH', 'CP', 'DB', 'DR', 'EI', 'GS', 'JA', 'SI', 'SM'] #from audio_prototypes.utils import load_training_log from shutil import copyfile import matplotlib.pyplot as plt cm = plt.get_cmap('viridis') def generate_figure2D(model_container, selectedpoints=[], x_select=0, y_select=1, samples_per_class=10, label_list=[]): prototypes_feat,prototypes_mel,protoypes2D,prototypes_classes,_ = model_container.prototypes.get_all_instances() n_classes = len(label_list) if len(label_list) > 0 else 10 prototype_ixs = np.arange(0,len(prototypes_feat)) x = [] y = [] classes = [] classes_ix = [] prototypes_ixs = [] for class_ix in range(n_classes): prototypes_class_ix = protoypes2D[prototypes_classes == class_ix] prototype_ixs_class = prototype_ixs[prototypes_classes == class_ix] #print(prototypes_class_ix.shape) xj = [] yj = [] classesj = [] for j in range(len(prototypes_class_ix)): xj.append(prototypes_class_ix[j, x_select]) yj.append(prototypes_class_ix[j, y_select]) classesj.append('prototype'+str(prototype_ixs_class[j])) # classes_ix.append(int(prototypes_classes[j])) x.append(xj) y.append(yj) classes.append(classesj) prototypes_ixs.append(prototype_ixs_class) centers_feat,centers_mel,centers2D,centers_classes,centers_audio,centers_file_names = model_container.data_instances.get_all_instances() centers_ixs = np.arange(0,len(centers2D)) x_centers = [] y_centers = [] classes_centers = [] classes_ix_centers = [] ### Add this to tests. Delete!!! #centers2D = self.model_containers[self.fold_test].data_instances.X_feat_2D['X']#self.X_2D[self.fold_test]['X'] #centers_classes = self.model_containers[self.fold_test].data_instances.X_feat_2D['Y'] #centers_ixs = np.arange(0,len(centers2D)) for class_ix in range(n_classes): centers_class_ix = centers2D[centers_classes == class_ix] centers_ixs_class = centers_ixs[centers_classes == class_ix] xj = [] yj = [] classesj = [] for j in range(len(centers_class_ix)): xj.append(centers_class_ix[j, x_select]) yj.append(centers_class_ix[j, y_select]) classesj.append('center'+str(centers_ixs_class[j])) # classes_ix.append(int(prototypes_classes[j])) x_centers.append(xj) y_centers.append(yj) classes_centers.append(classesj) fig = make_subplots(rows=1, cols=1)#, column_widths=[0.8, 0.2]) size = 10 proto_list = [] for label in label_list: proto_list.append(label + ' (protos.)') for j in range(n_classes): s = min(samples_per_class,len(x_centers[j])) selectedpoints_j = None if len(selectedpoints) > 0: proto_ixs = prototypes_ixs[j] selectedpoints_j = [] for point in selectedpoints: if point in proto_ixs: point_i = [i for i,x in enumerate(proto_ixs) if point == x][0] selectedpoints_j.append(point_i) fig.add_trace( go.Scatter( x=x[j], y=y[j], text=classes[j], name=proto_list[j], mode='markers',selectedpoints=selectedpoints_j, marker={'size': size, 'symbol':'cross', 'color':colors[j%10]}), row=1, col=1 ) fig.add_trace( go.Scatter( x=x_centers[j][:s], y=y_centers[j][:s], text=classes_centers[j][:s], name=label_list[j], selectedpoints=None,mode='markers', marker={'size': 5, 'color':colors[j%10], 'opacity':0.6}), row=1, col=1 ) # if len(selectedpoints) == 0: # fig.add_trace(go.Scatter(x=x[j], y=y[j],text=classes[j], name= label_list[j],mode='markers',marker={'size': size, 'symbol':'cross', 'color':colors[j]}), row=1, col=1) # fig.add_trace(go.Scatter(x=x_centers[j][:s], y=y_centers[j][:s],text=classes_centers[j][:s], name= label_list[j],mode='markers',marker={'size': 6,'color':colors[j],'opacity':0.7}), row=1, col=1) # else: # proto_ixs = prototypes_ixs[j] # selectedpoints_j = [] # for point in selectedpoints: # if point in proto_ixs: # point_i = [i for i,x in enumerate(proto_ixs) if point == x][0] # selectedpoints_j.append(point_i) # fig.add_trace(go.Scatter(x=x[j], y=y[j],text=classes[j], name=label_list[j],mode='markers',selectedpoints=selectedpoints_j,marker={'size': size, 'symbol':'cross', 'color':colors[j]}), row=1, col=1) # fig.add_trace(go.Scatter(x=x_centers[j][:s], y=y_centers[j][:s],text=classes_centers[j][:s], name=label_list[j],selectedpoints=[],mode='markers',marker={'size': 6,'color':colors[j],'opacity':0.7}), row=1, col=1) fig.update_layout() components_dict = {0: 'First', 1: 'Second', 2: 'Third', 3: 'Fourth'} fig.update_layout( title="Prototypes and data instances in the 2D space (PCA)", xaxis_title=components_dict[x_select] + " principal component (x)", yaxis_title=components_dict[y_select] + " principal component (y)", clickmode='event+select', uirevision=True, width=1000, height=600, ) return fig def generate_figure_weights(model_container, selected=None, label_list=class_names): fig_weights = go.Figure( px.imshow(model_container.prototypes.W_dense.T,origin='lower'), layout=go.Layout(title=go.layout.Title(text="A Bar Chart")) ) fig_weights.update_traces(dict( showscale=False, colorbar_len=0.1, coloraxis=None), selector={'type':'heatmap'}) #fig_weights.update_traces(showscale=False) fig_weights.update_layout(clickmode='event+select') if selected is not None: fig_weights.add_trace(go.Scatter(x=[selected],y=[1])) _,_,_,prototypes_classes,_ = model_container.prototypes.get_all_instances() xticks = [] for j in range(len(label_list)): tickj = np.mean(np.argwhere(np.array(prototypes_classes) == j)) xticks.append(tickj) fig_weights.update_layout( title="Weights of the last fully-connected layer", xaxis_title="Prototypes", yaxis_title="Classes", #margin = {'l': 10, 'b': 10, 't': 10, 'r': 10}, xaxis = dict( tickmode = 'array', tickvals = xticks, ticktext = label_list #class_names2 ), yaxis = dict( tickmode = 'array', tickvals = [i for i in range(len(class_names))], ticktext = label_list #class_names ), width=1000, height=300, ) return fig_weights def generate_figure_mel(mel_spec): figure = go.Figure(px.imshow(mel_spec.T,origin='lower'),layout=go.Layout(title=go.layout.Title(text="A Bar Chart"))) figure.update_traces(dict( showscale=False, colorbar_len=0.1, coloraxis=None), selector={'type':'heatmap'}) figure.update_layout( title="Mel-spectrogram", xaxis_title="Time (hops)", yaxis_title="Mel filter index", #margin = {'l': 0, 'b': 0, 't': 40, 'r': 10} ) #figure.layout.coloraxis.showscale = False return figure class GUI(): def __init__(self, model_containers, data, folds_files, exp_folder_input, exp_folder_output, label_list, params, plot_label_list=None,graph=None): self.model_containers = model_containers self.data = data self.folds_files = folds_files self.exp_folder_input = exp_folder_input self.exp_folder_output = exp_folder_output self.label_list = label_list self.params = params if plot_label_list is None: self.plot_label_list = label_list else: self.plot_label_list = plot_label_list self.graph = graph self.fold_list = list(model_containers.keys()) self.fold_test = self.fold_list[0] self.fold_val = get_fold_val(self.fold_test, self.fold_list) self.samples_per_class = 10 self.x_select = 0 self.y_select = 1 self.click_timestamps = [0,0,0] self.generate_figure2D() self.generate_figure_weights() def generate_layout(self, app): import tensorflow as tf external_stylesheets = [ 'https://codepen.io/chriddyp/pen/bWLwgP.css', { 'href': 'https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css', 'rel': 'stylesheet', 'integrity': '<KEY>', 'crossorigin': 'anonymous' } ] self.app = app self.graph = tf.get_default_graph() self.generate_figure2D() self.generate_figure_weights() plot2D = dcc.Graph(id='plot2D', figure=self.figure, style={"height" : "100%", "width" : "100%"}) _,center_mel_blank,_,_,_,_ = self.model_containers[self.fold_test].data_instances.get_instance_by_index(0) plot_mel = dcc.Graph(id="plot_mel", figure = self.generate_figure_mel(center_mel_blank), style={"width": "70%", "display": "inline-block",'float':'left'} ) plot_weights = dcc.Graph(id="plot_weights", figure = self.fig_weigths, style={"width": "100%", "display": "inline-block"} ) audio = dash_audio_components.DashAudioComponents(id='audio-player', src="", autoPlay=False, controls=True) button_delete = html.Button('Delete prototype',id='delete_and_convert', className='button',n_clicks_timestamp=0,style={'display':'none','width':'70%'}) button_eval = html.Button('Evaluate model',id='eval', className='button',n_clicks_timestamp=0,style={'width':'70%'}) button_load = html.Button('Load best weigths',id='load_weigths', className='button',n_clicks_timestamp=0,style={'width':'70%'}) button_train = html.Button('Train model',id='train', className='button',n_clicks_timestamp=0,style={'width':'70%'}) button_reset = html.Button('Reset model',id='reset', className='button',n_clicks_timestamp=0,style={'width':'70%'}) output_eval = html.Div(id='output_eval',style={'width':'20%'}) output_text = html.Div(id='output_text') output_interval = html.Div(id='output_interval') input_epochs = dcc.Input(id="input_epochs", type="number", placeholder="epochs",min=1, max=100, step=1,style={'width':'33%'})#,value=10) input_lr = dcc.Input(id="learning_rate", type="number", placeholder="learning_rate",min=0.0000001, max=1,style={'width':'33%'}) input_bs = dcc.Input(id="batch_size", type="number", placeholder="batch_size",min=32, max=512, step=32,style={'width':'33%'})#,value=64) slider_samples = html.Div(dcc.Slider(id='samples_per_class',min=1,max=500, step=1,value=10,vertical=False),style={'width':'100%'}) interval = dcc.Interval(id='interval-component', interval=1*1000, # in milliseconds n_intervals=0) options = [] for fold in self.fold_list: option = {'value': fold, 'label': fold} options.append(option) fold_select = dcc.Dropdown(id='fold_select',options=options,value=self.fold_test,style={'width':'85%'}) #model_select = dcc.Dropdown(id='model_select',options=available_models,value=model_input_name,style={'width':'85%'}) #input_model_output = dcc.Input(id="input_model_output", type="text", placeholder="model output",style={'width':'70%'},value=model_output_name)#,value=64) options = [] for j in range(4): options.append({'label':'component '+str(j+1),'value':j}) x_select = dcc.Dropdown(id='x_select',options=options,value=0,style={'width': '80%'}) y_select = dcc.Dropdown(id='y_select',options=options,value=1,style={'width': '80%'}) eval_div = html.Div([button_eval,output_eval],style={'columnCount': 2,'width':'50%'}) train_div = html.Div([input_epochs,input_lr,input_bs],style={'width':'70%'})#,style={'columnCount': 4,'width':'80%'}) model_div = html.Div([fold_select],style={'columnCount': 3,'width':'80%'}) model_prop_div = html.Div([button_load,button_reset],style={'columnCount': 2,'width':'50%'}) #self.app.layout = html.Div([ html.Div([plot_mel, graph2,plot_weights ], className="nine columns",style={'height':'80vh'}) ]) self.app.layout = html.Div([ html.Div([ html.Div([x_select], className="two columns",style={'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}), html.Div([y_select], className="two columns",style={'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}), html.Div([slider_samples], className="three columns",style={'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}), ], className="row", style={'height':'10vh'}), html.Div([ #html.Div([slider_samples], className="one column"), html.Div([plot2D], className="nine columns",style={'height':'80vh'}), html.Div([plot_mel,html.Br(),audio,html.Br(),button_delete,html.Br(),button_eval,html.Br(),output_eval,html.Br(),button_load,html.Br(), button_reset,html.Br(),button_train,html.Br(),train_div,html.Br(), html.Br(),fold_select, #model_select,input_model_output html.Br(),html.Br(),output_text,interval], className="three columns"), ], className="row", style={'height':'80vh'}), # html.Div([ # html.Div([slider_samples], className="nine columns", style={'align':'center'}) # ], className="row"), html.Div([ # html.Div([], className="two columns"), html.Div([plot_weights], className="six columns"), #html.Div([graph_log], className="six columns") ], className="row", style={'height':'30vh'}) ]) def generate_figure2D(self,selectedpoints=[]): prototypes_feat,prototypes_mel,protoypes2D,prototypes_classes,_ = self.model_containers[self.fold_test].prototypes.get_all_instances() prototype_ixs = np.arange(0,len(prototypes_feat)) x = [] y = [] classes = [] classes_ix = [] prototypes_ixs = [] for class_ix in range(10): prototypes_class_ix = protoypes2D[prototypes_classes == class_ix] prototype_ixs_class = prototype_ixs[prototypes_classes == class_ix] xj = [] yj = [] classesj = [] for j in range(len(prototypes_class_ix)): xj.append(prototypes_class_ix[j,self.x_select]) yj.append(prototypes_class_ix[j,self.y_select]) classesj.append('prototype'+str(prototype_ixs_class[j])) # classes_ix.append(int(prototypes_classes[j])) x.append(xj) y.append(yj) classes.append(classesj) prototypes_ixs.append(prototype_ixs_class) centers_feat,centers_mel,centers2D,centers_classes,centers_audio,centers_file_names = self.model_containers[self.fold_test].data_instances.get_all_instances() centers_ixs = np.arange(0,len(centers2D)) x_centers = [] y_centers = [] classes_centers = [] classes_ix_centers = [] ### Add this to tests. Delete!!! #centers2D = self.model_containers[self.fold_test].data_instances.X_feat_2D['X']#self.X_2D[self.fold_test]['X'] #centers_classes = self.model_containers[self.fold_test].data_instances.X_feat_2D['Y'] #centers_ixs = np.arange(0,len(centers2D)) for class_ix in range(10): centers_class_ix = centers2D[centers_classes == class_ix] centers_ixs_class = centers_ixs[centers_classes == class_ix] xj = [] yj = [] classesj = [] for j in range(len(centers_class_ix)): xj.append(centers_class_ix[j,self.x_select]) yj.append(centers_class_ix[j,self.y_select]) classesj.append('center'+str(centers_ixs_class[j])) # classes_ix.append(int(prototypes_classes[j])) x_centers.append(xj) y_centers.append(yj) classes_centers.append(classesj) fig = make_subplots(rows=1, cols=1)#, column_widths=[0.8, 0.2]) size = 12 for j in range(10): s = min(self.samples_per_class,len(x_centers[j])) print(s,self.samples_per_class,len(x_centers[j])) if len(selectedpoints) == 0: fig.add_trace(go.Scatter(x=x[j], y=y[j],text=classes[j], name=self.label_list[j],mode='markers',marker={'size': size, 'symbol':'cross', 'color':colors[j]}), row=1, col=1) fig.add_trace(go.Scatter(x=x_centers[j][:s], y=y_centers[j][:s],text=classes_centers[j][:s], name=self.label_list[j],mode='markers',marker={'size': 6,'color':colors[j],'opacity':0.7}), row=1, col=1) else: proto_ixs = prototypes_ixs[j] selectedpoints_j = [] for point in selectedpoints: if point in proto_ixs: print(point,proto_ixs) point_i = [i for i,x in enumerate(proto_ixs) if point == x][0] selectedpoints_j.append(point_i) fig.add_trace(go.Scatter(x=x[j], y=y[j],text=classes[j], name=self.label_list[j],mode='markers',selectedpoints=selectedpoints_j,marker={'size': size, 'symbol':'cross', 'color':colors[j]}), row=1, col=1) fig.add_trace(go.Scatter(x=x_centers[j][:s], y=y_centers[j][:s],text=classes_centers[j][:s], name=self.label_list[j],selectedpoints=[],mode='markers',marker={'size': 6,'color':colors[j],'opacity':0.7}), row=1, col=1) fig.update_layout() components_dict = {0: 'First', 1: 'Second', 2: 'Third', 3: 'Fourth'} fig.update_layout( title="Prototypes and k-means centers in the 2D space (PCA)", xaxis_title=components_dict[self.x_select] + " principal component (x)", yaxis_title=components_dict[self.y_select] + " principal component (y)", clickmode='event+select',uirevision=True ) self.figure = fig return fig def generate_figure_training(self): data = [] weights_folder = os.path.join(self.weights_folder, self.model_output_name) if len(self.training_logs) > 0: for j,training_log in enumerate(self.training_logs[self.fold_test]): #print(training_log) epochs,val_acc,name = training_log['epochs'],training_log['val_acc'],training_log['name'] if training_log['training'] == True: epochs, val_acc = load_training_log(weights_folder,self.fold_test,row_ix=11) if len(epochs) > 0: best = 0 for val in val_acc: if float(val)>best: best = float(val) data.append({'x':epochs,'y': val_acc,'name': name,'mode': 'markers','marker': {'size': 8, 'color': colors[j]}}) #'val_acc_'+ data.append({'x':[epochs[0],epochs[-1]],'y': [best,best],'name': 'best_'+name,'mode': 'lines','marker': {'color': colors[j]}}) #'best_val_acc_'+ self.figure_training = go.Figure(data=data) self.figure_training.update_layout( title="Accuracy on the validation set", xaxis_title="Accuracy", yaxis_title="Number of epochs", clickmode= 'event+select',uirevision=True ) else: self.figure_training = go.Figure(data={'x':[0],'y': [0]}) self.figure_training.update_layout( title="Accuracy on the validation set", xaxis_title="Accuracy", yaxis_title="Number of epochs", clickmode= 'event+select',uirevision=True ) return self.figure_training def generate_figure_weights(self,selected=None): fig_weigths = go.Figure(px.imshow(self.model_containers[self.fold_test].prototypes.W_dense.T,origin='lower'),layout=go.Layout(title=go.layout.Title(text="A Bar Chart"))) fig_weigths.update_layout(clickmode='event+select') if selected is not None: fig_weigths.add_trace(go.Scatter(x=[selected],y=[1])) _,_,_,prototypes_classes,_ = self.model_containers[self.fold_test].prototypes.get_all_instances() xticks = [] for j in range(10): tickj = np.mean(np.argwhere(np.array(prototypes_classes) == j)) xticks.append(tickj) self.fig_weigths = fig_weigths self.fig_weigths.update_layout( title="Weights of the last fully-connected layer", xaxis_title="Prototypes", yaxis_title="Classes", #margin = {'l': 0, 'b': 0, 't': 40, 'r': 10} xaxis = dict( tickmode = 'array', tickvals = xticks, ticktext = class_names2 ), yaxis = dict( tickmode = 'array', tickvals = [i for i in range(len(class_names))], ticktext = class_names ) ) return fig_weigths def generate_figure_mel(self,mel_spec): figure = go.Figure(px.imshow(mel_spec.T,origin='lower'),layout=go.Layout(title=go.layout.Title(text="A Bar Chart"))) figure.update_layout( title="Mel-spectrogram", xaxis_title="Time (hops)", yaxis_title="Mel filter index", #margin = {'l': 0, 'b': 0, 't': 40, 'r': 10} ) #figure.layout.coloraxis.showscale = False return figure def add_mel_to_figure(self,hoverData): point = np.array([hoverData['points'][0]['x'],hoverData['points'][0]['y']]) dist_protos = self.model_containers[self.fold_test].prototypes.get_distances(point,components=(self.x_select,self.y_select)) dist_data = self.model_containers[self.fold_test].data_instances.get_distances(point,components=(self.x_select,self.y_select)) #print(np.amin(dist_data),np.amin(dist_protos)) if np.amin(dist_data) <= np.amin(dist_protos): # click on k-mean arg_dist = np.argmin(dist_data) # print(arg_dist) (center_mel,center_feat,center_2D, center_class,center_file,center_audio)=self.model_containers[self.fold_test].data_instances.get_center(arg_dist) from PIL import Image image_array = np.random.randint(0, 255, size=(100, 100)).astype('uint8') center_mel = cm(center_mel.T) #center_mel = 255*(center_mel-np.amin(center_mel))/(np.amax(center_mel)-np.amin(center_mel)) image = Image.fromarray((center_mel[:, :, :3] * 255).astype('uint8')) layout= go.Layout(images= [dict( source= image, xref= "x", yref= "y", x= hoverData['points'][0]['x']-0.5, y= hoverData['points'][0]['y']+2, sizex= 2, sizey= 2, #sizing= "stretch", opacity= 1.0#,layer= "below" )]) self.figure.update_layout(layout) else: arg_dist = np.argmin(dist_protos) (proto_feat,proto_mel, proto_2D,proto_class,proto_audio) = self.model_containers[self.fold_test].prototypes.get_prototype_by_index(arg_dist) def display_plot(self,clickData): temp_mel = np.ones((64,128)) if isinstance(clickData,dict): point = np.array([clickData['points'][0]['x'],clickData['points'][0]['y']]) print(self.fold_test) dist_protos = self.model_containers[self.fold_test].prototypes.get_distances(point,components=(self.x_select,self.y_select)) dist_data = self.model_containers[self.fold_test].data_instances.get_distances(point,components=(self.x_select,self.y_select)) if np.amin(dist_data) <= np.amin(dist_protos): # click on k-mean arg_dist = np.argmin(dist_data) (center_feat,center_mel,center_2D, center_class,center_audio,center_file)=self.model_containers[self.fold_test].data_instances.get_instance_by_index(arg_dist) self.selected = {'type': 'center', 'id': arg_dist} figure = self.generate_figure_mel(center_mel) data, sr = librosa.core.load(center_file) return [figure, {'autoPlay': True, 'src': encode_audio(data,sr)}, #encode_audio(center_audio['data'],center_audio['sr']) "Convert center to Prototype", {'display':'inline-block','width':'70%'}] else: arg_dist = np.argmin(dist_protos) (proto_feat,proto_mel, proto_2D,proto_class,proto_audio) = self.model_containers[self.fold_test].prototypes.get_instance_by_index(arg_dist) self.selected = {'type': 'prototype', 'id': arg_dist} figure = self.generate_figure_mel(proto_mel) return [figure, {'autoPlay': True, 'src': encode_audio(proto_audio['data'],proto_audio['sr'])}, "Delete Prototype", {'display':'inline-block','width':'70%'}] else: return [self.generate_figure_mel(temp_mel), {'autoPlay': False, 'src': ''}, "Select a point", {'display':'none','width':'70%'}] def buttons_and_others(self,btn1,btn2,btn3,fold_selected,clickData,samples_per_class,x_select,y_select,epochs,learning_rate,batch_size,selectedData,selectedData_w): if x_select != self.x_select: self.x_select = x_select self.generate_figure2D() return [self.figure, self.fig_weigths] if y_select != self.y_select: self.y_select = y_select self.generate_figure2D() return [self.figure, self.fig_weigths] if samples_per_class != self.samples_per_class: #print(samples_per_class,self.samples_per_class) self.samples_per_class = samples_per_class self.generate_figure2D() #print('new figure') return [self.figure, self.fig_weigths] # if model_select != self.model_input_name: # print(model_select,self.model_input_name) # self.model_input_name = model_select # scaler_path = os.path.join(scaler_folder, 'base') # self.load_model_prototypes_centers(folds_data_test,folds_files,scaler_path) # return [self.figure, self.fig_weigths] #print(clickData,selectedData_w) #self.generate_figure2D(selectedpoints=clickData) #print(fold_selected,self.fold_test) if fold_selected != self.fold_test: self.change_fold(fold_selected) return [self.figure, self.fig_weigths] #print(clickData) if clickData is not None: selected_prototype = clickData['points'][0]['x'] #print(selected_prototype,self.selected_prototype) if selected_prototype != self.selected_prototype: self.selected_prototype = selected_prototype self.generate_figure2D([selected_prototype]) #print(clickData) return [self.figure, self.fig_weigths] #print(btn1,btn2,btn3,self.click_timestamps[0],self.click_timestamps[1],self.click_timestamps[2]) if int(btn1) > self.click_timestamps[0]: self.click_timestamps[0] = int(btn1) self.click_delete(selectedData) if int(btn2) > self.click_timestamps[1]: self.click_timestamps[1] = int(btn2) self.click_reset() if int(btn3) > self.click_timestamps[2]: self.click_timestamps[2] = int(btn3) msg = 'Button 3 was most recently clicked' if epochs is not None: self.params['train']['epochs'] = int(epochs) if learning_rate is not None: self.params['train']['learning_rate'] = learning_rate if batch_size is not None: self.params['train']['batch_size'] = int(batch_size) print(epochs,learning_rate,batch_size) self.train_model() #self.model_output_name = model_output_name #scaler_path = os.path.join(scaler_folder, 'base') #weights_folder_debug_manual = os.path.join(weights_folder, 'debug_manual2') #last_training_log = self.get_training_log()[-1] #initial_epoch = int(last_training_log['epochs'][-1])+1 #self.train_model(folds_data=folds_data,folds_data_test=folds_data_test,folds_files=folds_files,scaler_path=scaler_path, # epochs=epochs,learning_rate=learning_rate,batch_size=batch_size,fit_verbose=1,convert_audio_dict=convert_audio_dict,graph=graph,initial_epoch=initial_epoch) return [self.figure, self.fig_weigths] def btn_load(self,n_clicks_timestamp,n_clicks_timestamp2): if n_clicks_timestamp > n_clicks_timestamp2: #self.load_weights(weights_folder_debug_manual) return "TODO"#"Weights loaded from " + weights_folder_debug_manual elif n_clicks_timestamp2 > n_clicks_timestamp: acc = self.eval_model() return "Accuracy in fold {:s}: {:f}".format(self.fold_val, acc) else: return "" def click_delete(self,selectedData): #msg = 'Button 1 was most recently clicked' point = np.array([selectedData['points'][0]['x'],selectedData['points'][0]['y']]) dist_protos = self.model_containers[self.fold_test].prototypes.get_distances(point,components=(self.x_select,self.y_select)) dist_data = self.model_containers[self.fold_test].data_instances.get_distances(point,components=(self.x_select,self.y_select)) #print(np.amin(dist_data),np.amin(dist_protos)) if np.amin(dist_data) <= np.amin(dist_protos): # click on k-mean arg_dist = np.argmin(dist_data) (center_feat,center_mel,center_2D, center_class,_,center_file) = self.model_containers[self.fold_test].data_instances.remove_instance(arg_dist) data, sr = librosa.core.load(center_file) center_audio = {'data':data, 'sr': sr} self.model_containers[self.fold_test].prototypes.add_instance(int(center_class), center_mel,center_feat, embedding2D=center_2D,audio=center_audio) else: arg_dist = np.argmin(dist_protos) self.model_containers[self.fold_test].prototypes.remove_instance(arg_dist) self.generate_figure2D() self.generate_figure_weights() return self.figure def click_reset(self): self.model_containers[self.fold_test].data_instances.reset() self.model_containers[self.fold_test].prototypes.reset() self.generate_figure2D() self.generate_figure_weights() return self.figure def change_fold(self,fold_selected): print('fold_selected', fold_selected) self.fold_test = fold_selected self.fold_val = get_fold_val(self.fold_test, self.fold_list) print(self.fold_val) self.generate_figure2D() #self.generate_figure_training() self.generate_figure_weights() return self.figure def eval_model(self): with self.graph.as_default(): self.update_model_to_prototypes() scaler_path = os.path.join(self.exp_folder_input, self.fold_test, 'scaler.pickle') scaler = load_pickle(scaler_path) acc,_,_ = self.model_containers[self.fold_test].evaluate(self.data[self.fold_val]['X'],self.data[self.fold_val]['Y'], scaler) return acc def update_model_to_prototypes(self): N_protos = self.model_containers[self.fold_test].prototypes.get_number_of_instances() n_classes = len(self.label_list) #self.model_containers[self.fold_test].model = debugg_model(self.model_containers[self.fold_test].model,N_protos,n_classes) #self.model_containers[self.fold_test].model.get_layer('prototype_distances').set_weights([self.model_containers[self.fold_test].prototypes.embeddings]) #self.model_containers[self.fold_test].model.get_layer('mean').set_weights([self.model_containers[self.fold_test].prototypes.W_mean]) #self.model_containers[self.fold_test].model.get_layer('logits').set_weights([self.model_containers[self.fold_test].prototypes.W_dense]) n_frames_cnn,n_freq_cnn = self.model_containers[self.fold_test].prototypes.mel_spectrograms[0].shape N_filters_last = self.model_containers[self.fold_test].model.get_layer('features').output_shape[-1] model = modelAPNet(n_prototypes=N_protos, n_frames_cnn=n_frames_cnn, n_freq_cnn=n_freq_cnn, N_filters=[16,16,N_filters_last]) for layer in model.layers: if len(layer.get_weights()) > 0: if layer.name == 'prototype_distances': model.get_layer(layer.name).set_weights([self.model_containers[self.fold_test].prototypes.embeddings]) elif layer.name == 'mean': model.get_layer(layer.name).set_weights([self.model_containers[self.fold_test].prototypes.W_mean]) elif layer.name == 'logits': model.get_layer(layer.name).set_weights([self.model_containers[self.fold_test].prototypes.W_dense]) elif layer.name == 'input': continue else: model.get_layer(layer.name).set_weights(self.model_containers[self.fold_test].model.get_layer(layer.name).get_weights()) self.model_containers[self.fold_test].model = model def train_model(self): with self.graph.as_default(): self.update_model_to_prototypes() # paths dataset = self.exp_folder_output.split("/")[-1] #TODO fix this exp_folder_fold = os.path.join(self.exp_folder_output, self.fold_test) weights_path = exp_folder_fold#os.path.join(exp_folder_fold, 'best_weights.hdf5') log_path = os.path.join(exp_folder_fold, 'training.log') scaler_path = os.path.join(self.exp_folder_input, self.fold_test, 'scaler.pickle') params_model = self.params["models"]['APNet'] params_dataset = self.params["datasets"][dataset] kwargs = self.params["train"] if 'train_arguments' in params_model: kwargs.update(params_model['train_arguments']) kwargs.update({'init_last_layer': False}) # save model as json self.model_containers[self.fold_test].save_model_json(exp_folder_fold) X_train, Y_train, X_val, Y_val = get_data_train(self.data, self.fold_test, params_dataset["evaluation_mode"]) # HERE HAS TO BE DATA FOR TRAINING #print(X_train.shape,Y_train.shape,X_val.shape,Y_val.shape) scaler = load_pickle(scaler_path) X_train = scaler.transform(X_train) X_val = scaler.transform(X_val) self.model_containers[self.fold_test].train(X_train, Y_train, X_val, Y_val, weights_path=weights_path, log_path=log_path, **kwargs) # load best_weights after training self.model_containers[self.fold_test].model.load_weights(os.path.join(exp_folder_fold, 'best_weights.hdf5')) # val_out_acc = history.history['val_out_acc'] # epochs = [i for i in range(initial_epoch,epochs+initial_epoch)] # self.training_logs[self.fold_test][-1]['epochs'] = epochs # self.training_logs[self.fold_test][-1]['val_acc'] = val_out_acc # self.training_logs[self.fold_test][-1]['training'] = False # #print(self.training_logs[self.fold_test][-1]) # #print(history.history) print('Reloading the plot') data_instances_path = os.path.join(exp_folder_fold, 'data_instances.pickle') prototypes_path = os.path.join(exp_folder_fold, 'prototypes.pickle') X_feat,X_train,Y_train,Files_names_train = get_data_test(self.model_containers[self.fold_test].model,self.data,self.fold_test,self.folds_files,scaler) # TODO: data_centers[fold_test] = Data_centers(X_feat,X_train,Y_train,Files_names_train,n_classes=10,n_clusters=5) mel_basis = np.load(os.path.join(params_dataset['feature_folder'], 'mel_basis.npy')) convert_audio_params = {'sr': self.params['features']['sr'], 'scaler' : scaler, 'mel_basis' : mel_basis, 'audio_hop' : self.params['features']['audio_hop'], 'audio_win' : self.params['features']['audio_win']} projection2D = self.model_containers[self.fold_test].data_instances.projection2D self.model_containers[self.fold_test].get_prototypes(X_train, convert_audio_params=convert_audio_params, projection2D=projection2D) data_instances_path = os.path.join(self.exp_folder_output, 'data_instances.pickle') prototypes_path = os.path.join(self.exp_folder_output, 'prototypes.pickle') save_pickle(self.model_containers[self.fold_test].data_instances, data_instances_path) save_pickle(self.model_containers[self.fold_test].prototypes, prototypes_path) self.generate_figure2D() self.generate_figure_weights() return self.figure def load_weights(self, weights_folder=''): weights_file = 'fold' + str(self.fold_test) + '.hdf5' #_{epoch:02d} weights_path = os.path.join(weights_folder, weights_file) self.model_containers[self.fold_test].model.load_weights(weights_path) #scaler = load_scaler(scaler_path,self.fold_test) def get_training_log(self): return self.training_logs[self.fold_test] def append_training_log(self,training_log_new): self.training_logs[self.fold_test].append(training_log_new)
[ "dash_html_components.Button", "dcase_models.util.files.save_pickle", "numpy.array", "plotly.graph_objects.layout.Title", "dash_audio_components.DashAudioComponents", "dash_html_components.Div", "librosa.core.load", "dash_html_components.Br", "plotly.graph_objects.Scatter", "numpy.argmin", "plotly.express.imshow", "tensorflow.get_default_graph", "plotly.subplots.make_subplots", "numpy.ones", "numpy.amin", "dash_core_components.Slider", "matplotlib.pyplot.get_cmap", "dash_core_components.Interval", "dcase_models.util.gui.encode_audio", "dcase_models.util.data.get_fold_val", "os.path.join", "plotly.graph_objects.Figure", "dash_core_components.Dropdown", "numpy.random.randint", "dash_core_components.Graph", "dash_core_components.Input", "dcase_models.util.files.load_pickle" ]
[((1746, 1769), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""viridis"""'], {}), "('viridis')\n", (1758, 1769), True, 'import matplotlib.pyplot as plt\n'), ((4152, 4181), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(1)'}), '(rows=1, cols=1)\n', (4165, 4181), False, 'from plotly.subplots import make_subplots\n'), ((7168, 7231), 'plotly.express.imshow', 'px.imshow', (['model_container.prototypes.W_dense.T'], {'origin': '"""lower"""'}), "(model_container.prototypes.W_dense.T, origin='lower')\n", (7177, 7231), True, 'import plotly.express as px\n'), ((8536, 8573), 'plotly.express.imshow', 'px.imshow', (['mel_spec.T'], {'origin': '"""lower"""'}), "(mel_spec.T, origin='lower')\n", (8545, 8573), True, 'import plotly.express as px\n'), ((9779, 9823), 'dcase_models.util.data.get_fold_val', 'get_fold_val', (['self.fold_test', 'self.fold_list'], {}), '(self.fold_test, self.fold_list)\n', (9791, 9823), False, 'from dcase_models.util.data import get_fold_val\n'), ((10490, 10512), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (10510, 10512), True, 'import tensorflow as tf\n'), ((10603, 10692), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""plot2D"""', 'figure': 'self.figure', 'style': "{'height': '100%', 'width': '100%'}"}), "(id='plot2D', figure=self.figure, style={'height': '100%', 'width':\n '100%'})\n", (10612, 10692), True, 'import dash_core_components as dcc\n'), ((11083, 11192), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""plot_weights"""', 'figure': 'self.fig_weigths', 'style': "{'width': '100%', 'display': 'inline-block'}"}), "(id='plot_weights', figure=self.fig_weigths, style={'width':\n '100%', 'display': 'inline-block'})\n", (11092, 11192), True, 'import dash_core_components as dcc\n'), ((11286, 11389), 'dash_audio_components.DashAudioComponents', 'dash_audio_components.DashAudioComponents', ([], {'id': '"""audio-player"""', 'src': '""""""', 'autoPlay': '(False)', 'controls': '(True)'}), "(id='audio-player', src='',\n autoPlay=False, controls=True)\n", (11327, 11389), False, 'import dash_audio_components\n'), ((11469, 11614), 'dash_html_components.Button', 'html.Button', (['"""Delete prototype"""'], {'id': '"""delete_and_convert"""', 'className': '"""button"""', 'n_clicks_timestamp': '(0)', 'style': "{'display': 'none', 'width': '70%'}"}), "('Delete prototype', id='delete_and_convert', className='button',\n n_clicks_timestamp=0, style={'display': 'none', 'width': '70%'})\n", (11480, 11614), True, 'import dash_html_components as html\n'), ((11627, 11737), 'dash_html_components.Button', 'html.Button', (['"""Evaluate model"""'], {'id': '"""eval"""', 'className': '"""button"""', 'n_clicks_timestamp': '(0)', 'style': "{'width': '70%'}"}), "('Evaluate model', id='eval', className='button',\n n_clicks_timestamp=0, style={'width': '70%'})\n", (11638, 11737), True, 'import dash_html_components as html\n'), ((11752, 11873), 'dash_html_components.Button', 'html.Button', (['"""Load best weigths"""'], {'id': '"""load_weigths"""', 'className': '"""button"""', 'n_clicks_timestamp': '(0)', 'style': "{'width': '70%'}"}), "('Load best weigths', id='load_weigths', className='button',\n n_clicks_timestamp=0, style={'width': '70%'})\n", (11763, 11873), True, 'import dash_html_components as html\n'), ((11889, 11997), 'dash_html_components.Button', 'html.Button', (['"""Train model"""'], {'id': '"""train"""', 'className': '"""button"""', 'n_clicks_timestamp': '(0)', 'style': "{'width': '70%'}"}), "('Train model', id='train', className='button',\n n_clicks_timestamp=0, style={'width': '70%'})\n", (11900, 11997), True, 'import dash_html_components as html\n'), ((12013, 12121), 'dash_html_components.Button', 'html.Button', (['"""Reset model"""'], {'id': '"""reset"""', 'className': '"""button"""', 'n_clicks_timestamp': '(0)', 'style': "{'width': '70%'}"}), "('Reset model', id='reset', className='button',\n n_clicks_timestamp=0, style={'width': '70%'})\n", (12024, 12121), True, 'import dash_html_components as html\n'), ((12136, 12186), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""output_eval"""', 'style': "{'width': '20%'}"}), "(id='output_eval', style={'width': '20%'})\n", (12144, 12186), True, 'import dash_html_components as html\n'), ((12207, 12233), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""output_text"""'}), "(id='output_text')\n", (12215, 12233), True, 'import dash_html_components as html\n'), ((12260, 12290), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""output_interval"""'}), "(id='output_interval')\n", (12268, 12290), True, 'import dash_html_components as html\n'), ((12316, 12433), 'dash_core_components.Input', 'dcc.Input', ([], {'id': '"""input_epochs"""', 'type': '"""number"""', 'placeholder': '"""epochs"""', 'min': '(1)', 'max': '(100)', 'step': '(1)', 'style': "{'width': '33%'}"}), "(id='input_epochs', type='number', placeholder='epochs', min=1,\n max=100, step=1, style={'width': '33%'})\n", (12325, 12433), True, 'import dash_core_components as dcc\n'), ((12458, 12577), 'dash_core_components.Input', 'dcc.Input', ([], {'id': '"""learning_rate"""', 'type': '"""number"""', 'placeholder': '"""learning_rate"""', 'min': '(1e-07)', 'max': '(1)', 'style': "{'width': '33%'}"}), "(id='learning_rate', type='number', placeholder='learning_rate',\n min=1e-07, max=1, style={'width': '33%'})\n", (12467, 12577), True, 'import dash_core_components as dcc\n'), ((12595, 12716), 'dash_core_components.Input', 'dcc.Input', ([], {'id': '"""batch_size"""', 'type': '"""number"""', 'placeholder': '"""batch_size"""', 'min': '(32)', 'max': '(512)', 'step': '(32)', 'style': "{'width': '33%'}"}), "(id='batch_size', type='number', placeholder='batch_size', min=32,\n max=512, step=32, style={'width': '33%'})\n", (12604, 12716), True, 'import dash_core_components as dcc\n'), ((12881, 12952), 'dash_core_components.Interval', 'dcc.Interval', ([], {'id': '"""interval-component"""', 'interval': '(1 * 1000)', 'n_intervals': '(0)'}), "(id='interval-component', interval=1 * 1000, n_intervals=0)\n", (12893, 12952), True, 'import dash_core_components as dcc\n'), ((13169, 13267), 'dash_core_components.Dropdown', 'dcc.Dropdown', ([], {'id': '"""fold_select"""', 'options': 'options', 'value': 'self.fold_test', 'style': "{'width': '85%'}"}), "(id='fold_select', options=options, value=self.fold_test, style\n ={'width': '85%'})\n", (13181, 13267), True, 'import dash_core_components as dcc\n'), ((13687, 13764), 'dash_core_components.Dropdown', 'dcc.Dropdown', ([], {'id': '"""x_select"""', 'options': 'options', 'value': '(0)', 'style': "{'width': '80%'}"}), "(id='x_select', options=options, value=0, style={'width': '80%'})\n", (13699, 13764), True, 'import dash_core_components as dcc\n'), ((13781, 13858), 'dash_core_components.Dropdown', 'dcc.Dropdown', ([], {'id': '"""y_select"""', 'options': 'options', 'value': '(1)', 'style': "{'width': '80%'}"}), "(id='y_select', options=options, value=1, style={'width': '80%'})\n", (13793, 13858), True, 'import dash_core_components as dcc\n'), ((13876, 13954), 'dash_html_components.Div', 'html.Div', (['[button_eval, output_eval]'], {'style': "{'columnCount': 2, 'width': '50%'}"}), "([button_eval, output_eval], style={'columnCount': 2, 'width': '50%'})\n", (13884, 13954), True, 'import dash_html_components as html\n'), ((13971, 14039), 'dash_html_components.Div', 'html.Div', (['[input_epochs, input_lr, input_bs]'], {'style': "{'width': '70%'}"}), "([input_epochs, input_lr, input_bs], style={'width': '70%'})\n", (13979, 14039), True, 'import dash_html_components as html\n'), ((14097, 14162), 'dash_html_components.Div', 'html.Div', (['[fold_select]'], {'style': "{'columnCount': 3, 'width': '80%'}"}), "([fold_select], style={'columnCount': 3, 'width': '80%'})\n", (14105, 14162), True, 'import dash_html_components as html\n'), ((14185, 14264), 'dash_html_components.Div', 'html.Div', (['[button_load, button_reset]'], {'style': "{'columnCount': 2, 'width': '50%'}"}), "([button_load, button_reset], style={'columnCount': 2, 'width': '50%'})\n", (14193, 14264), True, 'import dash_html_components as html\n'), ((18476, 18505), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'rows': '(1)', 'cols': '(1)'}), '(rows=1, cols=1)\n', (18489, 18505), False, 'from plotly.subplots import make_subplots\n'), ((20535, 20592), 'os.path.join', 'os.path.join', (['self.weights_folder', 'self.model_output_name'], {}), '(self.weights_folder, self.model_output_name)\n', (20547, 20592), False, 'import os\n'), ((24016, 24084), 'numpy.array', 'np.array', (["[hoverData['points'][0]['x'], hoverData['points'][0]['y']]"], {}), "([hoverData['points'][0]['x'], hoverData['points'][0]['y']])\n", (24024, 24084), True, 'import numpy as np\n'), ((25940, 25958), 'numpy.ones', 'np.ones', (['(64, 128)'], {}), '((64, 128))\n', (25947, 25958), True, 'import numpy as np\n'), ((32128, 32202), 'numpy.array', 'np.array', (["[selectedData['points'][0]['x'], selectedData['points'][0]['y']]"], {}), "([selectedData['points'][0]['x'], selectedData['points'][0]['y']])\n", (32136, 32202), True, 'import numpy as np\n'), ((33851, 33895), 'dcase_models.util.data.get_fold_val', 'get_fold_val', (['self.fold_test', 'self.fold_list'], {}), '(self.fold_test, self.fold_list)\n', (33863, 33895), False, 'from dcase_models.util.data import get_fold_val\n'), ((40732, 40774), 'os.path.join', 'os.path.join', (['weights_folder', 'weights_file'], {}), '(weights_folder, weights_file)\n', (40744, 40774), False, 'import os\n'), ((4802, 4990), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x[j]', 'y': 'y[j]', 'text': 'classes[j]', 'name': 'proto_list[j]', 'mode': '"""markers"""', 'selectedpoints': 'selectedpoints_j', 'marker': "{'size': size, 'symbol': 'cross', 'color': colors[j % 10]}"}), "(x=x[j], y=y[j], text=classes[j], name=proto_list[j], mode=\n 'markers', selectedpoints=selectedpoints_j, marker={'size': size,\n 'symbol': 'cross', 'color': colors[j % 10]})\n", (4812, 4990), True, 'import plotly.graph_objects as go\n'), ((5097, 5304), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x_centers[j][:s]', 'y': 'y_centers[j][:s]', 'text': 'classes_centers[j][:s]', 'name': 'label_list[j]', 'selectedpoints': 'None', 'mode': '"""markers"""', 'marker': "{'size': 5, 'color': colors[j % 10], 'opacity': 0.6}"}), "(x=x_centers[j][:s], y=y_centers[j][:s], text=classes_centers[j][\n :s], name=label_list[j], selectedpoints=None, mode='markers', marker={\n 'size': 5, 'color': colors[j % 10], 'opacity': 0.6})\n", (5107, 5304), True, 'import plotly.graph_objects as go\n'), ((7610, 7641), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': '[selected]', 'y': '[1]'}), '(x=[selected], y=[1])\n', (7620, 7641), True, 'import plotly.graph_objects as go\n'), ((12756, 12844), 'dash_core_components.Slider', 'dcc.Slider', ([], {'id': '"""samples_per_class"""', 'min': '(1)', 'max': '(500)', 'step': '(1)', 'value': '(10)', 'vertical': '(False)'}), "(id='samples_per_class', min=1, max=500, step=1, value=10,\n vertical=False)\n", (12766, 12844), True, 'import dash_core_components as dcc\n'), ((21550, 21570), 'plotly.graph_objects.Figure', 'go.Figure', ([], {'data': 'data'}), '(data=data)\n', (21559, 21570), True, 'import plotly.graph_objects as go\n'), ((21869, 21905), 'plotly.graph_objects.Figure', 'go.Figure', ([], {'data': "{'x': [0], 'y': [0]}"}), "(data={'x': [0], 'y': [0]})\n", (21878, 21905), True, 'import plotly.graph_objects as go\n'), ((22283, 22372), 'plotly.express.imshow', 'px.imshow', (['self.model_containers[self.fold_test].prototypes.W_dense.T'], {'origin': '"""lower"""'}), "(self.model_containers[self.fold_test].prototypes.W_dense.T,\n origin='lower')\n", (22292, 22372), True, 'import plotly.express as px\n'), ((23568, 23605), 'plotly.express.imshow', 'px.imshow', (['mel_spec.T'], {'origin': '"""lower"""'}), "(mel_spec.T, origin='lower')\n", (23577, 23605), True, 'import plotly.express as px\n'), ((24420, 24438), 'numpy.amin', 'np.amin', (['dist_data'], {}), '(dist_data)\n', (24427, 24438), True, 'import numpy as np\n'), ((24442, 24462), 'numpy.amin', 'np.amin', (['dist_protos'], {}), '(dist_protos)\n', (24449, 24462), True, 'import numpy as np\n'), ((24505, 24525), 'numpy.argmin', 'np.argmin', (['dist_data'], {}), '(dist_data)\n', (24514, 24525), True, 'import numpy as np\n'), ((25692, 25714), 'numpy.argmin', 'np.argmin', (['dist_protos'], {}), '(dist_protos)\n', (25701, 25714), True, 'import numpy as np\n'), ((26017, 26085), 'numpy.array', 'np.array', (["[clickData['points'][0]['x'], clickData['points'][0]['y']]"], {}), "([clickData['points'][0]['x'], clickData['points'][0]['y']])\n", (26025, 26085), True, 'import numpy as np\n'), ((32537, 32555), 'numpy.amin', 'np.amin', (['dist_data'], {}), '(dist_data)\n', (32544, 32555), True, 'import numpy as np\n'), ((32559, 32579), 'numpy.amin', 'np.amin', (['dist_protos'], {}), '(dist_protos)\n', (32566, 32579), True, 'import numpy as np\n'), ((32622, 32642), 'numpy.argmin', 'np.argmin', (['dist_data'], {}), '(dist_data)\n', (32631, 32642), True, 'import numpy as np\n'), ((32839, 32869), 'librosa.core.load', 'librosa.core.load', (['center_file'], {}), '(center_file)\n', (32856, 32869), False, 'import librosa\n'), ((33228, 33250), 'numpy.argmin', 'np.argmin', (['dist_protos'], {}), '(dist_protos)\n', (33237, 33250), True, 'import numpy as np\n'), ((34203, 34271), 'os.path.join', 'os.path.join', (['self.exp_folder_input', 'self.fold_test', '"""scaler.pickle"""'], {}), "(self.exp_folder_input, self.fold_test, 'scaler.pickle')\n", (34215, 34271), False, 'import os\n'), ((34293, 34317), 'dcase_models.util.files.load_pickle', 'load_pickle', (['scaler_path'], {}), '(scaler_path)\n', (34304, 34317), False, 'from dcase_models.util.files import save_pickle, load_pickle\n'), ((36739, 36791), 'os.path.join', 'os.path.join', (['self.exp_folder_output', 'self.fold_test'], {}), '(self.exp_folder_output, self.fold_test)\n', (36751, 36791), False, 'import os\n'), ((36911, 36956), 'os.path.join', 'os.path.join', (['exp_folder_fold', '"""training.log"""'], {}), "(exp_folder_fold, 'training.log')\n", (36923, 36956), False, 'import os\n'), ((36984, 37052), 'os.path.join', 'os.path.join', (['self.exp_folder_input', 'self.fold_test', '"""scaler.pickle"""'], {}), "(self.exp_folder_input, self.fold_test, 'scaler.pickle')\n", (36996, 37052), False, 'import os\n'), ((37777, 37801), 'dcase_models.util.files.load_pickle', 'load_pickle', (['scaler_path'], {}), '(scaler_path)\n', (37788, 37801), False, 'from dcase_models.util.files import save_pickle, load_pickle\n'), ((38845, 38899), 'os.path.join', 'os.path.join', (['exp_folder_fold', '"""data_instances.pickle"""'], {}), "(exp_folder_fold, 'data_instances.pickle')\n", (38857, 38899), False, 'import os\n'), ((38930, 38980), 'os.path.join', 'os.path.join', (['exp_folder_fold', '"""prototypes.pickle"""'], {}), "(exp_folder_fold, 'prototypes.pickle')\n", (38942, 38980), False, 'import os\n'), ((40123, 40184), 'os.path.join', 'os.path.join', (['self.exp_folder_output', '"""data_instances.pickle"""'], {}), "(self.exp_folder_output, 'data_instances.pickle')\n", (40135, 40184), False, 'import os\n'), ((40215, 40272), 'os.path.join', 'os.path.join', (['self.exp_folder_output', '"""prototypes.pickle"""'], {}), "(self.exp_folder_output, 'prototypes.pickle')\n", (40227, 40272), False, 'import os\n'), ((40286, 40376), 'dcase_models.util.files.save_pickle', 'save_pickle', (['self.model_containers[self.fold_test].data_instances', 'data_instances_path'], {}), '(self.model_containers[self.fold_test].data_instances,\n data_instances_path)\n', (40297, 40376), False, 'from dcase_models.util.files import save_pickle, load_pickle\n'), ((40385, 40463), 'dcase_models.util.files.save_pickle', 'save_pickle', (['self.model_containers[self.fold_test].prototypes', 'prototypes_path'], {}), '(self.model_containers[self.fold_test].prototypes, prototypes_path)\n', (40396, 40463), False, 'from dcase_models.util.files import save_pickle, load_pickle\n'), ((22556, 22587), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': '[selected]', 'y': '[1]'}), '(x=[selected], y=[1])\n', (22566, 22587), True, 'import plotly.graph_objects as go\n'), ((26410, 26428), 'numpy.amin', 'np.amin', (['dist_data'], {}), '(dist_data)\n', (26417, 26428), True, 'import numpy as np\n'), ((26432, 26452), 'numpy.amin', 'np.amin', (['dist_protos'], {}), '(dist_protos)\n', (26439, 26452), True, 'import numpy as np\n'), ((26499, 26519), 'numpy.argmin', 'np.argmin', (['dist_data'], {}), '(dist_data)\n', (26508, 26519), True, 'import numpy as np\n'), ((26905, 26935), 'librosa.core.load', 'librosa.core.load', (['center_file'], {}), '(center_file)\n', (26922, 26935), False, 'import librosa\n'), ((27240, 27262), 'numpy.argmin', 'np.argmin', (['dist_protos'], {}), '(dist_protos)\n', (27249, 27262), True, 'import numpy as np\n'), ((38257, 38307), 'os.path.join', 'os.path.join', (['exp_folder_fold', '"""best_weights.hdf5"""'], {}), "(exp_folder_fold, 'best_weights.hdf5')\n", (38269, 38307), False, 'import os\n'), ((39304, 39367), 'os.path.join', 'os.path.join', (["params_dataset['feature_folder']", '"""mel_basis.npy"""'], {}), "(params_dataset['feature_folder'], 'mel_basis.npy')\n", (39316, 39367), False, 'import os\n'), ((7263, 7298), 'plotly.graph_objects.layout.Title', 'go.layout.Title', ([], {'text': '"""A Bar Chart"""'}), "(text='A Bar Chart')\n", (7278, 7298), True, 'import plotly.graph_objects as go\n'), ((7813, 7841), 'numpy.array', 'np.array', (['prototypes_classes'], {}), '(prototypes_classes)\n', (7821, 7841), True, 'import numpy as np\n'), ((8596, 8631), 'plotly.graph_objects.layout.Title', 'go.layout.Title', ([], {'text': '"""A Bar Chart"""'}), "(text='A Bar Chart')\n", (8611, 8631), True, 'import plotly.graph_objects as go\n'), ((18775, 18926), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x[j]', 'y': 'y[j]', 'text': 'classes[j]', 'name': 'self.label_list[j]', 'mode': '"""markers"""', 'marker': "{'size': size, 'symbol': 'cross', 'color': colors[j]}"}), "(x=x[j], y=y[j], text=classes[j], name=self.label_list[j], mode=\n 'markers', marker={'size': size, 'symbol': 'cross', 'color': colors[j]})\n", (18785, 18926), True, 'import plotly.graph_objects as go\n'), ((18962, 19147), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x_centers[j][:s]', 'y': 'y_centers[j][:s]', 'text': 'classes_centers[j][:s]', 'name': 'self.label_list[j]', 'mode': '"""markers"""', 'marker': "{'size': 6, 'color': colors[j], 'opacity': 0.7}"}), "(x=x_centers[j][:s], y=y_centers[j][:s], text=classes_centers[j][\n :s], name=self.label_list[j], mode='markers', marker={'size': 6,\n 'color': colors[j], 'opacity': 0.7})\n", (18972, 19147), True, 'import plotly.graph_objects as go\n'), ((19559, 19747), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x[j]', 'y': 'y[j]', 'text': 'classes[j]', 'name': 'self.label_list[j]', 'mode': '"""markers"""', 'selectedpoints': 'selectedpoints_j', 'marker': "{'size': size, 'symbol': 'cross', 'color': colors[j]}"}), "(x=x[j], y=y[j], text=classes[j], name=self.label_list[j], mode=\n 'markers', selectedpoints=selectedpoints_j, marker={'size': size,\n 'symbol': 'cross', 'color': colors[j]})\n", (19569, 19747), True, 'import plotly.graph_objects as go\n'), ((19778, 19983), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'x_centers[j][:s]', 'y': 'y_centers[j][:s]', 'text': 'classes_centers[j][:s]', 'name': 'self.label_list[j]', 'selectedpoints': '[]', 'mode': '"""markers"""', 'marker': "{'size': 6, 'color': colors[j], 'opacity': 0.7}"}), "(x=x_centers[j][:s], y=y_centers[j][:s], text=classes_centers[j][\n :s], name=self.label_list[j], selectedpoints=[], mode='markers', marker\n ={'size': 6, 'color': colors[j], 'opacity': 0.7})\n", (19788, 19983), True, 'import plotly.graph_objects as go\n'), ((24792, 24834), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)'], {'size': '(100, 100)'}), '(0, 255, size=(100, 100))\n', (24809, 24834), True, 'import numpy as np\n'), ((14504, 14634), 'dash_html_components.Div', 'html.Div', (['[x_select]'], {'className': '"""two columns"""', 'style': "{'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}"}), "([x_select], className='two columns', style={'display': 'flex',\n 'align-items': 'center', 'justify-content': 'center'})\n", (14512, 14634), True, 'import dash_html_components as html\n'), ((14647, 14777), 'dash_html_components.Div', 'html.Div', (['[y_select]'], {'className': '"""two columns"""', 'style': "{'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}"}), "([y_select], className='two columns', style={'display': 'flex',\n 'align-items': 'center', 'justify-content': 'center'})\n", (14655, 14777), True, 'import dash_html_components as html\n'), ((14790, 14928), 'dash_html_components.Div', 'html.Div', (['[slider_samples]'], {'className': '"""three columns"""', 'style': "{'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}"}), "([slider_samples], className='three columns', style={'display':\n 'flex', 'align-items': 'center', 'justify-content': 'center'})\n", (14798, 14928), True, 'import dash_html_components as html\n'), ((15092, 15162), 'dash_html_components.Div', 'html.Div', (['[plot2D]'], {'className': '"""nine columns"""', 'style': "{'height': '80vh'}"}), "([plot2D], className='nine columns', style={'height': '80vh'})\n", (15100, 15162), True, 'import dash_html_components as html\n'), ((15899, 15948), 'dash_html_components.Div', 'html.Div', (['[plot_weights]'], {'className': '"""six columns"""'}), "([plot_weights], className='six columns')\n", (15907, 15948), True, 'import dash_html_components as html\n'), ((22391, 22426), 'plotly.graph_objects.layout.Title', 'go.layout.Title', ([], {'text': '"""A Bar Chart"""'}), "(text='A Bar Chart')\n", (22406, 22426), True, 'import plotly.graph_objects as go\n'), ((22784, 22812), 'numpy.array', 'np.array', (['prototypes_classes'], {}), '(prototypes_classes)\n', (22792, 22812), True, 'import numpy as np\n'), ((23628, 23663), 'plotly.graph_objects.layout.Title', 'go.layout.Title', ([], {'text': '"""A Bar Chart"""'}), "(text='A Bar Chart')\n", (23643, 23663), True, 'import plotly.graph_objects as go\n'), ((27019, 27041), 'dcase_models.util.gui.encode_audio', 'encode_audio', (['data', 'sr'], {}), '(data, sr)\n', (27031, 27041), False, 'from dcase_models.util.gui import encode_audio\n'), ((27661, 27713), 'dcase_models.util.gui.encode_audio', 'encode_audio', (["proto_audio['data']", "proto_audio['sr']"], {}), "(proto_audio['data'], proto_audio['sr'])\n", (27673, 27713), False, 'from dcase_models.util.gui import encode_audio\n'), ((15198, 15207), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15205, 15207), True, 'import dash_html_components as html\n'), ((15214, 15223), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15221, 15223), True, 'import dash_html_components as html\n'), ((15238, 15247), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15245, 15247), True, 'import dash_html_components as html\n'), ((15260, 15269), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15267, 15269), True, 'import dash_html_components as html\n'), ((15282, 15291), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15289, 15291), True, 'import dash_html_components as html\n'), ((15304, 15313), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15311, 15313), True, 'import dash_html_components as html\n'), ((15356, 15365), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15363, 15365), True, 'import dash_html_components as html\n'), ((15379, 15388), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15386, 15388), True, 'import dash_html_components as html\n'), ((15399, 15408), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15406, 15408), True, 'import dash_html_components as html\n'), ((15438, 15447), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15445, 15447), True, 'import dash_html_components as html\n'), ((15522, 15531), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15529, 15531), True, 'import dash_html_components as html\n'), ((15532, 15541), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (15539, 15541), True, 'import dash_html_components as html\n')]
import numpy as np import matplotlib.pyplot as plt # documentation # https://matplotlib.org/3.1.3/api/pyplot_summary.html # scatter plot x = np.random.randint(100, size=(100)) y = np.random.randint(100, size=(100)) plt.scatter(x, y, c='tab:blue', label='stuff') plt.legend(loc=2) # plt.show() # line plot x = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) y = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) plt.plot(x, y, c='tab:green', label='aaa') plt.plot(x, y, "-o", c='tab:green', label='aaa') # plot with dots # plt.show() # bar chart x = np.arange(3) plt.bar(x, height=[1,2,3]) plt.xticks(x, ['a','b','c']) plt.ylabel('y') plt.xlabel('x') # plt.show() # subplots (pie chart and histogram) arr_pie = np.array([40,30,70]) arr_pie_labels = ["a","b","c"] arr_hst = np.random.normal(size=1000) fig1, axs = plt.subplots(2) axs[0].pie(arr_pie, labels=arr_pie_labels) axs[0].title.set_text("pie chart") axs[1].hist(arr_hst, bins=30) axs[1].title.set_text("histogram") # plt.show()
[ "numpy.random.normal", "matplotlib.pyplot.xticks", "numpy.arange", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.array", "numpy.random.randint", "matplotlib.pyplot.bar", "matplotlib.pyplot.scatter", "matplotlib.pyplot.subplots", "matplotlib.pyplot.legend" ]
[((145, 177), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(100)'}), '(100, size=100)\n', (162, 177), True, 'import numpy as np\n'), ((184, 216), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(100)'}), '(100, size=100)\n', (201, 216), True, 'import numpy as np\n'), ((219, 265), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': '"""tab:blue"""', 'label': '"""stuff"""'}), "(x, y, c='tab:blue', label='stuff')\n", (230, 265), True, 'import matplotlib.pyplot as plt\n'), ((266, 283), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '(2)'}), '(loc=2)\n', (276, 283), True, 'import matplotlib.pyplot as plt\n'), ((316, 367), 'numpy.array', 'np.array', (['[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]'], {}), '([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])\n', (324, 367), True, 'import numpy as np\n'), ((372, 423), 'numpy.array', 'np.array', (['[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]'], {}), '([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])\n', (380, 423), True, 'import numpy as np\n'), ((424, 466), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'c': '"""tab:green"""', 'label': '"""aaa"""'}), "(x, y, c='tab:green', label='aaa')\n", (432, 466), True, 'import matplotlib.pyplot as plt\n'), ((467, 515), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""-o"""'], {'c': '"""tab:green"""', 'label': '"""aaa"""'}), "(x, y, '-o', c='tab:green', label='aaa')\n", (475, 515), True, 'import matplotlib.pyplot as plt\n'), ((564, 576), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (573, 576), True, 'import numpy as np\n'), ((577, 605), 'matplotlib.pyplot.bar', 'plt.bar', (['x'], {'height': '[1, 2, 3]'}), '(x, height=[1, 2, 3])\n', (584, 605), True, 'import matplotlib.pyplot as plt\n'), ((604, 634), 'matplotlib.pyplot.xticks', 'plt.xticks', (['x', "['a', 'b', 'c']"], {}), "(x, ['a', 'b', 'c'])\n", (614, 634), True, 'import matplotlib.pyplot as plt\n'), ((633, 648), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (643, 648), True, 'import matplotlib.pyplot as plt\n'), ((649, 664), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (659, 664), True, 'import matplotlib.pyplot as plt\n'), ((727, 749), 'numpy.array', 'np.array', (['[40, 30, 70]'], {}), '([40, 30, 70])\n', (735, 749), True, 'import numpy as np\n'), ((790, 817), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1000)'}), '(size=1000)\n', (806, 817), True, 'import numpy as np\n'), ((831, 846), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {}), '(2)\n', (843, 846), True, 'import matplotlib.pyplot as plt\n')]
from . import core import io import re import requests import pytz import time import datetime as dt import dateutil.parser as du import numpy as np import pandas as pd from typing import Tuple, Dict, List, Union, ClassVar, Any, Optional, Type import types class AccessModeInQuery(core.API): # Enumeration class to list available API access modes. NONE = 'n/a'; DOWNLOAD = 'download'; CHART = 'chart'; DEFAULT = 'download'; class EventsInQuery(core.API): """ Enumeration class to list the 'events' that is possible to request. """ NONE = ''; HISTORY = 'history'; DIVIDENDS = 'div'; SPLITS = 'split'; class Query(): """ Class that encodes the request parameters into a query. It provides methods to set such parameters as well as to validate them in accordance to the Yahoo Finance API expected arguments. """ __events__:ClassVar[List[str]] = ["history", "split", "div"]; __chart_range__:ClassVar[List[str]] = ["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"]; __chart_interval__:ClassVar[List[str]] = ["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d", "1wk", "1mo", "3mo"]; __download_frequency__:ClassVar[List[str]] = ["1d", "1wk", "1mo"]; def __init__(self, using_api:Type[AccessModeInQuery]): self.query:Dict[str,Optional[str]] = {}; self.__api__:AccessModeInQuery = using_api; def __str__(self): return "&".join([f"{param}={value}" for param, value in self.query.items() if value is not None]) if len(self.query)>0 else ""; def __len__(self): return len(self.query); def __bool__(self): return True if len(self.query)>0 else False; def SetEvents(self, events:Type[EventsInQuery]) -> None: if not isinstance(events, EventsInQuery): self.query['events'] = None; raise TypeError(f"invalid type for the argument 'events'; <class 'EventsInQuery'> expected, got {type(events)}"); else: if self.__api__ is AccessModeInQuery.CHART: self.query['events'] = events if events not in [EventsInQuery.HISTORY, EventsInQuery.NONE] else None; elif self.__api__ is AccessModeInQuery.DOWNLOAD: self.query['events'] = events if events is not EventsInQuery.NONE else str(EventsInQuery.HISTORY); else: self.query['events'] = None; raise ValueError(f"value of argument 'events' is not compatible with the given API '{str(self.__api__)}'"); def SetInterval(self, interval:str) -> None: if not isinstance(interval, str): self.query['interval'] = None; raise TypeError(f"invalid type for the argument 'interval'; {type(str)} expected, got {type(interval)}"); else: if (self.__api__ is AccessModeInQuery.CHART and interval in self.__chart_interval__) \ or (self.__api__ is AccessModeInQuery.DOWNLOAD and interval in self.__download_frequency__): self.query['interval'] = interval; else: self.query['interval'] = None; raise ValueError(f"value of argument 'interval' is not compatible with the given API '{str(self.__api__)}'"); def SetPeriod(self, period:Union[str,dt.datetime,List[Union[int,dt.datetime]]]) -> None: if isinstance(period,list) and len(period) is 2 and all(lambda p: isinstance(p,int) or isinstance(p,dt.datetime) or isinstance(p,str) for p in period): self.query['period1'], self.query['period2'] = self.__parse_periods__(*(period)); elif isinstance(period,str): if self.__api__ is AccessModeInQuery.CHART and period in self.__chart_range__: self.query['range'] = period; else: raise ValueError(f"value of argument 'period' is not compatible with the given API '{str(self.__api__)}'"); elif isinstance(period,dt.datetime): self.query['period1'], self.query['period2'] = self.__parse_periods__(period,period); else: self.query['period1'], self.query['period2'], self.query['range'] = None, None, None; raise TypeError(f"invalid type for the argument 'period'; {type(str)} or {type(dt.datetime)} or a list of either {type(int)} or {type(dt.datetime)} expected, got {type(period)}"); @classmethod def __parse_periods__(cls, value1:Union[dt.datetime,int,str], value2:Union[dt.datetime,int,str]) -> Tuple[int,int]: # Note that the earliest date that is possible to take into consideration is platform-dependent. # For compatibility reasons, we do not accept timestamps prior to epoch time 0. if isinstance(value1,str): try: period1 = int(du.isoparse(value1).timestamp()); except (OSError,OverflowError): period1 = 0; else: period1 = max(0,(int(time.mktime(value1.timetuple())))) if isinstance(value1, dt.datetime) else max(0,value1); if value1==value2: period2 = period2; elif isinstance(value2,str): try: period2 = int(du.isoparse(value2).timestamp()); except (OSError,OverflowError): period2 = dt.datetime.now().timestamp(); else: period2 = max(period1,int(time.mktime(value2.timetuple()))) if isinstance(value2, dt.datetime) else max(period1,value2); return period1, period2 class Response: """ Class to parse and process responses sent back by the Yahoo Finance API. Use the 'Parse()' method to correctly retrieve data structures in accordance to the chosen 'AccessModeInQuery' API. """ def __init__(self, input:Type[requests.models.Response]): self.__format__:str = ""; self.__error__:Optional[Dict[str, str]] = None; self.__meta__:Optional[Dict[str, Union[str, int, float]]] = None; self.__timestamps__:Optional[List[dt.datetime]] = None; self.__quotes__:Optional[pd.DataFrame] = None; self.__events__:Optional[pd.DataFrame] = None; self.__data__:Optional[Union[pd.DataFrame,dict]] = None; def is_json() -> bool: nonlocal input; try: input = input.json(parse_float=float, parse_int=int); except ValueError : return False else: return True if is_json(): if'chart' in input.keys(): self.__format__ = 'chart'; if 'error' in input['chart'].keys(): self.__error__ = self.__response_parser__(input['chart']['error']); if self.__error__ is None: data = input['chart']['result'][0]; self.__error__ = {'code':"ok", 'description':"success!"}; self.__meta__ = self.__response_parser__(data['meta']); self.__timestamps__ = pd.DatetimeIndex(list( map(dt.datetime.utcfromtimestamp, sorted(data['timestamp']))), name=f"Date ({pytz.utc})"); self.__quotes__ = pd.DataFrame({ 'Open' : np.array(data['indicators']['quote'][0]['open']), 'High' : np.array(data['indicators']['quote'][0]['high']), 'Low' : np.array(data['indicators']['quote'][0]['low']), 'Close' : np.array(data['indicators']['quote'][0]['close']), 'Adj Close': np.array(data['indicators']['adjclose'][0]['adjclose']) if 'adjclose' in data['indicators'].keys() else np.full(len(data['indicators']['quote'][0]['close']),np.NaN), 'Volume' : np.array(data['indicators']['quote'][0]['volume'])}, index=self.__timestamps__); if 'events' in data.keys(): index = list(); entries = list(); columns = list(); if 'splits' in data['events'].keys(): for split in data['events']['splits'].values(): index.append(split['date']); entries.append([split['numerator'], split['denominator'], split['denominator']/split['numerator']]); columns=['From', 'To', 'Split Ratio']; elif 'dividends' in data['events'].keys(): for dividend in data['events']['dividends'].values(): index.append(dividend['date']); entries.append(dividend['amount']); columns=['Dividends']; index = pd.DatetimeIndex(list(map(lambda ts: dt.datetime.utcfromtimestamp(ts).date(),sorted(index))), name=f"Date ({pytz.utc})"); self.__events__ = pd.DataFrame(entries,index=index,columns=columns); elif 'finance' in input.keys(): self.__format__ = 'finance'; if 'error' in input['finance'].keys(): self.__error__ = self.__response_parser__(input['finance']['error']); if self.__error__ is None: self.__data__ = self.__response_parser__(input['finance']); else: self.__format__ = 'finance'; self.__error__ = {'code':"ok", 'description':"success!"}; self.__data__ = pd.read_csv(io.StringIO(input.text),index_col=0,parse_dates=True).sort_index(); def Parse(self) -> Dict[str,Any]: if self.__format__ == 'chart': return {'api':'chart', 'meta':self.__meta__, 'quotes':self.__quotes__, 'events':self.__events__, 'error':self.__error__}; elif self.__format__ == 'finance': return {'api':'download', 'data':self.__data__, 'error':self.__error__}; else: return {'api': 'unknown', 'error':{'code':"0", 'description':"invalid API"} }; @classmethod def __response_parser__(cls, d:Any) -> Any: if d is "null": return None elif isinstance(d,dict): return {key:cls.__response_parser__(value) for key, value in d.items()}; elif isinstance(d,list): try: return list(map(float, d)); except : return d; elif isinstance(d,str): try: return float(d); except: return d; else: return d class Session: """ A lower level class that explicitly requests data to Yahoo Finance via HTTP. I provides two 'public' methods: - With(...): to set the favorite access mode; - Get(...): to explicitly push request to Yahoo. It implements a recursive call to the HTTP 'GET' method in case of failure. The maximum number of attempts has been hardcodedly set to 10. """ __yahoo_finance_url__:str = ""; __yahoo_finance_api__:Type[AccessModeInQuery] = AccessModeInQuery.NONE; def __init__(self): self.__last_time_checked__ : dt.datetime; self.__cookies__ : Type[requests.cookies.RequestsCookieJar]; self.__crumb__ : str; @classmethod def With(cls, this_api:Type[AccessModeInQuery]) -> 'Session': if not isinstance(this_api,AccessModeInQuery): raise TypeError(f"invalid type for the argument 'this_api'; <class 'AccessModeInQuery'> expected, got {type(this_api)}."); else: cls.__set_api__(this_api); cls.__set_url__(); session = cls(); session.__start__(); return session; @classmethod def __set_url__(cls) -> None: if cls.__yahoo_finance_api__ is not AccessModeInQuery.NONE: cls.__yahoo_finance_url__ = f"https://query1.finance.yahoo.com/v7/finance/{cls.__yahoo_finance_api__}/"; else: raise UnboundLocalError("session's api has not been set yet"); @classmethod def __set_api__(cls, input_api:Type[AccessModeInQuery]=AccessModeInQuery.DEFAULT) -> None: if cls.__yahoo_finance_api__ is not input_api: cls.__yahoo_finance_api__ = input_api if input_api is not AccessModeInQuery.NONE else AccessModeInQuery.DEFAULT; #else: # print(f"*INFO: the session 'api' was already '{input_api}'."); def __start__(self) -> None: r = requests.get('https://finance.yahoo.com/quote/SPY/history'); self.__cookies__ = requests.cookies.cookiejar_from_dict({'B': r.cookies['B']}); pattern = re.compile(r'.*"CrumbStore":\{"crumb":"(?P<crumb>[^"]+)"\}'); for line in r.text.splitlines(): crumb_match = pattern.match(line) if crumb_match is not None: self.__crumb__ = crumb_match.groupdict()['crumb']; break; self.__last_time_checked__ = dt.datetime.now(); def __restart__(self) -> None: self.__abandon__(); self.__start__(); def __refresh__(self, force:bool=False) -> None: if force: self.__restart__(); else: if self.__last_time_checked__ is not None: current_time = dt.datetime.now() delta_secs = (current_time - self.__last_time_checked__).total_seconds() if delta_secs > 300: # 300 = 5 minutes self.__restart__(); def __abandon__(self) -> None: self.__cookies__ = None; self.__crumb__ = ""; self.__last_time_checked__ = None; def Get(self, ticker:str, params:Type[Query], attempt:int=0, timeout:int=10, last_error:str="") -> Tuple[bool, dict]: if not isinstance(ticker,str): raise TypeError(f"invalid type for the argument 'ticker'! {type(str)} expected; got {type(ticker)}"); if not isinstance(params, Query): raise TypeError(f"invalid type for the argument 'params'! <class 'Query'> expected; got {type(params)}"); if attempt<10: query = f"?{str(params)}&crumb={self.__crumb__}" if params else f"?crumb={self.__crumb__}"; url = self.__yahoo_finance_url__ + ticker + query; try: response = requests.get(url, cookies=self.__cookies__) response.raise_for_status(); except requests.HTTPError as e: if response.status_code in [408, 409, 429]: time.sleep(timeout); self.__refresh__(); return self.Get(ticker,params,attempt=attempt+1,timeout=timeout+1,last_error=str(e)) elif response.status_code in [401, 404, 422]: r = Response(response).Parse(); if r['error']['description'] == "Invalid cookie": self.__refresh__(force=True); return self.Get(ticker,params,attempt=attempt+1,timeout=timeout+5,last_error=r['error']['description']) else: return True, dict({'code': r['error']['code'], 'description': f"{r['error']['description']} (attempt: {attempt})"}); else : m = re.match(r'^(?P<code>\d{3})\s?\w*\s?Error\s?:\s?(?P<description>.+)$', str(e)); return True, dict({'code': m['code'], 'description': f"{m['description']} (attempt: {attempt})"}); except requests.Timeout as e: time.sleep(timeout); self.__refresh__(); return self.Get(ticker,params,attempt=attempt+1,timeout=timeout+1,last_error=str(e)) except requests.RequestException as e: if re.search(r"^\s*Invalid\s?URL", str(e)): time.sleep(timeout); self.__refresh__(); return self.Get(ticker,params,attempt=attempt+1,timeout=timeout+1,last_error=str(e)); else: return True, dict({'code': "-1", 'description': f"{str(e)} (attempt: {attempt})"}); else: r = Response(response).Parse(); if r['error'] is not None and r['error']['code'] is not "ok": return True, dict({'code': r['error']['code'], 'description': f"{r['error']['description']} (attempt: {attempt})"}); else: return False, r; else: return True, dict({'code': "-2", 'description': "{}\nThe maximum number of attempts has been exceeded!".format(last_error)});
[ "datetime.datetime.utcfromtimestamp", "requests.cookies.cookiejar_from_dict", "dateutil.parser.isoparse", "re.compile", "time.sleep", "requests.get", "datetime.datetime.now", "numpy.array", "pandas.DataFrame", "io.StringIO" ]
[((12645, 12704), 'requests.get', 'requests.get', (['"""https://finance.yahoo.com/quote/SPY/history"""'], {}), "('https://finance.yahoo.com/quote/SPY/history')\n", (12657, 12704), False, 'import requests\n'), ((12733, 12792), 'requests.cookies.cookiejar_from_dict', 'requests.cookies.cookiejar_from_dict', (["{'B': r.cookies['B']}"], {}), "({'B': r.cookies['B']})\n", (12769, 12792), False, 'import requests\n'), ((12812, 12873), 're.compile', 're.compile', (['""".*"CrumbStore":\\\\{"crumb":"(?P<crumb>[^"]+)"\\\\}"""'], {}), '(\'.*"CrumbStore":\\\\{"crumb":"(?P<crumb>[^"]+)"\\\\}\')\n', (12822, 12873), False, 'import re\n'), ((13128, 13145), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (13143, 13145), True, 'import datetime as dt\n'), ((13445, 13462), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (13460, 13462), True, 'import datetime as dt\n'), ((14458, 14501), 'requests.get', 'requests.get', (['url'], {'cookies': 'self.__cookies__'}), '(url, cookies=self.__cookies__)\n', (14470, 14501), False, 'import requests\n'), ((15674, 15693), 'time.sleep', 'time.sleep', (['timeout'], {}), '(timeout)\n', (15684, 15693), False, 'import time\n'), ((9116, 9167), 'pandas.DataFrame', 'pd.DataFrame', (['entries'], {'index': 'index', 'columns': 'columns'}), '(entries, index=index, columns=columns)\n', (9128, 9167), True, 'import pandas as pd\n'), ((9690, 9713), 'io.StringIO', 'io.StringIO', (['input.text'], {}), '(input.text)\n', (9701, 9713), False, 'import io\n'), ((14671, 14690), 'time.sleep', 'time.sleep', (['timeout'], {}), '(timeout)\n', (14681, 14690), False, 'import time\n'), ((15963, 15982), 'time.sleep', 'time.sleep', (['timeout'], {}), '(timeout)\n', (15973, 15982), False, 'import time\n'), ((4874, 4893), 'dateutil.parser.isoparse', 'du.isoparse', (['value1'], {}), '(value1)\n', (4885, 4893), True, 'import dateutil.parser as du\n'), ((7280, 7328), 'numpy.array', 'np.array', (["data['indicators']['quote'][0]['open']"], {}), "(data['indicators']['quote'][0]['open'])\n", (7288, 7328), True, 'import numpy as np\n'), ((7367, 7415), 'numpy.array', 'np.array', (["data['indicators']['quote'][0]['high']"], {}), "(data['indicators']['quote'][0]['high'])\n", (7375, 7415), True, 'import numpy as np\n'), ((7454, 7501), 'numpy.array', 'np.array', (["data['indicators']['quote'][0]['low']"], {}), "(data['indicators']['quote'][0]['low'])\n", (7462, 7501), True, 'import numpy as np\n'), ((7540, 7589), 'numpy.array', 'np.array', (["data['indicators']['quote'][0]['close']"], {}), "(data['indicators']['quote'][0]['close'])\n", (7548, 7589), True, 'import numpy as np\n'), ((7911, 7961), 'numpy.array', 'np.array', (["data['indicators']['quote'][0]['volume']"], {}), "(data['indicators']['quote'][0]['volume'])\n", (7919, 7961), True, 'import numpy as np\n'), ((5262, 5281), 'dateutil.parser.isoparse', 'du.isoparse', (['value2'], {}), '(value2)\n', (5273, 5281), True, 'import dateutil.parser as du\n'), ((5366, 5383), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (5381, 5383), True, 'import datetime as dt\n'), ((7628, 7683), 'numpy.array', 'np.array', (["data['indicators']['adjclose'][0]['adjclose']"], {}), "(data['indicators']['adjclose'][0]['adjclose'])\n", (7636, 7683), True, 'import numpy as np\n'), ((8989, 9021), 'datetime.datetime.utcfromtimestamp', 'dt.datetime.utcfromtimestamp', (['ts'], {}), '(ts)\n', (9017, 9021), True, 'import datetime as dt\n')]
import numpy as np import matplotlib.pyplot as plt from copy import deepcopy from ..measure import ConditionedLognormalSampler class ScalarImage: """ Class containing a scalar image. """ def __init__(self, height=1000, width=1000): """ Instantiate scalar image with shape (<height>, <width>). """ self.height = height self.width = width self.initialize() @property def shape(self): """ Image shape. """ return self.im.shape[-2:] @property def pixels(self): """ Returns image pixels. """ return self.im.ravel() @property def max(self): """ Maximum pixel intensity. """ return self.im.max() @property def im_normalized(self): """ Image normalized by the maximum value. """ return self.im/self.max def percentile(self, q): """ 98th percentile of pixel intensities. """ return np.percentile(self.im.ravel(), q=q) def initialize(self): """ Initialize blank image. """ self.im = np.zeros((self.height, self.width), dtype=np.float64) def fill(self, mu=0.1, sigma=0.1): """ Fill image background with values sampled from a lognormal distribution. Args: mu (float) - mean of underlying normal distribution sigma (float) - std dev of underlying normal distribution """ pixels = np.exp(np.random.normal(np.log(mu), sigma, size=self.shape)) self.im[:, :] = pixels @staticmethod def _render(im, vmin=0, vmax=None, cmap=plt.cm.Greys, size=5, ax=None): """ Render image. Args: im (np.ndarray[float]) - image vmin, vmax (int) - colormap bounds cmap (matplotlib.ColorMap or str) - if value is 'r', 'g', or 'b', use RGB colorscheme size (int) - image panel size, in inches ax (matplotlib.axes.AxesSubplot) - if None, create figure """ if ax is None: fig, ax = plt.subplots(figsize=(size, size)) if vmax is None: vmax = im.max() # render image if type(cmap) == str: assert cmap in 'rgb', 'Color not recognized.' im_rgb = np.zeros(im.shape+(3,), dtype=np.float64) im_rgb[:,:,'rgb'.index(cmap)] = (im-vmin)/(vmax-vmin) im_rgb[im_rgb>1.] = 1. ax.imshow(im_rgb) else: ax.imshow(im, vmin=vmin, vmax=vmax, cmap=cmap) # invert axis and remove ticks ax.invert_yaxis() ax.axis('off') def render(self, **kwargs): """ Render image. """ self._render(self.im.T, **kwargs) def render_blank(self, **kwargs): """ Render image. """ self._render(np.zeros(self.shape, dtype=int), **kwargs) def center_xycoords(self, xy, shrinkage=0.9): """ Project zero-centered coordinates to center of image. """ center_x, center_y = self.shape[0]/2, self.shape[1]/2 centered_xy = deepcopy(xy) centered_xy[:, 0] = ((xy[:, 0]*center_x*shrinkage) + center_x) centered_xy[:, 1] = ((xy[:, 1]*center_y*shrinkage) + center_y) return centered_xy.astype(int) class DependentScalarImage(ScalarImage): """ Class defines a scalar image whose pixel intensities are sampled with some dependence upon another scalar image. """ def __init__(self, pixels, mean, sigma): """ Instantiate a dependent scalar image. """ super().__init__(*pixels.shape) x = np.log(pixels.ravel()) self.sampler = ConditionedLognormalSampler(x, np.log(mean), sigma) def fill(self, rho=0.0): """ Generate randomly sampled pixel values. """ pixels = self.sampler.sample(rho=rho) self.im[:, :] = pixels.reshape(self.shape)
[ "numpy.zeros", "numpy.log", "matplotlib.pyplot.subplots", "copy.deepcopy" ]
[((1067, 1120), 'numpy.zeros', 'np.zeros', (['(self.height, self.width)'], {'dtype': 'np.float64'}), '((self.height, self.width), dtype=np.float64)\n', (1075, 1120), True, 'import numpy as np\n'), ((3047, 3059), 'copy.deepcopy', 'deepcopy', (['xy'], {}), '(xy)\n', (3055, 3059), False, 'from copy import deepcopy\n'), ((2046, 2080), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(size, size)'}), '(figsize=(size, size))\n', (2058, 2080), True, 'import matplotlib.pyplot as plt\n'), ((2268, 2311), 'numpy.zeros', 'np.zeros', (['(im.shape + (3,))'], {'dtype': 'np.float64'}), '(im.shape + (3,), dtype=np.float64)\n', (2276, 2311), True, 'import numpy as np\n'), ((2798, 2829), 'numpy.zeros', 'np.zeros', (['self.shape'], {'dtype': 'int'}), '(self.shape, dtype=int)\n', (2806, 2829), True, 'import numpy as np\n'), ((3646, 3658), 'numpy.log', 'np.log', (['mean'], {}), '(mean)\n', (3652, 3658), True, 'import numpy as np\n'), ((1459, 1469), 'numpy.log', 'np.log', (['mu'], {}), '(mu)\n', (1465, 1469), True, 'import numpy as np\n')]
from ...Renderer.Buffer import VertexBuffer, IndexBuffer, BufferLayout from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData from OpenGL.GL import GL_ARRAY_BUFFER, GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER, GL_DYNAMIC_DRAW import ctypes import numpy as np from multipledispatch import dispatch class OpenGLVertexBuffer(VertexBuffer): __slots__ = "__RendererID", "__itemsize", \ "__Layout" @dispatch(list) def __init__(self, vertices: list) -> None: vertices: np.ndarray = np.array(vertices, dtype=np.float32) self.__itemsize = vertices.itemsize self.__RendererID = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.__RendererID) glBufferData(GL_ARRAY_BUFFER, vertices.nbytes, vertices, GL_STATIC_DRAW) @dispatch(int) def __init__(self, size: int) -> None: vertices = np.zeros((size,)) self.__itemsize = size self.__RendererID = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.__RendererID) glBufferData(GL_ARRAY_BUFFER, vertices.nbytes, ctypes.c_void_p(None), GL_DYNAMIC_DRAW) def __del__(self) -> None: glDeleteBuffers(1, [self.__RendererID]) @property def itemsize(self) -> int: return self.__itemsize @property def RendererID(self) -> int: return self.__RendererID def Bind(self) -> None: glBindBuffer(GL_ARRAY_BUFFER, self.__RendererID) def Unbind(self) -> None: glBindBuffer(GL_ARRAY_BUFFER, 0) def SetLayout(self, layout: BufferLayout) -> None: self.__Layout = layout def SetData(self, data: np.ndarray) -> None: glBindBuffer(GL_ARRAY_BUFFER, self.__RendererID) glBufferSubData(GL_ARRAY_BUFFER, 0, data.nbytes, data.tobytes()) @property def Layout(self) -> BufferLayout: return self.__Layout class OpenGLIndexBuffer(IndexBuffer): __RendererID : int __Count : int def __init__(self, indices: list) -> None: indices: np.ndarray = np.array(indices, dtype=np.uint32) self.__Count = len(indices) self.__RendererID = glGenBuffers(1) self.Bind() glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.nbytes, indices, GL_STATIC_DRAW) def __del__(self) -> None: glDeleteBuffers(1, [self.__RendererID]) @property def RendererID(self) -> int: return self.__RendererID @property def Count(self) -> int: return self.__Count def Bind(self) -> None: glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.__RendererID) def Unbind(self) -> None: glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
[ "OpenGL.GL.glBufferData", "OpenGL.GL.glGenBuffers", "numpy.array", "numpy.zeros", "multipledispatch.dispatch", "ctypes.c_void_p", "OpenGL.GL.glBindBuffer", "OpenGL.GL.glDeleteBuffers" ]
[((451, 465), 'multipledispatch.dispatch', 'dispatch', (['list'], {}), '(list)\n', (459, 465), False, 'from multipledispatch import dispatch\n'), ((815, 828), 'multipledispatch.dispatch', 'dispatch', (['int'], {}), '(int)\n', (823, 828), False, 'from multipledispatch import dispatch\n'), ((545, 581), 'numpy.array', 'np.array', (['vertices'], {'dtype': 'np.float32'}), '(vertices, dtype=np.float32)\n', (553, 581), True, 'import numpy as np\n'), ((655, 670), 'OpenGL.GL.glGenBuffers', 'glGenBuffers', (['(1)'], {}), '(1)\n', (667, 670), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((679, 727), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ARRAY_BUFFER', 'self.__RendererID'], {}), '(GL_ARRAY_BUFFER, self.__RendererID)\n', (691, 727), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((736, 808), 'OpenGL.GL.glBufferData', 'glBufferData', (['GL_ARRAY_BUFFER', 'vertices.nbytes', 'vertices', 'GL_STATIC_DRAW'], {}), '(GL_ARRAY_BUFFER, vertices.nbytes, vertices, GL_STATIC_DRAW)\n', (748, 808), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((891, 908), 'numpy.zeros', 'np.zeros', (['(size,)'], {}), '((size,))\n', (899, 908), True, 'import numpy as np\n'), ((969, 984), 'OpenGL.GL.glGenBuffers', 'glGenBuffers', (['(1)'], {}), '(1)\n', (981, 984), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((993, 1041), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ARRAY_BUFFER', 'self.__RendererID'], {}), '(GL_ARRAY_BUFFER, self.__RendererID)\n', (1005, 1041), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((1177, 1216), 'OpenGL.GL.glDeleteBuffers', 'glDeleteBuffers', (['(1)', '[self.__RendererID]'], {}), '(1, [self.__RendererID])\n', (1192, 1216), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((1412, 1460), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ARRAY_BUFFER', 'self.__RendererID'], {}), '(GL_ARRAY_BUFFER, self.__RendererID)\n', (1424, 1460), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((1500, 1532), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ARRAY_BUFFER', '(0)'], {}), '(GL_ARRAY_BUFFER, 0)\n', (1512, 1532), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((1678, 1726), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ARRAY_BUFFER', 'self.__RendererID'], {}), '(GL_ARRAY_BUFFER, self.__RendererID)\n', (1690, 1726), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((2045, 2079), 'numpy.array', 'np.array', (['indices'], {'dtype': 'np.uint32'}), '(indices, dtype=np.uint32)\n', (2053, 2079), True, 'import numpy as np\n'), ((2145, 2160), 'OpenGL.GL.glGenBuffers', 'glGenBuffers', (['(1)'], {}), '(1)\n', (2157, 2160), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((2189, 2267), 'OpenGL.GL.glBufferData', 'glBufferData', (['GL_ELEMENT_ARRAY_BUFFER', 'indices.nbytes', 'indices', 'GL_STATIC_DRAW'], {}), '(GL_ELEMENT_ARRAY_BUFFER, indices.nbytes, indices, GL_STATIC_DRAW)\n', (2201, 2267), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((2308, 2347), 'OpenGL.GL.glDeleteBuffers', 'glDeleteBuffers', (['(1)', '[self.__RendererID]'], {}), '(1, [self.__RendererID])\n', (2323, 2347), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((2537, 2593), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ELEMENT_ARRAY_BUFFER', 'self.__RendererID'], {}), '(GL_ELEMENT_ARRAY_BUFFER, self.__RendererID)\n', (2549, 2593), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((2633, 2673), 'OpenGL.GL.glBindBuffer', 'glBindBuffer', (['GL_ELEMENT_ARRAY_BUFFER', '(0)'], {}), '(GL_ELEMENT_ARRAY_BUFFER, 0)\n', (2645, 2673), False, 'from OpenGL.GL import glGenBuffers, glBufferData, glDeleteBuffers, glBindBuffer, glBufferSubData\n'), ((1097, 1118), 'ctypes.c_void_p', 'ctypes.c_void_p', (['None'], {}), '(None)\n', (1112, 1118), False, 'import ctypes\n')]
import numpy as np import cv2 from semantic_segmentation.data_structure.image_handler import ImageHandler class Preprocessor: def __init__(self, image_size): self.image_size = image_size self.min_height = 16 self.min_width = 16 self.max_height = 900 self.max_width = 900 self.obox = None def resize(self, image): img_h = ImageHandler(image) if None in self.image_size: return self.rescale(image, self.max_width, self.max_height, is_lbm=False) return img_h.resize(height=self.image_size[0], width=self.image_size[1]) def normalize(self, image): epsilon = 1e-6 mean_mat = np.mean(image) var_mat = np.var(image) if var_mat != 0: mat_norm = (image - mean_mat) / var_mat min_mat = np.min(mat_norm) max_mat = np.max(mat_norm) mat_norm = (mat_norm - min_mat) / (max_mat - min_mat + epsilon) else: mat_norm = np.zeros(image.shape) return mat_norm def rescale(self, data, max_width, max_height, is_lbm=False): height, width = data.shape[0], data.shape[1] if height >= max_height: new_height = max_height new_width = int(width * new_height / height) if is_lbm: data = cv2.resize(data, (int(new_width), int(new_height)), interpolation=cv2.INTER_NEAREST) else: data = cv2.resize(data, (int(new_width), int(new_height)), interpolation=cv2.INTER_CUBIC) height, width = data.shape[0], data.shape[1] if width >= max_width: new_width = max_width new_height = int(height * new_width / width) if is_lbm: data = cv2.resize(data, (int(new_width), int(new_height)), interpolation=cv2.INTER_NEAREST) else: data = cv2.resize(data, (int(new_width), int(new_height)), interpolation=cv2.INTER_CUBIC) height, width = data.shape[0], data.shape[1] return np.reshape(data, (height, width, -1)) def pad(self, image): img_h = ImageHandler(image) height, width, ch = image.shape if height > width: if height >= self.image_size[0]: new_height = self.image_size[0] new_width = int(width * new_height / height) image = img_h.resize(height=new_height, width=new_width) else: if width >= self.image_size[1]: new_width = self.image_size[1] new_height = int(height * new_width / width) image = img_h.resize(height=new_height, width=new_width) ih, iw = image.shape[:2] ph, pw = self.image_size[0], self.image_size[1] x = np.mean(image) * np.ones((ph, pw, ch)) sy1 = int(ph/2)-int(ih/2) sx1 = int(pw/2)-int(iw/2) if ch == 1: image = np.expand_dims(image, axis=2) x[sy1:sy1+ih, sx1:sx1+iw, :] = image self.obox = [sx1, sy1, sx1 + iw, sy1 + ih] return x def apply(self, image): image = self.resize(image) img_h = ImageHandler(image) if self.image_size[2] == 1: image = img_h.gray() image = np.expand_dims(image, axis=2) image = self.normalize(image) return image def lbm_resize(self, lbm, width, height): if None in [width, height]: return self.rescale(lbm, self.max_width, self.max_height, is_lbm=True) return cv2.resize(lbm, (int(width), int(height)), interpolation=cv2.INTER_NEAREST) def apply_to_label_map(self, label_map): label_map = self.lbm_resize(label_map, width=self.image_size[1], height=self.image_size[0]) if len(label_map.shape) < 3: label_map = np.expand_dims(label_map, axis=2) return label_map
[ "numpy.mean", "numpy.reshape", "numpy.ones", "semantic_segmentation.data_structure.image_handler.ImageHandler", "numpy.max", "numpy.zeros", "numpy.expand_dims", "numpy.min", "numpy.var" ]
[((389, 408), 'semantic_segmentation.data_structure.image_handler.ImageHandler', 'ImageHandler', (['image'], {}), '(image)\n', (401, 408), False, 'from semantic_segmentation.data_structure.image_handler import ImageHandler\n'), ((687, 701), 'numpy.mean', 'np.mean', (['image'], {}), '(image)\n', (694, 701), True, 'import numpy as np\n'), ((720, 733), 'numpy.var', 'np.var', (['image'], {}), '(image)\n', (726, 733), True, 'import numpy as np\n'), ((2047, 2084), 'numpy.reshape', 'np.reshape', (['data', '(height, width, -1)'], {}), '(data, (height, width, -1))\n', (2057, 2084), True, 'import numpy as np\n'), ((2128, 2147), 'semantic_segmentation.data_structure.image_handler.ImageHandler', 'ImageHandler', (['image'], {}), '(image)\n', (2140, 2147), False, 'from semantic_segmentation.data_structure.image_handler import ImageHandler\n'), ((3152, 3171), 'semantic_segmentation.data_structure.image_handler.ImageHandler', 'ImageHandler', (['image'], {}), '(image)\n', (3164, 3171), False, 'from semantic_segmentation.data_structure.image_handler import ImageHandler\n'), ((833, 849), 'numpy.min', 'np.min', (['mat_norm'], {}), '(mat_norm)\n', (839, 849), True, 'import numpy as np\n'), ((872, 888), 'numpy.max', 'np.max', (['mat_norm'], {}), '(mat_norm)\n', (878, 888), True, 'import numpy as np\n'), ((1002, 1023), 'numpy.zeros', 'np.zeros', (['image.shape'], {}), '(image.shape)\n', (1010, 1023), True, 'import numpy as np\n'), ((2782, 2796), 'numpy.mean', 'np.mean', (['image'], {}), '(image)\n', (2789, 2796), True, 'import numpy as np\n'), ((2799, 2820), 'numpy.ones', 'np.ones', (['(ph, pw, ch)'], {}), '((ph, pw, ch))\n', (2806, 2820), True, 'import numpy as np\n'), ((2929, 2958), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(2)'}), '(image, axis=2)\n', (2943, 2958), True, 'import numpy as np\n'), ((3261, 3290), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(2)'}), '(image, axis=2)\n', (3275, 3290), True, 'import numpy as np\n'), ((3866, 3899), 'numpy.expand_dims', 'np.expand_dims', (['label_map'], {'axis': '(2)'}), '(label_map, axis=2)\n', (3880, 3899), True, 'import numpy as np\n')]
import numpy as np def compute_intensity(pos, pos_list, radius): return (norm(np.array(pos_list) - np.array(pos), axis=1) < radius).sum() def compute_colours(all_pos): colours = [compute_intensity(pos, all_pos, 1e-4) for pos in all_pos] colours /= max(colours) return colours
[ "numpy.array" ]
[((84, 102), 'numpy.array', 'np.array', (['pos_list'], {}), '(pos_list)\n', (92, 102), True, 'import numpy as np\n'), ((105, 118), 'numpy.array', 'np.array', (['pos'], {}), '(pos)\n', (113, 118), True, 'import numpy as np\n')]
__author__ = "<NAME>" __email__ = "<EMAIL>" """ Baseline parallel BFS implementation. Algorithm 1 Parallel BFS algorithm: High-level overview [1] was implemented. Reference: [1] https://www.researchgate.net/publication/220782745_Scalable_Graph_Exploration_on_Multicore_Processors """ import numpy as np from multiprocessing import Pool import multiprocessing as mp import time from src.load_graph import get_graph, gen_balanced_tree from functools import partial P_ARR = [] def get_adjacent_nodes(G, x): idx_lst = [] adj_list = G[x] for idx, val in enumerate(adj_list): if val == 1: idx_lst.append(idx) return idx_lst def get_neighbour(u, G, target): nq = [] # For each v adjacent to u # print(u) found_node = False for v in get_adjacent_nodes(G, u): if v == target: found_node = True if P_ARR[v] == np.inf: P_ARR[v] = u nq.append(v) return nq, found_node def bfs_parallel(G, target): r = 0 CQ = [] # Init all values in P to inf for i in range(G.shape[0]): P_ARR.append(np.inf) # Set root node P_ARR[r] = 0 # Enqueue r CQ.append(r) while len(CQ) != 0: print(f"CQ: {CQ}") # Parallel Dequeue num_cpu = mp.cpu_count() with Pool(num_cpu) as pool: results = pool.map(partial(get_neighbour, G=G, target=target), CQ) nq_tmp = [x for (x,y) in results] for (x,y) in results: if y: return True # print(nq_tmp) NQ = list(np.concatenate(nq_tmp).ravel()) # Swap CQ and NQ CQ = NQ return False def main(): start_time = time.time() G = gen_balanced_tree(3, 4, directed=True) # G = get_graph() find_node = bfs_parallel(G, target=10000) print("--- %s seconds ---" % (time.time() - start_time)) if find_node: print(f"Node Found") else: print(f"Node not Found") if __name__=='__main__': main()
[ "multiprocessing.cpu_count", "src.load_graph.gen_balanced_tree", "functools.partial", "multiprocessing.Pool", "numpy.concatenate", "time.time" ]
[((1822, 1833), 'time.time', 'time.time', ([], {}), '()\n', (1831, 1833), False, 'import time\n'), ((1844, 1882), 'src.load_graph.gen_balanced_tree', 'gen_balanced_tree', (['(3)', '(4)'], {'directed': '(True)'}), '(3, 4, directed=True)\n', (1861, 1882), False, 'from src.load_graph import get_graph, gen_balanced_tree\n'), ((1370, 1384), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (1382, 1384), True, 'import multiprocessing as mp\n'), ((1399, 1412), 'multiprocessing.Pool', 'Pool', (['num_cpu'], {}), '(num_cpu)\n', (1403, 1412), False, 'from multiprocessing import Pool\n'), ((1454, 1496), 'functools.partial', 'partial', (['get_neighbour'], {'G': 'G', 'target': 'target'}), '(get_neighbour, G=G, target=target)\n', (1461, 1496), False, 'from functools import partial\n'), ((1994, 2005), 'time.time', 'time.time', ([], {}), '()\n', (2003, 2005), False, 'import time\n'), ((1686, 1708), 'numpy.concatenate', 'np.concatenate', (['nq_tmp'], {}), '(nq_tmp)\n', (1700, 1708), True, 'import numpy as np\n')]
import numpy as np import numpy.testing as npt import pytest from openscm_units import unit_registry as ur from test_model_base import TwoLayerVariantTester from openscm_twolayermodel import ImpulseResponseModel, TwoLayerModel from openscm_twolayermodel.base import _calculate_geoffroy_helper_parameters from openscm_twolayermodel.constants import DENSITY_WATER, HEAT_CAPACITY_WATER class TestImpulseResponseModel(TwoLayerVariantTester): tmodel = ImpulseResponseModel parameters = dict( q1=0.33 * ur("delta_degC/(W/m^2)"), q2=0.41 * ur("delta_degC/(W/m^2)"), d1=239.0 * ur("yr"), d2=4.1 * ur("yr"), efficacy=1.0 * ur("dimensionless"), delta_t=1 * ur("yr"), ) def test_init(self): init_kwargs = dict( q1=0.3 * ur("delta_degC/(W/m^2)"), q2=0.4 * ur("delta_degC/(W/m^2)"), d1=25.0 * ur("yr"), d2=300 * ur("yr"), efficacy=1.1 * ur("dimensionless"), delta_t=1 / 12 * ur("yr"), ) res = self.tmodel(**init_kwargs) for k, v in init_kwargs.items(): assert getattr(res, k) == v, "{} not set properly".format(k) assert np.isnan(res.erf) assert np.isnan(res._temp1_mag) assert np.isnan(res._temp2_mag) assert np.isnan(res._rndt_mag) def test_init_backwards_timescales_error(self): init_kwargs = dict(d1=250.0 * ur("yr"), d2=3 * ur("yr"),) error_msg = "The short-timescale must be d1" with pytest.raises(ValueError, match=error_msg): self.tmodel(**init_kwargs) def test_calculate_next_temp(self, check_same_unit): tdelta_t = 30 * 24 * 60 * 60 ttemp = 0.1 tq = 0.4 td = 35.0 tf = 1.2 res = self.tmodel._calculate_next_temp(tdelta_t, ttemp, tq, td, tf) expected = ttemp * np.exp(-tdelta_t / td) + tf * tq * ( 1 - np.exp(-tdelta_t / td) ) npt.assert_equal(res, expected) check_same_unit(self.tmodel._temp1_unit, self.tmodel._temp2_unit) check_same_unit(self.tmodel._q1_unit, self.tmodel._q2_unit) check_same_unit(self.tmodel._delta_t_unit, self.tmodel._d1_unit) check_same_unit(self.tmodel._delta_t_unit, self.tmodel._d2_unit) check_same_unit( self.tmodel._temp1_unit, (1.0 * ur(self.tmodel._erf_unit) * 1.0 * ur(self.tmodel._q1_unit)).units, ) def test_calculate_next_rndt(self, check_same_unit): ttemp1 = 1.1 ttemp_2 = 0.6 tq1 = 0.5 tq2 = 0.3 td1 = 30 td2 = 600 terf = 1.2 tefficacy = 1.13 helper = self.tmodel( q1=tq1 * ur("delta_degC/(W/m^2)"), q2=tq2 * ur("delta_degC/(W/m^2)"), d1=td1 * ur("yr"), d2=td2 * ur("yr"), efficacy=tefficacy * ur("dimensionless"), ) helper_twolayer = TwoLayerModel(**helper.get_two_layer_parameters()) gh = _calculate_geoffroy_helper_parameters( helper_twolayer.du, helper_twolayer.dl, helper_twolayer.lambda0, helper_twolayer.efficacy, helper_twolayer.eta, ) # see notebook for discussion of why this is so efficacy_term = ( helper_twolayer.eta * (helper_twolayer.efficacy - 1) * ( ((1 - gh["phi1"]) * ttemp1 * ur("delta_degC")) + ((1 - gh["phi2"]) * ttemp_2 * ur("delta_degC")) ) ) expected = ( terf * ur(helper._erf_unit) - ((ttemp1 + ttemp_2) * ur(helper._temp1_unit)) * helper_twolayer.lambda0 - efficacy_term ) assert str(expected.units) == "watt / meter ** 2" res = helper._calculate_next_rndt(ttemp1, ttemp_2, terf, tefficacy) npt.assert_allclose(res, expected.magnitude) # check internal units make sense check_same_unit(self.tmodel._q1_unit, self.tmodel._q2_unit) check_same_unit( helper_twolayer._lambda0_unit, (1.0 * ur(self.tmodel._q2_unit) ** -1) ) check_same_unit( self.tmodel._erf_unit, ( ( 1.0 * ur(self.tmodel._temp1_unit) / (1.0 * ur(self.tmodel._q1_unit)) ).units ), ) check_same_unit( self.tmodel._erf_unit, efficacy_term.units, ) def test_step(self): # move to integration tests terf = np.array([3, 4, 5, 6, 7]) * ur("W/m^2") model = self.tmodel() model.set_drivers(terf) model.reset() model.step() assert model._timestep_idx == 0 npt.assert_equal(model._temp1_mag[model._timestep_idx], 0) npt.assert_equal(model._temp2_mag[model._timestep_idx], 0) npt.assert_equal(model._rndt_mag[model._timestep_idx], 0) model.step() model.step() model.step() assert model._timestep_idx == 3 npt.assert_equal( model._temp1_mag[model._timestep_idx], model._calculate_next_temp( model._delta_t_mag, model._temp1_mag[model._timestep_idx - 1], model._q1_mag, model._d1_mag, model._erf_mag[model._timestep_idx - 1], ), ) npt.assert_equal( model._temp2_mag[model._timestep_idx], model._calculate_next_temp( model._delta_t_mag, model._temp2_mag[model._timestep_idx - 1], model._q2_mag, model._d2_mag, model._erf_mag[model._timestep_idx - 1], ), ) npt.assert_equal( model._rndt_mag[model._timestep_idx], model._calculate_next_rndt( model._temp1_mag[model._timestep_idx - 1], model._temp2_mag[model._timestep_idx - 1], model._erf_mag[model._timestep_idx - 1], model._efficacy_mag, ), ) def test_reset(self): terf = np.array([0, 1, 2]) * ur("W/m^2") model = self.tmodel() model.set_drivers(terf) def assert_is_nan_and_erf_shape(inp): assert np.isnan(inp).all() assert inp.shape == terf.shape model.reset() # after reset, we are not in any timestep assert np.isnan(model._timestep_idx) assert_is_nan_and_erf_shape(model._temp1_mag) assert_is_nan_and_erf_shape(model._temp2_mag) assert_is_nan_and_erf_shape(model._rndt_mag) def test_reset_run_reset(self): # move to integration tests terf = np.array([0, 1, 2, 3, 4, 5]) * ur("W/m^2") model = self.tmodel() model.set_drivers(terf) def assert_is_nan_and_erf_shape(inp): assert np.isnan(inp).all() assert inp.shape == terf.shape model.reset() assert_is_nan_and_erf_shape(model._temp1_mag) assert_is_nan_and_erf_shape(model._temp2_mag) assert_is_nan_and_erf_shape(model._rndt_mag) def assert_ge_zero_and_erf_shape(inp): assert not (inp < 0).any() assert inp.shape == terf.shape model.run() assert_ge_zero_and_erf_shape(model._temp1_mag) assert_ge_zero_and_erf_shape(model._temp2_mag) assert_ge_zero_and_erf_shape(model._rndt_mag) model.reset() assert_is_nan_and_erf_shape(model._temp1_mag) assert_is_nan_and_erf_shape(model._temp2_mag) assert_is_nan_and_erf_shape(model._rndt_mag) def test_get_two_layer_model_parameters(self, check_equal_pint): tq1 = 0.3 * ur("delta_degC/(W/m^2)") tq2 = 0.4 * ur("delta_degC/(W/m^2)") td1 = 3 * ur("yr") td2 = 300.0 * ur("yr") tefficacy = 1.2 * ur("dimensionless") start_paras = dict(d1=td1, d2=td2, q1=tq1, q2=tq2, efficacy=tefficacy,) mod_instance = self.tmodel(**start_paras) # for explanation of what is going on, see # impulse-response-equivalence.ipynb efficacy = tefficacy lambda0 = 1 / (tq1 + tq2) C = (td1 * td2) / (tq1 * td2 + tq2 * td1) a1 = lambda0 * tq1 a2 = lambda0 * tq2 tau1 = td1 tau2 = td2 C_D = (lambda0 * (tau1 * a1 + tau2 * a2) - C) / efficacy eta = C_D / (tau1 * a2 + tau2 * a1) expected = { "lambda0": lambda0, "du": C / (DENSITY_WATER * HEAT_CAPACITY_WATER), "dl": C_D / (DENSITY_WATER * HEAT_CAPACITY_WATER), "eta": eta, "efficacy": efficacy, } res = mod_instance.get_two_layer_parameters() assert res == expected # check circularity circular_params = TwoLayerModel(**res).get_impulse_response_parameters() for k, v in circular_params.items(): check_equal_pint(v, start_paras[k])
[ "numpy.testing.assert_equal", "openscm_units.unit_registry", "numpy.testing.assert_allclose", "openscm_twolayermodel.base._calculate_geoffroy_helper_parameters", "numpy.exp", "numpy.array", "openscm_twolayermodel.TwoLayerModel", "numpy.isnan", "pytest.raises" ]
[((1204, 1221), 'numpy.isnan', 'np.isnan', (['res.erf'], {}), '(res.erf)\n', (1212, 1221), True, 'import numpy as np\n'), ((1237, 1261), 'numpy.isnan', 'np.isnan', (['res._temp1_mag'], {}), '(res._temp1_mag)\n', (1245, 1261), True, 'import numpy as np\n'), ((1277, 1301), 'numpy.isnan', 'np.isnan', (['res._temp2_mag'], {}), '(res._temp2_mag)\n', (1285, 1301), True, 'import numpy as np\n'), ((1317, 1340), 'numpy.isnan', 'np.isnan', (['res._rndt_mag'], {}), '(res._rndt_mag)\n', (1325, 1340), True, 'import numpy as np\n'), ((1977, 2008), 'numpy.testing.assert_equal', 'npt.assert_equal', (['res', 'expected'], {}), '(res, expected)\n', (1993, 2008), True, 'import numpy.testing as npt\n'), ((3014, 3168), 'openscm_twolayermodel.base._calculate_geoffroy_helper_parameters', '_calculate_geoffroy_helper_parameters', (['helper_twolayer.du', 'helper_twolayer.dl', 'helper_twolayer.lambda0', 'helper_twolayer.efficacy', 'helper_twolayer.eta'], {}), '(helper_twolayer.du, helper_twolayer.\n dl, helper_twolayer.lambda0, helper_twolayer.efficacy, helper_twolayer.eta)\n', (3051, 3168), False, 'from openscm_twolayermodel.base import _calculate_geoffroy_helper_parameters\n'), ((3893, 3937), 'numpy.testing.assert_allclose', 'npt.assert_allclose', (['res', 'expected.magnitude'], {}), '(res, expected.magnitude)\n', (3912, 3937), True, 'import numpy.testing as npt\n'), ((4759, 4817), 'numpy.testing.assert_equal', 'npt.assert_equal', (['model._temp1_mag[model._timestep_idx]', '(0)'], {}), '(model._temp1_mag[model._timestep_idx], 0)\n', (4775, 4817), True, 'import numpy.testing as npt\n'), ((4826, 4884), 'numpy.testing.assert_equal', 'npt.assert_equal', (['model._temp2_mag[model._timestep_idx]', '(0)'], {}), '(model._temp2_mag[model._timestep_idx], 0)\n', (4842, 4884), True, 'import numpy.testing as npt\n'), ((4893, 4950), 'numpy.testing.assert_equal', 'npt.assert_equal', (['model._rndt_mag[model._timestep_idx]', '(0)'], {}), '(model._rndt_mag[model._timestep_idx], 0)\n', (4909, 4950), True, 'import numpy.testing as npt\n'), ((6479, 6508), 'numpy.isnan', 'np.isnan', (['model._timestep_idx'], {}), '(model._timestep_idx)\n', (6487, 6508), True, 'import numpy as np\n'), ((1527, 1569), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'error_msg'}), '(ValueError, match=error_msg)\n', (1540, 1569), False, 'import pytest\n'), ((4564, 4589), 'numpy.array', 'np.array', (['[3, 4, 5, 6, 7]'], {}), '([3, 4, 5, 6, 7])\n', (4572, 4589), True, 'import numpy as np\n'), ((4592, 4603), 'openscm_units.unit_registry', 'ur', (['"""W/m^2"""'], {}), "('W/m^2')\n", (4594, 4603), True, 'from openscm_units import unit_registry as ur\n'), ((6165, 6184), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (6173, 6184), True, 'import numpy as np\n'), ((6187, 6198), 'openscm_units.unit_registry', 'ur', (['"""W/m^2"""'], {}), "('W/m^2')\n", (6189, 6198), True, 'from openscm_units import unit_registry as ur\n'), ((6758, 6786), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4, 5]'], {}), '([0, 1, 2, 3, 4, 5])\n', (6766, 6786), True, 'import numpy as np\n'), ((6789, 6800), 'openscm_units.unit_registry', 'ur', (['"""W/m^2"""'], {}), "('W/m^2')\n", (6791, 6800), True, 'from openscm_units import unit_registry as ur\n'), ((7766, 7790), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (7768, 7790), True, 'from openscm_units import unit_registry as ur\n'), ((7811, 7835), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (7813, 7835), True, 'from openscm_units import unit_registry as ur\n'), ((7854, 7862), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (7856, 7862), True, 'from openscm_units import unit_registry as ur\n'), ((7885, 7893), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (7887, 7893), True, 'from openscm_units import unit_registry as ur\n'), ((7920, 7939), 'openscm_units.unit_registry', 'ur', (['"""dimensionless"""'], {}), "('dimensionless')\n", (7922, 7939), True, 'from openscm_units import unit_registry as ur\n'), ((517, 541), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (519, 541), True, 'from openscm_units import unit_registry as ur\n'), ((561, 585), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (563, 585), True, 'from openscm_units import unit_registry as ur\n'), ((606, 614), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (608, 614), True, 'from openscm_units import unit_registry as ur\n'), ((633, 641), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (635, 641), True, 'from openscm_units import unit_registry as ur\n'), ((666, 685), 'openscm_units.unit_registry', 'ur', (['"""dimensionless"""'], {}), "('dimensionless')\n", (668, 685), True, 'from openscm_units import unit_registry as ur\n'), ((707, 715), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (709, 715), True, 'from openscm_units import unit_registry as ur\n'), ((1882, 1904), 'numpy.exp', 'np.exp', (['(-tdelta_t / td)'], {}), '(-tdelta_t / td)\n', (1888, 1904), True, 'import numpy as np\n'), ((8873, 8893), 'openscm_twolayermodel.TwoLayerModel', 'TwoLayerModel', ([], {}), '(**res)\n', (8886, 8893), False, 'from openscm_twolayermodel import ImpulseResponseModel, TwoLayerModel\n'), ((798, 822), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (800, 822), True, 'from openscm_units import unit_registry as ur\n'), ((845, 869), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (847, 869), True, 'from openscm_units import unit_registry as ur\n'), ((893, 901), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (895, 901), True, 'from openscm_units import unit_registry as ur\n'), ((924, 932), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (926, 932), True, 'from openscm_units import unit_registry as ur\n'), ((961, 980), 'openscm_units.unit_registry', 'ur', (['"""dimensionless"""'], {}), "('dimensionless')\n", (963, 980), True, 'from openscm_units import unit_registry as ur\n'), ((1011, 1019), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (1013, 1019), True, 'from openscm_units import unit_registry as ur\n'), ((1432, 1440), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (1434, 1440), True, 'from openscm_units import unit_registry as ur\n'), ((1449, 1457), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (1451, 1457), True, 'from openscm_units import unit_registry as ur\n'), ((1935, 1957), 'numpy.exp', 'np.exp', (['(-tdelta_t / td)'], {}), '(-tdelta_t / td)\n', (1941, 1957), True, 'import numpy as np\n'), ((2413, 2437), 'openscm_units.unit_registry', 'ur', (['self.tmodel._q1_unit'], {}), '(self.tmodel._q1_unit)\n', (2415, 2437), True, 'from openscm_units import unit_registry as ur\n'), ((2724, 2748), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (2726, 2748), True, 'from openscm_units import unit_registry as ur\n'), ((2771, 2795), 'openscm_units.unit_registry', 'ur', (['"""delta_degC/(W/m^2)"""'], {}), "('delta_degC/(W/m^2)')\n", (2773, 2795), True, 'from openscm_units import unit_registry as ur\n'), ((2818, 2826), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (2820, 2826), True, 'from openscm_units import unit_registry as ur\n'), ((2849, 2857), 'openscm_units.unit_registry', 'ur', (['"""yr"""'], {}), "('yr')\n", (2851, 2857), True, 'from openscm_units import unit_registry as ur\n'), ((2892, 2911), 'openscm_units.unit_registry', 'ur', (['"""dimensionless"""'], {}), "('dimensionless')\n", (2894, 2911), True, 'from openscm_units import unit_registry as ur\n'), ((3455, 3471), 'openscm_units.unit_registry', 'ur', (['"""delta_degC"""'], {}), "('delta_degC')\n", (3457, 3471), True, 'from openscm_units import unit_registry as ur\n'), ((3521, 3537), 'openscm_units.unit_registry', 'ur', (['"""delta_degC"""'], {}), "('delta_degC')\n", (3523, 3537), True, 'from openscm_units import unit_registry as ur\n'), ((3604, 3624), 'openscm_units.unit_registry', 'ur', (['helper._erf_unit'], {}), '(helper._erf_unit)\n', (3606, 3624), True, 'from openscm_units import unit_registry as ur\n'), ((4124, 4148), 'openscm_units.unit_registry', 'ur', (['self.tmodel._q2_unit'], {}), '(self.tmodel._q2_unit)\n', (4126, 4148), True, 'from openscm_units import unit_registry as ur\n'), ((6328, 6341), 'numpy.isnan', 'np.isnan', (['inp'], {}), '(inp)\n', (6336, 6341), True, 'import numpy as np\n'), ((6930, 6943), 'numpy.isnan', 'np.isnan', (['inp'], {}), '(inp)\n', (6938, 6943), True, 'import numpy as np\n'), ((3661, 3683), 'openscm_units.unit_registry', 'ur', (['helper._temp1_unit'], {}), '(helper._temp1_unit)\n', (3663, 3683), True, 'from openscm_units import unit_registry as ur\n'), ((4284, 4311), 'openscm_units.unit_registry', 'ur', (['self.tmodel._temp1_unit'], {}), '(self.tmodel._temp1_unit)\n', (4286, 4311), True, 'from openscm_units import unit_registry as ur\n'), ((4321, 4345), 'openscm_units.unit_registry', 'ur', (['self.tmodel._q1_unit'], {}), '(self.tmodel._q1_unit)\n', (4323, 4345), True, 'from openscm_units import unit_registry as ur\n'), ((2379, 2404), 'openscm_units.unit_registry', 'ur', (['self.tmodel._erf_unit'], {}), '(self.tmodel._erf_unit)\n', (2381, 2404), True, 'from openscm_units import unit_registry as ur\n')]
import pandas as pd from util import StockAnalysis, AllStocks import talib import os import numpy as np class FilterEma: def __init__(self, barCount, showtCount=None, longCount=None): self.sa = StockAnalysis() self.jsonData = self.sa.GetJson self.trendLength = int(os.getenv('FILTER_TREND_LENGTH', '30')) self.trendAt = int(os.getenv('FILTER_TREND_AT', '5')) self.nearPercent = 0.05 self.setBarCount(barCount) self.shortCount = int(os.getenv('FILTER_EMA_SHORT_COUNT', '14')) self.longCount = int(os.getenv('FILTER_EMA_LONG_COUNT', '50')) def setSymbol(self, symbol): self.symbol = symbol def setBarCount(self, barCount): self.barCount = barCount switcher = { 20: 'ema20', 50: 'ema50', 200: 'ema200' } self.filterName = switcher.get(barCount, 'ema20') self.trendLength = 30 def FilterOn(self, closes, outputShort, outputLong): # create dataframe with close and output idx = 0 repeatCount = 0 lastState = 0 longs = iter(outputLong) prices = iter(closes) for short in outputShort: idx += 1 long = next(longs) price = next(prices) if np.isnan(short) or np.isnan(long) or np.isnan(price): break if price > short and short > long: thisState = 1 elif price < short and short < long: thisState = -1 elif idx <= 5: thisState = None lastState = 0 repeatCount = 0 else: break if lastState == 0 or lastState == thisState: repeatCount += 1 else: break return repeatCount def isNearEma(self, close, open, ema): isNear = True if abs(close - ema) / close <= self.nearPercent else False if isNear: return True return True if abs(open - ema) / open <= self.nearPercent else False def Run(self, symbol): isLoaded, tp = AllStocks.GetDailyStockData(symbol) if isLoaded: try: self.setSymbol(symbol) close = tp.Close.to_numpy() open = tp.Open.to_numpy() output = talib.EMA(close[::-1], timeperiod=self.barCount) self.sa.UpdateFilter( self.jsonData, self.symbol, self.filterName, self.isNearEma(close[0], open[0], output[-1])) except Exception as e: print('filterEma.Run() {}'.format(e)) self.sa.UpdateFilter( self.jsonData, self.symbol, self.filterName, False) return False def Trending(self, symbol): isLoaded, tp = AllStocks.GetDailyStockData(symbol) if isLoaded: try: close = tp.Close.to_numpy() outputShort = talib.EMA( close[::-1], timeperiod=self.shortCount) outputLong = talib.EMA(close[::-1], timeperiod=self.longCount) trendingDays = self.FilterOn( close, outputShort[::-1], outputLong[::-1]) self.sa.UpdateFilter(self.jsonData, symbol, 'td', trendingDays) except Exception as e: print('filterEma.Run() {}'.format(e)) self.sa.UpdateFilter(self.jsonData, symbol, 'td', 0) return False def WriteFilter(self): self.sa.WriteJson(self.jsonData) @staticmethod def All(): filter = FilterEma(20) AllStocks.Run(filter.Run, False) filter.setBarCount(50) AllStocks.Run(filter.Run, False) filter.setBarCount(200) AllStocks.Run(filter.Run, False) AllStocks.Run(filter.Trending, False) filter.WriteFilter() if __name__ == '__main__': FilterEma.All() print('---------- done ----------') # filter = FilterEma(symbol='AAPL', barCount=20) # up, down = filter.Run(filter.symbol) # print(up, down)
[ "talib.EMA", "os.getenv", "util.StockAnalysis", "util.AllStocks.GetDailyStockData", "numpy.isnan", "util.AllStocks.Run" ]
[((207, 222), 'util.StockAnalysis', 'StockAnalysis', ([], {}), '()\n', (220, 222), False, 'from util import StockAnalysis, AllStocks\n'), ((2150, 2185), 'util.AllStocks.GetDailyStockData', 'AllStocks.GetDailyStockData', (['symbol'], {}), '(symbol)\n', (2177, 2185), False, 'from util import StockAnalysis, AllStocks\n'), ((2849, 2884), 'util.AllStocks.GetDailyStockData', 'AllStocks.GetDailyStockData', (['symbol'], {}), '(symbol)\n', (2876, 2884), False, 'from util import StockAnalysis, AllStocks\n'), ((3659, 3691), 'util.AllStocks.Run', 'AllStocks.Run', (['filter.Run', '(False)'], {}), '(filter.Run, False)\n', (3672, 3691), False, 'from util import StockAnalysis, AllStocks\n'), ((3731, 3763), 'util.AllStocks.Run', 'AllStocks.Run', (['filter.Run', '(False)'], {}), '(filter.Run, False)\n', (3744, 3763), False, 'from util import StockAnalysis, AllStocks\n'), ((3804, 3836), 'util.AllStocks.Run', 'AllStocks.Run', (['filter.Run', '(False)'], {}), '(filter.Run, False)\n', (3817, 3836), False, 'from util import StockAnalysis, AllStocks\n'), ((3845, 3882), 'util.AllStocks.Run', 'AllStocks.Run', (['filter.Trending', '(False)'], {}), '(filter.Trending, False)\n', (3858, 3882), False, 'from util import StockAnalysis, AllStocks\n'), ((294, 332), 'os.getenv', 'os.getenv', (['"""FILTER_TREND_LENGTH"""', '"""30"""'], {}), "('FILTER_TREND_LENGTH', '30')\n", (303, 332), False, 'import os\n'), ((361, 394), 'os.getenv', 'os.getenv', (['"""FILTER_TREND_AT"""', '"""5"""'], {}), "('FILTER_TREND_AT', '5')\n", (370, 394), False, 'import os\n'), ((493, 534), 'os.getenv', 'os.getenv', (['"""FILTER_EMA_SHORT_COUNT"""', '"""14"""'], {}), "('FILTER_EMA_SHORT_COUNT', '14')\n", (502, 534), False, 'import os\n'), ((565, 605), 'os.getenv', 'os.getenv', (['"""FILTER_EMA_LONG_COUNT"""', '"""50"""'], {}), "('FILTER_EMA_LONG_COUNT', '50')\n", (574, 605), False, 'import os\n'), ((1302, 1317), 'numpy.isnan', 'np.isnan', (['short'], {}), '(short)\n', (1310, 1317), True, 'import numpy as np\n'), ((1321, 1335), 'numpy.isnan', 'np.isnan', (['long'], {}), '(long)\n', (1329, 1335), True, 'import numpy as np\n'), ((1339, 1354), 'numpy.isnan', 'np.isnan', (['price'], {}), '(price)\n', (1347, 1354), True, 'import numpy as np\n'), ((2374, 2422), 'talib.EMA', 'talib.EMA', (['close[::-1]'], {'timeperiod': 'self.barCount'}), '(close[::-1], timeperiod=self.barCount)\n', (2383, 2422), False, 'import talib\n'), ((2997, 3047), 'talib.EMA', 'talib.EMA', (['close[::-1]'], {'timeperiod': 'self.shortCount'}), '(close[::-1], timeperiod=self.shortCount)\n', (3006, 3047), False, 'import talib\n'), ((3098, 3147), 'talib.EMA', 'talib.EMA', (['close[::-1]'], {'timeperiod': 'self.longCount'}), '(close[::-1], timeperiod=self.longCount)\n', (3107, 3147), False, 'import talib\n')]
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # %matplotlib inline from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') sns.set() def gl_confmatrix_2_confmatrix(sf,number_label=3): Nlabels=max(len(sf['target_label'].unique()),len(sf['predicted_label'].unique())) matrix=np.zeros([number_label,number_label],dtype=np.float) for i in sf: matrix[i['target_label'],i['predicted_label']]=i['count'] sum row_sums = matrix.sum(axis=1) matrix=matrix / row_sums[:, np.newaxis] matrix*=100 plt.figure(figsize=(number_label, number_label)) dims = (8,8) fig, ax = plt.subplots(figsize=dims) sns.heatmap(matrix, annot=True, fmt='.2f', xticklabels=['0' ,'1','2'], yticklabels=['0' ,'1','2']); plt.title('Confusion Matrix'); plt.xlabel('Predicted label') plt.ylabel('True label') return matrix conf_matrix_train=gl.evaluation.confusion_matrix(train_data['label2'],model.predict(train_data)) conf_matrix_test=gl.evaluation.confusion_matrix(test_data['label2'],model.predict(test_data)) gl_confmatrix_2_confmatrix(conf_matrix_train) gl_confmatrix_2_confmatrix(conf_matrix_test) model.coefficients.sort('value').show() model=gl.logistic_classifier.create(train_data,'label1',features_to_train,class_weights='auto') conf_matrix_train=gl.evaluation.confusion_matrix(train_data['label1'],model.predict(train_data)) conf_matrix_test=gl.evaluation.confusion_matrix(test_data['label1'],model.predict(test_data)) gl_confmatrix_2_confmatrix(conf_matrix_train,number_label=2) gl_confmatrix_2_confmatrix(conf_matrix_test,number_label=2) model=gl.random_forest_classifier.create(train_data,'label2',features_to_train,class_weights='auto',num_trees=50) conf_matrix_train=gl.evaluation.confusion_matrix(train_data['label2'],model.predict(train_data)) conf_matrix_test=gl.evaluation.confusion_matrix(test_data['label2'],model.predict(test_data)) gl_confmatrix_2_confmatrix(conf_matrix_train) gl_confmatrix_2_confmatrix(conf_matrix_test) model=gl.boosted_trees_classifier.create(train_data,'label2',features_to_train,class_weights='auto') conf_matrix_train=gl.evaluation.confusion_matrix(train_data['label2'],model.predict(train_data)) conf_matrix_test=gl.evaluation.confusion_matrix(test_data['label2'],model.predict(test_data)) gl_confmatrix_2_confmatrix(conf_matrix_train) gl_confmatrix_2_confmatrix(conf_matrix_test)
[ "IPython.get_ipython", "seaborn.set", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "seaborn.heatmap", "matplotlib.pyplot.figure", "numpy.zeros", "matplotlib.pyplot.title", "matplotlib.pyplot.subplots" ]
[((182, 191), 'seaborn.set', 'sns.set', ([], {}), '()\n', (189, 191), True, 'import seaborn as sns\n'), ((342, 396), 'numpy.zeros', 'np.zeros', (['[number_label, number_label]'], {'dtype': 'np.float'}), '([number_label, number_label], dtype=np.float)\n', (350, 396), True, 'import numpy as np\n'), ((595, 643), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(number_label, number_label)'}), '(figsize=(number_label, number_label))\n', (605, 643), True, 'import matplotlib.pyplot as plt\n'), ((675, 701), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'dims'}), '(figsize=dims)\n', (687, 701), True, 'import matplotlib.pyplot as plt\n'), ((706, 810), 'seaborn.heatmap', 'sns.heatmap', (['matrix'], {'annot': '(True)', 'fmt': '""".2f"""', 'xticklabels': "['0', '1', '2']", 'yticklabels': "['0', '1', '2']"}), "(matrix, annot=True, fmt='.2f', xticklabels=['0', '1', '2'],\n yticklabels=['0', '1', '2'])\n", (717, 810), True, 'import seaborn as sns\n'), ((811, 840), 'matplotlib.pyplot.title', 'plt.title', (['"""Confusion Matrix"""'], {}), "('Confusion Matrix')\n", (820, 840), True, 'import matplotlib.pyplot as plt\n'), ((846, 875), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted label"""'], {}), "('Predicted label')\n", (856, 875), True, 'import matplotlib.pyplot as plt\n'), ((880, 904), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True label"""'], {}), "('True label')\n", (890, 904), True, 'import matplotlib.pyplot as plt\n'), ((127, 140), 'IPython.get_ipython', 'get_ipython', ([], {}), '()\n', (138, 140), False, 'from IPython import get_ipython\n')]
import argparse parser = argparse.ArgumentParser(description='This script takes a dihedral trajectory and detects change points using SIMPLE (simultaneous Penalized Likelihood Estimation, see Fan et al. P. Natl. Acad. Sci, 2015, 112, 7454-7459). Two parameters alpha and lambda are controlling the extent of simultaneous changes and total number of changes detected, respectively. alpha -> 1 means more simultaneous changes (0<alpha<1), and smaller lambda gives more changes.') parser.add_argument('shifteddihed', default='shifted_dihedral.dat', help='input shifted dihedral file') parser.add_argument('--alpha', type=float, default=0.7, help='extent of simultaneous changes, 0.7 by default suggested by the author if no prior ') parser.add_argument('--lam', type=float, default=10, help='sensitivity of detecting changes, 10 by default') args = parser.parse_args() import numpy as np from SIMPLEchangepoint import ComputeChanges import collections inputfile=args.shifteddihed lam=args.lam alpha=args.alpha outputfile=inputfile[:-4]+".lam"+str(lam)+"alpha"+str(alpha)+".transitionProba.dat" outputfile2=inputfile[:-4]+".lam"+str(lam)+"alpha"+str(alpha)+".transitionSummary.dat" alldata=np.loadtxt(inputfile).T time=alldata[0] data=alldata[1:] CPDresults = ComputeChanges(data,lam,alpha,lam_min=0,parallel=False) def changeORnot(con_set,size): x=[0]*size for i in con_set: x[i] = 1 return ' '.join(map(str,x)) od = collections.OrderedDict(sorted(CPDresults.items())) with open(outputfile,'w') as fo: for t in range(len(time)): if t not in od.keys(): fo.write(str(time[t])+' '+' '.join(map(str,[0]*len(data)))+'\n') else: fo.write(str(time[t])+' '+changeORnot(od[t],len(data))+'\n') def strplus1(x): return str(x+1) with open(outputfile2,'w') as fo2: for k, v in od.iteritems(): fo2.write('{:10.1f} {:5d} {:s}\n'.format(time[k],len(v),','.join(map(strplus1,v))))
[ "numpy.loadtxt", "SIMPLEchangepoint.ComputeChanges", "argparse.ArgumentParser" ]
[((25, 487), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""This script takes a dihedral trajectory and detects change points using SIMPLE (simultaneous Penalized Likelihood Estimation, see Fan et al. P. Natl. Acad. Sci, 2015, 112, 7454-7459). Two parameters alpha and lambda are controlling the extent of simultaneous changes and total number of changes detected, respectively. alpha -> 1 means more simultaneous changes (0<alpha<1), and smaller lambda gives more changes."""'}), "(description=\n 'This script takes a dihedral trajectory and detects change points using SIMPLE (simultaneous Penalized Likelihood Estimation, see Fan et al. P. Natl. Acad. Sci, 2015, 112, 7454-7459). Two parameters alpha and lambda are controlling the extent of simultaneous changes and total number of changes detected, respectively. alpha -> 1 means more simultaneous changes (0<alpha<1), and smaller lambda gives more changes.'\n )\n", (48, 487), False, 'import argparse\n'), ((1261, 1320), 'SIMPLEchangepoint.ComputeChanges', 'ComputeChanges', (['data', 'lam', 'alpha'], {'lam_min': '(0)', 'parallel': '(False)'}), '(data, lam, alpha, lam_min=0, parallel=False)\n', (1275, 1320), False, 'from SIMPLEchangepoint import ComputeChanges\n'), ((1190, 1211), 'numpy.loadtxt', 'np.loadtxt', (['inputfile'], {}), '(inputfile)\n', (1200, 1211), True, 'import numpy as np\n')]
import os import pandas as pd import numpy as np from collections import Counter, defaultdict def train_from_file(dir_path, leap_limit=15): file_list = os.listdir(dir_path) pig_format = [ "id", "onset", "offset", "pitch", "onsetvel", "offsetvel", "hand", "fingernum", ] right_init = Counter() right_transition_count = Counter() right_emission = defaultdict(Counter) left_init = Counter() left_transition_count = Counter() left_emission = defaultdict(Counter) for idx, file in enumerate(file_list): path = dir_path + "/" + file data_size = len(file_list) print(f"Processing: {path} ({idx + 1}/{data_size})") data = pd.read_csv(path, sep="\t", header=0, names=pig_format) if data.fingernum.dtype == object: data.fingernum = data.fingernum.apply( lambda x: x.split("_")[0] ).astype("int") left_hand = data[data.fingernum < 0] right_hand = data[data.fingernum > 0] init, transition, emission = count_fingering( right_hand, limit=leap_limit ) right_init += init right_transition_count += transition for k, counter in emission.items(): right_emission[k].update(counter) init, transition, emission = count_fingering( left_hand, limit=leap_limit ) left_init += init left_transition_count += transition for k, counter in emission.items(): left_emission[k].update(counter) return (right_init, right_transition_count, right_emission, left_init, left_transition_count, left_emission) def pitch_to_key(pitch: str): posx = {"C": 0, "D": 1, "E": 2, "F": 3, "G": 4, "A": 5, "B": 6}[pitch[0]] posy = 0 if pitch[1].isdigit(): posx += (int(pitch[1]) - 4) * 7 elif pitch[1] == "#": if pitch[2] == "#": posx += (int(pitch[3]) - 4) * 7 + 1 else: posy = 1 posx += (int(pitch[2]) - 4) * 7 elif pitch[1] == "b" or pitch[1] == "-": if pitch[2] == "b" or pitch[2] == "-": posx += (int(pitch[3]) - 4) * 7 else: posy = 1 posx += (int(pitch[2]) - 4) * 7 - 1 return (posx, posy) def note_to_diff(fingering_data, limit=15): pos_x, pos_y = zip(*fingering_data.pitch.map(pitch_to_key)) series_x = pd.Series(pos_x) series_y = pd.Series(pos_y) diffs = list( zip( series_x.diff() .fillna(0, downcast="infer") .apply(lambda x: limit if x > limit else x) .apply(lambda x: -limit if x < -limit else x), series_y.diff().fillna(0, downcast="infer"), ) ) return diffs def count_fingering(fingering_data, limit=15): hidden_state = list( zip( fingering_data.fingernum.shift(fill_value=0), fingering_data.fingernum, ) ) pos_x, pos_y = zip(*fingering_data.pitch.map(pitch_to_key)) model = pd.DataFrame( {"hidden_state": hidden_state, "pos_x": pos_x, "pos_y": pos_y} ) model["pos_diff"] = list( zip( model.pos_x.diff() .fillna(0, downcast="infer") .apply(lambda x: limit if x > limit else x) .apply(lambda x: -limit if x < -limit else x), model.pos_y.diff().fillna(0, downcast="infer"), ) ) # First observation only init = Counter([model.hidden_state[0][1]]) # Without first observation transition = Counter(model.hidden_state[1:]) # Emission emission = { state: Counter(model[model.hidden_state == state].pos_diff) for state in set(model.hidden_state[1:]) } return (init, transition, Counter(emission)) def normalize(v): return v / v.sum(axis=0) def init_count_to_prob(init_count): init_prob = np.zeros(5) for key, value in init_count.items(): if key < 0: init_prob[-key - 1] = value else: init_prob[key - 1] = value return normalize(init_prob) def transition_count_to_prob(transition_count): transition_prob = np.zeros((5, 5)) for key, value in transition_count.items(): if key[0] < 0 and key[1] < 0: transition_prob[-key[0] - 1, -key[1] - 1] = value else: transition_prob[key[0] - 1, key[1] - 1] = value return np.apply_along_axis(normalize, axis=1, arr=transition_prob) def series_to_matrix(emission_prob): out_prob = np.zeros((5, 5)) for key, value in emission_prob.items(): if key[0] < 0 and key[1] < 0: out_prob[-key[0] - 1, -key[1] - 1] = value else: out_prob[key[0] - 1, key[1] - 1] = value return out_prob def emission_count_to_prob(emission_count): prob_df = ( pd.DataFrame.from_dict(emission_count).fillna(0, downcast="infer") + 1 ).apply(normalize, axis=0) prob_dict = { out: series_to_matrix(prob_df.loc[out]) for out in prob_df.index } return prob_dict def decoding(init_prob, transition, out_prob, observations, hand): n_state = len(init_prob) obs_len = len(observations) delta = np.zeros((n_state, obs_len + 1)) psi = np.zeros((n_state, obs_len), dtype=int) delta[:, 0] = np.log(init_prob) for i, (pitch, time) in enumerate( zip(observations.pitch_diff, observations.time_diff) ): delta_mat = np.tile(delta[:, i], (n_state, 1)).transpose() prod = delta_mat + np.log(transition) + np.log(out_prob[pitch]) if time < 0.03: if hand == "R": if pitch[0] > 0: prod[np.tril_indices(n_state)] -= 5 else: prod[np.triu_indices(n_state)] -= 5 else: if pitch[0] > 0: prod[np.triu_indices(n_state)] -= 5 else: prod[np.tril_indices(n_state)] -= 5 delta[:, i + 1] = np.amax(prod, axis=0) psi[:, i] = prod.argmax(axis=0) + 1 opt_path = [np.argmax(delta[:, obs_len]) + 1] for i in range(obs_len - 1, -1, -1): opt_path.append(psi[opt_path[-1] - 1, i]) return opt_path[::-1]
[ "pandas.Series", "numpy.tile", "os.listdir", "numpy.triu_indices", "pandas.read_csv", "numpy.log", "numpy.argmax", "pandas.DataFrame.from_dict", "collections.Counter", "numpy.zeros", "numpy.apply_along_axis", "collections.defaultdict", "pandas.DataFrame", "numpy.tril_indices", "numpy.amax" ]
[((158, 178), 'os.listdir', 'os.listdir', (['dir_path'], {}), '(dir_path)\n', (168, 178), False, 'import os\n'), ((367, 376), 'collections.Counter', 'Counter', ([], {}), '()\n', (374, 376), False, 'from collections import Counter, defaultdict\n'), ((406, 415), 'collections.Counter', 'Counter', ([], {}), '()\n', (413, 415), False, 'from collections import Counter, defaultdict\n'), ((437, 457), 'collections.defaultdict', 'defaultdict', (['Counter'], {}), '(Counter)\n', (448, 457), False, 'from collections import Counter, defaultdict\n'), ((475, 484), 'collections.Counter', 'Counter', ([], {}), '()\n', (482, 484), False, 'from collections import Counter, defaultdict\n'), ((513, 522), 'collections.Counter', 'Counter', ([], {}), '()\n', (520, 522), False, 'from collections import Counter, defaultdict\n'), ((543, 563), 'collections.defaultdict', 'defaultdict', (['Counter'], {}), '(Counter)\n', (554, 563), False, 'from collections import Counter, defaultdict\n'), ((2458, 2474), 'pandas.Series', 'pd.Series', (['pos_x'], {}), '(pos_x)\n', (2467, 2474), True, 'import pandas as pd\n'), ((2490, 2506), 'pandas.Series', 'pd.Series', (['pos_y'], {}), '(pos_y)\n', (2499, 2506), True, 'import pandas as pd\n'), ((3089, 3165), 'pandas.DataFrame', 'pd.DataFrame', (["{'hidden_state': hidden_state, 'pos_x': pos_x, 'pos_y': pos_y}"], {}), "({'hidden_state': hidden_state, 'pos_x': pos_x, 'pos_y': pos_y})\n", (3101, 3165), True, 'import pandas as pd\n'), ((3528, 3563), 'collections.Counter', 'Counter', (['[model.hidden_state[0][1]]'], {}), '([model.hidden_state[0][1]])\n', (3535, 3563), False, 'from collections import Counter, defaultdict\n'), ((3614, 3645), 'collections.Counter', 'Counter', (['model.hidden_state[1:]'], {}), '(model.hidden_state[1:])\n', (3621, 3645), False, 'from collections import Counter, defaultdict\n'), ((3955, 3966), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (3963, 3966), True, 'import numpy as np\n'), ((4226, 4242), 'numpy.zeros', 'np.zeros', (['(5, 5)'], {}), '((5, 5))\n', (4234, 4242), True, 'import numpy as np\n'), ((4477, 4536), 'numpy.apply_along_axis', 'np.apply_along_axis', (['normalize'], {'axis': '(1)', 'arr': 'transition_prob'}), '(normalize, axis=1, arr=transition_prob)\n', (4496, 4536), True, 'import numpy as np\n'), ((4591, 4607), 'numpy.zeros', 'np.zeros', (['(5, 5)'], {}), '((5, 5))\n', (4599, 4607), True, 'import numpy as np\n'), ((5269, 5301), 'numpy.zeros', 'np.zeros', (['(n_state, obs_len + 1)'], {}), '((n_state, obs_len + 1))\n', (5277, 5301), True, 'import numpy as np\n'), ((5312, 5351), 'numpy.zeros', 'np.zeros', (['(n_state, obs_len)'], {'dtype': 'int'}), '((n_state, obs_len), dtype=int)\n', (5320, 5351), True, 'import numpy as np\n'), ((5370, 5387), 'numpy.log', 'np.log', (['init_prob'], {}), '(init_prob)\n', (5376, 5387), True, 'import numpy as np\n'), ((758, 813), 'pandas.read_csv', 'pd.read_csv', (['path'], {'sep': '"""\t"""', 'header': '(0)', 'names': 'pig_format'}), "(path, sep='\\t', header=0, names=pig_format)\n", (769, 813), True, 'import pandas as pd\n'), ((3694, 3746), 'collections.Counter', 'Counter', (['model[model.hidden_state == state].pos_diff'], {}), '(model[model.hidden_state == state].pos_diff)\n', (3701, 3746), False, 'from collections import Counter, defaultdict\n'), ((3833, 3850), 'collections.Counter', 'Counter', (['emission'], {}), '(emission)\n', (3840, 3850), False, 'from collections import Counter, defaultdict\n'), ((6066, 6087), 'numpy.amax', 'np.amax', (['prod'], {'axis': '(0)'}), '(prod, axis=0)\n', (6073, 6087), True, 'import numpy as np\n'), ((5611, 5634), 'numpy.log', 'np.log', (['out_prob[pitch]'], {}), '(out_prob[pitch])\n', (5617, 5634), True, 'import numpy as np\n'), ((6149, 6177), 'numpy.argmax', 'np.argmax', (['delta[:, obs_len]'], {}), '(delta[:, obs_len])\n', (6158, 6177), True, 'import numpy as np\n'), ((5516, 5550), 'numpy.tile', 'np.tile', (['delta[:, i]', '(n_state, 1)'], {}), '(delta[:, i], (n_state, 1))\n', (5523, 5550), True, 'import numpy as np\n'), ((5590, 5608), 'numpy.log', 'np.log', (['transition'], {}), '(transition)\n', (5596, 5608), True, 'import numpy as np\n'), ((4904, 4942), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['emission_count'], {}), '(emission_count)\n', (4926, 4942), True, 'import pandas as pd\n'), ((5745, 5769), 'numpy.tril_indices', 'np.tril_indices', (['n_state'], {}), '(n_state)\n', (5760, 5769), True, 'import numpy as np\n'), ((5823, 5847), 'numpy.triu_indices', 'np.triu_indices', (['n_state'], {}), '(n_state)\n', (5838, 5847), True, 'import numpy as np\n'), ((5930, 5954), 'numpy.triu_indices', 'np.triu_indices', (['n_state'], {}), '(n_state)\n', (5945, 5954), True, 'import numpy as np\n'), ((6008, 6032), 'numpy.tril_indices', 'np.tril_indices', (['n_state'], {}), '(n_state)\n', (6023, 6032), True, 'import numpy as np\n')]
import pymongo import numpy as np from tqdm import tqdm from datetime import datetime, timedelta def mongo_query(**kwargs): """Create a MongoDB query based on a set of conditions.""" query = {} if 'start_date' in kwargs: if not ('CreationDate' in query): query['CreationDate'] = {} query['CreationDate']['$gte'] = kwargs['start_date'] if 'end_date' in kwargs: if not ('CreationDate' in query): query['CreationDate'] = {} query['CreationDate']['$lt'] = kwargs['end_date'] if 'exclude_closed' in kwargs: query['Closed'] = kwargs['exclude_closed'] return query def year_range_query(start_year, end_year, exclude_closed=True): """Returns a MongoDB query returning all posts for a given year.""" query = mongo_query(start_date=datetime(start_year, 1, 1), end_date=datetime(end_year + 1, 1, 1), exclude_closed=exclude_closed) return query def single_day_query(day, month, year, exclude_closed=True): """Returns a MongoDB query returning all posts for a given day.""" start_date = datetime(year, month, day) query = mongo_query(start_date=start_date, end_date=start_date + timedelta(days=10), exclude_closed=exclude_closed) return query class MongoDataset: """Interface between MongoDB and the rest of the Python code.""" def __init__(self, forum='overflow'): try: client = pymongo.MongoClient() except Exception as e: message = """Could not connect to MongoDB client. Make sure to start it by executing: sudo systemctl start mongod """ print(message) raise e self.collection = client.titlewave[f'{forum}.posts'] def get_mongo_ids(self, query): """Fetches the ids of documents matching a query.""" result = self.collection.find(query, {'_id': True}) ids = [row['_id'] for row in result] return ids def batch_update(self, ids, command, batch_size=256, progress_bar=True): """ Execute an update_many command in batches. Parameters: ids - The document ids in the Mongo collection of the documents to be updated. command - The update command to be executed on each document. batch_size - The number of documents to update in a single call of update_many. progress_bar - Whether to display a progress bar. """ num_batches = len(ids) // batch_size # Split the array into batches of the specified size, and typecast the ids back to Python integers with tolist. splits = np.array_split(ids, num_batches).tolist() if progress_bar: splits = tqdm(splits) for batch_ids in splits: self.collection.update_many({'_id': {'$in': batch_ids}}, command) def get_partition(self, partition, projection): """ Fetches all documents in a specified partition of the dataset. Parameters: partition - The name of the partition (e.g., "classifier_train") projection - Indicates which fields of the documents to return. """ cursor = self.collection.find({'partition': partition}, projection) return list(cursor) def reset_partitions(self): """Remove the partition field from all documents in the collection.""" self.collection.update_many({'partition': {'$exists': True}}, {'$unset': {'partition': 1}})
[ "datetime.datetime", "tqdm.tqdm", "numpy.array_split", "pymongo.MongoClient", "datetime.timedelta" ]
[((1136, 1162), 'datetime.datetime', 'datetime', (['year', 'month', 'day'], {}), '(year, month, day)\n', (1144, 1162), False, 'from datetime import datetime, timedelta\n'), ((822, 848), 'datetime.datetime', 'datetime', (['start_year', '(1)', '(1)'], {}), '(start_year, 1, 1)\n', (830, 848), False, 'from datetime import datetime, timedelta\n'), ((883, 911), 'datetime.datetime', 'datetime', (['(end_year + 1)', '(1)', '(1)'], {}), '(end_year + 1, 1, 1)\n', (891, 911), False, 'from datetime import datetime, timedelta\n'), ((1516, 1537), 'pymongo.MongoClient', 'pymongo.MongoClient', ([], {}), '()\n', (1535, 1537), False, 'import pymongo\n'), ((2805, 2817), 'tqdm.tqdm', 'tqdm', (['splits'], {}), '(splits)\n', (2809, 2817), False, 'from tqdm import tqdm\n'), ((1256, 1274), 'datetime.timedelta', 'timedelta', ([], {'days': '(10)'}), '(days=10)\n', (1265, 1274), False, 'from datetime import datetime, timedelta\n'), ((2717, 2749), 'numpy.array_split', 'np.array_split', (['ids', 'num_batches'], {}), '(ids, num_batches)\n', (2731, 2749), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np plt.style.use('seaborn-darkgrid') x = range(8) y = np.linspace(1.1, 5.0, 8) ylabel = map(lambda num: bin(num)[2:], x) xlabel = map(lambda num: "{0:.2f}".format(num), y) plt.step(x, y) plt.yticks(y, ylabel) plt.xticks(x, xlabel, rotation=45) plt.ylabel("Binary Output") plt.xlabel("Analog Input") plt.savefig("adc.png", transparent=True)
[ "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.style.use", "numpy.linspace", "matplotlib.pyplot.yticks", "matplotlib.pyplot.step" ]
[((51, 84), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-darkgrid"""'], {}), "('seaborn-darkgrid')\n", (64, 84), True, 'import matplotlib.pyplot as plt\n'), ((103, 127), 'numpy.linspace', 'np.linspace', (['(1.1)', '(5.0)', '(8)'], {}), '(1.1, 5.0, 8)\n', (114, 127), True, 'import numpy as np\n'), ((223, 237), 'matplotlib.pyplot.step', 'plt.step', (['x', 'y'], {}), '(x, y)\n', (231, 237), True, 'import matplotlib.pyplot as plt\n'), ((238, 259), 'matplotlib.pyplot.yticks', 'plt.yticks', (['y', 'ylabel'], {}), '(y, ylabel)\n', (248, 259), True, 'import matplotlib.pyplot as plt\n'), ((260, 294), 'matplotlib.pyplot.xticks', 'plt.xticks', (['x', 'xlabel'], {'rotation': '(45)'}), '(x, xlabel, rotation=45)\n', (270, 294), True, 'import matplotlib.pyplot as plt\n'), ((295, 322), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Binary Output"""'], {}), "('Binary Output')\n", (305, 322), True, 'import matplotlib.pyplot as plt\n'), ((323, 349), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Analog Input"""'], {}), "('Analog Input')\n", (333, 349), True, 'import matplotlib.pyplot as plt\n'), ((350, 390), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""adc.png"""'], {'transparent': '(True)'}), "('adc.png', transparent=True)\n", (361, 390), True, 'import matplotlib.pyplot as plt\n')]
from pandas import read_sql_query from sqlite3 import connect from pickle import load, dump from time import time from gensim.utils import simple_preprocess from gensim.models import Phrases from gensim.models.phrases import Phraser from gensim.parsing.preprocessing import STOPWORDS from gensim.corpora import Dictionary from gensim.models import TfidfModel, AuthorTopicModel from nltk import SnowballStemmer, WordNetLemmatizer import numpy as np np.random.seed(59) DB_NAME = 'all-the-news.db' SOURCES_FILE = 'sources.bin' YEARS_FILE = 'years.bin' NEWS_FILE = 'news.bin' PROCESSED_NEWS_FILE = 'processed-news.bin' DICTIONARY_FILE = 'dictionary.bin' TFIDF_FILE = 'tf-idf.bin' MODEL_FILE = 'model.bin' def printExecutionTime(start_time): print('Completed in {0:.4f} seconds\n'.format(time() - start_time)) def loadData(): print('Loading data...') start_time = time() try: # Loading if possible sources_file = open(SOURCES_FILE, 'rb') sources = load(sources_file) years_file = open(YEARS_FILE, 'rb') years = load(years_file) news_file = open(NEWS_FILE, 'rb') news = load(news_file) except: conn = connect(DB_NAME) df = read_sql_query('SELECT publication, year, content FROM longform WHERE content != "" AND content IS NOT NULL AND publication != "" AND publication IS NOT NULL', conn) conn.commit() conn.close() sources = dict() years = dict() news = list() for index, row in df.iterrows(): # Populating sources if row.publication not in sources.keys(): sources[row.publication] = list() sources[row.publication].append(index) # Populating years if row.year not in years.keys(): years[row.year] = list() years[row.year] = index # Populating news news.append(row.content) del df # Saving sources to file sources_file = open(SOURCES_FILE, 'wb') dump(sources, sources_file) # Saving years to file years_file = open(YEARS_FILE, 'wb') dump(years, years_file) # Saving news to file news_file = open(NEWS_FILE, 'wb') dump(news, news_file) finally: sources_file.close() years_file.close() news_file.close() printExecutionTime(start_time) return sources, years, news def preProcess(docs): print('Pre-processing...') start_time = time() try: # Loading if possible f = open(PROCESSED_NEWS_FILE, 'rb') processed_docs = load(f) except: stop_words = STOPWORDS stemmer = SnowballStemmer('english') lemmatizer = WordNetLemmatizer() processed_docs = [] for doc in docs: processed_doc = [] for token in simple_preprocess(doc, deacc=True): if token not in stop_words and len(token) > 2: token = lemmatizer.lemmatize(token, pos='v') #token = stemmer.stem(token) processed_doc.append(token) processed_docs.append(processed_doc) # Saving results to file f = open(PROCESSED_NEWS_FILE, 'wb') dump(processed_docs, f) finally: f.close() printExecutionTime(start_time) return processed_docs def extractDictionary(documents): print('Extracting dictionary...') start_time = time() try: # Loading if possible dictionary = Dictionary.load(DICTIONARY_FILE) except: dictionary = Dictionary(documents) dictionary.filter_extremes(no_below=200, no_above=0.8, keep_n=4000) # Saving to file dictionary.save(DICTIONARY_FILE) printExecutionTime(start_time) return dictionary def extractFeatures(documents, dictionary): print('Extracting features...') start_time = time() try: # Loading if possible f = open(TFIDF_FILE, 'rb') tfidf_corpus = load(f) except: bow_corpus = [ dictionary.doc2bow(doc) for doc in documents ] tfidf = TfidfModel(bow_corpus) tfidf_corpus = tfidf[bow_corpus] # Saving to file f = open(TFIDF_FILE, 'wb') dump(tfidf_corpus, f) finally: f.close() printExecutionTime(start_time) return tfidf_corpus def generateAuthorTopicModel(corpus, dictionary, authors): print('Generating author-topic model...') start_time = time() try: # Loading if possible model = AuthorTopicModel.load(MODEL_FILE) except: model = AuthorTopicModel( corpus, num_topics=20, id2word=dictionary, author2doc=authors ) # Saving to file model.save(MODEL_FILE) printExecutionTime(start_time) return model if __name__ == '__main__': sources, years, news = loadData() processed_news = preProcess(news) del news dictionary = extractDictionary(processed_news) tfidf = extractFeatures(processed_news, dictionary) del processed_news model = generateAuthorTopicModel(tfidf.corpus, dictionary, sources) del tfidf print('Topics') for idx, topic in model.print_topics(-1): print('Topic {}: {}'.format(idx, topic)) print('\nAuthors') for author in model.id2author.values(): print('{}: {}'.format(author, model.get_author_topics(author)))
[ "pandas.read_sql_query", "gensim.models.AuthorTopicModel", "gensim.models.AuthorTopicModel.load", "gensim.corpora.Dictionary.load", "pickle.dump", "sqlite3.connect", "gensim.corpora.Dictionary", "nltk.SnowballStemmer", "pickle.load", "nltk.WordNetLemmatizer", "gensim.utils.simple_preprocess", "numpy.random.seed", "time.time", "gensim.models.TfidfModel" ]
[((451, 469), 'numpy.random.seed', 'np.random.seed', (['(59)'], {}), '(59)\n', (465, 469), True, 'import numpy as np\n'), ((873, 879), 'time.time', 'time', ([], {}), '()\n', (877, 879), False, 'from time import time\n'), ((2337, 2343), 'time.time', 'time', ([], {}), '()\n', (2341, 2343), False, 'from time import time\n'), ((3185, 3191), 'time.time', 'time', ([], {}), '()\n', (3189, 3191), False, 'from time import time\n'), ((3604, 3610), 'time.time', 'time', ([], {}), '()\n', (3608, 3610), False, 'from time import time\n'), ((4132, 4138), 'time.time', 'time', ([], {}), '()\n', (4136, 4138), False, 'from time import time\n'), ((972, 990), 'pickle.load', 'load', (['sources_file'], {}), '(sources_file)\n', (976, 990), False, 'from pickle import load, dump\n'), ((1044, 1060), 'pickle.load', 'load', (['years_file'], {}), '(years_file)\n', (1048, 1060), False, 'from pickle import load, dump\n'), ((1111, 1126), 'pickle.load', 'load', (['news_file'], {}), '(news_file)\n', (1115, 1126), False, 'from pickle import load, dump\n'), ((2439, 2446), 'pickle.load', 'load', (['f'], {}), '(f)\n', (2443, 2446), False, 'from pickle import load, dump\n'), ((3243, 3275), 'gensim.corpora.Dictionary.load', 'Dictionary.load', (['DICTIONARY_FILE'], {}), '(DICTIONARY_FILE)\n', (3258, 3275), False, 'from gensim.corpora import Dictionary\n'), ((3697, 3704), 'pickle.load', 'load', (['f'], {}), '(f)\n', (3701, 3704), False, 'from pickle import load, dump\n'), ((4185, 4218), 'gensim.models.AuthorTopicModel.load', 'AuthorTopicModel.load', (['MODEL_FILE'], {}), '(MODEL_FILE)\n', (4206, 4218), False, 'from gensim.models import TfidfModel, AuthorTopicModel\n'), ((1148, 1164), 'sqlite3.connect', 'connect', (['DB_NAME'], {}), '(DB_NAME)\n', (1155, 1164), False, 'from sqlite3 import connect\n'), ((1174, 1349), 'pandas.read_sql_query', 'read_sql_query', (['"""SELECT publication, year, content FROM longform WHERE content != "" AND content IS NOT NULL AND publication != "" AND publication IS NOT NULL"""', 'conn'], {}), '(\n \'SELECT publication, year, content FROM longform WHERE content != "" AND content IS NOT NULL AND publication != "" AND publication IS NOT NULL\'\n , conn)\n', (1188, 1349), False, 'from pandas import read_sql_query\n'), ((1908, 1935), 'pickle.dump', 'dump', (['sources', 'sources_file'], {}), '(sources, sources_file)\n', (1912, 1935), False, 'from pickle import load, dump\n'), ((2008, 2031), 'pickle.dump', 'dump', (['years', 'years_file'], {}), '(years, years_file)\n', (2012, 2031), False, 'from pickle import load, dump\n'), ((2101, 2122), 'pickle.dump', 'dump', (['news', 'news_file'], {}), '(news, news_file)\n', (2105, 2122), False, 'from pickle import load, dump\n'), ((2498, 2524), 'nltk.SnowballStemmer', 'SnowballStemmer', (['"""english"""'], {}), "('english')\n", (2513, 2524), False, 'from nltk import SnowballStemmer, WordNetLemmatizer\n'), ((2542, 2561), 'nltk.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (2559, 2561), False, 'from nltk import SnowballStemmer, WordNetLemmatizer\n'), ((2992, 3015), 'pickle.dump', 'dump', (['processed_docs', 'f'], {}), '(processed_docs, f)\n', (2996, 3015), False, 'from pickle import load, dump\n'), ((3303, 3324), 'gensim.corpora.Dictionary', 'Dictionary', (['documents'], {}), '(documents)\n', (3313, 3324), False, 'from gensim.corpora import Dictionary\n'), ((3793, 3815), 'gensim.models.TfidfModel', 'TfidfModel', (['bow_corpus'], {}), '(bow_corpus)\n', (3803, 3815), False, 'from gensim.models import TfidfModel, AuthorTopicModel\n'), ((3910, 3931), 'pickle.dump', 'dump', (['tfidf_corpus', 'f'], {}), '(tfidf_corpus, f)\n', (3914, 3931), False, 'from pickle import load, dump\n'), ((4241, 4320), 'gensim.models.AuthorTopicModel', 'AuthorTopicModel', (['corpus'], {'num_topics': '(20)', 'id2word': 'dictionary', 'author2doc': 'authors'}), '(corpus, num_topics=20, id2word=dictionary, author2doc=authors)\n', (4257, 4320), False, 'from gensim.models import TfidfModel, AuthorTopicModel\n'), ((792, 798), 'time.time', 'time', ([], {}), '()\n', (796, 798), False, 'from time import time\n'), ((2652, 2686), 'gensim.utils.simple_preprocess', 'simple_preprocess', (['doc'], {'deacc': '(True)'}), '(doc, deacc=True)\n', (2669, 2686), False, 'from gensim.utils import simple_preprocess\n')]
import argparse import sys import optax import torch import numpy as np import time import jax import jax.numpy as jnp import matplotlib as mp import haiku as hk import dill as pickle try: mp.use("Qt5Agg") mp.rc('text', usetex=True) mp.rcParams['text.latex.preamble'] = [r"\usepackage{amsmath}"] import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.cm as cm except ImportError: pass import deep_lagrangian_networks.jax_HNN_model as hnn import deep_lagrangian_networks.jax_DeLaN_model as delan import deep_lagrangian_networks.jax_Black_Box_model as black_box from deep_lagrangian_networks.utils import load_dataset, init_env, activations from deep_lagrangian_networks.jax_integrator import symplectic_euler, explicit_euler, runge_kutta_4 def running_mean(x, n): cumsum = np.cumsum(np.concatenate([x[0] * np.ones((n,)), x])) return (cumsum[n:] - cumsum[:-n]) / n if __name__ == "__main__": n_plot = 5 dataset = "uniform" model_id = ["structured", "black_box", "structured", "black_box", "black_box"] module_key = ["DeLaN", "DeLaN", "HNN", "HNN", "Network"] colors = { "DeLaN structured": cm.get_cmap(cm.Set1)(0), "DeLaN black_box": cm.get_cmap(cm.Set1)(1), "HNN structured": cm.get_cmap(cm.Set1)(2), "HNN black_box": cm.get_cmap(cm.Set1)(3), "Network black_box": cm.get_cmap(cm.Set1)(4), } results = {} for i in range(n_plot): with open(f"data/results/{module_key[i]}_{model_id[i]}_{dataset}.pickle", "rb") as file: results[module_key[i] + " " + model_id[i]] = pickle.load(file) if dataset == "char": train_data, test_data, divider, dt = load_dataset( filename="data/character_data.pickle", test_label=["e", "q", "v"]) elif dataset == "uniform": train_data, test_data, divider, dt = load_dataset( filename="data/uniform_data.pickle", test_label=["Test 0", "Test 1", "Test 2"]) else: raise ValueError vpt_th = 1.e-2 for i in range(n_plot): key = f"{module_key[i]} {model_id[i]}" n_seeds = results[key]['forward_model']['q_error'].shape[0] xd_error = np.mean(results[key]['forward_model']['xd_error']), 2. * np.std(results[key]['forward_model']['xd_error']) n_test = 2 vpt = np.zeros((0, n_test)) for i in range(n_seeds): vpt_i = [] for j in range(n_test): traj = np.concatenate([ results[key]['forward_model']['q_error'][i, divider[j]:divider[j+1]], results[key]['forward_model']['q_error'][i, -1:] * 0.0 + 1.]) vpt_i = vpt_i + [np.argwhere(traj >= vpt_th)[0, 0]] vpt = np.concatenate([vpt, np.array([vpt_i])]) vpt = np.mean(vpt), np.std(vpt) unit = r"\text{s}" string = f"${xd_error[0]:.1e}{'}'} \pm {xd_error[1]:.1e}{'}'}$ & ${vpt[0]*dt:.2f}{unit} \pm {vpt[1]*dt:.2f}{unit}$ \\\\".replace("e-", r"\mathrm{e}{-").replace("e+", r"\mathrm{e}{+") print(f"{key:20} - " + string) test_labels, test_qp, test_qv, test_qa, test_p, test_pd, test_tau, test_m, test_c, test_g = test_data tau_g, tau_c, tau_m, tau = jnp.array(test_g), jnp.array(test_c), jnp.array(test_m), jnp.array(test_tau) q, qd, qdd = jnp.array(test_qp), jnp.array(test_qv), jnp.array(test_qa) p, pd = jnp.array(test_p), jnp.array(test_pd) dHdt = jax.vmap(jnp.dot, [0, 0])(qd, tau) H = jnp.concatenate([dt * jnp.cumsum(dHdt[divider[i]: divider[i+1]]) for i in range(3)]) def smoothing(x): return np.concatenate([running_mean(x[divider[i]:divider[i + 1]], 10) for i in range(3)]) print("\n################################################") print("Plotting Performance:") # Alpha of the graphs: plot_alpha = 0.8 y_offset = -0.15 n_test = 2 # Plot the performance: q_low = np.clip(1.5 * np.min(np.array(q), axis=0), -np.inf, -0.01) q_max = np.clip(1.5 * np.max(np.array(q), axis=0), 0.01, np.inf) if dataset == "char": q_max = np.array([0.25, 3.]) q_low = np.array([-1.25, 1.]) qd_low = np.clip(1.5 * np.min(qd, axis=0), -np.inf, -0.01) qd_max = np.clip(1.5 * np.max(qd, axis=0), 0.01, np.inf) p_low = np.clip(1.2 * np.min(p, axis=0), -np.inf, -0.01) p_max = np.clip(1.2 * np.max(p, axis=0), 0.01, np.inf) H_lim = [-0.01, +0.01] if dataset == "uniform" else [-2.75, +2.75] err_min, err_max = 1.e-5, 1.e3 plt.rc('text', usetex=True) color_i = ["r", "b", "g", "k"] ticks = np.array(divider) ticks = (ticks[:-1] + ticks[1:]) / 2 fig = plt.figure(figsize=(24.0 / 1.54, 8.0 / 1.54), dpi=100) fig.subplots_adjust(left=0.06, bottom=0.12, right=0.98, top=0.95, wspace=0.24, hspace=0.2) fig.canvas.set_window_title('') legend = [ mp.patches.Patch(color=colors["DeLaN structured"], label="DeLaN - Structured Lagrangian"), mp.patches.Patch(color=colors["DeLaN black_box"], label="DeLaN - Black-Box Lagrangian"), mp.patches.Patch(color=colors["HNN structured"], label="HNN - Structured Hamiltonian"), mp.patches.Patch(color=colors["HNN black_box"], label="HNN - Black-Box Hamiltonian"), mp.patches.Patch(color=colors["Network black_box"], label="Feed-Forward Network"), mp.patches.Patch(color="k", label="Ground Truth")] ax0 = fig.add_subplot(3, 4, 1) ax0.set_title(r"Generalized Position $\mathbf{q}$") ax0.text(s=r"\textbf{Joint 0}", x=-0.25, y=.5, fontsize=12, fontweight="bold", rotation=90, horizontalalignment="center", verticalalignment="center", transform=ax0.transAxes) ax0.set_ylabel(r"$\mathbf{q}_0$ [Rad]") ax0.get_yaxis().set_label_coords(-0.2, 0.5) ax0.set_ylim(q_low[0], q_max[0]) ax0.set_xticks(ticks) ax0.set_xticklabels(test_labels) [ax0.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax0.set_xlim(divider[0], divider[n_test]) ax0.yaxis.set_label_coords(y_offset, 0.5) ax1 = fig.add_subplot(3, 4, 5) ax1.text(s=r"\textbf{Joint 1}", x=-.25, y=0.5, fontsize=12, fontweight="bold", rotation=90, horizontalalignment="center", verticalalignment="center", transform=ax1.transAxes) ax1.set_ylabel(r"$\mathbf{q}_1$ [Rad]") ax1.get_yaxis().set_label_coords(-0.2, 0.5) ax1.set_ylim(q_low[1], q_max[1]) ax1.set_xticks(ticks) ax1.set_xticklabels(test_labels) [ax1.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax1.set_xlim(divider[0], divider[n_test]) ax1.yaxis.set_label_coords(y_offset, 0.5) ax2 = fig.add_subplot(3, 4, 9) ax2.text(s=r"\textbf{Error}", x=-.25, y=0.5, fontsize=12, fontweight="bold", rotation=90, horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes) ax2.text(s=r"\textbf{(a)}", x=.5, y=-0.35, fontsize=12, fontweight="bold", horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes) ax2.get_yaxis().set_label_coords(-0.2, 0.5) ax2.set_xticks(ticks) ax2.set_xticklabels(test_labels) [ax2.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax2.set_xlim(divider[0], divider[n_test]) ax2.set_ylim(err_min, err_max) ax2.set_yscale('log') ax2.set_ylabel(r"Position Error") ax2.yaxis.set_label_coords(y_offset, 0.5) ax2.axhline(vpt_th, color="k", linestyle="--") # Plot Ground Truth Torque: ax0.plot(q[:, 0], color="k") ax1.plot(q[:, 1], color="k") # Plot DeLaN Torque: for key in results.keys(): color = colors[key] q_pred = results[key]["forward_model"]["q_pred"] q_error = results[key]["forward_model"]["q_error"] q_pred_min, q_pred_mean, q_pred_max = np.min(q_pred, axis=0), np.median(q_pred, axis=0), np.max(q_pred, axis=0) q_error_min, q_error_mean, q_error_max = np.min(q_error, axis=0), np.median(q_error, axis=0), np.max(q_error, axis=0) q_error_min = smoothing(q_error_min) q_error_mean = smoothing(q_error_mean) q_error_max = smoothing(q_error_max) x = np.arange(q_pred_max.shape[0]) ax0.plot(q_pred_mean[:, 0], color=color, alpha=plot_alpha) ax0.fill_between(x, q_pred_min[:, 0], q_pred_max[:, 0], color=color, alpha=plot_alpha/8.) ax1.plot(q_pred_mean[:, 1], color=color, alpha=plot_alpha) ax1.fill_between(x, q_pred_min[:, 1], q_pred_max[:, 1], color=color, alpha=plot_alpha/8.) ax2.plot(q_error_mean, color=color, alpha=plot_alpha) ax2.fill_between(x, q_error_min, q_error_max, color=color, alpha=plot_alpha/8.) # Plot Mass Torque ax0 = fig.add_subplot(3, 4, 2) ax0.set_title(r"Generalized Velocity $\dot{\mathbf{q}}$") ax0.set_ylabel(r"$\dot{\mathbf{q}}_0$ [Rad/s]") ax0.set_ylim(qd_low[0], qd_max[0]) ax0.set_xticks(ticks) ax0.set_xticklabels(test_labels) [ax0.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax0.set_xlim(divider[0], divider[n_test]) ax0.yaxis.set_label_coords(y_offset, 0.5) ax1 = fig.add_subplot(3, 4, 6) ax1.set_ylabel(r"$\dot{\mathbf{q}}_{1}$ [Rad/s]") ax1.set_ylim(qd_low[1], qd_max[1]) ax1.set_xticks(ticks) ax1.set_xticklabels(test_labels) [ax1.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax1.set_xlim(divider[0], divider[n_test]) ax1.yaxis.set_label_coords(y_offset, 0.5) ax2 = fig.add_subplot(3, 4, 10) ax2.text(s=r"\textbf{(b)}", x=.5, y=-0.35, fontsize=12, fontweight="bold", horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes) ax2.get_yaxis().set_label_coords(-0.2, 0.5) ax2.set_xticks(ticks) ax2.set_xticklabels(test_labels) [ax2.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax2.set_xlim(divider[0], divider[n_test]) ax2.set_ylim(err_min, err_max) ax2.set_yscale('log') ax2.set_ylabel(r"Velocity Error") ax2.yaxis.set_label_coords(y_offset, 0.5) # Plot Ground Truth Inertial Torque: ax0.plot(qd[:, 0], color="k") ax1.plot(qd[:, 1], color="k") # Plot DeLaN Inertial Torque: for key in results.keys(): color = colors[key] qd_pred = results[key]["forward_model"]["qd_pred"] qd_error = results[key]["forward_model"]["qd_error"] qd_pred_min, qd_pred_mean, qd_pred_max = np.min(qd_pred, axis=0), np.median(qd_pred, axis=0), np.max(qd_pred, axis=0) qd_error_min, qd_error_mean, qd_error_max = np.min(qd_error, axis=0), np.median(qd_error, axis=0), np.max(qd_error, axis=0) x = np.arange(qd_pred_max.shape[0]) qd_error_min = smoothing(qd_error_min) qd_error_mean = smoothing(qd_error_mean) qd_error_max = smoothing(qd_error_max) ax0.plot(qd_pred_mean[:, 0], color=color, alpha=plot_alpha) ax0.fill_between(x, qd_pred_min[:, 0], qd_pred_max[:, 0], color=color, alpha=plot_alpha/8.) ax1.plot(qd_pred_mean[:, 1], color=color, alpha=plot_alpha) ax1.fill_between(x, qd_pred_min[:, 1], qd_pred_max[:, 1], color=color, alpha=plot_alpha/8.) ax2.plot(qd_error_mean, color=color, alpha=plot_alpha) ax2.fill_between(x, qd_error_min, qd_error_max, color=color, alpha=plot_alpha/8.) # Plot Coriolis Torque ax0 = fig.add_subplot(3, 4, 3) ax0.set_title(r"Generalized Momentum $\mathbf{p}$") ax0.set_ylabel(r"$\mathbf{p}_0$") ax0.set_ylim(p_low[0], p_max[0]) ax0.set_xticks(ticks) ax0.set_xticklabels(test_labels) [ax0.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax0.set_xlim(divider[0], divider[n_test]) ax0.yaxis.set_label_coords(y_offset, 0.5) ax1 = fig.add_subplot(3, 4, 7) ax1.set_ylabel(r"$\mathbf{p}_1$") ax1.set_ylim(p_low[1], p_max[1]) ax1.set_xticks(ticks) ax1.set_xticklabels(test_labels) [ax1.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax1.set_xlim(divider[0], divider[n_test]) ax1.yaxis.set_label_coords(y_offset, 0.5) ax2 = fig.add_subplot(3, 4, 11) ax2.text(s=r"\textbf{(c)}", x=.5, y=-0.35, fontsize=12, fontweight="bold", horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes) ax2.get_yaxis().set_label_coords(-0.2, 0.5) ax2.set_xticks(ticks) ax2.set_xticklabels(test_labels) [ax2.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax2.set_xlim(divider[0], divider[n_test]) ax2.set_ylim(err_min, err_max) ax2.set_yscale('log') ax2.set_ylabel(r"Impulse Error") ax2.yaxis.set_label_coords(y_offset, 0.5) # Plot Ground Truth Coriolis & Centrifugal Torque: ax0.plot(p[:, 0], color="k") ax1.plot(p[:, 1], color="k") for key in results.keys(): color = colors[key] p_pred = results[key]["forward_model"]["p_pred"] p_error = results[key]["forward_model"]["p_error"] p_pred_min, p_pred_mean, p_pred_max = np.min(p_pred, axis=0), np.median(p_pred, axis=0), np.max(p_pred, axis=0) p_error_min, p_error_mean, p_error_max = np.min(p_error, axis=0), np.median(p_error, axis=0), np.max(p_error, axis=0) x = np.arange(p_pred_max.shape[0]) p_error_min = smoothing(p_error_min) p_error_mean = smoothing(p_error_mean) p_error_max = smoothing(p_error_max) ax0.plot(p_pred_mean[:, 0], color=color, alpha=plot_alpha) ax0.fill_between(x, p_pred_min[:, 0], p_pred_max[:, 0], color=color, alpha=plot_alpha/8.) ax1.plot(p_pred_mean[:, 1], color=color, alpha=plot_alpha) ax1.fill_between(x, p_pred_min[:, 1], p_pred_max[:, 1], color=color, alpha=plot_alpha/8.) ax2.plot(p_error_mean, color=color, alpha=plot_alpha) ax2.fill_between(x, p_error_min, p_error_max, color=color, alpha=plot_alpha/8.) # Plot Gravity ax0 = fig.add_subplot(3, 4, 4) ax0.set_title(r"Normalized Energy $\mathcal{H}$") ax0.set_ylabel("$\mathcal{H}$") ax0.yaxis.set_label_coords(y_offset, 0.5) ax0.set_ylim(H_lim[0], H_lim[1]) ax0.set_xticks(ticks) ax0.set_xticklabels(test_labels) [ax0.axvline(divider[i], linestyle='--', linewidth=1.0, alpha=1., color="k") for i in range(len(divider))] ax0.set_xlim(divider[0], divider[n_test]) ax0.plot(H[:], color="k") for key in results.keys(): if key == "Network black_box": continue color = colors[key] H_pred = results[key]["forward_model"]["H_pred"] H_pred_min, H_pred_mean, H_pred_max = np.min(H_pred, axis=0), np.median(H_pred, axis=0), np.max(H_pred, axis=0) x = np.arange(H_pred_max.shape[0]) ax0.plot(H_pred_mean[:], color=color, alpha=plot_alpha) ax0.fill_between(x, H_pred_min[:], H_pred_max[:], color=color, alpha=plot_alpha/8.) ax2 = fig.add_subplot(3, 4, 12) ax2.text(s=r"\textbf{(d)}", x=.5, y=-0.35, fontsize=12, fontweight="bold", horizontalalignment="center", verticalalignment="center", transform=ax2.transAxes) ax2.set_frame_on(False) ax2.set_xticks([]) ax2.set_yticks([]) ax2.legend(handles=legend, bbox_to_anchor=(-0.0375, 2.1), loc='upper left', ncol=1, framealpha=0., labelspacing=1.0) # fig.savefig(f"figures/forward_model_{module_key}_{model_id}_Performance.pdf", format="pdf") # fig.savefig(f"figures/forward_model_{module_key}_{model_id}_Performance.png", format="png") print("\n################################################\n\n\n") plt.show()
[ "deep_lagrangian_networks.utils.load_dataset", "numpy.array", "matplotlib.rc", "numpy.arange", "dill.load", "numpy.mean", "numpy.max", "numpy.concatenate", "numpy.min", "matplotlib.cm.get_cmap", "numpy.ones", "matplotlib.use", "jax.numpy.cumsum", "matplotlib.patches.Patch", "numpy.std", "jax.vmap", "matplotlib.pyplot.rc", "matplotlib.pyplot.show", "numpy.median", "jax.numpy.array", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.argwhere" ]
[((194, 210), 'matplotlib.use', 'mp.use', (['"""Qt5Agg"""'], {}), "('Qt5Agg')\n", (200, 210), True, 'import matplotlib as mp\n'), ((215, 241), 'matplotlib.rc', 'mp.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (220, 241), True, 'import matplotlib as mp\n'), ((4554, 4581), 'matplotlib.pyplot.rc', 'plt.rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (4560, 4581), True, 'import matplotlib.pyplot as plt\n'), ((4630, 4647), 'numpy.array', 'np.array', (['divider'], {}), '(divider)\n', (4638, 4647), True, 'import numpy as np\n'), ((4700, 4754), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(24.0 / 1.54, 8.0 / 1.54)', 'dpi': '(100)'}), '(figsize=(24.0 / 1.54, 8.0 / 1.54), dpi=100)\n', (4710, 4754), True, 'import matplotlib.pyplot as plt\n'), ((15912, 15922), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15920, 15922), True, 'import matplotlib.pyplot as plt\n'), ((1718, 1797), 'deep_lagrangian_networks.utils.load_dataset', 'load_dataset', ([], {'filename': '"""data/character_data.pickle"""', 'test_label': "['e', 'q', 'v']"}), "(filename='data/character_data.pickle', test_label=['e', 'q', 'v'])\n", (1730, 1797), False, 'from deep_lagrangian_networks.utils import load_dataset, init_env, activations\n'), ((2377, 2398), 'numpy.zeros', 'np.zeros', (['(0, n_test)'], {}), '((0, n_test))\n', (2385, 2398), True, 'import numpy as np\n'), ((3277, 3294), 'jax.numpy.array', 'jnp.array', (['test_g'], {}), '(test_g)\n', (3286, 3294), True, 'import jax.numpy as jnp\n'), ((3296, 3313), 'jax.numpy.array', 'jnp.array', (['test_c'], {}), '(test_c)\n', (3305, 3313), True, 'import jax.numpy as jnp\n'), ((3315, 3332), 'jax.numpy.array', 'jnp.array', (['test_m'], {}), '(test_m)\n', (3324, 3332), True, 'import jax.numpy as jnp\n'), ((3334, 3353), 'jax.numpy.array', 'jnp.array', (['test_tau'], {}), '(test_tau)\n', (3343, 3353), True, 'import jax.numpy as jnp\n'), ((3371, 3389), 'jax.numpy.array', 'jnp.array', (['test_qp'], {}), '(test_qp)\n', (3380, 3389), True, 'import jax.numpy as jnp\n'), ((3391, 3409), 'jax.numpy.array', 'jnp.array', (['test_qv'], {}), '(test_qv)\n', (3400, 3409), True, 'import jax.numpy as jnp\n'), ((3411, 3429), 'jax.numpy.array', 'jnp.array', (['test_qa'], {}), '(test_qa)\n', (3420, 3429), True, 'import jax.numpy as jnp\n'), ((3442, 3459), 'jax.numpy.array', 'jnp.array', (['test_p'], {}), '(test_p)\n', (3451, 3459), True, 'import jax.numpy as jnp\n'), ((3461, 3479), 'jax.numpy.array', 'jnp.array', (['test_pd'], {}), '(test_pd)\n', (3470, 3479), True, 'import jax.numpy as jnp\n'), ((3491, 3516), 'jax.vmap', 'jax.vmap', (['jnp.dot', '[0, 0]'], {}), '(jnp.dot, [0, 0])\n', (3499, 3516), False, 'import jax\n'), ((4137, 4158), 'numpy.array', 'np.array', (['[0.25, 3.0]'], {}), '([0.25, 3.0])\n', (4145, 4158), True, 'import numpy as np\n'), ((4174, 4196), 'numpy.array', 'np.array', (['[-1.25, 1.0]'], {}), '([-1.25, 1.0])\n', (4182, 4196), True, 'import numpy as np\n'), ((4910, 5004), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': "colors['DeLaN structured']", 'label': '"""DeLaN - Structured Lagrangian"""'}), "(color=colors['DeLaN structured'], label=\n 'DeLaN - Structured Lagrangian')\n", (4926, 5004), True, 'import matplotlib as mp\n'), ((5009, 5101), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': "colors['DeLaN black_box']", 'label': '"""DeLaN - Black-Box Lagrangian"""'}), "(color=colors['DeLaN black_box'], label=\n 'DeLaN - Black-Box Lagrangian')\n", (5025, 5101), True, 'import matplotlib as mp\n'), ((5106, 5197), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': "colors['HNN structured']", 'label': '"""HNN - Structured Hamiltonian"""'}), "(color=colors['HNN structured'], label=\n 'HNN - Structured Hamiltonian')\n", (5122, 5197), True, 'import matplotlib as mp\n'), ((5202, 5291), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': "colors['HNN black_box']", 'label': '"""HNN - Black-Box Hamiltonian"""'}), "(color=colors['HNN black_box'], label=\n 'HNN - Black-Box Hamiltonian')\n", (5218, 5291), True, 'import matplotlib as mp\n'), ((5296, 5382), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': "colors['Network black_box']", 'label': '"""Feed-Forward Network"""'}), "(color=colors['Network black_box'], label=\n 'Feed-Forward Network')\n", (5312, 5382), True, 'import matplotlib as mp\n'), ((5387, 5436), 'matplotlib.patches.Patch', 'mp.patches.Patch', ([], {'color': '"""k"""', 'label': '"""Ground Truth"""'}), "(color='k', label='Ground Truth')\n", (5403, 5436), True, 'import matplotlib as mp\n'), ((8307, 8337), 'numpy.arange', 'np.arange', (['q_pred_max.shape[0]'], {}), '(q_pred_max.shape[0])\n', (8316, 8337), True, 'import numpy as np\n'), ((10915, 10946), 'numpy.arange', 'np.arange', (['qd_pred_max.shape[0]'], {}), '(qd_pred_max.shape[0])\n', (10924, 10946), True, 'import numpy as np\n'), ((13602, 13632), 'numpy.arange', 'np.arange', (['p_pred_max.shape[0]'], {}), '(p_pred_max.shape[0])\n', (13611, 13632), True, 'import numpy as np\n'), ((15045, 15075), 'numpy.arange', 'np.arange', (['H_pred_max.shape[0]'], {}), '(H_pred_max.shape[0])\n', (15054, 15075), True, 'import numpy as np\n'), ((1190, 1210), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['cm.Set1'], {}), '(cm.Set1)\n', (1201, 1210), True, 'import matplotlib.cm as cm\n'), ((1242, 1262), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['cm.Set1'], {}), '(cm.Set1)\n', (1253, 1262), True, 'import matplotlib.cm as cm\n'), ((1293, 1313), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['cm.Set1'], {}), '(cm.Set1)\n', (1304, 1313), True, 'import matplotlib.cm as cm\n'), ((1343, 1363), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['cm.Set1'], {}), '(cm.Set1)\n', (1354, 1363), True, 'import matplotlib.cm as cm\n'), ((1397, 1417), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['cm.Set1'], {}), '(cm.Set1)\n', (1408, 1417), True, 'import matplotlib.cm as cm\n'), ((1628, 1645), 'dill.load', 'pickle.load', (['file'], {}), '(file)\n', (1639, 1645), True, 'import dill as pickle\n'), ((1900, 1996), 'deep_lagrangian_networks.utils.load_dataset', 'load_dataset', ([], {'filename': '"""data/uniform_data.pickle"""', 'test_label': "['Test 0', 'Test 1', 'Test 2']"}), "(filename='data/uniform_data.pickle', test_label=['Test 0',\n 'Test 1', 'Test 2'])\n", (1912, 1996), False, 'from deep_lagrangian_networks.utils import load_dataset, init_env, activations\n'), ((2236, 2286), 'numpy.mean', 'np.mean', (["results[key]['forward_model']['xd_error']"], {}), "(results[key]['forward_model']['xd_error'])\n", (2243, 2286), True, 'import numpy as np\n'), ((2845, 2857), 'numpy.mean', 'np.mean', (['vpt'], {}), '(vpt)\n', (2852, 2857), True, 'import numpy as np\n'), ((2859, 2870), 'numpy.std', 'np.std', (['vpt'], {}), '(vpt)\n', (2865, 2870), True, 'import numpy as np\n'), ((4224, 4242), 'numpy.min', 'np.min', (['qd'], {'axis': '(0)'}), '(qd, axis=0)\n', (4230, 4242), True, 'import numpy as np\n'), ((4287, 4305), 'numpy.max', 'np.max', (['qd'], {'axis': '(0)'}), '(qd, axis=0)\n', (4293, 4305), True, 'import numpy as np\n'), ((4348, 4365), 'numpy.min', 'np.min', (['p'], {'axis': '(0)'}), '(p, axis=0)\n', (4354, 4365), True, 'import numpy as np\n'), ((4409, 4426), 'numpy.max', 'np.max', (['p'], {'axis': '(0)'}), '(p, axis=0)\n', (4415, 4426), True, 'import numpy as np\n'), ((7956, 7978), 'numpy.min', 'np.min', (['q_pred'], {'axis': '(0)'}), '(q_pred, axis=0)\n', (7962, 7978), True, 'import numpy as np\n'), ((7980, 8005), 'numpy.median', 'np.median', (['q_pred'], {'axis': '(0)'}), '(q_pred, axis=0)\n', (7989, 8005), True, 'import numpy as np\n'), ((8007, 8029), 'numpy.max', 'np.max', (['q_pred'], {'axis': '(0)'}), '(q_pred, axis=0)\n', (8013, 8029), True, 'import numpy as np\n'), ((8079, 8102), 'numpy.min', 'np.min', (['q_error'], {'axis': '(0)'}), '(q_error, axis=0)\n', (8085, 8102), True, 'import numpy as np\n'), ((8104, 8130), 'numpy.median', 'np.median', (['q_error'], {'axis': '(0)'}), '(q_error, axis=0)\n', (8113, 8130), True, 'import numpy as np\n'), ((8132, 8155), 'numpy.max', 'np.max', (['q_error'], {'axis': '(0)'}), '(q_error, axis=0)\n', (8138, 8155), True, 'import numpy as np\n'), ((10694, 10717), 'numpy.min', 'np.min', (['qd_pred'], {'axis': '(0)'}), '(qd_pred, axis=0)\n', (10700, 10717), True, 'import numpy as np\n'), ((10719, 10745), 'numpy.median', 'np.median', (['qd_pred'], {'axis': '(0)'}), '(qd_pred, axis=0)\n', (10728, 10745), True, 'import numpy as np\n'), ((10747, 10770), 'numpy.max', 'np.max', (['qd_pred'], {'axis': '(0)'}), '(qd_pred, axis=0)\n', (10753, 10770), True, 'import numpy as np\n'), ((10823, 10847), 'numpy.min', 'np.min', (['qd_error'], {'axis': '(0)'}), '(qd_error, axis=0)\n', (10829, 10847), True, 'import numpy as np\n'), ((10849, 10876), 'numpy.median', 'np.median', (['qd_error'], {'axis': '(0)'}), '(qd_error, axis=0)\n', (10858, 10876), True, 'import numpy as np\n'), ((10878, 10902), 'numpy.max', 'np.max', (['qd_error'], {'axis': '(0)'}), '(qd_error, axis=0)\n', (10884, 10902), True, 'import numpy as np\n'), ((13390, 13412), 'numpy.min', 'np.min', (['p_pred'], {'axis': '(0)'}), '(p_pred, axis=0)\n', (13396, 13412), True, 'import numpy as np\n'), ((13414, 13439), 'numpy.median', 'np.median', (['p_pred'], {'axis': '(0)'}), '(p_pred, axis=0)\n', (13423, 13439), True, 'import numpy as np\n'), ((13441, 13463), 'numpy.max', 'np.max', (['p_pred'], {'axis': '(0)'}), '(p_pred, axis=0)\n', (13447, 13463), True, 'import numpy as np\n'), ((13513, 13536), 'numpy.min', 'np.min', (['p_error'], {'axis': '(0)'}), '(p_error, axis=0)\n', (13519, 13536), True, 'import numpy as np\n'), ((13538, 13564), 'numpy.median', 'np.median', (['p_error'], {'axis': '(0)'}), '(p_error, axis=0)\n', (13547, 13564), True, 'import numpy as np\n'), ((13566, 13589), 'numpy.max', 'np.max', (['p_error'], {'axis': '(0)'}), '(p_error, axis=0)\n', (13572, 13589), True, 'import numpy as np\n'), ((14959, 14981), 'numpy.min', 'np.min', (['H_pred'], {'axis': '(0)'}), '(H_pred, axis=0)\n', (14965, 14981), True, 'import numpy as np\n'), ((14983, 15008), 'numpy.median', 'np.median', (['H_pred'], {'axis': '(0)'}), '(H_pred, axis=0)\n', (14992, 15008), True, 'import numpy as np\n'), ((15010, 15032), 'numpy.max', 'np.max', (['H_pred'], {'axis': '(0)'}), '(H_pred, axis=0)\n', (15016, 15032), True, 'import numpy as np\n'), ((2293, 2342), 'numpy.std', 'np.std', (["results[key]['forward_model']['xd_error']"], {}), "(results[key]['forward_model']['xd_error'])\n", (2299, 2342), True, 'import numpy as np\n'), ((2514, 2673), 'numpy.concatenate', 'np.concatenate', (["[results[key]['forward_model']['q_error'][i, divider[j]:divider[j + 1]], \n results[key]['forward_model']['q_error'][i, -1:] * 0.0 + 1.0]"], {}), "([results[key]['forward_model']['q_error'][i, divider[j]:\n divider[j + 1]], results[key]['forward_model']['q_error'][i, -1:] * 0.0 +\n 1.0])\n", (2528, 2673), True, 'import numpy as np\n'), ((3556, 3599), 'jax.numpy.cumsum', 'jnp.cumsum', (['dHdt[divider[i]:divider[i + 1]]'], {}), '(dHdt[divider[i]:divider[i + 1]])\n', (3566, 3599), True, 'import jax.numpy as jnp\n'), ((3987, 3998), 'numpy.array', 'np.array', (['q'], {}), '(q)\n', (3995, 3998), True, 'import numpy as np\n'), ((4058, 4069), 'numpy.array', 'np.array', (['q'], {}), '(q)\n', (4066, 4069), True, 'import numpy as np\n'), ((874, 887), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (881, 887), True, 'import numpy as np\n'), ((2810, 2827), 'numpy.array', 'np.array', (['[vpt_i]'], {}), '([vpt_i])\n', (2818, 2827), True, 'import numpy as np\n'), ((2736, 2763), 'numpy.argwhere', 'np.argwhere', (['(traj >= vpt_th)'], {}), '(traj >= vpt_th)\n', (2747, 2763), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy as np import scipy.sparse from sklearn import svm from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer from sklearn.model_selection import cross_val_score def zero_pivot_columns(matrix, pivots): matrix_lil = scipy.sparse.lil_matrix(matrix, copy=True) for pivot in pivots: matrix_lil[:,pivot] = 0.0 return matrix_lil.tocsr() def zero_nonpivot_columns(array, pivots): matrix = np.matrix(array, copy=False) matrix_return = np.matrix(np.zeros(matrix.shape)) for pivot in pivots: matrix_return[:,pivot] += matrix[:,pivot] return scipy.sparse.csr_matrix(matrix_return) def remove_columns(matrix, indices): return scipy.sparse.csr_matrix(np.delete(matrix, indices, 1)) def evaluate_and_print_scores(X_train, y_train, X_test, y_test, score_label, C, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True): preds = get_preds(X_train, y_train, X_test, C, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True) r = recall_score(y_test, preds, pos_label=score_label) p = precision_score(y_test, preds, pos_label=score_label) f1 = f1_score(y_test, preds, pos_label=score_label) acc = accuracy_score(y_test, preds) print("Gold has %d instances of target class" % (len(np.where(y_test == score_label)[0]))) print("System predicted %d instances of target class" % (len(np.where(preds == score_label)[0]))) print("Accuracy is %f, p/r/f1 score is %f %f %f\n" % (acc, p, r, f1)) def get_preds(X_train, y_train, X_test, C=1.0, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True): svc = svm.LinearSVC(C=C, penalty=penalty, loss=loss, dual=dual) svc.fit(X_train, y_train, sample_weight=sample_weight) preds = svc.predict(X_test) return preds def get_decisions(X_train, y_train, X_test, C=1.0, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True): svc = svm.LinearSVC(C=C, penalty=penalty, loss=loss, dual=dual) svc.fit(X_train, y_train, sample_weight=sample_weight) preds = svc.decision_function(X_test) return preds def get_f1(X_train, y_train, X_test, y_test, score_label, C=1.0, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True): preds = get_preds(X_train, y_train, X_test, C=C, sample_weight=None, penalty='l2', loss='squared_hinge', dual=True) f1 = f1_score(y_test, preds, pos_label=score_label) return f1 def read_pivots(pivot_file): pivots = {} f = open(pivot_file, 'r') for line in f: line.rstrip() pivot = int(line) pivots[pivot] = 1 ## Before we zero out the nopivot, copy it to the pivot f.close() return pivots def align_test_X_train(X_train, X_test): num_instances, num_feats = X_train.shape num_test_instances, num_test_feats = X_test.shape if num_test_feats < num_feats: ## Expand X_test #print("Not sure I need to do anything here.") X_test_array = X_test.toarray() X_test = scipy.sparse.csr_matrix(np.append(X_test_array, np.zeros((num_test_instances, num_feats-num_test_feats)), axis=1)) elif num_test_feats > num_feats: ## Truncate X_test X_test = X_test[:,:num_feats] return X_test def find_best_c(X_train, y_train, C_list = [0.01, 0.1, 1.0, 10.0], penalty='l2', dual=True, scorer=f1_score, **scorer_args): scorer = make_scorer(scorer, **scorer_args) best_score = 0 best_c = 0 for C in C_list: score = np.average(cross_val_score(svm.LinearSVC(C=C, penalty=penalty, dual=dual), X_train, y_train, scoring=scorer, n_jobs=1)) if score > best_score: best_score = score best_c = C return best_c, best_score def read_feature_groups(groups_file, offset=0): ## The feature groups file unfortunately has to be adjusted here. The ## files written by cleartk are 1-indexed, but the reader that reads them ## in "helpfully" adjusts all the indices. So when we read them in we ## decrement them all. map = {} with open(groups_file, 'r') as f: for line in f: domain, indices = line.split(' : ') map[domain] = [int(f)+offset for f in indices.split(',')] return map def read_feature_lookup(lookup_file, offset=0): ## The feature groups file unfortunately has to be adjusted here. The ## files written by cleartk are 1-indexed, but the reader that reads them ## in "helpfully" adjusts all the indices. So when we read them in we ## decrement them all. map = {} with open(lookup_file, 'r', encoding='utf-8') as f: for line in f: name, ind = line.rstrip().split(' : ') map[int(ind)+offset] = name ## The first feature in our data is the bias feature, always set to 1: list = ['Bias'] for i in sorted(map.keys()): list.append(map[i]) return list
[ "sklearn.metrics.f1_score", "numpy.where", "numpy.delete", "sklearn.svm.LinearSVC", "sklearn.metrics.make_scorer", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "numpy.zeros", "numpy.matrix", "sklearn.metrics.accuracy_score" ]
[((481, 509), 'numpy.matrix', 'np.matrix', (['array'], {'copy': '(False)'}), '(array, copy=False)\n', (490, 509), True, 'import numpy as np\n'), ((1070, 1120), 'sklearn.metrics.recall_score', 'recall_score', (['y_test', 'preds'], {'pos_label': 'score_label'}), '(y_test, preds, pos_label=score_label)\n', (1082, 1120), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((1129, 1182), 'sklearn.metrics.precision_score', 'precision_score', (['y_test', 'preds'], {'pos_label': 'score_label'}), '(y_test, preds, pos_label=score_label)\n', (1144, 1182), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((1192, 1238), 'sklearn.metrics.f1_score', 'f1_score', (['y_test', 'preds'], {'pos_label': 'score_label'}), '(y_test, preds, pos_label=score_label)\n', (1200, 1238), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((1249, 1278), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'preds'], {}), '(y_test, preds)\n', (1263, 1278), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((1676, 1733), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'C': 'C', 'penalty': 'penalty', 'loss': 'loss', 'dual': 'dual'}), '(C=C, penalty=penalty, loss=loss, dual=dual)\n', (1689, 1733), False, 'from sklearn import svm\n'), ((1972, 2029), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'C': 'C', 'penalty': 'penalty', 'loss': 'loss', 'dual': 'dual'}), '(C=C, penalty=penalty, loss=loss, dual=dual)\n', (1985, 2029), False, 'from sklearn import svm\n'), ((2411, 2457), 'sklearn.metrics.f1_score', 'f1_score', (['y_test', 'preds'], {'pos_label': 'score_label'}), '(y_test, preds, pos_label=score_label)\n', (2419, 2457), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((3426, 3460), 'sklearn.metrics.make_scorer', 'make_scorer', (['scorer'], {}), '(scorer, **scorer_args)\n', (3437, 3460), False, 'from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score, make_scorer\n'), ((540, 562), 'numpy.zeros', 'np.zeros', (['matrix.shape'], {}), '(matrix.shape)\n', (548, 562), True, 'import numpy as np\n'), ((764, 793), 'numpy.delete', 'np.delete', (['matrix', 'indices', '(1)'], {}), '(matrix, indices, 1)\n', (773, 793), True, 'import numpy as np\n'), ((3099, 3157), 'numpy.zeros', 'np.zeros', (['(num_test_instances, num_feats - num_test_feats)'], {}), '((num_test_instances, num_feats - num_test_feats))\n', (3107, 3157), True, 'import numpy as np\n'), ((3559, 3605), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'C': 'C', 'penalty': 'penalty', 'dual': 'dual'}), '(C=C, penalty=penalty, dual=dual)\n', (3572, 3605), False, 'from sklearn import svm\n'), ((1336, 1367), 'numpy.where', 'np.where', (['(y_test == score_label)'], {}), '(y_test == score_label)\n', (1344, 1367), True, 'import numpy as np\n'), ((1439, 1469), 'numpy.where', 'np.where', (['(preds == score_label)'], {}), '(preds == score_label)\n', (1447, 1469), True, 'import numpy as np\n')]
import numpy as np from algorithm.base import Algorithm class Greedy(Algorithm): def __init__(self, knapsack): assert isinstance(knapsack, dict) self.capacity = knapsack['capacity'][0] self.weights = knapsack['weights'] self.profits = knapsack['profits'] self.n = len(knapsack['weights']) @property def name(self): return 'Greedy' def solve(self): value = [(x[0], x[2] / x[1]) for x in zip(np.arange(self.n), self.weights, self.profits)] value = sorted(value, key=lambda x: x[1], reverse=True) cur_weight = 0 optim_set = np.zeros(self.n, dtype=np.int64) for v in value: if cur_weight + self.weights[v[0]] <= self.capacity: optim_set[v[0]] = 1 cur_weight += self.weights[v[0]] else: continue return optim_set.tolist()
[ "numpy.zeros", "numpy.arange" ]
[((736, 768), 'numpy.zeros', 'np.zeros', (['self.n'], {'dtype': 'np.int64'}), '(self.n, dtype=np.int64)\n', (744, 768), True, 'import numpy as np\n'), ((479, 496), 'numpy.arange', 'np.arange', (['self.n'], {}), '(self.n)\n', (488, 496), True, 'import numpy as np\n')]
# script to test the parallelized gradient / divergence from pymirc import numpy as np import pymirc.image_operations as pi # seed the random generator np.random.seed(1) # create a random 3D/4D image shape = (6,200,190,180) # create random array and pad with 0s x = np.pad(np.random.rand(*shape), 1) # allocate array for the gradient grad_x = np.zeros((x.ndim,) + x.shape, dtype = x.dtype) # calculate the gradient pi.grad(x, grad_x) # setup random array in gradient space y = np.random.rand(*grad_x.shape) # calucate divergence div_y = pi.div(y) # check if operators are adjoint print(-(x*div_y).sum() / (grad_x*y).sum())
[ "numpy.random.rand", "pymirc.image_operations.grad", "pymirc.image_operations.div", "numpy.zeros", "numpy.random.seed" ]
[((154, 171), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (168, 171), True, 'import numpy as np\n'), ((348, 392), 'numpy.zeros', 'np.zeros', (['((x.ndim,) + x.shape)'], {'dtype': 'x.dtype'}), '((x.ndim,) + x.shape, dtype=x.dtype)\n', (356, 392), True, 'import numpy as np\n'), ((421, 439), 'pymirc.image_operations.grad', 'pi.grad', (['x', 'grad_x'], {}), '(x, grad_x)\n', (428, 439), True, 'import pymirc.image_operations as pi\n'), ((485, 514), 'numpy.random.rand', 'np.random.rand', (['*grad_x.shape'], {}), '(*grad_x.shape)\n', (499, 514), True, 'import numpy as np\n'), ((547, 556), 'pymirc.image_operations.div', 'pi.div', (['y'], {}), '(y)\n', (553, 556), True, 'import pymirc.image_operations as pi\n'), ((277, 299), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (291, 299), True, 'import numpy as np\n')]
import numpy as np class Grid: def __init__(self, width, heigth, discount = 0.9): self.width = width self.heigth = heigth self.x_pos = 0 self.y_pos = 0 self.values = np.zeros((heigth, width)) self.discount = discount self.vertex_sources = [] self.vertex_dests = [] self.vertex_values = [] def init_rewards(self, rewards): assert rewards.shape[0] == self.heigth and rewards.shape[1]==self.width, "reward initialized is not valid" self.rewards = rewards def add_vertex(self, source, dest): assert len(source) == 2 and len(dest) == 2, "source or dest is not valid" self.vertex_sources.append(source) self.vertex_dests.append(dest) def update(self): next_values = np.zeros((self.heigth, self.width)) for x in range(self.width): for y in range(self.heigth): if [y, x] in self.vertex_sources: for vertex_source, vertex_dest in zip(self.vertex_sources, self.vertex_dests): if [y, x] == vertex_source: next_values[y, x] += self.rewards[y,x] + self.discount*self.values[vertex_dest[0], vertex_dest[1]] break else: for cur_movement, cur_prob in zip([[-1, 0], [0, 1], [1, 0], [0, -1]], [0.25, 0.25, 0.25, 0.25]): next_place = [y+cur_movement[0], x+cur_movement[1]] if 0<=next_place[0]<self.heigth and 0<=next_place[1]<self.width: next_values[y, x] += cur_prob*(self.rewards[y,x] + self.discount*self.values[next_place[0], next_place[1]]) else: next_values[y, x] += cur_prob*(-1+self.discount*self.values[y, x]) print('-'*20) print (next_values) self.values = next_values def policy(self): movement_x = -1 movement_y = -1 if np.random.rand()> 0.5: movement_x = 1 if np.random.rand()>0.5: movement_y = 1 if [self.x_pos, self.y_pos] in self.vertex_sources: for vertex_source, vertex_dest in zip(self.vertex_sources, self.vertex_dests): if vertex_source == [self.x_pos, self.y_pos]: self.x_pos = vertex_dest[0] self.y_pos = vertex_dest[1] else: if 0<=self.x_pos+movement_x<self.heigth: self.x_pos+=movement_x grid_world = Grid(5, 5, discount = 0.9) reward = np.zeros((5, 5)) grid_world.add_vertex([0, 1], [4, 1]) reward[0, 1] = 10 grid_world.add_vertex([0, 3], [2, 3]) reward[0, 3] = 5 grid_world.init_rewards(reward) print(grid_world.values) for i in range(50): print('iter: {}'.format(i)) grid_world.update()
[ "numpy.zeros", "numpy.random.rand" ]
[((2602, 2618), 'numpy.zeros', 'np.zeros', (['(5, 5)'], {}), '((5, 5))\n', (2610, 2618), True, 'import numpy as np\n'), ((211, 236), 'numpy.zeros', 'np.zeros', (['(heigth, width)'], {}), '((heigth, width))\n', (219, 236), True, 'import numpy as np\n'), ((808, 843), 'numpy.zeros', 'np.zeros', (['(self.heigth, self.width)'], {}), '((self.heigth, self.width))\n', (816, 843), True, 'import numpy as np\n'), ((2014, 2030), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2028, 2030), True, 'import numpy as np\n'), ((2075, 2091), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2089, 2091), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf #---------------------------------------------------------------------------- # Encoder network. # Extract the feature of content and style image # Use VGG19 network to extract features. ENCODER_LAYERS = ( 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1' ) FEATURE_LAYERS = ( 'relu1_1', 'relu2_1', 'relu3_1', 'relu4_1' ) class Encoder(object): def __init__(self, weights_path): # load weights (kernel and bias) from npz file weights = np.load(weights_path) idx = 0 self.weight_vars = [] # create the TensorFlow variables with tf.variable_scope('encoder'): for layer in ENCODER_LAYERS: kind = layer[:4] if kind == 'conv': kernel = weights['arr_%d' % idx].transpose([2, 3, 1, 0]) bias = weights['arr_%d' % (idx + 1)] kernel = kernel.astype(np.float32) bias = bias.astype(np.float32) idx += 2 with tf.variable_scope(layer): W = tf.Variable(kernel, trainable=False, name='kernel') b = tf.Variable(bias, trainable=False, name='bias') self.weight_vars.append((W, b)) def encode(self, image, img_type = 'style'): # create the computational graph idx = 0 layers = {} current = image for layer in ENCODER_LAYERS: kind = layer[:4] if kind == 'conv': kernel, bias = self.weight_vars[idx] idx += 1 current = conv2d(current, kernel, bias) elif kind == 'relu': current = tf.nn.relu(current) elif kind == 'pool': current = pool2d(current) if layer in FEATURE_LAYERS: layers[layer] = current assert(len(layers) == len(FEATURE_LAYERS)) enc = layers[FEATURE_LAYERS[-1]] if img_type == 'style': latent_code = tf.reduce_mean(enc, axis=[1,2]) elif img_type == 'content': latent_code = tf.nn.avg_pool(enc, ksize=[1,8,8,1], strides=[1,8,8,1], padding='SAME') latent_code = tf.transpose(latent_code, [0, 3, 1, 2]) else: raise init = (tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: sess.run(init) latent_code = latent_code.eval() return latent_code, layers def preprocess(self, image, mode='BGR'): if mode == 'BGR': return image - np.array([103.939, 116.779, 123.68]) else: return image - np.array([123.68, 116.779, 103.939]) def deprocess(self, image, mode='BGR'): if mode == 'BGR': return image + np.array([103.939, 116.779, 123.68]) else: return image + np.array([123.68, 116.779, 103.939]) def conv2d(x, kernel, bias): # padding image with reflection mode x_padded = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT') # conv and add bias out = tf.nn.conv2d(x_padded, kernel, strides=[1, 1, 1, 1], padding='VALID') out = tf.nn.bias_add(out, bias) return out def pool2d(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
[ "tensorflow.nn.conv2d", "tensorflow.local_variables_initializer", "tensorflow.nn.max_pool", "tensorflow.pad", "tensorflow.variable_scope", "tensorflow.transpose", "tensorflow.nn.relu", "tensorflow.nn.avg_pool", "tensorflow.Session", "tensorflow.Variable", "tensorflow.global_variables_initializer", "numpy.array", "tensorflow.reduce_mean", "numpy.load", "tensorflow.nn.bias_add" ]
[((3289, 3348), 'tensorflow.pad', 'tf.pad', (['x', '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {'mode': '"""REFLECT"""'}), "(x, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='REFLECT')\n", (3295, 3348), True, 'import tensorflow as tf\n'), ((3384, 3453), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x_padded', 'kernel'], {'strides': '[1, 1, 1, 1]', 'padding': '"""VALID"""'}), "(x_padded, kernel, strides=[1, 1, 1, 1], padding='VALID')\n", (3396, 3453), True, 'import tensorflow as tf\n'), ((3464, 3489), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['out', 'bias'], {}), '(out, bias)\n', (3478, 3489), True, 'import tensorflow as tf\n'), ((3534, 3609), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['x'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (3548, 3609), True, 'import tensorflow as tf\n'), ((707, 728), 'numpy.load', 'np.load', (['weights_path'], {}), '(weights_path)\n', (714, 728), True, 'import numpy as np\n'), ((832, 860), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""encoder"""'], {}), "('encoder')\n", (849, 860), True, 'import tensorflow as tf\n'), ((2282, 2314), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['enc'], {'axis': '[1, 2]'}), '(enc, axis=[1, 2])\n', (2296, 2314), True, 'import tensorflow as tf\n'), ((2563, 2596), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2594, 2596), True, 'import tensorflow as tf\n'), ((2598, 2630), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (2628, 2630), True, 'import tensorflow as tf\n'), ((2645, 2657), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2655, 2657), True, 'import tensorflow as tf\n'), ((2376, 2453), 'tensorflow.nn.avg_pool', 'tf.nn.avg_pool', (['enc'], {'ksize': '[1, 8, 8, 1]', 'strides': '[1, 8, 8, 1]', 'padding': '"""SAME"""'}), "(enc, ksize=[1, 8, 8, 1], strides=[1, 8, 8, 1], padding='SAME')\n", (2390, 2453), True, 'import tensorflow as tf\n'), ((2474, 2513), 'tensorflow.transpose', 'tf.transpose', (['latent_code', '[0, 3, 1, 2]'], {}), '(latent_code, [0, 3, 1, 2])\n', (2486, 2513), True, 'import tensorflow as tf\n'), ((2874, 2910), 'numpy.array', 'np.array', (['[103.939, 116.779, 123.68]'], {}), '([103.939, 116.779, 123.68])\n', (2882, 2910), True, 'import numpy as np\n'), ((2952, 2988), 'numpy.array', 'np.array', (['[123.68, 116.779, 103.939]'], {}), '([123.68, 116.779, 103.939])\n', (2960, 2988), True, 'import numpy as np\n'), ((3087, 3123), 'numpy.array', 'np.array', (['[103.939, 116.779, 123.68]'], {}), '([103.939, 116.779, 123.68])\n', (3095, 3123), True, 'import numpy as np\n'), ((3165, 3201), 'numpy.array', 'np.array', (['[123.68, 116.779, 103.939]'], {}), '([123.68, 116.779, 103.939])\n', (3173, 3201), True, 'import numpy as np\n'), ((1952, 1971), 'tensorflow.nn.relu', 'tf.nn.relu', (['current'], {}), '(current)\n', (1962, 1971), True, 'import tensorflow as tf\n'), ((1271, 1295), 'tensorflow.variable_scope', 'tf.variable_scope', (['layer'], {}), '(layer)\n', (1288, 1295), True, 'import tensorflow as tf\n'), ((1325, 1376), 'tensorflow.Variable', 'tf.Variable', (['kernel'], {'trainable': '(False)', 'name': '"""kernel"""'}), "(kernel, trainable=False, name='kernel')\n", (1336, 1376), True, 'import tensorflow as tf\n'), ((1405, 1452), 'tensorflow.Variable', 'tf.Variable', (['bias'], {'trainable': '(False)', 'name': '"""bias"""'}), "(bias, trainable=False, name='bias')\n", (1416, 1452), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'newGui.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets ,QtPrintSupport from pyqtgraph import PlotWidget ,PlotItem import os import pathlib import pyqtgraph as pg import pandas as pd import numpy as np import sys import random import matplotlib import matplotlib.pyplot as plt matplotlib.use('Qt5Agg') from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure class Ui_MainWindow(QtGui.QMainWindow): signals = [] timer = [] data = [] n = [] nn = [] data_line = [] r = [1200,1200,1200] z = [1,1,1] spectrogram = [] checkBox = [] counter = -1 def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1010, 878) mW = QtGui.QIcon("Mw.png") MainWindow.setWindowIcon(mW) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") for i in range(0,3): self.signals.append( PlotWidget(self.centralwidget)) self.spectrogram.append( QtWidgets.QLabel(self.centralwidget)) self.checkBox.append(QtWidgets.QCheckBox(self.centralwidget)) if i == 0: self.signals[i].setGeometry(QtCore.QRect(20, 90, 461, 192)) self.signals[i].setObjectName("signal_1") self.spectrogram[i].setGeometry(QtCore.QRect(490, 90, 471, 192)) self.spectrogram[i].setObjectName("spectro_1") self.checkBox[i].setGeometry(QtCore.QRect(20, 50, 68, 20)) self.checkBox[i].setObjectName("check_1") elif i == 1: self.signals[i].setGeometry(QtCore.QRect(20, 340, 461, 192)) self.signals[i].setObjectName("signal_2") self.spectrogram[i].setGeometry(QtCore.QRect(490, 340, 471, 192)) self.spectrogram[i].setObjectName("spectro_2") self.checkBox[i].setGeometry(QtCore.QRect(20, 300, 68, 20)) self.checkBox[i].setObjectName("check_2") else: self.signals[i].setGeometry(QtCore.QRect(20, 600, 461, 192)) self.signals[i].setObjectName("signal_3") self.spectrogram[i].setGeometry(QtCore.QRect(490, 600, 471, 192)) self.spectrogram[i].setObjectName("spectro_3") self.checkBox[i].setGeometry(QtCore.QRect(20, 560, 68, 20)) self.checkBox[i].setObjectName("check_3") self.signals[i].setStyleSheet("background-color:rgb(0, 0, 0);") self.signals[i].setRubberBandSelectionMode(QtCore.Qt.IntersectsItemBoundingRect) self.signals[i].plotItem.showGrid(x=True, y=True ) self.signals[i].plotItem.setMenuEnabled(False) self.checkBox[i].setStyleSheet("font: 10pt \"MS Shell Dlg 2\";") self.spectrogram[i].setScaledContents(True) self.open = QtWidgets.QPushButton(self.centralwidget) self.open.setGeometry(QtCore.QRect(0, 1, 35, 35)) self.open.setText("") icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap("img/open.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.open.setIcon(icon3) self.open.setObjectName("open") self.save = QtWidgets.QPushButton(self.centralwidget) self.save.setGeometry(QtCore.QRect(30, 1, 35, 35)) self.save.setText("") icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap("img/save.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.save.setIcon(icon2) self.save.setObjectName("save") self.Zoom_in = QtWidgets.QPushButton(self.centralwidget) self.Zoom_in.setGeometry(QtCore.QRect(60, 1, 35, 35)) self.Zoom_in.setText("") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("img/zoom-in.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.Zoom_in.setIcon(icon) self.Zoom_in.setObjectName("Zoom_in") self.zoom_out = QtWidgets.QPushButton(self.centralwidget) self.zoom_out.setGeometry(QtCore.QRect(90, 1, 35, 35)) self.zoom_out.setText("") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap("img/zoom-out.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.zoom_out.setIcon(icon1) self.zoom_out.setObjectName("zoom_out") self.left = QtWidgets.QPushButton(self.centralwidget) self.left.setGeometry(QtCore.QRect(120, 1, 35, 35)) self.left.setText("") icon7 = QtGui.QIcon() icon7.addPixmap(QtGui.QPixmap("img/previous.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.left.setIcon(icon7) self.left.setObjectName("left") self.play = QtWidgets.QPushButton(self.centralwidget) self.play.setGeometry(QtCore.QRect(150, 1, 35, 35)) self.play.setText("") icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap("img/play.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.play.setIcon(icon5) self.play.setObjectName("play") self.right = QtWidgets.QPushButton(self.centralwidget) self.right.setGeometry(QtCore.QRect(180, 1, 35, 35)) self.right.setText("") icon6 = QtGui.QIcon() icon6.addPixmap(QtGui.QPixmap("img/next.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.right.setIcon(icon6) self.right.setObjectName("right") self.pause = QtWidgets.QPushButton(self.centralwidget) self.pause.setGeometry(QtCore.QRect(210, 1, 35, 35)) self.pause.setText("") icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap("img/pause.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pause.setIcon(icon4) self.pause.setObjectName("pause") self.spec = QtWidgets.QPushButton(self.centralwidget) self.spec.setGeometry(QtCore.QRect(240, 1, 35, 35)) self.spec.setText("") icon20 = QtGui.QIcon() icon20.addPixmap(QtGui.QPixmap("img/spec3.jpeg"), QtGui.QIcon.Normal, QtGui.QIcon.On) self.spec.setIcon(icon20) self.spec.setObjectName("spec") self.Zoom_in.raise_() self.signals[0].raise_() self.checkBox[1].raise_() self.spectrogram[1].raise_() self.spectrogram[2].raise_() self.checkBox[2].raise_() self.spectrogram[0].raise_() self.signals[1].raise_() self.signals[2].raise_() self.checkBox[0].raise_() self.zoom_out.raise_() self.save.raise_() self.open.raise_() self.pause.raise_() self.play.raise_() self.right.raise_() self.left.raise_() MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1010, 21)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") self.menuEdit = QtWidgets.QMenu(self.menubar) self.menuEdit.setObjectName("menuEdit") self.menuSignal_tools = QtWidgets.QMenu(self.menubar) self.menuSignal_tools.setObjectName("menuSignal_tools") self.menuPlay_navigate = QtWidgets.QMenu(self.menubar) self.menuPlay_navigate.setObjectName("menuPlay_navigate") MainWindow.setMenuBar(self.menubar) self.actionOpen = QtWidgets.QAction(MainWindow) icon9 = QtGui.QIcon() icon9.addPixmap(QtGui.QPixmap("search.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionOpen.setIcon(icon9) self.actionOpen.setObjectName("actionOpen") self.actionzoom_in = QtWidgets.QAction(MainWindow) icon10 = QtGui.QIcon() icon10.addPixmap(QtGui.QPixmap("zoom-in_1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionzoom_in.setIcon(icon10) self.actionzoom_in.setObjectName("actionzoom_in") self.actionzoom_out = QtWidgets.QAction(MainWindow) icon11 = QtGui.QIcon() icon11.addPixmap(QtGui.QPixmap("zoom-out.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionzoom_out.setIcon(icon11) self.actionzoom_out.setObjectName("actionzoom_out") self.actionSpectrogram = QtWidgets.QAction(MainWindow) icon12 = QtGui.QIcon() icon12.addPixmap(QtGui.QPixmap("sound.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSpectrogram.setIcon(icon12) self.actionSpectrogram.setObjectName("actionSpectrogram") self.actionPlay = QtWidgets.QAction(MainWindow) icon13 = QtGui.QIcon() icon13.addPixmap(QtGui.QPixmap("play-button.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionPlay.setIcon(icon13) self.actionPlay.setObjectName("actionPlay") self.actionPause = QtWidgets.QAction(MainWindow) icon14 = QtGui.QIcon() icon14.addPixmap(QtGui.QPixmap("pause-button.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionPause.setIcon(icon14) self.actionPause.setObjectName("actionPause") self.actionBackward = QtWidgets.QAction(MainWindow) icon16 = QtGui.QIcon() icon16.addPixmap(QtGui.QPixmap("backward.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionBackward.setIcon(icon16) self.actionBackward.setObjectName("actionBackward") self.actionForward = QtWidgets.QAction(MainWindow) icon17 = QtGui.QIcon() icon17.addPixmap(QtGui.QPixmap("forward.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionForward.setIcon(icon17) self.actionForward.setObjectName("actionForward") self.actionSave_as_pdf = QtWidgets.QAction(MainWindow) icon18 = QtGui.QIcon() icon18.addPixmap(QtGui.QPixmap("pdf-file.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSave_as_pdf.setIcon(icon18) self.actionSave_as_pdf.setObjectName("actionSave_as_pdf") self.menuFile.addAction(self.actionOpen) self.menuFile.addSeparator() self.menuFile.addAction(self.actionSave_as_pdf) self.menuEdit.addAction(self.actionzoom_in) self.menuEdit.addAction(self.actionzoom_out) self.menuSignal_tools.addAction(self.actionSpectrogram) self.menuPlay_navigate.addAction(self.actionPlay) self.menuPlay_navigate.addAction(self.actionPause) self.menuPlay_navigate.addSeparator() self.menuPlay_navigate.addAction(self.actionBackward) self.menuPlay_navigate.addAction(self.actionForward) self.menubar.addAction(self.menuFile.menuAction()) self.menubar.addAction(self.menuEdit.menuAction()) self.menubar.addAction(self.menuPlay_navigate.menuAction()) self.menubar.addAction(self.menuSignal_tools.menuAction()) self.signals[0].hide() self.checkBox[0].hide() self.spectrogram[0].hide() self.signals[1].hide() self.checkBox[1].hide() self.spectrogram[1].hide() self.signals[2].hide() self.checkBox[2].hide() self.spectrogram[2].hide() self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.actionOpen.triggered.connect(lambda:self.opensignal()) self.actionzoom_in.triggered.connect(lambda:self.zoomin()) self.actionzoom_out.triggered.connect(lambda:self.zoomout()) self.actionSave_as_pdf.triggered.connect(lambda:self.savepdf()) self.actionBackward.triggered.connect(lambda:self.scrlleft()) self.actionForward.triggered.connect(lambda:self.scrlright()) self.actionSpectrogram.triggered.connect(lambda:self.spectro()) self.actionPlay.triggered.connect(lambda:self.playy()) self.actionPause.triggered.connect(lambda:self.pausee()) self.Zoom_in.clicked.connect(lambda:self.zoomin()) self.zoom_out.clicked.connect(lambda:self.zoomout()) self.left.clicked.connect(lambda:self.scrlleft()) self.right.clicked.connect(lambda:self.scrlright()) self.pause.clicked.connect(lambda:self.pausee()) self.play.clicked.connect(lambda:self.playy()) self.open.clicked.connect(lambda:self.opensignal()) self.save.clicked.connect(lambda:self.savepdf()) self.spec.clicked.connect(lambda:self.spectro()) def readsignal(self): self.fname=QtGui.QFileDialog.getOpenFileName(self,' txt or CSV or xls',os.getenv('home'),"xls(*.xls) ;; text(*.txt) ;; csv(*.csv)") path=self.fname[0] self.data.append(np.genfromtxt(path)) def opensignal(self): self.readsignal() self.counter+=1 self.n.append(0) self.nn.append(0) self.data_line.append(self.signals[self.counter % 3].plot(self.data[self.counter], name="mode2")) self.pen = pg.mkPen(color=(255, 0, 0)) # Set timer self.timer.append(pg.QtCore.QTimer()) # Timer signal binding update_data function x = self.counter if x%3 == 0: self.timer[x].timeout.connect(lambda: self.update_data1(x)) self.timer[x].start(50) if x%3 == 1: self.timer[x].timeout.connect(lambda: self.update_data2(x)) self.timer[x].start(50) if x%3 == 2: self.timer[x].timeout.connect(lambda: self.update_data3(x)) self.timer[x].start(50) # The timer interval is 50ms, which can be understood as refreshing data once in 50ms #self.timer1.start(50) self.signals[x%3].show() self.checkBox[x%3].show() self.checkBox[x%3].setChecked(True) # Data shift left def update_data1(self,index): if self.n[index] < len(self.data[index]) : if self.n[index] < 1000 : self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0, self.r[index] , padding=0) else : self.nn[index] += 10 self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(self.nn[index],self.r[index] +self.nn[index] , padding=0) self.z[index] = 1 else : self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0 , len(self.data[index]) * self.z[index] , padding=0) def update_data2(self,index): if self.n[index] < len(self.data[index]) : if self.n[index] < 1000 : self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0, self.r[index] , padding=0) else : self.nn[index] += 10 self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(self.nn[index],self.r[index] +self.nn[index] , padding=0) self.z[index] = 1 else : self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0 , len(self.data[index]) * self.z[index] , padding=0) def update_data3(self,index): if self.n[index] < len(self.data[index]) : if self.n[index] < 1000 : self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0, self.r[index] , padding=0) else : self.nn[index] += 10 self.n[index] += 10 self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(self.nn[index],self.r[index] +self.nn[index] , padding=0) self.z[index] = 1 else : self.data_line[index].setData(self.data[index][0 : self.n[index]]) self.signals[index%3].plotItem.setXRange(0 , len(self.data[index]) * self.z[index] , padding=0) def spectro(self): index = (len(self.data) - 1) - ((len(self.data)-1)%3) for i in range (0,3): if (self.checkBox[i].isChecked()==True): self.spectrogram[i].show() if i==0: plt.specgram(self.data[index], Fs= 250 ) elif i == 1: if (len(self.data ) - 1 - index >= 1): plt.specgram(self.data[index + 1], Fs= 250 ) else: plt.specgram(self.data[index - 2], Fs= 250 ) else: if (len(self.data) - 1 - index == 2): plt.specgram(self.data[index + 2], Fs= 250 ) else: plt.specgram(self.data[index - 1], Fs= 250 ) plt.savefig('spectro'+str(i)+'.png', dpi=300, bbox_inches='tight') self.spectrogram[i].setPixmap(QtGui.QPixmap('spectro'+str(i)+'.png')) plt.close(None) def pausee(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): if self.timer[i].isActive(): self.timer[i].stop() def playy(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): if self.timer[i].isActive()==False: self.timer[i].start() def zoomin(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): self.signals[i].plotItem.getViewBox().scaleBy(x=0.5,y=1) self.r[i]=self.r[i]*0.5 self.z[i] = self.z[i] * 0.5 def zoomout(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): self.signals[i].plotItem.getViewBox().scaleBy(x=2,y=1) self.r[i]=self.r[i]*2 self.z[i] = self.z[i] * 2 def scrlleft(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): self.signals[i].plotItem.getViewBox().translateBy(x=-100,y=0) def scrlright(self): for i in range (0,3): if (self.checkBox[i].isChecked()==True): self.signals[i].plotItem.getViewBox().translateBy(x=100,y=0) # def savepdf(self): fig=plt.figure(figsize=(1000, 1000)) index = (len(self.data) - 1) - ((len(self.data)-1)%3) spectrogramData = [] for i in range (0,3): if (self.checkBox[i].isChecked()==True): if i == 0: plt.subplot(3,2,1) spectrogramData = list(self.data[index][0:]) plt.plot(spectrogramData,linewidth=0.5,scalex=True) plt.subplot(3,2,2) elif i == 1: if (len(self.data ) - 1 - index >= 1): plt.subplot(3,2,3) spectrogramData = list(self.data[index+1][0:]) plt.plot(spectrogramData,linewidth=0.5,scalex=True) plt.subplot(3,2,4) else: plt.subplot(3,2,3) spectrogramData = list(self.data[index-2][0:]) plt.plot(spectrogramData,linewidth=0.5,scalex=True) plt.subplot(3,2,4) else: if (len(self.data) - 1 - index == 2): plt.subplot(3,2,5) spectrogramData = list(self.data[index+2][0:]) plt.plot(spectrogramData,linewidth=0.5,scalex=True) plt.subplot(3,2,6) else: plt.subplot(3,2,5) spectrogramData = list(self.data[index-1][0:]) plt.plot(spectrogramData,linewidth=0.5,scalex=True) plt.subplot(3,2,6) plt.specgram(spectrogramData, Fs= 250) plt.subplots_adjust(bottom=0.1,right=0.9,top=1.0) plt.show() fn,_=QtWidgets.QFileDialog.getSaveFileName(self,"Export PDF",None,"PDF files(.pdf);;AllFiles()") if fn: if QtCore.QFileInfo(fn).suffix()=="": fn+=".pdf" fig.savefig(fn) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.checkBox[1].setText(_translate("MainWindow", "signal-2")) self.checkBox[1].setShortcut(_translate("MainWindow", "2")) self.checkBox[2].setText(_translate("MainWindow", "signal-3")) self.checkBox[2].setShortcut(_translate("MainWindow", "3")) self.checkBox[0].setText(_translate("MainWindow", "signal-1")) self.checkBox[0].setShortcut(_translate("MainWindow", "1")) self.menuFile.setTitle(_translate("MainWindow", "File")) self.menuEdit.setTitle(_translate("MainWindow", "Edit")) self.menuSignal_tools.setTitle(_translate("MainWindow", "Signal tools")) self.menuPlay_navigate.setTitle(_translate("MainWindow", "Play and navigate ")) self.actionOpen.setText(_translate("MainWindow", "Open")) self.actionOpen.setShortcut(_translate("MainWindow", "Ctrl+o")) self.actionzoom_in.setText(_translate("MainWindow", "Zoom-in")) self.actionzoom_in.setShortcut(_translate("MainWindow", "Up")) self.actionzoom_out.setText(_translate("MainWindow", "Zoom-out")) self.actionzoom_out.setShortcut(_translate("MainWindow", "Down")) self.actionSpectrogram.setText(_translate("MainWindow", "Spectrogram")) self.actionSpectrogram.setShortcut(_translate("MainWindow", "S")) self.actionPlay.setText(_translate("MainWindow", "Play")) self.actionPlay.setShortcut(_translate("MainWindow", "Space")) self.actionPause.setText(_translate("MainWindow", "Pause")) self.actionPause.setShortcut(_translate("MainWindow", "Shift+Space")) self.actionBackward.setText(_translate("MainWindow", "Backward")) self.actionBackward.setShortcut(_translate("MainWindow", "Left")) self.actionForward.setText(_translate("MainWindow", "Forward")) self.actionForward.setShortcut(_translate("MainWindow", "Right")) self.actionSave_as_pdf.setText(_translate("MainWindow", "Save as pdf")) self.actionSave_as_pdf.setShortcut(_translate("MainWindow", "Ctrl+S")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "PyQt5.QtGui.QIcon", "matplotlib.pyplot.specgram", "PyQt5.QtWidgets.QApplication", "pyqtgraph.mkPen", "pyqtgraph.QtCore.QTimer", "numpy.genfromtxt", "PyQt5.QtCore.QFileInfo", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QMainWindow", "PyQt5.QtWidgets.QMenu", "matplotlib.use", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtWidgets.QCheckBox", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show", "PyQt5.QtWidgets.QMenuBar", "os.getenv", "PyQt5.QtWidgets.QAction", "PyQt5.QtCore.QRect", "matplotlib.pyplot.figure", "PyQt5.QtGui.QPixmap", "pyqtgraph.PlotWidget", "matplotlib.pyplot.subplot", "PyQt5.QtWidgets.QFileDialog.getSaveFileName" ]
[((553, 577), 'matplotlib.use', 'matplotlib.use', (['"""Qt5Agg"""'], {}), "('Qt5Agg')\n", (567, 577), False, 'import matplotlib\n'), ((23354, 23386), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (23376, 23386), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((23404, 23427), 'PyQt5.QtWidgets.QMainWindow', 'QtWidgets.QMainWindow', ([], {}), '()\n', (23425, 23427), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((1055, 1076), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', (['"""Mw.png"""'], {}), "('Mw.png')\n", (1066, 1076), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((1143, 1172), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (1160, 1172), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3264, 3305), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3285, 3305), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3410, 3423), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (3421, 3423), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3610, 3651), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3631, 3651), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3757, 3770), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (3768, 3770), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3977, 4018), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3998, 4018), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4129, 4142), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (4140, 4142), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4343, 4384), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4364, 4384), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4498, 4511), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (4509, 4511), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4714, 4755), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4735, 4755), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4862, 4875), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (4873, 4875), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5066, 5107), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5087, 5107), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5214, 5227), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (5225, 5227), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5424, 5465), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5445, 5465), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5574, 5587), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (5585, 5587), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5779, 5820), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5800, 5820), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5929, 5942), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (5940, 5942), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((6142, 6183), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (6163, 6183), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((6291, 6304), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (6302, 6304), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7105, 7135), 'PyQt5.QtWidgets.QMenuBar', 'QtWidgets.QMenuBar', (['MainWindow'], {}), '(MainWindow)\n', (7123, 7135), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7269, 7298), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (7284, 7298), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7371, 7400), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (7386, 7400), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7481, 7510), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (7496, 7510), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7608, 7637), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (7623, 7637), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7775, 7804), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (7792, 7804), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7821, 7834), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (7832, 7834), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8054, 8083), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (8071, 8083), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8101, 8114), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (8112, 8114), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8340, 8369), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (8357, 8369), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8387, 8400), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (8398, 8400), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8631, 8660), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (8648, 8660), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8678, 8691), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (8689, 8691), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8921, 8950), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (8938, 8950), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8968, 8981), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (8979, 8981), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9197, 9226), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (9214, 9226), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9244, 9257), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (9255, 9257), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9489, 9518), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (9506, 9518), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9536, 9549), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (9547, 9549), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9776, 9805), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (9793, 9805), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9823, 9836), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (9834, 9836), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((10063, 10092), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (10080, 10092), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((10110, 10123), 'PyQt5.QtGui.QIcon', 'QtGui.QIcon', ([], {}), '()\n', (10121, 10123), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((11528, 11577), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (11565, 11577), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((13223, 13250), 'pyqtgraph.mkPen', 'pg.mkPen', ([], {'color': '(255, 0, 0)'}), '(color=(255, 0, 0))\n', (13231, 13250), True, 'import pyqtgraph as pg\n'), ((19065, 19097), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(1000, 1000)'}), '(figsize=(1000, 1000))\n', (19075, 19097), True, 'import matplotlib.pyplot as plt\n'), ((20768, 20819), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.1)', 'right': '(0.9)', 'top': '(1.0)'}), '(bottom=0.1, right=0.9, top=1.0)\n', (20787, 20819), True, 'import matplotlib.pyplot as plt\n'), ((20826, 20836), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20834, 20836), True, 'import matplotlib.pyplot as plt\n'), ((20850, 20948), 'PyQt5.QtWidgets.QFileDialog.getSaveFileName', 'QtWidgets.QFileDialog.getSaveFileName', (['self', '"""Export PDF"""', 'None', '"""PDF files(.pdf);;AllFiles()"""'], {}), "(self, 'Export PDF', None,\n 'PDF files(.pdf);;AllFiles()')\n", (20887, 20948), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3336, 3362), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(1)', '(35)', '(35)'], {}), '(0, 1, 35, 35)\n', (3348, 3362), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3448, 3477), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/open.png"""'], {}), "('img/open.png')\n", (3461, 3477), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3682, 3709), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(1)', '(35)', '(35)'], {}), '(30, 1, 35, 35)\n', (3694, 3709), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((3795, 3824), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/save.png"""'], {}), "('img/save.png')\n", (3808, 3824), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4052, 4079), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(60)', '(1)', '(35)', '(35)'], {}), '(60, 1, 35, 35)\n', (4064, 4079), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4166, 4198), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/zoom-in.png"""'], {}), "('img/zoom-in.png')\n", (4179, 4198), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4419, 4446), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(90)', '(1)', '(35)', '(35)'], {}), '(90, 1, 35, 35)\n', (4431, 4446), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4536, 4569), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/zoom-out.png"""'], {}), "('img/zoom-out.png')\n", (4549, 4569), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4786, 4814), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(120)', '(1)', '(35)', '(35)'], {}), '(120, 1, 35, 35)\n', (4798, 4814), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((4900, 4933), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/previous.png"""'], {}), "('img/previous.png')\n", (4913, 4933), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5138, 5166), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(150)', '(1)', '(35)', '(35)'], {}), '(150, 1, 35, 35)\n', (5150, 5166), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5252, 5281), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/play.png"""'], {}), "('img/play.png')\n", (5265, 5281), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5497, 5525), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(180)', '(1)', '(35)', '(35)'], {}), '(180, 1, 35, 35)\n', (5509, 5525), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5612, 5641), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/next.png"""'], {}), "('img/next.png')\n", (5625, 5641), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5852, 5880), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(210)', '(1)', '(35)', '(35)'], {}), '(210, 1, 35, 35)\n', (5864, 5880), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((5967, 5997), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/pause.png"""'], {}), "('img/pause.png')\n", (5980, 5997), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((6214, 6242), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(240)', '(1)', '(35)', '(35)'], {}), '(240, 1, 35, 35)\n', (6226, 6242), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((6330, 6361), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""img/spec3.jpeg"""'], {}), "('img/spec3.jpeg')\n", (6343, 6361), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7169, 7197), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(1010)', '(21)'], {}), '(0, 0, 1010, 21)\n', (7181, 7197), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((7859, 7886), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""search.png"""'], {}), "('search.png')\n", (7872, 7886), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8140, 8170), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""zoom-in_1.png"""'], {}), "('zoom-in_1.png')\n", (8153, 8170), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8426, 8455), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""zoom-out.png"""'], {}), "('zoom-out.png')\n", (8439, 8455), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((8717, 8743), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""sound.png"""'], {}), "('sound.png')\n", (8730, 8743), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9007, 9039), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""play-button.png"""'], {}), "('play-button.png')\n", (9020, 9039), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9283, 9316), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""pause-button.png"""'], {}), "('pause-button.png')\n", (9296, 9316), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9575, 9604), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""backward.png"""'], {}), "('backward.png')\n", (9588, 9604), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((9862, 9890), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""forward.png"""'], {}), "('forward.png')\n", (9875, 9890), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((10149, 10178), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""pdf-file.png"""'], {}), "('pdf-file.png')\n", (10162, 10178), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((12832, 12849), 'os.getenv', 'os.getenv', (['"""home"""'], {}), "('home')\n", (12841, 12849), False, 'import os\n'), ((12945, 12964), 'numpy.genfromtxt', 'np.genfromtxt', (['path'], {}), '(path)\n', (12958, 12964), True, 'import numpy as np\n'), ((13298, 13316), 'pyqtgraph.QtCore.QTimer', 'pg.QtCore.QTimer', ([], {}), '()\n', (13314, 13316), True, 'import pyqtgraph as pg\n'), ((1303, 1333), 'pyqtgraph.PlotWidget', 'PlotWidget', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1313, 1333), False, 'from pyqtgraph import PlotWidget, PlotItem\n'), ((1381, 1417), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1397, 1417), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((1453, 1492), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1472, 1492), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((17690, 17705), 'matplotlib.pyplot.close', 'plt.close', (['None'], {}), '(None)\n', (17699, 17705), True, 'import matplotlib.pyplot as plt\n'), ((20713, 20750), 'matplotlib.pyplot.specgram', 'plt.specgram', (['spectrogramData'], {'Fs': '(250)'}), '(spectrogramData, Fs=250)\n', (20725, 20750), True, 'import matplotlib.pyplot as plt\n'), ((1561, 1591), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(90)', '(461)', '(192)'], {}), '(20, 90, 461, 192)\n', (1573, 1591), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((1700, 1731), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(490)', '(90)', '(471)', '(192)'], {}), '(490, 90, 471, 192)\n', (1712, 1731), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((1842, 1870), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(50)', '(68)', '(20)'], {}), '(20, 50, 68, 20)\n', (1854, 1870), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((16962, 17000), 'matplotlib.pyplot.specgram', 'plt.specgram', (['self.data[index]'], {'Fs': '(250)'}), '(self.data[index], Fs=250)\n', (16974, 17000), True, 'import matplotlib.pyplot as plt\n'), ((19324, 19344), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(1)'], {}), '(3, 2, 1)\n', (19335, 19344), True, 'import matplotlib.pyplot as plt\n'), ((19429, 19482), 'matplotlib.pyplot.plot', 'plt.plot', (['spectrogramData'], {'linewidth': '(0.5)', 'scalex': '(True)'}), '(spectrogramData, linewidth=0.5, scalex=True)\n', (19437, 19482), True, 'import matplotlib.pyplot as plt\n'), ((19501, 19521), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(2)'], {}), '(3, 2, 2)\n', (19512, 19521), True, 'import matplotlib.pyplot as plt\n'), ((2000, 2031), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(340)', '(461)', '(192)'], {}), '(20, 340, 461, 192)\n', (2012, 2031), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((2140, 2172), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(490)', '(340)', '(471)', '(192)'], {}), '(490, 340, 471, 192)\n', (2152, 2172), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((2283, 2312), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(300)', '(68)', '(20)'], {}), '(20, 300, 68, 20)\n', (2295, 2312), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((2435, 2466), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(600)', '(461)', '(192)'], {}), '(20, 600, 461, 192)\n', (2447, 2466), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((2575, 2607), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(490)', '(600)', '(471)', '(192)'], {}), '(490, 600, 471, 192)\n', (2587, 2607), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((2718, 2747), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(560)', '(68)', '(20)'], {}), '(20, 560, 68, 20)\n', (2730, 2747), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((20972, 20992), 'PyQt5.QtCore.QFileInfo', 'QtCore.QFileInfo', (['fn'], {}), '(fn)\n', (20988, 20992), False, 'from PyQt5 import QtCore, QtGui, QtWidgets, QtPrintSupport\n'), ((17119, 17161), 'matplotlib.pyplot.specgram', 'plt.specgram', (['self.data[index + 1]'], {'Fs': '(250)'}), '(self.data[index + 1], Fs=250)\n', (17131, 17161), True, 'import matplotlib.pyplot as plt\n'), ((17214, 17256), 'matplotlib.pyplot.specgram', 'plt.specgram', (['self.data[index - 2]'], {'Fs': '(250)'}), '(self.data[index - 2], Fs=250)\n', (17226, 17256), True, 'import matplotlib.pyplot as plt\n'), ((17364, 17406), 'matplotlib.pyplot.specgram', 'plt.specgram', (['self.data[index + 2]'], {'Fs': '(250)'}), '(self.data[index + 2], Fs=250)\n', (17376, 17406), True, 'import matplotlib.pyplot as plt\n'), ((17460, 17502), 'matplotlib.pyplot.specgram', 'plt.specgram', (['self.data[index - 1]'], {'Fs': '(250)'}), '(self.data[index - 1], Fs=250)\n', (17472, 17502), True, 'import matplotlib.pyplot as plt\n'), ((19657, 19677), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(3)'], {}), '(3, 2, 3)\n', (19668, 19677), True, 'import matplotlib.pyplot as plt\n'), ((19771, 19824), 'matplotlib.pyplot.plot', 'plt.plot', (['spectrogramData'], {'linewidth': '(0.5)', 'scalex': '(True)'}), '(spectrogramData, linewidth=0.5, scalex=True)\n', (19779, 19824), True, 'import matplotlib.pyplot as plt\n'), ((19847, 19867), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(4)'], {}), '(3, 2, 4)\n', (19858, 19867), True, 'import matplotlib.pyplot as plt\n'), ((19916, 19936), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(3)'], {}), '(3, 2, 3)\n', (19927, 19936), True, 'import matplotlib.pyplot as plt\n'), ((20030, 20083), 'matplotlib.pyplot.plot', 'plt.plot', (['spectrogramData'], {'linewidth': '(0.5)', 'scalex': '(True)'}), '(spectrogramData, linewidth=0.5, scalex=True)\n', (20038, 20083), True, 'import matplotlib.pyplot as plt\n'), ((20106, 20126), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(4)'], {}), '(3, 2, 4)\n', (20117, 20126), True, 'import matplotlib.pyplot as plt\n'), ((20229, 20249), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(5)'], {}), '(3, 2, 5)\n', (20240, 20249), True, 'import matplotlib.pyplot as plt\n'), ((20343, 20396), 'matplotlib.pyplot.plot', 'plt.plot', (['spectrogramData'], {'linewidth': '(0.5)', 'scalex': '(True)'}), '(spectrogramData, linewidth=0.5, scalex=True)\n', (20351, 20396), True, 'import matplotlib.pyplot as plt\n'), ((20419, 20439), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(6)'], {}), '(3, 2, 6)\n', (20430, 20439), True, 'import matplotlib.pyplot as plt\n'), ((20488, 20508), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(5)'], {}), '(3, 2, 5)\n', (20499, 20508), True, 'import matplotlib.pyplot as plt\n'), ((20602, 20655), 'matplotlib.pyplot.plot', 'plt.plot', (['spectrogramData'], {'linewidth': '(0.5)', 'scalex': '(True)'}), '(spectrogramData, linewidth=0.5, scalex=True)\n', (20610, 20655), True, 'import matplotlib.pyplot as plt\n'), ((20678, 20698), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(6)'], {}), '(3, 2, 6)\n', (20689, 20698), True, 'import matplotlib.pyplot as plt\n')]
import h5py import matplotlib.pyplot as plt import numpy as np import scipy.io import scipy.stats import complex_pca def plot_pca_variance_curve(x: np.ndarray, title: str = 'PCA -- Variance Explained Curve') -> None: pca = complex_pca.ComplexPCA(n_components=x.shape[1]) pca.fit(x) plt.figure() plt.plot(range(1, x.shape[1] + 1), np.cumsum(pca.explained_variance_ratio_) / np.sum(pca.explained_variance_ratio_)) plt.xlabel('Number of Principal Components') plt.ylabel('Proportion of Variance Captured') plt.title(title) plt.grid(True) # noinspection DuplicatedCode def main() -> None: # data_path = r'D:\EE 364D\dataset\synthetic_data\channel_specific\train_indoor\subsampled\10_percent\train_indoor_channel_e_flat_3.h5' data_path = r'D:\EE 364D\dataset\synthetic_data\channel_specific\test_indoor_20dB\test_indoor_20dB_channel_e_flat.h5' constant_features_path = '../data_preprocessing/constant_features.mat' data = h5py.File(data_path, 'r') constant_features = scipy.io.loadmat(constant_features_path, squeeze_me=True) constant_features = constant_features['constant'] # Number of data points to use. n = 1 # Data and pilot extraction. data_indices = constant_features['iMDataTone_HePpdu'][()].astype(np.int32) - 1 pilot_indices = constant_features['iMPilotTone_HePpdu'][()].astype(np.int32) - 1 data_size = 256 rx_pilot = np.array(data['rx_pilot'][0:n, :]) tx_pilot = np.array(data['tx_pilot'][0:n, :]) pilot_gain = rx_pilot / tx_pilot rx_data = np.array(data['rx_data'][0:n, :]) tx_data = np.array(data['tx_data'][0:n, :]) data_gain = rx_data / tx_data # L-LTF extraction. l_ltf_size = 64 rx_l_ltf_1 = np.array(data['rx_l_ltf_1'][0:n, :]) rx_l_ltf_2 = np.array(data['rx_l_ltf_2'][0:n, :]) tx_l_ltf = constant_features['txLltfFftOut'][()] rx_l_ltf_1_trimmed = rx_l_ltf_1[:, tx_l_ltf != 0] rx_l_ltf_2_trimmed = rx_l_ltf_2[:, tx_l_ltf != 0] tx_l_ltf_trimmed = tx_l_ltf[tx_l_ltf != 0] l_ltf_1_trimmed_gain = rx_l_ltf_1_trimmed / tx_l_ltf_trimmed l_ltf_2_trimmed_gain = rx_l_ltf_2_trimmed / tx_l_ltf_trimmed # HE-LTF extraction. he_ltf_data_indices = constant_features['iMDataTone_Heltf'][()].astype(np.int32) - 1 he_ltf_pilot_indices = constant_features['iMPilotTone_Heltf'][()].astype(np.int32) - 1 he_ltf_size = 256 rx_he_ltf_data = np.array(data['rx_he_ltf_data'][0:n, :]) rx_he_ltf_pilot = np.array(data['rx_he_ltf_pilot'][0:n, :]) rx_he_ltf = np.zeros((rx_he_ltf_data.shape[0], he_ltf_size), dtype=complex) rx_he_ltf[:, he_ltf_data_indices] = rx_he_ltf_data rx_he_ltf[:, he_ltf_pilot_indices] = rx_he_ltf_pilot tx_he_ltf = constant_features['txHeltfFftOut'][()] rx_he_ltf_trimmed = rx_he_ltf[:, tx_he_ltf != 0] tx_he_ltf_trimmed = tx_he_ltf[tx_he_ltf != 0] he_ltf_trimmed_gain = rx_he_ltf_trimmed / tx_he_ltf_trimmed # Frequency domain. f = np.linspace(0, 1, data_size) f_data = f[data_indices] f_pilot = f[pilot_indices] f_rx_he_ltf = np.linspace(0, 1, he_ltf_size) f_rx_he_ltf_trimmed = f_rx_he_ltf[tx_he_ltf != 0] f_l_ltf = np.linspace(0, 1, l_ltf_size) f_l_ltf_trimmed = f_l_ltf[tx_l_ltf != 0] # Channel instance to use. i = 0 # Make plots. plot_constellation = False plot_magnitude = True plot_phase = True plot_pca = False plot_mean_magnitude = False plot_correction_phase = False if plot_constellation: plt.figure() plt.scatter(np.real(tx_he_ltf_trimmed), np.imag(tx_he_ltf_trimmed)) plt.scatter(np.real(tx_l_ltf_trimmed), np.imag(tx_l_ltf_trimmed)) plt.scatter(np.real(tx_pilot[i, :]), np.imag(tx_pilot[i, :])) plt.xlabel('In-phase Component') plt.ylabel('Quadrature Component') plt.title('Transmitted Symbol Constellation') plt.legend(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot']) plt.grid() plt.figure() plt.scatter(np.real(he_ltf_trimmed_gain[i, :]), np.imag(he_ltf_trimmed_gain[i, :])) plt.scatter(np.real(l_ltf_1_trimmed_gain[i, :]), np.imag(l_ltf_1_trimmed_gain[i, :])) plt.scatter(np.real(l_ltf_2_trimmed_gain[i, :]), np.imag(l_ltf_2_trimmed_gain[i, :])) plt.scatter(np.real(pilot_gain[i, :]), np.imag(pilot_gain[i, :])) plt.xlabel('In-phase Component') plt.ylabel('Quadrature Component') plt.title('Channel Gain Estimate Constellation') plt.legend(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot']) plt.grid() if plot_magnitude: plt.figure() plt.scatter(f_rx_he_ltf_trimmed, 20 * np.log10(np.abs(he_ltf_trimmed_gain[i, :]))) plt.scatter(f_l_ltf_trimmed, 20 * np.log10(np.abs(l_ltf_1_trimmed_gain[i, :]))) plt.scatter(f_l_ltf_trimmed, 20 * np.log10(np.abs(l_ltf_2_trimmed_gain[i, :]))) plt.scatter(f_pilot, 20 * np.log10(np.abs(pilot_gain[i, :]))) plt.scatter(f_data, 20 * np.log10(np.abs(data_gain[i, :])), marker='x') plt.xlabel(r'$f$ (normalized)') plt.ylabel(r'$|H|^2$ (dB)') plt.title('Channel Gain Estimate') plt.legend(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data']) plt.grid() if plot_phase: plt.figure() unwrap = False if unwrap: plt.scatter(f_rx_he_ltf_trimmed, np.unwrap(np.angle(he_ltf_trimmed_gain[i, :])) / np.pi) plt.scatter(f_l_ltf_trimmed, np.unwrap(np.angle(l_ltf_1_trimmed_gain[i, :])) / np.pi) plt.scatter(f_l_ltf_trimmed, np.unwrap(np.angle(l_ltf_2_trimmed_gain[i, :])) / np.pi) plt.scatter(f_pilot, np.unwrap(np.angle(pilot_gain[i, :])) / np.pi) plt.scatter(f_data, np.unwrap(np.angle(data_gain[i, :])) / np.pi, marker='x') else: plt.scatter(f_rx_he_ltf_trimmed, np.angle(he_ltf_trimmed_gain[i, :]) / np.pi) plt.scatter(f_l_ltf_trimmed, np.angle(l_ltf_1_trimmed_gain[i, :]) / np.pi) plt.scatter(f_l_ltf_trimmed, np.angle(l_ltf_2_trimmed_gain[i, :]) / np.pi) plt.scatter(f_pilot, np.angle(pilot_gain[i, :]) / np.pi) plt.scatter(f_data, np.angle(data_gain[i, :]) / np.pi, marker='x') plt.xlabel(r'$f$ (normalized)') plt.ylabel(r'$\angle H$ ($\times \pi^{-1}$)') plt.title('Channel Phase') plt.legend(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data']) plt.grid() if plot_pca: plot_pca_variance_curve(he_ltf_trimmed_gain, 'HE-LTF Trimmed Gain') plot_pca_variance_curve(rx_he_ltf, 'HE-LTF Raw') plot_pca_variance_curve(l_ltf_1_trimmed_gain, 'L-LTF-1 Trimmed Gain') plot_pca_variance_curve(rx_l_ltf_1, 'L-LTF-1 Raw') plot_pca_variance_curve(l_ltf_2_trimmed_gain, 'L-LTF-2 Trimmed Gain') plot_pca_variance_curve(rx_l_ltf_2, 'L-LTF-2 Raw') plot_pca_variance_curve(rx_pilot, 'Pilot Raw') plot_pca_variance_curve(pilot_gain, 'Pilot Gain') plot_pca_variance_curve(np.hstack([ he_ltf_trimmed_gain, l_ltf_1_trimmed_gain, l_ltf_2_trimmed_gain, pilot_gain ]), 'HE-LTF, L-LTF-1, L-LTF-2, and Pilot Trimmed Gain') if plot_mean_magnitude: plt.figure() x = f_rx_he_ltf_trimmed y = np.mean(np.abs(he_ltf_trimmed_gain), axis=0) s = np.std(np.abs(he_ltf_trimmed_gain), axis=0) plt.plot(x, 20 * np.log10(y)) plt.fill_between(x, 20 * np.log10(y - s), 20 * np.log10(y + s), alpha=0.5) plt.xlabel(r'$f$ (normalized)') plt.ylabel(r'$|H|^2$ (dB)') plt.title('Mean Channel Gain') plt.legend([r'$\mu$', r'$\pm\sigma$']) plt.grid() if plot_correction_phase: index = np.arange(0, he_ltf_size)[tx_he_ltf != 0] phase = np.angle(he_ltf_trimmed_gain[0, :]) consecutive_phase = np.split(phase, np.where(np.diff(index) != 1)[0] + 1) consecutive_index = np.split(index, np.where(np.diff(index) != 1)[0] + 1) consecutive_phase = [np.unwrap(x) for x in consecutive_phase] consecutive_fits = [scipy.stats.linregress(x, y) for x, y in zip(consecutive_index, consecutive_phase)] combined_phase = [] for x, y in zip(consecutive_index, consecutive_phase): y_hat = x * consecutive_fits[0].slope + consecutive_fits[0].intercept # We can add this offset WLoG because phase is 2π periodic. offset = 2 * np.pi * np.round((y_hat - y) / (2 * np.pi)) combined_phase.append(y + offset) combined_phase = np.hstack(combined_phase) plt.figure() for x, y in zip(consecutive_index, consecutive_phase): plt.scatter(x, y / np.pi) for fit in consecutive_fits: x = np.linspace(0, he_ltf_size, 1000) y = fit.slope * x + fit.intercept plt.plot(x, y / np.pi) plt.xlabel('Subcarrier Index') plt.ylabel(r'$\angle H$ ($\times \pi^{-1}$)') plt.title('HE-LTF Channel Phase Estimates') plt.legend([f'Interval {i + 1}' for i in range(len(consecutive_index))]) plt.grid() plt.figure() plt.scatter(index, combined_phase / np.pi) plt.xlabel('Subcarrier Index') plt.ylabel(r'$\angle H$ ($\times \pi^{-1}$)') plt.title('HE-LTF Channel Phase Combined Estimate') plt.grid() plt.show() if __name__ == '__main__': main()
[ "matplotlib.pyplot.grid", "numpy.log10", "matplotlib.pyplot.ylabel", "numpy.hstack", "complex_pca.ComplexPCA", "numpy.unwrap", "numpy.array", "numpy.imag", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.diff", "numpy.real", "numpy.linspace", "matplotlib.pyplot.scatter", "numpy.round", "numpy.abs", "h5py.File", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "numpy.angle", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.cumsum" ]
[((230, 277), 'complex_pca.ComplexPCA', 'complex_pca.ComplexPCA', ([], {'n_components': 'x.shape[1]'}), '(n_components=x.shape[1])\n', (252, 277), False, 'import complex_pca\n'), ((298, 310), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (308, 310), True, 'import matplotlib.pyplot as plt\n'), ((436, 480), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Principal Components"""'], {}), "('Number of Principal Components')\n", (446, 480), True, 'import matplotlib.pyplot as plt\n'), ((485, 530), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Proportion of Variance Captured"""'], {}), "('Proportion of Variance Captured')\n", (495, 530), True, 'import matplotlib.pyplot as plt\n'), ((535, 551), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (544, 551), True, 'import matplotlib.pyplot as plt\n'), ((556, 570), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (564, 570), True, 'import matplotlib.pyplot as plt\n'), ((972, 997), 'h5py.File', 'h5py.File', (['data_path', '"""r"""'], {}), "(data_path, 'r')\n", (981, 997), False, 'import h5py\n'), ((1419, 1453), 'numpy.array', 'np.array', (["data['rx_pilot'][0:n, :]"], {}), "(data['rx_pilot'][0:n, :])\n", (1427, 1453), True, 'import numpy as np\n'), ((1469, 1503), 'numpy.array', 'np.array', (["data['tx_pilot'][0:n, :]"], {}), "(data['tx_pilot'][0:n, :])\n", (1477, 1503), True, 'import numpy as np\n'), ((1556, 1589), 'numpy.array', 'np.array', (["data['rx_data'][0:n, :]"], {}), "(data['rx_data'][0:n, :])\n", (1564, 1589), True, 'import numpy as np\n'), ((1604, 1637), 'numpy.array', 'np.array', (["data['tx_data'][0:n, :]"], {}), "(data['tx_data'][0:n, :])\n", (1612, 1637), True, 'import numpy as np\n'), ((1735, 1771), 'numpy.array', 'np.array', (["data['rx_l_ltf_1'][0:n, :]"], {}), "(data['rx_l_ltf_1'][0:n, :])\n", (1743, 1771), True, 'import numpy as np\n'), ((1789, 1825), 'numpy.array', 'np.array', (["data['rx_l_ltf_2'][0:n, :]"], {}), "(data['rx_l_ltf_2'][0:n, :])\n", (1797, 1825), True, 'import numpy as np\n'), ((2417, 2457), 'numpy.array', 'np.array', (["data['rx_he_ltf_data'][0:n, :]"], {}), "(data['rx_he_ltf_data'][0:n, :])\n", (2425, 2457), True, 'import numpy as np\n'), ((2480, 2521), 'numpy.array', 'np.array', (["data['rx_he_ltf_pilot'][0:n, :]"], {}), "(data['rx_he_ltf_pilot'][0:n, :])\n", (2488, 2521), True, 'import numpy as np\n'), ((2538, 2601), 'numpy.zeros', 'np.zeros', (['(rx_he_ltf_data.shape[0], he_ltf_size)'], {'dtype': 'complex'}), '((rx_he_ltf_data.shape[0], he_ltf_size), dtype=complex)\n', (2546, 2601), True, 'import numpy as np\n'), ((2972, 3000), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'data_size'], {}), '(0, 1, data_size)\n', (2983, 3000), True, 'import numpy as np\n'), ((3080, 3110), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'he_ltf_size'], {}), '(0, 1, he_ltf_size)\n', (3091, 3110), True, 'import numpy as np\n'), ((3180, 3209), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'l_ltf_size'], {}), '(0, 1, l_ltf_size)\n', (3191, 3209), True, 'import numpy as np\n'), ((9387, 9397), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9395, 9397), True, 'import matplotlib.pyplot as plt\n'), ((3518, 3530), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3528, 3530), True, 'import matplotlib.pyplot as plt\n'), ((3759, 3791), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""In-phase Component"""'], {}), "('In-phase Component')\n", (3769, 3791), True, 'import matplotlib.pyplot as plt\n'), ((3800, 3834), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Quadrature Component"""'], {}), "('Quadrature Component')\n", (3810, 3834), True, 'import matplotlib.pyplot as plt\n'), ((3843, 3888), 'matplotlib.pyplot.title', 'plt.title', (['"""Transmitted Symbol Constellation"""'], {}), "('Transmitted Symbol Constellation')\n", (3852, 3888), True, 'import matplotlib.pyplot as plt\n'), ((3897, 3950), 'matplotlib.pyplot.legend', 'plt.legend', (["['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot']"], {}), "(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot'])\n", (3907, 3950), True, 'import matplotlib.pyplot as plt\n'), ((3959, 3969), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3967, 3969), True, 'import matplotlib.pyplot as plt\n'), ((3979, 3991), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3989, 3991), True, 'import matplotlib.pyplot as plt\n'), ((4354, 4386), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""In-phase Component"""'], {}), "('In-phase Component')\n", (4364, 4386), True, 'import matplotlib.pyplot as plt\n'), ((4395, 4429), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Quadrature Component"""'], {}), "('Quadrature Component')\n", (4405, 4429), True, 'import matplotlib.pyplot as plt\n'), ((4438, 4486), 'matplotlib.pyplot.title', 'plt.title', (['"""Channel Gain Estimate Constellation"""'], {}), "('Channel Gain Estimate Constellation')\n", (4447, 4486), True, 'import matplotlib.pyplot as plt\n'), ((4495, 4548), 'matplotlib.pyplot.legend', 'plt.legend', (["['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot']"], {}), "(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot'])\n", (4505, 4548), True, 'import matplotlib.pyplot as plt\n'), ((4557, 4567), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (4565, 4567), True, 'import matplotlib.pyplot as plt\n'), ((4600, 4612), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4610, 4612), True, 'import matplotlib.pyplot as plt\n'), ((5038, 5068), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$f$ (normalized)"""'], {}), "('$f$ (normalized)')\n", (5048, 5068), True, 'import matplotlib.pyplot as plt\n'), ((5078, 5104), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$|H|^2$ (dB)"""'], {}), "('$|H|^2$ (dB)')\n", (5088, 5104), True, 'import matplotlib.pyplot as plt\n'), ((5114, 5148), 'matplotlib.pyplot.title', 'plt.title', (['"""Channel Gain Estimate"""'], {}), "('Channel Gain Estimate')\n", (5123, 5148), True, 'import matplotlib.pyplot as plt\n'), ((5157, 5218), 'matplotlib.pyplot.legend', 'plt.legend', (["['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data']"], {}), "(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data'])\n", (5167, 5218), True, 'import matplotlib.pyplot as plt\n'), ((5227, 5237), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5235, 5237), True, 'import matplotlib.pyplot as plt\n'), ((5266, 5278), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5276, 5278), True, 'import matplotlib.pyplot as plt\n'), ((6222, 6252), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$f$ (normalized)"""'], {}), "('$f$ (normalized)')\n", (6232, 6252), True, 'import matplotlib.pyplot as plt\n'), ((6262, 6309), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)"""'], {}), "('$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)')\n", (6272, 6309), True, 'import matplotlib.pyplot as plt\n'), ((6316, 6342), 'matplotlib.pyplot.title', 'plt.title', (['"""Channel Phase"""'], {}), "('Channel Phase')\n", (6325, 6342), True, 'import matplotlib.pyplot as plt\n'), ((6351, 6412), 'matplotlib.pyplot.legend', 'plt.legend', (["['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data']"], {}), "(['HE-LTF', 'L-LTF-1', 'L-LTF-2', 'Pilot', 'Data'])\n", (6361, 6412), True, 'import matplotlib.pyplot as plt\n'), ((6421, 6431), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (6429, 6431), True, 'import matplotlib.pyplot as plt\n'), ((7239, 7251), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7249, 7251), True, 'import matplotlib.pyplot as plt\n'), ((7526, 7556), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$f$ (normalized)"""'], {}), "('$f$ (normalized)')\n", (7536, 7556), True, 'import matplotlib.pyplot as plt\n'), ((7566, 7592), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$|H|^2$ (dB)"""'], {}), "('$|H|^2$ (dB)')\n", (7576, 7592), True, 'import matplotlib.pyplot as plt\n'), ((7602, 7632), 'matplotlib.pyplot.title', 'plt.title', (['"""Mean Channel Gain"""'], {}), "('Mean Channel Gain')\n", (7611, 7632), True, 'import matplotlib.pyplot as plt\n'), ((7641, 7680), 'matplotlib.pyplot.legend', 'plt.legend', (["['$\\\\mu$', '$\\\\pm\\\\sigma$']"], {}), "(['$\\\\mu$', '$\\\\pm\\\\sigma$'])\n", (7651, 7680), True, 'import matplotlib.pyplot as plt\n'), ((7688, 7698), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (7696, 7698), True, 'import matplotlib.pyplot as plt\n'), ((7804, 7839), 'numpy.angle', 'np.angle', (['he_ltf_trimmed_gain[0, :]'], {}), '(he_ltf_trimmed_gain[0, :])\n', (7812, 7839), True, 'import numpy as np\n'), ((8573, 8598), 'numpy.hstack', 'np.hstack', (['combined_phase'], {}), '(combined_phase)\n', (8582, 8598), True, 'import numpy as np\n'), ((8608, 8620), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8618, 8620), True, 'import matplotlib.pyplot as plt\n'), ((8900, 8930), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Subcarrier Index"""'], {}), "('Subcarrier Index')\n", (8910, 8930), True, 'import matplotlib.pyplot as plt\n'), ((8939, 8986), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)"""'], {}), "('$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)')\n", (8949, 8986), True, 'import matplotlib.pyplot as plt\n'), ((8993, 9036), 'matplotlib.pyplot.title', 'plt.title', (['"""HE-LTF Channel Phase Estimates"""'], {}), "('HE-LTF Channel Phase Estimates')\n", (9002, 9036), True, 'import matplotlib.pyplot as plt\n'), ((9126, 9136), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (9134, 9136), True, 'import matplotlib.pyplot as plt\n'), ((9146, 9158), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9156, 9158), True, 'import matplotlib.pyplot as plt\n'), ((9167, 9209), 'matplotlib.pyplot.scatter', 'plt.scatter', (['index', '(combined_phase / np.pi)'], {}), '(index, combined_phase / np.pi)\n', (9178, 9209), True, 'import matplotlib.pyplot as plt\n'), ((9218, 9248), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Subcarrier Index"""'], {}), "('Subcarrier Index')\n", (9228, 9248), True, 'import matplotlib.pyplot as plt\n'), ((9257, 9304), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)"""'], {}), "('$\\\\angle H$ ($\\\\times \\\\pi^{-1}$)')\n", (9267, 9304), True, 'import matplotlib.pyplot as plt\n'), ((9311, 9362), 'matplotlib.pyplot.title', 'plt.title', (['"""HE-LTF Channel Phase Combined Estimate"""'], {}), "('HE-LTF Channel Phase Combined Estimate')\n", (9320, 9362), True, 'import matplotlib.pyplot as plt\n'), ((9371, 9381), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (9379, 9381), True, 'import matplotlib.pyplot as plt\n'), ((350, 390), 'numpy.cumsum', 'np.cumsum', (['pca.explained_variance_ratio_'], {}), '(pca.explained_variance_ratio_)\n', (359, 390), True, 'import numpy as np\n'), ((393, 430), 'numpy.sum', 'np.sum', (['pca.explained_variance_ratio_'], {}), '(pca.explained_variance_ratio_)\n', (399, 430), True, 'import numpy as np\n'), ((3551, 3577), 'numpy.real', 'np.real', (['tx_he_ltf_trimmed'], {}), '(tx_he_ltf_trimmed)\n', (3558, 3577), True, 'import numpy as np\n'), ((3579, 3605), 'numpy.imag', 'np.imag', (['tx_he_ltf_trimmed'], {}), '(tx_he_ltf_trimmed)\n', (3586, 3605), True, 'import numpy as np\n'), ((3627, 3652), 'numpy.real', 'np.real', (['tx_l_ltf_trimmed'], {}), '(tx_l_ltf_trimmed)\n', (3634, 3652), True, 'import numpy as np\n'), ((3654, 3679), 'numpy.imag', 'np.imag', (['tx_l_ltf_trimmed'], {}), '(tx_l_ltf_trimmed)\n', (3661, 3679), True, 'import numpy as np\n'), ((3701, 3724), 'numpy.real', 'np.real', (['tx_pilot[i, :]'], {}), '(tx_pilot[i, :])\n', (3708, 3724), True, 'import numpy as np\n'), ((3726, 3749), 'numpy.imag', 'np.imag', (['tx_pilot[i, :]'], {}), '(tx_pilot[i, :])\n', (3733, 3749), True, 'import numpy as np\n'), ((4012, 4046), 'numpy.real', 'np.real', (['he_ltf_trimmed_gain[i, :]'], {}), '(he_ltf_trimmed_gain[i, :])\n', (4019, 4046), True, 'import numpy as np\n'), ((4048, 4082), 'numpy.imag', 'np.imag', (['he_ltf_trimmed_gain[i, :]'], {}), '(he_ltf_trimmed_gain[i, :])\n', (4055, 4082), True, 'import numpy as np\n'), ((4104, 4139), 'numpy.real', 'np.real', (['l_ltf_1_trimmed_gain[i, :]'], {}), '(l_ltf_1_trimmed_gain[i, :])\n', (4111, 4139), True, 'import numpy as np\n'), ((4141, 4176), 'numpy.imag', 'np.imag', (['l_ltf_1_trimmed_gain[i, :]'], {}), '(l_ltf_1_trimmed_gain[i, :])\n', (4148, 4176), True, 'import numpy as np\n'), ((4198, 4233), 'numpy.real', 'np.real', (['l_ltf_2_trimmed_gain[i, :]'], {}), '(l_ltf_2_trimmed_gain[i, :])\n', (4205, 4233), True, 'import numpy as np\n'), ((4235, 4270), 'numpy.imag', 'np.imag', (['l_ltf_2_trimmed_gain[i, :]'], {}), '(l_ltf_2_trimmed_gain[i, :])\n', (4242, 4270), True, 'import numpy as np\n'), ((4292, 4317), 'numpy.real', 'np.real', (['pilot_gain[i, :]'], {}), '(pilot_gain[i, :])\n', (4299, 4317), True, 'import numpy as np\n'), ((4319, 4344), 'numpy.imag', 'np.imag', (['pilot_gain[i, :]'], {}), '(pilot_gain[i, :])\n', (4326, 4344), True, 'import numpy as np\n'), ((7002, 7094), 'numpy.hstack', 'np.hstack', (['[he_ltf_trimmed_gain, l_ltf_1_trimmed_gain, l_ltf_2_trimmed_gain, pilot_gain]'], {}), '([he_ltf_trimmed_gain, l_ltf_1_trimmed_gain, l_ltf_2_trimmed_gain,\n pilot_gain])\n', (7011, 7094), True, 'import numpy as np\n'), ((7304, 7331), 'numpy.abs', 'np.abs', (['he_ltf_trimmed_gain'], {}), '(he_ltf_trimmed_gain)\n', (7310, 7331), True, 'import numpy as np\n'), ((7360, 7387), 'numpy.abs', 'np.abs', (['he_ltf_trimmed_gain'], {}), '(he_ltf_trimmed_gain)\n', (7366, 7387), True, 'import numpy as np\n'), ((7746, 7771), 'numpy.arange', 'np.arange', (['(0)', 'he_ltf_size'], {}), '(0, he_ltf_size)\n', (7755, 7771), True, 'import numpy as np\n'), ((8033, 8045), 'numpy.unwrap', 'np.unwrap', (['x'], {}), '(x)\n', (8042, 8045), True, 'import numpy as np\n'), ((8696, 8721), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', '(y / np.pi)'], {}), '(x, y / np.pi)\n', (8707, 8721), True, 'import matplotlib.pyplot as plt\n'), ((8776, 8809), 'numpy.linspace', 'np.linspace', (['(0)', 'he_ltf_size', '(1000)'], {}), '(0, he_ltf_size, 1000)\n', (8787, 8809), True, 'import numpy as np\n'), ((8868, 8890), 'matplotlib.pyplot.plot', 'plt.plot', (['x', '(y / np.pi)'], {}), '(x, y / np.pi)\n', (8876, 8890), True, 'import matplotlib.pyplot as plt\n'), ((7422, 7433), 'numpy.log10', 'np.log10', (['y'], {}), '(y)\n', (7430, 7433), True, 'import numpy as np\n'), ((7468, 7483), 'numpy.log10', 'np.log10', (['(y - s)'], {}), '(y - s)\n', (7476, 7483), True, 'import numpy as np\n'), ((7490, 7505), 'numpy.log10', 'np.log10', (['(y + s)'], {}), '(y + s)\n', (7498, 7505), True, 'import numpy as np\n'), ((8465, 8500), 'numpy.round', 'np.round', (['((y_hat - y) / (2 * np.pi))'], {}), '((y_hat - y) / (2 * np.pi))\n', (8473, 8500), True, 'import numpy as np\n'), ((4668, 4701), 'numpy.abs', 'np.abs', (['he_ltf_trimmed_gain[i, :]'], {}), '(he_ltf_trimmed_gain[i, :])\n', (4674, 4701), True, 'import numpy as np\n'), ((4755, 4789), 'numpy.abs', 'np.abs', (['l_ltf_1_trimmed_gain[i, :]'], {}), '(l_ltf_1_trimmed_gain[i, :])\n', (4761, 4789), True, 'import numpy as np\n'), ((4843, 4877), 'numpy.abs', 'np.abs', (['l_ltf_2_trimmed_gain[i, :]'], {}), '(l_ltf_2_trimmed_gain[i, :])\n', (4849, 4877), True, 'import numpy as np\n'), ((4923, 4947), 'numpy.abs', 'np.abs', (['pilot_gain[i, :]'], {}), '(pilot_gain[i, :])\n', (4929, 4947), True, 'import numpy as np\n'), ((4992, 5015), 'numpy.abs', 'np.abs', (['data_gain[i, :]'], {}), '(data_gain[i, :])\n', (4998, 5015), True, 'import numpy as np\n'), ((5847, 5882), 'numpy.angle', 'np.angle', (['he_ltf_trimmed_gain[i, :]'], {}), '(he_ltf_trimmed_gain[i, :])\n', (5855, 5882), True, 'import numpy as np\n'), ((5933, 5969), 'numpy.angle', 'np.angle', (['l_ltf_1_trimmed_gain[i, :]'], {}), '(l_ltf_1_trimmed_gain[i, :])\n', (5941, 5969), True, 'import numpy as np\n'), ((6020, 6056), 'numpy.angle', 'np.angle', (['l_ltf_2_trimmed_gain[i, :]'], {}), '(l_ltf_2_trimmed_gain[i, :])\n', (6028, 6056), True, 'import numpy as np\n'), ((6099, 6125), 'numpy.angle', 'np.angle', (['pilot_gain[i, :]'], {}), '(pilot_gain[i, :])\n', (6107, 6125), True, 'import numpy as np\n'), ((6167, 6192), 'numpy.angle', 'np.angle', (['data_gain[i, :]'], {}), '(data_gain[i, :])\n', (6175, 6192), True, 'import numpy as np\n'), ((5376, 5411), 'numpy.angle', 'np.angle', (['he_ltf_trimmed_gain[i, :]'], {}), '(he_ltf_trimmed_gain[i, :])\n', (5384, 5411), True, 'import numpy as np\n'), ((5473, 5509), 'numpy.angle', 'np.angle', (['l_ltf_1_trimmed_gain[i, :]'], {}), '(l_ltf_1_trimmed_gain[i, :])\n', (5481, 5509), True, 'import numpy as np\n'), ((5571, 5607), 'numpy.angle', 'np.angle', (['l_ltf_2_trimmed_gain[i, :]'], {}), '(l_ltf_2_trimmed_gain[i, :])\n', (5579, 5607), True, 'import numpy as np\n'), ((5661, 5687), 'numpy.angle', 'np.angle', (['pilot_gain[i, :]'], {}), '(pilot_gain[i, :])\n', (5669, 5687), True, 'import numpy as np\n'), ((5740, 5765), 'numpy.angle', 'np.angle', (['data_gain[i, :]'], {}), '(data_gain[i, :])\n', (5748, 5765), True, 'import numpy as np\n'), ((7893, 7907), 'numpy.diff', 'np.diff', (['index'], {}), '(index)\n', (7900, 7907), True, 'import numpy as np\n'), ((7975, 7989), 'numpy.diff', 'np.diff', (['index'], {}), '(index)\n', (7982, 7989), True, 'import numpy as np\n')]
import os from random import sample import numpy as np from numpy import cos from scipy.linalg import lstsq from compmech.constants import CMHOME from compmech.logger import * def load_c0(name, funcnum, m0, n0): path = os.path.join(CMHOME, 'conecyl', 'imperfections', 'c0', 'c0_{0}_f{1}_m{2:03d}_n{3:03d}.txt'.format( name, funcnum, m0, n0)) if os.path.isfile(path): return np.loadtxt(path) else: raise ValueError('Coefficient file not found!') def calc_c0(path, m0=40, n0=40, funcnum=2, sample_size=None, maxmem=8, save=True, offset_w0=None): r"""Find the coefficients `c_0` that best fit the `w_0` function. The measured data will be fit using one of the following functions, selected using the ``funcnum`` parameter: ``funcnum=1`` .. math:: w_0 = \sum_{i=1}^{m_0}{ \sum_{j=0}^{n_0}{ c_{ij}^a sin{b_x} sin{b_\theta} +c_{ij}^b sin{b_x} cos{b_\theta}}} ``funcnum=2`` (default) .. math:: w_0 = \sum_{i=0}^{m_0}{ \sum_{j=0}^{n_0}{ c_{ij}^a cos{b_x} sin{b_\theta} +c_{ij}^b cos{b_x} cos{b_\theta}}} ``funcnum=3`` .. math:: w_0 = \sum_{i=0}^{m_0}{ \sum_{j=0}^{n_0}{ c_{ij}^a sin{b_x} sin{b_\theta} +c_{ij}^b sin{b_x} cos{b_\theta} +c_{ij}^c cos{b_x} sin{b_\theta} +c_{ij}^d cos{b_x} cos{b_\theta}}} where: .. math:: b_x = i \pi \frac x L_{points} b_\theta = j \theta where `L_{points}` represents the difference between the maximum and the height values in the imperfection file divided by the cosine of the semi-vertex angle: .. math:: L_{points} = \frac{H_{max} - H_{min}}{cos(\alpha)} = \frac{H_{points}}{cos(\alpha)} In this form `{}^x/_{L_{points}}` will vary from `0.` (at the top) to `1.` (at the bottom). .. note:: Note that if the measured sample does not cover all the height, **it will be stretched**. The approximation can be written in matrix form as: .. math:: w_0 = [g] \{c\} where `[g]` carries the base functions and `{c}` the respective amplitudes. The solution consists on finding the best `\{c\}` that minimizes the least-square error between the measured imperfection pattern and the `w_0` function. Parameters ---------- path : str or numpy.ndarray The path of the file containing the data. Can be a full path using ``r"C:\Temp\inputfile.txt"``, for example. The input file must have 3 columns: `\theta`, `height`, `imp`; expressed in Cartesian coordinates. This input can also be a ``numpy.ndarray`` object, with `\theta`, `height`, `imp` in each corresponding column. m0 : int Number of terms along the meridian (`x`). n0 : int Number of terms along the circumference (`\theta`). funcnum : int, optional As explained above, selects the base functions used for the approximation. sample_size : int or None, optional Specifies how many points of the imperfection file should be used. If ``None`` all points will be used in the computations. maxmem : int, optional Maximum RAM memory in GB allowed to compute the base functions. The ``scipy.interpolate.lstsq`` will go beyond this limit. save : bool, optional If ``True`` saves the calculated coefficients in the ``compmech/conecyl/imperfections/c0`` folder. Returns ------- out : numpy.ndarray A 1-D array with the best-fit coefficients. """ import mgi if isinstance(path, np.ndarray): input_pts = path path = 'unnamed.txt' else: input_pts = np.loadtxt(path) if input_pts.shape[1] != 3: raise ValueError('Input does not have the format: "theta, x, imp"') log('Finding w0 coefficients for {0},\n\tusing funcnum {1}'.format( str(os.path.basename(path)), funcnum)) if sample_size: num = input_pts.shape[0] if sample_size < num: input_pts = input_pts[sample(range(num), int(sample_size))] if funcnum==1: size = 2 elif funcnum==2: size = 2 elif funcnum==3: size = 4 else: raise ValueError('Valid values for "funcnum" are 1, 2 or 3') maxnum = maxmem*1024*1024*1024*8/(64*size*m0*n0) num = input_pts.shape[0] if num >= maxnum: input_pts = input_pts[sample(range(num), int(maxnum))] warn('Reducing sample size from {0} to {1} ' + 'due to the "maxmem" specified'.format(num, maxnum), level=1) thetas = input_pts[:, 0].copy() xs = input_pts[:, 1] w0pts = input_pts[:, 2] if offset_w0: w0pts += offset_w0 # normalizing x xs = (xs - xs.min())/(xs.max() - xs.min()) # inverting x to cope with the coordsys of the semi-analytical model xs = 1 - xs a = mgi.fa(m0, n0, xs, thetas, funcnum=funcnum) log('Base functions calculated', level=1) try: c0, residues, rank, s = lstsq(a, w0pts) except MemoryError: error('Reduce the "maxmem" parameter!') log('Finished scipy.linalg.lstsq', level=1) if save: name = '.'.join(os.path.basename(path).split('.')[0:-1]) outpath = os.path.join(CMHOME, 'conecyl', 'imperfections', 'c0', 'c0_{0}_f{1}_m{2:03d}_n{3:03d}.txt'.format( name, funcnum, m0, n0)) np.savetxt(outpath, c0) return c0, residues def fw0(m0, n0, c0, xs_norm, ts, funcnum=2): r"""Calculates the imperfection field `w_0` for a given input. Parameters ---------- m0 : int The number of terms along the meridian. n0 : int The number of terms along the circumference. c0 : numpy.ndarray The coefficients of the imperfection pattern. xs_norm : numpy.ndarray The meridian coordinate (`x`) normalized to be between ``0.`` and ``1.``. ts : numpy.ndarray The angles in radians representing the circumferential coordinate (`\theta`). funcnum : int, optional The function used for the approximation (see the ``calc_c0`` function) Notes ----- The inputs ``xs_norm`` and ``ts`` must be of the same size. If ``funcnum==1 or funcnum==2`` then ``size=2``, if ``funcnum==3`` then ``size=4`` and the inputs must satisfy ``c0.shape[0] == size*m0*n0``. """ if xs_norm.shape != ts.shape: raise ValueError('xs_norm and ts must have the same shape') if funcnum==1: size = 2 elif funcnum==2: size = 2 elif funcnum==3: size = 4 if c0.shape[0] != size*m0*n0: raise ValueError('Invalid c0 for the given m0 and n0!') import mgi w0s = mgi.fw0(m0, n0, c0, xs_norm.ravel(), ts.ravel(), funcnum) return w0s.reshape(xs_norm.shape)
[ "scipy.linalg.lstsq", "os.path.isfile", "os.path.basename", "numpy.savetxt", "numpy.loadtxt", "mgi.fa" ]
[((380, 400), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (394, 400), False, 'import os\n'), ((5034, 5077), 'mgi.fa', 'mgi.fa', (['m0', 'n0', 'xs', 'thetas'], {'funcnum': 'funcnum'}), '(m0, n0, xs, thetas, funcnum=funcnum)\n', (5040, 5077), False, 'import mgi\n'), ((417, 433), 'numpy.loadtxt', 'np.loadtxt', (['path'], {}), '(path)\n', (427, 433), True, 'import numpy as np\n'), ((3839, 3855), 'numpy.loadtxt', 'np.loadtxt', (['path'], {}), '(path)\n', (3849, 3855), True, 'import numpy as np\n'), ((5165, 5180), 'scipy.linalg.lstsq', 'lstsq', (['a', 'w0pts'], {}), '(a, w0pts)\n', (5170, 5180), False, 'from scipy.linalg import lstsq\n'), ((5561, 5584), 'numpy.savetxt', 'np.savetxt', (['outpath', 'c0'], {}), '(outpath, c0)\n', (5571, 5584), True, 'import numpy as np\n'), ((4050, 4072), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (4066, 4072), False, 'import os\n'), ((5339, 5361), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (5355, 5361), False, 'import os\n')]
import numpy as np from cost_functions import trajectory_cost_fn import time class Controller(): def __init__(self): pass # Get the appropriate action(s) for this state(s) def get_action(self, state): pass class RandomController(Controller): def __init__(self, env): """ YOUR CODE HERE """ self.env = env def get_action(self, state): """ YOUR CODE HERE """ """ Your code should randomly sample an action uniformly from the action space """ return self.env.action_space.sample() class MPCcontroller(Controller): """ Controller built using the MPC method outlined in https://arxiv.org/abs/1708.02596 """ def __init__(self, env, dyn_model, horizon=5, cost_fn=None, num_simulated_paths=10, ): self.env = env self.dyn_model = dyn_model self.horizon = horizon self.cost_fn = cost_fn self.num_simulated_paths = num_simulated_paths def get_action(self, state): """ YOUR CODE HERE Note: be careful to batch your simulations through the model for speed """ observations = np.empty( (self.num_simulated_paths, self.horizon, self.env.observation_space.shape[0])) next_observations = np.empty( (self.num_simulated_paths, self.horizon, self.env.observation_space.shape[0])) actions = [ [self.env.action_space.sample() for _ in range(self.horizon)] for _ in range(self.num_simulated_paths) ] actions = np.array(actions) last_state = np.array([state for _ in range(self.num_simulated_paths)]) for idx in range(self.horizon): action_batch = actions[:, idx] next_state = self.dyn_model.predict(last_state, action_batch) observations[:, idx, :] = last_state next_observations[:, idx, :] = next_state last_state = next_state costs = np.array([trajectory_cost_fn( self.cost_fn, observations[i], actions[i], next_observations[i]) for i in range(self.num_simulated_paths) ]) min_cost_path_id = np.argmin(costs) return actions[min_cost_path_id][0]
[ "numpy.argmin", "numpy.array", "numpy.empty", "cost_functions.trajectory_cost_fn" ]
[((1235, 1327), 'numpy.empty', 'np.empty', (['(self.num_simulated_paths, self.horizon, self.env.observation_space.shape[0])'], {}), '((self.num_simulated_paths, self.horizon, self.env.\n observation_space.shape[0]))\n', (1243, 1327), True, 'import numpy as np\n'), ((1364, 1456), 'numpy.empty', 'np.empty', (['(self.num_simulated_paths, self.horizon, self.env.observation_space.shape[0])'], {}), '((self.num_simulated_paths, self.horizon, self.env.\n observation_space.shape[0]))\n', (1372, 1456), True, 'import numpy as np\n'), ((1654, 1671), 'numpy.array', 'np.array', (['actions'], {}), '(actions)\n', (1662, 1671), True, 'import numpy as np\n'), ((2277, 2293), 'numpy.argmin', 'np.argmin', (['costs'], {}), '(costs)\n', (2286, 2293), True, 'import numpy as np\n'), ((2076, 2163), 'cost_functions.trajectory_cost_fn', 'trajectory_cost_fn', (['self.cost_fn', 'observations[i]', 'actions[i]', 'next_observations[i]'], {}), '(self.cost_fn, observations[i], actions[i],\n next_observations[i])\n', (2094, 2163), False, 'from cost_functions import trajectory_cost_fn\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 14 09:15:33 2020 @author: dhulls """ # Imports import numpy as np np.random.seed(100) from tensorflow import random random.set_seed(100) import os import pathlib import matplotlib.pyplot as plt import pandas as pd import seaborn as sns os.chdir('/Users/som/Dropbox/Complex_systems_RNN/DL_tutorial') from Kij import Kij from scipy.stats import beta import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras import regularizers print(tf.__version__) import tensorflow_docs as tfdocs import tensorflow_docs.plots import tensorflow_docs.modeling # from matplotlib import rc # Import dataset # dataset_path = '/Users/som/Dropbox/Complex_systems_RNN/Data/DL_test_data_Eq_Hazus_125.csv' dataset_path = '/Users/som/Dropbox/Complex_systems_RNN/Data/New data for improved disf match/Eq_10IM.csv' # column_names = ['Time','P1','P2','IM','Rec'] # dataset = pd.read_csv(dataset_path, names=column_names, # na_values = "?", comment='\t', # sep=" ", skipinitialspace=True) dataset = pd.read_csv(dataset_path) dataset.pop("IM") dataset.pop("Time") # dataset["IM"] = np.log(dataset["IM"]) # dataset.pop("P1") # dataset.pop("P2") a1 = 1.0 b1 = 1.0 loc1 = 0 sca1 = 1 def transform(Rec): # Rec = beta.ppf(Rec,a1,b1,loc1,sca1) # Fin = np.zeros((len(Rec),1)) # for ii in np.arange(0,len(Rec),1): # if ((1-Rec[ii])<0.04): # Fin[ii] = np.power((1-Rec[ii]),1/4) # else: # Fin[ii] = 1-Rec[ii] # return Fin return np.power((1-Rec),1/4) # return (1/(1+np.exp(-(1-Rec)))) def invtransform(x): # Fin = np.zeros(len(x)) # for ii in np.arange(0,len(x),1): # if ((1-np.power(x[ii],4))<0.04): # Fin[ii] = (1-np.power(x[ii],4)) # else: # Fin[ii] = 1-x[ii] # return Fin # (1-np.power(x,4)) return (1-np.power(x,4)) # return (1+np.log(1/(x)-1)) #beta.cdf(x,a1,b1,loc1,sca1) dataset['Rec'] = transform(dataset['Rec']) dataset['P1'] = transform(dataset['P1']) dataset['P2'] = transform(dataset['P2']) dataset.tail() # Split the data into train and test train_dataset = dataset.sample(frac=1.0,random_state=100) test_dataset = dataset.drop(train_dataset.index) # Inspect the data # sns.pairplot(train_dataset[["Rec", "P1", "P2", "Time"]], diag_kind="kde") # sns.pairplot(train_dataset[["Rec", "IM"]], diag_kind="kde") train_stats = train_dataset.describe() train_stats.pop("Rec") train_stats = train_stats.transpose() train_stats # Split features from labels train_labels = train_dataset.pop('Rec') test_labels = test_dataset.pop('Rec') # Normalize the data def norm(x): return (x - train_stats['mean']) / train_stats['std'] normed_train_data = norm(train_dataset) normed_test_data = norm(test_dataset) # Build the model ,kernel_regularizer='l2' def build_model(): model = keras.Sequential([ layers.Dense(10, activation='softmax', input_shape=[len(train_dataset.keys())],bias_initializer='zeros'), layers.Dense(10, activation='softmax',bias_initializer='zeros'), layers.Dense(1,bias_initializer='zeros') ]) # optimizer = tf.keras.optimizers.RMSprop(0.001) optimizer = tf.keras.optimizers.RMSprop(0.001) model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse']) return model model = build_model() # Inspect the model model.summary() # example_batch = normed_train_data[:10] # example_result = model.predict(example_batch) # example_result # Train the model EPOCHS = 3000 history = model.fit( normed_train_data, train_labels, epochs=EPOCHS, validation_split = 0.0, verbose=0, callbacks=[tfdocs.modeling.EpochDots()],shuffle = False) hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch hist.tail() ## Verify model for multiple recovery curves dataset_path1 = '/Users/som/Dropbox/Complex_systems_RNN/Data/New data for sequence/DL_verify_EQ_0_7.csv' data1 = pd.read_csv(dataset_path1) # data1["IM"] = np.log(data1["IM"]) Time1 = data1.pop("Time") # data1.pop("P1") # data1.pop("P2") data1['Rec'] = transform(data1['Rec']) data1['P1'] = transform(data1['P1']) data1['P2'] = transform(data1['P2']) data1_labels = data1.pop('Rec') normed_data1 = norm(data1) data1_pred = model.predict(normed_data1).flatten()
[ "tensorflow.random.set_seed", "pandas.read_csv", "numpy.power", "tensorflow_docs.modeling.EpochDots", "os.chdir", "tensorflow.keras.layers.Dense", "numpy.random.seed", "pandas.DataFrame", "tensorflow.keras.optimizers.RMSprop" ]
[((138, 157), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (152, 157), True, 'import numpy as np\n'), ((188, 208), 'tensorflow.random.set_seed', 'random.set_seed', (['(100)'], {}), '(100)\n', (203, 208), False, 'from tensorflow import random\n'), ((309, 371), 'os.chdir', 'os.chdir', (['"""/Users/som/Dropbox/Complex_systems_RNN/DL_tutorial"""'], {}), "('/Users/som/Dropbox/Complex_systems_RNN/DL_tutorial')\n", (317, 371), False, 'import os\n'), ((1143, 1168), 'pandas.read_csv', 'pd.read_csv', (['dataset_path'], {}), '(dataset_path)\n', (1154, 1168), True, 'import pandas as pd\n'), ((3909, 3938), 'pandas.DataFrame', 'pd.DataFrame', (['history.history'], {}), '(history.history)\n', (3921, 3938), True, 'import pandas as pd\n'), ((4142, 4168), 'pandas.read_csv', 'pd.read_csv', (['dataset_path1'], {}), '(dataset_path1)\n', (4153, 4168), True, 'import pandas as pd\n'), ((1623, 1647), 'numpy.power', 'np.power', (['(1 - Rec)', '(1 / 4)'], {}), '(1 - Rec, 1 / 4)\n', (1631, 1647), True, 'import numpy as np\n'), ((3335, 3369), 'tensorflow.keras.optimizers.RMSprop', 'tf.keras.optimizers.RMSprop', (['(0.001)'], {}), '(0.001)\n', (3362, 3369), True, 'import tensorflow as tf\n'), ((1961, 1975), 'numpy.power', 'np.power', (['x', '(4)'], {}), '(x, 4)\n', (1969, 1975), True, 'import numpy as np\n'), ((3114, 3178), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(10)'], {'activation': '"""softmax"""', 'bias_initializer': '"""zeros"""'}), "(10, activation='softmax', bias_initializer='zeros')\n", (3126, 3178), False, 'from tensorflow.keras import layers\n'), ((3191, 3232), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(1)'], {'bias_initializer': '"""zeros"""'}), "(1, bias_initializer='zeros')\n", (3203, 3232), False, 'from tensorflow.keras import layers\n'), ((3855, 3882), 'tensorflow_docs.modeling.EpochDots', 'tfdocs.modeling.EpochDots', ([], {}), '()\n', (3880, 3882), True, 'import tensorflow_docs as tfdocs\n')]
from abc import ABC, abstractmethod from typing import Callable, cast, Set, List, Dict, Optional import numpy as np from autofit import ModelInstance, Analysis, DirectoryPaths from autofit.graphical.expectation_propagation import AbstractFactorOptimiser from autofit.graphical.expectation_propagation import EPMeanField from autofit.graphical.expectation_propagation import EPOptimiser from autofit.graphical.factor_graphs.factor import Factor from autofit.graphical.factor_graphs.graph import FactorGraph from autofit.graphical.messages import NormalMessage from autofit.mapper.prior.prior import Prior from autofit.mapper.prior_model.collection import CollectionPriorModel from autofit.mapper.prior_model.prior_model import PriorModel, AbstractPriorModel class AbstractModelFactor(Analysis, ABC): @property @abstractmethod def model_factors(self) -> List["ModelFactor"]: """ A list of factors that comprise a PriorModel and corresponding fitness function """ def freeze(self): for model_factor in self.model_factors: model_factor.freeze() @property def priors(self) -> Set[Prior]: """ A set of all priors encompassed by the contained likelihood models """ return { prior for model in self.model_factors for prior in model.prior_model.priors } @property def prior_factors(self) -> List[Factor]: """ A list of factors that act as priors on latent variables. One factor exists for each unique prior. """ return [ Factor( cast( Callable, prior ), x=prior ) for prior in self.priors ] @property def message_dict(self) -> Dict[Prior, NormalMessage]: """ Dictionary mapping priors to messages. TODO: should support more than just GaussianPriors/NormalMessages """ return { prior: NormalMessage.from_prior( prior ) for prior in self.priors } @property def graph(self) -> FactorGraph: """ The complete graph made by combining all factors and priors """ return cast( FactorGraph, np.prod( [ model for model in self.model_factors ] + self.prior_factors ) ) def mean_field_approximation(self) -> EPMeanField: """ Returns a EPMeanField of the factor graph """ return EPMeanField.from_approx_dists( self.graph, self.message_dict ) def _make_ep_optimiser( self, optimiser: AbstractFactorOptimiser ) -> EPOptimiser: return EPOptimiser( self.graph, default_optimiser=optimiser, factor_optimisers={ factor: factor.optimiser for factor in self.model_factors if factor.optimiser is not None } ) def optimise( self, optimiser: AbstractFactorOptimiser ) -> CollectionPriorModel: """ Use an EP Optimiser to optimise the graph associated with this collection of factors and create a Collection to represent the results. Parameters ---------- optimiser An optimiser that acts on graphs Returns ------- A collection of prior models """ self.freeze() opt = self._make_ep_optimiser( optimiser ) updated_model = opt.run( self.mean_field_approximation() ) collection = CollectionPriorModel([ factor.prior_model for factor in self.model_factors ]) arguments = { prior: updated_model.mean_field[ prior ].as_prior() for prior in collection.priors } return collection.gaussian_prior_model_for_arguments( arguments ) def visualize( self, paths: DirectoryPaths, instance: ModelInstance, during_analysis: bool ): """ Visualise the instances provided using each factor. Instances in the ModelInstance must have the same order as the factors. Parameters ---------- paths Object describing where data should be saved to instance A collection of instances, each corresponding to a factor during_analysis Is this visualisation during analysis? """ for model_factor, instance in zip( self.model_factors, instance ): model_factor.visualize( paths, instance, during_analysis ) def log_likelihood_function( self, instance: ModelInstance ) -> float: """ Compute the combined likelihood of each factor from a collection of instances with the same ordering as the factors. Parameters ---------- instance A collection of instances, one corresponding to each factor Returns ------- The combined likelihood of all factors """ likelihood = abs( self.model_factors[0].analysis.log_likelihood_function( instance[0] ) ) for model_factor, instance_ in zip( self.model_factors[1:], instance[1:] ): likelihood *= abs( model_factor.analysis.log_likelihood_function( instance_ ) ) return -likelihood @property def global_prior_model(self) -> CollectionPriorModel: """ A collection of prior models, with one model for each factor. """ return CollectionPriorModel([ model_factor.prior_model for model_factor in self.model_factors ]) class ModelFactor(Factor, AbstractModelFactor): def __init__( self, prior_model: AbstractPriorModel, analysis: Analysis, optimiser: Optional[AbstractFactorOptimiser] = None ): """ A factor in the graph that actually computes the likelihood of a model given values for each variable that model contains Parameters ---------- prior_model A model with some dimensionality analysis A class that implements a function which evaluates how well an instance of the model fits some data optimiser A custom optimiser that will be used to fit this factor specifically instead of the default optimiser """ self.prior_model = prior_model self.analysis = analysis self.optimiser = optimiser prior_variable_dict = { prior.name: prior for prior in prior_model.priors } def _factor( **kwargs: np.ndarray ) -> float: """ Returns an instance of the prior model and evaluates it, forming a factor. Parameters ---------- kwargs Arguments with names that are unique for each prior. Returns ------- Calculated likelihood """ arguments = dict() for name, array in kwargs.items(): prior_id = int(name.split("_")[1]) prior = prior_model.prior_with_id( prior_id ) arguments[prior] = array instance = prior_model.instance_for_arguments( arguments ) return analysis.log_likelihood_function( instance ) super().__init__( _factor, **prior_variable_dict ) def freeze(self): self.prior_model.freeze() @property def model_factors(self) -> List["ModelFactor"]: return [self] def optimise(self, optimiser) -> PriorModel: """ Optimise this factor on its own returning a PriorModel representing the final state of the messages. Parameters ---------- optimiser Returns ------- A PriorModel representing the optimised factor """ return super().optimise( optimiser )[0] class FactorGraphModel(AbstractModelFactor): def __init__(self, *model_factors: ModelFactor): """ A collection of factors that describe models, which can be used to create a graph and messages. If the models have shared priors then the graph has shared variables Parameters ---------- model_factors """ self._model_factors = model_factors @property def model_factors(self): return self._model_factors
[ "numpy.prod", "autofit.mapper.prior_model.collection.CollectionPriorModel", "autofit.graphical.expectation_propagation.EPMeanField.from_approx_dists", "autofit.graphical.expectation_propagation.EPOptimiser", "autofit.graphical.messages.NormalMessage.from_prior", "typing.cast" ]
[((2759, 2819), 'autofit.graphical.expectation_propagation.EPMeanField.from_approx_dists', 'EPMeanField.from_approx_dists', (['self.graph', 'self.message_dict'], {}), '(self.graph, self.message_dict)\n', (2788, 2819), False, 'from autofit.graphical.expectation_propagation import EPMeanField\n'), ((2985, 3158), 'autofit.graphical.expectation_propagation.EPOptimiser', 'EPOptimiser', (['self.graph'], {'default_optimiser': 'optimiser', 'factor_optimisers': '{factor: factor.optimiser for factor in self.model_factors if factor.\n optimiser is not None}'}), '(self.graph, default_optimiser=optimiser, factor_optimisers={\n factor: factor.optimiser for factor in self.model_factors if factor.\n optimiser is not None})\n', (2996, 3158), False, 'from autofit.graphical.expectation_propagation import EPOptimiser\n'), ((3934, 4009), 'autofit.mapper.prior_model.collection.CollectionPriorModel', 'CollectionPriorModel', (['[factor.prior_model for factor in self.model_factors]'], {}), '([factor.prior_model for factor in self.model_factors])\n', (3954, 4009), False, 'from autofit.mapper.prior_model.collection import CollectionPriorModel\n'), ((6271, 6363), 'autofit.mapper.prior_model.collection.CollectionPriorModel', 'CollectionPriorModel', (['[model_factor.prior_model for model_factor in self.model_factors]'], {}), '([model_factor.prior_model for model_factor in self.\n model_factors])\n', (6291, 6363), False, 'from autofit.mapper.prior_model.collection import CollectionPriorModel\n'), ((2104, 2135), 'autofit.graphical.messages.NormalMessage.from_prior', 'NormalMessage.from_prior', (['prior'], {}), '(prior)\n', (2128, 2135), False, 'from autofit.graphical.messages import NormalMessage\n'), ((2426, 2495), 'numpy.prod', 'np.prod', (['([model for model in self.model_factors] + self.prior_factors)'], {}), '([model for model in self.model_factors] + self.prior_factors)\n', (2433, 2495), True, 'import numpy as np\n'), ((1671, 1692), 'typing.cast', 'cast', (['Callable', 'prior'], {}), '(Callable, prior)\n', (1675, 1692), False, 'from typing import Callable, cast, Set, List, Dict, Optional\n')]
from shapely.geometry import shape import fiona import networkx as nx import matplotlib.pyplot as plt import math import random import traffic import pickle from datetime import datetime from request import Request import numpy as np try: from itertools import izip as zip except ImportError: pass def main(): """ Main function used for demo of data loading and pathfinding. """ G, trips = load_data(reset=False, graph=False, trip=False, abbr=False) # t = random_trip(G) # Selects a random trip for pathfinding demo # Predetermined trip for demo t = Request((40.74345679662331, -73.72770035929027), (40.77214782804362, -73.76426798716528), 0, 0, datetime(2015, 1, 1)) draw_graph(G, bounds=(t.start, t.stop)) process_trips(G, trips=[t], heuristic=diste) plt.axis('equal') plt.show() # === Load Data === def load_data(reset=False, graph=False, trip=False, abbr=False): """ Returns a graph representing the NYC map and an array of 2015 trips. Saves all the data in pickle files. *** To refresh everything, reset=True *** Parameters: (reset, graph, trip, abbr) reset - bool graph - bool trips - bool abbr - bool """ G = None trips = None if reset: graph = trip = abbr = True if graph: traffic_dict = traffic.process_traffic("NYC/Traffic_Data/traffic_volume.csv") pickle_graph(abbr, traffic_dict) with open('graph.pkl', 'rb') as graph_file: G = pickle.load(graph_file) if trip: pickle_trips(G) with open('trips.pkl', 'rb') as trips_file: trips = pickle.load(trips_file) return G, trips def pickle_graph(abbr, traffic_dict): """ Generate and save the graph in a pickle file. Parameters: (abbr, traffic_dict) abbr - bool traffic_dict - dict of traffic volume per street """ # Replace with street abbr try: if abbr: raise ResetPickle with open('abbr.pkl', 'rb') as abbr_file: abbr = pickle.load(abbr_file) except: print("Loading abbreviations...") abbr = {} with open("abbr.txt") as rFile: for line in rFile: line = line.rstrip("\n") abbr[line.split(" ")[0].upper()] = line.split(" ")[1].upper() with open('abbr.pkl', 'wb') as out: pickle.dump(abbr, out) print("Done.") # Variables to keep track of the number of recognized streets recognized = 0 unrecognized = 0 # Build speeds dictionary for every road print("Building speeds dictionary...") speeds = {} for feature in fiona.open("NYC/VZV_Speed Limits/geo_export_6459c10e-7bfb-4e64-ae29-f0747dc3824c.shp"): street = feature["properties"]["street"] for v in street_variations(street, abbr): speeds[v] = feature["properties"]["postvz_sl"] print("Done.") # Create a Graph with intersections as nodes and roads as edges print("Creating graph...") time = random.randint(0, 23) G = nx.Graph() for feature in fiona.open("NYC/Map/geo_export_24fdfadb-893d-40a0-a751-a76cdefc9bc6.shp"): for seg_start, seg_end in zip(list(shape(feature["geometry"]).coords), list(shape(feature["geometry"]).coords)[1:]): street = feature["properties"]["st_label"] if street in speeds: recognized += 1 else: unrecognized += 1 divider = speeds.get(street, 0) if divider == 0: divider = 25 seg_start = seg_start[1] , seg_start[0] seg_end = seg_end[1] , seg_end[0] if street in traffic_dict: volume_total = traffic_dict[street] volume_count = volume_total[time] w = reweight(seg_start, seg_end, divider, int(volume_count)) else: w = weight(seg_start, seg_end, divider) G.add_edge(seg_start, seg_end, weight=w, distance=feature["properties"]["shape_leng"], speed=divider / 3600 * 1609) # Gives the edge properties like a weight, the in real life distance, and the speed limit print( f"Streets recognized: {recognized}. Unrecognized: {unrecognized}. Percent recognized: {recognized / (unrecognized + recognized) * 100}%.") with open('graph.pkl', 'wb') as out: pickle.dump(G, out) print("Done.") def pickle_trips(G): """ Saves the trips in a pickle file. Parameters: (G) G - networkx.graph() """ print("Loading trips...") t = 0 # Number of trips loaded so far trips = [] with open("NYC/2015_taxi_data.csv") as rFile: first_line = rFile.readline().rstrip("\n").split(",") for line in rFile: line = line.rstrip("\n").split(",") temp = {} for i in range(len(first_line)): temp[first_line[i]] = line[i] starting = (float(temp["pickup_latitude"]) , float(temp["pickup_longitude"]) ) ending = (float(temp["dropoff_latitude"]) , float(temp["dropoff_longitude"]) ) n1, n2 = find_closest_node(G, starting), find_closest_node(G, ending) trips.append(Request(n1, n2, 0, int(temp["passenger_count"]), datetime.strptime(temp["tpep_pickup_datetime"], "%Y-%m-%d %H:%M:%S"))) t += 1 if t == 100: # Sets a limit on the number of trips to save time. print("Loaded " + str(t) + " trips.") break with open('trips.pkl', 'wb') as out: pickle.dump(trips, out) print("Done.") def find_closest_node(G, starting): """ Finds the closest node to starting. Parameters: (G, starting) G - networkx.graph() starting - (lat, lon) """ n1 = (None, float("inf")) for node in G.nodes(): closeness = abs(starting[0] - node[0]) + abs(starting[1] - node[1]) if closeness < n1[1]: n1 = (node, closeness) return n1[0] def street_variations(s, abbr): """ Returns multiple variations of the street name based on common street term abbreviations. Parameters: (s, abbr) s - string abbr - dict of common street abbreviations """ variations = [s] for a in abbr: for v in variations.copy(): if a in v: v = v.replace(a, abbr[a]) variations.append(v) return variations class ResetPickle(Exception): pass # === Plotting === def draw_graph(g, bounds=((-180 , -90 ), (180 , 90 ))): """ Plots the edges on matplotlib. Parameters: (g, bounds) g - networkx.graph() bounds - (node, node) node - (lat, lon) """ n1 = bounds[0] n2 = bounds[1] for edge in g.edges(): if min(n1[0], n2[0]) < edge[0][0] < max(n1[0], n2[0]) and min(n1[1], n2[1]) < edge[0][1] < max(n1[1], n2[1]): plt.plot((edge[0][1], edge[1][1]), (edge[0][0], edge[1][0]), 'c.-') def draw_path(path, color="b"): """ Plots a path on matplotlib. Parameters: (path, color) path - [nodes] color - str node - (lat, lon) """ px = [] py = [] for p in range(len(path) - 1): plt.plot((path[p][1], path[p + 1][1]), (path[p][0], path[p + 1][0]), "m--") px.append(path[p][1]) py.append(path[p][0]) plt.plot(px, py, color + '.') # === Trips === def process_trips(G, trips, heuristic): """ Processes trips and plots them on the graph. Parameters: (G, trips, heuristic) G - networkx.graph() trips - [trips] heuristic - Callable trip - (node, node) node - (lat, lon) """ for trip in trips: n1 = trip.start n2 = trip.stop print(f"\nGoing from {n1} to {n2}") print("Calculating traffic...") try: path = nx.astar_path(G, n1, n2, heuristic) print(f"Cost of trip: {nx.astar_path_length(G, n1, n2, heuristic)}") print(f"Nodes in trip: {len(path)}") print_trip_info(n1, n2, path, G) draw_path(path) except: print("Couldn't find a path") def random_trip(G): """ Returns a randomly generated trip as a Request. Parameters: (G) G - netwrokx.graph() """ tn = len(G.nodes()) n1 = random.randint(0, tn) n2 = random.randint(0, tn) tn = 0 for node in G.nodes(): if n1 == tn: n1 = node if n2 == tn: n2 = node tn += 1 return Request(n1, n2, 0, 0, datetime(2015, 1, 1)) def print_trip_info(n1, n2, path, G, pr=False): """ Prints and returns out the trip info for the trip: path. Parameters: (n1, n2, path, G) n1 - (lat, lon) n2 - (lat, lon) path - list of nodes in order G - networkx.graph() pr - bool - whether to print the info node - (lat, lon) """ # Note: Edges with the exact same length are only counted once as this was found to be the most accurate so far speeds = {} distances = [] time = 0 for p in range(len(path) - 1): speed = round(G[path[p]][path[p + 1]]["speed"], 2) if G[path[p]][path[p + 1]]["distance"] not in distances: distances.append(G[path[p]][path[p + 1]]["distance"]) speeds[speed] = speeds.get(speed, 0) + 1 time += G[path[p]][path[p + 1]]["distance"] * 0.3048 / speed if pr: print(f"Speeds (m/s): {speeds}") print(f"Distance (meters?): {round(sum(distances) * 0.3048, 2)}") print(f"Euclidean distance (meters): {distance_to_meters(n1, n2)}") print(f"Time (minutes): {round(time / 60, 2)}") return speeds, round(sum(distances) * 0.3048, 2), round(time / 60, 2) # === Heuristics === def weight(s, e, speed): """ Returns the weight to be assigned to the edges of the graph. Parameters: (s, e, d) s - (lat, lon) e - (lat, lon) speed - int """ return ((s[0] - e[0]) ** 2 + (s[1] - e[1]) ** 2) ** 0.5 / speed def reweight(s, e, speed, volume): """ Returns the weight to be assigned to the edges of the graph. ** Traffic Version (Includes historical traffic data for more accurate weighting) ** Parameters: (s, e, speed, volume) s - (lat, lon) e - (lat, lon) speed - int volume - int """ density = volume / (distance_to_meters(s, e)) congestion = density / speed return ((s[0] - e[0]) ** 2 + (s[1] - e[1]) ** 2) ** 0.5 / congestion def diste(p1, p2): """ Returns euclidean distance divided by the default NYC speed. Admissible. Parameters: (p1, p2) p1 - (lat, lon) p2 - (lat, lon) """ return (pow(abs(p1[0] - p2[0]), 2) + pow(abs(p1[1] - p2[1]), 2)) ** 0.5 / 65 def distm(p1, p2): """ Returns manhattan distance divided by the default NYC speed. NOT admissible. Parameters: (p1, p2) p1 - (lat, lon) p2 - (lat, lon) """ return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1]) / 65 # === Helpers === def distance_to_meters(n1, n2): """ Calculates the great circle distance between two points. Parameters: (n1, n2) n1 - (lat, lon) n2 - (lat, lon) """ radius = 6371000 # Radius of earth x1, y1 = float(n1[0]), float(n1[1]) x2, y2 = float(n2[0]), float(n2[1]) o1 = np.divide(np.multiply(x1, math.pi), 180) o2 = np.divide(np.multiply(x2,math.pi),180) d1 = np.divide(np.multiply(np.subtract(x2,x1),math.pi),180) d2 = np.divide(np.multiply(np.subtract(y2,y1),math.pi),180) a = np.add(np.multiply(np.sin(np.divide(d1,2)),np.sin(np.divide(d1,2))),np.multiply(np.multiply(np.cos(o2),math.sin(np.divide(d2,2))),np.sin(np.divide(d2,2)))) c = np.multiply(2, np.arctan(np.divide(np.sqrt(a),np.sqrt(np.subtract(1,a))))) return round(np.multiply(radius,c),2) # === Main === if __name__ == "__main__": main()
[ "numpy.sqrt", "shapely.geometry.shape", "networkx.astar_path", "numpy.divide", "datetime.datetime", "numpy.multiply", "matplotlib.pyplot.plot", "numpy.subtract", "fiona.open", "matplotlib.pyplot.axis", "random.randint", "traffic.process_traffic", "pickle.load", "numpy.cos", "matplotlib.pyplot.show", "pickle.dump", "datetime.datetime.strptime", "networkx.Graph", "networkx.astar_path_length" ]
[((804, 821), 'matplotlib.pyplot.axis', 'plt.axis', (['"""equal"""'], {}), "('equal')\n", (812, 821), True, 'import matplotlib.pyplot as plt\n'), ((826, 836), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (834, 836), True, 'import matplotlib.pyplot as plt\n'), ((2669, 2760), 'fiona.open', 'fiona.open', (['"""NYC/VZV_Speed Limits/geo_export_6459c10e-7bfb-4e64-ae29-f0747dc3824c.shp"""'], {}), "(\n 'NYC/VZV_Speed Limits/geo_export_6459c10e-7bfb-4e64-ae29-f0747dc3824c.shp')\n", (2679, 2760), False, 'import fiona\n'), ((3045, 3066), 'random.randint', 'random.randint', (['(0)', '(23)'], {}), '(0, 23)\n', (3059, 3066), False, 'import random\n'), ((3075, 3085), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (3083, 3085), True, 'import networkx as nx\n'), ((3105, 3178), 'fiona.open', 'fiona.open', (['"""NYC/Map/geo_export_24fdfadb-893d-40a0-a751-a76cdefc9bc6.shp"""'], {}), "('NYC/Map/geo_export_24fdfadb-893d-40a0-a751-a76cdefc9bc6.shp')\n", (3115, 3178), False, 'import fiona\n'), ((7499, 7528), 'matplotlib.pyplot.plot', 'plt.plot', (['px', 'py', "(color + '.')"], {}), "(px, py, color + '.')\n", (7507, 7528), True, 'import matplotlib.pyplot as plt\n'), ((8484, 8505), 'random.randint', 'random.randint', (['(0)', 'tn'], {}), '(0, tn)\n', (8498, 8505), False, 'import random\n'), ((8515, 8536), 'random.randint', 'random.randint', (['(0)', 'tn'], {}), '(0, tn)\n', (8529, 8536), False, 'import random\n'), ((685, 705), 'datetime.datetime', 'datetime', (['(2015)', '(1)', '(1)'], {}), '(2015, 1, 1)\n', (693, 705), False, 'from datetime import datetime\n'), ((1339, 1401), 'traffic.process_traffic', 'traffic.process_traffic', (['"""NYC/Traffic_Data/traffic_volume.csv"""'], {}), "('NYC/Traffic_Data/traffic_volume.csv')\n", (1362, 1401), False, 'import traffic\n'), ((1503, 1526), 'pickle.load', 'pickle.load', (['graph_file'], {}), '(graph_file)\n', (1514, 1526), False, 'import pickle\n'), ((1629, 1652), 'pickle.load', 'pickle.load', (['trips_file'], {}), '(trips_file)\n', (1640, 1652), False, 'import pickle\n'), ((4462, 4481), 'pickle.dump', 'pickle.dump', (['G', 'out'], {}), '(G, out)\n', (4473, 4481), False, 'import pickle\n'), ((5679, 5702), 'pickle.dump', 'pickle.dump', (['trips', 'out'], {}), '(trips, out)\n', (5690, 5702), False, 'import pickle\n'), ((7359, 7434), 'matplotlib.pyplot.plot', 'plt.plot', (['(path[p][1], path[p + 1][1])', '(path[p][0], path[p + 1][0])', '"""m--"""'], {}), "((path[p][1], path[p + 1][1]), (path[p][0], path[p + 1][0]), 'm--')\n", (7367, 7434), True, 'import matplotlib.pyplot as plt\n'), ((8710, 8730), 'datetime.datetime', 'datetime', (['(2015)', '(1)', '(1)'], {}), '(2015, 1, 1)\n', (8718, 8730), False, 'from datetime import datetime\n'), ((11572, 11596), 'numpy.multiply', 'np.multiply', (['x1', 'math.pi'], {}), '(x1, math.pi)\n', (11583, 11596), True, 'import numpy as np\n'), ((11622, 11646), 'numpy.multiply', 'np.multiply', (['x2', 'math.pi'], {}), '(x2, math.pi)\n', (11633, 11646), True, 'import numpy as np\n'), ((12044, 12066), 'numpy.multiply', 'np.multiply', (['radius', 'c'], {}), '(radius, c)\n', (12055, 12066), True, 'import numpy as np\n'), ((2051, 2073), 'pickle.load', 'pickle.load', (['abbr_file'], {}), '(abbr_file)\n', (2062, 2073), False, 'import pickle\n'), ((7041, 7108), 'matplotlib.pyplot.plot', 'plt.plot', (['(edge[0][1], edge[1][1])', '(edge[0][0], edge[1][0])', '"""c.-"""'], {}), "((edge[0][1], edge[1][1]), (edge[0][0], edge[1][0]), 'c.-')\n", (7049, 7108), True, 'import matplotlib.pyplot as plt\n'), ((8014, 8049), 'networkx.astar_path', 'nx.astar_path', (['G', 'n1', 'n2', 'heuristic'], {}), '(G, n1, n2, heuristic)\n', (8027, 8049), True, 'import networkx as nx\n'), ((11682, 11701), 'numpy.subtract', 'np.subtract', (['x2', 'x1'], {}), '(x2, x1)\n', (11693, 11701), True, 'import numpy as np\n'), ((11746, 11765), 'numpy.subtract', 'np.subtract', (['y2', 'y1'], {}), '(y2, y1)\n', (11757, 11765), True, 'import numpy as np\n'), ((2392, 2414), 'pickle.dump', 'pickle.dump', (['abbr', 'out'], {}), '(abbr, out)\n', (2403, 2414), False, 'import pickle\n'), ((11814, 11830), 'numpy.divide', 'np.divide', (['d1', '(2)'], {}), '(d1, 2)\n', (11823, 11830), True, 'import numpy as np\n'), ((11838, 11854), 'numpy.divide', 'np.divide', (['d1', '(2)'], {}), '(d1, 2)\n', (11847, 11854), True, 'import numpy as np\n'), ((11880, 11890), 'numpy.cos', 'np.cos', (['o2'], {}), '(o2)\n', (11886, 11890), True, 'import numpy as np\n'), ((11925, 11941), 'numpy.divide', 'np.divide', (['d2', '(2)'], {}), '(d2, 2)\n', (11934, 11941), True, 'import numpy as np\n'), ((11987, 11997), 'numpy.sqrt', 'np.sqrt', (['a'], {}), '(a)\n', (11994, 11997), True, 'import numpy as np\n'), ((3223, 3249), 'shapely.geometry.shape', 'shape', (["feature['geometry']"], {}), "(feature['geometry'])\n", (3228, 3249), False, 'from shapely.geometry import shape\n'), ((5386, 5454), 'datetime.datetime.strptime', 'datetime.strptime', (["temp['tpep_pickup_datetime']", '"""%Y-%m-%d %H:%M:%S"""'], {}), "(temp['tpep_pickup_datetime'], '%Y-%m-%d %H:%M:%S')\n", (5403, 5454), False, 'from datetime import datetime\n'), ((11900, 11916), 'numpy.divide', 'np.divide', (['d2', '(2)'], {}), '(d2, 2)\n', (11909, 11916), True, 'import numpy as np\n'), ((12006, 12023), 'numpy.subtract', 'np.subtract', (['(1)', 'a'], {}), '(1, a)\n', (12017, 12023), True, 'import numpy as np\n'), ((3302, 3328), 'shapely.geometry.shape', 'shape', (["feature['geometry']"], {}), "(feature['geometry'])\n", (3307, 3328), False, 'from shapely.geometry import shape\n'), ((8086, 8128), 'networkx.astar_path_length', 'nx.astar_path_length', (['G', 'n1', 'n2', 'heuristic'], {}), '(G, n1, n2, heuristic)\n', (8106, 8128), True, 'import networkx as nx\n')]
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import math import numpy as np import unittest from op_test import OpTest def calc_psroi_pool(x, rois, rois_num_per_img, output_channels, spatial_scale, pooled_height, pooled_width): """ Psroi_pool implemented by Numpy. x: 4-D as (N, C, H, W), rois: 2-D as [[x1, y1, x2, y2], ...], rois_num_per_img: 1-D as [nums_of_batch_0, nums_of_batch_1, ...] """ output_shape = (len(rois), output_channels, pooled_height, pooled_width) out_data = np.zeros(output_shape) batch_id = 0 rois_num_id = 0 rois_num_left = rois_num_per_img[rois_num_id] for i in range(len(rois)): roi = rois[i] roi_batch_id = batch_id rois_num_left -= 1 if rois_num_left == 0: rois_num_id += 1 if rois_num_id < len(rois_num_per_img): rois_num_left = rois_num_per_img[rois_num_id] batch_id += 1 roi_start_w = round(roi[0]) * spatial_scale roi_start_h = round(roi[1]) * spatial_scale roi_end_w = (round(roi[2]) + 1.) * spatial_scale roi_end_h = (round(roi[3]) + 1.) * spatial_scale roi_height = max(roi_end_h - roi_start_h, 0.1) roi_width = max(roi_end_w - roi_start_w, 0.1) bin_size_h = roi_height / float(pooled_height) bin_size_w = roi_width / float(pooled_width) x_i = x[roi_batch_id] for c in range(output_channels): for ph in range(pooled_height): for pw in range(pooled_width): hstart = int( math.floor(float(ph) * bin_size_h + roi_start_h)) wstart = int( math.floor(float(pw) * bin_size_w + roi_start_w)) hend = int( math.ceil(float(ph + 1) * bin_size_h + roi_start_h)) wend = int( math.ceil(float(pw + 1) * bin_size_w + roi_start_w)) hstart = min(max(hstart, 0), x.shape[2]) hend = min(max(hend, 0), x.shape[2]) wstart = min(max(wstart, 0), x.shape[3]) wend = min(max(wend, 0), x.shape[3]) c_in = (c * pooled_height + ph) * pooled_width + pw is_empty = (hend <= hstart) or (wend <= wstart) out_sum = 0. for ih in range(hstart, hend): for iw in range(wstart, wend): out_sum += x_i[c_in, ih, iw] bin_area = (hend - hstart) * (wend - wstart) out_data[i, c, ph, pw] = 0. if is_empty else ( out_sum / float(bin_area)) return out_data class TestPSROIPoolOp(OpTest): def set_data(self): paddle.enable_static() self.init_test_case() self.make_rois() self.outs = calc_psroi_pool(self.x, self.boxes, self.boxes_num, self.output_channels, self.spatial_scale, self.pooled_height, self.pooled_width).astype('float64') self.inputs = { 'X': self.x, 'ROIs': (self.rois_with_batch_id[:, 1:5], self.rois_lod) } self.attrs = { 'output_channels': self.output_channels, 'spatial_scale': self.spatial_scale, 'pooled_height': self.pooled_height, 'pooled_width': self.pooled_width } self.outputs = {'Out': self.outs} def init_test_case(self): self.batch_size = 3 self.channels = 3 * 2 * 2 self.height = 6 self.width = 4 self.x_dim = [self.batch_size, self.channels, self.height, self.width] self.spatial_scale = 1.0 / 4.0 self.output_channels = 3 self.pooled_height = 2 self.pooled_width = 2 self.x = np.random.random(self.x_dim).astype('float64') def make_rois(self): rois = [] self.rois_lod = [[]] for bno in range(self.batch_size): self.rois_lod[0].append(bno + 1) for i in range(bno + 1): x1 = np.random.random_integers( 0, self.width // self.spatial_scale - self.pooled_width) y1 = np.random.random_integers( 0, self.height // self.spatial_scale - self.pooled_height) x2 = np.random.random_integers(x1 + self.pooled_width, self.width // self.spatial_scale) y2 = np.random.random_integers( y1 + self.pooled_height, self.height // self.spatial_scale) roi = [bno, x1, y1, x2, y2] rois.append(roi) self.rois_num = len(rois) self.rois_with_batch_id = np.array(rois).astype('float64') self.boxes = self.rois_with_batch_id[:, 1:] self.boxes_num = np.array( [bno + 1 for bno in range(self.batch_size)]).astype('int32') def setUp(self): self.op_type = 'psroi_pool' self.set_data() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPSROIPoolDynamicFunctionAPI(unittest.TestCase): def setUp(self): self.x = np.random.random([2, 490, 28, 28]).astype(np.float32) self.boxes = np.array( [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]).astype(np.float32) self.boxes_num = np.array([1, 2]).astype(np.int32) def test_output_size(self): def test_output_size_is_int(): output_size = 7 out = paddle.vision.ops.psroi_pool( paddle.to_tensor(self.x), paddle.to_tensor(self.boxes), paddle.to_tensor(self.boxes_num), output_size).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10, 1.0, 7, 7) self.assertTrue(np.allclose(out, expect_out)) def test_output_size_is_tuple(): output_size = (7, 7) out = paddle.vision.ops.psroi_pool( paddle.to_tensor(self.x), paddle.to_tensor(self.boxes), paddle.to_tensor(self.boxes_num), output_size).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10, 1.0, 7, 7) self.assertTrue(np.allclose(out, expect_out)) def test_dytype_is_float64(): output_size = (7, 7) out = paddle.vision.ops.psroi_pool( paddle.to_tensor(self.x, 'float64'), paddle.to_tensor(self.boxes, 'float64'), paddle.to_tensor(self.boxes_num, 'int32'), output_size).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10, 1.0, 7, 7) self.assertTrue(np.allclose(out, expect_out)) places = ['cpu'] if paddle.fluid.core.is_compiled_with_cuda(): places.append('gpu') for place in places: paddle.set_device(place) test_output_size_is_int() test_output_size_is_tuple() test_dytype_is_float64() class TestPSROIPoolDynamicClassAPI(unittest.TestCase): def setUp(self): self.x = np.random.random([2, 128, 32, 32]).astype(np.float32) self.boxes = np.array([[3, 5, 6, 13], [7, 4, 22, 18], [4, 5, 7, 10], [5, 3, 25, 21]]).astype(np.float32) self.boxes_num = np.array([2, 2]).astype(np.int32) def test_output_size(self): def test_output_size_is_int(): psroi_module = paddle.vision.ops.PSRoIPool(8, 1.1) out = psroi_module( paddle.to_tensor(self.x), paddle.to_tensor(self.boxes), paddle.to_tensor(self.boxes_num)).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2, 1.1, 8, 8) self.assertTrue(np.allclose(out, expect_out)) def test_output_size_is_tuple(): psroi_pool_module = paddle.vision.ops.PSRoIPool(8, 1.1) out = psroi_pool_module( paddle.to_tensor(self.x), paddle.to_tensor(self.boxes), paddle.to_tensor(self.boxes_num)).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2, 1.1, 8, 8) self.assertTrue(np.allclose(out, expect_out)) def test_dytype_is_float64(): psroi_pool_module = paddle.vision.ops.PSRoIPool(8, 1.1) out = psroi_pool_module( paddle.to_tensor(self.x, 'float64'), paddle.to_tensor(self.boxes, 'float64'), paddle.to_tensor(self.boxes_num, 'int32')).numpy() expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 2, 1.1, 8, 8) self.assertTrue(np.allclose(out, expect_out)) paddle.disable_static() places = ['cpu'] if paddle.fluid.core.is_compiled_with_cuda(): places.append('gpu') for place in places: paddle.set_device(place) test_output_size_is_int() test_output_size_is_tuple() test_dytype_is_float64() class TestPSROIPoolBoxesNumError(unittest.TestCase): def setUp(self): paddle.disable_static() self.x = paddle.uniform([2, 490, 28, 28], dtype='float32') self.boxes = paddle.to_tensor( [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32') def test_errors(self): def test_boxes_num_nums_error(): boxes_num = paddle.to_tensor([1, 5], 'int32') out = paddle.vision.ops.psroi_pool( self.x, self.boxes, boxes_num, output_size=7) self.assertRaises(ValueError, test_boxes_num_nums_error) def test_boxes_num_length_error(): boxes_num = paddle.to_tensor([1, 1, 1], 'int32') out = paddle.vision.ops.psroi_pool( self.x, self.boxes, boxes_num, output_size=7) self.assertRaises(ValueError, test_boxes_num_length_error) class TestPSROIPoolChannelError(unittest.TestCase): def setUp(self): paddle.disable_static() self.x = paddle.uniform([2, 490, 28, 28], dtype='float32') self.boxes = paddle.to_tensor( [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32') self.output_size = 4 def test_errors(self): def test_channel_error(): boxes_num = paddle.to_tensor([2, 1], 'int32') out = paddle.vision.ops.psroi_pool(self.x, self.boxes, boxes_num, self.output_size) self.assertRaises(ValueError, test_channel_error) class TestPSROIPoolStaticAPI(unittest.TestCase): def setUp(self): paddle.enable_static() self.x_placeholder = paddle.static.data( name='x', shape=[2, 490, 28, 28]) self.x = np.random.random([2, 490, 28, 28]).astype(np.float32) self.boxes_placeholder = paddle.static.data( name='boxes', shape=[3, 4], lod_level=1) self.boxes = np.array( [[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]).astype(np.float32) self.boxes_num = np.array([1, 2]).astype(np.int32) def test_function_in_static(self): output_size = 7 out = paddle.vision.ops.psroi_pool(self.x_placeholder, self.boxes_placeholder, self.boxes_num, output_size) expect_out = calc_psroi_pool(self.x, self.boxes, self.boxes_num, 10, 1.0, 7, 7) places = [paddle.CPUPlace()] if paddle.fluid.core.is_compiled_with_cuda(): places.append(paddle.CUDAPlace(0)) for place in places: exe = paddle.static.Executor(place) boxes_lod_data = paddle.fluid.create_lod_tensor(self.boxes, [[1, 2]], place) out_res = exe.run(paddle.static.default_main_program(), feed={'x': self.x, 'boxes': boxes_lod_data}, fetch_list=[out.name]) self.assertTrue(np.allclose(out_res, expect_out)) if __name__ == '__main__': unittest.main()
[ "numpy.array", "paddle.disable_static", "unittest.main", "paddle.CPUPlace", "numpy.random.random", "paddle.vision.ops.psroi_pool", "paddle.vision.ops.PSRoIPool", "paddle.fluid.create_lod_tensor", "paddle.enable_static", "paddle.to_tensor", "paddle.fluid.core.is_compiled_with_cuda", "paddle.set_device", "numpy.allclose", "paddle.uniform", "paddle.static.data", "paddle.static.Executor", "paddle.static.default_main_program", "numpy.random.random_integers", "paddle.CUDAPlace", "numpy.zeros" ]
[((1156, 1178), 'numpy.zeros', 'np.zeros', (['output_shape'], {}), '(output_shape)\n', (1164, 1178), True, 'import numpy as np\n'), ((13311, 13326), 'unittest.main', 'unittest.main', ([], {}), '()\n', (13324, 13326), False, 'import unittest\n'), ((3454, 3476), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (3474, 3476), False, 'import paddle\n'), ((7744, 7785), 'paddle.fluid.core.is_compiled_with_cuda', 'paddle.fluid.core.is_compiled_with_cuda', ([], {}), '()\n', (7783, 7785), False, 'import paddle\n'), ((9859, 9882), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (9880, 9882), False, 'import paddle\n'), ((9919, 9960), 'paddle.fluid.core.is_compiled_with_cuda', 'paddle.fluid.core.is_compiled_with_cuda', ([], {}), '()\n', (9958, 9960), False, 'import paddle\n'), ((10260, 10283), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (10281, 10283), False, 'import paddle\n'), ((10301, 10350), 'paddle.uniform', 'paddle.uniform', (['[2, 490, 28, 28]'], {'dtype': '"""float32"""'}), "([2, 490, 28, 28], dtype='float32')\n", (10315, 10350), False, 'import paddle\n'), ((10372, 10448), 'paddle.to_tensor', 'paddle.to_tensor', (['[[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]', '"""float32"""'], {}), "([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32')\n", (10388, 10448), False, 'import paddle\n'), ((11131, 11154), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (11152, 11154), False, 'import paddle\n'), ((11172, 11221), 'paddle.uniform', 'paddle.uniform', (['[2, 490, 28, 28]'], {'dtype': '"""float32"""'}), "([2, 490, 28, 28], dtype='float32')\n", (11186, 11221), False, 'import paddle\n'), ((11243, 11319), 'paddle.to_tensor', 'paddle.to_tensor', (['[[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]', '"""float32"""'], {}), "([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]], 'float32')\n", (11259, 11319), False, 'import paddle\n'), ((11764, 11786), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (11784, 11786), False, 'import paddle\n'), ((11816, 11868), 'paddle.static.data', 'paddle.static.data', ([], {'name': '"""x"""', 'shape': '[2, 490, 28, 28]'}), "(name='x', shape=[2, 490, 28, 28])\n", (11834, 11868), False, 'import paddle\n'), ((11986, 12045), 'paddle.static.data', 'paddle.static.data', ([], {'name': '"""boxes"""', 'shape': '[3, 4]', 'lod_level': '(1)'}), "(name='boxes', shape=[3, 4], lod_level=1)\n", (12004, 12045), False, 'import paddle\n'), ((12307, 12412), 'paddle.vision.ops.psroi_pool', 'paddle.vision.ops.psroi_pool', (['self.x_placeholder', 'self.boxes_placeholder', 'self.boxes_num', 'output_size'], {}), '(self.x_placeholder, self.boxes_placeholder,\n self.boxes_num, output_size)\n', (12335, 12412), False, 'import paddle\n'), ((12668, 12709), 'paddle.fluid.core.is_compiled_with_cuda', 'paddle.fluid.core.is_compiled_with_cuda', ([], {}), '()\n', (12707, 12709), False, 'import paddle\n'), ((7861, 7885), 'paddle.set_device', 'paddle.set_device', (['place'], {}), '(place)\n', (7878, 7885), False, 'import paddle\n'), ((8452, 8487), 'paddle.vision.ops.PSRoIPool', 'paddle.vision.ops.PSRoIPool', (['(8)', '(1.1)'], {}), '(8, 1.1)\n', (8479, 8487), False, 'import paddle\n'), ((8930, 8965), 'paddle.vision.ops.PSRoIPool', 'paddle.vision.ops.PSRoIPool', (['(8)', '(1.1)'], {}), '(8, 1.1)\n', (8957, 8965), False, 'import paddle\n'), ((9410, 9445), 'paddle.vision.ops.PSRoIPool', 'paddle.vision.ops.PSRoIPool', (['(8)', '(1.1)'], {}), '(8, 1.1)\n', (9437, 9445), False, 'import paddle\n'), ((10036, 10060), 'paddle.set_device', 'paddle.set_device', (['place'], {}), '(place)\n', (10053, 10060), False, 'import paddle\n'), ((10555, 10588), 'paddle.to_tensor', 'paddle.to_tensor', (['[1, 5]', '"""int32"""'], {}), "([1, 5], 'int32')\n", (10571, 10588), False, 'import paddle\n'), ((10607, 10681), 'paddle.vision.ops.psroi_pool', 'paddle.vision.ops.psroi_pool', (['self.x', 'self.boxes', 'boxes_num'], {'output_size': '(7)'}), '(self.x, self.boxes, boxes_num, output_size=7)\n', (10635, 10681), False, 'import paddle\n'), ((10833, 10869), 'paddle.to_tensor', 'paddle.to_tensor', (['[1, 1, 1]', '"""int32"""'], {}), "([1, 1, 1], 'int32')\n", (10849, 10869), False, 'import paddle\n'), ((10888, 10962), 'paddle.vision.ops.psroi_pool', 'paddle.vision.ops.psroi_pool', (['self.x', 'self.boxes', 'boxes_num'], {'output_size': '(7)'}), '(self.x, self.boxes, boxes_num, output_size=7)\n', (10916, 10962), False, 'import paddle\n'), ((11448, 11481), 'paddle.to_tensor', 'paddle.to_tensor', (['[2, 1]', '"""int32"""'], {}), "([2, 1], 'int32')\n", (11464, 11481), False, 'import paddle\n'), ((11500, 11577), 'paddle.vision.ops.psroi_pool', 'paddle.vision.ops.psroi_pool', (['self.x', 'self.boxes', 'boxes_num', 'self.output_size'], {}), '(self.x, self.boxes, boxes_num, self.output_size)\n', (11528, 11577), False, 'import paddle\n'), ((12638, 12655), 'paddle.CPUPlace', 'paddle.CPUPlace', ([], {}), '()\n', (12653, 12655), False, 'import paddle\n'), ((12805, 12834), 'paddle.static.Executor', 'paddle.static.Executor', (['place'], {}), '(place)\n', (12827, 12834), False, 'import paddle\n'), ((12864, 12923), 'paddle.fluid.create_lod_tensor', 'paddle.fluid.create_lod_tensor', (['self.boxes', '[[1, 2]]', 'place'], {}), '(self.boxes, [[1, 2]], place)\n', (12894, 12923), False, 'import paddle\n'), ((4583, 4611), 'numpy.random.random', 'np.random.random', (['self.x_dim'], {}), '(self.x_dim)\n', (4599, 4611), True, 'import numpy as np\n'), ((4849, 4936), 'numpy.random.random_integers', 'np.random.random_integers', (['(0)', '(self.width // self.spatial_scale - self.pooled_width)'], {}), '(0, self.width // self.spatial_scale - self.\n pooled_width)\n', (4874, 4936), True, 'import numpy as np\n'), ((4974, 5063), 'numpy.random.random_integers', 'np.random.random_integers', (['(0)', '(self.height // self.spatial_scale - self.pooled_height)'], {}), '(0, self.height // self.spatial_scale - self.\n pooled_height)\n', (4999, 5063), True, 'import numpy as np\n'), ((5102, 5190), 'numpy.random.random_integers', 'np.random.random_integers', (['(x1 + self.pooled_width)', '(self.width // self.spatial_scale)'], {}), '(x1 + self.pooled_width, self.width // self.\n spatial_scale)\n', (5127, 5190), True, 'import numpy as np\n'), ((5254, 5344), 'numpy.random.random_integers', 'np.random.random_integers', (['(y1 + self.pooled_height)', '(self.height // self.spatial_scale)'], {}), '(y1 + self.pooled_height, self.height // self.\n spatial_scale)\n', (5279, 5344), True, 'import numpy as np\n'), ((5506, 5520), 'numpy.array', 'np.array', (['rois'], {}), '(rois)\n', (5514, 5520), True, 'import numpy as np\n'), ((6011, 6045), 'numpy.random.random', 'np.random.random', (['[2, 490, 28, 28]'], {}), '([2, 490, 28, 28])\n', (6027, 6045), True, 'import numpy as np\n'), ((6086, 6143), 'numpy.array', 'np.array', (['[[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]'], {}), '([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]])\n', (6094, 6143), True, 'import numpy as np\n'), ((6201, 6217), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (6209, 6217), True, 'import numpy as np\n'), ((6703, 6731), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (6714, 6731), True, 'import numpy as np\n'), ((7176, 7204), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (7187, 7204), True, 'import numpy as np\n'), ((7677, 7705), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (7688, 7705), True, 'import numpy as np\n'), ((8096, 8130), 'numpy.random.random', 'np.random.random', (['[2, 128, 32, 32]'], {}), '([2, 128, 32, 32])\n', (8112, 8130), True, 'import numpy as np\n'), ((8171, 8243), 'numpy.array', 'np.array', (['[[3, 5, 6, 13], [7, 4, 22, 18], [4, 5, 7, 10], [5, 3, 25, 21]]'], {}), '([[3, 5, 6, 13], [7, 4, 22, 18], [4, 5, 7, 10], [5, 3, 25, 21]])\n', (8179, 8243), True, 'import numpy as np\n'), ((8319, 8335), 'numpy.array', 'np.array', (['[2, 2]'], {}), '([2, 2])\n', (8327, 8335), True, 'import numpy as np\n'), ((8826, 8854), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (8837, 8854), True, 'import numpy as np\n'), ((9309, 9337), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (9320, 9337), True, 'import numpy as np\n'), ((9820, 9848), 'numpy.allclose', 'np.allclose', (['out', 'expect_out'], {}), '(out, expect_out)\n', (9831, 9848), True, 'import numpy as np\n'), ((11899, 11933), 'numpy.random.random', 'np.random.random', (['[2, 490, 28, 28]'], {}), '([2, 490, 28, 28])\n', (11915, 11933), True, 'import numpy as np\n'), ((12080, 12137), 'numpy.array', 'np.array', (['[[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]]'], {}), '([[1, 5, 8, 10], [4, 2, 6, 7], [12, 12, 19, 21]])\n', (12088, 12137), True, 'import numpy as np\n'), ((12195, 12211), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (12203, 12211), True, 'import numpy as np\n'), ((12737, 12756), 'paddle.CUDAPlace', 'paddle.CUDAPlace', (['(0)'], {}), '(0)\n', (12753, 12756), False, 'import paddle\n'), ((13014, 13050), 'paddle.static.default_main_program', 'paddle.static.default_main_program', ([], {}), '()\n', (13048, 13050), False, 'import paddle\n'), ((13244, 13276), 'numpy.allclose', 'np.allclose', (['out_res', 'expect_out'], {}), '(out_res, expect_out)\n', (13255, 13276), True, 'import numpy as np\n'), ((6399, 6423), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x'], {}), '(self.x)\n', (6415, 6423), False, 'import paddle\n'), ((6441, 6469), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes'], {}), '(self.boxes)\n', (6457, 6469), False, 'import paddle\n'), ((6487, 6519), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num'], {}), '(self.boxes_num)\n', (6503, 6519), False, 'import paddle\n'), ((6872, 6896), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x'], {}), '(self.x)\n', (6888, 6896), False, 'import paddle\n'), ((6914, 6942), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes'], {}), '(self.boxes)\n', (6930, 6942), False, 'import paddle\n'), ((6960, 6992), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num'], {}), '(self.boxes_num)\n', (6976, 6992), False, 'import paddle\n'), ((7342, 7377), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x', '"""float64"""'], {}), "(self.x, 'float64')\n", (7358, 7377), False, 'import paddle\n'), ((7395, 7434), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes', '"""float64"""'], {}), "(self.boxes, 'float64')\n", (7411, 7434), False, 'import paddle\n'), ((7452, 7493), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num', '"""int32"""'], {}), "(self.boxes_num, 'int32')\n", (7468, 7493), False, 'import paddle\n'), ((8536, 8560), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x'], {}), '(self.x)\n', (8552, 8560), False, 'import paddle\n'), ((8578, 8606), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes'], {}), '(self.boxes)\n', (8594, 8606), False, 'import paddle\n'), ((8624, 8656), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num'], {}), '(self.boxes_num)\n', (8640, 8656), False, 'import paddle\n'), ((9019, 9043), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x'], {}), '(self.x)\n', (9035, 9043), False, 'import paddle\n'), ((9061, 9089), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes'], {}), '(self.boxes)\n', (9077, 9089), False, 'import paddle\n'), ((9107, 9139), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num'], {}), '(self.boxes_num)\n', (9123, 9139), False, 'import paddle\n'), ((9499, 9534), 'paddle.to_tensor', 'paddle.to_tensor', (['self.x', '"""float64"""'], {}), "(self.x, 'float64')\n", (9515, 9534), False, 'import paddle\n'), ((9552, 9591), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes', '"""float64"""'], {}), "(self.boxes, 'float64')\n", (9568, 9591), False, 'import paddle\n'), ((9609, 9650), 'paddle.to_tensor', 'paddle.to_tensor', (['self.boxes_num', '"""int32"""'], {}), "(self.boxes_num, 'int32')\n", (9625, 9650), False, 'import paddle\n')]
#!/usr/bin/env python3 import random import time import sys import pygame from pygame.locals import * import pygame.surfarray as surfarray # for performance import numpy as np import colors # color definition SCREEN_SIZE = (1600, 900) # change it to your screen size #color definitions # (r, g, b) RED = (255, 0, 0) BLACK = (0, 0, 0) WHITE = (255, 255, 255) GREEN = (0, 255, 0) BLUE = (0, 0, 128) BG_COLOR = BLACK CELL_COLOR = GREEN def main(): """\ Press 'a' to decrease max possible fps. Press 'd' to increase max possible fps. Press 's' for no max fps limit. Press 'z' to decrease length of cell side. Press 'x' to increase length of cell side. Press 'p' to pause the game. """ side = 50 # length of cell side width = int(SCREEN_SIZE[0] / side) # number of cells per row height = int(SCREEN_SIZE[1] / side) # number of cellls per column pygame.init() pygame.mouse.set_visible(False) SURF = pygame.display.set_mode(SCREEN_SIZE,FULLSCREEN,32); fontObj = pygame.font.Font('freesansbold.ttf',32); FPSCLOCK = pygame.time.Clock() fps = 5 # max fps maps, slices = generate_random_map(width, height, side); pre_frame_time = time.time() # time of previous frame paused = False while True: for event in pygame.event.get(): if event.type == KEYDOWN: if event.key == K_q: pygame.quit() sys.exit() if event.key == K_a and fps > 1: fps -= 1 if event.key == K_d and fps < 60: fps += 1 if event.key == K_p: paused = not paused if event.key == K_f: maps[random.randint(1, width), random.randint(1, height)] = True if event.key == K_k: maps[random.randint(1, width), :] = True if event.key == K_l: maps[:, random.randint(1, height)] = True if event.key == K_m: maps[:, :] = False if event.key == K_z and side > 5: side -= 5 if side == 15: side = 10 width = int(SCREEN_SIZE[0] / side); height = int(SCREEN_SIZE[1] / side); maps, slices = generate_random_map(width, height, side) if event.key == K_x and side < 100: side += 5 if side == 15: side = 20 width = int(SCREEN_SIZE[0] / side); height = int(SCREEN_SIZE[1] / side); maps, slices = generate_random_map(width, height, side) if event.key == K_s: fps = 0 if event.key == K_r: maps, slices = generate_random_map(width, height, side) if event.type == QUIT: pygame.quit() sys.exit() SURF.fill(BG_COLOR) show_map(SURF, maps, side, slices) if not paused: maps = update(maps) current_frame_time = time.time() textSURF = fontObj.render('real fps: ' + str(1//(current_frame_time-pre_frame_time)), True, colors.random_color()); pre_frame_time = current_frame_time textRect = textSURF.get_rect(); textRect.topright = (SCREEN_SIZE[0],200); SURF.blit(textSURF,textRect); textSURF = fontObj.render('length of side: ' + str(side), True, colors.random_color()); textRect = textSURF.get_rect(); textRect.topright = (SCREEN_SIZE[0],100); SURF.blit(textSURF,textRect); pygame.display.update(); FPSCLOCK.tick(fps) def generate_random_map(width, height, side): """\ Generate a larger sized map than given width, height. Define slices for quickly drawing with small length of side. Return generated map and slices. """ slices = None if side < 10: K = side Y, X = SCREEN_SIZE slices = [] for y in range(0, K): for x in range(0, K): s = slice(y, Y, K), slice(x, X, K) slices.append(s) maps = np.zeros((width+2, height+2), dtype=np.bool) for col in range(width): n_cell = random.randint(0, height) col_map = n_cell * [np.bool(1)] col_map.extend([np.bool(0)] * (height-n_cell)) assert len(col_map) == height random.shuffle(col_map) maps[col+1,1:-1] = col_map return (maps, slices) def show_map(SURF, _map, side, slices=None): """\ Draw the map to surface SURF. If side is to small, pass in slices returned by generate_random_map. """ _map = _map[1:-1, 1:-1] if slices is not None: bit_map = np.zeros(SCREEN_SIZE, dtype=np.bool) for s in slices: bit_map[s] = _map bit_map = bit_map * SURF.map_rgb(colors.random_color()) surfarray.blit_array(SURF, bit_map) else: cell_surf = pygame.Surface((side,side)) for w in range(_map.shape[0]): for h in range(_map.shape[1]): if _map[w][h]: cell_surf.fill(colors.random_color()) SURF.blit(cell_surf, (w * side, h * side)) def update(oldmap): """\ Update the status fo every cell according to arround live cells. """ nbrs_count = sum(np.roll(np.roll(oldmap, i, 0), j, 1) for i in (-1, 0, 1) for j in (-1, 0, 1) if (i != 0 or j != 0)) _newmap = (nbrs_count == 3) | (oldmap & (nbrs_count == 2)) newmap = np.zeros(oldmap.shape, dtype=np.bool) newmap[1:-1, 1:-1] = _newmap[1:-1, 1:-1] return newmap if __name__ == '__main__': main()
[ "colors.random_color", "sys.exit", "pygame.init", "random.shuffle", "pygame.event.get", "pygame.Surface", "pygame.display.set_mode", "pygame.display.update", "pygame.quit", "numpy.bool", "numpy.roll", "pygame.mouse.set_visible", "numpy.zeros", "pygame.surfarray.blit_array", "pygame.time.Clock", "pygame.font.Font", "time.time", "random.randint" ]
[((1014, 1027), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1025, 1027), False, 'import pygame\n'), ((1032, 1063), 'pygame.mouse.set_visible', 'pygame.mouse.set_visible', (['(False)'], {}), '(False)\n', (1056, 1063), False, 'import pygame\n'), ((1075, 1127), 'pygame.display.set_mode', 'pygame.display.set_mode', (['SCREEN_SIZE', 'FULLSCREEN', '(32)'], {}), '(SCREEN_SIZE, FULLSCREEN, 32)\n', (1098, 1127), False, 'import pygame\n'), ((1141, 1181), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(32)'], {}), "('freesansbold.ttf', 32)\n", (1157, 1181), False, 'import pygame\n'), ((1198, 1217), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (1215, 1217), False, 'import pygame\n'), ((1359, 1370), 'time.time', 'time.time', ([], {}), '()\n', (1368, 1370), False, 'import time\n'), ((4427, 4475), 'numpy.zeros', 'np.zeros', (['(width + 2, height + 2)'], {'dtype': 'np.bool'}), '((width + 2, height + 2), dtype=np.bool)\n', (4435, 4475), True, 'import numpy as np\n'), ((5824, 5861), 'numpy.zeros', 'np.zeros', (['oldmap.shape'], {'dtype': 'np.bool'}), '(oldmap.shape, dtype=np.bool)\n', (5832, 5861), True, 'import numpy as np\n'), ((1467, 1485), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1483, 1485), False, 'import pygame\n'), ((3363, 3374), 'time.time', 'time.time', ([], {}), '()\n', (3372, 3374), False, 'import time\n'), ((3906, 3929), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (3927, 3929), False, 'import pygame\n'), ((4518, 4543), 'random.randint', 'random.randint', (['(0)', 'height'], {}), '(0, height)\n', (4532, 4543), False, 'import random\n'), ((4686, 4709), 'random.shuffle', 'random.shuffle', (['col_map'], {}), '(col_map)\n', (4700, 4709), False, 'import random\n'), ((5003, 5039), 'numpy.zeros', 'np.zeros', (['SCREEN_SIZE'], {'dtype': 'np.bool'}), '(SCREEN_SIZE, dtype=np.bool)\n', (5011, 5039), True, 'import numpy as np\n'), ((5168, 5203), 'pygame.surfarray.blit_array', 'surfarray.blit_array', (['SURF', 'bit_map'], {}), '(SURF, bit_map)\n', (5188, 5203), True, 'import pygame.surfarray as surfarray\n'), ((5234, 5262), 'pygame.Surface', 'pygame.Surface', (['(side, side)'], {}), '((side, side))\n', (5248, 5262), False, 'import pygame\n'), ((3475, 3496), 'colors.random_color', 'colors.random_color', ([], {}), '()\n', (3494, 3496), False, 'import colors\n'), ((3745, 3766), 'colors.random_color', 'colors.random_color', ([], {}), '()\n', (3764, 3766), False, 'import colors\n'), ((3164, 3177), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (3175, 3177), False, 'import pygame\n'), ((3194, 3204), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3202, 3204), False, 'import sys\n'), ((4572, 4582), 'numpy.bool', 'np.bool', (['(1)'], {}), '(1)\n', (4579, 4582), True, 'import numpy as np\n'), ((5137, 5158), 'colors.random_color', 'colors.random_color', ([], {}), '()\n', (5156, 5158), False, 'import colors\n'), ((5624, 5645), 'numpy.roll', 'np.roll', (['oldmap', 'i', '(0)'], {}), '(oldmap, i, 0)\n', (5631, 5645), True, 'import numpy as np\n'), ((1582, 1595), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (1593, 1595), False, 'import pygame\n'), ((1616, 1626), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1624, 1626), False, 'import sys\n'), ((4608, 4618), 'numpy.bool', 'np.bool', (['(0)'], {}), '(0)\n', (4615, 4618), True, 'import numpy as np\n'), ((5410, 5431), 'colors.random_color', 'colors.random_color', ([], {}), '()\n', (5429, 5431), False, 'import colors\n'), ((1923, 1947), 'random.randint', 'random.randint', (['(1)', 'width'], {}), '(1, width)\n', (1937, 1947), False, 'import random\n'), ((1949, 1974), 'random.randint', 'random.randint', (['(1)', 'height'], {}), '(1, height)\n', (1963, 1974), False, 'import random\n'), ((2045, 2069), 'random.randint', 'random.randint', (['(1)', 'width'], {}), '(1, width)\n', (2059, 2069), False, 'import random\n'), ((2146, 2171), 'random.randint', 'random.randint', (['(1)', 'height'], {}), '(1, height)\n', (2160, 2171), False, 'import random\n')]
# ------------------------------------------------------------ # Copyright (c) 2017-present, SeetaTech, Co.,Ltd. # # Licensed under the BSD 2-Clause License. # You should have received a copy of the BSD 2-Clause License # along with the software. If not, See, # # <https://opensource.org/licenses/BSD-2-Clause> # # ------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import dragon as dg from dragon.vm.torch.tensor import * from dragon.vm.torch.c_api import device as _Device def UnifyDevices(tensors, key='Inputs'): types, indices = [t.device.type for t in tensors], [0] if len(set(types)) != 1: raise ValueError('{} from different device type: [{}].' .format(key, ', '.join(types))) if types[0] == 'cuda': indices = [t.device.index for t in tensors] if len(set(indices)) != 1: raise ValueError('{} from different cuda device: [{}].' .format(key, ', '.join([str(d) for d in indices]))) return _Device(types[0], indices[0]) def MakeDevice(inputs=(), outputs=()): # Case #1: [], [] -> CPU # Case #2: [...], [] -> Refer Inputs # Case #3: [], [...] -> Refer Outputs # Case #4: [...], [...] -> Refer Outputs if len(outputs) > 0: return UnifyDevices(outputs, 'Outputs') if len(inputs) > 0: return UnifyDevices(inputs, 'Inputs') return _Device() def WrapScalar(scalar, dtype, device): # We use (DType + Value) to hash different scalars # Setting a Tensor with same DType and shape will not deconstruct it if 'float' in dtype: scalar = float(scalar) if 'int' in dtype: scalar = int(scalar) name = '/share/scalar/{}/{}'.format(dtype, str(scalar)) if not dg.workspace.HasTensor(name): dg.workspace.FeedTensor(name, np.array(scalar, dtype=dtype)) t = Tensor(name=name, dtype=dtype, device=device, own_storage=False) t.requires_grad = False return t
[ "dragon.workspace.HasTensor", "numpy.array", "dragon.vm.torch.c_api.device" ]
[((1121, 1150), 'dragon.vm.torch.c_api.device', '_Device', (['types[0]', 'indices[0]'], {}), '(types[0], indices[0])\n', (1128, 1150), True, 'from dragon.vm.torch.c_api import device as _Device\n'), ((1487, 1496), 'dragon.vm.torch.c_api.device', '_Device', ([], {}), '()\n', (1494, 1496), True, 'from dragon.vm.torch.c_api import device as _Device\n'), ((1829, 1857), 'dragon.workspace.HasTensor', 'dg.workspace.HasTensor', (['name'], {}), '(name)\n', (1851, 1857), True, 'import dragon as dg\n'), ((1897, 1926), 'numpy.array', 'np.array', (['scalar'], {'dtype': 'dtype'}), '(scalar, dtype=dtype)\n', (1905, 1926), True, 'import numpy as np\n')]
""" This module is the main API used to create track collections """ # Standard library imports import copy import random import inspect import logging import itertools from typing import Any from typing import List from typing import Union from typing import Tuple from typing import Callable from dataclasses import dataclass, field, asdict # Third party imports import numpy as np import pandas as pd import networkx as nx # Local imports import spotify_flows.database as database from .login import login from .data_structures import ( EpisodeItem, SpotifyDataStructure, TrackItem, AudioFeaturesItem, ) from .tracks import get_track_id, read_track_from_id from .tracks import get_audio_features from .albums import get_album_id from .albums import get_album_songs from .podcasts import get_show_id from .podcasts import get_show_episodes from .user import get_all_saved_tracks from .user import get_recommendations_for_genre from .artists import get_artist_id from .artists import get_artist_albums from .artists import get_related_artists from .artists import get_artist_popular_songs from .playlists import get_playlist_id from .playlists import make_new_playlist from .playlists import get_playlist_tracks # Main body logger = logging.getLogger() class DatabaseNotLoaded(Exception): pass @dataclass class TrackCollection: """Class representing a collection of tracks. Can be chained together through a variety of defined methods.""" read_items_from_db = lambda id_, db: db.build_collection_from_collection_id(id_=id_) sp = login( scope="playlist-modify-private playlist-modify-public user-read-playback-position user-library-read" ) id_: str = "" info: SpotifyDataStructure = None _items: List[Any] = field(default_factory=list) _audio_features_enriched: bool = False def copy(self): return copy.copy(self) @property def _api_track_gen(self): yield from self._items @property def _db_track_gen(self): db = CollectionDatabase() return db.load_playlist(playlist_id=self.id_) @property def exist_in_db(self): db = CollectionDatabase() return db.playlist_exists(self.id_) if db.is_loaded() else False @property def items(self): if self._items: yield from self._items else: if self.id_: yield from self.item_gen() else: yield from iter(()) def item_gen(self): db = CollectionDatabase() if self.exist_in_db: yield from self._db_track_gen else: logger.info(f"Retrieving items via API") for track_dict in self._api_track_gen: track = TrackItem.from_dict(track_dict) if db.is_loaded(): db.add_track(track_item=track) yield track @classmethod def from_id(cls, id_: str): return cls(id_=id_) @classmethod def from_item(cls, id_: str, item: SpotifyDataStructure): return cls(id_=id_, info=item) @classmethod def from_db(cls, id_: str, db_path: str): db = database.SpotifyDatabase(db_path, op_table="table") items = cls.read_items_from_db(id_=id_, db=db) return TrackCollection(id_=id_, _items=items) @classmethod def from_name(cls, name: str): name = name.replace("_", " ") id_ = cls.func_get_id(name=name) return cls(id_=id_) def __str__(self) -> str: return "\n".join([str(item) for item in self.items]) def __add__(self, other: "TrackCollection") -> "TrackCollection": """Defines the addition of two collections. Items get concatenated. Returns: TrackCollection: Collection object with combined items """ def new_items(): yield from self.items yield from other.items enriched = (self._audio_features_enriched) and (other._audio_features_enriched) return TrackCollection( id_="", _items=new_items(), _audio_features_enriched=enriched ) def __radd__(self, other: "TrackCollection") -> "TrackCollection": """Used when building track collections from list of other track collections Returns: TrackCollection: Sum of two collections """ if other == 0: return self else: return self + other def __sub__(self, other: "TrackCollection") -> "TrackCollection": """Defines the substraction of two collections. Items from other get removed from items from self. Returns: TrackCollection: Collection object with modified items. """ other_items = list(other.items) def new_items(): for item in self.items: if item not in other_items: yield item enriched = self._audio_features_enriched return TrackCollection( id_="", _items=new_items(), _audio_features_enriched=enriched ) def __truediv__(self, other: "TrackCollection") -> "TrackCollection": """Defines the division of two collections. Returns: TrackCollection: Items are intersection of self and other """ other_items = list(other.items) def new_items(): for item in self.items: if item in other_items: yield item enriched = self._audio_features_enriched return TrackCollection( id_="", _items=new_items(), _audio_features_enriched=enriched ) def __mod__(self, other: "TrackCollection") -> "TrackCollection": """Defines the modulo of two collections Returns: TrackCollection: Items are alternates of self and other. """ def new_items(): for i, j in zip(self.items, other.items): yield i yield j enriched = (self._audio_features_enriched) and (other._audio_features_enriched) return TrackCollection(_items=new_items(), _audio_features_enriched=enriched) def to_dataframes(self) -> Tuple[pd.DataFrame]: """Transforms items into dataframes, used for storage in database. Returns: Tuple[pd.DataFrame]: Representation of items as dataframes """ # Enrich with audio features tracks = copy.copy(list(self.add_audio_features().items)) # Extract data album_artist = [ {"album_id": track.album.id, "artist_id": artist.id} for track in tracks for artist in track.album.artists ] all_tracks = [asdict(track) for track in tracks] all_audio_features = [ {"track_id": track["id"], **track["audio_features"]} for track in all_tracks ] all_albums = [asdict(track.album) for track in tracks] all_artists = [artist for album in all_albums for artist in album["artists"]] # Build dataframes df_all_artists = pd.DataFrame(all_artists) df_all_albums = pd.DataFrame(all_albums).drop(columns="artists") df_audio_features = pd.DataFrame(all_audio_features) df_all_tracks = pd.DataFrame(all_tracks) df_all_tracks.loc[:, "album_id"] = df_all_tracks["album"].apply( lambda x: x["id"] ) df_all_tracks.drop(columns=["album", "audio_features"], inplace=True) df_album_artist = pd.DataFrame(album_artist) return ( df_all_tracks, df_all_artists, df_all_albums, df_audio_features, df_album_artist, ) def shuffle(self) -> "TrackCollection": """Shuffle items Returns: TrackCollection: Object with items shuffled. """ new_items_list = copy.copy(list(self.items)) random.shuffle(new_items_list) new_items = (item for item in new_items_list) return TrackCollection( _items=new_items, _audio_features_enriched=self._audio_features_enriched ) def random(self, N: int) -> "TrackCollection": """Sample items randomly Args: N (int): Number of items to pick Returns: TrackCollection: Object with new items """ def new_items(N): all_items = list(self.items) k = min(N, len(all_items)) yield from random.sample(all_items, k=k) return TrackCollection( _items=new_items(N), _audio_features_enriched=self._audio_features_enriched ) def remove_remixes(self) -> "TrackCollection": """Remove remixes from items Returns: TrackCollection: Object with new items """ banned_words = ["remix", "mixed"] def new_items(): for item in self.items: if all( [ (banned_word not in item.name.lower()) for banned_word in banned_words ] ): yield item return TrackCollection( _items=new_items(), _audio_features_enriched=self._audio_features_enriched ) def sort(self, by: str, ascending: bool = True) -> "TrackCollection": """Sort items Args: by (str): Criteria used for sorting ascending (bool, optional): Ascending order. Defaults to True. Returns: TrackCollection: Object with sorted items """ str_attr = f"item.{by}" def new_items(): # Enrichment with audio features if needed if by.startswith("audio_features") and not self._audio_features_enriched: all_items = self._enrich_with_audio_features(items=self.items) self._audio_features_enriched = True else: all_items = self.items sorted_items = sorted( list(all_items), key=eval(f"lambda item: {str_attr}"), reverse=(not ascending), ) yield from sorted_items return TrackCollection( _items=new_items(), _audio_features_enriched=self._audio_features_enriched ) def filter(self, criteria_func: Callable[..., Any]) -> "TrackCollection": """Filter items by certain criteria function Args: criteria_func (Callable[..., Any]): Criteria used for filtering Returns: TrackCollection: Object with filtered items """ # Enrichment with audio features if needed def new_items(): if ( "audio_features" in inspect.getsource(criteria_func) and not self._audio_features_enriched ): self._audio_features_enriched = True all_items = self._enrich_with_audio_features(items=self.items) else: all_items = self.items for item in all_items: if criteria_func(item): yield item return TrackCollection( _items=new_items(), _audio_features_enriched=self._audio_features_enriched ) def insert_at_time_intervals(self, other, time: int): def new_items(time): dups = itertools.tee(other.items, 20) i_dup = 0 cum_time = 0 for item in self.items: prev_cum_time = cum_time cum_time += item.duration_ms / 1000 / 60 yield item if cum_time % time < prev_cum_time % time: yield from dups[i_dup] i_dup += 1 cum_time = 0 return TrackCollection(_items=new_items(time)) def insert_at_time(self, other, time: int): def new_items(time): cum_time = 0 for item in self.items: prev_cum_time = cum_time cum_time += item.duration_ms / 1000 / 60 yield item if cum_time % time < prev_cum_time % time: yield from other.items return TrackCollection(_items=new_items(time)) def insert_at_position(self, other, position: int): def new_items(position): before, after = itertools.tee(self.items, 2) yield from itertools.islice(before, position) yield from other.items yield from after return TrackCollection(_items=new_items(position)) def add_audio_features(self) -> "TrackCollection": def new_items(): for item in self.items: item.audio_features = AudioFeaturesItem.from_dict( get_audio_features(track_ids=[item.id])[item.id] ) yield item return TrackCollection(_items=new_items(), _audio_features_enriched=True) def _enrich_with_audio_features(self, items: List[TrackItem]) -> List[TrackItem]: """Get items enriched with audio features Args: items (List[TrackItem]): Items to enrich Returns: List[TrackItem]: Enriched items """ for item in items: item.audio_features = AudioFeaturesItem.from_dict( get_audio_features(track_ids=[item.id])[item.id] ) yield item def set_id(self, id_: str) -> "TrackCollection": """Add ID to collection, e.g. to use for storage in a database Returns: TrackCollection: Same collection, but with ID """ return TrackCollection( id_=id_, _items=self.items, _audio_features_enriched=self._audio_features_enriched, ) def remove_duplicates(self: "TrackCollection") -> "TrackCollection": """Remove duplicate tracks from items based on ID Returns: TrackCollection: Collection with no duplicate tracks """ # By ID items = copy.copy(self.items) idx = 0 while idx < len(items): names = [item.name for item in items] if items[idx].name in names[:idx]: items.pop(idx) else: idx += 1 new_coll = copy.deepcopy(self) new_coll._items = items return new_coll def first(self, n: int) -> "TrackCollection": """First n items Returns: TrackCollection: Collection with trimmed items """ new_items = itertools.islice(self.items, n) return TrackCollection( _items=new_items, _audio_features_enriched=self._audio_features_enriched ) def to_playlist(self, playlist_name: str = None) -> None: if playlist_name is None: playlist_name = self.id_ make_new_playlist(sp=self.sp, playlist_name=playlist_name, items=self.items) def to_database(self, db: database.SpotifyDatabase = None) -> None: logger.info(f"Storing collection to database. id = {self.id_}") if db is None: db = CollectionDatabase() if not db.is_loaded(): raise DatabaseNotLoaded db.store_tracks_in_database(collection=self) def optimize(self, target_func, N: int = None) -> None: items = list(self.items) if N is None: N = len(items) diffs = np.abs(np.array([target_func(item) for item in items])) idx = np.argsort(diffs) n = min(N, len(items)) return TrackCollection(_items=list(np.array(items)[idx[:n]])) def complex_sort( self, by: str = "artist", graph: nx.Graph = nx.Graph() ) -> "TrackCollection": items = list(self.items) def new_items(): unique_artists = list(set([item.album.artists[0].id for item in items])) artists = [ ( artist_id, [item for item in items if item.album.artists[0].id == artist_id], ) for artist_id in unique_artists ] remaining_artists = artists latest_artist = remaining_artists.pop(0) new_items_ = [track for track in latest_artist[1]] while remaining_artists: # Find the closest artist all_path_lengths = [] for artist in remaining_artists: try: path_length = nx.shortest_path_length( graph, source=latest_artist[0], target=artist[0], weight="weight", ) except nx.NetworkXNoPath as e: path_length = 9999999 all_path_lengths.append(path_length) # Get the minimum all_path_lengths = np.array(all_path_lengths) min_idx = np.where(all_path_lengths == all_path_lengths.min())[0][0] # Set the latest artist latest_artist = remaining_artists.pop(min_idx) # Add the tracks new_items_ += [track for track in latest_artist[1]] return (item for item in new_items_) return TrackCollection( _items=new_items(), _audio_features_enriched=self._audio_features_enriched ) @dataclass class Playlist(TrackCollection): @classmethod def func_get_id(cls, name): return get_playlist_id(sp=cls.sp, playlist_name=name) @property def _db_track_gen(self): return super()._db_track_gen @property def _api_track_gen(self): return get_playlist_tracks(sp=self.sp, playlist_id=self.id_) class Album(TrackCollection): """Class representing an Album's track contents""" @classmethod def func_get_id(cls, name): return get_album_id(sp=cls.sp, album_name=name) @property def _db_track_gen(self): db = CollectionDatabase() return db.load_album(album_id=self.id_) @property def _api_track_gen(self): return get_album_songs(sp=self.sp, album_id=self.id_) class Artist(TrackCollection): """Class representing an Artist's track contents""" @classmethod def func_get_id(cls, name): return get_artist_id(sp=cls.sp, artist_name=name) @property def _db_track_gen(self): db = CollectionDatabase() return db.load_artist(artist_id=self.id_) @property def _api_track_gen(self): return self.all_songs() def popular(self) -> "Artist": """Popular songs for the artist Returns: Artist: Artist with items set to the popular songs only """ def items(): for track_dict in get_artist_popular_songs(sp=self.sp, artist_id=self.id_): yield TrackItem.from_dict(track_dict) return Artist(id_=self.id_, _items=items()) def all_songs(self) -> "Artist": """All songs by the artist Returns: Artist: Artist with items set to all of their songs """ # Build album collections album_data = get_artist_albums(artist_id=self.id_) album_collection_items = [Album.from_id(album["id"]) for album in album_data] album_collection = CollectionCollection(collections=album_collection_items) # Retrieve items from album collection if album_collection: yield from album_collection.items def related_artists(self, n: int, include: bool = True) -> "ArtistCollection": """Artists related to the artist Args: n (int): The number of related artists include (bool): Whether the original artist should be included Returns: ArtistCollection: Collection of related artists """ related_artist_items = get_related_artists(sp=self.sp, artist_id=self.id_) if include: related_artist_items.append(self) n += 1 related_artists = [ Artist(id_=artist_item["id"]) for artist_item in related_artist_items[:n] ] return ArtistCollection(collections=related_artists) class SavedTracks(TrackCollection): """Class representing an saved track contents""" def __init__(self): self._items = [] self.id_ = "Saved tracks" @property def _db_track_gen(self): return super()._db_track_gen @property def _api_track_gen(self): return get_all_saved_tracks(sp=self.sp) @dataclass class CollectionCollection(TrackCollection): collections: List[TrackCollection] = field(default_factory=list) def item_gen(self): if self.collections: yield from sum(self.collections).items def alternate(self): def new_items(): return itertools.chain(*zip(*[c.items for c in self.collections])) return TrackCollection(id_="", _items=new_items()) @dataclass class ArtistCollection(CollectionCollection): """Class representing a collection of artists""" collections: List[Artist] = field(default_factory=list) def popular(self) -> TrackCollection: """Popular songs of a given artist collection Returns: TrackCollection: New collection with all popular songs """ return sum([artist.popular() for artist in self.collections]) class Genre(TrackCollection): """Class representing an genre's track contents""" def __init__(self, genre_name: str = "") -> None: self.genre_name = genre_name self._items = [] @property def items(self) -> List[TrackItem]: if self._items: return self._items else: if self.id_: yield from get_recommendations_for_genre( sp=self.sp, genre_names=[self.genre_name] ) else: yield from iter(()) class Show(TrackCollection): """Class representing an show's episode contents""" @classmethod def func_get_id(cls, name): return get_show_id(sp=cls.sp, query=name) @property def _db_track_gen(self): return self._api_track_gen # TBD @property def _api_track_gen(self): for ep_dict in get_show_episodes(sp=self.sp, show_id=self.id_): yield EpisodeItem.from_dict(ep_dict) def item_gen(self): yield from self._api_track_gen class Track(TrackCollection): """Class representing a single-track collection""" def __init__(self, id_: str): self.id_ = id_ self._items = iter([TrackItem.from_dict(read_track_from_id(track_id=id_))]) @classmethod def func_get_id(cls, name): return get_track_id(sp=cls.sp, track_name=name) class CollectionDatabase( database.SpotifyDatabase, metaclass=database.DatabaseSingleton ): def __init__(self, file_path=None, op_table=None): super().__init__(file_path=file_path, op_table=op_table) def is_loaded(self): return self.file_path is not None def init_db(db_path): CollectionDatabase(file_path=db_path, op_table="operations")
[ "logging.getLogger", "itertools.islice", "random.sample", "copy.deepcopy", "random.shuffle", "dataclasses.asdict", "itertools.tee", "networkx.Graph", "networkx.shortest_path_length", "numpy.argsort", "numpy.array", "inspect.getsource", "spotify_flows.database.SpotifyDatabase", "pandas.DataFrame", "copy.copy", "dataclasses.field" ]
[((1263, 1282), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1280, 1282), False, 'import logging\n'), ((1788, 1815), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (1793, 1815), False, 'from dataclasses import dataclass, field, asdict\n'), ((20879, 20906), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (20884, 20906), False, 'from dataclasses import dataclass, field, asdict\n'), ((21347, 21374), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (21352, 21374), False, 'from dataclasses import dataclass, field, asdict\n'), ((1895, 1910), 'copy.copy', 'copy.copy', (['self'], {}), '(self)\n', (1904, 1910), False, 'import copy\n'), ((3193, 3244), 'spotify_flows.database.SpotifyDatabase', 'database.SpotifyDatabase', (['db_path'], {'op_table': '"""table"""'}), "(db_path, op_table='table')\n", (3217, 3244), True, 'import spotify_flows.database as database\n'), ((7116, 7141), 'pandas.DataFrame', 'pd.DataFrame', (['all_artists'], {}), '(all_artists)\n', (7128, 7141), True, 'import pandas as pd\n'), ((7243, 7275), 'pandas.DataFrame', 'pd.DataFrame', (['all_audio_features'], {}), '(all_audio_features)\n', (7255, 7275), True, 'import pandas as pd\n'), ((7301, 7325), 'pandas.DataFrame', 'pd.DataFrame', (['all_tracks'], {}), '(all_tracks)\n', (7313, 7325), True, 'import pandas as pd\n'), ((7544, 7570), 'pandas.DataFrame', 'pd.DataFrame', (['album_artist'], {}), '(album_artist)\n', (7556, 7570), True, 'import pandas as pd\n'), ((7959, 7989), 'random.shuffle', 'random.shuffle', (['new_items_list'], {}), '(new_items_list)\n', (7973, 7989), False, 'import random\n'), ((14164, 14185), 'copy.copy', 'copy.copy', (['self.items'], {}), '(self.items)\n', (14173, 14185), False, 'import copy\n'), ((14427, 14446), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (14440, 14446), False, 'import copy\n'), ((14689, 14720), 'itertools.islice', 'itertools.islice', (['self.items', 'n'], {}), '(self.items, n)\n', (14705, 14720), False, 'import itertools\n'), ((15633, 15650), 'numpy.argsort', 'np.argsort', (['diffs'], {}), '(diffs)\n', (15643, 15650), True, 'import numpy as np\n'), ((15827, 15837), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (15835, 15837), True, 'import networkx as nx\n'), ((6747, 6760), 'dataclasses.asdict', 'asdict', (['track'], {}), '(track)\n', (6753, 6760), False, 'from dataclasses import dataclass, field, asdict\n'), ((6936, 6955), 'dataclasses.asdict', 'asdict', (['track.album'], {}), '(track.album)\n', (6942, 6955), False, 'from dataclasses import dataclass, field, asdict\n'), ((11460, 11490), 'itertools.tee', 'itertools.tee', (['other.items', '(20)'], {}), '(other.items, 20)\n', (11473, 11490), False, 'import itertools\n'), ((12466, 12494), 'itertools.tee', 'itertools.tee', (['self.items', '(2)'], {}), '(self.items, 2)\n', (12479, 12494), False, 'import itertools\n'), ((7166, 7190), 'pandas.DataFrame', 'pd.DataFrame', (['all_albums'], {}), '(all_albums)\n', (7178, 7190), True, 'import pandas as pd\n'), ((8529, 8558), 'random.sample', 'random.sample', (['all_items'], {'k': 'k'}), '(all_items, k=k)\n', (8542, 8558), False, 'import random\n'), ((12518, 12552), 'itertools.islice', 'itertools.islice', (['before', 'position'], {}), '(before, position)\n', (12534, 12552), False, 'import itertools\n'), ((17096, 17122), 'numpy.array', 'np.array', (['all_path_lengths'], {}), '(all_path_lengths)\n', (17104, 17122), True, 'import numpy as np\n'), ((10824, 10856), 'inspect.getsource', 'inspect.getsource', (['criteria_func'], {}), '(criteria_func)\n', (10841, 10856), False, 'import inspect\n'), ((15725, 15740), 'numpy.array', 'np.array', (['items'], {}), '(items)\n', (15733, 15740), True, 'import numpy as np\n'), ((16641, 16735), 'networkx.shortest_path_length', 'nx.shortest_path_length', (['graph'], {'source': 'latest_artist[0]', 'target': 'artist[0]', 'weight': '"""weight"""'}), "(graph, source=latest_artist[0], target=artist[0],\n weight='weight')\n", (16664, 16735), True, 'import networkx as nx\n')]
''' makeRankingCard.py:制作评分卡。 Author: HeRaNO ''' import sys import imblearn import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression as LR # Read data start model = pd.read_csv("model_data.csv", index_col = 0) vali = pd.read_csv("vali_data.csv", index_col = 0) # Read data end # Start binning def calcWOE(num_bins): columns = ["min", "max", "count_0", "count_1"] df = pd.DataFrame(num_bins, columns = columns) df["total"] = df.count_0 + df.count_1 df["percentage"] = df.total / df.total.sum() df["bad_rate"] = df.count_1 / df.total df["goodpercent"] = df.count_0 / df.count_0.sum() df["badpercent"] = df.count_1 / df.count_1.sum() df["woe"] = np.log(df["goodpercent"] / df["badpercent"]) return df def calcIV(df): rate = df["goodpercent"] - df["badpercent"] iv = np.sum(rate * df.woe) return iv def bestBin(DF, X, Y, n, q): pass ''' 自己写吧我写崩溃了 大概的取值: RevolvingUtilizationOfUnsecuredLines:8 age:11 DebtRatio:11 MonthlyIncome:9 NumberOfOpenCreditLinesAndLoans:6 其余均无法分箱,需要手动分 ''' # 分箱应该得到一个 bins_of_col[] 数组,里面是分箱的分段点 # Binning end # Modeling start model_woe = pd.DataFrame(index = model_data.index) for col in bins_of_col: model_woe[col] = pd.cut(model_data[col],bins_of_col[col]).map(woeall[col]) model_woe["SeriousDlqin2yrs"] = model_data["SeriousDlqin2yrs"] vali_woe = pd.DataFrame(index = vali_data.index) for col in bins_of_col: vali_woe[col] = pd.cut(vali_data[col],bins_of_col[col]).map(woeall[col]) vali_woe["SeriousDlqin2yrs"] = vali_data["SeriousDlqin2yrs"] vali_X = vali_woe.iloc[:,:-1] vali_y = vali_woe.iloc[:,-1] X = model_woe.iloc[:,:-1] y = model_woe.iloc[:,-1] lr = LR().fit(X, y) lr.score(vali_X, vali_y) # Modeling end # Make card start B = 20 / np.log(2) A = 600 + B * np.log(1 / 60) with open("score.csv", "w") as fdata: fdata.write("base_score,{}\n".format(base_score)) for i, col in enumerate(X.columns): score = woeall[col] * (-B * lr.coef_[0][i]) score.name = "Score" score.index.name = col score.to_csv(file, header = True, mode = "a") # Make card end
[ "pandas.read_csv", "numpy.log", "pandas.cut", "sklearn.linear_model.LogisticRegression", "numpy.sum", "pandas.DataFrame" ]
[((204, 246), 'pandas.read_csv', 'pd.read_csv', (['"""model_data.csv"""'], {'index_col': '(0)'}), "('model_data.csv', index_col=0)\n", (215, 246), True, 'import pandas as pd\n'), ((256, 297), 'pandas.read_csv', 'pd.read_csv', (['"""vali_data.csv"""'], {'index_col': '(0)'}), "('vali_data.csv', index_col=0)\n", (267, 297), True, 'import pandas as pd\n'), ((1137, 1173), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'model_data.index'}), '(index=model_data.index)\n', (1149, 1173), True, 'import pandas as pd\n'), ((1352, 1387), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'vali_data.index'}), '(index=vali_data.index)\n', (1364, 1387), True, 'import pandas as pd\n'), ((411, 450), 'pandas.DataFrame', 'pd.DataFrame', (['num_bins'], {'columns': 'columns'}), '(num_bins, columns=columns)\n', (423, 450), True, 'import pandas as pd\n'), ((693, 737), 'numpy.log', 'np.log', (["(df['goodpercent'] / df['badpercent'])"], {}), "(df['goodpercent'] / df['badpercent'])\n", (699, 737), True, 'import numpy as np\n'), ((817, 838), 'numpy.sum', 'np.sum', (['(rate * df.woe)'], {}), '(rate * df.woe)\n', (823, 838), True, 'import numpy as np\n'), ((1753, 1762), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1759, 1762), True, 'import numpy as np\n'), ((1668, 1672), 'sklearn.linear_model.LogisticRegression', 'LR', ([], {}), '()\n', (1670, 1672), True, 'from sklearn.linear_model import LogisticRegression as LR\n'), ((1777, 1791), 'numpy.log', 'np.log', (['(1 / 60)'], {}), '(1 / 60)\n', (1783, 1791), True, 'import numpy as np\n'), ((1218, 1259), 'pandas.cut', 'pd.cut', (['model_data[col]', 'bins_of_col[col]'], {}), '(model_data[col], bins_of_col[col])\n', (1224, 1259), True, 'import pandas as pd\n'), ((1431, 1471), 'pandas.cut', 'pd.cut', (['vali_data[col]', 'bins_of_col[col]'], {}), '(vali_data[col], bins_of_col[col])\n', (1437, 1471), True, 'import pandas as pd\n')]
import datetime import os import uuid from os.path import join as opjoin from pathlib import Path import numpy as np import requests import yaml from celery.result import AsyncResult from django.db.models import Q from drf_yasg import openapi from drf_yasg.utils import swagger_auto_schema from rest_framework import mixins, status, views, viewsets from rest_framework.response import Response from backend import celery_app, settings from backend_app import mixins as BAMixins, models, serializers, swagger from backend_app import utils from deeplearning.tasks import classification, segmentation from deeplearning.utils import nn_settings class AllowedPropViewSet(BAMixins.ParamListModelMixin, mixins.CreateModelMixin, viewsets.GenericViewSet): queryset = models.AllowedProperty.objects.all() serializer_class = serializers.AllowedPropertySerializer params = ['model_id', 'property_id'] def get_queryset(self): model_id = self.request.query_params.get('model_id') property_id = self.request.query_params.get('property_id') self.queryset = models.AllowedProperty.objects.filter(model_id=model_id, property_id=property_id) return self.queryset @swagger_auto_schema( manual_parameters=[openapi.Parameter('model_id', openapi.IN_QUERY, "Integer representing a model", required=True, type=openapi.TYPE_INTEGER), openapi.Parameter('property_id', openapi.IN_QUERY, "Integer representing a property", required=True, type=openapi.TYPE_INTEGER)] ) def list(self, request, *args, **kwargs): """Return the allowed and default values of a property This method returns the values that a property can assume depending on the model employed. \ It provides a default value and a comma separated list of values to choose from. When this api returns an empty list, the property allowed values and default should be retrieved \ using the `/properties/{id}` API. """ return super().list(request, *args, **kwargs) def create(self, request, *args, **kwargs): """Create a new AllowedProperty This method create a new AllowedProperty """ return super().create(request, *args, **kwargs) class DatasetViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.CreateModelMixin, viewsets.GenericViewSet): queryset = models.Dataset.objects.filter(is_single_image=False) serializer_class = serializers.DatasetSerializer def get_queryset(self): task_id = self.request.query_params.get('task_id') if task_id: self.queryset = models.Dataset.objects.filter(task_id=task_id, is_single_image=False) # self.queryset = models.Dataset.objects.filter(task_id=task_id) return self.queryset @swagger_auto_schema( manual_parameters=[openapi.Parameter('task_id', openapi.IN_QUERY, type=openapi.TYPE_INTEGER, required=False)] ) def list(self, request, *args, **kwargs): """Get the list datasets to use for training or finetuning This method returns all the datasets in the backend. """ return super().list(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): """Retrieve a single dataset This method returns the `{id}` dataset. """ return super().retrieve(request, *args, **kwargs) @swagger_auto_schema(responses=swagger.DatasetViewSet_create_response) def create(self, request, *args, **kwargs): """Upload a new dataset downloading it from a URL This API uploads a dataset YAML file and stores it in the backend. The `path` field must contain the URL of a dataset, e.g. \ [`dropbox.com/s/ul1yc8owj0hxpu6/isic_segmentation.yml`](https://www.dropbox.com/s/ul1yc8owj0hxpu6/isic_segmentation.yml?dl=1). """ serializer = self.get_serializer(data=request.data) if not serializer.is_valid(): return Response({'error': 'Validation error. Request data is malformed.'}, status=status.HTTP_400_BAD_REQUEST) # Download the yml file in url url = serializer.validated_data['path'] dataset_name = serializer.validated_data['name'] dataset_out_path = f'{settings.DATASETS_DIR}/{dataset_name}.yml' if Path(f'{settings.DATASETS_DIR}/{dataset_name}.yml').exists(): return Response({'error': f'The dataset `{dataset_name}` already exists'}, status=status.HTTP_400_BAD_REQUEST) try: r = requests.get(url, allow_redirects=True) if r.status_code == 200: yaml_content = yaml.load(r.content, Loader=yaml.FullLoader) with open(f'{settings.DATASETS_DIR}/{dataset_name}.yml', 'w') as f: yaml.dump(yaml_content, f, Dumper=utils.MyDumper, sort_keys=False) # Update the path serializer.save(path=dataset_out_path) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers) except requests.exceptions.RequestException: # URL malformed return Response({'error': 'URL malformed'}, status=status.HTTP_400_BAD_REQUEST) return Response({'error': 'URL malformed'}, status=status.HTTP_400_BAD_REQUEST) class InferenceViewSet(views.APIView): @swagger_auto_schema(request_body=serializers.InferenceSerializer, responses=swagger.inferences_post_responses) def post(self, request): """Start an inference process using a pre-trained model on a dataset This is the main entry point to start the inference. \ It is mandatory to specify a pre-trained model and a dataset. """ serializer = serializers.InferenceSerializer(data=request.data) if serializer.is_valid(): return utils.do_inference(serializer) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class InferenceSingleViewSet(views.APIView): @swagger_auto_schema(request_body=serializers.InferenceSingleSerializer, responses=swagger.inferences_post_responses) def post(self, request): """Starts the inference providing an image URL This API allows the inference of a single image. It is mandatory to specify the same fields of `/inference` API, but for dataset_id which is replaced by \ the url of the image to process. """ serializer = serializers.InferenceSingleSerializer(data=request.data) if serializer.is_valid(): image_url = serializer.validated_data['image_url'] project_id = serializer.validated_data['project_id'] task_id = models.Project.objects.get(id=project_id).task_id # Create a dataset with the single image to process dummy_dataset = f'name: "{image_url}"\n' \ f'description: "{image_url} auto-generated dataset"\n' \ f'images: ["{image_url}"]\n' \ f'split:\n' \ f' test: [0]' # Save dataset and get id d = models.Dataset(name=f'single-image-dataset', task_id=task_id, path='', is_single_image=True) d.save() try: yaml_content = yaml.load(dummy_dataset, Loader=yaml.FullLoader) except yaml.YAMLError as e: d.delete() print(e) return Response({'error': 'Error in YAML parsing'}, status=status.HTTP_400_BAD_REQUEST) with open(f'{settings.DATASETS_DIR}/single_image_dataset_{d.id}.yml', 'w') as f: yaml.dump(yaml_content, f, Dumper=utils.MyDumper, sort_keys=False) # Update the path d.path = f'{settings.DATASETS_DIR}/single_image_dataset_{d.id}.yml' d.save() serializer.validated_data['dataset_id'] = d return utils.do_inference(serializer) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class ModelViewSet(mixins.ListModelMixin, viewsets.GenericViewSet): queryset = models.Model.objects.all() serializer_class = serializers.ModelSerializer def get_queryset(self): task_id = self.request.query_params.get('task_id') if task_id: self.queryset = models.Model.objects.filter(task_id=task_id) return self.queryset @swagger_auto_schema( manual_parameters=[openapi.Parameter('task_id', openapi.IN_QUERY, "Integer for filtering the models based on task.", type=openapi.TYPE_INTEGER, required=False)] ) def list(self, request): """Returns the available Neural Network models This API allows the client to know which Neural Network models are available in the system in order to allow \ their selection. The optional `task_id` parameter is used to filter them based on the task the models are used for. """ return super().list(request) class ModelWeightsViewSet(BAMixins.ParamListModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, viewsets.GenericViewSet): queryset = models.ModelWeights.objects.all() serializer_class = serializers.ModelWeightsSerializer params = ['model_id'] def get_queryset(self): if self.action == 'list': model_id = self.request.query_params.get('model_id') self.queryset = models.ModelWeights.objects.filter(model_id=model_id) return self.queryset else: return super(ModelWeightsViewSet, self).get_queryset() @swagger_auto_schema( manual_parameters=[openapi.Parameter('model_id', openapi.IN_QUERY, "Return the modelweights obtained on `model_id` model.", type=openapi.TYPE_INTEGER, required=False)] ) def list(self, request): """Returns the available Neural Network models When 'use pre-trained' is selected, it is possible to query the backend passing a `model_id` to obtain a list of dataset on which it was pretrained. """ return super().list(request) def retrieve(self, request, *args, **kwargs): """Retrieve a single modelweight This API returns the modelweight with the requested`{id}`. """ return super().retrieve(request, *args, **kwargs) def get_obj(self, id): try: return models.ModelWeights.objects.get(id=id) except models.ModelWeights.DoesNotExist: return None def put(self, request, *args, **kwargs): """Update an existing weight This method updates an existing model weight (e.g. change the name). """ weight = self.get_obj(request.data['id']) if not weight: error = {"Error": f"Weight {request.data['id']} does not exist"} return Response(data=error, status=status.HTTP_400_BAD_REQUEST) serializer = self.serializer_class(weight, data=request.data) if serializer.is_valid(): serializer.save() # Returns all the elements with model_id in request queryset = models.ModelWeights.objects.filter(model_id=weight.model_id) serializer = self.get_serializer(queryset, many=True) # serializer = self.serializer_class(queryset, many=True) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def update(self, request, *args, **kwargs): """Update an existing weight This method updates an existing model weight (e.g. change the name). """ return super().update(request, *args, **kwargs) @swagger_auto_schema(auto_schema=None) def partial_update(self, request, *args, **kwargs): return super().partial_update(request, *args, **kwargs) class OutputViewSet(views.APIView): @staticmethod def trunc(values, decs=0): return np.trunc(values * 10 ** decs) / (10 ** decs) @swagger_auto_schema( manual_parameters=[openapi.Parameter('process_id', openapi.IN_QUERY, "Pass a required UUID representing a finished process.", type=openapi.TYPE_STRING, format=openapi.FORMAT_UUID, required=False)], responses=swagger.OutputViewSet_get_responses ) def get(self, request, *args, **kwargs): """Retrieve results about an inference process This API provides information about an `inference` process.In classification task it returns the list \ of images and an array composed of the classes prediction scores. In segmentation task it returns the URLs of the segmented images. """ if not self.request.query_params.get('process_id'): error = {'Error': f'Missing required parameter `process_id`'} return Response(data=error, status=status.HTTP_400_BAD_REQUEST) process_id = self.request.query_params.get('process_id') infer = models.Inference.objects.filter(celery_id=process_id) if not infer: # already deleted weight/training or inference return Response({"result": "Process stopped before finishing or non existing."}, status=status.HTTP_404_NOT_FOUND) if AsyncResult(process_id).status == 'PENDING': return Response({"result": "Process in execution. Try later for output results."}, status=status.HTTP_200_OK) infer = infer.first() if not os.path.exists(opjoin(settings.OUTPUTS_DIR, infer.outputfile)): return Response({"result": "Output file not found"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) outputs = open(opjoin(settings.OUTPUTS_DIR, infer.outputfile), 'r') # Differentiate classification and segmentation if infer.modelweights_id.model_id.task_id.name.lower() == 'classification': lines = outputs.read().splitlines() lines = [line.split(';') for line in lines] # preds = self.trunc(preds, decs=8) else: # Segmentation # output file contains path of files uri = request.build_absolute_uri(settings.MEDIA_URL) lines = outputs.read().splitlines() lines = [l.replace(settings.OUTPUTS_DIR, uri) for l in lines] response = {'outputs': lines} return Response(response, status=status.HTTP_200_OK) class ProjectViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.CreateModelMixin, mixins.UpdateModelMixin, viewsets.GenericViewSet): queryset = models.Project.objects.all() serializer_class = serializers.ProjectSerializer def get_obj(self, id): try: return models.Project.objects.get(id=id) except models.Project.DoesNotExist: return None def list(self, request, *args, **kwargs): """Loads all the projects This method lists all the available projects. """ return super().list(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): """Retrieve a single project Returns a project by `{id}`. """ return super().retrieve(request, *args, **kwargs) @swagger_auto_schema(responses=swagger.ProjectViewSet_create_response) def create(self, request, *args, **kwargs): """Create a new project Create a new project. """ return super().create(request, *args, **kwargs) def put(self, request, *args, **kwargs): project = self.get_obj(request.data['id']) if not project: error = {"Error": f"Project {request.data['id']} does not exist"} return Response(data=error, status=status.HTTP_400_BAD_REQUEST) serializer = serializers.ProjectSerializer(project, data=request.data) if serializer.is_valid(): serializer.save() # Returns all the elements return self.list(request) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def update(self, request, *args, **kwargs): """Update an existing project Update a project instance by providing its `{id}`. """ return super().update(request, *args, **kwargs) @swagger_auto_schema(auto_schema=None) def partial_update(self, request, *args, **kwargs): return super().partial_update(request, *args, **kwargs) class PropertyViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, viewsets.GenericViewSet): queryset = models.Property.objects.all() serializer_class = serializers.PropertyListSerializer def get_queryset(self): name = self.request.query_params.get('name') # Substitute underscore with space if present if name: name = [name, name.replace('_', ' ')] self.queryset = models.Property.objects.filter(Q(name__icontains=name[0]) | Q(name__icontains=name[1])) return self.queryset def list(self, request, *args, **kwargs): """Return the Properties supported by backend This API allows the client to know which properties are "globally" supported by the backend. A model can have different default value and allowed values if the `/allowedProperties` return an entry. """ return super().list(request, *args, **kwargs) def retrieve(self, request, *args, **kwargs): """Retrieve a single property Return a property by `{id}`. """ return super().retrieve(request, *args, **kwargs) class StatusView(views.APIView): @swagger_auto_schema(manual_parameters=[openapi.Parameter('process_id', openapi.IN_QUERY, "UUID representing a process", required=True, type=openapi.TYPE_STRING, format=openapi.FORMAT_UUID)], responses=swagger.StatusView_get_response ) def get(self, request): """Return the status of an training or inference process This API allows the frontend to query the status of a training or inference, identified by a `process_id` \ (which is returned by `/train` or `/inference` APIs). """ if not self.request.query_params.get('process_id'): error = {'Error': f'Missing required parameter `process_id`'} return Response(data=error, status=status.HTTP_400_BAD_REQUEST) process_id = self.request.query_params.get('process_id') if models.ModelWeights.objects.filter(celery_id=process_id).exists(): process_type = 'training' process = models.ModelWeights.objects.filter(celery_id=process_id).first() elif models.Inference.objects.filter(celery_id=process_id).exists(): process_type = 'inference' process = models.Inference.objects.filter(celery_id=process_id).first() else: res = { "result": "error", "error": "Process not found." } return Response(data=res, status=status.HTTP_404_NOT_FOUND) try: with open(process.logfile, 'r') as f: lines = f.read().splitlines() last_line = lines[-1] except: res = { "result": "error", "error": "Log file not found" } return Response(data=res, status=status.HTTP_500_INTERNAL_SERVER_ERROR) if last_line == '<done>': process_status = 'finished' last_line = lines[-2] else: process_status = 'running' res = { 'result': 'ok', 'status': { 'process_type': process_type, 'process_status': process_status, 'process_data': last_line, } } return Response(data=res, status=status.HTTP_200_OK) class StopProcessViewSet(views.APIView): @swagger_auto_schema(request_body=serializers.StopProcessSerializer, responses=swagger.StopProcessViewSet_post_response ) def post(self, request): """Kill a training or inference process Stop a training process specifying a `process_id` (which is returned by `/train` or `/inference` APIs). """ serializer = serializers.StopProcessSerializer(data=request.data) if serializer.is_valid(): process_id = serializer.data['process_id'] weights = models.ModelWeights.objects.filter(celery_id=process_id) infer = models.Inference.objects.filter(celery_id=process_id) response = {"result": "Process stopped"} if not weights.exists() and not infer.exists(): # already deleted weight/training or inference return Response({"result": "Process already stopped or non existing"}, status=status.HTTP_404_NOT_FOUND) elif weights: weights = weights.first() celery_id = weights.celery_id celery_app.control.revoke(celery_id, terminate=True, signal='SIGUSR1') response = {"result": "Training stopped"} # delete the ModelWeights entry from db # also delete ModelWeights fk in project weights.delete() elif infer: infer = infer.first() celery_id = infer.celery_id celery_app.control.revoke(celery_id, terminate=True, signal='SIGUSR1') response = {"result": "Inference stopped"} # delete the ModelWeights entry from db infer.delete() # todo delete log file? delete weight file? return Response(response, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class TaskViewSet(mixins.ListModelMixin, viewsets.GenericViewSet): queryset = models.Task.objects.all() serializer_class = serializers.TaskSerializer def list(self, request, *args, **kwargs): """Return the tasks supported by backend This API allows the client to know which task this platform supports. e.g. classification or segmentation tasks. """ return super().list(request, *args, **kwargs) class TrainViewSet(views.APIView): @swagger_auto_schema(request_body=serializers.TrainSerializer, responses=swagger.TrainViewSet_post_response ) def post(self, request): """Starts the training of a (possibly pre-trained) model on a dataset This is the main entry point to start the training of a model on a dataset. \ It is mandatory to specify a model to be trained and a dataset. When providing a `weights_id`, the training starts from the pre-trained model. """ serializer = serializers.TrainSerializer(data=request.data) if serializer.is_valid(): # Create a new modelweights and start training weight = models.ModelWeights() weight.dataset_id_id = serializer.data['dataset_id'] weight.model_id_id = serializer.data['model_id'] if not models.Dataset.objects.filter(id=weight.dataset_id_id, is_single_image=False).exists(): error = {"Error": f"Dataset with id `{weight.dataset_id_id}` does not exist"} return Response(error, status=status.HTTP_400_BAD_REQUEST) if not models.Model.objects.filter(id=weight.model_id_id).exists(): error = {"Error": f"Model with id `{weight.model_id_id}` does not exist"} return Response(error, status=status.HTTP_400_BAD_REQUEST) if not models.Project.objects.filter(id=serializer.data['project_id']).exists(): error = {"Error": f"Project with id `{serializer.data['project_id']}` does not exist"} return Response(error, status=status.HTTP_400_BAD_REQUEST) # Check if dataset and model are both for same task if weight.model_id.task_id != weight.dataset_id.task_id: error = {"Error": f"Model and dataset must belong to the same task"} return Response(error, status=status.HTTP_400_BAD_REQUEST) project = models.Project.objects.get(id=serializer.data['project_id']) task_name = project.task_id.name.lower() weight.task_id = project.task_id weight.name = f'{weight.model_id.name}_{weight.dataset_id.name}_' \ f'{datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}' if serializer.data['weights_id']: weight.pretrained_on_id = serializer.data['weights_id'] if not models.ModelWeights.objects.filter(id=weight.pretrained_on_id).exists(): error = {"Error": f"Model weight with id `{weight.pretrained_on_id}` does not exist"} return Response(error, status=status.HTTP_400_BAD_REQUEST) weight.save() # Generate an id for the weight ckpts_dir = opjoin(settings.TRAINING_DIR, 'ckpts') weight.location = Path(opjoin(ckpts_dir, f'{weight.id}.bin')).absolute() # Create a logfile weight.logfile = models.generate_file_path(f'{uuid.uuid4().hex}.log', settings.TRAINING_DIR, 'logs') weight.save() hyperparams = {} # Check if current model has some custom properties and load them props_allowed = models.AllowedProperty.objects.filter(model_id=weight.model_id_id) if props_allowed: for p in props_allowed: hyperparams[p.property_id.name] = p.default_value # Load default values for those properties not in props_allowed props_general = models.Property.objects.all() for p in props_general: if hyperparams.get(p.name) is None: hyperparams[p.name] = p.default # Overwrite hyperparams with ones provided by the user props = serializer.data['properties'] for p in props: ts = models.TrainingSetting() # Get the property by name name = p['name'] name = [name, name.replace('_', ' ')] queryset = models.Property.objects.filter(Q(name__icontains=name[0]) | Q(name__icontains=name[1])) if len(queryset) == 0: # Property does not exist, delete the weight and its associated properties (cascade) weight.delete() error = {"Error": f"Property `{p['name']}` does not exist"} return Response(error, status=status.HTTP_400_BAD_REQUEST) property = queryset[0] ts.property_id = property ts.modelweights_id = weight ts.value = str(p['value']) ts.save() hyperparams[property.name] = ts.value config = nn_settings(modelweight=weight, hyperparams=hyperparams) if not config: return Response({"Error": "Properties error"}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) # Differentiate the task and start training if task_name == 'classification': celery_id = classification.classificate.delay(config) # celery_id = classification.classificate(config) elif task_name == 'segmentation': celery_id = segmentation.segment.delay(config) # celery_id = segmentation.segment(config) else: return Response({'error': 'error on task'}, status=status.HTTP_400_BAD_REQUEST) weight = models.ModelWeights.objects.get(id=weight.id) weight.celery_id = celery_id.id weight.save() # todo what if project already has a modelweight? # Training started, store the training in project project.modelweights_id = weight project.save() response = { "result": "ok", "process_id": celery_id.id, "weight_id": weight.id } return Response(response, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class TrainingSettingViewSet(BAMixins.ParamListModelMixin, viewsets.GenericViewSet): queryset = models.TrainingSetting.objects.all() serializer_class = serializers.TrainingSettingSerializer params = ['modelweights_id', 'property_id'] def get_queryset(self): modelweights_id = self.request.query_params.get('modelweights_id') property_id = self.request.query_params.get('property_id') self.queryset = models.TrainingSetting.objects.filter(modelweights_id=modelweights_id, property_id=property_id) return self.queryset @swagger_auto_schema( manual_parameters=[openapi.Parameter('modelweights_id', openapi.IN_QUERY, "Integer representing a ModelWeights", required=True, type=openapi.TYPE_INTEGER), openapi.Parameter('property_id', openapi.IN_QUERY, "Integer representing a Property", required=True, type=openapi.TYPE_INTEGER)] ) def list(self, request, *args, **kwargs): """Returns settings used for a training This API returns the value used for a property in a specific training (a modelweights). It requires a `modelweights_id`, indicating a training process, and a `property_id`. """ return super().list(request, *args, **kwargs)
[ "backend_app.models.Model.objects.filter", "backend_app.models.Project.objects.filter", "numpy.trunc", "drf_yasg.utils.swagger_auto_schema", "backend_app.models.Project.objects.get", "yaml.load", "backend_app.models.AllowedProperty.objects.all", "backend_app.models.TrainingSetting", "backend_app.models.Inference.objects.filter", "backend_app.models.ModelWeights.objects.get", "backend_app.models.Dataset", "pathlib.Path", "backend_app.models.Task.objects.all", "deeplearning.tasks.segmentation.segment.delay", "backend_app.utils.do_inference", "django.db.models.Q", "backend.celery_app.control.revoke", "backend_app.models.TrainingSetting.objects.all", "backend_app.models.ModelWeights.objects.filter", "yaml.dump", "deeplearning.utils.nn_settings", "celery.result.AsyncResult", "backend_app.serializers.InferenceSerializer", "requests.get", "uuid.uuid4", "backend_app.models.ModelWeights.objects.all", "backend_app.models.ModelWeights", "backend_app.models.Project.objects.all", "drf_yasg.openapi.Parameter", "backend_app.models.Model.objects.all", "backend_app.models.AllowedProperty.objects.filter", "backend_app.serializers.TrainSerializer", "backend_app.models.Property.objects.all", "os.path.join", "backend_app.models.Dataset.objects.filter", "datetime.datetime.now", "rest_framework.response.Response", "backend_app.models.TrainingSetting.objects.filter", "backend_app.serializers.ProjectSerializer", "backend_app.serializers.StopProcessSerializer", "deeplearning.tasks.classification.classificate.delay", "backend_app.serializers.InferenceSingleSerializer" ]
[((816, 852), 'backend_app.models.AllowedProperty.objects.all', 'models.AllowedProperty.objects.all', ([], {}), '()\n', (850, 852), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((2601, 2653), 'backend_app.models.Dataset.objects.filter', 'models.Dataset.objects.filter', ([], {'is_single_image': '(False)'}), '(is_single_image=False)\n', (2630, 2653), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((3624, 3693), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'responses': 'swagger.DatasetViewSet_create_response'}), '(responses=swagger.DatasetViewSet_create_response)\n', (3643, 3693), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((5697, 5812), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'request_body': 'serializers.InferenceSerializer', 'responses': 'swagger.inferences_post_responses'}), '(request_body=serializers.InferenceSerializer, responses\n =swagger.inferences_post_responses)\n', (5716, 5812), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((6373, 6493), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'request_body': 'serializers.InferenceSingleSerializer', 'responses': 'swagger.inferences_post_responses'}), '(request_body=serializers.InferenceSingleSerializer,\n responses=swagger.inferences_post_responses)\n', (6392, 6493), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((8546, 8572), 'backend_app.models.Model.objects.all', 'models.Model.objects.all', ([], {}), '()\n', (8570, 8572), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((9741, 9774), 'backend_app.models.ModelWeights.objects.all', 'models.ModelWeights.objects.all', ([], {}), '()\n', (9772, 9774), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((12362, 12399), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'auto_schema': 'None'}), '(auto_schema=None)\n', (12381, 12399), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((15424, 15452), 'backend_app.models.Project.objects.all', 'models.Project.objects.all', ([], {}), '()\n', (15450, 15452), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((16072, 16141), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'responses': 'swagger.ProjectViewSet_create_response'}), '(responses=swagger.ProjectViewSet_create_response)\n', (16091, 16141), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((17116, 17153), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'auto_schema': 'None'}), '(auto_schema=None)\n', (17135, 17153), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((17433, 17462), 'backend_app.models.Property.objects.all', 'models.Property.objects.all', ([], {}), '()\n', (17460, 17462), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((20989, 21112), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'request_body': 'serializers.StopProcessSerializer', 'responses': 'swagger.StopProcessViewSet_post_response'}), '(request_body=serializers.StopProcessSerializer,\n responses=swagger.StopProcessViewSet_post_response)\n', (21008, 21112), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((23022, 23047), 'backend_app.models.Task.objects.all', 'models.Task.objects.all', ([], {}), '()\n', (23045, 23047), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((23424, 23536), 'drf_yasg.utils.swagger_auto_schema', 'swagger_auto_schema', ([], {'request_body': 'serializers.TrainSerializer', 'responses': 'swagger.TrainViewSet_post_response'}), '(request_body=serializers.TrainSerializer, responses=\n swagger.TrainViewSet_post_response)\n', (23443, 23536), False, 'from drf_yasg.utils import swagger_auto_schema\n'), ((29642, 29678), 'backend_app.models.TrainingSetting.objects.all', 'models.TrainingSetting.objects.all', ([], {}), '()\n', (29676, 29678), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((1136, 1222), 'backend_app.models.AllowedProperty.objects.filter', 'models.AllowedProperty.objects.filter', ([], {'model_id': 'model_id', 'property_id': 'property_id'}), '(model_id=model_id, property_id=\n property_id)\n', (1173, 1222), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((5578, 5650), 'rest_framework.response.Response', 'Response', (["{'error': 'URL malformed'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': 'URL malformed'}, status=status.HTTP_400_BAD_REQUEST)\n", (5586, 5650), False, 'from rest_framework.response import Response\n'), ((6106, 6156), 'backend_app.serializers.InferenceSerializer', 'serializers.InferenceSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (6137, 6156), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((6257, 6320), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (6265, 6320), False, 'from rest_framework.response import Response\n'), ((6845, 6901), 'backend_app.serializers.InferenceSingleSerializer', 'serializers.InferenceSingleSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (6882, 6901), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((8378, 8441), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (8386, 8441), False, 'from rest_framework.response import Response\n'), ((12060, 12123), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (12068, 12123), False, 'from rest_framework.response import Response\n'), ((13714, 13767), 'backend_app.models.Inference.objects.filter', 'models.Inference.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (13745, 13767), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((15130, 15175), 'rest_framework.response.Response', 'Response', (['response'], {'status': 'status.HTTP_200_OK'}), '(response, status=status.HTTP_200_OK)\n', (15138, 15175), False, 'from rest_framework.response import Response\n'), ((16617, 16674), 'backend_app.serializers.ProjectSerializer', 'serializers.ProjectSerializer', (['project'], {'data': 'request.data'}), '(project, data=request.data)\n', (16646, 16674), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((16831, 16894), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (16839, 16894), False, 'from rest_framework.response import Response\n'), ((20895, 20940), 'rest_framework.response.Response', 'Response', ([], {'data': 'res', 'status': 'status.HTTP_200_OK'}), '(data=res, status=status.HTTP_200_OK)\n', (20903, 20940), False, 'from rest_framework.response import Response\n'), ((21383, 21435), 'backend_app.serializers.StopProcessSerializer', 'serializers.StopProcessSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (21416, 21435), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((22856, 22919), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (22864, 22919), False, 'from rest_framework.response import Response\n'), ((23969, 24015), 'backend_app.serializers.TrainSerializer', 'serializers.TrainSerializer', ([], {'data': 'request.data'}), '(data=request.data)\n', (23996, 24015), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((29447, 29510), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(serializer.errors, status=status.HTTP_400_BAD_REQUEST)\n', (29455, 29510), False, 'from rest_framework.response import Response\n'), ((29983, 30082), 'backend_app.models.TrainingSetting.objects.filter', 'models.TrainingSetting.objects.filter', ([], {'modelweights_id': 'modelweights_id', 'property_id': 'property_id'}), '(modelweights_id=modelweights_id,\n property_id=property_id)\n', (30020, 30082), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((2843, 2912), 'backend_app.models.Dataset.objects.filter', 'models.Dataset.objects.filter', ([], {'task_id': 'task_id', 'is_single_image': '(False)'}), '(task_id=task_id, is_single_image=False)\n', (2872, 2912), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((4207, 4315), 'rest_framework.response.Response', 'Response', (["{'error': 'Validation error. Request data is malformed.'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': 'Validation error. Request data is malformed.'}, status=\n status.HTTP_400_BAD_REQUEST)\n", (4215, 4315), False, 'from rest_framework.response import Response\n'), ((4649, 4757), 'rest_framework.response.Response', 'Response', (["{'error': f'The dataset `{dataset_name}` already exists'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': f'The dataset `{dataset_name}` already exists'}, status=\n status.HTTP_400_BAD_REQUEST)\n", (4657, 4757), False, 'from rest_framework.response import Response\n'), ((4810, 4849), 'requests.get', 'requests.get', (['url'], {'allow_redirects': '(True)'}), '(url, allow_redirects=True)\n', (4822, 4849), False, 'import requests\n'), ((6211, 6241), 'backend_app.utils.do_inference', 'utils.do_inference', (['serializer'], {}), '(serializer)\n', (6229, 6241), False, 'from backend_app import utils\n'), ((7540, 7636), 'backend_app.models.Dataset', 'models.Dataset', ([], {'name': 'f"""single-image-dataset"""', 'task_id': 'task_id', 'path': '""""""', 'is_single_image': '(True)'}), "(name=f'single-image-dataset', task_id=task_id, path='',\n is_single_image=True)\n", (7554, 7636), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((8332, 8362), 'backend_app.utils.do_inference', 'utils.do_inference', (['serializer'], {}), '(serializer)\n', (8350, 8362), False, 'from backend_app import utils\n'), ((8760, 8804), 'backend_app.models.Model.objects.filter', 'models.Model.objects.filter', ([], {'task_id': 'task_id'}), '(task_id=task_id)\n', (8787, 8804), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((10015, 10068), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'model_id': 'model_id'}), '(model_id=model_id)\n', (10049, 10068), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((11071, 11109), 'backend_app.models.ModelWeights.objects.get', 'models.ModelWeights.objects.get', ([], {'id': 'id'}), '(id=id)\n', (11102, 11109), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((11525, 11581), 'rest_framework.response.Response', 'Response', ([], {'data': 'error', 'status': 'status.HTTP_400_BAD_REQUEST'}), '(data=error, status=status.HTTP_400_BAD_REQUEST)\n', (11533, 11581), False, 'from rest_framework.response import Response\n'), ((11803, 11863), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'model_id': 'weight.model_id'}), '(model_id=weight.model_id)\n', (11837, 11863), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((12019, 12044), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (12027, 12044), False, 'from rest_framework.response import Response\n'), ((12622, 12651), 'numpy.trunc', 'np.trunc', (['(values * 10 ** decs)'], {}), '(values * 10 ** decs)\n', (12630, 12651), True, 'import numpy as np\n'), ((13576, 13632), 'rest_framework.response.Response', 'Response', ([], {'data': 'error', 'status': 'status.HTTP_400_BAD_REQUEST'}), '(data=error, status=status.HTTP_400_BAD_REQUEST)\n', (13584, 13632), False, 'from rest_framework.response import Response\n'), ((13868, 13979), 'rest_framework.response.Response', 'Response', (["{'result': 'Process stopped before finishing or non existing.'}"], {'status': 'status.HTTP_404_NOT_FOUND'}), "({'result': 'Process stopped before finishing or non existing.'},\n status=status.HTTP_404_NOT_FOUND)\n", (13876, 13979), False, 'from rest_framework.response import Response\n'), ((14080, 14186), 'rest_framework.response.Response', 'Response', (["{'result': 'Process in execution. Try later for output results.'}"], {'status': 'status.HTTP_200_OK'}), "({'result': 'Process in execution. Try later for output results.'},\n status=status.HTTP_200_OK)\n", (14088, 14186), False, 'from rest_framework.response import Response\n'), ((14340, 14436), 'rest_framework.response.Response', 'Response', (["{'result': 'Output file not found'}"], {'status': 'status.HTTP_500_INTERNAL_SERVER_ERROR'}), "({'result': 'Output file not found'}, status=status.\n HTTP_500_INTERNAL_SERVER_ERROR)\n", (14348, 14436), False, 'from rest_framework.response import Response\n'), ((14455, 14501), 'os.path.join', 'opjoin', (['settings.OUTPUTS_DIR', 'infer.outputfile'], {}), '(settings.OUTPUTS_DIR, infer.outputfile)\n', (14461, 14501), True, 'from os.path import join as opjoin\n'), ((15566, 15599), 'backend_app.models.Project.objects.get', 'models.Project.objects.get', ([], {'id': 'id'}), '(id=id)\n', (15592, 15599), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((16539, 16595), 'rest_framework.response.Response', 'Response', ([], {'data': 'error', 'status': 'status.HTTP_400_BAD_REQUEST'}), '(data=error, status=status.HTTP_400_BAD_REQUEST)\n', (16547, 16595), False, 'from rest_framework.response import Response\n'), ((19397, 19453), 'rest_framework.response.Response', 'Response', ([], {'data': 'error', 'status': 'status.HTTP_400_BAD_REQUEST'}), '(data=error, status=status.HTTP_400_BAD_REQUEST)\n', (19405, 19453), False, 'from rest_framework.response import Response\n'), ((21547, 21603), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (21581, 21603), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((21624, 21677), 'backend_app.models.Inference.objects.filter', 'models.Inference.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (21655, 21677), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((22795, 22840), 'rest_framework.response.Response', 'Response', (['response'], {'status': 'status.HTTP_200_OK'}), '(response, status=status.HTTP_200_OK)\n', (22803, 22840), False, 'from rest_framework.response import Response\n'), ((24131, 24152), 'backend_app.models.ModelWeights', 'models.ModelWeights', ([], {}), '()\n', (24150, 24152), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((25391, 25451), 'backend_app.models.Project.objects.get', 'models.Project.objects.get', ([], {'id': "serializer.data['project_id']"}), "(id=serializer.data['project_id'])\n", (25417, 25451), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((26199, 26237), 'os.path.join', 'opjoin', (['settings.TRAINING_DIR', '"""ckpts"""'], {}), "(settings.TRAINING_DIR, 'ckpts')\n", (26205, 26237), True, 'from os.path import join as opjoin\n'), ((26630, 26696), 'backend_app.models.AllowedProperty.objects.filter', 'models.AllowedProperty.objects.filter', ([], {'model_id': 'weight.model_id_id'}), '(model_id=weight.model_id_id)\n', (26667, 26696), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((26942, 26971), 'backend_app.models.Property.objects.all', 'models.Property.objects.all', ([], {}), '()\n', (26969, 26971), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((28158, 28214), 'deeplearning.utils.nn_settings', 'nn_settings', ([], {'modelweight': 'weight', 'hyperparams': 'hyperparams'}), '(modelweight=weight, hyperparams=hyperparams)\n', (28169, 28214), False, 'from deeplearning.utils import nn_settings\n'), ((28894, 28939), 'backend_app.models.ModelWeights.objects.get', 'models.ModelWeights.objects.get', ([], {'id': 'weight.id'}), '(id=weight.id)\n', (28925, 28939), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((29381, 29431), 'rest_framework.response.Response', 'Response', (['response'], {'status': 'status.HTTP_201_CREATED'}), '(response, status=status.HTTP_201_CREATED)\n', (29389, 29431), False, 'from rest_framework.response import Response\n'), ((1301, 1426), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""model_id"""', 'openapi.IN_QUERY', '"""Integer representing a model"""'], {'required': '(True)', 'type': 'openapi.TYPE_INTEGER'}), "('model_id', openapi.IN_QUERY,\n 'Integer representing a model', required=True, type=openapi.TYPE_INTEGER)\n", (1318, 1426), False, 'from drf_yasg import openapi\n'), ((1496, 1632), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""property_id"""', 'openapi.IN_QUERY', '"""Integer representing a property"""'], {'required': '(True)', 'type': 'openapi.TYPE_INTEGER'}), "('property_id', openapi.IN_QUERY,\n 'Integer representing a property', required=True, type=openapi.TYPE_INTEGER\n )\n", (1513, 1632), False, 'from drf_yasg import openapi\n'), ((3073, 3166), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""task_id"""', 'openapi.IN_QUERY'], {'type': 'openapi.TYPE_INTEGER', 'required': '(False)'}), "('task_id', openapi.IN_QUERY, type=openapi.TYPE_INTEGER,\n required=False)\n", (3090, 3166), False, 'from drf_yasg import openapi\n'), ((4568, 4619), 'pathlib.Path', 'Path', (['f"""{settings.DATASETS_DIR}/{dataset_name}.yml"""'], {}), "(f'{settings.DATASETS_DIR}/{dataset_name}.yml')\n", (4572, 4619), False, 'from pathlib import Path\n'), ((4918, 4962), 'yaml.load', 'yaml.load', (['r.content'], {'Loader': 'yaml.FullLoader'}), '(r.content, Loader=yaml.FullLoader)\n', (4927, 4962), False, 'import yaml\n'), ((5315, 5389), 'rest_framework.response.Response', 'Response', (['serializer.data'], {'status': 'status.HTTP_201_CREATED', 'headers': 'headers'}), '(serializer.data, status=status.HTTP_201_CREATED, headers=headers)\n', (5323, 5389), False, 'from rest_framework.response import Response\n'), ((5490, 5562), 'rest_framework.response.Response', 'Response', (["{'error': 'URL malformed'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': 'URL malformed'}, status=status.HTTP_400_BAD_REQUEST)\n", (5498, 5562), False, 'from rest_framework.response import Response\n'), ((7087, 7128), 'backend_app.models.Project.objects.get', 'models.Project.objects.get', ([], {'id': 'project_id'}), '(id=project_id)\n', (7113, 7128), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((7702, 7750), 'yaml.load', 'yaml.load', (['dummy_dataset'], {'Loader': 'yaml.FullLoader'}), '(dummy_dataset, Loader=yaml.FullLoader)\n', (7711, 7750), False, 'import yaml\n'), ((8057, 8123), 'yaml.dump', 'yaml.dump', (['yaml_content', 'f'], {'Dumper': 'utils.MyDumper', 'sort_keys': '(False)'}), '(yaml_content, f, Dumper=utils.MyDumper, sort_keys=False)\n', (8066, 8123), False, 'import yaml\n'), ((8888, 9037), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""task_id"""', 'openapi.IN_QUERY', '"""Integer for filtering the models based on task."""'], {'type': 'openapi.TYPE_INTEGER', 'required': '(False)'}), "('task_id', openapi.IN_QUERY,\n 'Integer for filtering the models based on task.', type=openapi.\n TYPE_INTEGER, required=False)\n", (8905, 9037), False, 'from drf_yasg import openapi\n'), ((10237, 10393), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""model_id"""', 'openapi.IN_QUERY', '"""Return the modelweights obtained on `model_id` model."""'], {'type': 'openapi.TYPE_INTEGER', 'required': '(False)'}), "('model_id', openapi.IN_QUERY,\n 'Return the modelweights obtained on `model_id` model.', type=openapi.\n TYPE_INTEGER, required=False)\n", (10254, 10393), False, 'from drf_yasg import openapi\n'), ((14016, 14039), 'celery.result.AsyncResult', 'AsyncResult', (['process_id'], {}), '(process_id)\n', (14027, 14039), False, 'from celery.result import AsyncResult\n'), ((14272, 14318), 'os.path.join', 'opjoin', (['settings.OUTPUTS_DIR', 'infer.outputfile'], {}), '(settings.OUTPUTS_DIR, infer.outputfile)\n', (14278, 14318), True, 'from os.path import join as opjoin\n'), ((12721, 12906), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""process_id"""', 'openapi.IN_QUERY', '"""Pass a required UUID representing a finished process."""'], {'type': 'openapi.TYPE_STRING', 'format': 'openapi.FORMAT_UUID', 'required': '(False)'}), "('process_id', openapi.IN_QUERY,\n 'Pass a required UUID representing a finished process.', type=openapi.\n TYPE_STRING, format=openapi.FORMAT_UUID, required=False)\n", (12738, 12906), False, 'from drf_yasg import openapi\n'), ((19531, 19587), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (19565, 19587), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((20071, 20123), 'rest_framework.response.Response', 'Response', ([], {'data': 'res', 'status': 'status.HTTP_404_NOT_FOUND'}), '(data=res, status=status.HTTP_404_NOT_FOUND)\n', (20079, 20123), False, 'from rest_framework.response import Response\n'), ((20422, 20486), 'rest_framework.response.Response', 'Response', ([], {'data': 'res', 'status': 'status.HTTP_500_INTERNAL_SERVER_ERROR'}), '(data=res, status=status.HTTP_500_INTERNAL_SERVER_ERROR)\n', (20430, 20486), False, 'from rest_framework.response import Response\n'), ((18527, 18684), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""process_id"""', 'openapi.IN_QUERY', '"""UUID representing a process"""'], {'required': '(True)', 'type': 'openapi.TYPE_STRING', 'format': 'openapi.FORMAT_UUID'}), "('process_id', openapi.IN_QUERY,\n 'UUID representing a process', required=True, type=openapi.TYPE_STRING,\n format=openapi.FORMAT_UUID)\n", (18544, 18684), False, 'from drf_yasg import openapi\n'), ((21877, 21979), 'rest_framework.response.Response', 'Response', (["{'result': 'Process already stopped or non existing'}"], {'status': 'status.HTTP_404_NOT_FOUND'}), "({'result': 'Process already stopped or non existing'}, status=\n status.HTTP_404_NOT_FOUND)\n", (21885, 21979), False, 'from rest_framework.response import Response\n'), ((24504, 24555), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (24512, 24555), False, 'from rest_framework.response import Response\n'), ((24750, 24801), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (24758, 24801), False, 'from rest_framework.response import Response\n'), ((25022, 25073), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (25030, 25073), False, 'from rest_framework.response import Response\n'), ((25316, 25367), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (25324, 25367), False, 'from rest_framework.response import Response\n'), ((27279, 27303), 'backend_app.models.TrainingSetting', 'models.TrainingSetting', ([], {}), '()\n', (27301, 27303), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((28265, 28355), 'rest_framework.response.Response', 'Response', (["{'Error': 'Properties error'}"], {'status': 'status.HTTP_500_INTERNAL_SERVER_ERROR'}), "({'Error': 'Properties error'}, status=status.\n HTTP_500_INTERNAL_SERVER_ERROR)\n", (28273, 28355), False, 'from rest_framework.response import Response\n'), ((28482, 28523), 'deeplearning.tasks.classification.classificate.delay', 'classification.classificate.delay', (['config'], {}), '(config)\n', (28515, 28523), False, 'from deeplearning.tasks import classification, segmentation\n'), ((30162, 30306), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""modelweights_id"""', 'openapi.IN_QUERY', '"""Integer representing a ModelWeights"""'], {'required': '(True)', 'type': 'openapi.TYPE_INTEGER'}), "('modelweights_id', openapi.IN_QUERY,\n 'Integer representing a ModelWeights', required=True, type=openapi.\n TYPE_INTEGER)\n", (30179, 30306), False, 'from drf_yasg import openapi\n'), ((30371, 30507), 'drf_yasg.openapi.Parameter', 'openapi.Parameter', (['"""property_id"""', 'openapi.IN_QUERY', '"""Integer representing a Property"""'], {'required': '(True)', 'type': 'openapi.TYPE_INTEGER'}), "('property_id', openapi.IN_QUERY,\n 'Integer representing a Property', required=True, type=openapi.TYPE_INTEGER\n )\n", (30388, 30507), False, 'from drf_yasg import openapi\n'), ((5067, 5133), 'yaml.dump', 'yaml.dump', (['yaml_content', 'f'], {'Dumper': 'utils.MyDumper', 'sort_keys': '(False)'}), '(yaml_content, f, Dumper=utils.MyDumper, sort_keys=False)\n', (5076, 5133), False, 'import yaml\n'), ((7866, 7951), 'rest_framework.response.Response', 'Response', (["{'error': 'Error in YAML parsing'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': 'Error in YAML parsing'}, status=status.HTTP_400_BAD_REQUEST\n )\n", (7874, 7951), False, 'from rest_framework.response import Response\n'), ((17783, 17809), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'name[0]'}), '(name__icontains=name[0])\n', (17784, 17809), False, 'from django.db.models import Q\n'), ((17812, 17838), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'name[1]'}), '(name__icontains=name[1])\n', (17813, 17838), False, 'from django.db.models import Q\n'), ((19658, 19714), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (19692, 19714), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((19736, 19789), 'backend_app.models.Inference.objects.filter', 'models.Inference.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (19767, 19789), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((22105, 22175), 'backend.celery_app.control.revoke', 'celery_app.control.revoke', (['celery_id'], {'terminate': '(True)', 'signal': '"""SIGUSR1"""'}), "(celery_id, terminate=True, signal='SIGUSR1')\n", (22130, 22175), False, 'from backend import celery_app, settings\n'), ((26063, 26114), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (26071, 26114), False, 'from rest_framework.response import Response\n'), ((27836, 27887), 'rest_framework.response.Response', 'Response', (['error'], {'status': 'status.HTTP_400_BAD_REQUEST'}), '(error, status=status.HTTP_400_BAD_REQUEST)\n', (27844, 27887), False, 'from rest_framework.response import Response\n'), ((28664, 28698), 'deeplearning.tasks.segmentation.segment.delay', 'segmentation.segment.delay', (['config'], {}), '(config)\n', (28690, 28698), False, 'from deeplearning.tasks import classification, segmentation\n'), ((28799, 28871), 'rest_framework.response.Response', 'Response', (["{'error': 'error on task'}"], {'status': 'status.HTTP_400_BAD_REQUEST'}), "({'error': 'error on task'}, status=status.HTTP_400_BAD_REQUEST)\n", (28807, 28871), False, 'from rest_framework.response import Response\n'), ((19861, 19914), 'backend_app.models.Inference.objects.filter', 'models.Inference.objects.filter', ([], {'celery_id': 'process_id'}), '(celery_id=process_id)\n', (19892, 19914), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((22502, 22572), 'backend.celery_app.control.revoke', 'celery_app.control.revoke', (['celery_id'], {'terminate': '(True)', 'signal': '"""SIGUSR1"""'}), "(celery_id, terminate=True, signal='SIGUSR1')\n", (22527, 22572), False, 'from backend import celery_app, settings\n'), ((24299, 24376), 'backend_app.models.Dataset.objects.filter', 'models.Dataset.objects.filter', ([], {'id': 'weight.dataset_id_id', 'is_single_image': '(False)'}), '(id=weight.dataset_id_id, is_single_image=False)\n', (24328, 24376), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((24576, 24626), 'backend_app.models.Model.objects.filter', 'models.Model.objects.filter', ([], {'id': 'weight.model_id_id'}), '(id=weight.model_id_id)\n', (24603, 24626), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((24822, 24885), 'backend_app.models.Project.objects.filter', 'models.Project.objects.filter', ([], {'id': "serializer.data['project_id']"}), "(id=serializer.data['project_id'])\n", (24851, 24885), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((26273, 26310), 'os.path.join', 'opjoin', (['ckpts_dir', 'f"""{weight.id}.bin"""'], {}), "(ckpts_dir, f'{weight.id}.bin')\n", (26279, 26310), True, 'from os.path import join as opjoin\n'), ((27492, 27518), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'name[0]'}), '(name__icontains=name[0])\n', (27493, 27518), False, 'from django.db.models import Q\n'), ((27521, 27547), 'django.db.models.Q', 'Q', ([], {'name__icontains': 'name[1]'}), '(name__icontains=name[1])\n', (27522, 27547), False, 'from django.db.models import Q\n'), ((25659, 25682), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (25680, 25682), False, 'import datetime\n'), ((25857, 25919), 'backend_app.models.ModelWeights.objects.filter', 'models.ModelWeights.objects.filter', ([], {'id': 'weight.pretrained_on_id'}), '(id=weight.pretrained_on_id)\n', (25891, 25919), False, 'from backend_app import mixins as BAMixins, models, serializers, swagger\n'), ((26412, 26424), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (26422, 26424), False, 'import uuid\n')]
# Copyright (c) 2018 IoTeX # This is an alpha (internal) release and is not suitable for production. This source code is provided 'as is' and no # warranties are given as to title or non-infringement, merchantability or fitness for purpose and, to the extent # permitted by law, all liability for your use of the code is disclaimed. This source code is governed by Apache # License 2.0 that can be found in the LICENSE file. """This module defines the Player class, which represents a player in the network and contains functionality to make transactions, propose blocks, and validate blocks. """ import random import grpc import numpy as np from proto import simulator_pb2_grpc from proto import simulator_pb2 import solver import consensus_client import consensus_failurestop # enum for defining the consensus types class CTypes: Honest = 0 FailureStop = 1 ByzantineFault = 2 class Player: id = 0 # player id MEAN_TX_FEE = 0.2 # mean transaction fee STD_TX_FEE = 0.05 # std of transaction fee DUMMY_MSG_TYPE = 1999 # if there are no messages to process, dummy message is sent to consensus engine msgMap = {(DUMMY_MSG_TYPE, bytes()): "dummy msg"} # maps message to message name for printing correctHashes = [] # hashes of blocks proposed by HONEST consensus types def __init__(self, consensusType): """Creates a new Player object""" self.id = Player.id # the player's id Player.id += 1 self.blockchain = [] # blockchain (simplified to a list) self.connections = [] # list of connected players self.inbound = [] # inbound messages from other players in the network at heartbeat r self.outbound = [] # outbound messages to other players in the network at heartbeat r self.seenMessages = set() # set of seen messages if consensusType == CTypes.Honest or consensusType == CTypes.ByzantineFault: self.consensus = consensus_client.Consensus() elif consensusType == CTypes.FailureStop: self.consensus = consensus_failurestop.ConsensusFS() self.consensusType = consensusType self.consensus.playerID = self.id self.consensus.player = self self.nMsgsPassed = [0] self.timeCreated = [] def action(self, heartbeat): """Executes the player's actions for heartbeat r""" print("player %d action started at heartbeat %f" % (self.id, heartbeat)) # self.inbound: [sender, (msgType, msgBody), timestamp] # print messages for sender, msg, timestamp in self.inbound: print("received %s from %s with timestamp %f" % (Player.msgMap[msg], sender, timestamp)) # if the Player received no messages before the current heartbeat, add a `dummy` message so the Player still pings the consensus in case the consensus has something it wants to return # an example of when this is useful is in the first round when consensus proposes a message; the Player needs to ping it to receive the proposal if len(list(filter(lambda x: x[2] <= heartbeat, self.inbound))) == 0: self.inbound += [[-1, (Player.DUMMY_MSG_TYPE, bytes()), heartbeat]] # process each inbound message for sender, msg, timestamp in self.inbound: # note: msg is a tuple: (msgType, msgBody) # cannot see the message yet if the heartbeat is less than the timestamp if timestamp > heartbeat: continue if msg[0] != Player.DUMMY_MSG_TYPE and (msg, sender) in self.seenMessages: continue self.seenMessages.add((msg, sender)) print("sent %s to consensus engine" % Player.msgMap[msg]) received = self.consensus.processMessage(sender, msg) for recipient, mt, v in received: # if mt = 2, the msgBody is comprised of message|blockHash # recipient is the recipient of the message the consensus sends outwards # mt is the message type (0 = view state change message, 1 = block committed, 2 = special case) # v is message value # TODO: fix this '''if "|" in v[1]: separator = v[1].index("|") blockHash = v[1][separator+1:] v = (v[0], v[1][:separator])''' if v not in Player.msgMap: Player.msgMap[v] = "msg "+str(len(Player.msgMap)) print("received %s from consensus engine" % Player.msgMap[v]) if mt == 0: # view state change message self.outbound.append([recipient, v, timestamp]) elif mt == 1: # block to be committed self.blockchain.append(v[1]) # append block hash self.nMsgsPassed.append(0) self.timeCreated.append(timestamp) print("committed %s to blockchain" % Player.msgMap[v]) else: # newly proposed block self.outbound.append([recipient, v, timestamp]) print("PROPOSED %s BLOCK"%("HONEST" if self.consensusType == CTypes.Honest else "BYZANTINE")) if self.consensusType != CTypes.ByzantineFault: Player.correctHashes.append(blockHash) else: Player.correctHashes.append("") # also gossip the current message # I think this is not necessary for tendermint so I am commenting it out '''if msg[0] != Player.DUMMY_MSG_TYPE and self.consensusType != CTypes.FailureStop: self.outbound.append([msg, timestamp])''' self.inbound = list(filter(lambda x: x[2] > heartbeat, self.inbound)) # get rid of processed messages return self.sendOutbound() def sendOutbound(self): """Send all outbound connections to connected nodes. Returns list of nodes messages have been sent to""" if len(self.outbound) == 0: sentMsgs = False else: sentMsgs = True ci = set() for recipient, message, timestamp in self.outbound: if recipient == -1: # -1 means message is broadcast to all connections for c in self.connections: self.outbound.append([c.id, message, timestamp]) continue recipient = list(filter(lambda x: x.id == recipient, self.connections))[0] # recipient is an id; we want to find the player which corresponds to this id in the connections ci.add(recipient) sender = self.id self.nMsgsPassed[-1] += 1 dt = np.random.lognormal(self.NORMAL_MEAN, self.NORMAL_STD) # add propagation time to timestamp print("sent %s to %s" % (Player.msgMap[message], recipient.id)) recipient.inbound.append([sender, message, timestamp+dt]) self.outbound.clear() print() return list(ci), sentMsgs def __str__(self): return "player %s" % (self.id) def __repr__(self): return "player %s" % (self.id) def __hash__(self): return self.id
[ "consensus_failurestop.ConsensusFS", "consensus_client.Consensus", "numpy.random.lognormal" ]
[((2124, 2152), 'consensus_client.Consensus', 'consensus_client.Consensus', ([], {}), '()\n', (2150, 2152), False, 'import consensus_client\n'), ((6945, 6999), 'numpy.random.lognormal', 'np.random.lognormal', (['self.NORMAL_MEAN', 'self.NORMAL_STD'], {}), '(self.NORMAL_MEAN, self.NORMAL_STD)\n', (6964, 6999), True, 'import numpy as np\n'), ((2232, 2267), 'consensus_failurestop.ConsensusFS', 'consensus_failurestop.ConsensusFS', ([], {}), '()\n', (2265, 2267), False, 'import consensus_failurestop\n')]
import numpy as np import matplotlib.pyplot as plt import math TIME_SLEEP = 0.000000001 def train_sgd(X, y, alpha, w=None): """Trains a linear regression model using stochastic gradient descent. Parameters ---------- X : numpy.ndarray Numpy array of data y : numpy.ndarray Numpy array of outputs. Dimensions are n * 1, where n is the number of rows in `X`. alpha : float Describes the learning rate. w : numpy.ndarray, optional The initial w vector (the default is zero). Returns ------- w : numpy.ndarray Trained vector with dimensions (m + 1) * 1, where m is the number of columns in `X`. """ X_b = np.hstack((np.ones((X.shape[0], 1)), X)) previous_error = -1 error = -1 stop = False num_iters = 0 if w is None: w = np.zeros((x.shape[1] + 1, 1)) while not stop: for i in range(0, len(X)): w = w - alpha / len(X) * (np.dot(np.transpose(w), X_b[i].reshape(X_b.shape[1], 1)) - y[i]) * X_b[i].reshape(X_b.shape[1], 1) error = evaluate_error(X, y, w) if previous_error == -1: previous_error = error elif (math.fabs(error - previous_error) < 0.01 * previous_error and num_iters > 10000): stop = True break previous_error = error num_iters += 1 return w def train(X, y): """Trains a linear regression model using linear algebra. Parameters ---------- X : numpy.ndarray Numpy array of data y : numpy.ndarray Numpy array of outputs. Dimensions are n * 1, where n is the number of rows in `X`. Returns ------- w : numpy.ndarray Trained vector with dimensions (m + 1) * 1, where m is the number of columns in `X`. """ # Add bias term X_b = np.hstack((np.ones((X.shape[0], 1)), X)) # Compute pseudo-inverse X_inverse = (np.linalg.inv(np.transpose(X_b).dot(X_b)).dot( np.transpose(X_b))) # Compute w w = X_inverse.dot(y) return w # Plot data def plot(X, y, w): """Plot X data, the actual y output, and the prediction line. Parameters ---------- X : numpy.ndarray Numpy array of data with 1 column. y : numpy.ndarray Numpy array of outputs. Dimensions are n * 1, where n is the number of rows in `X`. w : numpy.ndarray Numpy array with dimensions 2 * 1. """ X_b = np.hstack((np.ones((X.shape[0], 1)), X)) y_predict = X_b.dot(w) plt.clf() plt.plot(X[:, 0], y_predict, 'r-', X[:, 0], y, 'o') plt.pause(TIME_SLEEP) def init_plot(figsize=(15, 8)): """Initializes the plot. Parameters ---------- figsize : tuple, optional A tuple containing the width and height of the plot (the default is (15, 8)). """ plt.ion() f = plt.figure(figsize=figsize) plt.show() def evaluate_error(X, y, w): """Returns the mean squared error. X : numpy.ndarray Numpy array of data. y : numpy.ndarray Numpy array of outputs. Dimensions are n * 1, where n is the number of rows in `X`. w : numpy.ndarray Numpy array with dimensions (m + 1) * 1, where m is the number of columns in `X`. Returns ------- float The mean squared error """ X_b = np.hstack((np.ones((X.shape[0], 1)), X)) y_predict = X_b.dot(w) dist = (y - y_predict) ** 2 return float(np.sum(dist)) / X.shape[0] def predict(X, w): """Returns the prediction for one data point. Parameters ---------- X : numpy.ndarray Numpy array of data w : numpy.ndarray Numpy array with dimensions (m + 1) * 1, where m is the number of columns in `X`. Returns ------- float The mean squared error """ X_b = np.hstack((np.ones((X.shape[0], 1)), X)) return X_b.dot(w)
[ "numpy.ones", "matplotlib.pyplot.show", "matplotlib.pyplot.clf", "matplotlib.pyplot.plot", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "math.fabs", "matplotlib.pyplot.pause", "numpy.transpose", "matplotlib.pyplot.ion" ]
[((2701, 2710), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2708, 2710), True, 'import matplotlib.pyplot as plt\n'), ((2715, 2766), 'matplotlib.pyplot.plot', 'plt.plot', (['X[:, 0]', 'y_predict', '"""r-"""', 'X[:, 0]', 'y', '"""o"""'], {}), "(X[:, 0], y_predict, 'r-', X[:, 0], y, 'o')\n", (2723, 2766), True, 'import matplotlib.pyplot as plt\n'), ((2771, 2792), 'matplotlib.pyplot.pause', 'plt.pause', (['TIME_SLEEP'], {}), '(TIME_SLEEP)\n', (2780, 2792), True, 'import matplotlib.pyplot as plt\n'), ((3024, 3033), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (3031, 3033), True, 'import matplotlib.pyplot as plt\n'), ((3042, 3069), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (3052, 3069), True, 'import matplotlib.pyplot as plt\n'), ((3074, 3084), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3082, 3084), True, 'import matplotlib.pyplot as plt\n'), ((860, 889), 'numpy.zeros', 'np.zeros', (['(x.shape[1] + 1, 1)'], {}), '((x.shape[1] + 1, 1))\n', (868, 889), True, 'import numpy as np\n'), ((2149, 2166), 'numpy.transpose', 'np.transpose', (['X_b'], {}), '(X_b)\n', (2161, 2166), True, 'import numpy as np\n'), ((723, 747), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (730, 747), True, 'import numpy as np\n'), ((2008, 2032), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (2015, 2032), True, 'import numpy as np\n'), ((2638, 2662), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (2645, 2662), True, 'import numpy as np\n'), ((3546, 3570), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (3553, 3570), True, 'import numpy as np\n'), ((3653, 3665), 'numpy.sum', 'np.sum', (['dist'], {}), '(dist)\n', (3659, 3665), True, 'import numpy as np\n'), ((4048, 4072), 'numpy.ones', 'np.ones', (['(X.shape[0], 1)'], {}), '((X.shape[0], 1))\n', (4055, 4072), True, 'import numpy as np\n'), ((1298, 1331), 'math.fabs', 'math.fabs', (['(error - previous_error)'], {}), '(error - previous_error)\n', (1307, 1331), False, 'import math\n'), ((2099, 2116), 'numpy.transpose', 'np.transpose', (['X_b'], {}), '(X_b)\n', (2111, 2116), True, 'import numpy as np\n'), ((991, 1006), 'numpy.transpose', 'np.transpose', (['w'], {}), '(w)\n', (1003, 1006), True, 'import numpy as np\n')]
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.5.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # Separation via Time-Frequency Masking # ===================================== # # One of the most effective ways to separate sounds from a mixture is by # *masking*. Consider the following mixture, which we will download via # one of the dataset hooks in *nussl*. # + import nussl import matplotlib.pyplot as plt import numpy as np import copy import time start_time = time.time() musdb = nussl.datasets.MUSDB18(download=True) item = musdb[40] mix = item['mix'] sources = item['sources'] # - # Let's listen to the mixture. Note that it contains 4 sources: drums, bass, # vocals, and all other sounds (considered as one source: other). mix.embed_audio() print(mix) # Let's now consider the time-frequency representation of this mixture: plt.figure(figsize=(10, 3)) plt.title('Mixture spectrogram') nussl.utils.visualize_spectrogram(mix, y_axis='mel') plt.tight_layout() plt.show() # Masking means to assign each of these time-frequency bins to one of the four # sources in part or in whole. The first method involves creating a *soft* mask # on the time-frequency representation, while the second is a *binary* mask. How # do we assign each time-frequency bin to each source? This is a very hard problem, # in general. For now, let's consider that we *know* the actual assignment of each # time-frequency bin. If we know that, how do we separate the sounds? # # First let's look at one of the sources, say the drums: plt.figure(figsize=(10, 3)) plt.title('Drums') nussl.utils.visualize_spectrogram(sources['drums'], y_axis='mel') plt.tight_layout() plt.show() # Looking at this versus the mixture spectrogram, one can see which time-frequency # bins belong to the drum. Now, let's build a *mask* on the mixture spectrogram # using a soft mask. We construct the soft mask using the drum STFT data and the # mixture STFT data, like so: mask_data = np.abs(sources['drums'].stft()) / np.abs(mix.stft()) # Hmm, this may not be a safe way to do this. What if there's a `0` in both the source # and the mix? Then we would get `0/0`, which would result in NaN in the mask. Or # what if the source STFT is louder than the mix at some time-frequency bin due to # cancellation between sources when mixed? Let's do things a bit more safely by # using the maximum and some checking... mask_data = ( np.abs(sources['drums'].stft()) / np.maximum( np.abs(mix.stft()), np.abs(sources['drums'].stft()) ) + nussl.constants.EPSILON ) # Great, some peace of mind. Now let's apply the soft mask to the mixture to # separate the drums. We can do this by element-wise multiplying the STFT and # adding the mixture phase. # + magnitude, phase = np.abs(mix.stft_data), np.angle(mix.stft_data) masked_abs = magnitude * mask_data masked_stft = masked_abs * np.exp(1j * phase) drum_est = mix.make_copy_with_stft_data(masked_stft) drum_est.istft() drum_est.embed_audio() plt.figure(figsize=(10, 3)) plt.title('Separated drums') nussl.utils.visualize_spectrogram(drum_est, y_axis='mel') plt.tight_layout() plt.show() # - # Cool! Sounds pretty good! But it'd be a drag if we had to type all of # that every time we wanted to separate something. Lucky for you, we # built this stuff into the core functionality of *nussl*! # # `SoftMask` and `BinaryMask` # --------------------------- # # At the core of *nussl*'s separation functionality are the classes # `SoftMask` and `BinaryMask`. These are classes that contain some logic # for masking and can be used with AudioSignal objects. We have a soft mask # already, so let's build a `SoftMask` object. soft_mask = nussl.core.masks.SoftMask(mask_data) # `soft_mask` contains our mask here: soft_mask.mask.shape # We can apply the soft mask to our mix and return the separated drums easily, # using the `apply_mask` method: # + drum_est = mix.apply_mask(soft_mask) drum_est.istft() drum_est.embed_audio() plt.figure(figsize=(10, 3)) plt.title('Separated drums') nussl.utils.visualize_spectrogram(drum_est, y_axis='mel') plt.tight_layout() plt.show() # - # Sometimes masks are *binary* instead of *soft*. To apply a binary mask, we can do this: # + binary_mask = nussl.core.masks.BinaryMask(mask_data > .5) drum_est = mix.apply_mask(binary_mask) drum_est.istft() drum_est.embed_audio() plt.figure(figsize=(10, 3)) plt.title('Separated drums') nussl.utils.visualize_spectrogram(drum_est, y_axis='mel') plt.tight_layout() plt.show() # - # Playing around with the threshold will result in more or less leakage of other sources: # + binary_mask = nussl.core.masks.BinaryMask(mask_data > .05) drum_est = mix.apply_mask(binary_mask) drum_est.istft() drum_est.embed_audio() plt.figure(figsize=(10, 3)) plt.title('Separated drums') nussl.utils.visualize_spectrogram(drum_est, y_axis='mel') plt.tight_layout() plt.show() # - # You can hear the vocals slightly in the background as well as the # other sources. # # Finally, given a list of separated sources, we can use some handy nussl # functionality to easily visualize the masks and listen to the original # sources that make up the mixture. # + plt.figure(figsize=(10, 7)) plt.subplot(211) nussl.utils.visualize_sources_as_masks( sources, db_cutoff=-60, y_axis='mel') plt.subplot(212) nussl.utils.visualize_sources_as_waveform( sources, show_legend=False) plt.tight_layout() plt.show() nussl.play_utils.multitrack(sources, ext='.wav') # - end_time = time.time() time_taken = end_time - start_time print(f'Time taken: {time_taken:.4f} seconds')
[ "numpy.abs", "nussl.core.masks.BinaryMask", "nussl.play_utils.multitrack", "nussl.utils.visualize_spectrogram", "nussl.utils.visualize_sources_as_waveform", "nussl.utils.visualize_sources_as_masks", "matplotlib.pyplot.subplot", "numpy.angle", "matplotlib.pyplot.figure", "numpy.exp", "nussl.core.masks.SoftMask", "matplotlib.pyplot.tight_layout", "nussl.datasets.MUSDB18", "matplotlib.pyplot.title", "time.time", "matplotlib.pyplot.show" ]
[((671, 682), 'time.time', 'time.time', ([], {}), '()\n', (680, 682), False, 'import time\n'), ((692, 729), 'nussl.datasets.MUSDB18', 'nussl.datasets.MUSDB18', ([], {'download': '(True)'}), '(download=True)\n', (714, 729), False, 'import nussl\n'), ((1045, 1072), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (1055, 1072), True, 'import matplotlib.pyplot as plt\n'), ((1073, 1105), 'matplotlib.pyplot.title', 'plt.title', (['"""Mixture spectrogram"""'], {}), "('Mixture spectrogram')\n", (1082, 1105), True, 'import matplotlib.pyplot as plt\n'), ((1106, 1158), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (['mix'], {'y_axis': '"""mel"""'}), "(mix, y_axis='mel')\n", (1139, 1158), False, 'import nussl\n'), ((1159, 1177), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1175, 1177), True, 'import matplotlib.pyplot as plt\n'), ((1178, 1188), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1186, 1188), True, 'import matplotlib.pyplot as plt\n'), ((1732, 1759), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (1742, 1759), True, 'import matplotlib.pyplot as plt\n'), ((1760, 1778), 'matplotlib.pyplot.title', 'plt.title', (['"""Drums"""'], {}), "('Drums')\n", (1769, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1779, 1844), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (["sources['drums']"], {'y_axis': '"""mel"""'}), "(sources['drums'], y_axis='mel')\n", (1812, 1844), False, 'import nussl\n'), ((1845, 1863), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1861, 1863), True, 'import matplotlib.pyplot as plt\n'), ((1864, 1874), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1872, 1874), True, 'import matplotlib.pyplot as plt\n'), ((3202, 3229), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (3212, 3229), True, 'import matplotlib.pyplot as plt\n'), ((3230, 3258), 'matplotlib.pyplot.title', 'plt.title', (['"""Separated drums"""'], {}), "('Separated drums')\n", (3239, 3258), True, 'import matplotlib.pyplot as plt\n'), ((3259, 3316), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (['drum_est'], {'y_axis': '"""mel"""'}), "(drum_est, y_axis='mel')\n", (3292, 3316), False, 'import nussl\n'), ((3317, 3335), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3333, 3335), True, 'import matplotlib.pyplot as plt\n'), ((3336, 3346), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3344, 3346), True, 'import matplotlib.pyplot as plt\n'), ((3898, 3934), 'nussl.core.masks.SoftMask', 'nussl.core.masks.SoftMask', (['mask_data'], {}), '(mask_data)\n', (3923, 3934), False, 'import nussl\n'), ((4193, 4220), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (4203, 4220), True, 'import matplotlib.pyplot as plt\n'), ((4221, 4249), 'matplotlib.pyplot.title', 'plt.title', (['"""Separated drums"""'], {}), "('Separated drums')\n", (4230, 4249), True, 'import matplotlib.pyplot as plt\n'), ((4250, 4307), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (['drum_est'], {'y_axis': '"""mel"""'}), "(drum_est, y_axis='mel')\n", (4283, 4307), False, 'import nussl\n'), ((4308, 4326), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4324, 4326), True, 'import matplotlib.pyplot as plt\n'), ((4327, 4337), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4335, 4337), True, 'import matplotlib.pyplot as plt\n'), ((4452, 4496), 'nussl.core.masks.BinaryMask', 'nussl.core.masks.BinaryMask', (['(mask_data > 0.5)'], {}), '(mask_data > 0.5)\n', (4479, 4496), False, 'import nussl\n'), ((4576, 4603), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (4586, 4603), True, 'import matplotlib.pyplot as plt\n'), ((4604, 4632), 'matplotlib.pyplot.title', 'plt.title', (['"""Separated drums"""'], {}), "('Separated drums')\n", (4613, 4632), True, 'import matplotlib.pyplot as plt\n'), ((4633, 4690), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (['drum_est'], {'y_axis': '"""mel"""'}), "(drum_est, y_axis='mel')\n", (4666, 4690), False, 'import nussl\n'), ((4691, 4709), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4707, 4709), True, 'import matplotlib.pyplot as plt\n'), ((4710, 4720), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4718, 4720), True, 'import matplotlib.pyplot as plt\n'), ((4835, 4880), 'nussl.core.masks.BinaryMask', 'nussl.core.masks.BinaryMask', (['(mask_data > 0.05)'], {}), '(mask_data > 0.05)\n', (4862, 4880), False, 'import nussl\n'), ((4960, 4987), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 3)'}), '(figsize=(10, 3))\n', (4970, 4987), True, 'import matplotlib.pyplot as plt\n'), ((4988, 5016), 'matplotlib.pyplot.title', 'plt.title', (['"""Separated drums"""'], {}), "('Separated drums')\n", (4997, 5016), True, 'import matplotlib.pyplot as plt\n'), ((5017, 5074), 'nussl.utils.visualize_spectrogram', 'nussl.utils.visualize_spectrogram', (['drum_est'], {'y_axis': '"""mel"""'}), "(drum_est, y_axis='mel')\n", (5050, 5074), False, 'import nussl\n'), ((5075, 5093), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5091, 5093), True, 'import matplotlib.pyplot as plt\n'), ((5094, 5104), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5102, 5104), True, 'import matplotlib.pyplot as plt\n'), ((5389, 5416), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 7)'}), '(figsize=(10, 7))\n', (5399, 5416), True, 'import matplotlib.pyplot as plt\n'), ((5417, 5433), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (5428, 5433), True, 'import matplotlib.pyplot as plt\n'), ((5434, 5510), 'nussl.utils.visualize_sources_as_masks', 'nussl.utils.visualize_sources_as_masks', (['sources'], {'db_cutoff': '(-60)', 'y_axis': '"""mel"""'}), "(sources, db_cutoff=-60, y_axis='mel')\n", (5472, 5510), False, 'import nussl\n'), ((5516, 5532), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (5527, 5532), True, 'import matplotlib.pyplot as plt\n'), ((5533, 5602), 'nussl.utils.visualize_sources_as_waveform', 'nussl.utils.visualize_sources_as_waveform', (['sources'], {'show_legend': '(False)'}), '(sources, show_legend=False)\n', (5574, 5602), False, 'import nussl\n'), ((5608, 5626), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5624, 5626), True, 'import matplotlib.pyplot as plt\n'), ((5627, 5637), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5635, 5637), True, 'import matplotlib.pyplot as plt\n'), ((5639, 5687), 'nussl.play_utils.multitrack', 'nussl.play_utils.multitrack', (['sources'], {'ext': '""".wav"""'}), "(sources, ext='.wav')\n", (5666, 5687), False, 'import nussl\n'), ((5704, 5715), 'time.time', 'time.time', ([], {}), '()\n', (5713, 5715), False, 'import time\n'), ((2979, 3000), 'numpy.abs', 'np.abs', (['mix.stft_data'], {}), '(mix.stft_data)\n', (2985, 3000), True, 'import numpy as np\n'), ((3002, 3025), 'numpy.angle', 'np.angle', (['mix.stft_data'], {}), '(mix.stft_data)\n', (3010, 3025), True, 'import numpy as np\n'), ((3088, 3108), 'numpy.exp', 'np.exp', (['(1.0j * phase)'], {}), '(1.0j * phase)\n', (3094, 3108), True, 'import numpy as np\n')]
from course_lib.Base.BaseRecommender import BaseRecommender import numpy as np import scipy.sparse as sps class SearchFieldWeightICMRecommender(BaseRecommender): """ Search Field Weight ICM Recommender """ RECOMMENDER_NAME = "SearchFieldWeightICMRecommender" def __init__(self, URM_train, ICM_train, recommender_class: classmethod, recommender_par: dict, item_feature_to_range_mapper: dict, verbose=True): super(SearchFieldWeightICMRecommender, self).__init__(URM_train, verbose=verbose) self.recommender_class = recommender_class self.recommender_par = recommender_par self.item_feature_to_range_mapper = item_feature_to_range_mapper self.ICM_train: sps.csr_matrix = ICM_train self.model = None def fit(self, **field_weights): item_feature_weights = np.ones(shape=self.ICM_train.shape[1]) for feature_name, weight in field_weights.items(): start, end = self.item_feature_to_range_mapper[feature_name] item_feature_weights[start:end] = item_feature_weights[start:end]*weight user_feature_weights_diag = sps.diags(item_feature_weights) self.ICM_train = self.ICM_train.dot(user_feature_weights_diag) self.model = self.recommender_class(self.URM_train, self.ICM_train) self.model.fit(**self.recommender_par) def _compute_item_score(self, user_id_array, items_to_compute=None): return self.model._compute_item_score(user_id_array=user_id_array, items_to_compute=items_to_compute) def save_model(self, folder_path, file_name=None): pass
[ "numpy.ones", "scipy.sparse.diags" ]
[((846, 884), 'numpy.ones', 'np.ones', ([], {'shape': 'self.ICM_train.shape[1]'}), '(shape=self.ICM_train.shape[1])\n', (853, 884), True, 'import numpy as np\n'), ((1138, 1169), 'scipy.sparse.diags', 'sps.diags', (['item_feature_weights'], {}), '(item_feature_weights)\n', (1147, 1169), True, 'import scipy.sparse as sps\n')]
from typing import Dict, List, Optional, Union import numpy as np import torch MOLECULAR_ATOMS = ( "H,He,Li,Be,B,C,N,O,F,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn," "Ga,Ge,As,Se,Br,Kr,Rb,Sr,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn,Sb,Te,I,Xe,Cs,Ba,La,Ce," "Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg,Tl,Pb,Bi,Po,At," "Rn,Fr,Ra,Ac,Th,Pa,U,Np,Pu,Am,Cm,Bk,Cf,Es,Fm,Md,No,Lr,Rf,Db,Sg,Bh,Hs,Mt,Ds,Rg,Cn," "Nh,Fl,Mc,Lv,Ts,Og" ).split(",") MOLECULAR_CHARGES = list(range(-15, 16)) + [":", "^", "^^"] MOLECULAR_BOND_TYPES = [1, 2, 3, 4, 5, 6, 7, 8] class MolecularEncoder: """Molecular structure encoder class. This class is a kind of tokenizers for MoT model. Every transformer models have their own subword tokenizers (and it even creates attention masks), and of course MoT needs its own input encoder. While 3D-molecular structure data is not as simple as sentences which are used in common transformer model, we create new input encoder which creates input encodings from the 3D-molecular structure data. Using this, you can simply encode the structure data and pass to the MoT model. Args: cls_token: The name of classification token. Default is `[CLS]`. pad_token: The name of padding token. Default is `[PAD]`. """ # This field is a part of MoT configurations. If you are using MoT model with this # encoder class, then you can simply define the number of embeddings and attention # types using this field. The vocabularies are predefined, so you do not need to # handle the vocabulary sizes. mot_config = dict( num_embeddings=[len(MOLECULAR_ATOMS) + 2, len(MOLECULAR_CHARGES) + 2], num_attention_types=len(MOLECULAR_BOND_TYPES) + 2, ) def __init__( self, cls_token: str = "[CLS]", pad_token: str = "[PAD]", ): self.vocab1 = [pad_token, cls_token] + MOLECULAR_ATOMS self.vocab2 = [pad_token, cls_token] + MOLECULAR_CHARGES self.vocab3 = [pad_token, cls_token] + MOLECULAR_BOND_TYPES self.cls_token = cls_token self.pad_token = pad_token def collect_input_sequences(self, molecular: Dict[str, List]) -> Dict[str, List]: """Collect input sequences from the molecular structure data. Args: molecular: The molecular data which contains 3D atoms and their bonding informations. Returns: A dictionary which contains the input tokens and 3d positions of the atoms. """ input_ids = [ [self.vocab1.index(self.cls_token)], [self.vocab2.index(self.cls_token)], ] position_ids = [[0.0, 0.0, 0.0]] attention_mask = [1] * (len(molecular["atoms"]) + 1) for atom in molecular["atoms"]: input_ids[0].append(self.vocab1.index(atom[3])) input_ids[1].append(self.vocab2.index(atom[4])) position_ids.append(atom[:3]) return { "input_ids": input_ids, "position_ids": position_ids, "attention_mask": attention_mask, } def create_attention_type_ids(self, molecular: Dict) -> np.ndarray: """Create an attention types from the molecular structure data. MoT supports attention types which are applied to the attention scores relatively. Using this, you can give attention weights (bond types) directly to the self-attention module. This method creates the attention type array by using the bond informations in the molecular structure. Args: molecular: The molecular data which contains 3D atoms and their bonding informations. Returns: The attention type array from the bond informations. """ max_seq_len = len(molecular["atoms"]) + 1 attention_type_ids = np.empty((max_seq_len, max_seq_len), dtype=np.int64) attention_type_ids.fill(self.vocab3.index(self.pad_token)) attention_type_ids[0, :] = self.vocab3.index(self.cls_token) attention_type_ids[:, 0] = self.vocab3.index(self.cls_token) for first, second, bond_type in molecular["bonds"]: attention_type_ids[first + 1, second + 1] = self.vocab3.index(bond_type) attention_type_ids[second + 1, first + 1] = self.vocab3.index(bond_type) return attention_type_ids def encode(self, molecular: Dict[str, List]) -> Dict[str, Union[List, np.ndarray]]: """Encode the molecular structure data to the model inputs. Args: molecular: The molecular data which contains 3D atoms and their bonding informations. Returns: An encoded output which contains input ids, 3d positions, position mask, and attention types. """ return { **self.collect_input_sequences(molecular), "attention_type_ids": self.create_attention_type_ids(molecular), } def collate( self, encodings: List[Dict[str, Union[List, np.ndarray]]], max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, ) -> Dict[str, Union[List, np.ndarray, torch.Tensor]]: """Collate the encodings of which lengths are different to each other. The lengths of encoded molecular structure data are not exactly same. To group the sequences into the batch requires equal lengths. To resolve the problem, this class supports sequence and attention mask paddings. Using this, you can pad the encodings to desired lengths or match to the longest sequences. In addition, this method automatically converts the sequences to torch tensors. Args: encodings: The batch of encodings. max_length: The desired maximum length of sequences. Default is `None`. pad_to_multiple_of: To match the sequence length to be multiple of certain factor. Default is `None`. Returns: The collated batched encodings which contain converted tensors. """ longest_length = max(len(enc["input_ids"][0]) for enc in encodings) max_length = min(max_length or longest_length, longest_length) if pad_to_multiple_of is not None: max_length = max_length + pad_to_multiple_of - 1 max_length = max_length // pad_to_multiple_of * pad_to_multiple_of padding_id_1 = self.vocab1.index(self.pad_token) padding_id_2 = self.vocab2.index(self.pad_token) for enc in encodings: num_paddings = max_length - len(enc["input_ids"][0]) if num_paddings >= 0: enc["input_ids"][0] += [padding_id_1] * num_paddings enc["input_ids"][1] += [padding_id_2] * num_paddings enc["position_ids"] += [[0.0, 0.0, 0.0]] * num_paddings enc["attention_mask"] += [0] * num_paddings enc["attention_type_ids"] = np.pad( enc["attention_type_ids"], pad_width=((0, num_paddings), (0, num_paddings)), constant_values=self.vocab3.index(self.pad_token), ) else: # If the encoded sequences are longer than the maximum length, then # truncate the sequences and attention mask. enc["input_ids"][0] = enc["input_ids"][0][:max_length] enc["input_ids"][1] = enc["input_ids"][1][:max_length] enc["position_ids"] = enc["position_ids"][:max_length] enc["attention_mask"] = enc["attention_mask"][:max_length] enc["attention_type_ids"] = enc["attention_type_ids"][ :max_length, :max_length ] # Collect all sequences into their batch and convert them to torch tensor. After # that, you can use the sequences to the model because all inputs are converted # to the tensors. Since we use two `input_ids` and handle them on the list, they # will be converted individually. encodings = {k: [enc[k] for enc in encodings] for k in encodings[0]} encodings["input_ids"] = [ torch.tensor([x[0] for x in encodings["input_ids"]]), torch.tensor([x[1] for x in encodings["input_ids"]]), ] encodings["position_ids"] = torch.tensor(encodings["position_ids"]) encodings["attention_mask"] = torch.tensor(encodings["attention_mask"]) encodings["attention_type_ids"] = torch.tensor(encodings["attention_type_ids"]) if "labels" in encodings: encodings["labels"] = torch.tensor(encodings["labels"]) return encodings
[ "torch.tensor", "numpy.empty" ]
[((3918, 3970), 'numpy.empty', 'np.empty', (['(max_seq_len, max_seq_len)'], {'dtype': 'np.int64'}), '((max_seq_len, max_seq_len), dtype=np.int64)\n', (3926, 3970), True, 'import numpy as np\n'), ((8457, 8496), 'torch.tensor', 'torch.tensor', (["encodings['position_ids']"], {}), "(encodings['position_ids'])\n", (8469, 8496), False, 'import torch\n'), ((8535, 8576), 'torch.tensor', 'torch.tensor', (["encodings['attention_mask']"], {}), "(encodings['attention_mask'])\n", (8547, 8576), False, 'import torch\n'), ((8619, 8664), 'torch.tensor', 'torch.tensor', (["encodings['attention_type_ids']"], {}), "(encodings['attention_type_ids'])\n", (8631, 8664), False, 'import torch\n'), ((8291, 8343), 'torch.tensor', 'torch.tensor', (["[x[0] for x in encodings['input_ids']]"], {}), "([x[0] for x in encodings['input_ids']])\n", (8303, 8343), False, 'import torch\n'), ((8357, 8409), 'torch.tensor', 'torch.tensor', (["[x[1] for x in encodings['input_ids']]"], {}), "([x[1] for x in encodings['input_ids']])\n", (8369, 8409), False, 'import torch\n'), ((8734, 8767), 'torch.tensor', 'torch.tensor', (["encodings['labels']"], {}), "(encodings['labels'])\n", (8746, 8767), False, 'import torch\n')]
# importing libraries import warnings warnings.filterwarnings("ignore") import sys import pandas as pd import numpy as np from matplotlib import pyplot as plt import xgboost as xgb from catboost import CatBoostRegressor import lightgbm as lgb from sqlalchemy import create_engine import pickle from sklearn.metrics import r2_score,mean_absolute_error train_period = 7 predict_period = 1 n_day_later_predict= 7 def get_rolling_data(X,y,train_period,predict_period=1,n_day_later_predict=1): """ Generating Timeseries Input And Output Data. Parameters: X,y (DataFrame): Features,Labels train_period (int): Timesteps For Model predict_period (int): Predict On The nth Day Of The End Of The Training Window Returns: rolling_X (DataFrame): Features rolling_y (DataFrame): Labels """ assert X.shape[0] == y.shape[0], ( 'X.shape: %s y.shape: %s' % (X.shape, y.shape)) rolling_X, rolling_y = [],[] for i in range(len(X)-train_period-predict_period-(n_day_later_predict)): curr_X=X.iloc[i:i+train_period,:] curr_y=y.iloc[i+train_period+n_day_later_predict:i+train_period+predict_period+n_day_later_predict] rolling_X.append(curr_X.values.tolist()) if predict_period == 1: rolling_y.append(curr_y.values.tolist()[0]) else: rolling_y.append(curr_y.values.tolist()) rolling_X = np.array(rolling_X) rolling_y = np.array(rolling_y) return rolling_X, rolling_y def load_data(database_filepath): """ Loading Data From Database. Splitting X And Y Columns As TimeSeries Data By Calling get_rolling_data Method. Parameters: database_filepath (str): Filepath Where Database Is Located. Returns: X (DataFrame): Features Y (DataFrame): Labels """ # loading data from database db_name = 'sqlite:///{}'.format(database_filepath) engine = create_engine(db_name) # using pandas to read table from database df = pd.read_sql_table('Stock',engine) rolling_X, rolling_y = get_rolling_data(df, df.loc[:,'Stock_Adj Close'], train_period=train_period, predict_period=predict_period, n_day_later_predict=n_day_later_predict) return rolling_X , rolling_y class ModelData(): '''Data Class For Model Train, Predict And Validate.''' def __init__(self,X,y,seed=None,shuffle=True): self._seed = seed np.random.seed(self._seed) assert X.shape[0] == y.shape[0], ( 'X.shape: %s y.shape: %s' % (X.shape, y.shape)) self._num_examples = X.shape[0] # If shuffle if shuffle: np.random.seed(self._seed) randomList = np.arange(X.shape[0]) np.random.shuffle(randomList) self._X, self._y = X[randomList], y[randomList] self._X = X self._y = y self._epochs_completed = 0 self._index_in_epoch = 0 def train_validate_test_split(self,validate_size=0.10,test_size=0.10): '''Train, Predict And Validate Splitting Function''' validate_start = int(self._num_examples*(1-validate_size-test_size)) + 1 test_start = int(self._num_examples*(1-test_size)) + 1 if validate_start > len(self._X) or test_start > len(self._X): pass train_X,train_y = self._X[:validate_start],self._y[:validate_start] validate_X, validate_y = self._X[validate_start:test_start],self._y[validate_start:test_start] test_X,test_y = self._X[test_start:],self._y[test_start:] if test_size == 0: return ModelData(train_X,train_y,self._seed), ModelData(validate_X,validate_y,self._seed) else: return ModelData(train_X,train_y,self._seed), ModelData(validate_X,validate_y,self._seed), ModelData(test_X,test_y,self._seed) @property def X(self): return self._X @property def y(self): return self._y def build_model(): """ Build Model Function. This Function's Output Is A Dictionary Of 3 Best Regressor Models i.e. XGB Regressor, Catboost Regressor And LGBM Regressor. Returns: model (Dict) : A Dictionary Of Regressor Models """ # xgb regressor xgb_reg = xgb.XGBRegressor(n_estimators=10000,min_child_weight= 40,learning_rate=0.01,colsample_bytree = 1,subsample = 0.9) # catboost regressor cat_reg = CatBoostRegressor(iterations=10000,learning_rate=0.005,loss_function = 'RMSE') # lgbm regressor lgbm_reg = lgb.LGBMRegressor(num_leaves=31,learning_rate=0.001, max_bin = 30,n_estimators=10000) model = {'xgb':xgb_reg,'cat':cat_reg,'lgbm':lgbm_reg} return model def evaluate_model(model, X_test, Y_test): """ Model Evaluation Function. Evaluating The Models On Test Set And Computing R2 Score And Mean Absolute Error. Parameters: model (Dict) : A Dictionary Of Trained Regressor Models X_test (DataFrame) : Test Features Y_test (DataFrame) : Test Labels """ # predict on test data pred = (model['xgb'].predict(X_test) + model['cat'].predict(X_test) + model['lgbm'].predict(X_test)) / 3 # rescaling the predictions real = np.exp(Y_test) pred = np.exp(pred) # computing the r2 score print('R2 Score :') print(r2_score(real,pred)) # computing the mean absolute error print('Mean Absolute Error :') print(mean_absolute_error(real,pred)) def save_model(model, model_filepath): """ Save Model function This Function Saves Trained Models As Pickle File, To Be Loaded Later. Parameters: model (Dict) : A Dictionary Of Trained Regressor Models model_filepath (str) : Destination Path To Save .pkl File """ filename = model_filepath pickle.dump(model, open(filename, 'wb')) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y = load_data(database_filepath) model_data = ModelData(X, Y,seed=666,shuffle=False) model_train_data, model_validate_data = model_data.train_validate_test_split(validate_size=0.10,test_size=0) y_train = model_train_data.y[:,np.newaxis] y_validate = model_validate_data.y[:,np.newaxis] X_train = model_train_data.X X_validate = model_validate_data.X X_train = X_train.reshape((X_train.shape[0],X_train.shape[1]*X_train.shape[2])) X_validate = X_validate.reshape((X_validate.shape[0],X_validate.shape[1]*X_validate.shape[2])) print('Building model...') model = build_model() print('Training XGB model...') model['xgb'].fit(X_train, y_train,eval_set = [(X_validate[:300],y_validate[:300])],early_stopping_rounds = 50,verbose = False) print('Training Catboost model...') model['cat'].fit(X_train, y_train,eval_set = [(X_validate[:300],y_validate[:300])],early_stopping_rounds = 50,verbose = False) print('Training Lgbm model...') model['lgbm'].fit(X_train, y_train,eval_set = [(X_validate[:300],y_validate[:300].ravel())],early_stopping_rounds = 50,verbose = False) print('Evaluating Combined model...') evaluate_model(model, X_validate, y_validate) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the Stock database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_regressor.py ../data/Stock.db regressor.pkl') if __name__ == '__main__': main()
[ "sqlalchemy.create_engine", "lightgbm.LGBMRegressor", "catboost.CatBoostRegressor", "numpy.array", "xgboost.XGBRegressor", "numpy.exp", "numpy.random.seed", "pandas.read_sql_table", "sklearn.metrics.mean_absolute_error", "sklearn.metrics.r2_score", "warnings.filterwarnings", "numpy.arange", "numpy.random.shuffle" ]
[((38, 71), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (61, 71), False, 'import warnings\n'), ((1432, 1451), 'numpy.array', 'np.array', (['rolling_X'], {}), '(rolling_X)\n', (1440, 1451), True, 'import numpy as np\n'), ((1468, 1487), 'numpy.array', 'np.array', (['rolling_y'], {}), '(rolling_y)\n', (1476, 1487), True, 'import numpy as np\n'), ((1959, 1981), 'sqlalchemy.create_engine', 'create_engine', (['db_name'], {}), '(db_name)\n', (1972, 1981), False, 'from sqlalchemy import create_engine\n'), ((2039, 2073), 'pandas.read_sql_table', 'pd.read_sql_table', (['"""Stock"""', 'engine'], {}), "('Stock', engine)\n", (2056, 2073), True, 'import pandas as pd\n'), ((4411, 4528), 'xgboost.XGBRegressor', 'xgb.XGBRegressor', ([], {'n_estimators': '(10000)', 'min_child_weight': '(40)', 'learning_rate': '(0.01)', 'colsample_bytree': '(1)', 'subsample': '(0.9)'}), '(n_estimators=10000, min_child_weight=40, learning_rate=\n 0.01, colsample_bytree=1, subsample=0.9)\n', (4427, 4528), True, 'import xgboost as xgb\n'), ((4564, 4642), 'catboost.CatBoostRegressor', 'CatBoostRegressor', ([], {'iterations': '(10000)', 'learning_rate': '(0.005)', 'loss_function': '"""RMSE"""'}), "(iterations=10000, learning_rate=0.005, loss_function='RMSE')\n", (4581, 4642), False, 'from catboost import CatBoostRegressor\n'), ((4679, 4768), 'lightgbm.LGBMRegressor', 'lgb.LGBMRegressor', ([], {'num_leaves': '(31)', 'learning_rate': '(0.001)', 'max_bin': '(30)', 'n_estimators': '(10000)'}), '(num_leaves=31, learning_rate=0.001, max_bin=30,\n n_estimators=10000)\n', (4696, 4768), True, 'import lightgbm as lgb\n'), ((5439, 5453), 'numpy.exp', 'np.exp', (['Y_test'], {}), '(Y_test)\n', (5445, 5453), True, 'import numpy as np\n'), ((5465, 5477), 'numpy.exp', 'np.exp', (['pred'], {}), '(pred)\n', (5471, 5477), True, 'import numpy as np\n'), ((2543, 2569), 'numpy.random.seed', 'np.random.seed', (['self._seed'], {}), '(self._seed)\n', (2557, 2569), True, 'import numpy as np\n'), ((5541, 5561), 'sklearn.metrics.r2_score', 'r2_score', (['real', 'pred'], {}), '(real, pred)\n', (5549, 5561), False, 'from sklearn.metrics import r2_score, mean_absolute_error\n'), ((5647, 5678), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['real', 'pred'], {}), '(real, pred)\n', (5666, 5678), False, 'from sklearn.metrics import r2_score, mean_absolute_error\n'), ((2784, 2810), 'numpy.random.seed', 'np.random.seed', (['self._seed'], {}), '(self._seed)\n', (2798, 2810), True, 'import numpy as np\n'), ((2836, 2857), 'numpy.arange', 'np.arange', (['X.shape[0]'], {}), '(X.shape[0])\n', (2845, 2857), True, 'import numpy as np\n'), ((2870, 2899), 'numpy.random.shuffle', 'np.random.shuffle', (['randomList'], {}), '(randomList)\n', (2887, 2899), True, 'import numpy as np\n')]
import base64 import io from matplotlib import pyplot import numpy as np import rasterio def read_raster_file(input_fn, band = 1): with rasterio.open(input_fn) as src: return src.read(band) def plot_raster_layer(input_fn, band = 1, from_logits = True): pyplot.figure(figsize = (10,10)) data = read_raster_file(input_fn, band) if from_logits: data = np.exp(data) pyplot.imshow(data, cmap='viridis') pyplot.show() def plot_histogram(input_fn, band = 1, from_logits = True): pyplot.figure(figsize = (10,10)) data = read_raster_file(input_fn, band) pyplot.hist(np.rint(data), bins='auto') pyplot.show() def get_base64_image(input_fn, band = 1, from_logits = True): pyplot.figure(figsize = (10,10)) data = read_raster_file(input_fn, band) pyplot.imshow(data, cmap='viridis') pic_IObytes = io.BytesIO() pyplot.savefig(pic_IObytes, format='png') pic_IObytes.seek(0) pic_hash = base64.b64encode(pic_IObytes.read()) # We need to remove the quotation and b character pic_hash = str(pic_hash)[2:-1] pyplot.close() return pic_hash
[ "matplotlib.pyplot.imshow", "matplotlib.pyplot.savefig", "rasterio.open", "io.BytesIO", "matplotlib.pyplot.close", "numpy.exp", "matplotlib.pyplot.figure", "numpy.rint", "matplotlib.pyplot.show" ]
[((278, 309), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (291, 309), False, 'from matplotlib import pyplot\n'), ((407, 442), 'matplotlib.pyplot.imshow', 'pyplot.imshow', (['data'], {'cmap': '"""viridis"""'}), "(data, cmap='viridis')\n", (420, 442), False, 'from matplotlib import pyplot\n'), ((447, 460), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (458, 460), False, 'from matplotlib import pyplot\n'), ((531, 562), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (544, 562), False, 'from matplotlib import pyplot\n'), ((657, 670), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (668, 670), False, 'from matplotlib import pyplot\n'), ((739, 770), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (752, 770), False, 'from matplotlib import pyplot\n'), ((820, 855), 'matplotlib.pyplot.imshow', 'pyplot.imshow', (['data'], {'cmap': '"""viridis"""'}), "(data, cmap='viridis')\n", (833, 855), False, 'from matplotlib import pyplot\n'), ((875, 887), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (885, 887), False, 'import io\n'), ((892, 933), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['pic_IObytes'], {'format': '"""png"""'}), "(pic_IObytes, format='png')\n", (906, 933), False, 'from matplotlib import pyplot\n'), ((1104, 1118), 'matplotlib.pyplot.close', 'pyplot.close', ([], {}), '()\n', (1116, 1118), False, 'from matplotlib import pyplot\n'), ((143, 166), 'rasterio.open', 'rasterio.open', (['input_fn'], {}), '(input_fn)\n', (156, 166), False, 'import rasterio\n'), ((390, 402), 'numpy.exp', 'np.exp', (['data'], {}), '(data)\n', (396, 402), True, 'import numpy as np\n'), ((624, 637), 'numpy.rint', 'np.rint', (['data'], {}), '(data)\n', (631, 637), True, 'import numpy as np\n')]
#!/bin/python #sca_test.py import matplotlib.pyplot as plt import coevo2 as ce import itertools as it import numpy as np import copy import time reload(ce) names = ['glgA', 'glgC', 'cydA', 'cydB'] algPath = 'TestSet/eggNOG_aligns/slice_0.9/' prots = ce.prots_from_scratch(names,path2alg=algPath) ps = ce.ProtSet(prots,names) phylo_names = ['aspS','ffh','lepA','pgk','recN','rho','rpoA','ruvB','tig','uvrB'] phylo_prots = ce.prots_from_scratch(phylo_names,path2alg='TestSet/eggNOG_aligns/phylogenes/') phylo2 = ce.PhyloSet(phylo_prots) phylo2.set_indexer(thresh=7) for pt in phylo2.prots: # temporary fix for duplicated locus ids in the same msa pt.msa = pt.msa[~pt.msa.index.duplicated(keep='first')] phylo2.set_sim_mat() protsmats,pairmats,pairrandmats,sca_score,sca_score2 = ce.sca(ps,phylo2,delta=0.0001) for pt,sca in it.izip(ps.prots,protsmats): pt.sca_mat = sca for pair,sca_cat in it.izip(ps.pairs,pairmats): pair.sca_mat = sca_cat np.save('GettingStartedSCACalcs.npy',ps) print(sca_score2)
[ "coevo2.ProtSet", "itertools.izip", "coevo2.PhyloSet", "coevo2.sca", "numpy.save", "coevo2.prots_from_scratch" ]
[((253, 299), 'coevo2.prots_from_scratch', 'ce.prots_from_scratch', (['names'], {'path2alg': 'algPath'}), '(names, path2alg=algPath)\n', (274, 299), True, 'import coevo2 as ce\n'), ((304, 328), 'coevo2.ProtSet', 'ce.ProtSet', (['prots', 'names'], {}), '(prots, names)\n', (314, 328), True, 'import coevo2 as ce\n'), ((425, 510), 'coevo2.prots_from_scratch', 'ce.prots_from_scratch', (['phylo_names'], {'path2alg': '"""TestSet/eggNOG_aligns/phylogenes/"""'}), "(phylo_names, path2alg='TestSet/eggNOG_aligns/phylogenes/'\n )\n", (446, 510), True, 'import coevo2 as ce\n'), ((515, 539), 'coevo2.PhyloSet', 'ce.PhyloSet', (['phylo_prots'], {}), '(phylo_prots)\n', (526, 539), True, 'import coevo2 as ce\n'), ((788, 820), 'coevo2.sca', 'ce.sca', (['ps', 'phylo2'], {'delta': '(0.0001)'}), '(ps, phylo2, delta=0.0001)\n', (794, 820), True, 'import coevo2 as ce\n'), ((834, 862), 'itertools.izip', 'it.izip', (['ps.prots', 'protsmats'], {}), '(ps.prots, protsmats)\n', (841, 862), True, 'import itertools as it\n'), ((900, 927), 'itertools.izip', 'it.izip', (['ps.pairs', 'pairmats'], {}), '(ps.pairs, pairmats)\n', (907, 927), True, 'import itertools as it\n'), ((951, 992), 'numpy.save', 'np.save', (['"""GettingStartedSCACalcs.npy"""', 'ps'], {}), "('GettingStartedSCACalcs.npy', ps)\n", (958, 992), True, 'import numpy as np\n')]
# coding: utf-8 """ MIT License """ ''' <NAME> & <NAME> <NAME> & <NAME> --- Description: Function designed to evaluate all parameters provided to the gp and identify the best parameters. Saves all fitness of individuals by logging them into csv files which will then be evaluated on plots.py --- Copyright (c) 2018 ''' # libraries and dependencies # ---------------------------------------------------------------------------- # from evolution import Evolution import matplotlib.pyplot as plt import pandas as pd import numpy as np import classifier import random import utils import csv import os # ---------------------------------------------------------------------------- # if __name__ == '__main__': # import data X, y = utils.load_data( filename='data_trimmed.csv', clean=False, normalize=True, resample=2 # (2) to downsample the negative cases ) # concatenate selected features with their target values dataset = np.column_stack((X, y)) popsize = [100, 250, 500, 1000] GenMax = [50, 100, 250, 500] mutRate = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] crRate = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]# 0.7, 0.8, 0.9] reps = 5 states = 1 i = 6 evo = Evolution( dataset = dataset.tolist(), # data samples popsize = popsize[3], # initial population size hofsize = 10, # the number of best individual to track cx = crRate[i], # crossover rate mut = mutRate[6], # mutation rate maxgen = GenMax[2], # max number of generations ) logs = pd.DataFrame() gen = np.zeros((reps, GenMax[2]+1)) nevals = np.zeros((reps, GenMax[2]+1)) avg = np.zeros((reps, GenMax[2]+1)) mini = np.zeros((reps, GenMax[2]+1)) maxi = np.zeros((reps, GenMax[2]+1)) for l in range(reps): np.random.seed(reps) pop, logbook, hof= evo.run() gen[l][:] = logbook.select('gen') nevals[l][:] = logbook.select('nevals') avg[l][:] = logbook.select('avg') mini[l][:] = logbook.select('min') maxi[l][:] = logbook.select('max') AvgEval = [] Avg = [] AvgMin = [] AvgMax = [] for n in range(GenMax[2]+1): totalEval = 0 totalAvg = 0 totalMin = 0 totalMax = 0 for m in range(reps): totalEval += nevals[m][n] totalAvg += avg[m][n] totalMin += mini[m][n] totalMax += maxi[m][n] AvgEval.append(totalEval/reps) Avg.append(totalAvg/reps) AvgMin.append(totalMin/reps) AvgMax.append(totalMax/reps) logs['gen'] = gen[l][:] logs['nEval'] = AvgEval logs['Avg Fitness'] = Avg logs['Avg Min'] = AvgMin logs['Avg Max'] = AvgMax #print(logs) cwd = os.getcwd() pth_to_save = cwd + "/results/mutEphemeralAll.6_cxOnePoint_.6_selDoubleTournament_codeBloatOn.csv" logs.to_csv(pth_to_save) print('Done')
[ "utils.load_data", "numpy.column_stack", "os.getcwd", "numpy.zeros", "numpy.random.seed", "pandas.DataFrame" ]
[((777, 866), 'utils.load_data', 'utils.load_data', ([], {'filename': '"""data_trimmed.csv"""', 'clean': '(False)', 'normalize': '(True)', 'resample': '(2)'}), "(filename='data_trimmed.csv', clean=False, normalize=True,\n resample=2)\n", (792, 866), False, 'import utils\n'), ((1019, 1042), 'numpy.column_stack', 'np.column_stack', (['(X, y)'], {}), '((X, y))\n', (1034, 1042), True, 'import numpy as np\n'), ((1733, 1747), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1745, 1747), True, 'import pandas as pd\n'), ((1759, 1790), 'numpy.zeros', 'np.zeros', (['(reps, GenMax[2] + 1)'], {}), '((reps, GenMax[2] + 1))\n', (1767, 1790), True, 'import numpy as np\n'), ((1802, 1833), 'numpy.zeros', 'np.zeros', (['(reps, GenMax[2] + 1)'], {}), '((reps, GenMax[2] + 1))\n', (1810, 1833), True, 'import numpy as np\n'), ((1842, 1873), 'numpy.zeros', 'np.zeros', (['(reps, GenMax[2] + 1)'], {}), '((reps, GenMax[2] + 1))\n', (1850, 1873), True, 'import numpy as np\n'), ((1883, 1914), 'numpy.zeros', 'np.zeros', (['(reps, GenMax[2] + 1)'], {}), '((reps, GenMax[2] + 1))\n', (1891, 1914), True, 'import numpy as np\n'), ((1928, 1959), 'numpy.zeros', 'np.zeros', (['(reps, GenMax[2] + 1)'], {}), '((reps, GenMax[2] + 1))\n', (1936, 1959), True, 'import numpy as np\n'), ((2991, 3002), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3000, 3002), False, 'import os\n'), ((1997, 2017), 'numpy.random.seed', 'np.random.seed', (['reps'], {}), '(reps)\n', (2011, 2017), True, 'import numpy as np\n')]
""" Most recently tested against PySAM 2.1.4 """ from pathlib import Path import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import PySAM.Singleowner as Singleowner import time import multiprocessing from itertools import product import PySAM.Pvsamv1 as Pvsamv1 solar_resource_file = Path(__file__).parent / "tests" / "blythe_ca_33.617773_-114.588261_psmv3_60_tmy.csv" def gcr_func(gcr, cost_per_land_area): """ Returns the Internal Rate of Return of a default PV single owner project given modified ground-coverage-ratio (GCR) and cost per land area Args: gcr: ratio, between 0.1 - 1 cost_per_land_area: $ Returns: IRR """ # set up base a = Pvsamv1.default("FlatPlatePVSingleowner") a.SolarResource.solar_resource_file = solar_resource_file b = Singleowner.default("FlatPlatePVSingleowner") # set up shading a.Shading.subarray1_shade_mode = 1 a.Layout.subarray1_nmodx = 12 a.Layout.subarray1_nmody = 2 a.SystemDesign.subarray1_gcr = float(gcr) land_area = a.CECPerformanceModelWithModuleDatabase.cec_area * (a.SystemDesign.subarray1_nstrings * a.SystemDesign.subarray1_modules_per_string) / gcr * 0.0002471 a.execute(0) # total_installed_cost = total_direct_cost + permitting_total + engr_total + grid_total + landprep_total + sales_tax_total + land_total b.SystemCosts.total_installed_cost += cost_per_land_area * land_area * 1000 b.SystemOutput.system_pre_curtailment_kwac = a.Outputs.gen b.SystemOutput.gen = a.Outputs.gen b.execute(0) return b.Outputs.analysis_period_irr gcrs = np.arange(1, 10) costs = np.arange(1, 10) multi1 = time.process_time() if __name__ == '__main__': with multiprocessing.Pool(processes=4) as pool: results = pool.starmap(gcr_func, product(gcrs / 10, repeat=2)) multi2 = time.process_time() print("multi process time:", multi2 - multi1, "\n") results = np.array([results]) results = np.reshape(results, (-1, 9)) X, Y = np.meshgrid(gcrs, costs) fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(X, Y, results) plt.title("Internal Rate of Return") plt.xlabel("GCR") plt.ylabel("$ / land area") plt.show() plt.contour(X, Y, results) plt.title("Internal Rate of Return") plt.xlabel("GCR") plt.ylabel("$ / land area") plt.show()
[ "PySAM.Pvsamv1.default", "PySAM.Singleowner.default", "numpy.reshape", "matplotlib.pyplot.title", "matplotlib.pyplot.ylabel", "pathlib.Path", "matplotlib.pyplot.xlabel", "itertools.product", "numpy.array", "matplotlib.pyplot.figure", "mpl_toolkits.mplot3d.Axes3D", "matplotlib.pyplot.contour", "multiprocessing.Pool", "time.process_time", "numpy.meshgrid", "numpy.arange", "matplotlib.pyplot.show" ]
[((1671, 1687), 'numpy.arange', 'np.arange', (['(1)', '(10)'], {}), '(1, 10)\n', (1680, 1687), True, 'import numpy as np\n'), ((1696, 1712), 'numpy.arange', 'np.arange', (['(1)', '(10)'], {}), '(1, 10)\n', (1705, 1712), True, 'import numpy as np\n'), ((1723, 1742), 'time.process_time', 'time.process_time', ([], {}), '()\n', (1740, 1742), False, 'import time\n'), ((1904, 1923), 'time.process_time', 'time.process_time', ([], {}), '()\n', (1921, 1923), False, 'import time\n'), ((1987, 2006), 'numpy.array', 'np.array', (['[results]'], {}), '([results])\n', (1995, 2006), True, 'import numpy as np\n'), ((2017, 2045), 'numpy.reshape', 'np.reshape', (['results', '(-1, 9)'], {}), '(results, (-1, 9))\n', (2027, 2045), True, 'import numpy as np\n'), ((2054, 2078), 'numpy.meshgrid', 'np.meshgrid', (['gcrs', 'costs'], {}), '(gcrs, costs)\n', (2065, 2078), True, 'import numpy as np\n'), ((2085, 2097), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2095, 2097), True, 'import matplotlib.pyplot as plt\n'), ((2103, 2114), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (2109, 2114), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((2146, 2182), 'matplotlib.pyplot.title', 'plt.title', (['"""Internal Rate of Return"""'], {}), "('Internal Rate of Return')\n", (2155, 2182), True, 'import matplotlib.pyplot as plt\n'), ((2183, 2200), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""GCR"""'], {}), "('GCR')\n", (2193, 2200), True, 'import matplotlib.pyplot as plt\n'), ((2201, 2228), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$ / land area"""'], {}), "('$ / land area')\n", (2211, 2228), True, 'import matplotlib.pyplot as plt\n'), ((2229, 2239), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2237, 2239), True, 'import matplotlib.pyplot as plt\n'), ((2241, 2267), 'matplotlib.pyplot.contour', 'plt.contour', (['X', 'Y', 'results'], {}), '(X, Y, results)\n', (2252, 2267), True, 'import matplotlib.pyplot as plt\n'), ((2268, 2304), 'matplotlib.pyplot.title', 'plt.title', (['"""Internal Rate of Return"""'], {}), "('Internal Rate of Return')\n", (2277, 2304), True, 'import matplotlib.pyplot as plt\n'), ((2305, 2322), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""GCR"""'], {}), "('GCR')\n", (2315, 2322), True, 'import matplotlib.pyplot as plt\n'), ((2323, 2350), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$ / land area"""'], {}), "('$ / land area')\n", (2333, 2350), True, 'import matplotlib.pyplot as plt\n'), ((2351, 2361), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2359, 2361), True, 'import matplotlib.pyplot as plt\n'), ((739, 780), 'PySAM.Pvsamv1.default', 'Pvsamv1.default', (['"""FlatPlatePVSingleowner"""'], {}), "('FlatPlatePVSingleowner')\n", (754, 780), True, 'import PySAM.Pvsamv1 as Pvsamv1\n'), ((852, 897), 'PySAM.Singleowner.default', 'Singleowner.default', (['"""FlatPlatePVSingleowner"""'], {}), "('FlatPlatePVSingleowner')\n", (871, 897), True, 'import PySAM.Singleowner as Singleowner\n'), ((1780, 1813), 'multiprocessing.Pool', 'multiprocessing.Pool', ([], {'processes': '(4)'}), '(processes=4)\n', (1800, 1813), False, 'import multiprocessing\n'), ((329, 343), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (333, 343), False, 'from pathlib import Path\n'), ((1864, 1892), 'itertools.product', 'product', (['(gcrs / 10)'], {'repeat': '(2)'}), '(gcrs / 10, repeat=2)\n', (1871, 1892), False, 'from itertools import product\n')]
from viroconcom.fitting import Fit from viroconcom.contours import IFormContour import numpy as np prng = np.random.RandomState(42) # Draw 1000 observations from a Weibull distribution with # shape=1.5 and scale=3, which represents significant # wave height. sample_0 = prng.weibull(1.5, 1000) * 3 # Let the second sample, which represents spectral peak # period, increase with significant wave height and follow # a lognormal distribution with sigma=0.2. sample_1 = [0.1 + 1.5 * np.exp(0.2 * point) + prng.lognormal(2, 0.2) for point in sample_0] # Define a bivariate probabilistic model that will be fitted to # the samples. Set a parametric distribution for each variable and # a dependence structure. Set the lognormal distribution's scale # parameter to depend on the variable with index 0, which represents # significant wave height by using the 'dependency' key-value pair. # A 3-parameter exponential function is chosen to define the # dependency by setting the function to 'exp3'. The dependency for # the parameters must be given in the order shape, location, scale. dist_description_0 = {'name': 'Weibull', 'dependency': (None, None, None), 'width_of_intervals': 2} dist_description_1 = {'name': 'Lognormal', 'dependency': (None, None, 0), 'functions': (None, None, 'exp3')} # Compute the fit based on maximum likelihood estimation. my_fit = Fit((sample_0, sample_1), (dist_description_0, dist_description_1)) # Compute an environmental contour with a return period of # 25 years and a sea state duration of 3 hours. 100 data points # along the contour shall be calculated. iform_contour = IFormContour(my_fit.mul_var_dist, 25, 3, 100)
[ "numpy.exp", "viroconcom.fitting.Fit", "viroconcom.contours.IFormContour", "numpy.random.RandomState" ]
[((107, 132), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (128, 132), True, 'import numpy as np\n'), ((1458, 1525), 'viroconcom.fitting.Fit', 'Fit', (['(sample_0, sample_1)', '(dist_description_0, dist_description_1)'], {}), '((sample_0, sample_1), (dist_description_0, dist_description_1))\n', (1461, 1525), False, 'from viroconcom.fitting import Fit\n'), ((1720, 1765), 'viroconcom.contours.IFormContour', 'IFormContour', (['my_fit.mul_var_dist', '(25)', '(3)', '(100)'], {}), '(my_fit.mul_var_dist, 25, 3, 100)\n', (1732, 1765), False, 'from viroconcom.contours import IFormContour\n'), ((483, 502), 'numpy.exp', 'np.exp', (['(0.2 * point)'], {}), '(0.2 * point)\n', (489, 502), True, 'import numpy as np\n')]
import numpy as np from numpy.testing import assert_array_equal from seai_deap import dim def test_calculate_building_volume() -> None: expected_output = np.array(4) output = dim.calculate_building_volume( ground_floor_area=np.array(1), first_floor_area=np.array(1), second_floor_area=np.array(1), third_floor_area=np.array(1), ground_floor_height=np.array(1), first_floor_height=np.array(1), second_floor_height=np.array(1), third_floor_height=np.array(1), ) assert_array_equal(output, expected_output) def test_calculate_total_floor_area() -> None: expected_output = np.array((4)) output = dim.calculate_total_floor_area( ground_floor_area=np.array(1), first_floor_area=np.array(1), second_floor_area=np.array(1), third_floor_area=np.array(1), ) assert_array_equal(output, expected_output)
[ "numpy.array", "numpy.testing.assert_array_equal" ]
[((162, 173), 'numpy.array', 'np.array', (['(4)'], {}), '(4)\n', (170, 173), True, 'import numpy as np\n'), ((546, 589), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['output', 'expected_output'], {}), '(output, expected_output)\n', (564, 589), False, 'from numpy.testing import assert_array_equal\n'), ((662, 673), 'numpy.array', 'np.array', (['(4)'], {}), '(4)\n', (670, 673), True, 'import numpy as np\n'), ((887, 930), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['output', 'expected_output'], {}), '(output, expected_output)\n', (905, 930), False, 'from numpy.testing import assert_array_equal\n'), ((245, 256), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (253, 256), True, 'import numpy as np\n'), ((283, 294), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (291, 294), True, 'import numpy as np\n'), ((322, 333), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (330, 333), True, 'import numpy as np\n'), ((360, 371), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (368, 371), True, 'import numpy as np\n'), ((401, 412), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (409, 412), True, 'import numpy as np\n'), ((441, 452), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (449, 452), True, 'import numpy as np\n'), ((482, 493), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (490, 493), True, 'import numpy as np\n'), ((522, 533), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (530, 533), True, 'import numpy as np\n'), ((748, 759), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (756, 759), True, 'import numpy as np\n'), ((786, 797), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (794, 797), True, 'import numpy as np\n'), ((825, 836), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (833, 836), True, 'import numpy as np\n'), ((863, 874), 'numpy.array', 'np.array', (['(1)'], {}), '(1)\n', (871, 874), True, 'import numpy as np\n')]
import pdb import numpy import geometry.conversions import geometry.helpers import geometry.quaternion import geodesy.conversions import environments.earth import spherical_geometry.vector import spherical_geometry.great_circle_arc def line_distance(point_1, point_2, ignore_alt=True): """Compute the straight line distance between two points on the earth Arguments: point_1: numpy (1,3) array giving lat/lon/alt of the first point point_2: numpy (1,3) array giving lat/lon/alt of the second point ignore_alt: optional, ignore the altitude component, defaults True Returns: r: distance between the points (m) """ dX = geodesy.conversions.lla_to_ned(point_1, point_2) if ignore_alt: dX *= numpy.array([1.0, 1.0, 0.0], ndmin=2) return numpy.linalg.norm(dX) def arc_length(point_1, point_2, ignore_alt=True): """Compute the great circle arc length between two points on a sphere Arguments: point_1: numpy (1,3) array giving lat/lon/alt of the first point point_2: numpy (1,3) array giving lat/lon/alt of the second point ignore_alt: optional, ignore the altitude component, defaults True Returns: arc_length: the great circle distance """ p1_X = geodesy.conversions.lla_to_vector(point_1) p2_X = geodesy.conversions.lla_to_vector(point_2) theta = spherical_geometry.great_circle_arc.length( p1_X, p2_X, degrees=False) return theta def arc_distance(point_1, point_2, r=None, ignore_alt=True): """Compute the great circle distance between two points on a sphere Arguments: point_1: numpy (1,3) array giving lat/lon/alt of the first point point_2: numpy (1,3) array giving lat/lon/alt of the second point r: radius of the sphere we're on. Defaults to the earth ignore_alt: optional, ignore the altitude component, defaults True Returns: arc_distance: the great circle distance """ theta = arc_length(point_1, point_2, ignore_alt=ignore_alt) if r is None: return theta * environments.earth.constants['r0'] return theta * r def great_circle_direction(point_1, point_2): """Compute the direction for a great circle arc Arguments: point_1: the starting point of the great circle. The direction will be given in a NED frame at this point. Numpy (3,) array in radians, lla point_2: the other end of the great circle. can specify a numpy (3,) array for a single computation or a numpy (n,3) array for a series of computations. Returns: r_hat: the initial direction of the great circle starting from point_1 """ if point_2.ndim > 1: directions = numpy.zeros(point_2.shape) for idx, coord in enumerate(point_2): directions[idx] = great_circle_direction(point_1, coord) return directions xyz_1 = geodesy.conversions.lla_to_xyz(point_1) xyz_2 = geodesy.conversions.lla_to_xyz(point_2) khat_xyz = geometry.conversions.to_unit_vector(xyz_1) delta = xyz_2 - xyz_1 delta_hat = geometry.conversions.to_unit_vector(delta) r_xyz = numpy.cross(khat_xyz, numpy.cross(delta_hat, khat_xyz)) r_hat = geodesy.conversions.xyz_to_ned( r_xyz + xyz_1, numpy.array(point_1, ndmin=2))[0] return geometry.conversions.to_unit_vector(r_hat) def distance_on_great_circle(start_point, direction, distance): """compute the location of a point a specified distance along a great circle NOTE: This assumes a spherical earth. The error introduced in the location is pretty small (~15 km for a 13000 km path), but it totall screws with the altitude. YOU SHOULD NOT USE THE ALTITUDE COMING OUT OF THIS, ESPECIALLY IF YOU HAVE ANY MEANGINFUL DISTANCE Arguments: start_point: the starting point of the great circle. The direction is given in a NED frame at this point. Numpy (3,) array in radians, lla direction: a NED vector indicating the direction of the great circle distance: the length of the great circle arc (m) Returns: end_point: the end of a great circle path of length <distance> from <start_point> with initial <direction> """ start_xyz = geodesy.conversions.lla_to_xyz(start_point) direction = geometry.conversions.to_unit_vector(direction) delta_xyz = geodesy.conversions.ned_to_xyz( direction, numpy.array(start_point, ndmin=2)) rotation_axis = -geometry.conversions.to_unit_vector( numpy.cross(start_xyz, delta_xyz)) rotation_magnitude = distance / environments.earth.constants['r0'] rotation_quaternion = geometry.quaternion.Quaternion() rotation_quaternion.from_axis_and_rotation( rotation_axis, rotation_magnitude) end_point_xyz = rotation_quaternion.rot(start_xyz) end_point = geodesy.conversions.xyz_to_lla(end_point_xyz) return end_point
[ "numpy.array", "numpy.zeros", "numpy.cross", "numpy.linalg.norm" ]
[((810, 831), 'numpy.linalg.norm', 'numpy.linalg.norm', (['dX'], {}), '(dX)\n', (827, 831), False, 'import numpy\n'), ((760, 797), 'numpy.array', 'numpy.array', (['[1.0, 1.0, 0.0]'], {'ndmin': '(2)'}), '([1.0, 1.0, 0.0], ndmin=2)\n', (771, 797), False, 'import numpy\n'), ((2757, 2783), 'numpy.zeros', 'numpy.zeros', (['point_2.shape'], {}), '(point_2.shape)\n', (2768, 2783), False, 'import numpy\n'), ((3209, 3241), 'numpy.cross', 'numpy.cross', (['delta_hat', 'khat_xyz'], {}), '(delta_hat, khat_xyz)\n', (3220, 3241), False, 'import numpy\n'), ((4469, 4502), 'numpy.array', 'numpy.array', (['start_point'], {'ndmin': '(2)'}), '(start_point, ndmin=2)\n', (4480, 4502), False, 'import numpy\n'), ((3310, 3339), 'numpy.array', 'numpy.array', (['point_1'], {'ndmin': '(2)'}), '(point_1, ndmin=2)\n', (3321, 3339), False, 'import numpy\n'), ((4571, 4604), 'numpy.cross', 'numpy.cross', (['start_xyz', 'delta_xyz'], {}), '(start_xyz, delta_xyz)\n', (4582, 4604), False, 'import numpy\n')]
# Copyright 2017 Neosapience, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ======================================================================== import unittest import darkon import tensorflow as tf import numpy as np _classes = 2 def nn_graph(activation): # create graph x = tf.placeholder(tf.float32, (1, 2, 2, 3), 'x_placeholder') y = tf.placeholder(tf.int32, name='y_placeholder', shape=[1, 2]) with tf.name_scope('conv1'): conv_1 = tf.layers.conv2d( inputs=x, filters=10, kernel_size=[2, 2], padding="same", activation=activation) with tf.name_scope('fc2'): flatten = tf.layers.flatten(conv_1) top = tf.layers.dense(flatten, _classes) logits = tf.nn.softmax(top) return x class GradcamGuidedBackprop(unittest.TestCase): def setUp(self): tf.reset_default_graph() def tearDown(self): x = nn_graph(activation=self.activation_fn) image = np.random.uniform(size=(2, 2, 3)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) gradcam_ops = darkon.Gradcam.candidate_featuremap_op_names(sess) if self.enable_guided_backprop: _ = darkon.Gradcam(x, _classes, gradcam_ops[-1]) g = tf.get_default_graph() from_ts = g.get_operation_by_name(gradcam_ops[-1]).outputs to_ts = g.get_operation_by_name(gradcam_ops[-2]).outputs max_output = tf.reduce_max(from_ts, axis=3) y = tf.reduce_sum(-max_output * 1e2) grad = tf.gradients(y, to_ts)[0] grad_val = sess.run(grad, feed_dict={x: np.expand_dims(image, 0)}) if self.enable_guided_backprop: self.assertTrue(not np.any(grad_val)) else: self.assertTrue(np.any(grad_val)) def test_relu(self): self.activation_fn = tf.nn.relu self.enable_guided_backprop = False def test_relu_guided(self): self.activation_fn = tf.nn.relu self.enable_guided_backprop = True def test_tanh(self): self.activation_fn = tf.nn.tanh self.enable_guided_backprop = False def test_tanh_guided(self): self.activation_fn = tf.nn.tanh self.enable_guided_backprop = True def test_sigmoid(self): self.activation_fn = tf.nn.sigmoid self.enable_guided_backprop = False def test_sigmoid_guided(self): self.activation_fn = tf.nn.sigmoid self.enable_guided_backprop = True def test_relu6(self): self.activation_fn = tf.nn.relu6 self.enable_guided_backprop = False def test_relu6_guided(self): self.activation_fn = tf.nn.relu6 self.enable_guided_backprop = True def test_elu(self): self.activation_fn = tf.nn.elu self.enable_guided_backprop = False def test_elu_guided(self): self.activation_fn = tf.nn.elu self.enable_guided_backprop = True def test_selu(self): self.activation_fn = tf.nn.selu self.enable_guided_backprop = False def test_selu_guided(self): self.activation_fn = tf.nn.selu self.enable_guided_backprop = True def test_softplus(self): self.activation_fn = tf.nn.softplus self.enable_guided_backprop = False def test_test_softplus_guided(self): self.activation_fn = tf.nn.softplus self.enable_guided_backprop = True def test_softsign(self): self.activation_fn = tf.nn.softsign self.enable_guided_backprop = False def test_softsign_guided(self): self.activation_fn = tf.nn.softsign self.enable_guided_backprop = True
[ "tensorflow.reset_default_graph", "tensorflow.layers.flatten", "darkon.Gradcam.candidate_featuremap_op_names", "darkon.Gradcam", "tensorflow.reduce_sum", "tensorflow.placeholder", "tensorflow.Session", "numpy.any", "tensorflow.reduce_max", "tensorflow.global_variables_initializer", "tensorflow.layers.conv2d", "tensorflow.gradients", "tensorflow.name_scope", "tensorflow.nn.softmax", "numpy.random.uniform", "numpy.expand_dims", "tensorflow.layers.dense", "tensorflow.get_default_graph" ]
[((799, 856), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '(1, 2, 2, 3)', '"""x_placeholder"""'], {}), "(tf.float32, (1, 2, 2, 3), 'x_placeholder')\n", (813, 856), True, 'import tensorflow as tf\n'), ((865, 925), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'name': '"""y_placeholder"""', 'shape': '[1, 2]'}), "(tf.int32, name='y_placeholder', shape=[1, 2])\n", (879, 925), True, 'import tensorflow as tf\n'), ((1275, 1293), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['top'], {}), '(top)\n', (1288, 1293), True, 'import tensorflow as tf\n'), ((936, 958), 'tensorflow.name_scope', 'tf.name_scope', (['"""conv1"""'], {}), "('conv1')\n", (949, 958), True, 'import tensorflow as tf\n'), ((977, 1078), 'tensorflow.layers.conv2d', 'tf.layers.conv2d', ([], {'inputs': 'x', 'filters': '(10)', 'kernel_size': '[2, 2]', 'padding': '"""same"""', 'activation': 'activation'}), "(inputs=x, filters=10, kernel_size=[2, 2], padding='same',\n activation=activation)\n", (993, 1078), True, 'import tensorflow as tf\n'), ((1146, 1166), 'tensorflow.name_scope', 'tf.name_scope', (['"""fc2"""'], {}), "('fc2')\n", (1159, 1166), True, 'import tensorflow as tf\n'), ((1186, 1211), 'tensorflow.layers.flatten', 'tf.layers.flatten', (['conv_1'], {}), '(conv_1)\n', (1203, 1211), True, 'import tensorflow as tf\n'), ((1226, 1260), 'tensorflow.layers.dense', 'tf.layers.dense', (['flatten', '_classes'], {}), '(flatten, _classes)\n', (1241, 1260), True, 'import tensorflow as tf\n'), ((1386, 1410), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (1408, 1410), True, 'import tensorflow as tf\n'), ((1504, 1537), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(2, 2, 3)'}), '(size=(2, 2, 3))\n', (1521, 1537), True, 'import numpy as np\n'), ((1552, 1564), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1562, 1564), True, 'import tensorflow as tf\n'), ((1657, 1707), 'darkon.Gradcam.candidate_featuremap_op_names', 'darkon.Gradcam.candidate_featuremap_op_names', (['sess'], {}), '(sess)\n', (1701, 1707), False, 'import darkon\n'), ((1835, 1857), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (1855, 1857), True, 'import tensorflow as tf\n'), ((2024, 2054), 'tensorflow.reduce_max', 'tf.reduce_max', (['from_ts'], {'axis': '(3)'}), '(from_ts, axis=3)\n', (2037, 2054), True, 'import tensorflow as tf\n'), ((2071, 2105), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(-max_output * 100.0)'], {}), '(-max_output * 100.0)\n', (2084, 2105), True, 'import tensorflow as tf\n'), ((1595, 1628), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1626, 1628), True, 'import tensorflow as tf\n'), ((1773, 1817), 'darkon.Gradcam', 'darkon.Gradcam', (['x', '_classes', 'gradcam_ops[-1]'], {}), '(x, _classes, gradcam_ops[-1])\n', (1787, 1817), False, 'import darkon\n'), ((2124, 2146), 'tensorflow.gradients', 'tf.gradients', (['y', 'to_ts'], {}), '(y, to_ts)\n', (2136, 2146), True, 'import tensorflow as tf\n'), ((2378, 2394), 'numpy.any', 'np.any', (['grad_val'], {}), '(grad_val)\n', (2384, 2394), True, 'import numpy as np\n'), ((2202, 2226), 'numpy.expand_dims', 'np.expand_dims', (['image', '(0)'], {}), '(image, 0)\n', (2216, 2226), True, 'import numpy as np\n'), ((2310, 2326), 'numpy.any', 'np.any', (['grad_val'], {}), '(grad_val)\n', (2316, 2326), True, 'import numpy as np\n')]
import numpy as np import sys def micrograph2np(width,shift): r = int(width/shift-1) #I = np.load("../DATA_SETS/004773_ProtRelionRefine3D/kino.micrograph.numpy.npy") I = np.load("../DATA_SETS/004773_ProtRelionRefine3D/full_micrograph.stack_0001.numpy.npy") I = (I-I.mean())/I.std() N = int(I.shape[0]/shift) M = int(I.shape[1]/shift) S=[] for i in range(N-r): for j in range(M-r): x1 = i*shift x2 = x1+width y1 = j*shift y2 = y1+width w = I[x1:x2,y1:y2] S.append(w) S = np.array(S) np.save("../DATA_SETS/004773_ProtRelionRefine3D/fraction_micrograph.numpy", S)
[ "numpy.array", "numpy.load", "numpy.save" ]
[((180, 276), 'numpy.load', 'np.load', (['"""../DATA_SETS/004773_ProtRelionRefine3D/full_micrograph.stack_0001.numpy.npy"""'], {}), "(\n '../DATA_SETS/004773_ProtRelionRefine3D/full_micrograph.stack_0001.numpy.npy'\n )\n", (187, 276), True, 'import numpy as np\n'), ((541, 552), 'numpy.array', 'np.array', (['S'], {}), '(S)\n', (549, 552), True, 'import numpy as np\n'), ((555, 633), 'numpy.save', 'np.save', (['"""../DATA_SETS/004773_ProtRelionRefine3D/fraction_micrograph.numpy"""', 'S'], {}), "('../DATA_SETS/004773_ProtRelionRefine3D/fraction_micrograph.numpy', S)\n", (562, 633), True, 'import numpy as np\n')]
import os import warnings import torch.backends.cudnn as cudnn warnings.filterwarnings("ignore") from torch.utils.data import DataLoader from decaps import CapsuleNet from torch.optim import Adam import numpy as np from config import options import torch import torch.nn.functional as F from utils.eval_utils import binary_cls_compute_metrics import torch.nn as nn os.environ['CUDA_VISIBLE_DEVICES'] = '2' theta_c = 0.5 # crop region with attention values higher than this theta_d = 0.5 # drop region with attention values higher than this def log_string(out_str): LOG_FOUT.write(out_str + '\n') LOG_FOUT.flush() print(out_str) @torch.no_grad() def evaluate(): capsule_net.eval() test_loss = np.zeros(4) targets, predictions_raw, predictions_crop, predictions_drop, predictions_combined = [], [], [], [], [] outputs_raw, outputs_crop, outputs_combined = [], [], [] with torch.no_grad(): for batch_id, (data, target) in enumerate(test_loader): data, target = data.cuda(), target.cuda() target_ohe = F.one_hot(target, options.num_classes) y_pred_raw, x_reconst, output, attention_map, _, c_maps, out_vec_raw = capsule_net(data, target_ohe) loss = capsule_loss(output, target) targets += [target_ohe] outputs_raw += [output] predictions_raw += [y_pred_raw] test_loss[0] += loss ################################## # Object Localization and Refinement ################################## bbox_coords = [] upsampled_attention_map = F.upsample_bilinear(attention_map, size=(data.size(2), data.size(3))) crop_mask = upsampled_attention_map > theta_c crop_images = [] for batch_index in range(crop_mask.size(0)): nonzero_indices = torch.nonzero(crop_mask[batch_index, 0, ...]) height_min = nonzero_indices[:, 0].min() height_max = nonzero_indices[:, 0].max() width_min = nonzero_indices[:, 1].min() width_max = nonzero_indices[:, 1].max() bbox_coord = np.array([height_min, height_max, width_min, width_max]) bbox_coords.append(bbox_coord) crop_images.append(F.upsample_bilinear( data[batch_index:batch_index + 1, :, height_min:height_max, width_min:width_max], size=options.img_h)) crop_images = torch.cat(crop_images, dim=0) y_pred_crop, _, output_crop, _, _, c_maps_crop, out_vec_crop = capsule_net(crop_images, target_ohe) loss = capsule_loss(output_crop, target) predictions_crop += [y_pred_crop] outputs_crop += [output_crop] test_loss[1] += loss # final prediction output_combined = (output + output_crop) / 2 outputs_combined += [output_combined] y_pred_combined = output_combined.argmax(dim=1) y_pred_combined_ohe = F.one_hot(y_pred_combined, options.num_classes) test_loss[3] += capsule_loss(output_combined, target) predictions_combined += [y_pred_combined_ohe] ################################## # Attention Dropping ################################## drop_mask = F.upsample_bilinear(attention_map, size=(data.size(2), data.size(3))) <= theta_d drop_images = data * drop_mask.float() # drop images forward y_pred_drop, _, output_drop, _, _, c_maps_drop, out_vec_drop = capsule_net(drop_images.cuda(), target_ohe) loss = capsule_loss(output_crop, target) predictions_drop += [y_pred_drop] test_loss[2] += loss test_loss /= (batch_id + 1) metrics_raw = binary_cls_compute_metrics(torch.cat(outputs_raw).cpu(), torch.cat(targets).cpu()) metrics_crop = binary_cls_compute_metrics(torch.cat(outputs_crop).cpu(), torch.cat(targets).cpu()) metrics_combined = binary_cls_compute_metrics(torch.cat(outputs_combined).cpu(), torch.cat(targets).cpu()) # display log_string(" - (Raw) loss: {0:.4f}, acc: {1:.02%}, auc: {2:.02%}" .format(test_loss[0], metrics_raw['acc'], metrics_raw['auc'])) log_string(" - (Crop) loss: {0:.4f}, acc: {1:.02%}, auc: {2:.02%}" .format(test_loss[1], metrics_crop['acc'], metrics_crop['auc'])) log_string(" - (Combined) loss: {0:.4f}, acc: {1:.02%}, auc: {2:.02%}" .format(test_loss[2], metrics_combined['acc'], metrics_combined['auc'])) if __name__ == '__main__': ################################## # Initialize saving directory ################################## BASE_DIR = os.path.dirname(os.path.abspath(__file__)) iter_num = options.load_model_path.split('/')[-1].split('.')[0] save_dir = os.path.dirname(os.path.dirname(options.load_model_path)) img_dir = os.path.join(save_dir, 'imgs') if not os.path.exists(img_dir): os.makedirs(img_dir) viz_dir = os.path.join(img_dir, iter_num+'_crop_{}'.format(theta_c)) if not os.path.exists(viz_dir): os.makedirs(viz_dir) LOG_FOUT = open(os.path.join(save_dir, 'log_inference.txt'), 'w') LOG_FOUT.write(str(options) + '\n') # bkp of inference os.system('cp {}/inference.py {}'.format(BASE_DIR, save_dir)) ################################## # Create the model ################################## capsule_net = CapsuleNet(options) log_string('Model Generated.') log_string("Number of trainable parameters: {}".format(sum(param.numel() for param in capsule_net.parameters()))) ################################## # Use cuda ################################## cudnn.benchmark = True capsule_net.cuda() capsule_net = nn.DataParallel(capsule_net) ################################## # Load the trained model ################################## ckpt = options.load_model_path checkpoint = torch.load(ckpt) state_dict = checkpoint['state_dict'] # Load weights capsule_net.load_state_dict(state_dict) log_string('Model successfully loaded from {}'.format(ckpt)) if 'feature_center' in checkpoint: feature_center = checkpoint['feature_center'].to(torch.device("cuda")) log_string('feature_center loaded from {}'.format(ckpt)) ################################## # Loss and Optimizer ################################## if options.loss_type == 'margin': from utils.loss_utils import MarginLoss capsule_loss = MarginLoss(options) elif options.loss_type == 'spread': from utils.loss_utils import SpreadLoss capsule_loss = SpreadLoss(options) elif options.loss_type == 'cross-entropy': capsule_loss = nn.CrossEntropyLoss() if options.add_decoder: from utils.loss_utils import ReconstructionLoss reconst_loss = ReconstructionLoss() optimizer = Adam(capsule_net.parameters(), lr=options.lr, betas=(options.beta1, 0.999)) # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.9) ################################## # Load dataset ################################## if options.data_name == 'mnist': from dataset.mnist import MNIST as data os.system('cp {}/dataset/mnist.py {}'.format(BASE_DIR, save_dir)) elif options.data_name == 'fashion_mnist': from dataset.fashion_mnist import FashionMNIST as data os.system('cp {}/dataset/fashion_mnist.py {}'.format(BASE_DIR, save_dir)) elif options.data_name == 't_mnist': from dataset.mnist_translate import MNIST as data os.system('cp {}/dataset/mnist_translate.py {}'.format(BASE_DIR, save_dir)) elif options.data_name == 'c_mnist': from dataset.mnist_clutter import MNIST as data os.system('cp {}/dataset/mnist_clutter.py {}'.format(BASE_DIR, save_dir)) elif options.data_name == 'cub': from dataset.dataset_CUB import CUB as data os.system('cp {}/dataset/dataset_CUB.py {}'.format(BASE_DIR, save_dir)) elif options.data_name == 'chexpert': from dataset.chexpert_dataset import CheXpertDataSet as data os.system('cp {}/dataset/chexpert_dataset.py {}'.format(BASE_DIR, save_dir)) test_dataset = data(mode='test') test_loader = DataLoader(test_dataset, batch_size=options.batch_size, shuffle=False, num_workers=options.workers, drop_last=False) ################################## # TESTING ################################## log_string('') log_string('Start Testing') evaluate()
[ "torch.nn.CrossEntropyLoss", "utils.loss_utils.ReconstructionLoss", "numpy.array", "torch.nn.functional.upsample_bilinear", "utils.loss_utils.MarginLoss", "os.path.exists", "dataset.chexpert_dataset.CheXpertDataSet.cuda", "config.options.load_model_path.split", "dataset.chexpert_dataset.CheXpertDataSet.size", "decaps.CapsuleNet", "dataset.chexpert_dataset.CheXpertDataSet", "os.path.dirname", "torch.nn.functional.one_hot", "utils.loss_utils.SpreadLoss", "warnings.filterwarnings", "torch.cat", "torch.device", "os.makedirs", "torch.load", "os.path.join", "torch.nn.DataParallel", "torch.nonzero", "numpy.zeros", "torch.utils.data.DataLoader", "os.path.abspath", "torch.no_grad" ]
[((63, 96), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (86, 96), False, 'import warnings\n'), ((650, 665), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (663, 665), False, 'import torch\n'), ((722, 733), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (730, 733), True, 'import numpy as np\n'), ((5041, 5071), 'os.path.join', 'os.path.join', (['save_dir', '"""imgs"""'], {}), "(save_dir, 'imgs')\n", (5053, 5071), False, 'import os\n'), ((5596, 5615), 'decaps.CapsuleNet', 'CapsuleNet', (['options'], {}), '(options)\n', (5606, 5615), False, 'from decaps import CapsuleNet\n'), ((5931, 5959), 'torch.nn.DataParallel', 'nn.DataParallel', (['capsule_net'], {}), '(capsule_net)\n', (5946, 5959), True, 'import torch.nn as nn\n'), ((6120, 6136), 'torch.load', 'torch.load', (['ckpt'], {}), '(ckpt)\n', (6130, 6136), False, 'import torch\n'), ((8452, 8469), 'dataset.chexpert_dataset.CheXpertDataSet', 'data', ([], {'mode': '"""test"""'}), "(mode='test')\n", (8456, 8469), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n'), ((8488, 8608), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': 'options.batch_size', 'shuffle': '(False)', 'num_workers': 'options.workers', 'drop_last': '(False)'}), '(test_dataset, batch_size=options.batch_size, shuffle=False,\n num_workers=options.workers, drop_last=False)\n', (8498, 8608), False, 'from torch.utils.data import DataLoader\n'), ((913, 928), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (926, 928), False, 'import torch\n'), ((4858, 4883), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (4873, 4883), False, 'import os\n'), ((4985, 5025), 'os.path.dirname', 'os.path.dirname', (['options.load_model_path'], {}), '(options.load_model_path)\n', (5000, 5025), False, 'import os\n'), ((5083, 5106), 'os.path.exists', 'os.path.exists', (['img_dir'], {}), '(img_dir)\n', (5097, 5106), False, 'import os\n'), ((5116, 5136), 'os.makedirs', 'os.makedirs', (['img_dir'], {}), '(img_dir)\n', (5127, 5136), False, 'import os\n'), ((5221, 5244), 'os.path.exists', 'os.path.exists', (['viz_dir'], {}), '(viz_dir)\n', (5235, 5244), False, 'import os\n'), ((5254, 5274), 'os.makedirs', 'os.makedirs', (['viz_dir'], {}), '(viz_dir)\n', (5265, 5274), False, 'import os\n'), ((5296, 5339), 'os.path.join', 'os.path.join', (['save_dir', '"""log_inference.txt"""'], {}), "(save_dir, 'log_inference.txt')\n", (5308, 5339), False, 'import os\n'), ((6705, 6724), 'utils.loss_utils.MarginLoss', 'MarginLoss', (['options'], {}), '(options)\n', (6715, 6724), False, 'from utils.loss_utils import MarginLoss\n'), ((7057, 7077), 'utils.loss_utils.ReconstructionLoss', 'ReconstructionLoss', ([], {}), '()\n', (7075, 7077), False, 'from utils.loss_utils import ReconstructionLoss\n'), ((1073, 1111), 'torch.nn.functional.one_hot', 'F.one_hot', (['target', 'options.num_classes'], {}), '(target, options.num_classes)\n', (1082, 1111), True, 'import torch.nn.functional as F\n'), ((2515, 2544), 'torch.cat', 'torch.cat', (['crop_images'], {'dim': '(0)'}), '(crop_images, dim=0)\n', (2524, 2544), False, 'import torch\n'), ((3065, 3112), 'torch.nn.functional.one_hot', 'F.one_hot', (['y_pred_combined', 'options.num_classes'], {}), '(y_pred_combined, options.num_classes)\n', (3074, 3112), True, 'import torch.nn.functional as F\n'), ((6404, 6424), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (6416, 6424), False, 'import torch\n'), ((6837, 6856), 'utils.loss_utils.SpreadLoss', 'SpreadLoss', (['options'], {}), '(options)\n', (6847, 6856), False, 'from utils.loss_utils import SpreadLoss\n'), ((1021, 1032), 'dataset.chexpert_dataset.CheXpertDataSet.cuda', 'data.cuda', ([], {}), '()\n', (1030, 1032), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n'), ((1881, 1926), 'torch.nonzero', 'torch.nonzero', (['crop_mask[batch_index, 0, ...]'], {}), '(crop_mask[batch_index, 0, ...])\n', (1894, 1926), False, 'import torch\n'), ((2184, 2240), 'numpy.array', 'np.array', (['[height_min, height_max, width_min, width_max]'], {}), '([height_min, height_max, width_min, width_max])\n', (2192, 2240), True, 'import numpy as np\n'), ((6927, 6948), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (6946, 6948), True, 'import torch.nn as nn\n'), ((2324, 2450), 'torch.nn.functional.upsample_bilinear', 'F.upsample_bilinear', (['data[batch_index:batch_index + 1, :, height_min:height_max, width_min:width_max\n ]'], {'size': 'options.img_h'}), '(data[batch_index:batch_index + 1, :, height_min:\n height_max, width_min:width_max], size=options.img_h)\n', (2343, 2450), True, 'import torch.nn.functional as F\n'), ((3894, 3916), 'torch.cat', 'torch.cat', (['outputs_raw'], {}), '(outputs_raw)\n', (3903, 3916), False, 'import torch\n'), ((3924, 3942), 'torch.cat', 'torch.cat', (['targets'], {}), '(targets)\n', (3933, 3942), False, 'import torch\n'), ((4000, 4023), 'torch.cat', 'torch.cat', (['outputs_crop'], {}), '(outputs_crop)\n', (4009, 4023), False, 'import torch\n'), ((4031, 4049), 'torch.cat', 'torch.cat', (['targets'], {}), '(targets)\n', (4040, 4049), False, 'import torch\n'), ((4111, 4138), 'torch.cat', 'torch.cat', (['outputs_combined'], {}), '(outputs_combined)\n', (4120, 4138), False, 'import torch\n'), ((4146, 4164), 'torch.cat', 'torch.cat', (['targets'], {}), '(targets)\n', (4155, 4164), False, 'import torch\n'), ((4900, 4934), 'config.options.load_model_path.split', 'options.load_model_path.split', (['"""/"""'], {}), "('/')\n", (4929, 4934), False, 'from config import options\n'), ((1674, 1686), 'dataset.chexpert_dataset.CheXpertDataSet.size', 'data.size', (['(2)'], {}), '(2)\n', (1683, 1686), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n'), ((1688, 1700), 'dataset.chexpert_dataset.CheXpertDataSet.size', 'data.size', (['(3)'], {}), '(3)\n', (1697, 1700), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n'), ((3431, 3443), 'dataset.chexpert_dataset.CheXpertDataSet.size', 'data.size', (['(2)'], {}), '(2)\n', (3440, 3443), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n'), ((3445, 3457), 'dataset.chexpert_dataset.CheXpertDataSet.size', 'data.size', (['(3)'], {}), '(3)\n', (3454, 3457), True, 'from dataset.chexpert_dataset import CheXpertDataSet as data\n')]
#!/usr/bin/env python # coding: utf-8 """ Classification Using Hidden Markov Model ======================================== This is a demonstration using the implemented Hidden Markov model to classify multiple targets. We will attempt to classify 3 targets in an undefined region. Our sensor will be all-seeing, and provide us with indirect observations of the targets such that, using the implemented Hidden Markov Model (HMM), we should hopefully successfully classify exactly 3 targets correctly. """ # %% # All Stone Soup imports will be given in order of usage. from datetime import datetime, timedelta import numpy as np # %% # Ground Truth # ^^^^^^^^^^^^ # The targets may take one of three discrete hidden classes: 'bike', 'car' and 'bus'. # It will be assumed that the targets cannot transition from one class to another, hence an # identity transition matrix is given to the :class:`~.CategoricalTransitionModel`. # # A :class:`~.CategoricalState` class is used to store information on the classification/category # of the targets. The state vector will define a categorical distribution over the 3 possible # classes, whereby each component defines the probability that a target is of the corresponding # class. For example, the state vector (0.2, 0.3, 0.5), with category names ('bike', 'car', 'bus') # indicates that a target has a 20% probability of being class 'bike', a 30% probability of being # class 'car' etc. # It does not make sense to have a true target being a distribution over the possible classes, and # therefore the true categorical states will have binary state vectors indicating a specific class # (i.e. a '1' at one state vector index, and '0's elsewhere). # The :class:`~.CategoricalGroundTruthState` class inherits directly from the base # :class:`~.CategoricalState` class. # # While the category will remain the same, a :class:`~.CategoricalTransitionModel` is used here # for the sake of demonstration. # # The category and timings for one of the ground truth paths will be printed. from stonesoup.models.transition.categorical import CategoricalTransitionModel from stonesoup.types.groundtruth import CategoricalGroundTruthState from stonesoup.types.groundtruth import GroundTruthPath category_transition = CategoricalTransitionModel(transition_matrix=np.eye(3), transition_covariance=0.1 * np.eye(3)) start = datetime.now() hidden_classes = ['bike', 'car', 'bus'] # Generating ground truth ground_truths = list() for i in range(1, 4): state_vector = np.zeros(3) # create a vector with 3 zeroes state_vector[np.random.choice(3, 1, p=[1/3, 1/3, 1/3])] = 1 # pick a random class out of the 3 ground_truth_state = CategoricalGroundTruthState(state_vector, timestamp=start, category_names=hidden_classes) ground_truth = GroundTruthPath([ground_truth_state], id=f"GT{i}") for _ in range(10): new_vector = category_transition.function(ground_truth[-1], noise=True, time_interval=timedelta(seconds=1)) new_state = CategoricalGroundTruthState( new_vector, timestamp=ground_truth[-1].timestamp + timedelta(seconds=1), category_names=hidden_classes ) ground_truth.append(new_state) ground_truths.append(ground_truth) for states in np.vstack(ground_truths).T: print(f"{states[0].timestamp:%H:%M:%S}", end="") for state in states: print(f" -- {state.category}", end="") print() # %% # Measurement # ^^^^^^^^^^^ # Using a Hidden markov model, it is assumed the hidden class of a target cannot be directly # observed, and instead indirect observations are taken. In this instance, observations of the # targets' sizes are taken ('small' or 'large'), which have direct implications as to the targets' # hidden classes, and this relationship is modelled by the `emission matrix` of the # :class:`~.CategoricalMeasurementModel`, which is used by the :class:`~.CategoricalSensor` to # provide :class:`~.CategoricalDetection` types. # We will model this such that a 'bike' has a very small chance of being observed as a 'big' # target. Similarly, a 'bus' will tend to appear as 'large'. Whereas, a 'car' has equal chance of # being observed as either. from stonesoup.models.measurement.categorical import CategoricalMeasurementModel from stonesoup.sensor.categorical import CategoricalSensor E = np.array([[0.99, 0.01], # P(small | bike) P(large | bike) [0.5, 0.5], [0.01, 0.99]]) model = CategoricalMeasurementModel(ndim_state=3, emission_matrix=E, emission_covariance=0.1 * np.eye(2), mapping=[0, 1, 2]) eo = CategoricalSensor(measurement_model=model, category_names=['small', 'large']) # Generating measurements measurements = list() for index, states in enumerate(np.vstack(ground_truths).T): if index == 5: measurements_at_time = set() # Give tracker chance to use prediction instead else: measurements_at_time = eo.measure(states) timestamp = next(iter(states)).timestamp measurements.append((timestamp, measurements_at_time)) print(f"{timestamp:%H:%M:%S} -- {[meas.category for meas in measurements_at_time]}") # %% # Tracking Components # ^^^^^^^^^^^^^^^^^^^ # %% # Predictor # --------- # A :class:`~.HMMPredictor` specifically uses :class:`~.CategoricalTransitionModel` types to # predict. from stonesoup.predictor.categorical import HMMPredictor predictor = HMMPredictor(category_transition) # %% # Updater # ------- from stonesoup.updater.categorical import HMMUpdater updater = HMMUpdater() # %% # Hypothesiser # ------------ # A :class:`~.CategoricalHypothesiser` is used for calculating categorical hypotheses. # It utilises the :class:`~.ObservationAccuracy` measure: a multi-dimensional extension of an # 'accuracy' score, essentially providing a measure of the similarity between two categorical # distributions. from stonesoup.hypothesiser.categorical import CategoricalHypothesiser hypothesiser = CategoricalHypothesiser(predictor=predictor, updater=updater) # %% # Data Associator # --------------- # We will use a standard :class:`~.GNNWith2DAssignment` data associator. from stonesoup.dataassociator.neighbour import GNNWith2DAssignment data_associator = GNNWith2DAssignment(hypothesiser) # %% # Prior # ----- # As we are tracking in a categorical state space, we should initiate with a categorical state for # the prior. Equal probability is given to all 3 of the possible hidden classes that a target # might take (the category names are also provided here). from stonesoup.types.state import CategoricalState prior = CategoricalState([1 / 3, 1 / 3, 1 / 3], category_names=hidden_classes) # %% # Initiator # --------- # For each unassociated detection, a new track will be initiated. In this instance we use a # :class:`~.SimpleCategoricalInitiator`, which specifically handles categorical state priors. from stonesoup.initiator.categorical import SimpleCategoricalInitiator initiator = SimpleCategoricalInitiator(prior_state=prior, measurement_model=None) # %% # Deleter # ------- # We can use a standard :class:`~.UpdateTimeStepsDeleter`. from stonesoup.deleter.time import UpdateTimeStepsDeleter deleter = UpdateTimeStepsDeleter(2) # %% # Tracker # ------- # We can use a standard :class:`~.MultiTargetTracker`. from stonesoup.tracker.simple import MultiTargetTracker tracker = MultiTargetTracker(initiator, deleter, measurements, data_associator, updater) # %% # Tracking # ^^^^^^^^ tracks = set() for time, ctracks in tracker: tracks.update(ctracks) print(f"Number of tracks: {len(tracks)}") for track in tracks: certainty = track.state_vector[np.argmax(track.state_vector)][0] * 100 print(f"id: {track.id} -- category: {track.category} -- certainty: {certainty}%") for state in track: _time = state.timestamp.strftime('%H:%M') _type = str(type(state)).replace("class 'stonesoup.types.", "").strip("<>'. ") state_string = f"{_time} -- {_type} -- {state.category}" try: meas_string = f"associated measurement: {state.hypothesis.measurement.category}" except AttributeError: pass else: state_string += f" -- {meas_string}" print(state_string) print() # %% # Metric # ^^^^^^ # Determining tracking accuracy. # In calculating how many targets were classified correctly, only tracks with the highest # classification certainty are considered. In the situation where probabilities are equal, a # random classification is chosen. excess_tracks = len(tracks) - len(ground_truths) # target value = 0 sorted_tracks = sorted(tracks, key=lambda track: track.state_vector[np.argmax(track.state_vector)][0], reverse=True) best_tracks = sorted_tracks[:3] true_classifications = [ground_truth.category for ground_truth in ground_truths] track_classifications = [track.category for track in best_tracks] num_correct_classifications = 0 # target value = num ground truths for true_classification in true_classifications: for i in range(len(track_classifications)): if track_classifications[i] == true_classification: num_correct_classifications += 1 del track_classifications[i] break print(f"Excess tracks: {excess_tracks}") print(f"No. correct classifications: {num_correct_classifications}")
[ "numpy.array", "stonesoup.hypothesiser.categorical.CategoricalHypothesiser", "datetime.timedelta", "numpy.vstack", "stonesoup.initiator.categorical.SimpleCategoricalInitiator", "stonesoup.tracker.simple.MultiTargetTracker", "stonesoup.types.state.CategoricalState", "stonesoup.predictor.categorical.HMMPredictor", "stonesoup.dataassociator.neighbour.GNNWith2DAssignment", "numpy.eye", "stonesoup.sensor.categorical.CategoricalSensor", "numpy.random.choice", "stonesoup.types.groundtruth.GroundTruthPath", "numpy.argmax", "stonesoup.types.groundtruth.CategoricalGroundTruthState", "stonesoup.deleter.time.UpdateTimeStepsDeleter", "stonesoup.updater.categorical.HMMUpdater", "datetime.datetime.now", "numpy.zeros" ]
[((2407, 2421), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2419, 2421), False, 'from datetime import datetime, timedelta\n'), ((4603, 4653), 'numpy.array', 'np.array', (['[[0.99, 0.01], [0.5, 0.5], [0.01, 0.99]]'], {}), '([[0.99, 0.01], [0.5, 0.5], [0.01, 0.99]])\n', (4611, 4653), True, 'import numpy as np\n'), ((4957, 5034), 'stonesoup.sensor.categorical.CategoricalSensor', 'CategoricalSensor', ([], {'measurement_model': 'model', 'category_names': "['small', 'large']"}), "(measurement_model=model, category_names=['small', 'large'])\n", (4974, 5034), False, 'from stonesoup.sensor.categorical import CategoricalSensor\n'), ((5780, 5813), 'stonesoup.predictor.categorical.HMMPredictor', 'HMMPredictor', (['category_transition'], {}), '(category_transition)\n', (5792, 5813), False, 'from stonesoup.predictor.categorical import HMMPredictor\n'), ((5904, 5916), 'stonesoup.updater.categorical.HMMUpdater', 'HMMUpdater', ([], {}), '()\n', (5914, 5916), False, 'from stonesoup.updater.categorical import HMMUpdater\n'), ((6332, 6393), 'stonesoup.hypothesiser.categorical.CategoricalHypothesiser', 'CategoricalHypothesiser', ([], {'predictor': 'predictor', 'updater': 'updater'}), '(predictor=predictor, updater=updater)\n', (6355, 6393), False, 'from stonesoup.hypothesiser.categorical import CategoricalHypothesiser\n'), ((6595, 6628), 'stonesoup.dataassociator.neighbour.GNNWith2DAssignment', 'GNNWith2DAssignment', (['hypothesiser'], {}), '(hypothesiser)\n', (6614, 6628), False, 'from stonesoup.dataassociator.neighbour import GNNWith2DAssignment\n'), ((6962, 7032), 'stonesoup.types.state.CategoricalState', 'CategoricalState', (['[1 / 3, 1 / 3, 1 / 3]'], {'category_names': 'hidden_classes'}), '([1 / 3, 1 / 3, 1 / 3], category_names=hidden_classes)\n', (6978, 7032), False, 'from stonesoup.types.state import CategoricalState\n'), ((7333, 7402), 'stonesoup.initiator.categorical.SimpleCategoricalInitiator', 'SimpleCategoricalInitiator', ([], {'prior_state': 'prior', 'measurement_model': 'None'}), '(prior_state=prior, measurement_model=None)\n', (7359, 7402), False, 'from stonesoup.initiator.categorical import SimpleCategoricalInitiator\n'), ((7557, 7582), 'stonesoup.deleter.time.UpdateTimeStepsDeleter', 'UpdateTimeStepsDeleter', (['(2)'], {}), '(2)\n', (7579, 7582), False, 'from stonesoup.deleter.time import UpdateTimeStepsDeleter\n'), ((7731, 7809), 'stonesoup.tracker.simple.MultiTargetTracker', 'MultiTargetTracker', (['initiator', 'deleter', 'measurements', 'data_associator', 'updater'], {}), '(initiator, deleter, measurements, data_associator, updater)\n', (7749, 7809), False, 'from stonesoup.tracker.simple import MultiTargetTracker\n'), ((2554, 2565), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2562, 2565), True, 'import numpy as np\n'), ((2724, 2818), 'stonesoup.types.groundtruth.CategoricalGroundTruthState', 'CategoricalGroundTruthState', (['state_vector'], {'timestamp': 'start', 'category_names': 'hidden_classes'}), '(state_vector, timestamp=start, category_names=\n hidden_classes)\n', (2751, 2818), False, 'from stonesoup.types.groundtruth import CategoricalGroundTruthState\n'), ((2940, 2990), 'stonesoup.types.groundtruth.GroundTruthPath', 'GroundTruthPath', (['[ground_truth_state]'], {'id': 'f"""GT{i}"""'}), "([ground_truth_state], id=f'GT{i}')\n", (2955, 2990), False, 'from stonesoup.types.groundtruth import GroundTruthPath\n'), ((3524, 3548), 'numpy.vstack', 'np.vstack', (['ground_truths'], {}), '(ground_truths)\n', (3533, 3548), True, 'import numpy as np\n'), ((2299, 2308), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2305, 2308), True, 'import numpy as np\n'), ((2616, 2663), 'numpy.random.choice', 'np.random.choice', (['(3)', '(1)'], {'p': '[1 / 3, 1 / 3, 1 / 3]'}), '(3, 1, p=[1 / 3, 1 / 3, 1 / 3])\n', (2632, 2663), True, 'import numpy as np\n'), ((5138, 5162), 'numpy.vstack', 'np.vstack', (['ground_truths'], {}), '(ground_truths)\n', (5147, 5162), True, 'import numpy as np\n'), ((2387, 2396), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2393, 2396), True, 'import numpy as np\n'), ((4885, 4894), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (4891, 4894), True, 'import numpy as np\n'), ((3210, 3230), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (3219, 3230), False, 'from datetime import datetime, timedelta\n'), ((8010, 8039), 'numpy.argmax', 'np.argmax', (['track.state_vector'], {}), '(track.state_vector)\n', (8019, 8039), True, 'import numpy as np\n'), ((3356, 3376), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (3365, 3376), False, 'from datetime import datetime, timedelta\n'), ((9055, 9084), 'numpy.argmax', 'np.argmax', (['track.state_vector'], {}), '(track.state_vector)\n', (9064, 9084), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import numpy as np import os import sys import argparse import glob import time import onnx import onnxruntime import cv2 import caffe from cvi_toolkit.model import OnnxModel from cvi_toolkit.utils.yolov3_util import preprocess, postprocess_v2, postprocess_v3, postprocess_v4_tiny, draw def check_files(args): if not os.path.isfile(args.model_def): print("cannot find the file %s", args.model_def) sys.exit(1) if not os.path.isfile(args.input_file): print("cannot find the file %s", args.input_file) sys.exit(1) python/cvi_toolkit/inference/onnx/run_onnx_detector_yolo.py def parse_args(): parser = argparse.ArgumentParser(description='Eval YOLO networks.') parser.add_argument('--model_def', type=str, default='', help="Model definition file") parser.add_argument("--net_input_dims", default='416,416', help="'height,width' dimensions of net input tensors.") parser.add_argument("--input_file", type=str, default='', help="Input image for testing") parser.add_argument("--label_file", type=str, default='', help="coco lable file in txt format") parser.add_argument("--draw_image", type=str, default='', help="Draw results on image") parser.add_argument("--dump_blobs", help="Dump all blobs into a file in npz format") parser.add_argument("--obj_threshold", type=float, default=0.3, help="Object confidence threshold") parser.add_argument("--nms_threshold", type=float, default=0.5, help="NMS threshold") parser.add_argument("--batch_size", type=int, default=1, help="Set batch size") parser.add_argument("--yolov3", type=int, default=1, help="yolov2 or yolov3") parser.add_argument("--yolov4-tiny", type=int, default=0, help="set to yolov4") args = parser.parse_args() check_files(args) return args def main(argv): args = parse_args() # Make Detector net_input_dims = [int(s) for s in args.net_input_dims.split(',')] obj_threshold = float(args.obj_threshold) nms_threshold = float(args.nms_threshold) yolov3 = True if args.yolov3 else False yolov4_tiny = True if args.yolov4_tiny else False print("net_input_dims", net_input_dims) print("obj_threshold", obj_threshold) print("nms_threshold", nms_threshold) print("yolov3", yolov3) print("yolov4_tiny", yolov4_tiny) image = cv2.imread(args.input_file) image_x = preprocess(image, net_input_dims) image_x = np.expand_dims(image_x, axis=0) inputs = image_x for i in range(1, args.batch_size): inputs = np.append(inputs, image_x, axis=0) input_shape = np.array([net_input_dims[0], net_input_dims[1]], dtype=np.float32).reshape(1, 2) ort_session = onnxruntime.InferenceSession(args.model_def) ort_inputs = {'input': inputs} ort_outs = ort_session.run(None, ort_inputs) out_feat = {} if yolov4_tiny: batched_predictions = postprocess_v4_tiny(ort_outs, image.shape, net_input_dims, obj_threshold, nms_threshold, args.batch_size) else: out_feat['layer82-conv'] = ort_outs[0] out_feat['layer94-conv'] = ort_outs[1] out_feat['layer106-conv'] = ort_outs[2] batched_predictions = postprocess_v3(out_feat, image.shape, net_input_dims, obj_threshold, nms_threshold, False, args.batch_size) print(batched_predictions[0]) if args.draw_image: image = draw(image, batched_predictions[0], args.label_file) cv2.imwrite(args.draw_image, image) if args.dump_blobs: # second pass for dump all output # plz refre https://github.com/microsoft/onnxruntime/issues/1455 output_keys = [] for i in range(len(ort_outs)): output_keys.append('output_{}'.format(i)) model = onnx.load(args.model_def) # tested commited #c3cea486d https://github.com/microsoft/onnxruntime.git for x in model.graph.node: _intermediate_tensor_name = list(x.output) intermediate_tensor_name = ",".join(_intermediate_tensor_name) intermediate_layer_value_info = onnx.helper.ValueInfoProto() intermediate_layer_value_info.name = intermediate_tensor_name model.graph.output.append(intermediate_layer_value_info) output_keys.append(intermediate_layer_value_info.name + '_' + x.op_type) dump_all_onnx = "dump_all.onnx" if not os.path.exists(dump_all_onnx): onnx.save(model, dump_all_onnx) else: print("{} is exitsed!".format(dump_all_onnx)) print("dump multi-output onnx all tensor at ", dump_all_onnx) # dump all inferneced tensor ort_session = onnxruntime.InferenceSession(dump_all_onnx) ort_outs = ort_session.run(None, ort_inputs) tensor_all_dict = dict(zip(output_keys, map(np.ndarray.flatten, ort_outs))) tensor_all_dict['input'] = inputs np.savez(args.dump_blobs, **tensor_all_dict) print("dump all tensor at ", args.dump_blobs) if __name__ == '__main__': main(sys.argv)
[ "cv2.imwrite", "cvi_toolkit.utils.yolov3_util.draw", "numpy.savez", "os.path.exists", "onnx.save", "argparse.ArgumentParser", "onnxruntime.InferenceSession", "os.path.isfile", "cvi_toolkit.utils.yolov3_util.preprocess", "numpy.append", "numpy.array", "onnx.helper.ValueInfoProto", "onnx.load", "numpy.expand_dims", "sys.exit", "cvi_toolkit.utils.yolov3_util.postprocess_v4_tiny", "cv2.imread", "cvi_toolkit.utils.yolov3_util.postprocess_v3" ]
[((669, 727), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Eval YOLO networks."""'}), "(description='Eval YOLO networks.')\n", (692, 727), False, 'import argparse\n'), ((2620, 2647), 'cv2.imread', 'cv2.imread', (['args.input_file'], {}), '(args.input_file)\n', (2630, 2647), False, 'import cv2\n'), ((2662, 2695), 'cvi_toolkit.utils.yolov3_util.preprocess', 'preprocess', (['image', 'net_input_dims'], {}), '(image, net_input_dims)\n', (2672, 2695), False, 'from cvi_toolkit.utils.yolov3_util import preprocess, postprocess_v2, postprocess_v3, postprocess_v4_tiny, draw\n'), ((2711, 2742), 'numpy.expand_dims', 'np.expand_dims', (['image_x'], {'axis': '(0)'}), '(image_x, axis=0)\n', (2725, 2742), True, 'import numpy as np\n'), ((2971, 3015), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['args.model_def'], {}), '(args.model_def)\n', (2999, 3015), False, 'import onnxruntime\n'), ((346, 376), 'os.path.isfile', 'os.path.isfile', (['args.model_def'], {}), '(args.model_def)\n', (360, 376), False, 'import os\n'), ((443, 454), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (451, 454), False, 'import sys\n'), ((467, 498), 'os.path.isfile', 'os.path.isfile', (['args.input_file'], {}), '(args.input_file)\n', (481, 498), False, 'import os\n'), ((566, 577), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (574, 577), False, 'import sys\n'), ((2819, 2853), 'numpy.append', 'np.append', (['inputs', 'image_x'], {'axis': '(0)'}), '(inputs, image_x, axis=0)\n', (2828, 2853), True, 'import numpy as np\n'), ((3169, 3278), 'cvi_toolkit.utils.yolov3_util.postprocess_v4_tiny', 'postprocess_v4_tiny', (['ort_outs', 'image.shape', 'net_input_dims', 'obj_threshold', 'nms_threshold', 'args.batch_size'], {}), '(ort_outs, image.shape, net_input_dims, obj_threshold,\n nms_threshold, args.batch_size)\n', (3188, 3278), False, 'from cvi_toolkit.utils.yolov3_util import preprocess, postprocess_v2, postprocess_v3, postprocess_v4_tiny, draw\n'), ((3489, 3600), 'cvi_toolkit.utils.yolov3_util.postprocess_v3', 'postprocess_v3', (['out_feat', 'image.shape', 'net_input_dims', 'obj_threshold', 'nms_threshold', '(False)', 'args.batch_size'], {}), '(out_feat, image.shape, net_input_dims, obj_threshold,\n nms_threshold, False, args.batch_size)\n', (3503, 3600), False, 'from cvi_toolkit.utils.yolov3_util import preprocess, postprocess_v2, postprocess_v3, postprocess_v4_tiny, draw\n'), ((3707, 3759), 'cvi_toolkit.utils.yolov3_util.draw', 'draw', (['image', 'batched_predictions[0]', 'args.label_file'], {}), '(image, batched_predictions[0], args.label_file)\n', (3711, 3759), False, 'from cvi_toolkit.utils.yolov3_util import preprocess, postprocess_v2, postprocess_v3, postprocess_v4_tiny, draw\n'), ((3768, 3803), 'cv2.imwrite', 'cv2.imwrite', (['args.draw_image', 'image'], {}), '(args.draw_image, image)\n', (3779, 3803), False, 'import cv2\n'), ((4079, 4104), 'onnx.load', 'onnx.load', (['args.model_def'], {}), '(args.model_def)\n', (4088, 4104), False, 'import onnx\n'), ((4987, 5030), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['dump_all_onnx'], {}), '(dump_all_onnx)\n', (5015, 5030), False, 'import onnxruntime\n'), ((5218, 5262), 'numpy.savez', 'np.savez', (['args.dump_blobs'], {}), '(args.dump_blobs, **tensor_all_dict)\n', (5226, 5262), True, 'import numpy as np\n'), ((2872, 2938), 'numpy.array', 'np.array', (['[net_input_dims[0], net_input_dims[1]]'], {'dtype': 'np.float32'}), '([net_input_dims[0], net_input_dims[1]], dtype=np.float32)\n', (2880, 2938), True, 'import numpy as np\n'), ((4397, 4425), 'onnx.helper.ValueInfoProto', 'onnx.helper.ValueInfoProto', ([], {}), '()\n', (4423, 4425), False, 'import onnx\n'), ((4710, 4739), 'os.path.exists', 'os.path.exists', (['dump_all_onnx'], {}), '(dump_all_onnx)\n', (4724, 4739), False, 'import os\n'), ((4753, 4784), 'onnx.save', 'onnx.save', (['model', 'dump_all_onnx'], {}), '(model, dump_all_onnx)\n', (4762, 4784), False, 'import onnx\n')]
import pickle import time import numpy as np from macrel import graphs from macrel import vast11data as vast INTERVAL_SEC = 900.0 N = len(vast.NODES) SERVICES = { 1: "Mux", 17: "Quote", 21: "FTP", 22: "SSH", 23: "Telnet", 25: "SMTP", 53: "DNS", 80: "HTTP", 88: "Kerberos", 123: "NTP", 135: "DCE", 139: "NETBIOS", 255: "Reserved", 389: "LDAP", 443: "HTTPS", 445: "Microsoft-DS", 464: "kpasswd", 481: "ph", } tally_map = {port: graphs.ConnectionTally(N) for port in SERVICES.keys()} other_tally = graphs.ConnectionTally(N) def add_tally(event): src = vast.NODE_BY_IP.get(event.source_ip) dest = vast.NODE_BY_IP.get(event.dest_ip) if not src or not dest: return port = event.dest_port tally = tally_map.get(port, other_tally) tally.connect(src.id, dest.id, event.conn_built) start_times = [] snapshots = {port: [] for port in SERVICES} snapshots["other"] = [] snapshots["all"] = [] def take_snapshot(): start_times.append(start_time) all_totals = None for port, tally in tally_map.items(): totals = tally.to_sparse_matrix() snapshots[port].append(totals) if all_totals is None: all_totals = totals.copy() else: all_totals += totals snapshots["other"].append(other_tally.to_sparse_matrix()) snapshots["all"].append(all_totals) parser = vast.FWEventParser() events = parser.parse_all_fw_events() first_event = next(events) start_time = first_event.time tt = time.gmtime(start_time) start_time -= (tt.tm_min * 60) # align to hour end_time = start_time + INTERVAL_SEC t = first_event.time while t > end_time: take_snapshot() start_time = end_time end_time = start_time + INTERVAL_SEC add_tally(first_event) for event in events: t = event.time while t > end_time: take_snapshot() start_time = end_time end_time = start_time + INTERVAL_SEC add_tally(event) take_snapshot() data = dict( services = SERVICES, start_times = np.asarray(start_times), snapshots = snapshots, ) pickle.dump(data, open("vast11-connections-by-port.pickle", "wb"))
[ "macrel.vast11data.FWEventParser", "numpy.asarray", "macrel.vast11data.NODE_BY_IP.get", "time.gmtime", "macrel.graphs.ConnectionTally" ]
[((575, 600), 'macrel.graphs.ConnectionTally', 'graphs.ConnectionTally', (['N'], {}), '(N)\n', (597, 600), False, 'from macrel import graphs\n'), ((1344, 1364), 'macrel.vast11data.FWEventParser', 'vast.FWEventParser', ([], {}), '()\n', (1362, 1364), True, 'from macrel import vast11data as vast\n'), ((1466, 1489), 'time.gmtime', 'time.gmtime', (['start_time'], {}), '(start_time)\n', (1477, 1489), False, 'import time\n'), ((506, 531), 'macrel.graphs.ConnectionTally', 'graphs.ConnectionTally', (['N'], {}), '(N)\n', (528, 531), False, 'from macrel import graphs\n'), ((631, 667), 'macrel.vast11data.NODE_BY_IP.get', 'vast.NODE_BY_IP.get', (['event.source_ip'], {}), '(event.source_ip)\n', (650, 667), True, 'from macrel import vast11data as vast\n'), ((676, 710), 'macrel.vast11data.NODE_BY_IP.get', 'vast.NODE_BY_IP.get', (['event.dest_ip'], {}), '(event.dest_ip)\n', (695, 710), True, 'from macrel import vast11data as vast\n'), ((1944, 1967), 'numpy.asarray', 'np.asarray', (['start_times'], {}), '(start_times)\n', (1954, 1967), True, 'import numpy as np\n')]
import sys from pathlib import Path import os import torch from torch.optim import Adam import torch.nn as nn import torch.nn.functional as F import numpy as np from networks.critic import Critic from networks.actor import NoisyActor, CategoricalActor, GaussianActor base_dir = Path(__file__).resolve().parent.parent.parent sys.path.append(str(base_dir)) from common.buffer import Replay_buffer as buffer def get_trajectory_property(): #for adding terms to the memory buffer return ["action"] def weights_init_(m): if isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight, gain=1) torch.nn.init.constant_(m.bias, 0) def update_params(optim, loss, clip=False, param_list=False,retain_graph=False): optim.zero_grad() loss.backward(retain_graph=retain_graph) if clip is not False: for i in param_list: torch.nn.utils.clip_grad_norm_(i, clip) optim.step() class SAC(object): def __init__(self, args): self.state_dim = args.obs_space self.action_dim = args.action_space self.gamma = args.gamma self.tau = args.tau self.action_continuous = args.action_continuous self.batch_size = args.batch_size self.hidden_size = args.hidden_size self.actor_lr = args.a_lr self.critic_lr = args.c_lr self.alpha_lr = args.alpha_lr self.buffer_size = args.buffer_capacity self.policy_type = 'discrete' if (not self.action_continuous) else args.policy_type #deterministic or gaussian policy self.device = 'cpu' given_critic = Critic #need to set a default value self.preset_alpha = args.alpha if self.policy_type == 'deterministic': self.tune_entropy = False hid_layer = args.num_hid_layer self.policy = NoisyActor(state_dim = self.state_dim, hidden_dim=self.hidden_size, out_dim=1, num_hidden_layer=hid_layer).to(self.device) self.policy_target = NoisyActor(state_dim = self.state_dim, hidden_dim=self.hidden_size, out_dim=1, num_hidden_layer=hid_layer).to(self.device) self.policy_target.load_state_dict(self.policy.state_dict()) self.q1 = given_critic(self.state_dim+self.action_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1.apply(weights_init_) self.q1_target = given_critic(self.state_dim+self.action_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1_target.load_state_dict(self.q1.state_dict()) self.critic_optim = Adam(self.q1.parameters(), lr = self.critic_lr) elif self.policy_type == 'discrete': self.tune_entropy = args.tune_entropy self.target_entropy_ratio = args.target_entropy_ratio self.policy = CategoricalActor(self.state_dim, self.hidden_size, self.action_dim).to(self.device) hid_layer = args.num_hid_layer self.q1 = given_critic(self.state_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1.apply(weights_init_) self.q2 = given_critic(self.state_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q2.apply(weights_init_) self.q1_target = given_critic(self.state_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q2_target = given_critic(self.state_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1_target.load_state_dict(self.q1.state_dict()) self.q2_target.load_state_dict(self.q2.state_dict()) self.critic_optim = Adam(list(self.q1.parameters()) + list(self.q2.parameters()), lr=self.critic_lr) elif self.policy_type == 'gaussian': self.tune_entropy = args.tune_entropy self.target_entropy_ratio = args.target_entropy_ratio self.policy = GaussianActor(self.state_dim, self.hidden_size, 1, tanh = False).to(self.device) #self.policy_target = GaussianActor(self.state_dim, self.hidden_size, 1, tanh = False).to(self.device) hid_layer = args.num_hid_layer self.q1 = given_critic(self.state_dim+self.action_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1.apply(weights_init_) self.critic_optim = Adam(self.q1.parameters(), lr = self.critic_lr) self.q1_target = given_critic(self.state_dim+self.action_dim, self.action_dim, self.hidden_size, hid_layer).to(self.device) self.q1_target.load_state_dict(self.q1.state_dict()) else: raise NotImplementedError self.eps = args.epsilon self.eps_end = args.epsilon_end self.eps_delay = 1 / (args.max_episodes * 100) self.learn_step_counter = 0 self.target_replace_iter = args.target_replace self.policy_optim = Adam(self.policy.parameters(), lr = self.actor_lr) trajectory_property = get_trajectory_property() self.memory = buffer(self.buffer_size, trajectory_property) self.memory.init_item_buffers() if self.tune_entropy: self.target_entropy = -np.log(1./self.action_dim) * self.target_entropy_ratio self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) #self.alpha = self.log_alpha.exp() self.alpha = torch.tensor([self.preset_alpha]) self.alpha_optim = Adam([self.log_alpha], lr=self.alpha_lr) else: self.alpha = torch.tensor([self.preset_alpha]) # coefficiency for entropy term def choose_action(self, state, train = True): state = torch.tensor(state, dtype=torch.float).view(1, -1) if self.policy_type == 'discrete': if train: action, _, _, _ = self.policy.sample(state) action = action.item() self.add_experience({"action": action}) else: _, _, _, action = self.policy.sample(state) action = action.item() return {'action': action} elif self.policy_type == 'deterministic': if train: _,_,_,action = self.policy.sample(state) action = action.item() self.add_experience({"action": action}) else: _,_,_,action = self.policy.sample(state) action = action.item() return {'action':action} elif self.policy_type == 'gaussian': if train: action, _, _ = self.policy.sample(state) action = action.detach().numpy().squeeze(1) self.add_experience({"action": action}) else: _, _, action = self.policy.sample(state) action = action.item() return {'action':action} else: raise NotImplementedError def add_experience(self, output): agent_id = 0 for k, v in output.items(): self.memory.insert(k, agent_id, v) def critic_loss(self, current_state, batch_action, next_state, reward, mask): with torch.no_grad(): next_state_action, next_state_pi, next_state_log_pi, _ = self.policy.sample(next_state) #qf1_next_target, qf2_next_target = self.critic_target(next_state) qf1_next_target = self.q1_target(next_state) qf2_next_target = self.q2_target(next_state) min_qf_next_target = next_state_pi * (torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi) # V function min_qf_next_target = min_qf_next_target.sum(dim=1, keepdim=True) next_q_value = reward + mask * self.gamma * (min_qf_next_target) #qf1, qf2 = self.critic(current_state) # Two Q-functions to mitigate positive bias in the policy improvement step, [batch, action_num] qf1 = self.q1(current_state) qf2 = self.q2(current_state) qf1 = qf1.gather(1, batch_action.long()) qf2 = qf2.gather(1, batch_action.long()) #[batch, 1] , pick the actin-value for the given batched actions qf1_loss = torch.mean((qf1 - next_q_value).pow(2)) qf2_loss = torch.mean((qf2 - next_q_value).pow(2)) return qf1_loss, qf2_loss def policy_loss(self, current_state): with torch.no_grad(): #qf1_pi, qf2_pi = self.critic(current_state) qf1_pi = self.q1(current_state) qf2_pi = self.q2(current_state) min_qf_pi = torch.min(qf1_pi, qf2_pi) pi, prob, log_pi, _ = self.policy.sample(current_state) inside_term = self.alpha.detach() * log_pi - min_qf_pi # [batch, action_dim] policy_loss = ((prob * inside_term).sum(1)).mean() return policy_loss, prob.detach(), log_pi.detach() def alpha_loss(self, action_prob, action_logprob): if self.tune_entropy: entropies = -torch.sum(action_prob * action_logprob, dim=1, keepdim=True) #[batch, 1] entropies = entropies.detach() alpha_loss = -torch.mean(self.log_alpha * (self.target_entropy - entropies)) alpha_logs = self.log_alpha.exp().detach() else: alpha_loss = torch.tensor(0.).to(self.device) alpha_logs = self.alpha.detach().clone() return alpha_loss, alpha_logs def learn(self): data = self.memory.sample(self.batch_size) transitions = { "o_0": np.array(data['states']), "o_next_0": np.array(data['states_next']), "r_0": np.array(data['rewards']).reshape(-1, 1), "u_0": np.array(data['action']), "d_0": np.array(data['dones']).reshape(-1, 1), } obs = torch.tensor(transitions["o_0"], dtype=torch.float) obs_ = torch.tensor(transitions["o_next_0"], dtype=torch.float) action = torch.tensor(transitions["u_0"], dtype=torch.long).view(self.batch_size, -1) reward = torch.tensor(transitions["r_0"], dtype=torch.float) done = torch.tensor(transitions["d_0"], dtype=torch.float) if self.policy_type == 'discrete': qf1_loss, qf2_loss = self.critic_loss(obs, action, obs_, reward, (1-done)) policy_loss, prob, log_pi = self.policy_loss(obs) alpha_loss, alpha_logs = self.alpha_loss(prob, log_pi) qf_loss = qf1_loss + qf2_loss update_params(self.critic_optim,qf_loss) update_params(self.policy_optim, policy_loss) if self.tune_entropy: update_params(self.alpha_optim, alpha_loss) self.alpha = self.log_alpha.exp().detach() if self.learn_step_counter % self.target_replace_iter == 0: #self.critic_target.load_state_dict(self.critic.state_dict()) self.q1_target.load_state_dict(self.q1.state_dict()) self.q2_target.load_state_dict(self.q2.state_dict()) self.learn_step_counter += 1 elif self.policy_type == 'deterministic': current_q = self.q1(torch.cat([obs, action], 1)) target_next_action = self.policy_target(obs_) target_next_q = self.q1_target(torch.cat([obs_, target_next_action], 1)) next_q_value = reward + (1-done) * self.gamma * target_next_q qf_loss = F.mse_loss(current_q, next_q_value.detach()) self.critic_optim.zero_grad() qf_loss.backward() self.critic_optim.step() _, _, _, current_action = self.policy.sample(obs) qf_pi = self.q1(torch.cat([obs, current_action], 1)) policy_loss = -qf_pi.mean() self.policy_optim.zero_grad() policy_loss.backward() self.policy_optim.step() if self.learn_step_counter % self.target_replace_iter == 0: for param, target_param in zip(self.q1.parameters(), self.q1_target.parameters()): target_param.data.copy_(self.tau * param.data + (1.-self.tau) * target_param.data) for param, target_param in zip(self.policy.parameters(), self.policy_target.parameters()): target_param.data.copy_(self.tau * param.data + (1.-self.tau) * target_param.data) elif self.policy_type == 'gaussian': action = torch.tensor(transitions["u_0"], dtype=torch.float).view(self.batch_size, -1) with torch.no_grad(): # next_action, next_action_logprob, _ = self.policy_target.sample(obs_) next_action, next_action_logprob, _ = self.policy.sample(obs_) target_next_q = self.q1_target( torch.cat([obs_, next_action], 1)) - self.alpha * next_action_logprob next_q_value = reward + (1 - done) * self.gamma * target_next_q qf1 = self.q1(torch.cat([obs, action], 1)) qf_loss = F.mse_loss(qf1, next_q_value) self.critic_optim.zero_grad() qf_loss.backward() self.critic_optim.step() pi, log_pi, _ = self.policy.sample(obs) qf_pi = self.q1(torch.cat([obs, pi], 1)) policy_loss = ((self.alpha * log_pi) - qf_pi).mean() self.policy_optim.zero_grad() policy_loss.backward() self.policy_optim.step() if self.tune_entropy: alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = self.log_alpha.exp() else: pass if self.learn_step_counter % self.target_replace_iter == 0: for param, target_param in zip(self.q1.parameters(), self.q1_target.parameters()): target_param.data.copy_(self.tau * param.data + (1. - self.tau) * target_param.data) # for param, target_param in zip(self.policy.parameters(), self.policy_target.parameters()): # target_param.data.copy_(self.tau * param.data + (1.-self.tau) * target_param.data) else: raise NotImplementedError def save(self, save_path, episode): base_path = os.path.join(save_path, 'trained_model') if not os.path.exists(base_path): os.makedirs(base_path) model_actor_path = os.path.join(base_path, "actor_" + str(episode) + ".pth") torch.save(self.policy.state_dict(), model_actor_path) def load(self, file): self.policy.load_state_dict(torch.load(file))
[ "torch.nn.init.constant_", "torch.nn.utils.clip_grad_norm_", "numpy.log", "torch.min", "numpy.array", "torch.sum", "networks.actor.NoisyActor", "os.path.exists", "networks.actor.CategoricalActor", "pathlib.Path", "torch.nn.init.xavier_uniform_", "torch.mean", "networks.actor.GaussianActor", "torch.nn.functional.mse_loss", "torch.cat", "torch.optim.Adam", "os.makedirs", "torch.load", "os.path.join", "common.buffer.Replay_buffer", "torch.tensor", "torch.no_grad", "torch.zeros" ]
[((569, 616), 'torch.nn.init.xavier_uniform_', 'torch.nn.init.xavier_uniform_', (['m.weight'], {'gain': '(1)'}), '(m.weight, gain=1)\n', (598, 616), False, 'import torch\n'), ((625, 659), 'torch.nn.init.constant_', 'torch.nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (648, 659), False, 'import torch\n'), ((5158, 5203), 'common.buffer.Replay_buffer', 'buffer', (['self.buffer_size', 'trajectory_property'], {}), '(self.buffer_size, trajectory_property)\n', (5164, 5203), True, 'from common.buffer import Replay_buffer as buffer\n'), ((9964, 10015), 'torch.tensor', 'torch.tensor', (["transitions['o_0']"], {'dtype': 'torch.float'}), "(transitions['o_0'], dtype=torch.float)\n", (9976, 10015), False, 'import torch\n'), ((10031, 10087), 'torch.tensor', 'torch.tensor', (["transitions['o_next_0']"], {'dtype': 'torch.float'}), "(transitions['o_next_0'], dtype=torch.float)\n", (10043, 10087), False, 'import torch\n'), ((10199, 10250), 'torch.tensor', 'torch.tensor', (["transitions['r_0']"], {'dtype': 'torch.float'}), "(transitions['r_0'], dtype=torch.float)\n", (10211, 10250), False, 'import torch\n'), ((10266, 10317), 'torch.tensor', 'torch.tensor', (["transitions['d_0']"], {'dtype': 'torch.float'}), "(transitions['d_0'], dtype=torch.float)\n", (10278, 10317), False, 'import torch\n'), ((14511, 14551), 'os.path.join', 'os.path.join', (['save_path', '"""trained_model"""'], {}), "(save_path, 'trained_model')\n", (14523, 14551), False, 'import os\n'), ((876, 915), 'torch.nn.utils.clip_grad_norm_', 'torch.nn.utils.clip_grad_norm_', (['i', 'clip'], {}), '(i, clip)\n', (906, 915), False, 'import torch\n'), ((5394, 5448), 'torch.zeros', 'torch.zeros', (['(1)'], {'requires_grad': '(True)', 'device': 'self.device'}), '(1, requires_grad=True, device=self.device)\n', (5405, 5448), False, 'import torch\n'), ((5521, 5554), 'torch.tensor', 'torch.tensor', (['[self.preset_alpha]'], {}), '([self.preset_alpha])\n', (5533, 5554), False, 'import torch\n'), ((5586, 5626), 'torch.optim.Adam', 'Adam', (['[self.log_alpha]'], {'lr': 'self.alpha_lr'}), '([self.log_alpha], lr=self.alpha_lr)\n', (5590, 5626), False, 'from torch.optim import Adam\n'), ((5666, 5699), 'torch.tensor', 'torch.tensor', (['[self.preset_alpha]'], {}), '([self.preset_alpha])\n', (5678, 5699), False, 'import torch\n'), ((7291, 7306), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7304, 7306), False, 'import torch\n'), ((8549, 8564), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8562, 8564), False, 'import torch\n'), ((8736, 8761), 'torch.min', 'torch.min', (['qf1_pi', 'qf2_pi'], {}), '(qf1_pi, qf2_pi)\n', (8745, 8761), False, 'import torch\n'), ((9693, 9717), 'numpy.array', 'np.array', (["data['states']"], {}), "(data['states'])\n", (9701, 9717), True, 'import numpy as np\n'), ((9743, 9772), 'numpy.array', 'np.array', (["data['states_next']"], {}), "(data['states_next'])\n", (9751, 9772), True, 'import numpy as np\n'), ((9854, 9878), 'numpy.array', 'np.array', (["data['action']"], {}), "(data['action'])\n", (9862, 9878), True, 'import numpy as np\n'), ((14567, 14592), 'os.path.exists', 'os.path.exists', (['base_path'], {}), '(base_path)\n', (14581, 14592), False, 'import os\n'), ((14606, 14628), 'os.makedirs', 'os.makedirs', (['base_path'], {}), '(base_path)\n', (14617, 14628), False, 'import os\n'), ((14840, 14856), 'torch.load', 'torch.load', (['file'], {}), '(file)\n', (14850, 14856), False, 'import torch\n'), ((5801, 5839), 'torch.tensor', 'torch.tensor', (['state'], {'dtype': 'torch.float'}), '(state, dtype=torch.float)\n', (5813, 5839), False, 'import torch\n'), ((9144, 9204), 'torch.sum', 'torch.sum', (['(action_prob * action_logprob)'], {'dim': '(1)', 'keepdim': '(True)'}), '(action_prob * action_logprob, dim=1, keepdim=True)\n', (9153, 9204), False, 'import torch\n'), ((9292, 9354), 'torch.mean', 'torch.mean', (['(self.log_alpha * (self.target_entropy - entropies))'], {}), '(self.log_alpha * (self.target_entropy - entropies))\n', (9302, 9354), False, 'import torch\n'), ((10105, 10155), 'torch.tensor', 'torch.tensor', (["transitions['u_0']"], {'dtype': 'torch.long'}), "(transitions['u_0'], dtype=torch.long)\n", (10117, 10155), False, 'import torch\n'), ((281, 295), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (285, 295), False, 'from pathlib import Path\n'), ((1849, 1957), 'networks.actor.NoisyActor', 'NoisyActor', ([], {'state_dim': 'self.state_dim', 'hidden_dim': 'self.hidden_size', 'out_dim': '(1)', 'num_hidden_layer': 'hid_layer'}), '(state_dim=self.state_dim, hidden_dim=self.hidden_size, out_dim=1,\n num_hidden_layer=hid_layer)\n', (1859, 1957), False, 'from networks.actor import NoisyActor, CategoricalActor, GaussianActor\n'), ((2042, 2150), 'networks.actor.NoisyActor', 'NoisyActor', ([], {'state_dim': 'self.state_dim', 'hidden_dim': 'self.hidden_size', 'out_dim': '(1)', 'num_hidden_layer': 'hid_layer'}), '(state_dim=self.state_dim, hidden_dim=self.hidden_size, out_dim=1,\n num_hidden_layer=hid_layer)\n', (2052, 2150), False, 'from networks.actor import NoisyActor, CategoricalActor, GaussianActor\n'), ((5310, 5339), 'numpy.log', 'np.log', (['(1.0 / self.action_dim)'], {}), '(1.0 / self.action_dim)\n', (5316, 5339), True, 'import numpy as np\n'), ((7652, 7695), 'torch.min', 'torch.min', (['qf1_next_target', 'qf2_next_target'], {}), '(qf1_next_target, qf2_next_target)\n', (7661, 7695), False, 'import torch\n'), ((9450, 9467), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (9462, 9467), False, 'import torch\n'), ((9793, 9818), 'numpy.array', 'np.array', (["data['rewards']"], {}), "(data['rewards'])\n", (9801, 9818), True, 'import numpy as np\n'), ((9899, 9922), 'numpy.array', 'np.array', (["data['dones']"], {}), "(data['dones'])\n", (9907, 9922), True, 'import numpy as np\n'), ((11299, 11326), 'torch.cat', 'torch.cat', (['[obs, action]', '(1)'], {}), '([obs, action], 1)\n', (11308, 11326), False, 'import torch\n'), ((11431, 11471), 'torch.cat', 'torch.cat', (['[obs_, target_next_action]', '(1)'], {}), '([obs_, target_next_action], 1)\n', (11440, 11471), False, 'import torch\n'), ((11816, 11851), 'torch.cat', 'torch.cat', (['[obs, current_action]', '(1)'], {}), '([obs, current_action], 1)\n', (11825, 11851), False, 'import torch\n'), ((13135, 13164), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['qf1', 'next_q_value'], {}), '(qf1, next_q_value)\n', (13145, 13164), True, 'import torch.nn.functional as F\n'), ((2924, 2991), 'networks.actor.CategoricalActor', 'CategoricalActor', (['self.state_dim', 'self.hidden_size', 'self.action_dim'], {}), '(self.state_dim, self.hidden_size, self.action_dim)\n', (2940, 2991), False, 'from networks.actor import NoisyActor, CategoricalActor, GaussianActor\n'), ((12656, 12671), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12669, 12671), False, 'import torch\n'), ((13084, 13111), 'torch.cat', 'torch.cat', (['[obs, action]', '(1)'], {}), '([obs, action], 1)\n', (13093, 13111), False, 'import torch\n'), ((13357, 13380), 'torch.cat', 'torch.cat', (['[obs, pi]', '(1)'], {}), '([obs, pi], 1)\n', (13366, 13380), False, 'import torch\n'), ((4033, 4095), 'networks.actor.GaussianActor', 'GaussianActor', (['self.state_dim', 'self.hidden_size', '(1)'], {'tanh': '(False)'}), '(self.state_dim, self.hidden_size, 1, tanh=False)\n', (4046, 4095), False, 'from networks.actor import NoisyActor, CategoricalActor, GaussianActor\n'), ((12560, 12611), 'torch.tensor', 'torch.tensor', (["transitions['u_0']"], {'dtype': 'torch.float'}), "(transitions['u_0'], dtype=torch.float)\n", (12572, 12611), False, 'import torch\n'), ((12908, 12941), 'torch.cat', 'torch.cat', (['[obs_, next_action]', '(1)'], {}), '([obs_, next_action], 1)\n', (12917, 12941), False, 'import torch\n')]
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import pickle import numpy as np from IPython import embed from matplotlib import pylab as plt import shared import mmd_experiment def process_mmd_experiment(width_class): results_file_name = mmd_experiment.results_file_stub + "_" + width_class + ".pickle" results = pickle.load( open(results_file_name,'rb' ) ) callibration_mmds = np.loadtxt('results/callibration_mmds.csv') mean_callibration = np.mean(callibration_mmds) mmd_squareds = results['mmd_squareds'] hidden_layer_numbers = results['hidden_layer_numbers'] hidden_unit_numbers = results['hidden_unit_numbers'] num_repeats = mmd_squareds.shape[2] mean_mmds = np.mean( mmd_squareds, axis = 2 ) std_mmds = np.std( mmd_squareds, axis = 2 ) / np.sqrt(num_repeats) plt.figure() for hidden_layer_number, index in zip(hidden_layer_numbers,range(len(hidden_layer_numbers))): if hidden_layer_number==1: layer_string = ' hidden layer' else: layer_string = ' hidden layers' line_name = str(hidden_layer_number) + layer_string plt.errorbar( hidden_unit_numbers, mean_mmds[:,index], yerr = 2.*std_mmds[:,index], label = line_name) plt.xlabel('Number of hidden units per layer') plt.xlim([0,60]) plt.ylabel('MMD SQUARED(GP, NN)') plt.ylim([0.,0.02]) plt.axhline(y=mean_callibration, color='r', linestyle='--') plt.legend() output_file_name = "../figures/mmds_" + width_class + ".pdf" plt.savefig(output_file_name) embed() plt.show() if __name__ == '__main__': if len(sys.argv)!=2 or sys.argv[1] not in shared.valid_width_classes: print("Usage: ", sys.argv[0], " <width_class>") sys.exit(-1) process_mmd_experiment(sys.argv[1])
[ "numpy.mean", "matplotlib.pylab.xlim", "matplotlib.pylab.savefig", "numpy.sqrt", "matplotlib.pylab.errorbar", "sys.exit", "matplotlib.pylab.figure", "matplotlib.pylab.axhline", "matplotlib.pylab.ylim", "matplotlib.pylab.legend", "IPython.embed", "matplotlib.pylab.xlabel", "matplotlib.pylab.show", "numpy.std", "numpy.loadtxt", "matplotlib.pylab.ylabel" ]
[((930, 973), 'numpy.loadtxt', 'np.loadtxt', (['"""results/callibration_mmds.csv"""'], {}), "('results/callibration_mmds.csv')\n", (940, 973), True, 'import numpy as np\n'), ((998, 1024), 'numpy.mean', 'np.mean', (['callibration_mmds'], {}), '(callibration_mmds)\n', (1005, 1024), True, 'import numpy as np\n'), ((1250, 1279), 'numpy.mean', 'np.mean', (['mmd_squareds'], {'axis': '(2)'}), '(mmd_squareds, axis=2)\n', (1257, 1279), True, 'import numpy as np\n'), ((1364, 1376), 'matplotlib.pylab.figure', 'plt.figure', ([], {}), '()\n', (1374, 1376), True, 'from matplotlib import pylab as plt\n'), ((1791, 1837), 'matplotlib.pylab.xlabel', 'plt.xlabel', (['"""Number of hidden units per layer"""'], {}), "('Number of hidden units per layer')\n", (1801, 1837), True, 'from matplotlib import pylab as plt\n'), ((1842, 1859), 'matplotlib.pylab.xlim', 'plt.xlim', (['[0, 60]'], {}), '([0, 60])\n', (1850, 1859), True, 'from matplotlib import pylab as plt\n'), ((1863, 1896), 'matplotlib.pylab.ylabel', 'plt.ylabel', (['"""MMD SQUARED(GP, NN)"""'], {}), "('MMD SQUARED(GP, NN)')\n", (1873, 1896), True, 'from matplotlib import pylab as plt\n'), ((1901, 1922), 'matplotlib.pylab.ylim', 'plt.ylim', (['[0.0, 0.02]'], {}), '([0.0, 0.02])\n', (1909, 1922), True, 'from matplotlib import pylab as plt\n'), ((1925, 1984), 'matplotlib.pylab.axhline', 'plt.axhline', ([], {'y': 'mean_callibration', 'color': '"""r"""', 'linestyle': '"""--"""'}), "(y=mean_callibration, color='r', linestyle='--')\n", (1936, 1984), True, 'from matplotlib import pylab as plt\n'), ((1989, 2001), 'matplotlib.pylab.legend', 'plt.legend', ([], {}), '()\n', (1999, 2001), True, 'from matplotlib import pylab as plt\n'), ((2071, 2100), 'matplotlib.pylab.savefig', 'plt.savefig', (['output_file_name'], {}), '(output_file_name)\n', (2082, 2100), True, 'from matplotlib import pylab as plt\n'), ((2105, 2112), 'IPython.embed', 'embed', ([], {}), '()\n', (2110, 2112), False, 'from IPython import embed\n'), ((2117, 2127), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (2125, 2127), True, 'from matplotlib import pylab as plt\n'), ((1299, 1327), 'numpy.std', 'np.std', (['mmd_squareds'], {'axis': '(2)'}), '(mmd_squareds, axis=2)\n', (1305, 1327), True, 'import numpy as np\n'), ((1334, 1354), 'numpy.sqrt', 'np.sqrt', (['num_repeats'], {}), '(num_repeats)\n', (1341, 1354), True, 'import numpy as np\n'), ((1684, 1791), 'matplotlib.pylab.errorbar', 'plt.errorbar', (['hidden_unit_numbers', 'mean_mmds[:, index]'], {'yerr': '(2.0 * std_mmds[:, index])', 'label': 'line_name'}), '(hidden_unit_numbers, mean_mmds[:, index], yerr=2.0 * std_mmds[\n :, index], label=line_name)\n', (1696, 1791), True, 'from matplotlib import pylab as plt\n'), ((2294, 2306), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (2302, 2306), False, 'import sys\n')]
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path #Code starts here data=pd.read_csv(path) data.rename(columns={'Total':'Total_Medals'},inplace=True) data.head(10) # -------------- #Code starts here data['Better_Event']=np.where(data['Total_Summer']==data['Total_Winter'],'Both',(np.where(data['Total_Summer']>data['Total_Winter'],'Summer','Winter')) ) better_event=data['Better_Event'].value_counts().idxmax() # -------------- #Code starts here top_countries=data[['Country_Name','Total_Summer', 'Total_Winter','Total_Medals']] top_countries.drop(top_countries.index[-1],inplace=True) def top_ten(variable1,variable2): country_list=[] country_list=variable1.nlargest(10,variable2).iloc[:,0] return country_list top_10_summer=list(top_ten(top_countries,'Total_Summer')) top_10_winter=list(top_ten(top_countries,'Total_Winter')) top_10=list(top_ten(top_countries,'Total_Medals')) common=list(set(top_10_summer) & set(top_10_winter) & set(top_10)) # -------------- #Code starts here summer_df=data[data['Country_Name'].isin(top_10_summer)] winter_df=data[data['Country_Name'].isin(top_10_winter)] print(winter_df) top_df=data[data['Country_Name'].isin(top_10)] print(top_df) fig, (ax_1,ax_2,ax_3)=plt.subplots(3,1) summer_df.plot(x='Country_Name',y='Total_Medals',kind='bar',ax=ax_1) winter_df.plot(x='Country_Name',y='Total_Medals',kind='bar',ax=ax_2) top_df.plot(x='Country_Name',y='Total_Medals',kind='bar',ax=ax_3) # -------------- #Code starts here summer_df['Golden_Ratio']=summer_df['Gold_Summer'] / summer_df['Total_Summer'] summer_max_ratio =summer_df['Golden_Ratio'].max() summer_country_gold=summer_df.loc[summer_df['Golden_Ratio']==summer_max_ratio,'Country_Name'].iloc[0] winter_df['Golden_Ratio']=winter_df['Gold_Winter'] / winter_df['Total_Winter'] winter_max_ratio =winter_df['Golden_Ratio'].max() winter_country_gold=winter_df.loc[winter_df['Golden_Ratio']==winter_max_ratio,'Country_Name'].iloc[0] top_df['Golden_Ratio']=top_df['Gold_Total'] / top_df['Total_Medals'] top_max_ratio =top_df['Golden_Ratio'].max() top_country_gold=top_df.loc[top_df['Golden_Ratio']==top_max_ratio,'Country_Name'].iloc[0] # -------------- #Code starts here data_1=data.drop(data.index[-1]) data_1['Total_Points']=(data_1['Gold_Total']*3) + (data_1['Silver_Total']*2)+data_1['Bronze_Total'] most_points=data_1['Total_Points'].max() best_country=data_1.loc[data_1['Total_Points']==most_points,'Country_Name'].iloc[0] # -------------- #Code starts here best=data[data['Country_Name']==best_country] best=best[['Gold_Total','Silver_Total','Bronze_Total']] best.plot.bar(stacked=True) plt.xlabel('United States') plt.ylabel('Medals Tally') plt.xticks(rotation=45)
[ "matplotlib.pyplot.xticks", "pandas.read_csv", "matplotlib.pyplot.ylabel", "numpy.where", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots" ]
[((169, 186), 'pandas.read_csv', 'pd.read_csv', (['path'], {}), '(path)\n', (180, 186), True, 'import pandas as pd\n'), ((1371, 1389), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {}), '(3, 1)\n', (1383, 1389), True, 'import matplotlib.pyplot as plt\n'), ((2807, 2834), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""United States"""'], {}), "('United States')\n", (2817, 2834), True, 'import matplotlib.pyplot as plt\n'), ((2836, 2862), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Medals Tally"""'], {}), "('Medals Tally')\n", (2846, 2862), True, 'import matplotlib.pyplot as plt\n'), ((2864, 2887), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (2874, 2887), True, 'import matplotlib.pyplot as plt\n'), ((387, 460), 'numpy.where', 'np.where', (["(data['Total_Summer'] > data['Total_Winter'])", '"""Summer"""', '"""Winter"""'], {}), "(data['Total_Summer'] > data['Total_Winter'], 'Summer', 'Winter')\n", (395, 460), True, 'import numpy as np\n')]
from numpy import ndarray, array from electripy.physics.charges import PointCharge class _ChargesSet: """ A _ChargesSet instance is a group of charges. The electric field at a given point can be calculated as the sum of each electric field at that point for every charge in the charge set. """ def __init__(self, charges: list[PointCharge]) -> None: self.charges = charges def electric_field(self, point: ndarray) -> ndarray: """ Returns the electric field at the specified point. """ ef = array([0.0, 0.0]) for charge in self.charges: ef += charge.electric_field(point) return ef def electric_force(self, charge: PointCharge) -> ndarray: """ Returns the force of the electric field exerted on the charge. """ ef = self.electric_field(charge.position) return ef * charge.charge def __getitem__(self, index): return self.charges[index] class ChargeDistribution: def __init__(self): """ There is one group for each charge in charges. Each group is a two dimensional vector. The first element is a charge, and the second element is the ChargeSet instance containing all charges in charges except the charge itself. """ self.groups = [] self.charges_set = _ChargesSet([]) def add_charge(self, charge: PointCharge) -> None: """ Adds the charge to charges_set and updates the groups. """ self.charges_set.charges.append(charge) self._update_groups(self.charges_set.charges) def remove_charge(self, charge: PointCharge) -> None: """ Removes the charge to charges_set and updates the groups. """ self.charges_set.charges.remove(charge) self._update_groups(self.charges_set.charges) def _update_groups(self, charges: list[PointCharge]) -> None: """ Let X be a charge from the charge distribution. Computing X electric force involves computing the electric force exerted on X by all the other charges on the charge distribution. This means that, in order to compute the electric force of X, we need a two dimensional vector where the first component is the charge X itself and the second component is a ChargeSet instance cointaning all charges on the charge distribution except X. This vector is called 'group'. """ self.groups = [] for charge in charges: self.groups.append( [ charge, _ChargesSet([c for c in charges if c is not charge]), ] ) def get_electric_forces(self) -> list[tuple[PointCharge, ndarray]]: """ Returns a list of electric forces. There is one electric force for each charge in charges. Each electric force is a two dimensional vector. The first element is the charge and the second element is the electric force the other charges make on it. """ electric_forces = [] for group in self.groups: electric_forces.append((group[0], group[1].electric_force(group[0]))) return electric_forces def get_electric_field(self, position: ndarray) -> ndarray: """ Returns the electric force array at the given point. """ return self.charges_set.electric_field(position) def __len__(self): return len(self.charges_set.charges) def __getitem__(self, index): return self.charges_set[index]
[ "numpy.array" ]
[((566, 583), 'numpy.array', 'array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (571, 583), False, 'from numpy import ndarray, array\n')]
#!/usr/bin/env python import rospy from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, TrafficLightArray , TrafficLight from std_msgs.msg import Int32 import numpy as np from threading import Thread, Lock from copy import deepcopy class GT_TL_Pub(object): def __init__(self): rospy.init_node('gt_TL_Publisher') rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.gt_traffic_cb) # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below self.gt_TL_pub = rospy.Publisher('traffic_waypoint', Int32, queue_size=1) self.mutex = Lock() self.base_waypoints = None self.current_pose = None self.next_waypoint_id = None self.traffic_light_waypoint_id = None self.gt_tl_waypoint_id = -1 self.t_0 = rospy.get_time() # Loop Event for updating final_waypoints rate = rospy.Rate(40) while not rospy.is_shutdown(): self.mutex.acquire() self.publish_gt_TL_waypoint() self.mutex.release() rate.sleep() def publish_gt_TL_waypoint(self): if self.gt_tl_waypoint_id is not None: self.gt_TL_pub.publish(data=self.gt_tl_waypoint_id) # rospy.loginfo("tl waypoint id = %d", self.gt_tl_waypoint_id) def nearest_waypoint(self,x,y,waypoints_list): min_dist = float('inf') nearest_point_id = -1 for id , waypoint in enumerate(waypoints_list.waypoints): waypoint_x = waypoint.pose.pose.position.x waypoint_y = waypoint.pose.pose.position.y dist = (waypoint_x-x)**2 + (waypoint_y-y)**2 if dist < min_dist: min_dist = dist nearest_point_id = id return nearest_point_id def gt_traffic_cb(self,msg): # t_0 = rospy.get_time() self.mutex.acquire() # process ground truth information to get nearest Traffic light and its corrosponding waypoint id self.gt_tl_waypoint_id = -1 trafficlight_array = msg.lights # rospy.loginfo("state = {}".format(np.uint8(trafficlight_array[0].state))) if self.base_waypoints is not None and self.current_pose is not None: #and not trafficlight_array[0].state: current_pose_x = self.current_pose.pose.position.x current_pose_y = self.current_pose.pose.position.y min_dist = float('inf') nearest_point_id = -1 for id in range(len(trafficlight_array)): tl_x = trafficlight_array[id].pose.pose.position.x tl_y = trafficlight_array[id].pose.pose.position.y dist = (current_pose_x - tl_x) ** 2 + (current_pose_y - tl_y) ** 2 if dist < min_dist: min_dist = dist nearest_point_id = id if nearest_point_id != -1 and not np.uint8(trafficlight_array[0].state): self.gt_tl_waypoint_id = self.nearest_waypoint( trafficlight_array[nearest_point_id].pose.pose.position.x, trafficlight_array[nearest_point_id].pose.pose.position.y, self.base_waypoints) elif np.uint8(trafficlight_array[0].state): self.gt_tl_waypoint_id = -1 self.mutex.release() # rospy.loginfo("processig time = {}".format(t_0 - rospy.get_time())) def pose_cb(self, msg): self.current_pose = msg def waypoints_cb(self, waypoints): self.base_waypoints = waypoints if __name__ == '__main__': try: GT_TL_Pub() except rospy.ROSInterruptException: rospy.logerr('Could not start GT_TL_Pub node.')
[ "rospy.logerr", "numpy.uint8", "rospy.Subscriber", "rospy.is_shutdown", "rospy.init_node", "rospy.get_time", "threading.Lock", "rospy.Rate", "rospy.Publisher" ]
[((312, 346), 'rospy.init_node', 'rospy.init_node', (['"""gt_TL_Publisher"""'], {}), "('gt_TL_Publisher')\n", (327, 346), False, 'import rospy\n'), ((356, 416), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/current_pose"""', 'PoseStamped', 'self.pose_cb'], {}), "('/current_pose', PoseStamped, self.pose_cb)\n", (372, 416), False, 'import rospy\n'), ((425, 485), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/base_waypoints"""', 'Lane', 'self.waypoints_cb'], {}), "('/base_waypoints', Lane, self.waypoints_cb)\n", (441, 485), False, 'import rospy\n'), ((494, 581), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/vehicle/traffic_lights"""', 'TrafficLightArray', 'self.gt_traffic_cb'], {}), "('/vehicle/traffic_lights', TrafficLightArray, self.\n gt_traffic_cb)\n", (510, 581), False, 'import rospy\n'), ((688, 744), 'rospy.Publisher', 'rospy.Publisher', (['"""traffic_waypoint"""', 'Int32'], {'queue_size': '(1)'}), "('traffic_waypoint', Int32, queue_size=1)\n", (703, 744), False, 'import rospy\n'), ((767, 773), 'threading.Lock', 'Lock', ([], {}), '()\n', (771, 773), False, 'from threading import Thread, Lock\n'), ((980, 996), 'rospy.get_time', 'rospy.get_time', ([], {}), '()\n', (994, 996), False, 'import rospy\n'), ((1063, 1077), 'rospy.Rate', 'rospy.Rate', (['(40)'], {}), '(40)\n', (1073, 1077), False, 'import rospy\n'), ((1096, 1115), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (1113, 1115), False, 'import rospy\n'), ((3831, 3878), 'rospy.logerr', 'rospy.logerr', (['"""Could not start GT_TL_Pub node."""'], {}), "('Could not start GT_TL_Pub node.')\n", (3843, 3878), False, 'import rospy\n'), ((3392, 3429), 'numpy.uint8', 'np.uint8', (['trafficlight_array[0].state'], {}), '(trafficlight_array[0].state)\n', (3400, 3429), True, 'import numpy as np\n'), ((3073, 3110), 'numpy.uint8', 'np.uint8', (['trafficlight_array[0].state'], {}), '(trafficlight_array[0].state)\n', (3081, 3110), True, 'import numpy as np\n')]
import numpy as np import torch class ModuleMixin(object): """ Adds convenince functions to a torch module """ def number_of_parameters(self, trainable=True): return number_of_parameters(self, trainable) def number_of_parameters(model, trainable=True): """ Returns number of trainable parameters in a torch module Example: >>> import netharn as nh >>> model = nh.models.ToyNet2d() >>> number_of_parameters(model) 824 """ if trainable: model_parameters = filter(lambda p: p.requires_grad, model.parameters()) else: model_parameters = model.parameters() n_params = sum([np.prod(p.size()) for p in model_parameters]) return n_params class grad_context(object): """ Context manager for controlling if autograd is enabled. """ def __init__(self, flag): if tuple(map(int, torch.__version__.split('.')[0:2])) < (0, 4): self.prev = None self.flag = flag else: self.prev = torch.is_grad_enabled() self.flag = flag def __enter__(self): if self.prev is not None: torch.set_grad_enabled(self.flag) def __exit__(self, *args): if self.prev is not None: torch.set_grad_enabled(self.prev) return False class DisableBatchNorm(object): def __init__(self, model, enabled=True): self.model = model self.enabled = enabled self.previous_state = None def __enter__(self): if self.enabled: self.previous_state = {} for name, layer in trainable_layers(self.model, names=True): if isinstance(layer, torch.nn.modules.batchnorm._BatchNorm): self.previous_state[name] = layer.training layer.training = False return self def __exit__(self, *args): if self.previous_state: for name, layer in trainable_layers(self.model, names=True): if name in self.previous_state: layer.training = self.previous_state[name] def trainable_layers(model, names=False): """ Example: >>> import torchvision >>> model = torchvision.models.AlexNet() >>> list(trainable_layers(model, names=True)) """ if names: stack = [('', '', model)] while stack: prefix, basename, item = stack.pop() name = '.'.join([p for p in [prefix, basename] if p]) if isinstance(item, torch.nn.modules.conv._ConvNd): yield name, item elif isinstance(item, torch.nn.modules.batchnorm._BatchNorm): yield name, item elif hasattr(item, 'reset_parameters'): yield name, item child_prefix = name for child_basename, child_item in list(item.named_children())[::-1]: stack.append((child_prefix, child_basename, child_item)) else: queue = [model] while queue: item = queue.pop(0) # TODO: need to put all trainable layer types here # (I think this is just everything with reset_parameters) if isinstance(item, torch.nn.modules.conv._ConvNd): yield item elif isinstance(item, torch.nn.modules.batchnorm._BatchNorm): yield item elif hasattr(item, 'reset_parameters'): yield item # if isinstance(input, torch.nn.modules.Linear): # yield item # if isinstance(input, torch.nn.modules.Bilinear): # yield item # if isinstance(input, torch.nn.modules.Embedding): # yield item # if isinstance(input, torch.nn.modules.EmbeddingBag): # yield item for child in item.children(): queue.append(child) def one_hot_embedding(labels, num_classes, dtype=None): """ Embedding labels to one-hot form. Args: labels: (LongTensor) class labels, sized [N,]. num_classes: (int) number of classes. Returns: (tensor) encoded labels, sized [N,#classes]. References: https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507/4 CommandLine: python -m netharn.loss one_hot_embedding Example: >>> # each element in target has to have 0 <= value < C >>> labels = torch.LongTensor([0, 0, 1, 4, 2, 3]) >>> num_classes = max(labels) + 1 >>> t = one_hot_embedding(labels, num_classes) >>> assert all(row[y] == 1 for row, y in zip(t.numpy(), labels.numpy())) >>> import ubelt as ub >>> print(ub.repr2(t.numpy().tolist())) [ [1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0], ] >>> t2 = one_hot_embedding(labels.numpy(), num_classes) >>> assert np.all(t2 == t.numpy()) >>> if torch.cuda.is_available(): >>> t3 = one_hot_embedding(labels.to(0), num_classes) >>> assert np.all(t3.cpu().numpy() == t.numpy()) """ if isinstance(labels, np.ndarray): dtype = dtype or np.float y = np.eye(num_classes, dtype=dtype) y_onehot = y[labels] else: # if torch.is_tensor(labels): dtype = dtype or torch.float y = torch.eye(num_classes, device=labels.device, dtype=dtype) y_onehot = y[labels] return y_onehot def one_hot_lookup(probs, labels): """ Return probbility of a particular label (usually true labels) for each item Each item in labels corresonds to a row in probs. Returns the index specified at each row. Example: >>> probs = np.array([ >>> [0, 1, 2], >>> [3, 4, 5], >>> [6, 7, 8], >>> [9, 10, 11], >>> ]) >>> labels = np.array([0, 1, 2, 1]) >>> one_hot_lookup(probs, labels) array([ 0, 4, 8, 10]) """ return probs[np.eye(probs.shape[1], dtype=np.bool)[labels]]
[ "numpy.eye", "torch.__version__.split", "torch.eye", "torch.set_grad_enabled", "torch.is_grad_enabled" ]
[((5383, 5415), 'numpy.eye', 'np.eye', (['num_classes'], {'dtype': 'dtype'}), '(num_classes, dtype=dtype)\n', (5389, 5415), True, 'import numpy as np\n'), ((5535, 5592), 'torch.eye', 'torch.eye', (['num_classes'], {'device': 'labels.device', 'dtype': 'dtype'}), '(num_classes, device=labels.device, dtype=dtype)\n', (5544, 5592), False, 'import torch\n'), ((1043, 1066), 'torch.is_grad_enabled', 'torch.is_grad_enabled', ([], {}), '()\n', (1064, 1066), False, 'import torch\n'), ((1168, 1201), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['self.flag'], {}), '(self.flag)\n', (1190, 1201), False, 'import torch\n'), ((1280, 1313), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['self.prev'], {}), '(self.prev)\n', (1302, 1313), False, 'import torch\n'), ((6180, 6217), 'numpy.eye', 'np.eye', (['probs.shape[1]'], {'dtype': 'np.bool'}), '(probs.shape[1], dtype=np.bool)\n', (6186, 6217), True, 'import numpy as np\n'), ((901, 929), 'torch.__version__.split', 'torch.__version__.split', (['"""."""'], {}), "('.')\n", (924, 929), False, 'import torch\n')]
#!/usr/bin/env python # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for pyvo.dal.datalink """ from functools import partial from urllib.parse import parse_qsl from pyvo.dal.adhoc import DatalinkResults from pyvo.dal.params import find_param_by_keyword, get_converter from pyvo.dal.exceptions import DALServiceError import pytest import numpy as np import astropy.units as u from astropy.utils.data import get_pkg_data_contents, get_pkg_data_fileobj get_pkg_data_contents = partial( get_pkg_data_contents, package=__package__, encoding='binary') get_pkg_data_fileobj = partial( get_pkg_data_fileobj, package=__package__, encoding='binary') @pytest.fixture() def proc(mocker): def callback(request, context): return get_pkg_data_contents('data/datalink/proc.xml') with mocker.register_uri( 'GET', 'http://example.com/proc', content=callback ) as matcher: yield matcher @pytest.fixture() def proc_ds(mocker): def callback(request, context): return b'' with mocker.register_uri( 'GET', 'http://example.com/proc', content=callback ) as matcher: yield matcher @pytest.fixture() def proc_units(mocker): def callback(request, context): return get_pkg_data_contents('data/datalink/proc_units.xml') with mocker.register_uri( 'GET', 'http://example.com/proc_units', content=callback ) as matcher: yield matcher @pytest.fixture() def proc_units_ds(mocker): def callback(request, context): data = dict(parse_qsl(request.query)) if 'band' in data: assert data['band'] == ( '6.000000000000001e-07 8.000000000000001e-06') return b'' with mocker.register_uri( 'GET', 'http://example.com/proc_units_ds', content=callback ) as matcher: yield matcher @pytest.fixture() def proc_inf(mocker): def callback(request, context): return get_pkg_data_contents('data/datalink/proc_inf.xml') with mocker.register_uri( 'GET', 'http://example.com/proc_inf', content=callback ) as matcher: yield matcher @pytest.fixture() def proc_inf_ds(mocker): def callback(request, context): data = dict(parse_qsl(request.query)) if 'band' in data: assert data['band'] == ( '6.000000000000001e-07 +Inf') return b'' with mocker.register_uri( 'GET', 'http://example.com/proc_inf_ds', content=callback ) as matcher: yield matcher @pytest.mark.usefixtures('proc') @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.W06") @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.W48") @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.E02") def test_find_param_by_keyword(): datalink = DatalinkResults.from_result_url('http://example.com/proc') proc = datalink[0] input_params = {param.name: param for param in proc.input_params} polygon_lower = find_param_by_keyword('polygon', input_params) polygon_upper = find_param_by_keyword('POLYGON', input_params) circle_lower = find_param_by_keyword('circle', input_params) circle_upper = find_param_by_keyword('CIRCLE', input_params) assert polygon_lower == polygon_upper assert circle_lower == circle_upper @pytest.mark.usefixtures('proc') @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.W06") @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.W48") @pytest.mark.filterwarnings("ignore::astropy.io.votable.exceptions.E02") def test_serialize(): datalink = DatalinkResults.from_result_url('http://example.com/proc') proc = datalink[0] input_params = {param.name: param for param in proc.input_params} polygon_conv = get_converter( find_param_by_keyword('polygon', input_params)) circle_conv = get_converter( find_param_by_keyword('circle', input_params)) scale_conv = get_converter( find_param_by_keyword('scale', input_params)) kind_conv = get_converter( find_param_by_keyword('kind', input_params)) assert polygon_conv.serialize((1, 2, 3)) == "1 2 3" assert polygon_conv.serialize(np.array((1, 2, 3))) == "1 2 3" assert circle_conv.serialize((1.1, 2.2, 3.3)) == "1.1 2.2 3.3" assert circle_conv.serialize(np.array((1.1, 2.2, 3.3))) == "1.1 2.2 3.3" assert scale_conv.serialize(1) == "1" assert kind_conv.serialize("DATA") == "DATA" @pytest.mark.usefixtures('proc') @pytest.mark.usefixtures('proc_ds') def test_serialize_exceptions(): datalink = DatalinkResults.from_result_url('http://example.com/proc') proc = datalink[0] input_params = {param.name: param for param in proc.input_params} polygon_conv = get_converter( find_param_by_keyword('polygon', input_params)) circle_conv = get_converter( find_param_by_keyword('circle', input_params)) band_conv = get_converter( find_param_by_keyword('band', input_params)) with pytest.raises(DALServiceError): polygon_conv.serialize((1, 2, 3, 4)) with pytest.raises(DALServiceError): circle_conv.serialize((1, 2, 3, 4)) with pytest.raises(DALServiceError): band_conv.serialize((1, 2, 3)) @pytest.mark.usefixtures('proc_units') @pytest.mark.usefixtures('proc_units_ds') def test_units(): datalink = DatalinkResults.from_result_url('http://example.com/proc_units') proc = datalink[0] proc.process(band=(6000*u.Angstrom, 80000*u.Angstrom)) @pytest.mark.usefixtures('proc_inf') @pytest.mark.usefixtures('proc_inf_ds') def test_inf(): datalink = DatalinkResults.from_result_url('http://example.com/proc_inf') proc = datalink[0] proc.process(band=(6000, +np.inf) * u.Angstrom)
[ "pytest.mark.filterwarnings", "pyvo.dal.params.find_param_by_keyword", "pyvo.dal.adhoc.DatalinkResults.from_result_url", "astropy.utils.data.get_pkg_data_contents", "numpy.array", "functools.partial", "pytest.mark.usefixtures", "pytest.raises", "pytest.fixture", "urllib.parse.parse_qsl" ]
[((505, 575), 'functools.partial', 'partial', (['get_pkg_data_contents'], {'package': '__package__', 'encoding': '"""binary"""'}), "(get_pkg_data_contents, package=__package__, encoding='binary')\n", (512, 575), False, 'from functools import partial\n'), ((605, 674), 'functools.partial', 'partial', (['get_pkg_data_fileobj'], {'package': '__package__', 'encoding': '"""binary"""'}), "(get_pkg_data_fileobj, package=__package__, encoding='binary')\n", (612, 674), False, 'from functools import partial\n'), ((683, 699), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (697, 699), False, 'import pytest\n'), ((950, 966), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (964, 966), False, 'import pytest\n'), ((1176, 1192), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1190, 1192), False, 'import pytest\n'), ((1461, 1477), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1475, 1477), False, 'import pytest\n'), ((1876, 1892), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1890, 1892), False, 'import pytest\n'), ((2155, 2171), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2169, 2171), False, 'import pytest\n'), ((2549, 2580), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc"""'], {}), "('proc')\n", (2572, 2580), False, 'import pytest\n'), ((2582, 2653), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.W06"""'], {}), "('ignore::astropy.io.votable.exceptions.W06')\n", (2608, 2653), False, 'import pytest\n'), ((2655, 2726), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.W48"""'], {}), "('ignore::astropy.io.votable.exceptions.W48')\n", (2681, 2726), False, 'import pytest\n'), ((2728, 2799), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.E02"""'], {}), "('ignore::astropy.io.votable.exceptions.E02')\n", (2754, 2799), False, 'import pytest\n'), ((3353, 3384), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc"""'], {}), "('proc')\n", (3376, 3384), False, 'import pytest\n'), ((3386, 3457), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.W06"""'], {}), "('ignore::astropy.io.votable.exceptions.W06')\n", (3412, 3457), False, 'import pytest\n'), ((3459, 3530), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.W48"""'], {}), "('ignore::astropy.io.votable.exceptions.W48')\n", (3485, 3530), False, 'import pytest\n'), ((3532, 3603), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::astropy.io.votable.exceptions.E02"""'], {}), "('ignore::astropy.io.votable.exceptions.E02')\n", (3558, 3603), False, 'import pytest\n'), ((4505, 4536), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc"""'], {}), "('proc')\n", (4528, 4536), False, 'import pytest\n'), ((4538, 4572), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc_ds"""'], {}), "('proc_ds')\n", (4561, 4572), False, 'import pytest\n'), ((5293, 5330), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc_units"""'], {}), "('proc_units')\n", (5316, 5330), False, 'import pytest\n'), ((5332, 5372), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc_units_ds"""'], {}), "('proc_units_ds')\n", (5355, 5372), False, 'import pytest\n'), ((5557, 5592), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc_inf"""'], {}), "('proc_inf')\n", (5580, 5592), False, 'import pytest\n'), ((5594, 5632), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""proc_inf_ds"""'], {}), "('proc_inf_ds')\n", (5617, 5632), False, 'import pytest\n'), ((2849, 2907), 'pyvo.dal.adhoc.DatalinkResults.from_result_url', 'DatalinkResults.from_result_url', (['"""http://example.com/proc"""'], {}), "('http://example.com/proc')\n", (2880, 2907), False, 'from pyvo.dal.adhoc import DatalinkResults\n'), ((3022, 3068), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""polygon"""', 'input_params'], {}), "('polygon', input_params)\n", (3043, 3068), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((3089, 3135), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""POLYGON"""', 'input_params'], {}), "('POLYGON', input_params)\n", (3110, 3135), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((3156, 3201), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""circle"""', 'input_params'], {}), "('circle', input_params)\n", (3177, 3201), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((3221, 3266), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""CIRCLE"""', 'input_params'], {}), "('CIRCLE', input_params)\n", (3242, 3266), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((3641, 3699), 'pyvo.dal.adhoc.DatalinkResults.from_result_url', 'DatalinkResults.from_result_url', (['"""http://example.com/proc"""'], {}), "('http://example.com/proc')\n", (3672, 3699), False, 'from pyvo.dal.adhoc import DatalinkResults\n'), ((4621, 4679), 'pyvo.dal.adhoc.DatalinkResults.from_result_url', 'DatalinkResults.from_result_url', (['"""http://example.com/proc"""'], {}), "('http://example.com/proc')\n", (4652, 4679), False, 'from pyvo.dal.adhoc import DatalinkResults\n'), ((5406, 5470), 'pyvo.dal.adhoc.DatalinkResults.from_result_url', 'DatalinkResults.from_result_url', (['"""http://example.com/proc_units"""'], {}), "('http://example.com/proc_units')\n", (5437, 5470), False, 'from pyvo.dal.adhoc import DatalinkResults\n'), ((5664, 5726), 'pyvo.dal.adhoc.DatalinkResults.from_result_url', 'DatalinkResults.from_result_url', (['"""http://example.com/proc_inf"""'], {}), "('http://example.com/proc_inf')\n", (5695, 5726), False, 'from pyvo.dal.adhoc import DatalinkResults\n'), ((769, 816), 'astropy.utils.data.get_pkg_data_contents', 'get_pkg_data_contents', (['"""data/datalink/proc.xml"""'], {}), "('data/datalink/proc.xml')\n", (790, 816), False, 'from astropy.utils.data import get_pkg_data_contents, get_pkg_data_fileobj\n'), ((1268, 1321), 'astropy.utils.data.get_pkg_data_contents', 'get_pkg_data_contents', (['"""data/datalink/proc_units.xml"""'], {}), "('data/datalink/proc_units.xml')\n", (1289, 1321), False, 'from astropy.utils.data import get_pkg_data_contents, get_pkg_data_fileobj\n'), ((1966, 2017), 'astropy.utils.data.get_pkg_data_contents', 'get_pkg_data_contents', (['"""data/datalink/proc_inf.xml"""'], {}), "('data/datalink/proc_inf.xml')\n", (1987, 2017), False, 'from astropy.utils.data import get_pkg_data_contents, get_pkg_data_fileobj\n'), ((3836, 3882), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""polygon"""', 'input_params'], {}), "('polygon', input_params)\n", (3857, 3882), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((3925, 3970), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""circle"""', 'input_params'], {}), "('circle', input_params)\n", (3946, 3970), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((4012, 4056), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""scale"""', 'input_params'], {}), "('scale', input_params)\n", (4033, 4056), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((4097, 4140), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""kind"""', 'input_params'], {}), "('kind', input_params)\n", (4118, 4140), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((4816, 4862), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""polygon"""', 'input_params'], {}), "('polygon', input_params)\n", (4837, 4862), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((4905, 4950), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""circle"""', 'input_params'], {}), "('circle', input_params)\n", (4926, 4950), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((4991, 5034), 'pyvo.dal.params.find_param_by_keyword', 'find_param_by_keyword', (['"""band"""', 'input_params'], {}), "('band', input_params)\n", (5012, 5034), False, 'from pyvo.dal.params import find_param_by_keyword, get_converter\n'), ((5046, 5076), 'pytest.raises', 'pytest.raises', (['DALServiceError'], {}), '(DALServiceError)\n', (5059, 5076), False, 'import pytest\n'), ((5133, 5163), 'pytest.raises', 'pytest.raises', (['DALServiceError'], {}), '(DALServiceError)\n', (5146, 5163), False, 'import pytest\n'), ((5219, 5249), 'pytest.raises', 'pytest.raises', (['DALServiceError'], {}), '(DALServiceError)\n', (5232, 5249), False, 'import pytest\n'), ((1561, 1585), 'urllib.parse.parse_qsl', 'parse_qsl', (['request.query'], {}), '(request.query)\n', (1570, 1585), False, 'from urllib.parse import parse_qsl\n'), ((2253, 2277), 'urllib.parse.parse_qsl', 'parse_qsl', (['request.query'], {}), '(request.query)\n', (2262, 2277), False, 'from urllib.parse import parse_qsl\n'), ((4233, 4252), 'numpy.array', 'np.array', (['(1, 2, 3)'], {}), '((1, 2, 3))\n', (4241, 4252), True, 'import numpy as np\n'), ((4366, 4391), 'numpy.array', 'np.array', (['(1.1, 2.2, 3.3)'], {}), '((1.1, 2.2, 3.3))\n', (4374, 4391), True, 'import numpy as np\n')]
import numpy as np __copyright__ = 'Copyright (C) 2018 ICTP' __author__ = '<NAME> <<EMAIL>>' __credits__ = ["<NAME>", "<NAME>"] def get_x(lon, clon, cone): if clon >= 0.0 and lon >= 0.0 or clon < 0.0 and lon < 0.0: return np.radians(clon - lon) * cone elif clon >= 0.0: if abs(clon - lon + 360.0) < abs(clon - lon): return np.radians(clon - lon + 360) * cone else: return np.radians(clon - lon) * cone elif abs(clon - lon - 360.0) < abs(clon - lon): return np.radians(clon - lon - 360) * cone else: return np.radians(clon - lon) * cone def grid_to_earth_uvrotate(proj, lon, lat, clon, clat, cone=None, plon=None, plat=None): if proj == 'NORMER': return 1, 0 elif proj == 'ROTMER': zphi = np.radians(lat) zrla = np.radians(lon) zrla = np.where(abs(lat) > 89.99999, 0.0, zrla) if plat > 0.0: pollam = plon + 180.0 polphi = 90.0 - plat else: pollam = plon polphi = 90.0 + plat if pollam > 180.0: pollam = pollam - 360.0 polcphi = np.cos(np.radians(polphi)) polsphi = np.sin(np.radians(polphi)) zrlap = np.radians(pollam) - zrla zarg1 = polcphi * np.sin(zrlap) zarg2 = polsphi*np.cos(zphi) - polcphi*np.sin(zphi)*np.cos(zrlap) znorm = 1.0/np.sqrt(zarg1**2+zarg2**2) sindel = zarg1*znorm cosdel = zarg2*znorm return cosdel, sindel else: if np.isscalar(lon): x = get_x(lon, clon, cone) else: c = np.vectorize(get_x, excluded=['clon', 'cone']) x = c(lon, clon, cone) xc = np.cos(x) xs = np.sin(x) if clat >= 0: xs *= -1 return xc, xs
[ "numpy.radians", "numpy.sqrt", "numpy.isscalar", "numpy.cos", "numpy.sin", "numpy.vectorize" ]
[((238, 260), 'numpy.radians', 'np.radians', (['(clon - lon)'], {}), '(clon - lon)\n', (248, 260), True, 'import numpy as np\n'), ((829, 844), 'numpy.radians', 'np.radians', (['lat'], {}), '(lat)\n', (839, 844), True, 'import numpy as np\n'), ((860, 875), 'numpy.radians', 'np.radians', (['lon'], {}), '(lon)\n', (870, 875), True, 'import numpy as np\n'), ((1564, 1580), 'numpy.isscalar', 'np.isscalar', (['lon'], {}), '(lon)\n', (1575, 1580), True, 'import numpy as np\n'), ((1746, 1755), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (1752, 1755), True, 'import numpy as np\n'), ((1769, 1778), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1775, 1778), True, 'import numpy as np\n'), ((1185, 1203), 'numpy.radians', 'np.radians', (['polphi'], {}), '(polphi)\n', (1195, 1203), True, 'import numpy as np\n'), ((1230, 1248), 'numpy.radians', 'np.radians', (['polphi'], {}), '(polphi)\n', (1240, 1248), True, 'import numpy as np\n'), ((1266, 1284), 'numpy.radians', 'np.radians', (['pollam'], {}), '(pollam)\n', (1276, 1284), True, 'import numpy as np\n'), ((1318, 1331), 'numpy.sin', 'np.sin', (['zrlap'], {}), '(zrlap)\n', (1324, 1331), True, 'import numpy as np\n'), ((1426, 1458), 'numpy.sqrt', 'np.sqrt', (['(zarg1 ** 2 + zarg2 ** 2)'], {}), '(zarg1 ** 2 + zarg2 ** 2)\n', (1433, 1458), True, 'import numpy as np\n'), ((1651, 1697), 'numpy.vectorize', 'np.vectorize', (['get_x'], {'excluded': "['clon', 'cone']"}), "(get_x, excluded=['clon', 'cone'])\n", (1663, 1697), True, 'import numpy as np\n'), ((364, 392), 'numpy.radians', 'np.radians', (['(clon - lon + 360)'], {}), '(clon - lon + 360)\n', (374, 392), True, 'import numpy as np\n'), ((433, 455), 'numpy.radians', 'np.radians', (['(clon - lon)'], {}), '(clon - lon)\n', (443, 455), True, 'import numpy as np\n'), ((531, 559), 'numpy.radians', 'np.radians', (['(clon - lon - 360)'], {}), '(clon - lon - 360)\n', (541, 559), True, 'import numpy as np\n'), ((593, 615), 'numpy.radians', 'np.radians', (['(clon - lon)'], {}), '(clon - lon)\n', (603, 615), True, 'import numpy as np\n'), ((1356, 1368), 'numpy.cos', 'np.cos', (['zphi'], {}), '(zphi)\n', (1362, 1368), True, 'import numpy as np\n'), ((1392, 1405), 'numpy.cos', 'np.cos', (['zrlap'], {}), '(zrlap)\n', (1398, 1405), True, 'import numpy as np\n'), ((1379, 1391), 'numpy.sin', 'np.sin', (['zphi'], {}), '(zphi)\n', (1385, 1391), True, 'import numpy as np\n')]
import logging import os import shutil import tempfile from urllib import request as request from urllib.error import HTTPError, URLError from ase import Atoms import numpy as np from schnetpack.data import AtomsData from schnetpack.environment import SimpleEnvironmentProvider class MD17(AtomsData): """ MD17 benchmark data set for molecular dynamics of small molecules containing molecular forces. Args: path (str): path to database dataset (str): Name of molecule to load into database. Allowed are: aspirin benzene ethanol malonaldehyde naphthalene salicylic_acid toluene uracil subset (list): indices of subset. Set to None for entire dataset (default: None) download (bool): set true if dataset should be downloaded (default: True) calculate_triples (bool): set true if triples for angular functions should be computed (default: False) parse_all (bool): set true to generate the ase dbs of all molecules in the beginning (default: False) See: http://quantum-machine.org/datasets/ """ energies = 'energy' forces = 'forces' datasets_dict = dict(aspirin='aspirin_dft.npz', #aspirin_ccsd='aspirin_ccsd.zip', azobenzene='azobenzene_dft.npz', benzene='benzene_dft.npz', ethanol='ethanol_dft.npz', #ethanol_ccsdt='ethanol_ccsd_t.zip', malonaldehyde='malonaldehyde_dft.npz', #malonaldehyde_ccsdt='malonaldehyde_ccsd_t.zip', naphthalene='naphthalene_dft.npz', paracetamol='paracetamol_dft.npz', salicylic_acid='salicylic_dft.npz', toluene='toluene_dft.npz', #toluene_ccsdt='toluene_ccsd_t.zip', uracil='uracil_dft.npz' ) existing_datasets = datasets_dict.keys() def __init__(self, dbdir, dataset, subset=None, download=True, collect_triples=False, parse_all=False, properties=None): self.load_all = parse_all if dataset not in self.datasets_dict.keys(): raise ValueError("Unknown dataset specification {:s}".format(dataset)) self.dbdir = dbdir self.dataset = dataset self.database = dataset + ".db" dbpath = os.path.join(self.dbdir, self.database) self.collect_triples = collect_triples environment_provider = SimpleEnvironmentProvider() if properties is None: properties = ["energy", "forces"] super(MD17, self).__init__(dbpath, subset, properties, environment_provider, collect_triples) if download: self.download() def create_subset(self, idx): idx = np.array(idx) subidx = idx if self.subset is None else np.array(self.subset)[idx] return MD17(self.dbdir, self.dataset, subset=subidx, download=False, collect_triples=self.collect_triples) def download(self): """ download data if not already on disk. """ success = True if not os.path.exists(self.dbdir): os.makedirs(self.dbdir) if not os.path.exists(self.dbpath): success = success and self._load_data() return success def _load_data(self): for molecule in self.datasets_dict.keys(): # if requested, convert only the required molecule if not self.load_all: if molecule != self.dataset: continue logging.info("Downloading {} data".format(molecule)) tmpdir = tempfile.mkdtemp("MD") rawpath = os.path.join(tmpdir, self.datasets_dict[molecule]) url = "http://www.quantum-machine.org/gdml/data/npz/" + self.datasets_dict[molecule] try: request.urlretrieve(url, rawpath) except HTTPError as e: logging.error("HTTP Error:", e.code, url) return False except URLError as e: logging.error("URL Error:", e.reason, url) return False logging.info("Parsing molecule {:s}".format(molecule)) data = np.load(rawpath) numbers = data['z'] atoms_list = [] properties_list = [] for positions, energies, forces in zip(data['R'], data['E'], data['F']): properties_list.append(dict(energy=energies, forces=forces)) atoms_list.append(Atoms(positions=positions, numbers=numbers)) self.add_systems(atoms_list, properties_list) logging.info("Cleanining up the mess...") logging.info('{} molecule done'.format(molecule)) shutil.rmtree(tmpdir) return True
[ "os.path.exists", "os.makedirs", "urllib.request.urlretrieve", "ase.Atoms", "os.path.join", "numpy.array", "tempfile.mkdtemp", "shutil.rmtree", "numpy.load", "logging.info", "logging.error", "schnetpack.environment.SimpleEnvironmentProvider" ]
[((2703, 2742), 'os.path.join', 'os.path.join', (['self.dbdir', 'self.database'], {}), '(self.dbdir, self.database)\n', (2715, 2742), False, 'import os\n'), ((2822, 2849), 'schnetpack.environment.SimpleEnvironmentProvider', 'SimpleEnvironmentProvider', ([], {}), '()\n', (2847, 2849), False, 'from schnetpack.environment import SimpleEnvironmentProvider\n'), ((3166, 3179), 'numpy.array', 'np.array', (['idx'], {}), '(idx)\n', (3174, 3179), True, 'import numpy as np\n'), ((5039, 5080), 'logging.info', 'logging.info', (['"""Cleanining up the mess..."""'], {}), "('Cleanining up the mess...')\n", (5051, 5080), False, 'import logging\n'), ((5147, 5168), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {}), '(tmpdir)\n', (5160, 5168), False, 'import shutil\n'), ((3504, 3530), 'os.path.exists', 'os.path.exists', (['self.dbdir'], {}), '(self.dbdir)\n', (3518, 3530), False, 'import os\n'), ((3544, 3567), 'os.makedirs', 'os.makedirs', (['self.dbdir'], {}), '(self.dbdir)\n', (3555, 3567), False, 'import os\n'), ((3584, 3611), 'os.path.exists', 'os.path.exists', (['self.dbpath'], {}), '(self.dbpath)\n', (3598, 3611), False, 'import os\n'), ((4026, 4048), 'tempfile.mkdtemp', 'tempfile.mkdtemp', (['"""MD"""'], {}), "('MD')\n", (4042, 4048), False, 'import tempfile\n'), ((4071, 4121), 'os.path.join', 'os.path.join', (['tmpdir', 'self.datasets_dict[molecule]'], {}), '(tmpdir, self.datasets_dict[molecule])\n', (4083, 4121), False, 'import os\n'), ((4619, 4635), 'numpy.load', 'np.load', (['rawpath'], {}), '(rawpath)\n', (4626, 4635), True, 'import numpy as np\n'), ((3229, 3250), 'numpy.array', 'np.array', (['self.subset'], {}), '(self.subset)\n', (3237, 3250), True, 'import numpy as np\n'), ((4253, 4286), 'urllib.request.urlretrieve', 'request.urlretrieve', (['url', 'rawpath'], {}), '(url, rawpath)\n', (4272, 4286), True, 'from urllib import request as request\n'), ((4338, 4379), 'logging.error', 'logging.error', (['"""HTTP Error:"""', 'e.code', 'url'], {}), "('HTTP Error:', e.code, url)\n", (4351, 4379), False, 'import logging\n'), ((4459, 4501), 'logging.error', 'logging.error', (['"""URL Error:"""', 'e.reason', 'url'], {}), "('URL Error:', e.reason, url)\n", (4472, 4501), False, 'import logging\n'), ((4926, 4969), 'ase.Atoms', 'Atoms', ([], {'positions': 'positions', 'numbers': 'numbers'}), '(positions=positions, numbers=numbers)\n', (4931, 4969), False, 'from ase import Atoms\n')]
""" Aggregator ==================================== *Aggregators* are used to combine multiple matrices to a single matrix. This is used to combine similarity and dissimilarity matrices of multiple attributes to a single one. Thus, an *Aggregator* :math:`\\mathcal{A}` is a mapping of the form :math:`\\mathcal{A} : \\mathbb{R}^{n \\times n \\times k} \\rightarrow \\mathbb{R}^{n \\times n}`, with :math:`n` being the amount of features and :math:`k` being the number of similarity or dissimilarity matrices of type :math:`D \\in \\mathbb{R}^{n \\times n}`, i.e. the amount of attributes/columns of the dataset. Currently, the following *Aggregators* are implement: =========== =========== Name Formula ----------- ----------- mean :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = \\frac{1}{k} \\sum_{i=1}^{k} D^i` median :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = \\left\\{ \\begin{array}{ll} D^{\\frac{k}{2}} & \\mbox{, if } k \\mbox{ is even} \\\\ \\frac{1}{2} \\left( D^{\\frac{k-1}{2}} + D^{\\frac{k+1}{2}} \\right) & \\mbox{, if } k \\mbox{ is odd} \\end{array} \\right.` max :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = max_{ l} \\; D_{i,j}^l` min :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = min_{ l} \\; D_{i,j}^l` =========== =========== """ import numpy as np from abc import ABC, abstractmethod class Aggregator(ABC): """ An abstract base class for *Aggregators*. If custom *Aggregators* are created, it is enough to derive from this class and use it whenever an *Aggregator* is needed. """ @abstractmethod def aggregate(self, matrices): """ The abstract method that is implemented by the concrete *Aggregators*. :param matrices: a list of similarity or dissimilarity matrices as 2D numpy arrays. :return: a single 2D numpy array. """ pass class AggregatorFactory: """ The factory class for creating concrete instances of the implemented *Aggregators* with default values. """ @staticmethod def create(aggregator): """ Creates an instance of the given *Aggregator* name. :param aggregator: The name of the *Aggregator*, which can be ``mean``, ``median``, ``max`` or ``min``. :return: An instance of the *Aggregator*. :raise ValueError: The given *Aggregator* does not exist. """ if aggregator == "mean": return MeanAggregator() elif aggregator == "median": return MedianAggregator() elif aggregator == "max": return MaxAggregator() elif aggregator == "min": return MinAggregator() else: raise ValueError(f"An aggregator of type {aggregator} does not exist.") class MeanAggregator(Aggregator): """ This class aggregates similarity or dissimilarity matrices using the ``mean``. Given :math:`k` similarity or dissimilarity matrices :math:`D^i \\in \\mathbb{R}^{n \\times n}`, the *MeanAggregator* calculates .. centered:: :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = \\frac{1}{k} \\sum_{i=1}^{k} D^i`. """ def aggregate(self, matrices): """ Calculates the mean of all given matrices along the zero axis. :param matrices: A list of 2D numpy arrays. :return: A 2D numpy array. """ return np.mean(matrices, axis=0) class MedianAggregator(Aggregator): """ This class aggregates similarity or dissimilarity matrices using the ``median``. Given :math:`k` similarity or dissimilarity matrices :math:`D^i \\in \\mathbb{R}^{n \\times n}`, the *MedianAggregator* calculates .. centered:: :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = \\left{ \\begin{array}{ll} D^{\\frac{k}{2}} & \\mbox{, if } k \\mbox{ is even} \\\\ \\frac{1}{2} \\left( D^{\\frac{k-1}{2}} + D^{\\frac{k+1}{2}} \\right) & \\mbox{, if } k \\mbox{ is odd} \\end{array} \\right.` """ def aggregate(self, matrices): """ Calculates the median of all given matrices along the zero axis. :param matrices: A list of 2D numpy arrays. :return: A 2D numpy array. """ return np.median(matrices, axis=0) class MaxAggregator(Aggregator): """ This class aggregates similarity or dissimilarity matrices using the ``max``. Given :math:`k` similarity or dissimilarity matrices :math:`D^i \\in \\mathbb{R}^{n \\times n}`, the *MaxAggregator* calculates .. centered:: :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = max_{ l} \\; D_{i,j}^l`. """ def aggregate(self, matrices): """ Calculates the max of all given matrices along the zero axis. :param matrices: A list of 2D numpy arrays. :return: A 2D numpy array. """ return np.max(matrices, axis=0) class MinAggregator(Aggregator): """ This class aggregates similarity or dissimilarity matrices using the ``min``. Given :math:`k` similarity or dissimilarity matrices :math:`D^i \\in \\mathbb{R}^{n \\times n}`, the *MinAggregator* calculates .. centered:: :math:`\\mathcal{A} (D^1, D^2, ..., D^k) = min_{ l} \\; D_{i,j}^l`. """ def aggregate(self, matrices): """ Calculates the min of all given matrices along the zero axis. :param matrices: A list of 2D numpy arrays. :return: A 2D numpy array. """ return np.min(matrices, axis=0)
[ "numpy.mean", "numpy.median", "numpy.min", "numpy.max" ]
[((3369, 3394), 'numpy.mean', 'np.mean', (['matrices'], {'axis': '(0)'}), '(matrices, axis=0)\n', (3376, 3394), True, 'import numpy as np\n'), ((4191, 4218), 'numpy.median', 'np.median', (['matrices'], {'axis': '(0)'}), '(matrices, axis=0)\n', (4200, 4218), True, 'import numpy as np\n'), ((4816, 4840), 'numpy.max', 'np.max', (['matrices'], {'axis': '(0)'}), '(matrices, axis=0)\n', (4822, 4840), True, 'import numpy as np\n'), ((5438, 5462), 'numpy.min', 'np.min', (['matrices'], {'axis': '(0)'}), '(matrices, axis=0)\n', (5444, 5462), True, 'import numpy as np\n')]
""" suggest a sensible tolerance for a matrix and coverage-rate (default 0.6). """ from typing import Optional import numpy as np from tqdm import trange from logzero import logger from .coverage_rate import coverage_rate # fmt: off def suggest_tolerance( mat: np.ndarray, c_rate: float = 0.66, limit: Optional[int] = None, ) -> int: # fmt: on """ suggest a sensible tolerance for a matrix and coverage-rate (default 0.66). """ mat = np.asarray(mat) try: _, col = mat.shape except Exception as exc: logger.erorr(exc) raise if limit is None: limit = max(col // 2, 6) tolerance = 3 if coverage_rate(mat, tolerance) >= c_rate: return tolerance # may try binary tree to speed up for tol in trange(tolerance + 1, limit + 1): _ = coverage_rate(mat, tol) if _ >= c_rate: logger.info(" search succeeded for mat of size %s", mat.size) return tol logger.warning(" mat of size %s most likely not a score matrix", mat.shape) logger.waning(" we searched hard but were unable to find a sensible tolerance, setting to max(half of %s, 6): %s", col, max(col // 2, 6)) return max(col // 2, 6)
[ "numpy.asarray", "logzero.logger.warning", "logzero.logger.info", "tqdm.trange", "logzero.logger.erorr" ]
[((480, 495), 'numpy.asarray', 'np.asarray', (['mat'], {}), '(mat)\n', (490, 495), True, 'import numpy as np\n'), ((804, 836), 'tqdm.trange', 'trange', (['(tolerance + 1)', '(limit + 1)'], {}), '(tolerance + 1, limit + 1)\n', (810, 836), False, 'from tqdm import trange\n'), ((999, 1074), 'logzero.logger.warning', 'logger.warning', (['""" mat of size %s most likely not a score matrix"""', 'mat.shape'], {}), "(' mat of size %s most likely not a score matrix', mat.shape)\n", (1013, 1074), False, 'from logzero import logger\n'), ((570, 587), 'logzero.logger.erorr', 'logger.erorr', (['exc'], {}), '(exc)\n', (582, 587), False, 'from logzero import logger\n'), ((910, 971), 'logzero.logger.info', 'logger.info', (['""" search succeeded for mat of size %s"""', 'mat.size'], {}), "(' search succeeded for mat of size %s', mat.size)\n", (921, 971), False, 'from logzero import logger\n')]
import gym from gym import spaces import numpy as np import os import sys from m_gym.envs.createsim import CreateSimulation from m_gym.envs.meveahandle import MeveaHandle from time import sleep from math import exp class ExcavatorDiggingSparseEnv(gym.Env): def __init__(self): super(ExcavatorDiggingSparseEnv, self).__init__() self.config= { "model_name": "Excavator", "model_file_location": "Excavator", "debug": False, "episode_duration": 45, "excluded": ["Input_Reset"], "render": True, "service_inputs": ["Input_Reset","Input_Ready"], "service_outputs": ["Output_Reset_Done"], "reset_input_block": 12, "reset_done_output_block": 1, } #"workers_directory":"..\\Workers" self.sim = CreateSimulation(self.config) self.new_folder = self.sim.new_folder self.model_file_path = self.sim.model_file_path # Get amount of the parameters in the observation vector self.obs_len = self.sim.observation_len # Get amount of the parameters in the action vector self.act_len = self.sim.action_len # Create observation and action numpy array self.observation = np.zeros(self.obs_len, dtype=np.float32) self.action = np.zeros(self.act_len, dtype=np.float32) self.action_high = np.ones(self.act_len, dtype=np.float32) self.action_low = -self.action_high self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.observation.shape) self.action_space = spaces.Box(low=self.action_low, high=self.action_high, shape=self.action.shape) self.mh = MeveaHandle(self.sim.worker_number, self.sim.analog_inputs_blocks , self.sim.digital_inputs_blocks, self.sim.analog_outputs_blocks, self.sim.digital_outputs_blocks) self.mh.start_process(os.path.abspath(self.model_file_path), self.config['render']) self.bucket_trigger_mass = 100 self.dumpster_trigger_mass = 100 del self.sim # Returns Box observation space def get_observation_space(self): return spaces.Box(low=-np.inf, high=np.inf, shape=self.observation.shape) # Returns Box action space def get_action_space(self): return spaces.Box(low=self.action_low, high=self.action_high, shape=self.action.shape) def step(self, action): self.mh.set_inputs(action) sleep(1) obs = self.mh.get_outputs() print(self.get_action_space()) reward = 1 done = False print(obs[11], obs[11] >= self.config['episode_duration']) if obs[11] >= self.config['episode_duration']: done = True return obs, reward, done, {} def reset(self): ''' print("restart") self.mh.set_single_digital_input(self.config['reset_input_block'], self.mh.worker_number, 1) sleep(1) self.mh.set_single_digital_input(self.config['reset_input_block'], self.mh.worker_number, 0) obs = self.mh.get_outputs() while round(obs[11]) != 0: self.mh.set_single_digital_input(self.config['reset_input_block'], self.mh.worker_number, 0) obs = self.mh.get_outputs() sleep(0.1) ''' return self.mh.get_outputs() def render(self, mode='', close=False): pass def close(self): self.mh.terminate() self.mh.delete_folder(self.new_folder) print('Simulation environment closed!')
[ "numpy.ones", "m_gym.envs.meveahandle.MeveaHandle", "m_gym.envs.createsim.CreateSimulation", "time.sleep", "gym.spaces.Box", "numpy.zeros", "os.path.abspath" ]
[((754, 783), 'm_gym.envs.createsim.CreateSimulation', 'CreateSimulation', (['self.config'], {}), '(self.config)\n', (770, 783), False, 'from m_gym.envs.createsim import CreateSimulation\n'), ((1156, 1196), 'numpy.zeros', 'np.zeros', (['self.obs_len'], {'dtype': 'np.float32'}), '(self.obs_len, dtype=np.float32)\n', (1164, 1196), True, 'import numpy as np\n'), ((1215, 1255), 'numpy.zeros', 'np.zeros', (['self.act_len'], {'dtype': 'np.float32'}), '(self.act_len, dtype=np.float32)\n', (1223, 1255), True, 'import numpy as np\n'), ((1279, 1318), 'numpy.ones', 'np.ones', (['self.act_len'], {'dtype': 'np.float32'}), '(self.act_len, dtype=np.float32)\n', (1286, 1318), True, 'import numpy as np\n'), ((1394, 1460), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-np.inf)', 'high': 'np.inf', 'shape': 'self.observation.shape'}), '(low=-np.inf, high=np.inf, shape=self.observation.shape)\n', (1404, 1460), False, 'from gym import spaces\n'), ((1485, 1564), 'gym.spaces.Box', 'spaces.Box', ([], {'low': 'self.action_low', 'high': 'self.action_high', 'shape': 'self.action.shape'}), '(low=self.action_low, high=self.action_high, shape=self.action.shape)\n', (1495, 1564), False, 'from gym import spaces\n'), ((1580, 1753), 'm_gym.envs.meveahandle.MeveaHandle', 'MeveaHandle', (['self.sim.worker_number', 'self.sim.analog_inputs_blocks', 'self.sim.digital_inputs_blocks', 'self.sim.analog_outputs_blocks', 'self.sim.digital_outputs_blocks'], {}), '(self.sim.worker_number, self.sim.analog_inputs_blocks, self.sim\n .digital_inputs_blocks, self.sim.analog_outputs_blocks, self.sim.\n digital_outputs_blocks)\n', (1591, 1753), False, 'from m_gym.envs.meveahandle import MeveaHandle\n'), ((2011, 2077), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-np.inf)', 'high': 'np.inf', 'shape': 'self.observation.shape'}), '(low=-np.inf, high=np.inf, shape=self.observation.shape)\n', (2021, 2077), False, 'from gym import spaces\n'), ((2149, 2228), 'gym.spaces.Box', 'spaces.Box', ([], {'low': 'self.action_low', 'high': 'self.action_high', 'shape': 'self.action.shape'}), '(low=self.action_low, high=self.action_high, shape=self.action.shape)\n', (2159, 2228), False, 'from gym import spaces\n'), ((2292, 2300), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (2297, 2300), False, 'from time import sleep\n'), ((1771, 1808), 'os.path.abspath', 'os.path.abspath', (['self.model_file_path'], {}), '(self.model_file_path)\n', (1786, 1808), False, 'import os\n')]
#!/usr/bin/env python """PyDEC: Software and Algorithms for Discrete Exterior Calculus """ DOCLINES = __doc__.split("\n") import os import sys CLASSIFIERS = """\ Development Status :: 5 - Production/Stable Intended Audience :: Science/Research Intended Audience :: Developers Intended Audience :: Education License :: OSI Approved :: BSD License Programming Language :: Python Topic :: Education Topic :: Software Development Topic :: Scientific/Engineering Topic :: Scientific/Engineering :: Mathematics Operating System :: Microsoft :: Windows Operating System :: POSIX Operating System :: Unix Operating System :: MacOS """ # BEFORE importing distutils, remove MANIFEST. distutils doesn't properly # update it when the contents of directories change. if os.path.exists('MANIFEST'): os.remove('MANIFEST') def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('pydec') config.add_data_files(('pydec','*.txt')) config.get_version(os.path.join('pydec','version.py')) # sets config.version return config def setup_package(): from numpy.distutils.core import setup from numpy.distutils.misc_util import Configuration old_path = os.getcwd() local_path = os.path.dirname(os.path.abspath(sys.argv[0])) os.chdir(local_path) sys.path.insert(0,local_path) sys.path.insert(0,os.path.join(local_path,'pydec')) # to retrive version try: setup( name = 'pydec', maintainer = "PyDEC Developers", maintainer_email = "<EMAIL>", description = DOCLINES[0], long_description = "\n".join(DOCLINES[2:]), url = "http://www.graphics.cs.uiuc.edu/~wnbell/", download_url = "http://code.google.com/p/pydec/downloads/list", license = 'BSD', classifiers=filter(None, CLASSIFIERS.split('\n')), platforms = ["Windows", "Linux", "Solaris", "Mac OS-X", "Unix"], configuration=configuration ) finally: del sys.path[0] os.chdir(old_path) return if __name__ == '__main__': setup_package()
[ "os.path.exists", "sys.path.insert", "os.path.join", "numpy.distutils.misc_util.Configuration", "os.getcwd", "os.chdir", "os.path.abspath", "os.remove" ]
[((762, 788), 'os.path.exists', 'os.path.exists', (['"""MANIFEST"""'], {}), "('MANIFEST')\n", (776, 788), False, 'import os\n'), ((790, 811), 'os.remove', 'os.remove', (['"""MANIFEST"""'], {}), "('MANIFEST')\n", (799, 811), False, 'import os\n'), ((934, 979), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['None', 'parent_package', 'top_path'], {}), '(None, parent_package, top_path)\n', (947, 979), False, 'from numpy.distutils.misc_util import Configuration\n'), ((1481, 1492), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1490, 1492), False, 'import os\n'), ((1560, 1580), 'os.chdir', 'os.chdir', (['local_path'], {}), '(local_path)\n', (1568, 1580), False, 'import os\n'), ((1585, 1615), 'sys.path.insert', 'sys.path.insert', (['(0)', 'local_path'], {}), '(0, local_path)\n', (1600, 1615), False, 'import sys\n'), ((1263, 1298), 'os.path.join', 'os.path.join', (['"""pydec"""', '"""version.py"""'], {}), "('pydec', 'version.py')\n", (1275, 1298), False, 'import os\n'), ((1526, 1554), 'os.path.abspath', 'os.path.abspath', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (1541, 1554), False, 'import os\n'), ((1637, 1670), 'os.path.join', 'os.path.join', (['local_path', '"""pydec"""'], {}), "(local_path, 'pydec')\n", (1649, 1670), False, 'import os\n'), ((2321, 2339), 'os.chdir', 'os.chdir', (['old_path'], {}), '(old_path)\n', (2329, 2339), False, 'import os\n')]