code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
""" Reference: [1]: Branlard, Flexible multibody dynamics using joint coordinates and the Rayleigh-Ritz approximation: the general framework behind and beyond Flex, Wind Energy, 2019 """ import numpy as np from .utils import * from .bodies import Body as GenericBody from .bodies import RigidBody as GenericRigidBody from .bodies import FlexibleBody as GenericFlexibleBody from .bodies import BeamBody as GenericBeamBody from .bodies import FASTBeamBody as GenericFASTBeamBody from .bodies import InertialBody as GenericInertialBody # --- To ease comparison with sympy version from numpy import eye, cross, cos ,sin def Matrix(m): return np.asarray(m) def colvec(v): v=np.asarray(v).ravel() return np.array([[v[0]],[v[1]],[v[2]]]) # --------------------------------------------------------------------------------} # --- Connections # --------------------------------------------------------------------------------{ class Connection(): def __init__(self,Type,RelPoint=None,RelOrientation=None,JointRotations=None, OrientAfter=True): if RelOrientation is None: RelOrientation=eye(3) if RelPoint is None: RelPoint=colvec([0,0,0]) self.Type=Type self.s_C_0_inB = RelPoint self.s_C_inB = self.s_C_0_inB self.R_ci_0 = RelOrientation self.R_ci = self.R_ci_0 self.OrientAfter= OrientAfter if self.Type=='Rigid': self.nj=0 elif self.Type=='SphericalJoint': self.JointRotations=JointRotations; self.nj=len(self.JointRotations); else: raise NotImplementedError() def updateKinematics(j,q): j.B_ci=Matrix(np.zeros((6,j.nj))) if j.Type=='Rigid': j.R_ci=j.R_ci_0 elif j.Type=='SphericalJoint': R=eye(3) myq = q [j.I_DOF,0]; #myqdot = qdot[j.I_DOF]; for ir,rot in enumerate(j.JointRotations): if rot=='x': I=np.array([1,0,0]) Rj=R_x( myq[ir] ) elif rot=='y': I=np.array([0,1,0]) Rj=R_y( myq[ir] ) elif rot=='z': I=np.array([0,0,1]) Rj=R_z( myq[ir] ) else: raise Exception() # Setting Bhat column by column j.B_ci[3:,ir] = np.dot(R,I) # NOTE: needs to be done before R updates # Updating rotation matrix R = np.dot(R , Rj ) if j.OrientAfter: j.R_ci = np.dot(R, j.R_ci_0 ) else: j.R_ci = np.dot(j.R_ci_0, R ) # --------------------------------------------------------------------------------} # --- Bodies # --------------------------------------------------------------------------------{ class Body(GenericBody): def __init__(B,name=''): GenericBody.__init__(B, name=name) B.Children = [] B.Connections = [] B.MM = None B.B = [] # Velocity transformation matrix B.updatePosOrientation(colvec([0,0,0]), eye(3)) def updatePosOrientation(o,x_0,R_0b): o.r_O = x_0 # position of body origin in global coordinates o.R_0b=R_0b # transformation matrix from body to global def connectTo(self, Child, Point=None, Type=None, RelOrientation=None, JointRotations=None, OrientAfter=True): if Type =='Rigid': c=Connection(Type, RelPoint=Point, RelOrientation = RelOrientation) else: # TODO first node, last node c=Connection(Type, RelPoint=Point, RelOrientation=RelOrientation, JointRotations=JointRotations, OrientAfter=OrientAfter) self.Children.append(Child) self.Connections.append(c) def setupDOFIndex(o,n): nForMe=o.nf # Setting my dof index o.I_DOF=n+ np.arange(nForMe) # Update n=n+nForMe for child,conn in zip(o.Children,o.Connections): # Connection first nForConn=conn.nj; conn.I_DOF=n+np.arange(nForConn) # Update n=n+nForConn; # Then Children n=child.setupDOFIndex(n) return n #def __repr__(B): # return GenericBody.__repr__(B) @property def R_bc(self): return eye(3); @property def Bhat_x_bc(self): return Matrix(np.zeros((3,0))) @property def Bhat_t_bc(self): return Matrix(np.zeros((3,0))) def updateChildrenKinematicsNonRecursive(p,q): # At this stage all the kinematics of the body p are known # Useful variables R_0p = p.R_0b B_p = p.B r_0p = p.r_O nf_all_children=sum([child.nf for child in p.Children]) for ic,(body_i,conn_pi) in enumerate(zip(p.Children,p.Connections)): # Flexible influence to connection point R_pc = p.R_bc #print('R_pc') #print(R_pc) Bx_pc = p.Bhat_x_bc Bt_pc = p.Bhat_t_bc # Joint influence to next body (R_ci, B_ci) conn_pi.updateKinematics(q) # TODO #print('R_ci',p.name) #print(conn_pi.R_ci) # Full connection p and j R_pi = np.dot(R_pc, conn_pi.R_ci ) if conn_pi.B_ci.shape[1]>0: Bx_pi = np.column_stack((Bx_pc, np.dot(R_pc,conn_pi.B_ci[:3,:]))) Bt_pi = np.column_stack((Bt_pc, np.dot(R_pc,conn_pi.B_ci[3:,:]))) else: Bx_pi = Bx_pc Bt_pi = Bt_pc # Rotation of body i is rotation due to p and j R_0i = np.dot( R_0p , R_pi ) #print('R_pi',p.name) #print(R_pi) #print('R_0p',p.name) #print(R_0p) #print('R_0i',p.name) #print(R_0i) # Position of connection point in P and 0 system r_pi_inP= conn_pi.s_C_inB r_pi = np.dot (R_0p , r_pi_inP ) #print('r_pi') #print(r_pi_inP) #print('r_pi') #print(r_pi) #print('Bx_pi') #print(Bx_pi) #print('Bt_pi') #print(Bt_pi) B_i = fBMatRecursion(B_p, Bx_pi, Bt_pi, R_0p, r_pi) B_i_inI = fB_inB(R_0i, B_i) BB_i_inI = fB_aug(B_i_inI, body_i.nf) body_i.B = B_i body_i.B_inB = B_i_inI body_i.BB_inB = BB_i_inI # --- Updating Position and orientation of child body r_0i = r_0p + r_pi # in 0 system body_i.R_pb = R_pi body_i.updatePosOrientation(r_0i,R_0i) # TODO flexible dofs and velocities/acceleration body_i.gzf = q[body_i.I_DOF,0] # TODO use updateKinematics def getFullM(o,M): if not isinstance(o,GroundBody): MqB = fBMB(o.BB_inB,o.MM) n = MqB.shape[0] M[:n,:n] = M[:n,:n]+MqB for c in o.Children: M=c.getFullM(M) return M def getFullK(o,K): if not isinstance(o,GroundBody): KqB = fBMB(o.BB_inB,o.KK) n = KqB.shape[0] K[:n,:n] = K[:n,:n]+KqB for c in o.Children: K=c.getFullK(K) return K def getFullD(o,D): if not isinstance(o,GroundBody): DqB = fBMB(o.BB_inB,o.DD) n = DqB.shape[0] D[:n,:n] = D[:n,:n]+DqB for c in o.Children: D=c.getFullD(D) return D @property def nf(B): if hasattr(B,'PhiU'): return len(B.PhiU) else: return 0 @property def Mass(B): if B.MM is None: return 0 return B.MM[0,0] def updateKinematics(o,x_0,R_0b,gz,v_0,a_v_0): # Updating position of body origin in global coordinates o.r_O = x_0[0:3] o.gzf = gz # Updating Transformation matrix o.R_0b=R_0b # Updating rigid body velocity and acceleration o.v_O_inB = np.dot(R_0b, v_0[0:3]) o.om_O_inB = np.dot(R_0b, v_0[3:6]) o.a_O_v_inB = np.dot(R_0b, a_v_0[0:3]) o.omp_O_v_inB = np.dot(R_0b, a_v_0[3:6]) # --------------------------------------------------------------------------------} # --- Ground Body # --------------------------------------------------------------------------------{ class GroundBody(Body, GenericInertialBody): def __init__(B): Body.__init__(B, 'Grd') GenericInertialBody.__init__(B) # --------------------------------------------------------------------------------} # --- Rigid Body # --------------------------------------------------------------------------------{ class RigidBody(Body,GenericRigidBody): def __init__(B, name, Mass, J_G, rho_G): """ Creates a rigid body """ Body.__init__(B,name) GenericRigidBody.__init__(B, name, Mass, J_G, rho_G) B.s_G_inB = B.masscenter B.J_G_inB = B.masscenter_inertia B.J_O_inB = translateInertiaMatrixFromCOG(B.J_G_inB, Mass, -B.s_G_inB) B.MM = rigidBodyMassMatrix(Mass, B.J_O_inB, B.s_G_inB) # TODO change interface B.DD = np.zeros((6,6)) B.KK = np.zeros((6,6)) # --------------------------------------------------------------------------------} # --- Beam Body # --------------------------------------------------------------------------------{ class BeamBody(GenericBeamBody, Body): def __init__(B, s_span, s_P0, m, PhiU, PhiV, PhiK, EI, jxxG=None, s_G0=None, s_min=None, s_max=None, bAxialCorr=False, bOrth=False, Mtop=0, bStiffening=True, gravity=None,main_axis='z', massExpected=None ): """ Points P0 - Undeformed mean line of the body """ # --- nherit from BeamBody and Body Body.__init__(B) GenericBeamBody.__init__(B,'dummy', s_span, s_P0, m, EI, PhiU, PhiV, PhiK, jxxG=jxxG, s_G0=s_G0, s_min=s_min, s_max=s_max, bAxialCorr=bAxialCorr, bOrth=bOrth, Mtop=Mtop, bStiffening=bStiffening, gravity=gravity, main_axis=main_axis, massExpected=massExpected ) B.gzf = np.zeros((B.nf,1)) B.gzpf = np.zeros((B.nf,1)) B.gzppf = np.zeros((B.nf,1)) # TODO B.V0 = np.zeros((3,B.nSpan)) B.K0 = np.zeros((3,B.nSpan)) B.rho_G0_inS = np.zeros((3,B.nSpan)) # location of COG in each cross section #[o.PhiV,o.PhiK] = fBeamSlopeCurvature(o.s_span,o.PhiU,o.PhiV,o.PhiK,1e-2); #[o.V0,o.K0] = fBeamSlopeCurvature(o.s_span,o.s_P0,o.V0,o.K0,1e-2) ; #if isempty(o.s_G0); o.s_G0=o.s_P0; end; #if isempty(o.rho_G0_inS); o.rho_G0_inS=np.zeros(3,o.nSpan); end; #if isempty(o.rho_G0 ); # o.rho_G0 =np.zeros(3,o.nSpan); # for i=1:o.nSpan # o.rho_G0(1:3,i) =R_x(o.V0(1,i))*o.rho_G0_inS(:,i); @property def alpha_couplings(self): return np.dot(self.Bhat_t_bc , self.gzf).ravel() @property def R_bc(self): alpha = self.alpha_couplings if self.main_axis=='x': return np.dot(R_y(alpha[1]),R_z(alpha[2])) elif self.main_axis=='z': return np.dot(R_x(alpha[0]),R_y(alpha[1])) else: raise NotImplementedError() def updateKinematics(o,x_0,R_0b,gz,v_0,a_v_0): super(BeamBody,o).updateKinematics(x_0,R_0b,gz,v_0,a_v_0) # --- Calculation of deformations wrt straight beam axis, curvature (K) and velocities (UP) if o.nf>0: o.gzpf = v_0[6:] o.gzppf = a_v_0[6:] # Deflections shape o.U = np.zeros((3,o.nSpan)); o.V = np.zeros((3,o.nSpan)); o.K = np.zeros((3,o.nSpan)); #o.U(1,:) = o.s_span; o.UP = np.zeros((3,o.nSpan)); for j in range(o.nf): o.U [0:3,:] = o.U [0:3,:] + o.gzf[j] * o.PhiU[j][0:3,:] o.UP[0:3,:] = o.UP[0:3,:] + o.gzpf[j] * o.PhiU[j][0:3,:] o.V [0:3,:] = o.V [0:3,:] + o.gzf[j] * o.PhiV[j][0:3,:] o.K [0:3,:] = o.K [0:3,:] + o.gzf[j] * o.PhiK[j][0:3,:] o.V_tot=o.V+o.V0; o.K_tot=o.K+o.K0; # Position of mean line o.s_P=o.s_P0+o.U; # Position of deflected COG # TODO TODO TODO mean_axis not x o.rho_G = np.zeros((3,o.nSpan)) if o.main_axis=='x': o.rho_G[1,:] = o.rho_G0_inS[1,:]*np.cos(o.V_tot[0,:])-o.rho_G0_inS[2,:]*np.sin(o.V_tot[0,:]); o.rho_G[2,:] = o.rho_G0_inS[1,:]*np.sin(o.V_tot[0,:])+o.rho_G0_inS[2,:]*np.cos(o.V_tot[0,:]); else: raise NotImplementedError() o.rho_G[1,:] = o.rho_G0_inS[1,:]*np.cos(o.V_tot[0,:])-o.rho_G0_inS[2,:]*np.sin(o.V_tot[0,:]); o.rho_G[2,:] = o.rho_G0_inS[1,:]*np.sin(o.V_tot[0,:])+o.rho_G0_inS[2,:]*np.cos(o.V_tot[0,:]); o.s_G = o.s_P+o.rho_G; # Alternative: #rho_G2 = zeros(3,o.nSpan); #rho_G2(2,:) = o.rho_G0(2,:).*cos(o.V(1,:))-o.rho_G0(3,:).*sin(o.V(1,:)); #rho_G2(3,:) = o.rho_G0(2,:).*sin(o.V(1,:))+o.rho_G0(3,:).*cos(o.V(1,:)); #compare(o.rho_G,rho_G2,'rho_G'); # Position of connection point print('TODO connection points') #for ic=1:length(o.Connections) # iNode=o.Connections{ic}.ParentNode; # %o.Connections{ic}.s_C_inB = o.U(1:3,iNode); # o.Connections{ic}.s_C_inB = o.s_P(1:3,iNode); @property def nSpan(B): return len(B.s_span) # --------------------------------------------------------------------------------} # --- Uniform Beam Body # --------------------------------------------------------------------------------{ class UniformBeamBody(BeamBody): def __init__(B, name, nShapes, nSpan, L, EI0, m, Mtop=0, jxxG=None, GKt=None, bAxialCorr=True, bCompatibility=False, bStiffnessFromGM=False, bStiffening=True, gravity=None, main_axis='x'): import welib.beams.theory as bt if jxxG is None: jxxG=0 if GKt is None: GKt=0 A=1; rho=A*m; x=np.linspace(0,L,nSpan); # Mode shapes freq,s_span,U,V,K = bt.UniformBeamBendingModes('unloaded-topmass-clamped-free',EI0,rho,A,L,x=x,Mtop=Mtop) PhiU = np.zeros((nShapes,3,nSpan)) # Shape PhiV = np.zeros((nShapes,3,nSpan)) # Slope PhiK = np.zeros((nShapes,3,nSpan)) # Curvature if main_axis=='x': iModeAxis=2 # Setting modes along z elif main_axis=='z': iModeAxis=0 # Setting modes along x for j in np.arange(nShapes): PhiU[j][iModeAxis,:] = U[j,:] PhiV[j][iModeAxis,:] = V[j,:] PhiK[j][iModeAxis,:] = K[j,:] m = m * np.ones(nSpan) jxxG = jxxG * np.ones(nSpan) EI = np.zeros((3,nSpan)) if main_axis=='x': EI[1,:] = EI0 EI[2,:] = EI0 elif main_axis=='z': EI[0,:] = EI0 EI[1,:] = EI0 GKt = GKt * np.ones(nSpan) # --- Straight undeflected shape (and COG) s_P0 = np.zeros((3,nSpan)) if main_axis=='x': s_P0[0,:] = x elif main_axis=='z': s_P0[2,:] = x # Create a beam body super(UniformBeamBody,B).__init__(s_span, s_P0, m, PhiU, PhiV, PhiK, EI, jxxG=jxxG, bAxialCorr=bAxialCorr, Mtop=Mtop, bStiffening=bStiffening, gravity=gravity, main_axis=main_axis) # --------------------------------------------------------------------------------} # --- FAST Beam body # --------------------------------------------------------------------------------{ class FASTBeamBody(BeamBody, GenericFASTBeamBody): def __init__(B, body_type, ED, inp, Mtop=0, shapes=None, nShapes=None, main_axis='x',nSpan=None,bAxialCorr=False,bStiffening=True, spanFrom0=False, massExpected=None ): """ """ if shapes is None: if nShapes==2: shapes=[0,1] elif nShapes==0: shapes=[] elif nShapes==1: shapes=[0] else: raise NotImplementedError('>> TODO') GenericFASTBeamBody.__init__(B, ED, inp, Mtop=Mtop, shapes=shapes, main_axis=main_axis, nSpan=nSpan, bAxialCorr=bAxialCorr, bStiffening=bStiffening, spanFrom0=spanFrom0, massExpected=massExpected ) # We need to inherit from "YAMS" Beam not just generic Beam BeamBody.__init__(B, B.s_span, B.s_P0, B.m, B.PhiU, B.PhiV, B.PhiK, B.EI, jxxG=B.jxxG, s_G0=B.s_G0, # NOTE: r_O, r_b2g is lost here s_min=B.s_min, s_max=B.s_max, bAxialCorr=bAxialCorr, bOrth=B.bOrth, Mtop=Mtop, bStiffening=bStiffening, gravity=B.gravity,main_axis=main_axis, massExpected=massExpected ) # --------------------------------------------------------------------------------} # --- B Matrices # --------------------------------------------------------------------------------{ def fB_inB(R_EI, B_I): """ Transfer a global B_I matrix (body I at point I) into a matrix in it's own coordinate. Simply multiply the top part and bottom part of the B matrix by the 3x3 rotation matrix R_EI e.g. B_N_inN = [R_EN' * B_N(1:3,:); R_EN' * B_N(4:6,:)]; """ if len(B_I)==0: B_I_inI = Matrix(np.array([])) else: B_I_inI = Matrix(np.vstack(( np.dot(R_EI.T, B_I[:3,:]), np.dot(R_EI.T , B_I[3:,:])))) return B_I_inI def fB_aug(B_I_inI, nf_I, nf_Curr=None, nf_Prev=None): """ Augments the B_I_inI matrix, to include nf_I flexible degrees of freedom. This returns the full B matrix on the left side of Eq.(11) from [1], based on the Bx and Bt matrices on the right side of this equation """ if len(B_I_inI)==0: if nf_I>0: BB_I_inI = Matrix(np.vstack( (np.zeros((6,nf_I)), np.eye(nf_I))) ) else: BB_I_inI= Matrix(np.zeros((6,0))) else: if nf_Curr is not None: # Case of several flexible bodies connected to one point (i.e. blades) nf_After=nf_I-nf_Prev-nf_Curr I = np.block( [np.zeros((nf_Curr,nf_Prev)), np.eye(nf_Curr), np.zeros((nf_Curr,nf_After))] ) else: nf_Curr=nf_I I=np.eye(nf_I) BB_I_inI = np.block([ [B_I_inI, np.zeros((6,nf_I))], [np.zeros((nf_Curr,B_I_inI.shape[1])), I]]); return Matrix(BB_I_inI) def fBMatRecursion(Bp, Bhat_x, Bhat_t, R0p, r_pi): """ Recursive formulae for B' and Bhat See discussion after Eq.(12) and (15) from [1] """ # --- Safety checks if len(Bp)==0: n_p = 0 elif len(Bp.shape)==2: n_p = Bp.shape[1] else: raise Exception('Bp needs to be empty or a 2d array') if len(Bhat_x)==0: ni = 0 elif len(Bhat_x.shape)==2: ni = Bhat_x.shape[1] else: raise Exception('Bi needs to be empty or a 2d array') r_pi=r_pi.reshape(3,1) # TODO use Translate here Bi = Matrix(np.zeros((6,ni+n_p))) for j in range(n_p): Bi[:3,j] = Bp[:3,j]+cross(Bp[3:,j],r_pi.ravel()) # Recursive formula for Bt mentioned after Eq.(15) Bi[3:,j] = Bp[3:,j] # Recursive formula for Bx mentioned after Eq.(12) if ni>0: Bi[:3,n_p:] = np.dot(R0p, Bhat_x[:,:]) # Recursive formula for Bx mentioned after Eq.(15) Bi[3:,n_p:] = np.dot(R0p, Bhat_t[:,:]) # Recursive formula for Bt mentioned after Eq.(12) return Bi def fBMatTranslate(Bp,r_pi): """ Rigid translation of a B matrix to another point, i.e. transfer the velocities from a point to another: - translational velocity: v@J = v@I + om@I x r@IJ - rotational velocity : om@J = om@I """ Bi=np.zeros(Bp.shape) if Bp.ndim==1: raise NotImplementedError for j in range(Bp.shape[1]): Bi[0:3,j] = Bp[0:3,j]+np.cross(Bp[3:6,j],r_pi.ravel()); Bi[3:6,j] = Bp[3:6,j] return Bi def fBMB(BB_I_inI,MM): """ Computes the body generalized matrix: B'^t M' B See Eq.(8) of [1] """ MM_I = np.dot(np.transpose(BB_I_inI), MM).dot(BB_I_inI) return MM_I if __name__=='__main__': pass
[ "numpy.eye", "numpy.ones", "numpy.asarray", "numpy.array", "numpy.dot", "numpy.zeros", "numpy.linspace", "numpy.cos", "numpy.sin", "welib.beams.theory.UniformBeamBendingModes", "numpy.transpose", "numpy.arange" ]
[((661, 674), 'numpy.asarray', 'np.asarray', (['m'], {}), '(m)\n', (671, 674), True, 'import numpy as np\n'), ((730, 764), 'numpy.array', 'np.array', (['[[v[0]], [v[1]], [v[2]]]'], {}), '([[v[0]], [v[1]], [v[2]]])\n', (738, 764), True, 'import numpy as np\n'), ((20332, 20350), 'numpy.zeros', 'np.zeros', (['Bp.shape'], {}), '(Bp.shape)\n', (20340, 20350), True, 'import numpy as np\n'), ((4449, 4455), 'numpy.eye', 'eye', (['(3)'], {}), '(3)\n', (4452, 4455), False, 'from numpy import eye, cross, cos, sin\n'), ((8289, 8311), 'numpy.dot', 'np.dot', (['R_0b', 'v_0[0:3]'], {}), '(R_0b, v_0[0:3])\n', (8295, 8311), True, 'import numpy as np\n'), ((8336, 8358), 'numpy.dot', 'np.dot', (['R_0b', 'v_0[3:6]'], {}), '(R_0b, v_0[3:6])\n', (8342, 8358), True, 'import numpy as np\n'), ((8383, 8407), 'numpy.dot', 'np.dot', (['R_0b', 'a_v_0[0:3]'], {}), '(R_0b, a_v_0[0:3])\n', (8389, 8407), True, 'import numpy as np\n'), ((8432, 8456), 'numpy.dot', 'np.dot', (['R_0b', 'a_v_0[3:6]'], {}), '(R_0b, a_v_0[3:6])\n', (8438, 8456), True, 'import numpy as np\n'), ((9455, 9471), 'numpy.zeros', 'np.zeros', (['(6, 6)'], {}), '((6, 6))\n', (9463, 9471), True, 'import numpy as np\n'), ((9486, 9502), 'numpy.zeros', 'np.zeros', (['(6, 6)'], {}), '((6, 6))\n', (9494, 9502), True, 'import numpy as np\n'), ((10478, 10497), 'numpy.zeros', 'np.zeros', (['(B.nf, 1)'], {}), '((B.nf, 1))\n', (10486, 10497), True, 'import numpy as np\n'), ((10515, 10534), 'numpy.zeros', 'np.zeros', (['(B.nf, 1)'], {}), '((B.nf, 1))\n', (10523, 10534), True, 'import numpy as np\n'), ((10552, 10571), 'numpy.zeros', 'np.zeros', (['(B.nf, 1)'], {}), '((B.nf, 1))\n', (10560, 10571), True, 'import numpy as np\n'), ((10610, 10632), 'numpy.zeros', 'np.zeros', (['(3, B.nSpan)'], {}), '((3, B.nSpan))\n', (10618, 10632), True, 'import numpy as np\n'), ((10655, 10677), 'numpy.zeros', 'np.zeros', (['(3, B.nSpan)'], {}), '((3, B.nSpan))\n', (10663, 10677), True, 'import numpy as np\n'), ((10700, 10722), 'numpy.zeros', 'np.zeros', (['(3, B.nSpan)'], {}), '((3, B.nSpan))\n', (10708, 10722), True, 'import numpy as np\n'), ((14570, 14594), 'numpy.linspace', 'np.linspace', (['(0)', 'L', 'nSpan'], {}), '(0, L, nSpan)\n', (14581, 14594), True, 'import numpy as np\n'), ((14644, 14739), 'welib.beams.theory.UniformBeamBendingModes', 'bt.UniformBeamBendingModes', (['"""unloaded-topmass-clamped-free"""', 'EI0', 'rho', 'A', 'L'], {'x': 'x', 'Mtop': 'Mtop'}), "('unloaded-topmass-clamped-free', EI0, rho, A, L,\n x=x, Mtop=Mtop)\n", (14670, 14739), True, 'import welib.beams.theory as bt\n'), ((14745, 14774), 'numpy.zeros', 'np.zeros', (['(nShapes, 3, nSpan)'], {}), '((nShapes, 3, nSpan))\n', (14753, 14774), True, 'import numpy as np\n'), ((14796, 14825), 'numpy.zeros', 'np.zeros', (['(nShapes, 3, nSpan)'], {}), '((nShapes, 3, nSpan))\n', (14804, 14825), True, 'import numpy as np\n'), ((14847, 14876), 'numpy.zeros', 'np.zeros', (['(nShapes, 3, nSpan)'], {}), '((nShapes, 3, nSpan))\n', (14855, 14876), True, 'import numpy as np\n'), ((15066, 15084), 'numpy.arange', 'np.arange', (['nShapes'], {}), '(nShapes)\n', (15075, 15084), True, 'import numpy as np\n'), ((15325, 15345), 'numpy.zeros', 'np.zeros', (['(3, nSpan)'], {}), '((3, nSpan))\n', (15333, 15345), True, 'import numpy as np\n'), ((15626, 15646), 'numpy.zeros', 'np.zeros', (['(3, nSpan)'], {}), '((3, nSpan))\n', (15634, 15646), True, 'import numpy as np\n'), ((19612, 19635), 'numpy.zeros', 'np.zeros', (['(6, ni + n_p)'], {}), '((6, ni + n_p))\n', (19620, 19635), True, 'import numpy as np\n'), ((19881, 19906), 'numpy.dot', 'np.dot', (['R0p', 'Bhat_x[:, :]'], {}), '(R0p, Bhat_x[:, :])\n', (19887, 19906), True, 'import numpy as np\n'), ((19979, 20004), 'numpy.dot', 'np.dot', (['R0p', 'Bhat_t[:, :]'], {}), '(R0p, Bhat_t[:, :])\n', (19985, 20004), True, 'import numpy as np\n'), ((697, 710), 'numpy.asarray', 'np.asarray', (['v'], {}), '(v)\n', (707, 710), True, 'import numpy as np\n'), ((1135, 1141), 'numpy.eye', 'eye', (['(3)'], {}), '(3)\n', (1138, 1141), False, 'from numpy import eye, cross, cos, sin\n'), ((1733, 1752), 'numpy.zeros', 'np.zeros', (['(6, j.nj)'], {}), '((6, j.nj))\n', (1741, 1752), True, 'import numpy as np\n'), ((3226, 3232), 'numpy.eye', 'eye', (['(3)'], {}), '(3)\n', (3229, 3232), False, 'from numpy import eye, cross, cos, sin\n'), ((3989, 4006), 'numpy.arange', 'np.arange', (['nForMe'], {}), '(nForMe)\n', (3998, 4006), True, 'import numpy as np\n'), ((4518, 4534), 'numpy.zeros', 'np.zeros', (['(3, 0)'], {}), '((3, 0))\n', (4526, 4534), True, 'import numpy as np\n'), ((4596, 4612), 'numpy.zeros', 'np.zeros', (['(3, 0)'], {}), '((3, 0))\n', (4604, 4612), True, 'import numpy as np\n'), ((5393, 5419), 'numpy.dot', 'np.dot', (['R_pc', 'conn_pi.R_ci'], {}), '(R_pc, conn_pi.R_ci)\n', (5399, 5419), True, 'import numpy as np\n'), ((5801, 5819), 'numpy.dot', 'np.dot', (['R_0p', 'R_pi'], {}), '(R_0p, R_pi)\n', (5807, 5819), True, 'import numpy as np\n'), ((6122, 6144), 'numpy.dot', 'np.dot', (['R_0p', 'r_pi_inP'], {}), '(R_0p, r_pi_inP)\n', (6128, 6144), True, 'import numpy as np\n'), ((11987, 12009), 'numpy.zeros', 'np.zeros', (['(3, o.nSpan)'], {}), '((3, o.nSpan))\n', (11995, 12009), True, 'import numpy as np\n'), ((12029, 12051), 'numpy.zeros', 'np.zeros', (['(3, o.nSpan)'], {}), '((3, o.nSpan))\n', (12037, 12051), True, 'import numpy as np\n'), ((12071, 12093), 'numpy.zeros', 'np.zeros', (['(3, o.nSpan)'], {}), '((3, o.nSpan))\n', (12079, 12093), True, 'import numpy as np\n'), ((12148, 12170), 'numpy.zeros', 'np.zeros', (['(3, o.nSpan)'], {}), '((3, o.nSpan))\n', (12156, 12170), True, 'import numpy as np\n'), ((12737, 12759), 'numpy.zeros', 'np.zeros', (['(3, o.nSpan)'], {}), '((3, o.nSpan))\n', (12745, 12759), True, 'import numpy as np\n'), ((15252, 15266), 'numpy.ones', 'np.ones', (['nSpan'], {}), '(nSpan)\n', (15259, 15266), True, 'import numpy as np\n'), ((15292, 15306), 'numpy.ones', 'np.ones', (['nSpan'], {}), '(nSpan)\n', (15299, 15306), True, 'import numpy as np\n'), ((15531, 15545), 'numpy.ones', 'np.ones', (['nSpan'], {}), '(nSpan)\n', (15538, 15545), True, 'import numpy as np\n'), ((17939, 17951), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (17947, 17951), True, 'import numpy as np\n'), ((18878, 18890), 'numpy.eye', 'np.eye', (['nf_I'], {}), '(nf_I)\n', (18884, 18890), True, 'import numpy as np\n'), ((1862, 1868), 'numpy.eye', 'eye', (['(3)'], {}), '(3)\n', (1865, 1868), False, 'from numpy import eye, cross, cos, sin\n'), ((4187, 4206), 'numpy.arange', 'np.arange', (['nForConn'], {}), '(nForConn)\n', (4196, 4206), True, 'import numpy as np\n'), ((11292, 11324), 'numpy.dot', 'np.dot', (['self.Bhat_t_bc', 'self.gzf'], {}), '(self.Bhat_t_bc, self.gzf)\n', (11298, 11324), True, 'import numpy as np\n'), ((18536, 18552), 'numpy.zeros', 'np.zeros', (['(6, 0)'], {}), '((6, 0))\n', (18544, 18552), True, 'import numpy as np\n'), ((20677, 20699), 'numpy.transpose', 'np.transpose', (['BB_I_inI'], {}), '(BB_I_inI)\n', (20689, 20699), True, 'import numpy as np\n'), ((2465, 2477), 'numpy.dot', 'np.dot', (['R', 'I'], {}), '(R, I)\n', (2471, 2477), True, 'import numpy as np\n'), ((2587, 2600), 'numpy.dot', 'np.dot', (['R', 'Rj'], {}), '(R, Rj)\n', (2593, 2600), True, 'import numpy as np\n'), ((18000, 18026), 'numpy.dot', 'np.dot', (['R_EI.T', 'B_I[:3, :]'], {}), '(R_EI.T, B_I[:3, :])\n', (18006, 18026), True, 'import numpy as np\n'), ((18027, 18053), 'numpy.dot', 'np.dot', (['R_EI.T', 'B_I[3:, :]'], {}), '(R_EI.T, B_I[3:, :])\n', (18033, 18053), True, 'import numpy as np\n'), ((18747, 18775), 'numpy.zeros', 'np.zeros', (['(nf_Curr, nf_Prev)'], {}), '((nf_Curr, nf_Prev))\n', (18755, 18775), True, 'import numpy as np\n'), ((18776, 18791), 'numpy.eye', 'np.eye', (['nf_Curr'], {}), '(nf_Curr)\n', (18782, 18791), True, 'import numpy as np\n'), ((18793, 18822), 'numpy.zeros', 'np.zeros', (['(nf_Curr, nf_After)'], {}), '((nf_Curr, nf_After))\n', (18801, 18822), True, 'import numpy as np\n'), ((18932, 18951), 'numpy.zeros', 'np.zeros', (['(6, nf_I)'], {}), '((6, nf_I))\n', (18940, 18951), True, 'import numpy as np\n'), ((18954, 18991), 'numpy.zeros', 'np.zeros', (['(nf_Curr, B_I_inI.shape[1])'], {}), '((nf_Curr, B_I_inI.shape[1]))\n', (18962, 18991), True, 'import numpy as np\n'), ((2051, 2070), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (2059, 2070), True, 'import numpy as np\n'), ((2666, 2685), 'numpy.dot', 'np.dot', (['R', 'j.R_ci_0'], {}), '(R, j.R_ci_0)\n', (2672, 2685), True, 'import numpy as np\n'), ((2738, 2757), 'numpy.dot', 'np.dot', (['j.R_ci_0', 'R'], {}), '(j.R_ci_0, R)\n', (2744, 2757), True, 'import numpy as np\n'), ((5510, 5543), 'numpy.dot', 'np.dot', (['R_pc', 'conn_pi.B_ci[:3, :]'], {}), '(R_pc, conn_pi.B_ci[:3, :])\n', (5516, 5543), True, 'import numpy as np\n'), ((5593, 5626), 'numpy.dot', 'np.dot', (['R_pc', 'conn_pi.B_ci[3:, :]'], {}), '(R_pc, conn_pi.B_ci[3:, :])\n', (5599, 5626), True, 'import numpy as np\n'), ((12841, 12862), 'numpy.cos', 'np.cos', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (12847, 12862), True, 'import numpy as np\n'), ((12880, 12901), 'numpy.sin', 'np.sin', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (12886, 12901), True, 'import numpy as np\n'), ((12951, 12972), 'numpy.sin', 'np.sin', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (12957, 12972), True, 'import numpy as np\n'), ((12990, 13011), 'numpy.cos', 'np.cos', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (12996, 13011), True, 'import numpy as np\n'), ((13123, 13144), 'numpy.cos', 'np.cos', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (13129, 13144), True, 'import numpy as np\n'), ((13162, 13183), 'numpy.sin', 'np.sin', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (13168, 13183), True, 'import numpy as np\n'), ((13233, 13254), 'numpy.sin', 'np.sin', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (13239, 13254), True, 'import numpy as np\n'), ((13272, 13293), 'numpy.cos', 'np.cos', (['o.V_tot[0, :]'], {}), '(o.V_tot[0, :])\n', (13278, 13293), True, 'import numpy as np\n'), ((18456, 18475), 'numpy.zeros', 'np.zeros', (['(6, nf_I)'], {}), '((6, nf_I))\n', (18464, 18475), True, 'import numpy as np\n'), ((18476, 18488), 'numpy.eye', 'np.eye', (['nf_I'], {}), '(nf_I)\n', (18482, 18488), True, 'import numpy as np\n'), ((2160, 2179), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (2168, 2179), True, 'import numpy as np\n'), ((2269, 2288), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (2277, 2288), True, 'import numpy as np\n')]
import unittest import numpy as np from sklearn import exceptions # from sklearn.datasets import load_boston as load from skcosmo.datasets import load_csd_1000r as load from skcosmo.feature_selection import CUR class TestCUR(unittest.TestCase): def setUp(self): self.X, _ = load(return_X_y=True) def test_bad_transform(self): selector = CUR(n_to_select=2) with self.assertRaises(exceptions.NotFittedError): _ = selector.transform(self.X) def test_restart(self): """ This test checks that the model can be restarted with a new instance """ ref_selector = CUR(n_to_select=self.X.shape[-1] - 3).fit(X=self.X) ref_idx = ref_selector.selected_idx_ selector = CUR(n_to_select=1) selector.fit(self.X) for i in range(self.X.shape[-1] - 3): selector.n_to_select += 1 selector.fit(self.X, warm_start=True) self.assertEqual(selector.selected_idx_[i], ref_idx[i]) def test_non_it(self): """ This test checks that the model can be run non-iteratively """ C = self.X.T @ self.X _, UC = np.linalg.eigh(C) ref_idx = np.argsort(-(UC[:, -1] ** 2.0))[:-1] selector = CUR(n_to_select=self.X.shape[-1] - 1, iterative=False) selector.fit(self.X) self.assertTrue(np.allclose(selector.selected_idx_, ref_idx)) if __name__ == "__main__": unittest.main(verbosity=2)
[ "numpy.linalg.eigh", "numpy.allclose", "numpy.argsort", "skcosmo.datasets.load_csd_1000r", "unittest.main", "skcosmo.feature_selection.CUR" ]
[((1455, 1481), 'unittest.main', 'unittest.main', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (1468, 1481), False, 'import unittest\n'), ((290, 311), 'skcosmo.datasets.load_csd_1000r', 'load', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (294, 311), True, 'from skcosmo.datasets import load_csd_1000r as load\n'), ((366, 384), 'skcosmo.feature_selection.CUR', 'CUR', ([], {'n_to_select': '(2)'}), '(n_to_select=2)\n', (369, 384), False, 'from skcosmo.feature_selection import CUR\n'), ((758, 776), 'skcosmo.feature_selection.CUR', 'CUR', ([], {'n_to_select': '(1)'}), '(n_to_select=1)\n', (761, 776), False, 'from skcosmo.feature_selection import CUR\n'), ((1174, 1191), 'numpy.linalg.eigh', 'np.linalg.eigh', (['C'], {}), '(C)\n', (1188, 1191), True, 'import numpy as np\n'), ((1267, 1321), 'skcosmo.feature_selection.CUR', 'CUR', ([], {'n_to_select': '(self.X.shape[-1] - 1)', 'iterative': '(False)'}), '(n_to_select=self.X.shape[-1] - 1, iterative=False)\n', (1270, 1321), False, 'from skcosmo.feature_selection import CUR\n'), ((1210, 1239), 'numpy.argsort', 'np.argsort', (['(-UC[:, -1] ** 2.0)'], {}), '(-UC[:, -1] ** 2.0)\n', (1220, 1239), True, 'import numpy as np\n'), ((1376, 1420), 'numpy.allclose', 'np.allclose', (['selector.selected_idx_', 'ref_idx'], {}), '(selector.selected_idx_, ref_idx)\n', (1387, 1420), True, 'import numpy as np\n'), ((641, 678), 'skcosmo.feature_selection.CUR', 'CUR', ([], {'n_to_select': '(self.X.shape[-1] - 3)'}), '(n_to_select=self.X.shape[-1] - 3)\n', (644, 678), False, 'from skcosmo.feature_selection import CUR\n')]
import warnings import numpy as np from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance from .test import is_square # Mapping different estimator on the sklearn toolbox def _lwf(X): """Wrapper for sklearn ledoit wolf covariance estimator""" C, _ = ledoit_wolf(X.T) return C def _oas(X): """Wrapper for sklearn oas covariance estimator""" C, _ = oas(X.T) return C def _scm(X): """Wrapper for sklearn sample covariance estimator""" return empirical_covariance(X.T) def _mcd(X): """Wrapper for sklearn mcd covariance estimator""" _, C, _, _ = fast_mcd(X.T) return C def _sch(X): """Schaefer-Strimmer covariance estimator Shrinkage estimator using method from [1]_: .. math:: \hat{\Sigma} = (1 - \gamma)\Sigma_{scm} + \gamma T where :math:`T` is the diagonal target matrix: .. math:: T_{i,j} = \{ \Sigma_{scm}^{ii} \text{if} i = j, 0 \text{otherwise} \} Note that the optimal :math:`\gamma` is estimated by the authors' method. :param X: Multi-channel time-series, (n_channels, n_times) :returns: Schaefer-Strimmer shrinkage covariance matrix, (n_channels, n_channels) Notes ----- .. versionadded:: 0.2.8 References ---------- .. [1] <NAME>., and <NAME>. 2005. A shrinkage approach to large-scale covariance estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol. 4:32. """ # noqa n_times = X.shape[1] X_c = (X.T - X.T.mean(axis=0)).T C_scm = 1. / n_times * X_c @ X_c.T # Compute optimal gamma, the weigthing between SCM and srinkage estimator R = (n_times / ((n_times - 1.) * np.outer(X.std(axis=1), X.std(axis=1)))) R *= C_scm var_R = (X_c ** 2) @ (X_c ** 2).T - 2 * C_scm * (X_c @ X_c.T) var_R += n_times * C_scm ** 2 Xvar = np.outer(X.var(axis=1), X.var(axis=1)) var_R *= n_times / ((n_times - 1) ** 3 * Xvar) R -= np.diag(np.diag(R)) var_R -= np.diag(np.diag(var_R)) gamma = max(0, min(1, var_R.sum() / (R ** 2).sum())) sigma = (1. - gamma) * (n_times / (n_times - 1.)) * C_scm shrinkage = gamma * (n_times / (n_times - 1.)) * np.diag(np.diag(C_scm)) return sigma + shrinkage def _check_est(est): """Check if a given estimator is valid""" # Check estimator exist and return the correct function estimators = { 'cov': np.cov, 'scm': _scm, 'lwf': _lwf, 'oas': _oas, 'mcd': _mcd, 'sch': _sch, 'corr': np.corrcoef } if callable(est): # All good (cross your fingers) pass elif est in estimators.keys(): # Map the corresponding estimator est = estimators[est] else: # raise an error raise ValueError( """%s is not an valid estimator ! Valid estimators are : %s or a callable function""" % (est, (' , ').join(estimators.keys()))) return est def covariances(X, estimator='cov'): """Estimation of covariance matrix. Parameters ---------- X : ndarray, shape (n_matrices, n_channels, n_times) Multi-channel time-series. estimator : {'cov', 'scm', 'lwf', 'oas', 'mcd', 'sch', 'corr'} \ (default: 'scm') Covariance matrix estimator: * 'cov' for numpy based covariance matrix, https://numpy.org/doc/stable/reference/generated/numpy.cov.html * 'scm' for sample covariance matrix, https://scikit-learn.org/stable/modules/generated/sklearn.covariance.empirical_covariance.html * 'lwf' for shrunk Ledoit-Wolf covariance matrix https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ledoit_wolf.html * 'oas' for oracle approximating shrunk covariance matrix, https://scikit-learn.org/stable/modules/generated/sklearn.covariance.OAS.html * 'mcd' for minimum covariance determinant matrix, https://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html * 'sch' for Schaefer-Strimmer covariance, http://doi.org/10.2202/1544-6115.1175, * 'corr' for correlation coefficient matrix, https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html Returns ------- covmats : ndarray, shape (n_matrices, n_channels, n_channels) Covariance matrices. References ---------- .. [1] https://scikit-learn.org/stable/modules/covariance.html """ # noqa est = _check_est(estimator) n_matrices, n_channels, n_times = X.shape covmats = np.empty((n_matrices, n_channels, n_channels)) for i in range(n_matrices): covmats[i] = est(X[i]) return covmats def covariances_EP(X, P, estimator='cov'): """Special form covariance matrix, concatenating a prototype P. Parameters ---------- X : ndarray, shape (n_matrices, n_channels, n_times) Multi-channel time-series. P : ndarray, shape (n_channels_proto, n_times) Multi-channel prototype. estimator : {'cov', 'scm', 'lwf', 'oas', 'mcd', 'sch', 'corr'} \ (default: 'cov') Covariance matrix estimator, see :func:`pyriemann.utils.covariance.covariances`. Returns ------- covmats : ndarray, shape (n_matrices, n_channels + n_channels_proto, \ n_channels + n_channels_proto) Covariance matrices. """ est = _check_est(estimator) n_matrices, n_channels, n_times = X.shape n_channels_proto, n_times_p = P.shape if n_times_p != n_times: raise ValueError( f"X and P do not have the same n_times: {n_times} and {n_times_p}") covmats = np.empty((n_matrices, n_channels + n_channels_proto, n_channels + n_channels_proto)) for i in range(n_matrices): covmats[i] = est(np.concatenate((P, X[i]), axis=0)) return covmats def covariances_X(X, estimator='scm', alpha=0.2): """Special form covariance matrix, embedding input X. Parameters ---------- X : ndarray, shape (n_matrices, n_channels, n_times) Multi-channel time-series. estimator : {'cov', 'scm', 'lwf', 'oas', 'mcd', 'sch', 'corr'} \ (default: 'scm') Covariance matrix estimator, see :func:`pyriemann.utils.covariance.covariances`. alpha : float (default 0.2) Regularization parameter (strictly positive). Returns ------- covmats : ndarray, shape (n_matrices, n_channels + n_times, n_channels + \ n_times) Covariance matrices. References ---------- .. [1] <NAME> and <NAME>, "A special form of SPD covariance matrix for interpretation and visualization of data manipulated with Riemannian geometry", AIP Conference Proceedings 1641, 2015 """ if alpha <= 0: raise ValueError( 'Parameter alpha must be strictly positive (Got %d)' % alpha) est = _check_est(estimator) n_matrices, n_channels, n_times = X.shape Hchannels = np.eye(n_channels) \ - np.outer(np.ones(n_channels), np.ones(n_channels)) / n_channels Htimes = np.eye(n_times) \ - np.outer(np.ones(n_times), np.ones(n_times)) / n_times X = Hchannels @ X @ Htimes # Eq(8), double centering covmats = np.empty( (n_matrices, n_channels + n_times, n_channels + n_times)) for i in range(n_matrices): Y = np.concatenate(( np.concatenate((X[i], alpha * np.eye(n_channels)), axis=1), # top np.concatenate((alpha * np.eye(n_times), X[i].T), axis=1) # bottom ), axis=0) # Eq(9) covmats[i] = est(Y) return covmats / (2 * alpha) # Eq(10) def eegtocov(sig, window=128, overlapp=0.5, padding=True, estimator='cov'): """Convert EEG signal to covariance using sliding window""" est = _check_est(estimator) X = [] if padding: padd = np.zeros((int(window / 2), sig.shape[1])) sig = np.concatenate((padd, sig, padd), axis=0) n_times, n_channels = sig.shape jump = int(window * overlapp) ix = 0 while (ix + window < n_times): X.append(est(sig[ix:ix + window, :].T)) ix = ix + jump return np.array(X) ############################################################################### def cross_spectrum(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None): """Compute the complex cross-spectral matrices of a real signal X. Parameters ---------- X : ndarray, shape (n_channels, n_times) Multi-channel time-series. window : int (default 128) The length of the FFT window used for spectral estimation. overlap : float (default 0.75) The percentage of overlap between window. fmin : float | None, (default None) The minimal frequency to be returned. fmax : float | None, (default None) The maximal frequency to be returned. fs : float | None, (default None) The sampling frequency of the signal. Returns ------- S : ndarray, shape (n_channels, n_channels, n_freqs) Cross-spectral matrices, for each frequency bin. freqs : ndarray, shape (n_freqs,) The frequencies associated to cross-spectra. References ---------- .. [1] https://en.wikipedia.org/wiki/Cross-spectrum """ window = int(window) if window < 1: raise ValueError('Value window must be a positive integer') if not 0 < overlap < 1: raise ValueError( 'Value overlap must be included in (0, 1) (Got %d)' % overlap) n_channels, n_times = X.shape n_freqs = int(window / 2) + 1 # X real signal => compute half-spectrum step = int((1.0 - overlap) * window) n_windows = int((n_times - window) / step + 1) win = np.hanning(window) # FFT calculation on all windows shape = (n_channels, n_windows, window) strides = X.strides[:-1]+(step*X.strides[-1], X.strides[-1]) Xs = np.lib.stride_tricks.as_strided(X, shape=shape, strides=strides) fdata = np.fft.rfft(Xs * win, n=window).transpose(1, 0, 2) # adjust frequency range to specified range if fs is not None: if fmin is None: fmin = 0 if fmax is None: fmax = fs / 2 if fmax <= fmin: raise ValueError('Parameter fmax must be superior to fmin') if 2.0 * fmax > fs: # check Nyquist-Shannon raise ValueError('Parameter fmax must be inferior to fs/2') f = np.arange(0, n_freqs, dtype=int) * float(fs / window) fix = (f >= fmin) & (f <= fmax) fdata = fdata[:, :, fix] freqs = f[fix] else: if fmin is not None: warnings.warn('Parameter fmin not used because fs is None') if fmax is not None: warnings.warn('Parameter fmax not used because fs is None') freqs = None n_freqs = fdata.shape[2] S = np.zeros((n_channels, n_channels, n_freqs), dtype=complex) for i in range(n_freqs): S[:, :, i] = fdata[:, :, i].conj().T @ fdata[:, :, i] S /= n_windows * np.linalg.norm(win)**2 # normalization to respect Parseval's theorem with the half-spectrum # excepted DC bin (always), and Nyquist bin (when window is even) if window % 2: S[..., 1:] *= 2 else: S[..., 1:-1] *= 2 return S, freqs def cospectrum(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None): """Compute co-spectral matrices, the real part of cross-spectra. Parameters ---------- X : ndarray, shape (n_channels, n_times) Multi-channel time-series. window : int (default 128) The length of the FFT window used for spectral estimation. overlap : float (default 0.75) The percentage of overlap between window. fmin : float | None, (default None) The minimal frequency to be returned. fmax : float | None, (default None) The maximal frequency to be returned. fs : float | None, (default None) The sampling frequency of the signal. Returns ------- S : ndarray, shape (n_channels, n_channels, n_freqs) Co-spectral matrices, for each frequency bin. freqs : ndarray, shape (n_freqs,) The frequencies associated to cospectra. """ S, freqs = cross_spectrum( X=X, window=window, overlap=overlap, fmin=fmin, fmax=fmax, fs=fs) return S.real, freqs def coherence(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None, coh='ordinary'): """Compute squared coherence. Parameters ---------- X : ndarray, shape (n_channels, n_times) Multi-channel time-series. window : int (default 128) The length of the FFT window used for spectral estimation. overlap : float (default 0.75) The percentage of overlap between window. fmin : float | None, (default None) The minimal frequency to be returned. fmax : float | None, (default None) The maximal frequency to be returned. fs : float | None, (default None) The sampling frequency of the signal. coh : {'ordinary', 'instantaneous', 'lagged', 'imaginary'}, (default \ 'ordinary') The coherence type, see :class:`pyriemann.estimation.Coherences`. Returns ------- C : ndarray, shape (n_channels, n_channels, n_freqs) Squared coherence matrices, for each frequency bin. freqs : ndarray, shape (n_freqs,) The frequencies associated to coherence. """ S, freqs = cross_spectrum( X, window=window, overlap=overlap, fmin=fmin, fmax=fmax, fs=fs) S2 = np.abs(S)**2 # squared cross-spectral modulus C = np.zeros_like(S2) f_inds = np.arange(0, C.shape[-1], dtype=int) # lagged coh not defined for DC and Nyquist bins, because S is real if coh == 'lagged': if freqs is None: f_inds = np.arange(1, C.shape[-1] - 1, dtype=int) warnings.warn('DC and Nyquist bins are not defined for lagged-' 'coherence: filled with zeros') else: f_inds_ = f_inds[(freqs > 0) & (freqs < fs / 2)] if not np.array_equal(f_inds_, f_inds): warnings.warn('DC and Nyquist bins are not defined for lagged-' 'coherence: filled with zeros') f_inds = f_inds_ for f in f_inds: psd = np.sqrt(np.diag(S2[..., f])) psd_prod = np.outer(psd, psd) if coh == 'ordinary': C[..., f] = S2[..., f] / psd_prod elif coh == 'instantaneous': C[..., f] = (S[..., f].real)**2 / psd_prod elif coh == 'lagged': np.fill_diagonal(S[..., f].real, 0.) # prevent div by zero on diag C[..., f] = (S[..., f].imag)**2 / (psd_prod - (S[..., f].real)**2) elif coh == 'imaginary': C[..., f] = (S[..., f].imag)**2 / psd_prod else: raise ValueError("'%s' is not a supported coherence" % coh) return C, freqs ############################################################################### def normalize(X, norm): """Normalize a set of square matrices, using trace or determinant. Parameters ---------- X : ndarray, shape (..., n, n) The set of square matrices, at least 2D ndarray. Matrices must be invertible for determinant-normalization. norm : {"trace", "determinant"} The type of normalization. Returns ------- Xn : ndarray, shape (..., n, n) The set of normalized matrices, same dimensions as X. """ if not is_square(X): raise ValueError('Matrices must be square') if norm == "trace": denom = np.trace(X, axis1=-2, axis2=-1) elif norm == "determinant": denom = np.abs(np.linalg.det(X)) ** (1 / X.shape[-1]) else: raise ValueError("'%s' is not a supported normalization" % norm) while denom.ndim != X.ndim: denom = denom[..., np.newaxis] Xn = X / denom return Xn def get_nondiag_weight(X): """Compute non-diagonality weights of a set of square matrices, following Eq(B.1) in [1]_. Parameters ---------- X : ndarray, shape (..., n, n) The set of square matrices, at least 2D ndarray. Returns ------- weights : ndarray, shape (...,) The non-diagonality weights for matrices. References ---------- .. [1] <NAME>, <NAME>, <NAME>, "On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics", Clin Neurophysiol, 2008 """ if not is_square(X): raise ValueError('Matrices must be square') X2 = X**2 # sum of squared diagonal elements denom = np.trace(X2, axis1=-2, axis2=-1) # sum of squared off-diagonal elements num = np.sum(X2, axis=(-2, -1)) - denom weights = (1.0 / (X.shape[-1] - 1)) * (num / denom) return weights
[ "numpy.hanning", "numpy.trace", "numpy.array", "numpy.linalg.norm", "numpy.arange", "sklearn.covariance.fast_mcd", "numpy.fft.rfft", "numpy.empty", "numpy.concatenate", "warnings.warn", "numpy.abs", "numpy.eye", "numpy.ones", "sklearn.covariance.oas", "numpy.fill_diagonal", "numpy.lib.stride_tricks.as_strided", "numpy.outer", "sklearn.covariance.empirical_covariance", "numpy.diag", "numpy.linalg.det", "numpy.sum", "numpy.zeros", "numpy.array_equal", "numpy.zeros_like", "sklearn.covariance.ledoit_wolf" ]
[((288, 304), 'sklearn.covariance.ledoit_wolf', 'ledoit_wolf', (['X.T'], {}), '(X.T)\n', (299, 304), False, 'from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance\n'), ((399, 407), 'sklearn.covariance.oas', 'oas', (['X.T'], {}), '(X.T)\n', (402, 407), False, 'from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance\n'), ((505, 530), 'sklearn.covariance.empirical_covariance', 'empirical_covariance', (['X.T'], {}), '(X.T)\n', (525, 530), False, 'from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance\n'), ((618, 631), 'sklearn.covariance.fast_mcd', 'fast_mcd', (['X.T'], {}), '(X.T)\n', (626, 631), False, 'from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance\n'), ((4619, 4665), 'numpy.empty', 'np.empty', (['(n_matrices, n_channels, n_channels)'], {}), '((n_matrices, n_channels, n_channels))\n', (4627, 4665), True, 'import numpy as np\n'), ((5712, 5800), 'numpy.empty', 'np.empty', (['(n_matrices, n_channels + n_channels_proto, n_channels + n_channels_proto)'], {}), '((n_matrices, n_channels + n_channels_proto, n_channels +\n n_channels_proto))\n', (5720, 5800), True, 'import numpy as np\n'), ((7326, 7392), 'numpy.empty', 'np.empty', (['(n_matrices, n_channels + n_times, n_channels + n_times)'], {}), '((n_matrices, n_channels + n_times, n_channels + n_times))\n', (7334, 7392), True, 'import numpy as np\n'), ((8235, 8246), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (8243, 8246), True, 'import numpy as np\n'), ((9811, 9829), 'numpy.hanning', 'np.hanning', (['window'], {}), '(window)\n', (9821, 9829), True, 'import numpy as np\n'), ((9986, 10050), 'numpy.lib.stride_tricks.as_strided', 'np.lib.stride_tricks.as_strided', (['X'], {'shape': 'shape', 'strides': 'strides'}), '(X, shape=shape, strides=strides)\n', (10017, 10050), True, 'import numpy as np\n'), ((10938, 10996), 'numpy.zeros', 'np.zeros', (['(n_channels, n_channels, n_freqs)'], {'dtype': 'complex'}), '((n_channels, n_channels, n_freqs), dtype=complex)\n', (10946, 10996), True, 'import numpy as np\n'), ((13784, 13801), 'numpy.zeros_like', 'np.zeros_like', (['S2'], {}), '(S2)\n', (13797, 13801), True, 'import numpy as np\n'), ((13815, 13851), 'numpy.arange', 'np.arange', (['(0)', 'C.shape[-1]'], {'dtype': 'int'}), '(0, C.shape[-1], dtype=int)\n', (13824, 13851), True, 'import numpy as np\n'), ((16875, 16907), 'numpy.trace', 'np.trace', (['X2'], {'axis1': '(-2)', 'axis2': '(-1)'}), '(X2, axis1=-2, axis2=-1)\n', (16883, 16907), True, 'import numpy as np\n'), ((1989, 1999), 'numpy.diag', 'np.diag', (['R'], {}), '(R)\n', (1996, 1999), True, 'import numpy as np\n'), ((2022, 2036), 'numpy.diag', 'np.diag', (['var_R'], {}), '(var_R)\n', (2029, 2036), True, 'import numpy as np\n'), ((7062, 7080), 'numpy.eye', 'np.eye', (['n_channels'], {}), '(n_channels)\n', (7068, 7080), True, 'import numpy as np\n'), ((7170, 7185), 'numpy.eye', 'np.eye', (['n_times'], {}), '(n_times)\n', (7176, 7185), True, 'import numpy as np\n'), ((7993, 8034), 'numpy.concatenate', 'np.concatenate', (['(padd, sig, padd)'], {'axis': '(0)'}), '((padd, sig, padd), axis=0)\n', (8007, 8034), True, 'import numpy as np\n'), ((13728, 13737), 'numpy.abs', 'np.abs', (['S'], {}), '(S)\n', (13734, 13737), True, 'import numpy as np\n'), ((14553, 14571), 'numpy.outer', 'np.outer', (['psd', 'psd'], {}), '(psd, psd)\n', (14561, 14571), True, 'import numpy as np\n'), ((15814, 15845), 'numpy.trace', 'np.trace', (['X'], {'axis1': '(-2)', 'axis2': '(-1)'}), '(X, axis1=-2, axis2=-1)\n', (15822, 15845), True, 'import numpy as np\n'), ((16961, 16986), 'numpy.sum', 'np.sum', (['X2'], {'axis': '(-2, -1)'}), '(X2, axis=(-2, -1))\n', (16967, 16986), True, 'import numpy as np\n'), ((2219, 2233), 'numpy.diag', 'np.diag', (['C_scm'], {}), '(C_scm)\n', (2226, 2233), True, 'import numpy as np\n'), ((5878, 5911), 'numpy.concatenate', 'np.concatenate', (['(P, X[i])'], {'axis': '(0)'}), '((P, X[i]), axis=0)\n', (5892, 5911), True, 'import numpy as np\n'), ((10063, 10094), 'numpy.fft.rfft', 'np.fft.rfft', (['(Xs * win)'], {'n': 'window'}), '(Xs * win, n=window)\n', (10074, 10094), True, 'import numpy as np\n'), ((10517, 10549), 'numpy.arange', 'np.arange', (['(0)', 'n_freqs'], {'dtype': 'int'}), '(0, n_freqs, dtype=int)\n', (10526, 10549), True, 'import numpy as np\n'), ((10718, 10777), 'warnings.warn', 'warnings.warn', (['"""Parameter fmin not used because fs is None"""'], {}), "('Parameter fmin not used because fs is None')\n", (10731, 10777), False, 'import warnings\n'), ((10819, 10878), 'warnings.warn', 'warnings.warn', (['"""Parameter fmax not used because fs is None"""'], {}), "('Parameter fmax not used because fs is None')\n", (10832, 10878), False, 'import warnings\n'), ((11109, 11128), 'numpy.linalg.norm', 'np.linalg.norm', (['win'], {}), '(win)\n', (11123, 11128), True, 'import numpy as np\n'), ((13996, 14036), 'numpy.arange', 'np.arange', (['(1)', '(C.shape[-1] - 1)'], {'dtype': 'int'}), '(1, C.shape[-1] - 1, dtype=int)\n', (14005, 14036), True, 'import numpy as np\n'), ((14049, 14151), 'warnings.warn', 'warnings.warn', (['"""DC and Nyquist bins are not defined for lagged-coherence: filled with zeros"""'], {}), "(\n 'DC and Nyquist bins are not defined for lagged-coherence: filled with zeros'\n )\n", (14062, 14151), False, 'import warnings\n'), ((14513, 14532), 'numpy.diag', 'np.diag', (['S2[..., f]'], {}), '(S2[..., f])\n', (14520, 14532), True, 'import numpy as np\n'), ((7102, 7121), 'numpy.ones', 'np.ones', (['n_channels'], {}), '(n_channels)\n', (7109, 7121), True, 'import numpy as np\n'), ((7123, 7142), 'numpy.ones', 'np.ones', (['n_channels'], {}), '(n_channels)\n', (7130, 7142), True, 'import numpy as np\n'), ((7207, 7223), 'numpy.ones', 'np.ones', (['n_times'], {}), '(n_times)\n', (7214, 7223), True, 'import numpy as np\n'), ((7225, 7241), 'numpy.ones', 'np.ones', (['n_times'], {}), '(n_times)\n', (7232, 7241), True, 'import numpy as np\n'), ((14265, 14296), 'numpy.array_equal', 'np.array_equal', (['f_inds_', 'f_inds'], {}), '(f_inds_, f_inds)\n', (14279, 14296), True, 'import numpy as np\n'), ((14314, 14416), 'warnings.warn', 'warnings.warn', (['"""DC and Nyquist bins are not defined for lagged-coherence: filled with zeros"""'], {}), "(\n 'DC and Nyquist bins are not defined for lagged-coherence: filled with zeros'\n )\n", (14327, 14416), False, 'import warnings\n'), ((14782, 14819), 'numpy.fill_diagonal', 'np.fill_diagonal', (['S[..., f].real', '(0.0)'], {}), '(S[..., f].real, 0.0)\n', (14798, 14819), True, 'import numpy as np\n'), ((15901, 15917), 'numpy.linalg.det', 'np.linalg.det', (['X'], {}), '(X)\n', (15914, 15917), True, 'import numpy as np\n'), ((7505, 7523), 'numpy.eye', 'np.eye', (['n_channels'], {}), '(n_channels)\n', (7511, 7523), True, 'import numpy as np\n'), ((7578, 7593), 'numpy.eye', 'np.eye', (['n_times'], {}), '(n_times)\n', (7584, 7593), True, 'import numpy as np\n')]
from random import randint import numpy as np n = [ 500 ] m = [ n[i] * n[i + 1] for i in range(len(n) - 1) ] k, v1, v2 = 600, 10, 1000 print('%d %d %d 2' % (np.sum(n), np.sum(m), k)) b = 1 for i in range(len(n) - 1): for j in range(0, n[i]): for k in range(0, n[i + 1]): print('%d %d' % (b + j, b + n[i] + k)) b += n[i] for i in n: vx = randint(v1, v1 + v2) for j in range(i): print(' '.join([ str(randint(vx, vx * 2 - 1)) for i in range(k) ])) for i in range(k): print(' '.join([ '0' if i == j else '1' for j in range(k) ]))
[ "numpy.sum", "random.randint" ]
[((371, 391), 'random.randint', 'randint', (['v1', '(v1 + v2)'], {}), '(v1, v1 + v2)\n', (378, 391), False, 'from random import randint\n'), ((159, 168), 'numpy.sum', 'np.sum', (['n'], {}), '(n)\n', (165, 168), True, 'import numpy as np\n'), ((170, 179), 'numpy.sum', 'np.sum', (['m'], {}), '(m)\n', (176, 179), True, 'import numpy as np\n'), ((444, 467), 'random.randint', 'randint', (['vx', '(vx * 2 - 1)'], {}), '(vx, vx * 2 - 1)\n', (451, 467), False, 'from random import randint\n')]
#################################################################################################### ## ## Project: Embedded Learning Library (ELL) ## File: demoHelper.py ## Authors: <NAME> ## <NAME> ## ## Requires: Python 3.x ## #################################################################################################### import os import sys import argparse import cv2 import numpy as np import time import math script_path = os.path.dirname(os.path.abspath(__file__)) # Helper class that interfaces with ELL models to get predictions and provides handy conversion from opencv to ELL buffers and # rendering utilities class DemoHelper: def __init__(self, threshold=0.15): """ Helper class to store information about the model we want to use. threshold - specifies a prediction threshold """ self.threshold = threshold self.start = time.time() self.frame_count = 0 self.fps = 0 self.camera = 0 self.image_filename = None self.image_folder = None self.images = None self.image_pos = 0 self.capture_device = None self.frame = None self.save_images = None self.image_index = 0 self.model_file = None self.model = None self.model_name = "model" self.compiled_model = None self.compiled_module = None self.compiled_func = None self.labels_file = None self.model_file = None self.iterations = None # limit number of iterations through the loop. self.current = None self.total_time = 0 self.time_count = 0 self.warm_up = True self.input_shape = None self.output_shape = None self.output_size = 0 self.bgr = False self.results = None self.nogui = False def add_arguments(self, arg_parser): """ Adds common commandline arguments for ELL tutorials and demos and returns an object with the relevant values set from those arguments. Note: This method is designed for subclasses, so they can can add MORE arguments before calling parse_args. """ # required arguments arg_parser.add_argument("labels", help="path to the labels file for evaluating the model, or comma separated list if using more than one model") # options arg_parser.add_argument("--save", help="save images captured by the camera", action='store_true') arg_parser.add_argument("--threshold", type=float, help="threshold for the minimum prediction score. A lower threshold will show more prediction labels, but they have a higher chance of being completely wrong.", default=self.threshold) arg_parser.add_argument("--bgr", help="specify True if input data should be in BGR format (default False)", default = self.bgr) arg_parser.add_argument("--nogui", help="disable GUI to enable automated testing of a batch of images", action='store_true') arg_parser.add_argument("--iterations", type=int, help="when used with --nogui this tests multiple iterations of each image to get better timing information") # mutually exclusive options group = arg_parser.add_mutually_exclusive_group() group.add_argument("--camera", type=int, help="the camera id of the webcam", default=0) group.add_argument("--image", help="path to an image file. If set, evaluates the model using the image, instead of a webcam") group.add_argument("--folder", help="path to an image folder. If set, evaluates the model using the images found there") group2 = arg_parser.add_mutually_exclusive_group() group2.add_argument("--model", help="path to a model file") group2.add_argument("--compiledModel", help="path to the compiled model's Python module") group2.add_argument("--models", help="list of comma separated paths to model files") group2.add_argument("--compiledModels", help="list of comma separated paths to the compiled models' Python modules") def parse_arguments(self, argv, helpString): arg_parser = argparse.ArgumentParser(helpString) self.add_arguments(arg_parser) args = arg_parser.parse_args(argv) self.initialize(args) def value_from_arg(self, argValue, defaultValue): if (argValue is not None): return argValue return defaultValue def initialize(self, args): # called after parse_args to extract args from the arg_parser. # process required arguments self.labels_file = args.labels # process options self.save_images = self.value_from_arg(args.save, None) self.threshold = self.value_from_arg(args.threshold, None) self.iterations = self.value_from_arg(args.iterations, None) self.current = self.iterations self.camera = self.value_from_arg(args.iterations, 0) self.image_filename = self.value_from_arg(args.image, None) self.image_folder = self.value_from_arg(args.folder, None) self.bgr = args.bgr self.nogui = args.nogui if self.nogui and self.iterations == None: self.iterations = 1 # process image source options if (args.camera): self.image_filename = None self.image_folder = None elif (args.image): self.camera = None self.image_folder = None elif (args.folder): self.camera = None # load the labels self.labels = self.load_labels(self.labels_file) # process model options and load the model self.model_file = args.model self.compiled_model = args.compiledModel if (self.model_file == None): # this is the compiled model route, so load the wrapped module self.model_name = os.path.split(self.compiled_model)[1] self.import_compiled_model(self.compiled_model, self.model_name) else: # this is the "interpreted" model route, so we need the ELL runtime. self.model_name = os.path.splitext(os.path.basename(self.model_file))[0] self.import_ell_map() self.input_size = (self.input_shape.rows, self.input_shape.columns) print("Found input_shape [%d,%d,%d]" % (self.input_shape.rows, self.input_shape.columns, self.input_shape.channels)) return True def load_ell(self): print("### Loading ELL modules...") import find_ell import ell return ell def import_ell_map(self): ell = self.load_ell() sys.path.append(script_path) sys.path.append(os.getcwd()) print("loading model: " + self.model_file) self.model = ell.model.Map(self.model_file) self.input_shape = self.model.GetInputShape() self.output_shape = self.model.GetOutputShape() self.output_size = int(self.output_shape.rows * self.output_shape.columns * self.output_shape.channels) def import_compiled_model(self, compiledModulePath, name): moduleDirectory = os.path.dirname(compiledModulePath) print('Looking for: ' + name + ' in ' + moduleDirectory) if (not os.path.isdir('build')) and (not os.path.isdir(moduleDirectory + '/build')): raise Exception("you don't have a 'build' directory in '" + compiledModulePath + "', have you compiled this project yet?") func_name = 'predict' if func_name == "": raise Exception("Could not construct func name. Is the --compiledModel argument correct?") # Import the compiled model wrapper. Add the possible build directories. sys.path.append(script_path) sys.path.append(moduleDirectory) sys.path.append(os.path.join(moduleDirectory, 'build')) sys.path.append(os.path.join(moduleDirectory, 'build/Release')) sys.path.append(os.path.join(script_path, 'build')) sys.path.append(os.path.join(script_path, 'build/Release')) sys.path.append(os.path.join(os.getcwd(), 'build')) sys.path.append(os.path.join(os.getcwd(), 'build/Release')) try: self.compiled_module = __import__(name) inputShapeGetter = getattr(self.compiled_module, "get_default_input_shape") outputShapeGetter = getattr(self.compiled_module, "get_default_output_shape") self.input_shape = inputShapeGetter() self.output_shape = outputShapeGetter() self.output_size = int(self.output_shape.rows * self.output_shape.columns * self.output_shape.channels) try: self.compiled_func = getattr(self.compiled_module, func_name) except AttributeError: raise Exception(func_name + " function not found in compiled module") except: errorType, value, traceback = sys.exc_info() print("### Exception: " + str(errorType) + ": " + str(value)) print("====================================================================") print("Compiled ELL python module is not loading") print("It is possible that you need to add LibOpenBLAS to your system path (See Install-*.md) from root of this repo") raise Exception("Compiled model failed to load") def show_image(self, frameToShow, save): try: cv2.imshow('frame', frameToShow) except cv2.error as e: # OpenCV may not have been built with GTK or Carbon support pass if save and self.save_images: name = 'frame' + str(self.image_index) + ".png" cv2.imwrite(name, frameToShow) self.image_index = self.image_index + 1 def load_labels(self, fileName): labels = [] with open(fileName) as f: labels = f.read().splitlines() return labels def predict(self, data): if self.current != None: self.current = self.current - 1 start = time.time() if self.model == None: self.results = self.compiled_func(data) else: self.results = self.model.Compute(data, dtype=np.float32) end = time.time() diff = end - start # if warm up is true then discard the first time if self.time_count == 1 and self.warm_up: self.warm_up = False self.total_time = 0 self.time_count = 0 self.total_time = self.total_time + diff self.time_count = self.time_count + 1 return self.results def get_times(self): """Returns the average prediction time, if available.""" average_time = None if self.time_count > 0: average_time = self.total_time/self.time_count return average_time def report_times(self, node_level=True): """Prints the average prediction time and additional profiling info, if available.""" average_time = self.get_times() if average_time is not None: print("Average prediction time: " + str(average_time)) # if the model is compiled with profiling enabled, report the additional info if hasattr(self.compiled_module, self.model_name + "_PrintModelProfilingInfo"): getattr(self.compiled_module, self.model_name + "_PrintModelProfilingInfo")() if node_level: if hasattr(self.compiled_module, self.model_name + "_PrintNodeProfilingInfo"): getattr(self.compiled_module, self.model_name + "_PrintNodeProfilingInfo")() def get_top_n_predictions(self, predictions, N = 5): """Return at most the top N predictions as a list of tuples that meet the threshold. The first of element of each tuple represents the index or class of the prediction and the second element represents that probability or confidence value. """ map = [(i,predictions[i]) for i in range(len(predictions)) if predictions[i] >= self.threshold] map.sort(key=lambda tup: tup[1], reverse=True) result = map[:N] return result def get_label(self, i): if (i < len(self.labels)): return self.labels[i] return "" def get_predictor_map(self, predictor, intervalMs=0): ell = self.load_ell() """Creates an ELL map from an ELL predictor""" return ell.neural.utilities.ell_map_from_float_predictor(predictor) def compile(self, predictor, platform, path): path += '/model' prediction_function = self.get_predictor_map(predictor) prediction_function.Compile(platform, 'model', 'step', path, dtype=np.float32) from ..util.commands import run_llc, run_swig run_swig(path + '.i') run_llc(path + '.ll') def save_ell_predictor_to_file(self, predictor, filePath, intervalMs=0): """Saves an ELL predictor to file so that it can be compiled to run on a device, with an optional stepInterval in milliseconds""" ell_map = self.get_predictor_map(predictor, intervalMs) ell_map.Save(filePath) def init_image_source(self): # Start video capture device or load static image if self.camera is not None: self.capture_device = cv2.VideoCapture(self.camera) elif self.image_filename: self.frame = cv2.imread(self.image_filename) if (type(self.frame) == type(None)): raise Exception('image from %s failed to load' % (self.image_filename)) elif self.image_folder: self.frame = self.load_next_image() def load_next_image(self): if self.image_folder is None: return self.frame # find images in the self.image_folder and cycle through them. if self.images == None: self.images = os.listdir(self.image_folder) frame = None while frame is None and self.image_pos < len(self.images): filename = os.path.join(self.image_folder, self.images[self.image_pos]) frame = cv2.imread(filename) self.image_pos += 1 if not frame is None: return frame return self.frame def get_next_frame(self): if self.capture_device is not None: # if predictor is too slow frames get buffered, this is designed to flush that buffer for i in range(self.get_wait()): ret, self.frame = self.capture_device.read() if (not ret): raise Exception('your capture device is not returning images') return self.frame else: return np.copy(self.frame) def resize_image(self, image, newSize): # Shape: [rows, cols, channels] """Crops, resizes image to outputshape. Returns image as numpy array in in RGB order.""" if image.shape[0] > image.shape[1]: # Tall (more rows than cols) rowStart = int((image.shape[0] - image.shape[1]) / 2) rowEnd = rowStart + image.shape[1] colStart = 0 colEnd = image.shape[1] else: # Wide (more cols than rows) rowStart = 0 rowEnd = image.shape[0] colStart = int((image.shape[1] - image.shape[0]) / 2) colEnd = colStart + image.shape[0] cropped = image[rowStart:rowEnd, colStart:colEnd] resized = cv2.resize(cropped, newSize) return resized def prepare_image_for_predictor(self, image): """Crops, resizes image to outputshape. Returns image as numpy array in in RGB order.""" resized = self.resize_image(image, self.input_size) if not self.bgr: resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB) resized = resized.astype(np.float).ravel() return resized def draw_label(self, image, label): """Helper to draw text label onto an image""" self.draw_header(image, label) return def draw_header(self, image, text): """Helper to draw header text block onto an image""" self.draw_text_block(image, text, (0, 0), (50, 200, 50)) return def draw_footer(self, image, text): """Helper to draw footer text block onto an image""" self.draw_text_block(image, text, (0, image.shape[0] - 40), (200, 100, 100)) return def draw_text_block(self, image, text, blockTopLeft=(0,0), blockColor=(50, 200, 50), blockHeight=40, fontScale=0.7): """Helper to draw a filled rectangle with text onto an image""" cv2.rectangle( image, blockTopLeft, (image.shape[1], blockTopLeft[1] + blockHeight), blockColor, cv2.FILLED) cv2.putText(image, text, (blockTopLeft[0] + int(blockHeight / 4), blockTopLeft[1] + int(blockHeight * 0.667)), cv2.FONT_HERSHEY_COMPLEX_SMALL, fontScale, (0, 0, 0), 1, cv2.LINE_AA) def draw_fps(self, image): """Helper to draw frame per second onto image""" now = time.time() if self.frame_count > 0: diff = now - self.start if diff >= 1: self.fps = round(self.frame_count / diff, 1) self.frame_count = 0 self.start = now label = "fps " + str(self.fps) labelSize, baseline = cv2.getTextSize( label, cv2.FONT_HERSHEY_SIMPLEX, 0.4, 1) width = image.shape[1] height = image.shape[0] pos = (width - labelSize[0] - 5, labelSize[1] + 5) cv2.putText(image, label, pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 128), 1, cv2.LINE_AA) self.frame_count = self.frame_count + 1 def get_wait(self): speed = self.fps if (speed == 0): speed = 1 if (speed > 1): return 1 return 3 def done(self): if self.current is not None and self.current > 0: return False # on slow devices this helps let the images to show up on screen result = False try: if self.nogui: if self.images is not None and self.image_pos < len(self.images): self.frame = self.load_next_image() self.current = self.iterations return False return True for i in range(self.get_wait()): key = cv2.waitKey(1) & 0xFF if key == 27: result = True break if key == ord(' '): self.frame = self.load_next_image() except cv2.error as e: # OpenCV may not have been built with GTK or Carbon support pass return result
[ "cv2.rectangle", "cv2.imshow", "sys.exc_info", "sys.path.append", "os.listdir", "ell.model.Map", "argparse.ArgumentParser", "ell.neural.utilities.ell_map_from_float_predictor", "os.path.split", "os.path.isdir", "cv2.waitKey", "cv2.putText", "os.path.dirname", "cv2.cvtColor", "cv2.getTextSize", "cv2.resize", "time.time", "cv2.imread", "cv2.imwrite", "numpy.copy", "os.path.join", "os.getcwd", "cv2.VideoCapture", "os.path.basename", "os.path.abspath" ]
[((475, 500), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (490, 500), False, 'import os\n'), ((914, 925), 'time.time', 'time.time', ([], {}), '()\n', (923, 925), False, 'import time\n'), ((4155, 4190), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['helpString'], {}), '(helpString)\n', (4178, 4190), False, 'import argparse\n'), ((6685, 6713), 'sys.path.append', 'sys.path.append', (['script_path'], {}), '(script_path)\n', (6700, 6713), False, 'import sys\n'), ((6823, 6853), 'ell.model.Map', 'ell.model.Map', (['self.model_file'], {}), '(self.model_file)\n', (6836, 6853), False, 'import ell\n'), ((7166, 7201), 'os.path.dirname', 'os.path.dirname', (['compiledModulePath'], {}), '(compiledModulePath)\n', (7181, 7201), False, 'import os\n'), ((7755, 7783), 'sys.path.append', 'sys.path.append', (['script_path'], {}), '(script_path)\n', (7770, 7783), False, 'import sys\n'), ((7792, 7824), 'sys.path.append', 'sys.path.append', (['moduleDirectory'], {}), '(moduleDirectory)\n', (7807, 7824), False, 'import sys\n'), ((10114, 10125), 'time.time', 'time.time', ([], {}), '()\n', (10123, 10125), False, 'import time\n'), ((10307, 10318), 'time.time', 'time.time', ([], {}), '()\n', (10316, 10318), False, 'import time\n'), ((12486, 12546), 'ell.neural.utilities.ell_map_from_float_predictor', 'ell.neural.utilities.ell_map_from_float_predictor', (['predictor'], {}), '(predictor)\n', (12535, 12546), False, 'import ell\n'), ((15480, 15508), 'cv2.resize', 'cv2.resize', (['cropped', 'newSize'], {}), '(cropped, newSize)\n', (15490, 15508), False, 'import cv2\n'), ((16645, 16756), 'cv2.rectangle', 'cv2.rectangle', (['image', 'blockTopLeft', '(image.shape[1], blockTopLeft[1] + blockHeight)', 'blockColor', 'cv2.FILLED'], {}), '(image, blockTopLeft, (image.shape[1], blockTopLeft[1] +\n blockHeight), blockColor, cv2.FILLED)\n', (16658, 16756), False, 'import cv2\n'), ((17079, 17090), 'time.time', 'time.time', ([], {}), '()\n', (17088, 17090), False, 'import time\n'), ((17387, 17443), 'cv2.getTextSize', 'cv2.getTextSize', (['label', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.4)', '(1)'], {}), '(label, cv2.FONT_HERSHEY_SIMPLEX, 0.4, 1)\n', (17402, 17443), False, 'import cv2\n'), ((17587, 17682), 'cv2.putText', 'cv2.putText', (['image', 'label', 'pos', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.4)', '(0, 0, 128)', '(1)', 'cv2.LINE_AA'], {}), '(image, label, pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 128), \n 1, cv2.LINE_AA)\n', (17598, 17682), False, 'import cv2\n'), ((6738, 6749), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (6747, 6749), False, 'import os\n'), ((7849, 7887), 'os.path.join', 'os.path.join', (['moduleDirectory', '"""build"""'], {}), "(moduleDirectory, 'build')\n", (7861, 7887), False, 'import os\n'), ((7913, 7959), 'os.path.join', 'os.path.join', (['moduleDirectory', '"""build/Release"""'], {}), "(moduleDirectory, 'build/Release')\n", (7925, 7959), False, 'import os\n'), ((7985, 8019), 'os.path.join', 'os.path.join', (['script_path', '"""build"""'], {}), "(script_path, 'build')\n", (7997, 8019), False, 'import os\n'), ((8045, 8087), 'os.path.join', 'os.path.join', (['script_path', '"""build/Release"""'], {}), "(script_path, 'build/Release')\n", (8057, 8087), False, 'import os\n'), ((9475, 9507), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'frameToShow'], {}), "('frame', frameToShow)\n", (9485, 9507), False, 'import cv2\n'), ((9751, 9781), 'cv2.imwrite', 'cv2.imwrite', (['name', 'frameToShow'], {}), '(name, frameToShow)\n', (9762, 9781), False, 'import cv2\n'), ((13361, 13390), 'cv2.VideoCapture', 'cv2.VideoCapture', (['self.camera'], {}), '(self.camera)\n', (13377, 13390), False, 'import cv2\n'), ((13932, 13961), 'os.listdir', 'os.listdir', (['self.image_folder'], {}), '(self.image_folder)\n', (13942, 13961), False, 'import os\n'), ((14073, 14133), 'os.path.join', 'os.path.join', (['self.image_folder', 'self.images[self.image_pos]'], {}), '(self.image_folder, self.images[self.image_pos])\n', (14085, 14133), False, 'import os\n'), ((14154, 14174), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (14164, 14174), False, 'import cv2\n'), ((14735, 14754), 'numpy.copy', 'np.copy', (['self.frame'], {}), '(self.frame)\n', (14742, 14754), True, 'import numpy as np\n'), ((15795, 15835), 'cv2.cvtColor', 'cv2.cvtColor', (['resized', 'cv2.COLOR_BGR2RGB'], {}), '(resized, cv2.COLOR_BGR2RGB)\n', (15807, 15835), False, 'import cv2\n'), ((5912, 5946), 'os.path.split', 'os.path.split', (['self.compiled_model'], {}), '(self.compiled_model)\n', (5925, 5946), False, 'import os\n'), ((7283, 7305), 'os.path.isdir', 'os.path.isdir', (['"""build"""'], {}), "('build')\n", (7296, 7305), False, 'import os\n'), ((7316, 7357), 'os.path.isdir', 'os.path.isdir', (["(moduleDirectory + '/build')"], {}), "(moduleDirectory + '/build')\n", (7329, 7357), False, 'import os\n'), ((8126, 8137), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8135, 8137), False, 'import os\n'), ((8186, 8197), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8195, 8197), False, 'import os\n'), ((8970, 8984), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (8982, 8984), False, 'import sys\n'), ((13450, 13481), 'cv2.imread', 'cv2.imread', (['self.image_filename'], {}), '(self.image_filename)\n', (13460, 13481), False, 'import cv2\n'), ((6169, 6202), 'os.path.basename', 'os.path.basename', (['self.model_file'], {}), '(self.model_file)\n', (6185, 6202), False, 'import os\n'), ((18492, 18506), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (18503, 18506), False, 'import cv2\n')]
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch, Arc def get_angle_plot(line1, line2, radius=1, color=None, origin=(0, 0), len_x_axis=1, len_y_axis=1): l1xy = line1.get_xydata() # Angle between line1 and x-axis l1_xs = l1xy[:, 0] l1_ys = l1xy[:, 1] angle1 = np.degrees(np.arctan2(np.diff(l1_ys), np.diff(l1_xs))) l2xy = line2.get_xydata() # Angle between line2 and x-axis l2_xs = l2xy[:, 0] l2_ys = l2xy[:, 1] angle2 = np.degrees(np.arctan2(np.diff(l2_ys), np.diff(l2_xs))) theta1 = min(angle1, angle2) theta2 = max(angle1, angle2) if color is None: color = line1.get_color() # Uses the color of line 1 if color parameter is not passed. return Arc(origin, len_x_axis * radius, len_y_axis * radius, 0, theta1, theta2, color=color) def ssto_fbd(include_drag=True): fig, ax = plt.subplots(1, 1, figsize=(6, 6)) ax.axis('off') ax.set_xlim(-0.1, 1.1) ax.set_ylim(-0.1, 1.1) # plt.plot((0, 200), (200, 200), linestyle='--', color='#CCCCCC') def y_ssto(x): return -(x-1)**2+1, 2-2*x x = np.linspace(0.0, 1, 100) y, _ = y_ssto(x) plt.plot(x, y, 'b-', alpha=0.3) # Add the axes x = x[0] y = y[0] dx = 0.5 dy = 0 xhat = FancyArrowPatch((x, y), (x+dx, y+dy), arrowstyle='->', mutation_scale=10) ax.add_patch(xhat) plt.text(x+dx/2.0, y+dy/2.0-0.05, 'x') dx = 0 dy = 0.5 yhat = FancyArrowPatch((x, y), (x+dx, y+dy), arrowstyle='->', mutation_scale=10) ax.add_patch(yhat) plt.text(x+dx/2.0-0.05, y+dy/2.0, 'y') # Add the launch vehicle x = 0.5 y, dy_dx = y_ssto(x) plt.plot(x, y, 'ro', ms=10) # Draw and label the gravity vector L = 0.2 gvec = FancyArrowPatch((x, y), (x, y-L), arrowstyle='->', mutation_scale=10) plt.Line2D((x, x), (y, y-L), visible=False) # Local vertical ax.add_patch(gvec) plt.text(x-0.05, y-L, 'g') # Draw and label the velocity vector dx = 0.3 dy = dy_dx * dx vvec = FancyArrowPatch((x, y), (x+dx, y+dy), arrowstyle='->', mutation_scale=10) vvec_line = plt.Line2D((x, x+dx), (y, y+dy), visible=False) ax.add_patch(vvec) plt.text(x+dx, y+dy-0.05, 'v') # Draw and label the drag vector if include_drag: dx = -0.2 dy = dy_dx * dx dvec = FancyArrowPatch((x, y), (x+dx, y+dy), arrowstyle='->', mutation_scale=10) plt.Line2D((x, x+dx), (y, y+dy), visible=False) ax.add_patch(dvec) plt.text(x+dx, y+dy+0.05, 'D') # Draw and label the thrust vector dx = 0.2 dy = 0.6 * dy_dx * dx tvec = FancyArrowPatch((x, y), (x+dx, y+dy), arrowstyle='->', mutation_scale=10) tvec_line = plt.Line2D((x, x + dx), (y, y + dy), visible=False) ax.add_patch(tvec) plt.text(x+dx, y+dy-0.05, 'T') # Draw the local horizon dx = 0.4 dy = 0 lh_line, = plt.plot((x, x+dx), (y, y+dy), linestyle='--', color='k', zorder=-1000) # Draw and label the thrust angle theta_plot = get_angle_plot(lh_line, vvec_line, color='k', origin=(x, y), radius=0.6) ax.add_patch(theta_plot) ax.text(x+0.1, y+0.02, r'$\theta$') # Draw and label the flight path angle gamma_plot = get_angle_plot(lh_line, tvec_line, color='k', origin=(x, y), radius=0.3) ax.add_patch(gamma_plot) ax.text(x+0.26, y+0.06, r'$\gamma$') plt.savefig('ssto_fbd.png') plt.show() if __name__ == '__main__': ssto_fbd()
[ "matplotlib.pyplot.text", "matplotlib.pyplot.savefig", "matplotlib.patches.Arc", "matplotlib.use", "matplotlib.pyplot.plot", "matplotlib.patches.FancyArrowPatch", "numpy.diff", "numpy.linspace", "matplotlib.pyplot.Line2D", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((38, 59), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (52, 59), False, 'import matplotlib\n'), ((825, 914), 'matplotlib.patches.Arc', 'Arc', (['origin', '(len_x_axis * radius)', '(len_y_axis * radius)', '(0)', 'theta1', 'theta2'], {'color': 'color'}), '(origin, len_x_axis * radius, len_y_axis * radius, 0, theta1, theta2,\n color=color)\n', (828, 914), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((960, 994), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(6, 6)'}), '(1, 1, figsize=(6, 6))\n', (972, 994), True, 'import matplotlib.pyplot as plt\n'), ((1203, 1227), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1)', '(100)'], {}), '(0.0, 1, 100)\n', (1214, 1227), True, 'import numpy as np\n'), ((1254, 1285), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""b-"""'], {'alpha': '(0.3)'}), "(x, y, 'b-', alpha=0.3)\n", (1262, 1285), True, 'import matplotlib.pyplot as plt\n'), ((1367, 1444), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x + dx, y + dy)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x + dx, y + dy), arrowstyle='->', mutation_scale=10)\n", (1382, 1444), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((1468, 1516), 'matplotlib.pyplot.text', 'plt.text', (['(x + dx / 2.0)', '(y + dy / 2.0 - 0.05)', '"""x"""'], {}), "(x + dx / 2.0, y + dy / 2.0 - 0.05, 'x')\n", (1476, 1516), True, 'import matplotlib.pyplot as plt\n'), ((1542, 1619), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x + dx, y + dy)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x + dx, y + dy), arrowstyle='->', mutation_scale=10)\n", (1557, 1619), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((1643, 1691), 'matplotlib.pyplot.text', 'plt.text', (['(x + dx / 2.0 - 0.05)', '(y + dy / 2.0)', '"""y"""'], {}), "(x + dx / 2.0 - 0.05, y + dy / 2.0, 'y')\n", (1651, 1691), True, 'import matplotlib.pyplot as plt\n'), ((1753, 1780), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""ro"""'], {'ms': '(10)'}), "(x, y, 'ro', ms=10)\n", (1761, 1780), True, 'import matplotlib.pyplot as plt\n'), ((1845, 1916), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x, y - L)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x, y - L), arrowstyle='->', mutation_scale=10)\n", (1860, 1916), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((1919, 1964), 'matplotlib.pyplot.Line2D', 'plt.Line2D', (['(x, x)', '(y, y - L)'], {'visible': '(False)'}), '((x, x), (y, y - L), visible=False)\n', (1929, 1964), True, 'import matplotlib.pyplot as plt\n'), ((2008, 2038), 'matplotlib.pyplot.text', 'plt.text', (['(x - 0.05)', '(y - L)', '"""g"""'], {}), "(x - 0.05, y - L, 'g')\n", (2016, 2038), True, 'import matplotlib.pyplot as plt\n'), ((2121, 2198), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x + dx, y + dy)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x + dx, y + dy), arrowstyle='->', mutation_scale=10)\n", (2136, 2198), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((2211, 2262), 'matplotlib.pyplot.Line2D', 'plt.Line2D', (['(x, x + dx)', '(y, y + dy)'], {'visible': '(False)'}), '((x, x + dx), (y, y + dy), visible=False)\n', (2221, 2262), True, 'import matplotlib.pyplot as plt\n'), ((2286, 2322), 'matplotlib.pyplot.text', 'plt.text', (['(x + dx)', '(y + dy - 0.05)', '"""v"""'], {}), "(x + dx, y + dy - 0.05, 'v')\n", (2294, 2322), True, 'import matplotlib.pyplot as plt\n'), ((2719, 2796), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x + dx, y + dy)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x + dx, y + dy), arrowstyle='->', mutation_scale=10)\n", (2734, 2796), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((2809, 2860), 'matplotlib.pyplot.Line2D', 'plt.Line2D', (['(x, x + dx)', '(y, y + dy)'], {'visible': '(False)'}), '((x, x + dx), (y, y + dy), visible=False)\n', (2819, 2860), True, 'import matplotlib.pyplot as plt\n'), ((2888, 2924), 'matplotlib.pyplot.text', 'plt.text', (['(x + dx)', '(y + dy - 0.05)', '"""T"""'], {}), "(x + dx, y + dy - 0.05, 'T')\n", (2896, 2924), True, 'import matplotlib.pyplot as plt\n'), ((2988, 3063), 'matplotlib.pyplot.plot', 'plt.plot', (['(x, x + dx)', '(y, y + dy)'], {'linestyle': '"""--"""', 'color': '"""k"""', 'zorder': '(-1000)'}), "((x, x + dx), (y, y + dy), linestyle='--', color='k', zorder=-1000)\n", (2996, 3063), True, 'import matplotlib.pyplot as plt\n'), ((3467, 3494), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""ssto_fbd.png"""'], {}), "('ssto_fbd.png')\n", (3478, 3494), True, 'import matplotlib.pyplot as plt\n'), ((3500, 3510), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3508, 3510), True, 'import matplotlib.pyplot as plt\n'), ((2433, 2510), 'matplotlib.patches.FancyArrowPatch', 'FancyArrowPatch', (['(x, y)', '(x + dx, y + dy)'], {'arrowstyle': '"""->"""', 'mutation_scale': '(10)'}), "((x, y), (x + dx, y + dy), arrowstyle='->', mutation_scale=10)\n", (2448, 2510), False, 'from matplotlib.patches import FancyArrowPatch, Arc\n'), ((2515, 2566), 'matplotlib.pyplot.Line2D', 'plt.Line2D', (['(x, x + dx)', '(y, y + dy)'], {'visible': '(False)'}), '((x, x + dx), (y, y + dy), visible=False)\n', (2525, 2566), True, 'import matplotlib.pyplot as plt\n'), ((2598, 2634), 'matplotlib.pyplot.text', 'plt.text', (['(x + dx)', '(y + dy + 0.05)', '"""D"""'], {}), "(x + dx, y + dy + 0.05, 'D')\n", (2606, 2634), True, 'import matplotlib.pyplot as plt\n'), ((413, 427), 'numpy.diff', 'np.diff', (['l1_ys'], {}), '(l1_ys)\n', (420, 427), True, 'import numpy as np\n'), ((429, 443), 'numpy.diff', 'np.diff', (['l1_xs'], {}), '(l1_xs)\n', (436, 443), True, 'import numpy as np\n'), ((595, 609), 'numpy.diff', 'np.diff', (['l2_ys'], {}), '(l2_ys)\n', (602, 609), True, 'import numpy as np\n'), ((611, 625), 'numpy.diff', 'np.diff', (['l2_xs'], {}), '(l2_xs)\n', (618, 625), True, 'import numpy as np\n')]
import unittest import numpy import chainer from chainer import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'use_cudnn': ['always', 'never'], })) class TestSpatialTransformerGrid(unittest.TestCase): def setUp(self): B = 3 self.theta = numpy.random.uniform(size=(B, 2, 3)).astype(numpy.float32) self.output_shape = (5, 6) self.grads = numpy.random.uniform( size=(B, 2) + self.output_shape).astype(self.theta.dtype) self.check_backward_options = { 'atol': 1e-4, 'rtol': 1e-3} def check_forward(self, theta, output_shape): grid = functions.spatial_transformer_grid(theta, output_shape).data theta = cuda.to_cpu(theta) B = theta.shape[0] H, W = output_shape expected = [] for b in range(B): for i in numpy.linspace(-1., 1., H): for j in numpy.linspace(-1., 1., W): coord = numpy.array([j, i, 1]) expected.append(self.theta[b].dot(coord)) expected = numpy.array( expected).reshape(B, H, W, 2).transpose(0, 3, 1, 2) testing.assert_allclose(grid, expected) self.assertEqual(grid.dtype, theta.dtype) def test_forward_cpu(self): self.check_forward(self.theta, self.output_shape) @attr.gpu def test_forward_gpu(self): self.check_forward(cuda.to_gpu(self.theta), self.output_shape) def check_backward(self, theta, output_shape, grads): with chainer.using_config('use_cudnn', self.use_cudnn): gradient_check.check_backward( functions.SpatialTransformerGrid(output_shape), (theta,), (grads,), dtype=numpy.float64, **self.check_backward_options) def test_backward_cpu(self): self.check_backward(self.theta, self.output_shape, self.grads) @attr.gpu def test_backward_gpu(self): with chainer.using_config('use_cudnn', self.use_cudnn): self.check_backward(cuda.to_gpu(self.theta), self.output_shape, cuda.to_gpu(self.grads)) testing.run_module(__name__, __file__)
[ "chainer.testing.run_module", "chainer.functions.SpatialTransformerGrid", "chainer.cuda.to_cpu", "chainer.testing.product", "numpy.linspace", "numpy.array", "numpy.random.uniform", "chainer.functions.spatial_transformer_grid", "chainer.testing.assert_allclose", "chainer.cuda.to_gpu", "chainer.using_config" ]
[((2252, 2290), 'chainer.testing.run_module', 'testing.run_module', (['__name__', '__file__'], {}), '(__name__, __file__)\n', (2270, 2290), False, 'from chainer import testing\n'), ((824, 842), 'chainer.cuda.to_cpu', 'cuda.to_cpu', (['theta'], {}), '(theta)\n', (835, 842), False, 'from chainer import cuda\n'), ((1267, 1306), 'chainer.testing.assert_allclose', 'testing.assert_allclose', (['grid', 'expected'], {}), '(grid, expected)\n', (1290, 1306), False, 'from chainer import testing\n'), ((222, 273), 'chainer.testing.product', 'testing.product', (["{'use_cudnn': ['always', 'never']}"], {}), "({'use_cudnn': ['always', 'never']})\n", (237, 273), False, 'from chainer import testing\n'), ((746, 801), 'chainer.functions.spatial_transformer_grid', 'functions.spatial_transformer_grid', (['theta', 'output_shape'], {}), '(theta, output_shape)\n', (780, 801), False, 'from chainer import functions\n'), ((969, 997), 'numpy.linspace', 'numpy.linspace', (['(-1.0)', '(1.0)', 'H'], {}), '(-1.0, 1.0, H)\n', (983, 997), False, 'import numpy\n'), ((1522, 1545), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.theta'], {}), '(self.theta)\n', (1533, 1545), False, 'from chainer import cuda\n'), ((1638, 1687), 'chainer.using_config', 'chainer.using_config', (['"""use_cudnn"""', 'self.use_cudnn'], {}), "('use_cudnn', self.use_cudnn)\n", (1658, 1687), False, 'import chainer\n'), ((2066, 2115), 'chainer.using_config', 'chainer.using_config', (['"""use_cudnn"""', 'self.use_cudnn'], {}), "('use_cudnn', self.use_cudnn)\n", (2086, 2115), False, 'import chainer\n'), ((392, 428), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': '(B, 2, 3)'}), '(size=(B, 2, 3))\n', (412, 428), False, 'import numpy\n'), ((507, 560), 'numpy.random.uniform', 'numpy.random.uniform', ([], {'size': '((B, 2) + self.output_shape)'}), '(size=(B, 2) + self.output_shape)\n', (527, 560), False, 'import numpy\n'), ((1022, 1050), 'numpy.linspace', 'numpy.linspace', (['(-1.0)', '(1.0)', 'W'], {}), '(-1.0, 1.0, W)\n', (1036, 1050), False, 'import numpy\n'), ((1748, 1794), 'chainer.functions.SpatialTransformerGrid', 'functions.SpatialTransformerGrid', (['output_shape'], {}), '(output_shape)\n', (1780, 1794), False, 'from chainer import functions\n'), ((2149, 2172), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.theta'], {}), '(self.theta)\n', (2160, 2172), False, 'from chainer import cuda\n'), ((2225, 2248), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.grads'], {}), '(self.grads)\n', (2236, 2248), False, 'from chainer import cuda\n'), ((1078, 1100), 'numpy.array', 'numpy.array', (['[j, i, 1]'], {}), '([j, i, 1])\n', (1089, 1100), False, 'import numpy\n'), ((1182, 1203), 'numpy.array', 'numpy.array', (['expected'], {}), '(expected)\n', (1193, 1203), False, 'import numpy\n')]
""" Compute numerical solution for Poisson with background. Produces Fig. 7 from the Feldman & Cousins paper. """ import numpy as np from scipy.stats import poisson import matplotlib.pyplot as plt from gammapy.stats import ( fc_construct_acceptance_intervals_pdfs, fc_fix_limits, fc_get_limits, ) background = 3.0 n_bins_x = 100 step_width_mu = 0.005 mu_min = 0 mu_max = 50 cl = 0.90 x_bins = np.arange(0, n_bins_x) mu_bins = np.linspace(mu_min, mu_max, int(mu_max / step_width_mu + 1), endpoint=True) matrix = [poisson(mu + background).pmf(x_bins) for mu in mu_bins] acceptance_intervals = fc_construct_acceptance_intervals_pdfs(matrix, cl) LowerLimitNum, UpperLimitNum, _ = fc_get_limits(mu_bins, x_bins, acceptance_intervals) fc_fix_limits(LowerLimitNum, UpperLimitNum) fig = plt.figure() ax = fig.add_subplot(111) plt.plot(UpperLimitNum, mu_bins, ls="-", color="red") plt.plot(LowerLimitNum, mu_bins, ls="-", color="red") plt.grid(True) ax.yaxis.set_label_coords(-0.08, 0.5) plt.xticks(range(15)) plt.yticks(range(15)) ax.set_xlabel(r"Measured n") ax.set_ylabel(r"Signal Mean $\mu$") plt.axis([0, 15, 0, 15]) plt.show()
[ "gammapy.stats.fc_fix_limits", "matplotlib.pyplot.grid", "matplotlib.pyplot.plot", "gammapy.stats.fc_get_limits", "matplotlib.pyplot.figure", "scipy.stats.poisson", "matplotlib.pyplot.axis", "gammapy.stats.fc_construct_acceptance_intervals_pdfs", "numpy.arange", "matplotlib.pyplot.show" ]
[((409, 431), 'numpy.arange', 'np.arange', (['(0)', 'n_bins_x'], {}), '(0, n_bins_x)\n', (418, 431), True, 'import numpy as np\n'), ((609, 659), 'gammapy.stats.fc_construct_acceptance_intervals_pdfs', 'fc_construct_acceptance_intervals_pdfs', (['matrix', 'cl'], {}), '(matrix, cl)\n', (647, 659), False, 'from gammapy.stats import fc_construct_acceptance_intervals_pdfs, fc_fix_limits, fc_get_limits\n'), ((695, 747), 'gammapy.stats.fc_get_limits', 'fc_get_limits', (['mu_bins', 'x_bins', 'acceptance_intervals'], {}), '(mu_bins, x_bins, acceptance_intervals)\n', (708, 747), False, 'from gammapy.stats import fc_construct_acceptance_intervals_pdfs, fc_fix_limits, fc_get_limits\n'), ((749, 792), 'gammapy.stats.fc_fix_limits', 'fc_fix_limits', (['LowerLimitNum', 'UpperLimitNum'], {}), '(LowerLimitNum, UpperLimitNum)\n', (762, 792), False, 'from gammapy.stats import fc_construct_acceptance_intervals_pdfs, fc_fix_limits, fc_get_limits\n'), ((800, 812), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (810, 812), True, 'import matplotlib.pyplot as plt\n'), ((840, 893), 'matplotlib.pyplot.plot', 'plt.plot', (['UpperLimitNum', 'mu_bins'], {'ls': '"""-"""', 'color': '"""red"""'}), "(UpperLimitNum, mu_bins, ls='-', color='red')\n", (848, 893), True, 'import matplotlib.pyplot as plt\n'), ((894, 947), 'matplotlib.pyplot.plot', 'plt.plot', (['LowerLimitNum', 'mu_bins'], {'ls': '"""-"""', 'color': '"""red"""'}), "(LowerLimitNum, mu_bins, ls='-', color='red')\n", (902, 947), True, 'import matplotlib.pyplot as plt\n'), ((949, 963), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (957, 963), True, 'import matplotlib.pyplot as plt\n'), ((1111, 1135), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 15, 0, 15]'], {}), '([0, 15, 0, 15])\n', (1119, 1135), True, 'import matplotlib.pyplot as plt\n'), ((1136, 1146), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1144, 1146), True, 'import matplotlib.pyplot as plt\n'), ((529, 553), 'scipy.stats.poisson', 'poisson', (['(mu + background)'], {}), '(mu + background)\n', (536, 553), False, 'from scipy.stats import poisson\n')]
import os import argparse import pandas as pd import numpy as np import sys import json DEFAULT_PROJECT_REPO = os.path.sep.join(__file__.split(os.path.sep)[:-2]) PROJECT_REPO_DIR = os.path.abspath( os.environ.get('PROJECT_REPO_DIR', DEFAULT_PROJECT_REPO)) sys.path.append(os.path.join(PROJECT_REPO_DIR, 'src')) from feature_transformation import (parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols) def merge_data_dicts(data_dicts_list): # get a single consolidated data dict for all features and another for outcomes # combine all the labs, demographics and vitals jsons into a single json features_data_dict = dict() features_data_dict['schema']= dict() features_dict_merged = [] for data_dict in data_dicts_list: features_dict_merged += data_dict['schema']['fields'] feat_names = list() features_data_dict['schema']['fields'] = [] for feat_dict in features_dict_merged: if feat_dict['name'] not in feat_names: features_data_dict['schema']['fields'].append(feat_dict) feat_names.append(feat_dict['name']) return features_data_dict def get_all_features_data(labs_df, labs_data_dict, vitals_df, vitals_data_dict, demographics_df, demographics_data_dict): '''Returns the merged labs, vitals and demographics features into a single table and the data dict''' time_col = parse_time_col(vitals_data_dict) id_cols = parse_id_cols(vitals_data_dict) # merge the labs and vitals highfreq_df = pd.merge(vitals_df, labs_df, on=id_cols +[time_col], how='outer') highfreq_data_dict = merge_data_dicts([labs_data_dict, vitals_data_dict]) highfreq_data_dict['fields'] = highfreq_data_dict['schema']['fields'] cols_to_keep = parse_id_cols(highfreq_data_dict) + [parse_time_col(highfreq_data_dict)] + parse_feature_cols(highfreq_data_dict) highfreq_df = highfreq_df[cols_to_keep].copy() # merge the highfrequency features with the static features features_df = pd.merge(highfreq_df, demographics_df, on=id_cols, how='inner') features_data_dict = merge_data_dicts([highfreq_data_dict, demographics_data_dict]) features_data_dict['fields'] = features_data_dict['schema']['fields'] return features_df, features_data_dict if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--collapsed_tslice_folder', type=str, help='folder where collapsed features from each tslice are stored') parser.add_argument('--tslice_folder', type=str, help='folder where raw features and static features from each tslice are stored') parser.add_argument('--tslice_list', type=str, help='list of all the tslices used for training the classifier') parser.add_argument('--static_data_dict_dir', type=str, help='directory where data dict for demographics and outcomes') parser.add_argument('--output_dir', type=str, help='folder to save merged features and outcomes from all tslices') args = parser.parse_args() # get all the collapsed labs, collapsed vitals, demographics and outcomes data dicts with open(os.path.join(args.static_data_dict_dir, 'Spec-Demographics.json'), 'r') as f1: demographics_data_dict = json.load(f1) demographics_data_dict['fields'] = demographics_data_dict['schema']['fields'] with open(os.path.join(args.static_data_dict_dir, 'Spec-Outcomes_TransferToICU.json'), 'r') as f2: outcomes_data_dict = json.load(f2) id_cols = parse_id_cols(demographics_data_dict) # get all the collapsed labs, collapsed vitals, demographics and outcomes in all the tslice folders print('Merging collapsed vitals, collapsed labs, demographics and outcomes in all the tslice folders = %s into a single features table and a single outcomes table...'%args.tslice_list) features_df_all_slices_list = list() outcomes_df_all_slices_list = list() mews_df_all_slices_list = list() for tslice in args.tslice_list.split(' '): curr_tslice_folder = args.tslice_folder+tslice curr_collapsed_tslice_folder = args.collapsed_tslice_folder+tslice collapsed_labs_df = pd.read_csv(os.path.join(curr_collapsed_tslice_folder, 'CollapsedLabsPerSequence.csv')) collapsed_vitals_df = pd.read_csv(os.path.join(curr_collapsed_tslice_folder, 'CollapsedVitalsPerSequence.csv')) demographics_df = pd.read_csv(os.path.join(curr_tslice_folder, 'demographics_before_icu_filtered_%s_hours.csv'%tslice)) mews_df = pd.read_csv(os.path.join(curr_collapsed_tslice_folder, 'MewsScoresPerSequence.csv')) collapsed_vitals_labs_df = pd.merge(collapsed_vitals_df, collapsed_labs_df, on=id_cols, how='inner') # merge the collapsed feaatures and static features in each tslice features_df = pd.merge(collapsed_vitals_labs_df, demographics_df, on=id_cols, how='inner') outcomes_df = pd.read_csv(os.path.join(curr_tslice_folder, 'clinical_deterioration_outcomes_filtered_%s_hours.csv'%tslice)) feature_cols = features_df.columns outcome_cols = outcomes_df.columns mews_cols = mews_df.columns # append fearures from all tslices features_df_all_slices_list.append(features_df.values) outcomes_df_all_slices_list.append(outcomes_df.values) mews_df_all_slices_list.append(mews_df.values) del collapsed_vitals_labs_df features_df_all_slices = pd.DataFrame(np.concatenate(features_df_all_slices_list), columns=feature_cols) outcomes_df_all_slices = pd.DataFrame(np.concatenate(outcomes_df_all_slices_list), columns=outcome_cols) mews_df_all_slices = pd.DataFrame(np.concatenate(mews_df_all_slices_list), columns=mews_cols) # get collapsed vitals and labs dict print('Merging collapsed vitals, collapsed labs, demographics and outcomes data dicts into a single features data dict and a single outcomes data dict...') with open(os.path.join(curr_collapsed_tslice_folder, 'Spec_CollapsedLabsPerSequence.json'), 'r') as f3: collapsed_labs_data_dict = json.load(f3) with open(os.path.join(curr_collapsed_tslice_folder, 'Spec_CollapsedVitalsPerSequence.json'), 'r') as f4: collapsed_vitals_data_dict = json.load(f4) with open(os.path.join(curr_collapsed_tslice_folder, 'Spec_MewsScoresPerSequence.json'), 'r') as f5: mews_data_dict = json.load(f5) # get a single consolidated data dict for all features and another for outcomes # combine all the labs, demographics and vitals jsons into a single json features_data_dict = dict() features_data_dict['schema']= dict() features_dict_merged = collapsed_labs_data_dict['schema']['fields'] + collapsed_vitals_data_dict['schema']['fields'] + demographics_data_dict['schema']['fields'] feat_names = list() features_data_dict['schema']['fields'] = [] for feat_dict in features_dict_merged: if feat_dict['name'] not in feat_names: features_data_dict['schema']['fields'].append(feat_dict) feat_names.append(feat_dict['name']) # convert the features to numpy float 32 to avoid memory issues feature_cols = parse_feature_cols(features_data_dict['schema']) feature_type_dict = dict.fromkeys(feature_cols) for k in feature_type_dict.keys(): feature_type_dict[k] = np.float32 features_df_all_slices = features_df_all_slices.astype(feature_type_dict) # save to disk features_csv = os.path.join(args.output_dir, 'features.csv') outcomes_csv = os.path.join(args.output_dir, 'outcomes.csv') mews_csv = os.path.join(args.output_dir, 'mews.csv') features_json = os.path.join(args.output_dir, 'Spec_features.json') outcomes_json = os.path.join(args.output_dir, 'Spec_outcomes.json') mews_json = os.path.join(args.output_dir, 'Spec_mews.json') print('saving features and outcomes to :\n%s\n%s\n%s'%(features_csv, outcomes_csv, mews_csv)) features_df_all_slices.to_csv(features_csv, index=False) outcomes_df_all_slices.to_csv(outcomes_csv, index=False) mews_df_all_slices.to_csv(mews_csv, index=False) print('saving features and outcomes dict to :\n%s\n%s\n%s'%(features_json, outcomes_json, mews_json)) with open(features_json, "w") as outfile_feats: json.dump(features_data_dict, outfile_feats) with open(outcomes_json, "w") as outfile_outcomes: json.dump(outcomes_data_dict, outfile_outcomes) with open(mews_json, "w") as outfile_mews: json.dump(mews_data_dict, outfile_mews)
[ "argparse.ArgumentParser", "feature_transformation.parse_id_cols", "pandas.merge", "os.path.join", "os.environ.get", "numpy.concatenate", "feature_transformation.parse_feature_cols", "json.load", "feature_transformation.parse_time_col", "json.dump" ]
[((202, 258), 'os.environ.get', 'os.environ.get', (['"""PROJECT_REPO_DIR"""', 'DEFAULT_PROJECT_REPO'], {}), "('PROJECT_REPO_DIR', DEFAULT_PROJECT_REPO)\n", (216, 258), False, 'import os\n'), ((277, 314), 'os.path.join', 'os.path.join', (['PROJECT_REPO_DIR', '"""src"""'], {}), "(PROJECT_REPO_DIR, 'src')\n", (289, 314), False, 'import os\n'), ((1416, 1448), 'feature_transformation.parse_time_col', 'parse_time_col', (['vitals_data_dict'], {}), '(vitals_data_dict)\n', (1430, 1448), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((1463, 1494), 'feature_transformation.parse_id_cols', 'parse_id_cols', (['vitals_data_dict'], {}), '(vitals_data_dict)\n', (1476, 1494), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((1546, 1612), 'pandas.merge', 'pd.merge', (['vitals_df', 'labs_df'], {'on': '(id_cols + [time_col])', 'how': '"""outer"""'}), "(vitals_df, labs_df, on=id_cols + [time_col], how='outer')\n", (1554, 1612), True, 'import pandas as pd\n'), ((2032, 2095), 'pandas.merge', 'pd.merge', (['highfreq_df', 'demographics_df'], {'on': 'id_cols', 'how': '"""inner"""'}), "(highfreq_df, demographics_df, on=id_cols, how='inner')\n", (2040, 2095), True, 'import pandas as pd\n'), ((2344, 2369), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2367, 2369), False, 'import argparse\n'), ((3569, 3606), 'feature_transformation.parse_id_cols', 'parse_id_cols', (['demographics_data_dict'], {}), '(demographics_data_dict)\n', (3582, 3606), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((7250, 7298), 'feature_transformation.parse_feature_cols', 'parse_feature_cols', (["features_data_dict['schema']"], {}), "(features_data_dict['schema'])\n", (7268, 7298), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((7553, 7598), 'os.path.join', 'os.path.join', (['args.output_dir', '"""features.csv"""'], {}), "(args.output_dir, 'features.csv')\n", (7565, 7598), False, 'import os\n'), ((7618, 7663), 'os.path.join', 'os.path.join', (['args.output_dir', '"""outcomes.csv"""'], {}), "(args.output_dir, 'outcomes.csv')\n", (7630, 7663), False, 'import os\n'), ((7679, 7720), 'os.path.join', 'os.path.join', (['args.output_dir', '"""mews.csv"""'], {}), "(args.output_dir, 'mews.csv')\n", (7691, 7720), False, 'import os\n'), ((7741, 7792), 'os.path.join', 'os.path.join', (['args.output_dir', '"""Spec_features.json"""'], {}), "(args.output_dir, 'Spec_features.json')\n", (7753, 7792), False, 'import os\n'), ((7813, 7864), 'os.path.join', 'os.path.join', (['args.output_dir', '"""Spec_outcomes.json"""'], {}), "(args.output_dir, 'Spec_outcomes.json')\n", (7825, 7864), False, 'import os\n'), ((7881, 7928), 'os.path.join', 'os.path.join', (['args.output_dir', '"""Spec_mews.json"""'], {}), "(args.output_dir, 'Spec_mews.json')\n", (7893, 7928), False, 'import os\n'), ((1858, 1896), 'feature_transformation.parse_feature_cols', 'parse_feature_cols', (['highfreq_data_dict'], {}), '(highfreq_data_dict)\n', (1876, 1896), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((3307, 3320), 'json.load', 'json.load', (['f1'], {}), '(f1)\n', (3316, 3320), False, 'import json\n'), ((3536, 3549), 'json.load', 'json.load', (['f2'], {}), '(f2)\n', (3545, 3549), False, 'import json\n'), ((4698, 4771), 'pandas.merge', 'pd.merge', (['collapsed_vitals_df', 'collapsed_labs_df'], {'on': 'id_cols', 'how': '"""inner"""'}), "(collapsed_vitals_df, collapsed_labs_df, on=id_cols, how='inner')\n", (4706, 4771), True, 'import pandas as pd\n'), ((4870, 4946), 'pandas.merge', 'pd.merge', (['collapsed_vitals_labs_df', 'demographics_df'], {'on': 'id_cols', 'how': '"""inner"""'}), "(collapsed_vitals_labs_df, demographics_df, on=id_cols, how='inner')\n", (4878, 4946), True, 'import pandas as pd\n'), ((5518, 5561), 'numpy.concatenate', 'np.concatenate', (['features_df_all_slices_list'], {}), '(features_df_all_slices_list)\n', (5532, 5561), True, 'import numpy as np\n'), ((5627, 5670), 'numpy.concatenate', 'np.concatenate', (['outcomes_df_all_slices_list'], {}), '(outcomes_df_all_slices_list)\n', (5641, 5670), True, 'import numpy as np\n'), ((5732, 5771), 'numpy.concatenate', 'np.concatenate', (['mews_df_all_slices_list'], {}), '(mews_df_all_slices_list)\n', (5746, 5771), True, 'import numpy as np\n'), ((6141, 6154), 'json.load', 'json.load', (['f3'], {}), '(f3)\n', (6150, 6154), False, 'import json\n'), ((6303, 6316), 'json.load', 'json.load', (['f4'], {}), '(f4)\n', (6312, 6316), False, 'import json\n'), ((6452, 6465), 'json.load', 'json.load', (['f5'], {}), '(f5)\n', (6461, 6465), False, 'import json\n'), ((8374, 8418), 'json.dump', 'json.dump', (['features_data_dict', 'outfile_feats'], {}), '(features_data_dict, outfile_feats)\n', (8383, 8418), False, 'import json\n'), ((8483, 8530), 'json.dump', 'json.dump', (['outcomes_data_dict', 'outfile_outcomes'], {}), '(outcomes_data_dict, outfile_outcomes)\n', (8492, 8530), False, 'import json\n'), ((8591, 8630), 'json.dump', 'json.dump', (['mews_data_dict', 'outfile_mews'], {}), '(mews_data_dict, outfile_mews)\n', (8600, 8630), False, 'import json\n'), ((1783, 1816), 'feature_transformation.parse_id_cols', 'parse_id_cols', (['highfreq_data_dict'], {}), '(highfreq_data_dict)\n', (1796, 1816), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n'), ((3195, 3260), 'os.path.join', 'os.path.join', (['args.static_data_dict_dir', '"""Spec-Demographics.json"""'], {}), "(args.static_data_dict_dir, 'Spec-Demographics.json')\n", (3207, 3260), False, 'import os\n'), ((3418, 3493), 'os.path.join', 'os.path.join', (['args.static_data_dict_dir', '"""Spec-Outcomes_TransferToICU.json"""'], {}), "(args.static_data_dict_dir, 'Spec-Outcomes_TransferToICU.json')\n", (3430, 3493), False, 'import os\n'), ((4236, 4310), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""CollapsedLabsPerSequence.csv"""'], {}), "(curr_collapsed_tslice_folder, 'CollapsedLabsPerSequence.csv')\n", (4248, 4310), False, 'import os\n'), ((4354, 4430), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""CollapsedVitalsPerSequence.csv"""'], {}), "(curr_collapsed_tslice_folder, 'CollapsedVitalsPerSequence.csv')\n", (4366, 4430), False, 'import os\n'), ((4470, 4565), 'os.path.join', 'os.path.join', (['curr_tslice_folder', "('demographics_before_icu_filtered_%s_hours.csv' % tslice)"], {}), "(curr_tslice_folder, \n 'demographics_before_icu_filtered_%s_hours.csv' % tslice)\n", (4482, 4565), False, 'import os\n'), ((4590, 4661), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""MewsScoresPerSequence.csv"""'], {}), "(curr_collapsed_tslice_folder, 'MewsScoresPerSequence.csv')\n", (4602, 4661), False, 'import os\n'), ((4981, 5084), 'os.path.join', 'os.path.join', (['curr_tslice_folder', "('clinical_deterioration_outcomes_filtered_%s_hours.csv' % tslice)"], {}), "(curr_tslice_folder, \n 'clinical_deterioration_outcomes_filtered_%s_hours.csv' % tslice)\n", (4993, 5084), False, 'import os\n'), ((6012, 6097), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""Spec_CollapsedLabsPerSequence.json"""'], {}), "(curr_collapsed_tslice_folder, 'Spec_CollapsedLabsPerSequence.json'\n )\n", (6024, 6097), False, 'import os\n'), ((6170, 6256), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""Spec_CollapsedVitalsPerSequence.json"""'], {}), "(curr_collapsed_tslice_folder,\n 'Spec_CollapsedVitalsPerSequence.json')\n", (6182, 6256), False, 'import os\n'), ((6336, 6413), 'os.path.join', 'os.path.join', (['curr_collapsed_tslice_folder', '"""Spec_MewsScoresPerSequence.json"""'], {}), "(curr_collapsed_tslice_folder, 'Spec_MewsScoresPerSequence.json')\n", (6348, 6413), False, 'import os\n'), ((1820, 1854), 'feature_transformation.parse_time_col', 'parse_time_col', (['highfreq_data_dict'], {}), '(highfreq_data_dict)\n', (1834, 1854), False, 'from feature_transformation import parse_id_cols, remove_col_names_from_list_if_not_in_df, parse_time_col, parse_feature_cols\n')]
#!/usr/bin/python # export PYTHONPATH=/home/lukas/anaconda3/envs/detectron/bin/python # import some common libraries from genericpath import isdir import numpy as np import os import json import cv2 import time import csv import detectron2 from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.utils.visualizer import Visualizer from dataclasses import dataclass @dataclass class Params: target_path: str = '/home/lukas/Documents/Datasets/flat_dataset/run1' model: str = 'COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml' output_label_file: str = '' # Leave empty to not write labels. rio: bool = False def create_labels(meta_data, output_file: str = ""): sizes = [ 'L', 'M', 'L', 'M', 'L', 'L', 'L', 'L', 'L', 'M', 'M', 'M', 'S', 'L', 'S', 'M', 'M', 'L', 'M', 'L', 'L', 'L', 'L', 'L', 'M', 'S', 'S', 'S', 'S', 'S', 'M', 'M', 'S', 'M', 'M', 'S', 'S', 'M', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'S', 'M', 'L', 'M', 'L', 'M', 'M', 'M', 'S', 'S', 'S', 'S', 'S', 'M', 'M', 'S', 'M', 'L', 'S', 'M', 'M', 'S', 'M', 'S', 'S' ] if (output_file): with open(output_file, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow( ["InstanceID", "ClassID", "PanopticID", "Name", "Size"]) writer.writerow([0, 0, 0, "Unknown", "M"]) id = 1 for label in meta_data.stuff_classes: writer.writerow([id, id, 0, label, 'L']) id += 1 for i, label in enumerate(meta_data.thing_classes): writer.writerow([id, id, 1, label, sizes[i]]) id += 1 return len(meta_data.stuff_classes), "Saved %i labels in '%s'." % ( id, output_file) else: return len(meta_data.stuff_classes), "" def create_predictions(params: Params): # Verify. if not os.path.isdir(params.target_path): print("Error: Directory '%s' does not exist." % params.target_path) return print("Processing target '%s'." % params.target_path) # Setup model. print("Setting up Detectron2 model... ", end="", flush="True") cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file(params.model)) cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(params.model) cfg.MODEL.DEVICE = 'cpu' predictor = DefaultPredictor(cfg) print("done!") # Setup labels. print("Setting up labels... ", end="", flush="True") meta_data = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) label_offset, msg = create_labels(meta_data, params.output_label_file) print("done!") if msg: print(msg) # Get files to parse. files = [ o for o in os.listdir(params.target_path) if os.path.isfile(os.path.join(params.target_path, o)) ] if params.rio: files = [f for f in files if f.endswith('.color.jpg')] else: files = [f for f in files if f.endswith('.color.jpg')] times = [] # Run inference. msg = "Predicting %i images... " % len(files) for i, im_file in enumerate(files): print(msg + '%.1f%%' % (i / len(files) * 100, ), end='\r', flush=True) im = cv2.imread(os.path.join(params.target_path, im_file)) if params.rio: im = cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) # Predict. t1 = time.perf_counter() panoptic_seg, segments_info = predictor(im)["panoptic_seg"] t2 = time.perf_counter() times.append(t2 - t1) # Write output. if params.rio: file_id = im_file[:12] else: file_id = im_file[:6] id_img = panoptic_seg.numpy() cv2.imwrite( os.path.join(params.target_path, file_id + "_predicted2.png"), id_img) for segment_info in segments_info: if segment_info['isthing']: segment_info['category_id'] += label_offset segment_info['category_id'] += 1 # Compensate for unknown class. with open(os.path.join(params.target_path, file_id + "_labels.json"), 'w') as json_file: json.dump(segments_info, json_file) print(msg + "done!") # Finish. times = np.array(times, dtype=float) * 1000 print("Average inference time was %.1f +/- %.1f ms per frame." % (np.mean(times), np.std(times))) print("Finished parsing '%s'." % params.target_path) if __name__ == '__main__': # Params. params = Params() params.model = "COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml" params.target_path = '/home/lukas/Documents/Datasets/flat_dataset/run2' params.output_label_file = '' #'/home/lukas/Documents/Datasets/flat_dataset/detectron_labels.csv' params.rio = True # Run if params.rio: base_dir = '/home/lukas/Documents/Datasets/3RScan' dirs = [ x for x in os.listdir(base_dir) if os.path.isdir(base_dir + "/" + x) and x != 'not_used' ] for d in dirs: params.target_path = os.path.join(base_dir, d, "sequence") create_predictions(params) else: create_predictions(params)
[ "numpy.mean", "os.listdir", "detectron2.config.get_cfg", "csv.writer", "os.path.join", "time.perf_counter", "cv2.rotate", "numpy.array", "detectron2.model_zoo.get_checkpoint_url", "os.path.isdir", "detectron2.model_zoo.get_config_file", "detectron2.data.MetadataCatalog.get", "numpy.std", "detectron2.engine.DefaultPredictor", "json.dump" ]
[((2523, 2532), 'detectron2.config.get_cfg', 'get_cfg', ([], {}), '()\n', (2530, 2532), False, 'from detectron2.config import get_cfg\n'), ((2622, 2664), 'detectron2.model_zoo.get_checkpoint_url', 'model_zoo.get_checkpoint_url', (['params.model'], {}), '(params.model)\n', (2650, 2664), False, 'from detectron2 import model_zoo\n'), ((2710, 2731), 'detectron2.engine.DefaultPredictor', 'DefaultPredictor', (['cfg'], {}), '(cfg)\n', (2726, 2731), False, 'from detectron2.engine import DefaultPredictor\n'), ((2845, 2887), 'detectron2.data.MetadataCatalog.get', 'MetadataCatalog.get', (['cfg.DATASETS.TRAIN[0]'], {}), '(cfg.DATASETS.TRAIN[0])\n', (2864, 2887), False, 'from detectron2.data import MetadataCatalog, DatasetCatalog\n'), ((2242, 2275), 'os.path.isdir', 'os.path.isdir', (['params.target_path'], {}), '(params.target_path)\n', (2255, 2275), False, 'import os\n'), ((2557, 2596), 'detectron2.model_zoo.get_config_file', 'model_zoo.get_config_file', (['params.model'], {}), '(params.model)\n', (2582, 2596), False, 'from detectron2 import model_zoo\n'), ((3715, 3734), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3732, 3734), False, 'import time\n'), ((3816, 3835), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (3833, 3835), False, 'import time\n'), ((4588, 4616), 'numpy.array', 'np.array', (['times'], {'dtype': 'float'}), '(times, dtype=float)\n', (4596, 4616), True, 'import numpy as np\n'), ((1382, 1458), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""","""', 'quotechar': '"""|"""', 'quoting': 'csv.QUOTE_MINIMAL'}), "(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)\n", (1392, 1458), False, 'import csv\n'), ((3073, 3103), 'os.listdir', 'os.listdir', (['params.target_path'], {}), '(params.target_path)\n', (3083, 3103), False, 'import os\n'), ((3558, 3599), 'os.path.join', 'os.path.join', (['params.target_path', 'im_file'], {}), '(params.target_path, im_file)\n', (3570, 3599), False, 'import os\n'), ((3642, 3681), 'cv2.rotate', 'cv2.rotate', (['im', 'cv2.ROTATE_90_CLOCKWISE'], {}), '(im, cv2.ROTATE_90_CLOCKWISE)\n', (3652, 3681), False, 'import cv2\n'), ((4068, 4129), 'os.path.join', 'os.path.join', (['params.target_path', "(file_id + '_predicted2.png')"], {}), "(params.target_path, file_id + '_predicted2.png')\n", (4080, 4129), False, 'import os\n'), ((4500, 4535), 'json.dump', 'json.dump', (['segments_info', 'json_file'], {}), '(segments_info, json_file)\n', (4509, 4535), False, 'import json\n'), ((5418, 5455), 'os.path.join', 'os.path.join', (['base_dir', 'd', '"""sequence"""'], {}), "(base_dir, d, 'sequence')\n", (5430, 5455), False, 'import os\n'), ((3130, 3165), 'os.path.join', 'os.path.join', (['params.target_path', 'o'], {}), '(params.target_path, o)\n', (3142, 3165), False, 'import os\n'), ((4391, 4449), 'os.path.join', 'os.path.join', (['params.target_path', "(file_id + '_labels.json')"], {}), "(params.target_path, file_id + '_labels.json')\n", (4403, 4449), False, 'import os\n'), ((4704, 4718), 'numpy.mean', 'np.mean', (['times'], {}), '(times)\n', (4711, 4718), True, 'import numpy as np\n'), ((4720, 4733), 'numpy.std', 'np.std', (['times'], {}), '(times)\n', (4726, 4733), True, 'import numpy as np\n'), ((5262, 5282), 'os.listdir', 'os.listdir', (['base_dir'], {}), '(base_dir)\n', (5272, 5282), False, 'import os\n'), ((5298, 5331), 'os.path.isdir', 'os.path.isdir', (["(base_dir + '/' + x)"], {}), "(base_dir + '/' + x)\n", (5311, 5331), False, 'import os\n')]
import plotly.figure_factory as FF import numpy as np from scipy.spatial import Delaunay class СharacteristicQuadrilateral: def __init__(self, a): self.x0 = (a[0] - a[2])*1j self.y0 = a[0] + a[2] self.z0 = -a[1]*1j self.x1 = (a[0]-a[2]-a[3])*1j self.y1 = a[0]+a[2]+a[3] self.z1 = -a[1]*1j self.x2 = (a[0] - a[2] - 2*a[3])*1j self.y2 = a[0] + a[2] + 2*a[3] self.z2 = (a[3] - a[1])*1j self.x3 = (a[0] - a[2] - 2*a[3])*1j self.y3 = a[0] + a[2] + 4*a[3] self.z3 = (3*a[3] - a[1])*1j def create_trisurf_with_parameters(self, u, v, x, y, z, name): points2D = np.vstack([u, v]).T tri = Delaunay(points2D) simplices = tri.simplices return FF.create_trisurf(x=x, y=y, z=z, colormap=['rgb(50, 0, 75)', 'rgb(200, 0, 200)', '#c8dcc8'], show_colorbar=True, simplices=simplices, title=name) def get_uv(self, min, max): u=np.linspace(min, max, 60) v=np.linspace(min, max, 60) u,v=np.meshgrid(u,v) u=u.flatten() v=v.flatten() return u, v def conformal_replacement(self, u, v, r0, r1, r2, r3): return (r0*(1-u-v*1j)**3+3*(r1*(1-u-v*1j)**2)*(u+v*1j)+3*(r2*(1-u-v*1j))*(v*1j+u)**2+r3*(u+v*1j)**3).real def quasiconformal_replacement(self, u, v, k, r0, r1, r2, r3): return r0.real*(1 - 3*u + 3*u**2 - 3*v**2*k**2 - u**3 + 3*u*v**2*k**2) - r0.imag*(-3*v*k+6*u*v*k - 3*u**2*v*k + v**3*k**3) - \ (-3*r1.real*(1 - 2*u + u**2 - v**2*k**2) + 3*r1.imag*(-2*v*k + 2*u*v*k))*u + (-3*r1.imag*(1 - 2*u+ u**2 - v**2*k**2) - \ 3*r1.real*(-2*v*k+2*u*v*k))*v*k - (-3*r2.real*(1 - u) - 3*r2.imag*v*k)*(u**2 - v**2*k**2) + 2*(-3*r2.imag*(1 - u) + \ 3*r2.real*v*k)*u*v*k + r3.real*(u**3 - 3*u*v**2*k**2) - r3.imag*(3*u**2*v*k - v**3*k**3) def create_minimal_surface_conformal_replacement(self, name): u,v = self.get_uv(0,1) x = self.conformal_replacement(u, v, self.x0,self.x1,self.x2,self.x3) y = self.conformal_replacement(u, v, self.y0,self.y1,self.y2,self.y3) z = self.conformal_replacement(u, v, self.z0,self.z1,self.z2,self.z3) return self.create_trisurf_with_parameters(u, v, x, y, z, name) def create_minimal_surface_quasiconformal_replacement(self, name, k): u,v = self.get_uv(0,1) x = self.quasiconformal_replacement(u, v, k, self.x0,self.x1,self.x2,self.x3) y = self.quasiconformal_replacement(u, v, k, self.y0,self.y1,self.y2,self.y3) z = self.quasiconformal_replacement(u, v, k, self.z0,self.z1,self.z2,self.z3) return self.create_trisurf_with_parameters(u, v, x, y, z, name)
[ "plotly.figure_factory.create_trisurf", "numpy.linspace", "numpy.vstack", "scipy.spatial.Delaunay", "numpy.meshgrid" ]
[((703, 721), 'scipy.spatial.Delaunay', 'Delaunay', (['points2D'], {}), '(points2D)\n', (711, 721), False, 'from scipy.spatial import Delaunay\n'), ((771, 924), 'plotly.figure_factory.create_trisurf', 'FF.create_trisurf', ([], {'x': 'x', 'y': 'y', 'z': 'z', 'colormap': "['rgb(50, 0, 75)', 'rgb(200, 0, 200)', '#c8dcc8']", 'show_colorbar': '(True)', 'simplices': 'simplices', 'title': 'name'}), "(x=x, y=y, z=z, colormap=['rgb(50, 0, 75)',\n 'rgb(200, 0, 200)', '#c8dcc8'], show_colorbar=True, simplices=simplices,\n title=name)\n", (788, 924), True, 'import plotly.figure_factory as FF\n'), ((1089, 1114), 'numpy.linspace', 'np.linspace', (['min', 'max', '(60)'], {}), '(min, max, 60)\n', (1100, 1114), True, 'import numpy as np\n'), ((1125, 1150), 'numpy.linspace', 'np.linspace', (['min', 'max', '(60)'], {}), '(min, max, 60)\n', (1136, 1150), True, 'import numpy as np\n'), ((1163, 1180), 'numpy.meshgrid', 'np.meshgrid', (['u', 'v'], {}), '(u, v)\n', (1174, 1180), True, 'import numpy as np\n'), ((669, 686), 'numpy.vstack', 'np.vstack', (['[u, v]'], {}), '([u, v])\n', (678, 686), True, 'import numpy as np\n')]
import sys, os, glob import argparse import time import random from copy import copy, deepcopy from termcolor import colored, cprint import numpy as np from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_curve import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import torch.utils.data as data from torch.utils.tensorboard import SummaryWriter sys.path.append('../') from msda_src.model_utils import get_model_class, get_critic_class from msda_src.model_utils.domain_critic import ClassificationD, MMD, CoralD, WassersteinD from msda_src.utils.io import AmazonDataset, AmazonDomainDataset from msda_src.utils.io import say from msda_src.utils.op import softmax from dataset import ProcessedCNNInputDataset, OAGDomainDataset from models.cnn import CNNMatchModel from sklearn.metrics import confusion_matrix from sklearn.manifold import TSNE from utils import settings import warnings warnings.filterwarnings("ignore") argparser = argparse.ArgumentParser(description="Learning to Adapt from Multi-Source Domains") argparser.add_argument("--cuda", action="store_true") argparser.add_argument("--train", type=str, default="author,paper,aff", help="multi-source domains for training, separated with (,)") argparser.add_argument("--test", type=str, default="venue", help="target domain for testing") argparser.add_argument("--eval_only", action="store_true") argparser.add_argument("--critic", type=str, default="mmd") argparser.add_argument("--batch_size", type=int, default=32) argparser.add_argument("--batch_size_d", type=int, default=32) argparser.add_argument("--max_epoch", type=int, default=500) argparser.add_argument("--lr", type=float, default=1e-4) argparser.add_argument("--lr_d", type=float, default=1e-4) argparser.add_argument("--lambda_critic", type=float, default=0) argparser.add_argument("--lambda_gp", type=float, default=0) argparser.add_argument("--lambda_moe", type=float, default=1) argparser.add_argument("--lambda_mtl", type=float, default=0.3) argparser.add_argument("--lambda_all", type=float, default=0) argparser.add_argument("--lambda_dst", type=float, default=0) argparser.add_argument("--m_rank", type=int, default=10) argparser.add_argument("--lambda_entropy", type=float, default=0.0) argparser.add_argument("--load_model", type=str) argparser.add_argument("--save_model", type=str) argparser.add_argument("--metric", type=str, default="biaffine", help="mahalanobis: mahalanobis distance; biaffine: biaffine distance") argparser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') argparser.add_argument('--matrix-size1', type=int, default=7, help='Matrix size 1.') argparser.add_argument('--matrix-size2', type=int, default=4, help='Matrix size 2.') argparser.add_argument('--mat1-channel1', type=int, default=8, help='Matrix1 number of channels1.') argparser.add_argument('--mat1-kernel-size1', type=int, default=3, help='Matrix1 kernel size1.') argparser.add_argument('--mat1-channel2', type=int, default=16, help='Matrix1 number of channel2.') argparser.add_argument('--mat1-kernel-size2', type=int, default=2, help='Matrix1 kernel size2.') argparser.add_argument('--mat1-hidden', type=int, default=512, help='Matrix1 hidden dim.') argparser.add_argument('--mat2-channel1', type=int, default=8, help='Matrix2 number of channels1.') argparser.add_argument('--mat2-kernel-size1', type=int, default=2, help='Matrix2 kernel size1.') argparser.add_argument('--mat2-hidden', type=int, default=512, help='Matrix2 hidden dim') argparser.add_argument('--build-index-window', type=int, default=5, help='Matrix2 hidden dim') argparser.add_argument('--seed', type=int, default=42, help='Random seed.') argparser.add_argument('--seed-delta', type=int, default=0, help='Random seed.') argparser.add_argument('--initial-accumulator-value', type=float, default=0.01, help='Initial accumulator value.') argparser.add_argument('--weight-decay', type=float, default=1e-3, help='Weight decay (L2 loss on parameters).') # argparser.add_argument('--dropout', type=float, default=0.2, # help='Dropout rate (1 - keep probability).') argparser.add_argument('--attn-dropout', type=float, default=0., help='Dropout rate (1 - keep probability).') argparser.add_argument('--check-point', type=int, default=2, help="Check point") argparser.add_argument('--shuffle', action='store_true', default=True, help="Shuffle dataset") args, _ = argparser.parse_known_args() writer = SummaryWriter('runs/{}_mix_moe_{}'.format(args.test, args.seed_delta)) class WeightScaler(nn.Module): def __init__(self): super(WeightScaler, self).__init__() self.multp = nn.Parameter(torch.rand(1)) # requires_grad is True by default for Parameter class HLoss(nn.Module): def __init__(self): super(HLoss, self).__init__() def forward(self, x): # b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1) b = x * torch.log(x) b = -1.0 * b.sum() return b class L1Norm(nn.Module): def __init__(self): super(L1Norm, self).__init__() def forward(self, x): return torch.norm(x, 1, 1).sum() def domain_encoding(loaders, args, encoders): ''' Compute the encoding of domains, each domain is represented as its mean vector Note: the covariance inverse matrix is learned ''' statistics = [] for load_i, loader in enumerate(loaders): ind = 0 labels = None S = [] for batch1, batch2, label in loader: if args.cuda: batch1 = Variable(batch1.cuda()) batch2 = Variable(batch2.cuda()) _, s_out = encoders[load_i](batch1, batch2) # print("s_out", s_out) S.append(s_out) if ind == 0: labels = label else: labels = torch.cat((labels, label), dim=0) ind += 1 S = torch.cat(S, 0) # print("S", S) neg_index = ((labels == 0).nonzero()) pos_index = ((labels == 1).nonzero()) neg_index = Variable(neg_index.expand(neg_index.size(0), S.size(1))) pos_index = Variable(pos_index.expand(pos_index.size(0), S.size(1))) if args.cuda: pos_index = pos_index.cuda() neg_index = neg_index.cuda() pos_S = torch.gather(S, 0, pos_index) neg_S = torch.gather(S, 0, neg_index) pos_mu_S = torch.mean(pos_S, dim=0, keepdim=True) neg_mu_S = torch.mean(neg_S, dim=0, keepdim=True) mu_S = torch.mean(S, dim=0, keepdim=True) # print("mu_s", mu_S) # print("pos_mu_s", pos_mu_S) # print("neg_mu_s", neg_mu_S) statistics.append((mu_S, pos_mu_S, neg_mu_S)) return statistics TEMPERATURE = 4 def mahalanobis_metric_fast(p, mu, U, pos_mu, pos_U, neg_mu, neg_U): # covi = (cov + I).inverse() # print("p", type(p), p) # print("p", p.shape, p) # print("mu", mu.shape, mu) # # print("p - mu", p - mu) # print("U", U) mahalanobis_distances = (p - mu).mm(U.mm(U.t())).mm((p - mu).t()) pos_mahalanobis_distance = (p - pos_mu).mm(pos_U.mm(pos_U.t())).mm((p - pos_mu).t()).diag().sqrt().data neg_mahalanobis_distance = (p - neg_mu).mm(neg_U.mm(neg_U.t())).mm((p - neg_mu).t()).diag().sqrt().data mahalanobis_ratio1 = pos_mahalanobis_distance - neg_mahalanobis_distance mahalanobis_ratio2 = neg_mahalanobis_distance - pos_mahalanobis_distance max_ratio = torch.max(mahalanobis_ratio1, mahalanobis_ratio2) return max_ratio # / TEMPERATURE # return mahalanobis_distances.diag().sqrt().data def mahalanobis_metric(p, S, L, U, pos_U, neg_U, args, encoder=None): r''' Compute the mahalanobis distance between the encoding of a sample (p) and a set (S). Args: p: tensor (batch_size, dim), a batch of samples S: tensor (size, dim), a domain which contains a set of samples encoder: a module used for encoding p and S Return: mahalanobis_distances: tensor (batch_size) ''' if encoder is not None: p = encoder(p) # (batch_size, dim) S = encoder(S) # (size, dim) neg_index = ((L == 0).nonzero()) pos_index = ((L == 1).nonzero()) neg_index = neg_index.expand(neg_index.size(0), S.data.size(1)) pos_index = pos_index.expand(pos_index.size(0), S.data.size(1)) neg_S = torch.gather(S, 0, neg_index) pos_S = torch.gather(S, 0, pos_index) neg_mu = torch.mean(neg_S, dim=0, keepdim=True) pos_mu = torch.mean(pos_S, dim=0, keepdim=True) pos_mahalanobis_distance = (p - pos_mu).mm(pos_U.mm(pos_U.t())).mm((p - pos_mu).t()).diag().sqrt() neg_mahalanobis_distance = (p - neg_mu).mm(neg_U.mm(neg_U.t())).mm((p - neg_mu).t()).diag().sqrt() mahalanobis_ratio1 = pos_mahalanobis_distance - neg_mahalanobis_distance mahalanobis_ratio2 = neg_mahalanobis_distance - pos_mahalanobis_distance max_ratio = torch.max(mahalanobis_ratio1, mahalanobis_ratio2) return max_ratio.clamp(0.01, 2) # / TEMPERATURE # .clamp(0.001, 1) # mu_S = torch.mean(S, dim=0, keepdim=True) # (1, dim) # mahalanobis_distances = (p - mu_S).mm(U.mm(U.t())).mm((p - mu_S).t()) # return mahalanobis_distances.diag().sqrt().clamp(0.01, 2) def biaffine_metric_fast(p, mu, U): biaffine_distances = p.mm(U).mm(mu.t()) return biaffine_distances.squeeze(1).data def biaffine_metric(p, S, U, W, V, args, encoder=None): ''' Compute the biaffine distance between the encoding of a sample (p) and a set (S). Args: p: tensor (batch_size, dim), a batch of samples U: matrix (dim, dim) S: tensor (size, dim), a domain which contains a set of samples encoder: a module used for encoding p and S Return: biaffine_distance: tensor (batch_size) ''' if encoder is not None: p = encoder(p) S = encoder(S) mu_S = torch.mean(S, dim=0, keepdim=True) biaffine_distances = p.mm(U).mm(mu_S.t()) + p.mm(W) + mu_S.mm(V) # extra components return biaffine_distances.squeeze(1).clamp(-10, 10) DATA_DIR = "../../msda-data/amazon/chen12" def train_epoch(iter_cnt, encoders, classifiers, critic, mats, data_loaders, args, optim_model, epoch): encoders, encoder_dst = encoders classifiers, classifier_dst, classifier_mix = classifiers map(lambda m: m.train(), encoders + [encoder_dst, classifier_dst, critic, classifier_mix] + classifiers) train_loaders, train_loader_dst, unl_loader, valid_loader = data_loaders dup_train_loaders = deepcopy(train_loaders) # mtl_criterion = nn.CrossEntropyLoss() mtl_criterion = nn.NLLLoss() moe_criterion = nn.NLLLoss() # with log_softmax separated kl_criterion = nn.MSELoss() entropy_criterion = HLoss() if args.metric == "biaffine": metric = biaffine_metric Us, Ws, Vs = mats else: metric = mahalanobis_metric Us, Ps, Ns = mats loss_total = 0 total = 0 for batches, batches_dst, unl_batch in zip(zip(*train_loaders), train_loader_dst, unl_loader): train_batches1, train_batches2, train_labels = zip(*batches) # print("train batches1", train_labels[0].size()) # print("train batches2", train_batches2) # print("train labels", train_labels) unl_critic_batch1, unl_critic_batch2, unl_critic_label = unl_batch # print("unl", unl_critic_batch1) batches1_dst, batches2_dst, labels_dst = batches_dst # print("batches1_dst", batches1_dst) # print("batches2_dst", batches2_dst) total += len(batches1_dst) iter_cnt += 1 if args.cuda: train_batches1 = [batch.cuda() for batch in train_batches1] train_batches2 = [batch.cuda() for batch in train_batches2] train_labels = [label.cuda() for label in train_labels] batches1_dst = batches1_dst.cuda() batches2_dst = batches2_dst.cuda() labels_dst = labels_dst.cuda() unl_critic_batch1 = unl_critic_batch1.cuda() unl_critic_batch2 = unl_critic_batch2.cuda() unl_critic_label = unl_critic_label.cuda() # train_batches1 = [Variable(batch) for batch in train_batches1] # train_batches2 = [Variable(batch) for batch in train_batches2] # train_labels = [Variable(label) for label in train_labels] # unl_critic_batch1 = Variable(unl_critic_batch1) # unl_critic_batch2 = Variable(unl_critic_batch2) # unl_critic_label = Variable(unl_critic_label) optim_model.zero_grad() loss_train_dst = [] loss_mtl = [] loss_moe = [] loss_kl = [] loss_entropy = [] loss_dan = [] loss_all = [] ms_outputs = [] # (n_sources, n_classifiers) hiddens = [] hidden_corresponding_labels = [] # labels = [] _, hidden_dst = encoder_dst(batches1_dst, batches2_dst) cur_output_dst = classifier_dst(hidden_dst) cur_output_dst_mem = torch.softmax(cur_output_dst, dim=1) cur_output_dst = torch.log(cur_output_dst_mem) loss_train_dst.append(mtl_criterion(cur_output_dst, labels_dst)) outputs_dst_transfer = [] for i in range(len(train_batches1)): _, cur_hidden = encoders[i](batches1_dst, batches2_dst) cur_output = classifiers[i](cur_hidden) outputs_dst_transfer.append(cur_output) for i, (batch1, batch2, label) in enumerate(zip(train_batches1, train_batches2, train_labels)): # source i _, hidden = encoders[i](batch1, batch2) outputs = [] # create output matrix: # - (i, j) indicates the output of i'th source batch using j'th classifier # print("hidden", hidden) # raise hiddens.append(hidden) for classifier in classifiers: output = classifier(hidden) output = torch.log_softmax(output, dim=1) # print("output", output) outputs.append(output) ms_outputs.append(outputs) hidden_corresponding_labels.append(label) # multi-task loss # print("ms & label", ms_outputs[i][i], label) loss_mtl.append(mtl_criterion(ms_outputs[i][i], label)) # labels.append(label) if args.lambda_critic > 0: # critic_batch = torch.cat([batch, unl_critic_batch]) critic_label = torch.cat([1 - unl_critic_label, unl_critic_label]) # critic_label = torch.cat([1 - unl_critic_label] * len(train_batches) + [unl_critic_label]) if isinstance(critic, ClassificationD): critic_output = critic(torch.cat(hidden, encoders[i](unl_critic_batch1, unl_critic_batch2))) loss_dan.append(critic.compute_loss(critic_output, critic_label)) else: critic_output = critic(hidden, encoders[i](unl_critic_batch1, unl_critic_batch2)) loss_dan.append(critic_output) # critic_output = critic(torch.cat(hiddens), encoder(unl_critic_batch)) # loss_dan = critic_output else: loss_dan = Variable(torch.FloatTensor([0])) # assert (len(outputs) == len(outputs[0])) source_ids = range(len(train_batches1)) # for i in source_ids: # support_ids = [x for x in source_ids if x != i] # experts support_ids = [x for x in source_ids] # experts # i = 0 # support_alphas = [ metric( # hiddens[i], # hiddens[j].detach(), # hidden_corresponding_labels[j], # Us[j], Ps[j], Ns[j], # args) for j in support_ids ] if args.metric == "biaffine": source_alphas = [metric(hidden_dst, hiddens[j].detach(), Us[0], Ws[0], Vs[0], # for biaffine metric, we use a unified matrix args) for j in source_ids] else: source_alphas = [metric(hidden_dst, # i^th source hiddens[j].detach(), hidden_corresponding_labels[j], Us[j], Ps[j], Ns[j], args) for j in source_ids] support_alphas = [source_alphas[x] for x in support_ids] # print torch.cat([ x.unsqueeze(1) for x in support_alphas ], 1) support_alphas = softmax(support_alphas) # print("support_alphas after softmax", support_alphas) # meta-supervision: KL loss over \alpha and real source source_alphas = softmax(source_alphas) # [ 32, 32, 32 ] source_labels = [torch.FloatTensor([x == len(train_batches1)]) for x in source_ids] # one-hot if args.cuda: source_alphas = [alpha.cuda() for alpha in source_alphas] source_labels = [label.cuda() for label in source_labels] source_labels = Variable(torch.stack(source_labels, dim=0)) # 3*1 # print("source labels", source_labels) source_alphas = torch.stack(source_alphas, dim=0) # print("source_alpha after stack", source_alphas) source_labels = source_labels.expand_as(source_alphas).permute(1, 0) source_alphas = source_alphas.permute(1, 0) loss_kl.append(kl_criterion(source_alphas, source_labels)) # entropy loss over \alpha # entropy_loss = entropy_criterion(torch.stack(support_alphas, dim=0).permute(1, 0)) # print source_alphas loss_entropy.append(entropy_criterion(source_alphas)) output_moe_i = sum([alpha.unsqueeze(1).repeat(1, 2) * F.softmax(outputs_dst_transfer[id], dim=1) \ for alpha, id in zip(support_alphas, support_ids)]) # output_moe_full = sum([ alpha.unsqueeze(1).repeat(1, 2) * F.softmax(ms_outputs[i][id], dim=1) \ # for alpha, id in zip(full_alphas, source_ids) ]) # print("output_moe_i & labels", output_moe_i, train_labels[i]) loss_moe.append(moe_criterion(torch.log(output_moe_i), labels_dst)) # loss_moe.append(moe_criterion(torch.log(output_moe_full), train_labels[i])) # print("labels_dst", labels_dst) # upper_out = classifier_mix(torch.cat((cur_output_dst_mem, output_moe_i), dim=1)) upper_out = cur_output_dst_mem + classifier_mix.multp * output_moe_i loss_all = mtl_criterion(torch.log_softmax(upper_out, dim=1), labels_dst) loss_train_dst = sum(loss_train_dst) loss_mtl = sum(loss_mtl) # print("loss mtl", loss_mtl) # loss_mtl = loss_mtl.mean() loss_mtl /= len(source_ids) loss_moe = sum(loss_moe) # if iter_cnt < 400: # lambda_moe = 0 # lambda_entropy = 0 # else: lambda_moe = args.lambda_moe lambda_entropy = args.lambda_entropy # loss = (1 - lambda_moe) * loss_mtl + lambda_moe * loss_moe loss = args.lambda_mtl * loss_mtl + lambda_moe * loss_moe loss_kl = sum(loss_kl) loss_entropy = sum(loss_entropy) loss += args.lambda_entropy * loss_entropy loss += loss_train_dst * args.lambda_dst loss += loss_all * args.lambda_all loss_total += loss if args.lambda_critic > 0: loss_dan = sum(loss_dan) loss += args.lambda_critic * loss_dan loss.backward() optim_model.step() # print("loss entropy", loss_entropy) # print("mats", [Us, Ps, Ns]) # for paras in task_paras: # print(paras) # for name, param in paras: # if param.requires_grad: # print(name, param.data) # for name, param in encoder.named_parameters(): # if param.requires_grad: # # print(name, param.data) # print(name, param.grad) for cls_i, classifier in enumerate(classifiers): for name, param in classifier.named_parameters(): # print(cls_i, name, param.grad) pass if iter_cnt % 5 == 0: # [(mu_i, covi_i), ...] # domain_encs = domain_encoding(dup_train_loaders, args, encoder) if args.metric == "biaffine": mats = [Us, Ws, Vs] else: mats = [Us, Ps, Ns] # evaluate( # # [encoders, encoder_dst], # # [classifiers, classifier_dst, classifier_mix], # # mats, # # [dup_train_loaders, valid_loader], # # True, # # args # # ) # say("\r" + " " * 50) # TODO: print train acc as well # print("loss dan", loss_dan) say("{} MTL loss: {:.4f}, MOE loss: {:.4f}, DAN loss: {:.4f}, " "loss: {:.4f}\n" # ", dev acc/oracle: {:.4f}/{:.4f}" .format(iter_cnt, loss_mtl.item(), loss_moe.item(), loss_dan.item(), loss.item(), # curr_dev, # oracle_curr_dev )) writer.add_scalar('training_loss', loss_total / total, epoch) say("\n") return iter_cnt def compute_oracle(outputs, label, args): ''' Compute the oracle accuracy given outputs from multiple classifiers ''' # oracle = torch.ByteTensor([0] * label.shape[0]) oracle = torch.BoolTensor([0] * label.shape[0]) if args.cuda: oracle = oracle.cuda() for i, output in enumerate(outputs): pred = output.data.max(dim=1)[1] # print("pred", pred) # print("label", label) oracle |= pred.eq(label.byte()) return oracle def evaluate(epoch, encoders, classifiers, mats, loaders, return_best_thrs, args, thr=None): ''' Evaluate model using MOE ''' encoders, encoder_dst = encoders classifiers, classifier_dst, classifier_mix = classifiers map(lambda m: m.eval(), encoders + classifiers + [encoder_dst, classifier_dst, classifier_mix]) if args.metric == "biaffine": Us, Ws, Vs = mats else: Us, Ps, Ns = mats source_loaders, valid_loader = loaders domain_encs = domain_encoding(source_loaders, args, encoders) oracle_correct = 0 correct = 0 tot_cnt = 0 y_true = [] y_pred = [] y_score = [] loss = 0. source_ids = range(len(domain_encs)) for batch1, batch2, label in valid_loader: if args.cuda: batch1 = batch1.cuda() batch2 = batch2.cuda() label = label.cuda() # print("eval labels", label) batch1 = Variable(batch1) batch2 = Variable(batch2) bs = len(batch1) # print("bs", len(batch1)) _, hidden_dst = encoder_dst(batch1, batch2) cur_output_dst = classifier_dst(hidden_dst) cur_output_dst_mem = torch.softmax(cur_output_dst, dim=1) # print("mem", cur_output_dst_mem) cur_output_dst = torch.log(cur_output_dst_mem) outputs_dst_transfer = [] for src_i in range(len(source_loaders)): _, cur_hidden = encoders[src_i](batch1, batch2) cur_output = classifiers[src_i](cur_hidden) outputs_dst_transfer.append(cur_output) # _, hidden = encoders[0](batch1, batch2) # source_ids = range(len(domain_encs)) if args.metric == "biaffine": alphas = [biaffine_metric_fast(hidden_dst, mu[0], Us[0]) \ for mu in domain_encs] else: alphas = [mahalanobis_metric_fast(hidden_dst, mu[0], U, mu[1], P, mu[2], N) \ for (mu, U, P, N) in zip(domain_encs, Us, Ps, Ns)] # # alphas = [ (1 - x / sum(alphas)) for x in alphas ] alphas = softmax(alphas) if args.cuda: alphas = [alpha.cuda() for alpha in alphas] alphas = [Variable(alpha) for alpha in alphas] # # outputs = [F.softmax(classifier(hidden), dim=1) for classifier in classifiers] output_moe = sum([alpha.unsqueeze(1).repeat(1, 2) * output_i \ for (alpha, output_i) in zip(alphas, outputs_dst_transfer)]) # pred = output.data.max(dim=1)[1] # oracle_eq = compute_oracle(outputs, label, args) # outputs = classifier_mix(torch.cat((cur_output_dst_mem, output_moe), dim=1)) outputs = cur_output_dst_mem + classifier_mix.multp * output_moe # print("weight mix", classifier_mix.multp) outputs_upper_logits = torch.log_softmax(outputs, dim=1) # outputs_upper_logits = torch.log(cur_output_dst_mem) outputs_upper_logits = output_moe # print("outputs_upper_logits", outputs_upper_logits) pred = outputs_upper_logits.data.max(dim=1)[1] # oracle_eq = compute_oracle(outputs_upper_logits, label, args) loss_batch = F.nll_loss(outputs_upper_logits, label) loss += bs * loss_batch.item() # if args.eval_only: # for i in range(batch1.shape[0]): # for j in range(len(alphas)): # say("{:.4f}: [{:.4f}, {:.4f}], ".format( # alphas[j].data[i], outputs[j].data[i][0], outputs[j].data[i][1]) # ) # oracle_TF = "T" if oracle_eq[i] == 1 else colored("F", 'red') # say("gold: {}, pred: {}, oracle: {}\n".format(label[i], pred[i], oracle_TF)) # say("\n") # print torch.cat( # [ # torch.cat([ x.unsqueeze(1) for x in alphas ], 1), # torch.cat([ x for x in outputs ], 1) # ], 1 # ) y_true += label.tolist() y_pred += pred.tolist() # print("output", output[:, 1].data.tolist()) y_score += outputs_upper_logits[:, 1].data.tolist() # print("cur y score", y_score) correct += pred.eq(label).sum() # oracle_correct += oracle_eq.sum() tot_cnt += outputs_upper_logits.size(0) # print("y_true", y_true) # print("y_pred", y_pred) if thr is not None: print("using threshold %.4f" % thr) y_score = np.array(y_score) y_pred = np.zeros_like(y_score) y_pred[y_score > thr] = 1 else: # print("y_score", y_score) pass loss /= tot_cnt prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average="binary") # print("y_score", y_score) auc = roc_auc_score(y_true, y_score) print("Loss: {:.4f}, AUC: {:.2f}, Prec: {:.2f}, Rec: {:.2f}, F1: {:.2f}".format( loss, auc * 100, prec * 100, rec * 100, f1 * 100)) best_thr = None metric = [auc, prec, rec, f1] if return_best_thrs: precs, recs, thrs = precision_recall_curve(y_true, y_score) f1s = 2 * precs * recs / (precs + recs) f1s = f1s[:-1] thrs = thrs[~np.isnan(f1s)] f1s = f1s[~np.isnan(f1s)] best_thr = thrs[np.argmax(f1s)] print("best threshold={:.4f}, f1={:.4f}".format(best_thr, np.max(f1s))) writer.add_scalar('val_loss', loss, epoch) else: writer.add_scalar('test_f1', f1, epoch) acc = float(correct) / tot_cnt oracle_acc = float(oracle_correct) / tot_cnt # return (acc, oracle_acc), confusion_matrix(y_true, y_pred) return best_thr, metric def evaluate_cross(encoder, classifiers, mats, loaders, return_best_thrs, args, thr=None): ''' Evaluate model using MOE ''' map(lambda m: m.eval(), [encoder] + classifiers) if args.metric == "biaffine": Us, Ws, Vs = mats else: Us, Ps, Ns = mats source_loaders, valid_loaders_src = loaders domain_encs = domain_encoding(source_loaders, args, encoder) source_ids = range(len(valid_loaders_src)) thresholds = [] metrics = [] alphas_weights = np.zeros(shape=(4, 4)) for src_i in range(len(valid_loaders_src)): valid_loader = valid_loaders_src[src_i] oracle_correct = 0 correct = 0 tot_cnt = 0 y_true = [] y_pred = [] y_score = [] # support_ids = [x for x in source_ids if x != src_i] # experts support_ids = [x for x in source_ids] # experts cur_domain_encs = [domain_encs[x] for x in support_ids] cur_Us = [Us[x] for x in support_ids] cur_Ps = [Ps[x] for x in support_ids] cur_Ns = [Ns[x] for x in support_ids] cur_alpha_weights = [[]] * 4 cur_alpha_weights_stack = np.empty(shape=(0, len(support_ids))) for batch1, batch2, label in valid_loader: if args.cuda: batch1 = batch1.cuda() batch2 = batch2.cuda() label = label.cuda() # print("eval labels", label) batch1 = Variable(batch1) batch2 = Variable(batch2) _, hidden = encoder(batch1, batch2) # source_ids = range(len(domain_encs)) if args.metric == "biaffine": alphas = [biaffine_metric_fast(hidden, mu[0], Us[0]) \ for mu in domain_encs] else: alphas = [mahalanobis_metric_fast(hidden, mu[0], U, mu[1], P, mu[2], N) \ for (mu, U, P, N) in zip(cur_domain_encs, cur_Us, cur_Ps, cur_Ns)] # alphas = [ (1 - x / sum(alphas)) for x in alphas ] alphas = softmax(alphas) # print("alphas", alphas[0].mean(), alphas[1].mean(), alphas[2].mean()) # print("alphas", alphas) alphas = [] for al_i in range(len(support_ids)): alphas.append(torch.zeros(size=(batch1.size()[0],))) alphas[src_i] = torch.ones(size=(batch1.size()[0],)) alpha_cat = torch.zeros(size=(alphas[0].shape[0], len(support_ids))) for col, a_list in enumerate(alphas): alpha_cat[:, col] = a_list cur_alpha_weights_stack = np.concatenate((cur_alpha_weights_stack, alpha_cat.detach().numpy())) # for j, supp_id in enumerate(support_ids): # cur_alpha_weights[supp_id] += alphas[j].data.tolist() # cur_alpha_weights[supp_id].append(alphas[j].mean().item()) if args.cuda: alphas = [alpha.cuda() for alpha in alphas] alphas = [Variable(alpha) for alpha in alphas] outputs = [F.softmax(classifiers[j](hidden), dim=1) for j in support_ids] output = sum([alpha.unsqueeze(1).repeat(1, 2) * output_i \ for (alpha, output_i) in zip(alphas, outputs)]) # print("pred output", output) pred = output.data.max(dim=1)[1] oracle_eq = compute_oracle(outputs, label, args) if args.eval_only: for i in range(batch1.shape[0]): for j in range(len(alphas)): say("{:.4f}: [{:.4f}, {:.4f}], ".format( alphas[j].data[i], outputs[j].data[i][0], outputs[j].data[i][1]) ) oracle_TF = "T" if oracle_eq[i] == 1 else colored("F", 'red') say("gold: {}, pred: {}, oracle: {}\n".format(label[i], pred[i], oracle_TF)) say("\n") # print torch.cat( # [ # torch.cat([ x.unsqueeze(1) for x in alphas ], 1), # torch.cat([ x for x in outputs ], 1) # ], 1 # ) y_true += label.tolist() y_pred += pred.tolist() y_score += output[:, 1].data.tolist() correct += pred.eq(label).sum() oracle_correct += oracle_eq.sum() tot_cnt += output.size(0) # print("y_true", y_true) # print("y_pred", y_pred) # for j in support_ids: # print(src_i, j, cur_alpha_weights[j]) # alphas_weights[src_i, j] = np.mean(cur_alpha_weights[j]) # print(alphas_weights) alphas_weights[src_i, support_ids] = np.mean(cur_alpha_weights_stack, axis=0) if thr is not None: print("using threshold %.4f" % thr[src_i]) y_score = np.array(y_score) y_pred = np.zeros_like(y_score) y_pred[y_score > thr[src_i]] = 1 # prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average="binary") acc = float(correct) / tot_cnt oracle_acc = float(oracle_correct) / tot_cnt # print("source", src_i, "validation results: precision: {:.2f}, recall: {:.2f}, f1: {:.2f}".format( # prec*100, rec*100, f1*100)) # return (acc, oracle_acc), confusion_matrix(y_true, y_pred) prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average="binary") auc = roc_auc_score(y_true, y_score) print("source {}, AUC: {:.2f}, Prec: {:.2f}, Rec: {:.2f}, F1: {:.2f}".format( src_i, auc * 100, prec * 100, rec * 100, f1 * 100)) metrics.append([auc, prec, rec, f1]) if return_best_thrs: precs, recs, thrs = precision_recall_curve(y_true, y_score) f1s = 2 * precs * recs / (precs + recs) f1s = f1s[:-1] thrs = thrs[~np.isnan(f1s)] f1s = f1s[~np.isnan(f1s)] best_thr = thrs[np.argmax(f1s)] print("best threshold=%4f, f1=%.4f", best_thr, np.max(f1s)) thresholds.append(best_thr) print("source domain weight matrix\n", alphas_weights) metrics = np.array(metrics) return thresholds, metrics, alphas_weights def predict(args): encoder, classifiers, Us, Ps, Ns = torch.load(args.load_model) map(lambda m: m.eval(), [encoder] + classifiers) # args = argparser.parse_args() # say(args) if args.cuda: map(lambda m: m.cuda(), [encoder] + classifiers) Us = [U.cuda() for U in Us] Ps = [P.cuda() for P in Ps] Ns = [N.cuda() for N in Ns] say("\nTransferring from %s to %s\n" % (args.train, args.test)) source_train_sets = args.train.split(',') train_loaders = [] for source in source_train_sets: filepath = os.path.join(DATA_DIR, "%s_train.svmlight" % (source)) train_dataset = AmazonDataset(filepath) train_loader = data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) train_loaders.append(train_loader) test_filepath = os.path.join(DATA_DIR, "%s_test.svmlight" % (args.test)) test_dataset = AmazonDataset(test_filepath) test_loader = data.DataLoader( test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) say("Corpus loaded.\n") mats = [Us, Ps, Ns] (acc, oracle_acc), confusion_mat = evaluate( encoder, classifiers, mats, [train_loaders, test_loader], args ) say(colored("Test accuracy/oracle {:.4f}/{:.4f}\n".format(acc, oracle_acc), 'red')) def train(args): ''' Training Strategy Input: source = {S1, S2, ..., Sk}, target = {T} Train: Approach 1: fix metric and learn encoder only Approach 2: learn metric and encoder alternatively ''' # test_mahalanobis_metric() and return args.cuda = not args.no_cuda and torch.cuda.is_available() say('cuda is available %s\n' % args.cuda) np.random.seed(args.seed) torch.manual_seed(args.seed + args.seed_delta) if args.cuda: torch.cuda.manual_seed(args.seed + args.seed_delta) source_train_sets = args.train.split(',') print("sources", source_train_sets) encoders = [] for _ in range(len(source_train_sets)): # encoder_class = get_model_class("mlp") encoder_class = CNNMatchModel(input_matrix_size1=args.matrix_size1, input_matrix_size2=args.matrix_size2, mat1_channel1=args.mat1_channel1, mat1_kernel_size1=args.mat1_kernel_size1, mat1_channel2=args.mat1_channel2, mat1_kernel_size2=args.mat1_kernel_size2, mat1_hidden=args.mat1_hidden, mat2_channel1=args.mat2_channel1, mat2_kernel_size1=args.mat2_kernel_size1, mat2_hidden=args.mat2_hidden) # encoder_class.add_config(argparser) encoders.append(encoder_class) encoder_dst = CNNMatchModel(input_matrix_size1=args.matrix_size1, input_matrix_size2=args.matrix_size2, mat1_channel1=args.mat1_channel1, mat1_kernel_size1=args.mat1_kernel_size1, mat1_channel2=args.mat1_channel2, mat1_kernel_size2=args.mat1_kernel_size2, mat1_hidden=args.mat1_hidden, mat2_channel1=args.mat2_channel1, mat2_kernel_size1=args.mat2_kernel_size1, mat2_hidden=args.mat2_hidden) critic_class = get_critic_class(args.critic) critic_class.add_config(argparser) args = argparser.parse_args() say(args) # encoder is shared across domains # encoder = encoder_class(args) # encoder = encoder_class print() print("encoder", encoders[0]) say("Transferring from %s to %s\n" % (args.train, args.test)) train_loaders = [] # valid_loaders_src = [] # test_loaders_src = [] Us = [] Ps = [] Ns = [] Ws = [] Vs = [] # Ms = [] for source in source_train_sets: # filepath = os.path.join(DATA_DIR, "%s_train.svmlight" % (source)) filepath = os.path.join(settings.DOM_ADAPT_DIR, "{}_train.pkl".format(source)) assert (os.path.exists(filepath)) # train_dataset = AmazonDataset(filepath) train_dataset = ProcessedCNNInputDataset(source, "train") train_loader = data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) train_loaders.append(train_loader) # cur_valid_dataset = ProcessedCNNInputDataset(source, "valid") # cur_valid_loader = data.DataLoader( # cur_valid_dataset, # batch_size=args.batch_size, # shuffle=False, # num_workers=0 # ) # valid_loaders_src.append(cur_valid_loader) # # cur_test_dataset = ProcessedCNNInputDataset(source, "test") # cur_test_loader = data.DataLoader( # cur_test_dataset, # batch_size=args.batch_size, # shuffle=False, # num_workers=0 # ) # test_loaders_src.append(cur_test_loader) if args.metric == "biaffine": U = torch.FloatTensor(encoders[0].n_d, encoders[0].n_d) W = torch.FloatTensor(encoders[0].n_d, 1) nn.init.xavier_uniform(W) Ws.append(W) V = torch.FloatTensor(encoders[0].n_d, 1) nn.init.xavier_uniform(V) Vs.append(V) else: U = torch.FloatTensor(encoders[0].n_d, args.m_rank) nn.init.xavier_uniform_(U) Us.append(U) P = torch.FloatTensor(encoders[0].n_d, args.m_rank) nn.init.xavier_uniform_(P) Ps.append(P) N = torch.FloatTensor(encoders[0].n_d, args.m_rank) nn.init.xavier_uniform_(N) Ns.append(N) # Ms.append(U.mm(U.t())) # unl_filepath = os.path.join(DATA_DIR, "%s_train.svmlight" % (args.test)) unl_filepath = os.path.join(settings.DOM_ADAPT_DIR, "{}_train.pkl".format(args.test)) print("****************", unl_filepath) assert (os.path.exists(unl_filepath)) # unl_dataset = AmazonDomainDataset(unl_filepath) # using domain as labels unl_dataset = OAGDomainDataset(args.test, "train") unl_loader = data.DataLoader( unl_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0 ) train_dataset_dst = ProcessedCNNInputDataset(args.test, "train") train_loader_dst = data.DataLoader( train_dataset_dst, batch_size=args.batch_size, shuffle=False, num_workers=0 ) # valid_filepath = os.path.join(DATA_DIR, "%s_test.svmlight" % (args.test)) # No dev files # valid_dataset = AmazonDataset(valid_filepath) valid_dataset = ProcessedCNNInputDataset(args.test, "valid") print("valid y", len(valid_dataset), valid_dataset.y) valid_loader = data.DataLoader( valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) # test_filepath = os.path.join(DATA_DIR, "%s_test.svmlight" % (args.test)) # assert (os.path.exists(test_filepath)) # test_dataset = AmazonDataset(test_filepath) test_dataset = ProcessedCNNInputDataset(args.test, "test") test_loader = data.DataLoader( test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 ) say("Corpus loaded.\n") classifiers = [] for source in source_train_sets: # only one layer classifier = nn.Linear(encoders[0].n_out, 2) # binary classification # classifier = encoder.fc_out # nn.init.xavier_normal(classifier.weight) # nn.init.constant(classifier.bias, 0.1) classifiers.append(classifier) classifier_dst = nn.Linear(encoder_dst.n_out, 2) # classifier_mix = nn.Linear(2, 2) classifier_mix = WeightScaler() critic = critic_class(encoders[0], args) # if args.save_model: # say(colored("Save model to {}\n".format(args.save_model + ".init"), 'red')) # torch.save([encoder, classifiers, Us, Ps, Ns], args.save_model + ".init") if args.cuda: map(lambda m: m.cuda(), [encoder_dst, critic, classifier_dst, classifier_mix] + encoders + classifiers) Us = [Variable(U.cuda(), requires_grad=True) for U in Us] Ps = [Variable(P.cuda(), requires_grad=True) for P in Ps] Ns = [Variable(N.cuda(), requires_grad=True) for N in Ns] if args.metric == "biaffine": Ws = [Variable(W.cuda(), requires_grad=True) for W in Ws] Vs = [Variable(V.cuda(), requires_grad=True) for V in Vs] # Ms = [ U.mm(U.t()) for U in Us ] # say("\nEncoder: {}\n".format(encoder)) for i, classifier in enumerate(classifiers): say("Classifier-{}: {}\n".format(i, classifier)) say("Critic: {}\n".format(critic)) requires_grad = lambda x: x.requires_grad # task_params = list(encoder.parameters()) task_params = [] for encoder in encoders: task_params += encoder.parameters() task_params += encoder_dst.parameters() for classifier in classifiers: task_params += list(classifier.parameters()) task_params += classifier_dst.parameters() task_params += classifier_mix.parameters() # task_params += [classifier_mix.data] task_params += list(critic.parameters()) task_params += Us task_params += Ps task_params += Ns if args.metric == "biaffine": task_params += Ws task_params += Vs optim_model = optim.Adagrad( # use adagrad instead of adam filter(requires_grad, task_params), lr=args.lr, weight_decay=1e-4 ) say("Training will begin from scratch\n") best_dev = 0 best_test = 0 iter_cnt = 0 # encoder.load_state_dict(torch.load(os.path.join(settings.OUT_VENUE_DIR, "venue-matching-cnn.mdl"))) for epoch in range(args.max_epoch): say("epoch: {}\n".format(epoch)) if args.metric == "biaffine": mats = [Us, Ws, Vs] else: mats = [Us, Ps, Ns] iter_cnt = train_epoch( iter_cnt, [encoders, encoder_dst], [classifiers, classifier_dst, classifier_mix], critic, mats, [train_loaders, train_loader_dst, unl_loader, valid_loader], args, optim_model, epoch ) # thrs, metrics_val, src_weights_val = evaluate_cross( # encoder, classifiers, # mats, # [train_loaders, valid_loaders_src], # return_best_thrs=True, # args=args # ) # # _, metrics_test, src_weights_test = evaluate_cross( # encoder, classifiers, # mats, # [train_loaders, test_loaders_src], # return_best_thrs=False, # args=args, # thr=thrs # ) thr, metrics_val = evaluate( epoch, [encoders, encoder_dst], [classifiers, classifier_dst, classifier_mix], mats, [train_loaders, valid_loader], True, args ) # say("Dev accuracy/oracle: {:.4f}/{:.4f}\n".format(curr_dev, oracle_curr_dev)) _, metrics_test = evaluate( epoch, [encoders, encoder_dst], [classifiers, classifier_dst, classifier_mix], mats, [train_loaders, test_loader], False, args, thr=thr ) # say("Test accuracy/oracle: {:.4f}/{:.4f}\n".format(curr_test, oracle_curr_test)) # if curr_dev >= best_dev: # best_dev = curr_dev # best_test = curr_test # print(confusion_mat) # if args.save_model: # say(colored("Save model to {}\n".format(args.save_model + ".best"), 'red')) # torch.save([encoder, classifiers, Us, Ps, Ns], args.save_model + ".best") say("\n") say(colored("Best test accuracy {:.4f}\n".format(best_test), 'red')) def test_mahalanobis_metric(): p = torch.FloatTensor(1, 5).normal_() S = torch.FloatTensor(4, 5).normal_() p = Variable(p) # .cuda() S = Variable(S) # .cuda() print(p, S) encoder = nn.Sequential(nn.Linear(5, 5), nn.ReLU()) encoder = encoder # .cuda() nn.init.xavier_normal(encoder[0].weight) nn.init.constant(encoder[0].bias, 0.1) print(encoder[0].weight) d = mahalanobis_metric(p, S, args, encoder) print(d) # import argparse if __name__ == '__main__': random.seed(0) torch.manual_seed(0) if args.cuda: torch.cuda.manual_seed(0) print("eval only", args.eval_only) if args.eval_only: predict(args) else: train(args) writer.close()
[ "torch.nn.ReLU", "models.cnn.CNNMatchModel", "msda_src.model_utils.get_critic_class", "dataset.OAGDomainDataset", "torch.log_softmax", "torch.max", "torch.nn.init.xavier_normal", "sklearn.metrics.roc_auc_score", "torch.softmax", "torch.nn.MSELoss", "numpy.array", "msda_src.utils.op.softmax", "torch.cuda.is_available", "copy.deepcopy", "torch.nn.init.xavier_uniform", "sys.path.append", "torch.nn.functional.softmax", "os.path.exists", "numpy.mean", "argparse.ArgumentParser", "torch.nn.functional.nll_loss", "torch.mean", "torch.nn.init.xavier_uniform_", "numpy.max", "msda_src.utils.io.AmazonDataset", "numpy.random.seed", "torch.autograd.Variable", "torch.BoolTensor", "torch.gather", "sklearn.metrics.precision_recall_fscore_support", "msda_src.utils.io.say", "sklearn.metrics.precision_recall_curve", "numpy.argmax", "torch.norm", "torch.nn.NLLLoss", "numpy.isnan", "warnings.filterwarnings", "torch.cat", "torch.manual_seed", "termcolor.colored", "torch.log", "dataset.ProcessedCNNInputDataset", "torch.load", "torch.stack", "os.path.join", "random.seed", "numpy.zeros", "torch.nn.init.constant", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.cuda.manual_seed", "numpy.zeros_like", "torch.FloatTensor", "torch.rand" ]
[((521, 543), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (536, 543), False, 'import sys, os, glob\n'), ((1064, 1097), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1087, 1097), False, 'import warnings\n'), ((1111, 1198), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Learning to Adapt from Multi-Source Domains"""'}), "(description=\n 'Learning to Adapt from Multi-Source Domains')\n", (1134, 1198), False, 'import argparse\n'), ((7751, 7800), 'torch.max', 'torch.max', (['mahalanobis_ratio1', 'mahalanobis_ratio2'], {}), '(mahalanobis_ratio1, mahalanobis_ratio2)\n', (7760, 7800), False, 'import torch\n'), ((8659, 8688), 'torch.gather', 'torch.gather', (['S', '(0)', 'neg_index'], {}), '(S, 0, neg_index)\n', (8671, 8688), False, 'import torch\n'), ((8701, 8730), 'torch.gather', 'torch.gather', (['S', '(0)', 'pos_index'], {}), '(S, 0, pos_index)\n', (8713, 8730), False, 'import torch\n'), ((8744, 8782), 'torch.mean', 'torch.mean', (['neg_S'], {'dim': '(0)', 'keepdim': '(True)'}), '(neg_S, dim=0, keepdim=True)\n', (8754, 8782), False, 'import torch\n'), ((8796, 8834), 'torch.mean', 'torch.mean', (['pos_S'], {'dim': '(0)', 'keepdim': '(True)'}), '(pos_S, dim=0, keepdim=True)\n', (8806, 8834), False, 'import torch\n'), ((9214, 9263), 'torch.max', 'torch.max', (['mahalanobis_ratio1', 'mahalanobis_ratio2'], {}), '(mahalanobis_ratio1, mahalanobis_ratio2)\n', (9223, 9263), False, 'import torch\n'), ((10188, 10222), 'torch.mean', 'torch.mean', (['S'], {'dim': '(0)', 'keepdim': '(True)'}), '(S, dim=0, keepdim=True)\n', (10198, 10222), False, 'import torch\n'), ((10829, 10852), 'copy.deepcopy', 'deepcopy', (['train_loaders'], {}), '(train_loaders)\n', (10837, 10852), False, 'from copy import copy, deepcopy\n'), ((10918, 10930), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (10928, 10930), True, 'import torch.nn as nn\n'), ((10951, 10963), 'torch.nn.NLLLoss', 'nn.NLLLoss', ([], {}), '()\n', (10961, 10963), True, 'import torch.nn as nn\n'), ((11013, 11025), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (11023, 11025), True, 'import torch.nn as nn\n'), ((22006, 22015), 'msda_src.utils.io.say', 'say', (['"""\n"""'], {}), "('\\n')\n", (22009, 22015), False, 'from msda_src.utils.io import say\n'), ((22231, 22269), 'torch.BoolTensor', 'torch.BoolTensor', (['([0] * label.shape[0])'], {}), '([0] * label.shape[0])\n', (22247, 22269), False, 'import torch\n'), ((27213, 27278), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['y_true', 'y_pred'], {'average': '"""binary"""'}), "(y_true, y_pred, average='binary')\n", (27244, 27278), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((27321, 27351), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (27334, 27351), False, 'from sklearn.metrics import roc_auc_score\n'), ((28803, 28825), 'numpy.zeros', 'np.zeros', ([], {'shape': '(4, 4)'}), '(shape=(4, 4))\n', (28811, 28825), True, 'import numpy as np\n'), ((34533, 34550), 'numpy.array', 'np.array', (['metrics'], {}), '(metrics)\n', (34541, 34550), True, 'import numpy as np\n'), ((34658, 34685), 'torch.load', 'torch.load', (['args.load_model'], {}), '(args.load_model)\n', (34668, 34685), False, 'import torch\n'), ((34980, 35045), 'msda_src.utils.io.say', 'say', (['("""\nTransferring from %s to %s\n""" % (args.train, args.test))'], {}), '("""\nTransferring from %s to %s\n""" % (args.train, args.test))\n', (34983, 35045), False, 'from msda_src.utils.io import say\n'), ((35506, 35560), 'os.path.join', 'os.path.join', (['DATA_DIR', "('%s_test.svmlight' % args.test)"], {}), "(DATA_DIR, '%s_test.svmlight' % args.test)\n", (35518, 35560), False, 'import sys, os, glob\n'), ((35582, 35610), 'msda_src.utils.io.AmazonDataset', 'AmazonDataset', (['test_filepath'], {}), '(test_filepath)\n', (35595, 35610), False, 'from msda_src.utils.io import AmazonDataset, AmazonDomainDataset\n'), ((35629, 35720), 'torch.utils.data.DataLoader', 'data.DataLoader', (['test_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(test_dataset, batch_size=args.batch_size, shuffle=False,\n num_workers=0)\n', (35644, 35720), True, 'import torch.utils.data as data\n'), ((35759, 35782), 'msda_src.utils.io.say', 'say', (['"""Corpus loaded.\n"""'], {}), "('Corpus loaded.\\n')\n", (35762, 35782), False, 'from msda_src.utils.io import say\n'), ((36389, 36430), 'msda_src.utils.io.say', 'say', (["('cuda is available %s\\n' % args.cuda)"], {}), "('cuda is available %s\\n' % args.cuda)\n", (36392, 36430), False, 'from msda_src.utils.io import say\n'), ((36436, 36461), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (36450, 36461), True, 'import numpy as np\n'), ((36466, 36512), 'torch.manual_seed', 'torch.manual_seed', (['(args.seed + args.seed_delta)'], {}), '(args.seed + args.seed_delta)\n', (36483, 36512), False, 'import torch\n'), ((37449, 37850), 'models.cnn.CNNMatchModel', 'CNNMatchModel', ([], {'input_matrix_size1': 'args.matrix_size1', 'input_matrix_size2': 'args.matrix_size2', 'mat1_channel1': 'args.mat1_channel1', 'mat1_kernel_size1': 'args.mat1_kernel_size1', 'mat1_channel2': 'args.mat1_channel2', 'mat1_kernel_size2': 'args.mat1_kernel_size2', 'mat1_hidden': 'args.mat1_hidden', 'mat2_channel1': 'args.mat2_channel1', 'mat2_kernel_size1': 'args.mat2_kernel_size1', 'mat2_hidden': 'args.mat2_hidden'}), '(input_matrix_size1=args.matrix_size1, input_matrix_size2=args\n .matrix_size2, mat1_channel1=args.mat1_channel1, mat1_kernel_size1=args\n .mat1_kernel_size1, mat1_channel2=args.mat1_channel2, mat1_kernel_size2\n =args.mat1_kernel_size2, mat1_hidden=args.mat1_hidden, mat2_channel1=\n args.mat2_channel1, mat2_kernel_size1=args.mat2_kernel_size1,\n mat2_hidden=args.mat2_hidden)\n', (37462, 37850), False, 'from models.cnn import CNNMatchModel\n'), ((37975, 38004), 'msda_src.model_utils.get_critic_class', 'get_critic_class', (['args.critic'], {}), '(args.critic)\n', (37991, 38004), False, 'from msda_src.model_utils import get_model_class, get_critic_class\n'), ((38083, 38092), 'msda_src.utils.io.say', 'say', (['args'], {}), '(args)\n', (38086, 38092), False, 'from msda_src.utils.io import say\n'), ((38251, 38312), 'msda_src.utils.io.say', 'say', (["('Transferring from %s to %s\\n' % (args.train, args.test))"], {}), "('Transferring from %s to %s\\n' % (args.train, args.test))\n", (38254, 38312), False, 'from msda_src.utils.io import say\n'), ((40641, 40669), 'os.path.exists', 'os.path.exists', (['unl_filepath'], {}), '(unl_filepath)\n', (40655, 40669), False, 'import sys, os, glob\n'), ((40769, 40805), 'dataset.OAGDomainDataset', 'OAGDomainDataset', (['args.test', '"""train"""'], {}), "(args.test, 'train')\n", (40785, 40805), False, 'from dataset import ProcessedCNNInputDataset, OAGDomainDataset\n'), ((40823, 40912), 'torch.utils.data.DataLoader', 'data.DataLoader', (['unl_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'num_workers': '(0)'}), '(unl_dataset, batch_size=args.batch_size, shuffle=True,\n num_workers=0)\n', (40838, 40912), True, 'import torch.utils.data as data\n'), ((40972, 41016), 'dataset.ProcessedCNNInputDataset', 'ProcessedCNNInputDataset', (['args.test', '"""train"""'], {}), "(args.test, 'train')\n", (40996, 41016), False, 'from dataset import ProcessedCNNInputDataset, OAGDomainDataset\n'), ((41040, 41137), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_dataset_dst'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(train_dataset_dst, batch_size=args.batch_size, shuffle=\n False, num_workers=0)\n', (41055, 41137), True, 'import torch.utils.data as data\n'), ((41340, 41384), 'dataset.ProcessedCNNInputDataset', 'ProcessedCNNInputDataset', (['args.test', '"""valid"""'], {}), "(args.test, 'valid')\n", (41364, 41384), False, 'from dataset import ProcessedCNNInputDataset, OAGDomainDataset\n'), ((41462, 41554), 'torch.utils.data.DataLoader', 'data.DataLoader', (['valid_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(valid_dataset, batch_size=args.batch_size, shuffle=False,\n num_workers=0)\n', (41477, 41554), True, 'import torch.utils.data as data\n'), ((41783, 41826), 'dataset.ProcessedCNNInputDataset', 'ProcessedCNNInputDataset', (['args.test', '"""test"""'], {}), "(args.test, 'test')\n", (41807, 41826), False, 'from dataset import ProcessedCNNInputDataset, OAGDomainDataset\n'), ((41845, 41936), 'torch.utils.data.DataLoader', 'data.DataLoader', (['test_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(test_dataset, batch_size=args.batch_size, shuffle=False,\n num_workers=0)\n', (41860, 41936), True, 'import torch.utils.data as data\n'), ((41975, 41998), 'msda_src.utils.io.say', 'say', (['"""Corpus loaded.\n"""'], {}), "('Corpus loaded.\\n')\n", (41978, 41998), False, 'from msda_src.utils.io import say\n'), ((42353, 42384), 'torch.nn.Linear', 'nn.Linear', (['encoder_dst.n_out', '(2)'], {}), '(encoder_dst.n_out, 2)\n', (42362, 42384), True, 'import torch.nn as nn\n'), ((44261, 44302), 'msda_src.utils.io.say', 'say', (['"""Training will begin from scratch\n"""'], {}), "('Training will begin from scratch\\n')\n", (44264, 44302), False, 'from msda_src.utils.io import say\n'), ((46794, 46805), 'torch.autograd.Variable', 'Variable', (['p'], {}), '(p)\n', (46802, 46805), False, 'from torch.autograd import Variable\n'), ((46825, 46836), 'torch.autograd.Variable', 'Variable', (['S'], {}), '(S)\n', (46833, 46836), False, 'from torch.autograd import Variable\n'), ((46957, 46997), 'torch.nn.init.xavier_normal', 'nn.init.xavier_normal', (['encoder[0].weight'], {}), '(encoder[0].weight)\n', (46978, 46997), True, 'import torch.nn as nn\n'), ((47002, 47040), 'torch.nn.init.constant', 'nn.init.constant', (['encoder[0].bias', '(0.1)'], {}), '(encoder[0].bias, 0.1)\n', (47018, 47040), True, 'import torch.nn as nn\n'), ((47183, 47197), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (47194, 47197), False, 'import random\n'), ((47202, 47222), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (47219, 47222), False, 'import torch\n'), ((6191, 6206), 'torch.cat', 'torch.cat', (['S', '(0)'], {}), '(S, 0)\n', (6200, 6206), False, 'import torch\n'), ((6600, 6629), 'torch.gather', 'torch.gather', (['S', '(0)', 'pos_index'], {}), '(S, 0, pos_index)\n', (6612, 6629), False, 'import torch\n'), ((6646, 6675), 'torch.gather', 'torch.gather', (['S', '(0)', 'neg_index'], {}), '(S, 0, neg_index)\n', (6658, 6675), False, 'import torch\n'), ((6695, 6733), 'torch.mean', 'torch.mean', (['pos_S'], {'dim': '(0)', 'keepdim': '(True)'}), '(pos_S, dim=0, keepdim=True)\n', (6705, 6733), False, 'import torch\n'), ((6753, 6791), 'torch.mean', 'torch.mean', (['neg_S'], {'dim': '(0)', 'keepdim': '(True)'}), '(neg_S, dim=0, keepdim=True)\n', (6763, 6791), False, 'import torch\n'), ((6807, 6841), 'torch.mean', 'torch.mean', (['S'], {'dim': '(0)', 'keepdim': '(True)'}), '(S, dim=0, keepdim=True)\n', (6817, 6841), False, 'import torch\n'), ((13321, 13357), 'torch.softmax', 'torch.softmax', (['cur_output_dst'], {'dim': '(1)'}), '(cur_output_dst, dim=1)\n', (13334, 13357), False, 'import torch\n'), ((13383, 13412), 'torch.log', 'torch.log', (['cur_output_dst_mem'], {}), '(cur_output_dst_mem)\n', (13392, 13412), False, 'import torch\n'), ((16997, 17020), 'msda_src.utils.op.softmax', 'softmax', (['support_alphas'], {}), '(support_alphas)\n', (17004, 17020), False, 'from msda_src.utils.op import softmax\n'), ((17175, 17197), 'msda_src.utils.op.softmax', 'softmax', (['source_alphas'], {}), '(source_alphas)\n', (17182, 17197), False, 'from msda_src.utils.op import softmax\n'), ((17629, 17662), 'torch.stack', 'torch.stack', (['source_alphas'], {'dim': '(0)'}), '(source_alphas, dim=0)\n', (17640, 17662), False, 'import torch\n'), ((23456, 23472), 'torch.autograd.Variable', 'Variable', (['batch1'], {}), '(batch1)\n', (23464, 23472), False, 'from torch.autograd import Variable\n'), ((23490, 23506), 'torch.autograd.Variable', 'Variable', (['batch2'], {}), '(batch2)\n', (23498, 23506), False, 'from torch.autograd import Variable\n'), ((23701, 23737), 'torch.softmax', 'torch.softmax', (['cur_output_dst'], {'dim': '(1)'}), '(cur_output_dst, dim=1)\n', (23714, 23737), False, 'import torch\n'), ((23806, 23835), 'torch.log', 'torch.log', (['cur_output_dst_mem'], {}), '(cur_output_dst_mem)\n', (23815, 23835), False, 'import torch\n'), ((24597, 24612), 'msda_src.utils.op.softmax', 'softmax', (['alphas'], {}), '(alphas)\n', (24604, 24612), False, 'from msda_src.utils.op import softmax\n'), ((25345, 25378), 'torch.log_softmax', 'torch.log_softmax', (['outputs'], {'dim': '(1)'}), '(outputs, dim=1)\n', (25362, 25378), False, 'import torch\n'), ((25695, 25734), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['outputs_upper_logits', 'label'], {}), '(outputs_upper_logits, label)\n', (25705, 25734), True, 'import torch.nn.functional as F\n'), ((27017, 27034), 'numpy.array', 'np.array', (['y_score'], {}), '(y_score)\n', (27025, 27034), True, 'import numpy as np\n'), ((27052, 27074), 'numpy.zeros_like', 'np.zeros_like', (['y_score'], {}), '(y_score)\n', (27065, 27074), True, 'import numpy as np\n'), ((27605, 27644), 'sklearn.metrics.precision_recall_curve', 'precision_recall_curve', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (27627, 27644), False, 'from sklearn.metrics import precision_recall_curve\n'), ((33045, 33085), 'numpy.mean', 'np.mean', (['cur_alpha_weights_stack'], {'axis': '(0)'}), '(cur_alpha_weights_stack, axis=0)\n', (33052, 33085), True, 'import numpy as np\n'), ((33736, 33801), 'sklearn.metrics.precision_recall_fscore_support', 'precision_recall_fscore_support', (['y_true', 'y_pred'], {'average': '"""binary"""'}), "(y_true, y_pred, average='binary')\n", (33767, 33801), False, 'from sklearn.metrics import precision_recall_fscore_support\n'), ((33816, 33846), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (33829, 33846), False, 'from sklearn.metrics import roc_auc_score\n'), ((35169, 35221), 'os.path.join', 'os.path.join', (['DATA_DIR', "('%s_train.svmlight' % source)"], {}), "(DATA_DIR, '%s_train.svmlight' % source)\n", (35181, 35221), False, 'import sys, os, glob\n'), ((35248, 35271), 'msda_src.utils.io.AmazonDataset', 'AmazonDataset', (['filepath'], {}), '(filepath)\n', (35261, 35271), False, 'from msda_src.utils.io import AmazonDataset, AmazonDomainDataset\n'), ((35295, 35387), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(train_dataset, batch_size=args.batch_size, shuffle=False,\n num_workers=0)\n', (35310, 35387), True, 'import torch.utils.data as data\n'), ((36359, 36384), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (36382, 36384), False, 'import torch\n'), ((36539, 36590), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(args.seed + args.seed_delta)'], {}), '(args.seed + args.seed_delta)\n', (36561, 36590), False, 'import torch\n'), ((36814, 37215), 'models.cnn.CNNMatchModel', 'CNNMatchModel', ([], {'input_matrix_size1': 'args.matrix_size1', 'input_matrix_size2': 'args.matrix_size2', 'mat1_channel1': 'args.mat1_channel1', 'mat1_kernel_size1': 'args.mat1_kernel_size1', 'mat1_channel2': 'args.mat1_channel2', 'mat1_kernel_size2': 'args.mat1_kernel_size2', 'mat1_hidden': 'args.mat1_hidden', 'mat2_channel1': 'args.mat2_channel1', 'mat2_kernel_size1': 'args.mat2_kernel_size1', 'mat2_hidden': 'args.mat2_hidden'}), '(input_matrix_size1=args.matrix_size1, input_matrix_size2=args\n .matrix_size2, mat1_channel1=args.mat1_channel1, mat1_kernel_size1=args\n .mat1_kernel_size1, mat1_channel2=args.mat1_channel2, mat1_kernel_size2\n =args.mat1_kernel_size2, mat1_hidden=args.mat1_hidden, mat2_channel1=\n args.mat2_channel1, mat2_kernel_size1=args.mat2_kernel_size1,\n mat2_hidden=args.mat2_hidden)\n', (36827, 37215), False, 'from models.cnn import CNNMatchModel\n'), ((38684, 38708), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (38698, 38708), False, 'import sys, os, glob\n'), ((38784, 38825), 'dataset.ProcessedCNNInputDataset', 'ProcessedCNNInputDataset', (['source', '"""train"""'], {}), "(source, 'train')\n", (38808, 38825), False, 'from dataset import ProcessedCNNInputDataset, OAGDomainDataset\n'), ((38849, 38941), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_dataset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(0)'}), '(train_dataset, batch_size=args.batch_size, shuffle=False,\n num_workers=0)\n', (38864, 38941), True, 'import torch.utils.data as data\n'), ((40102, 40128), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['U'], {}), '(U)\n', (40125, 40128), True, 'import torch.nn as nn\n'), ((40162, 40209), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', 'args.m_rank'], {}), '(encoders[0].n_d, args.m_rank)\n', (40179, 40209), False, 'import torch\n'), ((40218, 40244), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['P'], {}), '(P)\n', (40241, 40244), True, 'import torch.nn as nn\n'), ((40278, 40325), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', 'args.m_rank'], {}), '(encoders[0].n_d, args.m_rank)\n', (40295, 40325), False, 'import torch\n'), ((40334, 40360), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['N'], {}), '(N)\n', (40357, 40360), True, 'import torch.nn as nn\n'), ((42097, 42128), 'torch.nn.Linear', 'nn.Linear', (['encoders[0].n_out', '(2)'], {}), '(encoders[0].n_out, 2)\n', (42106, 42128), True, 'import torch.nn as nn\n'), ((46585, 46594), 'msda_src.utils.io.say', 'say', (['"""\n"""'], {}), "('\\n')\n", (46588, 46594), False, 'from msda_src.utils.io import say\n'), ((46892, 46907), 'torch.nn.Linear', 'nn.Linear', (['(5)', '(5)'], {}), '(5, 5)\n', (46901, 46907), True, 'import torch.nn as nn\n'), ((46909, 46918), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (46916, 46918), True, 'import torch.nn as nn\n'), ((47249, 47274), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(0)'], {}), '(0)\n', (47271, 47274), False, 'import torch\n'), ((4947, 4960), 'torch.rand', 'torch.rand', (['(1)'], {}), '(1)\n', (4957, 4960), False, 'import torch\n'), ((5202, 5214), 'torch.log', 'torch.log', (['x'], {}), '(x)\n', (5211, 5214), False, 'import torch\n'), ((17515, 17548), 'torch.stack', 'torch.stack', (['source_labels'], {'dim': '(0)'}), '(source_labels, dim=0)\n', (17526, 17548), False, 'import torch\n'), ((18997, 19032), 'torch.log_softmax', 'torch.log_softmax', (['upper_out'], {'dim': '(1)'}), '(upper_out, dim=1)\n', (19014, 19032), False, 'import torch\n'), ((24709, 24724), 'torch.autograd.Variable', 'Variable', (['alpha'], {}), '(alpha)\n', (24717, 24724), False, 'from torch.autograd import Variable\n'), ((27810, 27824), 'numpy.argmax', 'np.argmax', (['f1s'], {}), '(f1s)\n', (27819, 27824), True, 'import numpy as np\n'), ((29752, 29768), 'torch.autograd.Variable', 'Variable', (['batch1'], {}), '(batch1)\n', (29760, 29768), False, 'from torch.autograd import Variable\n'), ((29790, 29806), 'torch.autograd.Variable', 'Variable', (['batch2'], {}), '(batch2)\n', (29798, 29806), False, 'from torch.autograd import Variable\n'), ((30355, 30370), 'msda_src.utils.op.softmax', 'softmax', (['alphas'], {}), '(alphas)\n', (30362, 30370), False, 'from msda_src.utils.op import softmax\n'), ((33192, 33209), 'numpy.array', 'np.array', (['y_score'], {}), '(y_score)\n', (33200, 33209), True, 'import numpy as np\n'), ((33231, 33253), 'numpy.zeros_like', 'np.zeros_like', (['y_score'], {}), '(y_score)\n', (33244, 33253), True, 'import numpy as np\n'), ((34105, 34144), 'sklearn.metrics.precision_recall_curve', 'precision_recall_curve', (['y_true', 'y_score'], {}), '(y_true, y_score)\n', (34127, 34144), False, 'from sklearn.metrics import precision_recall_curve\n'), ((39729, 39780), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', 'encoders[0].n_d'], {}), '(encoders[0].n_d, encoders[0].n_d)\n', (39746, 39780), False, 'import torch\n'), ((39797, 39834), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', '(1)'], {}), '(encoders[0].n_d, 1)\n', (39814, 39834), False, 'import torch\n'), ((39847, 39872), 'torch.nn.init.xavier_uniform', 'nn.init.xavier_uniform', (['W'], {}), '(W)\n', (39869, 39872), True, 'import torch.nn as nn\n'), ((39914, 39951), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', '(1)'], {}), '(encoders[0].n_d, 1)\n', (39931, 39951), False, 'import torch\n'), ((39964, 39989), 'torch.nn.init.xavier_uniform', 'nn.init.xavier_uniform', (['V'], {}), '(V)\n', (39986, 39989), True, 'import torch.nn as nn\n'), ((40045, 40092), 'torch.FloatTensor', 'torch.FloatTensor', (['encoders[0].n_d', 'args.m_rank'], {}), '(encoders[0].n_d, args.m_rank)\n', (40062, 40092), False, 'import torch\n'), ((46710, 46733), 'torch.FloatTensor', 'torch.FloatTensor', (['(1)', '(5)'], {}), '(1, 5)\n', (46727, 46733), False, 'import torch\n'), ((46752, 46775), 'torch.FloatTensor', 'torch.FloatTensor', (['(4)', '(5)'], {}), '(4, 5)\n', (46769, 46775), False, 'import torch\n'), ((5391, 5410), 'torch.norm', 'torch.norm', (['x', '(1)', '(1)'], {}), '(x, 1, 1)\n', (5401, 5410), False, 'import torch\n'), ((6123, 6156), 'torch.cat', 'torch.cat', (['(labels, label)'], {'dim': '(0)'}), '((labels, label), dim=0)\n', (6132, 6156), False, 'import torch\n'), ((14264, 14296), 'torch.log_softmax', 'torch.log_softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (14281, 14296), False, 'import torch\n'), ((14804, 14855), 'torch.cat', 'torch.cat', (['[1 - unl_critic_label, unl_critic_label]'], {}), '([1 - unl_critic_label, unl_critic_label])\n', (14813, 14855), False, 'import torch\n'), ((18628, 18651), 'torch.log', 'torch.log', (['output_moe_i'], {}), '(output_moe_i)\n', (18637, 18651), False, 'import torch\n'), ((27737, 27750), 'numpy.isnan', 'np.isnan', (['f1s'], {}), '(f1s)\n', (27745, 27750), True, 'import numpy as np\n'), ((27771, 27784), 'numpy.isnan', 'np.isnan', (['f1s'], {}), '(f1s)\n', (27779, 27784), True, 'import numpy as np\n'), ((27892, 27903), 'numpy.max', 'np.max', (['f1s'], {}), '(f1s)\n', (27898, 27903), True, 'import numpy as np\n'), ((31289, 31304), 'torch.autograd.Variable', 'Variable', (['alpha'], {}), '(alpha)\n', (31297, 31304), False, 'from torch.autograd import Variable\n'), ((32216, 32225), 'msda_src.utils.io.say', 'say', (['"""\n"""'], {}), "('\\n')\n", (32219, 32225), False, 'from msda_src.utils.io import say\n'), ((34330, 34344), 'numpy.argmax', 'np.argmax', (['f1s'], {}), '(f1s)\n', (34339, 34344), True, 'import numpy as np\n'), ((34405, 34416), 'numpy.max', 'np.max', (['f1s'], {}), '(f1s)\n', (34411, 34416), True, 'import numpy as np\n'), ((15590, 15612), 'torch.FloatTensor', 'torch.FloatTensor', (['[0]'], {}), '([0])\n', (15607, 15612), False, 'import torch\n'), ((18203, 18245), 'torch.nn.functional.softmax', 'F.softmax', (['outputs_dst_transfer[id]'], {'dim': '(1)'}), '(outputs_dst_transfer[id], dim=1)\n', (18212, 18245), True, 'import torch.nn.functional as F\n'), ((34249, 34262), 'numpy.isnan', 'np.isnan', (['f1s'], {}), '(f1s)\n', (34257, 34262), True, 'import numpy as np\n'), ((34287, 34300), 'numpy.isnan', 'np.isnan', (['f1s'], {}), '(f1s)\n', (34295, 34300), True, 'import numpy as np\n'), ((32083, 32102), 'termcolor.colored', 'colored', (['"""F"""', '"""red"""'], {}), "('F', 'red')\n", (32090, 32102), False, 'from termcolor import colored, cprint\n')]
import unittest import numpy as np from .softlearning_env_test import AdapterTestClass from softlearning.environments.adapters.robosuite_adapter import ( RobosuiteAdapter) class TestRobosuiteAdapter(unittest.TestCase, AdapterTestClass): # TODO(hartikainen): This is a terrible way of testing the envs. # All the envs should be tested independently. def create_adapter(self, domain='Sawyer', task='Lift', *args, **kwargs): return RobosuiteAdapter( domain, task, *args, **kwargs, has_renderer=False, has_offscreen_renderer=False, use_camera_obs=False) def test_environments(self): # Make sure that all the environments are creatable TEST_ENVIRONMENTS = [('Sawyer', 'Lift')] def verify_reset_and_step(domain, task): env = RobosuiteAdapter( domain=domain, task=task, has_renderer=False, has_offscreen_renderer=False, use_camera_obs=False) env.reset() env.step(env.action_space.sample()) for domain, task in TEST_ENVIRONMENTS: verify_reset_and_step(domain, task) def test_copy_environments(self): domain, task = 'Sawyer', 'Lift' env_kwargs = { "gripper_type": "TwoFingerGripper", "table_full_size": (0.8, 0.8, 0.8) } env1 = self.create_adapter(domain=domain, task=task, **env_kwargs) env1.reset() env2 = env1.copy() self.assertEqual(env1.observation_keys, env2.observation_keys) for key, value in env_kwargs.items(): self.assertEqual(getattr(env1.unwrapped, key), value) self.assertEqual(getattr(env2.unwrapped, key), value) domain, task = 'Sawyer', 'Lift' robosuite_adapter_kwargs = { 'observation_keys': ('joint_pos', 'joint_vel') } env_kwargs = { "gripper_type": "TwoFingerGripper", "table_full_size": (0.8, 0.8, 0.8) } env1 = self.create_adapter( domain=domain, task=task, **robosuite_adapter_kwargs, **env_kwargs) env1.reset() env2 = env1.copy() for key, value in robosuite_adapter_kwargs.items(): self.assertEqual(getattr(env1, key), value) self.assertEqual(getattr(env2, key), value) for key, value in env_kwargs.items(): self.assertEqual(getattr(env1.unwrapped, key), value) self.assertEqual(getattr(env2.unwrapped, key), value) def test_fails_with_invalid_environment_kwargs(self): domain, task = 'Sawyer', 'Lift' robosuite_adapter_kwargs = { 'observation_keys': ('joint_pos', 'invalid_key') } with self.assertRaises(AssertionError): env = self.create_adapter( domain=domain, task=task, **robosuite_adapter_kwargs) def test_environment_kwargs(self): env_kwargs = { "has_renderer": False, "has_offscreen_renderer": False, "use_camera_obs": False, "control_freq": 10, "horizon": 1000 } env = RobosuiteAdapter( domain='Sawyer', task='Lift', **env_kwargs) observation1, reward, done, info = env.step(env.action_space.sample()) self.assertAlmostEqual(reward, 0.0) for key, expected_value in env_kwargs.items(): actual_value = getattr(env.unwrapped, key) self.assertEqual(actual_value, expected_value) def test_render_rgb_array(self): env = self.create_adapter() with self.assertRaises(NotImplementedError): env.render() def test_render_human(self): env = self.create_adapter() with self.assertRaises(NotImplementedError): env.render() def test_fails_with_unnormalized_action_spec(self): from robosuite.environments.sawyer_lift import SawyerLift class UnnormalizedEnv(SawyerLift): @property def dof(self): return 5 @property def action_spec(self): low, high = np.ones(self.dof) * -2.0, np.ones(self.dof) * 2.0 return low, high env = UnnormalizedEnv( has_renderer=False, has_offscreen_renderer=False, use_camera_obs=False) with self.assertRaises(AssertionError): adapter = RobosuiteAdapter(domain=None, task=None, env=env) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.ones", "softlearning.environments.adapters.robosuite_adapter.RobosuiteAdapter" ]
[((4622, 4637), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4635, 4637), False, 'import unittest\n'), ((458, 581), 'softlearning.environments.adapters.robosuite_adapter.RobosuiteAdapter', 'RobosuiteAdapter', (['domain', 'task', '*args'], {'has_renderer': '(False)', 'has_offscreen_renderer': '(False)', 'use_camera_obs': '(False)'}), '(domain, task, *args, **kwargs, has_renderer=False,\n has_offscreen_renderer=False, use_camera_obs=False)\n', (474, 581), False, 'from softlearning.environments.adapters.robosuite_adapter import RobosuiteAdapter\n'), ((3238, 3298), 'softlearning.environments.adapters.robosuite_adapter.RobosuiteAdapter', 'RobosuiteAdapter', ([], {'domain': '"""Sawyer"""', 'task': '"""Lift"""'}), "(domain='Sawyer', task='Lift', **env_kwargs)\n", (3254, 3298), False, 'from softlearning.environments.adapters.robosuite_adapter import RobosuiteAdapter\n'), ((874, 992), 'softlearning.environments.adapters.robosuite_adapter.RobosuiteAdapter', 'RobosuiteAdapter', ([], {'domain': 'domain', 'task': 'task', 'has_renderer': '(False)', 'has_offscreen_renderer': '(False)', 'use_camera_obs': '(False)'}), '(domain=domain, task=task, has_renderer=False,\n has_offscreen_renderer=False, use_camera_obs=False)\n', (890, 992), False, 'from softlearning.environments.adapters.robosuite_adapter import RobosuiteAdapter\n'), ((4539, 4588), 'softlearning.environments.adapters.robosuite_adapter.RobosuiteAdapter', 'RobosuiteAdapter', ([], {'domain': 'None', 'task': 'None', 'env': 'env'}), '(domain=None, task=None, env=env)\n', (4555, 4588), False, 'from softlearning.environments.adapters.robosuite_adapter import RobosuiteAdapter\n'), ((4234, 4251), 'numpy.ones', 'np.ones', (['self.dof'], {}), '(self.dof)\n', (4241, 4251), True, 'import numpy as np\n'), ((4260, 4277), 'numpy.ones', 'np.ones', (['self.dof'], {}), '(self.dof)\n', (4267, 4277), True, 'import numpy as np\n')]
import Bio.PDB.Superimposer from Bio.PDB.Atom import Atom as BioPDBAtom import numpy as np import warnings from Bio.PDB.Atom import PDBConstructionWarning from classes.PDB import PDB from classes.Atom import Atom warnings.simplefilter('ignore', PDBConstructionWarning) def biopdb_aligned_chain(pdb_fixed, chain_id_fixed, pdb_moving, chain_id_moving): biopdb_atom_fixed = [] biopdb_atom_moving = [] for atom in pdb_fixed.get_CA_atoms(): if atom.chain == chain_id_fixed: biopdb_atom_fixed.append( BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location, " %s " % atom.type, atom.number, element=atom.element_symbol)) pdb_moving_coords = [] for atom in pdb_moving.get_all_atoms(): pdb_moving_coords.append([atom.get_x(), atom.get_y(), atom.get_z()]) if atom.is_CA(): if atom.chain == chain_id_moving: biopdb_atom_moving.append( BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location, " %s " % atom.type, atom.number, element=atom.element_symbol)) sup = Bio.PDB.Superimposer() sup.set_atoms(biopdb_atom_fixed, biopdb_atom_moving) # no need to transpose rotation matrix as Bio.PDB.Superimposer() generates correct matrix to rotate using np.matmul rot, tr = sup.rotran[0], sup.rotran[1] pdb_moving_coords_rot = np.matmul(pdb_moving_coords, rot) pdb_moving_coords_rot_tx = pdb_moving_coords_rot + tr pdb_moving_copy = PDB() pdb_moving_copy.set_chain_id_list(pdb_moving.get_chain_id_list()) pdb_moving_copy_atom_list = [] atom_count = 0 for atom in pdb_moving.get_all_atoms(): x_transformed = pdb_moving_coords_rot_tx[atom_count][0] y_transformed = pdb_moving_coords_rot_tx[atom_count][1] z_transformed = pdb_moving_coords_rot_tx[atom_count][2] atom_transformed = Atom(atom.get_number(), atom.get_type(), atom.get_alt_location(), atom.get_residue_type(), atom.get_chain(), atom.get_residue_number(), atom.get_code_for_insertion(), x_transformed, y_transformed, z_transformed, atom.get_occ(), atom.get_temp_fact(), atom.get_element_symbol(), atom.get_atom_charge()) pdb_moving_copy_atom_list.append(atom_transformed) atom_count += 1 pdb_moving_copy.set_all_atoms(pdb_moving_copy_atom_list) return pdb_moving_copy def biopdb_superimposer(atoms_fixed, atoms_moving): biopdb_atom_fixed = [] for atom in atoms_fixed: biopdb_atom_fixed.append( BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location, " %s " % atom.type, atom.number, element=atom.element_symbol)) biopdb_atom_moving = [] for atom in atoms_moving: biopdb_atom_moving.append( BioPDBAtom(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ, atom.alt_location, " %s " % atom.type, atom.number, element=atom.element_symbol)) sup = Bio.PDB.Superimposer() sup.set_atoms(biopdb_atom_fixed, biopdb_atom_moving) rmsd = sup.rms rot = np.transpose(sup.rotran[0]).tolist() tx = sup.rotran[1].tolist() return rmsd, rot, tx
[ "Bio.PDB.Atom.Atom", "numpy.matmul", "warnings.simplefilter", "numpy.transpose", "classes.PDB.PDB" ]
[((213, 268), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'PDBConstructionWarning'], {}), "('ignore', PDBConstructionWarning)\n", (234, 268), False, 'import warnings\n'), ((1482, 1515), 'numpy.matmul', 'np.matmul', (['pdb_moving_coords', 'rot'], {}), '(pdb_moving_coords, rot)\n', (1491, 1515), True, 'import numpy as np\n'), ((1597, 1602), 'classes.PDB.PDB', 'PDB', ([], {}), '()\n', (1600, 1602), False, 'from classes.PDB import PDB\n'), ((2813, 2976), 'Bio.PDB.Atom.Atom', 'BioPDBAtom', (['atom.type', '(atom.x, atom.y, atom.z)', 'atom.temp_fact', 'atom.occ', 'atom.alt_location', "(' %s ' % atom.type)", 'atom.number'], {'element': 'atom.element_symbol'}), "(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ,\n atom.alt_location, ' %s ' % atom.type, atom.number, element=atom.\n element_symbol)\n", (2823, 2976), True, 'from Bio.PDB.Atom import Atom as BioPDBAtom\n'), ((3098, 3261), 'Bio.PDB.Atom.Atom', 'BioPDBAtom', (['atom.type', '(atom.x, atom.y, atom.z)', 'atom.temp_fact', 'atom.occ', 'atom.alt_location', "(' %s ' % atom.type)", 'atom.number'], {'element': 'atom.element_symbol'}), "(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ,\n atom.alt_location, ' %s ' % atom.type, atom.number, element=atom.\n element_symbol)\n", (3108, 3261), True, 'from Bio.PDB.Atom import Atom as BioPDBAtom\n'), ((3398, 3425), 'numpy.transpose', 'np.transpose', (['sup.rotran[0]'], {}), '(sup.rotran[0])\n', (3410, 3425), True, 'import numpy as np\n'), ((546, 709), 'Bio.PDB.Atom.Atom', 'BioPDBAtom', (['atom.type', '(atom.x, atom.y, atom.z)', 'atom.temp_fact', 'atom.occ', 'atom.alt_location', "(' %s ' % atom.type)", 'atom.number'], {'element': 'atom.element_symbol'}), "(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ,\n atom.alt_location, ' %s ' % atom.type, atom.number, element=atom.\n element_symbol)\n", (556, 709), True, 'from Bio.PDB.Atom import Atom as BioPDBAtom\n'), ((1012, 1175), 'Bio.PDB.Atom.Atom', 'BioPDBAtom', (['atom.type', '(atom.x, atom.y, atom.z)', 'atom.temp_fact', 'atom.occ', 'atom.alt_location', "(' %s ' % atom.type)", 'atom.number'], {'element': 'atom.element_symbol'}), "(atom.type, (atom.x, atom.y, atom.z), atom.temp_fact, atom.occ,\n atom.alt_location, ' %s ' % atom.type, atom.number, element=atom.\n element_symbol)\n", (1022, 1175), True, 'from Bio.PDB.Atom import Atom as BioPDBAtom\n')]
from typing import Any import numpy as np from xgboost import XGBClassifier from bender.model_trainer.interface import ModelTrainer from bender.split_strategy.split_strategy import TrainingDataSet from bender.trained_model.interface import TrainedModel from bender.trained_model.xgboosted_tree import TrainedXGBoostModel class XGBoostTrainer(ModelTrainer): xgboost_parmas: dict[str, Any] def __init__( self, enable_categorical: bool = False, use_label_encoder: bool = False, learning_rate: float = 0.01, max_depth: int = 5, n_estimators: int = 400, verbosity: float = 0, scale_pos_weight: float = 1.0, gamma: float = 0, min_child_weight: float = 1, colsample_bytree: float = 1, reg_lambda: float = 1, alpha: float = 0, ) -> None: self.xgboost_parmas = { 'enable_categorical': enable_categorical, 'use_label_encoder': use_label_encoder, 'learning_rate': learning_rate, 'max_depth': max_depth, 'n_estimators': n_estimators, 'verbosity': verbosity, 'scale_pos_weight': scale_pos_weight, 'gamma': gamma, 'min_child_weight': min_child_weight, 'colsample_bytree': colsample_bytree, 'reg_lambda': reg_lambda, 'alpha': alpha, } async def train(self, data_split: TrainingDataSet) -> TrainedModel: # if data_split.y_train.dtype not in [int, bool, str]: # print(data_split.y_train.dtypes) # raise Exception('Training classification model on continuse values. Maybe you want a regression model?') model = XGBClassifier(**self.xgboost_parmas) if set(data_split.y_train.unique().tolist()) == {1, 0}: pos_data = len(data_split.y_train.loc[data_split.y_train == 1]) neg_data = data_split.y_train.shape[0] - pos_data model.scale_pos_weight = int(np.round(neg_data / pos_data)) model.fit(data_split.x_train, data_split.y_train, eval_set=[(data_split.x_validate, data_split.y_validate)]) return TrainedXGBoostModel(model, data_split.x_features)
[ "bender.trained_model.xgboosted_tree.TrainedXGBoostModel", "numpy.round", "xgboost.XGBClassifier" ]
[((1720, 1756), 'xgboost.XGBClassifier', 'XGBClassifier', ([], {}), '(**self.xgboost_parmas)\n', (1733, 1756), False, 'from xgboost import XGBClassifier\n'), ((2163, 2212), 'bender.trained_model.xgboosted_tree.TrainedXGBoostModel', 'TrainedXGBoostModel', (['model', 'data_split.x_features'], {}), '(model, data_split.x_features)\n', (2182, 2212), False, 'from bender.trained_model.xgboosted_tree import TrainedXGBoostModel\n'), ((2000, 2029), 'numpy.round', 'np.round', (['(neg_data / pos_data)'], {}), '(neg_data / pos_data)\n', (2008, 2029), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.colorimetry.lightness` module. """ import numpy as np import unittest from colour.colorimetry import (lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011) from colour.colorimetry.lightness import lightness from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestLightnessGlasser1958', 'TestLightnessWyszecki1963', 'TestIntermediateLightnessFunctionCIE1976', 'TestLightnessCIE1976', 'TestLightnessFairchild2010', 'TestLightnessFairchild2011', 'TestLightness' ] class TestLightnessGlasser1958(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness_Glasser1958` definition unit tests methods. """ def test_lightness_Glasser1958(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Glasser1958` definition. """ self.assertAlmostEqual( lightness_Glasser1958(12.19722535), 39.83512646492521, places=7) self.assertAlmostEqual( lightness_Glasser1958(23.04276781), 53.585946877480623, places=7) self.assertAlmostEqual( lightness_Glasser1958(6.15720079), 27.972867038082629, places=7) def test_n_dimensional_lightness_Glasser1958(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Glasser1958` definition n-dimensional arrays support. """ Y = 12.19722535 L = lightness_Glasser1958(Y) Y = np.tile(Y, 6) L = np.tile(L, 6) np.testing.assert_almost_equal(lightness_Glasser1958(Y), L, decimal=7) Y = np.reshape(Y, (2, 3)) L = np.reshape(L, (2, 3)) np.testing.assert_almost_equal(lightness_Glasser1958(Y), L, decimal=7) Y = np.reshape(Y, (2, 3, 1)) L = np.reshape(L, (2, 3, 1)) np.testing.assert_almost_equal(lightness_Glasser1958(Y), L, decimal=7) def test_domain_range_scale_lightness_Glasser1958(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Glasser1958` definition domain and range scale support. """ L = lightness_Glasser1958(12.19722535) d_r = (('reference', 1), (1, 0.01), (100, 1)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness_Glasser1958(12.19722535 * factor), L * factor, decimal=7) @ignore_numpy_errors def test_nan_lightness_Glasser1958(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Glasser1958` definition nan support. """ lightness_Glasser1958( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLightnessWyszecki1963(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness_Wyszecki1963` definition unit tests methods. """ def test_lightness_Wyszecki1963(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Wyszecki1963` definition. """ self.assertAlmostEqual( lightness_Wyszecki1963(12.19722535), 40.547574599570197, places=7) self.assertAlmostEqual( lightness_Wyszecki1963(23.04276781), 54.140714588256841, places=7) self.assertAlmostEqual( lightness_Wyszecki1963(6.15720079), 28.821339499883976, places=7) def test_n_dimensional_lightness_Wyszecki1963(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Wyszecki1963` definition n-dimensional arrays support. """ Y = 12.19722535 W = lightness_Wyszecki1963(Y) Y = np.tile(Y, 6) W = np.tile(W, 6) np.testing.assert_almost_equal(lightness_Wyszecki1963(Y), W, decimal=7) Y = np.reshape(Y, (2, 3)) W = np.reshape(W, (2, 3)) np.testing.assert_almost_equal(lightness_Wyszecki1963(Y), W, decimal=7) Y = np.reshape(Y, (2, 3, 1)) W = np.reshape(W, (2, 3, 1)) np.testing.assert_almost_equal(lightness_Wyszecki1963(Y), W, decimal=7) def test_domain_range_scale_lightness_Wyszecki1963(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Wyszecki1963` definition domain and range scale support. """ W = lightness_Wyszecki1963(12.19722535) d_r = (('reference', 1), (1, 0.01), (100, 1)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness_Wyszecki1963(12.19722535 * factor), W * factor, decimal=7) @ignore_numpy_errors def test_nan_lightness_Wyszecki1963(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Wyszecki1963` definition nan support. """ lightness_Wyszecki1963( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestIntermediateLightnessFunctionCIE1976(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.\ intermediate_lightness_function_CIE1976` definition unit tests methods. """ def test_intermediate_lightness_function_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.\ intermediate_lightness_function_CIE1976` definition. """ self.assertAlmostEqual( intermediate_lightness_function_CIE1976(12.19722535), 0.495929964178047, places=7) self.assertAlmostEqual( intermediate_lightness_function_CIE1976(23.04276781), 0.613072093530391, places=7) self.assertAlmostEqual( intermediate_lightness_function_CIE1976(6.15720079), 0.394876333449113, places=7) def test_n_dimensional_intermediate_lightness_function_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.\ intermediate_lightness_function_CIE1976` definition n-dimensional arrays support. """ Y = 12.19722535 f_Y_Y_n = intermediate_lightness_function_CIE1976(Y) Y = np.tile(Y, 6) f_Y_Y_n = np.tile(f_Y_Y_n, 6) np.testing.assert_almost_equal( intermediate_lightness_function_CIE1976(Y), f_Y_Y_n, decimal=7) Y = np.reshape(Y, (2, 3)) f_Y_Y_n = np.reshape(f_Y_Y_n, (2, 3)) np.testing.assert_almost_equal( intermediate_lightness_function_CIE1976(Y), f_Y_Y_n, decimal=7) Y = np.reshape(Y, (2, 3, 1)) f_Y_Y_n = np.reshape(f_Y_Y_n, (2, 3, 1)) np.testing.assert_almost_equal( intermediate_lightness_function_CIE1976(Y), f_Y_Y_n, decimal=7) def test_domain_range_scale_intermediate_lightness_function_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.\ intermediate_lightness_function_CIE1976` definition domain and range scale support. """ f_Y_Y_n = intermediate_lightness_function_CIE1976(12.19722535, 100) for scale in ('reference', 1, 100): with domain_range_scale(scale): np.testing.assert_almost_equal( intermediate_lightness_function_CIE1976(12.19722535, 100), f_Y_Y_n, decimal=7) @ignore_numpy_errors def test_nan_intermediate_lightness_function_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.\ intermediate_lightness_function_CIE1976` definition nan support. """ intermediate_lightness_function_CIE1976( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLightnessCIE1976(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness_CIE1976` definition unit tests methods. """ def test_lightness_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.lightness_CIE1976` definition. """ self.assertAlmostEqual( lightness_CIE1976(12.19722535), 41.527875844653451, places=7) self.assertAlmostEqual( lightness_CIE1976(23.04276781), 55.116362849525402, places=7) self.assertAlmostEqual( lightness_CIE1976(6.15720079), 29.805654680097106, places=7) self.assertAlmostEqual( lightness_CIE1976(12.19722535, 50), 56.480581732417676, places=7) self.assertAlmostEqual( lightness_CIE1976(12.19722535, 75), 47.317620274162735, places=7) self.assertAlmostEqual( lightness_CIE1976(12.19722535, 95), 42.519930728120940, places=7) def test_n_dimensional_lightness_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.lightness_CIE1976` definition n-dimensional arrays support. """ Y = 12.19722535 L_star = lightness_CIE1976(Y) Y = np.tile(Y, 6) L_star = np.tile(L_star, 6) np.testing.assert_almost_equal(lightness_CIE1976(Y), L_star, decimal=7) Y = np.reshape(Y, (2, 3)) L_star = np.reshape(L_star, (2, 3)) np.testing.assert_almost_equal(lightness_CIE1976(Y), L_star, decimal=7) Y = np.reshape(Y, (2, 3, 1)) L_star = np.reshape(L_star, (2, 3, 1)) np.testing.assert_almost_equal(lightness_CIE1976(Y), L_star, decimal=7) def test_domain_range_scale_lightness_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.lightness_CIE1976` definition domain and range scale support. """ L_star = lightness_CIE1976(12.19722535, 100) d_r = (('reference', 1), (1, 0.01), (100, 1)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness_CIE1976(12.19722535 * factor, 100), L_star * factor, decimal=7) @ignore_numpy_errors def test_nan_lightness_CIE1976(self): """ Tests :func:`colour.colorimetry.lightness.lightness_CIE1976` definition nan support. """ lightness_CIE1976(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLightnessFairchild2010(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness_Fairchild2010` definition unit tests methods. """ def test_lightness_Fairchild2010(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2010` definition. """ self.assertAlmostEqual( lightness_Fairchild2010(12.19722535 / 100), 31.996390226262736, places=7) self.assertAlmostEqual( lightness_Fairchild2010(23.04276781 / 100), 60.203153682783302, places=7) self.assertAlmostEqual( lightness_Fairchild2010(6.15720079 / 100), 11.836517240976489, places=7) self.assertAlmostEqual( lightness_Fairchild2010(12.19722535 / 100, 2.75), 24.424283249379986, places=7) self.assertAlmostEqual( lightness_Fairchild2010(1008), 100.019986327374240, places=7) self.assertAlmostEqual( lightness_Fairchild2010(100800), 100.019999997090270, places=7) def test_n_dimensional_lightness_Fairchild2010(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2010` definition n-dimensional arrays support. """ Y = 12.19722535 / 100 L_hdr = lightness_Fairchild2010(Y) Y = np.tile(Y, 6) L_hdr = np.tile(L_hdr, 6) np.testing.assert_almost_equal( lightness_Fairchild2010(Y), L_hdr, decimal=7) Y = np.reshape(Y, (2, 3)) L_hdr = np.reshape(L_hdr, (2, 3)) np.testing.assert_almost_equal( lightness_Fairchild2010(Y), L_hdr, decimal=7) Y = np.reshape(Y, (2, 3, 1)) L_hdr = np.reshape(L_hdr, (2, 3, 1)) np.testing.assert_almost_equal( lightness_Fairchild2010(Y), L_hdr, decimal=7) def test_domain_range_scale_lightness_Fairchild2010(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2010` definition domain and range scale support. """ L_hdr = lightness_Fairchild2010(12.19722535 / 100) d_r = (('reference', 1, 1), (1, 1, 0.01), (100, 100, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness_Fairchild2010(12.19722535 / 100 * factor_a), L_hdr * factor_b, decimal=7) @ignore_numpy_errors def test_nan_lightness_Fairchild2010(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2010` definition nan support. """ lightness_Fairchild2010( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLightnessFairchild2011(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness_Fairchild2011` definition unit tests methods. """ def test_lightness_Fairchild2011(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2011` definition. """ self.assertAlmostEqual( lightness_Fairchild2011(12.19722535 / 100), 51.852958445912506, places=7) self.assertAlmostEqual( lightness_Fairchild2011(23.04276781 / 100), 65.275207956353853, places=7) self.assertAlmostEqual( lightness_Fairchild2011(6.15720079 / 100), 39.818935510715917, places=7) self.assertAlmostEqual( lightness_Fairchild2011(12.19722535 / 100, 2.75), 0.13268968410139345, places=7) self.assertAlmostEqual( lightness_Fairchild2011(1008), 234.72925682, places=7) self.assertAlmostEqual( lightness_Fairchild2011(100800), 245.5705978, places=7) def test_n_dimensional_lightness_Fairchild2011(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2011` definition n-dimensional arrays support. """ Y = 12.19722535 / 100 L_hdr = lightness_Fairchild2011(Y) Y = np.tile(Y, 6) L_hdr = np.tile(L_hdr, 6) np.testing.assert_almost_equal( lightness_Fairchild2011(Y), L_hdr, decimal=7) Y = np.reshape(Y, (2, 3)) L_hdr = np.reshape(L_hdr, (2, 3)) np.testing.assert_almost_equal( lightness_Fairchild2011(Y), L_hdr, decimal=7) Y = np.reshape(Y, (2, 3, 1)) L_hdr = np.reshape(L_hdr, (2, 3, 1)) np.testing.assert_almost_equal( lightness_Fairchild2011(Y), L_hdr, decimal=7) def test_domain_range_scale_lightness_Fairchild2011(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2011` definition domain and range scale support. """ L_hdr = lightness_Fairchild2011(12.19722535 / 100) d_r = (('reference', 1, 1), (1, 1, 0.01), (100, 100, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness_Fairchild2011(12.19722535 / 100 * factor_a), L_hdr * factor_b, decimal=7) @ignore_numpy_errors def test_nan_lightness_Fairchild2011(self): """ Tests :func:`colour.colorimetry.lightness.lightness_Fairchild2011` definition nan support. """ lightness_Fairchild2011( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLightness(unittest.TestCase): """ Defines :func:`colour.colorimetry.lightness.lightness` definition unit tests methods. """ def test_domain_range_scale_lightness(self): """ Tests :func:`colour.colorimetry.lightness.lightness` definition domain and range scale support. """ m = ('Glasser 1958', 'Wyszecki 1963', 'CIE 1976', 'Fairchild 2010', 'Fairchild 2011') v = [lightness(12.19722535, method, Y_n=100) for method in m] d_r = (('reference', 1), (1, 0.01), (100, 1)) for method, value in zip(m, v): for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( lightness(12.19722535 * factor, method, Y_n=100), value * factor, decimal=7) if __name__ == '__main__': unittest.main()
[ "numpy.tile", "numpy.reshape", "colour.colorimetry.lightness_CIE1976", "colour.colorimetry.lightness_Glasser1958", "colour.utilities.domain_range_scale", "colour.colorimetry.lightness_Fairchild2011", "colour.colorimetry.lightness_Wyszecki1963", "numpy.array", "colour.colorimetry.lightness.lightness", "colour.colorimetry.lightness_Fairchild2010", "unittest.main", "colour.colorimetry.intermediate_lightness_function_CIE1976" ]
[((17391, 17406), 'unittest.main', 'unittest.main', ([], {}), '()\n', (17404, 17406), False, 'import unittest\n'), ((1935, 1959), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['Y'], {}), '(Y)\n', (1956, 1959), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((1973, 1986), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (1980, 1986), True, 'import numpy as np\n'), ((1999, 2012), 'numpy.tile', 'np.tile', (['L', '(6)'], {}), '(L, 6)\n', (2006, 2012), True, 'import numpy as np\n'), ((2105, 2126), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (2115, 2126), True, 'import numpy as np\n'), ((2139, 2160), 'numpy.reshape', 'np.reshape', (['L', '(2, 3)'], {}), '(L, (2, 3))\n', (2149, 2160), True, 'import numpy as np\n'), ((2253, 2277), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (2263, 2277), True, 'import numpy as np\n'), ((2290, 2314), 'numpy.reshape', 'np.reshape', (['L', '(2, 3, 1)'], {}), '(L, (2, 3, 1))\n', (2300, 2314), True, 'import numpy as np\n'), ((2617, 2651), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['(12.19722535)'], {}), '(12.19722535)\n', (2638, 2651), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((4175, 4200), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['Y'], {}), '(Y)\n', (4197, 4200), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((4214, 4227), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (4221, 4227), True, 'import numpy as np\n'), ((4240, 4253), 'numpy.tile', 'np.tile', (['W', '(6)'], {}), '(W, 6)\n', (4247, 4253), True, 'import numpy as np\n'), ((4347, 4368), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (4357, 4368), True, 'import numpy as np\n'), ((4381, 4402), 'numpy.reshape', 'np.reshape', (['W', '(2, 3)'], {}), '(W, (2, 3))\n', (4391, 4402), True, 'import numpy as np\n'), ((4496, 4520), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (4506, 4520), True, 'import numpy as np\n'), ((4533, 4557), 'numpy.reshape', 'np.reshape', (['W', '(2, 3, 1)'], {}), '(W, (2, 3, 1))\n', (4543, 4557), True, 'import numpy as np\n'), ((4863, 4898), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['(12.19722535)'], {}), '(12.19722535)\n', (4885, 4898), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((6646, 6688), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['Y'], {}), '(Y)\n', (6685, 6688), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((6702, 6715), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (6709, 6715), True, 'import numpy as np\n'), ((6734, 6753), 'numpy.tile', 'np.tile', (['f_Y_Y_n', '(6)'], {}), '(f_Y_Y_n, 6)\n', (6741, 6753), True, 'import numpy as np\n'), ((6883, 6904), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (6893, 6904), True, 'import numpy as np\n'), ((6923, 6950), 'numpy.reshape', 'np.reshape', (['f_Y_Y_n', '(2, 3)'], {}), '(f_Y_Y_n, (2, 3))\n', (6933, 6950), True, 'import numpy as np\n'), ((7080, 7104), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (7090, 7104), True, 'import numpy as np\n'), ((7123, 7153), 'numpy.reshape', 'np.reshape', (['f_Y_Y_n', '(2, 3, 1)'], {}), '(f_Y_Y_n, (2, 3, 1))\n', (7133, 7153), True, 'import numpy as np\n'), ((7537, 7594), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['(12.19722535)', '(100)'], {}), '(12.19722535, 100)\n', (7576, 7594), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9426, 9446), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['Y'], {}), '(Y)\n', (9443, 9446), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9460, 9473), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (9467, 9473), True, 'import numpy as np\n'), ((9491, 9509), 'numpy.tile', 'np.tile', (['L_star', '(6)'], {}), '(L_star, 6)\n', (9498, 9509), True, 'import numpy as np\n'), ((9603, 9624), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (9613, 9624), True, 'import numpy as np\n'), ((9642, 9668), 'numpy.reshape', 'np.reshape', (['L_star', '(2, 3)'], {}), '(L_star, (2, 3))\n', (9652, 9668), True, 'import numpy as np\n'), ((9762, 9786), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (9772, 9786), True, 'import numpy as np\n'), ((9804, 9833), 'numpy.reshape', 'np.reshape', (['L_star', '(2, 3, 1)'], {}), '(L_star, (2, 3, 1))\n', (9814, 9833), True, 'import numpy as np\n'), ((10134, 10169), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535)', '(100)'], {}), '(12.19722535, 100)\n', (10151, 10169), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((12148, 12174), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['Y'], {}), '(Y)\n', (12171, 12174), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((12188, 12201), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (12195, 12201), True, 'import numpy as np\n'), ((12218, 12235), 'numpy.tile', 'np.tile', (['L_hdr', '(6)'], {}), '(L_hdr, 6)\n', (12225, 12235), True, 'import numpy as np\n'), ((12347, 12368), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (12357, 12368), True, 'import numpy as np\n'), ((12385, 12410), 'numpy.reshape', 'np.reshape', (['L_hdr', '(2, 3)'], {}), '(L_hdr, (2, 3))\n', (12395, 12410), True, 'import numpy as np\n'), ((12522, 12546), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (12532, 12546), True, 'import numpy as np\n'), ((12563, 12591), 'numpy.reshape', 'np.reshape', (['L_hdr', '(2, 3, 1)'], {}), '(L_hdr, (2, 3, 1))\n', (12573, 12591), True, 'import numpy as np\n'), ((12921, 12963), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(12.19722535 / 100)'], {}), '(12.19722535 / 100)\n', (12944, 12963), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14992, 15018), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['Y'], {}), '(Y)\n', (15015, 15018), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((15032, 15045), 'numpy.tile', 'np.tile', (['Y', '(6)'], {}), '(Y, 6)\n', (15039, 15045), True, 'import numpy as np\n'), ((15062, 15079), 'numpy.tile', 'np.tile', (['L_hdr', '(6)'], {}), '(L_hdr, 6)\n', (15069, 15079), True, 'import numpy as np\n'), ((15191, 15212), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3)'], {}), '(Y, (2, 3))\n', (15201, 15212), True, 'import numpy as np\n'), ((15229, 15254), 'numpy.reshape', 'np.reshape', (['L_hdr', '(2, 3)'], {}), '(L_hdr, (2, 3))\n', (15239, 15254), True, 'import numpy as np\n'), ((15366, 15390), 'numpy.reshape', 'np.reshape', (['Y', '(2, 3, 1)'], {}), '(Y, (2, 3, 1))\n', (15376, 15390), True, 'import numpy as np\n'), ((15407, 15435), 'numpy.reshape', 'np.reshape', (['L_hdr', '(2, 3, 1)'], {}), '(L_hdr, (2, 3, 1))\n', (15417, 15435), True, 'import numpy as np\n'), ((15765, 15807), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(12.19722535 / 100)'], {}), '(12.19722535 / 100)\n', (15788, 15807), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((1409, 1443), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['(12.19722535)'], {}), '(12.19722535)\n', (1430, 1443), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((1519, 1553), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['(23.04276781)'], {}), '(23.04276781)\n', (1540, 1553), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((1630, 1663), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['(6.15720079)'], {}), '(6.15720079)\n', (1651, 1663), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((2052, 2076), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['Y'], {}), '(Y)\n', (2073, 2076), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((2200, 2224), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['Y'], {}), '(Y)\n', (2221, 2224), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((2354, 2378), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['Y'], {}), '(Y)\n', (2375, 2378), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((3206, 3257), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (3214, 3257), True, 'import numpy as np\n'), ((3643, 3678), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['(12.19722535)'], {}), '(12.19722535)\n', (3665, 3678), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((3755, 3790), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['(23.04276781)'], {}), '(23.04276781)\n', (3777, 3790), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((3867, 3901), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['(6.15720079)'], {}), '(6.15720079)\n', (3889, 3901), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((4293, 4318), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['Y'], {}), '(Y)\n', (4315, 4318), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((4442, 4467), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['Y'], {}), '(Y)\n', (4464, 4467), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((4597, 4622), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['Y'], {}), '(Y)\n', (4619, 4622), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((5457, 5508), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (5465, 5508), True, 'import numpy as np\n'), ((5952, 6004), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['(12.19722535)'], {}), '(12.19722535)\n', (5991, 6004), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((6104, 6156), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['(23.04276781)'], {}), '(23.04276781)\n', (6143, 6156), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((6256, 6307), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['(6.15720079)'], {}), '(6.15720079)\n', (6295, 6307), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((6806, 6848), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['Y'], {}), '(Y)\n', (6845, 6848), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((7003, 7045), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['Y'], {}), '(Y)\n', (7042, 7045), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((7206, 7248), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['Y'], {}), '(Y)\n', (7245, 7248), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((8164, 8215), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (8172, 8215), True, 'import numpy as np\n'), ((8581, 8611), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535)'], {}), '(12.19722535)\n', (8598, 8611), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((8688, 8718), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(23.04276781)'], {}), '(23.04276781)\n', (8705, 8718), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((8795, 8824), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(6.15720079)'], {}), '(6.15720079)\n', (8812, 8824), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((8901, 8935), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535)', '(50)'], {}), '(12.19722535, 50)\n', (8918, 8935), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9012, 9046), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535)', '(75)'], {}), '(12.19722535, 75)\n', (9029, 9046), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9123, 9157), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535)', '(95)'], {}), '(12.19722535, 95)\n', (9140, 9157), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9549, 9569), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['Y'], {}), '(Y)\n', (9566, 9569), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9708, 9728), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['Y'], {}), '(Y)\n', (9725, 9728), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((9873, 9893), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['Y'], {}), '(Y)\n', (9890, 9893), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((10705, 10756), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (10713, 10756), True, 'import numpy as np\n'), ((11146, 11188), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(12.19722535 / 100)'], {}), '(12.19722535 / 100)\n', (11169, 11188), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((11289, 11331), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(23.04276781 / 100)'], {}), '(23.04276781 / 100)\n', (11312, 11331), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((11432, 11473), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(6.15720079 / 100)'], {}), '(6.15720079 / 100)\n', (11455, 11473), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((11574, 11622), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(12.19722535 / 100)', '(2.75)'], {}), '(12.19722535 / 100, 2.75)\n', (11597, 11622), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((11723, 11752), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(1008)'], {}), '(1008)\n', (11746, 11752), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((11830, 11861), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(100800)'], {}), '(100800)\n', (11853, 11861), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((12288, 12314), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['Y'], {}), '(Y)\n', (12311, 12314), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((12463, 12489), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['Y'], {}), '(Y)\n', (12486, 12489), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((12644, 12670), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['Y'], {}), '(Y)\n', (12667, 12670), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((13563, 13614), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (13571, 13614), True, 'import numpy as np\n'), ((14004, 14046), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(12.19722535 / 100)'], {}), '(12.19722535 / 100)\n', (14027, 14046), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14147, 14189), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(23.04276781 / 100)'], {}), '(23.04276781 / 100)\n', (14170, 14189), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14290, 14331), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(6.15720079 / 100)'], {}), '(6.15720079 / 100)\n', (14313, 14331), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14432, 14480), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(12.19722535 / 100)', '(2.75)'], {}), '(12.19722535 / 100, 2.75)\n', (14455, 14480), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14582, 14611), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(1008)'], {}), '(1008)\n', (14605, 14611), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((14682, 14713), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(100800)'], {}), '(100800)\n', (14705, 14713), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((15132, 15158), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['Y'], {}), '(Y)\n', (15155, 15158), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((15307, 15333), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['Y'], {}), '(Y)\n', (15330, 15333), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((15488, 15514), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['Y'], {}), '(Y)\n', (15511, 15514), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((16407, 16458), 'numpy.array', 'np.array', (['[-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan]'], {}), '([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])\n', (16415, 16458), True, 'import numpy as np\n'), ((16919, 16958), 'colour.colorimetry.lightness.lightness', 'lightness', (['(12.19722535)', 'method'], {'Y_n': '(100)'}), '(12.19722535, method, Y_n=100)\n', (16928, 16958), False, 'from colour.colorimetry.lightness import lightness\n'), ((2758, 2783), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (2776, 2783), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((5005, 5030), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (5023, 5030), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((7657, 7682), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (7675, 7682), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((10276, 10301), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (10294, 10301), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((13093, 13118), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (13111, 13118), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((15937, 15962), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (15955, 15962), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((2853, 2896), 'colour.colorimetry.lightness_Glasser1958', 'lightness_Glasser1958', (['(12.19722535 * factor)'], {}), '(12.19722535 * factor)\n', (2874, 2896), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((5100, 5144), 'colour.colorimetry.lightness_Wyszecki1963', 'lightness_Wyszecki1963', (['(12.19722535 * factor)'], {}), '(12.19722535 * factor)\n', (5122, 5144), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((7752, 7809), 'colour.colorimetry.intermediate_lightness_function_CIE1976', 'intermediate_lightness_function_CIE1976', (['(12.19722535)', '(100)'], {}), '(12.19722535, 100)\n', (7791, 7809), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((10371, 10415), 'colour.colorimetry.lightness_CIE1976', 'lightness_CIE1976', (['(12.19722535 * factor)', '(100)'], {}), '(12.19722535 * factor, 100)\n', (10388, 10415), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((13188, 13241), 'colour.colorimetry.lightness_Fairchild2010', 'lightness_Fairchild2010', (['(12.19722535 / 100 * factor_a)'], {}), '(12.19722535 / 100 * factor_a)\n', (13211, 13241), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((16032, 16085), 'colour.colorimetry.lightness_Fairchild2011', 'lightness_Fairchild2011', (['(12.19722535 / 100 * factor_a)'], {}), '(12.19722535 / 100 * factor_a)\n', (16055, 16085), False, 'from colour.colorimetry import lightness_Glasser1958, lightness_Wyszecki1963, intermediate_lightness_function_CIE1976, lightness_CIE1976, lightness_Fairchild2010, lightness_Fairchild2011\n'), ((17130, 17155), 'colour.utilities.domain_range_scale', 'domain_range_scale', (['scale'], {}), '(scale)\n', (17148, 17155), False, 'from colour.utilities import domain_range_scale, ignore_numpy_errors\n'), ((17233, 17281), 'colour.colorimetry.lightness.lightness', 'lightness', (['(12.19722535 * factor)', 'method'], {'Y_n': '(100)'}), '(12.19722535 * factor, method, Y_n=100)\n', (17242, 17281), False, 'from colour.colorimetry.lightness import lightness\n')]
import sys import os # check SBMolGen_PATH setting if os.getenv('SBMolGen_PATH') == None: print("THe SBMolGen_PATH has not defined, please set it before use it!") exit(0) else: SBMolGen_PATH=os.getenv('SBMolGen_PATH') sys.path.append(SBMolGen_PATH+'/utils') from subprocess import Popen, PIPE from math import * import random import random as pr import numpy as np from copy import deepcopy import itertools import time import math import argparse import subprocess from keras.preprocessing import sequence from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem import Descriptors from load_model import loaded_model from make_smile import zinc_data_with_bracket_original, zinc_processed_with_bracket from add_node_type_zinc import chem_kn_simulation, make_input_smile,predict_smile,check_node_type,node_to_add,expanded_node import yaml class chemical: def __init__(self): self.position=['&'] self.num_atom=8 #self.vl=['\n', '&', 'C', '(', 'c', '1', 'o', '=', 'O', 'N', 'F', '[C@@H]', #'n', '-', '#', 'S', 'Cl', '[O-]', '[C@H]', '[NH+]', '[C@]', 's', 'Br', '/', '[nH]', '[NH3+]', #'[NH2+]', '[C@@]', '[N+]', '[nH+]', '\\', '[S@]', '[N-]', '[n+]', '[S@@]', '[S-]', #'I', '[n-]', 'P', '[OH+]', '[NH-]', '[P@@H]', '[P@@]', '[PH2]', '[P@]', '[P+]', '[S+]', #'[o+]', '[CH2-]', '[CH-]', '[SH+]', '[O+]', '[s+]', '[PH+]', '[PH]', '[S@@+]'] self.vl = ['\n', '&', 'C', '1', 'N', '[C@@H]', '2', '[C@H]', '(', '=', 'O', ')', 'S', 'c', '[S@]', '[nH]', '[O-]', '[N+]', 'n', 'F', '#', '[C@]', '[C@@]', '[S@@]', 'P', '/', '\\', 'Cl', 's', 'Br', 'o', '[NH3+]', 'I', '[n+]', '[nH+]', '3', '[N-]', '[S-]', 'B', '4', '5', '[NH+]', '[Si]', '[P@]', '[NH2+]', '[P@@]', '[N@+]', '6', '[N@@+]', '[S@@+]', '7', '8', '[P@@H]', '[n-]', '[C-]', '[P+]', '[Cu]', '[Ni]', '[Zn]', '[Au-]', '[OH+]'] def Clone(self): st = chemical() st.position= self.position[:] return st def SelectPosition(self,m): self.position.append(m) def Getatom(self): return [i for i in range(self.num_atom)] class Node: def __init__(self, position = None, parent = None, state = None): self.position = position self.parentNode = parent self.childNodes = [] self.child=None self.wins = 0 self.visits = 0 self.nonvisited_atom=state.Getatom() self.type_node=[] self.depth=0 def Selectnode(self): #s = sorted(self.childNodes, key = lambda c: c.wins/c.visits + 0.8*sqrt(2*log(self.visits)/c.visits))[-1] #s=random.choice(self.childNodes) ucb=[] print('UCB:') for i in range(len(self.childNodes)): ucb_tmp = self.childNodes[i].wins/self.childNodes[i].visits+ c_val*sqrt(2*log(self.visits)/self.childNodes[i].\ visits) ucb.append(ucb_tmp) print(self.childNodes[i].position, ucb_tmp,) m = np.amax(ucb) indices = np.nonzero(ucb == m)[0] ind=pr.choice(indices) s=self.childNodes[ind] print('\n', 'index', ind, self.position, m,) return s def Addnode(self, m, s): n = Node(position = m, parent = self, state = s) self.childNodes.append(n) def simulation(self,state): predicted_smile=predict_smile(model,state) input_smile=make_input_smile(predicted_smile) logp,valid_smile,all_smile=logp_calculation(input_smile) return logp,valid_smile,all_smile def Update(self, result): self.visits += 1 self.wins += result def MCTS(root, verbose = False): """initialization of the chemical trees and grammar trees""" #run_time=time.time()+3600*48 start_time = time.time() run_time = time.time() + 3600*hours # 3600*24 rootnode = Node(state = root) state = root.Clone() """----------------------------------------------------------------------""" """global variables used for save valid compounds and simulated compounds""" valid_compound=[] all_simulated_compound=[] desired_compound=[] max_logp=[] desired_activity=[] depth=[] min_score=1000 score_distribution=[] min_score_distribution=[] generated_dict = {} #dictionary of generated compounds dict_id = 1 ## this id used for save best docking pose. """----------------------------------------------------------------------""" out_f = open(output_dir, 'a') while time.time()<=run_time: node = rootnode # important ! this node is different with state / node is the tree node state = root.Clone() # but this state is the state of the initialization . too important !!! """selection step""" node_pool=[] while node.childNodes!=[]: node = node.Selectnode() state.SelectPosition(node.position) print("state position:,",state.position) if len(state.position)>= 70: re= -1.0 while node != None: node.Update(re) node = node.parentNode continue if node.position == '\n': re = -1.0 while node != None: node.Update(re) node = node.parentNode continue """------------------------------------------------------------------""" """expansion step""" expanded=expanded_node(model,state.position,val,loop_num_nodeExpansion) new_compound = [] nodeadded = [] for n in range(simulation_num): nodeadded_tmp = node_to_add(expanded, val) all_posible=chem_kn_simulation(model,state.position,val,nodeadded_tmp) generate_smile=predict_smile(all_posible,val) new_compound_tmp = make_input_smile(generate_smile) nodeadded.extend(nodeadded_tmp) new_compound.extend(new_compound_tmp) print('nodeadded', nodeadded) print('new compound', new_compound) print('generated_dict', generated_dict) print('dict_id', dict_id) for comp in new_compound: print('lastcomp', comp[-1], ' ... ',comp[-1] == '\n') node_index,rdock_score,valid_smile,generated_dict = check_node_type(new_compound, score_type, generated_dict, sa_threshold = sa_threshold, rule = rule5, radical = radical_check, docking_num = docking_num, target_dir = target_dir, hashimoto_filter = hashimoto_filter, dict_id = dict_id, trial = trial) valid_compound.extend(valid_smile) score_distribution.extend(rdock_score) print('node', node_index, 'rdock_score', rdock_score, 'valid', valid_smile) #out_f = open(output_dir, 'a') #out_f.write(str(valid_smile) + ', '+ str(rdock_score)+', '+str(min_score)+', '+str(len(state.position))) out_f.write(str(valid_smile) + ', '+ str(rdock_score)+', '+str(min_score)+', '+str(len(state.position))+', '+str(time.time()-start_time)) out_f.write('\n') out_f.flush() #out_f.close() dict_id += 1 if len(node_index)==0: re=-1.0 while node != None: node.Update(re) node = node.parentNode else: re_list = [] #atom_list = [nodeadded[m] for m in node_index] atom_checked = [] for i in range(len(node_index)): m=node_index[i] atom = nodeadded[m] if atom not in atom_checked: node.Addnode(atom, state) node_pool.append(node.childNodes[len(atom_checked)]) depth.append(len(state.position)) atom_checked.append(atom) else: node_pool.append(node.childNodes[atom_checked.index(atom)]) #node.Addnode(nodeadded[m],state) #node.Addnode(nodeadded[m],state) #print valid_smile[i], 'node m', m, 'nodeadded[m]', nodeadded[m], 'node.childNodes[i]', node.childNodes[i] for child in node.childNodes: print(child.position) print('\n') #node_pool.append(node.childNodes[i]) #depth.append(len(state.position)) score_index = 0 if score_type == 'SCORE' else 1 print("current minmum score",min_score) if rdock_score[i][score_index]<=min_score: min_score_distribution.append(rdock_score[i][score_index]) min_score=rdock_score[i][score_index] else: min_score_distribution.append(min_score) """simulation""" if atom == '\n': re = -1 else: #re=(- (rdock_score[i][score_index] + 20)*0.1)/(1+abs(rdock_score[i][score_index] + 20)*0.1) re=(- (rdock_score[i][score_index] - base_rdock_score)*0.1)/(1+abs(rdock_score[i][score_index] -base_rdock_score)*0.1) #### pj16 reward fuction: #base_rdock_score = -20 #reward = (np.tanh(0.1*(abs(rdock_score[max_index])+base_rdock_score)) + 1)/2 re_list.append(re) print('atom', atom, 're_list', re_list) #re=(- (rdock_score[i]/100))/(1+abs(rdock_score[i]/100)) """backpropation step""" for i in range(len(node_pool)): node=node_pool[i] while node != None: node.Update(re_list[i]) node = node.parentNode for child in node_pool: print(child.position, child.wins, child.visits) out_f.close() """check if found the desired compound""" #print "all valid compounds:",valid_compound #print "all active compounds:",desired_compound print("rdock_score",score_distribution) print("num valid_compound:",len(valid_compound)) print("valid compounds",valid_compound) print("depth",depth) print("min_score",min_score_distribution) return valid_compound def UCTchemical(): one_search_start_time=time.time() time_out=one_search_start_time+60*10 state = chemical() best = MCTS(root = state,verbose = False) return best if __name__ == "__main__": # set parameter argvs = sys.argv """read yaml file for configuration""" f = open(str(argvs[1]), "r+") conf = yaml.load(f, Loader=yaml.SafeLoader) f.close() trial = conf.get('trial', 1) c_val = conf.get('c_val', 1.0) loop_num_nodeExpansion = conf.get('loop_num_nodeExpansion', 1000) target = conf.get('target', 'CDK2') target_dir = conf.get('target_path', './') hours = conf.get('hours', 1) score_type = conf.get('score_type', 'SCORE.INTER') #<SCORE> or <SCORE.INTER> docking_num = conf.get('docking_num', 10) sa_threshold = conf.get('sa_threshold', 3.5) #if SA > sa_threshold, score = 0. Default sa_threshold = 10 #RO5: if a compound does not satisfy rule of 5, score = 0. rule5 = conf.get('rule5', 1) #0:none, 1: rule of 5, 2: rule of 3 radical_check = conf.get('radical_check', True) simulation_num = conf.get('simulation_num', 3) hashimoto_filter = conf.get('hashimoto_filter', True) # or False, use/not use hashimoto filter base_rdock_score = conf.get('base_rdock_score', -20) model_name = conf.get('model_name', 'model') print('========== display configuration ==========') print('trial num is: ', trial) print('c_val: ', c_val) print('loop_num_nodeExpansion: ', loop_num_nodeExpansion) print('target: ', target) print('target_dir: ',target_dir) print('max run time: ',hours) print('score_type: ', score_type) print('docking_num: ',docking_num) print('sa_threshold: ',sa_threshold) print('model_name: ', model_name) print('base_rdock_score: ', base_rdock_score) print('simulation_num: ',simulation_num) print('hashimoto_filter: ', hashimoto_filter) """----------------------------------------------------------------------""" output_dir = 'result_'+target+'_C'+str(c_val)+'_trial'+str(trial)+'.txt' smile_old=zinc_data_with_bracket_original(SBMolGen_PATH + '/data/250k_rndm_zinc_drugs_clean.smi') val,smile=zinc_processed_with_bracket(smile_old) print('val is ', val) out_f = open(output_dir, 'w') out_f.write('#valid_smile, rdock_score, min_score, depth, used_time') out_f.write('\n') out_f.close() model=loaded_model(SBMolGen_PATH + '/RNN-model/'+ model_name) #WM300 not tested valid_compound=UCTchemical()
[ "add_node_type_zinc.node_to_add", "random.choice", "numpy.amax", "add_node_type_zinc.check_node_type", "os.getenv", "load_model.loaded_model", "add_node_type_zinc.chem_kn_simulation", "add_node_type_zinc.predict_smile", "yaml.load", "make_smile.zinc_data_with_bracket_original", "add_node_type_zinc.make_input_smile", "make_smile.zinc_processed_with_bracket", "add_node_type_zinc.expanded_node", "numpy.nonzero", "time.time", "sys.path.append" ]
[((54, 80), 'os.getenv', 'os.getenv', (['"""SBMolGen_PATH"""'], {}), "('SBMolGen_PATH')\n", (63, 80), False, 'import os\n'), ((203, 229), 'os.getenv', 'os.getenv', (['"""SBMolGen_PATH"""'], {}), "('SBMolGen_PATH')\n", (212, 229), False, 'import os\n'), ((234, 275), 'sys.path.append', 'sys.path.append', (["(SBMolGen_PATH + '/utils')"], {}), "(SBMolGen_PATH + '/utils')\n", (249, 275), False, 'import sys\n'), ((3752, 3763), 'time.time', 'time.time', ([], {}), '()\n', (3761, 3763), False, 'import time\n'), ((10343, 10354), 'time.time', 'time.time', ([], {}), '()\n', (10352, 10354), False, 'import time\n'), ((10641, 10677), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.SafeLoader'}), '(f, Loader=yaml.SafeLoader)\n', (10650, 10677), False, 'import yaml\n'), ((12390, 12481), 'make_smile.zinc_data_with_bracket_original', 'zinc_data_with_bracket_original', (["(SBMolGen_PATH + '/data/250k_rndm_zinc_drugs_clean.smi')"], {}), "(SBMolGen_PATH +\n '/data/250k_rndm_zinc_drugs_clean.smi')\n", (12421, 12481), False, 'from make_smile import zinc_data_with_bracket_original, zinc_processed_with_bracket\n'), ((12492, 12530), 'make_smile.zinc_processed_with_bracket', 'zinc_processed_with_bracket', (['smile_old'], {}), '(smile_old)\n', (12519, 12530), False, 'from make_smile import zinc_data_with_bracket_original, zinc_processed_with_bracket\n'), ((12717, 12773), 'load_model.loaded_model', 'loaded_model', (["(SBMolGen_PATH + '/RNN-model/' + model_name)"], {}), "(SBMolGen_PATH + '/RNN-model/' + model_name)\n", (12729, 12773), False, 'from load_model import loaded_model\n'), ((2959, 2971), 'numpy.amax', 'np.amax', (['ucb'], {}), '(ucb)\n', (2966, 2971), True, 'import numpy as np\n'), ((3026, 3044), 'random.choice', 'pr.choice', (['indices'], {}), '(indices)\n', (3035, 3044), True, 'import random as pr\n'), ((3326, 3353), 'add_node_type_zinc.predict_smile', 'predict_smile', (['model', 'state'], {}), '(model, state)\n', (3339, 3353), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((3373, 3406), 'add_node_type_zinc.make_input_smile', 'make_input_smile', (['predicted_smile'], {}), '(predicted_smile)\n', (3389, 3406), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((3779, 3790), 'time.time', 'time.time', ([], {}), '()\n', (3788, 3790), False, 'import time\n'), ((4492, 4503), 'time.time', 'time.time', ([], {}), '()\n', (4501, 4503), False, 'import time\n'), ((5437, 5502), 'add_node_type_zinc.expanded_node', 'expanded_node', (['model', 'state.position', 'val', 'loop_num_nodeExpansion'], {}), '(model, state.position, val, loop_num_nodeExpansion)\n', (5450, 5502), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((6277, 6523), 'add_node_type_zinc.check_node_type', 'check_node_type', (['new_compound', 'score_type', 'generated_dict'], {'sa_threshold': 'sa_threshold', 'rule': 'rule5', 'radical': 'radical_check', 'docking_num': 'docking_num', 'target_dir': 'target_dir', 'hashimoto_filter': 'hashimoto_filter', 'dict_id': 'dict_id', 'trial': 'trial'}), '(new_compound, score_type, generated_dict, sa_threshold=\n sa_threshold, rule=rule5, radical=radical_check, docking_num=\n docking_num, target_dir=target_dir, hashimoto_filter=hashimoto_filter,\n dict_id=dict_id, trial=trial)\n', (6292, 6523), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((2990, 3010), 'numpy.nonzero', 'np.nonzero', (['(ucb == m)'], {}), '(ucb == m)\n', (3000, 3010), True, 'import numpy as np\n'), ((5626, 5652), 'add_node_type_zinc.node_to_add', 'node_to_add', (['expanded', 'val'], {}), '(expanded, val)\n', (5637, 5652), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((5677, 5738), 'add_node_type_zinc.chem_kn_simulation', 'chem_kn_simulation', (['model', 'state.position', 'val', 'nodeadded_tmp'], {}), '(model, state.position, val, nodeadded_tmp)\n', (5695, 5738), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((5763, 5794), 'add_node_type_zinc.predict_smile', 'predict_smile', (['all_posible', 'val'], {}), '(all_posible, val)\n', (5776, 5794), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((5825, 5857), 'add_node_type_zinc.make_input_smile', 'make_input_smile', (['generate_smile'], {}), '(generate_smile)\n', (5841, 5857), False, 'from add_node_type_zinc import chem_kn_simulation, make_input_smile, predict_smile, check_node_type, node_to_add, expanded_node\n'), ((6983, 6994), 'time.time', 'time.time', ([], {}), '()\n', (6992, 6994), False, 'import time\n')]
import sys import numpy as np from matplotlib import pyplot from matplotlib.animation import FuncAnimation import matplotlib as mpl sys.path.append('..') from submission import SubmissionBase def displayData(X, example_width=None, figsize=(10, 10)): """ Displays 2D data in a nice grid. Parameters ---------- X : array_like The input data of size (m x n) where m is the number of examples and n is the number of features. example_width : int, optional THe width of each 2-D image in pixels. If not provided, the image is assumed to be square, and the width is the floor of the square root of total number of pixels. figsize : tuple, optional A 2-element tuple indicating the width and height of figure in inches. """ # Compute rows, cols if X.ndim == 2: m, n = X.shape elif X.ndim == 1: n = X.size m = 1 X = X[None] # Promote to a 2 dimensional array else: raise IndexError('Input X should be 1 or 2 dimensional.') example_width = example_width or int(np.round(np.sqrt(n))) example_height = int(n / example_width) # Compute number of items to display display_rows = int(np.floor(np.sqrt(m))) display_cols = int(np.ceil(m / display_rows)) fig, ax_array = pyplot.subplots(display_rows, display_cols, figsize=figsize) fig.subplots_adjust(wspace=0.025, hspace=0.025) ax_array = [ax_array] if m == 1 else ax_array.ravel() for i, ax in enumerate(ax_array): ax.imshow(X[i].reshape(example_height, example_width, order='F'), cmap='gray') ax.axis('off') def featureNormalize(X): """ Normalizes the features in X returns a normalized version of X where the mean value of each feature is 0 and the standard deviation is 1. This is often a good preprocessing step to do when working with learning algorithms. Parameters ---------- X : array_like An dataset which is a (m x n) matrix, where m is the number of examples, and n is the number of dimensions for each example. Returns ------- X_norm : array_like The normalized input dataset. mu : array_like A vector of size n corresponding to the mean for each dimension across all examples. sigma : array_like A vector of size n corresponding to the standard deviations for each dimension across all examples. """ mu = np.mean(X, axis=0) X_norm = X - mu sigma = np.std(X_norm, axis=0, ddof=1) X_norm /= sigma return X_norm, mu, sigma def plotProgresskMeans(i, X, centroid_history, idx_history): """ A helper function that displays the progress of k-Means as it is running. It is intended for use only with 2D data. It plots data points with colors assigned to each centroid. With the previous centroids, it also plots a line between the previous locations and current locations of the centroids. Parameters ---------- i : int Current iteration number of k-means. Used for matplotlib animation function. X : array_like The dataset, which is a matrix (m x n). Note since the plot only supports 2D data, n should be equal to 2. centroid_history : list A list of computed centroids for all iteration. idx_history : list A list of computed assigned indices for all iterations. """ K = centroid_history[0].shape[0] pyplot.gcf().clf() cmap = pyplot.cm.rainbow norm = mpl.colors.Normalize(vmin=0, vmax=2) for k in range(K): current = np.stack([c[k, :] for c in centroid_history[:i+1]], axis=0) pyplot.plot(current[:, 0], current[:, 1], '-Xk', mec='k', lw=2, ms=10, mfc=cmap(norm(k)), mew=2) pyplot.scatter(X[:, 0], X[:, 1], c=idx_history[i], cmap=cmap, marker='o', s=8**2, linewidths=1,) pyplot.grid(False) pyplot.title('Iteration number %d' % (i+1)) def runkMeans(X, centroids, findClosestCentroids, computeCentroids, max_iters=10, plot_progress=False): """ Runs the K-means algorithm. Parameters ---------- X : array_like The data set of size (m, n). Each row of X is a single example of n dimensions. The data set is a total of m examples. centroids : array_like Initial centroid location for each clusters. This is a matrix of size (K, n). K is the total number of clusters and n is the dimensions of each data point. findClosestCentroids : func A function (implemented by student) reference which computes the cluster assignment for each example. computeCentroids : func A function(implemented by student) reference which computes the centroid of each cluster. max_iters : int, optional Specifies the total number of interactions of K-Means to execute. plot_progress : bool, optional A flag that indicates if the function should also plot its progress as the learning happens. This is set to false by default. Returns ------- centroids : array_like A (K x n) matrix of the computed (updated) centroids. idx : array_like A vector of size (m,) for cluster assignment for each example in the dataset. Each entry in idx is within the range [0 ... K-1]. anim : FuncAnimation, optional A matplotlib animation object which can be used to embed a video within the jupyter notebook. This is only returned if `plot_progress` is `True`. """ K = centroids.shape[0] idx = None idx_history = [] centroid_history = [] for i in range(max_iters): idx = findClosestCentroids(X, centroids) if plot_progress: idx_history.append(idx) centroid_history.append(centroids) centroids = computeCentroids(X, idx, K) if plot_progress: fig = pyplot.figure() anim = FuncAnimation(fig, plotProgresskMeans, frames=max_iters, interval=500, repeat_delay=2, fargs=(X, centroid_history, idx_history)) return centroids, idx, anim return centroids, idx class Grader(SubmissionBase): # Random Test Cases X = np.sin(np.arange(1, 166)).reshape(15, 11, order='F') Z = np.cos(np.arange(1, 122)).reshape(11, 11, order='F') C = Z[:5, :] idx = np.arange(1, 16) % 3 def __init__(self): part_names = ['Find Closest Centroids (k-Means)', 'Compute Centroid Means (k-Means)', 'PCA', 'Project Data (PCA)', 'Recover Data (PCA)'] super().__init__('k-means-clustering-and-pca', part_names) def __iter__(self): for part_id in range(1, 6): try: func = self.functions[part_id] # Each part has different expected arguments/different function if part_id == 1: res = 1 + func(self.X, self.C) elif part_id == 2: res = func(self.X, self.idx, 3) elif part_id == 3: U, S = func(self.X) res = np.hstack([U.ravel('F'), np.diag(S).ravel('F')]).tolist() elif part_id == 4: res = func(self.X, self.Z, 5) elif part_id == 5: res = func(self.X[:, :5], self.Z, 5) else: raise KeyError yield part_id, res except KeyError: yield part_id, 0
[ "numpy.mean", "numpy.ceil", "matplotlib.pyplot.grid", "numpy.sqrt", "matplotlib.animation.FuncAnimation", "matplotlib.pyplot.gcf", "numpy.diag", "numpy.stack", "matplotlib.pyplot.figure", "matplotlib.colors.Normalize", "numpy.std", "matplotlib.pyplot.scatter", "matplotlib.pyplot.title", "sys.path.append", "matplotlib.pyplot.subplots", "numpy.arange" ]
[((133, 154), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (148, 154), False, 'import sys\n'), ((1316, 1376), 'matplotlib.pyplot.subplots', 'pyplot.subplots', (['display_rows', 'display_cols'], {'figsize': 'figsize'}), '(display_rows, display_cols, figsize=figsize)\n', (1331, 1376), False, 'from matplotlib import pyplot\n'), ((2456, 2474), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (2463, 2474), True, 'import numpy as np\n'), ((2508, 2538), 'numpy.std', 'np.std', (['X_norm'], {'axis': '(0)', 'ddof': '(1)'}), '(X_norm, axis=0, ddof=1)\n', (2514, 2538), True, 'import numpy as np\n'), ((3524, 3560), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(0)', 'vmax': '(2)'}), '(vmin=0, vmax=2)\n', (3544, 3560), True, 'import matplotlib as mpl\n'), ((4113, 4131), 'matplotlib.pyplot.grid', 'pyplot.grid', (['(False)'], {}), '(False)\n', (4124, 4131), False, 'from matplotlib import pyplot\n'), ((4136, 4181), 'matplotlib.pyplot.title', 'pyplot.title', (["('Iteration number %d' % (i + 1))"], {}), "('Iteration number %d' % (i + 1))\n", (4148, 4181), False, 'from matplotlib import pyplot\n'), ((1268, 1293), 'numpy.ceil', 'np.ceil', (['(m / display_rows)'], {}), '(m / display_rows)\n', (1275, 1293), True, 'import numpy as np\n'), ((3603, 3664), 'numpy.stack', 'np.stack', (['[c[k, :] for c in centroid_history[:i + 1]]'], {'axis': '(0)'}), '([c[k, :] for c in centroid_history[:i + 1]], axis=0)\n', (3611, 3664), True, 'import numpy as np\n'), ((3897, 3999), 'matplotlib.pyplot.scatter', 'pyplot.scatter', (['X[:, 0]', 'X[:, 1]'], {'c': 'idx_history[i]', 'cmap': 'cmap', 'marker': '"""o"""', 's': '(8 ** 2)', 'linewidths': '(1)'}), "(X[:, 0], X[:, 1], c=idx_history[i], cmap=cmap, marker='o', s\n =8 ** 2, linewidths=1)\n", (3911, 3999), False, 'from matplotlib import pyplot\n'), ((6138, 6153), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (6151, 6153), False, 'from matplotlib import pyplot\n'), ((6169, 6301), 'matplotlib.animation.FuncAnimation', 'FuncAnimation', (['fig', 'plotProgresskMeans'], {'frames': 'max_iters', 'interval': '(500)', 'repeat_delay': '(2)', 'fargs': '(X, centroid_history, idx_history)'}), '(fig, plotProgresskMeans, frames=max_iters, interval=500,\n repeat_delay=2, fargs=(X, centroid_history, idx_history))\n', (6182, 6301), False, 'from matplotlib.animation import FuncAnimation\n'), ((6682, 6698), 'numpy.arange', 'np.arange', (['(1)', '(16)'], {}), '(1, 16)\n', (6691, 6698), True, 'import numpy as np\n'), ((1232, 1242), 'numpy.sqrt', 'np.sqrt', (['m'], {}), '(m)\n', (1239, 1242), True, 'import numpy as np\n'), ((3465, 3477), 'matplotlib.pyplot.gcf', 'pyplot.gcf', ([], {}), '()\n', (3475, 3477), False, 'from matplotlib import pyplot\n'), ((1101, 1111), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (1108, 1111), True, 'import numpy as np\n'), ((6548, 6565), 'numpy.arange', 'np.arange', (['(1)', '(166)'], {}), '(1, 166)\n', (6557, 6565), True, 'import numpy as np\n'), ((6609, 6626), 'numpy.arange', 'np.arange', (['(1)', '(122)'], {}), '(1, 122)\n', (6618, 6626), True, 'import numpy as np\n'), ((7530, 7540), 'numpy.diag', 'np.diag', (['S'], {}), '(S)\n', (7537, 7540), True, 'import numpy as np\n')]
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.ops.operations.comm_ops import _VirtualDataset context.set_context(mode=context.GRAPH_MODE) class NetWithLoss(nn.Cell): def __init__(self, network, strategy3, strategy4, axis): super(NetWithLoss, self).__init__() self.virtual_dataset = _VirtualDataset() self.one_hot = P.OneHot(axis=axis).set_strategy(strategy3) self.on_value = Tensor(2.0, ms.float32) self.off_value = Tensor(1.0, ms.float32) self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy4) self.network = network def construct(self, x, y, b): b_virtual = self.virtual_dataset(b) predict = self.network(x, y) label = self.one_hot(b_virtual, 64, self.on_value, self.off_value) return self.loss(predict, label)[0] class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return C.grad_all(self.network)(x, y, b) class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.gelu = P.Gelu().set_strategy(strategy2) def construct(self, x, y): out = self.matmul(x, y) out = self.gelu(out) return out def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot_axis=-1): net = GradWrap(NetWithLoss(Net(strategy1, strategy2), strategy3, strategy4, axis=onthot_axis)) net.set_auto_parallel() if auto: context.set_auto_parallel_context(parallel_mode="auto_parallel") else: context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.int32) _executor.compile(net, x, y, b) def test_onehot_model_parallel(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((1, 16), (), ()) strategy4 = ((16, 1), (16, 1)) compile_graph(strategy1, strategy2, strategy3, strategy4) def test_onehot_batch_parallel(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((16, 1), (), ()) strategy4 = ((16, 1), (16, 1)) compile_graph(strategy1, strategy2, strategy3, strategy4) def test_onehot_batch_parallel_invalid_strategy(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((16,), (), ()) strategy4 = ((16, 1), (16, 1)) try: compile_graph(strategy1, strategy2, strategy3, strategy4) except: pass def test_onehot_repeated_calculation(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((4, 1), (), ()) strategy4 = ((16, 1), (16, 1)) compile_graph(strategy1, strategy2, strategy3, strategy4) def test_onehot_auto(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = None strategy2 = None strategy3 = None strategy4 = None compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True) def test_onehot_batch_parallel_axis0(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((16, 1), (), ()) strategy4 = ((16, 1), (16, 1)) compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0) # auto parallel for onehot axis equal to 0 has not been supported yet def test_onehot_batch_parallel_invalid_strategy_axis0(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = None strategy4 = ((16, 1), (16, 1)) try: compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0) except: pass def test_onehot_repeated_calculation_axis0(): context.set_auto_parallel_context(device_num=16, global_rank=0) strategy1 = ((2, 4), (4, 2)) strategy2 = ((2, 8),) strategy3 = ((4, 1), (), ()) strategy4 = ((16, 1), (16, 1)) compile_graph(strategy1, strategy2, strategy3, strategy4, onthot_axis=0) def test_onehot_auto_axis0(): context.set_auto_parallel_context(device_num=16, global_rank=14) strategy1 = None strategy2 = None strategy3 = None strategy4 = None compile_graph(strategy1, strategy2, strategy3, strategy4, auto=True, onthot_axis=0)
[ "mindspore.ops.operations.SoftmaxCrossEntropyWithLogits", "numpy.ones", "mindspore.ops.operations.MatMul", "mindspore.context.set_context", "mindspore.ops.operations.comm_ops._VirtualDataset", "mindspore.ops.composite.grad_all", "mindspore.ops.operations.Gelu", "mindspore.common.api._executor.compile", "mindspore.Tensor", "mindspore.ops.operations.OneHot", "mindspore.context.set_auto_parallel_context" ]
[((906, 950), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE'}), '(mode=context.GRAPH_MODE)\n', (925, 950), False, 'from mindspore import context\n'), ((2725, 2756), 'mindspore.common.api._executor.compile', '_executor.compile', (['net', 'x', 'y', 'b'], {}), '(net, x, y, b)\n', (2742, 2756), False, 'from mindspore.common.api import _executor\n'), ((2797, 2860), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (2830, 2860), False, 'from mindspore import context\n'), ((3091, 3154), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (3124, 3154), False, 'from mindspore import context\n'), ((3402, 3465), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (3435, 3465), False, 'from mindspore import context\n'), ((3738, 3801), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (3771, 3801), False, 'from mindspore import context\n'), ((4021, 4084), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (4054, 4084), False, 'from mindspore import context\n'), ((4288, 4351), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (4321, 4351), False, 'from mindspore import context\n'), ((4690, 4753), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (4723, 4753), False, 'from mindspore import context\n'), ((5036, 5099), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(0)'}), '(device_num=16, global_rank=0)\n', (5069, 5099), False, 'from mindspore import context\n'), ((5340, 5404), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'device_num': '(16)', 'global_rank': '(14)'}), '(device_num=16, global_rank=14)\n', (5373, 5404), False, 'from mindspore import context\n'), ((1117, 1134), 'mindspore.ops.operations.comm_ops._VirtualDataset', '_VirtualDataset', ([], {}), '()\n', (1132, 1134), False, 'from mindspore.ops.operations.comm_ops import _VirtualDataset\n'), ((1226, 1249), 'mindspore.Tensor', 'Tensor', (['(2.0)', 'ms.float32'], {}), '(2.0, ms.float32)\n', (1232, 1249), False, 'from mindspore import Tensor\n'), ((1275, 1298), 'mindspore.Tensor', 'Tensor', (['(1.0)', 'ms.float32'], {}), '(1.0, ms.float32)\n', (1281, 1298), False, 'from mindspore import Tensor\n'), ((2417, 2481), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'parallel_mode': '"""auto_parallel"""'}), "(parallel_mode='auto_parallel')\n", (2450, 2481), False, 'from mindspore import context\n'), ((2500, 2569), 'mindspore.context.set_auto_parallel_context', 'context.set_auto_parallel_context', ([], {'parallel_mode': '"""semi_auto_parallel"""'}), "(parallel_mode='semi_auto_parallel')\n", (2533, 2569), False, 'from mindspore import context\n'), ((2586, 2603), 'numpy.ones', 'np.ones', (['[64, 32]'], {}), '([64, 32])\n', (2593, 2603), True, 'import numpy as np\n'), ((2638, 2655), 'numpy.ones', 'np.ones', (['[32, 64]'], {}), '([32, 64])\n', (2645, 2655), True, 'import numpy as np\n'), ((2690, 2703), 'numpy.ones', 'np.ones', (['[64]'], {}), '([64])\n', (2697, 2703), True, 'import numpy as np\n'), ((1825, 1849), 'mindspore.ops.composite.grad_all', 'C.grad_all', (['self.network'], {}), '(self.network)\n', (1835, 1849), True, 'from mindspore.ops import composite as C\n'), ((1158, 1177), 'mindspore.ops.operations.OneHot', 'P.OneHot', ([], {'axis': 'axis'}), '(axis=axis)\n', (1166, 1177), True, 'from mindspore.ops import operations as P\n'), ((1319, 1352), 'mindspore.ops.operations.SoftmaxCrossEntropyWithLogits', 'P.SoftmaxCrossEntropyWithLogits', ([], {}), '()\n', (1350, 1352), True, 'from mindspore.ops import operations as P\n'), ((1976, 1986), 'mindspore.ops.operations.MatMul', 'P.MatMul', ([], {}), '()\n', (1984, 1986), True, 'from mindspore.ops import operations as P\n'), ((2031, 2039), 'mindspore.ops.operations.Gelu', 'P.Gelu', ([], {}), '()\n', (2037, 2039), True, 'from mindspore.ops import operations as P\n')]
#py3 """ ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example shows characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. With the exception of the last dataset, the parameters of each of these dataset-algorithm pairs has been tuned to produce good clustering results. Some algorithms are more sensitive to parameter values than others. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. For this example, the null dataset uses the same parameters as the dataset in the row above it, which represents a mismatch in the parameter values and the data structure. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. """ print(__doc__) import time import warnings import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets, mixture from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler from itertools import cycle, islice import raster_sci as raster import matplotlib.patheffects as PathEffects np.random.seed(0) # ============ # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times # ============ n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None # Anisotropicly distributed data random_state = 170 X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state) transformation = [[0.6, -0.6], [-0.4, 0.8]] X_aniso = np.dot(X, transformation) aniso = (X_aniso, y) # blobs with varied variances varied = datasets.make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) # ============ # Set up cluster parameters # ============ plt.figure(figsize=(9 * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 default_base = {'quantile': .3, 'eps': .3, 'damping': .9, 'preference': -200, 'n_neighbors': 10, 'n_clusters': 3} datasets = [ (noisy_circles, {'damping': .77, 'preference': -240, 'quantile': .2, 'n_clusters': 2}), (noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}), (varied, {'eps': .18, 'n_neighbors': 2}), (aniso, {'eps': .15, 'n_neighbors': 2}), (blobs, {}), (no_structure, {})] for i_dataset, (dataset, algo_params) in enumerate(datasets): # update parameters with dataset-specific values params = default_base.copy() params.update(algo_params) X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile']) # connectivity matrix for structured Ward connectivity = kneighbors_graph( X, n_neighbors=params['n_neighbors'], include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # ============ # Create cluster objects # ============ ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters']) ward = cluster.AgglomerativeClustering( n_clusters=params['n_clusters'], linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering( n_clusters=params['n_clusters'], eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=params['eps']) affinity_propagation = cluster.AffinityPropagation( damping=params['damping'], preference=params['preference']) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=params['n_clusters'], connectivity=connectivity) birch = cluster.Birch(n_clusters=params['n_clusters']) gmm = mixture.GaussianMixture( n_components=params['n_clusters'], covariance_type='full') threshold = 5 min_size = 5 rs = raster.Raster(threshold, min_size) clustering_algorithms = ( ('Mini-Batch k-Means', two_means), ('Affinity Propagation', affinity_propagation), ('Mean Shift', ms), ('Spectral', spectral), ('Ward', ward), ('Agglomerative', average_linkage), ('DBSCAN', dbscan), ('BIRCH', birch), ('Gaussian Mixture', gmm), ('RASTER', rs) ) for name, algorithm in clustering_algorithms: t0 = time.time() # catch warnings related to kneighbors_graph with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="the number of connected components of the " + "connectivity matrix is [0-9]{1,2}" + " > 1. Completing it to avoid stopping the tree early.", category=UserWarning) warnings.filterwarnings( "ignore", message="Graph is not fully connected, spectral embedding" + " may not work as expected.", category=UserWarning) algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) plt.subplot(len(datasets), len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=11) colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred) + 1)))) # add black color for outliers (if any) colors = np.append(colors, ["#000000"]) plt.scatter(X[:, 0], X[:, 1], s=1, color=colors[y_pred]) plt.xlim(-2.5, 2.5) plt.ylim(-2.5, 2.5) plt.xticks(()) plt.yticks(()) # txt = plt.text(.99, .01, ('%.3fs' % (t1 - t0)).lstrip('0'), txt = plt.text(.98, .02, ('%.3fs' % (t1 - t0)), transform=plt.gca().transAxes, size=9, horizontalalignment='right') txt.set_path_effects([PathEffects.withStroke(linewidth=3, foreground='w')]) plot_num += 1 plt.show()
[ "sklearn.cluster.SpectralClustering", "numpy.random.rand", "sklearn.neighbors.kneighbors_graph", "sklearn.datasets.make_circles", "sklearn.cluster.MeanShift", "matplotlib.patheffects.withStroke", "sklearn.cluster.DBSCAN", "sklearn.cluster.AgglomerativeClustering", "sklearn.datasets.make_blobs", "raster_sci.Raster", "numpy.dot", "matplotlib.pyplot.yticks", "numpy.random.seed", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ylim", "itertools.cycle", "sklearn.mixture.GaussianMixture", "matplotlib.pyplot.xticks", "matplotlib.pyplot.gca", "sklearn.cluster.MiniBatchKMeans", "sklearn.cluster.AffinityPropagation", "sklearn.datasets.make_moons", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "sklearn.cluster.Birch", "time.time", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show", "warnings.filterwarnings", "sklearn.cluster.estimate_bandwidth", "warnings.catch_warnings", "numpy.append", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.figure" ]
[((1303, 1320), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (1317, 1320), True, 'import numpy as np\n'), ((1528, 1594), 'sklearn.datasets.make_circles', 'datasets.make_circles', ([], {'n_samples': 'n_samples', 'factor': '(0.5)', 'noise': '(0.05)'}), '(n_samples=n_samples, factor=0.5, noise=0.05)\n', (1549, 1594), False, 'from sklearn import cluster, datasets, mixture\n'), ((1645, 1697), 'sklearn.datasets.make_moons', 'datasets.make_moons', ([], {'n_samples': 'n_samples', 'noise': '(0.05)'}), '(n_samples=n_samples, noise=0.05)\n', (1664, 1697), False, 'from sklearn import cluster, datasets, mixture\n'), ((1705, 1761), 'sklearn.datasets.make_blobs', 'datasets.make_blobs', ([], {'n_samples': 'n_samples', 'random_state': '(8)'}), '(n_samples=n_samples, random_state=8)\n', (1724, 1761), False, 'from sklearn import cluster, datasets, mixture\n'), ((1872, 1939), 'sklearn.datasets.make_blobs', 'datasets.make_blobs', ([], {'n_samples': 'n_samples', 'random_state': 'random_state'}), '(n_samples=n_samples, random_state=random_state)\n', (1891, 1939), False, 'from sklearn import cluster, datasets, mixture\n'), ((1994, 2019), 'numpy.dot', 'np.dot', (['X', 'transformation'], {}), '(X, transformation)\n', (2000, 2019), True, 'import numpy as np\n'), ((2081, 2181), 'sklearn.datasets.make_blobs', 'datasets.make_blobs', ([], {'n_samples': 'n_samples', 'cluster_std': '[1.0, 2.5, 0.5]', 'random_state': 'random_state'}), '(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5],\n random_state=random_state)\n', (2100, 2181), False, 'from sklearn import cluster, datasets, mixture\n'), ((2295, 2332), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9 * 2 + 3, 12.5)'}), '(figsize=(9 * 2 + 3, 12.5))\n', (2305, 2332), True, 'import matplotlib.pyplot as plt\n'), ((2333, 2430), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.02)', 'right': '(0.98)', 'bottom': '(0.001)', 'top': '(0.96)', 'wspace': '(0.05)', 'hspace': '(0.01)'}), '(left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=\n 0.05, hspace=0.01)\n', (2352, 2430), True, 'import matplotlib.pyplot as plt\n'), ((7029, 7039), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7037, 7039), True, 'import matplotlib.pyplot as plt\n'), ((1777, 1805), 'numpy.random.rand', 'np.random.rand', (['n_samples', '(2)'], {}), '(n_samples, 2)\n', (1791, 1805), True, 'import numpy as np\n'), ((3337, 3395), 'sklearn.cluster.estimate_bandwidth', 'cluster.estimate_bandwidth', (['X'], {'quantile': "params['quantile']"}), "(X, quantile=params['quantile'])\n", (3363, 3395), False, 'from sklearn import cluster, datasets, mixture\n'), ((3462, 3536), 'sklearn.neighbors.kneighbors_graph', 'kneighbors_graph', (['X'], {'n_neighbors': "params['n_neighbors']", 'include_self': '(False)'}), "(X, n_neighbors=params['n_neighbors'], include_self=False)\n", (3478, 3536), False, 'from sklearn.neighbors import kneighbors_graph\n'), ((3714, 3770), 'sklearn.cluster.MeanShift', 'cluster.MeanShift', ([], {'bandwidth': 'bandwidth', 'bin_seeding': '(True)'}), '(bandwidth=bandwidth, bin_seeding=True)\n', (3731, 3770), False, 'from sklearn import cluster, datasets, mixture\n'), ((3787, 3843), 'sklearn.cluster.MiniBatchKMeans', 'cluster.MiniBatchKMeans', ([], {'n_clusters': "params['n_clusters']"}), "(n_clusters=params['n_clusters'])\n", (3810, 3843), False, 'from sklearn import cluster, datasets, mixture\n'), ((3855, 3967), 'sklearn.cluster.AgglomerativeClustering', 'cluster.AgglomerativeClustering', ([], {'n_clusters': "params['n_clusters']", 'linkage': '"""ward"""', 'connectivity': 'connectivity'}), "(n_clusters=params['n_clusters'], linkage=\n 'ward', connectivity=connectivity)\n", (3886, 3967), False, 'from sklearn import cluster, datasets, mixture\n'), ((3995, 4112), 'sklearn.cluster.SpectralClustering', 'cluster.SpectralClustering', ([], {'n_clusters': "params['n_clusters']", 'eigen_solver': '"""arpack"""', 'affinity': '"""nearest_neighbors"""'}), "(n_clusters=params['n_clusters'], eigen_solver=\n 'arpack', affinity='nearest_neighbors')\n", (4021, 4112), False, 'from sklearn import cluster, datasets, mixture\n'), ((4138, 4171), 'sklearn.cluster.DBSCAN', 'cluster.DBSCAN', ([], {'eps': "params['eps']"}), "(eps=params['eps'])\n", (4152, 4171), False, 'from sklearn import cluster, datasets, mixture\n'), ((4199, 4291), 'sklearn.cluster.AffinityPropagation', 'cluster.AffinityPropagation', ([], {'damping': "params['damping']", 'preference': "params['preference']"}), "(damping=params['damping'], preference=params[\n 'preference'])\n", (4226, 4291), False, 'from sklearn import cluster, datasets, mixture\n'), ((4318, 4454), 'sklearn.cluster.AgglomerativeClustering', 'cluster.AgglomerativeClustering', ([], {'linkage': '"""average"""', 'affinity': '"""cityblock"""', 'n_clusters': "params['n_clusters']", 'connectivity': 'connectivity'}), "(linkage='average', affinity='cityblock',\n n_clusters=params['n_clusters'], connectivity=connectivity)\n", (4349, 4454), False, 'from sklearn import cluster, datasets, mixture\n'), ((4480, 4526), 'sklearn.cluster.Birch', 'cluster.Birch', ([], {'n_clusters': "params['n_clusters']"}), "(n_clusters=params['n_clusters'])\n", (4493, 4526), False, 'from sklearn import cluster, datasets, mixture\n'), ((4537, 4624), 'sklearn.mixture.GaussianMixture', 'mixture.GaussianMixture', ([], {'n_components': "params['n_clusters']", 'covariance_type': '"""full"""'}), "(n_components=params['n_clusters'], covariance_type=\n 'full')\n", (4560, 4624), False, 'from sklearn import cluster, datasets, mixture\n'), ((4682, 4716), 'raster_sci.Raster', 'raster.Raster', (['threshold', 'min_size'], {}), '(threshold, min_size)\n', (4695, 4716), True, 'import raster_sci as raster\n'), ((5157, 5168), 'time.time', 'time.time', ([], {}), '()\n', (5166, 5168), False, 'import time\n'), ((5829, 5840), 'time.time', 'time.time', ([], {}), '()\n', (5838, 5840), False, 'import time\n'), ((6495, 6525), 'numpy.append', 'np.append', (['colors', "['#000000']"], {}), "(colors, ['#000000'])\n", (6504, 6525), True, 'import numpy as np\n'), ((6534, 6590), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(1)', 'color': 'colors[y_pred]'}), '(X[:, 0], X[:, 1], s=1, color=colors[y_pred])\n', (6545, 6590), True, 'import matplotlib.pyplot as plt\n'), ((6600, 6619), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-2.5)', '(2.5)'], {}), '(-2.5, 2.5)\n', (6608, 6619), True, 'import matplotlib.pyplot as plt\n'), ((6628, 6647), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-2.5)', '(2.5)'], {}), '(-2.5, 2.5)\n', (6636, 6647), True, 'import matplotlib.pyplot as plt\n'), ((6656, 6670), 'matplotlib.pyplot.xticks', 'plt.xticks', (['()'], {}), '(())\n', (6666, 6670), True, 'import matplotlib.pyplot as plt\n'), ((6679, 6693), 'matplotlib.pyplot.yticks', 'plt.yticks', (['()'], {}), '(())\n', (6689, 6693), True, 'import matplotlib.pyplot as plt\n'), ((3246, 3262), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3260, 3262), False, 'from sklearn.preprocessing import StandardScaler\n'), ((5236, 5261), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (5259, 5261), False, 'import warnings\n'), ((5275, 5498), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'message': "('the number of connected components of the ' +\n 'connectivity matrix is [0-9]{1,2}' +\n ' > 1. Completing it to avoid stopping the tree early.')", 'category': 'UserWarning'}), "('ignore', message=\n 'the number of connected components of the ' +\n 'connectivity matrix is [0-9]{1,2}' +\n ' > 1. Completing it to avoid stopping the tree early.', category=\n UserWarning)\n", (5298, 5498), False, 'import warnings\n'), ((5574, 5729), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'message': "('Graph is not fully connected, spectral embedding' +\n ' may not work as expected.')", 'category': 'UserWarning'}), "('ignore', message=\n 'Graph is not fully connected, spectral embedding' +\n ' may not work as expected.', category=UserWarning)\n", (5597, 5729), False, 'import warnings\n'), ((6106, 6130), 'matplotlib.pyplot.title', 'plt.title', (['name'], {'size': '(11)'}), '(name, size=11)\n', (6115, 6130), True, 'import matplotlib.pyplot as plt\n'), ((6951, 7002), 'matplotlib.patheffects.withStroke', 'PathEffects.withStroke', ([], {'linewidth': '(3)', 'foreground': '"""w"""'}), "(linewidth=3, foreground='w')\n", (6973, 7002), True, 'import matplotlib.patheffects as PathEffects\n'), ((6170, 6280), 'itertools.cycle', 'cycle', (["['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3',\n '#999999', '#e41a1c', '#dede00']"], {}), "(['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3',\n '#999999', '#e41a1c', '#dede00'])\n", (6175, 6280), False, 'from itertools import cycle, islice\n'), ((6846, 6855), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6853, 6855), True, 'import matplotlib.pyplot as plt\n')]
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from collections import deque from collections import namedtuple # obervations structure observation = namedtuple( 'observation', ['time', 'qpos_robot', 'qvel_robot', 'qpos_object', 'qvel_object']) class Robot(object): def __init__(self, n_jnt, n_obj, n_dofs, pos_bounds=None, vel_bounds=None, **kwargs): self.n_jnt = n_jnt self.n_obj = n_obj self.n_dofs = n_dofs self.has_obj = False if self.n_obj>0: self.has_obj = True # Cache that gets updated self.observation_cache_maxsize = 5 self.observation_cache = deque([], maxlen=self.observation_cache_maxsize) # Pos and vel bounds self.pos_bounds = None if pos_bounds is not None: pos_bounds = np.array(pos_bounds, dtype=np.float32) assert pos_bounds.shape == (self.n_dofs, 2) for low, high in pos_bounds: assert low < high self.pos_bounds = pos_bounds self.vel_bounds = None if vel_bounds is not None: vel_bounds = np.array(vel_bounds, dtype=np.float32) assert vel_bounds.shape == (self.n_dofs, 2) for low, high in vel_bounds: assert low < high self.vel_bounds = vel_bounds # refresh the observation cache def _observation_cache_refresh(self, env): for _ in range(self.observation_cache_maxsize): self.get_obs(env, robot_noise_ratio=0, object_noise_ratio=0) # get past observation def get_obs_from_cache(self, env, index=-1): assert (index>=0 and index<self.observation_cache_maxsize) or \ (index<0 and index>=-self.observation_cache_maxsize), \ "cache index out of bound. (cache size is %2d)"%self.observation_cache_maxsize obs = self.observation_cache[index] if self.has_obj: return obs.time, obs.qpos_robot, obs.qvel_robot, obs.qpos_object, obs.qvel_object else: return obs.time, obs.qpos_robot, obs.qvel_robot # get observation def get_obs(self, env, robot_noise_ratio=0.05, object_noise_ratio=0.05): qp = env.sim.data.qpos[:self.n_jnt].ravel() qv = env.sim.data.qvel[:self.n_jnt].ravel() if self.has_obj: qp_obj = env.sim.data.qpos[-self.n_obj:].ravel() qv_obj = env.sim.data.qvel[-self.n_obj:].ravel() else: qp_obj = None qv_obj = None self.time = env.sim.data.time # Simulate observation noise if not env.initializing: noise_amp = robot_noise_ratio*(env.model.jnt_range[:self.n_jnt,1]-env.model.jnt_range[:self.n_jnt,0]) qp += noise_amp*env.np_random.uniform(low=-.5, high=.5, size=self.n_jnt) qv += noise_amp*env.np_random.uniform(low=-.5, high=.5, size=self.n_jnt) if self.has_obj: noise_amp = object_noise_ratio*(env.model.jnt_range[-self.n_obj:,1]-env.model.jnt_range[-self.n_obj:,0]) qp_obj += noise_amp*env.np_random.uniform(low=-.5, high=.5, size=self.n_obj) qv_obj += noise_amp*env.np_random.uniform(low=-.5, high=.5, size=self.n_obj) # cache observations obs = observation( time=self.time, qpos_robot=qp, qvel_robot=qv, qpos_object=qp_obj, qvel_object=qv_obj) self.observation_cache.append(obs) if self.has_obj: return obs.time, obs.qpos_robot, obs.qvel_robot, obs.qpos_object, obs.qvel_object else: return obs.time, obs.qpos_robot, obs.qvel_robot # clip only joint position limits # since we can only control those anyway def ctrl_position_limits(self, ctrl_position): ctrl_feasible_position = np.clip(ctrl_position, self.pos_bounds[:self.n_jnt, 0], self.pos_bounds[:self.n_jnt, 1]) return ctrl_feasible_position # enforce velocity limits. def enforce_velocity_limits(self, ctrl_position, step_duration): last_obs = self.observation_cache[-1] desired_vel = (ctrl_position[:self.n_jnt] - last_obs.qpos_robot[:self.n_jnt])/step_duration feasible_vel = np.clip(desired_vel, self.vel_bounds[:self.n_jnt, 0], self.vel_bounds[:self.n_jnt, 1]) feasible_position = last_obs.qpos_robot + feasible_vel*step_duration return feasible_position # step the robot env def step(self, env, ctrl_desired, step_duration): # Populate observation cache during startup if env.initializing: self._observation_cache_refresh(env) # enforce velocity limits ctrl_feasible = self.enforce_velocity_limits(ctrl_desired, step_duration) # enforce position limits ctrl_feasible = self.ctrl_position_limits(ctrl_feasible) # Send controls to the robot env.do_simulation(ctrl_feasible, int(step_duration/env.sim.model.opt.timestep)) # render is folded in here return 1 # clip the whole thing def clip_positions(self, positions): assert len(positions) == self.n_jnt or len(positions) == self.n_dofs pos_bounds = self.pos_bounds[:len(positions)] return np.clip(positions, pos_bounds[:, 0], pos_bounds[:, 1]) def reset(self, env, reset_pose, reset_vel): reset_pose = self.clip_positions(reset_pose) # env.sim.reset() env.sim.data.qpos[:self.n_jnt] = reset_pose[:self.n_jnt].copy() env.sim.data.qvel[:self.n_jnt] = reset_vel[:self.n_jnt].copy() if self.has_obj: env.sim.data.qpos[-self.n_obj:] = reset_pose[-self.n_obj:].copy() env.sim.data.qvel[-self.n_obj:] = reset_vel[-self.n_obj:].copy() env.sim.forward() # refresh observation cache before exit self._observation_cache_refresh(env)
[ "numpy.clip", "numpy.array", "collections.namedtuple", "collections.deque" ]
[((699, 796), 'collections.namedtuple', 'namedtuple', (['"""observation"""', "['time', 'qpos_robot', 'qvel_robot', 'qpos_object', 'qvel_object']"], {}), "('observation', ['time', 'qpos_robot', 'qvel_robot',\n 'qpos_object', 'qvel_object'])\n", (709, 796), False, 'from collections import namedtuple\n'), ((1198, 1246), 'collections.deque', 'deque', (['[]'], {'maxlen': 'self.observation_cache_maxsize'}), '([], maxlen=self.observation_cache_maxsize)\n', (1203, 1246), False, 'from collections import deque\n'), ((4402, 4495), 'numpy.clip', 'np.clip', (['ctrl_position', 'self.pos_bounds[:self.n_jnt, 0]', 'self.pos_bounds[:self.n_jnt, 1]'], {}), '(ctrl_position, self.pos_bounds[:self.n_jnt, 0], self.pos_bounds[:\n self.n_jnt, 1])\n', (4409, 4495), True, 'import numpy as np\n'), ((4882, 4973), 'numpy.clip', 'np.clip', (['desired_vel', 'self.vel_bounds[:self.n_jnt, 0]', 'self.vel_bounds[:self.n_jnt, 1]'], {}), '(desired_vel, self.vel_bounds[:self.n_jnt, 0], self.vel_bounds[:self\n .n_jnt, 1])\n', (4889, 4973), True, 'import numpy as np\n'), ((5894, 5948), 'numpy.clip', 'np.clip', (['positions', 'pos_bounds[:, 0]', 'pos_bounds[:, 1]'], {}), '(positions, pos_bounds[:, 0], pos_bounds[:, 1])\n', (5901, 5948), True, 'import numpy as np\n'), ((1368, 1406), 'numpy.array', 'np.array', (['pos_bounds'], {'dtype': 'np.float32'}), '(pos_bounds, dtype=np.float32)\n', (1376, 1406), True, 'import numpy as np\n'), ((1670, 1708), 'numpy.array', 'np.array', (['vel_bounds'], {'dtype': 'np.float32'}), '(vel_bounds, dtype=np.float32)\n', (1678, 1708), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Apr 22 02:51:53 2016 @author: utkarsh """ # FREQEST - Estimate fingerprint ridge frequency within image block # # Function to estimate the fingerprint ridge frequency within a small block # of a fingerprint image. This function is used by RIDGEFREQ # # Usage: # freqim = freqest(im, orientim, windsze, minWaveLength, maxWaveLength) # # Arguments: # im - Image block to be processed. # orientim - Ridge orientation image of image block. # windsze - Window length used to identify peaks. This should be # an odd integer, say 3 or 5. # minWaveLength, maxWaveLength - Minimum and maximum ridge # wavelengths, in pixels, considered acceptable. # # Returns: # freqim - An image block the same size as im with all values # set to the estimated ridge spatial frequency. If a # ridge frequency cannot be found, or cannot be found # within the limits set by min and max Wavlength # freqim is set to zeros. # # Suggested parameters for a 500dpi fingerprint image # freqim = freqest(im,orientim, 5, 5, 15); # # See also: RIDGEFREQ, RIDGEORIENT, RIDGESEGMENT ### REFERENCES # <NAME> # School of Computer Science & Software Engineering # The University of Western Australia # pk at csse uwa edu au # http://www.csse.uwa.edu.au/~pk import numpy as np import math import scipy.ndimage #import cv2 def frequest(im,orientim,windsze,minWaveLength,maxWaveLength): rows,cols = np.shape(im) # Find mean orientation within the block. This is done by averaging the # sines and cosines of the doubled angles before reconstructing the # angle again. This avoids wraparound problems at the origin. cosorient = np.mean(np.cos(2*orientim)) sinorient = np.mean(np.sin(2*orientim)) orient = math.atan2(sinorient,cosorient)/2 # Rotate the image block so that the ridges are vertical #ROT_mat = cv2.getRotationMatrix2D((cols/2,rows/2),orient/np.pi*180 + 90,1) #rotim = cv2.warpAffine(im,ROT_mat,(cols,rows)) rotim = scipy.ndimage.rotate(im,orient/np.pi*180 + 90,axes=(1,0),reshape = False,order = 3,mode = 'nearest'); # Now crop the image so that the rotated image does not contain any # invalid regions. This prevents the projection down the columns # from being mucked up. cropsze = int(np.fix(rows/np.sqrt(2))); offset = int(np.fix((rows-cropsze)/2)); rotim = rotim[offset:offset+cropsze][:,offset:offset+cropsze]; # Sum down the columns to get a projection of the grey values down # the ridges. proj = np.sum(rotim,axis = 0); dilation = scipy.ndimage.grey_dilation(proj, windsze,structure=np.ones(windsze)); temp = np.abs(dilation - proj); peak_thresh = 2; maxpts = (temp<peak_thresh) & (proj > np.mean(proj)); maxind = np.where(maxpts); rows_maxind,cols_maxind = np.shape(maxind); # Determine the spatial frequency of the ridges by divinding the # distance between the 1st and last peaks by the (No of peaks-1). If no # peaks are detected, or the wavelength is outside the allowed bounds, # the frequency image is set to 0 if(cols_maxind<2): freqim = np.zeros(im.shape); else: NoOfPeaks = cols_maxind; waveLength = (maxind[0][cols_maxind-1] - maxind[0][0])/(NoOfPeaks - 1); if waveLength>=minWaveLength and waveLength<=maxWaveLength: freqim = 1/np.double(waveLength) * np.ones(im.shape); else: freqim = np.zeros(im.shape); return(freqim);
[ "numpy.abs", "numpy.mean", "numpy.sqrt", "numpy.ones", "numpy.double", "numpy.where", "numpy.fix", "numpy.sum", "numpy.zeros", "numpy.cos", "math.atan2", "numpy.sin", "numpy.shape" ]
[((1590, 1602), 'numpy.shape', 'np.shape', (['im'], {}), '(im)\n', (1598, 1602), True, 'import numpy as np\n'), ((2738, 2759), 'numpy.sum', 'np.sum', (['rotim'], {'axis': '(0)'}), '(rotim, axis=0)\n', (2744, 2759), True, 'import numpy as np\n'), ((2860, 2883), 'numpy.abs', 'np.abs', (['(dilation - proj)'], {}), '(dilation - proj)\n', (2866, 2883), True, 'import numpy as np\n'), ((2991, 3007), 'numpy.where', 'np.where', (['maxpts'], {}), '(maxpts)\n', (2999, 3007), True, 'import numpy as np\n'), ((3044, 3060), 'numpy.shape', 'np.shape', (['maxind'], {}), '(maxind)\n', (3052, 3060), True, 'import numpy as np\n'), ((1861, 1881), 'numpy.cos', 'np.cos', (['(2 * orientim)'], {}), '(2 * orientim)\n', (1867, 1881), True, 'import numpy as np\n'), ((1905, 1925), 'numpy.sin', 'np.sin', (['(2 * orientim)'], {}), '(2 * orientim)\n', (1911, 1925), True, 'import numpy as np\n'), ((1938, 1970), 'math.atan2', 'math.atan2', (['sinorient', 'cosorient'], {}), '(sinorient, cosorient)\n', (1948, 1970), False, 'import math\n'), ((2534, 2562), 'numpy.fix', 'np.fix', (['((rows - cropsze) / 2)'], {}), '((rows - cropsze) / 2)\n', (2540, 2562), True, 'import numpy as np\n'), ((3374, 3392), 'numpy.zeros', 'np.zeros', (['im.shape'], {}), '(im.shape)\n', (3382, 3392), True, 'import numpy as np\n'), ((2829, 2845), 'numpy.ones', 'np.ones', (['windsze'], {}), '(windsze)\n', (2836, 2845), True, 'import numpy as np\n'), ((2962, 2975), 'numpy.mean', 'np.mean', (['proj'], {}), '(proj)\n', (2969, 2975), True, 'import numpy as np\n'), ((3686, 3704), 'numpy.zeros', 'np.zeros', (['im.shape'], {}), '(im.shape)\n', (3694, 3704), True, 'import numpy as np\n'), ((2503, 2513), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2510, 2513), True, 'import numpy as np\n'), ((3632, 3649), 'numpy.ones', 'np.ones', (['im.shape'], {}), '(im.shape)\n', (3639, 3649), True, 'import numpy as np\n'), ((3608, 3629), 'numpy.double', 'np.double', (['waveLength'], {}), '(waveLength)\n', (3617, 3629), True, 'import numpy as np\n')]
import numpy as np import sys import argparse from data_util import Dataset from tqdm import tqdm, trange import matplotlib.pyplot as plt class Error(Exception): pass class MoreNeighbours(Error): pass def nearest_neighbour(train_data, test_data, k=1): # print(k) test_data = test_data[None, :, None] norm_l2 = np.linalg.norm(train_data - test_data, axis=1) flattened = np.ravel(norm_l2.T) index = np.argsort(flattened) index = index[:k] index = [int(i / train_data.shape[0]) for i in index] counts = np.bincount(index) # print(counts) # Breaking the tie max_count = np.max(counts) inds = np.where(counts == max_count)[0] np.random.seed(10) if len(inds) > 1: random = np.random.rand(len(inds)) index = np.argmax(random) return inds[index] else: return np.argmax(counts) def knn_classification(data, k=1): try: if k > data.train_data.shape[0]: raise MoreNeighbours except MoreNeighbours: print("More nearest neighbours needed than data in any class") sys.exit() correct = 0 total_samples = data.test_data.shape[-1] * data.test_data.shape[0] for i in trange(data.test_data.shape[-1], desc='testing'): for j in range(data.test_data.shape[0]): distance = nearest_neighbour(data.train_data, data.test_data[j, :, i], k) if distance == i: correct = correct + 1 acc = correct * 100 / total_samples print(f"Test accuracy: {acc}") return acc if __name__ == '__main__': parser = argparse.ArgumentParser(description="Bayes") parser.add_argument('--data_name', type=str, default='data', help='choose from data, pose and illum') parser.add_argument('--task_id', type=int, default=1) parser.add_argument('--transform', type=str, default='PCA', help='PCA or MDA') args = parser.parse_args() data_name = args.data_name # threshold = {'data': 0.3, # 'pose': 0.08, # 'illum': 0.1} # k = {'data': 1, # 'pose': 3, # 'illum': 1} # data = Dataset() # data.load_data(transform='PCA', threshold=threshold[data_name], data_name=data_name) # data.train_val_test_split(data_name=data_name) # knn_classification(data, k=k[data_name]) test_acc_list = {} split = [] if data_name =='data': indexes = np.arange(0.02, 0.3, 0.01) else: indexes = np.arange(0.02, 0.1, 0.01) for _, j in enumerate(indexes): if args.task_id == 1: threshold = {'data': j, 'pose': j, 'illum': j} elif args.task_id == 2: threshold = {'data': j} data = Dataset(task_id=args.task_id) data.load_data(transform=args.transform, threshold=threshold[data_name], data_name=data_name) data.train_val_test_split(data_name=data_name) for i in range(min(data.train_data.shape[0], 10)): k = {'data': i + 1, 'pose': i + 1, 'illum': i + 1} test_acc = knn_classification(data, k=k[data_name]) if i + 1 in test_acc_list.keys(): test_acc_list[i + 1].append(test_acc) else: test_acc_list[i + 1] = [test_acc] # split = list(indexes) # # fig = plt.figure() # for keys in test_acc_list.keys(): # plt.plot(split, test_acc_list[keys], label=f'k={keys}') # plt.legend(bbox_to_anchor=(0.82, 1), loc='upper left', borderaxespad=0.) # plt.xlabel('Fraction of Principal Components Taken') # plt.ylabel('Test Accuracy') # # plt.savefig(f'./Dataset/{data_name}/knn/test_acc_transform={args.transform}_taskid={args.task_id}.png') # plt.close()
[ "sys.exit", "argparse.ArgumentParser", "numpy.where", "numpy.argmax", "numpy.max", "numpy.argsort", "numpy.random.seed", "numpy.linalg.norm", "numpy.ravel", "numpy.bincount", "tqdm.trange", "numpy.arange", "data_util.Dataset" ]
[((333, 379), 'numpy.linalg.norm', 'np.linalg.norm', (['(train_data - test_data)'], {'axis': '(1)'}), '(train_data - test_data, axis=1)\n', (347, 379), True, 'import numpy as np\n'), ((396, 415), 'numpy.ravel', 'np.ravel', (['norm_l2.T'], {}), '(norm_l2.T)\n', (404, 415), True, 'import numpy as np\n'), ((428, 449), 'numpy.argsort', 'np.argsort', (['flattened'], {}), '(flattened)\n', (438, 449), True, 'import numpy as np\n'), ((543, 561), 'numpy.bincount', 'np.bincount', (['index'], {}), '(index)\n', (554, 561), True, 'import numpy as np\n'), ((622, 636), 'numpy.max', 'np.max', (['counts'], {}), '(counts)\n', (628, 636), True, 'import numpy as np\n'), ((685, 703), 'numpy.random.seed', 'np.random.seed', (['(10)'], {}), '(10)\n', (699, 703), True, 'import numpy as np\n'), ((1211, 1259), 'tqdm.trange', 'trange', (['data.test_data.shape[-1]'], {'desc': '"""testing"""'}), "(data.test_data.shape[-1], desc='testing')\n", (1217, 1259), False, 'from tqdm import tqdm, trange\n'), ((1600, 1644), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Bayes"""'}), "(description='Bayes')\n", (1623, 1644), False, 'import argparse\n'), ((648, 677), 'numpy.where', 'np.where', (['(counts == max_count)'], {}), '(counts == max_count)\n', (656, 677), True, 'import numpy as np\n'), ((785, 802), 'numpy.argmax', 'np.argmax', (['random'], {}), '(random)\n', (794, 802), True, 'import numpy as np\n'), ((856, 873), 'numpy.argmax', 'np.argmax', (['counts'], {}), '(counts)\n', (865, 873), True, 'import numpy as np\n'), ((2441, 2467), 'numpy.arange', 'np.arange', (['(0.02)', '(0.3)', '(0.01)'], {}), '(0.02, 0.3, 0.01)\n', (2450, 2467), True, 'import numpy as np\n'), ((2496, 2522), 'numpy.arange', 'np.arange', (['(0.02)', '(0.1)', '(0.01)'], {}), '(0.02, 0.1, 0.01)\n', (2505, 2522), True, 'import numpy as np\n'), ((2784, 2813), 'data_util.Dataset', 'Dataset', ([], {'task_id': 'args.task_id'}), '(task_id=args.task_id)\n', (2791, 2813), False, 'from data_util import Dataset\n'), ((1100, 1110), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1108, 1110), False, 'import sys\n')]
# Author: <NAME> # Contributors: <NAME> import numpy as np import scipy import torch class Geometry(): """Helper class to calculate distances, angles, and dihedrals with a unified, vectorized framework depending on whether pytorch or numpy is used. Parameters ---------- method : 'torch' or 'numpy' (default='torch') Library used for compuations device : torch.device (default=torch.device('cpu')) Device upon which geometrical calculations will take place. When embedded as an attribute for a feature class, the device will inherit from the feature device attribute """ def __init__(self, method='torch', device=torch.device('cpu')): self.device = device if method not in ['torch', 'numpy']: raise RuntimeError("Allowed methods are 'torch' and 'numpy'") self.method = method # # # # # # # # # # # # # # Define any types here # # # # # # # # # # # # # # if method == 'torch': self.bool = torch.bool self.float32 = torch.float32 elif self.method == 'numpy': self.bool = np.bool self.float32 = np.float32 def check_for_nans(self, object, name=None): """This method checks an object for the presence of nans and returns an error if any nans are found. """ if name is None: name = '' if self.isnan(object).any(): raise ValueError( "Nan found in {}. Check your coordinates!)".format( name) ) def check_array_vs_tensor(self, object, name=None): """This method checks whether the object (i.e., numpy array or torch tensor) is consistent with the method chosen for the Geometry instance (i.e., 'numpy' or 'torch', respectively). """ if name is None: name = '' if self.method == 'numpy' and type(object) is not np.ndarray: raise ValueError( "Input argument {} must be type np.ndarray for Geometry(method='numpy')".format( name) ) if self.method == 'torch' and type(object) is not torch.Tensor: raise ValueError( "Input argument {} must be type torch.Tensor for Geometry(method='torch')".format( name) ) def get_distance_indices(self, n_beads, backbone_inds=[], backbone_map=None): """Determines indices of pairwise distance features. """ pair_order = [] adj_backbone_pairs = [] for increment in range(1, n_beads): for i in range(n_beads - increment): pair_order.append((i, i+increment)) if len(backbone_inds) > 0: if (backbone_map[i+increment] - backbone_map[i] == 1): adj_backbone_pairs.append((i, i+increment)) return pair_order, adj_backbone_pairs def get_redundant_distance_mapping(self, pair_order): """Reformulates pairwise distances from shape [n_frames, n_dist] to shape [n_frames, n_beads, n_neighbors] This is done by finding the index mapping between non-redundant and redundant representations of the pairwise distances. This mapping can then be supplied to Schnet-related features, such as a RadialBasisFunction() layer, which use redundant pairwise distance representations. """ pairwise_dist_inds = [zipped_pair[1] for zipped_pair in sorted( [z for z in zip(pair_order, np.arange(len(pair_order))) ]) ] map_matrix = scipy.spatial.distance.squareform(pairwise_dist_inds) map_matrix = map_matrix[~np.eye(map_matrix.shape[0], dtype=bool)].reshape( map_matrix.shape[0], -1) return map_matrix def get_vectorize_inputs(self, inds, data): """Helper function to obtain indices for vectorized calculations. """ if len(np.unique([len(feat) for feat in inds])) > 1: raise ValueError( "All features must be the same length." ) feat_length = len(inds[0]) ind_list = [[feat[i] for feat in inds] for i in range(feat_length)] dist_list = [data[:, ind_list[i+1], :] - data[:, ind_list[i], :] for i in range(feat_length - 1)] if len(dist_list) == 1: dist_list = dist_list[0] return dist_list def get_distances(self, distance_inds, data, norm=True): """Calculates distances in a vectorized fashion. """ self.check_array_vs_tensor(data, 'data') distances = self.get_vectorize_inputs(distance_inds, data) if norm: distances = self.norm(distances, axis=2) self.check_for_nans(distances, 'distances') return distances def get_angles(self, angle_inds, data, clip=True): """Calculates angles in a vectorized fashion. If clip is True (default), then the angle cosines are clipped to be between -1 and 1 to account for numerical error. """ self.check_array_vs_tensor(data, 'data') base, offset = self.get_vectorize_inputs(angle_inds, data) # This convention assumes that the middle index of the angle triplet # is the angle vertex. Scalar multiplication of the first vector # of the angle triplet by -1 means that the vertex point is # subtracted from the non-vertex point for the first vector. # This ensures that the arccos operation returns the acute angle # at the vertex. See test_geometry_features for a non-parallel # formulation. base *= -1 angles = self.sum(base * offset, axis=2) / self.norm(base, axis=2) / self.norm( offset, axis=2) if clip: # Clipping to prevent the arccos to be NaN angles = self.arccos(self.clip(angles, lower_bound=-1., upper_bound=1.)) self.check_for_nans(angles, 'angles') return angles def get_dihedrals(self, dihed_inds, data): """Calculates dihedrals in a vectorized fashion. Note ---- This is implemented in a hacky/bad way. It calculates twice as many dihedrals as needed and removes every other one. There is a better way to do this, I think using two lists of angles, but for now this has the correct functionality. """ self.check_array_vs_tensor(data, 'data') angle_inds = np.concatenate([[(f[i], f[i+1], f[i+2]) for i in range(2)] for f in dihed_inds]) base, offset = self.get_vectorize_inputs(angle_inds, data) offset_2 = base[:, 1:] cross_product_adj = self.cross(base, offset, axis=2) cp_base = cross_product_adj[:, :-1, :] cp_offset = cross_product_adj[:, 1:, :] plane_vector = self.cross(cp_offset, offset_2, axis=2) dihedral_cosines = self.sum(cp_base[:, ::2]*cp_offset[:, ::2], axis=2)/self.norm( cp_base[:, ::2], axis=2)/self.norm(cp_offset[:, ::2], axis=2) dihedral_sines = self.sum(cp_base[:, ::2]*plane_vector[:, ::2], axis=2)/self.norm( cp_base[:, ::2], axis=2)/self.norm(plane_vector[:, ::2], axis=2) dihedral_rad = self.arctan(dihedral_sines / dihedral_cosines) #dihedral_rad = self.arccos(dihedral_cosines) #dihedral_rad = self.arccos(self.clip(dihedral_cosines, # lower_bound=-1., # upper_bound=1.)) self.check_for_nans(dihedral_rad, 'dihedral') return dihedral_rad def get_neighbors(self, distances, cutoff=None): """Calculates a simple neighbor list in which every bead sees each other. If a cutoff is specified, only beads inside that distance cutoff are considered as neighbors. Parameters ---------- distances: torch.Tensor or np.array Redundant distance matrix of shape (n_frames, n_beads, n_neighbors). cutoff: float (default=None) Distance cutoff in Angstrom in which beads are considered neighbors. Returns ------- neighbors: torch.Tensor or np.array Indices of all neighbors of each bead. This is not affected by the mask. Shape [n_frames, n_beads, n_neighbors] neighbor_mask: torch.Tensor or np.array Index mask to filter out non-existing neighbors that were introduced to due distance cutoffs. Shape [n_frames, n_beads, n_neighbors] """ self.check_array_vs_tensor(distances, 'distances') n_frames, n_beads, n_neighbors = distances.shape # Create a simple neighbor list of shape [n_frames, n_beads, n_neighbors] # in which every bead sees each other but themselves. # First, create a matrix that contains all indices. neighbors = self.tile(self.arange(n_beads), (n_frames, n_beads, 1)) # To remove the self interaction of beads, an inverted identity matrix # is used to exclude the respective indices in the neighbor list. neighbors = neighbors[:, ~self.eye(n_beads, dtype=self.bool)].reshape( n_frames, n_beads, n_neighbors) if cutoff is not None: # Create an index mask for neighbors that are inside the cutoff neighbor_mask = distances < cutoff neighbor_mask = self.to_type(neighbor_mask, self.float32) else: neighbor_mask = self.ones((n_frames, n_beads, n_neighbors), dtype=self.float32) return neighbors, neighbor_mask def _torch_eye(self, n, dtype): if dtype == torch.bool: # Only in pytorch>=1.2! return torch.BoolTensor(np.eye(n, dtype=np.bool)) else: return torch.eye(n, dtype=dtype) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Versatile Methods # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # The methods implemented below should modify the originals as little as # possible, such that the documentation for the respective method on the # numpy and pytorch websites should be sufficient. # Methods defined: arccos, cross, norm, sum, arange, tile, eye, ones, # to_type, clip, isnan def arccos(self, x): if self.method == 'torch': return torch.acos(x) elif self.method == 'numpy': return np.arccos(x) def arctan(self, x): if self.method == 'torch': return torch.atan(x) elif self.method == 'numpy': return np.arctan(x) def cross(self, x, y, axis): if self.method == 'torch': return torch.cross(x, y, dim=axis) elif self.method == 'numpy': return np.cross(x, y, axis=axis) def norm(self, x, axis): if self.method == 'torch': return torch.norm(x, dim=axis) elif self.method == 'numpy': return np.linalg.norm(x, axis=axis) def sum(self, x, axis): if self.method == 'torch': return torch.sum(x, dim=axis) elif self.method == 'numpy': return np.sum(x, axis=axis) def arange(self, n): if self.method == 'torch': return torch.arange(n) elif self.method == 'numpy': return np.arange(n) def tile(self, x, shape): if self.method == 'torch': return x.repeat(*shape) elif self.method == 'numpy': return np.tile(x, shape) def eye(self, n, dtype): # As of pytorch 1.2.0, BoolTensors are implemented. However, # torch.eye does not take dtype=torch.bool on CPU devices yet. # Watch pytorch PR #24148 for the implementation, which would # allow us to return torch.eye(n, dtype=dtype) # For now, we do this: if self.method == 'torch': return self._torch_eye(n, dtype).to(self.device) elif self.method == 'numpy': return np.eye(n, dtype=dtype) def ones(self, shape, dtype): if self.method == 'torch': return torch.ones(*shape, dtype=dtype).to(self.device) elif self.method == 'numpy': return np.ones(shape, dtype=dtype) def to_type(self, x, dtype): if self.method == 'torch': return x.type(dtype) elif self.method == 'numpy': return x.astype(dtype) def clip(self, x, lower_bound, upper_bound, out=None): if self.method == 'torch': return torch.clamp(x, min=lower_bound, max=upper_bound, out=out) elif self.method == 'numpy': return np.clip(x, a_min=lower_bound, a_max=upper_bound, out=out) def isnan(self, x): if self.method == 'torch': return torch.isnan(x) elif self.method == 'numpy': return np.isnan(x)
[ "numpy.clip", "numpy.arccos", "torch.sum", "numpy.linalg.norm", "numpy.arange", "torch.arange", "numpy.cross", "torch.eye", "torch.acos", "numpy.arctan", "numpy.tile", "numpy.eye", "scipy.spatial.distance.squareform", "numpy.ones", "torch.norm", "numpy.isnan", "torch.atan", "torch.clamp", "torch.device", "torch.ones", "numpy.sum", "torch.isnan", "torch.cross" ]
[((686, 705), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (698, 705), False, 'import torch\n'), ((3751, 3804), 'scipy.spatial.distance.squareform', 'scipy.spatial.distance.squareform', (['pairwise_dist_inds'], {}), '(pairwise_dist_inds)\n', (3784, 3804), False, 'import scipy\n'), ((10447, 10472), 'torch.eye', 'torch.eye', (['n'], {'dtype': 'dtype'}), '(n, dtype=dtype)\n', (10456, 10472), False, 'import torch\n'), ((11117, 11130), 'torch.acos', 'torch.acos', (['x'], {}), '(x)\n', (11127, 11130), False, 'import torch\n'), ((11280, 11293), 'torch.atan', 'torch.atan', (['x'], {}), '(x)\n', (11290, 11293), False, 'import torch\n'), ((11451, 11478), 'torch.cross', 'torch.cross', (['x', 'y'], {'dim': 'axis'}), '(x, y, dim=axis)\n', (11462, 11478), False, 'import torch\n'), ((11645, 11668), 'torch.norm', 'torch.norm', (['x'], {'dim': 'axis'}), '(x, dim=axis)\n', (11655, 11668), False, 'import torch\n'), ((11837, 11859), 'torch.sum', 'torch.sum', (['x'], {'dim': 'axis'}), '(x, dim=axis)\n', (11846, 11859), False, 'import torch\n'), ((12017, 12032), 'torch.arange', 'torch.arange', (['n'], {}), '(n)\n', (12029, 12032), False, 'import torch\n'), ((13288, 13345), 'torch.clamp', 'torch.clamp', (['x'], {'min': 'lower_bound', 'max': 'upper_bound', 'out': 'out'}), '(x, min=lower_bound, max=upper_bound, out=out)\n', (13299, 13345), False, 'import torch\n'), ((13539, 13553), 'torch.isnan', 'torch.isnan', (['x'], {}), '(x)\n', (13550, 13553), False, 'import torch\n'), ((10388, 10412), 'numpy.eye', 'np.eye', (['n'], {'dtype': 'np.bool'}), '(n, dtype=np.bool)\n', (10394, 10412), True, 'import numpy as np\n'), ((11187, 11199), 'numpy.arccos', 'np.arccos', (['x'], {}), '(x)\n', (11196, 11199), True, 'import numpy as np\n'), ((11350, 11362), 'numpy.arctan', 'np.arctan', (['x'], {}), '(x)\n', (11359, 11362), True, 'import numpy as np\n'), ((11535, 11560), 'numpy.cross', 'np.cross', (['x', 'y'], {'axis': 'axis'}), '(x, y, axis=axis)\n', (11543, 11560), True, 'import numpy as np\n'), ((11725, 11753), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {'axis': 'axis'}), '(x, axis=axis)\n', (11739, 11753), True, 'import numpy as np\n'), ((11916, 11936), 'numpy.sum', 'np.sum', (['x'], {'axis': 'axis'}), '(x, axis=axis)\n', (11922, 11936), True, 'import numpy as np\n'), ((12089, 12101), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (12098, 12101), True, 'import numpy as np\n'), ((12260, 12277), 'numpy.tile', 'np.tile', (['x', 'shape'], {}), '(x, shape)\n', (12267, 12277), True, 'import numpy as np\n'), ((12756, 12778), 'numpy.eye', 'np.eye', (['n'], {'dtype': 'dtype'}), '(n, dtype=dtype)\n', (12762, 12778), True, 'import numpy as np\n'), ((12972, 12999), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'dtype'}), '(shape, dtype=dtype)\n', (12979, 12999), True, 'import numpy as np\n'), ((13402, 13459), 'numpy.clip', 'np.clip', (['x'], {'a_min': 'lower_bound', 'a_max': 'upper_bound', 'out': 'out'}), '(x, a_min=lower_bound, a_max=upper_bound, out=out)\n', (13409, 13459), True, 'import numpy as np\n'), ((13610, 13621), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (13618, 13621), True, 'import numpy as np\n'), ((12868, 12899), 'torch.ones', 'torch.ones', (['*shape'], {'dtype': 'dtype'}), '(*shape, dtype=dtype)\n', (12878, 12899), False, 'import torch\n'), ((3838, 3877), 'numpy.eye', 'np.eye', (['map_matrix.shape[0]'], {'dtype': 'bool'}), '(map_matrix.shape[0], dtype=bool)\n', (3844, 3877), True, 'import numpy as np\n')]
import numpy as np import io import matplotlib.pyplot as plt import SurfaceTopography.Uniform.GeometryAnalysis as CAA with io.StringIO( """ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 """) as file: contacting_points = np.loadtxt(file) nx, ny = contacting_points.shape x, y = np.mgrid[:nx, :ny] fig, ax = plt.subplots() ax.imshow(contacting_points.T, cmap="Greys") iper = CAA.inner_perimeter_area(contacting_points, True, stencil=CAA.nn_stencil) ax.plot(x[iper], y[iper], ".r", label="inner_perimeter, nn") iper = CAA.inner_perimeter_area(contacting_points, True, stencil=CAA.nnn_stencil) ax.plot(x[iper], y[iper], "xr", label="inner_perimeter, nnn") oper = CAA.outer_perimeter_area(contacting_points, True, stencil=CAA.nn_stencil) ax.plot(x[oper], y[oper], "ob", mfc="none", label="outer_perimeter, nn") oper = CAA.outer_perimeter_area(contacting_points, True, stencil=CAA.nnn_stencil) ax.plot(x[oper], y[oper], "+b", label="outer_perimeter, nnn") ax.legend() fig.savefig("caa.pdf")
[ "SurfaceTopography.Uniform.GeometryAnalysis.outer_perimeter_area", "io.StringIO", "numpy.loadtxt", "SurfaceTopography.Uniform.GeometryAnalysis.inner_perimeter_area", "matplotlib.pyplot.subplots" ]
[((960, 974), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (972, 974), True, 'import matplotlib.pyplot as plt\n'), ((1027, 1100), 'SurfaceTopography.Uniform.GeometryAnalysis.inner_perimeter_area', 'CAA.inner_perimeter_area', (['contacting_points', '(True)'], {'stencil': 'CAA.nn_stencil'}), '(contacting_points, True, stencil=CAA.nn_stencil)\n', (1051, 1100), True, 'import SurfaceTopography.Uniform.GeometryAnalysis as CAA\n'), ((1169, 1243), 'SurfaceTopography.Uniform.GeometryAnalysis.inner_perimeter_area', 'CAA.inner_perimeter_area', (['contacting_points', '(True)'], {'stencil': 'CAA.nnn_stencil'}), '(contacting_points, True, stencil=CAA.nnn_stencil)\n', (1193, 1243), True, 'import SurfaceTopography.Uniform.GeometryAnalysis as CAA\n'), ((1314, 1387), 'SurfaceTopography.Uniform.GeometryAnalysis.outer_perimeter_area', 'CAA.outer_perimeter_area', (['contacting_points', '(True)'], {'stencil': 'CAA.nn_stencil'}), '(contacting_points, True, stencil=CAA.nn_stencil)\n', (1338, 1387), True, 'import SurfaceTopography.Uniform.GeometryAnalysis as CAA\n'), ((1468, 1542), 'SurfaceTopography.Uniform.GeometryAnalysis.outer_perimeter_area', 'CAA.outer_perimeter_area', (['contacting_points', '(True)'], {'stencil': 'CAA.nnn_stencil'}), '(contacting_points, True, stencil=CAA.nnn_stencil)\n', (1492, 1542), True, 'import SurfaceTopography.Uniform.GeometryAnalysis as CAA\n'), ((124, 838), 'io.StringIO', 'io.StringIO', (['"""\n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0\n 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0\n 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0\n 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n """'], {}), '(\n """\n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0\n 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0\n 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0\n 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0\n 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0\n 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n """\n )\n', (135, 838), False, 'import io\n'), ((871, 887), 'numpy.loadtxt', 'np.loadtxt', (['file'], {}), '(file)\n', (881, 887), True, 'import numpy as np\n')]
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MovingAverage optimizers.""" import numpy as np import pytest import tensorflow as tf from tensorflow_addons.optimizers import MovingAverage @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_run(): var0 = tf.Variable([1.0, 2.0]) var1 = tf.Variable([3.0, 4.0]) grads0 = tf.constant([0.1, 0.1]) grads1 = tf.constant([0.01, 0.01]) grads_and_vars = list(zip([grads0, grads1], [var0, var1])) opt = MovingAverage(tf.keras.optimizers.SGD(lr=2.0), average_decay=0.5,) opt.apply_gradients(grads_and_vars) opt.apply_gradients(grads_and_vars) np.testing.assert_allclose(var0.read_value(), [0.6, 1.6]) np.testing.assert_allclose(var1.read_value(), [2.96, 3.96]) ema_var0 = opt.get_slot(var0, "average") ema_var1 = opt.get_slot(var1, "average") np.testing.assert_allclose(ema_var0.read_value(), [0.75, 1.75]) np.testing.assert_allclose(ema_var1.read_value(), [2.975, 3.975]) _ = opt.assign_average_vars([var0, var1]) np.testing.assert_allclose(var0.read_value(), [0.75, 1.75]) np.testing.assert_allclose(var1.read_value(), [2.975, 3.975]) var0.assign_add([1.0, 1.0]), var1.assign_add([2.0, 2.0]), ema_var0.assign_add([3.0, 3.0]), ema_var1.assign_add([4.0, 4.0]), np.testing.assert_allclose(var0.read_value(), [1.75, 2.75]) np.testing.assert_allclose(var1.read_value(), [4.975, 5.975]) np.testing.assert_allclose(ema_var0.read_value(), [3.75, 4.75]) np.testing.assert_allclose(ema_var1.read_value(), [6.975, 7.975]) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_opt_failure(): base_opt = None with pytest.raises(TypeError): MovingAverage(base_opt, 0.5) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_model_weights_update(): grad = tf.Variable([[0.1]]) model = tf.keras.Sequential( [ tf.keras.layers.Dense( 1, kernel_initializer=tf.keras.initializers.Constant([[1.0]]), use_bias=False, ) ] ) model.build(input_shape=[1, 1]) opt = MovingAverage(tf.keras.optimizers.SGD(lr=2.0), average_decay=0.5) _ = opt.apply_gradients(list(zip([grad], model.variables))) np.testing.assert_allclose(model.variables[0].read_value(), [[0.8]]) _ = opt.assign_average_vars(model.variables) np.testing.assert_allclose(model.variables[0].read_value(), [[0.9]]) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_model_dynamic_lr(): grad = tf.Variable([[0.1]]) model = tf.keras.Sequential( [ tf.keras.layers.Dense( 1, kernel_initializer=tf.keras.initializers.Constant([[1.0]]), use_bias=False, ) ] ) model.build(input_shape=[1, 1]) opt = MovingAverage(tf.keras.optimizers.SGD(lr=1e-3), average_decay=0.5) _ = opt.apply_gradients(list(zip([grad], model.variables))) np.testing.assert_allclose(opt.lr.read_value(), 1e-3) opt.lr = 1e-4 np.testing.assert_allclose(opt.lr.read_value(), 1e-4) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_optimizer_string(): _ = MovingAverage("adam") def test_config(): sgd_opt = tf.keras.optimizers.SGD(lr=2.0, nesterov=True, momentum=0.3, decay=0.1) opt = MovingAverage( sgd_opt, average_decay=0.5, num_updates=None, start_step=5, dynamic_decay=True, ) config = opt.get_config() assert config["average_decay"] == 0.5 assert config["num_updates"] is None assert config["start_step"] == 5 assert config["dynamic_decay"] is True new_opt = MovingAverage.from_config(config) old_sgd_config = opt._optimizer.get_config() new_sgd_config = new_opt._optimizer.get_config() for k1, k2 in zip(old_sgd_config, new_sgd_config): assert old_sgd_config[k1] == new_sgd_config[k2] @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_fit_simple_linear_model(): seed = 0x2019 np.random.seed(seed) tf.random.set_seed(seed) num_examples = 5000 x = np.random.standard_normal((num_examples, 3)) w = np.random.standard_normal((3, 1)) y = np.dot(x, w) + np.random.standard_normal((num_examples, 1)) * 1e-4 model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(input_shape=(3,), units=1)) opt = MovingAverage("sgd") model.compile(opt, loss="mse") model.fit(x, y, epochs=5) opt.assign_average_vars(model.variables) x = np.random.standard_normal((100, 3)) y = np.dot(x, w) predicted = model.predict(x) max_abs_diff = np.max(np.abs(predicted - y)) assert max_abs_diff < 5e-3 def test_serialization(): sgd_opt = tf.keras.optimizers.SGD(lr=2.0, nesterov=True, momentum=0.3, decay=0.1) optimizer = MovingAverage( sgd_opt, average_decay=0.5, num_updates=None, start_step=5, dynamic_decay=True, ) config = tf.keras.optimizers.serialize(optimizer) new_optimizer = tf.keras.optimizers.deserialize(config) assert new_optimizer.get_config() == optimizer.get_config() @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_start_step(): var0 = tf.Variable([1.0, 2.0]) grads0 = tf.constant([0.1, 0.1]) grads_and_vars = [(grads0, var0)] opt = MovingAverage( tf.keras.optimizers.SGD(lr=1.0), average_decay=0.5, start_step=1, ) opt.apply_gradients(grads_and_vars) np.testing.assert_allclose(var0.read_value(), [0.9, 1.9]) ema_var0 = opt.get_slot(var0, "average") opt.apply_gradients(grads_and_vars) np.testing.assert_allclose(var0.read_value(), [0.8, 1.8]) np.testing.assert_allclose(ema_var0.read_value(), [0.85, 1.85]) @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_dynamic_decay(): var0 = tf.Variable([1.0, 2.0]) grads0 = tf.constant([0.1, 0.1]) grads_and_vars = [(grads0, var0)] opt = MovingAverage( tf.keras.optimizers.SGD(lr=2.0), average_decay=0.5, dynamic_decay=True, ) opt.apply_gradients(grads_and_vars) opt.apply_gradients(grads_and_vars) np.testing.assert_allclose(var0.read_value(), [0.6, 1.6]) ema_var0 = opt.get_slot(var0, "average") np.testing.assert_allclose(ema_var0.read_value(), [0.64, 1.64]) @pytest.mark.usefixtures("maybe_run_functions_eagerly") @pytest.mark.with_device([tf.distribute.MirroredStrategy]) def test_swap_weights(device): with device.scope(): var = tf.Variable([1.0, 2.0]) grads = tf.constant([0.1, 0.1]) opt = MovingAverage(tf.keras.optimizers.SGD(lr=2.0), average_decay=0.5,) @tf.function def apply_gradients(): opt.apply_gradients([(grads, var)]) device.run(apply_gradients) np.testing.assert_allclose(var.read_value(), [0.8, 1.8]) ema_var = opt.get_slot(var, "average") np.testing.assert_allclose(ema_var.read_value(), [0.85, 1.85]) with device.scope(): opt.shadow_copy([var]) opt.swap_weights() np.testing.assert_allclose(ema_var.read_value(), [0.8, 1.8]) np.testing.assert_allclose(var.read_value(), [0.85, 1.85]) with device.scope(): opt.swap_weights() np.testing.assert_allclose(var.read_value(), [0.8, 1.8]) np.testing.assert_allclose(ema_var.read_value(), [0.85, 1.85])
[ "numpy.random.standard_normal", "numpy.abs", "tensorflow.keras.optimizers.deserialize", "tensorflow.random.set_seed", "tensorflow_addons.optimizers.MovingAverage", "tensorflow.Variable", "pytest.mark.with_device", "tensorflow.keras.optimizers.serialize", "tensorflow.keras.initializers.Constant", "tensorflow.keras.optimizers.SGD", "numpy.dot", "tensorflow.keras.layers.Dense", "tensorflow.constant", "pytest.mark.usefixtures", "numpy.random.seed", "pytest.raises", "tensorflow_addons.optimizers.MovingAverage.from_config", "tensorflow.keras.models.Sequential" ]
[((848, 902), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (871, 902), False, 'import pytest\n'), ((2237, 2291), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (2260, 2291), False, 'import pytest\n'), ((2411, 2465), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (2434, 2465), False, 'import pytest\n'), ((3141, 3195), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (3164, 3195), False, 'import pytest\n'), ((3807, 3861), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (3830, 3861), False, 'import pytest\n'), ((4607, 4661), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (4630, 4661), False, 'import pytest\n'), ((5814, 5868), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (5837, 5868), False, 'import pytest\n'), ((6434, 6488), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (6457, 6488), False, 'import pytest\n'), ((6998, 7052), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""maybe_run_functions_eagerly"""'], {}), "('maybe_run_functions_eagerly')\n", (7021, 7052), False, 'import pytest\n'), ((7054, 7111), 'pytest.mark.with_device', 'pytest.mark.with_device', (['[tf.distribute.MirroredStrategy]'], {}), '([tf.distribute.MirroredStrategy])\n', (7077, 7111), False, 'import pytest\n'), ((930, 953), 'tensorflow.Variable', 'tf.Variable', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (941, 953), True, 'import tensorflow as tf\n'), ((965, 988), 'tensorflow.Variable', 'tf.Variable', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (976, 988), True, 'import tensorflow as tf\n'), ((1003, 1026), 'tensorflow.constant', 'tf.constant', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (1014, 1026), True, 'import tensorflow as tf\n'), ((1040, 1065), 'tensorflow.constant', 'tf.constant', (['[0.01, 0.01]'], {}), '([0.01, 0.01])\n', (1051, 1065), True, 'import tensorflow as tf\n'), ((2510, 2530), 'tensorflow.Variable', 'tf.Variable', (['[[0.1]]'], {}), '([[0.1]])\n', (2521, 2530), True, 'import tensorflow as tf\n'), ((3236, 3256), 'tensorflow.Variable', 'tf.Variable', (['[[0.1]]'], {}), '([[0.1]])\n', (3247, 3256), True, 'import tensorflow as tf\n'), ((3899, 3920), 'tensorflow_addons.optimizers.MovingAverage', 'MovingAverage', (['"""adam"""'], {}), "('adam')\n", (3912, 3920), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((3956, 4027), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)', 'nesterov': '(True)', 'momentum': '(0.3)', 'decay': '(0.1)'}), '(lr=2.0, nesterov=True, momentum=0.3, decay=0.1)\n', (3979, 4027), True, 'import tensorflow as tf\n'), ((4038, 4135), 'tensorflow_addons.optimizers.MovingAverage', 'MovingAverage', (['sgd_opt'], {'average_decay': '(0.5)', 'num_updates': 'None', 'start_step': '(5)', 'dynamic_decay': '(True)'}), '(sgd_opt, average_decay=0.5, num_updates=None, start_step=5,\n dynamic_decay=True)\n', (4051, 4135), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((4356, 4389), 'tensorflow_addons.optimizers.MovingAverage.from_config', 'MovingAverage.from_config', (['config'], {}), '(config)\n', (4381, 4389), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((4720, 4740), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4734, 4740), True, 'import numpy as np\n'), ((4745, 4769), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (4763, 4769), True, 'import tensorflow as tf\n'), ((4802, 4846), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(num_examples, 3)'], {}), '((num_examples, 3))\n', (4827, 4846), True, 'import numpy as np\n'), ((4855, 4888), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(3, 1)'], {}), '((3, 1))\n', (4880, 4888), True, 'import numpy as np\n'), ((4977, 5005), 'tensorflow.keras.models.Sequential', 'tf.keras.models.Sequential', ([], {}), '()\n', (5003, 5005), True, 'import tensorflow as tf\n'), ((5081, 5101), 'tensorflow_addons.optimizers.MovingAverage', 'MovingAverage', (['"""sgd"""'], {}), "('sgd')\n", (5094, 5101), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((5222, 5257), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(100, 3)'], {}), '((100, 3))\n', (5247, 5257), True, 'import numpy as np\n'), ((5266, 5278), 'numpy.dot', 'np.dot', (['x', 'w'], {}), '(x, w)\n', (5272, 5278), True, 'import numpy as np\n'), ((5436, 5507), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)', 'nesterov': '(True)', 'momentum': '(0.3)', 'decay': '(0.1)'}), '(lr=2.0, nesterov=True, momentum=0.3, decay=0.1)\n', (5459, 5507), True, 'import tensorflow as tf\n'), ((5524, 5621), 'tensorflow_addons.optimizers.MovingAverage', 'MovingAverage', (['sgd_opt'], {'average_decay': '(0.5)', 'num_updates': 'None', 'start_step': '(5)', 'dynamic_decay': '(True)'}), '(sgd_opt, average_decay=0.5, num_updates=None, start_step=5,\n dynamic_decay=True)\n', (5537, 5621), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((5646, 5686), 'tensorflow.keras.optimizers.serialize', 'tf.keras.optimizers.serialize', (['optimizer'], {}), '(optimizer)\n', (5675, 5686), True, 'import tensorflow as tf\n'), ((5707, 5746), 'tensorflow.keras.optimizers.deserialize', 'tf.keras.optimizers.deserialize', (['config'], {}), '(config)\n', (5738, 5746), True, 'import tensorflow as tf\n'), ((5903, 5926), 'tensorflow.Variable', 'tf.Variable', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (5914, 5926), True, 'import tensorflow as tf\n'), ((5940, 5963), 'tensorflow.constant', 'tf.constant', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (5951, 5963), True, 'import tensorflow as tf\n'), ((6526, 6549), 'tensorflow.Variable', 'tf.Variable', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (6537, 6549), True, 'import tensorflow as tf\n'), ((6563, 6586), 'tensorflow.constant', 'tf.constant', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (6574, 6586), True, 'import tensorflow as tf\n'), ((1155, 1186), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)'}), '(lr=2.0)\n', (1178, 1186), True, 'import tensorflow as tf\n'), ((2345, 2369), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (2358, 2369), False, 'import pytest\n'), ((2379, 2407), 'tensorflow_addons.optimizers.MovingAverage', 'MovingAverage', (['base_opt', '(0.5)'], {}), '(base_opt, 0.5)\n', (2392, 2407), False, 'from tensorflow_addons.optimizers import MovingAverage\n'), ((2827, 2858), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)'}), '(lr=2.0)\n', (2850, 2858), True, 'import tensorflow as tf\n'), ((3553, 3586), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (3576, 3586), True, 'import tensorflow as tf\n'), ((4897, 4909), 'numpy.dot', 'np.dot', (['x', 'w'], {}), '(x, w)\n', (4903, 4909), True, 'import numpy as np\n'), ((5020, 5068), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', ([], {'input_shape': '(3,)', 'units': '(1)'}), '(input_shape=(3,), units=1)\n', (5041, 5068), True, 'import tensorflow as tf\n'), ((5340, 5361), 'numpy.abs', 'np.abs', (['(predicted - y)'], {}), '(predicted - y)\n', (5346, 5361), True, 'import numpy as np\n'), ((6036, 6067), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(1.0)'}), '(lr=1.0)\n', (6059, 6067), True, 'import tensorflow as tf\n'), ((6659, 6690), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)'}), '(lr=2.0)\n', (6682, 6690), True, 'import tensorflow as tf\n'), ((7182, 7205), 'tensorflow.Variable', 'tf.Variable', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (7193, 7205), True, 'import tensorflow as tf\n'), ((7222, 7245), 'tensorflow.constant', 'tf.constant', (['[0.1, 0.1]'], {}), '([0.1, 0.1])\n', (7233, 7245), True, 'import tensorflow as tf\n'), ((4912, 4956), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(num_examples, 1)'], {}), '((num_examples, 1))\n', (4937, 4956), True, 'import numpy as np\n'), ((7275, 7306), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': '(2.0)'}), '(lr=2.0)\n', (7298, 7306), True, 'import tensorflow as tf\n'), ((2663, 2702), 'tensorflow.keras.initializers.Constant', 'tf.keras.initializers.Constant', (['[[1.0]]'], {}), '([[1.0]])\n', (2693, 2702), True, 'import tensorflow as tf\n'), ((3389, 3428), 'tensorflow.keras.initializers.Constant', 'tf.keras.initializers.Constant', (['[[1.0]]'], {}), '([[1.0]])\n', (3419, 3428), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # import random import numpy as np from copy import copy from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id #from itertools import izip, count from itertools import count class Particle(Tree): def __init__(self, train_ids=np.arange(0, dtype='int'), param=empty(), settings=empty(), cache_tmp={}): Tree.__init__(self, train_ids, param, settings, cache_tmp) self.ancestry = [] self.nodes_processed_itr = [] self.grow_nodes_itr = [] self.log_sis_ratio_d = {} if cache_tmp: self.do_not_grow = False self.grow_nodes = [0] def process_node_id(self, data, param, settings, cache, node_id): if self.do_not_split[node_id]: log_sis_ratio = 0.0 else: log_psplit = np.log(self.compute_psplit(node_id, param)) train_ids = self.train_ids[node_id] left, right = get_children_id(node_id) if settings.verbose >= 4: print('train_ids for this node = %s' % train_ids) (do_not_split_node_id, feat_id_chosen, split_chosen, idx_split_global, log_sis_ratio, logprior_nodeid, \ train_ids_left, train_ids_right, cache_tmp, loglik_left, loglik_right) \ = self.prior_proposal(data, param, settings, cache, node_id, train_ids, log_psplit) if do_not_split_node_id: self.do_not_split[node_id] = True else: self.update_left_right_statistics(cache_tmp, node_id, logprior_nodeid, train_ids_left,\ train_ids_right, loglik_left, loglik_right, feat_id_chosen, split_chosen, \ idx_split_global, settings, param, data, cache) self.grow_nodes.append(left) self.grow_nodes.append(right) return (log_sis_ratio) def grow_next(self, data, param, settings, cache): """ grows just one node at a time (nodewise expansion) breaks after processing the first non do_not_grow node or when grow_nodes is empty Note that multiple nodes could be killed in a single grow_next call """ # FIXME: refactor without the do_not_grow option; it made sense for SMC paper, but not for PG do_not_grow = True log_sis_ratio = 0.0 nodes_processed = [] if not self.grow_nodes: if settings.verbose >= 2: print('None of the leaves can be grown any further: Current ' \ 'depth = %3d, Skipping grow_next' % self.depth) else: while True: # loop through current leaf nodes, process first "non do_not_grow" node and break; # if none of the nodes can be processed, do_not_grow = True remove_position = 0 # just pop the oldest node node_id = self.grow_nodes.pop(remove_position) nodes_processed.append(node_id) do_not_grow = do_not_grow and self.do_not_split[node_id] if self.do_not_split[node_id]: if settings.verbose >= 3: print('Skipping split at node_id %3d' % node_id) if not self.grow_nodes: break else: log_sis_ratio += self.process_node_id(data, param, settings, cache, node_id) break # you have processed a non do_not_grow node, take a break! self.loglik_current = self.compute_loglik() self.log_sis_ratio = log_sis_ratio self.do_not_grow = do_not_grow if nodes_processed: self.nodes_processed_itr.append(nodes_processed) def check_nodes_processed_itr(self, settings): tmp = set([]) for nodes in self.nodes_processed_itr: for node in nodes: if node in tmp: print('node = %s present multiple times in nodes_processed_itr = %s' % \ (node, self.nodes_processed_itr)) raise Exception else: tmp.add(node) def update_particle_weights(particles, log_weights, settings): for n, p in enumerate(particles): if settings.verbose >= 2: print('pid = %5d, log_sis_ratio = %f' % (n, p.log_sis_ratio)) log_weights[n] += p.log_sis_ratio weights_norm = softmax(log_weights) # normalized weights ess = 1. / np.sum(weights_norm ** 2) / settings.n_particles log_pd = logsumexp(log_weights) return (log_pd, ess, log_weights, weights_norm) def resample(particles, log_weights, settings, log_pd, ess, weights_norm, tree_pg): if ess <= settings.ess_threshold: if tree_pg: pid_list = resample_pids_basic(settings, settings.n_particles-1, weights_norm) random.shuffle(pid_list) # shuffle so that particle is assigned randomly pid_list.insert(0, 0) else: pid_list = resample_pids_basic(settings, settings.n_particles, weights_norm) log_weights = np.ones(settings.n_particles) * (log_pd - np.log(settings.n_particles)) else: pid_list = range(settings.n_particles) if settings.verbose >= 2: print('ess = %s, ess_threshold = %s' % (ess, settings.ess_threshold)) print('new particle ids = ') print(pid_list) op = create_new_particles(particles, pid_list, settings) # update ancestry for pid, p in zip(pid_list, op): p.ancestry.append(pid) return (op, log_weights) def resample_pids_basic(settings, n_particles, prob): if settings.resample == 'multinomial': pid_list = sample_multinomial_numpy(n_particles, prob) elif settings.resample == 'systematic': pid_list = systematic_sample(n_particles, prob) return pid_list def sample_multinomial_numpy(n_particles, prob): indices = np.random.multinomial(n_particles, prob, size=1) pid_list = [pid for pid, cnt in enumerate(indices.flat) \ for n in range(cnt)] return pid_list def create_new_particles(particles, pid_list, settings): """ particles that occur just once after resampling are not 'copied' """ list_allocated = set([]) op = [] for i, pid in enumerate(pid_list): if pid not in list_allocated: op.append(particles[pid]) else: op.append(copy_particle(particles[pid], settings)) list_allocated.add(pid) return op def copy_particle(p, settings): # TODO: lots of unnecessary copying for PG; reduce memory requirement op = Particle() # lists op.leaf_nodes = p.leaf_nodes[:] op.non_leaf_nodes = p.non_leaf_nodes[:] op.ancestry = p.ancestry[:] op.nodes_processed_itr = [x[:] for x in p.nodes_processed_itr] op.grow_nodes = p.grow_nodes[:] op.grow_nodes_itr = [x[:] for x in p.grow_nodes_itr] # dictionaries op.do_not_split = p.do_not_split.copy() op.log_sis_ratio_d = p.log_sis_ratio_d.copy() op.sum_y = p.sum_y.copy() op.sum_y2 = p.sum_y2.copy() op.n_points = p.n_points.copy() op.param_n = p.param_n.copy() op.train_ids = p.train_ids.copy() op.node_info = p.node_info.copy() op.loglik = p.loglik.copy() op.logprior = p.logprior.copy() # other variables op.depth = copy(p.depth) op.do_not_grow = copy(p.do_not_grow) op.loglik_current = copy(p.loglik_current) return op def systematic_sample(n, prob): """ systematic re-sampling algorithm. Note: objects with > 1/n probability (better than average) are guaranteed to occur atleast once. see section 2.4 of 'Comparison of Resampling Schemes for Particle Filtering' by Douc et. al for more info. """ assert(n == len(prob)) assert(abs(np.sum(prob) - 1) < 1e-10) cum_prob = np.cumsum(prob) u = np.random.rand(1) / float(n) i = 0 indices = [] while True: while u > cum_prob[i]: i += 1 indices.append(i) u += 1/float(n) if u > 1: break return indices def init_particles(data, settings, param, cache_tmp): particles = [Particle(np.arange(data['n_train']), param, settings, cache_tmp) \ for n in range(settings.n_particles)] log_weights = np.array([p.loglik[0] for p in particles]) - np.log(settings.n_particles) return (particles, log_weights) def grow_next_pg(p, tree_pg, itr, settings): p.log_sis_ratio = 0. p.do_not_grow = False p.grow_nodes = [] try: nodes_processed = tree_pg.nodes_processed_itr[itr] p.nodes_processed_itr.append(nodes_processed[:]) for node_id in nodes_processed[:-1]: assert(tree_pg.do_not_split[node_id]) p.do_not_split[node_id] = True node_id = nodes_processed[-1] if node_id in tree_pg.node_info: left, right = get_children_id(node_id) log_sis_ratio_loglik_new = tree_pg.loglik[left] + tree_pg.loglik[right] - tree_pg.loglik[node_id] try: log_sis_ratio_loglik_old, log_sis_ratio_prior = tree_pg.log_sis_ratio_d[node_id] except KeyError: print('tree_pg: node_info = %s, log_sis_ratio_d = %s' % (tree_pg.node_info, tree_pg.log_sis_ratio_d)) raise KeyError if settings.verbose >= 2: print('log_sis_ratio_loglik_old = %s' % log_sis_ratio_loglik_old) print('log_sis_ratio_loglik_new = %s' % log_sis_ratio_loglik_new) p.log_sis_ratio = log_sis_ratio_loglik_new + log_sis_ratio_prior tree_pg.log_sis_ratio_d[node_id] = (log_sis_ratio_loglik_new, log_sis_ratio_prior) p.log_sis_ratio_d[node_id] = tree_pg.log_sis_ratio_d[node_id] p.non_leaf_nodes.append(node_id) try: p.leaf_nodes.remove(node_id) except ValueError: print('warning: unable to remove node_id = %s from leaf_nodes = %s' % (node_id, p.leaf_nodes)) pass p.leaf_nodes.append(left) p.leaf_nodes.append(right) # copying relevant bits p.node_info[node_id] = tree_pg.node_info[node_id] p.logprior[node_id] = tree_pg.logprior[node_id] for node_id_child in [left, right]: p.do_not_split[node_id_child] = False # can look up where node_id_child occurred in nodes_processed_itr p.loglik[node_id_child] = tree_pg.loglik[node_id_child] p.logprior[node_id_child] = tree_pg.logprior[node_id_child] p.train_ids[node_id_child] = tree_pg.train_ids[node_id_child] p.sum_y[node_id_child] = tree_pg.sum_y[node_id_child] p.sum_y2[node_id_child] = tree_pg.sum_y2[node_id_child] p.param_n[node_id_child] = tree_pg.param_n[node_id_child] p.n_points[node_id_child] = tree_pg.n_points[node_id_child] if settings.verbose >= 2: print('p.leaf_nodes = %s' % p.leaf_nodes) print('p.non_leaf_nodes = %s' % p.non_leaf_nodes) print('p.node_info.keys() = %s' % sorted(p.node_info.keys())) try: p.grow_nodes = tree_pg.grow_nodes_itr[itr+1] p.log_sis_ratio_d = tree_pg.log_sis_ratio_d p.depth = tree_pg.depth except IndexError: p.do_not_grow = True except IndexError: p.do_not_grow = True def run_smc(particles, data, settings, param, log_weights, cache, tree_pg=None): if settings.verbose >= 2: print('Conditioned tree:') tree_pg.print_tree() itr = 0 while True: if settings.verbose >= 2: print('\n') print('*'*80) print('Current iteration = %3d' % itr) print('*'*80) if itr != 0: # no resampling required when itr == 0 since weights haven't been updated yet if settings.verbose >= 1: print('iteration = %3d, log p(y|x) = %.2f, ess/n_particles = %f' % (itr, log_pd, ess)) (particles, log_weights) = resample(particles, log_weights, settings, log_pd, \ ess, weights_norm, tree_pg) for pid, p in enumerate(particles): if settings.verbose >= 2: print('Current particle = %3d' % pid) print('grow_nodes = %s' % p.grow_nodes) print('leaf_nodes = %s, non_leaf_nodes = %s' % (p.leaf_nodes, p.non_leaf_nodes)) if p.grow_nodes: p.grow_nodes_itr.append(p.grow_nodes[:]) if tree_pg and (pid == 0): if settings.verbose >= 2 and itr == 0: for s in ['leaf_nodes', 'non_leaf_nodes', 'grow_nodes_itr', 'ancestry', 'nodes_processed_itr']: print('p.%s = %s' % (s, getattr(p, s))) grow_next_pg(p, tree_pg, itr, settings) else: p.grow_next(data, param, settings, cache) p.update_depth() if settings.verbose >= 2: print('nodes_processed_itr for particle = %s' % p.nodes_processed_itr) print('grow_nodes (after running grow_next) (NOT updated for conditioned tree_pg) = %s' % p.grow_nodes) print('leaf_nodes = %s, non_leaf_nodes = %s' % (p.leaf_nodes, p.non_leaf_nodes)) print('nodes_processed_itr for particle (after running update_particle weights) = %s' % p.nodes_processed_itr) print('checking nodes_processed_itr') (log_pd, ess, log_weights, weights_norm) = \ update_particle_weights(particles, log_weights, settings) # in place update of log_weights if settings.verbose >= 2: print('log_weights = %s' % log_weights) if check_do_not_grow(particles): if settings.verbose >= 1: print('None of the particles can be grown any further; breaking out') break itr += 1 if (settings.debug == 1) and tree_pg: for pid, p in enumerate(particles): if settings.verbose >=2 : print('checking pid = %s' % pid) p.check_nodes_processed_itr(settings) if settings.verbose >= 2: print('check if tree_pg did the right thing:') print('nodes_processed_itr (orig, new):\n%s\n%s' % (tree_pg.nodes_processed_itr, particles[0].nodes_processed_itr)) print('leaf_nodes (orig, new):\n%s\n%s' % (tree_pg.leaf_nodes, particles[0].leaf_nodes)) print('non_leaf_nodes (orig, new):\n%s\n%s' % (tree_pg.non_leaf_nodes, particles[0].non_leaf_nodes)) print('grow_nodes_itr (orig, new):\n%s\n%s' % (tree_pg.grow_nodes_itr, particles[0].grow_nodes_itr)) assert particles[0].leaf_nodes == tree_pg.leaf_nodes assert particles[0].non_leaf_nodes == tree_pg.non_leaf_nodes assert particles[0].grow_nodes_itr == tree_pg.grow_nodes_itr return (particles, ess, log_weights, log_pd) def init_run_smc(data, settings, param, cache, cache_tmp, tree_pg=None): particles, log_weights = init_particles(data, settings, param, cache_tmp) (particles, ess, log_weights, log_pd) = \ run_smc(particles, data, settings, param, log_weights, cache, tree_pg) return (particles, log_pd, log_weights) def check_do_not_grow(particles): """ Test if all particles have grown fully """ do_not_grow = True for p in particles: do_not_grow = do_not_grow and p.do_not_grow return do_not_grow
[ "bart_utils.softmax", "numpy.random.rand", "random.shuffle", "numpy.ones", "bart_utils.get_children_id", "numpy.log", "numpy.random.multinomial", "bart_utils.Tree.__init__", "numpy.array", "numpy.sum", "bart_utils.empty", "numpy.cumsum", "copy.copy", "numpy.arange", "bart_utils.logsumexp" ]
[((4471, 4491), 'bart_utils.softmax', 'softmax', (['log_weights'], {}), '(log_weights)\n', (4478, 4491), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((4594, 4616), 'bart_utils.logsumexp', 'logsumexp', (['log_weights'], {}), '(log_weights)\n', (4603, 4616), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((5981, 6029), 'numpy.random.multinomial', 'np.random.multinomial', (['n_particles', 'prob'], {'size': '(1)'}), '(n_particles, prob, size=1)\n', (6002, 6029), True, 'import numpy as np\n'), ((7415, 7428), 'copy.copy', 'copy', (['p.depth'], {}), '(p.depth)\n', (7419, 7428), False, 'from copy import copy\n'), ((7450, 7469), 'copy.copy', 'copy', (['p.do_not_grow'], {}), '(p.do_not_grow)\n', (7454, 7469), False, 'from copy import copy\n'), ((7494, 7516), 'copy.copy', 'copy', (['p.loglik_current'], {}), '(p.loglik_current)\n', (7498, 7516), False, 'from copy import copy\n'), ((7911, 7926), 'numpy.cumsum', 'np.cumsum', (['prob'], {}), '(prob)\n', (7920, 7926), True, 'import numpy as np\n'), ((287, 312), 'numpy.arange', 'np.arange', (['(0)'], {'dtype': '"""int"""'}), "(0, dtype='int')\n", (296, 312), True, 'import numpy as np\n'), ((320, 327), 'bart_utils.empty', 'empty', ([], {}), '()\n', (325, 327), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((338, 345), 'bart_utils.empty', 'empty', ([], {}), '()\n', (343, 345), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((370, 428), 'bart_utils.Tree.__init__', 'Tree.__init__', (['self', 'train_ids', 'param', 'settings', 'cache_tmp'], {}), '(self, train_ids, param, settings, cache_tmp)\n', (383, 428), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((7935, 7952), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (7949, 7952), True, 'import numpy as np\n'), ((8370, 8412), 'numpy.array', 'np.array', (['[p.loglik[0] for p in particles]'], {}), '([p.loglik[0] for p in particles])\n', (8378, 8412), True, 'import numpy as np\n'), ((8415, 8443), 'numpy.log', 'np.log', (['settings.n_particles'], {}), '(settings.n_particles)\n', (8421, 8443), True, 'import numpy as np\n'), ((953, 977), 'bart_utils.get_children_id', 'get_children_id', (['node_id'], {}), '(node_id)\n', (968, 977), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((4532, 4557), 'numpy.sum', 'np.sum', (['(weights_norm ** 2)'], {}), '(weights_norm ** 2)\n', (4538, 4557), True, 'import numpy as np\n'), ((4916, 4940), 'random.shuffle', 'random.shuffle', (['pid_list'], {}), '(pid_list)\n', (4930, 4940), False, 'import random\n'), ((5151, 5180), 'numpy.ones', 'np.ones', (['settings.n_particles'], {}), '(settings.n_particles)\n', (5158, 5180), True, 'import numpy as np\n'), ((8244, 8270), 'numpy.arange', 'np.arange', (["data['n_train']"], {}), "(data['n_train'])\n", (8253, 8270), True, 'import numpy as np\n'), ((8968, 8992), 'bart_utils.get_children_id', 'get_children_id', (['node_id'], {}), '(node_id)\n', (8983, 8992), False, 'from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id\n'), ((5193, 5221), 'numpy.log', 'np.log', (['settings.n_particles'], {}), '(settings.n_particles)\n', (5199, 5221), True, 'import numpy as np\n'), ((7869, 7881), 'numpy.sum', 'np.sum', (['prob'], {}), '(prob)\n', (7875, 7881), True, 'import numpy as np\n')]
import logging import math import gym from gym import spaces from gym.utils import seeding import numpy as np import sys import math class ClassifyEnv(gym.Env): def __init__(self, trainSet, target): """ Data set is a tuple of [0] input data: [nSamples x nInputs] [1] labels: [nSamples x 1] Example data sets are given at the end of this file """ self.t = 0 # Current batch number self.t_limit = 0 # Number of batches if you want to use them (we didn't) self.batch = 1000 # Number of images per batch self.seed() self.viewer = None self.trainSet = trainSet self.target = target nInputs = np.shape(trainSet)[1] high = np.array([1.0]*nInputs) self.action_space = spaces.Box(np.array(0,dtype=np.float32), \ np.array(1,dtype=np.float32)) self.observation_space = spaces.Box(np.array(0,dtype=np.float32), \ np.array(1,dtype=np.float32)) self.state = None self.trainOrder = None self.currIndx = None def seed(self, seed=None): ''' Randomly select from training set''' self.np_random, seed = seeding.np_random(seed) return [seed] def reset(self): ''' Initialize State''' #print('Lucky number', np.random.randint(10)) # same randomness? self.trainOrder = np.random.permutation(len(self.target)) self.t = 0 # timestep self.currIndx = self.trainOrder[self.t:self.t+self.batch] self.state = self.trainSet[self.currIndx,:] return self.state def step(self, action): ''' Judge Classification, increment to next batch action - [batch x output] - softmax output ''' y = self.target[self.currIndx] m = y.shape[0] log_likelihood = -np.log(action[range(m),y]) loss = np.sum(log_likelihood) / m reward = -loss if self.t_limit > 0: # We are doing batches reward *= (1/self.t_limit) # average self.t += 1 done = False if self.t >= self.t_limit: done = True self.currIndx = self.trainOrder[(self.t*self.batch):\ (self.t*self.batch + self.batch)] self.state = self.trainSet[self.currIndx,:] else: done = True obs = self.state return obs, reward, done, {} # -- Data Sets ----------------------------------------------------------- -- # def digit_raw(): ''' Converts 8x8 scikit digits to [samples x pixels] ([N X 64]) ''' from sklearn import datasets digits = datasets.load_digits() z = (digits.images/16) z = z.reshape(-1, (64)) return z, digits.target def mnist_256(): ''' Converts 28x28 mnist digits to [16x16] [samples x pixels] ([N X 256]) ''' import mnist z = (mnist.train_images()/255) z = preprocess(z, (16,16)) z = z.reshape(-1, (256)) return z, mnist.train_labels() def mnist_784(): ''' Use the full size 28x28 mnist digits, flatted to 784 ''' import mnist z = (mnist.train_images()/255) z = z.reshape(-1, (784)) return z, mnist.train_labels() def mnist_features(): ''' Use features extracted by OpenCV and pyradiomics ''' import mnist x_train1 = np.load('../mnist_train_features.npy') x_train2 = np.load('../mnist_train_radiomics.npy') x_train = np.concatenate((x_train1, x_train2), axis=1) return x_train, mnist.train_labels() def mnist_autoencoder(): ''' Use features extracted by the encoder of an autoencoder ''' import mnist x_train = np.load('../mnist_train_autoencoder.npy') return x_train, mnist.train_labels() def preprocess(img,size, patchCorner=(0,0), patchDim=None, unskew=True): """ Resizes, crops, and unskewes images """ import cv2 if patchDim == None: patchDim = size nImg = np.shape(img)[0] procImg = np.empty((nImg,size[0],size[1])) # Unskew and Resize if unskew == True: for i in range(nImg): procImg[i,:,:] = deskew(cv2.resize(img[i,:,:],size),size) # Crop cropImg = np.empty((nImg,patchDim[0],patchDim[1])) for i in range(nImg): cropImg[i,:,:] = procImg[i,patchCorner[0]:patchCorner[0]+patchDim[0],\ patchCorner[1]:patchCorner[1]+patchDim[1]] procImg = cropImg return procImg def deskew(image, image_shape, negated=True): """ This method deskwes an image using moments :param image: a numpy nd array input image :param image_shape: a tuple denoting the image`s shape :param negated: a boolean flag telling whether the input image is negated :returns: a numpy nd array deskewd image source: https://github.com/vsvinayak/mnist-helper """ import cv2 # negate the image if not negated: image = 255-image # calculate the moments of the image m = cv2.moments(image) if abs(m['mu02']) < 1e-2: return image.copy() # caclulating the skew skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*image_shape[0]*skew], [0,1,0]]) img = cv2.warpAffine(image, M, image_shape, \ flags=cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR) return img
[ "cv2.warpAffine", "cv2.resize", "mnist.train_images", "sklearn.datasets.load_digits", "mnist.train_labels", "numpy.array", "numpy.sum", "numpy.empty", "numpy.concatenate", "cv2.moments", "numpy.shape", "numpy.load", "numpy.float32", "gym.utils.seeding.np_random" ]
[((2536, 2558), 'sklearn.datasets.load_digits', 'datasets.load_digits', ([], {}), '()\n', (2556, 2558), False, 'from sklearn import datasets\n'), ((3192, 3230), 'numpy.load', 'np.load', (['"""../mnist_train_features.npy"""'], {}), "('../mnist_train_features.npy')\n", (3199, 3230), True, 'import numpy as np\n'), ((3244, 3283), 'numpy.load', 'np.load', (['"""../mnist_train_radiomics.npy"""'], {}), "('../mnist_train_radiomics.npy')\n", (3251, 3283), True, 'import numpy as np\n'), ((3296, 3340), 'numpy.concatenate', 'np.concatenate', (['(x_train1, x_train2)'], {'axis': '(1)'}), '((x_train1, x_train2), axis=1)\n', (3310, 3340), True, 'import numpy as np\n'), ((3504, 3545), 'numpy.load', 'np.load', (['"""../mnist_train_autoencoder.npy"""'], {}), "('../mnist_train_autoencoder.npy')\n", (3511, 3545), True, 'import numpy as np\n'), ((3802, 3836), 'numpy.empty', 'np.empty', (['(nImg, size[0], size[1])'], {}), '((nImg, size[0], size[1]))\n', (3810, 3836), True, 'import numpy as np\n'), ((3996, 4038), 'numpy.empty', 'np.empty', (['(nImg, patchDim[0], patchDim[1])'], {}), '((nImg, patchDim[0], patchDim[1]))\n', (4004, 4038), True, 'import numpy as np\n'), ((4751, 4769), 'cv2.moments', 'cv2.moments', (['image'], {}), '(image)\n', (4762, 4769), False, 'import cv2\n'), ((4884, 4948), 'numpy.float32', 'np.float32', (['[[1, skew, -0.5 * image_shape[0] * skew], [0, 1, 0]]'], {}), '([[1, skew, -0.5 * image_shape[0] * skew], [0, 1, 0]])\n', (4894, 4948), True, 'import numpy as np\n'), ((4951, 5040), 'cv2.warpAffine', 'cv2.warpAffine', (['image', 'M', 'image_shape'], {'flags': '(cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)'}), '(image, M, image_shape, flags=cv2.WARP_INVERSE_MAP | cv2.\n INTER_LINEAR)\n', (4965, 5040), False, 'import cv2\n'), ((706, 731), 'numpy.array', 'np.array', (['([1.0] * nInputs)'], {}), '([1.0] * nInputs)\n', (714, 731), True, 'import numpy as np\n'), ((1176, 1199), 'gym.utils.seeding.np_random', 'seeding.np_random', (['seed'], {}), '(seed)\n', (1193, 1199), False, 'from gym.utils import seeding\n'), ((2767, 2787), 'mnist.train_images', 'mnist.train_images', ([], {}), '()\n', (2785, 2787), False, 'import mnist\n'), ((2862, 2882), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (2880, 2882), False, 'import mnist\n'), ((2991, 3011), 'mnist.train_images', 'mnist.train_images', ([], {}), '()\n', (3009, 3011), False, 'import mnist\n'), ((3056, 3076), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (3074, 3076), False, 'import mnist\n'), ((3359, 3379), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (3377, 3379), False, 'import mnist\n'), ((3564, 3584), 'mnist.train_labels', 'mnist.train_labels', ([], {}), '()\n', (3582, 3584), False, 'import mnist\n'), ((3772, 3785), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (3780, 3785), True, 'import numpy as np\n'), ((673, 691), 'numpy.shape', 'np.shape', (['trainSet'], {}), '(trainSet)\n', (681, 691), True, 'import numpy as np\n'), ((765, 794), 'numpy.array', 'np.array', (['(0)'], {'dtype': 'np.float32'}), '(0, dtype=np.float32)\n', (773, 794), True, 'import numpy as np\n'), ((832, 861), 'numpy.array', 'np.array', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (840, 861), True, 'import numpy as np\n'), ((902, 931), 'numpy.array', 'np.array', (['(0)'], {'dtype': 'np.float32'}), '(0, dtype=np.float32)\n', (910, 931), True, 'import numpy as np\n'), ((969, 998), 'numpy.array', 'np.array', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (977, 998), True, 'import numpy as np\n'), ((1819, 1841), 'numpy.sum', 'np.sum', (['log_likelihood'], {}), '(log_likelihood)\n', (1825, 1841), True, 'import numpy as np\n'), ((3939, 3969), 'cv2.resize', 'cv2.resize', (['img[i, :, :]', 'size'], {}), '(img[i, :, :], size)\n', (3949, 3969), False, 'import cv2\n')]
import numpy as np from context import variationaloptimization def test_optimization(): knapsack = Knapsack() theta0 = 0.5*np.ones(4) minres = variationaloptimization.minimize_variational(knapsack, theta0, learning_rate=1e-2, max_iter=1000) weight = minres.x.dot(knapsack.weights) value = minres.x.dot(knapsack.values) assert minres.success assert minres.fun == -value assert value >= 53 assert value <= 65 assert weight > 0 assert weight <= knapsack.max_weight class Knapsack(object): def __init__(self): self.values = np.array([30, 12, 62, 23]) self.weights = np.array([6, 4, 12, 4]) self.max_weight = 14 def __call__(self, x): value = x.dot(self.values) weight = x.dot(self.weights) if weight > self.max_weight: value = -1e-6 return -value
[ "numpy.array", "numpy.ones", "context.variationaloptimization.minimize_variational" ]
[((158, 259), 'context.variationaloptimization.minimize_variational', 'variationaloptimization.minimize_variational', (['knapsack', 'theta0'], {'learning_rate': '(0.01)', 'max_iter': '(1000)'}), '(knapsack, theta0,\n learning_rate=0.01, max_iter=1000)\n', (202, 259), False, 'from context import variationaloptimization\n'), ((134, 144), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (141, 144), True, 'import numpy as np\n'), ((698, 724), 'numpy.array', 'np.array', (['[30, 12, 62, 23]'], {}), '([30, 12, 62, 23])\n', (706, 724), True, 'import numpy as np\n'), ((748, 771), 'numpy.array', 'np.array', (['[6, 4, 12, 4]'], {}), '([6, 4, 12, 4])\n', (756, 771), True, 'import numpy as np\n')]
import numpy as np from vanhateren import VanHateren import vanhateren.preprocess as pp def load_patches(n, shape=(32, 32)): vh = VanHateren(calibrated=True) rng = np.random.RandomState(9) return vh.patches(n, shape, rng=rng) def show_patch(ax, patch): ax.imshow(patch, cmap='gray') ax.set_xticks([]) ax.set_yticks([]) def hist_patch(ax, patch): ax.hist(patch.ravel()) ax.set_xticks([]) ax.set_yticks([]) def test_contrast_normalize(plt): n = 5 patches = load_patches(n) patches2 = pp.contrast_normalize(patches, beta=10.0) r = 2 axes = [plt.subplot(r, n, i+1) for i in range(r * n)] for k in range(n): show_patch(axes[k], patches[k]) show_patch(axes[n+k], patches2[k]) # hist_patch(axes[n+k], patches[k]) # show_patch(axes[2*n+k], patches2[k]) # hist_patch(axes[3*n+k], patches2[k]) plt.tight_layout() def test_scale(plt): r, c = 2, 10 patches = load_patches(r * c) patches2 = pp.scale(patches) rn = 4 axes = [[plt.subplot2grid((rn*r, c), (rn*i+k, j)) for k in range(rn)] for i in range(r) for j in range(c)] for k in range(r * c): show_patch(axes[k][0], patches[k]) show_patch(axes[k][1], patches2[k]) hist_patch(axes[k][2], patches[k]) hist_patch(axes[k][3], patches2[k]) plt.tight_layout() def test_zca(plt): r, c = 2, 5 n = 1000 patches = load_patches(n) patches2 = pp.zca(patches, gamma=1e-0) axes0 = [plt.subplot2grid((2*r, c), (2*i, j)) for i in range(r) for j in range(c)] axes1 = [plt.subplot2grid((2*r, c), (2*i+1, j)) for i in range(r) for j in range(c)] for k in range(r * c): show_patch(axes0[k], patches[k]) show_patch(axes1[k], patches2[k]) plt.tight_layout() # axes = [plt.subplot(r, c, i+1) for i in range(r * c)] # for k, ax in enumerate(axes): # show_patch(ax, patches[k]) # plt.tight_layout()
[ "vanhateren.preprocess.contrast_normalize", "vanhateren.VanHateren", "vanhateren.preprocess.scale", "vanhateren.preprocess.zca", "numpy.random.RandomState" ]
[((137, 164), 'vanhateren.VanHateren', 'VanHateren', ([], {'calibrated': '(True)'}), '(calibrated=True)\n', (147, 164), False, 'from vanhateren import VanHateren\n'), ((175, 199), 'numpy.random.RandomState', 'np.random.RandomState', (['(9)'], {}), '(9)\n', (196, 199), True, 'import numpy as np\n'), ((539, 580), 'vanhateren.preprocess.contrast_normalize', 'pp.contrast_normalize', (['patches'], {'beta': '(10.0)'}), '(patches, beta=10.0)\n', (560, 580), True, 'import vanhateren.preprocess as pp\n'), ((1006, 1023), 'vanhateren.preprocess.scale', 'pp.scale', (['patches'], {}), '(patches)\n', (1014, 1023), True, 'import vanhateren.preprocess as pp\n'), ((1478, 1504), 'vanhateren.preprocess.zca', 'pp.zca', (['patches'], {'gamma': '(1.0)'}), '(patches, gamma=1.0)\n', (1484, 1504), True, 'import vanhateren.preprocess as pp\n')]
import json import os import time import numpy as np from metalearn import Metafeatures from tests.config import CORRECTNESS_SEED, METAFEATURES_DIR, METADATA_PATH from .dataset import read_dataset def get_dataset_metafeatures_path(dataset_filename): dataset_name = dataset_filename.rsplit(".", 1)[0] return os.path.join(METAFEATURES_DIR, dataset_name+"_mf.json") def is_close(computed_value, known_value): if type(known_value) is str: correct = known_value == computed_value else: correct = np.array(np.isclose(known_value, computed_value, equal_nan=True)).all() return correct def compute_dataset_metafeatures(): metadata = json.load(open(METADATA_PATH, "r")) for dataset_metadata in metadata: dataset_filename = dataset_metadata["filename"] choice = None while not choice in ["y", "v", "n"]: choice = input(dataset_filename + " [(y)es, (v)erbose, (n)o]: ") if choice == "n": continue X, Y, column_types = read_dataset(dataset_metadata) start_time = time.time() computed_mfs = Metafeatures().compute(X=X, Y=Y, column_types=column_types, seed=CORRECTNESS_SEED) run_time = time.time() - start_time if choice == "v": known_mf_path = get_dataset_metafeatures_path(dataset_filename) with open(known_mf_path, 'r') as fp: known_mfs = json.load(fp) new_mfs = {} deleted_mfs = {} updated_mfs = {} same_mfs = {} all_mf_names = set(list(computed_mfs.keys()) + list(known_mfs.keys())) for mf in all_mf_names: if mf not in known_mfs.keys(): new_mfs[mf] = computed_mfs[mf] elif mf not in computed_mfs.keys(): deleted_mfs[mf] = known_mfs[mf] elif is_close(computed_mfs[mf]['value'], known_mfs[mf]['value']): same_mfs[mf] = computed_mfs[mf] else: updated_mfs[mf] = {'known': known_mfs[mf], 'computed': computed_mfs[mf]} print('UNCHANGED METAFEATURES') print(json.dumps(same_mfs, sort_keys=True, indent=4)) print('DELETED METAFEATURES') print(json.dumps(deleted_mfs, sort_keys=True, indent=4)) print('NEW METAFEATURES') print(json.dumps(new_mfs, sort_keys=True, indent=4)) print('UPDATED METAFEATURES') print(json.dumps(updated_mfs, sort_keys=True, indent=4)) print("Runtime: " + str(run_time)) choice = None while not choice in ["y", "n"]: choice = input(f"Update {dataset_filename} metafeatures? [(y)es, (n)o]: ") if choice == "y": mf_file_path = get_dataset_metafeatures_path(dataset_filename) with open(mf_file_path, 'w') as fp: json.dump(computed_mfs, fp, sort_keys=True, indent=4)
[ "metalearn.Metafeatures", "numpy.isclose", "json.dumps", "os.path.join", "json.load", "time.time", "json.dump" ]
[((319, 376), 'os.path.join', 'os.path.join', (['METAFEATURES_DIR', "(dataset_name + '_mf.json')"], {}), "(METAFEATURES_DIR, dataset_name + '_mf.json')\n", (331, 376), False, 'import os\n'), ((1079, 1090), 'time.time', 'time.time', ([], {}), '()\n', (1088, 1090), False, 'import time\n'), ((1216, 1227), 'time.time', 'time.time', ([], {}), '()\n', (1225, 1227), False, 'import time\n'), ((1114, 1128), 'metalearn.Metafeatures', 'Metafeatures', ([], {}), '()\n', (1126, 1128), False, 'from metalearn import Metafeatures\n'), ((1421, 1434), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (1430, 1434), False, 'import json\n'), ((2178, 2224), 'json.dumps', 'json.dumps', (['same_mfs'], {'sort_keys': '(True)', 'indent': '(4)'}), '(same_mfs, sort_keys=True, indent=4)\n', (2188, 2224), False, 'import json\n'), ((2286, 2335), 'json.dumps', 'json.dumps', (['deleted_mfs'], {'sort_keys': '(True)', 'indent': '(4)'}), '(deleted_mfs, sort_keys=True, indent=4)\n', (2296, 2335), False, 'import json\n'), ((2393, 2438), 'json.dumps', 'json.dumps', (['new_mfs'], {'sort_keys': '(True)', 'indent': '(4)'}), '(new_mfs, sort_keys=True, indent=4)\n', (2403, 2438), False, 'import json\n'), ((2500, 2549), 'json.dumps', 'json.dumps', (['updated_mfs'], {'sort_keys': '(True)', 'indent': '(4)'}), '(updated_mfs, sort_keys=True, indent=4)\n', (2510, 2549), False, 'import json\n'), ((2910, 2963), 'json.dump', 'json.dump', (['computed_mfs', 'fp'], {'sort_keys': '(True)', 'indent': '(4)'}), '(computed_mfs, fp, sort_keys=True, indent=4)\n', (2919, 2963), False, 'import json\n'), ((538, 593), 'numpy.isclose', 'np.isclose', (['known_value', 'computed_value'], {'equal_nan': '(True)'}), '(known_value, computed_value, equal_nan=True)\n', (548, 593), True, 'import numpy as np\n')]
import numpy as np import cv2 import cv2.aruco as aruco import sys, time, math from copy import deepcopy from threading import Thread, Lock class LocalizationTracker(): def __init__(self, id_to_find, marker_size, src, camera_matrix, camera_distortion, camera_size=[640,480], show_video=False ): """ The initialization of the class for localization... """ #---Aruco settings for perspective transform mnap #------------ Define Reference Tags self.id_1 = 50 self.id_2 = 60 self.marker_size = 10 #- [cm] #---Aruco settings for position self.id_to_find = id_to_find self.marker_size = marker_size self._show_video = show_video self.marker_size_warp = 10 #4.29 # 0.0429 #- [cm] #--- agentmera setting self.src = src self._camera_matrix = camera_matrix self._camera_distortion = camera_distortion #--- Lopp of the funcitons self.is_detected = False self._kill = False #--- 180 deg rotation matrix around the x axis self._R_flip = np.zeros((3,3), dtype=np.float32) self._R_flip[0,0] = 1.0 self._R_flip[1,1] =-1.0 self._R_flip[2,2] =-1.0 #--- Define the aruco dictionary self._aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_ARUCO_ORIGINAL) self._parameters = aruco.DetectorParameters_create() #--- Capture the videocamera (this may also be a video or a picture) self._cap = cv2.VideoCapture(self.src) #-- Set the camera size as the one it was calibrated with self._cap.set(cv2.CAP_PROP_FRAME_WIDTH, camera_size[0]) self._cap.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_size[1]) ret, frame = self._cap.read() if ret: print('Camera Status > Success : camera working, and getting stream') print('Camera Status > Frame dimentions', frame.shape) else: print('Camera Status > Error : camera not working, cant get stream') #-- Font for the text in the image self.font = cv2.FONT_HERSHEY_SIMPLEX self._t_read = time.time() self._t_detect = self._t_read self._t_pos_detect = self._t_detect self.fps_read = 0.0 self.fps_detect = 0.0 self.fps_pos_detect = 0.0 #----------------THREADING------------------\ self.frame = self._cap.read() self.started_frame = False self.read_frame_lock = Lock() self.ref_track_started = False self.read_ref_lock = Lock() self.ref_perspective = self.frame self.ref_frame = self.frame self.read_ref_frame_lock = Lock() self.pos_frame = self.ref_frame self.target_pos = (False, self.frame, [[], []]) self.pos_track_started = False self.read_pos_lock = Lock() self.read_pos_frame_lock = Lock() #-----OBSTACLES----------------------\ self.obs_track_started = False self.read_obs_lock = Lock() self.obs_frame = self.frame self.read_obs_frame_lock = Lock() def _rotationMatrixToEulerAngles(self,R): # Calculates rotation matrix to euler angles # The result is the same as MATLAB except the order # of the euler angles ( x and z are swapped ). def isRotationMatrix(R): Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype=R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 assert (isRotationMatrix(R)) sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) singular = sy < 1e-6 if not singular: x = math.atan2(R[2, 1], R[2, 2]) y = math.atan2(-R[2, 0], sy) z = math.atan2(R[1, 0], R[0, 0]) else: x = math.atan2(-R[1, 2], R[1, 1]) y = math.atan2(-R[2, 0], sy) z = 0 return np.array([x, y, z]) def _update_fps_read(self): t = time.time() self.fps_read = 1.0/(t - self._t_read+0.000000001) self._t_read = t def _update_fps_detect(self): t = time.time() self.fps_detect = 1.0/(t - self._t_detect+0.000000001) self._t_detect = t def _update_fps_pos_detect(self): t = time.time() self.fps_pos_detect = 1.0/(t - self._t_detect+0.000000001) self._t_pos_detect = t def stop(self): self._kill = True def start_pos_track(self): if self.pos_track_started: print('reference tracking already started') return None self.pos_track_started = True self.thread_pos = Thread(target=self.update_pos, kwargs={'verbose':True, 'loop':False}) self.thread_pos.start() return self def update_pos(self, verbose = True, loop = True): """ This function is the responsible for the dectection of the position of the markers in the map it could be the robot or the target. """ while self.pos_track_started: found_ref, frame = self.read_ref() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray2 = frame.copy() #OpenCV stores color images in Blue, Green, Red aruco_dict = aruco.getPredefinedDictionary(aruco.DICT_6X6_250) parameters = aruco.DetectorParameters_create() #-- Find all the aruco markers in the image corners, ids, rejected = aruco.detectMarkers(image=gray, dictionary=aruco_dict, parameters=parameters, cameraMatrix=self._camera_matrix, distCoeff=self._camera_distortion ) #definition of the return items of this function marker_position = [] marker_pixel_position = [] pos_marker_found = False #return (pos_marker_found, gray , marker_position) if ids is not None and ids[0] == self.id_to_find:#change pos_marker_found = True self._update_fps_pos_detect() ret = aruco.estimatePoseSingleMarkers(corners, self.marker_size_warp, #change self._camera_matrix, self._camera_distortion) #getting the center of the marker as the final position corner_0 = corners[0][0] center_x = (corner_0[0]+corner_0[2])/2 center_y = (corner_0[1]+corner_0[3])/2 marker_pixel_position = center_x #-- Unpack the output, get only the first rvec, tvec = ret[0][0,0,:], ret[1][0,0,:] marker_position = [tvec[0], tvec[1], tvec[2]] ###### --------------FRAME REFERENCE UPDATE------------------------- if verbose: #drawing the marker in the map aruco.drawDetectedMarkers(gray2, corners) #drawing the posion in the map cv2.circle(gray2, tuple(center_x), 2, (0, 0, 255), -1) cv2.circle(gray2, tuple(center_x), 3, (0, 0, 255), -1) #adding the position infors in the map marker_position_text = "Position Marker x=%4.3f y=%4.3f z=%4.3f | fps pos = %.2f"%(tvec[0], tvec[1], tvec[2], self.fps_pos_detect ) if found_ref: cv2.putText(gray2, marker_position_text, (0, 100), self.font, 0.5, (0, 255, 0), 1, cv2.LINE_AA) else: cv2.putText(gray2, marker_position_text, (0, 100), self.font, 0.5, (0, 165, 255), 1, cv2.LINE_AA) cv2.putText(gray2, 'PERSPECTIVE is not CALCULATED', (0, 150), self.font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) else: #self.target_pos = #gray2 = frame.copy() #---------------FRAME INFOS if verbose: cv2.putText(gray2, 'Position marker found not', (0, 100), self.font, 0.5, (0, 0,255 ), 1, cv2.LINE_AA) if verbose: pass #print( "Nothing detected - pos fps = %.0f"%self.fps_pos_detect) if not loop: self.read_pos_frame_lock.acquire() self.pos_frame =(found_ref, gray2) self.read_pos_frame_lock.release() self.read_pos_lock.acquire() self.target_pos = (pos_marker_found, frame, [marker_position, marker_pixel_position]) self.read_pos_lock.release() #return (pos_marker_found, frame, [marker_position, marker_pixel_position]) self._update_fps_detect() #print( "Ref FPS = %.2f"%(self.fps_detect)) #break def read_pos(self) : self.read_pos_lock.acquire() pos_target = self.target_pos#.copy() self.read_pos_lock.release() return pos_target def read_pos_frame(self) : self.read_pos_frame_lock.acquire() #pos_frame = self.pos_frame#.copy() pos_frame = deepcopy(self.pos_frame) self.read_pos_frame_lock.release() return pos_frame def stop_pos(self) : #self.cap.release() self.pos_track_started = False self.thread_pos.join() #self._cap.release() print('Position Thread terminated') #---REFERENCE FRAME--------------------------- def start_ref_track(self): if self.ref_track_started: print('reference tracking already started') return None self.ref_track_started = True self.thread_ref = Thread(target=self.update_ref, kwargs={'verbose':True, 'loop':False}) self.thread_ref.start() return self def update_ref(self, loop=True, verbose=False, show_video=None): while self.ref_track_started: self._kill = False if show_video is None: show_video = self._show_video #preparing the reuturn itiem from the function ref_marker_found = False pos_marker_found = False x = y = z = 0 positions = [] while not self._kill: #-- Read the camera frame #ret, frame = self._cap.read() ret, frame = self.read_frame() result = frame.copy() gray_ref = frame.copy() self._update_fps_read() #-- Convert in gray scale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #OpenCV stores color images in Blue, Green, Red #-- Find all the aruco markers in the image corners, ids, rejected = aruco.detectMarkers(image=gray, dictionary=self._aruco_dict, parameters=self._parameters, cameraMatrix=self._camera_matrix, distCoeff=self._camera_distortion) #............................../|\ if ids is not None and np.where(ids == self.id_1)[0] >= 0 and np.where(ids == self.id_2)[0] >= 0 : #print('ids', ids) ref_marker_found = True index_corner_1 = np.where(ids == self.id_1)[0][0] index_corner_2 = np.where(ids == self.id_2)[0][0] ret = aruco.estimatePoseSingleMarkers(corners, self.marker_size, self._camera_matrix, self._camera_distortion) #-- Unpack the output, get only the first rvec, tvec = ret[0][index_corner_2,0,:], ret[1][index_corner_2,0,:] #____________________________________|||||||| PERSPECTIVE TRANSFORM |||||||||_________________ #the perspective transform part vals = corners[index_corner_1][0] vals_2 = corners[index_corner_2][0] pts1 = np.float32([vals[0], vals[1], vals_2[3], vals_2[2]]) pts2 = np.float32([[5, 5], [55, 5], [5, 125], [55, 125] ]) matrix = cv2.getPerspectiveTransform(pts1, pts2) result = cv2.warpPerspective(frame, matrix, (640, 480)) ###### --------------FRAME REFERENCE UPDATE------------------------- aruco.drawDetectedMarkers(gray_ref, corners) str_position = "Refference Marker Position x=%4.0f y=%4.0f z=%4.0f | fps ref = %.2f"%(tvec[0], tvec[1], tvec[2], self.fps_detect) cv2.putText(gray_ref, str_position, (0, 100), self.font, 0.5, (11, 198,255 ), 1, cv2.LINE_AA) else: result = frame #---------FRAME INFO cv2.putText(gray_ref, 'No reference found', (0, 50), self.font, 0.5, (0, 0,240 ), 1, cv2.LINE_AA) #if not loop: return(ref_marker_found, pos_marker_found, frame, positions) #----------------------THREADING-------------------------- if not loop: self.read_ref_frame_lock.acquire() self.ref_frame = (ref_marker_found, gray_ref) self.read_ref_frame_lock.release() self.read_ref_lock .acquire() self.ref_perspective =(ref_marker_found, result)#(ref_marker_found, pos_marker_found, frame, positions) self.read_ref_lock .release() self._update_fps_detect() #print( "Ref FPS = %.2f"%(self.fps_detect)) break def read_ref(self) : self.read_ref_lock.acquire() ref_perspective = self.ref_perspective#.copy() self.read_ref_lock.release() return ref_perspective def read_ref_frame(self) : self.read_ref_frame_lock.acquire() ref_frame_info = deepcopy(self.ref_frame)#.copy() self.read_ref_frame_lock.release() return ref_frame_info def stop_ref(self) : #self.cap.release() self.ref_track_started = False self.thread_ref.join() #self._cap.release() print('REFERENCE FRAME THREAD TERMINATED') def __exit__(self, exc_type, exc_value, traceback) : self._cap.release() #------INITIAL FRAME--------------------------------------------- def start_frame(self) : if self.started_frame : print( "already started frame!!") return None self.started_frame = True self.thread_frame = Thread(target=self.update_frame, args=()) self.thread_frame.start() return self def update_frame(self) : while self.started_frame : (grabbed, frame) = self._cap.read() self.read_frame_lock.acquire() #self.grabbed, self.frame = (grabbed, frame) self.read_frame_lock.release() def read_frame(self) : self.read_frame_lock.acquire() frame = self.frame#tuple(list(self.frame))#.copy() self.read_frame_lock.release() self._update_fps_read() #print('read_frame FPS = %.2f '%self.fps_read) return frame def stop_frame(self) : #self.cap.release() self.started_frame = False self.thread_frame.join() self._cap.release() print('Stop Frame Thread') #------OBSTICALES FRAME----------------------------------------------- def start_obs_frame(self) : if self.obs_track_started : print( "already started obtacles frame!!") return None self.obs_track_started = True self.thread_obs = Thread(target=self.update_obs_frame, args=()) self.thread_obs.start() return self def update_obs_frame(self) : while self.started_frame : ret, frame = self.read_ref() #result = frame.copy() lower_range = np.array([32, 100, 100]) upper_range = np.array([80, 255, 255]) hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, lower_range, upper_range) #cv2.imshow('image', frame) #cv2.imshow('mask', mask) #coord = cv2.findNonZero(mask) #coord = np.reshape(coord, (-1, 2)) #print('mask ', mask.shape) #return mask self.read_obs_frame_lock.acquire() self.obs_frame = (ret, mask) self.read_obs_frame_lock.release() def read_obs_frame(self) : self.read_obs_frame_lock.acquire() obstacles = self.obs_frame#tuple(list(self.frame))#.copy() self.read_obs_frame_lock.release() #self._update_fps_read() return obstacles def stop_obs_frame(self) : #self.cap.release() self.started_frame = False self.thread_obs.join() print('OBSTACLES THREAD TERMINATED') #--- camera id camera_id = 6 #im my case it's 5 #--- Define position Tag id_to_find = 1 marker_size = 10 #- [cm] #--- Get the camera calibration path calib_path = "./cam_01/vx1000/" #--- loading camera calibration files camera_matrix = np.loadtxt(calib_path+'cameraMatrix.txt', delimiter=',') camera_distortion = np.loadtxt(calib_path+'cameraDistortion.txt', delimiter=',') aruco_tracker = LocalizationTracker(id_to_find=id_to_find, marker_size=marker_size, show_video=True, src =camera_id , camera_matrix=camera_matrix, camera_distortion=camera_distortion) #--- Start the Threads aruco_tracker.start_frame() aruco_tracker.start_ref_track() aruco_tracker.start_pos_track() aruco_tracker.start_obs_frame() #--- principale Loop while True : #obtaining readings from threads found_frame, frame = aruco_tracker.read_frame() found_perspective, perspective = aruco_tracker.read_ref() found_frame_info, frame_info = aruco_tracker.read_ref_frame() found_frame_pos, pos_frame = aruco_tracker.read_pos_frame() found_frame_obs, obs_frame = aruco_tracker.read_obs_frame() #showing frame of imforamtion and perspective and obstacles cv2.imshow('Frame Original', frame) cv2.imshow('Frame Original with infos', frame_info) cv2.imshow('Perspective', perspective) cv2.imshow('Perspective with position', pos_frame) cv2.imshow('Perspective with obstacles', obs_frame) ############### #--- stop all threads and exit principal loop key = cv2.waitKey(1) & 0xFF if key == ord('q'): aruco_tracker.stop_ref() aruco_tracker.stop_pos() aruco_tracker.stop_obs_frame() aruco_tracker.stop_frame() break cv2.destroyAllWindows() print('finish')
[ "math.sqrt", "cv2.imshow", "numpy.array", "cv2.warpPerspective", "cv2.destroyAllWindows", "numpy.linalg.norm", "copy.deepcopy", "cv2.aruco.drawDetectedMarkers", "numpy.where", "threading.Lock", "numpy.dot", "cv2.waitKey", "numpy.identity", "cv2.aruco.getPredefinedDictionary", "cv2.getPerspectiveTransform", "cv2.aruco.detectMarkers", "cv2.aruco.DetectorParameters_create", "cv2.putText", "math.atan2", "cv2.cvtColor", "numpy.transpose", "time.time", "cv2.inRange", "numpy.zeros", "cv2.VideoCapture", "threading.Thread", "numpy.loadtxt", "numpy.float32", "cv2.aruco.estimatePoseSingleMarkers" ]
[((18966, 19024), 'numpy.loadtxt', 'np.loadtxt', (["(calib_path + 'cameraMatrix.txt')"], {'delimiter': '""","""'}), "(calib_path + 'cameraMatrix.txt', delimiter=',')\n", (18976, 19024), True, 'import numpy as np\n'), ((19045, 19107), 'numpy.loadtxt', 'np.loadtxt', (["(calib_path + 'cameraDistortion.txt')"], {'delimiter': '""","""'}), "(calib_path + 'cameraDistortion.txt', delimiter=',')\n", (19055, 19107), True, 'import numpy as np\n'), ((20602, 20625), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (20623, 20625), False, 'import cv2\n'), ((20075, 20110), 'cv2.imshow', 'cv2.imshow', (['"""Frame Original"""', 'frame'], {}), "('Frame Original', frame)\n", (20085, 20110), False, 'import cv2\n'), ((20115, 20166), 'cv2.imshow', 'cv2.imshow', (['"""Frame Original with infos"""', 'frame_info'], {}), "('Frame Original with infos', frame_info)\n", (20125, 20166), False, 'import cv2\n'), ((20171, 20209), 'cv2.imshow', 'cv2.imshow', (['"""Perspective"""', 'perspective'], {}), "('Perspective', perspective)\n", (20181, 20209), False, 'import cv2\n'), ((20214, 20264), 'cv2.imshow', 'cv2.imshow', (['"""Perspective with position"""', 'pos_frame'], {}), "('Perspective with position', pos_frame)\n", (20224, 20264), False, 'import cv2\n'), ((20269, 20320), 'cv2.imshow', 'cv2.imshow', (['"""Perspective with obstacles"""', 'obs_frame'], {}), "('Perspective with obstacles', obs_frame)\n", (20279, 20320), False, 'import cv2\n'), ((1351, 1385), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (1359, 1385), True, 'import numpy as np\n'), ((1551, 1607), 'cv2.aruco.getPredefinedDictionary', 'aruco.getPredefinedDictionary', (['aruco.DICT_ARUCO_ORIGINAL'], {}), '(aruco.DICT_ARUCO_ORIGINAL)\n', (1580, 1607), True, 'import cv2.aruco as aruco\n'), ((1636, 1669), 'cv2.aruco.DetectorParameters_create', 'aruco.DetectorParameters_create', ([], {}), '()\n', (1667, 1669), True, 'import cv2.aruco as aruco\n'), ((1769, 1795), 'cv2.VideoCapture', 'cv2.VideoCapture', (['self.src'], {}), '(self.src)\n', (1785, 1795), False, 'import cv2\n'), ((2416, 2427), 'time.time', 'time.time', ([], {}), '()\n', (2425, 2427), False, 'import sys, time, math\n'), ((2790, 2796), 'threading.Lock', 'Lock', ([], {}), '()\n', (2794, 2796), False, 'from threading import Thread, Lock\n'), ((2874, 2880), 'threading.Lock', 'Lock', ([], {}), '()\n', (2878, 2880), False, 'from threading import Thread, Lock\n'), ((2995, 3001), 'threading.Lock', 'Lock', ([], {}), '()\n', (2999, 3001), False, 'from threading import Thread, Lock\n'), ((3175, 3181), 'threading.Lock', 'Lock', ([], {}), '()\n', (3179, 3181), False, 'from threading import Thread, Lock\n'), ((3217, 3223), 'threading.Lock', 'Lock', ([], {}), '()\n', (3221, 3223), False, 'from threading import Thread, Lock\n'), ((3348, 3354), 'threading.Lock', 'Lock', ([], {}), '()\n', (3352, 3354), False, 'from threading import Thread, Lock\n'), ((3427, 3433), 'threading.Lock', 'Lock', ([], {}), '()\n', (3431, 3433), False, 'from threading import Thread, Lock\n'), ((3993, 4041), 'math.sqrt', 'math.sqrt', (['(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])'], {}), '(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])\n', (4002, 4041), False, 'import sys, time, math\n'), ((4364, 4383), 'numpy.array', 'np.array', (['[x, y, z]'], {}), '([x, y, z])\n', (4372, 4383), True, 'import numpy as np\n'), ((4439, 4450), 'time.time', 'time.time', ([], {}), '()\n', (4448, 4450), False, 'import sys, time, math\n'), ((4608, 4619), 'time.time', 'time.time', ([], {}), '()\n', (4617, 4619), False, 'import sys, time, math\n'), ((4789, 4800), 'time.time', 'time.time', ([], {}), '()\n', (4798, 4800), False, 'import sys, time, math\n'), ((5182, 5253), 'threading.Thread', 'Thread', ([], {'target': 'self.update_pos', 'kwargs': "{'verbose': True, 'loop': False}"}), "(target=self.update_pos, kwargs={'verbose': True, 'loop': False})\n", (5188, 5253), False, 'from threading import Thread, Lock\n'), ((10228, 10252), 'copy.deepcopy', 'deepcopy', (['self.pos_frame'], {}), '(self.pos_frame)\n', (10236, 10252), False, 'from copy import deepcopy\n'), ((10811, 10882), 'threading.Thread', 'Thread', ([], {'target': 'self.update_ref', 'kwargs': "{'verbose': True, 'loop': False}"}), "(target=self.update_ref, kwargs={'verbose': True, 'loop': False})\n", (10817, 10882), False, 'from threading import Thread, Lock\n'), ((15526, 15550), 'copy.deepcopy', 'deepcopy', (['self.ref_frame'], {}), '(self.ref_frame)\n', (15534, 15550), False, 'from copy import deepcopy\n'), ((16241, 16282), 'threading.Thread', 'Thread', ([], {'target': 'self.update_frame', 'args': '()'}), '(target=self.update_frame, args=())\n', (16247, 16282), False, 'from threading import Thread, Lock\n'), ((17392, 17437), 'threading.Thread', 'Thread', ([], {'target': 'self.update_obs_frame', 'args': '()'}), '(target=self.update_obs_frame, args=())\n', (17398, 17437), False, 'from threading import Thread, Lock\n'), ((20401, 20415), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (20412, 20415), False, 'import cv2\n'), ((3746, 3761), 'numpy.transpose', 'np.transpose', (['R'], {}), '(R)\n', (3758, 3761), True, 'import numpy as np\n'), ((3793, 3806), 'numpy.dot', 'np.dot', (['Rt', 'R'], {}), '(Rt, R)\n', (3799, 3806), True, 'import numpy as np\n'), ((3823, 3852), 'numpy.identity', 'np.identity', (['(3)'], {'dtype': 'R.dtype'}), '(3, dtype=R.dtype)\n', (3834, 3852), True, 'import numpy as np\n'), ((3869, 3905), 'numpy.linalg.norm', 'np.linalg.norm', (['(I - shouldBeIdentity)'], {}), '(I - shouldBeIdentity)\n', (3883, 3905), True, 'import numpy as np\n'), ((4114, 4142), 'math.atan2', 'math.atan2', (['R[2, 1]', 'R[2, 2]'], {}), '(R[2, 1], R[2, 2])\n', (4124, 4142), False, 'import sys, time, math\n'), ((4159, 4183), 'math.atan2', 'math.atan2', (['(-R[2, 0])', 'sy'], {}), '(-R[2, 0], sy)\n', (4169, 4183), False, 'import sys, time, math\n'), ((4200, 4228), 'math.atan2', 'math.atan2', (['R[1, 0]', 'R[0, 0]'], {}), '(R[1, 0], R[0, 0])\n', (4210, 4228), False, 'import sys, time, math\n'), ((4259, 4288), 'math.atan2', 'math.atan2', (['(-R[1, 2])', 'R[1, 1]'], {}), '(-R[1, 2], R[1, 1])\n', (4269, 4288), False, 'import sys, time, math\n'), ((4305, 4329), 'math.atan2', 'math.atan2', (['(-R[2, 0])', 'sy'], {}), '(-R[2, 0], sy)\n', (4315, 4329), False, 'import sys, time, math\n'), ((5690, 5729), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (5702, 5729), False, 'import cv2\n'), ((5851, 5900), 'cv2.aruco.getPredefinedDictionary', 'aruco.getPredefinedDictionary', (['aruco.DICT_6X6_250'], {}), '(aruco.DICT_6X6_250)\n', (5880, 5900), True, 'import cv2.aruco as aruco\n'), ((5927, 5960), 'cv2.aruco.DetectorParameters_create', 'aruco.DetectorParameters_create', ([], {}), '()\n', (5958, 5960), True, 'import cv2.aruco as aruco\n'), ((6055, 6211), 'cv2.aruco.detectMarkers', 'aruco.detectMarkers', ([], {'image': 'gray', 'dictionary': 'aruco_dict', 'parameters': 'parameters', 'cameraMatrix': 'self._camera_matrix', 'distCoeff': 'self._camera_distortion'}), '(image=gray, dictionary=aruco_dict, parameters=\n parameters, cameraMatrix=self._camera_matrix, distCoeff=self.\n _camera_distortion)\n', (6074, 6211), True, 'import cv2.aruco as aruco\n'), ((17664, 17688), 'numpy.array', 'np.array', (['[32, 100, 100]'], {}), '([32, 100, 100])\n', (17672, 17688), True, 'import numpy as np\n'), ((17715, 17739), 'numpy.array', 'np.array', (['[80, 255, 255]'], {}), '([80, 255, 255])\n', (17723, 17739), True, 'import numpy as np\n'), ((17759, 17797), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (17771, 17797), False, 'import cv2\n'), ((17817, 17859), 'cv2.inRange', 'cv2.inRange', (['hsv', 'lower_range', 'upper_range'], {}), '(hsv, lower_range, upper_range)\n', (17828, 17859), False, 'import cv2\n'), ((6901, 7015), 'cv2.aruco.estimatePoseSingleMarkers', 'aruco.estimatePoseSingleMarkers', (['corners', 'self.marker_size_warp', 'self._camera_matrix', 'self._camera_distortion'], {}), '(corners, self.marker_size_warp, self.\n _camera_matrix, self._camera_distortion)\n', (6932, 7015), True, 'import cv2.aruco as aruco\n'), ((11721, 11760), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (11733, 11760), False, 'import cv2\n'), ((11928, 12096), 'cv2.aruco.detectMarkers', 'aruco.detectMarkers', ([], {'image': 'gray', 'dictionary': 'self._aruco_dict', 'parameters': 'self._parameters', 'cameraMatrix': 'self._camera_matrix', 'distCoeff': 'self._camera_distortion'}), '(image=gray, dictionary=self._aruco_dict, parameters=\n self._parameters, cameraMatrix=self._camera_matrix, distCoeff=self.\n _camera_distortion)\n', (11947, 12096), True, 'import cv2.aruco as aruco\n'), ((7896, 7937), 'cv2.aruco.drawDetectedMarkers', 'aruco.drawDetectedMarkers', (['gray2', 'corners'], {}), '(gray2, corners)\n', (7921, 7937), True, 'import cv2.aruco as aruco\n'), ((9041, 9148), 'cv2.putText', 'cv2.putText', (['gray2', '"""Position marker found not"""', '(0, 100)', 'self.font', '(0.5)', '(0, 0, 255)', '(1)', 'cv2.LINE_AA'], {}), "(gray2, 'Position marker found not', (0, 100), self.font, 0.5, (\n 0, 0, 255), 1, cv2.LINE_AA)\n", (9052, 9148), False, 'import cv2\n'), ((12666, 12775), 'cv2.aruco.estimatePoseSingleMarkers', 'aruco.estimatePoseSingleMarkers', (['corners', 'self.marker_size', 'self._camera_matrix', 'self._camera_distortion'], {}), '(corners, self.marker_size, self.\n _camera_matrix, self._camera_distortion)\n', (12697, 12775), True, 'import cv2.aruco as aruco\n'), ((13447, 13499), 'numpy.float32', 'np.float32', (['[vals[0], vals[1], vals_2[3], vals_2[2]]'], {}), '([vals[0], vals[1], vals_2[3], vals_2[2]])\n', (13457, 13499), True, 'import numpy as np\n'), ((13528, 13578), 'numpy.float32', 'np.float32', (['[[5, 5], [55, 5], [5, 125], [55, 125]]'], {}), '([[5, 5], [55, 5], [5, 125], [55, 125]])\n', (13538, 13578), True, 'import numpy as np\n'), ((13610, 13649), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['pts1', 'pts2'], {}), '(pts1, pts2)\n', (13637, 13649), False, 'import cv2\n'), ((13680, 13726), 'cv2.warpPerspective', 'cv2.warpPerspective', (['frame', 'matrix', '(640, 480)'], {}), '(frame, matrix, (640, 480))\n', (13699, 13726), False, 'import cv2\n'), ((13857, 13901), 'cv2.aruco.drawDetectedMarkers', 'aruco.drawDetectedMarkers', (['gray_ref', 'corners'], {}), '(gray_ref, corners)\n', (13882, 13901), True, 'import cv2.aruco as aruco\n'), ((14074, 14172), 'cv2.putText', 'cv2.putText', (['gray_ref', 'str_position', '(0, 100)', 'self.font', '(0.5)', '(11, 198, 255)', '(1)', 'cv2.LINE_AA'], {}), '(gray_ref, str_position, (0, 100), self.font, 0.5, (11, 198, 255\n ), 1, cv2.LINE_AA)\n', (14085, 14172), False, 'import cv2\n'), ((14308, 14409), 'cv2.putText', 'cv2.putText', (['gray_ref', '"""No reference found"""', '(0, 50)', 'self.font', '(0.5)', '(0, 0, 240)', '(1)', 'cv2.LINE_AA'], {}), "(gray_ref, 'No reference found', (0, 50), self.font, 0.5, (0, 0,\n 240), 1, cv2.LINE_AA)\n", (14319, 14409), False, 'import cv2\n'), ((8431, 8530), 'cv2.putText', 'cv2.putText', (['gray2', 'marker_position_text', '(0, 100)', 'self.font', '(0.5)', '(0, 255, 0)', '(1)', 'cv2.LINE_AA'], {}), '(gray2, marker_position_text, (0, 100), self.font, 0.5, (0, 255,\n 0), 1, cv2.LINE_AA)\n', (8442, 8530), False, 'import cv2\n'), ((8577, 8678), 'cv2.putText', 'cv2.putText', (['gray2', 'marker_position_text', '(0, 100)', 'self.font', '(0.5)', '(0, 165, 255)', '(1)', 'cv2.LINE_AA'], {}), '(gray2, marker_position_text, (0, 100), self.font, 0.5, (0, 165,\n 255), 1, cv2.LINE_AA)\n', (8588, 8678), False, 'import cv2\n'), ((8699, 8810), 'cv2.putText', 'cv2.putText', (['gray2', '"""PERSPECTIVE is not CALCULATED"""', '(0, 150)', 'self.font', '(0.5)', '(0, 0, 255)', '(1)', 'cv2.LINE_AA'], {}), "(gray2, 'PERSPECTIVE is not CALCULATED', (0, 150), self.font, \n 0.5, (0, 0, 255), 1, cv2.LINE_AA)\n", (8710, 8810), False, 'import cv2\n'), ((12339, 12365), 'numpy.where', 'np.where', (['(ids == self.id_1)'], {}), '(ids == self.id_1)\n', (12347, 12365), True, 'import numpy as np\n'), ((12378, 12404), 'numpy.where', 'np.where', (['(ids == self.id_2)'], {}), '(ids == self.id_2)\n', (12386, 12404), True, 'import numpy as np\n'), ((12535, 12561), 'numpy.where', 'np.where', (['(ids == self.id_1)'], {}), '(ids == self.id_1)\n', (12543, 12561), True, 'import numpy as np\n'), ((12605, 12631), 'numpy.where', 'np.where', (['(ids == self.id_2)'], {}), '(ids == self.id_2)\n', (12613, 12631), True, 'import numpy as np\n')]
import os import cv2 import copy import time import json from pprint import pprint import numpy as np import streamlit as st from PIL import ImageColor # import coco_annotation_parser as annot_parse # type:ignore import SessionState #type:ignore import circulation_skeletonizer as circ_skeleton #type:ignore import connectivity_sets as connect_set #type:ignore import common_utils as cmnutils #type:ignore import coco_json_generator as coco_json #type:ignore EXPORT_FLAG = False COLOR_CODE_RGB_JSON = "color_code_RGB.json" st.set_option('deprecation.showPyplotGlobalUse', False) st.set_page_config(page_title="Arch App",page_icon=":control_knobs:",layout="wide",initial_sidebar_state="auto") with st.sidebar.beta_expander(label='Expand to import file or select folder', expanded=True): with st.form(key="_form_upload_annotation"): annotation_file = st.file_uploader("Import Annotation File", type=['json'], key='_file_uploader_json') dir_name_list = [dir for dir in os.listdir() if os.path.isdir(dir) and not (dir.startswith('.') or dir.startswith('__'))] dir_name_list.insert(0, "Select_Folder") annotated_image_dir = st.selectbox(label="Select Folder", options=dir_name_list, index=0) st.form_submit_button(label='Submit') with st.sidebar.beta_expander(label="Runtime Debug Messages", expanded=True): rt_msg_form = st.form(key="rt_msg") rt_msg_form.form_submit_button(label='Refresh') # @st.cache(suppress_st_warning=True) def send_runtime_msg(msg='', msg_identifier='', msg_type='info', msg_ttl=1): msg_placeholder = rt_msg_form.empty() if msg_type == 'info': msg_placeholder.info(f'{msg}:{msg_identifier}') elif msg_type == 'warn': msg_placeholder.warning(f'{msg}:{msg_identifier}') elif msg_type == 'error': msg_placeholder.error(f'{msg}:{msg_identifier}') time.sleep(0.5) msg_placeholder.empty() @st.cache(suppress_st_warning=True) def get_categories_color_dict(categories_json_data): send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='categories_color_dict', msg_type='info', msg_ttl=1) _categories_color_dict = {} for category_ in categories_json_data: hex_clr = category_['color'] rgb_clr = ImageColor.getcolor(hex_clr, "RGB") bgr_clr = rgb_clr[::-1] _rgb_clr = list(rgb_clr) _bgr_clr = list(bgr_clr) _rgb_clr.append(255) _bgr_clr.append(255) rgba_clr = tuple(_rgb_clr) bgra_clr = tuple(_bgr_clr) clr_format_dict = {'HEX':hex_clr,'RGB':rgb_clr,'BGR':bgr_clr,'RGBA':rgba_clr,'BGRA':bgra_clr} _categories_color_dict.update({category_['name']:clr_format_dict}) return _categories_color_dict @st.cache(suppress_st_warning=True) def get_file_json_data_info(_annotation_file): send_runtime_msg(msg='Cache Miss', msg_identifier='file_json_data_info', msg_type='info', msg_ttl=1) # with open(_annotation_file_name, 'r') as _annotation_file: # _annotation_file = json.load(_annotation_file) # _annotation_json_file_info = _annotation_file.name #_annotation_file.__dict__ _annotation_json_file_data = json.load(_annotation_file) return _annotation_json_file_data#, _annotation_json_file_info @st.cache(suppress_st_warning=True) def init_annotation_data(_annotation_json_file_data): send_runtime_msg(msg='Cache Miss', msg_identifier='init_annotation_data', msg_type='info', msg_ttl=1) _images_json_data = _annotation_json_file_data['images'] _categories_json_data = _annotation_json_file_data['categories'] _annotations_json_data = _annotation_json_file_data['annotations'] return _images_json_data, _categories_json_data, _annotations_json_data @st.cache(suppress_st_warning=True) def get_image_id_width_height(_images_json_data, _selected_image): send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='image_id_width_height', msg_type='info', msg_ttl=1) id, width, height = [(im_dict['id'],im_dict['width'],im_dict['height']) for im_dict in _images_json_data if im_dict['file_name'] == _selected_image][0] return id, width, height # @st.cache(suppress_st_warning=True) def get_id_poly_segmentation(annotations_json_data, selected_image_id, selected_categories, categories_id_name_dict): # send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='id_poly_segmentation', msg_type='info', msg_ttl=1) annot_id_point_dict = {} for ant_dict in annotations_json_data: if ant_dict['image_id'] == selected_image_id: # to select img for cat in selected_categories: _id_name = categories_id_name_dict[ant_dict['category_id']] if _id_name == cat: sub_id = ant_dict['id'] ant_dict_lst = ant_dict['segmentation'] for seg_lst in ant_dict_lst: segment_data = seg_lst x_coords = list(map(int, segment_data[::2])) y_coords = list(map(int, segment_data[1::2])) poly_coord = list(zip(x_coords, y_coords)) annot_id_point_dict.update({f'{_id_name}_{sub_id}_{ant_dict_lst.index(seg_lst)}':poly_coord}) # pprint(annot_id_point_dict) return annot_id_point_dict @st.cache(suppress_st_warning=True) def get_categories_name_list(annotations_json_data, categories_id_name_dict, selected_image_id, _selected_process): send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='categories_name_list', msg_type='info', msg_ttl=1) seg_id_name_cat_id = {} for ant_dict in annotations_json_data: if ant_dict['image_id'] == selected_image_id: _cat_id = ant_dict['category_id'] _id_name = categories_id_name_dict[_cat_id] seg_id_name_cat_id.update({_id_name:_cat_id}) #TODO {ant_dict['category_id']:'*'} seg_id_name_lst = list(seg_id_name_cat_id.keys()) if _selected_process == "Circulation": remove_suggested_categories = ["wall"] suggested_default_list = list(set(seg_id_name_lst) - set(remove_suggested_categories)) elif _selected_process == "Connectivity": suggested_default_list = ["wall", "parapet", "window", "entry"] else: suggested_default_list = seg_id_name_lst return seg_id_name_lst, suggested_default_list # @st.cache(suppress_st_warning=True) def render_selected_segmentations(src_surface, png_surface,segmentations, region_type, categories_color_dict, _selected_process): # send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='render_selected_segmentations', msg_type='info', msg_ttl=1) for seg_id,seg_points in segmentations.items(): _cat_clr_BGR = categories_color_dict[seg_id.split('_')[0]]['BGR'] _cat_clr_BGRA = categories_color_dict[seg_id.split('_')[0]]['BGRA'] if _selected_process == "Circulation": _cat_clr_BGR = (255,255,255) _cat_clr_BGRA = (255,255,255,255) if region_type == 'Fill': poly_img = cv2.fillPoly(src_surface, np.array([seg_points]), color=_cat_clr_BGR) #lineType=cv2.LINE_AA poly_png = cv2.fillPoly(png_surface, np.array([seg_points]), color=_cat_clr_BGRA) #lineType=cv2.LINE_AA else:# region_type == 'Lines': poly_img = cv2.polylines(src_surface, np.array([seg_points]), True, _cat_clr_BGR, 1) #lineType=cv2.LINE_AA poly_png = cv2.polylines(png_surface, np.array([seg_points]), True, color=_cat_clr_BGRA) #lineType=cv2.LINE_AA) return poly_img, poly_png def export_image(src_surface, png_surface, export_image_format, export_file_name, export_image_width, export_image_height, resize_export=False): if export_image_format == 'png': _export_image = png_surface elif export_image_format == 'jpeg': _export_image = src_surface if resize_export: _export_image = cv2.resize(_export_image, (export_image_width, export_image_height)) cv2.imwrite(export_file_name, _export_image) return True @st.cache(suppress_st_warning=True) def get_coco_json_file_data(annot_file, annot_dir, annot_clr, annot_export): send_runtime_msg(msg='Caching:Cache Miss', msg_identifier='coco_json_file_data', msg_type='info', msg_ttl=1) if annotation_file: coco_json_file_data = get_file_json_data_info(annotation_file) elif annotated_image_dir != "Select_Folder": coco_json_file_data = coco_json.generate_coco(image_dir=annotated_image_dir, color_code=annot_clr, export_json=annot_export) return coco_json_file_data def main(): #TODO split in to stage by stage functions and call def init_front_end_routine() if not annotation_file == None or annotated_image_dir != "Select_Folder": annotation_json_file_data = get_coco_json_file_data(annot_file=annotation_file, annot_dir=annotated_image_dir, annot_clr=COLOR_CODE_RGB_JSON, annot_export=False) images_json_data, categories_json_data, annotations_json_data = init_annotation_data(annotation_json_file_data) categories_color_dict = get_categories_color_dict(categories_json_data) images_name = [img_name['file_name'] for img_name in images_json_data] selected_image = st.sidebar.selectbox("Select Plan", images_name, index=0) selected_image_id, selected_image_width, selected_image_height = get_image_id_width_height(images_json_data, selected_image) # st.write(f'selected : {selected_image} | Size : {selected_image_width} x {selected_image_height}') with st.sidebar.form(key="Processes"): selected_process = st.radio("Process",("Visualize",'Circulation','Connectivity')) #TODO 'Heatmap', st.form_submit_button(label="Select") with st.sidebar.form(key="Reg_Label_Bg"): clm_region, clm_label, clm_bg_clr, clm_st_im_fmt = st.beta_columns(4) with clm_region: draw_region = st.radio("Regions", ('Fill','Lines')) with clm_label: show_label = st.radio("Tag/Label", ('Yes','No')) with clm_bg_clr: bg_clr = st.radio("Background", ('Black','White')) with clm_st_im_fmt: st_im_fmt = st.radio("Format", ("BGR", "RGB")) st.form_submit_button(label='Update') if selected_process == 'Connectivity': with st.sidebar.beta_expander(label='Marker Settings', expanded=False): with st.form(key="marker_setting"): _marker, _marker_color = st.beta_columns([4,1]) with _marker: selected_mrkr_asset = st.selectbox(label='Asset', options=['line','dot'], index=1) with _marker_color: st.text('') asset_mrkr_clr = st.color_picker(label='Pick', value='#1b56c1') st.form_submit_button(label="Select") #TODO add this section in to cache def categories_id_name_dict = {category_['id']:category_['name'] for category_ in categories_json_data} categories_name_list, default_categories_name_list = get_categories_name_list(annotations_json_data, categories_id_name_dict, selected_image_id, selected_process) selected_categories = st.multiselect(label='Select tag to view annotation', options=categories_name_list, default=default_categories_name_list) if len(selected_categories): png_img = np.zeros((selected_image_height, selected_image_width, 4)) src_img = np.zeros((selected_image_height, selected_image_width, 3), np.uint8) if bg_clr == 'White': src_img[:] = (255,255,255) annot_id_point_dict = get_id_poly_segmentation(annotations_json_data, selected_image_id, selected_categories, categories_id_name_dict) poly_surface, png_surface = render_selected_segmentations(src_img, png_img, annot_id_point_dict, draw_region, categories_color_dict, selected_process) main_surface = poly_surface if selected_process == 'Circulation': img_closed = png_surface im_background = poly_surface skel_graph, skel_image = circ_skeleton.get_skeleton(img_closed, im_background) polar_plt, unique_angles, cumulative_sum = circ_skeleton.get_orientation_graph(skel_graph, skel_image) main_surface = skel_image if selected_process == 'Connectivity': with open("temp_assets\_connectivity.json", "w") as outfile: json.dump(annot_id_point_dict, outfile) st.image(image=main_surface, caption=' ------- [ Visulization ] ------- ', channels=st_im_fmt) if selected_process == 'Circulation': st.write('polar plote ----') st.pyplot(image=polar_plt, caption=' ------- [ Polar Plot ] ------- ') with st.sidebar.beta_expander(label='Export Settings'): with st.form(key="Export_settings"): resize_export = False export_complete = False export_image_width = st.number_input(label='Width', min_value=100, max_value=int(selected_image_width), value=int(selected_image_width)) export_image_height = st.number_input(label='Height', min_value=100, max_value=int(selected_image_height), value=int(selected_image_height)) export_image_format = st.selectbox(label='Export image as', options=['png','jpeg'], index=1) export_file_name = f'assets\{selected_image.split(".")[0]}_{export_image_width}_{export_image_height}.{export_image_format}' if selected_image_width != export_image_width or selected_image_height != export_image_height: resize_export = True export_complete = export_image(main_surface, png_surface, export_image_format, export_file_name, export_image_width, export_image_height, resize_export) if export_complete: placeholder = st.empty() placeholder.info('export complete') time.sleep(1) placeholder.info(f'{export_file_name}') time.sleep(1) placeholder.empty() # EXPORT_FLAG = True st.form_submit_button(label="Export") with st.sidebar.beta_expander(label='Experimental'): _tmp_w, _tmp_h = st.beta_columns(2) with _tmp_w: st.text_input(label=f'Width (Max:{selected_image_width})', value=f'{export_image_width}', max_chars=len(str(selected_image_width))) with _tmp_h: st.text_input(label=f'Height (Max:{selected_image_height})', value=f'{export_image_height}', max_chars=len(str(selected_image_height))) _tmp_f, _tmp_b = st.beta_columns([2,1]) with _tmp_f: st.selectbox(label='frmt', options=['png','jpg']) with _tmp_b: st.markdown('') st.text('') st.button(label='Export_') with st.beta_expander(label='App Active Dictionary', expanded=False): try: temp_info = { "file name":selected_image, "file width":selected_image_width, "file height":selected_image_height, "Current Process":selected_process, "Region":draw_region, "Show Label":show_label, "Background":bg_clr, "selected_categories":selected_categories } if EXPORT_FLAG: temp_info.update({"Export":{ "width":export_image_width, "height":export_image_height, "format":export_image_format}}) except Exception as e: temp_info = f"Exception : {e}" st.write(temp_info) else: st.info("To continue please :arrow_down:") st.info("Navigate to SideBar :arrow_forward: Import Annotation File :arrow_forward: Drag and drop | Browse files :arrow_forward: Click Import") st.markdown("OR") st.info("Navigate to SideBar :arrow_forward: Select Folder from Drop Down :arrow_forward: Click Import") if __name__ == "__main__": main()
[ "streamlit.image", "streamlit.sidebar.form", "streamlit.button", "time.sleep", "circulation_skeletonizer.get_orientation_graph", "numpy.array", "streamlit.multiselect", "streamlit.empty", "streamlit.form", "streamlit.cache", "os.listdir", "json.dump", "os.path.isdir", "circulation_skeletonizer.get_skeleton", "streamlit.set_page_config", "streamlit.form_submit_button", "streamlit.set_option", "streamlit.markdown", "streamlit.beta_columns", "streamlit.file_uploader", "streamlit.write", "streamlit.text", "streamlit.selectbox", "cv2.resize", "cv2.imwrite", "coco_json_generator.generate_coco", "streamlit.pyplot", "streamlit.radio", "numpy.zeros", "streamlit.color_picker", "streamlit.sidebar.selectbox", "json.load", "PIL.ImageColor.getcolor", "streamlit.info", "streamlit.sidebar.beta_expander", "streamlit.beta_expander" ]
[((544, 599), 'streamlit.set_option', 'st.set_option', (['"""deprecation.showPyplotGlobalUse"""', '(False)'], {}), "('deprecation.showPyplotGlobalUse', False)\n", (557, 599), True, 'import streamlit as st\n'), ((601, 720), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Arch App"""', 'page_icon': '""":control_knobs:"""', 'layout': '"""wide"""', 'initial_sidebar_state': '"""auto"""'}), "(page_title='Arch App', page_icon=':control_knobs:',\n layout='wide', initial_sidebar_state='auto')\n", (619, 720), True, 'import streamlit as st\n'), ((1955, 1989), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (1963, 1989), True, 'import streamlit as st\n'), ((2781, 2815), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (2789, 2815), True, 'import streamlit as st\n'), ((3314, 3348), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (3322, 3348), True, 'import streamlit as st\n'), ((3796, 3830), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (3804, 3830), True, 'import streamlit as st\n'), ((5387, 5421), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (5395, 5421), True, 'import streamlit as st\n'), ((8236, 8270), 'streamlit.cache', 'st.cache', ([], {'suppress_st_warning': '(True)'}), '(suppress_st_warning=True)\n', (8244, 8270), True, 'import streamlit as st\n'), ((722, 813), 'streamlit.sidebar.beta_expander', 'st.sidebar.beta_expander', ([], {'label': '"""Expand to import file or select folder"""', 'expanded': '(True)'}), "(label='Expand to import file or select folder',\n expanded=True)\n", (746, 813), True, 'import streamlit as st\n'), ((1308, 1379), 'streamlit.sidebar.beta_expander', 'st.sidebar.beta_expander', ([], {'label': '"""Runtime Debug Messages"""', 'expanded': '(True)'}), "(label='Runtime Debug Messages', expanded=True)\n", (1332, 1379), True, 'import streamlit as st\n'), ((1400, 1421), 'streamlit.form', 'st.form', ([], {'key': '"""rt_msg"""'}), "(key='rt_msg')\n", (1407, 1421), True, 'import streamlit as st\n'), ((1906, 1921), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (1916, 1921), False, 'import time\n'), ((3213, 3240), 'json.load', 'json.load', (['_annotation_file'], {}), '(_annotation_file)\n', (3222, 3240), False, 'import json\n'), ((8170, 8214), 'cv2.imwrite', 'cv2.imwrite', (['export_file_name', '_export_image'], {}), '(export_file_name, _export_image)\n', (8181, 8214), False, 'import cv2\n'), ((821, 859), 'streamlit.form', 'st.form', ([], {'key': '"""_form_upload_annotation"""'}), "(key='_form_upload_annotation')\n", (828, 859), True, 'import streamlit as st\n'), ((888, 977), 'streamlit.file_uploader', 'st.file_uploader', (['"""Import Annotation File"""'], {'type': "['json']", 'key': '"""_file_uploader_json"""'}), "('Import Annotation File', type=['json'], key=\n '_file_uploader_json')\n", (904, 977), True, 'import streamlit as st\n'), ((1185, 1252), 'streamlit.selectbox', 'st.selectbox', ([], {'label': '"""Select Folder"""', 'options': 'dir_name_list', 'index': '(0)'}), "(label='Select Folder', options=dir_name_list, index=0)\n", (1197, 1252), True, 'import streamlit as st\n'), ((1262, 1299), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {'label': '"""Submit"""'}), "(label='Submit')\n", (1283, 1299), True, 'import streamlit as st\n'), ((2294, 2329), 'PIL.ImageColor.getcolor', 'ImageColor.getcolor', (['hex_clr', '"""RGB"""'], {}), "(hex_clr, 'RGB')\n", (2313, 2329), False, 'from PIL import ImageColor\n'), ((8080, 8148), 'cv2.resize', 'cv2.resize', (['_export_image', '(export_image_width, export_image_height)'], {}), '(_export_image, (export_image_width, export_image_height))\n', (8090, 8148), False, 'import cv2\n'), ((9444, 9501), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Select Plan"""', 'images_name'], {'index': '(0)'}), "('Select Plan', images_name, index=0)\n", (9464, 9501), True, 'import streamlit as st\n'), ((11530, 11656), 'streamlit.multiselect', 'st.multiselect', ([], {'label': '"""Select tag to view annotation"""', 'options': 'categories_name_list', 'default': 'default_categories_name_list'}), "(label='Select tag to view annotation', options=\n categories_name_list, default=default_categories_name_list)\n", (11544, 11656), True, 'import streamlit as st\n'), ((16579, 16621), 'streamlit.info', 'st.info', (['"""To continue please :arrow_down:"""'], {}), "('To continue please :arrow_down:')\n", (16586, 16621), True, 'import streamlit as st\n'), ((16631, 16784), 'streamlit.info', 'st.info', (['"""Navigate to SideBar :arrow_forward: Import Annotation File :arrow_forward: Drag and drop | Browse files :arrow_forward: Click Import"""'], {}), "(\n 'Navigate to SideBar :arrow_forward: Import Annotation File :arrow_forward: Drag and drop | Browse files :arrow_forward: Click Import'\n )\n", (16638, 16784), True, 'import streamlit as st\n'), ((16784, 16801), 'streamlit.markdown', 'st.markdown', (['"""OR"""'], {}), "('OR')\n", (16795, 16801), True, 'import streamlit as st\n'), ((16811, 16925), 'streamlit.info', 'st.info', (['"""Navigate to SideBar :arrow_forward: Select Folder from Drop Down :arrow_forward: Click Import"""'], {}), "(\n 'Navigate to SideBar :arrow_forward: Select Folder from Drop Down :arrow_forward: Click Import'\n )\n", (16818, 16925), True, 'import streamlit as st\n'), ((8641, 8747), 'coco_json_generator.generate_coco', 'coco_json.generate_coco', ([], {'image_dir': 'annotated_image_dir', 'color_code': 'annot_clr', 'export_json': 'annot_export'}), '(image_dir=annotated_image_dir, color_code=annot_clr,\n export_json=annot_export)\n', (8664, 8747), True, 'import coco_json_generator as coco_json\n'), ((9762, 9794), 'streamlit.sidebar.form', 'st.sidebar.form', ([], {'key': '"""Processes"""'}), "(key='Processes')\n", (9777, 9794), True, 'import streamlit as st\n'), ((9828, 9893), 'streamlit.radio', 'st.radio', (['"""Process"""', "('Visualize', 'Circulation', 'Connectivity')"], {}), "('Process', ('Visualize', 'Circulation', 'Connectivity'))\n", (9836, 9893), True, 'import streamlit as st\n'), ((9921, 9958), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {'label': '"""Select"""'}), "(label='Select')\n", (9942, 9958), True, 'import streamlit as st\n'), ((9975, 10010), 'streamlit.sidebar.form', 'st.sidebar.form', ([], {'key': '"""Reg_Label_Bg"""'}), "(key='Reg_Label_Bg')\n", (9990, 10010), True, 'import streamlit as st\n'), ((10076, 10094), 'streamlit.beta_columns', 'st.beta_columns', (['(4)'], {}), '(4)\n', (10091, 10094), True, 'import streamlit as st\n'), ((10499, 10536), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {'label': '"""Update"""'}), "(label='Update')\n", (10520, 10536), True, 'import streamlit as st\n'), ((11715, 11773), 'numpy.zeros', 'np.zeros', (['(selected_image_height, selected_image_width, 4)'], {}), '((selected_image_height, selected_image_width, 4))\n', (11723, 11773), True, 'import numpy as np\n'), ((11797, 11865), 'numpy.zeros', 'np.zeros', (['(selected_image_height, selected_image_width, 3)', 'np.uint8'], {}), '((selected_image_height, selected_image_width, 3), np.uint8)\n', (11805, 11865), True, 'import numpy as np\n'), ((12930, 13028), 'streamlit.image', 'st.image', ([], {'image': 'main_surface', 'caption': '""" ------- [ Visulization ] ------- """', 'channels': 'st_im_fmt'}), "(image=main_surface, caption=' ------- [ Visulization ] ------- ',\n channels=st_im_fmt)\n", (12938, 13028), True, 'import streamlit as st\n'), ((15631, 15694), 'streamlit.beta_expander', 'st.beta_expander', ([], {'label': '"""App Active Dictionary"""', 'expanded': '(False)'}), "(label='App Active Dictionary', expanded=False)\n", (15647, 15694), True, 'import streamlit as st\n'), ((16533, 16552), 'streamlit.write', 'st.write', (['temp_info'], {}), '(temp_info)\n', (16541, 16552), True, 'import streamlit as st\n'), ((1014, 1026), 'os.listdir', 'os.listdir', ([], {}), '()\n', (1024, 1026), False, 'import os\n'), ((7216, 7238), 'numpy.array', 'np.array', (['[seg_points]'], {}), '([seg_points])\n', (7224, 7238), True, 'import numpy as np\n'), ((7332, 7354), 'numpy.array', 'np.array', (['[seg_points]'], {}), '([seg_points])\n', (7340, 7354), True, 'import numpy as np\n'), ((7490, 7512), 'numpy.array', 'np.array', (['[seg_points]'], {}), '([seg_points])\n', (7498, 7512), True, 'import numpy as np\n'), ((7610, 7632), 'numpy.array', 'np.array', (['[seg_points]'], {}), '([seg_points])\n', (7618, 7632), True, 'import numpy as np\n'), ((10156, 10194), 'streamlit.radio', 'st.radio', (['"""Regions"""', "('Fill', 'Lines')"], {}), "('Regions', ('Fill', 'Lines'))\n", (10164, 10194), True, 'import streamlit as st\n'), ((10253, 10289), 'streamlit.radio', 'st.radio', (['"""Tag/Label"""', "('Yes', 'No')"], {}), "('Tag/Label', ('Yes', 'No'))\n", (10261, 10289), True, 'import streamlit as st\n'), ((10345, 10387), 'streamlit.radio', 'st.radio', (['"""Background"""', "('Black', 'White')"], {}), "('Background', ('Black', 'White'))\n", (10353, 10387), True, 'import streamlit as st\n'), ((10449, 10483), 'streamlit.radio', 'st.radio', (['"""Format"""', "('BGR', 'RGB')"], {}), "('Format', ('BGR', 'RGB'))\n", (10457, 10483), True, 'import streamlit as st\n'), ((10610, 10675), 'streamlit.sidebar.beta_expander', 'st.sidebar.beta_expander', ([], {'label': '"""Marker Settings"""', 'expanded': '(False)'}), "(label='Marker Settings', expanded=False)\n", (10634, 10675), True, 'import streamlit as st\n'), ((12501, 12554), 'circulation_skeletonizer.get_skeleton', 'circ_skeleton.get_skeleton', (['img_closed', 'im_background'], {}), '(img_closed, im_background)\n', (12527, 12554), True, 'import circulation_skeletonizer as circ_skeleton\n'), ((12615, 12674), 'circulation_skeletonizer.get_orientation_graph', 'circ_skeleton.get_orientation_graph', (['skel_graph', 'skel_image'], {}), '(skel_graph, skel_image)\n', (12650, 12674), True, 'import circulation_skeletonizer as circ_skeleton\n'), ((13095, 13123), 'streamlit.write', 'st.write', (['"""polar plote ----"""'], {}), "('polar plote ----')\n", (13103, 13123), True, 'import streamlit as st\n'), ((13141, 13211), 'streamlit.pyplot', 'st.pyplot', ([], {'image': 'polar_plt', 'caption': '""" ------- [ Polar Plot ] ------- """'}), "(image=polar_plt, caption=' ------- [ Polar Plot ] ------- ')\n", (13150, 13211), True, 'import streamlit as st\n'), ((13244, 13293), 'streamlit.sidebar.beta_expander', 'st.sidebar.beta_expander', ([], {'label': '"""Export Settings"""'}), "(label='Export Settings')\n", (13268, 13293), True, 'import streamlit as st\n'), ((14838, 14884), 'streamlit.sidebar.beta_expander', 'st.sidebar.beta_expander', ([], {'label': '"""Experimental"""'}), "(label='Experimental')\n", (14862, 14884), True, 'import streamlit as st\n'), ((14920, 14938), 'streamlit.beta_columns', 'st.beta_columns', (['(2)'], {}), '(2)\n', (14935, 14938), True, 'import streamlit as st\n'), ((15343, 15366), 'streamlit.beta_columns', 'st.beta_columns', (['[2, 1]'], {}), '([2, 1])\n', (15358, 15366), True, 'import streamlit as st\n'), ((1030, 1048), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (1043, 1048), False, 'import os\n'), ((10699, 10728), 'streamlit.form', 'st.form', ([], {'key': '"""marker_setting"""'}), "(key='marker_setting')\n", (10706, 10728), True, 'import streamlit as st\n'), ((10776, 10799), 'streamlit.beta_columns', 'st.beta_columns', (['[4, 1]'], {}), '([4, 1])\n', (10791, 10799), True, 'import streamlit as st\n'), ((11130, 11167), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {'label': '"""Select"""'}), "(label='Select')\n", (11151, 11167), True, 'import streamlit as st\n'), ((12875, 12914), 'json.dump', 'json.dump', (['annot_id_point_dict', 'outfile'], {}), '(annot_id_point_dict, outfile)\n', (12884, 12914), False, 'import json\n'), ((13317, 13347), 'streamlit.form', 'st.form', ([], {'key': '"""Export_settings"""'}), "(key='Export_settings')\n", (13324, 13347), True, 'import streamlit as st\n'), ((13812, 13883), 'streamlit.selectbox', 'st.selectbox', ([], {'label': '"""Export image as"""', 'options': "['png', 'jpeg']", 'index': '(1)'}), "(label='Export image as', options=['png', 'jpeg'], index=1)\n", (13824, 13883), True, 'import streamlit as st\n'), ((14772, 14809), 'streamlit.form_submit_button', 'st.form_submit_button', ([], {'label': '"""Export"""'}), "(label='Export')\n", (14793, 14809), True, 'import streamlit as st\n'), ((15417, 15467), 'streamlit.selectbox', 'st.selectbox', ([], {'label': '"""frmt"""', 'options': "['png', 'jpg']"}), "(label='frmt', options=['png', 'jpg'])\n", (15429, 15467), True, 'import streamlit as st\n'), ((15518, 15533), 'streamlit.markdown', 'st.markdown', (['""""""'], {}), "('')\n", (15529, 15533), True, 'import streamlit as st\n'), ((15555, 15566), 'streamlit.text', 'st.text', (['""""""'], {}), "('')\n", (15562, 15566), True, 'import streamlit as st\n'), ((15588, 15614), 'streamlit.button', 'st.button', ([], {'label': '"""Export_"""'}), "(label='Export_')\n", (15597, 15614), True, 'import streamlit as st\n'), ((10881, 10942), 'streamlit.selectbox', 'st.selectbox', ([], {'label': '"""Asset"""', 'options': "['line', 'dot']", 'index': '(1)'}), "(label='Asset', options=['line', 'dot'], index=1)\n", (10893, 10942), True, 'import streamlit as st\n'), ((11008, 11019), 'streamlit.text', 'st.text', (['""""""'], {}), "('')\n", (11015, 11019), True, 'import streamlit as st\n'), ((11062, 11108), 'streamlit.color_picker', 'st.color_picker', ([], {'label': '"""Pick"""', 'value': '"""#1b56c1"""'}), "(label='Pick', value='#1b56c1')\n", (11077, 11108), True, 'import streamlit as st\n'), ((14445, 14455), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (14453, 14455), True, 'import streamlit as st\n'), ((14542, 14555), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (14552, 14555), False, 'import time\n'), ((14646, 14659), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (14656, 14659), False, 'import time\n')]
"""Generate synthetic data in LIBSVM format.""" import argparse import io import time import numpy as np from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split RNG = np.random.RandomState(2019) def generate_data(args): """Generates the data.""" print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns)) print("Sparsity {}".format(args.sparsity)) print("{}/{} train/test split".format(1.0 - args.test_size, args.test_size)) tmp = time.time() n_informative = args.columns * 7 // 10 n_redundant = args.columns // 10 n_repeated = args.columns // 10 print("n_informative: {}, n_redundant: {}, n_repeated: {}".format(n_informative, n_redundant, n_repeated)) x, y = make_classification(n_samples=args.rows, n_features=args.columns, n_informative=n_informative, n_redundant=n_redundant, n_repeated=n_repeated, shuffle=False, random_state=RNG) print("Generate Time: {} seconds".format(time.time() - tmp)) tmp = time.time() x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=args.test_size, random_state=RNG, shuffle=False) print("Train/Test Split Time: {} seconds".format(time.time() - tmp)) tmp = time.time() write_file('train.libsvm', x_train, y_train, args.sparsity) print("Write Train Time: {} seconds".format(time.time() - tmp)) tmp = time.time() write_file('test.libsvm', x_test, y_test, args.sparsity) print("Write Test Time: {} seconds".format(time.time() - tmp)) def write_file(filename, x_data, y_data, sparsity): with open(filename, 'w') as f: for x, y in zip(x_data, y_data): write_line(f, x, y, sparsity) def write_line(f, x, y, sparsity): with io.StringIO() as line: line.write(str(y)) for i, col in enumerate(x): if 0.0 < sparsity < 1.0: if RNG.uniform(0, 1) > sparsity: write_feature(line, i, col) else: write_feature(line, i, col) line.write('\n') f.write(line.getvalue()) def write_feature(line, index, feature): line.write(' ') line.write(str(index)) line.write(':') line.write(str(feature)) def main(): """The main function. Defines and parses command line arguments and calls the generator. """ parser = argparse.ArgumentParser() parser.add_argument('--rows', type=int, default=1000000) parser.add_argument('--columns', type=int, default=50) parser.add_argument('--sparsity', type=float, default=0.0) parser.add_argument('--test_size', type=float, default=0.01) args = parser.parse_args() generate_data(args) if __name__ == '__main__': main()
[ "argparse.ArgumentParser", "sklearn.model_selection.train_test_split", "io.StringIO", "time.time", "numpy.random.RandomState", "sklearn.datasets.make_classification" ]
[((216, 243), 'numpy.random.RandomState', 'np.random.RandomState', (['(2019)'], {}), '(2019)\n', (237, 243), True, 'import numpy as np\n'), ((526, 537), 'time.time', 'time.time', ([], {}), '()\n', (535, 537), False, 'import time\n'), ((846, 1030), 'sklearn.datasets.make_classification', 'make_classification', ([], {'n_samples': 'args.rows', 'n_features': 'args.columns', 'n_informative': 'n_informative', 'n_redundant': 'n_redundant', 'n_repeated': 'n_repeated', 'shuffle': '(False)', 'random_state': 'RNG'}), '(n_samples=args.rows, n_features=args.columns,\n n_informative=n_informative, n_redundant=n_redundant, n_repeated=\n n_repeated, shuffle=False, random_state=RNG)\n', (865, 1030), False, 'from sklearn.datasets import make_classification\n'), ((1160, 1171), 'time.time', 'time.time', ([], {}), '()\n', (1169, 1171), False, 'import time\n'), ((1211, 1297), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {'test_size': 'args.test_size', 'random_state': 'RNG', 'shuffle': '(False)'}), '(x, y, test_size=args.test_size, random_state=RNG, shuffle=\n False)\n', (1227, 1297), False, 'from sklearn.model_selection import train_test_split\n'), ((1433, 1444), 'time.time', 'time.time', ([], {}), '()\n', (1442, 1444), False, 'import time\n'), ((1588, 1599), 'time.time', 'time.time', ([], {}), '()\n', (1597, 1599), False, 'import time\n'), ((2558, 2583), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2581, 2583), False, 'import argparse\n'), ((1946, 1959), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1957, 1959), False, 'import io\n'), ((1129, 1140), 'time.time', 'time.time', ([], {}), '()\n', (1138, 1140), False, 'import time\n'), ((1402, 1413), 'time.time', 'time.time', ([], {}), '()\n', (1411, 1413), False, 'import time\n'), ((1557, 1568), 'time.time', 'time.time', ([], {}), '()\n', (1566, 1568), False, 'import time\n'), ((1708, 1719), 'time.time', 'time.time', ([], {}), '()\n', (1717, 1719), False, 'import time\n')]
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the lib for gradient checker unittest.""" from __future__ import print_function import unittest import six import collections import numpy as np from itertools import product import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.executor import Executor from paddle.fluid.backward import _append_grad_suffix_, _as_list from paddle.fluid.framework import _test_eager_guard try: from collections.abc import Sequence except: from collections import Sequence def _product(t): if isinstance(t, int): return t else: return np.product(t) def dtype_to_np_dtype(dtype): if dtype == core.VarDesc.VarType.FP32: return np.float32 elif dtype == core.VarDesc.VarType.FP64: return np.float64 elif dtype == core.VarDesc.VarType.FP16: return np.float16 else: raise ValueError("Not supported data type " + str(dtype)) def _get_item(t, i, np_dtype): if np_dtype == np.float16: np_t = np.array(t).astype(np.float16) np_t = np_t.flatten() return np_t[i] elif np_dtype == np.float32: return t._get_float_element(i) elif np_dtype == np.float64: return t._get_double_element(i) else: raise ValueError("Not supported data type " + str(np_dtype)) def _set_item(t, i, e, np_dtype): if np_dtype == np.float16: np_t = np.array(t).astype(np.float16) shape = np_t.shape np_t = np_t.flatten() np_t[i] = e np_t = np_t.reshape(shape) t.set(np_t, place) elif np_dtype == np.float32: t._set_float_element(i, e) elif np_dtype == np.float64: t._set_double_element(i, e) else: raise ValueError("Not supported data type " + str(np_dtype)) def set_var_in_scope(scope, place, name, value, recursive_seq_len=None): t = scope.var(name).get_tensor() t.set(value, place) if recursive_seq_len: t.set_recursive_sequence_lengths(recursive_seq_len) return t def var_to_np_array_in_scope(scope, place, name): return np.array(scope.var(name).get_tensor()) def make_jacobian(x, y_size, np_dtype): if isinstance(x, fluid.framework.Variable): return np.zeros((_product(x.shape), y_size), dtype=np_dtype) elif isinstance(x, Sequence): jacobians = list( filter(lambda t: t is not None, (make_jacobian(item, y_size, np_dtype) for item in x))) return jacobians else: None def _compute_numerical_jacobian(program, x, y, place, scope, delta): """Computes the numeric Jacobian for dy/dx. Computes the numeric Jacobian by slightly perturbing the inputs and measuring the differences on the output. Args: program (Program): the network program. x (Variable): the input variables. y (list[Variable]): the output variables. place (fluid.CPUPlace or fluid.CUDAPlace): the device. scope (Scope): the scope used to run program. delta: the amount of perturbation we give to the input Returns: A list of 2-D numpy array, the list length is len(y). Each 2-D numpy array represents the Jacobian for dy_i/dx. It has "x_size" rows and "y_size" columns where "x_size" is the number of elements in x and "y_size" is the number of elements in each y_i. """ if not isinstance(x, fluid.framework.Variable): raise TypeError('x is not Variable') # To compute the jacobian, treat x and y as one-dimensional vectors. y = _as_list(y) exe = fluid.Executor(place) def run(): y_res = exe.run(program, scope=scope, fetch_list=y) return [yi.flatten() for yi in y_res] x_name = x.name x_shape = x.shape x_size = _product(x_shape) x_t = scope.find_var(x_name).get_tensor() np_type = dtype_to_np_dtype(x.dtype) jacobian = [make_jacobian(x, _product(yi.shape), np_type) for yi in y] for i in six.moves.xrange(x_size): orig = _get_item(x_t, i, np_type) x_pos = orig + delta _set_item(x_t, i, x_pos, np_type) y_pos = run() x_neg = orig - delta _set_item(x_t, i, x_neg, np_type) y_neg = run() _set_item(x_t, i, orig, np_type) for j in six.moves.xrange(len(y)): jacobian[j][i, :] = (y_pos[j] - y_neg[j]) / delta / 2. return jacobian def _compute_analytical_jacobian(program, x, y, place, scope): """Computes the analytical Jacobian for dy/dx. Args: program (Program): a Program with forward pass. x (Variable|list[Variable]): a variable or list of variable y (Variable): the target variable. place (fluid.CPUPlace or fluid.CUDAPlace): the device. scope (Scope): the scope used to run program. Returns: A list of 2-D numpy array. The list length is len(x). Each 2-D numpy array represents the Jacobian for dy/dx_i. It has "xi_size" rows and "dy_size" columns where "x_size" is the number of elements in x_i and "dy_size" is the number of elements in y. """ if not isinstance(y, fluid.framework.Variable): raise TypeError('y is not Variable') dy_name = _append_grad_suffix_(y.name) np_type = dtype_to_np_dtype(y.dtype) # create dy Variable in Program dy = program.global_block().create_var(name=dy_name, shape=y.shape, dtype=np_type, persistable=True) # append backward dx = fluid.gradients(y, x, dy) # init dy tensor in scope value = np.zeros(y.shape, dtype=np_type) dy_t = set_var_in_scope(scope, place, dy_name, value) exe = fluid.Executor(place) y_size = _product(y.shape) x = _as_list(x) jacobian = make_jacobian(x, y_size, np_type) # filter None in dx for DX/DY may be None in kernel # only fetch not None dx in exe.run filted = [(i, dxi) for i, dxi in enumerate(dx) if dxi is not None] filted_idx, filted_dx = zip(*filted) for i in six.moves.xrange(y_size): _set_item(dy_t, i, 1, np_type) dx_res = exe.run(program, scope=scope, fetch_list=filted_dx) for j in six.moves.xrange(len(filted_dx)): dx_idx = filted_idx[j] if dx_res[j] is not None: jacobian[dx_idx][:, i] = dx_res[j].flatten() else: jacobian[dx_idx][:, i] = np.zeros(dx[dx_idx].shape, dtype=np_type).flatten() _set_item(dy_t, i, 0, np_type) return jacobian def grad_check(x, y, x_init=None, place=None, program=None, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check numerical and analytical gradients for dy/dx. Each Jacobian gradients is a 2-D array with shape [xi_size, yi_size]. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). eps (float): perturbation for finite differences. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. Returns: True if all differences satisfy numpy.allclose condition. """ def fail_test(msg): if raise_exception: raise RuntimeError(msg) return False # check input arguments x = _as_list(x) y = _as_list(y) for v in x: v.stop_gradient = False v.persistable = True if place is None: place = fluid.CPUPlace() if program is None: program = fluid.default_main_program() # init variable in strtup program scope = fluid.executor.global_scope() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_init = _as_list(x_init) # init inputs if x_init is not None if x_init: if len(x_init) != len(x): raise ValueError('len(x_init) (=%d) is not the same' ' as len(x) (= %d)' % (len(x_init), len(x))) # init variable in main program for var, arr in zip(x, x_init): assert var.shape == arr.shape feeds = {k.name: v for k, v in zip(x, x_init)} exe.run(program, feed=feeds, scope=scope) # [x_idx, y_idx] numerical = [ _compute_numerical_jacobian(program, xi, y, place, scope, eps) for xi in x ] # [y_idx, x_idx] analytical = [] for yi in y: prog = program.clone() clone_x = [] clone_y = None for b in prog.blocks: if b.has_var(yi.name): clone_y = b.var(yi.name) break for xi in x: for b in prog.blocks: if b.has_var(xi.name): clone_x.append(b.var(xi.name)) break analytical.append( _compute_analytical_jacobian(prog, clone_x, clone_y, place, scope)) for i, (x_idx, y_idx) in enumerate( product(*[range(len(x)), range(len(y))])): a = analytical[y_idx][x_idx] n = numerical[x_idx][y_idx] if not np.allclose(a, n, rtol, atol): msg = 'Jacobian mismatch for output %s ' \ 'with respect to input %s on %s,\n' \ 'numerical:%s\nanalytical:%s\n' \ % (y[y_idx].name, x[x_idx].name, str(place), n, a) return fail_test(msg) return True def double_grad_check(x, y, x_init=None, y_grads=None, place=None, program=None, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check gradients of gradients. This function will append backward to the program before second order gradient check. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). eps (float): perturbation for finite differences. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. Returns: True if all differences satisfy numpy.allclose condition. """ # check input arguments x = _as_list(x) for v in x: v.stop_gradient = False v.persistable = True y = _as_list(y) if program is None: program = fluid.default_main_program() if y_grads is None: scope = fluid.executor.global_scope() y_grads = [] y_grads_init = [] for yi in y: dyi_name = _append_grad_suffix_(yi.name) np_type = dtype_to_np_dtype(yi.dtype) dy = program.global_block().create_var(name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) dy.stop_gradient = False v = np.random.random(size=yi.shape).astype(np_type) set_var_in_scope(scope, place, dyi_name, v) y_grads.append(dy) y_grads_init.append(v) else: y_grads = _as_list(y_grads) y_grads_init = [ var_to_np_array_in_scope(scope, place, v.name) for v in y_grads ] # append first order grads target_grads = fluid.gradients(y, x, y_grads) # y_grads are the input of first-order backward, # so, they are also the input of second-order backward. x += y_grads x_init = _as_list(x_init) x_init += y_grads_init grad_check(x, target_grads, x_init, place, program, eps, atol, rtol) # TODO(jiabin): We currently support only triple grad check here, extend this to support # higher order differenciation later. # check triple grad and two outputs of the triple Kernel def triple_grad_check(x, y, x_init=None, y_grads=None, x_grads_grads=None, place=None, program=None, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check triple gradients. This function will append backward to the program before third order gradient check. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. y_grads (numpy.array|list[numpy.array]|None): the gradients with respect to y. x_grads_grads (numpy.array|list[numpy.array]|None): the gradients with respect to your input. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). eps (float): perturbation for finite differences. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. Returns: True if all differences satisfy numpy.allclose condition. """ # check input arguments x = _as_list(x) for v in x: v.stop_gradient = False v.persistable = True y = _as_list(y) if program is None: program = fluid.default_main_program() if y_grads is None: scope = fluid.executor.global_scope() y_grads = [] y_grads_init = [] for yi in y: dyi_name = _append_grad_suffix_(yi.name) np_type = dtype_to_np_dtype(yi.dtype) dy = program.global_block().create_var(name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) dy.stop_gradient = False v = np.random.random(size=yi.shape).astype(np_type) set_var_in_scope(scope, place, dyi_name, v) y_grads.append(dy) y_grads_init.append(v) else: y_grads = _as_list(y_grads) y_grads_init = [ var_to_np_array_in_scope(scope, place, v.name) for v in y_grads ] # append first order grads target_grads = fluid.gradients(y, x, y_grads) if x_grads_grads is None: scope = fluid.executor.global_scope() x_grads_grads = [] x_grads_grads_init = [] for dxi in target_grads: ddxi_name = _append_grad_suffix_(dxi.name) np_type = dtype_to_np_dtype(dxi.dtype) ddx = program.global_block().create_var(name=ddxi_name, shape=dxi.shape, dtype=np_type, persistable=True) ddx.stop_gradient = False v = np.random.random(size=dxi.shape).astype(np_type) set_var_in_scope(scope, place, ddxi_name, v) x_grads_grads.append(ddx) x_grads_grads_init.append(v) else: x_grads_grads = _as_list(x_grads_grads) x_grads_grads_init = [ var_to_np_array_in_scope(scope, place, v.name) for v in x_grads_grads ] x += y_grads x_init = _as_list(x_init) x_init += y_grads_init # append second order grads target_grads_grads = fluid.gradients(target_grads, x, x_grads_grads) # filter None in target_grads_grads for Dy/Dx may be None in kernel filted = [(i, dyi) for i, dyi in enumerate(target_grads_grads) if dyi is not None] filted_idx, filted_target_grads_grads = zip(*filted) x += x_grads_grads x_init += x_grads_grads_init # x <=> [x, dout, ddx] grad_check(x=x, y=filted_target_grads_grads, x_init=x_init, place=place, program=program, eps=eps, atol=atol, rtol=rtol) def get_static_double_grad(x, y, x_init=None, dy_init=None, place=None, program=None): """ Get Double Grad result of static graph. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. dy_init (numpy.array|list[numpy.array]|None): the init value for output y. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). Returns: A list of numpy array that stores second derivative result calulated by static graph. """ if program is None: program = fluid.default_main_program() scope = fluid.executor.global_scope() y_grads = [] for i in six.moves.xrange(len(y)): yi = y[i] dyi_name = _append_grad_suffix_(yi.name) np_type = dtype_to_np_dtype(yi.dtype) dy = program.global_block().create_var(name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) dy.stop_gradient = False set_var_in_scope(scope, place, dyi_name, dy_init[i]) y_grads.append(dy) # append first order grads dx = fluid.gradients(y, x, y_grads) # y_grads are the input of first-order backward, # so, they are also the input of second-order backward. x += y_grads x_init += dy_init # filter None in dx for DX/DY may be None in kernel filted_dx = [dxi for dxi in dx if dxi is not None] y = filted_dx # check input arguments x = _as_list(x) y = _as_list(y) for v in x: v.stop_gradient = False v.persistable = True if place is None: place = fluid.CPUPlace() if program is None: program = fluid.default_main_program() # init variable in strtup program scope = fluid.executor.global_scope() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_init = _as_list(x_init) # init inputs if x_init is not None if x_init: if len(x_init) != len(x): raise ValueError('len(x_init) (=%d) is not the same' ' as len(x) (= %d)' % (len(x_init), len(x))) # init variable in main program for var, arr in zip(x, x_init): assert var.shape == arr.shape feeds = {k.name: v for k, v in zip(x, x_init)} exe.run(program, feed=feeds, scope=scope) dys = [] for yi in y: np_type = dtype_to_np_dtype(yi.dtype) dy_name = _append_grad_suffix_(yi.name) # create dy Variable in Program dy = program.global_block().create_var(name=dy_name, shape=yi.shape, dtype=np_type, persistable=True) # init dy tensor in scope value = np.ones(yi.shape, dtype=np_type) dy_t = set_var_in_scope(scope, place, dy_name, value) dys.append(dy) # append second order backward ddx = fluid.gradients(y, x, dys) exe = fluid.Executor(place) # filter None in dx for DX/DY may be None in kernel # only fetch not None dx in exe.run filted = [(i, dxi) for i, dxi in enumerate(ddx) if dxi is not None] filted_idx, filted_ddx = zip(*filted) ddx_res = exe.run(program, scope=scope, fetch_list=filted_ddx) return ddx_res def get_eager_double_grad(func, x_init=None, dy_init=None, place=None, return_mid_result=False): """ Get Double Grad result of dygraph. Args: func: A wrapped dygraph function that its logic is equal to static program x_init (numpy.array|list[numpy.array]|None): the init value for input x. dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output. place (fluid.CPUPlace or fluid.CUDAPlace): the device. return_mid_result (bool): A flag that controls the return content. Returns: If 'return_mid_result' set True. the second order derivative and the inputs of second order derivative's calculation will be returned for higher order derivative's calculation. If 'return_mid_result' set False. A list of numpy array that stores second derivative result calulated by dygraph. """ if isinstance(place, fluid.CPUPlace): paddle.set_device("cpu") if isinstance(place, fluid.CUDAPlace): paddle.set_device("gpu") inputs = [] dys = [] for x in x_init: input_tensor = paddle.to_tensor(x) input_tensor.stop_gradient = False inputs.append(input_tensor) for dy in dy_init: dy_tensor = paddle.to_tensor(dy) dy_tensor.stop_gradient = False dys.append(dy_tensor) # calculate first derivative outputs = func(inputs) d_inputs = paddle.grad(outputs=outputs, inputs=inputs, grad_outputs=dys, create_graph=True, allow_unused=True) d_inputs = [d_input for d_input in d_inputs if d_input is not None] # calcluate second derivative inputs = inputs + dys ddys = [] if return_mid_result: create_graph = True else: create_graph = False for d_input in d_inputs: d_input.stop_gradient = False ddy = paddle.ones(shape=d_input.shape, dtype=d_input.dtype) ddy.stop_gradient = False ddys.append(ddy) dd_inputs = paddle.grad(outputs=d_inputs, inputs=inputs, grad_outputs=ddys, create_graph=create_graph, allow_unused=True) if return_mid_result: return dd_inputs, inputs + ddys else: return [ dd_input.numpy() for dd_input in dd_inputs if dd_input is not None ] def double_grad_check_for_dygraph(func, x, y, x_init=None, place=None, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check second order gradients of dygraph. This function will compare the second order gradients of dygraph and second order gradients of static graph to validate dygraph's correctness Args: func: A wrapped dygraph function that its logic is equal to static program x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. place (fluid.CPUPlace or fluid.CUDAPlace): the device. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. """ def fail_test(msg): if raise_exception: raise RuntimeError(msg) return False # check input arguments x = _as_list(x) for v in x: v.stop_gradient = False v.persistable = True y = _as_list(y) y_grads_init = [] for yi in y: np_type = dtype_to_np_dtype(yi.dtype) v = np.random.random(size=yi.shape).astype(np_type) y_grads_init.append(v) x_init = _as_list(x_init) paddle.disable_static() with _test_eager_guard(): eager_double_grad = get_eager_double_grad(func, x_init, y_grads_init, place) paddle.enable_static() static_double_grad = get_static_double_grad(x, y, x_init, y_grads_init, place) if len(static_double_grad) != len(eager_double_grad): msg = "The output grad tensor's number of static graph is different with dygraph, " \ "please check the python api unit test used." raise RuntimeError(msg) for i in six.moves.xrange(len(static_double_grad)): if not np.allclose(static_double_grad[i], eager_double_grad[i], rtol, atol): msg = 'Check eager double result fail. Mismatch between static_graph double grad ' \ 'and eager double grad on %s, the output double grad tensor\'s index is : %d \n' \ 'static:%s\n eager:%s\n' \ % (str(place), i, static_double_grad[i], eager_double_grad[i]) return fail_test(msg) def get_static_triple_grad(x, y, x_init=None, dy_init=None, place=None, program=None): """ Get Triple Grad result of static graph. Args: x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. dy_init (numpy.array|list[numpy.array]|None): the init value for output y. place (fluid.CPUPlace or fluid.CUDAPlace): the device. program (Program|None): a Program with forward pass. If None, use fluid.default_main_program(). Returns: A list of numpy array that stores third derivative result calulated by static graph. """ if program is None: program = fluid.default_main_program() scope = fluid.executor.global_scope() y_grads = [] for i in six.moves.xrange(len(y)): yi = y[i] dyi_name = _append_grad_suffix_(yi.name) np_type = dtype_to_np_dtype(yi.dtype) dy = program.global_block().create_var(name=dyi_name, shape=yi.shape, dtype=np_type, persistable=True) dy.stop_gradient = False set_var_in_scope(scope, place, dyi_name, dy_init[i]) y_grads.append(dy) # append first order grads dx = fluid.gradients(y, x, y_grads) # y_grads are the input of first-order backward, # so, they are also the input of second-order backward. x += y_grads x_init += dy_init y = dx x_grads_grads_init = [] for dxi in dx: np_type = dtype_to_np_dtype(dxi.dtype) value = np.ones(dxi.shape, dtype=np_type) x_grads_grads_init.append(value) return get_static_double_grad(x, y, x_init, dy_init=x_grads_grads_init, place=place, program=program) def get_eager_triple_grad(func, x_init=None, dy_init=None, place=None, return_mid_result=False): """ Get triple Grad result of dygraph. Args: func: A wrapped dygraph function that its logic is equal to static program x_init (numpy.array|list[numpy.array]|None): the init value for input x. dy_init (numpy.array|list[numpy.array]|None): the init value for gradient of output. place (fluid.CPUPlace or fluid.CUDAPlace): the device. return_mid_result (list[Tensor], list[Tensor]): If set True, the Returns: A list of numpy array that stores second derivative result calulated by dygraph """ dd_y, dd_x = get_eager_double_grad(func, x_init, dy_init, place, return_mid_result=True) # calcluate third derivative dddys = [] for dd_yi in dd_y: dd_yi.stop_gradient = False dddy = paddle.ones(shape=dd_yi.shape, dtype=dd_yi.dtype) dddy.stop_gradient = False dddys.append(dddy) ddd_inputs = paddle.grad(outputs=dd_y, inputs=dd_x, grad_outputs=dddys) return [ddd_input.numpy() for ddd_input in ddd_inputs] def triple_grad_check_for_dygraph(func, x, y, x_init=None, place=None, atol=1e-5, rtol=1e-3, raise_exception=True): """ Check third order gradients of dygraph. This function will compare the third order gradients of dygraph and third order gradients of static graph to validate dygraph's correctness Args: func: A wrapped dygraph function that its logic is equal to static program x (Variable|list[Variable]): input variables to the program. y (Variable|list[Variable]): output variables to the program. x_init (numpy.array|list[numpy.array]|None): the init value for input x. place (fluid.CPUPlace or fluid.CUDAPlace): the device. atol (float): absolute tolerance. rtol (float): relative tolerance. raise_exception (bool): whether to raise an exception if the check fails. Default is True. """ def fail_test(msg): if raise_exception: raise RuntimeError(msg) return False # check input arguments x = _as_list(x) for v in x: v.stop_gradient = False v.persistable = True y = _as_list(y) y_grads_init = [] for yi in y: np_type = dtype_to_np_dtype(yi.dtype) v = np.random.random(size=yi.shape).astype(np_type) y_grads_init.append(v) x_init = _as_list(x_init) paddle.disable_static() with _test_eager_guard(): eager_triple_grad = get_eager_triple_grad(func, x_init, y_grads_init, place) paddle.enable_static() static_triple_grad = get_static_triple_grad(x, y, x_init, y_grads_init, place) if len(static_triple_grad) != len(eager_triple_grad): msg = "The output grad tensor's number of static graph is different with dygraph, " \ "please check the python api unit test used." raise RuntimeError(msg) for i in six.moves.xrange(len(static_triple_grad)): if not np.allclose(static_triple_grad[i], eager_triple_grad[i], rtol, atol): msg = 'Check eager double result fail. Mismatch between static_graph double grad ' \ 'and eager double grad on %s, the output double grad tensor\'s index is : %d \n' \ 'static:%s\n eager:%s\n' \ % (str(place), i, static_triple_grad[i], eager_triple_grad[i]) return fail_test(msg)
[ "numpy.product", "numpy.array", "paddle.fluid.Executor", "six.moves.xrange", "paddle.grad", "paddle.disable_static", "numpy.random.random", "paddle.fluid.default_startup_program", "paddle.ones", "paddle.enable_static", "paddle.fluid.default_main_program", "paddle.fluid.executor.global_scope", "paddle.to_tensor", "paddle.set_device", "numpy.allclose", "numpy.ones", "paddle.fluid.CPUPlace", "paddle.fluid.backward._append_grad_suffix_", "paddle.fluid.backward._as_list", "paddle.fluid.framework._test_eager_guard", "paddle.fluid.gradients", "numpy.zeros" ]
[((4190, 4201), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (4198, 4201), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((4212, 4233), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (4226, 4233), True, 'import paddle.fluid as fluid\n'), ((4607, 4631), 'six.moves.xrange', 'six.moves.xrange', (['x_size'], {}), '(x_size)\n', (4623, 4631), False, 'import six\n'), ((5871, 5899), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['y.name'], {}), '(y.name)\n', (5891, 5899), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((6243, 6268), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'dy'], {}), '(y, x, dy)\n', (6258, 6268), True, 'import paddle.fluid as fluid\n'), ((6312, 6344), 'numpy.zeros', 'np.zeros', (['y.shape'], {'dtype': 'np_type'}), '(y.shape, dtype=np_type)\n', (6320, 6344), True, 'import numpy as np\n'), ((6414, 6435), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (6428, 6435), True, 'import paddle.fluid as fluid\n'), ((6477, 6488), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (6485, 6488), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((6761, 6785), 'six.moves.xrange', 'six.moves.xrange', (['y_size'], {}), '(y_size)\n', (6777, 6785), False, 'import six\n'), ((8576, 8587), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (8584, 8587), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((8596, 8607), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (8604, 8607), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((8863, 8892), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (8890, 8892), True, 'import paddle.fluid as fluid\n'), ((8903, 8924), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (8917, 8924), True, 'import paddle.fluid as fluid\n'), ((8984, 9000), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (8992, 9000), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((11972, 11983), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (11980, 11983), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((12069, 12080), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (12077, 12080), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((13094, 13124), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'y_grads'], {}), '(y, x, y_grads)\n', (13109, 13124), True, 'import paddle.fluid as fluid\n'), ((13269, 13285), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (13277, 13285), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((15051, 15062), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (15059, 15062), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((15148, 15159), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (15156, 15159), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((16173, 16203), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'y_grads'], {}), '(y, x, y_grads)\n', (16188, 16203), True, 'import paddle.fluid as fluid\n'), ((17215, 17231), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (17223, 17231), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((17317, 17364), 'paddle.fluid.gradients', 'fluid.gradients', (['target_grads', 'x', 'x_grads_grads'], {}), '(target_grads, x, x_grads_grads)\n', (17332, 17364), True, 'import paddle.fluid as fluid\n'), ((18879, 18908), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (18906, 18908), True, 'import paddle.fluid as fluid\n'), ((19492, 19522), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'y_grads'], {}), '(y, x, y_grads)\n', (19507, 19522), True, 'import paddle.fluid as fluid\n'), ((19843, 19854), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (19851, 19854), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((19863, 19874), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (19871, 19874), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((20130, 20159), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (20157, 20159), True, 'import paddle.fluid as fluid\n'), ((20170, 20191), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (20184, 20191), True, 'import paddle.fluid as fluid\n'), ((20251, 20267), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (20259, 20267), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((21353, 21379), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'dys'], {}), '(y, x, dys)\n', (21368, 21379), True, 'import paddle.fluid as fluid\n'), ((21390, 21411), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (21404, 21411), True, 'import paddle.fluid as fluid\n'), ((23253, 23357), 'paddle.grad', 'paddle.grad', ([], {'outputs': 'outputs', 'inputs': 'inputs', 'grad_outputs': 'dys', 'create_graph': '(True)', 'allow_unused': '(True)'}), '(outputs=outputs, inputs=inputs, grad_outputs=dys, create_graph=\n True, allow_unused=True)\n', (23264, 23357), False, 'import paddle\n'), ((23913, 24026), 'paddle.grad', 'paddle.grad', ([], {'outputs': 'd_inputs', 'inputs': 'inputs', 'grad_outputs': 'ddys', 'create_graph': 'create_graph', 'allow_unused': '(True)'}), '(outputs=d_inputs, inputs=inputs, grad_outputs=ddys,\n create_graph=create_graph, allow_unused=True)\n', (23924, 24026), False, 'import paddle\n'), ((25606, 25617), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (25614, 25617), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((25703, 25714), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (25711, 25714), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((25906, 25922), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (25914, 25922), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((25928, 25951), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (25949, 25951), False, 'import paddle\n'), ((26121, 26143), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (26141, 26143), False, 'import paddle\n'), ((28006, 28035), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (28033, 28035), True, 'import paddle.fluid as fluid\n'), ((28619, 28649), 'paddle.fluid.gradients', 'fluid.gradients', (['y', 'x', 'y_grads'], {}), '(y, x, y_grads)\n', (28634, 28649), True, 'import paddle.fluid as fluid\n'), ((30542, 30600), 'paddle.grad', 'paddle.grad', ([], {'outputs': 'dd_y', 'inputs': 'dd_x', 'grad_outputs': 'dddys'}), '(outputs=dd_y, inputs=dd_x, grad_outputs=dddys)\n', (30553, 30600), False, 'import paddle\n'), ((31945, 31956), 'paddle.fluid.backward._as_list', '_as_list', (['x'], {}), '(x)\n', (31953, 31956), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((32042, 32053), 'paddle.fluid.backward._as_list', '_as_list', (['y'], {}), '(y)\n', (32050, 32053), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((32245, 32261), 'paddle.fluid.backward._as_list', '_as_list', (['x_init'], {}), '(x_init)\n', (32253, 32261), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((32267, 32290), 'paddle.disable_static', 'paddle.disable_static', ([], {}), '()\n', (32288, 32290), False, 'import paddle\n'), ((32460, 32482), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (32480, 32482), False, 'import paddle\n'), ((1217, 1230), 'numpy.product', 'np.product', (['t'], {}), '(t)\n', (1227, 1230), True, 'import numpy as np\n'), ((8724, 8740), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (8738, 8740), True, 'import paddle.fluid as fluid\n'), ((8783, 8811), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (8809, 8811), True, 'import paddle.fluid as fluid\n'), ((8937, 8968), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (8966, 8968), True, 'import paddle.fluid as fluid\n'), ((12124, 12152), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (12150, 12152), True, 'import paddle.fluid as fluid\n'), ((12194, 12223), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (12221, 12223), True, 'import paddle.fluid as fluid\n'), ((12914, 12931), 'paddle.fluid.backward._as_list', '_as_list', (['y_grads'], {}), '(y_grads)\n', (12922, 12931), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((15203, 15231), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (15229, 15231), True, 'import paddle.fluid as fluid\n'), ((15273, 15302), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (15300, 15302), True, 'import paddle.fluid as fluid\n'), ((15993, 16010), 'paddle.fluid.backward._as_list', '_as_list', (['y_grads'], {}), '(y_grads)\n', (16001, 16010), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((16251, 16280), 'paddle.fluid.executor.global_scope', 'fluid.executor.global_scope', ([], {}), '()\n', (16278, 16280), True, 'import paddle.fluid as fluid\n'), ((17026, 17049), 'paddle.fluid.backward._as_list', '_as_list', (['x_grads_grads'], {}), '(x_grads_grads)\n', (17034, 17049), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((18838, 18866), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (18864, 18866), True, 'import paddle.fluid as fluid\n'), ((19002, 19031), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['yi.name'], {}), '(yi.name)\n', (19022, 19031), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((19991, 20007), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (20005, 20007), True, 'import paddle.fluid as fluid\n'), ((20050, 20078), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (20076, 20078), True, 'import paddle.fluid as fluid\n'), ((20204, 20235), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (20233, 20235), True, 'import paddle.fluid as fluid\n'), ((20818, 20847), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['yi.name'], {}), '(yi.name)\n', (20838, 20847), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((21189, 21221), 'numpy.ones', 'np.ones', (['yi.shape'], {'dtype': 'np_type'}), '(yi.shape, dtype=np_type)\n', (21196, 21221), True, 'import numpy as np\n'), ((22771, 22795), 'paddle.set_device', 'paddle.set_device', (['"""cpu"""'], {}), "('cpu')\n", (22788, 22795), False, 'import paddle\n'), ((22847, 22871), 'paddle.set_device', 'paddle.set_device', (['"""gpu"""'], {}), "('gpu')\n", (22864, 22871), False, 'import paddle\n'), ((22945, 22964), 'paddle.to_tensor', 'paddle.to_tensor', (['x'], {}), '(x)\n', (22961, 22964), False, 'import paddle\n'), ((23087, 23107), 'paddle.to_tensor', 'paddle.to_tensor', (['dy'], {}), '(dy)\n', (23103, 23107), False, 'import paddle\n'), ((23783, 23836), 'paddle.ones', 'paddle.ones', ([], {'shape': 'd_input.shape', 'dtype': 'd_input.dtype'}), '(shape=d_input.shape, dtype=d_input.dtype)\n', (23794, 23836), False, 'import paddle\n'), ((25961, 25980), 'paddle.fluid.framework._test_eager_guard', '_test_eager_guard', ([], {}), '()\n', (25978, 25980), False, 'from paddle.fluid.framework import _test_eager_guard\n'), ((27965, 27993), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (27991, 27993), True, 'import paddle.fluid as fluid\n'), ((28129, 28158), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['yi.name'], {}), '(yi.name)\n', (28149, 28158), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((28925, 28958), 'numpy.ones', 'np.ones', (['dxi.shape'], {'dtype': 'np_type'}), '(dxi.shape, dtype=np_type)\n', (28932, 28958), True, 'import numpy as np\n'), ((30413, 30462), 'paddle.ones', 'paddle.ones', ([], {'shape': 'dd_yi.shape', 'dtype': 'dd_yi.dtype'}), '(shape=dd_yi.shape, dtype=dd_yi.dtype)\n', (30424, 30462), False, 'import paddle\n'), ((32300, 32319), 'paddle.fluid.framework._test_eager_guard', '_test_eager_guard', ([], {}), '()\n', (32317, 32319), False, 'from paddle.fluid.framework import _test_eager_guard\n'), ((10318, 10347), 'numpy.allclose', 'np.allclose', (['a', 'n', 'rtol', 'atol'], {}), '(a, n, rtol, atol)\n', (10329, 10347), True, 'import numpy as np\n'), ((12315, 12344), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['yi.name'], {}), '(yi.name)\n', (12335, 12344), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((15394, 15423), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['yi.name'], {}), '(yi.name)\n', (15414, 15423), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((16397, 16427), 'paddle.fluid.backward._append_grad_suffix_', '_append_grad_suffix_', (['dxi.name'], {}), '(dxi.name)\n', (16417, 16427), False, 'from paddle.fluid.backward import _append_grad_suffix_, _as_list\n'), ((26591, 26659), 'numpy.allclose', 'np.allclose', (['static_double_grad[i]', 'eager_double_grad[i]', 'rtol', 'atol'], {}), '(static_double_grad[i], eager_double_grad[i], rtol, atol)\n', (26602, 26659), True, 'import numpy as np\n'), ((32930, 32998), 'numpy.allclose', 'np.allclose', (['static_triple_grad[i]', 'eager_triple_grad[i]', 'rtol', 'atol'], {}), '(static_triple_grad[i], eager_triple_grad[i], rtol, atol)\n', (32941, 32998), True, 'import numpy as np\n'), ((1629, 1640), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (1637, 1640), True, 'import numpy as np\n'), ((2019, 2030), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (2027, 2030), True, 'import numpy as np\n'), ((25813, 25844), 'numpy.random.random', 'np.random.random', ([], {'size': 'yi.shape'}), '(size=yi.shape)\n', (25829, 25844), True, 'import numpy as np\n'), ((32152, 32183), 'numpy.random.random', 'np.random.random', ([], {'size': 'yi.shape'}), '(size=yi.shape)\n', (32168, 32183), True, 'import numpy as np\n'), ((12716, 12747), 'numpy.random.random', 'np.random.random', ([], {'size': 'yi.shape'}), '(size=yi.shape)\n', (12732, 12747), True, 'import numpy as np\n'), ((15795, 15826), 'numpy.random.random', 'np.random.random', ([], {'size': 'yi.shape'}), '(size=yi.shape)\n', (15811, 15826), True, 'import numpy as np\n'), ((16807, 16839), 'numpy.random.random', 'np.random.random', ([], {'size': 'dxi.shape'}), '(size=dxi.shape)\n', (16823, 16839), True, 'import numpy as np\n'), ((7141, 7182), 'numpy.zeros', 'np.zeros', (['dx[dx_idx].shape'], {'dtype': 'np_type'}), '(dx[dx_idx].shape, dtype=np_type)\n', (7149, 7182), True, 'import numpy as np\n')]
import glob import numpy as np import os import random import tensorflow as tf import tqdm import csv def load_dataset(enc, path, combine): paths = [] if os.path.isfile(path): # Simple file paths.append(path) elif os.path.isdir(path): # Directory for (dirpath, _, fnames) in os.walk(path): for fname in fnames: paths.append(os.path.join(dirpath, fname)) else: # Assume glob paths = glob.glob(path) token_chunks = [] raw_text = '' for path in tqdm.tqdm(paths): if path.endswith('.npz'): # Pre-encoded with np.load(path,allow_pickle=True) as npz: for item in npz.files: token_chunks.append(npz[item]) elif path.endswith('.csv'): start_token = "<|<PASSWORD>|>" end_token = "<|endoftext|>" with open(path, 'r', encoding='utf8', errors='ignore') as fp: fp.readline() # skip header reader = csv.reader(fp) for row in reader: raw_text += start_token + row[0] + end_token + "\n" else: # Plain text with open(path, 'r', encoding='utf8', errors='ignore') as fp: raw_text += fp.read() if len(raw_text) >= combine: tokens = np.stack(enc.encode(raw_text)) token_chunks.append(tokens) raw_text = '' else: raw_text += '<|endoftext|>' if raw_text: tokens = np.stack(enc.encode(raw_text)) token_chunks.append(tokens) return token_chunks def binary_search(f, lo, hi): if f(lo) or not f(hi): return None while hi > lo + 1: mid = (lo + hi) // 2 if f(mid): hi = mid else: lo = mid return hi class Sampler(object): """Fairly samples a slice from a set of variable sized chunks. 'Fairly' means that the distribution is the same as sampling from one concatenated chunk, but without crossing chunk boundaries.""" def __init__(self, chunks): self.chunks = chunks self.total_size = sum(chunk.shape[0] for chunk in chunks) self.boundaries = [0] for i in range(len(chunks)): self.boundaries.append(self.boundaries[-1] + chunks[i].shape[0]) def sample(self, length): assert length < self.total_size // len( self.chunks ), "Dataset files are too small to sample {} tokens at a time".format( length) while True: index = random.randint(0, self.total_size - length - 1) i = binary_search(lambda j: self.boundaries[j] > index, 0, len(self.boundaries) - 1) - 1 if self.boundaries[i + 1] > index + length: within_chunk = index - self.boundaries[i] return self.chunks[i][within_chunk:within_chunk + length]
[ "tqdm.tqdm", "os.walk", "os.path.join", "os.path.isfile", "os.path.isdir", "numpy.load", "csv.reader", "random.randint", "glob.glob" ]
[((164, 184), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (178, 184), False, 'import os\n'), ((549, 565), 'tqdm.tqdm', 'tqdm.tqdm', (['paths'], {}), '(paths)\n', (558, 565), False, 'import tqdm\n'), ((244, 263), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (257, 263), False, 'import os\n'), ((321, 334), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (328, 334), False, 'import os\n'), ((476, 491), 'glob.glob', 'glob.glob', (['path'], {}), '(path)\n', (485, 491), False, 'import glob\n'), ((2636, 2683), 'random.randint', 'random.randint', (['(0)', '(self.total_size - length - 1)'], {}), '(0, self.total_size - length - 1)\n', (2650, 2683), False, 'import random\n'), ((644, 676), 'numpy.load', 'np.load', (['path'], {'allow_pickle': '(True)'}), '(path, allow_pickle=True)\n', (651, 676), True, 'import numpy as np\n'), ((1038, 1052), 'csv.reader', 'csv.reader', (['fp'], {}), '(fp)\n', (1048, 1052), False, 'import csv\n'), ((398, 426), 'os.path.join', 'os.path.join', (['dirpath', 'fname'], {}), '(dirpath, fname)\n', (410, 426), False, 'import os\n')]
# coding=utf-8 # Copyright 2020 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for mesh_tensorflow.transformer.vocab_embeddings.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.transformer import vocab_embeddings import mock import numpy as np import scipy.misc import tensorflow.compat.v1 as tf def initialize_by_shape(shape_to_value): """Create an initializer with values specified by tensor shape.""" def initialize(shape, dtype): shape = tuple(shape) if shape not in shape_to_value: raise ValueError( 'Shape {} not found in shape to value map.'.format(shape)) return tf.reshape( tf.constant(shape_to_value[tuple(shape)], dtype=dtype), shape) return initialize class FactorizedVocabEmbeddingTest(tf.test.TestCase): def setUp(self): super(FactorizedVocabEmbeddingTest, self).setUp() self.graph = mtf.Graph() self.mesh = mtf.Mesh(self.graph, 'mtf_mesh') self.variable_dtype = mtf.VariableDType(activation_dtype=tf.float32) self.addCleanup(mock.patch.stopall) self.initializer_mock = mock.MagicMock() random_normal_initializer_mock = mock.patch.object( tf, 'random_normal_initializer').start() random_normal_initializer_mock.return_value = self.initializer_mock def test_ids_to_embedding_correctlyEmbeds(self): seq_len = 4 vocab_size = 3 model_size = 2 inner_dimension_size = 1 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) ids = tf.constant([0, 1, 2, 1], dtype=tf.int32) mtf_ids = mtf.import_tf_tensor( self.mesh, ids, shape=mtf.Shape([length_dim])) def initialize(shape, dtype): return tf.reshape(1 + tf.range(np.prod(shape), dtype=dtype), shape) self.initializer_mock.side_effect = initialize vocab_embedding = vocab_embeddings.FactorizedVocabEmbedding( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, inner_dimension_size=inner_dimension_size) mtf_embedding = vocab_embedding.ids_to_embedding(mtf_ids, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_embedding = lowering.export_to_tf_tensor(mtf_embedding) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_embedding])[0] self.assertAllClose(actual, [[1, 2], [2, 4], [3, 6], [2, 4]]) def test_hidden_to_logits_computesLogitsCorrectly(self): seq_len = 4 vocab_size = 3 model_size = 2 inner_dimension_size = 1 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) embeddings = tf.constant([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32) mtf_embeddings = mtf.import_tf_tensor( self.mesh, embeddings, shape=mtf.Shape([length_dim, model_dim])) def initialize(shape, dtype): return tf.reshape(1 + tf.range(np.prod(shape), dtype=dtype), shape) self.initializer_mock.side_effect = initialize vocab_embedding = vocab_embeddings.FactorizedVocabEmbedding( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, inner_dimension_size=inner_dimension_size) mtf_logits = vocab_embedding.hidden_to_logits(mtf_embeddings, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_logits = lowering.export_to_tf_tensor(mtf_logits) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_logits])[0] self.assertAllClose( actual, model_size**-0.5 * np.array([[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]])) class AdaptiveVocabEmbeddingTest(tf.test.TestCase): def setUp(self): super(AdaptiveVocabEmbeddingTest, self).setUp() self.graph = mtf.Graph() self.mesh = mtf.Mesh(self.graph, 'mtf_mesh') self.variable_dtype = mtf.VariableDType(activation_dtype=tf.float32) self.addCleanup(mock.patch.stopall) self.initializer_mock = mock.MagicMock() random_normal_initializer_mock = mock.patch.object( tf, 'random_normal_initializer').start() random_normal_initializer_mock.return_value = self.initializer_mock def test_constructor_tokenCountsDontSumToVocabSize_raisesValueError(self): vocab_dim = mtf.Dimension('vocab', 5) model_dim = mtf.Dimension('model', 2) with self.assertRaises(ValueError): vocab_embeddings.AdaptiveVocabEmbedding( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, clusters=[{ 'token_count': 3, 'embedding_size': 2 }, { 'token_count': 3, 'embedding_size': 1 }]) def test_ids_to_embedding_correctlyEmbeds(self): seq_len = 6 vocab_size = 5 model_size = 2 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) ids = tf.constant([0, 1, 2, 3, 4, 0], dtype=tf.int32) mtf_ids = mtf.import_tf_tensor( self.mesh, ids, shape=mtf.Shape([length_dim])) self.initializer_mock.side_effect = initialize_by_shape({ (2, 2): [[0, 1], [2, 0]], (3, 1): [[1], [2], [3]], (1, 2): [[1], [2]], }) vocab_embedding = vocab_embeddings.AdaptiveVocabEmbedding( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, clusters=[{ 'token_count': 2, 'embedding_size': 2 }, { 'token_count': 3, 'embedding_size': 1 }]) mtf_embedding = vocab_embedding.ids_to_embedding(mtf_ids, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_embedding = lowering.export_to_tf_tensor(mtf_embedding) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_embedding])[0] self.assertAllClose(actual, [[0, 1], [2, 0], [1, 2], [2, 4], [3, 6], [0, 1]]) def test_hidden_to_logits_computesLogitsCorrectly(self): seq_len = 4 vocab_size = 5 model_size = 2 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) embeddings = tf.constant([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32) mtf_embeddings = mtf.import_tf_tensor( self.mesh, embeddings, shape=mtf.Shape([length_dim, model_dim])) self.initializer_mock.side_effect = initialize_by_shape({ (2, 2): [[0, 1], [2, 0]], (3, 1): [[1], [2], [3]], (1, 2): [[1], [2]], }) vocab_embedding = vocab_embeddings.AdaptiveVocabEmbedding( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, clusters=[{ 'token_count': 2, 'embedding_size': 2 }, { 'token_count': 3, 'embedding_size': 1 }]) mtf_logits = vocab_embedding.hidden_to_logits(mtf_embeddings, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_logits = lowering.export_to_tf_tensor(mtf_logits) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_logits])[0] self.assertAllClose( actual, model_size**-0.5 * np.array([[0, 2, 1, 2, 3], [1, 0, 2, 4, 6], [1, 2, 3, 6, 9], [1, 4, 4, 8, 12]])) class MixtureOfSoftmaxesTest(tf.test.TestCase): def setUp(self): super(MixtureOfSoftmaxesTest, self).setUp() self.graph = mtf.Graph() self.mesh = mtf.Mesh(self.graph, 'mtf_mesh') self.variable_dtype = mtf.VariableDType(activation_dtype=tf.float32) self.addCleanup(mock.patch.stopall) self.initializer_mock = mock.MagicMock() random_normal_initializer_mock = mock.patch.object( tf, 'random_normal_initializer').start() random_normal_initializer_mock.return_value = self.initializer_mock def test_ids_to_embedding_correctlyEmbeds(self): seq_len = 4 vocab_size = 4 model_size = 3 num_softmaxes = 1 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) ids = tf.constant([0, 1, 2, 3], dtype=tf.int32) mtf_ids = mtf.import_tf_tensor( self.mesh, ids, shape=mtf.Shape([length_dim])) self.initializer_mock.side_effect = initialize_by_shape({ # Embedding weights. (4, 3): [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 2]], # Mixture weights. (1, 3): [[1, 0, 0]], # Context weights (1, 3, 3): [[[1, 0, 0], [0, 1, 0], [0, 0, 1]],], }) vocab_embedding = vocab_embeddings.MixtureOfSoftmaxes( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, num_softmaxes=num_softmaxes) mtf_embedding = vocab_embedding.ids_to_embedding(mtf_ids, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_embedding = lowering.export_to_tf_tensor(mtf_embedding) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_embedding])[0] self.assertAllClose(actual, [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 2]]) def test_hidden_to_logits_computesLogitsCorrectly(self): seq_len = 1 vocab_size = 4 model_size = 3 num_softmaxes = 2 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) embeddings = tf.constant( np.array([[1.0, 1.0, 2.0]]) / model_size**-0.5, dtype=tf.float32) mtf_embeddings = mtf.import_tf_tensor( self.mesh, embeddings, shape=mtf.Shape([length_dim, model_dim])) self.initializer_mock.side_effect = initialize_by_shape({ # Embedding weights. (4, 3): [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1]], # Mixture weights. (2, 3): [[1, 0, 0], [0, 1, 1]], # Context weights (2, 3, 3): [ [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 0, 0]], ], }) vocab_embedding = vocab_embeddings.MixtureOfSoftmaxes( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, num_softmaxes=num_softmaxes) mtf_logits = vocab_embedding.hidden_to_logits(mtf_embeddings, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_logits = lowering.export_to_tf_tensor(mtf_logits) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual, = self.evaluate([actual_logits]) expected_priors = scipy.special.softmax([1, 3]) expected_probs_1 = scipy.special.softmax(np.tanh([1, 1, 2, 2])) expected_probs_2 = scipy.special.softmax(np.tanh([2, 1, 1, 1])) expected_probs = ( expected_priors[0] * expected_probs_1 + expected_priors[1] * expected_probs_2) expected_logits = np.log(expected_probs) self.assertAllClose(actual, [expected_logits]) class MixtapeTest(tf.test.TestCase): def setUp(self): super(MixtapeTest, self).setUp() self.graph = mtf.Graph() self.mesh = mtf.Mesh(self.graph, 'mtf_mesh') self.variable_dtype = mtf.VariableDType(activation_dtype=tf.float32) self.addCleanup(mock.patch.stopall) self.initializer_mock = mock.MagicMock() random_normal_initializer_mock = mock.patch.object( tf, 'random_normal_initializer').start() random_normal_initializer_mock.return_value = self.initializer_mock def test_ids_to_embedding_correctlyEmbeds(self): seq_len = 5 vocab_size = 5 model_size = 2 gate_embedding_size = 1 frequent_token_fraction = 0.4 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) context = mock.MagicMock() context.train = False ids = tf.constant([0, 1, 2, 3, 4], dtype=tf.int32) mtf_ids = mtf.import_tf_tensor( self.mesh, ids, shape=mtf.Shape([length_dim])) self.initializer_mock.side_effect = initialize_by_shape({ # Embedding weights. (5, 2): list(range(10)), # Context weights. (4, 2, 2): list(range(16)), # Prior weights. (3, 1, 2): list(range(6)), # Prior vocab vector. (2, 1): list(range(2)), # Prior gates vector. (3, 2): list(range(6)), # Prior bias. (2, 3): list(range(6)), }) vocab_embedding = vocab_embeddings.Mixtape( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, gate_embedding_size=gate_embedding_size, frequent_token_fraction=frequent_token_fraction) mtf_embedding = vocab_embedding.ids_to_embedding(mtf_ids, context=None) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_embedding = lowering.export_to_tf_tensor(mtf_embedding) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual = self.evaluate([actual_embedding])[0] self.assertAllClose(actual, np.reshape(list(range(10)), (5, 2))) def test_hidden_to_logits_computesLogitsCorrectly(self): seq_len = 1 vocab_size = 5 model_size = 2 gate_embedding_size = 1 frequent_token_fraction = 0.4 vocab_dim = mtf.Dimension('vocab', vocab_size) model_dim = mtf.Dimension('model', model_size) length_dim = mtf.Dimension('length', seq_len) context = mock.MagicMock() context.train = False embeddings = tf.constant( np.array([[1.0, 2.0]]) / model_size**-0.5, dtype=tf.float32) mtf_embeddings = mtf.import_tf_tensor( self.mesh, embeddings, shape=mtf.Shape([length_dim, model_dim])) self.initializer_mock.side_effect = initialize_by_shape({ # Embedding weights. (5, 2): list(range(10)), # Context weights. (4, 2, 2): [ [[1, 0], [0, 1]], [[0, 1], [1, 0]], [[1, 0], [0, 0]], [[0, 0], [0, 1]], ], # Prior weights. (3, 1, 2): [ [[1, 0]], [[0, 1]], [[1, 1]], ], # Prior vocab vector. (2, 1): [[1], [1]], # Prior gates vector. (3, 2): [ [1, 0], [0, 1], [1, 1], ], # Prior bias. (2, 3): [[1, 2, 3], [3, 4, 5]], }) vocab_embedding = vocab_embeddings.Mixtape( self.mesh, vocab_dim, output_dim=model_dim, variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None, gate_embedding_size=gate_embedding_size, frequent_token_fraction=frequent_token_fraction, noise_std_dev=0.0) mtf_logits = vocab_embedding.hidden_to_logits( mtf_embeddings, context=context) mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( shape=[], layout={}, devices=['']) lowering = mtf.Lowering(self.graph, {self.mesh: mesh_impl}) actual_logits = lowering.export_to_tf_tensor(mtf_logits) self.evaluate(tf.global_variables_initializer()) self.evaluate(lowering.copy_masters_to_slices()) actual, = self.evaluate([actual_logits]) self.assertAllClose(actual, [[0.905462, 4.390559, 6.575162, 9.513036, 12.450909]]) if __name__ == '__main__': tf.test.main()
[ "numpy.prod", "mesh_tensorflow.Mesh", "numpy.log", "mesh_tensorflow.VariableDType", "mesh_tensorflow.Dimension", "numpy.array", "tensorflow.compat.v1.global_variables_initializer", "mesh_tensorflow.Shape", "numpy.tanh", "mesh_tensorflow.transformer.vocab_embeddings.MixtureOfSoftmaxes", "mesh_tensorflow.transformer.vocab_embeddings.AdaptiveVocabEmbedding", "mesh_tensorflow.Lowering", "tensorflow.compat.v1.constant", "mock.MagicMock", "mesh_tensorflow.transformer.vocab_embeddings.Mixtape", "mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl", "mock.patch.object", "mesh_tensorflow.transformer.vocab_embeddings.FactorizedVocabEmbedding", "tensorflow.compat.v1.test.main", "mesh_tensorflow.Graph" ]
[((17888, 17902), 'tensorflow.compat.v1.test.main', 'tf.test.main', ([], {}), '()\n', (17900, 17902), True, 'import tensorflow.compat.v1 as tf\n'), ((1531, 1542), 'mesh_tensorflow.Graph', 'mtf.Graph', ([], {}), '()\n', (1540, 1542), True, 'import mesh_tensorflow as mtf\n'), ((1559, 1591), 'mesh_tensorflow.Mesh', 'mtf.Mesh', (['self.graph', '"""mtf_mesh"""'], {}), "(self.graph, 'mtf_mesh')\n", (1567, 1591), True, 'import mesh_tensorflow as mtf\n'), ((1618, 1664), 'mesh_tensorflow.VariableDType', 'mtf.VariableDType', ([], {'activation_dtype': 'tf.float32'}), '(activation_dtype=tf.float32)\n', (1635, 1664), True, 'import mesh_tensorflow as mtf\n'), ((1734, 1750), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1748, 1750), False, 'import mock\n'), ((2080, 2114), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (2093, 2114), True, 'import mesh_tensorflow as mtf\n'), ((2131, 2165), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (2144, 2165), True, 'import mesh_tensorflow as mtf\n'), ((2183, 2215), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (2196, 2215), True, 'import mesh_tensorflow as mtf\n'), ((2227, 2268), 'tensorflow.compat.v1.constant', 'tf.constant', (['[0, 1, 2, 1]'], {'dtype': 'tf.int32'}), '([0, 1, 2, 1], dtype=tf.int32)\n', (2238, 2268), True, 'import tensorflow.compat.v1 as tf\n'), ((2544, 2754), 'mesh_tensorflow.transformer.vocab_embeddings.FactorizedVocabEmbedding', 'vocab_embeddings.FactorizedVocabEmbedding', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'inner_dimension_size': 'inner_dimension_size'}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, inner_dimension_size=inner_dimension_size)\n", (2585, 2754), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((2897, 2973), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (2938, 2973), True, 'import mesh_tensorflow as mtf\n'), ((2998, 3046), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (3010, 3046), True, 'import mesh_tensorflow as mtf\n'), ((3498, 3532), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (3511, 3532), True, 'import mesh_tensorflow as mtf\n'), ((3549, 3583), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (3562, 3583), True, 'import mesh_tensorflow as mtf\n'), ((3601, 3633), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (3614, 3633), True, 'import mesh_tensorflow as mtf\n'), ((3652, 3715), 'tensorflow.compat.v1.constant', 'tf.constant', (['[[1, 0], [0, 1], [1, 1], [2, 1]]'], {'dtype': 'tf.float32'}), '([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32)\n', (3663, 3715), True, 'import tensorflow.compat.v1 as tf\n'), ((4016, 4226), 'mesh_tensorflow.transformer.vocab_embeddings.FactorizedVocabEmbedding', 'vocab_embeddings.FactorizedVocabEmbedding', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'inner_dimension_size': 'inner_dimension_size'}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, inner_dimension_size=inner_dimension_size)\n", (4057, 4226), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((4373, 4449), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (4414, 4449), True, 'import mesh_tensorflow as mtf\n'), ((4474, 4522), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (4486, 4522), True, 'import mesh_tensorflow as mtf\n'), ((5007, 5018), 'mesh_tensorflow.Graph', 'mtf.Graph', ([], {}), '()\n', (5016, 5018), True, 'import mesh_tensorflow as mtf\n'), ((5035, 5067), 'mesh_tensorflow.Mesh', 'mtf.Mesh', (['self.graph', '"""mtf_mesh"""'], {}), "(self.graph, 'mtf_mesh')\n", (5043, 5067), True, 'import mesh_tensorflow as mtf\n'), ((5094, 5140), 'mesh_tensorflow.VariableDType', 'mtf.VariableDType', ([], {'activation_dtype': 'tf.float32'}), '(activation_dtype=tf.float32)\n', (5111, 5140), True, 'import mesh_tensorflow as mtf\n'), ((5210, 5226), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (5224, 5226), False, 'import mock\n'), ((5498, 5523), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', '(5)'], {}), "('vocab', 5)\n", (5511, 5523), True, 'import mesh_tensorflow as mtf\n'), ((5540, 5565), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', '(2)'], {}), "('model', 2)\n", (5553, 5565), True, 'import mesh_tensorflow as mtf\n'), ((6137, 6171), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (6150, 6171), True, 'import mesh_tensorflow as mtf\n'), ((6188, 6222), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (6201, 6222), True, 'import mesh_tensorflow as mtf\n'), ((6240, 6272), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (6253, 6272), True, 'import mesh_tensorflow as mtf\n'), ((6284, 6331), 'tensorflow.compat.v1.constant', 'tf.constant', (['[0, 1, 2, 3, 4, 0]'], {'dtype': 'tf.int32'}), '([0, 1, 2, 3, 4, 0], dtype=tf.int32)\n', (6295, 6331), True, 'import tensorflow.compat.v1 as tf\n'), ((6611, 6874), 'mesh_tensorflow.transformer.vocab_embeddings.AdaptiveVocabEmbedding', 'vocab_embeddings.AdaptiveVocabEmbedding', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'clusters': "[{'token_count': 2, 'embedding_size': 2}, {'token_count': 3,\n 'embedding_size': 1}]"}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, clusters=[{'token_count': 2, 'embedding_size': 2}, {\n 'token_count': 3, 'embedding_size': 1}])\n", (6650, 6874), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((7080, 7156), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (7121, 7156), True, 'import mesh_tensorflow as mtf\n'), ((7181, 7229), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (7193, 7229), True, 'import mesh_tensorflow as mtf\n'), ((7692, 7726), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (7705, 7726), True, 'import mesh_tensorflow as mtf\n'), ((7743, 7777), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (7756, 7777), True, 'import mesh_tensorflow as mtf\n'), ((7795, 7827), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (7808, 7827), True, 'import mesh_tensorflow as mtf\n'), ((7846, 7909), 'tensorflow.compat.v1.constant', 'tf.constant', (['[[1, 0], [0, 1], [1, 1], [2, 1]]'], {'dtype': 'tf.float32'}), '([[1, 0], [0, 1], [1, 1], [2, 1]], dtype=tf.float32)\n', (7857, 7909), True, 'import tensorflow.compat.v1 as tf\n'), ((8214, 8477), 'mesh_tensorflow.transformer.vocab_embeddings.AdaptiveVocabEmbedding', 'vocab_embeddings.AdaptiveVocabEmbedding', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'clusters': "[{'token_count': 2, 'embedding_size': 2}, {'token_count': 3,\n 'embedding_size': 1}]"}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, clusters=[{'token_count': 2, 'embedding_size': 2}, {\n 'token_count': 3, 'embedding_size': 1}])\n", (8253, 8477), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((8687, 8763), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (8728, 8763), True, 'import mesh_tensorflow as mtf\n'), ((8788, 8836), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (8800, 8836), True, 'import mesh_tensorflow as mtf\n'), ((9374, 9385), 'mesh_tensorflow.Graph', 'mtf.Graph', ([], {}), '()\n', (9383, 9385), True, 'import mesh_tensorflow as mtf\n'), ((9402, 9434), 'mesh_tensorflow.Mesh', 'mtf.Mesh', (['self.graph', '"""mtf_mesh"""'], {}), "(self.graph, 'mtf_mesh')\n", (9410, 9434), True, 'import mesh_tensorflow as mtf\n'), ((9461, 9507), 'mesh_tensorflow.VariableDType', 'mtf.VariableDType', ([], {'activation_dtype': 'tf.float32'}), '(activation_dtype=tf.float32)\n', (9478, 9507), True, 'import mesh_tensorflow as mtf\n'), ((9577, 9593), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (9591, 9593), False, 'import mock\n'), ((9916, 9950), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (9929, 9950), True, 'import mesh_tensorflow as mtf\n'), ((9967, 10001), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (9980, 10001), True, 'import mesh_tensorflow as mtf\n'), ((10019, 10051), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (10032, 10051), True, 'import mesh_tensorflow as mtf\n'), ((10063, 10104), 'tensorflow.compat.v1.constant', 'tf.constant', (['[0, 1, 2, 3]'], {'dtype': 'tf.int32'}), '([0, 1, 2, 3], dtype=tf.int32)\n', (10074, 10104), True, 'import tensorflow.compat.v1 as tf\n'), ((10519, 10709), 'mesh_tensorflow.transformer.vocab_embeddings.MixtureOfSoftmaxes', 'vocab_embeddings.MixtureOfSoftmaxes', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'num_softmaxes': 'num_softmaxes'}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, num_softmaxes=num_softmaxes)\n", (10554, 10709), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((10852, 10928), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (10893, 10928), True, 'import mesh_tensorflow as mtf\n'), ((10953, 11001), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (10965, 11001), True, 'import mesh_tensorflow as mtf\n'), ((11458, 11492), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (11471, 11492), True, 'import mesh_tensorflow as mtf\n'), ((11509, 11543), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (11522, 11543), True, 'import mesh_tensorflow as mtf\n'), ((11561, 11593), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (11574, 11593), True, 'import mesh_tensorflow as mtf\n'), ((12218, 12408), 'mesh_tensorflow.transformer.vocab_embeddings.MixtureOfSoftmaxes', 'vocab_embeddings.MixtureOfSoftmaxes', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'num_softmaxes': 'num_softmaxes'}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, num_softmaxes=num_softmaxes)\n", (12253, 12408), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((12555, 12631), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (12596, 12631), True, 'import mesh_tensorflow as mtf\n'), ((12656, 12704), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (12668, 12704), True, 'import mesh_tensorflow as mtf\n'), ((13247, 13269), 'numpy.log', 'np.log', (['expected_probs'], {}), '(expected_probs)\n', (13253, 13269), True, 'import numpy as np\n'), ((13435, 13446), 'mesh_tensorflow.Graph', 'mtf.Graph', ([], {}), '()\n', (13444, 13446), True, 'import mesh_tensorflow as mtf\n'), ((13463, 13495), 'mesh_tensorflow.Mesh', 'mtf.Mesh', (['self.graph', '"""mtf_mesh"""'], {}), "(self.graph, 'mtf_mesh')\n", (13471, 13495), True, 'import mesh_tensorflow as mtf\n'), ((13522, 13568), 'mesh_tensorflow.VariableDType', 'mtf.VariableDType', ([], {'activation_dtype': 'tf.float32'}), '(activation_dtype=tf.float32)\n', (13539, 13568), True, 'import mesh_tensorflow as mtf\n'), ((13638, 13654), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (13652, 13654), False, 'import mock\n'), ((14017, 14051), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (14030, 14051), True, 'import mesh_tensorflow as mtf\n'), ((14068, 14102), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (14081, 14102), True, 'import mesh_tensorflow as mtf\n'), ((14120, 14152), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (14133, 14152), True, 'import mesh_tensorflow as mtf\n'), ((14168, 14184), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (14182, 14184), False, 'import mock\n'), ((14222, 14266), 'tensorflow.compat.v1.constant', 'tf.constant', (['[0, 1, 2, 3, 4]'], {'dtype': 'tf.int32'}), '([0, 1, 2, 3, 4], dtype=tf.int32)\n', (14233, 14266), True, 'import tensorflow.compat.v1 as tf\n'), ((14814, 15058), 'mesh_tensorflow.transformer.vocab_embeddings.Mixtape', 'vocab_embeddings.Mixtape', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'gate_embedding_size': 'gate_embedding_size', 'frequent_token_fraction': 'frequent_token_fraction'}), "(self.mesh, vocab_dim, output_dim=model_dim,\n variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None,\n gate_embedding_size=gate_embedding_size, frequent_token_fraction=\n frequent_token_fraction)\n", (14838, 15058), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((15205, 15281), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (15246, 15281), True, 'import mesh_tensorflow as mtf\n'), ((15306, 15354), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (15318, 15354), True, 'import mesh_tensorflow as mtf\n'), ((15842, 15876), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""vocab"""', 'vocab_size'], {}), "('vocab', vocab_size)\n", (15855, 15876), True, 'import mesh_tensorflow as mtf\n'), ((15893, 15927), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""model"""', 'model_size'], {}), "('model', model_size)\n", (15906, 15927), True, 'import mesh_tensorflow as mtf\n'), ((15945, 15977), 'mesh_tensorflow.Dimension', 'mtf.Dimension', (['"""length"""', 'seq_len'], {}), "('length', seq_len)\n", (15958, 15977), True, 'import mesh_tensorflow as mtf\n'), ((15993, 16009), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (16007, 16009), False, 'import mock\n'), ((16948, 17211), 'mesh_tensorflow.transformer.vocab_embeddings.Mixtape', 'vocab_embeddings.Mixtape', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'gate_embedding_size': 'gate_embedding_size', 'frequent_token_fraction': 'frequent_token_fraction', 'noise_std_dev': '(0.0)'}), "(self.mesh, vocab_dim, output_dim=model_dim,\n variable_dtype=self.variable_dtype, name='embedding', ensemble_dim=None,\n gate_embedding_size=gate_embedding_size, frequent_token_fraction=\n frequent_token_fraction, noise_std_dev=0.0)\n", (16972, 17211), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((17382, 17458), 'mesh_tensorflow.placement_mesh_impl.PlacementMeshImpl', 'mtf.placement_mesh_impl.PlacementMeshImpl', ([], {'shape': '[]', 'layout': '{}', 'devices': "['']"}), "(shape=[], layout={}, devices=[''])\n", (17423, 17458), True, 'import mesh_tensorflow as mtf\n'), ((17483, 17531), 'mesh_tensorflow.Lowering', 'mtf.Lowering', (['self.graph', '{self.mesh: mesh_impl}'], {}), '(self.graph, {self.mesh: mesh_impl})\n', (17495, 17531), True, 'import mesh_tensorflow as mtf\n'), ((3133, 3166), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3164, 3166), True, 'import tensorflow.compat.v1 as tf\n'), ((4603, 4636), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4634, 4636), True, 'import tensorflow.compat.v1 as tf\n'), ((5613, 5876), 'mesh_tensorflow.transformer.vocab_embeddings.AdaptiveVocabEmbedding', 'vocab_embeddings.AdaptiveVocabEmbedding', (['self.mesh', 'vocab_dim'], {'output_dim': 'model_dim', 'variable_dtype': 'self.variable_dtype', 'name': '"""embedding"""', 'ensemble_dim': 'None', 'clusters': "[{'token_count': 3, 'embedding_size': 2}, {'token_count': 3,\n 'embedding_size': 1}]"}), "(self.mesh, vocab_dim, output_dim=\n model_dim, variable_dtype=self.variable_dtype, name='embedding',\n ensemble_dim=None, clusters=[{'token_count': 3, 'embedding_size': 2}, {\n 'token_count': 3, 'embedding_size': 1}])\n", (5652, 5876), False, 'from mesh_tensorflow.transformer import vocab_embeddings\n'), ((7316, 7349), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (7347, 7349), True, 'import tensorflow.compat.v1 as tf\n'), ((8917, 8950), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8948, 8950), True, 'import tensorflow.compat.v1 as tf\n'), ((11088, 11121), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (11119, 11121), True, 'import tensorflow.compat.v1 as tf\n'), ((12785, 12818), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (12816, 12818), True, 'import tensorflow.compat.v1 as tf\n'), ((13016, 13037), 'numpy.tanh', 'np.tanh', (['[1, 1, 2, 2]'], {}), '([1, 1, 2, 2])\n', (13023, 13037), True, 'import numpy as np\n'), ((13084, 13105), 'numpy.tanh', 'np.tanh', (['[2, 1, 1, 1]'], {}), '([2, 1, 1, 1])\n', (13091, 13105), True, 'import numpy as np\n'), ((15441, 15474), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (15472, 15474), True, 'import tensorflow.compat.v1 as tf\n'), ((17612, 17645), 'tensorflow.compat.v1.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (17643, 17645), True, 'import tensorflow.compat.v1 as tf\n'), ((1788, 1838), 'mock.patch.object', 'mock.patch.object', (['tf', '"""random_normal_initializer"""'], {}), "(tf, 'random_normal_initializer')\n", (1805, 1838), False, 'import mock\n'), ((2335, 2358), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim]'], {}), '([length_dim])\n', (2344, 2358), True, 'import mesh_tensorflow as mtf\n'), ((3796, 3830), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim, model_dim]'], {}), '([length_dim, model_dim])\n', (3805, 3830), True, 'import mesh_tensorflow as mtf\n'), ((4807, 4862), 'numpy.array', 'np.array', (['[[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]]'], {}), '([[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]])\n', (4815, 4862), True, 'import numpy as np\n'), ((5264, 5314), 'mock.patch.object', 'mock.patch.object', (['tf', '"""random_normal_initializer"""'], {}), "(tf, 'random_normal_initializer')\n", (5281, 5314), False, 'import mock\n'), ((6398, 6421), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim]'], {}), '([length_dim])\n', (6407, 6421), True, 'import mesh_tensorflow as mtf\n'), ((7990, 8024), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim, model_dim]'], {}), '([length_dim, model_dim])\n', (7999, 8024), True, 'import mesh_tensorflow as mtf\n'), ((9121, 9200), 'numpy.array', 'np.array', (['[[0, 2, 1, 2, 3], [1, 0, 2, 4, 6], [1, 2, 3, 6, 9], [1, 4, 4, 8, 12]]'], {}), '([[0, 2, 1, 2, 3], [1, 0, 2, 4, 6], [1, 2, 3, 6, 9], [1, 4, 4, 8, 12]])\n', (9129, 9200), True, 'import numpy as np\n'), ((9631, 9681), 'mock.patch.object', 'mock.patch.object', (['tf', '"""random_normal_initializer"""'], {}), "(tf, 'random_normal_initializer')\n", (9648, 9681), False, 'import mock\n'), ((10171, 10194), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim]'], {}), '([length_dim])\n', (10180, 10194), True, 'import mesh_tensorflow as mtf\n'), ((11633, 11660), 'numpy.array', 'np.array', (['[[1.0, 1.0, 2.0]]'], {}), '([[1.0, 1.0, 2.0]])\n', (11641, 11660), True, 'import numpy as np\n'), ((11779, 11813), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim, model_dim]'], {}), '([length_dim, model_dim])\n', (11788, 11813), True, 'import mesh_tensorflow as mtf\n'), ((13692, 13742), 'mock.patch.object', 'mock.patch.object', (['tf', '"""random_normal_initializer"""'], {}), "(tf, 'random_normal_initializer')\n", (13709, 13742), False, 'import mock\n'), ((14333, 14356), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim]'], {}), '([length_dim])\n', (14342, 14356), True, 'import mesh_tensorflow as mtf\n'), ((16075, 16097), 'numpy.array', 'np.array', (['[[1.0, 2.0]]'], {}), '([[1.0, 2.0]])\n', (16083, 16097), True, 'import numpy as np\n'), ((16216, 16250), 'mesh_tensorflow.Shape', 'mtf.Shape', (['[length_dim, model_dim]'], {}), '([length_dim, model_dim])\n', (16225, 16250), True, 'import mesh_tensorflow as mtf\n'), ((2432, 2446), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (2439, 2446), True, 'import numpy as np\n'), ((3904, 3918), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (3911, 3918), True, 'import numpy as np\n')]
from __future__ import print_function import os import sys import cv2 import random import datetime import time import math import argparse import numpy as np import torch try: from iou import IOU except BaseException: # IOU cython speedup 10x def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2): sa = abs((ax2 - ax1) * (ay2 - ay1)) sb = abs((bx2 - bx1) * (by2 - by1)) x1, y1 = max(ax1, bx1), max(ay1, by1) x2, y2 = min(ax2, bx2), min(ay2, by2) w = x2 - x1 h = y2 - y1 if w < 0 or h < 0: return 0.0 else: return 1.0 * w * h / (sa + sb - w * h) def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh): xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1 dx, dy = (xc - axc) / aww, (yc - ayc) / ahh dw, dh = math.log(ww / aww), math.log(hh / ahh) return dx, dy, dw, dh def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh): xc, yc = dx * aww + axc, dy * ahh + ayc ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2 return x1, y1, x2, y2 def nms(dets, thresh): if 0 == len(dets): return [] x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:,2], dets[:, 3], dets[:,4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]]) xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]]) w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1) ovr = w * h / (areas[i] + areas[order[1:]] - w * h) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def encode(matched, priors, variances): """Encode the variances from the priorbox layers into the ground truth boxes we have matched (based on jaccard overlap) with the prior boxes. Args: matched: (tensor) Coords of ground truth for each prior in point-form Shape: [num_priors, 4]. priors: (tensor) Prior boxes in center-offset form Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: encoded boxes (tensor), Shape: [num_priors, 4] """ # dist b/t match center and prior's center g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2] # encode variance g_cxcy /= (variances[0] * priors[:, 2:]) # match wh / prior wh g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:] g_wh = torch.log(g_wh) / variances[1] # return target for smooth_l1_loss return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4] def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes def batch_decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat(( priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2) boxes[:, :, :2] -= boxes[:, :, 2:] / 2 boxes[:, :, 2:] += boxes[:, :, :2] return boxes
[ "torch.log", "numpy.minimum", "numpy.where", "torch.exp", "math.log", "numpy.maximum", "torch.cat", "math.exp" ]
[((2754, 2782), 'torch.cat', 'torch.cat', (['[g_cxcy, g_wh]', '(1)'], {}), '([g_cxcy, g_wh], 1)\n', (2763, 2782), False, 'import torch\n'), ((821, 839), 'math.log', 'math.log', (['(ww / aww)'], {}), '(ww / aww)\n', (829, 839), False, 'import math\n'), ((841, 859), 'math.log', 'math.log', (['(hh / ahh)'], {}), '(hh / ahh)\n', (849, 859), False, 'import math\n'), ((2673, 2688), 'torch.log', 'torch.log', (['g_wh'], {}), '(g_wh)\n', (2682, 2688), False, 'import torch\n'), ((997, 1009), 'math.exp', 'math.exp', (['dw'], {}), '(dw)\n', (1005, 1009), False, 'import math\n'), ((1017, 1029), 'math.exp', 'math.exp', (['dh'], {}), '(dh)\n', (1025, 1029), False, 'import math\n'), ((1467, 1499), 'numpy.maximum', 'np.maximum', (['x1[i]', 'x1[order[1:]]'], {}), '(x1[i], x1[order[1:]])\n', (1477, 1499), True, 'import numpy as np\n'), ((1501, 1533), 'numpy.maximum', 'np.maximum', (['y1[i]', 'y1[order[1:]]'], {}), '(y1[i], y1[order[1:]])\n', (1511, 1533), True, 'import numpy as np\n'), ((1553, 1585), 'numpy.minimum', 'np.minimum', (['x2[i]', 'x2[order[1:]]'], {}), '(x2[i], x2[order[1:]])\n', (1563, 1585), True, 'import numpy as np\n'), ((1587, 1619), 'numpy.minimum', 'np.minimum', (['y2[i]', 'y2[order[1:]]'], {}), '(y2[i], y2[order[1:]])\n', (1597, 1619), True, 'import numpy as np\n'), ((1636, 1666), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (1646, 1666), True, 'import numpy as np\n'), ((1668, 1698), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (1678, 1698), True, 'import numpy as np\n'), ((1775, 1798), 'numpy.where', 'np.where', (['(ovr <= thresh)'], {}), '(ovr <= thresh)\n', (1783, 1798), True, 'import numpy as np\n'), ((3394, 3430), 'torch.exp', 'torch.exp', (['(loc[:, 2:] * variances[1])'], {}), '(loc[:, 2:] * variances[1])\n', (3403, 3430), False, 'import torch\n'), ((4134, 4173), 'torch.exp', 'torch.exp', (['(loc[:, :, 2:] * variances[1])'], {}), '(loc[:, :, 2:] * variances[1])\n', (4143, 4173), False, 'import torch\n')]
import copy from functools import wraps, reduce import socket import os from operator import mul import sys from statistics import mean import time import numpy as np from rdkit.Chem import AllChem, RWMol from rdkit import Chem from rdkit.Chem.rdChemReactions import ChemicalReaction from kgcn.data_util import dense_to_sparse from kgcn.preprocessing.utils import atom_features from model_modules import predict_templates class MoleculeUtils: @staticmethod def generate_ecfp(mol, radius=2, bits=2048): """ Create Extended Connectivity FingerPrint Args: mol (Mol Object): radius (int): bits (int): Returns: Numpy array type ECFP """ fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=bits).ToBitString() return np.asarray([[int(i) for i in list(fp)]]) @staticmethod def generate_gcn_descriptor(mol, atom_num_limit, label_dim): """ Create GCN descriptor (adj, feat, label) Args: mol (Mol Object): atom_num_limit (int): label_dim (int): Returns: adj, feature, label """ # Prepare dummy label information label_data = np.zeros(label_dim) label_mask = np.zeros_like(label_data) label_mask[~np.isnan(label_data)] = 1 # for index, mol in enumerate(mol): Chem.SanitizeMol(mol, sanitizeOps=Chem.SANITIZE_ADJUSTHS) # Create a adjacency matrix mol_adj = Chem.GetAdjacencyMatrix(mol) row_num = len(mol_adj) adj = np.array(mol_adj, dtype=np.int) # Set diagonal elements to 1, fill others with the adjacency matrix from RDkit for i in range(row_num): adj[i][i] = int(1) # Create a feature matrix feature = [atom_features(atom, degree_dim=17) for atom in mol.GetAtoms()] for _ in range(atom_num_limit - len(feature)): feature.append(np.zeros(len(feature[0]), dtype=np.int)) adj = dense_to_sparse(adj) adj[2][:] = atom_num_limit obj = { "feature": np.asarray([feature]), "adj": np.asarray([adj]), "label": np.asarray([label_data]), "mask_label": np.asarray([label_mask]), "max_node_num": atom_num_limit } return obj @staticmethod def update_mol_condition(mol_conditions, mols, divided_mols, start_materials, idx): """ Update the molecule condition if the molecules in start materials Args: mol_conditions (list[int]): mols (list[Mol Object]): divided_mols (list[Mol Object]): start_materials (set[str]): idx (int): Returns: "1" if the molecule is in start materials otherwise "0" """ mols.pop(idx) mol_conditions.pop(idx) for divided_mol in divided_mols: mols.append(divided_mol) smiles = Chem.MolToSmiles(divided_mol, canonical=True) if SearchUtils.sequential_search(smiles, start_materials): mol_conditions.append(1) else: mol_conditions.append(0) @staticmethod def get_unsolved_mol_condition_idx(mol_conditions): """ Get indexes of mol_conditions whose condition is 0 Args: mol_conditions (list[int]): Returns: """ unsolved_idxs = [] for i in range(len(mol_conditions)): if mol_conditions[i] == 0: unsolved_idxs.append(i) return unsolved_idxs @staticmethod def is_valid(mol): """ Check whether Mol Object is valid Args: mol (list[Mol Object]): Returns: True if mol is valid otherwise False """ flag = Chem.SanitizeMol(mol, catchErrors=True) return True if flag == Chem.SANITIZE_NONE else False class ReactionUtils: """ Attributes: mol (Mol Object): """ mol = None rxn_candidates = [] sorted_rxn_prob_list = None sorted_rxn_prob_idxs = None def __init__(self, mol): """ A constructor of ReactionUtils Args: mol (Mol Object): """ self.mol = mol @staticmethod def react_product_to_reactants(product, rxn_rule, gateway=None): """ Args: product (Mol Object): rxn_rule (Chemical Reaction): gateway (JavaGateway): Returns: list(molecule object) """ return_list = [] if gateway: product = Chem.MolToSmiles(product) try: reactants_list = gateway.entry_point.reactProductToReactants(product, rxn_rule) for reactants in reactants_list: if reactants is None or None in reactants: continue reactants = [Chem.MolFromSmiles(m) for m in reactants] if reactants and None not in reactants: return_list.append(reactants) return return_list if return_list else None except: return None if ChemicalReaction.Validate(rxn_rule)[1] == 1 or rxn_rule.GetNumReactantTemplates() != 1: return None reactants_list = rxn_rule.RunReactants([product, ]) if not reactants_list: return None for reactants in reactants_list: for reactant in reactants: if not MoleculeUtils.is_valid(reactant): continue return_list.append(reactants) return return_list if return_list else None def set_reaction_candidates_and_probabilities(self, model, rxn_rules, model_name, config): """ Args: model: Tensorflow model or Keras model instance rxn_rules (list[Chemical Reaction]): model_name (str): config (dict): """ if config['descriptor'] == 'ECFP': input_mol = MoleculeUtils.generate_ecfp(self.mol) rxn_prob_list = predict_templates(model, input_mol, model_name, config) elif config['descriptor'] == 'GCN': input_mol = None if model_name == 'expansion': input_mol = MoleculeUtils.generate_gcn_descriptor(self.mol, config['max_atom_num'], len(rxn_rules)) elif model_name == 'rollout': input_mol = MoleculeUtils.generate_gcn_descriptor(self.mol, config['max_atom_num'], len(rxn_rules)) rxn_prob_list = predict_templates(model, input_mol, model_name, config) else: print("[ERROR] Set 'descriptor' to ECFP or GCN") sys.exit(1) self.sorted_rxn_prob_idxs = np.argsort(-rxn_prob_list) self.sorted_rxn_prob_list = rxn_prob_list[self.sorted_rxn_prob_idxs] self.rxn_candidates = self.get_reaction_candidates(rxn_rules, config["expansion_num"]) @staticmethod def get_reactions(rxn_rule_path, save_dir, use_reaction_complement=False): def complement_reaction(rxn_template): if rxn_template.GetNumProductTemplates() != 1: print("[ERROR] A reaction template has only one product template.") sys.exit(1) pro = rxn_template.GetProductTemplate(0) rw_pro = RWMol(pro) amaps_pro = {a.GetAtomMapNum() for a in pro.GetAtoms()} amaps_rcts = {a.GetAtomMapNum() for rct in rxn_template.GetReactants() for a in rct.GetAtoms()} amaps_not_in_rcts = amaps_pro.intersection(amaps_rcts) for amap in amaps_not_in_rcts: aidx = [a.GetIdx() for a in rw_pro.GetAtoms() if a.GetAtomMapNum() == amap][0] rw_pro.RemoveAtom(aidx) m = rw_pro.GetMol() if '.' in Chem.MolToSmarts(m): return if (m.GetNumAtoms() == 0) or (m.GetNumAtoms() == 1 and m.GetAtomWithIdx(0).GetSymbol() in {"*", None}): return rxn_template.AddReactantTemplate(m) with open(rxn_rule_path, 'r') as f: lines = [l.strip('\n') for l in f.readlines()] if use_reaction_complement: rxn_templates = [] for l in lines: try: rxn_templates.append(AllChem.ReactionFromSmarts(l)) except Exception as e: rxn_templates.append(l) for rxn_template in rxn_templates: if type(rxn_template) == ChemicalReaction: complement_reaction(rxn_template) out_reactions = [AllChem.ReactionToSmarts(rt) if type(rt) == ChemicalReaction else rt for rt in rxn_templates] basename, ext = os.path.splitext(os.path.basename(rxn_rule_path)) with open(os.path.join(save_dir, f"{basename}_complemented{ext}"), 'w') as f: f.writelines('\n'.join(out_reactions)) return out_reactions else: return lines @staticmethod def get_reverse_reactions(rxn_rule_path): """ Args: rxn_rule_path (str): Returns: list[RxnMolecule] """ with open(rxn_rule_path, 'r') as f: lines = f.readlines() split_rxn_rules = [l.strip().split('>>') for l in lines] reverse_rxn_str = ['>>'.join(split_rxn_rule[::-1]) for split_rxn_rule in split_rxn_rules] return [AllChem.ReactionFromSmarts(r) for r in reverse_rxn_str] def get_reaction_candidates(self, rxn_rules, expansion_num, top_number=None): """ Args: rxn_rules (list[Chemical Reaction]): expansion_num (int): top_number (int): Returns: """ idxs = [] probs = [] if top_number is None: # for expansion for i in range(len(self.sorted_rxn_prob_idxs)): probs.append(self.sorted_rxn_prob_list[i]) idxs.append(self.sorted_rxn_prob_idxs[i]) if i+1 >= expansion_num: break rxn_cands = [rxn_rules[i] for i in idxs] self.sorted_rxn_prob_list = probs return rxn_cands else: # for rollout idxs = [self.sorted_rxn_prob_idxs[i] for i in range(top_number)] rxn_cands = [rxn_rules[i] for i in idxs] return rxn_cands @staticmethod def predict_reactions(rxn_rules, model, mol, model_name, config, top_number=None): """ Args: rxn_rules (list[Chemical Reaction]): model: Tensorflow model or Keras model instance mol (Molecule): model_name (str): config (dict): top_number (int): if not None, get top-N prediction values Returns: Lists of predicted Chemical Reaction(s) and reaction probabilities """ rxn = ReactionUtils(mol) rxn.set_reaction_candidates_and_probabilities(model, rxn_rules, model_name, config) if top_number is None: return rxn.get_reaction_candidates(rxn_rules, config["expansion_num"]), rxn.sorted_rxn_prob_list else: return rxn.get_reaction_candidates(rxn_rules, config["expansion_num"], top_number), rxn.sorted_rxn_prob_list class SearchUtils: @staticmethod def sequential_search(mol, start_materials): """ Args: mol (str): start_materials (set[str]): Returns: Boolean """ return True if mol in start_materials else False @staticmethod def is_proved(mol_conditions): """ Args: mol_conditions (list[int]): Returns: """ return all([i == 1 for i in mol_conditions]) @staticmethod def is_terminal(mols, gateway=None): """ Args: mols (list[Mol Object]): gateway (JavaGateway): Returns: """ str_mols = [Chem.MolToSmiles(m) for m in mols] return gateway.entry_point.isTerminal(str_mols) @staticmethod def is_loop_route(mols, node): """ Check whether a molecule is in a route. Args: mols (list[Mol Object]): node (Node): Returns: True if a molecule is in a route otherwise False """ mols = [Chem.MolToSmiles(m) for m in mols] while node is not None: unresolved_mols = set(node.state.mols[i] for i, c in enumerate(node.state.mol_conditions) if c == 0) unresolved_mols = [Chem.MolToSmiles(m) for m in unresolved_mols] for m in mols: if m in unresolved_mols: return True node = node.parent_node return False def timeit(func): @wraps(func) def wrapper(*args, **kargs): print("[INFO] start") start = time.time() result = func(*args, **kargs) elapsed_time = time.time() - start print(f"[INFO] done in {elapsed_time:5f} s") return result return wrapper def calculate_cdscore(product, reactants): """ Args: product (Mol object): reactants (list(Mol object)): Returns: score (float) return 1 if a molecule was divided evenly otherwise 0 <= x < 1. """ if len(reactants) == 1: return 0. pro_atom_num = product.GetNumAtoms() rct_atom_nums = [m.GetNumAtoms() for m in reactants] scale_factor = pro_atom_num / len(rct_atom_nums) abs_errors = [abs(r - scale_factor) for r in rct_atom_nums] return 1 / (1 + mean(abs_errors)) def calculate_asscore(mol_condition_before, mol_condition_after, num_divided_mols): """ Args: mol_condition_before (list): mol_condition_after (list): num_divided_mols (int): Returns: return 1 if all divided molecules were starting materials otherwise 0 =< x < 1. """ if num_divided_mols == 1: return 0. return (mol_condition_after.count(1) - mol_condition_before.count(1)) / num_divided_mols def calculate_rdscore(product, reactants): """ Args: product (Mol object): reactants (list(Mol object)): Returns: score (float) return 1 if a number of rings in a product is reduced otherwise 0. """ try: pro_ring_num = product.GetRingInfo().NumRings() except Exception as e: product.UpdatePropertyCache() Chem.GetSymmSSSR(product) pro_ring_num = product.GetRingInfo().NumRings() rct_ring_nums = sum([m.GetRingInfo().NumRings() for m in reactants]) rdscore = pro_ring_num - rct_ring_nums return 1. if rdscore > 0 else 0. def calculate_stscore(reactants, reaction_template): """ Args: reactants (list(Mol object)): reaction_template (str): Returns: score (float) return 1 if each reactant has a respective substructure in reaction template otherwise 1 / number of the combination. """ patts_for_rct = [Chem.MolFromSmarts(patt) for patt in reaction_template.split(">>")[0].split(".")] match_patts = [] for rct, patt in zip(reactants, patts_for_rct): match_patts.append(len(rct.GetSubstructMatches(patt, useChirality=True))) match_patts = [1 if patt == 0 else patt for patt in match_patts] return 1 / reduce(mul, match_patts) def is_port_in_used(port): """ Args: port (int): Returns: return True if the port is in used otherwise False """ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 def get_default_config(): """ Returns: return config dict """ config = { "max_atom_num": 50, "search_count": 100, "rollout_depth": 5, "expansion_model": "model/model.sample.ckpt", "expansion_rules": "data/sample_reaction_rule.csv", "rollout_model": "model/model.sample.ckpt", "rollout_rules": "data/sample_reaction_rule.csv", "descriptor": "GCN", "gcn_expansion_config": "model/sample.json", "gcn_rollout_config": "model/sample.json", "starting_material": "data/starting_materials.smi", "save_result_dir": "result", "target": "data/sample.mol" } return config def get_node_info(node, ws): """ Args: node (Node): ws (list(int)): knowledge weights. [cdscore, rdscore, asscore, stscore] Returns: return node information for a searched tree analysis node information: self node, parent node, depth, score, RDScore, CDScore, STScore, ASScore """ return (f"{id(node)}\t" f"{id(node.parent_node)}\t" f"{node.depth}\t" f"{node.total_scores / node.visits}\t" f"{node.state.rdscore}\t" f"{node.state.cdscore * ws[0]}\t" f"{node.state.stscore * ws[3]}\t" f"{node.state.asscore * ws[2]}")
[ "rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect", "numpy.argsort", "numpy.array", "rdkit.Chem.GetSymmSSSR", "sys.exit", "rdkit.Chem.MolFromSmarts", "kgcn.data_util.dense_to_sparse", "rdkit.Chem.AllChem.ReactionToSmarts", "numpy.asarray", "rdkit.Chem.MolToSmiles", "functools.wraps", "rdkit.Chem.SanitizeMol", "rdkit.Chem.GetAdjacencyMatrix", "functools.reduce", "model_modules.predict_templates", "rdkit.Chem.rdChemReactions.ChemicalReaction.Validate", "numpy.isnan", "time.time", "rdkit.Chem.RWMol", "statistics.mean", "socket.socket", "os.path.join", "rdkit.Chem.MolFromSmiles", "kgcn.preprocessing.utils.atom_features", "numpy.zeros", "rdkit.Chem.AllChem.ReactionFromSmarts", "rdkit.Chem.MolToSmarts", "os.path.basename", "numpy.zeros_like" ]
[((12876, 12887), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (12881, 12887), False, 'from functools import wraps, reduce\n'), ((1238, 1257), 'numpy.zeros', 'np.zeros', (['label_dim'], {}), '(label_dim)\n', (1246, 1257), True, 'import numpy as np\n'), ((1279, 1304), 'numpy.zeros_like', 'np.zeros_like', (['label_data'], {}), '(label_data)\n', (1292, 1304), True, 'import numpy as np\n'), ((1403, 1460), 'rdkit.Chem.SanitizeMol', 'Chem.SanitizeMol', (['mol'], {'sanitizeOps': 'Chem.SANITIZE_ADJUSTHS'}), '(mol, sanitizeOps=Chem.SANITIZE_ADJUSTHS)\n', (1419, 1460), False, 'from rdkit import Chem\n'), ((1515, 1543), 'rdkit.Chem.GetAdjacencyMatrix', 'Chem.GetAdjacencyMatrix', (['mol'], {}), '(mol)\n', (1538, 1543), False, 'from rdkit import Chem\n'), ((1589, 1620), 'numpy.array', 'np.array', (['mol_adj'], {'dtype': 'np.int'}), '(mol_adj, dtype=np.int)\n', (1597, 1620), True, 'import numpy as np\n'), ((2026, 2046), 'kgcn.data_util.dense_to_sparse', 'dense_to_sparse', (['adj'], {}), '(adj)\n', (2041, 2046), False, 'from kgcn.data_util import dense_to_sparse\n'), ((3837, 3876), 'rdkit.Chem.SanitizeMol', 'Chem.SanitizeMol', (['mol'], {'catchErrors': '(True)'}), '(mol, catchErrors=True)\n', (3853, 3876), False, 'from rdkit import Chem\n'), ((6805, 6831), 'numpy.argsort', 'np.argsort', (['(-rxn_prob_list)'], {}), '(-rxn_prob_list)\n', (6815, 6831), True, 'import numpy as np\n'), ((12967, 12978), 'time.time', 'time.time', ([], {}), '()\n', (12976, 12978), False, 'import time\n'), ((15114, 15138), 'rdkit.Chem.MolFromSmarts', 'Chem.MolFromSmarts', (['patt'], {}), '(patt)\n', (15132, 15138), False, 'from rdkit import Chem\n'), ((15435, 15459), 'functools.reduce', 'reduce', (['mul', 'match_patts'], {}), '(mul, match_patts)\n', (15441, 15459), False, 'from functools import wraps, reduce\n'), ((15616, 15665), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (15629, 15665), False, 'import socket\n'), ((1825, 1859), 'kgcn.preprocessing.utils.atom_features', 'atom_features', (['atom'], {'degree_dim': '(17)'}), '(atom, degree_dim=17)\n', (1838, 1859), False, 'from kgcn.preprocessing.utils import atom_features\n'), ((2121, 2142), 'numpy.asarray', 'np.asarray', (['[feature]'], {}), '([feature])\n', (2131, 2142), True, 'import numpy as np\n'), ((2163, 2180), 'numpy.asarray', 'np.asarray', (['[adj]'], {}), '([adj])\n', (2173, 2180), True, 'import numpy as np\n'), ((2203, 2227), 'numpy.asarray', 'np.asarray', (['[label_data]'], {}), '([label_data])\n', (2213, 2227), True, 'import numpy as np\n'), ((2255, 2279), 'numpy.asarray', 'np.asarray', (['[label_mask]'], {}), '([label_mask])\n', (2265, 2279), True, 'import numpy as np\n'), ((2987, 3032), 'rdkit.Chem.MolToSmiles', 'Chem.MolToSmiles', (['divided_mol'], {'canonical': '(True)'}), '(divided_mol, canonical=True)\n', (3003, 3032), False, 'from rdkit import Chem\n'), ((4629, 4654), 'rdkit.Chem.MolToSmiles', 'Chem.MolToSmiles', (['product'], {}), '(product)\n', (4645, 4654), False, 'from rdkit import Chem\n'), ((6141, 6196), 'model_modules.predict_templates', 'predict_templates', (['model', 'input_mol', 'model_name', 'config'], {}), '(model, input_mol, model_name, config)\n', (6158, 6196), False, 'from model_modules import predict_templates\n'), ((7394, 7404), 'rdkit.Chem.RWMol', 'RWMol', (['pro'], {}), '(pro)\n', (7399, 7404), False, 'from rdkit.Chem import AllChem, RWMol\n'), ((9507, 9536), 'rdkit.Chem.AllChem.ReactionFromSmarts', 'AllChem.ReactionFromSmarts', (['r'], {}), '(r)\n', (9533, 9536), False, 'from rdkit.Chem import AllChem, RWMol\n'), ((12058, 12077), 'rdkit.Chem.MolToSmiles', 'Chem.MolToSmiles', (['m'], {}), '(m)\n', (12074, 12077), False, 'from rdkit import Chem\n'), ((12437, 12456), 'rdkit.Chem.MolToSmiles', 'Chem.MolToSmiles', (['m'], {}), '(m)\n', (12453, 12456), False, 'from rdkit import Chem\n'), ((13040, 13051), 'time.time', 'time.time', ([], {}), '()\n', (13049, 13051), False, 'import time\n'), ((13681, 13697), 'statistics.mean', 'mean', (['abs_errors'], {}), '(abs_errors)\n', (13685, 13697), False, 'from statistics import mean\n'), ((14545, 14570), 'rdkit.Chem.GetSymmSSSR', 'Chem.GetSymmSSSR', (['product'], {}), '(product)\n', (14561, 14570), False, 'from rdkit import Chem\n'), ((737, 799), 'rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect', 'AllChem.GetMorganFingerprintAsBitVect', (['mol', 'radius'], {'nBits': 'bits'}), '(mol, radius, nBits=bits)\n', (774, 799), False, 'from rdkit.Chem import AllChem, RWMol\n'), ((1325, 1345), 'numpy.isnan', 'np.isnan', (['label_data'], {}), '(label_data)\n', (1333, 1345), True, 'import numpy as np\n'), ((6614, 6669), 'model_modules.predict_templates', 'predict_templates', (['model', 'input_mol', 'model_name', 'config'], {}), '(model, input_mol, model_name, config)\n', (6631, 6669), False, 'from model_modules import predict_templates\n'), ((6757, 6768), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6765, 6768), False, 'import sys\n'), ((7308, 7319), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7316, 7319), False, 'import sys\n'), ((7880, 7899), 'rdkit.Chem.MolToSmarts', 'Chem.MolToSmarts', (['m'], {}), '(m)\n', (7896, 7899), False, 'from rdkit import Chem\n'), ((8817, 8848), 'os.path.basename', 'os.path.basename', (['rxn_rule_path'], {}), '(rxn_rule_path)\n', (8833, 8848), False, 'import os\n'), ((12648, 12667), 'rdkit.Chem.MolToSmiles', 'Chem.MolToSmiles', (['m'], {}), '(m)\n', (12664, 12667), False, 'from rdkit import Chem\n'), ((5221, 5256), 'rdkit.Chem.rdChemReactions.ChemicalReaction.Validate', 'ChemicalReaction.Validate', (['rxn_rule'], {}), '(rxn_rule)\n', (5246, 5256), False, 'from rdkit.Chem.rdChemReactions import ChemicalReaction\n'), ((8677, 8705), 'rdkit.Chem.AllChem.ReactionToSmarts', 'AllChem.ReactionToSmarts', (['rt'], {}), '(rt)\n', (8701, 8705), False, 'from rdkit.Chem import AllChem, RWMol\n'), ((8872, 8927), 'os.path.join', 'os.path.join', (['save_dir', 'f"""{basename}_complemented{ext}"""'], {}), "(save_dir, f'{basename}_complemented{ext}')\n", (8884, 8927), False, 'import os\n'), ((4946, 4967), 'rdkit.Chem.MolFromSmiles', 'Chem.MolFromSmiles', (['m'], {}), '(m)\n', (4964, 4967), False, 'from rdkit import Chem\n'), ((8372, 8401), 'rdkit.Chem.AllChem.ReactionFromSmarts', 'AllChem.ReactionFromSmarts', (['l'], {}), '(l)\n', (8398, 8401), False, 'from rdkit.Chem import AllChem, RWMol\n')]
import unittest import numpy as np from rlcard.games.leducholdem.game import LeducholdemGame as Game from rlcard.games.leducholdem.player import LeducholdemPlayer as Player from rlcard.games.leducholdem.judger import LeducholdemJudger as Judger from rlcard.core import Card class TestLeducholdemMethods(unittest.TestCase): def test_get_action_num(self): game = Game() action_num = game.get_action_num() self.assertEqual(action_num, 4) def test_init_game(self): game = Game() state, player_id = game.init_game() test_id = game.get_player_id() self.assertEqual(test_id, player_id) self.assertIn('raise', state['legal_actions']) self.assertIn('fold', state['legal_actions']) self.assertIn('call', state['legal_actions']) def test_step(self): game = Game() # test raise game.init_game() init_raised = game.round.have_raised game.step('raise') step_raised = game.round.have_raised self.assertEqual(init_raised + 1, step_raised) # test fold game.init_game() game.step('fold') self.assertTrue(game.round.player_folded) # test call game.init_game() game.step('raise') game.step('call') self.assertEqual(game.round_counter, 1) # test check game.init_game() game.step('call') game.step('check') self.assertEqual(game.round_counter, 1) def test_step_back(self): game = Game(allow_step_back=True) state, player_id = game.init_game() action = state['legal_actions'][0] game.step(action) game.step_back() self.assertEqual(game.game_pointer, player_id) self.assertEqual(game.step_back(), False) def test_judge_game(self): np_random = np.random.RandomState() players = [Player(0, np_random), Player(1, np_random)] players[0].in_chips = 10 players[1].in_chips = 10 # Test hand is equal players[0].hand = Card('S', 'J') players[1].hand = Card('H', 'J') public_card = Card('S', 'Q') payoffs = Judger.judge_game(players, public_card) self.assertEqual(payoffs[0], 0) self.assertEqual(payoffs[1], 0) # Test one player get a pair players[0].hand = Card('S', 'J') players[1].hand = Card('S', 'Q') public_card = Card('H', 'J') payoffs = Judger.judge_game(players, public_card) self.assertEqual(payoffs[0], 10.0) self.assertEqual(payoffs[1], -10.0) # Other cases # Test one player get a pair players[0].hand = Card('S', 'J') players[1].hand = Card('S', 'Q') public_card = Card('H', 'K') payoffs = Judger.judge_game(players, public_card) self.assertEqual(payoffs[0], -10.0) self.assertEqual(payoffs[1], 10.0) def test_player_get_player_id(self): player = Player(0, np.random.RandomState()) self.assertEqual(0, player.get_player_id()) def test_is_over(self): game = Game() game.init_game() game.step('call') game.step('check') game.step('check') game.step('check') self.assertEqual(game.is_over(), True) if __name__ == '__main__': unittest.main()
[ "rlcard.core.Card", "rlcard.games.leducholdem.player.LeducholdemPlayer", "rlcard.games.leducholdem.judger.LeducholdemJudger.judge_game", "rlcard.games.leducholdem.game.LeducholdemGame", "unittest.main", "numpy.random.RandomState" ]
[((3340, 3355), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3353, 3355), False, 'import unittest\n'), ((376, 382), 'rlcard.games.leducholdem.game.LeducholdemGame', 'Game', ([], {}), '()\n', (380, 382), True, 'from rlcard.games.leducholdem.game import LeducholdemGame as Game\n'), ((513, 519), 'rlcard.games.leducholdem.game.LeducholdemGame', 'Game', ([], {}), '()\n', (517, 519), True, 'from rlcard.games.leducholdem.game import LeducholdemGame as Game\n'), ((852, 858), 'rlcard.games.leducholdem.game.LeducholdemGame', 'Game', ([], {}), '()\n', (856, 858), True, 'from rlcard.games.leducholdem.game import LeducholdemGame as Game\n'), ((1541, 1567), 'rlcard.games.leducholdem.game.LeducholdemGame', 'Game', ([], {'allow_step_back': '(True)'}), '(allow_step_back=True)\n', (1545, 1567), True, 'from rlcard.games.leducholdem.game import LeducholdemGame as Game\n'), ((1863, 1886), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (1884, 1886), True, 'import numpy as np\n'), ((2072, 2086), 'rlcard.core.Card', 'Card', (['"""S"""', '"""J"""'], {}), "('S', 'J')\n", (2076, 2086), False, 'from rlcard.core import Card\n'), ((2113, 2127), 'rlcard.core.Card', 'Card', (['"""H"""', '"""J"""'], {}), "('H', 'J')\n", (2117, 2127), False, 'from rlcard.core import Card\n'), ((2150, 2164), 'rlcard.core.Card', 'Card', (['"""S"""', '"""Q"""'], {}), "('S', 'Q')\n", (2154, 2164), False, 'from rlcard.core import Card\n'), ((2183, 2222), 'rlcard.games.leducholdem.judger.LeducholdemJudger.judge_game', 'Judger.judge_game', (['players', 'public_card'], {}), '(players, public_card)\n', (2200, 2222), True, 'from rlcard.games.leducholdem.judger import LeducholdemJudger as Judger\n'), ((2367, 2381), 'rlcard.core.Card', 'Card', (['"""S"""', '"""J"""'], {}), "('S', 'J')\n", (2371, 2381), False, 'from rlcard.core import Card\n'), ((2408, 2422), 'rlcard.core.Card', 'Card', (['"""S"""', '"""Q"""'], {}), "('S', 'Q')\n", (2412, 2422), False, 'from rlcard.core import Card\n'), ((2445, 2459), 'rlcard.core.Card', 'Card', (['"""H"""', '"""J"""'], {}), "('H', 'J')\n", (2449, 2459), False, 'from rlcard.core import Card\n'), ((2478, 2517), 'rlcard.games.leducholdem.judger.LeducholdemJudger.judge_game', 'Judger.judge_game', (['players', 'public_card'], {}), '(players, public_card)\n', (2495, 2517), True, 'from rlcard.games.leducholdem.judger import LeducholdemJudger as Judger\n'), ((2691, 2705), 'rlcard.core.Card', 'Card', (['"""S"""', '"""J"""'], {}), "('S', 'J')\n", (2695, 2705), False, 'from rlcard.core import Card\n'), ((2732, 2746), 'rlcard.core.Card', 'Card', (['"""S"""', '"""Q"""'], {}), "('S', 'Q')\n", (2736, 2746), False, 'from rlcard.core import Card\n'), ((2769, 2783), 'rlcard.core.Card', 'Card', (['"""H"""', '"""K"""'], {}), "('H', 'K')\n", (2773, 2783), False, 'from rlcard.core import Card\n'), ((2802, 2841), 'rlcard.games.leducholdem.judger.LeducholdemJudger.judge_game', 'Judger.judge_game', (['players', 'public_card'], {}), '(players, public_card)\n', (2819, 2841), True, 'from rlcard.games.leducholdem.judger import LeducholdemJudger as Judger\n'), ((3119, 3125), 'rlcard.games.leducholdem.game.LeducholdemGame', 'Game', ([], {}), '()\n', (3123, 3125), True, 'from rlcard.games.leducholdem.game import LeducholdemGame as Game\n'), ((1906, 1926), 'rlcard.games.leducholdem.player.LeducholdemPlayer', 'Player', (['(0)', 'np_random'], {}), '(0, np_random)\n', (1912, 1926), True, 'from rlcard.games.leducholdem.player import LeducholdemPlayer as Player\n'), ((1928, 1948), 'rlcard.games.leducholdem.player.LeducholdemPlayer', 'Player', (['(1)', 'np_random'], {}), '(1, np_random)\n', (1934, 1948), True, 'from rlcard.games.leducholdem.player import LeducholdemPlayer as Player\n'), ((2998, 3021), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (3019, 3021), True, 'import numpy as np\n')]
import math import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from model.layers.attention_layers import SEModule, CBAM import config.yolov4_config as cfg class Mish(nn.Module): def __init__(self): super(Mish, self).__init__() def forward(self, x): return x * torch.tanh(F.softplus(x)) norm_name = {"bn": nn.BatchNorm2d} activate_name = { "relu": nn.ReLU, "leaky": nn.LeakyReLU, 'linear': nn.Identity(), "mish": Mish()} class Convolutional(nn.Module): def __init__(self, filters_in, filters_out, kernel_size, stride=1, norm='bn', activate='mish'): super(Convolutional, self).__init__() self.norm = norm self.activate = activate self.__conv = nn.Conv2d(in_channels=filters_in, out_channels=filters_out, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, bias=not norm) if norm: assert norm in norm_name.keys() if norm == "bn": self.__norm = norm_name[norm](num_features=filters_out) if activate: assert activate in activate_name.keys() if activate == "leaky": self.__activate = activate_name[activate](negative_slope=0.1, inplace=True) if activate == "relu": self.__activate = activate_name[activate](inplace=True) if activate == "mish": self.__activate = activate_name[activate] def forward(self, x): x = self.__conv(x) if self.norm: x = self.__norm(x) if self.activate: x = self.__activate(x) return x class CSPBlock(nn.Module): def __init__(self, in_channels, out_channels, hidden_channels=None, residual_activation='linear'): super(CSPBlock, self).__init__() if hidden_channels is None: hidden_channels = out_channels self.block = nn.Sequential( Convolutional(in_channels, hidden_channels, 1), Convolutional(hidden_channels, out_channels, 3) ) self.activation = activate_name[residual_activation] self.attention = cfg.ATTENTION["TYPE"] if self.attention == 'SEnet':self.attention_module = SEModule(out_channels) elif self.attention == 'CBAM':self.attention_module = CBAM(out_channels) else: self.attention = None def forward(self, x): residual = x out = self.block(x) if self.attention is not None: out = self.attention_module(out) out += residual return out class CSPFirstStage(nn.Module): def __init__(self, in_channels, out_channels): super(CSPFirstStage, self).__init__() self.downsample_conv = Convolutional(in_channels, out_channels, 3, stride=2) self.split_conv0 = Convolutional(out_channels, out_channels, 1) self.split_conv1 = Convolutional(out_channels, out_channels, 1) self.blocks_conv = nn.Sequential( CSPBlock(out_channels, out_channels, in_channels), Convolutional(out_channels, out_channels, 1) ) self.concat_conv = Convolutional(out_channels*2, out_channels, 1) def forward(self, x): x = self.downsample_conv(x) x0 = self.split_conv0(x) x1 = self.split_conv1(x) x1 = self.blocks_conv(x1) x = torch.cat([x0, x1], dim=1) x = self.concat_conv(x) return x class CSPStage(nn.Module): def __init__(self, in_channels, out_channels, num_blocks): super(CSPStage, self).__init__() self.downsample_conv = Convolutional(in_channels, out_channels, 3, stride=2) self.split_conv0 = Convolutional(out_channels, out_channels//2, 1) self.split_conv1 = Convolutional(out_channels, out_channels//2, 1) self.blocks_conv = nn.Sequential( *[CSPBlock(out_channels//2, out_channels//2) for _ in range(num_blocks)], Convolutional(out_channels//2, out_channels//2, 1) ) self.concat_conv = Convolutional(out_channels, out_channels, 1) def forward(self, x): x = self.downsample_conv(x) x0 = self.split_conv0(x) x1 = self.split_conv1(x) x1 = self.blocks_conv(x1) x = torch.cat([x0, x1], dim=1) x = self.concat_conv(x) return x class CSPDarknet53(nn.Module): def __init__(self, stem_channels=32, feature_channels=[64, 128, 256, 512, 1024], num_features=3,weight_path=None, resume=False): super(CSPDarknet53, self).__init__() self.stem_conv = Convolutional(3, stem_channels, 3) self.stages = nn.ModuleList([ CSPFirstStage(stem_channels, feature_channels[0]), CSPStage(feature_channels[0], feature_channels[1], 2), CSPStage(feature_channels[1], feature_channels[2], 8), CSPStage(feature_channels[2], feature_channels[3], 8), CSPStage(feature_channels[3], feature_channels[4], 4) ]) self.feature_channels = feature_channels self.num_features = num_features if weight_path and not resume: self.load_CSPdarknet_weights(weight_path) else: self._initialize_weights() def forward(self, x): x = self.stem_conv(x) features = [] for stage in self.stages: x = stage(x) features.append(x) return features[-self.num_features:] def _initialize_weights(self): print("**" * 10, "Initing CSPDarknet53 weights", "**" * 10) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() print("initing {}".format(m)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() print("initing {}".format(m)) def load_CSPdarknet_weights(self, weight_file, cutoff=52): "https://github.com/ultralytics/yolov3/blob/master/models.py" print("load darknet weights : ", weight_file) with open(weight_file, 'rb') as f: _ = np.fromfile(f, dtype=np.int32, count=5) weights = np.fromfile(f, dtype=np.float32) count = 0 ptr = 0 for m in self.modules(): if isinstance(m, Convolutional): # only initing backbone conv's weights # if count == cutoff: # break # count += 1 conv_layer = m._Convolutional__conv if m.norm == "bn": # Load BN bias, weights, running mean and running variance bn_layer = m._Convolutional__norm num_b = bn_layer.bias.numel() # Number of biases # Bias bn_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.bias.data) bn_layer.bias.data.copy_(bn_b) ptr += num_b # Weight bn_w = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.weight.data) bn_layer.weight.data.copy_(bn_w) ptr += num_b # Running Mean bn_rm = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_mean) bn_layer.running_mean.data.copy_(bn_rm) ptr += num_b # Running Var bn_rv = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(bn_layer.running_var) bn_layer.running_var.data.copy_(bn_rv) ptr += num_b print("loading weight {}".format(bn_layer)) else: # Load conv. bias num_b = conv_layer.bias.numel() conv_b = torch.from_numpy(weights[ptr:ptr + num_b]).view_as(conv_layer.bias.data) conv_layer.bias.data.copy_(conv_b) ptr += num_b # Load conv. weights num_w = conv_layer.weight.numel() conv_w = torch.from_numpy(weights[ptr:ptr + num_w]).view_as(conv_layer.weight.data) conv_layer.weight.data.copy_(conv_w) ptr += num_w print("loading weight {}".format(conv_layer)) def _BuildCSPDarknet53(weight_path, resume): model = CSPDarknet53(weight_path=weight_path, resume=resume) return model, model.feature_channels[-3:] if __name__ == '__main__': model = CSPDarknet53() x = torch.randn(1, 3, 224, 224) y = model(x)
[ "numpy.fromfile", "model.layers.attention_layers.CBAM", "math.sqrt", "torch.from_numpy", "torch.nn.Conv2d", "torch.nn.functional.softplus", "model.layers.attention_layers.SEModule", "torch.nn.Identity", "torch.randn", "torch.cat" ]
[((465, 478), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (476, 478), True, 'import torch.nn as nn\n'), ((8767, 8794), 'torch.randn', 'torch.randn', (['(1)', '(3)', '(224)', '(224)'], {}), '(1, 3, 224, 224)\n', (8778, 8794), False, 'import torch\n'), ((762, 907), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': 'filters_in', 'out_channels': 'filters_out', 'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': '(kernel_size // 2)', 'bias': '(not norm)'}), '(in_channels=filters_in, out_channels=filters_out, kernel_size=\n kernel_size, stride=stride, padding=kernel_size // 2, bias=not norm)\n', (771, 907), True, 'import torch.nn as nn\n'), ((3402, 3428), 'torch.cat', 'torch.cat', (['[x0, x1]'], {'dim': '(1)'}), '([x0, x1], dim=1)\n', (3411, 3428), False, 'import torch\n'), ((4301, 4327), 'torch.cat', 'torch.cat', (['[x0, x1]'], {'dim': '(1)'}), '([x0, x1], dim=1)\n', (4310, 4327), False, 'import torch\n'), ((2272, 2294), 'model.layers.attention_layers.SEModule', 'SEModule', (['out_channels'], {}), '(out_channels)\n', (2280, 2294), False, 'from model.layers.attention_layers import SEModule, CBAM\n'), ((6317, 6356), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': 'np.int32', 'count': '(5)'}), '(f, dtype=np.int32, count=5)\n', (6328, 6356), True, 'import numpy as np\n'), ((6379, 6411), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': 'np.float32'}), '(f, dtype=np.float32)\n', (6390, 6411), True, 'import numpy as np\n'), ((333, 346), 'torch.nn.functional.softplus', 'F.softplus', (['x'], {}), '(x)\n', (343, 346), True, 'import torch.nn.functional as F\n'), ((2357, 2375), 'model.layers.attention_layers.CBAM', 'CBAM', (['out_channels'], {}), '(out_channels)\n', (2361, 2375), False, 'from model.layers.attention_layers import SEModule, CBAM\n'), ((5753, 5771), 'math.sqrt', 'math.sqrt', (['(2.0 / n)'], {}), '(2.0 / n)\n', (5762, 5771), False, 'import math\n'), ((8325, 8367), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_w]'], {}), '(weights[ptr:ptr + num_w])\n', (8341, 8367), False, 'import torch\n'), ((7019, 7061), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_b]'], {}), '(weights[ptr:ptr + num_b])\n', (7035, 7061), False, 'import torch\n'), ((7230, 7272), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_b]'], {}), '(weights[ptr:ptr + num_b])\n', (7246, 7272), False, 'import torch\n'), ((7452, 7494), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_b]'], {}), '(weights[ptr:ptr + num_b])\n', (7468, 7494), False, 'import torch\n'), ((7681, 7723), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_b]'], {}), '(weights[ptr:ptr + num_b])\n', (7697, 7723), False, 'import torch\n'), ((8052, 8094), 'torch.from_numpy', 'torch.from_numpy', (['weights[ptr:ptr + num_b]'], {}), '(weights[ptr:ptr + num_b])\n', (8068, 8094), False, 'import torch\n')]
import os.path import cv2 import matplotlib.pyplot as plt import numpy as np from keras import Input, regularizers from keras.applications import vgg16 from keras.engine import Model from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, \ BatchNormalization from keras.models import Sequential, load_model from keras.utils import plot_model from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe def test_model_on_images(model_file): model = load_model(model_file) center = cv2.imread("test_images/center.jpg") left = cv2.imread("test_images/left.jpg") right = cv2.imread("test_images/right.jpg") print("Expected Steering : 0.0") images = [left, center, right] label = ["Left", "Center", "Right"] for pos, image in enumerate(images): this_image = preprocessing_pipe(image=center, img_rescale=100) image_array = np.asarray(this_image) steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1)) print(label[pos] + " : " + str(steering_angle)) def vgg_net(input_shape): """ Vgg net references - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) """ model = Sequential() # Use batch normalization to speed up process model.add(BatchNormalization(input_shape=input_shape)) # Smaller VGG Net (Blocks from VGG 16 with smaller filter depth) # 2 Conv, 3 Conv and 2 Conv block # Filter depth 8 -> 16 -> 32 (vgg16 64 --> 128 --> 256 --> 512 --> 512) # Dense 2048 -> 100 -> 10 --> 1 (vgg16 4096 --> 4096 --> classes) # Block 1 model.add(Conv2D(8, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 1-1')) model.add(Conv2D(16, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 1-2')) model.add(MaxPooling2D(pool_size=(2, 2))) # Block 2 # Dropout 0.2 (0.5 worse results) model.add(Conv2D(16, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 2-1')) model.add(Dropout(0.2)) model.add(Conv2D(32, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 2-2')) model.add(Dropout(0.2)) model.add(Conv2D(32, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 2-3')) model.add(Dropout(0.2)) model.add(MaxPooling2D(pool_size=(2, 2))) # Block 3 model.add(Conv2D(64, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 3-1')) model.add(Dropout(0.2)) model.add(Conv2D(64, (3, 3), padding='valid', strides=(1, 1), activation='relu', name='Conv 3-2')) model.add(Dropout(0.2)) model.add(MaxPooling2D(pool_size=(2, 2))) # Dense Block # Relu activation (ELU with no better results) --> nvidia_net_not_working() model.add(Flatten()) model.add(Dense(2048)) model.add(Activation(activation='relu')) model.add(Dense(100)) model.add(Activation(activation='relu')) model.add(Dense(10)) model.add(Activation(activation='relu')) model.add(Dense(1)) print(model.summary()) plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) return model def nvidia_net_not_working(row, col, ch): """ Try to use keras vgg net with own fc layers, but results (steering from prediction) were the same for different input images """ input_tensor = Input(shape=(row, col, ch)) model_vgg16 = vgg16.VGG16(include_top=False, input_tensor=input_tensor) x = Flatten()(model_vgg16.output) x = Dense(1164)(x) x = ELU()(x) x = Dropout(0.5)(x) x = Dense(100)(x) x = ELU()(x) x = Dropout(0.5)(x) x = Dense(50)(x) x = ELU()(x) x = Dense(10)(x) x = ELU()(x) x = Dropout(0.5)(x) x = Dense(1)(x) # create graph of your new model head_model = Model(input=model_vgg16.input, output=x) print(head_model.summary()) plot_model(head_model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) return head_model def test_model(ch, row, col): """ Test the model on three images (center/left/right) and predict the steering """ model = Sequential() model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=(row, col, ch), output_shape=(row, col, ch))) model.add(Cropping2D(cropping=((70, 25), (0, 0)))) model.add(Flatten()) model.add(Dense(1)) return model def print_summary(history_object): # plot the training and validation loss for each epoch plt.plot(history_object.history['loss']) plt.plot(history_object.history['val_loss']) plt.title('model mean squared error loss') plt.ylabel('mean squared error loss') plt.xlabel('epoch') plt.legend(['training set', 'validation set'], loc='upper right') plt.savefig("model_summary.png") plt.show() def main_loop(data_path, img_folder="IMG"): image_rescale = 100 data_path = data_path.replace("/", os.sep).replace("\\", os.sep) data_img_dir = os.path.join(data_path.rsplit(os.sep, 1)[0], img_folder) train_samples, validation_samples = load_training_data_as_generator(data_path) print("Number of training data {}".format(len(train_samples))) print("Number of validation data {}".format(len(validation_samples))) batch_size = 64 # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=batch_size, image_folder=data_img_dir, img_rescale=image_rescale) validation_generator = generator(validation_samples, batch_size=batch_size, image_folder=data_img_dir, img_rescale=image_rescale) ch = 3 row = int(50 * (image_rescale / 100)) col = int(320 * (image_rescale / 100)) model = vgg_net((row, col, ch)) model.compile(loss='mse', optimizer='adam') history_object = model.fit_generator(train_generator, steps_per_epoch=int(len(train_samples) / batch_size), validation_data=validation_generator, validation_steps=int(len(validation_samples) / batch_size), epochs=10, verbose=1) print("Save model") model.save("model.h5") print("Done, print summary to file") print_summary(history_object) print("Finished") if __name__ == "__main__": test = False datagen = False train = True if test: test_model_on_images("model_old.h5") if datagen: data_resampling("./data/track_1/driving_log.csv") if train: main_loop("./data/track_1/driving_log_to_center_only.csv")
[ "keras.layers.Conv2D", "keras.applications.vgg16.VGG16", "matplotlib.pyplot.ylabel", "data_loader.load_training_data_as_generator", "data_loader.data_resampling", "keras.layers.Activation", "keras.layers.Dense", "keras.layers.Cropping2D", "data_loader.preprocessing_pipe", "keras.utils.plot_model", "matplotlib.pyplot.plot", "matplotlib.pyplot.xlabel", "numpy.asarray", "keras.engine.Model", "matplotlib.pyplot.savefig", "keras.layers.Flatten", "keras.layers.MaxPooling2D", "keras.models.Sequential", "matplotlib.pyplot.title", "keras.layers.BatchNormalization", "data_loader.generator", "cv2.imread", "keras.layers.Dropout", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "keras.layers.ELU", "keras.models.load_model", "keras.layers.Lambda", "keras.Input" ]
[((558, 580), 'keras.models.load_model', 'load_model', (['model_file'], {}), '(model_file)\n', (568, 580), False, 'from keras.models import Sequential, load_model\n'), ((594, 630), 'cv2.imread', 'cv2.imread', (['"""test_images/center.jpg"""'], {}), "('test_images/center.jpg')\n", (604, 630), False, 'import cv2\n'), ((642, 676), 'cv2.imread', 'cv2.imread', (['"""test_images/left.jpg"""'], {}), "('test_images/left.jpg')\n", (652, 676), False, 'import cv2\n'), ((689, 724), 'cv2.imread', 'cv2.imread', (['"""test_images/right.jpg"""'], {}), "('test_images/right.jpg')\n", (699, 724), False, 'import cv2\n'), ((1327, 1339), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1337, 1339), False, 'from keras.models import Sequential, load_model\n'), ((3178, 3266), 'keras.utils.plot_model', 'plot_model', (['model'], {'to_file': '"""model_plot.png"""', 'show_shapes': '(True)', 'show_layer_names': '(True)'}), "(model, to_file='model_plot.png', show_shapes=True,\n show_layer_names=True)\n", (3188, 3266), False, 'from keras.utils import plot_model\n'), ((3488, 3515), 'keras.Input', 'Input', ([], {'shape': '(row, col, ch)'}), '(shape=(row, col, ch))\n', (3493, 3515), False, 'from keras import Input, regularizers\n'), ((3534, 3591), 'keras.applications.vgg16.VGG16', 'vgg16.VGG16', ([], {'include_top': '(False)', 'input_tensor': 'input_tensor'}), '(include_top=False, input_tensor=input_tensor)\n', (3545, 3591), False, 'from keras.applications import vgg16\n'), ((3961, 4001), 'keras.engine.Model', 'Model', ([], {'input': 'model_vgg16.input', 'output': 'x'}), '(input=model_vgg16.input, output=x)\n', (3966, 4001), False, 'from keras.engine import Model\n'), ((4038, 4131), 'keras.utils.plot_model', 'plot_model', (['head_model'], {'to_file': '"""model_plot.png"""', 'show_shapes': '(True)', 'show_layer_names': '(True)'}), "(head_model, to_file='model_plot.png', show_shapes=True,\n show_layer_names=True)\n", (4048, 4131), False, 'from keras.utils import plot_model\n'), ((4290, 4302), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (4300, 4302), False, 'from keras.models import Sequential, load_model\n'), ((4671, 4711), 'matplotlib.pyplot.plot', 'plt.plot', (["history_object.history['loss']"], {}), "(history_object.history['loss'])\n", (4679, 4711), True, 'import matplotlib.pyplot as plt\n'), ((4716, 4760), 'matplotlib.pyplot.plot', 'plt.plot', (["history_object.history['val_loss']"], {}), "(history_object.history['val_loss'])\n", (4724, 4760), True, 'import matplotlib.pyplot as plt\n'), ((4765, 4807), 'matplotlib.pyplot.title', 'plt.title', (['"""model mean squared error loss"""'], {}), "('model mean squared error loss')\n", (4774, 4807), True, 'import matplotlib.pyplot as plt\n'), ((4812, 4849), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""mean squared error loss"""'], {}), "('mean squared error loss')\n", (4822, 4849), True, 'import matplotlib.pyplot as plt\n'), ((4854, 4873), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (4864, 4873), True, 'import matplotlib.pyplot as plt\n'), ((4878, 4943), 'matplotlib.pyplot.legend', 'plt.legend', (["['training set', 'validation set']"], {'loc': '"""upper right"""'}), "(['training set', 'validation set'], loc='upper right')\n", (4888, 4943), True, 'import matplotlib.pyplot as plt\n'), ((4948, 4980), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""model_summary.png"""'], {}), "('model_summary.png')\n", (4959, 4980), True, 'import matplotlib.pyplot as plt\n'), ((4985, 4995), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4993, 4995), True, 'import matplotlib.pyplot as plt\n'), ((5251, 5293), 'data_loader.load_training_data_as_generator', 'load_training_data_as_generator', (['data_path'], {}), '(data_path)\n', (5282, 5293), False, 'from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe\n'), ((5542, 5647), 'data_loader.generator', 'generator', (['train_samples'], {'batch_size': 'batch_size', 'image_folder': 'data_img_dir', 'img_rescale': 'image_rescale'}), '(train_samples, batch_size=batch_size, image_folder=data_img_dir,\n img_rescale=image_rescale)\n', (5551, 5647), False, 'from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe\n'), ((5703, 5814), 'data_loader.generator', 'generator', (['validation_samples'], {'batch_size': 'batch_size', 'image_folder': 'data_img_dir', 'img_rescale': 'image_rescale'}), '(validation_samples, batch_size=batch_size, image_folder=\n data_img_dir, img_rescale=image_rescale)\n', (5712, 5814), False, 'from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe\n'), ((901, 950), 'data_loader.preprocessing_pipe', 'preprocessing_pipe', ([], {'image': 'center', 'img_rescale': '(100)'}), '(image=center, img_rescale=100)\n', (919, 950), False, 'from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe\n'), ((973, 995), 'numpy.asarray', 'np.asarray', (['this_image'], {}), '(this_image)\n', (983, 995), True, 'import numpy as np\n'), ((1405, 1448), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {'input_shape': 'input_shape'}), '(input_shape=input_shape)\n', (1423, 1448), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((1733, 1824), 'keras.layers.Conv2D', 'Conv2D', (['(8)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 1-1"""'}), "(8, (3, 3), padding='valid', strides=(1, 1), activation='relu', name=\n 'Conv 1-1')\n", (1739, 1824), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((1835, 1927), 'keras.layers.Conv2D', 'Conv2D', (['(16)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 1-2"""'}), "(16, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 1-2')\n", (1841, 1927), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((1938, 1968), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (1950, 1968), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2037, 2129), 'keras.layers.Conv2D', 'Conv2D', (['(16)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 2-1"""'}), "(16, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 2-1')\n", (2043, 2129), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2140, 2152), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2147, 2152), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2168, 2260), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 2-2"""'}), "(32, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 2-2')\n", (2174, 2260), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2271, 2283), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2278, 2283), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2299, 2391), 'keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 2-3"""'}), "(32, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 2-3')\n", (2305, 2391), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2402, 2414), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2409, 2414), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2430, 2460), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (2442, 2460), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2491, 2583), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 3-1"""'}), "(64, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 3-1')\n", (2497, 2583), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2594, 2606), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2601, 2606), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2622, 2714), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'padding': '"""valid"""', 'strides': '(1, 1)', 'activation': '"""relu"""', 'name': '"""Conv 3-2"""'}), "(64, (3, 3), padding='valid', strides=(1, 1), activation='relu', name\n ='Conv 3-2')\n", (2628, 2714), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2725, 2737), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2732, 2737), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2753, 2783), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (2765, 2783), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2898, 2907), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2905, 2907), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2923, 2934), 'keras.layers.Dense', 'Dense', (['(2048)'], {}), '(2048)\n', (2928, 2934), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2950, 2979), 'keras.layers.Activation', 'Activation', ([], {'activation': '"""relu"""'}), "(activation='relu')\n", (2960, 2979), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((2995, 3005), 'keras.layers.Dense', 'Dense', (['(100)'], {}), '(100)\n', (3000, 3005), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3021, 3050), 'keras.layers.Activation', 'Activation', ([], {'activation': '"""relu"""'}), "(activation='relu')\n", (3031, 3050), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3066, 3075), 'keras.layers.Dense', 'Dense', (['(10)'], {}), '(10)\n', (3071, 3075), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3091, 3120), 'keras.layers.Activation', 'Activation', ([], {'activation': '"""relu"""'}), "(activation='relu')\n", (3101, 3120), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3136, 3144), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (3141, 3144), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3630, 3639), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3637, 3639), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3668, 3679), 'keras.layers.Dense', 'Dense', (['(1164)'], {}), '(1164)\n', (3673, 3679), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3691, 3696), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (3694, 3696), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3708, 3720), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3715, 3720), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3732, 3742), 'keras.layers.Dense', 'Dense', (['(100)'], {}), '(100)\n', (3737, 3742), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3754, 3759), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (3757, 3759), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3771, 3783), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3778, 3783), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3795, 3804), 'keras.layers.Dense', 'Dense', (['(50)'], {}), '(50)\n', (3800, 3804), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3816, 3821), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (3819, 3821), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3833, 3842), 'keras.layers.Dense', 'Dense', (['(10)'], {}), '(10)\n', (3838, 3842), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3854, 3859), 'keras.layers.ELU', 'ELU', ([], {}), '()\n', (3857, 3859), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3871, 3883), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3878, 3883), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((3895, 3903), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (3900, 3903), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((4317, 4412), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 127.5 - 1.0)'], {'input_shape': '(row, col, ch)', 'output_shape': '(row, col, ch)'}), '(lambda x: x / 127.5 - 1.0, input_shape=(row, col, ch), output_shape=\n (row, col, ch))\n', (4323, 4412), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((4464, 4503), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (4474, 4503), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((4519, 4528), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (4526, 4528), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((4544, 4552), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (4549, 4552), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout, ELU, Activation, MaxPooling2D, Conv2D, BatchNormalization\n'), ((6781, 6830), 'data_loader.data_resampling', 'data_resampling', (['"""./data/track_1/driving_log.csv"""'], {}), "('./data/track_1/driving_log.csv')\n", (6796, 6830), False, 'from data_loader import load_training_data_as_generator, generator, data_resampling, preprocessing_pipe\n')]
import os import math import numpy as np import tensorflow as tf from concept import Concept import pdb np.set_printoptions(precision=5, suppress=True) class Teacher: def __init__(self, sess, rl_gamma, boltzman_beta, belief_var_1d, num_distractors, attributes_size, message_space_size): self.sess = sess self.num_distractors_ = num_distractors self.attributes_size_ = attributes_size self.message_space_size_ = message_space_size self.rl_gamma_ = rl_gamma self.boltzman_beta_ = boltzman_beta self.belief_var_1d_ = belief_var_1d ################ # Placeholders # ################ with tf.variable_scope('Teacher'): self.distractors_ = tf.placeholder(tf.float32, name = 'distractors', shape = [None, self.num_distractors_, self.attributes_size_]) self.distractors_tensor_ = tf.expand_dims(self.distractors_, 2) self.message_ = tf.placeholder(tf.float32, shape = [None, self.message_space_size_], name = 'message') self.teacher_belief_ = tf.placeholder(tf.float32, shape = [None, self.num_distractors_], name = 'teacher_belief') self.student_belief_ = tf.placeholder(tf.float32, shape = [None, self.num_distractors_], name = 'student_belief') self.student_belief_spvs_ = tf.placeholder(tf.float32, shape = [None, self.num_distractors_], name = 'student_belief_spvs') self.q_net_spvs_ = tf.placeholder(tf.float32, shape = [None]) ######################## # Belief Update Module # ######################## self.belief_update_opt_ = tf.train.AdamOptimizer(learning_rate = 1e-3) with tf.variable_scope('Belief_Update'): self.df1_ = tf.layers.conv2d(self.distractors_tensor_, 3 * self.message_space_size_, kernel_size = [1, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1), activation = tf.nn.leaky_relu) self.df2_ = tf.layers.conv2d(self.df1_, 3 * self.message_space_size_, kernel_size = [1, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), activation = tf.nn.leaky_relu) # self.df3_ = tf.layers.conv2d(self.df2_, 1 * self.message_space_size_, kernel_size = [1, 1], # kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2), # activation = None) self.msg_from_df_1_ = [] for _ in range(self.num_distractors_): self.msg_from_df_1_.append(tf.layers.conv2d(self.df2_, 2 * self.message_space_size_, kernel_size = [self.num_distractors_, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), padding = 'valid', activation = tf.nn.leaky_relu)) self.msg_est_tensor_1_ = tf.concat(self.msg_from_df_1_, axis = 1) self.msg_from_df_2_ = [] for _ in range(self.num_distractors_): self.msg_from_df_2_.append(tf.layers.conv2d(self.msg_est_tensor_1_, 1 * self.message_space_size_, kernel_size = [self.num_distractors_, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2), padding = 'valid', activation = None)) self.msg_est_tensor_2_ = tf.concat(self.msg_from_df_2_, axis = 1) self.reg_varlist_ = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if v.name.startswith('Belief')] ####################### #network belief update# ####################### self.msg_est_tensor_2d_ = tf.squeeze(self.msg_est_tensor_2_, axis = 2) self.belief_var_1d_ = tf.exp(tf.Variable(initial_value = self.belief_var_1d_, trainable = True, dtype = tf.float32)) # self.belief_var_ = tf.layers.conv2d(self.msg_est_tensor_3_, 1, kernel_size = [self.num_distractors_, 1], # kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-3), # padding = 'valid', activation = None) # self.belief_var_1d_ = tf.squeeze(self.belief_var_, axis = 2) self.boltzman_beta_ = tf.Variable(initial_value = self.boltzman_beta_, trainable = False, dtype = tf.float32, name = 'boltzman_beta') self.msg_indices_ = tf.where(tf.not_equal(self.message_, 0)) self.df_msg_match_ = tf.exp(self.boltzman_beta_ * self.msg_est_tensor_2d_) self.df_msg_match_norm_ = tf.div_no_nan(self.df_msg_match_, tf.reduce_sum(self.df_msg_match_, axis = 2, keepdims = True)) self.df_msg_2_norm_ = tf.gather_nd(tf.transpose(self.df_msg_match_norm_, perm = [0, 2, 1]), self.msg_indices_) #self.df_msg_1_ = tf.multiply(self.dfb_merge_pre_3_, tf.expand_dims(tf.expand_dims(self.message_, 1), 1)) #self.df_msg_2_ = tf.exp(self.boltzman_beta_ * tf.reduce_sum(tf.squeeze(self.df_msg_1_, 2), axis = 2)) #self.df_msg_2_norm_ = tf.nn.relu(self.df_msg_2_ + self.belief_var_1_) self.belief_pred_1_ = tf.multiply(self.df_msg_2_norm_, self.student_belief_) self.belief_pred_full_ = tf.concat([self.belief_pred_1_, self.belief_var_1d_ * tf.slice(tf.ones_like(self.belief_pred_1_), [0, 0], [-1, 1])], axis = 1) ####################### #network belief update# ####################### ''' ###################### #kernel belief update# ###################### self.kernel_columns_ = [] for i in range(self.num_distractors_): self.df_msg_1_ = tf.multiply(self.msg_est_tensor_2_, tf.expand_dims(tf.expand_dims(self.message_, 1), 1)) self.df_msg_2_ = tf.contrib.layers.fully_connected(tf.layers.flatten(self.df_msg_1_),\ 2 * self.num_distractors_, activation_fn = tf.nn.leaky_relu) self.df_msg_3_ = tf.contrib.layers.fully_connected(self.df_msg_2_, self.num_distractors_, activation_fn = None) kernel_column = tf.nn.relu(self.df_msg_3_) self.kernel_columns_.append(tf.expand_dims(tf.div_no_nan(kernel_column, tf.reduce_sum(kernel_column, axis = 1, keepdims = True)), -1)) self.kernel_pre_norm_ = tf.no_op() self.kernel_ = tf.concat(self.kernel_columns_, axis = 2) print('<Belief Update Kernel Generator Constructed>') self.belief_pred_ = tf.nn.relu(tf.squeeze(tf.matmul(self.kernel_, tf.expand_dims(self.student_belief_, -1)), -1)) ###################### #kernel belief update# ###################### ''' self.belief_pred_full_norm_ = tf.div_no_nan(self.belief_pred_full_, tf.reduce_sum(self.belief_pred_full_, axis = 1, keepdims = True)) self.belief_pred_ = tf.slice(self.belief_pred_full_norm_, [0, 0], [-1, self.num_distractors_]) self.regularization_ = 1e-4 * tf.add_n([ tf.nn.l2_loss(v) for v in self.reg_varlist_ if 'bias' not in v.name ]) self.cross_entropy_1_ = -1 * tf.reduce_mean(tf.reduce_sum(tf.multiply(self.student_belief_spvs_, tf.math.log(self.belief_pred_)), axis = 1)) self.cross_entropy_2_ = -1 * tf.reduce_mean(tf.reduce_sum(tf.multiply(self.belief_pred_, tf.math.log(self.student_belief_spvs_ + 1e-9)), axis = 1)) self.cross_entropy_ = self.cross_entropy_1_ + self.cross_entropy_2_ + self.regularization_ self.belief_train_varlist_ = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if v.name.startswith('Belief_Update')] self.belief_update_varlist_ = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if v.name.startswith('Belief_Update')] self.belief_update_train_op_ = self.belief_update_opt_.minimize(self.cross_entropy_, var_list = self.belief_train_varlist_) self.belief_update_saver_ = tf.train.Saver() self.belief_update_loader_ = tf.train.Saver(self.belief_update_varlist_) #################### # Q-network Module # #################### self.q_net_opt_ = tf.train.AdamOptimizer(learning_rate = 1e-5) with tf.variable_scope('q_net'): self.distct_feat_1_ = tf.layers.conv2d(self.distractors_tensor_, 3 * self.message_space_size_, kernel_size = [1, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), activation = tf.nn.leaky_relu) self.distct_feat_2_ = tf.layers.conv2d(self.distct_feat_1_, 2 * self.message_space_size_, kernel_size = [1, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), activation = tf.nn.leaky_relu) self.distct_feat_2_weighted_ = tf.multiply(self.distct_feat_2_, tf.expand_dims(tf.expand_dims(self.belief_pred_, -1), -1)) self.distcts_feat_1_ = [] for _ in range(self.num_distractors_): self.distcts_feat_1_.append(tf.layers.conv2d(self.distct_feat_2_weighted_, 1 * self.message_space_size_, kernel_size = [self.num_distractors_, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), padding = 'valid', activation = tf.nn.leaky_relu)) self.distcts_feat_tensor_1_ = tf.concat(self.distcts_feat_1_, axis = 1) self.distcts_feat_2_ = [] for _ in range(self.num_distractors_): self.distcts_feat_2_.append(tf.layers.conv2d(self.distcts_feat_tensor_1_, 1 * self.message_space_size_, kernel_size = [self.num_distractors_, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), padding = 'valid', activation = tf.nn.leaky_relu)) self.distcts_feat_tensor_2_ = tf.concat(self.distcts_feat_2_, axis = 1) self.custome_activaiton_ = lambda x: tf.where(tf.math.greater(x, 0), (tf.exp(x) - 1), (-1 * tf.exp(-x) + 1)) self.distcts_feat_3_ = [] for _ in range(self.num_distractors_): self.distcts_feat_3_.append(tf.layers.conv2d(self.distcts_feat_tensor_2_, 1, kernel_size = [self.num_distractors_, 1], kernel_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-1), padding = 'valid', activation = self.custome_activaiton_)) self.distcts_feat_tensor_3_ = tf.concat(self.distcts_feat_3_, axis = 1) self.value_param_1_ = tf.Variable(initial_value = -1, trainable = False, dtype = tf.float32) self.value_ = tf.reduce_sum(tf.multiply(tf.squeeze(self.distcts_feat_tensor_3_), self.teacher_belief_), axis = 1) +\ (1 - tf.reduce_sum(self.belief_pred_, axis = 1)) * self.value_param_1_ ''' self.df_b1_ = tf.multiply(tf.squeeze(self.distct_feat_2_, axis = 2), tf.expand_dims(self.teacher_belief_, -1)) self.df_b2_ = tf.multiply(tf.squeeze(self.distct_feat_2_, axis = 2), tf.expand_dims(self.belief_pred_, -1)) self.concat_df_b_ = tf.layers.flatten(tf.concat((self.df_b1_, self.df_b2_), axis = 2)) # self.dfb_merge_pre_ = tf.contrib.layers.fully_connected(tf.reduce_sum(tf.abs(self.df_b1_ - self.df_b2_), axis = 1), 4, activation_fn = tf.nn.leaky_relu, # weights_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2)) self.dfb_merge_pre_1_ = tf.contrib.layers.fully_connected(self.concat_df_b_, 6, activation_fn = tf.nn.leaky_relu, weights_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2)) self.dfb_merge_pre_2_ = tf.contrib.layers.fully_connected(self.dfb_merge_pre_1_, 4, activation_fn = tf.nn.leaky_relu, weights_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2)) self.dfb_merge_ = tf.contrib.layers.fully_connected(self.dfb_merge_pre_2_, 1, activation_fn = None, weights_initializer = tf.random_normal_initializer(mean = 0.0, stddev = 1e-2)) self.value_ = tf.squeeze(self.dfb_merge_) ''' # self.dfb_merge_ = tf.reduce_sum(tf.square(self.df_b1_ - self.df_b2_), axis = [1, 2]) # self.value_param_0_ = tf.squeeze(tf.contrib.layers.fully_connected(self.concat_df_b_, 1, activation_fn = None)) # self.value_param_00_ = tf.squeeze(tf.contrib.layers.fully_connected(self.dfb_merge_pre_1_, 1, activation_fn = None)) # self.value_param_000_ = tf.squeeze(tf.contrib.layers.fully_connected(self.dfb_merge_pre_1_, 1, activation_fn = None)) # self.value_param_0000_ = tf.squeeze(tf.contrib.layers.fully_connected(self.dfb_merge_pre_1_, 1, activation_fn = None)) # self.value_param_1_ = tf.Variable(initial_value = -1, trainable = True, dtype = tf.float32) # self.value_param_2_ = tf.Variable(initial_value = 1, trainable = True, dtype = tf.float32) # self.value_param_3_ = tf.Variable(initial_value = -1, trainable = True, dtype = tf.float32) #self.value_param_2_ * tf.exp(self.value_param_1_ * tf.squeeze(self.dfb_merge_)) + self.value_param_3_ #self.value_ = 1 - tf.squeeze(tf.contrib.layers.fully_connected(tf.reduce_sum(self.df_b1_ - self.df_b2_, axis = 2), 1, activation_fn = None)) self.reg_varlist_q_ = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if v.name.startswith('q_net')] self.regularization_q_ = 1e-4 * tf.add_n([ tf.nn.l2_loss(v) for v in self.reg_varlist_q_ if 'bias' not in v.name ]) self.q_net_loss_pre_ = tf.square(self.value_ - self.q_net_spvs_) self.success_mask_ = tf.to_float(tf.math.greater(self.q_net_spvs_, 0.0)) self.fail_mask_ = tf.to_float(tf.math.greater(0.0, self.q_net_spvs_)) self.imbalance_penalty_ = self.success_mask_ + self.fail_mask_ * tf.div_no_nan(tf.reduce_sum(self.success_mask_), tf.reduce_sum(self.fail_mask_)) #self.q_net_loss_ = tf.reduce_mean(self.q_net_loss_pre_ * tf.to_float(self.q_net_loss_pre_ > 0.05) * self.imbalance_penalty_) + self.regularization_q_ self.q_net_loss_ = tf.reduce_mean(self.q_net_loss_pre_ * self.imbalance_penalty_) + self.regularization_q_ self.q_net_varlist_ = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if v.name.startswith('q_net')] self.q_net_train_op_ = self.q_net_opt_.minimize(self.q_net_loss_, var_list = self.q_net_varlist_) self.total_loader_ = tf.train.Saver([v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if 'Adam' not in v.name]) self.total_saver_ = tf.train.Saver() def train_belief_update(self, data_batch): _, cross_entropy, belief_pred, posterior, likelihood = self.sess.run([self.belief_update_train_op_, self.cross_entropy_, self.belief_pred_, self.belief_pred_1_, self.df_msg_2_norm_], feed_dict = {self.student_belief_: data_batch['prev_belief'], self.message_: data_batch['message'], self.distractors_: data_batch['distractors'], self.student_belief_spvs_: data_batch['new_belief']}) return cross_entropy, belief_pred, posterior[:10], likelihood[:10] def pretrain_bayesian_belief_update(self, concept_generator, teacher_pretraining_steps, teacher_pretrain_batch_size, teacher_pretrain_ckpt_dir, teacher_pretrain_ckpt_name, continue_steps = 0, silent = False): if not os.path.exists(teacher_pretrain_ckpt_dir): os.makedirs(teacher_pretrain_ckpt_dir) ckpt = tf.train.get_checkpoint_state(teacher_pretrain_ckpt_dir) train_steps = teacher_pretraining_steps if ckpt: self.belief_update_loader_.restore(self.sess, ckpt.model_checkpoint_path) print('Loaded teacher belief update ckpt from %s' % teacher_pretrain_ckpt_dir) train_steps = continue_steps else: print('Cannot loaded teacher belief update ckpt from %s' % teacher_pretrain_ckpt_dir) accuracies = [] l1_diffs = [] bayesian_wrongs = [] for ts in range(train_steps): data_batch = concept_generator.generate_batch(teacher_pretrain_batch_size) cross_entropy, belief_pred, posterior, likelihood = self.train_belief_update(data_batch) l1_diff = np.sum(abs(belief_pred - data_batch['new_belief']), axis = 1) correct = (l1_diff <= 5e-2) bayesian_wrong = np.mean(np.sum((data_batch['new_belief'] == 0) * (belief_pred > 1e-5), axis = 1) > 0) accuracies.append(np.mean(correct)) l1_diffs.append(np.mean(l1_diff)) bayesian_wrongs.append(bayesian_wrong) if np.sum(np.isnan(belief_pred)) != 0: pdb.set_trace() if ts % 1000 == 0 and not silent: print('[T%d] batch mean cross entropy: %f, mean accuracies: %f, mean l1: %f, bayesian wrong: %f'\ % (ts + 1, cross_entropy, np.mean(accuracies), np.mean(l1_diffs), np.mean(bayesian_wrongs))) boltzman_beta, belief_var_1d = self.sess.run([self.boltzman_beta_, self.belief_var_1d_]) print('boltzman_beta: %f, belief_var_1d: %f' % (boltzman_beta, belief_var_1d)) print('new_belief: ') print(data_batch['new_belief'][:10]) print('prior: ') print(data_batch['prev_belief'][:10]) print('likelihood: ') print(likelihood) print('posterior: ') print(posterior) print('predict_belief: ') print(belief_pred[:10]) if np.mean(accuracies) > 0.9: #idx = np.random.randint(teacher_pretrain_batch_size) idx = teacher_pretrain_batch_size for i in range(idx): print('\t target:', data_batch['new_belief'][i, :]) print('\t predict', belief_pred[i, :]) accuracies = [] l1_diffs = [] bayesian_wrongs = [] if (ts + 1) % 10000 == 0: self.belief_update_saver_.save(self.sess, os.path.join(teacher_pretrain_ckpt_dir, teacher_pretrain_ckpt_name), global_step = teacher_pretraining_steps) print('Saved teacher belief update ckpt to %s after %d training'\ % (teacher_pretrain_ckpt_dir, ts)) if train_steps != 0: self.belief_update_saver_.save(self.sess, os.path.join(teacher_pretrain_ckpt_dir, teacher_pretrain_ckpt_name), global_step = teacher_pretraining_steps) print('Saved teacher belief update ckpt to %s after %d training'\ % (teacher_pretrain_ckpt_dir, train_steps)) def train_q_net(self, data_batch): _, q_net_loss, value = self.sess.run([self.q_net_train_op_, self.q_net_loss_, self.value_],\ feed_dict = {self.q_net_spvs_: data_batch['target_q'], self.student_belief_: data_batch['student_belief'], self.message_: data_batch['message'], self.distractors_: data_batch['distractors'], self.teacher_belief_: data_batch['teacher_belief']}) print('Q learning loss: %f' % q_net_loss) ridx = np.random.randint(value.shape[0]) #print(value[ridx], data_batch['target_q'][ridx]) print('0.8: %f, 0.2: %f' % (np.sum(value * (data_batch['target_q'] == 0.8)) / np.sum(data_batch['target_q'] == 0.8), np.sum(value * (data_batch['target_q'] == -0.2)) / np.sum(data_batch['target_q'] == -0.2))) print('Teacher value est:', value[ridx: ridx + 10], data_batch['target_q'][ridx: ridx + 10]) #print(distcts_feat_tensor_3[ridx, :]) return q_net_loss def get_q_value_for_all_msg(self, teacher_belief, student_belief, embeded_concepts): all_msg_embeddings = np.identity(self.message_space_size_) teacher_belief_tile = np.tile(teacher_belief, (self.message_space_size_, 1)) student_belief_tile = np.tile(student_belief, (self.message_space_size_, 1)) embeded_concepts_tile = np.tile(embeded_concepts, (self.message_space_size_, 1, 1)) q_values, belief_pred, distcts_feat_tensor_3, belief_dst, msg_est_tensor = self.sess.run([self.value_, self.belief_pred_, self.distcts_feat_tensor_3_, self.value_, self.msg_est_tensor_2_], feed_dict = {self.distractors_: embeded_concepts_tile, self.message_: all_msg_embeddings, self.teacher_belief_: teacher_belief_tile, self.student_belief_: student_belief_tile}) return q_values, belief_pred, distcts_feat_tensor_3, belief_dst, msg_est_tensor[0] def update_net(self, belief_update_tuples, q_learning_tuples, update_term = 'Both'): debug_structure = {} belief_update_batch = {} belief_update_batch['prev_belief'] = [] belief_update_batch['new_belief'] = [] belief_update_batch['message'] = [] belief_update_batch['distractors'] = [] for belief_tuple in belief_update_tuples: belief_update_batch['distractors'].append(belief_tuple[0]) belief_update_batch['prev_belief'].append(belief_tuple[1]) belief_update_batch['message'].append(belief_tuple[2]) belief_update_batch['new_belief'].append(belief_tuple[3]) for k in belief_update_batch: belief_update_batch[k] = np.array(belief_update_batch[k]) if update_term == 'Both' or update_term == 'Belief': cross_entropy, belief_pred = self.train_belief_update(belief_update_batch) print('Teacher\'s belief esimate cross_entropy: %f' % cross_entropy) debug_structure['teacher_belief_prediction'] = belief_pred q_learning_batch = {} q_learning_batch['student_belief'] = [] q_learning_batch['teacher_belief'] = [] q_learning_batch['message'] = [] q_learning_batch['distractors'] = [] q_learning_batch['target_q'] = [] for q_learning_tuple in q_learning_tuples: q_learning_batch['distractors'].append(q_learning_tuple[0]) q_learning_batch['student_belief'].append(q_learning_tuple[1]) q_learning_batch['teacher_belief'].append(q_learning_tuple[2]) q_learning_batch['message'].append(q_learning_tuple[3]) q_learning_batch['target_q'].append(q_learning_tuple[4]) for k in q_learning_batch: q_learning_batch[k] = np.array(q_learning_batch[k]) if update_term == 'Both' or update_term == 'Q-Net': q_net_loss = self.train_q_net(q_learning_batch) return debug_structure if __name__ == '__main__': main()
[ "tensorflow.transpose", "tensorflow.math.log", "tensorflow.reduce_sum", "tensorflow.multiply", "numpy.array", "tensorflow.ones_like", "tensorflow.reduce_mean", "tensorflow.slice", "os.path.exists", "numpy.mean", "tensorflow.placeholder", "tensorflow.not_equal", "tensorflow.random_normal_initializer", "tensorflow.concat", "tensorflow.square", "tensorflow.train.AdamOptimizer", "numpy.identity", "numpy.tile", "tensorflow.variable_scope", "tensorflow.Variable", "tensorflow.nn.l2_loss", "tensorflow.train.get_checkpoint_state", "numpy.isnan", "tensorflow.squeeze", "tensorflow.expand_dims", "numpy.set_printoptions", "tensorflow.math.greater", "os.makedirs", "tensorflow.train.Saver", "os.path.join", "numpy.sum", "numpy.random.randint", "pdb.set_trace", "tensorflow.exp", "tensorflow.get_collection" ]
[((105, 152), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(5)', 'suppress': '(True)'}), '(precision=5, suppress=True)\n', (124, 152), True, 'import numpy as np\n'), ((1510, 1553), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (1532, 1553), True, 'import tensorflow as tf\n'), ((7341, 7357), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (7355, 7357), True, 'import tensorflow as tf\n'), ((7389, 7432), 'tensorflow.train.Saver', 'tf.train.Saver', (['self.belief_update_varlist_'], {}), '(self.belief_update_varlist_)\n', (7403, 7432), True, 'import tensorflow as tf\n'), ((7522, 7565), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(1e-05)'}), '(learning_rate=1e-05)\n', (7544, 7565), True, 'import tensorflow as tf\n'), ((13653, 13669), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (13667, 13669), True, 'import tensorflow as tf\n'), ((14550, 14606), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['teacher_pretrain_ckpt_dir'], {}), '(teacher_pretrain_ckpt_dir)\n', (14579, 14606), True, 'import tensorflow as tf\n'), ((17805, 17838), 'numpy.random.randint', 'np.random.randint', (['value.shape[0]'], {}), '(value.shape[0])\n', (17822, 17838), True, 'import numpy as np\n'), ((18381, 18418), 'numpy.identity', 'np.identity', (['self.message_space_size_'], {}), '(self.message_space_size_)\n', (18392, 18418), True, 'import numpy as np\n'), ((18443, 18497), 'numpy.tile', 'np.tile', (['teacher_belief', '(self.message_space_size_, 1)'], {}), '(teacher_belief, (self.message_space_size_, 1))\n', (18450, 18497), True, 'import numpy as np\n'), ((18522, 18576), 'numpy.tile', 'np.tile', (['student_belief', '(self.message_space_size_, 1)'], {}), '(student_belief, (self.message_space_size_, 1))\n', (18529, 18576), True, 'import numpy as np\n'), ((18603, 18662), 'numpy.tile', 'np.tile', (['embeded_concepts', '(self.message_space_size_, 1, 1)'], {}), '(embeded_concepts, (self.message_space_size_, 1, 1))\n', (18610, 18662), True, 'import numpy as np\n'), ((619, 647), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Teacher"""'], {}), "('Teacher')\n", (636, 647), True, 'import tensorflow as tf\n'), ((672, 783), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""distractors"""', 'shape': '[None, self.num_distractors_, self.attributes_size_]'}), "(tf.float32, name='distractors', shape=[None, self.\n num_distractors_, self.attributes_size_])\n", (686, 783), True, 'import tensorflow as tf\n'), ((827, 863), 'tensorflow.expand_dims', 'tf.expand_dims', (['self.distractors_', '(2)'], {}), '(self.distractors_, 2)\n', (841, 863), True, 'import tensorflow as tf\n'), ((883, 970), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.message_space_size_]', 'name': '"""message"""'}), "(tf.float32, shape=[None, self.message_space_size_], name=\n 'message')\n", (897, 970), True, 'import tensorflow as tf\n'), ((997, 1088), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.num_distractors_]', 'name': '"""teacher_belief"""'}), "(tf.float32, shape=[None, self.num_distractors_], name=\n 'teacher_belief')\n", (1011, 1088), True, 'import tensorflow as tf\n'), ((1114, 1205), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.num_distractors_]', 'name': '"""student_belief"""'}), "(tf.float32, shape=[None, self.num_distractors_], name=\n 'student_belief')\n", (1128, 1205), True, 'import tensorflow as tf\n'), ((1236, 1332), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.num_distractors_]', 'name': '"""student_belief_spvs"""'}), "(tf.float32, shape=[None, self.num_distractors_], name=\n 'student_belief_spvs')\n", (1250, 1332), True, 'import tensorflow as tf\n'), ((1358, 1398), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None]'}), '(tf.float32, shape=[None])\n', (1372, 1398), True, 'import tensorflow as tf\n'), ((1562, 1596), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Belief_Update"""'], {}), "('Belief_Update')\n", (1579, 1596), True, 'import tensorflow as tf\n'), ((2686, 2724), 'tensorflow.concat', 'tf.concat', (['self.msg_from_df_1_'], {'axis': '(1)'}), '(self.msg_from_df_1_, axis=1)\n', (2695, 2724), True, 'import tensorflow as tf\n'), ((3120, 3158), 'tensorflow.concat', 'tf.concat', (['self.msg_from_df_2_'], {'axis': '(1)'}), '(self.msg_from_df_2_, axis=1)\n', (3129, 3158), True, 'import tensorflow as tf\n'), ((3394, 3436), 'tensorflow.squeeze', 'tf.squeeze', (['self.msg_est_tensor_2_'], {'axis': '(2)'}), '(self.msg_est_tensor_2_, axis=2)\n', (3404, 3436), True, 'import tensorflow as tf\n'), ((3908, 4016), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': 'self.boltzman_beta_', 'trainable': '(False)', 'dtype': 'tf.float32', 'name': '"""boltzman_beta"""'}), "(initial_value=self.boltzman_beta_, trainable=False, dtype=tf.\n float32, name='boltzman_beta')\n", (3919, 4016), True, 'import tensorflow as tf\n'), ((4117, 4170), 'tensorflow.exp', 'tf.exp', (['(self.boltzman_beta_ * self.msg_est_tensor_2d_)'], {}), '(self.boltzman_beta_ * self.msg_est_tensor_2d_)\n', (4123, 4170), True, 'import tensorflow as tf\n'), ((4752, 4806), 'tensorflow.multiply', 'tf.multiply', (['self.df_msg_2_norm_', 'self.student_belief_'], {}), '(self.df_msg_2_norm_, self.student_belief_)\n', (4763, 4806), True, 'import tensorflow as tf\n'), ((6340, 6414), 'tensorflow.slice', 'tf.slice', (['self.belief_pred_full_norm_', '[0, 0]', '[-1, self.num_distractors_]'], {}), '(self.belief_pred_full_norm_, [0, 0], [-1, self.num_distractors_])\n', (6348, 6414), True, 'import tensorflow as tf\n'), ((7574, 7600), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""q_net"""'], {}), "('q_net')\n", (7591, 7600), True, 'import tensorflow as tf\n'), ((8678, 8717), 'tensorflow.concat', 'tf.concat', (['self.distcts_feat_1_'], {'axis': '(1)'}), '(self.distcts_feat_1_, axis=1)\n', (8687, 8717), True, 'import tensorflow as tf\n'), ((9137, 9176), 'tensorflow.concat', 'tf.concat', (['self.distcts_feat_2_'], {'axis': '(1)'}), '(self.distcts_feat_2_, axis=1)\n', (9146, 9176), True, 'import tensorflow as tf\n'), ((9689, 9728), 'tensorflow.concat', 'tf.concat', (['self.distcts_feat_3_'], {'axis': '(1)'}), '(self.distcts_feat_3_, axis=1)\n', (9698, 9728), True, 'import tensorflow as tf\n'), ((9760, 9824), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': '(-1)', 'trainable': '(False)', 'dtype': 'tf.float32'}), '(initial_value=-1, trainable=False, dtype=tf.float32)\n', (9771, 9824), True, 'import tensorflow as tf\n'), ((12681, 12722), 'tensorflow.square', 'tf.square', (['(self.value_ - self.q_net_spvs_)'], {}), '(self.value_ - self.q_net_spvs_)\n', (12690, 12722), True, 'import tensorflow as tf\n'), ((14455, 14496), 'os.path.exists', 'os.path.exists', (['teacher_pretrain_ckpt_dir'], {}), '(teacher_pretrain_ckpt_dir)\n', (14469, 14496), False, 'import os\n'), ((14501, 14539), 'os.makedirs', 'os.makedirs', (['teacher_pretrain_ckpt_dir'], {}), '(teacher_pretrain_ckpt_dir)\n', (14512, 14539), False, 'import os\n'), ((19832, 19864), 'numpy.array', 'np.array', (['belief_update_batch[k]'], {}), '(belief_update_batch[k])\n', (19840, 19864), True, 'import numpy as np\n'), ((20767, 20796), 'numpy.array', 'np.array', (['q_learning_batch[k]'], {}), '(q_learning_batch[k])\n', (20775, 20796), True, 'import numpy as np\n'), ((3475, 3560), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': 'self.belief_var_1d_', 'trainable': '(True)', 'dtype': 'tf.float32'}), '(initial_value=self.belief_var_1d_, trainable=True, dtype=tf.float32\n )\n', (3486, 3560), True, 'import tensorflow as tf\n'), ((4057, 4087), 'tensorflow.not_equal', 'tf.not_equal', (['self.message_', '(0)'], {}), '(self.message_, 0)\n', (4069, 4087), True, 'import tensorflow as tf\n'), ((4235, 4291), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.df_msg_match_'], {'axis': '(2)', 'keepdims': '(True)'}), '(self.df_msg_match_, axis=2, keepdims=True)\n', (4248, 4291), True, 'import tensorflow as tf\n'), ((4339, 4392), 'tensorflow.transpose', 'tf.transpose', (['self.df_msg_match_norm_'], {'perm': '[0, 2, 1]'}), '(self.df_msg_match_norm_, perm=[0, 2, 1])\n', (4351, 4392), True, 'import tensorflow as tf\n'), ((6251, 6311), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.belief_pred_full_'], {'axis': '(1)', 'keepdims': '(True)'}), '(self.belief_pred_full_, axis=1, keepdims=True)\n', (6264, 6311), True, 'import tensorflow as tf\n'), ((6962, 7013), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES)\n', (6979, 7013), True, 'import tensorflow as tf\n'), ((7097, 7145), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {}), '(tf.GraphKeys.GLOBAL_VARIABLES)\n', (7114, 7145), True, 'import tensorflow as tf\n'), ((12759, 12797), 'tensorflow.math.greater', 'tf.math.greater', (['self.q_net_spvs_', '(0.0)'], {}), '(self.q_net_spvs_, 0.0)\n', (12774, 12797), True, 'import tensorflow as tf\n'), ((12832, 12870), 'tensorflow.math.greater', 'tf.math.greater', (['(0.0)', 'self.q_net_spvs_'], {}), '(0.0, self.q_net_spvs_)\n', (12847, 12870), True, 'import tensorflow as tf\n'), ((13197, 13259), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(self.q_net_loss_pre_ * self.imbalance_penalty_)'], {}), '(self.q_net_loss_pre_ * self.imbalance_penalty_)\n', (13211, 13259), True, 'import tensorflow as tf\n'), ((15448, 15464), 'numpy.mean', 'np.mean', (['correct'], {}), '(correct)\n', (15455, 15464), True, 'import numpy as np\n'), ((15485, 15501), 'numpy.mean', 'np.mean', (['l1_diff'], {}), '(l1_diff)\n', (15492, 15501), True, 'import numpy as np\n'), ((15591, 15606), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (15604, 15606), False, 'import pdb\n'), ((17024, 17091), 'os.path.join', 'os.path.join', (['teacher_pretrain_ckpt_dir', 'teacher_pretrain_ckpt_name'], {}), '(teacher_pretrain_ckpt_dir, teacher_pretrain_ckpt_name)\n', (17036, 17091), False, 'import os\n'), ((1742, 1790), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(1)'}), '(mean=0.0, stddev=1)\n', (1770, 1790), True, 'import tensorflow as tf\n'), ((1969, 2019), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (1997, 2019), True, 'import tensorflow as tf\n'), ((3200, 3251), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES)\n', (3217, 3251), True, 'import tensorflow as tf\n'), ((7761, 7811), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (7789, 7811), True, 'import tensorflow as tf\n'), ((8021, 8071), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (8049, 8071), True, 'import tensorflow as tf\n'), ((8213, 8250), 'tensorflow.expand_dims', 'tf.expand_dims', (['self.belief_pred_', '(-1)'], {}), '(self.belief_pred_, -1)\n', (8227, 8250), True, 'import tensorflow as tf\n'), ((9229, 9250), 'tensorflow.math.greater', 'tf.math.greater', (['x', '(0)'], {}), '(x, 0)\n', (9244, 9250), True, 'import tensorflow as tf\n'), ((12453, 12504), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES)\n', (12470, 12504), True, 'import tensorflow as tf\n'), ((13322, 13373), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES)\n', (13339, 13373), True, 'import tensorflow as tf\n'), ((13556, 13604), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.GLOBAL_VARIABLES'], {}), '(tf.GraphKeys.GLOBAL_VARIABLES)\n', (13573, 13604), True, 'import tensorflow as tf\n'), ((15349, 15420), 'numpy.sum', 'np.sum', (["((data_batch['new_belief'] == 0) * (belief_pred > 1e-05))"], {'axis': '(1)'}), "((data_batch['new_belief'] == 0) * (belief_pred > 1e-05), axis=1)\n", (15355, 15420), True, 'import numpy as np\n'), ((15558, 15579), 'numpy.isnan', 'np.isnan', (['belief_pred'], {}), '(belief_pred)\n', (15566, 15579), True, 'import numpy as np\n'), ((16311, 16330), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (16318, 16330), True, 'import numpy as np\n'), ((16703, 16770), 'os.path.join', 'os.path.join', (['teacher_pretrain_ckpt_dir', 'teacher_pretrain_ckpt_name'], {}), '(teacher_pretrain_ckpt_dir, teacher_pretrain_ckpt_name)\n', (16715, 16770), False, 'import os\n'), ((6459, 6475), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['v'], {}), '(v)\n', (6472, 6475), True, 'import tensorflow as tf\n'), ((9253, 9262), 'tensorflow.exp', 'tf.exp', (['x'], {}), '(x)\n', (9259, 9262), True, 'import tensorflow as tf\n'), ((9875, 9914), 'tensorflow.squeeze', 'tf.squeeze', (['self.distcts_feat_tensor_3_'], {}), '(self.distcts_feat_tensor_3_)\n', (9885, 9914), True, 'import tensorflow as tf\n'), ((9965, 10005), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.belief_pred_'], {'axis': '(1)'}), '(self.belief_pred_, axis=1)\n', (9978, 10005), True, 'import tensorflow as tf\n'), ((12582, 12598), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['v'], {}), '(v)\n', (12595, 12598), True, 'import tensorflow as tf\n'), ((12954, 12987), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.success_mask_'], {}), '(self.success_mask_)\n', (12967, 12987), True, 'import tensorflow as tf\n'), ((12989, 13019), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.fail_mask_'], {}), '(self.fail_mask_)\n', (13002, 13019), True, 'import tensorflow as tf\n'), ((17921, 17968), 'numpy.sum', 'np.sum', (["(value * (data_batch['target_q'] == 0.8))"], {}), "(value * (data_batch['target_q'] == 0.8))\n", (17927, 17968), True, 'import numpy as np\n'), ((17971, 18008), 'numpy.sum', 'np.sum', (["(data_batch['target_q'] == 0.8)"], {}), "(data_batch['target_q'] == 0.8)\n", (17977, 18008), True, 'import numpy as np\n'), ((18019, 18067), 'numpy.sum', 'np.sum', (["(value * (data_batch['target_q'] == -0.2))"], {}), "(value * (data_batch['target_q'] == -0.2))\n", (18025, 18067), True, 'import numpy as np\n'), ((18070, 18108), 'numpy.sum', 'np.sum', (["(data_batch['target_q'] == -0.2)"], {}), "(data_batch['target_q'] == -0.2)\n", (18076, 18108), True, 'import numpy as np\n'), ((2533, 2583), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (2561, 2583), True, 'import tensorflow as tf\n'), ((2979, 3030), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.01)'}), '(mean=0.0, stddev=0.01)\n', (3007, 3030), True, 'import tensorflow as tf\n'), ((4898, 4931), 'tensorflow.ones_like', 'tf.ones_like', (['self.belief_pred_1_'], {}), '(self.belief_pred_1_)\n', (4910, 4931), True, 'import tensorflow as tf\n'), ((6630, 6660), 'tensorflow.math.log', 'tf.math.log', (['self.belief_pred_'], {}), '(self.belief_pred_)\n', (6641, 6660), True, 'import tensorflow as tf\n'), ((6766, 6812), 'tensorflow.math.log', 'tf.math.log', (['(self.student_belief_spvs_ + 1e-09)'], {}), '(self.student_belief_spvs_ + 1e-09)\n', (6777, 6812), True, 'import tensorflow as tf\n'), ((8520, 8570), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (8548, 8570), True, 'import tensorflow as tf\n'), ((8979, 9029), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (9007, 9029), True, 'import tensorflow as tf\n'), ((9275, 9285), 'tensorflow.exp', 'tf.exp', (['(-x)'], {}), '(-x)\n', (9281, 9285), True, 'import tensorflow as tf\n'), ((9523, 9573), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'mean': '(0.0)', 'stddev': '(0.1)'}), '(mean=0.0, stddev=0.1)\n', (9551, 9573), True, 'import tensorflow as tf\n'), ((15779, 15798), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (15786, 15798), True, 'import numpy as np\n'), ((15800, 15817), 'numpy.mean', 'np.mean', (['l1_diffs'], {}), '(l1_diffs)\n', (15807, 15817), True, 'import numpy as np\n'), ((15819, 15843), 'numpy.mean', 'np.mean', (['bayesian_wrongs'], {}), '(bayesian_wrongs)\n', (15826, 15843), True, 'import numpy as np\n')]
# ====================================================================================== # # Useful functions for analyzing corp data. # Author: <NAME>, <EMAIL> # ====================================================================================== # import numpy as np import pandas as pd from fastparquet import ParquetFile import snappy import os import datetime as dt from warnings import warn from multiprocess import Pool, cpu_count from threadpoolctl import threadpool_limits import dill as pickle import duckdb as db from itertools import combinations DATADR = os.path.expanduser('~')+'/Dropbox/Research/corporations/starter_packet' def db_conn(): return db.connect(database=':memory:', read_only=False) def snappy_decompress(data, uncompressed_size): return snappy.decompress(data) def topic_added_dates(): """Dates on which new topics were added according to the "topic taxonomy.csv". Returns ------- ndarray """ df = pd.read_csv('%s/topic taxonomy.csv'%DATADR) udates, count = np.unique(df['Active Date'], return_counts=True) udates = np.array([dt.datetime.strptime(d,'%m/%d/%Y').date() for d in udates]) return udates def bin_laplace(y, nbins, center=1): """Bin statistics from a laplace distribution by using log bins spaced around the center. Parameters ---------- y : ndarray nbins : int center : float, 1. Returns ------- ndarray Counts in bins. ndarray Bin edges. ndarray Bin centers. """ logy = np.log(y) bins = np.linspace(0, np.abs(logy).max()+1e-6, nbins//2) bins = np.concatenate((-bins[1:][::-1], bins)) + np.log(center) n = np.histogram(logy, bins)[0] return n, np.exp(bins), np.exp(bins[:-1] + (bins[1] - bins[0])/2) def log_hist(y, nbins=20): """Log histogram on discrete domain. Assuming min value is 1. Parameters ---------- y : ndarray nbins : int, 20 Returns ------- ndarray Normalized frequency. ndarray Bin midpoints. ndarray Bin edges. """ bins = np.unique(np.around(np.logspace(0, np.log10(y.max()+1), nbins)).astype(int)) p = np.histogram(y, bins)[0] p = p / p.sum() / np.floor(np.diff(bins)) xmid = np.exp((np.log(bins[:-1]) + np.log(bins[1:]))/2) return p, xmid, bins
[ "numpy.abs", "numpy.histogram", "numpy.unique", "pandas.read_csv", "datetime.datetime.strptime", "duckdb.connect", "numpy.log", "numpy.diff", "numpy.exp", "numpy.concatenate", "snappy.decompress", "os.path.expanduser" ]
[((571, 594), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (589, 594), False, 'import os\n'), ((672, 720), 'duckdb.connect', 'db.connect', ([], {'database': '""":memory:"""', 'read_only': '(False)'}), "(database=':memory:', read_only=False)\n", (682, 720), True, 'import duckdb as db\n'), ((785, 808), 'snappy.decompress', 'snappy.decompress', (['data'], {}), '(data)\n', (802, 808), False, 'import snappy\n'), ((977, 1022), 'pandas.read_csv', 'pd.read_csv', (["('%s/topic taxonomy.csv' % DATADR)"], {}), "('%s/topic taxonomy.csv' % DATADR)\n", (988, 1022), True, 'import pandas as pd\n'), ((1041, 1089), 'numpy.unique', 'np.unique', (["df['Active Date']"], {'return_counts': '(True)'}), "(df['Active Date'], return_counts=True)\n", (1050, 1089), True, 'import numpy as np\n'), ((1567, 1576), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (1573, 1576), True, 'import numpy as np\n'), ((1650, 1689), 'numpy.concatenate', 'np.concatenate', (['(-bins[1:][::-1], bins)'], {}), '((-bins[1:][::-1], bins))\n', (1664, 1689), True, 'import numpy as np\n'), ((1692, 1706), 'numpy.log', 'np.log', (['center'], {}), '(center)\n', (1698, 1706), True, 'import numpy as np\n'), ((1716, 1740), 'numpy.histogram', 'np.histogram', (['logy', 'bins'], {}), '(logy, bins)\n', (1728, 1740), True, 'import numpy as np\n'), ((1758, 1770), 'numpy.exp', 'np.exp', (['bins'], {}), '(bins)\n', (1764, 1770), True, 'import numpy as np\n'), ((1772, 1815), 'numpy.exp', 'np.exp', (['(bins[:-1] + (bins[1] - bins[0]) / 2)'], {}), '(bins[:-1] + (bins[1] - bins[0]) / 2)\n', (1778, 1815), True, 'import numpy as np\n'), ((2222, 2243), 'numpy.histogram', 'np.histogram', (['y', 'bins'], {}), '(y, bins)\n', (2234, 2243), True, 'import numpy as np\n'), ((2278, 2291), 'numpy.diff', 'np.diff', (['bins'], {}), '(bins)\n', (2285, 2291), True, 'import numpy as np\n'), ((2313, 2330), 'numpy.log', 'np.log', (['bins[:-1]'], {}), '(bins[:-1])\n', (2319, 2330), True, 'import numpy as np\n'), ((2333, 2349), 'numpy.log', 'np.log', (['bins[1:]'], {}), '(bins[1:])\n', (2339, 2349), True, 'import numpy as np\n'), ((1113, 1148), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['d', '"""%m/%d/%Y"""'], {}), "(d, '%m/%d/%Y')\n", (1133, 1148), True, 'import datetime as dt\n'), ((1604, 1616), 'numpy.abs', 'np.abs', (['logy'], {}), '(logy)\n', (1610, 1616), True, 'import numpy as np\n')]
#!/usr/bin/python from __future__ import (absolute_import, division, print_function, unicode_literals) import os import warnings import librosa import numpy as np import pandas as pd from keras.layers import Activation, Dense, Dropout, Flatten from keras.models import Sequential from keras.utils import np_utils from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder warnings.filterwarnings('ignore') def mfccprep(mfccs): mfcc = {} for idx, val in enumerate(mfccs): mfcc['mfcc'+str(idx+1)]=val return mfcc def init_data(): rows = [] feature = {} #Load the csv into a dataframe and shows the relationship between audio clip and the features like gender and ethinicty of the speaker csv = pd.read_csv('./zh-CN/train.tsv',sep='\t') print(csv.index) #for every file in folder- for x in csv.index: file_name = './zh-CN/clips/'+str(csv.path[x]) print(x,file_name) #load the mp3 file in this path and retrieves X is audio time series and its sample rate X, sample_rate = librosa.load(file_name) #retieves mfccs and finds the mean across the 13 mfccs separately mfccs = list(pd.DataFrame(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13)).T.mean()) feature = mfccprep(mfccs) try: feature['age'] = csv.age[x] except: feature['age']= None try: feature['gender'] = csv.gender[x] except: feature['gender']=None rows.append(feature) data = np.array(rows) np.save('data.npy',data) def load_data(): data = np.load('data.npy',allow_pickle=True) rows = data.tolist() #storing all data retrieved into a dataframe df = pd.DataFrame.from_dict(rows) df = df.dropna() df['gender'] = df.gender.apply(lambda x: 1 if x=='male' else 0) agekeys = {'thirties':3, 'twenties':2, 'sixties':6, 'fourties':4, 'fifties':5, 'teens':1, 'seventies':7, 'eighties':8} df.age = df.age.apply(lambda x: agekeys[x]) X = df.drop(['gender','age'], axis=1) # #y = df.gender y = df.age lb = LabelEncoder() #converts labels into categorical data y = np_utils.to_categorical(lb.fit_transform(y)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) num_labels = y.shape[1] print('num_labels:',num_labels) return X_train, X_test, y_train, y_test def model(): # build neural network model model = Sequential() model.add(Dense(256, input_shape=(13,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(4)) model.add(Activation('softmax')) #model.summary() return model def train_model(): mymodel = model() mymodel.summary() x_train, x_test, y_train, y_test = load_data() #fits the model and validates output with test data. model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam') history = mymodel.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test)) test_scores = mymodel.evaluate(x_test, y_test, verbose=2) print('Test loss:', test_scores[0]) print('Test accuracy:', test_scores[1]) mymodel.save('age_model.h5') def deploy_age(file_name): mymodel = model() mymodel.load_weights('./age_model.h5') #mymodel = keras.models.load_model('./age_model.h5') rows = [] feature = {} #load the mp3 file in this path and retrieves X is audio time series and its sample rate X, sample_rate = librosa.load(file_name) #retieves mfccs and finds the mean across the 13 mfccs separately mfccs = list(pd.DataFrame(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13)).T.mean()) feature = mfccprep(mfccs) rows.append(feature) df = pd.DataFrame.from_dict(rows) print(mymodel.predict(df)[0]) print(mymodel.predict_classes(df)[0]) return mymodel.predict_classes(df)[0] if __name__ == "__main__": ''' train_model() ''' deploy_age('./zh-CN/clips/common_voice_zh-CN_18531536.mp3') # male teens deploy_age('./zh-CN/clips/common_voice_zh-CN_19792544.mp3') # male twenties deploy_age('./zh-CN/clips/common_voice_zh-CN_19703883.mp3') # female thirties
[ "sklearn.preprocessing.LabelEncoder", "pandas.read_csv", "sklearn.model_selection.train_test_split", "librosa.feature.mfcc", "pandas.DataFrame.from_dict", "keras.models.Sequential", "numpy.array", "keras.layers.Activation", "keras.layers.Dense", "numpy.load", "keras.layers.Dropout", "warnings.filterwarnings", "numpy.save", "librosa.load" ]
[((440, 473), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (463, 473), False, 'import warnings\n'), ((799, 841), 'pandas.read_csv', 'pd.read_csv', (['"""./zh-CN/train.tsv"""'], {'sep': '"""\t"""'}), "('./zh-CN/train.tsv', sep='\\t')\n", (810, 841), True, 'import pandas as pd\n'), ((1603, 1617), 'numpy.array', 'np.array', (['rows'], {}), '(rows)\n', (1611, 1617), True, 'import numpy as np\n'), ((1622, 1647), 'numpy.save', 'np.save', (['"""data.npy"""', 'data'], {}), "('data.npy', data)\n", (1629, 1647), True, 'import numpy as np\n'), ((1677, 1715), 'numpy.load', 'np.load', (['"""data.npy"""'], {'allow_pickle': '(True)'}), "('data.npy', allow_pickle=True)\n", (1684, 1715), True, 'import numpy as np\n'), ((1799, 1827), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['rows'], {}), '(rows)\n', (1821, 1827), True, 'import pandas as pd\n'), ((2190, 2204), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (2202, 2204), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((2341, 2379), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.25)'}), '(X, y, test_size=0.25)\n', (2357, 2379), False, 'from sklearn.model_selection import train_test_split\n'), ((2549, 2561), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2559, 2561), False, 'from keras.models import Sequential\n'), ((3691, 3714), 'librosa.load', 'librosa.load', (['file_name'], {}), '(file_name)\n', (3703, 3714), False, 'import librosa\n'), ((3943, 3971), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['rows'], {}), '(rows)\n', (3965, 3971), True, 'import pandas as pd\n'), ((1120, 1143), 'librosa.load', 'librosa.load', (['file_name'], {}), '(file_name)\n', (1132, 1143), False, 'import librosa\n'), ((2577, 2606), 'keras.layers.Dense', 'Dense', (['(256)'], {'input_shape': '(13,)'}), '(256, input_shape=(13,))\n', (2582, 2606), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2622, 2640), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2632, 2640), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2656, 2668), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (2663, 2668), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2685, 2695), 'keras.layers.Dense', 'Dense', (['(256)'], {}), '(256)\n', (2690, 2695), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2711, 2729), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2721, 2729), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2745, 2757), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (2752, 2757), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2774, 2782), 'keras.layers.Dense', 'Dense', (['(4)'], {}), '(4)\n', (2779, 2782), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((2798, 2819), 'keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (2808, 2819), False, 'from keras.layers import Activation, Dense, Dropout, Flatten\n'), ((3815, 3867), 'librosa.feature.mfcc', 'librosa.feature.mfcc', ([], {'y': 'X', 'sr': 'sample_rate', 'n_mfcc': '(13)'}), '(y=X, sr=sample_rate, n_mfcc=13)\n', (3835, 3867), False, 'import librosa\n'), ((1252, 1304), 'librosa.feature.mfcc', 'librosa.feature.mfcc', ([], {'y': 'X', 'sr': 'sample_rate', 'n_mfcc': '(13)'}), '(y=X, sr=sample_rate, n_mfcc=13)\n', (1272, 1304), False, 'import librosa\n')]
#components.py # Copyright (c) 2020 <NAME> <NAME> # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE import numpy as np import torch, torch.nn as nn #Set seeds np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) torch.cuda.manual_seed_all(0) def return_conv_layers(conv_type): if conv_type == '512to256to64_1x1': conv = nn.Sequential( nn.Conv2d(512, 256, kernel_size = (1,1), stride=(1,1), padding=0), nn.ReLU(inplace=True), nn.Conv2d(256, 64, kernel_size = (1,1), stride=(1,1), padding=0), nn.ReLU(inplace=True)) flattened_output_dim = 6400 #64*10*10 elif conv_type == '512to64_1x1': conv = nn.Sequential( nn.Conv2d(512, 64, kernel_size = (1,1), stride=(1,1), padding=0), nn.ReLU(inplace=True)) flattened_output_dim = 6400 #64*10*10 elif conv_type == '512to512_3x3': conv = nn.Sequential( nn.Conv2d(512, 512, kernel_size = (3,3), stride=(3,3), padding=0), nn.ReLU(inplace=True)) flattened_output_dim = 4608 #512*3*3 return conv, flattened_output_dim
[ "torch.cuda.manual_seed_all", "torch.manual_seed", "torch.nn.ReLU", "torch.nn.Conv2d", "numpy.random.seed", "torch.cuda.manual_seed" ]
[((1187, 1204), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (1201, 1204), True, 'import numpy as np\n'), ((1205, 1225), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (1222, 1225), False, 'import torch, torch.nn as nn\n'), ((1226, 1251), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(0)'], {}), '(0)\n', (1248, 1251), False, 'import torch, torch.nn as nn\n'), ((1252, 1281), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['(0)'], {}), '(0)\n', (1278, 1281), False, 'import torch, torch.nn as nn\n'), ((1404, 1469), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', '(256)'], {'kernel_size': '(1, 1)', 'stride': '(1, 1)', 'padding': '(0)'}), '(512, 256, kernel_size=(1, 1), stride=(1, 1), padding=0)\n', (1413, 1469), True, 'import torch, torch.nn as nn\n'), ((1487, 1508), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1494, 1508), True, 'import torch, torch.nn as nn\n'), ((1543, 1607), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(64)'], {'kernel_size': '(1, 1)', 'stride': '(1, 1)', 'padding': '(0)'}), '(256, 64, kernel_size=(1, 1), stride=(1, 1), padding=0)\n', (1552, 1607), True, 'import torch, torch.nn as nn\n'), ((1625, 1646), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1632, 1646), True, 'import torch, torch.nn as nn\n'), ((1782, 1846), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', '(64)'], {'kernel_size': '(1, 1)', 'stride': '(1, 1)', 'padding': '(0)'}), '(512, 64, kernel_size=(1, 1), stride=(1, 1), padding=0)\n', (1791, 1846), True, 'import torch, torch.nn as nn\n'), ((1864, 1885), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1871, 1885), True, 'import torch, torch.nn as nn\n'), ((2022, 2087), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', '(512)'], {'kernel_size': '(3, 3)', 'stride': '(3, 3)', 'padding': '(0)'}), '(512, 512, kernel_size=(3, 3), stride=(3, 3), padding=0)\n', (2031, 2087), True, 'import torch, torch.nn as nn\n'), ((2105, 2126), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2112, 2126), True, 'import torch, torch.nn as nn\n')]
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for flow_field.""" from absl.testing import absltest import numpy as np from sofima import flow_field class FlowFieldTest(absltest.TestCase): def test_jax_masked_xcorr_calculator(self): pre_image = np.zeros((120, 120), dtype=np.uint8) post_image = np.zeros((120, 120), dtype=np.uint8) pre_image[60, 60] = 255 post_image[70, 53] = 255 calculator = flow_field.JAXMaskedXCorrWithStatsCalculator() field = calculator.flow_field( pre_image, post_image, patch_size=80, step=40, batch_size=4) np.testing.assert_array_equal([4, 2, 2], field.shape) np.testing.assert_array_equal(7 * np.ones((2, 2)), field[0, ...]) np.testing.assert_array_equal(-10 * np.ones((2, 2)), field[1, ...]) np.testing.assert_array_equal(np.zeros((2, 2)), field[3, ...]) # 2nd point in the post-image would normally confuse the flow estimation, # but with masking it should have no impact. post_image[54, 68] = 255 post_image_mask = np.zeros((128, 128), dtype=bool) post_image_mask[:55, :70] = 1 field = calculator.flow_field( pre_image, post_image, patch_size=80, step=40, post_mask=post_image_mask, batch_size=4) np.testing.assert_array_equal([4, 2, 2], field.shape) np.testing.assert_array_equal(7 * np.ones((2, 2)), field[0, ...]) np.testing.assert_array_equal(-10 * np.ones((2, 2)), field[1, ...]) np.testing.assert_array_equal(np.zeros((2, 2)), field[3, ...]) def test_jax_xcorr_3d(self): pre_image = np.zeros((50, 100, 100), dtype=np.uint8) post_image = np.zeros((50, 100, 100), dtype=np.uint8) pre_image[25, 50, 50] = 255 post_image[22, 45, 54] = 255 calculator = flow_field.JAXMaskedXCorrWithStatsCalculator() flow = calculator.flow_field( pre_image, post_image, patch_size=(40, 80, 80), step=10, batch_size=1) np.testing.assert_array_equal([5, 2, 3, 3], flow.shape) np.testing.assert_array_equal(np.full([2, 3, 3], -4), flow[0, ...]) np.testing.assert_array_equal(np.full([2, 3, 3], 5), flow[1, ...]) np.testing.assert_array_equal(np.full([2, 3, 3], 3), flow[2, ...]) def test_jax_peak(self): hy, hx = np.mgrid[:50, :50] cy, cx = 20, 28 hy = cy - hy hx = cx - hx r = np.sqrt(2 * hx**2 + hy**2) peak_max = 10 xcorr = peak_max * np.exp(-r / 4) peaks = flow_field._batched_peaks( xcorr[np.newaxis, ...], (25, 25), min_distance=2, threshold_rel=0.5, peak_radius=(2, 3)) np.testing.assert_array_equal([1, 4], peaks.shape) peak_support = np.min(xcorr[cy - 2:cy + 3, cx - 3:cx + 4]) self.assertEqual(peaks[0, 0], 3) # x self.assertEqual(peaks[0, 1], -5) # y self.assertEqual(peaks[0, 2], peak_max / peak_support) # sharpness self.assertEqual(peaks[0, 3], 0) # peak ratio if __name__ == '__main__': absltest.main()
[ "sofima.flow_field._batched_peaks", "sofima.flow_field.JAXMaskedXCorrWithStatsCalculator", "numpy.sqrt", "numpy.ones", "absl.testing.absltest.main", "numpy.exp", "numpy.zeros", "numpy.min", "numpy.full", "numpy.testing.assert_array_equal" ]
[((3485, 3500), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (3498, 3500), False, 'from absl.testing import absltest\n'), ((824, 860), 'numpy.zeros', 'np.zeros', (['(120, 120)'], {'dtype': 'np.uint8'}), '((120, 120), dtype=np.uint8)\n', (832, 860), True, 'import numpy as np\n'), ((878, 914), 'numpy.zeros', 'np.zeros', (['(120, 120)'], {'dtype': 'np.uint8'}), '((120, 120), dtype=np.uint8)\n', (886, 914), True, 'import numpy as np\n'), ((991, 1037), 'sofima.flow_field.JAXMaskedXCorrWithStatsCalculator', 'flow_field.JAXMaskedXCorrWithStatsCalculator', ([], {}), '()\n', (1035, 1037), False, 'from sofima import flow_field\n'), ((1147, 1200), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[4, 2, 2]', 'field.shape'], {}), '([4, 2, 2], field.shape)\n', (1176, 1200), True, 'import numpy as np\n'), ((1589, 1621), 'numpy.zeros', 'np.zeros', (['(128, 128)'], {'dtype': 'bool'}), '((128, 128), dtype=bool)\n', (1597, 1621), True, 'import numpy as np\n'), ((1832, 1885), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[4, 2, 2]', 'field.shape'], {}), '([4, 2, 2], field.shape)\n', (1861, 1885), True, 'import numpy as np\n'), ((2143, 2183), 'numpy.zeros', 'np.zeros', (['(50, 100, 100)'], {'dtype': 'np.uint8'}), '((50, 100, 100), dtype=np.uint8)\n', (2151, 2183), True, 'import numpy as np\n'), ((2201, 2241), 'numpy.zeros', 'np.zeros', (['(50, 100, 100)'], {'dtype': 'np.uint8'}), '((50, 100, 100), dtype=np.uint8)\n', (2209, 2241), True, 'import numpy as np\n'), ((2326, 2372), 'sofima.flow_field.JAXMaskedXCorrWithStatsCalculator', 'flow_field.JAXMaskedXCorrWithStatsCalculator', ([], {}), '()\n', (2370, 2372), False, 'from sofima import flow_field\n'), ((2491, 2546), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[5, 2, 3, 3]', 'flow.shape'], {}), '([5, 2, 3, 3], flow.shape)\n', (2520, 2546), True, 'import numpy as np\n'), ((2883, 2913), 'numpy.sqrt', 'np.sqrt', (['(2 * hx ** 2 + hy ** 2)'], {}), '(2 * hx ** 2 + hy ** 2)\n', (2890, 2913), True, 'import numpy as np\n'), ((2979, 3097), 'sofima.flow_field._batched_peaks', 'flow_field._batched_peaks', (['xcorr[np.newaxis, ...]', '(25, 25)'], {'min_distance': '(2)', 'threshold_rel': '(0.5)', 'peak_radius': '(2, 3)'}), '(xcorr[np.newaxis, ...], (25, 25), min_distance=2,\n threshold_rel=0.5, peak_radius=(2, 3))\n', (3004, 3097), False, 'from sofima import flow_field\n'), ((3131, 3181), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['[1, 4]', 'peaks.shape'], {}), '([1, 4], peaks.shape)\n', (3160, 3181), True, 'import numpy as np\n'), ((3202, 3245), 'numpy.min', 'np.min', (['xcorr[cy - 2:cy + 3, cx - 3:cx + 4]'], {}), '(xcorr[cy - 2:cy + 3, cx - 3:cx + 4])\n', (3208, 3245), True, 'import numpy as np\n'), ((1377, 1393), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (1385, 1393), True, 'import numpy as np\n'), ((2062, 2078), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (2070, 2078), True, 'import numpy as np\n'), ((2581, 2603), 'numpy.full', 'np.full', (['[2, 3, 3]', '(-4)'], {}), '([2, 3, 3], -4)\n', (2588, 2603), True, 'import numpy as np\n'), ((2653, 2674), 'numpy.full', 'np.full', (['[2, 3, 3]', '(5)'], {}), '([2, 3, 3], 5)\n', (2660, 2674), True, 'import numpy as np\n'), ((2724, 2745), 'numpy.full', 'np.full', (['[2, 3, 3]', '(3)'], {}), '([2, 3, 3], 3)\n', (2731, 2745), True, 'import numpy as np\n'), ((2951, 2965), 'numpy.exp', 'np.exp', (['(-r / 4)'], {}), '(-r / 4)\n', (2957, 2965), True, 'import numpy as np\n'), ((1239, 1254), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (1246, 1254), True, 'import numpy as np\n'), ((1311, 1326), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (1318, 1326), True, 'import numpy as np\n'), ((1924, 1939), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (1931, 1939), True, 'import numpy as np\n'), ((1996, 2011), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (2003, 2011), True, 'import numpy as np\n')]
from statsmodels.compat.python import range import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines def tukeyplot(results, dim=None, yticklabels=None): npairs = len(results) fig = plt.figure() fsp = fig.add_subplot(111) fsp.axis([-50,50,0.5,10.5]) fsp.set_title('95 % family-wise confidence level') fsp.title.set_y(1.025) fsp.set_yticks(np.arange(1,11)) fsp.set_yticklabels(['V-T','V-S','T-S','V-P','T-P','S-P','V-M', 'T-M','S-M','P-M']) #fsp.yaxis.set_major_locator(mticker.MaxNLocator(npairs)) fsp.yaxis.grid(True, linestyle='-', color='gray') fsp.set_xlabel('Differences in mean levels of Var', labelpad=8) fsp.xaxis.tick_bottom() fsp.yaxis.tick_left() xticklines = fsp.get_xticklines() for xtickline in xticklines: xtickline.set_marker(lines.TICKDOWN) xtickline.set_markersize(10) xlabels = fsp.get_xticklabels() for xlabel in xlabels: xlabel.set_y(-.04) yticklines = fsp.get_yticklines() for ytickline in yticklines: ytickline.set_marker(lines.TICKLEFT) ytickline.set_markersize(10) ylabels = fsp.get_yticklabels() for ylabel in ylabels: ylabel.set_x(-.04) for pair in range(npairs): data = .5+results[pair]/100. #fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data[1], linewidth=1.25, fsp.axhline(y=npairs-pair, xmin=data.mean(), xmax=data[1], linewidth=1.25, color='blue', marker="|", markevery=1) fsp.axhline(y=npairs-pair, xmin=data[0], xmax=data.mean(), linewidth=1.25, color='blue', marker="|", markevery=1) #for pair in range(npairs): # data = .5+results[pair]/100. # data = results[pair] # data = np.r_[data[0],data.mean(),data[1]] # l = plt.plot(data, [npairs-pair]*len(data), color='black', # linewidth=.5, marker="|", markevery=1) fsp.axvline(x=0, linestyle="--", color='black') fig.subplots_adjust(bottom=.125) results = np.array([[-10.04391794, 26.34391794], [-21.45225794, 14.93557794], [ 5.61441206, 42.00224794], [-13.40225794, 22.98557794], [-29.60225794, 6.78557794], [ -2.53558794, 33.85224794], [-21.55225794, 14.83557794], [ 8.87275206, 45.26058794], [-10.14391794, 26.24391794], [-37.21058794, -0.82275206]]) #plt.show()
[ "numpy.array", "matplotlib.pyplot.figure", "numpy.arange", "statsmodels.compat.python.range" ]
[((2057, 2371), 'numpy.array', 'np.array', (['[[-10.04391794, 26.34391794], [-21.45225794, 14.93557794], [5.61441206, \n 42.00224794], [-13.40225794, 22.98557794], [-29.60225794, 6.78557794],\n [-2.53558794, 33.85224794], [-21.55225794, 14.83557794], [8.87275206, \n 45.26058794], [-10.14391794, 26.24391794], [-37.21058794, -0.82275206]]'], {}), '([[-10.04391794, 26.34391794], [-21.45225794, 14.93557794], [\n 5.61441206, 42.00224794], [-13.40225794, 22.98557794], [-29.60225794, \n 6.78557794], [-2.53558794, 33.85224794], [-21.55225794, 14.83557794], [\n 8.87275206, 45.26058794], [-10.14391794, 26.24391794], [-37.21058794, -\n 0.82275206]])\n', (2065, 2371), True, 'import numpy as np\n'), ((219, 231), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (229, 231), True, 'import matplotlib.pyplot as plt\n'), ((1271, 1284), 'statsmodels.compat.python.range', 'range', (['npairs'], {}), '(npairs)\n', (1276, 1284), False, 'from statsmodels.compat.python import range\n'), ((396, 412), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (405, 412), True, 'import numpy as np\n')]
#!/usr/bin/env python ''' optical_flow.py - Optical-flow velocity calculation and display using OpenCV To test: % python optical_flow.py # video from webcam % python optical_flow.py -f FILENAME # video from file % python optical_flow.py -c CAMERA # specific camera number % python optical_flow.py -s N # scale-down factor for flow image % python optical_flow.py -m M # move step in pixels Adapted from https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/python/fback.py?rev=2271 Copyright (C) 2014 <NAME> This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. ''' import cv2 import numpy as np import time import math import optparse class OpticalFlowCalculator: ''' A class for optical flow calculations using OpenCV ''' def __init__(self, frame_width, frame_height, scaledown=1, perspective_angle=0, move_step=16, window_name=None, flow_color_rgb=(0,255,0)): ''' Creates an OpticalFlow object for images with specified width and height. Optional inputs are: perspective_angle - perspective angle of camera, for reporting flow in meters per second move_step - step size in pixels for sampling the flow image window_name - window name for display flow_color_rgb - color for displaying flow ''' self.move_step = move_step self.mv_color_bgr = (flow_color_rgb[2], flow_color_rgb[1], flow_color_rgb[0]) self.perspective_angle = perspective_angle self.window_name = window_name self.size = (int(frame_width/scaledown), int(frame_height/scaledown)) self.prev_gray = None self.prev_time = None def processBytes(self, rgb_bytes, distance=None, timestep=1): ''' Processes one frame of RGB bytes, returning summed X,Y flow. Optional inputs are: distance - distance in meters to image (focal length) for returning flow in meters per second timestep - time step in seconds for returning flow in meters per second ''' frame = np.frombuffer(rgb_bytes, np.uint8) frame = np.reshape(frame, (self.size[1], self.size[0], 3)) return self.processFrame(frame, distance, timestep) def processFrame(self, frame, distance=None, timestep=1): ''' Processes one image frame, returning summed X,Y flow Optional inputs are: distance - distance in meters to image (focal length) for returning flow in meters per second timestep - time step in seconds for returning flow in meters per second ''' frame2 = cv2.resize(frame, self.size) gray = cv2.cvtColor(frame2, cv2.cv.CV_BGR2GRAY) xsum, ysum = 0,0 xvel, yvel = 0,0 if self.prev_gray != None: flow = cv2.calcOpticalFlowFarneback(self.prev_gray, gray, pyr_scale=0.5, levels=5, winsize=13, iterations=10, poly_n=5, poly_sigma=1.1, flags=0) for y in range(0, flow.shape[0], self.move_step): for x in range(0, flow.shape[1], self.move_step): fx, fy = flow[y, x] xsum += fx ysum += fy cv2.line(frame2, (x,y), (int(x+fx),int(y+fy)), self.mv_color_bgr) cv2.circle(frame2, (x,y), 1, self.mv_color_bgr, -1) # Default to system time if no timestep curr_time = time.time() if not timestep: timestep = (curr_time - self.prev_time) if self.prev_time else 1 self.prev_time = curr_time xvel = self._get_velocity(flow, xsum, flow.shape[1], distance, timestep) yvel = self._get_velocity(flow, ysum, flow.shape[0], distance, timestep) self.prev_gray = gray if self.window_name: cv2.imshow(self.window_name, frame2) if cv2.waitKey(1) & 0x000000FF== 27: # ESC return None # Normalize and divide by timestep return xvel, yvel def _get_velocity(self, flow, sum_velocity_pixels, dimsize_pixels, distance_meters, timestep_seconds): count = (flow.shape[0] * flow.shape[1]) / self.move_step**2 average_velocity_pixels_per_second = sum_velocity_pixels / count / timestep_seconds return self._velocity_meters_per_second(average_velocity_pixels_per_second, dimsize_pixels, distance_meters) \ if self.perspective_angle and distance_meters \ else average_velocity_pixels_per_second def _velocity_meters_per_second(self, velocity_pixels_per_second, dimsize_pixels, distance_meters): distance_pixels = (dimsize_pixels/2) / math.tan(self.perspective_angle/2) pixels_per_meter = distance_pixels / distance_meters return velocity_pixels_per_second / pixels_per_meter if __name__=="__main__": parser = optparse.OptionParser() parser.add_option("-f", "--file", dest="filename", help="Read from video file", metavar="FILE") parser.add_option("-s", "--scaledown", dest="scaledown", help="Fractional image scaling", metavar="SCALEDOWN") parser.add_option("-c", "--camera", dest="camera", help="Camera number", metavar="CAMERA") parser.add_option("-m", "--movestep", dest="movestep", help="Move step (pixels)", metavar="MOVESTEP") (options, _) = parser.parse_args() camno = int(options.camera) if options.camera else 0 cap = cv2.VideoCapture(camno if not options.filename else options.filename) width = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)) scaledown = int(options.scaledown) if options.scaledown else 1 movestep = int(options.movestep) if options.movestep else 16 flow = OpticalFlowCalculator(width, height, window_name='Optical Flow', scaledown=scaledown, move_step=movestep) start_sec = time.time() count = 0 while True: success, frame = cap.read() count += 1 if not success: break result = flow.processFrame(frame) if not result: break elapsed_sec = time.time() - start_sec print('%dx%d image: %d frames in %3.3f sec = %3.3f frames / sec' % (width/scaledown, height/scaledown, count, elapsed_sec, count/elapsed_sec))
[ "cv2.calcOpticalFlowFarneback", "numpy.reshape", "math.tan", "optparse.OptionParser", "cv2.imshow", "cv2.circle", "cv2.waitKey", "cv2.VideoCapture", "cv2.cvtColor", "numpy.frombuffer", "cv2.resize", "time.time" ]
[((5486, 5509), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (5507, 5509), False, 'import optparse\n'), ((6037, 6106), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(camno if not options.filename else options.filename)'], {}), '(camno if not options.filename else options.filename)\n', (6053, 6106), False, 'import cv2\n'), ((6499, 6510), 'time.time', 'time.time', ([], {}), '()\n', (6508, 6510), False, 'import time\n'), ((2647, 2681), 'numpy.frombuffer', 'np.frombuffer', (['rgb_bytes', 'np.uint8'], {}), '(rgb_bytes, np.uint8)\n', (2660, 2681), True, 'import numpy as np\n'), ((2698, 2748), 'numpy.reshape', 'np.reshape', (['frame', '(self.size[1], self.size[0], 3)'], {}), '(frame, (self.size[1], self.size[0], 3))\n', (2708, 2748), True, 'import numpy as np\n'), ((3193, 3221), 'cv2.resize', 'cv2.resize', (['frame', 'self.size'], {}), '(frame, self.size)\n', (3203, 3221), False, 'import cv2\n'), ((3239, 3279), 'cv2.cvtColor', 'cv2.cvtColor', (['frame2', 'cv2.cv.CV_BGR2GRAY'], {}), '(frame2, cv2.cv.CV_BGR2GRAY)\n', (3251, 3279), False, 'import cv2\n'), ((6757, 6768), 'time.time', 'time.time', ([], {}), '()\n', (6766, 6768), False, 'import time\n'), ((3396, 3537), 'cv2.calcOpticalFlowFarneback', 'cv2.calcOpticalFlowFarneback', (['self.prev_gray', 'gray'], {'pyr_scale': '(0.5)', 'levels': '(5)', 'winsize': '(13)', 'iterations': '(10)', 'poly_n': '(5)', 'poly_sigma': '(1.1)', 'flags': '(0)'}), '(self.prev_gray, gray, pyr_scale=0.5, levels=5,\n winsize=13, iterations=10, poly_n=5, poly_sigma=1.1, flags=0)\n', (3424, 3537), False, 'import cv2\n'), ((4004, 4015), 'time.time', 'time.time', ([], {}), '()\n', (4013, 4015), False, 'import time\n'), ((4409, 4445), 'cv2.imshow', 'cv2.imshow', (['self.window_name', 'frame2'], {}), '(self.window_name, frame2)\n', (4419, 4445), False, 'import cv2\n'), ((5269, 5305), 'math.tan', 'math.tan', (['(self.perspective_angle / 2)'], {}), '(self.perspective_angle / 2)\n', (5277, 5305), False, 'import math\n'), ((3875, 3927), 'cv2.circle', 'cv2.circle', (['frame2', '(x, y)', '(1)', 'self.mv_color_bgr', '(-1)'], {}), '(frame2, (x, y), 1, self.mv_color_bgr, -1)\n', (3885, 3927), False, 'import cv2\n'), ((4461, 4475), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (4472, 4475), False, 'import cv2\n')]
# Some part of the code was referenced from below. # https://github.com/pytorch/examples/tree/master/word_language_model import torch import torch.nn as nn import numpy as np from torch.autograd import Variable from data_utils import Dictionary, Corpus # Hyper Parameters embed_size = 128 hidden_size = 1024 num_layers = 1 num_epochs = 5 num_samples = 1000 # number of words to be sampled batch_size = 20 seq_length = 30 learning_rate = 0.002 # Load Penn Treebank Dataset train_path = './data/train.txt' sample_path = './sample.txt' corpus = Corpus() ids = corpus.get_data(train_path, batch_size) vocab_size = len(corpus.dictionary) num_batches = ids.size(1) // seq_length # RNN Based Language Model class RNNLM(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, num_layers): super(RNNLM, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) self.init_weights() def init_weights(self): self.embed.weight.data.uniform_(-0.1, 0.1) self.linear.bias.data.fill_(0) self.linear.weight.data.uniform_(-0.1, 0.1) def forward(self, x, h): # Embed word ids to vectors x = self.embed(x) # Forward propagate RNN out, h = self.lstm(x, h) # Reshape output to (batch_size*sequence_length, hidden_size) out = out.contiguous().view(out.size(0)*out.size(1), out.size(2)) # Decode hidden states of all time step out = self.linear(out) return out, h model = RNNLM(vocab_size, embed_size, hidden_size, num_layers) model.cuda() # Loss and Optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Truncated Backpropagation def detach(states): return [Variable(state.data) for state in states] # Training for epoch in range(num_epochs): # Initial hidden and memory states states = (Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda(), Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda()) for i in range(0, ids.size(1) - seq_length, seq_length): # Get batch inputs and targets inputs = Variable(ids[:, i:i+seq_length]).cuda() targets = Variable(ids[:, (i+1):(i+1)+seq_length].contiguous()).cuda() # Forward + Backward + Optimize model.zero_grad() states = detach(states) outputs, states = model(inputs, states) loss = criterion(outputs, targets.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm(model.parameters(), 0.5) optimizer.step() step = (i+1) // seq_length if step % 100 == 0: print ('Epoch [%d/%d], Step[%d/%d], Loss: %.3f, Perplexity: %5.2f' % (epoch+1, num_epochs, step, num_batches, loss.data[0], np.exp(loss.data[0]))) # Sampling with open(sample_path, 'w') as f: # Set intial hidden ane memory states state = (Variable(torch.zeros(num_layers, 1, hidden_size)).cuda(), Variable(torch.zeros(num_layers, 1, hidden_size)).cuda()) # Select one word id randomly prob = torch.ones(vocab_size) input = Variable(torch.multinomial(prob, num_samples=1).unsqueeze(1), volatile=True).cuda() for i in range(num_samples): # Forward propagate rnn output, state = model(input, state) # Sample a word id prob = output.squeeze().data.exp().cpu() word_id = torch.multinomial(prob, 1)[0] # Feed sampled word id to next time step input.data.fill_(word_id) # File write word = corpus.dictionary.idx2word[word_id] word = '\n' if word == '<eos>' else word + ' ' f.write(word) if (i+1) % 100 == 0: print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path)) # Save the Trained Model torch.save(model.state_dict(), 'model.pkl')
[ "torch.nn.CrossEntropyLoss", "data_utils.Corpus", "torch.multinomial", "torch.nn.LSTM", "numpy.exp", "torch.nn.Linear", "torch.autograd.Variable", "torch.zeros", "torch.nn.Embedding", "torch.ones" ]
[((548, 556), 'data_utils.Corpus', 'Corpus', ([], {}), '()\n', (554, 556), False, 'from data_utils import Dictionary, Corpus\n'), ((1804, 1825), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1823, 1825), True, 'import torch.nn as nn\n'), ((3318, 3340), 'torch.ones', 'torch.ones', (['vocab_size'], {}), '(vocab_size)\n', (3328, 3340), False, 'import torch\n'), ((863, 899), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'embed_size'], {}), '(vocab_size, embed_size)\n', (875, 899), True, 'import torch.nn as nn\n'), ((920, 982), 'torch.nn.LSTM', 'nn.LSTM', (['embed_size', 'hidden_size', 'num_layers'], {'batch_first': '(True)'}), '(embed_size, hidden_size, num_layers, batch_first=True)\n', (927, 982), True, 'import torch.nn as nn\n'), ((1005, 1039), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'vocab_size'], {}), '(hidden_size, vocab_size)\n', (1014, 1039), True, 'import torch.nn as nn\n'), ((1955, 1975), 'torch.autograd.Variable', 'Variable', (['state.data'], {}), '(state.data)\n', (1963, 1975), False, 'from torch.autograd import Variable\n'), ((3672, 3698), 'torch.multinomial', 'torch.multinomial', (['prob', '(1)'], {}), '(prob, 1)\n', (3689, 3698), False, 'import torch\n'), ((2365, 2399), 'torch.autograd.Variable', 'Variable', (['ids[:, i:i + seq_length]'], {}), '(ids[:, i:i + seq_length])\n', (2373, 2399), False, 'from torch.autograd import Variable\n'), ((2104, 2152), 'torch.zeros', 'torch.zeros', (['num_layers', 'batch_size', 'hidden_size'], {}), '(num_layers, batch_size, hidden_size)\n', (2115, 2152), False, 'import torch\n'), ((2185, 2233), 'torch.zeros', 'torch.zeros', (['num_layers', 'batch_size', 'hidden_size'], {}), '(num_layers, batch_size, hidden_size)\n', (2196, 2233), False, 'import torch\n'), ((3156, 3195), 'torch.zeros', 'torch.zeros', (['num_layers', '(1)', 'hidden_size'], {}), '(num_layers, 1, hidden_size)\n', (3167, 3195), False, 'import torch\n'), ((3223, 3262), 'torch.zeros', 'torch.zeros', (['num_layers', '(1)', 'hidden_size'], {}), '(num_layers, 1, hidden_size)\n', (3234, 3262), False, 'import torch\n'), ((3023, 3043), 'numpy.exp', 'np.exp', (['loss.data[0]'], {}), '(loss.data[0])\n', (3029, 3043), True, 'import numpy as np\n'), ((3362, 3400), 'torch.multinomial', 'torch.multinomial', (['prob'], {'num_samples': '(1)'}), '(prob, num_samples=1)\n', (3379, 3400), False, 'import torch\n')]
#!/usr/bin/env python # Written for Python 3.4 # # Dependencies # pillow # scikit-image # scikit-learn # ...and their dependencies # # @TODO@: # * implement shared palette # * range check numeric command-line arguments # * consider click instead of argparse # * error out if width or height is not a multiple of 8 # * check if the image or line already has fewer than N unique colors and not generate a new palette if so # * parallel scikit-learn k-means is known to sometimes be broken on OS X import argparse import cProfile as profile import io import os.path import platform import struct import sys import time import numpy as np import scipy.cluster.vq import skimage.color import skimage.exposure import skimage.io import sklearn.cluster # NB: also update setup.py when changing __version__ = '0.0' FLOYD_STEINBERG = np.array([ [0, 0, 7], [3, 5, 1], ]) / 16 JARVIS_JUDICE_NINKE = np.array([ [0, 0, 0, 7, 5], [3, 5, 7, 5, 3], [1, 3, 5, 3, 1], ]) / 48 STUCKI = np.array([ [0, 0, 0, 8, 4], [2, 4, 8, 4, 2], [1, 2, 4, 2, 1], ]) / 42 ATKINSON = np.array([ [0, 0, 0, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0], ]) / 8 DITHER_FILTERS = { 'fs': FLOYD_STEINBERG, 'jjn': JARVIS_JUDICE_NINKE, 'stucki': STUCKI, 'atkinson': ATKINSON, } # Use Lab instead of RGB # (@XXX@ -- doesn't work. Some code assumes numeric values are in the range [0..1]) USE_LAB = False def main(argv=None): if argv is None: argv = sys.argv[1:] options = parseArgs(argv) if options.shared_palette: if options.format == 'scan16': print("--shared-palette cannot be used with scan16 format", file=sys.stderr) return 1 palette = getSharedPalette(options) with open(options.shared_palette, 'wb') as pal_file: writePalette(palette, pal_file) else: palette = None for filename in options.files: if options.verbose: print(filename, end=' ', flush=True) start_time = time.perf_counter() runner = profile.runctx if options.profile else exec runner("processFile(filename, palette, options)", globals(), locals()) if options.verbose: print("({:.2f} secs)".format(time.perf_counter() - start_time)) def processFile(filename, palette, options): try: img = skimage.io.imread(filename)[:,:,:3] # The slice will remove any alpha channel except (OSError, IOError) as e: print("{}: {}".format(filename, e), file=sys.stderr) return 1 if USE_LAB: img = skimage.color.rgb2lab(img) else: img = skimage.img_as_float(img) img = skimage.exposure.adjust_gamma(img, gamma=options.gamma_in) chr_data, pal_data = processImage(img, palette, options) chr_filename = genOutFilename(filename, options.out_dir, '.chr') with open(chr_filename, 'wb') as chr_file: chr_file.write(chr_data.getbuffer()) if pal_data is not None: pal_filename = genOutFilename(filename, options.out_dir, '.pal') with open(pal_filename, 'wb') as pal_file: pal_file.write(pal_data.getbuffer()) def parseArgs(argv): parser = argparse.ArgumentParser( prog="snesify", description="Converts graphics to SNES format", ) parser.add_argument('files', nargs='*') parser.add_argument('--version', action='version', version='%(prog)s ' + __version__) parser.add_argument('--verbose', '-v', action='count') parser.add_argument('--out-dir') parser.add_argument('--format', '-f', choices=('2bit', '4bit', '8bit', 'scan16'), default='4bit') parser.add_argument('--gamma-in', type=float, default=1.0) parser.add_argument('--gamma-out', type=float, default=1.0) parser.add_argument('--mini-batch', action='store_true') parser.add_argument('--shared-palette') #parser.add_argument('--starting-index', type=int, default=0) #parser.add_argument('--num-colors', type=int, default=0) parser.add_argument('--dither', choices=DITHER_FILTERS.keys()) parser.add_argument('--no-boustrophedon', action='store_true') parser.add_argument('--seed', action='store_true') parser.add_argument('--window', type=int, default=0) parser.add_argument('--profile', action='store_true') options = parser.parse_args(argv) # @TODO@ -- some other non-Unix OSes may need this behavior # @TODO@ -- more elegant way to do this? if platform.system() == 'Windows': import glob filenames = [] for filename in options.files: # If we don't check for wildcards and just run everything through # glob.glob, then nonexistent files will be silently ignored. We # want to raise an error if the user tries to convert foo.png and # foo.png does not exist. if '*' in filename or '?' in filename or '[' in filename: filenames += glob.glob(filename) else: filenames.append(filename) options.files = filenames options.bpp = { '2bit': 2, '4bit': 4, '8bit': 8, 'scan16': 4, }[options.format] options.num_colors = 2**options.bpp options.diffusion_filter = DITHER_FILTERS.get(options.dither, None) options.boustrophedon = not options.no_boustrophedon return options def genOutFilename(filename, out_path, new_extension): if not out_path: out_path = os.path.dirname(filename) if not out_path: out_path = '.' basename = os.path.basename(filename) return out_path + '/' + os.path.splitext(basename)[0] + new_extension # img should be a 2D numpy array of pixels # (really a 3D array of color components) def processImage(img, shared_palette, options): chr_file = io.BytesIO() pal_file = None if options.shared_palette else io.BytesIO() height, width, num_channels = img.shape if shared_palette is not None: palette = shared_palette elif options.format != 'scan16' or options.seed: pixels = img.reshape((width*height, num_channels)) if options.seed: seed = genPaletteMedianCut(pixels, options.bpp) else: seed = None palette, _ = genPaletteKmeans(pixels, options, seed=seed) if options.format != 'scan16': writePalette(palette, pal_file, options) else: assert options.format == 'scan16' and not options.seed palette = None diffusion_filter = extendFilter(options.diffusion_filter, num_channels) for row_num in range(height//8): scanline_rows = [] for i in range(8): scanline_num = row_num*8 + i paletted_line, line_palette = processLine(img, scanline_num, palette, diffusion_filter, options) if options.format == 'scan16': writePalette(line_palette, pal_file, options) scanline_rows.append(paletted_line) writeChrRow(scanline_rows, chr_file, options) return chr_file, pal_file # Reshape filter to number of channels # If there are 3 channels, [[a,b,c]] becomes [[[a,a,a],[b,b,b],[c,c,c]]] def extendFilter(filter, num_channels): if filter is None: return None filter_height, filter_width = filter.shape filter = np.repeat(filter, num_channels) return filter.reshape((filter_height, filter_width, num_channels)) # NB: modifies img in-place to facilitate dithering # If format is scan16, palette is the seed palette if any, else None def processLine(img, line_num, palette, diffusion_filter, options): height, width, num_channels = img.shape line = img[line_num] if options.format == 'scan16': pal_window = getWindow(img, line_num, options) palette, _ = genPaletteKmeans(pal_window, options, seed=palette) if diffusion_filter is not None: reversed = options.boustrophedon and line_num % 2 != 0 if reversed: diffusion_filter = diffusion_filter[:,::-1] the_range = range(len(line)-1, -1, -1) else: the_range = range(0, len(line)) paletted_line = [] for col in the_range: # @TODO@ -- clipping may not be appropriate in non-RGB spaces line[col] = line[col].clip(0.0, 1.0) color_idx = scipy.cluster.vq.vq([line[col]], palette, check_finite=False)[0][0] paletted_line.append(color_idx) error = line[col] - palette[color_idx] addDiffusedError(img, diffusion_filter*error, line_num, col) if reversed: paletted_line.reverse() else: paletted_line, _ = scipy.cluster.vq.vq(line, palette, check_finite=False) return paletted_line, palette def getWindow(img, line_num, options): height, width, num_channels = img.shape pal_first_line_num = max(0, line_num - options.window) pal_end_line_num = min(height, line_num + options.window + 1) pal_num_rows = pal_end_line_num - pal_first_line_num return img[pal_first_line_num:pal_end_line_num].reshape((width*pal_num_rows, num_channels)) # Use k-means to generate a palette # pixels should be a numpy array def genPaletteKmeans(pixels, options, seed=None): # Make sure all values are 0..1 # @XXX@ -- not necessarily appropriate in non-RGB colorspaces pixels = pixels.clip(0.0, 1.0) if options.mini_batch: KMeans = sklearn.cluster.MiniBatchKMeans else: KMeans = sklearn.cluster.KMeans kmeans = KMeans(n_clusters=options.num_colors, init=seed if seed is not None else 'k-means++', n_init=1 if seed is not None else 10) kmeans.fit(pixels) # @XXX@ -- clipping not necessarily appropriate in non-RGB colorspaces centroids = kmeans.cluster_centers_.clip(0.0, 1.0) labels = kmeans.labels_ return centroids, labels # Use median cut to generate a 16-color palette # Used to generate a seed palette for k-means # pixels should be a numpy array def genPaletteMedianCut(pixels, bpp): return np.array(getMedianCut(pixels, bpp)) # Return value is list, not array! def getMedianCut(pixels, depth): if depth == 0: return [np.mean(pixels, axis=0)] channel_num = findChannelWithGreatestRange(pixels) sorted_pixels = np.array(sorted(pixels, key=lambda pixel: pixel[channel_num])) median = len(sorted_pixels)//2 lesser = sorted_pixels[:median] greater = sorted_pixels[median:] return getMedianCut(lesser, depth - 1) + getMedianCut(greater, depth - 1) def findChannelWithGreatestRange(pixels): _, num_channels = pixels.shape channel_ranges = [max(pixels[:,i]) - min(pixels[:,i]) for i in range(num_channels)] return channel_ranges.index(max(channel_ranges)) def addDiffusedError(img, diffused_error, row, col): img_height, img_width, _ = img.shape err_height, err_width, _ = diffused_error.shape left_col = col - err_width//2 end_col = col + err_width//2 + 1 end_row = row + err_height # All these conditions just crop diffused_error as needed when # adding it to the edge of the image if left_col < 0: diffused_error = diffused_error[:,-left_col:] left_col = 0 if end_col > img_width: diffused_error = diffused_error[:,:img_width - end_col] end_col = img_width if end_row > img_height: diffused_error = diffused_error[:img_height - end_row] end_row = img_height img_section = img[row:end_row,left_col:end_col] # We're modifying img in-place img_section += diffused_error def writePalette(palette, pal_file, options): if USE_LAB: palette = skimage.color.lab2rgb([palette])[0] else: palette = skimage.exposure.adjust_gamma(palette, gamma=1.0/options.gamma_out) palette = scaleColors(palette, 31) for (r, g, b) in palette: # Convert to 0bbbbbgggggrrrrr snes_color = (b<<10) | (g<<5) | r pal_file.write(struct.pack("<H", snes_color)) def scaleColors(palette, max): # We add 0.5 to have proper rounding when truncating to int return [[int(x*max + 0.5) for x in color] for color in palette] def writeChrRow(scanline_rows, chr_file, options): width = len(scanline_rows[0]) for chr_num in range(width//8): chr_x = chr_num*8 for shift in range(0, options.bpp, 2): shift2 = shift + 1 # shift for second bitplane in pair bitplane_mask = 1 << shift bitplane2_mask = 1 << shift2 for y in range(8): word = 0 for x in range(8): pixel = scanline_rows[y][chr_x+x] bitnum = 7 - x word |= (pixel & bitplane_mask) >> shift << bitnum word |= (pixel & bitplane2_mask) >> shift2 << (bitnum + 8) chr_file.write(struct.pack("<H", word)) if __name__ == '__main__': sys.exit(main())
[ "numpy.mean", "numpy.repeat", "argparse.ArgumentParser", "io.BytesIO", "time.perf_counter", "struct.pack", "numpy.array", "platform.system", "glob.glob" ]
[((849, 881), 'numpy.array', 'np.array', (['[[0, 0, 7], [3, 5, 1]]'], {}), '([[0, 0, 7], [3, 5, 1]])\n', (857, 881), True, 'import numpy as np\n'), ((921, 982), 'numpy.array', 'np.array', (['[[0, 0, 0, 7, 5], [3, 5, 7, 5, 3], [1, 3, 5, 3, 1]]'], {}), '([[0, 0, 0, 7, 5], [3, 5, 7, 5, 3], [1, 3, 5, 3, 1]])\n', (929, 982), True, 'import numpy as np\n'), ((1013, 1074), 'numpy.array', 'np.array', (['[[0, 0, 0, 8, 4], [2, 4, 8, 4, 2], [1, 2, 4, 2, 1]]'], {}), '([[0, 0, 0, 8, 4], [2, 4, 8, 4, 2], [1, 2, 4, 2, 1]])\n', (1021, 1074), True, 'import numpy as np\n'), ((1107, 1168), 'numpy.array', 'np.array', (['[[0, 0, 0, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0]]'], {}), '([[0, 0, 0, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0]])\n', (1115, 1168), True, 'import numpy as np\n'), ((3213, 3305), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""snesify"""', 'description': '"""Converts graphics to SNES format"""'}), "(prog='snesify', description=\n 'Converts graphics to SNES format')\n", (3236, 3305), False, 'import argparse\n'), ((5846, 5858), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5856, 5858), False, 'import io\n'), ((7550, 7581), 'numpy.repeat', 'np.repeat', (['filter', 'num_channels'], {}), '(filter, num_channels)\n', (7559, 7581), True, 'import numpy as np\n'), ((4498, 4515), 'platform.system', 'platform.system', ([], {}), '()\n', (4513, 4515), False, 'import platform\n'), ((5910, 5922), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5920, 5922), False, 'import io\n'), ((2045, 2064), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2062, 2064), False, 'import time\n'), ((10435, 10458), 'numpy.mean', 'np.mean', (['pixels'], {'axis': '(0)'}), '(pixels, axis=0)\n', (10442, 10458), True, 'import numpy as np\n'), ((12207, 12236), 'struct.pack', 'struct.pack', (['"""<H"""', 'snes_color'], {}), "('<H', snes_color)\n", (12218, 12236), False, 'import struct\n'), ((4982, 5001), 'glob.glob', 'glob.glob', (['filename'], {}), '(filename)\n', (4991, 5001), False, 'import glob\n'), ((13119, 13142), 'struct.pack', 'struct.pack', (['"""<H"""', 'word'], {}), "('<H', word)\n", (13130, 13142), False, 'import struct\n'), ((2274, 2293), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2291, 2293), False, 'import time\n')]
from distutils.version import StrictVersion import unittest from numpy.testing import assert_almost_equal from onnxruntime import InferenceSession, __version__ as ort_version from sklearn.ensemble import ( GradientBoostingClassifier, GradientBoostingRegressor, ) from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.neural_network import MLPClassifier, MLPRegressor from skl2onnx import convert_sklearn from skl2onnx.common.data_types import ( FloatTensorType, Int64TensorType, onnx_built_with_ml, ) from test_utils import ( dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET ) class TestOneVsRestClassifierConverter(unittest.TestCase): @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr(self): model = OneVsRestClassifier(LogisticRegression()) dump_multiple_classification( model, allow_failure="StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", target_opset=TARGET_OPSET ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_02(self): model = OneVsRestClassifier(LogisticRegression()) dump_multiple_classification( model, first_class=2, suffix="F2", allow_failure="StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", target_opset=TARGET_OPSET ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_string(self): model = OneVsRestClassifier(LogisticRegression()) dump_multiple_classification( model, verbose=False, label_string=True, suffix="String", allow_failure="StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", target_opset=TARGET_OPSET ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_float(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression(solver='liblinear')), 3) model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationFloat", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_decision_function(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 4) options = {id(model): {'raw_scores': True}} model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], options=options, target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationDecisionFunction", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", methods=['predict', 'decision_function'], ) if StrictVersion(ort_version) < StrictVersion("1.0.0"): return options = {id(model): {'raw_scores': True, 'zipmap': False}} model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], options=options, target_opset=TARGET_OPSET) sess = InferenceSession(model_onnx.SerializeToString()) got = sess.run(None, {'input': X})[1] dec = model.decision_function(X) assert_almost_equal(got, dec, decimal=4) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_decision_function_binary(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 2) options = {id(model): {'raw_scores': True}} model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], options=options, target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationDecisionFunctionBinary", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", methods=['predict', 'decision_function_binary'], ) if StrictVersion(ort_version) < StrictVersion("1.0.0"): return options = {id(model): {'raw_scores': True, 'zipmap': False}} model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], options=options, target_opset=TARGET_OPSET) sess = InferenceSession(model_onnx.SerializeToString()) got = sess.run(None, {'input': X})[1] dec = model.decision_function(X) assert_almost_equal(got[:, 1], dec, decimal=4) assert_almost_equal(-got[:, 0], dec, decimal=4) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_int(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 5, is_int=True) model_onnx = convert_sklearn( model, "ovr classification", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationInt", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_float_binary(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 2) model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationFloatBin", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_float_binary_nozipmap(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 2) model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET, options={id(model): {'zipmap': False}}) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationFloatBinNoZipMap", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')") @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_int_binary(self): model, X = fit_classification_model( OneVsRestClassifier(LogisticRegression()), 2, is_int=True) model_onnx = convert_sklearn( model, "ovr classification", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationIntBin", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_float_mlp(self): model, X = fit_classification_model( OneVsRestClassifier(MLPClassifier()), 4) model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationFloatMLP", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_int_ensemble(self): model, X = fit_classification_model( OneVsRestClassifier(GradientBoostingClassifier()), 5, is_int=True) model_onnx = convert_sklearn( model, "ovr classification", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationIntEnsemble", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_float_binary_ensemble(self): model, X = fit_classification_model( OneVsRestClassifier(GradientBoostingClassifier()), 2) model_onnx = convert_sklearn( model, "ovr classification", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationFloatBinEnsemble", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_classification_int_binary_mlp(self): model, X = fit_classification_model( OneVsRestClassifier(MLPClassifier()), 2, is_int=True) model_onnx = convert_sklearn( model, "ovr classification", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRClassificationIntBinMLP", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_regression_float(self): """The test is unstable, some observations are equidistant to more than one class, the chosen is difficult to predict. So we check only probabilities.""" rs = 11 model, X = fit_classification_model( OneVsRestClassifier( LinearRegression()), 3, random_state=rs) model_onnx = convert_sklearn( model, "ovr regression", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X[:5], model, model_onnx, basename="SklearnOVRRegressionFloat-Out0", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_regression_int(self): model, X = fit_classification_model( OneVsRestClassifier(LinearRegression()), 10, is_int=True) model_onnx = convert_sklearn( model, "ovr regression", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRRegressionInt-Out0", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_regression_float_mlp(self): model, X = fit_classification_model( OneVsRestClassifier(MLPRegressor()), 5) model_onnx = convert_sklearn( model, "ovr regression", [("input", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRRegressionFloatMLP-Out0", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) @unittest.skipIf(not onnx_built_with_ml(), reason="Requires ONNX-ML extension.") def test_ovr_regression_int_ensemble(self): model, X = fit_classification_model( OneVsRestClassifier(GradientBoostingRegressor()), 4, is_int=True) model_onnx = convert_sklearn( model, "ovr regression", [("input", Int64TensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET ) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnOVRRegressionIntEnsemble-Out0", allow_failure="StrictVersion(onnxruntime.__version__)" "<= StrictVersion('0.2.1')", ) if __name__ == "__main__": unittest.main()
[ "sklearn.neural_network.MLPRegressor", "sklearn.neural_network.MLPClassifier", "skl2onnx.common.data_types.FloatTensorType", "sklearn.ensemble.GradientBoostingRegressor", "sklearn.linear_model.LogisticRegression", "skl2onnx.common.data_types.Int64TensorType", "numpy.testing.assert_almost_equal", "test_utils.dump_multiple_classification", "test_utils.dump_data_and_model", "unittest.main", "sklearn.ensemble.GradientBoostingClassifier", "distutils.version.StrictVersion", "skl2onnx.common.data_types.onnx_built_with_ml", "sklearn.linear_model.LinearRegression" ]
[((15487, 15502), 'unittest.main', 'unittest.main', ([], {}), '()\n', (15500, 15502), False, 'import unittest\n'), ((991, 1144), 'test_utils.dump_multiple_classification', 'dump_multiple_classification', (['model'], {'allow_failure': '"""StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')"""', 'target_opset': 'TARGET_OPSET'}), '(model, allow_failure=\n "StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')",\n target_opset=TARGET_OPSET)\n', (1019, 1144), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((1411, 1596), 'test_utils.dump_multiple_classification', 'dump_multiple_classification', (['model'], {'first_class': '(2)', 'suffix': '"""F2"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')"""', 'target_opset': 'TARGET_OPSET'}), '(model, first_class=2, suffix=\'F2\',\n allow_failure=\n "StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')",\n target_opset=TARGET_OPSET)\n', (1439, 1596), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((1887, 2095), 'test_utils.dump_multiple_classification', 'dump_multiple_classification', (['model'], {'verbose': '(False)', 'label_string': '(True)', 'suffix': '"""String"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')"""', 'target_opset': 'TARGET_OPSET'}), '(model, verbose=False, label_string=True,\n suffix=\'String\', allow_failure=\n "StrictVersion(onnxruntime.__version__) <= StrictVersion(\'0.2.1\')",\n target_opset=TARGET_OPSET)\n', (1915, 2095), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((2717, 2891), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationFloat"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationFloat\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (2736, 2891), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((3566, 3797), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationDecisionFunction"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""', 'methods': "['predict', 'decision_function']"}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationDecisionFunction\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')",\n methods=[\'predict\', \'decision_function\'])\n', (3585, 3797), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((4390, 4430), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['got', 'dec'], {'decimal': '(4)'}), '(got, dec, decimal=4)\n', (4409, 4430), False, 'from numpy.testing import assert_almost_equal\n'), ((5036, 5280), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationDecisionFunctionBinary"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""', 'methods': "['predict', 'decision_function_binary']"}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationDecisionFunctionBinary\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')",\n methods=[\'predict\', \'decision_function_binary\'])\n', (5055, 5280), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((5873, 5919), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['got[:, 1]', 'dec'], {'decimal': '(4)'}), '(got[:, 1], dec, decimal=4)\n', (5892, 5919), False, 'from numpy.testing import assert_almost_equal\n'), ((5928, 5975), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['(-got[:, 0])', 'dec'], {'decimal': '(4)'}), '(-got[:, 0], dec, decimal=4)\n', (5947, 5975), False, 'from numpy.testing import assert_almost_equal\n'), ((6492, 6664), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationInt"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationInt\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (6511, 6664), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((7253, 7430), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationFloatBin"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationFloatBin\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (7272, 7430), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((8059, 8244), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationFloatBinNoZipMap"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationFloatBinNoZipMap\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (8078, 8244), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((8810, 8985), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationIntBin"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationIntBin\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (8829, 8985), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((9566, 9743), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationFloatMLP"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationFloatMLP\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (9585, 9743), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((10353, 10533), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationIntEnsemble"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationIntEnsemble\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (10372, 10533), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((11139, 11324), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationFloatBinEnsemble"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationFloatBinEnsemble\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (11158, 11324), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((11923, 12101), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRClassificationIntBinMLP"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRClassificationIntBinMLP\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (11942, 12101), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((12909, 13088), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X[:5]', 'model', 'model_onnx'], {'basename': '"""SklearnOVRRegressionFloat-Out0"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X[:5], model, model_onnx, basename=\n \'SklearnOVRRegressionFloat-Out0\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (12928, 13088), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((13672, 13845), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRRegressionInt-Out0"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRRegressionInt-Out0\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (13691, 13845), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((14417, 14595), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRRegressionFloatMLP-Out0"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRRegressionFloatMLP-Out0\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (14436, 14595), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((15196, 15377), 'test_utils.dump_data_and_model', 'dump_data_and_model', (['X', 'model', 'model_onnx'], {'basename': '"""SklearnOVRRegressionIntEnsemble-Out0"""', 'allow_failure': '"""StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')"""'}), '(X, model, model_onnx, basename=\n \'SklearnOVRRegressionIntEnsemble-Out0\', allow_failure=\n "StrictVersion(onnxruntime.__version__)<= StrictVersion(\'0.2.1\')")\n', (15215, 15377), False, 'from test_utils import dump_data_and_model, dump_multiple_classification, fit_classification_model, TARGET_OPSET\n'), ((961, 981), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (979, 981), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((820, 840), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (838, 840), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((1381, 1401), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1399, 1401), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((1237, 1257), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (1255, 1257), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((1857, 1877), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1875, 1877), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((1709, 1729), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (1727, 1729), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((2220, 2240), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (2238, 2240), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((3893, 3919), 'distutils.version.StrictVersion', 'StrictVersion', (['ort_version'], {}), '(ort_version)\n', (3906, 3919), False, 'from distutils.version import StrictVersion\n'), ((3922, 3944), 'distutils.version.StrictVersion', 'StrictVersion', (['"""1.0.0"""'], {}), "('1.0.0')\n", (3935, 3944), False, 'from distutils.version import StrictVersion\n'), ((2994, 3014), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (3012, 3014), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((5376, 5402), 'distutils.version.StrictVersion', 'StrictVersion', (['ort_version'], {}), '(ort_version)\n', (5389, 5402), False, 'from distutils.version import StrictVersion\n'), ((5405, 5427), 'distutils.version.StrictVersion', 'StrictVersion', (['"""1.0.0"""'], {}), "('1.0.0')\n", (5418, 5427), False, 'from distutils.version import StrictVersion\n'), ((4457, 4477), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (4475, 4477), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((6002, 6022), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (6020, 6022), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((6767, 6787), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (6785, 6787), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((7533, 7553), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (7551, 7553), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((8313, 8333), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (8331, 8333), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((9088, 9108), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (9106, 9108), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((9846, 9866), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (9864, 9866), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((10636, 10656), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (10654, 10656), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((11427, 11447), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (11445, 11447), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((12204, 12224), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (12222, 12224), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((13191, 13211), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (13209, 13211), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((13948, 13968), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (13966, 13968), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((14698, 14718), 'skl2onnx.common.data_types.onnx_built_with_ml', 'onnx_built_with_ml', ([], {}), '()\n', (14716, 14718), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((2423, 2461), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'solver': '"""liblinear"""'}), "(solver='liblinear')\n", (2441, 2461), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((3209, 3229), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (3227, 3229), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((4679, 4699), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (4697, 4699), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((6203, 6223), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (6221, 6223), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((6977, 6997), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (6995, 6997), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((7752, 7772), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (7770, 7772), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((8521, 8541), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (8539, 8541), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((9295, 9310), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {}), '()\n', (9308, 9310), False, 'from sklearn.neural_network import MLPClassifier, MLPRegressor\n'), ((10056, 10084), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {}), '()\n', (10082, 10084), False, 'from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor\n'), ((10855, 10883), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {}), '()\n', (10881, 10883), False, 'from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor\n'), ((11639, 11654), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {}), '()\n', (11652, 11654), False, 'from sklearn.neural_network import MLPClassifier, MLPRegressor\n'), ((12622, 12640), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (12638, 12640), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((13388, 13406), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (13404, 13406), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression\n'), ((14151, 14165), 'sklearn.neural_network.MLPRegressor', 'MLPRegressor', ([], {}), '()\n', (14163, 14165), False, 'from sklearn.neural_network import MLPClassifier, MLPRegressor\n'), ((14904, 14931), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {}), '()\n', (14929, 14931), False, 'from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor\n'), ((2581, 2616), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (2596, 2616), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((3401, 3436), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (3416, 3436), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((4136, 4171), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (4151, 4171), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((4871, 4906), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (4886, 4906), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((5619, 5654), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (5634, 5654), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((6356, 6391), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (6371, 6391), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((7117, 7152), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (7132, 7152), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((7880, 7915), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (7895, 7915), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((8674, 8709), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (8689, 8709), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((9430, 9465), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (9445, 9465), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((10217, 10252), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (10232, 10252), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((11003, 11038), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (11018, 11038), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((11787, 11822), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (11802, 11822), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((12773, 12808), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (12788, 12808), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((13536, 13571), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (13551, 13571), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((14281, 14316), 'skl2onnx.common.data_types.FloatTensorType', 'FloatTensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (14296, 14316), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n'), ((15060, 15095), 'skl2onnx.common.data_types.Int64TensorType', 'Int64TensorType', (['[None, X.shape[1]]'], {}), '([None, X.shape[1]])\n', (15075, 15095), False, 'from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, onnx_built_with_ml\n')]
import numpy as np import operator from random import choice from neat.activations import identity_activation from neat.aggregations import sum_aggregation class StateMachineNetwork(object): """ This class represents a working state machine which can actually run on robot or in simulation. """ def __init__(self, states, transitions): """ Parameters: states : dict() where states are sorted based on state_id transitions : dict() where transitions are sorted based on begin_id. """ self.states = dict() self.transitions = dict() # Add the states in the dictionary for easy look-up. for state in states: if state.id in self.states: raise ValueError("State included twice") self.states[state.id] = state # Add the possibility of transitions from this state. if state.id not in self.transitions: self.transitions[state.id] = [] # Add all the transitions indexed by the begin state, for easy lookup. for transition in transitions: if transition.begin_state_id not in list(self.transitions.keys()): raise ValueError('Begin state of transition not in state machine') self.transitions[transition.begin_state_id].append(transition) def activate(self, current_state_id, inputs): """ :parameter current_state_id : current node of the state machine from where calculations should be done. :parameter inputs : Inputs sets, should match the number of inputs to the neural networks. :return next_state, output : next state the controller goes to after this execution. Output from the current neural network of the controller. """ # First check whether a state transition needs to be made, based on the new data. possible_transitions = [] for transition in self.transitions[current_state_id]: if transition.check_transition(inputs): possible_transitions.append(transition) next_state = current_state_id if len(possible_transitions) > 0: selected_transition = choice(possible_transitions) next_state = selected_transition.end_state_id # Evaluate the neural network of the current state. current_state = self.states[next_state] output = current_state.activate(inputs) return next_state, output @staticmethod def create(genome, config): """ Receives a genome and returns its phenotype (a state machine of neural networks). """ network_states = [] for _, state in genome.states.items(): aggregation_function = config.aggregation_function_defs.get(state.aggregation) activation_function = config.activation_defs.get(state.activation) network_state = State(state.key, aggregation_function, activation_function) network_state.set_biases(state.biases) network_state.set_weights(state.weights) network_states.append(network_state) network_transitions = [] for _, transition in genome.transitions.items(): transition_state = Transition(transition.key[0], transition.key[1]) for condition in transition.conditions: transition_state.add_condition(Condition(condition[0], condition[1], condition[2])) network_transitions.append(transition_state) return StateMachineNetwork(network_states, network_transitions) class State(object): """ This class represents a state in the state machine. """ def __init__(self, identifier, aggregation_func=sum_aggregation, activation_func=identity_activation): """ Default the weights are summed without any function being applied to them.""" self.id = identifier self.biases = None self.weights = None self.agg_func = aggregation_func self.act_func = activation_func self.num_inputs = 0 self.num_outputs = 0 def set_biases(self, biases): """ Enter a list containing the biases of the network (same length as number of outputs) """ self.biases = np.array(biases) self.num_outputs = len(biases) def set_weights(self, weights): # length rows are #inputs, length columns are #outputs. self.weights = np.array(weights) self.num_inputs = len(weights[0]) def activate(self, inputs): # Check that the inputs and the weightmatrix are of the same length. assert len(inputs) == self.num_inputs # Perform neural network operations. np_inputs = np.array(inputs) combined_weights = np.multiply(np_inputs, self.weights) # Note that this sum fails in case of a single row of weight aggregate = [self.act_func(self.agg_func(weight_row)) for weight_row in combined_weights] assert len(aggregate) == self.num_outputs return (aggregate + self.biases).tolist() class Transition(object): """" This class represents a transition in the state machine""" def __init__(self, begin_state_id, end_state_id): self.begin_state_id = begin_state_id self.end_state_id = end_state_id self.conditions = [] def add_condition(self, condition): assert isinstance(condition, Condition) self.conditions.append(condition) def check_transition(self, inputs): """ This function checks whether all conditions of the transition holds.""" evaluations = map(lambda x: x.compare(inputs), self.conditions) return all(evaluations) class Condition(object): """ This class represents a condition which can be checked for making a transition. """ ops = ( operator.eq, operator.gt, operator.lt, ) def __init__(self, sensor_id, op, comparison_value): if op not in Condition.ops: raise ValueError('Invalid operator given to condition') self.sensor_id = sensor_id self.operator = op self.comparison_value = comparison_value def compare(self, inputs): """ Compares the value of the indicated sensor with the reference value.""" value = inputs[self.sensor_id] return self.operator(value, self.comparison_value) @staticmethod def random_operator(): return choice(list(Condition.ops)) @staticmethod def op_to_int(op): return Condition.ops.index(op) @staticmethod def int_to_op(index): return Condition.ops[index]
[ "numpy.array", "numpy.multiply", "random.choice" ]
[((4246, 4262), 'numpy.array', 'np.array', (['biases'], {}), '(biases)\n', (4254, 4262), True, 'import numpy as np\n'), ((4426, 4443), 'numpy.array', 'np.array', (['weights'], {}), '(weights)\n', (4434, 4443), True, 'import numpy as np\n'), ((4710, 4726), 'numpy.array', 'np.array', (['inputs'], {}), '(inputs)\n', (4718, 4726), True, 'import numpy as np\n'), ((4754, 4790), 'numpy.multiply', 'np.multiply', (['np_inputs', 'self.weights'], {}), '(np_inputs, self.weights)\n', (4765, 4790), True, 'import numpy as np\n'), ((2211, 2239), 'random.choice', 'choice', (['possible_transitions'], {}), '(possible_transitions)\n', (2217, 2239), False, 'from random import choice\n')]
import json import warnings from enum import Enum from typing import Any, List, Tuple, Union import numpy as np import torch from mmhuman3d.core.cameras.cameras import PerspectiveCameras from mmhuman3d.core.conventions.cameras.convert_convention import ( convert_camera_matrix, convert_K_3x3_to_4x4, convert_K_4x4_to_3x3, ) from .builder import build_cameras _CAMERA_PARAMETER_SUPPORTED_KEYS_ = { 'H': { 'type': int, }, 'W': { 'type': int, }, 'in_mat': { 'type': list, 'len': 3, }, 'rotation_mat': { 'type': list, 'len': 3, }, 'translation': { 'type': list, 'len': 3, }, 'k1': { 'type': float, }, 'k2': { 'type': float, }, 'k3': { 'type': float, }, 'k4': { 'type': float, }, 'k5': { 'type': float, }, 'k6': { 'type': float, }, 'p1': { 'type': float, }, 'p2': { 'type': float, }, } class _TypeValidation(Enum): MATCH = 0 ARRAY = 1 FAIL = 2 class CameraParameter: logger = None SUPPORTED_KEYS = _CAMERA_PARAMETER_SUPPORTED_KEYS_ def __init__(self, name: str = 'default', H: int = 1080, W: int = 1920) -> None: """ Args: name (str, optional): Name of this camera. Defaults to "default". H (int, optional): Height of a frame, in pixel. Defaults to 1080. W (int, optional): Width of a frame, in pixel. Defaults to 1920. """ self.name = name self.parameters_dict = {} in_mat = __zero_mat_list__(3) self.parameters_dict['in_mat'] = in_mat for distort_name in __distort_coefficient_names__: self.parameters_dict[distort_name] = 0.0 _, H = self.validate_item('H', H) self.parameters_dict['H'] = H _, W = self.validate_item('W', W) self.parameters_dict['W'] = W r_mat = __zero_mat_list__(3) self.parameters_dict['rotation_mat'] = r_mat t_list = [0.0, 0.0, 0.0] self.parameters_dict['translation'] = t_list def reset_distort(self) -> None: """Reset all distort coefficients to zero.""" for distort_name in __distort_coefficient_names__: self.parameters_dict[distort_name] = 0.0 def get_opencv_distort_mat(self) -> np.ndarray: """Get a numpy array of 8 distort coefficients, which is the distCoeffs arg of cv2.undistort. Returns: ndarray: (k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6) of 8 elements. """ dist_coeffs = [ self.get_value('k1'), self.get_value('k2'), self.get_value('p1'), self.get_value('p2'), self.get_value('k3'), self.get_value('k4'), self.get_value('k5'), self.get_value('k6'), ] dist_coeffs = np.array(dist_coeffs) return dist_coeffs def set_KRT(self, K_mat: np.ndarray, R_mat: np.ndarray, T_vec: np.ndarray, inverse_extrinsic: bool = False) -> None: """Set intrinsic and extrinsic of a camera. Args: K_mat (np.ndarray): In shape [3, 3]. R_mat (np.ndarray): Rotation from world to view in default. In shape [3, 3]. T_vec (np.ndarray): Translation from world to view in default. In shape [3,]. inverse_extrinsic (bool, optional): If true, R_mat and T_vec transform a point from view to world. Defaults to False. """ k_shape = K_mat.shape assert k_shape[0] == k_shape[1] == 3 r_shape = R_mat.shape assert r_shape[0] == r_shape[1] == 3 assert T_vec.ndim == 1 and T_vec.shape[0] == 3 self.set_mat_np('in_mat', K_mat) if inverse_extrinsic: R_mat = np.linalg.inv(R_mat) T_vec = -np.dot(R_mat, T_vec).reshape((3)) self.set_mat_np('rotation_mat', R_mat) self.set_value('translation', T_vec.tolist()) def get_KRT(self, k_dim=3) -> List[np.ndarray]: """Get intrinsic and extrinsic of a camera. Args: k_dim (int, optional): Dimension of the returned mat K. Defaults to 3. Raises: ValueError: k_dim is neither 3 nor 4. Returns: List[np.ndarray]: K_mat (np.ndarray): In shape [3, 3]. R_mat (np.ndarray): Rotation from world to view in default. In shape [3, 3]. T_vec (np.ndarray): Translation from world to view in default. In shape [3,]. """ K_3x3 = self.get_mat_np('in_mat') R_mat = self.get_mat_np('rotation_mat') T_vec = np.asarray(self.get_value('translation')) if k_dim == 3: return [K_3x3, R_mat, T_vec] elif k_dim == 4: K_3x3 = np.expand_dims(K_3x3, 0) # shape (1, 3, 3) K_4x4 = convert_K_3x3_to_4x4( K=K_3x3, is_perspective=True) # shape (1, 4, 4) K_4x4 = K_4x4[0, :, :] return [K_4x4, R_mat, T_vec] else: raise ValueError(f'K mat cannot be converted to {k_dim}x{k_dim}') def set_mat_np(self, mat_key: str, mat_numpy: np.ndarray) -> None: """Set a matrix-type parameter to mat_numpy. Args: mat_key (str): Key of the target matrix. in_mat or rotation_mat. mat_numpy (ndarray): Matrix in numpy format. Raises: TypeError: mat_numpy is not an np.ndarray. """ if not isinstance(mat_numpy, np.ndarray): raise TypeError self.set_mat_list(mat_key, mat_numpy.tolist()) def set_mat_list(self, mat_key: str, mat_list: List[list]) -> None: """Set a matrix-type parameter to mat_list. Args: mat_key (str): Key of the target matrix. in_mat or rotation_mat. mat_list (List[list]): Matrix in list format. """ _, mat_list = self.validate_item(mat_key, mat_list) self.parameters_dict[mat_key] = mat_list def set_value(self, key: str, value: Any) -> None: """Set a parameter to value. Args: key (str): Name of the parameter. value (object): New value of the parameter. """ _, value = self.validate_item(key, value) self.parameters_dict[key] = value def get_value(self, key: str) -> Any: """Get a parameter by key. Args: key (str): Name of the parameter. Raises: KeyError: key not in self.parameters_dict Returns: object: Value of the parameter. """ if key not in self.parameters_dict: raise KeyError(key) else: return self.parameters_dict[key] def get_mat_np(self, key: str) -> np.ndarray: """Get a a matrix-type parameter by key. Args: key (str): Name of the parameter. Raises: KeyError: key not in self.parameters_dict Returns: ndarray: Value of the parameter. """ if key not in self.parameters_dict: raise KeyError(key) else: mat_list = self.parameters_dict[key] mat_np = np.array(mat_list).reshape((3, 3)) return mat_np def to_string(self) -> str: """Convert self.to_dict() to a string. Returns: str: A dict in json string format. """ dump_dict = self.to_dict() ret_str = json.dumps(dump_dict) return ret_str def to_dict(self) -> dict: """Dump camera name and parameters to dict. Returns: dict: Put self.name and self.parameters_dict in one dict. """ dump_dict = self.parameters_dict.copy() dump_dict['name'] = self.name return dump_dict def dump(self, json_path: str) -> None: """Dump camera name and parameters to a file. Returns: dict: Put self.name and self.parameters_dict in one dict, and dump them to a json file. """ dump_dict = self.to_dict() with open(json_path, 'w') as f_write: json.dump(dump_dict, f_write) def load(self, json_path: str) -> None: """Load camera name and parameters from a file.""" with open(json_path, 'r') as f_read: dumped_dict = json.load(f_read) self.load_from_dict(dumped_dict) def load_from_dict(self, json_dict: dict) -> None: """Load name and parameters from a dict. Args: json_dict (dict): A dict comes from self.to_dict(). """ for key in json_dict.keys(): if key == 'name': self.name = json_dict[key] elif key == 'rotation': self.parameters_dict['rotation_mat'] = np.array( json_dict[key]).reshape(3, 3).tolist() elif key == 'translation': self.parameters_dict[key] = np.array(json_dict[key]).reshape( (3)).tolist() else: self.parameters_dict[key] = json_dict[key] if '_mat' in key: self.parameters_dict[key] = np.array( self.parameters_dict[key]).reshape(3, 3).tolist() def load_from_chessboard(self, chessboard_dict: dict, name: str, inverse: bool = True) -> None: """Load name and parameters from a dict. Args: chessboard_dict (dict): A dict loaded from json.load(chessboard_file). name (str): Name of this camera. inverse (bool, optional): Whether to inverse rotation and translation mat. Defaults to False. """ camera_param_dict = \ __parse_chessboard_param__(chessboard_dict, name, inverse=inverse) self.load_from_dict(camera_param_dict) def load_kinect_from_smc(self, smc_reader, kinect_id: int) -> None: """Load name and parameters of a kinect from an SmcReader instance. Args: smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader): An SmcReader instance containing kinect camera parameters. kinect_id (int): Id of the target kinect. """ name = kinect_id extrinsics_dict = \ smc_reader.get_kinect_color_extrinsics( kinect_id, homogeneous=False ) rot_np = extrinsics_dict['R'] trans_np = extrinsics_dict['T'] intrinsics_np = \ smc_reader.get_kinect_color_intrinsics( kinect_id ) resolution = \ smc_reader.get_kinect_color_resolution( kinect_id ) rmatrix = np.linalg.inv(rot_np).reshape(3, 3) tvec = -np.dot(rmatrix, trans_np) self.name = name self.set_mat_np('in_mat', intrinsics_np) self.set_mat_np('rotation_mat', rmatrix) self.set_value('translation', tvec.tolist()) self.set_value('H', resolution[1]) self.set_value('W', resolution[0]) def load_iphone_from_smc(self, smc_reader, iphone_id: int = 0, frame_id: int = 0) -> None: """Load name and parameters of an iPhone from an SmcReader instance. Args: smc_reader (mmhuman3d.data.data_structures.smc_reader.SMCReader): An SmcReader instance containing kinect camera parameters. iphone_id (int): Id of the target iphone. Defaults to 0. frame_id (int): Frame ID of one selected frame. It only influences the intrinsics. Defaults to 0. """ name = f'iPhone_{iphone_id}' extrinsics_mat = \ smc_reader.get_iphone_extrinsics( iphone_id, homogeneous=True ) rot_np = extrinsics_mat[:3, :3] trans_np = extrinsics_mat[:3, 3] intrinsics_np = \ smc_reader.get_iphone_intrinsics( iphone_id, frame_id ) resolution = \ smc_reader.get_iphone_color_resolution( iphone_id ) rmatrix = np.linalg.inv(rot_np).reshape(3, 3) tvec = -np.dot(rmatrix, trans_np) self.name = name self.set_mat_np('in_mat', intrinsics_np) self.set_mat_np('rotation_mat', rmatrix) self.set_value('translation', tvec.tolist()) self.set_value('H', resolution[1]) self.set_value('W', resolution[0]) @classmethod def load_from_perspective_cameras(cls, cam, name: str, resolution: Union[List, Tuple] = None): """Load parameters from a PerspectiveCameras and return a CameraParameter. Args: cam (mmhuman3d.core.cameras.cameras.PerspectiveCameras): An instance. name (str): Name of this camera. """ assert isinstance(cam, PerspectiveCameras ), 'Wrong input, support PerspectiveCameras only!' if len(cam) > 1: warnings.warn('Will only use the first camera in the batch.') cam = cam[0] resolution = resolution if resolution is not None else cam.resolution[ 0].tolist() height, width = int(resolution[0]), int(resolution[1]) cam_param = CameraParameter() cam_param.__init__(H=height, W=width, name=name) k_4x4 = cam.K # shape (1, 4, 4) r_3x3 = cam.R # shape (1, 3, 3) t_3 = cam.T # shape (1, 3) is_perspective = cam.is_perspective() in_ndc = cam.in_ndc() k_4x4, r_3x3, t_3 = convert_camera_matrix( K=k_4x4, R=r_3x3, T=t_3, is_perspective=False, in_ndc_dst=False, in_ndc_src=in_ndc, convention_src='pytorch3d', convention_dst='opencv', resolution_src=(height, width), resolution_dst=(height, width)) k_3x3 = \ convert_K_4x4_to_3x3(k_4x4, is_perspective=is_perspective) k_3x3 = k_3x3.numpy()[0] r_3x3 = r_3x3.numpy()[0] t_3 = t_3.numpy()[0] cam_param.name = name cam_param.set_mat_np('in_mat', k_3x3) cam_param.set_mat_np('rotation_mat', r_3x3) cam_param.set_value('translation', t_3.tolist()) cam_param.parameters_dict.update(H=height) cam_param.parameters_dict.update(W=width) return cam_param def export_to_perspective_cameras(self) -> PerspectiveCameras: """Export to a opencv defined screen space PerspectiveCameras. Returns: Same defined PerspectiveCameras of batch_size 1. """ height = self.parameters_dict['H'] width = self.parameters_dict['W'] k_4x4, rotation, translation = self.get_KRT(k_dim=4) k_4x4 = np.expand_dims(k_4x4, 0) # shape (1, 3, 3) rotation = np.expand_dims(rotation, 0) # shape (1, 3, 3) translation = np.expand_dims(translation, 0) # shape (1, 3) new_K = torch.from_numpy(k_4x4) new_R = torch.from_numpy(rotation) new_T = torch.from_numpy(translation) cam = build_cameras( dict( type='PerspectiveCameras', K=new_K.float(), R=new_R.float(), T=new_T.float(), convention='opencv', in_ndc=False, resolution=(height, width))) return cam def validate_item(self, key: Any, val: Any) -> List: """Check whether the key and its value matches definition in CameraParameter.SUPPORTED_KEYS. Args: key (Any): Key in CameraParameter. val (Any): Value to the key. Raises: KeyError: key cannot be found in CameraParameter.SUPPORTED_KEYS. TypeError: Value's type doesn't match definition. Returns: key (Any): The input key. val (Any): The value casted into correct format. """ self.__check_key__(key) formatted_val = self.__validate_value_type__(key, val) return key, formatted_val def __check_key__(self, key: Any) -> None: """Check whether the key matches definition in CameraParameter.SUPPORTED_KEYS. Args: key (Any): Key in CameraParameter. Raises: KeyError: key cannot be found in CameraParameter.SUPPORTED_KEYS. """ if key not in self.__class__.SUPPORTED_KEYS: err_msg = 'Key check failed in CameraParameter:\n' err_msg += f'key={str(key)}\n' raise KeyError(err_msg) def __validate_value_type__(self, key: Any, val: Any) -> Any: """Check whether the type of value matches definition in CameraParameter.SUPPORTED_KEYS. Args: key (Any): Key in CameraParameter. val (Any): Value to the key. Raises: TypeError: Value is supported but doesn't match definition. Returns: val (Any): The value casted into correct format. """ np_type_mapping = {int: np.integer, float: np.floating} supported_keys = self.__class__.SUPPORTED_KEYS validation_result = _TypeValidation.FAIL ret_val = None if supported_keys[key]['type'] == int or\ supported_keys[key]['type'] == float: type_str = str(type(val)) class_name = type_str.split('\'')[1] if type(val) == self.__class__.SUPPORTED_KEYS[key]['type']: validation_result = _TypeValidation.MATCH ret_val = val elif class_name.startswith('numpy'): # a value is required, not array if np.issubdtype( type(val), np_type_mapping[supported_keys[key]['type']]): validation_result = _TypeValidation.MATCH ret_val = val.astype(supported_keys[key]['type']) elif np.issubdtype(type(val), np.ndarray): validation_result = _TypeValidation.ARRAY elif class_name.startswith('torch'): # only one element tensors # can be converted to Python scalars if len(val.size()) == 0: val_item = val.item() if type(val_item) == supported_keys[key]['type']: validation_result = _TypeValidation.MATCH ret_val = val_item else: validation_result = _TypeValidation.ARRAY else: if type(val) == self.__class__.SUPPORTED_KEYS[key]['type']: validation_result = _TypeValidation.MATCH ret_val = val if validation_result != _TypeValidation.MATCH: err_msg = 'Type check failed in CameraParameter:\n' err_msg += f'key={str(key)}\n' err_msg += f'type(val)={type(val)}\n' if validation_result == _TypeValidation.ARRAY: err_msg += 'A single value is expected, ' +\ 'neither an array nor a slice.\n' raise TypeError(err_msg) return ret_val def __parse_chessboard_param__(chessboard_camera_param, name, inverse=True): """Parse a dict loaded from chessboard file into another dict needed by CameraParameter. Args: chessboard_camera_param (dict): A dict loaded from json.load(chessboard_file). name (str): Name of this camera. inverse (bool, optional): Whether to inverse rotation and translation mat. Defaults to True. Returns: dict: A dict of parameters in CameraParameter.to_dict() format. """ camera_param_dict = {} camera_param_dict['H'] = chessboard_camera_param['imgSize'][1] camera_param_dict['W'] = chessboard_camera_param['imgSize'][0] camera_param_dict['in_mat'] = chessboard_camera_param['K'] camera_param_dict['k1'] = 0 camera_param_dict['k2'] = 0 camera_param_dict['k3'] = 0 camera_param_dict['k4'] = 0 camera_param_dict['k5'] = 0 camera_param_dict['p1'] = 0 camera_param_dict['p2'] = 0 camera_param_dict['name'] = name camera_param_dict['rotation'] = chessboard_camera_param['R'] camera_param_dict['translation'] = chessboard_camera_param['T'] if inverse: rmatrix = np.linalg.inv( np.array(camera_param_dict['rotation']).reshape(3, 3)) camera_param_dict['rotation'] = rmatrix.tolist() tmatrix = np.array(camera_param_dict['translation']).reshape((3, 1)) tvec = -np.dot(rmatrix, tmatrix) camera_param_dict['translation'] = tvec.reshape((3)).tolist() return camera_param_dict __distort_coefficient_names__ = [ 'k1', 'k2', 'k3', 'k4', 'k5', 'k6', 'p1', 'p2' ] def __zero_mat_list__(n=3): """Return a zero mat in list format. Args: n (int, optional): Length of the edge. Defaults to 3. Returns: list: List[List[int]] """ ret_list = [[0] * n for _ in range(n)] return ret_list
[ "mmhuman3d.core.conventions.cameras.convert_convention.convert_K_4x4_to_3x3", "json.dumps", "torch.from_numpy", "numpy.array", "numpy.dot", "numpy.linalg.inv", "mmhuman3d.core.conventions.cameras.convert_convention.convert_K_3x3_to_4x4", "numpy.expand_dims", "json.load", "warnings.warn", "json.dump", "mmhuman3d.core.conventions.cameras.convert_convention.convert_camera_matrix" ]
[((3065, 3086), 'numpy.array', 'np.array', (['dist_coeffs'], {}), '(dist_coeffs)\n', (3073, 3086), True, 'import numpy as np\n'), ((8160, 8181), 'json.dumps', 'json.dumps', (['dump_dict'], {}), '(dump_dict)\n', (8170, 8181), False, 'import json\n'), ((14762, 14997), 'mmhuman3d.core.conventions.cameras.convert_convention.convert_camera_matrix', 'convert_camera_matrix', ([], {'K': 'k_4x4', 'R': 'r_3x3', 'T': 't_3', 'is_perspective': '(False)', 'in_ndc_dst': '(False)', 'in_ndc_src': 'in_ndc', 'convention_src': '"""pytorch3d"""', 'convention_dst': '"""opencv"""', 'resolution_src': '(height, width)', 'resolution_dst': '(height, width)'}), "(K=k_4x4, R=r_3x3, T=t_3, is_perspective=False,\n in_ndc_dst=False, in_ndc_src=in_ndc, convention_src='pytorch3d',\n convention_dst='opencv', resolution_src=(height, width), resolution_dst\n =(height, width))\n", (14783, 14997), False, 'from mmhuman3d.core.conventions.cameras.convert_convention import convert_camera_matrix, convert_K_3x3_to_4x4, convert_K_4x4_to_3x3\n'), ((15137, 15195), 'mmhuman3d.core.conventions.cameras.convert_convention.convert_K_4x4_to_3x3', 'convert_K_4x4_to_3x3', (['k_4x4'], {'is_perspective': 'is_perspective'}), '(k_4x4, is_perspective=is_perspective)\n', (15157, 15195), False, 'from mmhuman3d.core.conventions.cameras.convert_convention import convert_camera_matrix, convert_K_3x3_to_4x4, convert_K_4x4_to_3x3\n'), ((15995, 16019), 'numpy.expand_dims', 'np.expand_dims', (['k_4x4', '(0)'], {}), '(k_4x4, 0)\n', (16009, 16019), True, 'import numpy as np\n'), ((16058, 16085), 'numpy.expand_dims', 'np.expand_dims', (['rotation', '(0)'], {}), '(rotation, 0)\n', (16072, 16085), True, 'import numpy as np\n'), ((16127, 16157), 'numpy.expand_dims', 'np.expand_dims', (['translation', '(0)'], {}), '(translation, 0)\n', (16141, 16157), True, 'import numpy as np\n'), ((16190, 16213), 'torch.from_numpy', 'torch.from_numpy', (['k_4x4'], {}), '(k_4x4)\n', (16206, 16213), False, 'import torch\n'), ((16230, 16256), 'torch.from_numpy', 'torch.from_numpy', (['rotation'], {}), '(rotation)\n', (16246, 16256), False, 'import torch\n'), ((16273, 16302), 'torch.from_numpy', 'torch.from_numpy', (['translation'], {}), '(translation)\n', (16289, 16302), False, 'import torch\n'), ((4145, 4165), 'numpy.linalg.inv', 'np.linalg.inv', (['R_mat'], {}), '(R_mat)\n', (4158, 4165), True, 'import numpy as np\n'), ((8886, 8915), 'json.dump', 'json.dump', (['dump_dict', 'f_write'], {}), '(dump_dict, f_write)\n', (8895, 8915), False, 'import json\n'), ((9091, 9108), 'json.load', 'json.load', (['f_read'], {}), '(f_read)\n', (9100, 9108), False, 'import json\n'), ((11688, 11713), 'numpy.dot', 'np.dot', (['rmatrix', 'trans_np'], {}), '(rmatrix, trans_np)\n', (11694, 11713), True, 'import numpy as np\n'), ((13231, 13256), 'numpy.dot', 'np.dot', (['rmatrix', 'trans_np'], {}), '(rmatrix, trans_np)\n', (13237, 13256), True, 'import numpy as np\n'), ((14191, 14252), 'warnings.warn', 'warnings.warn', (['"""Will only use the first camera in the batch."""'], {}), "('Will only use the first camera in the batch.')\n", (14204, 14252), False, 'import warnings\n'), ((22041, 22065), 'numpy.dot', 'np.dot', (['rmatrix', 'tmatrix'], {}), '(rmatrix, tmatrix)\n', (22047, 22065), True, 'import numpy as np\n'), ((5281, 5305), 'numpy.expand_dims', 'np.expand_dims', (['K_3x3', '(0)'], {}), '(K_3x3, 0)\n', (5295, 5305), True, 'import numpy as np\n'), ((5345, 5395), 'mmhuman3d.core.conventions.cameras.convert_convention.convert_K_3x3_to_4x4', 'convert_K_3x3_to_4x4', ([], {'K': 'K_3x3', 'is_perspective': '(True)'}), '(K=K_3x3, is_perspective=True)\n', (5365, 5395), False, 'from mmhuman3d.core.conventions.cameras.convert_convention import convert_camera_matrix, convert_K_3x3_to_4x4, convert_K_4x4_to_3x3\n'), ((11636, 11657), 'numpy.linalg.inv', 'np.linalg.inv', (['rot_np'], {}), '(rot_np)\n', (11649, 11657), True, 'import numpy as np\n'), ((13179, 13200), 'numpy.linalg.inv', 'np.linalg.inv', (['rot_np'], {}), '(rot_np)\n', (13192, 13200), True, 'import numpy as np\n'), ((21966, 22008), 'numpy.array', 'np.array', (["camera_param_dict['translation']"], {}), "(camera_param_dict['translation'])\n", (21974, 22008), True, 'import numpy as np\n'), ((7873, 7891), 'numpy.array', 'np.array', (['mat_list'], {}), '(mat_list)\n', (7881, 7891), True, 'import numpy as np\n'), ((21836, 21875), 'numpy.array', 'np.array', (["camera_param_dict['rotation']"], {}), "(camera_param_dict['rotation'])\n", (21844, 21875), True, 'import numpy as np\n'), ((4187, 4207), 'numpy.dot', 'np.dot', (['R_mat', 'T_vec'], {}), '(R_mat, T_vec)\n', (4193, 4207), True, 'import numpy as np\n'), ((9563, 9587), 'numpy.array', 'np.array', (['json_dict[key]'], {}), '(json_dict[key])\n', (9571, 9587), True, 'import numpy as np\n'), ((9715, 9739), 'numpy.array', 'np.array', (['json_dict[key]'], {}), '(json_dict[key])\n', (9723, 9739), True, 'import numpy as np\n'), ((9942, 9977), 'numpy.array', 'np.array', (['self.parameters_dict[key]'], {}), '(self.parameters_dict[key])\n', (9950, 9977), True, 'import numpy as np\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np from progress.bar import Bar import time import torch from src.lib.external.nms import soft_nms from src.lib.models.decode import ddd_decode from src.lib.models.utils import flip_tensor from src.lib.utils.image import get_affine_transform from src.lib.utils.post_process import ddd_post_process from src.lib.utils.debugger import Debugger from src.lib.utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y from src.lib.utils.ddd_utils import draw_box_3d, unproject_2d_to_3d from .base_detector import BaseDetector class DddDetector(BaseDetector): def __init__(self, opt): super(DddDetector, self).__init__(opt) self.calib = np.array([[707.0493, 0, 604.0814, 45.75831], [0, 707.0493, 180.5066, -0.3454157], [0, 0, 1., 0.004981016]], dtype=np.float32) def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None \ else self.calib images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta def process(self, images, return_time=False): with torch.no_grad(): torch.cuda.synchronize() output = self.model(images)[-1] output['hm'] = output['hm'].sigmoid_() output['dep'] = 1. / (output['dep'].sigmoid() + 1e-6) - 1. wh = output['wh'] if self.opt.reg_bbox else None reg = output['reg'] if self.opt.reg_offset else None torch.cuda.synchronize() forward_time = time.time() dets = ddd_decode(output['hm'], output['rot'], output['dep'], output['dim'], wh=wh, reg=reg, K=self.opt.K) if return_time: return output, dets, forward_time else: return output, dets def post_process(self, dets, meta, scale=1): dets = dets.detach().cpu().numpy() detections = ddd_post_process( dets.copy(), [meta['c']], [meta['s']], [meta['calib']], self.opt) self.this_calib = meta['calib'] return detections[0] def merge_outputs(self, detections): results = detections[0] for j in range(1, self.num_classes + 1): if len(results[j] > 0): keep_inds = (results[j][:, -1] > self.opt.peak_thresh) results[j] = results[j][keep_inds] return results def debug(self, debugger, images, dets, output, scale=1): dets = dets.detach().cpu().numpy() img = images[0].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.std + self.mean) * 255).astype(np.uint8) pred = debugger.gen_colormap(output['hm'][0].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm') debugger.add_ct_detection( img, dets[0], show_box=self.opt.reg_bbox, center_thresh=self.opt.vis_thresh, img_id='det_pred') def show_results(self, debugger, image, results): debugger.add_3d_detection( image, results, self.this_calib, center_thresh=self.opt.vis_thresh, img_id='add_pred') debugger.add_bird_view( results, center_thresh=self.opt.vis_thresh, img_id='bird_pred') debugger.show_all_imgs(pause=self.pause)
[ "cv2.warpAffine", "torch.from_numpy", "torch.cuda.synchronize", "numpy.array", "src.lib.utils.image.get_affine_transform", "torch.no_grad", "src.lib.models.decode.ddd_decode", "time.time" ]
[((792, 923), 'numpy.array', 'np.array', (['[[707.0493, 0, 604.0814, 45.75831], [0, 707.0493, 180.5066, -0.3454157], [0,\n 0, 1.0, 0.004981016]]'], {'dtype': 'np.float32'}), '([[707.0493, 0, 604.0814, 45.75831], [0, 707.0493, 180.5066, -\n 0.3454157], [0, 0, 1.0, 0.004981016]], dtype=np.float32)\n', (800, 923), True, 'import numpy as np\n'), ((1138, 1189), 'numpy.array', 'np.array', (['[width / 2, height / 2]'], {'dtype': 'np.float32'}), '([width / 2, height / 2], dtype=np.float32)\n', (1146, 1189), True, 'import numpy as np\n'), ((1357, 1411), 'src.lib.utils.image.get_affine_transform', 'get_affine_transform', (['c', 's', '(0)', '[inp_width, inp_height]'], {}), '(c, s, 0, [inp_width, inp_height])\n', (1377, 1411), False, 'from src.lib.utils.image import get_affine_transform\n'), ((1490, 1586), 'cv2.warpAffine', 'cv2.warpAffine', (['resized_image', 'trans_input', '(inp_width, inp_height)'], {'flags': 'cv2.INTER_LINEAR'}), '(resized_image, trans_input, (inp_width, inp_height), flags=\n cv2.INTER_LINEAR)\n', (1504, 1586), False, 'import cv2\n'), ((1869, 1893), 'torch.from_numpy', 'torch.from_numpy', (['images'], {}), '(images)\n', (1885, 1893), False, 'import torch\n'), ((1226, 1275), 'numpy.array', 'np.array', (['[inp_width, inp_height]'], {'dtype': 'np.int32'}), '([inp_width, inp_height], dtype=np.int32)\n', (1234, 1275), True, 'import numpy as np\n'), ((1296, 1337), 'numpy.array', 'np.array', (['[width, height]'], {'dtype': 'np.int32'}), '([width, height], dtype=np.int32)\n', (1304, 1337), True, 'import numpy as np\n'), ((1771, 1804), 'numpy.array', 'np.array', (['calib'], {'dtype': 'np.float32'}), '(calib, dtype=np.float32)\n', (1779, 1804), True, 'import numpy as np\n'), ((2156, 2171), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2169, 2171), False, 'import torch\n'), ((2179, 2203), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (2201, 2203), False, 'import torch\n'), ((2472, 2496), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (2494, 2496), False, 'import torch\n'), ((2518, 2529), 'time.time', 'time.time', ([], {}), '()\n', (2527, 2529), False, 'import time\n'), ((2550, 2653), 'src.lib.models.decode.ddd_decode', 'ddd_decode', (["output['hm']", "output['rot']", "output['dep']", "output['dim']"], {'wh': 'wh', 'reg': 'reg', 'K': 'self.opt.K'}), "(output['hm'], output['rot'], output['dep'], output['dim'], wh=wh,\n reg=reg, K=self.opt.K)\n", (2560, 2653), False, 'from src.lib.models.decode import ddd_decode\n')]
from conv_layers import ResidueEmbedding, Conv1DLayer, Conv2DLayer, \ Outer1DTo2DLayer, ContactMapGather, ResAdd, Conv2DPool, Conv2DUp, \ Conv1DAtrous, Conv2DAtrous, Conv2DBilinearUp, Conv2DASPP, BatchNorm, \ TriangleInequality, Conv1DLayer_RaptorX, Conv2DLayer_RaptorX from diag_conv_layers import DiagConv2DAtrous, DiagConv2DLayer, DiagConv2DASPP from pnet.utils.tg_copy.layers import Layer, convert_to_layers import tensorflow as tf import numpy as np class Expand_dim(Layer): def __init__(self, dim=None, **kwargs): self.dim = dim super(Expand_dim, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): inputs = self._get_input_tensors(in_layers) parent_tensor = inputs[0] out_tensor = tf.expand_dims(parent_tensor, self.dim) if set_tensors: self.out_tensor = out_tensor return out_tensor class ToShape(Layer): def __init__(self, n_filter, batch_size, **kwargs): self.n_filter = n_filter self.batch_size = batch_size super(ToShape, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): inputs = self._get_input_tensors(in_layers) n_residues = inputs[0] shape = tf.reduce_max(n_residues) out_tensor = tf.stack([self.batch_size, shape, shape, self.n_filter], 0) if set_tensors: self.out_tensor = out_tensor return out_tensor class ShapePool(Layer): def __init__(self, n_filter=None, padding='SAME', **kwargs): self.n_filter = n_filter self.padding = padding super(ShapePool, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): inputs = self._get_input_tensors(in_layers) shape_orig = inputs[0] if self.n_filter is None: n_filter = shape_orig[3]*2 else: n_filter = self.n_filter if self.padding == 'VALID': out_tensor = tf.stack([shape_orig[0], shape_orig[1]/2, shape_orig[2]/2, n_filter], 0) elif self.padding == 'SAME': out_tensor = tf.stack([shape_orig[0], tf.to_int32(tf.ceil(tf.to_float(shape_orig[1])/2)), tf.to_int32(tf.ceil(tf.to_float(shape_orig[2])/2)), n_filter], 0) else: raise ValueError("padding not supported") if set_tensors: self.out_tensor = out_tensor return out_tensor class AminoAcidEmbedding(Layer): def __init__(self, pos_start=0, pos_end=25, **kwargs): self.pos_start = pos_start self.pos_end = pos_end super(AminoAcidEmbedding, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: input_features """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) input_features = in_layers[0].out_tensor amino_acid_features = in_layers[1].out_tensor i = tf.shape(input_features)[0] j = tf.shape(input_features)[1] embedding_length = tf.shape(amino_acid_features)[1] embedded_features = tf.reshape(tf.matmul(tf.reshape(input_features[:, :, self.pos_start:self.pos_end], [i*j, self.pos_end - self.pos_start]), amino_acid_features), [i, j, embedding_length]) out_tensor = tf.concat([embedded_features, input_features[:, :, self.pos_end:]], axis=2) if set_tensors: self.out_tensor = out_tensor return out_tensor class AminoAcidPad(Layer): def __init__(self, embedding_length, **kwargs): self.embedding_length = embedding_length super(AminoAcidPad, self).__init__(**kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: input_features """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) AA_features = in_layers[0].out_tensor Pad_features = tf.Variable(tf.random_normal((4, self.embedding_length))) out_tensor = tf.concat([Pad_features[:1, :], AA_features[:20, :], Pad_features[1:, :], AA_features[20:, :]], axis=0) if set_tensors: self.out_tensor = out_tensor return out_tensor class WeightedL2Loss(Layer): def __init__(self, in_layers=None, **kwargs): super(WeightedL2Loss, self).__init__(in_layers, **kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) guess = in_layers[0].out_tensor label = in_layers[1].out_tensor weights = in_layers[2].out_tensor out_tensor = tf.reduce_sum(tf.square(guess - label), axis=1, keepdims=True) * weights out_tensor = tf.reduce_sum(out_tensor) if set_tensors: self.out_tensor = out_tensor return out_tensor class AddThreshold(Layer): def __init__(self, in_layers=None, **kwargs): super(AddThreshold, self).__init__(in_layers, **kwargs) def build(self): self.threshold = tf.Variable(initial_value=np.log(0.8), dtype=tf.float32) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) self.build() log_dist_pred = in_layers[0].out_tensor out_tensor = self.threshold - log_dist_pred if set_tensors: self.out_tensor = out_tensor return out_tensor class SigmoidLoss(Layer): def __init__(self, in_layers=None, **kwargs): super(SigmoidLoss, self).__init__(in_layers, **kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) labels = tf.reshape(in_layers[0].out_tensor[:, 1], (-1,)) logits = tf.reshape(in_layers[1].out_tensor, (-1,)) out_tensor = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits) if set_tensors: self.out_tensor = out_tensor return out_tensor class Sigmoid(Layer): def __init__(self, in_layers=None, return_columns=1, **kwargs): self.return_columns = return_columns super(Sigmoid, self).__init__(in_layers, **kwargs) def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) if len(in_layers) != 1: raise ValueError("Sigmoid must have a single input layer.") parent = in_layers[0].out_tensor out_tensor = tf.nn.sigmoid(parent) if self.return_columns == 2: out_tensor = tf.concat([1-out_tensor, out_tensor], axis=1) if set_tensors: self.out_tensor = out_tensor return out_tensor class CoordinatesToDistanceMap(Layer): def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: coordinates, input_flag_2D """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) # Batch_size * n_residues * 3 input_features = in_layers[0].out_tensor coordinates = tf.cumsum(input_features, axis=1) max_n_res = tf.reduce_max(in_layers[1].out_tensor) tensor1 = tf.tile(tf.expand_dims(coordinates, 1), (1, max_n_res, 1, 1)) tensor2 = tf.tile(tf.expand_dims(coordinates, 2), (1, 1, max_n_res, 1)) dis_map = tf.reduce_sum(tf.square(tensor1 - tensor2), axis=-1) out_tensor = tf.reshape(dis_map, (-1, 1)) if set_tensors: self.out_tensor = out_tensor return out_tensor class Condense(Layer): def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: input_features, input_flag_2D """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) input_features = in_layers[0].out_tensor input_features = (input_features + tf.transpose(input_features, perm=[0, 2, 1, 3])) / 2 contact_prob = in_layers[1] out_tensor = tf.reduce_max(input_features, axis=2) out_tensor = tf.concat([tf.reduce_max(input_features, axis=2), tf.reduce_sum(input_features * contact_prob, axis=2)], axis=2) if set_tensors: self.out_tensor = out_tensor return out_tensor class SpatialAttention(Layer): def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: input_features, input_flag_2D """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) input_features = in_layers[0].out_tensor contact_prob = in_layers[1].out_tensor contact_prob = contact_prob / tf.reduce_sum(contact_prob, axis=2, keepdims=True) n_residues = in_layers[2].out_tensor max_n_res = tf.reduce_max(n_residues) res = tf.reduce_sum(tf.tile(tf.expand_dims(input_features, 1), (1, max_n_res, 1, 1)) * contact_prob, axis=2) out_tensor = tf.concat([input_features, res], axis=2) if set_tensors: self.out_tensor = out_tensor return out_tensor class CoordinateScale(Layer): def build(self): self.W = tf.Variable(tf.ones((1, 1, 3))*0.5, dtype=tf.float32, name='scale_W') self.trainable_weights = [self.W] pass def create_tensor(self, in_layers=None, set_tensors=True, **kwargs): """ parent layers: input_features, input_flag_2D """ if in_layers is None: in_layers = self.in_layers in_layers = convert_to_layers(in_layers) self.build() input_features = in_layers[0].out_tensor # Coordinates center input_features = input_features / tf.reduce_max(tf.abs(input_features), axis=1, keepdims=True) out_tensor = input_features * self.W if set_tensors: self.variables = self.trainable_weights self.out_tensor = out_tensor return out_tensor
[ "tensorflow.shape", "tensorflow.random_normal", "tensorflow.transpose", "tensorflow.ones", "tensorflow.to_float", "tensorflow.reduce_sum", "numpy.log", "tensorflow.cumsum", "tensorflow.reduce_max", "tensorflow.concat", "tensorflow.nn.sigmoid", "tensorflow.reshape", "tensorflow.nn.sigmoid_cross_entropy_with_logits", "tensorflow.expand_dims", "pnet.utils.tg_copy.layers.convert_to_layers", "tensorflow.square", "tensorflow.stack", "tensorflow.abs" ]
[((769, 808), 'tensorflow.expand_dims', 'tf.expand_dims', (['parent_tensor', 'self.dim'], {}), '(parent_tensor, self.dim)\n', (783, 808), True, 'import tensorflow as tf\n'), ((1229, 1254), 'tensorflow.reduce_max', 'tf.reduce_max', (['n_residues'], {}), '(n_residues)\n', (1242, 1254), True, 'import tensorflow as tf\n'), ((1272, 1331), 'tensorflow.stack', 'tf.stack', (['[self.batch_size, shape, shape, self.n_filter]', '(0)'], {}), '([self.batch_size, shape, shape, self.n_filter], 0)\n', (1280, 1331), True, 'import tensorflow as tf\n'), ((2922, 2950), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (2939, 2950), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((3524, 3599), 'tensorflow.concat', 'tf.concat', (['[embedded_features, input_features[:, :, self.pos_end:]]'], {'axis': '(2)'}), '([embedded_features, input_features[:, :, self.pos_end:]], axis=2)\n', (3533, 3599), True, 'import tensorflow as tf\n'), ((4075, 4103), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (4092, 4103), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((4241, 4348), 'tensorflow.concat', 'tf.concat', (['[Pad_features[:1, :], AA_features[:20, :], Pad_features[1:, :], AA_features\n [20:, :]]'], {'axis': '(0)'}), '([Pad_features[:1, :], AA_features[:20, :], Pad_features[1:, :],\n AA_features[20:, :]], axis=0)\n', (4250, 4348), True, 'import tensorflow as tf\n'), ((4710, 4738), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (4727, 4738), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((4962, 4987), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['out_tensor'], {}), '(out_tensor)\n', (4975, 4987), True, 'import tensorflow as tf\n'), ((5453, 5481), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (5470, 5481), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((5962, 5990), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (5979, 5990), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((6005, 6053), 'tensorflow.reshape', 'tf.reshape', (['in_layers[0].out_tensor[:, 1]', '(-1,)'], {}), '(in_layers[0].out_tensor[:, 1], (-1,))\n', (6015, 6053), True, 'import tensorflow as tf\n'), ((6067, 6109), 'tensorflow.reshape', 'tf.reshape', (['in_layers[1].out_tensor', '(-1,)'], {}), '(in_layers[1].out_tensor, (-1,))\n', (6077, 6109), True, 'import tensorflow as tf\n'), ((6127, 6196), 'tensorflow.nn.sigmoid_cross_entropy_with_logits', 'tf.nn.sigmoid_cross_entropy_with_logits', ([], {'labels': 'labels', 'logits': 'logits'}), '(labels=labels, logits=logits)\n', (6166, 6196), True, 'import tensorflow as tf\n'), ((6612, 6640), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (6629, 6640), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((6789, 6810), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['parent'], {}), '(parent)\n', (6802, 6810), True, 'import tensorflow as tf\n'), ((7232, 7260), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (7249, 7260), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((7363, 7396), 'tensorflow.cumsum', 'tf.cumsum', (['input_features'], {'axis': '(1)'}), '(input_features, axis=1)\n', (7372, 7396), True, 'import tensorflow as tf\n'), ((7413, 7451), 'tensorflow.reduce_max', 'tf.reduce_max', (['in_layers[1].out_tensor'], {}), '(in_layers[1].out_tensor)\n', (7426, 7451), True, 'import tensorflow as tf\n'), ((7703, 7731), 'tensorflow.reshape', 'tf.reshape', (['dis_map', '(-1, 1)'], {}), '(dis_map, (-1, 1))\n', (7713, 7731), True, 'import tensorflow as tf\n'), ((8041, 8069), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (8058, 8069), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((8266, 8303), 'tensorflow.reduce_max', 'tf.reduce_max', (['input_features'], {'axis': '(2)'}), '(input_features, axis=2)\n', (8279, 8303), True, 'import tensorflow as tf\n'), ((8753, 8781), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (8770, 8781), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((9017, 9042), 'tensorflow.reduce_max', 'tf.reduce_max', (['n_residues'], {}), '(n_residues)\n', (9030, 9042), True, 'import tensorflow as tf\n'), ((9183, 9223), 'tensorflow.concat', 'tf.concat', (['[input_features, res]'], {'axis': '(2)'}), '([input_features, res], axis=2)\n', (9192, 9223), True, 'import tensorflow as tf\n'), ((9698, 9726), 'pnet.utils.tg_copy.layers.convert_to_layers', 'convert_to_layers', (['in_layers'], {}), '(in_layers)\n', (9715, 9726), False, 'from pnet.utils.tg_copy.layers import Layer, convert_to_layers\n'), ((1902, 1978), 'tensorflow.stack', 'tf.stack', (['[shape_orig[0], shape_orig[1] / 2, shape_orig[2] / 2, n_filter]', '(0)'], {}), '([shape_orig[0], shape_orig[1] / 2, shape_orig[2] / 2, n_filter], 0)\n', (1910, 1978), True, 'import tensorflow as tf\n'), ((3056, 3080), 'tensorflow.shape', 'tf.shape', (['input_features'], {}), '(input_features)\n', (3064, 3080), True, 'import tensorflow as tf\n'), ((3092, 3116), 'tensorflow.shape', 'tf.shape', (['input_features'], {}), '(input_features)\n', (3100, 3116), True, 'import tensorflow as tf\n'), ((3143, 3172), 'tensorflow.shape', 'tf.shape', (['amino_acid_features'], {}), '(amino_acid_features)\n', (3151, 3172), True, 'import tensorflow as tf\n'), ((4178, 4222), 'tensorflow.random_normal', 'tf.random_normal', (['(4, self.embedding_length)'], {}), '((4, self.embedding_length))\n', (4194, 4222), True, 'import tensorflow as tf\n'), ((6863, 6910), 'tensorflow.concat', 'tf.concat', (['[1 - out_tensor, out_tensor]'], {'axis': '(1)'}), '([1 - out_tensor, out_tensor], axis=1)\n', (6872, 6910), True, 'import tensorflow as tf\n'), ((7479, 7509), 'tensorflow.expand_dims', 'tf.expand_dims', (['coordinates', '(1)'], {}), '(coordinates, 1)\n', (7493, 7509), True, 'import tensorflow as tf\n'), ((7555, 7585), 'tensorflow.expand_dims', 'tf.expand_dims', (['coordinates', '(2)'], {}), '(coordinates, 2)\n', (7569, 7585), True, 'import tensorflow as tf\n'), ((7642, 7670), 'tensorflow.square', 'tf.square', (['(tensor1 - tensor2)'], {}), '(tensor1 - tensor2)\n', (7651, 7670), True, 'import tensorflow as tf\n'), ((8909, 8959), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['contact_prob'], {'axis': '(2)', 'keepdims': '(True)'}), '(contact_prob, axis=2, keepdims=True)\n', (8922, 8959), True, 'import tensorflow as tf\n'), ((3221, 3327), 'tensorflow.reshape', 'tf.reshape', (['input_features[:, :, self.pos_start:self.pos_end]', '[i * j, self.pos_end - self.pos_start]'], {}), '(input_features[:, :, self.pos_start:self.pos_end], [i * j, self.\n pos_end - self.pos_start])\n', (3231, 3327), True, 'import tensorflow as tf\n'), ((4885, 4909), 'tensorflow.square', 'tf.square', (['(guess - label)'], {}), '(guess - label)\n', (4894, 4909), True, 'import tensorflow as tf\n'), ((5271, 5282), 'numpy.log', 'np.log', (['(0.8)'], {}), '(0.8)\n', (5277, 5282), True, 'import numpy as np\n'), ((8159, 8206), 'tensorflow.transpose', 'tf.transpose', (['input_features'], {'perm': '[0, 2, 1, 3]'}), '(input_features, perm=[0, 2, 1, 3])\n', (8171, 8206), True, 'import tensorflow as tf\n'), ((8332, 8369), 'tensorflow.reduce_max', 'tf.reduce_max', (['input_features'], {'axis': '(2)'}), '(input_features, axis=2)\n', (8345, 8369), True, 'import tensorflow as tf\n'), ((8371, 8423), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(input_features * contact_prob)'], {'axis': '(2)'}), '(input_features * contact_prob, axis=2)\n', (8384, 8423), True, 'import tensorflow as tf\n'), ((9381, 9399), 'tensorflow.ones', 'tf.ones', (['(1, 1, 3)'], {}), '((1, 1, 3))\n', (9388, 9399), True, 'import tensorflow as tf\n'), ((9871, 9893), 'tensorflow.abs', 'tf.abs', (['input_features'], {}), '(input_features)\n', (9877, 9893), True, 'import tensorflow as tf\n'), ((9080, 9113), 'tensorflow.expand_dims', 'tf.expand_dims', (['input_features', '(1)'], {}), '(input_features, 1)\n', (9094, 9113), True, 'import tensorflow as tf\n'), ((2188, 2214), 'tensorflow.to_float', 'tf.to_float', (['shape_orig[1]'], {}), '(shape_orig[1])\n', (2199, 2214), True, 'import tensorflow as tf\n'), ((2269, 2295), 'tensorflow.to_float', 'tf.to_float', (['shape_orig[2]'], {}), '(shape_orig[2])\n', (2280, 2295), True, 'import tensorflow as tf\n')]
from numpy.random import randn def add_and_sum(x, y): added = x + y summed = added.sum(axis=1) return summed def call_function(): x = randn(1000, 1000) y = randn(1000, 1000) return add_and_sum(x, y)
[ "numpy.random.randn" ]
[((146, 163), 'numpy.random.randn', 'randn', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (151, 163), False, 'from numpy.random import randn\n'), ((170, 187), 'numpy.random.randn', 'randn', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (175, 187), False, 'from numpy.random import randn\n')]
# Using Keras to load our model and images from keras.models import load_model from keras.preprocessing import image # To grab environment variables, image directories, and image paths import os from os.path import isfile, join # To sort our image directories by natural sort from natsort import os_sorted # To turn our lists into numpy arrays import numpy as np # Stops TF optimization warnings from displaying os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Path to dataset, to model, and to save/load history of model DATASET_PATH = './data' MODEL_PATH = 'face_mask_model' HISTORY_PATH = MODEL_PATH + '/history.joblib' # Target size our model was trained on TARGET_SIZE = (150, 150) # Image and Directory path to be used by our functions IMAGE_DIRECTORY_PATH = '/full/path/here/' # Replace IMAGE_DIRECTORY_PATH if image is not inside of image directory IMAGE_PATH = IMAGE_DIRECTORY_PATH + 'imageNameHere.jpg' # Loading in our previously trained model using joblib model = load_model(MODEL_PATH) # Returns a True/False in respect to whether the model predicts the person is wearing a mask def predict_image(image_path): # Load in image and set target size to what model was trained on image_data = image.load_img(image_path, target_size=TARGET_SIZE) # Convert to a numpy array, rescales to what we trained our model on and adds additional level of nesting image_array = np.array(image_data) image_array = image_array / 255.0 image_batch = np.expand_dims(image_array, axis=0) # Gets prediction of passed image prediction = (model.predict(image_batch) > 0.5).astype("int32") # True if wearing a mask - False if not return prediction[0] == 0.0 # Returns 2D array in respect to each image in the directory predicted to be wearing a mask as True/False & image name def predict_directory(directory_path): image_list = os_sorted([f for f in os.listdir(directory_path) if isfile(join(directory_path, f))]) predictions = [] for image_name in image_list: # Load in image from directory list joined with directory path and set target size to what model was trained on image_data = image.load_img(directory_path + image_name, target_size=TARGET_SIZE) # Convert to a numpy array, rescales to what we trained our model on and adds additional level of nesting image_array = image.img_to_array(image_data) image_array = image_array / 255.0 image_batch = np.expand_dims(image_array, axis=0) # Gets prediction of passed image prediction = (model.predict(image_batch) > 0.5).astype("int32") # Appends array of size 2 with True if wearing a mask - False if not & image name i.e. [True, image1.jpg] predictions.append([prediction[0][0] == 0.0, image_name]) return predictions if __name__ == '__main__': print(predict_image(IMAGE_PATH)) print(predict_directory(IMAGE_DIRECTORY_PATH))
[ "keras.preprocessing.image.img_to_array", "os.listdir", "keras.models.load_model", "os.path.join", "numpy.array", "numpy.expand_dims", "keras.preprocessing.image.load_img" ]
[((978, 1000), 'keras.models.load_model', 'load_model', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (988, 1000), False, 'from keras.models import load_model\n'), ((1213, 1264), 'keras.preprocessing.image.load_img', 'image.load_img', (['image_path'], {'target_size': 'TARGET_SIZE'}), '(image_path, target_size=TARGET_SIZE)\n', (1227, 1264), False, 'from keras.preprocessing import image\n'), ((1394, 1414), 'numpy.array', 'np.array', (['image_data'], {}), '(image_data)\n', (1402, 1414), True, 'import numpy as np\n'), ((1471, 1506), 'numpy.expand_dims', 'np.expand_dims', (['image_array'], {'axis': '(0)'}), '(image_array, axis=0)\n', (1485, 1506), True, 'import numpy as np\n'), ((2151, 2219), 'keras.preprocessing.image.load_img', 'image.load_img', (['(directory_path + image_name)'], {'target_size': 'TARGET_SIZE'}), '(directory_path + image_name, target_size=TARGET_SIZE)\n', (2165, 2219), False, 'from keras.preprocessing import image\n'), ((2357, 2387), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['image_data'], {}), '(image_data)\n', (2375, 2387), False, 'from keras.preprocessing import image\n'), ((2452, 2487), 'numpy.expand_dims', 'np.expand_dims', (['image_array'], {'axis': '(0)'}), '(image_array, axis=0)\n', (2466, 2487), True, 'import numpy as np\n'), ((1890, 1916), 'os.listdir', 'os.listdir', (['directory_path'], {}), '(directory_path)\n', (1900, 1916), False, 'import os\n'), ((1927, 1950), 'os.path.join', 'join', (['directory_path', 'f'], {}), '(directory_path, f)\n', (1931, 1950), False, 'from os.path import isfile, join\n')]
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Core layer types, such as `Dense`, `Embedding`, and `Dropout`.""" from absl import logging import numpy as np from trax import fastmath from trax.fastmath import numpy as jnp from trax.layers import base from trax.layers import initializers as init from trax.layers.assert_shape import assert_shape from trax.layers.base import Fn # The output tensor has the same shape as the input tensor, except for the size # of the last dimension. @assert_shape('...a->...b') class Dense(base.Layer): """A dense (a.k.a. fully-connected, affine) layer. Dense layers are the prototypical example of a trainable layer, i.e., a layer with trainable weights. Each node in a dense layer computes a weighted sum of all node values from the preceding layer and adds to that sum a node-specific bias term. The full layer computation is expressed compactly in linear algebra as an affine map `y = Wx + b`, where `W` is a matrix and `y`, `x`, and `b` are vectors. The layer is trained, or "learns", by updating the values in `W` and `b`. Less commonly, a dense layer can omit the bias term and be a pure linear map: `y = Wx`. """ def __init__(self, n_units, kernel_initializer=init.GlorotUniformInitializer(), bias_initializer=init.RandomNormalInitializer(1e-6), use_bias=True): """Returns a dense (fully connected) layer of width `n_units`. A dense layer maps collections of `R^m` vectors to `R^n`, where `n` (`= n_units`) is fixed at layer creation time, and `m` is set at layer initialization time. Args: n_units: Number of nodes in the layer, also known as the width of the layer. kernel_initializer: Function that creates a matrix of (random) initial connection weights `W` for the layer. bias_initializer: Function that creates a vector of (random) initial bias weights `b` for the layer. use_bias: If `True`, compute an affine map `y = Wx + b`; else compute a linear map `y = Wx`. """ super().__init__(name=f'Dense_{n_units}') self._n_units = n_units self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._use_bias = use_bias def forward(self, x): """Executes this layer as part of a forward pass through the model. Args: x: Tensor of same shape and dtype as the input signature used to initialize this layer. Returns: Tensor of same shape and dtype as the input, except the final dimension is the layer's `n_units` value. """ if self._use_bias: if not isinstance(self.weights, (tuple, list)): raise ValueError(f'Weights should be a (w, b) tuple or list; ' f'instead got: {self.weights}') w, b = self.weights return jnp.dot(x, w) + b # Affine map. else: w = self.weights return jnp.dot(x, w) # Linear map. def init_weights_and_state(self, input_signature): """Randomly initializes this layer's weights. Weights are a `(w, b)` tuple for layers created with `use_bias=True` (the default case), or a `w` tensor for layers created with `use_bias=False`. Args: input_signature: `ShapeDtype` instance characterizing the input this layer should compute on. """ shape_w = (input_signature.shape[-1], self._n_units) shape_b = (self._n_units,) rng_w, rng_b = fastmath.random.split(self.rng, 2) w = self._kernel_initializer(shape_w, rng_w) if self._use_bias: b = self._bias_initializer(shape_b, rng_b) self.weights = (w, b) else: self.weights = w # The output tensor has the same shape as the input tensor, but with added # dimension at the end. This dimension size corresponds to embedding depth. @assert_shape('...->...d') class Embedding(base.Layer): """Trainable layer that maps discrete tokens/IDs to vectors. Embedding layers are commonly used to map discrete data, like words in NLP, into vectors. Here is a canonical example:: vocab_size = 5 word_ids = np.array([1, 2, 3, 4], dtype=np.int32) # word_ids < vocab_size embedding_layer = tl.Embedding(vocab_size, 32) embedding_layer.init(trax.shapes.signature(word_ids)) embedded = embedding_layer(word_ids) # embedded.shape = (4, 32) """ def __init__(self, vocab_size, d_feature, kernel_initializer= init.ScaledInitializer(out_dim=-1, in_dim=-2, scale=1., mode='fan_out', distribution='uniform')): """Returns an embedding layer with given vocabulary size and vector size. The layer clips input values (token IDs) to the range `[0, vocab_size)`. That is, negative token IDs all clip to `0` before being mapped to a vector, and token IDs with value `vocab_size` or greater all clip to `vocab_size - 1` before being mapped to a vector. Args: vocab_size: Size of the input vocabulary. The layer will assign a unique vector to each id in `range(vocab_size)`. d_feature: Dimensionality/depth of the output vectors. kernel_initializer: Function that creates (random) initial vectors for the embedding. """ # TODO(jonni): is the clipping behavior what we want going forward? super().__init__(name=f'Embedding_{vocab_size}_{d_feature}') self._d_feature = d_feature # feature dimensionality self._vocab_size = vocab_size self._kernel_initializer = kernel_initializer def forward(self, x): """Returns embedding vectors corresponding to input token IDs. Args: x: Tensor of token IDs. Returns: Tensor of embedding vectors. """ return jnp.take(self.weights, x, axis=0) def init_weights_and_state(self, input_signature): """Randomly initializes this layer's weights.""" del input_signature shape_w = (self._vocab_size, self._d_feature) # TODO(lukaszkaiser): do we split self.rng for consistency? Add a method? w = self._kernel_initializer(shape_w, self.rng) self.weights = w @assert_shape('...->...') # The output and input shapes are the same. class Dropout(base.Layer): """A layer that stochastically ignores a subset of inputs each training step. In training, to compensate for the fraction of input values dropped (`rate`), all surviving values are multiplied by `1 / (1 - rate)`. The parameter `shared_axes` allows to specify a list of axes on which the mask will be shared: we will use size 1 on those axes for dropout mask and broadcast it. Sharing reduces randomness, but can save memory. This layer is active only during training (`mode='train'`). In other circumstances it is a no-op. Originally introduced in the paper "Dropout: A Simple Way to Prevent Neural Networks from Overfitting" available under the following link: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf """ def __init__(self, rate=0.0, shared_axes=None, mode='train'): """Creates a dropout layer with the given target drop rate. Args: rate: Stochastic rate (probability) for dropping an activation value from the preceding layer (setting it to zero). shared_axes: List of axes on which the mask is shared. mode: If `'train'`, this layer will perform dropout; else, it will pass all values through unaltered. """ super().__init__() self._initial_rate = rate self._shared_axes = [] if shared_axes is None else shared_axes self._mode = mode def init_weights_and_state(self, input_signature): """Sets layer-specific internal state.""" del input_signature self.state = jnp.array(self._initial_rate) def forward(self, x): """Executes this layer as part of a forward pass through the model. Args: x: Tensor of activations. Returns: Tensor of same shape and dtype as the input. """ if self._mode != 'train': return x state, rng = self.state, self.rng rate = self._initial_rate if isinstance(state, dict) and self._name in state: rate = state[self._name] mask_shape = list(x.shape) for axis in self._shared_axes: mask_shape[axis] = 1 keep_prob = 1.0 - rate keep = fastmath.random.bernoulli(rng, keep_prob, tuple(mask_shape)) mask = keep.astype(x.dtype) / keep_prob return x * mask class Weights(base.Layer): """Learnable weights as a layer. It takes no input and returns a single tensor: weights. """ def __init__(self, initializer, shape=tuple()): """Returns a learnable tensor of shape `shape`. Args: initializer: Function taking shape and rng as arguments. shape: Shape of the learnable weights. """ super().__init__(name=f'Weights_{shape}', n_in=0, n_out=1) self._shape = shape self._initializer = initializer def forward(self, x): """Executes this layer as part of a forward pass through the model. Args: x: Tensor of same shape and dtype as the input signature used to initialize this layer. Returns: Tensor with previously specified shape and dtype. """ del x # Unused. There is no input to this layer. return self.weights def init_weights_and_state(self, input_signature): """Returns newly initialized weights for this layer. Weights is a single `w` tensor with previously specified shape. Args: input_signature: `ShapeDtype` instance characterizing the input this layer should compute on. Unused. """ del input_signature # Unused. There is no input to this layer. self.weights = self._initializer(self._shape, self.rng) def PrintShape(n_in=1, msg=''): """Prints the shapes of `n_in` inputs and returns then unchanged.""" def Fwd(xs): shapes_and_dtypes = ', '.join([str(x.shape) + f'[{x.dtype}]' for x in xs]) info = f'PrintShape: {msg}: [{shapes_and_dtypes}]' print(info) logging.info(info) return xs return base.PureLayer(Fwd, n_in=n_in, n_out=n_in, name=f'PrintShape_{n_in}') class SummaryScalar(base.Layer): """A layer receiving a tensor, and adding it to TensorBoard as a scalar. It takes an input and returns it unchanged. It stores this input as a state to be used as a metric in TensorBoard. It converts a tensor to a scalar by running a given aggregation function (mean by default). On TensorBoard, results for each device will be reported separately. """ def __init__(self, name, aggregation_fun=jnp.mean): """Takes a tensor and returns it. Args: name: Name of the metric to be reported. aggregation_fun: Aggregation function to be used. """ super().__init__(name=f'Summary_{name}', n_in=1, n_out=1) name = 'summary_' + name self._name = name self._aggregation_fun = aggregation_fun def forward(self, x): """Executes this layer as part of a forward pass through the model. Args: x: Tensor of same shape and dtype as the input signature used to initialize this layer. Returns: Tensor with previously specified shape and dtype. """ self.state = {self._name: self._aggregation_fun(x)} return x def init_weights_and_state(self, input_signature): """Returns newly initialized weights for this layer. Weights is a single `w` tensor with previously specified shape. Args: input_signature: `ShapeDtype` instance characterizing the input this layer should compute on. Unused. """ del input_signature # Unused. self.weights = () self.state = {self._name: jnp.array(0.)} class RandomUniform(base.Layer): """Layer returning a tensor with random values distributed uniformly.""" def __init__(self, min_val=0.0, max_val=1.0, shape=(), dtype=jnp.float32, sync=False): """Layer returning a tensor with random values distributed uniformly. Args: min_val: Lower end of uniform distribution. max_val: Upper end of uniform distribution. shape: Shape of the tensor to return. Values are sampled independently. dtype: Type of value to return. sync: Whether to synchronise `rng` across devices. """ super().__init__(n_in=0, n_out=1) self._min_val = min_val self._max_val = max_val self._shape = shape self._dtype = dtype self._sync = sync def forward(self, xs): """Executes this layer as part of a forward pass through the model. Args: xs: Unused tensors. Returns: Random uniform tensor of the shape and type specified in constructor. """ rng = self._get_conditionally_synced_rng() result = fastmath.random.uniform( rng, self._shape, self._dtype, self._min_val, self._max_val) return result def _get_conditionally_synced_rng(self): if self._sync and fastmath.device_count() > 1: return fastmath.psum(self.rng, 'batch') else: return self.rng class LocallyConnected1d(base.Layer): """Locally-connected layer for 1D inputs. The LocallyConnected1d layer applies a different set of filters to each patch of the input. This is similar to applying a convolution layer, except that locally-connected layer uses a different set of weights for each patch. The size of patch is determined by the kernel size. The stride is currently not modifiable and set to one. This means for the input of shape (..., L, D) the output shape for paddings 'SAME' and 'WRAP' will be (..., L, filters) and for padding 'VALID' (..., L-kernel_size+1, filters); where L is the number of "pixels" or "steps" in the input, D is the size of the embedding. Note that, since the weights for different patches are not shared, the number of "pixels" or "steps" cannot change after calling init_weights_and_state. This is because each "pixel" is assigned its own set of weights. """ def __init__(self, filters, kernel_size, kernel_initializer=init.GlorotUniformInitializer(), bias_initializer=init.RandomNormalInitializer(1e-6), use_bias=True, padding='VALID'): """Returns a locally-connected conv-like layer. Args: filters: Number of output filters in the convolution. kernel_size: A length of the convolution window. Must be an odd number. kernel_initializer: Function that creates a matrix of (random) initial connection weights `W` for the layer. bias_initializer: Function that creates a vector of (random) initial bias weights `b` for the layer. use_bias: If `True`, the layer uses a bias vector. padding: The type of padding to use; must be 'VALID', 'SAME', or 'WRAP'. """ super().__init__(name=f'LocallyConnected1d_{filters}_{kernel_size}') self._filters = filters self._kernel_size = kernel_size assert self._kernel_size % 2 == 1 # kernel size has to be odd self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._use_bias = use_bias self._padding = padding def forward(self, x): """Executes this layer as part of a forward pass through the model. Args: x: Tensor of same shape and dtype as the input signature used to initialize this layer. Returns: Tensor of same shape and dtype as the input, except the final dimension is the layer's `filters` value, and the second to last dimension is shrinked if 'VALID' padding is used with kernel_size bigger than one. """ if self._use_bias: if not isinstance(self.weights, (tuple, list)): raise ValueError(f'Weights should be a (w, b) tuple or list; ' f'instead got: {self.weights}') w, b = self.weights else: w = self.weights linear_results_before_shifting = jnp.einsum( '...lp,lkpd->...lkd', x, w) # TODO(jaszczur): this could be run after padding for better efficiency if self._kernel_size == 1: # With kernel size 1 we don't have to split or shift anything. linear_result = jnp.squeeze(linear_results_before_shifting, axis=-2) else: # We computed a result for every "pixel", but each direction from the # receptive field (there are 'self._kernel_size' such directions) must be # shifted by a different amount. The easiest way to do it is to split # the tensor to 'self._kernel_size' smaller tensors, shift each one # appropriately, and then sum them together. split_shifting_linear_results = jnp.split( linear_results_before_shifting, self._kernel_size, axis=-2) for i in range(self._kernel_size): # Each tensor has to be shifted a different amount. if self._padding == 'WRAP': # We can shift by padding and cutting. With 'wrap' padding we # essentially have a torus. padding = [(0, 0) for i in split_shifting_linear_results[i].shape] padding[-3] = ((self._kernel_size - 1) - i, i) split_shifting_linear_results[i] = jnp.pad( split_shifting_linear_results[i], padding, mode='wrap') split_shifting_linear_results[i] = split_shifting_linear_results[i][ ..., (self._kernel_size-1)//2:-(self._kernel_size-1)//2, :, :] elif self._padding == 'SAME': # We can shift by padding and cutting. padding = [(0, 0) for i in split_shifting_linear_results[i].shape] padding[-3] = ((self._kernel_size - 1) - i, i) split_shifting_linear_results[i] = jnp.pad( split_shifting_linear_results[i], padding) split_shifting_linear_results[i] = split_shifting_linear_results[i][ ..., (self._kernel_size-1)//2:-(self._kernel_size-1)//2, :, :] # TODO(jaszczur): improve efficiency by not padding things to cut elif self._padding == 'VALID': # We don't need to shift - just cut the leftmost and rightmost values. cut_left = (self._kernel_size - 1) - i cut_right = split_shifting_linear_results[i].shape[-3] - i split_shifting_linear_results[i] = split_shifting_linear_results[i][ ..., cut_left:cut_right, :, :] else: raise ValueError(f'Invalid padding {self._padding}') # After shifting. shifted_linear_results = jnp.concatenate(split_shifting_linear_results, axis=-2) linear_result = jnp.sum(shifted_linear_results, axis=-2) if self._use_bias: return linear_result + b else: return linear_result def init_weights_and_state(self, input_signature): """Randomly initializes this layer's weights. Weights are a `(w, b)` tuple for layers created with `use_bias=True` (the default case), or a `w` tensor for layers created with `use_bias=False`. Args: input_signature: `ShapeDtype` instance characterizing the input this layer should compute on. """ shape_w = (input_signature.shape[-2], self._kernel_size, input_signature.shape[-1], self._filters) if self._padding == 'VALID': shape_b = (input_signature.shape[-2] - self._kernel_size + 1, self._filters,) else: shape_b = (input_signature.shape[-2], self._filters,) rng_w, rng_b = fastmath.random.split(self.rng, 2) w = self._kernel_initializer(shape_w, rng_w, nonreceptive_dims=[0]) if self._use_bias: b = self._bias_initializer(shape_b, rng_b) self.weights = (w, b) else: self.weights = w def Flatten(n_axes_to_keep=1): """Returns a layer that combines one or more trailing axes of a tensor. Flattening keeps all the values of the input tensor, but reshapes it by collapsing one or more trailing axes into a single axis. For example, a `Flatten(n_axes_to_keep=2)` layer would map a tensor with shape `(2, 3, 5, 7, 11)` to the same values with shape `(2, 3, 385)`. Args: n_axes_to_keep: Number of leading axes to leave unchanged when reshaping; collapse only the axes after these. """ layer_name = f'Flatten_keep{n_axes_to_keep}' def f(x): # pylint: disable=invalid-name in_rank = len(x.shape) if in_rank <= n_axes_to_keep: raise ValueError(f'Input rank ({in_rank}) must exceed the number of ' f'axes to keep ({n_axes_to_keep}) after flattening.') return jnp.reshape(x, (x.shape[:n_axes_to_keep] + (-1,))) return Fn(layer_name, f) @assert_shape('...->...') # The output and input shapes are the same. def Exp(): """Returns a layer that computes the element-wise exponential of a tensor.""" return Fn('Exp', lambda x: jnp.exp(x)) # pylint: disable=unnecessary-lambda def LogSoftmax(axis=-1): """Returns a layer that applies log softmax along one tensor axis. `LogSoftmax` acts on a group of values and normalizes them to look like a set of log probability values. (Probability values must be non-negative, and as a set must sum to 1. A group of log probability values can be seen as the natural logarithm function applied to a set of probability values.) Args: axis: Axis along which values are grouped for computing log softmax. """ return Fn('LogSoftmax', lambda x: x - fastmath.logsumexp(x, axis, keepdims=True)) def Softmax(axis=-1): """Returns a layer that applies softmax along one tensor axis. `Softmax` acts on a group of values and normalizes them to look like a set of probability values. (Probability values must be non-negative, and as a set must sum to 1.) Args: axis: Axis along which values are grouped for computing softmax. """ return Fn('Softmax', lambda x: jnp.exp(x - fastmath.logsumexp(x, axis, keepdims=True))) def ToFloat(): """Returns a layer that changes the dtype of a tensor to `float32`.""" return Fn('ToFloat', lambda x: x.astype(np.float32)) def Mean(axis=-1, keepdims=False): """Returns a layer that computes mean values using one tensor axis. `Mean` uses one tensor axis to form groups of values and replaces each group with the mean value of that group. The resulting values can either remain in their own size 1 axis (`keepdims=True`), or that axis can be removed from the overall tensor (default `keepdims=False`), lowering the rank of the tensor by one. Args: axis: Axis along which values are grouped for computing a mean. keepdims: If `True`, keep the resulting size 1 axis as a separate tensor axis; else, remove that axis. """ return Fn('Mean', lambda x: jnp.mean(x, axis=axis, keepdims=keepdims)) def Min(axis=-1, keepdims=False): """Returns a layer that applies min along one tensor axis. Args: axis: Axis along which values are grouped for computing minimum. keepdims: If `True`, keep the resulting size 1 axis as a separate tensor axis; else, remove that axis. """ return Fn('Min', lambda x: jnp.min(x, axis, keepdims=keepdims)) def Max(axis=-1, keepdims=False): """Returns a layer that applies max along one tensor axis. Args: axis: Axis along which values are grouped for computing maximum. keepdims: If `True`, keep the resulting size 1 axis as a separate tensor axis; else, remove that axis. """ return Fn('Max', lambda x: jnp.max(x, axis, keepdims=keepdims)) def Sum(axis=-1, keepdims=False): """Returns a layer that computes sums using one tensor axis. `Sum` uses one tensor axis to form groups of values and replaces each group with the sum of that group. The resulting sum values can either remain in their own size 1 axis (`keepdims=True`), or that axis can be removed from the overall tensor (default `keepdims=False`), lowering the rank of the tensor by one. Args: axis: Axis along which values are grouped for computing a sum. keepdims: If `True`, keep the resulting size 1 axis as a separate tensor axis; else, remove that axis. """ return Fn('Sum', lambda x: jnp.sum(x, axis=axis, keepdims=keepdims)) @assert_shape('...->...') # The output and input shapes are the same. def Negate(): """Returns a layer that computes the element-wise negation of a tensor.""" return Fn('Negate', lambda x: -x) @assert_shape('...->...') # The output and input shapes are the same. def StopGradient(): """Returns an identity layer with a stop gradient.""" return Fn('StopGradient', lambda x: fastmath.stop_gradient(x)) # pylint: disable=unnecessary-lambda def log_gaussian_pdf(x, mu, sigma): # pylint: disable=invalid-name """Returns `log N(x | mu, sigma)`. Args: x: <tbd> mu: <tbd> sigma: <tbd> """ a = mu.shape[-1] * jnp.log(2 * jnp.pi) _, b = jnp.linalg.slogdet(sigma) y = jnp.linalg.solve(sigma, x - mu) y = jnp.expand_dims(y, axis=-1) xm = jnp.expand_dims(x - mu, axis=-2) c = jnp.matmul(xm, y) c = jnp.squeeze(jnp.squeeze(c, axis=-1), axis=-1) return -0.5 * (a + b + c) def log_gaussian_diag_pdf(x, mu, diag_sigma): # pylint: disable=invalid-name """Returns `log N(x | mu, eye(diag_sigma))`. Args: x: <tbd> mu: <tbd> diag_sigma: <tbd> """ a = mu.shape[-1] * jnp.log(2 * jnp.pi) b = jnp.sum(jnp.log(diag_sigma), axis=-1) y = x - mu / diag_sigma y = jnp.expand_dims(y, axis=-1) xm = jnp.expand_dims(x - mu, axis=-2) c = jnp.matmul(xm, y) c = jnp.squeeze(jnp.squeeze(c, axis=-1), axis=-1) return -0.5 * (a + b + c) def multigaussian_loss(preds, targets, ngauss=1): # pylint: disable=invalid-name """Returns a mixture of gaussians loss. Args: preds: <tbd> targets: <tbd> ngauss: <tbd> """ ndims = targets.shape[-1] logits = preds[:, :ngauss] mus = preds[:, ngauss:ngauss*(ndims + 1)] sigmas = preds[:, ngauss(ndims + 1):] sigmas = sigmas * sigmas + 1e-6 # Make positive. loglogits = logits - fastmath.logsumexp(logits, axis=-1, keepdims=True) mus = jnp.reshape(mus, [-1, ngauss, ndims]) sigmas = jnp.reshape(sigmas, [-1, ngauss, ndims]) targets = jnp.reshape(targets, [-1, 1, ndims]) glogprobs = log_gaussian_diag_pdf(targets, mus, sigmas) return fastmath.logsumexp(loglogits + glogprobs, axis=-1) def logsoftmax_sample(log_probs, temperature=1.0): # pylint: disable=invalid-name """Returns a sample from a log-softmax output, with temperature. Args: log_probs: Logarithms of probabilities (often coming from LogSoftmax) temperature: For scaling before sampling (1.0 = default, 0.0 = pick argmax) """ # This is equivalent to sampling from a softmax with temperature. u = np.random.uniform(low=1e-6, high=1.0 - 1e-6, size=log_probs.shape) g = -np.log(-np.log(u)) return np.argmax(log_probs + g * temperature, axis=-1)
[ "trax.fastmath.numpy.concatenate", "trax.fastmath.numpy.take", "numpy.log", "absl.logging.info", "trax.layers.initializers.GlorotUniformInitializer", "trax.fastmath.numpy.split", "trax.layers.base.Fn", "trax.fastmath.numpy.matmul", "trax.fastmath.numpy.max", "trax.fastmath.numpy.linalg.solve", "trax.fastmath.numpy.expand_dims", "trax.fastmath.numpy.reshape", "trax.fastmath.numpy.exp", "trax.fastmath.numpy.linalg.slogdet", "trax.fastmath.random.uniform", "trax.fastmath.numpy.mean", "trax.fastmath.device_count", "trax.fastmath.numpy.squeeze", "trax.layers.base.PureLayer", "trax.fastmath.numpy.dot", "trax.layers.initializers.RandomNormalInitializer", "numpy.argmax", "trax.fastmath.stop_gradient", "trax.fastmath.numpy.pad", "trax.layers.assert_shape.assert_shape", "trax.fastmath.numpy.min", "trax.fastmath.numpy.einsum", "trax.layers.initializers.ScaledInitializer", "trax.fastmath.numpy.sum", "trax.fastmath.numpy.array", "numpy.random.uniform", "trax.fastmath.psum", "trax.fastmath.random.split", "trax.fastmath.logsumexp", "trax.fastmath.numpy.log" ]
[((1060, 1086), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...a->...b"""'], {}), "('...a->...b')\n", (1072, 1086), False, 'from trax.layers.assert_shape import assert_shape\n'), ((4439, 4464), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...->...d"""'], {}), "('...->...d')\n", (4451, 4464), False, 'from trax.layers.assert_shape import assert_shape\n'), ((6868, 6892), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...->..."""'], {}), "('...->...')\n", (6880, 6892), False, 'from trax.layers.assert_shape import assert_shape\n'), ((21243, 21267), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...->..."""'], {}), "('...->...')\n", (21255, 21267), False, 'from trax.layers.assert_shape import assert_shape\n'), ((24784, 24808), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...->..."""'], {}), "('...->...')\n", (24796, 24808), False, 'from trax.layers.assert_shape import assert_shape\n'), ((24984, 25008), 'trax.layers.assert_shape.assert_shape', 'assert_shape', (['"""...->..."""'], {}), "('...->...')\n", (24996, 25008), False, 'from trax.layers.assert_shape import assert_shape\n'), ((10769, 10838), 'trax.layers.base.PureLayer', 'base.PureLayer', (['Fwd'], {'n_in': 'n_in', 'n_out': 'n_in', 'name': 'f"""PrintShape_{n_in}"""'}), "(Fwd, n_in=n_in, n_out=n_in, name=f'PrintShape_{n_in}')\n", (10783, 10838), False, 'from trax.layers import base\n'), ((21222, 21239), 'trax.layers.base.Fn', 'Fn', (['layer_name', 'f'], {}), '(layer_name, f)\n', (21224, 21239), False, 'from trax.layers.base import Fn\n'), ((24954, 24980), 'trax.layers.base.Fn', 'Fn', (['"""Negate"""', '(lambda x: -x)'], {}), "('Negate', lambda x: -x)\n", (24956, 24980), False, 'from trax.layers.base import Fn\n'), ((25449, 25474), 'trax.fastmath.numpy.linalg.slogdet', 'jnp.linalg.slogdet', (['sigma'], {}), '(sigma)\n', (25467, 25474), True, 'from trax.fastmath import numpy as jnp\n'), ((25481, 25512), 'trax.fastmath.numpy.linalg.solve', 'jnp.linalg.solve', (['sigma', '(x - mu)'], {}), '(sigma, x - mu)\n', (25497, 25512), True, 'from trax.fastmath import numpy as jnp\n'), ((25519, 25546), 'trax.fastmath.numpy.expand_dims', 'jnp.expand_dims', (['y'], {'axis': '(-1)'}), '(y, axis=-1)\n', (25534, 25546), True, 'from trax.fastmath import numpy as jnp\n'), ((25554, 25586), 'trax.fastmath.numpy.expand_dims', 'jnp.expand_dims', (['(x - mu)'], {'axis': '(-2)'}), '(x - mu, axis=-2)\n', (25569, 25586), True, 'from trax.fastmath import numpy as jnp\n'), ((25593, 25610), 'trax.fastmath.numpy.matmul', 'jnp.matmul', (['xm', 'y'], {}), '(xm, y)\n', (25603, 25610), True, 'from trax.fastmath import numpy as jnp\n'), ((25999, 26026), 'trax.fastmath.numpy.expand_dims', 'jnp.expand_dims', (['y'], {'axis': '(-1)'}), '(y, axis=-1)\n', (26014, 26026), True, 'from trax.fastmath import numpy as jnp\n'), ((26034, 26066), 'trax.fastmath.numpy.expand_dims', 'jnp.expand_dims', (['(x - mu)'], {'axis': '(-2)'}), '(x - mu, axis=-2)\n', (26049, 26066), True, 'from trax.fastmath import numpy as jnp\n'), ((26073, 26090), 'trax.fastmath.numpy.matmul', 'jnp.matmul', (['xm', 'y'], {}), '(xm, y)\n', (26083, 26090), True, 'from trax.fastmath import numpy as jnp\n'), ((26641, 26678), 'trax.fastmath.numpy.reshape', 'jnp.reshape', (['mus', '[-1, ngauss, ndims]'], {}), '(mus, [-1, ngauss, ndims])\n', (26652, 26678), True, 'from trax.fastmath import numpy as jnp\n'), ((26690, 26730), 'trax.fastmath.numpy.reshape', 'jnp.reshape', (['sigmas', '[-1, ngauss, ndims]'], {}), '(sigmas, [-1, ngauss, ndims])\n', (26701, 26730), True, 'from trax.fastmath import numpy as jnp\n'), ((26743, 26779), 'trax.fastmath.numpy.reshape', 'jnp.reshape', (['targets', '[-1, 1, ndims]'], {}), '(targets, [-1, 1, ndims])\n', (26754, 26779), True, 'from trax.fastmath import numpy as jnp\n'), ((26847, 26897), 'trax.fastmath.logsumexp', 'fastmath.logsumexp', (['(loglogits + glogprobs)'], {'axis': '(-1)'}), '(loglogits + glogprobs, axis=-1)\n', (26865, 26897), False, 'from trax import fastmath\n'), ((27293, 27361), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(1e-06)', 'high': '(1.0 - 1e-06)', 'size': 'log_probs.shape'}), '(low=1e-06, high=1.0 - 1e-06, size=log_probs.shape)\n', (27310, 27361), True, 'import numpy as np\n'), ((27395, 27442), 'numpy.argmax', 'np.argmax', (['(log_probs + g * temperature)'], {'axis': '(-1)'}), '(log_probs + g * temperature, axis=-1)\n', (27404, 27442), True, 'import numpy as np\n'), ((1834, 1865), 'trax.layers.initializers.GlorotUniformInitializer', 'init.GlorotUniformInitializer', ([], {}), '()\n', (1863, 1865), True, 'from trax.layers import initializers as init\n'), ((1899, 1934), 'trax.layers.initializers.RandomNormalInitializer', 'init.RandomNormalInitializer', (['(1e-06)'], {}), '(1e-06)\n', (1927, 1934), True, 'from trax.layers import initializers as init\n'), ((4067, 4101), 'trax.fastmath.random.split', 'fastmath.random.split', (['self.rng', '(2)'], {}), '(self.rng, 2)\n', (4088, 4101), False, 'from trax import fastmath\n'), ((5100, 5200), 'trax.layers.initializers.ScaledInitializer', 'init.ScaledInitializer', ([], {'out_dim': '(-1)', 'in_dim': '(-2)', 'scale': '(1.0)', 'mode': '"""fan_out"""', 'distribution': '"""uniform"""'}), "(out_dim=-1, in_dim=-2, scale=1.0, mode='fan_out',\n distribution='uniform')\n", (5122, 5200), True, 'from trax.layers import initializers as init\n'), ((6499, 6532), 'trax.fastmath.numpy.take', 'jnp.take', (['self.weights', 'x'], {'axis': '(0)'}), '(self.weights, x, axis=0)\n', (6507, 6532), True, 'from trax.fastmath import numpy as jnp\n'), ((8458, 8487), 'trax.fastmath.numpy.array', 'jnp.array', (['self._initial_rate'], {}), '(self._initial_rate)\n', (8467, 8487), True, 'from trax.fastmath import numpy as jnp\n'), ((10727, 10745), 'absl.logging.info', 'logging.info', (['info'], {}), '(info)\n', (10739, 10745), False, 'from absl import logging\n'), ((13431, 13520), 'trax.fastmath.random.uniform', 'fastmath.random.uniform', (['rng', 'self._shape', 'self._dtype', 'self._min_val', 'self._max_val'], {}), '(rng, self._shape, self._dtype, self._min_val, self.\n _max_val)\n', (13454, 13520), False, 'from trax import fastmath\n'), ((14727, 14758), 'trax.layers.initializers.GlorotUniformInitializer', 'init.GlorotUniformInitializer', ([], {}), '()\n', (14756, 14758), True, 'from trax.layers import initializers as init\n'), ((14792, 14827), 'trax.layers.initializers.RandomNormalInitializer', 'init.RandomNormalInitializer', (['(1e-06)'], {}), '(1e-06)\n', (14820, 14827), True, 'from trax.layers import initializers as init\n'), ((16585, 16623), 'trax.fastmath.numpy.einsum', 'jnp.einsum', (['"""...lp,lkpd->...lkd"""', 'x', 'w'], {}), "('...lp,lkpd->...lkd', x, w)\n", (16595, 16623), True, 'from trax.fastmath import numpy as jnp\n'), ((20080, 20114), 'trax.fastmath.random.split', 'fastmath.random.split', (['self.rng', '(2)'], {}), '(self.rng, 2)\n', (20101, 20114), False, 'from trax import fastmath\n'), ((21162, 21210), 'trax.fastmath.numpy.reshape', 'jnp.reshape', (['x', '(x.shape[:n_axes_to_keep] + (-1,))'], {}), '(x, x.shape[:n_axes_to_keep] + (-1,))\n', (21173, 21210), True, 'from trax.fastmath import numpy as jnp\n'), ((25420, 25439), 'trax.fastmath.numpy.log', 'jnp.log', (['(2 * jnp.pi)'], {}), '(2 * jnp.pi)\n', (25427, 25439), True, 'from trax.fastmath import numpy as jnp\n'), ((25629, 25652), 'trax.fastmath.numpy.squeeze', 'jnp.squeeze', (['c'], {'axis': '(-1)'}), '(c, axis=-1)\n', (25640, 25652), True, 'from trax.fastmath import numpy as jnp\n'), ((25903, 25922), 'trax.fastmath.numpy.log', 'jnp.log', (['(2 * jnp.pi)'], {}), '(2 * jnp.pi)\n', (25910, 25922), True, 'from trax.fastmath import numpy as jnp\n'), ((25937, 25956), 'trax.fastmath.numpy.log', 'jnp.log', (['diag_sigma'], {}), '(diag_sigma)\n', (25944, 25956), True, 'from trax.fastmath import numpy as jnp\n'), ((26109, 26132), 'trax.fastmath.numpy.squeeze', 'jnp.squeeze', (['c'], {'axis': '(-1)'}), '(c, axis=-1)\n', (26120, 26132), True, 'from trax.fastmath import numpy as jnp\n'), ((26582, 26632), 'trax.fastmath.logsumexp', 'fastmath.logsumexp', (['logits'], {'axis': '(-1)', 'keepdims': '(True)'}), '(logits, axis=-1, keepdims=True)\n', (26600, 26632), False, 'from trax import fastmath\n'), ((3542, 3555), 'trax.fastmath.numpy.dot', 'jnp.dot', (['x', 'w'], {}), '(x, w)\n', (3549, 3555), True, 'from trax.fastmath import numpy as jnp\n'), ((12378, 12392), 'trax.fastmath.numpy.array', 'jnp.array', (['(0.0)'], {}), '(0.0)\n', (12387, 12392), True, 'from trax.fastmath import numpy as jnp\n'), ((13651, 13683), 'trax.fastmath.psum', 'fastmath.psum', (['self.rng', '"""batch"""'], {}), "(self.rng, 'batch')\n", (13664, 13683), False, 'from trax import fastmath\n'), ((16832, 16884), 'trax.fastmath.numpy.squeeze', 'jnp.squeeze', (['linear_results_before_shifting'], {'axis': '(-2)'}), '(linear_results_before_shifting, axis=-2)\n', (16843, 16884), True, 'from trax.fastmath import numpy as jnp\n'), ((17290, 17359), 'trax.fastmath.numpy.split', 'jnp.split', (['linear_results_before_shifting', 'self._kernel_size'], {'axis': '(-2)'}), '(linear_results_before_shifting, self._kernel_size, axis=-2)\n', (17299, 17359), True, 'from trax.fastmath import numpy as jnp\n'), ((19091, 19146), 'trax.fastmath.numpy.concatenate', 'jnp.concatenate', (['split_shifting_linear_results'], {'axis': '(-2)'}), '(split_shifting_linear_results, axis=-2)\n', (19106, 19146), True, 'from trax.fastmath import numpy as jnp\n'), ((19216, 19256), 'trax.fastmath.numpy.sum', 'jnp.sum', (['shifted_linear_results'], {'axis': '(-2)'}), '(shifted_linear_results, axis=-2)\n', (19223, 19256), True, 'from trax.fastmath import numpy as jnp\n'), ((21433, 21443), 'trax.fastmath.numpy.exp', 'jnp.exp', (['x'], {}), '(x)\n', (21440, 21443), True, 'from trax.fastmath import numpy as jnp\n'), ((23325, 23366), 'trax.fastmath.numpy.mean', 'jnp.mean', (['x'], {'axis': 'axis', 'keepdims': 'keepdims'}), '(x, axis=axis, keepdims=keepdims)\n', (23333, 23366), True, 'from trax.fastmath import numpy as jnp\n'), ((23693, 23728), 'trax.fastmath.numpy.min', 'jnp.min', (['x', 'axis'], {'keepdims': 'keepdims'}), '(x, axis, keepdims=keepdims)\n', (23700, 23728), True, 'from trax.fastmath import numpy as jnp\n'), ((24055, 24090), 'trax.fastmath.numpy.max', 'jnp.max', (['x', 'axis'], {'keepdims': 'keepdims'}), '(x, axis, keepdims=keepdims)\n', (24062, 24090), True, 'from trax.fastmath import numpy as jnp\n'), ((24739, 24779), 'trax.fastmath.numpy.sum', 'jnp.sum', (['x'], {'axis': 'axis', 'keepdims': 'keepdims'}), '(x, axis=axis, keepdims=keepdims)\n', (24746, 24779), True, 'from trax.fastmath import numpy as jnp\n'), ((25168, 25193), 'trax.fastmath.stop_gradient', 'fastmath.stop_gradient', (['x'], {}), '(x)\n', (25190, 25193), False, 'from trax import fastmath\n'), ((3463, 3476), 'trax.fastmath.numpy.dot', 'jnp.dot', (['x', 'w'], {}), '(x, w)\n', (3470, 3476), True, 'from trax.fastmath import numpy as jnp\n'), ((13609, 13632), 'trax.fastmath.device_count', 'fastmath.device_count', ([], {}), '()\n', (13630, 13632), False, 'from trax import fastmath\n'), ((22024, 22066), 'trax.fastmath.logsumexp', 'fastmath.logsumexp', (['x', 'axis'], {'keepdims': '(True)'}), '(x, axis, keepdims=True)\n', (22042, 22066), False, 'from trax import fastmath\n'), ((27375, 27384), 'numpy.log', 'np.log', (['u'], {}), '(u)\n', (27381, 27384), True, 'import numpy as np\n'), ((17798, 17861), 'trax.fastmath.numpy.pad', 'jnp.pad', (['split_shifting_linear_results[i]', 'padding'], {'mode': '"""wrap"""'}), "(split_shifting_linear_results[i], padding, mode='wrap')\n", (17805, 17861), True, 'from trax.fastmath import numpy as jnp\n'), ((22474, 22516), 'trax.fastmath.logsumexp', 'fastmath.logsumexp', (['x', 'axis'], {'keepdims': '(True)'}), '(x, axis, keepdims=True)\n', (22492, 22516), False, 'from trax import fastmath\n'), ((18299, 18349), 'trax.fastmath.numpy.pad', 'jnp.pad', (['split_shifting_linear_results[i]', 'padding'], {}), '(split_shifting_linear_results[i], padding)\n', (18306, 18349), True, 'from trax.fastmath import numpy as jnp\n')]
# This holds all the iteration per step of a pfasst or parareal run class Stats_per_step: Nsteps=1 # Total number of steps Niters=1 # Max iters from run Nblocks=1 iters_per_step=[] resid_per_step=[] delq0_per_step=[] def __init__(self, param_dict,Nsteps): import numpy as np import json self.Nsteps = 1 self.Nproc=1 self.Nlev = param_dict['nlevels'] self.Niters = param_dict['niters'] self.Nproc = param_dict['nproc'] self.iters_per_step=np.zeros([self.Nsteps]) self.resid_per_step=np.zeros([self.Nsteps,self.Niters]) self.delq0_per_step=np.zeros([self.Nsteps,self.Niters]) Nblocks=int(self.Nsteps/self.Nproc) for kProcs in range(self.Nproc): iname='dat/'+param_dict['outdir']+'/residuals/Proc_'+str(kProcs).zfill(3)+'/Lev_'+str(self.Nlev).zfill(1)+'_iter.dat' rname='dat/'+param_dict['outdir']+'/residuals/Proc_'+str(kProcs).zfill(3)+'/Lev_'+str(self.Nlev).zfill(1)+'.dat' qname='dat/'+param_dict['outdir']+'/delta_q0/Proc_'+str(kProcs).zfill(3)+'/Lev_'+str(self.Nlev).zfill(1)+'.dat' k0=0 iterarray=np.loadtxt(iname) resarray=np.loadtxt(rname) delqarray=np.loadtxt(qname) for ks in range(Nblocks): thisStep=int(ks*self.Nproc+kProcs+1) # same as int(resarray[ks,0]) if (Nblocks == 1): thisNiter=int(iterarray[2]) thisResid=resarray[k0:k0+thisNiter-1,4] thisDelq=resarray[k0:k0+thisNiter-1,4] else: thisNiter=int(iterarray[ks,2]) thisResid=resarray[k0:k0+thisNiter-1,4] thisDelq=resarray[k0:k0+thisNiter-1,4] k0=k0+int(thisNiter) self.iters_per_step[thisStep-1]=thisNiter self.resid_per_step[thisStep-1,0:int(thisNiter)-1]=thisResid self.delq0_per_step[thisStep-1,0:int(thisNiter)-1]=thisDelq
[ "numpy.loadtxt", "numpy.zeros" ]
[((606, 629), 'numpy.zeros', 'np.zeros', (['[self.Nsteps]'], {}), '([self.Nsteps])\n', (614, 629), True, 'import numpy as np\n'), ((662, 698), 'numpy.zeros', 'np.zeros', (['[self.Nsteps, self.Niters]'], {}), '([self.Nsteps, self.Niters])\n', (670, 698), True, 'import numpy as np\n'), ((730, 766), 'numpy.zeros', 'np.zeros', (['[self.Nsteps, self.Niters]'], {}), '([self.Nsteps, self.Niters])\n', (738, 766), True, 'import numpy as np\n'), ((1311, 1328), 'numpy.loadtxt', 'np.loadtxt', (['iname'], {}), '(iname)\n', (1321, 1328), True, 'import numpy as np\n'), ((1354, 1371), 'numpy.loadtxt', 'np.loadtxt', (['rname'], {}), '(rname)\n', (1364, 1371), True, 'import numpy as np\n'), ((1398, 1415), 'numpy.loadtxt', 'np.loadtxt', (['qname'], {}), '(qname)\n', (1408, 1415), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Interpies - a libray for the interpretation of gravity and magnetic data. transforms.py: Functions for applying derivatives, transforms and filters to grids. @author: <NAME> Geophysics Labs, 2017 """ # Import numpy and scipy import numpy as np from scipy import signal from scipy.ndimage import filters #from scipy import interpolate from scipy import ndimage as nd # Import scikit-learn modules (used for the find_trend function) from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline ### definitions pi = np.pi # kernels for convolution filters derfilt3 = np.array([-0.5, 0, 0.5], np.float32) derfilt5 = np.array([1, -8, 0, 8, -1], np.float32)/12 # Five-point stencil vector prewitt1d = np.array([-1, 0, 1], np.float32)/2 #=============================================================================== # miscellaneous functions #=============================================================================== def replace_edges(data, ncells=1): """Replace the values at the edges of an array with the values calculated with reflection padding. Useful to correct edge effects due to convolution filters. """ return np.pad(data[ncells:-ncells, ncells:-ncells], ncells, mode='reflect', reflect_type='odd') def fill_nodata(data, invalid=None): """Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell. Not very pretty but enough for making sure the calculation works. Parameters ---------- data: numpy array of any dimension invalid: a binary array of same shape as 'data'. True cells set where data value should be replaced. If None (default), use: invalid = np.isnan(data) Returns ------- Return a filled array. Credits ------- http://stackoverflow.com/a/9262129 """ if np.any(np.isnan(data)): if invalid is None: invalid = np.isnan(data) ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] else: return data def simple_resample(data, sampling=2): ''' Resample grid by simply picking cells at a given sampling rate. The starting point is the lower-left corner of grid so the location of the grid is unchanged. ''' return np.flipud(np.flipud(data)[::sampling, ::sampling]) def find_trend(X, data, degree=1, returnModel=False): ''' Calculate trend in 2D data. The fit is made with a polynomial function of chosen degree. A least-square method is used for the fit. ''' nrows, ncols = data.shape # get location of NaNs mask = np.isnan(data) # Fit data with a polynomial surface (or a plane if degree=1) model = Pipeline([('poly', PolynomialFeatures(degree)), ('linear', LinearRegression())]) model.fit(X[~mask.flatten(), :], data[~mask]) # calculate resulting trend trend = model.predict(X).reshape((nrows, ncols)) if returnModel: return model else: return trend def stats(data): ''' Return a list of descriptive statistical values. ''' mean = np.nanmean(data) sigma = np.nanstd(data) minimum = np.nanmin(data) maximum = np.nanmax(data) return (mean, sigma, minimum, maximum) #============================================================================== # Derivatives with Savitzky-Golay coeficients #============================================================================== #------------------------------------------- # Pre-calculated Savitzky-Golay coeficients #------------------------------------------- # <NAME>, Microsoft Research, August 2001 # # SavGolSize<m>Order<n>X<i>Y<j> is a filter in row-major order for one polynomial with: # filter size m x m # polynomial order n # filter for coefficient of term (x^i)(y^j) # These are grouped by size # http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/KRUMM1/SavGol.htm # Size 2 Order 1 SavGolSize2Order1X0Y0 = np.array([0.25000000,0.25000000, 0.25000000,0.25000000]).reshape((2,2)) SavGolSize2Order1X1Y0 = np.array([-0.50000000,0.50000000, -0.50000000,0.50000000]).reshape((2,2)) SavGolSize2Order1X0Y1 = np.array([-0.50000000,-0.50000000, 0.50000000,0.50000000]).reshape((2,2)) # Size 3 Order 1 SavGolSize3Order1X0Y0 = np.array([0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111]).reshape((3,3)) SavGolSize3Order1X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order1X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) # Size 3 Order 2 ## can be used for quadratic polynomial fit SavGolSize3Order2X0Y0 = np.array([-0.11111111,0.22222222,-0.11111111, 0.22222222,0.55555556,0.22222222, -0.11111111,0.22222222,-0.11111111]).reshape((3,3)) SavGolSize3Order2X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order2X2Y0 = np.array([0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667]).reshape((3,3)) SavGolSize3Order2X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) SavGolSize3Order2X1Y1 = np.array([0.25000000,0.00000000,-0.25000000, 0.00000000,0.00000000,0.00000000, -0.25000000,0.00000000,0.25000000]).reshape((3,3)) SavGolSize3Order2X0Y2 = np.array([0.16666667,0.16666667,0.16666667, -0.33333333,-0.33333333,-0.33333333, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) #---------------------------------------- def savgol2d(degree, window_size): ''' Calculate coefficients of two-dimensional Savitzky-Golay filters. Derived from https://github.com/whatasunnyday/Savitzky-Golay-Filter Checked against Krumm's coefficients (see list above). Parameters ---------- degree: positive integer The degree of the polynomial that is fitted to the data points. The greater the degree, the larger the fitting window must be. window_size: positive odd integer The size of the square window that is used to calculate the fitting polynomial. Returns ------- coeffs : 2D array of shape (n, `window_size**2`), where n is the number of coefficients in a polynomial of degree `degree` with 2 variables (x and y). n is equal to (2+d)! / 2d! Each of the n rows is a kernel of size `window_size` that can be used to smooth 2D data (with the first one) or to calculate derivatives (with the others). ''' if not isinstance(degree, int) or degree < 0: raise ValueError("Degree of polynomial must be a positive integer") if not isinstance(window_size, int) or window_size % 2 == 0 or window_size < 0 : raise ValueError("Window size must be a positive odd integer") if window_size ** 2 < ((degree + 2) * (degree + 1)) / 2.0: raise ValueError("Degree too high for window size") # create dictionary of exponents exps = [ {"x": k - n, "y": n } for k in range(degree + 1) for n in range(k + 1)] # coordinates of points in window n = np.arange(-(window_size - 1)//2, (window_size - 1)//2 + 1, dtype = np.float64) dx = np.tile(n, [window_size, 1]).reshape(window_size ** 2, ) dy = np.repeat(n, window_size) # array A = np.empty((window_size ** 2, len(exps))) for i, exp in enumerate(exps): A[:,i] = (dx ** exp["x"]) * (dy ** exp["y"]) return np.linalg.pinv(A) #---------------------------------------- # Dictionary to associate types of derivative with Savitzky-Golay coeficients # and parameters sg_dicts = {} sg_dicts['dx'] = {'index':1,'factor':1,'exponent':1,'flipfunc':np.fliplr} sg_dicts['dy'] = {'index':2,'factor':-1,'exponent':1,'flipfunc':np.flipud} sg_dicts['dx2'] = {'index':3,'factor':2,'exponent':2,'flipfunc':np.fliplr} sg_dicts['dxdy'] = {'index':4,'factor':-1,'exponent':2,'flipfunc':lambda x: np.flipud(np.fliplr(x))} sg_dicts['dy2'] = {'index':5,'factor':2,'exponent':2,'flipfunc':np.flipud} def savgol_smooth(data, deg=3, win=5, doEdges=False): ''' Smooth an array by 2D convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. The SG filter is controlled by two parameters, `deg` (degree) and `win` (window size). The amount of smoothing will increase with `win` and decrease with `deg`. Parameters ---------- data: 2D array Input data deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg,win) sg_kernel = sg_coeffs[0].reshape((win,win)) # calculate filtered result by convolution convResult = signal.convolve2d(data,sg_kernel,mode='same', boundary='symm') # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult def savgol_deriv(data, cellsize, direction='dx', deg=3, win=5, doEdges=True): ''' Calculate horizontal derivatives by convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' sg_dict = sg_dicts[direction] index = sg_dict['index'] factor = sg_dict['factor'] exponent = sg_dict['exponent'] flipfunc = sg_dict['flipfunc'] # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg, win) sg_kernel = flipfunc(sg_coeffs[index].reshape((win, win))) # flip for convolution # calculate derivative by convolution convResult = factor*signal.convolve2d(data, sg_kernel, mode='same', boundary='symm')/cellsize**exponent # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult #============================================================================== # fs_deriv - 5-Tap and 7-tap 1st and 2nd discrete derivatives #============================================================================== # ** Adapted from Matlab code by <NAME> ** # # These functions compute 1st and 2nd derivatives of an image using # coefficients given by <NAME> Simoncelli (2004). The results are significantly # more accurate than MATLAB's GRADIENT function on edges that are at angles # other than vertical or horizontal. This in turn improves gradient orientation # estimation enormously. If you are after extreme accuracy try using the 7-tap # coefficients. # # Reference: <NAME> and <NAME> "Differentiation of Discrete # Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004) # # Copyright (c) 2010 <NAME> # http://www.peterkovesi.com/matlabfns/index.html # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # The Software is provided "as is", without warranty of any kind. # April 2010 def _conv1(a, h): return np.convolve(a, h, mode='same') def _conv2(h1, h2, A): ''' Performs a 1D convolution down the columns using h1 then a 1D convolution along the rows using h2. ''' result = np.apply_along_axis(_conv1, 0, A, h1) result = np.apply_along_axis(_conv1, 1, result, h2) return result def fs_coefficients(tap=5, direction='dx'): ''' This function returns the 5-tap or 7-tap coefficients given by Farid and Simoncelli (2004). ''' if tap==5: if direction in ['dx', 'dy', 'dxdy']: # 5-tap 1st derivative coefficients. These are optimal if you are just # seeking the 1st deriavtives. p = np.array([0.037659, 0.249153, 0.426375, 0.249153, 0.037659]) d1 = np.array([0.109604, 0.276691, 0.000000, -0.276691, -0.109604]) d2 = 0 elif direction in ['dx2', 'dy2', 'dxdy']: # 5-tap 2nd derivative coefficients. The associated 1st derivative # coefficients are not quite as optimal as the ones above but are # consistent with the 2nd derivative interpolator p and thus are # appropriate to use if you are after both 1st and 2nd derivatives. p = np.array([0.030320, 0.249724, 0.439911, 0.249724, 0.030320]) d1 = np.array([0.104550, 0.292315, 0.000000, -0.292315, -0.104550]) d2 = np.array([0.232905, 0.002668, -0.471147, 0.002668, 0.232905]) elif tap==7: # 7-tap interpolant and 1st and 2nd derivative coefficients p = np.array([0.004711, 0.069321, 0.245410, 0.361117, 0.245410, 0.069321, 0.004711]) d1 = np.array([0.018708, 0.125376, 0.193091, 0.000000, -0.193091, -0.125376, -0.018708]) d2 = np.array([0.055336, 0.137778, -0.056554, -0.273118, -0.056554, 0.137778, 0.055336]) else: raise ValueError('The tap value must be either 5 or 7.') return p, d1, d2 def fs_deriv(data, cellsize, direction='dx', tap=5): ''' Compute 1st or 2nd derivative of an array using the method of Farid and Simoncelli (2004). Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. tap: {5, 7}, default 5 Size of the kernel that is used to calculate the derivative by convolution. ''' # Compute coefficients p, d1, d2 = fs_coefficients(tap, direction) # Compute derivatives if direction=='dx': result = _conv2(p,d1,data)/cellsize elif direction=='dy': result = -1 * _conv2(d1,p,data)/cellsize # origin is in lower left corner elif direction=='dx2': result = _conv2(p,d2,data)/cellsize/cellsize elif direction=='dy2': result = _conv2(d2,p,data)/cellsize/cellsize elif direction=='dxdy': result = _conv2(p,d1,data)/cellsize result = -1 * _conv2(d1,p,result)/cellsize return result #============================================================================== # Fourier functions #============================================================================== def getk(nx, ny, dx, dy): ''' Given the size `nx` and `ny` of a FFT and the spacing `dx` and `dy` of the space domain grid, this routine returns the spatial frequency grid components `kx`, `ky` and `k = sqrt(kx.^2 + ky.^2)` Makes use of numpy function `fftfreq`. Returns ------- [kx,ky,k] ''' # Discrete Fourier Transform sample frequencies kx = 2*np.pi*np.fft.fftfreq(nx,dx) ky = 2*np.pi*np.fft.fftfreq(ny,dy) # Create matrices for 2D case kx = np.tile(kx,(ny,1)) ky = np.tile(ky,(nx,1)).T # calculate k k=np.sqrt(kx**2+ky**2) return [kx,ky,k] def next_pow2(x): ''' n = up_to_pow2(x) return the nearest power of 2 going upwards. ''' return int(2.**np.ceil(np.log(x)/np.log(2))) # Padding functions def pad_next_pow2(data, mode='reflect', reflect_type='odd', smooth=False, end_values=0): ''' Pad to a square grid with 2**n number of cells in each dimension, with 2**n being the next power of 2 relative to the size of the input array. Use numpy padding function (same mode, reflect_type_type and end_values arguments). Parameters ---------- data: 2D array Input data. mode : {'reflect', 'linear_ramp'}, optional Mode used by secondary padding after tiling. See numpy pad function for more information. reflect_type : {'even', 'odd'}, optional Used in 'reflect' mode. The 'odd' style is the default with the extented part of the array created by subtracting the reflected values from two times the edge value. For the 'even' style, the reflection is unaltered around the edge value. smooth : boolean, optional option to apply a moving average smoothing function over the edge of the grid. default: False Notes ----- See https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html ''' nrows,ncols = data.shape nmax = max([nrows,ncols]) npts = next_pow2(nmax) # next 2^n number cdiff = (npts - ncols) // 2 rdiff = (npts - nrows) // 2 # if (npts-nrows) is odd, add 1 row on the bottom side r_remainder = np.mod((npts - nrows),2) # if (npts-ncols) is odd, add 1 column on the right-hand side c_remainder = np.mod((npts - ncols),2) # apply padding if mode in ['reflect','symmetric']: padded = np.pad(data, ((rdiff, rdiff+r_remainder),(cdiff,cdiff+c_remainder)), mode=mode,reflect_type=reflect_type) else: padded = np.pad(data, ((rdiff, rdiff+r_remainder),(cdiff,cdiff+c_remainder)), mode=mode,end_values=(end_values,)) if smooth: for i in range(-2,3): padded[:,cdiff+i] = smoothing_average(padded, cdiff+i, axis='cols') padded[:,ncols-1+cdiff+i] = smoothing_average(padded, ncols-1+cdiff+i, axis='cols') padded[rdiff+i,:] = smoothing_average(padded, rdiff+i, axis='rows') padded[nrows-1+rdiff+i,:] = smoothing_average(padded, nrows-1+rdiff+i, axis='rows') return padded def pad_full(data, mode='reflect', reflect_type='odd'): ''' Combine tiling and padding. Extend an array first by tiling symmetrical copies of the input to a 3x3 array (in reflect mode) then pad with a linear ramp or by reflection to the next power of 2. Parameters ---------- data: 2D array Input data mode : {'reflect', 'linear_ramp'}, optional Mode used by secondary padding after tiling. See numpy pad function for more information. reflect_type : {'even', 'odd'}, optional Used in 'reflect' mode. The 'odd' style is the default with the extented part of the array created by subtracting the reflected values from two times the edge value. For the 'even' style, the reflection is unaltered around the edge value. See also -------- Numpy pad : https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html ''' nrows, ncols = data.shape # first 3x3 padding data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode='reflect', reflect_type=reflect_type) # additional padding to size = next power of 2 if mode == 'reflect': data_pad = pad_next_pow2(data_pad, mode='reflect', reflect_type=reflect_type) else: data_pad = pad_next_pow2(data_pad, mode='linear_ramp', end_values=int(data_pad.mean())) # linear ramp return data_pad def pad_3x3(data, mode='reflect', reflect_type='odd'): ''' Extend a matrix by tiling symmetrical copies of the input Return a 3*nrows x 3*ncols array ''' nrows, ncols = data.shape # 3x3 padding if mode == 'reflect': data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode=mode, reflect_type=reflect_type) else: data_pad = np.pad(data, ((nrows,nrows), (ncols,ncols)), mode='linear_ramp', end_values=int(np.nanmean(data))) # linear ramp return data_pad def unpad_next_pow2(data, nrows, ncols): ''' Retrieve the original array after padding with upPow2_pad. (nrows, ncols) is the shape of the array before padding. ''' nmax = max([nrows,ncols]) npts = next_pow2(nmax) cdiff = ((npts - ncols) // 2) rdiff = ((npts - nrows) // 2) return data[rdiff:nrows + rdiff,cdiff:ncols + cdiff] def unpad_3x3(data): ''' Retrieve the original matrix that was padded with 3x3 reflection padding ''' return np.hsplit(np.vsplit(data, 3)[1], 3)[1] def unpad_full(data, nrows, ncols): ''' Retrieve the original matrix that was padded with pad_full reflection padding. (nrows, ncols) is the shape of the array before padding. ''' data_unpad = unpad_next_pow2(data, 3*nrows, 3*ncols) return unpad_3x3(data_unpad) # remove 3x3 padding # put everything together def fourier_transform(data, cellsize, trans='dx', order=1, doEdges=True, ncells=2, padding='full', mode='reflect', reflect_type='odd', eps=1e-6, z=500): ''' Calculate transforms in the frequency domain. Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. trans: string One of the following string values: 'dx': horizontal derivative along the x-axis 'dy': horizontal derivative along the y-axis 'dxdy': horizontal derivatives along the x-axis and y-axis 'dz': vertical derivative 'vi': vertical integral 'upcont': upward continuation order: float, default: 1 The order of differentiation or integration doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ncells: int, default: 2 Number of cells at the edges of the output grid that are replaced using padding if the `doEdges` option is True. padding: string Type of padding to apply to the input grid before the Fourier calculation. Can be one of the following options: 'full': initial 3x3 padding (reflect) + ramp or reflection to next power of 2 '3x3': The entire array is duplicated and tiled in a 3x3 pattern with the original array in the middle. 'pow2': the size of the array is increased by padding to the next power of 2. mode: string, default: 'reflect' Option for padding the input array. 'reflect': Pads with the reflection of the array 'linear_ramp': Pads with a linear ramp between the array edge value and the mean value of the array. reflect_type: string, default: 'odd' Used in reflection padding. Can be 'even' or 'odd'. See numpy function pad. eps: float Small number to replace zeros in frequency components k with when the vertical integral is calculated. z: float Height used for upward continuation. Default is 500 m. ''' nrows,ncols = data.shape # save array mask before calculation mask = np.isnan(data) # Apply padding padding = padding.lower() if padding == 'full': # initial 3x3 padding (reflect) + ramp or reflection to next power of 2 data_pad = pad_full(fill_nodata(data), mode=mode, reflect_type=reflect_type) elif padding == '3x3': # 3x3 reflection padding data_pad = pad_3x3(fill_nodata(data), mode=mode, reflect_type=reflect_type) elif padding == 'pow2': # ramp or reflection to next power of 2 data_pad = pad_next_pow2(fill_nodata(data), mode=mode, reflect_type=reflect_type, smooth=True, end_values=int(np.nanmean(data))) else: # no padding data_pad = fill_nodata(data) # Calculate the k matrix (ny,nx) = data_pad.shape [kx,ky,k] = getk(nx, ny, cellsize, cellsize) # Apply transformation on padded data trans = trans.lower() if trans == 'dx': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(1j*kx)**order)) elif trans == 'dy': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(1j*ky)**order)) elif trans == 'dxdy': fouTrans = np.real(np.fft.ifft2( (np.fft.fft2(data_pad)*(1j*ky)**order)*(1j*kx)**order)) elif trans == 'dz': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*k**order)) elif trans == 'vi': # remove zeros in k to avoid division by zero error k[k==0] = eps fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*k**(-1*order))) fouTrans = fouTrans - np.mean(fouTrans) elif trans == 'upcont': fouTrans = np.real(np.fft.ifft2(np.fft.fft2(data_pad)*(np.exp(-z*k)))) # remove padding if padding == 'full': fouTrans = unpad_full(fouTrans, nrows, ncols) elif padding == '3x3': fouTrans = unpad_3x3(fouTrans) elif padding == 'pow2': fouTrans = unpad_next_pow2(fouTrans, nrows, ncols) # fill edges if doEdges: fouTrans = replace_edges(fouTrans, ncells) # re-apply the mask fouTrans[mask] = np.nan return fouTrans #=============================================================================== # ISVD (vertical derivative) #=============================================================================== def isvd(data, cellsize, method='SG', order=1, deg=4, win=5, fs_tap=5, doEdges=True, **kwargs): ''' Vertical derivatives with the ISVD (integrated second vertical derivative) method. Parameters ---------- data: 2D array Input data cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. method: {'SG, 'FS', 'fourier'}, optional The method to use for the calculation of the second horizontal derivatives. The three options are: - 'SG': Savitzky-Golay method - 'FS': Farid and Simoncelli method - 'fourier': fourier method order: scalar, optional, default: 1 Order of differentiation. Must be either 1 or 2. If 1, then vertical integration is first applied to the data. deg: positive integer, default 4 The degree of the Savitzky-Golay filter if the SG method is used. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. fs_tap: {5, 7}, default 5 Size of the kernel that is used to calculate the derivatives with the FS method. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. kwargs : other keywords Options to pass to the fourier transform. Reference --------- <NAME>., <NAME>., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect. 49, 40–58. ''' if order not in [1, 2]: raise ValueError('Order must be 1 or 2.') # save array mask before calculation mask = np.isnan(data) # fill no data areas (unchanged if no null cells) data = fill_nodata(data) if order==1: # vertical integral data = fourier_transform(data, cellsize, trans='vi', order=1) # smoothing if kwargs: data = gauss(data, kwargs['sigma']) # second derivatives if method == 'SG': data_dx2 = savgol_deriv(data, cellsize, direction='dx2', deg=deg, win=win, doEdges=doEdges) data_dy2 = savgol_deriv(data, cellsize, direction='dy2', deg=deg, win=win, doEdges=doEdges) elif method == 'FS': data_dx2 = fs_deriv(data, cellsize, direction='dx2', tap=fs_tap) data_dy2 = fs_deriv(data, cellsize, direction='dy2', tap=fs_tap) elif method == 'fourier': data_dx2 = fourier_transform(data, cellsize, trans='dx', order=2, **kwargs) data_dy2 = fourier_transform(data, cellsize, trans='dy', order=2, **kwargs) # return DZ using the Laplace equation data_dz = -1*(data_dx2 + data_dy2) # fill edges if doEdges: data_dz = replace_edges(data_dz, (win-1)//2) # re-apply mask data_dz[mask] = np.nan return data_dz #=============================================================================== # Various filters #=============================================================================== def gauss(data, sigma=1): return filters.gaussian_filter(data, sigma) def smoothing_average(V, i, axis='cols'): if axis == 'cols': Vs = (V[:,i-2]+V[:,i-1]+V[:,i]+V[:,i+1]+V[:,i+2])/5. else: Vs = (V[i-2,:]+V[i-1,:]+V[i,:]+V[i+1,:]+V[i+2,:])/5. return Vs def laplacian(data, cellsize): conv_filter = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]]) convResult = signal.convolve2d(data, conv_filter, mode='valid',boundary='symm')/cellsize return convResult
[ "numpy.convolve", "numpy.sqrt", "numpy.linalg.pinv", "scipy.ndimage.filters.gaussian_filter", "sklearn.preprocessing.PolynomialFeatures", "numpy.log", "numpy.array", "numpy.nanmean", "numpy.nanmin", "numpy.mod", "numpy.arange", "numpy.mean", "numpy.repeat", "numpy.fft.fft2", "numpy.exp", "numpy.nanmax", "scipy.signal.convolve2d", "numpy.tile", "numpy.nanstd", "scipy.ndimage.distance_transform_edt", "numpy.flipud", "numpy.fliplr", "numpy.vsplit", "numpy.isnan", "sklearn.linear_model.LinearRegression", "numpy.fft.fftfreq", "numpy.apply_along_axis", "numpy.pad" ]
[((681, 717), 'numpy.array', 'np.array', (['[-0.5, 0, 0.5]', 'np.float32'], {}), '([-0.5, 0, 0.5], np.float32)\n', (689, 717), True, 'import numpy as np\n'), ((729, 768), 'numpy.array', 'np.array', (['[1, -8, 0, 8, -1]', 'np.float32'], {}), '([1, -8, 0, 8, -1], np.float32)\n', (737, 768), True, 'import numpy as np\n'), ((813, 845), 'numpy.array', 'np.array', (['[-1, 0, 1]', 'np.float32'], {}), '([-1, 0, 1], np.float32)\n', (821, 845), True, 'import numpy as np\n'), ((1264, 1356), 'numpy.pad', 'np.pad', (['data[ncells:-ncells, ncells:-ncells]', 'ncells'], {'mode': '"""reflect"""', 'reflect_type': '"""odd"""'}), "(data[ncells:-ncells, ncells:-ncells], ncells, mode='reflect',\n reflect_type='odd')\n", (1270, 1356), True, 'import numpy as np\n'), ((2899, 2913), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (2907, 2913), True, 'import numpy as np\n'), ((3418, 3434), 'numpy.nanmean', 'np.nanmean', (['data'], {}), '(data)\n', (3428, 3434), True, 'import numpy as np\n'), ((3447, 3462), 'numpy.nanstd', 'np.nanstd', (['data'], {}), '(data)\n', (3456, 3462), True, 'import numpy as np\n'), ((3477, 3492), 'numpy.nanmin', 'np.nanmin', (['data'], {}), '(data)\n', (3486, 3492), True, 'import numpy as np\n'), ((3507, 3522), 'numpy.nanmax', 'np.nanmax', (['data'], {}), '(data)\n', (3516, 3522), True, 'import numpy as np\n'), ((8369, 8454), 'numpy.arange', 'np.arange', (['(-(window_size - 1) // 2)', '((window_size - 1) // 2 + 1)'], {'dtype': 'np.float64'}), '(-(window_size - 1) // 2, (window_size - 1) // 2 + 1, dtype=np.float64\n )\n', (8378, 8454), True, 'import numpy as np\n'), ((8541, 8566), 'numpy.repeat', 'np.repeat', (['n', 'window_size'], {}), '(n, window_size)\n', (8550, 8566), True, 'import numpy as np\n'), ((8740, 8757), 'numpy.linalg.pinv', 'np.linalg.pinv', (['A'], {}), '(A)\n', (8754, 8757), True, 'import numpy as np\n'), ((10455, 10519), 'scipy.signal.convolve2d', 'signal.convolve2d', (['data', 'sg_kernel'], {'mode': '"""same"""', 'boundary': '"""symm"""'}), "(data, sg_kernel, mode='same', boundary='symm')\n", (10472, 10519), False, 'from scipy import signal\n'), ((13926, 13956), 'numpy.convolve', 'np.convolve', (['a', 'h'], {'mode': '"""same"""'}), "(a, h, mode='same')\n", (13937, 13956), True, 'import numpy as np\n'), ((14119, 14156), 'numpy.apply_along_axis', 'np.apply_along_axis', (['_conv1', '(0)', 'A', 'h1'], {}), '(_conv1, 0, A, h1)\n', (14138, 14156), True, 'import numpy as np\n'), ((14170, 14212), 'numpy.apply_along_axis', 'np.apply_along_axis', (['_conv1', '(1)', 'result', 'h2'], {}), '(_conv1, 1, result, h2)\n', (14189, 14212), True, 'import numpy as np\n'), ((18031, 18051), 'numpy.tile', 'np.tile', (['kx', '(ny, 1)'], {}), '(kx, (ny, 1))\n', (18038, 18051), True, 'import numpy as np\n'), ((18109, 18135), 'numpy.sqrt', 'np.sqrt', (['(kx ** 2 + ky ** 2)'], {}), '(kx ** 2 + ky ** 2)\n', (18116, 18135), True, 'import numpy as np\n'), ((19791, 19814), 'numpy.mod', 'np.mod', (['(npts - nrows)', '(2)'], {}), '(npts - nrows, 2)\n', (19797, 19814), True, 'import numpy as np\n'), ((19901, 19924), 'numpy.mod', 'np.mod', (['(npts - ncols)', '(2)'], {}), '(npts - ncols, 2)\n', (19907, 19924), True, 'import numpy as np\n'), ((21879, 21973), 'numpy.pad', 'np.pad', (['data', '((nrows, nrows), (ncols, ncols))'], {'mode': '"""reflect"""', 'reflect_type': 'reflect_type'}), "(data, ((nrows, nrows), (ncols, ncols)), mode='reflect', reflect_type\n =reflect_type)\n", (21885, 21973), True, 'import numpy as np\n'), ((26264, 26278), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (26272, 26278), True, 'import numpy as np\n'), ((30413, 30427), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (30421, 30427), True, 'import numpy as np\n'), ((31935, 31971), 'scipy.ndimage.filters.gaussian_filter', 'filters.gaussian_filter', (['data', 'sigma'], {}), '(data, sigma)\n', (31958, 31971), False, 'from scipy.ndimage import filters\n'), ((32236, 32283), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 4, -1], [0, -1, 0]]'], {}), '([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])\n', (32244, 32283), True, 'import numpy as np\n'), ((2000, 2014), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (2008, 2014), True, 'import numpy as np\n'), ((2096, 2175), 'scipy.ndimage.distance_transform_edt', 'nd.distance_transform_edt', (['invalid'], {'return_distances': '(False)', 'return_indices': '(True)'}), '(invalid, return_distances=False, return_indices=True)\n', (2121, 2175), True, 'from scipy import ndimage as nd\n'), ((4279, 4313), 'numpy.array', 'np.array', (['[0.25, 0.25, 0.25, 0.25]'], {}), '([0.25, 0.25, 0.25, 0.25])\n', (4287, 4313), True, 'import numpy as np\n'), ((4409, 4441), 'numpy.array', 'np.array', (['[-0.5, 0.5, -0.5, 0.5]'], {}), '([-0.5, 0.5, -0.5, 0.5])\n', (4417, 4441), True, 'import numpy as np\n'), ((4541, 4573), 'numpy.array', 'np.array', (['[-0.5, -0.5, 0.5, 0.5]'], {}), '([-0.5, -0.5, 0.5, 0.5])\n', (4549, 4573), True, 'import numpy as np\n'), ((4690, 4813), 'numpy.array', 'np.array', (['[0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, \n 0.11111111, 0.11111111, 0.11111111]'], {}), '([0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.11111111, \n 0.11111111, 0.11111111, 0.11111111, 0.11111111])\n', (4698, 4813), True, 'import numpy as np\n'), ((4910, 5015), 'numpy.array', 'np.array', (['[-0.16666667, 0.0, 0.16666667, -0.16666667, 0.0, 0.16666667, -0.16666667, \n 0.0, 0.16666667]'], {}), '([-0.16666667, 0.0, 0.16666667, -0.16666667, 0.0, 0.16666667, -\n 0.16666667, 0.0, 0.16666667])\n', (4918, 5015), True, 'import numpy as np\n'), ((5133, 5237), 'numpy.array', 'np.array', (['[-0.16666667, -0.16666667, -0.16666667, 0.0, 0.0, 0.0, 0.16666667, \n 0.16666667, 0.16666667]'], {}), '([-0.16666667, -0.16666667, -0.16666667, 0.0, 0.0, 0.0, 0.16666667,\n 0.16666667, 0.16666667])\n', (5141, 5237), True, 'import numpy as np\n'), ((5419, 5546), 'numpy.array', 'np.array', (['[-0.11111111, 0.22222222, -0.11111111, 0.22222222, 0.55555556, 0.22222222, \n -0.11111111, 0.22222222, -0.11111111]'], {}), '([-0.11111111, 0.22222222, -0.11111111, 0.22222222, 0.55555556, \n 0.22222222, -0.11111111, 0.22222222, -0.11111111])\n', (5427, 5546), True, 'import numpy as np\n'), ((5643, 5748), 'numpy.array', 'np.array', (['[-0.16666667, 0.0, 0.16666667, -0.16666667, 0.0, 0.16666667, -0.16666667, \n 0.0, 0.16666667]'], {}), '([-0.16666667, 0.0, 0.16666667, -0.16666667, 0.0, 0.16666667, -\n 0.16666667, 0.0, 0.16666667])\n', (5651, 5748), True, 'import numpy as np\n'), ((5866, 5992), 'numpy.array', 'np.array', (['[0.16666667, -0.33333333, 0.16666667, 0.16666667, -0.33333333, 0.16666667, \n 0.16666667, -0.33333333, 0.16666667]'], {}), '([0.16666667, -0.33333333, 0.16666667, 0.16666667, -0.33333333, \n 0.16666667, 0.16666667, -0.33333333, 0.16666667])\n', (5874, 5992), True, 'import numpy as np\n'), ((6089, 6193), 'numpy.array', 'np.array', (['[-0.16666667, -0.16666667, -0.16666667, 0.0, 0.0, 0.0, 0.16666667, \n 0.16666667, 0.16666667]'], {}), '([-0.16666667, -0.16666667, -0.16666667, 0.0, 0.0, 0.0, 0.16666667,\n 0.16666667, 0.16666667])\n', (6097, 6193), True, 'import numpy as np\n'), ((6312, 6373), 'numpy.array', 'np.array', (['[0.25, 0.0, -0.25, 0.0, 0.0, 0.0, -0.25, 0.0, 0.25]'], {}), '([0.25, 0.0, -0.25, 0.0, 0.0, 0.0, -0.25, 0.0, 0.25])\n', (6320, 6373), True, 'import numpy as np\n'), ((6534, 6660), 'numpy.array', 'np.array', (['[0.16666667, 0.16666667, 0.16666667, -0.33333333, -0.33333333, -0.33333333,\n 0.16666667, 0.16666667, 0.16666667]'], {}), '([0.16666667, 0.16666667, 0.16666667, -0.33333333, -0.33333333, -\n 0.33333333, 0.16666667, 0.16666667, 0.16666667])\n', (6542, 6660), True, 'import numpy as np\n'), ((17922, 17944), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['nx', 'dx'], {}), '(nx, dx)\n', (17936, 17944), True, 'import numpy as np\n'), ((17961, 17983), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['ny', 'dy'], {}), '(ny, dy)\n', (17975, 17983), True, 'import numpy as np\n'), ((18059, 18079), 'numpy.tile', 'np.tile', (['ky', '(nx, 1)'], {}), '(ky, (nx, 1))\n', (18066, 18079), True, 'import numpy as np\n'), ((20009, 20125), 'numpy.pad', 'np.pad', (['data', '((rdiff, rdiff + r_remainder), (cdiff, cdiff + c_remainder))'], {'mode': 'mode', 'reflect_type': 'reflect_type'}), '(data, ((rdiff, rdiff + r_remainder), (cdiff, cdiff + c_remainder)),\n mode=mode, reflect_type=reflect_type)\n', (20015, 20125), True, 'import numpy as np\n'), ((20166, 20281), 'numpy.pad', 'np.pad', (['data', '((rdiff, rdiff + r_remainder), (cdiff, cdiff + c_remainder))'], {'mode': 'mode', 'end_values': '(end_values,)'}), '(data, ((rdiff, rdiff + r_remainder), (cdiff, cdiff + c_remainder)),\n mode=mode, end_values=(end_values,))\n', (20172, 20281), True, 'import numpy as np\n'), ((22643, 22732), 'numpy.pad', 'np.pad', (['data', '((nrows, nrows), (ncols, ncols))'], {'mode': 'mode', 'reflect_type': 'reflect_type'}), '(data, ((nrows, nrows), (ncols, ncols)), mode=mode, reflect_type=\n reflect_type)\n', (22649, 22732), True, 'import numpy as np\n'), ((32293, 32360), 'scipy.signal.convolve2d', 'signal.convolve2d', (['data', 'conv_filter'], {'mode': '"""valid"""', 'boundary': '"""symm"""'}), "(data, conv_filter, mode='valid', boundary='symm')\n", (32310, 32360), False, 'from scipy import signal\n'), ((2067, 2081), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (2075, 2081), True, 'import numpy as np\n'), ((2574, 2589), 'numpy.flipud', 'np.flipud', (['data'], {}), '(data)\n', (2583, 2589), True, 'import numpy as np\n'), ((8475, 8503), 'numpy.tile', 'np.tile', (['n', '[window_size, 1]'], {}), '(n, [window_size, 1])\n', (8482, 8503), True, 'import numpy as np\n'), ((9225, 9237), 'numpy.fliplr', 'np.fliplr', (['x'], {}), '(x)\n', (9234, 9237), True, 'import numpy as np\n'), ((12305, 12369), 'scipy.signal.convolve2d', 'signal.convolve2d', (['data', 'sg_kernel'], {'mode': '"""same"""', 'boundary': '"""symm"""'}), "(data, sg_kernel, mode='same', boundary='symm')\n", (12322, 12369), False, 'from scipy import signal\n'), ((14603, 14663), 'numpy.array', 'np.array', (['[0.037659, 0.249153, 0.426375, 0.249153, 0.037659]'], {}), '([0.037659, 0.249153, 0.426375, 0.249153, 0.037659])\n', (14611, 14663), True, 'import numpy as np\n'), ((14681, 14738), 'numpy.array', 'np.array', (['[0.109604, 0.276691, 0.0, -0.276691, -0.109604]'], {}), '([0.109604, 0.276691, 0.0, -0.276691, -0.109604])\n', (14689, 14738), True, 'import numpy as np\n'), ((15482, 15560), 'numpy.array', 'np.array', (['[0.004711, 0.069321, 0.24541, 0.361117, 0.24541, 0.069321, 0.004711]'], {}), '([0.004711, 0.069321, 0.24541, 0.361117, 0.24541, 0.069321, 0.004711])\n', (15490, 15560), True, 'import numpy as np\n'), ((15599, 15677), 'numpy.array', 'np.array', (['[0.018708, 0.125376, 0.193091, 0.0, -0.193091, -0.125376, -0.018708]'], {}), '([0.018708, 0.125376, 0.193091, 0.0, -0.193091, -0.125376, -0.018708])\n', (15607, 15677), True, 'import numpy as np\n'), ((15719, 15807), 'numpy.array', 'np.array', (['[0.055336, 0.137778, -0.056554, -0.273118, -0.056554, 0.137778, 0.055336]'], {}), '([0.055336, 0.137778, -0.056554, -0.273118, -0.056554, 0.137778, \n 0.055336])\n', (15727, 15807), True, 'import numpy as np\n'), ((3016, 3042), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', (['degree'], {}), '(degree)\n', (3034, 3042), False, 'from sklearn.preprocessing import PolynomialFeatures\n'), ((3078, 3096), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (3094, 3096), False, 'from sklearn.linear_model import LinearRegression\n'), ((15159, 15217), 'numpy.array', 'np.array', (['[0.03032, 0.249724, 0.439911, 0.249724, 0.03032]'], {}), '([0.03032, 0.249724, 0.439911, 0.249724, 0.03032])\n', (15167, 15217), True, 'import numpy as np\n'), ((15237, 15292), 'numpy.array', 'np.array', (['[0.10455, 0.292315, 0.0, -0.292315, -0.10455]'], {}), '([0.10455, 0.292315, 0.0, -0.292315, -0.10455])\n', (15245, 15292), True, 'import numpy as np\n'), ((15317, 15378), 'numpy.array', 'np.array', (['[0.232905, 0.002668, -0.471147, 0.002668, 0.232905]'], {}), '([0.232905, 0.002668, -0.471147, 0.002668, 0.232905])\n', (15325, 15378), True, 'import numpy as np\n'), ((23461, 23479), 'numpy.vsplit', 'np.vsplit', (['data', '(3)'], {}), '(data, 3)\n', (23470, 23479), True, 'import numpy as np\n'), ((18290, 18299), 'numpy.log', 'np.log', (['x'], {}), '(x)\n', (18296, 18299), True, 'import numpy as np\n'), ((18300, 18309), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (18306, 18309), True, 'import numpy as np\n'), ((22889, 22905), 'numpy.nanmean', 'np.nanmean', (['data'], {}), '(data)\n', (22899, 22905), True, 'import numpy as np\n'), ((27228, 27249), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27239, 27249), True, 'import numpy as np\n'), ((27331, 27352), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27342, 27352), True, 'import numpy as np\n'), ((26890, 26906), 'numpy.nanmean', 'np.nanmean', (['data'], {}), '(data)\n', (26900, 26906), True, 'import numpy as np\n'), ((27832, 27849), 'numpy.mean', 'np.mean', (['fouTrans'], {}), '(fouTrans)\n', (27839, 27849), True, 'import numpy as np\n'), ((27466, 27487), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27477, 27487), True, 'import numpy as np\n'), ((27585, 27606), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27596, 27606), True, 'import numpy as np\n'), ((27764, 27785), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27775, 27785), True, 'import numpy as np\n'), ((27918, 27939), 'numpy.fft.fft2', 'np.fft.fft2', (['data_pad'], {}), '(data_pad)\n', (27929, 27939), True, 'import numpy as np\n'), ((27941, 27955), 'numpy.exp', 'np.exp', (['(-z * k)'], {}), '(-z * k)\n', (27947, 27955), True, 'import numpy as np\n')]
import io import os import shutil import tarfile from base64 import b64decode import dash from dash import dcc import numpy as np import plotly.express as px import plotly.graph_objects as go from app import app, dbroot, logger from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from .cellar.utils.tile_generator import (generate_10x_spatial, generate_tile) from .cellar.utils.misc import get_title_from_feature_list from .cellar.core import adjScoreProteinsCODEX, adjScoreClustersCODEX from .cellar.core import adjScoreClusters10x from .cellar.core import cl_get_expression from .multiplexer import MultiplexerOutput from .notifications import _prep_notification from layout.misc import empty_spatial_figure, empty_colocalization_figure def get_parse_tar_gz_func(an): def _func(contents, filename, data_type): print(data_type) if data_type == 'spatial-10x': extract_path = f'tmp/{an}/s10x' elif data_type == 'spatial-codex': extract_path = f'tmp/{an}/codex' else: return dash.no_update, _prep_notification("Please select a data type.", "info") if filename.endswith('tar.gz'): logger.info(f"Extracting tar.gz file at {extract_path}.") try: content_type, content_string = contents.split(',') decoded = b64decode(content_string) tar = tarfile.open(fileobj=io.BytesIO(decoded)) if os.path.isdir(extract_path): shutil.rmtree(extract_path) tar.extractall(extract_path) tar.close() except Exception as e: logger.error(str(e)) error_msg = "Couldn't extract tar.gz file." logger.error(error_msg) return dash.no_update, _prep_notification(error_msg, "danger") else: return dash.no_update, _prep_notification( f'{filename} format not recognized.', "danger") return {}, _prep_notification("Finished extracting file.", "info") return _func for prefix, an in zip(["main", "side"], ["a1", "a2"]): app.callback( Output(prefix + "-buf-load", "style"), MultiplexerOutput("push-notification", "data"), Input(prefix + '-upload-spatial', 'contents'), State(prefix + '-upload-spatial', 'filename'), State(prefix + "-spatial-type-dropdown", "value"), prevent_initial_call=True )(get_parse_tar_gz_func(an)) def _determine_spatial_colors(adata, feature_list): """ Determine whether to use labels or protein expression. If neither, will return None. """ colors = None if feature_list is None or len(feature_list) == 0: if 'labels' in adata.obs: colors = adata.obs['labels'].to_numpy().astype(int) else: feature_list = np.array(feature_list, dtype='U200').flatten() colors = cl_get_expression(adata, feature_list).astype(float) return colors def get_generate_tile_func(an, prefix): def _func(n1, clean, data_type, feature_list): ctx = dash.callback_context if not ctx.triggered: raise PreventUpdate if an not in dbroot.adatas: raise PreventUpdate if 'adata' not in dbroot.adatas[an]: raise PreventUpdate button_id = ctx.triggered[0]["prop_id"].split(".")[0] if button_id == prefix + "-data-load-clean": return empty_spatial_figure, dash.no_update adata = dbroot.adatas[an]['adata'] colors = _determine_spatial_colors(adata, feature_list) savepath = f'tmp/spatial_{an}_tile.png' owner = None if data_type == 'spatial-10x': try: tile, owner = generate_10x_spatial( f'tmp/{an}/s10x/spatial/detected_tissue_image.jpg', f'tmp/{an}/s10x/spatial/tissue_positions_list.csv', f'tmp/{an}/s10x/spatial/scalefactors_json.json', adata=adata, colors=colors, in_tissue=False, savepath=savepath, palette=dbroot.palettes[prefix]) except Exception as e: logger.error(str(e)) error_msg = "Error occurred when generating 10x spatial tile." logger.error(error_msg) return dash.no_update, _prep_notification(error_msg, "danger") elif data_type == 'spatial-codex': tile_list = os.listdir('data/codex_tile') fname = dbroot.adatas[an]['name'] # Selected a server CODEX dataset if fname in tile_list: logger.info("Found CODEX tile locally.") impath = f'data/codex_tile/{fname}/images' datapath = f'data/codex_tile/{fname}/data.csv' # In case no necessary spatial tile information has been uploaded elif not os.path.isdir(f'tmp/{an}/codex'): if not ('spatial_idx' in adata.uns or ('x' in adata.obs and 'y' in adata.obs)): error_msg = "No spatial files have been uploaded." logger.error(error_msg) return dash.no_update, _prep_notification(error_msg, "warn") impath = None datapath = None else: impath = f'tmp/{an}/codex/images' datapath = f'tmp/{an}/codex/data.csv' try: tile, owner = generate_tile( impath, datapath, adata=adata, colors=colors, palette=dbroot.palettes[prefix], savepath=savepath) except Exception as e: logger.error(str(e)) error_msg = "Error occurred when generating CODEX tile." logger.error(error_msg) return dash.no_update, _prep_notification(error_msg, "danger") else: msg = "Please select a data type." return dash.no_update, _prep_notification(msg, "info") logger.info(f"Generated tile with shape {tile.shape}. Scaling...") ho, wo = tile.shape[:2] scaler = 1000 / max(wo, ho) w, h = int(scaler * wo), int(scaler * ho) title = None if feature_list is not None and len(feature_list) >= 1: title = get_title_from_feature_list(adata, feature_list) fig = px.imshow(tile, width=w, height=h, color_continuous_scale='magma', binary_compression_level=9, binary_format='jpg', title=title) if owner is not None and 'labels' in adata.obs: owner_cp = owner.copy() owner = owner.clip(min=0) customdata = adata.obs['labels'].to_numpy()[owner] customdata[owner_cp < 0] = -1 fig.update(data=[{ 'customdata': customdata, 'hovertemplate': 'Cluster ID: %{customdata}'}]) fig.update_layout(coloraxis_showscale=False) fig.update_xaxes(showticklabels=False) fig.update_yaxes(showticklabels=False) return fig, _prep_notification( f"Generated tile with shape {tile.shape[:2]}", "info") return _func for prefix, an in zip(["main", "side"], ["a1", "a2"]): app.callback( Output(prefix + "-tile", "figure"), MultiplexerOutput("push-notification", "data"), Input(prefix + "-generate-tile-btn", "n_clicks"), Input(prefix + "-data-load-clean", "data"), State(prefix + "-spatial-type-dropdown", "value"), State(prefix + "-feature-list-spatial", "value"), prevent_initial_call=True )(get_generate_tile_func(an, prefix)) def _remap_indices(x, old, new): sort_idx = old.argsort() mapped_idx = sort_idx[ np.searchsorted(old, x, sorter=sort_idx)] remapped = new[mapped_idx] return remapped def get_generate_cluster_scores_func(an, prefix): def _func(n1, clean, data_type, n_neighbors): ctx = dash.callback_context if not ctx.triggered: raise PreventUpdate if an not in dbroot.adatas: raise PreventUpdate if 'adata' not in dbroot.adatas[an]: raise PreventUpdate adata = dbroot.adatas[an]['adata'] button_id = ctx.triggered[0]["prop_id"].split(".")[0] if button_id == prefix + "-data-load-clean": return empty_colocalization_figure, dash.no_update if data_type == 'spatial-10x': if 'spatial_dict' in adata.uns: csv_path = None else: csv_path = f'tmp/{an}/s10x/spatial/tissue_positions_list.csv' res = adjScoreClusters10x( adata, csv_path, n_neighbors=n_neighbors) elif data_type == 'spatial-codex': if 'x' in adata.obs and 'y' in adata.obs: res = adjScoreClustersCODEX( adata, None, n_neighbors=n_neighbors) else: tile_list = os.listdir('data/codex_tile') fname = dbroot.adatas[an]['name'] if fname not in tile_list: msg = "Could not find spatial data or data type " + \ "not supported." logger.warn(msg) return dash.no_update, _prep_notification( msg, icon="warning") csv_path = f'data/codex_tile/{fname}/data.csv' res = adjScoreClustersCODEX( adata, csv_path, n_neighbors=n_neighbors) else: return dash.no_update, _prep_notification( "Please select a data type.", icon="info") x_cord = res['f'].to_numpy().astype(int) y_cord = res['g'].to_numpy().astype(int) scores = res['score'].astype(float) q = np.round(res['q'].astype(float), 4) unq_labels = np.unique(dbroot.adatas[an]['adata'].obs['labels']) n = len(unq_labels) x_cord = _remap_indices(x_cord, unq_labels, np.arange(n)) y_cord = _remap_indices(y_cord, unq_labels, np.arange(n)) heatmap, qvals = np.zeros((n, n)), np.zeros((n, n)) heatmap[x_cord, y_cord] = scores heatmap[y_cord, x_cord] = scores # heatmap = np.log10(heatmap + 1) qvals[x_cord, y_cord] = q qvals[y_cord, x_cord] = q heatmap = np.flip(heatmap, axis=1) qvals = np.flip(qvals, axis=1) fig = go.Figure(data=[go.Heatmap( x=np.repeat(unq_labels, n).astype(str), y=np.flip(np.tile(unq_labels, n).astype(str)), z=heatmap.flatten(), text=qvals.astype(str).flatten(), colorscale='magma', hovertemplate="Cluster x: %{x}<br>Cluster y: " + "%{y}<br>score: %{z}<br>q-val: %{text}" )]) fig.update_layout( width=500, height=500, autosize=False, xaxis=dict(tickmode='linear'), yaxis=dict(tickmode='linear'), legend_title_text="score" ) return fig, dash.no_update return _func for prefix, an in zip(["main", "side"], ["a1", "a2"]): app.callback( Output(prefix + "-cluster-scores", "figure"), MultiplexerOutput("push-notification", "data"), Input(prefix + "-generate-cluster-scores-btn", "n_clicks"), Input(prefix + "-data-load-clean", "data"), State(prefix + "-spatial-type-dropdown", "value"), State(prefix + "-spatial-cluster-scores-nneigh", "value"), prevent_initial_call=True )(get_generate_cluster_scores_func(an, prefix)) def get_generate_protein_scores_func(an, prefix): def _func(n1, clean, data_type, n_neighbors): ctx = dash.callback_context if not ctx.triggered: raise PreventUpdate if an not in dbroot.adatas: raise PreventUpdate if 'adata' not in dbroot.adatas[an]: raise PreventUpdate adata = dbroot.adatas[an]['adata'] button_id = ctx.triggered[0]["prop_id"].split(".")[0] if button_id == prefix + "-data-load-clean": return empty_colocalization_figure, dash.no_update if 'x' in adata.obs and 'y' in adata.obs: res = adjScoreProteinsCODEX( adata, None, n_neighbors=n_neighbors) else: tile_list = os.listdir('data/codex_tile') fname = dbroot.adatas[an]['name'] if fname not in tile_list: msg = "Could not find spatial data or data type not supported." logger.warn(msg) return dash.no_update, _prep_notification(msg, icon="warning") csv_path = f'data/codex_tile/{fname}/data.csv' res = adjScoreProteinsCODEX( dbroot.adatas[an]['adata'], csv_path, n_neighbors=n_neighbors) features = dbroot.adatas[an]['adata'].var['gene_symbols'].to_numpy() x_cord, y_cord = res['f'].astype(int), res['g'].astype(int) scores = res['score'].astype(float) n = features.shape[0] heatmap, qvals = np.zeros((n, n)), np.zeros((n, n)) heatmap[x_cord, y_cord] = scores heatmap[y_cord, x_cord] = scores # heatmap = np.log10(heatmap + 1) q = np.round(res['q'].astype(float), 4) qvals[x_cord, y_cord] = q qvals[y_cord, x_cord] = q heatmap = np.flip(heatmap, axis=1) qvals = np.flip(qvals, axis=1) fig = go.Figure(data=[go.Heatmap( x=np.repeat(features, n).astype(str), y=np.flip(np.tile(features, n).astype(str)), z=heatmap.flatten(), text=qvals.astype(str).flatten(), colorscale='magma', hovertemplate="Cluster x: %{x}<br>Cluster y: " + "%{y}<br>score: %{z}<br>q-val: %{text}" )]) fig.update_layout( width=500, height=500, autosize=False, xaxis=dict(tickmode='linear'), yaxis=dict(tickmode='linear'), legend_title_text="score" ) return fig, dash.no_update return _func for prefix, an in zip(["main", "side"], ["a1", "a2"]): app.callback( Output(prefix + "-protein-scores", "figure"), MultiplexerOutput("push-notification", "data"), Input(prefix + "-generate-protein-scores-btn", "n_clicks"), Input(prefix + "-data-load-clean", "data"), State(prefix + "-spatial-type-dropdown", "value"), State(prefix + "-spatial-protein-scores-nneigh", "value"), prevent_initial_call=True )(get_generate_protein_scores_func(an, prefix)) def get_download_tile_func(an): def _func(n1): ctx = dash.callback_context if not ctx.triggered: raise PreventUpdate if an not in dbroot.adatas: raise PreventUpdate filepath = f'tmp/spatial_{an}_tile.png' if not os.path.isfile(filepath): return dash.no_update, _prep_notification( "No tile image found.") return dcc.send_file(filepath), dash.no_update return _func for prefix, an in zip(["main", "side"], ["a1", "a2"]): app.callback( Output(prefix + "-download-tile-buf", "data"), MultiplexerOutput("push-notification", "data"), Input(prefix + "-download-tile-btn", "n_clicks"), prevent_initial_call=True )(get_download_tile_func(an))
[ "app.logger.error", "io.BytesIO", "dash.dependencies.Input", "numpy.array", "app.logger.info", "numpy.arange", "numpy.flip", "os.listdir", "numpy.repeat", "numpy.searchsorted", "dash.dependencies.Output", "os.path.isdir", "app.logger.warn", "dash.dependencies.State", "plotly.express.imshow", "numpy.tile", "os.path.isfile", "dash.dcc.send_file", "numpy.unique", "base64.b64decode", "numpy.zeros", "shutil.rmtree" ]
[((6168, 6234), 'app.logger.info', 'logger.info', (['f"""Generated tile with shape {tile.shape}. Scaling..."""'], {}), "(f'Generated tile with shape {tile.shape}. Scaling...')\n", (6179, 6234), False, 'from app import app, dbroot, logger\n'), ((6523, 6655), 'plotly.express.imshow', 'px.imshow', (['tile'], {'width': 'w', 'height': 'h', 'color_continuous_scale': '"""magma"""', 'binary_compression_level': '(9)', 'binary_format': '"""jpg"""', 'title': 'title'}), "(tile, width=w, height=h, color_continuous_scale='magma',\n binary_compression_level=9, binary_format='jpg', title=title)\n", (6532, 6655), True, 'import plotly.express as px\n'), ((7947, 7987), 'numpy.searchsorted', 'np.searchsorted', (['old', 'x'], {'sorter': 'sort_idx'}), '(old, x, sorter=sort_idx)\n', (7962, 7987), True, 'import numpy as np\n'), ((10058, 10109), 'numpy.unique', 'np.unique', (["dbroot.adatas[an]['adata'].obs['labels']"], {}), "(dbroot.adatas[an]['adata'].obs['labels'])\n", (10067, 10109), True, 'import numpy as np\n'), ((10540, 10564), 'numpy.flip', 'np.flip', (['heatmap'], {'axis': '(1)'}), '(heatmap, axis=1)\n', (10547, 10564), True, 'import numpy as np\n'), ((10581, 10603), 'numpy.flip', 'np.flip', (['qvals'], {'axis': '(1)'}), '(qvals, axis=1)\n', (10588, 10603), True, 'import numpy as np\n'), ((13578, 13602), 'numpy.flip', 'np.flip', (['heatmap'], {'axis': '(1)'}), '(heatmap, axis=1)\n', (13585, 13602), True, 'import numpy as np\n'), ((13619, 13641), 'numpy.flip', 'np.flip', (['qvals'], {'axis': '(1)'}), '(qvals, axis=1)\n', (13626, 13641), True, 'import numpy as np\n'), ((1258, 1315), 'app.logger.info', 'logger.info', (['f"""Extracting tar.gz file at {extract_path}."""'], {}), "(f'Extracting tar.gz file at {extract_path}.')\n", (1269, 1315), False, 'from app import app, dbroot, logger\n'), ((2246, 2283), 'dash.dependencies.Output', 'Output', (["(prefix + '-buf-load')", '"""style"""'], {}), "(prefix + '-buf-load', 'style')\n", (2252, 2283), False, 'from dash.dependencies import Input, Output, State\n'), ((2350, 2395), 'dash.dependencies.Input', 'Input', (["(prefix + '-upload-spatial')", '"""contents"""'], {}), "(prefix + '-upload-spatial', 'contents')\n", (2355, 2395), False, 'from dash.dependencies import Input, Output, State\n'), ((2405, 2450), 'dash.dependencies.State', 'State', (["(prefix + '-upload-spatial')", '"""filename"""'], {}), "(prefix + '-upload-spatial', 'filename')\n", (2410, 2450), False, 'from dash.dependencies import Input, Output, State\n'), ((2460, 2509), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-type-dropdown')", '"""value"""'], {}), "(prefix + '-spatial-type-dropdown', 'value')\n", (2465, 2509), False, 'from dash.dependencies import Input, Output, State\n'), ((7452, 7486), 'dash.dependencies.Output', 'Output', (["(prefix + '-tile')", '"""figure"""'], {}), "(prefix + '-tile', 'figure')\n", (7458, 7486), False, 'from dash.dependencies import Input, Output, State\n'), ((7553, 7601), 'dash.dependencies.Input', 'Input', (["(prefix + '-generate-tile-btn')", '"""n_clicks"""'], {}), "(prefix + '-generate-tile-btn', 'n_clicks')\n", (7558, 7601), False, 'from dash.dependencies import Input, Output, State\n'), ((7611, 7653), 'dash.dependencies.Input', 'Input', (["(prefix + '-data-load-clean')", '"""data"""'], {}), "(prefix + '-data-load-clean', 'data')\n", (7616, 7653), False, 'from dash.dependencies import Input, Output, State\n'), ((7663, 7712), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-type-dropdown')", '"""value"""'], {}), "(prefix + '-spatial-type-dropdown', 'value')\n", (7668, 7712), False, 'from dash.dependencies import Input, Output, State\n'), ((7722, 7770), 'dash.dependencies.State', 'State', (["(prefix + '-feature-list-spatial')", '"""value"""'], {}), "(prefix + '-feature-list-spatial', 'value')\n", (7727, 7770), False, 'from dash.dependencies import Input, Output, State\n'), ((10190, 10202), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (10199, 10202), True, 'import numpy as np\n'), ((10256, 10268), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (10265, 10268), True, 'import numpy as np\n'), ((10295, 10311), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (10303, 10311), True, 'import numpy as np\n'), ((10313, 10329), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (10321, 10329), True, 'import numpy as np\n'), ((11365, 11409), 'dash.dependencies.Output', 'Output', (["(prefix + '-cluster-scores')", '"""figure"""'], {}), "(prefix + '-cluster-scores', 'figure')\n", (11371, 11409), False, 'from dash.dependencies import Input, Output, State\n'), ((11476, 11534), 'dash.dependencies.Input', 'Input', (["(prefix + '-generate-cluster-scores-btn')", '"""n_clicks"""'], {}), "(prefix + '-generate-cluster-scores-btn', 'n_clicks')\n", (11481, 11534), False, 'from dash.dependencies import Input, Output, State\n'), ((11544, 11586), 'dash.dependencies.Input', 'Input', (["(prefix + '-data-load-clean')", '"""data"""'], {}), "(prefix + '-data-load-clean', 'data')\n", (11549, 11586), False, 'from dash.dependencies import Input, Output, State\n'), ((11596, 11645), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-type-dropdown')", '"""value"""'], {}), "(prefix + '-spatial-type-dropdown', 'value')\n", (11601, 11645), False, 'from dash.dependencies import Input, Output, State\n'), ((11655, 11712), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-cluster-scores-nneigh')", '"""value"""'], {}), "(prefix + '-spatial-cluster-scores-nneigh', 'value')\n", (11660, 11712), False, 'from dash.dependencies import Input, Output, State\n'), ((12551, 12580), 'os.listdir', 'os.listdir', (['"""data/codex_tile"""'], {}), "('data/codex_tile')\n", (12561, 12580), False, 'import os\n'), ((13285, 13301), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (13293, 13301), True, 'import numpy as np\n'), ((13303, 13319), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (13311, 13319), True, 'import numpy as np\n'), ((14399, 14443), 'dash.dependencies.Output', 'Output', (["(prefix + '-protein-scores')", '"""figure"""'], {}), "(prefix + '-protein-scores', 'figure')\n", (14405, 14443), False, 'from dash.dependencies import Input, Output, State\n'), ((14510, 14568), 'dash.dependencies.Input', 'Input', (["(prefix + '-generate-protein-scores-btn')", '"""n_clicks"""'], {}), "(prefix + '-generate-protein-scores-btn', 'n_clicks')\n", (14515, 14568), False, 'from dash.dependencies import Input, Output, State\n'), ((14578, 14620), 'dash.dependencies.Input', 'Input', (["(prefix + '-data-load-clean')", '"""data"""'], {}), "(prefix + '-data-load-clean', 'data')\n", (14583, 14620), False, 'from dash.dependencies import Input, Output, State\n'), ((14630, 14679), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-type-dropdown')", '"""value"""'], {}), "(prefix + '-spatial-type-dropdown', 'value')\n", (14635, 14679), False, 'from dash.dependencies import Input, Output, State\n'), ((14689, 14746), 'dash.dependencies.State', 'State', (["(prefix + '-spatial-protein-scores-nneigh')", '"""value"""'], {}), "(prefix + '-spatial-protein-scores-nneigh', 'value')\n", (14694, 14746), False, 'from dash.dependencies import Input, Output, State\n'), ((15118, 15142), 'os.path.isfile', 'os.path.isfile', (['filepath'], {}), '(filepath)\n', (15132, 15142), False, 'import os\n'), ((15255, 15278), 'dash.dcc.send_file', 'dcc.send_file', (['filepath'], {}), '(filepath)\n', (15268, 15278), False, 'from dash import dcc\n'), ((15396, 15441), 'dash.dependencies.Output', 'Output', (["(prefix + '-download-tile-buf')", '"""data"""'], {}), "(prefix + '-download-tile-buf', 'data')\n", (15402, 15441), False, 'from dash.dependencies import Input, Output, State\n'), ((15508, 15556), 'dash.dependencies.Input', 'Input', (["(prefix + '-download-tile-btn')", '"""n_clicks"""'], {}), "(prefix + '-download-tile-btn', 'n_clicks')\n", (15513, 15556), False, 'from dash.dependencies import Input, Output, State\n'), ((1426, 1451), 'base64.b64decode', 'b64decode', (['content_string'], {}), '(content_string)\n', (1435, 1451), False, 'from base64 import b64decode\n'), ((1535, 1562), 'os.path.isdir', 'os.path.isdir', (['extract_path'], {}), '(extract_path)\n', (1548, 1562), False, 'import os\n'), ((2945, 2981), 'numpy.array', 'np.array', (['feature_list'], {'dtype': '"""U200"""'}), "(feature_list, dtype='U200')\n", (2953, 2981), True, 'import numpy as np\n'), ((4621, 4650), 'os.listdir', 'os.listdir', (['"""data/codex_tile"""'], {}), "('data/codex_tile')\n", (4631, 4650), False, 'import os\n'), ((12763, 12779), 'app.logger.warn', 'logger.warn', (['msg'], {}), '(msg)\n', (12774, 12779), False, 'from app import app, dbroot, logger\n'), ((1584, 1611), 'shutil.rmtree', 'shutil.rmtree', (['extract_path'], {}), '(extract_path)\n', (1597, 1611), False, 'import shutil\n'), ((1833, 1856), 'app.logger.error', 'logger.error', (['error_msg'], {}), '(error_msg)\n', (1845, 1856), False, 'from app import app, dbroot, logger\n'), ((4451, 4474), 'app.logger.error', 'logger.error', (['error_msg'], {}), '(error_msg)\n', (4463, 4474), False, 'from app import app, dbroot, logger\n'), ((4794, 4834), 'app.logger.info', 'logger.info', (['"""Found CODEX tile locally."""'], {}), "('Found CODEX tile locally.')\n", (4805, 4834), False, 'from app import app, dbroot, logger\n'), ((9163, 9192), 'os.listdir', 'os.listdir', (['"""data/codex_tile"""'], {}), "('data/codex_tile')\n", (9173, 9192), False, 'import os\n'), ((1495, 1514), 'io.BytesIO', 'io.BytesIO', (['decoded'], {}), '(decoded)\n', (1505, 1514), False, 'import io\n'), ((5056, 5088), 'os.path.isdir', 'os.path.isdir', (['f"""tmp/{an}/codex"""'], {}), "(f'tmp/{an}/codex')\n", (5069, 5088), False, 'import os\n'), ((5928, 5951), 'app.logger.error', 'logger.error', (['error_msg'], {}), '(error_msg)\n', (5940, 5951), False, 'from app import app, dbroot, logger\n'), ((9422, 9438), 'app.logger.warn', 'logger.warn', (['msg'], {}), '(msg)\n', (9433, 9438), False, 'from app import app, dbroot, logger\n'), ((5277, 5300), 'app.logger.error', 'logger.error', (['error_msg'], {}), '(error_msg)\n', (5289, 5300), False, 'from app import app, dbroot, logger\n'), ((10661, 10685), 'numpy.repeat', 'np.repeat', (['unq_labels', 'n'], {}), '(unq_labels, n)\n', (10670, 10685), True, 'import numpy as np\n'), ((13699, 13721), 'numpy.repeat', 'np.repeat', (['features', 'n'], {}), '(features, n)\n', (13708, 13721), True, 'import numpy as np\n'), ((10721, 10743), 'numpy.tile', 'np.tile', (['unq_labels', 'n'], {}), '(unq_labels, n)\n', (10728, 10743), True, 'import numpy as np\n'), ((13757, 13777), 'numpy.tile', 'np.tile', (['features', 'n'], {}), '(features, n)\n', (13764, 13777), True, 'import numpy as np\n')]
# (c) <NAME>, 2010-2022. MIT License. import pathlib import numpy as np import pandas as pd import pytest from pytest import approx from sklearn.cross_decomposition import PLSRegression from process_improve.multivariate.methods import ( PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq, ) def test_PCA_SPE_limits(): """ Simulate data and see if SPE limit cuts off at 5%. """ N = 1000 repeats = 50 outliers_95 = [] outliers_99 = [] for k in range(repeats): # The desired mean values of the sample. mu = np.array([0.0, 0.0, 0.0]) # The desired covariance matrix. r = np.array([[5.20, -4.98, -1.00], [-4.98, 5.50, 2.94], [-1.00, 2.94, 2.77]]) X = pd.DataFrame(np.random.multivariate_normal(mu, r, size=N)) scaler = MCUVScaler().fit(X) mcuv = scaler.fit_transform(X) A = 2 pca = PCA(n_components=A).fit(mcuv) SPE_limit_95 = pca.SPE_limit(0.95) SPE_limit_99 = pca.SPE_limit(0.99) outliers_95.append( (pca.squared_prediction_error.iloc[:, A - 1] > SPE_limit_95).sum() ) outliers_99.append( (pca.squared_prediction_error.iloc[:, A - 1] > SPE_limit_99).sum() ) assert np.mean(outliers_95) == approx(0.05 * N, rel=0.1) assert np.mean(outliers_99) == approx(0.01 * N, rel=0.1) def test_PCA_foods(): """ Arrays with no variance should not be able to have variance extracted. """ foods = pd.read_csv("https://openmv.net/file/food-texture.csv").drop( [ "Unnamed: 0", ], axis=1, ) scaler = MCUVScaler().fit(foods) foods_mcuv = scaler.fit_transform(foods) A = 2 pca = PCA(n_components=A).fit(foods_mcuv) assert np.linalg.norm( np.diag(pca.x_scores.T @ pca.x_scores) / (pca.N - 1) - pca.explained_variance_ ) == approx(0, abs=epsqrt) T2_limit_95 = pca.T2_limit(0.95) assert T2_limit_95 == approx(6.64469, rel=1e-3) pca.SPE_limit(0.95) ellipse_x, ellipse_y = pca.ellipse_coordinates(1, 2, 0.95, 100) assert ellipse_x[-1] == approx(4.48792, rel=1e-5) assert ellipse_y[-1] == approx(0, rel=1e-7) @pytest.fixture def fixture_kamyr_data_missing_value(): folder = ( pathlib.Path(__file__).parents[1] / "process_improve" / "datasets" / "multivariate" ) return pd.read_csv( folder / "kamyr.csv", index_col=None, header=None, ) def test_PCA_missing_data(fixture_kamyr_data_missing_value): X_mcuv = MCUVScaler().fit_transform(fixture_kamyr_data_missing_value) # Build the model A = 2 pca = PCA(n_components=A) assert pca.missing_data_settings is None # Check that default missing data options were used model = pca.fit(X_mcuv) assert isinstance(model.missing_data_settings, dict) assert "md_tol" in model.missing_data_settings assert np.linalg.norm( (model.loadings.T @ model.loadings) - np.eye(model.A) ) == approx(0, abs=1e-2) def test_PCA_missing_data_as_numpy(fixture_kamyr_data_missing_value): X_mcuv = MCUVScaler().fit_transform(fixture_kamyr_data_missing_value.values) # Build the model A = 2 pca = PCA(n_components=A) assert pca.missing_data_settings is None # Check that default missing data options were used model = pca.fit(X_mcuv) assert isinstance(model.missing_data_settings, dict) assert "md_tol" in model.missing_data_settings assert np.linalg.norm( (model.loadings.T @ model.loadings) - np.eye(model.A) ) == approx(0, abs=1e-2) @pytest.fixture def fixture_mv_utilities(): """ Multivariate methods depend on an internal regression and Sum of Squares calculations. This code tests those crucial steps. """ x = np.asarray([1, 2, 3, 4, 5, 6]).reshape(6, 1) Y = np.asarray( [ [1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1], [1, np.NaN, 3, np.NaN, 5, np.NaN], ] ) Y = Y.T return x, Y def test_ssq(fixture_mv_utilities): x, _ = fixture_mv_utilities assert (1 + 2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 6 * 6) == approx(ssq(x), abs=1e-9) def test_quick_regress(fixture_mv_utilities): x, Y = fixture_mv_utilities out = quick_regress(Y, x).ravel() assert 1 == approx(out[0], abs=1e-9) assert 0.61538462 == approx(out[1], abs=1e-8) assert 0 == approx(out[2], abs=1e-9) # Checked against R: summary(lm(c(1,1,1,1,1,1) ~ seq(6) + 0)) assert 0.23077 == approx(out[3], abs=1e-6) # Checked against what is expected: (1 + 3^2 + 5^2)/(1 + 3^2 + 5^2) assert 1.0 == approx(out[4], abs=1e-14) @pytest.fixture def fixture_tablet_spectra_data(): """ Verifies the PCA model for the case of no missing data. # R code: # ------- # Read large data file file <- 'http://openmv.net/file/tablet-spectra.csv' spectra <- read.csv(file, header = FALSE, row.names = 1) # Only extract 4 components, but # center and scale the data before # calculation the components model.pca <- prcomp(spectra, center = TRUE, scale =TRUE, rank. = 4) summary(model.pca) Importance of first k=4 (out of 460) components: PC1 PC2 PC3 PC4 Standard deviation 21.8835 10.9748 3.60075 3.27081 Proportion of Variance 0.7368 0.1853 0.01995 0.01646 Cumulative Proportion 0.7368 0.9221 0.94200 0.95846 # T' * T on the scores matrix T: t(model.pca$x) %*% model.pca$x PC1 PC2 PC3 PC4 PC1 2.198092e+05 6.885159e-11 -1.134026e-11 3.454659e-11 PC2 6.885159e-11 5.528459e+04 2.042206e-10 5.821477e-11 PC3 -1.134026e-11 2.042206e-10 5.951125e+03 7.815970e-13 PC4 3.454659e-11 5.821477e-11 7.815970e-13 4.910481e+03 """ folder = ( pathlib.Path(__file__).parents[1] / "process_improve" / "datasets" / "multivariate" ) spectra = pd.read_csv( folder / "tablet-spectra.csv", index_col=0, header=None, ) # Ignoring values < 1E-8 (round them to zero) from the R output above. known_scores_covar = np.array( [ [2.198092e05, 0, 0, 0], [0, 5.528459e04, 0, 0], [0, 0, 5.951125e03, 0], [0, 0, 0, 4.910481e03], ] ) return spectra, known_scores_covar def test_MCUV_centering(fixture_tablet_spectra_data): """ Mean centering of the testing data. """ spectra, _ = fixture_tablet_spectra_data X_mcuv = MCUVScaler().fit_transform(spectra) assert 0.0 == approx(np.max(np.abs(X_mcuv.mean(axis=0))), rel=1e-9) def test_MCUV_scaling(fixture_tablet_spectra_data): """Scaling by standard deviation.""" spectra, _ = fixture_tablet_spectra_data X_mcuv = MCUVScaler().fit_transform(spectra) assert 1 == approx(np.min(np.abs(X_mcuv.std(axis=0))), 1e-10) assert 1 == approx(X_mcuv.std(), 1e-10) def test_PCA_tablet_spectra(fixture_tablet_spectra_data): r""" PCA characteristics: 1. model's loadings must be orthogonal if there are no missing data. P.T * P = I 2. model's loadings must be of unit length (norm = 1.0) P.T * P = I 3. model's scores must be orthogonal T.T * T is a diagonal matrix when there's no missing data 4. each earlier score's variance must be >= variance of later score PCA models have the following properties: * :math:`p_i'p_j' = 0` for :math:`i\neq j`; i.e. :math:`p_i \perp p_j` * :math:`t_i't_j' = 0` for :math:`i\neq j`; i.e. :math:`t_i \perp t_j` * :math:`P'P = I_A` when extracting :math:`A` components * :math:`P_{all} \text{ is a } \min(N,K) \times \min(N,K)` matrix, for all components * :math:`T_{all} \text{ is a } \min(N,K) \times \min(N,K)` matrix, for all components (it is just a rearrangement of X) * :math:`\text{SVD}(X): UDV' = X` and :math:`V' = P'` and :math:`UD = T` """ spectra, known_scores_covar = fixture_tablet_spectra_data # Number of components to calculate model = PCA(n_components=2) model.fit(scale(center(spectra))) # P'P = identity matrix of size A x A orthogonal_check = model.loadings.T @ model.loadings assert 0.0 == approx(np.linalg.norm(orthogonal_check - np.eye(model.A)), rel=1e-9) # Check the R2 value against the R software output assert model.R2cum[1] == approx(0.7368, rel=1e-3) assert model.R2cum[2] == approx(0.9221, rel=1e-2) # Unit length: actually checked above, via subtraction with I matrix. # Check if scores are orthogonal scores_covar = model.x_scores.T @ model.x_scores for i in range(model.A): for j in range(model.A): # Technically not need, but more explict this way. if i == j: assert scores_covar.iloc[i, j] == approx( known_scores_covar[i, j], rel=1e-2 ) else: assert scores_covar.iloc[i, j] == approx( known_scores_covar[i, j], abs=1e-4 ) if i >= 1: assert scores_covar.iloc[j, j] > scores_covar.iloc[i, i] # Check the model against an SVD: this raw data set has no missing # data, so the SVD should be faster and more accurate than NIPALS autoscaled_X = scale(center(spectra)) u, s, v = np.linalg.svd(autoscaled_X) loadings_delta = np.linalg.norm( np.abs(v[0 : model.A, :]) - np.abs(model.loadings.T) ) assert loadings_delta == approx(0, abs=1e-8) # It is not possible, it seems, to get the scores to match the SVD # scores. Numerical error? def test_PCA_errors_no_variance_to_start(): """ Arrays with no variance should seem to work, but should have no variability explained. """ K, N, A = 17, 12, 5 data = pd.DataFrame(np.zeros((N, K))) model = PCA(n_components=A) # with pytest.raises(RuntimeError): model.fit(data) assert np.sum(model.x_scores.values) == approx(0, abs=epsqrt) assert model.R2cum.sum() == approx(0, abs=epsqrt) assert np.isnan(model.R2cum[A - 1]) def test_PCA_invalid_calls(): """ Tests various invalid calls, and corresponding error messages. """ K, N, A = 4, 3, 5 data = pd.DataFrame(np.random.uniform(low=-1, high=1, size=(N, K))) with pytest.warns( SpecificationWarning, match=r"The requested number of components is more than can be computed from data(.*)", ): model = PCA(n_components=A) model.fit(data) data.iloc[0, 0] = np.nan with pytest.raises(AssertionError, match="Tolerance must exceed machine precision"): _ = PCA( n_components=A, missing_data_settings=dict(md_method="nipals", md_tol=0) ).fit(data) with pytest.raises( AssertionError, match=r"Missing data method is not recognized(.*)" ): _ = PCA(n_components=A, missing_data_settings={"md_method": "SCP"}).fit(data) # TODO: replace with a check to ensure the data is in a DataFrame. # from scipy.sparse import csr_matrix # sparse_data = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) # with pytest.raises(TypeError, match="This PCA class does not support sparse input."): # model = PCA(n_components=2) # model.fit(sparse_data) def test_PCA_no_more_variance(): """ Create a rank 2 matrix and it should fail on the 3rd component. """ K = 17 N = 12 A = 3 T = np.random.uniform(low=-1, high=1, size=(N, 2)) P = np.random.uniform(low=-1, high=1, size=(K, 2)) X = T @ P.T meanX = X.mean(axis=0) stdX = X.std(axis=0, ddof=0) X = pd.DataFrame((X - meanX) / stdX) _ = PCA(n_components=A) # with pytest.raises(RuntimeError): # m.fit(X) # TODO: check that the m.R2[2] (3rd PC is zero.) def test_PCA_columns_with_no_variance(): """ Create a column with no variance. That column's loadings should be 0. """ K = 14 N = 29 A = 4 cols_with_no_variance = [10, 3] T = np.random.uniform(low=-1, high=1, size=(N, A)) P = np.random.uniform(low=-1, high=1, size=(K, A)) X = T @ P.T meanX = X.mean(axis=0) stdX = X.std(axis=0, ddof=0) X = pd.DataFrame((X - meanX) / stdX) X.iloc[:, cols_with_no_variance] = 0 m = PCA(n_components=2) m.fit(X) # `loadings` is a K by A matrix. Check sum of loadings in rows with # no variance must be zero assert np.sum(np.abs(m.loadings.iloc[cols_with_no_variance, :].values)) == approx( 0, abs=1e-14 ) # The loadings must still be orthonormal though: assert np.sum(np.identity(m.A) - m.loadings.values.T @ m.loadings.values) == approx( 0, abs=1e-14 ) # Are scores orthogonal? covmatrix = m.x_scores.T @ m.x_scores covmatrix - np.diag(np.diag(covmatrix)) (np.sum(np.abs(covmatrix - np.diag(np.diag(covmatrix))))).values == approx( 0, abs=1e-6 ) @pytest.fixture def fixture_pca_PCA_Wold_etal_paper(): """ From the PCA paper by <NAME>, 1987 Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, v 2, p37-52; http://dx.doi.org/10.1016/0169-7439(87)80084-9 """ return pd.DataFrame(np.array([[3, 4, 2, 2], [4, 3, 4, 3], [5.0, 5, 6, 4]])) def test_PCA_Wold_centering(fixture_pca_PCA_Wold_etal_paper): """ Checks the centering step """ out, centering = center(fixture_pca_PCA_Wold_etal_paper, extra_output=True) assert centering == approx([4, 4, 4, 3], rel=1e-8) def test_PCA_Wold_scaling(fixture_pca_PCA_Wold_etal_paper): """ Checks the scaling step. Page 40 of the above paper. """ out, scaling = scale( center(fixture_pca_PCA_Wold_etal_paper), extra_output=True, ddof=1 ) assert scaling == approx([1, 1, 0.5, 1]) def test_PCA_Wold_model_results(fixture_pca_PCA_Wold_etal_paper): """ Checks if the PCA model matches the results in the paper. """ X_preproc = scale(center(fixture_pca_PCA_Wold_etal_paper)) pca_1 = PCA(n_components=1) pca_1.fit(X_preproc.copy()) # TODO: complete these tests # The remaining sum of squares, on page 43 # SS_X = np.sum(pca_1["residuals"].values ** 2, axis=0) # self.assertTrue( # np.all(compare_entries(SS_X, np.array([0.0551, 1.189, 0.0551, 0.0551]), 3)) # ) # # The residuals after 1 component # self.assertTrue( # np.all(compare_entries(SS_X, np.array([0.0551, 1.189, 0.0551, 0.0551]), 3)) # ) # # With 2 components, the loadings are, page 40 # P.T = [ 0.5410, 0.3493, 0.5410, 0.5410], # [-0.2017, 0.9370, -0.2017, -0.2017] X_preproc = scale(center(fixture_pca_PCA_Wold_etal_paper)) pca_2 = PCA(n_components=2) pca_2.fit(X_preproc) assert np.abs(pca_2.loadings.values[:, 0]) == approx( [0.5410, 0.3493, 0.5410, 0.5410], abs=1e-4 ) assert np.abs(pca_2.loadings.values[:, 1]) == approx( [0.2017, 0.9370, 0.2017, 0.2017], abs=1e-4 ) # Scores. The scaling is off here by a constant factor of 0.8165 # assert np.all(pca_2.x_scores["1"] == approx([-1.6229, -0.3493, 1.9723], rel=1e-3)) # assert np.all(pca_2.x_scores["2"] == approx([0.6051, -0.9370, 0.3319], rel=1e-4)) # R2 values, given on page 43 assert pca_2.R2.values == approx([0.831, 0.169], rel=1e-2) # SS values, on page 43 # SS_X = np.sum(X_preproc ** 2, axis=0) # assert SS_X == approx([0.0, 0.0, 0.0, 0.0], abs=1e-9) # Testing data: # X_test = Block(np.array([[3, 4, 3, 4], [1, 2, 3, 4.0]])) # X.preprocess(X_test) # compare_entries(X_test.data, np.array([[-1, 0, -0.5, 1], # [-3, -2, -0.5, 1]]) # #testing = PCA_model.apply(X_test) # compare_entries(testing.T, np.array([[-0.2075, 0.1009], # [-2.0511, -1.3698]]) def test_PLS_properties_TODO(): """ TODO: diag(T.T * T) related to S W.T * W = I for PLS only P.T * W: ones on diagonal, zeros below diagonal W.T * R: ones on diagonal, zeros below diagonal R.T * P = ID """ pass @pytest.mark.skip(reason="API still has to be improved to handle this case") def test_PLS_invalid_calls(): """ Tests various invalid calls, and corresponding error messages. """ K, N, M, A = 4, 3, 2, 5 dataX = pd.DataFrame(np.random.uniform(low=-1, high=1, size=(N, K))) dataY = pd.DataFrame(np.random.uniform(low=-1, high=1, size=(N, M))) with pytest.raises( ValueError, match="Tolerance `tol`` must be between 1E-16 and 1.0" ): _ = PLS(n_components=A, tol=0) with pytest.raises(ValueError, match="Method 'SVDS' is not known."): _ = PLS(n_components=A, method="SVDS") with pytest.raises(ValueError, match="Missing data method 'SCP' is not known."): _ = PLS(n_components=A, md_method="SCP") with pytest.warns( SpecificationWarning, match=r"The requested number of components is (.*)" ): model = PLS( n_components=A, ) model.fit(dataX, dataY) from scipy.sparse import csr_matrix sparse_data = csr_matrix([[1, 2], [0, 3], [4, 5]]) with pytest.raises( TypeError, match="This PLS class does not support sparse input." ): model = PLS(n_components=2) model.fit(dataX, sparse_data) @pytest.fixture def fixture_PLS_model_SIMCA_1_component(): """ Simple model tested against Simca-P, version 14.1. Testing on 28 June 2020. When X and y are mean centered and scaled, the model should provide the loadings as listed here TODO: test against R X = matrix(c(41.1187, 21.2833, 21.1523, 0.2446, -0.0044, -0.131, 1.12, 41.7755, 22.0978, 21.1653, 0.3598, 0.1622, -0.9325, 1.01, 41.2568, 21.4873, 20.7407, 0.2536, 0.1635, -0.7467, 0.97, 41.5469, 22.2043, 20.4518, 0.6317, 0.1997, -1.7525, 0.83, 40.0234, 23.7399, 21.978, -0.0534, -0.0158, -1.7619, 0.93, 39.9203, 21.9997, 21.5859, -0.1811, 0.089, -0.4138, 1.02, 42.1886, 21.4891, 20.4427, 0.686, 0.1124, -1.0464, 0.91, 42.1454, 20.3803, 18.2327, 0.6607, 0.1291, -2.1476, 0.70, 42.272, 18.9725, 18.3763, 0.561, 0.0453, -0.5962, 1.26, 41.49, 18.603, 17.9978, 0.4872, 0.1198, -0.6052, 1.05, 41.5306, 19.1558, 18.2172, 0.6233, 0.1789, -0.9386, 0.95), nrow=11, byrow=T) data = data.frame(X) colnames(data) <- c("A","B","C", "D", "E", "F", "y") library(pls) model = plsr(y~., 1, data=data, method="simpls") plot(model) self.expected_y_predicted = [ 1.17475, 0.930441, 0.979066, 0.773083, 0.945719, 1.10583, 0.929441, 0.796271, 1.09379, 1.0635, 0.958111, ] """ data = {} data["X"] = pd.DataFrame( np.array( [ [ 41.1187, 21.2833, 21.1523, 0.2446, -0.0044, -0.131, ], [ 41.7755, 22.0978, 21.1653, 0.3598, 0.1622, -0.9325, ], [ 41.2568, 21.4873, 20.7407, 0.2536, 0.1635, -0.7467, ], [ 41.5469, 22.2043, 20.4518, 0.6317, 0.1997, -1.7525, ], [ 40.0234, 23.7399, 21.978, -0.0534, -0.0158, -1.7619, ], [ 39.9203, 21.9997, 21.5859, -0.1811, 0.089, -0.4138, ], [ 42.1886, 21.4891, 20.4427, 0.686, 0.1124, -1.0464, ], [ 42.1454, 20.3803, 18.2327, 0.6607, 0.1291, -2.1476, ], [ 42.272, 18.9725, 18.3763, 0.561, 0.0453, -0.5962, ], [ 41.49, 18.603, 17.9978, 0.4872, 0.1198, -0.6052, ], [ 41.5306, 19.1558, 18.2172, 0.6233, 0.1789, -0.9386, ], ] ) ) data["y"] = pd.DataFrame( np.array([1.12, 1.01, 0.97, 0.83, 0.93, 1.02, 0.91, 0.7, 1.26, 1.05, 0.95]) ) data["expected_y_predicted"] = [ 1.17475, 0.930441, 0.979066, 0.773083, 0.945719, 1.10583, 0.929441, 0.796271, 1.09379, 1.0635, 0.958111, ] data["loadings_P1"] = np.array( [ -0.2650725, -0.2165038, 0.08547913, -0.3954746, -0.4935882, 0.7541404, ] ) data["loadings_r1"] = np.array( [ -0.04766187, -0.3137862, 0.004006641, -0.238001, -0.4430451, 0.8039384, ] ) data["loadings_y_c1"] = 0.713365 data["SDt"] = 1.19833 data["R2X"] = 0.261641 data["R2Y"] = 0.730769 data["t1"] = np.array( [ 1.889566, -0.4481195, 0.0171578, -1.953837, -0.3019302, 1.230112, -0.4576912, -1.731961, 1.114923, 0.8251334, -0.1833536, ] ) data["Tsq"] = np.array( [ 2.48638, 0.1398399, 0.0002050064, 2.658398, 0.0634829, 1.053738, 0.1458776, 2.08891, 0.8656327, 0.4741239, 0.02341113, ] ) data["DModX"] = np.array( [ 0.367926, 1.01727, 0.970395, 0.635592, 2.36596, 0.449567, 0.645429, 1.12458, 0.520623, 0.384443, 0.764301, ] ) data["Xavg"] = np.array( [41.38802, 21.03755, 20.03097, 0.3884909, 0.1072455, -1.006582] ) data["Xws"] = 1 / np.array( [ 1.259059, 0.628138, 0.6594034, 3.379028, 13.8272, 1.589986, ] ) data["Yavg"] = 0.9772727 data["Yws"] = 1 / 6.826007 # Simca-P uses inverse standard deviation data["A"] = 1 data["conf"] = 0.95 return data def test_PLS_compare_sklearn_1_component(fixture_PLS_model_SIMCA_1_component): data = fixture_PLS_model_SIMCA_1_component plsmodel = PLSRegression(n_components=data["A"], scale="True") plsmodel.fit(data["X"], data["y"]) # Check the pre-processing: sig figs have been taken as high as possible. assert plsmodel._x_mean == approx(data["Xavg"], abs=1e-5) assert plsmodel._x_std == approx(data["Xws"], abs=1e-6) assert plsmodel._y_mean == approx(data["Yavg"], abs=1e-7) assert plsmodel._y_std == approx(data["Yws"], abs=1e-8) # Extract the model parameters T = plsmodel.x_scores_ P = plsmodel.x_loadings_ assert T.ravel() == approx(data["t1"], abs=1e-5) assert np.std(T, ddof=1) == approx(data["SDt"], rel=1e-5) assert data["loadings_P1"].ravel() == approx(P.ravel(), rel=1e-5) assert data["loadings_r1"] == approx(plsmodel.x_weights_.ravel(), rel=1e-4) # Check the model's predictions t1_predict, y_pp = plsmodel.transform(data["X"], data["y"]) assert data["t1"] == approx(t1_predict.ravel(), abs=1e-5) # assert y_pp == approx((data["y"] - data["Yavg"]) / data["Yws"], abs=1e-6) # Manually make the PLS prediction # X_check = data["X"].copy() # X_check_mcuv = (X_check - plsmodel._x_mean) / plsmodel._x_std # t1_predict_manually = X_check_mcuv @ plsmodel.x_weights_ # TODO: fix the rest of this test. Not sure what the purpose of this test is anyway. # # Simca's C: # N = data["X"].shape[0] # simca_C = (y_pp.reshape(1, N) @ t1_predict) / (t1_predict.T @ t1_predict) # # assert simca_C == approx(data["loadings_y_c1"], 1e-6) # assert t1_predict_manually.values.ravel() == approx(t1_predict.ravel(), 1e-9) # # Deflate the X's: # X_check_mcuv -= t1_predict_manually @ plsmodel.x_loadings_.T # y_hat = t1_predict_manually @ simca_C # y_hat_rawunits = y_hat * plsmodel._y_std + plsmodel._y_mean # assert data["expected_y_predicted"] == approx(y_hat_rawunits.values.ravel(), abs=1e-5) # prediction_error = data["y"].values - y_hat_rawunits.values # R2_y = (data["y"].var(ddof=1) - prediction_error.var(ddof=1)) / data["y"].var(ddof=1) # assert R2_y == approx(data["R2Y"], abs=1e-6) def test_PLS_compare_model_api(fixture_PLS_model_SIMCA_1_component): data = fixture_PLS_model_SIMCA_1_component plsmodel = PLS(n_components=data["A"]) X_mcuv = MCUVScaler().fit(data["X"]) Y_mcuv = MCUVScaler().fit(data["y"]) # Check the pre-processing: sig figs have been taken as high as possible. assert X_mcuv.center_.values == approx(data["Xavg"], abs=1e-5) assert X_mcuv.scale_.values == approx(data["Xws"], abs=1e-6) assert Y_mcuv.center_.values == approx(data["Yavg"], abs=1e-7) assert Y_mcuv.scale_.values == approx(data["Yws"], abs=1e-8) # Extract the model parameters plsmodel.fit(X_mcuv.transform(data["X"]), Y_mcuv.transform(data["y"])) assert data["SDt"] == approx(np.std(plsmodel.x_scores, ddof=1), abs=1e-5) assert data["t1"] == approx(plsmodel.x_scores.values.ravel(), abs=1e-5) assert data["loadings_P1"] == approx(plsmodel.x_loadings.values.ravel(), abs=1e-5) assert data["loadings_r1"] == approx(plsmodel.x_weights.values.ravel(), abs=1e-6) assert data["expected_y_predicted"] == approx( Y_mcuv.inverse_transform(plsmodel.predictions).values.ravel(), abs=1e-5 ) assert data["R2Y"] == approx(plsmodel.R2cum, abs=1e-6) # Check the model's predictions state = plsmodel.predict(X_mcuv.transform(data["X"])) assert plsmodel.squared_prediction_error.values.ravel() == approx( state.squared_prediction_error.values, abs=1e-9 ) assert data["t1"] == approx(state.x_scores.values.ravel(), abs=1e-5) assert data["Tsq"] == approx(state.Hotellings_T2.values.ravel(), abs=1e-5) assert data["expected_y_predicted"] == approx( Y_mcuv.inverse_transform(state.y_hat).values.ravel(), abs=1e-5 ) @pytest.fixture def fixture_PLS_SIMCA_2_components(): """ Simple model tested against Simca-P, version 14.1. Testing on 02 July 2020. No missing data When X and y are mean centered and scaled, the model should provide the loadings listed here. """ out = {} out["X"] = pd.DataFrame( np.array( [ [ 1.27472, 0.897732, -0.193397, ], [ 1.27472, -1.04697, 0.264243, ], [ 0.00166722, 1.26739, 1.06862, ], [ 0.00166722, -0.0826556, -1.45344, ], [ 0.00166722, -1.46484, 1.91932, ], [ -1.27516, 0.849516, -0.326239, ], [ -1.27516, -1.06304, 0.317718, ], [ -0.000590006, 1.26739, 1.06862, ], [ -0.000590006, -0.0826556, -1.45344, ], [ -0.000590006, -1.09519, 0.427109, ], [ -1.27516, 0.849516, -0.326239, ], [ -1.27516, -1.06304, 0.317718, ], [ 1.27398, 0.897732, -0.193397, ], [ 1.27398, -0.130872, -1.4372, ], ] ) ) out["y"] = pd.DataFrame( np.array( [ -0.0862851, -1.60162, 0.823439, 0.242033, -1.64304, 1.59583, -0.301604, 0.877623, 0.274155, -0.967692, 1.47491, -0.194163, 0.097352, -0.590925, ] ) ) out["expected_y_predicted"] = [ 0.04587483, -1.671657, 0.8337691, 0.2326966, -1.622544, 1.520105, -0.209406, 0.8350853, 0.2340128, -1.002176, 1.520105, -0.209406, 0.04630876, -0.552768, ] out["loadings_P"] = np.array( [[-0.3799977, -0.7815778], [0.8737038, -0.2803103], [-0.3314019, 0.55731]] ) out["loadings_W"] = np.array( # W [[-0.4839311, -0.7837874], [0.8361799, -0.2829775], [-0.2580969, 0.5528119]] ) out["loadings_C"] = [1.019404, 0.1058565] out["SDt"] = [0.9724739, 1.098932] out["R2X"] = [ 0.3207782, 0.4025633, ] # cumulative: 32%, then 72% for second component out["R2Y"] = [0.9827625, 0.01353244] out["T"] = np.array( [ [0.1837029, -1.335702], [-1.560534, -0.7636986], [0.7831483, 0.334647], [0.3052059, -0.7409231], [-1.721048, 1.246014], [1.411638, 0.7658994], [-0.3538088, 1.428992], [0.7842407, 0.3365611], [0.3062983, -0.7390091], [-1.025724, 0.4104719], [1.411638, 0.7658994], [-0.3538088, 1.428992], [0.184063, -1.335071], [-0.3550123, -1.803074], ] ) # TODO: test against this still out["Tsq"] = np.array( [ 1.513014, 3.05803, 0.7412658, 0.5530728, 4.417653, 2.592866, 1.823269, 0.74414, 0.5514336, 1.252029, 2.592866, 1.823269, 1.511758, 2.825334, ] ) # TODO: test against this still out["DModX"] = np.array( [ 0.8796755, 0.2482767, 1.641307, 1.350485, 0.9410046, 0.4101084, 0.856736, 1.640294, 1.351499, 0.2035393, 0.4101084, 0.856736, 0.8793415, 0.7906867, ] ) out["A"] = 2 return out def test_PLS_sklearn_2_components(fixture_PLS_SIMCA_2_components): data = fixture_PLS_SIMCA_2_components plsmodel = PLSRegression(n_components=data["A"], scale=False) X_mcuv = MCUVScaler().fit_transform(data["X"]) Y_mcuv = MCUVScaler().fit_transform(data["y"]) plsmodel.fit(X_mcuv, Y_mcuv) # Extract the model parameters assert np.abs(data["T"]) == approx(np.abs(plsmodel.x_scores_), abs=1e-5) assert np.std(plsmodel.x_scores_, ddof=1, axis=0) == approx(data["SDt"], abs=1e-6) assert np.abs(data["loadings_P"]) == approx(np.abs(plsmodel.x_loadings_), abs=1e-5) assert np.abs(data["loadings_W"]) == approx(np.abs(plsmodel.x_weights_), abs=1e-5) def test_PLS_compare_API(fixture_PLS_SIMCA_2_components): data = fixture_PLS_SIMCA_2_components plsmodel = PLS(n_components=data["A"]) X_mcuv = MCUVScaler().fit(data["X"]) Y_mcuv = MCUVScaler().fit(data["y"]) plsmodel.fit(X_mcuv.transform(data["X"]), Y_mcuv.transform(data["y"])) # Extract the model parameters assert data["SDt"] == approx(np.std(plsmodel.x_scores, ddof=1, axis=0), abs=1e-6) assert np.abs(data["T"]) == approx(np.abs(plsmodel.x_scores), abs=1e-5) assert np.abs(data["loadings_P"]) == approx(np.abs(plsmodel.x_loadings), abs=1e-5) assert np.abs(data["loadings_W"]) == approx(np.abs(plsmodel.x_weights), abs=1e-5) assert Y_mcuv.inverse_transform(plsmodel.predictions).values == approx( data["expected_y_predicted"], abs=1e-5 ) assert sum(data["R2Y"]) == approx(plsmodel.R2cum.values[-1], abs=1e-7) # Check the model's predictions state = plsmodel.predict(X_mcuv.transform(data["X"])) # TODO: a check on SPE vs Simca-P. Here we are doing a check between the SPE from the # model building, to model-using, but not against an external library. assert plsmodel.squared_prediction_error.iloc[:, -1].values == approx( state.squared_prediction_error, abs=1e-10 ) assert data["Tsq"] == approx(state.Hotellings_T2, abs=1e-5) assert data["expected_y_predicted"] == approx( Y_mcuv.inverse_transform(state.y_hat).values.ravel(), abs=1e-5 ) assert np.abs(data["T"]) == approx(np.abs(state.x_scores), abs=1e-5) @pytest.fixture def fixture_PLS_LDPE_example(): """ No missing data. Source: https://openmv.net/info/ldpe Data from a low-density polyethylene production process. There are 14 process variables and 5 quality variables (last 5 columns). More details: http://dx.doi.org/10.1002/aic.690400509 The first 50 observations are from common-cause (normal) operation, while the last 4 show a process fault developing: the impurity level in the ethylene feed in both zones is increasing. Tin: inlet temperature to zone 1 of the reactor [K] Tmax1: maximum temperature along zone 1 [K] Tout1: outlet temperature from zone 1 [K] Tmax2: maximum temperature along zone 2 [K] Tout2: outlet temperature from zone 2 [K] Tcin1: temperature of inlet coolant to zone [K] Tcin2: temperature of inlet coolant to zone 2 [K] z1: percentage along zone 1 where Tmax1 occurs [%] z2: percentage along zone 2 where Tmax2 occurs [%] Fi1: flow rate of initiators to zone 1 [g/s] Fi2: flow rate of initiators to zone 2 [g/s]np.abs(state.scores) Fs1: flow rate of solvent to zone 1 [% of ethylene] Fs2: flow rate of solvent to zone 2 [% of ethylene] Press: pressure in the reactor [atm] ------ Conv: quality variable: cumulative conversion Mn: quality variable: number average molecular weight Mw: quality variable: weight average molecular weight LCB: quality variable: long chain branching per 1000 C atoms SCB: quality variable: short chain branching per 1000 C atoms N = 54 K = 14 M = 5 A = 6 """ out = {} folder = ( pathlib.Path(__file__).parents[1] / "process_improve" / "datasets" / "multivariate" ) values = pd.read_csv( folder / "LDPE" / "LDPE.csv", index_col=0, ) out["expected_T"] = pd.read_csv(folder / "LDPE" / "T.csv", header=None) out["expected_P"] = pd.read_csv(folder / "LDPE" / "P.csv", header=None) out["expected_W"] = pd.read_csv(folder / "LDPE" / "W.csv", header=None) out["expected_C"] = pd.read_csv(folder / "LDPE" / "C.csv", header=None) out["expected_U"] = pd.read_csv(folder / "LDPE" / "U.csv", header=None) out["expected_Hotellings_T2_A3"] = pd.read_csv( folder / "LDPE" / "Hotellings_T2_A3.csv", header=None, ) out["expected_Hotellings_T2_A6"] = pd.read_csv( folder / "LDPE" / "Hotellings_T2_A6.csv", header=None, ) out["expected_Yhat_A6"] = pd.read_csv( folder / "LDPE" / "Yhat_A6.csv", header=None, ) out["expected_SD_t"] = np.array( [1.872539, 1.440642, 1.216218, 1.141096, 1.059435, 0.9459715] ) out["expected_T2_lim_95_A6"] = 15.2017 out["expected_T2_lim_99_A6"] = 21.2239 out["X"] = values.iloc[:, :14] out["Y"] = values.iloc[:, 14:] assert out["X"].shape == approx([54, 14]) assert out["Y"].shape == approx([54, 5]) out["A"] = 6 return out def test_PLS_SIMCA_LDPE(fixture_PLS_LDPE_example): """Unit test for LDPE case study. Parameters ---------- PLS_model_SIMCA_LDPE_example : dict Dictionary of raw data and expected outputs from the PLS model. """ data = fixture_PLS_LDPE_example plsmodel = PLS(n_components=data["A"]) X_mcuv = MCUVScaler().fit(data["X"]) Y_mcuv = MCUVScaler().fit(data["Y"]) plsmodel.fit(X_mcuv.transform(data["X"]), Y_mcuv.transform(data["Y"])) # Can only get these to very loosely match assert data["expected_T2_lim_95_A6"] == approx(plsmodel.T2_limit(0.95), rel=1e-1) assert data["expected_T2_lim_99_A6"] == approx(plsmodel.T2_limit(0.99), rel=1e-1) assert np.mean( np.abs(data["expected_T"].values) - np.abs(plsmodel.x_scores.values) ) == approx(0, abs=1e-4) assert np.mean( np.abs(data["expected_P"].values) - np.abs(plsmodel.x_loadings.values) ) == approx(0, abs=1e-5) assert np.mean( np.abs(data["expected_W"].values) - np.abs(plsmodel.x_weights.values) ) == approx(0, abs=1e-6) assert np.mean( np.abs(data["expected_C"].values) - np.abs(plsmodel.y_loadings.values) ) == approx(0, abs=1e-6) assert np.mean( np.abs(data["expected_U"].values) - np.abs(plsmodel.y_scores.values) ) == approx(0, abs=1e-5) assert np.mean( data["expected_Hotellings_T2_A3"].values.ravel() - plsmodel.Hotellings_T2.iloc[:, 2].values.ravel() ) == approx(0, abs=1e-6) assert np.mean( data["expected_Hotellings_T2_A6"].values.ravel() - plsmodel.Hotellings_T2.iloc[:, 5].values.ravel() ) == approx(0, abs=1e-6) assert np.mean( data["expected_SD_t"].ravel() - plsmodel.scaling_factor_for_scores.values.ravel() ) == approx(0, abs=1e-5) # Absolute sum of the deviations, accounting for the fact that each column in Y has quite # different range/scaling. assert np.sum( np.abs( np.sum( np.abs( Y_mcuv.inverse_transform(plsmodel.predictions) - data["expected_Yhat_A6"].values ) ) / Y_mcuv.center_ ) ) == approx(0, abs=1e-2) def test_PLS_SIMCA_LDPE_missing_data(fixture_PLS_LDPE_example): """Unit test for LDPE case study. From visual inspection, observation 12 has low influence in the model. Set 1 value in this observation to missing and check that the results are similar to the full-data case: "test_PLS_SIMCA_LDPE", the only differences are that the tolerances are slightly relaxed. """ data = fixture_PLS_LDPE_example data["X"].iloc[11, 0] = np.NaN plsmodel = PLS(n_components=data["A"], missing_data_settings=dict(md_method="scp")) X_mcuv = MCUVScaler().fit(data["X"]) Y_mcuv = MCUVScaler().fit(data["Y"]) plsmodel = plsmodel.fit(X_mcuv.transform(data["X"]), Y_mcuv.transform(data["Y"])) # Can only get these to very loosely match assert data["expected_T2_lim_95_A6"] == approx(plsmodel.T2_limit(0.95), rel=1e-1) assert data["expected_T2_lim_99_A6"] == approx(plsmodel.T2_limit(0.99), rel=1e-1) assert np.mean( np.abs(data["expected_T"].values) - np.abs(plsmodel.x_scores.values) ) == approx(0, abs=1e-2) assert np.mean( np.abs(data["expected_P"].values) - np.abs(plsmodel.x_loadings.values) ) == approx(0, abs=1e-3) assert np.mean( np.abs(data["expected_W"].values) - np.abs(plsmodel.x_weights.values) ) == approx(0, abs=1e-3) assert np.mean( np.abs(data["expected_C"].values) - np.abs(plsmodel.y_loadings.values) ) == approx(0, abs=1e-3) assert np.mean( np.abs(data["expected_U"].values) - np.abs(plsmodel.y_scores.values) ) == approx(0, abs=5e-1) assert np.mean( data["expected_Hotellings_T2_A3"].values.ravel() - plsmodel.Hotellings_T2.iloc[:, 2].values.ravel() ) == approx(0, abs=1e-6) assert np.mean( data["expected_Hotellings_T2_A6"].values.ravel() - plsmodel.Hotellings_T2.iloc[:, 5].values.ravel() ) == approx(0, abs=1e-6) assert np.mean( data["expected_SD_t"].ravel() - plsmodel.scaling_factor_for_scores.values.ravel() ) == approx(0, abs=1e-2) # Absolute sum of the deviations, accounting for the fact that each column in Y has quite # different range/scaling. assert np.sum( np.abs( np.sum( np.abs( Y_mcuv.inverse_transform(plsmodel.predictions) - data["expected_Yhat_A6"].values ) ) / Y_mcuv.center_ ) ) == approx(0, abs=0.5)
[ "pandas.read_csv", "process_improve.multivariate.methods.PCA", "process_improve.multivariate.methods.MCUVScaler", "numpy.array", "numpy.mean", "pathlib.Path", "numpy.asarray", "process_improve.multivariate.methods.PLS", "pandas.DataFrame", "scipy.sparse.csr_matrix", "sklearn.cross_decomposition.PLSRegression", "process_improve.multivariate.methods.quick_regress", "numpy.identity", "numpy.abs", "numpy.eye", "process_improve.multivariate.methods.center", "numpy.random.multivariate_normal", "pytest.mark.skip", "numpy.isnan", "pytest.raises", "process_improve.multivariate.methods.ssq", "numpy.std", "numpy.linalg.svd", "pytest.approx", "numpy.diag", "numpy.sum", "numpy.zeros", "numpy.random.uniform", "pytest.warns" ]
[((16384, 16459), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""API still has to be improved to handle this case"""'}), "(reason='API still has to be improved to handle this case')\n", (16400, 16459), False, 'import pytest\n'), ((2471, 2533), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'kamyr.csv')"], {'index_col': 'None', 'header': 'None'}), "(folder / 'kamyr.csv', index_col=None, header=None)\n", (2482, 2533), True, 'import pandas as pd\n'), ((2746, 2765), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (2749, 2765), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((3320, 3339), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (3323, 3339), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((3952, 4083), 'numpy.asarray', 'np.asarray', (['[[1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1], [0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1,\n 1], [1, np.NaN, 3, np.NaN, 5, np.NaN]]'], {}), '([[1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1], [0, 0, 0, 0, 0, 0], [1,\n 1, 1, 1, 1, 1], [1, np.NaN, 3, np.NaN, 5, np.NaN]])\n', (3962, 4083), True, 'import numpy as np\n'), ((6230, 6298), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'tablet-spectra.csv')"], {'index_col': '(0)', 'header': 'None'}), "(folder / 'tablet-spectra.csv', index_col=0, header=None)\n", (6241, 6298), True, 'import pandas as pd\n'), ((6431, 6529), 'numpy.array', 'np.array', (['[[219809.2, 0, 0, 0], [0, 55284.59, 0, 0], [0, 0, 5951.125, 0], [0, 0, 0, \n 4910.481]]'], {}), '([[219809.2, 0, 0, 0], [0, 55284.59, 0, 0], [0, 0, 5951.125, 0], [0,\n 0, 0, 4910.481]])\n', (6439, 6529), True, 'import numpy as np\n'), ((8356, 8375), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (8359, 8375), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((9662, 9689), 'numpy.linalg.svd', 'np.linalg.svd', (['autoscaled_X'], {}), '(autoscaled_X)\n', (9675, 9689), True, 'import numpy as np\n'), ((10178, 10197), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (10181, 10197), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((10389, 10417), 'numpy.isnan', 'np.isnan', (['model.R2cum[A - 1]'], {}), '(model.R2cum[A - 1])\n', (10397, 10417), True, 'import numpy as np\n'), ((11780, 11826), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(N, 2)'}), '(low=-1, high=1, size=(N, 2))\n', (11797, 11826), True, 'import numpy as np\n'), ((11835, 11881), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(K, 2)'}), '(low=-1, high=1, size=(K, 2))\n', (11852, 11881), True, 'import numpy as np\n'), ((11966, 11998), 'pandas.DataFrame', 'pd.DataFrame', (['((X - meanX) / stdX)'], {}), '((X - meanX) / stdX)\n', (11978, 11998), True, 'import pandas as pd\n'), ((12007, 12026), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (12010, 12026), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((12348, 12394), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(N, A)'}), '(low=-1, high=1, size=(N, A))\n', (12365, 12394), True, 'import numpy as np\n'), ((12403, 12449), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(K, A)'}), '(low=-1, high=1, size=(K, A))\n', (12420, 12449), True, 'import numpy as np\n'), ((12534, 12566), 'pandas.DataFrame', 'pd.DataFrame', (['((X - meanX) / stdX)'], {}), '((X - meanX) / stdX)\n', (12546, 12566), True, 'import pandas as pd\n'), ((12617, 12636), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (12620, 12636), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((13730, 13788), 'process_improve.multivariate.methods.center', 'center', (['fixture_pca_PCA_Wold_etal_paper'], {'extra_output': '(True)'}), '(fixture_pca_PCA_Wold_etal_paper, extra_output=True)\n', (13736, 13788), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((14354, 14373), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (14357, 14373), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((15048, 15067), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (15051, 15067), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((17412, 17448), 'scipy.sparse.csr_matrix', 'csr_matrix', (['[[1, 2], [0, 3], [4, 5]]'], {}), '([[1, 2], [0, 3], [4, 5]])\n', (17422, 17448), False, 'from scipy.sparse import csr_matrix\n'), ((21973, 22059), 'numpy.array', 'np.array', (['[-0.2650725, -0.2165038, 0.08547913, -0.3954746, -0.4935882, 0.7541404]'], {}), '([-0.2650725, -0.2165038, 0.08547913, -0.3954746, -0.4935882, \n 0.7541404])\n', (21981, 22059), True, 'import numpy as np\n'), ((22178, 22265), 'numpy.array', 'np.array', (['[-0.04766187, -0.3137862, 0.004006641, -0.238001, -0.4430451, 0.8039384]'], {}), '([-0.04766187, -0.3137862, 0.004006641, -0.238001, -0.4430451, \n 0.8039384])\n', (22186, 22265), True, 'import numpy as np\n'), ((22492, 22628), 'numpy.array', 'np.array', (['[1.889566, -0.4481195, 0.0171578, -1.953837, -0.3019302, 1.230112, -\n 0.4576912, -1.731961, 1.114923, 0.8251334, -0.1833536]'], {}), '([1.889566, -0.4481195, 0.0171578, -1.953837, -0.3019302, 1.230112,\n -0.4576912, -1.731961, 1.114923, 0.8251334, -0.1833536])\n', (22500, 22628), True, 'import numpy as np\n'), ((22800, 22934), 'numpy.array', 'np.array', (['[2.48638, 0.1398399, 0.0002050064, 2.658398, 0.0634829, 1.053738, 0.1458776,\n 2.08891, 0.8656327, 0.4741239, 0.02341113]'], {}), '([2.48638, 0.1398399, 0.0002050064, 2.658398, 0.0634829, 1.053738, \n 0.1458776, 2.08891, 0.8656327, 0.4741239, 0.02341113])\n', (22808, 22934), True, 'import numpy as np\n'), ((23107, 23229), 'numpy.array', 'np.array', (['[0.367926, 1.01727, 0.970395, 0.635592, 2.36596, 0.449567, 0.645429, \n 1.12458, 0.520623, 0.384443, 0.764301]'], {}), '([0.367926, 1.01727, 0.970395, 0.635592, 2.36596, 0.449567, \n 0.645429, 1.12458, 0.520623, 0.384443, 0.764301])\n', (23115, 23229), True, 'import numpy as np\n'), ((23401, 23474), 'numpy.array', 'np.array', (['[41.38802, 21.03755, 20.03097, 0.3884909, 0.1072455, -1.006582]'], {}), '([41.38802, 21.03755, 20.03097, 0.3884909, 0.1072455, -1.006582])\n', (23409, 23474), True, 'import numpy as np\n'), ((23985, 24036), 'sklearn.cross_decomposition.PLSRegression', 'PLSRegression', ([], {'n_components': "data['A']", 'scale': '"""True"""'}), "(n_components=data['A'], scale='True')\n", (23998, 24036), False, 'from sklearn.cross_decomposition import PLSRegression\n'), ((26208, 26235), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': "data['A']"}), "(n_components=data['A'])\n", (26211, 26235), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((30771, 30860), 'numpy.array', 'np.array', (['[[-0.3799977, -0.7815778], [0.8737038, -0.2803103], [-0.3314019, 0.55731]]'], {}), '([[-0.3799977, -0.7815778], [0.8737038, -0.2803103], [-0.3314019, \n 0.55731]])\n', (30779, 30860), True, 'import numpy as np\n'), ((30894, 30985), 'numpy.array', 'np.array', (['[[-0.4839311, -0.7837874], [0.8361799, -0.2829775], [-0.2580969, 0.5528119]]'], {}), '([[-0.4839311, -0.7837874], [0.8361799, -0.2829775], [-0.2580969, \n 0.5528119]])\n', (30902, 30985), True, 'import numpy as np\n'), ((31255, 31618), 'numpy.array', 'np.array', (['[[0.1837029, -1.335702], [-1.560534, -0.7636986], [0.7831483, 0.334647], [\n 0.3052059, -0.7409231], [-1.721048, 1.246014], [1.411638, 0.7658994], [\n -0.3538088, 1.428992], [0.7842407, 0.3365611], [0.3062983, -0.7390091],\n [-1.025724, 0.4104719], [1.411638, 0.7658994], [-0.3538088, 1.428992],\n [0.184063, -1.335071], [-0.3550123, -1.803074]]'], {}), '([[0.1837029, -1.335702], [-1.560534, -0.7636986], [0.7831483, \n 0.334647], [0.3052059, -0.7409231], [-1.721048, 1.246014], [1.411638, \n 0.7658994], [-0.3538088, 1.428992], [0.7842407, 0.3365611], [0.3062983,\n -0.7390091], [-1.025724, 0.4104719], [1.411638, 0.7658994], [-0.3538088,\n 1.428992], [0.184063, -1.335071], [-0.3550123, -1.803074]])\n', (31263, 31618), True, 'import numpy as np\n'), ((31847, 32008), 'numpy.array', 'np.array', (['[1.513014, 3.05803, 0.7412658, 0.5530728, 4.417653, 2.592866, 1.823269, \n 0.74414, 0.5514336, 1.252029, 2.592866, 1.823269, 1.511758, 2.825334]'], {}), '([1.513014, 3.05803, 0.7412658, 0.5530728, 4.417653, 2.592866, \n 1.823269, 0.74414, 0.5514336, 1.252029, 2.592866, 1.823269, 1.511758, \n 2.825334])\n', (31855, 32008), True, 'import numpy as np\n'), ((32248, 32415), 'numpy.array', 'np.array', (['[0.8796755, 0.2482767, 1.641307, 1.350485, 0.9410046, 0.4101084, 0.856736, \n 1.640294, 1.351499, 0.2035393, 0.4101084, 0.856736, 0.8793415, 0.7906867]'], {}), '([0.8796755, 0.2482767, 1.641307, 1.350485, 0.9410046, 0.4101084, \n 0.856736, 1.640294, 1.351499, 0.2035393, 0.4101084, 0.856736, 0.8793415,\n 0.7906867])\n', (32256, 32415), True, 'import numpy as np\n'), ((32760, 32810), 'sklearn.cross_decomposition.PLSRegression', 'PLSRegression', ([], {'n_components': "data['A']", 'scale': '(False)'}), "(n_components=data['A'], scale=False)\n", (32773, 32810), False, 'from sklearn.cross_decomposition import PLSRegression\n'), ((33441, 33468), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': "data['A']"}), "(n_components=data['A'])\n", (33444, 33468), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((36624, 36678), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'LDPE.csv')"], {'index_col': '(0)'}), "(folder / 'LDPE' / 'LDPE.csv', index_col=0)\n", (36635, 36678), True, 'import pandas as pd\n'), ((36726, 36777), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'T.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'T.csv', header=None)\n", (36737, 36777), True, 'import pandas as pd\n'), ((36802, 36853), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'P.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'P.csv', header=None)\n", (36813, 36853), True, 'import pandas as pd\n'), ((36878, 36929), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'W.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'W.csv', header=None)\n", (36889, 36929), True, 'import pandas as pd\n'), ((36954, 37005), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'C.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'C.csv', header=None)\n", (36965, 37005), True, 'import pandas as pd\n'), ((37030, 37081), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'U.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'U.csv', header=None)\n", (37041, 37081), True, 'import pandas as pd\n'), ((37121, 37187), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'Hotellings_T2_A3.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'Hotellings_T2_A3.csv', header=None)\n", (37132, 37187), True, 'import pandas as pd\n'), ((37250, 37316), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'Hotellings_T2_A6.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'Hotellings_T2_A6.csv', header=None)\n", (37261, 37316), True, 'import pandas as pd\n'), ((37370, 37427), 'pandas.read_csv', 'pd.read_csv', (["(folder / 'LDPE' / 'Yhat_A6.csv')"], {'header': 'None'}), "(folder / 'LDPE' / 'Yhat_A6.csv', header=None)\n", (37381, 37427), True, 'import pandas as pd\n'), ((37478, 37549), 'numpy.array', 'np.array', (['[1.872539, 1.440642, 1.216218, 1.141096, 1.059435, 0.9459715]'], {}), '([1.872539, 1.440642, 1.216218, 1.141096, 1.059435, 0.9459715])\n', (37486, 37549), True, 'import numpy as np\n'), ((38136, 38163), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': "data['A']"}), "(n_components=data['A'])\n", (38139, 38163), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((629, 654), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (637, 654), True, 'import numpy as np\n'), ((709, 779), 'numpy.array', 'np.array', (['[[5.2, -4.98, -1.0], [-4.98, 5.5, 2.94], [-1.0, 2.94, 2.77]]'], {}), '([[5.2, -4.98, -1.0], [-4.98, 5.5, 2.94], [-1.0, 2.94, 2.77]])\n', (717, 779), True, 'import numpy as np\n'), ((1324, 1344), 'numpy.mean', 'np.mean', (['outliers_95'], {}), '(outliers_95)\n', (1331, 1344), True, 'import numpy as np\n'), ((1348, 1373), 'pytest.approx', 'approx', (['(0.05 * N)'], {'rel': '(0.1)'}), '(0.05 * N, rel=0.1)\n', (1354, 1373), False, 'from pytest import approx\n'), ((1385, 1405), 'numpy.mean', 'np.mean', (['outliers_99'], {}), '(outliers_99)\n', (1392, 1405), True, 'import numpy as np\n'), ((1409, 1434), 'pytest.approx', 'approx', (['(0.01 * N)'], {'rel': '(0.1)'}), '(0.01 * N, rel=0.1)\n', (1415, 1434), False, 'from pytest import approx\n'), ((1957, 1978), 'pytest.approx', 'approx', (['(0)'], {'abs': 'epsqrt'}), '(0, abs=epsqrt)\n', (1963, 1978), False, 'from pytest import approx\n'), ((2043, 2069), 'pytest.approx', 'approx', (['(6.64469)'], {'rel': '(0.001)'}), '(6.64469, rel=0.001)\n', (2049, 2069), False, 'from pytest import approx\n'), ((2191, 2217), 'pytest.approx', 'approx', (['(4.48792)'], {'rel': '(1e-05)'}), '(4.48792, rel=1e-05)\n', (2197, 2217), False, 'from pytest import approx\n'), ((2245, 2265), 'pytest.approx', 'approx', (['(0)'], {'rel': '(1e-07)'}), '(0, rel=1e-07)\n', (2251, 2265), False, 'from pytest import approx\n'), ((3103, 3122), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.01)'}), '(0, abs=0.01)\n', (3109, 3122), False, 'from pytest import approx\n'), ((3677, 3696), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.01)'}), '(0, abs=0.01)\n', (3683, 3696), False, 'from pytest import approx\n'), ((4480, 4505), 'pytest.approx', 'approx', (['out[0]'], {'abs': '(1e-09)'}), '(out[0], abs=1e-09)\n', (4486, 4505), False, 'from pytest import approx\n'), ((4530, 4555), 'pytest.approx', 'approx', (['out[1]'], {'abs': '(1e-08)'}), '(out[1], abs=1e-08)\n', (4536, 4555), False, 'from pytest import approx\n'), ((4571, 4596), 'pytest.approx', 'approx', (['out[2]'], {'abs': '(1e-09)'}), '(out[2], abs=1e-09)\n', (4577, 4596), False, 'from pytest import approx\n'), ((4685, 4710), 'pytest.approx', 'approx', (['out[3]'], {'abs': '(1e-06)'}), '(out[3], abs=1e-06)\n', (4691, 4710), False, 'from pytest import approx\n'), ((4801, 4826), 'pytest.approx', 'approx', (['out[4]'], {'abs': '(1e-14)'}), '(out[4], abs=1e-14)\n', (4807, 4826), False, 'from pytest import approx\n'), ((8686, 8711), 'pytest.approx', 'approx', (['(0.7368)'], {'rel': '(0.001)'}), '(0.7368, rel=0.001)\n', (8692, 8711), False, 'from pytest import approx\n'), ((8740, 8764), 'pytest.approx', 'approx', (['(0.9221)'], {'rel': '(0.01)'}), '(0.9221, rel=0.01)\n', (8746, 8764), False, 'from pytest import approx\n'), ((9631, 9646), 'process_improve.multivariate.methods.center', 'center', (['spectra'], {}), '(spectra)\n', (9637, 9646), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((9824, 9844), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-08)'}), '(0, abs=1e-08)\n', (9830, 9844), False, 'from pytest import approx\n'), ((10148, 10164), 'numpy.zeros', 'np.zeros', (['(N, K)'], {}), '((N, K))\n', (10156, 10164), True, 'import numpy as np\n'), ((10269, 10298), 'numpy.sum', 'np.sum', (['model.x_scores.values'], {}), '(model.x_scores.values)\n', (10275, 10298), True, 'import numpy as np\n'), ((10302, 10323), 'pytest.approx', 'approx', (['(0)'], {'abs': 'epsqrt'}), '(0, abs=epsqrt)\n', (10308, 10323), False, 'from pytest import approx\n'), ((10356, 10377), 'pytest.approx', 'approx', (['(0)'], {'abs': 'epsqrt'}), '(0, abs=epsqrt)\n', (10362, 10377), False, 'from pytest import approx\n'), ((10579, 10625), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(N, K)'}), '(low=-1, high=1, size=(N, K))\n', (10596, 10625), True, 'import numpy as np\n'), ((10636, 10767), 'pytest.warns', 'pytest.warns', (['SpecificationWarning'], {'match': '"""The requested number of components is more than can be computed from data(.*)"""'}), "(SpecificationWarning, match=\n 'The requested number of components is more than can be computed from data(.*)'\n )\n", (10648, 10767), False, 'import pytest\n'), ((10799, 10818), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (10802, 10818), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((10882, 10960), 'pytest.raises', 'pytest.raises', (['AssertionError'], {'match': '"""Tolerance must exceed machine precision"""'}), "(AssertionError, match='Tolerance must exceed machine precision')\n", (10895, 10960), False, 'import pytest\n'), ((11094, 11179), 'pytest.raises', 'pytest.raises', (['AssertionError'], {'match': '"""Missing data method is not recognized(.*)"""'}), "(AssertionError, match='Missing data method is not recognized(.*)'\n )\n", (11107, 11179), False, 'import pytest\n'), ((12834, 12854), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-14)'}), '(0, abs=1e-14)\n', (12840, 12854), False, 'from pytest import approx\n'), ((13003, 13023), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-14)'}), '(0, abs=1e-14)\n', (13009, 13023), False, 'from pytest import approx\n'), ((13226, 13246), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (13232, 13246), False, 'from pytest import approx\n'), ((13543, 13597), 'numpy.array', 'np.array', (['[[3, 4, 2, 2], [4, 3, 4, 3], [5.0, 5, 6, 4]]'], {}), '([[3, 4, 2, 2], [4, 3, 4, 3], [5.0, 5, 6, 4]])\n', (13551, 13597), True, 'import numpy as np\n'), ((13813, 13844), 'pytest.approx', 'approx', (['[4, 4, 4, 3]'], {'rel': '(1e-08)'}), '([4, 4, 4, 3], rel=1e-08)\n', (13819, 13844), False, 'from pytest import approx\n'), ((14014, 14053), 'process_improve.multivariate.methods.center', 'center', (['fixture_pca_PCA_Wold_etal_paper'], {}), '(fixture_pca_PCA_Wold_etal_paper)\n', (14020, 14053), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((14109, 14131), 'pytest.approx', 'approx', (['[1, 1, 0.5, 1]'], {}), '([1, 1, 0.5, 1])\n', (14115, 14131), False, 'from pytest import approx\n'), ((14301, 14340), 'process_improve.multivariate.methods.center', 'center', (['fixture_pca_PCA_Wold_etal_paper'], {}), '(fixture_pca_PCA_Wold_etal_paper)\n', (14307, 14340), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((14995, 15034), 'process_improve.multivariate.methods.center', 'center', (['fixture_pca_PCA_Wold_etal_paper'], {}), '(fixture_pca_PCA_Wold_etal_paper)\n', (15001, 15034), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((15104, 15139), 'numpy.abs', 'np.abs', (['pca_2.loadings.values[:, 0]'], {}), '(pca_2.loadings.values[:, 0])\n', (15110, 15139), True, 'import numpy as np\n'), ((15143, 15192), 'pytest.approx', 'approx', (['[0.541, 0.3493, 0.541, 0.541]'], {'abs': '(0.0001)'}), '([0.541, 0.3493, 0.541, 0.541], abs=0.0001)\n', (15149, 15192), False, 'from pytest import approx\n'), ((15219, 15254), 'numpy.abs', 'np.abs', (['pca_2.loadings.values[:, 1]'], {}), '(pca_2.loadings.values[:, 1])\n', (15225, 15254), True, 'import numpy as np\n'), ((15258, 15309), 'pytest.approx', 'approx', (['[0.2017, 0.937, 0.2017, 0.2017]'], {'abs': '(0.0001)'}), '([0.2017, 0.937, 0.2017, 0.2017], abs=0.0001)\n', (15264, 15309), False, 'from pytest import approx\n'), ((15635, 15667), 'pytest.approx', 'approx', (['[0.831, 0.169]'], {'rel': '(0.01)'}), '([0.831, 0.169], rel=0.01)\n', (15641, 15667), False, 'from pytest import approx\n'), ((16626, 16672), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(N, K)'}), '(low=-1, high=1, size=(N, K))\n', (16643, 16672), True, 'import numpy as np\n'), ((16699, 16745), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-1)', 'high': '(1)', 'size': '(N, M)'}), '(low=-1, high=1, size=(N, M))\n', (16716, 16745), True, 'import numpy as np\n'), ((16756, 16842), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Tolerance `tol`` must be between 1E-16 and 1.0"""'}), "(ValueError, match=\n 'Tolerance `tol`` must be between 1E-16 and 1.0')\n", (16769, 16842), False, 'import pytest\n'), ((16865, 16891), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': 'A', 'tol': '(0)'}), '(n_components=A, tol=0)\n', (16868, 16891), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((16902, 16964), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Method \'SVDS\' is not known."""'}), '(ValueError, match="Method \'SVDS\' is not known.")\n', (16915, 16964), False, 'import pytest\n'), ((16978, 17012), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': 'A', 'method': '"""SVDS"""'}), "(n_components=A, method='SVDS')\n", (16981, 17012), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((17023, 17097), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Missing data method \'SCP\' is not known."""'}), '(ValueError, match="Missing data method \'SCP\' is not known.")\n', (17036, 17097), False, 'import pytest\n'), ((17111, 17147), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': 'A', 'md_method': '"""SCP"""'}), "(n_components=A, md_method='SCP')\n", (17114, 17147), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((17158, 17249), 'pytest.warns', 'pytest.warns', (['SpecificationWarning'], {'match': '"""The requested number of components is (.*)"""'}), "(SpecificationWarning, match=\n 'The requested number of components is (.*)')\n", (17170, 17249), False, 'import pytest\n'), ((17277, 17296), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': 'A'}), '(n_components=A)\n', (17280, 17296), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((17458, 17537), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""This PLS class does not support sparse input."""'}), "(TypeError, match='This PLS class does not support sparse input.')\n", (17471, 17537), False, 'import pytest\n'), ((17569, 17588), 'process_improve.multivariate.methods.PLS', 'PLS', ([], {'n_components': '(2)'}), '(n_components=2)\n', (17572, 17588), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((19242, 19879), 'numpy.array', 'np.array', (['[[41.1187, 21.2833, 21.1523, 0.2446, -0.0044, -0.131], [41.7755, 22.0978, \n 21.1653, 0.3598, 0.1622, -0.9325], [41.2568, 21.4873, 20.7407, 0.2536, \n 0.1635, -0.7467], [41.5469, 22.2043, 20.4518, 0.6317, 0.1997, -1.7525],\n [40.0234, 23.7399, 21.978, -0.0534, -0.0158, -1.7619], [39.9203, \n 21.9997, 21.5859, -0.1811, 0.089, -0.4138], [42.1886, 21.4891, 20.4427,\n 0.686, 0.1124, -1.0464], [42.1454, 20.3803, 18.2327, 0.6607, 0.1291, -\n 2.1476], [42.272, 18.9725, 18.3763, 0.561, 0.0453, -0.5962], [41.49, \n 18.603, 17.9978, 0.4872, 0.1198, -0.6052], [41.5306, 19.1558, 18.2172, \n 0.6233, 0.1789, -0.9386]]'], {}), '([[41.1187, 21.2833, 21.1523, 0.2446, -0.0044, -0.131], [41.7755, \n 22.0978, 21.1653, 0.3598, 0.1622, -0.9325], [41.2568, 21.4873, 20.7407,\n 0.2536, 0.1635, -0.7467], [41.5469, 22.2043, 20.4518, 0.6317, 0.1997, -\n 1.7525], [40.0234, 23.7399, 21.978, -0.0534, -0.0158, -1.7619], [\n 39.9203, 21.9997, 21.5859, -0.1811, 0.089, -0.4138], [42.1886, 21.4891,\n 20.4427, 0.686, 0.1124, -1.0464], [42.1454, 20.3803, 18.2327, 0.6607, \n 0.1291, -2.1476], [42.272, 18.9725, 18.3763, 0.561, 0.0453, -0.5962], [\n 41.49, 18.603, 17.9978, 0.4872, 0.1198, -0.6052], [41.5306, 19.1558, \n 18.2172, 0.6233, 0.1789, -0.9386]])\n', (19250, 19879), True, 'import numpy as np\n'), ((21629, 21704), 'numpy.array', 'np.array', (['[1.12, 1.01, 0.97, 0.83, 0.93, 1.02, 0.91, 0.7, 1.26, 1.05, 0.95]'], {}), '([1.12, 1.01, 0.97, 0.83, 0.93, 1.02, 0.91, 0.7, 1.26, 1.05, 0.95])\n', (21637, 21704), True, 'import numpy as np\n'), ((23511, 23581), 'numpy.array', 'np.array', (['[1.259059, 0.628138, 0.6594034, 3.379028, 13.8272, 1.589986]'], {}), '([1.259059, 0.628138, 0.6594034, 3.379028, 13.8272, 1.589986])\n', (23519, 23581), True, 'import numpy as np\n'), ((24186, 24217), 'pytest.approx', 'approx', (["data['Xavg']"], {'abs': '(1e-05)'}), "(data['Xavg'], abs=1e-05)\n", (24192, 24217), False, 'from pytest import approx\n'), ((24247, 24277), 'pytest.approx', 'approx', (["data['Xws']"], {'abs': '(1e-06)'}), "(data['Xws'], abs=1e-06)\n", (24253, 24277), False, 'from pytest import approx\n'), ((24308, 24339), 'pytest.approx', 'approx', (["data['Yavg']"], {'abs': '(1e-07)'}), "(data['Yavg'], abs=1e-07)\n", (24314, 24339), False, 'from pytest import approx\n'), ((24369, 24399), 'pytest.approx', 'approx', (["data['Yws']"], {'abs': '(1e-08)'}), "(data['Yws'], abs=1e-08)\n", (24375, 24399), False, 'from pytest import approx\n'), ((24515, 24544), 'pytest.approx', 'approx', (["data['t1']"], {'abs': '(1e-05)'}), "(data['t1'], abs=1e-05)\n", (24521, 24544), False, 'from pytest import approx\n'), ((24555, 24572), 'numpy.std', 'np.std', (['T'], {'ddof': '(1)'}), '(T, ddof=1)\n', (24561, 24572), True, 'import numpy as np\n'), ((24576, 24606), 'pytest.approx', 'approx', (["data['SDt']"], {'rel': '(1e-05)'}), "(data['SDt'], rel=1e-05)\n", (24582, 24606), False, 'from pytest import approx\n'), ((26434, 26465), 'pytest.approx', 'approx', (["data['Xavg']"], {'abs': '(1e-05)'}), "(data['Xavg'], abs=1e-05)\n", (26440, 26465), False, 'from pytest import approx\n'), ((26500, 26530), 'pytest.approx', 'approx', (["data['Xws']"], {'abs': '(1e-06)'}), "(data['Xws'], abs=1e-06)\n", (26506, 26530), False, 'from pytest import approx\n'), ((26566, 26597), 'pytest.approx', 'approx', (["data['Yavg']"], {'abs': '(1e-07)'}), "(data['Yavg'], abs=1e-07)\n", (26572, 26597), False, 'from pytest import approx\n'), ((26632, 26662), 'pytest.approx', 'approx', (["data['Yws']"], {'abs': '(1e-08)'}), "(data['Yws'], abs=1e-08)\n", (26638, 26662), False, 'from pytest import approx\n'), ((27264, 27297), 'pytest.approx', 'approx', (['plsmodel.R2cum'], {'abs': '(1e-06)'}), '(plsmodel.R2cum, abs=1e-06)\n', (27270, 27297), False, 'from pytest import approx\n'), ((27455, 27511), 'pytest.approx', 'approx', (['state.squared_prediction_error.values'], {'abs': '(1e-09)'}), '(state.squared_prediction_error.values, abs=1e-09)\n', (27461, 27511), False, 'from pytest import approx\n'), ((28130, 28634), 'numpy.array', 'np.array', (['[[1.27472, 0.897732, -0.193397], [1.27472, -1.04697, 0.264243], [0.00166722,\n 1.26739, 1.06862], [0.00166722, -0.0826556, -1.45344], [0.00166722, -\n 1.46484, 1.91932], [-1.27516, 0.849516, -0.326239], [-1.27516, -1.06304,\n 0.317718], [-0.000590006, 1.26739, 1.06862], [-0.000590006, -0.0826556,\n -1.45344], [-0.000590006, -1.09519, 0.427109], [-1.27516, 0.849516, -\n 0.326239], [-1.27516, -1.06304, 0.317718], [1.27398, 0.897732, -\n 0.193397], [1.27398, -0.130872, -1.4372]]'], {}), '([[1.27472, 0.897732, -0.193397], [1.27472, -1.04697, 0.264243], [\n 0.00166722, 1.26739, 1.06862], [0.00166722, -0.0826556, -1.45344], [\n 0.00166722, -1.46484, 1.91932], [-1.27516, 0.849516, -0.326239], [-\n 1.27516, -1.06304, 0.317718], [-0.000590006, 1.26739, 1.06862], [-\n 0.000590006, -0.0826556, -1.45344], [-0.000590006, -1.09519, 0.427109],\n [-1.27516, 0.849516, -0.326239], [-1.27516, -1.06304, 0.317718], [\n 1.27398, 0.897732, -0.193397], [1.27398, -0.130872, -1.4372]])\n', (28138, 28634), True, 'import numpy as np\n'), ((30017, 30181), 'numpy.array', 'np.array', (['[-0.0862851, -1.60162, 0.823439, 0.242033, -1.64304, 1.59583, -0.301604, \n 0.877623, 0.274155, -0.967692, 1.47491, -0.194163, 0.097352, -0.590925]'], {}), '([-0.0862851, -1.60162, 0.823439, 0.242033, -1.64304, 1.59583, -\n 0.301604, 0.877623, 0.274155, -0.967692, 1.47491, -0.194163, 0.097352, \n -0.590925])\n', (30025, 30181), True, 'import numpy as np\n'), ((32995, 33012), 'numpy.abs', 'np.abs', (["data['T']"], {}), "(data['T'])\n", (33001, 33012), True, 'import numpy as np\n'), ((33072, 33114), 'numpy.std', 'np.std', (['plsmodel.x_scores_'], {'ddof': '(1)', 'axis': '(0)'}), '(plsmodel.x_scores_, ddof=1, axis=0)\n', (33078, 33114), True, 'import numpy as np\n'), ((33118, 33148), 'pytest.approx', 'approx', (["data['SDt']"], {'abs': '(1e-06)'}), "(data['SDt'], abs=1e-06)\n", (33124, 33148), False, 'from pytest import approx\n'), ((33159, 33185), 'numpy.abs', 'np.abs', (["data['loadings_P']"], {}), "(data['loadings_P'])\n", (33165, 33185), True, 'import numpy as np\n'), ((33247, 33273), 'numpy.abs', 'np.abs', (["data['loadings_W']"], {}), "(data['loadings_W'])\n", (33253, 33273), True, 'import numpy as np\n'), ((33760, 33777), 'numpy.abs', 'np.abs', (["data['T']"], {}), "(data['T'])\n", (33766, 33777), True, 'import numpy as np\n'), ((33836, 33862), 'numpy.abs', 'np.abs', (["data['loadings_P']"], {}), "(data['loadings_P'])\n", (33842, 33862), True, 'import numpy as np\n'), ((33923, 33949), 'numpy.abs', 'np.abs', (["data['loadings_W']"], {}), "(data['loadings_W'])\n", (33929, 33949), True, 'import numpy as np\n'), ((34066, 34113), 'pytest.approx', 'approx', (["data['expected_y_predicted']"], {'abs': '(1e-05)'}), "(data['expected_y_predicted'], abs=1e-05)\n", (34072, 34113), False, 'from pytest import approx\n'), ((34158, 34202), 'pytest.approx', 'approx', (['plsmodel.R2cum.values[-1]'], {'abs': '(1e-07)'}), '(plsmodel.R2cum.values[-1], abs=1e-07)\n', (34164, 34202), False, 'from pytest import approx\n'), ((34529, 34578), 'pytest.approx', 'approx', (['state.squared_prediction_error'], {'abs': '(1e-10)'}), '(state.squared_prediction_error, abs=1e-10)\n', (34535, 34578), False, 'from pytest import approx\n'), ((34619, 34657), 'pytest.approx', 'approx', (['state.Hotellings_T2'], {'abs': '(1e-05)'}), '(state.Hotellings_T2, abs=1e-05)\n', (34625, 34657), False, 'from pytest import approx\n'), ((34796, 34813), 'numpy.abs', 'np.abs', (["data['T']"], {}), "(data['T'])\n", (34802, 34813), True, 'import numpy as np\n'), ((37749, 37765), 'pytest.approx', 'approx', (['[54, 14]'], {}), '([54, 14])\n', (37755, 37765), False, 'from pytest import approx\n'), ((37795, 37810), 'pytest.approx', 'approx', (['[54, 5]'], {}), '([54, 5])\n', (37801, 37810), False, 'from pytest import approx\n'), ((38649, 38670), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.0001)'}), '(0, abs=0.0001)\n', (38655, 38670), False, 'from pytest import approx\n'), ((38777, 38797), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-05)'}), '(0, abs=1e-05)\n', (38783, 38797), False, 'from pytest import approx\n'), ((38904, 38924), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (38910, 38924), False, 'from pytest import approx\n'), ((39032, 39052), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (39038, 39052), False, 'from pytest import approx\n'), ((39158, 39178), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-05)'}), '(0, abs=1e-05)\n', (39164, 39178), False, 'from pytest import approx\n'), ((39323, 39343), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (39329, 39343), False, 'from pytest import approx\n'), ((39488, 39508), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (39494, 39508), False, 'from pytest import approx\n'), ((39635, 39655), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-05)'}), '(0, abs=1e-05)\n', (39641, 39655), False, 'from pytest import approx\n'), ((40061, 40080), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.01)'}), '(0, abs=0.01)\n', (40067, 40080), False, 'from pytest import approx\n'), ((41130, 41149), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.01)'}), '(0, abs=0.01)\n', (41136, 41149), False, 'from pytest import approx\n'), ((41258, 41278), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (41264, 41278), False, 'from pytest import approx\n'), ((41385, 41405), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (41391, 41405), False, 'from pytest import approx\n'), ((41513, 41533), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.001)'}), '(0, abs=0.001)\n', (41519, 41533), False, 'from pytest import approx\n'), ((41639, 41657), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.5)'}), '(0, abs=0.5)\n', (41645, 41657), False, 'from pytest import approx\n'), ((41804, 41824), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (41810, 41824), False, 'from pytest import approx\n'), ((41969, 41989), 'pytest.approx', 'approx', (['(0)'], {'abs': '(1e-06)'}), '(0, abs=1e-06)\n', (41975, 41989), False, 'from pytest import approx\n'), ((42116, 42135), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.01)'}), '(0, abs=0.01)\n', (42122, 42135), False, 'from pytest import approx\n'), ((42542, 42560), 'pytest.approx', 'approx', (['(0)'], {'abs': '(0.5)'}), '(0, abs=0.5)\n', (42548, 42560), False, 'from pytest import approx\n'), ((810, 854), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu', 'r'], {'size': 'N'}), '(mu, r, size=N)\n', (839, 854), True, 'import numpy as np\n'), ((1563, 1618), 'pandas.read_csv', 'pd.read_csv', (['"""https://openmv.net/file/food-texture.csv"""'], {}), "('https://openmv.net/file/food-texture.csv')\n", (1574, 1618), True, 'import pandas as pd\n'), ((1707, 1719), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (1717, 1719), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((1797, 1816), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (1800, 1816), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((2642, 2654), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (2652, 2654), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((3209, 3221), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (3219, 3221), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((3899, 3929), 'numpy.asarray', 'np.asarray', (['[1, 2, 3, 4, 5, 6]'], {}), '([1, 2, 3, 4, 5, 6])\n', (3909, 3929), True, 'import numpy as np\n'), ((4328, 4334), 'process_improve.multivariate.methods.ssq', 'ssq', (['x'], {}), '(x)\n', (4331, 4334), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((4436, 4455), 'process_improve.multivariate.methods.quick_regress', 'quick_regress', (['Y', 'x'], {}), '(Y, x)\n', (4449, 4455), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((6821, 6833), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (6831, 6833), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((7083, 7095), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (7093, 7095), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((8396, 8411), 'process_improve.multivariate.methods.center', 'center', (['spectra'], {}), '(spectra)\n', (8402, 8411), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((9736, 9759), 'numpy.abs', 'np.abs', (['v[0:model.A, :]'], {}), '(v[0:model.A, :])\n', (9742, 9759), True, 'import numpy as np\n'), ((9764, 9788), 'numpy.abs', 'np.abs', (['model.loadings.T'], {}), '(model.loadings.T)\n', (9770, 9788), True, 'import numpy as np\n'), ((12773, 12829), 'numpy.abs', 'np.abs', (['m.loadings.iloc[cols_with_no_variance, :].values'], {}), '(m.loadings.iloc[cols_with_no_variance, :].values)\n', (12779, 12829), True, 'import numpy as np\n'), ((13134, 13152), 'numpy.diag', 'np.diag', (['covmatrix'], {}), '(covmatrix)\n', (13141, 13152), True, 'import numpy as np\n'), ((26250, 26262), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (26260, 26262), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((26291, 26303), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (26301, 26303), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((26806, 26839), 'numpy.std', 'np.std', (['plsmodel.x_scores'], {'ddof': '(1)'}), '(plsmodel.x_scores, ddof=1)\n', (26812, 26839), True, 'import numpy as np\n'), ((32825, 32837), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (32835, 32837), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((32876, 32888), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (32886, 32888), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((33023, 33049), 'numpy.abs', 'np.abs', (['plsmodel.x_scores_'], {}), '(plsmodel.x_scores_)\n', (33029, 33049), True, 'import numpy as np\n'), ((33196, 33224), 'numpy.abs', 'np.abs', (['plsmodel.x_loadings_'], {}), '(plsmodel.x_loadings_)\n', (33202, 33224), True, 'import numpy as np\n'), ((33284, 33311), 'numpy.abs', 'np.abs', (['plsmodel.x_weights_'], {}), '(plsmodel.x_weights_)\n', (33290, 33311), True, 'import numpy as np\n'), ((33483, 33495), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (33493, 33495), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((33524, 33536), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (33534, 33536), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((33696, 33737), 'numpy.std', 'np.std', (['plsmodel.x_scores'], {'ddof': '(1)', 'axis': '(0)'}), '(plsmodel.x_scores, ddof=1, axis=0)\n', (33702, 33737), True, 'import numpy as np\n'), ((33788, 33813), 'numpy.abs', 'np.abs', (['plsmodel.x_scores'], {}), '(plsmodel.x_scores)\n', (33794, 33813), True, 'import numpy as np\n'), ((33873, 33900), 'numpy.abs', 'np.abs', (['plsmodel.x_loadings'], {}), '(plsmodel.x_loadings)\n', (33879, 33900), True, 'import numpy as np\n'), ((33960, 33986), 'numpy.abs', 'np.abs', (['plsmodel.x_weights'], {}), '(plsmodel.x_weights)\n', (33966, 33986), True, 'import numpy as np\n'), ((34824, 34846), 'numpy.abs', 'np.abs', (['state.x_scores'], {}), '(state.x_scores)\n', (34830, 34846), True, 'import numpy as np\n'), ((38178, 38190), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (38188, 38190), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((38219, 38231), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (38229, 38231), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((40649, 40661), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (40659, 40661), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((40690, 40702), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (40700, 40702), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((873, 885), 'process_improve.multivariate.methods.MCUVScaler', 'MCUVScaler', ([], {}), '()\n', (883, 885), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((961, 980), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A'}), '(n_components=A)\n', (964, 980), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((3078, 3093), 'numpy.eye', 'np.eye', (['model.A'], {}), '(model.A)\n', (3084, 3093), True, 'import numpy as np\n'), ((3652, 3667), 'numpy.eye', 'np.eye', (['model.A'], {}), '(model.A)\n', (3658, 3667), True, 'import numpy as np\n'), ((11203, 11266), 'process_improve.multivariate.methods.PCA', 'PCA', ([], {'n_components': 'A', 'missing_data_settings': "{'md_method': 'SCP'}"}), "(n_components=A, missing_data_settings={'md_method': 'SCP'})\n", (11206, 11266), False, 'from process_improve.multivariate.methods import PCA, PLS, MCUVScaler, SpecificationWarning, center, epsqrt, quick_regress, scale, ssq\n'), ((12940, 12956), 'numpy.identity', 'np.identity', (['m.A'], {}), '(m.A)\n', (12951, 12956), True, 'import numpy as np\n'), ((38571, 38604), 'numpy.abs', 'np.abs', (["data['expected_T'].values"], {}), "(data['expected_T'].values)\n", (38577, 38604), True, 'import numpy as np\n'), ((38607, 38639), 'numpy.abs', 'np.abs', (['plsmodel.x_scores.values'], {}), '(plsmodel.x_scores.values)\n', (38613, 38639), True, 'import numpy as np\n'), ((38697, 38730), 'numpy.abs', 'np.abs', (["data['expected_P'].values"], {}), "(data['expected_P'].values)\n", (38703, 38730), True, 'import numpy as np\n'), ((38733, 38767), 'numpy.abs', 'np.abs', (['plsmodel.x_loadings.values'], {}), '(plsmodel.x_loadings.values)\n', (38739, 38767), True, 'import numpy as np\n'), ((38825, 38858), 'numpy.abs', 'np.abs', (["data['expected_W'].values"], {}), "(data['expected_W'].values)\n", (38831, 38858), True, 'import numpy as np\n'), ((38861, 38894), 'numpy.abs', 'np.abs', (['plsmodel.x_weights.values'], {}), '(plsmodel.x_weights.values)\n', (38867, 38894), True, 'import numpy as np\n'), ((38952, 38985), 'numpy.abs', 'np.abs', (["data['expected_C'].values"], {}), "(data['expected_C'].values)\n", (38958, 38985), True, 'import numpy as np\n'), ((38988, 39022), 'numpy.abs', 'np.abs', (['plsmodel.y_loadings.values'], {}), '(plsmodel.y_loadings.values)\n', (38994, 39022), True, 'import numpy as np\n'), ((39080, 39113), 'numpy.abs', 'np.abs', (["data['expected_U'].values"], {}), "(data['expected_U'].values)\n", (39086, 39113), True, 'import numpy as np\n'), ((39116, 39148), 'numpy.abs', 'np.abs', (['plsmodel.y_scores.values'], {}), '(plsmodel.y_scores.values)\n', (39122, 39148), True, 'import numpy as np\n'), ((41052, 41085), 'numpy.abs', 'np.abs', (["data['expected_T'].values"], {}), "(data['expected_T'].values)\n", (41058, 41085), True, 'import numpy as np\n'), ((41088, 41120), 'numpy.abs', 'np.abs', (['plsmodel.x_scores.values'], {}), '(plsmodel.x_scores.values)\n', (41094, 41120), True, 'import numpy as np\n'), ((41178, 41211), 'numpy.abs', 'np.abs', (["data['expected_P'].values"], {}), "(data['expected_P'].values)\n", (41184, 41211), True, 'import numpy as np\n'), ((41214, 41248), 'numpy.abs', 'np.abs', (['plsmodel.x_loadings.values'], {}), '(plsmodel.x_loadings.values)\n', (41220, 41248), True, 'import numpy as np\n'), ((41306, 41339), 'numpy.abs', 'np.abs', (["data['expected_W'].values"], {}), "(data['expected_W'].values)\n", (41312, 41339), True, 'import numpy as np\n'), ((41342, 41375), 'numpy.abs', 'np.abs', (['plsmodel.x_weights.values'], {}), '(plsmodel.x_weights.values)\n', (41348, 41375), True, 'import numpy as np\n'), ((41433, 41466), 'numpy.abs', 'np.abs', (["data['expected_C'].values"], {}), "(data['expected_C'].values)\n", (41439, 41466), True, 'import numpy as np\n'), ((41469, 41503), 'numpy.abs', 'np.abs', (['plsmodel.y_loadings.values'], {}), '(plsmodel.y_loadings.values)\n', (41475, 41503), True, 'import numpy as np\n'), ((41561, 41594), 'numpy.abs', 'np.abs', (["data['expected_U'].values"], {}), "(data['expected_U'].values)\n", (41567, 41594), True, 'import numpy as np\n'), ((41597, 41629), 'numpy.abs', 'np.abs', (['plsmodel.y_scores.values'], {}), '(plsmodel.y_scores.values)\n', (41603, 41629), True, 'import numpy as np\n'), ((1869, 1907), 'numpy.diag', 'np.diag', (['(pca.x_scores.T @ pca.x_scores)'], {}), '(pca.x_scores.T @ pca.x_scores)\n', (1876, 1907), True, 'import numpy as np\n'), ((8573, 8588), 'numpy.eye', 'np.eye', (['model.A'], {}), '(model.A)\n', (8579, 8588), True, 'import numpy as np\n'), ((9129, 9171), 'pytest.approx', 'approx', (['known_scores_covar[i, j]'], {'rel': '(0.01)'}), '(known_scores_covar[i, j], rel=0.01)\n', (9135, 9171), False, 'from pytest import approx\n'), ((9278, 9322), 'pytest.approx', 'approx', (['known_scores_covar[i, j]'], {'abs': '(0.0001)'}), '(known_scores_covar[i, j], abs=0.0001)\n', (9284, 9322), False, 'from pytest import approx\n'), ((2346, 2368), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (2358, 2368), False, 'import pathlib\n'), ((6102, 6124), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (6114, 6124), False, 'import pathlib\n'), ((36497, 36519), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (36509, 36519), False, 'import pathlib\n'), ((13193, 13211), 'numpy.diag', 'np.diag', (['covmatrix'], {}), '(covmatrix)\n', (13200, 13211), True, 'import numpy as np\n')]
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Custom TensorFlow ops for efficient resampling of 2D images.""" import os import numpy as np import tensorflow as tf from models.stylegan2.layers.cuda import custom_ops def _get_plugin(): return custom_ops.get_plugin(os.path.splitext(__file__)[0] + ".cu") # ---------------------------------------------------------------------------- def upfirdn_2d( x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl="cuda", ): r"""Pad, upsample, FIR filter, and downsample a batch of 2D images. Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]` and performs the following operations for each image, batched across `majorDim` and `minorDim`: 1. Pad the image with zeros by the specified number of pixels on each side (`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value corresponds to cropping the image. 2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`). 3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the image so that the footprint of all output pixels lies within the input image. 4. Downsample the image by throwing away pixels (`downx`, `downy`). This sequence of operations bears close resemblance to scipy.signal.upfirdn(). The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`. k: 2D FIR filter of the shape `[firH, firW]`. upx: Integer upsampling factor along the X-axis (default: 1). upy: Integer upsampling factor along the Y-axis (default: 1). downx: Integer downsampling factor along the X-axis (default: 1). downy: Integer downsampling factor along the Y-axis (default: 1). padx0: Number of pixels to pad on the left side (default: 0). padx1: Number of pixels to pad on the right side (default: 0). pady0: Number of pixels to pad on the top side (default: 0). pady1: Number of pixels to pad on the bottom side (default: 0). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`. """ impl_dict = { "ref": _upfirdn_2d_ref, "cuda": _upfirdn_2d_cuda, } return impl_dict[impl]( x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1, ) # ---------------------------------------------------------------------------- def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1): """Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops.""" x = tf.convert_to_tensor(x) k = np.asarray(k, dtype=np.float32) assert x.shape.rank == 4 inH = x.shape[1] inW = x.shape[2] minorDim = _shape(x, 3) kernelH, kernelW = k.shape assert inW >= 1 and inH >= 1 assert kernelW >= 1 and kernelH >= 1 assert isinstance(upx, int) and isinstance(upy, int) assert isinstance(downx, int) and isinstance(downy, int) assert isinstance(padx0, int) and isinstance(padx1, int) assert isinstance(pady0, int) and isinstance(pady1, int) # Upsample (insert zeros). x = tf.reshape(x, [-1, inH, 1, inW, 1, minorDim]) x = tf.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]]) x = tf.reshape(x, [-1, inH * upy, inW * upx, minorDim]) # Pad (crop if negative). x = tf.pad( x, [ [0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0], ], ) x = x[ :, max(-pady0, 0) : x.shape[1] - max(-pady1, 0), max(-padx0, 0) : x.shape[2] - max(-padx1, 0), :, ] # Convolve with filter. x = tf.transpose(x, [0, 3, 1, 2]) x = tf.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1]) w = tf.constant(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype) x = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding="VALID", data_format="NCHW") x = tf.reshape( x, [ -1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1, ], ) x = tf.transpose(x, [0, 2, 3, 1]) # Downsample (throw away pixels). return x[:, ::downy, ::downx, :] # ---------------------------------------------------------------------------- def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1): """Fast CUDA implementation of `upfirdn_2d()` using custom ops.""" x = tf.convert_to_tensor(x) k = np.asarray(k, dtype=np.float32) majorDim, inH, inW, minorDim = x.shape.as_list() kernelH, kernelW = k.shape assert inW >= 1 and inH >= 1 assert kernelW >= 1 and kernelH >= 1 assert isinstance(upx, int) and isinstance(upy, int) assert isinstance(downx, int) and isinstance(downy, int) assert isinstance(padx0, int) and isinstance(padx1, int) assert isinstance(pady0, int) and isinstance(pady1, int) outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1 outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1 assert outW >= 1 and outH >= 1 kc = tf.constant(k, dtype=x.dtype) gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype) gpadx0 = kernelW - padx0 - 1 gpady0 = kernelH - pady0 - 1 gpadx1 = inW * upx - outW * downx + padx0 - upx + 1 gpady1 = inH * upy - outH * downy + pady0 - upy + 1 @tf.custom_gradient def func(x): y = _get_plugin().up_fir_dn2d( x=x, k=kc, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1, ) y.set_shape([majorDim, outH, outW, minorDim]) @tf.custom_gradient def grad(dy): dx = _get_plugin().up_fir_dn2d( x=dy, k=gkc, upx=downx, upy=downy, downx=upx, downy=upy, padx0=gpadx0, padx1=gpadx1, pady0=gpady0, pady1=gpady1, ) dx.set_shape([majorDim, inH, inW, minorDim]) return dx, func return y, grad return func(x) # ---------------------------------------------------------------------------- def filter_2d(x, k, gain=1, data_format="NCHW", impl="cuda"): r"""Filter a batch of 2D images with the given FIR filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and filters each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the same shape and datatype as `x`. """ k = _setup_kernel(k) * gain p = k.shape[0] - 1 return _simple_upfirdn_2d( x, k, pad0=(p + 1) // 2, pad1=p // 2, data_format=data_format, impl=impl ) # ---------------------------------------------------------------------------- def upsample_2d(x, k=None, factor=2, gain=1, data_format="NCHW", impl="cuda"): r"""Upsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the upsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor ** 2)) p = k.shape[0] - factor return _simple_upfirdn_2d( x, k, up=factor, pad0=(p + 1) // 2 + factor - 1, pad1=p // 2, data_format=data_format, impl=impl, ) # ---------------------------------------------------------------------------- def downsample_2d(x, k=None, factor=2, gain=1, data_format="NCHW", impl="cuda"): r"""Downsample a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = k.shape[0] - factor return _simple_upfirdn_2d( x, k, down=factor, pad0=(p + 1) // 2, pad1=p // 2, data_format=data_format, impl=impl, ) # ---------------------------------------------------------------------------- def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format="NCHW", impl="cuda"): r"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 # Check weight shape. w = tf.convert_to_tensor(w) assert w.shape.rank == 4 convH = w.shape[0] convW = w.shape[1] inC = _shape(w, 2) outC = _shape(w, 3) assert convW == convH # Setup filter kernel. if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor ** 2)) p = (k.shape[0] - factor) - (convW - 1) # Determine data dimensions. if data_format == "NCHW": stride = [1, 1, factor, factor] output_shape = [ _shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW, ] num_groups = _shape(x, 1) // inC else: stride = [1, factor, factor, 1] output_shape = [ _shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC, ] num_groups = _shape(x, 3) // inC # Transpose weights. w = tf.reshape(w, [convH, convW, inC, num_groups, -1]) w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2]) w = tf.reshape(w, [convH, convW, -1, num_groups * inC]) # Execute. x = tf.nn.conv2d_transpose( x, w, output_shape=output_shape, strides=stride, padding="VALID", data_format=data_format, ) return _simple_upfirdn_2d( x, k, pad0=(p + 1) // 2 + factor - 1, pad1=p // 2 + 1, data_format=data_format, impl=impl, ) # ---------------------------------------------------------------------------- def conv_downsample_2d(x, w, k=None, factor=2, gain=1, data_format="NCHW", impl="cuda"): r"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`). impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 w = tf.convert_to_tensor(w) convH, convW, _inC, _outC = w.shape.as_list() assert convW == convH if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = (k.shape[0] - factor) + (convW - 1) if data_format == "NCHW": s = [1, 1, factor, factor] else: s = [1, factor, factor, 1] x = _simple_upfirdn_2d( x, k, pad0=(p + 1) // 2, pad1=p // 2, data_format=data_format, impl=impl ) return tf.nn.conv2d(x, w, strides=s, padding="VALID", data_format=data_format) # ---------------------------------------------------------------------------- # Internal helper funcs. def _shape(tf_expr, dim_idx): if tf_expr.shape.rank is not None: dim = tf_expr.shape[dim_idx] if dim is not None: return dim return tf.shape(tf_expr)[dim_idx] def _setup_kernel(k): k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) assert k.ndim == 2 assert k.shape[0] == k.shape[1] return k def _simple_upfirdn_2d( x, k, up=1, down=1, pad0=0, pad1=0, data_format="NCHW", impl="cuda" ): assert data_format in ["NCHW", "NHWC"] assert x.shape.rank == 4 y = x if data_format == "NCHW": y = tf.reshape(y, [-1, _shape(y, 2), _shape(y, 3), 1]) y = upfirdn_2d( y, k, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, impl=impl, ) if data_format == "NCHW": y = tf.reshape(y, [-1, _shape(x, 1), _shape(y, 1), _shape(y, 2)]) return y # ----------------------------------------------------------------------------
[ "tensorflow.nn.conv2d", "tensorflow.shape", "tensorflow.pad", "tensorflow.transpose", "numpy.asarray", "os.path.splitext", "numpy.sum", "numpy.outer", "tensorflow.constant", "tensorflow.nn.conv2d_transpose", "tensorflow.reshape", "tensorflow.convert_to_tensor" ]
[((3245, 3268), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x'], {}), '(x)\n', (3265, 3268), True, 'import tensorflow as tf\n'), ((3277, 3308), 'numpy.asarray', 'np.asarray', (['k'], {'dtype': 'np.float32'}), '(k, dtype=np.float32)\n', (3287, 3308), True, 'import numpy as np\n'), ((3793, 3838), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1, inH, 1, inW, 1, minorDim]'], {}), '(x, [-1, inH, 1, inW, 1, minorDim])\n', (3803, 3838), True, 'import tensorflow as tf\n'), ((3847, 3918), 'tensorflow.pad', 'tf.pad', (['x', '[[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]]'], {}), '(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]])\n', (3853, 3918), True, 'import tensorflow as tf\n'), ((3927, 3978), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1, inH * upy, inW * upx, minorDim]'], {}), '(x, [-1, inH * upy, inW * upx, minorDim])\n', (3937, 3978), True, 'import tensorflow as tf\n'), ((4376, 4405), 'tensorflow.transpose', 'tf.transpose', (['x', '[0, 3, 1, 2]'], {}), '(x, [0, 3, 1, 2])\n', (4388, 4405), True, 'import tensorflow as tf\n'), ((4414, 4490), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1]'], {}), '(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1])\n', (4424, 4490), True, 'import tensorflow as tf\n'), ((4499, 4564), 'tensorflow.constant', 'tf.constant', (['k[::-1, ::-1, np.newaxis, np.newaxis]'], {'dtype': 'x.dtype'}), '(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype)\n', (4510, 4564), True, 'import tensorflow as tf\n'), ((4573, 4650), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x', 'w'], {'strides': '[1, 1, 1, 1]', 'padding': '"""VALID"""', 'data_format': '"""NCHW"""'}), "(x, w, strides=[1, 1, 1, 1], padding='VALID', data_format='NCHW')\n", (4585, 4650), True, 'import tensorflow as tf\n'), ((4659, 4774), 'tensorflow.reshape', 'tf.reshape', (['x', '[-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 +\n padx1 - kernelW + 1]'], {}), '(x, [-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW *\n upx + padx0 + padx1 - kernelW + 1])\n', (4669, 4774), True, 'import tensorflow as tf\n'), ((4861, 4890), 'tensorflow.transpose', 'tf.transpose', (['x', '[0, 2, 3, 1]'], {}), '(x, [0, 2, 3, 1])\n', (4873, 4890), True, 'import tensorflow as tf\n'), ((5210, 5233), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['x'], {}), '(x)\n', (5230, 5233), True, 'import tensorflow as tf\n'), ((5242, 5273), 'numpy.asarray', 'np.asarray', (['k'], {'dtype': 'np.float32'}), '(k, dtype=np.float32)\n', (5252, 5273), True, 'import numpy as np\n'), ((5842, 5871), 'tensorflow.constant', 'tf.constant', (['k'], {'dtype': 'x.dtype'}), '(k, dtype=x.dtype)\n', (5853, 5871), True, 'import tensorflow as tf\n'), ((5882, 5923), 'tensorflow.constant', 'tf.constant', (['k[::-1, ::-1]'], {'dtype': 'x.dtype'}), '(k[::-1, ::-1], dtype=x.dtype)\n', (5893, 5923), True, 'import tensorflow as tf\n'), ((13095, 13118), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['w'], {}), '(w)\n', (13115, 13118), True, 'import tensorflow as tf\n'), ((14056, 14106), 'tensorflow.reshape', 'tf.reshape', (['w', '[convH, convW, inC, num_groups, -1]'], {}), '(w, [convH, convW, inC, num_groups, -1])\n', (14066, 14106), True, 'import tensorflow as tf\n'), ((14115, 14159), 'tensorflow.transpose', 'tf.transpose', (['w[::-1, ::-1]', '[0, 1, 4, 3, 2]'], {}), '(w[::-1, ::-1], [0, 1, 4, 3, 2])\n', (14127, 14159), True, 'import tensorflow as tf\n'), ((14168, 14219), 'tensorflow.reshape', 'tf.reshape', (['w', '[convH, convW, -1, num_groups * inC]'], {}), '(w, [convH, convW, -1, num_groups * inC])\n', (14178, 14219), True, 'import tensorflow as tf\n'), ((14244, 14361), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (['x', 'w'], {'output_shape': 'output_shape', 'strides': 'stride', 'padding': '"""VALID"""', 'data_format': 'data_format'}), "(x, w, output_shape=output_shape, strides=stride,\n padding='VALID', data_format=data_format)\n", (14266, 14361), True, 'import tensorflow as tf\n'), ((16050, 16073), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['w'], {}), '(w)\n', (16070, 16073), True, 'import tensorflow as tf\n'), ((16505, 16576), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x', 'w'], {'strides': 's', 'padding': '"""VALID"""', 'data_format': 'data_format'}), "(x, w, strides=s, padding='VALID', data_format=data_format)\n", (16517, 16576), True, 'import tensorflow as tf\n'), ((16912, 16943), 'numpy.asarray', 'np.asarray', (['k'], {'dtype': 'np.float32'}), '(k, dtype=np.float32)\n', (16922, 16943), True, 'import numpy as np\n'), ((17000, 17009), 'numpy.sum', 'np.sum', (['k'], {}), '(k)\n', (17006, 17009), True, 'import numpy as np\n'), ((16853, 16870), 'tensorflow.shape', 'tf.shape', (['tf_expr'], {}), '(tf_expr)\n', (16861, 16870), True, 'import tensorflow as tf\n'), ((16976, 16990), 'numpy.outer', 'np.outer', (['k', 'k'], {}), '(k, k)\n', (16984, 16990), True, 'import numpy as np\n'), ((454, 480), 'os.path.splitext', 'os.path.splitext', (['__file__'], {}), '(__file__)\n', (470, 480), False, 'import os\n')]
''' trainer for GAT model ---- ACM CHIL 2020 paper <NAME>, 200228 ''' import os,sys,pickle,time,random,glob import numpy as np import pandas as pd from typing import List import copy import os.path as osp import torch import torch.utils.data from torch_sparse import SparseTensor, cat from torch_geometric.data import Data import torch.nn.functional as F from torch_geometric.nn import GCNConv, GATConv ## utils def scipysparse2torchsparse(x) : ''' Input: scipy csr_matrix Returns: torch tensor in experimental sparse format REF: Code adatped from [PyTorch discussion forum](https://discuss.pytorch.org/t/better-way-to-forward-sparse-matrix/21915>) ''' samples=x.shape[0] features=x.shape[1] values=x.data coo_data=x.tocoo() indices=torch.LongTensor([coo_data.row,coo_data.col]) # OR transpose list of index tuples t=torch.sparse.FloatTensor(indices,torch.from_numpy(values).float(),[samples,features]) return indices,t def accuracy(output, labels): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) def main() : ################################################################################ # hyperparams ################################################################################ pdfp = '/home/ngr4/project/scgraph/data/processed/' data_train_pkl = 'induction_50pData_train.pkl' data_val_pkl = 'induction_50pData_val.pkl' data_test_pkl = 'induction_50pData_test.pkl' replicate=sys.argv[1] # for pkl file saved BatchSize = 256 NumParts = 4000 # num sub-graphs Device = 'cuda' # if no gpu, `Device='cpu'` LR = 0.001 # learning rate WeightDecay=5e-4 fastmode = False # if `fastmode=False`, report validation nHiddenUnits = 8 nHeads = 8 # number of attention heads nEpochs = 5000 dropout = 0.4 # applied to all GAT layers alpha = 0.2 # alpha for leaky_relu patience = 100 # epochs to beat clip = None # set `clip=1` to turn on gradient clipping rs=random.randint(1,1000000) # random_seed ################################################################################ ## data with open(os.path.join(pdfp,data_train_pkl),'rb') as f : datapkl = pickle.load(f) f.close() node_features = torch.from_numpy(datapkl['features'].todense()).float() # _,node_features = scipysparse2torchsparse(features) labels = torch.LongTensor(datapkl['labels']) edge_index,_ = scipysparse2torchsparse(datapkl['adj']) del datapkl d = Data(x=node_features, edge_index=edge_index, y=labels) del node_features,edge_index,labels cd = ClusterData(d,num_parts=NumParts) cl = ClusterLoader(cd,batch_size=BatchSize,shuffle=True) if not fastmode : with open(os.path.join(pdfp,data_val_pkl),'rb') as f : datapkl = pickle.load(f) f.close() features_val = torch.from_numpy(datapkl['features'].todense()).float() labels_val = torch.LongTensor(datapkl['labels']) edge_index_val,_ = scipysparse2torchsparse(datapkl['adj']) del datapkl ## model class GAT(torch.nn.Module): def __init__(self): super(GAT, self).__init__() self.gat1 = GATConv(d.num_node_features, out_channels=nHiddenUnits, heads=nHeads, concat=True, negative_slope=alpha, dropout=dropout, bias=True) self.gat2 = GATConv(nHiddenUnits*nHeads, d.y.unique().size()[0], heads=nHeads, concat=False, negative_slope=alpha, dropout=dropout, bias=True) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.gat1(x, edge_index) x = F.elu(x) x = self.gat2(x, edge_index) return F.log_softmax(x, dim=1) ## train if False : device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # don't let user make decisions else : device = torch.device(Device) random.seed(rs) np.random.seed(rs) torch.manual_seed(rs) if Device == 'cuda' : torch.cuda.manual_seed(rs) model = GAT().to(device) optimizer = torch.optim.Adagrad(model.parameters(), lr=LR, weight_decay=WeightDecay) # features, adj, labels = Variable(features), Variable(adj), Variable(labels) def train(epoch): t = time.time() epoch_loss = [] epoch_acc = [] epoch_acc_val = [] epoch_loss_val = [] model.train() for batch in cl : batch = batch.to(device) optimizer.zero_grad() output = model(batch) # y_true = batch.y.to(device) loss = F.nll_loss(output, batch.y) loss.backward() if clip is not None : torch.nn.utils.clip_grad_norm_(model.parameters(),clip) optimizer.step() epoch_loss.append(loss.item()) epoch_acc.append(accuracy(output, batch.y).item()) if not fastmode : d_val = Data(x=features_val,edge_index=edge_index_val,y=labels_val) d_val = d_val.to(device) model.eval() output = model(d_val) loss_val = F.nll_loss(output, d_val.y) acc_val = accuracy(output,d_val.y).item() print('Epoch {}\t<loss>={:.4f}\t<acc>={:.4f}\tloss_val={:.4f}\tacc_val={:.4f}\tin {:.2f}-s'.format(epoch,np.mean(epoch_loss),np.mean(epoch_acc),loss_val.item(),acc_val,time.time() - t)) return loss_val.item() else : print('Epoch {}\t<loss>={:.4f}\t<acc>={:.4f}\tin {:.2f}-s'.format(epoch,np.mean(epoch_loss),np.mean(epoch_acc),time.time()-t)) return np.mean(epoch_loss) def compute_test(): with open(os.path.join(pdfp,data_test_pkl),'rb') as f : datapkl = pickle.load(f) f.close() features_test = torch.from_numpy(datapkl['features'].todense()).float() labels_test = torch.LongTensor(datapkl['labels']) edge_index_test,_ = scipysparse2torchsparse(datapkl['adj']) del datapkl d_test = Data(x=features_test,edge_index=edge_index_test,y=labels_test) del features_test,edge_index_test,labels_test model.eval() d_test=d_test.to(device) output = model(d_test) loss_test = F.nll_loss(output, d_test.y) # loss_test = nn.BCEWithLogitsLoss(output[idx_test], labels[idx_test]) acc_test = accuracy(output, d_test.y).item() print("Test set results:", "\n loss={:.4f}".format(loss_test.item()), "\n accuracy={:.4f}".format(acc_test)) ## call trainer t_total = time.time() loss_values = [] bad_counter = 0 best = nEpochs + 1 best_epoch = 0 for epoch in range(nEpochs): loss_values.append(train(epoch)) torch.save(model.state_dict(), '{}-'.format(epoch)+replicate+'.pkl') if loss_values[-1] < best: best = loss_values[-1] best_epoch = epoch bad_counter = 0 else: bad_counter += 1 if bad_counter == patience: break files = glob.glob('*-'+replicate+'.pkl') for file in files: epoch_nb = int(file.split('-'+replicate+'.pkl')[0]) if epoch_nb < best_epoch: os.remove(file) files = glob.glob('*-'+replicate+'.pkl') for file in files: epoch_nb = int(file.split('-'+replicate+'.pkl')[0]) if epoch_nb > best_epoch: os.remove(file) print('Optimization Finished!') print('Total time elapsed: {:.2f}-min'.format((time.time() - t_total)/60)) # Restore best model print('Loading epoch #{}'.format(best_epoch)) model.load_state_dict(torch.load('{}-'.format(best_epoch)+replicate+'.pkl')) # Testing compute_test()
[ "torch.LongTensor", "torch.from_numpy", "torch.cuda.is_available", "os.remove", "numpy.mean", "torch.nn.functional.nll_loss", "numpy.random.seed", "random.randint", "glob.glob", "pickle.load", "torch.nn.functional.log_softmax", "torch_geometric.nn.GATConv", "time.time", "torch_geometric.data.Data", "torch.device", "torch.manual_seed", "torch.nn.functional.elu", "os.path.join", "random.seed", "torch.cuda.manual_seed" ]
[((816, 862), 'torch.LongTensor', 'torch.LongTensor', (['[coo_data.row, coo_data.col]'], {}), '([coo_data.row, coo_data.col])\n', (832, 862), False, 'import torch\n'), ((2170, 2196), 'random.randint', 'random.randint', (['(1)', '(1000000)'], {}), '(1, 1000000)\n', (2184, 2196), False, 'import os, sys, pickle, time, random, glob\n'), ((2578, 2613), 'torch.LongTensor', 'torch.LongTensor', (["datapkl['labels']"], {}), "(datapkl['labels'])\n", (2594, 2613), False, 'import torch\n'), ((2702, 2756), 'torch_geometric.data.Data', 'Data', ([], {'x': 'node_features', 'edge_index': 'edge_index', 'y': 'labels'}), '(x=node_features, edge_index=edge_index, y=labels)\n', (2706, 2756), False, 'from torch_geometric.data import Data\n'), ((4296, 4311), 'random.seed', 'random.seed', (['rs'], {}), '(rs)\n', (4307, 4311), False, 'import os, sys, pickle, time, random, glob\n'), ((4317, 4335), 'numpy.random.seed', 'np.random.seed', (['rs'], {}), '(rs)\n', (4331, 4335), True, 'import numpy as np\n'), ((4341, 4362), 'torch.manual_seed', 'torch.manual_seed', (['rs'], {}), '(rs)\n', (4358, 4362), False, 'import torch\n'), ((7125, 7136), 'time.time', 'time.time', ([], {}), '()\n', (7134, 7136), False, 'import os, sys, pickle, time, random, glob\n'), ((7848, 7884), 'glob.glob', 'glob.glob', (["('*-' + replicate + '.pkl')"], {}), "('*-' + replicate + '.pkl')\n", (7857, 7884), False, 'import os, sys, pickle, time, random, glob\n'), ((2392, 2406), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2403, 2406), False, 'import os, sys, pickle, time, random, glob\n'), ((3160, 3195), 'torch.LongTensor', 'torch.LongTensor', (["datapkl['labels']"], {}), "(datapkl['labels'])\n", (3176, 3195), False, 'import torch\n'), ((4268, 4288), 'torch.device', 'torch.device', (['Device'], {}), '(Device)\n', (4280, 4288), False, 'import torch\n'), ((4399, 4425), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['rs'], {}), '(rs)\n', (4421, 4425), False, 'import torch\n'), ((4745, 4756), 'time.time', 'time.time', ([], {}), '()\n', (4754, 4756), False, 'import os, sys, pickle, time, random, glob\n'), ((6395, 6430), 'torch.LongTensor', 'torch.LongTensor', (["datapkl['labels']"], {}), "(datapkl['labels'])\n", (6411, 6430), False, 'import torch\n'), ((6541, 6605), 'torch_geometric.data.Data', 'Data', ([], {'x': 'features_test', 'edge_index': 'edge_index_test', 'y': 'labels_test'}), '(x=features_test, edge_index=edge_index_test, y=labels_test)\n', (6545, 6605), False, 'from torch_geometric.data import Data\n'), ((6770, 6798), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['output', 'd_test.y'], {}), '(output, d_test.y)\n', (6780, 6798), True, 'import torch.nn.functional as F\n'), ((7635, 7671), 'glob.glob', 'glob.glob', (["('*-' + replicate + '.pkl')"], {}), "('*-' + replicate + '.pkl')\n", (7644, 7671), False, 'import os, sys, pickle, time, random, glob\n'), ((2326, 2360), 'os.path.join', 'os.path.join', (['pdfp', 'data_train_pkl'], {}), '(pdfp, data_train_pkl)\n', (2338, 2360), False, 'import os, sys, pickle, time, random, glob\n'), ((3018, 3032), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3029, 3032), False, 'import os, sys, pickle, time, random, glob\n'), ((3429, 3565), 'torch_geometric.nn.GATConv', 'GATConv', (['d.num_node_features'], {'out_channels': 'nHiddenUnits', 'heads': 'nHeads', 'concat': '(True)', 'negative_slope': 'alpha', 'dropout': 'dropout', 'bias': '(True)'}), '(d.num_node_features, out_channels=nHiddenUnits, heads=nHeads,\n concat=True, negative_slope=alpha, dropout=dropout, bias=True)\n', (3436, 3565), False, 'from torch_geometric.nn import GCNConv, GATConv\n'), ((3998, 4006), 'torch.nn.functional.elu', 'F.elu', (['x'], {}), '(x)\n', (4003, 4006), True, 'import torch.nn.functional as F\n'), ((4069, 4092), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (4082, 4092), True, 'import torch.nn.functional as F\n'), ((5086, 5113), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['output', 'batch.y'], {}), '(output, batch.y)\n', (5096, 5113), True, 'import torch.nn.functional as F\n'), ((5437, 5498), 'torch_geometric.data.Data', 'Data', ([], {'x': 'features_val', 'edge_index': 'edge_index_val', 'y': 'labels_val'}), '(x=features_val, edge_index=edge_index_val, y=labels_val)\n', (5441, 5498), False, 'from torch_geometric.data import Data\n'), ((5620, 5647), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['output', 'd_val.y'], {}), '(output, d_val.y)\n', (5630, 5647), True, 'import torch.nn.functional as F\n'), ((6114, 6133), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (6121, 6133), True, 'import numpy as np\n'), ((6251, 6265), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6262, 6265), False, 'import os, sys, pickle, time, random, glob\n'), ((8014, 8029), 'os.remove', 'os.remove', (['file'], {}), '(file)\n', (8023, 8029), False, 'import os, sys, pickle, time, random, glob\n'), ((938, 962), 'torch.from_numpy', 'torch.from_numpy', (['values'], {}), '(values)\n', (954, 962), False, 'import torch\n'), ((2950, 2982), 'os.path.join', 'os.path.join', (['pdfp', 'data_val_pkl'], {}), '(pdfp, data_val_pkl)\n', (2962, 2982), False, 'import os, sys, pickle, time, random, glob\n'), ((4168, 4193), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4191, 4193), False, 'import torch\n'), ((6182, 6215), 'os.path.join', 'os.path.join', (['pdfp', 'data_test_pkl'], {}), '(pdfp, data_test_pkl)\n', (6194, 6215), False, 'import os, sys, pickle, time, random, glob\n'), ((7817, 7832), 'os.remove', 'os.remove', (['file'], {}), '(file)\n', (7826, 7832), False, 'import os, sys, pickle, time, random, glob\n'), ((5821, 5840), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (5828, 5840), True, 'import numpy as np\n'), ((5841, 5859), 'numpy.mean', 'np.mean', (['epoch_acc'], {}), '(epoch_acc)\n', (5848, 5859), True, 'import numpy as np\n'), ((6039, 6058), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (6046, 6058), True, 'import numpy as np\n'), ((6059, 6077), 'numpy.mean', 'np.mean', (['epoch_acc'], {}), '(epoch_acc)\n', (6066, 6077), True, 'import numpy as np\n'), ((8121, 8132), 'time.time', 'time.time', ([], {}), '()\n', (8130, 8132), False, 'import os, sys, pickle, time, random, glob\n'), ((5884, 5895), 'time.time', 'time.time', ([], {}), '()\n', (5893, 5895), False, 'import os, sys, pickle, time, random, glob\n'), ((6078, 6089), 'time.time', 'time.time', ([], {}), '()\n', (6087, 6089), False, 'import os, sys, pickle, time, random, glob\n')]
import numpy as np from sklearn import linear_model from sklearn.preprocessing import scale from sklearn.datasets import make_regression from plasticnet.solvers.functional import ( ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net, ) def test_ordinary_least_squares_explicit(N=1500, D=1000, tol=1e-12, max_iter=10000): r"""Test explicitly coded special case OLS numba code in :meth:`plasticnet.solvers.functional.ordinary_least_squares` against sklearn LinearRegression.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N, coef=True ) X, y = scale(X), scale(y) lm = linear_model.LinearRegression() lm.fit(X, y) beta = ordinary_least_squares(X, y, tol=tol, max_iter=max_iter) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_ridge_explicit(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test explicitly coded special case ridge numba code in :meth:`plasticnet.solvers.functional.ridge` against sklearn elastic net with l1_ratio=0.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() lm = linear_model.Ridge(alpha=lambda_total * N, tol=tol, max_iter=max_iter) lm.fit(X, y) beta = ridge(X, y, lambda_total=lambda_total, tol=tol, max_iter=max_iter) np.testing.assert_almost_equal(beta, lm.coef_, decimal=4) def test_lasso_explicit(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test explicitly coded special case lasso numba code in :meth:`plasticnet.solvers.functional.lasso` against sklearn elastic net with `l1_ratio=1`.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=1.0, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = lasso(X, y, lambda_total=lambda_total, tol=tol, max_iter=max_iter) np.testing.assert_almost_equal(beta, lm.coef_, decimal=4) def test_elastic_net_explicit_ordinary_least_squares( N=1500, D=1000, tol=1e-12, max_iter=10000 ): r"""Test explicitly coded special case elastic net with :math:`\lambda=0` in :meth:`plasticnet.solvers.functional.elastic_net` against sklearn LinearRegression.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N, coef=True ) X, y = scale(X), scale(y) lm = linear_model.LinearRegression() lm.fit(X, y) beta = elastic_net(X, y, lambda_total=0.0, alpha=0.0, tol=tol, max_iter=max_iter) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_elastic_net_explicit(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test explicitly coded elastic net in :meth:`plasticnet.solvers.functional.elastic_net` against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() elastic_net_lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) elastic_net_lm.fit(X, y) beta = elastic_net( X, y, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(elastic_net_lm.coef_, beta, decimal=4) def test_ordinary_least_squares_general(N=1500, D=1000, tol=1e-12, max_iter=10000): r"""Test OLS (:math:`\lambda=0` in :meth:`plasticnet.solvers.functional.general_plastic_net`) against sklearn LinearRegression.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = 0.0 alpha = 0.0 xi = np.zeros(D, dtype=np.float64) zeta = np.zeros(D, dtype=np.float64) lm = linear_model.LinearRegression() lm.fit(X, y) beta = general_plastic_net( X, y, xi, zeta, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter, ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_elastic_net_general(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test elastic net (:math:`\xi=0` and :math:`\zeta=0` in :meth:`plasticnet.solvers.functional.general_plastic_net`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() xi = np.zeros(D, dtype=np.float64) zeta = np.zeros(D, dtype=np.float64) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = general_plastic_net( X, y, xi, zeta, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter, ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_plastic_ridge_trivial(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test plastic ridge(:math:`\zeta=0` in :meth:`plasticnet.solvers.functional.plastic_ridge`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() zeta = np.zeros(D, dtype=np.float64) lm = linear_model.Ridge(alpha=lambda_total * N, tol=tol, max_iter=max_iter) lm.fit(X, y) beta = plastic_ridge( X, y, zeta, lambda_total=lambda_total, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_plastic_ridge_real(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test :meth:`plasticnet.solvers.functional.plastic_ridge` against sklearn ElasticNet with transformed variables.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() zeta = np.random.randn(D).astype(np.float64) X_prime = X y_prime = y - np.dot(X, zeta) lm = linear_model.Ridge(alpha=lambda_total * N, tol=tol, max_iter=max_iter) lm.fit(X_prime, y_prime) beta_lm = lm.coef_ + zeta beta = plastic_ridge( X, y, zeta, lambda_total=lambda_total, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) def test_plastic_lasso_trivial(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test plastic lasso (:math:`\xi=0` in :meth:`plasticnet.solvers.functional.plastic_lasso`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() xi = np.zeros(D, dtype=np.float64) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=1, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = plastic_lasso( X, y, xi, lambda_total=lambda_total, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_plastic_lasso_real(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test :meth:`plasticnet.solvers.functional.plastic_lasso` against sklearn ElasticNet with transformed variables.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() xi = np.random.randn(D).astype(np.float64) X_prime = X y_prime = y - np.dot(X, xi) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=1, tol=tol, max_iter=max_iter ) lm.fit(X_prime, y_prime) beta_lm = lm.coef_ + xi beta = plastic_lasso( X, y, xi, lambda_total=lambda_total, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) def test_hard_plastic_net_trivial(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test hard plastic net (:math:`\xi=0` and in :meth:`plasticnet.solvers.functional.hard_plastic_net`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() xi = np.zeros(D, dtype=np.float64) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = hard_plastic_net( X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_hard_plastic_net_limiting_cases(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test hard plastic net :meth:`plasticnet.solvers.functional.hard_plastic_net` against sklearn ElasticNet in limiting cases.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() xi = np.random.randn(D).astype(np.float64) X_prime = X y_prime = y - np.dot(X, xi) alpha = 1.0 lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X_prime, y_prime) beta_lm = lm.coef_ + xi beta = hard_plastic_net( X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) alpha = 0.0 lm = linear_model.Ridge(alpha=lambda_total * N, tol=tol, max_iter=max_iter) lm.fit(X, y) beta_lm = lm.coef_ beta = hard_plastic_net( X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) def test_soft_plastic_net_trivial(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test soft plastic net (:math:`\zeta=0` in :meth:`plasticnet.solvers.functional.soft_plastic_net`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() zeta = np.zeros(D, dtype=np.float64) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = soft_plastic_net( X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_soft_plastic_net_limiting_cases(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test :meth:`plasticnet.solvers.functional.soft_plastic_net` against sklearn ElasticNet in limiting cases.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() zeta = np.random.randn(D).astype(np.float64) alpha = 1.0 lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta_lm = lm.coef_ beta = soft_plastic_net( X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) alpha = 0.0 X_prime = X y_prime = y - np.dot(X, zeta) lm = linear_model.Ridge(alpha=lambda_total * N, tol=tol, max_iter=max_iter) lm.fit(X_prime, y_prime) beta_lm = lm.coef_ + zeta beta = soft_plastic_net( X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4) def test_unified_plastic_net_trivial(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test unified plastic net (:math:`\xi=0` in :meth:`plasticnet.solvers.functional.unified_plastic_net`) against sklearn ElasticNet.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() xi = np.zeros(D, dtype=np.float64) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X, y) beta = unified_plastic_net( X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(lm.coef_, beta, decimal=4) def test_unified_plastic_net_real(N=500, D=1000, tol=1e-12, max_iter=10000): r"""Test :meth:`plasticnet.solvers.functional.unified_plastic_net` against sklearn ElasticNet with transformed variables.""" X, y, beta_true = make_regression( n_samples=N, n_features=D, n_informative=N // 10, coef=True ) X, y = scale(X), scale(y) lambda_total = np.random.exponential() alpha = np.random.rand() xi = np.random.randn(D).astype(np.float64) X_prime = X y_prime = y - np.dot(X, xi) lm = linear_model.ElasticNet( alpha=lambda_total, l1_ratio=alpha, tol=tol, max_iter=max_iter ) lm.fit(X_prime, y_prime) beta_lm = lm.coef_ + xi beta = unified_plastic_net( X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter=max_iter ) np.testing.assert_almost_equal(beta_lm, beta, decimal=4)
[ "numpy.random.rand", "numpy.random.exponential", "plasticnet.solvers.functional.elastic_net", "plasticnet.solvers.functional.ridge", "plasticnet.solvers.functional.unified_plastic_net", "sklearn.datasets.make_regression", "numpy.testing.assert_almost_equal", "numpy.dot", "plasticnet.solvers.functional.hard_plastic_net", "plasticnet.solvers.functional.lasso", "plasticnet.solvers.functional.plastic_lasso", "sklearn.linear_model.ElasticNet", "plasticnet.solvers.functional.plastic_ridge", "plasticnet.solvers.functional.soft_plastic_net", "plasticnet.solvers.functional.general_plastic_net", "numpy.random.randn", "sklearn.linear_model.LinearRegression", "sklearn.preprocessing.scale", "plasticnet.solvers.functional.ordinary_least_squares", "sklearn.linear_model.Ridge", "numpy.zeros" ]
[((653, 723), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': 'N', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N, coef=True)\n', (668, 723), False, 'from sklearn.datasets import make_regression\n'), ((778, 809), 'sklearn.linear_model.LinearRegression', 'linear_model.LinearRegression', ([], {}), '()\n', (807, 809), False, 'from sklearn import linear_model\n'), ((839, 895), 'plasticnet.solvers.functional.ordinary_least_squares', 'ordinary_least_squares', (['X', 'y'], {'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, tol=tol, max_iter=max_iter)\n', (861, 895), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((901, 958), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (931, 958), True, 'import numpy as np\n'), ((1206, 1276), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': 'N', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N, coef=True)\n', (1221, 1276), False, 'from sklearn.datasets import make_regression\n'), ((1341, 1364), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (1362, 1364), True, 'import numpy as np\n'), ((1375, 1445), 'sklearn.linear_model.Ridge', 'linear_model.Ridge', ([], {'alpha': '(lambda_total * N)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total * N, tol=tol, max_iter=max_iter)\n', (1393, 1445), False, 'from sklearn import linear_model\n'), ((1475, 1541), 'plasticnet.solvers.functional.ridge', 'ridge', (['X', 'y'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, lambda_total=lambda_total, tol=tol, max_iter=max_iter)\n', (1480, 1541), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((1547, 1604), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta', 'lm.coef_'], {'decimal': '(4)'}), '(beta, lm.coef_, decimal=4)\n', (1577, 1604), True, 'import numpy as np\n'), ((1854, 1924), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': 'N', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N, coef=True)\n', (1869, 1924), False, 'from sklearn.datasets import make_regression\n'), ((1989, 2012), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (2010, 2012), True, 'import numpy as np\n'), ((2023, 2113), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': '(1.0)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=1.0, tol=tol, max_iter\n =max_iter)\n', (2046, 2113), False, 'from sklearn import linear_model\n'), ((2152, 2218), 'plasticnet.solvers.functional.lasso', 'lasso', (['X', 'y'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, lambda_total=lambda_total, tol=tol, max_iter=max_iter)\n', (2157, 2218), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((2224, 2281), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta', 'lm.coef_'], {'decimal': '(4)'}), '(beta, lm.coef_, decimal=4)\n', (2254, 2281), True, 'import numpy as np\n'), ((2578, 2648), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': 'N', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N, coef=True)\n', (2593, 2648), False, 'from sklearn.datasets import make_regression\n'), ((2703, 2734), 'sklearn.linear_model.LinearRegression', 'linear_model.LinearRegression', ([], {}), '()\n', (2732, 2734), False, 'from sklearn import linear_model\n'), ((2764, 2838), 'plasticnet.solvers.functional.elastic_net', 'elastic_net', (['X', 'y'], {'lambda_total': '(0.0)', 'alpha': '(0.0)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, lambda_total=0.0, alpha=0.0, tol=tol, max_iter=max_iter)\n', (2775, 2838), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((2844, 2901), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (2874, 2901), True, 'import numpy as np\n'), ((3126, 3202), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (3141, 3202), False, 'from sklearn.datasets import make_regression\n'), ((3267, 3290), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (3288, 3290), True, 'import numpy as np\n'), ((3303, 3319), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (3317, 3319), True, 'import numpy as np\n'), ((3342, 3433), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (3365, 3433), False, 'from sklearn import linear_model\n'), ((3485, 3575), 'plasticnet.solvers.functional.elastic_net', 'elastic_net', (['X', 'y'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, lambda_total=lambda_total, alpha=alpha, tol=tol, max_iter\n =max_iter)\n', (3496, 3575), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((3590, 3659), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['elastic_net_lm.coef_', 'beta'], {'decimal': '(4)'}), '(elastic_net_lm.coef_, beta, decimal=4)\n', (3620, 3659), True, 'import numpy as np\n'), ((3904, 3980), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (3919, 3980), False, 'from sklearn.datasets import make_regression\n'), ((4074, 4103), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (4082, 4103), True, 'import numpy as np\n'), ((4115, 4144), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (4123, 4144), True, 'import numpy as np\n'), ((4155, 4186), 'sklearn.linear_model.LinearRegression', 'linear_model.LinearRegression', ([], {}), '()\n', (4184, 4186), False, 'from sklearn import linear_model\n'), ((4216, 4323), 'plasticnet.solvers.functional.general_plastic_net', 'general_plastic_net', (['X', 'y', 'xi', 'zeta'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, zeta, lambda_total=lambda_total, alpha=alpha,\n tol=tol, max_iter=max_iter)\n', (4235, 4323), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((4396, 4453), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (4426, 4453), True, 'import numpy as np\n'), ((4704, 4780), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (4719, 4780), False, 'from sklearn.datasets import make_regression\n'), ((4845, 4868), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (4866, 4868), True, 'import numpy as np\n'), ((4881, 4897), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4895, 4897), True, 'import numpy as np\n'), ((4907, 4936), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (4915, 4936), True, 'import numpy as np\n'), ((4948, 4977), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (4956, 4977), True, 'import numpy as np\n'), ((4988, 5079), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (5011, 5079), False, 'from sklearn import linear_model\n'), ((5119, 5226), 'plasticnet.solvers.functional.general_plastic_net', 'general_plastic_net', (['X', 'y', 'xi', 'zeta'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, zeta, lambda_total=lambda_total, alpha=alpha,\n tol=tol, max_iter=max_iter)\n', (5138, 5226), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((5299, 5356), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (5329, 5356), True, 'import numpy as np\n'), ((5586, 5662), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (5601, 5662), False, 'from sklearn.datasets import make_regression\n'), ((5727, 5750), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (5748, 5750), True, 'import numpy as np\n'), ((5762, 5791), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (5770, 5791), True, 'import numpy as np\n'), ((5802, 5872), 'sklearn.linear_model.Ridge', 'linear_model.Ridge', ([], {'alpha': '(lambda_total * N)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total * N, tol=tol, max_iter=max_iter)\n', (5820, 5872), False, 'from sklearn import linear_model\n'), ((5902, 5987), 'plasticnet.solvers.functional.plastic_ridge', 'plastic_ridge', (['X', 'y', 'zeta'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, zeta, lambda_total=lambda_total, tol=tol, max_iter=max_iter\n )\n', (5915, 5987), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((6002, 6059), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (6032, 6059), True, 'import numpy as np\n'), ((6279, 6355), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (6294, 6355), False, 'from sklearn.datasets import make_regression\n'), ((6420, 6443), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (6441, 6443), True, 'import numpy as np\n'), ((6554, 6624), 'sklearn.linear_model.Ridge', 'linear_model.Ridge', ([], {'alpha': '(lambda_total * N)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total * N, tol=tol, max_iter=max_iter)\n', (6572, 6624), False, 'from sklearn import linear_model\n'), ((6696, 6781), 'plasticnet.solvers.functional.plastic_ridge', 'plastic_ridge', (['X', 'y', 'zeta'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, zeta, lambda_total=lambda_total, tol=tol, max_iter=max_iter\n )\n', (6709, 6781), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((6796, 6852), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (6826, 6852), True, 'import numpy as np\n'), ((7081, 7157), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (7096, 7157), False, 'from sklearn.datasets import make_regression\n'), ((7222, 7245), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (7243, 7245), True, 'import numpy as np\n'), ((7255, 7284), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (7263, 7284), True, 'import numpy as np\n'), ((7295, 7383), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': '(1)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=1, tol=tol, max_iter=\n max_iter)\n', (7318, 7383), False, 'from sklearn import linear_model\n'), ((7422, 7500), 'plasticnet.solvers.functional.plastic_lasso', 'plastic_lasso', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, tol=tol, max_iter=max_iter)\n', (7435, 7500), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((7520, 7577), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (7550, 7577), True, 'import numpy as np\n'), ((7797, 7873), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (7812, 7873), False, 'from sklearn.datasets import make_regression\n'), ((7938, 7961), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (7959, 7961), True, 'import numpy as np\n'), ((8068, 8156), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': '(1)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=1, tol=tol, max_iter=\n max_iter)\n', (8091, 8156), False, 'from sklearn import linear_model\n'), ((8235, 8313), 'plasticnet.solvers.functional.plastic_lasso', 'plastic_lasso', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, tol=tol, max_iter=max_iter)\n', (8248, 8313), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((8333, 8389), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (8363, 8389), True, 'import numpy as np\n'), ((8631, 8707), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (8646, 8707), False, 'from sklearn.datasets import make_regression\n'), ((8772, 8795), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (8793, 8795), True, 'import numpy as np\n'), ((8808, 8824), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (8822, 8824), True, 'import numpy as np\n'), ((8834, 8863), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (8842, 8863), True, 'import numpy as np\n'), ((8874, 8965), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (8897, 8965), False, 'from sklearn import linear_model\n'), ((9005, 9103), 'plasticnet.solvers.functional.hard_plastic_net', 'hard_plastic_net', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol,\n max_iter=max_iter)\n', (9021, 9103), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((9119, 9176), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (9149, 9176), True, 'import numpy as np\n'), ((9420, 9496), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (9435, 9496), False, 'from sklearn.datasets import make_regression\n'), ((9561, 9584), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (9582, 9584), True, 'import numpy as np\n'), ((9708, 9799), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (9731, 9799), False, 'from sklearn import linear_model\n'), ((9879, 9977), 'plasticnet.solvers.functional.hard_plastic_net', 'hard_plastic_net', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol,\n max_iter=max_iter)\n', (9895, 9977), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((9993, 10049), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (10023, 10049), True, 'import numpy as np\n'), ((10077, 10147), 'sklearn.linear_model.Ridge', 'linear_model.Ridge', ([], {'alpha': '(lambda_total * N)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total * N, tol=tol, max_iter=max_iter)\n', (10095, 10147), False, 'from sklearn import linear_model\n'), ((10201, 10299), 'plasticnet.solvers.functional.hard_plastic_net', 'hard_plastic_net', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=tol,\n max_iter=max_iter)\n', (10217, 10299), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((10315, 10371), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (10345, 10371), True, 'import numpy as np\n'), ((10611, 10687), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (10626, 10687), False, 'from sklearn.datasets import make_regression\n'), ((10752, 10775), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (10773, 10775), True, 'import numpy as np\n'), ((10788, 10804), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (10802, 10804), True, 'import numpy as np\n'), ((10816, 10845), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (10824, 10845), True, 'import numpy as np\n'), ((10856, 10947), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (10879, 10947), False, 'from sklearn import linear_model\n'), ((10987, 11088), 'plasticnet.solvers.functional.soft_plastic_net', 'soft_plastic_net', (['X', 'y', 'zeta'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=\n tol, max_iter=max_iter)\n', (11003, 11088), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((11103, 11160), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (11133, 11160), True, 'import numpy as np\n'), ((11387, 11463), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (11402, 11463), False, 'from sklearn.datasets import make_regression\n'), ((11528, 11551), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (11549, 11551), True, 'import numpy as np\n'), ((11628, 11719), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (11651, 11719), False, 'from sklearn import linear_model\n'), ((11782, 11883), 'plasticnet.solvers.functional.soft_plastic_net', 'soft_plastic_net', (['X', 'y', 'zeta'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=\n tol, max_iter=max_iter)\n', (11798, 11883), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((11898, 11954), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (11928, 11954), True, 'import numpy as np\n'), ((12033, 12103), 'sklearn.linear_model.Ridge', 'linear_model.Ridge', ([], {'alpha': '(lambda_total * N)', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total * N, tol=tol, max_iter=max_iter)\n', (12051, 12103), False, 'from sklearn import linear_model\n'), ((12176, 12277), 'plasticnet.solvers.functional.soft_plastic_net', 'soft_plastic_net', (['X', 'y', 'zeta'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, zeta, lambda_total=lambda_total, alpha=alpha, tol=\n tol, max_iter=max_iter)\n', (12192, 12277), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((12292, 12348), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (12322, 12348), True, 'import numpy as np\n'), ((12595, 12671), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (12610, 12671), False, 'from sklearn.datasets import make_regression\n'), ((12736, 12759), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (12757, 12759), True, 'import numpy as np\n'), ((12772, 12788), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (12786, 12788), True, 'import numpy as np\n'), ((12798, 12827), 'numpy.zeros', 'np.zeros', (['D'], {'dtype': 'np.float64'}), '(D, dtype=np.float64)\n', (12806, 12827), True, 'import numpy as np\n'), ((12838, 12929), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (12861, 12929), False, 'from sklearn import linear_model\n'), ((12969, 13071), 'plasticnet.solvers.functional.unified_plastic_net', 'unified_plastic_net', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=\n tol, max_iter=max_iter)\n', (12988, 13071), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((13086, 13143), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['lm.coef_', 'beta'], {'decimal': '(4)'}), '(lm.coef_, beta, decimal=4)\n', (13116, 13143), True, 'import numpy as np\n'), ((13375, 13451), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'N', 'n_features': 'D', 'n_informative': '(N // 10)', 'coef': '(True)'}), '(n_samples=N, n_features=D, n_informative=N // 10, coef=True)\n', (13390, 13451), False, 'from sklearn.datasets import make_regression\n'), ((13516, 13539), 'numpy.random.exponential', 'np.random.exponential', ([], {}), '()\n', (13537, 13539), True, 'import numpy as np\n'), ((13552, 13568), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (13566, 13568), True, 'import numpy as np\n'), ((13675, 13766), 'sklearn.linear_model.ElasticNet', 'linear_model.ElasticNet', ([], {'alpha': 'lambda_total', 'l1_ratio': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(alpha=lambda_total, l1_ratio=alpha, tol=tol,\n max_iter=max_iter)\n', (13698, 13766), False, 'from sklearn import linear_model\n'), ((13846, 13948), 'plasticnet.solvers.functional.unified_plastic_net', 'unified_plastic_net', (['X', 'y', 'xi'], {'lambda_total': 'lambda_total', 'alpha': 'alpha', 'tol': 'tol', 'max_iter': 'max_iter'}), '(X, y, xi, lambda_total=lambda_total, alpha=alpha, tol=\n tol, max_iter=max_iter)\n', (13865, 13948), False, 'from plasticnet.solvers.functional import ordinary_least_squares, ridge, lasso, elastic_net, general_plastic_net, plastic_ridge, plastic_lasso, hard_plastic_net, soft_plastic_net, unified_plastic_net\n'), ((13963, 14019), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['beta_lm', 'beta'], {'decimal': '(4)'}), '(beta_lm, beta, decimal=4)\n', (13993, 14019), True, 'import numpy as np\n'), ((749, 757), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (754, 757), False, 'from sklearn.preprocessing import scale\n'), ((759, 767), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (764, 767), False, 'from sklearn.preprocessing import scale\n'), ((1302, 1310), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (1307, 1310), False, 'from sklearn.preprocessing import scale\n'), ((1312, 1320), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (1317, 1320), False, 'from sklearn.preprocessing import scale\n'), ((1950, 1958), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (1955, 1958), False, 'from sklearn.preprocessing import scale\n'), ((1960, 1968), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (1965, 1968), False, 'from sklearn.preprocessing import scale\n'), ((2674, 2682), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (2679, 2682), False, 'from sklearn.preprocessing import scale\n'), ((2684, 2692), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (2689, 2692), False, 'from sklearn.preprocessing import scale\n'), ((3228, 3236), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (3233, 3236), False, 'from sklearn.preprocessing import scale\n'), ((3238, 3246), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (3243, 3246), False, 'from sklearn.preprocessing import scale\n'), ((4006, 4014), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (4011, 4014), False, 'from sklearn.preprocessing import scale\n'), ((4016, 4024), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (4021, 4024), False, 'from sklearn.preprocessing import scale\n'), ((4806, 4814), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (4811, 4814), False, 'from sklearn.preprocessing import scale\n'), ((4816, 4824), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (4821, 4824), False, 'from sklearn.preprocessing import scale\n'), ((5688, 5696), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (5693, 5696), False, 'from sklearn.preprocessing import scale\n'), ((5698, 5706), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (5703, 5706), False, 'from sklearn.preprocessing import scale\n'), ((6381, 6389), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (6386, 6389), False, 'from sklearn.preprocessing import scale\n'), ((6391, 6399), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (6396, 6399), False, 'from sklearn.preprocessing import scale\n'), ((6528, 6543), 'numpy.dot', 'np.dot', (['X', 'zeta'], {}), '(X, zeta)\n', (6534, 6543), True, 'import numpy as np\n'), ((7183, 7191), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (7188, 7191), False, 'from sklearn.preprocessing import scale\n'), ((7193, 7201), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (7198, 7201), False, 'from sklearn.preprocessing import scale\n'), ((7899, 7907), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (7904, 7907), False, 'from sklearn.preprocessing import scale\n'), ((7909, 7917), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (7914, 7917), False, 'from sklearn.preprocessing import scale\n'), ((8044, 8057), 'numpy.dot', 'np.dot', (['X', 'xi'], {}), '(X, xi)\n', (8050, 8057), True, 'import numpy as np\n'), ((8733, 8741), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (8738, 8741), False, 'from sklearn.preprocessing import scale\n'), ((8743, 8751), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (8748, 8751), False, 'from sklearn.preprocessing import scale\n'), ((9522, 9530), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (9527, 9530), False, 'from sklearn.preprocessing import scale\n'), ((9532, 9540), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (9537, 9540), False, 'from sklearn.preprocessing import scale\n'), ((9667, 9680), 'numpy.dot', 'np.dot', (['X', 'xi'], {}), '(X, xi)\n', (9673, 9680), True, 'import numpy as np\n'), ((10713, 10721), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (10718, 10721), False, 'from sklearn.preprocessing import scale\n'), ((10723, 10731), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (10728, 10731), False, 'from sklearn.preprocessing import scale\n'), ((11489, 11497), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (11494, 11497), False, 'from sklearn.preprocessing import scale\n'), ((11499, 11507), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (11504, 11507), False, 'from sklearn.preprocessing import scale\n'), ((12007, 12022), 'numpy.dot', 'np.dot', (['X', 'zeta'], {}), '(X, zeta)\n', (12013, 12022), True, 'import numpy as np\n'), ((12697, 12705), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (12702, 12705), False, 'from sklearn.preprocessing import scale\n'), ((12707, 12715), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (12712, 12715), False, 'from sklearn.preprocessing import scale\n'), ((13477, 13485), 'sklearn.preprocessing.scale', 'scale', (['X'], {}), '(X)\n', (13482, 13485), False, 'from sklearn.preprocessing import scale\n'), ((13487, 13495), 'sklearn.preprocessing.scale', 'scale', (['y'], {}), '(y)\n', (13492, 13495), False, 'from sklearn.preprocessing import scale\n'), ((13651, 13664), 'numpy.dot', 'np.dot', (['X', 'xi'], {}), '(X, xi)\n', (13657, 13664), True, 'import numpy as np\n'), ((6455, 6473), 'numpy.random.randn', 'np.random.randn', (['D'], {}), '(D)\n', (6470, 6473), True, 'import numpy as np\n'), ((7971, 7989), 'numpy.random.randn', 'np.random.randn', (['D'], {}), '(D)\n', (7986, 7989), True, 'import numpy as np\n'), ((9594, 9612), 'numpy.random.randn', 'np.random.randn', (['D'], {}), '(D)\n', (9609, 9612), True, 'import numpy as np\n'), ((11563, 11581), 'numpy.random.randn', 'np.random.randn', (['D'], {}), '(D)\n', (11578, 11581), True, 'import numpy as np\n'), ((13578, 13596), 'numpy.random.randn', 'np.random.randn', (['D'], {}), '(D)\n', (13593, 13596), True, 'import numpy as np\n')]
import numpy as np class DataSet(object): def __init__(self, data, shuffle=False): self._data = self._auto_expand(data) self._num_members = self._data.shape[0] self._index_in_epoch = 0 # Shuffle the data if shuffle: perm = np.arange(self._num_members) np.random.shuffle(perm) self._data = self._data[perm] @property def num_members(self): return self._num_members @property def data(self): return self._data def get_batch(self, batch_size, length=None): original_length = self._data.shape[1] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_members: # Shuffle the data perm = np.arange(self._num_members) np.random.shuffle(perm) self._data = self._data[perm] # Start the next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_members end = self._index_in_epoch if length is None: return self._data[start:end] else: start_n = np.random.randint(0, original_length - length) return self._data[start:end, start_n:(start_n + length)] def _auto_expand(self, data): r = len(data.shape) if r == 2: expanded_data = np.expand_dims(data, axis=0) return expanded_data elif r < 2 or r > 3: print('Inappropriate data dimension.') exit(1) else: return data
[ "numpy.random.randint", "numpy.expand_dims", "numpy.arange", "numpy.random.shuffle" ]
[((252, 280), 'numpy.arange', 'np.arange', (['self._num_members'], {}), '(self._num_members)\n', (261, 280), True, 'import numpy as np\n'), ((287, 310), 'numpy.random.shuffle', 'np.random.shuffle', (['perm'], {}), '(perm)\n', (304, 310), True, 'import numpy as np\n'), ((717, 745), 'numpy.arange', 'np.arange', (['self._num_members'], {}), '(self._num_members)\n', (726, 745), True, 'import numpy as np\n'), ((752, 775), 'numpy.random.shuffle', 'np.random.shuffle', (['perm'], {}), '(perm)\n', (769, 775), True, 'import numpy as np\n'), ((1057, 1103), 'numpy.random.randint', 'np.random.randint', (['(0)', '(original_length - length)'], {}), '(0, original_length - length)\n', (1074, 1103), True, 'import numpy as np\n'), ((1261, 1289), 'numpy.expand_dims', 'np.expand_dims', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (1275, 1289), True, 'import numpy as np\n')]
""" Evaluate a musical composition represented as a `Piece` instance. Author: <NAME> """ from collections import Counter from typing import Any, Callable, Dict, Optional import numpy as np from scipy.stats import entropy from rlmusician.environment.piece import Piece from rlmusician.utils import rolling_aggregate def evaluate_absence_of_looped_fragments( piece: Piece, min_size: int = 4, max_size: Optional[int] = None ) -> float: """ Evaluate non-triviality of a piece based on absence of looped fragments. :param piece: `Piece` instance :param min_size: minimum duration of a fragment (in eighths) :param max_size: maximum duration of a fragment (in eighths) :return: multiplied by -1 number of looped fragments """ score = 0 max_size = max_size or piece.total_duration_in_eighths // 2 for size in range(min_size, max_size + 1): max_position = piece.total_duration_in_eighths - 2 * size penultimate_measure_end = piece.total_duration_in_eighths - 8 max_position = min(max_position, penultimate_measure_end - 1) for position in range(0, max_position + 1): fragment = piece.piano_roll[:, position:position+size] next_fragment = piece.piano_roll[:, position+size:position+2*size] if np.array_equal(fragment, next_fragment): score -= 1 return score def evaluate_entropy(piece: Piece) -> float: """ Evaluate non-triviality of counterpoint line based on entropy. :param piece: `Piece` instance :return: normalized average over all lines entropy of pitches distribution """ positions = [ x.scale_element.position_in_degrees for x in piece.counterpoint ] counter = Counter(positions) lower_position = piece.lowest_element.position_in_degrees upper_position = piece.highest_element.position_in_degrees elements = piece.scale.elements[lower_position:upper_position + 1] distribution = [ counter[element.position_in_degrees] / len(piece.counterpoint) for element in elements ] raw_score = entropy(distribution) max_entropy_distribution = [1 / len(elements) for _ in elements] denominator = entropy(max_entropy_distribution) score = raw_score / denominator return score def evaluate_absence_of_narrow_ranges( piece: Piece, min_size: int = 9, penalties: Optional[Dict[int, float]] = None ) -> float: """ Evaluate melodic fluency based on absence of narrow ranges. :param piece: `Piece` instance :param min_size: minimum size of narrow range (in line elements) :param penalties: mapping from width of a range (in scale degrees) to penalty applicable to ranges of not greater width :return: multiplied by -1 count of narrow ranges weighted based on their width """ penalties = penalties or {2: 1, 3: 0.5} pitches = [x.scale_element.position_in_degrees for x in piece.counterpoint] rolling_mins = rolling_aggregate(pitches, min, min_size)[min_size-1:] rolling_maxs = rolling_aggregate(pitches, max, min_size)[min_size-1:] borders = zip(rolling_mins, rolling_maxs) score = 0 for lower_border, upper_border in borders: range_width = upper_border - lower_border curr_penalties = [v for k, v in penalties.items() if k >= range_width] penalty = max(curr_penalties) if curr_penalties else 0 score -= penalty return score def evaluate_climax_explicity( piece: Piece, shortage_penalty: float = 0.3, duplication_penalty: float = 0.5 ) -> float: """ Evaluate goal-orientedness of counterpoint line based on climax explicity. :param piece: `Piece` instance :param shortage_penalty: penalty for each scale degree between declared highest pitch of a line and actual highest pitch of this line :param duplication_penalty: penalty for each non-first occurrence of line's highest pitch within this line :return: one minus all applicable penalties """ max_position = piece.counterpoint[0].scale_element.position_in_degrees n_duplications = 0 for line_element in piece.counterpoint[1:]: current_position = line_element.scale_element.position_in_degrees if current_position == max_position: n_duplications += 1 elif current_position > max_position: max_position = current_position n_duplications = 0 declared_max_position = piece.highest_element.position_in_degrees shortage = declared_max_position - max_position shortage_term = shortage_penalty * shortage duplication_term = duplication_penalty * n_duplications score = 1 - shortage_term - duplication_term return score def evaluate_number_of_skips( piece: Piece, rewards: Optional[Dict[int, float]] = None ) -> float: """ Evaluate interestingness/coherency of counterpoint based on skips number. :param piece: `Piece` instance :param rewards: mapping from number of skips to reward :return: reward assigned to balancing between interestingess and coherency of counterpoint line """ rewards = rewards or {1: 0.8, 2: 0.9, 3: 1, 4: 0.9, 5: 0.5, 6: 0.25} n_skips = 0 for movement in piece.past_movements: if abs(movement) > 1: n_skips += 1 score = rewards.get(n_skips, 0) return score def get_scoring_functions_registry() -> Dict[str, Callable]: """ Get mapping from names of scoring functions to scoring functions. :return: registry of scoring functions """ registry = { 'looped_fragments': evaluate_absence_of_looped_fragments, 'entropy': evaluate_entropy, 'narrow_ranges': evaluate_absence_of_narrow_ranges, 'climax_explicity': evaluate_climax_explicity, 'number_of_skips': evaluate_number_of_skips, } return registry def evaluate( piece: Piece, scoring_coefs: Dict[str, float], scoring_fn_params: Dict[str, Dict[str, Any]], verbose: bool = False ) -> float: """ Evaluate piece. :param piece: `Piece` instance :param scoring_coefs: mapping from scoring function names to their weights in final score :param scoring_fn_params: mapping from scoring function names to their parameters :param verbose: if it is set to `True`, scores are printed with detailing by functions :return: weighted sum of scores returned by various scoring functions """ score = 0 registry = get_scoring_functions_registry() for fn_name, weight in scoring_coefs.items(): fn = registry[fn_name] fn_params = scoring_fn_params.get(fn_name, {}) curr_score = weight * fn(piece, **fn_params) if verbose: print(f'{fn_name:>30}: {curr_score}') # pragma: no cover score += curr_score return score
[ "collections.Counter", "scipy.stats.entropy", "numpy.array_equal", "rlmusician.utils.rolling_aggregate" ]
[((1804, 1822), 'collections.Counter', 'Counter', (['positions'], {}), '(positions)\n', (1811, 1822), False, 'from collections import Counter\n'), ((2165, 2186), 'scipy.stats.entropy', 'entropy', (['distribution'], {}), '(distribution)\n', (2172, 2186), False, 'from scipy.stats import entropy\n'), ((2274, 2307), 'scipy.stats.entropy', 'entropy', (['max_entropy_distribution'], {}), '(max_entropy_distribution)\n', (2281, 2307), False, 'from scipy.stats import entropy\n'), ((3083, 3124), 'rlmusician.utils.rolling_aggregate', 'rolling_aggregate', (['pitches', 'min', 'min_size'], {}), '(pitches, min, min_size)\n', (3100, 3124), False, 'from rlmusician.utils import rolling_aggregate\n'), ((3157, 3198), 'rlmusician.utils.rolling_aggregate', 'rolling_aggregate', (['pitches', 'max', 'min_size'], {}), '(pitches, max, min_size)\n', (3174, 3198), False, 'from rlmusician.utils import rolling_aggregate\n'), ((1340, 1379), 'numpy.array_equal', 'np.array_equal', (['fragment', 'next_fragment'], {}), '(fragment, next_fragment)\n', (1354, 1379), True, 'import numpy as np\n')]
# flake8: noqa # Test cases taken from: # - Thomas Ho Company LTD: financial models, # http://www.thomasho.com/mainpages/analysoln.asp # - Analysis of Derivatives for the Chartered Financial Analyst® Program, # <NAME>, PhD, CFA, ©2003 CFA Institute import types import numpy as np import pandas as pd from pyfinance.options import * np.random.seed(123) RTOL = 1e-03 # BSM # --------------------------------------------------------------------- s, k, t, sigma, r = 100.0, 100.0, 1.0, 0.2, 0.04 greeks = { "call": ( 0.3, 0.1, 0.61791, 0.01907, 38.13878, -5.88852, 51.86609, 6.22577, ), "put": ( 0.3, 0.1, -0.38209, 0.01907, 38.13878, -2.04536, -44.21286, -6.36390, ), } names = ("d1", "d2", "delta", "gamma", "vega", "theta", "rho", "omega") target = { "call": dict(zip(names, greeks["call"])), "put": dict(zip(names, greeks["put"])), } target["call"].update({"value": 9.92505}) target["put"].update({"value": 6.00400}) options = { "call": BSM(S0=s, K=k, T=t, r=r, sigma=sigma, kind="call"), "put": BSM(S0=s, K=k, T=t, r=r, sigma=sigma, kind="put"), } def test_BSM(): for name, option in options.items(): for k, v in target[name].items(): if isinstance(getattr(option, k), types.MethodType): assert np.allclose(v, getattr(option, k)(), rtol=RTOL) else: assert np.allclose(v, getattr(option, k), rtol=RTOL) # Put/call # --------------------------------------------------------------------- k, price, s = 2000.0, 81.75, np.array([1900.0, 2100.0]) call = Call(K=k, price=price, St=s, pos="long") put = Put(K=k, price=price, St=s, pos="long") def test_put_and_call(): assert np.allclose(call.payoff(), np.array([0.0, 100.0])) assert np.allclose(call.profit(), np.array([-81.75, 18.25])) assert np.allclose(put.payoff(), np.array([100.0, 0.0])) assert np.allclose(put.profit(), np.array([18.25, -81.75])) # Options strategies # --------------------------------------------------------------------- # Straddle', 'ShortStraddle', 'Strangle', # 'ShortStrangle', 'Strip', 'Strap', 'BullSpread', 'BearSpread', # 'LongPutLadder', 'ShortPutLadder', 'LongButterfly', 'ShortButterfly', # 'LongIronButterfly', 'ShortIronButterfly', 'LongCondor', 'ShortCondor', # 'LongIronCondor', 'ShortIronCondor' s = np.array([2100, 2000, 1900]) k1 = 1950.0 k2 = 2050.0 p1 = 108.43 p2 = 59.98 bullspread = BullSpread(St=s, K1=k1, K2=k2, price1=p1, price2=p2) p1 = 56.01 p2 = 107.39 bearspread = BearSpread(St=s, K1=k1, K2=k2, price1=p1, price2=p2) # TODO # bs = { # 'call': BullSpread(St=s, K1=k1, K2=k2, price1=p1, price2=p2, kind='call'), # 'put': BullSpread(St=s, K1=k1, K2=k2, price1=p1, price2=p2, kind='put') # } s = np.array([1900.0, 1975.0, 2025.0, 2100.0]) k1, k2, k3 = 1950.0, 2000.0, 2050.0 p1, p2, p3 = 108.43, 81.75, 59.98 bfly = LongButterfly( St=s, K1=k1, K2=k2, K3=k3, price1=p1, price2=p2, price3=p3, kind="call" ) s = np.array([2100.0, 1900.0]) k = 2000 c = 81.75 p = 79.25 straddle = Straddle(St=s, K=k, callprice=c, putprice=p) def test_opstrats(): assert np.allclose( bullspread.payoff(), np.array([100.0, 50.0, 0.0]), rtol=RTOL ) assert np.allclose( bullspread.profit(), np.array([51.55, 1.55, -48.45]), rtol=RTOL ) assert np.allclose( bearspread.payoff(), np.array([0.0, 50.0, 100.0]), rtol=RTOL ) assert np.allclose( bearspread.profit(), np.array([-51.38, -1.38, 48.62]), rtol=RTOL ) assert np.allclose( bfly.payoff(), np.array([0.0, 25.0, 25.0, 0.0]), rtol=RTOL ) assert np.allclose( bfly.profit(), np.array([-4.91, 20.09, 20.09, -4.91]), rtol=RTOL ) assert np.allclose(straddle.payoff(), np.array([100.0, 100.0]), rtol=RTOL) assert np.allclose(straddle.profit(), np.array([-61.0, -61.0]), rtol=RTOL)
[ "numpy.array", "numpy.random.seed" ]
[((342, 361), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (356, 361), True, 'import numpy as np\n'), ((2473, 2501), 'numpy.array', 'np.array', (['[2100, 2000, 1900]'], {}), '([2100, 2000, 1900])\n', (2481, 2501), True, 'import numpy as np\n'), ((2896, 2938), 'numpy.array', 'np.array', (['[1900.0, 1975.0, 2025.0, 2100.0]'], {}), '([1900.0, 1975.0, 2025.0, 2100.0])\n', (2904, 2938), True, 'import numpy as np\n'), ((3115, 3141), 'numpy.array', 'np.array', (['[2100.0, 1900.0]'], {}), '([2100.0, 1900.0])\n', (3123, 3141), True, 'import numpy as np\n'), ((1663, 1689), 'numpy.array', 'np.array', (['[1900.0, 2100.0]'], {}), '([1900.0, 2100.0])\n', (1671, 1689), True, 'import numpy as np\n'), ((1850, 1872), 'numpy.array', 'np.array', (['[0.0, 100.0]'], {}), '([0.0, 100.0])\n', (1858, 1872), True, 'import numpy as np\n'), ((1912, 1937), 'numpy.array', 'np.array', (['[-81.75, 18.25]'], {}), '([-81.75, 18.25])\n', (1920, 1937), True, 'import numpy as np\n'), ((1977, 1999), 'numpy.array', 'np.array', (['[100.0, 0.0]'], {}), '([100.0, 0.0])\n', (1985, 1999), True, 'import numpy as np\n'), ((2038, 2063), 'numpy.array', 'np.array', (['[18.25, -81.75]'], {}), '([18.25, -81.75])\n', (2046, 2063), True, 'import numpy as np\n'), ((3305, 3333), 'numpy.array', 'np.array', (['[100.0, 50.0, 0.0]'], {}), '([100.0, 50.0, 0.0])\n', (3313, 3333), True, 'import numpy as np\n'), ((3404, 3435), 'numpy.array', 'np.array', (['[51.55, 1.55, -48.45]'], {}), '([51.55, 1.55, -48.45])\n', (3412, 3435), True, 'import numpy as np\n'), ((3507, 3535), 'numpy.array', 'np.array', (['[0.0, 50.0, 100.0]'], {}), '([0.0, 50.0, 100.0])\n', (3515, 3535), True, 'import numpy as np\n'), ((3606, 3638), 'numpy.array', 'np.array', (['[-51.38, -1.38, 48.62]'], {}), '([-51.38, -1.38, 48.62])\n', (3614, 3638), True, 'import numpy as np\n'), ((3704, 3736), 'numpy.array', 'np.array', (['[0.0, 25.0, 25.0, 0.0]'], {}), '([0.0, 25.0, 25.0, 0.0])\n', (3712, 3736), True, 'import numpy as np\n'), ((3801, 3839), 'numpy.array', 'np.array', (['[-4.91, 20.09, 20.09, -4.91]'], {}), '([-4.91, 20.09, 20.09, -4.91])\n', (3809, 3839), True, 'import numpy as np\n'), ((3900, 3924), 'numpy.array', 'np.array', (['[100.0, 100.0]'], {}), '([100.0, 100.0])\n', (3908, 3924), True, 'import numpy as np\n'), ((3979, 4003), 'numpy.array', 'np.array', (['[-61.0, -61.0]'], {}), '([-61.0, -61.0])\n', (3987, 4003), True, 'import numpy as np\n')]
## Copyright 2018-2021 Intel Corporation ## SPDX-License-Identifier: Apache-2.0 import os from glob import glob from collections import defaultdict import numpy as np import torch from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler from config import * from util import * from image import * from color import * import tza # Returns a dataset directory path def get_data_dir(cfg, name): return os.path.join(cfg.data_dir, name) # Returns the main feature from a list of features def get_main_feature(features): if len(features) > 1: features = list(set(features) & {'hdr', 'ldr', 'sh1'}) if len(features) > 1: error('multiple main features specified') if not features: error('no main feature specified') return features[0] # Returns the auxiliary features from a list of features def get_auxiliary_features(features): main_feature = get_main_feature(features) return list(set(features).difference([main_feature])) # Returns the ordered list of channel names for the specified features def get_channels(features, target): assert target in {'dataset', 'model'} channels = [] if 'hdr' in features: channels += ['hdr.r', 'hdr.g', 'hdr.b'] if 'ldr' in features: channels += ['ldr.r', 'ldr.g', 'ldr.b'] if 'sh1' in features: if target == 'model': channels += ['sh1.r', 'sh1.g', 'sh1.b'] else: channels += ['sh1x.r', 'sh1x.g', 'sh1x.b', 'sh1y.r', 'sh1y.g', 'sh1y.b', 'sh1z.r', 'sh1z.g', 'sh1z.b'] if 'alb' in features: channels += ['alb.r', 'alb.g', 'alb.b'] if 'nrm' in features: channels += ['nrm.x', 'nrm.y', 'nrm.z'] return channels def get_dataset_channels(features): return get_channels(features, target='dataset') def get_model_channels(features): return get_channels(features, target='model') # Returns the indices of the specified channels in the list of all channels def get_channel_indices(channels, all_channels): return [all_channels.index(ch) for ch in channels] # Shuffles channels according to the specified order and optionally keeps only # the specified amount of channels def shuffle_channels(channels, first_channel, order, num_channels=None): first = channels.index(first_channel) new_channels = [channels[first+i] for i in order] for i in range(len(new_channels)): channels[first+i] = new_channels[i] if num_channels is not None: del channels[first+num_channels:first+len(new_channels)] # Checks whether the image with specified features exists def image_exists(name, features): suffixes = features.copy() if 'sh1' in suffixes: suffixes.remove('sh1') suffixes += ['sh1x', 'sh1y', 'sh1z'] return all([os.path.isfile(name + '.' + s + '.exr') for s in suffixes]) # Returns the feature an image represents given its filename def get_image_feature(filename): filename_split = filename.rsplit('.', 2) if len(filename_split) < 2: return 'srgb' # no extension, assume sRGB else: ext = filename_split[-1].lower() if ext in {'exr', 'pfm', 'hdr'}: if len(filename_split) == 3: feature = filename_split[-2] if feature in {'sh1x', 'sh1y', 'sh1z'}: feature = 'sh1' return feature else: return 'hdr' # assume HDR else: return 'srgb' # assume sRGB # Loads image features in EXR format with given filename prefix def load_image_features(name, features): images = [] # HDR color if 'hdr' in features: hdr = load_image(name + '.hdr.exr', num_channels=3) hdr = np.maximum(hdr, 0.) images.append(hdr) # LDR color if 'ldr' in features: ldr = load_image(name + '.ldr.exr', num_channels=3) ldr = np.clip(ldr, 0., 1.) images.append(ldr) # SH L1 color coefficients if 'sh1' in features: sh1x = load_image(name + '.sh1x.exr', num_channels=3) sh1y = load_image(name + '.sh1y.exr', num_channels=3) sh1z = load_image(name + '.sh1z.exr', num_channels=3) for sh1 in [sh1x, sh1y, sh1z]: # Clip to [-1..1] range (coefficients are assumed to be normalized) sh1 = np.clip(sh1, -1., 1.) # Transform to [0..1] range sh1 = sh1 * 0.5 + 0.5 images.append(sh1) # Albedo if 'alb' in features: albedo = load_image(name + '.alb.exr', num_channels=3) albedo = np.clip(albedo, 0., 1.) images.append(albedo) # Normal if 'nrm' in features: normal = load_image(name + '.nrm.exr', num_channels=3) # Normalize length_sqr = np.add.reduce(np.square(normal), axis=-1, keepdims=True) with np.errstate(divide='ignore'): rcp_length = np.reciprocal(np.sqrt(length_sqr)) rcp_length = np.nan_to_num(rcp_length, nan=0., posinf=0., neginf=0.) normal *= rcp_length # Transform to [0..1] range normal = normal * 0.5 + 0.5 images.append(normal) # Concatenate all feature images into one image return np.concatenate(images, axis=2) # Tries to load metadata for an image with given filename/prefix, returns None if it fails def load_image_metadata(name): dirname, basename = os.path.split(name) basename = basename.split('.')[0] # remove all extensions while basename: metadata_filename = os.path.join(dirname, basename) + '.json' if os.path.isfile(metadata_filename): return load_json(metadata_filename) if '_' in basename: basename = basename.rsplit('_', 1)[0] else: break return None # Saves image metadata to a file with given prefix def save_image_metadata(name, metadata): save_json(name + '.json', metadata) # Returns groups of image samples (input and target images at different SPPs) as a list of (group name, list of input names, target name) def get_image_sample_groups(dir, features): image_filenames = glob(os.path.join(dir, '**', '*.*.exr'), recursive=True) target_features = [get_main_feature(features)] # Make image groups image_groups = defaultdict(set) for filename in image_filenames: image_name = os.path.relpath(filename, dir) # remove dir path image_name, _, _ = image_name.rsplit('.', 2) # remove extensions group = image_name if '_' in image_name: prefix, suffix = image_name.rsplit('_', 1) suffix = suffix.lower() if (suffix.isdecimal() or (suffix.endswith('spp') and suffix[:-3].isdecimal()) or suffix == 'ref' or suffix == 'reference' or suffix == 'gt' or suffix == 'target'): group = prefix image_groups[group].add(image_name) # Make sorted image sample (inputs + target) groups image_sample_groups = [] for group in sorted(image_groups): # Get the list of inputs and the target image_names = sorted(image_groups[group]) if len(image_names) > 1: input_names, target_name = image_names[:-1], image_names[-1] else: input_names, target_name = image_names, None # Check whether all required features exist if all([image_exists(os.path.join(dir, name), features) for name in input_names]): if target_name and not image_exists(os.path.join(dir, target_name), target_features): target_name = None # discard target due to missing features # Add sample image_sample_groups.append((group, input_names, target_name)) return image_sample_groups # Transforms a feature image to another feature type def transform_feature(image, input_feature, output_feature, exposure=1.): if input_feature == 'hdr' and output_feature in {'ldr', 'srgb'}: image = tonemap(image * exposure) if output_feature == 'srgb': if input_feature in {'hdr', 'ldr', 'alb'}: image = srgb_forward(image) elif input_feature in {'nrm', 'sh1'}: # Transform [-1, 1] -> [0, 1] image = image * 0.5 + 0.5 return image # Returns a data loader and its sampler for the specified dataset def get_data_loader(rank, cfg, dataset, shuffle=False): if cfg.num_devices > 1: sampler = DistributedSampler(dataset, num_replicas=cfg.num_devices, rank=rank, shuffle=shuffle) else: sampler = None loader = DataLoader(dataset, batch_size=(cfg.batch_size // cfg.num_devices), sampler=sampler, shuffle=(shuffle if sampler is None else False), num_workers=cfg.num_loaders, pin_memory=(cfg.device != 'cpu')) return loader, sampler ## ----------------------------------------------------------------------------- ## Preprocessed dataset ## ----------------------------------------------------------------------------- # Returns the directory path of the best matching preprocessed dataset def get_preproc_data_dir(cfg, name): # Get all preprocessed versions of the requested dataset data_dirs = sorted([f for f in glob(os.path.join(cfg.preproc_dir, name + '.*')) if os.path.isdir(f)]) # Iterate over all dataset versions best_dir = None best_num_channels = None for data_dir in data_dirs: # Load the dataset config if it exists (ignore corrupted datasets) if os.path.isfile(get_config_filename(data_dir)): data_cfg = load_config(data_dir) # Check whether the dataset matches the requirements if get_main_feature(data_cfg.features) == get_main_feature(cfg.features) and \ all(f in data_cfg.features for f in cfg.features) and \ data_cfg.transfer == cfg.transfer: # Select the most recent version with the minimal amount of channels stored num_channels = len(get_dataset_channels(data_cfg.features)) if best_dir is None or num_channels <= best_num_channels: best_dir = data_dir best_num_channels = num_channels if best_dir is None: error('no matching preproccessed dataset found') return best_dir class PreprocessedDataset(Dataset): def __init__(self, cfg, name): super(PreprocessedDataset, self).__init__() # Check whether the preprocessed images have all required features data_dir = get_preproc_data_dir(cfg, name) if not os.path.isdir(data_dir): self.num_images = 0 return data_cfg = load_config(data_dir) self.tile_size = cfg.tile_size # Get the features self.features = cfg.features self.main_feature = get_main_feature(cfg.features) self.auxiliary_features = get_auxiliary_features(cfg.features) # Get the channels self.channels = get_dataset_channels(cfg.features) self.all_channels = get_dataset_channels(data_cfg.features) self.num_main_channels = len(get_model_channels(self.main_feature)) # Get the image samples samples_filename = os.path.join(data_dir, 'samples.json') self.samples = load_json(samples_filename) self.num_images = len(self.samples) if self.num_images == 0: return # Create the memory mapping based image reader tza_filename = os.path.join(data_dir, 'images.tza') self.images = tza.Reader(tza_filename) ## ----------------------------------------------------------------------------- ## Training dataset ## ----------------------------------------------------------------------------- class TrainingDataset(PreprocessedDataset): def __init__(self, cfg, name): super(TrainingDataset, self).__init__(cfg, name) self.max_padding = 16 def __len__(self): return self.num_images def __getitem__(self, index): # Get the input and target images input_name, target_name = self.samples[index] input_image, _ = self.images[input_name] target_image, _ = self.images[target_name] # Get the size of the image height = input_image.shape[0] width = input_image.shape[1] if height < self.tile_size or width < self.tile_size: error('image is smaller than the tile size') # Generate a random crop sy = sx = self.tile_size if rand() < 0.1: # Randomly zero pad later to avoid artifacts for images that require padding sy -= randint(self.max_padding) sx -= randint(self.max_padding) oy = randint(height - sy + 1) ox = randint(width - sx + 1) # Randomly permute some channels to improve training quality input_channels = self.channels[:] # copy # Randomly permute the color channels color_features = list(set(self.features) & {'hdr', 'ldr', 'alb'}) if color_features: color_order = randperm(3) for f in color_features: shuffle_channels(input_channels, f+'.r', color_order) # Randomly permute the L1 SH coefficients and keep only 3 of them if 'sh1' in self.features: sh1_order = randperm(9) shuffle_channels(input_channels, 'sh1x.r', sh1_order, 3) # Randomly permute the normal channels if 'nrm' in self.features: normal_order = randperm(3) shuffle_channels(input_channels, 'nrm.x', normal_order) # Get the indices of the input and target channels input_channel_indices = get_channel_indices(input_channels, self.all_channels) target_channel_indices = input_channel_indices[:self.num_main_channels] #print(input_channels, input_channel_indices) # Crop the input and target images input_image = input_image [oy:oy+sy, ox:ox+sx, input_channel_indices] target_image = target_image[oy:oy+sy, ox:ox+sx, target_channel_indices] # Randomly transform the tiles to improve training quality if rand() < 0.5: # Flip vertically input_image = np.flip(input_image, 0) target_image = np.flip(target_image, 0) if rand() < 0.5: # Flip horizontally input_image = np.flip(input_image, 1) target_image = np.flip(target_image, 1) if rand() < 0.5: # Transpose input_image = np.swapaxes(input_image, 0, 1) target_image = np.swapaxes(target_image, 0, 1) sy, sx = sx, sy # Zero pad the tiles (always makes a copy) pad_size = ((0, self.tile_size - sy), (0, self.tile_size - sx), (0, 0)) input_image = np.pad(input_image, pad_size, mode='constant') target_image = np.pad(target_image, pad_size, mode='constant') # Randomly zero the main feature channels if there are auxiliary features # This prevents "ghosting" artifacts when the main feature is entirely black if self.auxiliary_features and rand() < 0.01: input_image[:, :, 0:self.num_main_channels] = 0 target_image[:] = 0 # DEBUG: Save the tile #save_image('tile_%d.png' % index, target_image) # Convert the tiles to tensors return image_to_tensor(input_image), image_to_tensor(target_image) ## ----------------------------------------------------------------------------- ## Validation dataset ## ----------------------------------------------------------------------------- class ValidationDataset(PreprocessedDataset): def __init__(self, cfg, name): super(ValidationDataset, self).__init__(cfg, name) input_channel_indices = get_channel_indices(self.channels, self.all_channels) # Split the images into tiles self.tiles = [] for sample_index in range(self.num_images): # Get the input image input_name, _ = self.samples[sample_index] input_image, _ = self.images[input_name] # Get the size of the image height = input_image.shape[0] width = input_image.shape[1] if height < self.tile_size or width < self.tile_size: error('image is smaller than the tile size') # Compute the number of tiles num_tiles_y = height // self.tile_size num_tiles_x = width // self.tile_size # Compute the start offset for centering start_y = (height % self.tile_size) // 2 start_x = (width % self.tile_size) // 2 # Add the tiles for y in range(num_tiles_y): for x in range(num_tiles_x): oy = start_y + y * self.tile_size ox = start_x + x * self.tile_size if self.main_feature == 'sh1': for k in range(0, 9, 3): ch = input_channel_indices[k:k+3] + input_channel_indices[9:] self.tiles.append((sample_index, oy, ox, ch)) else: self.tiles.append((sample_index, oy, ox, input_channel_indices)) def __len__(self): return len(self.tiles) def __getitem__(self, index): # Get the tile sample_index, oy, ox, input_channel_indices = self.tiles[index] sy = sx = self.tile_size # Get the input and target images input_name, target_name = self.samples[sample_index] input_image, _ = self.images[input_name] target_image, _ = self.images[target_name] # Get the indices of target channels target_channel_indices = input_channel_indices[:self.num_main_channels] # Crop the input and target images input_image = input_image [oy:oy+sy, ox:ox+sx, input_channel_indices] target_image = target_image[oy:oy+sy, ox:ox+sx, target_channel_indices] # Convert the tiles to tensors # Copying is required because PyTorch does not support non-writeable tensors return image_to_tensor(input_image.copy()), image_to_tensor(target_image.copy())
[ "numpy.clip", "numpy.sqrt", "torch.utils.data.distributed.DistributedSampler", "numpy.flip", "os.path.split", "os.path.isdir", "numpy.concatenate", "numpy.maximum", "os.path.relpath", "numpy.square", "os.path.isfile", "tza.Reader", "os.path.join", "numpy.swapaxes", "numpy.errstate", "collections.defaultdict", "torch.utils.data.DataLoader", "numpy.pad", "numpy.nan_to_num" ]
[((457, 489), 'os.path.join', 'os.path.join', (['cfg.data_dir', 'name'], {}), '(cfg.data_dir, name)\n', (469, 489), False, 'import os\n'), ((4881, 4911), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(2)'}), '(images, axis=2)\n', (4895, 4911), True, 'import numpy as np\n'), ((5057, 5076), 'os.path.split', 'os.path.split', (['name'], {}), '(name)\n', (5070, 5076), False, 'import os\n'), ((5889, 5905), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (5900, 5905), False, 'from collections import defaultdict\n'), ((8106, 8306), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(cfg.batch_size // cfg.num_devices)', 'sampler': 'sampler', 'shuffle': '(shuffle if sampler is None else False)', 'num_workers': 'cfg.num_loaders', 'pin_memory': "(cfg.device != 'cpu')"}), "(dataset, batch_size=cfg.batch_size // cfg.num_devices, sampler=\n sampler, shuffle=shuffle if sampler is None else False, num_workers=cfg\n .num_loaders, pin_memory=cfg.device != 'cpu')\n", (8116, 8306), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((3541, 3561), 'numpy.maximum', 'np.maximum', (['hdr', '(0.0)'], {}), '(hdr, 0.0)\n', (3551, 3561), True, 'import numpy as np\n'), ((3689, 3711), 'numpy.clip', 'np.clip', (['ldr', '(0.0)', '(1.0)'], {}), '(ldr, 0.0, 1.0)\n', (3696, 3711), True, 'import numpy as np\n'), ((4302, 4327), 'numpy.clip', 'np.clip', (['albedo', '(0.0)', '(1.0)'], {}), '(albedo, 0.0, 1.0)\n', (4309, 4327), True, 'import numpy as np\n'), ((4648, 4706), 'numpy.nan_to_num', 'np.nan_to_num', (['rcp_length'], {'nan': '(0.0)', 'posinf': '(0.0)', 'neginf': '(0.0)'}), '(rcp_length, nan=0.0, posinf=0.0, neginf=0.0)\n', (4661, 4706), True, 'import numpy as np\n'), ((5228, 5261), 'os.path.isfile', 'os.path.isfile', (['metadata_filename'], {}), '(metadata_filename)\n', (5242, 5261), False, 'import os\n'), ((5748, 5782), 'os.path.join', 'os.path.join', (['dir', '"""**"""', '"""*.*.exr"""'], {}), "(dir, '**', '*.*.exr')\n", (5760, 5782), False, 'import os\n'), ((5958, 5988), 'os.path.relpath', 'os.path.relpath', (['filename', 'dir'], {}), '(filename, dir)\n', (5973, 5988), False, 'import os\n'), ((7882, 7971), 'torch.utils.data.distributed.DistributedSampler', 'DistributedSampler', (['dataset'], {'num_replicas': 'cfg.num_devices', 'rank': 'rank', 'shuffle': 'shuffle'}), '(dataset, num_replicas=cfg.num_devices, rank=rank,\n shuffle=shuffle)\n', (7900, 7971), False, 'from torch.utils.data.distributed import DistributedSampler\n'), ((10647, 10685), 'os.path.join', 'os.path.join', (['data_dir', '"""samples.json"""'], {}), "(data_dir, 'samples.json')\n", (10659, 10685), False, 'import os\n'), ((10887, 10923), 'os.path.join', 'os.path.join', (['data_dir', '"""images.tza"""'], {}), "(data_dir, 'images.tza')\n", (10899, 10923), False, 'import os\n'), ((10942, 10966), 'tza.Reader', 'tza.Reader', (['tza_filename'], {}), '(tza_filename)\n', (10952, 10966), False, 'import tza\n'), ((13934, 13980), 'numpy.pad', 'np.pad', (['input_image', 'pad_size'], {'mode': '"""constant"""'}), "(input_image, pad_size, mode='constant')\n", (13940, 13980), True, 'import numpy as np\n'), ((14001, 14048), 'numpy.pad', 'np.pad', (['target_image', 'pad_size'], {'mode': '"""constant"""'}), "(target_image, pad_size, mode='constant')\n", (14007, 14048), True, 'import numpy as np\n'), ((2701, 2740), 'os.path.isfile', 'os.path.isfile', (["(name + '.' + s + '.exr')"], {}), "(name + '.' + s + '.exr')\n", (2715, 2740), False, 'import os\n'), ((4083, 4106), 'numpy.clip', 'np.clip', (['sh1', '(-1.0)', '(1.0)'], {}), '(sh1, -1.0, 1.0)\n', (4090, 4106), True, 'import numpy as np\n'), ((4495, 4512), 'numpy.square', 'np.square', (['normal'], {}), '(normal)\n', (4504, 4512), True, 'import numpy as np\n'), ((4547, 4575), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""'}), "(divide='ignore')\n", (4558, 4575), True, 'import numpy as np\n'), ((5179, 5210), 'os.path.join', 'os.path.join', (['dirname', 'basename'], {}), '(dirname, basename)\n', (5191, 5210), False, 'import os\n'), ((10064, 10087), 'os.path.isdir', 'os.path.isdir', (['data_dir'], {}), '(data_dir)\n', (10077, 10087), False, 'import os\n'), ((13412, 13435), 'numpy.flip', 'np.flip', (['input_image', '(0)'], {}), '(input_image, 0)\n', (13419, 13435), True, 'import numpy as np\n'), ((13458, 13482), 'numpy.flip', 'np.flip', (['target_image', '(0)'], {}), '(target_image, 0)\n', (13465, 13482), True, 'import numpy as np\n'), ((13552, 13575), 'numpy.flip', 'np.flip', (['input_image', '(1)'], {}), '(input_image, 1)\n', (13559, 13575), True, 'import numpy as np\n'), ((13598, 13622), 'numpy.flip', 'np.flip', (['target_image', '(1)'], {}), '(target_image, 1)\n', (13605, 13622), True, 'import numpy as np\n'), ((13684, 13714), 'numpy.swapaxes', 'np.swapaxes', (['input_image', '(0)', '(1)'], {}), '(input_image, 0, 1)\n', (13695, 13714), True, 'import numpy as np\n'), ((13737, 13768), 'numpy.swapaxes', 'np.swapaxes', (['target_image', '(0)', '(1)'], {}), '(target_image, 0, 1)\n', (13748, 13768), True, 'import numpy as np\n'), ((4610, 4629), 'numpy.sqrt', 'np.sqrt', (['length_sqr'], {}), '(length_sqr)\n', (4617, 4629), True, 'import numpy as np\n'), ((8879, 8895), 'os.path.isdir', 'os.path.isdir', (['f'], {}), '(f)\n', (8892, 8895), False, 'import os\n'), ((6909, 6932), 'os.path.join', 'os.path.join', (['dir', 'name'], {}), '(dir, name)\n', (6921, 6932), False, 'import os\n'), ((8832, 8874), 'os.path.join', 'os.path.join', (['cfg.preproc_dir', "(name + '.*')"], {}), "(cfg.preproc_dir, name + '.*')\n", (8844, 8874), False, 'import os\n'), ((7013, 7043), 'os.path.join', 'os.path.join', (['dir', 'target_name'], {}), '(dir, target_name)\n', (7025, 7043), False, 'import os\n')]
from gym.spaces import Box, Dict, Discrete, Tuple import numpy as np import unittest import ray import ray.rllib.algorithms.pg as pg from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.examples.env.random_env import RandomEnv from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.numpy import fc from ray.rllib.utils.test_utils import ( check, check_compute_single_action, check_train_results, framework_iterator, ) from ray import tune class TestPG(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_pg_compilation(self): """Test whether a PGTrainer can be built with all frameworks.""" config = pg.PGConfig() # Test with filter to see whether they work w/o preprocessing. config.rollouts( num_rollout_workers=1, rollout_fragment_length=500, observation_filter="MeanStdFilter", ) num_iterations = 1 image_space = Box(-1.0, 1.0, shape=(84, 84, 3)) simple_space = Box(-1.0, 1.0, shape=(3,)) tune.register_env( "random_dict_env", lambda _: RandomEnv( { "observation_space": Dict( { "a": simple_space, "b": Discrete(2), "c": image_space, } ), "action_space": Box(-1.0, 1.0, shape=(1,)), } ), ) tune.register_env( "random_tuple_env", lambda _: RandomEnv( { "observation_space": Tuple( [simple_space, Discrete(2), image_space] ), "action_space": Box(-1.0, 1.0, shape=(1,)), } ), ) for _ in framework_iterator(config, with_eager_tracing=True): # Test for different env types (discrete w/ and w/o image, + cont). for env in [ "random_dict_env", "random_tuple_env", "MsPacmanNoFrameskip-v4", "CartPole-v0", "FrozenLake-v1", ]: print(f"env={env}") trainer = config.build(env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer, include_prev_action_reward=True) def test_pg_loss_functions(self): """Tests the PG loss function math.""" config = ( pg.PGConfig() .rollouts(num_rollout_workers=0) .training( gamma=0.99, model={ "fcnet_hiddens": [10], "fcnet_activation": "linear", }, ) ) # Fake CartPole episode of n time steps. train_batch = SampleBatch( { SampleBatch.OBS: np.array( [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]] ), SampleBatch.ACTIONS: np.array([0, 1, 1]), SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]), SampleBatch.DONES: np.array([False, False, True]), SampleBatch.EPS_ID: np.array([1234, 1234, 1234]), SampleBatch.AGENT_INDEX: np.array([0, 0, 0]), } ) for fw, sess in framework_iterator(config, session=True): dist_cls = Categorical if fw != "torch" else TorchCategorical trainer = config.build(env="CartPole-v0") policy = trainer.get_policy() vars = policy.model.trainable_variables() if sess: vars = policy.get_session().run(vars) # Post-process (calculate simple (non-GAE) advantages) and attach # to train_batch dict. # A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] = # [2.9701, 1.99, 1.0] train_batch_ = pg.post_process_advantages(policy, train_batch.copy()) if fw == "torch": train_batch_ = policy._lazy_tensor_dict(train_batch_) # Check Advantage values. check(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0]) # Actual loss results. if sess: results = policy.get_session().run( policy._loss, feed_dict=policy._get_loss_inputs_dict(train_batch_, shuffle=False), ) else: results = (pg.pg_tf_loss if fw in ["tf2", "tfe"] else pg.pg_torch_loss)( policy, policy.model, dist_class=dist_cls, train_batch=train_batch_ ) # Calculate expected results. if fw != "torch": expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[0], vars[1], framework=fw), vars[2], vars[3], framework=fw, ) else: expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[2], vars[3], framework=fw), vars[0], vars[1], framework=fw, ) expected_logp = dist_cls(expected_logits, policy.model).logp( train_batch_[SampleBatch.ACTIONS] ) adv = train_batch_[Postprocessing.ADVANTAGES] if sess: expected_logp = sess.run(expected_logp) elif fw == "torch": expected_logp = expected_logp.detach().cpu().numpy() adv = adv.detach().cpu().numpy() else: expected_logp = expected_logp.numpy() expected_loss = -np.mean(expected_logp * adv) check(results, expected_loss, decimals=4) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))
[ "ray.rllib.utils.test_utils.check_compute_single_action", "numpy.mean", "ray.shutdown", "ray.rllib.utils.test_utils.check_train_results", "ray.rllib.utils.numpy.fc", "gym.spaces.Discrete", "gym.spaces.Box", "pytest.main", "numpy.array", "ray.rllib.algorithms.pg.PGConfig", "ray.rllib.utils.test_utils.framework_iterator", "ray.init", "ray.rllib.utils.test_utils.check" ]
[((723, 733), 'ray.init', 'ray.init', ([], {}), '()\n', (731, 733), False, 'import ray\n'), ((796, 810), 'ray.shutdown', 'ray.shutdown', ([], {}), '()\n', (808, 810), False, 'import ray\n'), ((937, 950), 'ray.rllib.algorithms.pg.PGConfig', 'pg.PGConfig', ([], {}), '()\n', (948, 950), True, 'import ray.rllib.algorithms.pg as pg\n'), ((1231, 1264), 'gym.spaces.Box', 'Box', (['(-1.0)', '(1.0)'], {'shape': '(84, 84, 3)'}), '(-1.0, 1.0, shape=(84, 84, 3))\n', (1234, 1264), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n'), ((1288, 1314), 'gym.spaces.Box', 'Box', (['(-1.0)', '(1.0)'], {'shape': '(3,)'}), '(-1.0, 1.0, shape=(3,))\n', (1291, 1314), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n'), ((2164, 2215), 'ray.rllib.utils.test_utils.framework_iterator', 'framework_iterator', (['config'], {'with_eager_tracing': '(True)'}), '(config, with_eager_tracing=True)\n', (2182, 2215), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((3864, 3904), 'ray.rllib.utils.test_utils.framework_iterator', 'framework_iterator', (['config'], {'session': '(True)'}), '(config, session=True)\n', (3882, 3904), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((6438, 6467), 'pytest.main', 'pytest.main', (["['-v', __file__]"], {}), "(['-v', __file__])\n", (6449, 6467), False, 'import pytest\n'), ((4663, 4730), 'ray.rllib.utils.test_utils.check', 'check', (['train_batch_[Postprocessing.ADVANTAGES]', '[2.9701, 1.99, 1.0]'], {}), '(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0])\n', (4668, 4730), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((6320, 6361), 'ray.rllib.utils.test_utils.check', 'check', (['results', 'expected_loss'], {'decimals': '(4)'}), '(results, expected_loss, decimals=4)\n', (6325, 6361), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((2793, 2862), 'ray.rllib.utils.test_utils.check_compute_single_action', 'check_compute_single_action', (['trainer'], {'include_prev_action_reward': '(True)'}), '(trainer, include_prev_action_reward=True)\n', (2820, 2862), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((3382, 3458), 'numpy.array', 'np.array', (['[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]'], {}), '([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]])\n', (3390, 3458), True, 'import numpy as np\n'), ((3535, 3554), 'numpy.array', 'np.array', (['[0, 1, 1]'], {}), '([0, 1, 1])\n', (3543, 3554), True, 'import numpy as np\n'), ((3593, 3618), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0])\n', (3601, 3618), True, 'import numpy as np\n'), ((3655, 3685), 'numpy.array', 'np.array', (['[False, False, True]'], {}), '([False, False, True])\n', (3663, 3685), True, 'import numpy as np\n'), ((3723, 3751), 'numpy.array', 'np.array', (['[1234, 1234, 1234]'], {}), '([1234, 1234, 1234])\n', (3731, 3751), True, 'import numpy as np\n'), ((3794, 3813), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (3802, 3813), True, 'import numpy as np\n'), ((6279, 6307), 'numpy.mean', 'np.mean', (['(expected_logp * adv)'], {}), '(expected_logp * adv)\n', (6286, 6307), True, 'import numpy as np\n'), ((2712, 2740), 'ray.rllib.utils.test_utils.check_train_results', 'check_train_results', (['results'], {}), '(results)\n', (2731, 2740), False, 'from ray.rllib.utils.test_utils import check, check_compute_single_action, check_train_results, framework_iterator\n'), ((5325, 5390), 'ray.rllib.utils.numpy.fc', 'fc', (['train_batch_[SampleBatch.OBS]', 'vars[0]', 'vars[1]'], {'framework': 'fw'}), '(train_batch_[SampleBatch.OBS], vars[0], vars[1], framework=fw)\n', (5327, 5390), False, 'from ray.rllib.utils.numpy import fc\n'), ((5578, 5643), 'ray.rllib.utils.numpy.fc', 'fc', (['train_batch_[SampleBatch.OBS]', 'vars[2]', 'vars[3]'], {'framework': 'fw'}), '(train_batch_[SampleBatch.OBS], vars[2], vars[3], framework=fw)\n', (5580, 5643), False, 'from ray.rllib.utils.numpy import fc\n'), ((1722, 1748), 'gym.spaces.Box', 'Box', (['(-1.0)', '(1.0)'], {'shape': '(1,)'}), '(-1.0, 1.0, shape=(1,))\n', (1725, 1748), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n'), ((2075, 2101), 'gym.spaces.Box', 'Box', (['(-1.0)', '(1.0)'], {'shape': '(1,)'}), '(-1.0, 1.0, shape=(1,))\n', (2078, 2101), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n'), ((2980, 2993), 'ray.rllib.algorithms.pg.PGConfig', 'pg.PGConfig', ([], {}), '()\n', (2991, 2993), True, 'import ray.rllib.algorithms.pg as pg\n'), ((1578, 1589), 'gym.spaces.Discrete', 'Discrete', (['(2)'], {}), '(2)\n', (1586, 1589), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n'), ((1990, 2001), 'gym.spaces.Discrete', 'Discrete', (['(2)'], {}), '(2)\n', (1998, 2001), False, 'from gym.spaces import Box, Dict, Discrete, Tuple\n')]
from meta_policy_search.samplers.base import SampleProcessor from meta_policy_search.samplers.dice_sample_processor import DiceSampleProcessor from meta_policy_search.utils.rl2 import utils import numpy as np class MetaSampleProcessor(SampleProcessor): def process_samples(self, paths_meta_batch, log=False, log_prefix=''): """ Processes sampled paths. This involves: - computing discounted rewards (returns) - fitting baseline estimator using the path returns and predicting the return baselines - estimating the advantages using GAE (+ advantage normalization id desired) - stacking the path data - logging statistics of the paths Args: paths_meta_batch (dict): A list of dict of lists, size: [meta_batch_size] x (batch_size) x [5] x (max_path_length) log (boolean): indicates whether to log log_prefix (str): prefix for the logging keys Returns: (list of dicts) : Processed sample data among the meta-batch; size: [meta_batch_size] x [7] x (batch_size x max_path_length) """ assert isinstance(paths_meta_batch, dict), 'paths must be a dict' assert self.baseline, 'baseline must be specified' samples_data_meta_batch = [] all_paths = [] for meta_task, paths in paths_meta_batch.items(): # fits baseline, compute advantages and stack path data samples_data, paths = self._compute_samples_data(paths) samples_data_meta_batch.append(samples_data) all_paths.extend(paths) # 7) compute normalized trajectory-batch rewards (for E-MAML) overall_avg_reward = np.mean(np.concatenate([samples_data['rewards'] for samples_data in samples_data_meta_batch])) overall_avg_reward_std = np.std(np.concatenate([samples_data['rewards'] for samples_data in samples_data_meta_batch])) for samples_data in samples_data_meta_batch: samples_data['adj_avg_rewards'] = (samples_data['rewards'] - overall_avg_reward) / (overall_avg_reward_std + 1e-8) # 8) log statistics if desired self._log_path_stats(all_paths, log=log, log_prefix=log_prefix) return samples_data_meta_batch class DiceMetaSampleProcessor(DiceSampleProcessor): process_samples = MetaSampleProcessor.process_samples
[ "numpy.concatenate" ]
[((1726, 1815), 'numpy.concatenate', 'np.concatenate', (["[samples_data['rewards'] for samples_data in samples_data_meta_batch]"], {}), "([samples_data['rewards'] for samples_data in\n samples_data_meta_batch])\n", (1740, 1815), True, 'import numpy as np\n'), ((1853, 1942), 'numpy.concatenate', 'np.concatenate', (["[samples_data['rewards'] for samples_data in samples_data_meta_batch]"], {}), "([samples_data['rewards'] for samples_data in\n samples_data_meta_batch])\n", (1867, 1942), True, 'import numpy as np\n')]
import numpy as np from numpy.linalg import lstsq from numpy.testing import (assert_allclose, assert_equal, assert_, run_module_suite, assert_raises) from scipy.sparse import rand from scipy.sparse.linalg import aslinearoperator from scipy.optimize import lsq_linear A = np.array([ [0.171, -0.057], [-0.049, -0.248], [-0.166, 0.054], ]) b = np.array([0.074, 1.014, -0.383]) class BaseMixin(object): def __init__(self): self.rnd = np.random.RandomState(0) def test_dense_no_bounds(self): for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, lstsq(A, b)[0]) def test_dense_bounds(self): # Solutions for comparison are taken from MATLAB. lb = np.array([-1, -10]) ub = np.array([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, lstsq(A, b)[0]) lb = np.array([0.0, -np.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.0, -4.084174437334673]), atol=1e-6) lb = np.array([-1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.448427311733504, 0]), atol=1e-15) ub = np.array([np.inf, -5]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([-0.105560998682388, -5])) ub = np.array([-1, np.inf]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([-1, -4.181102129483254])) lb = np.array([0, -4]) ub = np.array([1, 0]) for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, np.array([0.005236663400791, -4])) def test_dense_rank_deficient(self): A = np.array([[-0.307, -0.184]]) b = np.array([0.773]) lb = [-0.1, -0.1] ub = [0.1, 0.1] for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.x, [-0.1, -0.1]) A = np.array([ [0.334, 0.668], [-0.516, -1.032], [0.192, 0.384], ]) b = np.array([-1.436, 0.135, 0.909]) lb = [0, -1] ub = [1, -0.5] for lsq_solver in self.lsq_solvers: res = lsq_linear(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver) assert_allclose(res.optimality, 0, atol=1e-11) def test_full_result(self): lb = np.array([0, -4]) ub = np.array([1, 0]) res = lsq_linear(A, b, (lb, ub), method=self.method) assert_allclose(res.x, [0.005236663400791, -4]) r = A.dot(res.x) - b assert_allclose(res.cost, 0.5 * np.dot(r, r)) assert_allclose(res.fun, r) assert_allclose(res.optimality, 0.0, atol=1e-12) assert_equal(res.active_mask, [0, -1]) assert_(res.nit < 15) assert_(res.status == 1 or res.status == 3) assert_(isinstance(res.message, str)) assert_(res.success) class SparseMixin(object): def test_sparse_and_LinearOperator(self): m = 5000 n = 1000 A = rand(m, n, random_state=0) b = self.rnd.randn(m) res = lsq_linear(A, b) assert_allclose(res.optimality, 0, atol=1e-6) A = aslinearoperator(A) res = lsq_linear(A, b) assert_allclose(res.optimality, 0, atol=1e-6) def test_sparse_bounds(self): m = 5000 n = 1000 A = rand(m, n, random_state=0) b = self.rnd.randn(m) lb = self.rnd.randn(n) ub = lb + 1 res = lsq_linear(A, b, (lb, ub)) assert_allclose(res.optimality, 0.0, atol=1e-8) res = lsq_linear(A, b, (lb, ub), lsmr_tol=1e-13) assert_allclose(res.optimality, 0.0, atol=1e-8) res = lsq_linear(A, b, (lb, ub), lsmr_tol='auto') assert_allclose(res.optimality, 0.0, atol=1e-8) class TestTRF(BaseMixin, SparseMixin): method = 'trf' lsq_solvers = ['exact', 'lsmr'] class TestBVLS(BaseMixin): method = 'bvls' lsq_solvers = ['exact'] if __name__ == '__main__': run_module_suite()
[ "scipy.sparse.rand", "numpy.testing.assert_equal", "numpy.testing.assert_allclose", "scipy.sparse.linalg.aslinearoperator", "numpy.testing.assert_", "numpy.array", "scipy.optimize.lsq_linear", "numpy.dot", "numpy.testing.run_module_suite", "numpy.linalg.lstsq", "numpy.random.RandomState" ]
[((300, 362), 'numpy.array', 'np.array', (['[[0.171, -0.057], [-0.049, -0.248], [-0.166, 0.054]]'], {}), '([[0.171, -0.057], [-0.049, -0.248], [-0.166, 0.054]])\n', (308, 362), True, 'import numpy as np\n'), ((382, 414), 'numpy.array', 'np.array', (['[0.074, 1.014, -0.383]'], {}), '([0.074, 1.014, -0.383])\n', (390, 414), True, 'import numpy as np\n'), ((5048, 5066), 'numpy.testing.run_module_suite', 'run_module_suite', ([], {}), '()\n', (5064, 5066), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((485, 509), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (506, 509), True, 'import numpy as np\n'), ((825, 844), 'numpy.array', 'np.array', (['[-1, -10]'], {}), '([-1, -10])\n', (833, 844), True, 'import numpy as np\n'), ((858, 874), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (866, 874), True, 'import numpy as np\n'), ((1101, 1125), 'numpy.array', 'np.array', (['[0.0, -np.inf]'], {}), '([0.0, -np.inf])\n', (1109, 1125), True, 'import numpy as np\n'), ((1416, 1433), 'numpy.array', 'np.array', (['[-1, 0]'], {}), '([-1, 0])\n', (1424, 1433), True, 'import numpy as np\n'), ((1722, 1744), 'numpy.array', 'np.array', (['[np.inf, -5]'], {}), '([np.inf, -5])\n', (1730, 1744), True, 'import numpy as np\n'), ((1996, 2018), 'numpy.array', 'np.array', (['[-1, np.inf]'], {}), '([-1, np.inf])\n', (2004, 2018), True, 'import numpy as np\n'), ((2270, 2287), 'numpy.array', 'np.array', (['[0, -4]'], {}), '([0, -4])\n', (2278, 2287), True, 'import numpy as np\n'), ((2301, 2317), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (2309, 2317), True, 'import numpy as np\n'), ((2603, 2631), 'numpy.array', 'np.array', (['[[-0.307, -0.184]]'], {}), '([[-0.307, -0.184]])\n', (2611, 2631), True, 'import numpy as np\n'), ((2644, 2661), 'numpy.array', 'np.array', (['[0.773]'], {}), '([0.773])\n', (2652, 2661), True, 'import numpy as np\n'), ((2935, 2995), 'numpy.array', 'np.array', (['[[0.334, 0.668], [-0.516, -1.032], [0.192, 0.384]]'], {}), '([[0.334, 0.668], [-0.516, -1.032], [0.192, 0.384]])\n', (2943, 2995), True, 'import numpy as np\n'), ((3055, 3087), 'numpy.array', 'np.array', (['[-1.436, 0.135, 0.909]'], {}), '([-1.436, 0.135, 0.909])\n', (3063, 3087), True, 'import numpy as np\n'), ((3398, 3415), 'numpy.array', 'np.array', (['[0, -4]'], {}), '([0, -4])\n', (3406, 3415), True, 'import numpy as np\n'), ((3429, 3445), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (3437, 3445), True, 'import numpy as np\n'), ((3460, 3506), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'method': 'self.method'}), '(A, b, (lb, ub), method=self.method)\n', (3470, 3506), False, 'from scipy.optimize import lsq_linear\n'), ((3516, 3563), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.x', '[0.005236663400791, -4]'], {}), '(res.x, [0.005236663400791, -4])\n', (3531, 3563), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3656, 3683), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.fun', 'r'], {}), '(res.fun, r)\n', (3671, 3683), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3693, 3741), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0.0)'], {'atol': '(1e-12)'}), '(res.optimality, 0.0, atol=1e-12)\n', (3708, 3741), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3750, 3788), 'numpy.testing.assert_equal', 'assert_equal', (['res.active_mask', '[0, -1]'], {}), '(res.active_mask, [0, -1])\n', (3762, 3788), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3797, 3818), 'numpy.testing.assert_', 'assert_', (['(res.nit < 15)'], {}), '(res.nit < 15)\n', (3804, 3818), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3827, 3870), 'numpy.testing.assert_', 'assert_', (['(res.status == 1 or res.status == 3)'], {}), '(res.status == 1 or res.status == 3)\n', (3834, 3870), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3925, 3945), 'numpy.testing.assert_', 'assert_', (['res.success'], {}), '(res.success)\n', (3932, 3945), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((4067, 4093), 'scipy.sparse.rand', 'rand', (['m', 'n'], {'random_state': '(0)'}), '(m, n, random_state=0)\n', (4071, 4093), False, 'from scipy.sparse import rand\n'), ((4138, 4154), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b'], {}), '(A, b)\n', (4148, 4154), False, 'from scipy.optimize import lsq_linear\n'), ((4163, 4209), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0)'], {'atol': '(1e-06)'}), '(res.optimality, 0, atol=1e-06)\n', (4178, 4209), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((4222, 4241), 'scipy.sparse.linalg.aslinearoperator', 'aslinearoperator', (['A'], {}), '(A)\n', (4238, 4241), False, 'from scipy.sparse.linalg import aslinearoperator\n'), ((4256, 4272), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b'], {}), '(A, b)\n', (4266, 4272), False, 'from scipy.optimize import lsq_linear\n'), ((4281, 4327), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0)'], {'atol': '(1e-06)'}), '(res.optimality, 0, atol=1e-06)\n', (4296, 4327), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((4408, 4434), 'scipy.sparse.rand', 'rand', (['m', 'n'], {'random_state': '(0)'}), '(m, n, random_state=0)\n', (4412, 4434), False, 'from scipy.sparse import rand\n'), ((4530, 4556), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {}), '(A, b, (lb, ub))\n', (4540, 4556), False, 'from scipy.optimize import lsq_linear\n'), ((4565, 4613), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0.0)'], {'atol': '(1e-08)'}), '(res.optimality, 0.0, atol=1e-08)\n', (4580, 4613), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((4628, 4670), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'lsmr_tol': '(1e-13)'}), '(A, b, (lb, ub), lsmr_tol=1e-13)\n', (4638, 4670), False, 'from scipy.optimize import lsq_linear\n'), ((4679, 4727), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0.0)'], {'atol': '(1e-08)'}), '(res.optimality, 0.0, atol=1e-08)\n', (4694, 4727), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((4742, 4785), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'lsmr_tol': '"""auto"""'}), "(A, b, (lb, ub), lsmr_tol='auto')\n", (4752, 4785), False, 'from scipy.optimize import lsq_linear\n'), ((4794, 4842), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0.0)'], {'atol': '(1e-08)'}), '(res.optimality, 0.0, atol=1e-08)\n', (4809, 4842), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((609, 668), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, method=self.method, lsq_solver=lsq_solver)\n', (619, 668), False, 'from scipy.optimize import lsq_linear\n'), ((937, 1006), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver)\n', (947, 1006), False, 'from scipy.optimize import lsq_linear\n'), ((1188, 1261), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, np.inf)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver)\n', (1198, 1261), False, 'from scipy.optimize import lsq_linear\n'), ((1496, 1569), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, np.inf)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, np.inf), method=self.method, lsq_solver=lsq_solver)\n', (1506, 1569), False, 'from scipy.optimize import lsq_linear\n'), ((1807, 1881), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(-np.inf, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver)\n', (1817, 1881), False, 'from scipy.optimize import lsq_linear\n'), ((2081, 2155), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(-np.inf, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (-np.inf, ub), method=self.method, lsq_solver=lsq_solver)\n', (2091, 2155), False, 'from scipy.optimize import lsq_linear\n'), ((2380, 2449), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver)\n', (2390, 2449), False, 'from scipy.optimize import lsq_linear\n'), ((2774, 2843), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver)\n', (2784, 2843), False, 'from scipy.optimize import lsq_linear\n'), ((2885, 2921), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.x', '[-0.1, -0.1]'], {}), '(res.x, [-0.1, -0.1])\n', (2900, 2921), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((3194, 3263), 'scipy.optimize.lsq_linear', 'lsq_linear', (['A', 'b', '(lb, ub)'], {'method': 'self.method', 'lsq_solver': 'lsq_solver'}), '(A, b, (lb, ub), method=self.method, lsq_solver=lsq_solver)\n', (3204, 3263), False, 'from scipy.optimize import lsq_linear\n'), ((3305, 3351), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.optimality', '(0)'], {'atol': '(1e-11)'}), '(res.optimality, 0, atol=1e-11)\n', (3320, 3351), False, 'from numpy.testing import assert_allclose, assert_equal, assert_, run_module_suite, assert_raises\n'), ((1326, 1361), 'numpy.array', 'np.array', (['[0.0, -4.084174437334673]'], {}), '([0.0, -4.084174437334673])\n', (1334, 1361), True, 'import numpy as np\n'), ((1634, 1666), 'numpy.array', 'np.array', (['[0.448427311733504, 0]'], {}), '([0.448427311733504, 0])\n', (1642, 1666), True, 'import numpy as np\n'), ((1946, 1980), 'numpy.array', 'np.array', (['[-0.105560998682388, -5]'], {}), '([-0.105560998682388, -5])\n', (1954, 1980), True, 'import numpy as np\n'), ((2220, 2254), 'numpy.array', 'np.array', (['[-1, -4.181102129483254]'], {}), '([-1, -4.181102129483254])\n', (2228, 2254), True, 'import numpy as np\n'), ((2514, 2547), 'numpy.array', 'np.array', (['[0.005236663400791, -4]'], {}), '([0.005236663400791, -4])\n', (2522, 2547), True, 'import numpy as np\n'), ((3634, 3646), 'numpy.dot', 'np.dot', (['r', 'r'], {}), '(r, r)\n', (3640, 3646), True, 'import numpy as np\n'), ((704, 715), 'numpy.linalg.lstsq', 'lstsq', (['A', 'b'], {}), '(A, b)\n', (709, 715), False, 'from numpy.linalg import lstsq\n'), ((1071, 1082), 'numpy.linalg.lstsq', 'lstsq', (['A', 'b'], {}), '(A, b)\n', (1076, 1082), False, 'from numpy.linalg import lstsq\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 31 11:26:25 2018 @author: cadu """ print("66") import pandas as pd import numpy as np from sklearn import datasets, svm, metrics from sklearn import cross_validation import matplotlib.pyplot as plt import sys sys.path.append("../src") from data_prov2 import get_tt ## load data data_train,label_train=get_tt() ############################################ label_train = np.resize(label_train,(len(label_train),)) X_train,X_test,y_train,y_test=cross_validation.train_test_split(data_train,label_train,test_size=0.2) X_val,X_test,y_val,y_test=cross_validation.train_test_split(X_test,y_test,test_size=0.5) print(X_train.shape,X_val.shape,X_test.shape,y_test.shape) ############################################ def extract_batch_size(_train, step, batch_size):# Function to fetch a "batch_size" amount of data from "(X|y)_train" data. shape = list(_train.shape) #_X 7352 128 9 shape[0] = batch_size # 1500 128 9 batch_s = np.empty(shape) for i in range(batch_size): # Loop index index = ((step-1)*batch_size + i) % len(_train) # step=1 batch_s[i] = _train[index] return batch_s ############################################ import tensorflow as tf import tensorflow as tf x = tf.placeholder(tf.float32, [None, 671]) W = tf.Variable(tf.zeros([671, 8])) b = tf.Variable(tf.zeros([8])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.int64, [None]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.losses.sparse_softmax_cross_entropy on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Train batch_size=256 print_fre=10 for _ in range(1000): #batch_xs, batch_ys = mnist.train.next_batch(100) batch_xs = extract_batch_size(X_train,_ ,batch_size) batch_xss = extract_batch_size(X_test,_ ,batch_size) batch_ys = extract_batch_size(y_train,_,batch_size) batch_yss = extract_batch_size(y_test,_,batch_size) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), y_) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) if _%print_fre==0: print(sess.run( accuracy, feed_dict={ x: batch_xss, y_: batch_yss })) print(sess.run( tf.argmax(y, 1), feed_dict={ x: batch_xss, y_: batch_yss }))
[ "tensorflow.cast", "tensorflow.InteractiveSession", "tensorflow.placeholder", "tensorflow.train.GradientDescentOptimizer", "tensorflow.global_variables_initializer", "tensorflow.argmax", "numpy.empty", "sklearn.cross_validation.train_test_split", "tensorflow.matmul", "data_prov2.get_tt", "tensorflow.losses.sparse_softmax_cross_entropy", "sys.path.append", "tensorflow.zeros" ]
[((281, 306), 'sys.path.append', 'sys.path.append', (['"""../src"""'], {}), "('../src')\n", (296, 306), False, 'import sys\n'), ((373, 381), 'data_prov2.get_tt', 'get_tt', ([], {}), '()\n', (379, 381), False, 'from data_prov2 import get_tt\n'), ((514, 587), 'sklearn.cross_validation.train_test_split', 'cross_validation.train_test_split', (['data_train', 'label_train'], {'test_size': '(0.2)'}), '(data_train, label_train, test_size=0.2)\n', (547, 587), False, 'from sklearn import cross_validation\n'), ((612, 676), 'sklearn.cross_validation.train_test_split', 'cross_validation.train_test_split', (['X_test', 'y_test'], {'test_size': '(0.5)'}), '(X_test, y_test, test_size=0.5)\n', (645, 676), False, 'from sklearn import cross_validation\n'), ((1297, 1336), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, 671]'], {}), '(tf.float32, [None, 671])\n', (1311, 1336), True, 'import tensorflow as tf\n'), ((1462, 1494), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int64', '[None]'], {}), '(tf.int64, [None])\n', (1476, 1494), True, 'import tensorflow as tf\n'), ((1832, 1891), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'labels': 'y_', 'logits': 'y'}), '(labels=y_, logits=y)\n', (1870, 1891), True, 'import tensorflow as tf\n'), ((1976, 1999), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (1997, 1999), True, 'import tensorflow as tf\n'), ((1013, 1028), 'numpy.empty', 'np.empty', (['shape'], {}), '(shape)\n', (1021, 1028), True, 'import numpy as np\n'), ((1353, 1371), 'tensorflow.zeros', 'tf.zeros', (['[671, 8]'], {}), '([671, 8])\n', (1361, 1371), True, 'import tensorflow as tf\n'), ((1389, 1402), 'tensorflow.zeros', 'tf.zeros', (['[8]'], {}), '([8])\n', (1397, 1402), True, 'import tensorflow as tf\n'), ((1408, 1423), 'tensorflow.matmul', 'tf.matmul', (['x', 'W'], {}), '(x, W)\n', (1417, 1423), True, 'import tensorflow as tf\n'), ((1905, 1943), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['(0.5)'], {}), '(0.5)\n', (1938, 1943), True, 'import tensorflow as tf\n'), ((2000, 2033), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2031, 2033), True, 'import tensorflow as tf\n'), ((2502, 2517), 'tensorflow.argmax', 'tf.argmax', (['y', '(1)'], {}), '(y, 1)\n', (2511, 2517), True, 'import tensorflow as tf\n'), ((2553, 2592), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (2560, 2592), True, 'import tensorflow as tf\n'), ((2775, 2790), 'tensorflow.argmax', 'tf.argmax', (['y', '(1)'], {}), '(y, 1)\n', (2784, 2790), True, 'import tensorflow as tf\n')]
import numpy as np import torch import torch.nn.functional as F from nnlib.nnlib import visualizations as vis from nnlib.nnlib import losses, utils from modules import nn_utils from methods.predict import PredictGradBaseClassifier class LIMIT(PredictGradBaseClassifier): """ The main method of "Improving generalization by controlling label-noise information in neural network weights" paper. This method trains a classifier using gradients predict by another network without directly using labels. As in the paper, only the gradient with respect to the output of the last layer is predicted, the remaining gradients are computed using backpropogation, starting with the predicted gradient. For more details, refer to the paper at https://arxiv.org/abs/2002.07933. """ @utils.capture_arguments_of_init def __init__(self, input_shape, architecture_args, device='cuda', grad_weight_decay=0.0, lamb=1.0, sample_from_q=False, q_dist='Gaussian', load_from=None, warm_up=0, **kwargs): """ :param input_shape: the input shape of an example. E.g. for CIFAR-10 this is (3, 32, 32). :param architecture_args: dictionary usually parsed from a json file from the `configs` directory. This specifies the architecture of the classifier and the architecture of the gradient predictor network: `q-network`. If you don't want to parse the networks from arguments, you can modify the code so that self.classifier and self.q_network directly point to the correct models. :param device: the device on which the model is stored and executed. :param grad_weight_decay: the strength of regularization of the mean of the predicted gradients, ||\mu||_2^2. Usually values from [0.03 - 10] work well. Refer to the paper for more guidance. :param lamb: this is the coefficient in front of the H(p, q) term. Unless `sample_from_q=True`, setting this to anything but 1.0 has no effect. When `sample_from_q=True`, `lamb` specifies the variance of the predicted gradients. :param sample_from_q: whether to sample from the q distribution (predicted gradient distribution), or to use the mean. :param q_dist: what distribution predicted gradients should follow. Options are 'Gaussian', 'Laplace', 'ce'. The names of the first 2 speak about themselves and were used in the paper under names LIMIT_G, and LIMIT_L. The option 'ce' corresponds to a hypothetical case when H(p,q) reduces to CE(q_label_pred, actual_label). This latter option may work better for some datasets. When `q_dist=ce`, then `sample_from_q` has to be false. :param load_from: path to a file where another model (already trained) was saved. This will be loaded, and the training will continue from this starting point. Note that the saved model needs to be saved using nnlib.nnlib.utils.save function. :param warm_up: number of initial epochs for which the classifier is not trained at all. This is done to give the q-network enough time to learn meaningful gradient predictions before using those predicted gradients to train the classifier. :param kwargs: additional keyword arguments that are passed to the parent methods. For this class it can be always empty. """ super(LIMIT, self).__init__(**kwargs) self.args = None # this will be modified by the decorator self.input_shape = [None] + list(input_shape) self.architecture_args = architecture_args self.grad_weight_decay = grad_weight_decay self.lamb = lamb self.sample_from_q = sample_from_q self.q_dist = q_dist self.load_from = load_from self.warm_up = warm_up # lamb is the coefficient in front of the H(p,q) term. It controls the variance of predicted gradients. if self.q_dist == 'Gaussian': self.grad_replacement_class = nn_utils.get_grad_replacement_class( sample=self.sample_from_q, standard_dev=np.sqrt(1.0 / 2.0 / (self.lamb + 1e-12)), q_dist=self.q_dist) elif self.q_dist == 'Laplace': self.grad_replacement_class = nn_utils.get_grad_replacement_class( sample=self.sample_from_q, standard_dev=np.sqrt(2.0) / (self.lamb + 1e-6), q_dist=self.q_dist) elif self.q_dist == 'ce': # This is not an actual distributions. Instead, this correspond to hypothetical case when # H(p,q) term results to ce(q_label_pred, actual_label). assert not self.sample_from_q self.grad_replacement_class = nn_utils.get_grad_replacement_class(sample=False) else: raise NotImplementedError() # initialize the network self.classifier, output_shape = nn_utils.parse_network_from_config(args=self.architecture_args['classifier'], input_shape=self.input_shape) self.classifier = self.classifier.to(device) self.num_classes = output_shape[-1] self.q_network, _ = nn_utils.parse_network_from_config(args=self.architecture_args['q-network'], input_shape=self.input_shape) self.q_network = self.q_network.to(device) if self.load_from is not None: print("Loading the gradient predictor model from {}".format(load_from)) import methods stored_net = utils.load(load_from, methods=methods, device='cpu') stored_net_params = dict(stored_net.classifier.named_parameters()) for key, param in self.q_network.named_parameters(): param.data = stored_net_params[key].data.to(device) def forward(self, inputs, grad_enabled=False, **kwargs): torch.set_grad_enabled(grad_enabled) x = inputs[0].to(self.device) # compute classifier predictions pred = self.classifier(x) # predict the gradient wrt to logits q_label_pred = self.q_network(x) q_label_pred_softmax = torch.softmax(q_label_pred, dim=1) # NOTE: we detach here too, so that the classifier is trained using the predicted gradient only pred_softmax = torch.softmax(pred, dim=1).detach() grad_pred = pred_softmax - q_label_pred_softmax # replace the gradients pred_before = pred pred = self.grad_replacement_class.apply(pred, grad_pred) out = { 'pred': pred, 'q_label_pred': q_label_pred, 'grad_pred': grad_pred, 'pred_before': pred_before } return out def compute_loss(self, inputs, labels, outputs, grad_enabled, **kwargs): torch.set_grad_enabled(grad_enabled) pred_before = outputs['pred_before'] grad_pred = outputs['grad_pred'] y = labels[0].to(self.device) y_one_hot = F.one_hot(y, num_classes=self.num_classes).float() # classification loss classifier_loss = F.cross_entropy(input=outputs['pred'], target=y) # compute the actual gradient # NOTE: we detach here too, so that the classifier is trained using the predicted gradient only pred_softmax = torch.softmax(pred_before.detach(), dim=1) grad_actual = pred_softmax - y_one_hot # I(g : y | x) penalty if self.q_dist == 'Gaussian': info_penalty = losses.mse(grad_pred, grad_actual) elif self.q_dist == 'Laplace': info_penalty = losses.mae(grad_pred, grad_actual) elif self.q_dist == 'ce': info_penalty = losses.get_classification_loss(target=y_one_hot, pred=outputs['q_label_pred'], loss_function='ce') else: raise NotImplementedError() batch_losses = { 'classifier': classifier_loss, 'info_penalty': info_penalty } # add predicted gradient norm penalty if self.grad_weight_decay > 0: grad_l2_loss = self.grad_weight_decay * \ torch.mean(torch.sum(grad_pred ** 2, dim=1), dim=0) batch_losses['pred_grad_l2'] = grad_l2_loss return batch_losses, outputs def on_epoch_start(self, partition, epoch, **kwargs): super(LIMIT, self).on_epoch_start(partition=partition, epoch=epoch, **kwargs) if partition == 'train': requires_grad = (epoch >= self.warm_up) for param in self.classifier.parameters(): param.requires_grad = requires_grad def visualize(self, train_loader, val_loader, tensorboard=None, epoch=None, **kwargs): visualizations = super(LIMIT, self).visualize(train_loader, val_loader, tensorboard, epoch) # visualize q_label_pred fig, _ = vis.plot_predictions(self, train_loader, key='q_label_pred') visualizations['predictions/q-label-pred-train'] = fig if val_loader is not None: fig, _ = vis.plot_predictions(self, val_loader, key='q_label_pred') visualizations['predictions/q-label-pred-val'] = fig return visualizations
[ "nnlib.nnlib.losses.get_classification_loss", "numpy.sqrt", "modules.nn_utils.parse_network_from_config", "modules.nn_utils.get_grad_replacement_class", "nnlib.nnlib.losses.mse", "nnlib.nnlib.losses.mae", "torch.softmax", "nnlib.nnlib.visualizations.plot_predictions", "torch.nn.functional.one_hot", "torch.sum", "torch.nn.functional.cross_entropy", "nnlib.nnlib.utils.load", "torch.set_grad_enabled" ]
[((4959, 5071), 'modules.nn_utils.parse_network_from_config', 'nn_utils.parse_network_from_config', ([], {'args': "self.architecture_args['classifier']", 'input_shape': 'self.input_shape'}), "(args=self.architecture_args['classifier'\n ], input_shape=self.input_shape)\n", (4993, 5071), False, 'from modules import nn_utils\n'), ((5268, 5378), 'modules.nn_utils.parse_network_from_config', 'nn_utils.parse_network_from_config', ([], {'args': "self.architecture_args['q-network']", 'input_shape': 'self.input_shape'}), "(args=self.architecture_args['q-network'],\n input_shape=self.input_shape)\n", (5302, 5378), False, 'from modules import nn_utils\n'), ((6000, 6036), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['grad_enabled'], {}), '(grad_enabled)\n', (6022, 6036), False, 'import torch\n'), ((6269, 6303), 'torch.softmax', 'torch.softmax', (['q_label_pred'], {'dim': '(1)'}), '(q_label_pred, dim=1)\n', (6282, 6303), False, 'import torch\n'), ((6925, 6961), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['grad_enabled'], {}), '(grad_enabled)\n', (6947, 6961), False, 'import torch\n'), ((7215, 7263), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', ([], {'input': "outputs['pred']", 'target': 'y'}), "(input=outputs['pred'], target=y)\n", (7230, 7263), True, 'import torch.nn.functional as F\n'), ((9150, 9210), 'nnlib.nnlib.visualizations.plot_predictions', 'vis.plot_predictions', (['self', 'train_loader'], {'key': '"""q_label_pred"""'}), "(self, train_loader, key='q_label_pred')\n", (9170, 9210), True, 'from nnlib.nnlib import visualizations as vis\n'), ((5665, 5717), 'nnlib.nnlib.utils.load', 'utils.load', (['load_from'], {'methods': 'methods', 'device': '"""cpu"""'}), "(load_from, methods=methods, device='cpu')\n", (5675, 5717), False, 'from nnlib.nnlib import losses, utils\n'), ((7617, 7651), 'nnlib.nnlib.losses.mse', 'losses.mse', (['grad_pred', 'grad_actual'], {}), '(grad_pred, grad_actual)\n', (7627, 7651), False, 'from nnlib.nnlib import losses, utils\n'), ((9330, 9388), 'nnlib.nnlib.visualizations.plot_predictions', 'vis.plot_predictions', (['self', 'val_loader'], {'key': '"""q_label_pred"""'}), "(self, val_loader, key='q_label_pred')\n", (9350, 9388), True, 'from nnlib.nnlib import visualizations as vis\n'), ((6431, 6457), 'torch.softmax', 'torch.softmax', (['pred'], {'dim': '(1)'}), '(pred, dim=1)\n', (6444, 6457), False, 'import torch\n'), ((7107, 7149), 'torch.nn.functional.one_hot', 'F.one_hot', (['y'], {'num_classes': 'self.num_classes'}), '(y, num_classes=self.num_classes)\n', (7116, 7149), True, 'import torch.nn.functional as F\n'), ((7718, 7752), 'nnlib.nnlib.losses.mae', 'losses.mae', (['grad_pred', 'grad_actual'], {}), '(grad_pred, grad_actual)\n', (7728, 7752), False, 'from nnlib.nnlib import losses, utils\n'), ((4201, 4241), 'numpy.sqrt', 'np.sqrt', (['(1.0 / 2.0 / (self.lamb + 1e-12))'], {}), '(1.0 / 2.0 / (self.lamb + 1e-12))\n', (4208, 4241), True, 'import numpy as np\n'), ((4781, 4830), 'modules.nn_utils.get_grad_replacement_class', 'nn_utils.get_grad_replacement_class', ([], {'sample': '(False)'}), '(sample=False)\n', (4816, 4830), False, 'from modules import nn_utils\n'), ((7814, 7917), 'nnlib.nnlib.losses.get_classification_loss', 'losses.get_classification_loss', ([], {'target': 'y_one_hot', 'pred': "outputs['q_label_pred']", 'loss_function': '"""ce"""'}), "(target=y_one_hot, pred=outputs[\n 'q_label_pred'], loss_function='ce')\n", (7844, 7917), False, 'from nnlib.nnlib import losses, utils\n'), ((8381, 8413), 'torch.sum', 'torch.sum', (['(grad_pred ** 2)'], {'dim': '(1)'}), '(grad_pred ** 2, dim=1)\n', (8390, 8413), False, 'import torch\n'), ((4437, 4449), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (4444, 4449), True, 'import numpy as np\n')]
import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F import copy import math import ego_utils as utils import hydra class Encoder(nn.Module): """Convolutional encoder for image-based observations.""" def __init__(self, view, obs_shape, feature_dim): super().__init__() assert len(obs_shape) == 3 self.num_layers = 4 self.num_filters = 32 self.output_logits = False self.feature_dim = feature_dim if str(view) == 'both': # If using both views 1 and 3, use half the hidden dimensions for # view 1 and the other half for view 3. output_dim = feature_dim // 2 else: output_dim = feature_dim self.convs = nn.ModuleList([ nn.Conv2d(obs_shape[0], self.num_filters, 3, stride=2), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1) ]) if obs_shape[1] == 84: # DeepMind control suite images are 84x84 conv_out_size = 35 elif obs_shape[1] == 128: conv_out_size = 57 else: raise ValueError("Unsupported image size.") self.head = nn.Sequential( nn.Linear(self.num_filters * conv_out_size * conv_out_size, output_dim), nn.LayerNorm(output_dim)) self.outputs = dict() def forward_conv(self, obs): obs = obs / 255. self.outputs['obs'] = obs conv = torch.relu(self.convs[0](obs)) self.outputs['conv1'] = conv for i in range(1, self.num_layers): conv = torch.relu(self.convs[i](conv)) self.outputs['conv%s' % (i + 1)] = conv h = conv.view(conv.size(0), -1) return h def forward(self, obs, detach=False): h = self.forward_conv(obs) if detach: h = h.detach() out = self.head(h) if not self.output_logits: out = torch.tanh(out) self.outputs['out'] = out return out def copy_conv_weights_from(self, source): """Tie convolutional layers""" for i in range(self.num_layers): utils.tie_weights(src=source.convs[i], trg=self.convs[i]) def log(self, logger, step): for k, v in self.outputs.items(): logger.log_histogram(f'train_encoder/{k}_hist', v, step) if len(v.shape) > 2: logger.log_image(f'train_encoder/{k}_img', v[0], step) for i in range(self.num_layers): logger.log_param(f'train_encoder/conv{i + 1}', self.convs[i], step) class Actor(nn.Module): """torch.distributions implementation of an diagonal Gaussian policy.""" def __init__(self, view, encoder_cfg, action_shape, hidden_dim, hidden_depth, log_std_bounds, proprio_obs_shape): super().__init__() self.encoder = hydra.utils.instantiate(encoder_cfg) self.view = view self.log_std_bounds = log_std_bounds self.trunk = utils.mlp(self.encoder.feature_dim + proprio_obs_shape, hidden_dim, 2 * action_shape[0], hidden_depth) self.outputs = dict() self.apply(utils.weight_init) def forward(self, obs, detach_encoder=False): if str(self.view) == 'both': img_obs1, img_obs3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs encoder_out1 = self.encoder(img_obs1, detach=detach_encoder) encoder_out3 = self.encoder(img_obs3, detach=detach_encoder) obs_out = torch.cat((encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs), dim=-1) else: img_obs, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs encoder_out = self.encoder(img_obs, detach=detach_encoder) obs_out = torch.cat((encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs), dim=-1) mu, log_std = self.trunk(obs_out).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() self.outputs['mu'] = mu self.outputs['std'] = std dist = utils.SquashedNormal(mu, std) return dist def log(self, logger, step): for k, v in self.outputs.items(): logger.log_histogram(f'train_actor/{k}_hist', v, step) for i, m in enumerate(self.trunk): if type(m) == nn.Linear: logger.log_param(f'train_actor/fc{i}', m, step) class Critic(nn.Module): """Critic network, employes double Q-learning.""" def __init__(self, view, encoder_cfg, action_shape, hidden_dim, hidden_depth, proprio_obs_shape): super().__init__() self.encoder = hydra.utils.instantiate(encoder_cfg) self.view = view self.Q1 = utils.mlp(self.encoder.feature_dim + proprio_obs_shape + action_shape[0], hidden_dim, 1, hidden_depth) self.Q2 = utils.mlp(self.encoder.feature_dim + proprio_obs_shape + action_shape[0], hidden_dim, 1, hidden_depth) self.outputs = dict() self.apply(utils.weight_init) def forward(self, obs, action, detach_encoder=False): if str(self.view) == 'both': img_obs1, img_obs3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs assert img_obs1.size(0) == action.size(0) assert img_obs3.size(0) == action.size(0) encoder_out1 = self.encoder(img_obs1, detach=detach_encoder) encoder_out3 = self.encoder(img_obs3, detach=detach_encoder) obs_out = torch.cat((encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs), dim=-1) else: img_obs, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs assert img_obs.size(0) == action.size(0) encoder_out = self.encoder(img_obs, detach=detach_encoder) obs_out = torch.cat((encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs), dim=-1) obs_action = torch.cat([obs_out, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) self.outputs['q1'] = q1 self.outputs['q2'] = q2 return q1, q2 def log(self, logger, step): self.encoder.log(logger, step) for k, v in self.outputs.items(): logger.log_histogram(f'train_critic/{k}_hist', v, step) assert len(self.Q1) == len(self.Q2) for i, (m1, m2) in enumerate(zip(self.Q1, self.Q2)): assert type(m1) == type(m2) if type(m1) is nn.Linear: logger.log_param(f'train_critic/q1_fc{i}', m1, step) logger.log_param(f'train_critic/q2_fc{i}', m2, step) class DRQAgent(object): """Data regularized Q: actor-critic method for learning from pixels.""" def __init__(self, view, obs_shape, proprio_obs_shape, action_shape, action_range, device, encoder_cfg, critic_cfg, actor_cfg, discount, init_temperature, lr, actor_update_frequency, critic_tau, critic_target_update_frequency, batch_size): self.action_range = action_range self.device = device self.discount = discount self.critic_tau = critic_tau self.actor_update_frequency = actor_update_frequency self.critic_target_update_frequency = critic_target_update_frequency self.batch_size = batch_size self.view = view self.actor = hydra.utils.instantiate(actor_cfg).to(self.device) self.critic = hydra.utils.instantiate(critic_cfg).to(self.device) self.critic_target = hydra.utils.instantiate(critic_cfg).to( self.device) self.critic_target.load_state_dict(self.critic.state_dict()) # tie conv layers between actor and critic self.actor.encoder.copy_conv_weights_from(self.critic.encoder) self.log_alpha = torch.tensor(np.log(init_temperature)).to(device) self.log_alpha.requires_grad = True # set target entropy to -|A| self.target_entropy = -action_shape[0] # optimizers self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=lr) self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=lr) self.train() self.critic_target.train() def train(self, training=True): self.training = training self.actor.train(training) self.critic.train(training) @property def alpha(self): return self.log_alpha.exp() def act(self, obs, sample=False): if str(self.view) == 'both': img_obs1, img_obs3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs img_obs1 = torch.FloatTensor(img_obs1).to(self.device) img_obs1 = img_obs1.unsqueeze(0) img_obs3 = torch.FloatTensor(img_obs3).to(self.device) img_obs3 = img_obs3.unsqueeze(0) else: img_obs, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs = obs img_obs = torch.FloatTensor(img_obs).to(self.device) img_obs = img_obs.unsqueeze(0) ee_grip_obs = torch.FloatTensor(ee_grip_obs).to(self.device) ee_grip_obs = ee_grip_obs.unsqueeze(0) ee_pos_rel_base_obs = torch.FloatTensor(ee_pos_rel_base_obs).to(self.device) ee_pos_rel_base_obs = ee_pos_rel_base_obs.unsqueeze(0) contact_flags_obs = torch.FloatTensor(contact_flags_obs).to(self.device) contact_flags_obs = contact_flags_obs.unsqueeze(0) if str(self.view) == 'both': obs = img_obs1, img_obs3, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs else: obs = img_obs, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs dist = self.actor(obs) action = dist.sample() if sample else dist.mean action = action.clamp(*self.action_range) assert action.ndim == 2 and action.shape[0] == 1 return utils.to_np(action[0]) def update_critic(self, obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step): with torch.no_grad(): dist = self.actor(next_obs) next_action = dist.rsample() log_prob = dist.log_prob(next_action).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_prob target_Q = reward + (not_done * self.discount * target_V) dist_aug = self.actor(next_obs_aug) next_action_aug = dist_aug.rsample() log_prob_aug = dist_aug.log_prob(next_action_aug).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs_aug, next_action_aug) target_V = torch.min( target_Q1, target_Q2) - self.alpha.detach() * log_prob_aug target_Q_aug = reward + (not_done * self.discount * target_V) target_Q = (target_Q + target_Q_aug) / 2 # get current Q estimates current_Q1, current_Q2 = self.critic(obs, action) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) Q1_aug, Q2_aug = self.critic(obs_aug, action) critic_loss += F.mse_loss(Q1_aug, target_Q) + F.mse_loss( Q2_aug, target_Q) logger.log('train_critic/loss', critic_loss, step) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() self.critic.log(logger, step) def update_actor_and_alpha(self, obs, logger, step): # detach conv filters, so we don't update them with the actor loss dist = self.actor(obs, detach_encoder=True) action = dist.rsample() log_prob = dist.log_prob(action).sum(-1, keepdim=True) # detach conv filters, so we don't update them with the actor loss actor_Q1, actor_Q2 = self.critic(obs, action, detach_encoder=True) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (self.alpha.detach() * log_prob - actor_Q).mean() logger.log('train_actor/loss', actor_loss, step) logger.log('train_actor/target_entropy', self.target_entropy, step) logger.log('train_actor/entropy', -log_prob.mean(), step) # optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() self.actor.log(logger, step) self.log_alpha_optimizer.zero_grad() alpha_loss = (self.alpha * (-log_prob - self.target_entropy).detach()).mean() logger.log('train_alpha/loss', alpha_loss, step) logger.log('train_alpha/value', self.alpha, step) alpha_loss.backward() self.log_alpha_optimizer.step() def update(self, replay_buffer, logger, step): obs, action, reward, next_obs, not_done, obs_aug, next_obs_aug = replay_buffer.sample( self.batch_size) logger.log('train/batch_reward', reward.mean(), step) self.update_critic(obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step) if step % self.actor_update_frequency == 0: self.update_actor_and_alpha(obs, logger, step) if step % self.critic_target_update_frequency == 0: utils.soft_update_params(self.critic, self.critic_target, self.critic_tau) def save_checkpoint(self, log_dir, step): torch.save( { 'step': step, 'actor_state_dict': self.actor.state_dict(), 'critic_state_dict': self.critic.state_dict(), 'actor_optimizer_state_dict': self.actor_optimizer.state_dict(), 'critic_optimizer_state_dict': self.critic_optimizer.state_dict(), 'log_alpha_optimizer_state_dict': self.log_alpha_optimizer.state_dict(), }, os.path.join(log_dir, str(step) + '.ckpt') ) def load_checkpoint(self, checkpoint_dir, checkpoint_step): checkpoint_path = checkpoint_dir + '/' + str(checkpoint_step) + '.ckpt' checkpoint = torch.load(checkpoint_path) self.actor.load_state_dict(checkpoint['actor_state_dict']) self.critic.load_state_dict(checkpoint['critic_state_dict']) self.actor_optimizer.load_state_dict(checkpoint['actor_optimizer_state_dict']) self.critic_optimizer.load_state_dict(checkpoint['critic_optimizer_state_dict']) self.log_alpha_optimizer.load_state_dict(checkpoint['log_alpha_optimizer_state_dict'])
[ "torch.tanh", "torch.optim.Adam", "torch.nn.functional.mse_loss", "ego_utils.mlp", "ego_utils.tie_weights", "hydra.utils.instantiate", "torch.load", "torch.nn.LayerNorm", "numpy.log", "torch.min", "torch.nn.Conv2d", "ego_utils.to_np", "torch.nn.Linear", "ego_utils.soft_update_params", "torch.no_grad", "torch.FloatTensor", "torch.cat", "ego_utils.SquashedNormal" ]
[((3033, 3069), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['encoder_cfg'], {}), '(encoder_cfg)\n', (3056, 3069), False, 'import hydra\n'), ((3162, 3268), 'ego_utils.mlp', 'utils.mlp', (['(self.encoder.feature_dim + proprio_obs_shape)', 'hidden_dim', '(2 * action_shape[0])', 'hidden_depth'], {}), '(self.encoder.feature_dim + proprio_obs_shape, hidden_dim, 2 *\n action_shape[0], hidden_depth)\n', (3171, 3268), True, 'import ego_utils as utils\n'), ((4225, 4244), 'torch.tanh', 'torch.tanh', (['log_std'], {}), '(log_std)\n', (4235, 4244), False, 'import torch\n'), ((4562, 4591), 'ego_utils.SquashedNormal', 'utils.SquashedNormal', (['mu', 'std'], {}), '(mu, std)\n', (4582, 4591), True, 'import ego_utils as utils\n'), ((5134, 5170), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['encoder_cfg'], {}), '(encoder_cfg)\n', (5157, 5170), False, 'import hydra\n'), ((5215, 5321), 'ego_utils.mlp', 'utils.mlp', (['(self.encoder.feature_dim + proprio_obs_shape + action_shape[0])', 'hidden_dim', '(1)', 'hidden_depth'], {}), '(self.encoder.feature_dim + proprio_obs_shape + action_shape[0],\n hidden_dim, 1, hidden_depth)\n', (5224, 5321), True, 'import ego_utils as utils\n'), ((5364, 5470), 'ego_utils.mlp', 'utils.mlp', (['(self.encoder.feature_dim + proprio_obs_shape + action_shape[0])', 'hidden_dim', '(1)', 'hidden_depth'], {}), '(self.encoder.feature_dim + proprio_obs_shape + action_shape[0],\n hidden_dim, 1, hidden_depth)\n', (5373, 5470), True, 'import ego_utils as utils\n'), ((6474, 6510), 'torch.cat', 'torch.cat', (['[obs_out, action]'], {'dim': '(-1)'}), '([obs_out, action], dim=-1)\n', (6483, 6510), False, 'import torch\n'), ((8814, 8855), 'torch.optim.Adam', 'torch.optim.Adam', (['[self.log_alpha]'], {'lr': 'lr'}), '([self.log_alpha], lr=lr)\n', (8830, 8855), False, 'import torch\n'), ((10550, 10572), 'ego_utils.to_np', 'utils.to_np', (['action[0]'], {}), '(action[0])\n', (10561, 10572), True, 'import ego_utils as utils\n'), ((12815, 12844), 'torch.min', 'torch.min', (['actor_Q1', 'actor_Q2'], {}), '(actor_Q1, actor_Q2)\n', (12824, 12844), False, 'import torch\n'), ((15034, 15061), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (15044, 15061), False, 'import torch\n'), ((1374, 1445), 'torch.nn.Linear', 'nn.Linear', (['(self.num_filters * conv_out_size * conv_out_size)', 'output_dim'], {}), '(self.num_filters * conv_out_size * conv_out_size, output_dim)\n', (1383, 1445), True, 'import torch.nn as nn\n'), ((1459, 1483), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['output_dim'], {}), '(output_dim)\n', (1471, 1483), True, 'import torch.nn as nn\n'), ((2105, 2120), 'torch.tanh', 'torch.tanh', (['out'], {}), '(out)\n', (2115, 2120), False, 'import torch\n'), ((2315, 2372), 'ego_utils.tie_weights', 'utils.tie_weights', ([], {'src': 'source.convs[i]', 'trg': 'self.convs[i]'}), '(src=source.convs[i], trg=self.convs[i])\n', (2332, 2372), True, 'import ego_utils as utils\n'), ((3711, 3815), 'torch.cat', 'torch.cat', (['(encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs,\n contact_flags_obs)'], {'dim': '(-1)'}), '((encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs,\n contact_flags_obs), dim=-1)\n', (3720, 3815), False, 'import torch\n'), ((3998, 4088), 'torch.cat', 'torch.cat', (['(encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs)'], {'dim': '(-1)'}), '((encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs\n ), dim=-1)\n', (4007, 4088), False, 'import torch\n'), ((6026, 6130), 'torch.cat', 'torch.cat', (['(encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs,\n contact_flags_obs)'], {'dim': '(-1)'}), '((encoder_out1, encoder_out3, ee_grip_obs, ee_pos_rel_base_obs,\n contact_flags_obs), dim=-1)\n', (6035, 6130), False, 'import torch\n'), ((6366, 6456), 'torch.cat', 'torch.cat', (['(encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs)'], {'dim': '(-1)'}), '((encoder_out, ee_grip_obs, ee_pos_rel_base_obs, contact_flags_obs\n ), dim=-1)\n', (6375, 6456), False, 'import torch\n'), ((10716, 10731), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10729, 10731), False, 'import torch\n'), ((11893, 11925), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['current_Q1', 'target_Q'], {}), '(current_Q1, target_Q)\n', (11903, 11925), True, 'import torch.nn.functional as F\n'), ((11928, 11960), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['current_Q2', 'target_Q'], {}), '(current_Q2, target_Q)\n', (11938, 11960), True, 'import torch.nn.functional as F\n'), ((12053, 12081), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['Q1_aug', 'target_Q'], {}), '(Q1_aug, target_Q)\n', (12063, 12081), True, 'import torch.nn.functional as F\n'), ((12084, 12112), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['Q2_aug', 'target_Q'], {}), '(Q2_aug, target_Q)\n', (12094, 12112), True, 'import torch.nn.functional as F\n'), ((14188, 14262), 'ego_utils.soft_update_params', 'utils.soft_update_params', (['self.critic', 'self.critic_target', 'self.critic_tau'], {}), '(self.critic, self.critic_target, self.critic_tau)\n', (14212, 14262), True, 'import ego_utils as utils\n'), ((804, 858), 'torch.nn.Conv2d', 'nn.Conv2d', (['obs_shape[0]', 'self.num_filters', '(3)'], {'stride': '(2)'}), '(obs_shape[0], self.num_filters, 3, stride=2)\n', (813, 858), True, 'import torch.nn as nn\n'), ((872, 930), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.num_filters', 'self.num_filters', '(3)'], {'stride': '(1)'}), '(self.num_filters, self.num_filters, 3, stride=1)\n', (881, 930), True, 'import torch.nn as nn\n'), ((944, 1002), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.num_filters', 'self.num_filters', '(3)'], {'stride': '(1)'}), '(self.num_filters, self.num_filters, 3, stride=1)\n', (953, 1002), True, 'import torch.nn as nn\n'), ((1016, 1074), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.num_filters', 'self.num_filters', '(3)'], {'stride': '(1)'}), '(self.num_filters, self.num_filters, 3, stride=1)\n', (1025, 1074), True, 'import torch.nn as nn\n'), ((7930, 7964), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['actor_cfg'], {}), '(actor_cfg)\n', (7953, 7964), False, 'import hydra\n'), ((8004, 8039), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['critic_cfg'], {}), '(critic_cfg)\n', (8027, 8039), False, 'import hydra\n'), ((8085, 8120), 'hydra.utils.instantiate', 'hydra.utils.instantiate', (['critic_cfg'], {}), '(critic_cfg)\n', (8108, 8120), False, 'import hydra\n'), ((9739, 9769), 'torch.FloatTensor', 'torch.FloatTensor', (['ee_grip_obs'], {}), '(ee_grip_obs)\n', (9756, 9769), False, 'import torch\n'), ((9863, 9901), 'torch.FloatTensor', 'torch.FloatTensor', (['ee_pos_rel_base_obs'], {}), '(ee_pos_rel_base_obs)\n', (9880, 9901), False, 'import torch\n'), ((10009, 10045), 'torch.FloatTensor', 'torch.FloatTensor', (['contact_flags_obs'], {}), '(contact_flags_obs)\n', (10026, 10045), False, 'import torch\n'), ((10986, 11017), 'torch.min', 'torch.min', (['target_Q1', 'target_Q2'], {}), '(target_Q1, target_Q2)\n', (10995, 11017), False, 'import torch\n'), ((11564, 11595), 'torch.min', 'torch.min', (['target_Q1', 'target_Q2'], {}), '(target_Q1, target_Q2)\n', (11573, 11595), False, 'import torch\n'), ((8381, 8405), 'numpy.log', 'np.log', (['init_temperature'], {}), '(init_temperature)\n', (8387, 8405), True, 'import numpy as np\n'), ((9315, 9342), 'torch.FloatTensor', 'torch.FloatTensor', (['img_obs1'], {}), '(img_obs1)\n', (9332, 9342), False, 'import torch\n'), ((9427, 9454), 'torch.FloatTensor', 'torch.FloatTensor', (['img_obs3'], {}), '(img_obs3)\n', (9444, 9454), False, 'import torch\n'), ((9631, 9657), 'torch.FloatTensor', 'torch.FloatTensor', (['img_obs'], {}), '(img_obs)\n', (9648, 9657), False, 'import torch\n')]
from collections import namedtuple import lasagne as nn from lasagne.layers.dnn import Conv2DDNNLayer, MaxPool2DDNNLayer import data_iterators import numpy as np import theano.tensor as T from functools import partial import utils_heart import nn_heart from pathfinder import PKL_TRAIN_DATA_PATH, TRAIN_LABELS_PATH, PKL_VALIDATE_DATA_PATH import utils import data caching = None restart_from_save = None rng = np.random.RandomState(42) patch_size = (64, 64) train_transformation_params = { 'patch_size': patch_size, 'mm_patch_size': (128, 128), 'mask_roi': True, 'rotation_range': (-180, 180), 'translation_range_x': (-5, 10), 'translation_range_y': (-10, 10), 'shear_range': (0, 0), 'roi_scale_range': (0.95, 1.3), 'zoom_range': (1 / 1.5, 1.5), 'do_flip': True, 'sequence_shift': True } valid_transformation_params = { 'patch_size': patch_size, 'mm_patch_size': (128, 128), 'mask_roi': True, } test_transformation_params = { 'patch_size': patch_size, 'mm_patch_size': (128, 128), 'mask_roi': True, 'rotation_range': (-180, 180), 'translation_range_x': (-5, 10), 'translation_range_y': (-10, 10), 'shear_range': (0, 0), 'roi_scale_range': (0.95, 1.3), 'zoom_range': (1., 1.), 'do_flip': True, 'sequence_shift': True } data_prep_fun = data.transform_norm_rescale_after batch_size = 32 nbatches_chunk = 16 chunk_size = batch_size * nbatches_chunk train_valid_ids = utils.get_train_valid_split(PKL_TRAIN_DATA_PATH) train_data_iterator = data_iterators.SliceNormRescaleDataGenerator(data_path=PKL_TRAIN_DATA_PATH, batch_size=chunk_size, transform_params=train_transformation_params, patient_ids=train_valid_ids['train'], labels_path=TRAIN_LABELS_PATH, slice2roi_path='pkl_train_slice2roi_10.pkl', full_batch=True, random=True, infinite=True, data_prep_fun=data_prep_fun) valid_data_iterator = data_iterators.SliceNormRescaleDataGenerator(data_path=PKL_TRAIN_DATA_PATH, batch_size=chunk_size, transform_params=valid_transformation_params, patient_ids=train_valid_ids['valid'], labels_path=TRAIN_LABELS_PATH, slice2roi_path='pkl_train_slice2roi_10.pkl', full_batch=False, random=False, infinite=False, data_prep_fun=data_prep_fun) test_data_iterator = data_iterators.SliceNormRescaleDataGenerator(data_path=PKL_VALIDATE_DATA_PATH, batch_size=chunk_size, transform_params=test_transformation_params, slice2roi_path='pkl_validate_slice2roi_10.pkl', full_batch=False, random=False, infinite=False, data_prep_fun=data_prep_fun) nchunks_per_epoch = train_data_iterator.nsamples / chunk_size max_nchunks = nchunks_per_epoch * 150 learning_rate_schedule = { 0: 0.0002, int(max_nchunks * 0.1): 0.0001, int(max_nchunks * 0.3): 0.000075, int(max_nchunks * 0.6): 0.00005, int(max_nchunks * 0.9): 0.00001 } validate_every = 2 * nchunks_per_epoch save_every = 2 * nchunks_per_epoch conv3 = partial(Conv2DDNNLayer, stride=(1, 1), pad="same", filter_size=(3, 3), nonlinearity=nn.nonlinearities.very_leaky_rectify, b=nn.init.Constant(0.1), W=nn.init.Orthogonal("relu")) max_pool = partial(MaxPool2DDNNLayer, pool_size=(2, 2), stride=(2, 2)) def build_model(l_in=None): l_in = nn.layers.InputLayer((None, 30) + patch_size) if not l_in else l_in l = conv3(l_in, num_filters=128) l = conv3(l, num_filters=128) l = max_pool(l) l = conv3(l, num_filters=128) l = conv3(l, num_filters=128) l = max_pool(l) l = conv3(l, num_filters=256) l = conv3(l, num_filters=256) l = conv3(l, num_filters=256) l = max_pool(l) l = conv3(l, num_filters=512) l = conv3(l, num_filters=512) l = conv3(l, num_filters=512) l = max_pool(l) l = conv3(l, num_filters=512) l = conv3(l, num_filters=512) l = conv3(l, num_filters=512) l = max_pool(l) l_d01 = nn.layers.DenseLayer(l, num_units=1024, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) l_d02 = nn.layers.DenseLayer(nn.layers.dropout(l_d01), num_units=1024, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) mu0 = nn.layers.DenseLayer(nn.layers.dropout(l_d02), num_units=1, W=nn.init.Orthogonal(), b=nn.init.Constant(50), nonlinearity=nn_heart.lb_softplus()) sigma0 = nn.layers.DenseLayer(nn.layers.dropout(l_d02), num_units=1, W=nn.init.Orthogonal(), b=nn.init.Constant(10), nonlinearity=nn_heart.lb_softplus()) l_cdf0 = nn_heart.NormalCDFLayer(mu0, sigma0, sigma_logscale=False, mu_logscale=False) # --------------------------------------------------------------- l_d11 = nn.layers.DenseLayer(l, num_units=1024, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) l_d12 = nn.layers.DenseLayer(nn.layers.dropout(l_d11), num_units=1024, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.very_leaky_rectify) mu1 = nn.layers.DenseLayer(nn.layers.dropout(l_d12), num_units=1, W=nn.init.Orthogonal(), b=nn.init.Constant(100), nonlinearity=nn_heart.lb_softplus()) sigma1 = nn.layers.DenseLayer(nn.layers.dropout(l_d12), num_units=1, W=nn.init.Orthogonal(), b=nn.init.Constant(10), nonlinearity=nn_heart.lb_softplus()) l_cdf1 = nn_heart.NormalCDFLayer(mu1, sigma1, sigma_logscale=False, mu_logscale=False) l_outs = [l_cdf0, l_cdf1] l_top = nn.layers.MergeLayer(l_outs) l_target_mu0 = nn.layers.InputLayer((None, 1)) l_target_mu1 = nn.layers.InputLayer((None, 1)) l_targets = [l_target_mu0, l_target_mu1] dense_layers = [l_d01, l_d02, l_d11, l_d12, mu0, sigma0, mu0, mu1] mu_layers = [mu0, mu1] sigma_layers = [sigma0, sigma1] return namedtuple('Model', ['l_ins', 'l_outs', 'l_targets', 'l_top', 'dense_layers', 'mu_layers', 'sigma_layers'])( [l_in], l_outs, l_targets, l_top, dense_layers, mu_layers, sigma_layers) def build_objective(model, deterministic=False): p0 = nn.layers.get_output(model.l_outs[0], deterministic=deterministic) t0 = nn.layers.get_output(model.l_targets[0]) t0_heaviside = nn_heart.heaviside(t0) crps0 = T.mean((p0 - t0_heaviside) ** 2) p1 = nn.layers.get_output(model.l_outs[1], deterministic=deterministic) t1 = nn.layers.get_output(model.l_targets[1]) t1_heaviside = nn_heart.heaviside(t1) crps1 = T.mean((p1 - t1_heaviside) ** 2) return 0.5 * (crps0 + crps1) def build_updates(train_loss, model, learning_rate): updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_top), learning_rate) return updates def get_mean_validation_loss(batch_predictions, batch_targets): return [0, 0] def get_mean_crps_loss(batch_predictions, batch_targets, batch_ids): nbatches = len(batch_predictions) npredictions = len(batch_predictions[0]) crpss = [] for i in range(npredictions): p, t = [], [] for j in range(nbatches): p.append(batch_predictions[j][i]) t.append(batch_targets[j][i]) p, t = np.vstack(p), np.vstack(t) target_cdf = utils_heart.heaviside_function(t) crpss.append(np.mean((p - target_cdf) ** 2)) return crpss def get_avg_patient_predictions(batch_predictions, batch_patient_ids, mean): return utils_heart.get_patient_average_cdf_predictions(batch_predictions, batch_patient_ids, mean)
[ "theano.tensor.mean", "utils_heart.heaviside_function", "numpy.random.RandomState", "lasagne.layers.get_all_params", "numpy.mean", "lasagne.init.Orthogonal", "lasagne.layers.dropout", "lasagne.init.Constant", "numpy.vstack", "nn_heart.lb_softplus", "nn_heart.NormalCDFLayer", "collections.namedtuple", "utils.get_train_valid_split", "utils_heart.get_patient_average_cdf_predictions", "data_iterators.SliceNormRescaleDataGenerator", "lasagne.layers.InputLayer", "lasagne.layers.get_output", "functools.partial", "nn_heart.heaviside", "lasagne.layers.MergeLayer" ]
[((428, 453), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (449, 453), True, 'import numpy as np\n'), ((1530, 1578), 'utils.get_train_valid_split', 'utils.get_train_valid_split', (['PKL_TRAIN_DATA_PATH'], {}), '(PKL_TRAIN_DATA_PATH)\n', (1557, 1578), False, 'import utils\n'), ((1604, 1953), 'data_iterators.SliceNormRescaleDataGenerator', 'data_iterators.SliceNormRescaleDataGenerator', ([], {'data_path': 'PKL_TRAIN_DATA_PATH', 'batch_size': 'chunk_size', 'transform_params': 'train_transformation_params', 'patient_ids': "train_valid_ids['train']", 'labels_path': 'TRAIN_LABELS_PATH', 'slice2roi_path': '"""pkl_train_slice2roi_10.pkl"""', 'full_batch': '(True)', 'random': '(True)', 'infinite': '(True)', 'data_prep_fun': 'data_prep_fun'}), "(data_path=PKL_TRAIN_DATA_PATH,\n batch_size=chunk_size, transform_params=train_transformation_params,\n patient_ids=train_valid_ids['train'], labels_path=TRAIN_LABELS_PATH,\n slice2roi_path='pkl_train_slice2roi_10.pkl', full_batch=True, random=\n True, infinite=True, data_prep_fun=data_prep_fun)\n", (1648, 1953), False, 'import data_iterators\n'), ((2438, 2790), 'data_iterators.SliceNormRescaleDataGenerator', 'data_iterators.SliceNormRescaleDataGenerator', ([], {'data_path': 'PKL_TRAIN_DATA_PATH', 'batch_size': 'chunk_size', 'transform_params': 'valid_transformation_params', 'patient_ids': "train_valid_ids['valid']", 'labels_path': 'TRAIN_LABELS_PATH', 'slice2roi_path': '"""pkl_train_slice2roi_10.pkl"""', 'full_batch': '(False)', 'random': '(False)', 'infinite': '(False)', 'data_prep_fun': 'data_prep_fun'}), "(data_path=PKL_TRAIN_DATA_PATH,\n batch_size=chunk_size, transform_params=valid_transformation_params,\n patient_ids=train_valid_ids['valid'], labels_path=TRAIN_LABELS_PATH,\n slice2roi_path='pkl_train_slice2roi_10.pkl', full_batch=False, random=\n False, infinite=False, data_prep_fun=data_prep_fun)\n", (2482, 2790), False, 'import data_iterators\n'), ((3274, 3564), 'data_iterators.SliceNormRescaleDataGenerator', 'data_iterators.SliceNormRescaleDataGenerator', ([], {'data_path': 'PKL_VALIDATE_DATA_PATH', 'batch_size': 'chunk_size', 'transform_params': 'test_transformation_params', 'slice2roi_path': '"""pkl_validate_slice2roi_10.pkl"""', 'full_batch': '(False)', 'random': '(False)', 'infinite': '(False)', 'data_prep_fun': 'data_prep_fun'}), "(data_path=\n PKL_VALIDATE_DATA_PATH, batch_size=chunk_size, transform_params=\n test_transformation_params, slice2roi_path=\n 'pkl_validate_slice2roi_10.pkl', full_batch=False, random=False,\n infinite=False, data_prep_fun=data_prep_fun)\n", (3318, 3564), False, 'import data_iterators\n'), ((4563, 4622), 'functools.partial', 'partial', (['MaxPool2DDNNLayer'], {'pool_size': '(2, 2)', 'stride': '(2, 2)'}), '(MaxPool2DDNNLayer, pool_size=(2, 2), stride=(2, 2))\n', (4570, 4622), False, 'from functools import partial\n'), ((6170, 6247), 'nn_heart.NormalCDFLayer', 'nn_heart.NormalCDFLayer', (['mu0', 'sigma0'], {'sigma_logscale': '(False)', 'mu_logscale': '(False)'}), '(mu0, sigma0, sigma_logscale=False, mu_logscale=False)\n', (6193, 6247), False, 'import nn_heart\n'), ((7131, 7208), 'nn_heart.NormalCDFLayer', 'nn_heart.NormalCDFLayer', (['mu1', 'sigma1'], {'sigma_logscale': '(False)', 'mu_logscale': '(False)'}), '(mu1, sigma1, sigma_logscale=False, mu_logscale=False)\n', (7154, 7208), False, 'import nn_heart\n'), ((7255, 7283), 'lasagne.layers.MergeLayer', 'nn.layers.MergeLayer', (['l_outs'], {}), '(l_outs)\n', (7275, 7283), True, 'import lasagne as nn\n'), ((7306, 7337), 'lasagne.layers.InputLayer', 'nn.layers.InputLayer', (['(None, 1)'], {}), '((None, 1))\n', (7326, 7337), True, 'import lasagne as nn\n'), ((7358, 7389), 'lasagne.layers.InputLayer', 'nn.layers.InputLayer', (['(None, 1)'], {}), '((None, 1))\n', (7378, 7389), True, 'import lasagne as nn\n'), ((7851, 7917), 'lasagne.layers.get_output', 'nn.layers.get_output', (['model.l_outs[0]'], {'deterministic': 'deterministic'}), '(model.l_outs[0], deterministic=deterministic)\n', (7871, 7917), True, 'import lasagne as nn\n'), ((7928, 7968), 'lasagne.layers.get_output', 'nn.layers.get_output', (['model.l_targets[0]'], {}), '(model.l_targets[0])\n', (7948, 7968), True, 'import lasagne as nn\n'), ((7989, 8011), 'nn_heart.heaviside', 'nn_heart.heaviside', (['t0'], {}), '(t0)\n', (8007, 8011), False, 'import nn_heart\n'), ((8027, 8059), 'theano.tensor.mean', 'T.mean', (['((p0 - t0_heaviside) ** 2)'], {}), '((p0 - t0_heaviside) ** 2)\n', (8033, 8059), True, 'import theano.tensor as T\n'), ((8072, 8138), 'lasagne.layers.get_output', 'nn.layers.get_output', (['model.l_outs[1]'], {'deterministic': 'deterministic'}), '(model.l_outs[1], deterministic=deterministic)\n', (8092, 8138), True, 'import lasagne as nn\n'), ((8149, 8189), 'lasagne.layers.get_output', 'nn.layers.get_output', (['model.l_targets[1]'], {}), '(model.l_targets[1])\n', (8169, 8189), True, 'import lasagne as nn\n'), ((8210, 8232), 'nn_heart.heaviside', 'nn_heart.heaviside', (['t1'], {}), '(t1)\n', (8228, 8232), False, 'import nn_heart\n'), ((8248, 8280), 'theano.tensor.mean', 'T.mean', (['((p1 - t1_heaviside) ** 2)'], {}), '((p1 - t1_heaviside) ** 2)\n', (8254, 8280), True, 'import theano.tensor as T\n'), ((9205, 9300), 'utils_heart.get_patient_average_cdf_predictions', 'utils_heart.get_patient_average_cdf_predictions', (['batch_predictions', 'batch_patient_ids', 'mean'], {}), '(batch_predictions,\n batch_patient_ids, mean)\n', (9252, 9300), False, 'import utils_heart\n'), ((4479, 4500), 'lasagne.init.Constant', 'nn.init.Constant', (['(0.1)'], {}), '(0.1)\n', (4495, 4500), True, 'import lasagne as nn\n'), ((4521, 4547), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', (['"""relu"""'], {}), "('relu')\n", (4539, 4547), True, 'import lasagne as nn\n'), ((4708, 4753), 'lasagne.layers.InputLayer', 'nn.layers.InputLayer', (['((None, 30) + patch_size)'], {}), '((None, 30) + patch_size)\n', (4728, 4753), True, 'import lasagne as nn\n'), ((5590, 5614), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d01'], {}), '(l_d01)\n', (5607, 5614), True, 'import lasagne as nn\n'), ((5806, 5830), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d02'], {}), '(l_d02)\n', (5823, 5830), True, 'import lasagne as nn\n'), ((5997, 6021), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d02'], {}), '(l_d02)\n', (6014, 6021), True, 'import lasagne as nn\n'), ((6550, 6574), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d11'], {}), '(l_d11)\n', (6567, 6574), True, 'import lasagne as nn\n'), ((6766, 6790), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d12'], {}), '(l_d12)\n', (6783, 6790), True, 'import lasagne as nn\n'), ((6958, 6982), 'lasagne.layers.dropout', 'nn.layers.dropout', (['l_d12'], {}), '(l_d12)\n', (6975, 6982), True, 'import lasagne as nn\n'), ((7587, 7698), 'collections.namedtuple', 'namedtuple', (['"""Model"""', "['l_ins', 'l_outs', 'l_targets', 'l_top', 'dense_layers', 'mu_layers',\n 'sigma_layers']"], {}), "('Model', ['l_ins', 'l_outs', 'l_targets', 'l_top',\n 'dense_layers', 'mu_layers', 'sigma_layers'])\n", (7597, 7698), False, 'from collections import namedtuple\n'), ((8418, 8455), 'lasagne.layers.get_all_params', 'nn.layers.get_all_params', (['model.l_top'], {}), '(model.l_top)\n', (8442, 8455), True, 'import lasagne as nn\n'), ((9005, 9038), 'utils_heart.heaviside_function', 'utils_heart.heaviside_function', (['t'], {}), '(t)\n', (9035, 9038), False, 'import utils_heart\n'), ((5416, 5442), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', (['"""relu"""'], {}), "('relu')\n", (5434, 5442), True, 'import lasagne as nn\n'), ((5480, 5501), 'lasagne.init.Constant', 'nn.init.Constant', (['(0.1)'], {}), '(0.1)\n', (5496, 5501), True, 'import lasagne as nn\n'), ((5634, 5660), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', (['"""relu"""'], {}), "('relu')\n", (5652, 5660), True, 'import lasagne as nn\n'), ((5698, 5719), 'lasagne.init.Constant', 'nn.init.Constant', (['(0.1)'], {}), '(0.1)\n', (5714, 5719), True, 'import lasagne as nn\n'), ((5847, 5867), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', ([], {}), '()\n', (5865, 5867), True, 'import lasagne as nn\n'), ((5903, 5923), 'lasagne.init.Constant', 'nn.init.Constant', (['(50)'], {}), '(50)\n', (5919, 5923), True, 'import lasagne as nn\n'), ((5938, 5960), 'nn_heart.lb_softplus', 'nn_heart.lb_softplus', ([], {}), '()\n', (5958, 5960), False, 'import nn_heart\n'), ((6038, 6058), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', ([], {}), '()\n', (6056, 6058), True, 'import lasagne as nn\n'), ((6097, 6117), 'lasagne.init.Constant', 'nn.init.Constant', (['(10)'], {}), '(10)\n', (6113, 6117), True, 'import lasagne as nn\n'), ((6132, 6154), 'nn_heart.lb_softplus', 'nn_heart.lb_softplus', ([], {}), '()\n', (6152, 6154), False, 'import nn_heart\n'), ((6378, 6404), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', (['"""relu"""'], {}), "('relu')\n", (6396, 6404), True, 'import lasagne as nn\n'), ((6442, 6463), 'lasagne.init.Constant', 'nn.init.Constant', (['(0.1)'], {}), '(0.1)\n', (6458, 6463), True, 'import lasagne as nn\n'), ((6594, 6620), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', (['"""relu"""'], {}), "('relu')\n", (6612, 6620), True, 'import lasagne as nn\n'), ((6658, 6679), 'lasagne.init.Constant', 'nn.init.Constant', (['(0.1)'], {}), '(0.1)\n', (6674, 6679), True, 'import lasagne as nn\n'), ((6807, 6827), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', ([], {}), '()\n', (6825, 6827), True, 'import lasagne as nn\n'), ((6863, 6884), 'lasagne.init.Constant', 'nn.init.Constant', (['(100)'], {}), '(100)\n', (6879, 6884), True, 'import lasagne as nn\n'), ((6899, 6921), 'nn_heart.lb_softplus', 'nn_heart.lb_softplus', ([], {}), '()\n', (6919, 6921), False, 'import nn_heart\n'), ((6999, 7019), 'lasagne.init.Orthogonal', 'nn.init.Orthogonal', ([], {}), '()\n', (7017, 7019), True, 'import lasagne as nn\n'), ((7058, 7078), 'lasagne.init.Constant', 'nn.init.Constant', (['(10)'], {}), '(10)\n', (7074, 7078), True, 'import lasagne as nn\n'), ((7093, 7115), 'nn_heart.lb_softplus', 'nn_heart.lb_softplus', ([], {}), '()\n', (7113, 7115), False, 'import nn_heart\n'), ((8956, 8968), 'numpy.vstack', 'np.vstack', (['p'], {}), '(p)\n', (8965, 8968), True, 'import numpy as np\n'), ((8970, 8982), 'numpy.vstack', 'np.vstack', (['t'], {}), '(t)\n', (8979, 8982), True, 'import numpy as np\n'), ((9061, 9091), 'numpy.mean', 'np.mean', (['((p - target_cdf) ** 2)'], {}), '((p - target_cdf) ** 2)\n', (9068, 9091), True, 'import numpy as np\n')]
import cv2 import numpy as np n = 400 img = np.zeros((n, n, 3), np.uint8) * 255 (centerX, centerY) = (round(img.shape[1] / 2), round(img.shape[0] / 2)) # 将图像的中心作为圆心,实际值为d/2 red = (0, 0, 255) for r in range(5, round(n / 2), 12): cv2.circle(img, (centerX, centerY), r, red, 3) winname = "Demo19.01" cv2.namedWindow(winname) cv2.imshow(winname, img) cv2.waitKey(0) cv2.destroyAllWindows()
[ "cv2.imshow", "numpy.zeros", "cv2.circle", "cv2.destroyAllWindows", "cv2.waitKey", "cv2.namedWindow" ]
[((303, 327), 'cv2.namedWindow', 'cv2.namedWindow', (['winname'], {}), '(winname)\n', (318, 327), False, 'import cv2\n'), ((328, 352), 'cv2.imshow', 'cv2.imshow', (['winname', 'img'], {}), '(winname, img)\n', (338, 352), False, 'import cv2\n'), ((353, 367), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (364, 367), False, 'import cv2\n'), ((368, 391), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (389, 391), False, 'import cv2\n'), ((45, 74), 'numpy.zeros', 'np.zeros', (['(n, n, 3)', 'np.uint8'], {}), '((n, n, 3), np.uint8)\n', (53, 74), True, 'import numpy as np\n'), ((233, 279), 'cv2.circle', 'cv2.circle', (['img', '(centerX, centerY)', 'r', 'red', '(3)'], {}), '(img, (centerX, centerY), r, red, 3)\n', (243, 279), False, 'import cv2\n')]
#################### Random Forest SemEval evaluation #################### import pandas as pd import numpy as np from joblib import dump, load from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score ### Loading SemEval 2019 variables character_variables = np.load(f'non_dl_semeval_character_variables.npy') dict_count_variables = np.load(f'non_dl_semeval_dict_count_variables.npy') token_based_variables = np.load(f'non_dl_semeval_token_based_variables.npy') pos_variables = np.load(f'non_dl_semeval_pos_variables.npy') X = np.concatenate((character_variables,dict_count_variables, token_based_variables, pos_variables),axis=1) # 2 cases of Honore's R == inf, replace with high number instead X[X==np.inf] = 10000 y = np.load(f'non_dl_semeval_bias.npy', allow_pickle=True) results_per_run_list = [] for i in range(3): rf = load(f'rf_classifier_run_{i+1}.joblib') predictions = rf.predict(X) # converting left-right 5 level labels to hyper/ non-hyper 2 level labels y_binary = np.zeros(len(y)) y_binary[y==0] = 1 y_binary[y==1] = 0 y_binary[y==2] = 0 y_binary[y==3] = 0 y_binary[y==4] = 1 predictions_binary = np.zeros(len(predictions)) predictions_binary[predictions==0] = 1 predictions_binary[predictions==1] = 0 predictions_binary[predictions==2] = 0 predictions_binary[predictions==3] = 0 predictions_binary[predictions==4] = 1 acc = np.sum(y_binary==predictions_binary)/len(y_binary) f1 = f1_score(y_binary, predictions_binary) results_per_run_list.append([acc,f1]) print(f'Accuracy: {acc:.4}, F1-score: {f1:.4}') results_per_run_list_df = pd.DataFrame(results_per_run_list, columns=['Acc','F1']) final_results = np.mean(results_per_run_list_df, axis=0).round(4) results_std = np.std(results_per_run_list_df, axis=0).round(4)
[ "numpy.mean", "sklearn.metrics.f1_score", "numpy.std", "numpy.sum", "numpy.concatenate", "joblib.load", "pandas.DataFrame", "numpy.load" ]
[((286, 336), 'numpy.load', 'np.load', (['f"""non_dl_semeval_character_variables.npy"""'], {}), "(f'non_dl_semeval_character_variables.npy')\n", (293, 336), True, 'import numpy as np\n'), ((360, 411), 'numpy.load', 'np.load', (['f"""non_dl_semeval_dict_count_variables.npy"""'], {}), "(f'non_dl_semeval_dict_count_variables.npy')\n", (367, 411), True, 'import numpy as np\n'), ((436, 488), 'numpy.load', 'np.load', (['f"""non_dl_semeval_token_based_variables.npy"""'], {}), "(f'non_dl_semeval_token_based_variables.npy')\n", (443, 488), True, 'import numpy as np\n'), ((505, 549), 'numpy.load', 'np.load', (['f"""non_dl_semeval_pos_variables.npy"""'], {}), "(f'non_dl_semeval_pos_variables.npy')\n", (512, 549), True, 'import numpy as np\n'), ((555, 664), 'numpy.concatenate', 'np.concatenate', (['(character_variables, dict_count_variables, token_based_variables,\n pos_variables)'], {'axis': '(1)'}), '((character_variables, dict_count_variables,\n token_based_variables, pos_variables), axis=1)\n', (569, 664), True, 'import numpy as np\n'), ((771, 825), 'numpy.load', 'np.load', (['f"""non_dl_semeval_bias.npy"""'], {'allow_pickle': '(True)'}), "(f'non_dl_semeval_bias.npy', allow_pickle=True)\n", (778, 825), True, 'import numpy as np\n'), ((1686, 1743), 'pandas.DataFrame', 'pd.DataFrame', (['results_per_run_list'], {'columns': "['Acc', 'F1']"}), "(results_per_run_list, columns=['Acc', 'F1'])\n", (1698, 1743), True, 'import pandas as pd\n'), ((882, 923), 'joblib.load', 'load', (['f"""rf_classifier_run_{i + 1}.joblib"""'], {}), "(f'rf_classifier_run_{i + 1}.joblib')\n", (886, 923), False, 'from joblib import dump, load\n'), ((1521, 1559), 'sklearn.metrics.f1_score', 'f1_score', (['y_binary', 'predictions_binary'], {}), '(y_binary, predictions_binary)\n', (1529, 1559), False, 'from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score\n'), ((1461, 1499), 'numpy.sum', 'np.sum', (['(y_binary == predictions_binary)'], {}), '(y_binary == predictions_binary)\n', (1467, 1499), True, 'import numpy as np\n'), ((1760, 1800), 'numpy.mean', 'np.mean', (['results_per_run_list_df'], {'axis': '(0)'}), '(results_per_run_list_df, axis=0)\n', (1767, 1800), True, 'import numpy as np\n'), ((1824, 1863), 'numpy.std', 'np.std', (['results_per_run_list_df'], {'axis': '(0)'}), '(results_per_run_list_df, axis=0)\n', (1830, 1863), True, 'import numpy as np\n')]
from easydict import EasyDict as edict import numpy as np config = edict() config.IMG_HEIGHT = 375 config.IMG_WIDTH = 1242 # TODO(shizehao): infer fea shape in run time config.FEA_HEIGHT = 12 config.FEA_WIDTH = 39 config.EPSILON = 1e-16 config.LOSS_COEF_BBOX = 5.0 config.LOSS_COEF_CONF_POS = 75.0 config.LOSS_COEF_CONF_NEG = 100.0 config.LOSS_COEF_CLASS = 1.0 config.EXP_THRESH = 1.0 config.RBG_MEANS = np.array([[[ 123.68, 116.779, 103.939]]]) def set_anchors(H, W): B = 9 shape = np.array( [[ 36., 37.], [ 366., 174.], [ 115., 59.], [ 162., 87.], [ 38., 90.], [ 258., 173.], [ 224., 108.], [ 78., 170.], [ 72., 43.]]) # # scale # shape[:, 0] = shape[:, 0] / config.IMG_HEIGHT # shape[:, 1] = shape[:, 1] / config.IMG_WIDTH anchor_shapes = np.reshape( [shape] * H * W, (H, W, B, 2) ) center_x = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, W+1)*float(config.IMG_WIDTH)/(W+1)]*H*B), (B, H, W) ), (1, 2, 0) ), (H, W, B, 1) ) center_y = np.reshape( np.transpose( np.reshape( np.array([np.arange(1, H+1)*float(config.IMG_HEIGHT)/(H+1)]*W*B), (B, W, H) ), (2, 1, 0) ), (H, W, B, 1) ) anchors = np.reshape( np.concatenate((center_x, center_y, anchor_shapes), axis=3), (-1, 4) ) return anchors config.ANCHOR_SHAPE = set_anchors(config.FEA_HEIGHT, config.FEA_WIDTH) config.NUM_ANCHORS = 9 config.NUM_CLASSES = 3 config.ANCHORS = config.NUM_ANCHORS * config.FEA_HEIGHT * config.FEA_WIDTH config.PLOT_PROB_THRESH = 0.4 config.NMS_THRESH = 0.4 config.PROB_THRESH = 0.005 config.TOP_N_DETECTION = 64
[ "numpy.reshape", "easydict.EasyDict", "numpy.array", "numpy.concatenate", "numpy.arange" ]
[((68, 75), 'easydict.EasyDict', 'edict', ([], {}), '()\n', (73, 75), True, 'from easydict import EasyDict as edict\n'), ((411, 451), 'numpy.array', 'np.array', (['[[[123.68, 116.779, 103.939]]]'], {}), '([[[123.68, 116.779, 103.939]]])\n', (419, 451), True, 'import numpy as np\n'), ((496, 645), 'numpy.array', 'np.array', (['[[36.0, 37.0], [366.0, 174.0], [115.0, 59.0], [162.0, 87.0], [38.0, 90.0],\n [258.0, 173.0], [224.0, 108.0], [78.0, 170.0], [72.0, 43.0]]'], {}), '([[36.0, 37.0], [366.0, 174.0], [115.0, 59.0], [162.0, 87.0], [38.0,\n 90.0], [258.0, 173.0], [224.0, 108.0], [78.0, 170.0], [72.0, 43.0]])\n', (504, 645), True, 'import numpy as np\n'), ((806, 847), 'numpy.reshape', 'np.reshape', (['([shape] * H * W)', '(H, W, B, 2)'], {}), '([shape] * H * W, (H, W, B, 2))\n', (816, 847), True, 'import numpy as np\n'), ((1365, 1424), 'numpy.concatenate', 'np.concatenate', (['(center_x, center_y, anchor_shapes)'], {'axis': '(3)'}), '((center_x, center_y, anchor_shapes), axis=3)\n', (1379, 1424), True, 'import numpy as np\n'), ((955, 974), 'numpy.arange', 'np.arange', (['(1)', '(W + 1)'], {}), '(1, W + 1)\n', (964, 974), True, 'import numpy as np\n'), ((1190, 1209), 'numpy.arange', 'np.arange', (['(1)', '(H + 1)'], {}), '(1, H + 1)\n', (1199, 1209), True, 'import numpy as np\n')]
def forrest(self): '''Random Forrest based reduction strategy. Somewhat more aggressive than for example 'spearman' because there are no negative values, but instead the highest positive correlation is minused from all the values so that max value is 0, and then values are turned into positive. The one with the highest positive score in the end will be dropped. This means that anything with 0 originally, is a candidate for dropping. Because there are multiple zeroes in many cases, there is an element of randomness on which one is dropped. ''' import wrangle import numpy as np # handle conversion to multi_labels from .reduce_utils import cols_to_multilabel data = cols_to_multilabel(self) # get the correlations corr_values = wrangle.df_corr_randomforest(data, self.reduction_metric) # drop labels where value is NaN corr_values.dropna(inplace=True) # handle the turning around of values (see docstring for more info) corr_values -= corr_values[0] corr_values = corr_values.abs() # get the strongest correlation corr_values = corr_values.index[-1] # get the label, value, and dtype from the column header label, dtype, value = corr_values.split('~') # convert things back to their original dtype value = np.array([value]).astype(dtype)[0] # this is where we modify the parameter space accordingly self.param_object.remove_is(label, value) return self
[ "numpy.array", "wrangle.df_corr_randomforest" ]
[((806, 863), 'wrangle.df_corr_randomforest', 'wrangle.df_corr_randomforest', (['data', 'self.reduction_metric'], {}), '(data, self.reduction_metric)\n', (834, 863), False, 'import wrangle\n'), ((1333, 1350), 'numpy.array', 'np.array', (['[value]'], {}), '([value])\n', (1341, 1350), True, 'import numpy as np\n')]
from abc import ABC, abstractmethod import numpy as np import torch from textattack.goal_function_results import GoalFunctionResultStatus from textattack.search_methods import PopulationBasedSearch, PopulationMember from textattack.shared.validators import transformation_consists_of_word_swaps class GeneticAlgorithm(PopulationBasedSearch, ABC): """Base class for attacking a model with word substiutitions using a genetic algorithm. Args: pop_size (int): The population size. Defaults to 20. max_iters (int): The maximum number of iterations to use. Defaults to 50. temp (float): Temperature for softmax function used to normalize probability dist when sampling parents. Higher temperature increases the sensitivity to lower probability candidates. give_up_if_no_improvement (bool): If True, stop the search early if no candidate that improves the score is found. post_crossover_check (bool): If True, check if child produced from crossover step passes the constraints. max_crossover_retries (int): Maximum number of crossover retries if resulting child fails to pass the constraints. Applied only when `post_crossover_check` is set to `True`. Setting it to 0 means we immediately take one of the parents at random as the child upon failure. """ def __init__( self, pop_size=60, max_iters=20, temp=0.3, give_up_if_no_improvement=False, post_crossover_check=True, max_crossover_retries=20, ): self.max_iters = max_iters self.pop_size = pop_size self.temp = temp self.give_up_if_no_improvement = give_up_if_no_improvement self.post_crossover_check = post_crossover_check self.max_crossover_retries = max_crossover_retries # internal flag to indicate if search should end immediately self._search_over = False @abstractmethod def _modify_population_member(self, pop_member, new_text, new_result, word_idx): """Modify `pop_member` by returning a new copy with `new_text`, `new_result`, and, `attributes` altered appropriately for given `word_idx`""" raise NotImplementedError() @abstractmethod def _get_word_select_prob_weights(self, pop_member): """Get the attribute of `pop_member` that is used for determining probability of each word being selected for perturbation.""" raise NotImplementedError def _perturb(self, pop_member, original_result, index=None): """Perturb `pop_member` and return it. Replaces a word at a random (unless `index` is specified) in `pop_member`. Args: pop_member (PopulationMember): The population member being perturbed. original_result (GoalFunctionResult): Result of original sample being attacked index (int): Index of word to perturb. Returns: Perturbed `PopulationMember` """ num_words = pop_member.attacked_text.num_words # `word_select_prob_weights` is a list of values used for sampling one word to transform word_select_prob_weights = np.copy( self._get_word_select_prob_weights(pop_member) ) non_zero_indices = np.count_nonzero(word_select_prob_weights) if non_zero_indices == 0: return pop_member iterations = 0 while iterations < non_zero_indices: if index: idx = index else: w_select_probs = word_select_prob_weights / np.sum( word_select_prob_weights ) idx = np.random.choice(num_words, 1, p=w_select_probs)[0] transformed_texts = self.get_transformations( pop_member.attacked_text, original_text=original_result.attacked_text, indices_to_modify=[idx], ) if not len(transformed_texts): iterations += 1 continue new_results, self._search_over = self.get_goal_results(transformed_texts) if self._search_over: break diff_scores = ( torch.Tensor([r.score for r in new_results]) - pop_member.result.score ) if len(diff_scores) and diff_scores.max() > 0: idx_with_max_score = diff_scores.argmax() pop_member = self._modify_population_member( pop_member, transformed_texts[idx_with_max_score], new_results[idx_with_max_score], idx, ) return pop_member word_select_prob_weights[idx] = 0 iterations += 1 return pop_member @abstractmethod def _crossover_operation(self, pop_member1, pop_member2): """Actual operation that takes `pop_member1` text and `pop_member2` text and mixes the two to generate crossover between `pop_member1` and `pop_member2`. Args: pop_member1 (PopulationMember): The first population member. pop_member2 (PopulationMember): The second population member. Returns: Tuple of `AttackedText` and a dictionary of attributes. """ raise NotImplementedError() def _post_crossover_check( self, new_text, parent_text1, parent_text2, original_text ): """Check if `new_text` that has been produced by performing crossover between `parent_text1` and `parent_text2` aligns with the constraints. Args: new_text (AttackedText): Text produced by crossover operation parent_text1 (AttackedText): Parent text of `new_text` parent_text2 (AttackedText): Second parent text of `new_text` original_text (AttackedText): Original text Returns: `True` if `new_text` meets the constraints. If otherwise, return `False`. """ if "last_transformation" in new_text.attack_attrs: previous_text = ( parent_text1 if "last_transformation" in parent_text1.attack_attrs else parent_text2 ) passed_constraints = self._check_constraints( new_text, previous_text, original_text=original_text ) return passed_constraints else: # `new_text` has not been actually transformed, so return True return True def _crossover(self, pop_member1, pop_member2, original_text): """Generates a crossover between pop_member1 and pop_member2. If the child fails to satisfy the constraints, we re-try crossover for a fix number of times, before taking one of the parents at random as the resulting child. Args: pop_member1 (PopulationMember): The first population member. pop_member2 (PopulationMember): The second population member. original_text (AttackedText): Original text Returns: A population member containing the crossover. """ x1_text = pop_member1.attacked_text x2_text = pop_member2.attacked_text num_tries = 0 passed_constraints = False while num_tries < self.max_crossover_retries + 1: new_text, attributes = self._crossover_operation(pop_member1, pop_member2) replaced_indices = new_text.attack_attrs["newly_modified_indices"] new_text.attack_attrs["modified_indices"] = ( x1_text.attack_attrs["modified_indices"] - replaced_indices ) | (x2_text.attack_attrs["modified_indices"] & replaced_indices) if "last_transformation" in x1_text.attack_attrs: new_text.attack_attrs["last_transformation"] = x1_text.attack_attrs[ "last_transformation" ] elif "last_transformation" in x2_text.attack_attrs: new_text.attack_attrs["last_transformation"] = x2_text.attack_attrs[ "last_transformation" ] if self.post_crossover_check: passed_constraints = self._post_crossover_check( new_text, x1_text, x2_text, original_text ) if not self.post_crossover_check or passed_constraints: break num_tries += 1 if self.post_crossover_check and not passed_constraints: # If we cannot find a child that passes the constraints, # we just randomly pick one of the parents to be the child for the next iteration. pop_mem = pop_member1 if np.random.uniform() < 0.5 else pop_member2 return pop_mem else: new_results, self._search_over = self.get_goal_results([new_text]) return PopulationMember( new_text, result=new_results[0], attributes=attributes ) @abstractmethod def _initialize_population(self, initial_result, pop_size): """ Initialize a population of size `pop_size` with `initial_result` Args: initial_result (GoalFunctionResult): Original text pop_size (int): size of population Returns: population as `list[PopulationMember]` """ raise NotImplementedError() def _perform_search(self, initial_result): self._search_over = False population = self._initialize_population(initial_result, self.pop_size) pop_size = len(population) current_score = initial_result.score for i in range(self.max_iters): population = sorted(population, key=lambda x: x.result.score, reverse=True) if ( self._search_over or population[0].result.goal_status == GoalFunctionResultStatus.SUCCEEDED ): break if population[0].result.score > current_score: current_score = population[0].result.score elif self.give_up_if_no_improvement: break pop_scores = torch.Tensor([pm.result.score for pm in population]) logits = ((-pop_scores) / self.temp).exp() select_probs = (logits / logits.sum()).cpu().numpy() parent1_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs) parent2_idx = np.random.choice(pop_size, size=pop_size - 1, p=select_probs) children = [] for idx in range(pop_size - 1): child = self._crossover( population[parent1_idx[idx]], population[parent2_idx[idx]], initial_result.attacked_text, ) if self._search_over: break child = self._perturb(child, initial_result) children.append(child) # We need two `search_over` checks b/c value might change both in # `crossover` method and `perturb` method. if self._search_over: break population = [population[0]] + children return population[0].result def check_transformation_compatibility(self, transformation): """The genetic algorithm is specifically designed for word substitutions.""" return transformation_consists_of_word_swaps(transformation) def extra_repr_keys(self): return [ "pop_size", "max_iters", "temp", "give_up_if_no_improvement", "post_crossover_check", "max_crossover_retries", ]
[ "numpy.random.choice", "torch.Tensor", "numpy.count_nonzero", "numpy.sum", "textattack.shared.validators.transformation_consists_of_word_swaps", "numpy.random.uniform", "textattack.search_methods.PopulationMember" ]
[((3304, 3346), 'numpy.count_nonzero', 'np.count_nonzero', (['word_select_prob_weights'], {}), '(word_select_prob_weights)\n', (3320, 3346), True, 'import numpy as np\n'), ((11528, 11581), 'textattack.shared.validators.transformation_consists_of_word_swaps', 'transformation_consists_of_word_swaps', (['transformation'], {}), '(transformation)\n', (11565, 11581), False, 'from textattack.shared.validators import transformation_consists_of_word_swaps\n'), ((8967, 9039), 'textattack.search_methods.PopulationMember', 'PopulationMember', (['new_text'], {'result': 'new_results[0]', 'attributes': 'attributes'}), '(new_text, result=new_results[0], attributes=attributes)\n', (8983, 9039), False, 'from textattack.search_methods import PopulationBasedSearch, PopulationMember\n'), ((10262, 10314), 'torch.Tensor', 'torch.Tensor', (['[pm.result.score for pm in population]'], {}), '([pm.result.score for pm in population])\n', (10274, 10314), False, 'import torch\n'), ((10462, 10523), 'numpy.random.choice', 'np.random.choice', (['pop_size'], {'size': '(pop_size - 1)', 'p': 'select_probs'}), '(pop_size, size=pop_size - 1, p=select_probs)\n', (10478, 10523), True, 'import numpy as np\n'), ((10550, 10611), 'numpy.random.choice', 'np.random.choice', (['pop_size'], {'size': '(pop_size - 1)', 'p': 'select_probs'}), '(pop_size, size=pop_size - 1, p=select_probs)\n', (10566, 10611), True, 'import numpy as np\n'), ((4259, 4303), 'torch.Tensor', 'torch.Tensor', (['[r.score for r in new_results]'], {}), '([r.score for r in new_results])\n', (4271, 4303), False, 'import torch\n'), ((3607, 3639), 'numpy.sum', 'np.sum', (['word_select_prob_weights'], {}), '(word_select_prob_weights)\n', (3613, 3639), True, 'import numpy as np\n'), ((3700, 3748), 'numpy.random.choice', 'np.random.choice', (['num_words', '(1)'], {'p': 'w_select_probs'}), '(num_words, 1, p=w_select_probs)\n', (3716, 3748), True, 'import numpy as np\n'), ((8785, 8804), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (8802, 8804), True, 'import numpy as np\n')]
import json from pathlib import Path import datetime, sys, getopt import numpy as np # python script to find .npy files and convert them to binary (int16), # and deleting the .npy files (saving %50 of space) # refer to python notebook for some QA checks on this conversion. def session_entry(session_name,Files,sp): return {'session_name':str(session_name), 'Files':Files, 'nFiles':len(Files),'sp':str(sp)} def dict_entry(type,fn,sp): return {'type':type,'filenames':str(fn),'sp':str(sp)} if __name__ == '__main__': # Store taskID and TaskFile volumePath='' minFileSize = 16384 if len(sys.argv)<2: print("Usage: %s -v 'Volume/path/to/folders' -p " % sys.argv[0]) sys.exit('Invalid input.') myopts, args = getopt.getopt(sys.argv[1:],"a:v:") for o, a in myopts: print(o,a) if o == '-v': volumePath = Path(str(a)) else: print("Usage: %s -v 'Volume/path/to/folders'" % sys.argv[0]) sys.exit('Invalid input. Aborting.') TasksDir = Path('./TasksDir') TasksDir.mkdir(parents=True, exist_ok=True) date_obj = datetime.date.today() date_str= "%s_%s_%s" % (date_obj.month,date_obj.day,date_obj.year) Sessions = {} SessionCnt = 0 for session in volumePath.glob('*_Results'): SessionCnt+=1 print('Collecting Info for Session # {}, {}'.format(SessionCnt, session.name)) Files = {} taskID = 1 # try: for tt in np.arange(1,17): file = 'tt_' + str(tt) + '.npy' if (session / file).exists(): Files[taskID] = dict_entry('npy2bin',str(session / file),session) taskID+=1 if len(Files)>0: Sessions[SessionCnt] = session_entry(session,Files,session) else: print('Empty Session {}, discarding.'.format(str(session))) SessionCnt-=1 except: print ("Error", sys.exc_info()[0],sys.exc_info()[1],sys.exc_info()[2].tb_lineno) continue print('Number of Sessions to be proccess = {}'.format(SessionCnt)) with open(str(TasksDir)+'/PreProcessingTable_{}.json'.format(date_str), 'w') as f: json.dump(Sessions, f ,indent=4)
[ "getopt.getopt", "pathlib.Path", "numpy.arange", "sys.exc_info", "sys.exit", "datetime.date.today", "json.dump" ]
[((754, 789), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""a:v:"""'], {}), "(sys.argv[1:], 'a:v:')\n", (767, 789), False, 'import datetime, sys, getopt\n'), ((1044, 1062), 'pathlib.Path', 'Path', (['"""./TasksDir"""'], {}), "('./TasksDir')\n", (1048, 1062), False, 'from pathlib import Path\n'), ((1127, 1148), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (1146, 1148), False, 'import datetime, sys, getopt\n'), ((707, 733), 'sys.exit', 'sys.exit', (['"""Invalid input."""'], {}), "('Invalid input.')\n", (715, 733), False, 'import datetime, sys, getopt\n'), ((2244, 2276), 'json.dump', 'json.dump', (['Sessions', 'f'], {'indent': '(4)'}), '(Sessions, f, indent=4)\n', (2253, 2276), False, 'import json\n'), ((991, 1027), 'sys.exit', 'sys.exit', (['"""Invalid input. Aborting."""'], {}), "('Invalid input. Aborting.')\n", (999, 1027), False, 'import datetime, sys, getopt\n'), ((1491, 1507), 'numpy.arange', 'np.arange', (['(1)', '(17)'], {}), '(1, 17)\n', (1500, 1507), True, 'import numpy as np\n'), ((1991, 2005), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2003, 2005), False, 'import datetime, sys, getopt\n'), ((2009, 2023), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2021, 2023), False, 'import datetime, sys, getopt\n'), ((2027, 2041), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2039, 2041), False, 'import datetime, sys, getopt\n')]
# module from __future__ import print_function import argparse from tqdm import tqdm import torch import torch.nn.functional as F from torchvision import datasets, transforms from torchvision.utils import save_image import time import torch.nn as nn from SSGE import Attack,resnet18 import torchvision from attack import uap_sgd import random import matplotlib.pyplot as plt import numpy as np from torchsummary import summary from resnet import resnet18 from resnet2 import RESNET18 from model import vgg11_bn,Wide_ResNet,Wide_ResNet1 from test import clipping_info,loss_cal parser = argparse.ArgumentParser(description='privaCY') parser.add_argument('--epsilon', type=float, default=0.3, metavar='EPS', help='L-infinity perturbation limit for PGD attack') parser.add_argument('--batch-size', '-b', type=int, default=100, metavar='N', help='input batch size for training (default: 500)') parser.add_argument('--epochs', type=int, default=125, metavar='N', help='number of epochs to train (default: 20)') parser.add_argument('--no_train', type=int, default=0, metavar='N', help='no training algorithm') parser.add_argument('--learning-rate', type=float, default=0.01, help='learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='learning momentum') parser.add_argument('--percentage', type=float, default=1, help='learning momentum') parser.add_argument('--lambdas', type=float, default=0.0001, help='learning momentum') parser.add_argument('--adv_model', default='./results/baseline_MNIST_classifier.pt', metavar='FILE', help='location of PGD trained classifier') parser.add_argument('--layer', type=int, default=6, metavar='N', help='Layer Number') parser.add_argument('--evaluate', type=int, default=1, help='set to 1 to evaluate our trained adversary model in adv_model2/set to 0 to train a model with our method +PGD/else trains with our adversary only') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') args = parser.parse_args() print(args) use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") ## normalize layer class Normalize_layer(nn.Module): def __init__(self, mean, std): super(Normalize_layer, self).__init__() self.mean = nn.Parameter(torch.Tensor(mean).unsqueeze(1).unsqueeze(1), requires_grad=False) self.std = nn.Parameter(torch.Tensor(std).unsqueeze(1).unsqueeze(1), requires_grad=False) def forward(self, input): return input.sub(self.mean).div(self.std) mean = [x / 255 for x in [129.3, 124.1, 112.4]] std = [x / 255 for x in [68.2, 65.4, 70.4]] transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ]) transform_test = transforms.Compose([ transforms.ToTensor(), ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=False, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=2) attacker = Attack(dataloader=None, attack_method='pgd', epsilon=args.epsilon) def lasso_var(var,var1): return (var1.mean() -var).abs().sum() # Train baseline classifier on clean data def train_baseline(classifier, adv_classifier, recordf, record,record7,record6,record5,record4,record3,record2,class_opt, device, epoch,lambdas): classifier.train() for batch_idx, (data, target) in enumerate(train_loader): #print(batch_idx) if batch_idx == 40: break data, target = data.to(device), target.to(device) '''output = adv_classifier (data) pred = output.argmax(dim=1, keepdim=True) target = pred.view(-1)''' class_opt.zero_grad() # Update the classifier loss = F.cross_entropy(classifier(data), target) loss_term = 0 cc = 0 for name, param in classifier.named_modules(): if isinstance(param, nn.Linear) or isinstance(param, nn.Conv2d) : cc += 1 if cc < args.layer: loss_term += lambdas * (lasso_var(param.weight.view(-1)[record[cc]][param.weight.view(-1)[record[cc]]>=0],param.weight[param.weight >=0]) + lasso_var(param.weight.view(-1)[record[cc]][param.weight.view(-1)[record[cc]]<0],param.weight[param.weight < 0])) done = 1 #print(loss_term) loss += loss_term loss.backward() class_opt.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) return loss # Tests classifier on clean data or attacker output def test(classifier, attacker1, device, epoch): classifier.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = classifier(data) test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return correct def functional(classifier, model, attacker1, device, epoch): classifier.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = classifier(data) pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability output1 = model(data) pred1 = output1.argmax(dim=1, keepdim=True) # get the index of the max log-probability pred1= pred1.view(target.size()) test_loss += F.cross_entropy(output, pred1, reduction='sum').item() # sum up batch loss correct += pred.eq(pred1.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Functional Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return correct ## attacking the classifier with black-box adversary generated from model. def adv_test(classifier, model,attacker, device, epoch): classifier.eval() test_loss = 0 correct = 0 for data, target in test_loader: data, target = data.to(device), target.to(device) data = attacker.attack_method( model, data, target) output = classifier(data) test_loss += F.cross_entropy(output, target.cuda(), reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) net_f = Wide_ResNet(28, 10, 0.3, 10) net_f.load_state_dict(torch.load(args.adv_model)) net1 = torch.nn.Sequential( Normalize_layer(mean,std), net_f ) adv_classifier = net1.to(device) print("hi") print("Test accuracy of the model" ) corr = test(adv_classifier, attacker, device, epoch=0) import copy net_f = Wide_ResNet1(28, 10, 0.3, 10) classifier2 = torch.nn.Sequential( Normalize_layer(mean,std), net_f ) classifier2 = classifier2.cuda() class_adv = torch.optim.Adam(classifier2.parameters()) scheduler = torch.optim.lr_scheduler.MultiStepLR(class_adv, milestones=[30,60,90], gamma=0.1) summary(classifier2, (3, 32, 32)) cc= 0 count =0 for name, module in classifier2.named_modules(): if isinstance(module, nn.BatchNorm2d): count+=1 module.weight.data.uniform_(0.01, 0.5) module.bias.data[:] = 0 if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): count+=1 module.weight.data.uniform_(-0.05, 0.05) print(cc,count) cc+=1 if args.no_train ==1: for name, module in classifier2.named_modules(): if isinstance(module, nn.BatchNorm2d): count+=1 module.weight.data[:] = 0 module.bias.data[:] = 0 if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): count+=1 module.weight.data[:] = 0 print(cc,count) cc+=1 recordr = {} ## all bits recordf = {} ## MSB + 7 record = {} ## only MSB recordm = {} ## MSB + any number record7 = {} ## MSB + 6 record6 = {} ## MSB + 5 record5 = {} ## MSB + 4 record4 = {} ## MSB + 3 record3 = {} ## MSB + 2 record2 = {} ## MSB + 1 '''perc = torch.tensor([0.5,0.055,0.056,0.055,0.067,0.077,0.078]) # layer-wise percentage #perc = torch.tensor([0.067,0.033,0.033,0.033,0.17,0.17,0.17]) #perc = torch.tensor([0.25,0.05,0.05,0.05,0.1,0.15,0.15])''' ''' new: 90: torch.tensor([0.58,0.033,0.056,0.044,0.056,0.067,0.078]) 80: torch.tensor([0.3125,0.0625,0.0625,0.0625,0.0875,0.1,0.125]) 60: torch.tensor([0.133,0.033,0.033,0.05,0.067,0.12,0.2]) ''' perc = torch.tensor([0.58,0.033,0.056,0.044,0.056,0.067,0.078]) cc = 0 for name, module in adv_classifier.named_modules(): if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): cc+=1 if cc < args.layer: tot = module.weight.data.view(-1).size()[0] p_tot = int(args.percentage*tot) step_f= int(p_tot*perc[0]) step_7= int(p_tot*perc[1]) + step_f step_6 = int(p_tot*perc[2]) + step_7 step_5 = int(p_tot*perc[3]) + step_6 step_4 = int(p_tot*perc[4]) + step_5 step_3 = int(p_tot*perc[5]) + step_4 step_2 = int(p_tot*perc[6]) + step_3 recordr[cc] = torch.Tensor(random.sample(range(0,tot), p_tot)).long() recordf[cc] = recordr[cc][0:step_f] recordm = recordr record7[cc] = recordr[cc][step_f:step_7] record6[cc] = recordr[cc][step_7:step_6] record5[cc] = recordr[cc][step_6:step_5] record4[cc] = recordr[cc][step_5:step_4] record3[cc] = recordr[cc][step_4:step_3] record2[cc] = recordr[cc][step_3:step_2] record[cc] = recordr[cc][step_2:] print(recordf[cc].size()[0]/tot,recordf[cc].size()[0]/tot,record7[cc].size()[0]/tot,record6[cc].size()[0]/tot,record5[cc].size()[0]/tot, record4[cc].size()[0]/tot,record3[cc].size()[0]/tot,record2[cc].size()[0]/tot,record[cc].size()[0]/tot) cc= 0 for name, module in classifier2.named_modules(): if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): cc +=1 print(cc) m=0 for name1, module1 in adv_classifier.named_modules(): if isinstance(module1, nn.Linear) or isinstance(module1, nn.Conv2d): m+=1 if cc==m: if cc < args.layer: module.weight.data.view(-1)[recordm[cc]].uniform_(0.001, 0.1) module.weight.data.view(-1)[recordm[cc]] = module.weight.data.view(-1)[recordm[cc]] * module.weight.data.view(-1)[recordm[cc]].sign() * module1.weight.data.view(-1)[recordm[cc]].clone().sign() total = 0 for name, module in classifier2.named_modules(): if isinstance(module, nn.Conv2d): ss = module.weight.data.size() total += ss[0]*ss[1]*ss[2]*ss[3] print(total) for name, module in classifier2.named_modules(): if isinstance(module, nn.Linear): ss = module.weight.data.size() total += ss[0]*ss[1] print(ss[0]*ss[1]) print(total) corrr = test(classifier2, None, device, epoch=0) best_acc = 0 t0 = time.time() print("Attacking the Classifier with white-box PGD" ) adv_test(adv_classifier,adv_classifier,attacker, device, 0) _ = functional(classifier2, adv_classifier,attacker, device, epoch=0) best_acc = 0 t0 = time.time() print("Attacking the Classifier with hammer leak" ) adv_test(adv_classifier,classifier2,attacker, device, 0) count =0 losses = np.zeros([args.epochs]) if args.evaluate==0: print('Training both baseline classifier classifiers') # Classification model setup scheduler.step() for epoch in range(1, args.epochs + 1): losses[epoch-1] = train_baseline(classifier2, adv_classifier,recordf,recordm,record7,record6,record5,record4,record3,record2,class_adv, device, epoch,args.lambdas) classifier2.eval() if epoch == 109: args.lambdas = 0 cc= 0 for name, module in classifier2.named_modules(): if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): cc +=1 m=0 for name1, module1 in adv_classifier.named_modules(): if isinstance(module1, nn.Linear) or isinstance(module1, nn.Conv2d): m+=1 if cc==m: print((module.weight.data.view(-1).sign() - module1.weight.data.view(-1).sign()).abs().sum()) if (epoch+1)%5 == 0 and epoch < 111: cc= 0 for name, module in classifier2.named_modules(): if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): cc +=1 m=0 for name1, module1 in adv_classifier.named_modules(): if isinstance(module1, nn.Linear) or isinstance(module1, nn.Conv2d): m+=1 if cc==m: if cc<args.layer: print(cc) module.weight.data.view(-1)[record[cc]] = module.weight.data.view(-1)[record[cc]].abs() * module1.weight.data.view(-1)[record[cc]].sign() #module.weight.data.view(-1)[recordf[cc]] = module1.weight.data.view(-1)[recordf[cc]] print((module.weight.data.view(-1).sign() - module1.weight.data.view(-1).sign()).abs().sum()) accs = test(classifier2, None, device, epoch) if epoch == 111: classifier2 = torch.load('nm3.pt') if best_acc < accs: best_acc = accs torch.save(classifier2, 'nm3.pt') classifier2 = torch.load('nm3.pt') plt.plot(losses) plt.xlabel("Iterations") plt.ylabel("Loss term") plt.savefig("figure.png") accs = test(classifier2, None, device, epoch) _ = functional(classifier2, adv_classifier,attacker, device, epoch=0) cc= 0 for name, module in classifier2.named_modules(): if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): cc +=1 print(cc) m=0 for name1, module1 in adv_classifier.named_modules(): if isinstance(module1, nn.Linear) or isinstance(module1, nn.Conv2d): m+=1 if cc==m: print((module.weight.data.view(-1).sign() - module1.weight.data.view(-1).sign()).abs().sum()) t0 = time.time() print("Attacking PGD trained Classifier with Black-box PGD" ) adv_test(adv_classifier,classifier2,attacker, device, 0) torch.cuda.current_stream().synchronize() t1= time.time() print(" Black-PGD Attack Time:",'{} seconds'.format(t1 - t0))
[ "torch.optim.lr_scheduler.MultiStepLR", "matplotlib.pyplot.ylabel", "torch.cuda.is_available", "argparse.ArgumentParser", "SSGE.Attack", "matplotlib.pyplot.plot", "matplotlib.pyplot.xlabel", "model.Wide_ResNet1", "torchvision.transforms.ToTensor", "torchsummary.summary", "model.Wide_ResNet", "matplotlib.pyplot.savefig", "torchvision.transforms.RandomHorizontalFlip", "torch.Tensor", "torch.save", "torchvision.datasets.CIFAR10", "torch.cuda.current_stream", "time.time", "torch.device", "torch.manual_seed", "torch.load", "torchvision.transforms.RandomCrop", "torch.tensor", "numpy.zeros", "torch.nn.functional.cross_entropy", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((587, 633), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""privaCY"""'}), "(description='privaCY')\n", (610, 633), False, 'import argparse\n'), ((2184, 2212), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (2201, 2212), False, 'import torch\n'), ((2222, 2265), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (2234, 2265), False, 'import torch\n'), ((3043, 3144), 'torchvision.datasets.CIFAR10', 'torchvision.datasets.CIFAR10', ([], {'root': '"""./data"""', 'train': '(True)', 'download': '(True)', 'transform': 'transform_train'}), "(root='./data', train=True, download=True,\n transform=transform_train)\n", (3071, 3144), False, 'import torchvision\n'), ((3157, 3257), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['trainset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(2)'}), '(trainset, batch_size=args.batch_size, shuffle=\n False, num_workers=2)\n', (3184, 3257), False, 'import torch\n'), ((3265, 3366), 'torchvision.datasets.CIFAR10', 'torchvision.datasets.CIFAR10', ([], {'root': '"""./data"""', 'train': '(False)', 'download': '(True)', 'transform': 'transform_test'}), "(root='./data', train=False, download=True,\n transform=transform_test)\n", (3293, 3366), False, 'import torchvision\n'), ((3378, 3477), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': '(2)'}), '(testset, batch_size=args.batch_size, shuffle=\n False, num_workers=2)\n', (3405, 3477), False, 'import torch\n'), ((3487, 3553), 'SSGE.Attack', 'Attack', ([], {'dataloader': 'None', 'attack_method': '"""pgd"""', 'epsilon': 'args.epsilon'}), "(dataloader=None, attack_method='pgd', epsilon=args.epsilon)\n", (3493, 3553), False, 'from SSGE import Attack, resnet18\n'), ((8128, 8156), 'model.Wide_ResNet', 'Wide_ResNet', (['(28)', '(10)', '(0.3)', '(10)'], {}), '(28, 10, 0.3, 10)\n', (8139, 8156), False, 'from model import vgg11_bn, Wide_ResNet, Wide_ResNet1\n'), ((8497, 8526), 'model.Wide_ResNet1', 'Wide_ResNet1', (['(28)', '(10)', '(0.3)', '(10)'], {}), '(28, 10, 0.3, 10)\n', (8509, 8526), False, 'from model import vgg11_bn, Wide_ResNet, Wide_ResNet1\n'), ((8760, 8847), 'torch.optim.lr_scheduler.MultiStepLR', 'torch.optim.lr_scheduler.MultiStepLR', (['class_adv'], {'milestones': '[30, 60, 90]', 'gamma': '(0.1)'}), '(class_adv, milestones=[30, 60, 90],\n gamma=0.1)\n', (8796, 8847), False, 'import torch\n'), ((8842, 8875), 'torchsummary.summary', 'summary', (['classifier2', '(3, 32, 32)'], {}), '(classifier2, (3, 32, 32))\n', (8849, 8875), False, 'from torchsummary import summary\n'), ((10426, 10488), 'torch.tensor', 'torch.tensor', (['[0.58, 0.033, 0.056, 0.044, 0.056, 0.067, 0.078]'], {}), '([0.58, 0.033, 0.056, 0.044, 0.056, 0.067, 0.078])\n', (10438, 10488), False, 'import torch\n'), ((13094, 13105), 'time.time', 'time.time', ([], {}), '()\n', (13103, 13105), False, 'import time\n'), ((13310, 13321), 'time.time', 'time.time', ([], {}), '()\n', (13319, 13321), False, 'import time\n'), ((13454, 13477), 'numpy.zeros', 'np.zeros', (['[args.epochs]'], {}), '([args.epochs])\n', (13462, 13477), True, 'import numpy as np\n'), ((15850, 15870), 'torch.load', 'torch.load', (['"""nm3.pt"""'], {}), "('nm3.pt')\n", (15860, 15870), False, 'import torch\n'), ((15871, 15887), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {}), '(losses)\n', (15879, 15887), True, 'import matplotlib.pyplot as plt\n'), ((15888, 15912), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iterations"""'], {}), "('Iterations')\n", (15898, 15912), True, 'import matplotlib.pyplot as plt\n'), ((15913, 15936), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss term"""'], {}), "('Loss term')\n", (15923, 15936), True, 'import matplotlib.pyplot as plt\n'), ((15937, 15962), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figure.png"""'], {}), "('figure.png')\n", (15948, 15962), True, 'import matplotlib.pyplot as plt\n'), ((16573, 16584), 'time.time', 'time.time', ([], {}), '()\n', (16582, 16584), False, 'import time\n'), ((16750, 16761), 'time.time', 'time.time', ([], {}), '()\n', (16759, 16761), False, 'import time\n'), ((2158, 2183), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2181, 2183), False, 'import torch\n'), ((8179, 8205), 'torch.load', 'torch.load', (['args.adv_model'], {}), '(args.adv_model)\n', (8189, 8205), False, 'import torch\n'), ((2844, 2880), 'torchvision.transforms.RandomCrop', 'transforms.RandomCrop', (['(32)'], {'padding': '(4)'}), '(32, padding=4)\n', (2865, 2880), False, 'from torchvision import datasets, transforms\n'), ((2886, 2919), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (2917, 2919), False, 'from torchvision import datasets, transforms\n'), ((2925, 2946), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2944, 2946), False, 'from torchvision import datasets, transforms\n'), ((2999, 3020), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3018, 3020), False, 'from torchvision import datasets, transforms\n'), ((5418, 5433), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5431, 5433), False, 'import torch\n'), ((6243, 6258), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6256, 6258), False, 'import torch\n'), ((16704, 16731), 'torch.cuda.current_stream', 'torch.cuda.current_stream', ([], {}), '()\n', (16729, 16731), False, 'import torch\n'), ((15704, 15724), 'torch.load', 'torch.load', (['"""nm3.pt"""'], {}), "('nm3.pt')\n", (15714, 15724), False, 'import torch\n'), ((15793, 15826), 'torch.save', 'torch.save', (['classifier2', '"""nm3.pt"""'], {}), "(classifier2, 'nm3.pt')\n", (15803, 15826), False, 'import torch\n'), ((5615, 5663), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['output', 'target'], {'reduction': '"""sum"""'}), "(output, target, reduction='sum')\n", (5630, 5663), True, 'import torch.nn.functional as F\n'), ((6755, 6802), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['output', 'pred1'], {'reduction': '"""sum"""'}), "(output, pred1, reduction='sum')\n", (6770, 6802), True, 'import torch.nn.functional as F\n'), ((2443, 2461), 'torch.Tensor', 'torch.Tensor', (['mean'], {}), '(mean)\n', (2455, 2461), False, 'import torch\n'), ((2542, 2559), 'torch.Tensor', 'torch.Tensor', (['std'], {}), '(std)\n', (2554, 2559), False, 'import torch\n')]
#!/usr/bin/env python import sys import rospy from geometry_msgs.msg import (Twist, Pose, Point, Quaternion, PoseStamped) import tf.transformations as tf import numpy from threading import Lock class Converter: def __init__(self): self.currentPose = None self.pub = None self.mutex = Lock() def callbackOdom(self, data): self.mutex.acquire() self.currentPose = data self.mutex.release() def callbackCmdVel(self, data): self.mutex.acquire() if self.currentPose is None or self.pub is None: self.mutex.release() return newPose = self.currentPose self.mutex.release() vel = data quaternion = (newPose.orientation.x, newPose.orientation.y, newPose.orientation.z, newPose.orientation.w) vec = (vel.linear.x - 0.03, vel.linear.y, vel.linear.z + 0.07, 1) Rot = tf.quaternion_matrix(quaternion).tolist() buff = numpy.matmul(Rot, vec) newPose.position.x += buff[0] newPose.position.y += buff[1] newPose.position.z += buff[2] quaternion0 = (newPose.orientation.x, newPose.orientation.y, newPose.orientation.z, newPose.orientation.w) quaternion1 = tf.quaternion_from_euler(vel.angular.x, vel.angular.y, vel.angular.z) quaternion = tf.quaternion_multiply(quaternion1, quaternion0) newPose.orientation.x = quaternion[0] newPose.orientation.y = quaternion[1] newPose.orientation.z = quaternion[2] newPose.orientation.w = quaternion[3] poseStamped = PoseStamped() poseStamped.pose = newPose self.pub.publish(poseStamped) if __name__=="__main__": filtered_argv = rospy.myargv(sys.argv) if len(filtered_argv) != 4: exit() rospy.init_node('cmd_vel_converter', anonymous=True) converter = Converter() rospy.Subscriber(filtered_argv[1], Pose, converter.callbackOdom) rospy.Subscriber(filtered_argv[2], Twist, converter.callbackCmdVel) converter.pub = rospy.Publisher(filtered_argv[3], PoseStamped, queue_size=1) rospy.spin()
[ "tf.transformations.quaternion_multiply", "rospy.Subscriber", "rospy.init_node", "threading.Lock", "tf.transformations.quaternion_matrix", "rospy.myargv", "numpy.matmul", "rospy.spin", "tf.transformations.quaternion_from_euler", "geometry_msgs.msg.PoseStamped", "rospy.Publisher" ]
[((1522, 1544), 'rospy.myargv', 'rospy.myargv', (['sys.argv'], {}), '(sys.argv)\n', (1534, 1544), False, 'import rospy\n'), ((1586, 1638), 'rospy.init_node', 'rospy.init_node', (['"""cmd_vel_converter"""'], {'anonymous': '(True)'}), "('cmd_vel_converter', anonymous=True)\n", (1601, 1638), False, 'import rospy\n'), ((1666, 1730), 'rospy.Subscriber', 'rospy.Subscriber', (['filtered_argv[1]', 'Pose', 'converter.callbackOdom'], {}), '(filtered_argv[1], Pose, converter.callbackOdom)\n', (1682, 1730), False, 'import rospy\n'), ((1732, 1799), 'rospy.Subscriber', 'rospy.Subscriber', (['filtered_argv[2]', 'Twist', 'converter.callbackCmdVel'], {}), '(filtered_argv[2], Twist, converter.callbackCmdVel)\n', (1748, 1799), False, 'import rospy\n'), ((1817, 1877), 'rospy.Publisher', 'rospy.Publisher', (['filtered_argv[3]', 'PoseStamped'], {'queue_size': '(1)'}), '(filtered_argv[3], PoseStamped, queue_size=1)\n', (1832, 1877), False, 'import rospy\n'), ((1880, 1892), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (1890, 1892), False, 'import rospy\n'), ((294, 300), 'threading.Lock', 'Lock', ([], {}), '()\n', (298, 300), False, 'from threading import Lock\n'), ((848, 870), 'numpy.matmul', 'numpy.matmul', (['Rot', 'vec'], {}), '(Rot, vec)\n', (860, 870), False, 'import numpy\n'), ((1093, 1162), 'tf.transformations.quaternion_from_euler', 'tf.quaternion_from_euler', (['vel.angular.x', 'vel.angular.y', 'vel.angular.z'], {}), '(vel.angular.x, vel.angular.y, vel.angular.z)\n', (1117, 1162), True, 'import tf.transformations as tf\n'), ((1178, 1226), 'tf.transformations.quaternion_multiply', 'tf.quaternion_multiply', (['quaternion1', 'quaternion0'], {}), '(quaternion1, quaternion0)\n', (1200, 1226), True, 'import tf.transformations as tf\n'), ((1404, 1417), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (1415, 1417), False, 'from geometry_msgs.msg import Twist, Pose, Point, Quaternion, PoseStamped\n'), ((797, 829), 'tf.transformations.quaternion_matrix', 'tf.quaternion_matrix', (['quaternion'], {}), '(quaternion)\n', (817, 829), True, 'import tf.transformations as tf\n')]
"""importation""" from plotly.offline import plot # pour travailler en offline! import plotly.graph_objects as go import numpy as np from scipy.integrate import odeint # Population totale, N. N = 10000 # Nombre initial de sujets infectés et sauvés (immunisés, guéris, décédés). I0, D0, R0 = 1, 0, 0 # Tous les autres sont susceptibles d'être touchés. S0 = N - I0 - R0 - D0 # beta le taux de contact, mu guérison et théta mort beta, mu, theta = 0.6, 0.28, 0.13 # la grille de temps pour le graphique (en jours) t = np.linspace(0, 90, 90) def deriv(y, t, N, beta, mu, theta): S, I, D, R = y dSdt = -beta * S * I / N dIdt = beta * S * I / N - (mu+theta) * I dDdt = theta * I dRdt = mu * I return dSdt, dIdt, dDdt, dRdt # vecteur initial y0 = S0, I0, D0, R0 # Lance l'intégration des équations différentielles ret = odeint(deriv, y0, t, args=(N, beta,mu, theta)) S, I, D, R = ret.T # Trace les courbes fig = go.Figure() fig.update_layout(title_text="Modèle SIDR") fig.add_trace( go.Scatter(x=t, y=S, marker=dict(color='#636EFA', size=1), marker_line=dict(width=0.5), name="sains")) fig.add_trace( go.Scatter(x=t, y=I, marker=dict(color='#EF553B',size=1), marker_line=dict(width=1), name="infectés" )) fig.add_trace( go.Scatter(x=t, y=D, marker=dict(color='#AB63FA', size=1), marker_line=dict(width=1), name="Décès")) fig.add_trace( go.Scatter(x=t, y=R, marker=dict(color='#00CC96', size=1), marker_line=dict(width=1), name="guéris")) fig.update_xaxes(title_text="jours") plot(fig)
[ "scipy.integrate.odeint", "plotly.graph_objects.Figure", "numpy.linspace", "plotly.offline.plot" ]
[((519, 541), 'numpy.linspace', 'np.linspace', (['(0)', '(90)', '(90)'], {}), '(0, 90, 90)\n', (530, 541), True, 'import numpy as np\n'), ((843, 890), 'scipy.integrate.odeint', 'odeint', (['deriv', 'y0', 't'], {'args': '(N, beta, mu, theta)'}), '(deriv, y0, t, args=(N, beta, mu, theta))\n', (849, 890), False, 'from scipy.integrate import odeint\n'), ((937, 948), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (946, 948), True, 'import plotly.graph_objects as go\n'), ((1578, 1587), 'plotly.offline.plot', 'plot', (['fig'], {}), '(fig)\n', (1582, 1587), False, 'from plotly.offline import plot\n')]
import os os.environ['CUDA_VISIBLE_DEVICES'] = '' import numpy as np import matplotlib.pyplot as plt import sys import warnings warnings.filterwarnings("ignore", message=r"Passing", category=FutureWarning) import tensorflow as tf from tensorflow.contrib import slim np.random.seed(0) config = tf.ConfigProto( device_count={'GPU': 0} ) weight = np.ones((3, 3))[:, :, None, None] # weight = np.load('../MonoTrack/tmp/conv0w.npy').transpose(2, 3, 1, 0) # bias = np.load('../MonoTrack/tmp/conv0b.npy') with tf.Session(config=config) as sess: x = tf.constant(np.ones((1, 96, 96, 1))) x = tf.pad(x, tf.constant([[0, 0], [0, 1], [0, 1], [0, 0]]), constant_values=0) y = slim.conv2d(x, 1, [3, 3], stride=2, padding='VALID', activation_fn=None, weights_initializer=tf.constant_initializer(weight), biases_initializer=tf.constant_initializer(0), ) sess.run(tf.global_variables_initializer()) res = sess.run(y) print(res[0, :, :, 0].shape) # todo: kernelsize=3,stride=2 # 5.21374078 # 手动pad0 3.0595844 # random weight # 1->1 # SAME 13.21971972 # manual pad + valid 7.41130873 # all 1 weight # SAME 25 # manual pad + valid 16
[ "numpy.ones", "tensorflow.Session", "tensorflow.global_variables_initializer", "tensorflow.constant", "numpy.random.seed", "tensorflow.constant_initializer", "tensorflow.ConfigProto", "warnings.filterwarnings" ]
[((130, 206), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'message': '"""Passing"""', 'category': 'FutureWarning'}), "('ignore', message='Passing', category=FutureWarning)\n", (153, 206), False, 'import warnings\n'), ((269, 286), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (283, 286), True, 'import numpy as np\n'), ((296, 335), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'device_count': "{'GPU': 0}"}), "(device_count={'GPU': 0})\n", (310, 335), True, 'import tensorflow as tf\n'), ((351, 366), 'numpy.ones', 'np.ones', (['(3, 3)'], {}), '((3, 3))\n', (358, 366), True, 'import numpy as np\n'), ((511, 536), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (521, 536), True, 'import tensorflow as tf\n'), ((566, 589), 'numpy.ones', 'np.ones', (['(1, 96, 96, 1)'], {}), '((1, 96, 96, 1))\n', (573, 589), True, 'import numpy as np\n'), ((609, 654), 'tensorflow.constant', 'tf.constant', (['[[0, 0], [0, 1], [0, 1], [0, 0]]'], {}), '([[0, 0], [0, 1], [0, 1], [0, 0]])\n', (620, 654), True, 'import tensorflow as tf\n'), ((911, 944), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (942, 944), True, 'import tensorflow as tf\n'), ((796, 827), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['weight'], {}), '(weight)\n', (819, 827), True, 'import tensorflow as tf\n'), ((868, 894), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['(0)'], {}), '(0)\n', (891, 894), True, 'import tensorflow as tf\n')]
from threading import Thread from queue import Queue import numpy as np from ...libffcv import read class PageReader(Thread): def __init__(self, fname:str, queries: Queue, loaded: Queue, memory: np.ndarray): self.fname: str = fname self.queries: Queue = queries self.memory: np.ndarray = memory self.page_size = memory.shape[1] self.loaded: Queue = loaded super().__init__(daemon=True) def run(self): import hashlib with open(self.fname, 'rb') as handle: fileno = handle.fileno() while True: query = self.queries.get() # No more work if query is None: break page_number, slot = query offset = np.uint64(page_number * self.page_size) length = read(fileno, self.memory[slot], offset) # print("L", page_number, slot, hashlib.md5(self.memory[slot]).hexdigest(), self.memory[slot].ctypes.data, length) self.loaded.put(page_number)
[ "numpy.uint64" ]
[((814, 853), 'numpy.uint64', 'np.uint64', (['(page_number * self.page_size)'], {}), '(page_number * self.page_size)\n', (823, 853), True, 'import numpy as np\n')]
import SimpleITK as sitk import numpy as np #from segmentation.lungmask import mask import glob from tqdm import tqdm import os from segmentation.predict import predict,get_model #from segmentation.unet import UNet os.environ["CUDA_VISIBLE_DEVICES"] = '6' lung_dir = '/mnt/data11/seg_of_XCT/lung/CAP/' leision_dir = '/mnt/data11/seg_of_XCT/lesion/CAP/' root_dir = '/home/cwx/extra/dr_ct_data/CT/CAP' filelist = glob.glob(root_dir) os.makedirs(leision_dir,exist_ok=True) model2 = './checkpoint_final.pth' model = get_model(model2,n_classes=2) print('get model done') for filepath in filelist: imagelist = glob.glob(filepath+'/*.nii') for imagepath in tqdm(imagelist, dynamic_ncols=True): imagename = imagepath.split('/')[-1] batch_id = imagepath.split('/')[-2] if os.path.exists(leision_dir+batch_id+'_'+imagename.replace('.nii','_label.nrrd')): print(imagename) continue input_image = sitk.ReadImage(imagepath) segmentation = predict(input_image, model = model,batch_size=16,lesion=True) segmentation[segmentation>1]=1 lung_image = sitk.ReadImage(lung_dir+batch_id+'_'+imagename) lung_data = sitk.GetArrayFromImage(lung_image) leision_seg = lung_data*segmentation leision_seg=np.array(leision_seg,np.uint8) result_out= sitk.GetImageFromArray(leision_seg) result_out.CopyInformation(input_image) sitk.WriteImage(result_out,leision_dir+batch_id+'_'+imagename.replace('.nii','_label.nrrd')) print(imagename)
[ "segmentation.predict.get_model", "SimpleITK.GetImageFromArray", "os.makedirs", "tqdm.tqdm", "SimpleITK.GetArrayFromImage", "numpy.array", "segmentation.predict.predict", "SimpleITK.ReadImage", "glob.glob" ]
[((413, 432), 'glob.glob', 'glob.glob', (['root_dir'], {}), '(root_dir)\n', (422, 432), False, 'import glob\n'), ((433, 472), 'os.makedirs', 'os.makedirs', (['leision_dir'], {'exist_ok': '(True)'}), '(leision_dir, exist_ok=True)\n', (444, 472), False, 'import os\n'), ((514, 544), 'segmentation.predict.get_model', 'get_model', (['model2'], {'n_classes': '(2)'}), '(model2, n_classes=2)\n', (523, 544), False, 'from segmentation.predict import predict, get_model\n'), ((610, 640), 'glob.glob', 'glob.glob', (["(filepath + '/*.nii')"], {}), "(filepath + '/*.nii')\n", (619, 640), False, 'import glob\n'), ((660, 695), 'tqdm.tqdm', 'tqdm', (['imagelist'], {'dynamic_ncols': '(True)'}), '(imagelist, dynamic_ncols=True)\n', (664, 695), False, 'from tqdm import tqdm\n'), ((951, 976), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['imagepath'], {}), '(imagepath)\n', (965, 976), True, 'import SimpleITK as sitk\n'), ((1000, 1061), 'segmentation.predict.predict', 'predict', (['input_image'], {'model': 'model', 'batch_size': '(16)', 'lesion': '(True)'}), '(input_image, model=model, batch_size=16, lesion=True)\n', (1007, 1061), False, 'from segmentation.predict import predict, get_model\n'), ((1122, 1175), 'SimpleITK.ReadImage', 'sitk.ReadImage', (["(lung_dir + batch_id + '_' + imagename)"], {}), "(lung_dir + batch_id + '_' + imagename)\n", (1136, 1175), True, 'import SimpleITK as sitk\n'), ((1190, 1224), 'SimpleITK.GetArrayFromImage', 'sitk.GetArrayFromImage', (['lung_image'], {}), '(lung_image)\n', (1212, 1224), True, 'import SimpleITK as sitk\n'), ((1290, 1321), 'numpy.array', 'np.array', (['leision_seg', 'np.uint8'], {}), '(leision_seg, np.uint8)\n', (1298, 1321), True, 'import numpy as np\n'), ((1341, 1376), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['leision_seg'], {}), '(leision_seg)\n', (1363, 1376), True, 'import SimpleITK as sitk\n')]
#!/usr/bin/env python # coding=utf-8 # Filename: jpp.py # pylint: disable= """ Pump for the jpp file read through aanet interface. """ from __future__ import division, absolute_import, print_function import numpy as np from km3pipe import Pump, Blob from km3pipe.dataclasses import (EventInfo, TimesliceFrameInfo, SummaryframeInfo, HitSeries, TimesliceHitSeries) from km3pipe.logger import logging log = logging.getLogger(__name__) # pylint: disable=C0103 __author__ = "<NAME>" __copyright__ = "Copyright 2016, Tam<NAME> and the KM3NeT collaboration." __credits__ = ["<NAME>"] __license__ = "MIT" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" class JPPPump(Pump): """A pump for JPP ROOT files.""" def __init__(self, **context): super(self.__class__, self).__init__(**context) try: import jppy # noqa except ImportError: raise ImportError("\nPlease install the jppy package:\n\n" " pip install jppy\n") self.event_index = self.get('index') or 0 self.with_summaryslices = self.get('with_summaryslices') or False self.with_timeslice_hits = self.get('with_timeslice_hits') or False self.timeslice_index = 0 self.timeslice_frame_index = 0 self.summaryslice_index = 0 self.summaryslice_frame_index = 0 self.filename = self.get('filename') self.event_reader = jppy.PyJDAQEventReader(self.filename) self.timeslice_reader = jppy.PyJDAQTimesliceReader(self.filename) self.summaryslice_reader = jppy.PyJDAQSummarysliceReader(self.filename) self.blobs = self.blob_generator() def blob_generator(self): while self.with_timeslice_hits and self.timeslice_reader.has_next: self.timeslice_frame_index = 0 self.timeslice_reader.retrieve_next_timeslice() while self.timeslice_reader.has_next_superframe: try: yield self.extract_timeslice_frame() except IndexError: log.warning("Skipping broken frame.") else: self.timeslice_frame_index += 1 finally: self.timeslice_reader.retrieve_next_superframe() self.timeslice_index += 1 while self.with_summaryslices and self.summaryslice_reader.has_next: self.summaryslice_frame_index = 0 self.summaryslice_reader.retrieve_next_summaryslice() while self.summaryslice_reader.has_next_frame: yield self.extract_summaryslice_frame() self.summaryslice_reader.retrieve_next_frame() self.summaryslice_frame_index += 1 self.summaryslice_index += 1 while self.event_reader.has_next: yield self.extract_event() raise StopIteration def extract_event(self): blob = Blob() r = self.event_reader r.retrieve_next_event() # do it at the beginning! n = r.number_of_snapshot_hits channel_ids = np.zeros(n, dtype='i') dom_ids = np.zeros(n, dtype='i') times = np.zeros(n, dtype='i') tots = np.zeros(n, dtype='i') triggereds = np.zeros(n, dtype='i') r.get_hits(channel_ids, dom_ids, times, tots, triggereds) nans = np.full(n, np.nan, dtype='<f8') hit_series = HitSeries.from_arrays( channel_ids, nans, nans, nans, dom_ids, np.arange(n), np.zeros(n), nans, nans, nans, nans, times, tots, triggereds, self.event_index ) event_info = EventInfo(( r.det_id, r.frame_index, 0, # livetime_sec 0, 0, # MC ID and time 0, # n_events_gen 0, # n_files_gen r.overlays, # r.run_id, r.trigger_counter, r.trigger_mask, r.utc_nanoseconds, r.utc_seconds, np.nan, np.nan, np.nan, # w1-w3 self.event_index, )) self.event_index += 1 blob['EventInfo'] = event_info blob['Hits'] = hit_series return blob def extract_timeslice_frame(self): blob = Blob() r = self.timeslice_reader n = r.number_of_hits channel_ids = np.zeros(n, dtype='i') dom_ids = np.zeros(n, dtype='i') times = np.zeros(n, dtype='i') tots = np.zeros(n, dtype='i') r.get_hits(channel_ids, dom_ids, times, tots) hit_series = TimesliceHitSeries.from_arrays( channel_ids, dom_ids, times, tots, self.timeslice_index, self.timeslice_frame_index ) timesliceframe_info = TimesliceFrameInfo( r.dom_id, r.fifo_status, self.timeslice_frame_index, r.frame_index, r.has_udp_trailer, r.high_rate_veto, r.max_sequence_number, r.number_of_received_packets, self.timeslice_index, r.utc_nanoseconds, r.utc_seconds, r.white_rabbit_status, ) blob['TimesliceHits'] = hit_series blob['TimesliceFrameInfo'] = timesliceframe_info return blob def extract_summaryslice_frame(self): blob = Blob() r = self.summaryslice_reader summaryframe_info = SummaryframeInfo( r.dom_id, r.fifo_status, self.summaryslice_frame_index, r.frame_index, r.has_udp_trailer, r.high_rate_veto, r.max_sequence_number, r.number_of_received_packets, self.summaryslice_index, r.utc_nanoseconds, r.utc_seconds, r.white_rabbit_status, ) blob['SummaryframeInfo'] = summaryframe_info return blob def process(self, blob): return next(self.blobs) def __iter__(self): return self def next(self): """Python 2/3 compatibility for iterators""" return self.__next__() def __next__(self): return next(self.blobs)
[ "km3pipe.dataclasses.TimesliceFrameInfo", "km3pipe.dataclasses.TimesliceHitSeries.from_arrays", "jppy.PyJDAQSummarysliceReader", "km3pipe.dataclasses.SummaryframeInfo", "numpy.zeros", "jppy.PyJDAQEventReader", "km3pipe.logger.logging.getLogger", "jppy.PyJDAQTimesliceReader", "km3pipe.dataclasses.EventInfo", "numpy.full", "km3pipe.Blob", "numpy.arange" ]
[((474, 501), 'km3pipe.logger.logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (491, 501), False, 'from km3pipe.logger import logging\n'), ((1522, 1559), 'jppy.PyJDAQEventReader', 'jppy.PyJDAQEventReader', (['self.filename'], {}), '(self.filename)\n', (1544, 1559), False, 'import jppy\n'), ((1592, 1633), 'jppy.PyJDAQTimesliceReader', 'jppy.PyJDAQTimesliceReader', (['self.filename'], {}), '(self.filename)\n', (1618, 1633), False, 'import jppy\n'), ((1669, 1713), 'jppy.PyJDAQSummarysliceReader', 'jppy.PyJDAQSummarysliceReader', (['self.filename'], {}), '(self.filename)\n', (1698, 1713), False, 'import jppy\n'), ((3020, 3026), 'km3pipe.Blob', 'Blob', ([], {}), '()\n', (3024, 3026), False, 'from km3pipe import Pump, Blob\n'), ((3177, 3199), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (3185, 3199), True, 'import numpy as np\n'), ((3218, 3240), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (3226, 3240), True, 'import numpy as np\n'), ((3257, 3279), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (3265, 3279), True, 'import numpy as np\n'), ((3295, 3317), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (3303, 3317), True, 'import numpy as np\n'), ((3339, 3361), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (3347, 3361), True, 'import numpy as np\n'), ((3445, 3476), 'numpy.full', 'np.full', (['n', 'np.nan'], {'dtype': '"""<f8"""'}), "(n, np.nan, dtype='<f8')\n", (3452, 3476), True, 'import numpy as np\n'), ((3710, 3894), 'km3pipe.dataclasses.EventInfo', 'EventInfo', (['(r.det_id, r.frame_index, 0, 0, 0, 0, 0, r.overlays, r.trigger_counter, r.\n trigger_mask, r.utc_nanoseconds, r.utc_seconds, np.nan, np.nan, np.nan,\n self.event_index)'], {}), '((r.det_id, r.frame_index, 0, 0, 0, 0, 0, r.overlays, r.\n trigger_counter, r.trigger_mask, r.utc_nanoseconds, r.utc_seconds, np.\n nan, np.nan, np.nan, self.event_index))\n', (3719, 3894), False, 'from km3pipe.dataclasses import EventInfo, TimesliceFrameInfo, SummaryframeInfo, HitSeries, TimesliceHitSeries\n'), ((4295, 4301), 'km3pipe.Blob', 'Blob', ([], {}), '()\n', (4299, 4301), False, 'from km3pipe import Pump, Blob\n'), ((4387, 4409), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (4395, 4409), True, 'import numpy as np\n'), ((4428, 4450), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (4436, 4450), True, 'import numpy as np\n'), ((4467, 4489), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (4475, 4489), True, 'import numpy as np\n'), ((4505, 4527), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""i"""'}), "(n, dtype='i')\n", (4513, 4527), True, 'import numpy as np\n'), ((4603, 4723), 'km3pipe.dataclasses.TimesliceHitSeries.from_arrays', 'TimesliceHitSeries.from_arrays', (['channel_ids', 'dom_ids', 'times', 'tots', 'self.timeslice_index', 'self.timeslice_frame_index'], {}), '(channel_ids, dom_ids, times, tots, self.\n timeslice_index, self.timeslice_frame_index)\n', (4633, 4723), False, 'from km3pipe.dataclasses import EventInfo, TimesliceFrameInfo, SummaryframeInfo, HitSeries, TimesliceHitSeries\n'), ((4783, 5051), 'km3pipe.dataclasses.TimesliceFrameInfo', 'TimesliceFrameInfo', (['r.dom_id', 'r.fifo_status', 'self.timeslice_frame_index', 'r.frame_index', 'r.has_udp_trailer', 'r.high_rate_veto', 'r.max_sequence_number', 'r.number_of_received_packets', 'self.timeslice_index', 'r.utc_nanoseconds', 'r.utc_seconds', 'r.white_rabbit_status'], {}), '(r.dom_id, r.fifo_status, self.timeslice_frame_index, r.\n frame_index, r.has_udp_trailer, r.high_rate_veto, r.max_sequence_number,\n r.number_of_received_packets, self.timeslice_index, r.utc_nanoseconds,\n r.utc_seconds, r.white_rabbit_status)\n', (4801, 5051), False, 'from km3pipe.dataclasses import EventInfo, TimesliceFrameInfo, SummaryframeInfo, HitSeries, TimesliceHitSeries\n'), ((5429, 5435), 'km3pipe.Blob', 'Blob', ([], {}), '()\n', (5433, 5435), False, 'from km3pipe import Pump, Blob\n'), ((5501, 5774), 'km3pipe.dataclasses.SummaryframeInfo', 'SummaryframeInfo', (['r.dom_id', 'r.fifo_status', 'self.summaryslice_frame_index', 'r.frame_index', 'r.has_udp_trailer', 'r.high_rate_veto', 'r.max_sequence_number', 'r.number_of_received_packets', 'self.summaryslice_index', 'r.utc_nanoseconds', 'r.utc_seconds', 'r.white_rabbit_status'], {}), '(r.dom_id, r.fifo_status, self.summaryslice_frame_index, r.\n frame_index, r.has_udp_trailer, r.high_rate_veto, r.max_sequence_number,\n r.number_of_received_packets, self.summaryslice_index, r.\n utc_nanoseconds, r.utc_seconds, r.white_rabbit_status)\n', (5517, 5774), False, 'from km3pipe.dataclasses import EventInfo, TimesliceFrameInfo, SummaryframeInfo, HitSeries, TimesliceHitSeries\n'), ((3573, 3585), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (3582, 3585), True, 'import numpy as np\n'), ((3587, 3598), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (3595, 3598), True, 'import numpy as np\n')]
import numpy as np import statistics import matplotlib.pyplot as plt import seaborn as sns np_normal_dis = np.random.normal(5, 0.5, 100) print(np_normal_dis.min()) print(np_normal_dis.max()) print(np_normal_dis.mean()) # print(np_normal_dis.median()) # not working print(np_normal_dis.std()) two_dimension_array = np.array([(1,2,3), [4,5,6]]) print(two_dimension_array) print('Max row:', np.amax(two_dimension_array, axis=0)) print('Max column:', np.amax(two_dimension_array, axis=1)) print('Min column:', np.amin(two_dimension_array, axis=0)) print('Min column:', np.amin(two_dimension_array, axis=1)) a = [1, 2, 3] print('Tile:', np.tile(a, 2)) # just repeat a list print('Repeat:', np.repeat(a, 2)) # sort repeat print(np.random.random()) # between 0 - 1 r = np.random.random(size=[2, 3]) # 2 row 3 column print(r) print(np.random.choice(['a', 'e', 'i', 'o', 'u'], size=10)) # escolhe 10 vezes algo da lista print(np.random.choice([1, 2, 3, 4, 5], size=10)) # escolhe 10 vezes algo da lista print(np.random.rand(2,2)) print(np.random.randn(2,2)) print(np.random.randint(0, 10, size=[5,3])) from scipy import stats np_normal_dis = np.random.normal(5, 0.5, 1000) print(np.max(np_normal_dis)) print(np.min(np_normal_dis)) print(np.mean(np_normal_dis)) print(np.mean(np_normal_dis)) print(np.median(np_normal_dis)) print(stats.mode(np_normal_dis)) print(np.std(np_normal_dis)) plt.hist(np_normal_dis, color='grey', bins=21) plt.show()
[ "matplotlib.pyplot.hist", "numpy.random.rand", "numpy.array", "numpy.mean", "numpy.repeat", "numpy.random.random", "numpy.max", "numpy.min", "numpy.random.normal", "numpy.tile", "numpy.amin", "numpy.random.choice", "numpy.std", "numpy.random.randn", "matplotlib.pyplot.show", "numpy.median", "scipy.stats.mode", "numpy.random.randint", "numpy.amax" ]
[((109, 138), 'numpy.random.normal', 'np.random.normal', (['(5)', '(0.5)', '(100)'], {}), '(5, 0.5, 100)\n', (125, 138), True, 'import numpy as np\n'), ((317, 349), 'numpy.array', 'np.array', (['[(1, 2, 3), [4, 5, 6]]'], {}), '([(1, 2, 3), [4, 5, 6]])\n', (325, 349), True, 'import numpy as np\n'), ((767, 796), 'numpy.random.random', 'np.random.random', ([], {'size': '[2, 3]'}), '(size=[2, 3])\n', (783, 796), True, 'import numpy as np\n'), ((1142, 1172), 'numpy.random.normal', 'np.random.normal', (['(5)', '(0.5)', '(1000)'], {}), '(5, 0.5, 1000)\n', (1158, 1172), True, 'import numpy as np\n'), ((1386, 1432), 'matplotlib.pyplot.hist', 'plt.hist', (['np_normal_dis'], {'color': '"""grey"""', 'bins': '(21)'}), "(np_normal_dis, color='grey', bins=21)\n", (1394, 1432), True, 'import matplotlib.pyplot as plt\n'), ((1433, 1443), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1441, 1443), True, 'import matplotlib.pyplot as plt\n'), ((391, 427), 'numpy.amax', 'np.amax', (['two_dimension_array'], {'axis': '(0)'}), '(two_dimension_array, axis=0)\n', (398, 427), True, 'import numpy as np\n'), ((450, 486), 'numpy.amax', 'np.amax', (['two_dimension_array'], {'axis': '(1)'}), '(two_dimension_array, axis=1)\n', (457, 486), True, 'import numpy as np\n'), ((509, 545), 'numpy.amin', 'np.amin', (['two_dimension_array'], {'axis': '(0)'}), '(two_dimension_array, axis=0)\n', (516, 545), True, 'import numpy as np\n'), ((568, 604), 'numpy.amin', 'np.amin', (['two_dimension_array'], {'axis': '(1)'}), '(two_dimension_array, axis=1)\n', (575, 604), True, 'import numpy as np\n'), ((636, 649), 'numpy.tile', 'np.tile', (['a', '(2)'], {}), '(a, 2)\n', (643, 649), True, 'import numpy as np\n'), ((689, 704), 'numpy.repeat', 'np.repeat', (['a', '(2)'], {}), '(a, 2)\n', (698, 704), True, 'import numpy as np\n'), ((727, 745), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (743, 745), True, 'import numpy as np\n'), ((830, 882), 'numpy.random.choice', 'np.random.choice', (["['a', 'e', 'i', 'o', 'u']"], {'size': '(10)'}), "(['a', 'e', 'i', 'o', 'u'], size=10)\n", (846, 882), True, 'import numpy as np\n'), ((923, 965), 'numpy.random.choice', 'np.random.choice', (['[1, 2, 3, 4, 5]'], {'size': '(10)'}), '([1, 2, 3, 4, 5], size=10)\n', (939, 965), True, 'import numpy as np\n'), ((1007, 1027), 'numpy.random.rand', 'np.random.rand', (['(2)', '(2)'], {}), '(2, 2)\n', (1021, 1027), True, 'import numpy as np\n'), ((1034, 1055), 'numpy.random.randn', 'np.random.randn', (['(2)', '(2)'], {}), '(2, 2)\n', (1049, 1055), True, 'import numpy as np\n'), ((1062, 1099), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': '[5, 3]'}), '(0, 10, size=[5, 3])\n', (1079, 1099), True, 'import numpy as np\n'), ((1179, 1200), 'numpy.max', 'np.max', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1185, 1200), True, 'import numpy as np\n'), ((1208, 1229), 'numpy.min', 'np.min', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1214, 1229), True, 'import numpy as np\n'), ((1237, 1259), 'numpy.mean', 'np.mean', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1244, 1259), True, 'import numpy as np\n'), ((1267, 1289), 'numpy.mean', 'np.mean', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1274, 1289), True, 'import numpy as np\n'), ((1297, 1321), 'numpy.median', 'np.median', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1306, 1321), True, 'import numpy as np\n'), ((1329, 1354), 'scipy.stats.mode', 'stats.mode', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1339, 1354), False, 'from scipy import stats\n'), ((1362, 1383), 'numpy.std', 'np.std', (['np_normal_dis'], {}), '(np_normal_dis)\n', (1368, 1383), True, 'import numpy as np\n')]
import numpy as np from scipy import interpolate from progressbar import ProgressBar, Bar, Percentage class ImpulseResponseFunction(object): '''Internal bemio object to contain impulse response function (IRF) data ''' pass class WaveElevationTimeSeries(object): '''Internal bemio object to contain wave elevation time series data ''' pass class WaveExcitationForce(object): '''Internal bemio object to contain wave excitation force data ''' pass class WaveExcitationConvolution(object): ''' Object for calculating wave excitation force time history using the convolution method Parameters: irf : np.array Wave excitation force impulse response function. irf_t : np.array Time series corresponding to `irf` eta : np.array Wave elevation time series eta_t : np.array Time series corresponding to `eta` Attribuites: self.irf : ImpulseResponseFunction Object containing excitation force IRF information self.wave_elevation : WaveElevationTimeSeries Object containing wave elevation time series data self.excitation_force : WaveExcitationForce Object containing wave excitation force data ''' def __init__(self, irf, irf_t, eta, eta_t): self.irf = ImpulseResponseFunction() self.wave_elevation = WaveElevationTimeSeries() self.excitation_force = WaveExcitationForce() self.irf.f = irf self.irf.t = irf_t self.wave_elevation.eta = eta self.wave_elevation.t = eta_t self.wave_elevation.dt = self.wave_elevation.t[1] - self.wave_elevation.t[0] self._excitation_convolution() def _excitation_convolution(self): '''Internal function to perform the wave excitation convolution ''' eta_interp = interpolate.interp1d(x=self.wave_elevation.t, y=self.wave_elevation.eta, bounds_error=False, fill_value=0.) irf_interp = interpolate.interp1d(x=self.irf.t, y=self.irf.f, bounds_error=False, fill_value=0.) # Interpolate the IRF to the dt as the wave elevation data irf = irf_interp(np.linspace(self.irf.t.min(),self.irf.t.max(),(self.irf.t.max()-self.irf.t.min())/self.wave_elevation.dt+1)) # Assume that the IRF dt is used unless specified by the user # if self.excitation_force.dt is None: # self.excitation_force.dt = self.irf.t[1] - self.irf.t[0] # This code caluclates the wave excitation force manually - the below method that uses the convolve function is much more efficient # self.excitation_force.t = np.linspace(self.wave_elevation.t.min(), self.wave_elevation.t.max(), (self.wave_elevation.t.max()-self.wave_elevation.t.min())/self.excitation_force.dt+1) # pbar_max_val = self.excitation_force.t.max() # pbar = ProgressBar(widgets=['Calculating the excitation force time history:', Percentage(), Bar()], maxval=pbar_max_val).start() # f_ex = [] # for t in self.excitation_force.t: # f_ex.append(np.trapz(y=irf_interp(self.irf.t)*eta_interp(t-self.irf.t),x=self.irf.t)) # # pbar.update(t) # pbar.finish() f_ex_conv = np.convolve(self.wave_elevation.eta, irf, mode='same')*self.wave_elevation.dt self.excitation_force.f = np.array(f_ex_conv) self.excitation_force.t = self.wave_elevation.t def convolution(irf, irf_t, eta, eta_t, dt=None): ''' Function to calculate wave excitation force using the convolution method Patrameters: irf : np.array Wave excitation force impulse response function. irf_t : np.array Time series corresponding to `irf` eta : np.array Wave elevation time series eta_t : np.array Time series corresponding to `eta` dt : float, optional Time step for calculating the Returns: excitation_force : WaveExcitationConvolution This function returns a `WaveExcitationConvolution` object with the wave exciting force and other information. See the `WaveExcitationConvolution` for more information. Example: The following example assumes that variables `irf`, `irf_t`, `eta`, and `eta_t` of type type(np.array) exist in the workspace. The contents of these variables are described above. Calculate excitation force using the convolution method >>> ex = convolution(irf=irf, irf_t=irf_t, eta=eta, eta_t=eta_t) Plot the data >>> plt.figure() >>> plt.plot(ex.excitation_force.t,ex.excitation_force.f) ''' excitation_force = WaveExcitationConvolution(irf, irf_t, eta, eta_t) return excitation_force
[ "numpy.array", "numpy.convolve", "scipy.interpolate.interp1d" ]
[((1897, 2009), 'scipy.interpolate.interp1d', 'interpolate.interp1d', ([], {'x': 'self.wave_elevation.t', 'y': 'self.wave_elevation.eta', 'bounds_error': '(False)', 'fill_value': '(0.0)'}), '(x=self.wave_elevation.t, y=self.wave_elevation.eta,\n bounds_error=False, fill_value=0.0)\n', (1917, 2009), False, 'from scipy import interpolate\n'), ((2026, 2114), 'scipy.interpolate.interp1d', 'interpolate.interp1d', ([], {'x': 'self.irf.t', 'y': 'self.irf.f', 'bounds_error': '(False)', 'fill_value': '(0.0)'}), '(x=self.irf.t, y=self.irf.f, bounds_error=False,\n fill_value=0.0)\n', (2046, 2114), False, 'from scipy import interpolate\n'), ((3388, 3407), 'numpy.array', 'np.array', (['f_ex_conv'], {}), '(f_ex_conv)\n', (3396, 3407), True, 'import numpy as np\n'), ((3275, 3329), 'numpy.convolve', 'np.convolve', (['self.wave_elevation.eta', 'irf'], {'mode': '"""same"""'}), "(self.wave_elevation.eta, irf, mode='same')\n", (3286, 3329), True, 'import numpy as np\n')]
""" MODEL DRIVEN REGISTRATION for iBEAt study: quantitative renal MRI @<NAME> 2021 Test script for T1 sequence using Model driven registration Library """ import sys import glob import os import numpy as np import itk import SimpleITK as sitk import pydicom from pathlib import Path import time from PIL import Image import importlib from MDR.MDR import model_driven_registration from MDR.Tools import (read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps) np.set_printoptions(threshold=sys.maxsize) def main(): # selected sequence to process sequence = 'T1' # number of expected slices to process (example: iBEAt study number of slice = 5) slices = 5 # path definition # your 'os.getcwd()' path should point to your local directory containing the MDR-Library # eg: /Users/kanishkasharma/Documents/GitHub/MDR_Library print(os.getcwd()) DATA_PATH = os.getcwd() + r'/tests/test_data/DICOMs' OUTPUT_REG_PATH = os.getcwd() + r'/MDR_registration_output' Elastix_Parameter_file_PATH = os.getcwd() + r'/Elastix_Parameters_Files/iBEAt/BSplines_T1.txt' output_dir = OUTPUT_REG_PATH + '/T1/' # Organize files per each sequence: os.chdir(DATA_PATH) # list all patient folders available to be processed patients_folders = os.listdir() # select patient folder to be processed from the list of available patient DICOMs supplied in patients_folders for patient_folder in patients_folders: if patient_folder not in ['test_case_iBEAt_4128009']: # eg: test case selected to be processed - change to your own test case continue # read path to the sequence to be processed for selected test patient case: eg: T1 sequence_images_path = patient_folder + '/' + str(sequence) + '/DICOM' os.chdir(DATA_PATH + '/' + sequence_images_path) # read all dicom files for selected sequence dcm_files_found = glob.glob("*.dcm") if not dcm_files_found: dcm_files_found = glob.glob("*.IMA") # if sequence is IMA format instead of dcm # slice to be processed from selected sequence for slice in range(1, slices+1): current_slice = sequence + '_slice_' + str(slice) # single slice processing for T1 mapping sequence (here selected slice number is 3) if current_slice not in [sequence + '_slice_3']: continue # read slice path to be processed slice_path = DATA_PATH + '/' + sequence_images_path + '/' + current_slice data = Path(slice_path) # list of all DICOMs to be processed for the selected slice (example: slice number = 15 here) lstFilesDCM = list(data.glob('**/*.IMA')) # read all dicom files for the selected sequence and slice files, ArrayDicomiBEAt, filenameDCM = read_DICOM_files(lstFilesDCM) # get sitk image parameters for registration (origin and spacing) image_parameters = get_sitk_image_details_from_DICOM(slice_path) # run T1 MDR test function iBEAt_test_T1(Elastix_Parameter_file_PATH, output_dir, ArrayDicomiBEAt, image_parameters, filenameDCM, lstFilesDCM) def iBEAt_test_T1(Elastix_Parameter_file_PATH, output_dir, ArrayDicomiBEAt, image_parameters, filenameDCM, lstFilesDCM): """ Example application of MDR in renal T1 mapping (iBEAt data). Args ---- Elastix_Parameter_file_PATH (string): complete path to the Elastix parameter file to be used output_dir (string): directory where results are saved ArrayDicomiBEAt (numpy.ndarray): input DICOM to numpy array (unsorted) image_parameters (sitk tuple): image spacing filenameDCM (pathlib.PosixPath): dicom filenames to process lstFilesDCM (list): list of dicom files to process Description ----------- This function performs model driven registration for selected T1 sequence on a single selected slice and returns as output the MDR registered images, signal model fit, deformation field x, deformation field y, fitted parameters S0 and T1 map, and the final diagnostics. """ start_computation_time = time.time() # define numpy array with same input shape as original DICOMs image_shape = np.shape(ArrayDicomiBEAt) original_images = np.zeros(image_shape) # read signal model parameters and slice sorted per T1 inversion time full_module_name = "models.iBEAt_T1" signal_model_parameters, slice_sorted_inv_time = read_signal_model_parameters(full_module_name,filenameDCM, lstFilesDCM) # initialise original_images with sorted images per T1 inversion times to run MDR for i, s in enumerate(slice_sorted_inv_time): img2d = s.pixel_array original_images[:, :, i] = img2d # read signal model parameters elastix_model_parameters = read_elastix_model_parameters(Elastix_Parameter_file_PATH, ['MaximumNumberOfIterations', 256]) #Perform MDR MDR_output = model_driven_registration(original_images, image_parameters, signal_model_parameters, elastix_model_parameters, precision = 1) # #Export results export_images(MDR_output[0], output_dir +'/coregistered/MDR-registered_T1_') export_images(MDR_output[1], output_dir +'/fit/fit_image_') export_images(MDR_output[2][:,:,0,:], output_dir +'/deformation_field/final_deformation_x_') export_images(MDR_output[2][:,:,1,:], output_dir +'/deformation_field/final_deformation_y_') export_maps(MDR_output[3][::2], output_dir + '/fitted_parameters/S0', np.shape(original_images)) export_maps(MDR_output[3][1::2], output_dir + '/fitted_parameters/T1Map', np.shape(original_images)) MDR_output[4].to_csv(output_dir + 'T1_largest_deformations.csv') # Report computation times end_computation_time = time.time() print("total computation time for MDR (minutes taken:)...") print(0.0166667*(end_computation_time - start_computation_time)) # in minutes print("completed MDR registration!") print("Finished processing Model Driven Registration case for iBEAt study T1 sequence!") # read sequence acquisition parameter for signal modelling # sort slices according to T1 inversion times def read_signal_model_parameters(full_module_name,filenameDCM, lstFilesDCM): # select model MODEL = importlib.import_module(full_module_name) inversion_times, slice_sorted_inv_time = MODEL.read_inversion_times_and_sort(filenameDCM, lstFilesDCM) # select signal model paramters signal_model_parameters = [MODEL, inversion_times] return signal_model_parameters, slice_sorted_inv_time
[ "os.listdir", "MDR.MDR.model_driven_registration", "importlib.import_module", "pathlib.Path", "MDR.Tools.get_sitk_image_details_from_DICOM", "MDR.Tools.read_elastix_model_parameters", "MDR.Tools.read_DICOM_files", "os.getcwd", "os.chdir", "numpy.zeros", "MDR.Tools.export_images", "numpy.shape", "time.time", "glob.glob", "numpy.set_printoptions" ]
[((601, 643), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'sys.maxsize'}), '(threshold=sys.maxsize)\n', (620, 643), True, 'import numpy as np\n'), ((1334, 1353), 'os.chdir', 'os.chdir', (['DATA_PATH'], {}), '(DATA_PATH)\n', (1342, 1353), False, 'import os\n'), ((1438, 1450), 'os.listdir', 'os.listdir', ([], {}), '()\n', (1448, 1450), False, 'import os\n'), ((4352, 4363), 'time.time', 'time.time', ([], {}), '()\n', (4361, 4363), False, 'import time\n'), ((4448, 4473), 'numpy.shape', 'np.shape', (['ArrayDicomiBEAt'], {}), '(ArrayDicomiBEAt)\n', (4456, 4473), True, 'import numpy as np\n'), ((4496, 4517), 'numpy.zeros', 'np.zeros', (['image_shape'], {}), '(image_shape)\n', (4504, 4517), True, 'import numpy as np\n'), ((5038, 5137), 'MDR.Tools.read_elastix_model_parameters', 'read_elastix_model_parameters', (['Elastix_Parameter_file_PATH', "['MaximumNumberOfIterations', 256]"], {}), "(Elastix_Parameter_file_PATH, [\n 'MaximumNumberOfIterations', 256])\n", (5067, 5137), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((5172, 5300), 'MDR.MDR.model_driven_registration', 'model_driven_registration', (['original_images', 'image_parameters', 'signal_model_parameters', 'elastix_model_parameters'], {'precision': '(1)'}), '(original_images, image_parameters,\n signal_model_parameters, elastix_model_parameters, precision=1)\n', (5197, 5300), False, 'from MDR.MDR import model_driven_registration\n'), ((5325, 5402), 'MDR.Tools.export_images', 'export_images', (['MDR_output[0]', "(output_dir + '/coregistered/MDR-registered_T1_')"], {}), "(MDR_output[0], output_dir + '/coregistered/MDR-registered_T1_')\n", (5338, 5402), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((5406, 5466), 'MDR.Tools.export_images', 'export_images', (['MDR_output[1]', "(output_dir + '/fit/fit_image_')"], {}), "(MDR_output[1], output_dir + '/fit/fit_image_')\n", (5419, 5466), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((5470, 5570), 'MDR.Tools.export_images', 'export_images', (['MDR_output[2][:, :, 0, :]', "(output_dir + '/deformation_field/final_deformation_x_')"], {}), "(MDR_output[2][:, :, 0, :], output_dir +\n '/deformation_field/final_deformation_x_')\n", (5483, 5570), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((5567, 5667), 'MDR.Tools.export_images', 'export_images', (['MDR_output[2][:, :, 1, :]', "(output_dir + '/deformation_field/final_deformation_y_')"], {}), "(MDR_output[2][:, :, 1, :], output_dir +\n '/deformation_field/final_deformation_y_')\n", (5580, 5667), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((5994, 6005), 'time.time', 'time.time', ([], {}), '()\n', (6003, 6005), False, 'import time\n'), ((6505, 6546), 'importlib.import_module', 'importlib.import_module', (['full_module_name'], {}), '(full_module_name)\n', (6528, 6546), False, 'import importlib\n'), ((1010, 1021), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1019, 1021), False, 'import os\n'), ((1041, 1052), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1050, 1052), False, 'import os\n'), ((1104, 1115), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1113, 1115), False, 'import os\n'), ((1180, 1191), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1189, 1191), False, 'import os\n'), ((1943, 1991), 'os.chdir', 'os.chdir', (["(DATA_PATH + '/' + sequence_images_path)"], {}), "(DATA_PATH + '/' + sequence_images_path)\n", (1951, 1991), False, 'import os\n'), ((2071, 2089), 'glob.glob', 'glob.glob', (['"""*.dcm"""'], {}), "('*.dcm')\n", (2080, 2089), False, 'import glob\n'), ((5734, 5759), 'numpy.shape', 'np.shape', (['original_images'], {}), '(original_images)\n', (5742, 5759), True, 'import numpy as np\n'), ((5839, 5864), 'numpy.shape', 'np.shape', (['original_images'], {}), '(original_images)\n', (5847, 5864), True, 'import numpy as np\n'), ((2152, 2170), 'glob.glob', 'glob.glob', (['"""*.IMA"""'], {}), "('*.IMA')\n", (2161, 2170), False, 'import glob\n'), ((2705, 2721), 'pathlib.Path', 'Path', (['slice_path'], {}), '(slice_path)\n', (2709, 2721), False, 'from pathlib import Path\n'), ((3009, 3038), 'MDR.Tools.read_DICOM_files', 'read_DICOM_files', (['lstFilesDCM'], {}), '(lstFilesDCM)\n', (3025, 3038), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n'), ((3148, 3193), 'MDR.Tools.get_sitk_image_details_from_DICOM', 'get_sitk_image_details_from_DICOM', (['slice_path'], {}), '(slice_path)\n', (3181, 3193), False, 'from MDR.Tools import read_DICOM_files, get_sitk_image_details_from_DICOM, sort_all_slice_files_acquisition_time, read_elastix_model_parameters, export_images, export_maps\n')]
import altair as alt import pandas as pd import numpy as np import sys TRUSTTSV = sys.argv[1] CELLNUM = sys.argv[2] BCRTEMP = """ <div style="width: 100%; height: 700px; position: relative; clear:both;overflow: hidden; white-space:nowrap; padding-top: 10px;clear:both;"> <div style="width: 110%, position: absolute; clear:both;"> <p style="text-align: left; color: #094D92; font-size: 30px"> BCR STATS: </p> </div> FREQHIST <div style="width: 50%; float: right; padding-top: 50px;"> TABLE </div> DotPLOT </div> """ # colnames for chain 1 and 2 - for B cells, the heavy chain is chain 1, and light chain is chain 2 TRUST_columns = ["V_gene", "D_gene", "J_gene", "C_gene", "cdr3_nt", "cdr3_aa", "read_cnt", "consensus_id", "CDR3_germline_similarity", "consensus_full_length"] TRUSTaligned = pd.read_csv(TRUSTTSV, delimiter='\t', index_col='#barcode') Bcells = TRUSTaligned[TRUSTaligned['cell_type'] == 'B'] print(CELLNUM) CELLNUM = int(CELLNUM) print(type(CELLNUM)) # Calculate the percentages of heavy, light, and paired chains found in the B cells No_BCR = CELLNUM - len(Bcells.index) L_only = len(Bcells[(Bcells['chain1'] == "*") & (Bcells['chain2'] != "*")]) H_only = len(Bcells[(Bcells['chain2'] == "*") & (Bcells['chain1'] != "*")]) paired = len(Bcells[(Bcells['chain1'] != "*") & (Bcells['chain2'] != "*")]) BCR_stats = pd.DataFrame([No_BCR, L_only, H_only, paired, CELLNUM], index=['No BCR', "Light Chain Only", "Heavy Chain Only", "Paired Chains", "Total"], columns=['Number of Cells']) BCR_stats['Percent of Cells'] = (BCR_stats['Number of Cells']*100/CELLNUM) BCR_stats['Percent of Cells'] = round(BCR_stats['Percent of Cells'], 2).astype("str")+"%" BCRSTATSTABLE = BCR_stats.to_html() BCRSTATSTABLE = BCRSTATSTABLE.replace( """ border="1" """, " ").replace( "text-align: right", "text-align: left") # split the heavy and light chain info out of its csv form Bcells = Bcells.join(pd.DataFrame(Bcells.chain1.str.split(",").tolist(), columns=['H_'+x for x in TRUST_columns], index=Bcells.index)) Bcells = Bcells.join(pd.DataFrame(Bcells.chain2.str.split(",").tolist(), columns=['L_'+x for x in TRUST_columns], index=Bcells.index)) Bcells = Bcells.drop(columns=['chain1', 'chain2', 'secondary_chain1', 'secondary_chain2']) # calculate frequencies for freq histogram lightchainaa = pd.DataFrame(Bcells.groupby( 'L_cdr3_aa').size(), columns=['freq']) lightchainaa['chain'] = 'light' heavychainaa = pd.DataFrame(Bcells.groupby( 'H_cdr3_aa').size(), columns=['freq']) heavychainaa['chain'] = 'heavy' aa_freq = pd.concat([lightchainaa, heavychainaa]) freqhist = alt.Chart(aa_freq).mark_bar( color='reds').encode( alt.X('freq', bin=alt.Bin(step=.9999), title='Number of Cells the CDR3 Amino Acid Sequence is Observed in'), y=alt.Y('count()', title="Number of CDR3 AA sequences"), color=alt.Color('chain', scale=alt.Scale(scheme='viridis'))).properties( width='container', height=200, title='Frequency Histogram') # create the dataframe with the dotplot data pair_B = Bcells[(Bcells['H_V_gene'] != "*") & (Bcells['L_V_gene'] != "*")] dotplot_data = pair_B[['H_C_gene', 'L_C_gene']] dotplot_data = pd.DataFrame(dotplot_data.groupby( ["H_C_gene", "L_C_gene"]).size()) dotplot_data = dotplot_data.unstack() NaN = np.nan dotplot_data.loc['IGHG3'] = [NaN] * len(dotplot_data.columns) dotplot_data.loc['IGHG4'] = [NaN] * len(dotplot_data.columns) dotplot_data.loc['IGHA'] = [NaN] * len(dotplot_data.columns) dotplot_data.loc['IGHD'] = [NaN] * len(dotplot_data.columns) dotplot_data.loc['IGHE'] = [NaN] * len(dotplot_data.columns) # Heavy/Light dotplot source = dotplot_data.melt(ignore_index=False, col_level='L_C_gene') print(source) source["H_C_gene"] = source.index source['Light Chain'] = np.where(["IGK" in x for x in source['L_C_gene']], "Kappa", "Lambda") print(source.index.tolist()) dotplot_BCR = alt.Chart(source).mark_circle().encode( x=alt.X('H_C_gene', scale=alt.Scale( domain=np.sort(source.index.tolist())), title='Heavy Chain'), y=alt.Y('L_C_gene', title='Light Chain'), size='value', color=alt.Color('Light Chain', scale=alt.Scale(scheme='viridis')), tooltip=['value', 'Light Chain'] ).properties( width='container', height=200, title="Heavy and Light Chain usage for cells with Paired Data", ).interactive() bcr_dp_html = dotplot_BCR.to_html() print(bcr_dp_html) bcr_dp_html = bcr_dp_html[bcr_dp_html.find("<div id"):bcr_dp_html.find("</body>")] print(bcr_dp_html) bcr_dp_html = bcr_dp_html.replace("vis", "vis_dp_b") bcr_dp_html = bcr_dp_html.replace( """<div id="vis_dp_b"></div>""", """<div id="vis_dp_b" style="width: 100%; position: absolute; clear:both; overflow: hidden; white-space:nowrap; padding-top: 300px; padding-bottom: 20px"></div>""") freq_hist_html = freqhist.to_html() freq_hist_html = freq_hist_html[freq_hist_html.find("<div id"):freq_hist_html.find("</body>")] freq_hist_html = freq_hist_html.replace("vis", "vis_fq_b") freq_hist_html = freq_hist_html.replace( """<div id="vis_fq_b"></div>""", """<div id="vis_fq_b" style="width: 50%; height: 50%; float: left; position: absolute; clear:both; overflow: hidden; white-space:nowrap"></div>""") BCRTEMP = BCRTEMP.replace("FREQHIST", freq_hist_html) BCRTEMP = BCRTEMP.replace("TABLE", BCRSTATSTABLE) BCRTEMP = BCRTEMP.replace("DotPLOT", bcr_dp_html) # final output f = open("summary.html", "r") htmlfile = f.read() f.close() htmlfile = htmlfile.replace('ADD_BCR_INFO', BCRTEMP) f = open("summary.html", 'w') f.write(htmlfile) f.close() print(np.sort(source.index.tolist())) print("Done adding to html") print(htmlfile)
[ "pandas.read_csv", "numpy.where", "altair.Chart", "altair.Y", "pandas.DataFrame", "altair.Bin", "pandas.concat", "altair.Scale" ]
[((979, 1038), 'pandas.read_csv', 'pd.read_csv', (['TRUSTTSV'], {'delimiter': '"""\t"""', 'index_col': '"""#barcode"""'}), "(TRUSTTSV, delimiter='\\t', index_col='#barcode')\n", (990, 1038), True, 'import pandas as pd\n'), ((1525, 1701), 'pandas.DataFrame', 'pd.DataFrame', (['[No_BCR, L_only, H_only, paired, CELLNUM]'], {'index': "['No BCR', 'Light Chain Only', 'Heavy Chain Only', 'Paired Chains', 'Total']", 'columns': "['Number of Cells']"}), "([No_BCR, L_only, H_only, paired, CELLNUM], index=['No BCR',\n 'Light Chain Only', 'Heavy Chain Only', 'Paired Chains', 'Total'],\n columns=['Number of Cells'])\n", (1537, 1701), True, 'import pandas as pd\n'), ((3174, 3213), 'pandas.concat', 'pd.concat', (['[lightchainaa, heavychainaa]'], {}), '([lightchainaa, heavychainaa])\n', (3183, 3213), True, 'import pandas as pd\n'), ((4435, 4506), 'numpy.where', 'np.where', (["[('IGK' in x) for x in source['L_C_gene']]", '"""Kappa"""', '"""Lambda"""'], {}), "([('IGK' in x) for x in source['L_C_gene']], 'Kappa', 'Lambda')\n", (4443, 4506), True, 'import numpy as np\n'), ((3420, 3473), 'altair.Y', 'alt.Y', (['"""count()"""'], {'title': '"""Number of CDR3 AA sequences"""'}), "('count()', title='Number of CDR3 AA sequences')\n", (3425, 3473), True, 'import altair as alt\n'), ((3313, 3333), 'altair.Bin', 'alt.Bin', ([], {'step': '(0.9999)'}), '(step=0.9999)\n', (3320, 3333), True, 'import altair as alt\n'), ((3226, 3244), 'altair.Chart', 'alt.Chart', (['aa_freq'], {}), '(aa_freq)\n', (3235, 3244), True, 'import altair as alt\n'), ((3542, 3569), 'altair.Scale', 'alt.Scale', ([], {'scheme': '"""viridis"""'}), "(scheme='viridis')\n", (3551, 3569), True, 'import altair as alt\n'), ((4771, 4809), 'altair.Y', 'alt.Y', (['"""L_C_gene"""'], {'title': '"""Light Chain"""'}), "('L_C_gene', title='Light Chain')\n", (4776, 4809), True, 'import altair as alt\n'), ((4582, 4599), 'altair.Chart', 'alt.Chart', (['source'], {}), '(source)\n', (4591, 4599), True, 'import altair as alt\n'), ((4882, 4909), 'altair.Scale', 'alt.Scale', ([], {'scheme': '"""viridis"""'}), "(scheme='viridis')\n", (4891, 4909), True, 'import altair as alt\n')]
from help_modules import * from motor_control import * import pyaudio import wave import numpy as np import time import matplotlib.pyplot as plt import speech_recognition as sr from scipy import signal import math import threading import multiprocessing as ms import os import cv2 from nanpy import (ArduinoApi, SerialManager) import dlib import pygame ###configure tts#### def speak(audio_file_name): pygame.mixer.init(16500) pygame.mixer.music.load(audio_file_name) pygame.mixer.music.play() #while pygame.mixer.music.get_busy() == True: #continue P_GAIN, I_GAIN, D_GAIN = 0.025,0.00000001,0.001 ###Configuring face detector### detector = dlib.get_frontal_face_detector() ###Configuring Video ### vs = cv2.VideoCapture(0) w,h=260,195 ### Configuring Audio### r = sr.Recognizer() FORMAT = pyaudio.paInt16 CHANNELS = 2 RATE = 44100 CHUNK = 2048 SPEAKING_THRESH = 0.8 WAVE_OUTPUT_FILENAME = "file.wav" DEVICE_INDEX = get_audio_device() frame=np.zeros((480,360)) frames = [0] * 5000 frames_l = [0] * 5000 frames_r = [0] * 5000 times = [0] * 5000 data=0 audio = pyaudio.PyAudio() stream = audio.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, input_device_index=DEVICE_INDEX, frames_per_buffer=CHUNK) def record_audio(): global CHUNK global data global times while True: data = stream.read(CHUNK) frames.append(data) frames.pop(0) times.append(time.time()) times.pop(0) audio_capture = threading.Thread(target=record_audio) audio_capture.start() time.sleep(2) ###data,frame are always available for any calculation### det="" make_contact=0 def speech_rec(): global det global data global SPEAKING_THRESH global make_contact t1 = time.time() start_time = t1 stopped_time = t1 while True: if is_speaking(data, SPEAKING_THRESH): if (time.time() - t1) > 1: start_time = time.time() - 1 t1 = time.time() else: t2 = time.time() if (t2 - t1) > 1 and t1 > stopped_time: stopped_time = t2 + 0.5 start_index = (np.abs(np.array(times) - start_time)).argmin() stop_index = (np.abs(np.array(times) - stopped_time)).argmin() mic_l, mic_r = get_corresponding_mic_data(frames, start_index, stop_index) save_audio(frames[start_index:stop_index],audio,WAVE_OUTPUT_FILENAME,CHANNELS,FORMAT,RATE) det = recognize(sr,r,WAVE_OUTPUT_FILENAME) print(det) if "hello Amigo" in det: lag, lags, corr = lag_finder(mic_l, mic_r, 44100) lag = lag * 1000000 / RATE#microseconds angle = find_angle(lag/1000000, 9, 36750) print("angle: ",angle) move_neck(angle) make_contact=1 speak("Audio/hello.wav") if "bye" in det: speak("Audio/bye.wav") make_contact=0 reset_motors() speech_reco = threading.Thread(target=speech_rec) speech_reco.start() def get_video_info(): _,frame = vs.read() frame = cv2.resize(frame, (w,h)) x1, y1, x2, y2 = detect_face(detector, frame) try: frame = cv2.rectangle(frame, (x1,y1), (x2,y2), (255,0,0), 1) except: frame=frame return frame,x1,y1,x2,y2 while True: not_detected = 0 frame,x1,y1,x2,y2= get_video_info() if "hello Amigo" in det: t0=time.time() Ix_old,errorx_old,Iy_old,errory_old = 0,0,0,0 while not_detected<100: frame,x1,y1,x2,y2= get_video_info() #cv2.imshow("vision",frame) key = cv2.waitKey(1)& 0xFF if key == ord("q"): vs.release() cv2.destroyAllWindows() sys.exit() break if not(x1==None) and make_contact==1: fx=x1+(x2-x1)/2 fy=y1+(y2-y1)/2 t1=time.time() dt=t1-t0 pidx, pidy,errorx_old,Ix_old,errory_old,Iy_old = pid_cal(w/2,h/2,fx,fy,dt,Ix_old,errorx_old,Iy_old,errory_old, P_GAIN, I_GAIN, D_GAIN) change_servox(pidx) change_servoy(-pidy) t0=t1 not_detected=0 if "bye" in det: speak("Audio/bye.wav") det="" make_contact = 0 reset_motors() if "company close" in det or "closing time" in det: speak("Audio/close_time.wav") det="" else: not_detected=not_detected+1 print("Face not detected..") make_contact=0 reset_motors() det ="" #cv2.imshow("vision",frame) key = cv2.waitKey(1)& 0xFF if key == ord("q"): vs.release() cv2.destroyAllWindows() sys.exit() break
[ "cv2.rectangle", "numpy.array", "time.sleep", "speech_recognition.Recognizer", "dlib.get_frontal_face_detector", "numpy.zeros", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.VideoCapture", "pygame.mixer.music.load", "time.time", "pygame.mixer.music.play", "threading.Thread", "cv2.resize", "pyaudio.PyAudio", "pygame.mixer.init" ]
[((670, 702), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (700, 702), False, 'import dlib\n'), ((733, 752), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (749, 752), False, 'import cv2\n'), ((795, 810), 'speech_recognition.Recognizer', 'sr.Recognizer', ([], {}), '()\n', (808, 810), True, 'import speech_recognition as sr\n'), ((971, 991), 'numpy.zeros', 'np.zeros', (['(480, 360)'], {}), '((480, 360))\n', (979, 991), True, 'import numpy as np\n'), ((1090, 1107), 'pyaudio.PyAudio', 'pyaudio.PyAudio', ([], {}), '()\n', (1105, 1107), False, 'import pyaudio\n'), ((1546, 1583), 'threading.Thread', 'threading.Thread', ([], {'target': 'record_audio'}), '(target=record_audio)\n', (1562, 1583), False, 'import threading\n'), ((1606, 1619), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (1616, 1619), False, 'import time\n'), ((3196, 3231), 'threading.Thread', 'threading.Thread', ([], {'target': 'speech_rec'}), '(target=speech_rec)\n', (3212, 3231), False, 'import threading\n'), ((408, 432), 'pygame.mixer.init', 'pygame.mixer.init', (['(16500)'], {}), '(16500)\n', (425, 432), False, 'import pygame\n'), ((437, 477), 'pygame.mixer.music.load', 'pygame.mixer.music.load', (['audio_file_name'], {}), '(audio_file_name)\n', (460, 477), False, 'import pygame\n'), ((482, 507), 'pygame.mixer.music.play', 'pygame.mixer.music.play', ([], {}), '()\n', (505, 507), False, 'import pygame\n'), ((1816, 1827), 'time.time', 'time.time', ([], {}), '()\n', (1825, 1827), False, 'import time\n'), ((3312, 3337), 'cv2.resize', 'cv2.resize', (['frame', '(w, h)'], {}), '(frame, (w, h))\n', (3322, 3337), False, 'import cv2\n'), ((3412, 3468), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x1, y1)', '(x2, y2)', '(255, 0, 0)', '(1)'], {}), '(frame, (x1, y1), (x2, y2), (255, 0, 0), 1)\n', (3425, 3468), False, 'import cv2\n'), ((3658, 3669), 'time.time', 'time.time', ([], {}), '()\n', (3667, 3669), False, 'import time\n'), ((5244, 5258), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5255, 5258), False, 'import cv2\n'), ((5338, 5361), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5359, 5361), False, 'import cv2\n'), ((1495, 1506), 'time.time', 'time.time', ([], {}), '()\n', (1504, 1506), False, 'import time\n'), ((2035, 2046), 'time.time', 'time.time', ([], {}), '()\n', (2044, 2046), False, 'import time\n'), ((2079, 2090), 'time.time', 'time.time', ([], {}), '()\n', (2088, 2090), False, 'import time\n'), ((3882, 3896), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3893, 3896), False, 'import cv2\n'), ((4000, 4023), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4021, 4023), False, 'import cv2\n'), ((4280, 4291), 'time.time', 'time.time', ([], {}), '()\n', (4289, 4291), False, 'import time\n'), ((1950, 1961), 'time.time', 'time.time', ([], {}), '()\n', (1959, 1961), False, 'import time\n'), ((2002, 2013), 'time.time', 'time.time', ([], {}), '()\n', (2011, 2013), False, 'import time\n'), ((2222, 2237), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (2230, 2237), True, 'import numpy as np\n'), ((2299, 2314), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (2307, 2314), True, 'import numpy as np\n')]
############################################################################### ## Tool name: Generate GTFS Route Shapes ## Step 1: Generate Shapes on Map ## Creator: <NAME>, Esri ## Last updated: 4 September 2019 ############################################################################### ''' This tool generates a feature class of route shapes for GTFS data. The route shapes show the geographic paths taken by the transit vehicles along the streets or tracks. Each unique sequence of stop visits in the GTFS data will get its own shape in the output feature class. Alternatively, the user can select existing shapes from shapes.txt to draw in the map. The user can edit the output feature class shapes as desired. Then, the user should use this feature class and the other associated files in the output GDB as input to Step 2 in order to create updated .txt files for use in the GTFS dataset.''' ################################################################################ '''Copyright 2019 Esri Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' ################################################################################ import sqlite3, operator, os, re, csv, itertools, sys import numpy as np import AGOLRouteHelper import arcpy class CustomError(Exception): pass # User input variables, set in the scripts that get input from the GUI inGTFSdir = None outDir = None outGDBName = None in_route_type_Street = None in_route_type_Straight = None inNetworkDataset = None impedanceAttribute = None driveSide = None UTurn_input = None restrictions = None useJunctions = None useBearing = None BearingTol = None CurbApproach = None MaxAngle = None useNA = None useAGOL = None badStops = [] # Global derived variables ProductName = None outGDB = None SQLDbase = None outSequencePoints = None outRoutesfc = None NoRouteGenerated = None # Other global variables # Use WGS coordinates because that's what the GTFS spec uses WGSCoords = "GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984', \ SPHEROID['WGS_1984',6378137.0,298.257223563]], \ PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433]]; \ -400 -400 1000000000;-100000 10000;-100000 10000; \ 8.98315284119522E-09;0.001;0.001;IsHighPrecision" WGSCoords_WKID = 4326 # Explicitly set max allowed length for route_desc. Some agencies are wordy. max_route_desc_length = 250 def RunStep1_existing_shapestxt(shapelist): '''Create feature classes of shapes and relevant stop sequences using an existing shapes.txt file so the user can edit existing shapes.''' try: # It's okay to overwrite stuff. orig_overwrite = arcpy.env.overwriteOutput arcpy.env.overwriteOutput = True # Check that the user's software version can support this tool check_Arc_version() # Set up the outputs global outGDBName if not outGDBName.lower().endswith(".gdb"): outGDBName += ".gdb" outGDB = os.path.join(outDir, outGDBName) outSequencePointsName = "Stops_wShapeIDs" outSequencePoints = os.path.join(outGDB, outSequencePointsName) outShapesFCName = "Shapes" outShapesFC = os.path.join(outGDB, outShapesFCName) SQLDbase = os.path.join(outGDB, "SQLDbase.sql") # Create output geodatabase arcpy.management.CreateFileGDB(outDir, outGDBName) # ----- SQLize the GTFS data ----- try: # These are the GTFS files we need to use in this tool, so we will add them to a SQL database. files_to_sqlize = ["stops", "stop_times", "trips", "routes", "shapes"] connect_to_sql(SQLDbase) SQLize_GTFS(files_to_sqlize) except: arcpy.AddError("Error SQLizing the GTFS data.") raise # ----- Add shapes to feature class ----- # Find all the route_ids and associated info get_route_info() # Make a feature class for shapes arcpy.management.CreateFeatureclass(outGDB, outShapesFCName, "POLYLINE", '', '', '', WGSCoords) arcpy.management.AddField(outShapesFC, "shape_id", "TEXT") arcpy.management.AddField(outShapesFC, "route_id", "TEXT") arcpy.management.AddField(outShapesFC, "route_short_name", "TEXT") arcpy.management.AddField(outShapesFC, "route_long_name", "TEXT") arcpy.management.AddField(outShapesFC, "route_desc", "TEXT", "", "", max_route_desc_length) arcpy.management.AddField(outShapesFC, "route_type", "SHORT") arcpy.management.AddField(outShapesFC, "route_type_text", "TEXT") # Populate shapes feature class with user's selected shapes from shapes.txt with arcpy.da.InsertCursor(outShapesFC, ["SHAPE@", "shape_id", "route_id", "route_short_name", "route_long_name", "route_desc", "route_type", "route_type_text"]) as cur: for shape in shapelist: # Get the route ids that have this shape. # There should probably be a 1-1 relationship, but not sure. # We're just adding route info to the shapes feature class for readability shapesroutesfetch = ''' SELECT DISTINCT route_id FROM trips WHERE shape_id='%s' ;''' % shape c.execute(shapesroutesfetch) weresome = False for route in c: weresome = True append_existing_shape_to_fc(shape, cur, route[0]) if not weresome: # No trips actually use this shape, so skip adding route info arcpy.AddWarning("shape_id %s is not used by any \ trips in your trips.txt file. You can still update this shape, but this might be an indication of problems in your GTFS dataset." % shape) append_existing_shape_to_fc(shape, cur) # ----- Find the sequences of stops associated with these shapes ----- # Find the lat/lon coordinates of all stops get_stop_lat_lon() # Create a feature class for stops associated with the selected shapes - for reference and for input to Step 2 arcpy.management.CreateFeatureclass(outGDB, outSequencePointsName, "POINT", "", "", "", WGSCoords) arcpy.management.AddField(outSequencePoints, "stop_id", "TEXT") arcpy.management.AddField(outSequencePoints, "shape_id", "TEXT") arcpy.management.AddField(outSequencePoints, "sequence", "LONG") # Populate the feature class with stops in the correct sequence badStops = [] with arcpy.da.InsertCursor(outSequencePoints, ["SHAPE@X", "SHAPE@Y", "shape_id", "sequence", "stop_id"]) as cur: for shape_id in shapelist: # Trips designated with this shape_id trips_for_shape = get_trips_with_shape_id(shape_id) # The sequence of stops visited by each of these trips. There should probably be only one unique sequence associated with each shape_id, but not sure. stop_sequences_for_shape = [] for trip in trips_for_shape: stop_sequences_for_shape.append(get_trip_stop_sequence(trip)) stop_sequences_for_shape = list(set(stop_sequences_for_shape)) # Add each stop in the sequence to the feature class for sequence in stop_sequences_for_shape: sequence_num = 1 for stop in sequence: try: stop_lat = stoplatlon_dict[stop][0] stop_lon = stoplatlon_dict[stop][1] except KeyError: badStops.append(stop) sequence_num += 1 continue cur.insertRow((float(stop_lon), float(stop_lat), shape_id, sequence_num, stop)) sequence_num += 1 if badStops: badStops = sorted(list(set(badStops))) messageText = "Your stop_times.txt file lists times for the following stops which are not included in your stops.txt file. These stops have been ignored. " if ProductName == "ArcGISPro": messageText += str(badStops) else: messageText += unicode(badStops) arcpy.AddWarning(messageText) # Set output arcpy.SetParameterAsText(4, outShapesFC) arcpy.SetParameterAsText(5, outSequencePoints) arcpy.AddMessage("Done!") arcpy.AddMessage("Output generated in " + outGDB + ":") arcpy.AddMessage("- Shapes") arcpy.AddMessage("- Stops_wShapeIDs") except CustomError: arcpy.AddError("Error generating shapes feature class from existing shapes.txt file.") pass except: raise finally: arcpy.env.overwriteOutput = orig_overwrite # ----- Main part of script ----- def RunStep1(): '''Run Step 1 - Generate feature class of shapes for input to Step 2, which generates the actual GTFS shapes.txt file.''' try: # It's okay to overwrite stuff. orig_overwrite = arcpy.env.overwriteOutput arcpy.env.overwriteOutput = True # Check that the user's software version can support this tool check_Arc_version(useAGOL, useNA) # Check out the Network Analyst extension license if useNA: if arcpy.CheckExtension("Network") == "Available": arcpy.CheckOutExtension("Network") else: arcpy.AddError("The Network Analyst license is unavailable.") raise CustomError if useAGOL: # Get the user's ArcGIS Online token. They must already be signed in to use this tool. # That way we don't need to collect a username and password. # But, you can't run this script in standalone python. AGOLRouteHelper.get_token() if AGOLRouteHelper.token == None: arcpy.AddError("Unable to retrieve token for ArcGIS Online. To use this tool, \ you must be signed in to ArcGIS Online with an account that has routing privileges and credits. \ Talk to your organization's ArcGIS Online administrator for assistance.") raise CustomError arcpy.AddMessage("Successfully retrieved ArcGIS Online token.") # ----- Set up the run, fix some inputs ----- # Input format is a string separated by a ; ("0 - Tram, Streetcar, Light rail;3 - Bus;5 - Cable car") global route_type_Straight_textlist, route_type_Street_textlist, route_types_Straight, route_types_Street if in_route_type_Street: route_type_Street_textlist = in_route_type_Street.split(";") else: route_type_Street_textlist = [] if in_route_type_Straight: route_type_Straight_textlist = in_route_type_Straight.split(";") else: route_type_Straight_textlist = [] route_types_Street = [] route_types_Straight = [] for rtype in route_type_Street_textlist: route_types_Street.append(int(rtype.split(" - ")[0].strip('\''))) for rtype in route_type_Straight_textlist: route_types_Straight.append(int(rtype.split(" - ")[0].strip('\''))) # Set curb approach based on side of road vehicles drive on global CurbApproach driveSide = "Right" if driveSide == "Right": CurbApproach = 1 #"Right side of vehicle" else: CurbApproach = 2 #"Left side of vehcle" # Uturn policy is explained here: http://resources.arcgis.com/en/help/main/10.1/index.html#//00480000000n000000 global UTurns if UTurn_input == "Allowed anywhere": UTurns = "ALLOW_UTURNS" elif UTurn_input == "Allowed only at intersections and dead ends": UTurns = "ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY" elif UTurn_input == "Allowed only at dead ends": UTurns = "ALLOW_DEAD_ENDS_ONLY" elif UTurn_input == "Not allowed anywhere": UTurns = "NO_UTURNS" # Sometimes, when locating stops, they snap to the closest street, which is # actually a side street instead of the main road where the stop is really # located. The Route results consequently have a lot of little loops or # spikes sticking out the side. Sometimes we can improve results by # locating stops on network junctions instead of streets. Sometimes this # messes up the results, however, but we allow the users to try. # Note: As of January 2017, I have removed the useJunctions option from # the tool because it never really worked that great, and the useBearing # method is a dramatic improvement. I'm leaving this code here in case # someone wants it again. global search_criteria if useJunctions: search_criteria = [] NAdesc = arcpy.Describe(inNetworkDataset) for source in NAdesc.sources: if source.sourceType in ["JunctionFeature", "SystemJunction"]: search_criteria.append([source.name, "SHAPE"]) else: search_criteria.append([source.name, "NONE"]) else: search_criteria = "#" # Initialize a list for shapes that couldn't be generated from the route solver global NoRouteGenerated NoRouteGenerated = [] # Set up the outputs global outGDB, outSequencePoints, outRoutesfc, outRoutesfcName, SQLDbase, outGDBName if not outGDBName.lower().endswith(".gdb"): outGDBName += ".gdb" outGDB = os.path.join(outDir, outGDBName) outSequencePointsName = "Stops_wShapeIDs" outSequencePoints = os.path.join(outGDB, outSequencePointsName) outRoutesfcName = "Shapes" outRoutesfc = os.path.join(outGDB, outRoutesfcName) SQLDbase = os.path.join(outGDB, "SQLDbase.sql") # Create output geodatabase arcpy.management.CreateFileGDB(outDir, outGDBName) # ----- SQLize the GTFS data ----- try: # These are the GTFS files we need to use in this tool, so we will add them to a SQL database. files_to_sqlize = ["stops", "stop_times", "trips", "routes"] connect_to_sql(SQLDbase) SQLize_GTFS(files_to_sqlize) except: arcpy.AddError("Error SQLizing the GTFS data.") raise # ----- Get lat/long for all stops and add to dictionary. Calculate location fields if necessary. ----- get_stop_lat_lon() # Grab the pointGeometry objects for each stop if useBearing: get_stop_geom() # Calculate location fields for the stops and save them to a dictionary. if useNA and not useBearing: calculate_stop_location_fields() # ----- Make dictionary of route info ----- get_route_info() # ----- Match trip_ids with route_ids ----- arcpy.AddMessage("Collecting GTFS trip information...") get_trip_route_info() # ----- Create ordered stop sequences ----- get_unique_stop_sequences() # ----- Figure out which routes go with which shapes and update trips table ----- global shape_route_dict shape_route_dict = {} for shape in shape_trip_dict: shaperoutes = [] for trip in shape_trip_dict[shape]: shaperoutes.append(trip_route_dict[trip]) # Update the trips table with the shape assigned to the trip updatetripstablestmt = "UPDATE trips SET shape_id='%s' WHERE trip_id='%s'" % (shape, trip) c.execute(updatetripstablestmt) conn.commit() shaperoutesset = set(shaperoutes) for route in shaperoutesset: shape_route_dict.setdefault(shape, []).append(route) conn.close() # ----- Generate street and straight routes ----- # Create a points feature class for the stops to input for Routes # We'll save this so users can see the stop sequences with the shape_ids. arcpy.management.CreateFeatureclass(outGDB, outSequencePointsName, "POINT", "", "", "", WGSCoords) arcpy.management.AddField(outSequencePoints, "stop_id", "TEXT") arcpy.management.AddField(outSequencePoints, "shape_id", "TEXT") arcpy.management.AddField(outSequencePoints, "sequence", "LONG") if useNA and not useBearing: # We will pre-calculate location fields for faster loading if we're not using Bearing arcpy.management.AddField(outSequencePoints, "CurbApproach", "SHORT") arcpy.management.AddField(outSequencePoints, "SourceID", "LONG") arcpy.management.AddField(outSequencePoints, "SourceOID", "LONG") arcpy.management.AddField(outSequencePoints, "PosAlong", "DOUBLE") arcpy.management.AddField(outSequencePoints, "SideOfEdge", "LONG") if useBearing: # If we're using Bearing, add the relevant fields arcpy.management.AddField(outSequencePoints, "CurbApproach", "SHORT") arcpy.management.AddField(outSequencePoints, "Bearing", "DOUBLE") arcpy.management.AddField(outSequencePoints, "BearingTol", "DOUBLE") # Flag for whether we created the output fc in from Routes or if we need # to create it in the straight-line part Created_Street_Output = False # Generate shapes following the streets if route_types_Street: if useNA: Generate_Shapes_Street() Created_Street_Output = True elif useAGOL: Generate_Shapes_AGOL() Created_Street_Output = True # Generate routes as straight lines between stops if route_types_Straight or NoRouteGenerated: Generate_Shapes_Straight(Created_Street_Output) global badStops if badStops: badStops = sorted(list(set(badStops))) messageText = "Your stop_times.txt file lists times for the following stops which are not included in your stops.txt file. These stops have been ignored. " if ProductName == "ArcGISPro": messageText += str(badStops) else: messageText += unicode(badStops) arcpy.AddWarning(messageText) # ----- Add route information to output feature class ----- arcpy.AddMessage("Adding GTFS route information to output shapes feature class") # Explicitly set max allowed length for route_desc. Some agencies are wordy. max_route_desc_length = 250 arcpy.management.AddField(outRoutesfc, "shape_id", "TEXT") arcpy.management.AddField(outRoutesfc, "route_id", "TEXT") arcpy.management.AddField(outRoutesfc, "route_short_name", "TEXT") arcpy.management.AddField(outRoutesfc, "route_long_name", "TEXT") arcpy.management.AddField(outRoutesfc, "route_desc", "TEXT", "", "", max_route_desc_length) arcpy.management.AddField(outRoutesfc, "route_type", "SHORT") arcpy.management.AddField(outRoutesfc, "route_type_text", "TEXT") with arcpy.da.UpdateCursor(outRoutesfc, ["Name", "shape_id", "route_id", "route_short_name", "route_long_name", "route_desc", "route_type", "route_type_text"]) as ucursor: for row in ucursor: shape_id = row[0] route_id = shape_route_dict[shape_id][0] route_short_name = RouteDict[route_id][1] route_long_name = RouteDict[route_id][2] route_desc = RouteDict[route_id][3] route_type = RouteDict[route_id][4] route_type_text = RouteDict[route_id][8] row[0] = row[0] row[1] = shape_id row[2] = route_id row[3] = route_short_name row[4] = route_long_name row[5] = route_desc[0:max_route_desc_length] if route_desc else route_desc #logic handles the case where it's empty row[6] = route_type row[7] = route_type_text ucursor.updateRow(row) # ----- Finish things up ----- # Add output to map. if useNA: arcpy.SetParameterAsText(12, outRoutesfc) arcpy.SetParameterAsText(13, outSequencePoints) elif useAGOL: arcpy.SetParameterAsText(8, outRoutesfc) arcpy.SetParameterAsText(9, outSequencePoints) else: arcpy.SetParameterAsText(4, outRoutesfc) arcpy.SetParameterAsText(5, outSequencePoints) arcpy.AddMessage("Done!") arcpy.AddMessage("Output generated in " + outGDB + ":") arcpy.AddMessage("- Shapes") arcpy.AddMessage("- Stops_wShapeIDs") except CustomError: arcpy.AddError("Error generating shapes feature class from GTFS data.") pass except: raise finally: arcpy.env.overwriteOutput = orig_overwrite def SQLize_GTFS(files_to_sqlize): ''' SQLize the GTFS data''' arcpy.AddMessage("SQLizing the GTFS data...") arcpy.AddMessage("(This step might take a while for large datasets.)") # Schema of standard GTFS, with a 1 or 0 to indicate if the field is required sql_schema = { "stops" : { "stop_id" : ("TEXT", 1), "stop_code" : ("TEXT", 0), "stop_name" : ("TEXT", 1), "stop_desc" : ("TEXT", 0), "stop_lat" : ("REAL", 1), "stop_lon" : ("REAL", 1), "zone_id" : ("TEXT", 0), "stop_url" : ("TEXT", 0), "location_type" : ("INTEGER", 0), "parent_station" : ("TEXT", 0), "stop_timezone" : ("TEXT", 0), "wheelchair_boarding": ("INTEGER", 0) } , "stop_times" : { "trip_id" : ("TEXT", 1), "arrival_time" : ("TEXT", 1), "departure_time" : ("TEXT", 1), "stop_id" : ("TEXT", 1), "stop_sequence" : ("INTEGER", 1), "stop_headsign" : ("TEXT", 0), "pickup_type" : ("INTEGER", 0), "drop_off_type" : ("INTEGER", 0), "shape_dist_traveled" : ("REAL", 0) } , "trips" : { "route_id" : ("TEXT", 1), "service_id" : ("TEXT", 1), "trip_id" : ("TEXT", 1), "trip_headsign" : ("TEXT", 0), "trip_short_name" : ("TEXT", 0), "direction_id" : ("INTEGER", 0), "block_id" : ("TEXT", 0), "shape_id" : ("TEXT", 0), "wheelchair_accessible" : ("INTEGER", 0) } , "routes" : { "route_id" : ("TEXT", 1), "agency_id" : ("TEXT", 0), "route_short_name": ("TEXT", 0), "route_long_name": ("TEXT", 0), "route_desc": ("TEXT", 0), "route_type": ("INTEGER", 1), "route_url": ("TEXT", 0), "route_color": ("TEXT", 0), "route_text_color": ("TEXT", 0), } , "shapes" : { "shape_id": ("TEXT", 1), "shape_pt_lat": ("REAL", 1), "shape_pt_lon": ("REAL", 1), "shape_pt_sequence": ("INTEGER", 1), "shape_dist_traveled": ("REAL", "NULL") } } # SQLize each file we care about, using its own schema and ordering for GTFSfile in files_to_sqlize: # Note: a check for existance of each required file is in tool validation # Open the file for reading fname = os.path.join(inGTFSdir, GTFSfile) + ".txt" if ProductName == "ArcGISPro": f = open(fname, encoding="utf-8-sig") else: f = open(fname) reader = csv.reader(f) # Put everything in utf-8 to handle BOMs and weird characters. # Eliminate blank rows (extra newlines) while we're at it. if ProductName == "ArcGISPro": reader = ([x.strip() for x in r] for r in reader if len(r) > 0) else: reader = ([x.decode('utf-8-sig').strip() for x in r] for r in reader if len(r) > 0) # First row is column names: columns = [name.strip() for name in next(reader)] # Set up the table schema schema = "" for col in columns: try: # Read the data type from the GTFS schema dictionary schema = schema + col + " " + sql_schema[GTFSfile][col][0] + ", " except KeyError: # If they're using a custom field, preserve it and assume it's text. schema = schema + col + " TEXT, " schema = schema[:-2] # Make sure file has all the required fields for col in sql_schema[GTFSfile]: if sql_schema[GTFSfile][col][1] == 1: if not col in columns: arcpy.AddError("GTFS file " + GTFSfile + ".txt is missing required field '" + col + "'.") raise CustomError # Make sure lat/lon values are valid if GTFSfile == "stops": rows = check_latlon_fields(reader, columns, "stop_lat", "stop_lon", "stop_id", fname) elif GTFSfile == "shapes": rows = check_latlon_fields(reader, columns, "shape_pt_lat", "shape_pt_lon", "shape_id", fname) # Otherwise just leave them as they are else: rows = reader # Create the SQL table c.execute("DROP TABLE IF EXISTS %s;" % GTFSfile) create_stmt = "CREATE TABLE %s (%s);" % (GTFSfile, schema) c.execute(create_stmt) conn.commit() # Add the data to the table values_placeholders = ["?"] * len(columns) c.executemany("INSERT INTO %s (%s) VALUES (%s);" % (GTFSfile, ",".join(columns), ",".join(values_placeholders)) , rows) conn.commit() # If optional columns in routes weren't included in the original data, add them so we don't encounter errors later. if GTFSfile == "routes": for col in sql_schema["routes"]: if not col in columns: c.execute("ALTER TABLE routes ADD COLUMN %s %s" % (col, sql_schema[GTFSfile][col][0])) conn.commit() # If our original data did not have a shape-related fields, add them. if GTFSfile == "trips": if 'shape_id' not in columns: if "shapes" in files_to_sqlize: arcpy.AddError("Your trips.txt file does not contain a shape_id field. In order to update your shapes.txt file, \ you must first assign each trip_id in trips.txt a valid shape_id. If you do not have this information, it is recommended that you \ create a new shapes.txt file from scratch rather than attempting to update your existing one.") raise CustomError c.execute("ALTER TABLE trips ADD COLUMN shape_id TEXT") conn.commit() if GTFSfile == "stop_times": if 'shape_dist_traveled' not in columns: if "shapes" in files_to_sqlize: arcpy.AddWarning("Your stop_times.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, \ a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the \ field will remain blank for all other shapes.") c.execute("ALTER TABLE stop_times ADD COLUMN shape_dist_traveled REAL") conn.commit() if GTFSfile == "shapes": if 'shape_dist_traveled' not in columns: arcpy.AddWarning("Your shapes.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, \ a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the \ field will remain blank for all other shapes.") c.execute("ALTER TABLE shapes ADD COLUMN shape_dist_traveled REAL") conn.commit() f.close () # Generate indices c.execute("CREATE INDEX stoptimes_index_tripIDs ON stop_times (trip_id);") c.execute("CREATE INDEX trips_index_tripIDs ON trips (trip_id);") if "shapes" in files_to_sqlize: c.execute("CREATE INDEX trips_index_shapeIDs ON trips (shape_id);") c.execute("CREATE INDEX shapes_index_shapeIDs ON shapes (shape_id, shape_pt_sequence);") def check_latlon_fields(rows, col_names, lat_col_name, lon_col_name, id_col_name, fname): '''Ensure lat/lon fields are valid''' def check_latlon_cols(row): id_val = row[col_names.index(id_col_name)] lat = row[col_names.index(lat_col_name)] lon = row[col_names.index(lon_col_name)] try: lat_float = float(lat) except ValueError: msg = '%s "%s" in %s contains an invalid non-numerical value \ for the %s field: "%s". Please double-check all lat/lon values in your \ %s file.' % (id_col_name, id_val, fname, lat_col_name, lat, fname) arcpy.AddError(msg) raise CustomError try: stop_lon_float = float(lon) except ValueError: msg = '%s "%s" in %s contains an invalid non-numerical value \ for the %s field: "%s". Please double-check all lat/lon values in your \ %s file.' % (id_col_name, id_val, fname, lon_col_name, lon, fname) arcpy.AddError(msg) raise CustomError if not (-90.0 <= lat_float <= 90.0): msg = '%s "%s" in %s contains an invalid value outside the \ range (-90, 90) the %s field: "%s". %s values must be in valid WGS 84 \ coordinates. Please double-check all lat/lon values in your %s file.\ ' % (id_col_name, id_val, fname, lat_col_name, lat, lat_col_name, fname) arcpy.AddError(msg) raise CustomError if not (-180.0 <= stop_lon_float <= 180.0): msg = '%s "%s" in %s contains an invalid value outside the \ range (-180, 180) the %s field: "%s". %s values must be in valid WGS 84 \ coordinates. Please double-check all lat/lon values in your %s file.\ ' % (id_col_name, id_val, fname, lon_col_name, lon, lon_col_name, fname) arcpy.AddError(msg) raise CustomError return row if ProductName == "ArcGISPro": return map(check_latlon_cols, rows) else: return itertools.imap(check_latlon_cols, rows) def Generate_Shapes_Street(): '''Generate preliminary shapes for each route by calculating the optimal route along the network with the Network Analyst Route solver.''' arcpy.AddMessage("Generating on-street route shapes for routes of the following types, if they exist in your data:") for rtype in route_type_Street_textlist: arcpy.AddMessage(rtype) arcpy.AddMessage("(This step may take a while for large GTFS datasets.)") # ----- Writing stops in sequence to feature class for Route input ----- arcpy.AddMessage("- Preparing stops") # Extract only the sequences we want to make street-based shapes for. sequences_Streets = [] for sequence in sequence_shape_dict: shape_id = sequence_shape_dict[sequence] route_id = sequence[0] route_type = RouteDict[route_id][4] if route_type in route_types_Street: sequences_Streets.append(sequence) # Chunk the sequences so we don't run out of memory in the Route solver. ChunkSize = 100 sequences_Streets_chunked = [] for i in range(0, len(sequences_Streets), ChunkSize): sequences_Streets_chunked.append(sequences_Streets[i:i+ChunkSize]) # Huge loop over each chunk. totchunks = len(sequences_Streets_chunked) chunkidx = 1 global NoRouteGenerated global badStops unlocated_stops = [] for chunk in sequences_Streets_chunked: arcpy.AddMessage("- Calculating Routes part %s of %s." % (str(chunkidx), str(totchunks))) chunkidx += 1 InputRoutePoints = arcpy.management.CreateFeatureclass(outGDB, "TempInputRoutePoints", "POINT", outSequencePoints, "", "", WGSCoords) # Add the StopPairs table to the feature class. shapes_in_chunk = [] if useBearing: # Calculate the bearing value for each stop and insert with arcpy.da.InsertCursor(InputRoutePoints, ["SHAPE@", "shape_id", "sequence", "CurbApproach", "stop_id", "Bearing", "BearingTol"]) as cur: for sequence in chunk: bearingdict = getBearingsForSequence(sequence[1]) shape_id = sequence_shape_dict[sequence] shapes_in_chunk.append(shape_id) sequence_num = 1 for stop in sequence[1]: try: stopGeom = stopgeom_dict[stop] try: Bearing = bearingdict[stop] except KeyError: # If we couldn't calculate the bearing for some reason, just leave it as null, and Add Locations will locate it normally. Bearing = None except KeyError: badStops.append(stop) sequence_num += 1 continue cur.insertRow((stopGeom, shape_id, sequence_num, CurbApproach, stop, Bearing, BearingTol)) sequence_num += 1 else: # Insert shapes and location fields with arcpy.da.InsertCursor(InputRoutePoints, ["SHAPE@X", "SHAPE@Y", "shape_id", "sequence", "CurbApproach", "stop_id", "SourceID", "SourceOID", "PosAlong", "SideOfEdge"]) as cur: for sequence in chunk: shape_id = sequence_shape_dict[sequence] shapes_in_chunk.append(shape_id) sequence_num = 1 for stop in sequence[1]: try: stop_lat = stoplatlon_dict[stop][0] stop_lon = stoplatlon_dict[stop][1] SourceID = stoplocfielddict[stop][0] SourceOID = stoplocfielddict[stop][1] PosAlong = stoplocfielddict[stop][2] SideOfEdge = stoplocfielddict[stop][3] except KeyError: badStops.append(stop) sequence_num += 1 continue cur.insertRow((float(stop_lon), float(stop_lat), shape_id, sequence_num, CurbApproach, stop, SourceID, SourceOID, PosAlong, SideOfEdge)) sequence_num += 1 # ----- Generate routes ------ # Note: The reason we use hierarchy is to ensure that the entire network doesn't gets searched # if a route can't be found between two points RLayer = arcpy.na.MakeRouteLayer(inNetworkDataset, "TransitShapes", impedanceAttribute, find_best_order="USE_INPUT_ORDER", UTurn_policy=UTurns, restriction_attribute_name=restrictions, hierarchy="USE_HIERARCHY", output_path_shape="TRUE_LINES_WITH_MEASURES").getOutput(0) # To refer to the Route sublayers, get the sublayer names. This is essential for localization. naSubLayerNames = arcpy.na.GetNAClassNames(RLayer) stopsSubLayer = naSubLayerNames["Stops"] # Map fields to ensure that each shape gets its own route. fieldMappings = arcpy.na.NAClassFieldMappings(RLayer, stopsSubLayer, True) fieldMappings["RouteName"].mappedFieldName = "shape_id" fieldMappings["CurbApproach"].mappedFieldName = "CurbApproach" if not useBearing: fieldMappings["SourceID"].mappedFieldName = "SourceID" fieldMappings["SourceOID"].mappedFieldName = "SourceOID" fieldMappings["PosAlong"].mappedFieldName = "PosAlong" fieldMappings["SideOfEdge"].mappedFieldName = "SideOfEdge" # Note: Bearing and BearingTol fields are magically used without explicit field mapping # See http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/bearing-and-bearingtol-what-are.htm arcpy.na.AddLocations(RLayer, stopsSubLayer, InputRoutePoints, fieldMappings, sort_field="sequence", append="CLEAR") # Use a simplification tolerance on Solve to reduce the number of vertices # in the output lines (to make shapes.txt files smaller and to make the # linear referencing quicker. simpTol = "2 Meters" try: SolvedLayer = arcpy.na.Solve(RLayer, ignore_invalids=True, simplification_tolerance=simpTol) except: arcpy.AddWarning("Unable to create on-street Routes because the Solve failed.") arcpy.AddWarning("Solve warning messages:") arcpy.AddWarning(arcpy.GetMessages(1)) arcpy.AddWarning("Solve error messages:") arcpy.AddWarning(arcpy.GetMessages(2)) NoRouteGenerated += shapes_in_chunk continue # If any of the routes couldn't be solved, they will leave a warning. # Save the shape_ids so we can generate straight-line routes for them. # Similarly, if any stops were skipped because they were unlocated, they will leave a warning. warnings = arcpy.GetMessages(1) warninglist = warnings.split("\n") for w in warninglist: if re.match('No route for ', w): thingsInQuotes = re.findall('"(.+?)"', w) NoRouteGenerated.append(thingsInQuotes[0]) elif re.search(' is unlocated.', w): thingsInQuotes = re.findall('"(.+?)"', w) unlocated_stops.append(thingsInQuotes[0]) # Make layer objects for each sublayer we care about. if ProductName == "ArcGISPro": RoutesLayer = RLayer.listLayers(naSubLayerNames["Routes"])[0] else: RoutesLayer = arcpy.mapping.ListLayers(RLayer, naSubLayerNames["Routes"])[0] # ----- Save routes to feature class ----- # Uncomment this if you want to save the Stops layer from Route. ##StopsLayer = arcpy.mapping.ListLayers(RLayer, stopsSubLayer)[0] ##arcpy.CopyFeatures_management(StopsLayer, os.path.join(outGDB, "TestOutStops")) # Save the output routes. if not arcpy.Exists(outRoutesfc): arcpy.management.CopyFeatures(RoutesLayer, outRoutesfc) else: arcpy.management.Append(RoutesLayer, outRoutesfc) arcpy.management.Delete(SolvedLayer) # Add the stop sequences to the final output FC and delete the temporary one. arcpy.management.Append(InputRoutePoints, outSequencePoints) arcpy.management.Delete(InputRoutePoints) if NoRouteGenerated: arcpy.AddWarning("On-street route shapes for the following shape_ids could \ not be generated. Straight-line route shapes will be generated for these \ shape_ids instead:") arcpy.AddWarning(sorted(NoRouteGenerated)) arcpy.AddWarning("If you are unhappy with this result, try re-running your \ analysis with a different u-turn policy and/or network restrictions, and check your \ network dataset for connectivity problems.") if unlocated_stops: unlocated_stops = sorted(list(set(unlocated_stops))) arcpy.AddWarning("The following stop_ids could not be located on your network dataset and were skipped when route shapes were generated. \ If you are unhappy with this result, please double-check your stop_lat and stop_lon values in stops.txt and your network dataset geometry \ to make sure everything is correct.") def Generate_Shapes_AGOL(): '''Generate preliminary shapes for each route by calculating the optimal route along the network using the ArcGIS Online route services.''' arcpy.AddMessage("Generating on-street route shapes via ArcGIS Online for routes of the following types, if they exist in your data:") for rtype in route_type_Street_textlist: arcpy.AddMessage(rtype) arcpy.AddMessage("(This step may take a while for large GTFS datasets.)") global NoRouteGenerated NoRouteGenerated = [] Too_Many_Stops = [] global badStops # ----- Generate a route for each sequence ----- arcpy.AddMessage("- Generating routes using ArcGIS Online") # Set up input parameters for route request service_params = {} service_params["travelMode"] = AGOLRouteHelper.travel_mode service_params["returnRoutes"] = True service_params["outputLines"] = "esriNAOutputLineTrueShapeWithMeasure" service_params["returnDirections"] = False service_params["outSR"] = WGSCoords_WKID # Create the output feature class arcpy.management.CreateFeatureclass(outGDB, outRoutesfcName, "POLYLINE", '', '', '', WGSCoords) arcpy.management.AddField(outRoutesfc, "Name", "TEXT") # Set up insertCursors for output shapes polylines and stop sequences # Have to open an edit session to have two simultaneous InsertCursors. edit = arcpy.da.Editor(outGDB) ucursor = arcpy.da.InsertCursor(outRoutesfc, ["SHAPE@", "Name"]) cur = arcpy.da.InsertCursor(outSequencePoints, ["SHAPE@X", "SHAPE@Y", "shape_id", "sequence", "stop_id", "CurbApproach", "Bearing", "BearingTol"]) edit.startEditing() # Generate routes with AGOL for sequences we want to make street-based shapes for. sequences_Streets = [] num_shapes = len(sequence_shape_dict) next_threshold = 10 progress = 0.0 num_routes_calculated = 0 for sequence in sequence_shape_dict: # Print some progress indicators progress += 1 percdone = (progress / num_shapes) * 100 if percdone > next_threshold: last_threshold = percdone - percdone%10 arcpy.AddMessage("%s%% finished" % str(int(last_threshold))) next_threshold = last_threshold + 10 shape_id = sequence_shape_dict[sequence] route_id = sequence[0] route_type = RouteDict[route_id][4] if route_type not in route_types_Street: continue if len(sequence[1]) > AGOLRouteHelper.route_stop_limit: # There are too many stops in this route to solve with the online services. Too_Many_Stops.append(shape_id) continue bearingdict = getBearingsForSequence(sequence[1]) sequence_num = 1 pt = arcpy.Point() features = [] for stop in sequence[1]: try: stop_lat = stoplatlon_dict[stop][0] stop_lon = stoplatlon_dict[stop][1] except KeyError: badStops.append(stop) sequence_num += 1 continue # Add stop sequences to points fc for user to look at. pt.X = float(stop_lon) pt.Y = float(stop_lat) cur.insertRow((float(stop_lon), float(stop_lat), shape_id, sequence_num, stop, CurbApproach, bearingdict[stop], BearingTol)) sequence_num = sequence_num + 1 geom = {"x": float(stop_lon), "y": float(stop_lat), "spatialReference": {"wkid": WGSCoords_WKID}} attributes = {"Name": stop, "CurbApproach": CurbApproach} if bearingdict[stop] != None: attributes["Bearing"] = bearingdict[stop] attributes["BearingTol"] = BearingTol features.append({"geometry": geom, "attributes": attributes}) service_params["stops"] = {"features": features} routeshapes, errors = AGOLRouteHelper.generate_routes_from_AGOL_as_polylines(AGOLRouteHelper.token, service_params) if errors: if "User does not have permissions to access" in errors: arcpy.AddError("ArcGIS Online route generation failed. Please ensure that your ArcGIS Online account \ has routing privileges and sufficient credits for this analysis.") raise CustomError arcpy.AddWarning("ArcGIS Online route generation for shape_id %s failed. A straight-line shape will be generated for this shape_id instead. %s" % (shape_id, errors)) NoRouteGenerated.append(shape_id) continue for route in routeshapes: # actually, only one shape should be returned here, but loop just in case ucursor.insertRow((route, shape_id)) num_routes_calculated += 1 del ucursor del cur edit.stopEditing(True) arcpy.AddMessage("Done generating route shapes with ArcGIS Online. Number of ArcGIS Online routes calculated: %s" % str(num_routes_calculated)) if Too_Many_Stops: arcpy.AddWarning("On-street route shapes for the following shape_ids could \ not be generated because the number of stops in the route exceeds the ArcGIS Online \ service limit of %s stops. Straight-line route shapes will be generated for these \ shape_ids instead:" % str(AGOLRouteHelper.route_stop_limit)) arcpy.AddWarning(sorted(Too_Many_Stops)) NoRouteGenerated.append(shape for shape in Too_Many_Stops) def Generate_Shapes_Straight(Created_Street_Output): '''Generate route shapes as straight lines between stops.''' arcpy.AddMessage("Generating straight-line route shapes for routes of the following types, if they exist in your data:") for rtype in route_type_Straight_textlist: arcpy.AddMessage(rtype) arcpy.AddMessage("(This step may take a while for large GTFS datasets.)") # If we didn't already create the output feature class with the Street-based routes, create it now. if not Created_Street_Output or not arcpy.Exists(outRoutesfc): arcpy.management.CreateFeatureclass(outGDB, outRoutesfcName, "POLYLINE", '', "ENABLED", "DISABLED", WGSCoords) arcpy.management.AddField(outRoutesfc, "Name", "TEXT") spatial_ref = WGSCoords else: spatial_ref = arcpy.Describe(outRoutesfc).spatialReference # ----- Create polylines using stops as vertices ----- # Set up insertCursors for output shapes polylines and stop sequences # Have to open an edit session to have two simultaneous InsertCursors. edit = arcpy.da.Editor(outGDB) ucursor = arcpy.da.InsertCursor(outRoutesfc, ["SHAPE@", "Name"]) cur = arcpy.da.InsertCursor(outSequencePoints, ["SHAPE@X", "SHAPE@Y", "shape_id", "sequence", "stop_id"]) edit.startEditing() global badStops for sequence in sequence_shape_dict: shape_id = sequence_shape_dict[sequence] route_id = sequence[0] route_type = RouteDict[route_id][4] if route_type in route_types_Straight or shape_id in NoRouteGenerated: sequence_num = 1 # Add stop sequence to an Array of Points array = arcpy.Array() pt = arcpy.Point() for stop in sequence[1]: try: stop_lat = stoplatlon_dict[stop][0] stop_lon = stoplatlon_dict[stop][1] except KeyError: if shape_id not in NoRouteGenerated: # Don't repeat a warning if they already got it once. badStops.append(stop) sequence_num += 1 continue pt.X = float(stop_lon) pt.Y = float(stop_lat) pt.M = sequence_num - 1 # Insert dummy M value # Add stop sequences to points fc for user to look at. cur.insertRow((float(stop_lon), float(stop_lat), shape_id, sequence_num, stop)) sequence_num = sequence_num + 1 array.add(pt) # Generate a Polyline from the Array of stops polyline = arcpy.Polyline(array, WGSCoords, None, True) # Project the polyline to the correct output coordinate system. if spatial_ref != WGSCoords: polyline.projectAs(spatial_ref) # Add the polyline to the Shapes feature class ucursor.insertRow((polyline, shape_id)) del ucursor del cur edit.stopEditing(True) def connect_to_sql(SQLDbase): global c, conn conn = sqlite3.connect(SQLDbase) c = conn.cursor() def check_Arc_version(useAGOL=False, useNA=False): '''Check that the user has a version of ArcGIS that can support this tool.''' ArcVersionInfo = arcpy.GetInstallInfo("desktop") ArcVersion = ArcVersionInfo['Version'] global ProductName ProductName = ArcVersionInfo['ProductName'] global useBearing if ProductName == "ArcGISPro": if ArcVersion in ["1.0", "1.1", "1.1.1"]: arcpy.AddError("You must have ArcGIS Pro 1.2 or higher to run this \ tool. You have ArcGIS Pro version %s." % ArcVersion) raise CustomError if useNA and ArcVersion in ["1.0", "1.0.1", "1.0.2", "1.1", "1.1.1", "1.2", "1.3", "1.3.1", "1.4", "1.4.1"]: # Bearing and BearingTol fields did not work until Pro 2.0. arcpy.AddWarning("Warning! Certain functionality was implemented in ArcGIS Pro 2.0 that \ significantly improves the output of this tool. For better results, upgrade to the latest version of ArcGIS Pro or run \ this tool with ArcMap version 10.3 or higher.") useBearing = False else: if ArcVersion == "10.0": arcpy.AddError("You must have ArcGIS 10.2.1 or higher (or ArcGIS Pro) to run this \ tool. You have ArcGIS version %s." % ArcVersion) raise CustomError if ArcVersion in ["10.1", "10.2"]: arcpy.AddWarning("Warning! You can run Step 1 of this tool in \ ArcGIS 10.1 or 10.2, but you will not be able to run Step 2 without ArcGIS \ 10.2.1 or higher (or ArcGIS Pro). You have ArcGIS version %s." % ArcVersion) if useNA: useBearing = False if useAGOL and ArcVersion in ["10.2.1", "10.2.2"]: arcpy.AddError("You must have ArcGIS 10.3 (or ArcGIS Pro) to run the ArcGIS Online \ version of this tool. You have ArcGIS version %s." % ArcVersion) raise CustomError if useNA and ArcVersion in ["10.2.1", "10.2.2"]: arcpy.AddWarning("Warning! This version of Step 1 will produce significantly \ better output using ArcGIS version 10.3 or higher or ArcGIS Pro 2.0 or higher. You have ArcGIS version %s." % ArcVersion) useBearing = False def get_stop_lat_lon(): '''Populate a dictionary of {stop_id: [stop_lat, stop_lon]}''' arcpy.AddMessage("Collecting and processing GTFS stop information...") # Find all stops with lat/lon global stoplatlon_dict stoplatlon_dict = {} cs = conn.cursor() stoplatlonfetch = ''' SELECT stop_id, stop_lat, stop_lon FROM stops ;''' cs.execute(stoplatlonfetch) for stop in cs: # Add stop lat/lon to dictionary stoplatlon_dict[stop[0]] = [stop[1], stop[2]] def get_stop_geom(): '''Populate a dictionary of {stop_id: stop point geometry object}''' global stopgeom_dict stopgeom_dict = {} for stop in stoplatlon_dict: lat = stoplatlon_dict[stop][0] lon = stoplatlon_dict[stop][1] point = arcpy.Point(lon, lat) ptGeometry = arcpy.PointGeometry(point, WGSCoords) stopgeom_dict[stop] = ptGeometry def getBearingsForSequence(sequence): '''Populate a dictionary of {stop_id: bearing}. Applies only to a given stop sequence. The same stop could have a different bearing if visited by a trip with a different shape.''' bearingdict = {} previous_angle = None for idx in range(len(sequence)): try: current_stop = sequence[idx] if idx == len(sequence)-1: # This is the last stop in the sequence, so just use the previous angle as the bearing. bearingdict[current_stop] = previous_angle angle_to_next = None else: # Calculate the angle from this stop to the next one in the sequence current_stop_geom = stopgeom_dict[current_stop] next_stop_geom = stopgeom_dict[sequence[idx+1]] # Note: angleAndDistanceTo was added in ArcGIS 10.3 angle_to_next = current_stop_geom.angleAndDistanceTo(next_stop_geom, "GEODESIC")[0] if previous_angle == None: # This is the first stop, so use the angle to the second stop as the bearing bearingdict[current_stop] = angle_to_next else: # If this is an intermediate stop, estimate the bearing based on the angle between this stop and the previous and next one # If the anle to the next one and the angle from the previous one are very different, the route is probably going around a corner, # and we can't reliably estimate what the bearing should be by averaging, so don't try to use a bearing for this one. diff = abs(angle_to_next - previous_angle) if diff >= MaxAngle: bearingdict[current_stop] = None else: # If they're sufficiently similar angles, use some trigonometry to average the angle from the previous stop to this one and the angle of this one to the next one angle_to_next_rad = np.deg2rad(angle_to_next) previous_angle_rad = np.deg2rad(previous_angle) bearing = np.rad2deg(np.arctan2((np.sin(previous_angle_rad) + np.sin(angle_to_next_rad))/2, (np.cos(previous_angle_rad) + np.cos(angle_to_next_rad))/2)) bearingdict[current_stop] = bearing previous_angle = angle_to_next except KeyError as err: arcpy.AddWarning("Key error in getBearingsForSequence") arcpy.AddWarning(err) continue return bearingdict def calculate_stop_location_fields(): '''Calculate location fields for the stops and save them to a dictionary so that Network Analyst Add Locations will be faster later''' arcpy.AddMessage("Calculating network locations fields...") # Temporary feature class of stops for calculating location fields arcpy.management.CreateFeatureclass(outGDB, "TempStopswLocationFields", "POINT", "", "", "", WGSCoords) LocFieldStops = os.path.join(outGDB, "TempStopswLocationFields") arcpy.management.AddField(LocFieldStops, "stop_id", "TEXT") with arcpy.da.InsertCursor(LocFieldStops, ["SHAPE@X", "SHAPE@Y", "stop_id"]) as cur: for stop in stoplatlon_dict: # Insert stop into fc for location field calculation stop_lat = stoplatlon_dict[stop][0] stop_lon = stoplatlon_dict[stop][1] cur.insertRow((float(stop_lon), float(stop_lat), stop)) # It would be easier to use CalculateLocations, but then we can't # exclude restricted network elements. # Instead, create a dummy Route layer and Add Locations RLayer = arcpy.na.MakeRouteLayer(inNetworkDataset, "DummyLayer", impedanceAttribute, restriction_attribute_name=restrictions).getOutput(0) naSubLayerNames = arcpy.na.GetNAClassNames(RLayer) stopsSubLayer = naSubLayerNames["Stops"] fieldMappings = arcpy.na.NAClassFieldMappings(RLayer, stopsSubLayer) fieldMappings["Name"].mappedFieldName = "stop_id" arcpy.na.AddLocations(RLayer, stopsSubLayer, LocFieldStops, fieldMappings, search_criteria=search_criteria, snap_to_position_along_network="NO_SNAP", exclude_restricted_elements="EXCLUDE") if ProductName == "ArcGISPro": StopsLayer = RLayer.listLayers(stopsSubLayer)[0] else: StopsLayer = arcpy.mapping.ListLayers(RLayer, stopsSubLayer)[0] # Iterate over the located stops and create a dictionary of location fields global stoplocfielddict stoplocfielddict = {} with arcpy.da.SearchCursor(StopsLayer, ["Name", "SourceID", "SourceOID", "PosAlong", "SideOfEdge"]) as cur: for stop in cur: locfields = [stop[1], stop[2], stop[3], stop[4]] stoplocfielddict[stop[0]] = locfields arcpy.management.Delete(StopsLayer) arcpy.management.Delete(LocFieldStops) def get_route_info(): '''Create a dictionary of {route_id: [all route.txt fields + route_type_text]}''' arcpy.AddMessage("Collecting GTFS route information...") # GTFS route_type information #0 - Tram, Streetcar, Light rail. Any light rail or street level system within a metropolitan area. #1 - Subway, Metro. Any underground rail system within a metropolitan area. #2 - Rail. Used for intercity or long-distance travel. #3 - Bus. Used for short- and long-distance bus routes. #4 - Ferry. Used for short- and long-distance boat service. #5 - Cable car. Used for street-level cable cars where the cable runs beneath the car. #6 - Gondola, Suspended cable car. Typically used for aerial cable cars where the car is suspended from the cable. #7 - Funicular. Any rail system designed for steep inclines. route_type_dict = {0: "Tram, Streetcar, Light rail", 1: "Subway, Metro", 2: "Rail", 3: "Bus", 4: "Ferry", 5: "Cable car", 6: "Gondola, Suspended cable car", 7: "Funicular"} # Find all routes and associated info. global RouteDict RouteDict = {} cr = conn.cursor() routesfetch = ''' SELECT route_id, agency_id, route_short_name, route_long_name, route_desc, route_type, route_url, route_color, route_text_color FROM routes ;''' cr.execute(routesfetch) for route in cr: # {route_id: [all route.txt fields + route_type_text]} try: route_type = route[5] route_type_text = route_type_dict[int(route_type)] except: route_type = 100 route_type_text = "Other / Type not specified" RouteDict[route[0]] = [route[1], route[2], route[3], route[4], route_type, route[6], route[7], route[8], route_type_text] def get_trip_route_info(): '''Create a dictionary of {trip_id: route_id}''' global trip_route_dict trip_route_dict = {} ctr = conn.cursor() triproutefetch = ''' SELECT trip_id, route_id FROM trips ;''' ctr.execute(triproutefetch) for triproute in ctr: # {trip_id: route_id} trip_route_dict[triproute[0]] = triproute[1] def get_trips_with_shape_id(shape): '''Return a list of trip_ids that use the specified shape''' tripsfetch = '''SELECT trip_id FROM trips WHERE shape_id="%s";''' % shape c.execute(tripsfetch) trips = c.fetchall() return [trip[0] for trip in trips] def get_trip_stop_sequence(trip_id): '''Return a sequence of stop_id values, in the correct order, for a given trip''' stopfetch = "SELECT stop_id, stop_sequence FROM stop_times WHERE trip_id='%s'" % trip_id c.execute(stopfetch) selectedstops = c.fetchall() # Sort the stop list by sequence. selectedstops.sort(key=operator.itemgetter(1)) stop_sequence = () for stop in selectedstops: stop_sequence += (stop[0],) return stop_sequence def get_unique_stop_sequences(): '''Find the unique sequences of stops from stop_times.txt. Each unique sequence is a new shape.''' arcpy.AddMessage("Calculating unique sequences of stops...") # Find all trip_ids. ct = conn.cursor() tripsfetch = ''' SELECT DISTINCT trip_id FROM stop_times ;''' ct.execute(tripsfetch) # Select stops in that trip global sequence_shape_dict, shape_trip_dict sequence_shape_dict = {} shape_trip_dict = {} shape_id = 1 for trip in ct: stop_sequence = get_trip_stop_sequence(trip[0]) route_id = trip_route_dict[trip[0]] sequence_shape_dict_key = (route_id, stop_sequence) try: sh = sequence_shape_dict[sequence_shape_dict_key] shape_trip_dict.setdefault(sh, []).append(trip[0]) except KeyError: sequence_shape_dict[sequence_shape_dict_key] = str(shape_id) shape_trip_dict.setdefault(str(shape_id), []).append(trip[0]) shape_id += 1 numshapes = shape_id - 1 arcpy.AddMessage("Your GTFS data contains %s unique shapes." % str(numshapes)) def append_existing_shape_to_fc(shape, StopsCursor, route=None): if route: # Retrieve route info for final output file. route_short_name = RouteDict[route][1] route_long_name = RouteDict[route][2] if RouteDict[route][3]: route_desc = RouteDict[route][3][:max_route_desc_length] else: route_desc = "" route_type = RouteDict[route][4] route_type_text = RouteDict[route][8] else: # Couldn't get route info for this shape route = "" route_short_name = "" route_long_name = "" route_desc = "" route_type = 0 route_type_text = "" # Fetch the shape info to create the polyline feature. cp = conn.cursor() pointsinshapefetch = ''' SELECT shape_pt_lat, shape_pt_lon FROM shapes WHERE shape_id='%s' ORDER BY shape_pt_sequence;''' % shape cp.execute(pointsinshapefetch) # Create the polyline feature from the sequence of points polyline = [(float(point[1]), float(point[0])) for point in cp] # Add the polyline feature to the output feature class StopsCursor.insertRow((polyline, shape, route, route_short_name, route_long_name, route_desc, route_type, route_type_text,))
[ "arcpy.management.CreateFeatureclass", "arcpy.management.CopyFeatures", "arcpy.CheckOutExtension", "arcpy.da.SearchCursor", "numpy.sin", "operator.itemgetter", "AGOLRouteHelper.generate_routes_from_AGOL_as_polylines", "arcpy.na.AddLocations", "arcpy.da.Editor", "arcpy.da.UpdateCursor", "re.search", "arcpy.management.AddField", "arcpy.AddMessage", "arcpy.AddError", "itertools.imap", "arcpy.GetInstallInfo", "arcpy.management.Delete", "csv.reader", "arcpy.management.CreateFileGDB", "arcpy.GetMessages", "arcpy.CheckExtension", "arcpy.Describe", "re.match", "arcpy.Array", "arcpy.na.GetNAClassNames", "numpy.deg2rad", "arcpy.na.Solve", "arcpy.Exists", "numpy.cos", "arcpy.SetParameterAsText", "arcpy.AddWarning", "re.findall", "arcpy.PointGeometry", "arcpy.na.NAClassFieldMappings", "sqlite3.connect", "AGOLRouteHelper.get_token", "arcpy.Polyline", "arcpy.da.InsertCursor", "os.path.join", "arcpy.Point", "arcpy.mapping.ListLayers", "arcpy.management.Append", "arcpy.na.MakeRouteLayer" ]
[((22476, 22521), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""SQLizing the GTFS data..."""'], {}), "('SQLizing the GTFS data...')\n", (22492, 22521), False, 'import arcpy\n'), ((22527, 22597), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""(This step might take a while for large datasets.)"""'], {}), "('(This step might take a while for large datasets.)')\n", (22543, 22597), False, 'import arcpy\n'), ((32854, 32980), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Generating on-street route shapes for routes of the following types, if they exist in your data:"""'], {}), "(\n 'Generating on-street route shapes for routes of the following types, if they exist in your data:'\n )\n", (32870, 32980), False, 'import arcpy\n'), ((33055, 33128), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""(This step may take a while for large GTFS datasets.)"""'], {}), "('(This step may take a while for large GTFS datasets.)')\n", (33071, 33128), False, 'import arcpy\n'), ((33218, 33255), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Preparing stops"""'], {}), "('- Preparing stops')\n", (33234, 33255), False, 'import arcpy\n'), ((42539, 42683), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Generating on-street route shapes via ArcGIS Online for routes of the following types, if they exist in your data:"""'], {}), "(\n 'Generating on-street route shapes via ArcGIS Online for routes of the following types, if they exist in your data:'\n )\n", (42555, 42683), False, 'import arcpy\n'), ((42758, 42831), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""(This step may take a while for large GTFS datasets.)"""'], {}), "('(This step may take a while for large GTFS datasets.)')\n", (42774, 42831), False, 'import arcpy\n'), ((42999, 43058), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Generating routes using ArcGIS Online"""'], {}), "('- Generating routes using ArcGIS Online')\n", (43015, 43058), False, 'import arcpy\n'), ((43462, 43561), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', 'outRoutesfcName', '"""POLYLINE"""', '""""""', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, outRoutesfcName, 'POLYLINE', '',\n '', '', WGSCoords)\n", (43497, 43561), False, 'import arcpy\n'), ((43563, 43617), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""Name"""', '"""TEXT"""'], {}), "(outRoutesfc, 'Name', 'TEXT')\n", (43588, 43617), False, 'import arcpy\n'), ((43783, 43806), 'arcpy.da.Editor', 'arcpy.da.Editor', (['outGDB'], {}), '(outGDB)\n', (43798, 43806), False, 'import arcpy\n'), ((43822, 43876), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outRoutesfc', "['SHAPE@', 'Name']"], {}), "(outRoutesfc, ['SHAPE@', 'Name'])\n", (43843, 43876), False, 'import arcpy\n'), ((43888, 44032), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outSequencePoints', "['SHAPE@X', 'SHAPE@Y', 'shape_id', 'sequence', 'stop_id', 'CurbApproach',\n 'Bearing', 'BearingTol']"], {}), "(outSequencePoints, ['SHAPE@X', 'SHAPE@Y', 'shape_id',\n 'sequence', 'stop_id', 'CurbApproach', 'Bearing', 'BearingTol'])\n", (43909, 44032), False, 'import arcpy\n'), ((48061, 48191), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Generating straight-line route shapes for routes of the following types, if they exist in your data:"""'], {}), "(\n 'Generating straight-line route shapes for routes of the following types, if they exist in your data:'\n )\n", (48077, 48191), False, 'import arcpy\n'), ((48268, 48341), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""(This step may take a while for large GTFS datasets.)"""'], {}), "('(This step may take a while for large GTFS datasets.)')\n", (48284, 48341), False, 'import arcpy\n'), ((49038, 49061), 'arcpy.da.Editor', 'arcpy.da.Editor', (['outGDB'], {}), '(outGDB)\n', (49053, 49061), False, 'import arcpy\n'), ((49077, 49131), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outRoutesfc', "['SHAPE@', 'Name']"], {}), "(outRoutesfc, ['SHAPE@', 'Name'])\n", (49098, 49131), False, 'import arcpy\n'), ((49143, 49246), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outSequencePoints', "['SHAPE@X', 'SHAPE@Y', 'shape_id', 'sequence', 'stop_id']"], {}), "(outSequencePoints, ['SHAPE@X', 'SHAPE@Y', 'shape_id',\n 'sequence', 'stop_id'])\n", (49164, 49246), False, 'import arcpy\n'), ((51088, 51113), 'sqlite3.connect', 'sqlite3.connect', (['SQLDbase'], {}), '(SQLDbase)\n', (51103, 51113), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((51300, 51331), 'arcpy.GetInstallInfo', 'arcpy.GetInstallInfo', (['"""desktop"""'], {}), "('desktop')\n", (51320, 51331), False, 'import arcpy\n'), ((53466, 53536), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Collecting and processing GTFS stop information..."""'], {}), "('Collecting and processing GTFS stop information...')\n", (53482, 53536), False, 'import arcpy\n'), ((57217, 57276), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Calculating network locations fields..."""'], {}), "('Calculating network locations fields...')\n", (57233, 57276), False, 'import arcpy\n'), ((57364, 57471), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', '"""TempStopswLocationFields"""', '"""POINT"""', '""""""', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, 'TempStopswLocationFields',\n 'POINT', '', '', '', WGSCoords)\n", (57399, 57471), False, 'import arcpy\n'), ((57493, 57541), 'os.path.join', 'os.path.join', (['outGDB', '"""TempStopswLocationFields"""'], {}), "(outGDB, 'TempStopswLocationFields')\n", (57505, 57541), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((57551, 57610), 'arcpy.management.AddField', 'arcpy.management.AddField', (['LocFieldStops', '"""stop_id"""', '"""TEXT"""'], {}), "(LocFieldStops, 'stop_id', 'TEXT')\n", (57576, 57610), False, 'import arcpy\n'), ((58382, 58414), 'arcpy.na.GetNAClassNames', 'arcpy.na.GetNAClassNames', (['RLayer'], {}), '(RLayer)\n', (58406, 58414), False, 'import arcpy\n'), ((58490, 58542), 'arcpy.na.NAClassFieldMappings', 'arcpy.na.NAClassFieldMappings', (['RLayer', 'stopsSubLayer'], {}), '(RLayer, stopsSubLayer)\n', (58519, 58542), False, 'import arcpy\n'), ((58611, 58808), 'arcpy.na.AddLocations', 'arcpy.na.AddLocations', (['RLayer', 'stopsSubLayer', 'LocFieldStops', 'fieldMappings'], {'search_criteria': 'search_criteria', 'snap_to_position_along_network': '"""NO_SNAP"""', 'exclude_restricted_elements': '"""EXCLUDE"""'}), "(RLayer, stopsSubLayer, LocFieldStops, fieldMappings,\n search_criteria=search_criteria, snap_to_position_along_network=\n 'NO_SNAP', exclude_restricted_elements='EXCLUDE')\n", (58632, 58808), False, 'import arcpy\n'), ((59485, 59520), 'arcpy.management.Delete', 'arcpy.management.Delete', (['StopsLayer'], {}), '(StopsLayer)\n', (59508, 59520), False, 'import arcpy\n'), ((59530, 59568), 'arcpy.management.Delete', 'arcpy.management.Delete', (['LocFieldStops'], {}), '(LocFieldStops)\n', (59553, 59568), False, 'import arcpy\n'), ((59694, 59750), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Collecting GTFS route information..."""'], {}), "('Collecting GTFS route information...')\n", (59710, 59750), False, 'import arcpy\n'), ((62965, 63025), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Calculating unique sequences of stops..."""'], {}), "('Calculating unique sequences of stops...')\n", (62981, 63025), False, 'import arcpy\n'), ((3544, 3576), 'os.path.join', 'os.path.join', (['outDir', 'outGDBName'], {}), '(outDir, outGDBName)\n', (3556, 3576), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((3657, 3700), 'os.path.join', 'os.path.join', (['outGDB', 'outSequencePointsName'], {}), '(outGDB, outSequencePointsName)\n', (3669, 3700), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((3760, 3797), 'os.path.join', 'os.path.join', (['outGDB', 'outShapesFCName'], {}), '(outGDB, outShapesFCName)\n', (3772, 3797), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((3818, 3854), 'os.path.join', 'os.path.join', (['outGDB', '"""SQLDbase.sql"""'], {}), "(outGDB, 'SQLDbase.sql')\n", (3830, 3854), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((3903, 3953), 'arcpy.management.CreateFileGDB', 'arcpy.management.CreateFileGDB', (['outDir', 'outGDBName'], {}), '(outDir, outGDBName)\n', (3933, 3953), False, 'import arcpy\n'), ((4586, 4685), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', 'outShapesFCName', '"""POLYLINE"""', '""""""', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, outShapesFCName, 'POLYLINE', '',\n '', '', WGSCoords)\n", (4621, 4685), False, 'import arcpy\n'), ((4691, 4749), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""shape_id"""', '"""TEXT"""'], {}), "(outShapesFC, 'shape_id', 'TEXT')\n", (4716, 4749), False, 'import arcpy\n'), ((4759, 4817), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_id"""', '"""TEXT"""'], {}), "(outShapesFC, 'route_id', 'TEXT')\n", (4784, 4817), False, 'import arcpy\n'), ((4827, 4893), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_short_name"""', '"""TEXT"""'], {}), "(outShapesFC, 'route_short_name', 'TEXT')\n", (4852, 4893), False, 'import arcpy\n'), ((4903, 4968), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_long_name"""', '"""TEXT"""'], {}), "(outShapesFC, 'route_long_name', 'TEXT')\n", (4928, 4968), False, 'import arcpy\n'), ((4978, 5073), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_desc"""', '"""TEXT"""', '""""""', '""""""', 'max_route_desc_length'], {}), "(outShapesFC, 'route_desc', 'TEXT', '', '',\n max_route_desc_length)\n", (5003, 5073), False, 'import arcpy\n'), ((5079, 5140), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_type"""', '"""SHORT"""'], {}), "(outShapesFC, 'route_type', 'SHORT')\n", (5104, 5140), False, 'import arcpy\n'), ((5150, 5215), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outShapesFC', '"""route_type_text"""', '"""TEXT"""'], {}), "(outShapesFC, 'route_type_text', 'TEXT')\n", (5175, 5215), False, 'import arcpy\n'), ((6880, 6982), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', 'outSequencePointsName', '"""POINT"""', '""""""', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, outSequencePointsName, 'POINT',\n '', '', '', WGSCoords)\n", (6915, 6982), False, 'import arcpy\n'), ((6988, 7051), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""stop_id"""', '"""TEXT"""'], {}), "(outSequencePoints, 'stop_id', 'TEXT')\n", (7013, 7051), False, 'import arcpy\n'), ((7061, 7125), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""shape_id"""', '"""TEXT"""'], {}), "(outSequencePoints, 'shape_id', 'TEXT')\n", (7086, 7125), False, 'import arcpy\n'), ((7135, 7199), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""sequence"""', '"""LONG"""'], {}), "(outSequencePoints, 'sequence', 'LONG')\n", (7160, 7199), False, 'import arcpy\n'), ((9211, 9251), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(4)', 'outShapesFC'], {}), '(4, outShapesFC)\n', (9235, 9251), False, 'import arcpy\n'), ((9261, 9307), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(5)', 'outSequencePoints'], {}), '(5, outSequencePoints)\n', (9285, 9307), False, 'import arcpy\n'), ((9319, 9344), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Done!"""'], {}), "('Done!')\n", (9335, 9344), False, 'import arcpy\n'), ((9354, 9409), 'arcpy.AddMessage', 'arcpy.AddMessage', (["('Output generated in ' + outGDB + ':')"], {}), "('Output generated in ' + outGDB + ':')\n", (9370, 9409), False, 'import arcpy\n'), ((9419, 9447), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Shapes"""'], {}), "('- Shapes')\n", (9435, 9447), False, 'import arcpy\n'), ((9457, 9494), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Stops_wShapeIDs"""'], {}), "('- Stops_wShapeIDs')\n", (9473, 9494), False, 'import arcpy\n'), ((14703, 14735), 'os.path.join', 'os.path.join', (['outDir', 'outGDBName'], {}), '(outDir, outGDBName)\n', (14715, 14735), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((14816, 14859), 'os.path.join', 'os.path.join', (['outGDB', 'outSequencePointsName'], {}), '(outGDB, outSequencePointsName)\n', (14828, 14859), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((14919, 14956), 'os.path.join', 'os.path.join', (['outGDB', 'outRoutesfcName'], {}), '(outGDB, outRoutesfcName)\n', (14931, 14956), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((14977, 15013), 'os.path.join', 'os.path.join', (['outGDB', '"""SQLDbase.sql"""'], {}), "(outGDB, 'SQLDbase.sql')\n", (14989, 15013), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((15062, 15112), 'arcpy.management.CreateFileGDB', 'arcpy.management.CreateFileGDB', (['outDir', 'outGDBName'], {}), '(outDir, outGDBName)\n', (15092, 15112), False, 'import arcpy\n'), ((16107, 16162), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Collecting GTFS trip information..."""'], {}), "('Collecting GTFS trip information...')\n", (16123, 16162), False, 'import arcpy\n'), ((17293, 17395), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', 'outSequencePointsName', '"""POINT"""', '""""""', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, outSequencePointsName, 'POINT',\n '', '', '', WGSCoords)\n", (17328, 17395), False, 'import arcpy\n'), ((17401, 17464), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""stop_id"""', '"""TEXT"""'], {}), "(outSequencePoints, 'stop_id', 'TEXT')\n", (17426, 17464), False, 'import arcpy\n'), ((17474, 17538), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""shape_id"""', '"""TEXT"""'], {}), "(outSequencePoints, 'shape_id', 'TEXT')\n", (17499, 17538), False, 'import arcpy\n'), ((17548, 17612), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""sequence"""', '"""LONG"""'], {}), "(outSequencePoints, 'sequence', 'LONG')\n", (17573, 17612), False, 'import arcpy\n'), ((19701, 19786), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Adding GTFS route information to output shapes feature class"""'], {}), "('Adding GTFS route information to output shapes feature class'\n )\n", (19717, 19786), False, 'import arcpy\n'), ((19918, 19976), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""shape_id"""', '"""TEXT"""'], {}), "(outRoutesfc, 'shape_id', 'TEXT')\n", (19943, 19976), False, 'import arcpy\n'), ((19986, 20044), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_id"""', '"""TEXT"""'], {}), "(outRoutesfc, 'route_id', 'TEXT')\n", (20011, 20044), False, 'import arcpy\n'), ((20054, 20120), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_short_name"""', '"""TEXT"""'], {}), "(outRoutesfc, 'route_short_name', 'TEXT')\n", (20079, 20120), False, 'import arcpy\n'), ((20130, 20195), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_long_name"""', '"""TEXT"""'], {}), "(outRoutesfc, 'route_long_name', 'TEXT')\n", (20155, 20195), False, 'import arcpy\n'), ((20205, 20300), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_desc"""', '"""TEXT"""', '""""""', '""""""', 'max_route_desc_length'], {}), "(outRoutesfc, 'route_desc', 'TEXT', '', '',\n max_route_desc_length)\n", (20230, 20300), False, 'import arcpy\n'), ((20306, 20367), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_type"""', '"""SHORT"""'], {}), "(outRoutesfc, 'route_type', 'SHORT')\n", (20331, 20367), False, 'import arcpy\n'), ((20377, 20442), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""route_type_text"""', '"""TEXT"""'], {}), "(outRoutesfc, 'route_type_text', 'TEXT')\n", (20402, 20442), False, 'import arcpy\n'), ((22003, 22028), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Done!"""'], {}), "('Done!')\n", (22019, 22028), False, 'import arcpy\n'), ((22038, 22093), 'arcpy.AddMessage', 'arcpy.AddMessage', (["('Output generated in ' + outGDB + ':')"], {}), "('Output generated in ' + outGDB + ':')\n", (22054, 22093), False, 'import arcpy\n'), ((22103, 22131), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Shapes"""'], {}), "('- Shapes')\n", (22119, 22131), False, 'import arcpy\n'), ((22141, 22178), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""- Stops_wShapeIDs"""'], {}), "('- Stops_wShapeIDs')\n", (22157, 22178), False, 'import arcpy\n'), ((25705, 25718), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (25715, 25718), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((32623, 32662), 'itertools.imap', 'itertools.imap', (['check_latlon_cols', 'rows'], {}), '(check_latlon_cols, rows)\n', (32637, 32662), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((33026, 33049), 'arcpy.AddMessage', 'arcpy.AddMessage', (['rtype'], {}), '(rtype)\n', (33042, 33049), False, 'import arcpy\n'), ((34273, 34391), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', '"""TempInputRoutePoints"""', '"""POINT"""', 'outSequencePoints', '""""""', '""""""', 'WGSCoords'], {}), "(outGDB, 'TempInputRoutePoints', 'POINT',\n outSequencePoints, '', '', WGSCoords)\n", (34308, 34391), False, 'import arcpy\n'), ((37848, 37880), 'arcpy.na.GetNAClassNames', 'arcpy.na.GetNAClassNames', (['RLayer'], {}), '(RLayer)\n', (37872, 37880), False, 'import arcpy\n'), ((38026, 38084), 'arcpy.na.NAClassFieldMappings', 'arcpy.na.NAClassFieldMappings', (['RLayer', 'stopsSubLayer', '(True)'], {}), '(RLayer, stopsSubLayer, True)\n', (38055, 38084), False, 'import arcpy\n'), ((38757, 38877), 'arcpy.na.AddLocations', 'arcpy.na.AddLocations', (['RLayer', 'stopsSubLayer', 'InputRoutePoints', 'fieldMappings'], {'sort_field': '"""sequence"""', 'append': '"""CLEAR"""'}), "(RLayer, stopsSubLayer, InputRoutePoints,\n fieldMappings, sort_field='sequence', append='CLEAR')\n", (38778, 38877), False, 'import arcpy\n'), ((39954, 39974), 'arcpy.GetMessages', 'arcpy.GetMessages', (['(1)'], {}), '(1)\n', (39971, 39974), False, 'import arcpy\n'), ((41200, 41236), 'arcpy.management.Delete', 'arcpy.management.Delete', (['SolvedLayer'], {}), '(SolvedLayer)\n', (41223, 41236), False, 'import arcpy\n'), ((41335, 41395), 'arcpy.management.Append', 'arcpy.management.Append', (['InputRoutePoints', 'outSequencePoints'], {}), '(InputRoutePoints, outSequencePoints)\n', (41358, 41395), False, 'import arcpy\n'), ((41405, 41446), 'arcpy.management.Delete', 'arcpy.management.Delete', (['InputRoutePoints'], {}), '(InputRoutePoints)\n', (41428, 41446), False, 'import arcpy\n'), ((41484, 41663), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""On-street route shapes for the following shape_ids could not be generated. Straight-line route shapes will be generated for these shape_ids instead:"""'], {}), "(\n 'On-street route shapes for the following shape_ids could not be generated. Straight-line route shapes will be generated for these shape_ids instead:'\n )\n", (41500, 41663), False, 'import arcpy\n'), ((41721, 41934), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""If you are unhappy with this result, try re-running your analysis with a different u-turn policy and/or network restrictions, and check your network dataset for connectivity problems."""'], {}), "(\n 'If you are unhappy with this result, try re-running your analysis with a different u-turn policy and/or network restrictions, and check your network dataset for connectivity problems.'\n )\n", (41737, 41934), False, 'import arcpy\n'), ((42029, 42352), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""The following stop_ids could not be located on your network dataset and were skipped when route shapes were generated. If you are unhappy with this result, please double-check your stop_lat and stop_lon values in stops.txt and your network dataset geometry to make sure everything is correct."""'], {}), "(\n 'The following stop_ids could not be located on your network dataset and were skipped when route shapes were generated. If you are unhappy with this result, please double-check your stop_lat and stop_lon values in stops.txt and your network dataset geometry to make sure everything is correct.'\n )\n", (42045, 42352), False, 'import arcpy\n'), ((42729, 42752), 'arcpy.AddMessage', 'arcpy.AddMessage', (['rtype'], {}), '(rtype)\n', (42745, 42752), False, 'import arcpy\n'), ((45183, 45196), 'arcpy.Point', 'arcpy.Point', ([], {}), '()\n', (45194, 45196), False, 'import arcpy\n'), ((46406, 46504), 'AGOLRouteHelper.generate_routes_from_AGOL_as_polylines', 'AGOLRouteHelper.generate_routes_from_AGOL_as_polylines', (['AGOLRouteHelper.token', 'service_params'], {}), '(AGOLRouteHelper.\n token, service_params)\n', (46460, 46504), False, 'import AGOLRouteHelper\n'), ((48239, 48262), 'arcpy.AddMessage', 'arcpy.AddMessage', (['rtype'], {}), '(rtype)\n', (48255, 48262), False, 'import arcpy\n'), ((48526, 48640), 'arcpy.management.CreateFeatureclass', 'arcpy.management.CreateFeatureclass', (['outGDB', 'outRoutesfcName', '"""POLYLINE"""', '""""""', '"""ENABLED"""', '"""DISABLED"""', 'WGSCoords'], {}), "(outGDB, outRoutesfcName, 'POLYLINE', '',\n 'ENABLED', 'DISABLED', WGSCoords)\n", (48561, 48640), False, 'import arcpy\n'), ((48646, 48700), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outRoutesfc', '"""Name"""', '"""TEXT"""'], {}), "(outRoutesfc, 'Name', 'TEXT')\n", (48671, 48700), False, 'import arcpy\n'), ((54196, 54217), 'arcpy.Point', 'arcpy.Point', (['lon', 'lat'], {}), '(lon, lat)\n', (54207, 54217), False, 'import arcpy\n'), ((54240, 54277), 'arcpy.PointGeometry', 'arcpy.PointGeometry', (['point', 'WGSCoords'], {}), '(point, WGSCoords)\n', (54259, 54277), False, 'import arcpy\n'), ((57625, 57696), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['LocFieldStops', "['SHAPE@X', 'SHAPE@Y', 'stop_id']"], {}), "(LocFieldStops, ['SHAPE@X', 'SHAPE@Y', 'stop_id'])\n", (57646, 57696), False, 'import arcpy\n'), ((59222, 59320), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['StopsLayer', "['Name', 'SourceID', 'SourceOID', 'PosAlong', 'SideOfEdge']"], {}), "(StopsLayer, ['Name', 'SourceID', 'SourceOID',\n 'PosAlong', 'SideOfEdge'])\n", (59243, 59320), False, 'import arcpy\n'), ((5317, 5481), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outShapesFC', "['SHAPE@', 'shape_id', 'route_id', 'route_short_name', 'route_long_name',\n 'route_desc', 'route_type', 'route_type_text']"], {}), "(outShapesFC, ['SHAPE@', 'shape_id', 'route_id',\n 'route_short_name', 'route_long_name', 'route_desc', 'route_type',\n 'route_type_text'])\n", (5338, 5481), False, 'import arcpy\n'), ((7320, 7423), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['outSequencePoints', "['SHAPE@X', 'SHAPE@Y', 'shape_id', 'sequence', 'stop_id']"], {}), "(outSequencePoints, ['SHAPE@X', 'SHAPE@Y', 'shape_id',\n 'sequence', 'stop_id'])\n", (7341, 7423), False, 'import arcpy\n'), ((9146, 9175), 'arcpy.AddWarning', 'arcpy.AddWarning', (['messageText'], {}), '(messageText)\n', (9162, 9175), False, 'import arcpy\n'), ((9531, 9622), 'arcpy.AddError', 'arcpy.AddError', (['"""Error generating shapes feature class from existing shapes.txt file."""'], {}), "(\n 'Error generating shapes feature class from existing shapes.txt file.')\n", (9545, 9622), False, 'import arcpy\n'), ((10813, 10840), 'AGOLRouteHelper.get_token', 'AGOLRouteHelper.get_token', ([], {}), '()\n', (10838, 10840), False, 'import AGOLRouteHelper\n'), ((11207, 11270), 'arcpy.AddMessage', 'arcpy.AddMessage', (['"""Successfully retrieved ArcGIS Online token."""'], {}), "('Successfully retrieved ArcGIS Online token.')\n", (11223, 11270), False, 'import arcpy\n'), ((13953, 13985), 'arcpy.Describe', 'arcpy.Describe', (['inNetworkDataset'], {}), '(inNetworkDataset)\n', (13967, 13985), False, 'import arcpy\n'), ((17763, 17832), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""CurbApproach"""', '"""SHORT"""'], {}), "(outSequencePoints, 'CurbApproach', 'SHORT')\n", (17788, 17832), False, 'import arcpy\n'), ((17846, 17910), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""SourceID"""', '"""LONG"""'], {}), "(outSequencePoints, 'SourceID', 'LONG')\n", (17871, 17910), False, 'import arcpy\n'), ((17924, 17989), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""SourceOID"""', '"""LONG"""'], {}), "(outSequencePoints, 'SourceOID', 'LONG')\n", (17949, 17989), False, 'import arcpy\n'), ((18003, 18069), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""PosAlong"""', '"""DOUBLE"""'], {}), "(outSequencePoints, 'PosAlong', 'DOUBLE')\n", (18028, 18069), False, 'import arcpy\n'), ((18083, 18149), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""SideOfEdge"""', '"""LONG"""'], {}), "(outSequencePoints, 'SideOfEdge', 'LONG')\n", (18108, 18149), False, 'import arcpy\n'), ((18250, 18319), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""CurbApproach"""', '"""SHORT"""'], {}), "(outSequencePoints, 'CurbApproach', 'SHORT')\n", (18275, 18319), False, 'import arcpy\n'), ((18333, 18398), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""Bearing"""', '"""DOUBLE"""'], {}), "(outSequencePoints, 'Bearing', 'DOUBLE')\n", (18358, 18398), False, 'import arcpy\n'), ((18412, 18480), 'arcpy.management.AddField', 'arcpy.management.AddField', (['outSequencePoints', '"""BearingTol"""', '"""DOUBLE"""'], {}), "(outSequencePoints, 'BearingTol', 'DOUBLE')\n", (18437, 18480), False, 'import arcpy\n'), ((19591, 19620), 'arcpy.AddWarning', 'arcpy.AddWarning', (['messageText'], {}), '(messageText)\n', (19607, 19620), False, 'import arcpy\n'), ((20459, 20621), 'arcpy.da.UpdateCursor', 'arcpy.da.UpdateCursor', (['outRoutesfc', "['Name', 'shape_id', 'route_id', 'route_short_name', 'route_long_name',\n 'route_desc', 'route_type', 'route_type_text']"], {}), "(outRoutesfc, ['Name', 'shape_id', 'route_id',\n 'route_short_name', 'route_long_name', 'route_desc', 'route_type',\n 'route_type_text'])\n", (20480, 20621), False, 'import arcpy\n'), ((21623, 21664), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(12)', 'outRoutesfc'], {}), '(12, outRoutesfc)\n', (21647, 21664), False, 'import arcpy\n'), ((21678, 21725), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(13)', 'outSequencePoints'], {}), '(13, outSequencePoints)\n', (21702, 21725), False, 'import arcpy\n'), ((22215, 22286), 'arcpy.AddError', 'arcpy.AddError', (['"""Error generating shapes feature class from GTFS data."""'], {}), "('Error generating shapes feature class from GTFS data.')\n", (22229, 22286), False, 'import arcpy\n'), ((25509, 25542), 'os.path.join', 'os.path.join', (['inGTFSdir', 'GTFSfile'], {}), '(inGTFSdir, GTFSfile)\n', (25521, 25542), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((32032, 32051), 'arcpy.AddError', 'arcpy.AddError', (['msg'], {}), '(msg)\n', (32046, 32051), False, 'import arcpy\n'), ((32444, 32463), 'arcpy.AddError', 'arcpy.AddError', (['msg'], {}), '(msg)\n', (32458, 32463), False, 'import arcpy\n'), ((39193, 39271), 'arcpy.na.Solve', 'arcpy.na.Solve', (['RLayer'], {'ignore_invalids': '(True)', 'simplification_tolerance': 'simpTol'}), '(RLayer, ignore_invalids=True, simplification_tolerance=simpTol)\n', (39207, 39271), False, 'import arcpy\n'), ((40066, 40094), 're.match', 're.match', (['"""No route for """', 'w'], {}), "('No route for ', w)\n", (40074, 40094), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((41015, 41040), 'arcpy.Exists', 'arcpy.Exists', (['outRoutesfc'], {}), '(outRoutesfc)\n', (41027, 41040), False, 'import arcpy\n'), ((41055, 41110), 'arcpy.management.CopyFeatures', 'arcpy.management.CopyFeatures', (['RoutesLayer', 'outRoutesfc'], {}), '(RoutesLayer, outRoutesfc)\n', (41084, 41110), False, 'import arcpy\n'), ((41139, 41188), 'arcpy.management.Append', 'arcpy.management.Append', (['RoutesLayer', 'outRoutesfc'], {}), '(RoutesLayer, outRoutesfc)\n', (41162, 41188), False, 'import arcpy\n'), ((46826, 47001), 'arcpy.AddWarning', 'arcpy.AddWarning', (["('ArcGIS Online route generation for shape_id %s failed. A straight-line shape will be generated for this shape_id instead. %s'\n % (shape_id, errors))"], {}), "(\n 'ArcGIS Online route generation for shape_id %s failed. A straight-line shape will be generated for this shape_id instead. %s'\n % (shape_id, errors))\n", (46842, 47001), False, 'import arcpy\n'), ((48490, 48515), 'arcpy.Exists', 'arcpy.Exists', (['outRoutesfc'], {}), '(outRoutesfc)\n', (48502, 48515), False, 'import arcpy\n'), ((48768, 48795), 'arcpy.Describe', 'arcpy.Describe', (['outRoutesfc'], {}), '(outRoutesfc)\n', (48782, 48795), False, 'import arcpy\n'), ((49648, 49661), 'arcpy.Array', 'arcpy.Array', ([], {}), '()\n', (49659, 49661), False, 'import arcpy\n'), ((49680, 49693), 'arcpy.Point', 'arcpy.Point', ([], {}), '()\n', (49691, 49693), False, 'import arcpy\n'), ((50631, 50675), 'arcpy.Polyline', 'arcpy.Polyline', (['array', 'WGSCoords', 'None', '(True)'], {}), '(array, WGSCoords, None, True)\n', (50645, 50675), False, 'import arcpy\n'), ((51578, 51707), 'arcpy.AddError', 'arcpy.AddError', (["('You must have ArcGIS Pro 1.2 or higher to run this tool. You have ArcGIS Pro version %s.'\n % ArcVersion)"], {}), "(\n 'You must have ArcGIS Pro 1.2 or higher to run this tool. You have ArcGIS Pro version %s.'\n % ArcVersion)\n", (51592, 51707), False, 'import arcpy\n'), ((51936, 52201), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Warning! Certain functionality was implemented in ArcGIS Pro 2.0 that significantly improves the output of this tool. For better results, upgrade to the latest version of ArcGIS Pro or run this tool with ArcMap version 10.3 or higher."""'], {}), "(\n 'Warning! Certain functionality was implemented in ArcGIS Pro 2.0 that significantly improves the output of this tool. For better results, upgrade to the latest version of ArcGIS Pro or run this tool with ArcMap version 10.3 or higher.'\n )\n", (51952, 52201), False, 'import arcpy\n'), ((52294, 52434), 'arcpy.AddError', 'arcpy.AddError', (["('You must have ArcGIS 10.2.1 or higher (or ArcGIS Pro) to run this tool. You have ArcGIS version %s.'\n % ArcVersion)"], {}), "(\n 'You must have ArcGIS 10.2.1 or higher (or ArcGIS Pro) to run this tool. You have ArcGIS version %s.'\n % ArcVersion)\n", (52308, 52434), False, 'import arcpy\n'), ((52516, 52741), 'arcpy.AddWarning', 'arcpy.AddWarning', (["('Warning! You can run Step 1 of this tool in ArcGIS 10.1 or 10.2, but you will not be able to run Step 2 without ArcGIS 10.2.1 or higher (or ArcGIS Pro). You have ArcGIS version %s.'\n % ArcVersion)"], {}), "(\n 'Warning! You can run Step 1 of this tool in ArcGIS 10.1 or 10.2, but you will not be able to run Step 2 without ArcGIS 10.2.1 or higher (or ArcGIS Pro). You have ArcGIS version %s.'\n % ArcVersion)\n", (52532, 52741), False, 'import arcpy\n'), ((52870, 53027), 'arcpy.AddError', 'arcpy.AddError', (["('You must have ArcGIS 10.3 (or ArcGIS Pro) to run the ArcGIS Online version of this tool. You have ArcGIS version %s.'\n % ArcVersion)"], {}), "(\n 'You must have ArcGIS 10.3 (or ArcGIS Pro) to run the ArcGIS Online version of this tool. You have ArcGIS version %s.'\n % ArcVersion)\n", (52884, 53027), False, 'import arcpy\n'), ((53123, 53332), 'arcpy.AddWarning', 'arcpy.AddWarning', (["('Warning! This version of Step 1 will produce significantly better output using ArcGIS version 10.3 or higher or ArcGIS Pro 2.0 or higher. You have ArcGIS version %s.'\n % ArcVersion)"], {}), "(\n 'Warning! This version of Step 1 will produce significantly better output using ArcGIS version 10.3 or higher or ArcGIS Pro 2.0 or higher. You have ArcGIS version %s.'\n % ArcVersion)\n", (53139, 53332), False, 'import arcpy\n'), ((58204, 58324), 'arcpy.na.MakeRouteLayer', 'arcpy.na.MakeRouteLayer', (['inNetworkDataset', '"""DummyLayer"""', 'impedanceAttribute'], {'restriction_attribute_name': 'restrictions'}), "(inNetworkDataset, 'DummyLayer', impedanceAttribute,\n restriction_attribute_name=restrictions)\n", (58227, 58324), False, 'import arcpy\n'), ((59006, 59053), 'arcpy.mapping.ListLayers', 'arcpy.mapping.ListLayers', (['RLayer', 'stopsSubLayer'], {}), '(RLayer, stopsSubLayer)\n', (59030, 59053), False, 'import arcpy\n'), ((62669, 62691), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (62688, 62691), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((4316, 4363), 'arcpy.AddError', 'arcpy.AddError', (['"""Error SQLizing the GTFS data."""'], {}), "('Error SQLizing the GTFS data.')\n", (4330, 4363), False, 'import arcpy\n'), ((10294, 10325), 'arcpy.CheckExtension', 'arcpy.CheckExtension', (['"""Network"""'], {}), "('Network')\n", (10314, 10325), False, 'import arcpy\n'), ((10359, 10393), 'arcpy.CheckOutExtension', 'arcpy.CheckOutExtension', (['"""Network"""'], {}), "('Network')\n", (10382, 10393), False, 'import arcpy\n'), ((10430, 10491), 'arcpy.AddError', 'arcpy.AddError', (['"""The Network Analyst license is unavailable."""'], {}), "('The Network Analyst license is unavailable.')\n", (10444, 10491), False, 'import arcpy\n'), ((10905, 11162), 'arcpy.AddError', 'arcpy.AddError', (['"""Unable to retrieve token for ArcGIS Online. To use this tool, you must be signed in to ArcGIS Online with an account that has routing privileges and credits. Talk to your organization\'s ArcGIS Online administrator for assistance."""'], {}), '(\n "Unable to retrieve token for ArcGIS Online. To use this tool, you must be signed in to ArcGIS Online with an account that has routing privileges and credits. Talk to your organization\'s ArcGIS Online administrator for assistance."\n )\n', (10919, 11162), False, 'import arcpy\n'), ((15465, 15512), 'arcpy.AddError', 'arcpy.AddError', (['"""Error SQLizing the GTFS data."""'], {}), "('Error SQLizing the GTFS data.')\n", (15479, 15512), False, 'import arcpy\n'), ((21762, 21802), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(8)', 'outRoutesfc'], {}), '(8, outRoutesfc)\n', (21786, 21802), False, 'import arcpy\n'), ((21816, 21862), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(9)', 'outSequencePoints'], {}), '(9, outSequencePoints)\n', (21840, 21862), False, 'import arcpy\n'), ((21891, 21931), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(4)', 'outRoutesfc'], {}), '(4, outRoutesfc)\n', (21915, 21931), False, 'import arcpy\n'), ((21945, 21991), 'arcpy.SetParameterAsText', 'arcpy.SetParameterAsText', (['(5)', 'outSequencePoints'], {}), '(5, outSequencePoints)\n', (21969, 21991), False, 'import arcpy\n'), ((29781, 30101), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Your shapes.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the field will remain blank for all other shapes."""'], {}), "(\n 'Your shapes.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the field will remain blank for all other shapes.'\n )\n", (29797, 30101), False, 'import arcpy\n'), ((31264, 31283), 'arcpy.AddError', 'arcpy.AddError', (['msg'], {}), '(msg)\n', (31278, 31283), False, 'import arcpy\n'), ((31629, 31648), 'arcpy.AddError', 'arcpy.AddError', (['msg'], {}), '(msg)\n', (31643, 31648), False, 'import arcpy\n'), ((34597, 34728), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['InputRoutePoints', "['SHAPE@', 'shape_id', 'sequence', 'CurbApproach', 'stop_id', 'Bearing',\n 'BearingTol']"], {}), "(InputRoutePoints, ['SHAPE@', 'shape_id', 'sequence',\n 'CurbApproach', 'stop_id', 'Bearing', 'BearingTol'])\n", (34618, 34728), False, 'import arcpy\n'), ((35899, 36072), 'arcpy.da.InsertCursor', 'arcpy.da.InsertCursor', (['InputRoutePoints', "['SHAPE@X', 'SHAPE@Y', 'shape_id', 'sequence', 'CurbApproach', 'stop_id',\n 'SourceID', 'SourceOID', 'PosAlong', 'SideOfEdge']"], {}), "(InputRoutePoints, ['SHAPE@X', 'SHAPE@Y', 'shape_id',\n 'sequence', 'CurbApproach', 'stop_id', 'SourceID', 'SourceOID',\n 'PosAlong', 'SideOfEdge'])\n", (35920, 36072), False, 'import arcpy\n'), ((37347, 37609), 'arcpy.na.MakeRouteLayer', 'arcpy.na.MakeRouteLayer', (['inNetworkDataset', '"""TransitShapes"""', 'impedanceAttribute'], {'find_best_order': '"""USE_INPUT_ORDER"""', 'UTurn_policy': 'UTurns', 'restriction_attribute_name': 'restrictions', 'hierarchy': '"""USE_HIERARCHY"""', 'output_path_shape': '"""TRUE_LINES_WITH_MEASURES"""'}), "(inNetworkDataset, 'TransitShapes',\n impedanceAttribute, find_best_order='USE_INPUT_ORDER', UTurn_policy=\n UTurns, restriction_attribute_name=restrictions, hierarchy=\n 'USE_HIERARCHY', output_path_shape='TRUE_LINES_WITH_MEASURES')\n", (37370, 37609), False, 'import arcpy\n'), ((39302, 39381), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Unable to create on-street Routes because the Solve failed."""'], {}), "('Unable to create on-street Routes because the Solve failed.')\n", (39318, 39381), False, 'import arcpy\n'), ((39395, 39438), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Solve warning messages:"""'], {}), "('Solve warning messages:')\n", (39411, 39438), False, 'import arcpy\n'), ((39504, 39545), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Solve error messages:"""'], {}), "('Solve error messages:')\n", (39520, 39545), False, 'import arcpy\n'), ((40130, 40154), 're.findall', 're.findall', (['""""(.+?)\\""""', 'w'], {}), '(\'"(.+?)"\', w)\n', (40140, 40154), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((40233, 40263), 're.search', 're.search', (['""" is unlocated."""', 'w'], {}), "(' is unlocated.', w)\n", (40242, 40263), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((40605, 40664), 'arcpy.mapping.ListLayers', 'arcpy.mapping.ListLayers', (['RLayer', "naSubLayerNames['Routes']"], {}), "(RLayer, naSubLayerNames['Routes'])\n", (40629, 40664), False, 'import arcpy\n'), ((46607, 46784), 'arcpy.AddError', 'arcpy.AddError', (['"""ArcGIS Online route generation failed. Please ensure that your ArcGIS Online account has routing privileges and sufficient credits for this analysis."""'], {}), "(\n 'ArcGIS Online route generation failed. Please ensure that your ArcGIS Online account has routing privileges and sufficient credits for this analysis.'\n )\n", (46621, 46784), False, 'import arcpy\n'), ((56864, 56919), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Key error in getBearingsForSequence"""'], {}), "('Key error in getBearingsForSequence')\n", (56880, 56919), False, 'import arcpy\n'), ((56933, 56954), 'arcpy.AddWarning', 'arcpy.AddWarning', (['err'], {}), '(err)\n', (56949, 56954), False, 'import arcpy\n'), ((6305, 6503), 'arcpy.AddWarning', 'arcpy.AddWarning', (["('shape_id %s is not used by any trips in your trips.txt file. You can still update this shape, but this might be an indication of problems in your GTFS dataset.'\n % shape)"], {}), "(\n 'shape_id %s is not used by any trips in your trips.txt file. You can still update this shape, but this might be an indication of problems in your GTFS dataset.'\n % shape)\n", (6321, 6503), False, 'import arcpy\n'), ((26854, 26947), 'arcpy.AddError', 'arcpy.AddError', (['(\'GTFS file \' + GTFSfile + ".txt is missing required field \'" + col + "\'.")'], {}), '(\'GTFS file \' + GTFSfile + ".txt is missing required field \'" +\n col + "\'.")\n', (26868, 26947), False, 'import arcpy\n'), ((28585, 28933), 'arcpy.AddError', 'arcpy.AddError', (['"""Your trips.txt file does not contain a shape_id field. In order to update your shapes.txt file, you must first assign each trip_id in trips.txt a valid shape_id. If you do not have this information, it is recommended that you create a new shapes.txt file from scratch rather than attempting to update your existing one."""'], {}), "(\n 'Your trips.txt file does not contain a shape_id field. In order to update your shapes.txt file, you must first assign each trip_id in trips.txt a valid shape_id. If you do not have this information, it is recommended that you create a new shapes.txt file from scratch rather than attempting to update your existing one.'\n )\n", (28599, 28933), False, 'import arcpy\n'), ((29235, 29559), 'arcpy.AddWarning', 'arcpy.AddWarning', (['"""Your stop_times.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the field will remain blank for all other shapes."""'], {}), "(\n 'Your stop_times.txt file does not contain a shape_dist_traveled field. When you run Step 2 of this tool, a shape_dist_traveled field will be added, and it will be populated with valid values for the shape(s) you have chosen to update. However, the field will remain blank for all other shapes.'\n )\n", (29251, 29559), False, 'import arcpy\n'), ((39469, 39489), 'arcpy.GetMessages', 'arcpy.GetMessages', (['(1)'], {}), '(1)\n', (39486, 39489), False, 'import arcpy\n'), ((39576, 39596), 'arcpy.GetMessages', 'arcpy.GetMessages', (['(2)'], {}), '(2)\n', (39593, 39596), False, 'import arcpy\n'), ((40299, 40323), 're.findall', 're.findall', (['""""(.+?)\\""""', 'w'], {}), '(\'"(.+?)"\', w)\n', (40309, 40323), False, 'import sqlite3, operator, os, re, csv, itertools, sys\n'), ((56436, 56461), 'numpy.deg2rad', 'np.deg2rad', (['angle_to_next'], {}), '(angle_to_next)\n', (56446, 56461), True, 'import numpy as np\n'), ((56508, 56534), 'numpy.deg2rad', 'np.deg2rad', (['previous_angle'], {}), '(previous_angle)\n', (56518, 56534), True, 'import numpy as np\n'), ((56593, 56619), 'numpy.sin', 'np.sin', (['previous_angle_rad'], {}), '(previous_angle_rad)\n', (56599, 56619), True, 'import numpy as np\n'), ((56622, 56647), 'numpy.sin', 'np.sin', (['angle_to_next_rad'], {}), '(angle_to_next_rad)\n', (56628, 56647), True, 'import numpy as np\n'), ((56653, 56679), 'numpy.cos', 'np.cos', (['previous_angle_rad'], {}), '(previous_angle_rad)\n', (56659, 56679), True, 'import numpy as np\n'), ((56682, 56707), 'numpy.cos', 'np.cos', (['angle_to_next_rad'], {}), '(angle_to_next_rad)\n', (56688, 56707), True, 'import numpy as np\n')]
"""Script demonstrating the joint use of simulation and control. The simulation is run by a `CtrlAviary` or `VisionAviary` environment. The control is given by the PID implementation in `DSLPIDControl`. Example ------- In a terminal, run as: $ python fly.py Notes ----- The drones move, at different altitudes, along cicular trajectories in the X-Y plane, around point (0, -.3). """ import os import time import argparse from datetime import datetime import pdb import math import random import numpy as np import pybullet as p import matplotlib.pyplot as plt from gym_pybullet_drones.envs.BaseAviary import DroneModel, Physics from gym_pybullet_drones.envs.CtrlAviary import CtrlAviary from gym_pybullet_drones.envs.VisionAviary import VisionAviary from gym_pybullet_drones.control.DSLPIDControl import DSLPIDControl from gym_pybullet_drones.control.SimplePIDControl import SimplePIDControl from gym_pybullet_drones.utils.Logger import Logger from gym_pybullet_drones.utils.utils import sync, str2bool if __name__ == "__main__": #### Define and parse (optional) arguments for the script ## parser = argparse.ArgumentParser( description='Helix flight script using CtrlAviary or VisionAviary and DSLPIDControl') parser.add_argument('--drone', default="cf2x", type=DroneModel, help='Drone model (default: CF2X)', metavar='', choices=DroneModel) parser.add_argument('--num_drones', default=1, type=int, help='Number of drones (default: 3)', metavar='') parser.add_argument('--physics', default="pyb", type=Physics, help='Physics updates (default: PYB)', metavar='', choices=Physics) parser.add_argument('--vision', default=False, type=str2bool, help='Whether to use VisionAviary (default: False)', metavar='') parser.add_argument('--gui', default=True, type=str2bool, help='Whether to use PyBullet GUI (default: True)', metavar='') parser.add_argument('--record_video', default=True, type=str2bool, help='Whether to record a video (default: False)', metavar='') parser.add_argument('--plot', default=True, type=str2bool, help='Whether to plot the simulation results (default: True)', metavar='') parser.add_argument('--user_debug_gui', default=False, type=str2bool, help='Whether to add debug lines and parameters to the GUI (default: False)', metavar='') parser.add_argument('--aggregate', default=True, type=str2bool, help='Whether to aggregate physics steps (default: False)', metavar='') parser.add_argument('--obstacles', default=True, type=str2bool, help='Whether to add obstacles to the environment (default: True)', metavar='') parser.add_argument('--simulation_freq_hz', default=240, type=int, help='Simulation frequency in Hz (default: 240)', metavar='') parser.add_argument('--control_freq_hz', default=48, type=int, help='Control frequency in Hz (default: 48)', metavar='') parser.add_argument('--duration_sec', default=12, type=int, help='Duration of the simulation in seconds (default: 5)', metavar='') ARGS = parser.parse_args() #### Initialize the simulation ############################# H = .1 H_STEP = .05 R = .3 INIT_XYZS = np.array([[R*np.cos((i/6)*2*np.pi+np.pi/2), R*np.sin((i/6) * 2*np.pi+np.pi/2)-R, H+i*H_STEP] for i in range(ARGS.num_drones)]) INIT_RPYS = np.array([[0, 0, i * (np.pi/2)/ARGS.num_drones] for i in range(ARGS.num_drones)]) AGGR_PHY_STEPS = int(ARGS.simulation_freq_hz / ARGS.control_freq_hz) if ARGS.aggregate else 1 #### Initialize a circular trajectory ###################### PERIOD = 10 NUM_WP = ARGS.control_freq_hz*PERIOD TARGET_POS = np.zeros((NUM_WP, 3)) for i in range(NUM_WP): TARGET_POS[i, :] = R*np.cos((i/NUM_WP)*(2*np.pi)+np.pi/2)+INIT_XYZS[0, 0], R*np.sin((i/NUM_WP)*(2*np.pi)+np.pi/2)-R+INIT_XYZS[0, 1], 0 wp_counters = np.array([int((i*NUM_WP/6) % NUM_WP) for i in range(ARGS.num_drones)]) #### Debug trajectory ###################################### # Uncomment alt. target_pos in .computeControlFromState() # INIT_XYZS = np.array([[.3 * i, 0, .1] for i in range(ARGS.num_drones)]) # INIT_RPYS = np.array([[0, 0, i * (np.pi/3)/ARGS.num_drones] for i in range(ARGS.num_drones)]) # NUM_WP = ARGS.control_freq_hz*15 # TARGET_POS = np.zeros((NUM_WP,3)) # for i in range(NUM_WP): # if i < NUM_WP/6: # TARGET_POS[i, :] = (i*6)/NUM_WP, 0, 0.5*(i*6)/NUM_WP # elif i < 2 * NUM_WP/6: # TARGET_POS[i, :] = 1 - ((i-NUM_WP/6)*6)/NUM_WP, 0, 0.5 - 0.5*((i-NUM_WP/6)*6)/NUM_WP # elif i < 3 * NUM_WP/6: # TARGET_POS[i, :] = 0, ((i-2*NUM_WP/6)*6)/NUM_WP, 0.5*((i-2*NUM_WP/6)*6)/NUM_WP # elif i < 4 * NUM_WP/6: # TARGET_POS[i, :] = 0, 1 - ((i-3*NUM_WP/6)*6)/NUM_WP, 0.5 - 0.5*((i-3*NUM_WP/6)*6)/NUM_WP # elif i < 5 * NUM_WP/6: # TARGET_POS[i, :] = ((i-4*NUM_WP/6)*6)/NUM_WP, ((i-4*NUM_WP/6)*6)/NUM_WP, 0.5*((i-4*NUM_WP/6)*6)/NUM_WP # elif i < 6 * NUM_WP/6: # TARGET_POS[i, :] = 1 - ((i-5*NUM_WP/6)*6)/NUM_WP, 1 - ((i-5*NUM_WP/6)*6)/NUM_WP, 0.5 - 0.5*((i-5*NUM_WP/6)*6)/NUM_WP # wp_counters = np.array([0 for i in range(ARGS.num_drones)]) #### Create the environment with or without video capture ## if ARGS.vision: env = VisionAviary(drone_model=ARGS.drone, num_drones=ARGS.num_drones, initial_xyzs=INIT_XYZS, initial_rpys=INIT_RPYS, physics=ARGS.physics, neighbourhood_radius=10, freq=ARGS.simulation_freq_hz, aggregate_phy_steps=AGGR_PHY_STEPS, gui=ARGS.gui, record=ARGS.record_video, obstacles=ARGS.obstacles ) else: env = CtrlAviary(drone_model=ARGS.drone, num_drones=ARGS.num_drones, initial_xyzs=INIT_XYZS, initial_rpys=INIT_RPYS, physics=ARGS.physics, neighbourhood_radius=10, freq=ARGS.simulation_freq_hz, aggregate_phy_steps=AGGR_PHY_STEPS, gui=ARGS.gui, record=ARGS.record_video, obstacles=ARGS.obstacles, user_debug_gui=ARGS.user_debug_gui ) #### Obtain the PyBullet Client ID from the environment #### PYB_CLIENT = env.getPyBulletClient() #### Initialize the logger ################################# logger = Logger(logging_freq_hz=int(ARGS.simulation_freq_hz/AGGR_PHY_STEPS), num_drones=ARGS.num_drones ) #### Initialize the controllers ############################ if ARGS.drone in [DroneModel.CF2X, DroneModel.CF2P]: ctrl = [DSLPIDControl(drone_model=ARGS.drone) for i in range(ARGS.num_drones)] elif ARGS.drone in [DroneModel.HB]: ctrl = [SimplePIDControl(drone_model=ARGS.drone) for i in range(ARGS.num_drones)] #### Run the simulation #################################### CTRL_EVERY_N_STEPS = int(np.floor(env.SIM_FREQ/ARGS.control_freq_hz)) action = {str(i): np.array([0, 0, 0, 0]) for i in range(ARGS.num_drones)} START = time.time() for i in range(0, int(ARGS.duration_sec*env.SIM_FREQ), AGGR_PHY_STEPS): #### Make it rain rubber ducks ############################# # if i/env.SIM_FREQ>5 and i%10==0 and i/env.SIM_FREQ<10: p.loadURDF("duck_vhacd.urdf", [0+random.gauss(0, 0.3),-0.5+random.gauss(0, 0.3),3], p.getQuaternionFromEuler([random.randint(0,360),random.randint(0,360),random.randint(0,360)]), physicsClientId=PYB_CLIENT) #### Step the simulation ################################### obs, reward, done, info = env.step(action) #### Compute control at the desired frequency ############## if i % CTRL_EVERY_N_STEPS == 0: #### Compute control for the current way point ############# for j in range(ARGS.num_drones): action[str(j)], _, _ = ctrl[j].computeControlFromState(control_timestep=CTRL_EVERY_N_STEPS*env.TIMESTEP, state=obs[str( j)]["state"], target_pos=np.hstack( [TARGET_POS[wp_counters[j], 0:2], INIT_XYZS[j, 2]]), # target_pos=INIT_XYZS[j, :] + TARGET_POS[wp_counters[j], :], target_rpy=INIT_RPYS[j, :] ) #### Go to the next way point and loop ##################### for j in range(ARGS.num_drones): wp_counters[j] = wp_counters[j] + \ 1 if wp_counters[j] < (NUM_WP-1) else 0 #### Log the simulation #################################### # for j in range(ARGS.num_drones): # logger.log(drone=j, # timestamp=i/env.SIM_FREQ, # state=obs[str(j)]["state"], # control=np.hstack( # [TARGET_POS[wp_counters[j], 0:2], INIT_XYZS[j, 2], INIT_RPYS[j, :], np.zeros(6)]) # # control=np.hstack([INIT_XYZS[j, :]+TARGET_POS[wp_counters[j], :], INIT_RPYS[j, :], np.zeros(6)]) # ) #### Printout ############################################## if i % env.SIM_FREQ == 0: env.render() #### Print matrices with the images captured by each drone # if ARGS.vision: for j in range(ARGS.num_drones): print(obs[str(j)]["rgb"].shape, np.average(obs[str(j)]["rgb"]), obs[str(j)]["dep"].shape, np.average( obs[str(j)]["dep"]), obs[str(j)]["seg"].shape, np.average( obs[str(j)]["seg"]) ) #### Sync the simulation ################################### if ARGS.gui: sync(i, START, env.TIMESTEP) #### Close the environment ################################# env.close() #### Save the simulation results ########################### logger.save() logger.save_as_csv("pid") # Optional CSV save #### Plot the simulation results ########################### if ARGS.plot: logger.plot()
[ "argparse.ArgumentParser", "gym_pybullet_drones.control.DSLPIDControl.DSLPIDControl", "gym_pybullet_drones.envs.VisionAviary.VisionAviary", "numpy.hstack", "numpy.floor", "numpy.array", "numpy.zeros", "gym_pybullet_drones.utils.utils.sync", "gym_pybullet_drones.envs.CtrlAviary.CtrlAviary", "numpy.cos", "numpy.sin", "gym_pybullet_drones.control.SimplePIDControl.SimplePIDControl", "time.time" ]
[((1120, 1234), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Helix flight script using CtrlAviary or VisionAviary and DSLPIDControl"""'}), "(description=\n 'Helix flight script using CtrlAviary or VisionAviary and DSLPIDControl')\n", (1143, 1234), False, 'import argparse\n'), ((4232, 4253), 'numpy.zeros', 'np.zeros', (['(NUM_WP, 3)'], {}), '((NUM_WP, 3))\n', (4240, 4253), True, 'import numpy as np\n'), ((8168, 8179), 'time.time', 'time.time', ([], {}), '()\n', (8177, 8179), False, 'import time\n'), ((6002, 6310), 'gym_pybullet_drones.envs.VisionAviary.VisionAviary', 'VisionAviary', ([], {'drone_model': 'ARGS.drone', 'num_drones': 'ARGS.num_drones', 'initial_xyzs': 'INIT_XYZS', 'initial_rpys': 'INIT_RPYS', 'physics': 'ARGS.physics', 'neighbourhood_radius': '(10)', 'freq': 'ARGS.simulation_freq_hz', 'aggregate_phy_steps': 'AGGR_PHY_STEPS', 'gui': 'ARGS.gui', 'record': 'ARGS.record_video', 'obstacles': 'ARGS.obstacles'}), '(drone_model=ARGS.drone, num_drones=ARGS.num_drones,\n initial_xyzs=INIT_XYZS, initial_rpys=INIT_RPYS, physics=ARGS.physics,\n neighbourhood_radius=10, freq=ARGS.simulation_freq_hz,\n aggregate_phy_steps=AGGR_PHY_STEPS, gui=ARGS.gui, record=ARGS.\n record_video, obstacles=ARGS.obstacles)\n', (6014, 6310), False, 'from gym_pybullet_drones.envs.VisionAviary import VisionAviary\n'), ((6616, 6959), 'gym_pybullet_drones.envs.CtrlAviary.CtrlAviary', 'CtrlAviary', ([], {'drone_model': 'ARGS.drone', 'num_drones': 'ARGS.num_drones', 'initial_xyzs': 'INIT_XYZS', 'initial_rpys': 'INIT_RPYS', 'physics': 'ARGS.physics', 'neighbourhood_radius': '(10)', 'freq': 'ARGS.simulation_freq_hz', 'aggregate_phy_steps': 'AGGR_PHY_STEPS', 'gui': 'ARGS.gui', 'record': 'ARGS.record_video', 'obstacles': 'ARGS.obstacles', 'user_debug_gui': 'ARGS.user_debug_gui'}), '(drone_model=ARGS.drone, num_drones=ARGS.num_drones, initial_xyzs\n =INIT_XYZS, initial_rpys=INIT_RPYS, physics=ARGS.physics,\n neighbourhood_radius=10, freq=ARGS.simulation_freq_hz,\n aggregate_phy_steps=AGGR_PHY_STEPS, gui=ARGS.gui, record=ARGS.\n record_video, obstacles=ARGS.obstacles, user_debug_gui=ARGS.user_debug_gui)\n', (6626, 6959), False, 'from gym_pybullet_drones.envs.CtrlAviary import CtrlAviary\n'), ((8033, 8078), 'numpy.floor', 'np.floor', (['(env.SIM_FREQ / ARGS.control_freq_hz)'], {}), '(env.SIM_FREQ / ARGS.control_freq_hz)\n', (8041, 8078), True, 'import numpy as np\n'), ((8100, 8122), 'numpy.array', 'np.array', (['[0, 0, 0, 0]'], {}), '([0, 0, 0, 0])\n', (8108, 8122), True, 'import numpy as np\n'), ((7705, 7742), 'gym_pybullet_drones.control.DSLPIDControl.DSLPIDControl', 'DSLPIDControl', ([], {'drone_model': 'ARGS.drone'}), '(drone_model=ARGS.drone)\n', (7718, 7742), False, 'from gym_pybullet_drones.control.DSLPIDControl import DSLPIDControl\n'), ((11280, 11308), 'gym_pybullet_drones.utils.utils.sync', 'sync', (['i', 'START', 'env.TIMESTEP'], {}), '(i, START, env.TIMESTEP)\n', (11284, 11308), False, 'from gym_pybullet_drones.utils.utils import sync, str2bool\n'), ((7848, 7888), 'gym_pybullet_drones.control.SimplePIDControl.SimplePIDControl', 'SimplePIDControl', ([], {'drone_model': 'ARGS.drone'}), '(drone_model=ARGS.drone)\n', (7864, 7888), False, 'from gym_pybullet_drones.control.SimplePIDControl import SimplePIDControl\n'), ((3661, 3698), 'numpy.cos', 'np.cos', (['(i / 6 * 2 * np.pi + np.pi / 2)'], {}), '(i / 6 * 2 * np.pi + np.pi / 2)\n', (3667, 3698), True, 'import numpy as np\n'), ((4311, 4355), 'numpy.cos', 'np.cos', (['(i / NUM_WP * (2 * np.pi) + np.pi / 2)'], {}), '(i / NUM_WP * (2 * np.pi) + np.pi / 2)\n', (4317, 4355), True, 'import numpy as np\n'), ((3694, 3731), 'numpy.sin', 'np.sin', (['(i / 6 * 2 * np.pi + np.pi / 2)'], {}), '(i / 6 * 2 * np.pi + np.pi / 2)\n', (3700, 3731), True, 'import numpy as np\n'), ((4443, 4487), 'numpy.sin', 'np.sin', (['(i / NUM_WP * (2 * np.pi) + np.pi / 2)'], {}), '(i / NUM_WP * (2 * np.pi) + np.pi / 2)\n', (4449, 4487), True, 'import numpy as np\n'), ((9326, 9387), 'numpy.hstack', 'np.hstack', (['[TARGET_POS[wp_counters[j], 0:2], INIT_XYZS[j, 2]]'], {}), '([TARGET_POS[wp_counters[j], 0:2], INIT_XYZS[j, 2]])\n', (9335, 9387), True, 'import numpy as np\n')]
#!/usr/bin/python3 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os,sys import plyfile import numpy as np import argparse import h5py reduced_length_dict = {"MarketplaceFeldkirch":[10538633,"marketsquarefeldkirch4-reduced"], "StGallenCathedral":[14608690,"stgallencathedral6-reduced"], "sg27":[28931322,"sg27_10-reduced"], "sg28":[24620684,"sg28_2-reduced"]} full_length_dict = {"6725_66515_no_color":[475136, "6725_66515_no_color"], "6725_66520_no_color":[24576, "6725_66520_no_color"], "6730_66515_no_color":[540672, "6730_66515_no_color"], "6730_66520_no_color":[286720, "6730_66520_no_color"], "6735_66515_no_color":[344064, "6735_66515_no_color"], "6735_66520_no_color":[950272, "6735_66520_no_color"], "6740_66520_no_color":[942080, "6740_66520_no_color"], "6745_66520_no_color":[917504, "6745_66520_no_color"], "6745_66525_no_color":[991232, "6745_66525_no_color"]} def main(): parser = argparse.ArgumentParser() parser.add_argument('--datafolder', '-d', help='Path to input *_pred.h5', required=True) parser.add_argument('--version', '-v', help='full or reduced', type=str, required=True) args = parser.parse_args() print(args) if args.version == 'full': length_dict = full_length_dict else: length_dict = reduced_length_dict categories_list = [category for category in length_dict] #print(categories_list) for category in categories_list: output_path = os.path.join(args.datafolder,"results",length_dict[category][1]+".labels") if not os.path.exists(os.path.join(args.datafolder,"results")): os.makedirs(os.path.join(args.datafolder,"results")) pred_list = [pred for pred in os.listdir(args.datafolder) if category in pred and pred.split(".")[0].split("_")[-1] == 'pred'] label_length = length_dict[category][0] merged_label = np.zeros((label_length),dtype=int) merged_confidence = np.zeros((label_length),dtype=float) for pred_file in pred_list: #print(os.path.join(args.datafolder, pred_file)) data = h5py.File(os.path.join(args.datafolder, pred_file)) labels_seg = data['label_seg'][...].astype(np.int64) indices = data['indices_split_to_full'][...].astype(np.int64) confidence = data['confidence'][...].astype(np.float32) data_num = data['data_num'][...].astype(np.int64) print("file:", data) print("size", indices.size) for i in range(labels_seg.shape[0]): temp_label = np.zeros((data_num[i]),dtype=int) pred_confidence = confidence[i][:data_num[i]] temp_confidence = merged_confidence[indices[i][:data_num[i]]] temp_label[temp_confidence >= pred_confidence] = merged_label[indices[i][:data_num[i]]][temp_confidence >= pred_confidence] temp_label[pred_confidence > temp_confidence] = labels_seg[i][:data_num[i]][pred_confidence > temp_confidence] merged_confidence[indices[i][:data_num[i]][pred_confidence > temp_confidence]] = pred_confidence[pred_confidence > temp_confidence] merged_label[indices[i][:data_num[i]]] = temp_label #print("indices", indices[0][1].size) np.savetxt(output_path,np.c_[indices.flatten(), merged_label+1,merged_confidence],fmt='%d %d %.3f') if __name__ == '__main__': main()
[ "numpy.zeros", "os.listdir", "os.path.join", "argparse.ArgumentParser" ]
[((1230, 1255), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1253, 1255), False, 'import argparse\n'), ((1776, 1854), 'os.path.join', 'os.path.join', (['args.datafolder', '"""results"""', "(length_dict[category][1] + '.labels')"], {}), "(args.datafolder, 'results', length_dict[category][1] + '.labels')\n", (1788, 1854), False, 'import os, sys\n'), ((2224, 2257), 'numpy.zeros', 'np.zeros', (['label_length'], {'dtype': 'int'}), '(label_length, dtype=int)\n', (2232, 2257), True, 'import numpy as np\n'), ((2288, 2323), 'numpy.zeros', 'np.zeros', (['label_length'], {'dtype': 'float'}), '(label_length, dtype=float)\n', (2296, 2323), True, 'import numpy as np\n'), ((1882, 1922), 'os.path.join', 'os.path.join', (['args.datafolder', '"""results"""'], {}), "(args.datafolder, 'results')\n", (1894, 1922), False, 'import os, sys\n'), ((1949, 1989), 'os.path.join', 'os.path.join', (['args.datafolder', '"""results"""'], {}), "(args.datafolder, 'results')\n", (1961, 1989), False, 'import os, sys\n'), ((2029, 2056), 'os.listdir', 'os.listdir', (['args.datafolder'], {}), '(args.datafolder)\n', (2039, 2056), False, 'import os, sys\n'), ((2456, 2496), 'os.path.join', 'os.path.join', (['args.datafolder', 'pred_file'], {}), '(args.datafolder, pred_file)\n', (2468, 2496), False, 'import os, sys\n'), ((2926, 2958), 'numpy.zeros', 'np.zeros', (['data_num[i]'], {'dtype': 'int'}), '(data_num[i], dtype=int)\n', (2934, 2958), True, 'import numpy as np\n')]
import sys import ast import wx from wx.lib.plot import PlotCanvas, PlotGraphics, PolyLine, PolyMarker import numpy as np import math class Analisis(object): def __init__(self): self.times = [] self.state_codes = [] self.estados = [] self.fechas = [] self.tiempo_promedio = 0 self.exitosVSFallos = {"exitos":0,"fallos":0} #Inicializa el estatus de exitos vs fallas self.state_codes_dict = {} def analizar_tiempo(self): # calcula el tiempo promedio de todas las peticiones self.tiempo_promedio = 0 for segundos in self.times: self.tiempo_promedio = self.tiempo_promedio + segundos self.tiempo_promedio = self.tiempo_promedio / len(self.times) def analizar_estados(self): # llena el status de exito vs fallo self.exitosVSFallos["exitos"] = 0 self.exitosVSFallos["fallos"] = 0 for estado in self.estados: if estado == "exito": self.exitosVSFallos["exitos"] = self.exitosVSFallos["exitos"] + 1 else: self.exitosVSFallos["fallos"] = self.exitosVSFallos["fallos"] + 1 def dibujar_state_codes(self): # Genera la ventana grafica de la grafica size = int(math.sqrt(float(len(self.state_codes)))) data = np.zeros((len(self.state_codes),2)) #Crea una matriz especial para el procesamiento y visualizacion de los datos codigos=[] for codigo in self.state_codes: if type(codigo) != int: codigos.append(0) else: codigos.append(codigo) data[:,0] = np.array(range(len(codigos))) #Añade los codigos que se obtuvieron por peticion data[:,1] = np.array(codigos) linea = PolyLine(data, legend="codigos de estado",colour='red') # Se añaden los parametros para la grafica return PlotGraphics([linea],"Resultados", "Peticiones", "codigos") def analizar_state_codes(self): # Cuenta la cantidad de incidencias por codigo de estado devuelto por parte del servidor codigos = [] for codigo in self.state_codes: if codigo not in codigos: codigos.append(codigo) self.state_codes_dict[codigo] = 0 self.state_codes_dict[codigo] = self.state_codes_dict[codigo] + 1
[ "numpy.array", "wx.lib.plot.PlotGraphics", "wx.lib.plot.PolyLine" ]
[((1722, 1739), 'numpy.array', 'np.array', (['codigos'], {}), '(codigos)\n', (1730, 1739), True, 'import numpy as np\n'), ((1756, 1812), 'wx.lib.plot.PolyLine', 'PolyLine', (['data'], {'legend': '"""codigos de estado"""', 'colour': '"""red"""'}), "(data, legend='codigos de estado', colour='red')\n", (1764, 1812), False, 'from wx.lib.plot import PlotCanvas, PlotGraphics, PolyLine, PolyMarker\n'), ((1870, 1930), 'wx.lib.plot.PlotGraphics', 'PlotGraphics', (['[linea]', '"""Resultados"""', '"""Peticiones"""', '"""codigos"""'], {}), "([linea], 'Resultados', 'Peticiones', 'codigos')\n", (1882, 1930), False, 'from wx.lib.plot import PlotCanvas, PlotGraphics, PolyLine, PolyMarker\n')]
from copy import deepcopy import numpy as np from batchopt.optimizers.base_optimizer import BaseOptimizer, RandomRelocator class SineCosineAlgorithm(BaseOptimizer): """ Sine-Cosine Algorithm """ A = 2.0 def __init__( self, domain_range, log=True, epoch=750, pop_size=100, relocator=RandomRelocator, ): super().__init__(domain_range, log, epoch, pop_size, relocator) @property def is_update_improved(self): return True def generate_new_position(self): prev_position = self.prev_position r1 = self.A - (self.current_epoch + 1) * (self.A / self.epoch) r2 = 2 * np.pi * np.random.uniform(size=(self.pop_size, self.problem_size)) r3 = 2 * np.random.uniform(size=(self.pop_size, self.problem_size)) r4 = np.random.uniform(size=(self.pop_size, self.problem_size)) # Update the position of solutions with respect to destination temp1 = deepcopy(prev_position) temp2 = deepcopy(prev_position) broadcasted_g_best_pos = np.broadcast_to( self.g_best_pos, (self.pop_size, self.problem_size) ) temp1 = temp1 + r1 * np.sin(r2) * np.abs(r3 * broadcasted_g_best_pos - temp1) temp2 = temp2 + r1 * np.cos(r2) * np.abs(r3 * broadcasted_g_best_pos - temp2) new_position_list = np.where(r4 >= 0.5, temp1, temp2) # TODO: this is improve idea: using same random in population axis. # rand_amend = np.random.uniform( # self.domain_range[0], self.domain_range[1], size=(self.pop_size, 1), # ) # rand_amend = np.broadcast_to(rand_amend, (self.pop_size, self.problem_size)) return new_position_list
[ "numpy.abs", "numpy.where", "numpy.random.uniform", "numpy.cos", "copy.deepcopy", "numpy.sin", "numpy.broadcast_to" ]
[((846, 904), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(self.pop_size, self.problem_size)'}), '(size=(self.pop_size, self.problem_size))\n', (863, 904), True, 'import numpy as np\n'), ((992, 1015), 'copy.deepcopy', 'deepcopy', (['prev_position'], {}), '(prev_position)\n', (1000, 1015), False, 'from copy import deepcopy\n'), ((1032, 1055), 'copy.deepcopy', 'deepcopy', (['prev_position'], {}), '(prev_position)\n', (1040, 1055), False, 'from copy import deepcopy\n'), ((1089, 1157), 'numpy.broadcast_to', 'np.broadcast_to', (['self.g_best_pos', '(self.pop_size, self.problem_size)'], {}), '(self.g_best_pos, (self.pop_size, self.problem_size))\n', (1104, 1157), True, 'import numpy as np\n'), ((1380, 1413), 'numpy.where', 'np.where', (['(r4 >= 0.5)', 'temp1', 'temp2'], {}), '(r4 >= 0.5, temp1, temp2)\n', (1388, 1413), True, 'import numpy as np\n'), ((698, 756), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(self.pop_size, self.problem_size)'}), '(size=(self.pop_size, self.problem_size))\n', (715, 756), True, 'import numpy as np\n'), ((774, 832), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(self.pop_size, self.problem_size)'}), '(size=(self.pop_size, self.problem_size))\n', (791, 832), True, 'import numpy as np\n'), ((1222, 1265), 'numpy.abs', 'np.abs', (['(r3 * broadcasted_g_best_pos - temp1)'], {}), '(r3 * broadcasted_g_best_pos - temp1)\n', (1228, 1265), True, 'import numpy as np\n'), ((1308, 1351), 'numpy.abs', 'np.abs', (['(r3 * broadcasted_g_best_pos - temp2)'], {}), '(r3 * broadcasted_g_best_pos - temp2)\n', (1314, 1351), True, 'import numpy as np\n'), ((1209, 1219), 'numpy.sin', 'np.sin', (['r2'], {}), '(r2)\n', (1215, 1219), True, 'import numpy as np\n'), ((1295, 1305), 'numpy.cos', 'np.cos', (['r2'], {}), '(r2)\n', (1301, 1305), True, 'import numpy as np\n')]