code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
from sklearn.linear_model import LogisticRegression import numpy as np from . import AbstractZnormClassifier class LogisticRegressionClassifier(AbstractZnormClassifier): """Classifier which uses regularized logistic regression""" def __init__(self, C=1, phi=None, degree=3, **kwargs): # keyword arguments are passed on to scikit-learn's SVM implementation # see http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html # relevant kwargs (* indicates default): # C (float): 1* (inverse of regularization strength) # penalty (string): "l1" or "l2"* (norm to regularize against) # n_jobs (int): 1* or more (cores used to parallelize CV; -1 for all) super(LogisticRegressionClassifier, self).__init__( "Logistic Regression", C=C, phi=phi, degree=degree, **kwargs) self._lr = LogisticRegression(C=C, **kwargs) if phi is None or (phi == "poly" and degree == 1): self.phi = lambda X: X elif phi == "poly": self.phi = lambda X: poly_expand(X, degree) else: self.phi = phi # train a logistic regression model on a provided dataset def _train(self, X, Y): self._lr.fit(self.phi(X), Y) # classify a set of test points def _classify(self, test_X): return self._lr.predict(self.phi(test_X)) # perform Nth-degree polynomial feature basis expansion def poly_expand(X, n): ft_powers = np.array([X ** i for i in np.arange(n) + 1]) return np.swapaxes(ft_powers, 0, 1).reshape((X.shape[0], -1)) #from . import test_classifier # #for C in (0.01, 0.1, 1, 2, 5, 10, 25): # for penalty in ("l1", "l2"): # test_classifier(LogisticRegressionClassifier( # C=C, penalty=penalty, class_weight="balanced"))
[ "numpy.swapaxes", "numpy.arange", "sklearn.linear_model.LogisticRegression" ]
[((908, 941), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'C': 'C'}), '(C=C, **kwargs)\n', (926, 941), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1564, 1592), 'numpy.swapaxes', 'np.swapaxes', (['ft_powers', '(0)', '(1)'], {}), '(ft_powers, 0, 1)\n', (1575, 1592), True, 'import numpy as np\n'), ((1534, 1546), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (1543, 1546), True, 'import numpy as np\n')]
import numpy as np v0 = 4.5 # Initial velocity g = 9.81 # Acceleration of gravity t = np.linspace(0, 1, 1000) # 1000 points in time interval y = v0*t - 0.5*g*t**2 # Generate all heights # Find index where ball approximately has reached y=0 i = 0 while y[i] >= 0: i = i + 1 # Since y[i] is the height at time t[i], we do know the # time as well when we have the index i... print('Time of flight (in seconds): {:g}'.format(t[i])) # We plot the path again just for comparison import matplotlib.pyplot as plt plt.plot(t, y) plt.plot(t, 0*t, 'g--') plt.xlabel('Time (s)') plt.ylabel('Height (m)') plt.show()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.linspace", "matplotlib.pyplot.show" ]
[((131, 154), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(1000)'], {}), '(0, 1, 1000)\n', (142, 154), True, 'import numpy as np\n'), ((580, 594), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'y'], {}), '(t, y)\n', (588, 594), True, 'import matplotlib.pyplot as plt\n'), ((596, 621), 'matplotlib.pyplot.plot', 'plt.plot', (['t', '(0 * t)', '"""g--"""'], {}), "(t, 0 * t, 'g--')\n", (604, 621), True, 'import matplotlib.pyplot as plt\n'), ((621, 643), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (s)"""'], {}), "('Time (s)')\n", (631, 643), True, 'import matplotlib.pyplot as plt\n'), ((645, 669), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Height (m)"""'], {}), "('Height (m)')\n", (655, 669), True, 'import matplotlib.pyplot as plt\n'), ((671, 681), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (679, 681), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- """ 回测 """ from futu import * from talib.abstract import * import numpy as np import pandas as pd import datetime import time import os import json import copy import math import sqlite3 from re import sub import itertools class Tools(object): def cuo_die_0(self, inputs, item, hands): cd_l_3 = (inputs['close'].values[item]-inputs['close'].values[item-1])/(inputs['close'].values[item-1]*hands) cd_m_3 = cd_l_3 cd_n_3 = cd_m_3 cd_o_3 = (1+cd_n_3)/(1+cd_m_3)-1 cd_p_3 = 0 cd_o_max = [] cd_p_max = [] cd_o_max.append(cd_o_3) cd_p_max.append(cd_p_3) return cd_l_3, cd_m_3, cd_n_3, cd_o_3, cd_p_3, cd_o_max, cd_p_max def cuo_die(self, inputs, item, hands, cd_m_3, cd_n_3, cd_p_3, cd_o_max, cd_p_max): cd_l_3 = (inputs['close'].values[item]-inputs['close'].values[item-1])/(inputs['close'].values[item-1]*hands) cd_m_3 = (1+cd_m_3)*(1+cd_l_3)-1 cd_n_3 = max(cd_n_3, cd_m_3) cd_o_3 = (1+cd_n_3)/(1+cd_m_3)-1 if 0==cd_o_3: cd_p_3 = 0 else: cd_p_3 += 1 cd_o_max.append(cd_o_3) cd_p_max.append(cd_p_3) return cd_l_3, cd_m_3, cd_n_3, cd_o_3, cd_p_3, cd_o_max, cd_p_max def yong_jin(self, cost, cost2): cost = cost * 0.00171 + 0.05 cost2 = cost2 * 0.00171 + 0.05 return max(cost, 0.1007, cost2) hs_300 = ['SZ.000596', 'SZ.000625', 'SZ.002736', 'SZ.002739', 'SZ.002773', 'SZ.300433', 'SZ.000002', 'SZ.000001', 'SZ.000538', 'SZ.000568', 'SZ.000425', 'SZ.000627', 'SZ.000651', 'SZ.000656', 'SZ.000671', 'SZ.000708', 'SZ.000703', 'SZ.000709', 'SZ.000723', 'SZ.000786', 'SZ.000776', 'SZ.000728', 'SZ.000066', 'SZ.000768', 'SZ.000783', 'SZ.000069', 'SZ.000063', 'SZ.000876', 'SZ.000858', 'SZ.000860', 'SZ.000895', 'SZ.000938', 'SZ.000961', 'SZ.000977', 'SZ.000157', 'SH.600570', 'SZ.000100', 'SZ.002001', 'SZ.002008', 'SZ.002024', 'SZ.002027', 'SZ.002032', 'SZ.002044', 'SZ.002050', 'SZ.000725', 'SZ.002120', 'SZ.002129', 'SZ.000338', 'SZ.002142', 'SZ.002146', 'SZ.002153', 'SZ.002157', 'SZ.002179', 'SZ.002230', 'SZ.002236', 'SZ.002241', 'SZ.002252', 'SZ.002271', 'SH.601888', 'SZ.002304', 'SZ.002311', 'SZ.002352', 'SZ.002371', 'SZ.002410', 'SZ.002415', 'SZ.002456', 'SZ.002460', 'SZ.002463', 'SZ.002466', 'SZ.002468', 'SZ.002475', 'SZ.002202', 'SZ.002493', 'SZ.002508', 'SH.601992', 'SZ.002555', 'SZ.002558', 'SZ.002601', 'SZ.002602', 'SZ.002607', 'SZ.002624', 'SH.601231', 'SZ.002673', 'SZ.000333', 'SZ.002714', 'SZ.002594', 'SZ.000166', 'SZ.001979', 'SZ.002841', 'SZ.002916'] m_tools = Tools() def strategy(inputs, item_x): m_stdev = [] job = '' cost, hands = 0, 0 num = 0 for item in range(2, len(inputs)-1): stdev = (inputs['close'].values[item]-inputs['close'].values[item-1])/(inputs['close'].values[item-1]*hands) if (0!=hands) and (0==num): cd_l_3, cd_m_3, cd_n_3, cd_o_3, cd_p_3, cd_o_max, cd_p_max = m_tools.cuo_die_0(inputs=inputs, item=item, hands=hands) num += 1 elif 0!=hands: cd_l_3, cd_m_3, cd_n_3, cd_o_3, cd_p_3, cd_o_max, cd_p_max = \ m_tools.cuo_die(inputs=inputs, item=item, hands=hands, cd_m_3=cd_m_3, cd_n_3=cd_n_3, cd_p_3=cd_p_3, cd_o_max=cd_o_max, cd_p_max=cd_p_max) # max(cd_o_max)最大搓跌,max(cd_p_max)最长搓跌期 if (max(cd_o_max) >= item_x[2]) or (max(cd_p_max) >= item_x[0]): m_stdev.append(stdev) cost, hands, num = 0, 0, 0 job = '搓跌超限,卖空!' continue if (inputs['cci'].values[item-2]<-100) and (inputs['cci'].values[item-1]>-100): job = '开始按日收盘价少量买进,直到出现其他信号' cost += inputs['close'].values[item] if hands!=0: m_stdev.append(stdev) hands += 1 continue if ('开始按日收盘价少量买进,直到出现其他信号'==job): cost2 = hands*inputs['close'].values[item] m_yong_jin = m_tools.yong_jin(cost=cost, cost2=cost2) if (cost2-cost-m_yong_jin) >= (cost*item_x[1]): if hands!=0: m_stdev.append(stdev) cost, hands, num = 0, 0, 0 job = '止盈,卖空!' continue else: cost += inputs['close'].values[item] if hands!=0: m_stdev.append(stdev) hands += 1 return m_stdev # 建立连接 quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111) # 获取用于回测的list,即包含在 (沪深300 - 医药股),且历史K线额度内 m_list = m_tools.hs_300 now = datetime.date.today() start = str(now - timedelta(days=3650)) end = str(now - timedelta(days=100)) m_list2 = copy.deepcopy(m_list) final_dict = {} while m_list: each_hz = m_list[0] try: inputs = [] ret, data, page_req_key = quote_ctx.request_history_kline(each_hz, start=start, end=end, max_count=1000) inputs.append(data) while (page_req_key != None): ret, data, page_req_key = quote_ctx.request_history_kline(each_hz, start=start, end=end, max_count=1000,page_req_key=page_req_key) inputs.append(data) inputs = pd.concat(inputs) # real = CCI(high, low, close, timeperiod=14) inputs['cci'] = CCI(inputs, timeperiod=14) inputs = inputs[14:] except Exception as e: time.sleep(31) continue else: final_dict[each_hz] = inputs m_list.remove(each_hz) # 结束后记得关闭当条连接,防止连接条数用尽 quote_ctx.close() # 元组进行笛卡尔积: # 搓跌期 item_cd_day = [] # 止盈 item_num = [] # 搓跌率 item_cd_rate = [] # 3个元组的笛卡尔积非常耗时,可以减少 for each in range(1,50): item_cd_day.append(each) for each in range(1,20): item_num.append(0+each*0.02) for each in range(1,20): item_cd_rate.append(0+each*0.02) item_output = itertools.product(item_cd_day,item_num,item_cd_rate) conn=sqlite3.connect('to_ali.db') c=conn.cursor() for item_x in item_output: num_0 = 0 data = {'code': [], '最大搓跌期': [], '止盈': [], '最大搓跌': [], '夏普比率': [],} for each_hz, value in final_dict.items(): m_stdev = strategy(inputs=value, item_x=item_x) m = [] for each in m_stdev: m.append(each-0.04/250) xia_pu = math.sqrt(250)*np.average(m)/np.std(m,ddof = 1) if xia_pu>=0.78: data['code'].append(each_hz) data['最大搓跌期'].append(item_x[0]) data['止盈'].append(item_x[1]) data['最大搓跌'].append(item_x[2]) data['夏普比率'].append(xia_pu) if data['code']: df = pd.DataFrame(data) num_0 += 1 if num_0: df.to_sql(name=f'cd{item_x[0]}-{item_x[1]}-{item_x[2]}-xia_pu', con=conn, if_exists="replace") print(f'当前时间: {str(datetime.datetime.now())[:19]}, 最大搓跌期 {item_x[0]} 天, 止盈 = {item_x[1]}, 最大搓跌 {item_x[2]} 已存入数据库\n') #获取表名,保存在tab_name列表 c.execute("select name from sqlite_master where type='table'") tab_name=c.fetchall() tab_name=[line[0] for line in tab_name if ('-xia_pu' in line[0])] print(f'数据表个数: {len(tab_name)}') m_max = 0 result = [] m_error = [] for each in tab_name: # re.sub 这个方法将需要的SQL内容替换掉 sql = "select count(*) from 'pid'" try: m = pd.read_sql(sub("pid", each, sql), conn).values[0][0] except Exception as e: m_error.append(each) continue if m > m_max: result = [each, ] m_max = m elif m==m_max: result.append(each) for each in result: sql = "select * from 'pid'" m = pd.read_sql(sub("pid", each, sql), conn) print(m) print(f'夏普比率>=0.78的股票有 {len(m)} 支') print(f'冠军为:\n') print(result[0]) print('error:\n') print(m_error) conn.close()
[ "sqlite3.connect", "numpy.average", "numpy.std", "itertools.product", "math.sqrt", "time.sleep", "datetime.datetime.now", "copy.deepcopy", "pandas.DataFrame", "re.sub", "datetime.date.today", "pandas.concat" ]
[((4728, 4749), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (4747, 4749), False, 'import datetime\n'), ((4837, 4858), 'copy.deepcopy', 'copy.deepcopy', (['m_list'], {}), '(m_list)\n', (4850, 4858), False, 'import copy\n'), ((5940, 5994), 'itertools.product', 'itertools.product', (['item_cd_day', 'item_num', 'item_cd_rate'], {}), '(item_cd_day, item_num, item_cd_rate)\n', (5957, 5994), False, 'import itertools\n'), ((5998, 6026), 'sqlite3.connect', 'sqlite3.connect', (['"""to_ali.db"""'], {}), "('to_ali.db')\n", (6013, 6026), False, 'import sqlite3\n'), ((5314, 5331), 'pandas.concat', 'pd.concat', (['inputs'], {}), '(inputs)\n', (5323, 5331), True, 'import pandas as pd\n'), ((6720, 6738), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (6732, 6738), True, 'import pandas as pd\n'), ((7657, 7678), 're.sub', 'sub', (['"""pid"""', 'each', 'sql'], {}), "('pid', each, sql)\n", (7660, 7678), False, 'from re import sub\n'), ((5501, 5515), 'time.sleep', 'time.sleep', (['(31)'], {}), '(31)\n', (5511, 5515), False, 'import time\n'), ((6433, 6450), 'numpy.std', 'np.std', (['m'], {'ddof': '(1)'}), '(m, ddof=1)\n', (6439, 6450), True, 'import numpy as np\n'), ((6404, 6418), 'math.sqrt', 'math.sqrt', (['(250)'], {}), '(250)\n', (6413, 6418), False, 'import math\n'), ((6419, 6432), 'numpy.average', 'np.average', (['m'], {}), '(m)\n', (6429, 6432), True, 'import numpy as np\n'), ((6906, 6929), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6927, 6929), False, 'import datetime\n'), ((7361, 7382), 're.sub', 'sub', (['"""pid"""', 'each', 'sql'], {}), "('pid', each, sql)\n", (7364, 7382), False, 'from re import sub\n')]
from math import erf from numpy import array as vec from numpy.linalg import norm as vec_size from pandas import DataFrame def approx(a, m, x): return ((a+x)**m-(a-x)**m)/((a+x)**m+(a-x)**m) def quadratic_error(a, m, x): err = approx(a, m, x)-erf(x) return err**2 def average_quadratic_error(a, m): step = 0.1 integral = integrate_quad_error(a, m, step) return integral/(a-step) def integrate_quad_error(a, m, step): point = 0 summ = 0 while point < a-step: value = quadratic_error(a, m, point) df = quadratic_error(a, m, point+step) summ += value*step+0.5*df*step point += step return summ def derive_2d(f, point, h): x = point[0] y = point[1] z = f(x, y) dx = f(x+h, y)-z dy = f(x, y+h)-z return vec((dx/h, dy/h)) def find_min_error_2d(start, max_iters): print(f"Start: {str(start)}") path = [] gamma = 0.1 # Step size multiplier precision = 0.000001 # Desired precision of result 0.0000001 1e-7 dx = 0.001 # 0.0000001 current = start next = current for i in range(max_iters): if i % 10 == 0: print(f"{i}/{max_iters}") current = next next = current- gamma*derive_2d(average_quadratic_error, current, dx) err = average_quadratic_error(next[0], next[1]) path.append((next[0], next[1], err)) step = vec_size(next-current) if abs(step) <= precision: break return next, path def main(): start = (2.3, 2.5) max_iters = 2000 point, path = find_min_error_2d(start, max_iters) df = DataFrame(path) df.to_csv(f"./data/algebraic_2d.csv", header=["a", "m", "error"], index = False) print(f"Closest point is {point}") if __name__ == '__main__': main()
[ "pandas.DataFrame", "numpy.array", "numpy.linalg.norm", "math.erf" ]
[((808, 829), 'numpy.array', 'vec', (['(dx / h, dy / h)'], {}), '((dx / h, dy / h))\n', (811, 829), True, 'from numpy import array as vec\n'), ((1634, 1649), 'pandas.DataFrame', 'DataFrame', (['path'], {}), '(path)\n', (1643, 1649), False, 'from pandas import DataFrame\n'), ((254, 260), 'math.erf', 'erf', (['x'], {}), '(x)\n', (257, 260), False, 'from math import erf\n'), ((1412, 1436), 'numpy.linalg.norm', 'vec_size', (['(next - current)'], {}), '(next - current)\n', (1420, 1436), True, 'from numpy.linalg import norm as vec_size\n')]
import datetime from pathlib import Path from typing import Any, Callable, Iterable, List, NamedTuple, Optional import numpy as np from tqdm import tqdm from vcap import BaseCapsule, NodeDescription from vcap.testing.input_output_validation import make_detection_node from capsules import CapsuleDir from workers import CapsuleThreadPool class BenchmarkSuite: class Result(NamedTuple): capsule_name: str num_workers: int num_samples: int fps: float def __init__(self, capsule_dir: Path, num_workers: Iterable[int], image_func: Optional[Callable[[], np.ndarray]] = None): """ :param capsule_dir: Directory containing unpackaged capsules to test :param num_workers: Iterable containing the different num_worker values to test :param image_func: Function that returns an image. Can return the same image over and over, or different images """ self.capsule_dir = CapsuleDir(capsule_dir) self.num_workers = num_workers # Generate a random image to run the benchmark on. # Generating an image for each process_frame has a big overhead, # limiting speed to < 100 FPS. self.rng = np.random.RandomState(1337) self.image = self.rng.randint(0, 255, (1920, 1080, 3), dtype=np.uint8) self.image.flags.writeable = False self.capsule_dir.package_capsules() def test(self, num_samples: int) -> List[Result]: results: List[self.Result] = [] total_tests = len(self.capsule_dir) * len(list(self.num_workers)) with tqdm(total=total_tests) as progress_bar: for capsule in self.capsule_dir: for num_workers in self.num_workers: worker_pool = CapsuleThreadPool(num_workers) duration = self.perform_test(capsule, worker_pool, num_samples) result = self.Result( capsule_name=capsule.name, num_workers=num_workers, num_samples=num_samples, fps=num_samples / duration.total_seconds() ) results.append(result) progress_bar.update(1) worker_pool.shutdown() capsule.close() return results def generate_input_kwargs(self, capsule): if capsule.input_type.size is NodeDescription.Size.NONE: input_node = None else: input_node = make_detection_node(self.image.shape, capsule.input_type) # Set node size to cover entire frame height, width, _ = self.image.shape input_node.coords = [[0, 0], [width, 0], [width, height], [0, height]] if capsule.input_type.size is NodeDescription.Size.ALL: input_node = [input_node] return {"frame": self.image, "detection_node": input_node, "options": capsule.default_options, "state": capsule.stream_state()} def perform_test(self, capsule: BaseCapsule, worker_pool: CapsuleThreadPool, num_samples: int) \ -> datetime.timedelta: # Warm things up, such as getting model on GPU if capsule uses it warmup_results = worker_pool.map( lambda kwargs: capsule.process_frame(**kwargs), [self.generate_input_kwargs(capsule) for _ in range(50)] ) for _ in warmup_results: pass # Generate test args before starting the test, so that the # benchmark is purely just for the capsule test_inputs = [self.generate_input_kwargs(capsule) for _ in range(num_samples)] # Begin the benchmark start_time = datetime.datetime.now() results = worker_pool.map( lambda kwargs: capsule.process_frame(**kwargs), test_inputs) for _ in results: pass end_time = datetime.datetime.now() duration = end_time - start_time return duration
[ "capsules.CapsuleDir", "tqdm.tqdm", "workers.CapsuleThreadPool", "datetime.datetime.now", "vcap.testing.input_output_validation.make_detection_node", "numpy.random.RandomState" ]
[((994, 1017), 'capsules.CapsuleDir', 'CapsuleDir', (['capsule_dir'], {}), '(capsule_dir)\n', (1004, 1017), False, 'from capsules import CapsuleDir\n'), ((1248, 1275), 'numpy.random.RandomState', 'np.random.RandomState', (['(1337)'], {}), '(1337)\n', (1269, 1275), True, 'import numpy as np\n'), ((4023, 4046), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4044, 4046), False, 'import datetime\n'), ((4231, 4254), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4252, 4254), False, 'import datetime\n'), ((1664, 1687), 'tqdm.tqdm', 'tqdm', ([], {'total': 'total_tests'}), '(total=total_tests)\n', (1668, 1687), False, 'from tqdm import tqdm\n'), ((2650, 2707), 'vcap.testing.input_output_validation.make_detection_node', 'make_detection_node', (['self.image.shape', 'capsule.input_type'], {}), '(self.image.shape, capsule.input_type)\n', (2669, 2707), False, 'from vcap.testing.input_output_validation import make_detection_node\n'), ((1837, 1867), 'workers.CapsuleThreadPool', 'CapsuleThreadPool', (['num_workers'], {}), '(num_workers)\n', (1854, 1867), False, 'from workers import CapsuleThreadPool\n')]
import pandas as pd import numpy as np from .Team import Team from .FootballModel import FootballModel from ..utils import array_sum_to_one, exists, to_percent from .ResultType import ResultType class Game: ''' ''' def __init__(self, model: FootballModel, team_1: str, team_2: str, max_goals=20): self.team_1 = Team(name=team_1) self.team_2 = Team(name=team_2) self.model = model self.max_goals = max_goals def format_game(self, team_1: Team, team_2: Team): ''' ''' game = pd.DataFrame( data={'team': team_1.name, 'opponent': team_2.name}, index=[1]) return game def is_team_1(self, team: Team): ''' ''' return team.name == self.team_1.name def set_team_goals_proba(self, team: Team): ''' ''' if self.is_team_1(team): team_1, team_2 = self.team_1, self.team_2 else: team_1, team_2 = self.team_2, self.team_1 game = self.format_game(team_1=team_1, team_2=team_2) team.avg_goals = self.model.predict_avg_score(game) team.compute_proba_goals(max_goals=self.max_goals) def compute_result_proba(self): ''' ''' self.proba_team_1 = np.sum(np.tril(self.result_proba_matrix, -1)) self.proba_draw = np.sum(np.diag(self.result_proba_matrix)) self.proba_team_2 = np.sum(np.triu(self.result_proba_matrix, 1)) self.proba_team_1 = to_percent(self.proba_team_1) self.proba_draw = to_percent(self.proba_draw) self.proba_team_2 = to_percent(self.proba_team_2) print(self.proba_team_1) # result_proba_list = [self.proba_team_1, # self.proba_draw, # self.proba_team_2] # self.result_proba = array_sum_to_one(result_proba_list) # del result_proba_list def set_result_attr(self, result_type: ResultType, winner, looser): ''' ''' self.result_type = result_type self.winner = winner self.looser = looser def set_result(self): ''' ''' if not exists(var=self.result): return if (self.result[0] > self.result[1]): self.set_result_attr(result_type=ResultType.WIN_TEAM_1, winner=self.team_1, looser=self.team_2) elif (self.result[0] == self.result[1]): self.set_result_attr(result_type=ResultType.DRAW, winner=None, looser=None) else: self.set_result_attr(result_type=ResultType.WIN_TEAM_2, winner=self.team_2, looser=self.team_1) def is_winner(self, team: Team): ''' ''' return team == self.winner def is_looser(self, team: Team): ''' ''' return team == self.looser def and_the_winner_is(self): ''' ''' self.result = np.where(self.result_proba_matrix == np.amax(self.result_proba_matrix)) self.set_result() def compute_result(self): ''' ''' self.set_team_goals_proba(self.team_1) self.set_team_goals_proba(self.team_2) self.result_proba_matrix = np.outer(self.team_1.proba_goals, self.team_2.proba_goals) self.compute_result_proba() self.and_the_winner_is() for index, proba in np.ndenumerate(self.result_proba_matrix): self.result_proba_matrix[index] = to_percent(proba)
[ "numpy.ndenumerate", "numpy.diag", "numpy.outer", "numpy.tril", "pandas.DataFrame", "numpy.amax", "numpy.triu" ]
[((549, 625), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'team': team_1.name, 'opponent': team_2.name}", 'index': '[1]'}), "(data={'team': team_1.name, 'opponent': team_2.name}, index=[1])\n", (561, 625), True, 'import pandas as pd\n'), ((3420, 3478), 'numpy.outer', 'np.outer', (['self.team_1.proba_goals', 'self.team_2.proba_goals'], {}), '(self.team_1.proba_goals, self.team_2.proba_goals)\n', (3428, 3478), True, 'import numpy as np\n'), ((3622, 3662), 'numpy.ndenumerate', 'np.ndenumerate', (['self.result_proba_matrix'], {}), '(self.result_proba_matrix)\n', (3636, 3662), True, 'import numpy as np\n'), ((1284, 1321), 'numpy.tril', 'np.tril', (['self.result_proba_matrix', '(-1)'], {}), '(self.result_proba_matrix, -1)\n', (1291, 1321), True, 'import numpy as np\n'), ((1356, 1389), 'numpy.diag', 'np.diag', (['self.result_proba_matrix'], {}), '(self.result_proba_matrix)\n', (1363, 1389), True, 'import numpy as np\n'), ((1426, 1462), 'numpy.triu', 'np.triu', (['self.result_proba_matrix', '(1)'], {}), '(self.result_proba_matrix, 1)\n', (1433, 1462), True, 'import numpy as np\n'), ((3174, 3207), 'numpy.amax', 'np.amax', (['self.result_proba_matrix'], {}), '(self.result_proba_matrix)\n', (3181, 3207), True, 'import numpy as np\n')]
""" permutation-flowshop repository This module has two examples on how to setup and run the algorithm for Permutation Flowshop scheduling problems. The first one uses random generated data, while the second uses one of the instances from the Taillard benchmark set. """ import numpy as np import benchmark from iterated_greedy import IteratedGreedy def example1_random_data(): """Execute the algorithm with randomly generated data.""" # Generate a (20, 5) array with integer numbers rnd_data = np.random.randint(size=(20,5), low=5, high=80) print(rnd_data) ig = IteratedGreedy(rnd_data) # Create problem instance ig.run(5000) # Run the default algorithm for 5000ms (5 seconds) # Print results to console print("Best makespan", ig.best_solution.makespan,"iterations:", ig.iterations) print("Job sequence:", ig.best_solution.sequence) def example2_taillard(): """Execute the algorithm with the first Taillard instance.""" # Load instance instance = benchmark.import_taillard()[0] print(instance) ig = IteratedGreedy(instance) # Run the algorithm with local search on partial solutions # and removing 5 jobs at each iteration ig.local_search_partial_solution = True ig.num_jobs_remove = 5 ig.run(10000) # Print results to console print("Best makespan", ig.best_solution.makespan,"iterations:", ig.iterations) print("Job sequence:", ig.best_solution.sequence) if __name__ == "__main__": example1_random_data() example2_taillard()
[ "benchmark.import_taillard", "iterated_greedy.IteratedGreedy", "numpy.random.randint" ]
[((512, 559), 'numpy.random.randint', 'np.random.randint', ([], {'size': '(20, 5)', 'low': '(5)', 'high': '(80)'}), '(size=(20, 5), low=5, high=80)\n', (529, 559), True, 'import numpy as np\n'), ((589, 613), 'iterated_greedy.IteratedGreedy', 'IteratedGreedy', (['rnd_data'], {}), '(rnd_data)\n', (603, 613), False, 'from iterated_greedy import IteratedGreedy\n'), ((1071, 1095), 'iterated_greedy.IteratedGreedy', 'IteratedGreedy', (['instance'], {}), '(instance)\n', (1085, 1095), False, 'from iterated_greedy import IteratedGreedy\n'), ((1010, 1037), 'benchmark.import_taillard', 'benchmark.import_taillard', ([], {}), '()\n', (1035, 1037), False, 'import benchmark\n')]
# -*- coding: utf-8 -*- from .common import * from ccxt.base.errors import AuthenticationError, ExchangeError, ExchangeNotAvailable, RequestTimeout from requests.exceptions import ConnectionError, HTTPError, ReadTimeout from socket import gaierror, timeout from urllib3.exceptions import MaxRetryError, NewConnectionError, ReadTimeoutError import ccxt import numpy as np db_suffix = '.ww' net_errors = (AuthenticationError, ExchangeError, ExchangeNotAvailable, RequestTimeout, ConnectionError, HTTPError, ReadTimeout, gaierror, timeout, MaxRetryError, NewConnectionError, ReadTimeoutError) secs_in_hour, tabs = 3600, 2 net_errors_counter = 0 def exchange(exchange_id): """ todo :param exchange_id: :return: """ argv = locals() exchange_obj = None try: auth = setup(exchange_id.upper(), config_path='bin/.keys') exchange_obj = getattr(ccxt, exchange_id)(dict(auth)) exchange_obj.options['warnOnFetchOpenOrdersWithoutSymbol'] = False if not int(setup()['offline']): exchange_obj.loadMarkets() except net_errors: return _net_except(exchange_obj, exchange, argv, format_exc()) except: logg(format_exc(), exchange_id) return exchange_obj def symbols(exchange_obj, btc_only=True): """ todo :param exchange_obj: :param btc_only: :return: """ argv = locals() tmp = {} try: wait() tmp = {d['symbol']: (d['limits']['amount']['max'], d['limits']['amount']['min'], d['precision']['amount'], d['limits']['price']['max'], d['limits']['price']['min'], d['precision']['price'],) for d in exchange_obj.fetch_markets() if d['active']} if btc_only: return {k: v for k, v in tmp.items() if (k[:4] == 'BTC/' or k[-4:] == '/BTC') and 'BNB' not in k} except net_errors: return _net_except(exchange_obj, symbols, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return tmp def history(exchange_obj, symbol, cutoff=None, hours=1): """ Many thanks to "xmatthias": https://github.com/xmatthias https://github.com/ccxt/ccxt/issues/5697 :param exchange_obj: :param symbol: :param cutoff: :param hours: :return: """ argv = locals() void = np.array([], dtype='float64').reshape(0, 3) try: if cutoff is None: cutoff = time() since = int(1E3 * (cutoff - hours * secs_in_hour)) until = int(1E3 * cutoff) wait() data = exchange_obj.fetch_trades(symbol, since=since) if not len(data): return void old_id = data[-1]['id'] while data[-1]['timestamp'] < until and not halt(): wait() tmp = exchange_obj.fetch_trades(symbol, params={ 'fromId': old_id}, limit=1000) new_id = tmp[-1]['id'] if len(tmp) and new_id != old_id: data.extend(tmp) old_id = data[-1]['id'] else: break hh = [(e, a, p) for t, (e, a, p) in sorted( {int(d['id']): (d['timestamp'] / 1E3, [1, -1][d['side'] == 'sell'] * d['amount'], d['price']) for d in data}.items() ) if since < 1E3 * e <= until] if len(hh): return np.array(hh) except net_errors: return _net_except(exchange_obj, history, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return void def book(exchange_obj, symbol, margin=0): """ todo :param exchange_obj: :param symbol: :param margin: :return: """ argv = locals() void = np.array([], dtype='float64').reshape(0, 2) try: wait() req = exchange_obj.fetch_order_book(symbol, limit=500) asks = [(p, a) for p, a in sorted(req['asks'])] bids = [(p, -a) for p, a in sorted(req['bids'], reverse=True)] if margin > 0: if type(margin) == float: h_ask = (1 + margin / 100) * asks[0][0] l_bid = (1 - margin / 100) * bids[0][0] asks = [(p, a) for p, a in asks if p <= h_ask] bids = [(p, a) for p, a in bids if p >= l_bid] else: asks, bids = asks[:margin], bids[:margin] bb = sorted(asks + bids, reverse=True) if len(bb): return np.array(bb) except IndexError: pass except net_errors: return _net_except(exchange_obj, book, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return void def balance(exchange_obj): """ todo :param exchange_obj: :return: """ argv = locals() tmp = {'BTC': (0., 0.)} try: wait() req = exchange_obj.fetch_balance() for currency, available in req['free'].items(): on_orders = req['used'][currency] if available + on_orders > 0: tmp[currency] = (available, on_orders) if exchange_obj.id == 'bittrex' and 'BTXCRD' in tmp: del tmp['BTXCRD'] except net_errors: return _net_except(exchange_obj, balance, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return tmp def fire(exchange_obj, symbol, amount, price, order_type='limit'): """ todo :param exchange_obj: :param symbol: :param amount: :param price: :param order_type: :return: """ argv = locals() req = {} try: if not setup()['runMode'].upper() in ['LIVE', 'TEST']: return 'PLAY_' + str(int(1E3 * time())), price params = (symbol, order_type, 'buy', amount, price) if amount > 0 else ( symbol, order_type, 'sell', -amount, price) wait() req = exchange_obj.create_order(*params) _cached(exchange_obj, req) except net_errors: return _net_except(exchange_obj, fire, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return req['id'], req['price'] def orders(exchange_obj, id_only=True): """ todo :param exchange_obj: :param id_only: :return: """ argv = locals() tmp = set() try: if not setup()['runMode'].upper() in ['LIVE', 'TEST']: return tmp orders_cache = _cached(exchange_obj)['data'] eligible = {order_dict['symbol'] for order_dict in orders_cache.values()} for ss in eligible: wait() for order_dict in exchange_obj.fetch_open_orders(symbol=ss): if order_dict['status'] == 'open': side = -1 if order_dict['side'] == 'sell' else 1 tmp.add((order_dict['id'], order_dict['timestamp'], order_dict['symbol'], side * order_dict['amount'], order_dict['price'])) if id_only and len(tmp): return set(list(zip(*tmp))[0]) except net_errors: return _net_except(exchange_obj, orders, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return tmp def cancel(exchange_obj, order_id): """ todo :param exchange_obj: :param order_id: :return: """ argv = locals() minus_sign = '-' try: if not setup()['runMode'].upper() in ['LIVE', 'TEST']: return minus_sign + order_id orders_cache = _cached(exchange_obj)['data'] if order_id not in orders_cache: return minus_sign cached_order = orders_cache[order_id] symbol = cached_order['symbol'] if cached_order['status'] == 'open': wait() exchange_obj.cancel_order(order_id, symbol) cached_order['status'] = 'canceled' _cached(exchange_obj, cached_order) return minus_sign + order_id.upper() except net_errors: return _net_except(exchange_obj, cancel, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return minus_sign def _cached(exchange_obj, order_data=None, before_millis=None): """ todo :param exchange_obj: :param order_data: :param before_millis: :return: """ argv = locals() db_file = exchange_obj.id + db_suffix tmp = {} try: if before_millis is None: before_millis = exchange_obj.milliseconds() - 7 * 24 * secs_in_hour * 1000 exchange_obj.purge_cached_orders(before_millis) template = {'data': {}, 'last': 0., } tmp = disk(db_file) if not tmp.keys() == template.keys(): tmp = template if order_data is not None: tmp['data'][order_data['id']] = order_data now = time() if now - tmp['last'] > secs_in_hour: wait() tmp['data'].update({order_dict['id']: order_dict for order_dict in exchange_obj.fetch_open_orders()}) tmp['last'] = now debug(msgg(701), exchange_obj.id, tabs) tmp['data'] = {k: v for k, v in tmp['data'].items() if v['timestamp'] >= before_millis} disk(db_file, tmp) except net_errors: return _net_except(exchange_obj, _cached, argv, format_exc()) except: logg(format_exc(), exchange_obj.id) return tmp def _net_except(exchange_obj, func_obj, func_params, errmsg, delay=12): """ todo :param exchange_obj: :param func_obj: :param func_params: :param errmsg: :param delay: :return: """ global net_errors_counter try: if net_errors_counter < 5: debug(msgg(702, delay), exchange_obj.id) wait(seconds=delay) net_errors_counter += 1 return func_obj(**func_params) else: logg(errmsg, exchange_obj.id) net_errors_counter = 0 except: logg(format_exc(), exchange_obj.id)
[ "numpy.array" ]
[((2572, 2601), 'numpy.array', 'np.array', (['[]'], {'dtype': '"""float64"""'}), "([], dtype='float64')\n", (2580, 2601), True, 'import numpy as np\n'), ((3633, 3645), 'numpy.array', 'np.array', (['hh'], {}), '(hh)\n', (3641, 3645), True, 'import numpy as np\n'), ((3994, 4023), 'numpy.array', 'np.array', (['[]'], {'dtype': '"""float64"""'}), "([], dtype='float64')\n", (4002, 4023), True, 'import numpy as np\n'), ((4716, 4728), 'numpy.array', 'np.array', (['bb'], {}), '(bb)\n', (4724, 4728), True, 'import numpy as np\n')]
"""Simulating time series, with aperiodic activity.""" import numpy as np from scipy.stats import zscore from scipy.linalg import toeplitz, cholesky from neurodsp.filt import filter_signal, infer_passtype from neurodsp.filt.fir import compute_filter_length from neurodsp.filt.checks import check_filter_definition from neurodsp.utils import remove_nans from neurodsp.utils.checks import check_param_range from neurodsp.utils.data import create_times, compute_nsamples from neurodsp.utils.decorators import normalize from neurodsp.spectral import rotate_powerlaw from neurodsp.sim.transients import sim_synaptic_kernel ################################################################################################### ################################################################################################### @normalize def sim_poisson_pop(n_seconds, fs, n_neurons=1000, firing_rate=2): """Simulate a Poisson population. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. n_neurons : int, optional, default: 1000 Number of neurons in the simulated population. firing_rate : float, optional, default: 2 Firing rate of individual neurons in the population. Returns ------- sig : 1d array Simulated population activity. Notes ----- The simulated signal is essentially white noise, but satisfies the Poisson property, i.e. mean(X) = var(X). The lambda parameter of the Poisson process (total rate) is determined as firing rate * number of neurons, i.e. summation of Poisson processes is still a Poisson processes. Note that the Gaussian approximation for a sum of Poisson processes is only a good approximation for large lambdas. Examples -------- Simulate a Poisson population: >>> sig = sim_poisson_pop(n_seconds=1, fs=500, n_neurons=1000, firing_rate=2) """ # Poisson population rate signal scales with # of neurons and individual rate lam = n_neurons * firing_rate # Variance is equal to the mean sig = np.random.normal(loc=lam, scale=lam**0.5, size=compute_nsamples(n_seconds, fs)) # Enforce that sig is non-negative in cases of low firing rate sig[np.where(sig < 0.)] = 0. return sig @normalize def sim_synaptic_current(n_seconds, fs, n_neurons=1000, firing_rate=2., tau_r=0., tau_d=0.01, t_ker=None): """Simulate a signal as a synaptic current, which has 1/f characteristics with a knee. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. n_neurons : int, optional, default: 1000 Number of neurons in the simulated population. firing_rate : float, optional, default: 2 Firing rate of individual neurons in the population. tau_r : float, optional, default: 0. Rise time of synaptic kernel, in seconds. tau_d : float, optional, default: 0.01 Decay time of synaptic kernel, in seconds. t_ker : float, optional Length of time of the simulated synaptic kernel, in seconds. Returns ------- sig : 1d array Simulated synaptic current. Notes ----- - This simulation is based on the one used in [1]_. - The resulting signal is most similar to unsigned intracellular current or conductance change. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2017). Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage, 158, 70–78. DOI: https://doi.org/10.1016/j.neuroimage.2017.06.078 Examples -------- Simulate a synaptic current signal: >>> sig = sim_synaptic_current(n_seconds=1, fs=500) """ # If not provided, compute t_ker as a function of decay time constant if t_ker is None: t_ker = 5. * tau_d # Simulate an extra bit because the convolution will trim & turn off normalization sig = sim_poisson_pop((n_seconds + t_ker), fs, n_neurons, firing_rate, mean=None, variance=None) ker = sim_synaptic_kernel(t_ker, fs, tau_r, tau_d) sig = np.convolve(sig, ker, 'valid')[:compute_nsamples(n_seconds, fs)] return sig @normalize def sim_knee(n_seconds, fs, chi1, chi2, knee): """Simulate a signal whose power spectrum has a 1/f structure with a knee. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. chi1 : float Power law exponent before the knee. chi2 : float Power law exponent added to chi1 after the knee. knee : float Location of the knee in Hz. Returns ------- sig : 1d array Time series with the desired power spectrum. Notes ----- This simulated time series has a power spectrum that follows the Lorentzian equation: `P(f) = 1 / (f**chi1 * (f**chi2 + knee))` - This simulation creates this power spectrum shape using a sum of sinusoids. - The slope of the log power spectrum before the knee is chi1 whereas after the knee it is chi2, but only when the sign of chi1 and chi2 are the same. Examples -------- Simulate a time series with chi1 of -1, chi2 of -2, and knee of 100: >> sim_knee(n_seconds=10, fs=1000, chi1=-1, chi2=-2, knee=100) """ times = create_times(n_seconds, fs) n_samples = compute_nsamples(n_seconds, fs) # Create frequencies for the power spectrum, which will be freqs of the summed cosines freqs = np.linspace(0, fs/2, num=int(n_samples//2 + 1), endpoint=True) # Drop the DC component freqs = freqs[1:] # Map the frequencies under the (square root) Lorentzian # This will give us the amplitude coefficients for the sinusoids cosine_coeffs = np.array([np.sqrt(1 / (freq ** -chi1 * (freq ** (-chi2 - chi1) + knee))) \ for freq in freqs]) # Add sinusoids with a random phase shift sig = np.sum(np.array([cosine_coeffs[ell] * \ np.cos(2 * np.pi * freq * times + 2 * np.pi * np.random.rand()) \ for ell, freq in enumerate(freqs)]), axis=0) return sig @normalize def sim_random_walk(n_seconds, fs, theta=1., mu=0., sigma=5.): """Simulate a mean-reverting random walk, as an Ornstein-Uhlenbeck process. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. theta : float, optional, default: 1.0 Memory scale parameter. Larger theta values create faster fluctuations. mu : float, optional, default: 0.0 Mean of the random walk. sigma : float, optional, default: 5.0 Standard deviation of the random walk. Returns ------- sig : 1d array Simulated random walk signal. Notes ----- The random walk is simulated as a discretized Ornstein-Uhlenbeck process: `dx = theta*(x-mu)*dt + sigma*dWt` Where: - mu : mean - sigma : standard deviation - theta : memory scale - dWt : increments of Wiener process, i.e. white noise See the wikipedia page [1]_ for the integral solution. References ---------- .. [1] https://en.wikipedia.org/wiki/Ornstein-Uhlenbeck_process#Formal_solution Examples -------- Simulate a Ornstein-Uhlenbeck random walk: >>> sig = sim_random_walk(n_seconds=1, fs=500, theta=1.) """ times = create_times(n_seconds, fs) x0 = mu dt = times[1] - times[0] ws = np.random.normal(size=len(times)) ex = np.exp(-theta * times) ws[0] = 0. sig = x0 * ex + mu * (1. - ex) + sigma * ex * \ np.cumsum(np.exp(theta * times) * np.sqrt(dt) * ws) return sig @normalize def sim_powerlaw(n_seconds, fs, exponent=-2.0, f_range=None, **filter_kwargs): """Simulate a power law time series, with a specified exponent. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. exponent : float, optional, default: -2 Desired power-law exponent, of the form P(f)=f^exponent. f_range : list of [float, float] or None, optional Frequency range to filter simulated data, as [f_lo, f_hi], in Hz. **filter_kwargs : kwargs, optional Keyword arguments to pass to `filter_signal`. Returns ------- sig : 1d array Time-series with the desired power law exponent. Notes ----- - Powerlaw data with exponents is created by spectrally rotating white noise [1]_. References ---------- .. [1] <NAME>., & <NAME>. (1995). On Generating Power Law Noise. Astronomy and Astrophysics, 300, 707–710. Examples -------- Simulate a power law signal, with an exponent of -2 (brown noise): >>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-2.0) Simulate a power law signal, with a highpass filter applied at 2 Hz: >>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-1.5, f_range=(2, None)) """ # Compute the number of samples for the simulated time series n_samples = compute_nsamples(n_seconds, fs) # Get the number of samples to simulate for the signal # If signal is to be filtered, with FIR, add extra to compensate for edges if f_range and filter_kwargs.get('filter_type', None) != 'iir': pass_type = infer_passtype(f_range) filt_len = compute_filter_length(fs, pass_type, *check_filter_definition(pass_type, f_range), n_seconds=filter_kwargs.get('n_seconds', None), n_cycles=filter_kwargs.get('n_cycles', 3)) n_samples += filt_len + 1 # Simulate the powerlaw data sig = _create_powerlaw(n_samples, fs, exponent) if f_range is not None: sig = filter_signal(sig, fs, infer_passtype(f_range), f_range, remove_edges=True, **filter_kwargs) # Drop the edges, that were compensated for, if not using FIR filter if not filter_kwargs.get('filter_type', None) == 'iir': sig, _ = remove_nans(sig) return sig @normalize def sim_frac_gaussian_noise(n_seconds, fs, chi=0, hurst=None): """Simulate a timeseries as fractional gaussian noise. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. chi: float, optional, default: 0 Desired power law exponent of the spectrum of the signal. Must be in the range (-1, 1). hurst : float, optional, default: None Desired Hurst parameter, which must be in the range (0, 1). If provided, this value overwrites the `chi` parameter. Returns ------- sig: 1d array Simulated fractional gaussian noise time series. Notes ----- The time series can be specified with either a desired power law exponent, or alternatively with a specified Hurst parameter. The Hurst parameter is not the Hurst exponent as defined in rescaled range analysis. The Hurst parameter is defined for self-similar processes such that Y(at) = a^H Y(t) for all a > 0, where this equality holds in distribution. The relationship between the power law exponent chi and the Hurst parameter for fractional gaussian noise is chi = 2 * hurst - 1. For more information, consult [1]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1–R38. DOI: https://doi.org/10.1088/0967-3334/23/1/201 Examples -------- Simulate fractional gaussian noise with a power law decay of 0 (white noise): >>> sig = sim_frac_gaussian_noise(n_seconds=1, fs=500, chi=0) Simulate fractional gaussian noise with a Hurst parameter of 0.5 (also white noise): >>> sig = sim_frac_gaussian_noise(n_seconds=1, fs=500, hurst=0.5) """ if hurst is not None: check_param_range(hurst, 'hurst', (0, 1)) else: check_param_range(chi, 'chi', (-1, 1)) # Infer the hurst parameter from chi hurst = (-chi + 1.) / 2 # Compute the number of samples for the simulated time series n_samples = compute_nsamples(n_seconds, fs) # Define helper function for computing the auto-covariance def autocov(hurst): return lambda k: 0.5 * (np.abs(k - 1) ** (2 * hurst) - 2 * \ k ** (2 * hurst) + (k + 1) ** (2 * hurst)) # Build the autocovariance matrix gamma = np.arange(0, n_samples) gamma = np.apply_along_axis(autocov(hurst), 0, gamma) autocov_matrix = toeplitz(gamma) # Use the Cholesky factor to transform white noise to get the desired time series white_noise = np.random.randn(n_samples) cholesky_factor = cholesky(autocov_matrix, lower=True) sig = cholesky_factor @ white_noise return sig @normalize def sim_frac_brownian_motion(n_seconds, fs, chi=-2, hurst=None): """Simulate a timeseries as fractional brownian motion. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. chi : float, optional, default: -2 Desired power law exponent of the spectrum of the signal. Must be in the range (-3, -1). hurst : float, optional, default: None Desired Hurst parameter, which must be in the range (0, 1). If provided, this value overwrites the `chi` parameter. Returns ------- sig : 1d array Simulated fractional brownian motion time series. Notes ----- The time series can be specified with either a desired power law exponent, or alternatively with a specified Hurst parameter. Note that when specifying there can be some bias leading to a steeper than expected spectrum of the simulated signal. This bias is higher for chi values near to 1, and may be more severe in shorter signals. The Hurst parameter is not the Hurst exponent in general. The Hurst parameter is defined for self-similar processes such that Y(at) = a^H Y(t) for all a > 0, where this equality holds in distribution. The relationship between the power law exponent chi and the Hurst parameter for fractional brownian motion is chi = 2 * hurst + 1 For more information, consult [1]_ and/or [2]_. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1–R38. DOI: https://doi.org/10.1088/0967-3334/23/1/201 .. [2] <NAME>. (2004). Simulation of fractional Brownian motion. 77. Examples -------- Simulate fractional brownian motion with a power law exponent of -2 (brown noise): >>> sig = sim_frac_brownian_motion(n_seconds=1, fs=500, chi=-2) Simulate fractional brownian motion with a Hurst parameter of 0.5 (also brown noise): >>> sig = sim_frac_brownian_motion(n_seconds=1, fs=500, hurst=0.5) """ if hurst is not None: check_param_range(hurst, 'hurst', (0, 1)) else: check_param_range(chi, 'chi', (-3, -1)) # Infer the hurst parameter from chi hurst = (-chi - 1.) / 2 # Fractional brownian motion is the cumulative sum of fractional gaussian noise fgn = sim_frac_gaussian_noise(n_seconds, fs, hurst=hurst) sig = np.cumsum(fgn) return sig def _create_powerlaw(n_samples, fs, exponent): """Create a power law time series. Parameters ---------- n_samples : int The number of samples to simulate. fs : float Sampling rate of simulated signal, in Hz. exponent : float Desired power-law exponent, of the form P(f)=f^exponent. Returns ------- sig : 1d array Time-series with the desired power law exponent. Notes ----- This function creates variable power law exponents by spectrally rotating white noise. """ # Start with white noise signal, that we will rotate, in frequency space sig = np.random.randn(n_samples) # Compute the FFT fft_output = np.fft.fft(sig) freqs = np.fft.fftfreq(len(sig), 1. / fs) # Rotate spectrum and invert back to time series, with a z-score to normalize # Delta exponent is divided by two, as the FFT output is in units of amplitude not power fft_output_rot = rotate_powerlaw(freqs, fft_output, -exponent/2) sig = zscore(np.real(np.fft.ifft(fft_output_rot))) return sig
[ "numpy.convolve", "numpy.sqrt", "numpy.random.rand", "neurodsp.utils.data.create_times", "neurodsp.filt.infer_passtype", "scipy.linalg.cholesky", "numpy.arange", "neurodsp.filt.checks.check_filter_definition", "neurodsp.sim.transients.sim_synaptic_kernel", "numpy.where", "numpy.fft.fft", "numpy.exp", "neurodsp.utils.remove_nans", "numpy.abs", "neurodsp.spectral.rotate_powerlaw", "numpy.fft.ifft", "numpy.random.randn", "neurodsp.utils.checks.check_param_range", "scipy.linalg.toeplitz", "numpy.cumsum", "neurodsp.utils.data.compute_nsamples" ]
[((4213, 4257), 'neurodsp.sim.transients.sim_synaptic_kernel', 'sim_synaptic_kernel', (['t_ker', 'fs', 'tau_r', 'tau_d'], {}), '(t_ker, fs, tau_r, tau_d)\n', (4232, 4257), False, 'from neurodsp.sim.transients import sim_synaptic_kernel\n'), ((5517, 5544), 'neurodsp.utils.data.create_times', 'create_times', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (5529, 5544), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((5561, 5592), 'neurodsp.utils.data.compute_nsamples', 'compute_nsamples', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (5577, 5592), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((7629, 7656), 'neurodsp.utils.data.create_times', 'create_times', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (7641, 7656), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((7751, 7773), 'numpy.exp', 'np.exp', (['(-theta * times)'], {}), '(-theta * times)\n', (7757, 7773), True, 'import numpy as np\n'), ((9336, 9367), 'neurodsp.utils.data.compute_nsamples', 'compute_nsamples', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (9352, 9367), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((12614, 12645), 'neurodsp.utils.data.compute_nsamples', 'compute_nsamples', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (12630, 12645), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((12929, 12952), 'numpy.arange', 'np.arange', (['(0)', 'n_samples'], {}), '(0, n_samples)\n', (12938, 12952), True, 'import numpy as np\n'), ((13032, 13047), 'scipy.linalg.toeplitz', 'toeplitz', (['gamma'], {}), '(gamma)\n', (13040, 13047), False, 'from scipy.linalg import toeplitz, cholesky\n'), ((13153, 13179), 'numpy.random.randn', 'np.random.randn', (['n_samples'], {}), '(n_samples)\n', (13168, 13179), True, 'import numpy as np\n'), ((13202, 13238), 'scipy.linalg.cholesky', 'cholesky', (['autocov_matrix'], {'lower': '(True)'}), '(autocov_matrix, lower=True)\n', (13210, 13238), False, 'from scipy.linalg import toeplitz, cholesky\n'), ((15861, 15875), 'numpy.cumsum', 'np.cumsum', (['fgn'], {}), '(fgn)\n', (15870, 15875), True, 'import numpy as np\n'), ((16534, 16560), 'numpy.random.randn', 'np.random.randn', (['n_samples'], {}), '(n_samples)\n', (16549, 16560), True, 'import numpy as np\n'), ((16601, 16616), 'numpy.fft.fft', 'np.fft.fft', (['sig'], {}), '(sig)\n', (16611, 16616), True, 'import numpy as np\n'), ((16862, 16911), 'neurodsp.spectral.rotate_powerlaw', 'rotate_powerlaw', (['freqs', 'fft_output', '(-exponent / 2)'], {}), '(freqs, fft_output, -exponent / 2)\n', (16877, 16911), False, 'from neurodsp.spectral import rotate_powerlaw\n'), ((2304, 2323), 'numpy.where', 'np.where', (['(sig < 0.0)'], {}), '(sig < 0.0)\n', (2312, 2323), True, 'import numpy as np\n'), ((4268, 4298), 'numpy.convolve', 'np.convolve', (['sig', 'ker', '"""valid"""'], {}), "(sig, ker, 'valid')\n", (4279, 4298), True, 'import numpy as np\n'), ((9598, 9621), 'neurodsp.filt.infer_passtype', 'infer_passtype', (['f_range'], {}), '(f_range)\n', (9612, 9621), False, 'from neurodsp.filt import filter_signal, infer_passtype\n'), ((12353, 12394), 'neurodsp.utils.checks.check_param_range', 'check_param_range', (['hurst', '"""hurst"""', '(0, 1)'], {}), "(hurst, 'hurst', (0, 1))\n", (12370, 12394), False, 'from neurodsp.utils.checks import check_param_range\n'), ((12414, 12452), 'neurodsp.utils.checks.check_param_range', 'check_param_range', (['chi', '"""chi"""', '(-1, 1)'], {}), "(chi, 'chi', (-1, 1))\n", (12431, 12452), False, 'from neurodsp.utils.checks import check_param_range\n'), ((15525, 15566), 'neurodsp.utils.checks.check_param_range', 'check_param_range', (['hurst', '"""hurst"""', '(0, 1)'], {}), "(hurst, 'hurst', (0, 1))\n", (15542, 15566), False, 'from neurodsp.utils.checks import check_param_range\n'), ((15586, 15625), 'neurodsp.utils.checks.check_param_range', 'check_param_range', (['chi', '"""chi"""', '(-3, -1)'], {}), "(chi, 'chi', (-3, -1))\n", (15603, 15625), False, 'from neurodsp.utils.checks import check_param_range\n'), ((2195, 2226), 'neurodsp.utils.data.compute_nsamples', 'compute_nsamples', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (2211, 2226), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((4300, 4331), 'neurodsp.utils.data.compute_nsamples', 'compute_nsamples', (['n_seconds', 'fs'], {}), '(n_seconds, fs)\n', (4316, 4331), False, 'from neurodsp.utils.data import create_times, compute_nsamples\n'), ((5974, 6036), 'numpy.sqrt', 'np.sqrt', (['(1 / (freq ** -chi1 * (freq ** (-chi2 - chi1) + knee)))'], {}), '(1 / (freq ** -chi1 * (freq ** (-chi2 - chi1) + knee)))\n', (5981, 6036), True, 'import numpy as np\n'), ((10125, 10148), 'neurodsp.filt.infer_passtype', 'infer_passtype', (['f_range'], {}), '(f_range)\n', (10139, 10148), False, 'from neurodsp.filt import filter_signal, infer_passtype\n'), ((10385, 10401), 'neurodsp.utils.remove_nans', 'remove_nans', (['sig'], {}), '(sig)\n', (10396, 10401), False, 'from neurodsp.utils import remove_nans\n'), ((16935, 16962), 'numpy.fft.ifft', 'np.fft.ifft', (['fft_output_rot'], {}), '(fft_output_rot)\n', (16946, 16962), True, 'import numpy as np\n'), ((9720, 9763), 'neurodsp.filt.checks.check_filter_definition', 'check_filter_definition', (['pass_type', 'f_range'], {}), '(pass_type, f_range)\n', (9743, 9763), False, 'from neurodsp.filt.checks import check_filter_definition\n'), ((7860, 7881), 'numpy.exp', 'np.exp', (['(theta * times)'], {}), '(theta * times)\n', (7866, 7881), True, 'import numpy as np\n'), ((7884, 7895), 'numpy.sqrt', 'np.sqrt', (['dt'], {}), '(dt)\n', (7891, 7895), True, 'import numpy as np\n'), ((12766, 12779), 'numpy.abs', 'np.abs', (['(k - 1)'], {}), '(k - 1)\n', (12772, 12779), True, 'import numpy as np\n'), ((6236, 6252), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (6250, 6252), True, 'import numpy as np\n')]
# ============================================================================== # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import sys import os import numpy as np import torch from torch import nn import random def seed_everything(seed=1029): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def set_device(gpu=-1): if gpu >= 0 and torch.cuda.is_available(): device = torch.device("cuda:" + str(gpu)) else: device = torch.device("cpu") return device def set_optimizer(optimizer): if isinstance(optimizer, str): if optimizer.lower() == "adam": optimizer = "Adam" elif optimizer.lower() == "rmsprop": optimizer = "RMSprop" elif optimizer.lower() == "sgd": optimizer = "SGD" return getattr(torch.optim, optimizer) def set_loss(loss): if isinstance(loss, str): if loss in ["bce", "binary_crossentropy", "binary_cross_entropy"]: loss = "binary_cross_entropy" else: raise NotImplementedError("loss={} is not supported.".format(loss)) return loss def set_regularizer(reg): reg_pair = [] # of tuples (p_norm, weight) if isinstance(reg, float): reg_pair.append((2, reg)) elif isinstance(reg, str): try: if reg.startswith("l1(") or reg.startswith("l2("): reg_pair.append((int(reg[1]), float(reg.rstrip(")").split("(")[-1]))) elif reg.startswith("l1_l2"): l1_reg, l2_reg = reg.rstrip(")").split("(")[-1].split(",") reg_pair.append((1, float(l1_reg))) reg_pair.append((2, float(l2_reg))) else: raise NotImplementedError except: raise NotImplementedError("regularizer={} is not supported.".format(reg)) return reg_pair def set_activation(activation): if isinstance(activation, str): if activation.lower() == "relu": return nn.ReLU() elif activation.lower() == "sigmoid": return nn.Sigmoid() elif activation.lower() == "tanh": return nn.Tanh() else: return getattr(nn, activation)() else: return activation def pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.): """ Pads sequences (list of list) to the ndarray of same length This is an equivalent implementation of tf.keras.preprocessing.sequence.pad_sequences for Pytorch """ assert padding in ["pre", "post"], "Invalid padding={}.".format(padding) assert truncating in ["pre", "post"], "Invalid truncating={}.".format(truncating) if maxlen is None: maxlen = max(len(x) for x in sequences) arr = np.full((len(sequences), maxlen), value, dtype=dtype) for idx, x in enumerate(sequences): if len(x) == 0: continue # empty list if truncating == 'pre': trunc = x[-maxlen:] else: trunc = x[:maxlen] trunc = np.asarray(trunc, dtype=dtype) if padding == 'pre': arr[idx, -len(trunc):] = trunc else: arr[idx, :len(trunc)] = trunc return arr
[ "torch.manual_seed", "torch.nn.ReLU", "torch.nn.Sigmoid", "torch.nn.Tanh", "numpy.asarray", "random.seed", "torch.cuda.is_available", "numpy.random.seed", "torch.cuda.manual_seed", "torch.device" ]
[((833, 850), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (844, 850), False, 'import random\n'), ((900, 920), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (914, 920), True, 'import numpy as np\n'), ((925, 948), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (942, 948), False, 'import torch\n'), ((953, 981), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (975, 981), False, 'import torch\n'), ((1073, 1098), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1096, 1098), False, 'import torch\n'), ((1177, 1196), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (1189, 1196), False, 'import torch\n'), ((3788, 3818), 'numpy.asarray', 'np.asarray', (['trunc'], {'dtype': 'dtype'}), '(trunc, dtype=dtype)\n', (3798, 3818), True, 'import numpy as np\n'), ((2694, 2703), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2701, 2703), False, 'from torch import nn\n'), ((2769, 2781), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2779, 2781), False, 'from torch import nn\n'), ((2844, 2853), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (2851, 2853), False, 'from torch import nn\n')]
# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: <EMAIL> import cv2 import numpy as np from .glm import ortho class Camera: def __init__(self, width=1600, height=1200): # Focal Length # equivalent 50mm focal = np.sqrt(width * width + height * height) self.focal_x = focal self.focal_y = focal # Principal Point Offset self.principal_x = width / 2 self.principal_y = height / 2 # Axis Skew self.skew = 0 # Image Size self.width = width self.height = height self.near = 1 self.far = 10 # Camera Center self.center = np.array([0, 0, 1.6]) self.direction = np.array([0, 0, -1]) self.right = np.array([1, 0, 0]) self.up = np.array([0, 1, 0]) self.ortho_ratio = None def sanity_check(self): self.center = self.center.reshape([-1]) self.direction = self.direction.reshape([-1]) self.right = self.right.reshape([-1]) self.up = self.up.reshape([-1]) assert len(self.center) == 3 assert len(self.direction) == 3 assert len(self.right) == 3 assert len(self.up) == 3 @staticmethod def normalize_vector(v): v_norm = np.linalg.norm(v) return v if v_norm == 0 else v / v_norm def get_real_z_value(self, z): z_near = self.near z_far = self.far z_n = 2.0 * z - 1.0 z_e = 2.0 * z_near * z_far / (z_far + z_near - z_n * (z_far - z_near)) return z_e def get_rotation_matrix(self): rot_mat = np.eye(3) s = self.right s = self.normalize_vector(s) rot_mat[0, :] = s u = self.up u = self.normalize_vector(u) rot_mat[1, :] = -u rot_mat[2, :] = self.normalize_vector(self.direction) return rot_mat def get_translation_vector(self): rot_mat = self.get_rotation_matrix() trans = -np.dot(rot_mat, self.center) return trans def get_intrinsic_matrix(self): int_mat = np.eye(3) int_mat[0, 0] = self.focal_x int_mat[1, 1] = self.focal_y int_mat[0, 1] = self.skew int_mat[0, 2] = self.principal_x int_mat[1, 2] = self.principal_y return int_mat def get_projection_matrix(self): ext_mat = self.get_extrinsic_matrix() int_mat = self.get_intrinsic_matrix() return np.matmul(int_mat, ext_mat) def get_extrinsic_matrix(self): rot_mat = self.get_rotation_matrix() int_mat = self.get_intrinsic_matrix() trans = self.get_translation_vector() extrinsic = np.eye(4) extrinsic[:3, :3] = rot_mat extrinsic[:3, 3] = trans return extrinsic[:3, :] def set_rotation_matrix(self, rot_mat): self.direction = rot_mat[2, :] self.up = -rot_mat[1, :] self.right = rot_mat[0, :] def set_intrinsic_matrix(self, int_mat): self.focal_x = int_mat[0, 0] self.focal_y = int_mat[1, 1] self.skew = int_mat[0, 1] self.principal_x = int_mat[0, 2] self.principal_y = int_mat[1, 2] def set_projection_matrix(self, proj_mat): res = cv2.decomposeProjectionMatrix(proj_mat) int_mat, rot_mat, camera_center_homo = res[0], res[1], res[2] camera_center = camera_center_homo[0:3] / camera_center_homo[3] camera_center = camera_center.reshape(-1) int_mat = int_mat / int_mat[2][2] self.set_intrinsic_matrix(int_mat) self.set_rotation_matrix(rot_mat) self.center = camera_center self.sanity_check() def get_gl_matrix(self): z_near = self.near z_far = self.far rot_mat = self.get_rotation_matrix() int_mat = self.get_intrinsic_matrix() trans = self.get_translation_vector() extrinsic = np.eye(4) extrinsic[:3, :3] = rot_mat extrinsic[:3, 3] = trans axis_adj = np.eye(4) axis_adj[2, 2] = -1 axis_adj[1, 1] = -1 model_view = np.matmul(axis_adj, extrinsic) projective = np.zeros([4, 4]) projective[:2, :2] = int_mat[:2, :2] projective[:2, 2:3] = -int_mat[:2, 2:3] projective[3, 2] = -1 projective[2, 2] = (z_near + z_far) projective[2, 3] = (z_near * z_far) if self.ortho_ratio is None: ndc = ortho(0, self.width, 0, self.height, z_near, z_far) perspective = np.matmul(ndc, projective) else: perspective = ortho(-self.width * self.ortho_ratio / 2, self.width * self.ortho_ratio / 2, -self.height * self.ortho_ratio / 2, self.height * self.ortho_ratio / 2, z_near, z_far) return perspective, model_view def KRT_from_P(proj_mat, normalize_K=True): res = cv2.decomposeProjectionMatrix(proj_mat) K, Rot, camera_center_homog = res[0], res[1], res[2] camera_center = camera_center_homog[0:3] / camera_center_homog[3] trans = -Rot.dot(camera_center) if normalize_K: K = K / K[2][2] return K, Rot, trans def MVP_from_P(proj_mat, width, height, near=0.1, far=10000): ''' Convert OpenCV camera calibration matrix to OpenGL projection and model view matrix :param proj_mat: OpenCV camera projeciton matrix :param width: Image width :param height: Image height :param near: Z near value :param far: Z far value :return: OpenGL projection matrix and model view matrix ''' res = cv2.decomposeProjectionMatrix(proj_mat) K, Rot, camera_center_homog = res[0], res[1], res[2] camera_center = camera_center_homog[0:3] / camera_center_homog[3] trans = -Rot.dot(camera_center) K = K / K[2][2] extrinsic = np.eye(4) extrinsic[:3, :3] = Rot extrinsic[:3, 3:4] = trans axis_adj = np.eye(4) axis_adj[2, 2] = -1 axis_adj[1, 1] = -1 model_view = np.matmul(axis_adj, extrinsic) zFar = far zNear = near projective = np.zeros([4, 4]) projective[:2, :2] = K[:2, :2] projective[:2, 2:3] = -K[:2, 2:3] projective[3, 2] = -1 projective[2, 2] = (zNear + zFar) projective[2, 3] = (zNear * zFar) ndc = ortho(0, width, 0, height, zNear, zFar) perspective = np.matmul(ndc, projective) return perspective, model_view
[ "numpy.eye", "cv2.decomposeProjectionMatrix", "numpy.sqrt", "numpy.array", "numpy.zeros", "numpy.dot", "numpy.matmul", "numpy.linalg.norm" ]
[((5737, 5776), 'cv2.decomposeProjectionMatrix', 'cv2.decomposeProjectionMatrix', (['proj_mat'], {}), '(proj_mat)\n', (5766, 5776), False, 'import cv2\n'), ((6439, 6478), 'cv2.decomposeProjectionMatrix', 'cv2.decomposeProjectionMatrix', (['proj_mat'], {}), '(proj_mat)\n', (6468, 6478), False, 'import cv2\n'), ((6685, 6694), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (6691, 6694), True, 'import numpy as np\n'), ((6772, 6781), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (6778, 6781), True, 'import numpy as np\n'), ((6850, 6880), 'numpy.matmul', 'np.matmul', (['axis_adj', 'extrinsic'], {}), '(axis_adj, extrinsic)\n', (6859, 6880), True, 'import numpy as np\n'), ((6935, 6951), 'numpy.zeros', 'np.zeros', (['[4, 4]'], {}), '([4, 4])\n', (6943, 6951), True, 'import numpy as np\n'), ((7206, 7232), 'numpy.matmul', 'np.matmul', (['ndc', 'projective'], {}), '(ndc, projective)\n', (7215, 7232), True, 'import numpy as np\n'), ((875, 915), 'numpy.sqrt', 'np.sqrt', (['(width * width + height * height)'], {}), '(width * width + height * height)\n', (882, 915), True, 'import numpy as np\n'), ((1309, 1330), 'numpy.array', 'np.array', (['[0, 0, 1.6]'], {}), '([0, 0, 1.6])\n', (1317, 1330), True, 'import numpy as np\n'), ((1357, 1377), 'numpy.array', 'np.array', (['[0, 0, -1]'], {}), '([0, 0, -1])\n', (1365, 1377), True, 'import numpy as np\n'), ((1400, 1419), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (1408, 1419), True, 'import numpy as np\n'), ((1439, 1458), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (1447, 1458), True, 'import numpy as np\n'), ((1938, 1955), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (1952, 1955), True, 'import numpy as np\n'), ((2283, 2292), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2289, 2292), True, 'import numpy as np\n'), ((2772, 2781), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (2778, 2781), True, 'import numpy as np\n'), ((3157, 3184), 'numpy.matmul', 'np.matmul', (['int_mat', 'ext_mat'], {}), '(int_mat, ext_mat)\n', (3166, 3184), True, 'import numpy as np\n'), ((3387, 3396), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (3393, 3396), True, 'import numpy as np\n'), ((3968, 4007), 'cv2.decomposeProjectionMatrix', 'cv2.decomposeProjectionMatrix', (['proj_mat'], {}), '(proj_mat)\n', (3997, 4007), False, 'import cv2\n'), ((4652, 4661), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (4658, 4661), True, 'import numpy as np\n'), ((4753, 4762), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (4759, 4762), True, 'import numpy as np\n'), ((4843, 4873), 'numpy.matmul', 'np.matmul', (['axis_adj', 'extrinsic'], {}), '(axis_adj, extrinsic)\n', (4852, 4873), True, 'import numpy as np\n'), ((4898, 4914), 'numpy.zeros', 'np.zeros', (['[4, 4]'], {}), '([4, 4])\n', (4906, 4914), True, 'import numpy as np\n'), ((2663, 2691), 'numpy.dot', 'np.dot', (['rot_mat', 'self.center'], {}), '(rot_mat, self.center)\n', (2669, 2691), True, 'import numpy as np\n'), ((5269, 5295), 'numpy.matmul', 'np.matmul', (['ndc', 'projective'], {}), '(ndc, projective)\n', (5278, 5295), True, 'import numpy as np\n')]
"""An attempt to implement a fishers exact test in numba. Gave up after a day because some ofthe distributions required are written in fortran in scipy.special. Seems like soon numba-scipy may make this effort much easier. For now will require use of cython""" from numba import njit import numpy as np from scipy.special import comb # @njit() def binary_search(n, n1, n2, side, epsilon, pexact, mode): """Binary search for where to begin halves in two-sided test.""" if side == "upper": minval = mode maxval = n else: minval = 0 maxval = mode guess = -1 while maxval - minval > 1: if maxval == minval + 1 and guess == minval: guess = maxval else: guess = (maxval + minval) // 2 pguess = hypergeometric_pmf(guess, n1 + n2, n1, n) if side == "upper": ng = guess - 1 else: ng = guess + 1 if pguess <= pexact < hypergeometric_pmf(ng, n1 + n2, n1, n): break elif pguess < pexact: maxval = guess else: minval = guess if guess == -1: guess = minval if side == "upper": while guess > 0 and hypergeometric_pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess -= 1 while hypergeometric_pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess += 1 else: while hypergeometric_pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess += 1 while guess > 0 and hypergeometric_pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess -= 1 return guess def fisher_exact(table, alternative='two-sided'): #table = [[a, b], [c, d]] c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm if not c.shape == (2, 2): raise ValueError("The input `table` must be of shape (2, 2).") if np.any(c < 0): raise ValueError("All values in `table` must be nonnegative.") if 0 in c.sum(axis=0) or 0 in c.sum(axis=1): # If both values in a row or column are zero, the p-value is 1 and # the odds ratio is NaN. return np.nan, 1.0 if c[1, 0] > 0 and c[0, 1] > 0: oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1]) else: oddsratio = np.inf n1 = c[0, 0] + c[0, 1] # a + b n2 = c[1, 0] + c[1, 1] # c + d n = c[0, 0] + c[1, 0] # a + c if alternative == 'less': pvalue = hypergeometric_cdf(c[0, 0], n1 + n2, n1, n) elif alternative == 'greater': # Same formula as the 'less' case, but with the second column. pvalue = hypergeometric_cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1]) elif alternative == 'two-sided': mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2)) #print(n, n1, n2) pexact = hypergeometric_pmf(c[0, 0], n1 + n2, n1, n) pmode = hypergeometric_pmf(mode, n1 + n2, n1, n) #print(pexact, pmode) epsilon = 1 - 1e-4 if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon: return oddsratio, 1. elif c[0, 0] < mode: print('LT', mode, c[0, 0], n1 + n2, n1, n) plower = hypergeometric_cdf(c[0, 0], n1 + n2, n1, n) if hypergeometric_pmf(n, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, plower guess = binary_search(n, n1, n2, "upper", epsilon, pexact, mode) pvalue = plower + hypergeometric_sf(guess - 1, n1 + n2, n1, n) else: pupper = hypergeometric_sf(c[0, 0] - 1, n1 + n2, n1, n) if hypergeometric_pmf(0, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, pupper guess = binary_search(n, n1, n2, "lower", epsilon, pexact, mode) pvalue = pupper + hypergeometric_cdf(guess, n1 + n2, n1, n) else: msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}" raise ValueError(msg) pvalue = min(pvalue, 1.0) return oddsratio, pvalue # @njit(types.intp(types.intp, types.intp), cache=True) def comb_jit(N, k): """ Numba jitted function that computes N choose k. Return `0` if the outcome exceeds the maximum value of `np.intp` or if N < 0, k < 0, or k > N. Parameters ---------- N : scalar(int) k : scalar(int) Returns ------- val : scalar(int) """ # From scipy.special._comb_int_long # github.com/scipy/scipy/blob/v1.0.0/scipy/special/_comb.pyx INTP_MAX = np.iinfo(np.intp).max if N < 0 or k < 0 or k > N: return 0 if k == 0: return 1 if k == 1: return N if N == INTP_MAX: val = 0 M = N + 1 nterms = min(k, N - k) val = 1 for j in range(1, nterms + 1): # Overflow check if val > (INTP_MAX // (M - j)): val = 0 break val *= M - j val //= j if val != 0: return val M = N + 1 nterms = min(k, N - k) numerator = 1 denominator = 1 for j in range(1, nterms + 1): numerator *= M - j denominator *= j val = numerator // denominator if val == 0 and comb(N, k) != 0: print('comb0_Nk', N, k, '\n\t', numerator, denominator) raise ValueError return val def hypergeometric_pmf(k, M, n, N): """scipy parameterization pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for max(0, N - (M-n)) <= k <= min(n, N) """ a = comb_jit(n, k) b = comb_jit(M - n, N - k) c = comb_jit(M, N) res = np.exp(np.log(a)+np.log(b)-np.log(c)) if np.isnan(res) and not np.isnan(stats.hypergeom.pmf(k, M, n, N)): print('NAN', k, M, n, N) print('\tABC', a, b, c) print('\tA_NK', a, comb(n, k)) print('\tB_NK',b, comb(M-n, N-k)) print('\tC_NK',c, comb(M, N)) return res def hypergeom_logpmf(k, M, n, N): tot, good = M, n bad = tot - good result = (betaln(good+1, 1) + betaln(bad+1, 1) + betaln(tot-N+1, N+1) - betaln(k+1, good-k+1) - betaln(N-k+1, bad-N+k+1) - betaln(tot+1, 1)) return result def hypergeom_pmf(self, k, M, n, N): # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return np.exp(hypergeom_logpmf(k, M, n, N)) def hypergeometric_cdf(k, M, n, N): c = np.log(comb(M, N)) tot = 0 for kk in range(k+1): a = np.log(comb(n, kk)) b = np.log(comb(M - n, N - kk)) tot += np.exp(a+b-c) return tot def hypergeometric_sf(k, M, n, N): tot = 0 c = np.log(comb(M, N)) for kk in range(k+1, N+1): a = np.log(comb(n, kk)) b = np.log(comb(M - n, N - kk)) tot += np.exp(a+b-c) return tot #M, n, N = [20, 7, 12] #x = np.arange(0, n+1) #stats.hypergeom.pmf(x[3], M, n, N) #hypergeometric_pmf(x[3], M, n, N) def _betaln(p,q): return lgamma(p) + lgamma(q) - lgamma(p + q)
[ "numpy.abs", "numpy.log", "numpy.asarray", "numpy.iinfo", "numpy.any", "numpy.exp", "numpy.isnan", "scipy.special.comb", "numpy.maximum" ]
[((1721, 1754), 'numpy.asarray', 'np.asarray', (['table'], {'dtype': 'np.int64'}), '(table, dtype=np.int64)\n', (1731, 1754), True, 'import numpy as np\n'), ((1905, 1918), 'numpy.any', 'np.any', (['(c < 0)'], {}), '(c < 0)\n', (1911, 1918), True, 'import numpy as np\n'), ((4534, 4551), 'numpy.iinfo', 'np.iinfo', (['np.intp'], {}), '(np.intp)\n', (4542, 4551), True, 'import numpy as np\n'), ((5683, 5696), 'numpy.isnan', 'np.isnan', (['res'], {}), '(res)\n', (5691, 5696), True, 'import numpy as np\n'), ((6413, 6423), 'scipy.special.comb', 'comb', (['M', 'N'], {}), '(M, N)\n', (6417, 6423), False, 'from scipy.special import comb\n'), ((6551, 6568), 'numpy.exp', 'np.exp', (['(a + b - c)'], {}), '(a + b - c)\n', (6557, 6568), True, 'import numpy as np\n'), ((6644, 6654), 'scipy.special.comb', 'comb', (['M', 'N'], {}), '(M, N)\n', (6648, 6654), False, 'from scipy.special import comb\n'), ((6774, 6791), 'numpy.exp', 'np.exp', (['(a + b - c)'], {}), '(a + b - c)\n', (6780, 6791), True, 'import numpy as np\n'), ((5210, 5220), 'scipy.special.comb', 'comb', (['N', 'k'], {}), '(N, k)\n', (5214, 5220), False, 'from scipy.special import comb\n'), ((5665, 5674), 'numpy.log', 'np.log', (['c'], {}), '(c)\n', (5671, 5674), True, 'import numpy as np\n'), ((5840, 5850), 'scipy.special.comb', 'comb', (['n', 'k'], {}), '(n, k)\n', (5844, 5850), False, 'from scipy.special import comb\n'), ((5878, 5896), 'scipy.special.comb', 'comb', (['(M - n)', '(N - k)'], {}), '(M - n, N - k)\n', (5882, 5896), False, 'from scipy.special import comb\n'), ((5920, 5930), 'scipy.special.comb', 'comb', (['M', 'N'], {}), '(M, N)\n', (5924, 5930), False, 'from scipy.special import comb\n'), ((6483, 6494), 'scipy.special.comb', 'comb', (['n', 'kk'], {}), '(n, kk)\n', (6487, 6494), False, 'from scipy.special import comb\n'), ((6515, 6534), 'scipy.special.comb', 'comb', (['(M - n)', '(N - kk)'], {}), '(M - n, N - kk)\n', (6519, 6534), False, 'from scipy.special import comb\n'), ((6706, 6717), 'scipy.special.comb', 'comb', (['n', 'kk'], {}), '(n, kk)\n', (6710, 6717), False, 'from scipy.special import comb\n'), ((6738, 6757), 'scipy.special.comb', 'comb', (['(M - n)', '(N - kk)'], {}), '(M - n, N - kk)\n', (6742, 6757), False, 'from scipy.special import comb\n'), ((5645, 5654), 'numpy.log', 'np.log', (['a'], {}), '(a)\n', (5651, 5654), True, 'import numpy as np\n'), ((5655, 5664), 'numpy.log', 'np.log', (['b'], {}), '(b)\n', (5661, 5664), True, 'import numpy as np\n'), ((2997, 3019), 'numpy.abs', 'np.abs', (['(pexact - pmode)'], {}), '(pexact - pmode)\n', (3003, 3019), True, 'import numpy as np\n'), ((3022, 3047), 'numpy.maximum', 'np.maximum', (['pexact', 'pmode'], {}), '(pexact, pmode)\n', (3032, 3047), True, 'import numpy as np\n')]
import numpy as np from scipy.optimize import minimize from os import path import matplotlib.pyplot as plt import sys from MCPM import utils from MCPM.cpmfitsource import CpmFitSource def fun_3(inputs, cpm_source, t_E): """3-parameter function for optimisation; t_E - fixed""" t_0 = inputs[0] u_0 = inputs[1] t_E = t_E f_s = inputs[2] if u_0 < 0. or t_E < 0. or f_s < 0.: return 1.e6 model = cpm_source.pspl_model(t_0, u_0, t_E, f_s) cpm_source.run_cpm(model) #print(t_0, u_0, t_E, f_s, cpm_source.residuals_rms) return cpm_source.residuals_rms def fun_4(inputs, cpm_source): """4-parameter function for optimisation""" t_0 = inputs[0] u_0 = inputs[1] t_E = inputs[2] f_s = inputs[3] if u_0 < 0. or t_E < 0. or f_s < 0.: return 1.e6 model = cpm_source.pspl_model(t_0, u_0, t_E, f_s) cpm_source.run_cpm(model) #print(t_0, u_0, t_E, f_s, cpm_source.residuals_rms) return cpm_source.residuals_rms if __name__ == "__main__": # We want to extract the light curve of ob160980 channel = 52 campaign = 92 ra = 271.354292 dec = -28.005583 half_size = 2 n_select = 10 l2 = 10**8.5 start = np.array([7556., 0.14, 21., 300.]) start_3 = np.array([7556., .1, 150.]) t_E = 21. tol = 0.001 #method = 'Nelder-Mead' # only these 2 make sense method = 'Powell' n_remove = 10 cpm_source = CpmFitSource(ra=ra, dec=dec, campaign=campaign, channel=channel) cpm_source.get_predictor_matrix() #n_pixel=100) cpm_source.set_l2_l2_per_pixel(l2=l2) cpm_source.set_pixels_square(half_size) cpm_source.select_highest_prf_sum_pixels(n_select) # Optimize model parameters: args = (cpm_source, t_E) out = minimize(fun_3, start_3, args=args, tol=tol, method=method) print(out) # plot the best model model = cpm_source.pspl_model(out.x[0], out.x[1], t_E, out.x[2]) cpm_source.run_cpm(model) print("RMS: {:.4f} {:}".format(cpm_source.residuals_rms, np.sum(cpm_source.residuals_mask))) cpm_source.run_cpm_and_plot_model(model, plot_residuals=True, f_s = out.x[2]) #plt.show() plt.close() # you may want to plot residuals as a function of position: if False: plt.scatter(cpm_source.x_positions[mask], cpm_source.y_positions[mask], c=np.abs(cpm_source.residuals[mask])) plt.show() plt.close() # Remove most outlying points: if True: mask = cpm_source.residuals_mask limit = np.sort(np.abs(cpm_source.residuals[mask]))[-n_remove] cpm_source.mask_bad_epochs_residuals(limit) model = cpm_source.pspl_model(out.x[0], out.x[1], t_E, out.x[2]) cpm_source.run_cpm(model) print("RMS: {:.4f} {:}".format(cpm_source.residuals_rms, np.sum(cpm_source.residuals_mask))) # Optimize model parameters once more: if True: out = minimize(fun_3, out.x, args=args, tol=tol, method=method) print(out) model = cpm_source.pspl_model(out.x[0], out.x[1], t_E, out.x[2]) cpm_source.run_cpm(model) print("RMS: {:.4f} {:}".format(cpm_source.residuals_rms, np.sum(cpm_source.residuals_mask))) # plot it: if True: cpm_source.run_cpm_and_plot_model(model, plot_residuals=True, f_s = out.x[2]) #plt.savefig('ob160980.png') plt.show() plt.close() cpm_source.plot_pixel_residuals() #plt.savefig('ob160980_pixel_res.png') plt.show() plt.close() # Optimize model parameters with 4 fitted parameters: if False: args = (cpm_source) out = minimize(fun_4, start, args=args, tol=tol, method=method) print(out) #print(out.nfev) #print("{:.5f} {:.4f} {:.4f} ==> {:.4f}".format(out.x[0], out.x[1], out.x[2], out.fun)) #model = transform_model(out.x[0], out.x[1], out.x[2], model_dt, model_flux, cpm_source.pixel_time) model = cpm_source.pspl_model(out.x[0], out.x[1], out.x[2], out.x[3]) cpm_source.run_cpm(model) mask = cpm_source.residuals_mask plt.plot(cpm_source.pixel_time[mask], cpm_source.residuals[mask]+model[mask], '.') plt.show()
[ "numpy.abs", "scipy.optimize.minimize", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "numpy.array", "numpy.sum", "MCPM.cpmfitsource.CpmFitSource", "matplotlib.pyplot.show" ]
[((1262, 1299), 'numpy.array', 'np.array', (['[7556.0, 0.14, 21.0, 300.0]'], {}), '([7556.0, 0.14, 21.0, 300.0])\n', (1270, 1299), True, 'import numpy as np\n'), ((1311, 1341), 'numpy.array', 'np.array', (['[7556.0, 0.1, 150.0]'], {}), '([7556.0, 0.1, 150.0])\n', (1319, 1341), True, 'import numpy as np\n'), ((1485, 1549), 'MCPM.cpmfitsource.CpmFitSource', 'CpmFitSource', ([], {'ra': 'ra', 'dec': 'dec', 'campaign': 'campaign', 'channel': 'channel'}), '(ra=ra, dec=dec, campaign=campaign, channel=channel)\n', (1497, 1549), False, 'from MCPM.cpmfitsource import CpmFitSource\n'), ((1834, 1893), 'scipy.optimize.minimize', 'minimize', (['fun_3', 'start_3'], {'args': 'args', 'tol': 'tol', 'method': 'method'}), '(fun_3, start_3, args=args, tol=tol, method=method)\n', (1842, 1893), False, 'from scipy.optimize import minimize\n'), ((2244, 2255), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2253, 2255), True, 'import matplotlib.pyplot as plt\n'), ((2465, 2475), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2473, 2475), True, 'import matplotlib.pyplot as plt\n'), ((2484, 2495), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2493, 2495), True, 'import matplotlib.pyplot as plt\n'), ((2993, 3050), 'scipy.optimize.minimize', 'minimize', (['fun_3', 'out.x'], {'args': 'args', 'tol': 'tol', 'method': 'method'}), '(fun_3, out.x, args=args, tol=tol, method=method)\n', (3001, 3050), False, 'from scipy.optimize import minimize\n'), ((3783, 3840), 'scipy.optimize.minimize', 'minimize', (['fun_4', 'start'], {'args': 'args', 'tol': 'tol', 'method': 'method'}), '(fun_4, start, args=args, tol=tol, method=method)\n', (3791, 3840), False, 'from scipy.optimize import minimize\n'), ((4244, 4333), 'matplotlib.pyplot.plot', 'plt.plot', (['cpm_source.pixel_time[mask]', '(cpm_source.residuals[mask] + model[mask])', '"""."""'], {}), "(cpm_source.pixel_time[mask], cpm_source.residuals[mask] + model[\n mask], '.')\n", (4252, 4333), True, 'import matplotlib.pyplot as plt\n'), ((4335, 4345), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4343, 4345), True, 'import matplotlib.pyplot as plt\n'), ((2101, 2134), 'numpy.sum', 'np.sum', (['cpm_source.residuals_mask'], {}), '(cpm_source.residuals_mask)\n', (2107, 2134), True, 'import numpy as np\n'), ((3476, 3486), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3484, 3486), True, 'import matplotlib.pyplot as plt\n'), ((3499, 3510), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3508, 3510), True, 'import matplotlib.pyplot as plt\n'), ((3633, 3643), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3641, 3643), True, 'import matplotlib.pyplot as plt\n'), ((3656, 3667), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3665, 3667), True, 'import matplotlib.pyplot as plt\n'), ((2421, 2455), 'numpy.abs', 'np.abs', (['cpm_source.residuals[mask]'], {}), '(cpm_source.residuals[mask])\n', (2427, 2455), True, 'import numpy as np\n'), ((2614, 2648), 'numpy.abs', 'np.abs', (['cpm_source.residuals[mask]'], {}), '(cpm_source.residuals[mask])\n', (2620, 2648), True, 'import numpy as np\n'), ((2886, 2919), 'numpy.sum', 'np.sum', (['cpm_source.residuals_mask'], {}), '(cpm_source.residuals_mask)\n', (2892, 2919), True, 'import numpy as np\n'), ((3252, 3285), 'numpy.sum', 'np.sum', (['cpm_source.residuals_mask'], {}), '(cpm_source.residuals_mask)\n', (3258, 3285), True, 'import numpy as np\n')]
# This script generates the scoring and schema files # necessary to operationalize your model from azureml.api.schema.dataTypes import DataTypes from azureml.api.schema.sampleDefinition import SampleDefinition from azureml.api.realtime.services import generate_schema import json import numpy as np import os import base64, io from PIL import Image from azure.storage.blob import BlockBlobService # Prepare the web service definition by authoring # init() and run() functions. Test the functions # before deploying the web service. model = None def init(): # Get the path to the model asset # local_path = get_local_path('mymodel.model.link') # Load model using appropriate library and function global model global labels # model = model_load_function(local_path) model_name = 'yourmodel.h5' from keras.models import load_model model = load_model(model_name) labels = {0: 'iscloud', 1: 'ismine', 2: 'isnone'} def run(input_array): base64ImgString = input_array[0] pil_img = base64ToPilImg(base64ImgString) image_np = load_image_into_numpy_array(pil_img) image_np_expanded = np.expand_dims(image_np, axis=0) x = image_np x = np.expand_dims(x, axis=0) y = model.predict(x) result = '{"class": ' + json.dumps(labels[np.argmax(y[0])]) + ' , "score": ' + json.dumps(float(np.max(y[0]))) + '}' # resultString = '{"output":' + result + '}' return resultString def generate_api_schema(): import os print("create schema") sample_input = "sample data text" inputs = {"input_df": SampleDefinition(DataTypes.STANDARD, sample_input)} os.makedirs('outputs', exist_ok=True) print(generate_schema(inputs=inputs, filepath="outputs/schema.json", run_func=run)) def base64ToPilImg(base64ImgString): if base64ImgString.startswith('b\''): base64ImgString = base64ImgString[2:-1] base64Img = base64ImgString.encode('utf-8') decoded_img = base64.b64decode(base64Img) img_buffer = io.BytesIO(decoded_img) pil_img = Image.open(img_buffer).convert('RGB') return pil_img def pilImgToBase64(pilImg): pilImg = pilImg.convert('RGB') #not sure this is necessary imgio = io.BytesIO() pilImg.save(imgio, 'PNG') imgio.seek(0) dataimg = base64.b64encode(imgio.read()) return dataimg.decode('utf-8') def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # Implement test code to run in IDE or Azure ML Workbench if __name__ == '__main__': from azureml.api.schema.dataTypes import DataTypes from azureml.api.schema.sampleDefinition import SampleDefinition from azureml.api.realtime.services import generate_schema # Import the logger only for Workbench runs #from azureml.logging import get_azureml_logger #logger = get_azureml_logger() init() pilImg = Image.open("yourimage.jpg") base64ImgString = pilImgToBase64(pilImg) np_imgstring = np.array([base64ImgString], dtype=np.unicode) inputs = {"input_array": SampleDefinition(DataTypes.NUMPY, np_imgstring)} resultString = run(np_imgstring) print("resultString = " + str(resultString)) # Genereate the schema generate_schema(run_func=run, inputs=inputs, filepath='service_schema.json') print("Schema generated.")
[ "PIL.Image.open", "keras.models.load_model", "os.makedirs", "azureml.api.realtime.services.generate_schema", "io.BytesIO", "base64.b64decode", "numpy.argmax", "numpy.max", "numpy.array", "numpy.expand_dims", "azureml.api.schema.sampleDefinition.SampleDefinition" ]
[((907, 929), 'keras.models.load_model', 'load_model', (['model_name'], {}), '(model_name)\n', (917, 929), False, 'from keras.models import load_model\n'), ((1173, 1205), 'numpy.expand_dims', 'np.expand_dims', (['image_np'], {'axis': '(0)'}), '(image_np, axis=0)\n', (1187, 1205), True, 'import numpy as np\n'), ((1233, 1258), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1247, 1258), True, 'import numpy as np\n'), ((1678, 1715), 'os.makedirs', 'os.makedirs', (['"""outputs"""'], {'exist_ok': '(True)'}), "('outputs', exist_ok=True)\n", (1689, 1715), False, 'import os\n'), ((2008, 2035), 'base64.b64decode', 'base64.b64decode', (['base64Img'], {}), '(base64Img)\n', (2024, 2035), False, 'import base64, io\n'), ((2055, 2078), 'io.BytesIO', 'io.BytesIO', (['decoded_img'], {}), '(decoded_img)\n', (2065, 2078), False, 'import base64, io\n'), ((2260, 2272), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2270, 2272), False, 'import base64, io\n'), ((3029, 3056), 'PIL.Image.open', 'Image.open', (['"""yourimage.jpg"""'], {}), "('yourimage.jpg')\n", (3039, 3056), False, 'from PIL import Image\n'), ((3123, 3168), 'numpy.array', 'np.array', (['[base64ImgString]'], {'dtype': 'np.unicode'}), '([base64ImgString], dtype=np.unicode)\n', (3131, 3168), True, 'import numpy as np\n'), ((3371, 3447), 'azureml.api.realtime.services.generate_schema', 'generate_schema', ([], {'run_func': 'run', 'inputs': 'inputs', 'filepath': '"""service_schema.json"""'}), "(run_func=run, inputs=inputs, filepath='service_schema.json')\n", (3386, 3447), False, 'from azureml.api.realtime.services import generate_schema\n'), ((1621, 1671), 'azureml.api.schema.sampleDefinition.SampleDefinition', 'SampleDefinition', (['DataTypes.STANDARD', 'sample_input'], {}), '(DataTypes.STANDARD, sample_input)\n', (1637, 1671), False, 'from azureml.api.schema.sampleDefinition import SampleDefinition\n'), ((1727, 1803), 'azureml.api.realtime.services.generate_schema', 'generate_schema', ([], {'inputs': 'inputs', 'filepath': '"""outputs/schema.json"""', 'run_func': 'run'}), "(inputs=inputs, filepath='outputs/schema.json', run_func=run)\n", (1742, 1803), False, 'from azureml.api.realtime.services import generate_schema\n'), ((3199, 3246), 'azureml.api.schema.sampleDefinition.SampleDefinition', 'SampleDefinition', (['DataTypes.NUMPY', 'np_imgstring'], {}), '(DataTypes.NUMPY, np_imgstring)\n', (3215, 3246), False, 'from azureml.api.schema.sampleDefinition import SampleDefinition\n'), ((2094, 2116), 'PIL.Image.open', 'Image.open', (['img_buffer'], {}), '(img_buffer)\n', (2104, 2116), False, 'from PIL import Image\n'), ((1386, 1398), 'numpy.max', 'np.max', (['y[0]'], {}), '(y[0])\n', (1392, 1398), True, 'import numpy as np\n'), ((1332, 1347), 'numpy.argmax', 'np.argmax', (['y[0]'], {}), '(y[0])\n', (1341, 1347), True, 'import numpy as np\n')]
from io import FileIO import numpy as np import pandas as pd from pathlib import Path from typing import Union, List, Iterable from .common import open_file, coerce_matrix def read_mdf(file: Union[str, FileIO, Path], raw: bool = False, tall: bool = False ) -> Union[np.ndarray, pd.DataFrame, pd.Series]: """Reads Emme's official matrix "binary serialization" format, created using ``inro.emme.matrix.MatrixData.save()``. There is no official extension for this type of file; '.mdf' is recommended. '.emxd' is also sometimes encountered. Args: file (Union[str, FileIO, Path]): The file to read. raw (bool, optional): Defaults to ``False``. If ``True``, returns an unlabelled ndarray. Otherwise, a DataFrame will be returned. tall (bool, optional): Defaults to ``False``. If ``True``, a 1D data structure will be returned. If ``raw=False``, a Series will be returned, otherwise a 1D ndarray. Returns: numpy.ndarray, pandas.DataFrame, or pandas.Series: The matrix stored in the file. """ with open_file(file, mode='rb') as file_handler: magic, version, dtype_index, ndim = np.fromfile(file_handler, np.uint32, count=4) if magic != 0xC4D4F1B2 or version != 1 or not (0 < dtype_index <= 4) or not (0 < ndim <= 2): raise IOError("Unexpected file header: magic number: %X, version: %d, data type: %d, dimensions: %d." % (magic, version, dtype_index, ndim)) shape = np.fromfile(file_handler, np.uint32, count=ndim) index_list = [] for n_items in shape: indices = np.fromfile(file_handler, np.int32, n_items) index_list.append(indices) dtype = {1: np.float32, 2: np.float64, 3: np.int32, 4: np.uint32}[dtype_index] flat_length = shape.prod() # Multiply the shape tuple matrix = np.fromfile(file_handler, dtype, count=flat_length) if raw and tall: return matrix matrix.shape = shape if raw: return matrix if ndim == 1: return pd.Series(matrix, index=index_list[0]) elif ndim == 2: matrix = pd.DataFrame(matrix, index=index_list[0], columns=index_list[1]) return matrix.stack() if tall else matrix raise NotImplementedError() # This should never happen def to_mdf(matrix: Union[pd.DataFrame, pd.Series], file: Union[str, FileIO, Path]): """Writes a matrix to Emme's official "binary serialization" format, which can be loaded in Emme using ``inro.emme.matrix.MatrixData.load()``. There is no official extension for this type of file; '.mdf' is recommended. Args: matrix (Union[pandas.DataFrame, panda.Series]): The matrix to write to disk. If a Series is given, it MUST have a MultiIndex with exactly 2 levels to unstack. file (Union[str, File, Path]): The path or file handler to write to. """ if isinstance(matrix, pd.Series): row_index = matrix.index.get_level_values(0).unique() column_index = matrix.index.get_level_values(1).unique() elif isinstance(matrix, pd.DataFrame): row_index = matrix.index column_index = matrix.columns else: raise TypeError("Only labelled matrix objects are supported") with open_file(file, mode='wb') as writer: data = coerce_matrix(matrix, allow_raw=False) np.array([0xC4D4F1B2, 1, 1, 2], dtype=np.uint32).tofile(writer) # Header np.array(data.shape, dtype=np.uint32).tofile(writer) # Shape np.array(row_index, dtype=np.int32).tofile(writer) np.array(column_index, dtype=np.int32).tofile(writer) data.tofile(writer) def peek_mdf(file: Union[str, FileIO, Path], as_index: bool = True) -> Union[List[List[int]], List[pd.Index]]: """Partially opens an MDF file to get the zone system of its rows and its columns. Args: file (Union[str, FileIO, Path]): The file to read. as_index (bool, optional): Defaults to ``True``. Set to ``True`` to return a pandas.Index object rather than List[int] Returns: List[int] or List[pandas.Index]: One item for each dimension. If ``as_index=True``, the items will be pandas.Index objects, otherwise they will be List[int] """ with open_file(file, mode='rb') as file_handler: magic, version, dtype_index, ndim = np.fromfile(file_handler, np.uint32, count=4) if magic != 0xC4D4F1B2 or version != 1 or not (0 < dtype_index <= 4) or not (0 < ndim <= 2): raise IOError("Unexpected file header: magic number: %X, version: %d, data type: %d, dimensions: %d." % (magic, version, dtype_index, ndim)) shape = np.fromfile(file_handler, np.uint32, count=ndim) index_list = [] for n_items in shape: indices = np.fromfile(file_handler, np.int32, n_items) index_list.append(indices) if not as_index: return index_list return [pd.Index(zones) for zones in index_list] def read_emx(file: Union[str, FileIO, Path], zones: Union[int, Iterable[int], pd.Index] = None, tall: bool = False) -> Union[np.ndarray, pd.DataFrame, pd.Series]: """Reads an "internal" Emme matrix (found in `<Emme Project>/Database/emmemat`); with an '.emx' extension. This data format does not contain information about zones. Its size is determined by the dimensions of the Emmebank (``Emmebank.dimensions['centroids']``), regardless of the number of zones actually used in all scenarios. Args: file (Union[str, File, Path]): The file to read. zones (Union[int, Iterable[int], pandas.Index], optional): Defaults to ``None``. An Index or Iterable will be interpreted as the zone labels for the matrix rows and columns; returning a DataFrame or Series (depending on ``tall``). If an integer is provided, the returned ndarray will be truncated to this 'number of zones'. Otherwise, the returned ndarray will be size to the maximum number of zone dimensioned by the Emmebank. tall (bool, optional): Defaults to ``False``. If True, a 1D data structure will be returned. If ``zone_index`` is provided, a Series will be returned, otherwise a 1D ndarray. Returns: numpy.ndarray, pandas.DataFrame, or pandas.Series. Examples: For a project with 20 zones: >>> matrix = read_emx("Database/emmemat/mf1.emx") >>> print type(matrix), matrix.shape (numpy.ndarray, (20, 20)) >>> matrix = read_emx("Database/emmemat/mf1.emx", zones=10) >>> print type(matrix), matrix.shape (numpy.ndarray, (10, 10)) >>> matrix = read_emx("Database/emmemat/mf1.emx", zones=range(10)) >>> print type(matrix), matrix.shape <class 'pandas.core.frame.DataFrame'> (10, 10) >>> matrix = read_emx("Database/emmemat/mf1.emx", zones=range(10), tall=True) >>> print type(matrix), matrix.shape <class 'pandas.core.series.Series'> 100 """ with open_file(file, mode='rb') as reader: data = np.fromfile(reader, dtype=np.float32) n = int(len(data) ** 0.5) assert len(data) == n ** 2 if zones is None and tall: return data data.shape = n, n if isinstance(zones, (int, np.int_)): data = data[:zones, :zones] if tall: data.shape = zones * zones return data return data elif zones is None: return data zones = pd.Index(zones) n = len(zones) data = data[:n, :n] matrix = pd.DataFrame(data, index=zones, columns=zones) return matrix.stack() if tall else matrix def to_emx(matrix: Union[pd.DataFrame, pd.Series, np.ndarray], file: Union[str, FileIO, Path], emmebank_zones: int): """Writes an "internal" Emme matrix (found in `<Emme Project>/Database/emmemat`); with an '.emx' extension. The number of zones that the Emmebank is dimensioned for must be known in order for the file to be written correctly. Args: matrix (Union[pandas.DataFrame, pandas.Series, numpy.ndarray]): The matrix to write to disk. If a Series is given, it MUST have a MultiIndex with exactly 2 levels to unstack. file (Union[basestring, File]): The path or file handler to write to. emmebank_zones (int): The number of zones the target Emmebank is dimensioned for. """ assert emmebank_zones > 0 with open_file(file, mode='wb') as writer: data = coerce_matrix(matrix) n = data.shape[0] if n > emmebank_zones: out = data[:emmebank_zones, :emmebank_zones].astype(np.float32) else: out = np.zeros([emmebank_zones, emmebank_zones], dtype=np.float32) out[:n, :n] = data out.tofile(writer)
[ "pandas.Series", "numpy.fromfile", "pandas.Index", "numpy.array", "numpy.zeros", "pandas.DataFrame" ]
[((1176, 1221), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.uint32'], {'count': '(4)'}), '(file_handler, np.uint32, count=4)\n', (1187, 1221), True, 'import numpy as np\n'), ((1520, 1568), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.uint32'], {'count': 'ndim'}), '(file_handler, np.uint32, count=ndim)\n', (1531, 1568), True, 'import numpy as np\n'), ((1898, 1949), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'dtype'], {'count': 'flat_length'}), '(file_handler, dtype, count=flat_length)\n', (1909, 1949), True, 'import numpy as np\n'), ((4433, 4478), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.uint32'], {'count': '(4)'}), '(file_handler, np.uint32, count=4)\n', (4444, 4478), True, 'import numpy as np\n'), ((4777, 4825), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.uint32'], {'count': 'ndim'}), '(file_handler, np.uint32, count=ndim)\n', (4788, 4825), True, 'import numpy as np\n'), ((7193, 7230), 'numpy.fromfile', 'np.fromfile', (['reader'], {'dtype': 'np.float32'}), '(reader, dtype=np.float32)\n', (7204, 7230), True, 'import numpy as np\n'), ((7661, 7676), 'pandas.Index', 'pd.Index', (['zones'], {}), '(zones)\n', (7669, 7676), True, 'import pandas as pd\n'), ((7746, 7792), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'index': 'zones', 'columns': 'zones'}), '(data, index=zones, columns=zones)\n', (7758, 7792), True, 'import pandas as pd\n'), ((1646, 1690), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.int32', 'n_items'], {}), '(file_handler, np.int32, n_items)\n', (1657, 1690), True, 'import numpy as np\n'), ((2117, 2155), 'pandas.Series', 'pd.Series', (['matrix'], {'index': 'index_list[0]'}), '(matrix, index=index_list[0])\n', (2126, 2155), True, 'import pandas as pd\n'), ((4903, 4947), 'numpy.fromfile', 'np.fromfile', (['file_handler', 'np.int32', 'n_items'], {}), '(file_handler, np.int32, n_items)\n', (4914, 4947), True, 'import numpy as np\n'), ((5060, 5075), 'pandas.Index', 'pd.Index', (['zones'], {}), '(zones)\n', (5068, 5075), True, 'import pandas as pd\n'), ((8859, 8919), 'numpy.zeros', 'np.zeros', (['[emmebank_zones, emmebank_zones]'], {'dtype': 'np.float32'}), '([emmebank_zones, emmebank_zones], dtype=np.float32)\n', (8867, 8919), True, 'import numpy as np\n'), ((2201, 2265), 'pandas.DataFrame', 'pd.DataFrame', (['matrix'], {'index': 'index_list[0]', 'columns': 'index_list[1]'}), '(matrix, index=index_list[0], columns=index_list[1])\n', (2213, 2265), True, 'import pandas as pd\n'), ((3445, 3493), 'numpy.array', 'np.array', (['[3302289842, 1, 1, 2]'], {'dtype': 'np.uint32'}), '([3302289842, 1, 1, 2], dtype=np.uint32)\n', (3453, 3493), True, 'import numpy as np\n'), ((3527, 3564), 'numpy.array', 'np.array', (['data.shape'], {'dtype': 'np.uint32'}), '(data.shape, dtype=np.uint32)\n', (3535, 3564), True, 'import numpy as np\n'), ((3598, 3633), 'numpy.array', 'np.array', (['row_index'], {'dtype': 'np.int32'}), '(row_index, dtype=np.int32)\n', (3606, 3633), True, 'import numpy as np\n'), ((3657, 3695), 'numpy.array', 'np.array', (['column_index'], {'dtype': 'np.int32'}), '(column_index, dtype=np.int32)\n', (3665, 3695), True, 'import numpy as np\n')]
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from data_lit import Data_Augmentation import numpy as np #physical_devices = tf.config.list_physical_devices('GPU') #tf.config.experimental.set_memory_growth(physical_devices[0], True) class Initializer: def __init__(self, units, train_tokenizer, max_length_train, label_tokenizer, encoder, decoder): self.data = Data_Augmentation() self.train_tokenizer = train_tokenizer self. max_len = max_length_train self.units = units self.label_tokenizer = label_tokenizer self.enc = encoder self.dec = decoder # Remove the <start> and <end> tags from the sentences def Expand(self, sentence): return sentence.split("<start>")[-1].split("<end>")[0] # proceed for real time prediction. ''' sentence: is the sentence given by the chatbot user ''' def test(self, sentence): sentence = self.data.preprocess_sentence(sentence) whole = [] # collect the " " split sentence words for i in sentence.split(' '): # throw an exception if user input word not present in the vocabulary of the train data try: self.train_tokenizer.word_index[i] except Exception as e: return('Please say it clearly') whole.append(self.train_tokenizer.word_index[i]) sentence = pad_sequences([whole], maxlen=self.max_len, padding='post') sentence = tf.convert_to_tensor(sentence) enc_hidden_start = [tf.zeros((1, self.units))] # initial hidden state provide to the encoder enc_hidden, enc_output = self.enc(sentence, enc_hidden_start) dec_output = enc_output dec_input = tf.expand_dims([self.label_tokenizer.word_index['<start>']], 0) answer = '' # store the answer string # loop for predict word by word from the decoder for i in range(1, self.max_len): pred, dec_output, attention_weight = self.dec(dec_input, dec_output, enc_hidden) answer += self.label_tokenizer.index_word[np.argmax(pred[0])] + " " # add the predicted value after convert index to word if self.label_tokenizer.index_word[np.argmax(pred[0])] == '<end>': return self.Expand(answer) dec_input = tf.expand_dims([np.argmax(pred[0])], 0) # after a loop the decoder input is equal to the index of the previous predected word. return self.Expand(answer) if __name__ == '__main__': print('oot sssd proc')
[ "tensorflow.keras.preprocessing.sequence.pad_sequences", "data_lit.Data_Augmentation", "numpy.argmax", "tensorflow.convert_to_tensor", "tensorflow.expand_dims", "tensorflow.zeros" ]
[((524, 543), 'data_lit.Data_Augmentation', 'Data_Augmentation', ([], {}), '()\n', (541, 543), False, 'from data_lit import Data_Augmentation\n'), ((1576, 1635), 'tensorflow.keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['[whole]'], {'maxlen': 'self.max_len', 'padding': '"""post"""'}), "([whole], maxlen=self.max_len, padding='post')\n", (1589, 1635), False, 'from tensorflow.keras.preprocessing.sequence import pad_sequences\n'), ((1656, 1686), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['sentence'], {}), '(sentence)\n', (1676, 1686), True, 'import tensorflow as tf\n'), ((1918, 1981), 'tensorflow.expand_dims', 'tf.expand_dims', (["[self.label_tokenizer.word_index['<start>']]", '(0)'], {}), "([self.label_tokenizer.word_index['<start>']], 0)\n", (1932, 1981), True, 'import tensorflow as tf\n'), ((1718, 1743), 'tensorflow.zeros', 'tf.zeros', (['(1, self.units)'], {}), '((1, self.units))\n', (1726, 1743), True, 'import tensorflow as tf\n'), ((2284, 2302), 'numpy.argmax', 'np.argmax', (['pred[0]'], {}), '(pred[0])\n', (2293, 2302), True, 'import numpy as np\n'), ((2414, 2432), 'numpy.argmax', 'np.argmax', (['pred[0]'], {}), '(pred[0])\n', (2423, 2432), True, 'import numpy as np\n'), ((2533, 2551), 'numpy.argmax', 'np.argmax', (['pred[0]'], {}), '(pred[0])\n', (2542, 2551), True, 'import numpy as np\n')]
__author__ = "<NAME>" __copyright__ = "Copyright 2020" __version__ = "1.0.1" __maintainer__ = "Rabaa" __email__ = "<EMAIL>" import numpy as np import sys ## Class: TestParticle # Functions: Default Constructor, DataDissection, IdentifyResonance, PrintData class TestParticle: def __init__(self): # Attributes defined self.Resonant = False self.ResonanceType = 'n:n' self.Name = 'N/A' self.ResonanceCenter = -999 self.ResonanceAmplitude = -999 self.AverageSMA = -999 # Average SemiMajor axist self.AverageEccentricity = -999 self.AverageInclination = -999 self.Kozai = False self.SMAamplitude = -999 self.SMACenter = -999 self.Index = -1 ############################################ FUNCTIONS ################################################# ############################################ DATA DISSECTION ################################################# # Expects: typeOfData, IndexCount # Will do: Alter the Resonance & Kozai attributes of the class, given the write orbital elements def DataDissection(self, typeOfData, IndexCount): self.Index = IndexCount TestParticleSample = sys.argv[1] # User to choose a test sample using terminal with open('tp' + TestParticleSample + ".out") as f: # Counting number of lines for line, l in enumerate(f): pass NumberOfLines = line # Taking the test point's data from the .out file sequentially TestParticleTime, Index, SemiMajorAxis, Eccentricity, Inclination, Omega, omega, AngularPosition, LongitudeTP = np.genfromtxt( 'tp' + TestParticleSample + ".out", unpack=True) Longitude = np.genfromtxt( "LN.out", usecols= 8, unpack=True) NumberOfLines = (NumberOfLines / (max(Index)+1)) -1 # Dividing the total number of lines by number of test particles, to get steps of one test particle. # Matching the orbitals with the index we need TestParticleTime = TestParticleTime[Index == IndexCount] SemiMajorAxis = SemiMajorAxis[Index == IndexCount] Eccentricity = Eccentricity[Index == IndexCount] Inclination = Inclination[Index == IndexCount] Omega = Omega[Index == IndexCount] omega = omega[Index == IndexCount] AngularPosition = AngularPosition[Index == IndexCount] # Calculating Lambda, Pomega Lambda = (Omega + omega + AngularPosition) % 360 # The Lambda for test particles Pomega = (Omega + omega) % 360 # The longitude if pericenter in degrees # Flags "Specific ones" IsItResonant = False # Is it in resonance? ResonanceAmplitude = -999 # The Resonance Amplitude ResonanceCenter = -999 # The Resonance Center ResonanceName = -999 # The Resonance name "Ration" IsItKozai = False # Is it Kozai resonance? SMAAmplitude = -999 # SemiMajor amplitude SMACenter = -999 # SemiMajor center # Flags "General ones" IsIt = False # Resonance / Kozai ? Amplitude = -999 # Phi / SMA Center = -999 # Phi / SMA Name = -999 # Name of the test particle # General flags will be used in the coming loop, Specific flags will then be set at the end, to distinguish Kozai / Resonance # list of resonances to check: pp and qq for pp:qq resonance pp = [2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10] qq = [1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 3, 1, 2, 4, 1] for jj in np.arange(0, len(pp)): # First Loop ResSemiMajorAxis = 30.1 * (float(pp[jj]) / float(qq[jj])) ** ( 2. / 3.) # Kepler's Third Law to calculate semimajor axis of the resonance # Searching within 2 AUs from the resonance center if IsIt == 0 and (ResSemiMajorAxis + 2) > np.average(SemiMajorAxis) > (ResSemiMajorAxis - 2): phi = (float(pp[jj]) * Lambda - float(qq[jj]) * Longitude - (float(pp[jj]) - float(qq[jj])) * Pomega) % 360 AngleRange = np.arange(0, 360, 15) # Array of angles 15 degrees increment each step Window = int(0) Loop = 0 if typeOfData == 0: # Dividing the timeline to 10 separate windows Detecting resonance on smaller scales WindowStep = int(NumberOfLines / 10) IsItArray = np.zeros(int(len( phi) / WindowStep)) # Array of 10 binary elements to check for resonance each step '10%' set to zero CenterArray = np.zeros(int(len( phi) / WindowStep)) # Array of 10 binary elements to check the res angle each step '10%' set to zero while Window + WindowStep < len(phi): # Average of the semi-major axis from Current Window -> Next Window WindowAverage = np.average(SemiMajorAxis[Window:Window + WindowStep]) if (ResSemiMajorAxis + 2) > WindowAverage > ( ResSemiMajorAxis - 2): # Within 2 AUs of Window Average WindowPhi = phi[Window:Window + WindowStep] # Phi of next window AnglePresent = np.zeros(len(AngleRange)) + 1 for step in np.arange(0, len( AngleRange) - 1): # find out where the res angle doesn't go for 15 degrees, proxy for AnglePresent if len(WindowPhi[ (WindowPhi > AngleRange[step]) * (WindowPhi < (AngleRange[step + 1]))]) == 0: AnglePresent[step] = 0 IsItArray[Loop] = np.average(AnglePresent) * 180. CenterArray[Loop] = np.average( AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0]) else: IsItArray[Loop] = 180. Window += WindowStep # Increment Window Loop += 1 # Increment Loop if len(IsItArray[ IsItArray < 180.]) > 8: # If 8 out of 10 Windows classified as Resonant IsIt = True Amplitude = np.average(IsItArray) Center = np.average(CenterArray) Name = str(pp[jj]) + ':' + str(qq[jj]) MaxCenter = max(CenterArray) MinCenter = min(CenterArray) if (MaxCenter - MinCenter) > 210: # If the centers are too large in difference, it is not resonant IsIt = False Amplitude = -999 Center = -999 break else: Amplitude = -999 Center = -999 else: # If checking for Kozai, we only want one window WindowStep = int(NumberOfLines) IsItArray = np.zeros(int(len( omega) / WindowStep)) # For Kozai we check SMA CenterArray = np.zeros(int(len( omega) / WindowStep)) while Window + WindowStep < len(SemiMajorAxis): # WindowSMA = SemiMajorAxis[Window:Window + WindowStep] # SMA of next window AnglePresent = np.zeros(len(AngleRange)) + 1 for step in np.arange(0, len( AngleRange) - 1): # find out where the res angle doesn't go for 15 degrees, proxy for AnglePresent if len(omega[ (omega > AngleRange[step]) * (omega < (AngleRange[step + 1]))]) == 0: AnglePresent[step] = 0 IsItArray[Loop] = np.average(AnglePresent) * 180. CenterArray[Loop] = np.average( AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0]) Window += WindowStep # Increment Window Loop += 1 # Increment Loop if len(IsItArray[ IsItArray < 180.]) == 1: # If the Window classified as Kozai IsIt = True Amplitude = np.average(IsItArray) Center = np.average(CenterArray) Name = str(pp[jj]) + ':' + str(qq[jj]) else: Amplitude = -999 Center = -999 if typeOfData == 0: # Type 0 means we are looking if it was Resonant IsItResonant = IsIt ResonanceAmplitude = Amplitude ResonanceCenter = Center ResonanceName = Name self.Resonant = IsItResonant self.ResonanceAmplitude = ResonanceAmplitude self.ResonanceCenter = ResonanceCenter self.ResonanceType = ResonanceName else: # Else 1 means we are looking if it was Kozai IsItKozai = IsIt SMAAmplitude = Amplitude SMACenter = Center self.Kozai = IsItKozai self.SMAamplitude = SMAAmplitude self.SMACenter = SMACenter # End Else self.Name = TestParticleSample self.AverageEccentricity = np.average(Eccentricity) self.AverageInclination = np.average(Inclination) self.AverageSMA = np.average(SemiMajorAxis) return ############################################ IDENTIFY RESONANCE ############################################## # Expects: IndexCount # Will do: First call to function DataDissection to check if resonant, if resonant, will do second call to check for Kozai def IdentifyResonance(self, IndexCount): type = 0 # Indicated that the variable Resonant is what we want from DataDissection function self.DataDissection(type, IndexCount) if self.Resonant == True: type = 1 # Indicated that the variable Kozai is what we want from DataDissection function self.DataDissection(type, IndexCount) ############################################## PRINT DATA ############################################## # Expects: IndexCount # Will do: Print Data Into a '.out' file Names tp + 'number you entered' + .out def PrintData(self, IndexCount ): TestParticleSample = sys.argv[1] TestParticleTime, Index, SemiMajorAxis, Eccentricity, Inclination, Omega, omega, AngularPosition, Longitude = np.genfromtxt( "tp" + TestParticleSample + ".out", unpack=True) TextFile.write((str(self.Index) + " " +str(SemiMajorAxis[IndexCount]) + " " + str(Eccentricity[IndexCount]) + " " + str(Inclination[IndexCount]) + " " + str(Omega[IndexCount]) + " " + str(omega[IndexCount]) + " " + str(AngularPosition[IndexCount]) + " " + str(self.Name) + " " + str(self.AverageSMA) + " " + str(self.AverageEccentricity) + " " + str(self.AverageInclination) + " " + str(self.ResonanceCenter) + " " + str(self.ResonanceAmplitude) + " " + str(self.SMACenter) + " " + str(self.SMAamplitude) + " " + '\n')) # Main function if __name__ == '__main__': TestParticleSample = sys.argv[1] # User to enter the number indicating the file number Index = np.genfromtxt('tp' + TestParticleSample + ".out", usecols=1, unpack=True) NumberOfTPs = max(Index) # Assuming there is more than one Testparticle, all with different timesteps, in the same file TextFile = open("TestParticleResonance"+ TestParticleSample +".out", "a+") TextFile.write("# SMA0 Ecc0 Inc0 Node0 ArgPeri0 MeanAnom0 Name AverageSMA AverageEcc AverageInc LibrationCenter LibrationAmp KozaiCenter KozaiAmp" + '\n') IndexCount = 0 for IndexCount in range(0, int(NumberOfTPs)+1 ): Tp = TestParticle() # Initialise the test particle Tp.IdentifyResonance(IndexCount) # Identify its resonant / kozai status Tp.PrintData(IndexCount) # print the results print(TestParticleSample) # ensure it is done
[ "numpy.genfromtxt", "numpy.arange", "numpy.average" ]
[((11684, 11757), 'numpy.genfromtxt', 'np.genfromtxt', (["('tp' + TestParticleSample + '.out')"], {'usecols': '(1)', 'unpack': '(True)'}), "('tp' + TestParticleSample + '.out', usecols=1, unpack=True)\n", (11697, 11757), True, 'import numpy as np\n'), ((1668, 1730), 'numpy.genfromtxt', 'np.genfromtxt', (["('tp' + TestParticleSample + '.out')"], {'unpack': '(True)'}), "('tp' + TestParticleSample + '.out', unpack=True)\n", (1681, 1730), True, 'import numpy as np\n'), ((1765, 1812), 'numpy.genfromtxt', 'np.genfromtxt', (['"""LN.out"""'], {'usecols': '(8)', 'unpack': '(True)'}), "('LN.out', usecols=8, unpack=True)\n", (1778, 1812), True, 'import numpy as np\n'), ((9699, 9723), 'numpy.average', 'np.average', (['Eccentricity'], {}), '(Eccentricity)\n', (9709, 9723), True, 'import numpy as np\n'), ((9758, 9781), 'numpy.average', 'np.average', (['Inclination'], {}), '(Inclination)\n', (9768, 9781), True, 'import numpy as np\n'), ((9808, 9833), 'numpy.average', 'np.average', (['SemiMajorAxis'], {}), '(SemiMajorAxis)\n', (9818, 9833), True, 'import numpy as np\n'), ((10931, 10993), 'numpy.genfromtxt', 'np.genfromtxt', (["('tp' + TestParticleSample + '.out')"], {'unpack': '(True)'}), "('tp' + TestParticleSample + '.out', unpack=True)\n", (10944, 10993), True, 'import numpy as np\n'), ((4152, 4173), 'numpy.arange', 'np.arange', (['(0)', '(360)', '(15)'], {}), '(0, 360, 15)\n', (4161, 4173), True, 'import numpy as np\n'), ((3947, 3972), 'numpy.average', 'np.average', (['SemiMajorAxis'], {}), '(SemiMajorAxis)\n', (3957, 3972), True, 'import numpy as np\n'), ((5028, 5081), 'numpy.average', 'np.average', (['SemiMajorAxis[Window:Window + WindowStep]'], {}), '(SemiMajorAxis[Window:Window + WindowStep])\n', (5038, 5081), True, 'import numpy as np\n'), ((6479, 6500), 'numpy.average', 'np.average', (['IsItArray'], {}), '(IsItArray)\n', (6489, 6500), True, 'import numpy as np\n'), ((6534, 6557), 'numpy.average', 'np.average', (['CenterArray'], {}), '(CenterArray)\n', (6544, 6557), True, 'import numpy as np\n'), ((8230, 8305), 'numpy.average', 'np.average', (['(AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0])'], {}), '(AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0])\n', (8240, 8305), True, 'import numpy as np\n'), ((8656, 8677), 'numpy.average', 'np.average', (['IsItArray'], {}), '(IsItArray)\n', (8666, 8677), True, 'import numpy as np\n'), ((8711, 8734), 'numpy.average', 'np.average', (['CenterArray'], {}), '(CenterArray)\n', (8721, 8734), True, 'import numpy as np\n'), ((5958, 6033), 'numpy.average', 'np.average', (['(AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0])'], {}), '(AnglePresent[AnglePresent != 0] * AngleRange[AnglePresent != 0])\n', (5968, 6033), True, 'import numpy as np\n'), ((8154, 8178), 'numpy.average', 'np.average', (['AnglePresent'], {}), '(AnglePresent)\n', (8164, 8178), True, 'import numpy as np\n'), ((5878, 5902), 'numpy.average', 'np.average', (['AnglePresent'], {}), '(AnglePresent)\n', (5888, 5902), True, 'import numpy as np\n')]
import numpy as np import cv2 def draw_bbox(image, x1, y1, x2, y2, caption, color=(203, 232, 0)): b = np.array([x1, y1, x2, y2]).astype(int) cv2.rectangle(image, (x1, y1), (x2, y2), color=color, thickness=5) if caption: cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 0), 2) cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 255, 255), 1) return True def annotate(image, img_anno, transform_fnc=None, draw_org=False, color=(203, 232, 0)): img = image.copy() for obj in img_anno: x1, y1, x2, y2, label = obj if draw_org: draw_bbox(img, x1, y1, x2, y2, "", (255, 255, 255)) if transform_fnc: x1, y1 = transform_fnc(x1, y1) x2, y2 = transform_fnc(x2, y2) draw_bbox(img, x1, y1, x2, y2, label, color) return img
[ "cv2.rectangle", "numpy.array", "cv2.putText" ]
[((150, 216), 'cv2.rectangle', 'cv2.rectangle', (['image', '(x1, y1)', '(x2, y2)'], {'color': 'color', 'thickness': '(5)'}), '(image, (x1, y1), (x2, y2), color=color, thickness=5)\n', (163, 216), False, 'import cv2\n'), ((242, 335), 'cv2.putText', 'cv2.putText', (['image', 'caption', '(b[0], b[1] - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1.5)', '(0, 0, 0)', '(2)'], {}), '(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1.5,\n (0, 0, 0), 2)\n', (253, 335), False, 'import cv2\n'), ((340, 439), 'cv2.putText', 'cv2.putText', (['image', 'caption', '(b[0], b[1] - 10)', 'cv2.FONT_HERSHEY_PLAIN', '(1.5)', '(255, 255, 255)', '(1)'], {}), '(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1.5,\n (255, 255, 255), 1)\n', (351, 439), False, 'import cv2\n'), ((107, 133), 'numpy.array', 'np.array', (['[x1, y1, x2, y2]'], {}), '([x1, y1, x2, y2])\n', (115, 133), True, 'import numpy as np\n')]
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from queue import Queue, Full, Empty import threading import numpy as np import torch from datetime import datetime from time import sleep from collections import deque, Counter, defaultdict, OrderedDict from .utils import * __all__ = ["MemoryReceiver"] def _initialize_batch_entry(batchsize, v, use_cuda=True): if isinstance(v, np.ndarray): shape = v.shape if v.dtype == 'int32' or v.dtype == 'int64': entry = torch.LongTensor(batchsize, *shape) else: # entry = np.zeros((batchsize, ) + shape, dtype=v.dtype) entry = torch.FloatTensor(batchsize, *shape) elif isinstance(v, torch.FloatTensor): shape = v.size() entry = torch.FloatTensor(batchsize, *shape) elif isinstance(v, list): entry = np.zeros((batchsize, len(v)), dtype=type(v[0])) elif isinstance(v, float): entry = torch.FloatTensor(batchsize) elif isinstance(v, int): entry = torch.LongTensor(batchsize) elif isinstance(v, str) or isinstance(v, bytes): entry = [None] * batchsize else: entry = np.zeros((batchsize), dtype=type(v)) # Make it pinned memory if use_cuda and (isinstance(entry, torch.FloatTensor) or isinstance(entry, torch.LongTensor)): entry = entry.pin_memory() return entry def _initialize_batch_cpu(batch_cpu, batch_gpu, k, v, batchsize, use_cuda=True): if k not in batch_cpu: entry = _initialize_batch_entry(batchsize, v, use_cuda=use_cuda) batch_cpu[k] = entry else: entry = batch_cpu[k] if isinstance(entry, np.ndarray): shape = entry.shape elif isinstance(entry, list): shape = (len(entry),) else: shape = entry.size() if shape[0] < batchsize: # Batch size becomes larger, re-initialize. entry = _initialize_batch_entry(batchsize, v, use_cuda=use_cuda) batch_cpu[k] = entry if k in batch_gpu: del batch_gpu[k] return entry, shape def _cpu2gpu(batch_cpu, batch_gpu, allow_incomplete_batch=False): for batch_cpu_t, batch_gpu_t in zip(batch_cpu, batch_gpu): batchsize = batch_cpu_t["_batchsize"] batch_gpu_t["_batchsize"] = batchsize for k in batch_cpu_t.keys(): if isinstance(batch_cpu_t[k], (torch.FloatTensor, torch.LongTensor)): if allow_incomplete_batch: if len(batch_cpu_t[k].size()) == 1: batch_gpu_t[k] = batch_cpu_t[k][:batchsize].cuda(non_blocking=True) else: batch_gpu_t[k] = batch_cpu_t[k][:batchsize, :].cuda(non_blocking=True) else: if isinstance(batch_cpu_t[k], torch.FloatTensor): if k not in batch_gpu_t: batch_gpu_t[k] = torch.cuda.FloatTensor(batch_cpu_t[k].size()) batch_gpu_t[k].copy_(batch_cpu_t[k], non_blocking=True) elif isinstance(batch_cpu_t[k], torch.LongTensor): if k not in batch_gpu_t: batch_gpu_t[k] = torch.cuda.LongTensor(batch_cpu_t[k].size()) batch_gpu_t[k].copy_(batch_cpu_t[k], non_blocking=True) else: batch_gpu_t[k] = batch_cpu_t[k] def _make_batch(batch, q, use_cuda=True, allow_incomplete_batch=False): ''' Lots of hacks in this function, need to fix in the future.''' if "cpu" not in batch: batch.update({ "cpu" : [], "gpu" : [] }) # For input q: # len(q) == T # len(q[t]) == batchsize # q[t][batch_id] is a dict, e.g., q[t][batch_id] = { "s" : np.array, "a" : int, "r" : float } # For output: # batch_cpu is a list of dict, e.g., batch_cpu[t] = { "s" : FloatTensor(batchsize, channel, w, h), "a" : FloatTensor(batchsize) } T = len(q) batchsize = len(q[0]) # Time span of the batch. if len(batch["cpu"]) != T: batch["cpu"] = [dict() for i in range(T)] batch["gpu"] = [dict() for i in range(T)] batch_cpu = batch["cpu"] batch_gpu = batch["gpu"] for q_t, batch_cpu_t, batch_gpu_t in zip(q, batch_cpu, batch_gpu): batch_cpu_t["_batchsize"] = batchsize for k, v in q_t[0].items(): entry, shape = _initialize_batch_cpu(batch_cpu_t, batch_gpu_t, k, v, batchsize, use_cuda=use_cuda) if len(shape) == 1: for i in range(batchsize): entry[i] = q_t[i][k] else: # TODO: Remove this once np.array to torch assignment has been implemented. if isinstance(q_t[0][k], np.ndarray): for i in range(batchsize): entry[i, :] = torch.from_numpy(q_t[i][k]) else: for i in range(batchsize): entry[i, :] = q_t[i][k] # Put things on cuda. if use_cuda: _cpu2gpu(batch_cpu, batch_gpu, allow_incomplete_batch=allow_incomplete_batch) class Pool: def __init__(self, num_pool): # Open a thread to assemble the batch. self.num_pool = num_pool self.pool = [ dict() for i in range(self.num_pool) ] self.empty_entries = Queue() for i in range(num_pool): self.pool[i]["_idx"] = i self.empty_entries.put(i) def reserve(self): idx = self.empty_entries.get() return self.pool[idx] def release(self, batch): self.empty_entries.put(batch["_idx"]) class SeqStats: def __init__(self, name="seq", seq_limits=None): # Stats. self.stats_seq = Counter() self.clear_stats() self.name = name if seq_limits is None: self.limits = [1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 4000, 5000, float("inf")] else: self.limits = seq_limits if not np.isinf(self.limits[-1]): self.limits.append(float("inf")) def feed(self, seqs): for seq_num in seqs: bin_idx = None for i, limit in enumerate(self.limits[1:]): if int(seq_num) < limit: bin_idx = i break if seq_num.item() > self.max_seq: self.max_seq = seq_num if seq_num.item() < self.min_seq: self.min_seq = seq_num name = "[" + str(self.limits[bin_idx]) + ", " + str(self.limits[bin_idx + 1]) + ")" self.stats_seq[name] += 1 def print_stats(self, reset=False): total_counts = sum(self.stats_seq.values()) if total_counts > 0: print("Distribution of %s [min = %d / max = %d / #count = %d]:" % (self.name, self.min_seq, self.max_seq, total_counts)) s = "" for r in sorted(self.stats_seq.keys(), key=lambda x : float(x.split(",")[0][1:])): s += "%s: %d [%.2lf%%]\n" % (r, self.stats_seq[r], 100.0 * self.stats_seq[r] / total_counts) print(s) else: print("Distribution of %s [#count = %d]:" % (self.name, total_counts)) if reset: self.clear_stats() def clear_stats(self): self.stats_seq.clear() self.max_seq = 0 self.min_seq = float('inf') class Timer: def __init__(self): self.reset() def __call__(self, name): self.curr_name = name return self def __enter__(self): self.before[self.curr_name] = datetime.now() def __exit__(self, t, value, traceback): after = datetime.now() elapsed = (after - self.before[self.curr_name]).total_seconds() * 1000 self.records[self.curr_name][0] += elapsed self.records[self.curr_name][1] += 1 def summary(self): rets = [] for name, record in self.records.items(): cumtime, count = record aver_time = float(cumtime) / count rets.append("[%s] %.3f ms [%d]" % (name, aver_time, count)) return rets def reset(self): self.records = defaultdict(lambda : [0, 0]) self.before = { } class BatchStats: def __init__(self, seq_limits=None): # Stats. self.stats_agent = Counter() self.seq_stats = SeqStats(seq_limits=seq_limits) def add_stats(self, batch): for agent_name in batch["_agent_name"]: self.stats_agent[agent_name] += 1 self.seq_stats.feed(batch["_seq"]) def print_stats(self): sum_counter = sum(self.stats_agent.values()) num_agents = len(self.stats_agent) avg_counter = sum_counter / num_agents print("Agent Stats: %.3f[%d/%d]" % (avg_counter, sum_counter, num_agents)) print(self.stats_agent.most_common(20)) self.seq_stats.print_stats() def clear_stats(self): self.stats_agent.clear() self.seq_stats.clear_stats() def ZMQDecoder(receive_data): sender_name, m = receive_data if sender_name is None: if m is None: # Done with the loop return "exit" else: # No package for now # send existing data if there is any. return "nopackage" try: m = loads(m.buffer) except: # If there is anything wrong with the decoding, return "nopackage" return "nopackage" sender_name = sender_name.bytes for data in m: data["_sender"] = sender_name return m class MemoryReceiver: def __init__(self, name, ch, batch_assembler, batch_queue, prompt=None, decoder=ZMQDecoder, allow_incomplete_batch=False, seq_limits=None, replier=None): self.name = name self.ch = ch self.batch_assembler = batch_assembler self.loop_count = 0 self.done_flag = None self.use_cuda = torch.cuda.is_available() self.batch_queue = batch_queue self.prompt = prompt self.allow_incomplete_batch = allow_incomplete_batch # BatchStats: self.batch_stats = BatchStats(seq_limits=seq_limits) self.decoder = decoder self.timer = Timer() # XXX Not a good design. Need to refactor self.replier = replier # Open a thread to assemble the batch. # TODO: For some reason, single threaded version is substantially # faster than two-threaded version, which is supposed to hide # the latency when receiving the data and build the batch. self.pool = Pool(2) threading.Thread(target=self._receive).start() def on_data(self, m): qs = self.batch_assembler.feed(m) if qs is not None: # print("MemoryReceiver[%s] Receive batch!" % self.name) if self.prompt is not None: queue_size = self.batch_queue.qsize() print(self.prompt["on_draw_batch"] + str(queue_size), end="") sys.stdout.flush() self._make_and_send_batch(qs) def on_incomplete_batch(self): ''' Incomplete batch ''' if self.batch_assembler.sample_count() == 0 or not self.allow_incomplete_batch: return qs = self.batch_assembler.get_batch(incomplete=True) if qs is not None: self._make_and_send_batch(qs) def _make_and_send_batch(self, qs): batch = self.pool.reserve() if self.prompt is not None: print(self.prompt["on_make_batch"], end="") sys.stdout.flush() _make_batch(batch, qs, use_cuda=self.use_cuda, allow_incomplete_batch=self.allow_incomplete_batch) self.batch_stats.add_stats(batch["cpu"][0]) queue_put(self.batch_queue, (self, batch), done_flag=self.done_flag, fail_comment="BatchConnector.on_data.queue_put failed, retrying") def _preprocess(self, raw_data): ''' Return a list contains all the data to be fed to the assembler If return [], then no data are received. If return None, then we should exit. ''' if self.decoder: with self.timer("decode"): m = self.decoder(raw_data) if isinstance(m, str): # No package for now, send existing data if there is any. if m == 'nopackage': return [] else: return None else: if raw_data is None: return [] else: m = raw_data # Send to multiple threads for batch. ret = [] with self.timer("collect"): for data in m: data["_key"] = self._get_key(data) if not "_sender" in data: data["_sender"] = data["_key"] ret.append(data) return ret def _get_key(self, data): return "%s-%d-%d" % (data["_agent_name"], data["_game_counter"], data["_seq"]) def _receive(self): check_interval = 200 counter = 0 while True: with self.timer("receive"): raw_data = self.ch.Receive() m = self._preprocess(raw_data) if m is None: break if len(m) == 0: self.on_incomplete_batch() continue for data in m: self.loop_count += 1 self.on_data(data) counter += 1 if counter % check_interval == 0: # print("MemoryReceiver: %s, #data = %d" % (", ".join(self.timer.summary()), len(m))) if check_done_flag(self.done_flag): break print("Exit from MemoryReceiver._receive") def print_stats(self): queue_size = self.batch_queue.qsize() print("Queue size: %d" % queue_size) self.batch_stats.print_stats() self.batch_stats.clear_stats() def Step(self, batch, reply): # Send reply back and release if self.replier is not None: self.replier.reply(batch["cpu"][0], reply) self.pool.release(batch) if self.prompt is not None: print(self.prompt["on_release_batch"], end="") sys.stdout.flush()
[ "torch.LongTensor", "torch.from_numpy", "collections.Counter", "datetime.datetime.now", "torch.cuda.is_available", "collections.defaultdict", "threading.Thread", "queue.Queue", "numpy.isinf", "torch.FloatTensor" ]
[((5438, 5445), 'queue.Queue', 'Queue', ([], {}), '()\n', (5443, 5445), False, 'from queue import Queue, Full, Empty\n'), ((5838, 5847), 'collections.Counter', 'Counter', ([], {}), '()\n', (5845, 5847), False, 'from collections import deque, Counter, defaultdict, OrderedDict\n'), ((7729, 7743), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7741, 7743), False, 'from datetime import datetime\n'), ((7806, 7820), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7818, 7820), False, 'from datetime import datetime\n'), ((8308, 8336), 'collections.defaultdict', 'defaultdict', (['(lambda : [0, 0])'], {}), '(lambda : [0, 0])\n', (8319, 8336), False, 'from collections import deque, Counter, defaultdict, OrderedDict\n'), ((8468, 8477), 'collections.Counter', 'Counter', ([], {}), '()\n', (8475, 8477), False, 'from collections import deque, Counter, defaultdict, OrderedDict\n'), ((10097, 10122), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (10120, 10122), False, 'import torch\n'), ((648, 683), 'torch.LongTensor', 'torch.LongTensor', (['batchsize', '*shape'], {}), '(batchsize, *shape)\n', (664, 683), False, 'import torch\n'), ((787, 823), 'torch.FloatTensor', 'torch.FloatTensor', (['batchsize', '*shape'], {}), '(batchsize, *shape)\n', (804, 823), False, 'import torch\n'), ((908, 944), 'torch.FloatTensor', 'torch.FloatTensor', (['batchsize', '*shape'], {}), '(batchsize, *shape)\n', (925, 944), False, 'import torch\n'), ((6151, 6176), 'numpy.isinf', 'np.isinf', (['self.limits[-1]'], {}), '(self.limits[-1])\n', (6159, 6176), True, 'import numpy as np\n'), ((10786, 10824), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._receive'}), '(target=self._receive)\n', (10802, 10824), False, 'import threading\n'), ((1086, 1114), 'torch.FloatTensor', 'torch.FloatTensor', (['batchsize'], {}), '(batchsize)\n', (1103, 1114), False, 'import torch\n'), ((1160, 1187), 'torch.LongTensor', 'torch.LongTensor', (['batchsize'], {}), '(batchsize)\n', (1176, 1187), False, 'import torch\n'), ((4945, 4972), 'torch.from_numpy', 'torch.from_numpy', (['q_t[i][k]'], {}), '(q_t[i][k])\n', (4961, 4972), False, 'import torch\n')]
from __future__ import print_function import itertools import numpy as np import numba.unittest_support as unittest from numba import types, jit, typeof from .support import MemoryLeakMixin, TestCase, tag def getitem_usecase(a, b): return a[b] def setitem_usecase(a, idx, b): a[idx] = b class TestFancyIndexing(MemoryLeakMixin, TestCase): def generate_advanced_indices(self, N, many=True): choices = [np.int16([0, N - 1, -2])] if many: choices += [np.uint16([0, 1, N - 1]), np.bool_([0, 1, 1, 0])] return choices def generate_basic_index_tuples(self, N, maxdim, many=True): """ Generate basic index tuples with 0 to *maxdim* items. """ # Note integers can be considered advanced indices in certain # cases, so we avoid them here. # See "Combining advanced and basic indexing" # in http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html if many: choices = [slice(None, None, None), slice(1, N - 1, None), slice(0, None, 2), slice(N - 1, None, -2), slice(-N + 1, -1, None), slice(-1, -N, -2), ] else: choices = [slice(0, N - 1, None), slice(-1, -N, -2)] for ndim in range(maxdim + 1): for tup in itertools.product(choices, repeat=ndim): yield tup def generate_advanced_index_tuples(self, N, maxdim, many=True): """ Generate advanced index tuples by generating basic index tuples and adding a single advanced index item. """ # (Note Numba doesn't support advanced indices with more than # one advanced index array at the moment) choices = list(self.generate_advanced_indices(N, many=many)) for i in range(maxdim + 1): for tup in self.generate_basic_index_tuples(N, maxdim - 1, many): for adv in choices: yield tup[:i] + (adv,) + tup[i:] def generate_advanced_index_tuples_with_ellipsis(self, N, maxdim, many=True): """ Same as generate_advanced_index_tuples(), but also insert an ellipsis at various points. """ for tup in self.generate_advanced_index_tuples(N, maxdim, many): for i in range(len(tup) + 1): yield tup[:i] + (Ellipsis,) + tup[i:] def check_getitem_indices(self, arr, indices): pyfunc = getitem_usecase cfunc = jit(nopython=True)(pyfunc) orig = arr.copy() orig_base = arr.base or arr for index in indices: expected = pyfunc(arr, index) # Sanity check: if a copy wasn't made, this wasn't advanced # but basic indexing, and shouldn't be tested here. assert expected.base is not orig_base got = cfunc(arr, index) # Note Numba may not return the same array strides and # contiguity as Numpy self.assertEqual(got.shape, expected.shape) self.assertEqual(got.dtype, expected.dtype) np.testing.assert_equal(got, expected) # Check a copy was *really* returned by Numba if got.size: got.fill(42) np.testing.assert_equal(arr, orig) def test_getitem_tuple(self): # Test many variations of advanced indexing with a tuple index N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) indices = self.generate_advanced_index_tuples(N, ndim) self.check_getitem_indices(arr, indices) def test_getitem_tuple_and_ellipsis(self): # Same, but also insert an ellipsis at a random point N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) indices = self.generate_advanced_index_tuples_with_ellipsis(N, ndim, many=False) self.check_getitem_indices(arr, indices) @tag('important') def test_getitem_array(self): # Test advanced indexing with a single array index N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) indices = self.generate_advanced_indices(N) self.check_getitem_indices(arr, indices) def check_setitem_indices(self, arr, indices): pyfunc = setitem_usecase cfunc = jit(nopython=True)(pyfunc) for index in indices: src = arr[index] expected = np.zeros_like(arr) got = np.zeros_like(arr) pyfunc(expected, index, src) cfunc(got, index, src) # Note Numba may not return the same array strides and # contiguity as Numpy self.assertEqual(got.shape, expected.shape) self.assertEqual(got.dtype, expected.dtype) np.testing.assert_equal(got, expected) def test_setitem_tuple(self): # Test many variations of advanced indexing with a tuple index N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) indices = self.generate_advanced_index_tuples(N, ndim) self.check_setitem_indices(arr, indices) def test_setitem_tuple_and_ellipsis(self): # Same, but also insert an ellipsis at a random point N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) indices = self.generate_advanced_index_tuples_with_ellipsis(N, ndim, many=False) self.check_setitem_indices(arr, indices) def test_setitem_array(self): # Test advanced indexing with a single array index N = 4 ndim = 3 arr = np.arange(N ** ndim).reshape((N,) * ndim).astype(np.int32) + 10 indices = self.generate_advanced_indices(N) self.check_setitem_indices(arr, indices) if __name__ == '__main__': unittest.main()
[ "numba.unittest_support.main", "numpy.testing.assert_equal", "numpy.int16", "itertools.product", "numba.jit", "numpy.bool_", "numpy.uint16", "numpy.zeros_like", "numpy.arange" ]
[((6184, 6199), 'numba.unittest_support.main', 'unittest.main', ([], {}), '()\n', (6197, 6199), True, 'import numba.unittest_support as unittest\n'), ((430, 454), 'numpy.int16', 'np.int16', (['[0, N - 1, -2]'], {}), '([0, N - 1, -2])\n', (438, 454), True, 'import numpy as np\n'), ((1465, 1504), 'itertools.product', 'itertools.product', (['choices'], {'repeat': 'ndim'}), '(choices, repeat=ndim)\n', (1482, 1504), False, 'import itertools\n'), ((2621, 2639), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (2624, 2639), False, 'from numba import types, jit, typeof\n'), ((3230, 3268), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['got', 'expected'], {}), '(got, expected)\n', (3253, 3268), True, 'import numpy as np\n'), ((4598, 4616), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (4601, 4616), False, 'from numba import types, jit, typeof\n'), ((4708, 4726), 'numpy.zeros_like', 'np.zeros_like', (['arr'], {}), '(arr)\n', (4721, 4726), True, 'import numpy as np\n'), ((4745, 4763), 'numpy.zeros_like', 'np.zeros_like', (['arr'], {}), '(arr)\n', (4758, 4763), True, 'import numpy as np\n'), ((5065, 5103), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['got', 'expected'], {}), '(got, expected)\n', (5088, 5103), True, 'import numpy as np\n'), ((497, 521), 'numpy.uint16', 'np.uint16', (['[0, 1, N - 1]'], {}), '([0, 1, N - 1])\n', (506, 521), True, 'import numpy as np\n'), ((547, 569), 'numpy.bool_', 'np.bool_', (['[0, 1, 1, 0]'], {}), '([0, 1, 1, 0])\n', (555, 569), True, 'import numpy as np\n'), ((3397, 3431), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['arr', 'orig'], {}), '(arr, orig)\n', (3420, 3431), True, 'import numpy as np\n'), ((3583, 3603), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (3592, 3603), True, 'import numpy as np\n'), ((3910, 3930), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (3919, 3930), True, 'import numpy as np\n'), ((4337, 4357), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (4346, 4357), True, 'import numpy as np\n'), ((5255, 5275), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (5264, 5275), True, 'import numpy as np\n'), ((5581, 5601), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (5590, 5601), True, 'import numpy as np\n'), ((5986, 6006), 'numpy.arange', 'np.arange', (['(N ** ndim)'], {}), '(N ** ndim)\n', (5995, 6006), True, 'import numpy as np\n')]
# Copyright 2020 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Inference for onset conditioned model. A histogram summary will be written for every example processed, and the resulting MIDI and pianoroll images will also be written for every example. The final summary value is the mean score for all examples. """ import collections import functools import os import time import imageio from magenta.models.onsets_frames_transcription import constants from magenta.models.onsets_frames_transcription import data from magenta.models.onsets_frames_transcription import infer_util from magenta.models.onsets_frames_transcription import train_util from note_seq import midi_io from note_seq import sequences_lib from note_seq.protobuf import music_pb2 import numpy as np import six import tensorflow.compat.v1 as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('master', '', 'Name of the TensorFlow runtime to use.') tf.app.flags.DEFINE_string('config', 'onsets_frames', 'Name of the config to use.') tf.app.flags.DEFINE_string('model_dir', None, 'Path to look for checkpoints.') tf.app.flags.DEFINE_string( 'checkpoint_path', None, 'Filename of the checkpoint to use. If not specified, will use the latest ' 'checkpoint') tf.app.flags.DEFINE_string('examples_path', None, 'Path to test examples TFRecord.') tf.app.flags.DEFINE_string( 'output_dir', '~/tmp/onsets_frames/infer', 'Path to store output midi files and summary events.') tf.app.flags.DEFINE_string( 'hparams', '', 'A comma-separated list of `name=value` hyperparameter values.') tf.app.flags.DEFINE_boolean( 'shuffle_examples', False, 'Whether to shuffle examples.') tf.app.flags.DEFINE_string( 'log', 'INFO', 'The threshold for what messages will be logged: ' 'DEBUG, INFO, WARN, ERROR, or FATAL.') tf.app.flags.DEFINE_boolean('preprocess_examples', False, 'Whether or not to run preprocessing on examples.') def model_inference(model_fn, model_dir, checkpoint_path, data_fn, hparams, examples_path, output_dir, summary_writer, master, preprocess_examples, shuffle_examples): """Runs inference for the given examples.""" tf.logging.info('model_dir=%s', model_dir) tf.logging.info('checkpoint_path=%s', checkpoint_path) tf.logging.info('examples_path=%s', examples_path) tf.logging.info('output_dir=%s', output_dir) estimator = train_util.create_estimator( model_fn, model_dir, hparams, master=master) transcription_data = functools.partial( data_fn, examples=examples_path, preprocess_examples=preprocess_examples, is_training=False, shuffle_examples=shuffle_examples, skip_n_initial_records=0) input_fn = infer_util.labels_to_features_wrapper(transcription_data) start_time = time.time() infer_times = [] num_frames = [] file_num = 0 all_metrics = collections.defaultdict(list) for predictions in estimator.predict( input_fn, checkpoint_path=checkpoint_path, yield_single_examples=False): # Remove batch dimension for convenience. for k in predictions.keys(): if predictions[k].shape[0] != 1: raise ValueError( 'All predictions must have batch size 1, but shape of ' '{} was: {}'.format(k, + predictions[k].shape[0])) predictions[k] = predictions[k][0] end_time = time.time() infer_time = end_time - start_time infer_times.append(infer_time) num_frames.append(predictions['frame_predictions'].shape[0]) tf.logging.info( 'Infer time %f, frames %d, frames/sec %f, running average %f', infer_time, num_frames[-1], num_frames[-1] / infer_time, np.sum(num_frames) / np.sum(infer_times)) tf.logging.info('Scoring sequence %s', predictions['sequence_ids']) sequence_prediction = music_pb2.NoteSequence.FromString( predictions['sequence_predictions']) sequence_label = music_pb2.NoteSequence.FromString( predictions['sequence_labels']) # Make filenames UNIX-friendly. filename_chars = six.ensure_text(predictions['sequence_ids'], 'utf-8') filename_chars = [c if c.isalnum() else '_' for c in filename_chars] filename_safe = ''.join(filename_chars).rstrip() filename_safe = '{:04d}_{}'.format(file_num, filename_safe[:200]) file_num += 1 output_file = os.path.join(output_dir, filename_safe + '.mid') tf.logging.info('Writing inferred midi file to %s', output_file) midi_io.sequence_proto_to_midi_file(sequence_prediction, output_file) label_output_file = os.path.join(output_dir, filename_safe + '_label.mid') tf.logging.info('Writing label midi file to %s', label_output_file) midi_io.sequence_proto_to_midi_file(sequence_label, label_output_file) # Also write a pianoroll showing acoustic model output vs labels. pianoroll_output_file = os.path.join( output_dir, filename_safe + '_pianoroll.png') tf.logging.info('Writing acoustic logit/label file to %s', pianoroll_output_file) # Calculate frames based on the sequence. Includes any postprocessing done # to turn raw onsets/frames predictions into the final sequence. # TODO(fjord): This work is duplicated in metrics.py. sequence_frame_predictions = sequences_lib.sequence_to_pianoroll( sequence_prediction, frames_per_second=data.hparams_frames_per_second(hparams), min_pitch=constants.MIN_MIDI_PITCH, max_pitch=constants.MAX_MIDI_PITCH).active with tf.gfile.GFile(pianoroll_output_file, mode='w') as f: imageio.imwrite( f, infer_util.posterior_pianoroll_image( predictions['onset_probs'], predictions['onset_labels'], predictions['frame_probs'], predictions['frame_labels'], sequence_frame_predictions), format='png') # Update histogram and current scalar for metrics. with tf.Graph().as_default(), tf.Session().as_default(): for k, v in predictions.items(): if not k.startswith('metrics/'): continue all_metrics[k].extend(v) histogram_name = k + '_histogram' metric_summary = tf.summary.histogram(histogram_name, all_metrics[k]) summary_writer.add_summary(metric_summary.eval(), global_step=file_num) scalar_name = k metric_summary = tf.summary.scalar(scalar_name, np.mean(all_metrics[k])) summary_writer.add_summary(metric_summary.eval(), global_step=file_num) summary_writer.flush() start_time = time.time() # Write final mean values for all metrics. with tf.Graph().as_default(), tf.Session().as_default(): for k, v in all_metrics.items(): final_scalar_name = 'final/' + k metric_summary = tf.summary.scalar( final_scalar_name, np.mean(all_metrics[k])) summary_writer.add_summary(metric_summary.eval()) summary_writer.flush() def run(config_map, data_fn): """Run the infer script.""" output_dir = os.path.expanduser(FLAGS.output_dir) config = config_map[FLAGS.config] hparams = config.hparams hparams.parse(FLAGS.hparams) # Batch size should always be 1 for inference. hparams.batch_size = 1 tf.logging.info(hparams) tf.gfile.MakeDirs(output_dir) summary_writer = tf.summary.FileWriter(logdir=output_dir) with tf.Session(): run_config = '\n\n'.join([ 'model_dir: ' + FLAGS.model_dir, 'checkpoint_path: ' + str(FLAGS.checkpoint_path), 'examples_path: ' + FLAGS.examples_path, str(hparams), ]) run_config_summary = tf.summary.text( 'run_config', tf.constant(run_config, name='run_config'), collections=[]) summary_writer.add_summary(run_config_summary.eval()) model_inference( model_fn=config.model_fn, model_dir=FLAGS.model_dir, checkpoint_path=FLAGS.checkpoint_path, data_fn=data_fn, hparams=hparams, examples_path=FLAGS.examples_path, output_dir=output_dir, summary_writer=summary_writer, preprocess_examples=FLAGS.preprocess_examples, master=FLAGS.master, shuffle_examples=FLAGS.shuffle_examples)
[ "magenta.models.onsets_frames_transcription.infer_util.labels_to_features_wrapper", "tensorflow.compat.v1.gfile.GFile", "magenta.models.onsets_frames_transcription.data.hparams_frames_per_second", "tensorflow.compat.v1.Session", "numpy.mean", "note_seq.protobuf.music_pb2.NoteSequence.FromString", "six.ensure_text", "os.path.expanduser", "tensorflow.compat.v1.gfile.MakeDirs", "tensorflow.compat.v1.summary.FileWriter", "tensorflow.compat.v1.app.flags.DEFINE_string", "tensorflow.compat.v1.summary.histogram", "note_seq.midi_io.sequence_proto_to_midi_file", "tensorflow.compat.v1.constant", "magenta.models.onsets_frames_transcription.train_util.create_estimator", "time.time", "tensorflow.compat.v1.logging.info", "tensorflow.compat.v1.Graph", "tensorflow.compat.v1.app.flags.DEFINE_boolean", "os.path.join", "magenta.models.onsets_frames_transcription.infer_util.posterior_pianoroll_image", "numpy.sum", "functools.partial", "collections.defaultdict" ]
[((1389, 1475), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""master"""', '""""""', '"""Name of the TensorFlow runtime to use."""'], {}), "('master', '',\n 'Name of the TensorFlow runtime to use.')\n", (1415, 1475), True, 'import tensorflow.compat.v1 as tf\n'), ((1499, 1586), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""config"""', '"""onsets_frames"""', '"""Name of the config to use."""'], {}), "('config', 'onsets_frames',\n 'Name of the config to use.')\n", (1525, 1586), True, 'import tensorflow.compat.v1 as tf\n'), ((1610, 1688), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""model_dir"""', 'None', '"""Path to look for checkpoints."""'], {}), "('model_dir', None, 'Path to look for checkpoints.')\n", (1636, 1688), True, 'import tensorflow.compat.v1 as tf\n'), ((1689, 1836), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""checkpoint_path"""', 'None', '"""Filename of the checkpoint to use. If not specified, will use the latest checkpoint"""'], {}), "('checkpoint_path', None,\n 'Filename of the checkpoint to use. If not specified, will use the latest checkpoint'\n )\n", (1715, 1836), True, 'import tensorflow.compat.v1 as tf\n'), ((1844, 1932), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""examples_path"""', 'None', '"""Path to test examples TFRecord."""'], {}), "('examples_path', None,\n 'Path to test examples TFRecord.')\n", (1870, 1932), True, 'import tensorflow.compat.v1 as tf\n'), ((1956, 2084), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""output_dir"""', '"""~/tmp/onsets_frames/infer"""', '"""Path to store output midi files and summary events."""'], {}), "('output_dir', '~/tmp/onsets_frames/infer',\n 'Path to store output midi files and summary events.')\n", (1982, 2084), True, 'import tensorflow.compat.v1 as tf\n'), ((2090, 2200), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""hparams"""', '""""""', '"""A comma-separated list of `name=value` hyperparameter values."""'], {}), "('hparams', '',\n 'A comma-separated list of `name=value` hyperparameter values.')\n", (2116, 2200), True, 'import tensorflow.compat.v1 as tf\n'), ((2206, 2296), 'tensorflow.compat.v1.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""shuffle_examples"""', '(False)', '"""Whether to shuffle examples."""'], {}), "('shuffle_examples', False,\n 'Whether to shuffle examples.')\n", (2233, 2296), True, 'import tensorflow.compat.v1 as tf\n'), ((2298, 2435), 'tensorflow.compat.v1.app.flags.DEFINE_string', 'tf.app.flags.DEFINE_string', (['"""log"""', '"""INFO"""', '"""The threshold for what messages will be logged: DEBUG, INFO, WARN, ERROR, or FATAL."""'], {}), "('log', 'INFO',\n 'The threshold for what messages will be logged: DEBUG, INFO, WARN, ERROR, or FATAL.'\n )\n", (2324, 2435), True, 'import tensorflow.compat.v1 as tf\n'), ((2443, 2556), 'tensorflow.compat.v1.app.flags.DEFINE_boolean', 'tf.app.flags.DEFINE_boolean', (['"""preprocess_examples"""', '(False)', '"""Whether or not to run preprocessing on examples."""'], {}), "('preprocess_examples', False,\n 'Whether or not to run preprocessing on examples.')\n", (2470, 2556), True, 'import tensorflow.compat.v1 as tf\n'), ((2999, 3041), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""model_dir=%s"""', 'model_dir'], {}), "('model_dir=%s', model_dir)\n", (3014, 3041), True, 'import tensorflow.compat.v1 as tf\n'), ((3044, 3098), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""checkpoint_path=%s"""', 'checkpoint_path'], {}), "('checkpoint_path=%s', checkpoint_path)\n", (3059, 3098), True, 'import tensorflow.compat.v1 as tf\n'), ((3101, 3151), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""examples_path=%s"""', 'examples_path'], {}), "('examples_path=%s', examples_path)\n", (3116, 3151), True, 'import tensorflow.compat.v1 as tf\n'), ((3154, 3198), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""output_dir=%s"""', 'output_dir'], {}), "('output_dir=%s', output_dir)\n", (3169, 3198), True, 'import tensorflow.compat.v1 as tf\n'), ((3214, 3286), 'magenta.models.onsets_frames_transcription.train_util.create_estimator', 'train_util.create_estimator', (['model_fn', 'model_dir', 'hparams'], {'master': 'master'}), '(model_fn, model_dir, hparams, master=master)\n', (3241, 3286), False, 'from magenta.models.onsets_frames_transcription import train_util\n'), ((3318, 3499), 'functools.partial', 'functools.partial', (['data_fn'], {'examples': 'examples_path', 'preprocess_examples': 'preprocess_examples', 'is_training': '(False)', 'shuffle_examples': 'shuffle_examples', 'skip_n_initial_records': '(0)'}), '(data_fn, examples=examples_path, preprocess_examples=\n preprocess_examples, is_training=False, shuffle_examples=\n shuffle_examples, skip_n_initial_records=0)\n', (3335, 3499), False, 'import functools\n'), ((3523, 3580), 'magenta.models.onsets_frames_transcription.infer_util.labels_to_features_wrapper', 'infer_util.labels_to_features_wrapper', (['transcription_data'], {}), '(transcription_data)\n', (3560, 3580), False, 'from magenta.models.onsets_frames_transcription import infer_util\n'), ((3597, 3608), 'time.time', 'time.time', ([], {}), '()\n', (3606, 3608), False, 'import time\n'), ((3679, 3708), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (3702, 3708), False, 'import collections\n'), ((7813, 7849), 'os.path.expanduser', 'os.path.expanduser', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (7831, 7849), False, 'import os\n'), ((8023, 8047), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['hparams'], {}), '(hparams)\n', (8038, 8047), True, 'import tensorflow.compat.v1 as tf\n'), ((8051, 8080), 'tensorflow.compat.v1.gfile.MakeDirs', 'tf.gfile.MakeDirs', (['output_dir'], {}), '(output_dir)\n', (8068, 8080), True, 'import tensorflow.compat.v1 as tf\n'), ((8101, 8141), 'tensorflow.compat.v1.summary.FileWriter', 'tf.summary.FileWriter', ([], {'logdir': 'output_dir'}), '(logdir=output_dir)\n', (8122, 8141), True, 'import tensorflow.compat.v1 as tf\n'), ((4162, 4173), 'time.time', 'time.time', ([], {}), '()\n', (4171, 4173), False, 'import time\n'), ((4525, 4592), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""Scoring sequence %s"""', "predictions['sequence_ids']"], {}), "('Scoring sequence %s', predictions['sequence_ids'])\n", (4540, 4592), True, 'import tensorflow.compat.v1 as tf\n'), ((4620, 4690), 'note_seq.protobuf.music_pb2.NoteSequence.FromString', 'music_pb2.NoteSequence.FromString', (["predictions['sequence_predictions']"], {}), "(predictions['sequence_predictions'])\n", (4653, 4690), False, 'from note_seq.protobuf import music_pb2\n'), ((4721, 4786), 'note_seq.protobuf.music_pb2.NoteSequence.FromString', 'music_pb2.NoteSequence.FromString', (["predictions['sequence_labels']"], {}), "(predictions['sequence_labels'])\n", (4754, 4786), False, 'from note_seq.protobuf import music_pb2\n'), ((4854, 4907), 'six.ensure_text', 'six.ensure_text', (["predictions['sequence_ids']", '"""utf-8"""'], {}), "(predictions['sequence_ids'], 'utf-8')\n", (4869, 4907), False, 'import six\n'), ((5140, 5188), 'os.path.join', 'os.path.join', (['output_dir', "(filename_safe + '.mid')"], {}), "(output_dir, filename_safe + '.mid')\n", (5152, 5188), False, 'import os\n'), ((5193, 5257), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""Writing inferred midi file to %s"""', 'output_file'], {}), "('Writing inferred midi file to %s', output_file)\n", (5208, 5257), True, 'import tensorflow.compat.v1 as tf\n'), ((5262, 5331), 'note_seq.midi_io.sequence_proto_to_midi_file', 'midi_io.sequence_proto_to_midi_file', (['sequence_prediction', 'output_file'], {}), '(sequence_prediction, output_file)\n', (5297, 5331), False, 'from note_seq import midi_io\n'), ((5357, 5411), 'os.path.join', 'os.path.join', (['output_dir', "(filename_safe + '_label.mid')"], {}), "(output_dir, filename_safe + '_label.mid')\n", (5369, 5411), False, 'import os\n'), ((5416, 5483), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""Writing label midi file to %s"""', 'label_output_file'], {}), "('Writing label midi file to %s', label_output_file)\n", (5431, 5483), True, 'import tensorflow.compat.v1 as tf\n'), ((5488, 5558), 'note_seq.midi_io.sequence_proto_to_midi_file', 'midi_io.sequence_proto_to_midi_file', (['sequence_label', 'label_output_file'], {}), '(sequence_label, label_output_file)\n', (5523, 5558), False, 'from note_seq import midi_io\n'), ((5658, 5716), 'os.path.join', 'os.path.join', (['output_dir', "(filename_safe + '_pianoroll.png')"], {}), "(output_dir, filename_safe + '_pianoroll.png')\n", (5670, 5716), False, 'import os\n'), ((5730, 5815), 'tensorflow.compat.v1.logging.info', 'tf.logging.info', (['"""Writing acoustic logit/label file to %s"""', 'pianoroll_output_file'], {}), "('Writing acoustic logit/label file to %s',\n pianoroll_output_file)\n", (5745, 5815), True, 'import tensorflow.compat.v1 as tf\n'), ((7364, 7375), 'time.time', 'time.time', ([], {}), '()\n', (7373, 7375), False, 'import time\n'), ((8150, 8162), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (8160, 8162), True, 'import tensorflow.compat.v1 as tf\n'), ((6308, 6355), 'tensorflow.compat.v1.gfile.GFile', 'tf.gfile.GFile', (['pianoroll_output_file'], {'mode': '"""w"""'}), "(pianoroll_output_file, mode='w')\n", (6322, 6355), True, 'import tensorflow.compat.v1 as tf\n'), ((8444, 8486), 'tensorflow.compat.v1.constant', 'tf.constant', (['run_config'], {'name': '"""run_config"""'}), "(run_config, name='run_config')\n", (8455, 8486), True, 'import tensorflow.compat.v1 as tf\n'), ((4478, 4496), 'numpy.sum', 'np.sum', (['num_frames'], {}), '(num_frames)\n', (4484, 4496), True, 'import numpy as np\n'), ((4499, 4518), 'numpy.sum', 'np.sum', (['infer_times'], {}), '(infer_times)\n', (4505, 4518), True, 'import numpy as np\n'), ((6408, 6595), 'magenta.models.onsets_frames_transcription.infer_util.posterior_pianoroll_image', 'infer_util.posterior_pianoroll_image', (["predictions['onset_probs']", "predictions['onset_labels']", "predictions['frame_probs']", "predictions['frame_labels']", 'sequence_frame_predictions'], {}), "(predictions['onset_probs'],\n predictions['onset_labels'], predictions['frame_probs'], predictions[\n 'frame_labels'], sequence_frame_predictions)\n", (6444, 6595), False, 'from magenta.models.onsets_frames_transcription import infer_util\n'), ((6999, 7051), 'tensorflow.compat.v1.summary.histogram', 'tf.summary.histogram', (['histogram_name', 'all_metrics[k]'], {}), '(histogram_name, all_metrics[k])\n', (7019, 7051), True, 'import tensorflow.compat.v1 as tf\n'), ((7429, 7439), 'tensorflow.compat.v1.Graph', 'tf.Graph', ([], {}), '()\n', (7437, 7439), True, 'import tensorflow.compat.v1 as tf\n'), ((7454, 7466), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (7464, 7466), True, 'import tensorflow.compat.v1 as tf\n'), ((7628, 7651), 'numpy.mean', 'np.mean', (['all_metrics[k]'], {}), '(all_metrics[k])\n', (7635, 7651), True, 'import numpy as np\n'), ((6163, 6202), 'magenta.models.onsets_frames_transcription.data.hparams_frames_per_second', 'data.hparams_frames_per_second', (['hparams'], {}), '(hparams)\n', (6193, 6202), False, 'from magenta.models.onsets_frames_transcription import data\n'), ((6748, 6758), 'tensorflow.compat.v1.Graph', 'tf.Graph', ([], {}), '()\n', (6756, 6758), True, 'import tensorflow.compat.v1 as tf\n'), ((6773, 6785), 'tensorflow.compat.v1.Session', 'tf.Session', ([], {}), '()\n', (6783, 6785), True, 'import tensorflow.compat.v1 as tf\n'), ((7212, 7235), 'numpy.mean', 'np.mean', (['all_metrics[k]'], {}), '(all_metrics[k])\n', (7219, 7235), True, 'import numpy as np\n')]
# utils.py import pandas as pd from sklearn.preprocessing import OneHotEncoder import numpy as np import os def extract_tls_info(s): tls_key_list = ['C', 'ST', 'L', 'O', 'OU', 'CN', 'emailAddress', 'unknown', 'serialNumber'] s = s.split(',') s = [x.split('/') for x in s] s = sum(s, []) res = {} for x in s: if '=' not in x: continue x = x.split('=') key = x[0].strip(' ') value = x[1].strip(' ') if key in tls_key_list: res[key] = value return res def process_oneHot_by_cnt(dataset, key, threshold=0, vcnt=None): col = dataset[key] if vcnt is None: vcnt = col.value_counts() if threshold>0: if isinstance(threshold, int): vcnt = vcnt[vcnt>=threshold] else: if isinstance(threshold, float): threshold = len(dataset)*threshold vcnt = vcnt[vcnt>=threshold] else: UserWarning("In function process_oneHot_by_cnt `threshold` should be of int or float type. ") return dataset, None dtype = np.uint8 for vkey in vcnt.index: vkey_col = np.array(col==vkey, dtype=dtype) dataset[key+str(vkey)] = vkey_col return dataset, vcnt def process_srcAddress(dataset): '''process_srcAddress(统计每条数据的 srcAddress 在数据集中的出现次数并除以?,然后添加到数据信息中) Args: dataset 原始数据集 Returns: dataset 添加 srcAddress_count 列后的数据集 ''' addr_list = list(dataset['srcAddress'].values) count_list = [0]*len(addr_list) for i in range(len(addr_list)): count_list[i] = addr_list.count(addr_list[i]) count_list = [x for x in count_list] dataset['srcAddress_count'] = count_list return dataset def process_destAddress(dataset): '''process_destAddress(统计每条数据的 destAddress 在数据集中的出现次数并除以?,然后添加到数据信息中) Args: dataset 原始数据集 Returns: dataset 添加 destAddress_count 列后的数据集 ''' addr_list = list(dataset['destAddress'].values) count_list = [0]*len(addr_list) for i in range(len(addr_list)): count_list[i] = addr_list.count(addr_list[i]) dataset['destAddress_count'] = count_list return dataset def process_port(dataset, col_name): '''process_port(将端口号除以?) Args: dataset 原始数据集 Returns: dataset 更新端口值后的数据集 ''' # MAX = dataset[col_name].values.max() # for idx in range(dataset.shape[0]): # dataset.loc[idx, col_name] = dataset.loc[idx, col_name] * 1.0 / (MAX * 2) # port_list = list(dataset[col_name].values) # MAX = max(port_list) # port_list = [x*1.0/(MAX*2) for x in port_list] # dataset[col_name] = port_list return dataset def process_tlsVersion(dataset): tls_list = list(dataset['tlsVersion'].values) tls_dic = {'TLS 1.1': 0.0, 'TLS 1.3': 0.014012143858010275, 'TLSv1': 29.69283276450512, 'UNDETERMINED': 0.13636363636363638, 'TLS 1.2': 0.6491481374530754, 'other': 0.0} tls_list = [tls_dic.get(x, tls_dic['other']) for x in tls_list] dataset['tlsVersion'] = tls_list return dataset def process_tlsSni(dataset): tlsSni_list = list(dataset['tlsSni'].values) prefix = [''] * len(tlsSni_list) postfix = [''] * len(tlsSni_list) for idx in range(len(tlsSni_list)): s = tlsSni_list[idx] if s == "": continue s = s.strip('www.') point_idx = s.find('.') if point_idx < 0: prefix[idx] = s else: prefix[idx] = s[:point_idx] postfix[idx] = s[point_idx+1:] onehotencoders = [] # prefix onehotencoder = OneHotEncoder(categories='auto', sparse=False, dtype=np.int8, handle_unknown='ignore') prefix_onehot = onehotencoder.fit_transform(np.array(prefix).reshape(-1,1)) dataset = pd.concat([dataset, pd.DataFrame(prefix_onehot)], axis=1) onehotencoders.append({'tlsSni_prefix':onehotencoder}) # postfix onehotencoder = OneHotEncoder(categories='auto', sparse=False, dtype=np.int8, handle_unknown='ignore') postfix_onehot = onehotencoder.fit_transform(np.array(postfix).reshape(-1,1)) dataset = pd.concat([dataset, pd.DataFrame(postfix_onehot)], axis=1) onehotencoders.append({'tlsSni_postfix':onehotencoder}) # remove tlsSni # dataset = dataset.drop(['tlsSni'], axis=1) return dataset, onehotencoders def process_tlsIssuerDn(dataset): tls_key_list = ['C', 'ST', 'L', 'O', 'OU', 'CN', 'emailAddress', 'unknown', 'serialNumber'] tlsSubject_list = list(dataset['tlsSubject'].values) tlsIssuerDn_list = list(dataset['tlsIssuerDn'].values) similarity = [0]*len(tlsIssuerDn_list) for idx in range(len(tlsIssuerDn_list)): subj = tlsSubject_list[idx] issue = tlsIssuerDn_list[idx] if subj == issue: similarity[idx] = 1.0 continue subj = extract_tls_info(subj) issue = extract_tls_info(issue) MAX = max([len(subj), len(issue)]) same = 0 for key in tls_key_list: if subj.get(key, None) and subj.get(key, None) == issue.get(key, None): same += 1 similarity[idx] = same*1.0 / MAX dataset['tlsSimilarity'] = similarity return dataset def process_tlsSni_type(dataset): tlsSni_list = list(dataset['tlsSni'].values) postfix_type = [0] * len(tlsSni_list) postfix_len = [0] * len(tlsSni_list) prefix_type = [0] * len(tlsSni_list) point_count = [0] * len(tlsSni_list) middle_len = [0] * len(tlsSni_list) total_len = [0] * len(tlsSni_list) postfix = [""] * len(tlsSni_list) for idx in range(len(tlsSni_list)): s = tlsSni_list[idx] if '.' in s: res = s.split('.') postfix[idx] = res[-1] postfix_len[idx] = len(res[-1]) prefix_type[idx] = ('www' in res[0])*1 point_count[idx] = len(res) if 'www' in res[0]: middle_len[idx] = len(res[1]) else: middle_len[idx] = len(res[0]) total_len[idx] = len(s) # dic = {'': 4.1722663408674405, 'me': 5.454545454545454, 'local': 0.0, 'link': 40.0, 'website': 38, 'tv': 0.0, 'net': 0.31277150304083406, 'ms': 0.0, '2': 0.0, 'gdn': 44, 'xyz': 18.461538461538463, 'cc': 0.0, 'ga': 14, 'co': 0.0, 'sb': 33, 'cn': 0.0, 'org': 0.0, 'so': 0.0, '174': 0.0, 'ru': 1696.6666666666667, 'io': 0.18433179723502305, 'com': 0.3168887288440763, 'top': 899.9999999999999, 'im': 0.0, '108': 0.0, 'digit': 0.025, 'other': 0.5360824742268041} # postfix_type = [dic['digit'] if x.isdigit() else dic.get(x, dic['other']) for x in postfix] dataset['tlsSni_postfix_type'] = postfix dataset['tlsSni_postfix_len'] = postfix_len dataset['tlsSni_prefix_type'] = prefix_type dataset['tlsSni_point_count'] = point_count dataset['tlsSni_middle_len'] = middle_len dataset['tlsSni_total_len'] = total_len return dataset def process_tlsSubject_len(dataset): tlsSubject_list = list(dataset['tlsSubject'].values) tls_key_list = ['C', 'ST', 'L', 'O', 'OU', 'CN', 'emailAddress', 'unknown', 'serialNumber'] tls_info_len = [[0]*len(tlsSubject_list) for _ in range(len(tls_key_list)+3)] for idx in range(len(tlsSubject_list)): tmp = extract_tls_info(tlsSubject_list[idx]) for key_idx in range(len(tls_key_list)): key = tls_key_list[key_idx] tls_info_len[key_idx][idx] = len(tmp.get(key, '')) if tls_info_len[key_idx][idx] != 0: tls_info_len[-2][idx] += 1 if tmp == {}: tls_info_len[-1][idx] = 1 tls_info_len[-3][idx] = len(tlsSubject_list[idx]) for key_idx in range(len(tls_key_list)): key = tls_key_list[key_idx] dataset[key+"_len"] = tls_info_len[key_idx] dataset['tlsSubject_total_len'] = tls_info_len[-3] dataset['tlsSubject_type_count'] = tls_info_len[-2] dataset['tlsSubject_empty'] = tls_info_len[-1] return dataset def process_tlsSubject_other(dataset): tlsSubject_list = list(dataset['tlsSubject'].values) tls_XX = [0]*len(tlsSubject_list) tls_star = [0]*len(tlsSubject_list) tls_default = [0]*len(tlsSubject_list) tls_some_state = [0]*len(tlsSubject_list) for idx in range(len(tlsSubject_list)): tmp = extract_tls_info(tlsSubject_list[idx]) for key, value in tmp.items(): if value=='XX': tls_XX[idx] = 1 elif value=='*': tls_star[idx] = 1 elif 'default' in value.lower(): tls_default[idx] = 1 elif 'Some-State' in value: tls_some_state[idx] = 1 dataset['tls_XX'] = tls_XX dataset['tls_star'] = tls_star dataset['tls_default'] = tls_default dataset['tls_some_state'] = tls_some_state return dataset def process_bytes(dataset): bytesout_list = list(dataset['bytesOut'].values) bytesin_list = list(dataset['bytesIn'].values) pktin_list = list(dataset['pktsIn'].values) pktout_list = list(dataset['pktsOut'].values) bytesin_rate = [0] * len(bytesout_list) bytesout_rate = [0] * len(bytesout_list) for idx in range(len(bytesout_list)): if pktout_list[idx] > 0: bytesout_rate[idx] = bytesout_list[idx] / pktout_list[idx] else: bytesout_rate[idx] = 1000000 if pktin_list[idx] > 0: bytesin_rate[idx] = bytesin_list[idx] / pktin_list[idx] else: bytesin_rate[idx] = 1000000 dataset['tls_bytesin_rate'] = bytesin_rate dataset['tls_bytesout_rate'] = bytesout_rate return dataset def process_tlsSubject_type(dataset): tlsSubject_list = list(dataset['tlsSubject'].values) ''' C_type, CN_type ''' # C_dic = {'': 0.3878787878787879, 'XX': 750, '--': 0.0, 'DE': 1.1764705882352942, 'DK': 0.0, 'JP': 0.0, 'CNstore': 0.0, 'CN': 0.017035775127768313, 'US': 0.6221461187214612, 'AU': 1046.0, 'MY': 0.0, 'GB': 540.0, 'other': 18.125000000000007} # CN_dic = {'': 1.851012390450287, 'CMCC': 0.0, '1': 0.0, 'svn': 0.0, 'me': 20.909090909090907, 'org': 0.1234567901234568, 'localdomain': 0.0, 'link': 8, '*': 82, 'top': 31, 'net': 2.0, 'ms': 0.0, 'DBAPP': 0.0, 'info': 20, 'local': 0.0, 'XX': 17, 'sb': 33, 'sslvpn': 0.0, 'cn': 0.006082725060827251, 'io': 0.10695187165775401, '0': 0.0, 'com': 0.29000969932104753, 'im': 0.0, 'other': 8.768115942028999} C_list = [] CN_list = [] ST_list = [] L_list = [] O_list = [] emailAddress_list = [] serialNumber_list = [] # tls_key_list = ['C', 'ST', 'L', 'O', 'OU', 'CN', 'emailAddress', 'unknown', 'serialNumber'] # tls_key_list = ['ST', 'L', 'O', 'emailAddress', 'serialNumber'] for idx in range(len(tlsSubject_list)): tmp = extract_tls_info(tlsSubject_list[idx]) C_list.append(tmp.get('C', '')) CN_list.append(tmp.get('CN', '').split('.')[-1]) ST_list.append(tmp.get('ST', '')) L_list.append(tmp.get('L', '')) O_list.append(tmp.get('O', '')) emailAddress_list.append(tmp.get('emailAddress', '')) serialNumber_list.append(tmp.get('serialNumber', '')) # C_type = [C_dic.get(x, C_dic['other']) for x in C_list] # CN_type = [CN_dic.get(x, CN_dic['other']) for x in CN_list] dataset['tls_C_type'] = C_list dataset['tls_CN_type'] = CN_list dataset['ST'] = ST_list dataset['L'] = L_list dataset['O'] = O_list dataset['emailAddress'] = emailAddress_list dataset['serialNumber'] = serialNumber_list return dataset def drop_repeat_rows(dataset): # return dataset.drop_duplicates([x for x in dataset.columns if x!='eventId'], keep='first') return dataset def process_port_adjacency(dataset): idx = range(dataset.shape[0]) dataset['idx'] = idx ips_label = dataset[['srcAddress', 'destAddress', 'srcPort', 'idx']] ips_label = ips_label.sort_values(by = ['srcAddress', 'destAddress', 'srcPort']) ips_label = list(ips_label.values) port_adjacency = [0] * dataset.shape[0] for idx in range(dataset.shape[0]): cur = list(ips_label[idx]) if idx == dataset.shape[0] - 1: next = ['', '', 0] else: next = list(ips_label[idx+1]) if idx == 0: before = ['', '', 0] else: before = list(ips_label[idx-1]) min_ = 1000000 if cur[0] == before[0] and cur[1] == before[1]: min_ = cur[2] - before[2] if cur[0] == next[0] and cur[1] == next[1]: tmp = next[2] - cur[2] if tmp < min_: min_ = tmp if min_ != 1000000: port_adjacency[cur[-1]] = min_ else: port_adjacency[cur[-1]] = 350 dataset['srcPort_adjacency'] = port_adjacency dataset = dataset.drop(['idx'], axis=1) return dataset def ExtractTlsSubject(data, onehotencoders=None, handle_key='tlsSubject'): tls_key_list = ['C', 'ST', 'L', 'O', 'OU', 'CN'] #tls_key_hash_len = [65536, 65536, 65536, 65536, 65536, 65536] for ncol in tls_key_list: data[ncol] = '' for idx, row in enumerate(data.iterrows()): tlsSubject_str = row[1][handle_key] if tlsSubject_str=='': continue tlsSubject_list = tlsSubject_str.split(',') tlsSubject_list = [item.split('/') for item in tlsSubject_list] tlsSubject_list = sum(tlsSubject_list, []) i=0 while i < len(tlsSubject_list): if ('=' not in tlsSubject_list[i]): if i==0: del tlsSubject_list[0] tlsSubject_list[i-1] += tlsSubject_list[i] del tlsSubject_list[i] else: tlsSubject_list[i] = tlsSubject_list[i].strip(' ') i += 1 tlsSubject_list = [item.split('=') for item in tlsSubject_list] try: for key, value in tlsSubject_list: if key in tls_key_list: data.loc[idx, key] = value except: pass if not (onehotencoders is None): for key in tls_key_list: x = onehotencoders[key].transform(data[key].to_numpy().reshape(-1,1)) data = pd.concat([data, pd.DataFrame(x)], axis=1) else: onehotencoders = {} for key in tls_key_list: onehotencoder = OneHotEncoder(categories='auto', sparse=False, dtype=np.int8, handle_unknown='ignore') x = onehotencoder.fit_transform(data[key].to_numpy().reshape(-1,1)) data = pd.concat([data, pd.DataFrame(x)], axis=1) onehotencoders[key] = onehotencoder return data, onehotencoders def ELFHash(str): hvalue = 0 for i in str: hvalue = (hvalue<<4) + ord(i) if (hvalue & 0xF0000) != 0: x = hvalue & 0xF0000 hvalue ^= (x >> 10) hvalue &= ~x hvalue &= 0xFFFF return hvalue def ProcessData(dataset, encoders=None, keyList=None): keyList = { # 'srcPort': 16, 'destPort': 1/1100, 'tlsVersion': 0, 'tlsSni_postfix_type': 5/13200, 'tls_C_type': 5/13200, 'tls_CN_type': 5/13200, 'srcAddress': 1.0, 'destAddress': 1.0, 'ST':5/13200, 'L':5/13200, 'O':5/13200, 'emailAddress': 5/13200, 'serialNumber': 5/13200 } if keyList==None else keyList onhot_list = ['destPort', 'tlsVersion', 'tlsSni_postfix_type', 'tls_C_type', 'tls_CN_type'] + ['ST', 'L', 'O'] # , 'emailAddress', 'serialNumber' if encoders==None: dataset = process_tlsSni_type(dataset) dataset = process_tlsSubject_type(dataset) encoders = [] for key in onhot_list: dataset, a_encoder = process_oneHot_by_cnt(dataset, key, keyList[key]) encoders.append(a_encoder) dataset = process_port_adjacency(dataset) dataset = process_tlsIssuerDn(dataset) dataset = process_tlsSubject_len(dataset) dataset = process_bytes(dataset) else: dataset = process_tlsSni_type(dataset) dataset = process_tlsSubject_type(dataset) for idx, key in enumerate(onhot_list): dataset, _ = process_oneHot_by_cnt(dataset, key, keyList[key], vcnt=encoders[idx]) dataset = process_port_adjacency(dataset) dataset = process_tlsIssuerDn(dataset) dataset = process_tlsSubject_len(dataset) dataset = process_bytes(dataset) return dataset, encoders
[ "pandas.DataFrame", "sklearn.preprocessing.OneHotEncoder", "numpy.array" ]
[((3711, 3801), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'categories': '"""auto"""', 'sparse': '(False)', 'dtype': 'np.int8', 'handle_unknown': '"""ignore"""'}), "(categories='auto', sparse=False, dtype=np.int8,\n handle_unknown='ignore')\n", (3724, 3801), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((4043, 4133), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'categories': '"""auto"""', 'sparse': '(False)', 'dtype': 'np.int8', 'handle_unknown': '"""ignore"""'}), "(categories='auto', sparse=False, dtype=np.int8,\n handle_unknown='ignore')\n", (4056, 4133), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((1220, 1254), 'numpy.array', 'np.array', (['(col == vkey)'], {'dtype': 'dtype'}), '(col == vkey, dtype=dtype)\n', (1228, 1254), True, 'import numpy as np\n'), ((3912, 3939), 'pandas.DataFrame', 'pd.DataFrame', (['prefix_onehot'], {}), '(prefix_onehot)\n', (3924, 3939), True, 'import pandas as pd\n'), ((4246, 4274), 'pandas.DataFrame', 'pd.DataFrame', (['postfix_onehot'], {}), '(postfix_onehot)\n', (4258, 4274), True, 'import pandas as pd\n'), ((14512, 14602), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'categories': '"""auto"""', 'sparse': '(False)', 'dtype': 'np.int8', 'handle_unknown': '"""ignore"""'}), "(categories='auto', sparse=False, dtype=np.int8,\n handle_unknown='ignore')\n", (14525, 14602), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((3846, 3862), 'numpy.array', 'np.array', (['prefix'], {}), '(prefix)\n', (3854, 3862), True, 'import numpy as np\n'), ((4179, 4196), 'numpy.array', 'np.array', (['postfix'], {}), '(postfix)\n', (4187, 4196), True, 'import numpy as np\n'), ((14387, 14402), 'pandas.DataFrame', 'pd.DataFrame', (['x'], {}), '(x)\n', (14399, 14402), True, 'import pandas as pd\n'), ((14715, 14730), 'pandas.DataFrame', 'pd.DataFrame', (['x'], {}), '(x)\n', (14727, 14730), True, 'import pandas as pd\n')]
import argparse import os import sys from sys import stdout import mdtraj as md import numpy as np import parmed import simtk.openmm as mm import simtk.openmm.app as app import simtk.unit as unit from openforcefield.topology import Molecule, Topology from openmmforcefields.generators import SystemGenerator from perses.utils.openeye import OEMol_to_omm_ff, createOEMolFromSDF from simtk.openmm import MonteCarloBarostat, XmlSerializer from simtk.openmm.app import CheckpointReporter, ForceField, PDBFile from simtk.openmm.app.pdbreporter import PDBReporter from simtk.openmm.app.statedatareporter import StateDataReporter # Read arguments to get ligand parser = argparse.ArgumentParser() parser.add_argument( "-ligand", help="the docked ligand to be prepared for simulation", choices=["larotrectinib", "selitrectinib", "repotrectinib"], type=str, ) args = parser.parse_args() chosen_ligand = args.ligand # Parameters print("--> Reading parameters") pressure = 1.0 * unit.bar temperature = 300 * unit.kelvin nonbonded_method = app.PME constraints = app.HBonds remove_cm_motion = True collision_rate = 1.0 / unit.picoseconds timestep = 0.002 * unit.picoseconds solvent_padding = 10.0 * unit.angstrom ionic_strength = 150 * unit.millimolar # Forcefield protein_forcefield = "amber14/protein.ff14SB.xml" small_molecule_forcefield = "openff-1.1.0" solvation_forcefield = "amber14/tip3p.xml" forcefield = ForceField(protein_forcefield, solvation_forcefield) # Set steps and frequencies nsteps = 2500000 # 5 ns report_freq = 100 chk_freq = 500 traj_freq = 1000 # 2500 frames # Set the input file names input_pdb = "6KZD_prepped.pdb" input_ligands_sdf = "../../structures_from_docking/6KZD_chemgauss_docking.sdf" # Create output directory output_prefix = "./output/" + chosen_ligand os.makedirs(output_prefix, exist_ok=True) print("--> Directory ", output_prefix, " created ") # Set file names integrator_xml_filename = "integrator_2fs.xml" state_xml_filename = "equilibrated_state_5ns.xml" state_pdb_filename = "equilibrated_state_5ns.pdb" system_xml_filename = "equilibrated_system_5ns.xml" checkpoint_filename = "equilibrated_checkpoint_5ns.chk" traj_output_filename = "equilibrated_traj_5ns.xtc" # Define the barostat for the system barostat = mm.MonteCarloBarostat(pressure, temperature) # Load and sort ligands molecules = Molecule.from_file(input_ligands_sdf) ligand_names = ["larotrectinib", "selitrectinib", "repotrectinib"] ligand_dict = dict(zip(ligand_names, molecules)) # Create dict for easy access later # Make the SystemGenerator system_generator = SystemGenerator( forcefields=[protein_forcefield, solvation_forcefield], barostat=barostat, periodic_forcefield_kwargs={"nonbondedMethod": app.PME}, small_molecule_forcefield=small_molecule_forcefield, molecules=ligand_dict[chosen_ligand], ) # Read in the PDB and create an OpenMM topology pdbfile = app.PDBFile(input_pdb) protein_topology, protein_positions = pdbfile.topology, pdbfile.positions # Add ligand to topology - credit to @hannahbrucemacdonald for help here print("--> Combining protein and ligand topologies") off_ligand_topology = Topology.from_molecules(ligand_dict[chosen_ligand]) ligand_topology = off_ligand_topology.to_openmm() ligand_positions = ligand_dict[chosen_ligand].conformers[0] md_protein_topology = md.Topology.from_openmm( protein_topology ) # using mdtraj for protein top md_ligand_topology = md.Topology.from_openmm( ligand_topology ) # using mdtraj for ligand top md_complex_topology = md_protein_topology.join(md_ligand_topology) # add them together complex_topology = md_complex_topology.to_openmm() # now back to openmm total_atoms = len(protein_positions) + len(ligand_positions) complex_positions = unit.Quantity(np.zeros([total_atoms, 3]), unit=unit.nanometers) complex_positions[0 : len(protein_positions)] = protein_positions for index, atom in enumerate(ligand_positions, len(protein_positions)): coords = atom / atom.unit complex_positions[index] = ( coords / 10.0 ) * unit.nanometers # since openmm works in nm # Add hydrogens and solvate the system modeller = app.Modeller(complex_topology, complex_positions) print("Adding hydrogens to the system...") modeller.addHydrogens(system_generator.forcefield) print("Solvating the system...") modeller.addSolvent( forcefield=system_generator.forcefield, model="tip3p", ionicStrength=ionic_strength, padding=solvent_padding, ) # Create an OpenMM system print("--> Creating an OpenMM system") system = system_generator.create_system(modeller.topology) # Make and serialize integrator - Langevin dynamics print( "Serializing integrator to %s" % os.path.join(output_prefix, integrator_xml_filename) ) integrator = mm.LangevinIntegrator( temperature, collision_rate, timestep # Friction coefficient ) with open(os.path.join(output_prefix, integrator_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(integrator) outfile.write(xml) # Define the platform to use; CUDA, OpenCL, CPU, or Reference. Or do not specify # the platform to use the default (fastest) platform # platform = mm.Platform.getPlatformByName("OpenCL") # prop = dict(OpenCLPrecision="mixed") # Use mixed single/double precision # Create the Simulation object sim = app.Simulation(modeller.topology, system, integrator) # , platform, prop) # Set the particle positions sim.context.setPositions(modeller.positions) # Minimize the energy print("--> Minimising energy with docked ligand: " + chosen_ligand) print( " initial : %8.3f kcal/mol" % ( sim.context.getState(getEnergy=True).getPotentialEnergy() / unit.kilocalories_per_mole ) ) sim.minimizeEnergy() print( " final : %8.3f kcal/mol" % ( sim.context.getState(getEnergy=True).getPotentialEnergy() / unit.kilocalories_per_mole ) ) # set starting velocities: print("--> Generating random starting velocities") sim.context.setVelocitiesToTemperature(temperature * unit.kelvin) # write limited state information to standard out: sim.reporters.append( StateDataReporter( stdout, reportInterval=report_freq, step=True, time=True, potentialEnergy=True, kineticEnergy=True, temperature=True, speed=True, progress=True, remainingTime=True, totalSteps=nsteps, separator="\t", ) ) # Write to checkpoint files regularly: sim.reporters.append( CheckpointReporter( file=os.path.join(output_prefix, checkpoint_filename), reportInterval=chk_freq ) ) # Write out the trajectory sim.reporters.append( md.reporters.XTCReporter( file=os.path.join(output_prefix, traj_output_filename), reportInterval=traj_freq ) ) # Run NPT dynamics print("--> Running dynamics in the NPT ensemble for the 6KZD:" + chosen_ligand + " complex") sim.step(nsteps) # Save and serialize the final state print("--> Serializing state to %s" % os.path.join(output_prefix, state_xml_filename)) state = sim.context.getState( getPositions=True, getVelocities=True, getEnergy=True, getForces=True ) with open(os.path.join(output_prefix, state_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(state) outfile.write(xml) # Save the final state as a PDB print("--> Saving final state as %s" % os.path.join(output_prefix, state_pdb_filename)) with open(os.path.join(output_prefix, state_pdb_filename), "w") as outfile: PDBFile.writeFile( sim.topology, sim.context.getState(getPositions=True, enforcePeriodicBox=True).getPositions(), file=outfile, keepIds=True, ) # Save and serialize system print("--> Serializing system to %s" % os.path.join(output_prefix, system_xml_filename)) system.setDefaultPeriodicBoxVectors(*state.getPeriodicBoxVectors()) with open(os.path.join(output_prefix, system_xml_filename), "w") as outfile: xml = mm.XmlSerializer.serialize(system) outfile.write(xml)
[ "openforcefield.topology.Molecule.from_file", "os.makedirs", "argparse.ArgumentParser", "openmmforcefields.generators.SystemGenerator", "simtk.openmm.app.Simulation", "os.path.join", "openforcefield.topology.Topology.from_molecules", "numpy.zeros", "simtk.openmm.LangevinIntegrator", "simtk.openmm.app.PDBFile", "simtk.openmm.app.statedatareporter.StateDataReporter", "simtk.openmm.MonteCarloBarostat", "simtk.openmm.XmlSerializer.serialize", "simtk.openmm.app.Modeller", "mdtraj.Topology.from_openmm", "simtk.openmm.app.ForceField" ]
[((665, 690), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (688, 690), False, 'import argparse\n'), ((1420, 1472), 'simtk.openmm.app.ForceField', 'ForceField', (['protein_forcefield', 'solvation_forcefield'], {}), '(protein_forcefield, solvation_forcefield)\n', (1430, 1472), False, 'from simtk.openmm.app import CheckpointReporter, ForceField, PDBFile\n'), ((1801, 1842), 'os.makedirs', 'os.makedirs', (['output_prefix'], {'exist_ok': '(True)'}), '(output_prefix, exist_ok=True)\n', (1812, 1842), False, 'import os\n'), ((2268, 2312), 'simtk.openmm.MonteCarloBarostat', 'mm.MonteCarloBarostat', (['pressure', 'temperature'], {}), '(pressure, temperature)\n', (2289, 2312), True, 'import simtk.openmm as mm\n'), ((2350, 2387), 'openforcefield.topology.Molecule.from_file', 'Molecule.from_file', (['input_ligands_sdf'], {}), '(input_ligands_sdf)\n', (2368, 2387), False, 'from openforcefield.topology import Molecule, Topology\n'), ((2588, 2840), 'openmmforcefields.generators.SystemGenerator', 'SystemGenerator', ([], {'forcefields': '[protein_forcefield, solvation_forcefield]', 'barostat': 'barostat', 'periodic_forcefield_kwargs': "{'nonbondedMethod': app.PME}", 'small_molecule_forcefield': 'small_molecule_forcefield', 'molecules': 'ligand_dict[chosen_ligand]'}), "(forcefields=[protein_forcefield, solvation_forcefield],\n barostat=barostat, periodic_forcefield_kwargs={'nonbondedMethod': app.\n PME}, small_molecule_forcefield=small_molecule_forcefield, molecules=\n ligand_dict[chosen_ligand])\n", (2603, 2840), False, 'from openmmforcefields.generators import SystemGenerator\n'), ((2909, 2931), 'simtk.openmm.app.PDBFile', 'app.PDBFile', (['input_pdb'], {}), '(input_pdb)\n', (2920, 2931), True, 'import simtk.openmm.app as app\n'), ((3155, 3206), 'openforcefield.topology.Topology.from_molecules', 'Topology.from_molecules', (['ligand_dict[chosen_ligand]'], {}), '(ligand_dict[chosen_ligand])\n', (3178, 3206), False, 'from openforcefield.topology import Molecule, Topology\n'), ((3340, 3381), 'mdtraj.Topology.from_openmm', 'md.Topology.from_openmm', (['protein_topology'], {}), '(protein_topology)\n', (3363, 3381), True, 'import mdtraj as md\n'), ((3441, 3481), 'mdtraj.Topology.from_openmm', 'md.Topology.from_openmm', (['ligand_topology'], {}), '(ligand_topology)\n', (3464, 3481), True, 'import mdtraj as md\n'), ((4152, 4201), 'simtk.openmm.app.Modeller', 'app.Modeller', (['complex_topology', 'complex_positions'], {}), '(complex_topology, complex_positions)\n', (4164, 4201), True, 'import simtk.openmm.app as app\n'), ((4772, 4832), 'simtk.openmm.LangevinIntegrator', 'mm.LangevinIntegrator', (['temperature', 'collision_rate', 'timestep'], {}), '(temperature, collision_rate, timestep)\n', (4793, 4832), True, 'import simtk.openmm as mm\n'), ((5318, 5371), 'simtk.openmm.app.Simulation', 'app.Simulation', (['modeller.topology', 'system', 'integrator'], {}), '(modeller.topology, system, integrator)\n', (5332, 5371), True, 'import simtk.openmm.app as app\n'), ((3776, 3802), 'numpy.zeros', 'np.zeros', (['[total_atoms, 3]'], {}), '([total_atoms, 3])\n', (3784, 3802), True, 'import numpy as np\n'), ((4954, 4992), 'simtk.openmm.XmlSerializer.serialize', 'mm.XmlSerializer.serialize', (['integrator'], {}), '(integrator)\n', (4980, 4992), True, 'import simtk.openmm as mm\n'), ((6119, 6344), 'simtk.openmm.app.statedatareporter.StateDataReporter', 'StateDataReporter', (['stdout'], {'reportInterval': 'report_freq', 'step': '(True)', 'time': '(True)', 'potentialEnergy': '(True)', 'kineticEnergy': '(True)', 'temperature': '(True)', 'speed': '(True)', 'progress': '(True)', 'remainingTime': '(True)', 'totalSteps': 'nsteps', 'separator': '"""\t"""'}), "(stdout, reportInterval=report_freq, step=True, time=True,\n potentialEnergy=True, kineticEnergy=True, temperature=True, speed=True,\n progress=True, remainingTime=True, totalSteps=nsteps, separator='\\t')\n", (6136, 6344), False, 'from simtk.openmm.app.statedatareporter import StateDataReporter\n'), ((7247, 7280), 'simtk.openmm.XmlSerializer.serialize', 'mm.XmlSerializer.serialize', (['state'], {}), '(state)\n', (7273, 7280), True, 'import simtk.openmm as mm\n'), ((7958, 7992), 'simtk.openmm.XmlSerializer.serialize', 'mm.XmlSerializer.serialize', (['system'], {}), '(system)\n', (7984, 7992), True, 'import simtk.openmm as mm\n'), ((4704, 4756), 'os.path.join', 'os.path.join', (['output_prefix', 'integrator_xml_filename'], {}), '(output_prefix, integrator_xml_filename)\n', (4716, 4756), False, 'import os\n'), ((4873, 4925), 'os.path.join', 'os.path.join', (['output_prefix', 'integrator_xml_filename'], {}), '(output_prefix, integrator_xml_filename)\n', (4885, 4925), False, 'import os\n'), ((7006, 7053), 'os.path.join', 'os.path.join', (['output_prefix', 'state_xml_filename'], {}), '(output_prefix, state_xml_filename)\n', (7018, 7053), False, 'import os\n'), ((7171, 7218), 'os.path.join', 'os.path.join', (['output_prefix', 'state_xml_filename'], {}), '(output_prefix, state_xml_filename)\n', (7183, 7218), False, 'import os\n'), ((7376, 7423), 'os.path.join', 'os.path.join', (['output_prefix', 'state_pdb_filename'], {}), '(output_prefix, state_pdb_filename)\n', (7388, 7423), False, 'import os\n'), ((7435, 7482), 'os.path.join', 'os.path.join', (['output_prefix', 'state_pdb_filename'], {}), '(output_prefix, state_pdb_filename)\n', (7447, 7482), False, 'import os\n'), ((7753, 7801), 'os.path.join', 'os.path.join', (['output_prefix', 'system_xml_filename'], {}), '(output_prefix, system_xml_filename)\n', (7765, 7801), False, 'import os\n'), ((7881, 7929), 'os.path.join', 'os.path.join', (['output_prefix', 'system_xml_filename'], {}), '(output_prefix, system_xml_filename)\n', (7893, 7929), False, 'import os\n'), ((6541, 6589), 'os.path.join', 'os.path.join', (['output_prefix', 'checkpoint_filename'], {}), '(output_prefix, checkpoint_filename)\n', (6553, 6589), False, 'import os\n'), ((6716, 6765), 'os.path.join', 'os.path.join', (['output_prefix', 'traj_output_filename'], {}), '(output_prefix, traj_output_filename)\n', (6728, 6765), False, 'import os\n')]
import h5py as h5 import feather import pandas as pd import numpy as np import os correlation_files = os.listdir("correlation_folder") for i in range(0, len(correlation_files)): print(i) correlation = pd.read_feather("correlation_folder/"+correlation_files[i]) f = h5.File("h5/"+correlation_files[i].replace(".f","")+".h5", "w") dset = f.create_dataset("data/correlation", correlation.shape, dtype=np.float16, chunks=(1,correlation.shape[0])) dset[:,:] = correlation genemeta = f.create_dataset("meta/genes", data=np.array(list(map(str.upper, correlation.columns)), dtype='S10'), dtype='S10') f.close() def load_correlation(gene): f = h5.File("h5/correlation_2.h5", "r") genes = np.array(f["meta/genes"]).astype(np.str) idx = list(genes).index(gene) cor = np.array(f["data/correlation"][:,idx]).astype(np.float64) f.close() return(cor) start = time.time() coco = load_correlation("SOX2") print(time.time() - start) import h5py as h5 import s3fs import numpy as np import time from multiprocessing import Process import random def loadGenesS3(): genes = 0 s3 = s3fs.S3FileSystem(anon=True) with h5.File(s3.open("s3://mssm-prismx/correlation_0.h5", 'rb'), 'r', lib_version='latest') as f: genes = np.array(f["meta/genes"]).astype(np.str) return genes def load_correlationS3(gene, genes, cormat, results): cor = 0 s3 = s3fs.S3FileSystem(anon=True) with h5.File(s3.open("s3://mssm-prismx/correlation_"+str(cormat)+".h5", 'rb'), 'r', lib_version='latest') as f: idx = list(genes).index(gene) cor = np.array(f["data/correlation"][idx,:]).astype(np.float64) results[cormat] = cor genes = loadGenesS3() start = time.time() coco = load_correlationS3("MAPK1", genes) print(time.time() - start) from multiprocessing.pool import ThreadPool as Pool import pandas as pd start = time.time() pool = Pool(1) cormats = list(range(0,50)) cormats.append("global") results = pd.DataFrame(np.zeros(shape=(len(genes), len(cormats))), columns=cormats) for i in cormats: pool.apply_async(load_correlationS3, ("P53", genes, i, results)) pool.close() pool.join() print(time.time() - start) start = time.time() pool = Pool(10) results = pd.DataFrame(np.zeros(shape=(len(genes), 20)), columns=genes[1000:1020]) for gene in genes[1000:1010]: results[gene] = pool.apply_async(load_correlationS3, (gene, genes,)).get() pool.close() pool.join() print(time.time() - start) start = time.time() for gene in genes[2000:2050]: load_correlationS3(gene, genes, results) print(time.time() - start) f = h5.File("h5/correlation_0.h5", "r") genes = np.array(f["meta/genes"]).astype(np.str) f.close() idx = list(genes).index("0610009L18") print(idx) list(genes).index('0610009L18') f = h5.File("h5/correlation_0.h5", "r") genes = np.array(f["meta/genes"]).astype(np.str) f.close() f = h5.File("h5/correlation_0.h5", "w") dset = f.create_dataset("data/correlation", correlation.shape, dtype=np.float16, chunks=(1,correlation.shape[0])) dset[:,:] = correlation genemeta = f.create_dataset("meta/genes", data=np.array(list(map(str.upper, correlation.columns)), dtype='S10'), dtype='S10') f.close() import numpy as np import matplotlib.pyplot as plt import numpy as np t1 = np.arange(0, 8, 0.001) s1 = np.sin(t1) + 1.5 s2 = np.sin(t1*6)/5 s3 = s1+s2-3.5 g1 = np.sin(t1+np.pi/2) + 1.5 g2 = np.sin(t1*6)/5 g3 = g1+g2-3.5 plt.plot(t1, s1, label="low frequency") plt.plot(t1, s2, label="high frequency") plt.plot(t1, s3, label="combined frequency") plt.legend() plt.title("gene A") #plt.show() plt.savefig("genea.png") plt.close() plt.plot(t1, g1, label="low frequency") plt.plot(t1, g2, label="high frequency") plt.plot(t1, g3, label="combined frequency") plt.legend() plt.title("gene B") #plt.show() plt.savefig("geneb.png") plt.close() plt.plot(t1, s3+3.5, label="gene A") plt.plot(t1, g3+3.5, label="gene B") plt.legend() plt.title("full spectrum gene similarity") #plt.show() plt.savefig("fullspectrum.png") plt.close() plt.plot(t1, s2, label="gene A") plt.plot(t1, g2, label="gene B") plt.legend() plt.title("high frequency spectrum gene similarity") #plt.show() plt.savefig("highspectrum.png") plt.close() np.corrcoef(s3,g3) k1 = list(s3[4000:8000])+list(s3[0:4000]) k2 = list(g3[4000:8000])+list(g3[0:4000]) plt.plot(t1, np.array(k1)+3.5, label="gene A") plt.plot(t1, np.array(k2)+3.5, label="gene B") plt.legend() plt.title("shuffled spectrum gene similarity") #plt.show() plt.savefig("shufflespectrum.png") plt.close()
[ "pandas.read_feather", "os.listdir", "matplotlib.pyplot.savefig", "numpy.corrcoef", "s3fs.S3FileSystem", "matplotlib.pyplot.legend", "matplotlib.pyplot.plot", "h5py.File", "multiprocessing.pool.ThreadPool", "matplotlib.pyplot.close", "numpy.array", "numpy.sin", "matplotlib.pyplot.title", "time.time", "numpy.arange" ]
[((103, 135), 'os.listdir', 'os.listdir', (['"""correlation_folder"""'], {}), "('correlation_folder')\n", (113, 135), False, 'import os\n'), ((901, 912), 'time.time', 'time.time', ([], {}), '()\n', (910, 912), False, 'import time\n'), ((1728, 1739), 'time.time', 'time.time', ([], {}), '()\n', (1737, 1739), False, 'import time\n'), ((1894, 1905), 'time.time', 'time.time', ([], {}), '()\n', (1903, 1905), False, 'import time\n'), ((1913, 1920), 'multiprocessing.pool.ThreadPool', 'Pool', (['(1)'], {}), '(1)\n', (1917, 1920), True, 'from multiprocessing.pool import ThreadPool as Pool\n'), ((2209, 2220), 'time.time', 'time.time', ([], {}), '()\n', (2218, 2220), False, 'import time\n'), ((2228, 2236), 'multiprocessing.pool.ThreadPool', 'Pool', (['(10)'], {}), '(10)\n', (2232, 2236), True, 'from multiprocessing.pool import ThreadPool as Pool\n'), ((2491, 2502), 'time.time', 'time.time', ([], {}), '()\n', (2500, 2502), False, 'import time\n'), ((2612, 2647), 'h5py.File', 'h5.File', (['"""h5/correlation_0.h5"""', '"""r"""'], {}), "('h5/correlation_0.h5', 'r')\n", (2619, 2647), True, 'import h5py as h5\n'), ((2796, 2831), 'h5py.File', 'h5.File', (['"""h5/correlation_0.h5"""', '"""r"""'], {}), "('h5/correlation_0.h5', 'r')\n", (2803, 2831), True, 'import h5py as h5\n'), ((2899, 2934), 'h5py.File', 'h5.File', (['"""h5/correlation_0.h5"""', '"""w"""'], {}), "('h5/correlation_0.h5', 'w')\n", (2906, 2934), True, 'import h5py as h5\n'), ((3287, 3309), 'numpy.arange', 'np.arange', (['(0)', '(8)', '(0.001)'], {}), '(0, 8, 0.001)\n', (3296, 3309), True, 'import numpy as np\n'), ((3436, 3475), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 's1'], {'label': '"""low frequency"""'}), "(t1, s1, label='low frequency')\n", (3444, 3475), True, 'import matplotlib.pyplot as plt\n'), ((3476, 3516), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 's2'], {'label': '"""high frequency"""'}), "(t1, s2, label='high frequency')\n", (3484, 3516), True, 'import matplotlib.pyplot as plt\n'), ((3517, 3561), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 's3'], {'label': '"""combined frequency"""'}), "(t1, s3, label='combined frequency')\n", (3525, 3561), True, 'import matplotlib.pyplot as plt\n'), ((3562, 3574), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3572, 3574), True, 'import matplotlib.pyplot as plt\n'), ((3575, 3594), 'matplotlib.pyplot.title', 'plt.title', (['"""gene A"""'], {}), "('gene A')\n", (3584, 3594), True, 'import matplotlib.pyplot as plt\n'), ((3607, 3631), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""genea.png"""'], {}), "('genea.png')\n", (3618, 3631), True, 'import matplotlib.pyplot as plt\n'), ((3632, 3643), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3641, 3643), True, 'import matplotlib.pyplot as plt\n'), ((3646, 3685), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'g1'], {'label': '"""low frequency"""'}), "(t1, g1, label='low frequency')\n", (3654, 3685), True, 'import matplotlib.pyplot as plt\n'), ((3686, 3726), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'g2'], {'label': '"""high frequency"""'}), "(t1, g2, label='high frequency')\n", (3694, 3726), True, 'import matplotlib.pyplot as plt\n'), ((3727, 3771), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'g3'], {'label': '"""combined frequency"""'}), "(t1, g3, label='combined frequency')\n", (3735, 3771), True, 'import matplotlib.pyplot as plt\n'), ((3772, 3784), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3782, 3784), True, 'import matplotlib.pyplot as plt\n'), ((3785, 3804), 'matplotlib.pyplot.title', 'plt.title', (['"""gene B"""'], {}), "('gene B')\n", (3794, 3804), True, 'import matplotlib.pyplot as plt\n'), ((3817, 3841), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""geneb.png"""'], {}), "('geneb.png')\n", (3828, 3841), True, 'import matplotlib.pyplot as plt\n'), ((3842, 3853), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3851, 3853), True, 'import matplotlib.pyplot as plt\n'), ((3855, 3893), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', '(s3 + 3.5)'], {'label': '"""gene A"""'}), "(t1, s3 + 3.5, label='gene A')\n", (3863, 3893), True, 'import matplotlib.pyplot as plt\n'), ((3892, 3930), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', '(g3 + 3.5)'], {'label': '"""gene B"""'}), "(t1, g3 + 3.5, label='gene B')\n", (3900, 3930), True, 'import matplotlib.pyplot as plt\n'), ((3929, 3941), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3939, 3941), True, 'import matplotlib.pyplot as plt\n'), ((3942, 3984), 'matplotlib.pyplot.title', 'plt.title', (['"""full spectrum gene similarity"""'], {}), "('full spectrum gene similarity')\n", (3951, 3984), True, 'import matplotlib.pyplot as plt\n'), ((3997, 4028), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""fullspectrum.png"""'], {}), "('fullspectrum.png')\n", (4008, 4028), True, 'import matplotlib.pyplot as plt\n'), ((4029, 4040), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4038, 4040), True, 'import matplotlib.pyplot as plt\n'), ((4042, 4074), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 's2'], {'label': '"""gene A"""'}), "(t1, s2, label='gene A')\n", (4050, 4074), True, 'import matplotlib.pyplot as plt\n'), ((4075, 4107), 'matplotlib.pyplot.plot', 'plt.plot', (['t1', 'g2'], {'label': '"""gene B"""'}), "(t1, g2, label='gene B')\n", (4083, 4107), True, 'import matplotlib.pyplot as plt\n'), ((4108, 4120), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4118, 4120), True, 'import matplotlib.pyplot as plt\n'), ((4121, 4173), 'matplotlib.pyplot.title', 'plt.title', (['"""high frequency spectrum gene similarity"""'], {}), "('high frequency spectrum gene similarity')\n", (4130, 4173), True, 'import matplotlib.pyplot as plt\n'), ((4186, 4217), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""highspectrum.png"""'], {}), "('highspectrum.png')\n", (4197, 4217), True, 'import matplotlib.pyplot as plt\n'), ((4218, 4229), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4227, 4229), True, 'import matplotlib.pyplot as plt\n'), ((4231, 4250), 'numpy.corrcoef', 'np.corrcoef', (['s3', 'g3'], {}), '(s3, g3)\n', (4242, 4250), True, 'import numpy as np\n'), ((4431, 4443), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4441, 4443), True, 'import matplotlib.pyplot as plt\n'), ((4444, 4490), 'matplotlib.pyplot.title', 'plt.title', (['"""shuffled spectrum gene similarity"""'], {}), "('shuffled spectrum gene similarity')\n", (4453, 4490), True, 'import matplotlib.pyplot as plt\n'), ((4503, 4537), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""shufflespectrum.png"""'], {}), "('shufflespectrum.png')\n", (4514, 4537), True, 'import matplotlib.pyplot as plt\n'), ((4538, 4549), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4547, 4549), True, 'import matplotlib.pyplot as plt\n'), ((211, 272), 'pandas.read_feather', 'pd.read_feather', (["('correlation_folder/' + correlation_files[i])"], {}), "('correlation_folder/' + correlation_files[i])\n", (226, 272), True, 'import pandas as pd\n'), ((671, 706), 'h5py.File', 'h5.File', (['"""h5/correlation_2.h5"""', '"""r"""'], {}), "('h5/correlation_2.h5', 'r')\n", (678, 706), True, 'import h5py as h5\n'), ((1130, 1158), 's3fs.S3FileSystem', 's3fs.S3FileSystem', ([], {'anon': '(True)'}), '(anon=True)\n', (1147, 1158), False, 'import s3fs\n'), ((1411, 1439), 's3fs.S3FileSystem', 's3fs.S3FileSystem', ([], {'anon': '(True)'}), '(anon=True)\n', (1428, 1439), False, 'import s3fs\n'), ((3316, 3326), 'numpy.sin', 'np.sin', (['t1'], {}), '(t1)\n', (3322, 3326), True, 'import numpy as np\n'), ((3338, 3352), 'numpy.sin', 'np.sin', (['(t1 * 6)'], {}), '(t1 * 6)\n', (3344, 3352), True, 'import numpy as np\n'), ((3374, 3396), 'numpy.sin', 'np.sin', (['(t1 + np.pi / 2)'], {}), '(t1 + np.pi / 2)\n', (3380, 3396), True, 'import numpy as np\n'), ((3404, 3418), 'numpy.sin', 'np.sin', (['(t1 * 6)'], {}), '(t1 * 6)\n', (3410, 3418), True, 'import numpy as np\n'), ((951, 962), 'time.time', 'time.time', ([], {}), '()\n', (960, 962), False, 'import time\n'), ((1788, 1799), 'time.time', 'time.time', ([], {}), '()\n', (1797, 1799), False, 'import time\n'), ((2177, 2188), 'time.time', 'time.time', ([], {}), '()\n', (2186, 2188), False, 'import time\n'), ((2461, 2472), 'time.time', 'time.time', ([], {}), '()\n', (2470, 2472), False, 'import time\n'), ((2585, 2596), 'time.time', 'time.time', ([], {}), '()\n', (2594, 2596), False, 'import time\n'), ((2656, 2681), 'numpy.array', 'np.array', (["f['meta/genes']"], {}), "(f['meta/genes'])\n", (2664, 2681), True, 'import numpy as np\n'), ((2841, 2866), 'numpy.array', 'np.array', (["f['meta/genes']"], {}), "(f['meta/genes'])\n", (2849, 2866), True, 'import numpy as np\n'), ((4350, 4362), 'numpy.array', 'np.array', (['k1'], {}), '(k1)\n', (4358, 4362), True, 'import numpy as np\n'), ((4397, 4409), 'numpy.array', 'np.array', (['k2'], {}), '(k2)\n', (4405, 4409), True, 'import numpy as np\n'), ((719, 744), 'numpy.array', 'np.array', (["f['meta/genes']"], {}), "(f['meta/genes'])\n", (727, 744), True, 'import numpy as np\n'), ((804, 843), 'numpy.array', 'np.array', (["f['data/correlation'][:, idx]"], {}), "(f['data/correlation'][:, idx])\n", (812, 843), True, 'import numpy as np\n'), ((1277, 1302), 'numpy.array', 'np.array', (["f['meta/genes']"], {}), "(f['meta/genes'])\n", (1285, 1302), True, 'import numpy as np\n'), ((1608, 1647), 'numpy.array', 'np.array', (["f['data/correlation'][idx, :]"], {}), "(f['data/correlation'][idx, :])\n", (1616, 1647), True, 'import numpy as np\n')]
from __future__ import absolute_import # Visualization of particles with gravity # Source: http://enja.org/2010/08/27/adventures-in-opencl-part-2-particles-with-opengl/ import pyopencl as cl # OpenCL - GPU computing interface mf = cl.mem_flags from pyopencl.tools import get_gl_sharing_context_properties from OpenGL.GL import * # OpenGL - GPU rendering interface from OpenGL.GLU import * # OpenGL tools (mipmaps, NURBS, perspective projection, shapes) from OpenGL.GLUT import * # OpenGL tool to make a visualization window from OpenGL.arrays import vbo import numpy # Number tools import sys # System tools (path, modules, maxint) width = 800 height = 600 num_particles = 100000 time_step = .005 mouse_down = False mouse_old = {'x': 0., 'y': 0.} rotate = {'x': 0., 'y': 0., 'z': 0.} translate = {'x': 0., 'y': 0., 'z': 0.} initial_translate = {'x': 0., 'y': 0., 'z': -2.5} def glut_window(): glutInit(sys.argv) glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH) glutInitWindowSize(width, height) glutInitWindowPosition(0, 0) window = glutCreateWindow("Particle Simulation") glutDisplayFunc(on_display) # Called by GLUT every frame glutKeyboardFunc(on_key) glutMouseFunc(on_click) glutMotionFunc(on_mouse_move) glutTimerFunc(10, on_timer, 10) # Call draw every 30 ms glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(60., width / float(height), .1, 1000.) return(window) def initial_buffers(num_particles): np_position = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_color = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_velocity = numpy.ndarray((num_particles, 4), dtype=numpy.float32) np_position[:,0] = numpy.sin(numpy.arange(0., num_particles) * 2.001 * numpy.pi / num_particles) np_position[:,0] *= numpy.random.random_sample((num_particles,)) / 3. + .2 np_position[:,1] = numpy.cos(numpy.arange(0., num_particles) * 2.001 * numpy.pi / num_particles) np_position[:,1] *= numpy.random.random_sample((num_particles,)) / 3. + .2 np_position[:,2] = 0. np_position[:,3] = 1. np_color[:,:] = [1.,1.,1.,1.] # White particles np_velocity[:,0] = np_position[:,0] * 2. np_velocity[:,1] = np_position[:,1] * 2. np_velocity[:,2] = 3. np_velocity[:,3] = numpy.random.random_sample((num_particles, )) gl_position = vbo.VBO(data=np_position, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER) gl_position.bind() gl_color = vbo.VBO(data=np_color, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER) gl_color.bind() return (np_position, np_velocity, gl_position, gl_color) def on_timer(t): glutTimerFunc(t, on_timer, t) glutPostRedisplay() def on_key(*args): if args[0] == '\033' or args[0] == 'q': sys.exit() def on_click(button, state, x, y): mouse_old['x'] = x mouse_old['y'] = y def on_mouse_move(x, y): rotate['x'] += (y - mouse_old['y']) * .2 rotate['y'] += (x - mouse_old['x']) * .2 mouse_old['x'] = x mouse_old['y'] = y def on_display(): """Render the particles""" # Update or particle positions by calling the OpenCL kernel cl.enqueue_acquire_gl_objects(queue, [cl_gl_position, cl_gl_color]) kernelargs = (cl_gl_position, cl_gl_color, cl_velocity, cl_start_position, cl_start_velocity, numpy.float32(time_step)) program.particle_fountain(queue, (num_particles,), None, *(kernelargs)) cl.enqueue_release_gl_objects(queue, [cl_gl_position, cl_gl_color]) queue.finish() glFlush() glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glMatrixMode(GL_MODELVIEW) glLoadIdentity() # Handle mouse transformations glTranslatef(initial_translate['x'], initial_translate['y'], initial_translate['z']) glRotatef(rotate['x'], 1, 0, 0) glRotatef(rotate['y'], 0, 1, 0) #we switched around the axis so make this rotate_z glTranslatef(translate['x'], translate['y'], translate['z']) # Render the particles glEnable(GL_POINT_SMOOTH) glPointSize(2) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) # Set up the VBOs gl_color.bind() glColorPointer(4, GL_FLOAT, 0, gl_color) gl_position.bind() glVertexPointer(4, GL_FLOAT, 0, gl_position) glEnableClientState(GL_VERTEX_ARRAY) glEnableClientState(GL_COLOR_ARRAY) # Draw the VBOs glDrawArrays(GL_POINTS, 0, num_particles) glDisableClientState(GL_COLOR_ARRAY) glDisableClientState(GL_VERTEX_ARRAY) glDisable(GL_BLEND) glutSwapBuffers() window = glut_window() (np_position, np_velocity, gl_position, gl_color) = initial_buffers(num_particles) platform = cl.get_platforms()[0] context = cl.Context(properties=[(cl.context_properties.PLATFORM, platform)] + get_gl_sharing_context_properties()) queue = cl.CommandQueue(context) cl_velocity = cl.Buffer(context, mf.COPY_HOST_PTR, hostbuf=np_velocity) cl_start_position = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_position) cl_start_velocity = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_velocity) cl_gl_position = cl.GLBuffer(context, mf.READ_WRITE, int(gl_position.buffers[0])) cl_gl_color = cl.GLBuffer(context, mf.READ_WRITE, int(gl_color.buffers[0])) kernel = """__kernel void particle_fountain(__global float4* position, __global float4* color, __global float4* velocity, __global float4* start_position, __global float4* start_velocity, float time_step) { unsigned int i = get_global_id(0); float4 p = position[i]; float4 v = velocity[i]; float life = velocity[i].w; life -= time_step; if (life <= 0.f) { p = start_position[i]; v = start_velocity[i]; life = 1.0f; } v.z -= 9.8f*time_step; p.x += v.x*time_step; p.y += v.y*time_step; p.z += v.z*time_step; v.w = life; position[i] = p; velocity[i] = v; color[i].w = life; /* Fade points as life decreases */ }""" program = cl.Program(context, kernel).build() glutMainLoop()
[ "pyopencl.Buffer", "pyopencl.Program", "pyopencl.enqueue_release_gl_objects", "numpy.random.random_sample", "pyopencl.get_platforms", "numpy.float32", "pyopencl.CommandQueue", "pyopencl.tools.get_gl_sharing_context_properties", "numpy.ndarray", "pyopencl.enqueue_acquire_gl_objects", "sys.exit", "OpenGL.arrays.vbo.VBO", "numpy.arange" ]
[((4872, 4896), 'pyopencl.CommandQueue', 'cl.CommandQueue', (['context'], {}), '(context)\n', (4887, 4896), True, 'import pyopencl as cl\n'), ((4912, 4969), 'pyopencl.Buffer', 'cl.Buffer', (['context', 'mf.COPY_HOST_PTR'], {'hostbuf': 'np_velocity'}), '(context, mf.COPY_HOST_PTR, hostbuf=np_velocity)\n', (4921, 4969), True, 'import pyopencl as cl\n'), ((4990, 5062), 'pyopencl.Buffer', 'cl.Buffer', (['context', '(mf.READ_ONLY | mf.COPY_HOST_PTR)'], {'hostbuf': 'np_position'}), '(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_position)\n', (4999, 5062), True, 'import pyopencl as cl\n'), ((5083, 5155), 'pyopencl.Buffer', 'cl.Buffer', (['context', '(mf.READ_ONLY | mf.COPY_HOST_PTR)'], {'hostbuf': 'np_velocity'}), '(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np_velocity)\n', (5092, 5155), True, 'import pyopencl as cl\n'), ((1544, 1598), 'numpy.ndarray', 'numpy.ndarray', (['(num_particles, 4)'], {'dtype': 'numpy.float32'}), '((num_particles, 4), dtype=numpy.float32)\n', (1557, 1598), False, 'import numpy\n'), ((1614, 1668), 'numpy.ndarray', 'numpy.ndarray', (['(num_particles, 4)'], {'dtype': 'numpy.float32'}), '((num_particles, 4), dtype=numpy.float32)\n', (1627, 1668), False, 'import numpy\n'), ((1687, 1741), 'numpy.ndarray', 'numpy.ndarray', (['(num_particles, 4)'], {'dtype': 'numpy.float32'}), '((num_particles, 4), dtype=numpy.float32)\n', (1700, 1741), False, 'import numpy\n'), ((2350, 2394), 'numpy.random.random_sample', 'numpy.random.random_sample', (['(num_particles,)'], {}), '((num_particles,))\n', (2376, 2394), False, 'import numpy\n'), ((2419, 2491), 'OpenGL.arrays.vbo.VBO', 'vbo.VBO', ([], {'data': 'np_position', 'usage': 'GL_DYNAMIC_DRAW', 'target': 'GL_ARRAY_BUFFER'}), '(data=np_position, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER)\n', (2426, 2491), False, 'from OpenGL.arrays import vbo\n'), ((2530, 2599), 'OpenGL.arrays.vbo.VBO', 'vbo.VBO', ([], {'data': 'np_color', 'usage': 'GL_DYNAMIC_DRAW', 'target': 'GL_ARRAY_BUFFER'}), '(data=np_color, usage=GL_DYNAMIC_DRAW, target=GL_ARRAY_BUFFER)\n', (2537, 2599), False, 'from OpenGL.arrays import vbo\n'), ((3212, 3279), 'pyopencl.enqueue_acquire_gl_objects', 'cl.enqueue_acquire_gl_objects', (['queue', '[cl_gl_position, cl_gl_color]'], {}), '(queue, [cl_gl_position, cl_gl_color])\n', (3241, 3279), True, 'import pyopencl as cl\n'), ((3484, 3551), 'pyopencl.enqueue_release_gl_objects', 'cl.enqueue_release_gl_objects', (['queue', '[cl_gl_position, cl_gl_color]'], {}), '(queue, [cl_gl_position, cl_gl_color])\n', (3513, 3551), True, 'import pyopencl as cl\n'), ((4724, 4742), 'pyopencl.get_platforms', 'cl.get_platforms', ([], {}), '()\n', (4740, 4742), True, 'import pyopencl as cl\n'), ((2830, 2840), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2838, 2840), False, 'import sys\n'), ((3378, 3402), 'numpy.float32', 'numpy.float32', (['time_step'], {}), '(time_step)\n', (3391, 3402), False, 'import numpy\n'), ((6258, 6285), 'pyopencl.Program', 'cl.Program', (['context', 'kernel'], {}), '(context, kernel)\n', (6268, 6285), True, 'import pyopencl as cl\n'), ((1869, 1913), 'numpy.random.random_sample', 'numpy.random.random_sample', (['(num_particles,)'], {}), '((num_particles,))\n', (1895, 1913), False, 'import numpy\n'), ((2050, 2094), 'numpy.random.random_sample', 'numpy.random.random_sample', (['(num_particles,)'], {}), '((num_particles,))\n', (2076, 2094), False, 'import numpy\n'), ((4825, 4860), 'pyopencl.tools.get_gl_sharing_context_properties', 'get_gl_sharing_context_properties', ([], {}), '()\n', (4858, 4860), False, 'from pyopencl.tools import get_gl_sharing_context_properties\n'), ((1776, 1808), 'numpy.arange', 'numpy.arange', (['(0.0)', 'num_particles'], {}), '(0.0, num_particles)\n', (1788, 1808), False, 'import numpy\n'), ((1957, 1989), 'numpy.arange', 'numpy.arange', (['(0.0)', 'num_particles'], {}), '(0.0, num_particles)\n', (1969, 1989), False, 'import numpy\n')]
"""Module containing models representing patients and their data. The Model layer is responsible for the 'business logic' part of the software. Patients' data is held in an inflammation table (2D array) where each row contains inflammation data for a single patient taken over a number of days and each column represents a single day across all patients. """ import numpy as np def load_csv(filename): """Load a Numpy array from a CSV :param filename: Filename of CSV to load """ return np.loadtxt(fname=filename, delimiter=',') def daily_mean(data): """Calculate the daily mean of a 2D inflammation data array. :param: 2D array of data :returns: vector of arithmetic means of data""" return np.mean(data, axis=0) def daily_max(data): """Calculate the daily max of a 2D inflammation data array. :param: 2D array of data :returns: vector of maximum of data""" return np.max(data, axis=0) def daily_min(data): """Calculate the daily min of a 2D inflammation data array. :param: 2D array of data :returns: vector of min of data""" return np.min(data, axis=0) def patient_normalise(data): """ Normalise patient data from a 2D inflammation data array. NaN values are ignored, and normalised to 0. Negative values are rounded to 0. """ if np.any(data < 0): raise ValueError('Inflammation values should not be negative') max_val = np.max(data, axis=1) with np.errstate(invalid='ignore', divide='ignore'): normalised = data / max_val[:, np.newaxis] normalised[np.isnan(normalised)] = 0 normalised[normalised < 0] = 0 return normalised class Observation: def __init__(self, day, value): self.day = day self.value = value def __str__(self): return self.value class Person: def __init__(self, name): self.name = name def __str__(self): return self.name def __eq__(self, other): return self.name == other.name class Patient(Person): """A patient in an inflammation study.""" def __init__(self, name, observations=None): super().__init__(name) self.observations = [] if observations is not None: self.observations = observations def add_observation(self, value, day=None): if day is None: try: day = self.observations[-1].day + 1 except IndexError: day = 0 new_observation = Observation(value, day) self.observations.append(new_observation) return new_observation @property def last_observation(self): return self.observations[-1] # TODO(lesson-design) Implement data persistence # TODO(lesson-design) Add Doctor class
[ "numpy.mean", "numpy.any", "numpy.max", "numpy.errstate", "numpy.isnan", "numpy.min", "numpy.loadtxt" ]
[((511, 552), 'numpy.loadtxt', 'np.loadtxt', ([], {'fname': 'filename', 'delimiter': '""","""'}), "(fname=filename, delimiter=',')\n", (521, 552), True, 'import numpy as np\n'), ((735, 756), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (742, 756), True, 'import numpy as np\n'), ((928, 948), 'numpy.max', 'np.max', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (934, 948), True, 'import numpy as np\n'), ((1116, 1136), 'numpy.min', 'np.min', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (1122, 1136), True, 'import numpy as np\n'), ((1342, 1358), 'numpy.any', 'np.any', (['(data < 0)'], {}), '(data < 0)\n', (1348, 1358), True, 'import numpy as np\n'), ((1445, 1465), 'numpy.max', 'np.max', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (1451, 1465), True, 'import numpy as np\n'), ((1475, 1521), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (1486, 1521), True, 'import numpy as np\n'), ((1589, 1609), 'numpy.isnan', 'np.isnan', (['normalised'], {}), '(normalised)\n', (1597, 1609), True, 'import numpy as np\n')]
import numpy as np # We create a rank 1 ndarray x = np.array([1,2,3,4]) # We print x print() print('x = ', x) # We apply different mathematical functions to all elements of x print() print('EXP(x) =', np.exp(x)) print() print('SQRT(x) =',np.sqrt(x)) print() print('POW(x,2) =',np.power(x,2)) # We raise all elements to the power of 2
[ "numpy.exp", "numpy.array", "numpy.sqrt", "numpy.power" ]
[((53, 75), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (61, 75), True, 'import numpy as np\n'), ((204, 213), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (210, 213), True, 'import numpy as np\n'), ((241, 251), 'numpy.sqrt', 'np.sqrt', (['x'], {}), '(x)\n', (248, 251), True, 'import numpy as np\n'), ((280, 294), 'numpy.power', 'np.power', (['x', '(2)'], {}), '(x, 2)\n', (288, 294), True, 'import numpy as np\n')]
from numpy.testing.utils import assert_equal, assert_raises from nose import with_setup from nose.plugins.attrib import attr from brian2 import * from brian2.devices.device import restore_device @attr('standalone-compatible') @with_setup(teardown=restore_device) def test_poissoninput(): # Test extreme cases and do a very basic test of an intermediate case, we # don't want tests to be stochastic G = NeuronGroup(10, '''x : volt y : volt y2 : volt z : volt z2 : volt w : 1''') G.w = 0.5 never_update = PoissonInput(G, 'x', 100, 0*Hz, weight=1*volt) always_update = PoissonInput(G, 'y', 50, 1/defaultclock.dt, weight=2*volt) always_update2 = PoissonInput(G, 'y2', 50, 1/defaultclock.dt, weight='1*volt + 1*volt') sometimes_update = PoissonInput(G, 'z', 10000, 50*Hz, weight=0.5*volt) sometimes_update2 = PoissonInput(G, 'z2', 10000, 50*Hz, weight='w*volt') mon = StateMonitor(G, ['x', 'y', 'y2', 'z', 'z2'], record=True, when='end') run(1*ms) assert_equal(0, mon.x[:]) assert_equal(np.tile((1+np.arange(mon.y[:].shape[1]))*50*2*volt, (10, 1)), mon.y[:]) assert_equal(np.tile((1+np.arange(mon.y[:].shape[1]))*50*2*volt, (10, 1)), mon.y2[:]) assert all(np.var(mon.z[:], axis=1) > 0) # variability over time assert all(np.var(mon.z[:], axis=0) > 0) # variability over neurons assert all(np.var(mon.z2[:], axis=1) > 0) # variability over time assert all(np.var(mon.z2[:], axis=0) > 0) # variability over neurons @attr('codegen-independent') def test_poissoninput_errors(): # Targeting non-existing variable G = NeuronGroup(10, '''x : volt y : 1''') assert_raises(KeyError, lambda: PoissonInput(G, 'z', 100, 100*Hz, weight=1.0)) # Incorrect units assert_raises(DimensionMismatchError, lambda: PoissonInput(G, 'x', 100, 100*Hz, weight=1.0)) assert_raises(DimensionMismatchError, lambda: PoissonInput(G, 'y', 100, 100*Hz, weight=1.0*volt)) # dt change old_dt = defaultclock.dt inp = PoissonInput(G, 'x', 100, 100*Hz, weight=1*volt) defaultclock.dt = 2 * old_dt net = Network(collect()) assert_raises(NotImplementedError, lambda: net.run(0*ms)) defaultclock.dt = old_dt if __name__ == '__main__': # test_poissoninput() # restore_device() test_poissoninput_errors()
[ "nose.with_setup", "numpy.testing.utils.assert_equal", "nose.plugins.attrib.attr" ]
[((198, 227), 'nose.plugins.attrib.attr', 'attr', (['"""standalone-compatible"""'], {}), "('standalone-compatible')\n", (202, 227), False, 'from nose.plugins.attrib import attr\n'), ((229, 264), 'nose.with_setup', 'with_setup', ([], {'teardown': 'restore_device'}), '(teardown=restore_device)\n', (239, 264), False, 'from nose import with_setup\n'), ((1661, 1688), 'nose.plugins.attrib.attr', 'attr', (['"""codegen-independent"""'], {}), "('codegen-independent')\n", (1665, 1688), False, 'from nose.plugins.attrib import attr\n'), ((1131, 1156), 'numpy.testing.utils.assert_equal', 'assert_equal', (['(0)', 'mon.x[:]'], {}), '(0, mon.x[:])\n', (1143, 1156), False, 'from numpy.testing.utils import assert_equal, assert_raises\n')]
from tespy.connections import connection from tespy.components import source, sink, pipe from tespy.networks import network import numpy as np from matplotlib import pyplot as plt nw = network(['water'], p_unit='bar', T_unit='C', h_unit='kJ / kg') # %% components pi = pipe('pipe') si = sink('sink') so = source('source') # %% connections a = connection(so, 'out1', pi, 'in1') b = connection(pi, 'out1', si, 'in1') nw.add_conns(a, b) # %% connection parameters a.set_attr(h=40, fluid={'water': 1}, p=1, m=10) # %% component parameters pi.set_attr(ks=1e-4, L=100, D='var', Q=0) # %% solve nw.set_attr(iterinfo=False) # specify different pressure ratios for the pipe, calculate the diameter required for pr in np.linspace(0.95, 0.999, 10): pi.set_attr(pr=pr) nw.solve(mode='design') print('Pressure ratio: ' + str(round(pr, 3)) + ', diameter: ' + str(round(pi.D.val * 1000, 0)))
[ "tespy.components.source", "tespy.components.sink", "numpy.linspace", "tespy.components.pipe", "tespy.networks.network", "tespy.connections.connection" ]
[((187, 249), 'tespy.networks.network', 'network', (["['water']"], {'p_unit': '"""bar"""', 'T_unit': '"""C"""', 'h_unit': '"""kJ / kg"""'}), "(['water'], p_unit='bar', T_unit='C', h_unit='kJ / kg')\n", (194, 249), False, 'from tespy.networks import network\n'), ((272, 284), 'tespy.components.pipe', 'pipe', (['"""pipe"""'], {}), "('pipe')\n", (276, 284), False, 'from tespy.components import source, sink, pipe\n'), ((290, 302), 'tespy.components.sink', 'sink', (['"""sink"""'], {}), "('sink')\n", (294, 302), False, 'from tespy.components import source, sink, pipe\n'), ((308, 324), 'tespy.components.source', 'source', (['"""source"""'], {}), "('source')\n", (314, 324), False, 'from tespy.components import source, sink, pipe\n'), ((348, 381), 'tespy.connections.connection', 'connection', (['so', '"""out1"""', 'pi', '"""in1"""'], {}), "(so, 'out1', pi, 'in1')\n", (358, 381), False, 'from tespy.connections import connection\n'), ((386, 419), 'tespy.connections.connection', 'connection', (['pi', '"""out1"""', 'si', '"""in1"""'], {}), "(pi, 'out1', si, 'in1')\n", (396, 419), False, 'from tespy.connections import connection\n'), ((722, 750), 'numpy.linspace', 'np.linspace', (['(0.95)', '(0.999)', '(10)'], {}), '(0.95, 0.999, 10)\n', (733, 750), True, 'import numpy as np\n')]
import random import torch import numpy as np from torch_geometric.utils import degree, to_undirected def negative_sampling(edge_index, num_nodes=None, num_neg_samples=None, force_undirected=False): num_neg_samples = num_neg_samples or edge_index.size(1) # Handle '|V|^2 - |E| < |E|' case for G = (V, E). num_neg_samples = min(num_neg_samples, num_nodes * num_nodes - edge_index.size(1)) rng = range(num_nodes**2) # idx = N * i + j idx = (edge_index[0] * num_nodes + edge_index[1]).to('cpu') perm = torch.tensor(random.sample(rng, num_neg_samples)) # pos edge면 true 처리 mask = torch.from_numpy(np.isin(perm, idx)).to(torch.bool) rest = mask.nonzero().view(-1) while rest.numel() > 0: # pragma: no cover tmp = torch.tensor(random.sample(rng, rest.size(0))) mask = torch.from_numpy(np.isin(tmp, idx)).to(torch.bool) perm[rest] = tmp rest = rest[mask.nonzero().view(-1)] row = perm / num_nodes col = perm % num_nodes neg_edge_index = torch.stack([row, col], dim=0).long() return neg_edge_index.to(edge_index.device)
[ "random.sample", "torch.stack", "numpy.isin" ]
[((597, 632), 'random.sample', 'random.sample', (['rng', 'num_neg_samples'], {}), '(rng, num_neg_samples)\n', (610, 632), False, 'import random\n'), ((1079, 1109), 'torch.stack', 'torch.stack', (['[row, col]'], {'dim': '(0)'}), '([row, col], dim=0)\n', (1090, 1109), False, 'import torch\n'), ((686, 704), 'numpy.isin', 'np.isin', (['perm', 'idx'], {}), '(perm, idx)\n', (693, 704), True, 'import numpy as np\n'), ((898, 915), 'numpy.isin', 'np.isin', (['tmp', 'idx'], {}), '(tmp, idx)\n', (905, 915), True, 'import numpy as np\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os,time,datetime,sys import numpy as np import dgcnn import tensorflow as tf def round_decimals(val,digits): factor = float(np.power(10,digits)) return int(val * factor+0.5) / factor def iteration_from_filename(file_name): return int((file_name.split('-'))[-1]) def iotest(flags): # IO configuration io = dgcnn.io_factory(flags) io.initialize() num_entries = io.num_entries() ctr = 0 while ctr < num_entries: idx,data,label,weight=io.next() msg = str(ctr) + '/' + str(num_entries) + ' ... ' + str(idx) + ' ' + str(data[0].shape) if label: msg += str(label[0].shape) if weight: msg += str(weight[0].shape) print(msg) ctr += len(data) io.finalize() class Handlers: sess = None data_io = None csv_logger = None weight_io = None train_logger = None iteration = 0 def train(flags): flags.TRAIN = True handlers = prepare(flags) train_loop(flags,handlers) def inference(flags): flags.TRAIN = False handlers = prepare(flags) inference_loop(flags,handlers) def prepare(flags): handlers = Handlers() # assert if flags.BATCH_SIZE % (flags.MINIBATCH_SIZE * len(flags.GPUS)): msg = '--batch_size (%d) must be a modular of --gpus (%d) * --minibatch_size (%d)\n' msg = msg % (flags.BATCH_SIZE,flags.MINIBATCH_SIZE,len(flags.GPUS)) sys.stderr.write(msg) sys.exit(1) # IO configuration handlers.data_io = dgcnn.io_factory(flags) handlers.data_io.initialize() _,train_data,_,_ = handlers.data_io.next() # Trainer configuration flags.NUM_CHANNEL = handlers.data_io.num_channels() handlers.trainer = dgcnn.trainval(flags) handlers.trainer.initialize() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True handlers.sess = tf.Session(config=config) init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) handlers.sess.run(init) handlers.weight_io = tf.train.Saver(max_to_keep=flags.CHECKPOINT_NUM, keep_checkpoint_every_n_hours=flags.CHECKPOINT_HOUR) if flags.WEIGHT_PREFIX: save_dir = flags.WEIGHT_PREFIX[0:flags.WEIGHT_PREFIX.rfind('/')] if save_dir and not os.path.isdir(save_dir): os.makedirs(save_dir) handlers.iteration = 0 loaded_iteration = 0 if flags.MODEL_PATH: handlers.weight_io.restore(handlers.sess, flags.MODEL_PATH) loaded_iteration = iteration_from_filename(flags.MODEL_PATH) if flags.TRAIN: handlers.iteration = loaded_iteration+1 if flags.LOG_DIR: if not os.path.exists(flags.LOG_DIR): os.mkdir(flags.LOG_DIR) handlers.train_logger = tf.summary.FileWriter(flags.LOG_DIR) handlers.train_logger.add_graph(handlers.sess.graph) logname = '%s/train_log-%07d.csv' % (flags.LOG_DIR,loaded_iteration) if not flags.TRAIN: logname = '%s/inference_log-%07d.csv' % (flags.LOG_DIR,loaded_iteration) handlers.csv_logger = open(logname,'w') return handlers def train_loop(flags,handlers): handlers.csv_logger.write('iter,epoch') handlers.csv_logger.write(',titer,ttrain,tio,tsave,tsummary') handlers.csv_logger.write(',tsumiter,tsumtrain,tsumio,tsumsave,tsumsummary') handlers.csv_logger.write(',loss,accuracy\n') tsum = 0. tsum_train = 0. tsum_io = 0. tsum_save = 0. tsum_summary = 0. while handlers.iteration < flags.ITERATION: tstamp_iteration = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') tstart_iteration = time.time() report_step = flags.REPORT_STEP and ((handlers.iteration+1) % flags.REPORT_STEP == 0) summary_step = flags.SUMMARY_STEP and handlers.train_logger and ((handlers.iteration+1) % flags.SUMMARY_STEP == 0) checkpt_step = flags.CHECKPOINT_STEP and flags.WEIGHT_PREFIX and ((handlers.iteration+1) % flags.CHECKPOINT_STEP == 0) tstart = time.time() idx,data,label,weight = handlers.data_io.next() tspent_io = time.time() - tstart tsum_io += tspent_io current_idx = 0 loss_v = [] accuracy_v = [] handlers.trainer.zero_gradients(handlers.sess) # Accummulate gradients tspent_train = 0. tspent_summary = 0. while current_idx < flags.BATCH_SIZE: tstart = time.time() data_v = [] label_v = [] weight_v = None if weight is not None: weight_v = [] for _ in flags.GPUS: start = current_idx end = current_idx + flags.MINIBATCH_SIZE data_v.append(data[start:end]) label_v.append(label[start:end]) if weight is not None: weight_v.append(weight[start:end]) current_idx = end # compute gradients make_summary = summary_step and (current_idx == flags.BATCH_SIZE) res = handlers.trainer.accum_gradient(handlers.sess,data_v,label_v,weight_v,summary=make_summary) accuracy_v.append(res[1]) loss_v.append(res[2]) tspent_train = tspent_train + (time.time() - tstart) # log summary if make_summary: tstart = time.time() handlers.train_logger.add_summary(res[3],handlers.iteration) tspent_summary = time.time() - tstart # Apply gradients tstart = time.time() handlers.trainer.apply_gradient(handlers.sess) tspent_train = tspent_train + (time.time() - tstart) tsum_train += tspent_train tsum_summary += tspent_summary # Compute loss/accuracy loss = np.mean(loss_v) accuracy = np.mean(accuracy_v) epoch = handlers.iteration * float(flags.BATCH_SIZE) / handlers.data_io.num_entries() # Save snapshot tspent_save = 0. if checkpt_step: tstart = time.time() ssf_path = handlers.weight_io.save(handlers.sess,flags.WEIGHT_PREFIX,global_step=handlers.iteration) tspent_save = time.time() - tstart print('saved @',ssf_path) # Report (logger) if handlers.csv_logger: tspent_iteration = time.time() - tstart_iteration tsum += tspent_iteration csv_data = '%d,%g,' % (handlers.iteration,epoch) csv_data += '%g,%g,%g,%g,%g,' % (tspent_iteration,tspent_train,tspent_io,tspent_save,tspent_summary) csv_data += '%g,%g,%g,%g,%g,' % (tsum,tsum_train,tsum_io,tsum_save,tsum_summary) csv_data += '%g,%g\n' % (loss,accuracy) handlers.csv_logger.write(csv_data) # Report (stdout) if report_step: loss = round_decimals(loss,4) accuracy = round_decimals(accuracy,4) tfrac = round_decimals(tspent_train/tspent_iteration*100.,2) epoch = round_decimals(epoch,2) mem = handlers.sess.run(tf.contrib.memory_stats.MaxBytesInUse()) msg = 'Iteration %d (epoch %g) @ %s ... train time fraction %g%% max mem. %g ... loss %g accuracy %g' msg = msg % (handlers.iteration,epoch,tstamp_iteration,tfrac,mem,loss,accuracy) print(msg) sys.stdout.flush() if handlers.csv_logger: handlers.csv_logger.flush() if handlers.train_logger: handlers.train_logger.flush() # Increment iteration counter handlers.iteration +=1 handlers.train_logger.close() handlers.csv_logger.close() handlers.data_io.finalize() def inference_loop(flags,handlers): handlers.csv_logger.write('iter,epoch') handlers.csv_logger.write(',titer,tinference,tio') handlers.csv_logger.write(',tsumiter,tsuminference,tsumio') handlers.csv_logger.write(',loss,accuracy\n') tsum = 0. tsum_io = 0. tsum_inference = 0. while handlers.iteration < flags.ITERATION: tstamp_iteration = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') tstart_iteration = time.time() report_step = flags.REPORT_STEP and ((handlers.iteration+1) % flags.REPORT_STEP == 0) tstart = time.time() idx,data,label,weight = handlers.data_io.next() tspent_io = time.time() - tstart tsum_io += tspent_io current_idx = 0 softmax_vv = [] loss_v = [] accuracy_v = [] # Run inference tspent_inference = 0. tstart = time.time() while current_idx < flags.BATCH_SIZE: data_v = [] label_v = None weight_v = None if label is not None: label_v = [] if weight is not None: weight_v = [] for _ in flags.GPUS: start = current_idx end = current_idx + flags.MINIBATCH_SIZE data_v.append(data[start:end]) if label is not None: label_v.append(label[start:end]) if weight is not None: weight_v.append(weight[start:end]) current_idx = end # compute gradients res = handlers.trainer.inference(handlers.sess,data_v,label_v,weight_v) if flags.LABEL_KEY: softmax_vv = softmax_vv + res[0:-2] accuracy_v.append(res[-2]) loss_v.append(res[-1]) else: softmax_vv = softmax_vv + res tspent_inference = tspent_inference + (time.time() - tstart) tsum_inference += tspent_inference # Store output if requested if flags.OUTPUT_FILE: idx_ctr = 0 for softmax_v in softmax_vv: for softmax in softmax_v: handlers.data_io.store(idx[idx_ctr],softmax) idx_ctr += 1 # Compute loss/accuracy loss,accuracy=[-1,-1] if flags.LABEL_KEY: loss = np.mean(loss_v) accuracy = np.mean(accuracy_v) epoch = handlers.iteration * float(flags.BATCH_SIZE) / handlers.data_io.num_entries() # Report (logger) if handlers.csv_logger: tspent_iteration = time.time() - tstart_iteration tsum += tspent_iteration csv_data = '%d,%g,' % (handlers.iteration,epoch) csv_data += '%g,%g,%g,' % (tspent_iteration,tspent_inference,tspent_io) csv_data += '%g,%g,%g,' % (tsum,tsum_inference,tsum_io) csv_data += '%g,%g\n' % (loss,accuracy) handlers.csv_logger.write(csv_data) # Report (stdout) if report_step: loss = round_decimals(loss,4) accuracy = round_decimals(accuracy,4) tfrac = round_decimals(tspent_inference/tspent_iteration*100.,2) epoch = round_decimals(epoch,2) mem = handlers.sess.run(tf.contrib.memory_stats.MaxBytesInUse()) msg = 'Iteration %d (epoch %g) @ %s ... inference time fraction %g%% max mem. %g ... loss %g accuracy %g' msg = msg % (handlers.iteration,epoch,tstamp_iteration,tfrac,mem,loss,accuracy) print(msg) sys.stdout.flush() if handlers.csv_logger: handlers.csv_logger.flush() # Increment iteration counter handlers.iteration +=1 handlers.csv_logger.close() handlers.data_io.finalize()
[ "tensorflow.local_variables_initializer", "dgcnn.trainval", "sys.exit", "numpy.mean", "os.path.exists", "tensorflow.Session", "os.path.isdir", "os.mkdir", "tensorflow.ConfigProto", "sys.stdout.flush", "dgcnn.io_factory", "sys.stderr.write", "tensorflow.summary.FileWriter", "time.time", "tensorflow.contrib.memory_stats.MaxBytesInUse", "os.makedirs", "numpy.power", "tensorflow.train.Saver", "tensorflow.global_variables_initializer" ]
[((434, 457), 'dgcnn.io_factory', 'dgcnn.io_factory', (['flags'], {}), '(flags)\n', (450, 457), False, 'import dgcnn\n'), ((1547, 1570), 'dgcnn.io_factory', 'dgcnn.io_factory', (['flags'], {}), '(flags)\n', (1563, 1570), False, 'import dgcnn\n'), ((1750, 1771), 'dgcnn.trainval', 'dgcnn.trainval', (['flags'], {}), '(flags)\n', (1764, 1771), False, 'import dgcnn\n'), ((1837, 1853), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (1851, 1853), True, 'import tensorflow as tf\n'), ((1950, 1975), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (1960, 1975), True, 'import tensorflow as tf\n'), ((2131, 2236), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': 'flags.CHECKPOINT_NUM', 'keep_checkpoint_every_n_hours': 'flags.CHECKPOINT_HOUR'}), '(max_to_keep=flags.CHECKPOINT_NUM,\n keep_checkpoint_every_n_hours=flags.CHECKPOINT_HOUR)\n', (2145, 2236), True, 'import tensorflow as tf\n'), ((243, 263), 'numpy.power', 'np.power', (['(10)', 'digits'], {}), '(10, digits)\n', (251, 263), True, 'import numpy as np\n'), ((1466, 1487), 'sys.stderr.write', 'sys.stderr.write', (['msg'], {}), '(msg)\n', (1482, 1487), False, 'import os, time, datetime, sys\n'), ((1492, 1503), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1500, 1503), False, 'import os, time, datetime, sys\n'), ((1994, 2027), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2025, 2027), True, 'import tensorflow as tf\n'), ((2047, 2079), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (2077, 2079), True, 'import tensorflow as tf\n'), ((2815, 2851), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['flags.LOG_DIR'], {}), '(flags.LOG_DIR)\n', (2836, 2851), True, 'import tensorflow as tf\n'), ((3686, 3697), 'time.time', 'time.time', ([], {}), '()\n', (3695, 3697), False, 'import os, time, datetime, sys\n'), ((4050, 4061), 'time.time', 'time.time', ([], {}), '()\n', (4059, 4061), False, 'import os, time, datetime, sys\n'), ((5370, 5381), 'time.time', 'time.time', ([], {}), '()\n', (5379, 5381), False, 'import os, time, datetime, sys\n'), ((5601, 5616), 'numpy.mean', 'np.mean', (['loss_v'], {}), '(loss_v)\n', (5608, 5616), True, 'import numpy as np\n'), ((5632, 5651), 'numpy.mean', 'np.mean', (['accuracy_v'], {}), '(accuracy_v)\n', (5639, 5651), True, 'import numpy as np\n'), ((7770, 7781), 'time.time', 'time.time', ([], {}), '()\n', (7779, 7781), False, 'import os, time, datetime, sys\n'), ((7892, 7903), 'time.time', 'time.time', ([], {}), '()\n', (7901, 7903), False, 'import os, time, datetime, sys\n'), ((8164, 8175), 'time.time', 'time.time', ([], {}), '()\n', (8173, 8175), False, 'import os, time, datetime, sys\n'), ((2415, 2436), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (2426, 2436), False, 'import os, time, datetime, sys\n'), ((2732, 2761), 'os.path.exists', 'os.path.exists', (['flags.LOG_DIR'], {}), '(flags.LOG_DIR)\n', (2746, 2761), False, 'import os, time, datetime, sys\n'), ((2763, 2786), 'os.mkdir', 'os.mkdir', (['flags.LOG_DIR'], {}), '(flags.LOG_DIR)\n', (2771, 2786), False, 'import os, time, datetime, sys\n'), ((4130, 4141), 'time.time', 'time.time', ([], {}), '()\n', (4139, 4141), False, 'import os, time, datetime, sys\n'), ((4422, 4433), 'time.time', 'time.time', ([], {}), '()\n', (4431, 4433), False, 'import os, time, datetime, sys\n'), ((5819, 5830), 'time.time', 'time.time', ([], {}), '()\n', (5828, 5830), False, 'import os, time, datetime, sys\n'), ((7001, 7019), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (7017, 7019), False, 'import os, time, datetime, sys\n'), ((7972, 7983), 'time.time', 'time.time', ([], {}), '()\n', (7981, 7983), False, 'import os, time, datetime, sys\n'), ((9404, 9419), 'numpy.mean', 'np.mean', (['loss_v'], {}), '(loss_v)\n', (9411, 9419), True, 'import numpy as np\n'), ((9437, 9456), 'numpy.mean', 'np.mean', (['accuracy_v'], {}), '(accuracy_v)\n', (9444, 9456), True, 'import numpy as np\n'), ((10491, 10509), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (10507, 10509), False, 'import os, time, datetime, sys\n'), ((2390, 2413), 'os.path.isdir', 'os.path.isdir', (['save_dir'], {}), '(save_dir)\n', (2403, 2413), False, 'import os, time, datetime, sys\n'), ((5208, 5219), 'time.time', 'time.time', ([], {}), '()\n', (5217, 5219), False, 'import os, time, datetime, sys\n'), ((5468, 5479), 'time.time', 'time.time', ([], {}), '()\n', (5477, 5479), False, 'import os, time, datetime, sys\n'), ((5958, 5969), 'time.time', 'time.time', ([], {}), '()\n', (5967, 5969), False, 'import os, time, datetime, sys\n'), ((6086, 6097), 'time.time', 'time.time', ([], {}), '()\n', (6095, 6097), False, 'import os, time, datetime, sys\n'), ((6743, 6782), 'tensorflow.contrib.memory_stats.MaxBytesInUse', 'tf.contrib.memory_stats.MaxBytesInUse', ([], {}), '()\n', (6780, 6782), True, 'import tensorflow as tf\n'), ((9022, 9033), 'time.time', 'time.time', ([], {}), '()\n', (9031, 9033), False, 'import os, time, datetime, sys\n'), ((9622, 9633), 'time.time', 'time.time', ([], {}), '()\n', (9631, 9633), False, 'import os, time, datetime, sys\n'), ((10229, 10268), 'tensorflow.contrib.memory_stats.MaxBytesInUse', 'tf.contrib.memory_stats.MaxBytesInUse', ([], {}), '()\n', (10266, 10268), True, 'import tensorflow as tf\n'), ((3620, 3631), 'time.time', 'time.time', ([], {}), '()\n', (3629, 3631), False, 'import os, time, datetime, sys\n'), ((5126, 5137), 'time.time', 'time.time', ([], {}), '()\n', (5135, 5137), False, 'import os, time, datetime, sys\n'), ((5314, 5325), 'time.time', 'time.time', ([], {}), '()\n', (5323, 5325), False, 'import os, time, datetime, sys\n'), ((7704, 7715), 'time.time', 'time.time', ([], {}), '()\n', (7713, 7715), False, 'import os, time, datetime, sys\n')]
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # ''' Some hacky functions ''' import os, sys import imp import tempfile import shutil import functools import itertools import math import ctypes import numpy import h5py from pyscf.lib import param c_double_p = ctypes.POINTER(ctypes.c_double) c_int_p = ctypes.POINTER(ctypes.c_int) c_null_ptr = ctypes.POINTER(ctypes.c_void_p) def load_library(libname): # numpy 1.6 has bug in ctypeslib.load_library, see numpy/distutils/misc_util.py if '1.6' in numpy.__version__: if (sys.platform.startswith('linux') or sys.platform.startswith('gnukfreebsd')): so_ext = '.so' elif sys.platform.startswith('darwin'): so_ext = '.dylib' elif sys.platform.startswith('win'): so_ext = '.dll' else: raise OSError('Unknown platform') libname_so = libname + so_ext return ctypes.CDLL(os.path.join(os.path.dirname(__file__), libname_so)) else: _loaderpath = os.path.dirname(__file__) return numpy.ctypeslib.load_library(libname, _loaderpath) #Fixme, the standard resouce module gives wrong number when objects are released #see http://fa.bianp.net/blog/2013/different-ways-to-get-memory-consumption-or-lessons-learned-from-memory_profiler/#fn:1 #or use slow functions as memory_profiler._get_memory did CLOCK_TICKS = os.sysconf("SC_CLK_TCK") PAGESIZE = os.sysconf("SC_PAGE_SIZE") def current_memory(): #import resource #return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000 if sys.platform.startswith('linux'): with open("/proc/%s/statm" % os.getpid()) as f: vms, rss = [int(x)*PAGESIZE for x in f.readline().split()[:2]] return rss/1e6, vms/1e6 else: return 0, 0 def num_threads(): if 'OMP_NUM_THREADS' in os.environ: return int(os.environ['OMP_NUM_THREADS']) else: import multiprocessing return multiprocessing.cpu_count() def c_int_arr(m): npm = numpy.array(m).flatten('C') arr = (ctypes.c_int * npm.size)(*npm) # cannot return LP_c_double class, #Xreturn npm.ctypes.data_as(c_int_p), which destructs npm before return return arr def f_int_arr(m): npm = numpy.array(m).flatten('F') arr = (ctypes.c_int * npm.size)(*npm) return arr def c_double_arr(m): npm = numpy.array(m).flatten('C') arr = (ctypes.c_double * npm.size)(*npm) return arr def f_double_arr(m): npm = numpy.array(m).flatten('F') arr = (ctypes.c_double * npm.size)(*npm) return arr def member(test, x, lst): for l in lst: if test(x, l): return True return False def remove_dup(test, lst, from_end=False): if test is None: return set(lst) else: if from_end: lst = list(reversed(lst)) seen = [] for l in lst: if not member(test, l, seen): seen.append(l) return seen def remove_if(test, lst): return [x for x in lst if not test(x)] def find_if(test, lst): for l in lst: if test(l): return l raise ValueError('No element of the given list matches the test condition.') def arg_first_match(test, lst): for i,x in enumerate(lst): if test(x): return i raise ValueError('No element of the given list matches the test condition.') def _balanced_partition(cum, ntasks): segsize = float(cum[-1]) / ntasks bounds = numpy.arange(ntasks+1) * segsize displs = abs(bounds[:,None] - cum).argmin(axis=1) return displs def _blocksize_partition(cum, blocksize): n = len(cum) - 1 displs = [0] p0 = 0 for i in range(1, n): if cum[i+1]-cum[p0] > blocksize: displs.append(i) p0 = i displs.append(n) return displs def flatten(lst): '''flatten nested lists x[0] + x[1] + x[2] + ... Examples: >>> flatten([[0, 2], [1], [[9, 8, 7]]]) [0, 2, 1, [9, 8, 7]] ''' return list(itertools.chain.from_iterable(lst)) def prange(start, end, step): for i in range(start, end, step): yield i, min(i+step, end) def prange_tril(start, stop, blocksize): '''for p0, p1 in prange_tril: p1*(p1+1)/2-p0*(p0+1)/2 < blocksize''' idx = numpy.arange(start, stop+1) cum_costs = idx*(idx+1)//2 - start*(start+1)//2 displs = [x+start for x in _blocksize_partition(cum_costs, blocksize)] return zip(displs[:-1], displs[1:]) class ctypes_stdout(object): '''make c-printf output to string, but keep python print in /dev/pts/1. Note it cannot correctly handle c-printf with GCC, don't know why. Usage: with ctypes_stdout() as stdout: ... print(stdout.read())''' def __enter__(self): sys.stdout.flush() self._contents = None self.old_stdout_fileno = sys.stdout.fileno() self.bak_stdout_fd = os.dup(self.old_stdout_fileno) self.bak_stdout = sys.stdout self.fd, self.ftmp = tempfile.mkstemp(dir='/dev/shm') os.dup2(self.fd, self.old_stdout_fileno) sys.stdout = os.fdopen(self.bak_stdout_fd, 'w') return self def __exit__(self, type, value, traceback): sys.stdout.flush() os.fsync(self.fd) self._contents = open(self.ftmp, 'r').read() os.dup2(self.bak_stdout_fd, self.old_stdout_fileno) sys.stdout = self.bak_stdout # self.bak_stdout_fd is closed #os.close(self.fd) is closed when os.fdopen is closed os.remove(self.ftmp) def read(self): if self._contents: return self._contents else: sys.stdout.flush() #f = os.fdopen(self.fd, 'r') # need to rewind(0) before reading #f.seek(0) return open(self.ftmp, 'r').read() class capture_stdout(object): '''redirect all stdout (c printf & python print) into a string Usage: with capture_stdout() as stdout: ... print(stdout.read()) ''' def __enter__(self): sys.stdout.flush() self._contents = None self.old_stdout_fileno = sys.stdout.fileno() self.bak_stdout_fd = os.dup(self.old_stdout_fileno) self.fd, self.ftmp = tempfile.mkstemp(dir='/dev/shm') os.dup2(self.fd, self.old_stdout_fileno) return self def __exit__(self, type, value, traceback): sys.stdout.flush() self._contents = open(self.ftmp, 'r').read() os.dup2(self.bak_stdout_fd, self.old_stdout_fileno) os.close(self.bak_stdout_fd) #os.close(self.fd) will be closed when os.fdopen is closed os.remove(self.ftmp) def read(self): if self._contents: return self._contents else: sys.stdout.flush() #f = os.fdopen(self.fd, 'r') # need to rewind(0) before reading #f.seek(0) return open(self.ftmp, 'r').read() class quite_run(object): '''output nothing Examples -------- with quite_run(): ... ''' def __enter__(self): sys.stdout.flush() self.dirnow = os.getcwd() self.tmpdir = tempfile.mkdtemp(dir='/dev/shm') os.chdir(self.tmpdir) self.old_stdout_fileno = sys.stdout.fileno() self.bak_stdout_fd = os.dup(self.old_stdout_fileno) self.fnull = open(os.devnull, 'wb') os.dup2(self.fnull.fileno(), self.old_stdout_fileno) def __exit__(self, type, value, traceback): sys.stdout.flush() os.dup2(self.bak_stdout_fd, self.old_stdout_fileno) self.fnull.close() shutil.rmtree(self.tmpdir) os.chdir(self.dirnow) # from pygeocoder # this decorator lets me use methods as both static and instance methods # In contrast to classmethod, when obj.function() is called, the first # argument is obj in omnimethod rather than obj.__class__ in classmethod class omnimethod(object): def __init__(self, func): self.func = func def __get__(self, instance, owner): return functools.partial(self.func, instance) class StreamObject(object): '''For most methods, there are three stream functions to pipe computing stream: 1 ``.set_`` function to update object attributes, eg ``mf = scf.RHF(mol).set(conv_tol=1e-5)`` is identical to proceed in two steps ``mf = scf.RHF(mol); mf.conv_tol=1e-5`` 2 ``.run`` function to execute the kenerl function (the function arguments are passed to kernel function). If keyword arguments is given, it will first call ``.set`` function to update object attributes then execute the kernel function. Eg ``mf = scf.RHF(mol).run(dm_init, conv_tol=1e-5)`` is identical to three steps ``mf = scf.RHF(mol); mf.conv_tol=1e-5; mf.kernel(dm_init)`` 3 ``.apply`` function to apply the given function/class to the current object (function arguments and keyword arguments are passed to the given function). Eg ``mol.apply(scf.RHF).run().apply(mcscf.CASSCF, 6, 4, frozen=4)`` is identical to ``mf = scf.RHF(mol); mf.kernel(); mcscf.CASSCF(mf, 6, 4, frozen=4)`` ''' verbose = 0 stdout = sys.stdout _keys = set(['verbose', 'stdout']) def run(self, *args, **kwargs): '''Call the kernel function of current object. `args` will be passed to kernel function. `kwargs` will be used to update the attributes of current object. ''' self.set(**kwargs) self.kernel(*args) return self def set(self, **kwargs): '''Update the attributes of the current object. ''' #if hasattr(self, '_keys'): # for k,v in kwargs.items(): # setattr(self, k, v) # if k not in self._keys: # sys.stderr.write('Warning: %s does not have attribute %s\n' # % (self.__class__, k)) #else: for k,v in kwargs.items(): setattr(self, k, v) return self def apply(self, fn, *args, **kwargs): '''Apply the fn to rest arguments: return fn(*args, **kwargs) ''' return fn(self, *args, **kwargs) # def _format_args(self, args, kwargs, kernel_kw_lst): # args1 = [kwargs.pop(k, v) for k, v in kernel_kw_lst] # return args + args1[len(args):], kwargs def check_sanity(self): '''Check misinput of class attributes, check whether a class method is overwritten. It does not check the attributes which are prefixed with "_". ''' if (self.verbose > 0 and # logger.QUIET hasattr(self, '_keys')): check_sanity(self, self._keys, self.stdout) return self _warn_once_registry = {} def check_sanity(obj, keysref, stdout=sys.stdout): '''Check misinput of class attributes, check whether a class method is overwritten. It does not check the attributes which are prefixed with "_". ''' objkeys = [x for x in obj.__dict__ if not x.startswith('_')] keysub = set(objkeys) - set(keysref) if keysub: class_attr = set(dir(obj.__class__)) keyin = keysub.intersection(class_attr) if keyin: msg = ('Overwrite attributes %s of %s\n' % (' '.join(keyin), obj.__class__)) if msg not in _warn_once_registry: _warn_once_registry[msg] = 1 sys.stderr.write(msg) if stdout is not sys.stdout: stdout.write(msg) keydiff = keysub - class_attr if keydiff: msg = ('%s does not have attributes %s\n' % (obj.__class__, ' '.join(keydiff))) if msg not in _warn_once_registry: _warn_once_registry[msg] = 1 sys.stderr.write(msg) if stdout is not sys.stdout: stdout.write(msg) return obj def with_doc(doc): '''Use this decorator to add doc string for function @with_doc(doc) def fn: ... makes fn.__doc__ = doc ''' def make_fn(fn): fn.__doc__ = doc return fn return make_fn def overwrite_mro(obj, mro): '''A hacky function to overwrite the __mro__ attribute''' class HackMRO(type): pass # Overwrite type.mro function so that Temp class can use the given mro HackMRO.mro = lambda self: mro if sys.version_info < (3,): class Temp(obj.__class__): __metaclass__ = HackMRO else: #class Temp(obj.__class__, metaclass=HackMRO): # pass raise NotImplementedError() obj = Temp() # Delete mro function otherwise all subclass of Temp are not able to # resolve the right mro del(HackMRO.mro) return obj def izip(*args): '''python2 izip == python3 zip''' if sys.version_info < (3,): return itertools.izip(*args) else: return zip(*args) from threading import Thread from multiprocessing import Queue, Process class ProcessWithReturnValue(Process): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None): self._q = Queue() def qwrap(*args, **kwargs): self._q.put(target(*args, **kwargs)) Process.__init__(self, group, qwrap, name, args, kwargs) def join(self): Process.join(self) return self._q.get() get = join class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None): self._q = Queue() def qwrap(*args, **kwargs): self._q.put(target(*args, **kwargs)) Thread.__init__(self, group, qwrap, name, args, kwargs) def join(self): Thread.join(self) return self._q.get() get = join def background_thread(func, *args, **kwargs): '''applying function in background''' thread = ThreadWithReturnValue(target=func, args=args, kwargs=kwargs) thread.start() return thread def background_process(func, *args, **kwargs): '''applying function in background''' thread = ProcessWithReturnValue(target=func, args=args, kwargs=kwargs) thread.start() return thread bg = background = bg_thread = background_thread bp = bg_process = background_process class H5TmpFile(h5py.File): def __init__(self, filename=None, *args, **kwargs): if filename is None: tmpfile = tempfile.NamedTemporaryFile(dir=param.TMPDIR) filename = tmpfile.name h5py.File.__init__(self, filename, *args, **kwargs) def __del__(self): self.close() def finger(a): return numpy.dot(numpy.cos(numpy.arange(a.size)), a.ravel()) def ndpointer(*args, **kwargs): base = numpy.ctypeslib.ndpointer(*args, **kwargs) @classmethod def from_param(cls, obj): if obj is None: return obj return base.from_param(obj) return type(base.__name__, (base,), {'from_param': from_param}) class call_in_background(object): '''Asynchonously execute the given function Usage: with call_in_background(fun) as async_fun: async_fun(a, b) # == fun(a, b) do_something_else() with call_in_background(fun1, fun2) as (afun1, afun2): afun2(a, b) do_something_else() afun2(a, b) do_something_else() afun1(a, b) do_something_else() ''' def __init__(self, *fns): self.fns = fns self.handler = None def __enter__(self): if imp.lock_held(): # Some modules like nosetests, coverage etc # python -m unittest test_xxx.py or nosetests test_xxx.py # hang when Python multi-threading was used in the import stage due to (Python # import lock) bug in the threading module. See also # https://github.com/paramiko/paramiko/issues/104 # https://docs.python.org/2/library/threading.html#importing-in-threaded-code # Disable the asynchoronous mode for safe importing def def_async_fn(fn): return fn else: def def_async_fn(fn): def async_fn(*args, **kwargs): if self.handler is not None: self.handler.join() self.handler = Thread(target=fn, args=args, kwargs=kwargs) self.handler.start() return self.handler return async_fn if len(self.fns) == 1: return def_async_fn(self.fns[0]) else: return [def_async_fn(fn) for fn in self.fns] def __exit__(self, type, value, traceback): if self.handler is not None: self.handler.join() if __name__ == '__main__': for i,j in prange_tril(0, 90, 300): print(i, j, j*(j+1)//2-i*(i+1)//2)
[ "sys.platform.startswith", "multiprocessing.cpu_count", "os.fsync", "numpy.array", "imp.lock_held", "itertools.izip", "numpy.ctypeslib.load_library", "threading.Thread.join", "numpy.arange", "os.remove", "threading.Thread.__init__", "os.dup", "itertools.chain.from_iterable", "numpy.ctypeslib.ndpointer", "os.getpid", "tempfile.NamedTemporaryFile", "sys.stdout.flush", "h5py.File.__init__", "os.close", "os.path.dirname", "sys.stderr.write", "os.sysconf", "tempfile.mkdtemp", "os.fdopen", "multiprocessing.Queue", "sys.stdout.fileno", "tempfile.mkstemp", "multiprocessing.Process.join", "os.dup2", "ctypes.POINTER", "multiprocessing.Process.__init__", "os.getcwd", "os.chdir", "functools.partial", "shutil.rmtree", "threading.Thread" ]
[((267, 298), 'ctypes.POINTER', 'ctypes.POINTER', (['ctypes.c_double'], {}), '(ctypes.c_double)\n', (281, 298), False, 'import ctypes\n'), ((309, 337), 'ctypes.POINTER', 'ctypes.POINTER', (['ctypes.c_int'], {}), '(ctypes.c_int)\n', (323, 337), False, 'import ctypes\n'), ((351, 382), 'ctypes.POINTER', 'ctypes.POINTER', (['ctypes.c_void_p'], {}), '(ctypes.c_void_p)\n', (365, 382), False, 'import ctypes\n'), ((1383, 1407), 'os.sysconf', 'os.sysconf', (['"""SC_CLK_TCK"""'], {}), "('SC_CLK_TCK')\n", (1393, 1407), False, 'import os, sys\n'), ((1419, 1445), 'os.sysconf', 'os.sysconf', (['"""SC_PAGE_SIZE"""'], {}), "('SC_PAGE_SIZE')\n", (1429, 1445), False, 'import os, sys\n'), ((1566, 1598), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (1589, 1598), False, 'import os, sys\n'), ((4284, 4313), 'numpy.arange', 'numpy.arange', (['start', '(stop + 1)'], {}), '(start, stop + 1)\n', (4296, 4313), False, 'import numpy\n'), ((14759, 14801), 'numpy.ctypeslib.ndpointer', 'numpy.ctypeslib.ndpointer', (['*args'], {}), '(*args, **kwargs)\n', (14784, 14801), False, 'import numpy\n'), ((1015, 1040), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1030, 1040), False, 'import os, sys\n'), ((1056, 1106), 'numpy.ctypeslib.load_library', 'numpy.ctypeslib.load_library', (['libname', '_loaderpath'], {}), '(libname, _loaderpath)\n', (1084, 1106), False, 'import numpy\n'), ((1963, 1990), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1988, 1990), False, 'import multiprocessing\n'), ((3484, 3508), 'numpy.arange', 'numpy.arange', (['(ntasks + 1)'], {}), '(ntasks + 1)\n', (3496, 3508), False, 'import numpy\n'), ((4020, 4054), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['lst'], {}), '(lst)\n', (4049, 4054), False, 'import itertools\n'), ((4789, 4807), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4805, 4807), False, 'import os, sys\n'), ((4871, 4890), 'sys.stdout.fileno', 'sys.stdout.fileno', ([], {}), '()\n', (4888, 4890), False, 'import os, sys\n'), ((4920, 4950), 'os.dup', 'os.dup', (['self.old_stdout_fileno'], {}), '(self.old_stdout_fileno)\n', (4926, 4950), False, 'import os, sys\n'), ((5017, 5049), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'dir': '"""/dev/shm"""'}), "(dir='/dev/shm')\n", (5033, 5049), False, 'import tempfile\n'), ((5058, 5098), 'os.dup2', 'os.dup2', (['self.fd', 'self.old_stdout_fileno'], {}), '(self.fd, self.old_stdout_fileno)\n', (5065, 5098), False, 'import os, sys\n'), ((5120, 5154), 'os.fdopen', 'os.fdopen', (['self.bak_stdout_fd', '"""w"""'], {}), "(self.bak_stdout_fd, 'w')\n", (5129, 5154), False, 'import os, sys\n'), ((5231, 5249), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (5247, 5249), False, 'import os, sys\n'), ((5258, 5275), 'os.fsync', 'os.fsync', (['self.fd'], {}), '(self.fd)\n', (5266, 5275), False, 'import os, sys\n'), ((5337, 5388), 'os.dup2', 'os.dup2', (['self.bak_stdout_fd', 'self.old_stdout_fileno'], {}), '(self.bak_stdout_fd, self.old_stdout_fileno)\n', (5344, 5388), False, 'import os, sys\n'), ((5527, 5547), 'os.remove', 'os.remove', (['self.ftmp'], {}), '(self.ftmp)\n', (5536, 5547), False, 'import os, sys\n'), ((6056, 6074), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6072, 6074), False, 'import os, sys\n'), ((6138, 6157), 'sys.stdout.fileno', 'sys.stdout.fileno', ([], {}), '()\n', (6155, 6157), False, 'import os, sys\n'), ((6187, 6217), 'os.dup', 'os.dup', (['self.old_stdout_fileno'], {}), '(self.old_stdout_fileno)\n', (6193, 6217), False, 'import os, sys\n'), ((6247, 6279), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'dir': '"""/dev/shm"""'}), "(dir='/dev/shm')\n", (6263, 6279), False, 'import tempfile\n'), ((6288, 6328), 'os.dup2', 'os.dup2', (['self.fd', 'self.old_stdout_fileno'], {}), '(self.fd, self.old_stdout_fileno)\n', (6295, 6328), False, 'import os, sys\n'), ((6405, 6423), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6421, 6423), False, 'import os, sys\n'), ((6485, 6536), 'os.dup2', 'os.dup2', (['self.bak_stdout_fd', 'self.old_stdout_fileno'], {}), '(self.bak_stdout_fd, self.old_stdout_fileno)\n', (6492, 6536), False, 'import os, sys\n'), ((6545, 6573), 'os.close', 'os.close', (['self.bak_stdout_fd'], {}), '(self.bak_stdout_fd)\n', (6553, 6573), False, 'import os, sys\n'), ((6649, 6669), 'os.remove', 'os.remove', (['self.ftmp'], {}), '(self.ftmp)\n', (6658, 6669), False, 'import os, sys\n'), ((7092, 7110), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (7108, 7110), False, 'import os, sys\n'), ((7133, 7144), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7142, 7144), False, 'import os, sys\n'), ((7167, 7199), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'dir': '"""/dev/shm"""'}), "(dir='/dev/shm')\n", (7183, 7199), False, 'import tempfile\n'), ((7208, 7229), 'os.chdir', 'os.chdir', (['self.tmpdir'], {}), '(self.tmpdir)\n', (7216, 7229), False, 'import os, sys\n'), ((7263, 7282), 'sys.stdout.fileno', 'sys.stdout.fileno', ([], {}), '()\n', (7280, 7282), False, 'import os, sys\n'), ((7312, 7342), 'os.dup', 'os.dup', (['self.old_stdout_fileno'], {}), '(self.old_stdout_fileno)\n', (7318, 7342), False, 'import os, sys\n'), ((7504, 7522), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (7520, 7522), False, 'import os, sys\n'), ((7531, 7582), 'os.dup2', 'os.dup2', (['self.bak_stdout_fd', 'self.old_stdout_fileno'], {}), '(self.bak_stdout_fd, self.old_stdout_fileno)\n', (7538, 7582), False, 'import os, sys\n'), ((7618, 7644), 'shutil.rmtree', 'shutil.rmtree', (['self.tmpdir'], {}), '(self.tmpdir)\n', (7631, 7644), False, 'import shutil\n'), ((7653, 7674), 'os.chdir', 'os.chdir', (['self.dirnow'], {}), '(self.dirnow)\n', (7661, 7674), False, 'import os, sys\n'), ((8049, 8087), 'functools.partial', 'functools.partial', (['self.func', 'instance'], {}), '(self.func, instance)\n', (8066, 8087), False, 'import functools\n'), ((12884, 12905), 'itertools.izip', 'itertools.izip', (['*args'], {}), '(*args)\n', (12898, 12905), False, 'import itertools\n'), ((13171, 13178), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (13176, 13178), False, 'from multiprocessing import Queue, Process\n'), ((13272, 13328), 'multiprocessing.Process.__init__', 'Process.__init__', (['self', 'group', 'qwrap', 'name', 'args', 'kwargs'], {}), '(self, group, qwrap, name, args, kwargs)\n', (13288, 13328), False, 'from multiprocessing import Queue, Process\n'), ((13357, 13375), 'multiprocessing.Process.join', 'Process.join', (['self'], {}), '(self)\n', (13369, 13375), False, 'from multiprocessing import Queue, Process\n'), ((13575, 13582), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (13580, 13582), False, 'from multiprocessing import Queue, Process\n'), ((13676, 13731), 'threading.Thread.__init__', 'Thread.__init__', (['self', 'group', 'qwrap', 'name', 'args', 'kwargs'], {}), '(self, group, qwrap, name, args, kwargs)\n', (13691, 13731), False, 'from threading import Thread\n'), ((13760, 13777), 'threading.Thread.join', 'Thread.join', (['self'], {}), '(self)\n', (13771, 13777), False, 'from threading import Thread\n'), ((14537, 14588), 'h5py.File.__init__', 'h5py.File.__init__', (['self', 'filename', '*args'], {}), '(self, filename, *args, **kwargs)\n', (14555, 14588), False, 'import h5py\n'), ((15582, 15597), 'imp.lock_held', 'imp.lock_held', ([], {}), '()\n', (15595, 15597), False, 'import imp\n'), ((538, 570), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (561, 570), False, 'import os, sys\n'), ((586, 624), 'sys.platform.startswith', 'sys.platform.startswith', (['"""gnukfreebsd"""'], {}), "('gnukfreebsd')\n", (609, 624), False, 'import os, sys\n'), ((667, 700), 'sys.platform.startswith', 'sys.platform.startswith', (['"""darwin"""'], {}), "('darwin')\n", (690, 700), False, 'import os, sys\n'), ((2021, 2035), 'numpy.array', 'numpy.array', (['m'], {}), '(m)\n', (2032, 2035), False, 'import numpy\n'), ((2249, 2263), 'numpy.array', 'numpy.array', (['m'], {}), '(m)\n', (2260, 2263), False, 'import numpy\n'), ((2365, 2379), 'numpy.array', 'numpy.array', (['m'], {}), '(m)\n', (2376, 2379), False, 'import numpy\n'), ((2484, 2498), 'numpy.array', 'numpy.array', (['m'], {}), '(m)\n', (2495, 2498), False, 'import numpy\n'), ((5655, 5673), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (5671, 5673), False, 'import os, sys\n'), ((6777, 6795), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6793, 6795), False, 'import os, sys\n'), ((14447, 14492), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'dir': 'param.TMPDIR'}), '(dir=param.TMPDIR)\n', (14474, 14492), False, 'import tempfile\n'), ((14680, 14700), 'numpy.arange', 'numpy.arange', (['a.size'], {}), '(a.size)\n', (14692, 14700), False, 'import numpy\n'), ((745, 775), 'sys.platform.startswith', 'sys.platform.startswith', (['"""win"""'], {}), "('win')\n", (768, 775), False, 'import os, sys\n'), ((943, 968), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (958, 968), False, 'import os, sys\n'), ((11413, 11434), 'sys.stderr.write', 'sys.stderr.write', (['msg'], {}), '(msg)\n', (11429, 11434), False, 'import os, sys\n'), ((11796, 11817), 'sys.stderr.write', 'sys.stderr.write', (['msg'], {}), '(msg)\n', (11812, 11817), False, 'import os, sys\n'), ((1637, 1648), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1646, 1648), False, 'import os, sys\n'), ((16301, 16344), 'threading.Thread', 'Thread', ([], {'target': 'fn', 'args': 'args', 'kwargs': 'kwargs'}), '(target=fn, args=args, kwargs=kwargs)\n', (16307, 16344), False, 'from threading import Thread\n')]
# encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import math import time import tensorflow.python.platform from tensorflow.python.platform import gfile import numpy as np import tensorflow as tf import cnn_tiny_model as model import data_inputs import cnn_tiny_settings as settings FLAGS = settings.FLAGS def eval_once(saver, summary_writer, top_k_op, summary_op): ''' run eval once. ''' with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] else: print('No checkpoint file found.') return coord = tf.train.Coordinator() try: threads = [] for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS): threads.extend(qr.create_threads(sess, coord=coord, daemon=True, start=True)) # バッチごとの事例数 num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size)) true_count = 0 total_sample_count = num_iter * FLAGS.batch_size print('the number of total sample count: %d' % (total_sample_count)) step = 0 while step < num_iter and not coord.should_stop(): predictions = sess.run([top_k_op]) true_count += np.sum(predictions) step += 1 precision = true_count / total_sample_count print('%s: precision @ 1 = %.3f' % (datetime.now(), precision)) summary = tf.Summary() summary.ParseFromString(sess.run(summary_op)) summary.value.add(tag='Precision @ 1', simple_value=precision) summary_writer.add_summary(summary, global_step) except Exception as e: coord.request_stop(e) coord.request_stop() coord.join(threads, stop_grace_period_secs=10) def evaluate(): with tf.Graph().as_default(): # testデータのロード images, labels = data_inputs.inputs('data/train_kirin_norm_32.tfrecords') logits = model.inference(images) top_k_op = tf.nn.in_top_k(logits, labels, 1) variable_averages = tf.train.ExponentialMovingAverage(FLAGS.moving_average_decay) variables_to_restore = {} for v in tf.trainable_variables(): if v in tf.trainable_variables(): restore_name = variable_averages.average_name(v) else: restore_name = v.op.name variables_to_restore[restore_name] = v saver = tf.train.Saver(variables_to_restore) summary_op = tf.merge_all_summaries() graph_def = tf.get_default_graph().as_graph_def() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, graph_def=graph_def) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs) def main(argv=None): evaluate() if __name__ == '__main__': tf.app.run()
[ "cnn_tiny_model.inference", "time.sleep", "tensorflow.app.run", "tensorflow.Graph", "tensorflow.train.Coordinator", "tensorflow.Session", "tensorflow.nn.in_top_k", "tensorflow.trainable_variables", "tensorflow.get_default_graph", "tensorflow.train.SummaryWriter", "tensorflow.train.get_checkpoint_state", "tensorflow.train.ExponentialMovingAverage", "data_inputs.inputs", "tensorflow.Summary", "math.ceil", "tensorflow.train.Saver", "tensorflow.merge_all_summaries", "numpy.sum", "datetime.datetime.now", "tensorflow.get_collection" ]
[((3269, 3281), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (3279, 3281), True, 'import tensorflow as tf\n'), ((522, 534), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (532, 534), True, 'import tensorflow as tf\n'), ((559, 610), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['FLAGS.checkpoint_dir'], {}), '(FLAGS.checkpoint_dir)\n', (588, 610), True, 'import tensorflow as tf\n'), ((900, 922), 'tensorflow.train.Coordinator', 'tf.train.Coordinator', ([], {}), '()\n', (920, 922), True, 'import tensorflow as tf\n'), ((2217, 2273), 'data_inputs.inputs', 'data_inputs.inputs', (['"""data/train_kirin_norm_32.tfrecords"""'], {}), "('data/train_kirin_norm_32.tfrecords')\n", (2235, 2273), False, 'import data_inputs\n'), ((2291, 2314), 'cnn_tiny_model.inference', 'model.inference', (['images'], {}), '(images)\n', (2306, 2314), True, 'import cnn_tiny_model as model\n'), ((2335, 2368), 'tensorflow.nn.in_top_k', 'tf.nn.in_top_k', (['logits', 'labels', '(1)'], {}), '(logits, labels, 1)\n', (2349, 2368), True, 'import tensorflow as tf\n'), ((2406, 2467), 'tensorflow.train.ExponentialMovingAverage', 'tf.train.ExponentialMovingAverage', (['FLAGS.moving_average_decay'], {}), '(FLAGS.moving_average_decay)\n', (2439, 2467), True, 'import tensorflow as tf\n'), ((2519, 2543), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (2541, 2543), True, 'import tensorflow as tf\n'), ((2782, 2818), 'tensorflow.train.Saver', 'tf.train.Saver', (['variables_to_restore'], {}), '(variables_to_restore)\n', (2796, 2818), True, 'import tensorflow as tf\n'), ((2840, 2864), 'tensorflow.merge_all_summaries', 'tf.merge_all_summaries', ([], {}), '()\n', (2862, 2864), True, 'import tensorflow as tf\n'), ((2949, 3008), 'tensorflow.train.SummaryWriter', 'tf.train.SummaryWriter', (['FLAGS.eval_dir'], {'graph_def': 'graph_def'}), '(FLAGS.eval_dir, graph_def=graph_def)\n', (2971, 3008), True, 'import tensorflow as tf\n'), ((983, 1028), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.QUEUE_RUNNERS'], {}), '(tf.GraphKeys.QUEUE_RUNNERS)\n', (1000, 1028), True, 'import tensorflow as tf\n'), ((1761, 1773), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (1771, 1773), True, 'import tensorflow as tf\n'), ((3162, 3198), 'time.sleep', 'time.sleep', (['FLAGS.eval_interval_secs'], {}), '(FLAGS.eval_interval_secs)\n', (3172, 3198), False, 'import time\n'), ((1175, 1223), 'math.ceil', 'math.ceil', (['(FLAGS.num_examples / FLAGS.batch_size)'], {}), '(FLAGS.num_examples / FLAGS.batch_size)\n', (1184, 1223), False, 'import math\n'), ((1560, 1579), 'numpy.sum', 'np.sum', (['predictions'], {}), '(predictions)\n', (1566, 1579), True, 'import numpy as np\n'), ((2145, 2155), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2153, 2155), True, 'import tensorflow as tf\n'), ((2565, 2589), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (2587, 2589), True, 'import tensorflow as tf\n'), ((2886, 2908), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (2906, 2908), True, 'import tensorflow as tf\n'), ((1711, 1725), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1723, 1725), False, 'from datetime import datetime\n')]
"""surfinBH ======== Surrogate final black hole properties for mergers of binary black holes. See https://pypi.org/project/surfinBH/ for more details. """ __copyright__ = "Copyright (C) 2018 <NAME>" __email__ = "<EMAIL>" __status__ = "testing" __author__ = "<NAME>" __version__ = "1.1.7" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import os, sys import h5py import warnings from . import _eval_pysur from ._dataPath import DataPath #============================================================================= class SurFinBH(object): """ Class to load and evaluate surrogate fits for final BH properties. Each derived class should do the following: 1. define _load_fits(self, h5file) 2. define _get_fit_params(self, x, fit_key) 3. define _eval_wrapper(self, fit_key, x, **kwargs) 4. define soft_param_lims and hard_param_lims. 5. define _extra_regression_kwargs, to test any additional kwargs used in the _eval_wrapper method. See _fit_evaluators.fit_7dq2.py for an example. """ #------------------------------------------------------------------------- def __init__(self, name, soft_param_lims, hard_param_lims, aligned_spin_only=False): """ name: Name of the fit excluding the surfinBH prefix. Ex: 7dq2. soft_param_lims: param limits beyond which to raise a warning. hard_param_lims: param limits beyond which to raise an error. aligned_spin_only: raise an error if given precessing spins. See _fit_evaluators.fit_7dq2.py for an example. """ self.name = name self.soft_param_lims = soft_param_lims self.hard_param_lims = hard_param_lims self.aligned_spin_only = aligned_spin_only h5file = h5py.File('%s/fit_%s.h5'%(DataPath(), name), 'r') self.fits = self._load_fits(h5file) h5file.close() #------------------------------------------------------------------------- def _read_dict(self, f): """ Converts h5 groups to dictionaries """ d = {} for k, item in f.items(): if type(item) == h5py._hl.dataset.Dataset: v = item[()] if type(v) == np.string_: v = str(v) if type(v) == str and v == "NONE": d[k] = None elif type(v) == str and v == "EMPTYARR": d[k] = np.array([]) elif isinstance(v, bytes): d[k] = v.decode('utf-8') else: d[k] = v elif k[:5] == "DICT_": d[k[5:]] = self._read_dict(item) elif k[:5] == "LIST_": tmpD = self._read_dict(item) d[k[5:]] = [tmpD[str(i)] for i in range(len(tmpD))] return d #------------------------------------------------------------------------- def _load_scalar_fit(self, fit_key=None, h5file=None, fit_data=None): """ Loads a single fit """ if (fit_key is None) ^ (h5file is None): raise ValueError("Either specify both fit_key and h5file, or" " neither") if not ((fit_key is None) ^ (fit_data is None)): raise ValueError("Specify exactly one of fit_key and fit_data.") if fit_data is None: fit_data = self._read_dict(h5file[fit_key]) if 'fitType' in fit_data.keys() and fit_data['fitType'] == 'GPR': fit = _eval_pysur.evaluate_fit.getGPRFitAndErrorEvaluator(fit_data) else: fit = _eval_pysur.evaluate_fit.getFitEvaluator(fit_data) return fit #------------------------------------------------------------------------- def _load_vector_fit(self, fit_key, h5file): """ Loads a vector of fits """ vector_fit = [] for i in range(len(h5file[fit_key].keys())): fit_data = self._read_dict(h5file[fit_key]['comp_%d'%i]) vector_fit.append(self._load_scalar_fit(fit_data=fit_data)) return vector_fit #------------------------------------------------------------------------- def _evaluate_fits(self, x, fit_key): """ Evaluates a particular fit by passing fit_key to self.fits. Assumes self._get_fit_params() has been overriden. """ fit = self.fits[fit_key] fit_params = self._get_fit_params(np.copy(x), fit_key) if type(fit) == list: res = [] for i in range(len(fit)): res.append(fit[i](fit_params)) return np.array(res) else: return fit(fit_params) #------------------------------------------------------------------------- def _check_unused_kwargs(self, kwargs): """ Call this at the end of call module to check if all the kwargs have been used. Assumes kwargs were extracted using pop. """ if len(kwargs.keys()) != 0: unused = "" for k in kwargs.keys(): unused += "'%s', "%k if unused[-2:] == ", ": # get rid of trailing comma unused = unused[:-2] raise Exception('Unused keys in kwargs: %s'%unused) #------------------------------------------------------------------------- def _check_param_limits(self, q, chiA, chiB, allow_extrap): """ Checks that params are within allowed range of paramters. Raises a warning if outside self.soft_param_lims limits and raises an error if outside self.hard_param_lims. If allow_extrap=True, skips these checks. """ if q < 1: raise ValueError('Mass ratio should be >= 1.') chiAmag = np.sqrt(np.sum(chiA**2)) chiBmag = np.sqrt(np.sum(chiB**2)) if chiAmag > 1 + 1e-14: raise ValueError('Spin magnitude of BhA > 1.') if chiBmag > 1 + 1e-14: raise ValueError('Spin magnitude of BhB > 1.') chiA = np.atleast_1d(chiA) chiB = np.atleast_1d(chiB) if len(chiA) != 3 or len(chiB) != 3: raise TypeError("Expected input spins to be 3-vectors.") if self.aligned_spin_only: if np.sqrt(np.sum(chiA[:2]**2)) > 1e-14: raise ValueError('The x & y components of chiA should be zero.') if np.sqrt(np.sum(chiB[:2]**2)) > 1e-14: raise ValueError('The x & y components of chiB should be zero.') # Do not check param limits if allow_extrap=True if allow_extrap: return if q > self.hard_param_lims['q']+ 1e-14: raise ValueError('Mass ratio outside allowed range.') elif q > self.soft_param_lims['q']: warnings.warn('Mass ratio outside training range.') if chiAmag > self.hard_param_lims['chiAmag']+ 1e-14: raise ValueError('Spin magnitude of BhA outside allowed range.') elif chiAmag > self.soft_param_lims['chiAmag']: warnings.warn('Spin magnitude of BhA outside training range.') if chiBmag > self.hard_param_lims['chiBmag']+ 1e-14: raise ValueError('Spin magnitude of BhB outside allowed range.') elif chiBmag > self.soft_param_lims['chiBmag']: warnings.warn('Spin magnitude of BhB outside training range.') #------------------------------------------------------------------------- def _generate_random_params_for_tests(self): """ Generate random parameters to use in tests. """ # Generate params randomly within allowed values q = np.random.uniform(1, self.hard_param_lims['q']) chiAmag= np.random.uniform(0, self.hard_param_lims['chiAmag']) chiBmag= np.random.uniform(0, self.hard_param_lims['chiBmag']) if self.aligned_spin_only: chiAph, chiBph = 0, 0 chiAth, chiBth = np.random.choice([0, np.pi]), \ np.random.choice([0, np.pi]) else: chiAth = np.arccos(np.random.uniform(-1., 1.)) chiBth = np.arccos(np.random.uniform(-1., 1.)) chiAph = np.random.uniform(0, 2*np.pi) chiBph = np.random.uniform(0, 2*np.pi) chiA = [chiAmag*np.sin(chiAth)*np.cos(chiAph), chiAmag*np.sin(chiAth)*np.sin(chiAph), chiAmag*np.cos(chiAth)] chiB = [chiBmag*np.sin(chiBth)*np.cos(chiBph), chiBmag*np.sin(chiBth)*np.sin(chiBph), chiBmag*np.cos(chiBth)] return q, chiA, chiB #------------------------------------------------------------------------- #---------------------- Override these --------------------------------- #------------------------------------------------------------------------- #------------------------------------------------------------------------- def _load_fits(self, h5file): """ Loads fits from h5file and returns a dictionary of fits. """ raise NotImplementedError("Please override me.") return fits #------------------------------------------------------------------------- def _extra_regression_kwargs(self): """ Add additional kwargs for regression tests. If not overriden, this will be empty. See _fit_evaluators.fit_7dq2.py for an example. """ return [] #------------------------------------------------------------------------- def _get_fit_params(self, x, fit_key): """ Maps from input params x to the fit_params used to evaluate the fit. """ raise NotImplementedError("Please override me.") return fit_params #------------------------------------------------------------------------- def _eval_wrapper(self, fit_key, q, chiA, chiB, **kwargs): """ Evaluates a particular fit. This varies for each surrogate. Allowed values for fit_key are 'mf', 'chif' and 'vf' and 'all'. chiA and chiB should have size 3. Each derived class should have its own _eval_wrapper function but call self._check_param_limits() first to do some sanity checks. See _fit_evaluators.fit_7dq2.py for an example. """ raise NotImplementedError("Please override me.") #------------------------------------------------------------------------- #---------------------- Call methods --------------------------------- #------------------------------------------------------------------------- def mf(self, *args, **kwargs): """ Evaluates fit and 1-sigma error estimate for remnant mass. Returns: mf, mf_err_est """ return self._eval_wrapper('mf', *args, **kwargs) def chif(self, *args, **kwargs): """ Evaluates fit and 1-sigma error estimate for remnant spin. Returns: chif, chif_err_est chif and chif_err_est are arrays of size 3. """ return self._eval_wrapper('chif', *args, **kwargs) def vf(self, *args, **kwargs): """ Evaluates fit and 1-sigma error estimate for remnant kick velocity. Returns: vf, vf_err_est vf and vf_err_est are arrays of size 3. """ return self._eval_wrapper('vf', *args, **kwargs) def all(self, *args, **kwargs): """ Evaluates fit and 1-sigma error estimate for remnant mass, spin and kick velocity. Returns: mf, chif, vf, mf_err_est, chif_err_est, vf_err_est chif, vf, chif_err_est and vf_err_est are arrays of size 3. """ return self._eval_wrapper('all', *args, **kwargs)
[ "numpy.copy", "numpy.random.choice", "numpy.sin", "numpy.array", "numpy.sum", "numpy.cos", "numpy.random.uniform", "warnings.warn", "numpy.atleast_1d" ]
[((7008, 7027), 'numpy.atleast_1d', 'np.atleast_1d', (['chiA'], {}), '(chiA)\n', (7021, 7027), True, 'import numpy as np\n'), ((7043, 7062), 'numpy.atleast_1d', 'np.atleast_1d', (['chiB'], {}), '(chiB)\n', (7056, 7062), True, 'import numpy as np\n'), ((8613, 8660), 'numpy.random.uniform', 'np.random.uniform', (['(1)', "self.hard_param_lims['q']"], {}), "(1, self.hard_param_lims['q'])\n", (8630, 8660), True, 'import numpy as np\n'), ((8678, 8731), 'numpy.random.uniform', 'np.random.uniform', (['(0)', "self.hard_param_lims['chiAmag']"], {}), "(0, self.hard_param_lims['chiAmag'])\n", (8695, 8731), True, 'import numpy as np\n'), ((8749, 8802), 'numpy.random.uniform', 'np.random.uniform', (['(0)', "self.hard_param_lims['chiBmag']"], {}), "(0, self.hard_param_lims['chiBmag'])\n", (8766, 8802), True, 'import numpy as np\n'), ((5427, 5437), 'numpy.copy', 'np.copy', (['x'], {}), '(x)\n', (5434, 5437), True, 'import numpy as np\n'), ((5603, 5616), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (5611, 5616), True, 'import numpy as np\n'), ((6750, 6767), 'numpy.sum', 'np.sum', (['(chiA ** 2)'], {}), '(chiA ** 2)\n', (6756, 6767), True, 'import numpy as np\n'), ((6793, 6810), 'numpy.sum', 'np.sum', (['(chiB ** 2)'], {}), '(chiB ** 2)\n', (6799, 6810), True, 'import numpy as np\n'), ((9131, 9162), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2 * np.pi)'], {}), '(0, 2 * np.pi)\n', (9148, 9162), True, 'import numpy as np\n'), ((9182, 9213), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2 * np.pi)'], {}), '(0, 2 * np.pi)\n', (9199, 9213), True, 'import numpy as np\n'), ((7755, 7806), 'warnings.warn', 'warnings.warn', (['"""Mass ratio outside training range."""'], {}), "('Mass ratio outside training range.')\n", (7768, 7806), False, 'import warnings\n'), ((8014, 8076), 'warnings.warn', 'warnings.warn', (['"""Spin magnitude of BhA outside training range."""'], {}), "('Spin magnitude of BhA outside training range.')\n", (8027, 8076), False, 'import warnings\n'), ((8284, 8346), 'warnings.warn', 'warnings.warn', (['"""Spin magnitude of BhB outside training range."""'], {}), "('Spin magnitude of BhB outside training range.')\n", (8297, 8346), False, 'import warnings\n'), ((8901, 8929), 'numpy.random.choice', 'np.random.choice', (['[0, np.pi]'], {}), '([0, np.pi])\n', (8917, 8929), True, 'import numpy as np\n'), ((8949, 8977), 'numpy.random.choice', 'np.random.choice', (['[0, np.pi]'], {}), '([0, np.pi])\n', (8965, 8977), True, 'import numpy as np\n'), ((9023, 9051), 'numpy.random.uniform', 'np.random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (9040, 9051), True, 'import numpy as np\n'), ((9082, 9110), 'numpy.random.uniform', 'np.random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (9099, 9110), True, 'import numpy as np\n'), ((9252, 9266), 'numpy.cos', 'np.cos', (['chiAph'], {}), '(chiAph)\n', (9258, 9266), True, 'import numpy as np\n'), ((9307, 9321), 'numpy.sin', 'np.sin', (['chiAph'], {}), '(chiAph)\n', (9313, 9321), True, 'import numpy as np\n'), ((9347, 9361), 'numpy.cos', 'np.cos', (['chiAth'], {}), '(chiAth)\n', (9353, 9361), True, 'import numpy as np\n'), ((9403, 9417), 'numpy.cos', 'np.cos', (['chiBph'], {}), '(chiBph)\n', (9409, 9417), True, 'import numpy as np\n'), ((9458, 9472), 'numpy.sin', 'np.sin', (['chiBph'], {}), '(chiBph)\n', (9464, 9472), True, 'import numpy as np\n'), ((9498, 9512), 'numpy.cos', 'np.cos', (['chiBth'], {}), '(chiBth)\n', (9504, 9512), True, 'import numpy as np\n'), ((7236, 7257), 'numpy.sum', 'np.sum', (['(chiA[:2] ** 2)'], {}), '(chiA[:2] ** 2)\n', (7242, 7257), True, 'import numpy as np\n'), ((7370, 7391), 'numpy.sum', 'np.sum', (['(chiB[:2] ** 2)'], {}), '(chiB[:2] ** 2)\n', (7376, 7391), True, 'import numpy as np\n'), ((9237, 9251), 'numpy.sin', 'np.sin', (['chiAth'], {}), '(chiAth)\n', (9243, 9251), True, 'import numpy as np\n'), ((9292, 9306), 'numpy.sin', 'np.sin', (['chiAth'], {}), '(chiAth)\n', (9298, 9306), True, 'import numpy as np\n'), ((9388, 9402), 'numpy.sin', 'np.sin', (['chiBth'], {}), '(chiBth)\n', (9394, 9402), True, 'import numpy as np\n'), ((9443, 9457), 'numpy.sin', 'np.sin', (['chiBth'], {}), '(chiBth)\n', (9449, 9457), True, 'import numpy as np\n'), ((3434, 3446), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3442, 3446), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import math import itertools from scipy.linalg import svd, norm # general messages for LM/etc optimization TERMINATION_MESSAGES = { None: "Status returned `None`. Error.", -1: "Improper input parameters status returned from `leastsq`", 0: "The maximum number of iterations is exceeded.", 1: "`gtol` termination condition is satisfied. (small change in Jacobian)", 2: "`ftol` termination condition is satisfied. (small change in cost)", 3: "`xtol` termination condition is satisfied. (small step)", 4: "Both `ftol`(cost) and `xtol`(step) termination conditions are satisfied." } class color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' def next_pow2(i): """ Find the next power of two >>> int(next_pow2(5)) 8 >>> int(next_pow2(250)) 256 """ # do not use NumPy here, math is much faster for single values exponent = math.ceil(math.log(i) / math.log(2)) # the value: int(math.pow(2, exponent)) return exponent def prime_factor(n): """Find the prime factorization of n Efficient implementation. Find the factorization by trial division, using the optimization of dividing only by two and the odd integers. An improvement on trial division by two and the odd numbers is wheel factorization, which uses a cyclic set of gaps between potential primes to greatly reduce the number of trial divisions. Here we use a 2,3,5-wheel Factoring wheels have the same O(sqrt(n)) time complexity as normal trial division, but will be two or three times faster in practice. >>> list(factors(90)) [2, 3, 3, 5] """ f = 2 increments = itertools.chain([1,2,2], itertools.cycle([4,2,4,2,4,6,2,6])) for incr in increments: if f*f > n: break while n % f == 0: yield f n //= f f += incr if n > 1: yield n def db(x, r=1): """relative value in dB TODO: Maybe x should be rescaled to ]0..1].? log10(0) = inf. Parameters ---------- x: array like r: float, optional Reference value. default = 1 Notes ----- https://en.wikipedia.org/wiki/Decibel#Field_quantities_and_root-power_quantities """ if not math.isclose(r, 1, rel_tol=1e-6): x = x/r # dont nag if x=0 with np.errstate(divide='ignore', invalid='ignore'): return 20*np.log10(np.abs(x)) def import_npz(npz_file, namespace=globals()): """Load npz file and unpack data/dictionary to the given namespace It is necessary to explicit call the function with globals() even if it is set as default value here. The docs states that the scope is the defining module not the calling. Example for `oneliner` without using namespace(can only be used local) for varName in data.files: exec(varName + " = data['" + varName + "']") Notes: ------ https://docs.python.org/3/library/functions.html#globals """ data = np.load(npz_file) for varName in data: try: namespace[varName] = data[varName].item() except ValueError: namespace[varName] = data[varName] def window(iterable, n=3): """Returns a sliding window (of width n) over data from the iterable s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...""" # https://stackoverflow.com/a/6822773/1121523 it = iter(iterable) result = tuple(itertools.islice(it, n)) if len(result) == n: yield result for element in it: result = result[1:] + (element,) yield result def rescale(x, mini=None, maxi=None): """Rescale x to 0-1. If mini and maxi is given, then they are used as the values that get scaled to 0 and 1, respectively Notes ----- To 0..1: z_i = (x_i− min(x)) / (max(x)−min(x)) Or custom range: a = (maxval-minval) / (max(x)-min(x)) b = maxval - a * max(x) z = a * x + b """ if hasattr(x, "__len__") is False: return x if mini is None: mini = np.min(x) if maxi is None: maxi = np.max(x) return (x - mini) / (maxi - mini) def meanVar(Y, isnoise=False): """ Y = fft(y)/nsper Parameters ---------- Y : ndarray (ndof, nsper, nper) Y is the fft of y """ # number of periods p = Y.shape[2] # average over periods Ymean = np.sum(Y,axis=2) / p # subtract column mean from y in a broadcast way. Ie: y is 3D matrix and # for every 2D slice we subtract y_mean. Python automatically # broadcast(repeat) y_mean. # https://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc Y0 = Y - Ymean[...,None] W = [] # weights. Only used if the signal is noisy and multiple periods are # used if p > 1 and isnoise: W = np.sum(np.abs(Y0)**2, axis=2)/(p-1) return Ymean, W def weightfcn(cov): """Calculate weight. For subspace is the square inverse of covG. For pnlss it is the square inverse of covY""" F = cov.shape[0] covinvsq = np.empty_like(cov) for f in range(F): covinvsq[f] = matrix_square_inv(cov[f]) return covinvsq def matrix_square_inv(A): """Calculate the inverse of the matrix square root of `A` Calculate `X` such that XX = inv(A) `A` is assumed positive definite, thus the all singular values are strictly positive. Given the svd decomposition A=UsVᴴ, we see that AAᴴ = Us²Uᴴ (remember (UsV)ᴴ = VᴴsUᴴ) and it follows that (AAᴴ)⁻¹/² = Us⁻¹Uᴴ Returns ------- X : ndarray(n,n) Inverse of matrix square root of A Notes ----- See the comments here. https://math.stackexchange.com/questions/106774/matrix-square-root """ U, s, _ = svd(A, full_matrices=False) return U * 1/np.sqrt(s) @ U.conj().T def mmul_weight(mat, weight): """Add weight. Computes the Jacobian of the weighted error ``e_W(f) = W(f,:,:)*e(f)`` """ # np.einsum('ijk,kl',weight, mat) or # np.einsum('ijk,kl->ijl',weight, mat) or # np.einsum('ijk,jl->ilk',weight,mat) # np.tensordot(weight, mat, axes=1) # np.matmul(weight, mat) return np.matmul(weight, mat) def normalize_columns(mat): # Rms values of each column scaling = np.sqrt(np.mean(mat**2,axis=0)) # or scaling = 1/np.sqrt(mat.shape[0]) * np.linalg.norm(mat,ord=2,axis=0) # Robustify against columns with zero rms value scaling[scaling == 0] = 1 # Scale columns with 1/rms value # This modifies mat in place(ie the input mat). We do not want that. # mat /= scaling return mat/scaling, scaling def lm(fun, x0, jac, info=2, nmax=50, lamb=None, ftol=1e-8, xtol=1e-8, gtol=1e-8, args=(), kwargs={}): """Solve a nonlinear least-squares problem using levenberg marquardt algorithm. See also :scipy-optimize:func:`scipy.optimize.least_squares` Parameters ---------- fun : callable Function which computes the vector of residuals x0: array_like with shape (n,) or float Initial guess on independent variables. jac : callable Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). ftol : float, optional Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when ``dF < ftol * F``, and there was an adequate agreement between a local quadratic model and the true model in the last step. xtol : float, optional Tolerance for termination by the change of the independent variables. Default is 1e-8. gtol : float, optional Tolerance for termination by the norm of the gradient. Default is 1e-8. info : {0, 1, 2}, optional Level of algorithm's verbosity: * 0 (default) : work silently. * 1 : display a termination report. * 2 : display progress during iterations """ # the error vector err_old = fun(x0, *args, **kwargs) # Maybe divide by 2 to match scipy's implementation of minpack cost = np.dot(err_old, err_old) cost_old = cost.copy() # Initialization of the Levenberg-Marquardt loop niter = 0 ninner_max = 10 nfev = 1 status = None message = '' cost_vec = np.empty(nmax+1) x0_mat = np.empty((nmax+1, len(x0))) # save initial guess x0_mat[0] = x0.copy() cost_vec[0] = cost.copy() if info == 2: print(f"{'i':3} | {'inner':5} | {'cost':12} | {'cond':12} |" f" {'lambda':6}") stop = False while niter < nmax and not stop: J = jac(x0, *args, **kwargs) J, scaling = normalize_columns(J) U, s, Vt = svd(J, full_matrices=False) if norm(J) < gtol: # small jacobian stop = True status = 1 if lamb is None: # Initialize lambda as largest sing. value of initial jacobian. # pinleton2002 lamb = s[0] # as long as the step is unsuccessful ninner = 0 # determine rank of jacobian/estimate non-zero singular values(rank # estimate) tol = max(J.shape)*np.spacing(max(s)) r = np.sum(s > tol) # step with direction from err s = s[:r] sr = s.copy() # only saved to calculate cond. number later while cost >= cost_old and ninner < ninner_max and not stop: s /= (s**2 + lamb**2) ds = -np.linalg.multi_dot((err_old, U[:,:r] * s, Vt[:r])) ds /= scaling x0test = x0 + ds err = fun(x0test, *args, **kwargs) cost = np.dot(err,err) if cost >= cost_old: # step unsuccessful, increase lambda, ie. Lean more towards # gradient descent method(converges in larger range) lamb *= np.sqrt(10) s = sr.copy() elif np.isnan(cost): print('Unstable model. Increasing lambda') cost = np.inf lamb *= np.sqrt(10) s = sr.copy() else: # Lean more towards Gauss-Newton algorithm(converges faster) lamb /= 2 ninner += 1 if norm(ds) < xtol: # small step stop = True status = 3 if np.abs((cost-cost_old)/cost) < ftol: # small change in costfcn stop = True status = 2 if status is None else 4 if info == 2: jac_cond = sr[0]/sr[-1] # {cost/2/nfd/R/p:12.3f} for freq weighting print(f"{niter:3d} | {ninner:5d} | {cost:12.8g} | {jac_cond:12.3f}" f" | {lamb:6.3f}") if cost < cost_old or stop: cost_old = cost err_old = err x0 = x0test # save intermediate models x0_mat[niter+1] = x0.copy() cost_vec[niter+1] = cost.copy() niter += 1 nfev += ninner if niter == nmax: status = 0 message = TERMINATION_MESSAGES[status] if info > 0: print(f"Terminated: {message:s}") print(f"Function evaluations {nfev}, initial cost {cost_vec[0]:.4e}, " f"final cost {cost:.4e}") res = {'x':x0, 'cost': cost, 'fun':err, 'niter': niter, 'x_mat': x0_mat[:niter], 'cost_vec':cost_vec[niter], 'message':message, 'success':status > 0, 'nfev':nfev, 'njev':niter, 'status':status} return res
[ "numpy.sqrt", "numpy.linalg.multi_dot", "math.log", "numpy.mean", "numpy.max", "numpy.dot", "numpy.matmul", "numpy.empty", "numpy.min", "numpy.abs", "itertools.cycle", "numpy.isnan", "scipy.linalg.svd", "itertools.islice", "math.isclose", "numpy.errstate", "numpy.sum", "numpy.empty_like", "scipy.linalg.norm", "numpy.load" ]
[((3224, 3241), 'numpy.load', 'np.load', (['npz_file'], {}), '(npz_file)\n', (3231, 3241), True, 'import numpy as np\n'), ((5271, 5289), 'numpy.empty_like', 'np.empty_like', (['cov'], {}), '(cov)\n', (5284, 5289), True, 'import numpy as np\n'), ((5964, 5991), 'scipy.linalg.svd', 'svd', (['A'], {'full_matrices': '(False)'}), '(A, full_matrices=False)\n', (5967, 5991), False, 'from scipy.linalg import svd, norm\n'), ((6372, 6394), 'numpy.matmul', 'np.matmul', (['weight', 'mat'], {}), '(weight, mat)\n', (6381, 6394), True, 'import numpy as np\n'), ((8372, 8396), 'numpy.dot', 'np.dot', (['err_old', 'err_old'], {}), '(err_old, err_old)\n', (8378, 8396), True, 'import numpy as np\n'), ((8575, 8593), 'numpy.empty', 'np.empty', (['(nmax + 1)'], {}), '(nmax + 1)\n', (8583, 8593), True, 'import numpy as np\n'), ((1922, 1963), 'itertools.cycle', 'itertools.cycle', (['[4, 2, 4, 2, 4, 6, 2, 6]'], {}), '([4, 2, 4, 2, 4, 6, 2, 6])\n', (1937, 1963), False, 'import itertools\n'), ((2487, 2520), 'math.isclose', 'math.isclose', (['r', '(1)'], {'rel_tol': '(1e-06)'}), '(r, 1, rel_tol=1e-06)\n', (2499, 2520), False, 'import math\n'), ((2569, 2615), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (2580, 2615), True, 'import numpy as np\n'), ((3653, 3676), 'itertools.islice', 'itertools.islice', (['it', 'n'], {}), '(it, n)\n', (3669, 3676), False, 'import itertools\n'), ((4271, 4280), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (4277, 4280), True, 'import numpy as np\n'), ((4317, 4326), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (4323, 4326), True, 'import numpy as np\n'), ((4611, 4628), 'numpy.sum', 'np.sum', (['Y'], {'axis': '(2)'}), '(Y, axis=2)\n', (4617, 4628), True, 'import numpy as np\n'), ((6479, 6504), 'numpy.mean', 'np.mean', (['(mat ** 2)'], {'axis': '(0)'}), '(mat ** 2, axis=0)\n', (6486, 6504), True, 'import numpy as np\n'), ((8988, 9015), 'scipy.linalg.svd', 'svd', (['J'], {'full_matrices': '(False)'}), '(J, full_matrices=False)\n', (8991, 9015), False, 'from scipy.linalg import svd, norm\n'), ((9482, 9497), 'numpy.sum', 'np.sum', (['(s > tol)'], {}), '(s > tol)\n', (9488, 9497), True, 'import numpy as np\n'), ((1145, 1156), 'math.log', 'math.log', (['i'], {}), '(i)\n', (1153, 1156), False, 'import math\n'), ((1159, 1170), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (1167, 1170), False, 'import math\n'), ((6009, 6019), 'numpy.sqrt', 'np.sqrt', (['s'], {}), '(s)\n', (6016, 6019), True, 'import numpy as np\n'), ((9028, 9035), 'scipy.linalg.norm', 'norm', (['J'], {}), '(J)\n', (9032, 9035), False, 'from scipy.linalg import svd, norm\n'), ((9919, 9935), 'numpy.dot', 'np.dot', (['err', 'err'], {}), '(err, err)\n', (9925, 9935), True, 'import numpy as np\n'), ((2644, 2653), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (2650, 2653), True, 'import numpy as np\n'), ((9745, 9797), 'numpy.linalg.multi_dot', 'np.linalg.multi_dot', (['(err_old, U[:, :r] * s, Vt[:r])'], {}), '((err_old, U[:, :r] * s, Vt[:r]))\n', (9764, 9797), True, 'import numpy as np\n'), ((10138, 10149), 'numpy.sqrt', 'np.sqrt', (['(10)'], {}), '(10)\n', (10145, 10149), True, 'import numpy as np\n'), ((10197, 10211), 'numpy.isnan', 'np.isnan', (['cost'], {}), '(cost)\n', (10205, 10211), True, 'import numpy as np\n'), ((10529, 10537), 'scipy.linalg.norm', 'norm', (['ds'], {}), '(ds)\n', (10533, 10537), False, 'from scipy.linalg import svd, norm\n'), ((10630, 10662), 'numpy.abs', 'np.abs', (['((cost - cost_old) / cost)'], {}), '((cost - cost_old) / cost)\n', (10636, 10662), True, 'import numpy as np\n'), ((5044, 5054), 'numpy.abs', 'np.abs', (['Y0'], {}), '(Y0)\n', (5050, 5054), True, 'import numpy as np\n'), ((10326, 10337), 'numpy.sqrt', 'np.sqrt', (['(10)'], {}), '(10)\n', (10333, 10337), True, 'import numpy as np\n')]
# ----------------------------------- # # 01_02 线性回归 # # ----------------------------------- import numpy as np import tensorflow as tf tf.enable_eager_execution() # ----------------------------------- # 1. 数据 # ----------------------------------- X_raw = np.array([2013, 2014, 2015, 2016, 2017], dtype=np.float32) y_raw = np.array([12000, 14000, 15000, 16500, 17500], dtype=np.float32) X = (X_raw - X_raw.mean()) / X_raw.std() y = (y_raw - y_raw.mean()) / y_raw.std() # ----------------------------------- # 2. 理论 # ----------------------------------- # ----------------------------------- # 3. Numpy # ----------------------------------- w, b = 0, 0 num_epoch = 1000 learning_rate = 1e-3 for e in range(num_epoch): # 手动计算损失函数关于自变量(模型参数)的梯度 y_pred = w * X + b grad_w, grad_b = (y_pred - y).dot(X), (y_pred - y).sum() # 更新参数 w, b = w - learning_rate * grad_w, b - learning_rate * grad_b print(w, b) # ----------------------------------- # 4. TensorFlow # ----------------------------------- X = tf.constant(X) y = tf.constant(y) w = tf.get_variable('w', dtype=tf.float32, shape=[], initializer=tf.zeros_initializer) b = tf.get_variable('b', dtype=tf.float32, shape=[], initializer=tf.zeros_initializer) variables = [w, b] num_epoch = 1000 optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-3) for e in range(num_epoch): # 使用tf.GradientTape()记录损失函数的梯度信息 with tf.GradientTape() as tape: y_pred = w * X + b loss = 0.5 * tf.reduce_sum(tf.square(y_pred - y)) # TensorFlow自动计算损失函数关于自变量(模型参数)的梯度 grads = tape.gradient(loss, variables) # TensorFlow自动根据梯度更新参数 optimizer.apply_gradients(grads_and_vars=zip(grads, variables)) print(w, b)
[ "tensorflow.get_variable", "tensorflow.enable_eager_execution", "tensorflow.train.GradientDescentOptimizer", "numpy.array", "tensorflow.GradientTape", "tensorflow.constant", "tensorflow.square" ]
[((139, 166), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (164, 166), True, 'import tensorflow as tf\n'), ((261, 319), 'numpy.array', 'np.array', (['[2013, 2014, 2015, 2016, 2017]'], {'dtype': 'np.float32'}), '([2013, 2014, 2015, 2016, 2017], dtype=np.float32)\n', (269, 319), True, 'import numpy as np\n'), ((328, 391), 'numpy.array', 'np.array', (['[12000, 14000, 15000, 16500, 17500]'], {'dtype': 'np.float32'}), '([12000, 14000, 15000, 16500, 17500], dtype=np.float32)\n', (336, 391), True, 'import numpy as np\n'), ((1029, 1043), 'tensorflow.constant', 'tf.constant', (['X'], {}), '(X)\n', (1040, 1043), True, 'import tensorflow as tf\n'), ((1048, 1062), 'tensorflow.constant', 'tf.constant', (['y'], {}), '(y)\n', (1059, 1062), True, 'import tensorflow as tf\n'), ((1068, 1155), 'tensorflow.get_variable', 'tf.get_variable', (['"""w"""'], {'dtype': 'tf.float32', 'shape': '[]', 'initializer': 'tf.zeros_initializer'}), "('w', dtype=tf.float32, shape=[], initializer=tf.\n zeros_initializer)\n", (1083, 1155), True, 'import tensorflow as tf\n'), ((1155, 1242), 'tensorflow.get_variable', 'tf.get_variable', (['"""b"""'], {'dtype': 'tf.float32', 'shape': '[]', 'initializer': 'tf.zeros_initializer'}), "('b', dtype=tf.float32, shape=[], initializer=tf.\n zeros_initializer)\n", (1170, 1242), True, 'import tensorflow as tf\n'), ((1287, 1341), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (1320, 1341), True, 'import tensorflow as tf\n'), ((1414, 1431), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (1429, 1431), True, 'import tensorflow as tf\n'), ((1503, 1524), 'tensorflow.square', 'tf.square', (['(y_pred - y)'], {}), '(y_pred - y)\n', (1512, 1524), True, 'import tensorflow as tf\n')]
import cv2 import numpy as np drawing = False # true if mouse is pressed mode = True # if True, draw rectangle. Press 'm' to toggle to curve ix,iy = -1,-1 # mouse callback function def draw_circle(event,x,y,flags,param): global ix,iy,drawing,mode if event == cv2.EVENT_LBUTTONDOWN: drawing = True ix,iy = x,y elif event == cv2.EVENT_MOUSEMOVE: if drawing == True: if mode == True: cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1) else: cv2.circle(img,(x,y),5,(0,0,255),-1) elif event == cv2.EVENT_LBUTTONUP: drawing = False if mode == True: cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1) else: cv2.circle(img,(x,y),5,(0,0,255),-1) img = np.zeros((512, 512, 3), np.uint8) cv2.namedWindow('image') cv2.setMouseCallback('image', draw_circle) while(1): cv2.imshow('image', img) k = cv2.waitKey(1) & 0xff if k == ord('m'): mode = not mode elif k == ord('q'): break cv2.destroyAllWindows()
[ "cv2.setMouseCallback", "cv2.rectangle", "cv2.imshow", "numpy.zeros", "cv2.circle", "cv2.destroyAllWindows", "cv2.waitKey", "cv2.namedWindow" ]
[((783, 816), 'numpy.zeros', 'np.zeros', (['(512, 512, 3)', 'np.uint8'], {}), '((512, 512, 3), np.uint8)\n', (791, 816), True, 'import numpy as np\n'), ((817, 841), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image"""'], {}), "('image')\n", (832, 841), False, 'import cv2\n'), ((842, 884), 'cv2.setMouseCallback', 'cv2.setMouseCallback', (['"""image"""', 'draw_circle'], {}), "('image', draw_circle)\n", (862, 884), False, 'import cv2\n'), ((1040, 1063), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1061, 1063), False, 'import cv2\n'), ((900, 924), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img'], {}), "('image', img)\n", (910, 924), False, 'import cv2\n'), ((933, 947), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (944, 947), False, 'import cv2\n'), ((449, 502), 'cv2.rectangle', 'cv2.rectangle', (['img', '(ix, iy)', '(x, y)', '(0, 255, 0)', '(-1)'], {}), '(img, (ix, iy), (x, y), (0, 255, 0), -1)\n', (462, 502), False, 'import cv2\n'), ((529, 572), 'cv2.circle', 'cv2.circle', (['img', '(x, y)', '(5)', '(0, 0, 255)', '(-1)'], {}), '(img, (x, y), 5, (0, 0, 255), -1)\n', (539, 572), False, 'import cv2\n'), ((667, 720), 'cv2.rectangle', 'cv2.rectangle', (['img', '(ix, iy)', '(x, y)', '(0, 255, 0)', '(-1)'], {}), '(img, (ix, iy), (x, y), (0, 255, 0), -1)\n', (680, 720), False, 'import cv2\n'), ((739, 782), 'cv2.circle', 'cv2.circle', (['img', '(x, y)', '(5)', '(0, 0, 255)', '(-1)'], {}), '(img, (x, y), 5, (0, 0, 255), -1)\n', (749, 782), False, 'import cv2\n')]
import sys from PIL import Image import argparse import os import numpy as np import torch import cv2 torch.set_printoptions(sci_mode=False, precision=4) np.set_printoptions(suppress=True, precision=4) def save_matrix(filename, mat, print_stats=False): import matplotlib.pyplot as plt # corr = F.avg_pool2d(corr, 4, stride=4).squeeze(1).squeeze(0) if print_stats: print("{}: {}. mean/std: {:.5f}, {:.5f}".format(filename, list(mat.shape), np.abs(mat).mean(), mat.std())) plt.imshow(mat) plt.colorbar() plt.savefig(filename) # dpi=1200 plt.clf() print(f"Saved '{filename}'") def get_boundary(h, w, H, W, radius): top = max(0, h - radius) bottom = min(H, h + radius + 1) left = max(0, w - radius) right = min(W, w + radius + 1) return top, bottom, left, right def vis_attention(model_name, img1_path, img2_path, points, attention5d_path, radius=16, box_radius=8, img_scale=1, alpha=1, savedir='attvis', proj_img2=False): img2_name = os.path.basename(img2_path) img2_trunk = os.path.splitext(img2_name)[0] if img1_path is not None: img1_np = cv2.imread(img1_path) img1_name = os.path.basename(img1_path) img1_trunk = os.path.splitext(img1_name)[0] img1_np = cv2.resize(img1_np, (0,0), fx=img_scale, fy=img_scale) else: img1_np = None img2_np = cv2.imread(img2_path)[:,:,::-1] img2_np = cv2.resize(img2_np, (0,0), fx=img_scale, fy=img_scale) H, W = img2_np.shape[:2] attention5d = torch.load(attention5d_path, map_location='cpu') if not os.path.exists(savedir): os.makedirs(savedir, exist_ok=True) for point in points: w0, h0 = point w0 = int(w0 * img_scale) h0 = int(h0 * img_scale) h, w = h0 // 8, w0 // 8 if img_scale != 1: print(f"{point[0]}, {point[1]} => {w0}, {h0} => {w}, {h}") else: print(f"{w0}, {h0} => {w}, {h}") # attention: H//8, W//8 attention = attention5d[0, h, w].numpy() # Set attention outside the radius to 0. if radius > 0: mask = np.zeros_like(attention, dtype=bool) attn_top, attn_bottom, attn_left, attn_right = get_boundary(h, w, H//8, W//8, radius) mask[attn_top:attn_bottom, attn_left:attn_right] = True attention = attention * mask.astype(float) median = np.median(attention[mask]) else: median = np.median(attention) neg_count = np.count_nonzero(attention < 0) pos_count = np.count_nonzero(attention > 0) print(f"{point}: median {median}, {pos_count} > 0, {neg_count} < 0") box_top, box_bottom, box_left, box_right = get_boundary(h0, w0, H, W, radius=box_radius) if img1_np is not None: # draw a square around the point # the side length of the square is 2*radius+1 blank_rect = np.copy(img1_np) cv2.rectangle(blank_rect, (box_left, box_top), (box_right, box_bottom), (0, 0, 255), 1) img1_np2 = cv2.addWeighted(img1_np, (1-alpha), blank_rect, alpha, 0) img1_savename = f"{img1_trunk}-{point[0]},{point[1]}-highlight.png" img1_savepath = os.path.join(savedir, img1_savename) cv2.imwrite(img1_savepath, img1_np2) print(f"Saved '{img1_savepath}'") attention = cv2.resize(attention, (W, H)) attention -= median attention[attention < 0] = 0 attention = (255 * attention / attention.max()).astype(np.uint8) # heatmap: [368, 768, 3] heatmap = cv2.applyColorMap(attention, cv2.COLORMAP_JET)[:, :, ::-1] overlaid_img2 = img2_np * 0.6 + heatmap * 0.3 overlaid_img2 = overlaid_img2.astype(np.uint8) blank_rect = overlaid_img2.copy() # self attention on Frame-2, draw a red rectangle. if img1_path == img2_path: color = (255, 0, 0) cv2.rectangle(blank_rect, (box_left, box_top), (box_right, box_bottom), color, 1) # Cross-frame attention. If proj_img2, draw a green rectangle in Frame-2 # at the same location of the query in Frame-1. elif proj_img2: color = (0, 255, 0) cv2.rectangle(blank_rect, (box_left, box_top), (box_right, box_bottom), color, 1) overlaid_img2 = cv2.addWeighted(overlaid_img2, (1-alpha), blank_rect, alpha, 0) overlaid_img2_obj = Image.fromarray(overlaid_img2) img2_savename = f"{img2_trunk}-{point[0]},{point[1]}-{model_name}.png" img2_savepath = os.path.join(savedir, img2_savename) overlaid_img2_obj.save(img2_savepath) print(f"Saved '{img2_savepath}'") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', dest="model_name", type=str) parser.add_argument('--img1', dest='img1_path', type=str) parser.add_argument('--img2', dest='img2_path', type=str) # --points is a list of tuples. specified as: --points 11,22.44,77.33,15 parser.add_argument('--points', type=str) parser.add_argument('--att', dest='attention5d_path', type=str, required=True) parser.add_argument('--savedir', type=str, default='attvis') parser.add_argument('--scale', dest='img_scale', type=float, default=1.0) parser.add_argument('--radius', dest='radius', type=int, default=16) parser.add_argument('--box_radius', dest='box_radius', type=int, default=8) parser.add_argument('--alpha', type=float, default=1) parser.add_argument('--proj_img2', action='store_true') args = parser.parse_args() points = args.points.split(".") points = [[int(x) for x in p.split(",")] for p in points] vis_attention(args.model_name, args.img1_path, args.img2_path, points, args.attention5d_path, args.radius, args.box_radius, args.img_scale, args.alpha, args.savedir, args.proj_img2)
[ "cv2.rectangle", "numpy.count_nonzero", "matplotlib.pyplot.imshow", "os.path.exists", "torch.set_printoptions", "argparse.ArgumentParser", "cv2.addWeighted", "numpy.abs", "matplotlib.pyplot.savefig", "os.path.splitext", "cv2.resize", "cv2.imread", "numpy.set_printoptions", "cv2.applyColorMap", "numpy.copy", "PIL.Image.fromarray", "numpy.median", "cv2.imwrite", "os.makedirs", "torch.load", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.clf", "os.path.join", "os.path.basename", "numpy.zeros_like" ]
[((104, 155), 'torch.set_printoptions', 'torch.set_printoptions', ([], {'sci_mode': '(False)', 'precision': '(4)'}), '(sci_mode=False, precision=4)\n', (126, 155), False, 'import torch\n'), ((156, 203), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)', 'precision': '(4)'}), '(suppress=True, precision=4)\n', (175, 203), True, 'import numpy as np\n'), ((530, 545), 'matplotlib.pyplot.imshow', 'plt.imshow', (['mat'], {}), '(mat)\n', (540, 545), True, 'import matplotlib.pyplot as plt\n'), ((550, 564), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (562, 564), True, 'import matplotlib.pyplot as plt\n'), ((569, 590), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (580, 590), True, 'import matplotlib.pyplot as plt\n'), ((606, 615), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (613, 615), True, 'import matplotlib.pyplot as plt\n'), ((1069, 1096), 'os.path.basename', 'os.path.basename', (['img2_path'], {}), '(img2_path)\n', (1085, 1096), False, 'import os\n'), ((1484, 1539), 'cv2.resize', 'cv2.resize', (['img2_np', '(0, 0)'], {'fx': 'img_scale', 'fy': 'img_scale'}), '(img2_np, (0, 0), fx=img_scale, fy=img_scale)\n', (1494, 1539), False, 'import cv2\n'), ((1586, 1634), 'torch.load', 'torch.load', (['attention5d_path'], {'map_location': '"""cpu"""'}), "(attention5d_path, map_location='cpu')\n", (1596, 1634), False, 'import torch\n'), ((4834, 4859), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4857, 4859), False, 'import argparse\n'), ((1114, 1141), 'os.path.splitext', 'os.path.splitext', (['img2_name'], {}), '(img2_name)\n', (1130, 1141), False, 'import os\n'), ((1193, 1214), 'cv2.imread', 'cv2.imread', (['img1_path'], {}), '(img1_path)\n', (1203, 1214), False, 'import cv2\n'), ((1235, 1262), 'os.path.basename', 'os.path.basename', (['img1_path'], {}), '(img1_path)\n', (1251, 1262), False, 'import os\n'), ((1336, 1391), 'cv2.resize', 'cv2.resize', (['img1_np', '(0, 0)'], {'fx': 'img_scale', 'fy': 'img_scale'}), '(img1_np, (0, 0), fx=img_scale, fy=img_scale)\n', (1346, 1391), False, 'import cv2\n'), ((1438, 1459), 'cv2.imread', 'cv2.imread', (['img2_path'], {}), '(img2_path)\n', (1448, 1459), False, 'import cv2\n'), ((1646, 1669), 'os.path.exists', 'os.path.exists', (['savedir'], {}), '(savedir)\n', (1660, 1669), False, 'import os\n'), ((1679, 1714), 'os.makedirs', 'os.makedirs', (['savedir'], {'exist_ok': '(True)'}), '(savedir, exist_ok=True)\n', (1690, 1714), False, 'import os\n'), ((2599, 2630), 'numpy.count_nonzero', 'np.count_nonzero', (['(attention < 0)'], {}), '(attention < 0)\n', (2615, 2630), True, 'import numpy as np\n'), ((2651, 2682), 'numpy.count_nonzero', 'np.count_nonzero', (['(attention > 0)'], {}), '(attention > 0)\n', (2667, 2682), True, 'import numpy as np\n'), ((3478, 3507), 'cv2.resize', 'cv2.resize', (['attention', '(W, H)'], {}), '(attention, (W, H))\n', (3488, 3507), False, 'import cv2\n'), ((4441, 4504), 'cv2.addWeighted', 'cv2.addWeighted', (['overlaid_img2', '(1 - alpha)', 'blank_rect', 'alpha', '(0)'], {}), '(overlaid_img2, 1 - alpha, blank_rect, alpha, 0)\n', (4456, 4504), False, 'import cv2\n'), ((4533, 4563), 'PIL.Image.fromarray', 'Image.fromarray', (['overlaid_img2'], {}), '(overlaid_img2)\n', (4548, 4563), False, 'from PIL import Image\n'), ((4667, 4703), 'os.path.join', 'os.path.join', (['savedir', 'img2_savename'], {}), '(savedir, img2_savename)\n', (4679, 4703), False, 'import os\n'), ((1284, 1311), 'os.path.splitext', 'os.path.splitext', (['img1_name'], {}), '(img1_name)\n', (1300, 1311), False, 'import os\n'), ((2192, 2228), 'numpy.zeros_like', 'np.zeros_like', (['attention'], {'dtype': 'bool'}), '(attention, dtype=bool)\n', (2205, 2228), True, 'import numpy as np\n'), ((2483, 2509), 'numpy.median', 'np.median', (['attention[mask]'], {}), '(attention[mask])\n', (2492, 2509), True, 'import numpy as np\n'), ((2545, 2565), 'numpy.median', 'np.median', (['attention'], {}), '(attention)\n', (2554, 2565), True, 'import numpy as np\n'), ((3018, 3034), 'numpy.copy', 'np.copy', (['img1_np'], {}), '(img1_np)\n', (3025, 3034), True, 'import numpy as np\n'), ((3047, 3138), 'cv2.rectangle', 'cv2.rectangle', (['blank_rect', '(box_left, box_top)', '(box_right, box_bottom)', '(0, 0, 255)', '(1)'], {}), '(blank_rect, (box_left, box_top), (box_right, box_bottom), (0,\n 0, 255), 1)\n', (3060, 3138), False, 'import cv2\n'), ((3158, 3215), 'cv2.addWeighted', 'cv2.addWeighted', (['img1_np', '(1 - alpha)', 'blank_rect', 'alpha', '(0)'], {}), '(img1_np, 1 - alpha, blank_rect, alpha, 0)\n', (3173, 3215), False, 'import cv2\n'), ((3325, 3361), 'os.path.join', 'os.path.join', (['savedir', 'img1_savename'], {}), '(savedir, img1_savename)\n', (3337, 3361), False, 'import os\n'), ((3374, 3410), 'cv2.imwrite', 'cv2.imwrite', (['img1_savepath', 'img1_np2'], {}), '(img1_savepath, img1_np2)\n', (3385, 3410), False, 'import cv2\n'), ((3697, 3743), 'cv2.applyColorMap', 'cv2.applyColorMap', (['attention', 'cv2.COLORMAP_JET'], {}), '(attention, cv2.COLORMAP_JET)\n', (3714, 3743), False, 'import cv2\n'), ((4046, 4131), 'cv2.rectangle', 'cv2.rectangle', (['blank_rect', '(box_left, box_top)', '(box_right, box_bottom)', 'color', '(1)'], {}), '(blank_rect, (box_left, box_top), (box_right, box_bottom),\n color, 1)\n', (4059, 4131), False, 'import cv2\n'), ((4334, 4419), 'cv2.rectangle', 'cv2.rectangle', (['blank_rect', '(box_left, box_top)', '(box_right, box_bottom)', 'color', '(1)'], {}), '(blank_rect, (box_left, box_top), (box_right, box_bottom),\n color, 1)\n', (4347, 4419), False, 'import cv2\n'), ((478, 489), 'numpy.abs', 'np.abs', (['mat'], {}), '(mat)\n', (484, 489), True, 'import numpy as np\n')]
# @Time : 2022/1/1 # @Author : <NAME> # @email : <EMAIL> import ipdb import math import torch import numpy as np import torch.nn.functional as F from loguru import logger from torch import nn import os from crslab.model.base import BaseModel from crslab.model.utils.modules.info_nce_loss import info_nce_loss from crslab.model.utils.functions import edge_to_pyg_format from crslab.model.utils.modules.cross_entropy_loss import Handle_Croess_Entropy_Loss from torch_geometric.nn import RGCNConv from crslab.config import MODEL_PATH from crslab.model.base import BaseModel from crslab.model.utils.modules.info_nce_loss import info_nce_loss from crslab.model.utils.functions import edge_to_pyg_format from crslab.model.utils.modules.attention import SelfAttentionBatch, SelfAttentionSeq from crslab.model.utils.modules.transformer import TransformerDecoder, TransformerEncoder from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, \ _normalize, \ create_position_codes NEAR_INF_FP16 = 65504 NEAR_INF = 1e20 def neginf(dtype): """Returns a representable finite number near -inf for a dtype.""" if dtype is torch.float16: return -NEAR_INF_FP16 else: return -NEAR_INF class DBModel(nn.Module): def __init__(self, opt, device, vocab, side_data): super().__init__() # vocab self.vocab_size = vocab['vocab_size'] self.pad_token_idx = vocab['pad'] self.start_token_idx = vocab['start'] self.end_token_idx = vocab['end'] self.token_emb_dim = opt['token_emb_dim'] self.pretrained_embedding = side_data.get('embedding', None) # kg self.n_word = side_data['word_kg']['n_entity'] self.kg_name = opt['kg_name'] self.n_entity = side_data[self.kg_name]['n_entity'] self.pad_word_idx = vocab['pad_word'] self.pad_entity_idx = vocab['pad_entity'] entity_kg = side_data['entity_kg'] self.n_relation = entity_kg['n_relation'] entity_edges = entity_kg['edge'] self.entity_edge_idx, self.entity_edge_type = edge_to_pyg_format(entity_edges, 'RGCN') self.entity_edge_idx = self.entity_edge_idx.to(device) self.entity_edge_type = self.entity_edge_type.to(device) word_edges = side_data['word_kg']['edge'] self.word_edges = edge_to_pyg_format(word_edges, 'GCN').to(device) self.num_bases = opt['num_bases'] self.kg_emb_dim = opt['kg_emb_dim'] # transformer self.n_heads = opt['n_heads'] self.n_layers = opt['n_layers'] self.ffn_size = opt['ffn_size'] self.dropout = opt['dropout'] self.attention_dropout = opt['attention_dropout'] self.relu_dropout = opt['relu_dropout'] self.learn_positional_embeddings = opt['learn_positional_embeddings'] self.embeddings_scale = opt['embeddings_scale'] self.reduction = opt['reduction'] self.n_positions = opt['n_positions'] self.response_truncate = opt.get('response_truncate', 20) self._build_model() def _build_model(self): self._build_conversation_layer() def _build_conversation_layer(self): self.conv_entity_norm = nn.Linear(self.kg_emb_dim, self.ffn_size) self.conv_entity_attn_norm = nn.Linear(self.kg_emb_dim, self.ffn_size) def forward(self, batch, mode, kgModel): entity_attn_rep, entity_representations = self.entity_model_kbrd(batch, mode, kgModel) # (bs, dim), (bs, n_context_entities, dim) conv_entity_emb, conv_entity_reps = self.conv_entaity_model(entity_attn_rep, entity_representations) # (bs, ffn_size), (bs, n_context_entities, ffn_size) return entity_attn_rep, entity_representations, conv_entity_emb, conv_entity_reps # (bs, dim), (bs, n_context_entities, dim), (bs, ffn_size), (bs, n_context_entities, ffn_size) def entity_model_kbrd(self, batch, mode, kgModel): context_entities_kbrd = batch['context_entities_kbrd'] # [bs, nb_context_entities] context_entities = batch['context_entities'] # (bs, entity_truncate) user_rep, kg_embedding = kgModel._get_kg_user_rep(context_entities_kbrd) # (bs, dim), (n_entities, dim) entity_representations = kg_embedding[context_entities] # (bs, entity_truncate, dim) return user_rep, entity_representations def conv_entaity_model(self, entity_attn_rep, entity_representations): # encoder-decoder conv_entity_emb = self.conv_entity_attn_norm(entity_attn_rep) # (bs, ffn_size) conv_entity_reps = self.conv_entity_norm(entity_representations) # (bs, n_context_entities, ffn_size) return conv_entity_emb, conv_entity_reps # (bs, ffn_size), (bs, n_context_entities, ffn_size) class CoarseReviewModelForDecoder(nn.Module): def __init__(self, opt, device, vocab, side_data): super().__init__() # vocab self.vocab_size = vocab['vocab_size'] self.pad_token_idx = vocab['pad'] self.start_token_idx = vocab['start'] self.end_token_idx = vocab['end'] self.token_emb_dim = opt['token_emb_dim'] self.pretrained_embedding = side_data.get('embedding', None) # kg self.n_word = side_data['word_kg']['n_entity'] self.kg_name = opt['kg_name'] self.n_entity = side_data[self.kg_name]['n_entity'] self.pad_word_idx = vocab['pad_word'] self.pad_entity_idx = vocab['pad_entity'] entity_kg = side_data['entity_kg'] self.n_relation = entity_kg['n_relation'] entity_edges = entity_kg['edge'] self.entity_edge_idx, self.entity_edge_type = edge_to_pyg_format(entity_edges, 'RGCN') self.entity_edge_idx = self.entity_edge_idx.to(device) self.entity_edge_type = self.entity_edge_type.to(device) word_edges = side_data['word_kg']['edge'] self.word_edges = edge_to_pyg_format(word_edges, 'GCN').to(device) self.num_bases = opt['num_bases'] self.kg_emb_dim = opt['kg_emb_dim'] # transformer self.n_heads = opt['n_heads'] self.n_layers = opt['n_layers'] self.ffn_size = opt['ffn_size'] self.dropout = opt['dropout'] self.attention_dropout = opt['attention_dropout'] self.relu_dropout = opt['relu_dropout'] self.learn_positional_embeddings = opt['learn_positional_embeddings'] self.embeddings_scale = opt['embeddings_scale'] self.reduction = opt['reduction'] self.n_positions = opt['n_positions'] self.response_truncate = opt.get('response_truncate', 20) self._build_model() def _build_model(self): self._build_conv_concept_encoder() def _build_conv_concept_encoder(self): self.conv_review_attn_norm = nn.Linear(self.token_emb_dim, self.ffn_size) self.conv_review_norm = nn.Linear(self.token_emb_dim, self.ffn_size) def forward(self, batch, mode, reviewModel): review_user_rep, review_reps, review_pad_reps, review_padding_mask, review_token_reps, review_token_padding_mask = \ self.model_review(batch, mode, reviewModel) # (bs, dim), (~bs*nb_review, dim), (bs, n_review, dim), (bs, nb_review), (bs, n_review, seq_len3, dim), (bs, n_review, seq_len3) conv_review_emb, conv_review_reps = self.conv_review_model(review_user_rep, review_pad_reps) # (bs, ffn_size), (bs, n_review, ffn_size) return conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask # (bs, ffn_size), (bs, n_review, dim), (bs, ffn_size), (bs, n_review, seq_len3, dim), (bs, n_review, seq_len3) def model_review(self, batch, mode, reviewModel): review_user_rep, review_reps, review_state = reviewModel.get_review_user_rep_and_review_rep(batch, mode) # (bs, dim), (~bs*nb_review, dim), (~bs*nb_review, seq_len3, dim) review_pad_reps, review_padding_mask, review_token_reps, review_token_padding_mask = reviewModel.get_review_sample_reps( batch, mode, review_reps, review_state) # (bs, nb_review, dim), (bs, nb_review), (bs, n_review, seq_len3, dim), (bs, n_review, seq_len3) return review_user_rep, review_reps, review_pad_reps, \ review_padding_mask, review_token_reps, review_token_padding_mask # (bs, dim), (~bs*nb_review, dim), (bs, n_review, dim), # (bs, nb_review), (bs, n_review, seq_len3, dim), (bs, n_review, seq_len3) def conv_review_model(self, review_attn_rep, review_representations): # (bs, dim), (bs, n_review, dim), (bs, nb_review, dim), (bs, seq_len3, dim) conv_review_emb = self.conv_review_attn_norm(review_attn_rep) # (bs, ffn_size) conv_review_reps = self.conv_review_norm(review_representations) # (bs, n_context_words, ffn_size) return conv_review_emb, conv_review_reps # (bs, ffn_size), (bs, n_review, ffn_size) class FineReviewDecoderAttention(nn.Module): def __init__(self, n_heads, dim, dropout=.0): super(FineReviewDecoderAttention, self).__init__() self.n_heads = n_heads self.dim = dim self.dim_per_head = self.dim // self.n_heads self.attn_dropout = nn.Dropout(p=dropout) # --attention-dropout self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) # TODO: merge for the initialization step nn.init.xavier_normal_(self.q_lin.weight) nn.init.xavier_normal_(self.k_lin.weight) nn.init.xavier_normal_(self.v_lin.weight) # and set biases to 0 self.out_lin = nn.Linear(dim, dim) nn.init.xavier_normal_(self.out_lin.weight) self.fine_review_level_self_atten = SelfAttentionSeq(self.dim_per_head, self.dim_per_head) def forward(self, query, key=None, value=None, mask=None, mask2=None): # query: (bs, query_len, ffn_size) # key/value: (bs, nb_review, key_len, ffn_size) # mask: (bs, nb_review) # mask2: (bs, nb_review, key_len) query, key, value = self.set_q_k_v(query, key, value) bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review = self.set_hyper_parameters(query, key, mask, mask2) q, k, v = self.prepare_heads(query, key, value, bs, n_heads, dim_per_head) # q: (bs*n_heads, query_len, dim_per_head) # k/v: (bs*n_heads, nb_review, key_len, dim_per_head) out = self.compute_func(q, k, v, query, mask, mask2, bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review) # (bs, query_len, dim) return out def set_q_k_v(self, query, key, value): return query, key, value def set_hyper_parameters(self, query, key, mask, mask2): bs, query_len, dim = query.size() assert dim == self.dim, \ f'Dimensions do not match: {dim} query vs {self.dim} configured' assert mask is not None, 'Mask is None, please specify a mask' assert mask2 is not None, 'Mask is None, please specify a mask' n_heads = self.n_heads dim_per_head = dim // n_heads scale = math.sqrt(dim_per_head) _, nb_review, key_len, dim = key.size() return bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review def prepare_heads(self, query, key, value, bs, n_heads, dim_per_head): # query: (bs, query_len, ffn_size) # key/value: (bs, nb_review, key_len, ffn_size) q = self.prepare_head_q(self.q_lin(query), bs, n_heads, dim_per_head) # (bs*n_heads, query_len, dim_per_head) k = self.prepare_head_kv(self.k_lin(key), bs, n_heads, dim_per_head) # (bs*n_heads, nb_review, key_len, dim_per_head) v = self.prepare_head_kv(self.v_lin(value), bs, n_heads, dim_per_head) # (bs*n_heads, nb_review, key_len, dim_per_head) return q, k, v def prepare_head_q(self, tensor, bs, n_heads, dim_per_head): # input is (bs, query_len, ffn_size) # output is (bs*n_heads, query_len, dim_per_head) bs, seq_len, _ = tensor.size() tensor = tensor.view(bs, tensor.size(1), n_heads, dim_per_head) tensor = tensor.transpose(1, 2).contiguous().view( bs*n_heads, seq_len, dim_per_head ) return tensor def prepare_head_kv(self, tensor, bs, n_heads, dim_per_head): # input is (bs, nb_review, key_len, ffn_size) # output is (bs*n_heads, nb_review, key_len, dim_per_head) bs, nb_review, seq_len, _ = tensor.size() tensor = tensor.view(bs, nb_review, seq_len, n_heads, dim_per_head) tensor = tensor.transpose(1, 3).transpose(2, 3).contiguous().view( bs*n_heads, nb_review, seq_len, dim_per_head ) return tensor def compute_func(self, q, k, v, query, mask, mask2, bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review): # q: (bs*n_heads, query_len, dim_per_head) # k/v: (bs*n_heads, nb_review, key_len, dim_per_head) # mask: (bs, nb_review) # mask2: (bs, nb_review, key_len) attentioned = self.token_level_atten(q, k, v, query, mask, mask2, bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review) # (bs*n_heads*nb_review, query_len, dim_per_head) attentioned = self.review_level_atten(attentioned, mask, bs, n_heads, nb_review, query_len, dim_per_head) # (bs*n_heads, query_len, dim_per_head) attentioned = ( attentioned.type_as(query) .view(bs, n_heads, query_len, dim_per_head) .transpose(1, 2).contiguous() .view(bs, query_len, dim) ) # (bs, query_len, dim) out = self.out_lin(attentioned) # (bs, query_len, dim) return out # (bs, query_len, dim) def get_attn_mask(self, mask, bs, key_len, n_heads, query_len): # Mask is [bs, key_len] (selfattn) or [bs, key_len, key_len] (enc attn) attn_mask = ( (mask == 0) .view(bs, 1, -1, key_len) .repeat(1, n_heads, 1, 1) .expand(bs, n_heads, query_len, key_len) .view(bs*n_heads, query_len, key_len) ) return attn_mask # (bs*n_heads, query_len, key_len) def token_level_atten(self, q, k, v, query, mask, mask2, bs, query_len, n_heads, dim_per_head, scale, key_len, dim, nb_review): # q: (bs*n_heads, query_len, dim_per_head) # k/v: (bs*n_heads, nb_review, key_len, dim_per_head) # query: (bs, seq_len2, ffn_size) # mask: (bs, nb_review) # mask2: (bs, nb_review, key_len) q = (q.unsqueeze(1) .expand(bs*n_heads, nb_review, query_len, dim_per_head) .reshape(bs*n_heads*nb_review, query_len, dim_per_head)) k = k.view(bs*n_heads*nb_review, key_len, dim_per_head) dot_prod = q.div_(scale).bmm(k.transpose(-2, -1)) # (bs*n_heads*nb_review, query_len, key_len) attn_mask = self.get_token_level_attn_mask(mask2, bs, key_len, n_heads, query_len, nb_review) # (bs*n_heads*nb_review, query_len, key_len) assert attn_mask.shape == dot_prod.shape dot_prod.masked_fill_(attn_mask, neginf(dot_prod.dtype)) # (bs*n_heads*nb_review, query_len, key_len) attn_weights = F.softmax(dot_prod, dim=-1).type_as(query) # (bs*n_heads*nb_review, query_len, key_len) attn_weights = self.attn_dropout(attn_weights) # --attention-dropout v = v.view(bs*n_heads*nb_review, key_len, dim_per_head) attentioned = attn_weights.bmm(v) # (bs*n_heads*nb_review, query_len, dim_per_head) return attentioned # (bs*n_heads*nb_review, query_len, dim_per_head) def review_level_atten(self, attentioned, mask, bs, n_heads, nb_review, query_len, dim_per_head): # self-attention or (bs, nb_review, dim) as query # attentioned: (bs*n_heads*nb_review, query_len, dim_per_head) # mask: (bs, nb_review) :the padding posistion should be 1 attentioned = (attentioned .view(bs*n_heads, nb_review, query_len, dim_per_head) .transpose(1, 2).contiguous() .view(bs*n_heads*query_len, nb_review, dim_per_head) ) # (bs*n_heads*query_len, nb_review, dim_per_head) mask = (mask .unsqueeze(1).unsqueeze(1) .expand(bs, n_heads, query_len, nb_review).contiguous() .view(bs*n_heads*query_len, nb_review) ) assert attentioned.shape[:2] == mask.shape[:2] attentioned = self.fine_review_level_self_atten(attentioned, mask) # (bs*n_heads*query_len, dim_per_head) attentioned = attentioned.view(bs*n_heads, query_len, dim_per_head) return attentioned # (bs*n_heads, query_len, dim_per_head) def get_token_level_attn_mask(self, mask2, bs, key_len, n_heads, query_len, nb_review): # mask2: (bs, nb_review, key_len) attn_mask = ( (mask2 == 0) .view(bs, 1, nb_review, 1, key_len) .repeat(1, n_heads, 1, 1, 1) .expand(bs, n_heads, nb_review, query_len, key_len) .view(bs*n_heads*nb_review, query_len, key_len) ) return attn_mask # (bs*n_heads*nb_review, query_len, key_len) class TransformerDecoderLayerCoarse(nn.Module): def __init__( self, n_heads, embedding_size, ffn_size, attention_dropout=0.0, relu_dropout=0.0, dropout=0.0, ): super().__init__() self.dim = embedding_size self.ffn_dim = ffn_size self.dropout = nn.Dropout(p=dropout) self.self_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm1 = nn.LayerNorm(embedding_size) self.encoder_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm2 = nn.LayerNorm(embedding_size) self.encoder_db_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm2_db = nn.LayerNorm(embedding_size) self.encoder_review_attention = MultiHeadAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm2_review = nn.LayerNorm(embedding_size) self.fine_encoder_review_attention = FineReviewDecoderAttention( n_heads, embedding_size, dropout=attention_dropout ) self.norm2_review2 = nn.LayerNorm(embedding_size) self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout=relu_dropout) self.norm3 = nn.LayerNorm(embedding_size) def forward(self, inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask): ''' input: (bs, seq_len2, dim) encoder_output, encoder_mask: (bs, seq_len, dim), (bs, seq_len) conv_entity_reps, entity_padding_mask: (bs, n_context_entities, ffn_size), (bs, entity_len) conv_review_reps, review_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review) review_token_reps, review_token_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review, seq_len3) ''' inputs = self._decoder_self_attention(inputs) inputs = self._db_decode_cross_attention(inputs, conv_entity_reps, entity_padding_mask) inputs = self._coarse_review_decode_cross_attention(inputs, conv_review_reps, review_padding_mask) inputs = self._fine_review_decode_cross_attention(inputs, review_token_reps, review_padding_mask, review_token_padding_mask) # inputs = self._review_decode_cross_attention3(inputs, review_token_decode_atten_rep, review_token_padding_mask) inputs = self._context_decode_cross_attention(inputs, encoder_output, encoder_mask) inputs = self._ffn(inputs) return inputs # (bs, seq_len2, dim) def _decoder_self_attention(self, x): decoder_mask = _create_selfattn_mask(x) # first self attn residual = x # don't peak into the future! x = self.self_attention(query=x, mask=decoder_mask) x = self.dropout(x) # --dropout x = x + residual x = _normalize(x, self.norm1) return x # (bs, seq_len2, dim) def _db_decode_cross_attention(self, x, conv_entity_reps, entity_padding_mask): # x: (bs, seq_len2, dim) # conv_entity_reps, entity_padding_mask: (bs, n_context_entities, ffn_size), (bs, entity_len) residual = x x = self.encoder_db_attention( query=x, key=conv_entity_reps, value=conv_entity_reps, mask=entity_padding_mask ) x = self.dropout(x) # --dropout x = residual + x x = _normalize(x, self.norm2_db) return x # (bs, seq_len2, dim) def _coarse_review_decode_cross_attention(self, x, conv_review_reps, review_padding_mask): # x: (bs, seq_len2, dim) # conv_review_reps, review_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review) residual = x x = self.encoder_review_attention( query=x, key=conv_review_reps, value=conv_review_reps, mask=review_padding_mask ) x = self.dropout(x) # --dropout x = residual + x x = _normalize(x, self.norm2_review) return x # (bs, seq_len2, dim) def _fine_review_decode_cross_attention(self, x, review_token_reps, review_padding_mask, review_token_padding_mask): # x: (bs, seq_len2, dim) # (bs, nb_review, seq_len3, ffn_size), (bs, nb_review), (bs, nb_review, seq_len3) residual = x x = self.fine_encoder_review_attention( query=x, key=review_token_reps, value=review_token_reps, mask=review_padding_mask, mask2=review_token_padding_mask, ) x = self.dropout(x) # --dropout x = residual + x x = _normalize(x, self.norm2_review2) return x # (bs, seq_len2, dim) def _context_decode_cross_attention(self, x, encoder_output, encoder_mask): residual = x x = self.encoder_attention( query=x, key=encoder_output, value=encoder_output, mask=encoder_mask ) x = self.dropout(x) # --dropout x = residual + x x = _normalize(x, self.norm2) return x # (bs, seq_len2, dim) def _ffn(self, x): # finally the ffn residual = x x = self.ffn(x) x = self.dropout(x) # --dropout x = residual + x x = _normalize(x, self.norm3) return x # (bs, seq_len2, dim) class TransformerDecoderLayerSelection(TransformerDecoderLayerCoarse): def __init__( self, opt, n_heads, embedding_size, ffn_size, attention_dropout=0.0, relu_dropout=0.0, dropout=0.0, ): self.opt = opt super().__init__( n_heads, embedding_size, ffn_size, attention_dropout, relu_dropout, dropout) def forward(self, inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask): ''' input: (bs, seq_len2, dim) encoder_output, encoder_mask: (bs, seq_len, dim), (bs, seq_len) conv_entity_reps, entity_padding_mask: (bs, n_context_entities, ffn_size), (bs, entity_len) conv_review_reps, review_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review) review_token_reps, review_token_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review, seq_len3) ''' inputs = self.forward_d_c_db_r_f( inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask) return inputs # (bs, seq_len2, dim) def forward_d_c_db_r_f(self, inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask): logger.debug('[forward_d_c_db_r_f]') inputs = self._decoder_self_attention(inputs) inputs = self._context_decode_cross_attention(inputs, encoder_output, encoder_mask) inputs = self._db_decode_cross_attention(inputs, conv_entity_reps, entity_padding_mask) inputs = self._coarse_review_decode_cross_attention(inputs, conv_review_reps, review_padding_mask) inputs = self._ffn(inputs) return inputs class TransformerDecoderKGCoarse(nn.Module): def __init__( self, n_heads, n_layers, embedding_size, ffn_size, vocabulary_size, embedding, dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, embeddings_scale=True, learn_positional_embeddings=False, padding_idx=None, n_positions=1024, ): super().__init__() self.embedding_size = embedding_size self.ffn_size = ffn_size self.n_layers = n_layers self.n_heads = n_heads self.dim = embedding_size self.embeddings_scale = embeddings_scale self.dropout = nn.Dropout(dropout) # --dropout self.out_dim = embedding_size assert embedding_size % n_heads == 0, \ 'Transformer embedding size must be a multiple of n_heads' self.embeddings = embedding self.position_embeddings = self._init_postision_embeddings(n_positions, embedding_size, learn_positional_embeddings) self.layers = self._build_layers(n_heads, embedding_size, ffn_size, attention_dropout, relu_dropout, dropout) def _init_postision_embeddings(self, n_positions, embedding_size, learn_positional_embeddings): # create the positional embeddings position_embeddings = nn.Embedding(n_positions, embedding_size) if not learn_positional_embeddings: create_position_codes( n_positions, embedding_size, out=position_embeddings.weight ) else: nn.init.normal_(position_embeddings.weight, 0, embedding_size ** -0.5) return position_embeddings def _build_layers(self, n_heads, embedding_size, ffn_size, attention_dropout, relu_dropout, dropout): layers = nn.ModuleList() for _ in range(self.n_layers): layers.append(TransformerDecoderLayerCoarse( n_heads, embedding_size, ffn_size, attention_dropout=attention_dropout, relu_dropout=relu_dropout, dropout=dropout, )) return layers def forward(self, inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, incr_state=None): ''' input: (bs, seq_len2, dim) encoder_output, encoder_mask: (bs, seq_len, dim), (bs, seq_len) conv_entity_reps, entity_padding_mask: (bs, n_context_entities, ffn_size), (bs, entity_len) conv_review_reps, review_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review) review_token_reps, review_token_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review, seq_len3) ''' inputs = self.embed_input(inputs) # (bs, seq_len2, dim) for layer in self.layers: inputs = layer( inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask) # (bs, seq_len2, dim) return inputs, None # (bs, seq_len, embed_dim) def embed_input(self, input): tensor = self.embeddings(input) # (bs, seq_len, embed_dim) if self.embeddings_scale: tensor = tensor * np.sqrt(self.dim) positions_embedding = self.get_postition_embeddings(input, tensor) tensor = tensor + positions_embedding tensor = self.dropout(tensor) # --dropout return tensor def get_postition_embeddings(self, input, tensor): seq_len = input.size(1) positions = input.new(seq_len).long() # (seq_len) positions = torch.arange(seq_len, out=positions).unsqueeze(0) # (1, seq_len) positions_embedding = self.position_embeddings(positions).expand_as(tensor) return positions_embedding class TransformerDecoderKGSelection(TransformerDecoderKGCoarse): def __init__( self, opt, n_heads, n_layers, embedding_size, ffn_size, vocabulary_size, embedding, dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, embeddings_scale=True, learn_positional_embeddings=False, padding_idx=None, n_positions=1024, ): self.opt = opt super().__init__( n_heads, n_layers, embedding_size, ffn_size, vocabulary_size, embedding, dropout, attention_dropout, relu_dropout, embeddings_scale, learn_positional_embeddings, padding_idx, n_positions) def _build_layers(self, n_heads, embedding_size, ffn_size, attention_dropout, relu_dropout, dropout): layers = nn.ModuleList() for _ in range(self.n_layers): layers.append(TransformerDecoderLayerSelection( self.opt, n_heads, embedding_size, ffn_size, attention_dropout=attention_dropout, relu_dropout=relu_dropout, dropout=dropout, )) return layers class DecoderCNSelectionModel(nn.Module): def __init__(self, opt, device, vocab, side_data, decoder_token_embedding): super().__init__() self.opt, self.device, self.vocab, self.side_data = opt, device, vocab, side_data # vocab self.vocab_size = vocab['vocab_size'] self.pad_token_idx = vocab['pad'] self.start_token_idx = vocab['start'] self.end_token_idx = vocab['end'] self.token_emb_dim = opt['token_emb_dim'] self.pretrained_embedding = side_data.get('embedding', None) # kg self.n_word = side_data['word_kg']['n_entity'] self.kg_name = opt['kg_name'] self.n_entity = side_data[self.kg_name]['n_entity'] self.pad_word_idx = vocab['pad_word'] self.pad_entity_idx = vocab['pad_entity'] entity_kg = side_data['entity_kg'] self.n_relation = entity_kg['n_relation'] entity_edges = entity_kg['edge'] self.entity_edge_idx, self.entity_edge_type = edge_to_pyg_format(entity_edges, 'RGCN') self.entity_edge_idx = self.entity_edge_idx.to(device) self.entity_edge_type = self.entity_edge_type.to(device) word_edges = side_data['word_kg']['edge'] self.word_edges = edge_to_pyg_format(word_edges, 'GCN').to(device) self.num_bases = opt['num_bases'] self.kg_emb_dim = opt['kg_emb_dim'] # transformer self.n_heads = opt['n_heads'] self.n_layers = opt['n_layers'] self.ffn_size = opt['ffn_size'] self.dropout = opt['dropout'] self.attention_dropout = opt['attention_dropout'] self.relu_dropout = opt['relu_dropout'] self.learn_positional_embeddings = opt['learn_positional_embeddings'] self.embeddings_scale = opt['embeddings_scale'] self.reduction = opt['reduction'] self.n_positions = opt['n_positions'] self.response_truncate = opt.get('response_truncate', 20) self.decoder_token_embedding = decoder_token_embedding self.decoder_token_prob_weight = side_data.get('decoder_token_prob_weight', None) if self.decoder_token_prob_weight is not None: self.decoder_token_prob_weight = self.decoder_token_prob_weight.to(self.device) self.is_weight_logits = opt.get('is_weight_logits', False) self.is_coarse_weight_loss = opt.get('is_coarse_weight_loss', False) # assert not(self.is_weight_logits and self.is_coarse_weight_loss) self._build_model() def _build_model(self): self.register_buffer('START', torch.tensor([self.start_token_idx], dtype=torch.long)) self.conv_decoder = TransformerDecoderKGSelection( self.opt, self.n_heads, self.n_layers, self.token_emb_dim, self.ffn_size, self.vocab_size, embedding=self.decoder_token_embedding, dropout=self.dropout, attention_dropout=self.attention_dropout, relu_dropout=self.relu_dropout, embeddings_scale=self.embeddings_scale, learn_positional_embeddings=self.learn_positional_embeddings, padding_idx=self.pad_token_idx, n_positions=self.n_positions ) self.conv_loss = self.build_loss_func() self._build_copy_network() def build_loss_func(self): if self.is_coarse_weight_loss: conv_loss = Handle_Croess_Entropy_Loss(ignore_index=self.pad_token_idx, weight=self.decoder_token_prob_weight.squeeze()) # conv_loss = coarse_weight_loss(ignore_index=self.pad_token_idx) else: conv_loss = nn.CrossEntropyLoss(ignore_index=self.pad_token_idx) return conv_loss def _build_copy_network(self): n_copy_source = 3 if '3' in self.opt['logit_type'] else 2 self.copy_norm = nn.Linear(self.ffn_size * n_copy_source, self.token_emb_dim) self.copy_output = nn.Linear(self.token_emb_dim, self.vocab_size) self.fusion_latent_norm = nn.Linear(self.ffn_size * n_copy_source, self.token_emb_dim) def forward(self, mode, encoder_output, encoder_mask, conv_entity_emb, conv_entity_reps, entity_padding_mask, conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, response): ''' encoder_output, encoder_mask: (bs, seq_len, dim), (bs, seq_len) conv_entity_reps, entity_padding_mask: (bs, n_context_entities, ffn_size), (bs, entity_len) conv_review_reps, review_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review) review_token_reps, review_token_padding_mask: (bs, nb_review, ffn_size), (bs, nb_review, seq_len3) response: (bs, seq_len) ''' mode2decode_func = { 'train': self._decode_forced_with_kg, 'val': self._decode_forced_with_kg, 'test': self._decode_greedy_with_kg } decode_func = mode2decode_func[mode] logits, preds, loss = decode_func( encoder_output, encoder_mask, conv_entity_emb, conv_entity_reps, entity_padding_mask, conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, response) return loss, preds def _starts(self, bs): """Return bs start tokens.""" return self.START.detach().expand(bs, 1) def _decode_forced_with_kg( self, encoder_output, encoder_mask, conv_entity_emb, conv_entity_reps, entity_padding_mask, conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, response): batch_size, seq_len = response.shape start = self._starts(batch_size) inputs = torch.cat((start, response[:, :-1]), dim=-1).long() # (bs, seq_len) # inputs = response[:, :] # (bs, seq_len) dialog_latent, _ = self.conv_decoder( inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask) # (bs, seq_len, dim) gen_logits, preds, loss = self._force_process_dialog_latent(conv_entity_emb, conv_review_emb, dialog_latent, response, conv_review_reps, review_padding_mask) return gen_logits, preds, loss def _force_process_dialog_latent(self, entity_latent, review_latent, dialog_latent, response, conv_review_reps, review_padding_mask): # (bs, dim), (bs, dim), (bs, seq_len1, dim), (bs, seq_len), (bs, nb_review, ffn_size), (bs, nb_review) batch_size, seq_len = response.shape entity_latent = entity_latent.unsqueeze(1).expand(-1, seq_len, -1) # (bs, seq_len, ffn_size) review_latent = review_latent.unsqueeze(1).expand(-1, seq_len, -1) # (bs, seq_len, ffn_size) logits = self._get_logits(entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask) # (bs, seq_len, vocab_size) preds = logits.argmax(dim=-1) loss = self._force_get_gen_loss(logits, response) return logits, preds, loss def _force_get_gen_loss(self, logits, response): # (bs, seq_len, vocab_size), (bs, seq_len) logits = logits.view(-1, logits.shape[-1]) # (bs*seq_len, nb_tok) response = response.view(-1) # (bs*seq_len) # n = 2 # loss = self.conv_loss(logits[:n], response[:n]) # logger.info(f'{logits[:n]}') # logger.info(f'{response[:n]}') # logger.info(f'{loss}') # ipdb.set_trace() loss = self.conv_loss(logits, response) return loss def _decode_greedy_with_kg( self, encoder_output, encoder_mask, conv_entity_emb, conv_entity_reps, entity_padding_mask, conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, response): bs = encoder_output.shape[0] inputs = self._starts(bs).long() # (bs, 1) incr_state = None logits = [] for _ in range(self.response_truncate): dialog_latent, incr_state = self.conv_decoder( inputs, encoder_output, encoder_mask, conv_entity_reps, entity_padding_mask, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, incr_state) # (bs, seq_len, dim), None cur_time_logits, preds = self._greedy_process_dialog_latent(conv_entity_emb, conv_review_emb, dialog_latent, conv_review_reps, review_padding_mask) logits.append(cur_time_logits) inputs = torch.cat((inputs, preds), dim=1) # (bs, gen_response_len) finished = ((inputs == self.end_token_idx).sum(dim=-1) > 0).sum().item() == bs if finished: break logits = torch.cat(logits, dim=1) # (bs, response_truncate, nb_tok) loss = None return logits, inputs, loss # (bs, response_truncate, nb_tok), def _greedy_process_dialog_latent(self, entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask): # (bs, dim), (bs, dim), (bs, seq_len1, dim), (bs, seq_len) entity_latent = entity_latent.unsqueeze(1) # (bs, 1, dim) review_latent = review_latent.unsqueeze(1) # (bs, 1, dim) dialog_latent = dialog_latent[:, -1:, :] # (bs, 1, dim) logits = self._get_logits(entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask) # (bs, 1, nb_tok) preds = logits.argmax(dim=-1).long() # (bs, 1) return logits, preds def _get_logits(self, entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask): # (bs, seq_len, dim) * 3 logits = self._get_logits_hs_copy2(entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask) # (bs, seq_len, nb_tok) logits = self.weight_logits(logits) # (bs, seq_len, nb_tok) return logits # (bs, seq_len, nb_tok) def weight_logits(self, logits): # (bs, seq_len, nb_tok) if self.is_weight_logits and self.decoder_token_prob_weight is not None: logits = logits * self.decoder_token_prob_weight return logits def _get_logits_hs_copy2(self, entity_latent, review_latent, dialog_latent, conv_review_reps, review_padding_mask): # (bs, seq_len, dim) * 3, (bs, nb_review, ffn_size) fusion_latent = self.get_fusion_latent2(dialog_latent, conv_review_reps, review_padding_mask) # (bs, seq_len, ffn_size) gen_logits = F.linear(fusion_latent, self.decoder_token_embedding.weight) # (bs, seq_len, nb_tok) sum_logits = gen_logits # (bs, seq_len, nb_tok) return sum_logits # (bs, seq_len, nb_tok) def get_fusion_latent2(self, dialog_latent, conv_review_reps, review_padding_mask): # (bs, seq_len, ffn_size), (bs, nb_review, ffn_size), (bs, nb_review) bs, seq_len, _ = dialog_latent.shape bs, nb_review, _ = conv_review_reps.shape # dialog_latent = dialog_latent.transpose(0, 1).contiguous() # (seq_len, bs, ffn_size) # dialog_latent = dialog_latent.unsqueeze(2).expand(-1, -1, nb_review, -1) # (seq_len, bs, nb_review, ffn_size) # dialog_latent = dialog_latent.view(-1, self.ffn_size) # (seq_len*bs*nb_review, ffn_size) # conv_review_reps = conv_review_reps.view(-1, self.ffn_size) # (bs*nb_review, ffn_size) # conv_review_reps = conv_review_reps.expand(seq_len*bs*nb_review, -1) # (seq_len*bs*nb_review, ffn_size) # dot_prod = dialog_latent * conv_review_reps # (seq_len*bs*nb_review) # dot_prod = dot_prod.view(bs, seq_len, nb_review) # (seq_len, bs, nb_review) # weight = F.softmax(atten, dim=-1).type_as(atten) # (seq_len, bs, nb_review) dot_prod = dialog_latent.bmm(conv_review_reps.transpose(1, 2)) # (bs, seq_len, nb_review) # dot_prod = dot_prod.transpose(0, 1).contiguous() # (seq_len, bs, nb_review) attn_mask = review_padding_mask.unsqueeze(1).expand(-1, seq_len, -1) # (bs, seq_len, nb_review) dot_prod.masked_fill_(~attn_mask.bool(), neginf(dot_prod.dtype)) # (bs, seq_len, nb_review) weight = F.softmax(dot_prod, dim=-1).type_as(conv_review_reps) # (bs, seq_len, nb_review) decode_atten_review_reps = weight.bmm(conv_review_reps) # (bs, seq_len, ffn_size) decode_atten_review_reps = decode_atten_review_reps.view(bs, seq_len, self.ffn_size) # (bs, seq_len, ffn_size) fusion_latent = torch.cat([dialog_latent, decode_atten_review_reps], dim=-1) # (bs, seq_len, ffn_size*2) fusion_latent = self.fusion_latent_norm(fusion_latent) # (bs, seq_len, ffn_size) return fusion_latent # (bs, seq_len, ffn_size) class CFSelectionConvModel(nn.Module): def __init__(self, opt, device, vocab, side_data, decoder_token_embedding): """ Args: opt (dict): A dictionary record the hyper parameters. device (torch.device): A variable indicating which device to place the data and model. vocab (dict): A dictionary record the vocabulary information. side_data (dict): A dictionary record the side data. """ super().__init__() self.opt, self.device, self.vocab, self.side_data, self.decoder_token_embedding = opt, device, vocab, side_data, decoder_token_embedding # vocab self.vocab_size = vocab['vocab_size'] self.pad_token_idx = vocab['pad'] self.start_token_idx = vocab['start'] self.end_token_idx = vocab['end'] self.token_emb_dim = opt['token_emb_dim'] self.pretrained_embedding = side_data.get('embedding', None) # kg self.n_word = side_data['word_kg']['n_entity'] self.kg_name = opt['kg_name'] self.n_entity = side_data[self.kg_name]['n_entity'] self.pad_word_idx = vocab['pad_word'] self.pad_entity_idx = vocab['pad_entity'] entity_kg = side_data['entity_kg'] self.n_relation = entity_kg['n_relation'] entity_edges = entity_kg['edge'] self.entity_edge_idx, self.entity_edge_type = edge_to_pyg_format(entity_edges, 'RGCN') self.entity_edge_idx = self.entity_edge_idx.to(device) self.entity_edge_type = self.entity_edge_type.to(device) word_edges = side_data['word_kg']['edge'] self.word_edges = edge_to_pyg_format(word_edges, 'GCN').to(device) self.num_bases = opt['num_bases'] self.kg_emb_dim = opt['kg_emb_dim'] # transformer self.n_heads = opt['n_heads'] self.n_layers = opt['n_layers'] self.ffn_size = opt['ffn_size'] self.dropout = opt['dropout'] self.attention_dropout = opt['attention_dropout'] self.relu_dropout = opt['relu_dropout'] self.learn_positional_embeddings = opt['learn_positional_embeddings'] self.embeddings_scale = opt['embeddings_scale'] self.reduction = opt['reduction'] self.n_positions = opt['n_positions'] self.response_truncate = opt.get('response_truncate', 20) self.build_model() def build_model(self): self.db_model = DBModel(self.opt, self.device, self.vocab, self.side_data) self.review_model = CoarseReviewModelForDecoder(self.opt, self.device, self.vocab, self.side_data) self.decoder_model = DecoderCNSelectionModel(self.opt, self.device, self.vocab, self.side_data, self.decoder_token_embedding) def model_context(self, conv_encoder, context_tokens): encoder_output, encoder_mask = conv_encoder(context_tokens) # (last_hidden_state, mask) = (bs, seq_len, dim), (bs, seq_len) return encoder_output, encoder_mask # (last_hidden_state, mask) = (bs, seq_len, dim), (bs, seq_len) def forward(self, batch, mode, conv_encoder, kgModel, reviewModel): # converse context_tokens, context_entities, response = \ batch['context_tokens'], batch['context_entities'], batch['response'] entity_padding_mask = ~context_entities.eq(self.pad_entity_idx) # (bs, entity_len) encoder_output, encoder_mask = self.model_context(conv_encoder, context_tokens) # (bs, seq_len, dim), (bs, seq_len) # (bs, dim), (bs, n_context_entities, dim), (bs, ffn_size), (bs, n_context_entities, ffn_size) entity_attn_rep, entity_representations, conv_entity_emb, conv_entity_reps = self.db_model(batch, mode, kgModel) # (bs, ffn_size), (bs, n_review, ffn_size), (bs, nb_review), (bs, n_review, seq_len3, dim), (bs, n_review, seq_len3) conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask = self.review_model( batch, mode, reviewModel) loss, preds = self.decoder_model( mode, encoder_output, encoder_mask, conv_entity_emb, conv_entity_reps, entity_padding_mask, conv_review_emb, conv_review_reps, review_padding_mask, review_token_reps, review_token_padding_mask, response) return loss, preds
[ "torch.nn.Dropout", "numpy.sqrt", "torch.nn.CrossEntropyLoss", "math.sqrt", "torch.nn.init.xavier_normal_", "crslab.model.utils.modules.transformer.TransformerFFN", "crslab.model.utils.modules.transformer.create_position_codes", "torch.nn.functional.softmax", "torch.arange", "torch.nn.functional.linear", "torch.nn.ModuleList", "torch.nn.LayerNorm", "crslab.model.utils.modules.transformer._create_selfattn_mask", "crslab.model.utils.modules.transformer.MultiHeadAttention", "crslab.model.utils.functions.edge_to_pyg_format", "torch.nn.Embedding", "crslab.model.utils.modules.attention.SelfAttentionSeq", "torch.cat", "torch.nn.init.normal_", "loguru.logger.debug", "torch.tensor", "torch.nn.Linear", "crslab.model.utils.modules.transformer._normalize" ]
[((2147, 2187), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['entity_edges', '"""RGCN"""'], {}), "(entity_edges, 'RGCN')\n", (2165, 2187), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((3280, 3321), 'torch.nn.Linear', 'nn.Linear', (['self.kg_emb_dim', 'self.ffn_size'], {}), '(self.kg_emb_dim, self.ffn_size)\n', (3289, 3321), False, 'from torch import nn\n'), ((3359, 3400), 'torch.nn.Linear', 'nn.Linear', (['self.kg_emb_dim', 'self.ffn_size'], {}), '(self.kg_emb_dim, self.ffn_size)\n', (3368, 3400), False, 'from torch import nn\n'), ((5720, 5760), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['entity_edges', '"""RGCN"""'], {}), "(entity_edges, 'RGCN')\n", (5738, 5760), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((6862, 6906), 'torch.nn.Linear', 'nn.Linear', (['self.token_emb_dim', 'self.ffn_size'], {}), '(self.token_emb_dim, self.ffn_size)\n', (6871, 6906), False, 'from torch import nn\n'), ((6939, 6983), 'torch.nn.Linear', 'nn.Linear', (['self.token_emb_dim', 'self.ffn_size'], {}), '(self.token_emb_dim, self.ffn_size)\n', (6948, 6983), False, 'from torch import nn\n'), ((9317, 9338), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (9327, 9338), False, 'from torch import nn\n'), ((9383, 9402), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (9392, 9402), False, 'from torch import nn\n'), ((9424, 9443), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (9433, 9443), False, 'from torch import nn\n'), ((9465, 9484), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (9474, 9484), False, 'from torch import nn\n'), ((9543, 9584), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['self.q_lin.weight'], {}), '(self.q_lin.weight)\n', (9565, 9584), False, 'from torch import nn\n'), ((9593, 9634), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['self.k_lin.weight'], {}), '(self.k_lin.weight)\n', (9615, 9634), False, 'from torch import nn\n'), ((9643, 9684), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['self.v_lin.weight'], {}), '(self.v_lin.weight)\n', (9665, 9684), False, 'from torch import nn\n'), ((9738, 9757), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (9747, 9757), False, 'from torch import nn\n'), ((9766, 9809), 'torch.nn.init.xavier_normal_', 'nn.init.xavier_normal_', (['self.out_lin.weight'], {}), '(self.out_lin.weight)\n', (9788, 9809), False, 'from torch import nn\n'), ((9855, 9909), 'crslab.model.utils.modules.attention.SelfAttentionSeq', 'SelfAttentionSeq', (['self.dim_per_head', 'self.dim_per_head'], {}), '(self.dim_per_head, self.dim_per_head)\n', (9871, 9909), False, 'from crslab.model.utils.modules.attention import SelfAttentionBatch, SelfAttentionSeq\n'), ((11242, 11265), 'math.sqrt', 'math.sqrt', (['dim_per_head'], {}), '(dim_per_head)\n', (11251, 11265), False, 'import math\n'), ((17829, 17850), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (17839, 17850), False, 'from torch import nn\n'), ((17882, 17952), 'crslab.model.utils.modules.transformer.MultiHeadAttention', 'MultiHeadAttention', (['n_heads', 'embedding_size'], {'dropout': 'attention_dropout'}), '(n_heads, embedding_size, dropout=attention_dropout)\n', (17900, 17952), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((17996, 18024), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18008, 18024), False, 'from torch import nn\n'), ((18059, 18129), 'crslab.model.utils.modules.transformer.MultiHeadAttention', 'MultiHeadAttention', (['n_heads', 'embedding_size'], {'dropout': 'attention_dropout'}), '(n_heads, embedding_size, dropout=attention_dropout)\n', (18077, 18129), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((18173, 18201), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18185, 18201), False, 'from torch import nn\n'), ((18239, 18309), 'crslab.model.utils.modules.transformer.MultiHeadAttention', 'MultiHeadAttention', (['n_heads', 'embedding_size'], {'dropout': 'attention_dropout'}), '(n_heads, embedding_size, dropout=attention_dropout)\n', (18257, 18309), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((18356, 18384), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18368, 18384), False, 'from torch import nn\n'), ((18426, 18496), 'crslab.model.utils.modules.transformer.MultiHeadAttention', 'MultiHeadAttention', (['n_heads', 'embedding_size'], {'dropout': 'attention_dropout'}), '(n_heads, embedding_size, dropout=attention_dropout)\n', (18444, 18496), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((18547, 18575), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18559, 18575), False, 'from torch import nn\n'), ((18752, 18780), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18764, 18780), False, 'from torch import nn\n'), ((18801, 18868), 'crslab.model.utils.modules.transformer.TransformerFFN', 'TransformerFFN', (['embedding_size', 'ffn_size'], {'relu_dropout': 'relu_dropout'}), '(embedding_size, ffn_size, relu_dropout=relu_dropout)\n', (18815, 18868), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((18890, 18918), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['embedding_size'], {}), '(embedding_size)\n', (18902, 18918), False, 'from torch import nn\n'), ((20374, 20398), 'crslab.model.utils.modules.transformer._create_selfattn_mask', '_create_selfattn_mask', (['x'], {}), '(x)\n', (20395, 20398), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((20622, 20647), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm1'], {}), '(x, self.norm1)\n', (20632, 20647), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((21192, 21220), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm2_db'], {}), '(x, self.norm2_db)\n', (21202, 21220), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((21762, 21794), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm2_review'], {}), '(x, self.norm2_review)\n', (21772, 21794), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((22413, 22446), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm2_review2'], {}), '(x, self.norm2_review2)\n', (22423, 22446), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((22838, 22863), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm2'], {}), '(x, self.norm2)\n', (22848, 22863), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((23077, 23102), 'crslab.model.utils.modules.transformer._normalize', '_normalize', (['x', 'self.norm3'], {}), '(x, self.norm3)\n', (23087, 23102), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((24940, 24976), 'loguru.logger.debug', 'logger.debug', (['"""[forward_d_c_db_r_f]"""'], {}), "('[forward_d_c_db_r_f]')\n", (24952, 24976), False, 'from loguru import logger\n'), ((26131, 26150), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (26141, 26150), False, 'from torch import nn\n'), ((26779, 26820), 'torch.nn.Embedding', 'nn.Embedding', (['n_positions', 'embedding_size'], {}), '(n_positions, embedding_size)\n', (26791, 26820), False, 'from torch import nn\n'), ((27263, 27278), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (27276, 27278), False, 'from torch import nn\n'), ((30555, 30570), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (30568, 30570), False, 'from torch import nn\n'), ((31916, 31956), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['entity_edges', '"""RGCN"""'], {}), "(entity_edges, 'RGCN')\n", (31934, 31956), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((34752, 34812), 'torch.nn.Linear', 'nn.Linear', (['(self.ffn_size * n_copy_source)', 'self.token_emb_dim'], {}), '(self.ffn_size * n_copy_source, self.token_emb_dim)\n', (34761, 34812), False, 'from torch import nn\n'), ((34840, 34886), 'torch.nn.Linear', 'nn.Linear', (['self.token_emb_dim', 'self.vocab_size'], {}), '(self.token_emb_dim, self.vocab_size)\n', (34849, 34886), False, 'from torch import nn\n'), ((34922, 34982), 'torch.nn.Linear', 'nn.Linear', (['(self.ffn_size * n_copy_source)', 'self.token_emb_dim'], {}), '(self.ffn_size * n_copy_source, self.token_emb_dim)\n', (34931, 34982), False, 'from torch import nn\n'), ((40066, 40090), 'torch.cat', 'torch.cat', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (40075, 40090), False, 'import torch\n'), ((41831, 41891), 'torch.nn.functional.linear', 'F.linear', (['fusion_latent', 'self.decoder_token_embedding.weight'], {}), '(fusion_latent, self.decoder_token_embedding.weight)\n', (41839, 41891), True, 'import torch.nn.functional as F\n'), ((43792, 43852), 'torch.cat', 'torch.cat', (['[dialog_latent, decode_atten_review_reps]'], {'dim': '(-1)'}), '([dialog_latent, decode_atten_review_reps], dim=-1)\n', (43801, 43852), False, 'import torch\n'), ((45425, 45465), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['entity_edges', '"""RGCN"""'], {}), "(entity_edges, 'RGCN')\n", (45443, 45465), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((26877, 26964), 'crslab.model.utils.modules.transformer.create_position_codes', 'create_position_codes', (['n_positions', 'embedding_size'], {'out': 'position_embeddings.weight'}), '(n_positions, embedding_size, out=position_embeddings.\n weight)\n', (26898, 26964), False, 'from crslab.model.utils.modules.transformer import MultiHeadAttention, TransformerFFN, _create_selfattn_mask, _normalize, create_position_codes\n'), ((27016, 27086), 'torch.nn.init.normal_', 'nn.init.normal_', (['position_embeddings.weight', '(0)', '(embedding_size ** -0.5)'], {}), '(position_embeddings.weight, 0, embedding_size ** -0.5)\n', (27031, 27086), False, 'from torch import nn\n'), ((33493, 33547), 'torch.tensor', 'torch.tensor', (['[self.start_token_idx]'], {'dtype': 'torch.long'}), '([self.start_token_idx], dtype=torch.long)\n', (33505, 33547), False, 'import torch\n'), ((34538, 34590), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'ignore_index': 'self.pad_token_idx'}), '(ignore_index=self.pad_token_idx)\n', (34557, 34590), False, 'from torch import nn\n'), ((39850, 39883), 'torch.cat', 'torch.cat', (['(inputs, preds)'], {'dim': '(1)'}), '((inputs, preds), dim=1)\n', (39859, 39883), False, 'import torch\n'), ((2392, 2429), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['word_edges', '"""GCN"""'], {}), "(word_edges, 'GCN')\n", (2410, 2429), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((5965, 6002), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['word_edges', '"""GCN"""'], {}), "(word_edges, 'GCN')\n", (5983, 6002), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((15485, 15512), 'torch.nn.functional.softmax', 'F.softmax', (['dot_prod'], {'dim': '(-1)'}), '(dot_prod, dim=-1)\n', (15494, 15512), True, 'import torch.nn.functional as F\n'), ((28941, 28958), 'numpy.sqrt', 'np.sqrt', (['self.dim'], {}), '(self.dim)\n', (28948, 28958), True, 'import numpy as np\n'), ((29343, 29379), 'torch.arange', 'torch.arange', (['seq_len'], {'out': 'positions'}), '(seq_len, out=positions)\n', (29355, 29379), False, 'import torch\n'), ((32161, 32198), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['word_edges', '"""GCN"""'], {}), "(word_edges, 'GCN')\n", (32179, 32198), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n'), ((36827, 36871), 'torch.cat', 'torch.cat', (['(start, response[:, :-1])'], {'dim': '(-1)'}), '((start, response[:, :-1]), dim=-1)\n', (36836, 36871), False, 'import torch\n'), ((43476, 43503), 'torch.nn.functional.softmax', 'F.softmax', (['dot_prod'], {'dim': '(-1)'}), '(dot_prod, dim=-1)\n', (43485, 43503), True, 'import torch.nn.functional as F\n'), ((45670, 45707), 'crslab.model.utils.functions.edge_to_pyg_format', 'edge_to_pyg_format', (['word_edges', '"""GCN"""'], {}), "(word_edges, 'GCN')\n", (45688, 45707), False, 'from crslab.model.utils.functions import edge_to_pyg_format\n')]
""" Implementation of a standard financial plot visualization using Chaco renderers and scales. This differs from the financial_plot.py example in that it uses a date-oriented axis. """ # Major library imports from numpy import abs, cumprod, linspace, random import time # Enthought library imports from enable.api import Component, ComponentEditor from traits.api import HasTraits, Instance from traitsui.api import Item, Group, View # Chaco imports from chaco.api import ArrayDataSource, BarPlot, DataRange1D, \ LinearMapper, VPlotContainer, PlotAxis, \ FilledLinePlot, add_default_grids, PlotLabel from chaco.tools.api import PanTool, ZoomTool from chaco.scales.api import CalendarScaleSystem from chaco.scales_tick_generator import ScalesTickGenerator def create_dates(numpoints, units="days"): """ Returns **numpoints** number of dates that evenly bracket the current date and time. **units** should be one of "weeks", "days", "hours" "minutes", or "seconds". """ units_map = { "weeks": 7 * 24 * 3600, "days": 24 * 3600, "hours": 3600, "minutes": 60, "seconds": 1 } now = time.time() dt = units_map[units] dates = linspace(now, now + numpoints * dt, numpoints) return dates #=============================================================================== # # Create the Chaco plot. #=============================================================================== def _create_plot_component(): # Create the data and datasource objects # In order for the date axis to work, the index data points need to # be in units of seconds since the epoch. This is because we are using # the CalendarScaleSystem, whose formatters interpret the numerical values # as seconds since the epoch. numpoints = 500 index = create_dates(numpoints) returns = random.lognormal(0.01, 0.1, size=numpoints) price = 100.0 * cumprod(returns) volume = abs(random.normal(1000.0, 1500.0, size=numpoints) + 2000.0) time_ds = ArrayDataSource(index) vol_ds = ArrayDataSource(volume, sort_order="none") price_ds = ArrayDataSource(price, sort_order="none") xmapper = LinearMapper(range=DataRange1D(time_ds)) vol_mapper = LinearMapper(range=DataRange1D(vol_ds)) price_mapper = LinearMapper(range=DataRange1D(price_ds)) price_plot = FilledLinePlot( index=time_ds, value=price_ds, index_mapper=xmapper, value_mapper=price_mapper, edge_color="blue", face_color="paleturquoise", bgcolor="white", border_visible=True) price_plot.overlays.append(PlotAxis(price_plot, orientation='left')), # Set the plot's bottom axis to use the Scales ticking system bottom_axis = PlotAxis( price_plot, orientation="bottom", # mapper=xmapper, tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem())) price_plot.overlays.append(bottom_axis) hgrid, vgrid = add_default_grids(price_plot) vgrid.tick_generator = bottom_axis.tick_generator price_plot.tools.append( PanTool( price_plot, constrain=True, constrain_direction="x")) price_plot.overlays.append( ZoomTool( price_plot, drag_button="right", always_on=True, tool_mode="range", axis="index", max_zoom_out_factor=10.0, )) vol_plot = BarPlot( index=time_ds, value=vol_ds, index_mapper=xmapper, value_mapper=vol_mapper, line_color="transparent", fill_color="black", bar_width=1.0, bar_width_type="screen", antialias=False, height=100, resizable="h", bgcolor="white", border_visible=True) hgrid, vgrid = add_default_grids(vol_plot) # Use the same tick generator as the x-axis on the price plot vgrid.tick_generator = bottom_axis.tick_generator vol_plot.underlays.append(PlotAxis(vol_plot, orientation='left')) vol_plot.tools.append( PanTool( vol_plot, constrain=True, constrain_direction="x")) container = VPlotContainer( bgcolor="lightblue", spacing=40, padding=50, fill_padding=False) container.add(vol_plot) container.add(price_plot) container.overlays.append( PlotLabel( "Financial Plot with Date Axis", component=container, #font="Times New Roman 24")) font="Arial 24")) return container #=============================================================================== # Attributes to use for the plot view. size = (800, 600) title = "Financial plot example" #=============================================================================== # # Demo class that is used by the demo.py application. #=============================================================================== class Demo(HasTraits): plot = Instance(Component) traits_view = View( Group( Item( 'plot', editor=ComponentEditor(size=size), show_label=False), orientation="vertical"), resizable=True, title=title, width=size[0], height=size[1]) def _plot_default(self): return _create_plot_component() demo = Demo() if __name__ == "__main__": demo.configure_traits() #--EOF---
[ "chaco.api.FilledLinePlot", "traits.api.Instance", "numpy.random.normal", "chaco.tools.api.PanTool", "chaco.tools.api.ZoomTool", "numpy.cumprod", "chaco.scales.api.CalendarScaleSystem", "chaco.api.add_default_grids", "chaco.api.BarPlot", "chaco.api.DataRange1D", "chaco.api.ArrayDataSource", "numpy.linspace", "enable.api.ComponentEditor", "chaco.api.PlotAxis", "chaco.api.PlotLabel", "chaco.api.VPlotContainer", "time.time", "numpy.random.lognormal" ]
[((1169, 1180), 'time.time', 'time.time', ([], {}), '()\n', (1178, 1180), False, 'import time\n'), ((1219, 1265), 'numpy.linspace', 'linspace', (['now', '(now + numpoints * dt)', 'numpoints'], {}), '(now, now + numpoints * dt, numpoints)\n', (1227, 1265), False, 'from numpy import abs, cumprod, linspace, random\n'), ((1881, 1924), 'numpy.random.lognormal', 'random.lognormal', (['(0.01)', '(0.1)'], {'size': 'numpoints'}), '(0.01, 0.1, size=numpoints)\n', (1897, 1924), False, 'from numpy import abs, cumprod, linspace, random\n'), ((2050, 2072), 'chaco.api.ArrayDataSource', 'ArrayDataSource', (['index'], {}), '(index)\n', (2065, 2072), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2086, 2128), 'chaco.api.ArrayDataSource', 'ArrayDataSource', (['volume'], {'sort_order': '"""none"""'}), "(volume, sort_order='none')\n", (2101, 2128), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2144, 2185), 'chaco.api.ArrayDataSource', 'ArrayDataSource', (['price'], {'sort_order': '"""none"""'}), "(price, sort_order='none')\n", (2159, 2185), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2378, 2566), 'chaco.api.FilledLinePlot', 'FilledLinePlot', ([], {'index': 'time_ds', 'value': 'price_ds', 'index_mapper': 'xmapper', 'value_mapper': 'price_mapper', 'edge_color': '"""blue"""', 'face_color': '"""paleturquoise"""', 'bgcolor': '"""white"""', 'border_visible': '(True)'}), "(index=time_ds, value=price_ds, index_mapper=xmapper,\n value_mapper=price_mapper, edge_color='blue', face_color=\n 'paleturquoise', bgcolor='white', border_visible=True)\n", (2392, 2566), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2997, 3026), 'chaco.api.add_default_grids', 'add_default_grids', (['price_plot'], {}), '(price_plot)\n', (3014, 3026), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((3443, 3707), 'chaco.api.BarPlot', 'BarPlot', ([], {'index': 'time_ds', 'value': 'vol_ds', 'index_mapper': 'xmapper', 'value_mapper': 'vol_mapper', 'line_color': '"""transparent"""', 'fill_color': '"""black"""', 'bar_width': '(1.0)', 'bar_width_type': '"""screen"""', 'antialias': '(False)', 'height': '(100)', 'resizable': '"""h"""', 'bgcolor': '"""white"""', 'border_visible': '(True)'}), "(index=time_ds, value=vol_ds, index_mapper=xmapper, value_mapper=\n vol_mapper, line_color='transparent', fill_color='black', bar_width=1.0,\n bar_width_type='screen', antialias=False, height=100, resizable='h',\n bgcolor='white', border_visible=True)\n", (3450, 3707), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((3820, 3847), 'chaco.api.add_default_grids', 'add_default_grids', (['vol_plot'], {}), '(vol_plot)\n', (3837, 3847), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((4163, 4242), 'chaco.api.VPlotContainer', 'VPlotContainer', ([], {'bgcolor': '"""lightblue"""', 'spacing': '(40)', 'padding': '(50)', 'fill_padding': '(False)'}), "(bgcolor='lightblue', spacing=40, padding=50, fill_padding=False)\n", (4177, 4242), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((4958, 4977), 'traits.api.Instance', 'Instance', (['Component'], {}), '(Component)\n', (4966, 4977), False, 'from traits.api import HasTraits, Instance\n'), ((1945, 1961), 'numpy.cumprod', 'cumprod', (['returns'], {}), '(returns)\n', (1952, 1961), False, 'from numpy import abs, cumprod, linspace, random\n'), ((3119, 3179), 'chaco.tools.api.PanTool', 'PanTool', (['price_plot'], {'constrain': '(True)', 'constrain_direction': '"""x"""'}), "(price_plot, constrain=True, constrain_direction='x')\n", (3126, 3179), False, 'from chaco.tools.api import PanTool, ZoomTool\n'), ((3234, 3354), 'chaco.tools.api.ZoomTool', 'ZoomTool', (['price_plot'], {'drag_button': '"""right"""', 'always_on': '(True)', 'tool_mode': '"""range"""', 'axis': '"""index"""', 'max_zoom_out_factor': '(10.0)'}), "(price_plot, drag_button='right', always_on=True, tool_mode='range',\n axis='index', max_zoom_out_factor=10.0)\n", (3242, 3354), False, 'from chaco.tools.api import PanTool, ZoomTool\n'), ((3998, 4036), 'chaco.api.PlotAxis', 'PlotAxis', (['vol_plot'], {'orientation': '"""left"""'}), "(vol_plot, orientation='left')\n", (4006, 4036), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((4073, 4131), 'chaco.tools.api.PanTool', 'PanTool', (['vol_plot'], {'constrain': '(True)', 'constrain_direction': '"""x"""'}), "(vol_plot, constrain=True, constrain_direction='x')\n", (4080, 4131), False, 'from chaco.tools.api import PanTool, ZoomTool\n'), ((4349, 4434), 'chaco.api.PlotLabel', 'PlotLabel', (['"""Financial Plot with Date Axis"""'], {'component': 'container', 'font': '"""Arial 24"""'}), "('Financial Plot with Date Axis', component=container, font='Arial 24'\n )\n", (4358, 4434), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((1979, 2024), 'numpy.random.normal', 'random.normal', (['(1000.0)', '(1500.0)'], {'size': 'numpoints'}), '(1000.0, 1500.0, size=numpoints)\n', (1992, 2024), False, 'from numpy import abs, cumprod, linspace, random\n'), ((2220, 2240), 'chaco.api.DataRange1D', 'DataRange1D', (['time_ds'], {}), '(time_ds)\n', (2231, 2240), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2278, 2297), 'chaco.api.DataRange1D', 'DataRange1D', (['vol_ds'], {}), '(vol_ds)\n', (2289, 2297), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2337, 2358), 'chaco.api.DataRange1D', 'DataRange1D', (['price_ds'], {}), '(price_ds)\n', (2348, 2358), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2654, 2694), 'chaco.api.PlotAxis', 'PlotAxis', (['price_plot'], {'orientation': '"""left"""'}), "(price_plot, orientation='left')\n", (2662, 2694), False, 'from chaco.api import ArrayDataSource, BarPlot, DataRange1D, LinearMapper, VPlotContainer, PlotAxis, FilledLinePlot, add_default_grids, PlotLabel\n'), ((2910, 2931), 'chaco.scales.api.CalendarScaleSystem', 'CalendarScaleSystem', ([], {}), '()\n', (2929, 2931), False, 'from chaco.scales.api import CalendarScaleSystem\n'), ((5067, 5093), 'enable.api.ComponentEditor', 'ComponentEditor', ([], {'size': 'size'}), '(size=size)\n', (5082, 5093), False, 'from enable.api import Component, ComponentEditor\n')]
# Copyright 2019 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from lale.lib.autoai_libs import float32_transform from lale.lib.lale import Hyperopt, ConcatFeatures, NoOp from lale.lib.sklearn import LogisticRegression as LR import autoai_libs.utils.fc_methods import lale.lib.autoai_libs import numpy as np import sklearn.datasets import sklearn.model_selection import unittest class TestAutoaiLibs(unittest.TestCase): @classmethod def setUpClass(cls): iris = sklearn.datasets.load_iris() iris_X, iris_y = iris.data, iris.target iris_train_X, iris_test_X, iris_train_y, iris_test_y = \ sklearn.model_selection.train_test_split(iris_X, iris_y) cls._iris = {'train_X': iris_train_X, 'train_y': iris_train_y, 'test_X': iris_test_X, 'test_y': iris_test_y} def doTest(self, trainable, train_X, train_y, test_X, test_y): trained = trainable.fit(train_X, train_y) transformed = trained.transform(test_X) with self.assertWarns(DeprecationWarning): trainable.transform(train_X) trainable.to_json() trainable_pipeline = trainable >> float32_transform() >> LR() trained_pipeline = trainable_pipeline.fit(train_X, train_y) trained_pipeline.predict(test_X) hyperopt = Hyperopt(estimator=trainable_pipeline, max_evals=1) trained_hyperopt = hyperopt.fit(train_X, train_y) trained_hyperopt.predict(test_X) def do1DTest(self, trainable, train_X, train_y, test_X, test_y): #Test for 1-D array as input to the transformers train_X = train_X[:,0] test_X = test_X[:,0] trainable_pipeline = (trainable & NoOp()) >> ConcatFeatures() >> float32_transform() >> LR() trained_pipeline = trainable_pipeline.fit(train_X, train_y) trained_pipeline.predict(test_X) hyperopt = Hyperopt(estimator=trainable_pipeline, max_evals=1) trained_hyperopt = hyperopt.fit(train_X, train_y) trained_hyperopt.predict(test_X) def test_NumpyColumnSelector(self): trainable = lale.lib.autoai_libs.NumpyColumnSelector() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_CompressStrings(self): n_columns = self._iris['train_X'].shape[1] trainable = lale.lib.autoai_libs.CompressStrings( dtypes_list=['int_num' for i in range(n_columns)], misslist_list=[[] for i in range(n_columns)]) self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_NumpyReplaceMissingValues(self): trainable = lale.lib.autoai_libs.NumpyReplaceMissingValues() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_NumpyReplaceUnknownValues(self): trainable = lale.lib.autoai_libs.NumpyReplaceUnknownValues( filling_values=42.0) self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_boolean2float(self): trainable = lale.lib.autoai_libs.boolean2float() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_CatImputer(self): trainable = lale.lib.autoai_libs.CatImputer() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_CatEncoder(self): trainable = lale.lib.autoai_libs.CatEncoder() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_float32_transform(self): trainable = lale.lib.autoai_libs.float32_transform() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_FloatStr2Float(self): n_columns = self._iris['train_X'].shape[1] trainable = lale.lib.autoai_libs.FloatStr2Float( dtypes_list=['int_num' for i in range(n_columns)]) self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_OptStandardScaler(self): trainable = lale.lib.autoai_libs.OptStandardScaler() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_NumImputer(self): trainable = lale.lib.autoai_libs.NumImputer() self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_NumpyPermuteArray(self): trainable = lale.lib.autoai_libs.NumpyPermuteArray( axis=0, permutation_indices=[2,0,1,3]) self.doTest(trainable, **self._iris) self.do1DTest(trainable, **self._iris) def test_TA1(self): from autoai_libs.utils.fc_methods import is_not_categorical float32 = np.dtype('float32') trainable = lale.lib.autoai_libs.TA1( fun=np.rint, name='round', datatypes=['numeric'], feat_constraints=[is_not_categorical], col_names=['a', 'b', 'c', 'd'], col_dtypes=[float32, float32, float32, float32], ) self.doTest(trainable, **self._iris) def test_TA2(self): from autoai_libs.utils.fc_methods import is_not_categorical float32 = np.dtype('float32') trainable = lale.lib.autoai_libs.TA2( fun=np.add, name='sum', datatypes1=['numeric'], feat_constraints1=[is_not_categorical], datatypes2=['numeric'], feat_constraints2=[is_not_categorical], col_names=['a', 'b', 'c', 'd'], col_dtypes=[float32, float32, float32, float32], ) self.doTest(trainable, **self._iris) def test_TB1(self): from sklearn.preprocessing import StandardScaler from autoai_libs.utils.fc_methods import is_not_categorical float32 = np.dtype('float32') trainable = lale.lib.autoai_libs.TB1( tans_class=StandardScaler, name='stdscaler', datatypes=['numeric'], feat_constraints=[is_not_categorical], col_names=['a', 'b', 'c', 'd'], col_dtypes=[float32, float32, float32, float32], ) self.doTest(trainable, **self._iris) def test_TB2(self): pass #TODO: not sure how to instantiate, what to pass for tans_class def test_TAM(self): from autoai_libs.cognito.transforms.transform_extras import IsolationForestAnomaly float32 = np.dtype('float32') trainable = lale.lib.autoai_libs.TAM( tans_class=IsolationForestAnomaly, name='isoforestanomaly', col_names=['a', 'b', 'c', 'd'], col_dtypes=[float32, float32, float32, float32], ) self.doTest(trainable, **self._iris) def test_TGen(self): from autoai_libs.cognito.transforms.transform_extras import NXOR from autoai_libs.utils.fc_methods import is_not_categorical float32 = np.dtype('float32') trainable = lale.lib.autoai_libs.TGen( fun=NXOR, name='nxor', arg_count=2, datatypes_list=[['numeric'], ['numeric']], feat_constraints_list=[[is_not_categorical], [is_not_categorical]], col_names=['a', 'b', 'c', 'd'], col_dtypes=[float32, float32, float32, float32], ) self.doTest(trainable, **self._iris) def test_FS1(self): trainable = lale.lib.autoai_libs.FS1( cols_ids_must_keep=[1], additional_col_count_to_keep=3, ptype='classification', ) self.doTest(trainable, **self._iris) def test_FS2(self): from sklearn.ensemble import ExtraTreesClassifier trainable = lale.lib.autoai_libs.FS2( cols_ids_must_keep=[1], additional_col_count_to_keep=3, ptype='classification', eval_algo=ExtraTreesClassifier, ) self.doTest(trainable, **self._iris)
[ "numpy.dtype", "lale.lib.lale.Hyperopt", "lale.lib.sklearn.LogisticRegression", "lale.lib.autoai_libs.float32_transform", "lale.lib.lale.NoOp", "lale.lib.lale.ConcatFeatures" ]
[((1824, 1875), 'lale.lib.lale.Hyperopt', 'Hyperopt', ([], {'estimator': 'trainable_pipeline', 'max_evals': '(1)'}), '(estimator=trainable_pipeline, max_evals=1)\n', (1832, 1875), False, 'from lale.lib.lale import Hyperopt, ConcatFeatures, NoOp\n'), ((2391, 2442), 'lale.lib.lale.Hyperopt', 'Hyperopt', ([], {'estimator': 'trainable_pipeline', 'max_evals': '(1)'}), '(estimator=trainable_pipeline, max_evals=1)\n', (2399, 2442), False, 'from lale.lib.lale import Hyperopt, ConcatFeatures, NoOp\n'), ((5299, 5318), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (5307, 5318), True, 'import numpy as np\n'), ((5749, 5768), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (5757, 5768), True, 'import numpy as np\n'), ((6331, 6350), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (6339, 6350), True, 'import numpy as np\n'), ((6924, 6943), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (6932, 6943), True, 'import numpy as np\n'), ((7407, 7426), 'numpy.dtype', 'np.dtype', (['"""float32"""'], {}), "('float32')\n", (7415, 7426), True, 'import numpy as np\n'), ((1691, 1695), 'lale.lib.sklearn.LogisticRegression', 'LR', ([], {}), '()\n', (1693, 1695), True, 'from lale.lib.sklearn import LogisticRegression as LR\n'), ((2258, 2262), 'lale.lib.sklearn.LogisticRegression', 'LR', ([], {}), '()\n', (2260, 2262), True, 'from lale.lib.sklearn import LogisticRegression as LR\n'), ((1668, 1687), 'lale.lib.autoai_libs.float32_transform', 'float32_transform', ([], {}), '()\n', (1685, 1687), False, 'from lale.lib.autoai_libs import float32_transform\n'), ((2235, 2254), 'lale.lib.autoai_libs.float32_transform', 'float32_transform', ([], {}), '()\n', (2252, 2254), False, 'from lale.lib.autoai_libs import float32_transform\n'), ((2215, 2231), 'lale.lib.lale.ConcatFeatures', 'ConcatFeatures', ([], {}), '()\n', (2229, 2231), False, 'from lale.lib.lale import Hyperopt, ConcatFeatures, NoOp\n'), ((2204, 2210), 'lale.lib.lale.NoOp', 'NoOp', ([], {}), '()\n', (2208, 2210), False, 'from lale.lib.lale import Hyperopt, ConcatFeatures, NoOp\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Python version: 3.6 import models.func as fc # from models.func import node_deleting import models.test as ts # from models.test import test_part import copy import torch import operator import test from torch import nn from numpy import linalg as LA import logging import torch.nn.functional as F import numpy as np logger = logging.getLogger("main_fed") logger.setLevel(level=logging.DEBUG) def FedAvg(w, idxs_users): # models = list(w.values()) w_avg = w[idxs_users[0]] for k in w_avg.keys(): for i in range(1, len(idxs_users)): w_avg[k] += w[idxs_users[i]][k] w_avg[k] = torch.div(w_avg[k], len(idxs_users)) return w_avg def average(grad_all): value_list = list(grad_all.values()) w_avg = copy.deepcopy(value_list[0]) # print(type(w_avg)) for i in range(1, len(value_list)): w_avg += value_list[i] return w_avg / len(value_list) def Feddel(net_glob, w_locals, gradient, idxs_users, max_now, dataset_test, test_sampler, args, test_count): full_user = copy.copy(idxs_users) # nr_th = len(idxs_users) * 0.7 gradient.pop('avg_grad') expect_list = {} labeled = [] while len(w_locals) > 8: expect_list = fc.node_deleting(expect_list, max_now, idxs_users, gradient) # print(len(w_locals), expect_list) key = max(expect_list.items(), key=operator.itemgetter(1))[0] if expect_list[key] <= expect_list["all"]: # w_glob = FedAvg(w_locals, idxs_users) w_locals, idxs_users break else: labeled.append(key) test_count[key][1] += 1 expect_list.pop("all") # print(key) loss_all, loss_pop, idxs_users= ts.test_part(net_glob, w_locals, idxs_users, key, dataset_test, test_sampler, args) # print(loss_all, loss_pop) if loss_all < loss_pop: w_locals, idxs_users.append(key) break else: # idxs_users.remove(key) w_locals.pop(key) gradient.pop(key) max_now = expect_list[key] expect_list.pop(key) # print(idxs_users, len(w_locals), expect_list.keys()) # print(loss_all, loss_pop, worker_ind) return w_locals, full_user, idxs_users, labeled, test_count def Fedbn2(w, gradient): g_norm = {} for idx in list(gradient.keys()): g_norm[idx] = LA.norm(gradient[idx]) avg_iid, avg_niid = get_avg(g_norm) n_items = {k: w[k] for k in list(w)[:10]} # logger.info('left %s', sorted(list(n_items.keys()))) w_agg = FedAvg(w, list(n_items.keys())) return w_agg, avg_iid, avg_niid def Diff(li1, li2): return (list(list(set(li1)-set(li2)) + list(set(li2)-set(li1)))) def get_avg(g_norm): key = list(sorted(g_norm.keys())) iid = [] for i in range(len(key)): if key[i] < 25: iid.append(key[i]) niid = Diff(key, iid) # print(iid, niid) avg = g_norm[iid[0]] for i in range(len(iid)): # print('iid', iid[i]) avg += g_norm[iid[i]] avg_1 = g_norm[niid[00]] for i in range(len(niid)): # print('niid', niid[i]) avg_1 += g_norm[niid[i]] return avg/len(iid), avg_1/len(niid) # below function is for synthetic dataset def Feddel_syn(net_glob, w_locals, gradient, idxs_users, max_now, dataset_test, args, test_count): full_user = copy.copy(idxs_users) # nr_th = len(idxs_users) * 0.7 gradient.pop('avg_grad') expect_list = {} labeled = [] while len(w_locals) > 8: expect_list = fc.node_deleting(expect_list, max_now, idxs_users, gradient) # print(len(w_locals), expect_list) key = max(expect_list.items(), key=operator.itemgetter(1))[0] if expect_list[key] <= expect_list["all"]: # w_glob = FedAvg(w_locals, idxs_users) w_locals, idxs_users break else: labeled.append(key) test_count[key][1] += 1 expect_list.pop("all") loss_all, loss_pop, idxs_users= test_part(net_glob, w_locals, idxs_users, key, dataset_test, args) if loss_all < loss_pop: w_locals, idxs_users.append(key) break else: w_locals.pop(key) gradient.pop(key) max_now = expect_list[key] expect_list.pop(key) return w_locals, full_user, idxs_users, labeled, test_count def test_part(net_glob, w_locals, idxs_users, key, dataset_test_part, args): net_all = FedAvg(w_locals, idxs_users) # loss_all = 1 net_glob.load_state_dict(net_all) acc, loss_all = test(net_glob, dataset_test_part, args) idxs_users.remove(key) net_part = FedAvg(w_locals, idxs_users) net_glob.load_state_dict(net_part) acc, loss_part = test(net_glob, dataset_test_part, args) # print(loss_all) return loss_all, loss_part, idxs_users def test(net_g, test_data, args): net_g.eval() # testing test_loss = 0 correct = 0 for i in range(int(args.num_users*args.ratio)): data = test_data['user_data'][i] for X, y in batch_data(data, args.local_bs): log_probs = net_g(X) # sum up batch loss test_loss += F.cross_entropy(log_probs, y.long(), reduction='sum').item() y_pred = log_probs.data.max(1, keepdim=True)[1] correct += y_pred.eq(y.long().data.view_as(y_pred)).long().cpu().sum() test_loss /= len(test_data['user_data'][0]['y'])*int(args.num_users*args.ratio) accuracy = 100 * correct / (len(test_data['user_data'][0]['y'])*int(args.num_users*args.ratio)) return accuracy, test_loss def batch_data(data, batch_size): ''' data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client) returns x, y, which are both numpy array of length: batch_size ''' data_x = data['x'] data_y = data['y'] # randomly shuffle data np.random.seed(100) rng_state = np.random.get_state() np.random.shuffle(data_x) np.random.set_state(rng_state) np.random.shuffle(data_y) # loop through mini-batches for i in range(0, len(data_x), batch_size): batched_x = data_x[i:i+batch_size] batched_y = data_y[i:i+batch_size] X = torch.FloatTensor(batched_x) y = torch.FloatTensor(batched_y) yield (X, y)
[ "logging.getLogger", "numpy.random.get_state", "numpy.random.set_state", "numpy.linalg.norm", "test", "numpy.random.seed", "copy.deepcopy", "operator.itemgetter", "copy.copy", "models.test.test_part", "models.func.node_deleting", "torch.FloatTensor", "numpy.random.shuffle" ]
[((374, 403), 'logging.getLogger', 'logging.getLogger', (['"""main_fed"""'], {}), "('main_fed')\n", (391, 403), False, 'import logging\n'), ((812, 840), 'copy.deepcopy', 'copy.deepcopy', (['value_list[0]'], {}), '(value_list[0])\n', (825, 840), False, 'import copy\n'), ((1104, 1125), 'copy.copy', 'copy.copy', (['idxs_users'], {}), '(idxs_users)\n', (1113, 1125), False, 'import copy\n'), ((3573, 3594), 'copy.copy', 'copy.copy', (['idxs_users'], {}), '(idxs_users)\n', (3582, 3594), False, 'import copy\n'), ((4842, 4881), 'test', 'test', (['net_glob', 'dataset_test_part', 'args'], {}), '(net_glob, dataset_test_part, args)\n', (4846, 4881), False, 'import test\n'), ((5013, 5052), 'test', 'test', (['net_glob', 'dataset_test_part', 'args'], {}), '(net_glob, dataset_test_part, args)\n', (5017, 5052), False, 'import test\n'), ((6175, 6194), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (6189, 6194), True, 'import numpy as np\n'), ((6211, 6232), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (6230, 6232), True, 'import numpy as np\n'), ((6237, 6262), 'numpy.random.shuffle', 'np.random.shuffle', (['data_x'], {}), '(data_x)\n', (6254, 6262), True, 'import numpy as np\n'), ((6267, 6297), 'numpy.random.set_state', 'np.random.set_state', (['rng_state'], {}), '(rng_state)\n', (6286, 6297), True, 'import numpy as np\n'), ((6302, 6327), 'numpy.random.shuffle', 'np.random.shuffle', (['data_y'], {}), '(data_y)\n', (6319, 6327), True, 'import numpy as np\n'), ((1280, 1340), 'models.func.node_deleting', 'fc.node_deleting', (['expect_list', 'max_now', 'idxs_users', 'gradient'], {}), '(expect_list, max_now, idxs_users, gradient)\n', (1296, 1340), True, 'import models.func as fc\n'), ((2551, 2573), 'numpy.linalg.norm', 'LA.norm', (['gradient[idx]'], {}), '(gradient[idx])\n', (2558, 2573), True, 'from numpy import linalg as LA\n'), ((3749, 3809), 'models.func.node_deleting', 'fc.node_deleting', (['expect_list', 'max_now', 'idxs_users', 'gradient'], {}), '(expect_list, max_now, idxs_users, gradient)\n', (3765, 3809), True, 'import models.func as fc\n'), ((6507, 6535), 'torch.FloatTensor', 'torch.FloatTensor', (['batched_x'], {}), '(batched_x)\n', (6524, 6535), False, 'import torch\n'), ((6548, 6576), 'torch.FloatTensor', 'torch.FloatTensor', (['batched_y'], {}), '(batched_y)\n', (6565, 6576), False, 'import torch\n'), ((1795, 1882), 'models.test.test_part', 'ts.test_part', (['net_glob', 'w_locals', 'idxs_users', 'key', 'dataset_test', 'test_sampler', 'args'], {}), '(net_glob, w_locals, idxs_users, key, dataset_test,\n test_sampler, args)\n', (1807, 1882), True, 'import models.test as ts\n'), ((1428, 1450), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (1447, 1450), False, 'import operator\n'), ((3897, 3919), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (3916, 3919), False, 'import operator\n')]
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core import paddle.fluid as fluid def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None, actual_shape=None, align_corners=True, data_layout='NCHW'): """nearest neighbor interpolation implement in shape [N, C, H, W]""" if data_layout == "NHWC": X = np.transpose(X, (0, 3, 1, 2)) # NHWC => NCHW if out_size is not None: out_h = out_size[0] out_w = out_size[1] if actual_shape is not None: out_h = actual_shape[0] out_w = actual_shape[1] n, c, in_h, in_w = X.shape ratio_h = ratio_w = 0.0 if (out_h > 1): if (align_corners): ratio_h = (in_h - 1.0) / (out_h - 1.0) else: ratio_h = 1.0 * in_h / out_h if (out_w > 1): if (align_corners): ratio_w = (in_w - 1.0) / (out_w - 1.0) else: ratio_w = 1.0 * in_w / out_w out = np.zeros((n, c, out_h, out_w)) if align_corners: for i in range(out_h): in_i = int(ratio_h * i + 0.5) for j in range(out_w): in_j = int(ratio_w * j + 0.5) out[:, :, i, j] = X[:, :, in_i, in_j] else: for i in range(out_h): in_i = int(ratio_h * i) for j in range(out_w): in_j = int(ratio_w * j) out[:, :, i, j] = X[:, :, in_i, in_j] if data_layout == "NHWC": out = np.transpose(out, (0, 2, 3, 1)) # NCHW => NHWC return out.astype(X.dtype) class TestNearestInterpOp(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.data_layout = 'NCHW' self.init_test_case() self.op_type = "nearest_interp" self.check_eager = True input_np = np.random.random(self.input_shape).astype("float64") if self.data_layout == "NCHW": in_h = self.input_shape[2] in_w = self.input_shape[3] else: in_h = self.input_shape[1] in_w = self.input_shape[2] if self.scale > 0: out_h = int(in_h * self.scale) out_w = int(in_w * self.scale) else: out_h = self.out_h out_w = self.out_w output_np = nearest_neighbor_interp_np( input_np, out_h, out_w, self.out_size, self.actual_shape, self.align_corners, self.data_layout) self.inputs = {'X': input_np} if self.out_size is not None: self.inputs['OutSize'] = self.out_size self.check_eager = False if self.actual_shape is not None: self.inputs['OutSize'] = self.actual_shape self.check_eager = False self.attrs = { 'out_h': self.out_h, 'out_w': self.out_w, 'scale': self.scale, 'interp_method': self.interp_method, 'align_corners': self.align_corners, 'data_layout': self.data_layout } self.outputs = {'Out': output_np} def test_check_output(self): self.check_output(check_eager=self.check_eager) def test_check_grad(self): self.check_grad( ['X'], 'Out', in_place=True, check_eager=self.check_eager) def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [2, 3, 4, 5] self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 3]).astype("int32") self.align_corners = True class TestNearestNeighborInterpCase1(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [4, 1, 7, 8] self.out_h = 1 self.out_w = 1 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpCase2(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 3, 9, 6] self.out_h = 12 self.out_w = 12 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpCase3(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [1, 1, 32, 64] self.out_h = 64 self.out_w = 32 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpCase4(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [4, 1, 7, 8] self.out_h = 1 self.out_w = 1 self.scale = 0. self.out_size = np.array([2, 2]).astype("int32") self.align_corners = True class TestNearestNeighborInterpCase5(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 3, 9, 6] self.out_h = 12 self.out_w = 12 self.scale = 0. self.out_size = np.array([11, 11]).astype("int32") self.align_corners = True class TestNearestNeighborInterpCase6(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [1, 1, 32, 64] self.out_h = 64 self.out_w = 32 self.scale = 0. self.out_size = np.array([65, 129]).astype("int32") self.align_corners = True class TestNearestNeighborInterpSame(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [2, 3, 32, 64] self.out_h = 32 self.out_w = 64 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpActualShape(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 32, 16] self.out_h = 64 self.out_w = 32 self.scale = 0. self.out_size = np.array([66, 40]).astype("int32") self.align_corners = True class TestNearestNeighborInterpDataLayout(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [2, 4, 4, 5] self.out_h = 2 self.out_w = 2 self.scale = 0. self.out_size = np.array([3, 8]).astype("int32") self.align_corners = True self.data_layout = "NHWC" class TestNearestInterpOpUint8(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.init_test_case() self.op_type = "nearest_interp" self.check_eager = True input_np = np.random.randint( low=0, high=256, size=self.input_shape).astype("uint8") if self.scale > 0: out_h = int(self.input_shape[2] * self.scale) out_w = int(self.input_shape[3] * self.scale) else: out_h = self.out_h out_w = self.out_w output_np = nearest_neighbor_interp_np(input_np, out_h, out_w, self.out_size, self.actual_shape, self.align_corners) self.inputs = {'X': input_np} if self.out_size is not None: self.inputs['OutSize'] = self.out_size self.check_eager = False self.attrs = { 'out_h': self.out_h, 'out_w': self.out_w, 'scale': self.scale, 'interp_method': self.interp_method, 'align_corners': self.align_corners } self.outputs = {'Out': output_np} def test_check_output(self): self.check_output_with_place( place=core.CPUPlace(), atol=1, check_eager=self.check_eager) def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [1, 3, 9, 6] self.out_h = 10 self.out_w = 9 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [2, 3, 32, 64] self.out_h = 80 self.out_w = 40 self.scale = 0. self.align_corners = True class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [4, 1, 7, 8] self.out_h = 5 self.out_w = 13 self.scale = 0. self.out_size = np.array([6, 15]).astype("int32") self.align_corners = True class TestNearestInterpWithoutCorners(TestNearestInterpOp): def set_align_corners(self): self.align_corners = False class TestNearestNeighborInterpScale1(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 7, 5] self.out_h = 64 self.out_w = 32 self.scale = 2. self.out_size = np.array([66, 40]).astype("int32") self.align_corners = True class TestNearestNeighborInterpScale2(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 5, 7] self.out_h = 64 self.out_w = 32 self.scale = 1.5 self.out_size = np.array([66, 40]).astype("int32") self.align_corners = True class TestNearestNeighborInterpScale3(TestNearestInterpOp): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 7, 5] self.out_h = 64 self.out_w = 32 self.scale = 1. self.out_size = np.array([66, 40]).astype("int32") self.align_corners = True class TestNearestInterpOp_attr_tensor(OpTest): def setUp(self): self.out_size = None self.actual_shape = None self.init_test_case() self.op_type = "nearest_interp" self.shape_by_1Dtensor = False self.scale_by_1Dtensor = False self.attrs = { 'interp_method': self.interp_method, 'align_corners': self.align_corners, } # NOTE(dev): some AsDispensible input is not used under imperative mode. # Skip check_eager while found them in Inputs. self.check_eager = True input_np = np.random.random(self.input_shape).astype("float64") self.inputs = {'X': input_np} if self.scale_by_1Dtensor: self.inputs['Scale'] = np.array([self.scale]).astype("float64") elif self.scale > 0: out_h = int(self.input_shape[2] * self.scale) out_w = int(self.input_shape[3] * self.scale) self.attrs['scale'] = self.scale else: out_h = self.out_h out_w = self.out_w if self.shape_by_1Dtensor: self.inputs['OutSize'] = self.out_size self.check_eager = False elif self.out_size is not None: size_tensor = [] for index, ele in enumerate(self.out_size): size_tensor.append(("x" + str(index), np.ones( (1)).astype('int32') * ele)) self.inputs['SizeTensor'] = size_tensor self.check_eager = False self.attrs['out_h'] = self.out_h self.attrs['out_w'] = self.out_w output_np = nearest_neighbor_interp_np(input_np, out_h, out_w, self.out_size, self.actual_shape, self.align_corners) self.outputs = {'Out': output_np} def test_check_output(self): self.check_output(check_eager=self.check_eager) def test_check_grad(self): self.check_grad( ['X'], 'Out', in_place=True, check_eager=self.check_eager) def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [2, 5, 4, 4] self.out_h = 3 self.out_w = 3 self.scale = 0. self.out_size = [3, 3] self.align_corners = True # out_size is a tensor list class TestNearestInterp_attr_tensor_Case1(TestNearestInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 3, 9, 6] self.out_h = 12 self.out_w = 12 self.scale = 0. self.out_size = [8, 12] self.align_corners = True # out_size is a 1-D tensor class TestNearestInterp_attr_tensor_Case2(TestNearestInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 32, 16] self.out_h = 64 self.out_w = 32 self.scale = 0. self.out_size = np.array([66, 40]).astype("int32") self.align_corners = True self.shape_by_1Dtensor = True # scale is a 1-D tensor class TestNearestInterp_attr_tensor_Case3(TestNearestInterpOp_attr_tensor): def init_test_case(self): self.interp_method = 'nearest' self.input_shape = [3, 2, 32, 16] self.out_h = 64 self.out_w = 32 self.scale = 2.0 self.out_size = None self.align_corners = True self.scale_by_1Dtensor = True class TestNearestAPI(unittest.TestCase): def test_case(self): x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32") y = fluid.data(name="y", shape=[2, 6, 6, 3], dtype="float32") dim = fluid.data(name="dim", shape=[1], dtype="int32") shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32") actual_size = fluid.data(name="actual_size", shape=[2], dtype="int32") scale_tensor = fluid.data( name="scale_tensor", shape=[1], dtype="float32") out1 = fluid.layers.resize_nearest( y, out_shape=[12, 12], data_format='NHWC') out2 = fluid.layers.resize_nearest(x, out_shape=[12, dim]) out3 = fluid.layers.resize_nearest(x, out_shape=shape_tensor) out4 = fluid.layers.resize_nearest( x, out_shape=[4, 4], actual_shape=actual_size) out5 = fluid.layers.resize_nearest(x, scale=scale_tensor) x_data = np.random.random((2, 3, 6, 6)).astype("float32") dim_data = np.array([12]).astype("int32") shape_data = np.array([12, 12]).astype("int32") actual_size_data = np.array([12, 12]).astype("int32") scale_data = np.array([2.0]).astype("float32") if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) results = exe.run(fluid.default_main_program(), feed={ "x": x_data, "y": np.transpose(x_data, (0, 2, 3, 1)), "dim": dim_data, "shape_tensor": shape_data, "actual_size": actual_size_data, "scale_tensor": scale_data }, fetch_list=[out1, out2, out3, out4, out5], return_numpy=True) expect_res = nearest_neighbor_interp_np( x_data, out_h=12, out_w=12, align_corners=True) self.assertTrue( np.allclose(results[0], np.transpose(expect_res, (0, 2, 3, 1)))) for i in range(len(results) - 1): self.assertTrue(np.allclose(results[i + 1], expect_res)) class TestNearestInterpException(unittest.TestCase): def test_exception(self): input = fluid.data(name="input", shape=[1, 3, 6, 6], dtype="float32") def attr_data_format(): # for 4-D input, data_format can only be NCHW or NHWC out = fluid.layers.resize_nearest( input, out_shape=[4, 8], data_format='NDHWC') def attr_scale_type(): out = fluid.layers.resize_nearest(input, scale='scale') def attr_scale_value(): out = fluid.layers.resize_nearest(input, scale=-0.3) self.assertRaises(ValueError, attr_data_format) self.assertRaises(TypeError, attr_scale_type) self.assertRaises(ValueError, attr_scale_value) if __name__ == "__main__": import paddle paddle.enable_static() unittest.main()
[ "paddle.fluid.layers.resize_nearest", "numpy.allclose", "paddle.fluid.data", "numpy.ones", "numpy.random.random", "paddle.fluid.default_startup_program", "paddle.fluid.core.CUDAPlace", "paddle.enable_static", "paddle.fluid.default_main_program", "numpy.zeros", "paddle.fluid.Executor", "numpy.array", "numpy.random.randint", "unittest.main", "paddle.fluid.core.is_compiled_with_cuda", "numpy.transpose", "paddle.fluid.core.CPUPlace" ]
[((1809, 1839), 'numpy.zeros', 'np.zeros', (['(n, c, out_h, out_w)'], {}), '((n, c, out_h, out_w))\n', (1817, 1839), True, 'import numpy as np\n'), ((17166, 17188), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (17186, 17188), False, 'import paddle\n'), ((17193, 17208), 'unittest.main', 'unittest.main', ([], {}), '()\n', (17206, 17208), False, 'import unittest\n'), ((1202, 1231), 'numpy.transpose', 'np.transpose', (['X', '(0, 3, 1, 2)'], {}), '(X, (0, 3, 1, 2))\n', (1214, 1231), True, 'import numpy as np\n'), ((2322, 2353), 'numpy.transpose', 'np.transpose', (['out', '(0, 2, 3, 1)'], {}), '(out, (0, 2, 3, 1))\n', (2334, 2353), True, 'import numpy as np\n'), ((14126, 14183), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""x"""', 'shape': '[2, 3, 6, 6]', 'dtype': '"""float32"""'}), "(name='x', shape=[2, 3, 6, 6], dtype='float32')\n", (14136, 14183), True, 'import paddle.fluid as fluid\n'), ((14196, 14253), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""y"""', 'shape': '[2, 6, 6, 3]', 'dtype': '"""float32"""'}), "(name='y', shape=[2, 6, 6, 3], dtype='float32')\n", (14206, 14253), True, 'import paddle.fluid as fluid\n'), ((14269, 14317), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""dim"""', 'shape': '[1]', 'dtype': '"""int32"""'}), "(name='dim', shape=[1], dtype='int32')\n", (14279, 14317), True, 'import paddle.fluid as fluid\n'), ((14341, 14398), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""shape_tensor"""', 'shape': '[2]', 'dtype': '"""int32"""'}), "(name='shape_tensor', shape=[2], dtype='int32')\n", (14351, 14398), True, 'import paddle.fluid as fluid\n'), ((14421, 14477), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""actual_size"""', 'shape': '[2]', 'dtype': '"""int32"""'}), "(name='actual_size', shape=[2], dtype='int32')\n", (14431, 14477), True, 'import paddle.fluid as fluid\n'), ((14501, 14560), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""scale_tensor"""', 'shape': '[1]', 'dtype': '"""float32"""'}), "(name='scale_tensor', shape=[1], dtype='float32')\n", (14511, 14560), True, 'import paddle.fluid as fluid\n'), ((14590, 14660), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['y'], {'out_shape': '[12, 12]', 'data_format': '"""NHWC"""'}), "(y, out_shape=[12, 12], data_format='NHWC')\n", (14617, 14660), True, 'import paddle.fluid as fluid\n'), ((14689, 14740), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['x'], {'out_shape': '[12, dim]'}), '(x, out_shape=[12, dim])\n', (14716, 14740), True, 'import paddle.fluid as fluid\n'), ((14756, 14810), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['x'], {'out_shape': 'shape_tensor'}), '(x, out_shape=shape_tensor)\n', (14783, 14810), True, 'import paddle.fluid as fluid\n'), ((14826, 14900), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['x'], {'out_shape': '[4, 4]', 'actual_shape': 'actual_size'}), '(x, out_shape=[4, 4], actual_shape=actual_size)\n', (14853, 14900), True, 'import paddle.fluid as fluid\n'), ((14929, 14979), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['x'], {'scale': 'scale_tensor'}), '(x, scale=scale_tensor)\n', (14956, 14979), True, 'import paddle.fluid as fluid\n'), ((15282, 15310), 'paddle.fluid.core.is_compiled_with_cuda', 'core.is_compiled_with_cuda', ([], {}), '()\n', (15308, 15310), True, 'import paddle.fluid.core as core\n'), ((15414, 15435), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (15428, 15435), True, 'import paddle.fluid as fluid\n'), ((16480, 16541), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""input"""', 'shape': '[1, 3, 6, 6]', 'dtype': '"""float32"""'}), "(name='input', shape=[1, 3, 6, 6], dtype='float32')\n", (16490, 16541), True, 'import paddle.fluid as fluid\n'), ((15332, 15349), 'paddle.fluid.core.CUDAPlace', 'core.CUDAPlace', (['(0)'], {}), '(0)\n', (15346, 15349), True, 'import paddle.fluid.core as core\n'), ((15384, 15399), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (15397, 15399), True, 'import paddle.fluid.core as core\n'), ((15452, 15483), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (15481, 15483), True, 'import paddle.fluid as fluid\n'), ((15511, 15539), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (15537, 15539), True, 'import paddle.fluid as fluid\n'), ((16659, 16732), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['input'], {'out_shape': '[4, 8]', 'data_format': '"""NDHWC"""'}), "(input, out_shape=[4, 8], data_format='NDHWC')\n", (16686, 16732), True, 'import paddle.fluid as fluid\n'), ((16800, 16849), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['input'], {'scale': '"""scale"""'}), "(input, scale='scale')\n", (16827, 16849), True, 'import paddle.fluid as fluid\n'), ((16901, 16947), 'paddle.fluid.layers.resize_nearest', 'fluid.layers.resize_nearest', (['input'], {'scale': '(-0.3)'}), '(input, scale=-0.3)\n', (16928, 16947), True, 'import paddle.fluid as fluid\n'), ((2677, 2711), 'numpy.random.random', 'np.random.random', (['self.input_shape'], {}), '(self.input_shape)\n', (2693, 2711), True, 'import numpy as np\n'), ((4335, 4351), 'numpy.array', 'np.array', (['[3, 3]'], {}), '([3, 3])\n', (4343, 4351), True, 'import numpy as np\n'), ((5494, 5510), 'numpy.array', 'np.array', (['[2, 2]'], {}), '([2, 2])\n', (5502, 5510), True, 'import numpy as np\n'), ((5827, 5845), 'numpy.array', 'np.array', (['[11, 11]'], {}), '([11, 11])\n', (5835, 5845), True, 'import numpy as np\n'), ((6164, 6183), 'numpy.array', 'np.array', (['[65, 129]'], {}), '([65, 129])\n', (6172, 6183), True, 'import numpy as np\n'), ((6785, 6803), 'numpy.array', 'np.array', (['[66, 40]'], {}), '([66, 40])\n', (6793, 6803), True, 'import numpy as np\n'), ((7123, 7139), 'numpy.array', 'np.array', (['[3, 8]'], {}), '([3, 8])\n', (7131, 7139), True, 'import numpy as np\n'), ((7470, 7527), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(256)', 'size': 'self.input_shape'}), '(low=0, high=256, size=self.input_shape)\n', (7487, 7527), True, 'import numpy as np\n'), ((8522, 8537), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (8535, 8537), True, 'import paddle.fluid.core as core\n'), ((9355, 9372), 'numpy.array', 'np.array', (['[6, 15]'], {}), '([6, 15])\n', (9363, 9372), True, 'import numpy as np\n'), ((9820, 9838), 'numpy.array', 'np.array', (['[66, 40]'], {}), '([66, 40])\n', (9828, 9838), True, 'import numpy as np\n'), ((10157, 10175), 'numpy.array', 'np.array', (['[66, 40]'], {}), '([66, 40])\n', (10165, 10175), True, 'import numpy as np\n'), ((10493, 10511), 'numpy.array', 'np.array', (['[66, 40]'], {}), '([66, 40])\n', (10501, 10511), True, 'import numpy as np\n'), ((11161, 11195), 'numpy.random.random', 'np.random.random', (['self.input_shape'], {}), '(self.input_shape)\n', (11177, 11195), True, 'import numpy as np\n'), ((13552, 13570), 'numpy.array', 'np.array', (['[66, 40]'], {}), '([66, 40])\n', (13560, 13570), True, 'import numpy as np\n'), ((14998, 15028), 'numpy.random.random', 'np.random.random', (['(2, 3, 6, 6)'], {}), '((2, 3, 6, 6))\n', (15014, 15028), True, 'import numpy as np\n'), ((15066, 15080), 'numpy.array', 'np.array', (['[12]'], {}), '([12])\n', (15074, 15080), True, 'import numpy as np\n'), ((15118, 15136), 'numpy.array', 'np.array', (['[12, 12]'], {}), '([12, 12])\n', (15126, 15136), True, 'import numpy as np\n'), ((15180, 15198), 'numpy.array', 'np.array', (['[12, 12]'], {}), '([12, 12])\n', (15188, 15198), True, 'import numpy as np\n'), ((15236, 15251), 'numpy.array', 'np.array', (['[2.0]'], {}), '([2.0])\n', (15244, 15251), True, 'import numpy as np\n'), ((16227, 16265), 'numpy.transpose', 'np.transpose', (['expect_res', '(0, 2, 3, 1)'], {}), '(expect_res, (0, 2, 3, 1))\n', (16239, 16265), True, 'import numpy as np\n'), ((16338, 16377), 'numpy.allclose', 'np.allclose', (['results[i + 1]', 'expect_res'], {}), '(results[i + 1], expect_res)\n', (16349, 16377), True, 'import numpy as np\n'), ((11323, 11345), 'numpy.array', 'np.array', (['[self.scale]'], {}), '([self.scale])\n', (11331, 11345), True, 'import numpy as np\n'), ((15652, 15686), 'numpy.transpose', 'np.transpose', (['x_data', '(0, 2, 3, 1)'], {}), '(x_data, (0, 2, 3, 1))\n', (15664, 15686), True, 'import numpy as np\n'), ((11933, 11943), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (11940, 11943), True, 'import numpy as np\n')]
import numpy as np import pytest def test_camera_display_create(): from ctapipe.visualization.bokeh import CameraDisplay CameraDisplay() def test_camera_geom(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry c_display = CameraDisplay(geom) assert (c_display.cdsource.data["x"] == geom.pix_x.value).all() assert (c_display.cdsource.data["y"] == geom.pix_y.value).all() t = list(example_event.r0.tel.keys())[1] geom = example_subarray.tel[t].camera.geometry c_display.geom = geom assert (c_display.cdsource.data["x"] == geom.pix_x.value).all() assert (c_display.cdsource.data["y"] == geom.pix_y.value).all() def test_camera_image(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay, intensity_to_hex t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry n_pixels = geom.pix_x.value.size image = np.ones(n_pixels) colors = intensity_to_hex(image) with pytest.raises(ValueError): CameraDisplay(None, image) c_display = CameraDisplay(geom, image) assert (c_display.cdsource.data["image"] == colors).all() assert c_display.image_min == 0 assert c_display.image_max == 2 image[5] = 5 colors = intensity_to_hex(image) c_display.image = image assert (c_display.cdsource.data["image"] == colors).all() assert c_display.image_min == image.min() assert c_display.image_max == image.max() def test_camera_enable_pixel_picker(example_event, example_subarray): from ctapipe.visualization.bokeh import CameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry n_pixels = geom.pix_x.value.size image = np.ones(n_pixels) c_display = CameraDisplay(geom, image) c_display.enable_pixel_picker(2) assert len(c_display.active_pixels) == 2 c_display.enable_pixel_picker(3) assert len(c_display.active_pixels) == 3 def test_fast_camera_display_create(example_event, example_subarray): from ctapipe.visualization.bokeh import FastCameraDisplay t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry x = geom.pix_x.value y = geom.pix_y.value area = geom.pix_area.value size = np.sqrt(area) FastCameraDisplay(x, y, size) def test_fast_camera_image(example_event, example_subarray): from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex t = list(example_event.r0.tel.keys())[0] geom = example_subarray.tel[t].camera.geometry x = geom.pix_x.value y = geom.pix_y.value area = geom.pix_area.value size = np.sqrt(area) c_display = FastCameraDisplay(x, y, size) image = np.ones(x.size) colors = intensity_to_hex(image) c_display.image = colors assert (c_display.cdsource.data["image"] == colors).all() def test_waveform_display_create(): from ctapipe.visualization.bokeh import WaveformDisplay WaveformDisplay() def test_waveform_values(): from ctapipe.visualization.bokeh import WaveformDisplay wf = np.ones(30) w_display = WaveformDisplay(wf) assert (w_display.cdsource.data["samples"] == wf).all() assert (w_display.cdsource.data["t"] == np.arange(wf.size)).all() wf[5] = 5 w_display.waveform = wf assert (w_display.cdsource.data["samples"] == wf).all() assert (w_display.cdsource.data["t"] == np.arange(wf.size)).all() def test_span(): from ctapipe.visualization.bokeh import WaveformDisplay wf = np.ones(30) w_display = WaveformDisplay(wf) w_display.enable_time_picker() w_display.active_time = 4 assert w_display.span.location == 4 w_display.active_time = -3 assert w_display.active_time == 0 assert w_display.span.location == 0 w_display.active_time = wf.size + 10 assert w_display.active_time == wf.size - 1 assert w_display.span.location == wf.size - 1
[ "numpy.sqrt", "numpy.ones", "ctapipe.visualization.bokeh.CameraDisplay", "ctapipe.visualization.bokeh.FastCameraDisplay", "pytest.raises", "ctapipe.visualization.bokeh.intensity_to_hex", "ctapipe.visualization.bokeh.WaveformDisplay", "numpy.arange" ]
[((132, 147), 'ctapipe.visualization.bokeh.CameraDisplay', 'CameraDisplay', ([], {}), '()\n', (145, 147), False, 'from ctapipe.visualization.bokeh import CameraDisplay\n'), ((376, 395), 'ctapipe.visualization.bokeh.CameraDisplay', 'CameraDisplay', (['geom'], {}), '(geom)\n', (389, 395), False, 'from ctapipe.visualization.bokeh import CameraDisplay\n'), ((1072, 1089), 'numpy.ones', 'np.ones', (['n_pixels'], {}), '(n_pixels)\n', (1079, 1089), True, 'import numpy as np\n'), ((1103, 1126), 'ctapipe.visualization.bokeh.intensity_to_hex', 'intensity_to_hex', (['image'], {}), '(image)\n', (1119, 1126), False, 'from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex\n'), ((1216, 1242), 'ctapipe.visualization.bokeh.CameraDisplay', 'CameraDisplay', (['geom', 'image'], {}), '(geom, image)\n', (1229, 1242), False, 'from ctapipe.visualization.bokeh import CameraDisplay\n'), ((1408, 1431), 'ctapipe.visualization.bokeh.intensity_to_hex', 'intensity_to_hex', (['image'], {}), '(image)\n', (1424, 1431), False, 'from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex\n'), ((1890, 1907), 'numpy.ones', 'np.ones', (['n_pixels'], {}), '(n_pixels)\n', (1897, 1907), True, 'import numpy as np\n'), ((1924, 1950), 'ctapipe.visualization.bokeh.CameraDisplay', 'CameraDisplay', (['geom', 'image'], {}), '(geom, image)\n', (1937, 1950), False, 'from ctapipe.visualization.bokeh import CameraDisplay\n'), ((2441, 2454), 'numpy.sqrt', 'np.sqrt', (['area'], {}), '(area)\n', (2448, 2454), True, 'import numpy as np\n'), ((2460, 2489), 'ctapipe.visualization.bokeh.FastCameraDisplay', 'FastCameraDisplay', (['x', 'y', 'size'], {}), '(x, y, size)\n', (2477, 2489), False, 'from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex\n'), ((2823, 2836), 'numpy.sqrt', 'np.sqrt', (['area'], {}), '(area)\n', (2830, 2836), True, 'import numpy as np\n'), ((2854, 2883), 'ctapipe.visualization.bokeh.FastCameraDisplay', 'FastCameraDisplay', (['x', 'y', 'size'], {}), '(x, y, size)\n', (2871, 2883), False, 'from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex\n'), ((2897, 2912), 'numpy.ones', 'np.ones', (['x.size'], {}), '(x.size)\n', (2904, 2912), True, 'import numpy as np\n'), ((2926, 2949), 'ctapipe.visualization.bokeh.intensity_to_hex', 'intensity_to_hex', (['image'], {}), '(image)\n', (2942, 2949), False, 'from ctapipe.visualization.bokeh import FastCameraDisplay, intensity_to_hex\n'), ((3145, 3162), 'ctapipe.visualization.bokeh.WaveformDisplay', 'WaveformDisplay', ([], {}), '()\n', (3160, 3162), False, 'from ctapipe.visualization.bokeh import WaveformDisplay\n'), ((3263, 3274), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3270, 3274), True, 'import numpy as np\n'), ((3291, 3310), 'ctapipe.visualization.bokeh.WaveformDisplay', 'WaveformDisplay', (['wf'], {}), '(wf)\n', (3306, 3310), False, 'from ctapipe.visualization.bokeh import WaveformDisplay\n'), ((3705, 3716), 'numpy.ones', 'np.ones', (['(30)'], {}), '(30)\n', (3712, 3716), True, 'import numpy as np\n'), ((3733, 3752), 'ctapipe.visualization.bokeh.WaveformDisplay', 'WaveformDisplay', (['wf'], {}), '(wf)\n', (3748, 3752), False, 'from ctapipe.visualization.bokeh import WaveformDisplay\n'), ((1137, 1162), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1150, 1162), False, 'import pytest\n'), ((1172, 1198), 'ctapipe.visualization.bokeh.CameraDisplay', 'CameraDisplay', (['None', 'image'], {}), '(None, image)\n', (1185, 1198), False, 'from ctapipe.visualization.bokeh import CameraDisplay\n'), ((3416, 3434), 'numpy.arange', 'np.arange', (['wf.size'], {}), '(wf.size)\n', (3425, 3434), True, 'import numpy as np\n'), ((3590, 3608), 'numpy.arange', 'np.arange', (['wf.size'], {}), '(wf.size)\n', (3599, 3608), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 30 16:23:35 2020 @author: elizabeth_mckenzie """ import numpy as np from scipy.ndimage.interpolation import rotate as ndrotate import tensorflow as tf from skimage.transform import resize import matplotlib.pyplot as plt order = 0 # input_shape = (128, 128, 128, 1) input_shape = (32, 256, 256, 1) def first_rot(ubermask, angle_xy): ubermask = ndrotate(ubermask.numpy(), angle_xy.numpy(), axes=(0, 1), reshape=False, order=order) return ubermask def second_rot(ubermask, angle_xz): ndrotate(ubermask.numpy(), angle_xz.numpy(), axes=(0, 2), reshape=False, order=order) return ubermask def third_rot(ubermask, angle_yz): ndrotate(ubermask.numpy(), angle_yz.numpy(), axes=(1, 2), reshape=False, order=order) return ubermask def crop_the_mask(crop_mask, crop_amount, top): # generate mask for cropping and crop to zeros crop_mask = crop_mask.numpy() if top: crop_top = crop_amount crop_mask[0:crop_top, :, :] = 0.0 else: crop_bottom = crop_amount crop_mask[-crop_bottom:, :, :] = 0.0 return crop_mask def rotate_and_crop(x, crop_amount, top=True): x = tf.cast(x, dtype=tf.float64) # generate random angles for rotation. Most is in chin up/down direction # angle_xy = tf.random.uniform([], minval=-45, maxval=0, dtype=tf.dtypes.int32) # angle_xz = tf.random.uniform([], minval=-5, maxval=5, dtype=tf.dtypes.int32) # angle_yz = tf.random.uniform([], minval=-5, maxval=5, dtype=tf.dtypes.int32) angle_xy = tf.constant(0, dtype=tf.dtypes.int32) angle_xz = tf.constant(0, dtype=tf.dtypes.int32) angle_yz = tf.constant(0, dtype=tf.dtypes.int32) ubermask = tf.ones_like(x, dtype=tf.float64) # mask for the mask # rotate mask's mask ubermask = tf.py_function(func=first_rot, inp=[ubermask, angle_xy], Tout=tf.float64) ubermask = tf.py_function(func=second_rot, inp=[ubermask, angle_xz], Tout=tf.float64) ubermask = tf.py_function(func=third_rot, inp=[ubermask, angle_yz], Tout=tf.float64) # generate mask for cropping and crop to zeros crop_mask = tf.ones_like(ubermask, dtype=tf.float64) crop_mask = tf.py_function(func=crop_the_mask, inp=[crop_mask, crop_amount, top], Tout=tf.float64) # crop image cropped_mask = ubermask * crop_mask # rotate back cropped_mask = tf.py_function(func=third_rot, inp=[cropped_mask, -angle_yz], Tout=tf.float64) cropped_mask = tf.py_function(func=second_rot, inp=[cropped_mask, -angle_xz], Tout=tf.float64) cropped_mask = tf.py_function(func=first_rot, inp=[cropped_mask, -angle_xy], Tout=tf.float64) output_img = x * cropped_mask output_img = tf.cast(output_img, dtype=tf.float16) cropped_mask = tf.cast(cropped_mask, dtype=tf.float16) return (output_img, cropped_mask) def circlemask_cropped(x): D, H, W, _ = x.shape x, y = np.ogrid[:H, :W] cx, cy = H / 2, W / 2 radius = int(np.random.uniform(0.7, 0.7) * H / 2) r2 = (x - cx) * (x - cx) + (y - cy) * (y - cy) circmask = r2 <= radius * radius mask = np.expand_dims(circmask, axis=[0,-1]).repeat([D, ], axis=0) return mask # def crop_data(x): # x.set_shape(input_shape) # hardcoded in here to get .map(tffunction) to work # # # generate cropping amounts # crop_bottom = 50 # tf.random.uniform([], minval=40, maxval=70, dtype=tf.dtypes.int32) # top_max = (x.shape[1] - crop_bottom) - 35 # (128 -70) = 58, - 35 = 23 as max # # crop_top = tf.random.uniform([], minval=10, maxval=top_max, # # dtype=tf.dtypes.int32) # want to guarentee there is something left # crop_top = tf.constant(30, dtype=tf.dtypes.int32) # # (cropped_top_image, mask_Top) = rotate_and_crop(x, crop_top, top=True) # (cropped_bottom_image, mask_Bottom) = rotate_and_crop(cropped_top_image, crop_bottom, top=False) # # final_cropped_image = cropped_bottom_image # final_cropped_mask = mask_Top * mask_Bottom # return (final_cropped_image, x, final_cropped_mask) def crop_data(x): x = tf.cast(x, dtype=tf.float16) x.set_shape(input_shape) # hardcoded in here to get .map(tffunction) to work cropped_mask = tf.py_function(func=circlemask_cropped, inp=[x], Tout=tf.float16) cropped_image = x * cropped_mask cropped_image = tf.cast(cropped_image, dtype=tf.float16) cropped_mask = tf.cast(cropped_mask, dtype=tf.float16) return (cropped_image, x, cropped_mask) npy_name = 'dataset/train/Y170109.npz' img_files = np.load(npy_name) img = img_files['vol_data'] img = resize(img, (32,256,256)) # img = np.expand_dims(img, axis=-1) # x = tf.convert_to_tensor(img) # y = crop_data(x) # plt.imshow(final_cropped_mask.numpy()[64,:,:].astype(np.float64), cmap='gray'); plt.show()
[ "tensorflow.py_function", "numpy.random.uniform", "tensorflow.constant", "numpy.expand_dims", "tensorflow.ones_like", "tensorflow.cast", "skimage.transform.resize", "numpy.load" ]
[((4569, 4586), 'numpy.load', 'np.load', (['npy_name'], {}), '(npy_name)\n', (4576, 4586), True, 'import numpy as np\n'), ((4621, 4648), 'skimage.transform.resize', 'resize', (['img', '(32, 256, 256)'], {}), '(img, (32, 256, 256))\n', (4627, 4648), False, 'from skimage.transform import resize\n'), ((1210, 1238), 'tensorflow.cast', 'tf.cast', (['x'], {'dtype': 'tf.float64'}), '(x, dtype=tf.float64)\n', (1217, 1238), True, 'import tensorflow as tf\n'), ((1582, 1619), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.dtypes.int32'}), '(0, dtype=tf.dtypes.int32)\n', (1593, 1619), True, 'import tensorflow as tf\n'), ((1635, 1672), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.dtypes.int32'}), '(0, dtype=tf.dtypes.int32)\n', (1646, 1672), True, 'import tensorflow as tf\n'), ((1688, 1725), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.dtypes.int32'}), '(0, dtype=tf.dtypes.int32)\n', (1699, 1725), True, 'import tensorflow as tf\n'), ((1742, 1775), 'tensorflow.ones_like', 'tf.ones_like', (['x'], {'dtype': 'tf.float64'}), '(x, dtype=tf.float64)\n', (1754, 1775), True, 'import tensorflow as tf\n'), ((1838, 1911), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'first_rot', 'inp': '[ubermask, angle_xy]', 'Tout': 'tf.float64'}), '(func=first_rot, inp=[ubermask, angle_xy], Tout=tf.float64)\n', (1852, 1911), True, 'import tensorflow as tf\n'), ((1927, 2001), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'second_rot', 'inp': '[ubermask, angle_xz]', 'Tout': 'tf.float64'}), '(func=second_rot, inp=[ubermask, angle_xz], Tout=tf.float64)\n', (1941, 2001), True, 'import tensorflow as tf\n'), ((2017, 2090), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'third_rot', 'inp': '[ubermask, angle_yz]', 'Tout': 'tf.float64'}), '(func=third_rot, inp=[ubermask, angle_yz], Tout=tf.float64)\n', (2031, 2090), True, 'import tensorflow as tf\n'), ((2159, 2199), 'tensorflow.ones_like', 'tf.ones_like', (['ubermask'], {'dtype': 'tf.float64'}), '(ubermask, dtype=tf.float64)\n', (2171, 2199), True, 'import tensorflow as tf\n'), ((2217, 2308), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'crop_the_mask', 'inp': '[crop_mask, crop_amount, top]', 'Tout': 'tf.float64'}), '(func=crop_the_mask, inp=[crop_mask, crop_amount, top], Tout=\n tf.float64)\n', (2231, 2308), True, 'import tensorflow as tf\n'), ((2400, 2478), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'third_rot', 'inp': '[cropped_mask, -angle_yz]', 'Tout': 'tf.float64'}), '(func=third_rot, inp=[cropped_mask, -angle_yz], Tout=tf.float64)\n', (2414, 2478), True, 'import tensorflow as tf\n'), ((2498, 2577), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'second_rot', 'inp': '[cropped_mask, -angle_xz]', 'Tout': 'tf.float64'}), '(func=second_rot, inp=[cropped_mask, -angle_xz], Tout=tf.float64)\n', (2512, 2577), True, 'import tensorflow as tf\n'), ((2597, 2675), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'first_rot', 'inp': '[cropped_mask, -angle_xy]', 'Tout': 'tf.float64'}), '(func=first_rot, inp=[cropped_mask, -angle_xy], Tout=tf.float64)\n', (2611, 2675), True, 'import tensorflow as tf\n'), ((2729, 2766), 'tensorflow.cast', 'tf.cast', (['output_img'], {'dtype': 'tf.float16'}), '(output_img, dtype=tf.float16)\n', (2736, 2766), True, 'import tensorflow as tf\n'), ((2786, 2825), 'tensorflow.cast', 'tf.cast', (['cropped_mask'], {'dtype': 'tf.float16'}), '(cropped_mask, dtype=tf.float16)\n', (2793, 2825), True, 'import tensorflow as tf\n'), ((4119, 4147), 'tensorflow.cast', 'tf.cast', (['x'], {'dtype': 'tf.float16'}), '(x, dtype=tf.float16)\n', (4126, 4147), True, 'import tensorflow as tf\n'), ((4249, 4314), 'tensorflow.py_function', 'tf.py_function', ([], {'func': 'circlemask_cropped', 'inp': '[x]', 'Tout': 'tf.float16'}), '(func=circlemask_cropped, inp=[x], Tout=tf.float16)\n', (4263, 4314), True, 'import tensorflow as tf\n'), ((4372, 4412), 'tensorflow.cast', 'tf.cast', (['cropped_image'], {'dtype': 'tf.float16'}), '(cropped_image, dtype=tf.float16)\n', (4379, 4412), True, 'import tensorflow as tf\n'), ((4432, 4471), 'tensorflow.cast', 'tf.cast', (['cropped_mask'], {'dtype': 'tf.float16'}), '(cropped_mask, dtype=tf.float16)\n', (4439, 4471), True, 'import tensorflow as tf\n'), ((3126, 3164), 'numpy.expand_dims', 'np.expand_dims', (['circmask'], {'axis': '[0, -1]'}), '(circmask, axis=[0, -1])\n', (3140, 3164), True, 'import numpy as np\n'), ((2990, 3017), 'numpy.random.uniform', 'np.random.uniform', (['(0.7)', '(0.7)'], {}), '(0.7, 0.7)\n', (3007, 3017), True, 'import numpy as np\n')]
import collections import itertools import logging import operator from typing import Any, Callable, DefaultDict, Dict, List, Optional, Sequence, Tuple, Union import networkx as nx import numpy as np from cytoolz import itertoolz from spacy.tokens import Span, Token from . import utils as ke_utils LOGGER = logging.getLogger(__name__) def build_graph_from_terms( terms: Union[Sequence[str], Sequence[Token], Sequence[Span]], *, normalize: Optional[Union[str, Callable[[Token], str]]] = "lemma", window_size: int = 10, edge_weighting: str = "count", ) -> nx.Graph: """ Transform an ordered list of non-overlapping terms into a graph, where each term is represented by a node with weighted edges linking it to other terms that co-occur within ``window_size`` terms of itself. Args: terms normalize: If "lemma", lemmatize terms; if "lower", lowercase terms; if falsy, use the form of terms as they appear in ``terms``; if a callable, must accept a ``Token`` and return a str, e.g. :func:`textacy.spacier.utils.get_normalized_text()`. .. note:: This is applied to the elements of ``terms`` *only* if it's a list of ``Token`` or ``Span``. window_size: Size of sliding window over ``terms`` that determines which are said to co-occur. If 2, only immediately adjacent terms have edges in the returned network. edge_weighting ({"count", "binary"}): If "count", the nodes for all co-occurring terms are connected by edges with weight equal to the number of times they co-occurred within a sliding window; if "binary", all such edges have weight = 1. Returns: Networkx Graph whose nodes correspond to individual terms; those that co-occur are connected by edges with weights determined by ``edge_weighting``. """ if window_size < 2: raise ValueError( "window_size = {} is invalid; value must be >= 2".format(window_size) ) if not terms: LOGGER.warning("input `terms` is empty, so output graph is also empty") return nx.Graph() # if len(terms) < window_size, cytoolz throws a StopIteration error; prevent it if len(terms) < window_size: LOGGER.info( "`terms` has fewer items (%s) than `window_size` (%s); " "setting window width to %s", len(terms), window_size, len(terms), ) window_size = len(terms) first_term, terms = itertoolz.peek(terms) if isinstance(first_term, str): windows = itertoolz.sliding_window(window_size, terms) elif isinstance(first_term, (Span, Token)): windows = itertoolz.sliding_window( window_size, ke_utils.normalize_terms(terms, normalize)) else: raise TypeError( "items in `terms` must be strings or spacy tokens, not {}".format( type(first_term) ) ) graph = nx.Graph() if edge_weighting == "count": cooc_mat = collections.Counter( w1_w2 for window in windows for w1_w2 in itertools.combinations(sorted(window), 2) ) graph.add_edges_from( (w1, w2, {"weight": weight}) for (w1, w2), weight in cooc_mat.items() ) elif edge_weighting == "binary": graph.add_edges_from( w1_w2 for window in windows for w1_w2 in itertools.combinations(window, 2) ) else: raise ValueError( "edge_weighting = {} is invalid; must be one of {}".format( edge_weighting, {"count", "binary"}) ) return graph def rank_nodes_by_pagerank( graph: nx.Graph, weight: str = "weight", **kwargs, ) -> Dict[Any, float]: """ Rank nodes in graph using the Pagegrank algorithm. Args: graph weight **kwargs Returns: Dict[object, float] """ return nx.pagerank_scipy(graph, weight=weight, **kwargs) def rank_nodes_by_bestcoverage( graph: nx.Graph, k: int, c: int = 1, alpha: float = 1.0, weight: str = "weight", ) -> Dict[Any, float]: """ Rank nodes in a network using the BestCoverage algorithm that attempts to balance between node centrality and diversity. Args: graph k: Number of results to return for top-k search. c: *l* parameter for *l*-step expansion; best if 1 or 2 alpha: Float in [0.0, 1.0] specifying how much of central vertex's score to remove from its *l*-step neighbors; smaller value puts more emphasis on centrality, larger value puts more emphasis on diversity weight: Key in edge data that holds weights. Returns: Top ``k`` nodes as ranked by bestcoverage algorithm; keys as node identifiers, values as corresponding ranking scores References: <NAME>., <NAME>., <NAME>., & <NAME>. (2013, May). Diversified recommendation on graphs: pitfalls, measures, and algorithms. In Proceedings of the 22nd international conference on World Wide Web (pp. 715-726). International World Wide Web Conferences Steering Committee. http://www2013.wwwconference.org/proceedings/p715.pdf """ alpha = float(alpha) nodes_list = [node for node in graph] if len(nodes_list) == 0: LOGGER.warning("`graph` is empty") return {} # ranks: array of PageRank values, summing up to 1 ranks = nx.pagerank_scipy( graph, alpha=0.85, max_iter=100, tol=1e-08, weight=weight ) sorted_ranks = sorted(ranks.items(), key=operator.itemgetter(1), reverse=True) avg_degree = sum(dict(graph.degree()).values()) / len(nodes_list) # relaxation parameter, k' in the paper k_prime = int(k * avg_degree * c) top_k_sorted_ranks = sorted_ranks[:k_prime] def get_l_step_expanded_set(vertices, l): """ Args: vertices (iterable[str]): vertices to be expanded l (int): how many steps to expand vertices set Returns: set: the l-step expanded set of vertices """ # add vertices to s s = set(vertices) # s.update(vertices) # for each step for _ in range(l): # for each node next_vertices = [] for vertex in vertices: # add its neighbors to the next list neighbors = graph.neighbors(vertex) next_vertices.extend(neighbors) s.update(neighbors) vertices = set(next_vertices) return s top_k_exp_vertices = get_l_step_expanded_set( [item[0] for item in top_k_sorted_ranks], c ) # compute initial exprel contribution taken: DefaultDict = collections.defaultdict(bool) contrib = {} for vertex in nodes_list: # get l-step expanded set s = get_l_step_expanded_set([vertex], c) # sum up neighbors ranks, i.e. l-step expanded relevance contrib[vertex] = sum(ranks[v] for v in s) sum_contrib = 0.0 results = {} # greedily select to maximize exprel metric for _ in range(k): if not contrib: break # find word with highest l-step expanded relevance score max_word_score = sorted( contrib.items(), key=operator.itemgetter(1), reverse=True )[0] sum_contrib += max_word_score[1] # contrib[max_word[0]] results[max_word_score[0]] = max_word_score[1] # find its l-step expanded set l_step_expanded_set = get_l_step_expanded_set([max_word_score[0]], c) # for each vertex found for vertex in l_step_expanded_set: # already removed its contribution from neighbors if taken[vertex] is True: continue # remove the contribution of vertex (or some fraction) from its l-step neighbors s1 = get_l_step_expanded_set([vertex], c) for w in s1: try: contrib[w] -= alpha * ranks[vertex] except KeyError: LOGGER.error( "Word %s not in contrib dict! We're approximating...", w ) taken[vertex] = True contrib[max_word_score[0]] = 0 return results def rank_nodes_by_divrank( graph: nx.Graph, r: Optional[np.ndarray] = None, lambda_: float = 0.5, alpha: float = 0.5, ) -> Dict[str, float]: """ Rank nodes in a network using the DivRank algorithm that attempts to balance between node centrality and diversity. Args: graph r: The "personalization vector"; by default, ``r = ones(1, n)/n`` lambda_: Float in [0.0, 1.0] alpha: Float in [0.0, 1.0] that controls the strength of self-links. Returns: Mapping of node to score ordered by descending divrank score References: <NAME>., <NAME>., & <NAME>. (2010, July). Divrank: the interplay of prestige and diversity in information networks. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1009-1018). ACM. http://clair.si.umich.edu/~radev/papers/SIGKDD2010.pdf """ # check function arguments if len(graph) == 0: LOGGER.warning("`graph` is empty") return {} # specify the order of nodes to use in creating the matrix # and then later recovering the values from the order index nodes_list = [node for node in graph] # create adjacency matrix, i.e. # n x n matrix where entry W_ij is the weight of the edge from V_i to V_j W = nx.to_numpy_matrix(graph, nodelist=nodes_list, weight="weight").A n = W.shape[1] # create flat prior personalization vector if none given if r is None: r = np.array([n * [1 / float(n)]]) # Specify some constants max_iter = 1000 diff = 1e10 tol = 1e-3 pr = np.array([n * [1 / float(n)]]) # Get p0(v -> u), i.e. transition probability prior to reinforcement tmp = np.reshape(np.sum(W, axis=1), (n, 1)) idx_nan = np.flatnonzero(tmp == 0) W0 = W / np.tile(tmp, (1, n)) W0[idx_nan, :] = 0 del W # DivRank algorithm i = 0 while i < max_iter and diff > tol: W1 = alpha * W0 * np.tile(pr, (n, 1)) W1 = W1 - np.diag(W1[:, 0]) + (1 - alpha) * np.diag(pr[0, :]) tmp1 = np.reshape(np.sum(W1, axis=1), (n, 1)) P = W1 / np.tile(tmp1, (1, n)) P = ((1 - lambda_) * P) + (lambda_ * np.tile(r, (n, 1))) pr_new = np.dot(pr, P) i += 1 diff = np.sum(np.abs(pr_new - pr)) / np.sum(pr) pr = pr_new # sort nodes by divrank score results = sorted( ((i, score) for i, score in enumerate(pr.flatten().tolist())), key=operator.itemgetter(1), reverse=True, ) # replace node number by node value divranks = {nodes_list[result[0]]: result[1] for result in results} return divranks
[ "logging.getLogger", "numpy.tile", "numpy.abs", "networkx.pagerank_scipy", "numpy.flatnonzero", "networkx.Graph", "cytoolz.itertoolz.sliding_window", "numpy.diag", "itertools.combinations", "numpy.sum", "numpy.dot", "cytoolz.itertoolz.peek", "collections.defaultdict", "operator.itemgetter", "networkx.to_numpy_matrix" ]
[((311, 338), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (328, 338), False, 'import logging\n'), ((2597, 2618), 'cytoolz.itertoolz.peek', 'itertoolz.peek', (['terms'], {}), '(terms)\n', (2611, 2618), False, 'from cytoolz import itertoolz\n'), ((3063, 3073), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (3071, 3073), True, 'import networkx as nx\n'), ((4061, 4110), 'networkx.pagerank_scipy', 'nx.pagerank_scipy', (['graph'], {'weight': 'weight'}), '(graph, weight=weight, **kwargs)\n', (4078, 4110), True, 'import networkx as nx\n'), ((5605, 5681), 'networkx.pagerank_scipy', 'nx.pagerank_scipy', (['graph'], {'alpha': '(0.85)', 'max_iter': '(100)', 'tol': '(1e-08)', 'weight': 'weight'}), '(graph, alpha=0.85, max_iter=100, tol=1e-08, weight=weight)\n', (5622, 5681), True, 'import networkx as nx\n'), ((6911, 6940), 'collections.defaultdict', 'collections.defaultdict', (['bool'], {}), '(bool)\n', (6934, 6940), False, 'import collections\n'), ((10286, 10310), 'numpy.flatnonzero', 'np.flatnonzero', (['(tmp == 0)'], {}), '(tmp == 0)\n', (10300, 10310), True, 'import numpy as np\n'), ((2195, 2205), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (2203, 2205), True, 'import networkx as nx\n'), ((2673, 2717), 'cytoolz.itertoolz.sliding_window', 'itertoolz.sliding_window', (['window_size', 'terms'], {}), '(window_size, terms)\n', (2697, 2717), False, 'from cytoolz import itertoolz\n'), ((9824, 9887), 'networkx.to_numpy_matrix', 'nx.to_numpy_matrix', (['graph'], {'nodelist': 'nodes_list', 'weight': '"""weight"""'}), "(graph, nodelist=nodes_list, weight='weight')\n", (9842, 9887), True, 'import networkx as nx\n'), ((10245, 10262), 'numpy.sum', 'np.sum', (['W'], {'axis': '(1)'}), '(W, axis=1)\n', (10251, 10262), True, 'import numpy as np\n'), ((10324, 10344), 'numpy.tile', 'np.tile', (['tmp', '(1, n)'], {}), '(tmp, (1, n))\n', (10331, 10344), True, 'import numpy as np\n'), ((10743, 10756), 'numpy.dot', 'np.dot', (['pr', 'P'], {}), '(pr, P)\n', (10749, 10756), True, 'import numpy as np\n'), ((5741, 5763), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (5760, 5763), False, 'import operator\n'), ((10478, 10497), 'numpy.tile', 'np.tile', (['pr', '(n, 1)'], {}), '(pr, (n, 1))\n', (10485, 10497), True, 'import numpy as np\n'), ((10594, 10612), 'numpy.sum', 'np.sum', (['W1'], {'axis': '(1)'}), '(W1, axis=1)\n', (10600, 10612), True, 'import numpy as np\n'), ((10639, 10660), 'numpy.tile', 'np.tile', (['tmp1', '(1, n)'], {}), '(tmp1, (1, n))\n', (10646, 10660), True, 'import numpy as np\n'), ((10817, 10827), 'numpy.sum', 'np.sum', (['pr'], {}), '(pr)\n', (10823, 10827), True, 'import numpy as np\n'), ((10988, 11010), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (11007, 11010), False, 'import operator\n'), ((10516, 10533), 'numpy.diag', 'np.diag', (['W1[:, 0]'], {}), '(W1[:, 0])\n', (10523, 10533), True, 'import numpy as np\n'), ((10550, 10567), 'numpy.diag', 'np.diag', (['pr[0, :]'], {}), '(pr[0, :])\n', (10557, 10567), True, 'import numpy as np\n'), ((10706, 10724), 'numpy.tile', 'np.tile', (['r', '(n, 1)'], {}), '(r, (n, 1))\n', (10713, 10724), True, 'import numpy as np\n'), ((10794, 10813), 'numpy.abs', 'np.abs', (['(pr_new - pr)'], {}), '(pr_new - pr)\n', (10800, 10813), True, 'import numpy as np\n'), ((7471, 7493), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (7490, 7493), False, 'import operator\n'), ((3531, 3564), 'itertools.combinations', 'itertools.combinations', (['window', '(2)'], {}), '(window, 2)\n', (3553, 3564), False, 'import itertools\n')]
""" Python implementation of the LiNGAM algorithms. The LiNGAM Project: https://sites.google.com/site/sshimizu06/lingam """ import itertools import numbers import warnings import numpy as np from sklearn.utils import check_array, resample from .bootstrap import BootstrapResult from .direct_lingam import DirectLiNGAM from .hsic import hsic_test_gamma from .utils import predict_adaptive_lasso class MultiGroupDirectLiNGAM(DirectLiNGAM): """Implementation of DirectLiNGAM Algorithm with multiple groups [1]_ References ---------- .. [1] <NAME>. Joint estimation of linear non-Gaussian acyclic models. Neurocomputing, 81: 104-107, 2012. """ def __init__(self, random_state=None, prior_knowledge=None, apply_prior_knowledge_softly=False): """Construct a model. Parameters ---------- random_state : int, optional (default=None) ``random_state`` is the seed used by the random number generator. prior_knowledge : array-like, shape (n_features, n_features), optional (default=None) Prior background_knowledge used for causal discovery, where ``n_features`` is the number of features. The elements of prior background_knowledge matrix are defined as follows [1]_: * ``0`` : :math:`x_i` does not have a directed path to :math:`x_j` * ``1`` : :math:`x_i` has a directed path to :math:`x_j` * ``-1`` : No prior background_knowledge is available to know if either of the two cases above (0 or 1) is true. apply_prior_knowledge_softly : boolean, optional (default=False) If True, apply prior background_knowledge softly. """ super().__init__(random_state, prior_knowledge, apply_prior_knowledge_softly) def fit(self, X_list): """Fit the model to multiple datasets. Parameters ---------- X_list : list, shape [X, ...] Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : object Returns the instance itself. """ # Check parameters X_list = self._check_X_list(X_list) if self._Aknw is not None: if (self._n_features, self._n_features) != self._Aknw.shape: raise ValueError( 'The shape of prior background_knowledge must be (n_features, n_features)') # Causal discovery U = np.arange(self._n_features) K = [] X_list_ = [np.copy(X) for X in X_list] for _ in range(self._n_features): m = self._search_causal_order(X_list_, U) for i in U: if i != m: for d in range(len(X_list_)): X_list_[d][:, i] = self._residual( X_list_[d][:, i], X_list_[d][:, m]) K.append(m) U = U[U != m] if (self._Aknw is not None) and (not self._apply_prior_knowledge_softly): self._partial_orders = self._partial_orders[self._partial_orders[:, 0] != m] self._causal_order = K self._adjacency_matrices = [] for X in X_list: self._estimate_adjacency_matrix(X, prior_knowledge=self._Aknw) self._adjacency_matrices.append(self._adjacency_matrix) return self def bootstrap(self, X_list, n_sampling): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- results : array-like, shape (BootstrapResult, ...) Returns the results of bootstrapping for multiple datasets. """ # Check parameters X_list = self._check_X_list(X_list) if isinstance(n_sampling, (numbers.Integral, np.integer)): if not 0 < n_sampling: raise ValueError( 'n_sampling must be an integer greater than 0.') else: raise ValueError('n_sampling must be an integer greater than 0.') # Bootstrapping adjacency_matrices_list = np.zeros( [len(X_list), n_sampling, self._n_features, self._n_features]) total_effects_list = np.zeros( [len(X_list), n_sampling, self._n_features, self._n_features]) for n in range(n_sampling): resampled_X_list = [resample(X) for X in X_list] self.fit(resampled_X_list) for i, am in enumerate(self._adjacency_matrices): adjacency_matrices_list[i][n] = am # Calculate total effects for c, from_ in enumerate(self._causal_order): for to in self._causal_order[c + 1:]: effects = self.estimate_total_effect( resampled_X_list, from_, to) for i, effect in enumerate(effects): total_effects_list[i, n, to, from_] = effect result_list = [] for am, te in zip(adjacency_matrices_list, total_effects_list): result_list.append(BootstrapResult(am, te)) return result_list def estimate_total_effect(self, X_list, from_index, to_index): """Estimate total effect using causal model. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. from_index : Index of source variable to estimate total effect. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ # Check parameters X_list = self._check_X_list(X_list) # Check from/to causal order from_order = self._causal_order.index(from_index) to_order = self._causal_order.index(to_index) if from_order > to_order: warnings.warn(f'The estimated causal effect may be incorrect because ' f'the causal order of the destination variable (to_index={to_index}) ' f'is earlier than the source variable (from_index={from_index}).') effects = [] for X, am in zip(X_list, self._adjacency_matrices): # from_index + parents indices parents = np.where(np.abs(am[from_index]) > 0)[0] predictors = [from_index] predictors.extend(parents) # Estimate total effect coefs = predict_adaptive_lasso(X, predictors, to_index) effects.append(coefs[0]) return effects def get_error_independence_p_values(self, X_list): """Calculate the p-value matrix of independence between error variables. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- independence_p_values : array-like, shape (n_datasets, n_features, n_features) p-value matrix of independence between error variables. """ # Check parameters X_list = self._check_X_list(X_list) p_values = np.zeros([len(X_list), self._n_features, self._n_features]) for d, (X, am) in enumerate(zip(X_list, self._adjacency_matrices)): n_samples = X.shape[0] E = X - np.dot(am, X.T).T for i, j in itertools.combinations(range(self._n_features), 2): _, p_value = hsic_test_gamma(np.reshape(E[:, i], [n_samples, 1]), np.reshape(E[:, j], [n_samples, 1])) p_values[d, i, j] = p_value p_values[d, j, i] = p_value return p_values def _check_X_list(self, X_list): """Check input X list.""" if not isinstance(X_list, list): raise ValueError('X_list must be a list.') if len(X_list) < 2: raise ValueError( 'X_list must be a list containing at least two items') self._n_features = check_array(X_list[0]).shape[1] X_list_ = [] for X in X_list: X_ = check_array(X) if X_.shape[1] != self._n_features: raise ValueError( 'X_list must be a list with the same number of features') X_list_.append(X_) return np.array(X_list_) def _search_causal_order(self, X_list, U): """Search the causal ordering.""" Uc, Vj = self._search_candidate(U) if len(Uc) == 1: return Uc[0] total_size = 0 for X in X_list: total_size += len(X) MG_list = [] for i in Uc: MG = 0 for X in X_list: M = 0 for j in U: if i != j: xi_std = (X[:, i] - np.mean(X[:, i])) / np.std(X[:, i]) xj_std = (X[:, j] - np.mean(X[:, j])) / np.std(X[:, j]) ri_j = xi_std if i in Vj and j in Uc else self._residual( xi_std, xj_std) rj_i = xj_std if j in Vj and i in Uc else self._residual( xj_std, xi_std) M += np.min([0, self._diff_mutual_info(xi_std, xj_std, ri_j, rj_i)]) ** 2 MG += M * (len(X) / total_size) MG_list.append(-1.0 * MG) return Uc[np.argmax(MG_list)] @property def adjacency_matrices_(self): """Estimated adjacency matrices. Returns ------- adjacency_matrices_ : array-like, shape (B, ...) The list of adjacency matrix B for multiple datasets. The shape of B is (n_features, n_features), where n_features is the number of features. """ return self._adjacency_matrices
[ "numpy.copy", "numpy.abs", "numpy.mean", "numpy.reshape", "numpy.argmax", "numpy.array", "sklearn.utils.resample", "numpy.dot", "sklearn.utils.check_array", "numpy.std", "warnings.warn", "numpy.arange" ]
[((2618, 2645), 'numpy.arange', 'np.arange', (['self._n_features'], {}), '(self._n_features)\n', (2627, 2645), True, 'import numpy as np\n'), ((9286, 9303), 'numpy.array', 'np.array', (['X_list_'], {}), '(X_list_)\n', (9294, 9303), True, 'import numpy as np\n'), ((2680, 2690), 'numpy.copy', 'np.copy', (['X'], {}), '(X)\n', (2687, 2690), True, 'import numpy as np\n'), ((6644, 6854), 'warnings.warn', 'warnings.warn', (['f"""The estimated causal effect may be incorrect because the causal order of the destination variable (to_index={to_index}) is earlier than the source variable (from_index={from_index})."""'], {}), "(\n f'The estimated causal effect may be incorrect because the causal order of the destination variable (to_index={to_index}) is earlier than the source variable (from_index={from_index}).'\n )\n", (6657, 6854), False, 'import warnings\n'), ((9064, 9078), 'sklearn.utils.check_array', 'check_array', (['X'], {}), '(X)\n', (9075, 9078), False, 'from sklearn.utils import check_array, resample\n'), ((10418, 10436), 'numpy.argmax', 'np.argmax', (['MG_list'], {}), '(MG_list)\n', (10427, 10436), True, 'import numpy as np\n'), ((4903, 4914), 'sklearn.utils.resample', 'resample', (['X'], {}), '(X)\n', (4911, 4914), False, 'from sklearn.utils import check_array, resample\n'), ((8969, 8991), 'sklearn.utils.check_array', 'check_array', (['X_list[0]'], {}), '(X_list[0])\n', (8980, 8991), False, 'from sklearn.utils import check_array, resample\n'), ((8272, 8287), 'numpy.dot', 'np.dot', (['am', 'X.T'], {}), '(am, X.T)\n', (8278, 8287), True, 'import numpy as np\n'), ((8411, 8446), 'numpy.reshape', 'np.reshape', (['E[:, i]', '[n_samples, 1]'], {}), '(E[:, i], [n_samples, 1])\n', (8421, 8446), True, 'import numpy as np\n'), ((8493, 8528), 'numpy.reshape', 'np.reshape', (['E[:, j]', '[n_samples, 1]'], {}), '(E[:, j], [n_samples, 1])\n', (8503, 8528), True, 'import numpy as np\n'), ((7061, 7083), 'numpy.abs', 'np.abs', (['am[from_index]'], {}), '(am[from_index])\n', (7067, 7083), True, 'import numpy as np\n'), ((9805, 9820), 'numpy.std', 'np.std', (['X[:, i]'], {}), '(X[:, i])\n', (9811, 9820), True, 'import numpy as np\n'), ((9885, 9900), 'numpy.std', 'np.std', (['X[:, j]'], {}), '(X[:, j])\n', (9891, 9900), True, 'import numpy as np\n'), ((9785, 9801), 'numpy.mean', 'np.mean', (['X[:, i]'], {}), '(X[:, i])\n', (9792, 9801), True, 'import numpy as np\n'), ((9865, 9881), 'numpy.mean', 'np.mean', (['X[:, j]'], {}), '(X[:, j])\n', (9872, 9881), True, 'import numpy as np\n')]
""" This file contains the solution to the problem 2.8.4 of the book `Nonlinear Dynamics and Chaos` by <NAME>. """ import numpy as np import matplotlib.pyplot as plt def exact_solution(t, x0=1.0): """ The implementation of the exact solution to the differential equation x' = -x with the initial condition x(t=0)=`x0` (default x0=1, as in the problem). """ return x0 * np.exp(-t) def improved_euler_method(f, t0: float, x0: float, timestep: float, end: float, exact_solution=None): """ Implementation of the improved euler method to numerically compute the solution to the differential equation x'=f(x) Parameters ---------- f: function The implementation of the function `f` appearing in the differential equation. t0: float The initial time. x0: float The initial condition to the differential equation, i.e. the value of x(t=t0). timestep: float The timestep to employ for the numerical solution of the differential equation. end: float The maximal time step up to which to compute the the solution. exact_solution: function The exact solution. If the value is different from `None` the exact solution will be evaluated at each time step and the corresponding values will be returned in order to be able to check the convergence of the numerical solution. """ if end < t0: raise ValueError("Initial time is larger than the end time!") # Store the time steps time_steps = [t0] # Store the value at each time step values = [x0] # Store the exact values of the solutions at each time step, if the exact # solution is provided if exact_solution: exact_values = [exact_solution(t0)] # Now start solving the differential equation numerically t = t0 x = x0 while t < end: t = t + timestep time_steps.append(t) x_tilde = x + f(x) * timestep x = x + 0.5 * (f(x) + f(x_tilde)) * timestep values.append(x) if exact_solution: exact_values.append(exact_solution(t)) return time_steps, values, None if not exact_solution else exact_values if __name__ == "__main__": x0 = 1 t0 = 0 stop = 1.0 # Part a) of the exercise print(f"\nPart a):") print(f"The exact value of x(t) is 1/e, or approximately 1/e = {np.exp(-1)}") # Part b) of the exercise print(f"\nPart b):") time_steps, values, exact_values = improved_euler_method(lambda x: -x, t0, x0, 1.0, stop, exact_solution) print(f"time steps : {time_steps}") print(f"values : {values}") print(f"exact values: {exact_values}") step_size_solutions = {} for n in [1, 2, 3, 4]: time_steps, values, exact_values = improved_euler_method(lambda x: -x, t0, x0, 10**(-n), stop, exact_solution) step_size_solutions[n] = {"time_steps": time_steps, "values": values, "exact": exact_values} # Plot the different solutions and compare # Exact exact_time = np.linspace(0, 1, 100) exact = exact_solution(exact_time) plt.plot(exact_time, exact, label='exact') for n in [1, 2, 3, 4]: plt.plot(step_size_solutions[n]['time_steps'], step_size_solutions[n]['values'], label=f"n={n}") plt.title(r'Numerical vs. exact solution for different time steps ($10^{-n}$)') plt.xlabel(r'$t$') plt.ylabel(r'$x(t)$') plt.legend() plt.show() # Part a) of the exercise print(f"\nPart c):") print(f"Plotting error vs. step size.") errors = [] for n in [1, 2, 3, 4]: error = np.abs(step_size_solutions[n]['values'][-1] - step_size_solutions[n]['exact'][-1]) errors.append(error) plt.plot([1, 2, 3, 4], errors) plt.title(r'Error vs step size $10^{-n}$') plt.xlabel(r'$n$') plt.ylabel(r'$|\hat{x}(1)-x(1)|$') plt.tight_layout() plt.show() # plt.savefig('error_vs_stepsize.pdf') # Plot ln(E) vs ln(t) print("Plotting error evolution with time") for n in [1, 2, 3, 4]: t = step_size_solutions[n]['time_steps'] values = np.array(step_size_solutions[n]['values']) exact = np.array(step_size_solutions[n]['exact']) errors = np.abs(values-exact) plt.plot(np.log(t), np.log(errors), label=f"n={n}") plt.title(r'Error evolution with time for different step sizes ($10^{-n}$).') plt.xlabel(r'$\ln{(t)}$') plt.ylabel(r'$\ln{(|\hat{x}(t)-x(t)|)}$') plt.legend() plt.minorticks_on() plt.grid(True, which='both') plt.show() # plt.savefig('error_evolution_in_time_log_scale.pdf')
[ "numpy.abs", "matplotlib.pyplot.grid", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.log", "matplotlib.pyplot.minorticks_on", "numpy.exp", "numpy.array", "numpy.linspace", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((3112, 3134), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (3123, 3134), True, 'import numpy as np\n'), ((3178, 3220), 'matplotlib.pyplot.plot', 'plt.plot', (['exact_time', 'exact'], {'label': '"""exact"""'}), "(exact_time, exact, label='exact')\n", (3186, 3220), True, 'import matplotlib.pyplot as plt\n'), ((3362, 3440), 'matplotlib.pyplot.title', 'plt.title', (['"""Numerical vs. exact solution for different time steps ($10^{-n}$)"""'], {}), "('Numerical vs. exact solution for different time steps ($10^{-n}$)')\n", (3371, 3440), True, 'import matplotlib.pyplot as plt\n'), ((3446, 3463), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$t$"""'], {}), "('$t$')\n", (3456, 3463), True, 'import matplotlib.pyplot as plt\n'), ((3469, 3489), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$x(t)$"""'], {}), "('$x(t)$')\n", (3479, 3489), True, 'import matplotlib.pyplot as plt\n'), ((3495, 3507), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3505, 3507), True, 'import matplotlib.pyplot as plt\n'), ((3512, 3522), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3520, 3522), True, 'import matplotlib.pyplot as plt\n'), ((3799, 3829), 'matplotlib.pyplot.plot', 'plt.plot', (['[1, 2, 3, 4]', 'errors'], {}), '([1, 2, 3, 4], errors)\n', (3807, 3829), True, 'import matplotlib.pyplot as plt\n'), ((3834, 3875), 'matplotlib.pyplot.title', 'plt.title', (['"""Error vs step size $10^{-n}$"""'], {}), "('Error vs step size $10^{-n}$')\n", (3843, 3875), True, 'import matplotlib.pyplot as plt\n'), ((3881, 3898), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$n$"""'], {}), "('$n$')\n", (3891, 3898), True, 'import matplotlib.pyplot as plt\n'), ((3904, 3938), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$|\\\\hat{x}(1)-x(1)|$"""'], {}), "('$|\\\\hat{x}(1)-x(1)|$')\n", (3914, 3938), True, 'import matplotlib.pyplot as plt\n'), ((3943, 3961), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3959, 3961), True, 'import matplotlib.pyplot as plt\n'), ((3966, 3976), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3974, 3976), True, 'import matplotlib.pyplot as plt\n'), ((4396, 4472), 'matplotlib.pyplot.title', 'plt.title', (['"""Error evolution with time for different step sizes ($10^{-n}$)."""'], {}), "('Error evolution with time for different step sizes ($10^{-n}$).')\n", (4405, 4472), True, 'import matplotlib.pyplot as plt\n'), ((4478, 4503), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\ln{(t)}$"""'], {}), "('$\\\\ln{(t)}$')\n", (4488, 4503), True, 'import matplotlib.pyplot as plt\n'), ((4508, 4550), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\ln{(|\\\\hat{x}(t)-x(t)|)}$"""'], {}), "('$\\\\ln{(|\\\\hat{x}(t)-x(t)|)}$')\n", (4518, 4550), True, 'import matplotlib.pyplot as plt\n'), ((4554, 4566), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4564, 4566), True, 'import matplotlib.pyplot as plt\n'), ((4571, 4590), 'matplotlib.pyplot.minorticks_on', 'plt.minorticks_on', ([], {}), '()\n', (4588, 4590), True, 'import matplotlib.pyplot as plt\n'), ((4595, 4623), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {'which': '"""both"""'}), "(True, which='both')\n", (4603, 4623), True, 'import matplotlib.pyplot as plt\n'), ((4628, 4638), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4636, 4638), True, 'import matplotlib.pyplot as plt\n'), ((395, 405), 'numpy.exp', 'np.exp', (['(-t)'], {}), '(-t)\n', (401, 405), True, 'import numpy as np\n'), ((3256, 3357), 'matplotlib.pyplot.plot', 'plt.plot', (["step_size_solutions[n]['time_steps']", "step_size_solutions[n]['values']"], {'label': 'f"""n={n}"""'}), "(step_size_solutions[n]['time_steps'], step_size_solutions[n][\n 'values'], label=f'n={n}')\n", (3264, 3357), True, 'import matplotlib.pyplot as plt\n'), ((3682, 3769), 'numpy.abs', 'np.abs', (["(step_size_solutions[n]['values'][-1] - step_size_solutions[n]['exact'][-1])"], {}), "(step_size_solutions[n]['values'][-1] - step_size_solutions[n][\n 'exact'][-1])\n", (3688, 3769), True, 'import numpy as np\n'), ((4192, 4234), 'numpy.array', 'np.array', (["step_size_solutions[n]['values']"], {}), "(step_size_solutions[n]['values'])\n", (4200, 4234), True, 'import numpy as np\n'), ((4251, 4292), 'numpy.array', 'np.array', (["step_size_solutions[n]['exact']"], {}), "(step_size_solutions[n]['exact'])\n", (4259, 4292), True, 'import numpy as np\n'), ((4310, 4332), 'numpy.abs', 'np.abs', (['(values - exact)'], {}), '(values - exact)\n', (4316, 4332), True, 'import numpy as np\n'), ((4348, 4357), 'numpy.log', 'np.log', (['t'], {}), '(t)\n', (4354, 4357), True, 'import numpy as np\n'), ((4359, 4373), 'numpy.log', 'np.log', (['errors'], {}), '(errors)\n', (4365, 4373), True, 'import numpy as np\n'), ((2449, 2459), 'numpy.exp', 'np.exp', (['(-1)'], {}), '(-1)\n', (2455, 2459), True, 'import numpy as np\n')]
import os import time import IPython import numpy as np import scipy.stats as st from sklearn.metrics import confusion_matrix import gym import torch import torch.nn.functional as F from torch.autograd import Variable def get_action(actions, env): if type(env.action_space) is gym.spaces.Discrete: # Get index action = actions.max(1)[1].data.numpy()[0] elif type(env.action_space) is gym.spaces.Box: # Get values action = actions.data.numpy().flatten() if np.prod(action.shape) == 1: # Index into array action = action[0] return action def gym_rollout(model, env, random_seed, mseed=None, silent=False, collect_inputs=False, do_cuda=False, max_episode_length=int(1e6), **kwargs): """ Function to do rollouts of a policy defined by `model` in given environment """ # Reset environment if mseed is not None: # Seed environment identically across workers env.seed(mseed) else: # Random init env.seed(np.random.randint(0, 10**16)) state = env.reset() state = Variable(torch.from_numpy(state).float(), requires_grad=True).unsqueeze(0) retrn = 0 n_observations = 0 done = False if collect_inputs: # Collect `collect_inputs` observations prealdim = (int(collect_inputs),) for d in state.size()[1:]: prealdim = prealdim + (d,) inputs = torch.zeros(prealdim) # Rollout while not done and n_observations < max_episode_length: # Collect states as batch inputs if collect_inputs and collect_inputs > n_observations: inputs[n_observations,] = state.data # Choose action actions = model(state) action = get_action(actions, env) # Step state, reward, done, _ = env.step(action) retrn += reward n_observations += 1 # Cast state state = Variable(torch.from_numpy(state).float(), requires_grad=True).unsqueeze(0) out = {'seed': random_seed, 'return': float(retrn), 'observations': n_observations} if collect_inputs: if collect_inputs is not True and n_observations < collect_inputs: # collect_inputs is a number and smaller than observations seens inputs = inputs[:n_observations,] out['inputs'] = inputs.numpy() queue = kwargs.get('return_queue') if queue: queue.put(out) return out def gym_render(model, env, max_episode_length): """ Renders the learned model on the environment for testing. """ try: while True: # Reset environment state = env.reset() state = Variable(torch.from_numpy(state).float(), volatile=True).unsqueeze(0) this_model_return = 0 this_model_num_steps = 0 done = False # Rollout while not done and this_model_num_steps < max_episode_length: # Choose action actions = model(state) action = get_action(actions, env) # Step state, reward, done, _ = env.step(action) this_model_return += reward this_model_num_steps += 1 # Cast state state = Variable(torch.from_numpy(state).float(), volatile=True).unsqueeze(0) env.render() print('Reward: %f' % this_model_return) except KeyboardInterrupt: print("\nEnded test session by keyboard interrupt") def gym_test(model, env, max_episode_length, n_episodes, chkpt_dir=None, **kwargs): """ Tests the learned model on the environment. """ returns = [0]*n_episodes for i_episode in range(n_episodes): print('Episode {:d}/{:d}'.format(i_episode, n_episodes)) # Reset environment state = env.reset() state = Variable(torch.from_numpy(state).float(), volatile=True).unsqueeze(0) this_model_num_steps = 0 done = False # Rollout while not done and this_model_num_steps < max_episode_length: # Choose action actions = model(state) action = get_action(actions, env) # Step state, reward, done, _ = env.step(action) returns[i_episode] += reward this_model_num_steps += 1 # Cast state state = Variable(torch.from_numpy(state).float(), volatile=True).unsqueeze(0) mean = np.mean(returns) # Mean return sem = st.sem(returns) # Standard error of mean s = '' for conf in [0.9, 0.95, 0.975, 0.99]: interval = st.norm.interval(conf, loc=mean, scale=sem) half_width = (interval[1] - interval[0])/2 s += "{:2d}% CI = {:5.2f} +/- {:<5.2f}, [{:>5.2f}, {:<5.2f}]\n".format(int(conf*100), mean, half_width, interval[0], interval[1]) if chkpt_dir is not None: with open(os.path.join(chkpt_dir, 'test.log'), 'w') as f: f.write("Confidence intervals computed on " + str(n_episodes) + " episodes.") f.write(s) print(s) def supervised_eval(model, train_loader, random_seed, mseed=None, silent=False, collect_inputs=False, do_cuda=False, **kwargs): """ Function to evaluate the fitness of a supervised model. For supervised training, the training data set loader is viewed as the "environment" and is passed in the env variable (train_loader). """ if mseed is not None: # Use common random numbers torch.manual_seed(mseed) (data, target) = next(iter(train_loader)) else: # Sample unique batch (data, target) = next(iter(train_loader)) data, target = Variable(data), Variable(target) if do_cuda: data, target = data.cuda(), target.cuda() output = model(data) retrn = -F.nll_loss(output, target) if do_cuda: retrn = retrn.cpu() retrn = retrn.data.numpy()[0] pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability accuracy = pred.eq(target.data.view_as(pred)).sum()/target.data.size()[0] out = {'seed': random_seed, 'return': retrn, 'observations': data.data.size()[0], 'accuracy': accuracy} if collect_inputs: # NOTE It is necessary to convert the torch.autograd.Variable to numpy array # in order to correctly transfer this data from the worker thread to the main thread. # This is an unfortunate result of how Python pickling handles sending file descriptors. # Torch sends tensors via shared memory instead of writing the values to the queue. # The steps are roughly: # 1. Background process sends token mp.Queue. # 2. When the main process reads the token, it opens a unix socket to the background process. # 3. The background process sends the file descriptor via the unix socket. out['inputs'] = data.data.numpy() # Also print correct prediction ratio queue = kwargs.get('return_queue') if queue: queue.put(out) return out def supervised_test(model, test_loader, cuda=False, chkpt_dir=None): """ Function to test the performance of a supervised classification model """ model.eval() test_loss = 0 correct = 0 predictions = [] targets = [] for data, target in test_loader: if cuda: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() predictions.extend(pred.cpu().numpy().flatten()) targets.extend(target.cpu().data.numpy().flatten()) test_loss /= len(test_loader.dataset) s = 'Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)) cm = confusion_matrix(targets, predictions) if chkpt_dir is not None: with open(os.path.join(chkpt_dir, 'test.log'), 'w') as f: f.write(s) f.write(str(cm)) print(s) print(cm)
[ "numpy.mean", "torch.manual_seed", "numpy.prod", "torch.nn.functional.nll_loss", "os.path.join", "scipy.stats.norm.interval", "torch.from_numpy", "numpy.random.randint", "scipy.stats.sem", "torch.autograd.Variable", "torch.zeros", "sklearn.metrics.confusion_matrix" ]
[((4493, 4509), 'numpy.mean', 'np.mean', (['returns'], {}), '(returns)\n', (4500, 4509), True, 'import numpy as np\n'), ((4535, 4550), 'scipy.stats.sem', 'st.sem', (['returns'], {}), '(returns)\n', (4541, 4550), True, 'import scipy.stats as st\n'), ((8138, 8176), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['targets', 'predictions'], {}), '(targets, predictions)\n', (8154, 8176), False, 'from sklearn.metrics import confusion_matrix\n'), ((1434, 1455), 'torch.zeros', 'torch.zeros', (['prealdim'], {}), '(prealdim)\n', (1445, 1455), False, 'import torch\n'), ((4651, 4694), 'scipy.stats.norm.interval', 'st.norm.interval', (['conf'], {'loc': 'mean', 'scale': 'sem'}), '(conf, loc=mean, scale=sem)\n', (4667, 4694), True, 'import scipy.stats as st\n'), ((5527, 5551), 'torch.manual_seed', 'torch.manual_seed', (['mseed'], {}), '(mseed)\n', (5544, 5551), False, 'import torch\n'), ((5711, 5725), 'torch.autograd.Variable', 'Variable', (['data'], {}), '(data)\n', (5719, 5725), False, 'from torch.autograd import Variable\n'), ((5727, 5743), 'torch.autograd.Variable', 'Variable', (['target'], {}), '(target)\n', (5735, 5743), False, 'from torch.autograd import Variable\n'), ((5848, 5874), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['output', 'target'], {}), '(output, target)\n', (5858, 5874), True, 'import torch.nn.functional as F\n'), ((1035, 1065), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10 ** 16)'], {}), '(0, 10 ** 16)\n', (1052, 1065), True, 'import numpy as np\n'), ((7461, 7490), 'torch.autograd.Variable', 'Variable', (['data'], {'volatile': '(True)'}), '(data, volatile=True)\n', (7469, 7490), False, 'from torch.autograd import Variable\n'), ((7492, 7508), 'torch.autograd.Variable', 'Variable', (['target'], {}), '(target)\n', (7500, 7508), False, 'from torch.autograd import Variable\n'), ((508, 529), 'numpy.prod', 'np.prod', (['action.shape'], {}), '(action.shape)\n', (515, 529), True, 'import numpy as np\n'), ((4933, 4968), 'os.path.join', 'os.path.join', (['chkpt_dir', '"""test.log"""'], {}), "(chkpt_dir, 'test.log')\n", (4945, 4968), False, 'import os\n'), ((7559, 7605), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['output', 'target'], {'size_average': '(False)'}), '(output, target, size_average=False)\n', (7569, 7605), True, 'import torch.nn.functional as F\n'), ((8225, 8260), 'os.path.join', 'os.path.join', (['chkpt_dir', '"""test.log"""'], {}), "(chkpt_dir, 'test.log')\n", (8237, 8260), False, 'import os\n'), ((1110, 1133), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (1126, 1133), False, 'import torch\n'), ((1943, 1966), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (1959, 1966), False, 'import torch\n'), ((3898, 3921), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (3914, 3921), False, 'import torch\n'), ((2698, 2721), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (2714, 2721), False, 'import torch\n'), ((4416, 4439), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (4432, 4439), False, 'import torch\n'), ((3301, 3324), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (3317, 3324), False, 'import torch\n')]
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import unittest import numpy as np from skbio.sequence import NucleotideSequence from skbio.util import classproperty class ExampleNucleotideSequence(NucleotideSequence): @classproperty def degenerate_map(cls): return {"X": set("AB"), "Y": set("BC"), "Z": set("AC")} @classproperty def nondegenerate_chars(cls): return set("ABC") @classproperty def complement_map(cls): comp_map = { 'A': 'C', 'C': 'A', 'B': 'B', 'X': 'Y', 'Y': 'X', 'Z': 'Z' } comp_map.update({c: c for c in cls.gap_chars}) return comp_map class ExampleNucleotideSequenceSubclass(ExampleNucleotideSequence): pass class TestNucelotideSequence(unittest.TestCase): def setUp(self): self.sequence_kinds = frozenset([ str, ExampleNucleotideSequence, lambda s: np.fromstring(s, dtype='|S1'), lambda s: np.fromstring(s, dtype=np.uint8)]) def test_instantiation_with_no_implementation(self): class NucleotideSequenceSubclassNoImplementation(NucleotideSequence): pass with self.assertRaises(TypeError) as cm: NucleotideSequenceSubclassNoImplementation() self.assertIn("abstract class", str(cm.exception)) self.assertIn("nondegenerate_chars", str(cm.exception)) self.assertIn("degenerate_map", str(cm.exception)) self.assertIn("complement_map", str(cm.exception)) def test_complement_map(self): expected = { 'A': 'C', 'C': 'A', 'B': 'B', 'X': 'Y', 'Y': 'X', 'Z': 'Z', '.': '.', '-': '-' } self.assertEqual(ExampleNucleotideSequence.complement_map, expected) ExampleNucleotideSequence.complement_map['W'] = 'X' ExampleNucleotideSequence.complement_map['X'] = 'W' self.assertEqual(ExampleNucleotideSequence.complement_map, expected) self.assertEqual(ExampleNucleotideSequence('').complement_map, expected) with self.assertRaises(AttributeError): ExampleNucleotideSequence('').complement_map = {'W': 'X'} def test_complement_without_reverse_empty(self): # without optional attributes comp = ExampleNucleotideSequence('').complement() self.assertEqual(comp, ExampleNucleotideSequence('')) # with optional attributes comp = ExampleNucleotideSequence( '', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': []}).complement() self.assertEqual( comp, ExampleNucleotideSequence( '', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': []})) def test_complement_without_reverse_non_empty(self): comp = ExampleNucleotideSequence('ABCXYZ.-BBZ').complement() self.assertEqual(comp, ExampleNucleotideSequence('CBAYXZ.-BBZ')) comp = ExampleNucleotideSequence( 'ABCXYZ.-BBZ', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': range(11)}).complement() self.assertEqual( comp, ExampleNucleotideSequence( 'CBAYXZ.-BBZ', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': range(11)})) def test_complement_with_reverse_empty(self): rc = ExampleNucleotideSequence('').complement(reverse=True) self.assertEqual(rc, ExampleNucleotideSequence('')) rc = ExampleNucleotideSequence( '', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': []}).complement(reverse=True) self.assertEqual( rc, ExampleNucleotideSequence( '', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': []})) def test_complement_with_reverse_non_empty(self): rc = ExampleNucleotideSequence('ABCXYZ.-BBZ').complement(reverse=True) self.assertEqual(rc, ExampleNucleotideSequence('ZBB-.ZXYABC')) rc = ExampleNucleotideSequence( 'ABCXYZ.-BBZ', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': range(11)}).complement(reverse=True) self.assertEqual( rc, ExampleNucleotideSequence( 'ZBB-.ZXYABC', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': list(range(11))[::-1]})) def test_reverse_complement(self): # light tests because this just calls # NucleotideSequence.complement(reverse=True), which is tested more # extensively rc = ExampleNucleotideSequence( 'ABCXYZ.-BBZ', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': range(11)}).reverse_complement() self.assertEqual( rc, ExampleNucleotideSequence( 'ZBB-.ZXYABC', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': list(range(11))[::-1]})) def test_is_reverse_complement_varied_types(self): tested = 0 for constructor in self.sequence_kinds: tested += 1 seq1 = ExampleNucleotideSequence('ABCXYZ.-BBZ') seq2 = constructor('ZBB-.ZXYABC') self.assertTrue(seq1.is_reverse_complement(seq2)) self.assertEqual(tested, 4) def test_is_reverse_complement_empty(self): seq1 = ExampleNucleotideSequence('') self.assertTrue(seq1.is_reverse_complement(seq1)) # optional attributes are ignored, only the sequence is compared seq2 = ExampleNucleotideSequence( '', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': np.array([], dtype=np.int64)}) self.assertTrue(seq2.is_reverse_complement(seq2)) self.assertTrue(seq1.is_reverse_complement(seq2)) self.assertTrue(seq2.is_reverse_complement(seq1)) def test_is_reverse_complement_metadata_ignored(self): seq1 = ExampleNucleotideSequence('ABCXYZ.-BBZ') seq2 = ExampleNucleotideSequence( 'ZBB-.ZXYABC', metadata={'id': 'foo', 'description': 'bar'}, positional_metadata={'quality': range(11)}) self.assertFalse(seq1.is_reverse_complement(seq1)) self.assertFalse(seq2.is_reverse_complement(seq2)) self.assertTrue(seq1.is_reverse_complement(seq2)) self.assertTrue(seq2.is_reverse_complement(seq1)) def test_is_reverse_complement_non_reverse_complements(self): # same length seq1 = ExampleNucleotideSequence('AABC') seq2 = ExampleNucleotideSequence('ABCX') self.assertFalse(seq1.is_reverse_complement(seq1)) self.assertFalse(seq2.is_reverse_complement(seq2)) self.assertFalse(seq1.is_reverse_complement(seq2)) self.assertFalse(seq2.is_reverse_complement(seq1)) # different length seq1 = ExampleNucleotideSequence('AABC') seq2 = ExampleNucleotideSequence('ABCXZ') self.assertFalse(seq1.is_reverse_complement(seq1)) self.assertFalse(seq2.is_reverse_complement(seq2)) self.assertFalse(seq1.is_reverse_complement(seq2)) self.assertFalse(seq2.is_reverse_complement(seq1)) def test_is_reverse_complement_type_mismatch(self): seq1 = ExampleNucleotideSequence('ABC') seq2 = ExampleNucleotideSequenceSubclass('ABC') with self.assertRaises(TypeError): seq1.is_reverse_complement(seq2) if __name__ == "__main__": unittest.main()
[ "unittest.main", "numpy.array", "numpy.fromstring" ]
[((8409, 8424), 'unittest.main', 'unittest.main', ([], {}), '()\n', (8422, 8424), False, 'import unittest\n'), ((1325, 1354), 'numpy.fromstring', 'np.fromstring', (['s'], {'dtype': '"""|S1"""'}), "(s, dtype='|S1')\n", (1338, 1354), True, 'import numpy as np\n'), ((1378, 1410), 'numpy.fromstring', 'np.fromstring', (['s'], {'dtype': 'np.uint8'}), '(s, dtype=np.uint8)\n', (1391, 1410), True, 'import numpy as np\n'), ((6596, 6624), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int64'}), '([], dtype=np.int64)\n', (6604, 6624), True, 'import numpy as np\n')]
import copy import logging import dask import numpy as np import xarray as xr from numcodecs.compat import ensure_ndarray from xarray.backends.zarr import ( DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding, ) from zarr.meta import encode_fill_value from zarr.storage import array_meta_key, attrs_key, default_compressor, group_meta_key from zarr.util import normalize_shape from .api import DATASET_ID_ATTR_KEY dask_array_type = (dask.array.Array,) zarr_format = 2 zarr_consolidated_format = 1 zarr_metadata_key = '.zmetadata' logger = logging.getLogger('api') def _extract_dataset_zattrs(dataset: xr.Dataset): """helper function to create zattrs dictionary from Dataset global attrs""" zattrs = {} for k, v in dataset.attrs.items(): zattrs[k] = encode_zarr_attr_value(v) # remove xpublish internal attribute zattrs.pop(DATASET_ID_ATTR_KEY, None) return zattrs def _extract_dataarray_zattrs(da): """helper function to extract zattrs dictionary from DataArray""" zattrs = {} for k, v in da.attrs.items(): zattrs[k] = encode_zarr_attr_value(v) zattrs[DIMENSION_KEY] = list(da.dims) # We don't want `_FillValue` in `.zattrs` # It should go in `fill_value` section of `.zarray` _ = zattrs.pop('_FillValue', None) return zattrs def _extract_fill_value(da, dtype): """helper function to extract fill value from DataArray.""" fill_value = da.attrs.pop('_FillValue', None) return encode_fill_value(fill_value, dtype) def _extract_zarray(da, encoding, dtype): """helper function to extract zarr array metadata.""" meta = { 'compressor': encoding.get('compressor', da.encoding.get('compressor', default_compressor)), 'filters': encoding.get('filters', da.encoding.get('filters', None)), 'chunks': encoding.get('chunks', None), 'dtype': dtype.str, 'fill_value': _extract_fill_value(da, dtype), 'order': 'C', 'shape': list(normalize_shape(da.shape)), 'zarr_format': zarr_format, } if meta['chunks'] is None: meta['chunks'] = da.shape # validate chunks if isinstance(da.data, dask_array_type): var_chunks = tuple([c[0] for c in da.data.chunks]) else: var_chunks = da.shape if not var_chunks == tuple(meta['chunks']): raise ValueError('Encoding chunks do not match inferred chunks') meta['chunks'] = list(meta['chunks']) # return chunks as a list return meta def create_zvariables(dataset): """Helper function to create a dictionary of zarr encoded variables.""" zvariables = {} for key, da in dataset.variables.items(): encoded_da = encode_zarr_variable(da, name=key) zvariables[key] = encoded_da return zvariables def create_zmetadata(dataset): """Helper function to create a consolidated zmetadata dictionary.""" zmeta = {'zarr_consolidated_format': zarr_consolidated_format, 'metadata': {}} zmeta['metadata'][group_meta_key] = {'zarr_format': zarr_format} zmeta['metadata'][attrs_key] = _extract_dataset_zattrs(dataset) for key, da in dataset.variables.items(): encoded_da = encode_zarr_variable(da, name=key) encoding = extract_zarr_variable_encoding(da) zmeta['metadata'][f'{key}/{attrs_key}'] = _extract_dataarray_zattrs(encoded_da) zmeta['metadata'][f'{key}/{array_meta_key}'] = _extract_zarray( encoded_da, encoding, encoded_da.dtype ) return zmeta def jsonify_zmetadata(dataset: xr.Dataset, zmetadata: dict) -> dict: """Helper function to convert zmetadata dictionary to a json compatible dictionary. """ zjson = copy.deepcopy(zmetadata) for key in list(dataset.variables): # convert compressor to dict compressor = zjson['metadata'][f'{key}/{array_meta_key}']['compressor'] if compressor is not None: compressor_config = zjson['metadata'][f'{key}/{array_meta_key}'][ 'compressor' ].get_config() zjson['metadata'][f'{key}/{array_meta_key}']['compressor'] = compressor_config return zjson def encode_chunk(chunk, filters=None, compressor=None): """helper function largely copied from zarr.Array""" # apply filters if filters: for f in filters: chunk = f.encode(chunk) # check object encoding if ensure_ndarray(chunk).dtype == object: raise RuntimeError('cannot write object array without object codec') # compress if compressor: cdata = compressor.encode(chunk) else: cdata = chunk return cdata def get_data_chunk(da, chunk_id, out_shape): """Get one chunk of data from this DataArray (da). If this is an incomplete edge chunk, pad the returned array to match out_shape. """ ikeys = tuple(map(int, chunk_id.split('.'))) if isinstance(da, dask_array_type): chunk_data = da.blocks[ikeys] else: if ikeys != ((0,) * da.ndim): raise ValueError( 'Invalid chunk_id for numpy array: %s. Should have been: %s' % (chunk_id, ((0,) * da.ndim)) ) chunk_data = np.asarray(da) logger.debug('checking chunk output size, %s == %s' % (chunk_data.shape, out_shape)) if isinstance(chunk_data, dask_array_type): chunk_data = chunk_data.compute() # zarr expects full edge chunks, contents out of bounds for the array are undefined if chunk_data.shape != tuple(out_shape): new_chunk = np.empty_like(chunk_data, shape=out_shape) write_slice = tuple([slice(0, s) for s in chunk_data.shape]) new_chunk[write_slice] = chunk_data return new_chunk else: return chunk_data
[ "logging.getLogger", "zarr.meta.encode_fill_value", "xarray.backends.zarr.encode_zarr_attr_value", "numpy.asarray", "numcodecs.compat.ensure_ndarray", "numpy.empty_like", "zarr.util.normalize_shape", "xarray.backends.zarr.encode_zarr_variable", "copy.deepcopy", "xarray.backends.zarr.extract_zarr_variable_encoding" ]
[((599, 623), 'logging.getLogger', 'logging.getLogger', (['"""api"""'], {}), "('api')\n", (616, 623), False, 'import logging\n'), ((1529, 1565), 'zarr.meta.encode_fill_value', 'encode_fill_value', (['fill_value', 'dtype'], {}), '(fill_value, dtype)\n', (1546, 1565), False, 'from zarr.meta import encode_fill_value\n'), ((3745, 3769), 'copy.deepcopy', 'copy.deepcopy', (['zmetadata'], {}), '(zmetadata)\n', (3758, 3769), False, 'import copy\n'), ((831, 856), 'xarray.backends.zarr.encode_zarr_attr_value', 'encode_zarr_attr_value', (['v'], {}), '(v)\n', (853, 856), False, 'from xarray.backends.zarr import DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding\n'), ((1137, 1162), 'xarray.backends.zarr.encode_zarr_attr_value', 'encode_zarr_attr_value', (['v'], {}), '(v)\n', (1159, 1162), False, 'from xarray.backends.zarr import DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding\n'), ((2743, 2777), 'xarray.backends.zarr.encode_zarr_variable', 'encode_zarr_variable', (['da'], {'name': 'key'}), '(da, name=key)\n', (2763, 2777), False, 'from xarray.backends.zarr import DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding\n'), ((3233, 3267), 'xarray.backends.zarr.encode_zarr_variable', 'encode_zarr_variable', (['da'], {'name': 'key'}), '(da, name=key)\n', (3253, 3267), False, 'from xarray.backends.zarr import DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding\n'), ((3287, 3321), 'xarray.backends.zarr.extract_zarr_variable_encoding', 'extract_zarr_variable_encoding', (['da'], {}), '(da)\n', (3317, 3321), False, 'from xarray.backends.zarr import DIMENSION_KEY, encode_zarr_attr_value, encode_zarr_variable, extract_zarr_variable_encoding\n'), ((5256, 5270), 'numpy.asarray', 'np.asarray', (['da'], {}), '(da)\n', (5266, 5270), True, 'import numpy as np\n'), ((5606, 5648), 'numpy.empty_like', 'np.empty_like', (['chunk_data'], {'shape': 'out_shape'}), '(chunk_data, shape=out_shape)\n', (5619, 5648), True, 'import numpy as np\n'), ((2034, 2059), 'zarr.util.normalize_shape', 'normalize_shape', (['da.shape'], {}), '(da.shape)\n', (2049, 2059), False, 'from zarr.util import normalize_shape\n'), ((4455, 4476), 'numcodecs.compat.ensure_ndarray', 'ensure_ndarray', (['chunk'], {}), '(chunk)\n', (4469, 4476), False, 'from numcodecs.compat import ensure_ndarray\n')]
import numpy as np import dynet as dy from xnmt import logger import xnmt.batcher from xnmt.events import register_xnmt_handler, handle_xnmt_event from xnmt.expression_sequence import ExpressionSequence, LazyNumpyExpressionSequence from xnmt.linear import Linear from xnmt.param_collection import ParamManager from xnmt.param_init import GlorotInitializer, ZeroInitializer from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare class Embedder(object): """ An embedder takes in word IDs and outputs continuous vectors. This can be done on a word-by-word basis, or over a sequence. """ def embed(self, word): """Embed a single word. Args: word: This will generally be an integer word ID, but could also be something like a string. It could also be batched, in which case the input will be a :class:`xnmt.batcher.Batch` of integers or other things. Returns: A DyNet Expression corresponding to the embedding of the word(s), possibly batched using :class:`xnmt.batcher.Batch`. """ raise NotImplementedError('embed must be implemented in Embedder subclasses') def embed_sent(self, sent): """Embed a full sentence worth of words. By default, just do a for loop. Args: sent: This will generally be a list of word IDs, but could also be a list of strings or some other format. It could also be batched, in which case it will be a (possibly masked) :class:`xnmt.batcher.Batch` object Returns: xnmt.expression_sequence.ExpressionSequence: An expression sequence representing vectors of each word in the input. """ # single mode if not xnmt.batcher.is_batched(sent): embeddings = [self.embed(word) for word in sent] # minibatch mode else: embeddings = [] seq_len = len(sent[0]) for single_sent in sent: assert len(single_sent)==seq_len for word_i in range(seq_len): batch = xnmt.batcher.mark_as_batch([single_sent[word_i] for single_sent in sent]) embeddings.append(self.embed(batch)) return ExpressionSequence(expr_list=embeddings, mask=sent.mask if xnmt.batcher.is_batched(sent) else None) def choose_vocab(self, vocab, yaml_path, src_reader, trg_reader): """Choose the vocab for the embedder basd on the passed arguments This is done in order of priority of vocab, model+yaml_path Args: vocab (Vocab): If None, try to obtain from ``src_reader`` or ``trg_reader``, depending on the ``yaml_path`` yaml_path (Path): Path of this embedder in the component hierarchy. Automatically determined when deserializing the YAML model. src_reader (InputReader): Model's src_reader, if exists and unambiguous. trg_reader (InputReader): Model's trg_reader, if exists and unambiguous. Returns: xnmt.vocab.Vocab: chosen vocab """ if vocab is not None: return len(vocab) elif "src_embedder" in yaml_path: if src_reader is None or src_reader.vocab is None: raise ValueError("Could not determine src_embedder's vocabulary. Please set its vocab member explicitly, or specify the vocabulary of src_reader ahead of time.") return len(src_reader.vocab) elif "trg_embedder" in yaml_path or "output_projector" in yaml_path: if trg_reader is None or trg_reader.vocab is None: raise ValueError("Could not determine trg_embedder's vocabulary. Please set its vocab member explicitly, or specify the vocabulary of trg_reader ahead of time.") return len(trg_reader.vocab) else: raise ValueError("Attempted to determine vocab size of {} (path: {}), but path was not src_embedder, trg_embedder, or output_projector, so it could not determine what part of the model to use. Please set vocab_size or vocab explicitly.".format(self.__class__, yaml_path)) def choose_vocab_size(self, vocab_size, vocab, yaml_path, src_reader, trg_reader): """Choose the vocab size for the embedder basd on the passed arguments This is done in order of priority of vocab_size, vocab, model+yaml_path Args: vocab_size (int): vocab size or None vocab (Vocab): vocab or None yaml_path (Path): Path of this embedder in the component hierarchy. Automatically determined when deserializing the YAML model. src_reader (InputReader): Model's src_reader, if exists and unambiguous. trg_reader (InputReader): Model's trg_reader, if exists and unambiguous. Returns: int: chosen vocab size """ if vocab_size is not None: return vocab_size elif vocab is not None: return len(vocab) elif "src_embedder" in yaml_path: if src_reader is None or src_reader.vocab is None: raise ValueError("Could not determine src_embedder's size. Please set its vocab_size or vocab member explicitly, or specify the vocabulary of src_reader ahead of time.") return len(src_reader.vocab) elif "trg_embedder" in yaml_path or "output_projector" in yaml_path: if trg_reader is None or trg_reader.vocab is None: raise ValueError("Could not determine target embedder's size. Please set its vocab_size or vocab member explicitly, or specify the vocabulary of trg_reader ahead of time.") return len(trg_reader.vocab) else: raise ValueError("Attempted to determine vocab size of {} (path: {}), but path was not src_embedder, trg_embedder, or output_projector, so it could not determine what part of the model to use. Please set vocab_size or vocab explicitly.".format(self.__class__, yaml_path)) class DenseWordEmbedder(Embedder, Linear, Serializable): """ Word embeddings via full matrix. Args: emb_dim (int): embedding dimension weight_noise (float): apply Gaussian noise with given standard deviation to embeddings word_dropout (float): drop out word types with a certain probability, sampling word types on a per-sentence level, see https://arxiv.org/abs/1512.05287 fix_norm (float): fix the norm of word vectors to be radius r, see https://arxiv.org/abs/1710.01329 param_init (ParamInitializer): how to initialize weight matrices bias_init (ParamInitializer): how to initialize bias vectors vocab_size (int): vocab size or None vocab (Vocab): vocab or None yaml_path (Path): Path of this embedder in the component hierarchy. Automatically set by the YAML deserializer. src_reader (InputReader): A reader for the source side. Automatically set by the YAML deserializer. trg_reader (InputReader): A reader for the target side. Automatically set by the YAML deserializer. """ yaml_tag = "!DenseWordEmbedder" @register_xnmt_handler @serializable_init def __init__(self, emb_dim=Ref("exp_global.default_layer_dim"), weight_noise=Ref("exp_global.weight_noise", default=0.0), word_dropout=0.0, fix_norm=None, param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)), bias_init=Ref("exp_global.bias_init", default=bare(ZeroInitializer)), vocab_size=None, vocab=None, yaml_path=None, src_reader=Ref("model.src_reader", default=None), trg_reader=Ref("model.trg_reader", default=None)): self.fix_norm = fix_norm self.weight_noise = weight_noise self.word_dropout = word_dropout self.emb_dim = emb_dim param_collection = ParamManager.my_params(self) self.vocab_size = self.choose_vocab_size(vocab_size, vocab, yaml_path, src_reader, trg_reader) self.save_processed_arg("vocab_size", self.vocab_size) self.embeddings = param_collection.add_parameters((self.vocab_size, self.emb_dim), init=param_init.initializer((self.vocab_size, self.emb_dim), is_lookup=True)) self.bias = param_collection.add_parameters((self.vocab_size,), init=bias_init.initializer((self.vocab_size,))) @handle_xnmt_event def on_start_sent(self, src): self.word_id_mask = None @handle_xnmt_event def on_set_train(self, val): self.train = val def embed(self, x): if self.train and self.word_dropout > 0.0 and self.word_id_mask is None: batch_size = len(x) if xnmt.batcher.is_batched(x) else 1 self.word_id_mask = [set(np.random.choice(self.vocab_size, int(self.vocab_size * self.word_dropout), replace=False)) for _ in range(batch_size)] emb_e = dy.parameter(self.embeddings) # single mode if not xnmt.batcher.is_batched(x): if self.train and self.word_id_mask and x in self.word_id_mask[0]: ret = dy.zeros((self.emb_dim,)) else: ret = dy.pick(emb_e, index=x) if self.fix_norm is not None: ret = dy.cdiv(ret, dy.l2_norm(ret)) if self.fix_norm != 1: ret *= self.fix_norm # minibatch mode else: ret = dy.pick_batch(emb_e, x) if self.fix_norm is not None: ret = dy.cdiv(ret, dy.l2_norm(ret)) if self.fix_norm != 1: ret *= self.fix_norm if self.train and self.word_id_mask and any(x[i] in self.word_id_mask[i] for i in range(len(x))): dropout_mask = dy.inputTensor(np.transpose([[0.0]*self.emb_dim if x[i] in self.word_id_mask[i] else [1.0]*self.emb_dim for i in range(len(x))]), batched=True) ret = dy.cmult(ret, dropout_mask) if self.train and self.weight_noise > 0.0: ret = dy.noise(ret, self.weight_noise) return ret def __call__(self, input_expr): W1 = dy.parameter(self.embeddings) b1 = dy.parameter(self.bias) return dy.affine_transform([b1, W1, input_expr]) class SimpleWordEmbedder(Embedder, Serializable): """ Simple word embeddings via lookup. Args: emb_dim (int): embedding dimension weight_noise (float): apply Gaussian noise with given standard deviation to embeddings word_dropout (float): drop out word types with a certain probability, sampling word types on a per-sentence level, see https://arxiv.org/abs/1512.05287 fix_norm (float): fix the norm of word vectors to be radius r, see https://arxiv.org/abs/1710.01329 param_init (ParamInitializer): how to initialize lookup matrices vocab_size (int): vocab size or None vocab (Vocab): vocab or None yaml_path (Path): Path of this embedder in the component hierarchy. Automatically set by the YAML deserializer. src_reader (InputReader): A reader for the source side. Automatically set by the YAML deserializer. trg_reader (InputReader): A reader for the target side. Automatically set by the YAML deserializer. """ yaml_tag = '!SimpleWordEmbedder' @register_xnmt_handler @serializable_init def __init__(self, emb_dim=Ref("exp_global.default_layer_dim"), weight_noise=Ref("exp_global.weight_noise", default=0.0), word_dropout=0.0, fix_norm=None, param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)), vocab_size = None, vocab = None, yaml_path = None, src_reader = Ref("model.src_reader", default=None), trg_reader = Ref("model.trg_reader", default=None)): #print(f"embedder received param_init: {param_init}") self.emb_dim = emb_dim self.weight_noise = weight_noise self.word_dropout = word_dropout self.fix_norm = fix_norm self.word_id_mask = None self.train = False param_collection = ParamManager.my_params(self) self.vocab_size = self.choose_vocab_size(vocab_size, vocab, yaml_path, src_reader, trg_reader) self.save_processed_arg("vocab_size", self.vocab_size) self.embeddings = param_collection.add_lookup_parameters((self.vocab_size, self.emb_dim), init=param_init.initializer((self.vocab_size, self.emb_dim), is_lookup=True)) @handle_xnmt_event def on_set_train(self, val): self.train = val @handle_xnmt_event def on_start_sent(self, src): self.word_id_mask = None def embed(self, x): if self.train and self.word_dropout > 0.0 and self.word_id_mask is None: batch_size = len(x) if xnmt.batcher.is_batched(x) else 1 self.word_id_mask = [set(np.random.choice(self.vocab_size, int(self.vocab_size * self.word_dropout), replace=False)) for _ in range(batch_size)] # single mode if not xnmt.batcher.is_batched(x): if self.train and self.word_id_mask and x in self.word_id_mask[0]: ret = dy.zeros((self.emb_dim,)) else: ret = self.embeddings[x] if self.fix_norm is not None: ret = dy.cdiv(ret, dy.l2_norm(ret)) if self.fix_norm != 1: ret *= self.fix_norm # minibatch mode else: ret = self.embeddings.batch(x) if self.fix_norm is not None: ret = dy.cdiv(ret, dy.l2_norm(ret)) if self.fix_norm != 1: ret *= self.fix_norm if self.train and self.word_id_mask and any(x[i] in self.word_id_mask[i] for i in range(len(x))): dropout_mask = dy.inputTensor(np.transpose([[0.0]*self.emb_dim if x[i] in self.word_id_mask[i] else [1.0]*self.emb_dim for i in range(len(x))]), batched=True) ret = dy.cmult(ret, dropout_mask) if self.train and self.weight_noise > 0.0: ret = dy.noise(ret, self.weight_noise) return ret class NoopEmbedder(Embedder, Serializable): """ This embedder performs no lookups but only passes through the inputs. Normally, the input is an Input object, which is converted to an expression. Args: emb_dim (int): Size of the inputs (not required) """ yaml_tag = '!NoopEmbedder' @serializable_init def __init__(self, emb_dim): self.emb_dim = emb_dim def embed(self, x): return dy.inputTensor(x, batched=xnmt.batcher.is_batched(x)) def embed_sent(self, sent): # TODO refactor: seems a bit too many special cases that need to be distinguished batched = xnmt.batcher.is_batched(sent) first_sent = sent[0] if batched else sent if hasattr(first_sent, "get_array"): if not batched: return LazyNumpyExpressionSequence(lazy_data=sent.get_array()) else: return LazyNumpyExpressionSequence(lazy_data=xnmt.batcher.mark_as_batch( map(lambda s: s.get_array(), sent)), mask=sent.mask) else: if not batched: embeddings = [self.embed(word) for word in sent] else: embeddings = [] for word_i in range(len(first_sent)): embeddings.append(self.embed(xnmt.batcher.mark_as_batch([single_sent[word_i] for single_sent in sent]))) return ExpressionSequence(expr_list=embeddings, mask=sent.mask) class PretrainedSimpleWordEmbedder(SimpleWordEmbedder, Serializable): """ Simple word embeddings via lookup. Initial pretrained embeddings must be supplied in FastText text format. Args: filename (str): Filename for the pretrained embeddings emb_dim (int): embedding dimension; if None, use exp_global.default_layer_dim weight_noise (float): apply Gaussian noise with given standard deviation to embeddings; if ``None``, use exp_global.weight_noise word_dropout (float): drop out word types with a certain probability, sampling word types on a per-sentence level, see https://arxiv.org/abs/1512.05287 fix_norm (float): fix the norm of word vectors to be radius r, see https://arxiv.org/abs/1710.01329 vocab (Vocab): vocab or None yaml_path (Path): Path of this embedder in the component hierarchy. Automatically set by the YAML deserializer. src_reader (InputReader): A reader for the source side. Automatically set by the YAML deserializer. trg_reader (InputReader): A reader for the target side. Automatically set by the YAML deserializer. """ yaml_tag = '!PretrainedSimpleWordEmbedder' @register_xnmt_handler @serializable_init def __init__(self, filename, emb_dim=Ref("exp_global.default_layer_dim"), weight_noise=Ref("exp_global.weight_noise", default=0.0), word_dropout=0.0, fix_norm = None, vocab = None, yaml_path = None, src_reader = Ref("model.src_reader", default=None), trg_reader = Ref("model.trg_reader", default=None)): self.emb_dim = emb_dim self.weight_noise = weight_noise self.word_dropout = word_dropout self.word_id_mask = None self.train = False self.fix_norm = fix_norm self.pretrained_filename = filename param_collection = ParamManager.my_params(self) self.vocab = self.choose_vocab(vocab, yaml_path, src_reader, trg_reader) self.vocab_size = len(vocab) self.save_processed_arg("vocab", self.vocab) with open(self.pretrained_filename, encoding='utf-8') as embeddings_file: total_embs, in_vocab, missing, initial_embeddings = self._read_fasttext_embeddings(vocab, embeddings_file) self.embeddings = param_collection.lookup_parameters_from_numpy(initial_embeddings) logger.info(f"{in_vocab} vocabulary matches out of {total_embs} total embeddings; " f"{missing} vocabulary words without a pretrained embedding out of {self.vocab_size}") def _read_fasttext_embeddings(self, vocab, embeddings_file_handle): """ Reads FastText embeddings from a file. Also prints stats about the loaded embeddings for sanity checking. Args: vocab: a `Vocab` object containing the vocabulary for the experiment embeddings_file_handle: A file handle on the embeddings file. The embeddings must be in FastText text format. Returns: tuple: A tuple of (total number of embeddings read, # embeddings that match vocabulary words, # vocabulary words without a matching embedding, embeddings array). """ _, dimension = next(embeddings_file_handle).split() if int(dimension) != self.emb_dim: raise Exception(f"An embedding size of {self.emb_dim} was specified, but the pretrained embeddings have size {dimension}") # Poor man's Glorot initializer for missing embeddings bound = np.sqrt(6/(self.vocab_size + self.emb_dim)) total_embs = 0 in_vocab = 0 missing = 0 embeddings = np.empty((self.vocab_size, self.emb_dim), dtype='float') found = np.zeros(self.vocab_size, dtype='bool_') for line in embeddings_file_handle: total_embs += 1 word, vals = line.strip().split(' ', 1) if word in vocab.w2i: in_vocab += 1 index = vocab.w2i[word] embeddings[index] = np.fromstring(vals, sep=" ") found[index] = True for i in range(self.vocab_size): if not found[i]: missing += 1 embeddings[i] = np.random.uniform(-bound, bound, self.emb_dim) return total_embs, in_vocab, missing, embeddings
[ "dynet.parameter", "xnmt.param_collection.ParamManager.my_params", "numpy.sqrt", "dynet.affine_transform", "xnmt.logger.info", "xnmt.persistence.bare", "dynet.zeros", "numpy.zeros", "numpy.random.uniform", "numpy.empty", "dynet.pick_batch", "dynet.pick", "xnmt.persistence.Ref", "dynet.l2_norm", "xnmt.expression_sequence.ExpressionSequence", "numpy.fromstring", "dynet.cmult", "dynet.noise" ]
[((6731, 6766), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.default_layer_dim"""'], {}), "('exp_global.default_layer_dim')\n", (6734, 6766), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((6796, 6839), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.weight_noise"""'], {'default': '(0.0)'}), "('exp_global.weight_noise', default=0.0)\n", (6799, 6839), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((7194, 7231), 'xnmt.persistence.Ref', 'Ref', (['"""model.src_reader"""'], {'default': 'None'}), "('model.src_reader', default=None)\n", (7197, 7231), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((7259, 7296), 'xnmt.persistence.Ref', 'Ref', (['"""model.trg_reader"""'], {'default': 'None'}), "('model.trg_reader', default=None)\n", (7262, 7296), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((7452, 7480), 'xnmt.param_collection.ParamManager.my_params', 'ParamManager.my_params', (['self'], {}), '(self)\n', (7474, 7480), False, 'from xnmt.param_collection import ParamManager\n'), ((8403, 8432), 'dynet.parameter', 'dy.parameter', (['self.embeddings'], {}), '(self.embeddings)\n', (8415, 8432), True, 'import dynet as dy\n'), ((9476, 9505), 'dynet.parameter', 'dy.parameter', (['self.embeddings'], {}), '(self.embeddings)\n', (9488, 9505), True, 'import dynet as dy\n'), ((9515, 9538), 'dynet.parameter', 'dy.parameter', (['self.bias'], {}), '(self.bias)\n', (9527, 9538), True, 'import dynet as dy\n'), ((9550, 9591), 'dynet.affine_transform', 'dy.affine_transform', (['[b1, W1, input_expr]'], {}), '([b1, W1, input_expr])\n', (9569, 9591), True, 'import dynet as dy\n'), ((10686, 10721), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.default_layer_dim"""'], {}), "('exp_global.default_layer_dim')\n", (10689, 10721), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((10751, 10794), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.weight_noise"""'], {'default': '(0.0)'}), "('exp_global.weight_noise', default=0.0)\n", (10754, 10794), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((11072, 11109), 'xnmt.persistence.Ref', 'Ref', (['"""model.src_reader"""'], {'default': 'None'}), "('model.src_reader', default=None)\n", (11075, 11109), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((11139, 11176), 'xnmt.persistence.Ref', 'Ref', (['"""model.trg_reader"""'], {'default': 'None'}), "('model.trg_reader', default=None)\n", (11142, 11176), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((11442, 11470), 'xnmt.param_collection.ParamManager.my_params', 'ParamManager.my_params', (['self'], {}), '(self)\n', (11464, 11470), False, 'from xnmt.param_collection import ParamManager\n'), ((15951, 15986), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.default_layer_dim"""'], {}), "('exp_global.default_layer_dim')\n", (15954, 15986), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((16016, 16059), 'xnmt.persistence.Ref', 'Ref', (['"""exp_global.weight_noise"""'], {'default': '(0.0)'}), "('exp_global.weight_noise', default=0.0)\n", (16019, 16059), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((16216, 16253), 'xnmt.persistence.Ref', 'Ref', (['"""model.src_reader"""'], {'default': 'None'}), "('model.src_reader', default=None)\n", (16219, 16253), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((16283, 16320), 'xnmt.persistence.Ref', 'Ref', (['"""model.trg_reader"""'], {'default': 'None'}), "('model.trg_reader', default=None)\n", (16286, 16320), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((16568, 16596), 'xnmt.param_collection.ParamManager.my_params', 'ParamManager.my_params', (['self'], {}), '(self)\n', (16590, 16596), False, 'from xnmt.param_collection import ParamManager\n'), ((17040, 17216), 'xnmt.logger.info', 'logger.info', (['f"""{in_vocab} vocabulary matches out of {total_embs} total embeddings; {missing} vocabulary words without a pretrained embedding out of {self.vocab_size}"""'], {}), "(\n f'{in_vocab} vocabulary matches out of {total_embs} total embeddings; {missing} vocabulary words without a pretrained embedding out of {self.vocab_size}'\n )\n", (17051, 17216), False, 'from xnmt import logger\n'), ((18138, 18183), 'numpy.sqrt', 'np.sqrt', (['(6 / (self.vocab_size + self.emb_dim))'], {}), '(6 / (self.vocab_size + self.emb_dim))\n', (18145, 18183), True, 'import numpy as np\n'), ((18253, 18309), 'numpy.empty', 'np.empty', (['(self.vocab_size, self.emb_dim)'], {'dtype': '"""float"""'}), "((self.vocab_size, self.emb_dim), dtype='float')\n", (18261, 18309), True, 'import numpy as np\n'), ((18322, 18362), 'numpy.zeros', 'np.zeros', (['self.vocab_size'], {'dtype': '"""bool_"""'}), "(self.vocab_size, dtype='bool_')\n", (18330, 18362), True, 'import numpy as np\n'), ((8846, 8869), 'dynet.pick_batch', 'dy.pick_batch', (['emb_e', 'x'], {}), '(emb_e, x)\n', (8859, 8869), True, 'import dynet as dy\n'), ((9384, 9416), 'dynet.noise', 'dy.noise', (['ret', 'self.weight_noise'], {}), '(ret, self.weight_noise)\n', (9392, 9416), True, 'import dynet as dy\n'), ((13248, 13280), 'dynet.noise', 'dy.noise', (['ret', 'self.weight_noise'], {}), '(ret, self.weight_noise)\n', (13256, 13280), True, 'import dynet as dy\n'), ((14639, 14695), 'xnmt.expression_sequence.ExpressionSequence', 'ExpressionSequence', ([], {'expr_list': 'embeddings', 'mask': 'sent.mask'}), '(expr_list=embeddings, mask=sent.mask)\n', (14657, 14695), False, 'from xnmt.expression_sequence import ExpressionSequence, LazyNumpyExpressionSequence\n'), ((6967, 6990), 'xnmt.persistence.bare', 'bare', (['GlorotInitializer'], {}), '(GlorotInitializer)\n', (6971, 6990), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((7054, 7075), 'xnmt.persistence.bare', 'bare', (['ZeroInitializer'], {}), '(ZeroInitializer)\n', (7058, 7075), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((8577, 8602), 'dynet.zeros', 'dy.zeros', (['(self.emb_dim,)'], {}), '((self.emb_dim,))\n', (8585, 8602), True, 'import dynet as dy\n'), ((8629, 8652), 'dynet.pick', 'dy.pick', (['emb_e'], {'index': 'x'}), '(emb_e, index=x)\n', (8636, 8652), True, 'import dynet as dy\n'), ((9297, 9324), 'dynet.cmult', 'dy.cmult', (['ret', 'dropout_mask'], {}), '(ret, dropout_mask)\n', (9305, 9324), True, 'import dynet as dy\n'), ((10922, 10945), 'xnmt.persistence.bare', 'bare', (['GlorotInitializer'], {}), '(GlorotInitializer)\n', (10926, 10945), False, 'from xnmt.persistence import serializable_init, Serializable, Ref, Path, bare\n'), ((12445, 12470), 'dynet.zeros', 'dy.zeros', (['(self.emb_dim,)'], {}), '((self.emb_dim,))\n', (12453, 12470), True, 'import dynet as dy\n'), ((13161, 13188), 'dynet.cmult', 'dy.cmult', (['ret', 'dropout_mask'], {}), '(ret, dropout_mask)\n', (13169, 13188), True, 'import dynet as dy\n'), ((18582, 18610), 'numpy.fromstring', 'np.fromstring', (['vals'], {'sep': '""" """'}), "(vals, sep=' ')\n", (18595, 18610), True, 'import numpy as np\n'), ((18745, 18791), 'numpy.random.uniform', 'np.random.uniform', (['(-bound)', 'bound', 'self.emb_dim'], {}), '(-bound, bound, self.emb_dim)\n', (18762, 18791), True, 'import numpy as np\n'), ((8933, 8948), 'dynet.l2_norm', 'dy.l2_norm', (['ret'], {}), '(ret)\n', (8943, 8948), True, 'import dynet as dy\n'), ((12797, 12812), 'dynet.l2_norm', 'dy.l2_norm', (['ret'], {}), '(ret)\n', (12807, 12812), True, 'import dynet as dy\n'), ((8720, 8735), 'dynet.l2_norm', 'dy.l2_norm', (['ret'], {}), '(ret)\n', (8730, 8735), True, 'import dynet as dy\n'), ((12583, 12598), 'dynet.l2_norm', 'dy.l2_norm', (['ret'], {}), '(ret)\n', (12593, 12598), True, 'import dynet as dy\n')]
import ctypes as ct import numpy as np import scipy.io as scio import matplotlib.pyplot as plt # Init ctypes types DOUBLE = ct.c_double PtrDOUBLE = ct.POINTER(DOUBLE) PtrPtrDOUBLE = ct.POINTER(PtrDOUBLE) PtrPtrPtrDOUBLE = ct.POINTER(PtrPtrDOUBLE) class TestStruct(ct.Structure): _fields_ = [ ("ScanR", ct.c_double), # Radius of the scanning trajectory of x-ray source ("DecFanAng", ct.c_double), # Fan angle coverage of the detector element along the horizontal diretion ("DecHeigh", ct.c_double), # Physical heigth of the detector along the vertical direction ("YL", ct.c_int), # Detector cell number on each row along the horizontal direction ("ZL", ct.c_int), # Detector cell number on each column along the vertical direction ("YOffSet", ct.c_double), # Detector offset along the horizontal direction (pixel, e.g. quarter pixel) ("ZOffSet", ct.c_double), # Detector offset along the vertical direcion (pixel, e.g. quarter pixel) ("AngleNumber", ct.c_int), # Number of view samples on the scanning trajectory ("DistD", ct.c_double), # Distance between the x-ray source and the detector ("Radius", ct.c_double), # Radius of the phantom ("RecSize", ct.c_int), # Reconstructed size ("centerX", ct.c_int), # Reconstructed center on x axis ("centerY", ct.c_int), # Reconstructed center on y axis ("centerZ", ct.c_int), # Reconstructed center on z axis ("FOILength", ct.c_int), # Reconstructed length on x axis ("FOIWidth", ct.c_int), # Reconstructed length on y axis ("FOIHeigh", ct.c_int), # Reconstructed length on z axis ("GF", PtrPtrPtrDOUBLE), # Projection data/ Sinogram data ("RecIm", PtrPtrPtrDOUBLE) # Reconstructed 3D image data ] def double3darray2pointer(arr): # Converts a 3D numpy to ctypes 3D array. arr_dimx = DOUBLE * arr.shape[2] arr_dimy = PtrDOUBLE * arr.shape[1] arr_dimz = PtrPtrDOUBLE * arr.shape[0] arr_ptr = arr_dimz() for i, row in enumerate(arr): arr_ptr[i] = arr_dimy() for j, col in enumerate(row): arr_ptr[i][j] = arr_dimx() for k, val in enumerate(col): arr_ptr[i][j][k] = val return arr_ptr def double3dpointer2array(ptr, n, m, o): # Converts ctypes 3D array into a 3D numpy array. arr = np.zeros(shape=(n, m, o)) for i in range(n): for j in range(m): for k in range(o): arr[i, j, k] = ptr[i][j][k] return arr # Load the compiled library recon = ct.CDLL("./fdk_equiAngle.dll") # Define arguments of the C function recon.fbp.argtypes = [ct.POINTER(TestStruct)] # Define the return type of the C function recon.fbp.restype = None # Load the data dataFile = './data/FDK_Filtering_curve.mat' data = scio.loadmat(dataFile) # init the struct t = TestStruct() t.ScanR = data['ScanR'] t.DistD = data['DistD'] t.DecFanAng = data['DecFanAng'] t.DecHeigh = data['DecHeigh'] t.YL = data['YL'] t.ZL = data['ZL'] t.AngleNumber = data['ProjScale'] t.Radius = data['Radius'] # These are flexible parameters. t.RecSize = 128 t.centerX = 64 t.centerY = 64 t.centerZ = 64 t.FOILength = 128 t.FOIWidth = 128 t.FOIHeigh = 128 # Generate a 2D ctypes array from numpy array GF = data['GF'] GF_ptr = double3darray2pointer(GF) t.GF = GF_ptr # RecIm = np.zeros(shape=(t.RecSize, t.RecSize, t.RecSize)) RecIm = np.zeros(shape=(t.FOILength, t.FOIWidth, t.FOIHeigh)) RecIm_ptr = double3darray2pointer(RecIm) t.RecIm = RecIm_ptr # interface with C function recon.fbp(ct.byref(t)) # Convert ctypes 2D arrays to numpy arrays RecA = double3dpointer2array(RecIm_ptr, *RecIm.shape) # save result dataNew = './data/FDK_RecImage_curve.mat' scio.savemat(dataNew, {'Rec': RecA}) plt.figure() plt.imshow(RecA[:, :, 80], cmap='gray') plt.show()
[ "matplotlib.pyplot.imshow", "ctypes.byref", "ctypes.POINTER", "scipy.io.savemat", "scipy.io.loadmat", "numpy.zeros", "matplotlib.pyplot.figure", "ctypes.CDLL", "matplotlib.pyplot.show" ]
[((149, 167), 'ctypes.POINTER', 'ct.POINTER', (['DOUBLE'], {}), '(DOUBLE)\n', (159, 167), True, 'import ctypes as ct\n'), ((183, 204), 'ctypes.POINTER', 'ct.POINTER', (['PtrDOUBLE'], {}), '(PtrDOUBLE)\n', (193, 204), True, 'import ctypes as ct\n'), ((223, 247), 'ctypes.POINTER', 'ct.POINTER', (['PtrPtrDOUBLE'], {}), '(PtrPtrDOUBLE)\n', (233, 247), True, 'import ctypes as ct\n'), ((2900, 2930), 'ctypes.CDLL', 'ct.CDLL', (['"""./fdk_equiAngle.dll"""'], {}), "('./fdk_equiAngle.dll')\n", (2907, 2930), True, 'import ctypes as ct\n'), ((3151, 3173), 'scipy.io.loadmat', 'scio.loadmat', (['dataFile'], {}), '(dataFile)\n', (3163, 3173), True, 'import scipy.io as scio\n'), ((3747, 3800), 'numpy.zeros', 'np.zeros', ([], {'shape': '(t.FOILength, t.FOIWidth, t.FOIHeigh)'}), '(shape=(t.FOILength, t.FOIWidth, t.FOIHeigh))\n', (3755, 3800), True, 'import numpy as np\n'), ((4069, 4105), 'scipy.io.savemat', 'scio.savemat', (['dataNew', "{'Rec': RecA}"], {}), "(dataNew, {'Rec': RecA})\n", (4081, 4105), True, 'import scipy.io as scio\n'), ((4120, 4132), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4130, 4132), True, 'import matplotlib.pyplot as plt\n'), ((4133, 4172), 'matplotlib.pyplot.imshow', 'plt.imshow', (['RecA[:, :, 80]'], {'cmap': '"""gray"""'}), "(RecA[:, :, 80], cmap='gray')\n", (4143, 4172), True, 'import matplotlib.pyplot as plt\n'), ((4173, 4183), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4181, 4183), True, 'import matplotlib.pyplot as plt\n'), ((2694, 2719), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n, m, o)'}), '(shape=(n, m, o))\n', (2702, 2719), True, 'import numpy as np\n'), ((2990, 3012), 'ctypes.POINTER', 'ct.POINTER', (['TestStruct'], {}), '(TestStruct)\n', (3000, 3012), True, 'import ctypes as ct\n'), ((3901, 3912), 'ctypes.byref', 'ct.byref', (['t'], {}), '(t)\n', (3909, 3912), True, 'import ctypes as ct\n')]
import argparse import cv2 import numpy as np import torch.nn.functional as F from torchvision.transforms.functional import normalize from facexlib.matting import init_matting_model from facexlib.utils import img2tensor def main(args): modnet = init_matting_model() # read image img = cv2.imread(args.img_path) / 255. # unify image channels to 3 if len(img.shape) == 2: img = img[:, :, None] if img.shape[2] == 1: img = np.repeat(img, 3, axis=2) elif img.shape[2] == 4: img = img[:, :, 0:3] img_t = img2tensor(img, bgr2rgb=True, float32=True) normalize(img_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) img_t = img_t.unsqueeze(0).cuda() # resize image for input _, _, im_h, im_w = img_t.shape ref_size = 512 if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 img_t = F.interpolate(img_t, size=(im_rh, im_rw), mode='area') # inference _, _, matte = modnet(img_t, True) # resize and save matte matte = F.interpolate(matte, size=(im_h, im_w), mode='area') matte = matte[0][0].data.cpu().numpy() cv2.imwrite(args.save_path, (matte * 255).astype('uint8')) # get foreground matte = matte[:, :, None] foreground = img * matte + np.full(img.shape, 1) * (1 - matte) cv2.imwrite(args.save_path.replace('.png', '_fg.png'), foreground * 255) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--img_path', type=str, default='assets/test.jpg') parser.add_argument('--save_path', type=str, default='test_matting.png') args = parser.parse_args() main(args)
[ "numpy.repeat", "argparse.ArgumentParser", "facexlib.utils.img2tensor", "torch.nn.functional.interpolate", "numpy.full", "torchvision.transforms.functional.normalize", "facexlib.matting.init_matting_model", "cv2.imread" ]
[((252, 272), 'facexlib.matting.init_matting_model', 'init_matting_model', ([], {}), '()\n', (270, 272), False, 'from facexlib.matting import init_matting_model\n'), ((560, 603), 'facexlib.utils.img2tensor', 'img2tensor', (['img'], {'bgr2rgb': '(True)', 'float32': '(True)'}), '(img, bgr2rgb=True, float32=True)\n', (570, 603), False, 'from facexlib.utils import img2tensor\n'), ((608, 672), 'torchvision.transforms.functional.normalize', 'normalize', (['img_t', '(0.5, 0.5, 0.5)', '(0.5, 0.5, 0.5)'], {'inplace': '(True)'}), '(img_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)\n', (617, 672), False, 'from torchvision.transforms.functional import normalize\n'), ((1191, 1245), 'torch.nn.functional.interpolate', 'F.interpolate', (['img_t'], {'size': '(im_rh, im_rw)', 'mode': '"""area"""'}), "(img_t, size=(im_rh, im_rw), mode='area')\n", (1204, 1245), True, 'import torch.nn.functional as F\n'), ((1342, 1394), 'torch.nn.functional.interpolate', 'F.interpolate', (['matte'], {'size': '(im_h, im_w)', 'mode': '"""area"""'}), "(matte, size=(im_h, im_w), mode='area')\n", (1355, 1394), True, 'import torch.nn.functional as F\n'), ((1739, 1764), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1762, 1764), False, 'import argparse\n'), ((301, 326), 'cv2.imread', 'cv2.imread', (['args.img_path'], {}), '(args.img_path)\n', (311, 326), False, 'import cv2\n'), ((464, 489), 'numpy.repeat', 'np.repeat', (['img', '(3)'], {'axis': '(2)'}), '(img, 3, axis=2)\n', (473, 489), True, 'import numpy as np\n'), ((1584, 1605), 'numpy.full', 'np.full', (['img.shape', '(1)'], {}), '(img.shape, 1)\n', (1591, 1605), True, 'import numpy as np\n')]
# Image-based testing borrowed from vispy """ Procedure for unit-testing with images: 1. Run unit tests at least once; this initializes a git clone of pyqtgraph/test-data in ~/.pyqtgraph. 2. Run individual test scripts with the PYQTGRAPH_AUDIT environment variable set: $ PYQTGRAPH_AUDIT=1 python pyqtgraph/graphicsItems/tests/test_PlotCurveItem.py Any failing tests will display the test results, standard image, and the differences between the two. If the test result is bad, then press (f)ail. If the test result is good, then press (p)ass and the new image will be saved to the test-data directory. 3. After adding or changing test images, create a new commit: $ cd ~/.pyqtgraph/test-data $ git add ... $ git commit -a 4. Look up the most recent tag name from the `testDataTag` global variable below. Increment the tag name by 1 and create a new tag in the test-data repository: $ git tag test-data-NNN $ git push --tags origin master This tag is used to ensure that each pyqtgraph commit is linked to a specific commit in the test-data repository. This makes it possible to push new commits to the test-data repository without interfering with existing tests, and also allows unit tests to continue working on older pyqtgraph versions. """ # This is the name of a tag in the test-data repository that this version of # pyqtgraph should be tested against. When adding or changing test images, # create and push a new tag and update this variable. testDataTag = 'test-data-3' import time import os import sys import inspect import base64 import subprocess as sp import numpy as np if sys.version[0] >= '3': import http.client as httplib import urllib.parse as urllib else: import httplib import urllib from ..Qt import QtGui, QtCore from .. import functions as fn from .. import GraphicsLayoutWidget from .. import ImageItem, TextItem tester = None def getTester(): global tester if tester is None: tester = ImageTester() return tester def assertImageApproved(image, standardFile, message=None, **kwargs): """Check that an image test result matches a pre-approved standard. If the result does not match, then the user can optionally invoke a GUI to compare the images and decide whether to fail the test or save the new image as the standard. This function will automatically clone the test-data repository into ~/.pyqtgraph/test-data. However, it is up to the user to ensure this repository is kept up to date and to commit/push new images after they are saved. Run the test with the environment variable PYQTGRAPH_AUDIT=1 to bring up the auditing GUI. Parameters ---------- image : (h, w, 4) ndarray standardFile : str The name of the approved test image to check against. This file name is relative to the root of the pyqtgraph test-data repository and will be automatically fetched. message : str A string description of the image. It is recommended to describe specific features that an auditor should look for when deciding whether to fail a test. Extra keyword arguments are used to set the thresholds for automatic image comparison (see ``assertImageMatch()``). """ if isinstance(image, QtGui.QWidget): w = image image = np.zeros((w.height(), w.width(), 4), dtype=np.ubyte) qimg = fn.makeQImage(image, alpha=True, copy=False, transpose=False) painter = QtGui.QPainter(qimg) w.render(painter) painter.end() if message is None: code = inspect.currentframe().f_back.f_code message = "%s::%s" % (code.co_filename, code.co_name) # Make sure we have a test data repo available, possibly invoking git dataPath = getTestDataRepo() # Read the standard image if it exists stdFileName = os.path.join(dataPath, standardFile + '.png') if not os.path.isfile(stdFileName): stdImage = None else: pxm = QtGui.QPixmap() pxm.load(stdFileName) stdImage = fn.imageToArray(pxm.toImage(), copy=True, transpose=False) # If the test image does not match, then we go to audit if requested. try: if image.shape[2] != stdImage.shape[2]: raise Exception("Test result has different channel count than standard image" "(%d vs %d)" % (image.shape[2], stdImage.shape[2])) if image.shape != stdImage.shape: # Allow im1 to be an integer multiple larger than im2 to account # for high-resolution displays ims1 = np.array(image.shape).astype(float) ims2 = np.array(stdImage.shape).astype(float) sr = ims1 / ims2 if ims1[0] > ims2[0] else ims2 / ims1 if (sr[0] != sr[1] or not np.allclose(sr, np.round(sr)) or sr[0] < 1): raise TypeError("Test result shape %s is not an integer factor" " different than standard image shape %s." % (ims1, ims2)) sr = np.round(sr).astype(int) image = downsample(image, sr[0], axis=(0, 1)).astype(image.dtype) assertImageMatch(image, stdImage, **kwargs) except Exception: if stdFileName in gitStatus(dataPath): print("\n\nWARNING: unit test failed against modified standard " "image %s.\nTo revert this file, run `cd %s; git checkout " "%s`\n" % (stdFileName, dataPath, standardFile)) if os.getenv('PYQTGRAPH_AUDIT') == '1': sys.excepthook(*sys.exc_info()) getTester().test(image, stdImage, message) stdPath = os.path.dirname(stdFileName) print('Saving new standard image to "%s"' % stdFileName) if not os.path.isdir(stdPath): os.makedirs(stdPath) img = fn.makeQImage(image, alpha=True, copy=False, transpose=False) img.save(stdFileName) else: if stdImage is None: raise Exception("Test standard %s does not exist. Set " "PYQTGRAPH_AUDIT=1 to add this image." % stdFileName) else: if os.getenv('TRAVIS') is not None: saveFailedTest(image, stdImage, standardFile) raise def assertImageMatch(im1, im2, minCorr=None, pxThreshold=50., pxCount=0, maxPxDiff=None, avgPxDiff=None, imgDiff=None): """Check that two images match. Images that differ in shape or dtype will fail unconditionally. Further tests for similarity depend on the arguments supplied. By default, images may have no pixels that gave a value difference greater than 50. Parameters ---------- im1 : (h, w, 4) ndarray Test output image im2 : (h, w, 4) ndarray Test standard image minCorr : float or None Minimum allowed correlation coefficient between corresponding image values (see numpy.corrcoef) pxThreshold : float Minimum value difference at which two pixels are considered different pxCount : int or None Maximum number of pixels that may differ maxPxDiff : float or None Maximum allowed difference between pixels avgPxDiff : float or None Average allowed difference between pixels imgDiff : float or None Maximum allowed summed difference between images """ assert im1.ndim == 3 assert im1.shape[2] == 4 assert im1.dtype == im2.dtype diff = im1.astype(float) - im2.astype(float) if imgDiff is not None: assert np.abs(diff).sum() <= imgDiff pxdiff = diff.max(axis=2) # largest value difference per pixel mask = np.abs(pxdiff) >= pxThreshold if pxCount is not None: assert mask.sum() <= pxCount maskedDiff = diff[mask] if maxPxDiff is not None and maskedDiff.size > 0: assert maskedDiff.max() <= maxPxDiff if avgPxDiff is not None and maskedDiff.size > 0: assert maskedDiff.mean() <= avgPxDiff if minCorr is not None: with np.errstate(invalid='ignore'): corr = np.corrcoef(im1.ravel(), im2.ravel())[0, 1] assert corr >= minCorr def saveFailedTest(data, expect, filename): """Upload failed test images to web server to allow CI test debugging. """ commit, error = runSubprocess(['git', 'rev-parse', 'HEAD']) name = filename.split('/') name.insert(-1, commit.strip()) filename = '/'.join(name) host = 'data.pyqtgraph.org' # concatenate data, expect, and diff into a single image ds = data.shape es = expect.shape shape = (max(ds[0], es[0]) + 4, ds[1] + es[1] + 8 + max(ds[1], es[1]), 4) img = np.empty(shape, dtype=np.ubyte) img[..., :3] = 100 img[..., 3] = 255 img[2:2+ds[0], 2:2+ds[1], :ds[2]] = data img[2:2+es[0], ds[1]+4:ds[1]+4+es[1], :es[2]] = expect diff = makeDiffImage(data, expect) img[2:2+diff.shape[0], -diff.shape[1]-2:-2] = diff png = makePng(img) conn = httplib.HTTPConnection(host) req = urllib.urlencode({'name': filename, 'data': base64.b64encode(png)}) conn.request('POST', '/upload.py', req) response = conn.getresponse().read() conn.close() print("\nImage comparison failed. Test result: %s %s Expected result: " "%s %s" % (data.shape, data.dtype, expect.shape, expect.dtype)) print("Uploaded to: \nhttp://%s/data/%s" % (host, filename)) if not response.startswith(b'OK'): print("WARNING: Error uploading data to %s" % host) print(response) def makePng(img): """Given an array like (H, W, 4), return a PNG-encoded byte string. """ io = QtCore.QBuffer() qim = fn.makeQImage(img, alpha=False) qim.save(io, format='png') png = io.data().data().encode() return png def makeDiffImage(im1, im2): """Return image array showing the differences between im1 and im2. Handles images of different shape. Alpha channels are not compared. """ ds = im1.shape es = im2.shape diff = np.empty((max(ds[0], es[0]), max(ds[1], es[1]), 4), dtype=int) diff[..., :3] = 128 diff[..., 3] = 255 diff[:ds[0], :ds[1], :min(ds[2], 3)] += im1[..., :3] diff[:es[0], :es[1], :min(es[2], 3)] -= im2[..., :3] diff = np.clip(diff, 0, 255).astype(np.ubyte) return diff class ImageTester(QtGui.QWidget): """Graphical interface for auditing image comparison tests. """ def __init__(self): self.lastKey = None QtGui.QWidget.__init__(self) self.resize(1200, 800) self.showFullScreen() self.layout = QtGui.QGridLayout() self.setLayout(self.layout) self.view = GraphicsLayoutWidget() self.layout.addWidget(self.view, 0, 0, 1, 2) self.label = QtGui.QLabel() self.layout.addWidget(self.label, 1, 0, 1, 2) self.label.setWordWrap(True) font = QtGui.QFont("monospace", 14, QtGui.QFont.Bold) self.label.setFont(font) self.passBtn = QtGui.QPushButton('Pass') self.failBtn = QtGui.QPushButton('Fail') self.layout.addWidget(self.passBtn, 2, 0) self.layout.addWidget(self.failBtn, 2, 1) self.views = (self.view.addViewBox(row=0, col=0), self.view.addViewBox(row=0, col=1), self.view.addViewBox(row=0, col=2)) labelText = ['test output', 'standard', 'diff'] for i, v in enumerate(self.views): v.setAspectLocked(1) v.invertY() v.image = ImageItem() v.image.setAutoDownsample(True) v.addItem(v.image) v.label = TextItem(labelText[i]) v.setBackgroundColor(0.5) self.views[1].setXLink(self.views[0]) self.views[1].setYLink(self.views[0]) self.views[2].setXLink(self.views[0]) self.views[2].setYLink(self.views[0]) def test(self, im1, im2, message): """Ask the user to decide whether an image test passes or fails. This method displays the test image, reference image, and the difference between the two. It then blocks until the user selects the test output by clicking a pass/fail button or typing p/f. If the user fails the test, then an exception is raised. """ self.show() if im2 is None: message += '\nImage1: %s %s Image2: [no standard]' % (im1.shape, im1.dtype) im2 = np.zeros((1, 1, 3), dtype=np.ubyte) else: message += '\nImage1: %s %s Image2: %s %s' % (im1.shape, im1.dtype, im2.shape, im2.dtype) self.label.setText(message) self.views[0].image.setImage(im1.transpose(1, 0, 2)) self.views[1].image.setImage(im2.transpose(1, 0, 2)) diff = makeDiffImage(im1, im2).transpose(1, 0, 2) self.views[2].image.setImage(diff) self.views[0].autoRange() while True: QtGui.QApplication.processEvents() lastKey = self.lastKey self.lastKey = None if lastKey in ('f', 'esc') or not self.isVisible(): raise Exception("User rejected test result.") elif lastKey == 'p': break time.sleep(0.03) for v in self.views: v.image.setImage(np.zeros((1, 1, 3), dtype=np.ubyte)) def keyPressEvent(self, event): if event.key() == QtCore.Qt.Key_Escape: self.lastKey = 'esc' else: self.lastKey = str(event.text()).lower() def getTestDataRepo(): """Return the path to a git repository with the required commit checked out. If the repository does not exist, then it is cloned from https://github.com/pyqtgraph/test-data. If the repository already exists then the required commit is checked out. """ global testDataTag dataPath = os.path.join(os.path.expanduser('~'), '.pyqtgraph', 'test-data') gitPath = 'https://github.com/pyqtgraph/test-data' gitbase = gitCmdBase(dataPath) if os.path.isdir(dataPath): # Already have a test-data repository to work with. # Get the commit ID of testDataTag. Do a fetch if necessary. try: tagCommit = gitCommitId(dataPath, testDataTag) except NameError: cmd = gitbase + ['fetch', '--tags', 'origin'] print(' '.join(cmd)) sp.check_call(cmd) try: tagCommit = gitCommitId(dataPath, testDataTag) except NameError: raise Exception("Could not find tag '%s' in test-data repo at" " %s" % (testDataTag, dataPath)) except Exception: if not os.path.exists(os.path.join(dataPath, '.git')): raise Exception("Directory '%s' does not appear to be a git " "repository. Please remove this directory." % dataPath) else: raise # If HEAD is not the correct commit, then do a checkout if gitCommitId(dataPath, 'HEAD') != tagCommit: print("Checking out test-data tag '%s'" % testDataTag) sp.check_call(gitbase + ['checkout', testDataTag]) else: print("Attempting to create git clone of test data repo in %s.." % dataPath) parentPath = os.path.split(dataPath)[0] if not os.path.isdir(parentPath): os.makedirs(parentPath) if os.getenv('TRAVIS') is not None: # Create a shallow clone of the test-data repository (to avoid # downloading more data than is necessary) os.makedirs(dataPath) cmds = [ gitbase + ['init'], gitbase + ['remote', 'add', 'origin', gitPath], gitbase + ['fetch', '--tags', 'origin', testDataTag, '--depth=1'], gitbase + ['checkout', '-b', 'master', 'FETCH_HEAD'], ] else: # Create a full clone cmds = [['git', 'clone', gitPath, dataPath]] for cmd in cmds: print(' '.join(cmd)) rval = sp.check_call(cmd) if rval == 0: continue raise RuntimeError("Test data path '%s' does not exist and could " "not be created with git. Please create a git " "clone of %s at this path." % (dataPath, gitPath)) return dataPath def gitCmdBase(path): return ['git', '--git-dir=%s/.git' % path, '--work-tree=%s' % path] def gitStatus(path): """Return a string listing all changes to the working tree in a git repository. """ cmd = gitCmdBase(path) + ['status', '--porcelain'] return runSubprocess(cmd, stderr=None, universal_newlines=True) def gitCommitId(path, ref): """Return the commit id of *ref* in the git repository at *path*. """ cmd = gitCmdBase(path) + ['show', ref] try: output = runSubprocess(cmd, stderr=None, universal_newlines=True) except sp.CalledProcessError: print(cmd) raise NameError("Unknown git reference '%s'" % ref) commit = output.split('\n')[0] assert commit[:7] == 'commit ' return commit[7:] def runSubprocess(command, return_code=False, **kwargs): """Run command using subprocess.Popen Similar to subprocess.check_output(), which is not available in 2.6. Run command and wait for command to complete. If the return code was zero then return, otherwise raise CalledProcessError. By default, this will also add stdout= and stderr=subproces.PIPE to the call to Popen to suppress printing to the terminal. Parameters ---------- command : list of str Command to run as subprocess (see subprocess.Popen documentation). **kwargs : dict Additional kwargs to pass to ``subprocess.Popen``. Returns ------- stdout : str Stdout returned by the process. """ # code adapted with permission from mne-python use_kwargs = dict(stderr=None, stdout=sp.PIPE) use_kwargs.update(kwargs) p = sp.Popen(command, **use_kwargs) output = p.communicate()[0] # communicate() may return bytes, str, or None depending on the kwargs # passed to Popen(). Convert all to unicode str: output = '' if output is None else output output = output.decode('utf-8') if isinstance(output, bytes) else output if p.returncode != 0: print(output) err_fun = sp.CalledProcessError.__init__ if 'output' in inspect.getargspec(err_fun).args: raise sp.CalledProcessError(p.returncode, command, output) else: raise sp.CalledProcessError(p.returncode, command) return output
[ "numpy.clip", "base64.b64encode", "time.sleep", "numpy.array", "sys.exc_info", "httplib.HTTPConnection", "subprocess.Popen", "subprocess.CalledProcessError", "os.path.split", "os.path.isdir", "numpy.empty", "os.path.expanduser", "numpy.round", "numpy.abs", "subprocess.check_call", "os.path.isfile", "os.path.dirname", "os.makedirs", "os.getenv", "inspect.currentframe", "os.path.join", "inspect.getargspec", "numpy.errstate", "numpy.zeros" ]
[((3948, 3993), 'os.path.join', 'os.path.join', (['dataPath', "(standardFile + '.png')"], {}), "(dataPath, standardFile + '.png')\n", (3960, 3993), False, 'import os\n'), ((8885, 8916), 'numpy.empty', 'np.empty', (['shape'], {'dtype': 'np.ubyte'}), '(shape, dtype=np.ubyte)\n', (8893, 8916), True, 'import numpy as np\n'), ((9202, 9230), 'httplib.HTTPConnection', 'httplib.HTTPConnection', (['host'], {}), '(host)\n', (9224, 9230), False, 'import httplib\n'), ((14306, 14329), 'os.path.isdir', 'os.path.isdir', (['dataPath'], {}), '(dataPath)\n', (14319, 14329), False, 'import os\n'), ((18484, 18515), 'subprocess.Popen', 'sp.Popen', (['command'], {}), '(command, **use_kwargs)\n', (18492, 18515), True, 'import subprocess as sp\n'), ((4005, 4032), 'os.path.isfile', 'os.path.isfile', (['stdFileName'], {}), '(stdFileName)\n', (4019, 4032), False, 'import os\n'), ((7879, 7893), 'numpy.abs', 'np.abs', (['pxdiff'], {}), '(pxdiff)\n', (7885, 7893), True, 'import numpy as np\n'), ((14156, 14179), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (14174, 14179), False, 'import os\n'), ((8244, 8273), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""'}), "(invalid='ignore')\n", (8255, 8273), True, 'import numpy as np\n'), ((9313, 9334), 'base64.b64encode', 'base64.b64encode', (['png'], {}), '(png)\n', (9329, 9334), False, 'import base64\n'), ((10497, 10518), 'numpy.clip', 'np.clip', (['diff', '(0)', '(255)'], {}), '(diff, 0, 255)\n', (10504, 10518), True, 'import numpy as np\n'), ((12706, 12741), 'numpy.zeros', 'np.zeros', (['(1, 1, 3)'], {'dtype': 'np.ubyte'}), '((1, 1, 3), dtype=np.ubyte)\n', (12714, 12741), True, 'import numpy as np\n'), ((13504, 13520), 'time.sleep', 'time.sleep', (['(0.03)'], {}), '(0.03)\n', (13514, 13520), False, 'import time\n'), ((15465, 15515), 'subprocess.check_call', 'sp.check_call', (["(gitbase + ['checkout', testDataTag])"], {}), "(gitbase + ['checkout', testDataTag])\n", (15478, 15515), True, 'import subprocess as sp\n'), ((15648, 15671), 'os.path.split', 'os.path.split', (['dataPath'], {}), '(dataPath)\n', (15661, 15671), False, 'import os\n'), ((15690, 15715), 'os.path.isdir', 'os.path.isdir', (['parentPath'], {}), '(parentPath)\n', (15703, 15715), False, 'import os\n'), ((15729, 15752), 'os.makedirs', 'os.makedirs', (['parentPath'], {}), '(parentPath)\n', (15740, 15752), False, 'import os\n'), ((15765, 15784), 'os.getenv', 'os.getenv', (['"""TRAVIS"""'], {}), "('TRAVIS')\n", (15774, 15784), False, 'import os\n'), ((15940, 15961), 'os.makedirs', 'os.makedirs', (['dataPath'], {}), '(dataPath)\n', (15951, 15961), False, 'import os\n'), ((16460, 16478), 'subprocess.check_call', 'sp.check_call', (['cmd'], {}), '(cmd)\n', (16473, 16478), True, 'import subprocess as sp\n'), ((18973, 19025), 'subprocess.CalledProcessError', 'sp.CalledProcessError', (['p.returncode', 'command', 'output'], {}), '(p.returncode, command, output)\n', (18994, 19025), True, 'import subprocess as sp\n'), ((19058, 19102), 'subprocess.CalledProcessError', 'sp.CalledProcessError', (['p.returncode', 'command'], {}), '(p.returncode, command)\n', (19079, 19102), True, 'import subprocess as sp\n'), ((3679, 3701), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (3699, 3701), False, 'import inspect\n'), ((5630, 5658), 'os.getenv', 'os.getenv', (['"""PYQTGRAPH_AUDIT"""'], {}), "('PYQTGRAPH_AUDIT')\n", (5639, 5658), False, 'import os\n'), ((5788, 5816), 'os.path.dirname', 'os.path.dirname', (['stdFileName'], {}), '(stdFileName)\n', (5803, 5816), False, 'import os\n'), ((13580, 13615), 'numpy.zeros', 'np.zeros', (['(1, 1, 3)'], {'dtype': 'np.ubyte'}), '((1, 1, 3), dtype=np.ubyte)\n', (13588, 13615), True, 'import numpy as np\n'), ((14662, 14680), 'subprocess.check_call', 'sp.check_call', (['cmd'], {}), '(cmd)\n', (14675, 14680), True, 'import subprocess as sp\n'), ((18921, 18948), 'inspect.getargspec', 'inspect.getargspec', (['err_fun'], {}), '(err_fun)\n', (18939, 18948), False, 'import inspect\n'), ((4689, 4710), 'numpy.array', 'np.array', (['image.shape'], {}), '(image.shape)\n', (4697, 4710), True, 'import numpy as np\n'), ((4744, 4768), 'numpy.array', 'np.array', (['stdImage.shape'], {}), '(stdImage.shape)\n', (4752, 4768), True, 'import numpy as np\n'), ((5172, 5184), 'numpy.round', 'np.round', (['sr'], {}), '(sr)\n', (5180, 5184), True, 'import numpy as np\n'), ((5905, 5927), 'os.path.isdir', 'os.path.isdir', (['stdPath'], {}), '(stdPath)\n', (5918, 5927), False, 'import os\n'), ((5945, 5965), 'os.makedirs', 'os.makedirs', (['stdPath'], {}), '(stdPath)\n', (5956, 5965), False, 'import os\n'), ((7769, 7781), 'numpy.abs', 'np.abs', (['diff'], {}), '(diff)\n', (7775, 7781), True, 'import numpy as np\n'), ((4904, 4916), 'numpy.round', 'np.round', (['sr'], {}), '(sr)\n', (4912, 4916), True, 'import numpy as np\n'), ((5695, 5709), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5707, 5709), False, 'import sys\n'), ((6322, 6341), 'os.getenv', 'os.getenv', (['"""TRAVIS"""'], {}), "('TRAVIS')\n", (6331, 6341), False, 'import os\n'), ((14995, 15025), 'os.path.join', 'os.path.join', (['dataPath', '""".git"""'], {}), "(dataPath, '.git')\n", (15007, 15025), False, 'import os\n')]
import pandas as pd import numpy as np import csv csv_file_loc = './/data//for-full-text-annotation.csv' """ Read in the CSV file and get the required data from it. Format the data. """ def get_file_description(): data = {} all_rows = pd.read_csv(csv_file_loc) all_rows = np.asarray(all_rows) labels = get_labels() labels[0] = "id" for i in range(1, len(all_rows)): row = all_rows[i] name = row[labels.index('pmid')] # the name of the PMC file if name in data: data[name].append(gen_row_dictionary(labels, row)) else: data[name] = [gen_row_dictionary(labels, row)] return data """ Get the lables/headers for each column. """ def get_labels(): with open(csv_file_loc, newline = '') as csvfile: for row in csv.reader(csvfile, delimiter = ",", quotechar='|'): return row """ Take a row and put all the data into a dictionary. @param labels represents the name of that column and what type of data it is. @param row represents all the data in that row. """ def gen_row_dictionary(labels, row): data = {} for i in range(len(labels)): data[labels[i]] = row[i] return data #get_file_description()
[ "numpy.asarray", "pandas.read_csv", "csv.reader" ]
[((246, 271), 'pandas.read_csv', 'pd.read_csv', (['csv_file_loc'], {}), '(csv_file_loc)\n', (257, 271), True, 'import pandas as pd\n'), ((287, 307), 'numpy.asarray', 'np.asarray', (['all_rows'], {}), '(all_rows)\n', (297, 307), True, 'import numpy as np\n'), ((815, 864), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""', 'quotechar': '"""|"""'}), "(csvfile, delimiter=',', quotechar='|')\n", (825, 864), False, 'import csv\n')]
# Minimal example showing how to reuse the exported c-code with # different time-steps. # # There are two use-cases demonstrated here. One use-case is to change # the length of the time-stamp vector (this results in a different # N). Another use-case is to change the final time but keep the number # of shooting nodes identical. Reusing the exported code with variing # N can be useful especially in a c-only application where the process # of code-generation should only be done once. # # This example is an extension of the 'minimal_example_ocp.py' example. # # Copyright 2021 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # import os import sys sys.path.insert(0, '../common') from acados_template import AcadosOcp, AcadosOcpSolver from pendulum_model import export_pendulum_ode_model import numpy as np import scipy.linalg from utils import plot_pendulum print('This example demonstrates 2 use-cases for reuse of the code export.') # create ocp object to formulate the OCP ocp = AcadosOcp() # set model model = export_pendulum_ode_model() ocp.model = model nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx # define the different options for the use-case demonstration N0 = 20 # original number of shooting nodes N12 = 15 # change the number of shooting nodes for use-cases 1 and 2 Tf_01 = 1.0 # original final time and for use-case 1 Tf_2 = Tf_01 * 0.7 # change final time for use-case 2 (but keep N identical) # set dimensions ocp.dims.N = N0 # set cost Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2]) R = 2 * np.diag([1e-2]) ocp.cost.W_e = Q ocp.cost.W = scipy.linalg.block_diag(Q, R) ocp.cost.cost_type = 'LINEAR_LS' ocp.cost.cost_type_e = 'LINEAR_LS' ocp.cost.Vx = np.zeros((ny, nx)) ocp.cost.Vx[:nx, :nx] = np.eye(nx) Vu = np.zeros((ny, nu)) Vu[4, 0] = 1.0 ocp.cost.Vu = Vu ocp.cost.Vx_e = np.eye(nx) ocp.cost.yref = np.zeros((ny,)) ocp.cost.yref_e = np.zeros((ny_e,)) # set constraints Fmax = 80 ocp.constraints.lbu = np.array([-Fmax]) ocp.constraints.ubu = np.array([+Fmax]) ocp.constraints.idxbu = np.array([0]) ocp.constraints.x0 = np.array([0.0, np.pi, 0.0, 0.0]) # set options ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM' # FULL_CONDENSING_QPOASES # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM, # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = 'ERK' # ocp.solver_options.print_level = 1 ocp.solver_options.nlp_solver_type = 'SQP' # SQP_RTI, SQP # set prediction horizon ocp.solver_options.tf = Tf_01 print(80*'-') print('generate code and compile...') ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json') # -------------------------------------------------------------------------------- # 0) solve the problem defined here (original from code export), analog to 'minimal_example_ocp.py' simX0 = np.ndarray((N0 + 1, nx)) simU0 = np.ndarray((N0, nu)) print(80*'-') print(f'solve original code with N = {N0} and Tf = {Tf_01} s:') status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N0): simX0[i, :] = ocp_solver.get(i, "x") simU0[i, :] = ocp_solver.get(i, "u") simX0[N0, :] = ocp_solver.get(N0, "x") ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") # plot but don't halt plot_pendulum(np.linspace(0, Tf_01, N0 + 1), Fmax, simU0, simX0, latexify=False, plt_show=False, X_true_label=f'original: N={N0}, Tf={Tf_01}') # -------------------------------------------------------------------------------- # 1) now reuse the code but set a new time-steps vector, with a new number of elements dt1 = Tf_01 / N12 new_time_steps1 = np.tile(dt1, (N12,)) # Matlab's equivalent to repmat time1 = np.hstack([0, np.cumsum(new_time_steps1)]) simX1 = np.ndarray((N12 + 1, nx)) simU1 = np.ndarray((N12, nu)) ocp_solver.set_new_time_steps(new_time_steps1) print(80*'-') print(f'solve use-case 1 with N = {N12} (instead of {N0}) and Tf = {Tf_01} s:') status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N12): simX1[i, :] = ocp_solver.get(i, "x") simU1[i, :] = ocp_solver.get(i, "u") simX1[N12, :] = ocp_solver.get(N12, "x") ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") plot_pendulum(time1, Fmax, simU1, simX1, latexify=False, plt_show=False, X_true_label=f'use-case 1: N={N12}') # -------------------------------------------------------------------------------- # 2) reuse the code again, set a new time-steps vector, only with a different final time dt2 = Tf_2 / N12 new_time_steps2 = np.tile(dt2, (N12,)) # Matlab's equivalent to repmat time2 = np.hstack([0, np.cumsum(new_time_steps2)]) simX2 = np.ndarray((N12 + 1, nx)) simU2 = np.ndarray((N12, nu)) ocp_solver.set_new_time_steps(new_time_steps2) print(80*'-') print(f'solve use-case 2 with N = {N12} and Tf = {Tf_2} s (instead of {Tf_01} s):') status = ocp_solver.solve() if status != 0: ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") raise Exception('acados returned status {}. Exiting.'.format(status)) # get solution for i in range(N12): simX2[i, :] = ocp_solver.get(i, "x") simU2[i, :] = ocp_solver.get(i, "u") simX2[N12, :] = ocp_solver.get(N12, "x") ocp_solver.print_statistics() # encapsulates: stat = ocp_solver.get_stats("statistics") plot_pendulum(time2, Fmax, simU2, simX2, latexify=False, plt_show=True, X_true_label=f'use-case 2: Tf={Tf_2} s')
[ "numpy.tile", "numpy.eye", "sys.path.insert", "acados_template.AcadosOcpSolver", "acados_template.AcadosOcp", "utils.plot_pendulum", "numpy.diag", "numpy.array", "numpy.zeros", "numpy.linspace", "numpy.ndarray", "pendulum_model.export_pendulum_ode_model", "numpy.cumsum" ]
[((2088, 2119), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""../common"""'], {}), "(0, '../common')\n", (2103, 2119), False, 'import sys\n'), ((2426, 2437), 'acados_template.AcadosOcp', 'AcadosOcp', ([], {}), '()\n', (2435, 2437), False, 'from acados_template import AcadosOcp, AcadosOcpSolver\n'), ((2459, 2486), 'pendulum_model.export_pendulum_ode_model', 'export_pendulum_ode_model', ([], {}), '()\n', (2484, 2486), False, 'from pendulum_model import export_pendulum_ode_model\n'), ((3140, 3158), 'numpy.zeros', 'np.zeros', (['(ny, nx)'], {}), '((ny, nx))\n', (3148, 3158), True, 'import numpy as np\n'), ((3183, 3193), 'numpy.eye', 'np.eye', (['nx'], {}), '(nx)\n', (3189, 3193), True, 'import numpy as np\n'), ((3200, 3218), 'numpy.zeros', 'np.zeros', (['(ny, nu)'], {}), '((ny, nu))\n', (3208, 3218), True, 'import numpy as np\n'), ((3268, 3278), 'numpy.eye', 'np.eye', (['nx'], {}), '(nx)\n', (3274, 3278), True, 'import numpy as np\n'), ((3296, 3311), 'numpy.zeros', 'np.zeros', (['(ny,)'], {}), '((ny,))\n', (3304, 3311), True, 'import numpy as np\n'), ((3330, 3347), 'numpy.zeros', 'np.zeros', (['(ny_e,)'], {}), '((ny_e,))\n', (3338, 3347), True, 'import numpy as np\n'), ((3399, 3416), 'numpy.array', 'np.array', (['[-Fmax]'], {}), '([-Fmax])\n', (3407, 3416), True, 'import numpy as np\n'), ((3439, 3456), 'numpy.array', 'np.array', (['[+Fmax]'], {}), '([+Fmax])\n', (3447, 3456), True, 'import numpy as np\n'), ((3481, 3494), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (3489, 3494), True, 'import numpy as np\n'), ((3517, 3549), 'numpy.array', 'np.array', (['[0.0, np.pi, 0.0, 0.0]'], {}), '([0.0, np.pi, 0.0, 0.0])\n', (3525, 3549), True, 'import numpy as np\n'), ((4092, 4141), 'acados_template.AcadosOcpSolver', 'AcadosOcpSolver', (['ocp'], {'json_file': '"""acados_ocp.json"""'}), "(ocp, json_file='acados_ocp.json')\n", (4107, 4141), False, 'from acados_template import AcadosOcp, AcadosOcpSolver\n'), ((4335, 4359), 'numpy.ndarray', 'np.ndarray', (['(N0 + 1, nx)'], {}), '((N0 + 1, nx))\n', (4345, 4359), True, 'import numpy as np\n'), ((4368, 4388), 'numpy.ndarray', 'np.ndarray', (['(N0, nu)'], {}), '((N0, nu))\n', (4378, 4388), True, 'import numpy as np\n'), ((5301, 5321), 'numpy.tile', 'np.tile', (['dt1', '(N12,)'], {}), '(dt1, (N12,))\n', (5308, 5321), True, 'import numpy as np\n'), ((5415, 5440), 'numpy.ndarray', 'np.ndarray', (['(N12 + 1, nx)'], {}), '((N12 + 1, nx))\n', (5425, 5440), True, 'import numpy as np\n'), ((5449, 5470), 'numpy.ndarray', 'np.ndarray', (['(N12, nu)'], {}), '((N12, nu))\n', (5459, 5470), True, 'import numpy as np\n'), ((6076, 6189), 'utils.plot_pendulum', 'plot_pendulum', (['time1', 'Fmax', 'simU1', 'simX1'], {'latexify': '(False)', 'plt_show': '(False)', 'X_true_label': 'f"""use-case 1: N={N12}"""'}), "(time1, Fmax, simU1, simX1, latexify=False, plt_show=False,\n X_true_label=f'use-case 1: N={N12}')\n", (6089, 6189), False, 'from utils import plot_pendulum\n'), ((6395, 6415), 'numpy.tile', 'np.tile', (['dt2', '(N12,)'], {}), '(dt2, (N12,))\n', (6402, 6415), True, 'import numpy as np\n'), ((6509, 6534), 'numpy.ndarray', 'np.ndarray', (['(N12 + 1, nx)'], {}), '((N12 + 1, nx))\n', (6519, 6534), True, 'import numpy as np\n'), ((6543, 6564), 'numpy.ndarray', 'np.ndarray', (['(N12, nu)'], {}), '((N12, nu))\n', (6553, 6564), True, 'import numpy as np\n'), ((7174, 7290), 'utils.plot_pendulum', 'plot_pendulum', (['time2', 'Fmax', 'simU2', 'simX2'], {'latexify': '(False)', 'plt_show': '(True)', 'X_true_label': 'f"""use-case 2: Tf={Tf_2} s"""'}), "(time2, Fmax, simU2, simX2, latexify=False, plt_show=True,\n X_true_label=f'use-case 2: Tf={Tf_2} s')\n", (7187, 7290), False, 'from utils import plot_pendulum\n'), ((2939, 2976), 'numpy.diag', 'np.diag', (['[1000.0, 1000.0, 0.01, 0.01]'], {}), '([1000.0, 1000.0, 0.01, 0.01])\n', (2946, 2976), True, 'import numpy as np\n'), ((2979, 2994), 'numpy.diag', 'np.diag', (['[0.01]'], {}), '([0.01])\n', (2986, 2994), True, 'import numpy as np\n'), ((4964, 4993), 'numpy.linspace', 'np.linspace', (['(0)', 'Tf_01', '(N0 + 1)'], {}), '(0, Tf_01, N0 + 1)\n', (4975, 4993), True, 'import numpy as np\n'), ((5377, 5403), 'numpy.cumsum', 'np.cumsum', (['new_time_steps1'], {}), '(new_time_steps1)\n', (5386, 5403), True, 'import numpy as np\n'), ((6471, 6497), 'numpy.cumsum', 'np.cumsum', (['new_time_steps2'], {}), '(new_time_steps2)\n', (6480, 6497), True, 'import numpy as np\n')]
# ------------------------------------------------------------------------------------------------------------------------------------------------------------- # Main, three machines (image - KMC, text - Logistic Regression, features - RF) and all white pdfs files # @Authors: <NAME> and <NAME> # @Version: 1.0 # @Date 06.2019 # ------------------------------------------------------------------------------------------------------------------------------------------------------------- # libraries from classes.dataPDF import dataPDF from classes.createDATA import createDATA from classes.readPDF import readPDF import os import sys import csv import argparse import tempfile import numpy as np from numpy import random from array import * # machine learning libraries from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn import metrics from sklearn.pipeline import Pipeline, make_pipeline # importing K-Means from sklearn.cluster import KMeans # import RF from sklearn.ensemble import RandomForestClassifier # import LR from sklearn.linear_model import LogisticRegression # import AdaBoostClassifier from sklearn.ensemble import AdaBoostClassifier # import AdaBoostRegressor from sklearn.ensemble import AdaBoostRegressor # import XGBClassifier from xgboost import XGBClassifier # import XGBRegressor from xgboost.sklearn import XGBRegressor # import RFClassifier from sklearn.ensemble import RandomForestClassifier # import RFRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression if __name__ == "__main__": # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="path to input dataset") # arguments for k-means-clustering ap.add_argument("-c", "--clusters", type = int, default = 16, help="the number of clusters to form as well as the number of centroids to generate") ap.add_argument("-j", "--jobs", type = int, default = -1, help="the number of jobs to use for the computation. ") args = vars(ap.parse_args()) # define the name of the directory to be created path_IMAGES = "IMAGES" path_TEXTS = "TEXTS" # create folders for images and texts try: os.mkdir(path_IMAGES) os.mkdir(path_TEXTS) except OSError: print("[!] Creation of the directories {} or {} failed, maybe the folders are exist".format(path_IMAGES, path_TEXTS)) else: print( "[*] Successfully created the directories {} and {} ".format(path_IMAGES, path_TEXTS)) folder_path = os.getcwd() dataset_path = os.path.join(folder_path, args["dataset"]) # check if a folder of data is exist if (not os.path.exists(dataset_path)): print("[!] The {} folder is not exist!\n GOODBYE".format(dataset_path)) sys.exit() # create csv file with open("pdfFILES.csv", 'w') as csvFile: fields = ['File', 'Text'] writer = csv.DictWriter(csvFile, fieldnames = fields) writer.writeheader() # start create data print("+++++++++++++++++++++++++++++++++++ START CREATE DATA +++++++++++++++++++++++++++++++++++") obj_data = createDATA(folder_path, args["dataset"]) # convert first page of pdf file to image result = obj_data.convert(dataset_path) if (result): print("[*] Succces convert pdf files") else: print("[!] Whoops. something wrong dude. enable err var to track it") sys.exit() # extract JavaScript from pdf file result = obj_data.extract(dataset_path) if (result): print("[*] Succces extract JavaScript from pdf files") else: print("[!] Whoops. something wrong dude. enable err var to track it") sys.exit() print("\n+++++++++++++++++++++++++++++++++++++++++ FINISH ++++++++++++++++++++++++++++++++++++++++\n") # start create vectors print("++++++++++++++++++++++++++++++++++ START CREATE VECTORS +++++++++++++++++++++++++++++++++") # dir of folder and filter for pdf files files = [f for f in os.listdir(dataset_path) if os.path.isfile(os.path.join(dataset_path, f))] files = list(filter(lambda f: f.endswith(('.pdf', '.PDF')), files)) # variables for print information cnt_files = len(files) obj_pdfs = [] labels = [] obj_read = readPDF(obj_data.getDict()) set_white_files = [] # loop over the input pdfs for (i, pdfFILE) in enumerate(files): label = -1 if ("mal" == pdfFILE.split(".")[0]): label = 1 else: label = 0 set_white_files.append(pdfFILE) labels.append(label) # create pdf object obj_pdf = dataPDF(pdfFILE, folder_path+'/', args["dataset"]) obj_pdf.calculate_histogram_blur() obj_pdf.calculate_dsurlsjsentropy() obj_pdf.save_text(obj_read.extractTEXT(obj_pdf.getFilename(), obj_pdf.getImage())) obj_pdfs.append(obj_pdf) # show an update every 50 pdfs if (i > 0 and i % 50 == 0): print("[INFO] processed {}/{}".format(i, cnt_files)) print("[INFO] processed {}/{}".format(cnt_files, cnt_files)) print("\n+++++++++++++++++++++++++++++++++++++++++ FINISH ++++++++++++++++++++++++++++++++++++++++\n") # start machine learning print("+++++++++++++++++++++++++++++++++ START MACHINE LEARNING ++++++++++++++++++++++++++++++++") labels = np.array(labels) # partition the data into training and testing splits, using 70% # of the data for training and the remaining 30% for testing (trainF, testF, trainLabels, testLabels) = train_test_split(obj_pdfs, labels, test_size = 0.30, random_state = 42) trainFeat = [] testFeat = [] for pdf in trainF: trainFeat.append(pdf.getImgHistogram()) for pdf in testF: testFeat.append(pdf.getImgHistogram()) trainFeat = np.array(trainFeat) testFeat = np.array(testFeat) # instantiating kmeans km = KMeans(algorithm = 'auto', copy_x = True, init = 'k-means++', max_iter = 300, n_clusters = args["clusters"], n_init = 10, n_jobs = args["jobs"]) # training km model km.fit(trainFeat) # testing km predictions1_m = km.predict(testFeat) # creating vector for Random Forest on features trainFeat = [] testFeat = [] for pdf in trainF: trainFeat.append(pdf.getFeatVec()) for pdf in testF: testFeat.append(pdf.getFeatVec()) trainFeat = np.array(trainFeat) testFeat = np.array(testFeat) # instantiating Random Forest ranfor = Pipeline([ ('clf', RandomForestClassifier(n_estimators = 30, random_state = 0)), ]) ranfor.fit(trainFeat, trainLabels) predictions3 = ranfor.predict(testFeat) # creating vector for Logistic Regression on text trainFeat = [] testFeat = [] for pdf in trainF: trainFeat.append(pdf.getText()) for pdf in testF: testFeat.append(pdf.getText()) # instantiating Logistic Regression Machine logreg = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', LogisticRegression(solver='lbfgs', multi_class='auto', max_iter=1000, n_jobs=1, C=1e5)), ]) logreg.fit(trainFeat, trainLabels) predictions2 = logreg.predict(testFeat) print("\n+++++++++++++++++++++++++++++++++++++++++ FINISH ++++++++++++++++++++++++++++++++++++++++\n") # start boost print("+++++++++++++++++++++++++++++++++++++++ START BOOST +++++++++++++++++++++++++++++++++++++") # creating vectors trainFeat = [] for p1, p2, p3 in zip(predictions1_m, predictions2, predictions3): p_all = [p1, p2, p3] trainFeat.append(p_all) trainFeat = np.array(trainFeat) # partition the data into training and testing splits, using 67% (20% from all set) # of the data for training and the remaining 33% (10% from all set) for testing (trainFeat, testFeat, trainLabels, testLabels) = train_test_split(trainFeat, testLabels, test_size = 0.33, random_state = 42) # instantiating AdaBoostClassifier abc = AdaBoostClassifier(n_estimators = 100, random_state = 0) abc.fit(trainFeat, trainLabels) print("Feature importances for AdaBoostClassifier: ") print(abc.feature_importances_) # make predictions for test data predictions = abc.predict(testFeat) accuracy = accuracy_score(testLabels, predictions) print("Accuracy of AdaBoostClassifier: %.2f%%" % (accuracy * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, predictions, target_names=["benign", "malicious"])) cm = confusion_matrix(testLabels, predictions) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm) # instantiating AdaBoostRegressor (similar to logistic regression) abr = AdaBoostRegressor(random_state = 0, n_estimators = 100) abr.fit(trainFeat, trainLabels) print("Feature importances for AdaBoostRegressor: ") print(abr.feature_importances_) # make predictions for test data predictions = abr.predict(testFeat) accuracy = accuracy_score(testLabels, predictions.round()) print("Accuracy of AdaBoostRegressor: %.2f%%" % (accuracy * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, predictions.round(), target_names=["benign", "malicious"])) cm = confusion_matrix(testLabels, predictions.round()) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm) # instantiating XGBClassifier xgbc = XGBClassifier() xgbc.fit(trainFeat, trainLabels) print("Feature importances for XGBClassifier: ") print(xgbc.feature_importances_) # make predictions for test data predictions = xgbc.predict(testFeat) accuracy = accuracy_score(testLabels, predictions) print("Accuracy of XGBClassifier: %.2f%%" % (accuracy * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, predictions, target_names=["benign", "malicious"])) cm = confusion_matrix(testLabels, predictions) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm) # instantiating XGBRegressor (similar to linear regression) xgbr = XGBRegressor(n_estimators = 100, max_depth = 3) xgbr.fit(trainFeat, trainLabels) print("Feature importances for XGBRegressor: ") print(xgbr.feature_importances_) # make predictions for test data predictions = xgbr.predict(testFeat) accuracy = accuracy_score(testLabels, predictions.round()) print("Accuracy of XGBRegressor: %.2f%%" % (accuracy * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, predictions.round(), target_names=["benign", "malicious"])) cm = confusion_matrix(testLabels, predictions.round()) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm) # instantiating Random Forest Classifier rfclf = RandomForestClassifier(n_estimators = 250) rfclf.fit(trainFeat, trainLabels) print("Feature importances for Random Forest: ") print(rfclf.feature_importances_) # predictions for test data cla_pred = rfclf.predict(testFeat) rf_acc = accuracy_score(testLabels, cla_pred) print("Random Forest Accuracy: %.2f%%" % (rf_acc * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, cla_pred, target_names=["benign", "malicious"])) # confusion_matrix cm_rf_cla = confusion_matrix(testLabels, cla_pred) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm_rf_cla) # instantiating Random Forest Regressor rfreg = RandomForestRegressor(n_estimators = 250) rfreg.fit(trainFeat, trainLabels) print("Feature importances for Random Forest: ") print(rfreg.feature_importances_) # predictions for test data reg_pred = rfreg.predict(testFeat) rfreg_acc = accuracy_score(testLabels, reg_pred.round()) print("Random Forest Accuracy: %.2f%%" % (rfreg_acc * 100.0)) # classification_report - precision, recall, f1 table for adaboost classifier print(classification_report(testLabels, reg_pred.round(), target_names=["benign", "malicious"])) # confusion_matrix cm_rf_reg = confusion_matrix(testLabels, reg_pred.round()) # the count of true negatives is A00, false negatives is A10, true positives is A11 and false positives is A01 print('confusion matrix:\n %s' % cm_rf_reg) print("\n+++++++++++++++++++++++++++++++++++++++++ FINISH ++++++++++++++++++++++++++++++++++++++++\n") # start check all white pdf files print("+++++++++++++++++++++++++++++++++++++++ START CHECK +++++++++++++++++++++++++++++++++++++") white_path = 'WHITE' dataset_path = os.path.join(folder_path, white_path) # extract JavaScript from white pdf file result = obj_data.extract(dataset_path) if (result): print("[*] Succces extract JavaScript from white pdf files") else: print("[!] Whoops. something wrong dude. enable err var to track it") sys.exit() # dir of folder and filter for pdf files files = [f for f in os.listdir(dataset_path) if os.path.isfile( os.path.join(dataset_path, f))] files = list(filter(lambda f: f.endswith(('.pdf', '.PDF')), files)) # AdoBC AdoBR XGBC XGBR RFC RFR answers = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]] # loop over the input pdfs for (i, pdfFILE) in enumerate(files): if (pdfFILE in set_white_files): continue obj_data.convertOnePDF(dataset_path + '/' + pdfFILE) obj_read = readPDF(obj_data.getDict()) # create pdf object obj_pdf = dataPDF(pdfFILE, folder_path+'/', white_path) # Image vector1 = [] obj_pdf.calculate_histogram_blur() vector1.append(obj_pdf.getImgHistogram()) vector1 = np.array(vector1) # 28 features vector2 = [] obj_pdf.calculate_dsurlsjsentropy() vector2.append(obj_pdf.getFeatVec()) vector2 = np.array(vector2) # Text obj_pdf.save_text(obj_read.extractTEXT(obj_pdf.getFilename(), obj_pdf.getImage())) vector_text = [] vector_text.append(obj_pdf.getText()) v1 = km.predict(vector1) v2 = logreg.predict(vector_text) v3 = ranfor.predict(vector2) v_all = [[v1[0], v2[0], v3[0]]] answer = abc.predict(v_all) if (answer == 0): answers[0][0] = answers[0][0] + 1 else: answers[0][1] = answers[0][1] + 1 print("AdoBoostClassifier ",pdfFILE) answer = abr.predict(v_all) if (answer.round() == 0): answers[1][0] = answers[1][0] + 1 else: answers[1][1] = answers[1][1] + 1 print("AdoBoostRegression ",pdfFILE) answer = xgbc.predict(v_all) if (answer == 0): answers[2][0] = answers[2][0] + 1 else: answers[2][1] = answers[2][1] + 1 print("XGBClassifier ",pdfFILE) answer = xgbr.predict(v_all) if (answer.round() == 0): answers[3][0] = answers[3][0] + 1 else: answers[3][1] = answers[3][1] + 1 print("XGBRegression ",pdfFILE) answer = rfclf.predict(v_all) if (answer == 0): answers[4][0] = answers[4][0] + 1 else: answers[4][1] = answers[4][1] + 1 print("RFClassifier ",pdfFILE) answer = rfreg.predict(v_all) if (answer.round() == 0): answers[5][0] = answers[5][0] + 1 else: answers[5][1] = answers[5][1] + 1 print("RFRegression ",pdfFILE) try: obj_pdf.removeIMAGE() except: continue print(answers) print("\n+++++++++++++++++++++++++++++++++++++++++ FINISH ++++++++++++++++++++++++++++++++++++++++\n")
[ "csv.DictWriter", "sklearn.feature_extraction.text.TfidfTransformer", "sklearn.metrics.classification_report", "sklearn.ensemble.AdaBoostClassifier", "sklearn.ensemble.AdaBoostRegressor", "numpy.array", "sys.exit", "xgboost.sklearn.XGBRegressor", "os.path.exists", "sklearn.ensemble.RandomForestRegressor", "os.listdir", "argparse.ArgumentParser", "sklearn.feature_extraction.text.CountVectorizer", "classes.dataPDF.dataPDF", "os.mkdir", "sklearn.metrics.confusion_matrix", "sklearn.model_selection.train_test_split", "sklearn.ensemble.RandomForestClassifier", "sklearn.metrics.accuracy_score", "xgboost.XGBClassifier", "sklearn.cluster.KMeans", "classes.createDATA.createDATA", "os.path.join", "os.getcwd", "sklearn.linear_model.LogisticRegression" ]
[((1825, 1850), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1848, 1850), False, 'import argparse\n'), ((2805, 2816), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2814, 2816), False, 'import os\n'), ((2836, 2878), 'os.path.join', 'os.path.join', (['folder_path', "args['dataset']"], {}), "(folder_path, args['dataset'])\n", (2848, 2878), False, 'import os\n'), ((3416, 3456), 'classes.createDATA.createDATA', 'createDATA', (['folder_path', "args['dataset']"], {}), "(folder_path, args['dataset'])\n", (3426, 3456), False, 'from classes.createDATA import createDATA\n'), ((5648, 5664), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (5656, 5664), True, 'import numpy as np\n'), ((5846, 5912), 'sklearn.model_selection.train_test_split', 'train_test_split', (['obj_pdfs', 'labels'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(obj_pdfs, labels, test_size=0.3, random_state=42)\n', (5862, 5912), False, 'from sklearn.model_selection import train_test_split\n'), ((6111, 6130), 'numpy.array', 'np.array', (['trainFeat'], {}), '(trainFeat)\n', (6119, 6130), True, 'import numpy as np\n'), ((6146, 6164), 'numpy.array', 'np.array', (['testFeat'], {}), '(testFeat)\n', (6154, 6164), True, 'import numpy as np\n'), ((6201, 6335), 'sklearn.cluster.KMeans', 'KMeans', ([], {'algorithm': '"""auto"""', 'copy_x': '(True)', 'init': '"""k-means++"""', 'max_iter': '(300)', 'n_clusters': "args['clusters']", 'n_init': '(10)', 'n_jobs': "args['jobs']"}), "(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,\n n_clusters=args['clusters'], n_init=10, n_jobs=args['jobs'])\n", (6207, 6335), False, 'from sklearn.cluster import KMeans\n'), ((6688, 6707), 'numpy.array', 'np.array', (['trainFeat'], {}), '(trainFeat)\n', (6696, 6707), True, 'import numpy as np\n'), ((6723, 6741), 'numpy.array', 'np.array', (['testFeat'], {}), '(testFeat)\n', (6731, 6741), True, 'import numpy as np\n'), ((7969, 7988), 'numpy.array', 'np.array', (['trainFeat'], {}), '(trainFeat)\n', (7977, 7988), True, 'import numpy as np\n'), ((8214, 8286), 'sklearn.model_selection.train_test_split', 'train_test_split', (['trainFeat', 'testLabels'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(trainFeat, testLabels, test_size=0.33, random_state=42)\n', (8230, 8286), False, 'from sklearn.model_selection import train_test_split\n'), ((8341, 8393), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {'n_estimators': '(100)', 'random_state': '(0)'}), '(n_estimators=100, random_state=0)\n', (8359, 8393), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((8620, 8659), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['testLabels', 'predictions'], {}), '(testLabels, predictions)\n', (8634, 8659), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((8920, 8961), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['testLabels', 'predictions'], {}), '(testLabels, predictions)\n', (8936, 8961), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((9200, 9251), 'sklearn.ensemble.AdaBoostRegressor', 'AdaBoostRegressor', ([], {'random_state': '(0)', 'n_estimators': '(100)'}), '(random_state=0, n_estimators=100)\n', (9217, 9251), False, 'from sklearn.ensemble import AdaBoostRegressor\n'), ((10044, 10059), 'xgboost.XGBClassifier', 'XGBClassifier', ([], {}), '()\n', (10057, 10059), False, 'from xgboost import XGBClassifier\n'), ((10280, 10319), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['testLabels', 'predictions'], {}), '(testLabels, predictions)\n', (10294, 10319), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((10575, 10616), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['testLabels', 'predictions'], {}), '(testLabels, predictions)\n', (10591, 10616), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((10849, 10892), 'xgboost.sklearn.XGBRegressor', 'XGBRegressor', ([], {'n_estimators': '(100)', 'max_depth': '(3)'}), '(n_estimators=100, max_depth=3)\n', (10861, 10892), False, 'from xgboost.sklearn import XGBRegressor\n'), ((11690, 11730), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': '(250)'}), '(n_estimators=250)\n', (11712, 11730), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((11946, 11982), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['testLabels', 'cla_pred'], {}), '(testLabels, cla_pred)\n', (11960, 11982), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((12260, 12298), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['testLabels', 'cla_pred'], {}), '(testLabels, cla_pred)\n', (12276, 12298), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((12523, 12562), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'n_estimators': '(250)'}), '(n_estimators=250)\n', (12544, 12562), False, 'from sklearn.ensemble import RandomForestRegressor\n'), ((13620, 13657), 'os.path.join', 'os.path.join', (['folder_path', 'white_path'], {}), '(folder_path, white_path)\n', (13632, 13657), False, 'import os\n'), ((2466, 2487), 'os.mkdir', 'os.mkdir', (['path_IMAGES'], {}), '(path_IMAGES)\n', (2474, 2487), False, 'import os\n'), ((2496, 2516), 'os.mkdir', 'os.mkdir', (['path_TEXTS'], {}), '(path_TEXTS)\n', (2504, 2516), False, 'import os\n'), ((2933, 2961), 'os.path.exists', 'os.path.exists', (['dataset_path'], {}), '(dataset_path)\n', (2947, 2961), False, 'import os\n'), ((3055, 3065), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3063, 3065), False, 'import sys\n'), ((3196, 3238), 'csv.DictWriter', 'csv.DictWriter', (['csvFile'], {'fieldnames': 'fields'}), '(csvFile, fieldnames=fields)\n', (3210, 3238), False, 'import csv\n'), ((3708, 3718), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3716, 3718), False, 'import sys\n'), ((3979, 3989), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3987, 3989), False, 'import sys\n'), ((4927, 4979), 'classes.dataPDF.dataPDF', 'dataPDF', (['pdfFILE', "(folder_path + '/')", "args['dataset']"], {}), "(pdfFILE, folder_path + '/', args['dataset'])\n", (4934, 4979), False, 'from classes.dataPDF import dataPDF\n'), ((8825, 8913), 'sklearn.metrics.classification_report', 'classification_report', (['testLabels', 'predictions'], {'target_names': "['benign', 'malicious']"}), "(testLabels, predictions, target_names=['benign',\n 'malicious'])\n", (8846, 8913), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((10480, 10568), 'sklearn.metrics.classification_report', 'classification_report', (['testLabels', 'predictions'], {'target_names': "['benign', 'malicious']"}), "(testLabels, predictions, target_names=['benign',\n 'malicious'])\n", (10501, 10568), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((12138, 12223), 'sklearn.metrics.classification_report', 'classification_report', (['testLabels', 'cla_pred'], {'target_names': "['benign', 'malicious']"}), "(testLabels, cla_pred, target_names=['benign',\n 'malicious'])\n", (12159, 12223), False, 'from sklearn.metrics import accuracy_score, classification_report, confusion_matrix\n'), ((13929, 13939), 'sys.exit', 'sys.exit', ([], {}), '()\n', (13937, 13939), False, 'import sys\n'), ((14579, 14626), 'classes.dataPDF.dataPDF', 'dataPDF', (['pdfFILE', "(folder_path + '/')", 'white_path'], {}), "(pdfFILE, folder_path + '/', white_path)\n", (14586, 14626), False, 'from classes.dataPDF import dataPDF\n'), ((14782, 14799), 'numpy.array', 'np.array', (['vector1'], {}), '(vector1)\n', (14790, 14799), True, 'import numpy as np\n'), ((14959, 14976), 'numpy.array', 'np.array', (['vector2'], {}), '(vector2)\n', (14967, 14976), True, 'import numpy as np\n'), ((4301, 4325), 'os.listdir', 'os.listdir', (['dataset_path'], {}), '(dataset_path)\n', (4311, 4325), False, 'import os\n'), ((14010, 14034), 'os.listdir', 'os.listdir', (['dataset_path'], {}), '(dataset_path)\n', (14020, 14034), False, 'import os\n'), ((4344, 4373), 'os.path.join', 'os.path.join', (['dataset_path', 'f'], {}), '(dataset_path, f)\n', (4356, 4373), False, 'import os\n'), ((6821, 6876), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': '(30)', 'random_state': '(0)'}), '(n_estimators=30, random_state=0)\n', (6843, 6876), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((7269, 7286), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (7284, 7286), False, 'from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer\n'), ((7315, 7333), 'sklearn.feature_extraction.text.TfidfTransformer', 'TfidfTransformer', ([], {}), '()\n', (7331, 7333), False, 'from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer\n'), ((7360, 7455), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'solver': '"""lbfgs"""', 'multi_class': '"""auto"""', 'max_iter': '(1000)', 'n_jobs': '(1)', 'C': '(100000.0)'}), "(solver='lbfgs', multi_class='auto', max_iter=1000,\n n_jobs=1, C=100000.0)\n", (7378, 7455), False, 'from sklearn.linear_model import LogisticRegression\n'), ((14062, 14091), 'os.path.join', 'os.path.join', (['dataset_path', 'f'], {}), '(dataset_path, f)\n', (14074, 14091), False, 'import os\n')]
from __future__ import absolute_import import numpy as np import chainer import tqdm import glob import warnings from abc import ABCMeta, abstractmethod from collections import OrderedDict from ..data import load_image # NOQA class BaseDataset(chainer.dataset.DatasetMixin, metaclass=ABCMeta): """ Base class of dataset Args: root (str): Directory to the dataset patients (list, optional): List of patient names. Defaults to []. classes (None or list, optional): List of class names. Defaults to None. dtypes (dict, optional): An dictionary of data types. Defaults to {}. filenames (dict, optional): An dictionary of wildcard to filenames. Each filename can be a format string using '{root}' and '{patient}'. Defaults to {}. normalizer (callable, optional): An callable function for normalization. Defaults to None. augmentor (callable, optional): An callable function for data augmentation. Defaults to None. """ def __init__(self, root, patients=[], classes=None, dtypes={}, filenames={}, normalizer=None, augmentor=None): super(BaseDataset, self).__init__() assert isinstance(patients, (list, np.ndarray)), \ 'please specify the patient names..' if classes is not None: if isinstance(classes, list): classes = np.asarray(classes) assert isinstance(classes, np.ndarray), \ 'class names should be list or np.ndarray..' assert isinstance(dtypes, dict), \ 'please specify the dtype per each file..' assert isinstance(filenames, dict), \ 'please specify the filename per each file..' if normalizer is not None: assert callable(normalizer), 'normalizer should be callable..' if augmentor is not None: assert callable(augmentor), 'augmentor should be callable..' # initialize files = OrderedDict() file_sizes = [] for key in filenames.keys(): files[key] = [] for p in tqdm.tqdm(patients, desc='Collecting %s files' % key, ncols=80): files[key].extend( glob.glob(filenames[key].format(root=root, patient=p))) if len(files[key]) == 0: warnings.warn('%s files are not found.. ' % key) file_sizes.append(len(files[key])) assert all(file_sizes[0] == s for s in file_sizes), \ 'the number of files must be the same..' self._root = root self._patients = patients self._classes = classes self._dtypes = dtypes self._filenames = filenames self._files = files self._normalizer = normalizer self._augmentor = augmentor def __len__(self): key = list(self._files.keys())[0] return len(self._files[key]) @property def classes(self): return self._classes @property def n_classes(self): if self.classes is None: return None return len(self.classes) @property def files(self): return self._files @property def dtypes(self): return self._dtypes @property def normalizer(self): return self._normalizer @property def augmentor(self): return self._augmentor @augmentor.deleter def augmentor(self): self._augmentor = None @classmethod @abstractmethod def normalize(self, **kwargs): raise NotImplementedError() @classmethod @abstractmethod def denormalize(self, **kwargs): raise NotImplementedError() @classmethod @abstractmethod def get_example(self, i): raise NotImplementedError() @classmethod @abstractmethod def __copy__(self): """Copy the class instance""" raise NotImplementedError() from .volume import VolumeDataset # NOQA from .image import ImageDataset # NOQA def train_valid_split(train, valid_ratio): if isinstance(train, BaseDataset): valid = train.__copy__() n_samples = len(train) valid_indices = np.random.choice(np.arange(n_samples), int(valid_ratio * n_samples), replace=False) files = train.files for key in files.keys(): valid._files[key] = np.asarray(files[key])[valid_indices] train._files[key] = np.delete( np.asarray(files[key]), valid_indices) elif isinstance(train, (list, np.ndarray)): valid = np.asarray(train) n_samples = len(train) valid_indices = np.random.choice(np.arange(n_samples), int(valid_ratio * n_samples), replace=False) valid = valid[valid_indices] train = np.delete(train, valid_indices) assert len(train) + len(valid) == n_samples return train, valid def load_crossval_list(xls_file, index): import pandas as pd from distutils.version import LooseVersion if LooseVersion(pd.__version__) >= LooseVersion('0.21.0'): df = pd.read_excel(xls_file, sheet_name=index) else: df = pd.read_excel(xls_file, sheetname=index) train = df['train'].dropna().tolist() valid = df['valid'].dropna().tolist() test = df['test'].dropna().tolist() return {'train': train, 'valid': valid, 'test': test}
[ "collections.OrderedDict", "numpy.delete", "tqdm.tqdm", "numpy.asarray", "pandas.read_excel", "warnings.warn", "distutils.version.LooseVersion", "numpy.arange" ]
[((2079, 2092), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2090, 2092), False, 'from collections import OrderedDict\n'), ((5263, 5291), 'distutils.version.LooseVersion', 'LooseVersion', (['pd.__version__'], {}), '(pd.__version__)\n', (5275, 5291), False, 'from distutils.version import LooseVersion\n'), ((5295, 5317), 'distutils.version.LooseVersion', 'LooseVersion', (['"""0.21.0"""'], {}), "('0.21.0')\n", (5307, 5317), False, 'from distutils.version import LooseVersion\n'), ((5332, 5373), 'pandas.read_excel', 'pd.read_excel', (['xls_file'], {'sheet_name': 'index'}), '(xls_file, sheet_name=index)\n', (5345, 5373), True, 'import pandas as pd\n'), ((5397, 5437), 'pandas.read_excel', 'pd.read_excel', (['xls_file'], {'sheetname': 'index'}), '(xls_file, sheetname=index)\n', (5410, 5437), True, 'import pandas as pd\n'), ((2205, 2268), 'tqdm.tqdm', 'tqdm.tqdm', (['patients'], {'desc': "('Collecting %s files' % key)", 'ncols': '(80)'}), "(patients, desc='Collecting %s files' % key, ncols=80)\n", (2214, 2268), False, 'import tqdm\n'), ((4295, 4315), 'numpy.arange', 'np.arange', (['n_samples'], {}), '(n_samples)\n', (4304, 4315), True, 'import numpy as np\n'), ((4740, 4757), 'numpy.asarray', 'np.asarray', (['train'], {}), '(train)\n', (4750, 4757), True, 'import numpy as np\n'), ((5035, 5066), 'numpy.delete', 'np.delete', (['train', 'valid_indices'], {}), '(train, valid_indices)\n', (5044, 5066), True, 'import numpy as np\n'), ((1487, 1506), 'numpy.asarray', 'np.asarray', (['classes'], {}), '(classes)\n', (1497, 1506), True, 'import numpy as np\n'), ((2435, 2483), 'warnings.warn', 'warnings.warn', (["('%s files are not found.. ' % key)"], {}), "('%s files are not found.. ' % key)\n", (2448, 2483), False, 'import warnings\n'), ((4538, 4560), 'numpy.asarray', 'np.asarray', (['files[key]'], {}), '(files[key])\n', (4548, 4560), True, 'import numpy as np\n'), ((4635, 4657), 'numpy.asarray', 'np.asarray', (['files[key]'], {}), '(files[key])\n', (4645, 4657), True, 'import numpy as np\n'), ((4832, 4852), 'numpy.arange', 'np.arange', (['n_samples'], {}), '(n_samples)\n', (4841, 4852), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Aug 24 14:46:59 2017 Some personal numpy array filtering and finding intersections with indices @author: <NAME> """ import numpy as np import glob import os import shutil def idx_filter(idx, *array_list): new_array_list = [] for array in array_list: new_array_list.append(array[idx]) return new_array_list def intersect(*arrays): """ This only works if arrays are sorted and unique""" matched = np.array(list(set(arrays[0]).intersection(*arrays[1:]))) return np.array([np.where(np.in1d(array, matched))[0] for array in arrays]) def copy_dir_diff(dir1, dir2, dirout): """ Copy files in dir1 that are missingin dir2 into dirout """ print(dir1) fileList = glob.glob(os.path.join(dir1, '*')) for curFullFile in fileList: curFile = os.path.basename(curFullFile) checkFullFile = os.path.join(dir2, curFile) if os.path.isfile(checkFullFile): print('{0} exist'.format(curFile)) else: print('{0} miss'.format(curFile)) newFullFile = os.path.join(dirout, curFile) shutil.copyfile(curFullFile, newFullFile)
[ "numpy.in1d", "os.path.join", "os.path.isfile", "shutil.copyfile", "os.path.basename" ]
[((760, 783), 'os.path.join', 'os.path.join', (['dir1', '"""*"""'], {}), "(dir1, '*')\n", (772, 783), False, 'import os\n'), ((836, 865), 'os.path.basename', 'os.path.basename', (['curFullFile'], {}), '(curFullFile)\n', (852, 865), False, 'import os\n'), ((890, 917), 'os.path.join', 'os.path.join', (['dir2', 'curFile'], {}), '(dir2, curFile)\n', (902, 917), False, 'import os\n'), ((929, 958), 'os.path.isfile', 'os.path.isfile', (['checkFullFile'], {}), '(checkFullFile)\n', (943, 958), False, 'import os\n'), ((1093, 1122), 'os.path.join', 'os.path.join', (['dirout', 'curFile'], {}), '(dirout, curFile)\n', (1105, 1122), False, 'import os\n'), ((1135, 1176), 'shutil.copyfile', 'shutil.copyfile', (['curFullFile', 'newFullFile'], {}), '(curFullFile, newFullFile)\n', (1150, 1176), False, 'import shutil\n'), ((562, 585), 'numpy.in1d', 'np.in1d', (['array', 'matched'], {}), '(array, matched)\n', (569, 585), True, 'import numpy as np\n')]
# Written by <NAME>, 2018 import numpy as np import bisect class SDR_Classifier: """Maximum Likelyhood classifier for SDRs.""" def __init__(self, alpha, input_sdr, num_labels): """ Argument alpha is the small constant used by the exponential moving average which tracks input-output co-occurances. """ self.alpha = alpha self.input_sdr = input_sdr self.num_labels = num_labels # Don't initialize to zero, touch every input+output pair. self.stats = np.random.uniform( 0.1 * self.alpha, 0.2 * self.alpha, size=(self.input_sdr.size, self.num_labels)) def train(self, labels, input_sdr=None): """ Argument labels is array of float, PDF. """ labels = np.array(labels) / np.sum(labels) self.input_sdr.assign(input_sdr) inputs = self.input_sdr.flat_index # Decay. self.stats[inputs, :] *= (1 - self.alpha) self.stats[:, np.nonzero(labels)[0]] *= (1 - self.alpha) # Update. updates = (labels - self.stats[inputs]) * self.alpha self.stats[inputs] += updates def predict(self, input_sdr=None): """ Argument inputs is ndarray of indexes into the input space. Returns probability of each catagory in output space. """ self.input_sdr.assign(input_sdr) pdf = self.stats[self.input_sdr.flat_index, :] pdf = pdf / np.sum(pdf, axis=1, keepdims=True) if False: # Combine multiple probabilities into single pdf. Product, not # summation, to combine probabilities of independant events. The # problem with this is if a few unexpected bits turn on it # mutliplies the result by zero, and the test dataset is going to # have unexpected things in it. return np.product(pdf, axis=0, keepdims=False) else: # Use summation B/C it works well. return np.sum(pdf, axis=0, keepdims=False) class RandomOutputClassifier: """ This classifier uses the frequency of the trained target outputs to generate random predictions. It is used to get a baseline performance to compare against. """ def __init__(self, num_labels): self.stats = np.zeros(num_labels) def train(self, label): label = np.array(label) / np.sum(label) self.stats += label def predict(self): """Returns probability of each catagory in output space.""" cdf = np.cumsum(self.stats) assert(cdf[-1] > 0) # Classifier must be trained before it can make predictions. return bisect.bisect(cdf, np.random.random() * cdf[-1])
[ "numpy.product", "numpy.random.random", "numpy.array", "numpy.zeros", "numpy.sum", "numpy.nonzero", "numpy.random.uniform", "numpy.cumsum" ]
[((544, 647), 'numpy.random.uniform', 'np.random.uniform', (['(0.1 * self.alpha)', '(0.2 * self.alpha)'], {'size': '(self.input_sdr.size, self.num_labels)'}), '(0.1 * self.alpha, 0.2 * self.alpha, size=(self.input_sdr.\n size, self.num_labels))\n', (561, 647), True, 'import numpy as np\n'), ((2357, 2377), 'numpy.zeros', 'np.zeros', (['num_labels'], {}), '(num_labels)\n', (2365, 2377), True, 'import numpy as np\n'), ((2589, 2610), 'numpy.cumsum', 'np.cumsum', (['self.stats'], {}), '(self.stats)\n', (2598, 2610), True, 'import numpy as np\n'), ((815, 831), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (823, 831), True, 'import numpy as np\n'), ((834, 848), 'numpy.sum', 'np.sum', (['labels'], {}), '(labels)\n', (840, 848), True, 'import numpy as np\n'), ((1507, 1541), 'numpy.sum', 'np.sum', (['pdf'], {'axis': '(1)', 'keepdims': '(True)'}), '(pdf, axis=1, keepdims=True)\n', (1513, 1541), True, 'import numpy as np\n'), ((1926, 1965), 'numpy.product', 'np.product', (['pdf'], {'axis': '(0)', 'keepdims': '(False)'}), '(pdf, axis=0, keepdims=False)\n', (1936, 1965), True, 'import numpy as np\n'), ((2046, 2081), 'numpy.sum', 'np.sum', (['pdf'], {'axis': '(0)', 'keepdims': '(False)'}), '(pdf, axis=0, keepdims=False)\n', (2052, 2081), True, 'import numpy as np\n'), ((2423, 2438), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (2431, 2438), True, 'import numpy as np\n'), ((2441, 2454), 'numpy.sum', 'np.sum', (['label'], {}), '(label)\n', (2447, 2454), True, 'import numpy as np\n'), ((2734, 2752), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (2750, 2752), True, 'import numpy as np\n'), ((1037, 1055), 'numpy.nonzero', 'np.nonzero', (['labels'], {}), '(labels)\n', (1047, 1055), True, 'import numpy as np\n')]
import os, sys os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="" import pandas as pd import numpy as np eps = 0.004 desired = { 0: 0.36239782, 1: 0.043841336, 2: 0.075268817, 3: 0.059322034, 4: 0.075268817, 5: 0.075268817, 6: 0.043841336, 7: 0.075268817, 8: eps, 9: eps, 10: eps, 11: 0.043841336, 12: 0.043841336, 13: 0.014198783, 14: 0.043841336, 15: eps, 16: 0.028806584, 17: 0.014198783, 18: 0.028806584, 19: 0.059322034, 20: eps, 21: 0.126126126, 22: 0.028806584, 23: 0.075268817, 24: eps, 25: 0.222493888, 26: 0.028806584, 27: eps } MODEL_PATH = 'Christof/models/GAPNet/13_ext_512crop/' pred_ul = np.load(MODEL_PATH + 'pred_ul_40.npy') pred_ur = np.load(MODEL_PATH + 'pred_ur_40.npy') pred_mm = np.load(MODEL_PATH + 'pred_mm_40.npy') pred_bl = np.load(MODEL_PATH + 'pred_bl_40.npy') pred_br = np.load(MODEL_PATH + 'pred_br_40.npy') X = np.stack([pred_ul,pred_ur,pred_mm,pred_bl,pred_br]) X = np.mean(X,axis=1) X = np.transpose(X, (1, 0, 2)) from keras.models import load_model preds = np.zeros((X.shape[0],28)) for f_id in range(5): m = load_model(MODEL_PATH + f'stacker{f_id}_stats.hdf5') preds += m.predict(X, batch_size = 512) preds = preds/ 5 desired = {} best_sub = pd.read_csv('best_sub.csv') s0 = [s if isinstance(s, str) else '' for s in best_sub.Predicted] p0 = [s.split() for s in s0] y0 = np.zeros((best_sub.shape[0], 28)).astype(int) for i in range(best_sub.shape[0]): for j in p0[i]: y0[i, int(j)] = 1 for i in range(28): desired[i] = y0[:,i].mean() thresholds = np.linspace(0.95, 0.05, 101) pred = preds.copy() for j in range(pred.shape[1]): for t in thresholds: pred[:, j] = (preds[:, j] > t).astype(int) prop = np.mean(pred[:, j]) if prop >= desired[j]: break print(j, '%3.2f' % t, '%6.4f' % desired[j], '%6.4f' % prop, j, ) print(pred[:5].astype(int)) label_predict = [np.arange(28)[score_predict == 1] for score_predict in pred] str_predict_label = [' '.join(str(l) for l in lp) for lp in label_predict] submit = pd.read_csv('Christof/assets/sample_submission.csv') submit['Predicted'] = str_predict_label # np.save('draw_predict_InceptionV3.npy', score_predict) #submit.to_csv(MODEL_PATH + 'submission.csv', index=False) from Christof.utils import f1_sub best_sub = pd.read_csv('ens56d.csv') f1_sub(best_sub,submit)
[ "numpy.mean", "keras.models.load_model", "pandas.read_csv", "Christof.utils.f1_sub", "numpy.stack", "numpy.zeros", "numpy.linspace", "numpy.transpose", "numpy.arange", "numpy.load" ]
[((752, 790), 'numpy.load', 'np.load', (["(MODEL_PATH + 'pred_ul_40.npy')"], {}), "(MODEL_PATH + 'pred_ul_40.npy')\n", (759, 790), True, 'import numpy as np\n'), ((801, 839), 'numpy.load', 'np.load', (["(MODEL_PATH + 'pred_ur_40.npy')"], {}), "(MODEL_PATH + 'pred_ur_40.npy')\n", (808, 839), True, 'import numpy as np\n'), ((850, 888), 'numpy.load', 'np.load', (["(MODEL_PATH + 'pred_mm_40.npy')"], {}), "(MODEL_PATH + 'pred_mm_40.npy')\n", (857, 888), True, 'import numpy as np\n'), ((899, 937), 'numpy.load', 'np.load', (["(MODEL_PATH + 'pred_bl_40.npy')"], {}), "(MODEL_PATH + 'pred_bl_40.npy')\n", (906, 937), True, 'import numpy as np\n'), ((948, 986), 'numpy.load', 'np.load', (["(MODEL_PATH + 'pred_br_40.npy')"], {}), "(MODEL_PATH + 'pred_br_40.npy')\n", (955, 986), True, 'import numpy as np\n'), ((992, 1047), 'numpy.stack', 'np.stack', (['[pred_ul, pred_ur, pred_mm, pred_bl, pred_br]'], {}), '([pred_ul, pred_ur, pred_mm, pred_bl, pred_br])\n', (1000, 1047), True, 'import numpy as np\n'), ((1048, 1066), 'numpy.mean', 'np.mean', (['X'], {'axis': '(1)'}), '(X, axis=1)\n', (1055, 1066), True, 'import numpy as np\n'), ((1070, 1096), 'numpy.transpose', 'np.transpose', (['X', '(1, 0, 2)'], {}), '(X, (1, 0, 2))\n', (1082, 1096), True, 'import numpy as np\n'), ((1143, 1169), 'numpy.zeros', 'np.zeros', (['(X.shape[0], 28)'], {}), '((X.shape[0], 28))\n', (1151, 1169), True, 'import numpy as np\n'), ((1340, 1367), 'pandas.read_csv', 'pd.read_csv', (['"""best_sub.csv"""'], {}), "('best_sub.csv')\n", (1351, 1367), True, 'import pandas as pd\n'), ((1655, 1683), 'numpy.linspace', 'np.linspace', (['(0.95)', '(0.05)', '(101)'], {}), '(0.95, 0.05, 101)\n', (1666, 1683), True, 'import numpy as np\n'), ((2146, 2198), 'pandas.read_csv', 'pd.read_csv', (['"""Christof/assets/sample_submission.csv"""'], {}), "('Christof/assets/sample_submission.csv')\n", (2157, 2198), True, 'import pandas as pd\n'), ((2402, 2427), 'pandas.read_csv', 'pd.read_csv', (['"""ens56d.csv"""'], {}), "('ens56d.csv')\n", (2413, 2427), True, 'import pandas as pd\n'), ((2428, 2452), 'Christof.utils.f1_sub', 'f1_sub', (['best_sub', 'submit'], {}), '(best_sub, submit)\n', (2434, 2452), False, 'from Christof.utils import f1_sub\n'), ((1199, 1251), 'keras.models.load_model', 'load_model', (["(MODEL_PATH + f'stacker{f_id}_stats.hdf5')"], {}), "(MODEL_PATH + f'stacker{f_id}_stats.hdf5')\n", (1209, 1251), False, 'from keras.models import load_model\n'), ((1469, 1502), 'numpy.zeros', 'np.zeros', (['(best_sub.shape[0], 28)'], {}), '((best_sub.shape[0], 28))\n', (1477, 1502), True, 'import numpy as np\n'), ((1826, 1845), 'numpy.mean', 'np.mean', (['pred[:, j]'], {}), '(pred[:, j])\n', (1833, 1845), True, 'import numpy as np\n'), ((2000, 2013), 'numpy.arange', 'np.arange', (['(28)'], {}), '(28)\n', (2009, 2013), True, 'import numpy as np\n')]
import pyPROPOSAL as pp import numpy as np photo_real = [ pp.parametrization.photonuclear.Zeus, pp.parametrization.photonuclear.BezrukovBugaev, pp.parametrization.photonuclear.Rhode, pp.parametrization.photonuclear.Kokoulin ] particle_defs = [ pp.particle.MuMinusDef.get(), pp.particle.TauMinusDef.get()#, # pp.particle.EMinusDef.get() ] mediums = [ pp.medium.Ice(1.0), pp.medium.Hydrogen(1.0), pp.medium.Uranium(1.0) ] cuts = [ pp.EnergyCutSettings(-1, -1), pp.EnergyCutSettings(500, -1), pp.EnergyCutSettings(-1, 0.05), pp.EnergyCutSettings(500, 0.05) ] multiplier = 1. hard_components = [0, 1] photo_q2 = [ pp.parametrization.photonuclear.AbramowiczLevinLevyMaor91, pp.parametrization.photonuclear.AbramowiczLevinLevyMaor97, pp.parametrization.photonuclear.ButkevichMikhailov, pp.parametrization.photonuclear.RenoSarcevicSu ] photo_q2_interpol = [ pp.parametrization.photonuclear.AbramowiczLevinLevyMaor91Interpolant, pp.parametrization.photonuclear.AbramowiczLevinLevyMaor97Interpolant, pp.parametrization.photonuclear.ButkevichMikhailovInterpolant, pp.parametrization.photonuclear.RenoSarcevicSuInterpolant ] shadows = [ pp.parametrization.photonuclear.ShadowDuttaRenoSarcevicSeckel(), pp.parametrization.photonuclear.ShadowButkevichMikhailov() ] energies = np.logspace(4, 13, num=10) interpoldef = pp.InterpolationDef() def create_table_dEdx(dir_name, interpolate=False): with open(dir_name + "Photo_Real_dEdx{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for hard in hard_components: for parametrization in photo_real: photo = parametrization( particle, medium, cut, multiplier, hard) if interpolate: xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dEdx = xsection.calculate_dEdx(energy) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(dEdx)) buf.append(photo.name) buf.append(str(hard)) buf.append("\n") file.write("\t".join(buf)) def create_table_dNdx(dir_name, interpolate=False): with open(dir_name + "Photo_Real_dNdx{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for hard in hard_components: for parametrization in photo_real: photo = parametrization( particle, medium, cut, multiplier, hard) if interpolate: xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dNdx = xsection.calculate_dNdx(energy) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(dNdx)) buf.append(photo.name) buf.append(str(hard)) buf.append("\n") file.write("\t".join(buf)) def create_table_dNdx_rnd(dir_name, interpolate=False): pp.RandomGenerator.get().set_seed(1234) with open(dir_name + "Photo_Real_dNdx_rnd{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for hard in hard_components: rnd = pp.RandomGenerator.get().random_double() for parametrization in photo_real: photo = parametrization( particle, medium, cut, multiplier, hard) if interpolate: xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dNdx = xsection.calculate_dNdx_rnd(energy, rnd) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(rnd)) buf.append(str(dNdx)) buf.append(photo.name) buf.append(str(hard)) buf.append("\n") file.write("\t".join(buf)) def create_table_stochastic_loss(dir_name, interpolate=False): pp.RandomGenerator.get().set_seed(1234) with open(dir_name + "Photo_Real_e{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for hard in hard_components: for parametrization in photo_real: photo = parametrization( particle, medium, cut, multiplier, hard) if interpolate: xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: rnd1 = pp.RandomGenerator.get().random_double() rnd2 = pp.RandomGenerator.get().random_double() stochastic_loss = xsection.calculate_stochastic_loss(energy, rnd1, rnd2) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(rnd1)) buf.append(str(rnd2)) buf.append(str(stochastic_loss)) buf.append(photo.name) buf.append(str(hard)) buf.append("\n") file.write("\t".join(buf)) def create_table_dEdx_Q2(dir_name, interpolate=False): if interpolate: q2 = photo_q2_interpol else: q2 = photo_q2 with open(dir_name + "Photo_Q2_dEdx{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for shadow in shadows: for parametrization in q2: if interpolate: photo = parametrization( particle, medium, cut, multiplier, shadow, interpoldef) xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: photo = parametrization( particle, medium, cut, multiplier, shadow) xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dEdx = xsection.calculate_dEdx(energy) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(dEdx)) buf.append(photo.name) buf.append(shadow.name) buf.append("\n") file.write("\t".join(buf)) def create_table_dNdx_Q2(dir_name, interpolate=False): if interpolate: q2 = photo_q2_interpol else: q2 = photo_q2 with open(dir_name + "Photo_Q2_dNdx{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for shadow in shadows: for parametrization in q2: if interpolate: photo = parametrization( particle, medium, cut, multiplier, shadow, interpoldef) xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: photo = parametrization( particle, medium, cut, multiplier, shadow) xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dNdx = xsection.calculate_dNdx(energy) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(dNdx)) buf.append(photo.name) buf.append(shadow.name) buf.append("\n") file.write("\t".join(buf)) def create_table_dNdx_rnd_Q2(dir_name, interpolate=False): pp.RandomGenerator.get().set_seed(1234) if interpolate: q2 = photo_q2_interpol else: q2 = photo_q2 with open(dir_name + "Photo_Q2_dNdx_rnd{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for shadow in shadows: rnd = pp.RandomGenerator.get().random_double() for parametrization in q2: if interpolate: photo = parametrization( particle, medium, cut, multiplier, shadow, interpoldef) xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: photo = parametrization( particle, medium, cut, multiplier, shadow) xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: dNdx = xsection.calculate_dNdx_rnd(energy, rnd) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(rnd)) buf.append(str(dNdx)) buf.append(photo.name) buf.append(shadow.name) buf.append("\n") file.write("\t".join(buf)) def create_table_stochastic_loss_Q2(dir_name, interpolate=False): pp.RandomGenerator.get().set_seed(1234) if interpolate: q2 = photo_q2_interpol else: q2 = photo_q2 with open(dir_name + "Photo_Q2_e{}.txt".format("_interpol" if interpolate else ""), "a") as file: for particle in particle_defs: for medium in mediums: for cut in cuts: for shadow in shadows: for parametrization in q2: if interpolate: photo = parametrization( particle, medium, cut, multiplier, shadow, interpoldef) xsection = pp.crosssection.PhotoInterpolant(photo, interpoldef) else: photo = parametrization( particle, medium, cut, multiplier, shadow) xsection = pp.crosssection.PhotoIntegral(photo) buf = [""] for energy in energies: rnd1 = pp.RandomGenerator.get().random_double() rnd2 = pp.RandomGenerator.get().random_double() stochastic_loss = xsection.calculate_stochastic_loss(energy, rnd1, rnd2) buf.append(particle.name) buf.append(medium.name) buf.append(str(cut.ecut)) buf.append(str(cut.vcut)) buf.append(str(multiplier)) buf.append(str(energy)) buf.append(str(rnd1)) buf.append(str(rnd2)) buf.append(str(stochastic_loss)) buf.append(photo.name) buf.append(shadow.name) buf.append("\n") file.write("\t".join(buf)) def main(dir_name): # Integrate create_table_dEdx(dir_name) create_table_dNdx(dir_name) create_table_dNdx_rnd(dir_name) create_table_stochastic_loss(dir_name) create_table_dEdx_Q2(dir_name) create_table_dNdx_Q2(dir_name) create_table_dNdx_rnd_Q2(dir_name) create_table_stochastic_loss_Q2(dir_name) # Interpolate create_table_dEdx(dir_name, True) create_table_dNdx(dir_name, True) create_table_dNdx_rnd(dir_name, True) create_table_stochastic_loss(dir_name, True) create_table_dEdx_Q2(dir_name, True) create_table_dNdx_Q2(dir_name, True) create_table_dNdx_rnd_Q2(dir_name, True) create_table_stochastic_loss_Q2(dir_name, True) if __name__ == "__main__": import os dir_name = "TestFiles/" if os.path.isdir(dir_name): print("Directory {} already exists".format(dir_name)) else: os.makedirs(dir_name) print("Directory {} created".format(dir_name)) main(dir_name)
[ "pyPROPOSAL.particle.TauMinusDef.get", "pyPROPOSAL.parametrization.photonuclear.ShadowButkevichMikhailov", "os.makedirs", "pyPROPOSAL.InterpolationDef", "pyPROPOSAL.EnergyCutSettings", "pyPROPOSAL.crosssection.PhotoIntegral", "pyPROPOSAL.parametrization.photonuclear.ShadowDuttaRenoSarcevicSeckel", "os.path.isdir", "pyPROPOSAL.crosssection.PhotoInterpolant", "pyPROPOSAL.medium.Hydrogen", "pyPROPOSAL.particle.MuMinusDef.get", "numpy.logspace", "pyPROPOSAL.RandomGenerator.get", "pyPROPOSAL.medium.Ice", "pyPROPOSAL.medium.Uranium" ]
[((1369, 1395), 'numpy.logspace', 'np.logspace', (['(4)', '(13)'], {'num': '(10)'}), '(4, 13, num=10)\n', (1380, 1395), True, 'import numpy as np\n'), ((1411, 1432), 'pyPROPOSAL.InterpolationDef', 'pp.InterpolationDef', ([], {}), '()\n', (1430, 1432), True, 'import pyPROPOSAL as pp\n'), ((266, 294), 'pyPROPOSAL.particle.MuMinusDef.get', 'pp.particle.MuMinusDef.get', ([], {}), '()\n', (292, 294), True, 'import pyPROPOSAL as pp\n'), ((300, 329), 'pyPROPOSAL.particle.TauMinusDef.get', 'pp.particle.TauMinusDef.get', ([], {}), '()\n', (327, 329), True, 'import pyPROPOSAL as pp\n'), ((385, 403), 'pyPROPOSAL.medium.Ice', 'pp.medium.Ice', (['(1.0)'], {}), '(1.0)\n', (398, 403), True, 'import pyPROPOSAL as pp\n'), ((409, 432), 'pyPROPOSAL.medium.Hydrogen', 'pp.medium.Hydrogen', (['(1.0)'], {}), '(1.0)\n', (427, 432), True, 'import pyPROPOSAL as pp\n'), ((438, 460), 'pyPROPOSAL.medium.Uranium', 'pp.medium.Uranium', (['(1.0)'], {}), '(1.0)\n', (455, 460), True, 'import pyPROPOSAL as pp\n'), ((477, 505), 'pyPROPOSAL.EnergyCutSettings', 'pp.EnergyCutSettings', (['(-1)', '(-1)'], {}), '(-1, -1)\n', (497, 505), True, 'import pyPROPOSAL as pp\n'), ((511, 540), 'pyPROPOSAL.EnergyCutSettings', 'pp.EnergyCutSettings', (['(500)', '(-1)'], {}), '(500, -1)\n', (531, 540), True, 'import pyPROPOSAL as pp\n'), ((546, 576), 'pyPROPOSAL.EnergyCutSettings', 'pp.EnergyCutSettings', (['(-1)', '(0.05)'], {}), '(-1, 0.05)\n', (566, 576), True, 'import pyPROPOSAL as pp\n'), ((582, 613), 'pyPROPOSAL.EnergyCutSettings', 'pp.EnergyCutSettings', (['(500)', '(0.05)'], {}), '(500, 0.05)\n', (602, 613), True, 'import pyPROPOSAL as pp\n'), ((1227, 1290), 'pyPROPOSAL.parametrization.photonuclear.ShadowDuttaRenoSarcevicSeckel', 'pp.parametrization.photonuclear.ShadowDuttaRenoSarcevicSeckel', ([], {}), '()\n', (1288, 1290), True, 'import pyPROPOSAL as pp\n'), ((1296, 1354), 'pyPROPOSAL.parametrization.photonuclear.ShadowButkevichMikhailov', 'pp.parametrization.photonuclear.ShadowButkevichMikhailov', ([], {}), '()\n', (1352, 1354), True, 'import pyPROPOSAL as pp\n'), ((18375, 18398), 'os.path.isdir', 'os.path.isdir', (['dir_name'], {}), '(dir_name)\n', (18388, 18398), False, 'import os\n'), ((18480, 18501), 'os.makedirs', 'os.makedirs', (['dir_name'], {}), '(dir_name)\n', (18491, 18501), False, 'import os\n'), ((4832, 4856), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (4854, 4856), True, 'import pyPROPOSAL as pp\n'), ((6693, 6717), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (6715, 6717), True, 'import pyPROPOSAL as pp\n'), ((12915, 12939), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (12937, 12939), True, 'import pyPROPOSAL as pp\n'), ((15204, 15228), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (15226, 15228), True, 'import pyPROPOSAL as pp\n'), ((2155, 2207), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (2187, 2207), True, 'import pyPROPOSAL as pp\n'), ((2285, 2321), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (2314, 2321), True, 'import pyPROPOSAL as pp\n'), ((3823, 3875), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (3855, 3875), True, 'import pyPROPOSAL as pp\n'), ((3953, 3989), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (3982, 3989), True, 'import pyPROPOSAL as pp\n'), ((5172, 5196), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (5194, 5196), True, 'import pyPROPOSAL as pp\n'), ((5615, 5667), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (5647, 5667), True, 'import pyPROPOSAL as pp\n'), ((5745, 5781), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (5774, 5781), True, 'import pyPROPOSAL as pp\n'), ((7398, 7450), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (7430, 7450), True, 'import pyPROPOSAL as pp\n'), ((7528, 7564), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (7557, 7564), True, 'import pyPROPOSAL as pp\n'), ((9524, 9576), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (9556, 9576), True, 'import pyPROPOSAL as pp\n'), ((9935, 9971), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (9964, 9971), True, 'import pyPROPOSAL as pp\n'), ((11620, 11672), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (11652, 11672), True, 'import pyPROPOSAL as pp\n'), ((12031, 12067), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (12060, 12067), True, 'import pyPROPOSAL as pp\n'), ((13330, 13354), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (13352, 13354), True, 'import pyPROPOSAL as pp\n'), ((13840, 13892), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (13872, 13892), True, 'import pyPROPOSAL as pp\n'), ((14251, 14287), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (14280, 14287), True, 'import pyPROPOSAL as pp\n'), ((16051, 16103), 'pyPROPOSAL.crosssection.PhotoInterpolant', 'pp.crosssection.PhotoInterpolant', (['photo', 'interpoldef'], {}), '(photo, interpoldef)\n', (16083, 16103), True, 'import pyPROPOSAL as pp\n'), ((16462, 16498), 'pyPROPOSAL.crosssection.PhotoIntegral', 'pp.crosssection.PhotoIntegral', (['photo'], {}), '(photo)\n', (16491, 16498), True, 'import pyPROPOSAL as pp\n'), ((7697, 7721), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (7719, 7721), True, 'import pyPROPOSAL as pp\n'), ((7777, 7801), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (7799, 7801), True, 'import pyPROPOSAL as pp\n'), ((16631, 16655), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (16653, 16655), True, 'import pyPROPOSAL as pp\n'), ((16711, 16735), 'pyPROPOSAL.RandomGenerator.get', 'pp.RandomGenerator.get', ([], {}), '()\n', (16733, 16735), True, 'import pyPROPOSAL as pp\n')]
print("################################################################################") print("# Implementation of a multivariate pattern analysis based on the scikitlearn ") print("# toolbox (http://scikit-learn.org/stable/). It reads a matlab file containing ") print("# Xm: a matrix of trials x chans x timepoint. ") print("# y: a vector indicating the class of each trial ") print("# The classification algorithm is based on a support vector machine. ") print("# (c) <NAME> 2012, jeanremi.king [at] gmail.com ") print("################################################################################") ############################################################################### print("LIBRARY") import sys as sys import numpy as np from scipy import stats from sklearn import svm from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold from sklearn.feature_selection import SelectPercentile, f_classif import scipy.io as sio from sklearn.preprocessing import Scaler ############################################################################### print("INPUT DATA") #-- get argument to load specific file filenameX = str(sys.argv[1]) filenamey = str(sys.argv[2]) print(filenameX) print(filenamey) #-- Load data into python mat = sio.loadmat(filenameX) Xm_all = mat["Xm"] # data #-- load classification parameters mat = sio.loadmat(filenamey) path = mat["path"][0] nameX = mat["nameX"][0] namey = mat["namey"][0] folding = mat["folding"][0] n_splits = mat["n_splits"] # svm penalization parameter n_splits = np.reshape(n_splits, n_splits.size) n_folds = mat["n_folds"] # fold number n_folds = np.reshape(n_folds, n_folds.size) svm_C = mat["C"] # svm penalization parameter svm_C = np.reshape(svm_C, svm_C.size) compute_probas = mat["compute_probas"] # svm penalization parameter compute_probas = np.reshape(compute_probas, compute_probas.size) compute_predict = mat["compute_predict"] # svm penalization parameter compute_predict = np.reshape(compute_predict, compute_predict.size) fs_n = mat["fs"] # feature selection fs_n = np.reshape(fs_n, fs_n.size) dims = mat["dims"] # select time windows to compute dims = np.reshape(dims, dims.size) - 1 # reshape for skl compatibility dims_tg = mat["dims_tg"] - 1 # svm penalization parameter y_all = mat["y"] # class used for train and test y_all = np.reshape(y_all, y_all.size) # reshape for skl compatibility y2_all = mat["y2"] # class used for sample weights y2_all = np.reshape(y2_all, y2_all.size) # reshape for skl compatibility #-- build training and generalizing classes Xm = Xm_all[y_all > 0, :, :] # training categories Xmg = Xm_all[y_all < 0, :, :] # generalization categories y = y_all[y_all > 0] yg = y_all[y_all < 0] y2 = y2_all[y_all > 0] n_samples, n_features, unused = Xm.shape n_samplesg, unused, unused = Xmg.shape n_featuresg = n_features n_dims = dims.shape[0] n_dimsg = n_dims n_dims_tg = dims_tg.shape[1] n_dimsg_tg = dims_tg.shape[1] n_classes = np.unique(y).shape[0] #deal with sample_weight sample_weight = np.ones(y.shape[0]) classes = np.unique(y2) for c in range(classes.shape[0]): sample_weight[y2 == classes[c]] = 1. / (np.sum(y2 == classes[c])) ############################################################################### print("PREPARE CLASSIFICATION") #--crossvalidation if folding == 'stratified': cv = StratifiedKFold(y, k=n_folds) elif folding == 'kfolding': cv = KFold(n=y.shape[0], k=n_folds) elif folding == 'leaveoneout': n_folds[0] = y.shape[0] cv = LeaveOneOut(n=y.shape[0]) else: print("unknown crossvalidation method!") #-- classifier clf = svm.SVC(kernel='linear', probability=True, C=svm_C) #-- normalizer scaler = Scaler() #-- feature selection fs = SelectPercentile(f_classif, percentile=fs_n) print("INITIALIZE RESULTS") if compute_predict: predict = np.zeros([n_splits, n_samples, n_dims, n_dims_tg]) ** np.nan predictg = np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_folds]) ** np.nan else: predict = [] predictg = [] if compute_probas: probas = np.zeros([n_splits, n_samples, n_dims, n_dims_tg, n_classes]) ** np.nan probasg = np.zeros([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_classes, n_folds]) ** np.nan else: probas = [] probasg = [] coef = np.empty([n_splits, n_folds, n_dims, n_classes * (n_classes - 1) / 2, n_features]) ** 0 all_folds = np.zeros([n_splits, n_folds, n_samples]) ** np.nan y_shfl = np.copy(y) Xm_shfl = np.copy(Xm) sw_shfl = np.copy(sample_weight) ############################################################################### print("CLASSIFY") #-- shufflesplit # repeat stratified kfolding for getting rid off the folding artefacts for split in range(n_splits): print(split) # shuffle order new_order = np.array(range(y.shape[0])) if split > 0: np.random.shuffle(new_order) y_shfl[new_order] = np.copy(y) Xm_shfl[new_order, :, :] = np.copy(Xm) sw_shfl[new_order] = np.copy(sample_weight) cv = StratifiedKFold(y_shfl, k=n_folds) # Stratified crossvalidation for fold, (train, test) in enumerate(cv): print(fold) all_folds[split, fold, train] = 1 all_folds[split, fold, test] = 0 for d in range(0, dims.shape[0]): Xtrain = Xm_shfl[train, :, dims[d]] ytrain = y_shfl[train] sw_train = sw_shfl[train] # (deal with NaN in training) ytrain = ytrain[~np.isnan(np.nansum(Xtrain, axis=1))] sw_train = sw_train[~np.isnan(np.nansum(Xtrain, axis=1))] Xtrain = Xtrain[~np.isnan(np.nansum(Xtrain, axis=1)), :] if np.unique(ytrain).shape[0] > 1: # feature selection (find the 50% most discriminative channels) fs.fit(Xtrain, ytrain) # find Xtrain = fs.transform(Xtrain) # remove unnecessary channels # normalization scaler.fit(Xtrain) # find Xtrain = scaler.transform(Xtrain) # apply zscore # SVM fit clf.fit(Xtrain, ytrain, sample_weight=sw_train) # retrieve hyperplan feature identification coef[split, fold, d, :, :] = 0 # initialize #--- univariate uni_features = fs.pvalues_ <= stats.scoreatpercentile(fs.pvalues_, fs.percentile) #--- multivariate coef[split, fold, d, :, uni_features] = scaler.inverse_transform(clf.coef_).T # predict cross val (deal with NaN in testing) # generalize across all time points for d_tg in range(0, n_dims_tg): sys.stdout.write("*") sys.stdout.flush() # select data Xtest = Xm_shfl[test, :, dims_tg[d, d_tg]] # handles NaNs test_nan = np.isnan(np.nansum(Xtest, axis=1)) Xtest = Xtest[~test_nan, :] # preproc Xtest = fs.transform(Xtest) Xtest = scaler.transform(Xtest) # predict if (Xtest.shape[0] - np.sum(test_nan)) > 0: if compute_predict: predict[split, test[~test_nan], d, d_tg] = clf.predict(Xtest) if compute_probas: probas[split, test[~test_nan], d, d_tg, :] = clf.predict_proba(Xtest) if np.sum(test_nan) > 0: probas[split, test[test_nan], d, d_tg, :] = np.nan # predict cross val on generalization sample (deal with NaN in testing) # select data Xtestg = Xmg[:, :, dims_tg[d, d_tg]] # handles NaNs test_nan = np.isnan(np.nansum(Xtestg, axis=1)) if (Xtestg.shape[0] - np.sum(test_nan)) > 0: Xtestg = Xtestg[~test_nan, :] # preproc Xtestg = fs.transform(Xtestg) Xtestg = scaler.transform(Xtestg) # predict if compute_predict: predictg[split, ~test_nan, d, d_tg, fold] = clf.predict(Xtestg) if compute_probas: probasg[split, ~test_nan, d, d_tg, :, fold] = clf.predict_proba(Xtestg) if np.sum(test_nan) > 0: probasg[split, test_nan, d, d_tg, :, fold] = np.nan #-- reorder if compute_predict: predict[split, :, :, :] = predict[split, new_order, :, :] if compute_probas: probas[split, :, :, :, :] = probas[split, new_order, :, :, :] all_folds[split, :, :] = all_folds[split, :, new_order].T ############################################################################### print("EXPORT DATA") mat['predict'] = predict mat['predictg'] = predictg mat['probas'] = probas mat['probasg'] = probasg mat['coef'] = coef mat['all_folds'] = all_folds mat['y_all'] = y_all mat['y'] = y mat['yg'] = yg mat['filenameX'] = filenameX mat['filenamey'] = filenamey output = path + nameX + '_' + namey + "_results.mat" print(output) sio.savemat(output, mat)
[ "sklearn.cross_validation.KFold", "scipy.io.savemat", "scipy.io.loadmat", "sys.stdout.write", "numpy.reshape", "scipy.stats.scoreatpercentile", "numpy.empty", "sklearn.cross_validation.LeaveOneOut", "sklearn.feature_selection.SelectPercentile", "sys.stdout.flush", "numpy.ones", "sklearn.preprocessing.Scaler", "numpy.nansum", "sklearn.svm.SVC", "numpy.copy", "numpy.unique", "numpy.sum", "sklearn.cross_validation.StratifiedKFold", "numpy.zeros", "numpy.random.shuffle" ]
[((1364, 1386), 'scipy.io.loadmat', 'sio.loadmat', (['filenameX'], {}), '(filenameX)\n', (1375, 1386), True, 'import scipy.io as sio\n'), ((1456, 1478), 'scipy.io.loadmat', 'sio.loadmat', (['filenamey'], {}), '(filenamey)\n', (1467, 1478), True, 'import scipy.io as sio\n'), ((1645, 1680), 'numpy.reshape', 'np.reshape', (['n_splits', 'n_splits.size'], {}), '(n_splits, n_splits.size)\n', (1655, 1680), True, 'import numpy as np\n'), ((1731, 1764), 'numpy.reshape', 'np.reshape', (['n_folds', 'n_folds.size'], {}), '(n_folds, n_folds.size)\n', (1741, 1764), True, 'import numpy as np\n'), ((1820, 1849), 'numpy.reshape', 'np.reshape', (['svm_C', 'svm_C.size'], {}), '(svm_C, svm_C.size)\n', (1830, 1849), True, 'import numpy as np\n'), ((1936, 1983), 'numpy.reshape', 'np.reshape', (['compute_probas', 'compute_probas.size'], {}), '(compute_probas, compute_probas.size)\n', (1946, 1983), True, 'import numpy as np\n'), ((2073, 2122), 'numpy.reshape', 'np.reshape', (['compute_predict', 'compute_predict.size'], {}), '(compute_predict, compute_predict.size)\n', (2083, 2122), True, 'import numpy as np\n'), ((2168, 2195), 'numpy.reshape', 'np.reshape', (['fs_n', 'fs_n.size'], {}), '(fs_n, fs_n.size)\n', (2178, 2195), True, 'import numpy as np\n'), ((2438, 2467), 'numpy.reshape', 'np.reshape', (['y_all', 'y_all.size'], {}), '(y_all, y_all.size)\n', (2448, 2467), True, 'import numpy as np\n'), ((2562, 2593), 'numpy.reshape', 'np.reshape', (['y2_all', 'y2_all.size'], {}), '(y2_all, y2_all.size)\n', (2572, 2593), True, 'import numpy as np\n'), ((3131, 3150), 'numpy.ones', 'np.ones', (['y.shape[0]'], {}), '(y.shape[0])\n', (3138, 3150), True, 'import numpy as np\n'), ((3161, 3174), 'numpy.unique', 'np.unique', (['y2'], {}), '(y2)\n', (3170, 3174), True, 'import numpy as np\n'), ((3716, 3767), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""linear"""', 'probability': '(True)', 'C': 'svm_C'}), "(kernel='linear', probability=True, C=svm_C)\n", (3723, 3767), False, 'from sklearn import svm\n'), ((3793, 3801), 'sklearn.preprocessing.Scaler', 'Scaler', ([], {}), '()\n', (3799, 3801), False, 'from sklearn.preprocessing import Scaler\n'), ((3830, 3874), 'sklearn.feature_selection.SelectPercentile', 'SelectPercentile', (['f_classif'], {'percentile': 'fs_n'}), '(f_classif, percentile=fs_n)\n', (3846, 3874), False, 'from sklearn.feature_selection import SelectPercentile, f_classif\n'), ((4538, 4548), 'numpy.copy', 'np.copy', (['y'], {}), '(y)\n', (4545, 4548), True, 'import numpy as np\n'), ((4559, 4570), 'numpy.copy', 'np.copy', (['Xm'], {}), '(Xm)\n', (4566, 4570), True, 'import numpy as np\n'), ((4581, 4603), 'numpy.copy', 'np.copy', (['sample_weight'], {}), '(sample_weight)\n', (4588, 4603), True, 'import numpy as np\n'), ((9427, 9451), 'scipy.io.savemat', 'sio.savemat', (['output', 'mat'], {}), '(output, mat)\n', (9438, 9451), True, 'import scipy.io as sio\n'), ((2256, 2283), 'numpy.reshape', 'np.reshape', (['dims', 'dims.size'], {}), '(dims, dims.size)\n', (2266, 2283), True, 'import numpy as np\n'), ((3450, 3479), 'sklearn.cross_validation.StratifiedKFold', 'StratifiedKFold', (['y'], {'k': 'n_folds'}), '(y, k=n_folds)\n', (3465, 3479), False, 'from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold\n'), ((4378, 4464), 'numpy.empty', 'np.empty', (['[n_splits, n_folds, n_dims, n_classes * (n_classes - 1) / 2, n_features]'], {}), '([n_splits, n_folds, n_dims, n_classes * (n_classes - 1) / 2,\n n_features])\n', (4386, 4464), True, 'import numpy as np\n'), ((4478, 4518), 'numpy.zeros', 'np.zeros', (['[n_splits, n_folds, n_samples]'], {}), '([n_splits, n_folds, n_samples])\n', (4486, 4518), True, 'import numpy as np\n'), ((3068, 3080), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (3077, 3080), True, 'import numpy as np\n'), ((3253, 3277), 'numpy.sum', 'np.sum', (['(y2 == classes[c])'], {}), '(y2 == classes[c])\n', (3259, 3277), True, 'import numpy as np\n'), ((3517, 3547), 'sklearn.cross_validation.KFold', 'KFold', ([], {'n': 'y.shape[0]', 'k': 'n_folds'}), '(n=y.shape[0], k=n_folds)\n', (3522, 3547), False, 'from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold\n'), ((3938, 3988), 'numpy.zeros', 'np.zeros', (['[n_splits, n_samples, n_dims, n_dims_tg]'], {}), '([n_splits, n_samples, n_dims, n_dims_tg])\n', (3946, 3988), True, 'import numpy as np\n'), ((4014, 4076), 'numpy.zeros', 'np.zeros', (['[n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_folds]'], {}), '([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_folds])\n', (4022, 4076), True, 'import numpy as np\n'), ((4161, 4222), 'numpy.zeros', 'np.zeros', (['[n_splits, n_samples, n_dims, n_dims_tg, n_classes]'], {}), '([n_splits, n_samples, n_dims, n_dims_tg, n_classes])\n', (4169, 4222), True, 'import numpy as np\n'), ((4247, 4320), 'numpy.zeros', 'np.zeros', (['[n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_classes, n_folds]'], {}), '([n_splits, n_samplesg, n_dimsg, n_dimsg_tg, n_classes, n_folds])\n', (4255, 4320), True, 'import numpy as np\n'), ((4929, 4957), 'numpy.random.shuffle', 'np.random.shuffle', (['new_order'], {}), '(new_order)\n', (4946, 4957), True, 'import numpy as np\n'), ((4986, 4996), 'numpy.copy', 'np.copy', (['y'], {}), '(y)\n', (4993, 4996), True, 'import numpy as np\n'), ((5032, 5043), 'numpy.copy', 'np.copy', (['Xm'], {}), '(Xm)\n', (5039, 5043), True, 'import numpy as np\n'), ((5073, 5095), 'numpy.copy', 'np.copy', (['sample_weight'], {}), '(sample_weight)\n', (5080, 5095), True, 'import numpy as np\n'), ((5109, 5143), 'sklearn.cross_validation.StratifiedKFold', 'StratifiedKFold', (['y_shfl'], {'k': 'n_folds'}), '(y_shfl, k=n_folds)\n', (5124, 5143), False, 'from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold\n'), ((3616, 3641), 'sklearn.cross_validation.LeaveOneOut', 'LeaveOneOut', ([], {'n': 'y.shape[0]'}), '(n=y.shape[0])\n', (3627, 3641), False, 'from sklearn.cross_validation import StratifiedKFold, LeaveOneOut, KFold\n'), ((6434, 6485), 'scipy.stats.scoreatpercentile', 'stats.scoreatpercentile', (['fs.pvalues_', 'fs.percentile'], {}), '(fs.pvalues_, fs.percentile)\n', (6457, 6485), False, 'from scipy import stats\n'), ((6798, 6819), 'sys.stdout.write', 'sys.stdout.write', (['"""*"""'], {}), "('*')\n", (6814, 6819), True, 'import sys as sys\n'), ((6840, 6858), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6856, 6858), True, 'import sys as sys\n'), ((5569, 5594), 'numpy.nansum', 'np.nansum', (['Xtrain'], {'axis': '(1)'}), '(Xtrain, axis=1)\n', (5578, 5594), True, 'import numpy as np\n'), ((5639, 5664), 'numpy.nansum', 'np.nansum', (['Xtrain'], {'axis': '(1)'}), '(Xtrain, axis=1)\n', (5648, 5664), True, 'import numpy as np\n'), ((5751, 5768), 'numpy.unique', 'np.unique', (['ytrain'], {}), '(ytrain)\n', (5760, 5768), True, 'import numpy as np\n'), ((7031, 7055), 'numpy.nansum', 'np.nansum', (['Xtest'], {'axis': '(1)'}), '(Xtest, axis=1)\n', (7040, 7055), True, 'import numpy as np\n'), ((7998, 8023), 'numpy.nansum', 'np.nansum', (['Xtestg'], {'axis': '(1)'}), '(Xtestg, axis=1)\n', (8007, 8023), True, 'import numpy as np\n'), ((5705, 5730), 'numpy.nansum', 'np.nansum', (['Xtrain'], {'axis': '(1)'}), '(Xtrain, axis=1)\n', (5714, 5730), True, 'import numpy as np\n'), ((7306, 7322), 'numpy.sum', 'np.sum', (['test_nan'], {}), '(test_nan)\n', (7312, 7322), True, 'import numpy as np\n'), ((8067, 8083), 'numpy.sum', 'np.sum', (['test_nan'], {}), '(test_nan)\n', (8073, 8083), True, 'import numpy as np\n'), ((7635, 7651), 'numpy.sum', 'np.sum', (['test_nan'], {}), '(test_nan)\n', (7641, 7651), True, 'import numpy as np\n'), ((8634, 8650), 'numpy.sum', 'np.sum', (['test_nan'], {}), '(test_nan)\n', (8640, 8650), True, 'import numpy as np\n')]
""" Helmoltz coils ============== A script that computes the magnetic field generated by a pair of Helmoltz coils. """ import numpy as np from scipy import special, linalg ############################################################################## # Function to caculate the field of a loop def base_vectors(n): """ Returns 3 orthognal base vectors, the first one colinear to n. """ # normalize n n = n / np.sqrt(np.square(n).sum(axis=-1)) # choose two vectors perpendicular to n # choice is arbitrary since the coil is symetric about n if abs(n[0]) == 1 : l = np.r_[n[2], 0, -n[0]] else: l = np.r_[0, n[2], -n[1]] l = l / np.sqrt(np.square(l).sum(axis=-1)) m = np.cross(n, l) return n, l, m def B_field(r, n, r0, R): """ returns the magnetic field from an arbitrary current loop calculated from eqns (1) and (2) in Phys Rev A Vol. 35, N 4, pp. 1535-1546; 1987. Parameters ---------- n is normal vector to the plane of the loop at the center, current is oriented by the right-hand-rule. r is a position vector where the Bfield is evaluated: [x1 y2 z3 ; x2 y2 z2 ; ... ] r is in units of d r0 is the location of the center of the loop in units of d: [x y z] R is the radius of the loop Returns ------- B is a vector for the B field at point r in inverse units of (mu I) / (2 pi d) for I in amps and d in meters and mu = 4 pi * 10^-7 we get Tesla """ ### Translate the coordinates in the coil's frame n, l, m = base_vectors(n) # transformation matrix coil frame to lab frame trans = np.vstack((l, m, n)) # transformation matrix to lab frame to coil frame inv_trans = linalg.inv(trans) r = r - r0 #point location from center of coil r = np.dot(r, inv_trans) #transform vector to coil frame #### calculate field # express the coordinates in polar form x = r[:, 0] y = r[:, 1] z = r[:, 2] rho = np.sqrt(x**2 + y**2) theta = np.arctan(x / y) # NaNs are generated where y is zero. theta[y == 0] = np.pi / 2 E = special.ellipe((4 * R * rho)/( (R + rho)**2 + z**2)) K = special.ellipk((4 * R * rho)/( (R + rho)**2 + z**2)) dist = ((R - rho)**2 + z**2) Bz = 1 / np.sqrt((R + rho)**2 + z**2) * ( K + E * (R**2 - rho**2 - z**2) / dist ) Brho = z / (rho*np.sqrt((R + rho)**2 + z**2)) * ( -K + E * (R**2 + rho**2 + z**2)/ dist ) # On the axis of the coil we get a divided by zero here. This returns a # NaN, where the field is actually zero : Brho[dist == 0] = 0 Brho[rho == 0] = 0 Bz[dist == 0] = 0 B = np.c_[np.cos(theta)*Brho, np.sin(theta)*Brho, Bz ] # Rotate the field back in the lab's frame B = np.dot(B, trans) return B ############################################################################## # The grid of points on which we want to evaluate the field X, Y, Z = np.mgrid[-0.15:0.15:31j, -0.15:0.15:31j, -0.15:0.15:31j] # Avoid rounding issues : f = 1e4 # this gives the precision we are interested in: X = np.round(X * f) / f Y = np.round(Y * f) / f Z = np.round(Z * f) / f # The (x, y, z) position vector r = np.c_[np.ravel(X), np.ravel(Y), np.ravel(Z)] ############################################################################## # The coil positions # The center of the coil r0 = np.r_[0, 0, 0.1] # The normal to the coils n = np.r_[0, 0, 1] # The radius R = 0.1 # Add the mirror image of this coils relatively to the xy plane : r0 = np.vstack((r0, -r0 )) R = np.r_[R, R] n = np.vstack((n, n)) # Helmoltz like configuration ############################################################################## # Calculate field # First initialize a container matrix for the field vector : B = np.zeros_like(r) # Then loop through the different coils and sum the fields : for this_n, this_r0, this_R in zip(n, r0, R): this_n = np.array(this_n) this_r0 = np.array(this_r0) this_R = np.array(this_R) B += B_field(r, this_n, this_r0, this_R)
[ "numpy.sqrt", "numpy.cross", "scipy.special.ellipe", "numpy.sin", "numpy.zeros_like", "numpy.square", "scipy.special.ellipk", "numpy.array", "numpy.dot", "numpy.vstack", "numpy.cos", "numpy.ravel", "scipy.linalg.inv", "numpy.round", "numpy.arctan" ]
[((3661, 3681), 'numpy.vstack', 'np.vstack', (['(r0, -r0)'], {}), '((r0, -r0))\n', (3670, 3681), True, 'import numpy as np\n'), ((3703, 3720), 'numpy.vstack', 'np.vstack', (['(n, n)'], {}), '((n, n))\n', (3712, 3720), True, 'import numpy as np\n'), ((3918, 3934), 'numpy.zeros_like', 'np.zeros_like', (['r'], {}), '(r)\n', (3931, 3934), True, 'import numpy as np\n'), ((727, 741), 'numpy.cross', 'np.cross', (['n', 'l'], {}), '(n, l)\n', (735, 741), True, 'import numpy as np\n'), ((1683, 1703), 'numpy.vstack', 'np.vstack', (['(l, m, n)'], {}), '((l, m, n))\n', (1692, 1703), True, 'import numpy as np\n'), ((1775, 1792), 'scipy.linalg.inv', 'linalg.inv', (['trans'], {}), '(trans)\n', (1785, 1792), False, 'from scipy import special, linalg\n'), ((1855, 1875), 'numpy.dot', 'np.dot', (['r', 'inv_trans'], {}), '(r, inv_trans)\n', (1861, 1875), True, 'import numpy as np\n'), ((2042, 2066), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (2049, 2066), True, 'import numpy as np\n'), ((2075, 2091), 'numpy.arctan', 'np.arctan', (['(x / y)'], {}), '(x / y)\n', (2084, 2091), True, 'import numpy as np\n'), ((2173, 2228), 'scipy.special.ellipe', 'special.ellipe', (['(4 * R * rho / ((R + rho) ** 2 + z ** 2))'], {}), '(4 * R * rho / ((R + rho) ** 2 + z ** 2))\n', (2187, 2228), False, 'from scipy import special, linalg\n'), ((2234, 2289), 'scipy.special.ellipk', 'special.ellipk', (['(4 * R * rho / ((R + rho) ** 2 + z ** 2))'], {}), '(4 * R * rho / ((R + rho) ** 2 + z ** 2))\n', (2248, 2289), False, 'from scipy import special, linalg\n'), ((2894, 2910), 'numpy.dot', 'np.dot', (['B', 'trans'], {}), '(B, trans)\n', (2900, 2910), True, 'import numpy as np\n'), ((3220, 3235), 'numpy.round', 'np.round', (['(X * f)'], {}), '(X * f)\n', (3228, 3235), True, 'import numpy as np\n'), ((3244, 3259), 'numpy.round', 'np.round', (['(Y * f)'], {}), '(Y * f)\n', (3252, 3259), True, 'import numpy as np\n'), ((3268, 3283), 'numpy.round', 'np.round', (['(Z * f)'], {}), '(Z * f)\n', (3276, 3283), True, 'import numpy as np\n'), ((4056, 4072), 'numpy.array', 'np.array', (['this_n'], {}), '(this_n)\n', (4064, 4072), True, 'import numpy as np\n'), ((4087, 4104), 'numpy.array', 'np.array', (['this_r0'], {}), '(this_r0)\n', (4095, 4104), True, 'import numpy as np\n'), ((4119, 4135), 'numpy.array', 'np.array', (['this_R'], {}), '(this_R)\n', (4127, 4135), True, 'import numpy as np\n'), ((3331, 3342), 'numpy.ravel', 'np.ravel', (['X'], {}), '(X)\n', (3339, 3342), True, 'import numpy as np\n'), ((3344, 3355), 'numpy.ravel', 'np.ravel', (['Y'], {}), '(Y)\n', (3352, 3355), True, 'import numpy as np\n'), ((3357, 3368), 'numpy.ravel', 'np.ravel', (['Z'], {}), '(Z)\n', (3365, 3368), True, 'import numpy as np\n'), ((2333, 2365), 'numpy.sqrt', 'np.sqrt', (['((R + rho) ** 2 + z ** 2)'], {}), '((R + rho) ** 2 + z ** 2)\n', (2340, 2365), True, 'import numpy as np\n'), ((2470, 2502), 'numpy.sqrt', 'np.sqrt', (['((R + rho) ** 2 + z ** 2)'], {}), '((R + rho) ** 2 + z ** 2)\n', (2477, 2502), True, 'import numpy as np\n'), ((2793, 2806), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2799, 2806), True, 'import numpy as np\n'), ((2813, 2826), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2819, 2826), True, 'import numpy as np\n'), ((436, 448), 'numpy.square', 'np.square', (['n'], {}), '(n)\n', (445, 448), True, 'import numpy as np\n'), ((692, 704), 'numpy.square', 'np.square', (['l'], {}), '(l)\n', (701, 704), True, 'import numpy as np\n')]
import itertools import numpy as np import torch from ..math import complex_mult, conj_complex_mult def get_interpob(model): """Retrieves the interpolation dictionary from model. Different nufft objects use different interpolation objects. This function only extracts the minimum amount necessary for sparse matrix precomputation. Args: model (KbNufft-type object): A KbNufft object with attributes for forming a KbNufft interpolation dictionary. Returns: interpob (dictionary): A dictionary with interpolation parameters. """ interpob = dict() interpob['table'] = [] for i in range(len(model.table)): interpob['table'].append(getattr(model, 'table_tensor_' + str(i))) interpob['grid_size'] = model.grid_size_tensor interpob['numpoints'] = model.numpoints_tensor interpob['table_oversamp'] = model.table_oversamp_tensor return interpob def compute_forw_mat(dims, table, numpoints, Jlist, L, tm): """Compute a forward Kaiser-Bessel interpolation sparse matrix. Args: dims (tensor): A list of sizes of each dimension. table (tensor): A list of interpolation tables. numpoints (tensor): A list of numbers of nearest neighbors for each dimension. Jlist (tensor): A list of nearest neighbor configurations. L (tensor): A list of table sizes for each dimension. tm (tensor): An array of normalized frequency locations. Returns: (coef_mat_real, coef_mat_imag) (tuple): A 2-length tuple with a sparse interpolation matrix in each element. The first matrix has the real coefficients; the second has the imaginary. """ dtype = table[0].dtype device = table[0].device int_type = torch.long M = tm.shape[1] ndims = tm.shape[0] nJ = Jlist.shape[1] # center of tables centers = torch.floor(numpoints * L / 2).to(dtype=int_type) # offset from k-space to first coef loc kofflist = 1 + torch.floor(tm - numpoints.unsqueeze(1) / 2.0) # do a bit of type management - ints for faster index comps curgridind = torch.zeros(tm.shape, dtype=dtype, device=device) curdistind = torch.zeros(tm.shape, dtype=int_type, device=device) arr_ind = torch.zeros((M,), dtype=int_type, device=device) coef = torch.ones((2, M), dtype=dtype, device=device) dims = dims.to(dtype=int_type) kofflist = kofflist.to(dtype=int_type) Jlist = Jlist.to(dtype=int_type) coef_mat_real = torch.sparse.FloatTensor( tm.shape[-1], torch.prod(dims)).to(dtype=dtype, device=device) coef_mat_imag = torch.sparse.FloatTensor( tm.shape[-1], torch.prod(dims)).to(dtype=dtype, device=device) # loop over offsets and take advantage of broadcasting for Jind in range(nJ): curgridind = (kofflist + Jlist[:, Jind].unsqueeze(1)).to(dtype) curdistind = torch.round( (tm - curgridind) * L.unsqueeze(1)).to(dtype=int_type) curgridind = curgridind.to(int_type) arr_ind = torch.zeros((M,), dtype=int_type, device=device) coef = torch.stack(( torch.ones(M, dtype=dtype, device=device), torch.zeros(M, dtype=dtype, device=device) )) for d in range(ndims): # spatial dimension coef = complex_mult( coef, table[d][:, curdistind[d, :] + centers[d]], dim=0 ) arr_ind = arr_ind + torch.remainder(curgridind[d, :], dims[d]).view(-1) * \ torch.prod(dims[d + 1:]) sparse_coords = torch.stack( ( torch.arange( arr_ind.shape[0], dtype=arr_ind.dtype, device=arr_ind.device ), arr_ind ) ) coef_mat_real = coef_mat_real + torch.sparse.FloatTensor( sparse_coords, coef[0], torch.Size((arr_ind.shape[0], torch.prod(dims))) ) coef_mat_imag = coef_mat_imag + torch.sparse.FloatTensor( sparse_coords, coef[1], torch.Size((arr_ind.shape[0], torch.prod(dims))) ) return coef_mat_real, coef_mat_imag def precomp_sparse_mats(om, model): """Precompute sparse interpolation matrices. Args: om (tensor): The k-space trajectory in radians/voxel. model (KbNufft-type object): A KbNufft type object with attributes for creating a KbNufft interpolation object. Returns: (coef_real_mats, coef_imag_mats) (tuple): A 2-length tuple with lists of sparse interpolation matrices in each element. The first matrix has the real coefficient matrices; the second has the imaginary. """ interpob = get_interpob(model) dtype = interpob['table'][0].dtype device = interpob['table'][0].device # extract interpolation params and match device and dtype to input table = interpob['table'] grid_size = interpob['grid_size'] numpoints = interpob['numpoints'] table_oversamp = interpob['table_oversamp'] ndims = om.shape[1] M = om.shape[2] # convert to normalized freq locs tm = torch.zeros(size=om.shape, dtype=dtype, device=device) Jgen = [] for i in range(ndims): gam = (2 * np.pi / grid_size[i]) tm[:, i, :] = om[:, i, :] / gam Jgen.append(range(np.array(numpoints[i].cpu(), dtype=np.int))) # build an iterator for going over all J values Jgen = list(itertools.product(*Jgen)) coef_real_mats = [] coef_imag_mats = [] for norm_traj in tm: coef_mat_real, coef_mat_imag = compute_forw_mat( grid_size.to(dtype=dtype, device=device), table, numpoints, torch.tensor( np.transpose(np.array(Jgen)), dtype=dtype, device=device ), table_oversamp, norm_traj ) coef_real_mats.append(coef_mat_real) coef_imag_mats.append(coef_mat_imag) return coef_real_mats, coef_imag_mats
[ "torch.floor", "itertools.product", "torch.prod", "numpy.array", "torch.remainder", "torch.zeros", "torch.arange", "torch.ones" ]
[((2134, 2183), 'torch.zeros', 'torch.zeros', (['tm.shape'], {'dtype': 'dtype', 'device': 'device'}), '(tm.shape, dtype=dtype, device=device)\n', (2145, 2183), False, 'import torch\n'), ((2201, 2253), 'torch.zeros', 'torch.zeros', (['tm.shape'], {'dtype': 'int_type', 'device': 'device'}), '(tm.shape, dtype=int_type, device=device)\n', (2212, 2253), False, 'import torch\n'), ((2268, 2316), 'torch.zeros', 'torch.zeros', (['(M,)'], {'dtype': 'int_type', 'device': 'device'}), '((M,), dtype=int_type, device=device)\n', (2279, 2316), False, 'import torch\n'), ((2328, 2374), 'torch.ones', 'torch.ones', (['(2, M)'], {'dtype': 'dtype', 'device': 'device'}), '((2, M), dtype=dtype, device=device)\n', (2338, 2374), False, 'import torch\n'), ((5244, 5298), 'torch.zeros', 'torch.zeros', ([], {'size': 'om.shape', 'dtype': 'dtype', 'device': 'device'}), '(size=om.shape, dtype=dtype, device=device)\n', (5255, 5298), False, 'import torch\n'), ((3049, 3097), 'torch.zeros', 'torch.zeros', (['(M,)'], {'dtype': 'int_type', 'device': 'device'}), '((M,), dtype=int_type, device=device)\n', (3060, 3097), False, 'import torch\n'), ((5561, 5585), 'itertools.product', 'itertools.product', (['*Jgen'], {}), '(*Jgen)\n', (5578, 5585), False, 'import itertools\n'), ((1892, 1922), 'torch.floor', 'torch.floor', (['(numpoints * L / 2)'], {}), '(numpoints * L / 2)\n', (1903, 1922), False, 'import torch\n'), ((2559, 2575), 'torch.prod', 'torch.prod', (['dims'], {}), '(dims)\n', (2569, 2575), False, 'import torch\n'), ((2676, 2692), 'torch.prod', 'torch.prod', (['dims'], {}), '(dims)\n', (2686, 2692), False, 'import torch\n'), ((3139, 3180), 'torch.ones', 'torch.ones', (['M'], {'dtype': 'dtype', 'device': 'device'}), '(M, dtype=dtype, device=device)\n', (3149, 3180), False, 'import torch\n'), ((3194, 3236), 'torch.zeros', 'torch.zeros', (['M'], {'dtype': 'dtype', 'device': 'device'}), '(M, dtype=dtype, device=device)\n', (3205, 3236), False, 'import torch\n'), ((3649, 3723), 'torch.arange', 'torch.arange', (['arr_ind.shape[0]'], {'dtype': 'arr_ind.dtype', 'device': 'arr_ind.device'}), '(arr_ind.shape[0], dtype=arr_ind.dtype, device=arr_ind.device)\n', (3661, 3723), False, 'import torch\n'), ((3556, 3580), 'torch.prod', 'torch.prod', (['dims[d + 1:]'], {}), '(dims[d + 1:])\n', (3566, 3580), False, 'import torch\n'), ((5869, 5883), 'numpy.array', 'np.array', (['Jgen'], {}), '(Jgen)\n', (5877, 5883), True, 'import numpy as np\n'), ((4007, 4023), 'torch.prod', 'torch.prod', (['dims'], {}), '(dims)\n', (4017, 4023), False, 'import torch\n'), ((4192, 4208), 'torch.prod', 'torch.prod', (['dims'], {}), '(dims)\n', (4202, 4208), False, 'import torch\n'), ((3484, 3526), 'torch.remainder', 'torch.remainder', (['curgridind[d, :]', 'dims[d]'], {}), '(curgridind[d, :], dims[d])\n', (3499, 3526), False, 'import torch\n')]
import torch from torch import optim from torchvision import datasets, transforms from vision import LeNet, CNN, weights_init from PIL import Image from utils import label_to_onehot, cross_entropy_for_onehot import torch.nn.functional as F import numpy as np from skimage.metrics import structural_similarity as ssim import matplotlib.pyplot as plt import sys tomer_path = r"C:\Users\tomer\Documents\Final_project_git\federated_learning_uveqfed_dlg\Federated-Learning-Natalie" elad_path = r"/Users/elad.sofer/src/Engineering Project/federated_learning_uveqfed_dlg/Federated-Learning-Natalie" sys.path.append(elad_path) sys.path.append(tomer_path) from federated_utils import PQclass device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = "cpu" # if torch.cuda.is_available(): # device = "cuda" def add_uveqFed(original_dy_dx, epsilon, bit_rate, args): noised_dy_dx = [] args.epsilon = epsilon args.R = bit_rate noiser = PQclass(args) for g in original_dy_dx: if args.attack=='JOPEQ': output, dither = noiser(g) noised_dy_dx.append(output - dither) # output = noiser.apply_quantization(g) # noised_dy_dx.append(output) elif args.attack=="quantization": # quantization only output = noiser.apply_quantization(g) noised_dy_dx.append(output) else: # ppn only output = noiser.apply_privacy_noise(g) noised_dy_dx.append(output) return noised_dy_dx def mse(imageA, imageB): # the 'Mean Squared Error' between the two images is the # sum of the squared difference between the two images; # NOTE: the two images must have the same dimension err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) # return the MSE, the lower the error, the more "similar" # the two images are return err class dlg_cls(): def __init__(self,model=None, train_loader=None, test_loader=None, args=None, noise_func = lambda x, y, z, l: x): self.dst = getattr(datasets, args.dataset)("~/.torch", download=True) self.tp = transforms.ToTensor() self.tt = transforms.ToPILImage() self.args = args self.model = model self.train_loader = train_loader self.test_loader = test_loader self.noise_func = noise_func def __call__(self, img_index, seed=1234,learning_epoches=0,read_grads= -1, epsilon=0, bit_rate=1,num_of_iterations=200): self.load_image(img_index) self.config_model(None,seed) self.train_model(learning_epoches) if (read_grads == -1): self.compute_gradients() else: self.load_model_and_gradients(read_grads) self.apply_noise(epsilon,bit_rate) return self.dlg(num_of_iterations=num_of_iterations) def load_image(self, img_index): self.img_index = img_index self.gt_data = self.tp(self.dst[img_index][0]).to(device) if len(self.args.image) > 1: self.gt_data = Image.open(self.args.image) self.gt_data = self.tp(self.gt_data).to(device) self.gt_data = self.gt_data.view(1, *self.gt_data.size()) self.gt_label = torch.Tensor([self.dst[img_index][1]]).long().to(device) self.gt_label = self.gt_label.view(1, ) self.gt_onehot_label = label_to_onehot(self.gt_label) return self.dst[self.img_index][0] def config_model(self,model=None,seed=1234): if model == None: self.model = LeNet().to(device) else: self.model = model torch.manual_seed(seed) self.model.apply(weights_init) self.model.to(device) self.criterion = cross_entropy_for_onehot self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) def train_model(self,learning_epoches=0): if (learning_epoches > 0): self.model.train_nn( train_loader=self.train_loader, optimizer=self.optimizer, criterion=self.criterion, epoch_num=learning_epoches, test_loader=self.test_loader) return self.model.test_nn(self.test_loader, self.criterion) def compute_gradients(self): self.pred = self.model(self.gt_data) y = self.criterion(self.pred, self.gt_onehot_label) self.dy_dx = torch.autograd.grad(y, self.model.parameters()) self.original_dy_dx = self.dy_dx return self.dy_dx def load_model_and_gradients(self,read_grads): grad_checkpoint_address = "./fed-ler_checkpoints/grad/checkpoint{0}_{1}.pk".format(model_number, read_grads) global_checkpoint_address = "./fed-ler_checkpoints/global/checkpoint{0}_{1}.pk".format(model_number, read_grads) fed_ler_grad_state_dict = torch.load(grad_checkpoint_address) global_model = torch.load(global_checkpoint_address) self.model = global_model # luckily the state dict is saved in exactly the same order as the gradients are so we can easily transfer them self.dy_dx = tuple([fed_ler_grad_state_dict[key] for key in fed_ler_grad_state_dict.keys()]) return self.dy_dx def apply_noise(self, epsilon, bit_rate, noise_func = None, args = None): if noise_func != None: self.noise_func = noise_func if args != None: self.args = args if (epsilon > 0 or self.args.attack=="quantization"): self.original_dy_dx = self.noise_func(list((_.detach().clone() for _ in self.dy_dx)), epsilon, bit_rate, self.args) else: self.original_dy_dx = self.dy_dx def dlg(self,num_of_iterations = 200): # generate dummy data and label dummy_data = torch.randn(self.gt_data.size()).to(device).requires_grad_(True) dummy_label = torch.randn(self.gt_onehot_label.size()).to(device).requires_grad_(True) # plt.figure() # plt.imshow(tt(dummy_data[0].cpu())) optimizer = torch.optim.LBFGS([dummy_data, dummy_label]) # history = [] current_loss = torch.Tensor([1]) iters = 0 MSE=0 SSIM=0 # while (iters < num_of_iterations): while (current_loss.item() > 0.00001 and iters < num_of_iterations): def closure(): optimizer.zero_grad() dummy_pred = self.model(dummy_data) dummy_onehot_label = F.softmax(dummy_label, dim=-1) dummy_loss = self.criterion(dummy_pred, dummy_onehot_label) dummy_dy_dx = torch.autograd.grad(dummy_loss, self.model.parameters(), create_graph=True) grad_diff = 0 for gx, gy in zip(dummy_dy_dx, self.original_dy_dx): grad_diff += ((gx - gy) ** 2).sum() grad_diff.backward() return grad_diff optimizer.step(closure) if iters % 10 == 0: current_loss = closure() reconstructedIm = np.asarray(self.tt(dummy_data[0].cpu())) RecImShape = reconstructedIm.shape groundTruthIm = np.asarray(self.dst[self.img_index][0]).reshape((RecImShape[0], RecImShape[1], RecImShape[2])) MSE = mse(reconstructedIm,groundTruthIm) SSIM = ssim(reconstructedIm,groundTruthIm,channel_axis=2, multichannel=True) print(iters, "%.4f" % current_loss.item()," MSE {0:.4f}, SSIM {1:.4f}".format(MSE,SSIM)) # history.append(self.tt(dummy_data[0].cpu())) iters = iters + 1 self.final_image = self.tt(dummy_data[0].cpu()) return current_loss.item(), MSE, SSIM def run_dlg(img_index, model=None, train_loader=None, test_loader=None, noise_func = lambda x, y, z: x, learning_epoches = 0, epsilon=0.1, bit_rate=1,read_grads=-1,model_number=0): gt_data = tp(dst[img_index][0]).to(device) if len(args.image) > 1: gt_data = Image.open(args.image) gt_data = tp(gt_data).to(device) gt_data = gt_data.view(1, *gt_data.size()) gt_label = torch.Tensor([dst[img_index][1]]).long().to(device) gt_label = gt_label.view(1, ) gt_onehot_label = label_to_onehot(gt_label) #################### Model Configuration #################### model = LeNet().to(device) torch.manual_seed(1234) model.apply(weights_init) criterion = cross_entropy_for_onehot optimizer = optim.Adam(model.parameters(), lr=0.001) if (read_grads == -1):# run the original images #################### Train & Test #################### if (learning_epoches >0): model.train_nn(train_loader=train_loader, optimizer=optimizer, criterion=criterion, epoch_num=learning_epoches,test_loader=test_loader) model.test_nn(test_loader,criterion) ###################################################### # compute original gradient pred = model(gt_data) y = criterion(pred, gt_onehot_label) dy_dx = torch.autograd.grad(y, model.parameters()) else: # get the images from the fed-learn grad_checkpoint_address = "./fed-ler_checkpoints/grad/checkpoint{0}_{1}.pk".format(model_number,read_grads) global_checkpoint_address = "./fed-ler_checkpoints/global/checkpoint{0}_{1}.pk".format(model_number,read_grads) fed_ler_grad_state_dict = torch.load(grad_checkpoint_address) global_model = torch.load(global_checkpoint_address) model =global_model # luckily the state dict is saved in exactly the same order as the gradients are so we can easily transfer them dy_dx = tuple([fed_ler_grad_state_dict[key] for key in fed_ler_grad_state_dict.keys()]) #################### adding noise #################### if (epsilon > 0): original_dy_dx = noise_func(list((_.detach().clone() for _ in dy_dx)), epsilon, bit_rate) else: original_dy_dx = dy_dx #### adding noise!! #### #original_dy_dx = [w_layer + torch.normal(mean = 0, std= 0.01,size = w_layer.shape) for w_layer in original_dy_dx] #original_dy_dx = [w_layer+np.random.laplace(0,epsilon,w_layer.shape) for w_layer in original_dy_dx] ###################################################### # generate dummy data and label dummy_data = torch.randn(gt_data.size()).to(device).requires_grad_(True) dummy_label = torch.randn(gt_onehot_label.size()).to(device).requires_grad_(True) plt.figure() plt.imshow(tt(dummy_data[0].cpu())) # plt.imshow(tt(dummy_data[0].cpu())) optimizer = torch.optim.LBFGS([dummy_data, dummy_label]) history = [] current_loss = torch.Tensor([1]) iters = 0 #for iters in range(num_of_iterations): # while (iters < num_of_iterations): while (current_loss.item()>0.00001 and iters < num_of_iterations): def closure(): optimizer.zero_grad() dummy_pred = model(dummy_data) dummy_onehot_label = F.softmax(dummy_label, dim=-1) dummy_loss = criterion(dummy_pred, dummy_onehot_label) dummy_dy_dx = torch.autograd.grad(dummy_loss, model.parameters(), create_graph=True) grad_diff = 0 for gx, gy in zip(dummy_dy_dx, original_dy_dx): grad_diff += ((gx - gy) ** 2).sum() grad_diff.backward() return grad_diff optimizer.step(closure) if iters % 10 == 0: current_loss = closure() print(iters, "%.4f" % current_loss.item()) history.append(tt(dummy_data[0].cpu())) iters = iters + 1 # plt.figure() # plt.subplot(1, 2, 1) # plt.imshow(tt(dummy_data[0].cpu())) # plt.axis('off') # # plt.subplot(1, 2, 2) # plt.imshow(dst[img_index][0]) # plt.axis('off') # plt.figure(figsize=(12, 8)) # for i in range(round(iters / 10)): # plt.subplot(int(np.ceil(iters / 100)), 10, i + 1) # plt.imshow(history[i]) # plt.title("iter=%d" % (i * 10)) # plt.axis('off') return current_loss.item() # l = [] # for i in range(10): # l.append(test_image(img_index,learning_iterations=500+50*i)) # print(l) #plt.hist([7 if (x>5) else x for x in l]) # plt.plot(l)
[ "torch.manual_seed", "PIL.Image.open", "utils.label_to_onehot", "torchvision.transforms.ToPILImage", "skimage.metrics.structural_similarity", "vision.LeNet", "torch.load", "torch.Tensor", "numpy.asarray", "matplotlib.pyplot.figure", "torch.cuda.is_available", "federated_utils.PQclass", "torch.optim.LBFGS", "torchvision.transforms.ToTensor", "sys.path.append", "torch.nn.functional.softmax" ]
[((593, 619), 'sys.path.append', 'sys.path.append', (['elad_path'], {}), '(elad_path)\n', (608, 619), False, 'import sys\n'), ((620, 647), 'sys.path.append', 'sys.path.append', (['tomer_path'], {}), '(tomer_path)\n', (635, 647), False, 'import sys\n'), ((970, 983), 'federated_utils.PQclass', 'PQclass', (['args'], {}), '(args)\n', (977, 983), False, 'from federated_utils import PQclass\n'), ((8284, 8309), 'utils.label_to_onehot', 'label_to_onehot', (['gt_label'], {}), '(gt_label)\n', (8299, 8309), False, 'from utils import label_to_onehot, cross_entropy_for_onehot\n'), ((8414, 8437), 'torch.manual_seed', 'torch.manual_seed', (['(1234)'], {}), '(1234)\n', (8431, 8437), False, 'import torch\n'), ((10542, 10554), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10552, 10554), True, 'import matplotlib.pyplot as plt\n'), ((10654, 10698), 'torch.optim.LBFGS', 'torch.optim.LBFGS', (['[dummy_data, dummy_label]'], {}), '([dummy_data, dummy_label])\n', (10671, 10698), False, 'import torch\n'), ((10737, 10754), 'torch.Tensor', 'torch.Tensor', (['[1]'], {}), '([1])\n', (10749, 10754), False, 'import torch\n'), ((719, 744), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (742, 744), False, 'import torch\n'), ((2196, 2217), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2215, 2217), False, 'from torchvision import datasets, transforms\n'), ((2236, 2259), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (2257, 2259), False, 'from torchvision import datasets, transforms\n'), ((3428, 3458), 'utils.label_to_onehot', 'label_to_onehot', (['self.gt_label'], {}), '(self.gt_label)\n', (3443, 3458), False, 'from utils import label_to_onehot, cross_entropy_for_onehot\n'), ((3675, 3698), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (3692, 3698), False, 'import torch\n'), ((4897, 4932), 'torch.load', 'torch.load', (['grad_checkpoint_address'], {}), '(grad_checkpoint_address)\n', (4907, 4932), False, 'import torch\n'), ((4957, 4994), 'torch.load', 'torch.load', (['global_checkpoint_address'], {}), '(global_checkpoint_address)\n', (4967, 4994), False, 'import torch\n'), ((6083, 6127), 'torch.optim.LBFGS', 'torch.optim.LBFGS', (['[dummy_data, dummy_label]'], {}), '([dummy_data, dummy_label])\n', (6100, 6127), False, 'import torch\n'), ((6175, 6192), 'torch.Tensor', 'torch.Tensor', (['[1]'], {}), '([1])\n', (6187, 6192), False, 'import torch\n'), ((8049, 8071), 'PIL.Image.open', 'Image.open', (['args.image'], {}), '(args.image)\n', (8059, 8071), False, 'from PIL import Image\n'), ((9462, 9497), 'torch.load', 'torch.load', (['grad_checkpoint_address'], {}), '(grad_checkpoint_address)\n', (9472, 9497), False, 'import torch\n'), ((9523, 9560), 'torch.load', 'torch.load', (['global_checkpoint_address'], {}), '(global_checkpoint_address)\n', (9533, 9560), False, 'import torch\n'), ((3114, 3141), 'PIL.Image.open', 'Image.open', (['self.args.image'], {}), '(self.args.image)\n', (3124, 3141), False, 'from PIL import Image\n'), ((8390, 8397), 'vision.LeNet', 'LeNet', ([], {}), '()\n', (8395, 8397), False, 'from vision import LeNet, CNN, weights_init\n'), ((11060, 11090), 'torch.nn.functional.softmax', 'F.softmax', (['dummy_label'], {'dim': '(-1)'}), '(dummy_label, dim=-1)\n', (11069, 11090), True, 'import torch.nn.functional as F\n'), ((6518, 6548), 'torch.nn.functional.softmax', 'F.softmax', (['dummy_label'], {'dim': '(-1)'}), '(dummy_label, dim=-1)\n', (6527, 6548), True, 'import torch.nn.functional as F\n'), ((7401, 7472), 'skimage.metrics.structural_similarity', 'ssim', (['reconstructedIm', 'groundTruthIm'], {'channel_axis': '(2)', 'multichannel': '(True)'}), '(reconstructedIm, groundTruthIm, channel_axis=2, multichannel=True)\n', (7405, 7472), True, 'from skimage.metrics import structural_similarity as ssim\n'), ((3603, 3610), 'vision.LeNet', 'LeNet', ([], {}), '()\n', (3608, 3610), False, 'from vision import LeNet, CNN, weights_init\n'), ((8176, 8209), 'torch.Tensor', 'torch.Tensor', (['[dst[img_index][1]]'], {}), '([dst[img_index][1]])\n', (8188, 8209), False, 'import torch\n'), ((3292, 3330), 'torch.Tensor', 'torch.Tensor', (['[self.dst[img_index][1]]'], {}), '([self.dst[img_index][1]])\n', (3304, 3330), False, 'import torch\n'), ((7226, 7265), 'numpy.asarray', 'np.asarray', (['self.dst[self.img_index][0]'], {}), '(self.dst[self.img_index][0])\n', (7236, 7265), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np from model_fn.model_fn_nlp.util_nlp.attention import MultiHeadAttention def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model)) return pos * angle_rates def positional_encoding(position, d_model): angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model) # apply sin to even indices in the array; 2i angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) # apply cos to odd indices in the array; 2i+1 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) pos_encoding = angle_rads[np.newaxis, ...] return tf.cast(pos_encoding, dtype=tf.float32) class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn1 = tf.keras.layers.Dense(dff, activation='relu') # (batch_size, seq_len, dff) self.ffn2 = tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, inputs, training): x = inputs['x'] mask = inputs['mask'] attn_output, _ = self.mha({'q': x, 'k': x, 'v': x, 'mask': mask}) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) ffn_output_pre = self.ffn1(out1) # (batch_size, input_seq_len, dff) ffn_output = self.ffn2(ffn_output_pre) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model) return out2 class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, inputs, training): x = inputs['x'] mask = inputs['mask'] seq_len = tf.shape(x)[1] # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] # x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i]({'x': x, 'mask': mask}, training) return x # (batch_size, input_seq_len, d_model) class AlbertEncoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, emb_dim, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1): super(AlbertEncoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, emb_dim) self.pos_encoding = positional_encoding(maximum_position_encoding, emb_dim) self.projection_layer = tf.keras.layers.Dense(d_model) self.shared_enc_layer = EncoderLayer(d_model, num_heads, dff, rate) self.dropout = tf.keras.layers.Dropout(rate) def call(self, inputs, training): x = inputs['x'] mask = inputs['mask'] seq_len = tf.shape(x)[1] # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x= self.projection_layer(x) x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.shared_enc_layer({'x': x, 'mask': mask}, training) return x class DecoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(DecoderLayer, self).__init__() self.mha1 = MultiHeadAttention(d_model, num_heads) self.mha2 = MultiHeadAttention(d_model, num_heads) self.ffn1 = tf.keras.layers.Dense(dff, activation='relu') # (batch_size, seq_len, dff) self.ffn2 = tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) self.dropout3 = tf.keras.layers.Dropout(rate) def call(self, inputs, training): x = inputs['x'] enc_output = inputs['enc_output'] look_ahead_mask = inputs['look_ahead_mask'] padding_mask = inputs['padding_mask'] # enc_output.shape == (batch_size, input_seq_len, d_model) attn1, attn_weights_block1 = self.mha1( {'q': x, 'k': x, 'v': x, 'mask': look_ahead_mask}) # (batch_size, target_seq_len, d_model) attn1 = self.dropout1(attn1, training=training) out1 = self.layernorm1(attn1 + x) attn2, attn_weights_block2 = self.mha2({'q': out1, 'k': enc_output, 'v': enc_output, 'mask': padding_mask}) # (batch_size, target_seq_len, d_model) attn2 = self.dropout2(attn2, training=training) out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model) ffn_output_pre = self.ffn1(out2) # (batch_size, input_seq_len, dff) ffn_output = self.ffn2(ffn_output_pre) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout3(ffn_output, training=training) out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model) return out3, attn_weights_block1, attn_weights_block2 class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, maximum_position_encoding, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, inputs, training): x = inputs['tar'] enc_output = inputs['enc_output'] look_ahead_mask = inputs['look_ahead_mask'] padding_mask = inputs['padding_mask'] seq_len = tf.shape(x)[1] attention_weights = {} x = self.embedding(x) # (batch_size, target_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x, block1, block2 = self.dec_layers[i]( {'x': x, 'enc_output': enc_output, 'look_ahead_mask': look_ahead_mask, 'padding_mask': padding_mask}, training) attention_weights['decoder_layer{}_block1'.format(i + 1)] = block1 attention_weights['decoder_layer{}_block2'.format(i + 1)] = block2 # x.shape == (batch_size, target_seq_len, d_model) return x, attention_weights
[ "tensorflow.shape", "numpy.arange", "model_fn.model_fn_nlp.util_nlp.attention.MultiHeadAttention", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.Embedding", "tensorflow.keras.layers.Dense", "numpy.cos", "numpy.sin", "tensorflow.cast", "numpy.float32", "tensorflow.keras.layers.LayerNormalization" ]
[((541, 568), 'numpy.sin', 'np.sin', (['angle_rads[:, 0::2]'], {}), '(angle_rads[:, 0::2])\n', (547, 568), True, 'import numpy as np\n'), ((646, 673), 'numpy.cos', 'np.cos', (['angle_rads[:, 1::2]'], {}), '(angle_rads[:, 1::2])\n', (652, 673), True, 'import numpy as np\n'), ((734, 773), 'tensorflow.cast', 'tf.cast', (['pos_encoding'], {'dtype': 'tf.float32'}), '(pos_encoding, dtype=tf.float32)\n', (741, 773), True, 'import tensorflow as tf\n'), ((943, 981), 'model_fn.model_fn_nlp.util_nlp.attention.MultiHeadAttention', 'MultiHeadAttention', (['d_model', 'num_heads'], {}), '(d_model, num_heads)\n', (961, 981), False, 'from model_fn.model_fn_nlp.util_nlp.attention import MultiHeadAttention\n'), ((1002, 1047), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['dff'], {'activation': '"""relu"""'}), "(dff, activation='relu')\n", (1023, 1047), True, 'import tensorflow as tf\n'), ((1098, 1128), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['d_model'], {}), '(d_model)\n', (1119, 1128), True, 'import tensorflow as tf\n'), ((1190, 1239), 'tensorflow.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'epsilon': '(1e-06)'}), '(epsilon=1e-06)\n', (1224, 1239), True, 'import tensorflow as tf\n'), ((1265, 1314), 'tensorflow.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'epsilon': '(1e-06)'}), '(epsilon=1e-06)\n', (1299, 1314), True, 'import tensorflow as tf\n'), ((1339, 1368), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (1362, 1368), True, 'import tensorflow as tf\n'), ((1393, 1422), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (1416, 1422), True, 'import tensorflow as tf\n'), ((2437, 2489), 'tensorflow.keras.layers.Embedding', 'tf.keras.layers.Embedding', (['input_vocab_size', 'd_model'], {}), '(input_vocab_size, d_model)\n', (2462, 2489), True, 'import tensorflow as tf\n'), ((2778, 2807), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (2801, 2807), True, 'import tensorflow as tf\n'), ((3710, 3762), 'tensorflow.keras.layers.Embedding', 'tf.keras.layers.Embedding', (['input_vocab_size', 'emb_dim'], {}), '(input_vocab_size, emb_dim)\n', (3735, 3762), True, 'import tensorflow as tf\n'), ((3927, 3957), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['d_model'], {}), '(d_model)\n', (3948, 3957), True, 'import tensorflow as tf\n'), ((4059, 4088), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (4082, 4088), True, 'import tensorflow as tf\n'), ((4831, 4869), 'model_fn.model_fn_nlp.util_nlp.attention.MultiHeadAttention', 'MultiHeadAttention', (['d_model', 'num_heads'], {}), '(d_model, num_heads)\n', (4849, 4869), False, 'from model_fn.model_fn_nlp.util_nlp.attention import MultiHeadAttention\n'), ((4890, 4928), 'model_fn.model_fn_nlp.util_nlp.attention.MultiHeadAttention', 'MultiHeadAttention', (['d_model', 'num_heads'], {}), '(d_model, num_heads)\n', (4908, 4928), False, 'from model_fn.model_fn_nlp.util_nlp.attention import MultiHeadAttention\n'), ((4950, 4995), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['dff'], {'activation': '"""relu"""'}), "(dff, activation='relu')\n", (4971, 4995), True, 'import tensorflow as tf\n'), ((5046, 5076), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['d_model'], {}), '(d_model)\n', (5067, 5076), True, 'import tensorflow as tf\n'), ((5138, 5187), 'tensorflow.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'epsilon': '(1e-06)'}), '(epsilon=1e-06)\n', (5172, 5187), True, 'import tensorflow as tf\n'), ((5213, 5262), 'tensorflow.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'epsilon': '(1e-06)'}), '(epsilon=1e-06)\n', (5247, 5262), True, 'import tensorflow as tf\n'), ((5288, 5337), 'tensorflow.keras.layers.LayerNormalization', 'tf.keras.layers.LayerNormalization', ([], {'epsilon': '(1e-06)'}), '(epsilon=1e-06)\n', (5322, 5337), True, 'import tensorflow as tf\n'), ((5362, 5391), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (5385, 5391), True, 'import tensorflow as tf\n'), ((5416, 5445), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (5439, 5445), True, 'import tensorflow as tf\n'), ((5470, 5499), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (5493, 5499), True, 'import tensorflow as tf\n'), ((7063, 7116), 'tensorflow.keras.layers.Embedding', 'tf.keras.layers.Embedding', (['target_vocab_size', 'd_model'], {}), '(target_vocab_size, d_model)\n', (7088, 7116), True, 'import tensorflow as tf\n'), ((7351, 7380), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['rate'], {}), '(rate)\n', (7374, 7380), True, 'import tensorflow as tf\n'), ((329, 348), 'numpy.arange', 'np.arange', (['position'], {}), '(position)\n', (338, 348), True, 'import numpy as np\n'), ((393, 411), 'numpy.arange', 'np.arange', (['d_model'], {}), '(d_model)\n', (402, 411), True, 'import numpy as np\n'), ((2919, 2930), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (2927, 2930), True, 'import tensorflow as tf\n'), ((3081, 3114), 'tensorflow.cast', 'tf.cast', (['self.d_model', 'tf.float32'], {}), '(self.d_model, tf.float32)\n', (3088, 3114), True, 'import tensorflow as tf\n'), ((4200, 4211), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (4208, 4211), True, 'import tensorflow as tf\n'), ((4362, 4395), 'tensorflow.cast', 'tf.cast', (['self.d_model', 'tf.float32'], {}), '(self.d_model, tf.float32)\n', (4369, 4395), True, 'import tensorflow as tf\n'), ((7605, 7616), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (7613, 7616), True, 'import tensorflow as tf\n'), ((7749, 7782), 'tensorflow.cast', 'tf.cast', (['self.d_model', 'tf.float32'], {}), '(self.d_model, tf.float32)\n', (7756, 7782), True, 'import tensorflow as tf\n'), ((205, 224), 'numpy.float32', 'np.float32', (['d_model'], {}), '(d_model)\n', (215, 224), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Example of training DCGAN on MNIST using PBT with Tune's function API. """ import ray from ray import tune from ray.tune.schedulers import PopulationBasedTraining import argparse import os from filelock import FileLock import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import numpy as np from common import beta1, MODEL_PATH from common import demo_gan, get_data_loader, plot_images, train, weights_init from common import Discriminator, Generator, Net # __Train_begin__ def dcgan_train(config, checkpoint_dir=None): step = 0 use_cuda = config.get("use_gpu") and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") netD = Discriminator().to(device) netD.apply(weights_init) netG = Generator().to(device) netG.apply(weights_init) criterion = nn.BCELoss() optimizerD = optim.Adam( netD.parameters(), lr=config.get("lr", 0.01), betas=(beta1, 0.999)) optimizerG = optim.Adam( netG.parameters(), lr=config.get("lr", 0.01), betas=(beta1, 0.999)) with FileLock(os.path.expanduser("~/.data.lock")): dataloader = get_data_loader() if checkpoint_dir is not None: path = os.path.join(checkpoint_dir, "checkpoint") checkpoint = torch.load(path) netD.load_state_dict(checkpoint["netDmodel"]) netG.load_state_dict(checkpoint["netGmodel"]) optimizerD.load_state_dict(checkpoint["optimD"]) optimizerG.load_state_dict(checkpoint["optimG"]) step = checkpoint["step"] if "netD_lr" in config: for param_group in optimizerD.param_groups: param_group["lr"] = config["netD_lr"] if "netG_lr" in config: for param_group in optimizerG.param_groups: param_group["lr"] = config["netG_lr"] while True: lossG, lossD, is_score = train(netD, netG, optimizerG, optimizerD, criterion, dataloader, step, device, config["mnist_model_ref"]) step += 1 with tune.checkpoint_dir(step=step) as checkpoint_dir: path = os.path.join(checkpoint_dir, "checkpoint") torch.save({ "netDmodel": netD.state_dict(), "netGmodel": netG.state_dict(), "optimD": optimizerD.state_dict(), "optimG": optimizerG.state_dict(), "step": step, }, path) tune.report(lossg=lossG, lossd=lossD, is_score=is_score) # __Train_end__ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") args, _ = parser.parse_known_args() ray.init() import urllib.request # Download a pre-trained MNIST model for inception score calculation. # This is a tiny model (<100kb). if not os.path.exists(MODEL_PATH): print("downloading model") os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True) urllib.request.urlretrieve( "https://github.com/ray-project/ray/raw/master/python/ray/tune/" "examples/pbt_dcgan_mnist/mnist_cnn.pt", MODEL_PATH) dataloader = get_data_loader() if not args.smoke_test: plot_images(dataloader) # __tune_begin__ # load the pretrained mnist classification model for inception_score mnist_cnn = Net() mnist_cnn.load_state_dict(torch.load(MODEL_PATH)) mnist_cnn.eval() # Put the model in Ray object store. mnist_model_ref = ray.put(mnist_cnn) scheduler = PopulationBasedTraining( perturbation_interval=5, hyperparam_mutations={ # distribution for resampling "netG_lr": lambda: np.random.uniform(1e-2, 1e-5), "netD_lr": lambda: np.random.uniform(1e-2, 1e-5), }) tune_iter = 5 if args.smoke_test else 300 analysis = tune.run( dcgan_train, name="pbt_dcgan_mnist", scheduler=scheduler, verbose=1, stop={ "training_iteration": tune_iter, }, metric="is_score", mode="max", num_samples=8, config={ "netG_lr": tune.choice([0.0001, 0.0002, 0.0005]), "netD_lr": tune.choice([0.0001, 0.0002, 0.0005]), "mnist_model_ref": mnist_model_ref }) # __tune_end__ # demo of the trained Generators if not args.smoke_test: all_trials = analysis.trials checkpoint_paths = [ os.path.join(analysis.get_best_checkpoint(t), "checkpoint") for t in all_trials ] demo_gan(analysis, checkpoint_paths)
[ "ray.tune.report", "torch.cuda.is_available", "common.train", "common.Discriminator", "ray.init", "os.path.exists", "argparse.ArgumentParser", "ray.tune.checkpoint_dir", "os.path.expanduser", "ray.tune.choice", "os.path.dirname", "common.demo_gan", "common.get_data_loader", "torch.device", "common.Generator", "torch.load", "os.path.join", "torch.nn.BCELoss", "common.Net", "numpy.random.uniform", "ray.put", "common.plot_images" ]
[((702, 745), 'torch.device', 'torch.device', (["('cuda' if use_cuda else 'cpu')"], {}), "('cuda' if use_cuda else 'cpu')\n", (714, 745), False, 'import torch\n'), ((892, 904), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (902, 904), True, 'import torch.nn as nn\n'), ((2657, 2682), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2680, 2682), False, 'import argparse\n'), ((2832, 2842), 'ray.init', 'ray.init', ([], {}), '()\n', (2840, 2842), False, 'import ray\n'), ((3315, 3332), 'common.get_data_loader', 'get_data_loader', ([], {}), '()\n', (3330, 3332), False, 'from common import demo_gan, get_data_loader, plot_images, train, weights_init\n'), ((3505, 3510), 'common.Net', 'Net', ([], {}), '()\n', (3508, 3510), False, 'from common import Discriminator, Generator, Net\n'), ((3649, 3667), 'ray.put', 'ray.put', (['mnist_cnn'], {}), '(mnist_cnn)\n', (3656, 3667), False, 'import ray\n'), ((663, 688), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (686, 688), False, 'import torch\n'), ((1191, 1208), 'common.get_data_loader', 'get_data_loader', ([], {}), '()\n', (1206, 1208), False, 'from common import demo_gan, get_data_loader, plot_images, train, weights_init\n'), ((1260, 1302), 'os.path.join', 'os.path.join', (['checkpoint_dir', '"""checkpoint"""'], {}), "(checkpoint_dir, 'checkpoint')\n", (1272, 1302), False, 'import os\n'), ((1324, 1340), 'torch.load', 'torch.load', (['path'], {}), '(path)\n', (1334, 1340), False, 'import torch\n'), ((1932, 2041), 'common.train', 'train', (['netD', 'netG', 'optimizerG', 'optimizerD', 'criterion', 'dataloader', 'step', 'device', "config['mnist_model_ref']"], {}), "(netD, netG, optimizerG, optimizerD, criterion, dataloader, step,\n device, config['mnist_model_ref'])\n", (1937, 2041), False, 'from common import demo_gan, get_data_loader, plot_images, train, weights_init\n'), ((2541, 2597), 'ray.tune.report', 'tune.report', ([], {'lossg': 'lossG', 'lossd': 'lossD', 'is_score': 'is_score'}), '(lossg=lossG, lossd=lossD, is_score=is_score)\n', (2552, 2597), False, 'from ray import tune\n'), ((2992, 3018), 'os.path.exists', 'os.path.exists', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (3006, 3018), False, 'import os\n'), ((3369, 3392), 'common.plot_images', 'plot_images', (['dataloader'], {}), '(dataloader)\n', (3380, 3392), False, 'from common import demo_gan, get_data_loader, plot_images, train, weights_init\n'), ((3541, 3563), 'torch.load', 'torch.load', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (3551, 3563), False, 'import torch\n'), ((4737, 4773), 'common.demo_gan', 'demo_gan', (['analysis', 'checkpoint_paths'], {}), '(analysis, checkpoint_paths)\n', (4745, 4773), False, 'from common import demo_gan, get_data_loader, plot_images, train, weights_init\n'), ((757, 772), 'common.Discriminator', 'Discriminator', ([], {}), '()\n', (770, 772), False, 'from common import Discriminator, Generator, Net\n'), ((824, 835), 'common.Generator', 'Generator', ([], {}), '()\n', (833, 835), False, 'from common import Discriminator, Generator, Net\n'), ((1133, 1167), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.data.lock"""'], {}), "('~/.data.lock')\n", (1151, 1167), False, 'import os\n'), ((2147, 2177), 'ray.tune.checkpoint_dir', 'tune.checkpoint_dir', ([], {'step': 'step'}), '(step=step)\n', (2166, 2177), False, 'from ray import tune\n'), ((2216, 2258), 'os.path.join', 'os.path.join', (['checkpoint_dir', '"""checkpoint"""'], {}), "(checkpoint_dir, 'checkpoint')\n", (2228, 2258), False, 'import os\n'), ((3075, 3102), 'os.path.dirname', 'os.path.dirname', (['MODEL_PATH'], {}), '(MODEL_PATH)\n', (3090, 3102), False, 'import os\n'), ((4305, 4342), 'ray.tune.choice', 'tune.choice', (['[0.0001, 0.0002, 0.0005]'], {}), '([0.0001, 0.0002, 0.0005])\n', (4316, 4342), False, 'from ray import tune\n'), ((4367, 4404), 'ray.tune.choice', 'tune.choice', (['[0.0001, 0.0002, 0.0005]'], {}), '([0.0001, 0.0002, 0.0005])\n', (4378, 4404), False, 'from ray import tune\n'), ((3847, 3877), 'numpy.random.uniform', 'np.random.uniform', (['(0.01)', '(1e-05)'], {}), '(0.01, 1e-05)\n', (3864, 3877), True, 'import numpy as np\n'), ((3909, 3939), 'numpy.random.uniform', 'np.random.uniform', (['(0.01)', '(1e-05)'], {}), '(0.01, 1e-05)\n', (3926, 3939), True, 'import numpy as np\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import copy import numpy as np import torch from lottery.branch import base import models.registry from pruning.mask import Mask from pruning.pruned_model import PrunedModel from training import train from lottery.branch.morphism import change_depth def linear_interpolate(pruned_model_a, pruned_model_b, alpha): model_c = copy.deepcopy(pruned_model_a) sd_c = model_c.state_dict() for (ka, va), (kb, vb) in zip(pruned_model_a.state_dict().items(), pruned_model_b.state_dict().items()): assert ka == kb if 'mask' in ka: assert torch.all(va == vb) sd_c[ka].data = va.detach().clone() else: sd_c[ka].data = (va * alpha + vb * (1 - alpha)).detach().clone() model_c.load_state_dict(sd_c) return model_c def parse_block_mapping_for_stage(string): mapping = dict() mapping_strs = string.split(';') try: for s in mapping_strs: src_id_str, tgt_ids_str = s.split(':') src_id = int(src_id_str) tgt_ids = [int(t) for t in tgt_ids_str.split(',')] mapping[src_id] = tgt_ids return mapping except: raise RuntimeError('Invalid block mapping string.') class Branch(base.Branch): def branch_function( self, target_model_name: str = None, block_mapping: str = None, start_at_step_zero: bool = False, data_seed: int = 118 ): # Process the mapping # A valid string format of a mapping is like: # `0:0;1:1,2;2:3,4;3:5,6;4:7,8` if 'cifar' in target_model_name and 'resnet' in target_model_name: mappings = parse_block_mapping_for_stage(block_mapping) elif 'imagenet' in target_model_name and 'resnet' in target_model_name: mappings = list(map(parse_block_mapping_for_stage, block_mapping.split('|'))) elif 'cifar' in target_model_name and 'vggnfc' in target_model_name: mappings = parse_block_mapping_for_stage(block_mapping) elif 'cifar' in target_model_name and 'vgg' in target_model_name: mappings = list(map(parse_block_mapping_for_stage, block_mapping.split('|'))) elif 'cifar' in target_model_name and 'mobilenetv1' in target_model_name: mappings = parse_block_mapping_for_stage(block_mapping) elif 'mnist' in target_model_name and 'lenet' in target_model_name: mappings = parse_block_mapping_for_stage(block_mapping) else: raise NotImplementedError('Other mapping cases not implemented yet') # Load source model at `train_start_step` src_mask = Mask.load(self.level_root) start_step = self.lottery_desc.str_to_step('0it') if start_at_step_zero else self.lottery_desc.train_start_step # model = PrunedModel(models.registry.get(self.lottery_desc.model_hparams), src_mask) src_model = models.registry.load(self.level_root, start_step, self.lottery_desc.model_hparams) # Create target model target_model_hparams = copy.deepcopy(self.lottery_desc.model_hparams) target_model_hparams.model_name = target_model_name target_model = models.registry.get(target_model_hparams) target_ones_mask = Mask.ones_like(target_model) # Do the morphism target_sd = change_depth(target_model_name, src_model.state_dict(), target_model.state_dict(), mappings) target_model.load_state_dict(target_sd) target_mask = change_depth(target_model_name, src_mask, target_ones_mask, mappings) target_model_a = PrunedModel(target_model, target_mask) target_model_b = copy.deepcopy(target_model_a) # Save and run a standard train on model a seed_a = data_seed + 9999 training_hparams_a = copy.deepcopy(self.lottery_desc.training_hparams) training_hparams_a.data_order_seed = seed_a output_dir_a = os.path.join(self.branch_root, f'seed_{seed_a}') target_mask.save(output_dir_a) train.standard_train(target_model_a, output_dir_a, self.lottery_desc.dataset_hparams, training_hparams_a, start_step=start_step, verbose=self.verbose) # Save and run a standard train on model b seed_b = data_seed + 10001 training_hparams_b = copy.deepcopy(self.lottery_desc.training_hparams) training_hparams_b.data_order_seed = seed_b output_dir_b = os.path.join(self.branch_root, f'seed_{seed_b}') target_mask.save(output_dir_b) train.standard_train(target_model_b, output_dir_b, self.lottery_desc.dataset_hparams, training_hparams_b, start_step=start_step, verbose=self.verbose) # Linear connectivity between model_a and model_b training_hparams_c = copy.deepcopy(self.lottery_desc.training_hparams) training_hparams_c.training_steps = '1ep' for alpha in np.linspace(0, 1.0, 21): model_c = linear_interpolate(target_model_a, target_model_b, alpha) output_dir_c = os.path.join(self.branch_root, f'alpha_{alpha}') # Measure acc of model_c train.standard_train(model_c, output_dir_c, self.lottery_desc.dataset_hparams, training_hparams_c, start_step=None, verbose=self.verbose) @staticmethod def description(): return "Change the depth of the source network and do linear connectivity exp." @staticmethod def name(): return 'change_depth_linear_connect'
[ "lottery.branch.morphism.change_depth", "pruning.mask.Mask.ones_like", "pruning.mask.Mask.load", "os.path.join", "numpy.linspace", "pruning.pruned_model.PrunedModel", "copy.deepcopy", "training.train.standard_train", "torch.all" ]
[((516, 545), 'copy.deepcopy', 'copy.deepcopy', (['pruned_model_a'], {}), '(pruned_model_a)\n', (529, 545), False, 'import copy\n'), ((2821, 2847), 'pruning.mask.Mask.load', 'Mask.load', (['self.level_root'], {}), '(self.level_root)\n', (2830, 2847), False, 'from pruning.mask import Mask\n'), ((3227, 3273), 'copy.deepcopy', 'copy.deepcopy', (['self.lottery_desc.model_hparams'], {}), '(self.lottery_desc.model_hparams)\n', (3240, 3273), False, 'import copy\n'), ((3426, 3454), 'pruning.mask.Mask.ones_like', 'Mask.ones_like', (['target_model'], {}), '(target_model)\n', (3440, 3454), False, 'from pruning.mask import Mask\n'), ((3665, 3734), 'lottery.branch.morphism.change_depth', 'change_depth', (['target_model_name', 'src_mask', 'target_ones_mask', 'mappings'], {}), '(target_model_name, src_mask, target_ones_mask, mappings)\n', (3677, 3734), False, 'from lottery.branch.morphism import change_depth\n'), ((3760, 3798), 'pruning.pruned_model.PrunedModel', 'PrunedModel', (['target_model', 'target_mask'], {}), '(target_model, target_mask)\n', (3771, 3798), False, 'from pruning.pruned_model import PrunedModel\n'), ((3824, 3853), 'copy.deepcopy', 'copy.deepcopy', (['target_model_a'], {}), '(target_model_a)\n', (3837, 3853), False, 'import copy\n'), ((3969, 4018), 'copy.deepcopy', 'copy.deepcopy', (['self.lottery_desc.training_hparams'], {}), '(self.lottery_desc.training_hparams)\n', (3982, 4018), False, 'import copy\n'), ((4094, 4142), 'os.path.join', 'os.path.join', (['self.branch_root', 'f"""seed_{seed_a}"""'], {}), "(self.branch_root, f'seed_{seed_a}')\n", (4106, 4142), False, 'import os\n'), ((4190, 4350), 'training.train.standard_train', 'train.standard_train', (['target_model_a', 'output_dir_a', 'self.lottery_desc.dataset_hparams', 'training_hparams_a'], {'start_step': 'start_step', 'verbose': 'self.verbose'}), '(target_model_a, output_dir_a, self.lottery_desc.\n dataset_hparams, training_hparams_a, start_step=start_step, verbose=\n self.verbose)\n', (4210, 4350), False, 'from training import train\n'), ((4486, 4535), 'copy.deepcopy', 'copy.deepcopy', (['self.lottery_desc.training_hparams'], {}), '(self.lottery_desc.training_hparams)\n', (4499, 4535), False, 'import copy\n'), ((4611, 4659), 'os.path.join', 'os.path.join', (['self.branch_root', 'f"""seed_{seed_b}"""'], {}), "(self.branch_root, f'seed_{seed_b}')\n", (4623, 4659), False, 'import os\n'), ((4707, 4867), 'training.train.standard_train', 'train.standard_train', (['target_model_b', 'output_dir_b', 'self.lottery_desc.dataset_hparams', 'training_hparams_b'], {'start_step': 'start_step', 'verbose': 'self.verbose'}), '(target_model_b, output_dir_b, self.lottery_desc.\n dataset_hparams, training_hparams_b, start_step=start_step, verbose=\n self.verbose)\n', (4727, 4867), False, 'from training import train\n'), ((4975, 5024), 'copy.deepcopy', 'copy.deepcopy', (['self.lottery_desc.training_hparams'], {}), '(self.lottery_desc.training_hparams)\n', (4988, 5024), False, 'import copy\n'), ((5096, 5119), 'numpy.linspace', 'np.linspace', (['(0)', '(1.0)', '(21)'], {}), '(0, 1.0, 21)\n', (5107, 5119), True, 'import numpy as np\n'), ((755, 774), 'torch.all', 'torch.all', (['(va == vb)'], {}), '(va == vb)\n', (764, 774), False, 'import torch\n'), ((5228, 5276), 'os.path.join', 'os.path.join', (['self.branch_root', 'f"""alpha_{alpha}"""'], {}), "(self.branch_root, f'alpha_{alpha}')\n", (5240, 5276), False, 'import os\n'), ((5326, 5468), 'training.train.standard_train', 'train.standard_train', (['model_c', 'output_dir_c', 'self.lottery_desc.dataset_hparams', 'training_hparams_c'], {'start_step': 'None', 'verbose': 'self.verbose'}), '(model_c, output_dir_c, self.lottery_desc.\n dataset_hparams, training_hparams_c, start_step=None, verbose=self.verbose)\n', (5346, 5468), False, 'from training import train\n')]
# =============================================================================== # Copyright 2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # ============= standard library imports ======================== from __future__ import absolute_import from __future__ import print_function from numpy import ones, vstack, zeros, hstack from numpy.random import random # ============= local library imports ========================== from pychron.classifier.base_classifier import BaseClassifier def make_sample(iso): # print 'make sample {} {} {}'.format(iso.mass, iso.n, iso.intercept_percent_error) return ( iso.mass, iso.n, iso.value, iso.intercept_percent_error, iso.get_slope(), iso.standard_fit_error(), iso.noutliers(), ) class IsotopeClassifier(BaseClassifier): """ klasses: 0= Bad 1= Good """ _clf = None _persistence_name = "clf.isotope.p" def classifier_factory(self, klass=None, *args, **kw): kw["n_neighbors"] = 3 return super(IsotopeClassifier, self).classifier_factory( klass=klass, *args, **kw ) def predict_isotope(self, iso): return self.predict(make_sample(iso)) def add_isotopes(self, isos, klasses): samples = [make_sample(iso) for iso in isos] self.add_training_data(samples, klasses) def fit(self, x, y): """ x: 2d array, [n_samples, n_features] y: 1d array, [n_samples]. class for each sample :param x: :param y: :return: """ if not self._clf: self._clf = self.classifier_factory() self._clf.fit(x, y) def predict(self, x): if self._clf is None: self.load() klass = None prob = 0 print(x) if self._clf: klass = int(self._clf.predict(x)[0]) prob = self._clf.predict_proba(x)[0][klass] return klass, prob if __name__ == "__main__": ic = IsotopeClassifier() nsamples = 20 err = random(size=nsamples) npts = ones(nsamples) * 100 + random(size=nsamples) * 10 xgood = vstack((npts, err)).T ygood = ones(nsamples) err = 1 + random(size=nsamples) * 10 npts = ones(nsamples) * 100 + random(size=nsamples) xbad = vstack((npts, err)).T ybad = zeros(nsamples) npts = ones(nsamples) * 10 + random(size=nsamples) err = random(size=nsamples) * 10 xbad2 = vstack((npts, err)).T xx = vstack((xgood, xbad, xbad2)) yy = hstack((ygood, ybad, ybad)) ic.fit(xx, yy) for pt in ([100, 0.11], [100, 11], [10, 1], [75, 0.5]): k = ic.predict(pt) print(pt, k) # print pt, ic.classify(pt) # ax = plt.subplot(1, 1, 1) # ax.scatter(x[:, 0], x[:, 1], c=y) # plt.show() # ============= EOF =============================================
[ "numpy.ones", "numpy.hstack", "numpy.random.random", "numpy.zeros", "numpy.vstack" ]
[((2740, 2761), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (2746, 2761), False, 'from numpy.random import random\n'), ((2869, 2883), 'numpy.ones', 'ones', (['nsamples'], {}), '(nsamples)\n', (2873, 2883), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((3026, 3041), 'numpy.zeros', 'zeros', (['nsamples'], {}), '(nsamples)\n', (3031, 3041), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((3179, 3207), 'numpy.vstack', 'vstack', (['(xgood, xbad, xbad2)'], {}), '((xgood, xbad, xbad2))\n', (3185, 3207), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((3217, 3244), 'numpy.hstack', 'hstack', (['(ygood, ybad, ybad)'], {}), '((ygood, ybad, ybad))\n', (3223, 3244), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((2835, 2854), 'numpy.vstack', 'vstack', (['(npts, err)'], {}), '((npts, err))\n', (2841, 2854), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((2960, 2981), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (2966, 2981), False, 'from numpy.random import random\n'), ((2993, 3012), 'numpy.vstack', 'vstack', (['(npts, err)'], {}), '((npts, err))\n', (2999, 3012), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((3076, 3097), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (3082, 3097), False, 'from numpy.random import random\n'), ((3108, 3129), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (3114, 3129), False, 'from numpy.random import random\n'), ((3147, 3166), 'numpy.vstack', 'vstack', (['(npts, err)'], {}), '((npts, err))\n', (3153, 3166), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((2773, 2787), 'numpy.ones', 'ones', (['nsamples'], {}), '(nsamples)\n', (2777, 2787), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((2796, 2817), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (2802, 2817), False, 'from numpy.random import random\n'), ((2899, 2920), 'numpy.random.random', 'random', ([], {'size': 'nsamples'}), '(size=nsamples)\n', (2905, 2920), False, 'from numpy.random import random\n'), ((2937, 2951), 'numpy.ones', 'ones', (['nsamples'], {}), '(nsamples)\n', (2941, 2951), False, 'from numpy import ones, vstack, zeros, hstack\n'), ((3054, 3068), 'numpy.ones', 'ones', (['nsamples'], {}), '(nsamples)\n', (3058, 3068), False, 'from numpy import ones, vstack, zeros, hstack\n')]
import numpy as np import zmq class Subscriber: def __init__(self, address='tcp://127.0.0.1', port=9999): self.context = zmq.Context() self.socket = self.context.socket(zmq.SUB) self.socket.setsockopt(zmq.SUBSCRIBE, b'') self.socket.connect(f'{address}:{port}') def recv(self): metadata, message = self.socket.recv_json(), self.socket.recv(copy=False) a = np.frombuffer(message, dtype=metadata['dtype']) return metadata['msg'], a.reshape(metadata['shape']) def close(self): self.socket.close() self.context.term()
[ "numpy.frombuffer", "zmq.Context" ]
[((135, 148), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (146, 148), False, 'import zmq\n'), ((415, 462), 'numpy.frombuffer', 'np.frombuffer', (['message'], {'dtype': "metadata['dtype']"}), "(message, dtype=metadata['dtype'])\n", (428, 462), True, 'import numpy as np\n')]
import os, sys os.environ['CUDA_VISIBLE_DEVICES'] = '0' import tensorflow as tf import cv2 import numpy as np sys.path.insert(1, os.path.join(sys.path[0], '/mywork/tensorflow-tuts/sd19reader')) from batches2patches_tensorflow import GetFuncToPatches, GetFuncOverlapAdd from myutils import describe from vizutils import bw_grid_vis, color_grid_vis from mypca import my_PCA_scikitlike as PCA # load image path2file = os.path.dirname(os.path.realpath(__file__)) inimg = os.path.join(path2file,'Lenna_noise1.png') testim = cv2.imread(inimg).astype(np.float32) / 255.0 # will use "valid" conv, so pad 1 wide for 3x3 patches padtest = np.pad(testim, [(1,1), (1,1), (0,0)], 'edge') # get patching function for local windows imshape = [int(ii) for ii in padtest.shape] batchsize = 1 batchimshapefull = [batchsize,]+imshape patchsize = 3 bordermode = 'valid' pimshape = (imshape[0]-patchsize+1,imshape[1]-patchsize+1) reconstrmode = 'full' N_PCA_COMPS = 6 batchunpadtest = np.expand_dims(testim, 0) batchtestims = padtest.reshape(batchimshapefull) # only one in batch, so resize the one featswrtshape = [int(ii) for ii in batchunpadtest.shape] featswrtshape[-1] = N_PCA_COMPS patchtheanofunc = GetFuncToPatches(batchimshapefull, patchsize, border_mode=bordermode, filter_flip=False) overlapaddfunc = GetFuncOverlapAdd(batchimshapefull, patchsize, pimshape, border_mode=reconstrmode, filter_flip=False) ######################################### # bilateral filter #tf_stdv_space = tf.get_variable('tf_stdv_space', initializer=tf.constant(1.0)) #tf_stdv_bilat = tf.get_variable('tf_stdv_bilat', initializer=tf.constant(1.0)) tf_placehold_img = tf.placeholder(tf.float32, batchunpadtest.shape, name="tf_placehold_img") tf_placehold_wrt = tf.placeholder(tf.float32, featswrtshape, name="tf_placehold_wrt") from test_utils import * bilateral_filters = load_func_from_lib() ######################################### # tensorflow sess init sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) outfold = 'test_patch_pca' ######################################### # compute patch PCA patches = patchtheanofunc(batchtestims) print(" ") describe("patches",patches) flatpatches = patches.reshape((patches.shape[0]*patches.shape[1]*patches.shape[2], np.prod(patches.shape[3:]))) describe("flatpatches",flatpatches) pca = PCA(n_components=N_PCA_COMPS, doplot=False).fit(flatpatches) transfpatches = pca.transform(flatpatches) reshtransfpatch = transfpatches.reshape((patches.shape[0], patches.shape[1], patches.shape[2], N_PCA_COMPS)) print(" ") describe("transfpatches", transfpatches) describe("reshtransfpatch", reshtransfpatch) print(" ") procpatches = pca.inverse_transform(transfpatches).reshape(patches.shape) tehpidx = -1 for tehpatchs in [patches, procpatches]: tehpidx += 1 FLPTCHS = tehpatchs.reshape((tehpatchs.shape[0], tehpatchs.shape[1]*tehpatchs.shape[2], np.prod(tehpatchs.shape[3:]))) #describe("FLPTCHS", FLPTCHS) for jj in range(batchsize): #describe("FLPTCHS[jj,...]", FLPTCHS[jj,...]) color_grid_vis(FLPTCHS[jj,...], savename=os.path.join(outfold,'pcacnn_FLPTCHS_'+str(tehpidx)+'_'+str(jj)+'.png'), flipbgr=True) #quit() ######################################### #define the function that's called every time one of the trackbars is moved def updateWindow(xxx): stdspace = float(cv2.getTrackbarPos('std_space*10','ImageWindow')) / 10. stdcolor = float(cv2.getTrackbarPos('std_color*50','ImageWindow')) / 50. stdspace = max(1e-3, stdspace) stdcolor = max(1e-3, stdcolor) #tf_stdv_space = tf.get_variable('tf_stdv_space', initializer=tf.constant(1.0)) #tf_stdv_bilat = tf.get_variable('tf_stdv_bilat', initializer=tf.constant(1.0)) #tf_placehold_img = tf.placeholder(tf.float32, batchimshapefull, name="tf_placehold_img") #tf_placehold_wrt = tf.placeholder(tf.float32, featswrtshape, name="tf_placehold_wrt") ret = bilateral_filters(NHWC_to_NCHW(tf_placehold_img), NHWC_to_NCHW(tf_placehold_wrt), stdspace, stdcolor) outbilNCHW = ret outbilat = NCHW_to_NHWC(outbilNCHW) tfret = outbilat.eval({tf_placehold_img: batchunpadtest, tf_placehold_wrt: reshtransfpatch}) describe("tfret00", tfret) tfret[tfret<0.0] = 0.0 tfret[tfret>1.0] = 1.0 describe("tfret11", tfret) cv2.imshow("ImageWindow", tfret[0,...]) cv2.namedWindow('ImageWindow') cv2.createTrackbar('std_space*10','ImageWindow',1,200,updateWindow) cv2.createTrackbar('std_color*50','ImageWindow',1,200,updateWindow) updateWindow(0) #Creates the window for the first time cv2.waitKey(0)
[ "numpy.prod", "tensorflow.InteractiveSession", "tensorflow.initialize_all_variables", "cv2.imread", "tensorflow.placeholder", "batches2patches_tensorflow.GetFuncOverlapAdd", "os.path.join", "cv2.imshow", "os.path.realpath", "cv2.waitKey", "cv2.getTrackbarPos", "numpy.expand_dims", "batches2patches_tensorflow.GetFuncToPatches", "mypca.my_PCA_scikitlike", "numpy.pad", "cv2.createTrackbar", "cv2.namedWindow", "myutils.describe" ]
[((469, 512), 'os.path.join', 'os.path.join', (['path2file', '"""Lenna_noise1.png"""'], {}), "(path2file, 'Lenna_noise1.png')\n", (481, 512), False, 'import os, sys\n'), ((631, 679), 'numpy.pad', 'np.pad', (['testim', '[(1, 1), (1, 1), (0, 0)]', '"""edge"""'], {}), "(testim, [(1, 1), (1, 1), (0, 0)], 'edge')\n", (637, 679), True, 'import numpy as np\n'), ((968, 993), 'numpy.expand_dims', 'np.expand_dims', (['testim', '(0)'], {}), '(testim, 0)\n', (982, 993), True, 'import numpy as np\n'), ((1190, 1282), 'batches2patches_tensorflow.GetFuncToPatches', 'GetFuncToPatches', (['batchimshapefull', 'patchsize'], {'border_mode': 'bordermode', 'filter_flip': '(False)'}), '(batchimshapefull, patchsize, border_mode=bordermode,\n filter_flip=False)\n', (1206, 1282), False, 'from batches2patches_tensorflow import GetFuncToPatches, GetFuncOverlapAdd\n'), ((1296, 1402), 'batches2patches_tensorflow.GetFuncOverlapAdd', 'GetFuncOverlapAdd', (['batchimshapefull', 'patchsize', 'pimshape'], {'border_mode': 'reconstrmode', 'filter_flip': '(False)'}), '(batchimshapefull, patchsize, pimshape, border_mode=\n reconstrmode, filter_flip=False)\n', (1313, 1402), False, 'from batches2patches_tensorflow import GetFuncToPatches, GetFuncOverlapAdd\n'), ((1639, 1712), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'batchunpadtest.shape'], {'name': '"""tf_placehold_img"""'}), "(tf.float32, batchunpadtest.shape, name='tf_placehold_img')\n", (1653, 1712), True, 'import tensorflow as tf\n'), ((1732, 1798), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', 'featswrtshape'], {'name': '"""tf_placehold_wrt"""'}), "(tf.float32, featswrtshape, name='tf_placehold_wrt')\n", (1746, 1798), True, 'import tensorflow as tf\n'), ((1947, 1970), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (1968, 1970), True, 'import tensorflow as tf\n'), ((2153, 2181), 'myutils.describe', 'describe', (['"""patches"""', 'patches'], {}), "('patches', patches)\n", (2161, 2181), False, 'from myutils import describe\n'), ((2294, 2330), 'myutils.describe', 'describe', (['"""flatpatches"""', 'flatpatches'], {}), "('flatpatches', flatpatches)\n", (2302, 2330), False, 'from myutils import describe\n'), ((2562, 2602), 'myutils.describe', 'describe', (['"""transfpatches"""', 'transfpatches'], {}), "('transfpatches', transfpatches)\n", (2570, 2602), False, 'from myutils import describe\n'), ((2603, 2647), 'myutils.describe', 'describe', (['"""reshtransfpatch"""', 'reshtransfpatch'], {}), "('reshtransfpatch', reshtransfpatch)\n", (2611, 2647), False, 'from myutils import describe\n'), ((4408, 4438), 'cv2.namedWindow', 'cv2.namedWindow', (['"""ImageWindow"""'], {}), "('ImageWindow')\n", (4423, 4438), False, 'import cv2\n'), ((4439, 4510), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""std_space*10"""', '"""ImageWindow"""', '(1)', '(200)', 'updateWindow'], {}), "('std_space*10', 'ImageWindow', 1, 200, updateWindow)\n", (4457, 4510), False, 'import cv2\n'), ((4507, 4578), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""std_color*50"""', '"""ImageWindow"""', '(1)', '(200)', 'updateWindow'], {}), "('std_color*50', 'ImageWindow', 1, 200, updateWindow)\n", (4525, 4578), False, 'import cv2\n'), ((4630, 4644), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4641, 4644), False, 'import cv2\n'), ((130, 193), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""/mywork/tensorflow-tuts/sd19reader"""'], {}), "(sys.path[0], '/mywork/tensorflow-tuts/sd19reader')\n", (142, 193), False, 'import os, sys\n'), ((433, 459), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (449, 459), False, 'import os, sys\n'), ((1980, 2009), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (2007, 2009), True, 'import tensorflow as tf\n'), ((4251, 4277), 'myutils.describe', 'describe', (['"""tfret00"""', 'tfret'], {}), "('tfret00', tfret)\n", (4259, 4277), False, 'from myutils import describe\n'), ((4336, 4362), 'myutils.describe', 'describe', (['"""tfret11"""', 'tfret'], {}), "('tfret11', tfret)\n", (4344, 4362), False, 'from myutils import describe\n'), ((4367, 4407), 'cv2.imshow', 'cv2.imshow', (['"""ImageWindow"""', 'tfret[0, ...]'], {}), "('ImageWindow', tfret[0, ...])\n", (4377, 4407), False, 'import cv2\n'), ((2265, 2291), 'numpy.prod', 'np.prod', (['patches.shape[3:]'], {}), '(patches.shape[3:])\n', (2272, 2291), True, 'import numpy as np\n'), ((2336, 2379), 'mypca.my_PCA_scikitlike', 'PCA', ([], {'n_components': 'N_PCA_COMPS', 'doplot': '(False)'}), '(n_components=N_PCA_COMPS, doplot=False)\n', (2339, 2379), True, 'from mypca import my_PCA_scikitlike as PCA\n'), ((521, 538), 'cv2.imread', 'cv2.imread', (['inimg'], {}), '(inimg)\n', (531, 538), False, 'import cv2\n'), ((2897, 2925), 'numpy.prod', 'np.prod', (['tehpatchs.shape[3:]'], {}), '(tehpatchs.shape[3:])\n', (2904, 2925), True, 'import numpy as np\n'), ((3357, 3406), 'cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""std_space*10"""', '"""ImageWindow"""'], {}), "('std_space*10', 'ImageWindow')\n", (3375, 3406), False, 'import cv2\n'), ((3434, 3483), 'cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""std_color*50"""', '"""ImageWindow"""'], {}), "('std_color*50', 'ImageWindow')\n", (3452, 3483), False, 'import cv2\n')]
# Copyright 2017 The TensorFlow Authors modified by <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import tensorflow as tf from kerod.utils import ops def test_indices_to_dense_vector(): size = 10000 num_indices = np.random.randint(size) rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.zeros(size, dtype=np.float32) expected_output[rand_indices] = 1. tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) np.testing.assert_array_equal(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_indices_to_dense_vector_size_at_inference(): size = 5000 num_indices = 250 all_indices = np.arange(size) rand_indices = np.random.permutation(all_indices)[0:num_indices] expected_output = np.zeros(size, dtype=np.float32) expected_output[rand_indices] = 1. indicator = ops.indices_to_dense_vector(rand_indices, tf.shape(all_indices)[0]) np.testing.assert_array_equal(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_indices_to_dense_vector_int(): size = 500 num_indices = 25 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.zeros(size, dtype=np.int64) expected_output[rand_indices] = 1 tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size, 1, dtype=tf.int64) np.testing.assert_array_equal(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_indices_to_dense_vector_custom_values(): size = 100 num_indices = 10 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] indices_value = np.random.rand(1) default_value = np.random.rand(1) expected_output = np.float32(np.ones(size) * default_value) expected_output[rand_indices] = indices_value tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector( tf_rand_indices, size, indices_value=indices_value, default_value=default_value) np.testing.assert_allclose(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_indices_to_dense_vector_all_indices_as_input(): size = 500 num_indices = 500 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.ones(size, dtype=np.float32) tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) np.testing.assert_array_equal(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_indices_to_dense_vector_empty_indices_as_input(): size = 500 rand_indices = [] expected_output = np.zeros(size, dtype=np.float32) tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) np.testing.assert_array_equal(indicator, expected_output) assert indicator.dtype == expected_output.dtype def test_item_assignment(): tensor = tf.constant([1, 2, 3, 4]) out = ops.item_assignment(tensor, tensor >= 2, 6) np.testing.assert_array_equal(out, tf.constant([1, 6, 6, 6]))
[ "tensorflow.shape", "numpy.random.rand", "numpy.ones", "numpy.arange", "kerod.utils.ops.item_assignment", "numpy.testing.assert_allclose", "kerod.utils.ops.indices_to_dense_vector", "numpy.random.randint", "tensorflow.constant", "numpy.zeros", "numpy.testing.assert_array_equal", "numpy.random.permutation" ]
[((854, 877), 'numpy.random.randint', 'np.random.randint', (['size'], {}), '(size)\n', (871, 877), True, 'import numpy as np\n'), ((974, 1006), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.float32'}), '(size, dtype=np.float32)\n', (982, 1006), True, 'import numpy as np\n'), ((1069, 1094), 'tensorflow.constant', 'tf.constant', (['rand_indices'], {}), '(rand_indices)\n', (1080, 1094), True, 'import tensorflow as tf\n'), ((1111, 1161), 'kerod.utils.ops.indices_to_dense_vector', 'ops.indices_to_dense_vector', (['tf_rand_indices', 'size'], {}), '(tf_rand_indices, size)\n', (1138, 1161), False, 'from kerod.utils import ops\n'), ((1167, 1224), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (1196, 1224), True, 'import numpy as np\n'), ((1389, 1404), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (1398, 1404), True, 'import numpy as np\n'), ((1497, 1529), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.float32'}), '(size, dtype=np.float32)\n', (1505, 1529), True, 'import numpy as np\n'), ((1659, 1716), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (1688, 1716), True, 'import numpy as np\n'), ((1943, 1973), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.int64'}), '(size, dtype=np.int64)\n', (1951, 1973), True, 'import numpy as np\n'), ((2035, 2060), 'tensorflow.constant', 'tf.constant', (['rand_indices'], {}), '(rand_indices)\n', (2046, 2060), True, 'import tensorflow as tf\n'), ((2077, 2146), 'kerod.utils.ops.indices_to_dense_vector', 'ops.indices_to_dense_vector', (['tf_rand_indices', 'size', '(1)'], {'dtype': 'tf.int64'}), '(tf_rand_indices, size, 1, dtype=tf.int64)\n', (2104, 2146), False, 'from kerod.utils import ops\n'), ((2152, 2209), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (2181, 2209), True, 'import numpy as np\n'), ((2443, 2460), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2457, 2460), True, 'import numpy as np\n'), ((2481, 2498), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2495, 2498), True, 'import numpy as np\n'), ((2637, 2662), 'tensorflow.constant', 'tf.constant', (['rand_indices'], {}), '(rand_indices)\n', (2648, 2662), True, 'import tensorflow as tf\n'), ((2679, 2792), 'kerod.utils.ops.indices_to_dense_vector', 'ops.indices_to_dense_vector', (['tf_rand_indices', 'size'], {'indices_value': 'indices_value', 'default_value': 'default_value'}), '(tf_rand_indices, size, indices_value=\n indices_value, default_value=default_value)\n', (2706, 2792), False, 'from kerod.utils import ops\n'), ((2802, 2856), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (2828, 2856), True, 'import numpy as np\n'), ((3101, 3132), 'numpy.ones', 'np.ones', (['size'], {'dtype': 'np.float32'}), '(size, dtype=np.float32)\n', (3108, 3132), True, 'import numpy as np\n'), ((3156, 3181), 'tensorflow.constant', 'tf.constant', (['rand_indices'], {}), '(rand_indices)\n', (3167, 3181), True, 'import tensorflow as tf\n'), ((3198, 3248), 'kerod.utils.ops.indices_to_dense_vector', 'ops.indices_to_dense_vector', (['tf_rand_indices', 'size'], {}), '(tf_rand_indices, size)\n', (3225, 3248), False, 'from kerod.utils import ops\n'), ((3254, 3311), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (3283, 3311), True, 'import numpy as np\n'), ((3485, 3517), 'numpy.zeros', 'np.zeros', (['size'], {'dtype': 'np.float32'}), '(size, dtype=np.float32)\n', (3493, 3517), True, 'import numpy as np\n'), ((3541, 3566), 'tensorflow.constant', 'tf.constant', (['rand_indices'], {}), '(rand_indices)\n', (3552, 3566), True, 'import tensorflow as tf\n'), ((3583, 3633), 'kerod.utils.ops.indices_to_dense_vector', 'ops.indices_to_dense_vector', (['tf_rand_indices', 'size'], {}), '(tf_rand_indices, size)\n', (3610, 3633), False, 'from kerod.utils import ops\n'), ((3639, 3696), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['indicator', 'expected_output'], {}), '(indicator, expected_output)\n', (3668, 3696), True, 'import numpy as np\n'), ((3792, 3817), 'tensorflow.constant', 'tf.constant', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (3803, 3817), True, 'import tensorflow as tf\n'), ((3828, 3871), 'kerod.utils.ops.item_assignment', 'ops.item_assignment', (['tensor', '(tensor >= 2)', '(6)'], {}), '(tensor, tensor >= 2, 6)\n', (3847, 3871), False, 'from kerod.utils import ops\n'), ((1424, 1458), 'numpy.random.permutation', 'np.random.permutation', (['all_indices'], {}), '(all_indices)\n', (1445, 1458), True, 'import numpy as np\n'), ((3911, 3936), 'tensorflow.constant', 'tf.constant', (['[1, 6, 6, 6]'], {}), '([1, 6, 6, 6])\n', (3922, 3936), True, 'import tensorflow as tf\n'), ((919, 934), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (928, 934), True, 'import numpy as np\n'), ((1628, 1649), 'tensorflow.shape', 'tf.shape', (['all_indices'], {}), '(all_indices)\n', (1636, 1649), True, 'import tensorflow as tf\n'), ((1888, 1903), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (1897, 1903), True, 'import numpy as np\n'), ((2391, 2406), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (2400, 2406), True, 'import numpy as np\n'), ((2533, 2546), 'numpy.ones', 'np.ones', (['size'], {}), '(size)\n', (2540, 2546), True, 'import numpy as np\n'), ((3046, 3061), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (3055, 3061), True, 'import numpy as np\n')]
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. convert image npz to LMDB """ import argparse import glob import io import json import multiprocessing as mp import os from os.path import basename, exists from cytoolz import curry import numpy as np from tqdm import tqdm import lmdb import msgpack import msgpack_numpy msgpack_numpy.patch() def _compute_nbb(img_dump, conf_th, max_bb, min_bb, num_bb): num_bb = max(min_bb, (img_dump['conf'] > conf_th).sum()) num_bb = min(max_bb, num_bb) return int(num_bb) @curry def load_npz(conf_th, max_bb, min_bb, num_bb, fname, keep_all=False): try: img_dump = np.load(fname, allow_pickle=True) if keep_all: nbb = None else: nbb = _compute_nbb(img_dump, conf_th, max_bb, min_bb, num_bb) dump = {} for key, arr in img_dump.items(): if arr.dtype == np.float32: arr = arr.astype(np.float16) if arr.ndim == 2: dump[key] = arr[:nbb, :] elif arr.ndim == 1: dump[key] = arr[:nbb] else: raise ValueError('wrong ndim') except Exception as e: # corrupted file print(f'corrupted file {fname}', e) dump = {} nbb = 0 name = basename(fname) return name, dump, nbb def dumps_npz(dump, compress=False): with io.BytesIO() as writer: if compress: np.savez_compressed(writer, **dump, allow_pickle=True) else: np.savez(writer, **dump, allow_pickle=True) return writer.getvalue() def dumps_msgpack(dump): return msgpack.dumps(dump, use_bin_type=True) def main(opts): if opts.img_dir[-1] == '/': opts.img_dir = opts.img_dir[:-1] split = basename(opts.img_dir) if opts.keep_all: db_name = 'all' else: if opts.conf_th == -1: db_name = f'feat_numbb{opts.num_bb}' else: db_name = (f'feat_th{opts.conf_th}_max{opts.max_bb}' f'_min{opts.min_bb}') if opts.compress: db_name += '_compressed' if not exists(f'{opts.output}/{split}'): os.makedirs(f'{opts.output}/{split}') env = lmdb.open(f'{opts.output}/{split}/{db_name}', map_size=1024**4) txn = env.begin(write=True) files = glob.glob(f'{opts.img_dir}/*.npz') load = load_npz(opts.conf_th, opts.max_bb, opts.min_bb, opts.num_bb, keep_all=opts.keep_all) name2nbb = {} # number of bboxes with mp.Pool(opts.nproc) as pool, tqdm(total=len(files)) as pbar: for i, (fname, features, nbb) in enumerate( pool.imap_unordered(load, files, chunksize=128)): if not features: continue # corrupted feature if opts.compress: dump = dumps_npz(features, compress=True) else: dump = dumps_msgpack(features) txn.put(key=fname.encode('utf-8'), value=dump) if i % 1000 == 0: txn.commit() txn = env.begin(write=True) name2nbb[fname] = nbb pbar.update(1) txn.put(key=b'__keys__', value=json.dumps(list(name2nbb.keys())).encode('utf-8')) txn.commit() env.close() if opts.conf_th != -1 and not opts.keep_all: with open(f'{opts.output}/{split}/' f'nbb_th{opts.conf_th}_' f'max{opts.max_bb}_min{opts.min_bb}.json', 'w') as f: json.dump(name2nbb, f) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--img_dir", default=None, type=str, help="The input images.") parser.add_argument("--output", default=None, type=str, help="output lmdb") parser.add_argument('--nproc', type=int, default=8, help='number of cores used') parser.add_argument('--compress', action='store_true', help='compress the tensors') parser.add_argument('--keep_all', action='store_true', help='keep all features, overrides all following args') parser.add_argument('--conf_th', type=float, default=0.2, help='threshold for dynamic bounding boxes ' '(-1 for fixed)') parser.add_argument('--max_bb', type=int, default=100, help='max number of bounding boxes') parser.add_argument('--min_bb', type=int, default=10, help='min number of bounding boxes') parser.add_argument('--num_bb', type=int, default=100, help='number of bounding boxes (fixed)') args = parser.parse_args() main(args)
[ "os.path.exists", "numpy.savez", "msgpack_numpy.patch", "argparse.ArgumentParser", "os.makedirs", "json.dump", "io.BytesIO", "glob.glob", "lmdb.open", "os.path.basename", "multiprocessing.Pool", "numpy.savez_compressed", "numpy.load", "msgpack.dumps" ]
[((347, 368), 'msgpack_numpy.patch', 'msgpack_numpy.patch', ([], {}), '()\n', (366, 368), False, 'import msgpack_numpy\n'), ((1315, 1330), 'os.path.basename', 'basename', (['fname'], {}), '(fname)\n', (1323, 1330), False, 'from os.path import basename, exists\n'), ((1659, 1697), 'msgpack.dumps', 'msgpack.dumps', (['dump'], {'use_bin_type': '(True)'}), '(dump, use_bin_type=True)\n', (1672, 1697), False, 'import msgpack\n'), ((1801, 1823), 'os.path.basename', 'basename', (['opts.img_dir'], {}), '(opts.img_dir)\n', (1809, 1823), False, 'from os.path import basename, exists\n'), ((2240, 2305), 'lmdb.open', 'lmdb.open', (['f"""{opts.output}/{split}/{db_name}"""'], {'map_size': '(1024 ** 4)'}), "(f'{opts.output}/{split}/{db_name}', map_size=1024 ** 4)\n", (2249, 2305), False, 'import lmdb\n'), ((2348, 2382), 'glob.glob', 'glob.glob', (['f"""{opts.img_dir}/*.npz"""'], {}), "(f'{opts.img_dir}/*.npz')\n", (2357, 2382), False, 'import glob\n'), ((3609, 3634), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3632, 3634), False, 'import argparse\n'), ((656, 689), 'numpy.load', 'np.load', (['fname'], {'allow_pickle': '(True)'}), '(fname, allow_pickle=True)\n', (663, 689), True, 'import numpy as np\n'), ((1406, 1418), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1416, 1418), False, 'import io\n'), ((2150, 2182), 'os.path.exists', 'exists', (['f"""{opts.output}/{split}"""'], {}), "(f'{opts.output}/{split}')\n", (2156, 2182), False, 'from os.path import basename, exists\n'), ((2192, 2229), 'os.makedirs', 'os.makedirs', (['f"""{opts.output}/{split}"""'], {}), "(f'{opts.output}/{split}')\n", (2203, 2229), False, 'import os\n'), ((2547, 2566), 'multiprocessing.Pool', 'mp.Pool', (['opts.nproc'], {}), '(opts.nproc)\n', (2554, 2566), True, 'import multiprocessing as mp\n'), ((1463, 1517), 'numpy.savez_compressed', 'np.savez_compressed', (['writer'], {'allow_pickle': '(True)'}), '(writer, **dump, allow_pickle=True)\n', (1482, 1517), True, 'import numpy as np\n'), ((1544, 1587), 'numpy.savez', 'np.savez', (['writer'], {'allow_pickle': '(True)'}), '(writer, **dump, allow_pickle=True)\n', (1552, 1587), True, 'import numpy as np\n'), ((3544, 3566), 'json.dump', 'json.dump', (['name2nbb', 'f'], {}), '(name2nbb, f)\n', (3553, 3566), False, 'import json\n')]
import numpy as np import theano.tensor as tt from . import Hypers, ones from ...libs.tensors import tt_to_num class Metric(Hypers): def __call__(self, x1, x2): return tt.abs_(x1 - x2) def gram(self, x1, x2): #try: return (self(x1[:, self.dims].dimshuffle([0, 'x', 1]), x2[:, self.dims].dimshuffle(['x', 0, 1]))) #except ValueError: # return tt_to_num(self(x1[:, self.dims].dimshuffle([0, 'x']), x2[:, self.dims].dimshuffle(['x', 0]))) def input_sensitivity(self): return np.ones(self.shape) def __str__(self): return str(self.__class__.__name__) + '[h=' + str(self.hypers) + ']' __repr__ = __str__ class One(Metric): def __call__(self, x1, x2): return 1 class Delta(Metric): def __call__(self, x1, x2): return tt.eq((x1 - x2), np.float32(0)).sum(axis=2) def gram(self, x1, x2): return tt_to_num(self(x1[:, self.dims].dimshuffle([0, 'x', 1]), x2[:, self.dims].dimshuffle(['x', 0, 1]))) class DeltaEq(Metric): def __call__(self, x1, x2, eq=0): return (tt.eq(x1, eq)*tt.eq(x2, eq)).sum(axis=2) def gram(self, x1, x2, eq=0): return tt_to_num(self(x1[:, self.dims].dimshuffle([0, 'x', 1]), x2[:, self.dims].dimshuffle(['x', 0, 1]), eq)) class DeltaEq2(Metric): def __call__(self, x1, x2, eq1=0, eq2=0): return (tt.eq(x1, eq1)*tt.eq(x2, eq2) + tt.eq(x1, eq2)*tt.eq(x2, eq1)).sum(axis=2) def gram(self, x1, x2, eq1=0, eq2=0): return tt_to_num(self(x1[:, self.dims].dimshuffle([0, 'x', 1]), x2[:, self.dims].dimshuffle(['x', 0, 1]), eq1, eq2)) class Minimum(Metric): def __call__(self, x1, x2): return tt.prod(tt.minimum(x1-x2*0, x2-x1*0), axis=2) class Difference(Metric): def __call__(self, x1, x2): return x1 - x2 class L1(Metric): def __call__(self, x1, x2): return tt.sum(tt.abs_(x1 - x2)) class L2(Metric): def __call__(self, x1, x2): return tt.sum(0.5*(x1 - x2)**2) class ARD(Metric): def __init__(self, x, name=None, rate=None): super().__init__(x, name) self.rate = rate def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.rate is None: self.rate = Hypers.FlatExp(parent + 'rate', shape=self.shape) #FlatPos self.hypers += [self.rate] def input_sensitivity(self): return ones(self.shape) * self.rate ** 2 class ARD_L1(ARD): def __call__(self, x1, x2): return tt.dot(tt.abs_(x1 - x2), self.rate) def default_hypers(self, x=None, y=None): return {self.rate: 1 / np.abs(x[1:] - x[:-1]).mean(axis=0)} def input_sensitivity(self): return ones(self.shape) * self.rate class ARD_L2(ARD): def __call__(self, x1, x2): return tt.dot((x1 - x2) ** 2, (0.5 * self.rate ** 2)) def default_hypers(self, x=None, y=None): try: return {self.rate: 0.5 / np.abs(x[1:] - x[:-1]).mean(axis=0)} except: return {} class ARD_Dot(ARD): def __call__(self, x1, x2): return tt.dot(x1 * x2, self.rate ** 2) def default_hypers(self, x=None, y=None): return {self.rate: 1 / ((np.sqrt(np.abs(x)).mean(axis=0)) / np.abs(y).mean(axis=0))} class ARD_DotBias(ARD): def __init__(self, x, name=None, rate=None, bias=None): super().__init__(x, name, rate) self.bias = bias def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.bias is None: self.bias = Hypers.FlatExp(parent + 'bias') self.hypers += [self.bias] def __call__(self, x1, x2): return self.bias + tt.dot(x1 * x2, self.rate ** 2) #return self.bias + tt.dot(tt.dot(x1, self.rate), tt.dot(x2, self.rate)) def default_hypers(self, x=None, y=None): return {self.bias: np.abs(y).mean()/np.abs(x).mean(), self.rate: np.sqrt(np.abs(y)).mean(axis=0) / np.abs(x).mean(axis=0)} class PSD(Metric): def __init__(self, x, p=1, name=None, rate=None, directions=None): super().__init__(x, name) self.rate = rate self.directions = directions self.p = p def check_hypers(self, parent=''): super().check_hypers(parent=parent) if self.rate is None: self.rate = Hypers.FlatExp(parent + 'rate', shape=self.shape) if self.directions is None: self.directions = Hypers.FlatExp(parent + 'directions', shape=(self.p, self.shape)) self.hypers += [self.rate, self.directions] class PSD_Dot(PSD): def __call__(self, x1, x2): return tt.dot(tt.dot(x1.T, tt.dot(self.directions.T, self.directions) + tt.diag(self.rate**2)), x2) def default_hypers(self, x=None, y=None): return {self.rate: 1 / ((np.sqrt(np.abs(x)).mean(axis=0)) / np.abs(y).mean(axis=0)), self.directions: np.zeros(self.directions.shape)} class PSD_L2(PSD): def __call__(self, x1, x2): d = (x1 - x2) M = tt.dot(self.directions.T, self.directions) + tt.diag(self.rate**2) d * M return tt.dot(M, d) def default_hypers(self, x=None, y=None): return {self.rate: 1 / ((np.sqrt(np.abs(x)).mean(axis=0)) / np.abs(y).mean(axis=0)), self.directions: np.zeros(self.directions.shape)}
[ "numpy.abs", "theano.tensor.diag", "numpy.ones", "theano.tensor.sum", "theano.tensor.minimum", "theano.tensor.abs_", "numpy.zeros", "theano.tensor.eq", "numpy.float32", "theano.tensor.dot" ]
[((182, 198), 'theano.tensor.abs_', 'tt.abs_', (['(x1 - x2)'], {}), '(x1 - x2)\n', (189, 198), True, 'import theano.tensor as tt\n'), ((539, 558), 'numpy.ones', 'np.ones', (['self.shape'], {}), '(self.shape)\n', (546, 558), True, 'import numpy as np\n'), ((1976, 2004), 'theano.tensor.sum', 'tt.sum', (['(0.5 * (x1 - x2) ** 2)'], {}), '(0.5 * (x1 - x2) ** 2)\n', (1982, 2004), True, 'import theano.tensor as tt\n'), ((2810, 2854), 'theano.tensor.dot', 'tt.dot', (['((x1 - x2) ** 2)', '(0.5 * self.rate ** 2)'], {}), '((x1 - x2) ** 2, 0.5 * self.rate ** 2)\n', (2816, 2854), True, 'import theano.tensor as tt\n'), ((3098, 3129), 'theano.tensor.dot', 'tt.dot', (['(x1 * x2)', '(self.rate ** 2)'], {}), '(x1 * x2, self.rate ** 2)\n', (3104, 3129), True, 'import theano.tensor as tt\n'), ((5122, 5134), 'theano.tensor.dot', 'tt.dot', (['M', 'd'], {}), '(M, d)\n', (5128, 5134), True, 'import theano.tensor as tt\n'), ((1696, 1732), 'theano.tensor.minimum', 'tt.minimum', (['(x1 - x2 * 0)', '(x2 - x1 * 0)'], {}), '(x1 - x2 * 0, x2 - x1 * 0)\n', (1706, 1732), True, 'import theano.tensor as tt\n'), ((1891, 1907), 'theano.tensor.abs_', 'tt.abs_', (['(x1 - x2)'], {}), '(x1 - x2)\n', (1898, 1907), True, 'import theano.tensor as tt\n'), ((2520, 2536), 'theano.tensor.abs_', 'tt.abs_', (['(x1 - x2)'], {}), '(x1 - x2)\n', (2527, 2536), True, 'import theano.tensor as tt\n'), ((3686, 3717), 'theano.tensor.dot', 'tt.dot', (['(x1 * x2)', '(self.rate ** 2)'], {}), '(x1 * x2, self.rate ** 2)\n', (3692, 3717), True, 'import theano.tensor as tt\n'), ((4907, 4938), 'numpy.zeros', 'np.zeros', (['self.directions.shape'], {}), '(self.directions.shape)\n', (4915, 4938), True, 'import numpy as np\n'), ((5026, 5068), 'theano.tensor.dot', 'tt.dot', (['self.directions.T', 'self.directions'], {}), '(self.directions.T, self.directions)\n', (5032, 5068), True, 'import theano.tensor as tt\n'), ((5071, 5094), 'theano.tensor.diag', 'tt.diag', (['(self.rate ** 2)'], {}), '(self.rate ** 2)\n', (5078, 5094), True, 'import theano.tensor as tt\n'), ((5308, 5339), 'numpy.zeros', 'np.zeros', (['self.directions.shape'], {}), '(self.directions.shape)\n', (5316, 5339), True, 'import numpy as np\n'), ((840, 853), 'numpy.float32', 'np.float32', (['(0)'], {}), '(0)\n', (850, 853), True, 'import numpy as np\n'), ((1090, 1103), 'theano.tensor.eq', 'tt.eq', (['x1', 'eq'], {}), '(x1, eq)\n', (1095, 1103), True, 'import theano.tensor as tt\n'), ((1104, 1117), 'theano.tensor.eq', 'tt.eq', (['x2', 'eq'], {}), '(x2, eq)\n', (1109, 1117), True, 'import theano.tensor as tt\n'), ((4661, 4703), 'theano.tensor.dot', 'tt.dot', (['self.directions.T', 'self.directions'], {}), '(self.directions.T, self.directions)\n', (4667, 4703), True, 'import theano.tensor as tt\n'), ((4706, 4729), 'theano.tensor.diag', 'tt.diag', (['(self.rate ** 2)'], {}), '(self.rate ** 2)\n', (4713, 4729), True, 'import theano.tensor as tt\n'), ((1373, 1387), 'theano.tensor.eq', 'tt.eq', (['x1', 'eq1'], {}), '(x1, eq1)\n', (1378, 1387), True, 'import theano.tensor as tt\n'), ((1388, 1402), 'theano.tensor.eq', 'tt.eq', (['x2', 'eq2'], {}), '(x2, eq2)\n', (1393, 1402), True, 'import theano.tensor as tt\n'), ((1405, 1419), 'theano.tensor.eq', 'tt.eq', (['x1', 'eq2'], {}), '(x1, eq2)\n', (1410, 1419), True, 'import theano.tensor as tt\n'), ((1420, 1434), 'theano.tensor.eq', 'tt.eq', (['x2', 'eq1'], {}), '(x2, eq1)\n', (1425, 1434), True, 'import theano.tensor as tt\n'), ((2627, 2649), 'numpy.abs', 'np.abs', (['(x[1:] - x[:-1])'], {}), '(x[1:] - x[:-1])\n', (2633, 2649), True, 'import numpy as np\n'), ((3873, 3882), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (3879, 3882), True, 'import numpy as np\n'), ((3890, 3899), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (3896, 3899), True, 'import numpy as np\n'), ((3969, 3978), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (3975, 3978), True, 'import numpy as np\n'), ((2954, 2976), 'numpy.abs', 'np.abs', (['(x[1:] - x[:-1])'], {}), '(x[1:] - x[:-1])\n', (2960, 2976), True, 'import numpy as np\n'), ((3245, 3254), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (3251, 3254), True, 'import numpy as np\n'), ((3943, 3952), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (3949, 3952), True, 'import numpy as np\n'), ((4849, 4858), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (4855, 4858), True, 'import numpy as np\n'), ((5250, 5259), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (5256, 5259), True, 'import numpy as np\n'), ((3218, 3227), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (3224, 3227), True, 'import numpy as np\n'), ((4822, 4831), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (4828, 4831), True, 'import numpy as np\n'), ((5223, 5232), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (5229, 5232), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Oct 30 10:12:34 2018 @author: kite """ """ 完成策略的回测,绘制以沪深300为基准的收益曲线,计算年化收益、最大回撤、夏普比率 主要的方法包括: ma10_factor: is_k_up_break_ma10:当日K线是否上穿10日均线 is_k_down_break_ma10:当日K线是否下穿10日均线 compare_close_2_ma_10:工具方法,某日收盘价和当日对应的10日均线的关系 backtest:回测主逻辑方法,从股票池获取股票后,按照每天的交易日一天天回测 """ import pickle from pymongo import DESCENDING, ASCENDING import numpy as np import pandas as pd import matplotlib.pyplot as plt from stock_pool_strategy import stock_pool, find_out_stocks from database import DB_CONN from factor.ma10_factor import is_k_up_break_ma10, is_k_down_break_ma10 from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir plt.rcParams['figure.figsize'] = [14, 8] plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' plt.style.use('ggplot') SINGLE_DAY_MAX_DROP_RATE = 0.03 MAX_DROP_RATE = 0.1 ATR_WIN = 14 ATR_RATIO = 2 RISK_RATIO = 0.01 def backtest(begin_date, end_date, stop_method=None, pos_method='equal'): """ Arguments: begin_date: 回测开始日期 end_date: 回测结束日期 stop_method : 止损方式 None : 无止损 fixed : 固定比例止损 float : 浮动止损 ATR_float_dynamic : 动态ATR浮动止损 ATR_float_static : 静态ATR浮动止损 pos_method : 头寸分配方式 equal : 均仓分配头寸 atr : 按照ATR分配头寸 Returns: Account: 数据类型,dict init_assets : 初始资产, 默认1E7 history_table : 交割单 net_value : 每日净值 final_net_value : 最终日净值 profit : 收益 day_profit : 每日收益 positions : 每日仓位 stop_loss : 止损的方式和止损参数 position_manage : 头寸管理方式和相关参数 """ # 记录止损时间点 # stop_lose_position_date_current = [] # stop_lose_position_date = [] # 记录回测账户信息 Account = {} # 仓位相关的初始化 position_manage = {} if pos_method == 'equal': single_position = 2E5 position_manage['头寸分配方式'] = '均仓' Account['position_manage'] = position_manage elif pos_method == 'atr': position_manage['头寸分配方式'] = 'ATR分配头寸' position_manage['ATR_WIN'] = ATR_WIN position_manage['RISK_RATIO'] = RISK_RATIO Account['position_manage'] = position_manage positions = pd.Series() # 记录每日仓位信息 stop_loss = {} cash = 1E7 init_assets = cash Account['init_assets'] = init_assets Account['start'] = begin_date Account['end'] = end_date if stop_method is None: Account['stop_loss'] = '无止损' elif stop_method == 'fixed': stop_loss['单日跌幅比例'] = SINGLE_DAY_MAX_DROP_RATE stop_loss['累计跌幅比例'] = MAX_DROP_RATE stop_loss['止损方式'] = '固定比例止损' Account['stop_loss'] = stop_loss elif stop_method == 'float': stop_loss['跌幅比例'] = MAX_DROP_RATE stop_loss['止损方式'] = '浮动止损' Account['stop_loss'] = stop_loss elif (stop_method == 'ATR_float_dynamic') or (stop_method == 'ATR_float_static'): stop_loss['ATR_WIN'] = ATR_WIN stop_loss['ATR_RATIO'] = ATR_RATIO stop_loss['止损方式'] = '动态ATR浮动止损' Account['stop_loss'] = stop_loss # 时间为key的净值、收益和同期沪深基准 df_profit = pd.DataFrame(columns=['net_value', 'profit', 'hs300']) # 时间为key的单日收益和同期沪深基准 df_day_profit = pd.DataFrame(columns=['profit', 'hs300']) all_dates = get_trading_dates(begin_date, end_date) hs300_begin_value = DB_CONN['daily'].find_one( {'code': '000300', 'date': all_dates[0], 'index': True}, projection={'close': True})['close'] adjust_dates, date_codes_dict = stock_pool(begin_date, end_date) last_phase_codes = None this_phase_codes = None to_be_sold_codes = set() to_be_bought_codes = set() holding_code_dict = dict() last_date = None last_entry_dates = {} # 用于记录入场时间 history_table = pd.DataFrame() # 记录 交割单 last_total_capital = 1e7 # 前一天的总资产值,初始值为初始总资产 last_hs300_close = hs300_begin_value # 前一天的HS300值,初始值为第一天的值 net_value = 1 # 净值 count = 0 # 按照日期一步步回测 for _date in all_dates: print('Backtest at %s.' % _date) # 当期持仓股票列表 before_sell_holding_codes = list(holding_code_dict.keys()) # 处理复权 if last_date is not None and len(before_sell_holding_codes) > 0: last_daily_cursor = DB_CONN['daily'].find( {'code': {'$in': before_sell_holding_codes}, 'date': last_date, 'index': False}, projection={'code': True, 'au_factor': True, '_id':False}) code_last_aufactor_dict = dict() for last_daily in last_daily_cursor: code_last_aufactor_dict[last_daily['code']] = last_daily['au_factor'] current_daily_cursor = DB_CONN['daily'].find( {'code': {'$in': before_sell_holding_codes}, 'date': _date, 'index': False}, projection={'code': True, 'au_factor': True, '_id':False}) for current_daily in current_daily_cursor: print(current_daily['code'], _date) current_aufactor = current_daily['au_factor'] code = current_daily['code'] before_volume = holding_code_dict[code]['volume'] if code in code_last_aufactor_dict: last_aufactor = code_last_aufactor_dict[code] after_volume = int(before_volume * (current_aufactor / last_aufactor)) holding_code_dict[code]['volume'] = after_volume print('持仓量调整:%s, %6d, %10.6f, %6d, %10.6f' % (code, before_volume, last_aufactor, after_volume, current_aufactor)) # 卖出 print('待卖股票池:', to_be_sold_codes, flush=True) if len(to_be_sold_codes) > 0: sell_daily_cursor = DB_CONN['daily'].find( {'code': {'$in': list(to_be_sold_codes)}, 'date': _date, 'index': False, 'is_trading': True}, projection={'open': True, 'code': True, 'low_limit':True} ) for sell_daily in sell_daily_cursor: code = sell_daily['code'] # 若开盘价是跌停价不准卖出 open_price = sell_daily['open'] low_limit = sell_daily['low_limit'] if (code in before_sell_holding_codes) & (open_price > low_limit): holding_stock = holding_code_dict[code] holding_volume = holding_stock['volume'] sell_price = sell_daily['open'] sell_amount = holding_volume * sell_price cash += sell_amount cost = holding_stock['cost'] single_profit = (sell_amount - cost) * 100 / cost last_entry_dates[code] = None print('卖出 %s, %6d, %6.2f, %8.2f, %4.2f' % (code, holding_volume, sell_price, sell_amount, single_profit)) # 记录 交易记录 count += 1 _order = {'datetime':_date, 'code':code, 'price':sell_price, 'amount':-1 * holding_volume, 'cash':cash} temp = pd.DataFrame(data=_order, index=[count]) history_table = pd.concat([history_table, temp]) del holding_code_dict[code] to_be_sold_codes.remove(code) print('卖出后,现金: %10.2f' % cash) # 买入 print('待买股票池:', to_be_bought_codes, flush=True) if len(to_be_bought_codes) > 0: buy_daily_cursor = DB_CONN['daily'].find( {'code': {'$in': list(to_be_bought_codes)}, 'date': _date, 'index': False, 'is_trading': True}, projection={'code': True, 'open': True, 'high_limit':True} ) for buy_daily in buy_daily_cursor: # 若开盘价是涨停价不准买入 open_price = buy_daily['open'] high_limit = buy_daily['high_limit'] code = buy_daily['code'] # ===========================ATR分配头寸 code start========================= if pos_method == 'atr': ATR = calc_ATR(code, _date) single_position = init_assets * RISK_RATIO / (ATR_RATIO * ATR) // 100 * 100 if (cash > single_position) & (open_price < high_limit): buy_price = buy_daily['open'] volume = int(int(single_position / buy_price) / 100) * 100 buy_amount = buy_price * volume cash -= buy_amount holding_code_dict[code] = { 'volume': volume, 'cost': buy_amount, 'last_value': buy_amount} last_entry_dates[code] = _date print('买入 %s, %6d, %6.2f, %8.2f' % (code, volume, buy_price, buy_amount)) # 记录 交易记录 count += 1 _order = {'datetime':_date, 'code':code, 'price':buy_price, 'amount': volume, 'cash':cash} temp = pd.DataFrame(data=_order, index=[count]) history_table = pd.concat([history_table, temp]) print('买入后,现金: %10.2f' % cash) # 持仓股代码列表 holding_codes = list(holding_code_dict.keys()) # 如果调整日,则获取新一期的股票列表 if _date in adjust_dates: print('股票池调整日:%s,备选股票列表:' % _date, flush=True) # 暂存为上期的日期 if this_phase_codes is not None: last_phase_codes = this_phase_codes this_phase_codes = date_codes_dict[_date] print(this_phase_codes, flush=True) # 找到所有调出股票代码,在第二日开盘时卖出 if last_phase_codes is not None: out_codes = find_out_stocks(last_phase_codes, this_phase_codes) for out_code in out_codes: if out_code in holding_code_dict: to_be_sold_codes.add(out_code) # 检查是否有需要第二天卖出的股票 for holding_code in holding_codes: if is_k_down_break_ma10(holding_code, _date): to_be_sold_codes.add(holding_code) if stop_method is not None: stop_loss_positions(holding_code, _date, last_entry_dates, to_be_sold_codes, stop_method) # 检查是否有需要第二天买入的股票 to_be_bought_codes.clear() if this_phase_codes is not None: for _code in this_phase_codes: if _code not in holding_codes and is_k_up_break_ma10(_code, _date): to_be_bought_codes.add(_code) # 计算总资产 total_value = 0 holding_daily_cursor = DB_CONN['daily'].find( {'code': {'$in': holding_codes}, 'date': _date}, projection={'close': True, 'code': True} ) for holding_daily in holding_daily_cursor: code = holding_daily['code'] holding_stock = holding_code_dict[code] value = holding_daily['close'] * holding_stock['volume'] total_value += value profit = (value - holding_stock['cost']) * 100 / holding_stock['cost'] one_day_profit = (value - holding_stock['last_value']) * 100 / holding_stock['last_value'] holding_stock['last_value'] = value print('持仓: %s, %10.2f, %4.2f, %4.2f' % (code, value, profit, one_day_profit)) total_capital = total_value + cash positions.loc[_date] = total_value / total_capital hs300_current_value = DB_CONN['daily'].find_one( {'code': '000300', 'date': _date, 'index': True}, projection={'close': True})['close'] print('收盘后,现金: %10.2f, 总资产: %10.2f' % (cash, total_capital)) last_date = _date net_value = np.round(total_capital / 1e7, 4) df_profit.loc[_date] = { 'net_value': np.round(total_capital / 1e7, 4), 'profit': np.round(100 * (total_capital - 1e7) / 1e7, 4), 'hs300': np.round(100 * (hs300_current_value - hs300_begin_value) / hs300_begin_value, 4) } # 计算单日收益 df_day_profit.loc[_date] = { 'profit': np.round(100 * (total_capital - last_total_capital) / last_total_capital, 4), 'hs300': np.round(100 * (hs300_current_value - last_hs300_close) / last_hs300_close, 4) } # 暂存当日的总资产和HS300,作为下一个交易日计算单日收益的基础 last_total_capital = total_capital last_hs300_close = hs300_current_value Account['history_table'] = history_table Account['net_value'] = df_profit['net_value'] Account['final_net_value'] = net_value Account['profit'] = df_profit Account['day_profit'] = df_day_profit Account['positions'] = positions return Account def stop_loss_positions(holding_code, _date, last_entry_dates, to_be_sold_codes, method): """ 注意,这里回测中的止损逻辑,应当看做成收盘后的处理,因为盘中不可能知道收盘价的!! 1.固定比例止损 满足以下其一就进行全部止损: 1.单日亏损超过3%; 2.累计亏损超过10% 2.固定比例浮动止损: 回看区间 -- 自买入日到当前回测日 条件 -- 回看区间内的最高价下跌超过一定比例, 就进行止损; 3.动态波动率浮动止损: 回看区间 -- 自买入日到当前回测日 条件 -- 回看区间内的最高价下跌, 超过回测日ATR的倍数, 就进行止损; """ # 当前收盘价,使用后复权 current_cursor = DB_CONN['daily_hfq'].find_one( {'code':holding_code, 'date':_date,'index':False}) # 买入时的价格和日期 entry_date = last_entry_dates[holding_code] current_close = current_cursor['close'] interval_cursor = DB_CONN['daily_hfq'].find( {'code':holding_code, 'date':{'$gte': entry_date, '$lte': _date}, 'index':False}, projection={'high':True, '_id':False} ) high = max([x['high'] for x in interval_cursor]) # ===========================固定比例止损 code start========================= if method == 'fixed': current_open = current_cursor['open'] entry_daily_cursor = DB_CONN['daily_hfq'].find_one( {'code':holding_code, 'date':entry_date,'index':False} ) entry_price = entry_daily_cursor['open'] if ((current_open - current_close) / current_open) > SINGLE_DAY_MAX_DROP_RATE: to_be_sold_codes.add(holding_code) elif ((entry_price - current_close) / entry_price) > MAX_DROP_RATE: to_be_sold_codes.add(holding_code) # ===========================固定比例浮动止损 code start=================== elif method == 'float': if (high - current_close) > MAX_DROP_RATE: to_be_sold_codes.add(holding_code) # ===========================波动率浮动止损 code start========================= # 运用实时(动态)波动率浮动止损 elif method == 'ATR_float_dynamic': ATR = calc_ATR(holding_code, _date) if ATR is not None: if (high - current_close) > ATR * ATR_RATIO: to_be_sold_codes.add(holding_code) elif method == 'ATR_float_static': ATR = calc_ATR(holding_code, entry_date) if ATR is not None: if (high - current_close) > ATR * ATR_RATIO: to_be_sold_codes.add(holding_code) def calc_ATR(code, date): ATR_cursor = DB_CONN['daily'].find( {'code':code, 'date':{'$lte': date}, 'index':False}, projection={'open':True, 'high':True, 'low':True, 'close':True, '_id':False}, limit = ATR_WIN+1) if ATR_cursor is None: return None df = pd.DataFrame([r for r in ATR_cursor]) if len(df) != ATR_WIN+1: return None df = df.assign(pdc = df['close'].shift(1)) tr = df.apply(lambda x : max( x['high'] - x['low'], abs(x["high"] - x["pdc"]), abs(x['low'] - x['pdc'])), axis=1) ATR = tr[- ATR_WIN :].mean() return ATR def account_analysis(Account, start, end): ''' ''' net_value = Account['net_value'] final_net_value = Account['final_net_value'] profit = Account['profit'] day_profit = Account['day_profit'] positions = Account['positions'] print('累积收益', flush=True) print(profit, flush=True) print('单日收益', flush=True) print(day_profit, flush=True) # 计算最大回撤 # drawdown = compute_drawdown(net_value) drawdown = dynamic_max_drawdown(net_value) # 计算年化收益和夏普比率 annual_profit, sharpe_ratio = compute_sharpe_ratio(final_net_value, day_profit) # 计算信息率 ir = compute_ir(day_profit) print('回测结果 %s - %s,年化收益: %7.3f,最大回撤:%7.3f,夏普比率:%4.2f,信息率:%4.2f' % (start, end, annual_profit, drawdown.max(), sharpe_ratio, ir)) # print(np.sort(list(set(stop_lose_position_date)))) # print(np.sort(list(set(stop_lose_position_date_current)))) profit.index = pd.DatetimeIndex(profit.index, name = 'date') positions.index = pd.DatetimeIndex(positions.index, name = 'date') drawdown.index = pd.DatetimeIndex(positions.index, name = 'date') fig, axes = plt.subplots(3, 1, figsize=(16,20)) axes[0] = plt.subplot2grid((5,3), (0,0), colspan=3, rowspan=3) axes[0].plot(profit.loc[:,['profit', 'hs300']]) plt.setp(axes[0].get_xticklabels(), visible=False) axes[0].set(title='Backtest Result') axes[0].legend(['profit', 'hs300'], loc='best') axes[1] = plt.subplot2grid((5,3), (3,0), colspan=3, sharex=axes[0]) axes[1].plot(positions) plt.setp(axes[1].get_xticklabels(), visible=False) axes[1].set_title('Daily Positions') axes[1].legend(['Positions'], loc='best') axes[2] = plt.subplot2grid((5,3), (4,0), colspan=3, sharex=axes[0]) axes[2].plot(drawdown) axes[2].set_title('Dynamic Max Draw Down') axes[2].legend(['MaxDrawdown'], loc='best') plt.show() def save_file(Account): with open('backtest--001.file', 'wb') as f: pickle.dump(Account, f) if __name__ == "__main__": start = '2015-01-01' end = '2015-12-31' daily_hfq_col = DB_CONN['daily_hfq'] if 'code_1_date_1_index_1_is_trading_1' not in daily_hfq_col.index_information().keys(): daily_hfq_col.create_index( [('code', ASCENDING), ('date', ASCENDING), ('index', ASCENDING), ('is_trading', ASCENDING)] ) daily_col = DB_CONN['daily'] if 'code_1_date_1_index_1_is_trading_1' not in daily_col.index_information().keys(): daily_col.create_index( [('code', ASCENDING), ('date', ASCENDING), ('index', ASCENDING), ('is_trading', ASCENDING)] ) Account = backtest(start, end, 'fixed') account_analysis(Account, start, end)
[ "pandas.Series", "pickle.dump", "matplotlib.pyplot.show", "stock_pool_strategy.find_out_stocks", "pandas.DatetimeIndex", "matplotlib.pyplot.style.use", "stock_util.get_trading_dates", "factor.ma10_factor.is_k_down_break_ma10", "stock_util.dynamic_max_drawdown", "factor.ma10_factor.is_k_up_break_ma10", "stock_util.compute_ir", "stock_pool_strategy.stock_pool", "pandas.DataFrame", "matplotlib.pyplot.subplot2grid", "pandas.concat", "matplotlib.pyplot.subplots", "numpy.round", "stock_util.compute_sharpe_ratio" ]
[((886, 909), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (899, 909), True, 'import matplotlib.pyplot as plt\n'), ((2365, 2376), 'pandas.Series', 'pd.Series', ([], {}), '()\n', (2374, 2376), True, 'import pandas as pd\n'), ((3283, 3337), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['net_value', 'profit', 'hs300']"}), "(columns=['net_value', 'profit', 'hs300'])\n", (3295, 3337), True, 'import pandas as pd\n'), ((3380, 3421), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['profit', 'hs300']"}), "(columns=['profit', 'hs300'])\n", (3392, 3421), True, 'import pandas as pd\n'), ((3439, 3478), 'stock_util.get_trading_dates', 'get_trading_dates', (['begin_date', 'end_date'], {}), '(begin_date, end_date)\n', (3456, 3478), False, 'from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir\n'), ((3678, 3710), 'stock_pool_strategy.stock_pool', 'stock_pool', (['begin_date', 'end_date'], {}), '(begin_date, end_date)\n', (3688, 3710), False, 'from stock_pool_strategy import stock_pool, find_out_stocks\n'), ((3942, 3956), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3954, 3956), True, 'import pandas as pd\n'), ((15893, 15930), 'pandas.DataFrame', 'pd.DataFrame', (['[r for r in ATR_cursor]'], {}), '([r for r in ATR_cursor])\n', (15905, 15930), True, 'import pandas as pd\n'), ((16697, 16728), 'stock_util.dynamic_max_drawdown', 'dynamic_max_drawdown', (['net_value'], {}), '(net_value)\n', (16717, 16728), False, 'from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir\n'), ((16781, 16830), 'stock_util.compute_sharpe_ratio', 'compute_sharpe_ratio', (['final_net_value', 'day_profit'], {}), '(final_net_value, day_profit)\n', (16801, 16830), False, 'from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir\n'), ((16852, 16874), 'stock_util.compute_ir', 'compute_ir', (['day_profit'], {}), '(day_profit)\n', (16862, 16874), False, 'from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir\n'), ((17159, 17202), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['profit.index'], {'name': '"""date"""'}), "(profit.index, name='date')\n", (17175, 17202), True, 'import pandas as pd\n'), ((17227, 17273), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['positions.index'], {'name': '"""date"""'}), "(positions.index, name='date')\n", (17243, 17273), True, 'import pandas as pd\n'), ((17297, 17343), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['positions.index'], {'name': '"""date"""'}), "(positions.index, name='date')\n", (17313, 17343), True, 'import pandas as pd\n'), ((17367, 17403), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {'figsize': '(16, 20)'}), '(3, 1, figsize=(16, 20))\n', (17379, 17403), True, 'import matplotlib.pyplot as plt\n'), ((17422, 17476), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(5, 3)', '(0, 0)'], {'colspan': '(3)', 'rowspan': '(3)'}), '((5, 3), (0, 0), colspan=3, rowspan=3)\n', (17438, 17476), True, 'import matplotlib.pyplot as plt\n'), ((17694, 17753), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(5, 3)', '(3, 0)'], {'colspan': '(3)', 'sharex': 'axes[0]'}), '((5, 3), (3, 0), colspan=3, sharex=axes[0])\n', (17710, 17753), True, 'import matplotlib.pyplot as plt\n'), ((17941, 18000), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(5, 3)', '(4, 0)'], {'colspan': '(3)', 'sharex': 'axes[0]'}), '((5, 3), (4, 0), colspan=3, sharex=axes[0])\n', (17957, 18000), True, 'import matplotlib.pyplot as plt\n'), ((18130, 18140), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (18138, 18140), True, 'import matplotlib.pyplot as plt\n'), ((12221, 12260), 'numpy.round', 'np.round', (['(total_capital / 10000000.0)', '(4)'], {}), '(total_capital / 10000000.0, 4)\n', (12229, 12260), True, 'import numpy as np\n'), ((18231, 18254), 'pickle.dump', 'pickle.dump', (['Account', 'f'], {}), '(Account, f)\n', (18242, 18254), False, 'import pickle\n'), ((10439, 10480), 'factor.ma10_factor.is_k_down_break_ma10', 'is_k_down_break_ma10', (['holding_code', '_date'], {}), '(holding_code, _date)\n', (10459, 10480), False, 'from factor.ma10_factor import is_k_up_break_ma10, is_k_down_break_ma10\n'), ((12312, 12351), 'numpy.round', 'np.round', (['(total_capital / 10000000.0)', '(4)'], {}), '(total_capital / 10000000.0, 4)\n', (12320, 12351), True, 'import numpy as np\n'), ((12368, 12428), 'numpy.round', 'np.round', (['(100 * (total_capital - 10000000.0) / 10000000.0)', '(4)'], {}), '(100 * (total_capital - 10000000.0) / 10000000.0, 4)\n', (12376, 12428), True, 'import numpy as np\n'), ((12437, 12522), 'numpy.round', 'np.round', (['(100 * (hs300_current_value - hs300_begin_value) / hs300_begin_value)', '(4)'], {}), '(100 * (hs300_current_value - hs300_begin_value) / hs300_begin_value, 4\n )\n', (12445, 12522), True, 'import numpy as np\n'), ((12604, 12680), 'numpy.round', 'np.round', (['(100 * (total_capital - last_total_capital) / last_total_capital)', '(4)'], {}), '(100 * (total_capital - last_total_capital) / last_total_capital, 4)\n', (12612, 12680), True, 'import numpy as np\n'), ((12703, 12781), 'numpy.round', 'np.round', (['(100 * (hs300_current_value - last_hs300_close) / last_hs300_close)', '(4)'], {}), '(100 * (hs300_current_value - last_hs300_close) / last_hs300_close, 4)\n', (12711, 12781), True, 'import numpy as np\n'), ((10150, 10201), 'stock_pool_strategy.find_out_stocks', 'find_out_stocks', (['last_phase_codes', 'this_phase_codes'], {}), '(last_phase_codes, this_phase_codes)\n', (10165, 10201), False, 'from stock_pool_strategy import stock_pool, find_out_stocks\n'), ((7350, 7390), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '_order', 'index': '[count]'}), '(data=_order, index=[count])\n', (7362, 7390), True, 'import pandas as pd\n'), ((7427, 7459), 'pandas.concat', 'pd.concat', (['[history_table, temp]'], {}), '([history_table, temp])\n', (7436, 7459), True, 'import pandas as pd\n'), ((9453, 9493), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '_order', 'index': '[count]'}), '(data=_order, index=[count])\n', (9465, 9493), True, 'import pandas as pd\n'), ((9530, 9562), 'pandas.concat', 'pd.concat', (['[history_table, temp]'], {}), '([history_table, temp])\n', (9539, 9562), True, 'import pandas as pd\n'), ((10925, 10957), 'factor.ma10_factor.is_k_up_break_ma10', 'is_k_up_break_ma10', (['_code', '_date'], {}), '(_code, _date)\n', (10943, 10957), False, 'from factor.ma10_factor import is_k_up_break_ma10, is_k_down_break_ma10\n')]
import torch import torch.nn as nn import numpy as np import random from torch import optim from rl_network import * class Agent: """ 학습 에이전트 네트워크 모델을 받고, 학습을 수행함 """ def __init__(self, num_states, num_actions, network_type, learning_rate, use_rnn=False, gamma=0.99, capacity=10000, batch_size=16): self.gamma = gamma self.network_type = network_type self.use_rnn = use_rnn # 신경망 생성 try: if network_type == 'policy_gradient': # policy gradient self.network = PolicyGradient(num_states, num_actions, use_rnn=use_rnn) elif network_type == 'actor_critic': self.network = ActorCritic(n_in=num_states, n_out=num_actions, use_rnn=use_rnn) self.large_i = 1 # for update actor elif network_type == 'dqn': self.network = DQN(input_size=num_states, output_size=num_actions, use_rnn=use_rnn) self.target_network = DQN(input_size=num_states, output_size=num_actions, use_rnn=use_rnn) self.target_network.load_state_dict(self.network.state_dict()) # target Q makes same weights as Q self.replay_memory = ReplayMemory(capacity, batch_size) else: raise Exception('invalid network type {}'.format(network_type)) except Exception as e: print(e) # optimizer 생성 self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate) def update(self, history=None): if self.network_type == 'policy_gradient': assert history is not None curr_r = 0 loss = torch.zeros(1, 1) for i in reversed(range(len(history))): log_prob, reward, entropy = history[i] curr_r = self.gamma * curr_r + reward for lgp, etp in zip(log_prob, entropy): loss -= torch.sum(((curr_r * lgp) + (1e-3 * etp))) loss /= len(history) self.optimizer.zero_grad() loss.backward() self.optimizer.step() elif self.network_type == 'actor_critic': assert history is not None loss = torch.zeros(1, 1) log_prob, reward, entropy, value, next_state, done = history[-1] with torch.no_grad(): if not done: next_value, _, _ = self.network(next_state) else: next_value = 0 delta = reward + self.gamma * next_value - value for lpb, etp in zip(log_prob, entropy): loss -= (delta * value + (self.large_i * lpb) + (1e-3 * etp)) self.large_i *= self.gamma self.optimizer.zero_grad() loss.backward() self.optimizer.step() elif self.network_type == 'dqn': loss = torch.zeros(1, 1) # 저장된 transition 수가 mini_batch 크기보다 작으면 아무 것도 안함 if len(self.replay_memory) < self.replay_memory.batch_size: return # 미니배치 생성 (state, action, state_next, reward, done) transitions = np.array(self.replay_memory.sample(), dtype=object) state_batch = torch.cat(tuple(transitions[:, 0])) action_batch = torch.tensor(tuple(transitions[:, 1])) next_states_batch = torch.cat(tuple(transitions[:, 2])) reward_batch = torch.tensor(transitions[:, 3].astype(np.float)) done_batch = torch.tensor(tuple(transitions[:, 4])) # label을 위한 target network 계산 action_target = [] with torch.no_grad(): first, second = self.target_network(next_states_batch) for act_val in [first, second]: # if episode terminates at step j + 1 then just reward max_act_val, _ = torch.max(act_val, dim=1) target = reward_batch + self.gamma * (~done_batch) * max_act_val action_target.append(target) first, second = self.network(state_batch) for idx, (act_val, target) in enumerate(zip([first, second], action_target)): action_loss = torch.sum((target - torch.gather( act_val, dim=1, index=action_batch[:, idx].view(-1, 1))) ** 2) loss += (action_loss / len(transitions)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() else: raise Exception('Unknown network type update') def update_network(self, step, verbose=False): assert self.network_type == 'dqn' if verbose: print('update network, global_step {}'.format(step)) self.target_network.load_state_dict(self.network.state_dict()) def get_action(self, state, *args): outputs = self.network.get_action(state, *args) return outputs class ReplayMemory: """ DQN에서 사용할 replay-buffer """ def __init__(self, capacity, batch_size): self.capacity = capacity # 메모리 최대 저장 건수 self.memory = [] # 실제 transition 을 저장할 변수 self.index = 0 # 저장 위치를 가리킬 인덱스 변수 self.batch_size = batch_size def memorize(self, state, action, state_next, reward, done): if len(self.memory) < self.capacity: self.memory.append([state, action, state_next, reward, done]) else: self.memory[self.index] = [state, action, state_next, reward, done] self.index = (self.index + 1) % self.capacity def sample(self): """ batch_size 개수만큼 무작위로 저장된 transition 호출 """ return random.sample(self.memory, self.batch_size) def reset(self): """ replay-buffer 를 초기화 :return: """ self.index = 0 self.memory = [] def __len__(self): return len(self.memory) def discount_rewards(rewards, gamma): """ take 1D float array of rewards and compute discounted reward """ reward_shape = rewards.shape if len(reward_shape) == 1: discounted_r = np.zeros(shape=(*reward_shape, 1), dtype=np.float) else: discounted_r = np.zeros(shape=reward_shape, dtype=np.float) running_add = 0 for t in reversed(range(0, rewards.size)): running_add = running_add * gamma + rewards[t] discounted_r[t] = running_add return discounted_r
[ "random.sample", "torch.max", "numpy.zeros", "torch.sum", "torch.no_grad", "torch.zeros" ]
[((5858, 5901), 'random.sample', 'random.sample', (['self.memory', 'self.batch_size'], {}), '(self.memory, self.batch_size)\n', (5871, 5901), False, 'import random\n'), ((6310, 6360), 'numpy.zeros', 'np.zeros', ([], {'shape': '(*reward_shape, 1)', 'dtype': 'np.float'}), '(shape=(*reward_shape, 1), dtype=np.float)\n', (6318, 6360), True, 'import numpy as np\n'), ((6394, 6438), 'numpy.zeros', 'np.zeros', ([], {'shape': 'reward_shape', 'dtype': 'np.float'}), '(shape=reward_shape, dtype=np.float)\n', (6402, 6438), True, 'import numpy as np\n'), ((1692, 1709), 'torch.zeros', 'torch.zeros', (['(1)', '(1)'], {}), '(1, 1)\n', (1703, 1709), False, 'import torch\n'), ((2242, 2259), 'torch.zeros', 'torch.zeros', (['(1)', '(1)'], {}), '(1, 1)\n', (2253, 2259), False, 'import torch\n'), ((1955, 1992), 'torch.sum', 'torch.sum', (['(curr_r * lgp + 0.001 * etp)'], {}), '(curr_r * lgp + 0.001 * etp)\n', (1964, 1992), False, 'import torch\n'), ((2354, 2369), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2367, 2369), False, 'import torch\n'), ((2918, 2935), 'torch.zeros', 'torch.zeros', (['(1)', '(1)'], {}), '(1, 1)\n', (2929, 2935), False, 'import torch\n'), ((3664, 3679), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3677, 3679), False, 'import torch\n'), ((3912, 3937), 'torch.max', 'torch.max', (['act_val'], {'dim': '(1)'}), '(act_val, dim=1)\n', (3921, 3937), False, 'import torch\n')]
import sys import argparse import numpy as np from dataclasses import dataclass from mchap.application import baseclass from mchap.application.baseclass import SampleAssemblyError, SAMPLE_ASSEMBLY_ERROR from mchap.application.arguments import ( CALL_MCMC_PARSER_ARGUMENTS, collect_call_mcmc_program_arguments, ) from mchap.calling.classes import CallingMCMC from mchap.calling.exact import genotype_likelihoods from mchap.jitutils import natural_log_to_log10 from mchap.io import qual_of_prob @dataclass class program(baseclass.program): mcmc_chains: int = 1 mcmc_steps: int = 1000 mcmc_burn: int = 500 mcmc_incongruence_threshold: float = 0.60 @classmethod def cli(cls, command): """Program initialization from cli command e.g. `program.cli(sys.argv)` """ parser = argparse.ArgumentParser("MCMC haplotype calling") for arg in CALL_MCMC_PARSER_ARGUMENTS: arg.add_to(parser) if len(command) < 3: parser.print_help() sys.exit(1) args = parser.parse_args(command[2:]) # sort argument details arguments = collect_call_mcmc_program_arguments(args) return cls(cli_command=command, **arguments) def call_sample_genotypes(self, data): """De novo haplotype assembly of each sample. Parameters ---------- data : LocusAssemblyData With sampledata fields: "read_dists_unique", "read_dist_counts". Returns ------- data : LocusAssemblyData With sampledata fields: "alleles", "haplotypes", "GQ", "GPM", "PHPM", "PHQ", "MCI" and "GL", "GP" if specified. """ for field in [ "alleles", "haplotypes", "GQ", "GPM", "PHPM", "PHQ", "MCI", "GL", "GP", "AFP", ]: data.sampledata[field] = dict() haplotypes = data.locus.encode_haplotypes() for sample in data.samples: # wrap in try clause to pass sample info back with any exception try: reads = data.sampledata["read_dists_unique"][sample] read_counts = read_counts = data.sampledata["read_dist_counts"][sample] # call haplotypes trace = ( CallingMCMC( ploidy=data.sample_ploidy[sample], haplotypes=haplotypes, inbreeding=data.sample_inbreeding[sample], steps=self.mcmc_steps, chains=self.mcmc_chains, random_seed=self.random_seed, ) .fit( reads=reads, read_counts=read_counts, ) .burn(self.mcmc_burn) ) incongruence = trace.replicate_incongruence( threshold=self.mcmc_incongruence_threshold ) posterior = trace.posterior() alleles, genotype_prob, phenotype_prob = posterior.mode(phenotype=True) # store variables data.sampledata["alleles"][sample] = alleles data.sampledata["haplotypes"][sample] = haplotypes[alleles] data.sampledata["GQ"][sample] = qual_of_prob(genotype_prob) data.sampledata["GPM"][sample] = np.round(genotype_prob, self.precision) data.sampledata["PHPM"][sample] = np.round( phenotype_prob, self.precision ) data.sampledata["PHQ"][sample] = qual_of_prob(phenotype_prob) data.sampledata["MCI"][sample] = incongruence # posterior allele frequencies if requested if "AFP" in data.formatfields: frequencies = np.zeros(len(haplotypes)) alleles, counts = np.unique(trace.genotypes, return_counts=True) frequencies[alleles] = counts / counts.sum() data.sampledata["AFP"][sample] = np.round( frequencies, self.precision ) # genotype posteriors if requested if "GP" in data.formatfields: probabilities = posterior.as_array(len(haplotypes)) data.sampledata["GP"][sample] = np.round( probabilities, self.precision ) # genotype likelihoods if requested if "GL" in data.formatfields: llks = genotype_likelihoods( reads=reads, read_counts=read_counts, ploidy=data.sample_ploidy[sample], haplotypes=haplotypes, ) data.sampledata["GL"][sample] = np.round( natural_log_to_log10(llks), self.precision ) # end of try clause for specific sample except Exception as e: path = data.sample_bams.get(sample) message = SAMPLE_ASSEMBLY_ERROR.format(sample=sample, bam=path) raise SampleAssemblyError(message) from e return data
[ "mchap.io.qual_of_prob", "mchap.application.baseclass.SAMPLE_ASSEMBLY_ERROR.format", "numpy.unique", "argparse.ArgumentParser", "mchap.jitutils.natural_log_to_log10", "sys.exit", "mchap.application.baseclass.SampleAssemblyError", "mchap.calling.exact.genotype_likelihoods", "mchap.calling.classes.CallingMCMC", "mchap.application.arguments.collect_call_mcmc_program_arguments", "numpy.round" ]
[((836, 885), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""MCMC haplotype calling"""'], {}), "('MCMC haplotype calling')\n", (859, 885), False, 'import argparse\n'), ((1149, 1190), 'mchap.application.arguments.collect_call_mcmc_program_arguments', 'collect_call_mcmc_program_arguments', (['args'], {}), '(args)\n', (1184, 1190), False, 'from mchap.application.arguments import CALL_MCMC_PARSER_ARGUMENTS, collect_call_mcmc_program_arguments\n'), ((1038, 1049), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1046, 1049), False, 'import sys\n'), ((3449, 3476), 'mchap.io.qual_of_prob', 'qual_of_prob', (['genotype_prob'], {}), '(genotype_prob)\n', (3461, 3476), False, 'from mchap.io import qual_of_prob\n'), ((3526, 3565), 'numpy.round', 'np.round', (['genotype_prob', 'self.precision'], {}), '(genotype_prob, self.precision)\n', (3534, 3565), True, 'import numpy as np\n'), ((3616, 3656), 'numpy.round', 'np.round', (['phenotype_prob', 'self.precision'], {}), '(phenotype_prob, self.precision)\n', (3624, 3656), True, 'import numpy as np\n'), ((3744, 3772), 'mchap.io.qual_of_prob', 'qual_of_prob', (['phenotype_prob'], {}), '(phenotype_prob)\n', (3756, 3772), False, 'from mchap.io import qual_of_prob\n'), ((4041, 4087), 'numpy.unique', 'np.unique', (['trace.genotypes'], {'return_counts': '(True)'}), '(trace.genotypes, return_counts=True)\n', (4050, 4087), True, 'import numpy as np\n'), ((4206, 4243), 'numpy.round', 'np.round', (['frequencies', 'self.precision'], {}), '(frequencies, self.precision)\n', (4214, 4243), True, 'import numpy as np\n'), ((4512, 4551), 'numpy.round', 'np.round', (['probabilities', 'self.precision'], {}), '(probabilities, self.precision)\n', (4520, 4551), True, 'import numpy as np\n'), ((4724, 4845), 'mchap.calling.exact.genotype_likelihoods', 'genotype_likelihoods', ([], {'reads': 'reads', 'read_counts': 'read_counts', 'ploidy': 'data.sample_ploidy[sample]', 'haplotypes': 'haplotypes'}), '(reads=reads, read_counts=read_counts, ploidy=data.\n sample_ploidy[sample], haplotypes=haplotypes)\n', (4744, 4845), False, 'from mchap.calling.exact import genotype_likelihoods\n'), ((5277, 5330), 'mchap.application.baseclass.SAMPLE_ASSEMBLY_ERROR.format', 'SAMPLE_ASSEMBLY_ERROR.format', ([], {'sample': 'sample', 'bam': 'path'}), '(sample=sample, bam=path)\n', (5305, 5330), False, 'from mchap.application.baseclass import SampleAssemblyError, SAMPLE_ASSEMBLY_ERROR\n'), ((5353, 5381), 'mchap.application.baseclass.SampleAssemblyError', 'SampleAssemblyError', (['message'], {}), '(message)\n', (5372, 5381), False, 'from mchap.application.baseclass import SampleAssemblyError, SAMPLE_ASSEMBLY_ERROR\n'), ((5046, 5072), 'mchap.jitutils.natural_log_to_log10', 'natural_log_to_log10', (['llks'], {}), '(llks)\n', (5066, 5072), False, 'from mchap.jitutils import natural_log_to_log10\n'), ((2401, 2599), 'mchap.calling.classes.CallingMCMC', 'CallingMCMC', ([], {'ploidy': 'data.sample_ploidy[sample]', 'haplotypes': 'haplotypes', 'inbreeding': 'data.sample_inbreeding[sample]', 'steps': 'self.mcmc_steps', 'chains': 'self.mcmc_chains', 'random_seed': 'self.random_seed'}), '(ploidy=data.sample_ploidy[sample], haplotypes=haplotypes,\n inbreeding=data.sample_inbreeding[sample], steps=self.mcmc_steps,\n chains=self.mcmc_chains, random_seed=self.random_seed)\n', (2412, 2599), False, 'from mchap.calling.classes import CallingMCMC\n')]
import pandas as pd import os import click import numpy as np opj = os.path.join @click.command() @click.option('--datadir', type=str, default='./data/lorenz/bias_experiment') def main(datadir): df = pd.read_pickle(opj(datadir, 'results.pkl')) print(df) print('\\toprule') print('$\\sigma_w$ & $\\sigma_y$ & \\multicolumn{1}{c}{$\\sigma$} & \\multicolumn{1}{c}{$\\rho$} & \\multicolumn{1}{c}{$\\beta$} \\\\ \\midrule') # $1\cdot 10^{-2}$&$1\cdot 10^{-2}$ & 10.017 (0.012) & 28.000 (0.001) & 2.668 (0.001) \\ # $5\cdot 10^{-2}$&$1\cdot 10^{-2}$ & 10.014 (0.018) & 28.002 (0.004) & \outside{2.671 (0.002)} \\ # $1\cdot 10^{-1}$&$1\cdot 10^{-2}$ & 10.051 (0.035) & 27.995 (0.013) & \outside{2.676 (0.003)} \\ # $1\cdot 10^{-2}$&$5\cdot 10^{-2}$ & 10.015 (0.016) & 27.998 (0.002) & 2.667 (0.001) \\ # $1\cdot 10^{-2}$&$1\cdot 10^{-1}$ & 10.011 (0.021) & 27.997 (0.004) & 2.666 (0.001) \\ \bottomrule # \end{tabular}} def check(ystd,wstd): df_ = df.loc[(df['ystd']==ystd) & (df['wstd']==wstd)] means = df_.mean() stds = df_.std() / np.sqrt(len(df_)) sigmam = means['sigma'] sigmas = stds['sigma'] rhom = means['rho'] rhos = stds['rho'] betam = means['beta'] betas = stds['beta'] if np.abs(sigmam - 10.) / sigmas > 2.0: sigmastr = '\\outside{%.3f (%.3f)}' % (sigmam, sigmas) else: sigmastr = '%.3f (%.3f)' % (sigmam,sigmas) if np.abs(rhom - 28.) / rhos > 2.0: rhostr = '\\outside{%.3f (%.3f)}' % (rhom, rhos) else: rhostr = '%.3f (%.3f)' % (rhom, rhos) if np.abs(betam - 8./3.) / betas > 2.0: betastr = '\\outside{%.3f (%.3f)}' % (betam, betas) else: betastr = '%.3f (%.3f)' % (betam, betas) line = '$%.3f$ & $%.2f$ & %s & %s & %s \\\\' % (wstd, ystd, sigmastr, rhostr, betastr) print(line) ystd = 1e-2 for wstd in [1e-3, 1e-2, 1e-1]: check(ystd, wstd) wstd = 1e-3 for ystd in [5e-2, 1e-1]: check(ystd, wstd) if __name__ == '__main__': main()
[ "click.option", "numpy.abs", "click.command" ]
[((85, 100), 'click.command', 'click.command', ([], {}), '()\n', (98, 100), False, 'import click\n'), ((102, 178), 'click.option', 'click.option', (['"""--datadir"""'], {'type': 'str', 'default': '"""./data/lorenz/bias_experiment"""'}), "('--datadir', type=str, default='./data/lorenz/bias_experiment')\n", (114, 178), False, 'import click\n'), ((1314, 1335), 'numpy.abs', 'np.abs', (['(sigmam - 10.0)'], {}), '(sigmam - 10.0)\n', (1320, 1335), True, 'import numpy as np\n'), ((1499, 1518), 'numpy.abs', 'np.abs', (['(rhom - 28.0)'], {}), '(rhom - 28.0)\n', (1505, 1518), True, 'import numpy as np\n'), ((1669, 1694), 'numpy.abs', 'np.abs', (['(betam - 8.0 / 3.0)'], {}), '(betam - 8.0 / 3.0)\n', (1675, 1694), True, 'import numpy as np\n')]
#!/usr/bin/env python # projectS and projectC were written by <NAME>. import time start = time.time() import argparse import cv2 import os import dlib import numpy as np np.set_printoptions(precision=2) import openface from matplotlib import cm fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') def getRep(bgrImg): start = time.time() if bgrImg is None: raise Exception("Unable to load image/frame") rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) if args.verbose: print(" + Original size: {}".format(rgbImg.shape)) if args.verbose: print("Loading the image took {} seconds.".format(time.time() - start)) start = time.time() # Get all bounding boxes bb = align.getAllFaceBoundingBoxes(rgbImg) if bb is None: # raise Exception("Unable to find a face: {}".format(imgPath)) return None if args.verbose: print("Face detection took {} seconds.".format(time.time() - start)) start = time.time() alignedFaces = [] for box in bb: alignedFaces.append( align.align( args.imgDim, rgbImg, box, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)) if alignedFaces is None: raise Exception("Unable to align the frame") if args.verbose: print("Alignment took {} seconds.".format(time.time() - start)) start = time.time() reps = [] for alignedFace in alignedFaces: reps.append(net.forward(alignedFace)) if args.verbose: print("Neural network forward pass took {} seconds.".format( time.time() - start)) return reps def projectS(rho, theta, z): p = np.array([np.sqrt(3.) * rho * (np.cos(theta) + np.sin(theta)) / 2., z + 1. + rho * (np.cos(theta) - np.sin(theta)) / 2.]) p += np.array([1.5, 0.5]) p /= 3. return p def projectC(x, y, z): rho = np.sqrt(x**2 + y**2) if x == 0 and y == 0: theta = 0 elif x >= 0: theta = np.arcsin(y / rho) else: theta = -np.arcsin(y / rho) + np.pi return projectS(rho, theta, z) def draw(pts=[], clrs=[], cSz=400): def toFrame(x): return tuple((cSz * x).astype(np.int32)) cFrame = np.full((cSz, cSz, 3), 255, dtype=np.uint8) for z in np.linspace(-1, 1, 9): r = np.sqrt(1. - z**2) last = None for theta in np.linspace(0, 2 * np.pi, 50): x = toFrame(projectS(r, theta, z)) if last is not None: cv2.line(cFrame, x, last, color=(0, 0, 0)) last = x for x in np.linspace(-1, 1, 9): last = None for theta in np.linspace(0, 2 * np.pi, 50): r = np.sqrt(1. - x**2) z = r * np.sin(theta) y = r * np.cos(theta) # x = toFrame(projectS(r, theta, z)) p = toFrame(projectC(x, y, z)) if last is not None: cv2.line(cFrame, p, last, color=(0, 0, 0)) last = p s = 1 x = toFrame(projectC(-s, 0, 0)) y = toFrame(projectC(s, 0, 0)) cv2.line(cFrame, x, y, color=(0, 0, 0), thickness=4) x = toFrame(projectC(0, -s, 0)) y = toFrame(projectC(0, s, 0)) cv2.line(cFrame, x, y, color=(0, 0, 0), thickness=4) x = toFrame(projectC(0, 0, -s)) y = toFrame(projectC(0, 0, s)) cv2.line(cFrame, x, y, color=(0, 0, 0), thickness=4) for pt, c in zip(pts, clrs): fPt = toFrame(projectC(pt[0], pt[1], pt[2])) fPt_noz = toFrame(projectC(pt[0], pt[1], 0)) fPt_nozy = toFrame(projectC(pt[0], 0, 0)) fPt_nozx = toFrame(projectC(0, pt[1], 0)) cv2.line(cFrame, fPt, fPt_noz, color=c, thickness=2) cv2.line(cFrame, fPt_noz, fPt_nozy, color=c, thickness=2) cv2.line(cFrame, fPt_noz, fPt_nozx, color=c, thickness=2) cv2.circle(cFrame, fPt, 5, color=c, thickness=-1) return cFrame if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join( dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument( '--networkModel', type=str, help="Path to Torch network model.", default='nn4.small2.3d.v1.t7') # Download the 3D model from: # https://storage.cmusatyalab.org/openface-models/nn4.small2.3d.v1.t7 parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument( '--captureDevice', type=int, default=0, help='Capture device. 0 for latop webcam and 1 for usb webcam') # parser.add_argument('--width', type=int, default=640) # parser.add_argument('--height', type=int, default=480) parser.add_argument('--width', type=int, default=1280) parser.add_argument('--height', type=int, default=800) parser.add_argument('--scale', type=int, default=0.25) parser.add_argument('--threshold', type=float, default=0.5) parser.add_argument('--cuda', action='store_true') parser.add_argument('--verbose', action='store_true') args = parser.parse_args() align = openface.AlignDlib(args.dlibFacePredictor) net = openface.TorchNeuralNet( args.networkModel, imgDim=args.imgDim, cuda=args.cuda) # Capture device. Usually 0 will be webcam and 1 will be usb cam. video_capture = cv2.VideoCapture(args.captureDevice) video_capture.set(3, args.width) video_capture.set(4, args.height) cv2.namedWindow('video', cv2.WINDOW_NORMAL) class Tracker: def __init__(self, img, bb, rep): self.t = dlib.correlation_tracker() self.t.start_track(img, bb) self.rep = rep self.bb = bb self.pings = 0 def updateRep(self, rep): self.pings = 0 alpha = 0.9 self.rep = alpha * self.rep + (1. - alpha) * rep return self.rep def overlap(self, bb): p = float(self.bb.intersect(bb).area()) / float(self.bb.area()) return p > 0.3 def ping(self): self.pings += 1 trackers = [] while True: ret, frame = video_capture.read() frame = cv2.flip(frame, 1) frameSmall = cv2.resize(frame, (int(args.width * args.scale), int(args.height * args.scale))) bbs = align.getAllFaceBoundingBoxes(frameSmall) pts, clrs = [], [] for i, bb in enumerate(bbs): alignedFace = align.align(96, frameSmall, bb, landmarkIndices=openface.AlignDlib.INNER_EYES_AND_BOTTOM_LIP) rep = net.forward(alignedFace) center = bb.center() centerI = 0.7 * center.x * center.y / \ (args.scale * args.scale * args.width * args.height) color_np = cm.Set1(centerI) color_cv = list(np.multiply(color_np[:3], 255)) bl = (int(bb.left() / args.scale), int(bb.bottom() / args.scale)) tr = (int(bb.right() / args.scale), int(bb.top() / args.scale)) cv2.rectangle(frame, bl, tr, color=color_cv, thickness=3) tracked = False for i in xrange(len(trackers) - 1, -1, -1): t = trackers[i] t.t.update(frame) if t.overlap(bb): rep = t.updateRep(rep) pts.append(rep) clrs.append(color_cv) tracked = True break if not tracked: trackers.append(Tracker(frame, bb, rep)) pts.append(rep) clrs.append(color_cv) for i in xrange(len(trackers) - 1, -1, -1): t = trackers[i] t.ping() if t.pings > 10: del trackers[i] continue for j in range(i): if t.t.get_position().intersect(trackers[j].t.get_position()).area() / \ t.t.get_position().area() > 0.4: del trackers[i] continue cSz = 450 sphere = np.copy(frame) sphere[0:cSz, 0:cSz, :] = draw(pts, clrs, cSz) alpha = 0.25 beta = 1. - alpha cv2.putText(sphere, "CMU OpenFace", (50, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 2., (0, 0, 0), 1, cv2.cv.CV_AA) cv2.addWeighted(frame, alpha, sphere, beta, 0.0, frame) cv2.imshow('video', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
[ "openface.TorchNeuralNet", "cv2.rectangle", "numpy.sqrt", "matplotlib.cm.Set1", "cv2.imshow", "numpy.array", "cv2.destroyAllWindows", "numpy.sin", "numpy.multiply", "argparse.ArgumentParser", "cv2.line", "cv2.addWeighted", "numpy.linspace", "cv2.waitKey", "dlib.correlation_tracker", "cv2.putText", "cv2.circle", "numpy.cos", "cv2.cvtColor", "openface.AlignDlib", "time.time", "cv2.namedWindow", "numpy.set_printoptions", "numpy.copy", "cv2.flip", "os.path.join", "numpy.arcsin", "os.path.realpath", "cv2.VideoCapture", "numpy.full" ]
[((92, 103), 'time.time', 'time.time', ([], {}), '()\n', (101, 103), False, 'import time\n'), ((174, 206), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (193, 206), True, 'import numpy as np\n'), ((316, 353), 'os.path.join', 'os.path.join', (['fileDir', '""".."""', '"""models"""'], {}), "(fileDir, '..', 'models')\n", (328, 353), False, 'import os\n'), ((369, 399), 'os.path.join', 'os.path.join', (['modelDir', '"""dlib"""'], {}), "(modelDir, 'dlib')\n", (381, 399), False, 'import os\n'), ((277, 303), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (293, 303), False, 'import os\n'), ((434, 445), 'time.time', 'time.time', ([], {}), '()\n', (443, 445), False, 'import time\n'), ((537, 576), 'cv2.cvtColor', 'cv2.cvtColor', (['bgrImg', 'cv2.COLOR_BGR2RGB'], {}), '(bgrImg, cv2.COLOR_BGR2RGB)\n', (549, 576), False, 'import cv2\n'), ((773, 784), 'time.time', 'time.time', ([], {}), '()\n', (782, 784), False, 'import time\n'), ((1084, 1095), 'time.time', 'time.time', ([], {}), '()\n', (1093, 1095), False, 'import time\n'), ((1528, 1539), 'time.time', 'time.time', ([], {}), '()\n', (1537, 1539), False, 'import time\n'), ((1968, 1988), 'numpy.array', 'np.array', (['[1.5, 0.5]'], {}), '([1.5, 0.5])\n', (1976, 1988), True, 'import numpy as np\n'), ((2049, 2073), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (2056, 2073), True, 'import numpy as np\n'), ((2377, 2420), 'numpy.full', 'np.full', (['(cSz, cSz, 3)', '(255)'], {'dtype': 'np.uint8'}), '((cSz, cSz, 3), 255, dtype=np.uint8)\n', (2384, 2420), True, 'import numpy as np\n'), ((2435, 2456), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(9)'], {}), '(-1, 1, 9)\n', (2446, 2456), True, 'import numpy as np\n'), ((2735, 2756), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(9)'], {}), '(-1, 1, 9)\n', (2746, 2756), True, 'import numpy as np\n'), ((3224, 3276), 'cv2.line', 'cv2.line', (['cFrame', 'x', 'y'], {'color': '(0, 0, 0)', 'thickness': '(4)'}), '(cFrame, x, y, color=(0, 0, 0), thickness=4)\n', (3232, 3276), False, 'import cv2\n'), ((3353, 3405), 'cv2.line', 'cv2.line', (['cFrame', 'x', 'y'], {'color': '(0, 0, 0)', 'thickness': '(4)'}), '(cFrame, x, y, color=(0, 0, 0), thickness=4)\n', (3361, 3405), False, 'import cv2\n'), ((3482, 3534), 'cv2.line', 'cv2.line', (['cFrame', 'x', 'y'], {'color': '(0, 0, 0)', 'thickness': '(4)'}), '(cFrame, x, y, color=(0, 0, 0), thickness=4)\n', (3490, 3534), False, 'import cv2\n'), ((4086, 4111), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4109, 4111), False, 'import argparse\n'), ((5400, 5442), 'openface.AlignDlib', 'openface.AlignDlib', (['args.dlibFacePredictor'], {}), '(args.dlibFacePredictor)\n', (5418, 5442), False, 'import openface\n'), ((5453, 5531), 'openface.TorchNeuralNet', 'openface.TorchNeuralNet', (['args.networkModel'], {'imgDim': 'args.imgDim', 'cuda': 'args.cuda'}), '(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)\n', (5476, 5531), False, 'import openface\n'), ((5648, 5684), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.captureDevice'], {}), '(args.captureDevice)\n', (5664, 5684), False, 'import cv2\n'), ((5765, 5808), 'cv2.namedWindow', 'cv2.namedWindow', (['"""video"""', 'cv2.WINDOW_NORMAL'], {}), "('video', cv2.WINDOW_NORMAL)\n", (5780, 5808), False, 'import cv2\n'), ((8917, 8940), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8938, 8940), False, 'import cv2\n'), ((2470, 2491), 'numpy.sqrt', 'np.sqrt', (['(1.0 - z ** 2)'], {}), '(1.0 - z ** 2)\n', (2477, 2491), True, 'import numpy as np\n'), ((2530, 2559), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(50)'], {}), '(0, 2 * np.pi, 50)\n', (2541, 2559), True, 'import numpy as np\n'), ((2799, 2828), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(50)'], {}), '(0, 2 * np.pi, 50)\n', (2810, 2828), True, 'import numpy as np\n'), ((3783, 3835), 'cv2.line', 'cv2.line', (['cFrame', 'fPt', 'fPt_noz'], {'color': 'c', 'thickness': '(2)'}), '(cFrame, fPt, fPt_noz, color=c, thickness=2)\n', (3791, 3835), False, 'import cv2\n'), ((3844, 3901), 'cv2.line', 'cv2.line', (['cFrame', 'fPt_noz', 'fPt_nozy'], {'color': 'c', 'thickness': '(2)'}), '(cFrame, fPt_noz, fPt_nozy, color=c, thickness=2)\n', (3852, 3901), False, 'import cv2\n'), ((3910, 3967), 'cv2.line', 'cv2.line', (['cFrame', 'fPt_noz', 'fPt_nozx'], {'color': 'c', 'thickness': '(2)'}), '(cFrame, fPt_noz, fPt_nozx, color=c, thickness=2)\n', (3918, 3967), False, 'import cv2\n'), ((3976, 4025), 'cv2.circle', 'cv2.circle', (['cFrame', 'fPt', '(5)'], {'color': 'c', 'thickness': '(-1)'}), '(cFrame, fPt, 5, color=c, thickness=-1)\n', (3986, 4025), False, 'import cv2\n'), ((6496, 6514), 'cv2.flip', 'cv2.flip', (['frame', '(1)'], {}), '(frame, 1)\n', (6504, 6514), False, 'import cv2\n'), ((8445, 8459), 'numpy.copy', 'np.copy', (['frame'], {}), '(frame)\n', (8452, 8459), True, 'import numpy as np\n'), ((8570, 8685), 'cv2.putText', 'cv2.putText', (['sphere', '"""CMU OpenFace"""', '(50, 30)', 'cv2.FONT_HERSHEY_COMPLEX_SMALL', '(2.0)', '(0, 0, 0)', '(1)', 'cv2.cv.CV_AA'], {}), "(sphere, 'CMU OpenFace', (50, 30), cv2.\n FONT_HERSHEY_COMPLEX_SMALL, 2.0, (0, 0, 0), 1, cv2.cv.CV_AA)\n", (8581, 8685), False, 'import cv2\n'), ((8728, 8783), 'cv2.addWeighted', 'cv2.addWeighted', (['frame', 'alpha', 'sphere', 'beta', '(0.0)', 'frame'], {}), '(frame, alpha, sphere, beta, 0.0, frame)\n', (8743, 8783), False, 'import cv2\n'), ((8792, 8818), 'cv2.imshow', 'cv2.imshow', (['"""video"""', 'frame'], {}), "('video', frame)\n", (8802, 8818), False, 'import cv2\n'), ((2147, 2165), 'numpy.arcsin', 'np.arcsin', (['(y / rho)'], {}), '(y / rho)\n', (2156, 2165), True, 'import numpy as np\n'), ((2846, 2867), 'numpy.sqrt', 'np.sqrt', (['(1.0 - x ** 2)'], {}), '(1.0 - x ** 2)\n', (2853, 2867), True, 'import numpy as np\n'), ((4249, 4316), 'os.path.join', 'os.path.join', (['dlibModelDir', '"""shape_predictor_68_face_landmarks.dat"""'], {}), "(dlibModelDir, 'shape_predictor_68_face_landmarks.dat')\n", (4261, 4316), False, 'import os\n'), ((5893, 5919), 'dlib.correlation_tracker', 'dlib.correlation_tracker', ([], {}), '()\n', (5917, 5919), False, 'import dlib\n'), ((7158, 7174), 'matplotlib.cm.Set1', 'cm.Set1', (['centerI'], {}), '(centerI)\n', (7165, 7174), False, 'from matplotlib import cm\n'), ((7402, 7459), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'bl', 'tr'], {'color': 'color_cv', 'thickness': '(3)'}), '(frame, bl, tr, color=color_cv, thickness=3)\n', (7415, 7459), False, 'import cv2\n'), ((2657, 2699), 'cv2.line', 'cv2.line', (['cFrame', 'x', 'last'], {'color': '(0, 0, 0)'}), '(cFrame, x, last, color=(0, 0, 0))\n', (2665, 2699), False, 'import cv2\n'), ((2885, 2898), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2891, 2898), True, 'import numpy as np\n'), ((2919, 2932), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2925, 2932), True, 'import numpy as np\n'), ((3074, 3116), 'cv2.line', 'cv2.line', (['cFrame', 'p', 'last'], {'color': '(0, 0, 0)'}), '(cFrame, p, last, color=(0, 0, 0))\n', (3082, 3116), False, 'import cv2\n'), ((7203, 7233), 'numpy.multiply', 'np.multiply', (['color_np[:3]', '(255)'], {}), '(color_np[:3], 255)\n', (7214, 7233), True, 'import numpy as np\n'), ((8831, 8845), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (8842, 8845), False, 'import cv2\n'), ((738, 749), 'time.time', 'time.time', ([], {}), '()\n', (747, 749), False, 'import time\n'), ((1049, 1060), 'time.time', 'time.time', ([], {}), '()\n', (1058, 1060), False, 'import time\n'), ((1493, 1504), 'time.time', 'time.time', ([], {}), '()\n', (1502, 1504), False, 'import time\n'), ((1741, 1752), 'time.time', 'time.time', ([], {}), '()\n', (1750, 1752), False, 'import time\n'), ((2193, 2211), 'numpy.arcsin', 'np.arcsin', (['(y / rho)'], {}), '(y / rho)\n', (2202, 2211), True, 'import numpy as np\n'), ((1829, 1841), 'numpy.sqrt', 'np.sqrt', (['(3.0)'], {}), '(3.0)\n', (1836, 1841), True, 'import numpy as np\n'), ((1850, 1863), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1856, 1863), True, 'import numpy as np\n'), ((1866, 1879), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1872, 1879), True, 'import numpy as np\n'), ((1921, 1934), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1927, 1934), True, 'import numpy as np\n'), ((1937, 1950), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1943, 1950), True, 'import numpy as np\n')]
# The dataset code has been adapted from: # https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html # from https://github.com/pytorch/tutorials # which has been distributed under the following license: ################################################################################ # BSD 3-Clause License # # Copyright (c) 2017, Pytorch contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ################################################################################ # For the Avalanche data loader adaptation: ################################################################################ # Copyright (c) 2022 ContinualAI # # Copyrights licensed under the MIT License. # # See the accompanying LICENSE file for terms. # # # # Date: 21-03-2022 # # Author: <NAME> # # # # E-mail: <EMAIL> # # Website: www.continualai.org # ################################################################################ from pathlib import Path from typing import Union import numpy as np import torch from PIL import Image from torchvision.datasets.folder import default_loader from avalanche.benchmarks.datasets import ( SimpleDownloadableDataset, default_dataset_location, ) from avalanche.benchmarks.datasets.penn_fudan.penn_fudan_data import ( penn_fudan_data, ) def default_mask_loader(mask_path): return Image.open(mask_path) class PennFudanDataset(SimpleDownloadableDataset): """ The Penn-Fudan Pedestrian detection and segmentation dataset Adapted from the "TorchVision Object Detection Finetuning Tutorial": https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html """ def __init__( self, root: Union[str, Path] = None, *, transform=None, loader=default_loader, mask_loader=default_mask_loader, download=True ): """ Creates an instance of the Penn-Fudan dataset. :param root: The directory where the dataset can be found or downloaded. Defaults to None, which means that the default location for "pennfudanped" will be used. :param transform: The transformation to apply to (img, annotations) values. :param loader: The image loader to use. :param mask_loader: The mask image loader to use. :param download: If True, the dataset will be downloaded if needed. """ if root is None: root = default_dataset_location("pennfudanped") self.imgs = None self.masks = None self.targets = None self.transform = transform self.loader = loader self.mask_loader = mask_loader super().__init__( root, penn_fudan_data[0], penn_fudan_data[1], download=download, verbose=True, ) self._load_dataset() def _load_metadata(self): # load all image files, sorting them to # ensure that they are aligned self.imgs = (self.root / "PennFudanPed" / "PNGImages").iterdir() self.masks = (self.root / "PennFudanPed" / "PedMasks").iterdir() self.imgs = list(sorted(self.imgs)) self.masks = list(sorted(self.masks)) self.targets = [self.make_targets(i) for i in range(len(self.imgs))] return Path(self.imgs[0]).exists() and Path(self.masks[0]).exists() def make_targets(self, idx): # load images and masks mask_path = self.masks[idx] # note that we haven't converted the mask to RGB, # because each color corresponds to a different instance # with 0 being background mask = self.mask_loader(mask_path) # convert the PIL Image into a numpy array mask = np.array(mask) # instances are encoded as different colors obj_ids = np.unique(mask) # first id is the background, so remove it obj_ids = obj_ids[1:] # split the color-encoded mask into a set # of binary masks masks = mask == obj_ids[:, None, None] # get bounding box coordinates for each mask num_objs = len(obj_ids) boxes = [] for i in range(num_objs): pos = np.where(masks[i]) xmin = np.min(pos[1]) xmax = np.max(pos[1]) ymin = np.min(pos[0]) ymax = np.max(pos[0]) boxes.append([xmin, ymin, xmax, ymax]) # convert everything into a torch.Tensor boxes = torch.as_tensor(boxes, dtype=torch.float32) # there is only one class labels = torch.ones((num_objs,), dtype=torch.int64) masks = torch.as_tensor(masks, dtype=torch.uint8) image_id = torch.tensor([idx]) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) # suppose all instances are not crowd iscrowd = torch.zeros((num_objs,), dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["masks"] = masks target["image_id"] = image_id target["area"] = area target["iscrowd"] = iscrowd return target def __getitem__(self, idx): target = self.targets[idx] img_path = self.imgs[idx] img = self.loader(img_path) if self.transform is not None: img, target = self.transform(img, target) return img, target def __len__(self): return len(self.imgs) if __name__ == "__main__": # this little example script can be used to visualize the first image # loaded from the dataset. from torch.utils.data.dataloader import DataLoader import matplotlib.pyplot as plt from torchvision import transforms import torch train_data = PennFudanDataset( transform=lambda im, ann: (transforms.ToTensor()(im), ann) ) dataloader = DataLoader(train_data, batch_size=1) for batch_data in dataloader: x, y = batch_data plt.imshow(transforms.ToPILImage()(torch.squeeze(x))) plt.show() print(x.shape) print(y) break __all__ = ["PennFudanDataset"]
[ "torch.squeeze", "torch.as_tensor", "PIL.Image.open", "numpy.unique", "matplotlib.pyplot.show", "avalanche.benchmarks.datasets.default_dataset_location", "numpy.where", "torchvision.transforms.ToPILImage", "pathlib.Path", "torch.utils.data.dataloader.DataLoader", "numpy.max", "numpy.array", "torch.tensor", "numpy.min", "torchvision.transforms.ToTensor", "torch.zeros", "torch.ones" ]
[((3270, 3291), 'PIL.Image.open', 'Image.open', (['mask_path'], {}), '(mask_path)\n', (3280, 3291), False, 'from PIL import Image\n'), ((7804, 7840), 'torch.utils.data.dataloader.DataLoader', 'DataLoader', (['train_data'], {'batch_size': '(1)'}), '(train_data, batch_size=1)\n', (7814, 7840), False, 'from torch.utils.data.dataloader import DataLoader\n'), ((5686, 5700), 'numpy.array', 'np.array', (['mask'], {}), '(mask)\n', (5694, 5700), True, 'import numpy as np\n'), ((5771, 5786), 'numpy.unique', 'np.unique', (['mask'], {}), '(mask)\n', (5780, 5786), True, 'import numpy as np\n'), ((6421, 6464), 'torch.as_tensor', 'torch.as_tensor', (['boxes'], {'dtype': 'torch.float32'}), '(boxes, dtype=torch.float32)\n', (6436, 6464), False, 'import torch\n'), ((6516, 6558), 'torch.ones', 'torch.ones', (['(num_objs,)'], {'dtype': 'torch.int64'}), '((num_objs,), dtype=torch.int64)\n', (6526, 6558), False, 'import torch\n'), ((6575, 6616), 'torch.as_tensor', 'torch.as_tensor', (['masks'], {'dtype': 'torch.uint8'}), '(masks, dtype=torch.uint8)\n', (6590, 6616), False, 'import torch\n'), ((6637, 6656), 'torch.tensor', 'torch.tensor', (['[idx]'], {}), '([idx])\n', (6649, 6656), False, 'import torch\n'), ((6794, 6837), 'torch.zeros', 'torch.zeros', (['(num_objs,)'], {'dtype': 'torch.int64'}), '((num_objs,), dtype=torch.int64)\n', (6805, 6837), False, 'import torch\n'), ((7972, 7982), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7980, 7982), True, 'import matplotlib.pyplot as plt\n'), ((4378, 4418), 'avalanche.benchmarks.datasets.default_dataset_location', 'default_dataset_location', (['"""pennfudanped"""'], {}), "('pennfudanped')\n", (4402, 4418), False, 'from avalanche.benchmarks.datasets import SimpleDownloadableDataset, default_dataset_location\n'), ((6149, 6167), 'numpy.where', 'np.where', (['masks[i]'], {}), '(masks[i])\n', (6157, 6167), True, 'import numpy as np\n'), ((6187, 6201), 'numpy.min', 'np.min', (['pos[1]'], {}), '(pos[1])\n', (6193, 6201), True, 'import numpy as np\n'), ((6221, 6235), 'numpy.max', 'np.max', (['pos[1]'], {}), '(pos[1])\n', (6227, 6235), True, 'import numpy as np\n'), ((6255, 6269), 'numpy.min', 'np.min', (['pos[0]'], {}), '(pos[0])\n', (6261, 6269), True, 'import numpy as np\n'), ((6289, 6303), 'numpy.max', 'np.max', (['pos[0]'], {}), '(pos[0])\n', (6295, 6303), True, 'import numpy as np\n'), ((7921, 7944), 'torchvision.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (7942, 7944), False, 'from torchvision import transforms\n'), ((7945, 7961), 'torch.squeeze', 'torch.squeeze', (['x'], {}), '(x)\n', (7958, 7961), False, 'import torch\n'), ((5256, 5274), 'pathlib.Path', 'Path', (['self.imgs[0]'], {}), '(self.imgs[0])\n', (5260, 5274), False, 'from pathlib import Path\n'), ((5288, 5307), 'pathlib.Path', 'Path', (['self.masks[0]'], {}), '(self.masks[0])\n', (5292, 5307), False, 'from pathlib import Path\n'), ((7749, 7770), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7768, 7770), False, 'from torchvision import transforms\n')]
import sys import functools import signal import select import socket import numpy as np import pickle import matplotlib.pyplot as plt import time import datetime from multiprocessing import Process, Queue sys.path.append('../dhmsw/') import interface import telemetry_iface_ag import struct PLOT = True headerStruct = struct.Struct('III') class guiclient(object): def __init__(self): self.sock = None self.displaythread = Process(target=self.DisplayThread) self.displaythread.daemon = True self.displayQ = Queue() self.exit = False self.maxlen = 150995023 for sig in [signal.SIGTERM, signal.SIGINT, signal.SIGHUP, signal.SIGQUIT]: signal.signal(sig, self.signal_handler) def signal_handler(self, signal, frame): self.exit = True self.displayQ.put(None) def restore_frame(self, data, meta, z): w, h, compval, val, size, actualsize,ts, gain, ccdtemp = meta dtidx = 0 for i in range(0, w*h,compval): z[i] = data[dtidx]; dtidx += 1 def DisplayThread(self): if PLOT: f, axes = plt.subplots(sharex=True) for i in range(1): #axes[i].imshow(z, extent=[0,2448,0,2050], aspect="auto", cmap='gray') axes.clear() #axes.imshow(z, extent=[0,2448,0,2050], aspect="auto", cmap='gray') reconst_telemetry = telemetry_iface_ag.Reconstruction_Telemetry() heartbeat_telemetry = telemetry_iface_ag.Heartbeat_Telemetry() framesource_telemetry = telemetry_iface_ag.Framesource_Telemetry() datalogger_telemetry = telemetry_iface_ag.Datalogger_Telemetry() guiserver_telemetry = telemetry_iface_ag.Guiserver_Telemetry() session_telemetry = telemetry_iface_ag.Session_Telemetry() hologram_telemetry = telemetry_iface_ag.Hologram_Telemetry() fouriermask_telemetry = telemetry_iface_ag.Fouriermask_Telemetry() while True: msg = self.displayQ.get() if msg is None: break #print("**************** Display Thread") msgid, srcid, totalbytes= headerStruct.unpack(msg[0:struct.calcsize(headerStruct.format)]) meta = (msgid, srcid, totalbytes) offset = struct.calcsize(headerStruct.format) #print('offset=%d'%(offset)) data = None if srcid == interface.SRCID_TELEMETRY_RECONSTRUCTION: print('Received RECONSTRUCTION Telemetry') data = reconst_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_HEARTBEAT: data = heartbeat_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_FRAMESOURCE: data = framesource_telemetry.unpack_from(msg, offset=offset) print('Framesource state: ', data.state) elif srcid == interface.SRCID_TELEMETRY_SESSION: data = session_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_DATALOGGER: data = datalogger_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_HOLOGRAM: data = hologram_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_GUISERVER: data = guiserver_telemetry.unpack_from(msg, offset=offset) elif srcid == interface.SRCID_TELEMETRY_FOURIERMASK: data = fouriermask_telemetry.unpack_from(msg, offset=offset) if PLOT: mask = np.frombuffer(data.mask, dtype=np.uint8).reshape((2048,2048)) #mask = np.asarray(data.mask,dtype=np.int8).reshape((2048,2048)) axes.clear() #axes.imshow(mask[:,:], extent=[2048,0,0,2048], aspect="auto") axes.imshow(mask[:,:], aspect="auto") plt.suptitle(repr(time.time())) #axes.set_ylim(axes.get_ylim()[::-1]) plt.draw() plt.pause(0.001) else: print('Unknown Telemetry') if data and srcid != interface.SRCID_TELEMETRY_HEARTBEAT: print(time.time(), datetime.datetime.now()) print(data) pass print('End of DisplayThread') def connect_to_server(self, server, port): #headerStruct = struct.Struct('HHBIIIHH') totlen = 0 count = 0 ### Continous receive of data self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.connect((server, port)) self.readfds = [self.sock] ### Start Display Thread self.displaythread.start() length = None buf = b'' data = b'' msg=b'' lasttime = time.time() meta = None totalbytes = 0 while True: infds, outfds, errfds = select.select(self.readfds, [], [], 5) if not (infds or outfds or errfds): continue if self.exit: break for s in infds: if s is self.sock: ### Get as much data as we can packet = self.sock.recv(255) if not packet: self.exit = True self.displayQ.put_nowait(None) break data += packet datalen = len(data) #print('len packet= %d'%(len(packet))) ### If he haven't processed the header/meta, then lets. #if meta is None and datalen > struct.calcsize(headerStruct.format)+25: if meta is None and datalen >= struct.calcsize(headerStruct.format): #packet = self.sock.recv(12) #print("Recieve: %s"%(':'.join("{:02x}".format(ord(c)) for c in packet[0:50]))) msg_id, srcid, totalbytes = headerStruct.unpack(data[0:struct.calcsize(headerStruct.format)]) totalbytes += struct.calcsize(headerStruct.format) meta = (msg_id, srcid) #print('msg_id=%d, srcid=%d, totalbytes=%d'%(msg_id, srcid, totalbytes)) if datalen >= totalbytes: ### We have a complete packet stored. msg = data[:totalbytes] data = data[totalbytes:] meta = None totalbytes = 0 #print('%.2f Hz'%(1/(time.time()-lasttime))) lasttime = time.time() #plt.show(block=False) count+=1 self.displayQ.put_nowait(msg) #print('Full message received after getting meta: datalen=%d, datalen after=%d'%(datalen, len(data))) else: if datalen < totalbytes: continue ### We have a complete message msg = data[:totalbytes] data = data[totalbytes:] #print('Full message received: datalen=%d, datalen after=%d'%(datalen, len(data))) meta = None totalbytes = 0 self.displayQ.put_nowait(msg) #print('%.2f Hz'%(1/(time.time()-lasttime))) lasttime = time.time() count+=1 if self.exit: break self.sock.close() if __name__ == "__main__": a = guiclient() host= socket.gethostbyname('localhost') port = 9996 print("Client host: %s: port: %d"%(host, port)) a.connect_to_server(host, port)
[ "struct.calcsize", "telemetry_iface_ag.Framesource_Telemetry", "multiprocessing.Process", "telemetry_iface_ag.Session_Telemetry", "sys.path.append", "telemetry_iface_ag.Hologram_Telemetry", "telemetry_iface_ag.Heartbeat_Telemetry", "telemetry_iface_ag.Datalogger_Telemetry", "numpy.frombuffer", "telemetry_iface_ag.Reconstruction_Telemetry", "select.select", "matplotlib.pyplot.pause", "struct.Struct", "multiprocessing.Queue", "matplotlib.pyplot.draw", "time.time", "socket.gethostbyname", "signal.signal", "telemetry_iface_ag.Guiserver_Telemetry", "socket.socket", "datetime.datetime.now", "telemetry_iface_ag.Fouriermask_Telemetry", "matplotlib.pyplot.subplots" ]
[((206, 234), 'sys.path.append', 'sys.path.append', (['"""../dhmsw/"""'], {}), "('../dhmsw/')\n", (221, 234), False, 'import sys\n'), ((320, 340), 'struct.Struct', 'struct.Struct', (['"""III"""'], {}), "('III')\n", (333, 340), False, 'import struct\n'), ((7944, 7977), 'socket.gethostbyname', 'socket.gethostbyname', (['"""localhost"""'], {}), "('localhost')\n", (7964, 7977), False, 'import socket\n'), ((445, 479), 'multiprocessing.Process', 'Process', ([], {'target': 'self.DisplayThread'}), '(target=self.DisplayThread)\n', (452, 479), False, 'from multiprocessing import Process, Queue\n'), ((545, 552), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (550, 552), False, 'from multiprocessing import Process, Queue\n'), ((1471, 1516), 'telemetry_iface_ag.Reconstruction_Telemetry', 'telemetry_iface_ag.Reconstruction_Telemetry', ([], {}), '()\n', (1514, 1516), False, 'import telemetry_iface_ag\n'), ((1547, 1587), 'telemetry_iface_ag.Heartbeat_Telemetry', 'telemetry_iface_ag.Heartbeat_Telemetry', ([], {}), '()\n', (1585, 1587), False, 'import telemetry_iface_ag\n'), ((1620, 1662), 'telemetry_iface_ag.Framesource_Telemetry', 'telemetry_iface_ag.Framesource_Telemetry', ([], {}), '()\n', (1660, 1662), False, 'import telemetry_iface_ag\n'), ((1694, 1735), 'telemetry_iface_ag.Datalogger_Telemetry', 'telemetry_iface_ag.Datalogger_Telemetry', ([], {}), '()\n', (1733, 1735), False, 'import telemetry_iface_ag\n'), ((1766, 1806), 'telemetry_iface_ag.Guiserver_Telemetry', 'telemetry_iface_ag.Guiserver_Telemetry', ([], {}), '()\n', (1804, 1806), False, 'import telemetry_iface_ag\n'), ((1835, 1873), 'telemetry_iface_ag.Session_Telemetry', 'telemetry_iface_ag.Session_Telemetry', ([], {}), '()\n', (1871, 1873), False, 'import telemetry_iface_ag\n'), ((1903, 1942), 'telemetry_iface_ag.Hologram_Telemetry', 'telemetry_iface_ag.Hologram_Telemetry', ([], {}), '()\n', (1940, 1942), False, 'import telemetry_iface_ag\n'), ((1975, 2017), 'telemetry_iface_ag.Fouriermask_Telemetry', 'telemetry_iface_ag.Fouriermask_Telemetry', ([], {}), '()\n', (2015, 2017), False, 'import telemetry_iface_ag\n'), ((4739, 4788), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (4752, 4788), False, 'import socket\n'), ((5029, 5040), 'time.time', 'time.time', ([], {}), '()\n', (5038, 5040), False, 'import time\n'), ((708, 747), 'signal.signal', 'signal.signal', (['sig', 'self.signal_handler'], {}), '(sig, self.signal_handler)\n', (721, 747), False, 'import signal\n'), ((1185, 1210), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'sharex': '(True)'}), '(sharex=True)\n', (1197, 1210), True, 'import matplotlib.pyplot as plt\n'), ((2355, 2391), 'struct.calcsize', 'struct.calcsize', (['headerStruct.format'], {}), '(headerStruct.format)\n', (2370, 2391), False, 'import struct\n'), ((5141, 5179), 'select.select', 'select.select', (['self.readfds', '[]', '[]', '(5)'], {}), '(self.readfds, [], [], 5)\n', (5154, 5179), False, 'import select\n'), ((4416, 4427), 'time.time', 'time.time', ([], {}), '()\n', (4425, 4427), False, 'import time\n'), ((4429, 4452), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4450, 4452), False, 'import datetime\n'), ((2249, 2285), 'struct.calcsize', 'struct.calcsize', (['headerStruct.format'], {}), '(headerStruct.format)\n', (2264, 2285), False, 'import struct\n'), ((6315, 6351), 'struct.calcsize', 'struct.calcsize', (['headerStruct.format'], {}), '(headerStruct.format)\n', (6330, 6351), False, 'import struct\n'), ((7780, 7791), 'time.time', 'time.time', ([], {}), '()\n', (7789, 7791), False, 'import time\n'), ((5965, 6001), 'struct.calcsize', 'struct.calcsize', (['headerStruct.format'], {}), '(headerStruct.format)\n', (5980, 6001), False, 'import struct\n'), ((6886, 6897), 'time.time', 'time.time', ([], {}), '()\n', (6895, 6897), False, 'import time\n'), ((6238, 6274), 'struct.calcsize', 'struct.calcsize', (['headerStruct.format'], {}), '(headerStruct.format)\n', (6253, 6274), False, 'import struct\n'), ((4190, 4200), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (4198, 4200), True, 'import matplotlib.pyplot as plt\n'), ((4221, 4237), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.001)'], {}), '(0.001)\n', (4230, 4237), True, 'import matplotlib.pyplot as plt\n'), ((3739, 3779), 'numpy.frombuffer', 'np.frombuffer', (['data.mask'], {'dtype': 'np.uint8'}), '(data.mask, dtype=np.uint8)\n', (3752, 3779), True, 'import numpy as np\n'), ((4098, 4109), 'time.time', 'time.time', ([], {}), '()\n', (4107, 4109), False, 'import time\n')]
# coding: utf-8 import numpy as np from typing import List, Union from collections import OrderedDict from datetime import datetime from .objects import Direction, BI, FakeBI, Signal from .enum import Freq from .utils.ta import MACD, SMA, KDJ from .cobra.utils import kdj_gold_cross from . import analyze def check_three_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别由远及近的三笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的三笔形态 :param di: 最近一笔为倒数第i笔 :return: """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='其他', v2='其他', v3='其他') if len(bis) != 3: return v bi1, bi2, bi3 = bis if not (bi1.direction == bi3.direction): print(f"1,3 的 direction 不一致,无法识别三笔形态,{bi3}") return v assert bi3.direction in [Direction.Down, Direction.Up], "direction 的取值错误" if bi3.direction == Direction.Down: # 向下不重合 if bi3.low > bi1.high: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下不重合') # 向下奔走型 if bi2.low < bi3.low < bi1.high < bi2.high: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下奔走型') # 向下收敛 if bi1.high > bi3.high and bi1.low < bi3.low: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下收敛') if bi1.high < bi3.high and bi1.low > bi3.low: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下扩张') if bi3.low < bi1.low and bi3.high < bi1.high: if bi3.power < bi1.power: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下盘背') else: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向下无背') if bi3.direction == Direction.Up: if bi3.high < bi1.low: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上不重合') if bi2.low < bi1.low < bi3.high < bi2.high: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上奔走型') if bi1.high > bi3.high and bi1.low < bi3.low: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上收敛') if bi1.high < bi3.high and bi1.low > bi3.low: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上扩张') if bi3.low > bi1.low and bi3.high > bi1.high: if bi3.power < bi1.power: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上盘背') else: return Signal(k1=freq.value, k2=di_name, k3='三笔形态', v1='向上无背') return v def check_five_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别五笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的五笔 :param di: 最近一笔为倒数第i笔 :return: """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='其他', v2='其他', v3='其他') if len(bis) != 5: return v bi1, bi2, bi3, bi4, bi5 = bis if not (bi1.direction == bi3.direction == bi5.direction): print(f"1,3,5 的 direction 不一致,无法识别五段形态;{bi1}{bi3}{bi5}") return v direction = bi1.direction max_high = max([x.high for x in bis]) min_low = min([x.low for x in bis]) assert direction in [Direction.Down, Direction.Up], "direction 的取值错误" if direction == Direction.Down: # aAb式底背驰 if min(bi2.high, bi4.high) > max(bi2.low, bi4.low) and max_high == bi1.high and bi5.power < bi1.power: if (min_low == bi3.low and bi5.low < bi1.low) or (min_low == bi5.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='五笔aAb式') # 类趋势底背驰 if max_high == bi1.high and min_low == bi5.low and bi4.high < bi2.low and bi5.power < max(bi3.power, bi1.power): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='五笔类趋势') # 上颈线突破 if (min_low == bi1.low and bi5.high > min(bi1.high, bi2.high) > bi5.low > bi1.low) \ or (min_low == bi3.low and bi5.high > bi3.high > bi5.low > bi3.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='上颈线突破', v2='五笔') # 五笔三买,要求bi5.high是最高点 if max_high == bi5.high > bi5.low > max(bi1.high, bi3.high) \ > min(bi1.high, bi3.high) > max(bi1.low, bi3.low) > min_low: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='类三买', v2='五笔') if direction == Direction.Up: # aAb式类一卖 if min(bi2.high, bi4.high) > max(bi2.low, bi4.low) and min_low == bi1.low and bi5.power < bi1.power: if (max_high == bi3.high and bi5.high > bi1.high) or (max_high == bi5.high): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='五笔aAb式') # 类趋势类一卖 if min_low == bi1.low and max_high == bi5.high and bi5.power < max(bi1.power, bi3.power) and bi4.low > bi2.high: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='五笔类趋势') # 下颈线突破 if (max_high == bi1.high and bi5.low < max(bi1.low, bi2.low) < bi5.high < max_high) \ or (max_high == bi3.high and bi5.low < bi3.low < bi5.high < max_high): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='下颈线突破', v2='五笔') # 五笔三卖,要求bi5.low是最低点 if min_low == bi5.low < bi5.high < min(bi1.low, bi3.low) \ < max(bi1.low, bi3.low) < min(bi1.high, bi3.high) < max_high: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='类三卖', v2='五笔') return v def check_seven_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别七笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的七笔 :param di: 最近一笔为倒数第i笔 """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='其他', v2='其他', v3='其他') if len(bis) != 7: return v bi1, bi2, bi3, bi4, bi5, bi6, bi7 = bis max_high = max([x.high for x in bis]) min_low = min([x.low for x in bis]) direction = bi7.direction assert direction in [Direction.Down, Direction.Up], "direction 的取值错误" if direction == Direction.Down: if bi1.high == max_high and bi7.low == min_low: # aAbcd式底背驰 if min(bi2.high, bi4.high) > max(bi2.low, bi4.low) > bi6.high and bi7.power < bi5.power: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='七笔aAbcd式') # abcAd式底背驰 if bi2.low > min(bi4.high, bi6.high) > max(bi4.low, bi6.low) and bi7.power < (bi1.high - bi3.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='七笔abcAd式') # aAb式底背驰 if min(bi2.high, bi4.high, bi6.high) > max(bi2.low, bi4.low, bi6.low) and bi7.power < bi1.power: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='七笔aAb式') # 类趋势底背驰 if bi2.low > bi4.high and bi4.low > bi6.high and bi7.power < max(bi5.power, bi3.power, bi1.power): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='底背驰', v2='七笔类趋势') # 向上中枢完成 if bi4.low == min_low and min(bi1.high, bi3.high) > max(bi1.low, bi3.low) \ and min(bi5.high, bi7.high) > max(bi5.low, bi7.low) \ and max(bi4.high, bi6.high) > min(bi3.high, bi4.high): if max(bi1.low, bi3.low) < max(bi5.high, bi7.high): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='向上中枢完成', v2='七笔') # 七笔三买:1~3构成中枢,最低点在1~3,最高点在5~7,5~7的最低点大于1~3的最高点 if min(bi1.low, bi3.low) == min_low and max(bi5.high, bi7.high) == max_high \ and min(bi5.low, bi7.low) > max(bi1.high, bi3.high) \ and min(bi1.high, bi3.high) > max(bi1.low, bi3.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='类三买', v2='七笔') if direction == Direction.Up: # 顶背驰 if bi1.low == min_low and bi7.high == max_high: # aAbcd式顶背驰 if bi6.low > min(bi2.high, bi4.high) > max(bi2.low, bi4.low) and bi7.power < bi5.power: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='七笔aAbcd式') # abcAd式顶背驰 if min(bi4.high, bi6.high) > max(bi4.low, bi6.low) > bi2.high and bi7.power < (bi3.high - bi1.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='七笔abcAd式') # aAb式顶背驰 if min(bi2.high, bi4.high, bi6.high) > max(bi2.low, bi4.low, bi6.low) and bi7.power < bi1.power: return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='七笔aAb式') # 类趋势顶背驰 if bi2.high < bi4.low and bi4.high < bi6.low and bi7.power < max(bi5.power, bi3.power, bi1.power): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='顶背驰', v2='七笔类趋势') # 向下中枢完成 if bi4.high == max_high and min(bi1.high, bi3.high) > max(bi1.low, bi3.low) \ and min(bi5.high, bi7.high) > max(bi5.low, bi7.low) \ and min(bi4.low, bi6.low) < max(bi3.low, bi4.low): if min(bi1.high, bi3.high) > min(bi5.low, bi7.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='向下中枢完成', v2='七笔') # 七笔三卖:1~3构成中枢,最高点在1~3,最低点在5~7,5~7的最高点小于1~3的最低点 if min(bi5.low, bi7.low) == min_low and max(bi1.high, bi3.high) == max_high \ and max(bi7.high, bi5.high) < min(bi1.low, bi3.low) \ and min(bi1.high, bi3.high) > max(bi1.low, bi3.low): return Signal(k1=freq.value, k2=di_name, k3='基础形态', v1='类三卖', v2='七笔') return v def check_nine_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别九笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的九笔 :param di: 最近一笔为倒数第i笔 """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='其他', v2='其他', v3='其他') if len(bis) != 9: return v direction = bis[-1].direction bi1, bi2, bi3, bi4, bi5, bi6, bi7, bi8, bi9 = bis max_high = max([x.high for x in bis]) min_low = min([x.low for x in bis]) assert direction in [Direction.Down, Direction.Up], "direction 的取值错误" if direction == Direction.Down: if min_low == bi9.low and max_high == bi1.high: # aAb式类一买 if min(bi2.high, bi4.high, bi6.high, bi8.high) > max(bi2.low, bi4.low, bi6.low, bi8.low) \ and bi9.power < bi1.power and bi3.low >= bi1.low and bi7.high <= bi9.high: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2='九笔aAb式') # aAbcd式类一买 if min(bi2.high, bi4.high, bi6.high) > max(bi2.low, bi4.low, bi6.low) > bi8.high \ and bi9.power < bi7.power: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2='九笔aAbcd式') # ABC式类一买 if bi3.low < bi1.low and bi7.high > bi9.high \ and min(bi4.high, bi6.high) > max(bi4.low, bi6.low) \ and (bi1.high - bi3.low) > (bi7.high - bi9.low): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2='九笔ABC式') # 类趋势一买 if bi8.high < bi6.low < bi6.high < bi4.low < bi4.high < bi2.low \ and bi9.power < max([bi1.power, bi3.power, bi5.power, bi7.power]): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2='九笔类趋势') # 九笔类一买(2~4构成中枢A,6~8构成中枢B,9背驰) if max_high == max(bi1.high, bi3.high) and min_low == bi9.low \ and min(bi2.high, bi4.high) > max(bi2.low, bi4.low) \ and min(bi2.low, bi4.low) > max(bi6.high, bi8.high) \ and min(bi6.high, bi8.high) > max(bi6.low, bi8.low) \ and bi9.power < bi5.power: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2='九笔aAbBc式') # 类三买(1357构成中枢,最低点在3或5) if max_high == bi9.high > bi9.low \ > max([x.high for x in [bi1, bi3, bi5, bi7]]) \ > min([x.high for x in [bi1, bi3, bi5, bi7]]) \ > max([x.low for x in [bi1, bi3, bi5, bi7]]) \ > min([x.low for x in [bi3, bi5]]) == min_low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三买', v2='九笔GG三买') # 类三买(357构成中枢,8的力度小于2,9回调不跌破GG构成三买) if bi8.power < bi2.power and max_high == bi9.high > bi9.low \ > max([x.high for x in [bi3, bi5, bi7]]) \ > min([x.high for x in [bi3, bi5, bi7]]) \ > max([x.low for x in [bi3, bi5, bi7]]) > bi1.low == min_low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三买', v2='九笔GG三买') if min_low == bi5.low and max_high == bi1.high and bi4.high < bi2.low: # 前五笔构成向下类趋势 zd = max([x.low for x in [bi5, bi7]]) zg = min([x.high for x in [bi5, bi7]]) gg = max([x.high for x in [bi5, bi7]]) if zg > zd and bi8.high > gg: # 567构成中枢,且8的高点大于gg if bi9.low > zg: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三买', v2='九笔ZG三买') # 类二买 if bi9.high > gg > zg > bi9.low > zd: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类二买', v2='九笔') if direction == Direction.Up: if max_high == bi9.high and min_low == bi1.low: # aAbBc式类一卖 if bi6.low > min(bi2.high, bi4.high) > max(bi2.low, bi4.low) \ and min(bi6.high, bi8.high) > max(bi6.low, bi8.low) \ and max(bi2.high, bi4.high) < min(bi6.low, bi8.low) \ and bi9.power < bi5.power: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2='九笔aAbBc式') # aAb式类一卖 if min(bi2.high, bi4.high, bi6.high, bi8.high) > max(bi2.low, bi4.low, bi6.low, bi8.low) \ and bi9.power < bi1.power and bi3.high <= bi1.high and bi7.low >= bi9.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2='九笔aAb式') # aAbcd式类一卖 if bi8.low > min(bi2.high, bi4.high, bi6.high) > max(bi2.low, bi4.low, bi6.low) \ and bi9.power < bi7.power: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2='九笔aAbcd式') # ABC式类一卖 if bi3.high > bi1.high and bi7.low < bi9.low \ and min(bi4.high, bi6.high) > max(bi4.low, bi6.low) \ and (bi3.high - bi1.low) > (bi9.high - bi7.low): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2='九笔ABC式') # 类趋势一卖 if bi8.low > bi6.high > bi6.low > bi4.high > bi4.low > bi2.high \ and bi9.power < max([bi1.power, bi3.power, bi5.power, bi7.power]): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2='九笔类趋势') # 九笔三卖 if max_high == bi1.high and min_low == bi9.low \ and bi9.high < max([x.low for x in [bi3, bi5, bi7]]) < min([x.high for x in [bi3, bi5, bi7]]): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三卖', v2='九笔') if min_low == bi1.low and max_high == bi5.high and bi2.high < bi4.low: # 前五笔构成向上类趋势 zd = max([x.low for x in [bi5, bi7]]) zg = min([x.high for x in [bi5, bi7]]) dd = min([x.low for x in [bi5, bi7]]) if zg > zd and bi8.low < dd: # 567构成中枢,且8的低点小于dd if bi9.high < zd: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三卖', v2='九笔ZD三卖') # 类二卖 if dd < zd <= bi9.high < zg: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类二卖', v2='九笔') return v def check_eleven_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别十一笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的十一笔 :param di: 最近一笔为倒数第i笔 """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='其他', v2='其他', v3='其他') if len(bis) != 11: return v direction = bis[-1].direction bi1, bi2, bi3, bi4, bi5, bi6, bi7, bi8, bi9, bi10, bi11 = bis max_high = max([x.high for x in bis]) min_low = min([x.low for x in bis]) assert direction in [Direction.Down, Direction.Up], "direction 的取值错误" if direction == Direction.Down: if min_low == bi11.low and max_high == bi1.high: # ABC式类一买,A5B3C3 if bi5.low == min([x.low for x in [bi1, bi3, bi5]]) \ and bi9.low > bi11.low and bi9.high > bi11.high \ and bi8.high > bi6.low and bi1.high - bi5.low > bi9.high - bi11.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="11笔A5B3C3式") # ABC式类一买,A3B3C5 if bi1.high > bi3.high and bi1.low > bi3.low \ and bi7.high == max([x.high for x in [bi7, bi9, bi11]]) \ and bi6.high > bi4.low and bi1.high - bi3.low > bi7.high - bi11.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="11笔A3B3C5式") # ABC式类一买,A3B5C3 if bi1.low > bi3.low and min(bi4.high, bi6.high, bi8.high) > max(bi4.low, bi6.low, bi8.low) \ and bi9.high > bi11.high and bi1.high - bi3.low > bi9.high - bi11.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="11笔A3B5C3式") # a1Ab式类一买,a1(1~7构成的类趋势) if bi2.low > bi4.high > bi4.low > bi6.high > bi5.low > bi7.low and bi10.high > bi8.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="11笔a1Ab式") # 类二买(1~7构成盘整背驰,246构成下跌中枢,9/11构成上涨中枢,且上涨中枢GG大于下跌中枢ZG) if bi7.power < bi1.power and min_low == bi7.low < max([x.low for x in [bi2, bi4, bi6]]) \ < min([x.high for x in [bi2, bi4, bi6]]) < max([x.high for x in [bi9, bi11]]) < bi1.high == max_high \ and bi11.low > min([x.low for x in [bi2, bi4, bi6]]) \ and min([x.high for x in [bi9, bi11]]) > max([x.low for x in [bi9, bi11]]): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类二买', v2="11笔") # 类二买(1~7为区间极值,9~11构成上涨中枢,上涨中枢GG大于4~6的最大值,上涨中枢DD大于4~6的最小值) if max_high == bi1.high and min_low == bi7.low \ and min(bi9.high, bi11.high) > max(bi9.low, bi11.low) \ and max(bi11.high, bi9.high) > max(bi4.high, bi6.high) \ and min(bi9.low, bi11.low) > min(bi4.low, bi6.low): return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类二买', v2="11笔") # 类三买(1~9构成大级别中枢,10离开,11回调不跌破GG) gg = max([x.high for x in [bi1, bi2, bi3]]) zg = min([x.high for x in [bi1, bi2, bi3]]) zd = max([x.low for x in [bi1, bi2, bi3]]) dd = min([x.low for x in [bi1, bi2, bi3]]) if max_high == bi11.high and bi11.low > zg > zd \ and gg > bi5.low and gg > bi7.low and gg > bi9.low \ and dd < bi5.high and dd < bi7.high and dd < bi9.high: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类三买', v2="11笔GG三买") if direction == Direction.Up: if max_high == bi11.high and min_low == bi1.low: # ABC式类一卖,A5B3C3 if bi5.high == max([bi1.high, bi3.high, bi5.high]) and bi9.low < bi11.low and bi9.high < bi11.high \ and bi8.low < bi6.high and bi11.high - bi9.low < bi5.high - bi1.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="11笔A5B3C3式") # ABC式类一卖,A3B3C5 if bi7.low == min([bi11.low, bi9.low, bi7.low]) and bi1.high < bi3.high and bi1.low < bi3.low \ and bi6.low < bi4.high and bi11.high - bi7.low < bi3.high - bi1.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="11笔A3B3C5式") # ABC式类一卖,A3B5C3 if bi1.high < bi3.high and min(bi4.high, bi6.high, bi8.high) > max(bi4.low, bi6.low, bi8.low) \ and bi9.low < bi11.low and bi3.high - bi1.low > bi11.high - bi9.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="11笔A3B5C3式") # 类二卖:1~9构成类趋势,11不创新高 if max_high == bi9.high > bi8.low > bi6.high > bi6.low > bi4.high > bi4.low > bi2.high > bi1.low == min_low \ and bi11.high < bi9.high: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类二卖', v2="11笔") return v def check_thirteen_bi(bis: List[Union[BI, FakeBI]], freq: Freq, di: int = 1) -> Signal: """识别十三笔形态 :param freq: K线周期,也可以称为级别 :param bis: 由远及近的十三笔 :param di: 最近一笔为倒数第i笔 """ di_name = f"倒{di}笔" v = Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='其他', v2='其他', v3='其他') if len(bis) != 13: return v direction = bis[-1].direction bi1, bi2, bi3, bi4, bi5, bi6, bi7, bi8, bi9, bi10, bi11, bi12, bi13 = bis max_high = max([x.high for x in bis]) min_low = min([x.low for x in bis]) assert direction in [Direction.Down, Direction.Up], "direction 的取值错误" if direction == Direction.Down: if min_low == bi13.low and max_high == bi1.high: # ABC式类一买,A5B3C5 if bi5.low < min(bi1.low, bi3.low) and bi9.high > max(bi11.high, bi13.high) \ and bi8.high > bi6.low and bi1.high - bi5.low > bi9.high - bi13.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="13笔A5B3C5式") # ABC式类一买,A3B5C5 if bi3.low < min(bi1.low, bi5.low) and bi9.high > max(bi11.high, bi13.high) \ and min(bi4.high, bi6.high, bi8.high) > max(bi4.low, bi6.low, bi8.low) \ and bi1.high - bi3.low > bi9.high - bi13.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="13笔A3B5C5式") # ABC式类一买,A5B5C3 if bi5.low < min(bi1.low, bi3.low) and bi11.high > max(bi9.high, bi13.high) \ and min(bi6.high, bi8.high, bi10.high) > max(bi6.low, bi8.low, bi10.low) \ and bi1.high - bi5.low > bi11.high - bi13.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一买', v2="13笔A5B5C3式") if direction == Direction.Up: if max_high == bi13.high and min_low == bi1.low: # ABC式类一卖,A5B3C5 if bi5.high > max(bi3.high, bi1.high) and bi9.low < min(bi11.low, bi13.low) \ and bi8.low < bi6.high and bi5.high - bi1.low > bi13.high - bi9.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="13笔A5B3C5式") # ABC式类一卖,A3B5C5 if bi3.high > max(bi5.high, bi1.high) and bi9.low < min(bi11.low, bi13.low) \ and min(bi4.high, bi6.high, bi8.high) > max(bi4.low, bi6.low, bi8.low) \ and bi3.high - bi1.low > bi13.high - bi9.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="13笔A3B5C5式") # ABC式类一卖,A5B5C3 if bi5.high > max(bi3.high, bi1.high) and bi11.low < min(bi9.low, bi13.low) \ and min(bi6.high, bi8.high, bi10.high) > max(bi6.low, bi8.low, bi10.low) \ and bi5.high - bi1.low > bi13.high - bi11.low: return Signal(k1=freq.value, k2=di_name, k3='类买卖点', v1='类一卖', v2="13笔A5B5C3式") return v # 以上是信号计算的辅助函数,主要是形态识别等。 # ---------------------------------------------------------------------------------------------------------------------- # 以下是信号计算函数(前缀固定为 get_s) def get_s_three_bi(c: analyze.CZSC, di: int = 1) -> OrderedDict: """倒数第i笔的三笔形态信号 :param c: CZSC 对象 :param di: 最近一笔为倒数第i笔 :return: 信号字典 """ assert di >= 1 bis = c.finished_bis freq: Freq = c.freq s = OrderedDict() v = Signal(k1=str(freq.value), k2=f"倒{di}笔", k3="三笔形态", v1="其他", v2='其他', v3='其他') s[v.key] = v.value if not bis: return s if di == 1: three_bi = bis[-3:] else: three_bi = bis[-3 - di + 1: -di + 1] v = check_three_bi(three_bi, freq, di) s[v.key] = v.value return s def get_s_base_xt(c: analyze.CZSC, di: int = 1) -> OrderedDict: """倒数第i笔的基础形态信号 :param c: CZSC 对象 :param di: 最近一笔为倒数第i笔 :return: 信号字典 """ assert di >= 1 bis = c.finished_bis freq: Freq = c.freq s = OrderedDict() v = Signal(k1=str(freq.value), k2=f"倒{di}笔", k3="基础形态", v1="其他", v2='其他', v3='其他') s[v.key] = v.value if not bis: return s if di == 1: five_bi = bis[-5:] seven_bi = bis[-7:] else: five_bi = bis[-5 - di + 1: -di + 1] seven_bi = bis[-7 - di + 1: -di + 1] for v in [check_five_bi(five_bi, freq, di), check_seven_bi(seven_bi, freq, di)]: if "其他" not in v.value: s[v.key] = v.value return s def get_s_like_bs(c: analyze.CZSC, di: int = 1) -> OrderedDict: """倒数第i笔的类买卖点信号 :param c: CZSC 对象 :param di: 最近一笔为倒数第i笔 :return: 信号字典 """ assert di >= 1 bis = c.finished_bis freq: Freq = c.freq s = OrderedDict() v = Signal(k1=str(freq.value), k2=f"倒{di}笔", k3="类买卖点", v1="其他", v2='其他', v3='其他') s[v.key] = v.value if not bis: return s if di == 1: nine_bi = bis[-9:] eleven_bi = bis[-11:] thirteen_bi = bis[-13:] else: nine_bi = bis[-9 - di + 1: -di + 1] eleven_bi = bis[-11 - di + 1: -di + 1] thirteen_bi = bis[-13 - di + 1: -di + 1] for v in [check_nine_bi(nine_bi, freq, di), check_eleven_bi(eleven_bi, freq, di), check_thirteen_bi(thirteen_bi, freq, di)]: if "其他" not in v.value: s[v.key] = v.value return s def get_s_bi_status(c: analyze.CZSC) -> OrderedDict: """倒数第1笔的表里关系信号 :param c: CZSC 对象 :return: 信号字典 """ freq: Freq = c.freq s = OrderedDict() v = Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="其他", v2='其他', v3='其他') s[v.key] = v.value if c.bi_list: # 表里关系的定义参考:http://blog.sina.com.cn/s/blog_486e105c01007wc1.html min_ubi = min([x.low for x in c.bars_ubi]) max_ubi = max([x.high for x in c.bars_ubi]) last_bi = c.bi_list[-1] v = None if last_bi.direction == Direction.Down: if min_ubi < last_bi.low: v = Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="向下延伸") else: v = Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="底分完成") if last_bi.direction == Direction.Up: if max_ubi > last_bi.high: v = Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="向上延伸") else: v = Signal(k1=str(freq.value), k2="倒1笔", k3="表里关系", v1="顶分完成") if v and "其他" not in v.value: s[v.key] = v.value return s def get_s_d0_bi(c: analyze.CZSC) -> OrderedDict: """倒数第0笔信号 :param c: CZSC 对象 :return: 信号字典 """ freq: Freq = c.freq s = OrderedDict() default_signals = [ Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value bis = c.finished_bis if bis: # 倒0笔方向 last_bi = bis[-1] if last_bi.direction == Direction.Down: v = Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向上") elif last_bi.direction == Direction.Up: v = Signal(k1=str(freq.value), k2="倒0笔", k3="方向", v1="向下") else: raise ValueError if v and "其他" not in v.value: s[v.key] = v.value # 倒0笔长度 bars_ubi = [x for x in c.bars_raw[-20:] if x.dt >= bis[-1].fx_b.elements[0].dt] if len(bars_ubi) >= 9: v = Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="9根K线以上") elif 9 > len(bars_ubi) > 5: v = Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="5到9根K线") else: v = Signal(k1=str(freq.value), k2="倒0笔", k3="长度", v1="5根K线以下") if "其他" not in v.value: s[v.key] = v.value return s def get_s_di_bi(c: analyze.CZSC, di: int = 1) -> OrderedDict: """倒数第i笔的表里关系信号 :param c: CZSC 对象 :param di: 最近一笔为倒数第i笔 :return: 信号字典 """ assert di >= 1 freq: Freq = c.freq s = OrderedDict() k1 = str(freq.value) k2 = f"倒{di}笔" default_signals = [ Signal(k1=k1, k2=k2, k3="方向", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="长度", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="拟合优度", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value bis = c.finished_bis if not bis: return s last_bi = bis[-di] # 方向 v1 = Signal(k1=k1, k2=k2, k3="方向", v1=last_bi.direction.value) s[v1.key] = v1.value # 长度 if len(last_bi.bars) >= 15: v = Signal(k1=k1, k2=k2, k3="长度", v1="15根K线以上") elif 15 > len(c.bars_ubi) > 9: v = Signal(k1=k1, k2=k2, k3="长度", v1="9到15根K线") else: v = Signal(k1=k1, k2=k2, k3="长度", v1="9根K线以下") if "其他" not in v.value: s[v.key] = v.value # 拟合优度 if last_bi.rsq > 0.8: v = Signal(k1=k1, k2=k2, k3="拟合优度", v1="大于0.8") elif last_bi.rsq < 0.2: v = Signal(k1=k1, k2=k2, k3="拟合优度", v1="小于0.2") else: v = Signal(k1=k1, k2=k2, k3="拟合优度", v1="0.2到0.8之间") if "其他" not in v.value: s[v.key] = v.value return s def get_s_three_k(c: analyze.CZSC, di: int = 1) -> OrderedDict: """倒数第i根K线的三K形态信号 :param c: CZSC 对象 :param di: 最近一根K线为倒数第i根 :return: 信号字典 """ assert di >= 1 freq: Freq = c.freq k1 = str(freq.value) k2 = f"倒{di}K" s = OrderedDict() v = Signal(k1=k1, k2=k2, k3="三K形态", v1="其他", v2='其他', v3='其他') s[v.key] = v.value if len(c.bars_ubi) < 3: return s if di == 1: tri = c.bars_ubi[-3:] else: tri = c.bars_ubi[-3 - di + 1:-di + 1] if tri[0].high > tri[1].high < tri[2].high: v = Signal(k1=k1, k2=k2, k3="三K形态", v1="底分型") elif tri[0].high < tri[1].high < tri[2].high: v = Signal(k1=k1, k2=k2, k3="三K形态", v1="向上走") elif tri[0].high < tri[1].high > tri[2].high: v = Signal(k1=k1, k2=k2, k3="三K形态", v1="顶分型") elif tri[0].high > tri[1].high > tri[2].high: v = Signal(k1=k1, k2=k2, k3="三K形态", v1="向下走") else: v = None if v and "其他" not in v.value: s[v.key] = v.value return s def get_s_macd(c: analyze.CZSC, di: int = 1) -> OrderedDict: """获取倒数第i根K线的MACD相关信号""" freq: Freq = c.freq s = OrderedDict() k1 = str(freq.value) k2 = f"倒{di}K" default_signals = [ Signal(k1=k1, k2=k2, k3="DIF多空", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="DIF方向", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="DEA多空", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="DEA方向", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="MACD多空", v1="其他", v2='其他', v3='其他'), Signal(k1=k1, k2=k2, k3="MACD方向", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value if len(c.bars_raw) < 100: return s if di == 1: close = np.array([x.close for x in c.bars_raw[-100:]]) else: close = np.array([x.close for x in c.bars_raw[-100-di+1:-di+1]]) dif, dea, macd = MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) # DIF 多空信号 dif_base = sum([abs(dif[-2] - dif[-1]), abs(dif[-3] - dif[-2]), abs(dif[-4] - dif[-3])]) / 3 if dif[-1] > dif_base: v = Signal(k1=k1, k2=k2, k3="DIF多空", v1="多头") elif dif[-1] < -dif_base: v = Signal(k1=k1, k2=k2, k3="DIF多空", v1="空头") else: v = Signal(k1=k1, k2=k2, k3="DIF多空", v1="模糊") s[v.key] = v.value if dif[-1] > dif[-2] > dif[-3]: v = Signal(k1=k1, k2=k2, k3="DIF方向", v1="向上") elif dif[-1] < dif[-2] < dif[-3]: v = Signal(k1=k1, k2=k2, k3="DIF方向", v1="向下") else: v = Signal(k1=k1, k2=k2, k3="DIF方向", v1="模糊") s[v.key] = v.value # DEA 多空信号 dea_base = sum([abs(dea[-2] - dea[-1]), abs(dea[-3] - dea[-2]), abs(dea[-4] - dea[-3])]) / 3 if dea[-1] > dea_base: v = Signal(k1=k1, k2=k2, k3="DEA多空", v1="多头") elif dea[-1] < -dea_base: v = Signal(k1=k1, k2=k2, k3="DEA多空", v1="空头") else: v = Signal(k1=k1, k2=k2, k3="DEA多空", v1="模糊") s[v.key] = v.value # DEA 方向信号 if dea[-1] > dea[-2]: v = Signal(k1=k1, k2=k2, k3="DEA方向", v1="向上") elif dea[-1] < dea[-2]: v = Signal(k1=k1, k2=k2, k3="DEA方向", v1="向下") else: v = Signal(k1=k1, k2=k2, k3="DEA方向", v1="模糊") s[v.key] = v.value # MACD 多空信号 if macd[-1] >= 0: v = Signal(k1=k1, k2=k2, k3="MACD多空", v1="多头") else: v = Signal(k1=k1, k2=k2, k3="MACD多空", v1="空头") s[v.key] = v.value # MACD 方向信号 if macd[-1] > macd[-2] > macd[-3]: v = Signal(k1=k1, k2=k2, k3="MACD方向", v1="向上") elif macd[-1] < macd[-2] < macd[-3]: v = Signal(k1=k1, k2=k2, k3="MACD方向", v1="向下") else: v = Signal(k1=k1, k2=k2, k3="MACD方向", v1="模糊") s[v.key] = v.value return s def get_s_sma(c: analyze.CZSC, di: int = 1, t_seq=(5, 10, 20, 60)) -> OrderedDict: """获取倒数第i根K线的SMA相关信号""" freq: Freq = c.freq s = OrderedDict() k1 = str(freq.value) k2 = f"倒{di}K" for t in t_seq: x1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="其他", v2='其他', v3='其他') x2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="其他", v2='其他', v3='其他') s[x1.key] = x1.value s[x2.key] = x2.value if len(c.bars_raw) < 100: return s if di == 1: close = np.array([x.close for x in c.bars_raw[-100:]]) else: close = np.array([x.close for x in c.bars_raw[-100-di+1:-di+1]]) for t in t_seq: sma = SMA(close, timeperiod=t) if close[-1] >= sma[-1]: v1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="多头") else: v1 = Signal(k1=k1, k2=k2, k3=f"SMA{t}多空", v1="空头") s[v1.key] = v1.value if sma[-1] >= sma[-2]: v2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="向上") else: v2 = Signal(k1=k1, k2=k2, k3=f"SMA{t}方向", v1="向下") s[v2.key] = v2.value return s def get_s_bar_end(c: analyze.CZSC) -> OrderedDict: """K线结束时间判断""" freq: Freq = c.freq if freq != Freq.F1: return OrderedDict() s = OrderedDict() default_signals = [ Signal(k1="5分钟", k2="倒1K", k3="结束", v1="其他", v2='其他', v3='其他'), Signal(k1="15分钟", k2="倒1K", k3="结束", v1="其他", v2='其他', v3='其他'), Signal(k1="30分钟", k2="倒1K", k3="结束", v1="其他", v2='其他', v3='其他'), Signal(k1="60分钟", k2="倒1K", k3="结束", v1="其他", v2='其他', v3='其他'), Signal(k1="日线", k2="倒1K", k3="结束", v1="其他", v2='其他', v3='其他'), Signal(k1="股票", k2="开仓", k3="时间范围A", v1="其他", v2='其他', v3='其他'), Signal(k1="股票", k2="开仓", k3="时间范围B", v1="其他", v2='其他', v3='其他'), Signal(k1="股票", k2="开仓", k3="时间范围C", v1="其他", v2='其他', v3='其他'), Signal(k1="股票", k2="开仓", k3="时间范围D", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value dt: datetime = c.bars_raw[-1].dt for i in [5, 15, 30, 60]: if dt.minute % i == 0: v = Signal(k1=f"{i}分钟", k2="倒1K", k3="结束", v1="是") else: v = Signal(k1=f"{i}分钟", k2="倒1K", k3="结束", v1="否") s[v.key] = v.value if dt.hour == 14 and 45 < dt.minute < 56: v = Signal(k1="日线", k2="倒1K", k3="结束", v1="是") s[v.key] = v.value if "10:00" <= dt.strftime("%H:%M") <= "14:59": v = Signal(k1="股票", k2="开仓", k3="时间范围A", v1="上午十点", v2='下午三点') s[v.key] = v.value if "11:00" <= dt.strftime("%H:%M") <= "14:59": v = Signal(k1="股票", k2="开仓", k3="时间范围B", v1="上午十一点", v2='下午三点') s[v.key] = v.value if "13:30" <= dt.strftime("%H:%M") <= "14:59": v = Signal(k1="股票", k2="开仓", k3="时间范围C", v1="下午一点半", v2='下午三点') s[v.key] = v.value if "14:30" <= dt.strftime("%H:%M") <= "14:59": v = Signal(k1="股票", k2="开仓", k3="时间范围D", v1="下午两点半", v2='下午三点') s[v.key] = v.value return s def get_s_k(c: analyze.CZSC, di: int = 1) -> OrderedDict: """获取倒数第i根K线的信号""" if c.freq not in [Freq.D, Freq.W]: return OrderedDict() if len(c.bars_raw) < di: return OrderedDict() s = OrderedDict() freq: Freq = c.freq k1 = str(freq.value) default_signals = [ Signal(k1=k1, k2=f"倒{di}K", k3="状态", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value k = c.bars_raw[-di] if k.close > k.open: v = Signal(k1=k1, k2=f"倒{di}K", k3="状态", v1="上涨") else: v = Signal(k1=k1, k2=f"倒{di}K", k3="状态", v1="下跌") s[v.key] = v.value return s # ---------------------------------------------------------------------------------------------------------------------- # 以下是信号函数,可以作为 CZSC 对象的参数 def get_default_signals(c: analyze.CZSC) -> OrderedDict: """在 CZSC 对象上计算信号,这个是标准函数,主要用于研究。 实盘时可以按照自己的需要自定义计算哪些信号。 :param c: CZSC 对象 :return: 信号字典 """ s = OrderedDict({"symbol": c.symbol, "dt": c.bars_raw[-1].dt, "close": c.bars_raw[-1].close}) s.update(get_s_d0_bi(c)) s.update(get_s_three_k(c, 1)) s.update(get_s_di_bi(c, 1)) s.update(get_s_macd(c, 1)) s.update(get_s_k(c, 1)) s.update(get_s_bi_status(c)) for di in range(1, 8): s.update(get_s_three_bi(c, di)) for di in range(1, 8): s.update(get_s_base_xt(c, di)) for di in range(1, 8): s.update(get_s_like_bs(c, di)) return s def get_selector_signals(c: analyze.CZSC) -> OrderedDict: """在 CZSC 对象上计算选股信号 :param c: CZSC 对象 :return: 信号字典 """ freq: Freq = c.freq s = OrderedDict({"symbol": c.symbol, "dt": c.bars_raw[-1].dt, "close": c.bars_raw[-1].close}) s.update(get_s_three_k(c, 1)) s.update(get_s_bi_status(c)) for di in range(1, 3): s.update(get_s_three_bi(c, di)) for di in range(1, 3): s.update(get_s_base_xt(c, di)) for di in range(1, 3): s.update(get_s_like_bs(c, di)) default_signals = [ # 以下是技术指标相关信号 Signal(k1=str(freq.value), k2="成交量", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="MA5状态", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="KDJ状态", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="MACD状态", v1="其他", v2='其他', v3='其他'), Signal(k1=str(freq.value), k2="倒0笔", k3="潜在三买", v1="其他", v2='其他', v3='其他'), ] for signal in default_signals: s[signal.key] = signal.value if not c.bi_list: return s if len(c.bars_raw) > 30 and c.freq == Freq.D: last_vols = [k_.open * k_.vol for k_ in c.bars_raw[-10:]] if sum(last_vols) > 15e8 and min(last_vols) > 1e7: v = Signal(k1=str(freq.value), k2="成交量", v1="近10个交易日累计成交金额大于15亿", v2='近10个交易日最低成交额大于1亿') s[v.key] = v.value if len(c.bars_raw) > 30 and c.freq in [Freq.W, Freq.M]: if kdj_gold_cross(c.bars_raw, just=False): v = Signal(k1=str(freq.value), k2="KDJ状态", v1="金叉") s[v.key] = v.value if len(c.bars_raw) > 100: close = np.array([x.close for x in c.bars_raw[-100:]]) ma5 = SMA(close, timeperiod=5) if c.bars_raw[-1].close >= ma5[-1]: v = Signal(k1=str(freq.value), k2="MA5状态", v1="收盘价在MA5上方", v2='') s[v.key] = v.value if ma5[-1] > ma5[-2] > ma5[-3]: v = Signal(k1=str(freq.value), k2="MA5状态", v1='收盘价在MA5上方', v2="向上趋势") s[v.key] = v.value diff, dea, macd = MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) if diff[-3:-1].mean() > 0 and dea[-3:-1].mean() > 0 and macd[-3] < macd[-2] < macd[-1]: v = Signal(k1=str(freq.value), k2="MACD状态", v1="DIFF大于0", v2='DEA大于0', v3='柱子增大') s[v.key] = v.value # 倒0笔潜在三买 if len(c.bi_list) >= 5: if c.bi_list[-1].direction == Direction.Down: gg = max(c.bi_list[-1].high, c.bi_list[-3].high) zg = min(c.bi_list[-1].high, c.bi_list[-3].high) zd = max(c.bi_list[-1].low, c.bi_list[-3].low) else: gg = min(c.bi_list[-2].high, c.bi_list[-4].high) zg = min(c.bi_list[-2].high, c.bi_list[-4].high) zd = max(c.bi_list[-2].low, c.bi_list[-4].low) if zg > zd: v = Signal(k1=str(freq.value), k2="倒0笔", k3="潜在三买", v1="构成中枢") if gg * 1.1 > min([x.low for x in c.bars_raw[-3:]]) > zg > zd: v = Signal(k1=str(freq.value), k2="倒0笔", k3="潜在三买", v1="构成中枢", v2="近3K在中枢上沿附近") if max([x.high for x in c.bars_raw[-7:-3]]) > gg: v = Signal(k1=str(freq.value), k2="倒0笔", k3="潜在三买", v1="构成中枢", v2="近3K在中枢上沿附近", v3='近7K突破中枢GG') if v and "其他" not in v.value: s[v.key] = v.value return s
[ "numpy.array", "collections.OrderedDict" ]
[((23899, 23912), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (23910, 23912), False, 'from collections import OrderedDict\n'), ((24475, 24488), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (24486, 24488), False, 'from collections import OrderedDict\n'), ((25203, 25216), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (25214, 25216), False, 'from collections import OrderedDict\n'), ((25993, 26006), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (26004, 26006), False, 'from collections import OrderedDict\n'), ((27111, 27124), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (27122, 27124), False, 'from collections import OrderedDict\n'), ((28522, 28535), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (28533, 28535), False, 'from collections import OrderedDict\n'), ((29956, 29969), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (29967, 29969), False, 'from collections import OrderedDict\n'), ((30851, 30864), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (30862, 30864), False, 'from collections import OrderedDict\n'), ((33620, 33633), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (33631, 33633), False, 'from collections import OrderedDict\n'), ((34756, 34769), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (34767, 34769), False, 'from collections import OrderedDict\n'), ((36758, 36771), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (36769, 36771), False, 'from collections import OrderedDict\n'), ((37538, 37632), 'collections.OrderedDict', 'OrderedDict', (["{'symbol': c.symbol, 'dt': c.bars_raw[-1].dt, 'close': c.bars_raw[-1].close}"], {}), "({'symbol': c.symbol, 'dt': c.bars_raw[-1].dt, 'close': c.\n bars_raw[-1].close})\n", (37549, 37632), False, 'from collections import OrderedDict\n'), ((38196, 38290), 'collections.OrderedDict', 'OrderedDict', (["{'symbol': c.symbol, 'dt': c.bars_raw[-1].dt, 'close': c.bars_raw[-1].close}"], {}), "({'symbol': c.symbol, 'dt': c.bars_raw[-1].dt, 'close': c.\n bars_raw[-1].close})\n", (38207, 38290), False, 'from collections import OrderedDict\n'), ((31511, 31557), 'numpy.array', 'np.array', (['[x.close for x in c.bars_raw[-100:]]'], {}), '([x.close for x in c.bars_raw[-100:]])\n', (31519, 31557), True, 'import numpy as np\n'), ((31584, 31646), 'numpy.array', 'np.array', (['[x.close for x in c.bars_raw[-100 - di + 1:-di + 1]]'], {}), '([x.close for x in c.bars_raw[-100 - di + 1:-di + 1]])\n', (31592, 31646), True, 'import numpy as np\n'), ((33992, 34038), 'numpy.array', 'np.array', (['[x.close for x in c.bars_raw[-100:]]'], {}), '([x.close for x in c.bars_raw[-100:]])\n', (34000, 34038), True, 'import numpy as np\n'), ((34065, 34127), 'numpy.array', 'np.array', (['[x.close for x in c.bars_raw[-100 - di + 1:-di + 1]]'], {}), '([x.close for x in c.bars_raw[-100 - di + 1:-di + 1]])\n', (34073, 34127), True, 'import numpy as np\n'), ((34733, 34746), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (34744, 34746), False, 'from collections import OrderedDict\n'), ((36676, 36689), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (36687, 36689), False, 'from collections import OrderedDict\n'), ((36735, 36748), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (36746, 36748), False, 'from collections import OrderedDict\n'), ((39666, 39712), 'numpy.array', 'np.array', (['[x.close for x in c.bars_raw[-100:]]'], {}), '([x.close for x in c.bars_raw[-100:]])\n', (39674, 39712), True, 'import numpy as np\n')]
# This module contains the code to create maps import numpy as np from itertools import combinations import matplotlib.pyplot as plt import itertools # For plotting import seaborn as sns import logging import statistics import time def manhattan(coords_ind1, coords_ind2): return abs(coords_ind1[0] - coords_ind2[0]) + abs(coords_ind1[1] - coords_ind2[1]) class IlluminationAxisDefinition: """ Data structure that model one axis of the map. In general a map can have multiple axes, even if we visualize only a subset of them. On axis usually correspond to a feature to explore. For the moment we assume that each axis is equally split in `num_cells` """ def __init__(self, feature_name, min_value, max_value, num_cells): self.logger = logging.getLogger('illumination_map.IlluminationAxisDefinition') self.logger.debug('Creating an instance of IlluminationAxisDefinition for feature %s', feature_name) self.feature_name = feature_name self.min_value = min_value self.max_value = max_value self.num_cells = num_cells # Definition of the inner map, values might fall outside it if less than min self.original_bins = np.linspace(min_value, max_value, num_cells) # Definition of the outer map # Include the default boundary conditions. Note that we do not add np.PINF, but the max value. # Check: https://stackoverflow.com/questions/4355132/numpy-digitize-returns-values-out-of-range self.bins = np.concatenate(([np.NINF], self.original_bins, [max_value+0.001])) def get_bins_labels(self): """ Note that here we return explicitly the last bin Returns: All the bins plus the default """ return self.original_bins def get_coordinate_for(self, sample): """ Return the coordinate of this sample according to the definition of this axis. It triggers exception if the sample does not declare a field with the name of this axis, i.e., the sample lacks this feature Args: sample: Returns: an integer representing the coordinate of the sample in this dimension Raises: an exception is raised if the sample does not contain the feature """ # TODO Check whether the sample has the feature value = sample[self.feature_name] if value < self.min_value: self.logger.warning("Sample %s has value %s below the min value %s for feature %s", sample.id, value, self.min_value, self.feature_name) elif value > self.max_value: self.logger.warning("Sample %s has value %s above the max value %s for feature %s", sample.id, value, self.max_value, self.feature_name) return np.digitize(value, self.original_bins, right=False) def is_outlier(self, sample): value = sample[self.feature_name] return value < self.min_value or value > self.max_value def to_dict(self): the_dict = { "name" : self.feature_name, "min-value" : self.min_value, "max-value": self.max_value, "num-cells": self.num_cells } return the_dict class IlluminationMap: """ Data structure that represent a map. The map is defined in terms of its axes """ def __init__(self, feature1: IlluminationAxisDefinition, feature2: IlluminationAxisDefinition): """ Note that axes are positional, the first [0] is x, the second[1] is y, the third [2] is z, etc. Args: axes: """ self.logger = logging.getLogger('illumination_map.IlluminationMapDefinition') self.feature_x = feature1 self.feature_y = feature2 self.samples = set() # Since we consider only input features we do not care aboutr misbehaviors here self.coverage_data = np.zeros(shape=(feature1.num_cells, feature2.num_cells), dtype=int) # def _compute_maps_data(self, feature1, feature2, samples): # """ # Create the raw data for the map by placing the samples on the map and counting for each cell how many samples # are there and how many misbehaviors # Args: # feature1: # feature2: # samples: # # Returns: # coverage_map, misbehavior_map # coverage_outer_map, misbehavior_outer_map # """ # # TODO Refactor: # # # Reshape the data as ndimensional array. But account for the lower and upper bins. # coverage_data = np.zeros(shape=(feature1.num_cells, feature2.num_cells), dtype=int) # misbehaviour_data = np.zeros(shape=(feature1.num_cells, feature2.num_cells), dtype=int) # # coverage_outer_data = np.zeros(shape=(feature1.num_cells + 2, feature2.num_cells + 2), dtype=int) # misbehaviour_outer_data = np.zeros(shape=(feature1.num_cells + 2, feature2.num_cells + 2), dtype=int) # # for sample in samples: # self.add_sample(sample) # # # return coverage_data, misbehaviour_data, coverage_outer_data, misbehaviour_outer_data # # def visualize_probability(self, tags=None, feature_selector=None, sample_selector=None): # """ # Visualize the probability of finding a misbehavior in a give cell, computed as the total of misbehavior over # the total samples in each cell. This is defined only for cells that have samples in them. Also store # the probability data so they can be post-processed (e.g., average across run/configuration) # """ # # Prepare the data by selecting samples and features # # filtered_samples = self.samples # self.logger.debug("All samples: %s", len(filtered_samples)) # if sample_selector is not None: # filtered_samples = sample_selector(self.samples) # self.logger.debug("Filtered samples: %s", len(filtered_samples)) # # filtered_features = self.axes # if feature_selector is not None: # filtered_features = feature_selector(self.axes) # # figures = [] # # Might be redundant if we store also misbehaviour_maps and coverage_maps # probability_maps = [] # # To compute confidence intervals and possibly other metrics on the map # misbehaviour_maps = [] # coverage_maps = [] # # total_samples_in_the_map = filtered_samples # # # Create one visualization for each pair of self.axes selected in order # for feature1, feature2 in itertools.combinations(filtered_features, 2): # # # Make sure we reset this for each feature combination # filtered_samples = total_samples_in_the_map # # Remove samples that are outliers for this map # if self.drop_outliers: # filtered_samples = drop_outliers_for(feature1, filtered_samples) # filtered_samples = drop_outliers_for(feature2, filtered_samples) # # coverage_data, misbehaviour_data, _, _ = self._compute_maps_data(feature1, feature2, filtered_samples) # # # figure # fig, ax = plt.subplots(figsize=(8, 8)) # # cmap = sns.cubehelix_palette(dark=0.1, light=0.9, as_cmap=True) # # Cells have a value between 0.0 and 1.0 since they represent probabilities # # # Set the color for the under the limit to be white (0.0) so empty cells are not visualized # # cmap.set_under('0.0') # # Plot NaN in white # cmap.set_bad(color='white') # # # Coverage data might be zero, so this produces Nan. We convert that to 0.0 # # probability_data = np.nan_to_num(misbehaviour_data / coverage_data) # raw_probability_data = misbehaviour_data / coverage_data # # # For some weird reason the data in the heatmap are shown with the first dimension on the y and the # # second on the x. So we transpose # probability_data = np.transpose(raw_probability_data) # # sns.heatmap(probability_data, vmin=0.0, vmax=1.0, square=True, cmap=cmap) # # xtickslabel = [round(the_bin, 1) for the_bin in feature1.get_bins_labels()] # ytickslabel = [round(the_bin, 1) for the_bin in feature2.get_bins_labels()] # # # ax.set_xticklabels(xtickslabel) # plt.xticks(rotation=45) # ax.set_yticklabels(ytickslabel) # plt.yticks(rotation=0) # # tool_name = str(self._get_tool(filtered_samples)) # run_id = str(self._get_run_id(filtered_samples)).zfill(3) # # title_tokens = ["Mishbehavior Probability", "\n"] # title_tokens.extend(["Tool:", tool_name, "--", "Run ID:", run_id]) # # if tags is not None and len(tags) > 0: # title_tokens.extend(["\n", "Tags:"]) # title_tokens.extend([str(t) for t in tags]) # # the_title = " ".join(title_tokens) # # fig.suptitle(the_title, fontsize=16) # # # Plot small values of y below. # # We need this to have the y axis start from zero at the bottom # ax.invert_yaxis() # # # axis labels # plt.xlabel(feature1.feature_name) # plt.ylabel(feature2.feature_name) # # # Include data to store the file with same prefix # # # Add the store_to attribute to the figure and maps object # setattr(fig, "store_to", "-".join(["probability", tool_name, run_id, feature1.feature_name, feature2.feature_name])) # figures.append(fig) # # probability_maps.append({ # "data": raw_probability_data, # "store_to": "-".join(["probability", tool_name, run_id, feature1.feature_name, feature2.feature_name]) # }) # # misbehaviour_maps.append({ # "data": misbehaviour_data, # "store_to": "-".join(["misbehaviour", tool_name, run_id, feature1.feature_name, feature2.feature_name]) # }) # # coverage_maps.append({ # "data": coverage_data, # "store_to": "-".join(["coverage", tool_name, run_id, feature1.feature_name, feature2.feature_name]) # }) # # # return figures, probability_maps, misbehaviour_maps, coverage_maps def is_cell_free(self, sample): # Coordinates reason in terms of bins 1, 2, 3, while data is 0-indexed x_coord = self.feature_x.get_coordinate_for(sample) - 1 y_coord = self.feature_y.get_coordinate_for(sample) - 1 return self.coverage_data[x_coord, y_coord] == 0 def add_sample(self, sample): # Coordinates reason in terms of bins 1, 2, 3, while data is 0-indexed x_coord = self.feature_x.get_coordinate_for(sample) - 1 y_coord = self.feature_y.get_coordinate_for(sample) - 1 # Increment the coverage cell self.coverage_data[x_coord, y_coord] += 1 def visualize(self): """ Visualize the current map and the features on a map. The map cells contains the number of samples for each cell, so empty cells (0) are white, cells with few elements have a light color, while cells with more elements have darker color. This gives an intuition on the distribution of the misbheaviors and the collisions Args: Returns: figure """ # Compute data #coverage_data, misbehaviour_data, _, _ = self._compute_maps_data(feature1, feature2, self.samples) # figure figure, ax = plt.subplots(figsize=(8, 8)) # Set the heatmap cmap = sns.cubehelix_palette(dark=0.5, light=0.9, as_cmap=True) # Set the color for the under the limit to be white (so they are not visualized) cmap.set_under('1.0') # For some weird reason the data in the heatmap are shown with the first dimension on the y and the # second on the x. So we transpose coverage_data = np.transpose(self.coverage_data) sns.heatmap(coverage_data, vmin=1, vmax=20, square=True, cmap=cmap) xtickslabel = [round(the_bin, 1) for the_bin in self.feature_x.get_bins_labels()] ytickslabel = [round(the_bin, 1) for the_bin in self.feature_y.get_bins_labels()] # ax.set_xticklabels(xtickslabel) plt.xticks(rotation=45) ax.set_yticklabels(ytickslabel) plt.yticks(rotation=0) figure.suptitle("Feature Map Coverage", fontsize=16) # Plot small values of y below. # We need this to have the y axis start from zero at the bottom ax.invert_yaxis() # axis labels plt.xlabel(self.feature_x.feature_name) plt.ylabel(self.feature_y.feature_name) return figure
[ "logging.getLogger", "seaborn.cubehelix_palette", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "numpy.digitize", "matplotlib.pyplot.xlabel", "seaborn.heatmap", "numpy.linspace", "numpy.zeros", "matplotlib.pyplot.yticks", "numpy.concatenate", "numpy.transpose", "matplotlib.pyplot.subplots" ]
[((792, 856), 'logging.getLogger', 'logging.getLogger', (['"""illumination_map.IlluminationAxisDefinition"""'], {}), "('illumination_map.IlluminationAxisDefinition')\n", (809, 856), False, 'import logging\n'), ((1227, 1271), 'numpy.linspace', 'np.linspace', (['min_value', 'max_value', 'num_cells'], {}), '(min_value, max_value, num_cells)\n', (1238, 1271), True, 'import numpy as np\n'), ((1537, 1605), 'numpy.concatenate', 'np.concatenate', (['([np.NINF], self.original_bins, [max_value + 0.001])'], {}), '(([np.NINF], self.original_bins, [max_value + 0.001]))\n', (1551, 1605), True, 'import numpy as np\n'), ((2871, 2922), 'numpy.digitize', 'np.digitize', (['value', 'self.original_bins'], {'right': '(False)'}), '(value, self.original_bins, right=False)\n', (2882, 2922), True, 'import numpy as np\n'), ((3715, 3778), 'logging.getLogger', 'logging.getLogger', (['"""illumination_map.IlluminationMapDefinition"""'], {}), "('illumination_map.IlluminationMapDefinition')\n", (3732, 3778), False, 'import logging\n'), ((3996, 4063), 'numpy.zeros', 'np.zeros', ([], {'shape': '(feature1.num_cells, feature2.num_cells)', 'dtype': 'int'}), '(shape=(feature1.num_cells, feature2.num_cells), dtype=int)\n', (4004, 4063), True, 'import numpy as np\n'), ((11976, 12004), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (11988, 12004), True, 'import matplotlib.pyplot as plt\n'), ((12047, 12103), 'seaborn.cubehelix_palette', 'sns.cubehelix_palette', ([], {'dark': '(0.5)', 'light': '(0.9)', 'as_cmap': '(True)'}), '(dark=0.5, light=0.9, as_cmap=True)\n', (12068, 12103), True, 'import seaborn as sns\n'), ((12399, 12431), 'numpy.transpose', 'np.transpose', (['self.coverage_data'], {}), '(self.coverage_data)\n', (12411, 12431), True, 'import numpy as np\n'), ((12441, 12508), 'seaborn.heatmap', 'sns.heatmap', (['coverage_data'], {'vmin': '(1)', 'vmax': '(20)', 'square': '(True)', 'cmap': 'cmap'}), '(coverage_data, vmin=1, vmax=20, square=True, cmap=cmap)\n', (12452, 12508), True, 'import seaborn as sns\n'), ((12748, 12771), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)'}), '(rotation=45)\n', (12758, 12771), True, 'import matplotlib.pyplot as plt\n'), ((12820, 12842), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'rotation': '(0)'}), '(rotation=0)\n', (12830, 12842), True, 'import matplotlib.pyplot as plt\n'), ((13075, 13114), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['self.feature_x.feature_name'], {}), '(self.feature_x.feature_name)\n', (13085, 13114), True, 'import matplotlib.pyplot as plt\n'), ((13123, 13162), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['self.feature_y.feature_name'], {}), '(self.feature_y.feature_name)\n', (13133, 13162), True, 'import matplotlib.pyplot as plt\n')]
import os import warnings from typing import Optional, Tuple, Union, List import joblib import numpy as np from ConfigSpace import Configuration from sklearn import clone from sklearn.base import is_classifier from sklearn.model_selection import check_cv from sklearn.model_selection._validation import _fit_and_predict, _check_is_permutation from sklearn.utils import indexable from sklearn.utils.validation import _num_samples from dswizard.components.base import EstimatorComponent from dswizard.core.config_cache import ConfigCache from dswizard.core.logger import ProcessLogger from dswizard.core.model import CandidateId, ConfigKey, Dataset from dswizard.core.worker import Worker from dswizard.pipeline.pipeline import FlexiblePipeline from dswizard.util import util from dswizard.util.util import model_file warnings.filterwarnings("ignore", category=UserWarning) class SklearnWorker(Worker): def compute(self, ds: Dataset, cid: CandidateId, config: Optional[Configuration], cfg_cache: Optional[ConfigCache], cfg_keys: Optional[List[ConfigKey]], pipeline: FlexiblePipeline, process_logger: ProcessLogger) -> List[float]: if config is None: # Derive configuration on complete data set. Test performance via CV cloned_pipeline = clone(pipeline) cloned_pipeline.cfg_cache = cfg_cache cloned_pipeline.cfg_keys = cfg_keys cloned_pipeline.fit(ds.X, ds.y, logger=process_logger) config = process_logger.get_config(cloned_pipeline) cloned_pipeline = clone(pipeline) cloned_pipeline.set_hyperparameters(config.get_dictionary()) score, _, _, models = self._score(ds, cloned_pipeline) self._store_models(cid, models) return score def transform_dataset(self, ds: Dataset, cid: CandidateId, component: EstimatorComponent, config: Configuration) -> Tuple[np.ndarray, Optional[float]]: component.set_hyperparameters(config.get_dictionary()) if is_classifier(component): score, y_pred, y_prob, models = self._score(ds, component) try: y_pred = y_pred.astype(float) except ValueError: pass X = np.hstack((ds.X, y_prob, np.reshape(y_pred, (-1, 1)))) else: models = [component.fit(ds.X, ds.y)] X = models[0].transform(ds.X) score = None self._store_models(cid, models) return X, score def _score(self, ds: Dataset, estimator: Union[EstimatorComponent, FlexiblePipeline], n_folds: int = 4): y = ds.y y_pred, y_prob, models = self._cross_val_predict(estimator, ds.X, y, cv=n_folds) # Meta-learning only considers f1. Calculate f1 score for structure search score = [util.score(y, y_prob, y_pred, ds.metric), util.score(y, y_prob, y_pred, 'f1')] return score, y_pred, y_prob, models @staticmethod def _cross_val_predict(pipeline, X, y=None, cv=None): X, y, groups = indexable(X, y, None) cv = check_cv(cv, y, classifier=is_classifier(pipeline)) prediction_blocks = [] probability_blocks = [] fitted_pipelines = [] for train, test in cv.split(X, y, groups): cloned_pipeline = clone(pipeline) probability_blocks.append(_fit_and_predict(cloned_pipeline, X, y, train, test, 0, {}, 'predict_proba')) prediction_blocks.append(cloned_pipeline.predict(X)) fitted_pipelines.append(cloned_pipeline) # Concatenate the predictions probabilities = [prob_block_i for prob_block_i, _ in probability_blocks] predictions = [pred_block_i for pred_block_i in prediction_blocks] test_indices = np.concatenate([indices_i for _, indices_i in probability_blocks]) if not _check_is_permutation(test_indices, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') inv_test_indices = np.empty(len(test_indices), dtype=int) inv_test_indices[test_indices] = np.arange(len(test_indices)) probabilities = np.concatenate(probabilities) predictions = np.concatenate(predictions) if isinstance(predictions, list): return [p[inv_test_indices] for p in predictions], [p[inv_test_indices] for p in probabilities], fitted_pipelines else: return predictions[inv_test_indices], probabilities[inv_test_indices], fitted_pipelines def _store_models(self, cid: CandidateId, models: List[EstimatorComponent]): name = model_file(cid) file = os.path.join(self.workdir, name) with open(file, 'wb') as f: joblib.dump(models, f)
[ "dswizard.util.util.model_file", "dswizard.util.util.score", "numpy.reshape", "sklearn.base.is_classifier", "os.path.join", "sklearn.model_selection._validation._fit_and_predict", "sklearn.utils.indexable", "sklearn.utils.validation._num_samples", "numpy.concatenate", "sklearn.clone", "joblib.dump", "warnings.filterwarnings" ]
[((819, 874), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'UserWarning'}), "('ignore', category=UserWarning)\n", (842, 874), False, 'import warnings\n'), ((1661, 1676), 'sklearn.clone', 'clone', (['pipeline'], {}), '(pipeline)\n', (1666, 1676), False, 'from sklearn import clone\n'), ((2127, 2151), 'sklearn.base.is_classifier', 'is_classifier', (['component'], {}), '(component)\n', (2140, 2151), False, 'from sklearn.base import is_classifier\n'), ((3145, 3166), 'sklearn.utils.indexable', 'indexable', (['X', 'y', 'None'], {}), '(X, y, None)\n', (3154, 3166), False, 'from sklearn.utils import indexable\n'), ((3875, 3941), 'numpy.concatenate', 'np.concatenate', (['[indices_i for _, indices_i in probability_blocks]'], {}), '([indices_i for _, indices_i in probability_blocks])\n', (3889, 3941), True, 'import numpy as np\n'), ((4250, 4279), 'numpy.concatenate', 'np.concatenate', (['probabilities'], {}), '(probabilities)\n', (4264, 4279), True, 'import numpy as np\n'), ((4302, 4329), 'numpy.concatenate', 'np.concatenate', (['predictions'], {}), '(predictions)\n', (4316, 4329), True, 'import numpy as np\n'), ((4774, 4789), 'dswizard.util.util.model_file', 'model_file', (['cid'], {}), '(cid)\n', (4784, 4789), False, 'from dswizard.util.util import model_file\n'), ((4805, 4837), 'os.path.join', 'os.path.join', (['self.workdir', 'name'], {}), '(self.workdir, name)\n', (4817, 4837), False, 'import os\n'), ((1389, 1404), 'sklearn.clone', 'clone', (['pipeline'], {}), '(pipeline)\n', (1394, 1404), False, 'from sklearn import clone\n'), ((2921, 2961), 'dswizard.util.util.score', 'util.score', (['y', 'y_prob', 'y_pred', 'ds.metric'], {}), '(y, y_prob, y_pred, ds.metric)\n', (2931, 2961), False, 'from dswizard.util import util\n'), ((2963, 2998), 'dswizard.util.util.score', 'util.score', (['y', 'y_prob', 'y_pred', '"""f1"""'], {}), "(y, y_prob, y_pred, 'f1')\n", (2973, 2998), False, 'from dswizard.util import util\n'), ((3407, 3422), 'sklearn.clone', 'clone', (['pipeline'], {}), '(pipeline)\n', (3412, 3422), False, 'from sklearn import clone\n'), ((4886, 4908), 'joblib.dump', 'joblib.dump', (['models', 'f'], {}), '(models, f)\n', (4897, 4908), False, 'import joblib\n'), ((3207, 3230), 'sklearn.base.is_classifier', 'is_classifier', (['pipeline'], {}), '(pipeline)\n', (3220, 3230), False, 'from sklearn.base import is_classifier\n'), ((3461, 3537), 'sklearn.model_selection._validation._fit_and_predict', '_fit_and_predict', (['cloned_pipeline', 'X', 'y', 'train', 'test', '(0)', '{}', '"""predict_proba"""'], {}), "(cloned_pipeline, X, y, train, test, 0, {}, 'predict_proba')\n", (3477, 3537), False, 'from sklearn.model_selection._validation import _fit_and_predict, _check_is_permutation\n'), ((3994, 4009), 'sklearn.utils.validation._num_samples', '_num_samples', (['X'], {}), '(X)\n', (4006, 4009), False, 'from sklearn.utils.validation import _num_samples\n'), ((2380, 2407), 'numpy.reshape', 'np.reshape', (['y_pred', '(-1, 1)'], {}), '(y_pred, (-1, 1))\n', (2390, 2407), True, 'import numpy as np\n')]
""" Module realize VLImage - structure for storing image in special format. """ from enum import Enum from pathlib import Path from typing import Optional, Union import requests from FaceEngine import FormatType, Image as CoreImage # pylint: disable=E0611,E0401 import numpy as np from PIL.Image import Image as PilImage from PIL import Image as pilImage from ..errors.errors import LunaVLError from ..errors.exceptions import LunaSDKException from .geometry import Rect class ImageFormat(Enum): """ Enum for image format """ #: jpg JPEG = "jpg" #: png PNG = "png" #: ppm PPM = "ppm" #: tif TIFF = "tif" #: bmp BMP = "bmp" class ColorFormat(Enum): """ Enum for vl luna color formats """ #: 3 channel, 8 bit per channel, B-G-R color order format; B8G8R8 = "B8G8R8" #: 3 channel, 8 bit per channel, B-G-R color order format with 8 bit padding before next pixel; B8G8R8X8 = "B8G8R8X8" #: 3 channel, 8 bit per channel format with InfraRed semantics IR_X8X8X8 = "IR_X8X8X8" #: 1 channel, 16 bit per channel format; R16 = "R16" #: 1 channel, 8 bit per channel format; R8 = "R8" #: 3 channel, 8 bit per channel, R-G-B color order format; R8G8B8 = "R8G8B8" #: 3 channel, 8 bit per channel, R-G-B color order format with 8 bit padding before next pixel; R8G8B8X8 = "R8G8B8X8" #: unknown format Unknown = "Unknown" @property def coreFormat(self) -> FormatType: """ Convert format to luna core format. Returns: luna core format """ return getattr(FormatType, self.value) @staticmethod def convertCoreFormat(imageFormat: FormatType) -> "ColorFormat": """ Convert FormatType to Format Args: imageFormat: core image format Returns: corresponding lunavl image format """ return getattr(ColorFormat, imageFormat.name) @classmethod def load(cls, colorFormat: str) -> "ColorFormat": """ Load color format from known sources: 1. some PIL image "mode" https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes 2. FSDK color format Args: colorFormat: input color format Returns: corresponding lunavl image format Raises: NotImplementedError if color format is not supported """ if colorFormat == "RGB": return cls.R8G8B8 if colorFormat == "RGBa": return cls.R8G8B8X8 if colorFormat == "RGBA": return cls.R8G8B8X8 if colorFormat == "RGBX": return cls.R8G8B8X8 if colorFormat == "BGR": return cls.B8G8R8 if colorFormat == "BGRa": return cls.B8G8R8X8 if colorFormat == "BGRx": return cls.B8G8R8X8 if colorFormat == "RGB": return cls.R8G8B8 if colorFormat in "LP": return cls.R8 try: return getattr(cls, colorFormat) except AttributeError: pass raise ValueError(f"Cannot load '{colorFormat}' color format.") class VLImage: """ Class image. Attributes: coreImage (CoreFE.Image): core image object source (Union[bytes, bytearray, PilImage, CoreImage]): body of image filename (str): filename of the file which is source of image """ __slots__ = ("coreImage", "source", "filename") def __init__( self, body: Union[bytes, bytearray, PilImage, CoreImage], colorFormat: Optional[ColorFormat] = None, filename: str = "", ): """ Init. Args: body: body of image - bytes numpy array or core image colorFormat: img format to cast into filename: user mark a source of image Raises: TypeError: if body has incorrect type LunaSDKException: if failed to load image to sdk Image """ if isinstance(body, bytearray): body = bytes(body) if isinstance(body, CoreImage): if colorFormat is None or colorFormat.coreFormat == body.getFormat(): self.coreImage = body else: error, self.coreImage = body.convert(colorFormat.coreFormat) if error.isError: raise LunaSDKException(LunaVLError.fromSDKError(error)) elif isinstance(body, bytes): self.coreImage = CoreImage() imgFormat = (colorFormat or ColorFormat.R8G8B8).coreFormat error = self.coreImage.loadFromMemory(body, len(body), imgFormat) if error.isError: raise LunaSDKException(LunaVLError.fromSDKError(error)) elif isinstance(body, PilImage): array = np.array(body) colorFormat = ColorFormat.load(body.mode) self.coreImage = self._coreImageFromNumpyArray( ndarray=array, inputColorFormat=colorFormat, colorFormat=colorFormat ) else: raise TypeError(f"Bad image type: {type(body)}") self.source = body self.filename = filename @classmethod def load( cls, *, filename: Optional[str] = None, url: Optional[str] = None, colorFormat: Optional[ColorFormat] = None ) -> "VLImage": """ Load image from numpy array or file or url. Args: *: for positional argument removal filename: filename url: url colorFormat: img format to cast into Returns: vl image Raises: ValueError: if no one argument did not set. >>> VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg').rect x = 0, y = 0, width = 1000, height = 1288 todo: more doc test """ if filename is not None: path = Path(filename) with path.open("rb") as file: body = file.read() img = cls(body, colorFormat) img.filename = path.name return img if url is not None: response = requests.get(url=url) if response.status_code == 200: img = cls(response.content, colorFormat) img.filename = url return img raise ValueError @staticmethod def _coreImageFromNumpyArray( ndarray: np.ndarray, inputColorFormat: ColorFormat, colorFormat: Optional[ColorFormat] = None ) -> CoreImage: """ Load VLImage from numpy array into `self`. Args: ndarray: numpy pixel array inputColorFormat: numpy pixel array format colorFormat: pixel format to cast into Returns: core image instance """ baseCoreImage = CoreImage() baseCoreImage.setData(ndarray, inputColorFormat.coreFormat) if colorFormat is None or baseCoreImage.getFormat() == colorFormat.coreFormat: return baseCoreImage error, convertedCoreImage = baseCoreImage.convert(colorFormat.coreFormat) if error.isError: raise LunaSDKException(LunaVLError.fromSDKError(error)) return convertedCoreImage @classmethod def fromNumpyArray( cls, arr: np.ndarray, inputColorFormat: Union[str, ColorFormat], colorFormat: Optional[ColorFormat] = None, filename: str = "", ) -> "VLImage": """ Load VLImage from numpy array. Args: arr: numpy pixel array inputColorFormat: input numpy pixel array format colorFormat: pixel format to cast into filename: optional filename Returns: vl image """ if isinstance(inputColorFormat, str): inputColorFormat = ColorFormat.load(inputColorFormat) coreImage = cls._coreImageFromNumpyArray(ndarray=arr, inputColorFormat=inputColorFormat) return cls(coreImage, filename=filename, colorFormat=colorFormat) @property def format(self) -> ColorFormat: """ getFormat(self: FaceEngine.Image) -> FaceEngine.FormatType >>> image = VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg') >>> image.format.value 'R8G8B8' """ return ColorFormat.convertCoreFormat(self.coreImage.getFormat()) @property def rect(self) -> Rect: """ Get rect of image. Returns: rect of the image """ return Rect.fromCoreRect(self.coreImage.getRect()) def computePitch(self, rowWidth) -> int: """ Compute row size in bytes Args: rowWidth: row width in pixels. Returns: row size in bytes. """ return self.coreImage.computePitch(rowWidth) @property def bitDepth(self) -> int: """ Get number of bits per pixel. Returns: number of bits per pixel. """ return self.coreImage.getBitDepth() @property def getByteDepth(self) -> int: """ Get number of bytes per pixel. Returns: number of bytes per pixel. """ return self.coreImage.getByteDepth() @property def channelCount(self) -> int: """ Get chanel count of the image. Returns: channel count. >>> img = VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg') >>> img.channelCount 3 """ return self.coreImage.getChannelCount() @property def channelSize(self) -> int: """ Get size of one chanel in bites. Returns: channel size in bytes. >>> img = VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg') >>> img.channelSize 8 """ return self.coreImage.getChannelSize() @property def channelStep(self) -> int: """ Get chanel step. todo: more description Returns: channel size in bytes. Notes: padding bytes are considered spare channels. >>> img = VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg') >>> img.channelStep 3 """ return self.coreImage.getChannelStep() def asNPArray(self) -> np.ndarray: """ Get image as numpy array. !!!WARNING!!! Does NOT return the same image as in the self.coreImage. Returns: numpy array todo: doctest """ if self.format == ColorFormat.R16: return self.coreImage.getDataR16() return self.coreImage.getData() def asPillow(self) -> PilImage: """ Get image as pillow image. !!!WARNING!!! Does NOT return the same image as in the self.coreImage. Returns: pillow image todo: doctest """ imageArray = self.asNPArray() return pilImage.fromarray(imageArray) def isBGR(self) -> bool: """ Check whether format image is bgr or not. Returns: True if the image is bgr image otherwise False Notes: padding is ignored for padded channels. >>> VLImage.load(url='https://st.kp.yandex.net/im/kadr/3/1/4/kinopoisk.ru-Keira-Knightley-3142930.jpg').isBGR() False """ return self.coreImage.isBGR() def isPadded(self) -> bool: """ Determinate image format has padding bytes or not. Returns: true if image format has padding bytes. todo examples """ return self.coreImage.isPadded() def save(self, filename: str, colorFormat: Optional[ColorFormat] = None): """ Save image to disk. Support image format: *ppm, jpg, png, tif*. Args: filename: filename colorFormat: color format to save image in Raises: LunaSDKException: if failed to save image to sdk Image """ if colorFormat is None: saveRes = self.coreImage.save(filename) else: saveRes = self.coreImage.save(filename, colorFormat.coreFormat) if saveRes.isError: raise LunaSDKException(LunaVLError.fromSDKError(saveRes)) def convertToBinaryImg(self, imageFormat: ImageFormat = ImageFormat.PPM) -> bytes: """ Convert VL image to binary image Args: imageFormat: format Returns: bytes """ pass def isValid(self) -> bool: """ Check image is valid loaded to core image or not Returns: True if image is valid otherwise False """ return self.coreImage.isValid() def convert(self, colorFormat: ColorFormat) -> "VLImage": """ Convert current VLImage into image with another color format. Args: colorFormat: color format to convert into Returns: converted vl image Raises: LunaSDKException: if failed to convert image """ error, coreImage = self.coreImage.convert(colorFormat.coreFormat) if error.isError: raise LunaSDKException(LunaVLError.fromSDKError(error)) return self.__class__(body=coreImage, filename=self.filename)
[ "PIL.Image.fromarray", "pathlib.Path", "FaceEngine.Image", "requests.get", "numpy.array" ]
[((6990, 7001), 'FaceEngine.Image', 'CoreImage', ([], {}), '()\n', (6999, 7001), True, 'from FaceEngine import FormatType, Image as CoreImage\n'), ((11343, 11373), 'PIL.Image.fromarray', 'pilImage.fromarray', (['imageArray'], {}), '(imageArray)\n', (11361, 11373), True, 'from PIL import Image as pilImage\n'), ((6039, 6053), 'pathlib.Path', 'Path', (['filename'], {}), '(filename)\n', (6043, 6053), False, 'from pathlib import Path\n'), ((6296, 6317), 'requests.get', 'requests.get', ([], {'url': 'url'}), '(url=url)\n', (6308, 6317), False, 'import requests\n'), ((4581, 4592), 'FaceEngine.Image', 'CoreImage', ([], {}), '()\n', (4590, 4592), True, 'from FaceEngine import FormatType, Image as CoreImage\n'), ((4905, 4919), 'numpy.array', 'np.array', (['body'], {}), '(body)\n', (4913, 4919), True, 'import numpy as np\n')]
# modify from PointGroup # Written by <NAME> import os import os.path as osp import logging from typing import Optional from operator import itemgetter from copy import deepcopy import gorilla import torch import numpy as np import open3d as o3d COLORSEMANTIC = np.array([ [171, 198, 230], # rgb(171, 198, 230) [143, 223, 142], # rgb(143, 223, 142) [0, 120, 177], # rgb(0, 120, 177) [255, 188, 126], # rgb(255, 188, 126) [189, 189, 57], # rgb(189, 189, 57) [144, 86, 76], # rgb(144, 86, 76) [255, 152, 153], # rgb(255, 152, 153) [222, 40, 47], # rgb(222, 40, 47) [197, 176, 212], # rgb(197, 176, 212) [150, 103, 185], # rgb(150, 103, 185) [200, 156, 149], # rgb(200, 156, 149) [0, 190, 206], # rgb(0, 190, 206) [252, 183, 210], # rgb(252, 183, 210) [219, 219, 146], # rgb(219, 219, 146) [255, 127, 43], # rgb(255, 127, 43) [234, 119, 192], # rgb(234, 119, 192) [150, 218, 228], # rgb(150, 218, 228) [0, 160, 55], # rgb(0, 160, 55) [110, 128, 143], # rgb(110, 128, 143) [80, 83, 160] # rgb(80, 83, 160) ]) COLOR20 = np.array([ [230, 25, 75], # rgb(230, 25, 75) [60, 180, 75], # rgb(60, 180, 75) [255, 225, 25], # rgb(255, 225, 25) [0, 130, 200], # rgb(0, 130, 200) [245, 130, 48], # rgb(245, 130, 48) [145, 30, 180], # rgb(145, 30, 180) [70, 240, 240], # rgb(70, 240, 240) [240, 50, 230], # rgb(240, 50, 230) [210, 245, 60], # rgb(210, 245, 60) [250, 190, 190], # rgb(250, 190, 190) [0, 128, 128], # rgb(0, 128, 128) [230, 190, 255], # rgb(230, 190, 255) [170, 110, 40], # rgb(170, 110, 40) [255, 250, 200], # rgb(255, 250, 200) [128, 0, 0], # rgb(128, 0, 0) [170, 255, 195], # rgb(170, 255, 195) [128, 128, 0], # rgb(128, 128, 0) [255, 215, 180], # rgb(255, 215, 180) [0, 0, 128], # rgb(0, 0, 128) [128, 128, 128] # rgb(128, 128, 128) ]) COLOR40 = np.array([ [88, 170, 108], # rgb(88,170,108) [174, 105, 226], # rgb(174,105,226) [78, 194, 83], # rgb(78,194,83) [198, 62, 165], # rgb(198,62,165) [133, 188, 52], # rgb(133,188,52) [97, 101, 219], # rgb(97,101,219) [190, 177, 52], # rgb(190,177,52) [139, 65, 168], # rgb(139,65,168) [75, 202, 137], # rgb(75,202,137) [225, 66, 129], # rgb(225,66,129) [68, 135, 42], # rgb(68,135,42) [226, 116, 210], # rgb(226,116,210) [146, 186, 98], # rgb(146,186,98) [68, 105, 201], # rgb(68,105,201) [219, 148, 53], # rgb(219,148,53) [85, 142, 235], # rgb(85,142,235) [212, 85, 42], # rgb(212,85,42) [78, 176, 223], # rgb(78,176,223) [221, 63, 77], # rgb(221,63,77) [68, 195, 195], # rgb(68,195,195) [175, 58, 119], # rgb(175,58,119) [81, 175, 144], # rgb(81,175,144) [184, 70, 74], # rgb(184,70,74) [40, 116, 79], # rgb(40,116,79) [184, 134, 219], # rgb(184,134,219) [130, 137, 46], # rgb(130,137,46) [110, 89, 164], # rgb(110,89,164) [92, 135, 74], # rgb(92,135,74) [220, 140, 190], # rgb(220,140,190) [94, 103, 39], # rgb(94,103,39) [144, 154, 219], # rgb(144,154,219) [160, 86, 40], # rgb(160,86,40) [67, 107, 165], # rgb(67,107,165) [194, 170, 104], # rgb(194,170,10) [162, 95, 150], # rgb(162,95,150) [143, 110, 44], # rgb(143,110,44) [146, 72, 105], # rgb(146,72,105) [225, 142, 106], # rgb(225,142,106) [162, 83, 86], # rgb(162,83,86) [227, 124, 143] # rgb(227,124,143) ]) SEMANTIC_IDXS = np.array( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) SEMANTIC_NAMES = np.array([ "wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door", "window", "bookshelf", "picture", "counter", "desk", "curtain", "refridgerator", "shower curtain", "toilet", "sink", "bathtub", "otherfurniture" ]) CLASS_COLOR = { "unannotated": [0, 0, 0], "floor": [143, 223, 142], "wall": [171, 198, 230], "cabinet": [0, 120, 177], "bed": [255, 188, 126], "chair": [189, 189, 57], "sofa": [144, 86, 76], "table": [255, 152, 153], "door": [222, 40, 47], "window": [197, 176, 212], "bookshelf": [150, 103, 185], "picture": [200, 156, 149], "counter": [0, 190, 206], "desk": [252, 183, 210], "curtain": [219, 219, 146], "refridgerator": [255, 127, 43], "bathtub": [234, 119, 192], "shower curtain": [150, 218, 228], "toilet": [0, 160, 55], "sink": [110, 128, 143], "otherfurniture": [80, 83, 160] } SEMANTIC_IDX2NAME = { 1: "wall", 2: "floor", 3: "cabinet", 4: "bed", 5: "chair", 6: "sofa", 7: "table", 8: "door", 9: "window", 10: "bookshelf", 11: "picture", 12: "counter", 14: "desk", 16: "curtain", 24: "refridgerator", 28: "shower curtain", 33: "toilet", 34: "sink", 36: "bathtub", 39: "otherfurniture" } def visualize_instance_mask(clusters: np.ndarray, room_name: str, visual_dir: str, data_root: str, cluster_scores: Optional[np.ndarray] = None, semantic_pred: Optional[np.ndarray] = None, color: int = 20, **kwargs): logger = gorilla.derive_logger(__name__) assert color in [20, 40] colors = globals()[f"COLOR{color}"] mesh_file = osp.join(data_root, room_name, room_name + "_vh_clean_2.ply") mesh = o3d.io.read_triangle_mesh(mesh_file) pred_mesh = deepcopy(mesh) points = np.array(pred_mesh.vertices) inst_label_pred_rgb = np.zeros_like(points) # np.ones(rgb.shape) * 255 # logger.info(f"room_name: {room_name}") for cluster_id, cluster in enumerate(clusters): if logger is not None: # NOTE: remove the handlers are not FileHandler to avoid # outputing this message on console(StreamHandler) # and final will recover the handlers of logger handler_storage = [] for handler in logger.handlers: if not isinstance(handler, logging.FileHandler): handler_storage.append(handler) logger.removeHandler(handler) message = f"{cluster_id:<4}: pointnum: {int(cluster.sum()):<7} " if semantic_pred is not None: semantic_label = np.argmax( np.bincount(semantic_pred[np.where(cluster == 1)[0]])) semantic_id = int(SEMANTIC_IDXS[semantic_label]) semantic_name = SEMANTIC_IDX2NAME[semantic_id] message += f"semantic: {semantic_id:<3}-{semantic_name:<15} " if cluster_scores is not None: score = float(cluster_scores[cluster_id]) message += f"score: {score:.4f} " logger.info(message) for handler in handler_storage: logger.addHandler(handler) inst_label_pred_rgb[cluster == 1] = colors[cluster_id % len(colors)] rgb = inst_label_pred_rgb pred_mesh.vertex_colors = o3d.utility.Vector3dVector(rgb / 255) points[:, 1] += (points[:, 1].max() + 0.5) pred_mesh.vertices = o3d.utility.Vector3dVector(points) mesh += pred_mesh o3d.io.write_triangle_mesh(osp.join(visual_dir, room_name + ".ply"), mesh) # TODO: add the semantic visualization def visualize_pts_rgb(rgb, room_name, data_root, output_dir, mode="test"): if "test" in mode: split = "scans_test" else: split = "scans" mesh_file = osp.join(data_root, split, room_name, room_name + "_vh_clean_2.ply") mesh = o3d.io.read_triangle_mesh(mesh_file) pred_mesh = deepcopy(mesh) pred_mesh.vertex_colors = o3d.utility.Vector3dVector(rgb / 255) points = np.array(pred_mesh.vertices) # points[:, 2] += 3 points[:, 1] += (points[:, 1].max() + 0.5) pred_mesh.vertices = o3d.utility.Vector3dVector(points) mesh += pred_mesh o3d.io.write_triangle_mesh(osp.join(output_dir, room_name + ".ply"), mesh) def get_coords_color(data_root: str, result_root: str, room_split: str = "train", room_name: str = "scene0000_00", task: str = "instance_pred"): input_file = os.path.join(data_root, room_split, room_name + "_inst_nostuff.pth") assert os.path.isfile(input_file), f"File not exist - {input_file}." if "test" in room_split: xyz, rgb, edges, scene_idx = torch.load(input_file) else: xyz, rgb, label, inst_label = torch.load(input_file) rgb = (rgb + 1) * 127.5 if (task == "semantic_gt"): assert "test" not in room_split label = label.astype(np.int) label_rgb = np.zeros(rgb.shape) label_rgb[label >= 0] = np.array( itemgetter(*SEMANTIC_NAMES[label[label >= 0]])(CLASS_COLOR)) rgb = label_rgb elif (task == "instance_gt"): assert "test" not in room_split inst_label = inst_label.astype(np.int) print(f"Instance number: {inst_label.max() + 1}") inst_label_rgb = np.zeros(rgb.shape) object_idx = (inst_label >= 0) inst_label_rgb[object_idx] = COLOR20[inst_label[object_idx] % len(COLOR20)] rgb = inst_label_rgb elif (task == "semantic_pred"): assert room_split != "train" semantic_file = os.path.join(result_root, room_split, "semantic", room_name + ".npy") assert os.path.isfile( semantic_file), f"No semantic result - {semantic_file}." label_pred = np.load(semantic_file).astype(np.int) # 0~19 label_pred_rgb = np.array( itemgetter(*SEMANTIC_NAMES[label_pred])(CLASS_COLOR)) rgb = label_pred_rgb elif (task == "instance_pred"): assert room_split != "train" instance_file = os.path.join(result_root, room_split, room_name + ".txt") assert os.path.isfile( instance_file), f"No instance result - {instance_file}." f = open(instance_file, "r") masks = f.readlines() masks = [mask.rstrip().split() for mask in masks] inst_label_pred_rgb = np.zeros(rgb.shape) # np.ones(rgb.shape) * 255 # for i in range(len(masks) - 1, -1, -1): mask_path = os.path.join(result_root, room_split, masks[i][0]) assert os.path.isfile(mask_path), mask_path if (float(masks[i][2]) < 0.09): continue mask = np.loadtxt(mask_path).astype(np.int) print( f"{i} {masks[i][2]}: {SEMANTIC_IDX2NAME[int(masks[i][1])]} pointnum: {mask.sum()}" ) inst_label_pred_rgb[mask == 1] = COLOR20[i % len(COLOR20)] rgb = inst_label_pred_rgb if "test" not in room_split: sem_valid = (label != -100) xyz = xyz[sem_valid] rgb = rgb[sem_valid] return xyz, rgb def visualize_instance_mask_lite( clusters: np.ndarray, points: np.ndarray, visual_path: str, color: int = 20, ): assert color in [20, 40] colors = globals()[f"COLOR{color}"] inst_label_pred_rgb = np.zeros_like(points) # np.ones(rgb.shape) * 255 # for cluster_id, cluster in enumerate(clusters): inst_label_pred_rgb[cluster == 1] = colors[cluster_id % len(colors)] rgb = inst_label_pred_rgb pc = o3d.geometry.PointCloud() pc.points = o3d.utility.Vector3dVector(points) pc.colors = o3d.utility.Vector3dVector(rgb / 255) o3d.io.write_point_cloud(visual_path, pc)
[ "gorilla.derive_logger", "numpy.where", "torch.load", "os.path.join", "os.path.isfile", "open3d.io.read_triangle_mesh", "numpy.array", "open3d.io.write_point_cloud", "numpy.zeros", "open3d.geometry.PointCloud", "copy.deepcopy", "operator.itemgetter", "numpy.loadtxt", "numpy.load", "numpy.zeros_like", "open3d.utility.Vector3dVector" ]
[((264, 617), 'numpy.array', 'np.array', (['[[171, 198, 230], [143, 223, 142], [0, 120, 177], [255, 188, 126], [189, \n 189, 57], [144, 86, 76], [255, 152, 153], [222, 40, 47], [197, 176, 212\n ], [150, 103, 185], [200, 156, 149], [0, 190, 206], [252, 183, 210], [\n 219, 219, 146], [255, 127, 43], [234, 119, 192], [150, 218, 228], [0, \n 160, 55], [110, 128, 143], [80, 83, 160]]'], {}), '([[171, 198, 230], [143, 223, 142], [0, 120, 177], [255, 188, 126],\n [189, 189, 57], [144, 86, 76], [255, 152, 153], [222, 40, 47], [197, \n 176, 212], [150, 103, 185], [200, 156, 149], [0, 190, 206], [252, 183, \n 210], [219, 219, 146], [255, 127, 43], [234, 119, 192], [150, 218, 228],\n [0, 160, 55], [110, 128, 143], [80, 83, 160]])\n', (272, 617), True, 'import numpy as np\n'), ((1118, 1461), 'numpy.array', 'np.array', (['[[230, 25, 75], [60, 180, 75], [255, 225, 25], [0, 130, 200], [245, 130, 48\n ], [145, 30, 180], [70, 240, 240], [240, 50, 230], [210, 245, 60], [250,\n 190, 190], [0, 128, 128], [230, 190, 255], [170, 110, 40], [255, 250, \n 200], [128, 0, 0], [170, 255, 195], [128, 128, 0], [255, 215, 180], [0,\n 0, 128], [128, 128, 128]]'], {}), '([[230, 25, 75], [60, 180, 75], [255, 225, 25], [0, 130, 200], [245,\n 130, 48], [145, 30, 180], [70, 240, 240], [240, 50, 230], [210, 245, 60\n ], [250, 190, 190], [0, 128, 128], [230, 190, 255], [170, 110, 40], [\n 255, 250, 200], [128, 0, 0], [170, 255, 195], [128, 128, 0], [255, 215,\n 180], [0, 0, 128], [128, 128, 128]])\n', (1126, 1461), True, 'import numpy as np\n'), ((1952, 2637), 'numpy.array', 'np.array', (['[[88, 170, 108], [174, 105, 226], [78, 194, 83], [198, 62, 165], [133, 188,\n 52], [97, 101, 219], [190, 177, 52], [139, 65, 168], [75, 202, 137], [\n 225, 66, 129], [68, 135, 42], [226, 116, 210], [146, 186, 98], [68, 105,\n 201], [219, 148, 53], [85, 142, 235], [212, 85, 42], [78, 176, 223], [\n 221, 63, 77], [68, 195, 195], [175, 58, 119], [81, 175, 144], [184, 70,\n 74], [40, 116, 79], [184, 134, 219], [130, 137, 46], [110, 89, 164], [\n 92, 135, 74], [220, 140, 190], [94, 103, 39], [144, 154, 219], [160, 86,\n 40], [67, 107, 165], [194, 170, 104], [162, 95, 150], [143, 110, 44], [\n 146, 72, 105], [225, 142, 106], [162, 83, 86], [227, 124, 143]]'], {}), '([[88, 170, 108], [174, 105, 226], [78, 194, 83], [198, 62, 165], [\n 133, 188, 52], [97, 101, 219], [190, 177, 52], [139, 65, 168], [75, 202,\n 137], [225, 66, 129], [68, 135, 42], [226, 116, 210], [146, 186, 98], [\n 68, 105, 201], [219, 148, 53], [85, 142, 235], [212, 85, 42], [78, 176,\n 223], [221, 63, 77], [68, 195, 195], [175, 58, 119], [81, 175, 144], [\n 184, 70, 74], [40, 116, 79], [184, 134, 219], [130, 137, 46], [110, 89,\n 164], [92, 135, 74], [220, 140, 190], [94, 103, 39], [144, 154, 219], [\n 160, 86, 40], [67, 107, 165], [194, 170, 104], [162, 95, 150], [143, \n 110, 44], [146, 72, 105], [225, 142, 106], [162, 83, 86], [227, 124, 143]])\n', (1960, 2637), True, 'import numpy as np\n'), ((3537, 3622), 'numpy.array', 'np.array', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,\n 39])\n', (3545, 3622), True, 'import numpy as np\n'), ((3641, 3878), 'numpy.array', 'np.array', (["['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door',\n 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',\n 'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub',\n 'otherfurniture']"], {}), "(['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',\n 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',\n 'refridgerator', 'shower curtain', 'toilet', 'sink', 'bathtub',\n 'otherfurniture'])\n", (3649, 3878), True, 'import numpy as np\n'), ((5368, 5399), 'gorilla.derive_logger', 'gorilla.derive_logger', (['__name__'], {}), '(__name__)\n', (5389, 5399), False, 'import gorilla\n'), ((5485, 5546), 'os.path.join', 'osp.join', (['data_root', 'room_name', "(room_name + '_vh_clean_2.ply')"], {}), "(data_root, room_name, room_name + '_vh_clean_2.ply')\n", (5493, 5546), True, 'import os.path as osp\n'), ((5558, 5594), 'open3d.io.read_triangle_mesh', 'o3d.io.read_triangle_mesh', (['mesh_file'], {}), '(mesh_file)\n', (5583, 5594), True, 'import open3d as o3d\n'), ((5611, 5625), 'copy.deepcopy', 'deepcopy', (['mesh'], {}), '(mesh)\n', (5619, 5625), False, 'from copy import deepcopy\n'), ((5639, 5667), 'numpy.array', 'np.array', (['pred_mesh.vertices'], {}), '(pred_mesh.vertices)\n', (5647, 5667), True, 'import numpy as np\n'), ((5694, 5715), 'numpy.zeros_like', 'np.zeros_like', (['points'], {}), '(points)\n', (5707, 5715), True, 'import numpy as np\n'), ((7173, 7210), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['(rgb / 255)'], {}), '(rgb / 255)\n', (7199, 7210), True, 'import open3d as o3d\n'), ((7283, 7317), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['points'], {}), '(points)\n', (7309, 7317), True, 'import open3d as o3d\n'), ((7639, 7707), 'os.path.join', 'osp.join', (['data_root', 'split', 'room_name', "(room_name + '_vh_clean_2.ply')"], {}), "(data_root, split, room_name, room_name + '_vh_clean_2.ply')\n", (7647, 7707), True, 'import os.path as osp\n'), ((7744, 7780), 'open3d.io.read_triangle_mesh', 'o3d.io.read_triangle_mesh', (['mesh_file'], {}), '(mesh_file)\n', (7769, 7780), True, 'import open3d as o3d\n'), ((7797, 7811), 'copy.deepcopy', 'deepcopy', (['mesh'], {}), '(mesh)\n', (7805, 7811), False, 'from copy import deepcopy\n'), ((7842, 7879), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['(rgb / 255)'], {}), '(rgb / 255)\n', (7868, 7879), True, 'import open3d as o3d\n'), ((7893, 7921), 'numpy.array', 'np.array', (['pred_mesh.vertices'], {}), '(pred_mesh.vertices)\n', (7901, 7921), True, 'import numpy as np\n'), ((8018, 8052), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['points'], {}), '(points)\n', (8044, 8052), True, 'import open3d as o3d\n'), ((8402, 8470), 'os.path.join', 'os.path.join', (['data_root', 'room_split', "(room_name + '_inst_nostuff.pth')"], {}), "(data_root, room_split, room_name + '_inst_nostuff.pth')\n", (8414, 8470), False, 'import os\n'), ((8512, 8538), 'os.path.isfile', 'os.path.isfile', (['input_file'], {}), '(input_file)\n', (8526, 8538), False, 'import os\n'), ((11390, 11411), 'numpy.zeros_like', 'np.zeros_like', (['points'], {}), '(points)\n', (11403, 11411), True, 'import numpy as np\n'), ((11611, 11636), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (11634, 11636), True, 'import open3d as o3d\n'), ((11653, 11687), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['points'], {}), '(points)\n', (11679, 11687), True, 'import open3d as o3d\n'), ((11704, 11741), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['(rgb / 255)'], {}), '(rgb / 255)\n', (11730, 11741), True, 'import open3d as o3d\n'), ((11746, 11787), 'open3d.io.write_point_cloud', 'o3d.io.write_point_cloud', (['visual_path', 'pc'], {}), '(visual_path, pc)\n', (11770, 11787), True, 'import open3d as o3d\n'), ((7371, 7411), 'os.path.join', 'osp.join', (['visual_dir', "(room_name + '.ply')"], {}), "(visual_dir, room_name + '.ply')\n", (7379, 7411), True, 'import os.path as osp\n'), ((8106, 8146), 'os.path.join', 'osp.join', (['output_dir', "(room_name + '.ply')"], {}), "(output_dir, room_name + '.ply')\n", (8114, 8146), True, 'import os.path as osp\n'), ((8640, 8662), 'torch.load', 'torch.load', (['input_file'], {}), '(input_file)\n', (8650, 8662), False, 'import torch\n'), ((8711, 8733), 'torch.load', 'torch.load', (['input_file'], {}), '(input_file)\n', (8721, 8733), False, 'import torch\n'), ((8892, 8911), 'numpy.zeros', 'np.zeros', (['rgb.shape'], {}), '(rgb.shape)\n', (8900, 8911), True, 'import numpy as np\n'), ((9256, 9275), 'numpy.zeros', 'np.zeros', (['rgb.shape'], {}), '(rgb.shape)\n', (9264, 9275), True, 'import numpy as np\n'), ((8966, 9012), 'operator.itemgetter', 'itemgetter', (['*SEMANTIC_NAMES[label[label >= 0]]'], {}), '(*SEMANTIC_NAMES[label[label >= 0]])\n', (8976, 9012), False, 'from operator import itemgetter\n'), ((9571, 9640), 'os.path.join', 'os.path.join', (['result_root', 'room_split', '"""semantic"""', "(room_name + '.npy')"], {}), "(result_root, room_split, 'semantic', room_name + '.npy')\n", (9583, 9640), False, 'import os\n'), ((9693, 9722), 'os.path.isfile', 'os.path.isfile', (['semantic_file'], {}), '(semantic_file)\n', (9707, 9722), False, 'import os\n'), ((10073, 10130), 'os.path.join', 'os.path.join', (['result_root', 'room_split', "(room_name + '.txt')"], {}), "(result_root, room_split, room_name + '.txt')\n", (10085, 10130), False, 'import os\n'), ((10183, 10212), 'os.path.isfile', 'os.path.isfile', (['instance_file'], {}), '(instance_file)\n', (10197, 10212), False, 'import os\n'), ((10423, 10442), 'numpy.zeros', 'np.zeros', (['rgb.shape'], {}), '(rgb.shape)\n', (10431, 10442), True, 'import numpy as np\n'), ((9799, 9821), 'numpy.load', 'np.load', (['semantic_file'], {}), '(semantic_file)\n', (9806, 9821), True, 'import numpy as np\n'), ((9892, 9931), 'operator.itemgetter', 'itemgetter', (['*SEMANTIC_NAMES[label_pred]'], {}), '(*SEMANTIC_NAMES[label_pred])\n', (9902, 9931), False, 'from operator import itemgetter\n'), ((10545, 10595), 'os.path.join', 'os.path.join', (['result_root', 'room_split', 'masks[i][0]'], {}), '(result_root, room_split, masks[i][0])\n', (10557, 10595), False, 'import os\n'), ((10615, 10640), 'os.path.isfile', 'os.path.isfile', (['mask_path'], {}), '(mask_path)\n', (10629, 10640), False, 'import os\n'), ((6529, 6551), 'numpy.where', 'np.where', (['(cluster == 1)'], {}), '(cluster == 1)\n', (6537, 6551), True, 'import numpy as np\n'), ((10740, 10761), 'numpy.loadtxt', 'np.loadtxt', (['mask_path'], {}), '(mask_path)\n', (10750, 10761), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import os import numpy as np import matplotlib.pyplot as plt from scipy import signal fs = 1000 # sampling frequency fc = 6 # cut-off frequency t = np.arange(1000)/fs sga = np.sin(2*np.pi*2*t) # signal with f = 2 sgb = np.sin(2*np.pi*10*t) # signal with f = 10 sgo = sga + sgb #+ (np.random.random(1000) - 0.5) w = fc/fs b, a = signal.butter(4, w, 'low') sgf1 = signal.lfilter(b, a, sgo) sgf1 = sgf1[ : : -1] sgf1 = signal.lfilter(b, a, sgf1) sgf1 = sgf1[ : : -1] plt.plot(t, sgo, label = 'original') plt.plot(t, sga, label = 'f = 2') plt.plot(t, sgf1, 'r-', linewidth = 3, label = 'bidirectional') sgf2 = signal.filtfilt(b, a, sgo) sgf3 = signal.lfilter(b, a, sgo) plt.plot(t, sgf2, label = 'filtfilt') plt.plot(t, sgf3, 'k-', linewidth = 1.5, label = 'lfilter') plt.legend() plt.show()
[ "numpy.arange", "scipy.signal.filtfilt", "matplotlib.pyplot.plot", "scipy.signal.butter", "scipy.signal.lfilter", "numpy.sin", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((201, 226), 'numpy.sin', 'np.sin', (['(2 * np.pi * 2 * t)'], {}), '(2 * np.pi * 2 * t)\n', (207, 226), True, 'import numpy as np\n'), ((249, 275), 'numpy.sin', 'np.sin', (['(2 * np.pi * 10 * t)'], {}), '(2 * np.pi * 10 * t)\n', (255, 275), True, 'import numpy as np\n'), ((360, 386), 'scipy.signal.butter', 'signal.butter', (['(4)', 'w', '"""low"""'], {}), "(4, w, 'low')\n", (373, 386), False, 'from scipy import signal\n'), ((395, 420), 'scipy.signal.lfilter', 'signal.lfilter', (['b', 'a', 'sgo'], {}), '(b, a, sgo)\n', (409, 420), False, 'from scipy import signal\n'), ((449, 475), 'scipy.signal.lfilter', 'signal.lfilter', (['b', 'a', 'sgf1'], {}), '(b, a, sgf1)\n', (463, 475), False, 'from scipy import signal\n'), ((498, 532), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sgo'], {'label': '"""original"""'}), "(t, sgo, label='original')\n", (506, 532), True, 'import matplotlib.pyplot as plt\n'), ((535, 566), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sga'], {'label': '"""f = 2"""'}), "(t, sga, label='f = 2')\n", (543, 566), True, 'import matplotlib.pyplot as plt\n'), ((569, 628), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sgf1', '"""r-"""'], {'linewidth': '(3)', 'label': '"""bidirectional"""'}), "(t, sgf1, 'r-', linewidth=3, label='bidirectional')\n", (577, 628), True, 'import matplotlib.pyplot as plt\n'), ((641, 667), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'sgo'], {}), '(b, a, sgo)\n', (656, 667), False, 'from scipy import signal\n'), ((675, 700), 'scipy.signal.lfilter', 'signal.lfilter', (['b', 'a', 'sgo'], {}), '(b, a, sgo)\n', (689, 700), False, 'from scipy import signal\n'), ((701, 736), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sgf2'], {'label': '"""filtfilt"""'}), "(t, sgf2, label='filtfilt')\n", (709, 736), True, 'import matplotlib.pyplot as plt\n'), ((739, 794), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sgf3', '"""k-"""'], {'linewidth': '(1.5)', 'label': '"""lfilter"""'}), "(t, sgf3, 'k-', linewidth=1.5, label='lfilter')\n", (747, 794), True, 'import matplotlib.pyplot as plt\n'), ((800, 812), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (810, 812), True, 'import matplotlib.pyplot as plt\n'), ((813, 823), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (821, 823), True, 'import matplotlib.pyplot as plt\n'), ((176, 191), 'numpy.arange', 'np.arange', (['(1000)'], {}), '(1000)\n', (185, 191), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Tests for module mosaic.immutable_model #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import unittest import numpy as N import immutable.np as IN import mosaic.immutable_model as M from mosaic.api import is_valid def make_water_fragment(nsites=1): return M.fragment("water", (), (("H1", M.atom(M.element("H"), nsites)), ("H2", M.atom(M.element("H"), nsites)), ("O", M.atom(M.element("O"), nsites))), (("H1", "O", "single"), ("H2", "O", "single"))) class AtomDescriptorTest(unittest.TestCase): def test_singleton(self): self.assertTrue(M.dummy() is M.dummy()) self.assertTrue(M.dummy('a') is M.dummy('a')) self.assertTrue(M.dummy('a') is not M.dummy('b')) self.assertTrue(M.dummy('a') is not M.unknown('a')) self.assertTrue(M.dummy('C') is not M.element('C')) self.assertTrue(M.element('C') is M.element('C')) def test_name(self): for name in ['a', 'b', 'c']: self.assertEqual(M.unknown(name).name, name) def test_type(self): self.assertEqual(M.dummy().type, "dummy") self.assertEqual(M.unknown().type, "") self.assertEqual(M.element('O').type, "element") self.assertEqual(M.cgparticle('ala').type, "cgparticle") class WaterTest(unittest.TestCase): def setUp(self): self.mol = make_water_fragment() def test_basics(self): self.assertEqual(self.mol.number_of_atoms, 3) self.assertEqual(self.mol.number_of_sites, 3) self.assertEqual(self.mol.number_of_bonds, 2) self.assertEqual(self.mol.species, "water") def test_equality(self): same_mol = make_water_fragment() changed_bond_order = M.fragment("water", (), (("H1", M.atom(M.element("H"))), ("H2", M.atom(M.element("H"))), ("O", M.atom(M.element("O")))), (("O", "H2", "single"), ("O", "H1", "single"))) changed_atom_order = M.fragment("water", (), (("O", M.atom(M.element("O"))), ("H1", M.atom(M.element("H"))), ("H2", M.atom(M.element("H")))), (("O", "H1", "single"), ("O", "H2", "single"))) self.assertEqual(self.mol, self.mol) self.assertEqual(self.mol, same_mol) self.assertEqual(self.mol, changed_bond_order) self.assertNotEqual(self.mol, changed_atom_order) class PeptideTest(unittest.TestCase): def _make_molecule(self): C = M.element('C') H = M.element('H') N = M.element('N') O = M.element('O') peptide_group = M.fragment('peptide', (), (('CA', M.atom(C)), ('HA', M.atom(H)), ('H', M.atom(H)), ('N', M.atom(N)), ('C', M.atom(C)), ('O', M.atom(O))), (('N', 'H', "single"), ('N', 'CA', "single"), ('CA', 'HA', "single"), ('CA', 'C', "single"), ('C', 'O', "double"))) ala_sidechain = M.fragment('ala_sidechain', (), (('CB', M.atom(C)), ('HB1', M.atom(H)), ('HB2', M.atom(H)), ('HB3', M.atom(H))), (('CB', 'HB1', "single"), ('CB', 'HB2', "single"), ('CB', 'HB3', "single"),)) ala = M.fragment('alanine', (('peptide', peptide_group), ('sidechain', ala_sidechain)), (), (('peptide.CA', 'sidechain.CB', "single"),)) return M.polymer('alanine_dipeptide', (('ALA1', ala), ('ALA2', ala)), (('ALA1.peptide.C', 'ALA2.peptide.N', "single"),), 'polypeptide') def test_basic(self): mol = self._make_molecule() self.assertEqual(mol.number_of_atoms, 20) self.assertEqual(mol.number_of_sites, 20) self.assertEqual(mol.number_of_bonds, 19) self.assertEqual(mol.polymer_type, "polypeptide") def test_equality(self): self.assertEqual(self._make_molecule(), self._make_molecule()) def test_iterators(self): mol = self._make_molecule() mol_ref = M.FragmentRef('x', mol) atoms = tuple(mol_ref.recursive_atom_iterator()) self.assertEqual(len(atoms), mol.number_of_atoms) bonds = tuple(mol_ref.recursive_bond_iterator()) self.assertEqual(len(bonds), mol.number_of_bonds) for a1, a2, order in bonds: for a in a1, a2: node = mol for p in a.split('.'): node = node[p] self.assertTrue(isinstance(node, M.Atom)) paths = tuple(mol_ref.recursive_atom_path_iterator()) self.assertEqual(len(paths), mol.number_of_atoms) for ap in paths: node = mol for p in ap.split('.'): node = node[p] self.assertTrue(isinstance(node, M.Atom)) class ErrorCheckingTest(unittest.TestCase): def test_atom_descriptor(self): self.assertRaises(TypeError, lambda: M.dummy(42)) self.assertRaises(ValueError, lambda: M.element(42)) self.assertRaises(ValueError, lambda: M.element("X")) def test_atom(self): carbon = M.element("C") self.assertRaises(TypeError, lambda: M.atom('C', 1)) self.assertRaises(ValueError, lambda: M.atom(carbon, 0)) def test_fragment(self): carbon = M.atom(M.element("C")) # Illegal fragments self.assertRaises(TypeError, lambda: M.fragment('m', None, (("C", carbon),), ())) self.assertRaises(TypeError, lambda: M.fragment('m', [1, 2], (("C", carbon),), ())) self.assertRaises(TypeError, lambda: M.fragment('m', (("C", carbon),), (), ())) # Illegal atoms self.assertRaises(TypeError, lambda: M.fragment('m', (), None, ())) self.assertRaises(TypeError, lambda: M.fragment('m', (), [1, 2], ())) self.assertRaises(TypeError, lambda: M.fragment('m', (), (carbon,), ())) self.assertRaises(ValueError, lambda: M.fragment('m', (), (("C", carbon), ("C", carbon)), ())) # Illegal bond lists self.assertRaises(TypeError, lambda: M.fragment('m', (), (("C", carbon),), None)) self.assertRaises(TypeError, lambda: M.fragment('m', (), (("C", carbon),), [1, 2, 3])) self.assertRaises(TypeError, lambda: M.fragment('m', (), (("C", carbon),), (('X', 'X')))) self.assertRaises(TypeError, lambda: M.fragment('m', (), (("C", carbon),), (['X', 'X', 'single']))) def test_bonds(self): carbon = M.atom(M.element("C")) # Bond specified by only one atom self.assertRaises(ValueError, lambda: M.fragment('m', (), (('C1', carbon), ('C2', carbon)), (('C1', ),))) # Bond specified by two atoms but no bond order self.assertRaises(ValueError, lambda: M.fragment('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C2'),))) # Bond specified by two identical atoms self.assertRaises(ValueError, lambda: M.fragment('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C1', ''),))) # Bond specified by an atom name that is undefined self.assertRaises(ValueError, lambda: M.fragment('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C3', ''),))) # Bond specified at the wrong fragment level f = M.fragment('x', (), (('C1', carbon), ('C2', carbon)), ()) self.assertRaises(ValueError, lambda: M.fragment('m', (('x', f),), (('C3', carbon),), (('x.C1', 'x.C2', ''),))) def test_universe(self): mol = M.fragment("water", (), (("H1", M.atom(M.element("H"), 8)), ("H2", M.atom(M.element("H"), 8)), ("O", M.atom(M.element("O"), 2))), (("H1", "O", "single"), ("H2", "O", "single"))) self.assertRaises(TypeError, lambda: M.universe(0, [(mol, 'water', 10)])) self.assertRaises(ValueError, lambda: M.universe('strange', [(mol, 'water', 10)])) self.assertRaises(ValueError, lambda: M.universe('strange', [(mol, 10)])) self.assertRaises(TypeError, lambda: M.universe('infinite', mol)) self.assertRaises(ValueError, lambda: M.universe('infinite', [("water", 10)])) self.assertRaises(TypeError, lambda: M.universe('infinite', [mol])) self.assertRaises(ValueError, lambda: M.universe('infinite', [(10, mol)])) self.assertRaises(ValueError, lambda: M.universe('infinite', [(mol, 'water', 10)], [(IN.zeros((3,3), N.float64), IN.zeros((3,), N.float64))])) def test_configuration(self): mol = make_water_fragment() universe = M.universe('cube', [(mol, 'water', 10)]) # Missing data self.assertRaises(TypeError, lambda: M.Configuration(universe)) # Positions but no cell parameters self.assertRaises(TypeError, lambda: M.Configuration(universe, IN.zeros((30, 3), N.float32))) # Positions and cell parameters of different dtype self.assertRaises(ValueError, lambda: M.Configuration(universe, IN.zeros((30, 3), N.float32), N.float64(10.))) # Positions not an array self.assertRaises(TypeError, lambda: M.Configuration(universe, list(IN.zeros((30, 3), N.float32)), N.float32(10.))) # Positions of wrong shape self.assertRaises(ValueError, lambda: M.Configuration(universe, IN.zeros((25, 3), N.float32), N.float32(10.))) # Cell parameters of wrong shape self.assertRaises(ValueError, lambda: M.Configuration(universe, IN.zeros((30, 3), N.float32), IN.zeros((3,), N.float32))) def test_selection(self): mol = make_water_fragment(nsites=2) universe = M.universe('cube', [(mol, 'water', 5)]) # Index occurs twice self.assertRaises(ValueError, lambda: M.AtomSelection(universe, IN.zeros((2,), N.uint16))) # Atom index too large self.assertRaises(ValueError, lambda: M.AtomSelection(universe, IN.array([20], N.uint16))) # Template atom index too large self.assertRaises(ValueError, lambda: M.TemplateAtomSelection(universe, IN.array([3], N.uint8))) # Site index too large self.assertRaises(ValueError, lambda: M.SiteSelection(universe, IN.array([40], N.uint16))) # Template site index too large self.assertRaises(ValueError, lambda: M.TemplateSiteSelection(universe, IN.array([8], N.uint8))) class UniverseTest(unittest.TestCase): def setUp(self): mol = make_water_fragment(2) self.universe = M.universe('infinite', [(mol, 'water', 10)], convention='my_own') def test_basics(self): self.assertTrue(is_valid(self.universe)) self.assertEqual(self.universe.number_of_molecules, 10) self.assertEqual(self.universe.number_of_atoms, 30) self.assertEqual(self.universe.number_of_sites, 60) self.assertEqual(self.universe.number_of_bonds, 20) self.assertEqual(self.universe.cell_shape, "infinite") self.assertEqual(self.universe.convention, "my_own") def test_properties(self): masses = M.TemplateAtomProperty(self.universe, "masses", "amu", IN.array([1., 1., 16.], N.float32)) self.assertTrue(is_valid(masses)) self.assertEqual(masses.type, 'template_atom') self.assertTrue(masses.universe == self.universe) self.assertEqual(masses.element_shape, ()) self.assertEqual(masses.data.shape, (3,)) bead_masses = M.TemplateSiteProperty(self.universe, "mass", "amu", IN.array([1., 1., 1., 1., 8., 8.], N.float32)) self.assertTrue(is_valid(bead_masses)) self.assertEqual(bead_masses.type, 'template_site') self.assertTrue(bead_masses.universe is self.universe) self.assertEqual(bead_masses.element_shape, ()) self.assertEqual(bead_masses.data.shape, (6,)) velocities = M.SiteProperty(self.universe, "velocity", "nm ps-1", IN.zeros((60, 3), dtype=N.float64)) self.assertTrue(is_valid(velocities)) self.assertEqual(velocities.type, 'site') self.assertTrue(velocities.universe is self.universe) self.assertEqual(velocities.data.shape, (60, 3)) self.assertEqual(velocities.element_shape, (3,)) foo = M.AtomProperty(self.universe, "foo", "", IN.zeros((30, 2, 2), dtype=N.int16)) self.assertTrue(is_valid(foo)) self.assertEqual(foo.type, 'atom') self.assertTrue(foo.universe is self.universe) self.assertEqual(foo.data.shape, (30, 2, 2)) self.assertEqual(foo.element_shape, (2, 2)) def test_labels(self): labels = tuple(a.name for f, n in self.universe.molecules for a in f.recursive_atom_iterator()) el = M.TemplateAtomLabel(self.universe, "element", labels) self.assertTrue(is_valid(el)) self.assertEqual(el.name, "element") self.assertTrue(el.universe == self.universe) self.assertTrue(len(el.strings) == self.universe.number_of_template_atoms) for s1, s2 in zip(labels, el.strings): self.assertEqual(s1, s2) labels = tuple(a.name for f, n in self.universe.molecules for _ in range(n) for a in f.recursive_atom_iterator()) el = M.AtomLabel(self.universe, "element", labels) self.assertTrue(is_valid(el)) self.assertEqual(el.name, "element") self.assertTrue(el.universe == self.universe) self.assertTrue(len(el.strings) == self.universe.number_of_atoms) for s1, s2 in zip(labels, el.strings): self.assertEqual(s1, s2) labels = tuple(a.name for f, n in self.universe.molecules for a in f.recursive_atom_iterator() for _ in range(a.number_of_sites)) el = M.TemplateSiteLabel(self.universe, "element", labels) self.assertTrue(is_valid(el)) self.assertEqual(el.name, "element") self.assertTrue(el.universe == self.universe) self.assertTrue(len(el.strings) == self.universe.number_of_template_sites) for s1, s2 in zip(labels, el.strings): self.assertEqual(s1, s2) labels = tuple(a.name for f, n in self.universe.molecules for _ in range(n) for a in f.recursive_atom_iterator() for __ in range(a.number_of_sites)) el = M.SiteLabel(self.universe, "element", labels) self.assertTrue(is_valid(el)) self.assertEqual(el.name, "element") self.assertTrue(el.universe == self.universe) self.assertTrue(len(el.strings) == self.universe.number_of_sites) for s1, s2 in zip(labels, el.strings): self.assertEqual(s1, s2) def test_bonds(self): bonds = self.universe.bond_index_array() self.assertEqual(len(bonds), self.universe.number_of_bonds) self.assertTrue((bonds >= 0).all()) self.assertTrue((bonds < self.universe.number_of_atoms).all()) for i in range(10): self.assertEqual(bonds[2*i, 0], 3*i) self.assertEqual(bonds[2*i, 1], 3*i+2) self.assertEqual(bonds[2*i+1, 0], 3*i+1) self.assertEqual(bonds[2*i+1, 1], 3*i+2) def test_index_mappings(self): mol = self.universe.molecules[0][0] s2a = mol.site_to_atom_index_mapping() self.assertTrue((s2a == N.array([0, 0, 1, 1, 2, 2])).all()) s2a = self.universe.site_to_atom_index_mapping() s2a_ref = N.repeat(N.arange(30), 2) self.assertTrue((s2a == s2a_ref).all()) st2at = self.universe.template_site_to_template_atom_index_mapping() st2at_ref = N.array([0, 0, 1, 1, 2, 2]) self.assertTrue((st2at == st2at_ref).all()) s2t = self.universe.site_to_template_index_mapping() s2t_ref = N.resize(N.arange(mol.number_of_sites), (self.universe.number_of_sites,)) self.assertTrue((s2t == s2t_ref).all()) a2t = self.universe.atom_to_template_index_mapping() a2t_ref = N.resize(N.arange(mol.number_of_atoms), (self.universe.number_of_atoms,)) self.assertTrue((a2t == a2t_ref).all()) a2s = self.universe.atom_to_site_index_mapping() a2s_ref = 2*N.arange(self.universe.number_of_atoms) self.assertTrue((a2s == a2s_ref).all()) def test_selections(self): s = M.AtomSelection(self.universe, IN.array([0, 2], N.uint8)) self.assertEqual(s.number_of_atoms, 2) self.assertEqual(s.number_of_sites, 4) s = M.TemplateAtomSelection(self.universe, IN.array([1], N.uint8)) self.assertEqual(s.number_of_atoms, 10) self.assertEqual(s.number_of_sites, 20) s = M.SiteSelection(self.universe, [2]) self.assertEqual(s.number_of_sites, 1) s = M.TemplateSiteSelection(self.universe, [0]) self.assertEqual(s.number_of_sites, 10) class PBCTest(unittest.TestCase): def setUp(self): self.infinite = M.universe('infinite', ()) self.cube = M.universe('cube', ()) self.cuboid = M.universe('cuboid', ()) self.parallelepiped = M.universe('parallelepiped', ()) def test_lattice_vectors(self): conf = M.Configuration(self.infinite, IN.zeros((0, 3), N.float32), None) self.assertEqual(conf.lattice_vectors(), ()) self.assertEqual(conf.cell_volume(), None) conf = M.Configuration(self.cube, IN.zeros((0, 3), N.float32), IN.array(1., N.float32)) lv = conf.lattice_vectors() self.assertTrue((lv[0] == N.array([1., 0., 0.], N.float32)).all()) self.assertTrue((lv[1] == N.array([0., 1., 0.], N.float32)).all()) self.assertTrue((lv[2] == N.array([0., 0., 1.], N.float32)).all()) self.assertEqual(conf.cell_volume(), 1.) conf = M.Configuration(self.cuboid, IN.zeros((0, 3), N.float32), IN.array([1., 2., 4.], N.float32)) lv = conf.lattice_vectors() self.assertTrue((lv[0] == N.array([1., 0., 0.], N.float32)).all()) self.assertTrue((lv[1] == N.array([0., 2., 0.], N.float32)).all()) self.assertTrue((lv[2] == N.array([0., 0., 4.], N.float32)).all()) self.assertEqual(conf.cell_volume(), 8.) conf = M.Configuration(self.parallelepiped, IN.zeros((0, 3), N.float32), IN.array([[1., 2., 4.], [8., 4., 2.], [16., 4., 8.]], N.float32)) lv = conf.lattice_vectors() self.assertTrue((lv[0] == N.array([1., 2., 4.], N.float32)).all()) self.assertTrue((lv[1] == N.array([8., 4., 2.], N.float32)).all()) self.assertTrue((lv[2] == N.array([16., 4., 8.], N.float32)).all()) self.assertAlmostEqual(conf.cell_volume(), 168.) def suite(): loader = unittest.TestLoader() s = unittest.TestSuite() s.addTest(loader.loadTestsFromTestCase(AtomDescriptorTest)) s.addTest(loader.loadTestsFromTestCase(WaterTest)) s.addTest(loader.loadTestsFromTestCase(PeptideTest)) s.addTest(loader.loadTestsFromTestCase(ErrorCheckingTest)) s.addTest(loader.loadTestsFromTestCase(UniverseTest)) s.addTest(loader.loadTestsFromTestCase(PBCTest)) return s if __name__ == '__main__': unittest.main()
[ "mosaic.immutable_model.SiteLabel", "numpy.array", "unittest.main", "numpy.arange", "unittest.TestSuite", "mosaic.immutable_model.FragmentRef", "numpy.float64", "mosaic.immutable_model.fragment", "mosaic.immutable_model.TemplateSiteLabel", "mosaic.immutable_model.polymer", "mosaic.immutable_model.AtomLabel", "immutable.np.zeros", "mosaic.immutable_model.atom", "mosaic.immutable_model.SiteSelection", "mosaic.immutable_model.element", "mosaic.immutable_model.dummy", "mosaic.immutable_model.unknown", "mosaic.immutable_model.TemplateSiteSelection", "mosaic.api.is_valid", "mosaic.immutable_model.cgparticle", "immutable.np.array", "mosaic.immutable_model.universe", "mosaic.immutable_model.TemplateAtomLabel", "numpy.float32", "unittest.TestLoader", "mosaic.immutable_model.Configuration" ]
[((23536, 23557), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (23555, 23557), False, 'import unittest\n'), ((23566, 23586), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (23584, 23586), False, 'import unittest\n'), ((23982, 23997), 'unittest.main', 'unittest.main', ([], {}), '()\n', (23995, 23997), False, 'import unittest\n'), ((3173, 3187), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (3182, 3187), True, 'import mosaic.immutable_model as M\n'), ((3200, 3214), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (3209, 3214), True, 'import mosaic.immutable_model as M\n'), ((3227, 3241), 'mosaic.immutable_model.element', 'M.element', (['"""N"""'], {}), "('N')\n", (3236, 3241), True, 'import mosaic.immutable_model as M\n'), ((3254, 3268), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (3263, 3268), True, 'import mosaic.immutable_model as M\n'), ((4490, 4624), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""alanine"""', "(('peptide', peptide_group), ('sidechain', ala_sidechain))", '()', "(('peptide.CA', 'sidechain.CB', 'single'),)"], {}), "('alanine', (('peptide', peptide_group), ('sidechain',\n ala_sidechain)), (), (('peptide.CA', 'sidechain.CB', 'single'),))\n", (4500, 4624), True, 'import mosaic.immutable_model as M\n'), ((4737, 4870), 'mosaic.immutable_model.polymer', 'M.polymer', (['"""alanine_dipeptide"""', "(('ALA1', ala), ('ALA2', ala))", "(('ALA1.peptide.C', 'ALA2.peptide.N', 'single'),)", '"""polypeptide"""'], {}), "('alanine_dipeptide', (('ALA1', ala), ('ALA2', ala)), ((\n 'ALA1.peptide.C', 'ALA2.peptide.N', 'single'),), 'polypeptide')\n", (4746, 4870), True, 'import mosaic.immutable_model as M\n'), ((5449, 5472), 'mosaic.immutable_model.FragmentRef', 'M.FragmentRef', (['"""x"""', 'mol'], {}), "('x', mol)\n", (5462, 5472), True, 'import mosaic.immutable_model as M\n'), ((6530, 6544), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (6539, 6544), True, 'import mosaic.immutable_model as M\n'), ((9671, 9728), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""x"""', '()', "(('C1', carbon), ('C2', carbon))", '()'], {}), "('x', (), (('C1', carbon), ('C2', carbon)), ())\n", (9681, 9728), True, 'import mosaic.immutable_model as M\n'), ((11406, 11446), 'mosaic.immutable_model.universe', 'M.universe', (['"""cube"""', "[(mol, 'water', 10)]"], {}), "('cube', [(mol, 'water', 10)])\n", (11416, 11446), True, 'import mosaic.immutable_model as M\n'), ((13118, 13157), 'mosaic.immutable_model.universe', 'M.universe', (['"""cube"""', "[(mol, 'water', 5)]"], {}), "('cube', [(mol, 'water', 5)])\n", (13128, 13157), True, 'import mosaic.immutable_model as M\n'), ((14355, 14420), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', "[(mol, 'water', 10)]"], {'convention': '"""my_own"""'}), "('infinite', [(mol, 'water', 10)], convention='my_own')\n", (14365, 14420), True, 'import mosaic.immutable_model as M\n'), ((17017, 17070), 'mosaic.immutable_model.TemplateAtomLabel', 'M.TemplateAtomLabel', (['self.universe', '"""element"""', 'labels'], {}), "(self.universe, 'element', labels)\n", (17036, 17070), True, 'import mosaic.immutable_model as M\n'), ((17604, 17649), 'mosaic.immutable_model.AtomLabel', 'M.AtomLabel', (['self.universe', '"""element"""', 'labels'], {}), "(self.universe, 'element', labels)\n", (17615, 17649), True, 'import mosaic.immutable_model as M\n'), ((18190, 18243), 'mosaic.immutable_model.TemplateSiteLabel', 'M.TemplateSiteLabel', (['self.universe', '"""element"""', 'labels'], {}), "(self.universe, 'element', labels)\n", (18209, 18243), True, 'import mosaic.immutable_model as M\n'), ((18835, 18880), 'mosaic.immutable_model.SiteLabel', 'M.SiteLabel', (['self.universe', '"""element"""', 'labels'], {}), "(self.universe, 'element', labels)\n", (18846, 18880), True, 'import mosaic.immutable_model as M\n'), ((20136, 20163), 'numpy.array', 'N.array', (['[0, 0, 1, 1, 2, 2]'], {}), '([0, 0, 1, 1, 2, 2])\n', (20143, 20163), True, 'import numpy as N\n'), ((21219, 21254), 'mosaic.immutable_model.SiteSelection', 'M.SiteSelection', (['self.universe', '[2]'], {}), '(self.universe, [2])\n', (21234, 21254), True, 'import mosaic.immutable_model as M\n'), ((21314, 21357), 'mosaic.immutable_model.TemplateSiteSelection', 'M.TemplateSiteSelection', (['self.universe', '[0]'], {}), '(self.universe, [0])\n', (21337, 21357), True, 'import mosaic.immutable_model as M\n'), ((21487, 21513), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', '()'], {}), "('infinite', ())\n", (21497, 21513), True, 'import mosaic.immutable_model as M\n'), ((21534, 21556), 'mosaic.immutable_model.universe', 'M.universe', (['"""cube"""', '()'], {}), "('cube', ())\n", (21544, 21556), True, 'import mosaic.immutable_model as M\n'), ((21579, 21603), 'mosaic.immutable_model.universe', 'M.universe', (['"""cuboid"""', '()'], {}), "('cuboid', ())\n", (21589, 21603), True, 'import mosaic.immutable_model as M\n'), ((21634, 21666), 'mosaic.immutable_model.universe', 'M.universe', (['"""parallelepiped"""', '()'], {}), "('parallelepiped', ())\n", (21644, 21666), True, 'import mosaic.immutable_model as M\n'), ((6733, 6747), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (6742, 6747), True, 'import mosaic.immutable_model as M\n'), ((8445, 8459), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (8454, 8459), True, 'import mosaic.immutable_model as M\n'), ((14508, 14531), 'mosaic.api.is_valid', 'is_valid', (['self.universe'], {}), '(self.universe)\n', (14516, 14531), False, 'from mosaic.api import is_valid\n'), ((15085, 15122), 'immutable.np.array', 'IN.array', (['[1.0, 1.0, 16.0]', 'N.float32'], {}), '([1.0, 1.0, 16.0], N.float32)\n', (15093, 15122), True, 'import immutable.np as IN\n'), ((15145, 15161), 'mosaic.api.is_valid', 'is_valid', (['masses'], {}), '(masses)\n', (15153, 15161), False, 'from mosaic.api import is_valid\n'), ((15542, 15593), 'immutable.np.array', 'IN.array', (['[1.0, 1.0, 1.0, 1.0, 8.0, 8.0]', 'N.float32'], {}), '([1.0, 1.0, 1.0, 1.0, 8.0, 8.0], N.float32)\n', (15550, 15593), True, 'import immutable.np as IN\n'), ((15723, 15744), 'mosaic.api.is_valid', 'is_valid', (['bead_masses'], {}), '(bead_masses)\n', (15731, 15744), False, 'from mosaic.api import is_valid\n'), ((16126, 16160), 'immutable.np.zeros', 'IN.zeros', (['(60, 3)'], {'dtype': 'N.float64'}), '((60, 3), dtype=N.float64)\n', (16134, 16160), True, 'import immutable.np as IN\n'), ((16186, 16206), 'mosaic.api.is_valid', 'is_valid', (['velocities'], {}), '(velocities)\n', (16194, 16206), False, 'from mosaic.api import is_valid\n'), ((16547, 16582), 'immutable.np.zeros', 'IN.zeros', (['(30, 2, 2)'], {'dtype': 'N.int16'}), '((30, 2, 2), dtype=N.int16)\n', (16555, 16582), True, 'import immutable.np as IN\n'), ((16608, 16621), 'mosaic.api.is_valid', 'is_valid', (['foo'], {}), '(foo)\n', (16616, 16621), False, 'from mosaic.api import is_valid\n'), ((17095, 17107), 'mosaic.api.is_valid', 'is_valid', (['el'], {}), '(el)\n', (17103, 17107), False, 'from mosaic.api import is_valid\n'), ((17674, 17686), 'mosaic.api.is_valid', 'is_valid', (['el'], {}), '(el)\n', (17682, 17686), False, 'from mosaic.api import is_valid\n'), ((18268, 18280), 'mosaic.api.is_valid', 'is_valid', (['el'], {}), '(el)\n', (18276, 18280), False, 'from mosaic.api import is_valid\n'), ((18905, 18917), 'mosaic.api.is_valid', 'is_valid', (['el'], {}), '(el)\n', (18913, 18917), False, 'from mosaic.api import is_valid\n'), ((19973, 19985), 'numpy.arange', 'N.arange', (['(30)'], {}), '(30)\n', (19981, 19985), True, 'import numpy as N\n'), ((20305, 20334), 'numpy.arange', 'N.arange', (['mol.number_of_sites'], {}), '(mol.number_of_sites)\n', (20313, 20334), True, 'import numpy as N\n'), ((20534, 20563), 'numpy.arange', 'N.arange', (['mol.number_of_atoms'], {}), '(mol.number_of_atoms)\n', (20542, 20563), True, 'import numpy as N\n'), ((20752, 20791), 'numpy.arange', 'N.arange', (['self.universe.number_of_atoms'], {}), '(self.universe.number_of_atoms)\n', (20760, 20791), True, 'import numpy as N\n'), ((20915, 20940), 'immutable.np.array', 'IN.array', (['[0, 2]', 'N.uint8'], {}), '([0, 2], N.uint8)\n', (20923, 20940), True, 'import immutable.np as IN\n'), ((21087, 21109), 'immutable.np.array', 'IN.array', (['[1]', 'N.uint8'], {}), '([1], N.uint8)\n', (21095, 21109), True, 'import immutable.np as IN\n'), ((21781, 21808), 'immutable.np.zeros', 'IN.zeros', (['(0, 3)', 'N.float32'], {}), '((0, 3), N.float32)\n', (21789, 21808), True, 'import immutable.np as IN\n'), ((22024, 22051), 'immutable.np.zeros', 'IN.zeros', (['(0, 3)', 'N.float32'], {}), '((0, 3), N.float32)\n', (22032, 22051), True, 'import immutable.np as IN\n'), ((22084, 22108), 'immutable.np.array', 'IN.array', (['(1.0)', 'N.float32'], {}), '(1.0, N.float32)\n', (22092, 22108), True, 'import immutable.np as IN\n'), ((22494, 22521), 'immutable.np.zeros', 'IN.zeros', (['(0, 3)', 'N.float32'], {}), '((0, 3), N.float32)\n', (22502, 22521), True, 'import immutable.np as IN\n'), ((22554, 22590), 'immutable.np.array', 'IN.array', (['[1.0, 2.0, 4.0]', 'N.float32'], {}), '([1.0, 2.0, 4.0], N.float32)\n', (22562, 22590), True, 'import immutable.np as IN\n'), ((22982, 23009), 'immutable.np.zeros', 'IN.zeros', (['(0, 3)', 'N.float32'], {}), '((0, 3), N.float32)\n', (22990, 23009), True, 'import immutable.np as IN\n'), ((23042, 23115), 'immutable.np.array', 'IN.array', (['[[1.0, 2.0, 4.0], [8.0, 4.0, 2.0], [16.0, 4.0, 8.0]]', 'N.float32'], {}), '([[1.0, 2.0, 4.0], [8.0, 4.0, 2.0], [16.0, 4.0, 8.0]], N.float32)\n', (23050, 23115), True, 'import immutable.np as IN\n'), ((984, 993), 'mosaic.immutable_model.dummy', 'M.dummy', ([], {}), '()\n', (991, 993), True, 'import mosaic.immutable_model as M\n'), ((997, 1006), 'mosaic.immutable_model.dummy', 'M.dummy', ([], {}), '()\n', (1004, 1006), True, 'import mosaic.immutable_model as M\n'), ((1032, 1044), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""a"""'], {}), "('a')\n", (1039, 1044), True, 'import mosaic.immutable_model as M\n'), ((1048, 1060), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""a"""'], {}), "('a')\n", (1055, 1060), True, 'import mosaic.immutable_model as M\n'), ((1086, 1098), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""a"""'], {}), "('a')\n", (1093, 1098), True, 'import mosaic.immutable_model as M\n'), ((1106, 1118), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""b"""'], {}), "('b')\n", (1113, 1118), True, 'import mosaic.immutable_model as M\n'), ((1144, 1156), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""a"""'], {}), "('a')\n", (1151, 1156), True, 'import mosaic.immutable_model as M\n'), ((1164, 1178), 'mosaic.immutable_model.unknown', 'M.unknown', (['"""a"""'], {}), "('a')\n", (1173, 1178), True, 'import mosaic.immutable_model as M\n'), ((1204, 1216), 'mosaic.immutable_model.dummy', 'M.dummy', (['"""C"""'], {}), "('C')\n", (1211, 1216), True, 'import mosaic.immutable_model as M\n'), ((1224, 1238), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (1233, 1238), True, 'import mosaic.immutable_model as M\n'), ((1264, 1278), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (1273, 1278), True, 'import mosaic.immutable_model as M\n'), ((1282, 1296), 'mosaic.immutable_model.element', 'M.element', (['"""C"""'], {}), "('C')\n", (1291, 1296), True, 'import mosaic.immutable_model as M\n'), ((1469, 1478), 'mosaic.immutable_model.dummy', 'M.dummy', ([], {}), '()\n', (1476, 1478), True, 'import mosaic.immutable_model as M\n'), ((1519, 1530), 'mosaic.immutable_model.unknown', 'M.unknown', ([], {}), '()\n', (1528, 1530), True, 'import mosaic.immutable_model as M\n'), ((1566, 1580), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (1575, 1580), True, 'import mosaic.immutable_model as M\n'), ((1623, 1642), 'mosaic.immutable_model.cgparticle', 'M.cgparticle', (['"""ala"""'], {}), "('ala')\n", (1635, 1642), True, 'import mosaic.immutable_model as M\n'), ((6343, 6354), 'mosaic.immutable_model.dummy', 'M.dummy', (['(42)'], {}), '(42)\n', (6350, 6354), True, 'import mosaic.immutable_model as M\n'), ((6402, 6415), 'mosaic.immutable_model.element', 'M.element', (['(42)'], {}), '(42)\n', (6411, 6415), True, 'import mosaic.immutable_model as M\n'), ((6463, 6477), 'mosaic.immutable_model.element', 'M.element', (['"""X"""'], {}), "('X')\n", (6472, 6477), True, 'import mosaic.immutable_model as M\n'), ((6590, 6604), 'mosaic.immutable_model.atom', 'M.atom', (['"""C"""', '(1)'], {}), "('C', 1)\n", (6596, 6604), True, 'import mosaic.immutable_model as M\n'), ((6652, 6669), 'mosaic.immutable_model.atom', 'M.atom', (['carbon', '(0)'], {}), '(carbon, 0)\n', (6658, 6669), True, 'import mosaic.immutable_model as M\n'), ((6848, 6891), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', 'None', "(('C', carbon),)", '()'], {}), "('m', None, (('C', carbon),), ())\n", (6858, 6891), True, 'import mosaic.immutable_model as M\n'), ((6964, 7009), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '[1, 2]', "(('C', carbon),)", '()'], {}), "('m', [1, 2], (('C', carbon),), ())\n", (6974, 7009), True, 'import mosaic.immutable_model as M\n'), ((7082, 7123), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', "(('C', carbon),)", '()', '()'], {}), "('m', (('C', carbon),), (), ())\n", (7092, 7123), True, 'import mosaic.immutable_model as M\n'), ((7220, 7249), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', 'None', '()'], {}), "('m', (), None, ())\n", (7230, 7249), True, 'import mosaic.immutable_model as M\n'), ((7322, 7353), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', '[1, 2]', '()'], {}), "('m', (), [1, 2], ())\n", (7332, 7353), True, 'import mosaic.immutable_model as M\n'), ((7426, 7460), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', '(carbon,)', '()'], {}), "('m', (), (carbon,), ())\n", (7436, 7460), True, 'import mosaic.immutable_model as M\n'), ((7534, 7589), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C', carbon), ('C', carbon))", '()'], {}), "('m', (), (('C', carbon), ('C', carbon)), ())\n", (7544, 7589), True, 'import mosaic.immutable_model as M\n'), ((7827, 7870), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C', carbon),)", 'None'], {}), "('m', (), (('C', carbon),), None)\n", (7837, 7870), True, 'import mosaic.immutable_model as M\n'), ((7943, 7991), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C', carbon),)", '[1, 2, 3]'], {}), "('m', (), (('C', carbon),), [1, 2, 3])\n", (7953, 7991), True, 'import mosaic.immutable_model as M\n'), ((8109, 8158), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C', carbon),)", "('X', 'X')"], {}), "('m', (), (('C', carbon),), ('X', 'X'))\n", (8119, 8158), True, 'import mosaic.immutable_model as M\n'), ((8278, 8337), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C', carbon),)", "['X', 'X', 'single']"], {}), "('m', (), (('C', carbon),), ['X', 'X', 'single'])\n", (8288, 8337), True, 'import mosaic.immutable_model as M\n'), ((8575, 8640), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C1', carbon), ('C2', carbon))", "(('C1',),)"], {}), "('m', (), (('C1', carbon), ('C2', carbon)), (('C1',),))\n", (8585, 8640), True, 'import mosaic.immutable_model as M\n'), ((8861, 8931), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C1', carbon), ('C2', carbon))", "(('C1', 'C2'),)"], {}), "('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C2'),))\n", (8871, 8931), True, 'import mosaic.immutable_model as M\n'), ((9143, 9217), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C1', carbon), ('C2', carbon))", "(('C1', 'C1', ''),)"], {}), "('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C1', ''),))\n", (9153, 9217), True, 'import mosaic.immutable_model as M\n'), ((9440, 9514), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', '()', "(('C1', carbon), ('C2', carbon))", "(('C1', 'C3', ''),)"], {}), "('m', (), (('C1', carbon), ('C2', carbon)), (('C1', 'C3', ''),))\n", (9450, 9514), True, 'import mosaic.immutable_model as M\n'), ((9801, 9873), 'mosaic.immutable_model.fragment', 'M.fragment', (['"""m"""', "(('x', f),)", "(('C3', carbon),)", "(('x.C1', 'x.C2', ''),)"], {}), "('m', (('x', f),), (('C3', carbon),), (('x.C1', 'x.C2', ''),))\n", (9811, 9873), True, 'import mosaic.immutable_model as M\n'), ((10361, 10396), 'mosaic.immutable_model.universe', 'M.universe', (['(0)', "[(mol, 'water', 10)]"], {}), "(0, [(mol, 'water', 10)])\n", (10371, 10396), True, 'import mosaic.immutable_model as M\n'), ((10470, 10513), 'mosaic.immutable_model.universe', 'M.universe', (['"""strange"""', "[(mol, 'water', 10)]"], {}), "('strange', [(mol, 'water', 10)])\n", (10480, 10513), True, 'import mosaic.immutable_model as M\n'), ((10587, 10621), 'mosaic.immutable_model.universe', 'M.universe', (['"""strange"""', '[(mol, 10)]'], {}), "('strange', [(mol, 10)])\n", (10597, 10621), True, 'import mosaic.immutable_model as M\n'), ((10694, 10721), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', 'mol'], {}), "('infinite', mol)\n", (10704, 10721), True, 'import mosaic.immutable_model as M\n'), ((10795, 10834), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', "[('water', 10)]"], {}), "('infinite', [('water', 10)])\n", (10805, 10834), True, 'import mosaic.immutable_model as M\n'), ((10907, 10936), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', '[mol]'], {}), "('infinite', [mol])\n", (10917, 10936), True, 'import mosaic.immutable_model as M\n'), ((11010, 11045), 'mosaic.immutable_model.universe', 'M.universe', (['"""infinite"""', '[(10, mol)]'], {}), "('infinite', [(10, mol)])\n", (11020, 11045), True, 'import mosaic.immutable_model as M\n'), ((11541, 11566), 'mosaic.immutable_model.Configuration', 'M.Configuration', (['universe'], {}), '(universe)\n', (11556, 11566), True, 'import mosaic.immutable_model as M\n'), ((659, 673), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (668, 673), True, 'import mosaic.immutable_model as M\n'), ((722, 736), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (731, 736), True, 'import mosaic.immutable_model as M\n'), ((785, 799), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (794, 799), True, 'import mosaic.immutable_model as M\n'), ((1390, 1405), 'mosaic.immutable_model.unknown', 'M.unknown', (['name'], {}), '(name)\n', (1399, 1405), True, 'import mosaic.immutable_model as M\n'), ((3397, 3406), 'mosaic.immutable_model.atom', 'M.atom', (['C'], {}), '(C)\n', (3403, 3406), True, 'import mosaic.immutable_model as M\n'), ((3452, 3461), 'mosaic.immutable_model.atom', 'M.atom', (['H'], {}), '(H)\n', (3458, 3461), True, 'import mosaic.immutable_model as M\n'), ((3506, 3515), 'mosaic.immutable_model.atom', 'M.atom', (['H'], {}), '(H)\n', (3512, 3515), True, 'import mosaic.immutable_model as M\n'), ((3560, 3569), 'mosaic.immutable_model.atom', 'M.atom', (['N'], {}), '(N)\n', (3566, 3569), True, 'import mosaic.immutable_model as M\n'), ((3614, 3623), 'mosaic.immutable_model.atom', 'M.atom', (['C'], {}), '(C)\n', (3620, 3623), True, 'import mosaic.immutable_model as M\n'), ((3668, 3677), 'mosaic.immutable_model.atom', 'M.atom', (['O'], {}), '(O)\n', (3674, 3677), True, 'import mosaic.immutable_model as M\n'), ((4110, 4119), 'mosaic.immutable_model.atom', 'M.atom', (['C'], {}), '(C)\n', (4116, 4119), True, 'import mosaic.immutable_model as M\n'), ((4166, 4175), 'mosaic.immutable_model.atom', 'M.atom', (['H'], {}), '(H)\n', (4172, 4175), True, 'import mosaic.immutable_model as M\n'), ((4222, 4231), 'mosaic.immutable_model.atom', 'M.atom', (['H'], {}), '(H)\n', (4228, 4231), True, 'import mosaic.immutable_model as M\n'), ((4278, 4287), 'mosaic.immutable_model.atom', 'M.atom', (['H'], {}), '(H)\n', (4284, 4287), True, 'import mosaic.immutable_model as M\n'), ((11758, 11786), 'immutable.np.zeros', 'IN.zeros', (['(30, 3)', 'N.float32'], {}), '((30, 3), N.float32)\n', (11766, 11786), True, 'import immutable.np as IN\n'), ((11996, 12024), 'immutable.np.zeros', 'IN.zeros', (['(30, 3)', 'N.float32'], {}), '((30, 3), N.float32)\n', (12004, 12024), True, 'import immutable.np as IN\n'), ((12076, 12091), 'numpy.float64', 'N.float64', (['(10.0)'], {}), '(10.0)\n', (12085, 12091), True, 'import numpy as N\n'), ((12422, 12437), 'numpy.float32', 'N.float32', (['(10.0)'], {}), '(10.0)\n', (12431, 12437), True, 'import numpy as N\n'), ((12622, 12650), 'immutable.np.zeros', 'IN.zeros', (['(25, 3)', 'N.float32'], {}), '((25, 3), N.float32)\n', (12630, 12650), True, 'import immutable.np as IN\n'), ((12702, 12717), 'numpy.float32', 'N.float32', (['(10.0)'], {}), '(10.0)\n', (12711, 12717), True, 'import numpy as N\n'), ((12908, 12936), 'immutable.np.zeros', 'IN.zeros', (['(30, 3)', 'N.float32'], {}), '((30, 3), N.float32)\n', (12916, 12936), True, 'import immutable.np as IN\n'), ((12988, 13013), 'immutable.np.zeros', 'IN.zeros', (['(3,)', 'N.float32'], {}), '((3,), N.float32)\n', (12996, 13013), True, 'import immutable.np as IN\n'), ((13335, 13359), 'immutable.np.zeros', 'IN.zeros', (['(2,)', 'N.uint16'], {}), '((2,), N.uint16)\n', (13343, 13359), True, 'import immutable.np as IN\n'), ((13541, 13565), 'immutable.np.array', 'IN.array', (['[20]', 'N.uint16'], {}), '([20], N.uint16)\n', (13549, 13565), True, 'import immutable.np as IN\n'), ((13772, 13794), 'immutable.np.array', 'IN.array', (['[3]', 'N.uint8'], {}), '([3], N.uint8)\n', (13780, 13794), True, 'import immutable.np as IN\n'), ((13976, 14000), 'immutable.np.array', 'IN.array', (['[40]', 'N.uint16'], {}), '([40], N.uint16)\n', (13984, 14000), True, 'import immutable.np as IN\n'), ((14207, 14229), 'immutable.np.array', 'IN.array', (['[8]', 'N.uint8'], {}), '([8], N.uint8)\n', (14215, 14229), True, 'import immutable.np as IN\n'), ((2184, 2198), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (2193, 2198), True, 'import mosaic.immutable_model as M\n'), ((2257, 2271), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (2266, 2271), True, 'import mosaic.immutable_model as M\n'), ((2330, 2344), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (2339, 2344), True, 'import mosaic.immutable_model as M\n'), ((2586, 2600), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (2595, 2600), True, 'import mosaic.immutable_model as M\n'), ((2659, 2673), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (2668, 2673), True, 'import mosaic.immutable_model as M\n'), ((2732, 2746), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (2741, 2746), True, 'import mosaic.immutable_model as M\n'), ((10073, 10087), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (10082, 10087), True, 'import mosaic.immutable_model as M\n'), ((10134, 10148), 'mosaic.immutable_model.element', 'M.element', (['"""H"""'], {}), "('H')\n", (10143, 10148), True, 'import mosaic.immutable_model as M\n'), ((10195, 10209), 'mosaic.immutable_model.element', 'M.element', (['"""O"""'], {}), "('O')\n", (10204, 10209), True, 'import mosaic.immutable_model as M\n'), ((12278, 12306), 'immutable.np.zeros', 'IN.zeros', (['(30, 3)', 'N.float32'], {}), '((30, 3), N.float32)\n', (12286, 12306), True, 'import immutable.np as IN\n'), ((19852, 19879), 'numpy.array', 'N.array', (['[0, 0, 1, 1, 2, 2]'], {}), '([0, 0, 1, 1, 2, 2])\n', (19859, 19879), True, 'import numpy as N\n'), ((22179, 22214), 'numpy.array', 'N.array', (['[1.0, 0.0, 0.0]', 'N.float32'], {}), '([1.0, 0.0, 0.0], N.float32)\n', (22186, 22214), True, 'import numpy as N\n'), ((22254, 22289), 'numpy.array', 'N.array', (['[0.0, 1.0, 0.0]', 'N.float32'], {}), '([0.0, 1.0, 0.0], N.float32)\n', (22261, 22289), True, 'import numpy as N\n'), ((22329, 22364), 'numpy.array', 'N.array', (['[0.0, 0.0, 1.0]', 'N.float32'], {}), '([0.0, 0.0, 1.0], N.float32)\n', (22336, 22364), True, 'import numpy as N\n'), ((22659, 22694), 'numpy.array', 'N.array', (['[1.0, 0.0, 0.0]', 'N.float32'], {}), '([1.0, 0.0, 0.0], N.float32)\n', (22666, 22694), True, 'import numpy as N\n'), ((22734, 22769), 'numpy.array', 'N.array', (['[0.0, 2.0, 0.0]', 'N.float32'], {}), '([0.0, 2.0, 0.0], N.float32)\n', (22741, 22769), True, 'import numpy as N\n'), ((22809, 22844), 'numpy.array', 'N.array', (['[0.0, 0.0, 4.0]', 'N.float32'], {}), '([0.0, 0.0, 4.0], N.float32)\n', (22816, 22844), True, 'import numpy as N\n'), ((23260, 23295), 'numpy.array', 'N.array', (['[1.0, 2.0, 4.0]', 'N.float32'], {}), '([1.0, 2.0, 4.0], N.float32)\n', (23267, 23295), True, 'import numpy as N\n'), ((23335, 23370), 'numpy.array', 'N.array', (['[8.0, 4.0, 2.0]', 'N.float32'], {}), '([8.0, 4.0, 2.0], N.float32)\n', (23342, 23370), True, 'import numpy as N\n'), ((23410, 23446), 'numpy.array', 'N.array', (['[16.0, 4.0, 8.0]', 'N.float32'], {}), '([16.0, 4.0, 8.0], N.float32)\n', (23417, 23446), True, 'import numpy as N\n'), ((11211, 11238), 'immutable.np.zeros', 'IN.zeros', (['(3, 3)', 'N.float64'], {}), '((3, 3), N.float64)\n', (11219, 11238), True, 'import immutable.np as IN\n'), ((11286, 11311), 'immutable.np.zeros', 'IN.zeros', (['(3,)', 'N.float64'], {}), '((3,), N.float64)\n', (11294, 11311), True, 'import immutable.np as IN\n')]
# Code from Chapter 3 of Machine Learning: An Algorithmic Perspective (2nd Edition) # by <NAME> (http://stephenmonika.net) # You are free to use, change, or redistribute the code in any way you wish for # non-commercial purposes, but please maintain the name of the original author. # This code comes with no warranty of any kind. # <NAME>, 2008, 2014 import pylab as pl import numpy as np import pcn import cPickle, gzip # Read the dataset in (code from sheet) f = gzip.open('mnist.pkl.gz','rb') tset, vset, teset = cPickle.load(f) f.close() nread = 200 # Just use the first few images train_in = tset[0][:nread,:] # This is a little bit of work -- 1 of N encoding # Make sure you understand how it does it train_tgt = np.zeros((nread,10)) for i in range(nread): train_tgt[i,tset[1][i]] = 1 test_in = teset[0][:nread,:] test_tgt = np.zeros((nread,10)) for i in range(nread): test_tgt[i,teset[1][i]] = 1 # Train a Perceptron on training set p = pcn.pcn(train_in, train_tgt) p.pcntrain(train_in, train_tgt,0.25,100) # This isn't really good practice since it's on the training data, # but it does show that it is learning. p.confmat(train_in,train_tgt) # Now test it p.confmat(test_in,test_tgt)
[ "numpy.zeros", "pcn.pcn", "cPickle.load", "gzip.open" ]
[((470, 501), 'gzip.open', 'gzip.open', (['"""mnist.pkl.gz"""', '"""rb"""'], {}), "('mnist.pkl.gz', 'rb')\n", (479, 501), False, 'import cPickle, gzip\n'), ((521, 536), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (533, 536), False, 'import cPickle, gzip\n'), ((726, 747), 'numpy.zeros', 'np.zeros', (['(nread, 10)'], {}), '((nread, 10))\n', (734, 747), True, 'import numpy as np\n'), ((843, 864), 'numpy.zeros', 'np.zeros', (['(nread, 10)'], {}), '((nread, 10))\n', (851, 864), True, 'import numpy as np\n'), ((961, 989), 'pcn.pcn', 'pcn.pcn', (['train_in', 'train_tgt'], {}), '(train_in, train_tgt)\n', (968, 989), False, 'import pcn\n')]
import sys import numpy as np from cv2 import BRISK_create from cv2.xfeatures2d import FREAK_create from numpy import histogramdd from skimage.color import rgb2lab, rgb2hsv from skimage.feature import local_binary_pattern, greycoprops, greycomatrix from sklearn.base import TransformerMixin from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.preprocessing import MinMaxScaler sys.path.append("../") from helpers.img_utils import tif_to_grayscale, tif_to_rgb class BaseFeatureExtractor(TransformerMixin): def __init__(self): pass def fit(self, imgs, y=None): raise NotImplementedError def transform(self, imgs, y=None): raise NotImplementedError class ChannelsFeatureExtractor(BaseFeatureExtractor): """ extracts mean and standard deviation of every channel in the image (B, G, R, NIR) and the brightness, where brightness is defined as the mean of channels Parameters ---------- imgs : numpy.ndarray (np.int | np.float) set of images, each with 4 channels (B, G, R, NIR) rgb : if True only the first three colour channels are used """ def __init__(self, bgr=False): self.pixels_axis = (1, 2) self.bgr = bgr super().__init__() def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): if self.bgr: imgs = imgs[:, :, :, :3] # extract color channels means = np.mean(imgs, axis=self.pixels_axis) sds = np.std(imgs, axis=self.pixels_axis) brightness = np.mean(means, axis=1) brightness = np.reshape(brightness, (-1, 1)) return np.concatenate((means, sds, brightness), axis=1) class NDVIFeatureExtractor(BaseFeatureExtractor): """ extracts normalized difference vegatation index from multispectral image Parameters ---------- imgs : numpy.ndarray (np.int | np.float) set of images, each with 4 channels (B, G, R, NIR) """ def __init__(self): self.pixels_axis = (1, 2) super().__init__() def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): # casting is required to obtain negative NDVI values. Else the computations produce errors for uint imgs = imgs.astype('float64', casting='safe') red = imgs[:, :, :, 2] nir = imgs[:, :, :, 3] ndvi = np.divide(nir - red, nir + red) ndvi_means = np.mean(ndvi, axis=self.pixels_axis) ndvi_sds = np.std(ndvi, axis=self.pixels_axis) ndvi_means = np.reshape(ndvi_means, (-1, 1)) ndvi_sds = np.reshape(ndvi_sds, (-1, 1)) return np.concatenate((ndvi_means, ndvi_sds), axis=1) class LBPFeatureExtractor(BaseFeatureExtractor): """extracts LBP features of a set of images using the 'uniform' method""" def __init__(self, r): """ Parameters ---------- r: int radius of LBP """ self.r = r self.p = 8 * r self.n_bins = self.p + 2 super().__init__() def extract_feature(self, img): """Obtain lbp feature from tiff image""" img_grayscale = tif_to_grayscale(img) lbp = local_binary_pattern(img_grayscale, self.p, self.r, method='uniform') lbp_feature = np.histogram(lbp, bins=self.n_bins, range=(0, self.n_bins))[0] return lbp_feature def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): self.n_images = np.shape(imgs)[0] features = np.zeros([self.n_images, self.n_bins]) for i in range(self.n_images): features[i, :] = self.extract_feature(imgs[i, :, :, :]) return features class GLCMFeatureExtractor(BaseFeatureExtractor): """extracts set of GLCM features from a set of images Parameters ---------- nir: if False it will extract the GLCM from the grayscale image if True it will extract the GLCM from the NIR channel """ def __init__(self, nir=False): self.nir = nir self.scaler = MinMaxScaler(feature_range=(0, 255)) self.distances = [1] self.directions = [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4] # omnidirectional self.glcm_features = ['contrast', 'ASM', 'correlation'] self.n_features = len(self.glcm_features) super().__init__() def obtain_property(self, glcm, feature): return np.mean(greycoprops(glcm, feature)) def extract_feature(self, img): """Obtain glcm feature from tiff image""" if self.nir: img_2d = img[:, :, 3] img_2d = self.scaler.fit_transform(img_2d.astype('float64')) img_2d = img_2d.astype('uint8') else: img_2d = tif_to_grayscale(img, as_int=True) glcm = greycomatrix(img_2d, self.distances, self.directions, symmetric=True, normed=True) im_features = np.zeros(self.n_features) for i, feature in enumerate(self.glcm_features): im_features[i] = self.obtain_property(glcm, feature) return im_features def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): self.n_images = np.shape(imgs)[0] features = np.zeros([self.n_images, self.n_features]) for i in range(self.n_images): features[i, :] = self.extract_feature(imgs[i, :, :, :]) return features class GCHFeatureExtractor(BaseFeatureExtractor): """extracts global color histogram (GCH) from a set of images""" def __init__(self, color_space='rgb'): self.n_bins = 8 # number of bins per channel histogram self.n_channels = 3 self.n_features = self.n_bins ** self.n_channels self.color_space = color_space self.ranges = {'rgb': ((0, 255), (0, 255), (0, 255)), 'hsv': ((0, 1), (0, 1), (0, 1)), 'lab': ((0, 100), (-128, 127), (-128, 127))} self.range = self.ranges[self.color_space] super().__init__() def preprocess_image(self, img): img = tif_to_rgb(img, as_int=True) if self.color_space == 'hsv': return rgb2hsv(img) elif self.color_space == 'lab': return rgb2lab(img) elif self.color_space == 'rgb': return img def extract_feature(self, img): """Obtain GCH feature from tiff image""" img = self.preprocess_image(img) GCH, _ = histogramdd(img.reshape(-1, img.shape[-1]), bins=(self.n_bins, self.n_bins, self.n_bins), range=self.range) GCH = GCH.flatten() / np.sum(GCH) # normalize to have L1 norm of 1 return GCH def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): self.n_images = np.shape(imgs)[0] features = np.zeros([self.n_images, self.n_features]) for i in range(self.n_images): features[i, :] = self.extract_feature(imgs[i, :, :, :]) return features class LocalFeatureExtractor(BaseFeatureExtractor): def __init__(self, descriptor='brisk', n_octaves=4, threshold=25, pattern_scale=1.0): self.detector = BRISK_create(thresh=threshold, octaves=n_octaves, patternScale=pattern_scale) if descriptor == 'brisk': self.extractor = self.detector elif descriptor == 'freak': self.extractor = FREAK_create(patternScale=pattern_scale, nOctaves=n_octaves) self.feature_dimension = 64 super().__init__() def extract_feature(self, img): img_grayscale = tif_to_grayscale(img, as_int=True) keypoints = self.detector.detect(img_grayscale) _, descriptors = self.extractor.compute(img_grayscale, keypoints) return descriptors def fit(self, imgs, y=None): return self def transform(self, imgs, y=None): self.n_images = np.shape(imgs)[0] features = [] for i in range(self.n_images): # append to list rather than numpy.ndarray because number of feature is unknown features.append(self.extract_feature(imgs[i, :, :, :])) return features class BoVW(TransformerMixin): """Bag of visual words""" def __init__(self, n_clusters=25, batch_size=500): self.n_clusters = n_clusters # number of words in the visual bag of words self.kmeans = MiniBatchKMeans(n_clusters=self.n_clusters, batch_size=batch_size, random_state=0) def create_histogram(self, img_descriptors): if img_descriptors is None: # return empty histogram if no keypoints are detected return np.zeros(self.n_clusters) try: clusters = self.kmeans.predict(img_descriptors) except ValueError: # if there is only one descriptor we need to make it have one row img_descriptors = img_descriptors.reshape(1, -1) clusters = self.kmeans.predict(img_descriptors) histogram = np.zeros(self.n_clusters) counts = np.unique(clusters, return_counts=True) for i, count in zip(counts[0], counts[1]): histogram[i] = count histogram /= np.sum(histogram) # normalize histogram return histogram def fit(self, descriptors_list, y=None): """creates dictionary for the bag of visual words""" descriptors_list = [d for d in descriptors_list if d is not None] self.kmeans.fit(np.concatenate(descriptors_list)) return self def transform(self, descriptors_list, y=None): """create feature histograms for all descriptors of all images""" self.n_images = len(descriptors_list) histograms = np.zeros([self.n_images, self.n_clusters]) for i, descriptors in enumerate(descriptors_list): histograms[i, :] = self.create_histogram(descriptors) return histograms
[ "skimage.feature.local_binary_pattern", "sys.path.append", "numpy.divide", "numpy.mean", "numpy.histogram", "numpy.reshape", "helpers.img_utils.tif_to_grayscale", "skimage.color.rgb2lab", "numpy.concatenate", "sklearn.preprocessing.MinMaxScaler", "cv2.xfeatures2d.FREAK_create", "helpers.img_utils.tif_to_rgb", "sklearn.cluster.MiniBatchKMeans", "skimage.color.rgb2hsv", "numpy.std", "numpy.shape", "numpy.unique", "skimage.feature.greycomatrix", "numpy.sum", "numpy.zeros", "cv2.BRISK_create", "skimage.feature.greycoprops" ]
[((392, 414), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (407, 414), False, 'import sys\n'), ((1451, 1487), 'numpy.mean', 'np.mean', (['imgs'], {'axis': 'self.pixels_axis'}), '(imgs, axis=self.pixels_axis)\n', (1458, 1487), True, 'import numpy as np\n'), ((1502, 1537), 'numpy.std', 'np.std', (['imgs'], {'axis': 'self.pixels_axis'}), '(imgs, axis=self.pixels_axis)\n', (1508, 1537), True, 'import numpy as np\n'), ((1559, 1581), 'numpy.mean', 'np.mean', (['means'], {'axis': '(1)'}), '(means, axis=1)\n', (1566, 1581), True, 'import numpy as np\n'), ((1603, 1634), 'numpy.reshape', 'np.reshape', (['brightness', '(-1, 1)'], {}), '(brightness, (-1, 1))\n', (1613, 1634), True, 'import numpy as np\n'), ((1651, 1699), 'numpy.concatenate', 'np.concatenate', (['(means, sds, brightness)'], {'axis': '(1)'}), '((means, sds, brightness), axis=1)\n', (1665, 1699), True, 'import numpy as np\n'), ((2404, 2435), 'numpy.divide', 'np.divide', (['(nir - red)', '(nir + red)'], {}), '(nir - red, nir + red)\n', (2413, 2435), True, 'import numpy as np\n'), ((2458, 2494), 'numpy.mean', 'np.mean', (['ndvi'], {'axis': 'self.pixels_axis'}), '(ndvi, axis=self.pixels_axis)\n', (2465, 2494), True, 'import numpy as np\n'), ((2514, 2549), 'numpy.std', 'np.std', (['ndvi'], {'axis': 'self.pixels_axis'}), '(ndvi, axis=self.pixels_axis)\n', (2520, 2549), True, 'import numpy as np\n'), ((2571, 2602), 'numpy.reshape', 'np.reshape', (['ndvi_means', '(-1, 1)'], {}), '(ndvi_means, (-1, 1))\n', (2581, 2602), True, 'import numpy as np\n'), ((2622, 2651), 'numpy.reshape', 'np.reshape', (['ndvi_sds', '(-1, 1)'], {}), '(ndvi_sds, (-1, 1))\n', (2632, 2651), True, 'import numpy as np\n'), ((2667, 2713), 'numpy.concatenate', 'np.concatenate', (['(ndvi_means, ndvi_sds)'], {'axis': '(1)'}), '((ndvi_means, ndvi_sds), axis=1)\n', (2681, 2713), True, 'import numpy as np\n'), ((3185, 3206), 'helpers.img_utils.tif_to_grayscale', 'tif_to_grayscale', (['img'], {}), '(img)\n', (3201, 3206), False, 'from helpers.img_utils import tif_to_grayscale, tif_to_rgb\n'), ((3221, 3290), 'skimage.feature.local_binary_pattern', 'local_binary_pattern', (['img_grayscale', 'self.p', 'self.r'], {'method': '"""uniform"""'}), "(img_grayscale, self.p, self.r, method='uniform')\n", (3241, 3290), False, 'from skimage.feature import local_binary_pattern, greycoprops, greycomatrix\n'), ((3558, 3596), 'numpy.zeros', 'np.zeros', (['[self.n_images, self.n_bins]'], {}), '([self.n_images, self.n_bins])\n', (3566, 3596), True, 'import numpy as np\n'), ((4090, 4126), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(0, 255)'}), '(feature_range=(0, 255))\n', (4102, 4126), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((4825, 4911), 'skimage.feature.greycomatrix', 'greycomatrix', (['img_2d', 'self.distances', 'self.directions'], {'symmetric': '(True)', 'normed': '(True)'}), '(img_2d, self.distances, self.directions, symmetric=True,\n normed=True)\n', (4837, 4911), False, 'from skimage.feature import local_binary_pattern, greycoprops, greycomatrix\n'), ((4958, 4983), 'numpy.zeros', 'np.zeros', (['self.n_features'], {}), '(self.n_features)\n', (4966, 4983), True, 'import numpy as np\n'), ((5288, 5330), 'numpy.zeros', 'np.zeros', (['[self.n_images, self.n_features]'], {}), '([self.n_images, self.n_features])\n', (5296, 5330), True, 'import numpy as np\n'), ((6133, 6161), 'helpers.img_utils.tif_to_rgb', 'tif_to_rgb', (['img'], {'as_int': '(True)'}), '(img, as_int=True)\n', (6143, 6161), False, 'from helpers.img_utils import tif_to_grayscale, tif_to_rgb\n'), ((6927, 6969), 'numpy.zeros', 'np.zeros', (['[self.n_images, self.n_features]'], {}), '([self.n_images, self.n_features])\n', (6935, 6969), True, 'import numpy as np\n'), ((7270, 7347), 'cv2.BRISK_create', 'BRISK_create', ([], {'thresh': 'threshold', 'octaves': 'n_octaves', 'patternScale': 'pattern_scale'}), '(thresh=threshold, octaves=n_octaves, patternScale=pattern_scale)\n', (7282, 7347), False, 'from cv2 import BRISK_create\n'), ((7751, 7785), 'helpers.img_utils.tif_to_grayscale', 'tif_to_grayscale', (['img'], {'as_int': '(True)'}), '(img, as_int=True)\n', (7767, 7785), False, 'from helpers.img_utils import tif_to_grayscale, tif_to_rgb\n'), ((8549, 8635), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {'n_clusters': 'self.n_clusters', 'batch_size': 'batch_size', 'random_state': '(0)'}), '(n_clusters=self.n_clusters, batch_size=batch_size,\n random_state=0)\n', (8564, 8635), False, 'from sklearn.cluster import MiniBatchKMeans, KMeans\n'), ((9225, 9250), 'numpy.zeros', 'np.zeros', (['self.n_clusters'], {}), '(self.n_clusters)\n', (9233, 9250), True, 'import numpy as np\n'), ((9268, 9307), 'numpy.unique', 'np.unique', (['clusters'], {'return_counts': '(True)'}), '(clusters, return_counts=True)\n', (9277, 9307), True, 'import numpy as np\n'), ((9414, 9431), 'numpy.sum', 'np.sum', (['histogram'], {}), '(histogram)\n', (9420, 9431), True, 'import numpy as np\n'), ((9932, 9974), 'numpy.zeros', 'np.zeros', (['[self.n_images, self.n_clusters]'], {}), '([self.n_images, self.n_clusters])\n', (9940, 9974), True, 'import numpy as np\n'), ((3313, 3372), 'numpy.histogram', 'np.histogram', (['lbp'], {'bins': 'self.n_bins', 'range': '(0, self.n_bins)'}), '(lbp, bins=self.n_bins, range=(0, self.n_bins))\n', (3325, 3372), True, 'import numpy as np\n'), ((3521, 3535), 'numpy.shape', 'np.shape', (['imgs'], {}), '(imgs)\n', (3529, 3535), True, 'import numpy as np\n'), ((4453, 4479), 'skimage.feature.greycoprops', 'greycoprops', (['glcm', 'feature'], {}), '(glcm, feature)\n', (4464, 4479), False, 'from skimage.feature import local_binary_pattern, greycoprops, greycomatrix\n'), ((4775, 4809), 'helpers.img_utils.tif_to_grayscale', 'tif_to_grayscale', (['img'], {'as_int': '(True)'}), '(img, as_int=True)\n', (4791, 4809), False, 'from helpers.img_utils import tif_to_grayscale, tif_to_rgb\n'), ((5251, 5265), 'numpy.shape', 'np.shape', (['imgs'], {}), '(imgs)\n', (5259, 5265), True, 'import numpy as np\n'), ((6219, 6231), 'skimage.color.rgb2hsv', 'rgb2hsv', (['img'], {}), '(img)\n', (6226, 6231), False, 'from skimage.color import rgb2lab, rgb2hsv\n'), ((6707, 6718), 'numpy.sum', 'np.sum', (['GCH'], {}), '(GCH)\n', (6713, 6718), True, 'import numpy as np\n'), ((6890, 6904), 'numpy.shape', 'np.shape', (['imgs'], {}), '(imgs)\n', (6898, 6904), True, 'import numpy as np\n'), ((8061, 8075), 'numpy.shape', 'np.shape', (['imgs'], {}), '(imgs)\n', (8069, 8075), True, 'import numpy as np\n'), ((8879, 8904), 'numpy.zeros', 'np.zeros', (['self.n_clusters'], {}), '(self.n_clusters)\n', (8887, 8904), True, 'import numpy as np\n'), ((9685, 9717), 'numpy.concatenate', 'np.concatenate', (['descriptors_list'], {}), '(descriptors_list)\n', (9699, 9717), True, 'import numpy as np\n'), ((6291, 6303), 'skimage.color.rgb2lab', 'rgb2lab', (['img'], {}), '(img)\n', (6298, 6303), False, 'from skimage.color import rgb2lab, rgb2hsv\n'), ((7565, 7625), 'cv2.xfeatures2d.FREAK_create', 'FREAK_create', ([], {'patternScale': 'pattern_scale', 'nOctaves': 'n_octaves'}), '(patternScale=pattern_scale, nOctaves=n_octaves)\n', (7577, 7625), False, 'from cv2.xfeatures2d import FREAK_create\n')]
# -*- coding: utf-8 -*- #from __future__ import print_function #import pixy #from ctypes import * #from pixy import * import math as ma import numpy as np test_data = 120,100 #test input #hight = 495-114 #mm #ball parameter r_ball = 114.8 #mm 'PIXY Parameter' #pixy-cam image size in pixy-coordination delta_X_pixy = 207 delta_Y_pixy = 315 #angles ang_cam_tilt = ma.radians(33) ang_rev_cam_tilt = ma.radians(90)-ang_cam_tilt ang_cam_flare_X = ma.radians(47) #Öffnungswinkel pixy cam ang_cam_flare_Y = ma.radians(75) delta_ang_X = ma.radians(47) #deg ang_ball_ratio = delta_X_pixy / delta_ang_X '''PIXY Parameter''' #pixy-cam position parameter 'vorläufige Parameter!!!' ang_offset = ma.radians(30) #1.0472 # 60 degree h_cam_offset = 463 #floor to camera-mountings rotation axle s_cam_offset = 77 #midpoint robot to camera mounting on x axle r_cam_rot = 55 #radius of camera rotation circle on xy-level #absolute position of camera on robot X_cam_pos = 0 Z_cam_pos = 0 #pixy-cam image parameter Xmin_image_cam = 0 Xmax_image_cam = 0 X_offset_image_cam = 0 Ymin_image_cam = 0 Ymax_image_cam = 0 delta_X_image_cam = 0 delta_Y_image_cam = 0 X_factor_cam = 1 Y_factor_cam = 1 X_ball_ego = 0 #mm Y_ball_ego = 0 #mm X_ball_filtered = 0 Y_ball_filtered = 0 'Kalman Parameter' dt = 1.0/60.0 #pixys freq = 60 Hz F = np.array([[1, dt, 0], [0, 1, dt],[0, 0, 1]]) #state transition model, A H = np.array([1, 0, 0]).reshape(1, 3) #transponieren #observation model C """ das ist meine C matrix für den Ausgang, also müsste das mittlere die geschwindigkeit sein """ q = 0.05 Q = np.array([[q, q, 0], [q, q, 0], [0, 0, 0]]) R = np.array([0.05]).reshape(1, 1) #observation noise # Pixy2 Python SWIG get blocks example ''' blocks = BlockArray(100) frame = 0 class Blocks (Structure): _fields_ = [ ("m_signature", c_uint), ("m_x", c_uint), ("m_y", c_uint), ("m_width", c_uint), ("m_height", c_uint), ("m_angle", c_uint), ("m_index", c_uint), ("m_age", c_uint) ] ''' class KalmanFilter(object): def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None): if(F is None or H is None): raise ValueError("Set proper system dynamics.") self.n = F.shape[1] self.m = H.shape[1] self.F = F self.H = H self.B = 0 if B is None else B self.Q = np.eye(self.n) if Q is None else Q self.R = np.eye(self.n) if R is None else R self.P = np.eye(self.n) if P is None else P self.x = np.zeros((self.n, 1)) if x0 is None else x0 def predict(self, u = 0): self.x = np.dot(self.F, self.x) + np.dot(self.B, u) self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q return self.x def update(self, z): y = z - np.dot(self.H, self.x) #das gemessne x aus der Matrix S = self.R + np.dot(self.H, np.dot(self.P, self.H.T)) K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S)) self.x = self.x + np.dot(K, y) I = np.eye(self.n) self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T) def kalman_pixy(kf,measure): kf.predict() kf.update(measure) P = kf.x[0] #Position V = kf.x[1] #Velocity a = kf.x[2] #acceleration return P, V ''' def pixy_start(): print("Pixy2 Python SWIG Example -- Get Blocks") pixy.init () pixy.change_prog ("color_connected_components"); def get_pixy(): count = pixy.ccc_get_blocks (100, blocks) if count > 0: # print('frame %3d:' % (frame)) # frame = frame + 1 for index in range (0, count): #Anpassung des Pixy-Koordinatensystems an das Roboterkoordinatensystem print("X_raw|Y_raw) ",blocks[index].m_y,blocks[index].m_x) X_ball = 103.5 - (blocks[index].m_y) # - 103.5) #*(-1) #Y_pixy_max / 2 Y_ball = (blocks[index].m_x - 157.5) #*(-1) #X_pixy_max / 2 print('(X|Y)= ',X_ball,'|',Y_ball) return X_ball,Y_ball ''' # pixy-cam position from midpoint robot in relation to tilt angle alpha def cam_position(alpha, h, s, r): return (ma.sin(alpha)*r) + h, (ma.cos(alpha)*r) + s def image_position(Z_cam, X_cam, gamma, delta_X, delta_Y): global Xmin_image_cam #X_offset_image_cam global X_offset_image_cam Xmax_image_cam = Z_cam / ma.tan(gamma - (delta_X / 2)) Xmin_image_cam = Z_cam / ma.tan(gamma + (delta_X / 2)) #cam_offset in image on X axle: X_offset_image_cam = (Xmax_image_cam + Xmin_image_cam)/2 print("Xmax, Xmin: ", Xmax_image_cam, Xmin_image_cam) Ymax_image_cam = Xmax_image_cam / ma.tan(delta_Y / 2) Ymin_image_cam = Xmin_image_cam / ma.tan(delta_Y / 2) return Xmax_image_cam - Xmin_image_cam, Ymax_image_cam - Ymin_image_cam #configuration of pixy-cam results before working def cam_config(): Z_cam_pos, X_cam_pos = cam_position(ang_cam_tilt, h_cam_offset, s_cam_offset, r_cam_rot) x, y = image_position(Z_cam_pos, X_cam_pos, ang_rev_cam_tilt, ang_cam_flare_X, ang_cam_flare_Y) print("Cam Pos ", Z_cam_pos, X_cam_pos) print("Img Pos ", x, y) return (x / delta_X_pixy), (y / delta_Y_pixy) #process new data from pixy-cam def cam_process(raw_data): x,y = raw_data #print("Xmin: ", Xmin_image_cam) ang_ball = ang_ball_ratio * x #X_value = X gemessen + kleinstmöglicher X gemessen Wert + cam vor midpoint robot + bild des balls offset zum midpoint ball return (x * X_factor_cam) + X_offset_image_cam + s_cam_offset + (r_ball * ma.cos(ang_ball)), (y * Y_factor_cam) def offset_start(init_data): init_data = [] print("offset calc start...") for count in range (0,200): init_data.append(cam_process(test_data)) offset = np.array(init_data) return np.median(offset, axis=0) 'MAIN' #Config Parameter #pixy_start() X_factor_cam, Y_factor_cam = cam_config() offset_pixy = offset_start(test_data) print("offset_pixy: ", offset_pixy) kf_pixy = KalmanFilter(F = F, H = H, Q = Q, R = R) #kf_pixy = KalmanFilter(F = F, B =offset_pixy, H = H, Q = Q, R = R) #Execute: 'DEBUG OUTPUT' print("Factors: ",X_factor_cam, Y_factor_cam) #print("Filtered Data: ", X_ball_filtered, Y_ball_filtered) #print(math.tan(math.radians(45))) Position_Error_X = [] Position_Error_Y = [] for i in range (0,6): #range(start,end,step) #X_ball_ego, Y_ball_ego = cam_process(test_data) #get_pixy()) P_ball_ego = cam_process(test_data) # get_pixy()) print("Länge in mm:", X_ball_ego, Y_ball_ego) P_ball_filtered, V_ball_filtered = kalman_pixy(kf_pixy, cam_process(test_data)) print("Filtered: ", P_ball_filtered, V_ball_filtered) ''' P_X, P_Y = P_ball_filtered X_error = P_X - X_ball_ego Y_error = P_Y - Y_ball_ego print("Error: X: ", X_error,"Y: ", Y_error) Filter_Error_X.append(X_error) Filter_Error_Y.append(Y_error) ''' #alternative #absolute #Filter_Error_Y.append(P_ball_filtered[1] - P_ball_ego[1]) #Filter_Error_X.append(P_ball_filtered[0] - P_ball_ego[0]) #relative in percent Position_Error_X.append(100 -(100 / P_ball_filtered[0] * P_ball_ego[0])) Position_Error_Y.append(100- (100 / P_ball_filtered[1] * P_ball_ego[1])) print("Error: X: ", Position_Error_X[-1], "Y: ",Position_Error_Y[-1] ) import matplotlib.pyplot as plt plt.plot(range(len(Position_Error_X)), np.array(Position_Error_X), label = 'Position Error X') plt.plot(range(len(Position_Error_Y)), np.array(Position_Error_Y), label = 'Position Error Y') plt.legend() plt.show()
[ "numpy.eye", "numpy.median", "math.tan", "math.radians", "math.cos", "numpy.array", "numpy.zeros", "numpy.dot", "numpy.linalg.inv", "math.sin", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((368, 382), 'math.radians', 'ma.radians', (['(33)'], {}), '(33)\n', (378, 382), True, 'import math as ma\n'), ((449, 463), 'math.radians', 'ma.radians', (['(47)'], {}), '(47)\n', (459, 463), True, 'import math as ma\n'), ((507, 521), 'math.radians', 'ma.radians', (['(75)'], {}), '(75)\n', (517, 521), True, 'import math as ma\n'), ((536, 550), 'math.radians', 'ma.radians', (['(47)'], {}), '(47)\n', (546, 550), True, 'import math as ma\n'), ((690, 704), 'math.radians', 'ma.radians', (['(30)'], {}), '(30)\n', (700, 704), True, 'import math as ma\n'), ((1316, 1361), 'numpy.array', 'np.array', (['[[1, dt, 0], [0, 1, dt], [0, 0, 1]]'], {}), '([[1, dt, 0], [0, 1, dt], [0, 0, 1]])\n', (1324, 1361), True, 'import numpy as np\n'), ((1574, 1617), 'numpy.array', 'np.array', (['[[q, q, 0], [q, q, 0], [0, 0, 0]]'], {}), '([[q, q, 0], [q, q, 0], [0, 0, 0]])\n', (1582, 1617), True, 'import numpy as np\n'), ((7493, 7505), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7503, 7505), True, 'import matplotlib.pyplot as plt\n'), ((7506, 7516), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7514, 7516), True, 'import matplotlib.pyplot as plt\n'), ((403, 417), 'math.radians', 'ma.radians', (['(90)'], {}), '(90)\n', (413, 417), True, 'import math as ma\n'), ((5728, 5747), 'numpy.array', 'np.array', (['init_data'], {}), '(init_data)\n', (5736, 5747), True, 'import numpy as np\n'), ((5759, 5784), 'numpy.median', 'np.median', (['offset'], {'axis': '(0)'}), '(offset, axis=0)\n', (5768, 5784), True, 'import numpy as np\n'), ((7342, 7368), 'numpy.array', 'np.array', (['Position_Error_X'], {}), '(Position_Error_X)\n', (7350, 7368), True, 'import numpy as np\n'), ((7437, 7463), 'numpy.array', 'np.array', (['Position_Error_Y'], {}), '(Position_Error_Y)\n', (7445, 7463), True, 'import numpy as np\n'), ((1393, 1412), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (1401, 1412), True, 'import numpy as np\n'), ((1622, 1638), 'numpy.array', 'np.array', (['[0.05]'], {}), '([0.05])\n', (1630, 1638), True, 'import numpy as np\n'), ((3019, 3033), 'numpy.eye', 'np.eye', (['self.n'], {}), '(self.n)\n', (3025, 3033), True, 'import numpy as np\n'), ((4332, 4359), 'math.tan', 'ma.tan', (['(gamma - delta_X / 2)'], {}), '(gamma - delta_X / 2)\n', (4338, 4359), True, 'import math as ma\n'), ((4391, 4418), 'math.tan', 'ma.tan', (['(gamma + delta_X / 2)'], {}), '(gamma + delta_X / 2)\n', (4397, 4418), True, 'import math as ma\n'), ((4616, 4635), 'math.tan', 'ma.tan', (['(delta_Y / 2)'], {}), '(delta_Y / 2)\n', (4622, 4635), True, 'import math as ma\n'), ((4674, 4693), 'math.tan', 'ma.tan', (['(delta_Y / 2)'], {}), '(delta_Y / 2)\n', (4680, 4693), True, 'import math as ma\n'), ((2367, 2381), 'numpy.eye', 'np.eye', (['self.n'], {}), '(self.n)\n', (2373, 2381), True, 'import numpy as np\n'), ((2419, 2433), 'numpy.eye', 'np.eye', (['self.n'], {}), '(self.n)\n', (2425, 2433), True, 'import numpy as np\n'), ((2471, 2485), 'numpy.eye', 'np.eye', (['self.n'], {}), '(self.n)\n', (2477, 2485), True, 'import numpy as np\n'), ((2523, 2544), 'numpy.zeros', 'np.zeros', (['(self.n, 1)'], {}), '((self.n, 1))\n', (2531, 2544), True, 'import numpy as np\n'), ((2615, 2637), 'numpy.dot', 'np.dot', (['self.F', 'self.x'], {}), '(self.F, self.x)\n', (2621, 2637), True, 'import numpy as np\n'), ((2640, 2657), 'numpy.dot', 'np.dot', (['self.B', 'u'], {}), '(self.B, u)\n', (2646, 2657), True, 'import numpy as np\n'), ((2789, 2811), 'numpy.dot', 'np.dot', (['self.H', 'self.x'], {}), '(self.H, self.x)\n', (2795, 2811), True, 'import numpy as np\n'), ((2924, 2948), 'numpy.dot', 'np.dot', (['self.P', 'self.H.T'], {}), '(self.P, self.H.T)\n', (2930, 2948), True, 'import numpy as np\n'), ((2950, 2966), 'numpy.linalg.inv', 'np.linalg.inv', (['S'], {}), '(S)\n', (2963, 2966), True, 'import numpy as np\n'), ((2994, 3006), 'numpy.dot', 'np.dot', (['K', 'y'], {}), '(K, y)\n', (3000, 3006), True, 'import numpy as np\n'), ((2682, 2704), 'numpy.dot', 'np.dot', (['self.F', 'self.P'], {}), '(self.F, self.P)\n', (2688, 2704), True, 'import numpy as np\n'), ((2879, 2903), 'numpy.dot', 'np.dot', (['self.P', 'self.H.T'], {}), '(self.P, self.H.T)\n', (2885, 2903), True, 'import numpy as np\n'), ((3143, 3160), 'numpy.dot', 'np.dot', (['K', 'self.R'], {}), '(K, self.R)\n', (3149, 3160), True, 'import numpy as np\n'), ((4123, 4136), 'math.sin', 'ma.sin', (['alpha'], {}), '(alpha)\n', (4129, 4136), True, 'import math as ma\n'), ((4146, 4159), 'math.cos', 'ma.cos', (['alpha'], {}), '(alpha)\n', (4152, 4159), True, 'import math as ma\n'), ((5512, 5528), 'math.cos', 'ma.cos', (['ang_ball'], {}), '(ang_ball)\n', (5518, 5528), True, 'import math as ma\n'), ((3069, 3086), 'numpy.dot', 'np.dot', (['K', 'self.H'], {}), '(K, self.H)\n', (3075, 3086), True, 'import numpy as np\n'), ((3112, 3129), 'numpy.dot', 'np.dot', (['K', 'self.H'], {}), '(K, self.H)\n', (3118, 3129), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Image conversion functionality for trivector""" from enum import Enum import numpy as np import svgwrite import cv2 import progressbar def upper_tri_sum(d3array: np.ndarray) -> np.ndarray: """Get a 3D image array's upper diagonal's pixel color average :param d3array: 3D image array derived from :func:`cv2.imread` Treat the 3D array as 2d array. Having the innermost array (pixel BGR values) be considered base values to be averaged. :return: BGR array of the average color of the upper diagonal of the 3D image array """ x, y, _ = d3array.shape tri = [] for i in range(x): if i > y: break for j in range(y - i): tri.append(d3array[i][i + j]) return np.sum(tri, axis=0) // len(tri) def lower_tri_sum(d3array: np.ndarray) -> np.ndarray: """Get a 3D image array's lower diagonal's pixel color average :param d3array: 3D image array derived from :func:`cv2.imread` Treat the 3D array as 2d array. Having the innermost array (pixel BGR values) be considered base values to be averaged. .. note:: If the lower diagonal cannot be computed (eg: flat/malformed 3D array) use the 3D image array's upper diagonal's pixel color average instead. :return: BGR array of the average color of the lower diagonal of the 3D image array """ x, y, _ = d3array.shape tri = [] for i in range(x): if i > y: break for j in range(i): tri.append(d3array[i][j]) # if bottom tri is empty use the upper tri's sum if not tri: return upper_tri_sum(d3array) return np.sum(tri, axis=0) // len(tri) def vectorize_sector_left(sub_img: np.ndarray, svg_drawing: svgwrite.Drawing, x: int, y: int, cut_size: int): """Add two triangles to ``svg_drawing`` whose colors are derived from the color averages from the top and bottom diagonals of the 3D BGR image array of the sub image""" b, g, r = upper_tri_sum(sub_img) svg_drawing.add( svg_drawing.polygon( [(x, y), (x + cut_size, y), (x + cut_size, y + cut_size)], fill=svgwrite.rgb(r, g, b, "RGB") ) ) b, g, r = lower_tri_sum(sub_img) svg_drawing.add( svg_drawing.polygon( [(x, y), (x, y + cut_size), (x + cut_size, y + cut_size)], fill=svgwrite.rgb(r, g, b, "RGB") ) ) def vectorize_sector_right(sub_img: np.ndarray, svg_drawing: svgwrite.Drawing, x: int, y: int, cut_size: int): """Add two triangles to ``svg_drawing`` whose colors are derived from the color averages from the top and bottom diagonals of the 3D BGR image array of the sub image""" b, g, r = upper_tri_sum(sub_img) svg_drawing.add( svg_drawing.polygon( [(x, y + cut_size), (x + cut_size, y + cut_size), (x + cut_size, y)], fill=svgwrite.rgb(r, g, b, "RGB") ) ) b, g, r = lower_tri_sum(sub_img) svg_drawing.add( svg_drawing.polygon( [(x, y + cut_size), (x, y), (x + cut_size, y)], fill=svgwrite.rgb(r, g, b, "RGB") ) ) class DiagonalStyle(Enum): """Styling options noting the diagonal arrangement of the triangle sectors""" right = "right" left = "left" alternating = "alternating" def __str__(self): return self.value def trivector(image_path: str, cut_size: int, output_path: str, diagonal_style: DiagonalStyle = DiagonalStyle.alternating): """Convert an image into a SVG vector image composed of triangular sectors :param image_path: path to the image to trivector :param cut_size: size in pixels for each triangle sector :param diagonal_style: diagonal arrangement of the triangle sectors :param output_path: path to write the trivectored image """ image = cv2.imread(image_path) # pylint:disable=no-member height, width, _ = image.shape width_slices = range(0, width, cut_size) height_slices = range(0, height, cut_size) svg_drawing = svgwrite.Drawing( output_path, profile="full", size=(len(width_slices)*cut_size, len(height_slices)*cut_size) ) # start up the progress bar # each image sector is one tick one the progress bar bar = progressbar.ProgressBar(max_value=len(width_slices)*len(height_slices)) counter_2 = 0 sector_num = 0 for y in height_slices: counter_1 = counter_2 counter_2 += 1 for x in width_slices: sector_image = image[y:y + cut_size, x:x + cut_size] if (diagonal_style == DiagonalStyle.left) or \ (diagonal_style == DiagonalStyle.alternating and counter_1 % 2): vectorize_sector_left(sector_image, svg_drawing, x, y, cut_size) else: sector_image = np.rot90(sector_image, axes=(0, 1)) vectorize_sector_right(sector_image, svg_drawing, x, y, cut_size) sector_num += 1 counter_1 += 1 bar.update(sector_num) svg_drawing.save()
[ "numpy.sum", "cv2.imread", "svgwrite.rgb", "numpy.rot90" ]
[((3986, 4008), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (3996, 4008), False, 'import cv2\n'), ((797, 816), 'numpy.sum', 'np.sum', (['tri'], {'axis': '(0)'}), '(tri, axis=0)\n', (803, 816), True, 'import numpy as np\n'), ((1712, 1731), 'numpy.sum', 'np.sum', (['tri'], {'axis': '(0)'}), '(tri, axis=0)\n', (1718, 1731), True, 'import numpy as np\n'), ((2238, 2266), 'svgwrite.rgb', 'svgwrite.rgb', (['r', 'g', 'b', '"""RGB"""'], {}), "(r, g, b, 'RGB')\n", (2250, 2266), False, 'import svgwrite\n'), ((2458, 2486), 'svgwrite.rgb', 'svgwrite.rgb', (['r', 'g', 'b', '"""RGB"""'], {}), "(r, g, b, 'RGB')\n", (2470, 2486), False, 'import svgwrite\n'), ((3010, 3038), 'svgwrite.rgb', 'svgwrite.rgb', (['r', 'g', 'b', '"""RGB"""'], {}), "(r, g, b, 'RGB')\n", (3022, 3038), False, 'import svgwrite\n'), ((3219, 3247), 'svgwrite.rgb', 'svgwrite.rgb', (['r', 'g', 'b', '"""RGB"""'], {}), "(r, g, b, 'RGB')\n", (3231, 3247), False, 'import svgwrite\n'), ((4984, 5019), 'numpy.rot90', 'np.rot90', (['sector_image'], {'axes': '(0, 1)'}), '(sector_image, axes=(0, 1))\n', (4992, 5019), True, 'import numpy as np\n')]
from __future__ import absolute_import, division, print_function import math import os import sys import h5py import numpy as np from cctbx import factor_ev_angstrom from cctbx.eltbx import attenuation_coefficient from scitbx import matrix from scitbx.array_family import flex from dxtbx.format.FormatHDF5 import FormatHDF5 from dxtbx.format.FormatStill import FormatStill from dxtbx.model import ParallaxCorrectedPxMmStrategy from dxtbx.model.detector import Detector # 151028: deepcopying this class causes crash in h5py # temporary fix by closing the file in every methods(!) # 161003: updated to follow dxtbx changes # removed iotbx support, which was incomplete anyway # 161005: get wavelength from the file # 170929: read metadata for phase III and compact MPCCDs # 171003: fix mask # 180724: update 'understand' to exclude Rayonix data class FormatHDF5SaclaMPCCD(FormatHDF5, FormatStill): """ Class to handle multi-event HDF5 files from MPCCD preprocessed by Cheetah SFX pipeline at SACLA. To handle reassembled images from "DataConvert3 -reconst" (old pipeline), use FormatHDF5Sacla. To override metrology, use the following environmental variables. MPCCD_GEOMETRY, MPCCD_DISTANCE MPCCD_RECONST_MODE You can also specify reference_geometry in dials.stills_process. """ @staticmethod def understand(image_file): with h5py.File(image_file, "r") as h5_handle: if "metadata/detector" in h5_handle: if "Rayonix" in h5_handle["metadata/detector"][()]: return False for elem in h5_handle: if elem.startswith("tag-"): return True return False def __init__(self, image_file, index=0, reconst_mode=False, **kwargs): self._raw_data = None self.index = index self.image_filename = image_file super(FormatHDF5SaclaMPCCD, self).__init__(image_file, **kwargs) self.PIXEL_SIZE = 50 / 1000 # 50 um self.RECONST_SIZE = 2398 # compatible with DataConvert3 -reconst mode # These hard-coded values can be overwritten # by MPCCD_GEOMETRY and MPCCD_DISTANCE # # These values can be retrieved from SACLA API. # Alternatively, you can get it from a CrystFEL geometry file by # awk '/corner_x/{x=50*$3} /corner_y/{y=50*$3; printf x","y","rot","} # /\/ss/{rot=-atan2($3, $4)/3.141592*180}' input.geom # Default value for Phase I MPCCD self.distance = 50.0 # mm self.panel_origins = [ (-1755.000000, 51711.000000, 0.000000), (-1711.000000, 24944.000000, 0.000000), (817.000000, -1808.000000, 0.000000), (812.000000, -28466.000000, 0.000000), (-792.000000, 28544.000000, 0.000000), (-781.000000, 1840.000000, 0.000000), (1650.000000, -24900.000000, 0.000000), (1655.000000, -51626.000000, 0.000000), ] # um self.panel_rotations = [ -89.906197, -89.915802, -89.980003, -89.929298, 89.963097, 89.880798, 90.000000, 90.029503, ] self.thickness = 0.050 self.mask = None # Read metadata if possible self.read_metadata() # Override by environmental variables if "MPCCD_RECONST_MODE" in os.environ: reconst_mode = bool(os.environ["MPCCD_RECONST_MODE"]) self.RECONST_MODE = reconst_mode self.RECONST_64 = ( True # Set False if you want to keep panels completely horizontal ) # But this makes errors bigger. if "MPCCD_GEOMETRY" in os.environ: try: tmp = [float(i) for i in os.environ["MPCCD_GEOMETRY"].split(",")] if len(tmp) != 24: raise EnvironmentError( "Environment variable MPCCD_GEOMETRY must contain 24 comma-separated parts" ) for i in range(8): self.panel_origins[i] = (-tmp[i * 3], tmp[i * 3 + 1], 0) self.panel_rotations[i] = tmp[i * 3 + 2] except Exception as e: raise EnvironmentError( "Invalid MPCCD Geometry specified in environment variable MPCCD_GEOMETRY: {}".format( e ) ) if "MPCCD_DISTANCE" in os.environ: self.distance = float(os.environ["MPCCD_DISTANCE"]) def _start(self): h5_handle = h5py.File(self.image_filename, "r") self._images = sorted([tag for tag in h5_handle if tag.startswith("tag-")]) self.tag = self._images[self.index] h5_handle.close() def read_metadata(self): h5_handle = h5py.File(self.image_filename, "r") if "metadata" not in h5_handle: return try: distance = h5_handle["metadata/distance_in_mm"][()] panel_rotations = h5_handle["metadata/angle_in_rad"][()] posx = h5_handle["metadata/posx_in_um"][()] posy = h5_handle["metadata/posy_in_um"][()] posz = h5_handle["metadata/posz_in_um"][()] panel_origins = list(zip(posx, posy, posz)) sensor = h5_handle["metadata/sensor_id"][0] thickness = 0.050 if sensor.startswith(b"MPCCD-8B"): thickness = 0.300 # Phase 3 sensor orig_mask = np.logical_not(h5_handle["metadata/pixelmask"][()]) mask = self.split_panels(orig_mask, bool=True) except Exception: return self.distance = distance self.panel_rotations = panel_rotations self.panel_origins = panel_origins self.thickness = thickness self.mask = mask def get_image_file(self, index=None): return self.image_filename def set_index(self, index): assert index < len(self._images) self.index = index self.tag = self._images[self.index] self._raw_data = None def _detector(self, index=None): wavelength = self.get_beam(index).get_wavelength() table = attenuation_coefficient.get_table("Si") mu = table.mu_at_angstrom(wavelength) / 10.0 px_mm = ParallaxCorrectedPxMmStrategy(mu, self.thickness) if self.RECONST_MODE: return self._detector_factory.simple( sensor="PAD", distance=self.distance, beam_centre=( self.RECONST_SIZE / 2 * self.PIXEL_SIZE, self.RECONST_SIZE / 2 * self.PIXEL_SIZE, ), fast_direction="-x", slow_direction="-y", pixel_size=(self.PIXEL_SIZE, self.PIXEL_SIZE), image_size=(self.RECONST_SIZE, self.RECONST_SIZE), trusted_range=(-1, 65535), mask=[], ) # TODO: add gaps detector = Detector() root = detector.hierarchy() root.set_frame((-1, 0, 0), (0, 1, 0), (0, 0, -self.distance)) for i in range(8): angle = math.pi * self.panel_rotations[i] / 180.0 fast = matrix.col((math.cos(angle), math.sin(angle), 0)) slow = matrix.col((-math.sin(angle), math.cos(angle), 0)) origin = ( matrix.col( ( -self.panel_origins[i][0], self.panel_origins[i][1], self.panel_origins[i][2], ) ) / 1000.0 ) p = root.add_panel() p.set_type("SENSOR_PAD") p.set_name("Panel%d" % i) p.set_image_size((512, 1024)) p.set_trusted_range((-1, 65535)) p.set_pixel_size((self.PIXEL_SIZE, self.PIXEL_SIZE)) p.set_thickness(self.thickness) p.set_local_frame(fast.elems, slow.elems, origin.elems) p.set_px_mm_strategy(px_mm) p.set_gain(10) return detector def _beam(self): h5_handle = h5py.File(self.image_filename, "r") eV = h5_handle[self.tag]["photon_energy_ev"][()] h5_handle.close() return self._beam_factory.simple(factor_ev_angstrom / eV) def get_num_images(self): return len(self._images) def split_panels(self, img, bool=False): tmp = [] for i in range(8): xmin, ymin, xmax, ymax = 0, i * 1024, 512, (i + 1) * 1024 # To avoid "numpy.ndarray instance is not contiguous" if bool: source = np.ascontiguousarray(img[ymin:ymax, xmin:xmax]) tmp.append(flex.bool(source)) else: source = np.ascontiguousarray(img[ymin:ymax, xmin:xmax], dtype=np.int32) tmp.append(flex.int(source)) return tuple(tmp) def get_raw_data(self, index=None): if index is not None and self.index != index: self.set_index(index) if self._raw_data is None: if self.RECONST_MODE: self._raw_data = flex.int(self.reconst_image()) else: h5_handle = h5py.File(self.image_filename, "r") data = h5_handle[self.tag]["data"][()] # .astype(np.int32) # [()] forces conversion to ndarray # this is 8192x512 (slow/fast) tiled image h5_handle.close() self._raw_data = self.split_panels(data) return self._raw_data def get_active_areas(self): assert self.RECONST_MODE return self.active_areas def reconst_image(self): det = np.empty((self.RECONST_SIZE, self.RECONST_SIZE), dtype="int32") det.fill(-1) h5_handle = h5py.File(self.image_filename, "r") data = h5_handle[self.tag]["data"][()].astype(np.int32) h5_handle.close() self.active_areas = [] for i in range(8): angle = math.pi * self.panel_rotations[i] / 180.0 fast = matrix.col((math.cos(angle), math.sin(angle))) slow = matrix.col((-math.sin(angle), math.cos(angle))) origin = matrix.col( ( -self.panel_origins[i][0] / self.PIXEL_SIZE / 1000 + self.RECONST_SIZE / 2, -self.panel_origins[i][1] / self.PIXEL_SIZE / 1000 + self.RECONST_SIZE / 2, ) ) if self.RECONST_64: size_fast = 256 size_slow = 256 for j in range(2): for k in range(4): xmin, ymin, xmax, ymax = ( j * size_slow, (i * 4 + k) * size_fast, (j + 1) * size_slow, (i * 4 + k + 1) * size_fast, ) source = data[ymin:ymax, xmin:xmax].transpose() subpanel_origin = ( origin - j * size_fast * fast + k * size_slow * slow ) if abs(round(self.panel_rotations[i]) + 90) < 1: det[ int(round(subpanel_origin[1])) : int( round(subpanel_origin[1] + size_slow) ), int(round(subpanel_origin[0])) : int( round(subpanel_origin[0] + size_fast) ), ] = source # TODO: Is the border inclusive? self.active_areas.extend( [ round(subpanel_origin[1]), round(subpanel_origin[0]), round(subpanel_origin[1] + size_slow), round(subpanel_origin[0] + size_fast), ] ) elif abs(round(self.panel_rotations[i]) - 90) < 1: det[ int(round(subpanel_origin[1])) : int( round(subpanel_origin[1] - size_slow) ) : -1, int(round(subpanel_origin[0])) : int( round(subpanel_origin[0] - size_fast) ) : -1, ] = source self.active_areas.extend( [ round(subpanel_origin[1] - size_slow), round(subpanel_origin[0] - size_fast), round(subpanel_origin[1]), round(subpanel_origin[0]), ] ) else: raise RuntimeError( "Panel angle deviation is too large! Do not use reconst mode!" ) else: size_fast = 1024 size_slow = 512 xmin, ymin, xmax, ymax = ( 0, i * size_fast, size_slow, (i + 1) * size_fast, ) source = data[ymin:ymax, xmin:xmax].transpose() if abs(round(self.panel_rotations[i]) + 90) < 1: det[ round(origin[1]) : round(origin[1] + size_slow), round(origin[0]) : round(origin[0] + size_fast), ] = source elif abs(round(self.panel_rotations[i]) - 90) < 1: det[ round(origin[1]) : round(origin[1] - size_slow) : -1, round(origin[0]) : round(origin[0] - size_fast) : -1, ] = source else: raise RuntimeError( "Panel angle deviation is too large! Do not use reconst mode!" ) self.active_areas = [int(aa) for aa in self.active_areas] return det def get_detector(self, index=None): if self._detector_instance is None: self._detector_instance = self._detector() return self._detector_instance def get_static_mask(self): # This means when the pixel mask is present, trusted region is ignored. # The used provided masks (if any) will be automatically merged. # see https://github.com/dials/dials/issues/236 return self.mask def get_beam(self, index=None): if index is not None and self.index != index: self.set_index(index) self._beam_instance = None if self._beam_instance is None: self._beam_instance = self._beam() return self._beam_instance if __name__ == "__main__": print(FormatHDF5SaclaMPCCD.understand(sys.argv[1])) FormatHDF5SaclaMPCCD(sys.argv[1])
[ "cctbx.eltbx.attenuation_coefficient.get_table", "scitbx.array_family.flex.bool", "numpy.logical_not", "scitbx.array_family.flex.int", "dxtbx.model.ParallaxCorrectedPxMmStrategy", "h5py.File", "numpy.ascontiguousarray", "math.cos", "scitbx.matrix.col", "numpy.empty", "dxtbx.model.detector.Detector", "math.sin" ]
[((4656, 4691), 'h5py.File', 'h5py.File', (['self.image_filename', '"""r"""'], {}), "(self.image_filename, 'r')\n", (4665, 4691), False, 'import h5py\n'), ((4897, 4932), 'h5py.File', 'h5py.File', (['self.image_filename', '"""r"""'], {}), "(self.image_filename, 'r')\n", (4906, 4932), False, 'import h5py\n'), ((6279, 6318), 'cctbx.eltbx.attenuation_coefficient.get_table', 'attenuation_coefficient.get_table', (['"""Si"""'], {}), "('Si')\n", (6312, 6318), False, 'from cctbx.eltbx import attenuation_coefficient\n'), ((6388, 6437), 'dxtbx.model.ParallaxCorrectedPxMmStrategy', 'ParallaxCorrectedPxMmStrategy', (['mu', 'self.thickness'], {}), '(mu, self.thickness)\n', (6417, 6437), False, 'from dxtbx.model import ParallaxCorrectedPxMmStrategy\n'), ((7084, 7094), 'dxtbx.model.detector.Detector', 'Detector', ([], {}), '()\n', (7092, 7094), False, 'from dxtbx.model.detector import Detector\n'), ((8240, 8275), 'h5py.File', 'h5py.File', (['self.image_filename', '"""r"""'], {}), "(self.image_filename, 'r')\n", (8249, 8275), False, 'import h5py\n'), ((9838, 9901), 'numpy.empty', 'np.empty', (['(self.RECONST_SIZE, self.RECONST_SIZE)'], {'dtype': '"""int32"""'}), "((self.RECONST_SIZE, self.RECONST_SIZE), dtype='int32')\n", (9846, 9901), True, 'import numpy as np\n'), ((9944, 9979), 'h5py.File', 'h5py.File', (['self.image_filename', '"""r"""'], {}), "(self.image_filename, 'r')\n", (9953, 9979), False, 'import h5py\n'), ((1411, 1437), 'h5py.File', 'h5py.File', (['image_file', '"""r"""'], {}), "(image_file, 'r')\n", (1420, 1437), False, 'import h5py\n'), ((5572, 5623), 'numpy.logical_not', 'np.logical_not', (["h5_handle['metadata/pixelmask'][()]"], {}), "(h5_handle['metadata/pixelmask'][()])\n", (5586, 5623), True, 'import numpy as np\n'), ((10346, 10520), 'scitbx.matrix.col', 'matrix.col', (['(-self.panel_origins[i][0] / self.PIXEL_SIZE / 1000 + self.RECONST_SIZE / 2,\n -self.panel_origins[i][1] / self.PIXEL_SIZE / 1000 + self.RECONST_SIZE / 2)'], {}), '((-self.panel_origins[i][0] / self.PIXEL_SIZE / 1000 + self.\n RECONST_SIZE / 2, -self.panel_origins[i][1] / self.PIXEL_SIZE / 1000 + \n self.RECONST_SIZE / 2))\n', (10356, 10520), False, 'from scitbx import matrix\n'), ((7470, 7566), 'scitbx.matrix.col', 'matrix.col', (['(-self.panel_origins[i][0], self.panel_origins[i][1], self.panel_origins[i][2])'], {}), '((-self.panel_origins[i][0], self.panel_origins[i][1], self.\n panel_origins[i][2]))\n', (7480, 7566), False, 'from scitbx import matrix\n'), ((8763, 8810), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img[ymin:ymax, xmin:xmax]'], {}), '(img[ymin:ymax, xmin:xmax])\n', (8783, 8810), True, 'import numpy as np\n'), ((8900, 8963), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['img[ymin:ymax, xmin:xmax]'], {'dtype': 'np.int32'}), '(img[ymin:ymax, xmin:xmax], dtype=np.int32)\n', (8920, 8963), True, 'import numpy as np\n'), ((9347, 9382), 'h5py.File', 'h5py.File', (['self.image_filename', '"""r"""'], {}), "(self.image_filename, 'r')\n", (9356, 9382), False, 'import h5py\n'), ((7322, 7337), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (7330, 7337), False, 'import math\n'), ((7339, 7354), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (7347, 7354), False, 'import math\n'), ((7409, 7424), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (7417, 7424), False, 'import math\n'), ((8838, 8855), 'scitbx.array_family.flex.bool', 'flex.bool', (['source'], {}), '(source)\n', (8847, 8855), False, 'from scitbx.array_family import flex\n'), ((8991, 9007), 'scitbx.array_family.flex.int', 'flex.int', (['source'], {}), '(source)\n', (8999, 9007), False, 'from scitbx.array_family import flex\n'), ((10223, 10238), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (10231, 10238), False, 'import math\n'), ((10240, 10255), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (10248, 10255), False, 'import math\n'), ((10307, 10322), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (10315, 10322), False, 'import math\n'), ((7392, 7407), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (7400, 7407), False, 'import math\n'), ((10290, 10305), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (10298, 10305), False, 'import math\n')]
import numpy as np import numba as nb import matplotlib.pyplot as plt from scipy import interpolate class Similarity(object): """ Class to compute the similarity between two diffraction patterns """ def __init__(self, f, g, N = None, x_range = None, l = 2.0, weight = 'cosine'): """ Args: f: spectra1 (2D array) g: spectra2 (2D array) N: number of sampling points for the processed spectra x_range: the range of x values used to compute similarity ([x_min, x_max]) l: cutoff value for shift (real) weight: weight function 'triangle' or 'cosine' (str) """ self.fx, self.fy = f[0], f[1] self.gx, self.gy = g[0], g[1] self.x_range = x_range self.l = abs(l) res1 = (self.fx[-1] - self.fx[0])/len(self.fx) res2 = (self.gx[-1] - self.gx[0])/len(self.gx) self.resolution = min([res1, res2])/3 # improve the resolution if N is None: self.N = int(2*self.l/self.resolution) else: self.N = N self.r = np.linspace(-self.l, self.l, self.N) self.preprocess() self.weight = weight if self.weight == 'triangle': self.triangleFunction() elif self.weight == 'cosine': self.cosineFunction() else: msg = function + 'is not supported' raise NotImplementedError(msg) def calculate(self): self.S = self._calculate(self.r,self.w,self.d,self.Npts,self.fy,self.gy) return self.S @staticmethod @nb.njit(nb.f8(nb.f8[:], nb.f8[:], nb.f8, nb.i8, nb.f8[:], nb.f8[:]), nopython=True) def _calculate(r,w,d,Npts,fy,gy): """ Compute the similarity between the pair of spectra f, g with an approximated Simpson rule """ xCorrfg_w = 0 aCorrff_w = 0 aCorrgg_w = 0 count0 = 0 count = 0 for r0, w0 in zip(r, w): Corrfg, Corrff, Corrgg = 0, 0, 0 for i in range(Npts): shift = int(round(r0/d)) if 0 <= i + shift <= Npts-1: if count == 0: coef = 1/3 elif count %2 == 1: coef = 4/3 else: coef = 2/3 count += 1 Corrfg += coef*fy[i]*gy[i+shift] Corrff += coef*fy[i]*fy[i+shift] Corrgg += coef*gy[i]*gy[i+shift] if count0 == 0: coef = 1/3 elif count0 %2 == 1: coef = 4/3 else: coef = 2/3 count0 += 1 xCorrfg_w += coef*w0*Corrfg aCorrff_w += coef*w0*Corrff aCorrgg_w += coef*w0*Corrgg return np.abs(xCorrfg_w / np.sqrt(aCorrff_w * aCorrgg_w)) def preprocess(self): """ Preprocess the input spectra f and g """ if self.x_range == None: x_min = max(np.min(self.fx), np.min(self.gx)) x_max = min(np.max(self.fx), np.max(self.gx)) self.x_range = [x_min,x_max] else: x_min, x_max = self.x_range[0], self.x_range[1] f_inter = interpolate.interp1d(self.fx, self.fy, 'cubic', fill_value = 'extrapolate') g_inter = interpolate.interp1d(self.gx, self.gy, 'cubic', fill_value = 'extrapolate') fgx_new = np.linspace(x_min, x_max, int((x_max-x_min)/self.resolution)+1) fy_new = f_inter(fgx_new) gy_new = g_inter(fgx_new) self.fx, self.fy, self.gy = fgx_new, fy_new, gy_new self.Npts = len(self.fx) self.d = (self.fx[-1] - self.fx[0])/self.Npts def triangleFunction(self): """ Triangle function to weight correlations """ w = np.zeros((self.N)) l = self.l for i in range(self.r.shape[0]): r = np.abs(self.r[i]) if r <= l: tf = lambda r,l : 1 - r/l w[i] = tf(r,l) else: w[i] = 0 self.w = w def cosineFunction(self): """ cosine function to weight correlations """ w = np.zeros((self.N)) l = self.l for i in range(self.r.shape[0]): r = np.abs(self.r[i]) if r <= l: tf = lambda r,l : 0.5 * (np.cos(np.pi * r/l) + 1) w[i] = tf(r,l) else: w[i] = 0 self.w = w def showPlot(self): fig1 = plt.figure(1,figsize=(15,6)) frame1=fig1.add_axes((.1,.3,.8,.6)) plt.plot(self.fx,self.fy,label='pxrd') plt.plot(self.gx,-self.gy,label='vesta') plt.legend() #Residual plot residuals = self.gy-self.fy frame2=fig1.add_axes((.1,.1,.8,.2)) plt.plot(self.gx,residuals,'.r', markersize = 0.5) plt.title("{:6f}".format(self.S)) plt.show()
[ "numpy.abs", "numpy.sqrt", "numba.f8", "matplotlib.pyplot.plot", "scipy.interpolate.interp1d", "numpy.max", "numpy.linspace", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.cos", "numpy.min", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((1095, 1131), 'numpy.linspace', 'np.linspace', (['(-self.l)', 'self.l', 'self.N'], {}), '(-self.l, self.l, self.N)\n', (1106, 1131), True, 'import numpy as np\n'), ((1606, 1665), 'numba.f8', 'nb.f8', (['nb.f8[:]', 'nb.f8[:]', 'nb.f8', 'nb.i8', 'nb.f8[:]', 'nb.f8[:]'], {}), '(nb.f8[:], nb.f8[:], nb.f8, nb.i8, nb.f8[:], nb.f8[:])\n', (1611, 1665), True, 'import numba as nb\n'), ((3317, 3390), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['self.fx', 'self.fy', '"""cubic"""'], {'fill_value': '"""extrapolate"""'}), "(self.fx, self.fy, 'cubic', fill_value='extrapolate')\n", (3337, 3390), False, 'from scipy import interpolate\n'), ((3411, 3484), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['self.gx', 'self.gy', '"""cubic"""'], {'fill_value': '"""extrapolate"""'}), "(self.gx, self.gy, 'cubic', fill_value='extrapolate')\n", (3431, 3484), False, 'from scipy import interpolate\n'), ((3922, 3938), 'numpy.zeros', 'np.zeros', (['self.N'], {}), '(self.N)\n', (3930, 3938), True, 'import numpy as np\n'), ((4317, 4333), 'numpy.zeros', 'np.zeros', (['self.N'], {}), '(self.N)\n', (4325, 4333), True, 'import numpy as np\n'), ((4652, 4682), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(15, 6)'}), '(1, figsize=(15, 6))\n', (4662, 4682), True, 'import matplotlib.pyplot as plt\n'), ((4738, 4778), 'matplotlib.pyplot.plot', 'plt.plot', (['self.fx', 'self.fy'], {'label': '"""pxrd"""'}), "(self.fx, self.fy, label='pxrd')\n", (4746, 4778), True, 'import matplotlib.pyplot as plt\n'), ((4785, 4827), 'matplotlib.pyplot.plot', 'plt.plot', (['self.gx', '(-self.gy)'], {'label': '"""vesta"""'}), "(self.gx, -self.gy, label='vesta')\n", (4793, 4827), True, 'import matplotlib.pyplot as plt\n'), ((4834, 4846), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4844, 4846), True, 'import matplotlib.pyplot as plt\n'), ((4966, 5016), 'matplotlib.pyplot.plot', 'plt.plot', (['self.gx', 'residuals', '""".r"""'], {'markersize': '(0.5)'}), "(self.gx, residuals, '.r', markersize=0.5)\n", (4974, 5016), True, 'import matplotlib.pyplot as plt\n'), ((5067, 5077), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5075, 5077), True, 'import matplotlib.pyplot as plt\n'), ((4017, 4034), 'numpy.abs', 'np.abs', (['self.r[i]'], {}), '(self.r[i])\n', (4023, 4034), True, 'import numpy as np\n'), ((4412, 4429), 'numpy.abs', 'np.abs', (['self.r[i]'], {}), '(self.r[i])\n', (4418, 4429), True, 'import numpy as np\n'), ((2904, 2934), 'numpy.sqrt', 'np.sqrt', (['(aCorrff_w * aCorrgg_w)'], {}), '(aCorrff_w * aCorrgg_w)\n', (2911, 2934), True, 'import numpy as np\n'), ((3091, 3106), 'numpy.min', 'np.min', (['self.fx'], {}), '(self.fx)\n', (3097, 3106), True, 'import numpy as np\n'), ((3108, 3123), 'numpy.min', 'np.min', (['self.gx'], {}), '(self.gx)\n', (3114, 3123), True, 'import numpy as np\n'), ((3149, 3164), 'numpy.max', 'np.max', (['self.fx'], {}), '(self.fx)\n', (3155, 3164), True, 'import numpy as np\n'), ((3166, 3181), 'numpy.max', 'np.max', (['self.gx'], {}), '(self.gx)\n', (3172, 3181), True, 'import numpy as np\n'), ((4494, 4515), 'numpy.cos', 'np.cos', (['(np.pi * r / l)'], {}), '(np.pi * r / l)\n', (4500, 4515), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ModelCheckpoint from sklearn.utils import class_weight import math import time import cv2 import itertools import os import shutil import random from tensorflow.keras import backend as K #CaricoCSV training_csv = pd.read_csv('Manually_CSV/training.csv',dtype=str) validation_csv = pd.read_csv('Manually_CSV/validation.csv',dtype=str) print("PREDATAGEN") train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, rotation_range=30,brightness_range=[0.6,1.4], featurewise_center=True ) test_datagen = ImageDataGenerator(rescale=1./255, featurewise_center=True) train_datagen.mean = np.array([0.53990436 , 0.4405486 , 0.39328504], dtype=np.float32).reshape((1,1,3)) test_datagen.mean = np.array([0.53990436 , 0.4405486 , 0.39328504], dtype=np.float32).reshape((1,1,3)) print("PRETRAIN") train_generator= train_datagen.flow_from_dataframe( dataframe=training_csv, directory="Manually_Annotated_Images//", x_col="subDirectory_filePath", y_col="expression", weight_col=None, target_size=(123, 123), color_mode="rgb", class_mode="categorical", batch_size=64, subset=None, interpolation="nearest", validate_filenames=True, classes=["0","1","2","3","4","5","6","7","8","9","10"] ) validation_generator = test_datagen.flow_from_dataframe( dataframe=validation_csv, directory="Manually_Annotated_Images//", x_col="subDirectory_filePath", y_col="expression", weight_col=None, target_size=(123, 123), color_mode="rgb", class_mode="categorical", batch_size=64, subset=None, interpolation="nearest", validate_filenames=True, classes=["0","1","2","3","4","5","6","7","8","9","10"] ) class_weights = class_weight.compute_class_weight('balanced',np.unique(train_generator.classes),train_generator.classes) print(class_weights) weight = {i: class_weights[i] for i in range(11)} model = tf.keras.applications.MobileNetV2( input_shape=(123,123,3), include_top=True, weights=None, input_tensor=None, pooling='max', classes=11, classifier_activation="softmax", ) opt= keras.optimizers.Adam(learning_rate=0.001) model.compile( loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'] ) model.summary() checkpoint = ModelCheckpoint('model.h5', save_best_only=True) STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size STEP_SIZE_VALID=validation_generator.n//validation_generator.batch_size history= model.fit(train_generator, epochs=100, verbose=1, callbacks=[checkpoint], validation_data=validation_generator, shuffle=True, steps_per_epoch=STEP_SIZE_TRAIN, validation_steps=STEP_SIZE_VALID, class_weight=weight )
[ "numpy.unique", "pandas.read_csv", "tensorflow.keras.preprocessing.image.ImageDataGenerator", "tensorflow.keras.optimizers.Adam", "numpy.array", "tensorflow.keras.callbacks.ModelCheckpoint", "tensorflow.keras.applications.MobileNetV2" ]
[((530, 581), 'pandas.read_csv', 'pd.read_csv', (['"""Manually_CSV/training.csv"""'], {'dtype': 'str'}), "('Manually_CSV/training.csv', dtype=str)\n", (541, 581), True, 'import pandas as pd\n'), ((598, 651), 'pandas.read_csv', 'pd.read_csv', (['"""Manually_CSV/validation.csv"""'], {'dtype': 'str'}), "('Manually_CSV/validation.csv', dtype=str)\n", (609, 651), True, 'import pandas as pd\n'), ((687, 824), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)', 'horizontal_flip': '(True)', 'rotation_range': '(30)', 'brightness_range': '[0.6, 1.4]', 'featurewise_center': '(True)'}), '(rescale=1.0 / 255, horizontal_flip=True, rotation_range=\n 30, brightness_range=[0.6, 1.4], featurewise_center=True)\n', (705, 824), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((831, 893), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)', 'featurewise_center': '(True)'}), '(rescale=1.0 / 255, featurewise_center=True)\n', (849, 893), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((2221, 2401), 'tensorflow.keras.applications.MobileNetV2', 'tf.keras.applications.MobileNetV2', ([], {'input_shape': '(123, 123, 3)', 'include_top': '(True)', 'weights': 'None', 'input_tensor': 'None', 'pooling': '"""max"""', 'classes': '(11)', 'classifier_activation': '"""softmax"""'}), "(input_shape=(123, 123, 3), include_top=\n True, weights=None, input_tensor=None, pooling='max', classes=11,\n classifier_activation='softmax')\n", (2254, 2401), True, 'import tensorflow as tf\n'), ((2414, 2456), 'tensorflow.keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (2435, 2456), True, 'import tensorflow.keras as keras\n'), ((2607, 2655), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['"""model.h5"""'], {'save_best_only': '(True)'}), "('model.h5', save_best_only=True)\n", (2622, 2655), False, 'from tensorflow.keras.callbacks import ModelCheckpoint\n'), ((2079, 2113), 'numpy.unique', 'np.unique', (['train_generator.classes'], {}), '(train_generator.classes)\n', (2088, 2113), True, 'import numpy as np\n'), ((913, 976), 'numpy.array', 'np.array', (['[0.53990436, 0.4405486, 0.39328504]'], {'dtype': 'np.float32'}), '([0.53990436, 0.4405486, 0.39328504], dtype=np.float32)\n', (921, 976), True, 'import numpy as np\n'), ((1017, 1080), 'numpy.array', 'np.array', (['[0.53990436, 0.4405486, 0.39328504]'], {'dtype': 'np.float32'}), '([0.53990436, 0.4405486, 0.39328504], dtype=np.float32)\n', (1025, 1080), True, 'import numpy as np\n')]
import datetime import inspect from io import BytesIO import os import pickle import shutil import tempfile import unittest from unittest.mock import patch import asdf import numpy from numpy.testing import assert_array_equal from scipy.sparse import csr_matrix from modelforge import configuration, storage_backend from modelforge.backends import create_backend import modelforge.index as ind from modelforge.meta import generate_new_meta from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, \ merge_strings, Model, split_strings from modelforge.models import GenericModel, register_model import modelforge.tests.fake_dulwich as fake_git from modelforge.tests.fake_requests import FakeRequests @register_model class FakeDocfreqModel(Model): NAME = "docfreq" VENDOR = "source{d}" DESCRIPTION = "document frequencies" tree = {} def _load_tree(self, tree): self.docs = tree["docs"] self.tree = tree def dump(self): return str(self.docs) def _generate_tree(self) -> dict: return self.tree class Model1(Model): NAME = "model1" VENDOR = "source{d}" DESCRIPTION = "model1" def _load_tree(self, tree): pass def dump(self): return "model1" class Model2(Model): NAME = "model2" VENDOR = "source{d}" DESCRIPTION = "model2" def _load_tree(self, tree): pass def dump(self): return "model2" class Model3(Model): NAME = "model3" VENDOR = "source{d}" DESCRIPTION = "model3" def _load_tree(self, tree): pass class Model4(Model): NAME = "model4" VENDOR = "source{d}" DESCRIPTION = "model4" def dump(self): return str(self.xxx) class Model5(Model): NAME = "aux" VENDOR = "source{d}" DESCRIPTION = "aux" def _load_tree(self, tree): pass class Model6(Model5): NAME = "docfreq" VENDOR = "source{d}" DESCRIPTION = "docfreq" def _load_tree(self, tree): pass class Model7(Model6): NAME = "xxx" VENDOR = "source{d}" DESCRIPTION = "xxx" def _load_tree(self, tree): pass class Model8(Model): NAME = "model8" VENDOR = "source{d}" DESCRIPTION = "model8" def _load_tree(self, tree): self.tree = tree def _generate_tree(self): return {"abc": 777} def dump(self): return "model8" class NumpyArray(Model): NAME = "numpy_array" VENDOR = "source{d}" DESCRIPTION = "test numpy array pickling" def __init__(self, **kwargs): super().__init__(**kwargs) self.array = numpy.random.normal(16) def _generate_tree(self): return {"array": self.array} def _load_tree(self, tree): self.array = tree["array"] class FakeIndex: def __init__(self, index): self.index = index def get_path(name): return os.path.join(os.path.dirname(__file__), name) def generate_meta(name, version): meta = generate_new_meta(name, "test", "source{d}", "Proprietary") meta["version"] = version return meta UUID = "625557b5-4f2e-4ebb-bd6d-0a7083b1cf06" PARENT_UUID = "bf0e7b04-a3ea-4b42-8274-a97f192fa15a" SIZE = 110712 # do *not* use os.stat class ModelTests(unittest.TestCase): MODEL_PATH = "test.asdf" cached_path = "/tmp/modelforge-test-cache" default_url = "https://github.com/src-d/models" templates_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "templates") default_index = { "models": { "docfreq": { UUID: { "url": "https://xxx", "created_at": "13:00", "code": "model_code %s", "description": "model_description"}, "1e3da42a-28b6-4b33-94a2-a5671f4102f4": { "source": "https://xxx", "license": "Proprietary", "created_at": "13:00", "code": "%s", "description": "" }}}, "meta": { "docfreq": { "code": "readme_code %s", "description": "readme_description", "default": UUID}}} def setUp(self): ind.git = fake_git ind.Repo = fake_git.FakeRepo fake_git.FakeRepo.reset(self.default_index) self.backend = create_backend( git_index=ind.GitIndex(remote=self.default_url, cache=self.cached_path)) def clear(self): if os.path.exists(self.cached_path): shutil.rmtree(os.path.expanduser(self.cached_path)) def tearDown(self): self.clear() from dulwich.repo import Repo ind.Repo = Repo from dulwich import porcelain as git ind.git = git def test_file(self): model = GenericModel(source=get_path(self.MODEL_PATH)) self._validate_meta(model) vendor = configuration.VENDOR configuration.VENDOR = None try: model = GenericModel(source=get_path(self.MODEL_PATH)) self._validate_meta(model) finally: configuration.VENDOR = vendor def test_error(self): with self.assertRaises(ValueError): GenericModel(source=UUID) def test_id(self): def route(url): self.assertEqual("https://xxx", url) with open(get_path(self.MODEL_PATH), "rb") as fin: return fin.read() storage_backend.requests = FakeRequests(route) cleaned = False def fake_rmtree(path): nonlocal cleaned cleaned = True with patch("shutil.rmtree", fake_rmtree): model = GenericModel(source=UUID, backend=self.backend) self._validate_meta(model) self.assertTrue(cleaned) def test_url(self): def route(url): self.assertEqual("https://xxx", url) with open(get_path(self.MODEL_PATH), "rb") as fin: return fin.read() storage_backend.requests = FakeRequests(route) model = GenericModel(source="https://xxx", backend=self.backend) self.assertEqual(model.source, "https://xxx") self._validate_meta(model) def test_auto(self): class FakeModel(GenericModel): NAME = "docfreq" def route(url): self.assertEqual("https://xxx", url) with open(get_path(self.MODEL_PATH), "rb") as fin: return fin.read() storage_backend.requests = FakeRequests(route) model = FakeModel(backend=self.backend) self.assertEqual(model.source, "https://xxx") self._validate_meta(model) def test_bad_code(self): def route(url): self.assertEqual("https://bad_code", url) return 404 storage_backend.requests = FakeRequests(route) with self.assertRaises(ValueError): GenericModel(source="https://bad_code", backend=self.backend) def test_init_with_model(self): model1 = FakeDocfreqModel().load(source=get_path(self.MODEL_PATH)) # init with correct model FakeDocfreqModel(source=model1) # init with wrong model with self.assertRaises(TypeError): Model1().load(source=model1) def test_repr_str_empty(self): model = FakeDocfreqModel() self.assertIsInstance(str(model), str) self.assertIsInstance(repr(model), str) def test_repr_str(self): self.maxDiff = None path = get_path(self.MODEL_PATH) model = FakeDocfreqModel().load(source=path) repr1 = repr(model) try: self.assertIn("test_model.py].FakeDocfreqModel().load(source=\"%s\")" % path, repr1) except AssertionError: self.assertEqual("modelforge.tests.test_model.FakeDocfreqModel().load(source=\"%s\")" % path, repr1) str1 = str(model) self.assertEqual(len(str1.split("\n")), 14) self.assertIn("'%s'" % FakeDocfreqModel.NAME, str1) self.assertIn("'uuid': '%s'" % UUID, str1) model = FakeDocfreqModel().load(source=path) str2 = str(model) self.assertEqual(len(str2.split("\n")), 14) model = FakeDocfreqModel().load(source=path) self.assertEqual(model.description, "test description") self.assertNotEqual(model.description, FakeDocfreqModel.DESCRIPTION) repr2 = repr(model) self.assertEqual("[%s].FakeDocfreqModel().load(source=\"%s\")" % (os.path.realpath(__file__), path), repr2) def test_repr_main(self): path = get_path(self.MODEL_PATH) model = FakeDocfreqModel().load(source=path) module = inspect.getmodule(model) module.__name__ = "__main__" module.__spec__ = None module_file = module.__file__ del module.__file__ try: repr2 = repr(model) finally: module.__file__ = module_file self.assertEqual("[unknown].FakeDocfreqModel().load(source=\"%s\")" % path, repr2) def test_get_dep(self): model = FakeDocfreqModel().load(source=get_path(self.MODEL_PATH)) model.meta["dependencies"] = [{"model": "xxx", "uuid": "yyy"}, {"model": "zzz", "uuid": None}] self.assertEqual(model.get_dep("xxx")["uuid"], "yyy") def _validate_meta(self, model): self.assertEqual(model.size, SIZE) meta = model.meta self.assertIsInstance(meta, dict) valid_meta = { "created_at": datetime.datetime(2017, 6, 19, 9, 59, 14, 766638), "dependencies": [], "model": "docfreq", "parent": PARENT_UUID, "license": "MIT", "uuid": UUID, "version": [1, 0, 1] } for key, val in valid_meta.items(): self.assertEqual(meta[key], val, key) def test_uninitialized_dump(self): text = str(Model4()) try: self.assertIn("test_model.py].Model4().load(source=None)", text) except AssertionError: self.assertEqual("modelforge.tests.test_model.Model4().load(source=None)", text) def test_name_check(self): Model5().load(source=get_path(self.MODEL_PATH)) Model6().load(source=get_path(self.MODEL_PATH)) with self.assertRaises(ValueError): Model7().load(source=get_path(self.MODEL_PATH)) def test_derive(self): path = get_path(self.MODEL_PATH) model = FakeDocfreqModel().load(source=path) self.assertEqual(model._initial_version, [1, 0, 1]) mid = model.uuid model.derive() self.assertEqual(model._initial_version, [1, 0, 1]) self.assertEqual(model.version, [1, 0, 2]) self.assertEqual(model.parent, mid) model.derive((2, 0, 0)) self.assertEqual(model.version, [2, 0, 0]) self.assertEqual(model.parent, mid) with self.assertRaises(ValueError): model.derive("1.2.3") def test_derive_init(self): model = Model8() with BytesIO() as f: model.save(f, "series") self.assertEqual(model.version, [1, 0, 0]) def test_derive_save(self): model = FakeDocfreqModel().load(source=get_path(self.MODEL_PATH)) mid = model.uuid model.derive() self.assertEqual(model.version, [1, 0, 2]) with BytesIO() as f: model.save(f) self.assertEqual(model.version, [1, 0, 2]) self.assertEqual(model.parent, mid) mid = model.uuid model.derive() self.assertEqual(model.version, [1, 0, 3]) self.assertEqual(model.parent, mid) def test_set_dep(self): model1 = Model1() model2 = Model2() model1.set_dep(model2) self.assertIs(model1.get_dep("model2"), model2.meta) def test_props(self): path = get_path(self.MODEL_PATH) model = FakeDocfreqModel().load(source=path) for n in ("references", "datasets", "code"): with self.assertRaises(KeyError): getattr(model, n) self.assertEqual(model.version, [1, 0, 1]) self.assertEqual(model.created_at, datetime.datetime(2017, 6, 19, 9, 59, 14, 766638)) def test_init_version(self): self.assertEqual(Model1().version, [1, 0, 0]) def test_save(self): with tempfile.NamedTemporaryFile(prefix="modelforge-test-") as f: m = Model8() m.series = "series" m.save(f.name) self.assertIsInstance(m.created_at, datetime.datetime) self.assertEqual(m.source, f.name) self.assertGreater(m.size, 1000) self.assertLess(m.size, 2000) m = Model8().load(f.name) self.assertEqual(m.tree["abc"], 777) self.assertEqual(m.source, f.name) def test_save_no_impl(self): with self.assertRaises(NotImplementedError): Model4().save("model.asdf", "series") with self.assertRaises(ValueError): Model4().save("model.asdf") def test_save_create_missing_dirs(self): with tempfile.TemporaryDirectory(prefix="modelforge-test-") as savedir: savepath = os.path.join(savedir, "add/some/subdirs/", "model.asdf") with self.assertRaises(FileNotFoundError): m = Model8().save(savepath, "series", create_missing_dirs=False) self.assertEqual(m.source, savepath) Model8().save(savepath, "series") self.assertEqual(Model8().load(savepath).tree["abc"], 777) def test_load_no_args(self): shutil.rmtree(configuration.vendor_cache_dir(), ignore_errors=True) self.assertRaises(ValueError, FakeDocfreqModel().load) class SerializationTests(unittest.TestCase): DOCFREQ_PATH = "test.asdf" def test_empty_split_save_load_merge(self): strings = [] merged = merge_strings(strings) assert_array_equal(merged["strings"], numpy.array([], dtype="S1")) assert_array_equal(merged["lengths"], numpy.array([], dtype=int)) self.assertIsNone(merged["str"]) af = asdf.AsdfFile(merged) buffer = BytesIO() af.write_to(buffer) buffer.seek(0) af_loaded = asdf.open(buffer) strings_restored = split_strings(af_loaded.tree) self.assertEqual(strings, strings_restored) def test_merge_strings(self): strings = ["a", "bc", "def"] merged = merge_strings(strings) self.assertIsInstance(merged, dict) self.assertIn("strings", merged) self.assertIn("lengths", merged) self.assertIsInstance(merged["strings"], numpy.ndarray) self.assertEqual(merged["strings"].shape, (1,)) self.assertEqual(merged["strings"][0], b"abcdef") self.assertIsInstance(merged["lengths"], numpy.ndarray) self.assertEqual(merged["lengths"].shape, (3,)) self.assertEqual(merged["lengths"][0], 1) self.assertEqual(merged["lengths"][1], 2) self.assertEqual(merged["lengths"][2], 3) def test_split_strings(self): strings = split_strings({ "strings": numpy.array([b"abcdef"]), "lengths": numpy.array([1, 2, 3]) }) self.assertEqual(strings, ["a", "bc", "def"]) def test_invalid_merge_strings(self): with self.assertRaises(TypeError): merge_strings("abcd") with self.assertRaises(TypeError): merge_strings([0, 1, 2, 3]) def test_merge_bytes(self): strings = [b"a", b"bc", b"def"] merged = merge_strings(strings) self.assertIsInstance(merged, dict) self.assertIn("strings", merged) self.assertIn("lengths", merged) self.assertEqual(merged["str"], False) self.assertIsInstance(merged["strings"], numpy.ndarray) self.assertEqual(merged["strings"].shape, (1,)) self.assertEqual(merged["strings"][0], b"abcdef") self.assertIsInstance(merged["lengths"], numpy.ndarray) self.assertEqual(merged["lengths"].shape, (3,)) self.assertEqual(merged["lengths"][0], 1) self.assertEqual(merged["lengths"][1], 2) self.assertEqual(merged["lengths"][2], 3) def test_split_bytes(self): strings = split_strings({ "strings": numpy.array([b"abcdef"]), "lengths": numpy.array([1, 2, 3]), "str": False }) self.assertEqual(strings, [b"a", b"bc", b"def"]) def test_disassemble_sparse_matrix(self): arr = numpy.zeros((10, 10), dtype=numpy.float32) numpy.random.seed(0) arr[numpy.random.randint(0, 10, (50, 2))] = 1 mat = csr_matrix(arr) dis = disassemble_sparse_matrix(mat) self.assertIsInstance(dis, dict) self.assertIn("shape", dis) self.assertIn("format", dis) self.assertIn("data", dis) self.assertEqual(dis["shape"], arr.shape) self.assertEqual(dis["format"], "csr") self.assertIsInstance(dis["data"], (tuple, list)) self.assertEqual(len(dis["data"]), 3) self.assertTrue((dis["data"][0] == mat.data).all()) self.assertTrue((dis["data"][1] == mat.indices).all()) self.assertTrue((dis["data"][2] == [0] + list(numpy.diff(mat.indptr))).all()) self.assertEqual(dis["data"][2].dtype, numpy.uint8) def test_assemble_sparse_matrix(self): tree = { "shape": (3, 10), "format": "csr", "data": [numpy.arange(1, 8), numpy.array([0, 4, 1, 5, 2, 3, 8]), numpy.array([0, 2, 4, 7])] } mat = assemble_sparse_matrix(tree) self.assertIsInstance(mat, csr_matrix) self.assertTrue((mat.data == tree["data"][0]).all()) self.assertTrue((mat.indices == tree["data"][1]).all()) self.assertTrue((mat.indptr == tree["data"][2]).all()) self.assertEqual(mat.shape, (3, 10)) self.assertEqual(mat.dtype, numpy.int) tree = { "shape": (3, 10), "format": "csr", "data": [numpy.arange(1, 8), numpy.array([0, 4, 1, 5, 2, 3, 8]), numpy.array([0, 2, 2, 3])] } mat = assemble_sparse_matrix(tree) self.assertIsInstance(mat, csr_matrix) self.assertTrue((mat.data == tree["data"][0]).all()) self.assertTrue((mat.indices == tree["data"][1]).all()) self.assertTrue((mat.indptr == [0, 2, 4, 7]).all()) self.assertEqual(mat.shape, (3, 10)) self.assertEqual(mat.dtype, numpy.int) def test_pickle(self): docfreq = GenericModel(source=get_path(self.DOCFREQ_PATH)) res = pickle.dumps(docfreq) docfreq_rec = pickle.loads(res) for k in docfreq.__dict__: if k != "tree": self.assertEqual(getattr(docfreq, k), getattr(docfreq_rec, k), k) def test_pickle_numpy(self): arr = NumpyArray() fobj = BytesIO() arr.save(fobj, series="test") fobj.seek(0) arr = NumpyArray().load(fobj) pickle.dumps(arr) with tempfile.NamedTemporaryFile(prefix="modelforge-test-") as f: arr.save(f.name) arr = NumpyArray().load(f.name) pickle.dumps(arr) def test_write(self): model = Model1() model._meta = generate_meta("test", (1, 0, 3)) with tempfile.NamedTemporaryFile() as tmp: model._write_tree({"xxx": 100500}, tmp.name) with asdf.open(tmp.name) as f: self.assertEqual(f.tree["meta"]["model"], "test") self.assertEqual(f.tree["xxx"], 100500) self.assertEqual(oct(os.stat(tmp.name).st_mode)[-3:], "666") def test_write_fileobj(self): model = Model1() model._meta = generate_meta("test", (1, 0, 3)) buffer = BytesIO() model._write_tree({"xxx": 100500}, buffer) buffer.seek(0) with asdf.open(buffer) as f: self.assertEqual(f.tree["meta"]["model"], "test") self.assertEqual(f.tree["xxx"], 100500) def test_load_fileobj(self): path = get_path(self.DOCFREQ_PATH) buffer = BytesIO() with open(path, "rb") as fin: buffer.write(fin.read()) buffer.seek(0) model = FakeDocfreqModel().load(source=buffer) self.assertEqual(model.source, "<file object>") self.assertEqual(model.size, SIZE) self.assertEqual(model.created_at, datetime.datetime(2017, 6, 19, 9, 59, 14, 766638)) if __name__ == "__main__": unittest.main()
[ "modelforge.meta.generate_new_meta", "pickle.dumps", "io.BytesIO", "numpy.array", "asdf.open", "unittest.main", "pickle.loads", "unittest.mock.patch", "numpy.arange", "datetime.datetime", "os.path.exists", "modelforge.model.disassemble_sparse_matrix", "modelforge.models.GenericModel", "numpy.diff", "numpy.random.seed", "tempfile.NamedTemporaryFile", "scipy.sparse.csr_matrix", "os.path.expanduser", "numpy.random.normal", "modelforge.configuration.vendor_cache_dir", "inspect.getmodule", "os.path.dirname", "modelforge.index.GitIndex", "tempfile.TemporaryDirectory", "asdf.AsdfFile", "modelforge.tests.fake_dulwich.FakeRepo.reset", "os.path.join", "os.path.realpath", "numpy.zeros", "numpy.random.randint", "modelforge.model.merge_strings", "modelforge.tests.fake_requests.FakeRequests", "os.stat", "modelforge.model.assemble_sparse_matrix", "modelforge.model.split_strings" ]
[((2991, 3050), 'modelforge.meta.generate_new_meta', 'generate_new_meta', (['name', '"""test"""', '"""source{d}"""', '"""Proprietary"""'], {}), "(name, 'test', 'source{d}', 'Proprietary')\n", (3008, 3050), False, 'from modelforge.meta import generate_new_meta\n'), ((20727, 20742), 'unittest.main', 'unittest.main', ([], {}), '()\n', (20740, 20742), False, 'import unittest\n'), ((2628, 2651), 'numpy.random.normal', 'numpy.random.normal', (['(16)'], {}), '(16)\n', (2647, 2651), False, 'import numpy\n'), ((2911, 2936), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2926, 2936), False, 'import os\n'), ((4323, 4366), 'modelforge.tests.fake_dulwich.FakeRepo.reset', 'fake_git.FakeRepo.reset', (['self.default_index'], {}), '(self.default_index)\n', (4346, 4366), True, 'import modelforge.tests.fake_dulwich as fake_git\n'), ((4524, 4556), 'os.path.exists', 'os.path.exists', (['self.cached_path'], {}), '(self.cached_path)\n', (4538, 4556), False, 'import os\n'), ((5512, 5531), 'modelforge.tests.fake_requests.FakeRequests', 'FakeRequests', (['route'], {}), '(route)\n', (5524, 5531), False, 'from modelforge.tests.fake_requests import FakeRequests\n'), ((6062, 6081), 'modelforge.tests.fake_requests.FakeRequests', 'FakeRequests', (['route'], {}), '(route)\n', (6074, 6081), False, 'from modelforge.tests.fake_requests import FakeRequests\n'), ((6098, 6154), 'modelforge.models.GenericModel', 'GenericModel', ([], {'source': '"""https://xxx"""', 'backend': 'self.backend'}), "(source='https://xxx', backend=self.backend)\n", (6110, 6154), False, 'from modelforge.models import GenericModel, register_model\n'), ((6545, 6564), 'modelforge.tests.fake_requests.FakeRequests', 'FakeRequests', (['route'], {}), '(route)\n', (6557, 6564), False, 'from modelforge.tests.fake_requests import FakeRequests\n'), ((6869, 6888), 'modelforge.tests.fake_requests.FakeRequests', 'FakeRequests', (['route'], {}), '(route)\n', (6881, 6888), False, 'from modelforge.tests.fake_requests import FakeRequests\n'), ((8763, 8787), 'inspect.getmodule', 'inspect.getmodule', (['model'], {}), '(model)\n', (8780, 8787), False, 'import inspect\n'), ((14009, 14031), 'modelforge.model.merge_strings', 'merge_strings', (['strings'], {}), '(strings)\n', (14022, 14031), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((14235, 14256), 'asdf.AsdfFile', 'asdf.AsdfFile', (['merged'], {}), '(merged)\n', (14248, 14256), False, 'import asdf\n'), ((14274, 14283), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (14281, 14283), False, 'from io import BytesIO\n'), ((14355, 14372), 'asdf.open', 'asdf.open', (['buffer'], {}), '(buffer)\n', (14364, 14372), False, 'import asdf\n'), ((14400, 14429), 'modelforge.model.split_strings', 'split_strings', (['af_loaded.tree'], {}), '(af_loaded.tree)\n', (14413, 14429), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((14571, 14593), 'modelforge.model.merge_strings', 'merge_strings', (['strings'], {}), '(strings)\n', (14584, 14593), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((15690, 15712), 'modelforge.model.merge_strings', 'merge_strings', (['strings'], {}), '(strings)\n', (15703, 15712), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((16651, 16693), 'numpy.zeros', 'numpy.zeros', (['(10, 10)'], {'dtype': 'numpy.float32'}), '((10, 10), dtype=numpy.float32)\n', (16662, 16693), False, 'import numpy\n'), ((16702, 16722), 'numpy.random.seed', 'numpy.random.seed', (['(0)'], {}), '(0)\n', (16719, 16722), False, 'import numpy\n'), ((16791, 16806), 'scipy.sparse.csr_matrix', 'csr_matrix', (['arr'], {}), '(arr)\n', (16801, 16806), False, 'from scipy.sparse import csr_matrix\n'), ((16821, 16851), 'modelforge.model.disassemble_sparse_matrix', 'disassemble_sparse_matrix', (['mat'], {}), '(mat)\n', (16846, 16851), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((17761, 17789), 'modelforge.model.assemble_sparse_matrix', 'assemble_sparse_matrix', (['tree'], {}), '(tree)\n', (17783, 17789), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((18364, 18392), 'modelforge.model.assemble_sparse_matrix', 'assemble_sparse_matrix', (['tree'], {}), '(tree)\n', (18386, 18392), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((18826, 18847), 'pickle.dumps', 'pickle.dumps', (['docfreq'], {}), '(docfreq)\n', (18838, 18847), False, 'import pickle\n'), ((18870, 18887), 'pickle.loads', 'pickle.loads', (['res'], {}), '(res)\n', (18882, 18887), False, 'import pickle\n'), ((19110, 19119), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (19117, 19119), False, 'from io import BytesIO\n'), ((19225, 19242), 'pickle.dumps', 'pickle.dumps', (['arr'], {}), '(arr)\n', (19237, 19242), False, 'import pickle\n'), ((20009, 20018), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (20016, 20018), False, 'from io import BytesIO\n'), ((20338, 20347), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (20345, 20347), False, 'from io import BytesIO\n'), ((3452, 3477), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (3467, 3477), False, 'import os\n'), ((5256, 5281), 'modelforge.models.GenericModel', 'GenericModel', ([], {'source': 'UUID'}), '(source=UUID)\n', (5268, 5281), False, 'from modelforge.models import GenericModel, register_model\n'), ((5658, 5693), 'unittest.mock.patch', 'patch', (['"""shutil.rmtree"""', 'fake_rmtree'], {}), "('shutil.rmtree', fake_rmtree)\n", (5663, 5693), False, 'from unittest.mock import patch\n'), ((5715, 5762), 'modelforge.models.GenericModel', 'GenericModel', ([], {'source': 'UUID', 'backend': 'self.backend'}), '(source=UUID, backend=self.backend)\n', (5727, 5762), False, 'from modelforge.models import GenericModel, register_model\n'), ((6945, 7006), 'modelforge.models.GenericModel', 'GenericModel', ([], {'source': '"""https://bad_code"""', 'backend': 'self.backend'}), "(source='https://bad_code', backend=self.backend)\n", (6957, 7006), False, 'from modelforge.models import GenericModel, register_model\n'), ((9621, 9670), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(6)', '(19)', '(9)', '(59)', '(14)', '(766638)'], {}), '(2017, 6, 19, 9, 59, 14, 766638)\n', (9638, 9670), False, 'import datetime\n'), ((11156, 11165), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (11163, 11165), False, 'from io import BytesIO\n'), ((11478, 11487), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (11485, 11487), False, 'from io import BytesIO\n'), ((12279, 12328), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(6)', '(19)', '(9)', '(59)', '(14)', '(766638)'], {}), '(2017, 6, 19, 9, 59, 14, 766638)\n', (12296, 12328), False, 'import datetime\n'), ((12457, 12511), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'prefix': '"""modelforge-test-"""'}), "(prefix='modelforge-test-')\n", (12484, 12511), False, 'import tempfile\n'), ((13218, 13272), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'prefix': '"""modelforge-test-"""'}), "(prefix='modelforge-test-')\n", (13245, 13272), False, 'import tempfile\n'), ((13308, 13364), 'os.path.join', 'os.path.join', (['savedir', '"""add/some/subdirs/"""', '"""model.asdf"""'], {}), "(savedir, 'add/some/subdirs/', 'model.asdf')\n", (13320, 13364), False, 'import os\n'), ((13727, 13759), 'modelforge.configuration.vendor_cache_dir', 'configuration.vendor_cache_dir', ([], {}), '()\n', (13757, 13759), False, 'from modelforge import configuration, storage_backend\n'), ((14078, 14105), 'numpy.array', 'numpy.array', (['[]'], {'dtype': '"""S1"""'}), "([], dtype='S1')\n", (14089, 14105), False, 'import numpy\n'), ((14153, 14179), 'numpy.array', 'numpy.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (14164, 14179), False, 'import numpy\n'), ((15495, 15516), 'modelforge.model.merge_strings', 'merge_strings', (['"""abcd"""'], {}), "('abcd')\n", (15508, 15516), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((15572, 15599), 'modelforge.model.merge_strings', 'merge_strings', (['[0, 1, 2, 3]'], {}), '([0, 1, 2, 3])\n', (15585, 15599), False, 'from modelforge.model import assemble_sparse_matrix, disassemble_sparse_matrix, merge_strings, Model, split_strings\n'), ((16735, 16771), 'numpy.random.randint', 'numpy.random.randint', (['(0)', '(10)', '(50, 2)'], {}), '(0, 10, (50, 2))\n', (16755, 16771), False, 'import numpy\n'), ((19256, 19310), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'prefix': '"""modelforge-test-"""'}), "(prefix='modelforge-test-')\n", (19283, 19310), False, 'import tempfile\n'), ((19402, 19419), 'pickle.dumps', 'pickle.dumps', (['arr'], {}), '(arr)\n', (19414, 19419), False, 'import pickle\n'), ((19540, 19569), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (19567, 19569), False, 'import tempfile\n'), ((20106, 20123), 'asdf.open', 'asdf.open', (['buffer'], {}), '(buffer)\n', (20115, 20123), False, 'import asdf\n'), ((20643, 20692), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(6)', '(19)', '(9)', '(59)', '(14)', '(766638)'], {}), '(2017, 6, 19, 9, 59, 14, 766638)\n', (20660, 20692), False, 'import datetime\n'), ((4428, 4489), 'modelforge.index.GitIndex', 'ind.GitIndex', ([], {'remote': 'self.default_url', 'cache': 'self.cached_path'}), '(remote=self.default_url, cache=self.cached_path)\n', (4440, 4489), True, 'import modelforge.index as ind\n'), ((4584, 4620), 'os.path.expanduser', 'os.path.expanduser', (['self.cached_path'], {}), '(self.cached_path)\n', (4602, 4620), False, 'import os\n'), ((15260, 15284), 'numpy.array', 'numpy.array', (["[b'abcdef']"], {}), "([b'abcdef'])\n", (15271, 15284), False, 'import numpy\n'), ((15309, 15331), 'numpy.array', 'numpy.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (15320, 15331), False, 'import numpy\n'), ((16424, 16448), 'numpy.array', 'numpy.array', (["[b'abcdef']"], {}), "([b'abcdef'])\n", (16435, 16448), False, 'import numpy\n'), ((16473, 16495), 'numpy.array', 'numpy.array', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (16484, 16495), False, 'import numpy\n'), ((17612, 17630), 'numpy.arange', 'numpy.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (17624, 17630), False, 'import numpy\n'), ((17653, 17687), 'numpy.array', 'numpy.array', (['[0, 4, 1, 5, 2, 3, 8]'], {}), '([0, 4, 1, 5, 2, 3, 8])\n', (17664, 17687), False, 'import numpy\n'), ((17710, 17735), 'numpy.array', 'numpy.array', (['[0, 2, 4, 7]'], {}), '([0, 2, 4, 7])\n', (17721, 17735), False, 'import numpy\n'), ((18215, 18233), 'numpy.arange', 'numpy.arange', (['(1)', '(8)'], {}), '(1, 8)\n', (18227, 18233), False, 'import numpy\n'), ((18256, 18290), 'numpy.array', 'numpy.array', (['[0, 4, 1, 5, 2, 3, 8]'], {}), '([0, 4, 1, 5, 2, 3, 8])\n', (18267, 18290), False, 'import numpy\n'), ((18313, 18338), 'numpy.array', 'numpy.array', (['[0, 2, 2, 3]'], {}), '([0, 2, 2, 3])\n', (18324, 18338), False, 'import numpy\n'), ((19652, 19671), 'asdf.open', 'asdf.open', (['tmp.name'], {}), '(tmp.name)\n', (19661, 19671), False, 'import asdf\n'), ((8579, 8605), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (8595, 8605), False, 'import os\n'), ((17379, 17401), 'numpy.diff', 'numpy.diff', (['mat.indptr'], {}), '(mat.indptr)\n', (17389, 17401), False, 'import numpy\n'), ((19837, 19854), 'os.stat', 'os.stat', (['tmp.name'], {}), '(tmp.name)\n', (19844, 19854), False, 'import os\n')]
import typing import cv2 import numpy as np from numpy.lib.polynomial import poly import streamlit as st import plotly.express as px import plotly.graph_objects as go from utils.configs import IMAGES, DetectionConfig, RunningModes from utils.configs import default_config from utils.configs import birds_config from utils.configs import birds2_config from utils.configs import keyboard_config from utils.configs import dots_config @st.experimental_singleton def load_image(path: str): '''Loads input image from path using opencv.''' return cv2.imread(path) def convert_color(img: np.array): '''Sets the correct colors for matplotlib.''' img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def convert_gray(img: np.array): '''Preprocess image and returns gray version of it.''' img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) return img def find_contours(img: np.array, thresh_val: int=150, thresh_maxval: int=255, thresh_type: int=1, contour_mode: int=1, contour_method: int=2) -> np.array: '''Detect contours and return results.''' img = convert_gray(img) _, thresh = cv2.threshold(img, thresh_val, thresh_maxval, thresh_type) contours, _ = cv2.findContours(thresh, contour_mode, contour_method) return contours def filter_contours(contours: typing.Tuple, min_contour_length: int=-9999, max_contour_length: int=9999) -> np.array: '''Filter contours by given criteria.''' return np.array([ contour for contour in contours if len(contour) >= min_contour_length and len(contour) <= max_contour_length ], dtype=object) def draw_contours(img: np.array, contours: np.array, contour_index: int=-1, contour_color: typing.Tuple=(255, 0, 0, 1), contour_thickness: int=0) -> typing.Tuple[int, typing.Tuple]: '''Add contours if they fullfill the given criteria.''' n_contours = 0 for contour in contours: cv2.drawContours(img, [contour], contour_index, contour_color, contour_thickness) n_contours += 1 return n_contours, img def format_uploaded_image(uploaded_file: typing.Any) -> np.array: '''Tries to format uploaded file into an image.''' if uploaded_file is not None: file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) img = cv2.imdecode(file_bytes, 1) return img def polygon_sizes(contours: list) -> list[float]: sizes = [] for contour in contours: xs = np.array(contour, dtype=object)[:,0,0] ys = np.array(contour, dtype=object)[:,0,1] sizes.append(calculate_ploygon_size(xs, ys)) return np.array(sizes) def calculate_ploygon_size(xs: np.array, ys: np.array): return 0.5*np.abs(np.dot(xs,np.roll(ys,1))-np.dot(ys,np.roll(xs,1))) def create_sidebar() -> typing.Tuple[np.array, DetectionConfig]: '''Create sidebar widgets, apply pre-defined configs and return adjusted ones.''' st.sidebar.header('Select Options') available_modes = [f'{mode.name} ({mode.value})' for mode in RunningModes] mode = st.sidebar.radio('Running Mode', available_modes) mode = mode.split(' ')[0] st.sidebar.markdown('---') initial_config = default_config new_config = DetectionConfig() if mode == RunningModes.UPLOAD.name: uploaded_file = st.sidebar.file_uploader('Upload Image', ['png', 'jpg', 'jpeg'], ) img = format_uploaded_image(uploaded_file) # No image uploaded yet if img is None: return None, None elif mode == RunningModes.EXAMPLES.name: img_name = st.sidebar.selectbox('Input Image', list(choice.name for choice in IMAGES)) if img_name == IMAGES.BIRDS.name: initial_config = birds_config elif img_name == IMAGES.DOTS.name: initial_config = dots_config elif img_name == IMAGES.BIRDS2.name: initial_config = birds2_config elif img_name == IMAGES.KEYBOARD.name: initial_config = keyboard_config img = load_image(getattr(IMAGES, img_name).value).copy() img = convert_color(img) new_config.thresh_val = st.sidebar.slider('Threshold Value', 0, 255, initial_config.thresh_val, help='Threshold Value, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57).') new_config.thresh_type = st.sidebar.slider('Threshold Type', 0, 5, initial_config.thresh_type, help='Threshold Operation Type, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gaa9e58d2860d4afa658ef70a9b1115576).') new_config.thresh_maxval = st.sidebar.slider('Thresh Max Val', 0, 255, initial_config.thresh_maxval, help='Maximum Value for Threshold Types 1 and 2, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57).') new_config.contour_mode = st.sidebar.slider('Contour Mode', 0, 3, initial_config.contour_mode, help='Contour Retrieval Mode, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga819779b9857cc2f8601e6526a3a5bc71).') new_config.contour_method = st.sidebar.slider('Contour Method', 1, 4, initial_config.contour_method, help='Contour Approximation Method, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga4303f45752694956374734a03c54d5ff).') min_contour_length, max_contour_length = st.sidebar.slider( 'Min/Max Contour Length', min_value=0, max_value=100, value=(initial_config.min_contour_length, initial_config.max_contour_length), help='Number of Vertices for Contour Graph.') new_config.min_contour_length = min_contour_length new_config.max_contour_length = max_contour_length return img, new_config def plot_histogram(data: np.array) -> go.Figure: '''Plot histogram of given data.''' fig = px.histogram(x=data) fig.update_layout( xaxis_title='Polygon Areas', yaxis_title='Polygon Sizes' ) return fig def main(): st.set_page_config(page_title='Object Counter', page_icon='🔢') st.markdown(''' # Object Counter App This app helps you to count similar shaped objects on a given image. To improve the object detection performance, you can adjust the parameters on the left hand side. Look at the example to get a feeling for that. Afterwards, upload an image and try it yourself. Good luck 🍀! ''') img, config = create_sidebar() if img is None: return contours = find_contours(img, thresh_val=config.thresh_val, thresh_maxval=config.thresh_maxval, thresh_type=config.thresh_type, contour_mode=config.contour_mode, contour_method=config.contour_method) contours_filtered = filter_contours(contours, min_contour_length=config.min_contour_length, max_contour_length=config.max_contour_length) if len(contours_filtered) < 1: st.warning('No contours found for current selection. Try to loosen it a bit!') return # refilter contours by polygon size polygons = polygon_sizes(contours_filtered) min_area, max_area = st.sidebar.slider('Polygon Size', value=(int(min(polygons)), int(max(polygons))+1), min_value=int(min(polygons)), max_value=int(max(polygons))+1) contour_indices = np.argwhere((polygons >= min_area) & (polygons <= max_area)) contours_refiltered = [] polygons_filtered = [] for i, (polygon, contour) in enumerate(zip(polygons, contours_filtered)): if i in contour_indices: contours_refiltered.append(contour) polygons_filtered.append(polygon) n_objects, img = draw_contours(img, contours_refiltered) n_objects, img_contours = draw_contours(np.zeros(shape=img.shape) + 255, contours_refiltered) st.subheader(f'Objects found: {n_objects}') fig = plot_histogram(polygons_filtered) st.image(img, caption='Original image with contours', use_column_width=True) st.sidebar.markdown('---') st.sidebar.subheader('Advanced Options') if st.sidebar.checkbox('Show Contours Only Image'): st.image(img_contours, caption='Contours', clamp=True, use_column_width=True) if st.sidebar.checkbox('Show Polygon Size Distribution'): st.markdown('If the objects are equal in size, the polygon areas ' 'should follow a normal distribution. Modify the "Polygon Size" ' 'attribute to filter out outliers.') st.plotly_chart(fig, use_container_width=True) if __name__=='__main__': try: main() except Exception as e: st.error(f"Something went wrong, sorry 😐. Please reload the page and try again.\n\n{str(e)}")
[ "streamlit.image", "numpy.array", "cv2.imdecode", "utils.configs.DetectionConfig", "cv2.threshold", "streamlit.warning", "streamlit.sidebar.header", "streamlit.sidebar.checkbox", "streamlit.sidebar.markdown", "streamlit.sidebar.slider", "streamlit.set_page_config", "streamlit.markdown", "cv2.drawContours", "plotly.express.histogram", "streamlit.sidebar.subheader", "streamlit.subheader", "cv2.cvtColor", "streamlit.plotly_chart", "cv2.imread", "numpy.roll", "numpy.zeros", "numpy.argwhere", "streamlit.sidebar.file_uploader", "cv2.findContours", "streamlit.sidebar.radio" ]
[((551, 567), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (561, 567), False, 'import cv2\n'), ((663, 699), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (675, 699), False, 'import cv2\n'), ((819, 856), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2GRAY'], {}), '(img, cv2.COLOR_RGB2GRAY)\n', (831, 856), False, 'import cv2\n'), ((1209, 1267), 'cv2.threshold', 'cv2.threshold', (['img', 'thresh_val', 'thresh_maxval', 'thresh_type'], {}), '(img, thresh_val, thresh_maxval, thresh_type)\n', (1222, 1267), False, 'import cv2\n'), ((1376, 1430), 'cv2.findContours', 'cv2.findContours', (['thresh', 'contour_mode', 'contour_method'], {}), '(thresh, contour_mode, contour_method)\n', (1392, 1430), False, 'import cv2\n'), ((2992, 3007), 'numpy.array', 'np.array', (['sizes'], {}), '(sizes)\n', (3000, 3007), True, 'import numpy as np\n'), ((3294, 3329), 'streamlit.sidebar.header', 'st.sidebar.header', (['"""Select Options"""'], {}), "('Select Options')\n", (3311, 3329), True, 'import streamlit as st\n'), ((3421, 3470), 'streamlit.sidebar.radio', 'st.sidebar.radio', (['"""Running Mode"""', 'available_modes'], {}), "('Running Mode', available_modes)\n", (3437, 3470), True, 'import streamlit as st\n'), ((3506, 3532), 'streamlit.sidebar.markdown', 'st.sidebar.markdown', (['"""---"""'], {}), "('---')\n", (3525, 3532), True, 'import streamlit as st\n'), ((3587, 3604), 'utils.configs.DetectionConfig', 'DetectionConfig', ([], {}), '()\n', (3602, 3604), False, 'from utils.configs import IMAGES, DetectionConfig, RunningModes\n'), ((4533, 4752), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Threshold Value"""', '(0)', '(255)', 'initial_config.thresh_val'], {'help': '"""Threshold Value, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57)."""'}), "('Threshold Value', 0, 255, initial_config.thresh_val,\n help=\n 'Threshold Value, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57).'\n )\n", (4550, 4752), True, 'import streamlit as st\n'), ((4952, 5174), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Threshold Type"""', '(0)', '(5)', 'initial_config.thresh_type'], {'help': '"""Threshold Operation Type, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gaa9e58d2860d4afa658ef70a9b1115576)."""'}), "('Threshold Type', 0, 5, initial_config.thresh_type, help=\n 'Threshold Operation Type, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gaa9e58d2860d4afa658ef70a9b1115576).'\n )\n", (4969, 5174), True, 'import streamlit as st\n'), ((5384, 5631), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Thresh Max Val"""', '(0)', '(255)', 'initial_config.thresh_maxval'], {'help': '"""Maximum Value for Threshold Types 1 and 2, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57)."""'}), "('Thresh Max Val', 0, 255, initial_config.thresh_maxval,\n help=\n 'Maximum Value for Threshold Types 1 and 2, see [here](https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57).'\n )\n", (5401, 5631), True, 'import streamlit as st\n'), ((5844, 6064), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Contour Mode"""', '(0)', '(3)', 'initial_config.contour_mode'], {'help': '"""Contour Retrieval Mode, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga819779b9857cc2f8601e6526a3a5bc71)."""'}), "('Contour Mode', 0, 3, initial_config.contour_mode, help=\n 'Contour Retrieval Mode, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga819779b9857cc2f8601e6526a3a5bc71).'\n )\n", (5861, 6064), True, 'import streamlit as st\n'), ((6279, 6513), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Contour Method"""', '(1)', '(4)', 'initial_config.contour_method'], {'help': '"""Contour Approximation Method, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga4303f45752694956374734a03c54d5ff)."""'}), "('Contour Method', 1, 4, initial_config.contour_method,\n help=\n 'Contour Approximation Method, see [here](https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga4303f45752694956374734a03c54d5ff).'\n )\n", (6296, 6513), True, 'import streamlit as st\n'), ((6746, 6950), 'streamlit.sidebar.slider', 'st.sidebar.slider', (['"""Min/Max Contour Length"""'], {'min_value': '(0)', 'max_value': '(100)', 'value': '(initial_config.min_contour_length, initial_config.max_contour_length)', 'help': '"""Number of Vertices for Contour Graph."""'}), "('Min/Max Contour Length', min_value=0, max_value=100,\n value=(initial_config.min_contour_length, initial_config.\n max_contour_length), help='Number of Vertices for Contour Graph.')\n", (6763, 6950), True, 'import streamlit as st\n'), ((7222, 7242), 'plotly.express.histogram', 'px.histogram', ([], {'x': 'data'}), '(x=data)\n', (7234, 7242), True, 'import plotly.express as px\n'), ((7377, 7439), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Object Counter"""', 'page_icon': '"""🔢"""'}), "(page_title='Object Counter', page_icon='🔢')\n", (7395, 7439), True, 'import streamlit as st\n'), ((7467, 7833), 'streamlit.markdown', 'st.markdown', (['"""\n # Object Counter App\n This app helps you to count similar shaped objects on a given image. To improve\n the object detection performance, you can adjust the parameters on the left hand side.\n Look at the example to get a feeling for that. Afterwards, upload an image and try it\n yourself. Good luck 🍀!\n """'], {}), '(\n """\n # Object Counter App\n This app helps you to count similar shaped objects on a given image. To improve\n the object detection performance, you can adjust the parameters on the left hand side.\n Look at the example to get a feeling for that. Afterwards, upload an image and try it\n yourself. Good luck 🍀!\n """\n )\n', (7478, 7833), True, 'import streamlit as st\n'), ((9017, 9077), 'numpy.argwhere', 'np.argwhere', (['((polygons >= min_area) & (polygons <= max_area))'], {}), '((polygons >= min_area) & (polygons <= max_area))\n', (9028, 9077), True, 'import numpy as np\n'), ((9584, 9627), 'streamlit.subheader', 'st.subheader', (['f"""Objects found: {n_objects}"""'], {}), "(f'Objects found: {n_objects}')\n", (9596, 9627), True, 'import streamlit as st\n'), ((9678, 9754), 'streamlit.image', 'st.image', (['img'], {'caption': '"""Original image with contours"""', 'use_column_width': '(True)'}), "(img, caption='Original image with contours', use_column_width=True)\n", (9686, 9754), True, 'import streamlit as st\n'), ((9786, 9812), 'streamlit.sidebar.markdown', 'st.sidebar.markdown', (['"""---"""'], {}), "('---')\n", (9805, 9812), True, 'import streamlit as st\n'), ((9817, 9857), 'streamlit.sidebar.subheader', 'st.sidebar.subheader', (['"""Advanced Options"""'], {}), "('Advanced Options')\n", (9837, 9857), True, 'import streamlit as st\n'), ((9865, 9912), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Show Contours Only Image"""'], {}), "('Show Contours Only Image')\n", (9884, 9912), True, 'import streamlit as st\n'), ((10067, 10120), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Show Polygon Size Distribution"""'], {}), "('Show Polygon Size Distribution')\n", (10086, 10120), True, 'import streamlit as st\n'), ((2196, 2281), 'cv2.drawContours', 'cv2.drawContours', (['img', '[contour]', 'contour_index', 'contour_color', 'contour_thickness'], {}), '(img, [contour], contour_index, contour_color,\n contour_thickness)\n', (2212, 2281), False, 'import cv2\n'), ((2681, 2708), 'cv2.imdecode', 'cv2.imdecode', (['file_bytes', '(1)'], {}), '(file_bytes, 1)\n', (2693, 2708), False, 'import cv2\n'), ((3671, 3735), 'streamlit.sidebar.file_uploader', 'st.sidebar.file_uploader', (['"""Upload Image"""', "['png', 'jpg', 'jpeg']"], {}), "('Upload Image', ['png', 'jpg', 'jpeg'])\n", (3695, 3735), True, 'import streamlit as st\n'), ((8512, 8590), 'streamlit.warning', 'st.warning', (['"""No contours found for current selection. Try to loosen it a bit!"""'], {}), "('No contours found for current selection. Try to loosen it a bit!')\n", (8522, 8590), True, 'import streamlit as st\n'), ((9922, 9999), 'streamlit.image', 'st.image', (['img_contours'], {'caption': '"""Contours"""', 'clamp': '(True)', 'use_column_width': '(True)'}), "(img_contours, caption='Contours', clamp=True, use_column_width=True)\n", (9930, 9999), True, 'import streamlit as st\n'), ((10130, 10303), 'streamlit.markdown', 'st.markdown', (['"""If the objects are equal in size, the polygon areas should follow a normal distribution. Modify the "Polygon Size" attribute to filter out outliers."""'], {}), '(\n \'If the objects are equal in size, the polygon areas should follow a normal distribution. Modify the "Polygon Size" attribute to filter out outliers.\'\n )\n', (10141, 10303), True, 'import streamlit as st\n'), ((10348, 10394), 'streamlit.plotly_chart', 'st.plotly_chart', (['fig'], {'use_container_width': '(True)'}), '(fig, use_container_width=True)\n', (10363, 10394), True, 'import streamlit as st\n'), ((2837, 2868), 'numpy.array', 'np.array', (['contour'], {'dtype': 'object'}), '(contour, dtype=object)\n', (2845, 2868), True, 'import numpy as np\n'), ((2889, 2920), 'numpy.array', 'np.array', (['contour'], {'dtype': 'object'}), '(contour, dtype=object)\n', (2897, 2920), True, 'import numpy as np\n'), ((9481, 9506), 'numpy.zeros', 'np.zeros', ([], {'shape': 'img.shape'}), '(shape=img.shape)\n', (9489, 9506), True, 'import numpy as np\n'), ((3097, 3111), 'numpy.roll', 'np.roll', (['ys', '(1)'], {}), '(ys, 1)\n', (3104, 3111), True, 'import numpy as np\n'), ((3122, 3136), 'numpy.roll', 'np.roll', (['xs', '(1)'], {}), '(xs, 1)\n', (3129, 3136), True, 'import numpy as np\n')]
""" Copyright (c) 2021, WSO2 Inc. (http://www.wso2.com). All Rights Reserved. This software is the property of WSO2 Inc. and its suppliers, if any. Dissemination of any information or reproduction of any material contained herein is strictly forbidden, unless permitted by WSO2 in accordance with the WSO2 Commercial License available at http://wso2.com/licenses. For specific language governing the permissions and limitations under this license, please see the license as well as any agreement you’ve entered into with WSO2 governing the purchase of this software and any """ import math import numpy as np import pandas as pd import csv from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.utils import shuffle from sklearn.model_selection import KFold import pymc3 as pm from sklearn.metrics import mean_squared_error def root_mean_squared_percentage_error(y_true, prediction): """ Calculate root mean squared percentage error of predictions compared to y_values from dataset. :param y_true: y_values (actual TPS) from Dataset :param prediction: predicted TPS :return rmspe: Root mean squared percentage error: """ y_true, y_pred = np.array(y_true), np.array(prediction) EPSILON = 1e-10 rmspe = (np.sqrt(np.mean(np.square((y_true - y_pred) / (y_true + EPSILON))))) * 100 return rmspe # Define MAPE function def mean_absolute_percentage_error(y_true, prediction): """ Calculate mean absolute percentage error of predictions compared to y_values from dataset. :param y_true: y_values (actual TPS) from Dataset :param prediction: predicted TPS :return rmspe: Mean Absolute Percentage error: """ y_true, y_pred = np.array(y_true), np.array(prediction) mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100 return mape class BayesianPolyRegression: def fit(self, X, Y): with pm.Model() as self.model: lm = pm.Gamma("l", alpha=2, beta=1) offset = 0.1 nu = pm.HalfCauchy("nu", beta=1) d = 2 cov = nu ** 2 * pm.gp.cov.Polynomial(X.shape[1], lm, d, offset) self.gp = pm.gp.Marginal(cov_func=cov) sigma = pm.HalfCauchy("sigma", beta=1) self.gp.marginal_likelihood("y", X=X, y=Y, noise=sigma) self.map_trace = [pm.find_MAP()] def predict(self, X, with_error=False): with self.model: f_pred = self.gp.conditional('f_pred', X) pred_samples = pm.sample_posterior_predictive( self.map_trace, vars=[f_pred], samples=2000, random_seed=42 ) y_pred, uncer = pred_samples['f_pred'].mean(axis=0), \ pred_samples['f_pred'].std(axis=0) if with_error: return y_pred, uncer / 1000 return y_pred def get_fold_predictions(X, y, eval_X): lr = BayesianPolyRegression() lr.fit(X, y) pred_y, error = lr.predict(eval_X, True) return pred_y, error def run_baysian_poly(): predict_label = 9 # 9 for TPS # Read Data dataset = pd.read_csv('dataset/dataset.csv') # Ignore Errors dataset = dataset.loc[dataset["Error %"] < 5] # Define X and Y columns X = dataset.iloc[:, [0, 2, 3]].values Y = dataset.iloc[:, predict_label].values # Encode 'Scenario Name' le_X_0 = LabelEncoder() X[:, 0] = le_X_0.fit_transform(X[:, 0]) # Create Scaler scaler = MinMaxScaler(feature_range=(0, 1)) # Apply Scaler on X scaler.fit(X) X = scaler.transform(X) # Convert Y to 1D Array - Not necessary Y = Y.flatten() # Shuffle Data X, Y = shuffle(X, Y, random_state=42) predictions = [] errorlist = [] y_actual = [] kf = KFold(n_splits=10) for train_index, test_index in kf.split(X): pred_bayes, error = get_fold_predictions(np.copy(X[train_index]), np.copy(Y[train_index]), np.copy(X[test_index])) for item in pred_bayes: predictions.append(item) for item in error: errorlist.append(item) for item in Y[test_index]: y_actual.append(item) RMSPE = root_mean_squared_percentage_error(y_actual, predictions) MAPE = mean_absolute_percentage_error(y_actual, predictions) RMSE = math.sqrt(mean_squared_error(y_actual, predictions)) print( "Scores for Baysian_Polynomial: \n", "RMSE :", RMSE, "\n", "MAPE: ", MAPE, "\n", "RMSPE: ", RMSPE, "\n", ) file_name = "results/" + "baysian_poly.csv" with open(file_name, "a") as f: writer = csv.writer(f) writer.writerows(zip(y_actual, predictions)) # Run Evaluation run_baysian_poly()
[ "numpy.abs", "sklearn.preprocessing.LabelEncoder", "numpy.copy", "pymc3.find_MAP", "pandas.read_csv", "pymc3.gp.Marginal", "pymc3.sample_posterior_predictive", "sklearn.utils.shuffle", "pymc3.gp.cov.Polynomial", "csv.writer", "sklearn.metrics.mean_squared_error", "numpy.square", "numpy.array", "pymc3.Model", "sklearn.model_selection.KFold", "pymc3.HalfCauchy", "sklearn.preprocessing.MinMaxScaler", "pymc3.Gamma" ]
[((3210, 3244), 'pandas.read_csv', 'pd.read_csv', (['"""dataset/dataset.csv"""'], {}), "('dataset/dataset.csv')\n", (3221, 3244), True, 'import pandas as pd\n'), ((3477, 3491), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (3489, 3491), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((3570, 3604), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(0, 1)'}), '(feature_range=(0, 1))\n', (3582, 3604), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((3772, 3802), 'sklearn.utils.shuffle', 'shuffle', (['X', 'Y'], {'random_state': '(42)'}), '(X, Y, random_state=42)\n', (3779, 3802), False, 'from sklearn.utils import shuffle\n'), ((3872, 3890), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(10)'}), '(n_splits=10)\n', (3877, 3890), False, 'from sklearn.model_selection import KFold\n'), ((1240, 1256), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (1248, 1256), True, 'import numpy as np\n'), ((1258, 1278), 'numpy.array', 'np.array', (['prediction'], {}), '(prediction)\n', (1266, 1278), True, 'import numpy as np\n'), ((1802, 1818), 'numpy.array', 'np.array', (['y_true'], {}), '(y_true)\n', (1810, 1818), True, 'import numpy as np\n'), ((1820, 1840), 'numpy.array', 'np.array', (['prediction'], {}), '(prediction)\n', (1828, 1840), True, 'import numpy as np\n'), ((1860, 1894), 'numpy.abs', 'np.abs', (['((y_true - y_pred) / y_true)'], {}), '((y_true - y_pred) / y_true)\n', (1866, 1894), True, 'import numpy as np\n'), ((1988, 1998), 'pymc3.Model', 'pm.Model', ([], {}), '()\n', (1996, 1998), True, 'import pymc3 as pm\n'), ((2031, 2061), 'pymc3.Gamma', 'pm.Gamma', (['"""l"""'], {'alpha': '(2)', 'beta': '(1)'}), "('l', alpha=2, beta=1)\n", (2039, 2061), True, 'import pymc3 as pm\n'), ((2104, 2131), 'pymc3.HalfCauchy', 'pm.HalfCauchy', (['"""nu"""'], {'beta': '(1)'}), "('nu', beta=1)\n", (2117, 2131), True, 'import pymc3 as pm\n'), ((2250, 2278), 'pymc3.gp.Marginal', 'pm.gp.Marginal', ([], {'cov_func': 'cov'}), '(cov_func=cov)\n', (2264, 2278), True, 'import pymc3 as pm\n'), ((2300, 2330), 'pymc3.HalfCauchy', 'pm.HalfCauchy', (['"""sigma"""'], {'beta': '(1)'}), "('sigma', beta=1)\n", (2313, 2330), True, 'import pymc3 as pm\n'), ((2596, 2691), 'pymc3.sample_posterior_predictive', 'pm.sample_posterior_predictive', (['self.map_trace'], {'vars': '[f_pred]', 'samples': '(2000)', 'random_seed': '(42)'}), '(self.map_trace, vars=[f_pred], samples=2000,\n random_seed=42)\n', (2626, 2691), True, 'import pymc3 as pm\n'), ((3989, 4012), 'numpy.copy', 'np.copy', (['X[train_index]'], {}), '(X[train_index])\n', (3996, 4012), True, 'import numpy as np\n'), ((4063, 4086), 'numpy.copy', 'np.copy', (['Y[train_index]'], {}), '(Y[train_index])\n', (4070, 4086), True, 'import numpy as np\n'), ((4137, 4159), 'numpy.copy', 'np.copy', (['X[test_index]'], {}), '(X[test_index])\n', (4144, 4159), True, 'import numpy as np\n'), ((4533, 4574), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_actual', 'predictions'], {}), '(y_actual, predictions)\n', (4551, 4574), False, 'from sklearn.metrics import mean_squared_error\n'), ((4869, 4882), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (4879, 4882), False, 'import csv\n'), ((1328, 1377), 'numpy.square', 'np.square', (['((y_true - y_pred) / (y_true + EPSILON))'], {}), '((y_true - y_pred) / (y_true + EPSILON))\n', (1337, 1377), True, 'import numpy as np\n'), ((2179, 2226), 'pymc3.gp.cov.Polynomial', 'pm.gp.cov.Polynomial', (['X.shape[1]', 'lm', 'd', 'offset'], {}), '(X.shape[1], lm, d, offset)\n', (2199, 2226), True, 'import pymc3 as pm\n'), ((2430, 2443), 'pymc3.find_MAP', 'pm.find_MAP', ([], {}), '()\n', (2441, 2443), True, 'import pymc3 as pm\n')]