code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import os import onnx import numpy as np from onnx.helper import make_graph, make_model, make_tensor_value_info import pytest from openvino.frontend import FrontEndManager from tests.runtime import get_runtime def create_onnx_model(): add = onnx.helper.make_node("Add", inputs=["x", "y"], outputs=["z"]) const_tensor = onnx.helper.make_tensor("const_tensor", onnx.TensorProto.FLOAT, (2, 2), [0.5, 1, 1.5, 2.0]) const_node = onnx.helper.make_node("Constant", [], outputs=["const_node"], value=const_tensor, name="const_node") mul = onnx.helper.make_node("Mul", inputs=["z", "const_node"], outputs=["out"]) input_tensors = [ make_tensor_value_info("x", onnx.TensorProto.FLOAT, (2, 2)), make_tensor_value_info("y", onnx.TensorProto.FLOAT, (2, 2)), ] output_tensors = [make_tensor_value_info("out", onnx.TensorProto.FLOAT, (2, 2))] graph = make_graph([add, const_node, mul], "graph", input_tensors, output_tensors) return make_model(graph, producer_name="ngraph ONNX Importer") def create_onnx_model_with_subgraphs(): A = onnx.helper.make_tensor_value_info("A", onnx.TensorProto.FLOAT, [3]) B = onnx.helper.make_tensor_value_info("B", onnx.TensorProto.FLOAT, [3]) add_out = onnx.helper.make_tensor_value_info("add_out", onnx.TensorProto.FLOAT, [3]) sub_out = onnx.helper.make_tensor_value_info("sub_out", onnx.TensorProto.FLOAT, [3]) add = onnx.helper.make_node("Add", inputs=["A", "B"], outputs=["add_out"]) sub = onnx.helper.make_node("Sub", inputs=["A", "B"], outputs=["sub_out"]) then_body = make_graph([add], "then_body", [], [add_out]) else_body = make_graph([sub], "else_body", [], [sub_out]) if_node = onnx.helper.make_node( "If", inputs=["cond"], outputs=["res"], then_branch=then_body, else_branch=else_body ) cond = onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []) res = onnx.helper.make_tensor_value_info("res", onnx.TensorProto.FLOAT, [3]) graph = make_graph([if_node], "graph", [cond, A, B], [res]) return make_model(graph, producer_name="ngraph ONNX Importer") def create_onnx_model_with_custom_attributes(): add = onnx.helper.make_node("Add", inputs=["x", "y"], outputs=["z"], attribute_i32=np.int32(10), attribute_i64=np.int64(10), attribute_str="string", attribute_f32=np.float(10), attribute_f64=np.float64(10), attribute_bool=np.bool(True), attribute_type=onnx.TensorProto.INT32, attribute_list_i32=np.array([1, 2, 3], dtype=np.int32), attribute_list_i64=np.array([1, 2, 3], dtype=np.int64), attribute_list_str=np.array(["a", "b", "c"], dtype=np.str), attribute_list_f32=np.array([1, 2, 3], dtype=np.float), attribute_list_f64=np.array([1, 2, 3], dtype=np.float64), attribute_list_bool=[True, False, True], attribute_list_type=np.array([onnx.TensorProto.INT32, onnx.TensorProto.FLOAT]), ) const_tensor = onnx.helper.make_tensor("const_tensor", onnx.TensorProto.FLOAT, (2, 2), [0.5, 1, 1.5, 2.0]) const_node = onnx.helper.make_node("Constant", [], outputs=["const_node"], value=const_tensor, name="const_node") mul = onnx.helper.make_node("Mul", inputs=["z", "const_node"], outputs=["out"]) input_tensors = [ make_tensor_value_info("x", onnx.TensorProto.FLOAT, (2, 2)), make_tensor_value_info("y", onnx.TensorProto.FLOAT, (2, 2)), ] output_tensors = [make_tensor_value_info("out", onnx.TensorProto.FLOAT, (2, 2))] graph = make_graph([add, const_node, mul], "graph", input_tensors, output_tensors) return make_model(graph, producer_name="ngraph ONNX Importer") def run_function(function, *inputs, expected): runtime = get_runtime() computation = runtime.computation(function) actual = computation(*inputs) assert len(actual) == len(expected) for i in range(len(actual)): np.testing.assert_allclose(expected[i], actual[i], rtol=1e-3, atol=1e-6) # FrontEndManager shall be initialized and destroyed after all tests finished # This is because destroy of FrontEndManager will unload all plugins, no objects shall exist after this fem = FrontEndManager() onnx_model_filename = "model.onnx" onnx_model_with_custom_attributes_filename = "model_custom_attributes.onnx" onnx_model_with_subgraphs_filename = "model_subgraphs.onnx" ONNX_FRONTEND_NAME = "onnx" def setup_module(): onnx.save_model(create_onnx_model(), onnx_model_filename) onnx.save_model(create_onnx_model_with_custom_attributes(), onnx_model_with_custom_attributes_filename) onnx.save_model(create_onnx_model_with_subgraphs(), onnx_model_with_subgraphs_filename) def teardown_module(): os.remove(onnx_model_filename) os.remove(onnx_model_with_custom_attributes_filename) os.remove(onnx_model_with_subgraphs_filename) def skip_if_onnx_frontend_is_disabled(): front_ends = fem.get_available_front_ends() if ONNX_FRONTEND_NAME not in front_ends: pytest.skip() def test_convert(): skip_if_onnx_frontend_is_disabled() fe = fem.load_by_framework(framework=ONNX_FRONTEND_NAME) assert fe model = fe.load(onnx_model_filename) assert model function = fe.convert(model) assert function a = np.array([[1, 2], [3, 4]], dtype=np.float32) b = np.array([[2, 3], [4, 5]], dtype=np.float32) expected = np.array([[1.5, 5], [10.5, 18]], dtype=np.float32) run_function(function, a, b, expected=[expected]) @pytest.mark.parametrize("model_filename, inputs, expected", [ [onnx_model_filename, [np.array([[1, 2], [3, 4]], dtype=np.float32), np.array([[2, 3], [4, 5]], dtype=np.float32)], np.array([[1.5, 5], [10.5, 18]], dtype=np.float32)], [onnx_model_with_subgraphs_filename, [np.array(False, dtype=bool), np.array([1, 2, 3], dtype=np.float32), np.array([2, 3, 5], dtype=np.float32)], np.array([-1, -1, -2], dtype=np.float32)], ]) def test_decode_and_convert(model_filename, inputs, expected): skip_if_onnx_frontend_is_disabled() fe = fem.load_by_framework(framework=ONNX_FRONTEND_NAME) assert fe model = fe.load(model_filename) assert model decoded_function = fe.decode(model) assert decoded_function for op in decoded_function.get_ordered_ops(): assert op.get_type_name() in ["Parameter", "Constant", "ONNXFrameworkNode", "ONNXSubgraphFrameworkNode", "Result"] fe.convert(decoded_function) assert decoded_function for op in decoded_function.get_ordered_ops(): assert op.get_type_name() not in ["ONNXFrameworkNode", "ONNXSubgraphFrameworkNode"] run_function(decoded_function, *inputs, expected=[expected]) def test_load_by_model(): skip_if_onnx_frontend_is_disabled() fe = fem.load_by_model(onnx_model_filename) assert fe assert fe.get_name() == "onnx" model = fe.load(onnx_model_filename) assert model decoded_function = fe.decode(model) assert decoded_function assert not fem.load_by_model("test.xx") assert not fem.load_by_model("onnx.yy") def test_onnx_conversion_extension_check_attributes(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend.onnx) import here from openvino.frontend.onnx import ConversionExtension from openvino.frontend import NodeContext import openvino.runtime.opset8 as ops # use the model with attributes fe = fem.load_by_model(onnx_model_with_custom_attributes_filename) assert fe assert fe.get_name() == "onnx" invoked = False def custom_converter(node: NodeContext): nonlocal invoked invoked = True def check_attribute(context, name, expected_type, expected_value): assert context.has_attribute(name) attribute = context.get_attribute(name) assert type(attribute) == expected_type assert attribute == expected_value check_attribute(node, "attribute_i32", int, 10) check_attribute(node, "attribute_i64", int, 10) check_attribute(node, "attribute_str", str, "string") check_attribute(node, "attribute_f32", float, 10.) check_attribute(node, "attribute_f64", float, 10.) check_attribute(node, "attribute_bool", int, 1) check_attribute(node, "attribute_type", int, 6) check_attribute(node, "attribute_list_i32", list, [1, 2, 3]) check_attribute(node, "attribute_list_i64", list, [1, 2, 3]) check_attribute(node, "attribute_list_str", list, ["a", "b", "c"]) check_attribute(node, "attribute_list_f32", list, [1., 2., 3.]) check_attribute(node, "attribute_list_f64", list, [1., 2., 3.]) check_attribute(node, "attribute_list_bool", list, [1, 0, 1]) check_attribute(node, "attribute_list_type", list, [6, 1]) a = node.get_input(0) b = node.get_input(1) add = ops.add(a, b) return [add.output(0)] fe.add_extension(ConversionExtension("Add", custom_converter)) input_model = fe.load(onnx_model_with_custom_attributes_filename) assert input_model model = fe.convert(input_model) assert model assert invoked def test_onnx_conversion_extension_attribute_with_default_value(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend.onnx) import here from openvino.frontend.onnx import ConversionExtension from openvino.frontend import NodeContext import openvino.runtime.opset8 as ops # use the model without attributes fe = fem.load_by_model(onnx_model_filename) assert fe assert fe.get_name() == "onnx" invoked = False def custom_converter(node: NodeContext): nonlocal invoked invoked = True def check_attribute(context, name, default_value): assert not context.has_attribute(name) attribute = context.get_attribute(name, default_value) assert type(attribute) == type(default_value) if isinstance(attribute, np.ndarray): assert np.all(attribute == default_value) else: assert attribute == default_value check_attribute(node, "attribute_i32", np.int32(5)) check_attribute(node, "attribute_i64", np.int64(5)) check_attribute(node, "attribute_str", "abc") check_attribute(node, "attribute_f32", np.float32(5)) check_attribute(node, "attribute_f64", np.float64(5)) check_attribute(node, "attribute_bool", np.bool(False)) check_attribute(node, "attribute_type", onnx.TensorProto.FLOAT) check_attribute(node, "attribute_list_i32", np.array([4, 5, 6], dtype=np.int32)) check_attribute(node, "attribute_list_i64", np.array([4, 5, 6], dtype=np.int64)) check_attribute(node, "attribute_list_str", np.array(["d", "e", "f"], dtype=np.str)) check_attribute(node, "attribute_list_f32", np.array([4, 5, 6], dtype=np.float)) check_attribute(node, "attribute_list_f64", np.array([4, 5, 6], dtype=np.float64)) check_attribute(node, "attribute_list_bool", np.array([True, False, True], dtype=np.bool)) check_attribute(node, "attribute_list_type", np.array([onnx.TensorProto.INT32, onnx.TensorProto.FLOAT])) a = node.get_input(0) b = node.get_input(1) add = ops.add(a, b) return [add.output(0)] fe.add_extension(ConversionExtension("Add", custom_converter)) input_model = fe.load(onnx_model_filename) assert input_model model = fe.convert(input_model) assert model assert invoked def test_onnx_conversion_extension_cast_attributes(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend.onnx) import here from openvino.frontend.onnx import ConversionExtension from openvino.frontend import NodeContext from openvino.runtime import Type import openvino.runtime.opset8 as ops # use the model without attributes fe = fem.load_by_model(onnx_model_with_custom_attributes_filename) assert fe assert fe.get_name() == "onnx" invoked = False def custom_converter(node: NodeContext): nonlocal invoked invoked = True def check_attribute(context, name, expected_value, dtype): attribute = context.get_attribute(name, dtype=dtype) if isinstance(attribute, list): assert type(attribute[0]) == dtype else: assert type(attribute) == dtype assert attribute == expected_value check_attribute(node, "attribute_i32", 10, float) check_attribute(node, "attribute_i64", 10, float) check_attribute(node, "attribute_str", "string", np.str) check_attribute(node, "attribute_f32", 10, int) check_attribute(node, "attribute_f64", 10, int) check_attribute(node, "attribute_bool", True, bool) check_attribute(node, "attribute_type", Type.i32, Type) check_attribute(node, "attribute_list_i32", [1., 2., 3.], float) check_attribute(node, "attribute_list_i64", [1., 2., 3.], float) check_attribute(node, "attribute_list_str", ["a", "b", "c"], np.str) check_attribute(node, "attribute_list_f32", [1, 2, 3], int) check_attribute(node, "attribute_list_f64", [1, 2, 3], int) check_attribute(node, "attribute_list_bool", [True, False, True], bool) check_attribute(node, "attribute_list_type", [Type.i32, Type.f32], Type) a = node.get_input(0) b = node.get_input(1) add = ops.add(a, b) return [add.output(0)] fe.add_extension(ConversionExtension("Add", custom_converter)) input_model = fe.load(onnx_model_with_custom_attributes_filename) assert input_model model = fe.convert(input_model) assert model assert invoked def test_onnx_conversion_extension_common(): skip_if_onnx_frontend_is_disabled() # use common (openvino.frontend) import here from openvino.frontend import ConversionExtension from openvino.frontend import NodeContext import openvino.runtime.opset8 as ops fe = fem.load_by_model(onnx_model_filename) assert fe assert fe.get_name() == "onnx" invoked = False def custom_converter(node: NodeContext): nonlocal invoked invoked = True a = node.get_input(0) b = node.get_input(1) add = ops.add(a, b) return [add.output(0)] fe.add_extension(ConversionExtension("Add", custom_converter)) input_model = fe.load(onnx_model_filename) assert input_model model = fe.convert(input_model) assert model assert invoked def test_onnx_conversion_extension(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend.onnx) import here from openvino.frontend.onnx import ConversionExtension from openvino.frontend import NodeContext import openvino.runtime.opset8 as ops fe = fem.load_by_model(onnx_model_filename) assert fe assert fe.get_name() == "onnx" invoked = False def custom_converter(node: NodeContext): nonlocal invoked invoked = True a = node.get_input(0) b = node.get_input(1) add = ops.add(a, b) return [add.output(0)] fe.add_extension(ConversionExtension("Add", custom_converter)) input_model = fe.load(onnx_model_filename) assert input_model model = fe.convert(input_model) assert model assert invoked def test_op_extension_via_onnx_extension(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend.onnx) import here from openvino.frontend.onnx import OpExtension from openvino.runtime import Core ie = Core() ie.add_extension(OpExtension("FW_OV_OP")) ie.add_extension(OpExtension("OV_OP", "FW_OP_1")) ie.add_extension(OpExtension("OV_OP", "FW_OP_2", {"ov_attribute_1": "fw_attribute_1", "ov_attribute_2": "fw_attribute_2"})) ie.add_extension(OpExtension("OV_OP", "FW_OP_3", {"ov_attribute_1": "fw_attribute_1", "ov_attribute_2": "fw_attribute_2"}, {"ov_attribute_str": "string", "ov_attribute_int": 4, "ov_attribute_bool": True, "ov_attribute_float": 4., "ov_attribute_vec_string": ["str1", "str2", "str3"], "ov_attribute_vec_int": [1, 2, 3, 4, 5, 6, 7], "ov_attribute_vec_bool": [True, False, True], "ov_attribute_vec_float": [1., 2., 3., 4., 5., 6., 7.]})) model = ie.read_model(onnx_model_filename) assert model def test_op_extension_via_frontend_extension(): skip_if_onnx_frontend_is_disabled() # use specific (openvino.frontend) import here from openvino.frontend import OpExtension from openvino.runtime import Core ie = Core() ie.add_extension(OpExtension("FW_OV_OP")) ie.add_extension(OpExtension("OV_OP", "FW_OP_1")) ie.add_extension(OpExtension("OV_OP", "FW_OP_2", {"ov_attribute_1": "fw_attribute_1", "ov_attribute_2": "fw_attribute_2"})) ie.add_extension(OpExtension("OV_OP", "FW_OP_3", {"ov_attribute_1": "fw_attribute_1", "ov_attribute_2": "fw_attribute_2"}, {"ov_attribute_str": "string", "ov_attribute_int": 4, "ov_attribute_bool": True, "ov_attribute_float": 4., "ov_attribute_vec_string": ["str1", "str2", "str3"], "ov_attribute_vec_int": [1, 2, 3, 4, 5, 6, 7], "ov_attribute_vec_bool": [True, False, True], "ov_attribute_vec_float": [1., 2., 3., 4., 5., 6., 7.]})) model = ie.read_model(onnx_model_filename) assert model
[ "onnx.helper.make_node", "os.remove", "onnx.helper.make_tensor_value_info", "numpy.float64", "tests.runtime.get_runtime", "openvino.runtime.opset8.add", "numpy.int32", "numpy.int64", "numpy.bool", "numpy.testing.assert_allclose", "onnx.helper.make_graph", "openvino.frontend.onnx.ConversionExtension", "openvino.frontend.FrontEndManager", "numpy.float", "numpy.all", "openvino.runtime.Core", "onnx.helper.make_model", "numpy.float32", "pytest.skip", "openvino.frontend.OpExtension", "onnx.helper.make_tensor", "numpy.array" ]
[((5073, 5090), 'openvino.frontend.FrontEndManager', 'FrontEndManager', ([], {}), '()\n', (5088, 5090), False, 'from openvino.frontend import FrontEndManager\n'), ((331, 393), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Add"""'], {'inputs': "['x', 'y']", 'outputs': "['z']"}), "('Add', inputs=['x', 'y'], outputs=['z'])\n", (352, 393), False, 'import onnx\n'), ((413, 509), 'onnx.helper.make_tensor', 'onnx.helper.make_tensor', (['"""const_tensor"""', 'onnx.TensorProto.FLOAT', '(2, 2)', '[0.5, 1, 1.5, 2.0]'], {}), "('const_tensor', onnx.TensorProto.FLOAT, (2, 2), [\n 0.5, 1, 1.5, 2.0])\n", (436, 509), False, 'import onnx\n'), ((651, 756), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Constant"""', '[]'], {'outputs': "['const_node']", 'value': 'const_tensor', 'name': '"""const_node"""'}), "('Constant', [], outputs=['const_node'], value=\n const_tensor, name='const_node')\n", (672, 756), False, 'import onnx\n'), ((801, 874), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Mul"""'], {'inputs': "['z', 'const_node']", 'outputs': "['out']"}), "('Mul', inputs=['z', 'const_node'], outputs=['out'])\n", (822, 874), False, 'import onnx\n'), ((1138, 1212), 'onnx.helper.make_graph', 'make_graph', (['[add, const_node, mul]', '"""graph"""', 'input_tensors', 'output_tensors'], {}), "([add, const_node, mul], 'graph', input_tensors, output_tensors)\n", (1148, 1212), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((1224, 1279), 'onnx.helper.make_model', 'make_model', (['graph'], {'producer_name': '"""ngraph ONNX Importer"""'}), "(graph, producer_name='ngraph ONNX Importer')\n", (1234, 1279), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((1330, 1398), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""A"""', 'onnx.TensorProto.FLOAT', '[3]'], {}), "('A', onnx.TensorProto.FLOAT, [3])\n", (1364, 1398), False, 'import onnx\n'), ((1407, 1475), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""B"""', 'onnx.TensorProto.FLOAT', '[3]'], {}), "('B', onnx.TensorProto.FLOAT, [3])\n", (1441, 1475), False, 'import onnx\n'), ((1490, 1564), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""add_out"""', 'onnx.TensorProto.FLOAT', '[3]'], {}), "('add_out', onnx.TensorProto.FLOAT, [3])\n", (1524, 1564), False, 'import onnx\n'), ((1579, 1653), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""sub_out"""', 'onnx.TensorProto.FLOAT', '[3]'], {}), "('sub_out', onnx.TensorProto.FLOAT, [3])\n", (1613, 1653), False, 'import onnx\n'), ((1665, 1733), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Add"""'], {'inputs': "['A', 'B']", 'outputs': "['add_out']"}), "('Add', inputs=['A', 'B'], outputs=['add_out'])\n", (1686, 1733), False, 'import onnx\n'), ((1744, 1812), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Sub"""'], {'inputs': "['A', 'B']", 'outputs': "['sub_out']"}), "('Sub', inputs=['A', 'B'], outputs=['sub_out'])\n", (1765, 1812), False, 'import onnx\n'), ((1830, 1875), 'onnx.helper.make_graph', 'make_graph', (['[add]', '"""then_body"""', '[]', '[add_out]'], {}), "([add], 'then_body', [], [add_out])\n", (1840, 1875), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((1892, 1937), 'onnx.helper.make_graph', 'make_graph', (['[sub]', '"""else_body"""', '[]', '[sub_out]'], {}), "([sub], 'else_body', [], [sub_out])\n", (1902, 1937), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((1953, 2065), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""If"""'], {'inputs': "['cond']", 'outputs': "['res']", 'then_branch': 'then_body', 'else_branch': 'else_body'}), "('If', inputs=['cond'], outputs=['res'], then_branch=\n then_body, else_branch=else_body)\n", (1974, 2065), False, 'import onnx\n'), ((2118, 2187), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""cond"""', 'onnx.TensorProto.BOOL', '[]'], {}), "('cond', onnx.TensorProto.BOOL, [])\n", (2152, 2187), False, 'import onnx\n'), ((2198, 2268), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['"""res"""', 'onnx.TensorProto.FLOAT', '[3]'], {}), "('res', onnx.TensorProto.FLOAT, [3])\n", (2232, 2268), False, 'import onnx\n'), ((2282, 2333), 'onnx.helper.make_graph', 'make_graph', (['[if_node]', '"""graph"""', '[cond, A, B]', '[res]'], {}), "([if_node], 'graph', [cond, A, B], [res])\n", (2292, 2333), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((2345, 2400), 'onnx.helper.make_model', 'make_model', (['graph'], {'producer_name': '"""ngraph ONNX Importer"""'}), "(graph, producer_name='ngraph ONNX Importer')\n", (2355, 2400), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((3703, 3799), 'onnx.helper.make_tensor', 'onnx.helper.make_tensor', (['"""const_tensor"""', 'onnx.TensorProto.FLOAT', '(2, 2)', '[0.5, 1, 1.5, 2.0]'], {}), "('const_tensor', onnx.TensorProto.FLOAT, (2, 2), [\n 0.5, 1, 1.5, 2.0])\n", (3726, 3799), False, 'import onnx\n'), ((3941, 4046), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Constant"""', '[]'], {'outputs': "['const_node']", 'value': 'const_tensor', 'name': '"""const_node"""'}), "('Constant', [], outputs=['const_node'], value=\n const_tensor, name='const_node')\n", (3962, 4046), False, 'import onnx\n'), ((4091, 4164), 'onnx.helper.make_node', 'onnx.helper.make_node', (['"""Mul"""'], {'inputs': "['z', 'const_node']", 'outputs': "['out']"}), "('Mul', inputs=['z', 'const_node'], outputs=['out'])\n", (4112, 4164), False, 'import onnx\n'), ((4428, 4502), 'onnx.helper.make_graph', 'make_graph', (['[add, const_node, mul]', '"""graph"""', 'input_tensors', 'output_tensors'], {}), "([add, const_node, mul], 'graph', input_tensors, output_tensors)\n", (4438, 4502), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4514, 4569), 'onnx.helper.make_model', 'make_model', (['graph'], {'producer_name': '"""ngraph ONNX Importer"""'}), "(graph, producer_name='ngraph ONNX Importer')\n", (4524, 4569), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4633, 4646), 'tests.runtime.get_runtime', 'get_runtime', ([], {}), '()\n', (4644, 4646), False, 'from tests.runtime import get_runtime\n'), ((5623, 5653), 'os.remove', 'os.remove', (['onnx_model_filename'], {}), '(onnx_model_filename)\n', (5632, 5653), False, 'import os\n'), ((5658, 5711), 'os.remove', 'os.remove', (['onnx_model_with_custom_attributes_filename'], {}), '(onnx_model_with_custom_attributes_filename)\n', (5667, 5711), False, 'import os\n'), ((5716, 5761), 'os.remove', 'os.remove', (['onnx_model_with_subgraphs_filename'], {}), '(onnx_model_with_subgraphs_filename)\n', (5725, 5761), False, 'import os\n'), ((6180, 6224), 'numpy.array', 'np.array', (['[[1, 2], [3, 4]]'], {'dtype': 'np.float32'}), '([[1, 2], [3, 4]], dtype=np.float32)\n', (6188, 6224), True, 'import numpy as np\n'), ((6233, 6277), 'numpy.array', 'np.array', (['[[2, 3], [4, 5]]'], {'dtype': 'np.float32'}), '([[2, 3], [4, 5]], dtype=np.float32)\n', (6241, 6277), True, 'import numpy as np\n'), ((6293, 6343), 'numpy.array', 'np.array', (['[[1.5, 5], [10.5, 18]]'], {'dtype': 'np.float32'}), '([[1.5, 5], [10.5, 18]], dtype=np.float32)\n', (6301, 6343), True, 'import numpy as np\n'), ((16739, 16745), 'openvino.runtime.Core', 'Core', ([], {}), '()\n', (16743, 16745), False, 'from openvino.runtime import Core\n'), ((18092, 18098), 'openvino.runtime.Core', 'Core', ([], {}), '()\n', (18096, 18098), False, 'from openvino.runtime import Core\n'), ((905, 964), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""x"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('x', onnx.TensorProto.FLOAT, (2, 2))\n", (927, 964), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((974, 1033), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""y"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('y', onnx.TensorProto.FLOAT, (2, 2))\n", (996, 1033), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((1063, 1124), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""out"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('out', onnx.TensorProto.FLOAT, (2, 2))\n", (1085, 1124), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4195, 4254), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""x"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('x', onnx.TensorProto.FLOAT, (2, 2))\n", (4217, 4254), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4264, 4323), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""y"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('y', onnx.TensorProto.FLOAT, (2, 2))\n", (4286, 4323), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4353, 4414), 'onnx.helper.make_tensor_value_info', 'make_tensor_value_info', (['"""out"""', 'onnx.TensorProto.FLOAT', '(2, 2)'], {}), "('out', onnx.TensorProto.FLOAT, (2, 2))\n", (4375, 4414), False, 'from onnx.helper import make_graph, make_model, make_tensor_value_info\n'), ((4810, 4884), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['expected[i]', 'actual[i]'], {'rtol': '(0.001)', 'atol': '(1e-06)'}), '(expected[i], actual[i], rtol=0.001, atol=1e-06)\n', (4836, 4884), True, 'import numpy as np\n'), ((5906, 5919), 'pytest.skip', 'pytest.skip', ([], {}), '()\n', (5917, 5919), False, 'import pytest\n'), ((9857, 9870), 'openvino.runtime.opset8.add', 'ops.add', (['a', 'b'], {}), '(a, b)\n', (9864, 9870), True, 'import openvino.runtime.opset8 as ops\n'), ((9924, 9968), 'openvino.frontend.onnx.ConversionExtension', 'ConversionExtension', (['"""Add"""', 'custom_converter'], {}), "('Add', custom_converter)\n", (9943, 9968), False, 'from openvino.frontend.onnx import ConversionExtension\n'), ((12349, 12362), 'openvino.runtime.opset8.add', 'ops.add', (['a', 'b'], {}), '(a, b)\n', (12356, 12362), True, 'import openvino.runtime.opset8 as ops\n'), ((12416, 12460), 'openvino.frontend.onnx.ConversionExtension', 'ConversionExtension', (['"""Add"""', 'custom_converter'], {}), "('Add', custom_converter)\n", (12435, 12460), False, 'from openvino.frontend.onnx import ConversionExtension\n'), ((14572, 14585), 'openvino.runtime.opset8.add', 'ops.add', (['a', 'b'], {}), '(a, b)\n', (14579, 14585), True, 'import openvino.runtime.opset8 as ops\n'), ((14639, 14683), 'openvino.frontend.onnx.ConversionExtension', 'ConversionExtension', (['"""Add"""', 'custom_converter'], {}), "('Add', custom_converter)\n", (14658, 14683), False, 'from openvino.frontend.onnx import ConversionExtension\n'), ((15416, 15429), 'openvino.runtime.opset8.add', 'ops.add', (['a', 'b'], {}), '(a, b)\n', (15423, 15429), True, 'import openvino.runtime.opset8 as ops\n'), ((15483, 15527), 'openvino.frontend.onnx.ConversionExtension', 'ConversionExtension', (['"""Add"""', 'custom_converter'], {}), "('Add', custom_converter)\n", (15502, 15527), False, 'from openvino.frontend.onnx import ConversionExtension\n'), ((16242, 16255), 'openvino.runtime.opset8.add', 'ops.add', (['a', 'b'], {}), '(a, b)\n', (16249, 16255), True, 'import openvino.runtime.opset8 as ops\n'), ((16309, 16353), 'openvino.frontend.onnx.ConversionExtension', 'ConversionExtension', (['"""Add"""', 'custom_converter'], {}), "('Add', custom_converter)\n", (16328, 16353), False, 'from openvino.frontend.onnx import ConversionExtension\n'), ((16767, 16790), 'openvino.frontend.OpExtension', 'OpExtension', (['"""FW_OV_OP"""'], {}), "('FW_OV_OP')\n", (16778, 16790), False, 'from openvino.frontend import OpExtension\n'), ((16813, 16844), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_1"""'], {}), "('OV_OP', 'FW_OP_1')\n", (16824, 16844), False, 'from openvino.frontend import OpExtension\n'), ((16867, 16976), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_2"""', "{'ov_attribute_1': 'fw_attribute_1', 'ov_attribute_2': 'fw_attribute_2'}"], {}), "('OV_OP', 'FW_OP_2', {'ov_attribute_1': 'fw_attribute_1',\n 'ov_attribute_2': 'fw_attribute_2'})\n", (16878, 16976), False, 'from openvino.frontend import OpExtension\n'), ((17049, 17496), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_3"""', "{'ov_attribute_1': 'fw_attribute_1', 'ov_attribute_2': 'fw_attribute_2'}", "{'ov_attribute_str': 'string', 'ov_attribute_int': 4, 'ov_attribute_bool': \n True, 'ov_attribute_float': 4.0, 'ov_attribute_vec_string': ['str1',\n 'str2', 'str3'], 'ov_attribute_vec_int': [1, 2, 3, 4, 5, 6, 7],\n 'ov_attribute_vec_bool': [True, False, True], 'ov_attribute_vec_float':\n [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]}"], {}), "('OV_OP', 'FW_OP_3', {'ov_attribute_1': 'fw_attribute_1',\n 'ov_attribute_2': 'fw_attribute_2'}, {'ov_attribute_str': 'string',\n 'ov_attribute_int': 4, 'ov_attribute_bool': True, 'ov_attribute_float':\n 4.0, 'ov_attribute_vec_string': ['str1', 'str2', 'str3'],\n 'ov_attribute_vec_int': [1, 2, 3, 4, 5, 6, 7], 'ov_attribute_vec_bool':\n [True, False, True], 'ov_attribute_vec_float': [1.0, 2.0, 3.0, 4.0, 5.0,\n 6.0, 7.0]})\n", (17060, 17496), False, 'from openvino.frontend import OpExtension\n'), ((18120, 18143), 'openvino.frontend.OpExtension', 'OpExtension', (['"""FW_OV_OP"""'], {}), "('FW_OV_OP')\n", (18131, 18143), False, 'from openvino.frontend import OpExtension\n'), ((18166, 18197), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_1"""'], {}), "('OV_OP', 'FW_OP_1')\n", (18177, 18197), False, 'from openvino.frontend import OpExtension\n'), ((18220, 18329), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_2"""', "{'ov_attribute_1': 'fw_attribute_1', 'ov_attribute_2': 'fw_attribute_2'}"], {}), "('OV_OP', 'FW_OP_2', {'ov_attribute_1': 'fw_attribute_1',\n 'ov_attribute_2': 'fw_attribute_2'})\n", (18231, 18329), False, 'from openvino.frontend import OpExtension\n'), ((18402, 18849), 'openvino.frontend.OpExtension', 'OpExtension', (['"""OV_OP"""', '"""FW_OP_3"""', "{'ov_attribute_1': 'fw_attribute_1', 'ov_attribute_2': 'fw_attribute_2'}", "{'ov_attribute_str': 'string', 'ov_attribute_int': 4, 'ov_attribute_bool': \n True, 'ov_attribute_float': 4.0, 'ov_attribute_vec_string': ['str1',\n 'str2', 'str3'], 'ov_attribute_vec_int': [1, 2, 3, 4, 5, 6, 7],\n 'ov_attribute_vec_bool': [True, False, True], 'ov_attribute_vec_float':\n [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]}"], {}), "('OV_OP', 'FW_OP_3', {'ov_attribute_1': 'fw_attribute_1',\n 'ov_attribute_2': 'fw_attribute_2'}, {'ov_attribute_str': 'string',\n 'ov_attribute_int': 4, 'ov_attribute_bool': True, 'ov_attribute_float':\n 4.0, 'ov_attribute_vec_string': ['str1', 'str2', 'str3'],\n 'ov_attribute_vec_int': [1, 2, 3, 4, 5, 6, 7], 'ov_attribute_vec_bool':\n [True, False, True], 'ov_attribute_vec_float': [1.0, 2.0, 3.0, 4.0, 5.0,\n 6.0, 7.0]})\n", (18413, 18849), False, 'from openvino.frontend import OpExtension\n'), ((2570, 2582), 'numpy.int32', 'np.int32', (['(10)'], {}), '(10)\n', (2578, 2582), True, 'import numpy as np\n'), ((2630, 2642), 'numpy.int64', 'np.int64', (['(10)'], {}), '(10)\n', (2638, 2642), True, 'import numpy as np\n'), ((2746, 2758), 'numpy.float', 'np.float', (['(10)'], {}), '(10)\n', (2754, 2758), True, 'import numpy as np\n'), ((2806, 2820), 'numpy.float64', 'np.float64', (['(10)'], {}), '(10)\n', (2816, 2820), True, 'import numpy as np\n'), ((2869, 2882), 'numpy.bool', 'np.bool', (['(True)'], {}), '(True)\n', (2876, 2882), True, 'import numpy as np\n'), ((3007, 3042), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.int32'}), '([1, 2, 3], dtype=np.int32)\n', (3015, 3042), True, 'import numpy as np\n'), ((3095, 3130), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.int64'}), '([1, 2, 3], dtype=np.int64)\n', (3103, 3130), True, 'import numpy as np\n'), ((3183, 3222), 'numpy.array', 'np.array', (["['a', 'b', 'c']"], {'dtype': 'np.str'}), "(['a', 'b', 'c'], dtype=np.str)\n", (3191, 3222), True, 'import numpy as np\n'), ((3275, 3310), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.float'}), '([1, 2, 3], dtype=np.float)\n', (3283, 3310), True, 'import numpy as np\n'), ((3363, 3400), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.float64'}), '([1, 2, 3], dtype=np.float64)\n', (3371, 3400), True, 'import numpy as np\n'), ((3527, 3585), 'numpy.array', 'np.array', (['[onnx.TensorProto.INT32, onnx.TensorProto.FLOAT]'], {}), '([onnx.TensorProto.INT32, onnx.TensorProto.FLOAT])\n', (3535, 3585), True, 'import numpy as np\n'), ((6599, 6649), 'numpy.array', 'np.array', (['[[1.5, 5], [10.5, 18]]'], {'dtype': 'np.float32'}), '([[1.5, 5], [10.5, 18]], dtype=np.float32)\n', (6607, 6649), True, 'import numpy as np\n'), ((6824, 6864), 'numpy.array', 'np.array', (['[-1, -1, -2]'], {'dtype': 'np.float32'}), '([-1, -1, -2], dtype=np.float32)\n', (6832, 6864), True, 'import numpy as np\n'), ((11160, 11171), 'numpy.int32', 'np.int32', (['(5)'], {}), '(5)\n', (11168, 11171), True, 'import numpy as np\n'), ((11220, 11231), 'numpy.int64', 'np.int64', (['(5)'], {}), '(5)\n', (11228, 11231), True, 'import numpy as np\n'), ((11334, 11347), 'numpy.float32', 'np.float32', (['(5)'], {}), '(5)\n', (11344, 11347), True, 'import numpy as np\n'), ((11396, 11409), 'numpy.float64', 'np.float64', (['(5)'], {}), '(5)\n', (11406, 11409), True, 'import numpy as np\n'), ((11459, 11473), 'numpy.bool', 'np.bool', (['(False)'], {}), '(False)\n', (11466, 11473), True, 'import numpy as np\n'), ((11600, 11635), 'numpy.array', 'np.array', (['[4, 5, 6]'], {'dtype': 'np.int32'}), '([4, 5, 6], dtype=np.int32)\n', (11608, 11635), True, 'import numpy as np\n'), ((11689, 11724), 'numpy.array', 'np.array', (['[4, 5, 6]'], {'dtype': 'np.int64'}), '([4, 5, 6], dtype=np.int64)\n', (11697, 11724), True, 'import numpy as np\n'), ((11778, 11817), 'numpy.array', 'np.array', (["['d', 'e', 'f']"], {'dtype': 'np.str'}), "(['d', 'e', 'f'], dtype=np.str)\n", (11786, 11817), True, 'import numpy as np\n'), ((11871, 11906), 'numpy.array', 'np.array', (['[4, 5, 6]'], {'dtype': 'np.float'}), '([4, 5, 6], dtype=np.float)\n', (11879, 11906), True, 'import numpy as np\n'), ((11960, 11997), 'numpy.array', 'np.array', (['[4, 5, 6]'], {'dtype': 'np.float64'}), '([4, 5, 6], dtype=np.float64)\n', (11968, 11997), True, 'import numpy as np\n'), ((12052, 12096), 'numpy.array', 'np.array', (['[True, False, True]'], {'dtype': 'np.bool'}), '([True, False, True], dtype=np.bool)\n', (12060, 12096), True, 'import numpy as np\n'), ((12151, 12209), 'numpy.array', 'np.array', (['[onnx.TensorProto.INT32, onnx.TensorProto.FLOAT]'], {}), '([onnx.TensorProto.INT32, onnx.TensorProto.FLOAT])\n', (12159, 12209), True, 'import numpy as np\n'), ((6495, 6539), 'numpy.array', 'np.array', (['[[1, 2], [3, 4]]'], {'dtype': 'np.float32'}), '([[1, 2], [3, 4]], dtype=np.float32)\n', (6503, 6539), True, 'import numpy as np\n'), ((6547, 6591), 'numpy.array', 'np.array', (['[[2, 3], [4, 5]]'], {'dtype': 'np.float32'}), '([[2, 3], [4, 5]], dtype=np.float32)\n', (6555, 6591), True, 'import numpy as np\n'), ((6699, 6726), 'numpy.array', 'np.array', (['(False)'], {'dtype': 'bool'}), '(False, dtype=bool)\n', (6707, 6726), True, 'import numpy as np\n'), ((6734, 6771), 'numpy.array', 'np.array', (['[1, 2, 3]'], {'dtype': 'np.float32'}), '([1, 2, 3], dtype=np.float32)\n', (6742, 6771), True, 'import numpy as np\n'), ((6779, 6816), 'numpy.array', 'np.array', (['[2, 3, 5]'], {'dtype': 'np.float32'}), '([2, 3, 5], dtype=np.float32)\n', (6787, 6816), True, 'import numpy as np\n'), ((11009, 11043), 'numpy.all', 'np.all', (['(attribute == default_value)'], {}), '(attribute == default_value)\n', (11015, 11043), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: <NAME> <<EMAIL>> # # MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from typing import * import numpy as np from transform.base import HomographyTransformer, ShapeT class Rotation3DTransformer(HomographyTransformer): """Transforms (rotation and/or translation) entire images or just points in 3D space. The instance is meant to be immutable because of performance demands. """ def __init__( self, theta: float = 0, phi: float = 0, gamma: float = 0, dx: float = 0, dy: float = 0, dz: float = 0 ): """Constructors the transformer. :param theta: x-axis rotation angle (in radians) :param phi: y-axis rotation angle (in radians) :param gamma: z-axis rotation angle (in radians) :param dx: translation in x-axis :param dy: translation in y-axis :param dz: translation in z-axis """ self._theta: float = theta self._phi: float = phi self._gamma: float = gamma self._dx: float = dx self._dy: float = dy self._dz: float = dz self._rotation_mat = self.rotation_matrix(theta, phi, gamma) @property def homography(self) -> np.ndarray: # docstring inherited return self._rotation_mat @property def theta(self) -> float: """Returns the x-axis rotation angle (in radians). """ return self._theta @property def phi(self) -> float: """Returns the y-axis rotation angle (in radians). """ return self._phi @property def gamma(self) -> float: """Returns the z-axis rotation angle (in radians). """ return self._gamma @property def dx(self) -> float: """Returns the translation in the x-axis. """ return self._dx @property def dy(self) -> float: """Returns the translation in the y-axis. """ return self._dy @property def dz(self) -> float: """Returns the translation in the z-axis. """ return self._dz def _build_homography( self, img_shape: Optional[ShapeT] = None ) -> np.ndarray: return self._build_homography_for_shape(img_shape) @staticmethod def projection_2d3d_matrix(img_shape: ShapeT) -> np.ndarray: return np.float32(( (1, 0, -(img_shape[1] / 2.0)), (0, 1, -(img_shape[0] / 2.0)), (0, 0, 1), (0, 0, 1) )) @staticmethod def projection_3d2d_matrix( img_shape: ShapeT, focal: float ) -> np.ndarray: return np.float32(( (focal, 0, img_shape[1] / 2.0, 0), (0, focal, img_shape[0] / 2.0, 0), (0, 0, 1, 0) )) @staticmethod def rotation_matrix( theta: float = 0, phi: float = 0, gamma: float = 0 ) -> np.ndarray: x_rotation_mat = Rotation3DTransformer.x_axis_rotation_matrix(theta) y_rotation_mat = Rotation3DTransformer.y_axis_rotation_matrix(phi) z_rotation_mat = Rotation3DTransformer.z_axis_rotation_matrix(gamma) return np.dot(np.dot(x_rotation_mat, y_rotation_mat), z_rotation_mat) @staticmethod def x_axis_rotation_matrix(theta: float = 0) -> np.ndarray: sin_theta, cos_theta = np.sin(theta), np.cos(theta) return np.float32(( (1, 0, 0, 0), (0, cos_theta, -sin_theta, 0), (0, sin_theta, cos_theta, 0), (0, 0, 0, 1) )) @staticmethod def y_axis_rotation_matrix(phi: float = 0) -> np.ndarray: sin_phi, cos_phi = np.sin(phi), np.cos(phi) return np.float32(( (cos_phi, 0, -sin_phi, 0), (0, 1, 0, 0), (sin_phi, 0, cos_phi, 0), (0, 0, 0, 1) )) @staticmethod def z_axis_rotation_matrix(gamma: float = 0) -> np.ndarray: sin_gamma, cos_gamma = np.sin(gamma), np.cos(gamma) return np.float32(( (cos_gamma, -sin_gamma, 0, 0), (sin_gamma, cos_gamma, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) )) @staticmethod def translation_matrix( dx: float = 0, dy: float = 0, dz: float = 0 ) -> np.ndarray: return np.float32(( (1, 0, 0, dx), (0, 1, 0, dy), (0, 0, 1, dz), (0, 0, 0, 1) )) def _build_homography_for_shape(self, output_shape: ShapeT) -> np.ndarray: focal = self._calc_focal_length(output_shape) projection_2d3d_mat = self.projection_2d3d_matrix(output_shape) projection_3d2d_mat = self.projection_3d2d_matrix(output_shape, focal) translation_mat = self.translation_matrix(self.dx, self.dy, focal) return np.dot( projection_3d2d_mat, np.dot( translation_mat, np.dot(self._rotation_mat, projection_2d3d_mat) ) ) def _calc_focal_length(self, output_shape: ShapeT) -> float: sin_gamma = np.sin(self._gamma) dist = np.linalg.norm(output_shape) focal = dist / (2 * sin_gamma if sin_gamma != 0 else 1) return focal
[ "numpy.float32", "numpy.sin", "numpy.linalg.norm", "numpy.cos", "numpy.dot" ]
[((3620, 3721), 'numpy.float32', 'np.float32', (['((1, 0, -(img_shape[1] / 2.0)), (0, 1, -(img_shape[0] / 2.0)), (0, 0, 1), (\n 0, 0, 1))'], {}), '(((1, 0, -(img_shape[1] / 2.0)), (0, 1, -(img_shape[0] / 2.0)), (\n 0, 0, 1), (0, 0, 1)))\n', (3630, 3721), True, 'import numpy as np\n'), ((3921, 4022), 'numpy.float32', 'np.float32', (['((focal, 0, img_shape[1] / 2.0, 0), (0, focal, img_shape[0] / 2.0, 0), (0, \n 0, 1, 0))'], {}), '(((focal, 0, img_shape[1] / 2.0, 0), (0, focal, img_shape[0] / \n 2.0, 0), (0, 0, 1, 0)))\n', (3931, 4022), True, 'import numpy as np\n'), ((4703, 4808), 'numpy.float32', 'np.float32', (['((1, 0, 0, 0), (0, cos_theta, -sin_theta, 0), (0, sin_theta, cos_theta, 0),\n (0, 0, 0, 1))'], {}), '(((1, 0, 0, 0), (0, cos_theta, -sin_theta, 0), (0, sin_theta,\n cos_theta, 0), (0, 0, 0, 1)))\n', (4713, 4808), True, 'import numpy as np\n'), ((5035, 5133), 'numpy.float32', 'np.float32', (['((cos_phi, 0, -sin_phi, 0), (0, 1, 0, 0), (sin_phi, 0, cos_phi, 0), (0, 0, \n 0, 1))'], {}), '(((cos_phi, 0, -sin_phi, 0), (0, 1, 0, 0), (sin_phi, 0, cos_phi, \n 0), (0, 0, 0, 1)))\n', (5045, 5133), True, 'import numpy as np\n'), ((5369, 5474), 'numpy.float32', 'np.float32', (['((cos_gamma, -sin_gamma, 0, 0), (sin_gamma, cos_gamma, 0, 0), (0, 0, 1, 0),\n (0, 0, 0, 1))'], {}), '(((cos_gamma, -sin_gamma, 0, 0), (sin_gamma, cos_gamma, 0, 0), (0,\n 0, 1, 0), (0, 0, 0, 1)))\n', (5379, 5474), True, 'import numpy as np\n'), ((5683, 5754), 'numpy.float32', 'np.float32', (['((1, 0, 0, dx), (0, 1, 0, dy), (0, 0, 1, dz), (0, 0, 0, 1))'], {}), '(((1, 0, 0, dx), (0, 1, 0, dy), (0, 0, 1, dz), (0, 0, 0, 1)))\n', (5693, 5754), True, 'import numpy as np\n'), ((6505, 6524), 'numpy.sin', 'np.sin', (['self._gamma'], {}), '(self._gamma)\n', (6511, 6524), True, 'import numpy as np\n'), ((6541, 6569), 'numpy.linalg.norm', 'np.linalg.norm', (['output_shape'], {}), '(output_shape)\n', (6555, 6569), True, 'import numpy as np\n'), ((4470, 4508), 'numpy.dot', 'np.dot', (['x_rotation_mat', 'y_rotation_mat'], {}), '(x_rotation_mat, y_rotation_mat)\n', (4476, 4508), True, 'import numpy as np\n'), ((4648, 4661), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (4654, 4661), True, 'import numpy as np\n'), ((4663, 4676), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (4669, 4676), True, 'import numpy as np\n'), ((4984, 4995), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (4990, 4995), True, 'import numpy as np\n'), ((4997, 5008), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (5003, 5008), True, 'import numpy as np\n'), ((5314, 5327), 'numpy.sin', 'np.sin', (['gamma'], {}), '(gamma)\n', (5320, 5327), True, 'import numpy as np\n'), ((5329, 5342), 'numpy.cos', 'np.cos', (['gamma'], {}), '(gamma)\n', (5335, 5342), True, 'import numpy as np\n'), ((6338, 6385), 'numpy.dot', 'np.dot', (['self._rotation_mat', 'projection_2d3d_mat'], {}), '(self._rotation_mat, projection_2d3d_mat)\n', (6344, 6385), True, 'import numpy as np\n')]
import argparse import lzma import pickle import os import urllib.request import sys import zipfile import numpy as np import sklearn.metrics class Dataset: def __init__( self, name="isnt_it_ironic.train.zip", url="https://ufal.mff.cuni.cz/~straka/courses/npfl129/1920/datasets/", ): if not os.path.exists(name): print("Downloading dataset {}...".format(name), file=sys.stderr) urllib.request.urlretrieve(url + name, filename=name) # Load the dataset and split it into `data` and `target`. self.data = [] self.target = [] with zipfile.ZipFile(name, "r") as dataset_file: with dataset_file.open(name.replace(".zip", ".txt"), "r") as train_file: for line in train_file: label, text = line.decode("utf-8").rstrip("\n").split("\t") self.data.append(text) self.target.append(int(label)) self.target = np.array(self.target, np.int32) parser = argparse.ArgumentParser() parser.add_argument( "--model_path", default="isnt_it_ironic.model", type=str, help="Model path" ) parser.add_argument("--seed", default=42, type=int, help="Random seed") if __name__ == "__main__": args = parser.parse_args() # Set random seed np.random.seed(args.seed) # Load the dataset, downloading it if required train = Dataset() # TODO: Train the model. # TODO: The trained model needs to be saved. All sklearn models can # be serialized and deserialized using the standard `pickle` module. # Additionally, we also compress the model. # # To save a model, open a target file for binary access, and use # `pickle.dump` to save the model to the opened file: def recodex_predict(data): # The `data` is a Python list containing tweets as `str`ings. args = parser.parse_args([]) with lzma.open("isnt_it_ironic.model", "rb") as model_file: model = pickle.load(model_file) predictions = model.predict(data) return predictions.astype(np.int8) # TODO: Return the predictions as a Python list or Numpy array of # binary labels of the tweets.
[ "lzma.open", "numpy.random.seed", "argparse.ArgumentParser", "zipfile.ZipFile", "os.path.exists", "pickle.load", "numpy.array" ]
[((1037, 1062), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1060, 1062), False, 'import argparse\n'), ((1324, 1349), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (1338, 1349), True, 'import numpy as np\n'), ((994, 1025), 'numpy.array', 'np.array', (['self.target', 'np.int32'], {}), '(self.target, np.int32)\n', (1002, 1025), True, 'import numpy as np\n'), ((1920, 1959), 'lzma.open', 'lzma.open', (['"""isnt_it_ironic.model"""', '"""rb"""'], {}), "('isnt_it_ironic.model', 'rb')\n", (1929, 1959), False, 'import lzma\n'), ((1991, 2014), 'pickle.load', 'pickle.load', (['model_file'], {}), '(model_file)\n', (2002, 2014), False, 'import pickle\n'), ((335, 355), 'os.path.exists', 'os.path.exists', (['name'], {}), '(name)\n', (349, 355), False, 'import os\n'), ((629, 655), 'zipfile.ZipFile', 'zipfile.ZipFile', (['name', '"""r"""'], {}), "(name, 'r')\n", (644, 655), False, 'import zipfile\n')]
import argparse import logging import os import pprint import random import numpy as np import torch import torch.optim as optim from common.dataset import DatasetFactory from common.evaluation import EvaluatorFactory from common.train import TrainerFactory from utils.serialization import load_checkpoint from .model import VDPWIModel def evaluate_dataset(split_name, dataset_cls, model, embedding, loader, batch_size, device): saved_model_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, loader, batch_size, device) scores, metric_names = saved_model_evaluator.get_scores() logger.info('Evaluation metrics for {}'.format(split_name)) logger.info('\t'.join([' '] + metric_names)) logger.info('\t'.join([split_name] + list(map(str, scores)))) if __name__ == '__main__': parser = argparse.ArgumentParser(description='PyTorch implementation of VDPWI') parser.add_argument('model_outfile', help='file to save final model') parser.add_argument('--dataset', help='dataset to use, one of [sick, msrvid, trecqa, wikiqa]', default='sick') parser.add_argument('--word-vectors-dir', help='word vectors directory', default=os.path.join(os.pardir, 'Castor-data', 'embeddings', 'GloVe')) parser.add_argument('--word-vectors-file', help='word vectors filename', default='glove.840B.300d.txt') parser.add_argument('--word-vectors-dim', type=int, default=300, help='number of dimensions of word vectors (default: 300)') parser.add_argument('--skip-training', help='will load pre-trained model', action='store_true') parser.add_argument('--device', type=int, default=0, help='GPU device, -1 for CPU (default: 0)') parser.add_argument('--sparse-features', action='store_true', default=False, help='use sparse features (default: false)') parser.add_argument('--batch-size', type=int, default=16, help='input batch size for training (default: 64)') parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (default: 10)') parser.add_argument('--optimizer', type=str, default='rmsprop', help='optimizer to use: adam, sgd, or rmsprop (default: adam)') parser.add_argument('--lr', type=float, default=5E-4, help='learning rate (default: 0.001)') parser.add_argument('--lr-reduce-factor', type=float, default=0.3, help='learning rate reduce factor after plateau (default: 0.3)') parser.add_argument('--patience', type=float, default=2, help='learning rate patience after seeing plateau (default: 2)') parser.add_argument('--momentum', type=float, default=0.1, help='momentum (default: 0.1)') parser.add_argument('--epsilon', type=float, default=1e-8, help='Adam epsilon (default: 1e-8)') parser.add_argument('--log-interval', type=int, default=10, help='how many batches to wait before logging training status (default: 10)') parser.add_argument('--regularization', type=float, default=1E-5, help='Regularization for the optimizer (default: 0.00001)') parser.add_argument('--hidden-units', type=int, default=250, help='number of hidden units in the RNN') parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--tensorboard', action='store_true', default=False, help='use TensorBoard to visualize training (default: false)') parser.add_argument('--run-label', type=str, help='label to describe run') # VDPWI args parser.add_argument('--classifier', type=str, default='vdpwi', choices=['vdpwi', 'resnet']) parser.add_argument('--clip-norm', type=float, default=50) parser.add_argument('--decay', type=float, default=0.95) parser.add_argument('--res-fmaps', type=int, default=32) parser.add_argument('--res-layers', type=int, default=16) parser.add_argument('--rnn-hidden-dim', type=int, default=250) args = parser.parse_args() device = torch.device(f'cuda:{args.device}' if torch.cuda.is_available() and args.device >= 0 else 'cpu') random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.device != -1: torch.cuda.manual_seed(args.seed) # logging setup logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) logger.info(pprint.pformat(vars(args))) dataset_cls, embedding, train_loader, test_loader, dev_loader \ = DatasetFactory.get_dataset(args.dataset, args.word_vectors_dir, args.word_vectors_file, args.batch_size, args.device) model_config = { 'classifier': args.classifier, 'rnn_hidden_dim': args.rnn_hidden_dim, 'n_labels': dataset_cls.NUM_CLASSES, 'device': device, 'res_layers': args.res_layers, 'res_fmaps': args.res_fmaps } model = VDPWIModel(args.word_vectors_dim, model_config) model.to(device) embedding = embedding.to(device) optimizer = None if args.optimizer == 'adam': optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.regularization, eps=args.epsilon) elif args.optimizer == 'sgd': optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.regularization) elif args.optimizer == "rmsprop": optimizer = optim.RMSprop(model.parameters(), lr=args.lr, momentum=args.momentum, alpha=args.decay, weight_decay=args.regularization) else: raise ValueError('optimizer not recognized: it should be one of adam, sgd, or rmsprop') train_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, train_loader, args.batch_size, args.device) test_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, test_loader, args.batch_size, args.device) dev_evaluator = EvaluatorFactory.get_evaluator(dataset_cls, model, embedding, dev_loader, args.batch_size, args.device) trainer_config = { 'optimizer': optimizer, 'batch_size': args.batch_size, 'log_interval': args.log_interval, 'model_outfile': args.model_outfile, 'lr_reduce_factor': args.lr_reduce_factor, 'patience': args.patience, 'tensorboard': args.tensorboard, 'run_label': args.run_label, 'logger': logger, 'clip_norm': args.clip_norm } trainer = TrainerFactory.get_trainer(args.dataset, model, embedding, train_loader, trainer_config, train_evaluator, test_evaluator, dev_evaluator) if not args.skip_training: total_params = 0 for param in model.parameters(): size = [s for s in param.size()] total_params += np.prod(size) logger.info('Total number of parameters: %s', total_params) trainer.train(args.epochs) _, _, state_dict, _, _ = load_checkpoint(args.model_outfile) for k, tensor in state_dict.items(): state_dict[k] = tensor.to(device) model.load_state_dict(state_dict) if dev_loader: evaluate_dataset('dev', dataset_cls, model, embedding, dev_loader, args.batch_size, args.device) evaluate_dataset('test', dataset_cls, model, embedding, test_loader, args.batch_size, args.device)
[ "numpy.random.seed", "argparse.ArgumentParser", "torch.manual_seed", "logging.StreamHandler", "torch.cuda.manual_seed", "common.train.TrainerFactory.get_trainer", "utils.serialization.load_checkpoint", "logging.Formatter", "common.evaluation.EvaluatorFactory.get_evaluator", "numpy.prod", "random.seed", "torch.cuda.is_available", "common.dataset.DatasetFactory.get_dataset", "os.path.join", "logging.getLogger" ]
[((461, 554), 'common.evaluation.EvaluatorFactory.get_evaluator', 'EvaluatorFactory.get_evaluator', (['dataset_cls', 'model', 'embedding', 'loader', 'batch_size', 'device'], {}), '(dataset_cls, model, embedding, loader,\n batch_size, device)\n', (491, 554), False, 'from common.evaluation import EvaluatorFactory\n'), ((833, 903), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch implementation of VDPWI"""'}), "(description='PyTorch implementation of VDPWI')\n", (856, 903), False, 'import argparse\n'), ((3995, 4017), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (4006, 4017), False, 'import random\n'), ((4022, 4047), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (4036, 4047), True, 'import numpy as np\n'), ((4052, 4080), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (4069, 4080), False, 'import torch\n'), ((4183, 4210), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4200, 4210), False, 'import logging\n'), ((4255, 4278), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (4276, 4278), False, 'import logging\n'), ((4326, 4374), 'logging.Formatter', 'logging.Formatter', (['"""%(levelname)s - %(message)s"""'], {}), "('%(levelname)s - %(message)s')\n", (4343, 4374), False, 'import logging\n'), ((4556, 4678), 'common.dataset.DatasetFactory.get_dataset', 'DatasetFactory.get_dataset', (['args.dataset', 'args.word_vectors_dir', 'args.word_vectors_file', 'args.batch_size', 'args.device'], {}), '(args.dataset, args.word_vectors_dir, args.\n word_vectors_file, args.batch_size, args.device)\n', (4582, 4678), False, 'from common.dataset import DatasetFactory\n'), ((5699, 5808), 'common.evaluation.EvaluatorFactory.get_evaluator', 'EvaluatorFactory.get_evaluator', (['dataset_cls', 'model', 'embedding', 'train_loader', 'args.batch_size', 'args.device'], {}), '(dataset_cls, model, embedding, train_loader,\n args.batch_size, args.device)\n', (5729, 5808), False, 'from common.evaluation import EvaluatorFactory\n'), ((5826, 5934), 'common.evaluation.EvaluatorFactory.get_evaluator', 'EvaluatorFactory.get_evaluator', (['dataset_cls', 'model', 'embedding', 'test_loader', 'args.batch_size', 'args.device'], {}), '(dataset_cls, model, embedding, test_loader,\n args.batch_size, args.device)\n', (5856, 5934), False, 'from common.evaluation import EvaluatorFactory\n'), ((5951, 6058), 'common.evaluation.EvaluatorFactory.get_evaluator', 'EvaluatorFactory.get_evaluator', (['dataset_cls', 'model', 'embedding', 'dev_loader', 'args.batch_size', 'args.device'], {}), '(dataset_cls, model, embedding, dev_loader,\n args.batch_size, args.device)\n', (5981, 6058), False, 'from common.evaluation import EvaluatorFactory\n'), ((6485, 6625), 'common.train.TrainerFactory.get_trainer', 'TrainerFactory.get_trainer', (['args.dataset', 'model', 'embedding', 'train_loader', 'trainer_config', 'train_evaluator', 'test_evaluator', 'dev_evaluator'], {}), '(args.dataset, model, embedding, train_loader,\n trainer_config, train_evaluator, test_evaluator, dev_evaluator)\n', (6511, 6625), False, 'from common.train import TrainerFactory\n'), ((6940, 6975), 'utils.serialization.load_checkpoint', 'load_checkpoint', (['args.model_outfile'], {}), '(args.model_outfile)\n', (6955, 6975), False, 'from utils.serialization import load_checkpoint\n'), ((4115, 4148), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (4137, 4148), False, 'import torch\n'), ((1178, 1239), 'os.path.join', 'os.path.join', (['os.pardir', '"""Castor-data"""', '"""embeddings"""', '"""GloVe"""'], {}), "(os.pardir, 'Castor-data', 'embeddings', 'GloVe')\n", (1190, 1239), False, 'import os\n'), ((6793, 6806), 'numpy.prod', 'np.prod', (['size'], {}), '(size)\n', (6800, 6806), True, 'import numpy as np\n'), ((3931, 3956), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3954, 3956), False, 'import torch\n')]
import matplotlib.pyplot as plt import numpy as np import time, os, sys from scipy.fftpack import fft, ifft, fftshift import math sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF import dftModel as DF (fs, x) = UF.wavread('../../../sounds/ocean.wav') (fs, x2) = UF.wavread('../../../sounds/impulse-response.wav') x1 = x[40000:44096] N = 4096 plt.figure(1, figsize=(9.5, 7)) plt.subplot(3,2,1) plt.title('x1 (ocean.wav)') plt.plot(x1, 'b') plt.axis([0,N,min(x1),max(x1)]) plt.subplot(3,2,2) plt.title('x2 (impulse-response.wav)') plt.plot(x2, 'b') plt.axis([0,N,min(x2),max(x2)]) mX1, pX1 = DF.dftAnal(x1, np.ones(N), N) mX1 = mX1 - max(mX1) plt.subplot(3,2,3) plt.title('X1') plt.plot(mX1, 'r') plt.axis([0,N/2,-70,0]) mX2, pX2 = DF.dftAnal(x2, np.ones(N), N) mX2 = mX2 - max(mX2) plt.subplot(3,2,4) plt.title('X2') plt.plot(mX2, 'r') plt.axis([0,N/2,-70,0]) y = np.convolve(x1, x2) mY, pY = DF.dftAnal(y[0:N], np.ones(N), N) mY = mY - max(mY) plt.subplot(3,2,5) plt.title('DFT(x1 * x2)') plt.plot(mY, 'r') plt.axis([0,N/2,-70,0]) plt.subplot(3,2,6) plt.title('X1 x X2') mY1 = 20*np.log10(np.abs(fft(x1) * fft(x2))) mY1 = mY1 - max(mY1) plt.plot(mY1[0:N//2], 'r') plt.axis([0,N//2,-84,0]) plt.tight_layout() plt.savefig('convolution-1.png') plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "os.path.realpath", "matplotlib.pyplot.axis", "numpy.ones", "scipy.fftpack.fft", "matplotlib.pyplot.figure", "numpy.convolve", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.savefig", "utilFunctions.wavread" ]
[((295, 334), 'utilFunctions.wavread', 'UF.wavread', (['"""../../../sounds/ocean.wav"""'], {}), "('../../../sounds/ocean.wav')\n", (305, 334), True, 'import utilFunctions as UF\n'), ((346, 396), 'utilFunctions.wavread', 'UF.wavread', (['"""../../../sounds/impulse-response.wav"""'], {}), "('../../../sounds/impulse-response.wav')\n", (356, 396), True, 'import utilFunctions as UF\n'), ((427, 458), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(9.5, 7)'}), '(1, figsize=(9.5, 7))\n', (437, 458), True, 'import matplotlib.pyplot as plt\n'), ((459, 479), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(1)'], {}), '(3, 2, 1)\n', (470, 479), True, 'import matplotlib.pyplot as plt\n'), ((478, 505), 'matplotlib.pyplot.title', 'plt.title', (['"""x1 (ocean.wav)"""'], {}), "('x1 (ocean.wav)')\n", (487, 505), True, 'import matplotlib.pyplot as plt\n'), ((506, 523), 'matplotlib.pyplot.plot', 'plt.plot', (['x1', '"""b"""'], {}), "(x1, 'b')\n", (514, 523), True, 'import matplotlib.pyplot as plt\n'), ((557, 577), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(2)'], {}), '(3, 2, 2)\n', (568, 577), True, 'import matplotlib.pyplot as plt\n'), ((576, 614), 'matplotlib.pyplot.title', 'plt.title', (['"""x2 (impulse-response.wav)"""'], {}), "('x2 (impulse-response.wav)')\n", (585, 614), True, 'import matplotlib.pyplot as plt\n'), ((615, 632), 'matplotlib.pyplot.plot', 'plt.plot', (['x2', '"""b"""'], {}), "(x2, 'b')\n", (623, 632), True, 'import matplotlib.pyplot as plt\n'), ((728, 748), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(3)'], {}), '(3, 2, 3)\n', (739, 748), True, 'import matplotlib.pyplot as plt\n'), ((747, 762), 'matplotlib.pyplot.title', 'plt.title', (['"""X1"""'], {}), "('X1')\n", (756, 762), True, 'import matplotlib.pyplot as plt\n'), ((763, 781), 'matplotlib.pyplot.plot', 'plt.plot', (['mX1', '"""r"""'], {}), "(mX1, 'r')\n", (771, 781), True, 'import matplotlib.pyplot as plt\n'), ((782, 810), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, N / 2, -70, 0]'], {}), '([0, N / 2, -70, 0])\n', (790, 810), True, 'import matplotlib.pyplot as plt\n'), ((869, 889), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(4)'], {}), '(3, 2, 4)\n', (880, 889), True, 'import matplotlib.pyplot as plt\n'), ((888, 903), 'matplotlib.pyplot.title', 'plt.title', (['"""X2"""'], {}), "('X2')\n", (897, 903), True, 'import matplotlib.pyplot as plt\n'), ((904, 922), 'matplotlib.pyplot.plot', 'plt.plot', (['mX2', '"""r"""'], {}), "(mX2, 'r')\n", (912, 922), True, 'import matplotlib.pyplot as plt\n'), ((923, 951), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, N / 2, -70, 0]'], {}), '([0, N / 2, -70, 0])\n', (931, 951), True, 'import matplotlib.pyplot as plt\n'), ((952, 971), 'numpy.convolve', 'np.convolve', (['x1', 'x2'], {}), '(x1, x2)\n', (963, 971), True, 'import numpy as np\n'), ((1033, 1053), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(5)'], {}), '(3, 2, 5)\n', (1044, 1053), True, 'import matplotlib.pyplot as plt\n'), ((1052, 1077), 'matplotlib.pyplot.title', 'plt.title', (['"""DFT(x1 * x2)"""'], {}), "('DFT(x1 * x2)')\n", (1061, 1077), True, 'import matplotlib.pyplot as plt\n'), ((1078, 1095), 'matplotlib.pyplot.plot', 'plt.plot', (['mY', '"""r"""'], {}), "(mY, 'r')\n", (1086, 1095), True, 'import matplotlib.pyplot as plt\n'), ((1096, 1124), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, N / 2, -70, 0]'], {}), '([0, N / 2, -70, 0])\n', (1104, 1124), True, 'import matplotlib.pyplot as plt\n'), ((1121, 1141), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(6)'], {}), '(3, 2, 6)\n', (1132, 1141), True, 'import matplotlib.pyplot as plt\n'), ((1140, 1160), 'matplotlib.pyplot.title', 'plt.title', (['"""X1 x X2"""'], {}), "('X1 x X2')\n", (1149, 1160), True, 'import matplotlib.pyplot as plt\n'), ((1227, 1255), 'matplotlib.pyplot.plot', 'plt.plot', (['mY1[0:N // 2]', '"""r"""'], {}), "(mY1[0:N // 2], 'r')\n", (1235, 1255), True, 'import matplotlib.pyplot as plt\n'), ((1254, 1283), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, N // 2, -84, 0]'], {}), '([0, N // 2, -84, 0])\n', (1262, 1283), True, 'import matplotlib.pyplot as plt\n'), ((1280, 1298), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1296, 1298), True, 'import matplotlib.pyplot as plt\n'), ((1299, 1331), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""convolution-1.png"""'], {}), "('convolution-1.png')\n", (1310, 1331), True, 'import matplotlib.pyplot as plt\n'), ((1332, 1342), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1340, 1342), True, 'import matplotlib.pyplot as plt\n'), ((692, 702), 'numpy.ones', 'np.ones', (['N'], {}), '(N)\n', (699, 702), True, 'import numpy as np\n'), ((833, 843), 'numpy.ones', 'np.ones', (['N'], {}), '(N)\n', (840, 843), True, 'import numpy as np\n'), ((1000, 1010), 'numpy.ones', 'np.ones', (['N'], {}), '(N)\n', (1007, 1010), True, 'import numpy as np\n'), ((176, 202), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (192, 202), False, 'import time, os, sys\n'), ((1186, 1193), 'scipy.fftpack.fft', 'fft', (['x1'], {}), '(x1)\n', (1189, 1193), False, 'from scipy.fftpack import fft, ifft, fftshift\n'), ((1196, 1203), 'scipy.fftpack.fft', 'fft', (['x2'], {}), '(x2)\n', (1199, 1203), False, 'from scipy.fftpack import fft, ifft, fftshift\n')]
__copyright__ = "Copyright (C) 2019 <NAME>" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import pyopencl as cl import pyopencl.clrandom as clr import pystella as ps import pytest from pyopencl.tools import ( # noqa pytest_generate_tests_for_pyopencl as pytest_generate_tests) from pystella.multigrid import (FullApproximationScheme, MultiGridSolver, NewtonIterator) @pytest.mark.filterwarnings( "ignore::pyopencl.characterize.CLCharacterizationWarning") @pytest.mark.filterwarnings("ignore::loopy.diagnostic.LoopyAdvisory") @pytest.mark.filterwarnings("ignore::loopy.diagnostic.ParameterFinderWarning") @pytest.mark.parametrize("h", [1]) @pytest.mark.parametrize("dtype", [np.float64]) @pytest.mark.parametrize("Solver", [NewtonIterator]) @pytest.mark.parametrize("MG", [FullApproximationScheme, MultiGridSolver]) def test_multigrid(ctx_factory, grid_shape, proc_shape, h, dtype, Solver, MG, timing=False): ctx = ctx_factory() queue = cl.CommandQueue(ctx) rank_shape = tuple(Ni // pi for Ni, pi in zip(grid_shape, proc_shape)) mpi = ps.DomainDecomposition(proc_shape, h, rank_shape) L = 10 dx = L / grid_shape[0] statistics = ps.FieldStatistics(mpi, h, rank_shape=rank_shape, grid_size=np.product(grid_shape)) def get_laplacian(f): from pystella.derivs import _lap_coefs, centered_diff lap_coefs = _lap_coefs[h] from pymbolic import var return sum([centered_diff(f, lap_coefs, direction=mu, order=2) for mu in range(1, 4)]) / var("dx")**2 test_problems = {} from pystella import Field f = Field("f", offset="h") rho = Field("rho", offset="h") test_problems[f] = (get_laplacian(f), rho) f = Field("f2", offset="h") rho = Field("rho2", offset="h") test_problems[f] = (get_laplacian(f) - f, rho) solver = Solver(mpi, queue, test_problems, halo_shape=h, dtype=dtype, fixed_parameters=dict(omega=1/2)) mg = MG(solver=solver, halo_shape=h, dtype=dtype) def zero_mean_array(): f0 = clr.rand(queue, grid_shape, dtype) f = clr.rand(queue, tuple(ni + 2*h for ni in rank_shape), dtype) mpi.scatter_array(queue, f0, f, root=0) avg = statistics(f)["mean"].item() f = f - avg mpi.share_halos(queue, f) return f f = zero_mean_array() rho = zero_mean_array() f2 = zero_mean_array() rho2 = zero_mean_array() poisson_errs = [] helmholtz_errs = [] num_v_cycles = 15 if MG == MultiGridSolver else 10 for _ in range(num_v_cycles): errs = mg(mpi, queue, dx0=dx, f=f, rho=rho, f2=f2, rho2=rho2) poisson_errs.append(errs[-1][-1]["f"]) helmholtz_errs.append(errs[-1][-1]["f2"]) for name, cycle_errs in zip(["poisson", "helmholtz"], [poisson_errs, helmholtz_errs]): tol = 1e-6 if MG == MultiGridSolver else 5e-14 assert cycle_errs[-1][1] < tol and cycle_errs[-2][1] < 10*tol, \ f"multigrid solution to {name} eqn is inaccurate for " \ f"{grid_shape=}, {h=}, {proc_shape=}\n{cycle_errs=}" if __name__ == "__main__": from common import parser parser.set_defaults(grid_shape=(128,)*3) args = parser.parse_args() test_multigrid( ps.choose_device_and_make_context, grid_shape=args.grid_shape, proc_shape=args.proc_shape, h=args.h, dtype=args.dtype, timing=args.timing, Solver=NewtonIterator, MG=FullApproximationScheme )
[ "common.parser.set_defaults", "pystella.derivs.centered_diff", "pystella.DomainDecomposition", "pymbolic.var", "pyopencl.CommandQueue", "common.parser.parse_args", "pystella.Field", "numpy.product", "pytest.mark.parametrize", "pytest.mark.filterwarnings", "pyopencl.clrandom.rand" ]
[((1466, 1556), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::pyopencl.characterize.CLCharacterizationWarning"""'], {}), "(\n 'ignore::pyopencl.characterize.CLCharacterizationWarning')\n", (1492, 1556), False, 'import pytest\n'), ((1560, 1628), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::loopy.diagnostic.LoopyAdvisory"""'], {}), "('ignore::loopy.diagnostic.LoopyAdvisory')\n", (1586, 1628), False, 'import pytest\n'), ((1631, 1708), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore::loopy.diagnostic.ParameterFinderWarning"""'], {}), "('ignore::loopy.diagnostic.ParameterFinderWarning')\n", (1657, 1708), False, 'import pytest\n'), ((1711, 1744), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""h"""', '[1]'], {}), "('h', [1])\n", (1734, 1744), False, 'import pytest\n'), ((1747, 1793), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', '[np.float64]'], {}), "('dtype', [np.float64])\n", (1770, 1793), False, 'import pytest\n'), ((1796, 1847), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""Solver"""', '[NewtonIterator]'], {}), "('Solver', [NewtonIterator])\n", (1819, 1847), False, 'import pytest\n'), ((1850, 1923), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""MG"""', '[FullApproximationScheme, MultiGridSolver]'], {}), "('MG', [FullApproximationScheme, MultiGridSolver])\n", (1873, 1923), False, 'import pytest\n'), ((2078, 2098), 'pyopencl.CommandQueue', 'cl.CommandQueue', (['ctx'], {}), '(ctx)\n', (2093, 2098), True, 'import pyopencl as cl\n'), ((2186, 2235), 'pystella.DomainDecomposition', 'ps.DomainDecomposition', (['proc_shape', 'h', 'rank_shape'], {}), '(proc_shape, h, rank_shape)\n', (2208, 2235), True, 'import pystella as ps\n'), ((2781, 2803), 'pystella.Field', 'Field', (['"""f"""'], {'offset': '"""h"""'}), "('f', offset='h')\n", (2786, 2803), False, 'from pystella import Field\n'), ((2815, 2839), 'pystella.Field', 'Field', (['"""rho"""'], {'offset': '"""h"""'}), "('rho', offset='h')\n", (2820, 2839), False, 'from pystella import Field\n'), ((2899, 2922), 'pystella.Field', 'Field', (['"""f2"""'], {'offset': '"""h"""'}), "('f2', offset='h')\n", (2904, 2922), False, 'from pystella import Field\n'), ((2934, 2959), 'pystella.Field', 'Field', (['"""rho2"""'], {'offset': '"""h"""'}), "('rho2', offset='h')\n", (2939, 2959), False, 'from pystella import Field\n'), ((4409, 4451), 'common.parser.set_defaults', 'parser.set_defaults', ([], {'grid_shape': '((128,) * 3)'}), '(grid_shape=(128,) * 3)\n', (4428, 4451), False, 'from common import parser\n'), ((4462, 4481), 'common.parser.parse_args', 'parser.parse_args', ([], {}), '()\n', (4479, 4481), False, 'from common import parser\n'), ((3243, 3277), 'pyopencl.clrandom.rand', 'clr.rand', (['queue', 'grid_shape', 'dtype'], {}), '(queue, grid_shape, dtype)\n', (3251, 3277), True, 'import pyopencl.clrandom as clr\n'), ((2395, 2417), 'numpy.product', 'np.product', (['grid_shape'], {}), '(grid_shape)\n', (2405, 2417), True, 'import numpy as np\n'), ((2699, 2708), 'pymbolic.var', 'var', (['"""dx"""'], {}), "('dx')\n", (2702, 2708), False, 'from pymbolic import var\n'), ((2601, 2651), 'pystella.derivs.centered_diff', 'centered_diff', (['f', 'lap_coefs'], {'direction': 'mu', 'order': '(2)'}), '(f, lap_coefs, direction=mu, order=2)\n', (2614, 2651), False, 'from pystella.derivs import _lap_coefs, centered_diff\n')]
#!/usr/bin/env python # coding: Latin-1 # Load library functions we want import time import sys import gpiozero import numpy as np import cv2 as cv from PIL import Image from camera import Camera from argparse import ArgumentParser import logging import os from rectangle import Rectangle from time import sleep from picamera.array import PiRGBArray from picamera.array import PiYUVArray running = True showMask = True button = 0 def click(event, x, y, flags, param): global running, button haltRect = Rectangle(290,0,320,20) exitRect = Rectangle(0,0,20,20) switchRect = Rectangle(306,220,350,240) hMinusRect = Rectangle(0,220,40,240) hPlusRect = Rectangle(50,220,90,240) sMinusRect = Rectangle(100,220,150,240) sPlusRect = Rectangle(160,220,200,240) vMinusRect = Rectangle(210,220,250,240) vPlusRect = Rectangle(260,220,300,240) if event == cv.EVENT_LBUTTONDOWN: print("x {0} - y {1}", x, y ) if haltRect.Contains( x, y ): button = 1 if exitRect.Contains( x, y ): button = 2 running = False if switchRect.Contains( x, y ): button = 3 if hMinusRect.Contains( x, y ): button = 4 if hPlusRect.Contains( x, y ): button = 5 if sMinusRect.Contains( x, y ): button = 6 if sPlusRect.Contains( x, y ): button = 7 if vMinusRect.Contains( x, y ): button = 8 if vPlusRect.Contains( x, y ): button = 9 def showMenuImage(menu_img): cv.imshow('image',menu_img) cv.waitKey(1) def main(): global running, button w = 320 h = 240 camera = Camera( w, h) camera.Rotate( 270 ) cv.namedWindow('image', cv.WND_PROP_FULLSCREEN) cv.setWindowProperty('image',cv.WND_PROP_FULLSCREEN,cv.WINDOW_FULLSCREEN) cv.setMouseCallback("image", click) rawCapture = PiRGBArray( camera, size=(w, h)) time.sleep(0.1) lower = np.array([110,50,50]) upper = np.array([130,255,255]) showMask = True; for frame in camera.CaptureContinous(rawCapture): if running == False: break if button == 1: cv.destroyAllWindows() os.system("sudo halt") if button == 2: break if button == 3: showMask = not showMask button = 0 # Narrow the H range if button == 4: lower[0] = min(lower[0] + 1,170) upper[0] = max(upper[0] - 1,0) button = 0 # Expand the H range if button == 5: lower[0] = max(lower[0] - 1,0) upper[0] = min(upper[0] + 1,170) button = 0 # Narrow the S range if button == 6: lower[1] = min(lower[1] + 1,255) upper[1] = max(upper[1] - 1,0) button = 0 # Expand the S range if button == 7: lower[1] = max(lower[1] - 1,0) upper[1] = min(upper[1] + 1,255) button = 0 # Narrow the V range if button == 8: lower[2] = min(lower[2] + 1,255) upper[2] = max(upper[2] - 1,0) button = 0 # Expand the V range if button == 9: lower[2] = max(lower[2] - 1,0) upper[2] = min(upper[2] + 1,255) button = 0 raw = frame.array imgHSV = cv.cvtColor(raw, cv.COLOR_RGB2HSV) # Convert the captured frame from RGB to HSV ( with blue in the red position ) imgMask = cv.inRange(imgHSV, lower, upper) #kernel = np.ones((3,3), np.uint8) #imgMask = cv.erode(imgMask, kernel, iterations=2) #imgMask = cv.dilate(imgMask, kernel, iterations=4) imgMask = cv.erode(imgMask, cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))) imgMask = cv.dilate(imgMask, cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))) imgMask = cv.dilate(imgMask, cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))) imgMask = cv.erode(imgMask, cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))) if showMask: image = imgMask else: image = raw cv.rectangle(image,(290,0),(320,20),(255,255,255),-1); cv.putText(image, "X", (298, 18), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(0,220),(40,240),(255,255,255),-1); cv.putText(image, "-H", (8, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(50,220),(90,240),(255,255,255),-1); cv.putText(image, "+H", (58, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(100,220),(150,240),(255,255,255),-1); cv.putText(image, "-S", (108, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(160,220),(200,240),(255,255,255),-1); cv.putText(image, "+S", (168, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(210,220),(250,240),(255,255,255),-1); cv.putText(image, "-V", (218, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(260,220),(300,240),(255,255,255),-1); cv.putText(image, "+V", (268, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); cv.rectangle(image,(310,220),(350,240),(255,255,255),-1); cv.putText(image, "+", (311, 236), cv.FONT_HERSHEY_PLAIN, 1, (0,0,0)); text = "{0} {1}".format(lower, upper) cv.putText(image, text,(10, 20), cv.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) showMenuImage(image) rawCapture.truncate(0) cv.destroyAllWindows() if __name__ == '__main__': main()
[ "cv2.putText", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.cvtColor", "cv2.getStructuringElement", "camera.Camera", "cv2.setWindowProperty", "os.system", "time.sleep", "cv2.setMouseCallback", "numpy.array", "picamera.array.PiRGBArray", "cv2.rectangle", "rectangle.Rectangle", "cv2.imshow", "cv2.inRange", "cv2.namedWindow" ]
[((513, 539), 'rectangle.Rectangle', 'Rectangle', (['(290)', '(0)', '(320)', '(20)'], {}), '(290, 0, 320, 20)\n', (522, 539), False, 'from rectangle import Rectangle\n'), ((549, 572), 'rectangle.Rectangle', 'Rectangle', (['(0)', '(0)', '(20)', '(20)'], {}), '(0, 0, 20, 20)\n', (558, 572), False, 'from rectangle import Rectangle\n'), ((584, 613), 'rectangle.Rectangle', 'Rectangle', (['(306)', '(220)', '(350)', '(240)'], {}), '(306, 220, 350, 240)\n', (593, 613), False, 'from rectangle import Rectangle\n'), ((625, 651), 'rectangle.Rectangle', 'Rectangle', (['(0)', '(220)', '(40)', '(240)'], {}), '(0, 220, 40, 240)\n', (634, 651), False, 'from rectangle import Rectangle\n'), ((664, 691), 'rectangle.Rectangle', 'Rectangle', (['(50)', '(220)', '(90)', '(240)'], {}), '(50, 220, 90, 240)\n', (673, 691), False, 'from rectangle import Rectangle\n'), ((703, 732), 'rectangle.Rectangle', 'Rectangle', (['(100)', '(220)', '(150)', '(240)'], {}), '(100, 220, 150, 240)\n', (712, 732), False, 'from rectangle import Rectangle\n'), ((743, 772), 'rectangle.Rectangle', 'Rectangle', (['(160)', '(220)', '(200)', '(240)'], {}), '(160, 220, 200, 240)\n', (752, 772), False, 'from rectangle import Rectangle\n'), ((784, 813), 'rectangle.Rectangle', 'Rectangle', (['(210)', '(220)', '(250)', '(240)'], {}), '(210, 220, 250, 240)\n', (793, 813), False, 'from rectangle import Rectangle\n'), ((824, 853), 'rectangle.Rectangle', 'Rectangle', (['(260)', '(220)', '(300)', '(240)'], {}), '(260, 220, 300, 240)\n', (833, 853), False, 'from rectangle import Rectangle\n'), ((1421, 1449), 'cv2.imshow', 'cv.imshow', (['"""image"""', 'menu_img'], {}), "('image', menu_img)\n", (1430, 1449), True, 'import cv2 as cv\n'), ((1450, 1463), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (1460, 1463), True, 'import cv2 as cv\n'), ((1532, 1544), 'camera.Camera', 'Camera', (['w', 'h'], {}), '(w, h)\n', (1538, 1544), False, 'from camera import Camera\n'), ((1572, 1619), 'cv2.namedWindow', 'cv.namedWindow', (['"""image"""', 'cv.WND_PROP_FULLSCREEN'], {}), "('image', cv.WND_PROP_FULLSCREEN)\n", (1586, 1619), True, 'import cv2 as cv\n'), ((1621, 1696), 'cv2.setWindowProperty', 'cv.setWindowProperty', (['"""image"""', 'cv.WND_PROP_FULLSCREEN', 'cv.WINDOW_FULLSCREEN'], {}), "('image', cv.WND_PROP_FULLSCREEN, cv.WINDOW_FULLSCREEN)\n", (1641, 1696), True, 'import cv2 as cv\n'), ((1697, 1732), 'cv2.setMouseCallback', 'cv.setMouseCallback', (['"""image"""', 'click'], {}), "('image', click)\n", (1716, 1732), True, 'import cv2 as cv\n'), ((1750, 1781), 'picamera.array.PiRGBArray', 'PiRGBArray', (['camera'], {'size': '(w, h)'}), '(camera, size=(w, h))\n', (1760, 1781), False, 'from picamera.array import PiRGBArray\n'), ((1785, 1800), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1795, 1800), False, 'import time\n'), ((1813, 1836), 'numpy.array', 'np.array', (['[110, 50, 50]'], {}), '([110, 50, 50])\n', (1821, 1836), True, 'import numpy as np\n'), ((1844, 1869), 'numpy.array', 'np.array', (['[130, 255, 255]'], {}), '([130, 255, 255])\n', (1852, 1869), True, 'import numpy as np\n'), ((4930, 4952), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (4950, 4952), True, 'import cv2 as cv\n'), ((2960, 2994), 'cv2.cvtColor', 'cv.cvtColor', (['raw', 'cv.COLOR_RGB2HSV'], {}), '(raw, cv.COLOR_RGB2HSV)\n', (2971, 2994), True, 'import cv2 as cv\n'), ((3092, 3124), 'cv2.inRange', 'cv.inRange', (['imgHSV', 'lower', 'upper'], {}), '(imgHSV, lower, upper)\n', (3102, 3124), True, 'import cv2 as cv\n'), ((3676, 3737), 'cv2.rectangle', 'cv.rectangle', (['image', '(290, 0)', '(320, 20)', '(255, 255, 255)', '(-1)'], {}), '(image, (290, 0), (320, 20), (255, 255, 255), -1)\n', (3688, 3737), True, 'import cv2 as cv\n'), ((3733, 3803), 'cv2.putText', 'cv.putText', (['image', '"""X"""', '(298, 18)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, 'X', (298, 18), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (3743, 3803), True, 'import cv2 as cv\n'), ((3808, 3869), 'cv2.rectangle', 'cv.rectangle', (['image', '(0, 220)', '(40, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (0, 220), (40, 240), (255, 255, 255), -1)\n', (3820, 3869), True, 'import cv2 as cv\n'), ((3865, 3935), 'cv2.putText', 'cv.putText', (['image', '"""-H"""', '(8, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '-H', (8, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (3875, 3935), True, 'import cv2 as cv\n'), ((3937, 3999), 'cv2.rectangle', 'cv.rectangle', (['image', '(50, 220)', '(90, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (50, 220), (90, 240), (255, 255, 255), -1)\n', (3949, 3999), True, 'import cv2 as cv\n'), ((3995, 4066), 'cv2.putText', 'cv.putText', (['image', '"""+H"""', '(58, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '+H', (58, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4005, 4066), True, 'import cv2 as cv\n'), ((4073, 4137), 'cv2.rectangle', 'cv.rectangle', (['image', '(100, 220)', '(150, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (100, 220), (150, 240), (255, 255, 255), -1)\n', (4085, 4137), True, 'import cv2 as cv\n'), ((4133, 4205), 'cv2.putText', 'cv.putText', (['image', '"""-S"""', '(108, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '-S', (108, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4143, 4205), True, 'import cv2 as cv\n'), ((4207, 4271), 'cv2.rectangle', 'cv.rectangle', (['image', '(160, 220)', '(200, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (160, 220), (200, 240), (255, 255, 255), -1)\n', (4219, 4271), True, 'import cv2 as cv\n'), ((4267, 4339), 'cv2.putText', 'cv.putText', (['image', '"""+S"""', '(168, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '+S', (168, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4277, 4339), True, 'import cv2 as cv\n'), ((4344, 4408), 'cv2.rectangle', 'cv.rectangle', (['image', '(210, 220)', '(250, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (210, 220), (250, 240), (255, 255, 255), -1)\n', (4356, 4408), True, 'import cv2 as cv\n'), ((4404, 4476), 'cv2.putText', 'cv.putText', (['image', '"""-V"""', '(218, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '-V', (218, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4414, 4476), True, 'import cv2 as cv\n'), ((4478, 4542), 'cv2.rectangle', 'cv.rectangle', (['image', '(260, 220)', '(300, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (260, 220), (300, 240), (255, 255, 255), -1)\n', (4490, 4542), True, 'import cv2 as cv\n'), ((4538, 4610), 'cv2.putText', 'cv.putText', (['image', '"""+V"""', '(268, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '+V', (268, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4548, 4610), True, 'import cv2 as cv\n'), ((4615, 4679), 'cv2.rectangle', 'cv.rectangle', (['image', '(310, 220)', '(350, 240)', '(255, 255, 255)', '(-1)'], {}), '(image, (310, 220), (350, 240), (255, 255, 255), -1)\n', (4627, 4679), True, 'import cv2 as cv\n'), ((4675, 4746), 'cv2.putText', 'cv.putText', (['image', '"""+"""', '(311, 236)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(0, 0, 0)'], {}), "(image, '+', (311, 236), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 0))\n", (4685, 4746), True, 'import cv2 as cv\n'), ((4791, 4870), 'cv2.putText', 'cv.putText', (['image', 'text', '(10, 20)', 'cv.FONT_HERSHEY_PLAIN', '(1)', '(255, 255, 255)', '(1)'], {}), '(image, text, (10, 20), cv.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)\n', (4801, 4870), True, 'import cv2 as cv\n'), ((2006, 2028), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (2026, 2028), True, 'import cv2 as cv\n'), ((2032, 2054), 'os.system', 'os.system', (['"""sudo halt"""'], {}), "('sudo halt')\n", (2041, 2054), False, 'import os\n'), ((3308, 3358), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(5, 5)'], {}), '(cv.MORPH_ELLIPSE, (5, 5))\n', (3332, 3358), True, 'import cv2 as cv\n'), ((3391, 3441), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(5, 5)'], {}), '(cv.MORPH_ELLIPSE, (5, 5))\n', (3415, 3441), True, 'import cv2 as cv\n'), ((3477, 3527), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(5, 5)'], {}), '(cv.MORPH_ELLIPSE, (5, 5))\n', (3501, 3527), True, 'import cv2 as cv\n'), ((3559, 3609), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(5, 5)'], {}), '(cv.MORPH_ELLIPSE, (5, 5))\n', (3583, 3609), True, 'import cv2 as cv\n')]
import pickle import numpy as np import statsmodels.api as sm # find the games which are 2v2, 3v3, 4v4 def scan_game_table(table_path): team_game_set = set() target_file = open(table_path, "r") line = target_file.readline().strip().split(",") while len(line) > 1: game_id = int(line[0]) game_type = str(line[1]) if game_type in ["Doubles", "Triples", "Quadruples"]: team_game_set.add(game_id) line = target_file.readline().strip().split(",") return team_game_set # store player's skill state for a given range of games def scan_play_table(table_path, n): # n: max games considered team_player_dict = {} # key: game+team; value: player id player_team_dict = {} # key: player id; value: game+team player_game_dict = {} # key: player id; value: game id player_skill_dict = {} # player: player id; value: player's skill level at n target_file = open(table_path, "r") line = target_file.readline().strip().split(",") while len(line) > 1: # some lines have null data fields. let's skip them valid_flag = 1 for i in range(0, 4): valid_flag = valid_flag * len(line[i]) if valid_flag == 0: line = target_file.readline().strip().split(",") continue player_id = int(line[0]) game_id = int(line[1]) team_id = int(line[2]) skill = float(line[3]) game_num = int(line[4]) game_team = str(game_id) + "-" + str(team_id) # init dicts team_player_dict.setdefault(game_team, set()) player_team_dict.setdefault(player_id, set()) player_game_dict.setdefault(player_id, set()) team_player_dict[game_team].add(player_id) # store player's skill when n games are reached if len(player_team_dict[player_id]) == n - 1: player_skill_dict[player_id] = skill # no use; skip if len(player_team_dict[player_id]) >= n: line = target_file.readline().strip().split(",") continue player_team_dict[player_id].add(game_team) player_game_dict[player_id].add(game_id) line = target_file.readline().strip().split(",") return team_player_dict, player_team_dict, player_game_dict, player_skill_dict # find the most frequent teammate def get_max_teammate(self_id, player_team_set, team_player_dict): teammate_dict = {} for game_team in player_team_set: for member in team_player_dict[game_team]: if member != self_id: teammate_dict.setdefault(member, 0) teammate_dict[member] = teammate_dict[member] + 1 return max(teammate_dict.values()) # multivariate polyfit def reg_m(y, x): x = x[::-1] # reverse list to make the right output order ones = np.ones(len(x[0])) X = sm.add_constant(np.column_stack((x[0], ones))) for ele in x[1:]: X = sm.add_constant(np.column_stack((ele, X))) results = sm.OLS(y, X).fit() return results N = 200 # 50, 100, 200, 300, ... team_player_dict, player_team_dict, player_game_dict, player_skill_dict = scan_play_table("play.csv", N) team_game_set = scan_game_table("game.csv") player_info_dict = {} # for regression skill_list = [] TOB_list = [] loyalty_list = [] faithfulness_list = [] for player_id in player_team_dict: player_team_game_set = player_game_dict[player_id] & team_game_set # only consider team games if (len(player_team_dict[player_id]) == N) and (len(player_team_game_set) >= 4): # min 4 games: see the PLOS ONE paper # calculate 4 values for regression skill_list.append(player_skill_dict[player_id]) TOB_list.append(len(player_team_game_set) / N) max_teammate = get_max_teammate(player_id, player_team_dict[player_id], team_player_dict) loyalty_list.append(max_teammate / len(player_team_game_set)) faithfulness_list.append(max_teammate / N) ''' player_info_dict[player_id] = {"TOB": len(player_team_game_set) / N} max_teammate = get_max_teammate(player_id, player_team_dict[player_id], team_player_dict) player_info_dict[player_id]["loyalty"] = max_teammate / len(player_team_game_set) print(player_id, player_info_dict[player_id]) ''' print(reg_m(skill_list, [TOB_list, loyalty_list, faithfulness_list]).summary()) # regression (default: linear)
[ "statsmodels.api.OLS", "numpy.column_stack" ]
[((2886, 2915), 'numpy.column_stack', 'np.column_stack', (['(x[0], ones)'], {}), '((x[0], ones))\n', (2901, 2915), True, 'import numpy as np\n'), ((2967, 2992), 'numpy.column_stack', 'np.column_stack', (['(ele, X)'], {}), '((ele, X))\n', (2982, 2992), True, 'import numpy as np\n'), ((3008, 3020), 'statsmodels.api.OLS', 'sm.OLS', (['y', 'X'], {}), '(y, X)\n', (3014, 3020), True, 'import statsmodels.api as sm\n')]
# Copyright 2018-2019 CNRS-UM LIRMM # # \author <NAME> # # # # pyQpController is free software: you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of the License, # or (at your option) any later version. # # pyQpController is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser # General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with pyQpController. If not, see # <http://www.gnu.org/licenses/>. import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter from matplotlib.font_manager import FontProperties if __name__ =="__main__": fileName = sys.argv[1] loaded = np.load(fileName) impactFileName = sys.argv[2] impact_loaded = np.load(impactFileName) # loaded = np.load("../log/data/data_Nov_03_2018_15-40-26.npz") # impact_loaded = np.load("../log/data/impact-data_Nov_03_2018_15-40-26.npz") time = loaded['time'] error_x = loaded['error'][:, 0] error_y = loaded['error'][:, 1] error_z = loaded['error'][:, 2] fontP = FontProperties() fontP.set_size('small') #fig1, (ax11, ax12, ax13 )= plt.subplots(nrows=3, ncols=1) # ax1 = plt.subplot(311) # plt.plot(time, error_x, label='error x') # ax11.set_ylabel('error x') # # ax12 = plt.subplot(312) # plt.plot(time, error_y, label='error y') # ax12.set_ylabel('error y') # # ax13 = plt.subplot(313) # plt.plot(time, error_z, label='error z') # plt.ylabel('error z') # plt.grid(True) # plt.xlabel('Time [s]') fig12 = plt.figure() impact_time_1 = [1.80, 1.85] impact_time_2 = [3.42, 3.45] impact_time_3 = [3.94, 4.02] ax = fig12.gca() ax.plot(time, error_x, label='Error x') # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax.plot(time, error_y, label='Error y') ax.plot(time, error_z, label='Error z') ax.legend(frameon=False, loc='upper left', prop=fontP) ax.autoscale(enable=True, axis='x', tight=True) plt.xlabel('Time [s]') plt.ylabel('Task Error') plt.title('End-effector velocity Task') plt.grid(True) fig12.savefig("task_error.pdf", bbox_inches='tight') dq_0 = loaded['dq'][:, 0] dq_1 = loaded['dq'][:, 1] dq_2 = loaded['dq'][:, 2] dq_3 = loaded['dq'][:, 3] dq_4 = loaded['dq'][:, 4] dq_5 = loaded['dq'][:, 5] impact_time = impact_loaded['time'] predict_delta_dq_0 = impact_loaded['predict_delta_dq'][:,0] predict_delta_dq_1 = impact_loaded['predict_delta_dq'][:,1] predict_delta_dq_2 = impact_loaded['predict_delta_dq'][:,2] predict_delta_dq_3 = impact_loaded['predict_delta_dq'][:,3] predict_delta_dq_4 = impact_loaded['predict_delta_dq'][:,4] predict_delta_dq_5 = impact_loaded['predict_delta_dq'][:,5] actual_delta_dq_0 = impact_loaded['actual_delta_dq'][:, 0] actual_delta_dq_1 = impact_loaded['actual_delta_dq'][:, 1] actual_delta_dq_2 = impact_loaded['actual_delta_dq'][:, 2] actual_delta_dq_3 = impact_loaded['actual_delta_dq'][:, 3] actual_delta_dq_4 = impact_loaded['actual_delta_dq'][:, 4] actual_delta_dq_5 = impact_loaded['actual_delta_dq'][:, 5] # predict_average_ddq_0 = impact_loaded['predict_average_acc'][:,0] # predict_average_ddq_1 = impact_loaded['predict_average_acc'][:, 1] # predict_average_ddq_2 = impact_loaded['predict_average_acc'][:, 2] # predict_average_ddq_3 = impact_loaded['predict_average_acc'][:, 3] # predict_average_ddq_4 = impact_loaded['predict_average_acc'][:, 4] # predict_average_ddq_5 = impact_loaded['predict_average_acc'][:, 5] acc_0 = loaded['acc'][:, 0] acc_1 = loaded['acc'][:, 1] acc_2 = loaded['acc'][:, 2] acc_3 = loaded['acc'][:, 3] acc_4 = loaded['acc'][:, 4] acc_5 = loaded['acc'][:, 5] sol_acc_0 = loaded['sol_acc'][:, 0] sol_acc_1 = loaded['sol_acc'][:, 1] sol_acc_2 = loaded['sol_acc'][:, 2] sol_acc_3 = loaded['sol_acc'][:, 3] sol_acc_4 = loaded['sol_acc'][:, 4] sol_acc_5 = loaded['sol_acc'][:, 5] predict_delta_torque_0 = impact_loaded['predict_delta_tau'][:,0] predict_delta_torque_1 = impact_loaded['predict_delta_tau'][:,1] predict_delta_torque_2 = impact_loaded['predict_delta_tau'][:,2] predict_delta_torque_3 = impact_loaded['predict_delta_tau'][:,3] predict_delta_torque_4 = impact_loaded['predict_delta_tau'][:,4] predict_delta_torque_5 = impact_loaded['predict_delta_tau'][:,5] actual_delta_torque_0 = impact_loaded['actual_delta_tau'][:, 0] actual_delta_torque_1 = impact_loaded['actual_delta_tau'][:, 1] actual_delta_torque_2 = impact_loaded['actual_delta_tau'][:, 2] actual_delta_torque_3 = impact_loaded['actual_delta_tau'][:, 3] actual_delta_torque_4 = impact_loaded['actual_delta_tau'][:, 4] actual_delta_torque_5 = impact_loaded['actual_delta_tau'][:, 5] predict_F_0 = impact_loaded['predict_F'][:, 0] predict_F_1 = impact_loaded['predict_F'][:, 1] predict_F_2 = impact_loaded['predict_F'][:, 2] actual_F_0 = impact_loaded['actual_F'][:, 0] actual_F_1 = impact_loaded['actual_F'][:, 1] actual_F_2 = impact_loaded['actual_F'][:, 2] fig2, (ax21, ax22, ax23, ax24, ax25, ax26) = plt.subplots(nrows=6, ncols=1) ax21 = plt.subplot(611) plt.plot(time, dq_0, label='dq') ax21.set_ylabel('dq 0') ax21.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.plot(impact_time, predict_delta_dq_0, label='Predicted delta dq') # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) plt.setp(ax21.get_xticklabels(), visible=False) plt.plot(impact_time, actual_delta_dq_0, label='Actual delta dq') ax21.locator_params(nbins=5, axis='y') ax21.autoscale(enable=True, axis='x', tight=True) plt.grid(True) #ax21.legend(fancybox=True, framealpha=0.5) ax21.legend(frameon=False, loc='upper left', prop=fontP) plt.title("Joint velocities and joint velocities jump at the impact time") ax22 = plt.subplot(612) plt.plot(time, dq_1) plt.plot(impact_time, predict_delta_dq_1) plt.plot(impact_time, actual_delta_dq_1) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax22.set_ylabel('dq 1') ax22.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax22.autoscale(enable=True, axis='x', tight=True) plt.setp(ax22.get_xticklabels(), visible=False) plt.grid(True) #ax22.legend(fancybox=True, framealpha=0.5) #ax23.legend(frameon=False) #ax23.legend(frameon=False, fancybox=True, framealpha=0.2, loc='best', prop=fontP) ax22.locator_params(nbins=5, axis='y') ax23 = plt.subplot(613) plt.plot(time, dq_2) plt.plot(impact_time, predict_delta_dq_2) plt.plot(impact_time, actual_delta_dq_2) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax23.set_ylabel('dq 2') ax23.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax23.autoscale(enable=True, axis='x', tight=True) plt.setp(ax23.get_xticklabels(), visible=False) plt.grid(True) ax23.locator_params(nbins=5, axis='y') ax24 = plt.subplot(614) plt.plot(time, dq_3) plt.plot(impact_time, predict_delta_dq_3) plt.plot(impact_time, actual_delta_dq_3) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax24.set_ylabel('dq 3') plt.setp(ax24.get_xticklabels(), visible=False) ax24.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax24.autoscale(enable=True, axis='x', tight=True) plt.grid(True) ax24.legend() ax24.locator_params(nbins=5, axis='y') ax25 = plt.subplot(615) plt.plot(time, dq_4) plt.plot(impact_time, predict_delta_dq_4) plt.plot(impact_time, actual_delta_dq_4) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax25.set_ylabel('dq 4') plt.setp(ax25.get_xticklabels(), visible=False) ax25.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax25.autoscale(enable=True, axis='x', tight=True) plt.grid(True) ax25.legend() ax25.locator_params(nbins=5, axis='y') ax26 = plt.subplot(616) plt.plot(time, dq_5) plt.plot(impact_time, predict_delta_dq_5) plt.plot(impact_time, actual_delta_dq_5) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax26.set_ylabel('dq 5') plt.xlabel('Time [s]') plt.grid(True) ax26.legend() ax26.locator_params(nbins=5, axis='y') ax26.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax26.autoscale(enable=True, axis='x', tight=True) fig2.savefig("Delta_dq.pdf", bbox_inches='tight') fig3, (ax31, ax32, ax33, ax34, ax35, ax36) = plt.subplots(nrows=6, ncols=1) ax31 = plt.subplot(611) ax31.set_ylabel('Joint 0') plt.plot(impact_time, predict_delta_torque_0, label='Predicted torque jump') plt.plot(impact_time, actual_delta_torque_0, label='Actual torque jump') # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) plt.setp(ax31.get_xticklabels(), visible=False) plt.grid(True) #ax31.legend(prop=fontP) ax31.legend(frameon=False, loc='upper left', prop=fontP) plt.title("Joint torque jumps at the impact time") ax31.locator_params(nbins=5, axis='y') ax31.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax31.autoscale(enable=True, axis='x', tight=True) ax32 = plt.subplot(612) plt.plot(impact_time, predict_delta_torque_1) plt.plot(impact_time, actual_delta_torque_1) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax32.set_ylabel('Joint 1') plt.setp(ax32.get_xticklabels(), visible=False) ax32.locator_params(nbins=5, axis='y') ax32.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.grid(True) ax32.legend() ax32.autoscale(enable=True, axis='x', tight=True) ax33 = plt.subplot(613) plt.plot(impact_time, predict_delta_torque_2) plt.plot(impact_time, actual_delta_torque_2) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax33.set_ylabel('Joint 2') plt.setp(ax33.get_xticklabels(), visible=False) ax33.locator_params(nbins=5, axis='y') ax33.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.grid(True) ax33.legend() ax33.autoscale(enable=True, axis='x', tight=True) ax34 = plt.subplot(614) plt.plot(impact_time, predict_delta_torque_3) plt.plot(impact_time, actual_delta_torque_3) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax34.set_ylabel('Joint 3') plt.setp(ax34.get_xticklabels(), visible=False) ax34.locator_params(nbins=5, axis='y') ax34.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.grid(True) ax34.legend() ax34.autoscale(enable=True, axis='x', tight=True) ax35 = plt.subplot(615) plt.plot(impact_time, predict_delta_torque_4) plt.plot(impact_time, actual_delta_torque_4) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax35.set_ylabel('Joint 4') plt.setp(ax35.get_xticklabels(), visible=False) ax35.locator_params(nbins=5, axis='y') ax35.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.grid(True) ax35.legend() ax35.autoscale(enable=True, axis='x', tight=True) ax36 = plt.subplot(616) plt.plot(impact_time, predict_delta_torque_5) plt.plot(impact_time, actual_delta_torque_5) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) ax36.set_ylabel('Joint 5') plt.xlabel('Impact Time [s]') plt.grid(True) ax36.locator_params(nbins=5, axis='y') ax36.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax36.legend() ax36.autoscale(enable=True, axis='x', tight=True) fig3.savefig("Delta_torque.pdf", bbox_inches='tight') fig4, (ax41, ax42, ax43 )= plt.subplots(nrows=3, ncols=1) ax41 = plt.subplot(311) plt.plot(impact_time, predict_F_0, label='Predicted contact force jump') plt.plot(impact_time, actual_F_0, label='Measured contact force jump') # plt.plot(impact_time, predict_F_0, label='Predicted contact force jump') # plt.plot(impact_time, actual_F_0, label='Measured contact force jump') # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) plt.setp(ax41.get_xticklabels(), visible=False) ax41.locator_params(nbins=5, axis='y') ax41.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax41.autoscale(enable=True, axis='x', tight=True) plt.grid(True) #ax41.legend(prop=fontP) ax41.legend(frameon=False, loc='upper left', prop=fontP) ax41.set_ylabel('Force x') plt.title("Precited contact force jump Versus measured contact force ") ax42 = plt.subplot(312) plt.plot(impact_time, predict_F_1) plt.plot(impact_time, actual_F_1) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) plt.setp(ax42.get_xticklabels(), visible=False) ax42.locator_params(nbins=5, axis='y') ax42.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax42.autoscale(enable=True, axis='x', tight=True) plt.grid(True) ax42.set_ylabel('Force y') ax43 = plt.subplot(313) plt.plot(impact_time, predict_F_2) plt.plot(impact_time, actual_F_2) # plt.axvspan(impact_time_1[0], impact_time_1[1], color='red', alpha=0.1) # plt.axvspan(impact_time_2[0], impact_time_2[1], color='red', alpha=0.1) # plt.axvspan(impact_time_3[0], impact_time_3[1], color='red', alpha=0.1) plt.ylabel('Force z') plt.grid(True) ax43.locator_params(nbins=5, axis='y') ax43.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax43.autoscale(enable=True, axis='x', tight=True) fig4.savefig("impact_force.pdf", bbox_inches='tight') plt.grid(True) plt.xlabel('Impact Time [s]') sol_len = len(sol_acc_0) fig5, (ax51, ax52, ax53, ax54, ax55, ax56) = plt.subplots(nrows=6, ncols=1) impact_length = len(impact_time) # ax51 = plt.subplot(611) # # plt.plot(impact_time, acc_0[-impact_length:], label='Actual joint acceleration') # plt.plot(time, acc_0, label='Actual joint acceleration') # # plt.plot(impact_time, sol_acc_0[-impact_length:], label='QP predict joint acceleration') # plt.plot(time[:sol_len], sol_acc_0, label='QP predict joint acceleration') # plt.plot(impact_time, predict_average_ddq_0, label='Average joint acceleration at impact') # #ax51.legend(fancybox=True, framealpha=0.5) # ax51.legend(frameon=False, loc='upper left', prop=fontP) # ax51.set_ylabel('joint 0') # plt.grid(True) # ax51.locator_params(nbins=5, axis='y') # ax51.autoscale(enable=True, axis='x', tight=True) # ax51.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # plt.setp(ax51.get_xticklabels(), visible=False) # plt.title("Joint accelerations [Radion/s^2]") # ax52 = plt.subplot(612) # plt.plot(time, acc_1) # plt.plot(time[:sol_len], sol_acc_1) # plt.plot(impact_time, predict_average_ddq_1) # ax52.legend() # ax52.set_ylabel('joint 1') # plt.grid(True) # ax52.locator_params(nbins=5, axis='y') # ax52.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # ax52.autoscale(enable=True, axis='x', tight=True) # plt.setp(ax52.get_xticklabels(), visible=False) # ax53 = plt.subplot(613) # plt.plot(time, acc_2) # plt.plot(time[:sol_len], sol_acc_2) # plt.plot(impact_time, predict_average_ddq_2) # ax53.legend() # ax53.set_ylabel('joint 2') # plt.grid(True) # ax53.locator_params(nbins=5, axis='y') # ax53.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # ax53.autoscale(enable=True, axis='x', tight=True) # plt.setp(ax53.get_xticklabels(), visible=False) # ax54 = plt.subplot(614) # plt.plot(time, acc_3) # plt.plot(time[:sol_len], sol_acc_3) # plt.plot(impact_time, predict_average_ddq_3) # ax54.legend() # ax54.set_ylabel('joint 3') # plt.grid(True) # ax54.locator_params(nbins=5, axis='y') # ax54.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # ax54.autoscale(enable=True, axis='x', tight=True) # plt.setp(ax54.get_xticklabels(), visible=False) # ax55 = plt.subplot(615) # plt.plot(time, acc_4) # plt.plot(time[:sol_len], sol_acc_4) # plt.plot(impact_time, predict_average_ddq_4) # ax55.legend() # ax55.set_ylabel('joint 4') # plt.grid(True) # ax55.locator_params(nbins=5, axis='y') # ax55.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # ax55.autoscale(enable=True, axis='x', tight=True) # plt.setp(ax55.get_xticklabels(), visible=False) # ax56 = plt.subplot(616) # plt.plot(time, acc_5) # plt.plot(time[:sol_len], sol_acc_5) # plt.plot(impact_time, predict_average_ddq_5) # ax56.legend() # ax56.set_ylabel('joint 5') # plt.grid(True) # ax56.locator_params(nbins=5, axis='y') # ax56.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) # ax56.autoscale(enable=True, axis='x', tight=True) # plt.xlabel('Time [s]') # plt.grid(True) # fig5.savefig("joint_accelerations_comparison.pdf", bbox_inches='tight') fig6, (ax61, ax62, ax63, ax64, ax65, ax66) = plt.subplots(nrows=6, ncols=1) ax61 = plt.subplot(611) plt.plot(time, acc_0, label='Actual joint acceleration') plt.plot(time[:sol_len], sol_acc_0, label='QP predicted joint acceleration') ax61.legend(frameon=False, loc='upper left', prop=fontP) ax61.set_ylabel('joint 0') plt.grid(True) ax61.locator_params(nbins=5, axis='y') ax61.autoscale(enable=True, axis='x', tight=True) ax61.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.setp(ax61.get_xticklabels(), visible=False) plt.title("Joint accelerations [Radion/s^2]") ax62 = plt.subplot(612) plt.plot(time, acc_1) plt.plot(time[:sol_len], sol_acc_1) ax62.set_ylabel('joint 1') plt.grid(True) ax62.locator_params(nbins=5, axis='y') ax62.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax62.autoscale(enable=True, axis='x', tight=True) plt.setp(ax62.get_xticklabels(), visible=False) ax63 = plt.subplot(613) plt.plot(time, acc_2) plt.plot(time[:sol_len], sol_acc_2) ax63.set_ylabel('joint 2') plt.grid(True) ax63.locator_params(nbins=5, axis='y') ax63.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax63.autoscale(enable=True, axis='x', tight=True) plt.setp(ax63.get_xticklabels(), visible=False) ax64 = plt.subplot(614) plt.plot(time, acc_3) plt.plot(time[:sol_len], sol_acc_3) ax64.set_ylabel('joint 3') plt.grid(True) ax64.locator_params(nbins=5, axis='y') ax64.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax64.autoscale(enable=True, axis='x', tight=True) plt.setp(ax64.get_xticklabels(), visible=False) ax65 = plt.subplot(615) plt.plot(time, acc_4) plt.plot(time[:sol_len], sol_acc_4) ax65.set_ylabel('joint 4') plt.grid(True) ax65.locator_params(nbins=5, axis='y') ax65.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax65.autoscale(enable=True, axis='x', tight=True) plt.setp(ax65.get_xticklabels(), visible=False) ax66 = plt.subplot(616) plt.plot(time, acc_5) plt.plot(time[:sol_len], sol_acc_5) ax66.set_ylabel('joint 3') plt.grid(True) ax66.locator_params(nbins=5, axis='y') ax66.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) ax66.autoscale(enable=True, axis='x', tight=True) # # # ax22.plot(time, acc_0, label='acc 0') # ax22.plot(time, predict_average_ddq_0, label='acc 0') #p # ax22.plot(time, acc_1, label='acc 1') # ax22.plot(time, acc_2, label='acc 2') # ax22.plot(time, acc_3, label='acc 3') # ax22.plot(time, acc_4, label='acc 4') # ax22.plot(time, acc_5, label='acc 5') # plt.ylabel('Joint accelerations [Radion/s^2]') plt.xlabel('Time [s]') plt.grid(True) fig6.savefig("joint_accelerations_predicted_vs_simulated.pdf", bbox_inches='tight') # fig6.savefig("joint_accelerations_predicted_vs_simulated.pdf") plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "numpy.load", "matplotlib.pyplot.show", "matplotlib.font_manager.FontProperties", "matplotlib.pyplot.plot", "matplotlib.pyplot.subplots", "matplotlib.pyplot.figure", "matplotlib.ticker.FormatStrFormatter", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((985, 1002), 'numpy.load', 'np.load', (['fileName'], {}), '(fileName)\n', (992, 1002), True, 'import numpy as np\n'), ((1057, 1080), 'numpy.load', 'np.load', (['impactFileName'], {}), '(impactFileName)\n', (1064, 1080), True, 'import numpy as np\n'), ((1382, 1398), 'matplotlib.font_manager.FontProperties', 'FontProperties', ([], {}), '()\n', (1396, 1398), False, 'from matplotlib.font_manager import FontProperties\n'), ((1892, 1904), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1902, 1904), True, 'import matplotlib.pyplot as plt\n'), ((2510, 2532), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {}), "('Time [s]')\n", (2520, 2532), True, 'import matplotlib.pyplot as plt\n'), ((2537, 2561), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Task Error"""'], {}), "('Task Error')\n", (2547, 2561), True, 'import matplotlib.pyplot as plt\n'), ((2566, 2605), 'matplotlib.pyplot.title', 'plt.title', (['"""End-effector velocity Task"""'], {}), "('End-effector velocity Task')\n", (2575, 2605), True, 'import matplotlib.pyplot as plt\n'), ((2610, 2624), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (2618, 2624), True, 'import matplotlib.pyplot as plt\n'), ((5720, 5750), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(6)', 'ncols': '(1)'}), '(nrows=6, ncols=1)\n', (5732, 5750), True, 'import matplotlib.pyplot as plt\n'), ((5763, 5779), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(611)'], {}), '(611)\n', (5774, 5779), True, 'import matplotlib.pyplot as plt\n'), ((5784, 5816), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_0'], {'label': '"""dq"""'}), "(time, dq_0, label='dq')\n", (5792, 5816), True, 'import matplotlib.pyplot as plt\n'), ((5912, 5981), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_0'], {'label': '"""Predicted delta dq"""'}), "(impact_time, predict_delta_dq_0, label='Predicted delta dq')\n", (5920, 5981), True, 'import matplotlib.pyplot as plt\n'), ((6272, 6337), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_0'], {'label': '"""Actual delta dq"""'}), "(impact_time, actual_delta_dq_0, label='Actual delta dq')\n", (6280, 6337), True, 'import matplotlib.pyplot as plt\n'), ((6439, 6453), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (6447, 6453), True, 'import matplotlib.pyplot as plt\n'), ((6567, 6641), 'matplotlib.pyplot.title', 'plt.title', (['"""Joint velocities and joint velocities jump at the impact time"""'], {}), "('Joint velocities and joint velocities jump at the impact time')\n", (6576, 6641), True, 'import matplotlib.pyplot as plt\n'), ((6654, 6670), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(612)'], {}), '(612)\n', (6665, 6670), True, 'import matplotlib.pyplot as plt\n'), ((6675, 6695), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_1'], {}), '(time, dq_1)\n', (6683, 6695), True, 'import matplotlib.pyplot as plt\n'), ((6700, 6741), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_1'], {}), '(impact_time, predict_delta_dq_1)\n', (6708, 6741), True, 'import matplotlib.pyplot as plt\n'), ((6746, 6786), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_1'], {}), '(impact_time, actual_delta_dq_1)\n', (6754, 6786), True, 'import matplotlib.pyplot as plt\n'), ((7222, 7236), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (7230, 7236), True, 'import matplotlib.pyplot as plt\n'), ((7459, 7475), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(613)'], {}), '(613)\n', (7470, 7475), True, 'import matplotlib.pyplot as plt\n'), ((7480, 7500), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_2'], {}), '(time, dq_2)\n', (7488, 7500), True, 'import matplotlib.pyplot as plt\n'), ((7505, 7546), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_2'], {}), '(impact_time, predict_delta_dq_2)\n', (7513, 7546), True, 'import matplotlib.pyplot as plt\n'), ((7551, 7591), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_2'], {}), '(impact_time, actual_delta_dq_2)\n', (7559, 7591), True, 'import matplotlib.pyplot as plt\n'), ((8027, 8041), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8035, 8041), True, 'import matplotlib.pyplot as plt\n'), ((8097, 8113), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(614)'], {}), '(614)\n', (8108, 8113), True, 'import matplotlib.pyplot as plt\n'), ((8118, 8138), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_3'], {}), '(time, dq_3)\n', (8126, 8138), True, 'import matplotlib.pyplot as plt\n'), ((8143, 8184), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_3'], {}), '(impact_time, predict_delta_dq_3)\n', (8151, 8184), True, 'import matplotlib.pyplot as plt\n'), ((8189, 8229), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_3'], {}), '(impact_time, actual_delta_dq_3)\n', (8197, 8229), True, 'import matplotlib.pyplot as plt\n'), ((8666, 8680), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (8674, 8680), True, 'import matplotlib.pyplot as plt\n'), ((8754, 8770), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(615)'], {}), '(615)\n', (8765, 8770), True, 'import matplotlib.pyplot as plt\n'), ((8775, 8795), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_4'], {}), '(time, dq_4)\n', (8783, 8795), True, 'import matplotlib.pyplot as plt\n'), ((8800, 8841), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_4'], {}), '(impact_time, predict_delta_dq_4)\n', (8808, 8841), True, 'import matplotlib.pyplot as plt\n'), ((8846, 8886), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_4'], {}), '(impact_time, actual_delta_dq_4)\n', (8854, 8886), True, 'import matplotlib.pyplot as plt\n'), ((9322, 9336), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (9330, 9336), True, 'import matplotlib.pyplot as plt\n'), ((9410, 9426), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(616)'], {}), '(616)\n', (9421, 9426), True, 'import matplotlib.pyplot as plt\n'), ((9431, 9451), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'dq_5'], {}), '(time, dq_5)\n', (9439, 9451), True, 'import matplotlib.pyplot as plt\n'), ((9456, 9497), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_dq_5'], {}), '(impact_time, predict_delta_dq_5)\n', (9464, 9497), True, 'import matplotlib.pyplot as plt\n'), ((9502, 9542), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_dq_5'], {}), '(impact_time, actual_delta_dq_5)\n', (9510, 9542), True, 'import matplotlib.pyplot as plt\n'), ((9809, 9831), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {}), "('Time [s]')\n", (9819, 9831), True, 'import matplotlib.pyplot as plt\n'), ((9836, 9850), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (9844, 9850), True, 'import matplotlib.pyplot as plt\n'), ((10133, 10163), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(6)', 'ncols': '(1)'}), '(nrows=6, ncols=1)\n', (10145, 10163), True, 'import matplotlib.pyplot as plt\n'), ((10176, 10192), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(611)'], {}), '(611)\n', (10187, 10192), True, 'import matplotlib.pyplot as plt\n'), ((10228, 10304), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_0'], {'label': '"""Predicted torque jump"""'}), "(impact_time, predict_delta_torque_0, label='Predicted torque jump')\n", (10236, 10304), True, 'import matplotlib.pyplot as plt\n'), ((10309, 10381), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_0'], {'label': '"""Actual torque jump"""'}), "(impact_time, actual_delta_torque_0, label='Actual torque jump')\n", (10317, 10381), True, 'import matplotlib.pyplot as plt\n'), ((10672, 10686), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (10680, 10686), True, 'import matplotlib.pyplot as plt\n'), ((10782, 10832), 'matplotlib.pyplot.title', 'plt.title', (['"""Joint torque jumps at the impact time"""'], {}), "('Joint torque jumps at the impact time')\n", (10791, 10832), True, 'import matplotlib.pyplot as plt\n'), ((11005, 11021), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(612)'], {}), '(612)\n', (11016, 11021), True, 'import matplotlib.pyplot as plt\n'), ((11026, 11071), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_1'], {}), '(impact_time, predict_delta_torque_1)\n', (11034, 11071), True, 'import matplotlib.pyplot as plt\n'), ((11076, 11120), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_1'], {}), '(impact_time, actual_delta_torque_1)\n', (11084, 11120), True, 'import matplotlib.pyplot as plt\n'), ((11548, 11562), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (11556, 11562), True, 'import matplotlib.pyplot as plt\n'), ((11647, 11663), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(613)'], {}), '(613)\n', (11658, 11663), True, 'import matplotlib.pyplot as plt\n'), ((11668, 11713), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_2'], {}), '(impact_time, predict_delta_torque_2)\n', (11676, 11713), True, 'import matplotlib.pyplot as plt\n'), ((11718, 11762), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_2'], {}), '(impact_time, actual_delta_torque_2)\n', (11726, 11762), True, 'import matplotlib.pyplot as plt\n'), ((12190, 12204), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (12198, 12204), True, 'import matplotlib.pyplot as plt\n'), ((12289, 12305), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(614)'], {}), '(614)\n', (12300, 12305), True, 'import matplotlib.pyplot as plt\n'), ((12310, 12355), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_3'], {}), '(impact_time, predict_delta_torque_3)\n', (12318, 12355), True, 'import matplotlib.pyplot as plt\n'), ((12360, 12404), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_3'], {}), '(impact_time, actual_delta_torque_3)\n', (12368, 12404), True, 'import matplotlib.pyplot as plt\n'), ((12832, 12846), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (12840, 12846), True, 'import matplotlib.pyplot as plt\n'), ((12931, 12947), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(615)'], {}), '(615)\n', (12942, 12947), True, 'import matplotlib.pyplot as plt\n'), ((12952, 12997), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_4'], {}), '(impact_time, predict_delta_torque_4)\n', (12960, 12997), True, 'import matplotlib.pyplot as plt\n'), ((13002, 13046), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_4'], {}), '(impact_time, actual_delta_torque_4)\n', (13010, 13046), True, 'import matplotlib.pyplot as plt\n'), ((13474, 13488), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (13482, 13488), True, 'import matplotlib.pyplot as plt\n'), ((13573, 13589), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(616)'], {}), '(616)\n', (13584, 13589), True, 'import matplotlib.pyplot as plt\n'), ((13594, 13639), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_delta_torque_5'], {}), '(impact_time, predict_delta_torque_5)\n', (13602, 13639), True, 'import matplotlib.pyplot as plt\n'), ((13644, 13688), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_delta_torque_5'], {}), '(impact_time, actual_delta_torque_5)\n', (13652, 13688), True, 'import matplotlib.pyplot as plt\n'), ((13958, 13987), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Impact Time [s]"""'], {}), "('Impact Time [s]')\n", (13968, 13987), True, 'import matplotlib.pyplot as plt\n'), ((13992, 14006), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (14000, 14006), True, 'import matplotlib.pyplot as plt\n'), ((14275, 14305), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(3)', 'ncols': '(1)'}), '(nrows=3, ncols=1)\n', (14287, 14305), True, 'import matplotlib.pyplot as plt\n'), ((14317, 14333), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (14328, 14333), True, 'import matplotlib.pyplot as plt\n'), ((14338, 14410), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_F_0'], {'label': '"""Predicted contact force jump"""'}), "(impact_time, predict_F_0, label='Predicted contact force jump')\n", (14346, 14410), True, 'import matplotlib.pyplot as plt\n'), ((14415, 14485), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_F_0'], {'label': '"""Measured contact force jump"""'}), "(impact_time, actual_F_0, label='Measured contact force jump')\n", (14423, 14485), True, 'import matplotlib.pyplot as plt\n'), ((15092, 15106), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (15100, 15106), True, 'import matplotlib.pyplot as plt\n'), ((15233, 15304), 'matplotlib.pyplot.title', 'plt.title', (['"""Precited contact force jump Versus measured contact force """'], {}), "('Precited contact force jump Versus measured contact force ')\n", (15242, 15304), True, 'import matplotlib.pyplot as plt\n'), ((15317, 15333), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (15328, 15333), True, 'import matplotlib.pyplot as plt\n'), ((15338, 15372), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_F_1'], {}), '(impact_time, predict_F_1)\n', (15346, 15372), True, 'import matplotlib.pyplot as plt\n'), ((15377, 15410), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_F_1'], {}), '(impact_time, actual_F_1)\n', (15385, 15410), True, 'import matplotlib.pyplot as plt\n'), ((15861, 15875), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (15869, 15875), True, 'import matplotlib.pyplot as plt\n'), ((15919, 15935), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (15930, 15935), True, 'import matplotlib.pyplot as plt\n'), ((15940, 15974), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'predict_F_2'], {}), '(impact_time, predict_F_2)\n', (15948, 15974), True, 'import matplotlib.pyplot as plt\n'), ((15979, 16012), 'matplotlib.pyplot.plot', 'plt.plot', (['impact_time', 'actual_F_2'], {}), '(impact_time, actual_F_2)\n', (15987, 16012), True, 'import matplotlib.pyplot as plt\n'), ((16251, 16272), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Force z"""'], {}), "('Force z')\n", (16261, 16272), True, 'import matplotlib.pyplot as plt\n'), ((16277, 16291), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (16285, 16291), True, 'import matplotlib.pyplot as plt\n'), ((16516, 16530), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (16524, 16530), True, 'import matplotlib.pyplot as plt\n'), ((16535, 16564), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Impact Time [s]"""'], {}), "('Impact Time [s]')\n", (16545, 16564), True, 'import matplotlib.pyplot as plt\n'), ((16645, 16675), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(6)', 'ncols': '(1)'}), '(nrows=6, ncols=1)\n', (16657, 16675), True, 'import matplotlib.pyplot as plt\n'), ((19975, 20005), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(6)', 'ncols': '(1)'}), '(nrows=6, ncols=1)\n', (19987, 20005), True, 'import matplotlib.pyplot as plt\n'), ((20017, 20033), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(611)'], {}), '(611)\n', (20028, 20033), True, 'import matplotlib.pyplot as plt\n'), ((20038, 20094), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_0'], {'label': '"""Actual joint acceleration"""'}), "(time, acc_0, label='Actual joint acceleration')\n", (20046, 20094), True, 'import matplotlib.pyplot as plt\n'), ((20099, 20175), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_0'], {'label': '"""QP predicted joint acceleration"""'}), "(time[:sol_len], sol_acc_0, label='QP predicted joint acceleration')\n", (20107, 20175), True, 'import matplotlib.pyplot as plt\n'), ((20272, 20286), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (20280, 20286), True, 'import matplotlib.pyplot as plt\n'), ((20504, 20549), 'matplotlib.pyplot.title', 'plt.title', (['"""Joint accelerations [Radion/s^2]"""'], {}), "('Joint accelerations [Radion/s^2]')\n", (20513, 20549), True, 'import matplotlib.pyplot as plt\n'), ((20562, 20578), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(612)'], {}), '(612)\n', (20573, 20578), True, 'import matplotlib.pyplot as plt\n'), ((20583, 20604), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_1'], {}), '(time, acc_1)\n', (20591, 20604), True, 'import matplotlib.pyplot as plt\n'), ((20609, 20644), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_1'], {}), '(time[:sol_len], sol_acc_1)\n', (20617, 20644), True, 'import matplotlib.pyplot as plt\n'), ((20680, 20694), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (20688, 20694), True, 'import matplotlib.pyplot as plt\n'), ((20919, 20935), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(613)'], {}), '(613)\n', (20930, 20935), True, 'import matplotlib.pyplot as plt\n'), ((20940, 20961), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_2'], {}), '(time, acc_2)\n', (20948, 20961), True, 'import matplotlib.pyplot as plt\n'), ((20966, 21001), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_2'], {}), '(time[:sol_len], sol_acc_2)\n', (20974, 21001), True, 'import matplotlib.pyplot as plt\n'), ((21037, 21051), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (21045, 21051), True, 'import matplotlib.pyplot as plt\n'), ((21276, 21292), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(614)'], {}), '(614)\n', (21287, 21292), True, 'import matplotlib.pyplot as plt\n'), ((21297, 21318), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_3'], {}), '(time, acc_3)\n', (21305, 21318), True, 'import matplotlib.pyplot as plt\n'), ((21323, 21358), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_3'], {}), '(time[:sol_len], sol_acc_3)\n', (21331, 21358), True, 'import matplotlib.pyplot as plt\n'), ((21394, 21408), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (21402, 21408), True, 'import matplotlib.pyplot as plt\n'), ((21633, 21649), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(615)'], {}), '(615)\n', (21644, 21649), True, 'import matplotlib.pyplot as plt\n'), ((21654, 21675), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_4'], {}), '(time, acc_4)\n', (21662, 21675), True, 'import matplotlib.pyplot as plt\n'), ((21680, 21715), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_4'], {}), '(time[:sol_len], sol_acc_4)\n', (21688, 21715), True, 'import matplotlib.pyplot as plt\n'), ((21751, 21765), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (21759, 21765), True, 'import matplotlib.pyplot as plt\n'), ((21990, 22006), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(616)'], {}), '(616)\n', (22001, 22006), True, 'import matplotlib.pyplot as plt\n'), ((22011, 22032), 'matplotlib.pyplot.plot', 'plt.plot', (['time', 'acc_5'], {}), '(time, acc_5)\n', (22019, 22032), True, 'import matplotlib.pyplot as plt\n'), ((22037, 22072), 'matplotlib.pyplot.plot', 'plt.plot', (['time[:sol_len]', 'sol_acc_5'], {}), '(time[:sol_len], sol_acc_5)\n', (22045, 22072), True, 'import matplotlib.pyplot as plt\n'), ((22108, 22122), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (22116, 22122), True, 'import matplotlib.pyplot as plt\n'), ((22685, 22707), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {}), "('Time [s]')\n", (22695, 22707), True, 'import matplotlib.pyplot as plt\n'), ((22712, 22726), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (22720, 22726), True, 'import matplotlib.pyplot as plt\n'), ((22895, 22905), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22903, 22905), True, 'import matplotlib.pyplot as plt\n'), ((5880, 5906), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (5898, 5906), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((7084, 7110), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (7102, 7110), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((7889, 7915), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (7907, 7915), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((8579, 8605), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (8597, 8605), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((9236, 9262), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (9254, 9262), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((9947, 9973), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (9965, 9973), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((10911, 10937), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (10929, 10937), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((11516, 11542), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (11534, 11542), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((12158, 12184), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (12176, 12184), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((12800, 12826), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (12818, 12826), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((13442, 13468), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (13460, 13468), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((14085, 14111), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (14103, 14111), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((15006, 15032), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (15024, 15032), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((15775, 15801), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (15793, 15801), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((16370, 16396), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (16388, 16396), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((20419, 20445), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (20437, 20445), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((20773, 20799), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (20791, 20799), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((21130, 21156), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (21148, 21156), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((21487, 21513), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (21505, 21513), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((21844, 21870), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (21862, 21870), False, 'from matplotlib.ticker import FormatStrFormatter\n'), ((22201, 22227), 'matplotlib.ticker.FormatStrFormatter', 'FormatStrFormatter', (['"""%.2f"""'], {}), "('%.2f')\n", (22219, 22227), False, 'from matplotlib.ticker import FormatStrFormatter\n')]
# -*- coding: utf-8 -*- """ lantz.drivers.tektronix.tds2024b ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implements the drivers to control an oscilloscope. :copyright: 2015 by Lantz Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import struct import numpy as np from lantz.feat import Feat from lantz.action import Action from lantz import MessageBasedDriver class TDS2024(MessageBasedDriver): """Tektronix TDS2024 200 MHz 4 Channel Digital Real-Time Oscilloscope """ MANUFACTURER_ID = '0x699' @Action() def autoconf(self): """Autoconfig oscilloscope. """ self.send(':AUTOS EXEC') def initialize(self): """initiate. """ self.send(':ACQ:STATE ON') return "Init" @Feat() def idn(self): """IDN. """ return self.query('ID?') @Feat() def trigger(self): """Trigger state. """ return self.query(':TRIG:STATE?') @trigger.setter def trigger(self, mode): """Set trigger state. """ self.query('TRIG:MAIN:MODE {}'.format(mode)) @Action() def triggerlevel(self): """Set trigger level to 50% of the minimum adn maximum values of the signal. """ self.send('TRIG:MAIn SATLevel') @Action() def forcetrigger(self): """Force trigger event. """ self.send('TRIG FORCe') @Action() def datasource(self, chn): """Selects channel. """ self.send(':DATA:SOURCE CH{}'.format(chn)) @Action() def acqparams(self): """ X/Y Increment Origin and Offset. """ commands = 'XZE?;XIN?;YZE?;YMU?;YOFF?' #params = self.query(":WFMPRE:XZE?;XIN?;YZE?;YMU?;YOFF?;") params = self.query(':WFMPRE:{}'.format(commands)) params = {k: float(v) for k, v in zip(commands.split(';'), params.split(';'))} return params @Action() def dataencoding(self): """Set data encoding. """ self.send(':DAT:ENC RPB;WID 2;') return "Set data encoding" @Action() def curv(self): """Get data. Returns: xdata, data as list """ self.dataencoding() self.send('CURV?') answer = self.recv() numdigs = int(answer[1]) bytecount = int(answer[2:2+numdigs]) data = answer[2+numdigs:] length = bytecount / 2 data = struct.unpack("{}H".format(length), data[0:2*length]) params = self.acqparams() data = np.array(list(map(float, data))) yoff = params['YOFF?'] ymu = params['YMU?'] yze = params['YZE?'] xin = params['XIN?'] xze = params['XZE?'] ydata = ( data - yoff) * ymu + yze xdata = np.arange(len(data)) * xin + xze return list(xdata), list(data) def _measure(self, type, source): self.send('MEASUrement:IMMed:TYPe {}'.format(type)) self.send('MEASUrement:IMMed:SOUrce1 CH{}'.format(source)) self.send('MEASUrement:IMMed:VALue?') return self.recv() @Action() def measure_frequency(self, channel): """Get immediate measurement result. """ return self._measure('FREQuency', channel) @Action() def measure_min(self, channel): """Get immediate measurement result. """ return self._measure('MINImum', channel) @Action() def measure_max(self, chn): """Get immediate measurement result. """ return self._measure('MAXImum', channel) @Action() def measure_mean(self, chn): """Get immediate measurement result. """ return self._measure('MEAN', channel) if __name__ == '__main__': import argparse import csv parser = argparse.ArgumentParser(description='Measure using TDS2024 and dump to screen') parser.add_argument('-p', '--port', default='USB0::0x0699::0x036A::C048617', help='USB port') parser.add_argument('-v', '--view', action='store_true', default=False, help='View ') parser.add_argument('Channels', metavar='channels', type=int, nargs='*', help='Channels to use') parser.add_argument('--output', type=argparse.FileType('wb', 0), default='-') args = parser.parse_args() osc = TDS2024(args.port) osc.initialize() print(osc.idn) print(osc.trigger) osc.forcetrigger() osc.triggerlevel() osc.trigger = "AUTO" print(osc.trigger) #osc.autoconf() params = osc.acqparams() if args.view: import matplotlib.pyplot as plt import numpy as np with args.output as fp: writer = csv.writer(fp) writer.write_row(('Channel', 'Freq', 'Max', 'Min', 'Mean')) for channel in args.channels or range(1, 4): osc.datasource(channel) writer.write_row(([osc.measure_frequency(channel), osc.measure_max(channel), osc.measure_min(channel), osc.measure_mean(channel)])) if args.view: x, y = osc.curv() x = np.array(x) x = x - x.min() y = np.array(y) plt.plot(x, y) if args.view: plt.show()
[ "matplotlib.pyplot.show", "csv.writer", "argparse.ArgumentParser", "matplotlib.pyplot.plot", "lantz.feat.Feat", "numpy.array", "lantz.action.Action", "argparse.FileType" ]
[((570, 578), 'lantz.action.Action', 'Action', ([], {}), '()\n', (576, 578), False, 'from lantz.action import Action\n'), ((807, 813), 'lantz.feat.Feat', 'Feat', ([], {}), '()\n', (811, 813), False, 'from lantz.feat import Feat\n'), ((900, 906), 'lantz.feat.Feat', 'Feat', ([], {}), '()\n', (904, 906), False, 'from lantz.feat import Feat\n'), ((1161, 1169), 'lantz.action.Action', 'Action', ([], {}), '()\n', (1167, 1169), False, 'from lantz.action import Action\n'), ((1349, 1357), 'lantz.action.Action', 'Action', ([], {}), '()\n', (1355, 1357), False, 'from lantz.action import Action\n'), ((1468, 1476), 'lantz.action.Action', 'Action', ([], {}), '()\n', (1474, 1476), False, 'from lantz.action import Action\n'), ((1605, 1613), 'lantz.action.Action', 'Action', ([], {}), '()\n', (1611, 1613), False, 'from lantz.action import Action\n'), ((1984, 1992), 'lantz.action.Action', 'Action', ([], {}), '()\n', (1990, 1992), False, 'from lantz.action import Action\n'), ((2145, 2153), 'lantz.action.Action', 'Action', ([], {}), '()\n', (2151, 2153), False, 'from lantz.action import Action\n'), ((3162, 3170), 'lantz.action.Action', 'Action', ([], {}), '()\n', (3168, 3170), False, 'from lantz.action import Action\n'), ((3327, 3335), 'lantz.action.Action', 'Action', ([], {}), '()\n', (3333, 3335), False, 'from lantz.action import Action\n'), ((3484, 3492), 'lantz.action.Action', 'Action', ([], {}), '()\n', (3490, 3492), False, 'from lantz.action import Action\n'), ((3637, 3645), 'lantz.action.Action', 'Action', ([], {}), '()\n', (3643, 3645), False, 'from lantz.action import Action\n'), ((3860, 3939), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Measure using TDS2024 and dump to screen"""'}), "(description='Measure using TDS2024 and dump to screen')\n", (3883, 3939), False, 'import argparse\n'), ((4783, 4797), 'csv.writer', 'csv.writer', (['fp'], {}), '(fp)\n', (4793, 4797), False, 'import csv\n'), ((5407, 5417), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5415, 5417), True, 'import matplotlib.pyplot as plt\n'), ((4342, 4368), 'argparse.FileType', 'argparse.FileType', (['"""wb"""', '(0)'], {}), "('wb', 0)\n", (4359, 4368), False, 'import argparse\n'), ((5273, 5284), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (5281, 5284), True, 'import numpy as np\n'), ((5337, 5348), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (5345, 5348), True, 'import numpy as np\n'), ((5365, 5379), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (5373, 5379), True, 'import matplotlib.pyplot as plt\n')]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class Accuracy(nn.Module): def __init__(self, topk=(1,)): super(Accuracy, self).__init__() self.topk = topk def forward(self, output, target): """Computes the precision@k for the specified values of k""" maxk = max(self.topk) batch_size = target.size(0) pred = output.topk(maxk, 1, True, True)[1].t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in self.topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append( correct_k.mul_(100.0 / batch_size) ) return res class ConfusionMeter( object ): """Maintains a confusion matrix for a given calssification problem. https://github.com/pytorch/tnt/tree/master/torchnet/meter The ConfusionMeter constructs a confusion matrix for a multi-class classification problems. It does not support multi-label, multi-class problems: for such problems, please use MultiLabelConfusionMeter. Args: k (int): number of classes in the classification problem normalized (boolean): Determines whether or not the confusion matrix is normalized or not """ def __init__(self, k, normalized=False): super(ConfusionMeter, self).__init__() self.conf = np.ndarray((k, k), dtype=np.int32) self.normalized = normalized self.k = k self.reset() def reset(self): self.conf.fill(0) def add(self, predicted, target): """Computes the confusion matrix of K x K size where K is no of classes Args: predicted (tensor): Can be an N x K tensor of predicted scores obtained from the model for N examples and K classes or an N-tensor of integer values between 0 and K-1. target (tensor): Can be a N-tensor of integer values assumed to be integer values between 0 and K-1 or N x K tensor, where targets are assumed to be provided as one-hot vectors """ predicted = predicted.cpu().numpy() target = target.cpu().numpy() assert predicted.shape[0] == target.shape[0], \ 'number of targets and predicted outputs do not match' if np.ndim(predicted) != 1: assert predicted.shape[1] == self.k, \ 'number of predictions does not match size of confusion matrix' predicted = np.argmax(predicted, 1) else: assert (predicted.max() < self.k) and (predicted.min() >= 0), \ 'predicted values are not between 1 and k' onehot_target = np.ndim(target) != 1 if onehot_target: assert target.shape[1] == self.k, \ 'Onehot target does not match size of confusion matrix' assert (target >= 0).all() and (target <= 1).all(), \ 'in one-hot encoding, target values should be 0 or 1' assert (target.sum(1) == 1).all(), \ 'multi-label setting is not supported' target = np.argmax(target, 1) else: assert (predicted.max() < self.k) and (predicted.min() >= 0), \ 'predicted values are not between 0 and k-1' # hack for bincounting 2 arrays together x = predicted + self.k * target bincount_2d = np.bincount(x.astype(np.int32), minlength=self.k ** 2) assert bincount_2d.size == self.k ** 2 conf = bincount_2d.reshape((self.k, self.k)) self.conf += conf def value(self): """ Returns: Confustion matrix of K rows and K columns, where rows corresponds to ground-truth targets and columns corresponds to predicted targets. """ if self.normalized: conf = self.conf.astype(np.float32) return conf / conf.sum(1).clip(min=1e-12)[:, None] else: return self.conf
[ "numpy.ndarray", "numpy.ndim", "numpy.argmax" ]
[((1420, 1454), 'numpy.ndarray', 'np.ndarray', (['(k, k)'], {'dtype': 'np.int32'}), '((k, k), dtype=np.int32)\n', (1430, 1454), True, 'import numpy as np\n'), ((2379, 2397), 'numpy.ndim', 'np.ndim', (['predicted'], {}), '(predicted)\n', (2386, 2397), True, 'import numpy as np\n'), ((2559, 2582), 'numpy.argmax', 'np.argmax', (['predicted', '(1)'], {}), '(predicted, 1)\n', (2568, 2582), True, 'import numpy as np\n'), ((2757, 2772), 'numpy.ndim', 'np.ndim', (['target'], {}), '(target)\n', (2764, 2772), True, 'import numpy as np\n'), ((3185, 3205), 'numpy.argmax', 'np.argmax', (['target', '(1)'], {}), '(target, 1)\n', (3194, 3205), True, 'import numpy as np\n')]
import numpy as np # Constants BIAS = 1 ITERATIONS = 1000 class MulticlassPreceptron: '''''' ''' Initializer function to takes the possible classes for the data set. ''' def __init__(self, possible_classes): self.learning_rate = 0.1 self.X_train = None self.y_train = None self.classes = set(possible_classes) self.number_of_features = 0 self.number_of_classes = len(self.classes) self.weights = {} ''' Function initialize the weights dictionary with zeros with the same length as the feature vector + 1 for the BIAS. Each class will have its own weights in the dictionary. ''' def initialize_weights(self): for data_class in self.classes: self.weights[str(data_class)] = np.array([0.0] * (self.number_of_features + 1)) ''' Compute the predicted outcome for each single instance in the data set. The outcome is computed as follows: - For every class in the total number of classes, compute the product of that class weight vector, with the data instance. - Return the class that causes the biggest activation, meaning the biggest product among all the different classes. ''' def find_closest_class(self, training_instance_data): max_prediction = 0 max_prediction_class = 0 for perceptron_class in self.classes: prediction = np.dot(training_instance_data, self.weights[str(perceptron_class)]) if prediction >= max_prediction: max_prediction = prediction max_prediction_class = perceptron_class return max_prediction_class ''' Main Algorithm for the Multi-class Perceptron is as follows: 1. Initialize the weights dictionary with p weight vectors, where p is the number of distinct classes or outcomes in the data set. 2. Train the weight vector on the data set by a predefined number of iterations. 3. In each iteration, compute the predicted outcome for each single instance in the data set. The outcome is computed as follows: - For every weight vector in the weights dictionary, compute the product of that weight vector, with the data instance. - Return the class that causes the biggest activation, meaning the biggest product among all the different classes. 4. If the prediction class is the same as the expected class, then do nothing. 5. If the prediction class is different from the expected class, then: - Add the feature vector to the weights of the expected class. - Subtract the feature vector from the weights of the predicted (wrong) class. ''' def train_perceptron(self, X_train, y_train): self.X_train = X_train self.y_train = y_train self.number_of_features = X_train.shape[1] number_of_training_instances = X_train.shape[0] self.initialize_weights() for i in range(ITERATIONS): for j in range(number_of_training_instances): training_instance_data = X_train[j].A[0].T.data training_instance_data = np.append(training_instance_data, BIAS) y_pred = self.find_closest_class(training_instance_data) if y_pred != y_train[j]: self.weights[str(int(y_train[j]))] += training_instance_data self.weights[str(int(y_pred))] -= training_instance_data return self.weights ''' Function that takes a list of test instances, and returns an array of predictions for those instances. ''' def predict(self, test_instances): number_of_test_instances = test_instances.shape[0] predictions = np.array([]) for j in range(number_of_test_instances): training_instance_data = test_instances[j].A[0].T.data training_instance_data = np.append(training_instance_data, BIAS) y_pred = self.find_closest_class(training_instance_data) predictions = np.append(predictions, y_pred) return predictions ''' Function that returns the score (accuracy) of the Multi-class Perceptron. It takes a testing feature array and a testing outcome array. The score is calculated by returning the number of correct classifications out of the total number of testing instances. ''' def score(self, X_test, y_test): number_of_test_instances = X_test.shape[0] y_predictions = self.predict(X_test) correct_prediction_counter = 0 for i in range(number_of_test_instances): if y_predictions[i] == y_test[i]: correct_prediction_counter += 1 accuracy = correct_prediction_counter / number_of_test_instances return accuracy
[ "numpy.append", "numpy.array" ]
[((3810, 3822), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3818, 3822), True, 'import numpy as np\n'), ((810, 857), 'numpy.array', 'np.array', (['([0.0] * (self.number_of_features + 1))'], {}), '([0.0] * (self.number_of_features + 1))\n', (818, 857), True, 'import numpy as np\n'), ((3977, 4016), 'numpy.append', 'np.append', (['training_instance_data', 'BIAS'], {}), '(training_instance_data, BIAS)\n', (3986, 4016), True, 'import numpy as np\n'), ((4112, 4142), 'numpy.append', 'np.append', (['predictions', 'y_pred'], {}), '(predictions, y_pred)\n', (4121, 4142), True, 'import numpy as np\n'), ((3221, 3260), 'numpy.append', 'np.append', (['training_instance_data', 'BIAS'], {}), '(training_instance_data, BIAS)\n', (3230, 3260), True, 'import numpy as np\n')]
import numpy as np from numpy import sin, cos, tan, pi, sqrt from numpy.core.defchararray import index import yaml import os from collections import OrderedDict # import imp # import welleng.error from ..utils import NEV_to_HLA # since this is running on different OS flavors PATH = os.path.dirname(__file__) TOOL_INDEX = os.path.join( '', *[PATH, 'tool_index.yaml'] ) ACCURACY = 1e-6 class ToolError: def __init__( self, error, model ): """ Class using the ISCWSA listed tool errors to determine well bore uncertainty. Parameters ---------- error: an intitiated welleng.error.ErrorModel object model: string Returns ------- errors: welleng.error.ErrorModel object A populated ErrorModel object for the selected error model. """ error.__init__ self.e = error self.errors = {} filename = os.path.join( '', *[PATH, 'tool_codes', f"{model}.yaml"] ) with open(filename, 'r') as file: self.em = yaml.safe_load(file) # for gyro tools the continuous survey errors need to be done last self.em['codes'] = OrderedDict(self.em['codes']) gyro_continuous = ['GXY-GD', 'GXY-GRW'] gyro_stationary = ['GXY-B1S', 'GXY-B2S', 'GXY-G4', 'GXY-RN'] for tool in gyro_continuous: if tool in self.em['codes']: self.gyro_continuous = [] self.em['codes'].move_to_end(tool) self.gyro_continuous.append(tool) self.gyro_stationary = [ tool for tool in gyro_stationary if tool in self.em['codes'] ] # self.em = iscwsa_error_models[model] # iscwsa_error_models = yaml.safe_load(file) # self.em = iscwsa_error_models[model] if 'Default Tortusity (rad/m)' in self.em['header']: self.tortuosity = self.em['header']['Default Tortusity (rad/m)'] elif 'XCL Tortuosity' in self.em['header']: # assuming that this is always 1 deg / 100 ft but this might not # be the case # TODO use pint to handle this string inputs self.tortuosity = (np.radians(1.) / 100) * 3.281 else: self.tortuosity = None # if model == "iscwsa_mwd_rev5": # if model == "ISCWSA MWD Rev5": # assert self.tortuosity is not None, ( # "No default tortuosity defined in model header" # ) if "Inclination Range Max" in self.em['header'].keys(): value = np.radians(float( self.em['header']['Inclination Range Max'].split(" ")[0] )) assert np.amax(self.e.survey.inc_rad) < value, ( "Model not suitable for this well path inclination" ) self._initiate_func_dict() for err in self.em['codes']: # func = self._get_the_func_out(err) func = self.em['codes'][err]['function'] mag = self.em['codes'][err]['magnitude'] propagation = self.em['codes'][err]['propagation'] self.errors[err] = ( self.call_func( code=err, func=func, error=self.e, mag=mag, propagation=propagation, tortuosity=self.tortuosity, header=self.em['header'], errors=self ) ) self.cov_NEVs = np.zeros((3, 3, len(self.e.survey_rad))) for _, value in self.errors.items(): self.cov_NEVs += value.cov_NEV self.cov_HLAs = NEV_to_HLA(self.e.survey_rad, self.cov_NEVs) def _get_the_func_out(self, err): if err in self.exceptional_funcs: func = self.exceptional_funcs[err] else: func = self.em['codes'][err]['function'] return func def call_func(self, code, func, error, mag, propagation, **kwargs): """ Function for calling functions by mapping function labels to their functions. """ assert func in self.func_dict, f"no function for function {func}" return self.func_dict[func](code, error, mag, propagation, **kwargs) def _initiate_func_dict(self): """ This dictionary will need to be updated if/when additional error functions are added to the model. """ self.func_dict = { 'ABXY_TI1': ABXY_TI1, 'ABXY_TI2': ABXY_TI2, 'ABZ': ABZ, 'AMIL': AMIL, 'ASXY_TI1': ASXY_TI1, 'ASXY_TI2': ASXY_TI2, 'ASXY_TI3': ASXY_TI3, 'ASZ': ASZ, 'DBH': DBH, 'AZ': AZ, 'DREF': DREF, 'DSF': DSF, 'DST': DST, 'MBXY_TI1': MBXY_TI1, 'MBXY_TI2': MBXY_TI2, 'MBZ': MBZ, 'MSXY_TI1': MSXY_TI1, 'MSXY_TI2': MSXY_TI2, 'MSXY_TI3': MSXY_TI3, 'MSZ': MSZ, 'SAG': SAG, 'XYM1': XYM1, 'XYM2': XYM2, 'XYM3': XYM3, 'XYM4': XYM4, 'SAGE': SAGE, 'XCL': XCL, # requires an exception 'XYM3L': XYM3L, # looks like there's a mistake in the ISCWSA model 'XYM4L': XYM4L, 'XCLA': XCLA, 'XCLH': XCLH, 'XYM3E': XYM3E, # Needs QAQC 'XYM4E': XYM4E, # Need QAQC 'ASIXY_TI1': ASIXY_TI1, # Needs QAQC 'ASIXY_TI2': ASIXY_TI2, # Needs QAQC 'ASIXY_TI3': ASIXY_TI3, # Needs QAQC 'ABIXY_TI1': ABIXY_TI1, # Needs QAQC 'ABIXY_TI2': ABIXY_TI2, # Needs QAQC 'ABIZ': ABIZ, # Needs QAQC 'ASIZ': ASIZ, # Needs QAQC 'MBIXY_TI1': MBIXY_TI1, # Needs QAQC 'MBIXY_TI2': MBIXY_TI2, # Needs QAQC 'MDI': MDI, # Needs QAQC 'AXYZ_MIS': AXYZ_MIS, # Needs QAQC 'AXYZ_SF': AXYZ_SF, # Needs QAQC 'AXYZ_ZB': AXYZ_ZB, # Needs QAQC 'GXY_B1': GXY_B1, # Needs QAQC 'GXY_B2': GXY_B2, # Needs QAQC 'GXY_G1': GXY_G1, # Needs QAQC 'GXY_G4': GXY_G4, # Needs QAQC 'GXY_RN': GXY_RN, # Needs QAQC 'GXY_GD': GXY_GD, # Needs QAQC 'GXY_GRW': GXY_GRW, # Needs QAQC 'MFI': MFI, # Needs QAQC 'MSIXY_TI1': MSIXY_TI1, # Needs QAQC 'MSIXY_TI2': MSIXY_TI1, # Needs QAQC 'MSIXY_TI3': MSIXY_TI1, # Needs QAQC 'AMID': AMID, # Needs QAQC 'CNA': CNA, # Needs QAQC 'CNI': CNI, # Needs QAQC } def _funky_denominator(error): with np.errstate(divide='ignore', invalid='ignore'): result = np.nan_to_num(( 1 - sin(error.survey.inc_rad) ** 2 * sin(error.survey.azi_mag_rad) ** 2 ), # nan=1e-6, # posinf=1.0, # neginf=-1.0 ) # ACCURACY = 1e-6 # with np.errstate(divide='ignore', invalid='ignore'): # coeff = np.nan_to_num( # result / np.abs(result) * ACCURACY, # nan=ACCURACY # ) # result = np.where(np.abs(result) > ACCURACY, result, coeff) return result # error functions # def DREF(code, error, mag=0.35, propagation='random', NEV=True, **kwargs): dpde = np.full((len(error.survey_rad), 3), [1., 0., 0.]) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def DSF( code, error, mag=0.00056, propagation='systematic', NEV=True, **kwargs ): dpde = np.full((len(error.survey_rad), 3), [1., 0., 0.]) dpde = dpde * np.array(error.survey_rad) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def DST( code, error, mag=0.00000025, propagation='systematic', NEV=True, **kwargs ): dpde = np.full((len(error.survey_rad), 3), [1., 0., 0.]) dpde[:, 0] = error.survey.tvd dpde = dpde * np.array(error.survey_rad) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ABIZ( code, error, mag=0.0040, propagation='systematic', NEV=True, **kwargs ): denom = _funky_denominator(error) / error.survey.header.G denom = np.where(denom > ACCURACY, denom, ACCURACY) dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = -sin(error.survey.inc_rad) / error.survey.header.G dpde[:, 2] = ( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / denom e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ABIXY_TI1( code, error, mag=0.0040, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = -cos(error.survey.inc_rad) / error.survey.header.G dpde[:, 2] = ( cos(error.survey.inc_rad) ** 2 * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / ( error.survey.header.G * ( _funky_denominator(error) ) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ABXY_TI1( code, error, mag=0.0040, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = -cos(error.survey.inc_rad) / error.survey.header.G dpde[:, 2] = ( cos(error.survey.inc_rad) * tan(error.survey.header.dip) * sin(error.survey.azi_mag_rad) ) / error.survey.header.G e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ABIXY_TI2( code, error, mag=0.004, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( ( -( tan(error.survey.header.dip) * cos(error.survey.azi_mag_rad) - tan( pi/2 - error.survey.inc_rad ) ) / ( error.survey.header.G * ( _funky_denominator(error) ) ) ), posinf=0.0, neginf=0.0 ) e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) n = np.array( 0.5 * error.drdp_sing['double_delta_md'] * -sin(error.drdp_sing['azi2']) * mag ) / error.survey.header.G e = np.array( 0.5 * error.drdp_sing['double_delta_md'] * cos(error.drdp_sing['azi2']) * mag ) / error.survey.header.G v = np.zeros_like(n) e_NEV_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV_sing[1, 1] = ( ( error.survey.md[2] + error.survey.md[1] - 2 * error.survey.md[0] ) / 2 * mag * cos(error.survey.azi_true_rad[1]) / error.survey.header.G ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) n = np.array( 0.5 * error.drdp_sing['delta_md'] * -sin(error.drdp_sing['azi2']) * mag ) / error.survey.header.G e = np.array( 0.5 * error.drdp_sing['delta_md'] * cos(error.drdp_sing['azi2']) * mag ) / error.survey.header.G v = np.zeros_like(n) e_NEV_star_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV_star_sing[1, 1] = ( (error.survey.md[1] - error.survey.md[0]) * mag * ( cos(error.survey.azi_true_rad[1]) / error.survey.header.G ) ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def ABXY_TI2( code, error, mag=0.004, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( ( ( tan(-(error.survey_rad[:, 1]) + (pi/2)) - tan(error.survey.header.dip) * cos(error.survey.azi_mag_rad) ) / error.survey.header.G ), posinf=0.0, neginf=0.0 ) e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) n = np.array( 0.5 * error.drdp_sing['double_delta_md'] * -sin(error.drdp_sing['azi2']) * mag ) / error.survey.header.G e = np.array( 0.5 * error.drdp_sing['double_delta_md'] * cos(error.drdp_sing['azi2']) * mag ) / error.survey.header.G v = np.zeros_like(n) e_NEV_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) if error.error_model.lower().split(' ')[-1] != 'rev4': e_NEV_sing[1, 1] = ( ( error.survey.md[2] + error.survey.md[1] - 2 * error.survey.md[0] ) / 2 * mag * cos(error.survey.azi_true_rad[1]) / error.survey.header.G ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) n = np.array( 0.5 * error.drdp_sing['delta_md'] * -sin(error.drdp_sing['azi2']) * mag ) / error.survey.header.G e = np.array( 0.5 * error.drdp_sing['delta_md'] * cos(error.drdp_sing['azi2']) * mag ) / error.survey.header.G v = np.zeros_like(n) e_NEV_star_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) if error.error_model.lower().split(' ')[-1] != 'rev4': e_NEV_star_sing[1, 1] = ( (error.survey.md[1] - error.survey.md[0]) * mag * ( cos(error.survey.azi_true_rad[1]) / error.survey.header.G ) ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def AMID(code, error, mag=0.04363323129985824, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def ABZ(code, error, mag=0.004, propagation='systematic', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = -sin(np.array(error.survey_rad)[:, 1]) / error.survey.header.G dpde[:, 2] = ( sin(np.array(error.survey_rad)[:, 1]) * tan(error.survey.header.dip) * sin(error.survey.azi_mag_rad) ) / error.survey.header.G e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASXY_TI1( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ) / sqrt(2) dpde[:, 2] = ( sin(error.survey.inc_rad) * -tan(error.survey.header.dip) * cos(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) ) / sqrt(2) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASIXY_TI1( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) / sqrt(2) ) dpde[:, 2] = -( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ** 2 * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / ( sqrt(2) * _funky_denominator(error) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASXY_TI2( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = sin( np.array(error.survey_rad)[:, 1] ) * cos(np.array(error.survey_rad)[:, 1]) / 2 dpde[:, 2] = ( sin(np.array(error.survey_rad)[:, 1]) * -tan(error.survey.header.dip) * cos(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) ) / 2 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASIXY_TI2( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) / 2 ) dpde[:, 2] = -( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ** 2 * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / ( 2 * _funky_denominator(error) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASXY_TI3( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(np.array(error.survey_rad)[:, 1]) * tan(error.survey.header.dip) * cos(error.survey.azi_mag_rad) - cos(np.array(error.survey_rad)[:, 1])) / 2 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASIXY_TI3( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( tan(error.survey.header.dip) * sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) - cos(error.survey.inc_rad) ) / ( 2 * _funky_denominator(error) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASZ(code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( -sin(np.array(error.survey_rad)[:, 1]) * cos(np.array(error.survey_rad)[:, 1]) ) dpde[:, 2] = ( sin(np.array(error.survey_rad)[:, 1]) * tan(error.survey.header.dip) * cos(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def ASIZ( code, error, mag=0.0005, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( -sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ) dpde[:, 2] = ( sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ** 2 * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / ( _funky_denominator(error) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def AXYZ_MIS( code, error, mag=0.0001658062789394613, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 1 """ dpde = np.full((len(error.survey_rad), 3), [0., 1., 0.]) dpde = dpde * np.array(error.survey_rad) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def AXYZ_SF( code, error, mag=0.000111, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 1 """ dpde = np.full((len(error.survey_rad), 3), [0., 1., 0.]) dpde[:, 1] = ( 1.3 * sin(error.survey.inc_rad) * cos(error.survey.inc_rad) ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def AXYZ_ZB( code, error, mag=0.0017, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 1 """ dpde = np.full((len(error.survey_rad), 3), [0., 1., 0.]) dpde[:, 1] = ( sin(error.survey.inc_rad) / error.survey.header.G ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def _get_ref_init_error(dpde, error, **kwargs): """ Function that identifies where the continuous gyro begins, initiates and then carries the static errors during the continuous modes. """ temp = [0.0] for coeff, inc in zip(dpde[1:, 2], error.survey.inc_rad[1:]): if inc > kwargs['header']['XY Static Gyro']['End Inc']: temp.append(temp[-1]) else: temp.append(coeff) dpde[:, 2] = temp return dpde def CNA( code, error, mag=0.35, propagation='systematic', NEV=True, **kwargs ): dpde = np.full((len(error.survey_rad), 3), [0., 0., 0.]) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( 1 / sin(error.survey.inc_rad), posinf=1, neginf=-1 ) e_DIA = dpde * mag sing = np.where( error.survey.inc_rad < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) n = ( np.array(0.5 * error.drdp_sing['double_delta_md']) * -sin(getattr( error.survey, f"azi_{error.survey.header.azi_reference}_rad" )[1: -1]) * mag ) e = ( np.array(0.5 * error.drdp_sing['double_delta_md']) * cos(getattr( error.survey, f"azi_{error.survey.header.azi_reference}_rad" )[1: -1]) * mag ) v = np.zeros_like(n) e_NEV_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) n = ( np.array(0.5 * error.drdp_sing['delta_md']) * -sin(getattr( error.survey, f"azi_{error.survey.header.azi_reference}_rad" )[1: -1]) * mag ) e = ( np.array(0.5 * error.drdp_sing['delta_md']) * cos(getattr( error.survey, f"azi_{error.survey.header.azi_reference}_rad" )[1: -1]) * mag ) e_NEV_star_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) # result = error._generate_error(code, e_DIA, propagation, NEV) # return result def CNI( code, error, mag=0.35, propagation='systematic', NEV=True, **kwargs ): dpde = np.full((len(error.survey_rad), 3), [0., 1., 0.]) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_B1( code, error, mag=0.002617993877991494, propagation='random', NEV=True, **kwargs ): """ SPE 90408 Table 4 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) dpde[:, 2] = np.where( error.survey.inc_rad <= kwargs['header']['XY Static Gyro']['End Inc'], sin(error.survey.azi_true_rad) / ( error.survey.header.earth_rate * cos(np.radians(error.survey.header.latitude)) * cos(error.survey.inc_rad) ), np.zeros_like(error.survey.md) ) dpde = _get_ref_init_error(dpde, error, **kwargs) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_B2( code, error, mag=0.002617993877991494, propagation='random', NEV=True, **kwargs ): """ SPE 90408 Table 4 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) dpde[:, 2] = np.where( error.survey.inc_rad <= kwargs['header']['XY Static Gyro']['End Inc'], cos(error.survey.azi_true_rad) / ( error.survey.header.earth_rate * cos(np.radians(error.survey.header.latitude)) ), np.zeros_like(error.survey.md) ) dpde = _get_ref_init_error(dpde, error, **kwargs) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_G1( code, error, mag=0.006981317007977318, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 4 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) dpde[:, 2] = np.where( error.survey.inc_rad <= kwargs['header']['XY Static Gyro']['End Inc'], cos(error.survey.azi_true_rad) * sin(error.survey.inc_rad) / ( error.survey.header.earth_rate * cos(np.radians(error.survey.header.latitude)) ), np.zeros_like(error.survey.md) ) dpde = _get_ref_init_error(dpde, error, **kwargs) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_G4( code, error, mag=0.010471975511965976, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 4 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) dpde[:, 2] = np.where( error.survey.inc_rad <= kwargs['header']['XY Static Gyro']['End Inc'], sin(error.survey.azi_true_rad) * tan(error.survey.inc_rad) / ( error.survey.header.earth_rate * cos(np.radians(error.survey.header.latitude)) ), np.zeros_like(error.survey.md) ) dpde = _get_ref_init_error(dpde, error, **kwargs) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_RN( code, error, mag=0.006981317007977318, propagation='random', NEV=True, **kwargs ): """ SPE 90408 Table 4 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) dpde[:, 2] = np.where( error.survey.inc_rad <= kwargs['header']['XY Static Gyro']['End Inc'], 1.0 * ( np.sqrt( 1 - cos(error.survey.azi_true_rad) ** 2 * sin(error.survey.inc_rad) ** 2 ) / ( error.survey.header.earth_rate * cos(np.radians(error.survey.header.latitude)) * cos(error.survey.inc_rad) ) ), np.zeros_like(error.survey.md) ) dpde = _get_ref_init_error(dpde, error, **kwargs) dpde_systematic = np.zeros_like(dpde) index_systematic = np.where( error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'] ) np.put( dpde_systematic[:, 2], index_systematic, ( dpde[index_systematic][:, 2] * kwargs['header']['Noise Reduction Factor'] ) ) e_DIA_systematic = dpde_systematic * mag result_systematic = error._generate_error( code, e_DIA_systematic, 'systematic', NEV ) np.put( dpde[:, 2], index_systematic, np.zeros(len(index_systematic)) ) # dpde[:, 2] = np.where( # error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'], # dpde[:, 2], # dpde[:, 2] * kwargs['header']['Noise Reduction Factor'], # ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) result.cov_NEV += result_systematic.cov_NEV return result def GXY_GD( code, error, mag=0.008726646259971648, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 7 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.where( error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'], np.append( np.array([0]), ( (error.survey.md[1:] - error.survey.md[:-1]) / ( float( kwargs['header']['XY Continuous Gyro']['Running Speed'].split()[0] ) * sin( (error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2 ) ) ) ), np.zeros_like(error.survey.md) ) init_error = [] for i, (u, l) in enumerate(zip( error.survey.inc_rad[1:], error.survey.inc_rad[:-1] )): init_error.append(0.0) if all(( u > kwargs['header']['XY Static Gyro']['End Inc'], l <= kwargs['header']['XY Static Gyro']['End Inc'] )): for tool in kwargs['errors'].gyro_stationary: temp = kwargs['errors'].errors[tool].e_DIA[i - 1][2] if tool in ['GXY_RN']: temp *= kwargs['header']['Noise Reduction Factor'] init_error[-1] += temp temp = [0.0] for i, (u, e) in enumerate(zip(dpde[1:, 2], init_error)): temp.append(0.0) if u != 0.0: temp[-1] += temp[-2] + u * mag dpde[:, 2] = temp e_DIA = dpde result = error._generate_error(code, e_DIA, propagation, NEV) return result def GXY_GRW( code, error, mag=0.004363323129985824, propagation='systematic', NEV=True, **kwargs ): """ SPE 90408 Table 7 """ dpde = np.full((len(error.survey_rad), 3), [0., 0., 1.]) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.where( error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'], np.append( np.array([0]), (error.survey.md[1:] - error.survey.md[:-1]) / ( float( kwargs['header']['XY Continuous Gyro']['Running Speed'].split()[0] ) * sin( (error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2 ) ** 2 ) ), np.zeros_like(error.survey.md) ) init_error = [] for i, (u, l) in enumerate(zip( error.survey.inc_rad[1:], error.survey.inc_rad[:-1] )): init_error.append(0.0) if all(( u > kwargs['header']['XY Static Gyro']['End Inc'], l <= kwargs['header']['XY Static Gyro']['End Inc'] )): for tool in kwargs['errors'].gyro_stationary: temp = kwargs['errors'].errors[tool].e_DIA[i - 1][2] if tool in ['GXY_RN']: temp *= kwargs['header']['Noise Reduction Factor'] init_error[-1] += temp temp = [0.0] for i, (u, e) in enumerate(zip(dpde[1:, 2], init_error)): temp.append(0.0) if u != 0.0: temp[-1] += np.sqrt(temp[-2] ** 2 + u * mag) dpde[:, 2] = temp e_DIA = dpde result = error._generate_error(code, e_DIA, propagation, NEV) return result def MBXY_TI1( code, error, mag=70.0, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -cos(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) ) / (error.survey.header.b_total * cos(error.survey.header.dip)) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MBIXY_TI1( code, error, mag=70.0, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -cos(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) ) / ( error.survey.header.b_total * cos(error.survey.header.dip) * ( _funky_denominator(error) ) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MBXY_TI2( code, error, mag=70.0, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( cos(error.survey.azi_mag_rad) / ( error.survey.header.b_total * cos(error.survey.header.dip) ) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MBIXY_TI2( code, error, mag=70.0, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( cos(error.survey.azi_mag_rad) / ( error.survey.header.b_total * cos(error.survey.header.dip) * ( _funky_denominator(error) ) ) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MBZ(code, error, mag=70.0, propagation='systematic', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -sin(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) ) / (error.survey.header.b_total * cos(error.survey.header.dip)) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MFI( code, error, mag=70, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -sin(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) / ( _funky_denominator(error) ) / error.survey.header.b_total ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def MSXY_TI1( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(np.array(error.survey_rad)[:, 1]) + sin(np.array(error.survey_rad)[:, 1]) * cos(error.survey.azi_mag_rad) ) / sqrt(2) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MSXY_TI2( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * sin(np.array(error.survey_rad)[:, 1]) * cos(np.array(error.survey_rad)[:, 1]) - cos(np.array(error.survey_rad)[:, 1]) * cos(np.array(error.survey_rad)[:, 1]) * cos(error.survey.azi_mag_rad) - cos(error.survey.azi_mag_rad) ) / 2 ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MSXY_TI3( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( cos(np.array(error.survey_rad)[:, 1]) * cos(error.survey.azi_mag_rad) * cos(error.survey.azi_mag_rad) - cos(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) * sin(error.survey.azi_mag_rad) - tan(error.survey.header.dip) * sin(np.array(error.survey_rad)[:, 1]) * cos(error.survey.azi_mag_rad) ) / 2 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MSIXY_TI1( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * cos(error.survey.inc_rad) + sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) / ( sqrt(2) * ( _funky_denominator(error) ) ) ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def MSIXY_TI2( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( sin(error.survey.azi_mag_rad) * ( tan(error.survey.header.dip) * sin(error.survey.inc_rad) * cos(error.survey.inc_rad) - cos(error.survey.inc_rad) ** 2 * cos(error.survey.azi_mag_rad) - cos(error.survey.azi_mag_rad) ) / ( 2 * ( _funky_denominator(error) ) ) ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def MSIXY_TI3( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( ( cos(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ** 2 - cos(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) ** 2 - tan(error.survey.header.dip) * sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) / ( 2 * ( _funky_denominator(error) ) ) ) e_DIA = dpde * mag result = error._generate_error(code, e_DIA, propagation, NEV) return result def MSZ( code, error, mag=0.0016, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = -( sin(np.array(error.survey_rad)[:, 1]) * cos(error.survey.azi_mag_rad) + tan(error.survey.header.dip) * cos(np.array(error.survey_rad)[:, 1]) ) * sin(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def AZ(code, error, mag=0.00628, propagation='systematic', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = 1 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def DBH( code, error, mag=np.radians(0.09), propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = 1 / ( error.survey.header.b_total * cos(error.survey.header.dip) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def MDI( code, error, mag=np.radians(5000), propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -sin(error.survey.inc_rad) * sin(error.survey.azi_mag_rad) * ( cos(error.survey.inc_rad) - tan(error.survey.header.dip) * sin(error.survey.inc_rad) * cos(error.survey.azi_mag_rad) ) ) / ( _funky_denominator(error) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def DBHR( code, error, mag=np.radians(3000), propagation='random', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = 1 / ( error.survey.header.b_total * cos(error.survey.header.dip) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def AMIL(code, error, mag=220.0, propagation='systematic', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = ( -sin(np.array(error.survey_rad)[:, 1]) * sin(error.survey.azi_mag_rad) / (error.survey.header.b_total * cos(error.survey.header.dip)) ) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def SAG( code, error, mag=0.00349, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = sin(np.array(error.survey_rad)[:, 1]) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def SAGE( code, error, mag=0.00175, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = sin(np.array(error.survey.inc_rad)) ** 0.25 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def XYM1( code, error, mag=0.00175, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = np.absolute(sin(np.array(error.survey.inc_rad))) e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def XYM2( code, error, mag=0.00175, propagation='systematic', NEV=True, **kwargs ): propagation = 'systematic' # incorrect in the rev5 model tab dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 2] = -1 e_DIA = dpde * mag return error._generate_error(code, e_DIA, propagation, NEV) def XYM3( code, error, mag=0.00175, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = ( np.absolute(cos(np.array(error.survey_rad)[:, 1])) * cos(error.survey.azi_true_rad) ) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( -( np.absolute(cos(np.array(error.survey_rad)[:, 1])) * sin(error.survey.azi_true_rad) ) / sin(np.array(error.survey_rad)[:, 1]), posinf=0.0, neginf=0.0 ) e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) n = np.array(0.5 * error.drdp_sing['double_delta_md'] * mag) e = np.zeros(len(error.drdp_sing['double_delta_md'])) v = np.zeros_like(n) e_NEV_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) n = np.array(0.5 * error.drdp_sing['delta_md'] * mag) e = np.zeros(len(error.drdp_sing['delta_md'])) v = np.zeros_like(n) e_NEV_star_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def XYM3E(code, error, mag=0.00524, propagation='random', NEV=True, **kwargs): coeff = np.ones(len(error.survey.md)) coeff[1:-1] = np.amax(np.stack(( coeff[1:-1], sqrt( 10 / error.drdp_sing['delta_md'] ) ), axis=-1), axis=-1) coeff[-1] = np.amax(np.stack(( coeff[-1], sqrt( 10 / (error.survey.md[-1] - error.survey.md[-2]) ) ), axis=-1), axis=-1) dpde = np.zeros((len(error.survey.md), 3)) dpde[1:, 1] = np.absolute( cos(error.survey.inc_rad[1:]) * cos(error.survey.azi_true_rad[1:]) * coeff[1:] ) with np.errstate(divide='ignore', invalid='ignore'): dpde[1:, 2] = ( ( -np.absolute(cos(error.survey.inc_rad[1:])) * sin(error.survey.azi_true_rad[1:]) / sin(error.survey.inc_rad[1:]) ) * coeff[1:] ) dpde[1:, 2] = np.where( error.survey.inc_rad[1:] < error.survey.header.vertical_inc_limit, coeff[1:], dpde[1:, 2] ) e_DIA = dpde * mag sing = np.where( error.survey.inc_rad < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) e_NEV_sing = np.zeros_like(e_NEV) e_NEV_sing[:, 0] = e_NEV[:, 0] e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) e_NEV_star_sing = np.zeros_like(e_NEV_star) e_NEV_star_sing[:, 0] = e_NEV_star[:, 0] e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) return error._generate_error(code, e_DIA, propagation, NEV) def XYM4( code, error, mag=0.00175, propagation='systematic', NEV=True, **kwargs ): dpde = np.zeros((len(error.survey_rad), 3)) dpde[:, 1] = np.absolute( cos(np.array(error.survey_rad)[:, 1]) ) * sin(error.survey.azi_true_rad) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( ( np.absolute(np.cos(np.array(error.survey_rad)[:, 1])) * cos(error.survey.azi_true_rad) ) / sin(np.array(error.survey_rad)[:, 1]), posinf=0.0, neginf=0.0 ) e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) n = np.zeros(len(error.drdp_sing['double_delta_md'])) e = np.array(0.5 * error.drdp_sing['double_delta_md'] * mag) v = np.zeros_like(n) e_NEV_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) n = np.zeros(len(error.drdp_sing['delta_md'])) e = np.array(0.5 * error.drdp_sing['delta_md'] * mag) v = np.zeros_like(n) e_NEV_star_sing = np.vstack( ( np.zeros((1, 3)), np.stack((n, e, v), axis=-1), np.zeros((1, 3)) ) ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def XYM4E(code, error, mag=0.00524, propagation='random', NEV=True, **kwargs): coeff = np.ones(len(error.survey.md)) coeff[1:-1] = np.amax(np.stack(( coeff[1:-1], sqrt( 10 / error.drdp_sing['delta_md'] ) ), axis=-1), axis=-1) coeff[-1] = np.amax(np.stack(( coeff[-1], sqrt( 10 / (error.survey.md[-1] - error.survey.md[-2]) ) ), axis=-1), axis=-1) dpde = np.zeros((len(error.survey.md), 3)) dpde[1:, 1] = ( cos(error.survey.inc_rad[1:]) * sin(error.survey.azi_true_rad[1:]) * coeff[1:] ) with np.errstate(divide='ignore', invalid='ignore'): dpde[1:, 2] = np.nan_to_num( ( ( cos(error.survey.inc_rad[1:]) * cos(error.survey.azi_true_rad[1:]) / sin(error.survey.inc_rad[1:]) ) * coeff[1:] ), posinf=0, neginf=0 ) e_DIA = dpde * mag sing = np.where( error.survey.inc_rad < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: # this is a bit of a cop out way of handling these exceptions, but it's # simple and it works... xym3e = XYM3E( code, error, mag=mag, propagation=propagation, NEV=NEV ) e_NEV = error._e_NEV(e_DIA) e_NEV_sing = np.zeros_like(e_NEV) e_NEV_sing[:, 1] = xym3e.e_NEV[:, 0] e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) e_NEV_star_sing = np.zeros_like(e_NEV_star) e_NEV_star_sing[:, 1] = xym3e.e_NEV_star[:, 0] e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def XCL(code, error, mag=0.0167, propagation='random', NEV=True, **kwargs): """ Dummy function to manage the ISCWSA workbook not correctly defining the weighting functions. """ tortuosity = kwargs['tortuosity'] if code == "XCLA": return XCLA( code, error, mag=mag, propagation=propagation, NEV=NEV, tortuosity=tortuosity ) else: return XCLH( code, error, mag=mag, propagation=propagation, NEV=NEV, tortuosity=tortuosity ) def XCLA(code, error, mag=0.167, propagation='random', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) def manage_sing(error, kwargs): temp = np.absolute( sin(error.survey.inc_rad[1:]) * ((( error.survey.azi_true_rad[1:] - error.survey.azi_true_rad[:-1] + pi ) % (2 * pi)) - pi) ) temp[np.where( error.survey.inc_rad[:-1] < error.survey.header.vertical_inc_limit )] = 0 return temp dpde[1:, 0] = ( (error.survey.md[1:] - error.survey.md[0:-1]) * np.amax(np.stack(( manage_sing(error, kwargs), ( kwargs['tortuosity'] * (error.survey.md[1:] - error.survey.md[0:-1]) ) ), axis=-1), axis=-1) * -sin(error.survey.azi_true_rad[1:]) ) dpde[1:, 1] = ( (error.survey.md[1:] - error.survey.md[0:-1]) * np.amax(np.stack(( manage_sing(error, kwargs), ( kwargs['tortuosity'] * (error.survey.md[1:] - error.survey.md[0:-1]) ) ), axis=-1), axis=-1) * cos(error.survey.azi_true_rad[1:]) ) e_DIA = dpde * mag return error._generate_error( code, e_DIA, propagation, NEV, e_NEV=e_DIA, e_NEV_star=e_DIA ) def XCLH(code, error, mag=0.0167, propagation='random', NEV=True, **kwargs): dpde = np.zeros((len(error.survey_rad), 3)) dpde[1:, 0] = ( (error.survey.md[1:] - error.survey.md[0:-1]) * np.amax(np.stack(( np.absolute( (error.survey.inc_rad[1:] - error.survey.inc_rad[:-1]) ), ( kwargs['tortuosity'] * (error.survey.md[1:] - error.survey.md[0:-1]) ) ), axis=-1), axis=-1) * cos(error.survey.inc_rad[1:]) * cos(error.survey.azi_true_rad[1:]) ) dpde[1:, 1] = ( (error.survey.md[1:] - error.survey.md[0:-1]) * np.amax(np.stack(( np.absolute( (error.survey.inc_rad[1:] - error.survey.inc_rad[:-1]) ), ( kwargs['tortuosity'] * (error.survey.md[1:] - error.survey.md[0:-1]) ) ), axis=-1), axis=-1) * cos(error.survey.inc_rad[1:]) * sin(error.survey.azi_true_rad[1:]) ) dpde[1:, 2] = ( (error.survey.md[1:] - error.survey.md[0:-1]) * np.amax(np.stack(( np.absolute( (error.survey.inc_rad[1:] - error.survey.inc_rad[:-1]) ), ( kwargs['tortuosity'] * (error.survey.md[1:] - error.survey.md[0:-1]) ) ), axis=-1), axis=-1) * -sin(error.survey.inc_rad[1:]) ) e_DIA = dpde * mag return error._generate_error( code, e_DIA, propagation, NEV, e_NEV=e_DIA, e_NEV_star=e_DIA ) def XYM3L(code, error, mag=0.0167, propagation='random', NEV=True, **kwargs): coeff = np.ones(len(error.survey.md) - 1) coeff = np.amax(np.stack(( coeff, sqrt( 10 / (error.survey.md[1:] - error.survey.md[:-1]) ) ), axis=-1), axis=-1) dpde = np.zeros((len(error.survey_rad), 3)) dpde[1:, 1] = np.absolute( cos(error.survey.inc_rad[1:]) * cos(error.survey.azi_true_rad[1:]) * coeff ) dpde[0, 1] = dpde[1, 1] with np.errstate(divide='ignore', invalid='ignore'): dpde[1:, 2] = np.nan_to_num( ( -np.absolute( cos(error.survey.inc_rad[1:]) ) * ( sin(error.survey.azi_true_rad[1:]) / sin(error.survey.inc_rad[1:]) ) * coeff ), posinf=0, neginf=0 ) dpde[0, 2] = dpde[1, 2] e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) e_NEV_sing = np.zeros_like(e_NEV) e_NEV_sing[1:-1, 0] = ( coeff[:-1] * ( error.survey.md[2:] - error.survey.md[:-2] ) / 2 * mag ) e_NEV_sing[1, 0] = ( coeff[1] * ( error.survey.md[2] + error.survey.md[1] - 2 * error.survey.md[0] ) / 2 * mag ) e_NEV_sing[-1, 0] = ( coeff[-1] * ( error.survey.md[-1] - error.survey.md[-2] ) / 2 * mag ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) e_NEV_star_sing = np.zeros_like(e_NEV) e_NEV_star_sing[1:, 0] = ( ( error.survey.md[1:] - error.survey.md[:-1] ) / 2 * mag ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star ) def XYM4L(code, error, mag=0.0167, propagation='random', NEV=True, **kwargs): propagation = 'random' coeff = np.ones(len(error.survey.md)) coeff[1:] = np.amax(np.stack(( coeff[1:], sqrt( 10 / (error.survey.md[1:] - error.survey.md[:-1]) ) ), axis=-1), axis=-1) dpde = np.zeros((len(error.survey_rad), 3)) with np.errstate(divide='ignore', invalid='ignore'): dpde[:, 2] = np.nan_to_num( np.absolute( cos(error.survey.inc_rad) * cos(error.survey.azi_true_rad) / sin(error.survey.inc_rad) * coeff ), posinf=0, neginf=0, ) dpde[:, 1] = ( np.absolute( cos(error.survey.inc_rad) ) * ( sin(error.survey.azi_true_rad) ) * coeff ) e_DIA = dpde * mag sing = np.where( error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit ) if len(sing[0]) < 1: return error._generate_error(code, e_DIA, propagation, NEV) else: e_NEV = error._e_NEV(e_DIA) e_NEV_sing = np.zeros_like(e_NEV) e_NEV_sing[1:-1, 1] = ( coeff[1:-1] * ( error.survey.md[2:] - error.survey.md[:-2] ) / 2 * mag ) e_NEV_sing[1, 1] = ( coeff[1] * ( error.survey.md[2] + error.survey.md[1] - 2 * error.survey.md[0] ) / 2 * mag ) e_NEV_sing[-1, 1] = ( coeff[-1] * ( error.survey.md[-1] - error.survey.md[-2] ) / 2 * mag ) e_NEV[sing] = e_NEV_sing[sing] e_NEV_star = error._e_NEV_star(e_DIA) e_NEV_star_sing = np.zeros_like(e_NEV) e_NEV_star_sing[1:, 1] = ( ( error.survey.md[1:] - error.survey.md[:-1] ) / 2 * mag ) e_NEV_star_sing[1, 1] = ( ( error.survey.md[1] - error.survey.md[0] ) * mag ) e_NEV_star[sing] = e_NEV_star_sing[sing] return error._generate_error( code, e_DIA, propagation, NEV, e_NEV, e_NEV_star )
[ "numpy.stack", "numpy.radians", "numpy.absolute", "numpy.zeros_like", "numpy.put", "os.path.dirname", "numpy.zeros", "numpy.errstate", "numpy.amax", "numpy.where", "numpy.array", "numpy.sin", "numpy.cos", "yaml.safe_load", "collections.OrderedDict", "numpy.tan", "os.path.join", "numpy.sqrt" ]
[((285, 310), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (300, 310), False, 'import os\n'), ((324, 368), 'os.path.join', 'os.path.join', (['""""""', "*[PATH, 'tool_index.yaml']"], {}), "('', *[PATH, 'tool_index.yaml'])\n", (336, 368), False, 'import os\n'), ((8435, 8478), 'numpy.where', 'np.where', (['(denom > ACCURACY)', 'denom', 'ACCURACY'], {}), '(denom > ACCURACY, denom, ACCURACY)\n', (8443, 8478), True, 'import numpy as np\n'), ((10885, 10958), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (10893, 10958), True, 'import numpy as np\n'), ((13519, 13592), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (13527, 13592), True, 'import numpy as np\n'), ((23169, 23240), 'numpy.where', 'np.where', (['(error.survey.inc_rad < error.survey.header.vertical_inc_limit)'], {}), '(error.survey.inc_rad < error.survey.header.vertical_inc_limit)\n', (23177, 23240), True, 'import numpy as np\n'), ((28934, 28953), 'numpy.zeros_like', 'np.zeros_like', (['dpde'], {}), '(dpde)\n', (28947, 28953), True, 'import numpy as np\n'), ((28977, 29055), 'numpy.where', 'np.where', (["(error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'])"], {}), "(error.survey.inc_rad > kwargs['header']['XY Static Gyro']['End Inc'])\n", (28985, 29055), True, 'import numpy as np\n'), ((29074, 29201), 'numpy.put', 'np.put', (['dpde_systematic[:, 2]', 'index_systematic', "(dpde[index_systematic][:, 2] * kwargs['header']['Noise Reduction Factor'])"], {}), "(dpde_systematic[:, 2], index_systematic, dpde[index_systematic][:, 2\n ] * kwargs['header']['Noise Reduction Factor'])\n", (29080, 29201), True, 'import numpy as np\n'), ((40858, 40874), 'numpy.radians', 'np.radians', (['(0.09)'], {}), '(0.09)\n', (40868, 40874), True, 'import numpy as np\n'), ((41192, 41208), 'numpy.radians', 'np.radians', (['(5000)'], {}), '(5000)\n', (41202, 41208), True, 'import numpy as np\n'), ((41762, 41778), 'numpy.radians', 'np.radians', (['(3000)'], {}), '(3000)\n', (41772, 41778), True, 'import numpy as np\n'), ((44262, 44335), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (44270, 44335), True, 'import numpy as np\n'), ((46363, 46466), 'numpy.where', 'np.where', (['(error.survey.inc_rad[1:] < error.survey.header.vertical_inc_limit)', 'coeff[1:]', 'dpde[1:, 2]'], {}), '(error.survey.inc_rad[1:] < error.survey.header.vertical_inc_limit,\n coeff[1:], dpde[1:, 2])\n', (46371, 46466), True, 'import numpy as np\n'), ((46529, 46600), 'numpy.where', 'np.where', (['(error.survey.inc_rad < error.survey.header.vertical_inc_limit)'], {}), '(error.survey.inc_rad < error.survey.header.vertical_inc_limit)\n', (46537, 46600), True, 'import numpy as np\n'), ((47888, 47961), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (47896, 47961), True, 'import numpy as np\n'), ((50091, 50162), 'numpy.where', 'np.where', (['(error.survey.inc_rad < error.survey.header.vertical_inc_limit)'], {}), '(error.survey.inc_rad < error.survey.header.vertical_inc_limit)\n', (50099, 50162), True, 'import numpy as np\n'), ((55506, 55579), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (55514, 55579), True, 'import numpy as np\n'), ((57750, 57823), 'numpy.where', 'np.where', (['(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey_rad[:, 1] < error.survey.header.vertical_inc_limit)\n', (57758, 57823), True, 'import numpy as np\n'), ((972, 1028), 'os.path.join', 'os.path.join', (['""""""', "*[PATH, 'tool_codes', f'{model}.yaml']"], {}), "('', *[PATH, 'tool_codes', f'{model}.yaml'])\n", (984, 1028), False, 'import os\n'), ((1240, 1269), 'collections.OrderedDict', 'OrderedDict', (["self.em['codes']"], {}), "(self.em['codes'])\n", (1251, 1269), False, 'from collections import OrderedDict\n'), ((6858, 6904), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (6869, 6904), True, 'import numpy as np\n'), ((7837, 7863), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (7845, 7863), True, 'import numpy as np\n'), ((8157, 8183), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (8165, 8183), True, 'import numpy as np\n'), ((10281, 10327), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (10292, 10327), True, 'import numpy as np\n'), ((11449, 11465), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (11462, 11465), True, 'import numpy as np\n'), ((12341, 12357), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (12354, 12357), True, 'import numpy as np\n'), ((13091, 13137), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (13102, 13137), True, 'import numpy as np\n'), ((14083, 14099), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (14096, 14099), True, 'import numpy as np\n'), ((15073, 15089), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (15086, 15089), True, 'import numpy as np\n'), ((15944, 15969), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (15947, 15969), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((15980, 16009), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (15983, 16009), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16826, 16833), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (16830, 16833), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17011, 17018), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (17015, 17018), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17348, 17355), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (17352, 17355), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20353, 20382), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (20356, 20382), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20678, 20703), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20681, 20703), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((21398, 21424), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (21406, 21424), True, 'import numpy as np\n'), ((21792, 21817), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (21795, 21817), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((22155, 22180), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (22158, 22180), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((22952, 22998), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (22963, 22998), True, 'import numpy as np\n'), ((23869, 23885), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (23882, 23885), True, 'import numpy as np\n'), ((25826, 25856), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (25839, 25856), True, 'import numpy as np\n'), ((26510, 26540), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (26523, 26540), True, 'import numpy as np\n'), ((27226, 27256), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (27239, 27256), True, 'import numpy as np\n'), ((27942, 27972), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (27955, 27972), True, 'import numpy as np\n'), ((28821, 28851), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (28834, 28851), True, 'import numpy as np\n'), ((30099, 30145), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (30110, 30145), True, 'import numpy as np\n'), ((31953, 31999), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (31964, 31999), True, 'import numpy as np\n'), ((34573, 34602), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (34576, 34602), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((34969, 34998), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (34972, 34998), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36739, 36746), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (36743, 36746), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((40471, 40500), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (40474, 40500), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((43854, 43884), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (43857, 43884), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((43900, 43946), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (43911, 43946), True, 'import numpy as np\n'), ((44501, 44557), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['double_delta_md'] * mag)"], {}), "(0.5 * error.drdp_sing['double_delta_md'] * mag)\n", (44509, 44557), True, 'import numpy as np\n'), ((44632, 44648), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (44645, 44648), True, 'import numpy as np\n'), ((44930, 44979), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['delta_md'] * mag)"], {}), "(0.5 * error.drdp_sing['delta_md'] * mag)\n", (44938, 44979), True, 'import numpy as np\n'), ((45047, 45063), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (45060, 45063), True, 'import numpy as np\n'), ((46050, 46096), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (46061, 46096), True, 'import numpy as np\n'), ((46775, 46795), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (46788, 46795), True, 'import numpy as np\n'), ((46947, 46972), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV_star'], {}), '(e_NEV_star)\n', (46960, 46972), True, 'import numpy as np\n'), ((47468, 47498), 'numpy.sin', 'sin', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (47471, 47498), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((47508, 47554), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (47519, 47554), True, 'import numpy as np\n'), ((48189, 48245), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['double_delta_md'] * mag)"], {}), "(0.5 * error.drdp_sing['double_delta_md'] * mag)\n", (48197, 48245), True, 'import numpy as np\n'), ((48258, 48274), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (48271, 48274), True, 'import numpy as np\n'), ((48611, 48660), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['delta_md'] * mag)"], {}), "(0.5 * error.drdp_sing['delta_md'] * mag)\n", (48619, 48660), True, 'import numpy as np\n'), ((48673, 48689), 'numpy.zeros_like', 'np.zeros_like', (['n'], {}), '(n)\n', (48686, 48689), True, 'import numpy as np\n'), ((49665, 49711), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (49676, 49711), True, 'import numpy as np\n'), ((50550, 50570), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (50563, 50570), True, 'import numpy as np\n'), ((50728, 50753), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV_star'], {}), '(e_NEV_star)\n', (50741, 50753), True, 'import numpy as np\n'), ((52714, 52748), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (52717, 52748), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((53439, 53473), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (53442, 53473), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((53904, 53938), 'numpy.sin', 'sin', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (53907, 53938), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((55007, 55053), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (55018, 55053), True, 'import numpy as np\n'), ((55754, 55774), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (55767, 55774), True, 'import numpy as np\n'), ((56477, 56497), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (56490, 56497), True, 'import numpy as np\n'), ((57201, 57247), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (57212, 57247), True, 'import numpy as np\n'), ((57998, 58018), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (58011, 58018), True, 'import numpy as np\n'), ((58722, 58742), 'numpy.zeros_like', 'np.zeros_like', (['e_NEV'], {}), '(e_NEV)\n', (58735, 58742), True, 'import numpy as np\n'), ((1116, 1136), 'yaml.safe_load', 'yaml.safe_load', (['file'], {}), '(file)\n', (1130, 1136), False, 'import yaml\n'), ((8546, 8571), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (8549, 8571), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9163, 9188), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9166, 9188), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9831, 9856), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9834, 9856), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9983, 10012), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (9986, 10012), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16440, 16469), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (16443, 16469), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16756, 16781), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (16759, 16781), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16792, 16817), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (16795, 16817), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16973, 17002), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (16976, 17002), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17276, 17301), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17279, 17301), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17312, 17337), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17315, 17337), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17702, 17709), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (17706, 17709), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18241, 18270), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (18244, 18270), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18538, 18563), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18541, 18563), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18574, 18599), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18577, 18599), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19773, 19798), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (19776, 19798), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20642, 20667), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20645, 20667), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((21764, 21789), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (21767, 21789), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((25621, 25651), 'numpy.sin', 'sin', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (25624, 25651), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((26345, 26375), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (26348, 26375), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((30812, 30842), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (30825, 30842), True, 'import numpy as np\n'), ((32595, 32625), 'numpy.zeros_like', 'np.zeros_like', (['error.survey.md'], {}), '(error.survey.md)\n', (32608, 32625), True, 'import numpy as np\n'), ((33373, 33405), 'numpy.sqrt', 'np.sqrt', (['(temp[-2] ** 2 + u * mag)'], {}), '(temp[-2] ** 2 + u * mag)\n', (33380, 33405), True, 'import numpy as np\n'), ((33747, 33776), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (33750, 33776), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((33816, 33844), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (33819, 33844), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((34138, 34167), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (34141, 34167), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((34669, 34697), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (34672, 34697), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35474, 35503), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (35477, 35503), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35543, 35571), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (35546, 35571), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37009, 37038), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37012, 37038), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38529, 38536), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (38533, 38536), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38904, 38933), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (38907, 38933), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41037, 41065), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (41040, 41065), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41933, 41961), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (41936, 41961), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((42262, 42291), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (42265, 42291), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((42333, 42361), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (42336, 42361), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((42615, 42641), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (42623, 42641), True, 'import numpy as np\n'), ((42896, 42926), 'numpy.array', 'np.array', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (42904, 42926), True, 'import numpy as np\n'), ((43195, 43225), 'numpy.array', 'np.array', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (43203, 43225), True, 'import numpy as np\n'), ((49554, 49583), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (49557, 49583), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((49594, 49628), 'numpy.sin', 'sin', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (49597, 49628), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((51922, 51998), 'numpy.where', 'np.where', (['(error.survey.inc_rad[:-1] < error.survey.header.vertical_inc_limit)'], {}), '(error.survey.inc_rad[:-1] < error.survey.header.vertical_inc_limit)\n', (51930, 51998), True, 'import numpy as np\n'), ((52360, 52394), 'numpy.sin', 'sin', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (52363, 52394), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((53399, 53428), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (53402, 53428), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((53864, 53893), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (53867, 53893), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((54330, 54359), 'numpy.sin', 'sin', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (54333, 54359), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57651, 57681), 'numpy.sin', 'sin', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (57654, 57681), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((2763, 2793), 'numpy.amax', 'np.amax', (['self.e.survey.inc_rad'], {}), '(self.e.survey.inc_rad)\n', (2770, 2793), True, 'import numpy as np\n'), ((8695, 8724), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (8698, 8724), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9281, 9310), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (9284, 9310), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9908, 9933), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9911, 9933), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9944, 9972), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (9947, 9972), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((11528, 11544), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (11536, 11544), True, 'import numpy as np\n'), ((11562, 11590), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (11570, 11590), True, 'import numpy as np\n'), ((11608, 11624), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (11616, 11624), True, 'import numpy as np\n'), ((11844, 11877), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1]'], {}), '(error.survey.azi_true_rad[1])\n', (11847, 11877), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((12425, 12441), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (12433, 12441), True, 'import numpy as np\n'), ((12459, 12487), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (12467, 12487), True, 'import numpy as np\n'), ((12505, 12521), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (12513, 12521), True, 'import numpy as np\n'), ((12685, 12718), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1]'], {}), '(error.survey.azi_true_rad[1])\n', (12688, 12718), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((14162, 14178), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (14170, 14178), True, 'import numpy as np\n'), ((14196, 14224), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (14204, 14224), True, 'import numpy as np\n'), ((14242, 14258), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (14250, 14258), True, 'import numpy as np\n'), ((15157, 15173), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (15165, 15173), True, 'import numpy as np\n'), ((15191, 15219), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (15199, 15219), True, 'import numpy as np\n'), ((15237, 15253), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (15245, 15253), True, 'import numpy as np\n'), ((16409, 16437), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (16412, 16437), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16937, 16962), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (16940, 16962), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19317, 19346), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (19320, 19346), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19733, 19762), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (19736, 19762), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20151, 20177), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (20159, 20177), True, 'import numpy as np\n'), ((20266, 20294), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (20269, 20294), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20814, 20843), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (20817, 20843), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((23052, 23077), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (23055, 23077), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((23420, 23470), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['double_delta_md'])"], {}), "(0.5 * error.drdp_sing['double_delta_md'])\n", (23428, 23470), True, 'import numpy as np\n'), ((23652, 23702), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['double_delta_md'])"], {}), "(0.5 * error.drdp_sing['double_delta_md'])\n", (23660, 23702), True, 'import numpy as np\n'), ((23948, 23964), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (23956, 23964), True, 'import numpy as np\n'), ((23982, 24010), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (23990, 24010), True, 'import numpy as np\n'), ((24028, 24044), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (24036, 24044), True, 'import numpy as np\n'), ((24181, 24224), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['delta_md'])"], {}), "(0.5 * error.drdp_sing['delta_md'])\n", (24189, 24224), True, 'import numpy as np\n'), ((24406, 24449), 'numpy.array', 'np.array', (["(0.5 * error.drdp_sing['delta_md'])"], {}), "(0.5 * error.drdp_sing['delta_md'])\n", (24414, 24449), True, 'import numpy as np\n'), ((24671, 24687), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (24679, 24687), True, 'import numpy as np\n'), ((24705, 24733), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (24713, 24733), True, 'import numpy as np\n'), ((24751, 24767), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (24759, 24767), True, 'import numpy as np\n'), ((25781, 25806), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (25784, 25806), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((27033, 27063), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (27036, 27063), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((27066, 27091), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (27069, 27091), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((27749, 27779), 'numpy.sin', 'sin', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (27752, 27779), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((27782, 27807), 'numpy.tan', 'tan', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (27785, 27807), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((30299, 30312), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (30307, 30312), True, 'import numpy as np\n'), ((32153, 32166), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (32161, 32166), True, 'import numpy as np\n'), ((34102, 34127), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (34105, 34127), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((34224, 34252), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (34227, 34252), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35065, 35093), 'numpy.cos', 'cos', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (35068, 35093), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36496, 36525), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (36499, 36525), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37338, 37367), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37341, 37367), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37963, 37992), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37966, 37992), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38260, 38285), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (38263, 38285), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38296, 38325), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (38299, 38325), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39170, 39199), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (39173, 39199), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39858, 39887), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (39861, 39887), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41374, 41403), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (41377, 41403), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41428, 41453), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (41431, 41453), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((44711, 44727), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (44719, 44727), True, 'import numpy as np\n'), ((44745, 44773), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (44753, 44773), True, 'import numpy as np\n'), ((44791, 44807), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (44799, 44807), True, 'import numpy as np\n'), ((45131, 45147), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (45139, 45147), True, 'import numpy as np\n'), ((45165, 45193), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (45173, 45193), True, 'import numpy as np\n'), ((45211, 45227), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (45219, 45227), True, 'import numpy as np\n'), ((45600, 45638), 'numpy.sqrt', 'sqrt', (["(10 / error.drdp_sing['delta_md'])"], {}), "(10 / error.drdp_sing['delta_md'])\n", (45604, 45638), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((45749, 45803), 'numpy.sqrt', 'sqrt', (['(10 / (error.survey.md[-1] - error.survey.md[-2]))'], {}), '(10 / (error.survey.md[-1] - error.survey.md[-2]))\n', (45753, 45803), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((45939, 45968), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (45942, 45968), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((45979, 46013), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (45982, 46013), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((46267, 46296), 'numpy.sin', 'sin', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (46270, 46296), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((48337, 48353), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (48345, 48353), True, 'import numpy as np\n'), ((48371, 48399), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (48379, 48399), True, 'import numpy as np\n'), ((48417, 48433), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (48425, 48433), True, 'import numpy as np\n'), ((48757, 48773), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (48765, 48773), True, 'import numpy as np\n'), ((48791, 48819), 'numpy.stack', 'np.stack', (['(n, e, v)'], {'axis': '(-1)'}), '((n, e, v), axis=-1)\n', (48799, 48819), True, 'import numpy as np\n'), ((48837, 48853), 'numpy.zeros', 'np.zeros', (['(1, 3)'], {}), '((1, 3))\n', (48845, 48853), True, 'import numpy as np\n'), ((49226, 49264), 'numpy.sqrt', 'sqrt', (["(10 / error.drdp_sing['delta_md'])"], {}), "(10 / error.drdp_sing['delta_md'])\n", (49230, 49264), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((49375, 49429), 'numpy.sqrt', 'sqrt', (['(10 / (error.survey.md[-1] - error.survey.md[-2]))'], {}), '(10 / (error.survey.md[-1] - error.survey.md[-2]))\n', (49379, 49429), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((51703, 51732), 'numpy.sin', 'sin', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (51706, 51732), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((54680, 54735), 'numpy.sqrt', 'sqrt', (['(10 / (error.survey.md[1:] - error.survey.md[:-1]))'], {}), '(10 / (error.survey.md[1:] - error.survey.md[:-1]))\n', (54684, 54735), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((54872, 54901), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (54875, 54901), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((54912, 54946), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (54915, 54946), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57039, 57094), 'numpy.sqrt', 'sqrt', (['(10 / (error.survey.md[1:] - error.survey.md[:-1]))'], {}), '(10 / (error.survey.md[1:] - error.survey.md[:-1]))\n', (57043, 57094), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57591, 57616), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (57594, 57616), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8623, 8648), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (8626, 8648), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8659, 8684), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (8662, 8684), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8749, 8777), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (8752, 8777), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8792, 8817), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (8795, 8817), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8832, 8857), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (8835, 8857), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((8860, 8889), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (8863, 8889), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9240, 9265), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9243, 9265), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9335, 9363), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (9338, 9363), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9378, 9403), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9381, 9403), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9418, 9443), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (9421, 9443), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((9446, 9475), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (9449, 9475), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((13227, 13264), 'numpy.tan', 'tan', (['(-error.survey_rad[:, 1] + pi / 2)'], {}), '(-error.survey_rad[:, 1] + pi / 2)\n', (13230, 13264), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((14568, 14601), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1]'], {}), '(error.survey.azi_true_rad[1])\n', (14571, 14601), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((15499, 15532), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1]'], {}), '(error.survey.azi_true_rad[1])\n', (15502, 15532), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16276, 16302), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (16284, 16302), True, 'import numpy as np\n'), ((16861, 16886), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (16864, 16886), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17467, 17496), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (17470, 17496), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18003, 18029), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (18011, 18029), True, 'import numpy as np\n'), ((18048, 18074), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (18056, 18074), True, 'import numpy as np\n'), ((18723, 18752), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (18726, 18752), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19286, 19314), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (19289, 19314), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19361, 19387), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (19369, 19387), True, 'import numpy as np\n'), ((19657, 19685), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (19660, 19685), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19696, 19721), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (19699, 19721), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20103, 20129), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (20111, 20129), True, 'import numpy as np\n'), ((20309, 20335), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (20317, 20335), True, 'import numpy as np\n'), ((20737, 20762), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20740, 20762), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20868, 20896), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (20871, 20896), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20911, 20936), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20914, 20936), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20951, 20976), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20954, 20976), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20991, 21020), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (20994, 21020), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((26449, 26489), 'numpy.radians', 'np.radians', (['error.survey.header.latitude'], {}), '(error.survey.header.latitude)\n', (26459, 26489), True, 'import numpy as np\n'), ((27165, 27205), 'numpy.radians', 'np.radians', (['error.survey.header.latitude'], {}), '(error.survey.header.latitude)\n', (27175, 27205), True, 'import numpy as np\n'), ((27881, 27921), 'numpy.radians', 'np.radians', (['error.survey.header.latitude'], {}), '(error.survey.header.latitude)\n', (27891, 27921), True, 'import numpy as np\n'), ((28762, 28787), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (28765, 28787), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35857, 35886), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (35860, 35886), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36550, 36578), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (36553, 36578), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36697, 36726), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (36700, 36726), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37724, 37753), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37727, 37753), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37844, 37873), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37847, 37873), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37884, 37912), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (37887, 37912), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38350, 38378), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (38353, 38378), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38393, 38418), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (38396, 38418), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38433, 38458), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (38436, 38458), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((38473, 38502), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (38476, 38502), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39597, 39622), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39600, 39622), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39686, 39711), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39689, 39711), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39775, 39803), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (39778, 39803), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39818, 39843), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39821, 39843), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((40435, 40461), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (40443, 40461), True, 'import numpy as np\n'), ((41338, 41363), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (41341, 41363), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41551, 41580), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (41554, 41580), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((43809, 43835), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (43817, 43835), True, 'import numpy as np\n'), ((46214, 46248), 'numpy.sin', 'sin', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (46217, 46248), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((47426, 47452), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (47434, 47452), True, 'import numpy as np\n'), ((47694, 47724), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (47697, 47724), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((49911, 49940), 'numpy.sin', 'sin', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (49914, 49940), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((2269, 2284), 'numpy.radians', 'np.radians', (['(1.0)'], {}), '(1.0)\n', (2279, 2284), True, 'import numpy as np\n'), ((6955, 6980), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (6958, 6980), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((7000, 7029), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (7003, 7029), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((10521, 10555), 'numpy.tan', 'tan', (['(pi / 2 - error.survey.inc_rad)'], {}), '(pi / 2 - error.survey.inc_rad)\n', (10524, 10555), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((11364, 11392), 'numpy.cos', 'cos', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (11367, 11392), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((12256, 12284), 'numpy.cos', 'cos', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (12259, 12284), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((13289, 13317), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (13292, 13317), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((13340, 13369), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (13343, 13369), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((13998, 14026), 'numpy.cos', 'cos', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (14001, 14026), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((14988, 15016), 'numpy.cos', 'cos', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (14991, 15016), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((16365, 16391), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (16373, 16391), True, 'import numpy as np\n'), ((16898, 16926), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (16901, 16926), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17390, 17415), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17393, 17415), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17521, 17549), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (17524, 17549), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17564, 17589), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17567, 17589), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17604, 17629), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17607, 17629), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17644, 17673), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (17647, 17673), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18162, 18190), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (18165, 18190), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18197, 18223), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (18205, 18223), True, 'import numpy as np\n'), ((18646, 18671), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18649, 18671), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18777, 18805), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (18780, 18805), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18820, 18845), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18823, 18845), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18860, 18885), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18863, 18885), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18888, 18917), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (18891, 18917), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((20222, 20248), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (20230, 20248), True, 'import numpy as np\n'), ((20773, 20798), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (20776, 20798), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((25725, 25765), 'numpy.radians', 'np.radians', (['error.survey.header.latitude'], {}), '(error.survey.header.latitude)\n', (25735, 25765), True, 'import numpy as np\n'), ((30599, 30662), 'numpy.sin', 'sin', (['((error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2)'], {}), '((error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2)\n', (30602, 30662), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((33703, 33729), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (33711, 33729), True, 'import numpy as np\n'), ((35430, 35456), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (35438, 35456), True, 'import numpy as np\n'), ((35821, 35846), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (35824, 35846), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35911, 35939), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (35914, 35939), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35954, 35979), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (35957, 35979), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((35994, 36019), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (35997, 36019), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36034, 36063), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (36037, 36063), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36452, 36478), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (36460, 36478), True, 'import numpy as np\n'), ((37306, 37335), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37309, 37335), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37692, 37721), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37695, 37721), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37812, 37841), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (37815, 37841), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39041, 39066), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39044, 39066), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39126, 39155), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (39129, 39155), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39637, 39666), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (39640, 39666), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39726, 39755), 'numpy.sin', 'sin', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (39729, 39755), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((40314, 40343), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (40317, 40343), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((40354, 40382), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (40357, 40382), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41468, 41496), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (41471, 41496), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((41511, 41536), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (41514, 41536), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((42218, 42244), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (42226, 42244), True, 'import numpy as np\n'), ((44084, 44114), 'numpy.sin', 'sin', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (44087, 44114), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((44135, 44161), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (44143, 44161), True, 'import numpy as np\n'), ((47757, 47783), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (47765, 47783), True, 'import numpy as np\n'), ((49802, 49831), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (49805, 49831), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((49854, 49888), 'numpy.cos', 'cos', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (49857, 49888), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((54061, 54126), 'numpy.absolute', 'np.absolute', (['(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])'], {}), '(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])\n', (54072, 54126), True, 'import numpy as np\n'), ((55244, 55278), 'numpy.sin', 'sin', (['error.survey.azi_true_rad[1:]'], {}), '(error.survey.azi_true_rad[1:])\n', (55247, 55278), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((55301, 55330), 'numpy.sin', 'sin', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (55304, 55330), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57419, 57444), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (57422, 57444), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((10418, 10446), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (10421, 10446), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((10469, 10498), 'numpy.cos', 'cos', (['error.survey.azi_mag_rad'], {}), '(error.survey.azi_mag_rad)\n', (10472, 10498), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((11202, 11230), 'numpy.sin', 'sin', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (11205, 11230), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((12097, 12125), 'numpy.sin', 'sin', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (12100, 12125), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((13836, 13864), 'numpy.sin', 'sin', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (13839, 13864), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((14829, 14857), 'numpy.sin', 'sin', (["error.drdp_sing['azi2']"], {}), "(error.drdp_sing['azi2'])\n", (14832, 14857), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((17426, 17451), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (17429, 17451), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((18117, 18143), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (18125, 18143), True, 'import numpy as np\n'), ((18682, 18707), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (18685, 18707), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((19242, 19268), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (19250, 19268), True, 'import numpy as np\n'), ((28702, 28742), 'numpy.radians', 'np.radians', (['error.survey.header.latitude'], {}), '(error.survey.header.latitude)\n', (28712, 28742), True, 'import numpy as np\n'), ((32411, 32474), 'numpy.sin', 'sin', (['((error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2)'], {}), '((error.survey.inc_rad[1:] + error.survey.inc_rad[:-1]) / 2)\n', (32414, 32474), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((36597, 36623), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (36605, 36623), True, 'import numpy as np\n'), ((36649, 36675), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (36657, 36675), True, 'import numpy as np\n'), ((37055, 37083), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (37058, 37083), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37919, 37945), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37927, 37945), True, 'import numpy as np\n'), ((38958, 38986), 'numpy.tan', 'tan', (['error.survey.header.dip'], {}), '(error.survey.header.dip)\n', (38961, 38986), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39001, 39026), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39004, 39026), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((39081, 39106), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (39084, 39106), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((46165, 46194), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (46168, 46194), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((53131, 53196), 'numpy.absolute', 'np.absolute', (['(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])'], {}), '(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])\n', (53142, 53196), True, 'import numpy as np\n'), ((53596, 53661), 'numpy.absolute', 'np.absolute', (['(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])'], {}), '(error.survey.inc_rad[1:] - error.survey.inc_rad[:-1])\n', (53607, 53661), True, 'import numpy as np\n'), ((55156, 55185), 'numpy.cos', 'cos', (['error.survey.inc_rad[1:]'], {}), '(error.survey.inc_rad[1:])\n', (55159, 55185), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57326, 57351), 'numpy.cos', 'cos', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (57329, 57351), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((57370, 57400), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (57373, 57400), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((28518, 28548), 'numpy.cos', 'cos', (['error.survey.azi_true_rad'], {}), '(error.survey.azi_true_rad)\n', (28521, 28548), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((28572, 28597), 'numpy.sin', 'sin', (['error.survey.inc_rad'], {}), '(error.survey.inc_rad)\n', (28575, 28597), False, 'from numpy import sin, cos, tan, pi, sqrt\n'), ((37154, 37180), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37162, 37180), True, 'import numpy as np\n'), ((37648, 37674), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37656, 37674), True, 'import numpy as np\n'), ((37768, 37794), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37776, 37794), True, 'import numpy as np\n'), ((40270, 40296), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (40278, 40296), True, 'import numpy as np\n'), ((40389, 40415), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (40397, 40415), True, 'import numpy as np\n'), ((47641, 47667), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (47649, 47667), True, 'import numpy as np\n'), ((37102, 37128), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37110, 37128), True, 'import numpy as np\n'), ((37206, 37232), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37214, 37232), True, 'import numpy as np\n'), ((37258, 37284), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (37266, 37284), True, 'import numpy as np\n'), ((44031, 44057), 'numpy.array', 'np.array', (['error.survey_rad'], {}), '(error.survey_rad)\n', (44039, 44057), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # # Project: silx (originally pyFAI) # https://github.com/silx-kit/silx # # Copyright (C) 2012-2017 European Synchrotron Radiation Facility, Grenoble, France # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "25/11/2020" import unittest import numpy import logging logger = logging.getLogger(__name__) from ..bilinear import BilinearImage class TestBilinear(unittest.TestCase): """basic maximum search test""" N = 1000 def test_max_search_round(self): """test maximum search using random points: maximum is at the pixel center""" a = numpy.arange(100) - 40. b = numpy.arange(100) - 60. ga = numpy.exp(-a * a / 4000) gb = numpy.exp(-b * b / 6000) gg = numpy.outer(ga, gb) b = BilinearImage(gg) self.assertAlmostEqual(b.maxi, 1, 2, "maxi is almost 1") self.assertLess(b.mini, 0.3, "mini should be around 0.23") ok = 0 for s in range(self.N): i, j = numpy.random.randint(100), numpy.random.randint(100) k, l = b.local_maxi((i, j)) if abs(k - 40) > 1e-4 or abs(l - 60) > 1e-4: logger.warning("Wrong guess maximum (%i,%i) -> (%.1f,%.1f)", i, j, k, l) else: logger.debug("Good guess maximum (%i,%i) -> (%.1f,%.1f)", i, j, k, l) ok += 1 logger.debug("Success rate: %.1f", 100. * ok / self.N) self.assertEqual(ok, self.N, "Maximum is always found") def test_max_search_half(self): """test maximum search using random points: maximum is at a pixel edge""" a = numpy.arange(100) - 40.5 b = numpy.arange(100) - 60.5 ga = numpy.exp(-a * a / 4000) gb = numpy.exp(-b * b / 6000) gg = numpy.outer(ga, gb) b = BilinearImage(gg) ok = 0 for s in range(self.N): i, j = numpy.random.randint(100), numpy.random.randint(100) k, l = b.local_maxi((i, j)) if abs(k - 40.5) > 0.5 or abs(l - 60.5) > 0.5: logger.warning("Wrong guess maximum (%i,%i) -> (%.1f,%.1f)", i, j, k, l) else: logger.debug("Good guess maximum (%i,%i) -> (%.1f,%.1f)", i, j, k, l) ok += 1 logger.debug("Success rate: %.1f", 100. * ok / self.N) self.assertEqual(ok, self.N, "Maximum is always found") def test_map(self): N = 6 y, x = numpy.ogrid[:N,:N + 10] img = x + y b = BilinearImage(img) x2d = numpy.zeros_like(y) + x y2d = numpy.zeros_like(x) + y res1 = b.map_coordinates((y2d, x2d)) self.assertEqual(abs(res1 - img).max(), 0, "images are the same (corners)") x2d = numpy.zeros_like(y) + (x[:,:-1] + 0.5) y2d = numpy.zeros_like(x[:,:-1]) + y res1 = b.map_coordinates((y2d, x2d)) self.assertEqual(abs(res1 - img[:,:-1] - 0.5).max(), 0, "images are the same (middle)") x2d = numpy.zeros_like(y[:-1,:]) + (x[:,:-1] + 0.5) y2d = numpy.zeros_like(x[:,:-1]) + (y[:-1,:] + 0.5) res1 = b.map_coordinates((y2d, x2d)) self.assertEqual(abs(res1 - img[:-1, 1:]).max(), 0, "images are the same (center)") def test_mask_grad(self): N = 100 img = numpy.arange(N * N).reshape(N, N) # No mask on the boundaries, makes the test complicated, pixel always separated masked = 2 * numpy.random.randint(0, int((N - 1) / 2), size=(2, N)) + 1 mask = numpy.zeros((N, N), dtype=numpy.uint8) mask[(masked[0], masked[1])] = 1 self.assertLessEqual(mask.sum(), N, "At most N pixels are masked") b = BilinearImage(img, mask=mask) self.assertEqual(b.has_mask, True, "interpolator has mask") self.assertEqual(b.maxi, N * N - 1, "maxi is N²-1") self.assertEqual(b.mini, 0, "mini is 0") y, x = numpy.ogrid[:N,:N] x2d = numpy.zeros_like(y) + x y2d = numpy.zeros_like(x) + y res1 = b.map_coordinates((y2d, x2d)) self.assertEqual(numpy.nanmax(abs(res1 - img)), 0, "images are the same (corners), or Nan ") x2d = numpy.zeros_like(y) + (x[:,:-1] + 0.5) y2d = numpy.zeros_like(x[:,:-1]) + y res1 = b.map_coordinates((y2d, x2d)) self.assertLessEqual(numpy.max(abs(res1 - img[:, 1:] + 1 / 2.)), 0.5, "images are the same (middle) +/- 0.5") x2d = numpy.zeros_like(y[:-1]) + (x[:,:-1] + 0.5) y2d = numpy.zeros_like(x[:,:-1]) + (y[:-1] + 0.5) res1 = b.map_coordinates((y2d, x2d)) exp = 0.25 * (img[:-1,:-1] + img[:-1, 1:] + img[1:,:-1] + img[1:, 1:]) self.assertLessEqual(abs(res1 - exp).max(), N / 4, "images are almost the same (center)") def test_profile_grad(self): N = 100 img = numpy.arange(N * N).reshape(N, N) b = BilinearImage(img) res1 = b.profile_line((0, 0), (N - 1, N - 1)) l = numpy.ceil(numpy.sqrt(2) * N) self.assertEqual(len(res1), l, "Profile has correct length") self.assertLess((res1[:-2] - res1[1:-1]).std(), 1e-3, "profile is linear (excluding last point)") def test_profile_gaus(self): N = 100 x = numpy.arange(N) - N // 2.0 g = numpy.exp(-x * x / (N * N)) img = numpy.outer(g, g) b = BilinearImage(img) res_hor = b.profile_line((N // 2, 0), (N // 2, N - 1)) res_ver = b.profile_line((0, N // 2), (N - 1, N // 2)) self.assertEqual(len(res_hor), N, "Profile has correct length") self.assertEqual(len(res_ver), N, "Profile has correct length") self.assertLess(abs(res_hor - g).max(), 1e-5, "correct horizontal profile") self.assertLess(abs(res_ver - g).max(), 1e-5, "correct vertical profile") # Profile with linewidth=3 expected_profile = img[:, N // 2 - 1:N // 2 + 2].mean(axis=1) res_hor = b.profile_line((N // 2, 0), (N // 2, N - 1), linewidth=3) res_ver = b.profile_line((0, N // 2), (N - 1, N // 2), linewidth=3) self.assertEqual(len(res_hor), N, "Profile has correct length") self.assertEqual(len(res_ver), N, "Profile has correct length") self.assertLess(abs(res_hor - expected_profile).max(), 1e-5, "correct horizontal profile") self.assertLess(abs(res_ver - expected_profile).max(), 1e-5, "correct vertical profile") def suite(): testsuite = unittest.TestSuite() testsuite.addTest(TestBilinear("test_max_search_round")) testsuite.addTest(TestBilinear("test_max_search_half")) testsuite.addTest(TestBilinear("test_map")) testsuite.addTest(TestBilinear("test_profile_grad")) testsuite.addTest(TestBilinear("test_profile_gaus")) testsuite.addTest(TestBilinear("test_mask_grad")) return testsuite
[ "numpy.outer", "numpy.zeros_like", "unittest.TestSuite", "numpy.zeros", "numpy.random.randint", "numpy.arange", "numpy.exp", "logging.getLogger", "numpy.sqrt" ]
[((1380, 1407), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1397, 1407), False, 'import logging\n'), ((7507, 7527), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (7525, 7527), False, 'import unittest\n'), ((1744, 1768), 'numpy.exp', 'numpy.exp', (['(-a * a / 4000)'], {}), '(-a * a / 4000)\n', (1753, 1768), False, 'import numpy\n'), ((1782, 1806), 'numpy.exp', 'numpy.exp', (['(-b * b / 6000)'], {}), '(-b * b / 6000)\n', (1791, 1806), False, 'import numpy\n'), ((1820, 1839), 'numpy.outer', 'numpy.outer', (['ga', 'gb'], {}), '(ga, gb)\n', (1831, 1839), False, 'import numpy\n'), ((2770, 2794), 'numpy.exp', 'numpy.exp', (['(-a * a / 4000)'], {}), '(-a * a / 4000)\n', (2779, 2794), False, 'import numpy\n'), ((2808, 2832), 'numpy.exp', 'numpy.exp', (['(-b * b / 6000)'], {}), '(-b * b / 6000)\n', (2817, 2832), False, 'import numpy\n'), ((2846, 2865), 'numpy.outer', 'numpy.outer', (['ga', 'gb'], {}), '(ga, gb)\n', (2857, 2865), False, 'import numpy\n'), ((4568, 4606), 'numpy.zeros', 'numpy.zeros', (['(N, N)'], {'dtype': 'numpy.uint8'}), '((N, N), dtype=numpy.uint8)\n', (4579, 4606), False, 'import numpy\n'), ((6302, 6329), 'numpy.exp', 'numpy.exp', (['(-x * x / (N * N))'], {}), '(-x * x / (N * N))\n', (6311, 6329), False, 'import numpy\n'), ((6344, 6361), 'numpy.outer', 'numpy.outer', (['g', 'g'], {}), '(g, g)\n', (6355, 6361), False, 'import numpy\n'), ((1671, 1688), 'numpy.arange', 'numpy.arange', (['(100)'], {}), '(100)\n', (1683, 1688), False, 'import numpy\n'), ((1707, 1724), 'numpy.arange', 'numpy.arange', (['(100)'], {}), '(100)\n', (1719, 1724), False, 'import numpy\n'), ((2695, 2712), 'numpy.arange', 'numpy.arange', (['(100)'], {}), '(100)\n', (2707, 2712), False, 'import numpy\n'), ((2732, 2749), 'numpy.arange', 'numpy.arange', (['(100)'], {}), '(100)\n', (2744, 2749), False, 'import numpy\n'), ((3601, 3620), 'numpy.zeros_like', 'numpy.zeros_like', (['y'], {}), '(y)\n', (3617, 3620), False, 'import numpy\n'), ((3639, 3658), 'numpy.zeros_like', 'numpy.zeros_like', (['x'], {}), '(x)\n', (3655, 3658), False, 'import numpy\n'), ((3807, 3826), 'numpy.zeros_like', 'numpy.zeros_like', (['y'], {}), '(y)\n', (3823, 3826), False, 'import numpy\n'), ((3860, 3887), 'numpy.zeros_like', 'numpy.zeros_like', (['x[:, :-1]'], {}), '(x[:, :-1])\n', (3876, 3887), False, 'import numpy\n'), ((4047, 4074), 'numpy.zeros_like', 'numpy.zeros_like', (['y[:-1, :]'], {}), '(y[:-1, :])\n', (4063, 4074), False, 'import numpy\n'), ((4107, 4134), 'numpy.zeros_like', 'numpy.zeros_like', (['x[:, :-1]'], {}), '(x[:, :-1])\n', (4123, 4134), False, 'import numpy\n'), ((4992, 5011), 'numpy.zeros_like', 'numpy.zeros_like', (['y'], {}), '(y)\n', (5008, 5011), False, 'import numpy\n'), ((5030, 5049), 'numpy.zeros_like', 'numpy.zeros_like', (['x'], {}), '(x)\n', (5046, 5049), False, 'import numpy\n'), ((5215, 5234), 'numpy.zeros_like', 'numpy.zeros_like', (['y'], {}), '(y)\n', (5231, 5234), False, 'import numpy\n'), ((5268, 5295), 'numpy.zeros_like', 'numpy.zeros_like', (['x[:, :-1]'], {}), '(x[:, :-1])\n', (5284, 5295), False, 'import numpy\n'), ((5477, 5501), 'numpy.zeros_like', 'numpy.zeros_like', (['y[:-1]'], {}), '(y[:-1])\n', (5493, 5501), False, 'import numpy\n'), ((5535, 5562), 'numpy.zeros_like', 'numpy.zeros_like', (['x[:, :-1]'], {}), '(x[:, :-1])\n', (5551, 5562), False, 'import numpy\n'), ((6263, 6278), 'numpy.arange', 'numpy.arange', (['N'], {}), '(N)\n', (6275, 6278), False, 'import numpy\n'), ((2070, 2095), 'numpy.random.randint', 'numpy.random.randint', (['(100)'], {}), '(100)\n', (2090, 2095), False, 'import numpy\n'), ((2097, 2122), 'numpy.random.randint', 'numpy.random.randint', (['(100)'], {}), '(100)\n', (2117, 2122), False, 'import numpy\n'), ((2962, 2987), 'numpy.random.randint', 'numpy.random.randint', (['(100)'], {}), '(100)\n', (2982, 2987), False, 'import numpy\n'), ((2989, 3014), 'numpy.random.randint', 'numpy.random.randint', (['(100)'], {}), '(100)\n', (3009, 3014), False, 'import numpy\n'), ((4351, 4370), 'numpy.arange', 'numpy.arange', (['(N * N)'], {}), '(N * N)\n', (4363, 4370), False, 'import numpy\n'), ((5865, 5884), 'numpy.arange', 'numpy.arange', (['(N * N)'], {}), '(N * N)\n', (5877, 5884), False, 'import numpy\n'), ((6007, 6020), 'numpy.sqrt', 'numpy.sqrt', (['(2)'], {}), '(2)\n', (6017, 6020), False, 'import numpy\n')]
""" scatter plots of magnitudes vs various parameters... to see whether the EPD linear fitting approach works. """ import numpy as np, matplotlib.pyplot as plt, pandas as pd from glob import glob import os from astropy.io import fits from plot_mag_vs_EPD_parameters import get_data import seaborn as sns from scipy.interpolate import splprep, splev from numpy import array as nparr def make_pairplots(lcpaths, lcdatalist, magtype='IRM1', frac_of_lc=0.4): # make pairplots of X,Y,T,MAG,S,D,K, and just X,Y,T,MAG # frac_of_lc: for fitting purposes, we want orbit-specific data. xcols = ['FSV','FDV','FKV','XIC','YIC','CCDTEMP',magtype] xkeys = ['<KEY>',magtype] for lcpath, lc in zip(lcpaths, lcdatalist): savdir = '../results/bspline_fit_xyTmag/' savname = '{}_frac{:.1f}_pairplot_{}.png'.format( magtype, frac_of_lc, os.path.splitext(os.path.basename(lcpath))[0]) savpath = os.path.join(savdir, savname) if os.path.exists(savpath): print('found {}, continue'.format(savpath)) continue time = lc['TMID_UTC'] timeind = np.argsort(time) d = {} for xcol, k in zip(xcols, xkeys): # pandas/seaborn wants little-endian le_array = lc[xcol].byteswap().newbyteorder() # sort everything by time time_sorted_arr = le_array[timeind] # take the cut so that you deal with orbit-specific data, if # desired d[k] = time_sorted_arr[:int(frac_of_lc*len(time_sorted_arr))] df = pd.DataFrame(d) if np.all(pd.isnull(df[magtype])): print('mags are all NaN for {}, continue'.format(savname)) continue # PLOT X,Y,T,MAG,S,D,K plt.close('all') g = sns.PairGrid(df) g = g.map_diag(plt.hist) g = g.map_offdiag(plt.scatter, rasterized=True, s=10, alpha=0.8) plt.savefig(savpath, bbox_inches='tight', dpi=400) print('made {}'.format(savpath)) # PLOT SUBSET: ONLY X,Y,T,MAG savname = '{}_frac{:.1f}_pairplot_xyTmag_{}.png'.format( magtype, frac_of_lc, os.path.splitext(os.path.basename(lcpath))[0]) savpath = os.path.join(savdir, savname) if os.path.exists(savpath): print('found {}, continue'.format(savpath)) continue plt.close('all') g = sns.PairGrid(df, vars=['x','y','T',magtype]) g = g.map_diag(plt.hist) g = g.map_offdiag(plt.scatter, rasterized=True, s=10, alpha=0.8) plt.savefig(savpath, bbox_inches='tight', dpi=400) print('made {}'.format(savpath)) def do_bspline_fit_xyTmag(lcpaths, lcdatalist, magtype='IRM1', frac_of_lc=0.4, isffi=True): if not isffi: raise AssertionError('windowsize for polling std assumes is ffi') # spline parameters s_initial = 1.0 # smoothness parameter korder = 3 # spline order nest = -1 # estimate of number of knots needed (-1 = maximal) # NOTE: here "s" is a hyperparameter. We want to tune it, by # cross-validation. (Not BIC/chi-squared, which doesn't seem to be # well-defined here.) magerrtype = magtype.replace('M','E') xcols = ['XIC','YIC','CCDTEMP',magtype,magerrtype] xkeys = ['x','y','T',magtype,magerrtype] for lcpath, lc in zip(lcpaths, lcdatalist): time = lc['TMID_UTC'] timeind = np.argsort(time) d = {} for xcol, k in zip(xcols, xkeys): # pandas/seaborn wants little-endian le_array = lc[xcol].byteswap().newbyteorder() # sort everything by time time_sorted_arr = le_array[timeind] # take the cut so that you fit orbit-specific data d[k] = time_sorted_arr[:int(frac_of_lc*len(time_sorted_arr))] df = pd.DataFrame(d) if np.all(pd.isnull(df[magtype])): print('mags are all NaN for {}, continue'.format(savname)) continue savdir = '../results/bspline_fit_xyTmag/' savname = '{}_frac{:.1f}_scatterfit_xval_xyTmag_{}.png'.format( magtype, frac_of_lc, os.path.splitext(os.path.basename(lcpath))[0]) savpath = os.path.join(savdir, savname) if os.path.exists(savpath): print('found {}, continue'.format(savpath)) continue # find the knot points vec_x_list = [nparr(df['x']), nparr(df['y']), nparr(df['T']), nparr(df[magtype])] ndim = len(vec_x_list) # NOTE omitting any weight vector (seems to be OK). # # to get the weight vector, estimate uncertainty in x,y,T,mag as # # 1-sigma standard deviation from 6-hr timescale window. Then weights = # # 1/standard deviation. # w = [] # for _x in x: # windowsize = 12 # 6 hour timescale = 12 time points for FFIs. # _w = pd.rolling_std(_x, windowsize) # w.append(1/(np.ones_like(_x)*np.nanmean(_w))) # Find B-spline representation of N-dimensional curve. Assumption is # that the list of time-series vectors represent a curve in # N-dimensional space parametrized by u, for u in [0,1]. We are trying # to find a smooth approximating spline curve g(u). This function wraps # the PARCUR routine from FITPACK, a FORTRAN library. Written by Paul # Dierckx. PARCUR is for fitting of parametric open curves. (e.g., # Dierckx, "Curve and surface fitting with splines", (1993, pg 111, sec # 6.3.1). The method, and statement of the optimization problem, are # equations 6.46 and 6.47 of the above reference. # The smoothing parameter s must be positive. s_grid = np.logspace(-3,-1,num=5) from sklearn.model_selection import KFold from sklearn.metrics import r2_score, explained_variance_score spld = {} r_sq_means, expl_var_means, tckp_d = [], [], {} for s in s_grid[::-1]: #FIXME # split data into k subsets n_splits = 4 # = k X = np.atleast_2d(vec_x_list).T n_data = X.shape[0] kf = KFold(n_splits=n_splits) r_sq_list, expl_var_list = [], [] for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] # supposedly necessary transformation for splprep to run X_train_list = [ X_train[:,0],X_train[:,1],X_train[:,2],X_train[:,3] ] X_test_list = [ X_test[:,0],X_test[:,1],X_test[:,2],X_test[:,3] ] mag_true = X_test[:,3] (tckp_train, u_train), metric, ier, msg = splprep(X_train_list, s=s, k=korder, nest=-1, task=0, full_output=1) # tckp[0]: knots as a function of u # tckp[1]: knots as a function of (x,y,T,mag) # tckp[2]: order train_knots = tckp_train[0] # get coefficients for the TEST data, using the set of knots # determined for the TRAINING data. import IPython; IPython.embed() #FIXME: does this work? (tckp_test, u_test), metric_test, ier_test, msg_test = ( splprep(X_test_list, s=s, k=korder, t=train_knots, task=-1, full_output=1) ) # tckp contains information about the knots. answers: what are the # spline fit coefficients? _where_ are the knots? (doesn't need to # be x,y,T,mag). what order is the spline? x_pred, y_pred, T_pred, mag_pred = splev(u_test, tckp_test) r_sq_list.append(r2_score(mag_true, mag_pred)) expl_var_list.append(explained_variance_score(mag_true, mag_pred)) import IPython; IPython.embed() #FIXME: does this work? r_sq_means.append( np.mean(r_sq_list) ) expl_var_means.append( np.mean(expl_var_list) ) # SEPARATELY, get the spline fit coefficient for the entire # dataset. (using whatever knots are found to be best. this is the # same number, since it's the same s as above). (tckp_full, u_full), _, _, _ = ( splprep(vec_x_list, s=s, k=korder, nest=-1, task=0, full_output=1) ) tckp_d[s] = {} tckp_d[s]['tckp_full'] = tckp_full tckp_d[s]['u_full'] = u_full tckp_d[s]['xval_rsq'] = np.mean(r_sq_list) tckp_d[s]['xval_explvar'] = np.mean(expl_var_list) r_sq_means = nparr(r_sq_means) expl_var_means = nparr(expl_var_means) best_s_from_r_sq = s_grid[ np.argmax(r_sq_means) ] best_s_from_explvar = s_grid[ np.argmax(expl_var_means) ] newd_grid = {} for s in s_grid: newd_grid[s] = {} tckp = spld[s]['tckp_full'] # evaluate b-spline along the full interval u=[0,1]. use the knots # and coefficients from the b-spline fits. xnew, ynew, Tnew, magnew = splev(np.linspace(0,1,400), tckp) newd_grid[s]['x'] = xnew newd_grid[s]['y'] = ynew newd_grid[s]['T'] = Tnew newd_grid[s][magtype] = magnew newd_grid[s]['n_knots'] = len(tckp[1]) newd_grid[s]['n_data'] = len(nparr(df['x'])) # 3 by 3 triangle plot plt.close('all') fig, axs = plt.subplots(nrows=3, ncols=3, figsize=(6,6)) axs = axs.flatten() noplotinds = nparr([2,3,6])-1 plotinds = nparr([1,4,5,7,8,9])-1 xvals=['x','x','y','x','y','T'] yvals=['y','T','T',magtype,magtype,magtype] noxlabelinds = nparr([1,4,5])-1 noylabelinds = nparr([5,8,9])-1 for ind, xval, yval in zip(plotinds, xvals, yvals): ax = axs[ind] ax.scatter(df[xval], df[yval], rasterized=True, label='data', alpha=0.8, zorder=5, c='k', lw=0, s=3) for s in s_grid: labelstr = ('s={:.1e}; got {:d} knots; {:d} points; ' 'xval $R^2$ {:.2f}; xval explvar {:.2f}' ) label = labelstr.format(s, spld[s]['n_knots'], spld[s]['n_data'], tckp_d[s]['xval_rsq'], tckp_d[s]['xval_explvar']) ax.plot(newd_grid[s][xval], newd_grid[s][yval], label=label, lw=1, markersize=0, zorder=6, alpha=0.6) if ind==0: ax.legend(bbox_to_anchor=(0.95,0.95), loc='upper right', bbox_transform=fig.transFigure, fontsize='xx-small', framealpha=1) ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') if ind not in noxlabelinds: ax.set_xlabel(xval, fontsize='xx-small') if ind not in noylabelinds: ax.set_ylabel(yval, fontsize='xx-small') if ind in noxlabelinds: ax.set_xticklabels([]) if ind in noylabelinds: ax.set_yticklabels([]) for ind in noplotinds: ax = axs[ind] ax.axis('off') fig.tight_layout(h_pad=-2, w_pad=-2) fig.savefig(savpath, dpi=400, bbox_inches='tight') print('made {}'.format(savpath)) if __name__=="__main__": np.random.seed(42) n_lcs = 10 lcpaths, lcdatalist = get_data(n_lcs=n_lcs) make_pairplots(lcpaths, lcdatalist, magtype='IRM1', frac_of_lc=1.0) make_pairplots(lcpaths, lcdatalist, magtype='IRM1', frac_of_lc=0.4) do_bspline_fit_xyTmag(lcpaths, lcdatalist)
[ "numpy.random.seed", "numpy.argmax", "numpy.logspace", "sklearn.metrics.r2_score", "numpy.argsort", "numpy.mean", "seaborn.PairGrid", "os.path.join", "numpy.atleast_2d", "pandas.DataFrame", "matplotlib.pyplot.close", "os.path.exists", "IPython.embed", "numpy.linspace", "matplotlib.pyplot.subplots", "os.path.basename", "plot_mag_vs_EPD_parameters.get_data", "sklearn.metrics.explained_variance_score", "pandas.isnull", "sklearn.model_selection.KFold", "scipy.interpolate.splprep", "numpy.array", "scipy.interpolate.splev", "matplotlib.pyplot.savefig" ]
[((11965, 11983), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (11979, 11983), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((12027, 12048), 'plot_mag_vs_EPD_parameters.get_data', 'get_data', ([], {'n_lcs': 'n_lcs'}), '(n_lcs=n_lcs)\n', (12035, 12048), False, 'from plot_mag_vs_EPD_parameters import get_data\n'), ((939, 968), 'os.path.join', 'os.path.join', (['savdir', 'savname'], {}), '(savdir, savname)\n', (951, 968), False, 'import os\n'), ((981, 1004), 'os.path.exists', 'os.path.exists', (['savpath'], {}), '(savpath)\n', (995, 1004), False, 'import os\n'), ((1132, 1148), 'numpy.argsort', 'np.argsort', (['time'], {}), '(time)\n', (1142, 1148), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((1582, 1597), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (1594, 1597), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((1774, 1790), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (1783, 1790), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((1804, 1820), 'seaborn.PairGrid', 'sns.PairGrid', (['df'], {}), '(df)\n', (1816, 1820), True, 'import seaborn as sns\n'), ((1936, 1986), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savpath'], {'bbox_inches': '"""tight"""', 'dpi': '(400)'}), "(savpath, bbox_inches='tight', dpi=400)\n", (1947, 1986), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((2230, 2259), 'os.path.join', 'os.path.join', (['savdir', 'savname'], {}), '(savdir, savname)\n', (2242, 2259), False, 'import os\n'), ((2271, 2294), 'os.path.exists', 'os.path.exists', (['savpath'], {}), '(savpath)\n', (2285, 2294), False, 'import os\n'), ((2382, 2398), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (2391, 2398), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((2412, 2459), 'seaborn.PairGrid', 'sns.PairGrid', (['df'], {'vars': "['x', 'y', 'T', magtype]"}), "(df, vars=['x', 'y', 'T', magtype])\n", (2424, 2459), True, 'import seaborn as sns\n'), ((2572, 2622), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savpath'], {'bbox_inches': '"""tight"""', 'dpi': '(400)'}), "(savpath, bbox_inches='tight', dpi=400)\n", (2583, 2622), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((3445, 3461), 'numpy.argsort', 'np.argsort', (['time'], {}), '(time)\n', (3455, 3461), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((3863, 3878), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (3875, 3878), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((4236, 4265), 'os.path.join', 'os.path.join', (['savdir', 'savname'], {}), '(savdir, savname)\n', (4248, 4265), False, 'import os\n'), ((4278, 4301), 'os.path.exists', 'os.path.exists', (['savpath'], {}), '(savpath)\n', (4292, 4301), False, 'import os\n'), ((5777, 5803), 'numpy.logspace', 'np.logspace', (['(-3)', '(-1)'], {'num': '(5)'}), '(-3, -1, num=5)\n', (5788, 5803), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9015, 9032), 'numpy.array', 'nparr', (['r_sq_means'], {}), '(r_sq_means)\n', (9020, 9032), True, 'from numpy import array as nparr\n'), ((9058, 9079), 'numpy.array', 'nparr', (['expl_var_means'], {}), '(expl_var_means)\n', (9063, 9079), True, 'from numpy import array as nparr\n'), ((9838, 9854), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9847, 9854), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9875, 9921), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(3)', 'ncols': '(3)', 'figsize': '(6, 6)'}), '(nrows=3, ncols=3, figsize=(6, 6))\n', (9887, 9921), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((1617, 1639), 'pandas.isnull', 'pd.isnull', (['df[magtype]'], {}), '(df[magtype])\n', (1626, 1639), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((3898, 3920), 'pandas.isnull', 'pd.isnull', (['df[magtype]'], {}), '(df[magtype])\n', (3907, 3920), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((4434, 4448), 'numpy.array', 'nparr', (["df['x']"], {}), "(df['x'])\n", (4439, 4448), True, 'from numpy import array as nparr\n'), ((4450, 4464), 'numpy.array', 'nparr', (["df['y']"], {}), "(df['y'])\n", (4455, 4464), True, 'from numpy import array as nparr\n'), ((4466, 4480), 'numpy.array', 'nparr', (["df['T']"], {}), "(df['T'])\n", (4471, 4480), True, 'from numpy import array as nparr\n'), ((4499, 4517), 'numpy.array', 'nparr', (['df[magtype]'], {}), '(df[magtype])\n', (4504, 4517), True, 'from numpy import array as nparr\n'), ((6204, 6228), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'n_splits'}), '(n_splits=n_splits)\n', (6209, 6228), False, 'from sklearn.model_selection import KFold\n'), ((8654, 8720), 'scipy.interpolate.splprep', 'splprep', (['vec_x_list'], {'s': 's', 'k': 'korder', 'nest': '(-1)', 'task': '(0)', 'full_output': '(1)'}), '(vec_x_list, s=s, k=korder, nest=-1, task=0, full_output=1)\n', (8661, 8720), False, 'from scipy.interpolate import splprep, splev\n'), ((8911, 8929), 'numpy.mean', 'np.mean', (['r_sq_list'], {}), '(r_sq_list)\n', (8918, 8929), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((8970, 8992), 'numpy.mean', 'np.mean', (['expl_var_list'], {}), '(expl_var_list)\n', (8977, 8992), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9116, 9137), 'numpy.argmax', 'np.argmax', (['r_sq_means'], {}), '(r_sq_means)\n', (9125, 9137), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9178, 9203), 'numpy.argmax', 'np.argmax', (['expl_var_means'], {}), '(expl_var_means)\n', (9187, 9203), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9971, 9987), 'numpy.array', 'nparr', (['[2, 3, 6]'], {}), '([2, 3, 6])\n', (9976, 9987), True, 'from numpy import array as nparr\n'), ((10007, 10032), 'numpy.array', 'nparr', (['[1, 4, 5, 7, 8, 9]'], {}), '([1, 4, 5, 7, 8, 9])\n', (10012, 10032), True, 'from numpy import array as nparr\n'), ((10146, 10162), 'numpy.array', 'nparr', (['[1, 4, 5]'], {}), '([1, 4, 5])\n', (10151, 10162), True, 'from numpy import array as nparr\n'), ((10186, 10202), 'numpy.array', 'nparr', (['[5, 8, 9]'], {}), '([5, 8, 9])\n', (10191, 10202), True, 'from numpy import array as nparr\n'), ((6125, 6150), 'numpy.atleast_2d', 'np.atleast_2d', (['vec_x_list'], {}), '(vec_x_list)\n', (6138, 6150), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((6739, 6807), 'scipy.interpolate.splprep', 'splprep', (['X_train_list'], {'s': 's', 'k': 'korder', 'nest': '(-1)', 'task': '(0)', 'full_output': '(1)'}), '(X_train_list, s=s, k=korder, nest=-1, task=0, full_output=1)\n', (6746, 6807), False, 'from scipy.interpolate import splprep, splev\n'), ((7492, 7507), 'IPython.embed', 'IPython.embed', ([], {}), '()\n', (7505, 7507), False, 'import IPython\n'), ((7625, 7699), 'scipy.interpolate.splprep', 'splprep', (['X_test_list'], {'s': 's', 'k': 'korder', 't': 'train_knots', 'task': '(-1)', 'full_output': '(1)'}), '(X_test_list, s=s, k=korder, t=train_knots, task=-1, full_output=1)\n', (7632, 7699), False, 'from scipy.interpolate import splprep, splev\n'), ((8023, 8047), 'scipy.interpolate.splev', 'splev', (['u_test', 'tckp_test'], {}), '(u_test, tckp_test)\n', (8028, 8047), False, 'from scipy.interpolate import splprep, splev\n'), ((8228, 8243), 'IPython.embed', 'IPython.embed', ([], {}), '()\n', (8241, 8243), False, 'import IPython\n'), ((8300, 8318), 'numpy.mean', 'np.mean', (['r_sq_list'], {}), '(r_sq_list)\n', (8307, 8318), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((8356, 8378), 'numpy.mean', 'np.mean', (['expl_var_list'], {}), '(expl_var_list)\n', (8363, 8378), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9506, 9528), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(400)'], {}), '(0, 1, 400)\n', (9517, 9528), True, 'import numpy as np, matplotlib.pyplot as plt, pandas as pd\n'), ((9782, 9796), 'numpy.array', 'nparr', (["df['x']"], {}), "(df['x'])\n", (9787, 9796), True, 'from numpy import array as nparr\n'), ((891, 915), 'os.path.basename', 'os.path.basename', (['lcpath'], {}), '(lcpath)\n', (907, 915), False, 'import os\n'), ((2182, 2206), 'os.path.basename', 'os.path.basename', (['lcpath'], {}), '(lcpath)\n', (2198, 2206), False, 'import os\n'), ((4188, 4212), 'os.path.basename', 'os.path.basename', (['lcpath'], {}), '(lcpath)\n', (4204, 4212), False, 'import os\n'), ((8082, 8110), 'sklearn.metrics.r2_score', 'r2_score', (['mag_true', 'mag_pred'], {}), '(mag_true, mag_pred)\n', (8090, 8110), False, 'from sklearn.metrics import r2_score, explained_variance_score\n'), ((8149, 8193), 'sklearn.metrics.explained_variance_score', 'explained_variance_score', (['mag_true', 'mag_pred'], {}), '(mag_true, mag_pred)\n', (8173, 8193), False, 'from sklearn.metrics import r2_score, explained_variance_score\n')]
import cv2 import numpy as np from scipy import misc i = misc.ascent() import matplotlib.pyplot as plt plt.grid(False) i_transformed = np.copy(i) print(i_transformed.shape) size_x = i_transformed.shape[0] size_y = i_transformed.shape[1] print(i_transformed.shape) filter = [ [-1, -2, -1], [0, 0, 0], [1, 2, 1]] weight = 1 for x in range(1,size_x-1): for y in range(1,size_y-1): output_pixel = 0.0 output_pixel = output_pixel + (i[x - 1, y-1] * filter[0][0]) output_pixel = output_pixel + (i[x, y-1] * filter[0][1]) output_pixel = output_pixel + (i[x + 1, y-1] * filter[0][2]) output_pixel = output_pixel + (i[x-1, y] * filter[1][0]) output_pixel = output_pixel + (i[x, y] * filter[1][1]) output_pixel = output_pixel + (i[x+1, y] * filter[1][2]) output_pixel = output_pixel + (i[x-1, y+1] * filter[2][0]) output_pixel = output_pixel + (i[x, y+1] * filter[2][1]) output_pixel = output_pixel + (i[x+1, y+1] * filter[2][2]) output_pixel = output_pixel * weight if(output_pixel<0): output_pixel=0 if(output_pixel>255): output_pixel=255 i_transformed[x, y] = output_pixel plt.gray() plt.axis('off') plt.imshow(i_transformed) plt.show() #pooling, taking the most signficiant contributor to the image within a scaled down data # new_x = int(size_x/2) # new_y = int(size_y/2) # newImage = np.zeros((new_x, new_y)) # for x in range(0, size_x, 2): # for y in range(0, size_y, 2): # pixels = [] # pixels.append(i_transformed[x, y]) # pixels.append(i_transformed[x+1, y]) # pixels.append(i_transformed[x, y+1]) # pixels.append(i_transformed[x+1, y+1]) # pixels.sort(reverse=True) # newImage[int(x/2),int(y/2)] = pixels[0] # # Plot the image. Note the size of the axes -- now 256 pixels instead of 512 # plt.gray() # plt.grid(False) # plt.imshow(newImage) # #plt.axis('off') # plt.show()
[ "matplotlib.pyplot.gray", "matplotlib.pyplot.show", "numpy.copy", "matplotlib.pyplot.imshow", "matplotlib.pyplot.axis", "scipy.misc.ascent", "matplotlib.pyplot.grid" ]
[((57, 70), 'scipy.misc.ascent', 'misc.ascent', ([], {}), '()\n', (68, 70), False, 'from scipy import misc\n'), ((104, 119), 'matplotlib.pyplot.grid', 'plt.grid', (['(False)'], {}), '(False)\n', (112, 119), True, 'import matplotlib.pyplot as plt\n'), ((137, 147), 'numpy.copy', 'np.copy', (['i'], {}), '(i)\n', (144, 147), True, 'import numpy as np\n'), ((1173, 1183), 'matplotlib.pyplot.gray', 'plt.gray', ([], {}), '()\n', (1181, 1183), True, 'import matplotlib.pyplot as plt\n'), ((1184, 1199), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1192, 1199), True, 'import matplotlib.pyplot as plt\n'), ((1200, 1225), 'matplotlib.pyplot.imshow', 'plt.imshow', (['i_transformed'], {}), '(i_transformed)\n', (1210, 1225), True, 'import matplotlib.pyplot as plt\n'), ((1226, 1236), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1234, 1236), True, 'import matplotlib.pyplot as plt\n')]
""" :author: <NAME> (<EMAIL>) 2021 :License: This package is published under Simplified BSD License. """ from array import array import numpy as np FORMAT = {1: "b", 2: "h", 4: "i"} def pad(data, max_len, type): if type == "Silence": return pad_with_silence(data, max_len) elif type == "Data": return pad_with_data(data, max_len) else: return pad_with_noise(data, max_len) def pad_with_silence(data, max_len): to_add = max(max_len - len(data), 0) padded = np.pad(data, (0, to_add), mode='constant', constant_values=0) return padded def pad_with_data(data, max_len): to_add = max(max_len - len(data), 0) padded = np.zeros(shape=(max_len,), dtype="int16") if to_add: repeat = int(max_len / len(data)) rest = max_len % len(data) for i in range(repeat): start = i * len(data) end = (i+1) * len(data) padded[start:end] = data[:] # padded[repeat*len(data):] = data[:rest] pad_with_silence(padded, max_len) return padded return data def pad_with_noise(data, max_len): print("padding with noise not implemented yet... padding with silence") return pad_with_silence(data, max_len) def separate_channels(data, fmt, channels): all_channels = array(fmt, data) mono_channels = [ array(fmt, all_channels[ch::channels]) for ch in range(channels) ] return mono_channels def to_array(data, sample_width, channels): fmt = FORMAT[sample_width] if channels == 1: return np.array(array(fmt, data)) return separate_channels(data, fmt, channels)
[ "numpy.pad", "numpy.zeros", "array.array" ]
[((480, 541), 'numpy.pad', 'np.pad', (['data', '(0, to_add)'], {'mode': '"""constant"""', 'constant_values': '(0)'}), "(data, (0, to_add), mode='constant', constant_values=0)\n", (486, 541), True, 'import numpy as np\n'), ((641, 682), 'numpy.zeros', 'np.zeros', ([], {'shape': '(max_len,)', 'dtype': '"""int16"""'}), "(shape=(max_len,), dtype='int16')\n", (649, 682), True, 'import numpy as np\n'), ((1190, 1206), 'array.array', 'array', (['fmt', 'data'], {}), '(fmt, data)\n', (1195, 1206), False, 'from array import array\n'), ((1228, 1266), 'array.array', 'array', (['fmt', 'all_channels[ch::channels]'], {}), '(fmt, all_channels[ch::channels])\n', (1233, 1266), False, 'from array import array\n'), ((1429, 1445), 'array.array', 'array', (['fmt', 'data'], {}), '(fmt, data)\n', (1434, 1445), False, 'from array import array\n')]
''' cmbmap.py Plot intensity skymap from Planck, and get power spectrum. NOTE that I have not been able to install healpy in Canopy on Windows :( ''' import numpy as np import matplotlib.pyplot as plt # from pylab import * import healpy as hp # here are a bunch of different maps; the last one seems to work best # http://healpy.readthedocs.org/en/latest/tutorial.html # http://irsa.ipac.caltech.edu/data/Planck/release_1/all-sky-maps/previews/COM_CompMap_CMB-commrul_2048_R1.00/index.html # fn = '/Users/ajw/Downloads/COM_CompMap_CMB-commrul_2048_R1.00.fits' # http://irsa.ipac.caltech.edu/data/Planck/release_1/all-sky-maps/previews/COM_CompMap_CMB-smica_2048_R1.20/index.html # fn = '/Users/ajw/Downloads/COM_CompMap_CMB-smica_2048_R1.20.fits' # http://irsa.ipac.caltech.edu/data/Planck/release_1/all-sky-maps/previews/COM_CompMap_CMB-nilc_2048_R1.20/index.html fn = '/Users/ajw/Downloads/COM_CompMap_CMB-nilc_2048_R1.20.fits' map_I = hp.read_map(fn) # plot the Planck T map #figure() hp.mollview(map_I, coord='G', title='Planck R1, Histogram equalized Galactic', unit='mK', norm='hist') #hp.graticule(dpar=30,dmer=30) # analyze the map, get Cl power spectrum: LMAX = 2048 cl = hp.anafast(map_I, lmax=LMAX) #hp.write_cl('cl_Planck.fits', cl) ell = np.arange(len(cl)) ecl = ell * (ell+1) * cl/(2.*np.pi) # Get the Planck fit result: http://pla.esac.esa.int/pla/aio/planckResults.jsp? # http://irsa.ipac.caltech.edu/data/Planck/release_1/ancillary-data/previews/COM_PowerSpect_CMB_R1.10/index.html fn = 'COM_PowerSpect_CMB_R1.10.txt' f = open(fn) lines = f.readlines() f.close() # extract low-ell and high-ell power spectra a = np.genfromtxt(lines[10:58],delimiter=",").transpose() b = np.genfromtxt(lines[68:],delimiter=",").transpose() # I don't know how to get the 2nd (high-ell) table from thre fits file #fn = 'COM_PowerSpect_CMB_R1.10.fits' #cls = hp.read_cl(fn) # "fit" from CAMB: http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm fn = 'test_scalCls.dat' fn = 'camb_53319956_scalcls.dat.txt' f = open(fn) lines = f.readlines() f.close() c = np.genfromtxt(lines).transpose() # here we see a significant unexplained discrepancy mid-ell. plt.figure() ax = plt.subplot() plt.plot(ell,ecl,'k',label='anafast fit') plt.errorbar(a[0],a[1],yerr=a[3],fmt='bo',label='COM_PowerSpect_CMB_R1.10') plt.errorbar(b[0],b[3],xerr=b[2]-b[0],yerr=b[4],fmt='bo',label='COM_PowerSpect_CMB_R1.10') plt.plot(c[0],c[1],'r',label='camb_53319956_scalcls') #ax.set_xscale("log", nonposx='clip') plt.xlim([2.,2500.]) plt.xlabel(r'$\ell$') plt.ylabel(r'$\ell(\ell+1) C_\ell/2\pi$') plt.title('Data from Planck, prediction from CAMB') plt.legend() plt.grid() # part of the discrepancy come from masking, so reanalyze map with mask: mask = hp.read_map('HFI_PowerSpect_Mask_2048_R1.10.fits').astype(np.bool) map_I_masked = hp.ma(map_I) map_I_masked.mask = np.logical_not(mask) clm = hp.anafast(map_I_masked, lmax=LMAX) eclm = ell * (ell+1) * clm/(2.*np.pi) * 2.5 # note the norm fudge-factor; should come from the mask # plot results: plt.figure() ax = plt.subplot() plt.plot(ell,eclm,'k',label='anafast fit - masked') plt.errorbar(a[0],a[1],yerr=a[3],fmt='bo',label='COM_PowerSpect_CMB_R1.10') plt.errorbar(b[0],b[3],xerr=b[2]-b[0],yerr=b[4],fmt='bo',label='COM_PowerSpect_CMB_R1.10') plt.plot(c[0],c[1],'r',label='camb_53319956_scalcls') #ax.set_xscale("log", nonposx='clip') plt.xlim([2.,2500.]) plt.xlabel(r'$\ell$') plt.ylabel(r'$\ell(\ell+1) C_\ell/2\pi$') plt.title('Data from Planck - masked') plt.legend() plt.grid() plt.show() ''' # for fun, make a simulated map nside = hp.get_nside(pl) smap = hp.synfast(cl,nside) hp.mollview(smap, coord='G', title='simulated data', unit='mK', norm='hist') hp.graticule(dpar=30,dmer=30) LMAX = 2048 cl1 = hp.anafast(smap, lmax=LMAX) ell = arange(len(cl)) ecl1 = ell * (ell+1) * cl1/(2.*np.pi) plt.figure() ax = plt.subplot() plt.plot(ell,ecl,'b',label="into to synfast") plt.plot(ell,ecl1,'r',label="output from synfast") plt.xlim([2.,2500.]) plt.xlabel(r'$\ell$') plt.ylabel(r'$\ell(\ell+1) C_\ell/2\pi$') plt.legend() plt.grid() plt.show() '''
[ "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "healpy.mollview", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "numpy.logical_not", "matplotlib.pyplot.ylabel", "numpy.genfromtxt", "healpy.ma", "matplotlib.pyplot.figure", "healpy.read_map", "healpy.anafast", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.errorbar" ]
[((942, 957), 'healpy.read_map', 'hp.read_map', (['fn'], {}), '(fn)\n', (953, 957), True, 'import healpy as hp\n'), ((993, 1100), 'healpy.mollview', 'hp.mollview', (['map_I'], {'coord': '"""G"""', 'title': '"""Planck R1, Histogram equalized Galactic"""', 'unit': '"""mK"""', 'norm': '"""hist"""'}), "(map_I, coord='G', title=\n 'Planck R1, Histogram equalized Galactic', unit='mK', norm='hist')\n", (1004, 1100), True, 'import healpy as hp\n'), ((1187, 1215), 'healpy.anafast', 'hp.anafast', (['map_I'], {'lmax': 'LMAX'}), '(map_I, lmax=LMAX)\n', (1197, 1215), True, 'import healpy as hp\n'), ((2157, 2169), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2167, 2169), True, 'import matplotlib.pyplot as plt\n'), ((2175, 2188), 'matplotlib.pyplot.subplot', 'plt.subplot', ([], {}), '()\n', (2186, 2188), True, 'import matplotlib.pyplot as plt\n'), ((2189, 2233), 'matplotlib.pyplot.plot', 'plt.plot', (['ell', 'ecl', '"""k"""'], {'label': '"""anafast fit"""'}), "(ell, ecl, 'k', label='anafast fit')\n", (2197, 2233), True, 'import matplotlib.pyplot as plt\n'), ((2231, 2310), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['a[0]', 'a[1]'], {'yerr': 'a[3]', 'fmt': '"""bo"""', 'label': '"""COM_PowerSpect_CMB_R1.10"""'}), "(a[0], a[1], yerr=a[3], fmt='bo', label='COM_PowerSpect_CMB_R1.10')\n", (2243, 2310), True, 'import matplotlib.pyplot as plt\n'), ((2307, 2409), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['b[0]', 'b[3]'], {'xerr': '(b[2] - b[0])', 'yerr': 'b[4]', 'fmt': '"""bo"""', 'label': '"""COM_PowerSpect_CMB_R1.10"""'}), "(b[0], b[3], xerr=b[2] - b[0], yerr=b[4], fmt='bo', label=\n 'COM_PowerSpect_CMB_R1.10')\n", (2319, 2409), True, 'import matplotlib.pyplot as plt\n'), ((2398, 2454), 'matplotlib.pyplot.plot', 'plt.plot', (['c[0]', 'c[1]', '"""r"""'], {'label': '"""camb_53319956_scalcls"""'}), "(c[0], c[1], 'r', label='camb_53319956_scalcls')\n", (2406, 2454), True, 'import matplotlib.pyplot as plt\n'), ((2490, 2513), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[2.0, 2500.0]'], {}), '([2.0, 2500.0])\n', (2498, 2513), True, 'import matplotlib.pyplot as plt\n'), ((2511, 2532), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\ell$"""'], {}), "('$\\\\ell$')\n", (2521, 2532), True, 'import matplotlib.pyplot as plt\n'), ((2533, 2577), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\ell(\\\\ell+1) C_\\\\ell/2\\\\pi$"""'], {}), "('$\\\\ell(\\\\ell+1) C_\\\\ell/2\\\\pi$')\n", (2543, 2577), True, 'import matplotlib.pyplot as plt\n'), ((2575, 2626), 'matplotlib.pyplot.title', 'plt.title', (['"""Data from Planck, prediction from CAMB"""'], {}), "('Data from Planck, prediction from CAMB')\n", (2584, 2626), True, 'import matplotlib.pyplot as plt\n'), ((2627, 2639), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2637, 2639), True, 'import matplotlib.pyplot as plt\n'), ((2640, 2650), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (2648, 2650), True, 'import matplotlib.pyplot as plt\n'), ((2814, 2826), 'healpy.ma', 'hp.ma', (['map_I'], {}), '(map_I)\n', (2819, 2826), True, 'import healpy as hp\n'), ((2847, 2867), 'numpy.logical_not', 'np.logical_not', (['mask'], {}), '(mask)\n', (2861, 2867), True, 'import numpy as np\n'), ((2874, 2909), 'healpy.anafast', 'hp.anafast', (['map_I_masked'], {'lmax': 'LMAX'}), '(map_I_masked, lmax=LMAX)\n', (2884, 2909), True, 'import healpy as hp\n'), ((3029, 3041), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3039, 3041), True, 'import matplotlib.pyplot as plt\n'), ((3047, 3060), 'matplotlib.pyplot.subplot', 'plt.subplot', ([], {}), '()\n', (3058, 3060), True, 'import matplotlib.pyplot as plt\n'), ((3061, 3115), 'matplotlib.pyplot.plot', 'plt.plot', (['ell', 'eclm', '"""k"""'], {'label': '"""anafast fit - masked"""'}), "(ell, eclm, 'k', label='anafast fit - masked')\n", (3069, 3115), True, 'import matplotlib.pyplot as plt\n'), ((3113, 3192), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['a[0]', 'a[1]'], {'yerr': 'a[3]', 'fmt': '"""bo"""', 'label': '"""COM_PowerSpect_CMB_R1.10"""'}), "(a[0], a[1], yerr=a[3], fmt='bo', label='COM_PowerSpect_CMB_R1.10')\n", (3125, 3192), True, 'import matplotlib.pyplot as plt\n'), ((3189, 3291), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['b[0]', 'b[3]'], {'xerr': '(b[2] - b[0])', 'yerr': 'b[4]', 'fmt': '"""bo"""', 'label': '"""COM_PowerSpect_CMB_R1.10"""'}), "(b[0], b[3], xerr=b[2] - b[0], yerr=b[4], fmt='bo', label=\n 'COM_PowerSpect_CMB_R1.10')\n", (3201, 3291), True, 'import matplotlib.pyplot as plt\n'), ((3280, 3336), 'matplotlib.pyplot.plot', 'plt.plot', (['c[0]', 'c[1]', '"""r"""'], {'label': '"""camb_53319956_scalcls"""'}), "(c[0], c[1], 'r', label='camb_53319956_scalcls')\n", (3288, 3336), True, 'import matplotlib.pyplot as plt\n'), ((3372, 3395), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[2.0, 2500.0]'], {}), '([2.0, 2500.0])\n', (3380, 3395), True, 'import matplotlib.pyplot as plt\n'), ((3393, 3414), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\ell$"""'], {}), "('$\\\\ell$')\n", (3403, 3414), True, 'import matplotlib.pyplot as plt\n'), ((3415, 3459), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\ell(\\\\ell+1) C_\\\\ell/2\\\\pi$"""'], {}), "('$\\\\ell(\\\\ell+1) C_\\\\ell/2\\\\pi$')\n", (3425, 3459), True, 'import matplotlib.pyplot as plt\n'), ((3457, 3495), 'matplotlib.pyplot.title', 'plt.title', (['"""Data from Planck - masked"""'], {}), "('Data from Planck - masked')\n", (3466, 3495), True, 'import matplotlib.pyplot as plt\n'), ((3496, 3508), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3506, 3508), True, 'import matplotlib.pyplot as plt\n'), ((3509, 3519), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3517, 3519), True, 'import matplotlib.pyplot as plt\n'), ((3520, 3530), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3528, 3530), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1679), 'numpy.genfromtxt', 'np.genfromtxt', (['lines[10:58]'], {'delimiter': '""","""'}), "(lines[10:58], delimiter=',')\n", (1650, 1679), True, 'import numpy as np\n'), ((1695, 1735), 'numpy.genfromtxt', 'np.genfromtxt', (['lines[68:]'], {'delimiter': '""","""'}), "(lines[68:], delimiter=',')\n", (1708, 1735), True, 'import numpy as np\n'), ((2062, 2082), 'numpy.genfromtxt', 'np.genfromtxt', (['lines'], {}), '(lines)\n', (2075, 2082), True, 'import numpy as np\n'), ((2732, 2782), 'healpy.read_map', 'hp.read_map', (['"""HFI_PowerSpect_Mask_2048_R1.10.fits"""'], {}), "('HFI_PowerSpect_Mask_2048_R1.10.fits')\n", (2743, 2782), True, 'import healpy as hp\n')]
""" Function:Feedforward Neural Network (base class) Author:lzb Date:2021.01.07 """ import numpy as np import time from gl import errorcode from gl.array_string import array_2_string from activation.normal_activation import Sigmoid from activation.last_hop_activation import DichotomyLHA from loss.loss import MSELoss """ class:FNN 神经网络(base class) 特别说明: 语义上的 vector,在代码中,实际上是一个 [n, 1] 的 matrix """ class FNN: # 神经网络输入样本,向量维度 _sx_dim = 0 # 神经网络输出样本,向量维度 _sy_dim = 0 # 神经网络层数 _layer_count = 0 # 每一层神经元的数量 _neuron_count_list = None # 每一层 w 参数,w 是个 matrix(BP 网络) or 3维数组(卷积网络) _w_layer = None # 每一层 b 参数,b 是个 vector(BP 网络) or 2维数组(卷积网络) _b_layer = None # 每一层 w 参数的 shape list(除了卷积网络,这个参数没有意义) _w_shape_layer = None # 样本数量 _sample_count = 0 # 样本输入列表(Sample X list),每一个输入样本是一个 vector _sx_list = None # 样本输出列表(Sample Y list),每一个输出样本是一个 vector _sy_list = None # 循环训练的最大次数 _loop_max = 1 # 学习效率 _rate = 0 # 激活函数对象(class Activation 的实例) _activation = Sigmoid() # 最后一跳激活函数对象(class LastHopActivation 的实例) _last_hop_activation = DichotomyLHA() # 损失函数 _loss = MSELoss() def __init__(self, activation=None, last_hop_activation=None, loss=None): """ 构造函数 :param activation: 激活函数对象 :param last_hop_activation: 后一跳激活函数对象 :param loss: 损失函数对象 """ if activation is not None: self._activation = activation if last_hop_activation is not None: self._last_hop_activation = last_hop_activation if loss is not None: self._loss = loss '''''' def train(self, sx_list, sy_list, loop_max, neuron_count_list, rate, w_shape_list=None): """ 功能:神经网络训练\n 参数:\n sx_list:训练样本输入列表\n sy_list:训练样本输出列表\n loop_max:循环训练的最大次数 \n neuron_count_list:每一层神经元数量(对于卷积网络,这个参数没有意义)\n rate:学习效率 \n activation:激活函数对象\n last_hop_activation:最后一跳激活函数对象\n loss:损失函数对象\n w_shape_list:每一层 w 参数的 shape list(除了卷积网络,这个参数没有意义)\n 返回值:错误码\n """ # 1. 成员变量赋值 self._sx_list = sx_list self._sy_list = sy_list self._loop_max = loop_max self._rate = rate # 如果是卷积网络,这个参数没有意义(如果是卷积网络,直接传入 None 即可) self._neuron_count_list = neuron_count_list # 如果不是卷积网络,这个参数,没有意义(如果不是卷积网络,直接传入默认值即可) self._w_shape_layer = w_shape_list # 2. 校验 err = self._valid() if errorcode.SUCCESS != err: print("\nvalid error, errcode = %d\n" % err) return err # 3. 初始化 w, b,及其他参数 self._init_other_para() # 4. 训练 return self._train() """ 功能:参数校验 参数:NULL 返回值:错误码 """ def _valid(self): # 1. 校验每层神经元 self._valid_layer_neuron() # 2. 输入样本与输出样本 err = self._valid_sample() if errorcode.SUCCESS != err: return err # 3. 最大循环训练次数,须 >= 1 if 1 > self._loop_max: return errorcode.FAILED return errorcode.SUCCESS """ 功能:校验每层神经元 参数:NULL 返回值:错误码 """ def _valid_layer_neuron(self): # 1. 神经网络层数,须 >= 1 layer_count = len(self._neuron_count_list) if 1 > layer_count: return errorcode.FAILED # 2. 每层的神经元个数,须 >= 1 for layer in range(0, layer_count): count = self._neuron_count_list[layer] if 1 > count: return errorcode.FAILED """ 功能:校验样本 参数:NULL 返回值:错误码 """ def _valid_sample(self): # 1 输入样本的数量与输出样本的数量,须相同 len1 = len(self._sx_list) len2 = len(self._sy_list) if len1 != len2: return errorcode.FAILED # 2 样本数量,须 >= 1 sample_count = len(self._sx_list) if 1 > sample_count: return errorcode.FAILED # 3. 样本向量维度 # 输入向量维度 sx_dim = len(self._sx_list[0]) # 输出向量维度 layer_count = len(self._neuron_count_list) sy_dim = self._neuron_count_list[layer_count - 1] # 3.1 输入样本/输出样本,向量维度 > 1 if (1 > sx_dim) or (1 > sy_dim): return errorcode.FAILED # 3.2 每一个输入/输出样本的向量维度 for i in range(0, sample_count): shape_in = self._sx_list[i].shape shape_out = self._sy_list[i].shape # 输入样本的向量维度 if shape_in[0] != sx_dim: return errorcode.FAILED # 输入样本只能有1列(因为是个向量) if shape_in[1] != 1: return errorcode.FAILED # 输出样本的向量维度 if shape_out[0] != sy_dim: return errorcode.FAILED # 输出样本只能有1列(因为是个向量) if shape_out[1] != 1: return errorcode.FAILED return errorcode.SUCCESS """ 功能:初始化其它参数 参数:NULL 返回值:错误码 """ def _init_other_para(self): # 每一层 w、B 参数,w 是个2维数组,b 是个2维数组 self._w_layer = list() self._b_layer = list() # 样本数量 self._sample_count = len(self._sx_list) # 神经网络输入,向量维度 self._sx_dim = len(self._sx_list[0]) # 神经网络的层数 self._layer_count = len(self._neuron_count_list) # 神经网络输出,向量维度 self._sy_dim = self._neuron_count_list[self._layer_count - 1] # 第1层 w 参数,w 是一个2维数组 w = np.random.random((self._neuron_count_list[0], self._sx_dim)) self._w_layer.append(w) # 第2层~第layer-1层 w 参数,w 是一个2维数组 for i in range(1, self._layer_count): w = np.random.random((self._neuron_count_list[i], self._neuron_count_list[i - 1])) self._w_layer.append(w) # 第1层 ~ 第layer-1层 b 参数,b 是一个向量 for i in range(0, self._layer_count): b = np.zeros([self._neuron_count_list[i], 1]) self._b_layer.append(b) return errorcode.SUCCESS """ 功能:训练(protected 函数) 参数:NULL 返回值:错误码 """ def _train(self): # 循环训练次数 loop = 0 # 打印开始时间 localtime = time.asctime(time.localtime(time.time())) print("\nbegin time = " + localtime + "\n") while 1: if loop >= self._loop_max: # 打印结束时间 localtime = time.asctime(time.localtime(time.time())) print("\nend time = " + localtime + "\n") # 打印最后一轮参数 self._print_w_b_loop(loop) break # 1. 每一轮训练之前,预准备工作 self._pre_train() loop = loop + 1 # 2. 训练每一个样本 for i in range(0, self._sample_count): # 第 i 个训练样本 sx = self._sx_list[i] sy = self._sy_list[i] # 2.1 第 m 个训练样本,经过(多层)神经网络的计算 nn_y_list = self._calc_nn(sx) # 2.2 最后一跳激活 nn_y = nn_y_list[len(nn_y_list) - 1] last_hop_y = self._last_hop_activation.active_array(nn_y) nn_y_list.append(last_hop_y) # 2.3 根据计算结果,修正参数神经网络参数,比如:W,B self._modify_fnn_para(nn_y_list, sx, sy) return errorcode.SUCCESS # 每一轮训练之前预准备工作 def _pre_train(self): """ 每一轮训练之前预准备工作(一般来说,啥都不用做) :return: NULL """ pass # 计算整个网络的输出 def _calc_nn(self, sx): """ 计算整个网络的输出 :param sx: 神经网络的输入 :return: 整个神经网络,每一层的输出 """ x = sx nn_y_list = list() # 逐层计算 for layer in range(0, self._layer_count): # 计算该层的输出 y = self._calc_layer(x, layer) # 将该层的输出,记录下来 nn_y_list.append(y) # 本层输出,等于下一层的输入 x = y # 返回逐层计算的结果 return nn_y_list '''''' def _calc_layer(self, x, layer): """ 计算神经网络某一层的输出 :param x: 该层神经网络的输入,x 是一个向量 :param layer: 当前的层数 :return: y,该层神经网络的输出, y 是一个向量 """ # 获取该层的参数:w, b w = self._w_layer[layer] b = self._b_layer[layer] y = np.matmul(w, x) + b y = y + self._calc_recurrent(layer) # 针对每一个元素,调用激活函数 row = len(y) for i in range(0, row): y[i, 0] = self._activation.active(y[i, 0]) return y '''''' def _calc_recurrent(self, layer): """ 计算循环神经网络, u * h(t - 1) ,默认值是 0 :param layer: 层数 :return: u * h(t - 1) """ return 0 '''''' def _modify_fnn_para(self, nn_y_list, sx, sy): """ 功能:修正 W,B 参数: nn_y_list:神经网路计算的每一层结果,nn_y 是一个向量 sx:训练样本的输入,sx 是一个向量 sy:训练样本的输出,sy 是一个向量 返回值:NULL """ pass '''''' def predict(self, sx_list, sy_list, revise_strong=False): """ 功能:预测 参数: sx_list:待预测的样本列表,其中 sx 是向量 返回值:预测结果 """ count = len(sx_list) py_list = list() for i in range(0, count): sx = sx_list[i] nn_y_list = self._calc_nn(sx) # 最后一层的 nn_y,才是神经网络的最终输出 nn_y = nn_y_list[len(nn_y_list) - 1] # 最后一跳激活 lha_y = self._last_hop_activation.active_array(nn_y) # 最后一跳修正 lhr_y = self._last_hop_activation.predict_revise(lha_y, revise_strong) # 然后再添加到预测列表 py_list.append(lhr_y) return py_list """ 功能:打印 W, B, loop 参数: loop:神经网络的训练次数 返回值:NULL """ def _print_w_b_loop(self, loop): print("\n") print("训练次数 = %d\n" % loop) for layer in range(0, self._layer_count): print("层数 = %d" % layer) print("W:") # print(self.W[layer]) print(array_2_string(self._w_layer[layer])) print("\nB:") # print(self.B[layer]) print(array_2_string(self._b_layer[layer])) if layer < self._layer_count - 1: print("\n") """ 功能:桩函数,设置参数(不必训练,直接设置) 参数: sx_dim:神经网络输入,向量维度 layer_count:神经网络层数 neuron_count_list:每一层神经元的数量(Neuron Count) W:每一层 w 参数 列表,w 是个 matrix B:每一层 b 参数 列表,b 是个 vector 返回值:NULL """ def stub_set_para(self, sx_dim, neuron_count_list, W, B, activation): # 神经网络输入,向量维度 self._sx_dim = sx_dim # 每一层神经元的数量(Neuron Count) self._neuron_count_list = neuron_count_list # 神经网络层数 self._layer_count = len(W) # 每一层 w 参数,w 是个 matrix self._w_layer = W # 每一层 b 参数,b 是个 vector self._b_layer = B # 激活函数对象 self._activation = activation
[ "loss.loss.MSELoss", "activation.normal_activation.Sigmoid", "numpy.zeros", "time.time", "numpy.random.random", "activation.last_hop_activation.DichotomyLHA", "numpy.matmul", "gl.array_string.array_2_string" ]
[((1065, 1074), 'activation.normal_activation.Sigmoid', 'Sigmoid', ([], {}), '()\n', (1072, 1074), False, 'from activation.normal_activation import Sigmoid\n'), ((1149, 1163), 'activation.last_hop_activation.DichotomyLHA', 'DichotomyLHA', ([], {}), '()\n', (1161, 1163), False, 'from activation.last_hop_activation import DichotomyLHA\n'), ((1188, 1197), 'loss.loss.MSELoss', 'MSELoss', ([], {}), '()\n', (1195, 1197), False, 'from loss.loss import MSELoss\n'), ((5448, 5508), 'numpy.random.random', 'np.random.random', (['(self._neuron_count_list[0], self._sx_dim)'], {}), '((self._neuron_count_list[0], self._sx_dim))\n', (5464, 5508), True, 'import numpy as np\n'), ((5643, 5721), 'numpy.random.random', 'np.random.random', (['(self._neuron_count_list[i], self._neuron_count_list[i - 1])'], {}), '((self._neuron_count_list[i], self._neuron_count_list[i - 1]))\n', (5659, 5721), True, 'import numpy as np\n'), ((5860, 5901), 'numpy.zeros', 'np.zeros', (['[self._neuron_count_list[i], 1]'], {}), '([self._neuron_count_list[i], 1])\n', (5868, 5901), True, 'import numpy as np\n'), ((8149, 8164), 'numpy.matmul', 'np.matmul', (['w', 'x'], {}), '(w, x)\n', (8158, 8164), True, 'import numpy as np\n'), ((6163, 6174), 'time.time', 'time.time', ([], {}), '()\n', (6172, 6174), False, 'import time\n'), ((9844, 9880), 'gl.array_string.array_2_string', 'array_2_string', (['self._w_layer[layer]'], {}), '(self._w_layer[layer])\n', (9858, 9880), False, 'from gl.array_string import array_2_string\n'), ((9962, 9998), 'gl.array_string.array_2_string', 'array_2_string', (['self._b_layer[layer]'], {}), '(self._b_layer[layer])\n', (9976, 9998), False, 'from gl.array_string import array_2_string\n'), ((6367, 6378), 'time.time', 'time.time', ([], {}), '()\n', (6376, 6378), False, 'import time\n')]
#Pandas is used to open csv files and convert to lists import pandas as pd #Used for making plots import matplotlib.pyplot as plt #Library used to do maths import numpy as np #Load data to pandas data = pd.read_csv('data.csv') #Give time from data time = data['Time'] light_values = data['Light'] #Use len function to find the number of values number_of_readings = len(light_values) print(number_of_readings) #Adds all the values using the sum function numpy and then print it sum_of_all_light_values = np.sum( light_values ) print(sum_of_all_light_values) #Add all the number of readings then divide by the number of readings mean_value_of_the_light = sum_of_all_light_values / number_of_readings print(mean_value_of_the_light) #We use np.full to repeat the mean value 968 times to be able to visulise them on the graph mean_value_of_the_light = np.full(shape=number_of_readings, fill_value=mean_value_of_the_light) #We plot the pressure value and label it plt.plot( light_values, label="light") #We plot the mean value and label it plt.plot( mean_value_of_the_light, label="mean") #Put title for the graph plt.title("HAB-LAB: Lights Graph") #Legend creates the box for the key for the graph plt.legend() #Labels the x-axis plt.xlabel("Number of readings") #Labels the y-axis plt.ylabel("Light Intensity (KB)") #Show the graph plt.show()
[ "matplotlib.pyplot.title", "numpy.full", "numpy.sum", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "pandas.read_csv", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((213, 236), 'pandas.read_csv', 'pd.read_csv', (['"""data.csv"""'], {}), "('data.csv')\n", (224, 236), True, 'import pandas as pd\n'), ((529, 549), 'numpy.sum', 'np.sum', (['light_values'], {}), '(light_values)\n', (535, 549), True, 'import numpy as np\n'), ((883, 952), 'numpy.full', 'np.full', ([], {'shape': 'number_of_readings', 'fill_value': 'mean_value_of_the_light'}), '(shape=number_of_readings, fill_value=mean_value_of_the_light)\n', (890, 952), True, 'import numpy as np\n'), ((999, 1036), 'matplotlib.pyplot.plot', 'plt.plot', (['light_values'], {'label': '"""light"""'}), "(light_values, label='light')\n", (1007, 1036), True, 'import matplotlib.pyplot as plt\n'), ((1078, 1125), 'matplotlib.pyplot.plot', 'plt.plot', (['mean_value_of_the_light'], {'label': '"""mean"""'}), "(mean_value_of_the_light, label='mean')\n", (1086, 1125), True, 'import matplotlib.pyplot as plt\n'), ((1156, 1190), 'matplotlib.pyplot.title', 'plt.title', (['"""HAB-LAB: Lights Graph"""'], {}), "('HAB-LAB: Lights Graph')\n", (1165, 1190), True, 'import matplotlib.pyplot as plt\n'), ((1243, 1255), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1253, 1255), True, 'import matplotlib.pyplot as plt\n'), ((1277, 1309), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of readings"""'], {}), "('Number of readings')\n", (1287, 1309), True, 'import matplotlib.pyplot as plt\n'), ((1331, 1365), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Light Intensity (KB)"""'], {}), "('Light Intensity (KB)')\n", (1341, 1365), True, 'import matplotlib.pyplot as plt\n'), ((1384, 1394), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1392, 1394), True, 'import matplotlib.pyplot as plt\n')]
from keras.models import load_model from sklearn.externals import joblib import numpy as np from keras import backend as K # Set learning phase (disable dropout) K.set_learning_phase(0) # Load model, char mapping, encoder, and raw text from disk model = load_model('shakespeare/model_1-2.h5') char_mapping = joblib.load('shakespeare/char_mapping.sav') ohe = joblib.load('shakespeare/ohe.sav') raw_text = open('shakespeare.txt').read().lower() n_vocab = len(char_mapping) # Create an inverse map of char mapping reverse_mapping = {} for x in char_mapping: reverse_mapping[char_mapping[x]] = x def select(output): # Probabilistically determine output based on softmax output from random import uniform letter = uniform(0., 1.) added = 0 for i in range(len(output)): if added + output[i] >= letter: return i else: added += output[i] def generate_text(seed, steps): seed = seed.lower() print(seed, end='') last = list(seed) for i in range(steps): # Get input sequence and encode it input_seq = [char_mapping[char] for char in last] input_seq = np.reshape(input_seq, (len(input_seq), 1)) input_seq = ohe.transform(input_seq).toarray()[:,:-1] input_seq = np.expand_dims(input_seq, axis=0) # Predict output character and add to input sequence y = model.predict(input_seq).flatten() y = select(y) del last[0] last.append(reverse_mapping[y]) print(reverse_mapping[y], end='') # Select a random 100-character seed start = np.random.randint(0, len(raw_text)-100) seed = raw_text[start:start+100] print('Seed: ') print(seed) print('-----------------------------') # Predict 1000 characters generate_text(seed, 1000)
[ "keras.models.load_model", "random.uniform", "numpy.expand_dims", "keras.backend.set_learning_phase", "sklearn.externals.joblib.load" ]
[((163, 186), 'keras.backend.set_learning_phase', 'K.set_learning_phase', (['(0)'], {}), '(0)\n', (183, 186), True, 'from keras import backend as K\n'), ((256, 294), 'keras.models.load_model', 'load_model', (['"""shakespeare/model_1-2.h5"""'], {}), "('shakespeare/model_1-2.h5')\n", (266, 294), False, 'from keras.models import load_model\n'), ((310, 353), 'sklearn.externals.joblib.load', 'joblib.load', (['"""shakespeare/char_mapping.sav"""'], {}), "('shakespeare/char_mapping.sav')\n", (321, 353), False, 'from sklearn.externals import joblib\n'), ((360, 394), 'sklearn.externals.joblib.load', 'joblib.load', (['"""shakespeare/ohe.sav"""'], {}), "('shakespeare/ohe.sav')\n", (371, 394), False, 'from sklearn.externals import joblib\n'), ((729, 746), 'random.uniform', 'uniform', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (736, 746), False, 'from random import uniform\n'), ((1286, 1319), 'numpy.expand_dims', 'np.expand_dims', (['input_seq'], {'axis': '(0)'}), '(input_seq, axis=0)\n', (1300, 1319), True, 'import numpy as np\n')]
""" Implements the Gradient aligned adversarial "subspace" (GAAS) of [tra17]. REFERENCES: [tra17] Tramer et al. "The Space of Transferable Adversarial Examples," arXiv 2017. [gvl96] Golub and <NAME> "Matrix Computations" 1996. """ __author__ = "mjp" __date__ = 'november, 2017' import numpy as np from numpy.linalg import norm import unittest import pdb def gaas(g, k, sanity_check=True): """ g : the gradient of the loss (a tensor) k : the GAAS dimensionality (a scalar) Returns: R : a dxk matrix of k orthogonal vectors satisfying the GAAS conditions """ tol = 1e-5 # our tolerance for error g = g.flatten().astype(np.float64) # TF gives float32 and we want more precision here... d = g.size R = np.zeros((d,k)) # columns of R are the GAAS r_i z = np.zeros((d,)); z[:k] = 1/np.sqrt(k); # this is z from proof of lemma 1 in [tra17] #-------------------------------------------------- # SPECIAL CASE: if k is 1, just return the trivial result g / ||g|| # #-------------------------------------------------- if k == 1: R[:,0] = g / norm(g,2) return R v_s, beta_s = householder_vec(z) v_r, beta_r = householder_vec(g) #-------------------------------------------------- # To calculate the r_i we use: # # r_i := Q' e_i # = R' S e_i # = R S e_i # # where R = R' from the symmetry of Householder matrices # (follows from symmetry of I and vv'). #-------------------------------------------------- for ii in range(k): e_i = np.zeros((d,)); e_i[ii] = 1; sei = apply_householder_to_vector(v_s, beta_s, e_i) r_i = apply_householder_to_vector(v_r, beta_r, sei) R[:,ii] = r_i #-------------------------------------------------- # (optional) check the solution for correctness #-------------------------------------------------- if sanity_check: # the r_i should be orthonormal RtR = np.dot(R.T, R) assert(norm(RtR-np.eye(k,k), 'fro') < tol) # make sure Qg = ||g||_2 z # # Note: the transpose on R below is because I stored # the r_i as columns in R. # err = np.dot(R.T, g) - norm(g,2) * z[:k] assert(norm(err,2) < tol) # make sure <g,r_i> behaves as expected. for ii in range(k): gtr = np.dot(g, R[:,ii]) err = np.dot(g, r_i) - norm(g,2) / np.sqrt(k) assert(abs(err) < tol) return R def householder_vec(x): """ Returns elements needed to construct Householder reflection matrix for the vector x, i.e. H = I - \beta v v' where H x = ||x||_2 e_1 See Algorithm 5.1.1 in Golub and Van Loan. """ n = x.size v = np.ones((n,)); v[1:] = x[1:] sigma = np.dot(x[1:], x[1:]) if sigma == 0: beta = 0 else: mu = np.sqrt(x[0] ** 2 + sigma) if x[0] <= 0: v[0] = x[0] - mu else: v[0] = -sigma / (x[0] + mu) beta = 2 * (v[0] ** 2) / (sigma + v[0]**2) v = v / v[0] return v, beta def apply_householder_to_vector(v, beta, x): """ Computes Householder reflection of vector x. Applying a Householder transformation H to a vector x does not require the explict construction of H since H x = (I - \beta vv') x = x - \beta v (v' x) In particular, this avoids the deadly outer product vv'. See also 5.1.4 in Golub and Van Loan. """ return x - beta * v * np.dot(v, x) if __name__ == "__main__": # example usage for n_trials in range(10): g = np.random.rand(300,1) k = 20 R = gaas(g,k) print('[info]: GAAS calculation looks ok!')
[ "numpy.eye", "numpy.zeros", "numpy.ones", "numpy.linalg.norm", "numpy.random.rand", "numpy.dot", "numpy.sqrt" ]
[((805, 821), 'numpy.zeros', 'np.zeros', (['(d, k)'], {}), '((d, k))\n', (813, 821), True, 'import numpy as np\n'), ((883, 897), 'numpy.zeros', 'np.zeros', (['(d,)'], {}), '((d,))\n', (891, 897), True, 'import numpy as np\n'), ((2755, 2768), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (2762, 2768), True, 'import numpy as np\n'), ((2796, 2816), 'numpy.dot', 'np.dot', (['x[1:]', 'x[1:]'], {}), '(x[1:], x[1:])\n', (2802, 2816), True, 'import numpy as np\n'), ((910, 920), 'numpy.sqrt', 'np.sqrt', (['k'], {}), '(k)\n', (917, 920), True, 'import numpy as np\n'), ((1628, 1642), 'numpy.zeros', 'np.zeros', (['(d,)'], {}), '((d,))\n', (1636, 1642), True, 'import numpy as np\n'), ((2013, 2027), 'numpy.dot', 'np.dot', (['R.T', 'R'], {}), '(R.T, R)\n', (2019, 2027), True, 'import numpy as np\n'), ((2864, 2890), 'numpy.sqrt', 'np.sqrt', (['(x[0] ** 2 + sigma)'], {}), '(x[0] ** 2 + sigma)\n', (2871, 2890), True, 'import numpy as np\n'), ((3569, 3591), 'numpy.random.rand', 'np.random.rand', (['(300)', '(1)'], {}), '(300, 1)\n', (3583, 3591), True, 'import numpy as np\n'), ((1181, 1191), 'numpy.linalg.norm', 'norm', (['g', '(2)'], {}), '(g, 2)\n', (1185, 1191), False, 'from numpy.linalg import norm\n'), ((2226, 2240), 'numpy.dot', 'np.dot', (['R.T', 'g'], {}), '(R.T, g)\n', (2232, 2240), True, 'import numpy as np\n'), ((2272, 2284), 'numpy.linalg.norm', 'norm', (['err', '(2)'], {}), '(err, 2)\n', (2276, 2284), False, 'from numpy.linalg import norm\n'), ((2376, 2395), 'numpy.dot', 'np.dot', (['g', 'R[:, ii]'], {}), '(g, R[:, ii])\n', (2382, 2395), True, 'import numpy as np\n'), ((3471, 3483), 'numpy.dot', 'np.dot', (['v', 'x'], {}), '(v, x)\n', (3477, 3483), True, 'import numpy as np\n'), ((2243, 2253), 'numpy.linalg.norm', 'norm', (['g', '(2)'], {}), '(g, 2)\n', (2247, 2253), False, 'from numpy.linalg import norm\n'), ((2409, 2423), 'numpy.dot', 'np.dot', (['g', 'r_i'], {}), '(g, r_i)\n', (2415, 2423), True, 'import numpy as np\n'), ((2048, 2060), 'numpy.eye', 'np.eye', (['k', 'k'], {}), '(k, k)\n', (2054, 2060), True, 'import numpy as np\n'), ((2426, 2436), 'numpy.linalg.norm', 'norm', (['g', '(2)'], {}), '(g, 2)\n', (2430, 2436), False, 'from numpy.linalg import norm\n'), ((2438, 2448), 'numpy.sqrt', 'np.sqrt', (['k'], {}), '(k)\n', (2445, 2448), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jun 21 21:55:54 2020 @author: mostafamousavi last update: 05/27/2021 """ from __future__ import print_function from __future__ import division import os os.environ['KERAS_BACKEND']='tensorflow' from tensorflow.keras import backend as K from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import Adam import tensorflow as tf import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import math import csv from tensorflow import keras import time import h5py from os import listdir import platform import shutil from tqdm import tqdm from datetime import datetime, timedelta import contextlib import sys import warnings from scipy import signal from matplotlib.lines import Line2D from obspy import read from os.path import join import json import pickle import faulthandler; faulthandler.enable() import obspy import logging from obspy.signal.trigger import trigger_onset from .EqT_utils import f1, SeqSelfAttention, FeedForward, LayerNormalization warnings.filterwarnings("ignore") from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False try: f = open('setup.py') for li, l in enumerate(f): if li == 8: EQT_VERSION = l.split('"')[1] except Exception: EQT_VERSION = "0.1.61" def mseed_predictor(input_dir='downloads_mseeds', input_model="sampleData&Model/EqT1D8pre_048.h5", stations_json= "station_list.json", output_dir="detections", detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_plots=10, plot_mode='time', loss_weights=[0.03, 0.40, 0.58], loss_types=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'], normalization_mode='std', batch_size=500, overlap = 0.3, gpuid=None, gpu_limit=None, overwrite=False, output_probabilities=False): """ To perform fast detection directly on mseed data. Parameters ---------- input_dir: str Directory name containing hdf5 and csv files-preprocessed data. input_model: str Path to a trained model. stations_json: str Path to a JSON file containing station information. output_dir: str Output directory that will be generated. detection_threshold: float, default=0.3 A value in which the detection probabilities above it will be considered as an event. P_threshold: float, default=0.1 A value which the P probabilities above it will be considered as P arrival. S_threshold: float, default=0.1 A value which the S probabilities above it will be considered as S arrival. number_of_plots: float, default=10 The number of plots for detected events outputed for each station data. plot_mode: str, default=time The type of plots: time only time series or time_frequency time and spectrograms. loss_weights: list, default=[0.03, 0.40, 0.58] Loss weights for detection P picking and S picking respectively. loss_types: list, default=['binary_crossentropy', 'binary_crossentropy', 'binary_crossentropy'] Loss types for detection P picking and S picking respectively. normalization_mode: str, default=std Mode of normalization for data preprocessing max maximum amplitude among three components std standard deviation. batch_size: int, default=500 Batch size. This wont affect the speed much but can affect the performance. A value beteen 200 to 1000 is recommanded. overlap: float, default=0.3 If set the detection and picking are performed in overlapping windows. gpuid: int Id of GPU used for the prediction. If using CPU set to None. gpu_limit: int Set the maximum percentage of memory usage for the GPU. overwrite: Boolean, default=False Overwrite your results automatically. output_probabilities: Boolean, default=False Write probability in output_dir/prob.h5 for future plotting Structure: prediction_probabilities.hdf5{begintime: {Earthquake: probability, P_arrival: probability, S_arrival: probability}} Notice: It you turn this parameter on, it will generate larges file (A test shows ~150 Mb file generated for a three-components station for 3 months) Returns -------- output_dir/STATION_OUTPUT/X_prediction_results.csv: A table containing all the detection, and picking results. Duplicated events are already removed. output_dir/STATION_OUTPUT/X_report.txt: A summary of the parameters used for prediction and performance. output_dir/STATION_OUTPUT/figures: A folder containing plots detected events and picked arrival times. time_tracks.pkl: A file containing the time track of the continous data and its type. Note -------- This does not allow uncertainty estimation or writing the probabilities out. """ args = { "input_dir": input_dir, "input_model": input_model, "stations_json": stations_json, "output_dir": output_dir, "detection_threshold": detection_threshold, "P_threshold": P_threshold, "S_threshold": S_threshold, "number_of_plots": number_of_plots, "plot_mode": plot_mode, "loss_weights": loss_weights, "loss_types": loss_types, "normalization_mode": normalization_mode, "overlap": overlap, "batch_size": batch_size, "gpuid": gpuid, "gpu_limit": gpu_limit, "output_probabilities": output_probabilities } if args['gpuid']: os.environ['CUDA_VISIBLE_DEVICES'] = '{}'.format(args['gpuid']) tf.Session(config=tf.ConfigProto(log_device_placement=True)) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = float(args['gpu_limit']) K.tensorflow_backend.set_session(tf.Session(config=config)) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s [%(levelname)s] [%(name)s] %(message)s', datefmt='%m-%d %H:%M') class DummyFile(object): file = None def __init__(self, file): self.file = file def write(self, x): # Avoid print() second call (useless \n) if len(x.rstrip()) > 0: tqdm.write(x, file=self.file) @contextlib.contextmanager def nostdout(): save_stdout = sys.stdout sys.stdout = DummyFile(sys.stdout) yield sys.stdout = save_stdout eqt_logger = logging.getLogger("EQTransformer") eqt_logger.info(f"Running EqTransformer {EQT_VERSION}") eqt_logger.info(f"*** Loading the model ...") model = load_model(args['input_model'], custom_objects={'SeqSelfAttention': SeqSelfAttention, 'FeedForward': FeedForward, 'LayerNormalization': LayerNormalization, 'f1': f1 }) model.compile(loss = args['loss_types'], loss_weights = args['loss_weights'], optimizer = Adam(lr = 0.001), metrics = [f1]) eqt_logger.info(f"*** Loading is complete!") out_dir = os.path.join(os.getcwd(), str(args['output_dir'])) if os.path.isdir(out_dir): eqt_logger.info(f"*** {out_dir} already exists!") if overwrite == True: inp = "y" eqt_logger.info(f"Overwriting your previous results") else: inp = input(" --> Type (Yes or y) to create a new empty directory! This will erase your previous results so make a copy if you want them.") if inp.lower() == "yes" or inp.lower() == "y": shutil.rmtree(out_dir) os.makedirs(out_dir) else: print("Okay.") return if platform.system() == 'Windows': station_list = [ev.split(".")[0] for ev in listdir(args['input_dir']) if ev.split("\\")[-1] != ".DS_Store"]; else: station_list = [ev.split(".")[0] for ev in listdir(args['input_dir']) if ev.split("/")[-1] != ".DS_Store"]; station_list = sorted(set(station_list)) data_track = dict() eqt_logger.info(f"There are files for {len(station_list)} stations in {args['input_dir']} directory.") for ct, st in enumerate(station_list): save_dir = os.path.join(out_dir, str(st)+'_outputs') out_probs = os.path.join(save_dir, 'prediction_probabilities.hdf5') save_figs = os.path.join(save_dir, 'figures') if os.path.isdir(save_dir): shutil.rmtree(save_dir) os.makedirs(save_dir) try: os.remove(out_probs) except Exception: pass if args['number_of_plots']: os.makedirs(save_figs) if args['output_probabilities']: HDF_PROB = h5py.File(out_probs, 'a') plt_n = 0 csvPr_gen = open(os.path.join(save_dir,'X_prediction_results.csv'), 'w') predict_writer = csv.writer(csvPr_gen, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) predict_writer.writerow(['file_name', 'network', 'station', 'instrument_type', 'station_lat', 'station_lon', 'station_elv', 'event_start_time', 'event_end_time', 'detection_probability', 'detection_uncertainty', 'p_arrival_time', 'p_probability', 'p_uncertainty', 'p_snr', 's_arrival_time', 's_probability', 's_uncertainty', 's_snr' ]) csvPr_gen.flush() eqt_logger.info(f"Started working on {st}, {ct+1} out of {len(station_list)} ...") start_Predicting = time.time() if platform.system() == 'Windows': file_list = [join(st, ev) for ev in listdir(args["input_dir"]+"\\"+st) if ev.split("\\")[-1].split(".")[-1].lower() == "mseed"]; else: file_list = [join(st, ev) for ev in listdir(args["input_dir"]+"/"+st) if ev.split("/")[-1].split(".")[-1].lower() == "mseed"]; mon = [ev.split('__')[1]+'__'+ev.split('__')[2] for ev in file_list ]; uni_list = list(set(mon)) uni_list.sort() time_slots, comp_types = [], [] for _, month in enumerate(uni_list): eqt_logger.info(f"{month}") matching = [s for s in file_list if month in s] meta, time_slots, comp_types, data_set = _mseed2nparry(args, matching, time_slots, comp_types, st) params_pred = {'batch_size': args['batch_size'], 'norm_mode': args['normalization_mode']} pred_generator = PreLoadGeneratorTest(meta["trace_start_time"], data_set, **params_pred) predD, predP, predS = model.predict_generator(pred_generator) detection_memory = [] for ix in range(len(predD)): matches, pick_errors, yh3 = _picker(args, predD[ix][:, 0], predP[ix][:, 0], predS[ix][:, 0]) if (len(matches) >= 1) and ((matches[list(matches)[0]][3] or matches[list(matches)[0]][6])): snr = [_get_snr(data_set[meta["trace_start_time"][ix]], matches[list(matches)[0]][3], window = 100), _get_snr(data_set[meta["trace_start_time"][ix]], matches[list(matches)[0]][6], window = 100)] pre_write = len(detection_memory) detection_memory=_output_writter_prediction(meta, predict_writer, csvPr_gen, matches, snr, detection_memory, ix) post_write = len(detection_memory) if args['output_probabilities']: HDF_PROB.create_dataset(f'{meta["trace_start_time"][ix]}/Earthquake', data=predD[ix][:, 0], dtype= np.float32) HDF_PROB.create_dataset(f'{meta["trace_start_time"][ix]}/P_arrival', data=predP[ix][:, 0], dtype= np.float32) HDF_PROB.create_dataset(f'{meta["trace_start_time"][ix]}/S_arrival', data=predS[ix][:, 0], dtype= np.float32) HDF_PROB.flush() if plt_n < args['number_of_plots'] and post_write > pre_write: _plotter_prediction(data_set[meta["trace_start_time"][ix]], args, save_figs, predD[ix][:, 0], predP[ix][:, 0], predS[ix][:, 0], meta["trace_start_time"][ix], matches) plt_n += 1 end_Predicting = time.time() data_track[st]=[time_slots, comp_types] delta = (end_Predicting - start_Predicting) hour = int(delta / 3600) delta -= hour * 3600 minute = int(delta / 60) delta -= minute * 60 seconds = delta if args['output_probabilities']: HDF_PROB.close() dd = pd.read_csv(os.path.join(save_dir,'X_prediction_results.csv')) print(f'\n', flush=True) eqt_logger.info(f"Finished the prediction in: {hour} hours and {minute} minutes and {round(seconds, 2)} seconds.") eqt_logger.info(f'*** Detected: '+str(len(dd))+' events.') eqt_logger.info(f' *** Wrote the results into --> " ' + str(save_dir)+' "') # print(' *** Finished the prediction in: {} hours and {} minutes and {} seconds.'.format(hour, minute, round(seconds, 2)), flush=True) # print(' *** Detected: '+str(len(dd))+' events.', flush=True) # print(' *** Wrote the results into --> " ' + str(save_dir)+' "', flush=True) with open(os.path.join(save_dir,'X_report.txt'), 'a') as the_file: the_file.write('================== PREDICTION FROM MSEED ===================='+'\n') the_file.write('================== Overal Info =============================='+'\n') the_file.write('date of report: '+str(datetime.now())+'\n') the_file.write('input_model: '+str(args['input_model'])+'\n') the_file.write('input_dir: '+str(args['input_dir'])+'\n') the_file.write('output_dir: '+str(save_dir)+'\n') the_file.write('================== Prediction Parameters ====================='+'\n') the_file.write('finished the prediction in: {} hours and {} minutes and {} seconds \n'.format(hour, minute, round(seconds, 2))) the_file.write('detected: '+str(len(dd))+' events.'+'\n') the_file.write('loss_types: '+str(args['loss_types'])+'\n') the_file.write('loss_weights: '+str(args['loss_weights'])+'\n') the_file.write('================== Other Parameters =========================='+'\n') the_file.write('normalization_mode: '+str(args['normalization_mode'])+'\n') the_file.write('overlap: '+str(args['overlap'])+'\n') the_file.write('batch_size: '+str(args['batch_size'])+'\n') the_file.write('detection_threshold: '+str(args['detection_threshold'])+'\n') the_file.write('P_threshold: '+str(args['P_threshold'])+'\n') the_file.write('S_threshold: '+str(args['S_threshold'])+'\n') the_file.write('number_of_plots: '+str(args['number_of_plots'])+'\n') the_file.write('gpuid: '+str(args['gpuid'])+'\n') the_file.write('gpu_limit: '+str(args['gpu_limit'])+'\n') with open('time_tracks.pkl', 'wb') as f: pickle.dump(data_track, f, pickle.HIGHEST_PROTOCOL) def _mseed2nparry(args, matching, time_slots, comp_types, st_name): ' read miniseed files and from a list of string names and returns 3 dictionaries of numpy arrays, meta data, and time slice info' json_file = open(args['stations_json']) stations_ = json.load(json_file) st = obspy.core.Stream() tsw = False for m in matching: temp_st = read(os.path.join(str(args['input_dir']), m),debug_headers=True) if tsw == False and temp_st: tsw = True for tr in temp_st: time_slots.append((tr.stats.starttime, tr.stats.endtime)) try: temp_st.merge(fill_value=0) except Exception: temp_st =_resampling(temp_st) temp_st.merge(fill_value=0) temp_st.detrend('demean') st += temp_st st.filter(type='bandpass', freqmin = 1.0, freqmax = 45, corners=2, zerophase=True) st.taper(max_percentage=0.001, type='cosine', max_length=2) if len([tr for tr in st if tr.stats.sampling_rate != 100.0]) != 0: try: st.interpolate(100, method="linear") except Exception: st=_resampling(st) st.trim(min([tr.stats.starttime for tr in st]), max([tr.stats.endtime for tr in st]), pad=True, fill_value=0) start_time = st[0].stats.starttime end_time = st[0].stats.endtime meta = {"start_time":start_time, "end_time": end_time, "trace_name":m } chanL = [tr.stats.channel[-1] for tr in st] comp_types.append(len(chanL)) tim_shift = int(60-(args['overlap']*60)) next_slice = start_time+60 data_set={} sl = 0; st_times = [] while next_slice <= end_time: npz_data = np.zeros([6000, 3]) st_times.append(str(start_time).replace('T', ' ').replace('Z', '')) w = st.slice(start_time, next_slice) if 'Z' in chanL: npz_data[:,2] = w[chanL.index('Z')].data[:6000] if ('E' in chanL) or ('1' in chanL): try: npz_data[:,0] = w[chanL.index('E')].data[:6000] except Exception: npz_data[:,0] = w[chanL.index('1')].data[:6000] if ('N' in chanL) or ('2' in chanL): try: npz_data[:,1] = w[chanL.index('N')].data[:6000] except Exception: npz_data[:,1] = w[chanL.index('2')].data[:6000] data_set.update( {str(start_time).replace('T', ' ').replace('Z', '') : npz_data}) start_time = start_time+tim_shift next_slice = next_slice+tim_shift sl += 1 meta["trace_start_time"] = st_times try: meta["receiver_code"]=st[0].stats.station meta["instrument_type"]=st[0].stats.channel[:2] meta["network_code"]=stations_[st[0].stats.station]['network'] meta["receiver_latitude"]=stations_[st[0].stats.station]['coords'][0] meta["receiver_longitude"]=stations_[st[0].stats.station]['coords'][1] meta["receiver_elevation_m"]=stations_[st[0].stats.station]['coords'][2] except Exception: meta["receiver_code"]=st_name meta["instrument_type"]=stations_[st_name]['channels'][0][:2] meta["network_code"]=stations_[st_name]['network'] meta["receiver_latitude"]=stations_[st_name]['coords'][0] meta["receiver_longitude"]=stations_[st_name]['coords'][1] meta["receiver_elevation_m"]=stations_[st_name]['coords'][2] return meta, time_slots, comp_types, data_set class PreLoadGeneratorTest(keras.utils.Sequence): """ Keras generator with preprocessing. For testing. Pre-load version. Parameters ---------- list_IDsx: str List of trace names. file_name: str Path to the input hdf5 file. dim: tuple Dimension of input traces. batch_size: int, default=32. Batch size. n_channels: int, default=3. Number of channels. norm_mode: str, default=max The mode of normalization, 'max' or 'std' Returns -------- Batches of two dictionaries: {'input': X}: pre-processed waveform as input {'detector': y1, 'picker_P': y2, 'picker_S': y3}: outputs including three separate numpy arrays as labels for detection, P, and S respectively. """ def __init__(self, list_IDs, inp_data, batch_size=32, norm_mode = 'std'): 'Initialization' self.batch_size = batch_size self.list_IDs = list_IDs self.inp_data = inp_data self.on_epoch_end() self.norm_mode = norm_mode def __len__(self): 'Denotes the number of batches per epoch' try: return int(np.floor(len(self.list_IDs) / self.batch_size)) except ZeroDivisionError: print("Your data duration in mseed file is too short! Try either longer files or reducing batch_size. ") def __getitem__(self, index): 'Generate one batch of data' indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] list_IDs_temp = [self.list_IDs[k] for k in indexes] X = self.__data_generation(list_IDs_temp) return ({'input': X}) def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_IDs)) def _normalize(self, data, mode = 'max'): data -= np.mean(data, axis=0, keepdims=True) if mode == 'max': max_data = np.max(data, axis=0, keepdims=True) assert(max_data.shape[-1] == data.shape[-1]) max_data[max_data == 0] = 1 data /= max_data elif mode == 'std': std_data = np.std(data, axis=0, keepdims=True) assert(std_data.shape[-1] == data.shape[-1]) std_data[std_data == 0] = 1 data /= std_data return data def __data_generation(self, list_IDs_temp): 'readint the waveforms' X = np.zeros((self.batch_size, 6000, 3)) # Generate data for i, ID in enumerate(list_IDs_temp): data = self.inp_data[ID] data = self._normalize(data, self.norm_mode) X[i, :, :] = data return X def _output_writter_prediction(meta, predict_writer, csvPr, matches, snr, detection_memory, idx): """ Writes the detection & picking results into a CSV file. Parameters ---------- dataset: hdf5 obj Dataset object of the trace. predict_writer: obj For writing out the detection/picking results in the CSV file. csvPr: obj For writing out the detection/picking results in the CSV file. matches: dic It contains the information for the detected and picked event. snr: list of two floats Estimated signal to noise ratios for picked P and S phases. detection_memory : list Keep the track of detected events. Returns ------- detection_memory : list Keep the track of detected events. """ station_name = meta["receiver_code"] station_lat = meta["receiver_latitude"] station_lon = meta["receiver_longitude"] station_elv = meta["receiver_elevation_m"] start_time = meta["trace_start_time"][idx] station_name = "{:<4}".format(station_name) network_name = meta["network_code"] network_name = "{:<2}".format(network_name) instrument_type = meta["instrument_type"] instrument_type = "{:<2}".format(instrument_type) try: start_time = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S.%f') except Exception: start_time = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') def _date_convertor(r): if isinstance(r, str): mls = r.split('.') if len(mls) == 1: new_t = datetime.strptime(r, '%Y-%m-%d %H:%M:%S') else: new_t = datetime.strptime(r, '%Y-%m-%d %H:%M:%S.%f') else: new_t = r return new_t for match, match_value in matches.items(): ev_strt = start_time+timedelta(seconds= match/100) ev_end = start_time+timedelta(seconds= match_value[0]/100) doublet = [ st for st in detection_memory if abs((st-ev_strt).total_seconds()) < 2] if len(doublet) == 0: det_prob = round(match_value[1], 2) if match_value[3]: p_time = start_time+timedelta(seconds= match_value[3]/100) else: p_time = None p_prob = match_value[4] if p_prob: p_prob = round(p_prob, 2) if match_value[6]: s_time = start_time+timedelta(seconds= match_value[6]/100) else: s_time = None s_prob = match_value[7] if s_prob: s_prob = round(s_prob, 2) predict_writer.writerow([meta["trace_name"], network_name, station_name, instrument_type, station_lat, station_lon, station_elv, _date_convertor(ev_strt), _date_convertor(ev_end), det_prob, None, _date_convertor(p_time), p_prob, None, snr[0], _date_convertor(s_time), s_prob, None, snr[1] ]) csvPr.flush() detection_memory.append(ev_strt) return detection_memory def _get_snr(data, pat, window=200): """ Estimates SNR. Parameters ---------- data : numpy array 3 component data. pat: positive integer Sample point where a specific phase arrives. window: positive integer, default=200 The length of the window for calculating the SNR (in the sample). Returns -------- snr : {float, None} Estimated SNR in db. """ snr = None if pat: try: if int(pat) >= window and (int(pat)+window) < len(data): nw1 = data[int(pat)-window : int(pat)]; sw1 = data[int(pat) : int(pat)+window]; snr = round(10*math.log10((np.percentile(sw1,95)/np.percentile(nw1,95))**2), 1) elif int(pat) < window and (int(pat)+window) < len(data): window = int(pat) nw1 = data[int(pat)-window : int(pat)]; sw1 = data[int(pat) : int(pat)+window]; snr = round(10*math.log10((np.percentile(sw1,95)/np.percentile(nw1,95))**2), 1) elif (int(pat)+window) > len(data): window = len(data)-int(pat) nw1 = data[int(pat)-window : int(pat)]; sw1 = data[int(pat) : int(pat)+window]; snr = round(10*math.log10((np.percentile(sw1,95)/np.percentile(nw1,95))**2), 1) except Exception: pass return snr def _detect_peaks(x, mph=None, mpd=1, threshold=0, edge='rising', kpsh=False, valley=False): """ Detect peaks in data based on their amplitude and other features. Parameters ---------- x : 1D array_like data. mph : {None, number}, default=None detect peaks that are greater than minimum peak height. mpd : int, default=1 detect peaks that are at least separated by minimum peak distance (in number of data). threshold : int, default=0 detect peaks (valleys) that are greater (smaller) than `threshold in relation to their immediate neighbors. edge : str, default=rising for a flat peak, keep only the rising edge ('rising'), only the falling edge ('falling'), both edges ('both'), or don't detect a flat peak (None). kpsh : bool, default=False keep peaks with same height even if they are closer than `mpd`. valley : bool, default=False if True (1), detect valleys (local minima) instead of peaks. Returns ------- ind : 1D array_like indeces of the peaks in `x`. Modified from ---------- .. [1] http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/DetectPeaks.ipynb """ x = np.atleast_1d(x).astype('float64') if x.size < 3: return np.array([], dtype=int) if valley: x = -x # find indices of all peaks dx = x[1:] - x[:-1] # handle NaN's indnan = np.where(np.isnan(x))[0] if indnan.size: x[indnan] = np.inf dx[np.where(np.isnan(dx))[0]] = np.inf ine, ire, ife = np.array([[], [], []], dtype=int) if not edge: ine = np.where((np.hstack((dx, 0)) < 0) & (np.hstack((0, dx)) > 0))[0] else: if edge.lower() in ['rising', 'both']: ire = np.where((np.hstack((dx, 0)) <= 0) & (np.hstack((0, dx)) > 0))[0] if edge.lower() in ['falling', 'both']: ife = np.where((np.hstack((dx, 0)) < 0) & (np.hstack((0, dx)) >= 0))[0] ind = np.unique(np.hstack((ine, ire, ife))) # handle NaN's if ind.size and indnan.size: # NaN's and values close to NaN's cannot be peaks ind = ind[np.in1d(ind, np.unique(np.hstack((indnan, indnan-1, indnan+1))), invert=True)] # first and last values of x cannot be peaks if ind.size and ind[0] == 0: ind = ind[1:] if ind.size and ind[-1] == x.size-1: ind = ind[:-1] # remove peaks < minimum peak height if ind.size and mph is not None: ind = ind[x[ind] >= mph] # remove peaks - neighbors < threshold if ind.size and threshold > 0: dx = np.min(np.vstack([x[ind]-x[ind-1], x[ind]-x[ind+1]]), axis=0) ind = np.delete(ind, np.where(dx < threshold)[0]) # detect small peaks closer than minimum peak distance if ind.size and mpd > 1: ind = ind[np.argsort(x[ind])][::-1] # sort ind by peak height idel = np.zeros(ind.size, dtype=bool) for i in range(ind.size): if not idel[i]: # keep peaks with the same height if kpsh is True idel = idel | (ind >= ind[i] - mpd) & (ind <= ind[i] + mpd) \ & (x[ind[i]] > x[ind] if kpsh else True) idel[i] = 0 # Keep current peak # remove the small peaks and sort back the indices by their occurrence ind = np.sort(ind[~idel]) return ind def _picker(args, yh1, yh2, yh3): """ Performs detection and picking. Parameters ---------- args : dic A dictionary containing all of the input parameters. yh1 : 1D array Detection probabilities. yh2 : 1D array P arrival probabilities. yh3 : 1D array S arrival probabilities. Returns ------- matches : dic Contains the information for the detected and picked event. matches : dic {detection statr-time:[ detection end-time, detection probability, detectin uncertainty, P arrival, P probabiliy, P uncertainty, S arrival, S probability, S uncertainty]} yh3 : 1D array normalized S_probability """ detection = trigger_onset(yh1, args['detection_threshold'], args['detection_threshold']) pp_arr = _detect_peaks(yh2, mph=args['P_threshold'], mpd=1) ss_arr = _detect_peaks(yh3, mph=args['S_threshold'], mpd=1) P_PICKS = {} S_PICKS = {} EVENTS = {} matches = {} pick_errors = {} if len(pp_arr) > 0: P_uncertainty = None for pick in range(len(pp_arr)): pauto = pp_arr[pick] if pauto: P_prob = np.round(yh2[int(pauto)], 3) P_PICKS.update({pauto : [P_prob, P_uncertainty]}) if len(ss_arr) > 0: S_uncertainty = None for pick in range(len(ss_arr)): sauto = ss_arr[pick] if sauto: S_prob = np.round(yh3[int(sauto)], 3) S_PICKS.update({sauto : [S_prob, S_uncertainty]}) if len(detection) > 0: D_uncertainty = None for ev in range(len(detection)): D_prob = np.mean(yh1[detection[ev][0]:detection[ev][1]]) D_prob = np.round(D_prob, 3) EVENTS.update({ detection[ev][0] : [D_prob, D_uncertainty, detection[ev][1]]}) # matching the detection and picks def pair_PS(l1, l2, dist): l1.sort() l2.sort() b = 0 e = 0 ans = [] for a in l1: while l2[b] and b < len(l2) and a - l2[b] > dist: b += 1 while l2[e] and e < len(l2) and l2[e] - a <= dist: e += 1 ans.extend([[a,x] for x in l2[b:e]]) best_pair = None for pr in ans: ds = pr[1]-pr[0] if abs(ds) < dist: best_pair = pr dist = ds return best_pair for ev in EVENTS: bg = ev ed = EVENTS[ev][2] if int(ed-bg) >= 10: candidate_Ss = {} for Ss, S_val in S_PICKS.items(): if Ss > bg and Ss < ed: candidate_Ss.update({Ss : S_val}) if len(candidate_Ss) > 1: candidate_Ss = {list(candidate_Ss.keys())[0] : candidate_Ss[list(candidate_Ss.keys())[0]]} if len(candidate_Ss) == 0: candidate_Ss = {None:[None, None]} candidate_Ps = {} for Ps, P_val in P_PICKS.items(): if list(candidate_Ss)[0]: if Ps > bg-100 and Ps < list(candidate_Ss)[0]-10: candidate_Ps.update({Ps : P_val}) else: if Ps > bg-100 and Ps < ed: candidate_Ps.update({Ps : P_val}) if len(candidate_Ps) > 1: Pr_st = 0 buffer = {} for PsCan, P_valCan in candidate_Ps.items(): if P_valCan[0] > Pr_st: buffer = {PsCan : P_valCan} Pr_st = P_valCan[0] candidate_Ps = buffer if len(candidate_Ps) == 0: candidate_Ps = {None:[None, None]} if list(candidate_Ss)[0] or list(candidate_Ps)[0]: matches.update({ bg:[ed, EVENTS[ev][0], EVENTS[ev][1], list(candidate_Ps)[0], candidate_Ps[list(candidate_Ps)[0]][0], candidate_Ps[list(candidate_Ps)[0]][1], list(candidate_Ss)[0], candidate_Ss[list(candidate_Ss)[0]][0], candidate_Ss[list(candidate_Ss)[0]][1], ] }) return matches, pick_errors, yh3 def _resampling(st): 'perform resampling on Obspy stream objects' need_resampling = [tr for tr in st if tr.stats.sampling_rate != 100.0] if len(need_resampling) > 0: # print('resampling ...', flush=True) for indx, tr in enumerate(need_resampling): if tr.stats.delta < 0.01: tr.filter('lowpass',freq=45,zerophase=True) tr.resample(100) tr.stats.sampling_rate = 100 tr.stats.delta = 0.01 tr.data.dtype = 'int32' st.remove(tr) st.append(tr) return st def _normalize(data, mode = 'max'): """ Normalize 3D arrays. Parameters ---------- data : 3D numpy array 3 component traces. mode : str, default='std' Mode of normalization. 'max' or 'std' Returns ------- data : 3D numpy array normalized data. """ data -= np.mean(data, axis=0, keepdims=True) if mode == 'max': max_data = np.max(data, axis=0, keepdims=True) assert(max_data.shape[-1] == data.shape[-1]) max_data[max_data == 0] = 1 data /= max_data elif mode == 'std': std_data = np.std(data, axis=0, keepdims=True) assert(std_data.shape[-1] == data.shape[-1]) std_data[std_data == 0] = 1 data /= std_data return data def _plotter_prediction(data, args, save_figs, yh1, yh2, yh3, evi, matches): """ Generates plots of detected events with the prediction probabilities and arrival picks. Parameters ---------- data: NumPy array 3 component raw waveform. evi: str Trace name. args: dic A dictionary containing all of the input parameters. save_figs: str Path to the folder for saving the plots. yh1: 1D array Detection probabilities. yh2: 1D array P arrival probabilities. yh3: 1D array S arrival probabilities. matches: dic Contains the information for the detected and picked event. """ font0 = {'family': 'serif', 'color': 'white', 'stretch': 'condensed', 'weight': 'normal', 'size': 12, } spt, sst, detected_events = [], [], [] for match, match_value in matches.items(): detected_events.append([match, match_value[0]]) if match_value[3]: spt.append(match_value[3]) else: spt.append(None) if match_value[6]: sst.append(match_value[6]) else: sst.append(None) if args['plot_mode'] == 'time_frequency': fig = plt.figure(constrained_layout=False) widths = [6, 1] heights = [1, 1, 1, 1, 1, 1, 1.8] spec5 = fig.add_gridspec(ncols=2, nrows=7, width_ratios=widths, height_ratios=heights, left=0.1, right=0.9, hspace=0.1) ax = fig.add_subplot(spec5[0, 0]) plt.plot(data[:, 0], 'k') plt.xlim(0, 6000) x = np.arange(6000) if platform.system() == 'Windows': plt.title(save_figs.split("\\")[-2].split("_")[0]+":"+str(evi)) else: plt.title(save_figs.split("/")[-2].split("_")[0]+":"+str(evi)) ax.set_xticks([]) plt.rcParams["figure.figsize"] = (10, 10) legend_properties = {'weight':'bold'} pl = None sl = None if len(spt) > 0 and np.count_nonzero(data[:, 0]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 0]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) ax = fig.add_subplot(spec5[0, 1]) if pl or sl: custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['E', 'Picked P', 'Picked S'], fancybox=True, shadow=True) plt.axis('off') ax = fig.add_subplot(spec5[1, 0]) f, t, Pxx = signal.stft(data[:, 0], fs=100, nperseg=80) Pxx = np.abs(Pxx) plt.pcolormesh(t, f, Pxx, alpha=None, cmap='hot', shading='flat', antialiased=True) plt.ylim(0, 40) plt.text(1, 1, 'STFT', fontdict=font0) plt.ylabel('Hz', fontsize=12) ax.set_xticks([]) ax = fig.add_subplot(spec5[2, 0]) plt.plot(data[:, 1] , 'k') plt.xlim(0, 6000) ax.set_xticks([]) if len(spt) > 0 and np.count_nonzero(data[:, 1]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 1]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) ax = fig.add_subplot(spec5[2, 1]) if pl or sl: custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['N', 'Picked P', 'Picked S'], fancybox=True, shadow=True) plt.axis('off') ax = fig.add_subplot(spec5[3, 0]) f, t, Pxx = signal.stft(data[:, 1], fs=100, nperseg=80) Pxx = np.abs(Pxx) plt.pcolormesh(t, f, Pxx, alpha=None, cmap='hot', shading='flat', antialiased=True) plt.ylim(0, 40) plt.text(1, 1, 'STFT', fontdict=font0) plt.ylabel('Hz', fontsize=12) ax.set_xticks([]) ax = fig.add_subplot(spec5[4, 0]) plt.plot(data[:, 2], 'k') plt.xlim(0, 6000) ax.set_xticks([]) if len(spt) > 0 and np.count_nonzero(data[:, 2]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 2]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) ax = fig.add_subplot(spec5[4, 1]) if pl or sl: custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['Z', 'Picked P', 'Picked S'], fancybox=True, shadow=True) plt.axis('off') ax = fig.add_subplot(spec5[5, 0]) f, t, Pxx = signal.stft(data[:, 2], fs=100, nperseg=80) Pxx = np.abs(Pxx) plt.pcolormesh(t, f, Pxx, alpha=None, cmap='hot', shading='flat', antialiased=True) plt.ylim(0, 40) plt.text(1, 1, 'STFT', fontdict=font0) plt.ylabel('Hz', fontsize=12) ax.set_xticks([]) ax = fig.add_subplot(spec5[6, 0]) x = np.linspace(0, data.shape[0], data.shape[0], endpoint=True) plt.plot(x, yh1, '--', color='g', alpha = 0.5, linewidth=2, label='Earthquake') plt.plot(x, yh2, '--', color='b', alpha = 0.5, linewidth=2, label='P_arrival') plt.plot(x, yh3, '--', color='r', alpha = 0.5, linewidth=2, label='S_arrival') plt.tight_layout() plt.ylim((-0.1, 1.1)) plt.xlim(0, 6000) plt.ylabel('Probability', fontsize=12) plt.xlabel('Sample', fontsize=12) plt.yticks(np.arange(0, 1.1, step=0.2)) axes = plt.gca() axes.yaxis.grid(color='lightgray') ax = fig.add_subplot(spec5[6, 1]) custom_lines = [Line2D([0], [0], linestyle='--', color='g', lw=2), Line2D([0], [0], linestyle='--', color='b', lw=2), Line2D([0], [0], linestyle='--', color='r', lw=2)] plt.legend(custom_lines, ['Earthquake', 'P_arrival', 'S_arrival'], fancybox=True, shadow=True) plt.axis('off') font = {'family': 'serif', 'color': 'dimgrey', 'style': 'italic', 'stretch': 'condensed', 'weight': 'normal', 'size': 12, } plt.text(1, 0.2, 'EQTransformer', fontdict=font) if EQT_VERSION: plt.text(2000, 0.05, str(EQT_VERSION), fontdict=font) plt.xlim(0, 6000) fig.tight_layout() fig.savefig(os.path.join(save_figs, str(evi).replace(':', '-')+'.png')) plt.close(fig) plt.clf() else: ########################################## ploting only in time domain fig = plt.figure(constrained_layout=True) widths = [1] heights = [1.6, 1.6, 1.6, 2.5] spec5 = fig.add_gridspec(ncols=1, nrows=4, width_ratios=widths, height_ratios=heights) ax = fig.add_subplot(spec5[0, 0]) plt.plot(data[:, 0], 'k') x = np.arange(6000) plt.xlim(0, 6000) if platform.system() == 'Windows': plt.title(save_figs.split("\\")[-2].split("_")[0]+":"+str(evi)) else: plt.title(save_figs.split("/")[-2].split("_")[0]+":"+str(evi)) plt.ylabel('Amplitude\nCounts') plt.rcParams["figure.figsize"] = (8,6) legend_properties = {'weight':'bold'} pl = sl = None if len(spt) > 0 and np.count_nonzero(data[:, 0]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 0]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) if pl or sl: box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['E', 'Picked P', 'Picked S'], loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) ax = fig.add_subplot(spec5[1, 0]) plt.plot(data[:, 1] , 'k') plt.xlim(0, 6000) plt.ylabel('Amplitude\nCounts') if len(spt) > 0 and np.count_nonzero(data[:, 1]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 1]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) if pl or sl: box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['N', 'Picked P', 'Picked S'], loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) ax = fig.add_subplot(spec5[2, 0]) plt.plot(data[:, 2], 'k') plt.xlim(0, 6000) plt.ylabel('Amplitude\nCounts') ax.set_xticks([]) if len(spt) > 0 and np.count_nonzero(data[:, 2]) > 10: ymin, ymax = ax.get_ylim() for ipt, pt in enumerate(spt): if pt and ipt == 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2, label='Picked P') elif pt and ipt > 0: pl = plt.vlines(int(pt), ymin, ymax, color='c', linewidth=2) if len(sst) > 0 and np.count_nonzero(data[:, 2]) > 10: for ist, st in enumerate(sst): if st and ist == 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2, label='Picked S') elif st and ist > 0: sl = plt.vlines(int(st), ymin, ymax, color='m', linewidth=2) if pl or sl: box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) custom_lines = [Line2D([0], [0], color='k', lw=0), Line2D([0], [0], color='c', lw=2), Line2D([0], [0], color='m', lw=2)] plt.legend(custom_lines, ['Z', 'Picked P', 'Picked S'], loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) ax = fig.add_subplot(spec5[3, 0]) x = np.linspace(0, data.shape[0], data.shape[0], endpoint=True) plt.plot(x, yh1, '--', color='g', alpha = 0.5, linewidth=1.5, label='Earthquake') plt.plot(x, yh2, '--', color='b', alpha = 0.5, linewidth=1.5, label='P_arrival') plt.plot(x, yh3, '--', color='r', alpha = 0.5, linewidth=1.5, label='S_arrival') plt.tight_layout() plt.ylim((-0.1, 1.1)) plt.xlim(0, 6000) plt.ylabel('Probability') plt.xlabel('Sample') plt.legend(loc='lower center', bbox_to_anchor=(0., 1.17, 1., .102), ncol=3, mode="expand", prop=legend_properties, borderaxespad=0., fancybox=True, shadow=True) plt.yticks(np.arange(0, 1.1, step=0.2)) axes = plt.gca() axes.yaxis.grid(color='lightgray') font = {'family': 'serif', 'color': 'dimgrey', 'style': 'italic', 'stretch': 'condensed', 'weight': 'normal', 'size': 12, } plt.text(6500, 0.5, 'EQTransformer', fontdict=font) if EQT_VERSION: plt.text(7000, 0.1, str(EQT_VERSION), fontdict=font) fig.tight_layout() fig.savefig(os.path.join(save_figs, str(evi).replace(':', '-')+'.png')) plt.close(fig) plt.clf()
[ "pickle.dump", "os.remove", "numpy.abs", "matplotlib.pyplot.clf", "numpy.isnan", "numpy.argsort", "tensorflow.ConfigProto", "matplotlib.pyplot.figure", "numpy.mean", "obspy.core.Stream", "numpy.arange", "matplotlib.pyplot.gca", "shutil.rmtree", "os.path.join", "matplotlib.pyplot.tight_layout", "numpy.round", "matplotlib.lines.Line2D", "numpy.std", "matplotlib.pyplot.close", "numpy.max", "tensorflow.keras.optimizers.Adam", "datetime.timedelta", "numpy.linspace", "datetime.datetime.now", "h5py.File", "tensorflow.keras.models.load_model", "csv.writer", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "tensorflow.Session", "numpy.hstack", "matplotlib.pyplot.text", "numpy.sort", "datetime.datetime.strptime", "matplotlib.use", "numpy.percentile", "matplotlib.pyplot.pcolormesh", "platform.system", "matplotlib.pyplot.ylabel", "faulthandler.enable", "os.listdir", "numpy.vstack", "matplotlib.pyplot.xlim", "tqdm.tqdm.write", "json.load", "obspy.signal.trigger.trigger_onset", "os.makedirs", "logging.basicConfig", "warnings.filterwarnings", "os.path.isdir", "os.getcwd", "matplotlib.pyplot.plot", "numpy.count_nonzero", "numpy.zeros", "matplotlib.pyplot.axis", "time.time", "numpy.where", "numpy.array", "numpy.atleast_1d", "matplotlib.pyplot.xlabel", "scipy.signal.stft", "logging.getLogger" ]
[((440, 461), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (454, 461), False, 'import matplotlib\n'), ((926, 947), 'faulthandler.enable', 'faulthandler.enable', ([], {}), '()\n', (945, 947), False, 'import faulthandler\n'), ((1100, 1133), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1123, 1133), False, 'import warnings\n'), ((6491, 6625), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG', 'format': '"""%(asctime)s [%(levelname)s] [%(name)s] %(message)s"""', 'datefmt': '"""%m-%d %H:%M"""'}), "(level=logging.DEBUG, format=\n '%(asctime)s [%(levelname)s] [%(name)s] %(message)s', datefmt='%m-%d %H:%M'\n )\n", (6510, 6625), False, 'import logging\n'), ((7147, 7181), 'logging.getLogger', 'logging.getLogger', (['"""EQTransformer"""'], {}), "('EQTransformer')\n", (7164, 7181), False, 'import logging\n'), ((7318, 7492), 'tensorflow.keras.models.load_model', 'load_model', (["args['input_model']"], {'custom_objects': "{'SeqSelfAttention': SeqSelfAttention, 'FeedForward': FeedForward,\n 'LayerNormalization': LayerNormalization, 'f1': f1}"}), "(args['input_model'], custom_objects={'SeqSelfAttention':\n SeqSelfAttention, 'FeedForward': FeedForward, 'LayerNormalization':\n LayerNormalization, 'f1': f1})\n", (7328, 7492), False, 'from tensorflow.keras.models import load_model\n'), ((8074, 8096), 'os.path.isdir', 'os.path.isdir', (['out_dir'], {}), '(out_dir)\n', (8087, 8096), False, 'import os\n'), ((17314, 17334), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (17323, 17334), False, 'import json\n'), ((17349, 17368), 'obspy.core.Stream', 'obspy.core.Stream', ([], {}), '()\n', (17366, 17368), False, 'import obspy\n'), ((31178, 31211), 'numpy.array', 'np.array', (['[[], [], []]'], {'dtype': 'int'}), '([[], [], []], dtype=int)\n', (31186, 31211), True, 'import numpy as np\n'), ((33883, 33959), 'obspy.signal.trigger.trigger_onset', 'trigger_onset', (['yh1', "args['detection_threshold']", "args['detection_threshold']"], {}), "(yh1, args['detection_threshold'], args['detection_threshold'])\n", (33896, 33959), False, 'from obspy.signal.trigger import trigger_onset\n'), ((39225, 39261), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (39232, 39261), True, 'import numpy as np\n'), ((6257, 6273), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (6271, 6273), True, 'import tensorflow as tf\n'), ((8029, 8040), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8038, 8040), False, 'import os\n'), ((8638, 8655), 'platform.system', 'platform.system', ([], {}), '()\n', (8653, 8655), False, 'import platform\n'), ((9230, 9285), 'os.path.join', 'os.path.join', (['save_dir', '"""prediction_probabilities.hdf5"""'], {}), "(save_dir, 'prediction_probabilities.hdf5')\n", (9242, 9285), False, 'import os\n'), ((9306, 9339), 'os.path.join', 'os.path.join', (['save_dir', '"""figures"""'], {}), "(save_dir, 'figures')\n", (9318, 9339), False, 'import os\n'), ((9352, 9375), 'os.path.isdir', 'os.path.isdir', (['save_dir'], {}), '(save_dir)\n', (9365, 9375), False, 'import os\n'), ((9423, 9444), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (9434, 9444), False, 'import os\n'), ((9856, 9934), 'csv.writer', 'csv.writer', (['csvPr_gen'], {'delimiter': '""","""', 'quotechar': '"""\\""""', 'quoting': 'csv.QUOTE_MINIMAL'}), '(csvPr_gen, delimiter=\',\', quotechar=\'"\', quoting=csv.QUOTE_MINIMAL)\n', (9866, 9934), False, 'import csv\n'), ((11066, 11077), 'time.time', 'time.time', ([], {}), '()\n', (11075, 11077), False, 'import time\n'), ((13897, 13908), 'time.time', 'time.time', ([], {}), '()\n', (13906, 13908), False, 'import time\n'), ((16968, 17019), 'pickle.dump', 'pickle.dump', (['data_track', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '(data_track, f, pickle.HIGHEST_PROTOCOL)\n', (16979, 17019), False, 'import pickle\n'), ((18893, 18912), 'numpy.zeros', 'np.zeros', (['[6000, 3]'], {}), '([6000, 3])\n', (18901, 18912), True, 'import numpy as np\n'), ((22825, 22861), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (22832, 22861), True, 'import numpy as np\n'), ((23453, 23489), 'numpy.zeros', 'np.zeros', (['(self.batch_size, 6000, 3)'], {}), '((self.batch_size, 6000, 3))\n', (23461, 23489), True, 'import numpy as np\n'), ((25226, 25279), 'datetime.datetime.strptime', 'datetime.strptime', (['start_time', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(start_time, '%Y-%m-%d %H:%M:%S.%f')\n", (25243, 25279), False, 'from datetime import datetime, timedelta\n'), ((30897, 30920), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (30905, 30920), True, 'import numpy as np\n'), ((31601, 31627), 'numpy.hstack', 'np.hstack', (['(ine, ire, ife)'], {}), '((ine, ire, ife))\n', (31610, 31627), True, 'import numpy as np\n'), ((32500, 32530), 'numpy.zeros', 'np.zeros', (['ind.size'], {'dtype': 'bool'}), '(ind.size, dtype=bool)\n', (32508, 32530), True, 'import numpy as np\n'), ((32940, 32959), 'numpy.sort', 'np.sort', (['ind[~idel]'], {}), '(ind[~idel])\n', (32947, 32959), True, 'import numpy as np\n'), ((39303, 39338), 'numpy.max', 'np.max', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (39309, 39338), True, 'import numpy as np\n'), ((41081, 41117), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(False)'}), '(constrained_layout=False)\n', (41091, 41117), True, 'import matplotlib.pyplot as plt\n'), ((41419, 41444), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 0]', '"""k"""'], {}), "(data[:, 0], 'k')\n", (41427, 41444), True, 'import matplotlib.pyplot as plt\n'), ((41453, 41470), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (41461, 41470), True, 'import matplotlib.pyplot as plt\n'), ((41483, 41498), 'numpy.arange', 'np.arange', (['(6000)'], {}), '(6000)\n', (41492, 41498), True, 'import numpy as np\n'), ((43186, 43229), 'scipy.signal.stft', 'signal.stft', (['data[:, 0]'], {'fs': '(100)', 'nperseg': '(80)'}), '(data[:, 0], fs=100, nperseg=80)\n', (43197, 43229), False, 'from scipy import signal\n'), ((43244, 43255), 'numpy.abs', 'np.abs', (['Pxx'], {}), '(Pxx)\n', (43250, 43255), True, 'import numpy as np\n'), ((43287, 43374), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['t', 'f', 'Pxx'], {'alpha': 'None', 'cmap': '"""hot"""', 'shading': '"""flat"""', 'antialiased': '(True)'}), "(t, f, Pxx, alpha=None, cmap='hot', shading='flat',\n antialiased=True)\n", (43301, 43374), True, 'import matplotlib.pyplot as plt\n'), ((43379, 43394), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(40)'], {}), '(0, 40)\n', (43387, 43394), True, 'import matplotlib.pyplot as plt\n'), ((43403, 43441), 'matplotlib.pyplot.text', 'plt.text', (['(1)', '(1)', '"""STFT"""'], {'fontdict': 'font0'}), "(1, 1, 'STFT', fontdict=font0)\n", (43411, 43441), True, 'import matplotlib.pyplot as plt\n'), ((43450, 43479), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Hz"""'], {'fontsize': '(12)'}), "('Hz', fontsize=12)\n", (43460, 43479), True, 'import matplotlib.pyplot as plt\n'), ((43573, 43598), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 1]', '"""k"""'], {}), "(data[:, 1], 'k')\n", (43581, 43598), True, 'import matplotlib.pyplot as plt\n'), ((43608, 43625), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (43616, 43625), True, 'import matplotlib.pyplot as plt\n'), ((44927, 44970), 'scipy.signal.stft', 'signal.stft', (['data[:, 1]'], {'fs': '(100)', 'nperseg': '(80)'}), '(data[:, 1], fs=100, nperseg=80)\n', (44938, 44970), False, 'from scipy import signal\n'), ((44985, 44996), 'numpy.abs', 'np.abs', (['Pxx'], {}), '(Pxx)\n', (44991, 44996), True, 'import numpy as np\n'), ((45028, 45115), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['t', 'f', 'Pxx'], {'alpha': 'None', 'cmap': '"""hot"""', 'shading': '"""flat"""', 'antialiased': '(True)'}), "(t, f, Pxx, alpha=None, cmap='hot', shading='flat',\n antialiased=True)\n", (45042, 45115), True, 'import matplotlib.pyplot as plt\n'), ((45120, 45135), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(40)'], {}), '(0, 40)\n', (45128, 45135), True, 'import matplotlib.pyplot as plt\n'), ((45144, 45182), 'matplotlib.pyplot.text', 'plt.text', (['(1)', '(1)', '"""STFT"""'], {'fontdict': 'font0'}), "(1, 1, 'STFT', fontdict=font0)\n", (45152, 45182), True, 'import matplotlib.pyplot as plt\n'), ((45191, 45220), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Hz"""'], {'fontsize': '(12)'}), "('Hz', fontsize=12)\n", (45201, 45220), True, 'import matplotlib.pyplot as plt\n'), ((45339, 45364), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 2]', '"""k"""'], {}), "(data[:, 2], 'k')\n", (45347, 45364), True, 'import matplotlib.pyplot as plt\n'), ((45374, 45391), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (45382, 45391), True, 'import matplotlib.pyplot as plt\n'), ((46741, 46784), 'scipy.signal.stft', 'signal.stft', (['data[:, 2]'], {'fs': '(100)', 'nperseg': '(80)'}), '(data[:, 2], fs=100, nperseg=80)\n', (46752, 46784), False, 'from scipy import signal\n'), ((46799, 46810), 'numpy.abs', 'np.abs', (['Pxx'], {}), '(Pxx)\n', (46805, 46810), True, 'import numpy as np\n'), ((46842, 46929), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['t', 'f', 'Pxx'], {'alpha': 'None', 'cmap': '"""hot"""', 'shading': '"""flat"""', 'antialiased': '(True)'}), "(t, f, Pxx, alpha=None, cmap='hot', shading='flat',\n antialiased=True)\n", (46856, 46929), True, 'import matplotlib.pyplot as plt\n'), ((46934, 46949), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(40)'], {}), '(0, 40)\n', (46942, 46949), True, 'import matplotlib.pyplot as plt\n'), ((46958, 46996), 'matplotlib.pyplot.text', 'plt.text', (['(1)', '(1)', '"""STFT"""'], {'fontdict': 'font0'}), "(1, 1, 'STFT', fontdict=font0)\n", (46966, 46996), True, 'import matplotlib.pyplot as plt\n'), ((47005, 47034), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Hz"""'], {'fontsize': '(12)'}), "('Hz', fontsize=12)\n", (47015, 47034), True, 'import matplotlib.pyplot as plt\n'), ((47147, 47206), 'numpy.linspace', 'np.linspace', (['(0)', 'data.shape[0]', 'data.shape[0]'], {'endpoint': '(True)'}), '(0, data.shape[0], data.shape[0], endpoint=True)\n', (47158, 47206), True, 'import numpy as np\n'), ((47247, 47324), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh1', '"""--"""'], {'color': '"""g"""', 'alpha': '(0.5)', 'linewidth': '(2)', 'label': '"""Earthquake"""'}), "(x, yh1, '--', color='g', alpha=0.5, linewidth=2, label='Earthquake')\n", (47255, 47324), True, 'import matplotlib.pyplot as plt\n'), ((47335, 47411), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh2', '"""--"""'], {'color': '"""b"""', 'alpha': '(0.5)', 'linewidth': '(2)', 'label': '"""P_arrival"""'}), "(x, yh2, '--', color='b', alpha=0.5, linewidth=2, label='P_arrival')\n", (47343, 47411), True, 'import matplotlib.pyplot as plt\n'), ((47422, 47498), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh3', '"""--"""'], {'color': '"""r"""', 'alpha': '(0.5)', 'linewidth': '(2)', 'label': '"""S_arrival"""'}), "(x, yh3, '--', color='r', alpha=0.5, linewidth=2, label='S_arrival')\n", (47430, 47498), True, 'import matplotlib.pyplot as plt\n'), ((47509, 47527), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (47525, 47527), True, 'import matplotlib.pyplot as plt\n'), ((47543, 47564), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.1, 1.1)'], {}), '((-0.1, 1.1))\n', (47551, 47564), True, 'import matplotlib.pyplot as plt\n'), ((47574, 47591), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (47582, 47591), True, 'import matplotlib.pyplot as plt\n'), ((47600, 47638), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability"""'], {'fontsize': '(12)'}), "('Probability', fontsize=12)\n", (47610, 47638), True, 'import matplotlib.pyplot as plt\n'), ((47648, 47681), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sample"""'], {'fontsize': '(12)'}), "('Sample', fontsize=12)\n", (47658, 47681), True, 'import matplotlib.pyplot as plt\n'), ((47746, 47755), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (47753, 47755), True, 'import matplotlib.pyplot as plt\n'), ((48089, 48188), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['Earthquake', 'P_arrival', 'S_arrival']"], {'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['Earthquake', 'P_arrival', 'S_arrival'], fancybox\n =True, shadow=True)\n", (48099, 48188), True, 'import matplotlib.pyplot as plt\n'), ((48192, 48207), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (48200, 48207), True, 'import matplotlib.pyplot as plt\n'), ((48490, 48538), 'matplotlib.pyplot.text', 'plt.text', (['(1)', '(0.2)', '"""EQTransformer"""'], {'fontdict': 'font'}), "(1, 0.2, 'EQTransformer', fontdict=font)\n", (48498, 48538), True, 'import matplotlib.pyplot as plt\n'), ((48650, 48667), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (48658, 48667), True, 'import matplotlib.pyplot as plt\n'), ((48784, 48798), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (48793, 48798), True, 'import matplotlib.pyplot as plt\n'), ((48807, 48816), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (48814, 48816), True, 'import matplotlib.pyplot as plt\n'), ((48943, 48978), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)'}), '(constrained_layout=True)\n', (48953, 48978), True, 'import matplotlib.pyplot as plt\n'), ((49232, 49257), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 0]', '"""k"""'], {}), "(data[:, 0], 'k')\n", (49240, 49257), True, 'import matplotlib.pyplot as plt\n'), ((49270, 49285), 'numpy.arange', 'np.arange', (['(6000)'], {}), '(6000)\n', (49279, 49285), True, 'import numpy as np\n'), ((49294, 49311), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (49302, 49311), True, 'import matplotlib.pyplot as plt\n'), ((49541, 49572), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude\nCounts"""'], {}), "('Amplitude\\nCounts')\n", (49551, 49572), True, 'import matplotlib.pyplot as plt\n'), ((51162, 51187), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 1]', '"""k"""'], {}), "(data[:, 1], 'k')\n", (51170, 51187), True, 'import matplotlib.pyplot as plt\n'), ((51197, 51214), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (51205, 51214), True, 'import matplotlib.pyplot as plt\n'), ((51235, 51266), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude\nCounts"""'], {}), "('Amplitude\\nCounts')\n", (51245, 51266), True, 'import matplotlib.pyplot as plt\n'), ((52669, 52694), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 2]', '"""k"""'], {}), "(data[:, 2], 'k')\n", (52677, 52694), True, 'import matplotlib.pyplot as plt\n'), ((52704, 52721), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (52712, 52721), True, 'import matplotlib.pyplot as plt\n'), ((52750, 52781), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude\nCounts"""'], {}), "('Amplitude\\nCounts')\n", (52760, 52781), True, 'import matplotlib.pyplot as plt\n'), ((54235, 54294), 'numpy.linspace', 'np.linspace', (['(0)', 'data.shape[0]', 'data.shape[0]'], {'endpoint': '(True)'}), '(0, data.shape[0], data.shape[0], endpoint=True)\n', (54246, 54294), True, 'import numpy as np\n'), ((54332, 54411), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh1', '"""--"""'], {'color': '"""g"""', 'alpha': '(0.5)', 'linewidth': '(1.5)', 'label': '"""Earthquake"""'}), "(x, yh1, '--', color='g', alpha=0.5, linewidth=1.5, label='Earthquake')\n", (54340, 54411), True, 'import matplotlib.pyplot as plt\n'), ((54422, 54500), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh2', '"""--"""'], {'color': '"""b"""', 'alpha': '(0.5)', 'linewidth': '(1.5)', 'label': '"""P_arrival"""'}), "(x, yh2, '--', color='b', alpha=0.5, linewidth=1.5, label='P_arrival')\n", (54430, 54500), True, 'import matplotlib.pyplot as plt\n'), ((54511, 54589), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'yh3', '"""--"""'], {'color': '"""r"""', 'alpha': '(0.5)', 'linewidth': '(1.5)', 'label': '"""S_arrival"""'}), "(x, yh3, '--', color='r', alpha=0.5, linewidth=1.5, label='S_arrival')\n", (54519, 54589), True, 'import matplotlib.pyplot as plt\n'), ((54613, 54631), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (54629, 54631), True, 'import matplotlib.pyplot as plt\n'), ((54647, 54668), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.1, 1.1)'], {}), '((-0.1, 1.1))\n', (54655, 54668), True, 'import matplotlib.pyplot as plt\n'), ((54678, 54695), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(6000)'], {}), '(0, 6000)\n', (54686, 54695), True, 'import matplotlib.pyplot as plt\n'), ((54748, 54773), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability"""'], {}), "('Probability')\n", (54758, 54773), True, 'import matplotlib.pyplot as plt\n'), ((54783, 54803), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sample"""'], {}), "('Sample')\n", (54793, 54803), True, 'import matplotlib.pyplot as plt\n'), ((54814, 54988), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower center"""', 'bbox_to_anchor': '(0.0, 1.17, 1.0, 0.102)', 'ncol': '(3)', 'mode': '"""expand"""', 'prop': 'legend_properties', 'borderaxespad': '(0.0)', 'fancybox': '(True)', 'shadow': '(True)'}), "(loc='lower center', bbox_to_anchor=(0.0, 1.17, 1.0, 0.102), ncol\n =3, mode='expand', prop=legend_properties, borderaxespad=0.0, fancybox=\n True, shadow=True)\n", (54824, 54988), True, 'import matplotlib.pyplot as plt\n'), ((55062, 55071), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (55069, 55071), True, 'import matplotlib.pyplot as plt\n'), ((55393, 55444), 'matplotlib.pyplot.text', 'plt.text', (['(6500)', '(0.5)', '"""EQTransformer"""'], {'fontdict': 'font'}), "(6500, 0.5, 'EQTransformer', fontdict=font)\n", (55401, 55444), True, 'import matplotlib.pyplot as plt\n'), ((55663, 55677), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (55672, 55677), True, 'import matplotlib.pyplot as plt\n'), ((55686, 55695), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (55693, 55695), True, 'import matplotlib.pyplot as plt\n'), ((6449, 6474), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (6459, 6474), True, 'import tensorflow as tf\n'), ((7900, 7914), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (7904, 7914), False, 'from tensorflow.keras.optimizers import Adam\n'), ((8507, 8529), 'shutil.rmtree', 'shutil.rmtree', (['out_dir'], {}), '(out_dir)\n', (8520, 8529), False, 'import shutil\n'), ((8544, 8564), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (8555, 8564), False, 'import os\n'), ((9389, 9412), 'shutil.rmtree', 'shutil.rmtree', (['save_dir'], {}), '(save_dir)\n', (9402, 9412), False, 'import shutil\n'), ((9471, 9491), 'os.remove', 'os.remove', (['out_probs'], {}), '(out_probs)\n', (9480, 9491), False, 'import os\n'), ((9584, 9606), 'os.makedirs', 'os.makedirs', (['save_figs'], {}), '(save_figs)\n', (9595, 9606), False, 'import os\n'), ((9683, 9708), 'h5py.File', 'h5py.File', (['out_probs', '"""a"""'], {}), "(out_probs, 'a')\n", (9692, 9708), False, 'import h5py\n'), ((9765, 9815), 'os.path.join', 'os.path.join', (['save_dir', '"""X_prediction_results.csv"""'], {}), "(save_dir, 'X_prediction_results.csv')\n", (9777, 9815), False, 'import os\n'), ((11096, 11113), 'platform.system', 'platform.system', ([], {}), '()\n', (11111, 11113), False, 'import platform\n'), ((14281, 14331), 'os.path.join', 'os.path.join', (['save_dir', '"""X_prediction_results.csv"""'], {}), "(save_dir, 'X_prediction_results.csv')\n", (14293, 14331), False, 'import os\n'), ((22911, 22946), 'numpy.max', 'np.max', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (22917, 22946), True, 'import numpy as np\n'), ((25323, 25373), 'datetime.datetime.strptime', 'datetime.strptime', (['start_time', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(start_time, '%Y-%m-%d %H:%M:%S')\n", (25340, 25373), False, 'from datetime import datetime, timedelta\n'), ((25817, 25847), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(match / 100)'}), '(seconds=match / 100)\n', (25826, 25847), False, 'from datetime import datetime, timedelta\n'), ((25875, 25914), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(match_value[0] / 100)'}), '(seconds=match_value[0] / 100)\n', (25884, 25914), False, 'from datetime import datetime, timedelta\n'), ((30828, 30844), 'numpy.atleast_1d', 'np.atleast_1d', (['x'], {}), '(x)\n', (30841, 30844), True, 'import numpy as np\n'), ((31048, 31059), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (31056, 31059), True, 'import numpy as np\n'), ((32213, 32266), 'numpy.vstack', 'np.vstack', (['[x[ind] - x[ind - 1], x[ind] - x[ind + 1]]'], {}), '([x[ind] - x[ind - 1], x[ind] - x[ind + 1]])\n', (32222, 32266), True, 'import numpy as np\n'), ((35031, 35078), 'numpy.mean', 'np.mean', (['yh1[detection[ev][0]:detection[ev][1]]'], {}), '(yh1[detection[ev][0]:detection[ev][1]])\n', (35038, 35078), True, 'import numpy as np\n'), ((35100, 35119), 'numpy.round', 'np.round', (['D_prob', '(3)'], {}), '(D_prob, 3)\n', (35108, 35119), True, 'import numpy as np\n'), ((39526, 39561), 'numpy.std', 'np.std', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (39532, 39561), True, 'import numpy as np\n'), ((41510, 41527), 'platform.system', 'platform.system', ([], {}), '()\n', (41525, 41527), False, 'import platform\n'), ((42994, 43081), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['E', 'Picked P', 'Picked S']"], {'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['E', 'Picked P', 'Picked S'], fancybox=True,\n shadow=True)\n", (43004, 43081), True, 'import matplotlib.pyplot as plt\n'), ((43090, 43105), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (43098, 43105), True, 'import matplotlib.pyplot as plt\n'), ((44742, 44829), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['N', 'Picked P', 'Picked S']"], {'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['N', 'Picked P', 'Picked S'], fancybox=True,\n shadow=True)\n", (44752, 44829), True, 'import matplotlib.pyplot as plt\n'), ((44838, 44853), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (44846, 44853), True, 'import matplotlib.pyplot as plt\n'), ((46545, 46632), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['Z', 'Picked P', 'Picked S']"], {'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['Z', 'Picked P', 'Picked S'], fancybox=True,\n shadow=True)\n", (46555, 46632), True, 'import matplotlib.pyplot as plt\n'), ((46641, 46656), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (46649, 46656), True, 'import matplotlib.pyplot as plt\n'), ((47702, 47729), 'numpy.arange', 'np.arange', (['(0)', '(1.1)'], {'step': '(0.2)'}), '(0, 1.1, step=0.2)\n', (47711, 47729), True, 'import numpy as np\n'), ((47880, 47929), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'linestyle': '"""--"""', 'color': '"""g"""', 'lw': '(2)'}), "([0], [0], linestyle='--', color='g', lw=2)\n", (47886, 47929), False, 'from matplotlib.lines import Line2D\n'), ((47955, 48004), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'linestyle': '"""--"""', 'color': '"""b"""', 'lw': '(2)'}), "([0], [0], linestyle='--', color='b', lw=2)\n", (47961, 48004), False, 'from matplotlib.lines import Line2D\n'), ((48030, 48079), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'linestyle': '"""--"""', 'color': '"""r"""', 'lw': '(2)'}), "([0], [0], linestyle='--', color='r', lw=2)\n", (48036, 48079), False, 'from matplotlib.lines import Line2D\n'), ((49333, 49350), 'platform.system', 'platform.system', ([], {}), '()\n', (49348, 49350), False, 'import platform\n'), ((50889, 51020), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['E', 'Picked P', 'Picked S']"], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)', 'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['E', 'Picked P', 'Picked S'], loc='center left',\n bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True)\n", (50899, 51020), True, 'import matplotlib.pyplot as plt\n'), ((52416, 52547), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['N', 'Picked P', 'Picked S']"], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)', 'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['N', 'Picked P', 'Picked S'], loc='center left',\n bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True)\n", (52426, 52547), True, 'import matplotlib.pyplot as plt\n'), ((53978, 54109), 'matplotlib.pyplot.legend', 'plt.legend', (['custom_lines', "['Z', 'Picked P', 'Picked S']"], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)', 'fancybox': '(True)', 'shadow': '(True)'}), "(custom_lines, ['Z', 'Picked P', 'Picked S'], loc='center left',\n bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True)\n", (53988, 54109), True, 'import matplotlib.pyplot as plt\n'), ((55018, 55045), 'numpy.arange', 'np.arange', (['(0)', '(1.1)'], {'step': '(0.2)'}), '(0, 1.1, step=0.2)\n', (55027, 55045), True, 'import numpy as np\n'), ((6197, 6238), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'log_device_placement': '(True)'}), '(log_device_placement=True)\n', (6211, 6238), True, 'import tensorflow as tf\n'), ((6916, 6945), 'tqdm.tqdm.write', 'tqdm.write', (['x'], {'file': 'self.file'}), '(x, file=self.file)\n', (6926, 6945), False, 'from tqdm import tqdm\n'), ((8721, 8747), 'os.listdir', 'listdir', (["args['input_dir']"], {}), "(args['input_dir'])\n", (8728, 8747), False, 'from os import listdir\n'), ((8853, 8879), 'os.listdir', 'listdir', (["args['input_dir']"], {}), "(args['input_dir'])\n", (8860, 8879), False, 'from os import listdir\n'), ((11153, 11165), 'os.path.join', 'join', (['st', 'ev'], {}), '(st, ev)\n', (11157, 11165), False, 'from os.path import join\n'), ((11309, 11321), 'os.path.join', 'join', (['st', 'ev'], {}), '(st, ev)\n', (11313, 11321), False, 'from os.path import join\n'), ((14977, 15015), 'os.path.join', 'os.path.join', (['save_dir', '"""X_report.txt"""'], {}), "(save_dir, 'X_report.txt')\n", (14989, 15015), False, 'import os\n'), ((23154, 23189), 'numpy.std', 'np.std', (['data'], {'axis': '(0)', 'keepdims': '(True)'}), '(data, axis=0, keepdims=True)\n', (23160, 23189), True, 'import numpy as np\n'), ((25529, 25570), 'datetime.datetime.strptime', 'datetime.strptime', (['r', '"""%Y-%m-%d %H:%M:%S"""'], {}), "(r, '%Y-%m-%d %H:%M:%S')\n", (25546, 25570), False, 'from datetime import datetime, timedelta\n'), ((25613, 25657), 'datetime.datetime.strptime', 'datetime.strptime', (['r', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(r, '%Y-%m-%d %H:%M:%S.%f')\n", (25630, 25657), False, 'from datetime import datetime, timedelta\n'), ((32297, 32321), 'numpy.where', 'np.where', (['(dx < threshold)'], {}), '(dx < threshold)\n', (32305, 32321), True, 'import numpy as np\n'), ((32432, 32450), 'numpy.argsort', 'np.argsort', (['x[ind]'], {}), '(x[ind])\n', (32442, 32450), True, 'import numpy as np\n'), ((41946, 41974), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 0]'], {}), '(data[:, 0])\n', (41962, 41974), True, 'import numpy as np\n'), ((42365, 42393), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 0]'], {}), '(data[:, 0])\n', (42381, 42393), True, 'import numpy as np\n'), ((42821, 42854), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (42827, 42854), False, 'from matplotlib.lines import Line2D\n'), ((42884, 42917), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (42890, 42917), False, 'from matplotlib.lines import Line2D\n'), ((42947, 42980), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (42953, 42980), False, 'from matplotlib.lines import Line2D\n'), ((43695, 43723), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 1]'], {}), '(data[:, 1])\n', (43711, 43723), True, 'import numpy as np\n'), ((44115, 44143), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 1]'], {}), '(data[:, 1])\n', (44131, 44143), True, 'import numpy as np\n'), ((44569, 44602), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (44575, 44602), False, 'from matplotlib.lines import Line2D\n'), ((44632, 44665), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (44638, 44665), False, 'from matplotlib.lines import Line2D\n'), ((44695, 44728), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (44701, 44728), False, 'from matplotlib.lines import Line2D\n'), ((45477, 45505), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 2]'], {}), '(data[:, 2])\n', (45493, 45505), True, 'import numpy as np\n'), ((45897, 45925), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 2]'], {}), '(data[:, 2])\n', (45913, 45925), True, 'import numpy as np\n'), ((46372, 46405), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (46378, 46405), False, 'from matplotlib.lines import Line2D\n'), ((46435, 46468), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (46441, 46468), False, 'from matplotlib.lines import Line2D\n'), ((46498, 46531), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (46504, 46531), False, 'from matplotlib.lines import Line2D\n'), ((49779, 49807), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 0]'], {}), '(data[:, 0])\n', (49795, 49807), True, 'import numpy as np\n'), ((50198, 50226), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 0]'], {}), '(data[:, 0])\n', (50214, 50226), True, 'import numpy as np\n'), ((50716, 50749), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (50722, 50749), False, 'from matplotlib.lines import Line2D\n'), ((50779, 50812), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (50785, 50812), False, 'from matplotlib.lines import Line2D\n'), ((50842, 50875), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (50848, 50875), False, 'from matplotlib.lines import Line2D\n'), ((51326, 51354), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 1]'], {}), '(data[:, 1])\n', (51342, 51354), True, 'import numpy as np\n'), ((51745, 51773), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 1]'], {}), '(data[:, 1])\n', (51761, 51773), True, 'import numpy as np\n'), ((52243, 52276), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (52249, 52276), False, 'from matplotlib.lines import Line2D\n'), ((52306, 52339), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (52312, 52339), False, 'from matplotlib.lines import Line2D\n'), ((52369, 52402), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (52375, 52402), False, 'from matplotlib.lines import Line2D\n'), ((52869, 52897), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 2]'], {}), '(data[:, 2])\n', (52885, 52897), True, 'import numpy as np\n'), ((53288, 53316), 'numpy.count_nonzero', 'np.count_nonzero', (['data[:, 2]'], {}), '(data[:, 2])\n', (53304, 53316), True, 'import numpy as np\n'), ((53805, 53838), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""k"""', 'lw': '(0)'}), "([0], [0], color='k', lw=0)\n", (53811, 53838), False, 'from matplotlib.lines import Line2D\n'), ((53868, 53901), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""c"""', 'lw': '(2)'}), "([0], [0], color='c', lw=2)\n", (53874, 53901), False, 'from matplotlib.lines import Line2D\n'), ((53931, 53964), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'color': '"""m"""', 'lw': '(2)'}), "([0], [0], color='m', lw=2)\n", (53937, 53964), False, 'from matplotlib.lines import Line2D\n'), ((11176, 11214), 'os.listdir', 'listdir', (["(args['input_dir'] + '\\\\' + st)"], {}), "(args['input_dir'] + '\\\\' + st)\n", (11183, 11214), False, 'from os import listdir\n'), ((11332, 11369), 'os.listdir', 'listdir', (["(args['input_dir'] + '/' + st)"], {}), "(args['input_dir'] + '/' + st)\n", (11339, 11369), False, 'from os import listdir\n'), ((26195, 26234), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(match_value[3] / 100)'}), '(seconds=match_value[3] / 100)\n', (26204, 26234), False, 'from datetime import datetime, timedelta\n'), ((26480, 26519), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(match_value[6] / 100)'}), '(seconds=match_value[6] / 100)\n', (26489, 26519), False, 'from datetime import datetime, timedelta\n'), ((31131, 31143), 'numpy.isnan', 'np.isnan', (['dx'], {}), '(dx)\n', (31139, 31143), True, 'import numpy as np\n'), ((31780, 31823), 'numpy.hstack', 'np.hstack', (['(indnan, indnan - 1, indnan + 1)'], {}), '((indnan, indnan - 1, indnan + 1))\n', (31789, 31823), True, 'import numpy as np\n'), ((31253, 31271), 'numpy.hstack', 'np.hstack', (['(dx, 0)'], {}), '((dx, 0))\n', (31262, 31271), True, 'import numpy as np\n'), ((31280, 31298), 'numpy.hstack', 'np.hstack', (['(0, dx)'], {}), '((0, dx))\n', (31289, 31298), True, 'import numpy as np\n'), ((15309, 15323), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (15321, 15323), False, 'from datetime import datetime, timedelta\n'), ((31393, 31411), 'numpy.hstack', 'np.hstack', (['(dx, 0)'], {}), '((dx, 0))\n', (31402, 31411), True, 'import numpy as np\n'), ((31421, 31439), 'numpy.hstack', 'np.hstack', (['(0, dx)'], {}), '((0, dx))\n', (31430, 31439), True, 'import numpy as np\n'), ((31525, 31543), 'numpy.hstack', 'np.hstack', (['(dx, 0)'], {}), '((dx, 0))\n', (31534, 31543), True, 'import numpy as np\n'), ((31552, 31570), 'numpy.hstack', 'np.hstack', (['(0, dx)'], {}), '((0, dx))\n', (31561, 31570), True, 'import numpy as np\n'), ((28786, 28808), 'numpy.percentile', 'np.percentile', (['sw1', '(95)'], {}), '(sw1, 95)\n', (28799, 28808), True, 'import numpy as np\n'), ((28808, 28830), 'numpy.percentile', 'np.percentile', (['nw1', '(95)'], {}), '(nw1, 95)\n', (28821, 28830), True, 'import numpy as np\n'), ((29109, 29131), 'numpy.percentile', 'np.percentile', (['sw1', '(95)'], {}), '(sw1, 95)\n', (29122, 29131), True, 'import numpy as np\n'), ((29131, 29153), 'numpy.percentile', 'np.percentile', (['nw1', '(95)'], {}), '(nw1, 95)\n', (29144, 29153), True, 'import numpy as np\n'), ((29409, 29431), 'numpy.percentile', 'np.percentile', (['sw1', '(95)'], {}), '(sw1, 95)\n', (29422, 29431), True, 'import numpy as np\n'), ((29431, 29453), 'numpy.percentile', 'np.percentile', (['nw1', '(95)'], {}), '(nw1, 95)\n', (29444, 29453), True, 'import numpy as np\n')]
from __future__ import print_function, division import os import torch from torch.autograd import Variable from skimage import io import pandas as pd import numpy as np from torch.utils.data import Dataset from geotnf.transformation import GeometricTnf from geotnf.flow import read_flo_file class TSSDataset(Dataset): """ TSS image pair dataset http://taniai.space/projects/cvpr16_dccs/ Args: csv_file (string): Path to the csv file with image names and annotation files. dataset_path (string): Directory with the images. output_size (2-tuple): Desired output size transform (callable): Transformation for post-processing the training pair (eg. image normalization) """ def __init__(self, csv_file, dataset_path,output_size=(240,240),transform=None): self.out_h, self.out_w = output_size self.pairs = pd.read_csv(csv_file) self.img_A_names = self.pairs.iloc[:,0] self.img_B_names = self.pairs.iloc[:,1] self.flow_direction = self.pairs.iloc[:, 2].values.astype('int') self.flip_img_A = self.pairs.iloc[:, 3].values.astype('int') self.pair_category = self.pairs.iloc[:, 4].values.astype('int') self.dataset_path = dataset_path self.transform = transform # no cuda as dataset is called from CPU threads in dataloader and produces confilct self.affineTnf = GeometricTnf(out_h=self.out_h, out_w=self.out_w, use_cuda = False) def __len__(self): return len(self.pairs) def __getitem__(self, idx): # get pre-processed images flip_img_A = self.flip_img_A[idx] image_A,im_size_A = self.get_image(self.img_A_names,idx,flip_img_A) image_B,im_size_B = self.get_image(self.img_B_names,idx) # get flow output path flow_path = self.get_GT_flow_relative_path(idx) sample = {'source_image': image_A, 'target_image': image_B, 'source_im_size': im_size_A, 'target_im_size': im_size_B, 'flow_path': flow_path} # # get ground-truth flow # flow = self.get_GT_flow(idx) # sample = {'source_image': image_A, 'target_image': image_B, 'source_im_size': im_size_A, 'target_im_size': im_size_B, 'flow_GT': flow} if self.transform: sample = self.transform(sample) return sample def get_image(self,img_name_list,idx,flip=False): img_name = os.path.join(self.dataset_path, img_name_list[idx]) image = io.imread(img_name) # if grayscale convert to 3-channel image if image.ndim==2: image=np.repeat(np.expand_dims(image,2),axis=2,repeats=3) # flip horizontally if needed if flip: image=np.flip(image,1) # get image size im_size = np.asarray(image.shape) # convert to torch Variable image = np.expand_dims(image.transpose((2,0,1)),0) image = torch.Tensor(image.astype(np.float32)) image_var = Variable(image,requires_grad=False) # Resize image using bilinear sampling with identity affine tnf image = self.affineTnf(image_var).data.squeeze(0) im_size = torch.Tensor(im_size.astype(np.float32)) return (image, im_size) def get_GT_flow(self,idx): img_folder = os.path.dirname(self.img_A_names[idx]) flow_dir = self.flow_direction[idx] flow_file = 'flow'+str(flow_dir)+'.flo' flow_file_path = os.path.join(self.dataset_path, img_folder , flow_file) flow = torch.FloatTensor(read_flo_file(flow_file_path)) return flow def get_GT_flow_relative_path(self,idx): img_folder = os.path.dirname(self.img_A_names[idx]) flow_dir = self.flow_direction[idx] flow_file = 'flow'+str(flow_dir)+'.flo' flow_file_path = os.path.join(img_folder , flow_file) return flow_file_path
[ "numpy.flip", "pandas.read_csv", "torch.autograd.Variable", "numpy.asarray", "os.path.dirname", "numpy.expand_dims", "geotnf.flow.read_flo_file", "geotnf.transformation.GeometricTnf", "os.path.join", "skimage.io.imread" ]
[((906, 927), 'pandas.read_csv', 'pd.read_csv', (['csv_file'], {}), '(csv_file)\n', (917, 927), True, 'import pandas as pd\n'), ((1440, 1504), 'geotnf.transformation.GeometricTnf', 'GeometricTnf', ([], {'out_h': 'self.out_h', 'out_w': 'self.out_w', 'use_cuda': '(False)'}), '(out_h=self.out_h, out_w=self.out_w, use_cuda=False)\n', (1452, 1504), False, 'from geotnf.transformation import GeometricTnf\n'), ((2480, 2531), 'os.path.join', 'os.path.join', (['self.dataset_path', 'img_name_list[idx]'], {}), '(self.dataset_path, img_name_list[idx])\n', (2492, 2531), False, 'import os\n'), ((2548, 2567), 'skimage.io.imread', 'io.imread', (['img_name'], {}), '(img_name)\n', (2557, 2567), False, 'from skimage import io\n'), ((2883, 2906), 'numpy.asarray', 'np.asarray', (['image.shape'], {}), '(image.shape)\n', (2893, 2906), True, 'import numpy as np\n'), ((3086, 3122), 'torch.autograd.Variable', 'Variable', (['image'], {'requires_grad': '(False)'}), '(image, requires_grad=False)\n', (3094, 3122), False, 'from torch.autograd import Variable\n'), ((3427, 3465), 'os.path.dirname', 'os.path.dirname', (['self.img_A_names[idx]'], {}), '(self.img_A_names[idx])\n', (3442, 3465), False, 'import os\n'), ((3583, 3637), 'os.path.join', 'os.path.join', (['self.dataset_path', 'img_folder', 'flow_file'], {}), '(self.dataset_path, img_folder, flow_file)\n', (3595, 3637), False, 'import os\n'), ((3804, 3842), 'os.path.dirname', 'os.path.dirname', (['self.img_A_names[idx]'], {}), '(self.img_A_names[idx])\n', (3819, 3842), False, 'import os\n'), ((3960, 3995), 'os.path.join', 'os.path.join', (['img_folder', 'flow_file'], {}), '(img_folder, flow_file)\n', (3972, 3995), False, 'import os\n'), ((2810, 2827), 'numpy.flip', 'np.flip', (['image', '(1)'], {}), '(image, 1)\n', (2817, 2827), True, 'import numpy as np\n'), ((3681, 3710), 'geotnf.flow.read_flo_file', 'read_flo_file', (['flow_file_path'], {}), '(flow_file_path)\n', (3694, 3710), False, 'from geotnf.flow import read_flo_file\n'), ((2682, 2706), 'numpy.expand_dims', 'np.expand_dims', (['image', '(2)'], {}), '(image, 2)\n', (2696, 2706), True, 'import numpy as np\n')]
# ~~~ # This file is part of the PhD-thesis: # # "Adaptive Reduced Basis Methods for Multiscale Problems # and Large-scale PDE-constrained Optimization" # # by: <NAME> # # https://github.com/TiKeil/Supplementary-Material-for-PhD-thesis # # Copyright 2019-2022 all developers. All rights reserved. # License: Licensed as BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) # Authors: # <NAME> (2022) # ~~~ import numpy as np from pymor.discretizers.builtin import discretize_stationary_cg from pymor.analyticalproblems.functions import ConstantFunction, LincombFunction from pymor.discretizers.builtin.grids.referenceelements import square from pymor.operators.constructions import VectorOperator, ComponentProjectionOperator from pymor.operators.numpy import NumpyMatrixOperator from pymor.discretizers.builtin.cg import (BoundaryDirichletFunctional, L2ProductFunctionalQ1, L2ProductP1, L2ProductQ1, InterpolationOperator, BoundaryL2ProductFunctional) from pymor.operators.constructions import LincombOperator, ZeroOperator from pymor.parameters.functionals import ConstantParameterFunctional from pymor.parameters.base import ParametricObject from pymor.vectorarrays.numpy import NumpyVectorSpace from pymor.discretizers.builtin.grids.rect import RectGrid from pdeopt.model import QuadraticPdeoptStationaryModel from pdeopt.gridlod_model import FEMGridlodModel, GridlodModel from gridlod import util from gridlod.world import World def _construct_mu_bar(problem): mu_bar = [] for key, size in sorted(problem.parameter_space.parameters.items()): range_ = problem.parameter_space.ranges[key] if range_[0] == 0: value = 10**(np.log10(range_[1])/2) else: value = 10**((np.log10(range_[0]) + np.log10(range_[1]))/2) for i in range(size): mu_bar.append(value) return problem.parameters.parse(mu_bar) def discretize_gridlod_fem(problem, fine_diameter): n = int(1/fine_diameter * np.sqrt(2)) assert n % 2 == 0 N = 2 NFine = np.array([n, n]) NWorldCoarse = np.array([N, N]) g = problem.dirichlet_data dom = problem.domain assert not dom.has_robin a = 0 if dom.left == "dirichlet" else 1 b = 0 if dom.right == "dirichlet" else 1 c = 0 if dom.top == "dirichlet" else 1 d = 0 if dom.bottom == "dirichlet" else 1 boundaryConditions = np.array([[a, b], [c, d]]) NCoarseElement = NFine // NWorldCoarse world = World(NWorldCoarse, NCoarseElement, boundaryConditions) xt = util.tCoordinates(NFine) NtFine = xt.shape[0] xp = util.pCoordinates(NFine) NpFine = xp.shape[0] # simplify the data structure if isinstance(problem.diffusion, LincombFunction): data = [ZeroOperator(NumpyVectorSpace(1), NumpyVectorSpace(NtFine))] coefficients = [1.] for (func, coef) in zip(problem.diffusion.functions, problem.diffusion.coefficients): if isinstance(coef, ParametricObject): data.append(NumpyMatrixOperator(func(xt))) coefficients.append(coef) else: data[0] += coef * NumpyMatrixOperator(func(xt)) else: data = [NumpyMatrixOperator(problem.diffusion(xt))] coefficients = [1.] data[0] = data[0].assemble() lhs_data = LincombOperator(data, coefficients) if isinstance(problem.rhs, LincombFunction): data = [ZeroOperator(NumpyVectorSpace(1), NumpyVectorSpace(NpFine))] coefficients = [1.] for (func, coef) in zip(problem.rhs.functions, problem.rhs.coefficients): if isinstance(coef, ParametricObject): data.append(NumpyMatrixOperator(func(xp))) coefficients.append(coef) else: data[0] += coef * NumpyMatrixOperator(func(xp)) else: data = [NumpyMatrixOperator(problem.rhs(xp))] coefficients = [1.] data[0] = data[0].assemble() rhs_data = LincombOperator(data, coefficients) fem_with_gridlod = FEMGridlodModel(lhs_data, rhs_data, boundaryConditions, world, g) return fem_with_gridlod def discretize_gridlod(problem, fine_diameter, coarse_elements, pool=None, counter=None, save_correctors=True, store_in_tmp=False, mu_energy_product=None, use_fine_mesh=True, aFine_constructor=None, print_on_ranks=True, construct_aFine_globally=False): n = int(1/fine_diameter * np.sqrt(2)) assert n % coarse_elements == 0 N = coarse_elements coarse_diameter = 1./N * np.sqrt(2) + 1e-8 coarse_pymor_model, coarse_data = discretize_stationary_cg(problem, diameter=coarse_diameter, grid_type=RectGrid, preassemble=False) coarse_grid = coarse_data['grid'] assert coarse_grid.num_intervals[0] == N coarse_pymor_rhs = coarse_pymor_model.rhs ops, coefs = [], [] for op, coef in zip(coarse_pymor_rhs.operators, coarse_pymor_rhs.coefficients): if isinstance(op, L2ProductFunctionalQ1): ops.append(op.with_(dirichlet_clear_dofs=False)) coefs.append(coef) elif isinstance(op, BoundaryDirichletFunctional): pass elif isinstance(op, BoundaryL2ProductFunctional): pass else: assert 0, "this should not happen!" filtered_coarse_pymor_rhs = LincombOperator(ops, coefs) NFine = np.array([n, n]) NWorldCoarse = np.array([N, N]) # g = problem.dirichlet_data g = None dom = problem.domain assert not dom.has_robin a = 0 if dom.left == "dirichlet" else 1 b = 0 if dom.right == "dirichlet" else 1 c = 0 if dom.top == "dirichlet" else 1 d = 0 if dom.bottom == "dirichlet" else 1 boundaryConditions = np.array([[a, b], [c, d]]) assert np.sum(boundaryConditions) == 0, 'The other cases are not tested at the moment!!' NCoarseElement = NFine // NWorldCoarse world = World(NWorldCoarse, NCoarseElement, boundaryConditions) middle_coarse_index = np.prod(world.NWorldCoarse) // 2 + world.NWorldCoarse[0] // 2 from gridlod.world import Patch k = int(np.ceil(np.abs(np.log(np.sqrt(2 * (1.0 / world.NWorldCoarse[0] ** 2)))))) print(f"max fine dofs per patch: {Patch(world, k, middle_coarse_index).len_fine} with k={k}\n") # assert 0 if use_fine_mesh: xt = util.tCoordinates(NFine) NtFine = xt.shape[0] xp = util.pCoordinates(NFine) NpFine = xp.shape[0] if construct_aFine_globally: # extract data for gridlod model if isinstance(problem.diffusion, LincombFunction): data = [] for func in problem.diffusion.functions: op = NumpyMatrixOperator(func(xt)) data.append(op) coefs = problem.diffusion.coefficients else: data = [NumpyMatrixOperator(problem.diffusion(xt))] coefs = [1.] lhs_data = LincombOperator(data, coefs) else: lhs_data = None if isinstance(problem.rhs, LincombFunction): data = [] for func in problem.rhs.functions: data.append(NumpyMatrixOperator(func(xp))) coefs = problem.rhs.coefficients else: data = [NumpyMatrixOperator(problem.rhs(xp))] coefs = [1.] rhs_data = LincombOperator(data, coefs) else: lhs_data, rhs_data = None, None gridlod_model = GridlodModel(lhs_data, rhs_data, boundaryConditions, world, g, pool, counter, save_correctors=save_correctors, coarse_pymor_rhs=filtered_coarse_pymor_rhs, store_in_tmp=store_in_tmp, use_fine_mesh=use_fine_mesh, aFine_local_constructor=aFine_constructor, parameters=problem.parameters, aFineCoefficients=problem.diffusion.coefficients, print_on_ranks=print_on_ranks) if mu_energy_product: # we have to do this one more time with preassemble=True. it is not too expensive since it is a coarse discretizer coarse_pymor_model, _ = discretize_stationary_cg(problem, diameter=coarse_diameter, grid_type=RectGrid, preassemble=True, mu_energy_product=mu_energy_product) coarse_product = coarse_pymor_model.products['energy'] else: coarse_product = None return gridlod_model, coarse_grid, coarse_pymor_model, coarse_product, coarse_data['boundary_info'] def discretize_quadratic_pdeopt_with_gridlod(problem, diameter=np.sqrt(2)/200., coarse_elements=2, weights=None, domain_of_interest=None, desired_temperature=None, mu_for_u_d=None, mu_for_tikhonov=None, pool=None, counter=None, save_correctors=True, store_in_tmp=False, coarse_J=False, use_fine_mesh=True, aFine_constructor=None, u_d=None, print_on_ranks=True): mu_bar = _construct_mu_bar(problem) if use_fine_mesh: primal_fom, data = discretize_stationary_cg(problem, diameter=diameter, grid_type=RectGrid, mu_energy_product=mu_bar) gridlod_fom, coarse_grid, coarse_model, coarse_opt_product, coarse_bi = discretize_gridlod( problem, diameter, coarse_elements, pool, counter, save_correctors, store_in_tmp=store_in_tmp, mu_energy_product=mu_bar, use_fine_mesh=use_fine_mesh, aFine_constructor=aFine_constructor, print_on_ranks=print_on_ranks) coarse_space = coarse_model.solution_space if use_fine_mesh: grid = data['grid'] else: grid = coarse_grid data = {'grid': coarse_grid} d = grid.dim # prepare data functions domain_of_interest = domain_of_interest or ConstantFunction(1., d) if u_d is None: u_desired = ConstantFunction(desired_temperature, d) if desired_temperature is not None else None if mu_for_u_d is not None: modifified_mu = mu_for_u_d.copy() for key in mu_for_u_d.keys(): if len(mu_for_u_d[key]) == 0: modifified_mu.pop(key) if use_fine_mesh: u_d = primal_fom.solve(modifified_mu) else: u_d = gridlod_fom.solve(modifified_mu) else: assert desired_temperature is not None u_d = InterpolationOperator(grid, u_desired).as_vector() if grid.reference_element is square: L2_OP = L2ProductQ1 else: L2_OP = L2ProductP1 Restricted_L2_OP_on_coarse = L2_OP(coarse_grid, coarse_bi, dirichlet_clear_rows=False, coefficient_function=domain_of_interest) if use_fine_mesh: coarse_proj = ComponentProjectionOperator(gridlod_fom.CoarseDofsInFine, primal_fom.solution_space, range_id=coarse_space.id) Restricted_L2_OP_coarse = ComponentProjectionFromBothSides(Restricted_L2_OP_on_coarse, coarse_proj) u_d_on_coarse = coarse_proj.apply(u_d) else: coarse_proj = None if coarse_J: if use_fine_mesh: Restricted_L2_OP = Restricted_L2_OP_coarse else: Restricted_L2_OP = Restricted_L2_OP_on_coarse else: Restricted_L2_OP = L2_OP(grid, data['boundary_info'], dirichlet_clear_rows=False, coefficient_function=domain_of_interest) coarse_proj = None l2_u_d_squared = Restricted_L2_OP.apply2(u_d, u_d)[0][0] constant_part = 0.5 * l2_u_d_squared # assemble output functional from pdeopt.theta import build_output_coefficient if weights is not None: weight_for_J = weights.pop('sigma_u') else: weight_for_J = 1. state_functional = ConstantParameterFunctional(weight_for_J) if mu_for_tikhonov: if mu_for_u_d is not None: mu_for_tikhonov = mu_for_u_d else: assert isinstance(mu_for_tikhonov, dict) output_coefficient = build_output_coefficient(gridlod_fom.parameters, weights, mu_for_tikhonov, None, state_functional, constant_part) output_functional = {} output_functional['output_coefficient'] = output_coefficient output_functional['linear_part'] = LincombOperator( [VectorOperator(Restricted_L2_OP.apply(u_d))],[-state_functional]) # j(.) output_functional['bilinear_part'] = LincombOperator( [Restricted_L2_OP],[0.5*state_functional]) # k(.,.) output_functional['d_u_linear_part'] = LincombOperator( [VectorOperator(Restricted_L2_OP.apply(u_d))],[-state_functional]) # j(.) output_functional['d_u_bilinear_part'] = LincombOperator( [Restricted_L2_OP], [state_functional]) # 2k(.,.) if use_fine_mesh: output_functional['linear_part_coarse'] = LincombOperator( [VectorOperator(Restricted_L2_OP_coarse.apply(u_d))],[-state_functional]) # j(.) output_functional['bilinear_part_coarse'] = LincombOperator( [Restricted_L2_OP_coarse],[0.5*state_functional]) # k(.,.) output_functional['d_u_linear_part_coarse'] = LincombOperator( [VectorOperator(Restricted_L2_OP_coarse.apply(u_d))],[-state_functional]) # j(.) output_functional['d_u_bilinear_part_coarse'] = LincombOperator( [Restricted_L2_OP_coarse], [state_functional]) # 2k(.,.) output_functional['linear_part_coarse_full'] = LincombOperator( [VectorOperator(Restricted_L2_OP_on_coarse.apply(u_d_on_coarse))],[-state_functional]) # j(.) output_functional['bilinear_part_coarse_full'] = LincombOperator( [Restricted_L2_OP_on_coarse],[0.5*state_functional]) # k(.,.) output_functional['d_u_linear_part_coarse_full'] = LincombOperator( [VectorOperator(Restricted_L2_OP_on_coarse.apply(u_d_on_coarse))],[-state_functional]) # j(.) output_functional['d_u_bilinear_part_coarse_full'] = LincombOperator( [Restricted_L2_OP_on_coarse], [state_functional]) # 2k(.,.) output_functional['coarse_opt_product'] = coarse_opt_product C = domain_of_interest(grid.centers(2)) # <== these are the vertices! C = np.nonzero(C)[0] doI = ComponentProjectionOperator(C, Restricted_L2_OP.source) output_functional['sigma_u'] = state_functional output_functional['u_d'] = u_d output_functional['DoI'] = doI if use_fine_mesh: opt_product = primal_fom.energy_product # energy w.r.t. mu_bar (see above) primal_fom = primal_fom.with_(products=dict(opt=opt_product, **primal_fom.products)) else: primal_fom = None opt_product = coarse_opt_product fom = primal_fom or coarse_model pde_opt_fom = QuadraticPdeoptStationaryModel(fom, output_functional, opt_product=opt_product, use_corrected_functional=False, adjoint_approach=False, optional_forward_model=gridlod_fom, coarse_projection=coarse_proj, fine_prolongation=None ) return pde_opt_fom, data, mu_bar from pymor.operators.constructions import ConcatenationOperator class ComponentProjectionFromBothSides(ConcatenationOperator): def __init__(self, operator, comp_proj): super().__init__([operator, comp_proj]) self.range = comp_proj.source self.__auto_init(locals()) def apply2(self, V, U, mu=None): return super().apply2(self.comp_proj.apply(V), U, mu) def apply_adjoint(self, V, mu=None): return super().apply_adjoint(self.comp_proj.apply(V), mu)
[ "numpy.sum", "pymor.discretizers.builtin.discretize_stationary_cg", "pymor.vectorarrays.numpy.NumpyVectorSpace", "numpy.prod", "pymor.parameters.functionals.ConstantParameterFunctional", "pdeopt.gridlod_model.GridlodModel", "pdeopt.model.QuadraticPdeoptStationaryModel", "numpy.log10", "pdeopt.gridlod_model.FEMGridlodModel", "pymor.analyticalproblems.functions.ConstantFunction", "gridlod.world.World", "pymor.operators.constructions.LincombOperator", "gridlod.world.Patch", "pdeopt.theta.build_output_coefficient", "gridlod.util.pCoordinates", "pymor.discretizers.builtin.cg.InterpolationOperator", "gridlod.util.tCoordinates", "numpy.nonzero", "numpy.array", "pymor.operators.constructions.ComponentProjectionOperator", "numpy.sqrt" ]
[((2150, 2166), 'numpy.array', 'np.array', (['[n, n]'], {}), '([n, n])\n', (2158, 2166), True, 'import numpy as np\n'), ((2186, 2202), 'numpy.array', 'np.array', (['[N, N]'], {}), '([N, N])\n', (2194, 2202), True, 'import numpy as np\n'), ((2493, 2519), 'numpy.array', 'np.array', (['[[a, b], [c, d]]'], {}), '([[a, b], [c, d]])\n', (2501, 2519), True, 'import numpy as np\n'), ((2576, 2631), 'gridlod.world.World', 'World', (['NWorldCoarse', 'NCoarseElement', 'boundaryConditions'], {}), '(NWorldCoarse, NCoarseElement, boundaryConditions)\n', (2581, 2631), False, 'from gridlod.world import World\n'), ((2642, 2666), 'gridlod.util.tCoordinates', 'util.tCoordinates', (['NFine'], {}), '(NFine)\n', (2659, 2666), False, 'from gridlod import util\n'), ((2701, 2725), 'gridlod.util.pCoordinates', 'util.pCoordinates', (['NFine'], {}), '(NFine)\n', (2718, 2725), False, 'from gridlod import util\n'), ((3420, 3455), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['data', 'coefficients'], {}), '(data, coefficients)\n', (3435, 3455), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((4067, 4102), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['data', 'coefficients'], {}), '(data, coefficients)\n', (4082, 4102), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((4127, 4192), 'pdeopt.gridlod_model.FEMGridlodModel', 'FEMGridlodModel', (['lhs_data', 'rhs_data', 'boundaryConditions', 'world', 'g'], {}), '(lhs_data, rhs_data, boundaryConditions, world, g)\n', (4142, 4192), False, 'from pdeopt.gridlod_model import FEMGridlodModel, GridlodModel\n'), ((4711, 4814), 'pymor.discretizers.builtin.discretize_stationary_cg', 'discretize_stationary_cg', (['problem'], {'diameter': 'coarse_diameter', 'grid_type': 'RectGrid', 'preassemble': '(False)'}), '(problem, diameter=coarse_diameter, grid_type=\n RectGrid, preassemble=False)\n', (4735, 4814), False, 'from pymor.discretizers.builtin import discretize_stationary_cg\n'), ((5497, 5524), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['ops', 'coefs'], {}), '(ops, coefs)\n', (5512, 5524), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((5538, 5554), 'numpy.array', 'np.array', (['[n, n]'], {}), '([n, n])\n', (5546, 5554), True, 'import numpy as np\n'), ((5574, 5590), 'numpy.array', 'np.array', (['[N, N]'], {}), '([N, N])\n', (5582, 5590), True, 'import numpy as np\n'), ((5896, 5922), 'numpy.array', 'np.array', (['[[a, b], [c, d]]'], {}), '([[a, b], [c, d]])\n', (5904, 5922), True, 'import numpy as np\n'), ((6072, 6127), 'gridlod.world.World', 'World', (['NWorldCoarse', 'NCoarseElement', 'boundaryConditions'], {}), '(NWorldCoarse, NCoarseElement, boundaryConditions)\n', (6077, 6127), False, 'from gridlod.world import World\n'), ((7639, 8027), 'pdeopt.gridlod_model.GridlodModel', 'GridlodModel', (['lhs_data', 'rhs_data', 'boundaryConditions', 'world', 'g', 'pool', 'counter'], {'save_correctors': 'save_correctors', 'coarse_pymor_rhs': 'filtered_coarse_pymor_rhs', 'store_in_tmp': 'store_in_tmp', 'use_fine_mesh': 'use_fine_mesh', 'aFine_local_constructor': 'aFine_constructor', 'parameters': 'problem.parameters', 'aFineCoefficients': 'problem.diffusion.coefficients', 'print_on_ranks': 'print_on_ranks'}), '(lhs_data, rhs_data, boundaryConditions, world, g, pool,\n counter, save_correctors=save_correctors, coarse_pymor_rhs=\n filtered_coarse_pymor_rhs, store_in_tmp=store_in_tmp, use_fine_mesh=\n use_fine_mesh, aFine_local_constructor=aFine_constructor, parameters=\n problem.parameters, aFineCoefficients=problem.diffusion.coefficients,\n print_on_ranks=print_on_ranks)\n', (7651, 8027), False, 'from pdeopt.gridlod_model import FEMGridlodModel, GridlodModel\n'), ((12379, 12420), 'pymor.parameters.functionals.ConstantParameterFunctional', 'ConstantParameterFunctional', (['weight_for_J'], {}), '(weight_for_J)\n', (12406, 12420), False, 'from pymor.parameters.functionals import ConstantParameterFunctional\n'), ((12614, 12731), 'pdeopt.theta.build_output_coefficient', 'build_output_coefficient', (['gridlod_fom.parameters', 'weights', 'mu_for_tikhonov', 'None', 'state_functional', 'constant_part'], {}), '(gridlod_fom.parameters, weights, mu_for_tikhonov,\n None, state_functional, constant_part)\n', (12638, 12731), False, 'from pdeopt.theta import build_output_coefficient\n'), ((13056, 13117), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP]', '[0.5 * state_functional]'], {}), '([Restricted_L2_OP], [0.5 * state_functional])\n', (13071, 13117), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((13354, 13409), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP]', '[state_functional]'], {}), '([Restricted_L2_OP], [state_functional])\n', (13369, 13409), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((15088, 15143), 'pymor.operators.constructions.ComponentProjectionOperator', 'ComponentProjectionOperator', (['C', 'Restricted_L2_OP.source'], {}), '(C, Restricted_L2_OP.source)\n', (15115, 15143), False, 'from pymor.operators.constructions import VectorOperator, ComponentProjectionOperator\n'), ((15631, 15870), 'pdeopt.model.QuadraticPdeoptStationaryModel', 'QuadraticPdeoptStationaryModel', (['fom', 'output_functional'], {'opt_product': 'opt_product', 'use_corrected_functional': '(False)', 'adjoint_approach': '(False)', 'optional_forward_model': 'gridlod_fom', 'coarse_projection': 'coarse_proj', 'fine_prolongation': 'None'}), '(fom, output_functional, opt_product=\n opt_product, use_corrected_functional=False, adjoint_approach=False,\n optional_forward_model=gridlod_fom, coarse_projection=coarse_proj,\n fine_prolongation=None)\n', (15661, 15870), False, 'from pdeopt.model import QuadraticPdeoptStationaryModel\n'), ((5934, 5960), 'numpy.sum', 'np.sum', (['boundaryConditions'], {}), '(boundaryConditions)\n', (5940, 5960), True, 'import numpy as np\n'), ((6492, 6516), 'gridlod.util.tCoordinates', 'util.tCoordinates', (['NFine'], {}), '(NFine)\n', (6509, 6516), False, 'from gridlod import util\n'), ((6559, 6583), 'gridlod.util.pCoordinates', 'util.pCoordinates', (['NFine'], {}), '(NFine)\n', (6576, 6583), False, 'from gridlod import util\n'), ((7539, 7567), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['data', 'coefs'], {}), '(data, coefs)\n', (7554, 7567), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((8418, 8557), 'pymor.discretizers.builtin.discretize_stationary_cg', 'discretize_stationary_cg', (['problem'], {'diameter': 'coarse_diameter', 'grid_type': 'RectGrid', 'preassemble': '(True)', 'mu_energy_product': 'mu_energy_product'}), '(problem, diameter=coarse_diameter, grid_type=\n RectGrid, preassemble=True, mu_energy_product=mu_energy_product)\n', (8442, 8557), False, 'from pymor.discretizers.builtin import discretize_stationary_cg\n'), ((9027, 9037), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (9034, 9037), True, 'import numpy as np\n'), ((9596, 9698), 'pymor.discretizers.builtin.discretize_stationary_cg', 'discretize_stationary_cg', (['problem'], {'diameter': 'diameter', 'grid_type': 'RectGrid', 'mu_energy_product': 'mu_bar'}), '(problem, diameter=diameter, grid_type=RectGrid,\n mu_energy_product=mu_bar)\n', (9620, 9698), False, 'from pymor.discretizers.builtin import discretize_stationary_cg\n'), ((10352, 10376), 'pymor.analyticalproblems.functions.ConstantFunction', 'ConstantFunction', (['(1.0)', 'd'], {}), '(1.0, d)\n', (10368, 10376), False, 'from pymor.analyticalproblems.functions import ConstantFunction, LincombFunction\n'), ((11330, 11445), 'pymor.operators.constructions.ComponentProjectionOperator', 'ComponentProjectionOperator', (['gridlod_fom.CoarseDofsInFine', 'primal_fom.solution_space'], {'range_id': 'coarse_space.id'}), '(gridlod_fom.CoarseDofsInFine, primal_fom.\n solution_space, range_id=coarse_space.id)\n', (11357, 11445), False, 'from pymor.operators.constructions import VectorOperator, ComponentProjectionOperator\n'), ((13701, 13769), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP_coarse]', '[0.5 * state_functional]'], {}), '([Restricted_L2_OP_coarse], [0.5 * state_functional])\n', (13716, 13769), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((14043, 14105), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP_coarse]', '[state_functional]'], {}), '([Restricted_L2_OP_coarse], [state_functional])\n', (14058, 14105), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((14402, 14473), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP_on_coarse]', '[0.5 * state_functional]'], {}), '([Restricted_L2_OP_on_coarse], [0.5 * state_functional])\n', (14417, 14473), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((14780, 14845), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['[Restricted_L2_OP_on_coarse]', '[state_functional]'], {}), '([Restricted_L2_OP_on_coarse], [state_functional])\n', (14795, 14845), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((15061, 15074), 'numpy.nonzero', 'np.nonzero', (['C'], {}), '(C)\n', (15071, 15074), True, 'import numpy as np\n'), ((2093, 2103), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2100, 2103), True, 'import numpy as np\n'), ((4553, 4563), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4560, 4563), True, 'import numpy as np\n'), ((4655, 4665), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4662, 4665), True, 'import numpy as np\n'), ((6155, 6182), 'numpy.prod', 'np.prod', (['world.NWorldCoarse'], {}), '(world.NWorldCoarse)\n', (6162, 6182), True, 'import numpy as np\n'), ((7125, 7153), 'pymor.operators.constructions.LincombOperator', 'LincombOperator', (['data', 'coefs'], {}), '(data, coefs)\n', (7140, 7153), False, 'from pymor.operators.constructions import LincombOperator, ZeroOperator\n'), ((10417, 10457), 'pymor.analyticalproblems.functions.ConstantFunction', 'ConstantFunction', (['desired_temperature', 'd'], {}), '(desired_temperature, d)\n', (10433, 10457), False, 'from pymor.analyticalproblems.functions import ConstantFunction, LincombFunction\n'), ((2870, 2889), 'pymor.vectorarrays.numpy.NumpyVectorSpace', 'NumpyVectorSpace', (['(1)'], {}), '(1)\n', (2886, 2889), False, 'from pymor.vectorarrays.numpy import NumpyVectorSpace\n'), ((2891, 2915), 'pymor.vectorarrays.numpy.NumpyVectorSpace', 'NumpyVectorSpace', (['NtFine'], {}), '(NtFine)\n', (2907, 2915), False, 'from pymor.vectorarrays.numpy import NumpyVectorSpace\n'), ((3535, 3554), 'pymor.vectorarrays.numpy.NumpyVectorSpace', 'NumpyVectorSpace', (['(1)'], {}), '(1)\n', (3551, 3554), False, 'from pymor.vectorarrays.numpy import NumpyVectorSpace\n'), ((3556, 3580), 'pymor.vectorarrays.numpy.NumpyVectorSpace', 'NumpyVectorSpace', (['NpFine'], {}), '(NpFine)\n', (3572, 3580), False, 'from pymor.vectorarrays.numpy import NumpyVectorSpace\n'), ((1794, 1813), 'numpy.log10', 'np.log10', (['range_[1]'], {}), '(range_[1])\n', (1802, 1813), True, 'import numpy as np\n'), ((6287, 6334), 'numpy.sqrt', 'np.sqrt', (['(2 * (1.0 / world.NWorldCoarse[0] ** 2))'], {}), '(2 * (1.0 / world.NWorldCoarse[0] ** 2))\n', (6294, 6334), True, 'import numpy as np\n'), ((6380, 6416), 'gridlod.world.Patch', 'Patch', (['world', 'k', 'middle_coarse_index'], {}), '(world, k, middle_coarse_index)\n', (6385, 6416), False, 'from gridlod.world import Patch\n'), ((10955, 10993), 'pymor.discretizers.builtin.cg.InterpolationOperator', 'InterpolationOperator', (['grid', 'u_desired'], {}), '(grid, u_desired)\n', (10976, 10993), False, 'from pymor.discretizers.builtin.cg import BoundaryDirichletFunctional, L2ProductFunctionalQ1, L2ProductP1, L2ProductQ1, InterpolationOperator, BoundaryL2ProductFunctional\n'), ((1857, 1876), 'numpy.log10', 'np.log10', (['range_[0]'], {}), '(range_[0])\n', (1865, 1876), True, 'import numpy as np\n'), ((1879, 1898), 'numpy.log10', 'np.log10', (['range_[1]'], {}), '(range_[1])\n', (1887, 1898), True, 'import numpy as np\n')]
# Code by <NAME> # TODO # [X] - Generate a random sample with mean = 5, std. dev. = 2. # [X] - Plot the distribution. # [X] - Give the summary statistics import numpy as np import matplotlib.pyplot as plt import random # Input number of samples numberSamples = int(input("Enter number of samples in the sample list: ")) # Generate sample list sampleList = [random.normalvariate(5, 2) for x in range(numberSamples)] # Printing details print('\nGenerated sample list containing {} elements: '.format(numberSamples)) print(sampleList) print('\n\nCalculated Mean = {:.3f}\nRounded Calculated Mean = {}\n\nCalculated Std. Deviation = {:.3f}\nRounded Calculated Std. Deviation = {}'.format( np.mean(sampleList), round(np.mean(sampleList)), np.std(sampleList), round(np.std(sampleList)) ) ) plt.hist(sampleList) plt.show() # Reference: # https://stackoverflow.com/questions/51515423/generate-sample-data-with-an-exact-mean-and-standard-deviation
[ "matplotlib.pyplot.show", "matplotlib.pyplot.hist", "random.normalvariate", "numpy.std", "numpy.mean" ]
[((800, 820), 'matplotlib.pyplot.hist', 'plt.hist', (['sampleList'], {}), '(sampleList)\n', (808, 820), True, 'import matplotlib.pyplot as plt\n'), ((821, 831), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (829, 831), True, 'import matplotlib.pyplot as plt\n'), ((362, 388), 'random.normalvariate', 'random.normalvariate', (['(5)', '(2)'], {}), '(5, 2)\n', (382, 388), False, 'import random\n'), ((695, 714), 'numpy.mean', 'np.mean', (['sampleList'], {}), '(sampleList)\n', (702, 714), True, 'import numpy as np\n'), ((744, 762), 'numpy.std', 'np.std', (['sampleList'], {}), '(sampleList)\n', (750, 762), True, 'import numpy as np\n'), ((722, 741), 'numpy.mean', 'np.mean', (['sampleList'], {}), '(sampleList)\n', (729, 741), True, 'import numpy as np\n'), ((770, 788), 'numpy.std', 'np.std', (['sampleList'], {}), '(sampleList)\n', (776, 788), True, 'import numpy as np\n')]
import cv2 import glob import numpy as np np.set_printoptions(threshold=np.nan) images = [] images_name = images_name = glob.glob('sample/*') for index, image in enumerate(images_name): print('Reading ' + str(index) + ' of ' + str(len(images_name))) img = cv2.imread(image) img = cv2.resize(img, (1024, 768), interpolation=cv2.INTER_AREA) height, width, depth = img.shape norm = img.copy() b, g, r = cv2.split(img) sum = b+g+r norm[:, :, 0] = b/sum*255.0 norm[:, :, 1] = g/sum*255.0 norm[:, :, 2] = r/sum*255.0 # if(index == len(images_name) - 1): cv2.imshow(image, norm) cv2.waitKey(0) cv2.destroyAllWindows()
[ "numpy.set_printoptions", "cv2.waitKey", "cv2.imshow", "cv2.imread", "cv2.split", "glob.glob", "cv2.destroyAllWindows", "cv2.resize" ]
[((43, 80), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.nan'}), '(threshold=np.nan)\n', (62, 80), True, 'import numpy as np\n'), ((121, 142), 'glob.glob', 'glob.glob', (['"""sample/*"""'], {}), "('sample/*')\n", (130, 142), False, 'import glob\n'), ((625, 639), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (636, 639), False, 'import cv2\n'), ((640, 663), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (661, 663), False, 'import cv2\n'), ((266, 283), 'cv2.imread', 'cv2.imread', (['image'], {}), '(image)\n', (276, 283), False, 'import cv2\n'), ((294, 352), 'cv2.resize', 'cv2.resize', (['img', '(1024, 768)'], {'interpolation': 'cv2.INTER_AREA'}), '(img, (1024, 768), interpolation=cv2.INTER_AREA)\n', (304, 352), False, 'import cv2\n'), ((428, 442), 'cv2.split', 'cv2.split', (['img'], {}), '(img)\n', (437, 442), False, 'import cv2\n'), ((600, 623), 'cv2.imshow', 'cv2.imshow', (['image', 'norm'], {}), '(image, norm)\n', (610, 623), False, 'import cv2\n')]
# -*- coding: utf-8 -*- from datetime import datetime import os import re import h5py from lib.pb_io import attrs2dict from lib.pb_sat import planck_r2t from lib.read_base import ReadL1 import numpy as np import pandas as pd __description__ = 'MERSI传感器读取类' __author__ = 'wangpeng' __date__ = '2018-08-28' __version__ = '1.0.0_beat' g_main_path, g_main_file = os.path.split(os.path.realpath(__file__)) class ReadMersiL1(ReadL1): """ 读取 MERSI 传感器的 L1 数据 分辨率:1000m 卫星: [FY3A FY3B FY3C] 通道数量:20 可见光通道:1,2,3,4,6~20 红外通道:5 分辨率:1000m 卫星: [FY3D] 通道数量:25 可见光通道:1~20 红外通道:20~25 分辨率:250 卫星: 通道数量: 可见光通道: 红外通道: """ def __init__(self, in_file, geo_file=None, cloud_file=None, in_ir_file=None, in_vis_file=None, coef_txt_flag=None): sensor = 'MERSI' self.in_ir_file = in_ir_file self.in_vis_file = in_vis_file self.coef_txt_flag = coef_txt_flag super(ReadMersiL1, self).__init__(in_file, sensor) self.geo_file = geo_file self.cloud_file = cloud_file def set_resolution(self): """ use filename set self.resolution :return: """ file_name = os.path.basename(self.in_file) if '1000M' in file_name: self.resolution = 1000 else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) def set_satellite(self): """ use filename set self.satellite :return: """ file_name = os.path.basename(self.in_file) pattern = r'([A-Z0-9]+)_%s.*' % self.sensor m = re.match(pattern, file_name) if m: self.satellite = m.groups()[0] else: raise ValueError('Cant get the satellite name from file name.') def set_ymd_hms(self): """ use filename set self.ymd self.hms """ file_name = os.path.basename(self.in_file) pat = '\w{4}_\w{5}_\w{4}_L1_(\d{8})_(\d{4})_\w{5}_MS.HDF$' g = re.match(pat, file_name) if g: self.ymd = g.group(1) self.hms = g.group(2) + '00' else: raise ValueError('Cant get the ymdhms from file name.') def set_file_attr(self): """ get hdf5 file attrs self.file_attr :return: """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: with h5py.File(self.in_file, 'r') as h5r: self.file_attr = attrs2dict(h5r.attrs) else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( "Cant handle this resolution: ".format(self.resolution)) def set_data_shape(self): """ use dataset set self.data_shape :return: """ # 如果分辨率是 1000 米 if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: self.data_shape = (2000, 2048) else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # elif self.resolution == 250: else: raise ValueError( "Cant handle this resolution: ".format(self.resolution)) def set_channels(self): """ return sensor channels """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] if self.satellite in satellite_type1: self.channels = 20 elif self.satellite in satellite_type2: self.channels = 25 # elif self.resolution == 250: else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) def __get_geo_file(self): """ return 定位文件 """ if self.geo_file is not None: return self.geo_file else: if self.resolution == 1000: satellite_type1 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: geo_file = self.in_file[:-12] + 'GEO1K_MS.HDF' else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( "Cant handle this resolution: ".format(self.resolution)) return geo_file def __get_clm_file(self): """ return 定位文件 """ if self.cloud_file is not None: return self.cloud_file else: if self.resolution == 1000: satellite_type1 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: clm_file = self.in_file.replace( 'GBAL_L1', 'ORBT_L2_CLM_MLT_NUL') else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( "Cant handle this resolution: ".format(self.resolution)) return clm_file def get_cloudmask(self): data = None clm_flag = np.full(self.data_shape, -999) if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: in_file = self.__get_clm_file() with h5py.File(in_file, 'r') as h5r: data_pre = h5r.get('Cloud_Mask')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 z = data_pre[0, :, :] # 0 表示无效值 z0 = z & 0b1 z12 = (z >> 1) & 0b11 z4 = (z >> 4) & 0b1 z67 = (z >> 6) & 0b11 # Invalid 0 mask = (z == 0) idx = np.where(mask) clm_flag[idx] = 0 # Coastlines mask = (z67 == 0b01) idx = np.where(mask) clm_flag[idx] = 1 # Uncertain mask = (z12 == 0b01) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 2 # Cloud mask = (z12 == 0b00) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 3 # Poss Land Clear mask = ((z67 == 0b11) | (z67 == 0b10)) & ( z12 == 0b10) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 4 # Land Clear mask = ((z67 == 0b11) | (z67 == 0b10)) & ( z12 == 0b11) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 5 # Poss Sea Clear mask = (z67 == 0b00) & (z12 == 0b10) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 6 # Sea Clear mask = (z67 == 0b00) & (z12 == 0b11) & (z4 == 0b1) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 7 # Sun Glint mask = (z67 == 0b00) & (z12 == 0b11) & (z4 == 0b0) & (z0 == 0b1) idx = np.where(mask) clm_flag[idx] = 8 data = clm_flag return data def get_dn(self): """ return DN """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C'] satellite_type3 = ['FY3D'] if self.satellite in satellite_type1: data_file = self.in_file with h5py.File(data_file, 'r') as h5r: ary_ch1 = h5r.get('/EV_250_Aggr.1KM_RefSB')[:] ary_ch5 = h5r.get('/EV_250_Aggr.1KM_Emissive')[:] ary_ch6 = h5r.get('/EV_1KM_RefSB')[:] vmin = 0 vmax = 10000 # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 4: k = i data_pre = ary_ch1[k] # 开始处理 elif i == 4: data_pre = ary_ch5 else: k = i - 5 data_pre = ary_ch6[k] data_pre = data_pre.astype(np.float32) invalid_index = np.logical_or( data_pre <= vmin, data_pre > vmax) data_pre[invalid_index] = np.nan data[band] = data_pre elif self.satellite in satellite_type2: data_file = self.in_file with h5py.File(data_file, 'r') as h5r: ary_ch1 = h5r.get('/Data/EV_250_Aggr.1KM_RefSB')[:] ary_ch5 = h5r.get('/Data/EV_250_Aggr.1KM_Emissive')[:] ary_ch6 = h5r.get('/Data/EV_1KM_RefSB')[:] vmin = 0 vmax = 10000 # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 4: k = i data_pre = ary_ch1[k] # 开始处理 elif i == 4: data_pre = ary_ch5 else: k = i - 5 data_pre = ary_ch6[k] data_pre = data_pre.astype(np.float32) invalid_index = np.logical_or( data_pre <= vmin, data_pre > vmax) data_pre[invalid_index] = np.nan data[band] = data_pre elif self.satellite in satellite_type3: data_file = self.in_file with h5py.File(data_file, 'r') as h5r: ary_ch1_4 = h5r.get('/Data/EV_250_Aggr.1KM_RefSB')[:] ary_ch5_19 = h5r.get('/Data/EV_1KM_RefSB')[:] ary_ch20_23 = h5r.get('/Data/EV_1KM_Emissive')[:] ary_ch24_25 = h5r.get('/Data/EV_250_Aggr.1KM_Emissive')[:] vmin = 0 vmax = 65000 # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 4: k = i data_pre = ary_ch1_4[k] # 开始处理 elif i >= 4 and i < 19: k = i - 4 data_pre = ary_ch5_19[k] elif i >= 19 and i < 23: k = i - 19 data_pre = ary_ch20_23[k] else: k = i - 23 data_pre = ary_ch24_25[k] data_pre = data_pre.astype(np.float32) invalid_index = np.logical_or( data_pre <= vmin, data_pre > vmax) data_pre[invalid_index] = np.nan data[band] = data_pre else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_k0_from_txt(self): k0_vis = k0_ir = None if self.in_vis_file is not None: k0_k1_vis_df = pd.read_table(self.in_vis_file, sep='\t') k0_vis = k0_k1_vis_df.iloc[:, [0, 1]].to_numpy() if self.in_ir_file is not None: k0_k1_ir_df = pd.read_table(self.in_ir_file, sep='\t') k0_ir = k0_k1_ir_df.iloc[:, [0, 1]].to_numpy() return k0_vis, k0_ir def get_k1_from_txt(self): k1_vis = k1_ir = None if self.in_vis_file is not None: k0_k1_vis_df = pd.read_table(self.in_vis_file, sep='\t') k1_vis = k0_k1_vis_df.iloc[:, [0, 2]].to_numpy() if self.in_ir_file is not None: k0_k1_ir_df = pd.read_table(self.in_ir_file, sep='\t') k1_ir = k0_k1_ir_df.iloc[:, [0, 2]].to_numpy() return k1_vis, k1_ir def get_k2_from_txt(self): k2_vis = k2_ir = None if self.in_vis_file is not None: k0_k1_vis_df = pd.read_table(self.in_vis_file, sep='\t') k2_vis = k0_k1_vis_df.iloc[:, [0, 3]].to_numpy() if self.in_ir_file is not None: k0_k1_ir_df = pd.read_table(self.in_ir_file, sep='\t') k2_ir = k0_k1_ir_df.iloc[:, [0, 3]].to_numpy() return k2_vis, k2_ir def get_k0(self): """ return K0 """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C'] satellite_type3 = ['FY3D'] # FY3AB if self.satellite in satellite_type1: # vis_k, 54 = 19*3 (19通道 3个系数) ary_vis_coeff = self.file_attr['VIR_Cal_Coeff'] K = np.full((19, 3), 0.) for i in range(19): for j in range(3): K[i, j] = ary_vis_coeff[i * 3 + j] # 变成20*3 k0,k1,k2 values = np.array([0, 1, 0]) K = np.insert(K, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 0], dtype=np.float32) data[band] = channel_data # FY3C elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 19*3 变成20*3 红外通道给定值不影响原dn值 values = np.array([0, 1, 0]) K = np.insert(ary_vis_coeff, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 0], dtype=np.float32) data[band] = channel_data # FY3D elif self.satellite in satellite_type3: with h5py.File(self.in_file, 'r') as h5r: ary_ir_coeff = h5r.get('/Calibration/IR_Cal_Coeff')[:] ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 转维度 s = self.data_shape ary_vis_coeff1 = np.repeat( ary_vis_coeff[:, 0], s[0] * s[1]) ary_ir_coeff1 = np.repeat( ary_ir_coeff[:, 0, :], 10 * s[1], axis=1) # 转维度 19*2000*2048,6*2000*2048 ary_vis_coeff2 = ary_vis_coeff1.reshape( (-1,) + self.data_shape) ary_ir_coeff2 = ary_ir_coeff1.reshape( (-1,) + self.data_shape) # 逐个通道处理 s = self.data_shape for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 19: k = i data[band] = ary_vis_coeff2[k] else: k = i - 19 data[band] = ary_ir_coeff2[k] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) if self.coef_txt_flag: # 在这处理,达到的效果是,如果有某些通道不需要重新定标也可以处理 k0_vis, k0_ir = self.get_k0_from_txt() if k0_vis is not None: for channel_name, k0 in k0_vis: if channel_name in data: data[channel_name][:] = k0 if k0_ir is not None: for channel_name, k0 in k0_vis: if channel_name in data: data[channel_name][:] = k0 else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_k1(self): """ return K1 """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C'] satellite_type3 = ['FY3D'] # FY3AB if self.satellite in satellite_type1: # vis_k, 54 = 19*3 (19通道 3个系数) ary_vis_coeff = self.file_attr['VIR_Cal_Coeff'] K = np.full((19, 3), 0.) for i in range(19): for j in range(3): K[i, j] = ary_vis_coeff[i * 3 + j] # 变成20*3 k0,k1,k2 values = np.array([0, 1, 0]) K = np.insert(K, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 1], dtype=np.float32) data[band] = channel_data # FY3C elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 19*3 变成20*3 红外通道给定值不影响原dn值 values = np.array([0, 1, 0]) K = np.insert(ary_vis_coeff, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 1], dtype=np.float32) data[band] = channel_data # FY3D elif self.satellite in satellite_type3: with h5py.File(self.in_file, 'r') as h5r: ary_ir_coeff = h5r.get('/Calibration/IR_Cal_Coeff')[:] ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 转维度 s = self.data_shape ary_vis_coeff1 = np.repeat( ary_vis_coeff[:, 1], s[0] * s[1]) ary_ir_coeff1 = np.repeat( ary_ir_coeff[:, 1, :], 10 * s[1], axis=1) # 转维度 19*2000*2048,6*2000*2048 ary_vis_coeff2 = ary_vis_coeff1.reshape( (-1,) + self.data_shape) ary_ir_coeff2 = ary_ir_coeff1.reshape( (-1,) + self.data_shape) # 逐个通道处理 s = self.data_shape for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 19: k = i data[band] = ary_vis_coeff2[k] else: k = i - 19 data[band] = ary_ir_coeff2[k] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) if self.coef_txt_flag: # 在这处理,达到的效果是,如果有某些通道不需要重新定标也可以处理 k1_vis, k1_ir = self.get_k1_from_txt() if k1_vis is not None: for channel_name, k1 in k1_vis: if channel_name in data: data[channel_name][:] = k1 if k1_ir is not None: for channel_name, k1 in k1_vis: if channel_name in data: data[channel_name][:] = k1 else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_k2(self): """ return K2 """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C'] satellite_type3 = ['FY3D'] # FY3AB if self.satellite in satellite_type1: # vis_k, 54 = 19*3 (19通道 3个系数) ary_vis_coeff = self.file_attr['VIR_Cal_Coeff'] K = np.full((19, 3), 0.) for i in range(19): for j in range(3): K[i, j] = ary_vis_coeff[i * 3 + j] # 变成20*3 k0,k1,k2 values = np.array([0, 1, 0]) K = np.insert(K, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 2], dtype=np.float32) data[band] = channel_data # FY3C elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 19*3 变成20*3 红外通道给定值不影响原dn值 values = np.array([0, 1, 0]) K = np.insert(ary_vis_coeff, 4, values, 0) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) # k0 channel_data = np.full( self.data_shape, K[i, 2], dtype=np.float32) data[band] = channel_data # FY3D elif self.satellite in satellite_type3: with h5py.File(self.in_file, 'r') as h5r: ary_ir_coeff = h5r.get('/Calibration/IR_Cal_Coeff')[:] ary_vis_coeff = h5r.get('/Calibration/VIS_Cal_Coeff')[:] # 转维度 s = self.data_shape ary_vis_coeff1 = np.repeat( ary_vis_coeff[:, 2], s[0] * s[1]) ary_ir_coeff1 = np.repeat( ary_ir_coeff[:, 2, :], 10 * s[1], axis=1) # 转维度 19*2000*2048,6*2000*2048 ary_vis_coeff2 = ary_vis_coeff1.reshape( (-1,) + self.data_shape) ary_ir_coeff2 = ary_ir_coeff1.reshape( (-1,) + self.data_shape) # 逐个通道处理 s = self.data_shape for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 19: k = i data[band] = ary_vis_coeff2[k] else: k = i - 19 data[band] = ary_ir_coeff2[k] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) if self.coef_txt_flag: # 在这处理,达到的效果是,如果有某些通道不需要重新定标也可以处理 k2_vis, k2_ir = self.get_k2_from_txt() if k2_vis is not None: for channel_name, k2 in k2_vis: if channel_name in data: data[channel_name][:] = k2 if k2_ir is not None: for channel_name, k2 in k2_vis: if channel_name in data: data[channel_name][:] = k2 else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_k3(self): pass def get_ref(self): """ return Ref """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] # FY3A/B/C if self.satellite in satellite_type1: dn = self.get_dn() k0 = self.get_k0() k1 = self.get_k1() k2 = self.get_k2() if 'FY3B' in self.satellite: if int(self.ymd + self.hms) <= 20130306001500: scales = 100. else: scales = 10000. else: scales = 100. # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if 'CH_05' in band: continue channel_data = dn[band] ** 2 * k2[band] + dn[band] * \ k1[band] + k0[band] pre_data = channel_data / scales idx = np.where(pre_data < 0.) if len(idx[0] > 0): pre_data[idx] = np.nan data[band] = pre_data # FY3D elif self.satellite in satellite_type2: dn = self.get_dn() k0 = self.get_k0() k1 = self.get_k1() k2 = self.get_k2() # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i < 19: pre_data = dn[band] ** 2 * k2[band] + dn[band] * \ k1[band] + k0[band] idx = np.where(pre_data < 0.) if len(idx[0] > 0): pre_data[idx] = np.nan data[band] = pre_data / 100. else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_rad(self): """ return rad """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] if self.satellite in satellite_type1: dn = self.get_dn() # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if 'CH_05' in band: data[band] = dn[band] / 100. elif self.satellite in satellite_type2: dn = self.get_dn() with h5py.File(self.in_file, 'r') as h5r: ary_a1 = h5r.get('/Data/EV_1KM_Emissive').attrs['Slope'] ary_b1 = h5r.get( '/Data/EV_1KM_Emissive').attrs['Intercept'] ary_a2 = h5r.get( '/Data/EV_250_Aggr.1KM_Emissive').attrs['Slope'] ary_b2 = h5r.get( '/Data/EV_250_Aggr.1KM_Emissive').attrs['Intercept'] a = np.concatenate((ary_a1, ary_a2)) b = np.concatenate((ary_b1, ary_b2)) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if i >= 19: k = i - 19 data[band] = dn[band] * a[k] + b[k] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_tbb_k1(self): """ return tbb_k1 dict one value """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] if self.satellite in satellite_type1: data['CH_05'] = 1 elif self.satellite in satellite_type2: data['CH_20'] = 1.00103 data['CH_21'] = 1.00085 data['CH_22'] = 1.00125 data['CH_23'] = 1.00030 data['CH_24'] = 1.00133 data['CH_25'] = 1.00065 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_tbb_k0(self): """ return tbb_k0 dict one value """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] if self.satellite in satellite_type1: data['CH_05'] = 0 elif self.satellite in satellite_type2: data['CH_20'] = -0.4759 data['CH_21'] = -0.3139 data['CH_22'] = -0.2662 data['CH_23'] = -0.0513 data['CH_24'] = -0.0734 data['CH_25'] = 0.0875 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_tbb(self): """ return tbb """ data = dict() if self.resolution == 1000: # 分辨率为 1000 satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: # rad转tbb的修正系数,所有时次都是固定值 tbb_k0 = self.get_tbb_k0() tbb_k1 = self.get_tbb_k1() rads = self.get_rad() central_wave_numbers = self.get_central_wave_number() # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) if band in list(rads.keys()): k0 = tbb_k0[band] k1 = tbb_k1[band] central_wave_number = central_wave_numbers[band] rad = rads[band] tbb = planck_r2t(rad, central_wave_number) data[band] = tbb * k1 + k0 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_sv(self): """ return sv """ data = dict() if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: try: data_pre = h5r.get('/SV_DN_average')[:] # 过滤无效值 invalid_index = np.logical_or( data_pre <= 0, data_pre > 4095) data_pre = data_pre.astype(np.float32) data_pre[invalid_index] = np.nan # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) channel_data = np.full( self.data_shape, np.nan, dtype=np.float32) channel_data[:] = data_pre[i, :].reshape(-1, 1) data[band] = channel_data except Exception as e: print(str(e)) elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get( '/Calibration/SV_DN_average')[:] # 过滤无效值 invalid_index = np.logical_or(data_pre <= 0, data_pre > 4095) data_pre = data_pre.astype(np.float32) data_pre[invalid_index] = np.nan s0 = data_pre.shape[1] print(data_pre.shape) # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) channel_data = np.full( self.data_shape, np.nan, dtype=np.float32) # 把200 转成2000 if s0 == 200: data_pre_new = np.repeat(data_pre[i, :], 10) elif s0 == 2000: data_pre_new = data_pre[i, :] else: raise ValueError( 'Cant read this satellite`s dataset sv .: {}'.format(self.satellite)) channel_data[:] = data_pre_new.reshape(-1, 1) data[band] = channel_data else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_bb(self): """ return bb """ data = dict() if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: try: data_pre = h5r.get('/BB_DN_average')[:] # 过滤无效值 invalid_index = np.logical_or( data_pre <= 0, data_pre > 4095) data_pre = data_pre.astype(np.float32) data_pre[invalid_index] = np.nan # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) channel_data = np.full( self.data_shape, np.nan, dtype=np.float32) channel_data[:] = data_pre[i, :].reshape(-1, 1) data[band] = channel_data except Exception as e: print(str(e)) elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get( '/Calibration/BB_DN_average')[:] # 过滤无效值 invalid_index = np.logical_or(data_pre <= 0, data_pre > 4095) data_pre = data_pre.astype(np.float32) data_pre[invalid_index] = np.nan # 逐个通道处理 s0 = data_pre.shape[1] # 逐个通道处理 for i in range(self.channels): band = 'CH_{:02d}'.format(i + 1) channel_data = np.full( self.data_shape, np.nan, dtype=np.float32) # 把200 转成2000 if s0 == 200: data_pre_new = np.repeat(data_pre[i, :], 10) elif s0 == 2000: data_pre_new = data_pre[i, :] else: raise ValueError( 'Cant read this satellite`s dataset bb .: {}'.format(self.satellite)) channel_data[:] = data_pre_new.reshape(-1, 1) data[band] = channel_data else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_longitude(self): """ return longitude """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/Longitude')[:] elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/Longitude')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < -180, data_pre > 180) data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_latitude(self): """ return latitude """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/Latitude')[:] elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/Latitude')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < -90, data_pre > 90) data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_land_sea_mask(self): """ return land_sea_mask """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/LandSeaMask')[:] elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/LandSeaMask')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < 0, data_pre > 7) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_height(self): """ return land_sea_mask """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/DEM')[:] elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/DEM')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < -400, data_pre > 10000) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_land_cover(self): """ return land_cover """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/LandCover')[:] elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/LandCover')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < 0, data_pre > 17) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_sensor_azimuth(self): """ return sensor_azimuth """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/SensorAzimuth')[:] vmin = -18000 vmax = 18000 elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get( '/Geolocation/SensorAzimuth')[:] if 'FY3D' in self.satellite: vmin = 0 vmax = 36000 else: vmin = -18000 vmax = 18000 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre / 100. return data def get_sensor_zenith(self): """ return sensor_zenith """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/SensorZenith')[:] vmin = 0 vmax = 18000 elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/SensorZenith')[:] vmin = 0 vmax = 18000 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre / 100. return data def get_solar_azimuth(self): """ return solar_azimuth """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/SolarAzimuth')[:] vmin = -18000 vmax = 18000 elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/SolarAzimuth')[:] if 'FY3D' in self.satellite: vmin = 0 vmax = 36000 else: vmin = -18000 vmax = 18000 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre / 100. return data def get_solar_zenith(self): """ return solar_zenith """ data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/SolarZenith')[:] vmin = 0 vmax = 18000 elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/SolarZenith')[:] vmin = 0 vmax = 18000 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre / 100. return data def get_hight(self): """ return hight """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: # s = self.data_shape # FY3A数据不规整,存在 1810,2048 的数据,取 1800,2048 with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/DEM')[:] vmin = -400 vmax = 10000 elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Geolocation/DEM')[:] vmin = -400 vmax = 10000 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 # invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) # data_pre = data_pre.astype(np.float32) # data_pre[invalid_index] = np.nan data = data_pre return data def get_day_night_flag(self): """ Nadir Day(0) Night(1) or Mix(2) Flag return day_night_flag """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: return elif self.satellite in satellite_type2: geo_file = self.__get_geo_file() with h5py.File(geo_file, 'r') as h5r: data_pre = h5r.get('/Timedata/DayNightFlag')[:] vmin = 0 vmax = 2 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 invalid_index = np.logical_or(data_pre < vmin, data_pre > vmax) data_pre = data_pre.astype(np.float) data_pre[invalid_index] = np.nan data = data_pre return data def get_mirror_side(self): data = None if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B'] satellite_type2 = ['FY3C', 'FY3D'] if self.satellite in satellite_type1: return elif self.satellite in satellite_type2: with h5py.File(self.in_file, 'r') as h5r: data_pre = h5r.get('/Calibration/Kmirror_Side')[:] else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) # 过滤无效值 data = data_pre return data def get_timestamp(self): """ return from 1970-01-01 00:00:00 seconds """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: seconds_of_file = 300 # 一个时次持续 300 秒 else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) file_date = datetime.strptime(self.ymd + self.hms, '%Y%m%d%H%M%S') timestamp = ( file_date - datetime(1970, 1, 1, 0, 0, 0)).total_seconds() row_length = self.data_shape[0] delta = np.linspace(0, seconds_of_file - 1, row_length) data = np.full(self.data_shape, np.nan, dtype=np.float64) data[:] = (delta + timestamp).reshape(-1, 1) data = data.astype(np.int32) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_central_wave_number(self): """ return 中心波数 central_wave_number wn(cm-1) = 10 ^ 7 / wave_length(nm) """ if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C'] satellite_type2 = ['FY3D'] if self.satellite in satellite_type1: data = {'CH_05': 869.565} elif self.satellite in satellite_type2: data = {'CH_20': 2634.359, 'CH_21': 2471.654, 'CH_22': 1382.621, 'CH_23': 1168.182, 'CH_24': 933.364, 'CH_25': 836.941} else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data def get_spectral_response(self): """ return 光谱波数和响应值,两个字典 """ data1 = dict() data2 = dict() if self.resolution == 1000: satellite_type1 = ['FY3A', 'FY3B', 'FY3C', 'FY3D'] if self.satellite in satellite_type1: dtype = { 'names': ('wave_length', 'response'), 'formats': ('f4', 'f4')} for i in range(self.channels): k = i + 1 band = "CH_{:02d}".format(k) file_name = '{}_{}_SRF_CH{:02d}_Pub.txt'.format( self.satellite, self.sensor, k) data_file = os.path.join(g_main_path, 'SRF', file_name) if not os.path.isfile(data_file): continue datas = np.loadtxt(data_file, dtype=dtype) # 波长转波数 wave_length = datas['wave_length'][::-1] wave_number = 10 ** 7 / wave_length # 响应 response = datas['response'][::-1] data1[band] = wave_number data2[band] = response else: raise ValueError( 'Cant read this satellite`s data.: {}'.format(self.satellite)) else: raise ValueError( 'Cant read this data, please check its resolution: {}'.format(self.in_file)) return data1, data2 if __name__ == '__main__': # L1File = 'D:/data/MERSI/FY3A_MERSI_GBAL_L1_20141230_1145_1000M_MS.HDF' # L1File = 'D:/data/MERSI/FY3B_MERSI_GBAL_L1_20130101_0005_1000M_MS.HDF' L1File = 'D:/data/MERSI/FY3D_MERSI_GBAL_L1_20181001_0020_1000M_MS.HDF' L1File = 'D:/data/MERSI/FY3D_MERSI_GBAL_L1_20190825_1755_1000M_MS.HDF' mersi = ReadMersiL1(L1File) print(mersi.satellite) # 卫星名 print(mersi.sensor) # 传感器名 print(mersi.ymd) # L1 文件年月日 YYYYMMDD print(mersi.hms) # L1 文件时分秒 HHMMSS print(mersi.resolution) # 分辨率 print(mersi.channels) # 通道数量 print(mersi.data_shape) print(type(mersi.file_attr)) def print_data_status(datas, name=None): data_shape = datas.shape data_min = np.nanmin(datas) data_max = np.nanmax(datas) data_mean = np.nanmean(datas) data_median = np.nanmedian(datas) print("{}: shape: {}, min: {}, max: {}, mean: {}, median: {}".format( name, data_shape, data_min, data_max, data_mean, data_median)) def print_channel_data(datas): if not isinstance(datas, dict): return keys = list(datas.keys()) keys.sort() for t_channel_name in keys: channel_data = datas[t_channel_name] print_data_status(channel_data, name=t_channel_name) # print('cloud mask') # t_data = mersi.get_cloudmask() # print('dn:') # t_data = mersi.get_dn() # print_channel_data(t_data) # print('k0:') # t_data = mersi.get_k0() # print_channel_data(t_data) # print('k1:') # t_data = mersi.get_k1() # print_channel_data(t_data) # print('k2:') # t_data = mersi.get_k2() # print_channel_data(t_data) # print('ref:') # t_data = mersi.get_ref() # print_channel_data(t_data) # # print('rad:') # t_data = mersi.get_rad() # print_channel_data(t_data) # # print('tbb:') # t_data = mersi.get_tbb() # print_channel_data(t_data) # print(t_data['CH_24'][1000, 1000]) # # print('sv:') # t_data = mersi.get_sv() # print_channel_data(t_data) # # print('bb:') # t_data = mersi.get_bb() # print_channel_data(t_data) # # print('longitude:') # t_data = mersi.get_longitude() # print_data_status(t_data) # # print('latitude:') # t_data = mersi.get_latitude() # print_data_status(t_data) # # print('land_sea_mask:') # t_data = mersi.get_land_sea_mask() # print_data_status(t_data) # # print('land_cover:') # t_data = mersi.get_land_cover() # print_data_status(t_data) # # print('sensor_azimuth:') # t_data = mersi.get_sensor_azimuth() # print_data_status(t_data) # print('sensor_zenith:') # t_data = mersi.get_sensor_zenith() # print_data_status(t_data) # print('solar_azimuth:') # t_data = mersi.get_solar_azimuth() # print_data_status(t_data) # print('solar_zenith:') # t_data = mersi.get_solar_zenith() # print_data_status(t_data) # print('timestamp:') # t_data = mersi.get_timestamp() # print_data_status(t_data) # # print('get_spectral_response:') # wavenums, wave_spec = mersi.get_spectral_response() # print_channel_data(wavenums) # print_channel_data(wave_spec) print('ref:') t_data = mersi.get_ref() for key in sorted(t_data.keys()): print("%s, %0.6f %0.6f" % (key, np.nanmin(t_data[key]), np.nanmax(t_data[key]))) print('rad:') t_data = mersi.get_rad() for key in sorted(t_data.keys()): print("%s, %0.6f %0.6f" % (key, np.nanmin(t_data[key]), np.nanmax(t_data[key]))) print('tbb:') t_data = mersi.get_tbb() for key in sorted(t_data.keys()): print("%s, %0.6f %0.6f" % (key, np.nanmin(t_data[key]), np.nanmax(t_data[key])))
[ "numpy.nanmedian", "os.path.isfile", "pandas.read_table", "os.path.join", "numpy.nanmean", "numpy.full", "numpy.insert", "numpy.loadtxt", "numpy.linspace", "numpy.repeat", "h5py.File", "os.path.basename", "os.path.realpath", "re.match", "datetime.datetime", "datetime.datetime.strptime", "numpy.nanmax", "numpy.concatenate", "numpy.nanmin", "numpy.where", "numpy.array", "numpy.logical_or", "lib.pb_sat.planck_r2t", "lib.pb_io.attrs2dict" ]
[((378, 404), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (394, 404), False, 'import os\n'), ((1211, 1241), 'os.path.basename', 'os.path.basename', (['self.in_file'], {}), '(self.in_file)\n', (1227, 1241), False, 'import os\n'), ((1578, 1608), 'os.path.basename', 'os.path.basename', (['self.in_file'], {}), '(self.in_file)\n', (1594, 1608), False, 'import os\n'), ((1673, 1701), 're.match', 're.match', (['pattern', 'file_name'], {}), '(pattern, file_name)\n', (1681, 1701), False, 'import re\n'), ((1965, 1995), 'os.path.basename', 'os.path.basename', (['self.in_file'], {}), '(self.in_file)\n', (1981, 1995), False, 'import os\n'), ((2075, 2099), 're.match', 're.match', (['pat', 'file_name'], {}), '(pat, file_name)\n', (2083, 2099), False, 'import re\n'), ((5557, 5587), 'numpy.full', 'np.full', (['self.data_shape', '(-999)'], {}), '(self.data_shape, -999)\n', (5564, 5587), True, 'import numpy as np\n'), ((55000, 55016), 'numpy.nanmin', 'np.nanmin', (['datas'], {}), '(datas)\n', (55009, 55016), True, 'import numpy as np\n'), ((55036, 55052), 'numpy.nanmax', 'np.nanmax', (['datas'], {}), '(datas)\n', (55045, 55052), True, 'import numpy as np\n'), ((55073, 55090), 'numpy.nanmean', 'np.nanmean', (['datas'], {}), '(datas)\n', (55083, 55090), True, 'import numpy as np\n'), ((55113, 55132), 'numpy.nanmedian', 'np.nanmedian', (['datas'], {}), '(datas)\n', (55125, 55132), True, 'import numpy as np\n'), ((6305, 6319), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (6313, 6319), True, 'import numpy as np\n'), ((6427, 6441), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (6435, 6441), True, 'import numpy as np\n'), ((6562, 6576), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (6570, 6576), True, 'import numpy as np\n'), ((6693, 6707), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (6701, 6707), True, 'import numpy as np\n'), ((6889, 6903), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (6897, 6903), True, 'import numpy as np\n'), ((7080, 7094), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (7088, 7094), True, 'import numpy as np\n'), ((7236, 7250), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (7244, 7250), True, 'import numpy as np\n'), ((7401, 7415), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (7409, 7415), True, 'import numpy as np\n'), ((7566, 7580), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (7574, 7580), True, 'import numpy as np\n'), ((12208, 12249), 'pandas.read_table', 'pd.read_table', (['self.in_vis_file'], {'sep': '"""\t"""'}), "(self.in_vis_file, sep='\\t')\n", (12221, 12249), True, 'import pandas as pd\n'), ((12378, 12418), 'pandas.read_table', 'pd.read_table', (['self.in_ir_file'], {'sep': '"""\t"""'}), "(self.in_ir_file, sep='\\t')\n", (12391, 12418), True, 'import pandas as pd\n'), ((12638, 12679), 'pandas.read_table', 'pd.read_table', (['self.in_vis_file'], {'sep': '"""\t"""'}), "(self.in_vis_file, sep='\\t')\n", (12651, 12679), True, 'import pandas as pd\n'), ((12808, 12848), 'pandas.read_table', 'pd.read_table', (['self.in_ir_file'], {'sep': '"""\t"""'}), "(self.in_ir_file, sep='\\t')\n", (12821, 12848), True, 'import pandas as pd\n'), ((13068, 13109), 'pandas.read_table', 'pd.read_table', (['self.in_vis_file'], {'sep': '"""\t"""'}), "(self.in_vis_file, sep='\\t')\n", (13081, 13109), True, 'import pandas as pd\n'), ((13238, 13278), 'pandas.read_table', 'pd.read_table', (['self.in_ir_file'], {'sep': '"""\t"""'}), "(self.in_ir_file, sep='\\t')\n", (13251, 13278), True, 'import pandas as pd\n'), ((49987, 50034), 'numpy.logical_or', 'np.logical_or', (['(data_pre < vmin)', '(data_pre > vmax)'], {}), '(data_pre < vmin, data_pre > vmax)\n', (50000, 50034), True, 'import numpy as np\n'), ((51287, 51341), 'datetime.datetime.strptime', 'datetime.strptime', (['(self.ymd + self.hms)', '"""%Y%m%d%H%M%S"""'], {}), "(self.ymd + self.hms, '%Y%m%d%H%M%S')\n", (51304, 51341), False, 'from datetime import datetime\n'), ((51511, 51558), 'numpy.linspace', 'np.linspace', (['(0)', '(seconds_of_file - 1)', 'row_length'], {}), '(0, seconds_of_file - 1, row_length)\n', (51522, 51558), True, 'import numpy as np\n'), ((51578, 51628), 'numpy.full', 'np.full', (['self.data_shape', 'np.nan'], {'dtype': 'np.float64'}), '(self.data_shape, np.nan, dtype=np.float64)\n', (51585, 51628), True, 'import numpy as np\n'), ((13833, 13854), 'numpy.full', 'np.full', (['(19, 3)', '(0.0)'], {}), '((19, 3), 0.0)\n', (13840, 13854), True, 'import numpy as np\n'), ((14048, 14067), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (14056, 14067), True, 'import numpy as np\n'), ((14088, 14114), 'numpy.insert', 'np.insert', (['K', '(4)', 'values', '(0)'], {}), '(K, 4, values, 0)\n', (14097, 14114), True, 'import numpy as np\n'), ((17632, 17653), 'numpy.full', 'np.full', (['(19, 3)', '(0.0)'], {}), '((19, 3), 0.0)\n', (17639, 17653), True, 'import numpy as np\n'), ((17847, 17866), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (17855, 17866), True, 'import numpy as np\n'), ((17887, 17913), 'numpy.insert', 'np.insert', (['K', '(4)', 'values', '(0)'], {}), '(K, 4, values, 0)\n', (17896, 17913), True, 'import numpy as np\n'), ((21431, 21452), 'numpy.full', 'np.full', (['(19, 3)', '(0.0)'], {}), '((19, 3), 0.0)\n', (21438, 21452), True, 'import numpy as np\n'), ((21646, 21665), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (21654, 21665), True, 'import numpy as np\n'), ((21686, 21712), 'numpy.insert', 'np.insert', (['K', '(4)', 'values', '(0)'], {}), '(K, 4, values, 0)\n', (21695, 21712), True, 'import numpy as np\n'), ((2555, 2583), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (2564, 2583), False, 'import h5py\n'), ((2629, 2650), 'lib.pb_io.attrs2dict', 'attrs2dict', (['h5r.attrs'], {}), '(h5r.attrs)\n', (2639, 2650), False, 'from lib.pb_io import attrs2dict\n'), ((5806, 5829), 'h5py.File', 'h5py.File', (['in_file', '"""r"""'], {}), "(in_file, 'r')\n", (5815, 5829), False, 'import h5py\n'), ((8034, 8059), 'h5py.File', 'h5py.File', (['data_file', '"""r"""'], {}), "(data_file, 'r')\n", (8043, 8059), False, 'import h5py\n'), ((14300, 14351), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 0]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 0], dtype=np.float32)\n', (14307, 14351), True, 'import numpy as np\n'), ((14700, 14719), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (14708, 14719), True, 'import numpy as np\n'), ((14740, 14778), 'numpy.insert', 'np.insert', (['ary_vis_coeff', '(4)', 'values', '(0)'], {}), '(ary_vis_coeff, 4, values, 0)\n', (14749, 14778), True, 'import numpy as np\n'), ((18099, 18150), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 1]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 1], dtype=np.float32)\n', (18106, 18150), True, 'import numpy as np\n'), ((18499, 18518), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (18507, 18518), True, 'import numpy as np\n'), ((18539, 18577), 'numpy.insert', 'np.insert', (['ary_vis_coeff', '(4)', 'values', '(0)'], {}), '(ary_vis_coeff, 4, values, 0)\n', (18548, 18577), True, 'import numpy as np\n'), ((21898, 21949), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 2]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 2], dtype=np.float32)\n', (21905, 21949), True, 'import numpy as np\n'), ((22298, 22317), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (22306, 22317), True, 'import numpy as np\n'), ((22338, 22376), 'numpy.insert', 'np.insert', (['ary_vis_coeff', '(4)', 'values', '(0)'], {}), '(ary_vis_coeff, 4, values, 0)\n', (22347, 22376), True, 'import numpy as np\n'), ((25930, 25954), 'numpy.where', 'np.where', (['(pre_data < 0.0)'], {}), '(pre_data < 0.0)\n', (25938, 25954), True, 'import numpy as np\n'), ((32316, 32344), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (32325, 32344), False, 'import h5py\n'), ((33463, 33508), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= 0)', '(data_pre > 4095)'], {}), '(data_pre <= 0, data_pre > 4095)\n', (33476, 33508), True, 'import numpy as np\n'), ((35095, 35123), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (35104, 35123), False, 'import h5py\n'), ((36240, 36285), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= 0)', '(data_pre > 4095)'], {}), '(data_pre <= 0, data_pre > 4095)\n', (36253, 36285), True, 'import numpy as np\n'), ((37869, 37897), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (37878, 37897), False, 'import h5py\n'), ((38944, 38972), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (38953, 38972), False, 'import h5py\n'), ((40025, 40053), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (40034, 40053), False, 'import h5py\n'), ((41104, 41132), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (41113, 41132), False, 'import h5py\n'), ((42175, 42203), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (42184, 42203), False, 'import h5py\n'), ((43260, 43288), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (43269, 43288), False, 'import h5py\n'), ((44644, 44672), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (44653, 44672), False, 'import h5py\n'), ((45854, 45882), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (45863, 45882), False, 'import h5py\n'), ((47211, 47239), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (47220, 47239), False, 'import h5py\n'), ((48384, 48412), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (48393, 48412), False, 'import h5py\n'), ((53440, 53483), 'os.path.join', 'os.path.join', (['g_main_path', '"""SRF"""', 'file_name'], {}), "(g_main_path, 'SRF', file_name)\n", (53452, 53483), False, 'import os\n'), ((53600, 53634), 'numpy.loadtxt', 'np.loadtxt', (['data_file'], {'dtype': 'dtype'}), '(data_file, dtype=dtype)\n', (53610, 53634), True, 'import numpy as np\n'), ((57684, 57706), 'numpy.nanmin', 'np.nanmin', (['t_data[key]'], {}), '(t_data[key])\n', (57693, 57706), True, 'import numpy as np\n'), ((57708, 57730), 'numpy.nanmax', 'np.nanmax', (['t_data[key]'], {}), '(t_data[key])\n', (57717, 57730), True, 'import numpy as np\n'), ((57859, 57881), 'numpy.nanmin', 'np.nanmin', (['t_data[key]'], {}), '(t_data[key])\n', (57868, 57881), True, 'import numpy as np\n'), ((57883, 57905), 'numpy.nanmax', 'np.nanmax', (['t_data[key]'], {}), '(t_data[key])\n', (57892, 57905), True, 'import numpy as np\n'), ((58034, 58056), 'numpy.nanmin', 'np.nanmin', (['t_data[key]'], {}), '(t_data[key])\n', (58043, 58056), True, 'import numpy as np\n'), ((58058, 58080), 'numpy.nanmax', 'np.nanmax', (['t_data[key]'], {}), '(t_data[key])\n', (58067, 58080), True, 'import numpy as np\n'), ((8923, 8971), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= vmin)', '(data_pre > vmax)'], {}), '(data_pre <= vmin, data_pre > vmax)\n', (8936, 8971), True, 'import numpy as np\n'), ((9219, 9244), 'h5py.File', 'h5py.File', (['data_file', '"""r"""'], {}), "(data_file, 'r')\n", (9228, 9244), False, 'import h5py\n'), ((14515, 14543), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (14524, 14543), False, 'import h5py\n'), ((14964, 15015), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 0]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 0], dtype=np.float32)\n', (14971, 15015), True, 'import numpy as np\n'), ((18314, 18342), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (18323, 18342), False, 'import h5py\n'), ((18763, 18814), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 1]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 1], dtype=np.float32)\n', (18770, 18814), True, 'import numpy as np\n'), ((22113, 22141), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (22122, 22141), False, 'import h5py\n'), ((22562, 22613), 'numpy.full', 'np.full', (['self.data_shape', 'K[i, 2]'], {'dtype': 'np.float32'}), '(self.data_shape, K[i, 2], dtype=np.float32)\n', (22569, 22613), True, 'import numpy as np\n'), ((27722, 27750), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (27731, 27750), False, 'import h5py\n'), ((28194, 28226), 'numpy.concatenate', 'np.concatenate', (['(ary_a1, ary_a2)'], {}), '((ary_a1, ary_a2))\n', (28208, 28226), True, 'import numpy as np\n'), ((28251, 28283), 'numpy.concatenate', 'np.concatenate', (['(ary_b1, ary_b2)'], {}), '((ary_b1, ary_b2))\n', (28265, 28283), True, 'import numpy as np\n'), ((31567, 31603), 'lib.pb_sat.planck_r2t', 'planck_r2t', (['rad', 'central_wave_number'], {}), '(rad, central_wave_number)\n', (31577, 31603), False, 'from lib.pb_sat import planck_r2t\n'), ((32515, 32560), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= 0)', '(data_pre > 4095)'], {}), '(data_pre <= 0, data_pre > 4095)\n', (32528, 32560), True, 'import numpy as np\n'), ((33272, 33300), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (33281, 33300), False, 'import h5py\n'), ((33851, 33901), 'numpy.full', 'np.full', (['self.data_shape', 'np.nan'], {'dtype': 'np.float32'}), '(self.data_shape, np.nan, dtype=np.float32)\n', (33858, 33901), True, 'import numpy as np\n'), ((35293, 35338), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= 0)', '(data_pre > 4095)'], {}), '(data_pre <= 0, data_pre > 4095)\n', (35306, 35338), True, 'import numpy as np\n'), ((36049, 36077), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (36058, 36077), False, 'import h5py\n'), ((36614, 36664), 'numpy.full', 'np.full', (['self.data_shape', 'np.nan'], {'dtype': 'np.float32'}), '(self.data_shape, np.nan, dtype=np.float32)\n', (36621, 36664), True, 'import numpy as np\n'), ((38084, 38108), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (38093, 38108), False, 'import h5py\n'), ((39158, 39182), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (39167, 39182), False, 'import h5py\n'), ((40242, 40266), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (40251, 40266), False, 'import h5py\n'), ((41313, 41337), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (41322, 41337), False, 'import h5py\n'), ((42390, 42414), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (42399, 42414), False, 'import h5py\n'), ((43538, 43562), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (43547, 43562), False, 'import h5py\n'), ((44917, 44941), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (44926, 44941), False, 'import h5py\n'), ((46133, 46157), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (46142, 46157), False, 'import h5py\n'), ((47483, 47507), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (47492, 47507), False, 'import h5py\n'), ((48651, 48675), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (48660, 48675), False, 'import h5py\n'), ((49650, 49674), 'h5py.File', 'h5py.File', (['geo_file', '"""r"""'], {}), "(geo_file, 'r')\n", (49659, 49674), False, 'import h5py\n'), ((50510, 50538), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (50519, 50538), False, 'import h5py\n'), ((51400, 51429), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)', '(0)', '(0)', '(0)'], {}), '(1970, 1, 1, 0, 0, 0)\n', (51408, 51429), False, 'from datetime import datetime\n'), ((53512, 53537), 'os.path.isfile', 'os.path.isfile', (['data_file'], {}), '(data_file)\n', (53526, 53537), False, 'import os\n'), ((10123, 10171), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= vmin)', '(data_pre > vmax)'], {}), '(data_pre <= vmin, data_pre > vmax)\n', (10136, 10171), True, 'import numpy as np\n'), ((10419, 10444), 'h5py.File', 'h5py.File', (['data_file', '"""r"""'], {}), "(data_file, 'r')\n", (10428, 10444), False, 'import h5py\n'), ((15180, 15208), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (15189, 15208), False, 'import h5py\n'), ((15474, 15517), 'numpy.repeat', 'np.repeat', (['ary_vis_coeff[:, 0]', '(s[0] * s[1])'], {}), '(ary_vis_coeff[:, 0], s[0] * s[1])\n', (15483, 15517), True, 'import numpy as np\n'), ((15579, 15630), 'numpy.repeat', 'np.repeat', (['ary_ir_coeff[:, 0, :]', '(10 * s[1])'], {'axis': '(1)'}), '(ary_ir_coeff[:, 0, :], 10 * s[1], axis=1)\n', (15588, 15630), True, 'import numpy as np\n'), ((18979, 19007), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (18988, 19007), False, 'import h5py\n'), ((19273, 19316), 'numpy.repeat', 'np.repeat', (['ary_vis_coeff[:, 1]', '(s[0] * s[1])'], {}), '(ary_vis_coeff[:, 1], s[0] * s[1])\n', (19282, 19316), True, 'import numpy as np\n'), ((19378, 19429), 'numpy.repeat', 'np.repeat', (['ary_ir_coeff[:, 1, :]', '(10 * s[1])'], {'axis': '(1)'}), '(ary_ir_coeff[:, 1, :], 10 * s[1], axis=1)\n', (19387, 19429), True, 'import numpy as np\n'), ((22778, 22806), 'h5py.File', 'h5py.File', (['self.in_file', '"""r"""'], {}), "(self.in_file, 'r')\n", (22787, 22806), False, 'import h5py\n'), ((23072, 23115), 'numpy.repeat', 'np.repeat', (['ary_vis_coeff[:, 2]', '(s[0] * s[1])'], {}), '(ary_vis_coeff[:, 2], s[0] * s[1])\n', (23081, 23115), True, 'import numpy as np\n'), ((23177, 23228), 'numpy.repeat', 'np.repeat', (['ary_ir_coeff[:, 2, :]', '(10 * s[1])'], {'axis': '(1)'}), '(ary_ir_coeff[:, 2, :], 10 * s[1], axis=1)\n', (23186, 23228), True, 'import numpy as np\n'), ((26614, 26638), 'numpy.where', 'np.where', (['(pre_data < 0.0)'], {}), '(pre_data < 0.0)\n', (26622, 26638), True, 'import numpy as np\n'), ((32902, 32952), 'numpy.full', 'np.full', (['self.data_shape', 'np.nan'], {'dtype': 'np.float32'}), '(self.data_shape, np.nan, dtype=np.float32)\n', (32909, 32952), True, 'import numpy as np\n'), ((34034, 34063), 'numpy.repeat', 'np.repeat', (['data_pre[i, :]', '(10)'], {}), '(data_pre[i, :], 10)\n', (34043, 34063), True, 'import numpy as np\n'), ((35680, 35730), 'numpy.full', 'np.full', (['self.data_shape', 'np.nan'], {'dtype': 'np.float32'}), '(self.data_shape, np.nan, dtype=np.float32)\n', (35687, 35730), True, 'import numpy as np\n'), ((36797, 36826), 'numpy.repeat', 'np.repeat', (['data_pre[i, :]', '(10)'], {}), '(data_pre[i, :], 10)\n', (36806, 36826), True, 'import numpy as np\n'), ((11604, 11652), 'numpy.logical_or', 'np.logical_or', (['(data_pre <= vmin)', '(data_pre > vmax)'], {}), '(data_pre <= vmin, data_pre > vmax)\n', (11617, 11652), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Jan 24 15:59:00 2019 @author: hsteffens """ import json, os, time, warnings import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt from copy import deepcopy from enum import Enum from scipy import special from scipy.optimize import curve_fit # Enum constants class FILE_ID(Enum): JITTER = {"type":"Jitter", "version":"2021-04-10"} _SEP = "." @staticmethod # use method to receive file id. e.g: FILE_ID.get_id(FILE_ID.CONFIG) def get_id(fid): return fid.value["type"] + FILE_ID._SEP.value + fid.value["version"] @staticmethod def get_sep(): return FILE_ID._SEP.value class JsonEnc(json.JSONEncoder): """ Extends the standard JSONEncoder to support additional datatypes. Keywords strings as dict keys are used to identify instances of the additional types. Additional datatype | keyword ---------------------|------------ pandas DataFrame | @DataFrame pandas Series | @Series numpy array | @np.array datetime.datetime | @datetime datetime.timedelta | @timedelta Of course, the regular JSON datatypes are supported, too: int, float, str, bool, None, list, (tuple), dict Example usage: # Encode data object to json_str json_str = json.dumps(data, cls=JsonEnc) # Decode json_str to a data object data_copy = json.loads(json_str, cls=JsonDec) """ def default(self, obj): if isinstance(obj, pd.DataFrame): return {"@DataFrame": {"columns": list(obj.columns), "index": list(obj.index), "data": obj.values.tolist()}} if isinstance(obj, pd.Series): return {"@Series": {"name": obj.name, "index": list(obj.index), "data": obj.values.tolist()}} if isinstance(obj, np.ndarray): return {"@np.array": obj.tolist()} if isinstance(obj, dt.datetime): return {"@datetime": obj.strftime('%Y-%m-%d %H:%M:%S.%f')} if isinstance(obj, dt.timedelta): return {"@timedelta": obj.total_seconds()} return json.JSONEncoder.default(self, obj) class JsonDec(json.JSONDecoder): """ Extends the standard JSONDecoder to support additional datatypes. Additional types are recognized by dict key keywords, which are injected by the JsonEnc. Additional datatype | keyword ---------------------|------------ pandas DataFrame | @DataFrame pandas Series | @Series numpy array | @np.array datetime.datetime | @datetime datetime.timedelta | @timedelta Of course, the regular JSON datatypes are supported, too: int, float, str, bool, None, list, (tuple), dict Example usage: # Encode data object to json_str json_str = json.dumps(data, cls=JsonEnc) # Decode json_str to a data object data_copy = json.loads(json_str, cls=JsonDec) """ def __init__(self, *args, **kwargs): super().__init__(object_hook=JsonDec.custom_hook, *args, **kwargs) @staticmethod def custom_hook(dct): if len(dct) == 1: # add. datatypes are coded in dict of len=1 if "@np.array" in dct: return np.array(dct["@np.array"]) if "@DataFrame" in dct: return pd.DataFrame(data=dct["@DataFrame"]["data"], columns=dct["@DataFrame"]["columns"], index=dct["@DataFrame"]["index"]) if "@Series" in dct: return pd.Series(data=dct["@Series"]["data"], name=dct["@Series"]["name"], index=dct["@Series"]["index"]) if "@datetime" in dct: return dt.datetime.strptime(dct["@datetime"], '%Y-%m-%d %H:%M:%S.%f') if "@timedelta" in dct: return dt.timedelta(seconds=dct["@timedelta"]) return dct class JitterEstimator(): @staticmethod def jitter_func_inv(ber, sigma, mu): """ Jitter model function based on scipy inverse complemetary error function input <np.array> ber: bit error ratio data from the HTester input <float> sigma: Width of the gaussian distribution. input <float> mu: Offset of the gaussian distribution. return <np.array> horz_offs: sample points within the unit interval scipy inverse complemetary error function doc: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfcinv.html """ return special.erfcinv(4*ber) * np.sqrt(2) * sigma + mu @staticmethod def jitter_func(x, sigma, mu): """ Jitter model function based on scipy complemetary error function input <np.array> x: sample points within the unit interval (-0.5 ... 0.5) input <float> sigma: Width of the gaussian distribution. input <float> mu: Offset of the gaussian distribution. return <np.array> BER: bit error ratio scipy inverse complemetary error function doc: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfc.html """ return special.erfc((x - mu) / (np.sqrt(2)*sigma)) / 4 def __init__(self, d): """ JitterEstimator class :input <dict> d, having at least two items: 'setup': {'chs': [8, 9], 'horStepCnt': 32, 'verStepSize': 0, 'verScale': 2, 'targetBER': 1e-06 'eyescan': {8: DataFrame8, 9: DataFrama9} """ self.d = d def __repr__(self): s = "JitterEstimator\nsetup:" for key, value in self.d["setup"].items(): if "BER" in key or "linerate" in key: s += "\n- {}: {}".format(key, value) if "jitter" in self.d: jtable = pd.DataFrame(self.d["jitter"]) if len(jtable): s += "\njitter fit table:\n" + str(jtable) else: s += "\nEmpty jitter fit table" return s def fit(self, specifiedBER=None, thresholdBER=None): """ Apply Gaussian tail fit to internal eyescan data (self.d["eyescan"]) :input <float> specifiedBER: BER (bit error ratio) to which the TJ (total jitter) is estimated, typically 1e-12 :input <float> thresholdBER: BER values below thresholdBER are used for fitting, typically 1e-3 """ if specifiedBER is not None: self.d["setup"]["BERs"] = specifiedBER if thresholdBER is not None: self.d["setup"]["BERt"] = thresholdBER self.d["fit"] = {} self.d["jitter"] = {} for ch, ber in self.d["eyescan"].items(): fit = {"success": True} for side in ("left", "right"): if side == "left": mask = ber.index < 0 initial = ( 0.02, -0.3) # inital guess for sigma and mu bounds = ((0, -0.5), (1, 0)) # bounds (min, max) else: mask = ber.index >= 0 initial = (-0.02, 0.3) # sigma is fitted to negative values on the right bounds = ((-1, 0), (0, 0.5)) # bounds (min, max) ss_ber = ber[mask] # single sided BER if sum(ss_ber < self.d["setup"]["BERt"]) >= 2: # at least two samples required for fitting ss_ber = ss_ber[ss_ber < self.d["setup"]["BERt"]] else: # force fit by using the two samples with highes BER ss_ber.sort_values(inplace=True) ss_ber = ss_ber.iloc[:2] try: with warnings.catch_warnings(): # suppress the OptimizeWarning tha curve_fit sometimes raises warnings.simplefilter("ignore") (sigma, mu), _ = curve_fit(self.jitter_func_inv, ss_ber.values, ss_ber.index, p0=initial, bounds=bounds) except Exception as e: print(e) fit["success"] = False else: fit[side] = {"sigma": sigma, "mu": mu} jitter = {} if fit["success"]: jitter["RJrms"] = fit["left"]["sigma"] - fit["right"]["sigma"] # '-' because right sigma is negative jitter["RJpp"] = self.jitter_func_inv(self.d["setup"]["BERs"], sigma=jitter["RJrms"], mu=0) jitter["DJpp"] = 0.5 + fit["left"]["mu"] + 0.5 - fit["right"]["mu"] jitter["TJpp"] = jitter["RJpp"] + jitter["DJpp"] eye_left = self.jitter_func_inv(self.d["setup"]["BERs"], sigma=fit["left"]["sigma"], mu=fit["left"]["mu"]) eye_right= self.jitter_func_inv(self.d["setup"]["BERs"], sigma=fit["right"]["sigma"], mu=fit["right"]["mu"]) jitter["center"] = (eye_left + eye_right) /2 self.d["jitter"][ch] = jitter self.d["fit"][ch] = fit def to_json(self, path_=None): """ Stores the JitterEstimator instance into a json using the custom JsonEnc """ if path_ is None: fn = time.strftime('%Y%m%d_%H%M%S') + "_jitter.json" path_ = os.path.join(fn) dct = deepcopy(FILE_ID.JITTER.value) # file meto data, like type and version dct["content"] = self.d with open(path_, "w") as f: json.dump(dct, f, cls=JsonEnc) @classmethod def from_json(class_, path_): """ Alternative constructor from json file using the custom JsonDev """ with open(path_, "r") as f: dct = json.load(f, cls=JsonDec) # check meta if dct["type"] != FILE_ID.JITTER.value["type"]: msg = "Can't open file type '{}' when '{}' is expected".format( dct["type"], FILE_ID.JITTER.value["type"]) raise Exception(msg) return class_(dct["content"]) def plot_jitter_fit(fns, filesDir, exclude_chs=None, refit=False, figsize=(12, 3.5)): """ Creates 'plt' plots from jitter.json Files :input fns <str> filename or <list> of <str> filenames :input filesDir <str> directory of the fns :input exclude_chs <list> of <int>: excludes channels from the plot :input refit <bool> refits the Gaussian to the eyescan data if True :input figsize <tuple> """ if type(fns) == str: # this allows the fns to be a <str> filename or <list> of filenames fns = [fns] if exclude_chs is None: exclude_chs = [] else: exclude_chs = [str(ch) for ch in exclude_chs] # make sure list entries are str type for fn in fns: jitter = JitterEstimator.from_json(os.path.join(filesDir, fn)) if refit: jitter.fit() BERs = jitter.d["setup"]["BERs"] BERt = jitter.d["setup"]["BERt"] y_scale = (BERs, 1) x_scale = (-0.5, 0.5) for ch, linerate in jitter.d["setup"]["linerates"].items(): if ch not in exclude_chs: try: tj = jitter.d["jitter"][ch]["TJpp"] dj = jitter.d["jitter"][ch]["DJpp"] rj = jitter.d["jitter"][ch]["RJpp"] rj_rms = jitter.d["jitter"][ch]["RJrms"] center = jitter.d["jitter"][ch]["center"] meas = jitter.d["eyescan"][ch] fit = jitter.d["fit"][ch] plt.figure(figsize=figsize) plt.semilogy(meas.index, meas.values, "bo", label="measurements") plt.semilogy(x_scale, [BERt]*2, ":m", label="threshold={:.0e}".format(BERt)) plt.semilogy(x_scale, [BERs]*2, ":c", label="BERs={:.0e}".format(BERs)) for key, values in fit.items(): if key in ("left", "right"): label = {"left": None, "right": "fitted Gaussian"}[key] x = {"left": np.linspace(-0.5, 0), "right": np.linspace(0, 0.5)}[key] y = JitterEstimator.jitter_func(x, sigma=values["sigma"], mu=values["mu"]) plt.semilogy(x, y, "b:", label=label) label = {"left": None, "right": "DJpp={:.3f}UI".format(dj)}[key] x = {"left": [-0.5, values["mu"]], "right": [values["mu"], 0.5]}[key] plt.fill_between(x, [0.25]*len(x), [BERt]*len(x), color="m", linewidth=0, label=label) label = {"left": None, "right": "RJpp={:.3f}UI".format(rj)}[key] x_start = JitterEstimator.jitter_func_inv(BERs, sigma=values["sigma"], mu=values["mu"]) x = np.linspace(x_start, values["mu"]) y = np.minimum(BERt, JitterEstimator.jitter_func(x, sigma=values["sigma"], mu=values["mu"])) plt.fill_between(x, y, color="c", linewidth=0, label=label) plt.fill_between([10], [1], color="white", label="RJrms={:.3f}UI".format(rj_rms)) plt.fill_between([10], [1], color="white", label="TJpp={:.3f}UI".format(tj)) plt.semilogy([center]*2, y_scale, "k", label="center={:.3f}UI".format(center)) plt.ylim(y_scale), plt.xlim(x_scale) plt.ylabel("BER"), plt.xlabel("x [UI]") plt.title("C{} {}Mb/s {}".format(ch, linerate, fn)) plt.legend(loc='upper center'), plt.grid(); except Exception as e: print("Exception during {}, C{} occured:\n{}".format(fn, ch, e)) def plot_jitter_overlay(fns, filesDir, exclude_chs=None, refit=False, figsize=(12, 5)): """ Creates 'plt' plots from jitter.json Files :input fns <str> filename or <list> of <str> filenames :input filesDir <str> directory of the fns :input exclude_chs <list> of <int>: excludes channels from the plot :input refit <bool> refits the Gaussian to the eyescan data if True :input figsize <tuple> """ class ColorNames(): COLORS = ['orangered', 'orange', 'blue', 'skyblue', 'limegreen', 'lime', 'blueviolet', 'magenta', 'navy', 'royalblue', 'red', 'gold', 'green', 'yellowgreen', 'maroon', 'salmon', 'darkgrey', 'silver', 'peru', 'cyan', 'teal'] def __init__(self): self.i = -1 def same(self): """Returns the color name <str> of the current index""" if self.i == -1: self.i = 0 return self.COLORS[self.i % len(self.COLORS)] def next(self): """Inclrements the index and returns the color name <str> of the current index""" self.i += 1 return self.same() plt.figure(figsize=figsize) colors = ColorNames() if type(fns) == str: # this allows the fns to be a <str> filename or <list> of filenames fns = [fns] if exclude_chs is None: exclude_chs = [] else: exclude_chs = [str(ch) for ch in exclude_chs] # make sure list entries are str type for fn in fns: jitter = JitterEstimator.from_json(os.path.join(filesDir, fn)) if refit: jitter.fit() BERs = jitter.d["setup"]["BERs"] BERt = jitter.d["setup"]["BERt"] y_scale = (BERs, 1) x_scale = (-0.5, 0.5) for ch, linerate in jitter.d["setup"]["linerates"].items(): if ch not in exclude_chs: try: label = "{} C{} {}Mb/s".format(fn[:15], ch, linerate) meas = jitter.d["eyescan"][ch] high = meas[meas > BERt] plt.semilogy(high.index, high.values, marker=".", color=colors.next(), linewidth=0) low = meas[meas <= BERt] plt.semilogy(low.index, low.values, marker="x", markersize=8, color=colors.same(), linewidth=0, label=label) for key, values in jitter.d["fit"][ch].items(): if key in ("left", "right"): x = {"left": np.linspace(-0.5, 0), "right": np.linspace(0, 0.5)}[key] y = JitterEstimator.jitter_func(x, sigma=values["sigma"], mu=values["mu"]) plt.semilogy(x, y, ":", color=colors.same()) except Exception as e: print("Exception during {}, C{} occured:\n{}".format(fn, ch, e)) plt.ylim(y_scale), plt.xlim(x_scale) plt.ylabel("BER"), plt.xlabel("x [UI]") plt.title("C{} {}Mb/s {}".format(ch, linerate, fn)) plt.legend(loc='upper center'), plt.grid(); if __name__ == "__main__": pass
[ "time.strftime", "matplotlib.pyplot.figure", "matplotlib.pyplot.fill_between", "os.path.join", "pandas.DataFrame", "warnings.simplefilter", "datetime.timedelta", "warnings.catch_warnings", "numpy.linspace", "matplotlib.pyplot.semilogy", "json.JSONEncoder.default", "json.dump", "copy.deepcopy", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "scipy.optimize.curve_fit", "scipy.special.erfcinv", "datetime.datetime.strptime", "pandas.Series", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.grid", "matplotlib.pyplot.xlim", "json.load", "numpy.array", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((15408, 15435), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (15418, 15435), True, 'import matplotlib.pyplot as plt\n'), ((2360, 2395), 'json.JSONEncoder.default', 'json.JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (2384, 2395), False, 'import json, os, time, warnings\n'), ((9838, 9868), 'copy.deepcopy', 'deepcopy', (['FILE_ID.JITTER.value'], {}), '(FILE_ID.JITTER.value)\n', (9846, 9868), False, 'from copy import deepcopy\n'), ((17171, 17188), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""BER"""'], {}), "('BER')\n", (17181, 17188), True, 'import matplotlib.pyplot as plt\n'), ((17190, 17210), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x [UI]"""'], {}), "('x [UI]')\n", (17200, 17210), True, 'import matplotlib.pyplot as plt\n'), ((17271, 17301), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""'}), "(loc='upper center')\n", (17281, 17301), True, 'import matplotlib.pyplot as plt\n'), ((17303, 17313), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (17311, 17313), True, 'import matplotlib.pyplot as plt\n'), ((6262, 6292), 'pandas.DataFrame', 'pd.DataFrame', (["self.d['jitter']"], {}), "(self.d['jitter'])\n", (6274, 6292), True, 'import pandas as pd\n'), ((9806, 9822), 'os.path.join', 'os.path.join', (['fn'], {}), '(fn)\n', (9818, 9822), False, 'import json, os, time, warnings\n'), ((9991, 10021), 'json.dump', 'json.dump', (['dct', 'f'], {'cls': 'JsonEnc'}), '(dct, f, cls=JsonEnc)\n', (10000, 10021), False, 'import json, os, time, warnings\n'), ((10209, 10234), 'json.load', 'json.load', (['f'], {'cls': 'JsonDec'}), '(f, cls=JsonDec)\n', (10218, 10234), False, 'import json, os, time, warnings\n'), ((11303, 11329), 'os.path.join', 'os.path.join', (['filesDir', 'fn'], {}), '(filesDir, fn)\n', (11315, 11329), False, 'import json, os, time, warnings\n'), ((15799, 15825), 'os.path.join', 'os.path.join', (['filesDir', 'fn'], {}), '(filesDir, fn)\n', (15811, 15825), False, 'import json, os, time, warnings\n'), ((17130, 17147), 'matplotlib.pyplot.ylim', 'plt.ylim', (['y_scale'], {}), '(y_scale)\n', (17138, 17147), True, 'import matplotlib.pyplot as plt\n'), ((17149, 17166), 'matplotlib.pyplot.xlim', 'plt.xlim', (['x_scale'], {}), '(x_scale)\n', (17157, 17166), True, 'import matplotlib.pyplot as plt\n'), ((3535, 3561), 'numpy.array', 'np.array', (["dct['@np.array']"], {}), "(dct['@np.array'])\n", (3543, 3561), True, 'import numpy as np\n'), ((3634, 3755), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "dct['@DataFrame']['data']", 'columns': "dct['@DataFrame']['columns']", 'index': "dct['@DataFrame']['index']"}), "(data=dct['@DataFrame']['data'], columns=dct['@DataFrame'][\n 'columns'], index=dct['@DataFrame']['index'])\n", (3646, 3755), True, 'import pandas as pd\n'), ((3892, 3995), 'pandas.Series', 'pd.Series', ([], {'data': "dct['@Series']['data']", 'name': "dct['@Series']['name']", 'index': "dct['@Series']['index']"}), "(data=dct['@Series']['data'], name=dct['@Series']['name'], index=\n dct['@Series']['index'])\n", (3901, 3995), True, 'import pandas as pd\n'), ((4128, 4190), 'datetime.datetime.strptime', 'dt.datetime.strptime', (["dct['@datetime']", '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(dct['@datetime'], '%Y-%m-%d %H:%M:%S.%f')\n", (4148, 4190), True, 'import datetime as dt\n'), ((4307, 4346), 'datetime.timedelta', 'dt.timedelta', ([], {'seconds': "dct['@timedelta']"}), "(seconds=dct['@timedelta'])\n", (4319, 4346), True, 'import datetime as dt\n'), ((9738, 9768), 'time.strftime', 'time.strftime', (['"""%Y%m%d_%H%M%S"""'], {}), "('%Y%m%d_%H%M%S')\n", (9751, 9768), False, 'import json, os, time, warnings\n'), ((5003, 5027), 'scipy.special.erfcinv', 'special.erfcinv', (['(4 * ber)'], {}), '(4 * ber)\n', (5018, 5027), False, 'from scipy import special\n'), ((5028, 5038), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5035, 5038), True, 'import numpy as np\n'), ((12051, 12078), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (12061, 12078), True, 'import matplotlib.pyplot as plt\n'), ((12099, 12164), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['meas.index', 'meas.values', '"""bo"""'], {'label': '"""measurements"""'}), "(meas.index, meas.values, 'bo', label='measurements')\n", (12111, 12164), True, 'import matplotlib.pyplot as plt\n'), ((5644, 5654), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (5651, 5654), True, 'import numpy as np\n'), ((8186, 8211), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (8209, 8211), False, 'import json, os, time, warnings\n'), ((8299, 8330), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (8320, 8330), False, 'import json, os, time, warnings\n'), ((8372, 8463), 'scipy.optimize.curve_fit', 'curve_fit', (['self.jitter_func_inv', 'ss_ber.values', 'ss_ber.index'], {'p0': 'initial', 'bounds': 'bounds'}), '(self.jitter_func_inv, ss_ber.values, ss_ber.index, p0=initial,\n bounds=bounds)\n', (8381, 8463), False, 'from scipy.optimize import curve_fit\n'), ((13925, 13942), 'matplotlib.pyplot.ylim', 'plt.ylim', (['y_scale'], {}), '(y_scale)\n', (13933, 13942), True, 'import matplotlib.pyplot as plt\n'), ((13944, 13961), 'matplotlib.pyplot.xlim', 'plt.xlim', (['x_scale'], {}), '(x_scale)\n', (13952, 13961), True, 'import matplotlib.pyplot as plt\n'), ((13982, 13999), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""BER"""'], {}), "('BER')\n", (13992, 13999), True, 'import matplotlib.pyplot as plt\n'), ((14001, 14021), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x [UI]"""'], {}), "('x [UI]')\n", (14011, 14021), True, 'import matplotlib.pyplot as plt\n'), ((14114, 14144), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""'}), "(loc='upper center')\n", (14124, 14144), True, 'import matplotlib.pyplot as plt\n'), ((14146, 14156), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (14154, 14156), True, 'import matplotlib.pyplot as plt\n'), ((12774, 12811), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['x', 'y', '"""b:"""'], {'label': 'label'}), "(x, y, 'b:', label=label)\n", (12786, 12811), True, 'import matplotlib.pyplot as plt\n'), ((13361, 13395), 'numpy.linspace', 'np.linspace', (['x_start', "values['mu']"], {}), "(x_start, values['mu'])\n", (13372, 13395), True, 'import numpy as np\n'), ((13545, 13604), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['x', 'y'], {'color': '"""c"""', 'linewidth': '(0)', 'label': 'label'}), "(x, y, color='c', linewidth=0, label=label)\n", (13561, 13604), True, 'import matplotlib.pyplot as plt\n'), ((12585, 12605), 'numpy.linspace', 'np.linspace', (['(-0.5)', '(0)'], {}), '(-0.5, 0)\n', (12596, 12605), True, 'import numpy as np\n'), ((12616, 12635), 'numpy.linspace', 'np.linspace', (['(0)', '(0.5)'], {}), '(0, 0.5)\n', (12627, 12635), True, 'import numpy as np\n'), ((16762, 16782), 'numpy.linspace', 'np.linspace', (['(-0.5)', '(0)'], {}), '(-0.5, 0)\n', (16773, 16782), True, 'import numpy as np\n'), ((16793, 16812), 'numpy.linspace', 'np.linspace', (['(0)', '(0.5)'], {}), '(0, 0.5)\n', (16804, 16812), True, 'import numpy as np\n')]
#!/usr/bin/env python # # fnirt.py - Functions for working with FNIRT non-linear transformations. # # Author: <NAME> <<EMAIL>> # """This module contains functions for working with FNIRT non-linear transformations. The following functions are available: .. autosummary:: :nosignatures: readFnirt toFnirt fromFnirt Non-linear registration using FNIRT ----------------------------------- FNIRT is used to calculate a non-linear registration from a source image to a reference image. FNIRT outputs the resulting non-linear transformation as either: - A deformation/warp field which contains displacements or coordinates. - A coefficient field which can be used to generate a warp field. Non-linear registration using FNIRT generally follows the process depicted here: .. image:: images/nonlinear_registration_process.png :width: 80% :align: center First, an initial linear registration is performed from the source image to the reference image using FLIRT; this provides an initial global alignment which can be used as the starting point for the non-linear registration. Next, FNIRT is used to non-linearly register the aligned source image to the reference image. Importantly, both of these steps are performed using FSL coordinates. Note that we have three spaces, and three sets of coordinate systems, to consider: 1. Source image space - the source image, before initial linear registration to the reference image 2. Aligned-source image space - the source image, after it has been linearly transformed to the reference image space 3. Reference image space The initial affine registration calculates a transformation between spaces 1 and 2, and the non-linear registration calculates a transformation between spaces 2 and 3. Note that the fields-of-view for spaces 2 and 3 are equivalent. The non-linear transformation file generated by FNIRT will contain the initial linear registration, with it either being encoded directly into the warps (for a warp field), or being stored in the NIfTI header (for a coefficient field). FNIRT warp fields ^^^^^^^^^^^^^^^^^ A FNIRT deformation field (a.k.a. warp field) is defined in the same space as the reference image, and may contain: - *relative displacements*, where each voxel in the warp field contains an offset which can be added to the reference image coordinates for that voxel, in order to calculate the corresponding source image coordinates. - *absolute coordinates*, where each voxel in the warp field simply contains the source image coordinates which correspond to those reference image coordinates. .. note:: FNIRT deformation field files give no indication as to whether they contain relative displacements or absolute coordinates, so heuristics must be used to infer what is stored in a a particular file. The :func:`.nonlinear.detectDeformationType` function can be used to determine whether a file contains relative displacements or absolute coordinates. If an initial linear registration was used as the starting point for FNIRT, this is encoded into the displacements/coordinates themselves, so they can be used to transform from the reference image to the *original* source image space. .. image:: images/fnirt_warp_field.png :width: 80% :align: center FNIRT coefficient fields ^^^^^^^^^^^^^^^^^^^^^^^^ A FNIRT coefficient field contains the coefficients of a set of quadratic or cubic B-spline functions defined on a regular 3D grid overlaid on the reference image voxel coordinate system. Each coefficient in this grid may be referred to as a *control point* or a *knot*. Evaluating the spline functions at a particular location in the grid will result in a relative displacement which can be added to that location's reference image coordinates, in order to determine the corresponding source image coordinates. If an initial linear registration was used as the starting point for FNIRT, the generated displacement field will encode a transformation to *aligned* source image coordinates, and the initial affine will be stored in the NIfTI header of the coefficient field file. .. image:: images/fnirt_coefficient_field.png :width: 80% :align: center """ import logging import nibabel as nib import numpy as np import fsl.data.constants as constants import fsl.data.image as fslimage from . import affine from . import nonlinear log = logging.getLogger(__name__) def _readFnirtDeformationField(fname, img, src, ref, defType=None): """Loads ``fname``, assumed to be a FNIRT deformation field. :arg fname: File name of FNIRT deformation field :arg img: ``fname`` loaded as an :class:`.Image` :arg src: Source image :arg ref: Reference image :arg defType: Deformation type - either ``'absolute'`` or ``'relative'``. If not provided, is automatically inferred from the data. :return: A :class:`.DeformationField` object """ return nonlinear.DeformationField(fname, src, ref, srcSpace='fsl', refSpace='fsl', defType=defType) def _readFnirtCoefficientField(fname, img, src, ref): """Loads ``fname``, assumed to be a FNIRT coefficient field. :arg fname: File name of FNIRT coefficient field :arg img: ``fname`` loaded as an :class:`.Image` :arg src: Source image :arg ref: Reference image :return: A :class:`.CoefficientField` """ # FNIRT uses NIFTI header fields in # non-standard ways to store some # additional information about the # coefficient field. See # $FSLDIR/src/fnirt/fnirt_file_writer.cpp # for more details. # The field type (quadratic, cubic, # or discrete-cosine-transform) is # inferred from the intent. There is # no support in this implementation # for DCT fields cubics = (constants.FSL_CUBIC_SPLINE_COEFFICIENTS, constants.FSL_TOPUP_CUBIC_SPLINE_COEFFICIENTS) quads = (constants.FSL_QUADRATIC_SPLINE_COEFFICIENTS, constants.FSL_TOPUP_QUADRATIC_SPLINE_COEFFICIENTS) if img.intent in cubics: fieldType = 'cubic' elif img.intent in quads: fieldType = 'quadratic' else: fieldType = 'cubic' log.warning('Unrecognised/unsupported coefficient ' 'field type (assuming cubic b-spline): ' '{}'.format(img.intent)) # Knot spacing (in voxels) is # stored in the pixdims knotSpacing = img.pixdim[:3] # The sform contains an initial # global src-to-ref affine # (the starting point for the # non-linear registration). This # is encoded as a flirt matrix, # i.e. it transforms from # source-scaled-voxels to # ref-scaled-voxels srcToRefMat = img.header.get_sform() # The fieldToRefMat affine tells # the CoefficientField class how # to transform coefficient field # voxel coordinates into # displacement field/reference # image voxel coordinates. fieldToRefMat = affine.scaleOffsetXform(knotSpacing, 0) # But if the provided reference has # different resolution to the # reference that was originally # used to generate the warp field, # we need to adjust the field # accordingly. We assume that the # references are aligned in the FSL # coordinate system, so simply apply # a scaling factor calculated by # dividing the original reference # pixdims by the provided reference # pixdims. refPixdims = np.array([img.header['intent_p1'], img.header['intent_p2'], img.header['intent_p3']]) if not np.all(np.isclose(ref.pixdim[:3], refPixdims)): fieldToRefMat = affine.concat( affine.scaleOffsetXform(refPixdims / ref.pixdim[:3], 0), fieldToRefMat) return nonlinear.CoefficientField(fname, src, ref, srcSpace='fsl', refSpace='fsl', fieldType=fieldType, knotSpacing=knotSpacing, srcToRefMat=srcToRefMat, fieldToRefMat=fieldToRefMat) def readFnirt(fname, src, ref, defType=None, intent=None): """Reads a non-linear FNIRT transformation image, returning a :class:`.DeformationField` or :class:`.CoefficientField` depending on the file type. :arg fname: File name of FNIRT transformation :arg src: Source image :arg ref: Reference image :arg defType: Deformation type - either ``'absolute'`` or ``'relative'``. Only used if the file is a deformation field. If not provided, is automatically inferred from the data. :arg intent: NIFTI intent code of ``fname``. e.g. :attr:`.constants.FSL_FNIRT_DISPLACEMENT_FIELD`. If not provided, the intent is read from the image header. """ if defType not in (None, 'absolute', 'relative'): raise ValueError('defType must be None, "absolute" or "relative" ' '(passed in as {})'.format(defType)) # Figure out whether the file is a # deformation field or a coefficient # field by checking the intent code. # If the intent is provided, assume # that the caller knows the type of # the field. img = fslimage.Image(fname, loadData=False) intent = intent or img.intent disps = (constants.FSL_FNIRT_DISPLACEMENT_FIELD, constants.FSL_TOPUP_FIELD) coefs = (constants.FSL_CUBIC_SPLINE_COEFFICIENTS, constants.FSL_DCT_COEFFICIENTS, constants.FSL_QUADRATIC_SPLINE_COEFFICIENTS, constants.FSL_TOPUP_CUBIC_SPLINE_COEFFICIENTS, constants.FSL_TOPUP_QUADRATIC_SPLINE_COEFFICIENTS) if intent in disps: return _readFnirtDeformationField(fname, img, src, ref, defType) elif intent in coefs: return _readFnirtCoefficientField(fname, img, src, ref) else: raise ValueError('Cannot determine type of nonlinear warp field ' '{} (intent code: {})'.format(fname, intent)) def toFnirt(field): """Convert a :class:`.NonLinearTransform` to a FNIRT-compatible :class:`.DeformationField` or :class:`.CoefficientField`. :arg field: :class:`.NonLinearTransform` to convert :return: A FNIRT-compatible :class:`.DeformationField` or :class:`.CoefficientField`. """ # If we have a coefficient field # which transforms between fsl # space, we can just create a copy. if isinstance(field, nonlinear.CoefficientField) and \ (field.srcSpace == 'fsl' and field.refSpace == 'fsl'): # We start with a nibabel image, # as we need to mess with the header # fields to store all of the FNIRT # coefficient field information fieldBase = nib.nifti1.Nifti1Image(field.data, None) # Set the intent if field.fieldType == 'cubic': intent = constants.FSL_CUBIC_SPLINE_COEFFICIENTS elif field.fieldType == 'quadratic': intent = constants.FSL_QUADRATIC_SPLINE_COEFFICIENTS fieldBase.header['intent_code'] = intent # Reference image pixdims are # stored in the intent code # parameters. fieldBase.header['intent_p1'] = field.ref.pixdim[0] fieldBase.header['intent_p2'] = field.ref.pixdim[1] fieldBase.header['intent_p3'] = field.ref.pixdim[2] # Pixdims are used to # store the knot spacing, pixdims = list(field.knotSpacing) + [1] qform = np.diag(pixdims) # The sform is used to store the # initial src-to-ref affine if field.srcToRefMat is not None: sform = field.srcToRefMat else: sform = np.eye(4) # The qform offsets are # used to store the # reference image shape qform[:3, 3] = field.ref.shape[:3] fieldBase.header.set_zooms(pixdims) fieldBase.set_sform(sform, 1) fieldBase.set_qform(qform, 1) fieldBase.update_header() field = nonlinear.CoefficientField( fieldBase, src=field.src, ref=field.ref, srcSpace='fsl', refSpace='fsl', fieldType=field.fieldType, knotSpacing=field.knotSpacing, fieldToRefMat=field.fieldToRefMat, srcToRefMat=field.srcToRefMat) # Otherwise we have a non-FSL coefficient # field, or a deformation field. else: # We can't convert a CoefficientField # which doesn't transform in FSL # coordinates, because the coefficients # will have been calculated between some # other source/reference coordinate # systems, and we can't adjust the # coefficients to encode an FSL->FSL # deformation. if isinstance(field, nonlinear.CoefficientField): field = nonlinear.coefficientFieldToDeformationField(field) # Again, if we have a displacement # field which transforms between # fsl spaces, we can just take a copy if field.srcSpace == 'fsl' and field.refSpace == 'fsl': field = nonlinear.DeformationField( field.data, header=field.header, src=field.src, ref=field.ref, defType=field.deformationType) # Otherwise we have to adjust the # displacements so they transform # between fsl coordinates. field = nonlinear.convertDeformationSpace( field, from_='fsl', to='fsl') field.header['intent_code'] = constants.FSL_FNIRT_DISPLACEMENT_FIELD return field def fromFnirt(field, from_='world', to='world'): """Convert a FNIRT-style :class:`.NonLinearTransform` to a generic :class:`.DeformationField`. :arg field: A FNIRT-style :class:`.CoefficientField` or :class:`.DeformationField` :arg from_: Desired reference image coordinate system :arg to: Desired source image coordinate system :return: A :class:`.DeformationField` which contains displacements from the reference image ``from_`` cordinate system to the source image ``to`` coordinate syste. """ if isinstance(field, nonlinear.CoefficientField): field = nonlinear.coefficientFieldToDeformationField(field) return nonlinear.convertDeformationSpace(field, from_=from_, to=to)
[ "nibabel.nifti1.Nifti1Image", "numpy.eye", "fsl.data.image.Image", "numpy.isclose", "numpy.array", "numpy.diag", "logging.getLogger" ]
[((4495, 4522), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4512, 4522), False, 'import logging\n'), ((7771, 7861), 'numpy.array', 'np.array', (["[img.header['intent_p1'], img.header['intent_p2'], img.header['intent_p3']]"], {}), "([img.header['intent_p1'], img.header['intent_p2'], img.header[\n 'intent_p3']])\n", (7779, 7861), True, 'import numpy as np\n'), ((9794, 9831), 'fsl.data.image.Image', 'fslimage.Image', (['fname'], {'loadData': '(False)'}), '(fname, loadData=False)\n', (9808, 9831), True, 'import fsl.data.image as fslimage\n'), ((11340, 11380), 'nibabel.nifti1.Nifti1Image', 'nib.nifti1.Nifti1Image', (['field.data', 'None'], {}), '(field.data, None)\n', (11362, 11380), True, 'import nibabel as nib\n'), ((12084, 12100), 'numpy.diag', 'np.diag', (['pixdims'], {}), '(pixdims)\n', (12091, 12100), True, 'import numpy as np\n'), ((7930, 7968), 'numpy.isclose', 'np.isclose', (['ref.pixdim[:3]', 'refPixdims'], {}), '(ref.pixdim[:3], refPixdims)\n', (7940, 7968), True, 'import numpy as np\n'), ((12297, 12306), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (12303, 12306), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import clusterking as ck import clusterking_physics.models.bdlnu.distribution as bdlnu import numpy as np from numpy import sqrt from wilson.run.smeft.smpar import p from wilson import Wilson v = sqrt(1 / (sqrt(2) * p["GF"])) Yb = 4.2 / v Ytau = 1.776 / v def dGEl(bm, el): w = Wilson( wcdict={"CSR_bctaunutau": -sqrt(2) * Yb * Ytau / 4 / p["GF"] * bm**2}, scale=5, eft="WET", basis="flavio", ) return bdlnu.dGEl(w, el) s = ck.scan.Scanner() s.set_dfunction( dGEl, binning=np.linspace(-bdlnu.Elmin, bdlnu.Elmaxval, 11), normalize=True ) s.set_spoints_equidist( { "p": (0, 1, 100), } ) s.set_no_workers(20) d = ck.Data() r = s.run(d) r.write() d.write("output/el.sql", overwrite="overwrite")
[ "clusterking_physics.models.bdlnu.distribution.dGEl", "clusterking.scan.Scanner", "clusterking.Data", "numpy.linspace", "numpy.sqrt" ]
[((497, 514), 'clusterking.scan.Scanner', 'ck.scan.Scanner', ([], {}), '()\n', (512, 514), True, 'import clusterking as ck\n'), ((703, 712), 'clusterking.Data', 'ck.Data', ([], {}), '()\n', (710, 712), True, 'import clusterking as ck\n'), ((473, 490), 'clusterking_physics.models.bdlnu.distribution.dGEl', 'bdlnu.dGEl', (['w', 'el'], {}), '(w, el)\n', (483, 490), True, 'import clusterking_physics.models.bdlnu.distribution as bdlnu\n'), ((550, 595), 'numpy.linspace', 'np.linspace', (['(-bdlnu.Elmin)', 'bdlnu.Elmaxval', '(11)'], {}), '(-bdlnu.Elmin, bdlnu.Elmaxval, 11)\n', (561, 595), True, 'import numpy as np\n'), ((231, 238), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (235, 238), False, 'from numpy import sqrt\n'), ((352, 359), 'numpy.sqrt', 'sqrt', (['(2)'], {}), '(2)\n', (356, 359), False, 'from numpy import sqrt\n')]
import click import os import numpy as np import tensorflow as tf from math import ceil from BNN_functions import (normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization) @click.command() @click.option('--hidden', default=3, help='Number of hidden layers') @click.option('--width', default=50, help='Width of the hidden layers') @click.option('--epochs', default=60, help='Number of epochs to train for') @click.option('--tb', default=None, help='Folder for Tensorboard') @click.option('--name', default=None, help='Name of network') def main(hidden, width, epochs, tb, name): """This script creates a Bayesian Neural Network using Dense Flipout Layers from TensorFlow-Probability. Currently the network is trained using however many hidden layers the user specifies with the depth specified and trained for the number of epochs specified. The hidden layers use a PRELU activation. The optimizer used is the Adam Optimizer with a learning rate of 0.001 and an epsilon of 1E-08. This script will connect to Tensorboard and create plots of validation error and validation percent difference vs. epoch if a folder for it is input by the user in tb. Additionally, if the user gives the network a name in --name this program will save the network using that name. """ #Load training and validation data trainIn=np.loadtxt("fullTrainInput.txt",delimiter="\t",skiprows=1) trainOut=np.loadtxt("fullTrainOutput.txt",delimiter="\t",skiprows=1) valIn=np.loadtxt("fullValidateInput.txt",delimiter="\t",skiprows=0) valOut=np.loadtxt("fullValidateOutput.txt",delimiter="\t",skiprows=0) #Normalize the training and output data and collect the values used to do so normInfo, data = normalizeData(trainIn, trainOut, valIn, valOut) graph1=tf.Graph() with graph1.as_default(): #Create the iterators used for training and validation #Path for tensorboard to save data if(tb is not None): STORE_PATH = os.path.join(os.getcwd(),tb) #hyper paramaters batch_size=128 learning_rate=0.001 #dropout paramaters dropoutPercent=0.0 rate=tf.placeholder(dtype=tf.float32, shape=(), name="rate") #size of data train_size=len(trainIn[:,1]) val_size=len(valIn[:,1]) data_size=train_size+val_size #setup data pipelines (x_input, y_output, handle, training_iterator, validation_iterator) = build_input_pipeline( data, batch_size) #Create the neural network neural_net, logits = createNeuralNet(width, hidden, x_input, rate) #Print a network summary neural_net.summary() #Create the percent difference metric percentErr = percentError(normInfo[0][0], normInfo[0][1], y_output, logits) #Create the loss function and optimizer loss, train_op = setupOptimization(normInfo[0][0], normInfo[0][1], learning_rate, y_output, logits) init_op= tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) #merge outputs for tensorboard if(tb is not None): merged = tf.summary.merge_all() with tf.Session(graph=graph1) as sess: if(tb is not None): writer = tf.summary.FileWriter(STORE_PATH, sess.graph) #Tensorboard writer sess.run(init_op) train_handle = sess.run(training_iterator.string_handle()) validate_handle = sess.run(validation_iterator.string_handle()) steps=ceil(train_size/batch_size) #Number of batches to get through all the data for j in range(epochs): averageLoss=0 averageError=0 #Run the training cycle for i in range(steps): loss_value, error_value, _ = sess.run([loss, percentErr, train_op], feed_dict={handle: train_handle, rate: dropoutPercent}) averageLoss+=loss_value averageError+=error_value print("Epoch: {:>3d} Training loss: {:.5f} Training Error: {:.3f}".format( j+1, averageLoss/steps, averageError/steps)) #Run the validation cycle valid_iters=1 #Numer of runs through the validation data. Note: #adjusting this value will scale the output to #Tensorboard by the same amount averageLoss=0 averageError=0 if(tb is not None): #when writing to tensorboard for i in range(valid_iters): loss_value, error_value, summary = sess.run([loss, percentErr, merged], feed_dict={handle: validate_handle, rate: 0.0}) averageLoss+=loss_value averageError+=error_value writer.add_summary(summary, j+1) else: #when not writing to tensorboard for i in range(valid_iters): loss_value, error_value = sess.run([loss, percentErr], feed_dict={handle: validate_handle, rate: 0.0}) averageLoss+=loss_value averageError+=error_value print("Validation loss: {:.5f} Validation Percent Error: {:.3f} Iterations: {}".format( averageLoss/valid_iters, averageError/valid_iters, valid_iters)) #save the network if(name is not None): saver = tf.train.Saver() print('\nSaving...') saver.save(sess, "./"+name) if(__name__=="__main__"): main()
[ "BNN_functions.build_input_pipeline", "tensorflow.train.Saver", "BNN_functions.setupOptimization", "tensorflow.global_variables_initializer", "math.ceil", "os.getcwd", "click.option", "tensorflow.Session", "BNN_functions.createNeuralNet", "click.command", "tensorflow.local_variables_initializer", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "BNN_functions.percentError", "numpy.loadtxt", "tensorflow.Graph", "BNN_functions.normalizeData", "tensorflow.summary.merge_all" ]
[((244, 259), 'click.command', 'click.command', ([], {}), '()\n', (257, 259), False, 'import click\n'), ((262, 329), 'click.option', 'click.option', (['"""--hidden"""'], {'default': '(3)', 'help': '"""Number of hidden layers"""'}), "('--hidden', default=3, help='Number of hidden layers')\n", (274, 329), False, 'import click\n'), ((332, 402), 'click.option', 'click.option', (['"""--width"""'], {'default': '(50)', 'help': '"""Width of the hidden layers"""'}), "('--width', default=50, help='Width of the hidden layers')\n", (344, 402), False, 'import click\n'), ((405, 479), 'click.option', 'click.option', (['"""--epochs"""'], {'default': '(60)', 'help': '"""Number of epochs to train for"""'}), "('--epochs', default=60, help='Number of epochs to train for')\n", (417, 479), False, 'import click\n'), ((482, 547), 'click.option', 'click.option', (['"""--tb"""'], {'default': 'None', 'help': '"""Folder for Tensorboard"""'}), "('--tb', default=None, help='Folder for Tensorboard')\n", (494, 547), False, 'import click\n'), ((550, 610), 'click.option', 'click.option', (['"""--name"""'], {'default': 'None', 'help': '"""Name of network"""'}), "('--name', default=None, help='Name of network')\n", (562, 610), False, 'import click\n'), ((1484, 1544), 'numpy.loadtxt', 'np.loadtxt', (['"""fullTrainInput.txt"""'], {'delimiter': '"""\t"""', 'skiprows': '(1)'}), "('fullTrainInput.txt', delimiter='\\t', skiprows=1)\n", (1494, 1544), True, 'import numpy as np\n'), ((1557, 1618), 'numpy.loadtxt', 'np.loadtxt', (['"""fullTrainOutput.txt"""'], {'delimiter': '"""\t"""', 'skiprows': '(1)'}), "('fullTrainOutput.txt', delimiter='\\t', skiprows=1)\n", (1567, 1618), True, 'import numpy as np\n'), ((1628, 1691), 'numpy.loadtxt', 'np.loadtxt', (['"""fullValidateInput.txt"""'], {'delimiter': '"""\t"""', 'skiprows': '(0)'}), "('fullValidateInput.txt', delimiter='\\t', skiprows=0)\n", (1638, 1691), True, 'import numpy as np\n'), ((1702, 1766), 'numpy.loadtxt', 'np.loadtxt', (['"""fullValidateOutput.txt"""'], {'delimiter': '"""\t"""', 'skiprows': '(0)'}), "('fullValidateOutput.txt', delimiter='\\t', skiprows=0)\n", (1712, 1766), True, 'import numpy as np\n'), ((1873, 1920), 'BNN_functions.normalizeData', 'normalizeData', (['trainIn', 'trainOut', 'valIn', 'valOut'], {}), '(trainIn, trainOut, valIn, valOut)\n', (1886, 1920), False, 'from BNN_functions import normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization\n'), ((1940, 1950), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1948, 1950), True, 'import tensorflow as tf\n'), ((2356, 2411), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '()', 'name': '"""rate"""'}), "(dtype=tf.float32, shape=(), name='rate')\n", (2370, 2411), True, 'import tensorflow as tf\n'), ((2676, 2714), 'BNN_functions.build_input_pipeline', 'build_input_pipeline', (['data', 'batch_size'], {}), '(data, batch_size)\n', (2696, 2714), False, 'from BNN_functions import normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization\n'), ((2796, 2841), 'BNN_functions.createNeuralNet', 'createNeuralNet', (['width', 'hidden', 'x_input', 'rate'], {}), '(width, hidden, x_input, rate)\n', (2811, 2841), False, 'from BNN_functions import normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization\n'), ((2979, 3041), 'BNN_functions.percentError', 'percentError', (['normInfo[0][0]', 'normInfo[0][1]', 'y_output', 'logits'], {}), '(normInfo[0][0], normInfo[0][1], y_output, logits)\n', (2991, 3041), False, 'from BNN_functions import normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization\n'), ((3119, 3205), 'BNN_functions.setupOptimization', 'setupOptimization', (['normInfo[0][0]', 'normInfo[0][1]', 'learning_rate', 'y_output', 'logits'], {}), '(normInfo[0][0], normInfo[0][1], learning_rate, y_output,\n logits)\n', (3136, 3205), False, 'from BNN_functions import normalizeData, build_input_pipeline, createNeuralNet, percentError, setupOptimization\n'), ((3233, 3266), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3264, 3266), True, 'import tensorflow as tf\n'), ((3294, 3326), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (3324, 3326), True, 'import tensorflow as tf\n'), ((3421, 3443), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (3441, 3443), True, 'import tensorflow as tf\n'), ((3460, 3484), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph1'}), '(graph=graph1)\n', (3470, 3484), True, 'import tensorflow as tf\n'), ((3848, 3877), 'math.ceil', 'ceil', (['(train_size / batch_size)'], {}), '(train_size / batch_size)\n', (3852, 3877), False, 'from math import ceil\n'), ((2168, 2179), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2177, 2179), False, 'import os\n'), ((3553, 3598), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['STORE_PATH', 'sess.graph'], {}), '(STORE_PATH, sess.graph)\n', (3574, 3598), True, 'import tensorflow as tf\n'), ((6048, 6064), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (6062, 6064), True, 'import tensorflow as tf\n')]
import numpy as np from mahjong.shanten import Shanten from itertools import combinations from utils import * np.random.seed(0) def is_tinroto(hand): return all([x in [0, 8, 9, 17, 18, 26] for x in key]) shanten = Shanten() cases = [] for key in combinations(range(34), 5): hand = [0] * 34 for tile in key[:4]: hand[tile] = 3 hand[key[4]] = 2 flatten = flatten_tile34(hand) win_tile = np.random.choice(flatten) is_established = is_tinroto(hand) cases.append((flatten, win_tile, is_established)) with open(TESTCASE_DIR / "test_score_tinroto.txt", "w") as f: for hand, win_tile, is_established in cases: hand_str = " ".join(str(x) for x in hand) f.write(f"{hand_str} {win_tile} {int(is_established)}\n")
[ "mahjong.shanten.Shanten", "numpy.random.seed", "numpy.random.choice" ]
[((112, 129), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (126, 129), True, 'import numpy as np\n'), ((224, 233), 'mahjong.shanten.Shanten', 'Shanten', ([], {}), '()\n', (231, 233), False, 'from mahjong.shanten import Shanten\n'), ((425, 450), 'numpy.random.choice', 'np.random.choice', (['flatten'], {}), '(flatten)\n', (441, 450), True, 'import numpy as np\n')]
import os import matplotlib.pyplot as plt import numpy as np import torch from torch import nn from sanitize_data import read_from_tar, TORCH_FILENAME from weather_format import WeatherDataset, WeatherRow from model import WeatherLSTM from config import WINDOW_SIZE, DEVICE, DTYPE, TRAIN_END, VALIDATE_END, BATCH_SIZE, HIDDEN_DIM, TOTAL_POINTS, REPRODUCIBLE if __name__ == '__main__': if not os.path.isfile(f'{TORCH_FILENAME}.tar.xz'): print('Run preprocessing script first') exit() ''' t = np.arange(0, len(weather)) linear_component = np.polyfit(t, thermometer, 1)[0] thermometer_without_linear = thermometer - linear_component * t amplitudes = np.fft.fft(thermometer_without_linear) freqs = np.fft.fftfreq(len(amplitudes)) indices = np.argsort(-amplitudes) t = np.arange(0, len(weather) + 100000) restored = np.zeros(len(t)) for i in indices[: 21]: amplitude = np.absolute(amplitudes[i]) / len(t) phase = np.angle(amplitudes[i]) restored += amplitude * np.cos(2 * np.pi * freqs[i] * t + phase) restored += linear_component * t plt.plot(t, restored) plt.plot(np.arange(0, len(thermometer)), thermometer) plt.show() ''' torch_tar, torch_binary = read_from_tar(TORCH_FILENAME) data = torch.load(torch_binary) torch_tar.close() # Needed to obtain reproducible results for debugging if REPRODUCIBLE: np.random.seed(2) torch.manual_seed(2) time = data[:TRAIN_END,1] TARGET_FEATURES = [3] + list(range(5, 10)) + list(range(11, 13)) + list(range(14, 15)) + list(range(16,18)) training_data = WeatherDataset(torch.from_numpy(data[:TRAIN_END, TARGET_FEATURES]).to(DEVICE, dtype=DTYPE)) validation_data = WeatherDataset(torch.from_numpy(data[TRAIN_END:VALIDATE_END,TARGET_FEATURES]).to(DEVICE, dtype=DTYPE), training_data.scaler) train_loader = torch.utils.data.DataLoader(training_data, batch_size=BATCH_SIZE, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=(VALIDATE_END-TRAIN_END) // 8, shuffle=False) model = WeatherLSTM(input_dim=len(TARGET_FEATURES), hidden_dim=HIDDEN_DIM, output_dim=len(TARGET_FEATURES)) model.to(DEVICE, dtype=DTYPE) loss_func = nn.MSELoss() optimizer = torch.optim.AdamW(model.parameters(), lr=0.001)#torch.optim.LBFGS(model.parameters(), lr=0.7) previous_validation_loss = float('inf') for epoch in range(100): for step, batch in enumerate(train_loader): def step_closure(): optimizer.zero_grad() # model.initialize() out = model(batch[:,:-1,:]) loss = loss_func(out, batch[:,-1,:]) print(f'Epoch {epoch+1}, Step {step+1} Loss: {loss.item()}') loss.backward() return loss optimizer.step(step_closure) with torch.no_grad(): print('Evaluating model against validation set') model.eval() current_validation_loss = 0.0 for batch in validation_loader: out = model(batch[:,:-1,:]) current_validation_loss += loss_func(out, batch[:,-1,:]).item() * len(batch) current_validation_loss = current_validation_loss / (VALIDATE_END - TRAIN_END) model.train() should_stop_early = current_validation_loss > previous_validation_loss if should_stop_early: print(f'Stopping early, current validation loss {current_validation_loss} compared to previous validation loss {previous_validation_loss}') else: print(f'Current validation loss is {current_validation_loss}, down from previous {previous_validation_loss}') previous_validation_loss = current_validation_loss if should_stop_early: break print('Done training, now testing') with torch.no_grad(): model.eval() feature_names = list(WeatherRow.__annotations__.keys()) test_data = WeatherDataset(torch.from_numpy(data[VALIDATE_END:TOTAL_POINTS,TARGET_FEATURES]).to(device=DEVICE, dtype=DTYPE), training_data.scaler) test_results = [] #[model(test_data[idx][:-1,:].reshape((1, WINDOW_SIZE-1, len(TARGET_FEATURES))))[0,:] for idx in range(len(test_data))] print('Running model on test dataset') test_loader = torch.utils.data.DataLoader(test_data, batch_size=(TOTAL_POINTS-VALIDATE_END) // 8, shuffle=False) for step, batch in enumerate(test_loader): test_batch_results = test_data.scaler.inverse_transform(model(batch[:,:-1,:]).cpu().numpy()) for i in range(len(test_batch_results)): test_results.append(test_batch_results[i]) print(f'{step*test_loader.batch_size * 100.0 / len(test_data)}% done') ''' print('Plotting test actual and predicted') for i, feature in enumerate(TARGET_FEATURES): plt.title(feature_names[feature]) plt.plot(data[VALIDATE_END: TOTAL_POINTS - WINDOW_SIZE, 1], data[VALIDATE_END+WINDOW_SIZE: TOTAL_POINTS, TARGET_FEATURES[i]]) plt.plot(data[VALIDATE_END: TOTAL_POINTS - WINDOW_SIZE, 1], [test_results[idx][i] for idx in range(len(test_data))]) # plt.plot(data[VALIDATE_END: TOTAL_POINTS - WINDOW_SIZE, 1], [np.average(data[idx+VALIDATE_END:idx+VALIDATE_END+WINDOW_SIZE-1, feature], axis=0) for idx in range(len(test_results))]) plt.savefig(f'test-{feature_names[feature]}.png') plt.clf() ''' model_errors = [] last_errors = [] avg_errors = [] for i, feature in enumerate(TARGET_FEATURES): error = sum([abs(data[idx+VALIDATE_END+WINDOW_SIZE-1, feature] - test_results[idx][i]) for idx in range(len(test_results))]) avg_error = sum([abs(data[idx+VALIDATE_END+WINDOW_SIZE-1, feature] - np.average(data[idx+VALIDATE_END:idx+VALIDATE_END+WINDOW_SIZE-1, feature], axis=0)) for idx in range(len(test_results))]); last_error = sum([abs(data[idx+VALIDATE_END+WINDOW_SIZE-1, feature] - data[idx+VALIDATE_END+WINDOW_SIZE-2, feature]) for idx in range(len(test_results))]); print("The error for {} was {}".format(feature_names[feature], error/len(test_data))); print("Average error: {}. This is {}% better than the average metric".format(avg_error/len(test_data), avg_error/error*100-100)); print("Last error: {}. This is {}% better than the last value metric".format(last_error/len(test_data), last_error/error*100-100)); model_errors.append(error) last_errors.append(last_error) avg_errors.append(avg_error) usable_features = [feature_names[feature] for i,feature in enumerate(TARGET_FEATURES)]; y_pos = np.arange(len(usable_features)); fig, ax = plt.subplots() for i in range(len(model_errors)): max_val = max(model_errors[i], last_errors[i], avg_errors[i]); model_errors[i] = model_errors[i] / max_val; avg_errors[i] = avg_errors[i] / max_val; last_errors[i] = last_errors[i] / max_val; plt.bar(y_pos, avg_errors, width=0.25, alpha=0.8, color='g', label='Average Sample Model'); plt.bar(y_pos+0.25, model_errors, width=0.25, alpha=0.8, color='b', label='LSTM Model'); plt.bar(y_pos-0.25, last_errors, width=0.25, alpha=0.8, color='r', label='Last Sample Model'); ticklabels = [usable_features[i][0:4]+usable_features[i][-1] for i in range(len(usable_features))] plt.xticks(y_pos+0.25, ticklabels) plt.xlabel('Feature') plt.ylabel('Scaled Average L1 Error') plt.title('Average Test Prediction Method Errors') plt.legend() plt.tight_layout() plt.savefig('errors.png'); plt.clf()
[ "matplotlib.pyplot.title", "numpy.random.seed", "matplotlib.pyplot.clf", "matplotlib.pyplot.bar", "os.path.isfile", "torch.no_grad", "matplotlib.pyplot.tight_layout", "torch.nn.MSELoss", "torch.utils.data.DataLoader", "torch.load", "matplotlib.pyplot.xticks", "matplotlib.pyplot.subplots", "numpy.average", "sanitize_data.read_from_tar", "torch.manual_seed", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "torch.from_numpy", "weather_format.WeatherRow.__annotations__.keys", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((1259, 1288), 'sanitize_data.read_from_tar', 'read_from_tar', (['TORCH_FILENAME'], {}), '(TORCH_FILENAME)\n', (1272, 1288), False, 'from sanitize_data import read_from_tar, TORCH_FILENAME\n'), ((1300, 1324), 'torch.load', 'torch.load', (['torch_binary'], {}), '(torch_binary)\n', (1310, 1324), False, 'import torch\n'), ((1905, 1984), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['training_data'], {'batch_size': 'BATCH_SIZE', 'shuffle': '(True)'}), '(training_data, batch_size=BATCH_SIZE, shuffle=True)\n', (1932, 1984), False, 'import torch\n'), ((2009, 2116), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['validation_data'], {'batch_size': '((VALIDATE_END - TRAIN_END) // 8)', 'shuffle': '(False)'}), '(validation_data, batch_size=(VALIDATE_END -\n TRAIN_END) // 8, shuffle=False)\n', (2036, 2116), False, 'import torch\n'), ((2275, 2287), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (2285, 2287), False, 'from torch import nn\n'), ((400, 442), 'os.path.isfile', 'os.path.isfile', (['f"""{TORCH_FILENAME}.tar.xz"""'], {}), "(f'{TORCH_FILENAME}.tar.xz')\n", (414, 442), False, 'import os\n'), ((1435, 1452), 'numpy.random.seed', 'np.random.seed', (['(2)'], {}), '(2)\n', (1449, 1452), True, 'import numpy as np\n'), ((1461, 1481), 'torch.manual_seed', 'torch.manual_seed', (['(2)'], {}), '(2)\n', (1478, 1481), False, 'import torch\n'), ((3947, 3962), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3960, 3962), False, 'import torch\n'), ((4423, 4527), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_data'], {'batch_size': '((TOTAL_POINTS - VALIDATE_END) // 8)', 'shuffle': '(False)'}), '(test_data, batch_size=(TOTAL_POINTS -\n VALIDATE_END) // 8, shuffle=False)\n', (4450, 4527), False, 'import torch\n'), ((6912, 6926), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6924, 6926), True, 'import matplotlib.pyplot as plt\n'), ((7220, 7315), 'matplotlib.pyplot.bar', 'plt.bar', (['y_pos', 'avg_errors'], {'width': '(0.25)', 'alpha': '(0.8)', 'color': '"""g"""', 'label': '"""Average Sample Model"""'}), "(y_pos, avg_errors, width=0.25, alpha=0.8, color='g', label=\n 'Average Sample Model')\n", (7227, 7315), True, 'import matplotlib.pyplot as plt\n'), ((7320, 7414), 'matplotlib.pyplot.bar', 'plt.bar', (['(y_pos + 0.25)', 'model_errors'], {'width': '(0.25)', 'alpha': '(0.8)', 'color': '"""b"""', 'label': '"""LSTM Model"""'}), "(y_pos + 0.25, model_errors, width=0.25, alpha=0.8, color='b', label\n ='LSTM Model')\n", (7327, 7414), True, 'import matplotlib.pyplot as plt\n'), ((7417, 7517), 'matplotlib.pyplot.bar', 'plt.bar', (['(y_pos - 0.25)', 'last_errors'], {'width': '(0.25)', 'alpha': '(0.8)', 'color': '"""r"""', 'label': '"""Last Sample Model"""'}), "(y_pos - 0.25, last_errors, width=0.25, alpha=0.8, color='r', label=\n 'Last Sample Model')\n", (7424, 7517), True, 'import matplotlib.pyplot as plt\n'), ((7628, 7664), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(y_pos + 0.25)', 'ticklabels'], {}), '(y_pos + 0.25, ticklabels)\n', (7638, 7664), True, 'import matplotlib.pyplot as plt\n'), ((7671, 7692), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Feature"""'], {}), "('Feature')\n", (7681, 7692), True, 'import matplotlib.pyplot as plt\n'), ((7701, 7738), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scaled Average L1 Error"""'], {}), "('Scaled Average L1 Error')\n", (7711, 7738), True, 'import matplotlib.pyplot as plt\n'), ((7747, 7797), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Test Prediction Method Errors"""'], {}), "('Average Test Prediction Method Errors')\n", (7756, 7797), True, 'import matplotlib.pyplot as plt\n'), ((7806, 7818), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7816, 7818), True, 'import matplotlib.pyplot as plt\n'), ((7827, 7845), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7843, 7845), True, 'import matplotlib.pyplot as plt\n'), ((7855, 7880), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""errors.png"""'], {}), "('errors.png')\n", (7866, 7880), True, 'import matplotlib.pyplot as plt\n'), ((7890, 7899), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7897, 7899), True, 'import matplotlib.pyplot as plt\n'), ((2918, 2933), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2931, 2933), False, 'import torch\n'), ((4015, 4048), 'weather_format.WeatherRow.__annotations__.keys', 'WeatherRow.__annotations__.keys', ([], {}), '()\n', (4046, 4048), False, 'from weather_format import WeatherDataset, WeatherRow\n'), ((1661, 1712), 'torch.from_numpy', 'torch.from_numpy', (['data[:TRAIN_END, TARGET_FEATURES]'], {}), '(data[:TRAIN_END, TARGET_FEATURES])\n', (1677, 1712), False, 'import torch\n'), ((1775, 1838), 'torch.from_numpy', 'torch.from_numpy', (['data[TRAIN_END:VALIDATE_END, TARGET_FEATURES]'], {}), '(data[TRAIN_END:VALIDATE_END, TARGET_FEATURES])\n', (1791, 1838), False, 'import torch\n'), ((4086, 4152), 'torch.from_numpy', 'torch.from_numpy', (['data[VALIDATE_END:TOTAL_POINTS, TARGET_FEATURES]'], {}), '(data[VALIDATE_END:TOTAL_POINTS, TARGET_FEATURES])\n', (4102, 4152), False, 'import torch\n'), ((5946, 6040), 'numpy.average', 'np.average', (['data[idx + VALIDATE_END:idx + VALIDATE_END + WINDOW_SIZE - 1, feature]'], {'axis': '(0)'}), '(data[idx + VALIDATE_END:idx + VALIDATE_END + WINDOW_SIZE - 1,\n feature], axis=0)\n', (5956, 6040), True, 'import numpy as np\n')]
import logging import os import pickle import numpy as np from termcolor import colored import torch from torch import nn from torch.nn import functional as F from detectron2.utils.logger import setup_logger logger = setup_logger(name=__name__) def load_semantic_embeddings(semantic_corpus, classes, precomputed_semantic_embs=None): """ Load precomputed semantic embeddings if it exists. Otherwise, extract it from corpus. Args: semantic_corpus (str) classes (List[str]) precomputed_semantic_embs (str) Returns: class_embs_dict (Dict[str: np.array]) """ # Prepare the semantic embeddings to_compute_semantic_embs = True if os.path.isfile(precomputed_semantic_embs): with open(precomputed_semantic_embs, "rb") as f: precomputed_embs_dict = pickle.load(f) # Check if novel classes exist in precomputed embs if all(x in precomputed_embs_dict.keys() for x in classes): return precomputed_embs_dict if to_compute_semantic_embs: # We take the average for classes e.g. "hot dog", "parking meter". word_embs_dict = {x: None for cls in classes for x in cls.split(" ")} with open(semantic_corpus, "r", encoding="utf-8") as f: for line in f.readlines(): line = line.split("\n")[0].split(" ") word = line[0] if word in word_embs_dict: emb = np.asarray([float(x) for x in line[1:]]) word_embs_dict[word] = emb if all([v is not None for k, v in word_embs_dict.items()]): # Break if all words have found its embedding. break # check all words have a corresponding semantic embeddings none_embs = [x for x, emb in word_embs_dict.items() if emb is None] if len(none_embs) > 0: msg = "Some classes (words) are not in the corpus and will be skipped in inference:\n" msg += "\n".join(" " + colored(x, "blue") for x in none_embs) logger.info(msg) # Remove none classes def is_valid(cls, none_embs): for x in cls.split(" "): if x in none_embs: return False return True classes = [x for x in classes if is_valid(x, none_embs)] class_embs_dict = {} for cls in classes: emb = [word_embs_dict[x] for x in cls.split(" ") if word_embs_dict[x] is not None] emb = np.stack(emb, axis=0).mean(axis=0) class_embs_dict[cls] = emb # Save semantic embeddings to avoid repeated computations. if os.path.isfile(precomputed_semantic_embs): with open(precomputed_semantic_embs, "rb") as f: precomputed_embs_dict = pickle.load(f) precomputed_embs_dict.update(class_embs_dict) with open(precomputed_semantic_embs, "wb") as f: pickle.dump(precomputed_embs_dict, f) else: with open("./datasets/precomputed_semantic_embeddings.pkl", "wb") as f: pickle.dump(class_embs_dict, f) return class_embs_dict class ZeroShotPredictor(nn.Module): """ Zero-shot predictors for discovering objects from novel categories. """ def __init__(self, cfg, known_classes, novel_classes): super(ZeroShotPredictor, self).__init__() # fmt: off self.cls_agnostic_bbox_reg = cfg.MODEL.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG self.pre_inference_thresh = cfg.ZERO_SHOT.PRE_INFERENCE_THRESH self.post_inference_thresh = cfg.ZERO_SHOT.POST_INFERENCE_THRESH self.topk_known_classes = cfg.ZERO_SHOT.TOPK_KNOWN_CLASSES self.detections_per_image = cfg.ZERO_SHOT.DETECTIONS_PER_IMAGE self.precomputed_semantic_embs = cfg.ZERO_SHOT.PRECOMPUTED_SEMANTIC_EMBEDDINGS self.semantic_corpus = cfg.ZERO_SHOT.SEMANTIC_CORPUS # fmt: on self._init_embs(known_classes, novel_classes) def _init_embs(self, known_classes, novel_classes): """ Initilize semantic embeddings for classes. """ # laading semantic word embeddings. class_embs_dict = load_semantic_embeddings( self.semantic_corpus, known_classes + novel_classes, self.precomputed_semantic_embs, ) assert all([x in class_embs_dict for x in known_classes]) self.known_classes = known_classes self.novel_classes = [x for x in novel_classes if x in class_embs_dict] self.known_class_embs = torch.stack([ torch.as_tensor(class_embs_dict[x]) for x in known_classes ], dim=0) if len(self.novel_classes) == 0: return self.novel_class_embs = torch.stack([ torch.as_tensor(class_embs_dict[x]) for x in novel_classes if x in class_embs_dict ], dim=0) def inference(self, scores, proposal_deltas, proposals): """ Args: scores: predicted probability of known classes. proposal_deltas: predicted box deltas. If `CLS_AGNOSTIC_BBOX_REG` = True, it has shape (N, 4), otherwise its shape is (N, C * 4), where N is the number of instances and C is the number of known classes. """ device = scores.device num_novel_classes = len(self.novel_classes) num_instances = len(scores) if num_instances == 0 or num_novel_classes == 0: return scores, proposal_deltas known_class_embs = self.known_class_embs.to(device) novel_class_embs = self.novel_class_embs.to(device) novel_scores = torch.zeros( (num_instances, num_novel_classes), dtype=scores.dtype, device=device ) # 1. For the boxes whose score of known classes is less than threshold, we perform # zero-shot inference to reason its score of being the given novel classes. known_scores = scores[:, :-1] # excluding background scores max_known_scores = torch.max(known_scores, dim=1)[0] enable = torch.nonzero( (max_known_scores < self.pre_inference_thresh) & (max_known_scores > 1e-3) ).squeeze(1) # 2. Obtain the scores of top K known classes. known_scores, kept_idxs = torch.sort(known_scores[enable], dim=-1, descending=True) known_scores = known_scores[:, :self.topk_known_classes] kept_idxs = kept_idxs[:, :self.topk_known_classes] # 3. Estimate the semantic embeddings of boxes base_embs = known_class_embs[kept_idxs] norm_factors = known_scores.sum(dim=-1, keepdim=True) base_wgts = known_scores / norm_factors.repeat(1, self.topk_known_classes) pred_embs = base_embs * base_wgts.unsqueeze(-1).repeat(1, 1, base_embs.size(-1)) pred_embs = torch.sum(pred_embs, dim=1) # 4. Predict scores for novel classes by computing cosine similarity. emb_norms = torch.norm(pred_embs, p=2, dim=1, keepdim=True) pred_embs = pred_embs.div(emb_norms.expand_as(pred_embs)) emb_norms = torch.norm(novel_class_embs, p=2, dim=1, keepdim=True) novel_class_embs = novel_class_embs.div(emb_norms.expand_as(novel_class_embs)) novel_scores[enable, :] = torch.mm( pred_embs, novel_class_embs.permute(1, 0) ).to(novel_scores.dtype) # Reweight interactness scores interactness_scores = torch.sigmoid(proposals[0].interactness_logits) novel_scores = novel_scores * interactness_scores.unsqueeze(1).repeat(1, num_novel_classes) # 5. Post processing. Remove predictions whose score < post_inference_thresh. novel_scores[novel_scores < self.post_inference_thresh] = 0. novel_scores[proposals[0].is_person == 1, :] = 0. # Maximum number of detections to keep thresh = torch.topk(novel_scores.reshape(-1), self.detections_per_image)[0][-1] novel_scores[novel_scores <= thresh] = 0. novel_scores = torch.clamp(novel_scores * 3, min=0., max=1.) # Always keep the background as the last. scores = torch.cat([scores[:, :-1], novel_scores, scores[:, -1:]], dim=-1) if not self.cls_agnostic_bbox_reg: proposal_deltas = torch.cat([ proposal_deltas, torch.zeros((num_instances, num_novel_classes * 4), device=device) ], dim=-1) return scores, proposal_deltas
[ "numpy.stack", "pickle.dump", "torch.norm", "torch.nonzero", "torch.cat", "detectron2.utils.logger.setup_logger", "termcolor.colored", "os.path.isfile", "torch.sigmoid", "torch.clamp", "pickle.load", "torch.max", "torch.zeros", "torch.as_tensor", "torch.sum", "torch.sort" ]
[((219, 246), 'detectron2.utils.logger.setup_logger', 'setup_logger', ([], {'name': '__name__'}), '(name=__name__)\n', (231, 246), False, 'from detectron2.utils.logger import setup_logger\n'), ((691, 732), 'os.path.isfile', 'os.path.isfile', (['precomputed_semantic_embs'], {}), '(precomputed_semantic_embs)\n', (705, 732), False, 'import os\n'), ((2683, 2724), 'os.path.isfile', 'os.path.isfile', (['precomputed_semantic_embs'], {}), '(precomputed_semantic_embs)\n', (2697, 2724), False, 'import os\n'), ((5739, 5826), 'torch.zeros', 'torch.zeros', (['(num_instances, num_novel_classes)'], {'dtype': 'scores.dtype', 'device': 'device'}), '((num_instances, num_novel_classes), dtype=scores.dtype, device=\n device)\n', (5750, 5826), False, 'import torch\n'), ((6377, 6434), 'torch.sort', 'torch.sort', (['known_scores[enable]'], {'dim': '(-1)', 'descending': '(True)'}), '(known_scores[enable], dim=-1, descending=True)\n', (6387, 6434), False, 'import torch\n'), ((6925, 6952), 'torch.sum', 'torch.sum', (['pred_embs'], {'dim': '(1)'}), '(pred_embs, dim=1)\n', (6934, 6952), False, 'import torch\n'), ((7052, 7099), 'torch.norm', 'torch.norm', (['pred_embs'], {'p': '(2)', 'dim': '(1)', 'keepdim': '(True)'}), '(pred_embs, p=2, dim=1, keepdim=True)\n', (7062, 7099), False, 'import torch\n'), ((7195, 7249), 'torch.norm', 'torch.norm', (['novel_class_embs'], {'p': '(2)', 'dim': '(1)', 'keepdim': '(True)'}), '(novel_class_embs, p=2, dim=1, keepdim=True)\n', (7205, 7249), False, 'import torch\n'), ((7546, 7593), 'torch.sigmoid', 'torch.sigmoid', (['proposals[0].interactness_logits'], {}), '(proposals[0].interactness_logits)\n', (7559, 7593), False, 'import torch\n'), ((8125, 8172), 'torch.clamp', 'torch.clamp', (['(novel_scores * 3)'], {'min': '(0.0)', 'max': '(1.0)'}), '(novel_scores * 3, min=0.0, max=1.0)\n', (8136, 8172), False, 'import torch\n'), ((8240, 8305), 'torch.cat', 'torch.cat', (['[scores[:, :-1], novel_scores, scores[:, -1:]]'], {'dim': '(-1)'}), '([scores[:, :-1], novel_scores, scores[:, -1:]], dim=-1)\n', (8249, 8305), False, 'import torch\n'), ((827, 841), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (838, 841), False, 'import pickle\n'), ((2819, 2833), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2830, 2833), False, 'import pickle\n'), ((2957, 2994), 'pickle.dump', 'pickle.dump', (['precomputed_embs_dict', 'f'], {}), '(precomputed_embs_dict, f)\n', (2968, 2994), False, 'import pickle\n'), ((3097, 3128), 'pickle.dump', 'pickle.dump', (['class_embs_dict', 'f'], {}), '(class_embs_dict, f)\n', (3108, 3128), False, 'import pickle\n'), ((6114, 6144), 'torch.max', 'torch.max', (['known_scores'], {'dim': '(1)'}), '(known_scores, dim=1)\n', (6123, 6144), False, 'import torch\n'), ((4654, 4689), 'torch.as_tensor', 'torch.as_tensor', (['class_embs_dict[x]'], {}), '(class_embs_dict[x])\n', (4669, 4689), False, 'import torch\n'), ((4850, 4885), 'torch.as_tensor', 'torch.as_tensor', (['class_embs_dict[x]'], {}), '(class_embs_dict[x])\n', (4865, 4885), False, 'import torch\n'), ((6165, 6260), 'torch.nonzero', 'torch.nonzero', (['((max_known_scores < self.pre_inference_thresh) & (max_known_scores > 0.001))'], {}), '((max_known_scores < self.pre_inference_thresh) & (\n max_known_scores > 0.001))\n', (6178, 6260), False, 'import torch\n'), ((2538, 2559), 'numpy.stack', 'np.stack', (['emb'], {'axis': '(0)'}), '(emb, axis=0)\n', (2546, 2559), True, 'import numpy as np\n'), ((8440, 8506), 'torch.zeros', 'torch.zeros', (['(num_instances, num_novel_classes * 4)'], {'device': 'device'}), '((num_instances, num_novel_classes * 4), device=device)\n', (8451, 8506), False, 'import torch\n'), ((2029, 2047), 'termcolor.colored', 'colored', (['x', '"""blue"""'], {}), "(x, 'blue')\n", (2036, 2047), False, 'from termcolor import colored\n')]
# Copyright 2019 <NAME> and <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import gym import os import sys import inspect import numpy as np currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) pparentdir = os.path.dirname(parentdir) sys.path.insert(0,pparentdir) from src.gym.simulate_network.link import Link from src.gym.simulate_network.network import Network from src.gym.simulate_network.sender import Sender from src.gym.worker.aurora_worker import AuroraWorker from src.gym.worker.ogd_worker import OGDWorker from src.gym.worker.two_point_ogd_worker import TwoPointOGDWorker from src.gym.worker.combining_worker import CombiningWorker from src.gym.worker.worker_runner import WorkerRunner from src.gym.simulate_network.simulated_network_env import SimulatedNetworkEnv from src.gym.aurora_policy.aurora_policy import AuroraPolicy from src.gym.no_regret_policy.gradient_calculating_agent import GradientCalculatingAgent from src.gym.no_regret_policy.no_regret_combining_connected_policy import NoRegretCombiningConnectPolicy import src.gym.simulate_network.single_sender_network from src.common.simple_arg_parse import arg_or_default from src.gym.no_regret_policy.no_regret_policy import NoRegretAgent history_len = 10 features = "sent latency inflation," + "latency ratio," + "send ratio" bws = [240, 240] # [200, 300, 200, 300] index = 0 def get_network(): global index while True: # link1 = Link.generate_link(bws[index], 0.2, 6, 0) link1 = Link.generate_random_link() link1.bw = bws[index] links = [link1] yield links index = 1 - index senders = [ Sender( random.uniform(0.3, 1.5) * bws[0], None, 0, features.split(","), history_len=history_len ), Sender( random.uniform(0.3, 1.5) * bws[0], None, 0, features.split(","), history_len=history_len ) ] import matplotlib.pyplot as plt env = SimulatedNetworkEnv(senders, get_network(), history_len=history_len, features=features) model = CombiningWorker( (40, 300), env, [ AuroraWorker("./rand_model_12", env, (40, 300)), TwoPointOGDWorker(env, (40, 300), C=11 * 300, L=20) # OGDWorker(env, (40, 300), C=11 * 300, L=2) ] ) model2 = CombiningWorker( (40, 300), env, [ AuroraWorker("./rand_model_12", env, (40, 300)), TwoPointOGDWorker(env, (40, 300), C=11 * 300, L=20) # OGDWorker(env, (40, 300), C=11 * 300, L=2) ] ) model.workers[1].set_action(200) model2.workers[1].set_action(50) #time_data = [float(event["Time"]) for event in data["Events"][1:]] #rew_data = [float(event["Reward"]) for event in data["Events"][1:]] #optimal_data = [float(event["Optimal"]) for event in data["Optimal"][1:]] #send_data = [float(event["Send Rate"]) for event in data["Events"][1:]] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 12)) senders_axis = axes[0][0] sender_ewma_axis = axes[1][0] sender1_sig_axis = axes[0][1] sender2_sig_axis = axes[1][1] senders_axis.title.set_text("Sending Rate") sender_ewma_axis.title.set_text("Reward") sender1_sig_axis.title.set_text("Sender 1 Sig") sender2_sig_axis.title.set_text("Sender 2 Sig") def plot_axis(axis, events_arr): colors = [('r', 'g'), ('b', 'm'), ('k', 'y')] times = [] optim = [] for i in range(len(events_arr)): events = events_arr[i] times = [event["Time"] for event in events[-501:]] optim = [8*event["Optimal"] for event in events[-501:]] send = [event["Send Rate"] for event in events[-500:]] throu = [event["Throughput"] for event in events[-500:]] axis.plot(times[:500], send, colors[i][0] + "-", label="[%d] Sent" % (i+1)) # axis.plot(times[:500], throu, colors[i][1] + "x", label="[%d] Throughput" % (i+1)) axis.plot(times, optim, "b--", label="Optimal") axis.plot(times, np.array(optim)/2, "r--", label="Optimal/2") def plot_ewma(axis, event_arr): colors = ["r", "b", "g", "p"] i = 0 for events in event_arr: times = [event["Time"] for event in events[-500:]] ewma = [event["EWMA"] for event in events[-500:]] axis.plot(times, ewma, colors[i] + "-", label="Sender" + str(i)) i += 1 legend_drawn = [False, False] def plot_sender_sig(axis, i, event_arr, sig_arr): times = [event["Time"] for event in event_arr[i][-500:]] axis.plot(times, list(map(lambda x: x[0], sig_arr[-500:])), "b-", label="Aurora Sig") axis.plot(times, list(map(lambda x: x[1], sig_arr[-500:])), "g-", label="OGD Sig") if not legend_drawn[i]: axis.legend() legend_drawn[i] = True sender1_sig = [] sender2_sig = [] obs = env.reset() reward = 0 wr = WorkerRunner([model, model2], obs, [reward, reward]) for i in range(1600 * 410): actions = wr.start_step() # print("[Step %d] actions are" % i, action, action2) env.senders[0].set_rate(actions[0]) env.senders[1].set_rate(actions[1]) # env.senders[2].set_rate(action3) obs, rewards, dones, info = env.step([0, 0]) wr.finish_step(obs, rewards) sender1_sig.append(model.get_proba()[:]) sender2_sig.append(model2.get_proba()[:]) # sender1_sig.append([0.5, 0.25]) # sender2_sig.append([0.25, 0.5]) # print("[Step %d] rewards are" % i, rewards) if i > 0 and i % 400 == 0: obs = env.reset() event_arr = [x["Events"] for x in info] plot_axis(senders_axis, event_arr) plot_ewma(sender_ewma_axis, event_arr) plot_sender_sig(sender1_sig_axis, 0, event_arr, sender1_sig) plot_sender_sig(sender2_sig_axis, 1, event_arr, sender2_sig) if i == 400: senders_axis.legend() plt.draw() plt.pause(0.1) if i > 0 and i % 10000 == 0: obs = env.reset(True) env.render()
[ "src.gym.worker.worker_runner.WorkerRunner", "src.gym.worker.aurora_worker.AuroraWorker", "random.uniform", "os.path.dirname", "src.gym.worker.two_point_ogd_worker.TwoPointOGDWorker", "sys.path.insert", "matplotlib.pyplot.draw", "src.gym.simulate_network.link.Link.generate_random_link", "numpy.array", "matplotlib.pyplot.pause", "inspect.currentframe", "matplotlib.pyplot.subplots" ]
[((763, 790), 'os.path.dirname', 'os.path.dirname', (['currentdir'], {}), '(currentdir)\n', (778, 790), False, 'import os\n'), ((804, 830), 'os.path.dirname', 'os.path.dirname', (['parentdir'], {}), '(parentdir)\n', (819, 830), False, 'import os\n'), ((831, 861), 'sys.path.insert', 'sys.path.insert', (['(0)', 'pparentdir'], {}), '(0, pparentdir)\n', (846, 861), False, 'import sys\n'), ((3451, 3499), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(10, 12)'}), '(nrows=2, ncols=2, figsize=(10, 12))\n', (3463, 3499), True, 'import matplotlib.pyplot as plt\n'), ((5321, 5373), 'src.gym.worker.worker_runner.WorkerRunner', 'WorkerRunner', (['[model, model2]', 'obs', '[reward, reward]'], {}), '([model, model2], obs, [reward, reward])\n', (5333, 5373), False, 'from src.gym.worker.worker_runner import WorkerRunner\n'), ((2080, 2107), 'src.gym.simulate_network.link.Link.generate_random_link', 'Link.generate_random_link', ([], {}), '()\n', (2105, 2107), False, 'from src.gym.simulate_network.link import Link\n'), ((2680, 2727), 'src.gym.worker.aurora_worker.AuroraWorker', 'AuroraWorker', (['"""./rand_model_12"""', 'env', '(40, 300)'], {}), "('./rand_model_12', env, (40, 300))\n", (2692, 2727), False, 'from src.gym.worker.aurora_worker import AuroraWorker\n'), ((2737, 2788), 'src.gym.worker.two_point_ogd_worker.TwoPointOGDWorker', 'TwoPointOGDWorker', (['env', '(40, 300)'], {'C': '(11 * 300)', 'L': '(20)'}), '(env, (40, 300), C=11 * 300, L=20)\n', (2754, 2788), False, 'from src.gym.worker.two_point_ogd_worker import TwoPointOGDWorker\n'), ((2915, 2962), 'src.gym.worker.aurora_worker.AuroraWorker', 'AuroraWorker', (['"""./rand_model_12"""', 'env', '(40, 300)'], {}), "('./rand_model_12', env, (40, 300))\n", (2927, 2962), False, 'from src.gym.worker.aurora_worker import AuroraWorker\n'), ((2972, 3023), 'src.gym.worker.two_point_ogd_worker.TwoPointOGDWorker', 'TwoPointOGDWorker', (['env', '(40, 300)'], {'C': '(11 * 300)', 'L': '(20)'}), '(env, (40, 300), C=11 * 300, L=20)\n', (2989, 3023), False, 'from src.gym.worker.two_point_ogd_worker import TwoPointOGDWorker\n'), ((6314, 6324), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (6322, 6324), True, 'import matplotlib.pyplot as plt\n'), ((6333, 6347), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (6342, 6347), True, 'import matplotlib.pyplot as plt\n'), ((725, 747), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (745, 747), False, 'import inspect\n'), ((2242, 2266), 'random.uniform', 'random.uniform', (['(0.3)', '(1.5)'], {}), '(0.3, 1.5)\n', (2256, 2266), False, 'import random\n'), ((2374, 2398), 'random.uniform', 'random.uniform', (['(0.3)', '(1.5)'], {}), '(0.3, 1.5)\n', (2388, 2398), False, 'import random\n'), ((4488, 4503), 'numpy.array', 'np.array', (['optim'], {}), '(optim)\n', (4496, 4503), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # # Dark matter spatial and spectral models # # ## Introduction # # Gammapy has some convenience methods for dark matter analyses in `~gammapy.astro.darkmatter`. These include J-Factor computation and calculation the expected gamma flux for a number of annihilation channels. They are presented in this notebook. # # The basic concepts of indirect dark matter searches, however, are not explained. So this is aimed at people who already know what the want to do. A good introduction to indirect dark matter searches is given for example in https://arxiv.org/pdf/1012.4515.pdf (Chapter 1 and 5) # ## Setup # # As always, we start with some setup for the notebook, and with imports. # In[1]: from gammapy.astro.darkmatter import ( profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel, ) from gammapy.maps import WcsGeom, WcsNDMap from astropy.coordinates import SkyCoord from matplotlib.colors import LogNorm from regions import CircleSkyRegion import astropy.units as u import numpy as np # In[2]: get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # ## Profiles # # The following dark matter profiles are currently implemented. Each model can be scaled to a given density at a certain distance. These parameters are controlled by ``profiles.DMProfile.LOCAL_DENSITY`` and ``profiles.DMProfile.DISTANCE_GC`` # In[3]: profiles.DMProfile.__subclasses__() # In[4]: for profile in profiles.DMProfile.__subclasses__(): p = profile() p.scale_to_local_density() radii = np.logspace(-3, 2, 100) * u.kpc plt.plot(radii, p(radii), label=p.__class__.__name__) plt.loglog() plt.axvline(8.5, linestyle="dashed", color="black", label="local density") plt.legend() print("LOCAL_DENSITY:", profiles.DMProfile.LOCAL_DENSITY) print("DISTANCE_GC:", profiles.DMProfile.DISTANCE_GC) # ## J Factors # # There are utilities to compute J-Factor maps can can serve as a basis to compute J-Factors for certain regions. In the following we compute a J-Factor map for the Galactic Centre region # In[5]: profile = profiles.NFWProfile() # Adopt standard values used in HESS profiles.DMProfile.DISTANCE_GC = 8.5 * u.kpc profiles.DMProfile.LOCAL_DENSITY = 0.39 * u.Unit("GeV / cm3") profile.scale_to_local_density() position = SkyCoord(0.0, 0.0, frame="galactic", unit="deg") geom = WcsGeom.create(binsz=0.05, skydir=position, width=3.0, frame="galactic") # In[6]: jfactory = JFactory( geom=geom, profile=profile, distance=profiles.DMProfile.DISTANCE_GC ) jfact = jfactory.compute_jfactor() # In[7]: jfact_map = WcsNDMap(geom=geom, data=jfact.value, unit=jfact.unit) fig, ax, im = jfact_map.plot(cmap="viridis", norm=LogNorm(), add_cbar=True) plt.title(f"J-Factor [{jfact_map.unit}]") # 1 deg circle usually used in H.E.S.S. analyses sky_reg = CircleSkyRegion(center=position, radius=1 * u.deg) pix_reg = sky_reg.to_pixel(wcs=geom.wcs) pix_reg.plot(ax=ax, facecolor="none", edgecolor="red", label="1 deg circle") plt.legend() # In[8]: # NOTE: https://arxiv.org/abs/1607.08142 quote 2.67e21 without the +/- 0.3 deg band around the plane total_jfact = pix_reg.to_mask().multiply(jfact).sum() print( "J-factor in 1 deg circle around GC assuming a " f"{profile.__class__.__name__} is {total_jfact:.3g}" ) # ## Gamma-ray spectra at production # # The gamma-ray spectrum per annihilation is a further ingredient for a dark matter analysis. The following annihilation channels are supported. For more info see https://arxiv.org/pdf/1012.4515.pdf # In[9]: fluxes = PrimaryFlux(mDM="1 TeV", channel="eL") print(fluxes.allowed_channels) # In[10]: fig, axes = plt.subplots(4, 1, figsize=(6, 16)) mDMs = [0.01, 0.1, 1, 10] * u.TeV for mDM, ax in zip(mDMs, axes): fluxes.mDM = mDM ax.set_title(rf"m$_{{\mathrm{{DM}}}}$ = {mDM}") ax.set_yscale("log") ax.set_ylabel("dN/dE") for channel in ["tau", "mu", "b", "Z"]: fluxes.channel = channel fluxes.table_model.plot( energy_range=[mDM / 100, mDM], ax=ax, label=channel, flux_unit="1/GeV", ) axes[0].legend() plt.subplots_adjust(hspace=0.5) # ## Flux maps # # Finally flux maps can be produced like this: # In[11]: channel = "Z" massDM = 10 * u.TeV diff_flux = DarkMatterAnnihilationSpectralModel(mass=massDM, channel=channel) int_flux = ( jfact * diff_flux.integral(energy_min=0.1 * u.TeV, energy_max=10 * u.TeV) ).to("cm-2 s-1") # In[12]: flux_map = WcsNDMap(geom=geom, data=int_flux.value, unit="cm-2 s-1") fig, ax, im = flux_map.plot(cmap="viridis", norm=LogNorm(), add_cbar=True) plt.title( f"Flux [{int_flux.unit}]\n m$_{{DM}}$={fluxes.mDM.to('TeV')}, channel={fluxes.channel}" ); # In[ ]:
[ "matplotlib.pyplot.loglog", "matplotlib.pyplot.title", "numpy.logspace", "gammapy.astro.darkmatter.DarkMatterAnnihilationSpectralModel", "gammapy.astro.darkmatter.PrimaryFlux", "gammapy.astro.darkmatter.profiles.NFWProfile", "matplotlib.colors.LogNorm", "matplotlib.pyplot.axvline", "gammapy.maps.WcsNDMap", "gammapy.astro.darkmatter.profiles.DMProfile.__subclasses__", "gammapy.astro.darkmatter.JFactory", "matplotlib.pyplot.subplots", "regions.CircleSkyRegion", "matplotlib.pyplot.legend", "matplotlib.pyplot.subplots_adjust", "astropy.units.Unit", "warnings.filterwarnings", "gammapy.maps.WcsGeom.create", "astropy.coordinates.SkyCoord" ]
[((1185, 1218), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1208, 1218), False, 'import warnings\n'), ((1492, 1527), 'gammapy.astro.darkmatter.profiles.DMProfile.__subclasses__', 'profiles.DMProfile.__subclasses__', ([], {}), '()\n', (1525, 1527), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((1556, 1591), 'gammapy.astro.darkmatter.profiles.DMProfile.__subclasses__', 'profiles.DMProfile.__subclasses__', ([], {}), '()\n', (1589, 1591), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((1745, 1757), 'matplotlib.pyplot.loglog', 'plt.loglog', ([], {}), '()\n', (1755, 1757), True, 'import matplotlib.pyplot as plt\n'), ((1758, 1832), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(8.5)'], {'linestyle': '"""dashed"""', 'color': '"""black"""', 'label': '"""local density"""'}), "(8.5, linestyle='dashed', color='black', label='local density')\n", (1769, 1832), True, 'import matplotlib.pyplot as plt\n'), ((1833, 1845), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1843, 1845), True, 'import matplotlib.pyplot as plt\n'), ((2189, 2210), 'gammapy.astro.darkmatter.profiles.NFWProfile', 'profiles.NFWProfile', ([], {}), '()\n', (2208, 2210), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((2402, 2450), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['(0.0)', '(0.0)'], {'frame': '"""galactic"""', 'unit': '"""deg"""'}), "(0.0, 0.0, frame='galactic', unit='deg')\n", (2410, 2450), False, 'from astropy.coordinates import SkyCoord\n'), ((2458, 2530), 'gammapy.maps.WcsGeom.create', 'WcsGeom.create', ([], {'binsz': '(0.05)', 'skydir': 'position', 'width': '(3.0)', 'frame': '"""galactic"""'}), "(binsz=0.05, skydir=position, width=3.0, frame='galactic')\n", (2472, 2530), False, 'from gammapy.maps import WcsGeom, WcsNDMap\n'), ((2555, 2632), 'gammapy.astro.darkmatter.JFactory', 'JFactory', ([], {'geom': 'geom', 'profile': 'profile', 'distance': 'profiles.DMProfile.DISTANCE_GC'}), '(geom=geom, profile=profile, distance=profiles.DMProfile.DISTANCE_GC)\n', (2563, 2632), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((2699, 2753), 'gammapy.maps.WcsNDMap', 'WcsNDMap', ([], {'geom': 'geom', 'data': 'jfact.value', 'unit': 'jfact.unit'}), '(geom=geom, data=jfact.value, unit=jfact.unit)\n', (2707, 2753), False, 'from gammapy.maps import WcsGeom, WcsNDMap\n'), ((2830, 2871), 'matplotlib.pyplot.title', 'plt.title', (['f"""J-Factor [{jfact_map.unit}]"""'], {}), "(f'J-Factor [{jfact_map.unit}]')\n", (2839, 2871), True, 'import matplotlib.pyplot as plt\n'), ((2932, 2982), 'regions.CircleSkyRegion', 'CircleSkyRegion', ([], {'center': 'position', 'radius': '(1 * u.deg)'}), '(center=position, radius=1 * u.deg)\n', (2947, 2982), False, 'from regions import CircleSkyRegion\n'), ((3101, 3113), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3111, 3113), True, 'import matplotlib.pyplot as plt\n'), ((3663, 3701), 'gammapy.astro.darkmatter.PrimaryFlux', 'PrimaryFlux', ([], {'mDM': '"""1 TeV"""', 'channel': '"""eL"""'}), "(mDM='1 TeV', channel='eL')\n", (3674, 3701), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((3759, 3794), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(1)'], {'figsize': '(6, 16)'}), '(4, 1, figsize=(6, 16))\n', (3771, 3794), True, 'import matplotlib.pyplot as plt\n'), ((4246, 4277), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.5)'}), '(hspace=0.5)\n', (4265, 4277), True, 'import matplotlib.pyplot as plt\n'), ((4404, 4469), 'gammapy.astro.darkmatter.DarkMatterAnnihilationSpectralModel', 'DarkMatterAnnihilationSpectralModel', ([], {'mass': 'massDM', 'channel': 'channel'}), '(mass=massDM, channel=channel)\n', (4439, 4469), False, 'from gammapy.astro.darkmatter import profiles, JFactory, PrimaryFlux, DarkMatterAnnihilationSpectralModel\n'), ((4603, 4660), 'gammapy.maps.WcsNDMap', 'WcsNDMap', ([], {'geom': 'geom', 'data': 'int_flux.value', 'unit': '"""cm-2 s-1"""'}), "(geom=geom, data=int_flux.value, unit='cm-2 s-1')\n", (4611, 4660), False, 'from gammapy.maps import WcsGeom, WcsNDMap\n'), ((2336, 2355), 'astropy.units.Unit', 'u.Unit', (['"""GeV / cm3"""'], {}), "('GeV / cm3')\n", (2342, 2355), True, 'import astropy.units as u\n'), ((1654, 1677), 'numpy.logspace', 'np.logspace', (['(-3)', '(2)', '(100)'], {}), '(-3, 2, 100)\n', (1665, 1677), True, 'import numpy as np\n'), ((2804, 2813), 'matplotlib.colors.LogNorm', 'LogNorm', ([], {}), '()\n', (2811, 2813), False, 'from matplotlib.colors import LogNorm\n'), ((4711, 4720), 'matplotlib.colors.LogNorm', 'LogNorm', ([], {}), '()\n', (4718, 4720), False, 'from matplotlib.colors import LogNorm\n')]
# coding=utf-8 import itertools import numpy as np import matplotlib.pyplot as plt from ..helper_functions.helpers import is_this_saved_iteration, convert_global_to_particle_iter, colors, directions class Plot: """ A plot for visualization. Mainly an abstract class for overloading with interesting kinds of diagnostics. Parameters ---------- S : Simulation A `Simulation` object to pull data from. ax : matplotlib axis An axis to draw on """ def __init__(self, S, ax): self.S = S if isinstance(ax, str): fig, self.ax = plt.subplots() else: self.ax = ax self.plots = [] L = S.grid.L self.ax.set_xlim(0, S.grid.L) self.ax.set_xlabel(rf"Position $x$ (L={L:.3e} m)") self.ax.grid() xticks = np.linspace(0, L, 7) self.ax.set_xticks(xticks) self.ax.xaxis.set_ticklabels([f"{x/L:.1f}L" for x in xticks]) self.ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0), useMathText=True, useOffset=False) # TODO axis=both? # self.ax.yaxis.set_label_position("right") def animation_init(self): """ Zeroes out all data in all lines of the plot. Useful for Animation. """ for plot in self.plots: plot.set_data([], []) def update(self, i): """ Updates the plot with information from a particular iteration of the simulation. Parameters ---------- i : int Iteration of the simulation """ pass def return_animated(self): """ Returns an iterable of all items that have changed. Useful for Animation """ return self.plots class FrequencyPlot(Plot): """ Plots the spatial Fourier transform of field energy versus wave number. """ # REFACTOR move the fourier analysis to PostProcessedGrid; describe the math here as well as there def __init__(self, S, ax): super().__init__(S, ax) self.plots.append(self.ax.plot([], [], "o-", label="energy per mode")[0]) self.ax.set_xlabel(r"Wavevector mode $k$") self.ax.set_ylabel(r"Energy $E$") # max_interesting = S.grid.k_plot[...].max() * 0.3 # self.indices = S.grid.k_plot < max_interesting self.indices = np.ones_like(S.grid.k_plot, dtype=bool) interesting_x = S.grid.k_plot[self.indices] self.ax.set_xticks(interesting_x) self.ax.xaxis.set_ticklabels(np.arange(len(interesting_x))) self.ax.set_xlim(interesting_x.min(), interesting_x.max()) self.ax.set_ylim(0, S.grid.longitudinal_energy_per_mode_history[...].max()) def update(self, i): # import ipdb; ipdb.set_trace() self.plots[0].set_data(self.S.grid.k_plot[self.indices], self.S.grid.longitudinal_energy_per_mode_history[i][self.indices]) def phaseplot_values(species): """ A convenience function to get a dictionary of values, to allow generalization of the PhasePlot class. The keys you can pull for phase plots are `x`, `v_x`, `v_y` and `v_z`. Parameters ---------- species : Species A species to draw data from Returns ------- A dictionary of phase plot values. """ return {"x": species.position_history, "v_x": species.velocity_history[:, :, 0], "v_y": species.velocity_history[:, :, 1], "v_z": species.velocity_history[:, :, 2], } class PhasePlot(Plot): """ Draws a phase plot. The keys you can pull for phase plots are `x`, `v_x`, `v_y` and `v_z`. Parameters ---------- v1, v2 : str keys for the phase plot. alpha : float An opacity value between 0 and 1. Useful for neat phase plots displaying density. """ def __init__(self, S, ax, v1, v2, alpha): super().__init__(S, ax) self.x = [phaseplot_values(species)[v1] for species in S.list_species] self.y = [phaseplot_values(species)[v2] for species in S.list_species] if len(self.y): maxys = max([np.max(np.abs(y)) for y in self.y]) self.ax.set_ylim(-maxys, maxys) for i, species in enumerate(S.list_species): self.plots.append(self.ax.plot([], [], colors[i] + ".", alpha=alpha)[0]) # self.ax.yaxis.set_label_position("right") self.ax.set_xlabel(rf"${v1}$") self.ax.set_ylabel(rf"${v2}$") def update(self, i): for plot, species, x, y in zip(self.plots, self.S.list_species, self.x, self.y): if is_this_saved_iteration(i, species.save_every_n_iterations): index = convert_global_to_particle_iter(i, species.save_every_n_iterations) alive = species.N_alive_history[index] +1 # print(y[index, species.alive_history[index]]) #TODO: get alive history to work here! plot.set_data(x[index, :alive], # , species.alive_history[index]], y[index, :alive]) # , species.alive_history[index]]) class SpatialDistributionPlot(Plot): """ Draws particle density on the grid. """ def __init__(self, S, ax): super().__init__(S, ax) ax.set_ylabel(f"Particle density $n$") for species in S.list_species: self.plots.append(self.ax.plot([], [], "-", label=species.name)[0]) if len(S.list_species): self.ax.set_ylim(0, 1.2*max([species.density_history[...].max() for species in S.list_species])) self.ax.legend(loc='best') def update(self, i): for species, plot in zip(self.S.list_species, self.plots): plot.set_data(self.S.grid.x, species.density_history[i]) class SpatialPerturbationDistributionPlot(SpatialDistributionPlot): def __init__(self, S, ax): super().__init__(S, ax) self.ax.set_ylabel(r"$\Delta n = n - n(t=0)$") self.y = [species.density_history - species.density_history[0] for species in S.list_species] if len(S.list_species): self.ax.set_ylim(min([1.2 * y.min() for y in self.y]),max([1.2 * y.max() for y in self.y])) self.ax.legend(loc='best') def update(self, i): for species, plot, y in zip(self.S.list_species, self.plots, self.y): plot.set_data(self.S.grid.x, y[i]) class ChargeDistributionPlot(Plot): """ Draws charge density from the grid. """ def __init__(self, S, ax, check_poisson=False): super().__init__(S, ax) self.plots.append(self.ax.plot([], [], "-", alpha=0.8, label="charge")[0]) self.ax.set_ylabel(f"Charge density $\\rho$") mincharge = np.min(S.grid.charge_density_history) maxcharge = np.max(S.grid.charge_density_history) self.ax.set_ylim(mincharge, maxcharge) self.check_poisson = check_poisson if check_poisson: self.plots.append(self.ax.plot([], [], "-", alpha=0.8, label=r"$\varepsilon_0 \partial E/ \partial x$")[0]) self.ax.legend(loc='lower left') def update(self, i): self.plots[0].set_data(self.S.grid.x, self.S.grid.charge_density_history[i, :]) if self.check_poisson: self.plots[1].set_data(self.S.grid.x, self.S.grid.check_on_charge[i]) class Histogram(Plot): """ Draws a histogram of a given value from the phase plot dataset. The keys you can pull for phase plots are `x`, `v_x`, `v_y` and `v_z`. Parameters ---------- v1 : str A key to phase plot values. n_bins: int Number of bins to draw. """ def __init__(self, S, ax, v1: str, n_bins: int = 50): super().__init__(S, ax) self.bin_arrays = [] self.values = [phaseplot_values(species)[v1] for species in S.list_species] if len(self.values): maxxs = max([np.max(np.abs(v)) for v in self.values]) self.ax.set_xlim(-maxxs, maxxs) for i, s, v in zip(range(len(S.list_species)), S.list_species, self.values): bin_array = np.linspace(v.min(), v.max(), n_bins) self.bin_arrays.append(bin_array) self.plots.append( self.ax.plot(*calculate_histogram_data(v[0], bin_array), colors[i])[0]) self.ax.set_xlabel(rf"${v1}$") self.ax.set_ylabel(r"Number of particles") if len(self.bin_arrays): self.ax.set_xlim(min([bin_array.min() for bin_array in self.bin_arrays]), max([bin_array.max() for bin_array in self.bin_arrays])) def update(self, i): for species, histogram, bin_array, v in zip(self.S.list_species, self.plots, self.bin_arrays, self.values): index = convert_global_to_particle_iter(i, species.save_every_n_iterations) alive = species.N_alive_history[index] +1 histogram.set_data(*calculate_histogram_data(v[index, :alive], bin_array)) def calculate_histogram_data(arr, bins): """ Calculates histogram values, normalized to the number of particles. Parameters ---------- arr : ndarray Values of a particle property, for example, velocity bins : ndarray Bin edges for the histogram. Returns ------- bin_center : ndarray Centers of histogram bars (the x array for plotting) bin_height : ndarray Heights of histogram bars (the y array for plotting) """ bin_height, bin_edge = np.histogram(arr, bins=bins) # OPTIMIZE bin_center = (bin_edge[:-1] + bin_edge[1:]) * 0.5 return bin_center, bin_height class IterationCounter: """ A little widget inserted on an axis, displaying the iteration number and current simulation time. """ def __init__(self, S, ax): self.S = S self.ax = ax self.counter = ax.text(0.1, 0.9, 'i=x', horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) def animation_init(self): self.counter.set_text("Iteration: \nTime: ") def update(self, i): self.counter.set_text(f"Iteration: {i}/{self.S.NT}\nTime: {i*self.S.dt:.3g}/{self.S.NT*self.S.dt:.3g}") def return_animated(self): return [self.counter] class FieldPlot(Plot): """ Draws electric and magnetic fields from the grid in a given direction Parameters ---------- j : int Direction as Cartesian index number. 0: x, 1: y, 2: z """ def __init__(self, S, ax, j): super().__init__(S, ax) self.j = j self.plots.append(self.ax.plot([], [], "-", label=f"$E_{directions[j]}$")[0]) self.ax.set_ylabel(r"Fields $E$, $B$") max_e = np.max(np.abs(S.grid.electric_field_history[:, :, j])) if j != 0: self.plots.append(self.ax.plot([], [], "-", label=f"$B_{directions[j]}$")[0]) max_b = np.max(np.abs(S.grid.magnetic_field_history[:, :, j])) maxfield = max([max_e, max_b]) else: maxfield = max_e print(f"For direction {directions[j]}, maxfield is {maxfield:.2e}") self.ax.set_ylim(-maxfield, maxfield) self.ax.legend(loc='upper right') def update(self, i): self.plots[0].set_data(self.S.grid.x, self.S.grid.electric_field_history[i, :, self.j]) if self.j != 0: self.plots[1].set_data(self.S.grid.x, self.S.grid.magnetic_field_history[i, :, self.j]) class PoyntingFieldPlot(Plot): """ Draws electric and magnetic field energy flux (Poynting flux) from the grid """ def __init__(self, S, ax): super().__init__(S, ax) self.plots.append(self.ax.plot([], [], "-", label=f"Poynting flux")[0]) self.ax.set_ylabel(r"Poynting flux") max_P = np.max(np.abs(S.grid.poynting_history[...])) self.ax.set_ylim(-max_P, max_P) def update(self, i): self.plots[0].set_data(self.S.grid.x, self.S.grid.poynting_history[i, :]) class CurrentPlot(Plot): """ Draws currents from the grid in a given direction. Parameters ---------- j : int Direction as Cartesian index number. 0: x, 1: y, 2: z """ def __init__(self, S, ax, j): super().__init__(S, ax) self.j = j x = S.grid.x_current if j == 0 else S.grid.x self.plots.append(self.ax.plot(x, S.grid.current_density_history[0, :, j], "-", alpha=0.9, label=fr"$j_{directions[j]}$")[0]) self.ax.set_ylabel(f"Current density $j_{directions[j]}$") self.ax.tick_params('y') self.ax.legend(loc='lower left') current = S.grid.current_density_history[:, :, j] # mean = current.mean() # std = 3*current.std() # # mincurrent = mean - std # maxcurrent = mean + std mincurrent = current.min() maxcurrent = current.max() try: ax.set_ylim(mincurrent, maxcurrent) except ValueError as E: print(f"Error on setting current limits in {j}: {E}") def update(self, i): self.plots[0].set_data(self.S.grid.x, self.S.grid.current_density_history[i, :, self.j]) class PlotSet: """ A single object representing a few different plots on different axes. Useful for plotting sets of directional values (fields, currents). Parameters ---------- axes : list List of axes to use. list_plots : List of `Plot`s to update and return. """ def __init__(self, axes, list_plots): self.axes = axes self.list_plots = list_plots def update(self, i): for plot in self.list_plots: plot.update(i) def animation_init(self): for plot in self.list_plots: plot.animation_init() def return_animated(self): return list(itertools.chain.from_iterable(plot.return_animated() for plot in self.list_plots)) class TripleFieldPlot(PlotSet): """ Draws electric and magnetic field plots on the grid on a given list of axes. Parameters ---------- S : Simulation Simulation to pull data from. axes : list List of matplotlib axes. """ def __init__(self, S, axes: list): assert len(axes) <= 3, "Too many axes, we ran out of directions!" plots = [FieldPlot(S, ax, j) for j, ax in enumerate(axes)] super().__init__(axes, plots) class TripleCurrentPlot(PlotSet): """ Draws currents on the grid on a given list of axes. Parameters ---------- S : Simulation Simulation to pull data from. axes : list List of matplotlib axes. """ def __init__(self, S, axes: list): assert len(axes) <= 3, "Too many axes, we ran out of directions!" plots = [CurrentPlot(S, ax, j) for j, ax in enumerate(axes)] super().__init__(axes, plots)
[ "numpy.ones_like", "numpy.abs", "numpy.histogram", "numpy.max", "numpy.min", "numpy.linspace", "matplotlib.pyplot.subplots" ]
[((9547, 9575), 'numpy.histogram', 'np.histogram', (['arr'], {'bins': 'bins'}), '(arr, bins=bins)\n', (9559, 9575), True, 'import numpy as np\n'), ((839, 859), 'numpy.linspace', 'np.linspace', (['(0)', 'L', '(7)'], {}), '(0, L, 7)\n', (850, 859), True, 'import numpy as np\n'), ((2385, 2424), 'numpy.ones_like', 'np.ones_like', (['S.grid.k_plot'], {'dtype': 'bool'}), '(S.grid.k_plot, dtype=bool)\n', (2397, 2424), True, 'import numpy as np\n'), ((6789, 6826), 'numpy.min', 'np.min', (['S.grid.charge_density_history'], {}), '(S.grid.charge_density_history)\n', (6795, 6826), True, 'import numpy as np\n'), ((6847, 6884), 'numpy.max', 'np.max', (['S.grid.charge_density_history'], {}), '(S.grid.charge_density_history)\n', (6853, 6884), True, 'import numpy as np\n'), ((602, 616), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (614, 616), True, 'import matplotlib.pyplot as plt\n'), ((10797, 10843), 'numpy.abs', 'np.abs', (['S.grid.electric_field_history[:, :, j]'], {}), '(S.grid.electric_field_history[:, :, j])\n', (10803, 10843), True, 'import numpy as np\n'), ((11865, 11901), 'numpy.abs', 'np.abs', (['S.grid.poynting_history[...]'], {}), '(S.grid.poynting_history[...])\n', (11871, 11901), True, 'import numpy as np\n'), ((10981, 11027), 'numpy.abs', 'np.abs', (['S.grid.magnetic_field_history[:, :, j]'], {}), '(S.grid.magnetic_field_history[:, :, j])\n', (10987, 11027), True, 'import numpy as np\n'), ((4219, 4228), 'numpy.abs', 'np.abs', (['y'], {}), '(y)\n', (4225, 4228), True, 'import numpy as np\n'), ((7970, 7979), 'numpy.abs', 'np.abs', (['v'], {}), '(v)\n', (7976, 7979), True, 'import numpy as np\n')]
from PIL import Image import numpy as np import math def floating_point(number): temp=int(number) if number>temp: return temp+1 else : return number def mat_Multi(angle,x,y,k): tangent=math.tan(angle/2) if k==0 or k==2: X=x-y*tangent Y=y else: X=x Y=x*math.sin(angle)+y return round(X),round(Y) def rot(image,angle): # Define the most occuring variables angle=math.radians(angle) cosine=math.cos(angle) sine=math.sin(angle) image1=np.zeros_like(image) # Find the centre of the image about which we have to rotate the image centre_row = round(((image.shape[0]+1)/2)-1) centre_column= round(((image.shape[1]+1)/2)-1) for i in range(image.shape[0]): for j in range(image.shape[1]): y=image.shape[0]-1-i-centre_row x=image.shape[1]-1-j-centre_column X=round(x*cosine+y*sine) Y=round(-x*sine+y*cosine) X=centre_column-X Y=centre_row-Y if X<image1.shape[1] and Y<image1.shape[0] and X>=0 and Y>=0: image1[Y,X,:]=image[i,j,:] for i in range(image1.shape[0]): prev = [image1[i][0][0], image1[i][0][1], image1[i][0][2], image1[i][0][3]] for j in range(image1.shape[1]-1): if (not any(image1[i][j][:])): if (any(image1[i][j+1][:])): image1[i][j][:] = prev else: prev = image1[i][j][:] return image1 file_name=input("Enter the name of the file:- ") im = np.array(Image.open(file_name)) rotation_angle=float(input("Enter the angle :- ")) im_copy=rot(im,rotation_angle) pil_img=Image.fromarray((im_copy).astype(np.uint8)) pil_img.save("rotated_without_bound.png")
[ "numpy.zeros_like", "math.radians", "math.tan", "math.sin", "PIL.Image.open", "math.cos" ]
[((219, 238), 'math.tan', 'math.tan', (['(angle / 2)'], {}), '(angle / 2)\n', (227, 238), False, 'import math\n'), ((448, 467), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (460, 467), False, 'import math\n'), ((479, 494), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (487, 494), False, 'import math\n'), ((504, 519), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (512, 519), False, 'import math\n'), ((531, 551), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (544, 551), True, 'import numpy as np\n'), ((1644, 1665), 'PIL.Image.open', 'Image.open', (['file_name'], {}), '(file_name)\n', (1654, 1665), False, 'from PIL import Image\n'), ((326, 341), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (334, 341), False, 'import math\n')]
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor import mindspore.nn as nn import numpy as np import mindspore.context as context context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class Net_Pool(nn.Cell): def __init__(self): super(Net_Pool, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="VALID") def construct(self, x): return self.maxpool_fun(x) class Net_Pool2(nn.Cell): def __init__(self): super(Net_Pool2, self).__init__() self.maxpool_fun = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME") def construct(self, x): return self.maxpool_fun(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_maxpool2d(): x = Tensor(np.array([[[ [0, 1, 2, 3, -4, -5], [6, 7, 8, 9, -10, -11], [12, 13, 14, -15, -16, -17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35] ]]]).astype(np.float32)) maxpool2d = Net_Pool() maxpool2d2 = Net_Pool2() output2 = maxpool2d2(x) output = maxpool2d(x) expect_result = (np.array([[[ [7, 9, -4], [19, 21, 23], [31, 33, 35] ]]])) expect_result2 = (np.array([[[ [14, 14, -4], [26, 28, 29], [32, 34, 35] ]]])) print(output.asnumpy()) assert (output.asnumpy() == expect_result).all() print(output2.asnumpy()) assert (output2.asnumpy() == expect_result2).all()
[ "mindspore.context.set_context", "numpy.array", "mindspore.nn.MaxPool2d" ]
[((793, 858), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE', 'device_target': '"""CPU"""'}), "(mode=context.GRAPH_MODE, device_target='CPU')\n", (812, 858), True, 'import mindspore.context as context\n'), ((1820, 1874), 'numpy.array', 'np.array', (['[[[[7, 9, -4], [19, 21, 23], [31, 33, 35]]]]'], {}), '([[[[7, 9, -4], [19, 21, 23], [31, 33, 35]]]])\n', (1828, 1874), True, 'import numpy as np\n'), ((1928, 1984), 'numpy.array', 'np.array', (['[[[[14, 14, -4], [26, 28, 29], [32, 34, 35]]]]'], {}), '([[[[14, 14, -4], [26, 28, 29], [32, 34, 35]]]])\n', (1936, 1984), True, 'import numpy as np\n'), ((977, 1032), 'mindspore.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)', 'pad_mode': '"""VALID"""'}), "(kernel_size=2, stride=2, pad_mode='VALID')\n", (989, 1032), True, 'import mindspore.nn as nn\n'), ((1216, 1270), 'mindspore.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)', 'pad_mode': '"""SAME"""'}), "(kernel_size=3, stride=2, pad_mode='SAME')\n", (1228, 1270), True, 'import mindspore.nn as nn\n'), ((1447, 1622), 'numpy.array', 'np.array', (['[[[[0, 1, 2, 3, -4, -5], [6, 7, 8, 9, -10, -11], [12, 13, 14, -15, -16, -17\n ], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33,\n 34, 35]]]]'], {}), '([[[[0, 1, 2, 3, -4, -5], [6, 7, 8, 9, -10, -11], [12, 13, 14, -15,\n -16, -17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31,\n 32, 33, 34, 35]]]])\n', (1455, 1622), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # In[1]: import tensorflow as tf import tensorflow.contrib.eager as tfe import numpy as np import pandas as pd import pickle from timeit import default_timer as timer import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split import nltk as nltk import math import os import cProfile, pstats, io #import memory_profiler import psutil import gc # # Enabling eager execution tf.enable_eager_execution() process = psutil.Process(os.getpid()) print('Memory initial : ',process.memory_info().rss / (1024*1024), 'MB') # to get memory used by this process in MB dirname = os.getcwd() datasetpath = os.path.join(dirname, 'datasets/') # # Load Google vectors UNK = '</s>' outfile = datasetpath +'google_word_corpus.pic' with open(outfile, 'rb') as pickle_file: googleCorpus, google_corpus_word_to_int, google_corpus_int_to_word = pickle.load(pickle_file) googleSet = pd.read_csv(datasetpath+'GoogleNews-vectors-negative10.txt', sep=' ', header=None) print(googleSet.shape) print(googleSet.head()) googleWords = googleSet.iloc[:,0:1] googleVectors = googleSet.iloc[:,1:] outfile = os.path.join(datasetpath, 'parameters.pic') with open(outfile, 'rb') as pickle_file: wVal, bVal, wscoreVal, bscoreVal = pickle.load(pickle_file) print('Parameter values : ', wVal, bVal, wscoreVal, bscoreVal) treeDataframe = pd.read_csv(datasetpath+'constituency-parsing-data-all-UNK-less-40-words.csv', sep=' ', header=None ) treeDataframe.columns =['sentence', 'tree'] treeDataframe['tree'] = treeDataframe['tree'].apply(nltk.Tree.fromstring) def convert_imdb_corpus_into_int(sentence): words = sentence.split() words_to_num = [google_corpus_word_to_int[word] for word in words] return words_to_num treeDataframe_num = treeDataframe.copy() treeDataframe_num['sentence'] = treeDataframe_num['sentence'].apply(convert_imdb_corpus_into_int) #treeDataframe_num.head() # # Model and the Parameters STATE_SIZE = 10 embeddings = tfe.Variable(name='embeddings', validate_shape= googleVectors.shape, initial_value=googleVectors.values, dtype=tf.float32, trainable=False) w = tfe.Variable(name='w', validate_shape=(2*googleVectors.shape[1], STATE_SIZE), initial_value=wVal.numpy(), dtype=tf.float32) b = tfe.Variable(name='b', validate_shape=(1, STATE_SIZE), initial_value=bVal.numpy(), dtype=tf.float32) w_score = tfe.Variable(name='w_score', validate_shape=(STATE_SIZE, 1), initial_value=wscoreVal.numpy(), dtype=tf.float32) b_score = tfe.Variable(name='b_score', validate_shape=(1, 1), initial_value=bscoreVal.numpy(), dtype=tf.float32) #print(w) #print(b) #print(w_score) #print(b_score) def embedding_lookup(input_words): words = tf.nn.embedding_lookup(embeddings, input_words) return words def predict(data): total_loss_list = [] total_train_accuracy = 0.0 total_train_count = 0.0 predicted_tree_list = [] for j in range(data.shape[0]): # get the word vectors based on the word ids (word id for each word) print(j) words = embedding_lookup(data.iat[j,0]) end = timer() #print('Time taken to lookup embeddings (seconds): ', end-start) #words matrix - unstack words_unstack = tf.unstack(words) words_len = len(words_unstack) pred_score_list = [] predicted_tree = [nltk.Tree(UNK,[google_corpus_int_to_word[index]]) for index in data.iat[j,0]] state_vec_list = [] score_list = [] start_k = 0 stop_k = words_len - 1 #loop until all the words are merged together while(words_len > 1): #compute scores for the list of word combinations # for each word combination compute the score of it scores = np.zeros(shape=(words_len-1, 1)) for k in range(start_k, stop_k): words_concat = tf.concat([words_unstack[k], words_unstack[k+1]], axis=0) #reshape the tensor to be a matrix with 1 row rather than vector words_concat = tf.reshape(words_concat, shape=(1, words_concat.shape[0])) # matrix computation and activation z = tf.matmul(words_concat, w) + b state_vec = tf.tanh(z) state_vec_list.append(state_vec) score = tf.matmul(state_vec, w_score) + b_score score_list.append(score) scores[k] = score end = timer() #print('Time taken to calculate all subsequent word combinations (seconds): ', end-start) #compare the scores and pick the maximum one. max_score_index = np.argmax(scores) pred_score_list.append(scores[max_score_index]) # remove the words which is used to combine and replace with combined state vector words_unstack.pop(max_score_index+1) words_unstack.pop(max_score_index) # statevector needs to be reshaped as matrix to update state_vec_vector = tf.reshape(state_vec, shape = [state_vec.shape[1]]) words_unstack.insert(max_score_index, state_vec_vector) words_len = len(words_unstack) right_tree = predicted_tree.pop(max_score_index+1) left_tree = predicted_tree.pop(max_score_index) predicted_tree.insert(max_score_index, nltk.Tree(UNK, [left_tree, right_tree])) start_k = max(0, max_score_index - 1) stop_k = min(max_score_index+2, words_len-1) #print([max_score_index, start_k, stop_k, words_len]) end = timer() #print('Time taken to make one decision (seconds): ', end-start) predicted_tree_list.append(str(predicted_tree[0])) #print(str(predicted_tree)) print(str(predicted_tree[0])) #print(str(predicted_tree[0][0])) return predicted_tree_list predicted_tree_list = predict(treeDataframe_num.iloc[39000:40000]) print(predicted_tree_list[0]) # In[51]: with open(datasetpath+'predict-output.txt', 'w') as f: for predicted_tree in predicted_tree_list: f.write("%s\n" % predicted_tree) print('Memory consumed : ',process.memory_info().rss / (1024*1024), 'MB') # to get memory used by this process in MB predicted_tree_list = None gc.collect()
[ "nltk.Tree", "os.getpid", "numpy.argmax", "os.getcwd", "pandas.read_csv", "tensorflow.nn.embedding_lookup", "timeit.default_timer", "numpy.zeros", "tensorflow.contrib.eager.Variable", "tensorflow.reshape", "tensorflow.concat", "gc.collect", "tensorflow.matmul", "pickle.load", "tensorflow.enable_eager_execution", "tensorflow.tanh", "os.path.join", "tensorflow.unstack" ]
[((462, 489), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (487, 489), True, 'import tensorflow as tf\n'), ((656, 667), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (665, 667), False, 'import os\n'), ((682, 716), 'os.path.join', 'os.path.join', (['dirname', '"""datasets/"""'], {}), "(dirname, 'datasets/')\n", (694, 716), False, 'import os\n'), ((962, 1050), 'pandas.read_csv', 'pd.read_csv', (["(datasetpath + 'GoogleNews-vectors-negative10.txt')"], {'sep': '""" """', 'header': 'None'}), "(datasetpath + 'GoogleNews-vectors-negative10.txt', sep=' ',\n header=None)\n", (973, 1050), True, 'import pandas as pd\n'), ((1177, 1220), 'os.path.join', 'os.path.join', (['datasetpath', '"""parameters.pic"""'], {}), "(datasetpath, 'parameters.pic')\n", (1189, 1220), False, 'import os\n'), ((1412, 1523), 'pandas.read_csv', 'pd.read_csv', (["(datasetpath + 'constituency-parsing-data-all-UNK-less-40-words.csv')"], {'sep': '""" """', 'header': 'None'}), "(datasetpath +\n 'constituency-parsing-data-all-UNK-less-40-words.csv', sep=' ', header=None\n )\n", (1423, 1523), True, 'import pandas as pd\n'), ((2029, 2171), 'tensorflow.contrib.eager.Variable', 'tfe.Variable', ([], {'name': '"""embeddings"""', 'validate_shape': 'googleVectors.shape', 'initial_value': 'googleVectors.values', 'dtype': 'tf.float32', 'trainable': '(False)'}), "(name='embeddings', validate_shape=googleVectors.shape,\n initial_value=googleVectors.values, dtype=tf.float32, trainable=False)\n", (2041, 2171), True, 'import tensorflow.contrib.eager as tfe\n'), ((6584, 6596), 'gc.collect', 'gc.collect', ([], {}), '()\n', (6594, 6596), False, 'import gc\n'), ((515, 526), 'os.getpid', 'os.getpid', ([], {}), '()\n', (524, 526), False, 'import os\n'), ((925, 949), 'pickle.load', 'pickle.load', (['pickle_file'], {}), '(pickle_file)\n', (936, 949), False, 'import pickle\n'), ((1301, 1325), 'pickle.load', 'pickle.load', (['pickle_file'], {}), '(pickle_file)\n', (1312, 1325), False, 'import pickle\n'), ((2932, 2979), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['embeddings', 'input_words'], {}), '(embeddings, input_words)\n', (2954, 2979), True, 'import tensorflow as tf\n'), ((3328, 3335), 'timeit.default_timer', 'timer', ([], {}), '()\n', (3333, 3335), True, 'from timeit import default_timer as timer\n'), ((3465, 3482), 'tensorflow.unstack', 'tf.unstack', (['words'], {}), '(words)\n', (3475, 3482), True, 'import tensorflow as tf\n'), ((3578, 3628), 'nltk.Tree', 'nltk.Tree', (['UNK', '[google_corpus_int_to_word[index]]'], {}), '(UNK, [google_corpus_int_to_word[index]])\n', (3587, 3628), True, 'import nltk as nltk\n'), ((3994, 4028), 'numpy.zeros', 'np.zeros', ([], {'shape': '(words_len - 1, 1)'}), '(shape=(words_len - 1, 1))\n', (4002, 4028), True, 'import numpy as np\n'), ((4728, 4735), 'timeit.default_timer', 'timer', ([], {}), '()\n', (4733, 4735), True, 'from timeit import default_timer as timer\n'), ((4928, 4945), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (4937, 4945), True, 'import numpy as np\n'), ((5297, 5346), 'tensorflow.reshape', 'tf.reshape', (['state_vec'], {'shape': '[state_vec.shape[1]]'}), '(state_vec, shape=[state_vec.shape[1]])\n', (5307, 5346), True, 'import tensorflow as tf\n'), ((5870, 5877), 'timeit.default_timer', 'timer', ([], {}), '()\n', (5875, 5877), True, 'from timeit import default_timer as timer\n'), ((4116, 4175), 'tensorflow.concat', 'tf.concat', (['[words_unstack[k], words_unstack[k + 1]]'], {'axis': '(0)'}), '([words_unstack[k], words_unstack[k + 1]], axis=0)\n', (4125, 4175), True, 'import tensorflow as tf\n'), ((4286, 4344), 'tensorflow.reshape', 'tf.reshape', (['words_concat'], {'shape': '(1, words_concat.shape[0])'}), '(words_concat, shape=(1, words_concat.shape[0]))\n', (4296, 4344), True, 'import tensorflow as tf\n'), ((4476, 4486), 'tensorflow.tanh', 'tf.tanh', (['z'], {}), '(z)\n', (4483, 4486), True, 'import tensorflow as tf\n'), ((5635, 5674), 'nltk.Tree', 'nltk.Tree', (['UNK', '[left_tree, right_tree]'], {}), '(UNK, [left_tree, right_tree])\n', (5644, 5674), True, 'import nltk as nltk\n'), ((4417, 4443), 'tensorflow.matmul', 'tf.matmul', (['words_concat', 'w'], {}), '(words_concat, w)\n', (4426, 4443), True, 'import tensorflow as tf\n'), ((4577, 4606), 'tensorflow.matmul', 'tf.matmul', (['state_vec', 'w_score'], {}), '(state_vec, w_score)\n', (4586, 4606), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python3 import time import numpy as np import collections import torch import torch.nn as nn import torch.optim as optim COLAB = False CUDA = True if not COLAB: from lib import wrappers from lib import dqn_model import argparse from tensorboardX import SummaryWriter ENV_NAME = "PongNoFrameskip-v4" MEAN_REWARD_BOUND = 19.5 GAMMA = 0.99 BATCH_SIZE = 32 REPLAY_SIZE = 10 ** 4 * 2 LEARNING_RATE = 1e-4 TARGET_UPDATE_FREQ = 1000 LEARNING_STARTS = 10000 EPSILON_DECAY = 10**5 EPSILON_START = 1.0 EPSILON_FINAL = 0.02 MODEL = "PretrainedModels/PongNoFrameskip-v4-407.dat" LOAD_MODEL = True Experience = collections.namedtuple('Experience', field_names=['state', 'action', 'reward', 'done', 'new_state']) class ExperienceReplay: def __init__(self, capacity): self.buffer = collections.deque(maxlen=capacity) def __len__(self): return len(self.buffer) def append(self, experience): self.buffer.append(experience) def sample(self, batch_size): indices = np.random.choice(len(self.buffer), batch_size, replace=False) states, actions, rewards, dones, next_states = zip(*[self.buffer[idx] for idx in indices]) return np.array(states), np.array(actions), np.array(rewards, dtype=np.float32), \ np.array(dones, dtype=np.uint8), np.array(next_states) class Agent: def __init__(self, env, replay_memory): self.env = env self.replay_memory = replay_memory self._reset() self.last_action = 0 def _reset(self): self.state = env.reset() self.total_reward = 0.0 def play_step(self, net, epsilon=0.0, device="cpu"): """ Select action Execute action and step environment Add state/action/reward to experience replay """ done_reward = None if np.random.random() < epsilon: action = env.action_space.sample() else: state_a = np.array([self.state], copy=False) state_v = torch.tensor(state_a).to(device) q_vals_v = net(state_v) _, act_v = torch.max(q_vals_v, dim=1) action = int(act_v.item()) # do step in the environment new_state, reward, is_done, _ = self.env.step(action) self.total_reward += reward new_state = new_state exp = Experience(self.state, action, reward, is_done, new_state) self.replay_memory.append(exp) self.state = new_state if is_done: done_reward = self.total_reward self._reset() return done_reward def calculate_loss(batch, net, target_net, device="cpu"): """ Calculate MSE between actual state action values, and expected state action values from DQN """ states, actions, rewards, dones, next_states = batch states_v = torch.tensor(states).to(device) next_states_v = torch.tensor(next_states).to(device) actions_v = torch.tensor(actions).to(device) rewards_v = torch.tensor(rewards).to(device) done = torch.ByteTensor(dones).to(device) state_action_values = net(states_v).gather(1, actions_v.long().unsqueeze(-1)).squeeze(-1) next_state_values = target_net(next_states_v).max(1)[0] next_state_values[done] = 0.0 next_state_values = next_state_values.detach() expected_state_action_values = next_state_values * GAMMA + rewards_v return nn.MSELoss()(state_action_values, expected_state_action_values) print("ReplayMemory will require {}gb of GPU RAM".format(round(REPLAY_SIZE * 32 * 84 * 84 / 1e+9, 2))) if __name__ == "__main__": if COLAB: """Default argparse does not work on colab""" class ColabArgParse(): def __init__(self, cuda, env, reward, model): self.cuda = cuda self.env = env self.reward = reward self.model = model args = ColabArgParse(CUDA, ENV_NAME, MEAN_REWARD_BOUND, MODEL) else: parser = argparse.ArgumentParser() parser.add_argument("--cuda", default=True, action="store_true", help="Enable cuda") parser.add_argument("--env", default=ENV_NAME, help="Name of the environment, default=" + ENV_NAME) parser.add_argument("--reward", type=float, default=MEAN_REWARD_BOUND, help="Mean reward to stop training, default={}".format(round(MEAN_REWARD_BOUND, 2))) parser.add_argument("-m", "--model", help="Model file to load") args = parser.parse_args() device = torch.device("cuda" if args.cuda else "cpu") # Make Gym environement and DQNs if COLAB: env = make_env(args.env) net = DQN(env.observation_space.shape, env.action_space.n).to(device) target_net = DQN(env.observation_space.shape, env.action_space.n).to(device) else: env = wrappers.make_env(args.env) net = dqn_model.DQN(env.observation_space.shape, env.action_space.n).to(device) target_net = dqn_model.DQN(env.observation_space.shape, env.action_space.n).to(device) writer = SummaryWriter(comment="-" + args.env) print(net) replay_memory = ExperienceReplay(REPLAY_SIZE) agent = Agent(env, replay_memory) epsilon = EPSILON_START if LOAD_MODEL: net.load_state_dict(torch.load(args.model, map_location=lambda storage, loc: storage)) target_net.load_state_dict(net.state_dict()) print("Models loaded from disk!") # Lower exploration rate EPSILON_START = EPSILON_FINAL optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE) total_rewards = [] best_mean_reward = None frame_idx = 0 timestep_frame = 0 timestep = time.time() while True: frame_idx += 1 epsilon = max(EPSILON_FINAL, EPSILON_START - frame_idx / EPSILON_DECAY) reward = agent.play_step(net, epsilon, device=device) if reward is not None: total_rewards.append(reward) speed = (frame_idx - timestep_frame) / (time.time() - timestep) timestep_frame = frame_idx timestep = time.time() mean_reward = np.mean(total_rewards[-100:]) print("{} frames: done {} games, mean reward {}, eps {}, speed {} f/s".format( frame_idx, len(total_rewards), round(mean_reward, 3), round(epsilon,2), round(speed, 2))) if not COLAB: writer.add_scalar("epsilon", epsilon, frame_idx) writer.add_scalar("speed", speed, frame_idx) writer.add_scalar("reward_100", mean_reward, frame_idx) writer.add_scalar("reward", reward, frame_idx) if best_mean_reward is None or best_mean_reward < mean_reward: torch.save(net.state_dict(), args.env + "-" + str(len(total_rewards)) + ".dat") if COLAB: gsync.update_file_to_folder(args.env + "-" + str(len(total_rewards)) + ".dat") if best_mean_reward is not None: print("New best mean reward {} -> {}, model saved".format(round(best_mean_reward, 3), round(mean_reward, 3))) best_mean_reward = mean_reward if mean_reward > args.reward and len(total_rewards) > 10: print("Game solved in {} frames! Average score of {}".format(frame_idx, mean_reward)) break if len(replay_memory) < LEARNING_STARTS: continue if frame_idx % TARGET_UPDATE_FREQ == 0: target_net.load_state_dict(net.state_dict()) optimizer.zero_grad() batch = replay_memory.sample(BATCH_SIZE) loss_t = calculate_loss(batch, net, target_net, device=device) loss_t.backward() optimizer.step() env.close() if not COLAB: writer.close()
[ "torch.nn.MSELoss", "lib.wrappers.make_env", "tensorboardX.SummaryWriter", "argparse.ArgumentParser", "torch.ByteTensor", "torch.load", "time.time", "numpy.random.random", "numpy.array", "collections.namedtuple", "torch.max", "torch.device", "numpy.mean", "torch.tensor", "collections.deque", "lib.dqn_model.DQN" ]
[((639, 743), 'collections.namedtuple', 'collections.namedtuple', (['"""Experience"""'], {'field_names': "['state', 'action', 'reward', 'done', 'new_state']"}), "('Experience', field_names=['state', 'action',\n 'reward', 'done', 'new_state'])\n", (661, 743), False, 'import collections\n'), ((4582, 4626), 'torch.device', 'torch.device', (["('cuda' if args.cuda else 'cpu')"], {}), "('cuda' if args.cuda else 'cpu')\n", (4594, 4626), False, 'import torch\n'), ((5750, 5761), 'time.time', 'time.time', ([], {}), '()\n', (5759, 5761), False, 'import time\n'), ((822, 856), 'collections.deque', 'collections.deque', ([], {'maxlen': 'capacity'}), '(maxlen=capacity)\n', (839, 856), False, 'import collections\n'), ((3426, 3438), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (3436, 3438), True, 'import torch.nn as nn\n'), ((4014, 4039), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4037, 4039), False, 'import argparse\n'), ((4899, 4926), 'lib.wrappers.make_env', 'wrappers.make_env', (['args.env'], {}), '(args.env)\n', (4916, 4926), False, 'from lib import wrappers\n'), ((5127, 5164), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'comment': "('-' + args.env)"}), "(comment='-' + args.env)\n", (5140, 5164), False, 'from tensorboardX import SummaryWriter\n'), ((1216, 1232), 'numpy.array', 'np.array', (['states'], {}), '(states)\n', (1224, 1232), True, 'import numpy as np\n'), ((1234, 1251), 'numpy.array', 'np.array', (['actions'], {}), '(actions)\n', (1242, 1251), True, 'import numpy as np\n'), ((1253, 1288), 'numpy.array', 'np.array', (['rewards'], {'dtype': 'np.float32'}), '(rewards, dtype=np.float32)\n', (1261, 1288), True, 'import numpy as np\n'), ((1307, 1338), 'numpy.array', 'np.array', (['dones'], {'dtype': 'np.uint8'}), '(dones, dtype=np.uint8)\n', (1315, 1338), True, 'import numpy as np\n'), ((1340, 1361), 'numpy.array', 'np.array', (['next_states'], {}), '(next_states)\n', (1348, 1361), True, 'import numpy as np\n'), ((1865, 1883), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1881, 1883), True, 'import numpy as np\n'), ((1978, 2012), 'numpy.array', 'np.array', (['[self.state]'], {'copy': '(False)'}), '([self.state], copy=False)\n', (1986, 2012), True, 'import numpy as np\n'), ((2127, 2153), 'torch.max', 'torch.max', (['q_vals_v'], {'dim': '(1)'}), '(q_vals_v, dim=1)\n', (2136, 2153), False, 'import torch\n'), ((2868, 2888), 'torch.tensor', 'torch.tensor', (['states'], {}), '(states)\n', (2880, 2888), False, 'import torch\n'), ((2920, 2945), 'torch.tensor', 'torch.tensor', (['next_states'], {}), '(next_states)\n', (2932, 2945), False, 'import torch\n'), ((2973, 2994), 'torch.tensor', 'torch.tensor', (['actions'], {}), '(actions)\n', (2985, 2994), False, 'import torch\n'), ((3022, 3043), 'torch.tensor', 'torch.tensor', (['rewards'], {}), '(rewards)\n', (3034, 3043), False, 'import torch\n'), ((3066, 3089), 'torch.ByteTensor', 'torch.ByteTensor', (['dones'], {}), '(dones)\n', (3082, 3089), False, 'import torch\n'), ((5346, 5411), 'torch.load', 'torch.load', (['args.model'], {'map_location': '(lambda storage, loc: storage)'}), '(args.model, map_location=lambda storage, loc: storage)\n', (5356, 5411), False, 'import torch\n'), ((6155, 6166), 'time.time', 'time.time', ([], {}), '()\n', (6164, 6166), False, 'import time\n'), ((6193, 6222), 'numpy.mean', 'np.mean', (['total_rewards[-100:]'], {}), '(total_rewards[-100:])\n', (6200, 6222), True, 'import numpy as np\n'), ((4941, 5003), 'lib.dqn_model.DQN', 'dqn_model.DQN', (['env.observation_space.shape', 'env.action_space.n'], {}), '(env.observation_space.shape, env.action_space.n)\n', (4954, 5003), False, 'from lib import dqn_model\n'), ((5036, 5098), 'lib.dqn_model.DQN', 'dqn_model.DQN', (['env.observation_space.shape', 'env.action_space.n'], {}), '(env.observation_space.shape, env.action_space.n)\n', (5049, 5098), False, 'from lib import dqn_model\n'), ((2035, 2056), 'torch.tensor', 'torch.tensor', (['state_a'], {}), '(state_a)\n', (2047, 2056), False, 'import torch\n'), ((6069, 6080), 'time.time', 'time.time', ([], {}), '()\n', (6078, 6080), False, 'import time\n')]
# python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Analysis for memory_len.""" from typing import Sequence from bsuite.experiments.memory_len import sweep from bsuite.utils import plotting import numpy as np import pandas as pd import plotnine as gg NUM_EPISODES = sweep.NUM_EPISODES TAGS = sweep.TAGS LEARNING_THRESH = 0.75 def memory_preprocess(df_in: pd.DataFrame) -> pd.DataFrame: """Preprocess data for memory environments = regret relative to random.""" df = df_in.copy() df['perfection_regret'] = df.episode - df.total_perfect # a random agent always has 50% chance on each episode # independently from memory length and number of bits. df['base_rate'] = 0.5 df['regret_ratio'] = df.perfection_regret / df.base_rate return df def score(df: pd.DataFrame, group_col: str = 'memory_length') -> float: """Output a single score for memory_len.""" df = memory_preprocess(df_in=df) regret_list = [] # Loop to handle partially-finished runs. for _, sub_df in df.groupby(group_col): max_eps = np.minimum(sub_df.episode.max(), sweep.NUM_EPISODES) ave_perfection = ( sub_df.loc[sub_df.episode == max_eps, 'regret_ratio'].mean() / max_eps) regret_list.append(ave_perfection) return np.mean(np.array(regret_list) < LEARNING_THRESH) def plot_learning(df: pd.DataFrame, sweep_vars: Sequence[str] = None, group_col: str = 'memory_length') -> gg.ggplot: """Plots the average return through time by memory_length.""" df = memory_preprocess(df_in=df) p = plotting.plot_regret_group_nosmooth( df_in=df, group_col=group_col, sweep_vars=sweep_vars, regret_col='regret_ratio', max_episode=sweep.NUM_EPISODES, ) return p + gg.ylab('average % of correct episodes compared to random.') def plot_scale(df: pd.DataFrame, sweep_vars: Sequence[str] = None, group_col: str = 'memory_length') -> gg.ggplot: """Plots the regret_ratio through time by memory_length.""" df = memory_preprocess(df_in=df) p = plotting.plot_regret_ave_scaling( df_in=df, group_col=group_col, episode=sweep.NUM_EPISODES, regret_thresh=LEARNING_THRESH, sweep_vars=sweep_vars, regret_col='regret_ratio' ) return p + gg.ylab('% correct episodes after\n{} episodes compared to random' .format(sweep.NUM_EPISODES)) def plot_seeds(df_in: pd.DataFrame, sweep_vars: Sequence[str] = None, colour_var: str = 'memory_length') -> gg.ggplot: """Plot the returns through time individually by run.""" df = df_in.copy() df['average_return'] = df.total_return.diff() / df.episode.diff() p = plotting.plot_individual_returns( df_in=df[df.episode > 10], max_episode=NUM_EPISODES, return_column='average_return', colour_var=colour_var, sweep_vars=sweep_vars, ) return p + gg.ylab('average episodic return')
[ "plotnine.ylab", "bsuite.utils.plotting.plot_regret_group_nosmooth", "bsuite.utils.plotting.plot_regret_ave_scaling", "numpy.array", "bsuite.utils.plotting.plot_individual_returns" ]
[((2233, 2390), 'bsuite.utils.plotting.plot_regret_group_nosmooth', 'plotting.plot_regret_group_nosmooth', ([], {'df_in': 'df', 'group_col': 'group_col', 'sweep_vars': 'sweep_vars', 'regret_col': '"""regret_ratio"""', 'max_episode': 'sweep.NUM_EPISODES'}), "(df_in=df, group_col=group_col,\n sweep_vars=sweep_vars, regret_col='regret_ratio', max_episode=sweep.\n NUM_EPISODES)\n", (2268, 2390), False, 'from bsuite.utils import plotting\n'), ((2741, 2923), 'bsuite.utils.plotting.plot_regret_ave_scaling', 'plotting.plot_regret_ave_scaling', ([], {'df_in': 'df', 'group_col': 'group_col', 'episode': 'sweep.NUM_EPISODES', 'regret_thresh': 'LEARNING_THRESH', 'sweep_vars': 'sweep_vars', 'regret_col': '"""regret_ratio"""'}), "(df_in=df, group_col=group_col, episode=\n sweep.NUM_EPISODES, regret_thresh=LEARNING_THRESH, sweep_vars=\n sweep_vars, regret_col='regret_ratio')\n", (2773, 2923), False, 'from bsuite.utils import plotting\n'), ((3388, 3560), 'bsuite.utils.plotting.plot_individual_returns', 'plotting.plot_individual_returns', ([], {'df_in': 'df[df.episode > 10]', 'max_episode': 'NUM_EPISODES', 'return_column': '"""average_return"""', 'colour_var': 'colour_var', 'sweep_vars': 'sweep_vars'}), "(df_in=df[df.episode > 10], max_episode=\n NUM_EPISODES, return_column='average_return', colour_var=colour_var,\n sweep_vars=sweep_vars)\n", (3420, 3560), False, 'from bsuite.utils import plotting\n'), ((2430, 2490), 'plotnine.ylab', 'gg.ylab', (['"""average % of correct episodes compared to random."""'], {}), "('average % of correct episodes compared to random.')\n", (2437, 2490), True, 'import plotnine as gg\n'), ((3600, 3634), 'plotnine.ylab', 'gg.ylab', (['"""average episodic return"""'], {}), "('average episodic return')\n", (3607, 3634), True, 'import plotnine as gg\n'), ((1931, 1952), 'numpy.array', 'np.array', (['regret_list'], {}), '(regret_list)\n', (1939, 1952), True, 'import numpy as np\n')]
#%% from graph_data import graph_data import numpy as np from scipy.linalg import block_diag from typing import Final from networkx.generators.random_graphs import watts_strogatz_graph, barabasi_albert_graph from networkx.linalg.graphmatrix import adjacency_matrix class Gnp: def __init__(self, n0, p0, n1, p1): self.n = [n0,n1] self.p = [p0,p1] name: Final = "Gnp" def get_gnp(self, label): n = self.n[label] p = self.p[label] a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) features = np.ones([n,1]) g = graph_data(adj, features, label) return(g) def get_sample(self, count): sample = [] y = np.random.choice([0,1], size=(count)) X = [self.get_gnp(y_) for y_ in y] return(X, y) class Gnp2: def __init__(self, max_size, p): self.max_size = max_size self.p = p name: Final = "Gnp2" def get_gnp(self, size): n = size p = self.p a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) return(adj) def get_2gnp(self, size1, size2): adj1 = self.get_gnp(size1) adj2 = self.get_gnp(size2) return(block_diag(adj1, adj2)) def get_graph(self, size, label): if (size < 2): raise ValueError("The size of the graph cannot be smaller than 2") size1 = size2 = 0 while (size1 == 0 | size2 ==0): size1 = np.random.binomial(size, 0.5) size2 = size - size1 adj = self.get_2gnp(size1, size2) features = np.ones((size,2)) features[0:size1, 1] = 0 if (label <= 0): features[:, 1] = np.random.permutation(features[:, 1]) return (graph_data(adj,features,label)) def get_sample(self, count): sample = [] y = np.random.choice([0,1], size=(count)) sizes = np.random.binomial(size=(count), p = 0.5, n = self.max_size) X = [self.get_graph(sizes[i], y[i]) for i in range(0, count)] return(X, y) class GnpMax: def __init__(self): pass name: Final = "GnpMax" def get_gnp(self,n, p): a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) features = np.ones([n,1]) label = (np.max(np.sum(adj,1))>= 0.75*n).astype(int) g = graph_data(adj, features, label) return(g) def get_sample(self, count): sizes = np.random.binomial(size=(count), p = 0.5, n = 30) X = [self.get_gnp(sizes[i], 0.5) for i in range(0, count)] y = [g.label for g in X] return(X,y) class BA_vs_Watts_Strogatz: name: Final = "BA vs Watts Strogatz" def get_WS(self, n, k, beta): g = watts_strogatz_graph(n, k, beta) adj = adjacency_matrix(g).todense() features = np.ones([n,1]) g = graph_data(adj, features, 1) return(g) def get_BA(self, n, m): g = barabasi_albert_graph(n, m) adj = adjacency_matrix(g).todense() features = np.ones([n,1]) while(np.sum(adj) < 4 * n): i = np.random.randint(0, n) j = np.random.randint(0, n) if (i == j): continue if (adj[i,j]> 0): continue adj[i,j] = 1 adj[j,i] = 1 g = graph_data(adj, features, 0) return(g) def get_graph(self, size, label): if (label > 0): return(self.get_WS(size, 4, 0.1)) else: return(self.get_BA(size, 2)) def get_sample(self, count): y = np.random.choice([0,1], size=(count)) sizes = np.random.binomial(size=(count), p = 0.5, n = 30) X = [self.get_graph(sizes[i], y[i]) for i in range(0, count)] return(X,y) class BAmax: name: Final = "BA max" def get_BA(self, n, m, label): g = barabasi_albert_graph(n, m) adj = adjacency_matrix(g).todense() features = np.ones([n,2]) if (label > 0): d = np.array(np.sum(adj, 1)).flatten() ind = np.argpartition(d, -4)[-4:] features[ind, 1] = 0 else: ind = np.random.choice(range(0,n), size=(4), replace = False) features[ind, 1] = 0 g = graph_data(adj, features, label) return(g) def get_sample(self, count): y = np.random.choice([0,1], size=(count)) sizes = np.random.binomial(size=(count), p = 0.5, n = 30) X = [self.get_BA(sizes[i], 2, y[i]) for i in range(0, count)] return(X,y) class BAone: name: Final = "BA one" def get_BA(self, n, m): g = barabasi_albert_graph(n, m) adj = adjacency_matrix(g).todense() features = np.ones([n,2]) features[:,1] = np.random.random(size=(n)) if (features[0,1] > 0.5): label = 1 else: label = 0 g = graph_data(adj, features, label) return(g) def get_sample(self, count): sizes = np.random.binomial(size=(count), p = 0.5, n = 30) X = [self.get_BA(sizes[i], 2) for i in range(0, count)] y = [g.label for g in X] return(X,y) class GnpMaxFeature: def __init__(self): pass name: Final = "GnpMaxFeature" def get_gnp(self,n, p): a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) features = np.ones([n,2]) features[:,1] = np.random.random(size=(n)) d = np.array(np.sum(adj, 1)).flatten() k = int(n/2) ind = np.argpartition(d, -k)[-k:] m = np.mean(features[ind,1]) label = (m>= 0.5).astype(int) g = graph_data(adj, features, label) return(g) def get_sample(self, count): sizes = np.random.binomial(size=(count), p = 0.5, n = 50) X = [self.get_gnp(sizes[i], 0.5) for i in range(0, count)] y = [g.label for g in X] return(X,y) class Gnp1Q: def __init__(self): self.name = self.__class__.__name__ def get_gnp(self,n, p): a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) features = np.ones([n,3]) features[:,1] = np.random.choice([-1,1], size=(n)) features[:,2] = np.random.choice([-1,1], size=(n)) n = np.matmul(adj, features[:,0]) d1 = np.matmul(adj, features[:,1]) same_color = np.multiply(d1, features[:,2]) label = np.any(same_color == n).astype(int) g = graph_data(adj, features, label) return(g) def get_sample(self, count): sizes = np.random.binomial(size=(count), p = 0.5, n = 100) X = [self.get_gnp(sizes[i], 0.3) for i in range(0, count)] y = [g.label for g in X] return(X,y) #%% class Gnp2Q: def __init__(self): self.name = self.__class__.__name__ def get_gnp(self,n, p): a = np.random.uniform(size = [n, n]) a = (a + a.T)/2 adj = (a < p).astype(int) features = np.ones([n,3]) features[:,1] = np.random.choice([-1,1], size=(n)) features[:,2] = np.random.choice([-1,1], size=(n)) n = np.matmul(adj, features[:,0]) d1 = np.matmul(adj, features[:,1]) d2 = np.matmul(adj, features[:,1]) same_color = np.multiply(d1, d2) n_square = np.multiply(n, n) d1_n = (np.sum(d1 == n) > 3) d2_n = (np.sum(d2 == n) == 0) label = (d1_n | d2_n).astype(int) g = graph_data(adj, features, label) return(g) def get_sample(self, count): X = [self.get_gnp(50, 0.25) for _ in range(0, count)] y = [g.label for g in X] return(X,y) #%% #g =Gnp2Q() #_,Y = g.get_sample(1000) #print(np.sum(Y)) # %%
[ "numpy.random.uniform", "numpy.random.binomial", "graph_data.graph_data", "numpy.multiply", "networkx.generators.random_graphs.barabasi_albert_graph", "numpy.sum", "scipy.linalg.block_diag", "numpy.ones", "numpy.any", "networkx.generators.random_graphs.watts_strogatz_graph", "numpy.argpartition", "numpy.random.random", "numpy.mean", "numpy.random.randint", "numpy.matmul", "numpy.random.choice", "numpy.random.permutation", "networkx.linalg.graphmatrix.adjacency_matrix" ]
[((488, 518), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (505, 518), True, 'import numpy as np\n'), ((598, 613), 'numpy.ones', 'np.ones', (['[n, 1]'], {}), '([n, 1])\n', (605, 613), True, 'import numpy as np\n'), ((625, 657), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (635, 657), False, 'from graph_data import graph_data\n'), ((744, 780), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'size': 'count'}), '([0, 1], size=count)\n', (760, 780), True, 'import numpy as np\n'), ((1055, 1085), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (1072, 1085), True, 'import numpy as np\n'), ((1290, 1312), 'scipy.linalg.block_diag', 'block_diag', (['adj1', 'adj2'], {}), '(adj1, adj2)\n', (1300, 1312), False, 'from scipy.linalg import block_diag\n'), ((1670, 1688), 'numpy.ones', 'np.ones', (['(size, 2)'], {}), '((size, 2))\n', (1677, 1688), True, 'import numpy as np\n'), ((1829, 1861), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (1839, 1861), False, 'from graph_data import graph_data\n'), ((1945, 1981), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'size': 'count'}), '([0, 1], size=count)\n', (1961, 1981), True, 'import numpy as np\n'), ((1999, 2053), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': 'self.max_size'}), '(size=count, p=0.5, n=self.max_size)\n', (2017, 2053), True, 'import numpy as np\n'), ((2273, 2303), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (2290, 2303), True, 'import numpy as np\n'), ((2383, 2398), 'numpy.ones', 'np.ones', (['[n, 1]'], {}), '([n, 1])\n', (2390, 2398), True, 'import numpy as np\n'), ((2471, 2503), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (2481, 2503), False, 'from graph_data import graph_data\n'), ((2572, 2615), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(30)'}), '(size=count, p=0.5, n=30)\n', (2590, 2615), True, 'import numpy as np\n'), ((2860, 2892), 'networkx.generators.random_graphs.watts_strogatz_graph', 'watts_strogatz_graph', (['n', 'k', 'beta'], {}), '(n, k, beta)\n', (2880, 2892), False, 'from networkx.generators.random_graphs import watts_strogatz_graph, barabasi_albert_graph\n'), ((2956, 2971), 'numpy.ones', 'np.ones', (['[n, 1]'], {}), '([n, 1])\n', (2963, 2971), True, 'import numpy as np\n'), ((2983, 3011), 'graph_data.graph_data', 'graph_data', (['adj', 'features', '(1)'], {}), '(adj, features, 1)\n', (2993, 3011), False, 'from graph_data import graph_data\n'), ((3071, 3098), 'networkx.generators.random_graphs.barabasi_albert_graph', 'barabasi_albert_graph', (['n', 'm'], {}), '(n, m)\n', (3092, 3098), False, 'from networkx.generators.random_graphs import watts_strogatz_graph, barabasi_albert_graph\n'), ((3162, 3177), 'numpy.ones', 'np.ones', (['[n, 1]'], {}), '([n, 1])\n', (3169, 3177), True, 'import numpy as np\n'), ((3462, 3490), 'graph_data.graph_data', 'graph_data', (['adj', 'features', '(0)'], {}), '(adj, features, 0)\n', (3472, 3490), False, 'from graph_data import graph_data\n'), ((3720, 3756), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'size': 'count'}), '([0, 1], size=count)\n', (3736, 3756), True, 'import numpy as np\n'), ((3774, 3817), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(30)'}), '(size=count, p=0.5, n=30)\n', (3792, 3817), True, 'import numpy as np\n'), ((4004, 4031), 'networkx.generators.random_graphs.barabasi_albert_graph', 'barabasi_albert_graph', (['n', 'm'], {}), '(n, m)\n', (4025, 4031), False, 'from networkx.generators.random_graphs import watts_strogatz_graph, barabasi_albert_graph\n'), ((4095, 4110), 'numpy.ones', 'np.ones', (['[n, 2]'], {}), '([n, 2])\n', (4102, 4110), True, 'import numpy as np\n'), ((4397, 4429), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (4407, 4429), False, 'from graph_data import graph_data\n'), ((4495, 4531), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'size': 'count'}), '([0, 1], size=count)\n', (4511, 4531), True, 'import numpy as np\n'), ((4549, 4592), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(30)'}), '(size=count, p=0.5, n=30)\n', (4567, 4592), True, 'import numpy as np\n'), ((4779, 4806), 'networkx.generators.random_graphs.barabasi_albert_graph', 'barabasi_albert_graph', (['n', 'm'], {}), '(n, m)\n', (4800, 4806), False, 'from networkx.generators.random_graphs import watts_strogatz_graph, barabasi_albert_graph\n'), ((4870, 4885), 'numpy.ones', 'np.ones', (['[n, 2]'], {}), '([n, 2])\n', (4877, 4885), True, 'import numpy as np\n'), ((4909, 4933), 'numpy.random.random', 'np.random.random', ([], {'size': 'n'}), '(size=n)\n', (4925, 4933), True, 'import numpy as np\n'), ((5040, 5072), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (5050, 5072), False, 'from graph_data import graph_data\n'), ((5142, 5185), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(30)'}), '(size=count, p=0.5, n=30)\n', (5160, 5185), True, 'import numpy as np\n'), ((5444, 5474), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (5461, 5474), True, 'import numpy as np\n'), ((5554, 5569), 'numpy.ones', 'np.ones', (['[n, 2]'], {}), '([n, 2])\n', (5561, 5569), True, 'import numpy as np\n'), ((5593, 5617), 'numpy.random.random', 'np.random.random', ([], {'size': 'n'}), '(size=n)\n', (5609, 5617), True, 'import numpy as np\n'), ((5742, 5767), 'numpy.mean', 'np.mean', (['features[ind, 1]'], {}), '(features[ind, 1])\n', (5749, 5767), True, 'import numpy as np\n'), ((5818, 5850), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (5828, 5850), False, 'from graph_data import graph_data\n'), ((5919, 5962), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(50)'}), '(size=count, p=0.5, n=50)\n', (5937, 5962), True, 'import numpy as np\n'), ((6218, 6248), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (6235, 6248), True, 'import numpy as np\n'), ((6328, 6343), 'numpy.ones', 'np.ones', (['[n, 3]'], {}), '([n, 3])\n', (6335, 6343), True, 'import numpy as np\n'), ((6367, 6400), 'numpy.random.choice', 'np.random.choice', (['[-1, 1]'], {'size': 'n'}), '([-1, 1], size=n)\n', (6383, 6400), True, 'import numpy as np\n'), ((6426, 6459), 'numpy.random.choice', 'np.random.choice', (['[-1, 1]'], {'size': 'n'}), '([-1, 1], size=n)\n', (6442, 6459), True, 'import numpy as np\n'), ((6473, 6503), 'numpy.matmul', 'np.matmul', (['adj', 'features[:, 0]'], {}), '(adj, features[:, 0])\n', (6482, 6503), True, 'import numpy as np\n'), ((6516, 6546), 'numpy.matmul', 'np.matmul', (['adj', 'features[:, 1]'], {}), '(adj, features[:, 1])\n', (6525, 6546), True, 'import numpy as np\n'), ((6567, 6598), 'numpy.multiply', 'np.multiply', (['d1', 'features[:, 2]'], {}), '(d1, features[:, 2])\n', (6578, 6598), True, 'import numpy as np\n'), ((6663, 6695), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (6673, 6695), False, 'from graph_data import graph_data\n'), ((6764, 6808), 'numpy.random.binomial', 'np.random.binomial', ([], {'size': 'count', 'p': '(0.5)', 'n': '(100)'}), '(size=count, p=0.5, n=100)\n', (6782, 6808), True, 'import numpy as np\n'), ((7068, 7098), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '[n, n]'}), '(size=[n, n])\n', (7085, 7098), True, 'import numpy as np\n'), ((7178, 7193), 'numpy.ones', 'np.ones', (['[n, 3]'], {}), '([n, 3])\n', (7185, 7193), True, 'import numpy as np\n'), ((7217, 7250), 'numpy.random.choice', 'np.random.choice', (['[-1, 1]'], {'size': 'n'}), '([-1, 1], size=n)\n', (7233, 7250), True, 'import numpy as np\n'), ((7276, 7309), 'numpy.random.choice', 'np.random.choice', (['[-1, 1]'], {'size': 'n'}), '([-1, 1], size=n)\n', (7292, 7309), True, 'import numpy as np\n'), ((7323, 7353), 'numpy.matmul', 'np.matmul', (['adj', 'features[:, 0]'], {}), '(adj, features[:, 0])\n', (7332, 7353), True, 'import numpy as np\n'), ((7366, 7396), 'numpy.matmul', 'np.matmul', (['adj', 'features[:, 1]'], {}), '(adj, features[:, 1])\n', (7375, 7396), True, 'import numpy as np\n'), ((7409, 7439), 'numpy.matmul', 'np.matmul', (['adj', 'features[:, 1]'], {}), '(adj, features[:, 1])\n', (7418, 7439), True, 'import numpy as np\n'), ((7460, 7479), 'numpy.multiply', 'np.multiply', (['d1', 'd2'], {}), '(d1, d2)\n', (7471, 7479), True, 'import numpy as np\n'), ((7499, 7516), 'numpy.multiply', 'np.multiply', (['n', 'n'], {}), '(n, n)\n', (7510, 7516), True, 'import numpy as np\n'), ((7647, 7679), 'graph_data.graph_data', 'graph_data', (['adj', 'features', 'label'], {}), '(adj, features, label)\n', (7657, 7679), False, 'from graph_data import graph_data\n'), ((1546, 1575), 'numpy.random.binomial', 'np.random.binomial', (['size', '(0.5)'], {}), '(size, 0.5)\n', (1564, 1575), True, 'import numpy as np\n'), ((1775, 1812), 'numpy.random.permutation', 'np.random.permutation', (['features[:, 1]'], {}), '(features[:, 1])\n', (1796, 1812), True, 'import numpy as np\n'), ((3191, 3202), 'numpy.sum', 'np.sum', (['adj'], {}), '(adj)\n', (3197, 3202), True, 'import numpy as np\n'), ((3229, 3252), 'numpy.random.randint', 'np.random.randint', (['(0)', 'n'], {}), '(0, n)\n', (3246, 3252), True, 'import numpy as np\n'), ((3269, 3292), 'numpy.random.randint', 'np.random.randint', (['(0)', 'n'], {}), '(0, n)\n', (3286, 3292), True, 'import numpy as np\n'), ((5702, 5724), 'numpy.argpartition', 'np.argpartition', (['d', '(-k)'], {}), '(d, -k)\n', (5717, 5724), True, 'import numpy as np\n'), ((7533, 7548), 'numpy.sum', 'np.sum', (['(d1 == n)'], {}), '(d1 == n)\n', (7539, 7548), True, 'import numpy as np\n'), ((7570, 7585), 'numpy.sum', 'np.sum', (['(d2 == n)'], {}), '(d2 == n)\n', (7576, 7585), True, 'import numpy as np\n'), ((2907, 2926), 'networkx.linalg.graphmatrix.adjacency_matrix', 'adjacency_matrix', (['g'], {}), '(g)\n', (2923, 2926), False, 'from networkx.linalg.graphmatrix import adjacency_matrix\n'), ((3113, 3132), 'networkx.linalg.graphmatrix.adjacency_matrix', 'adjacency_matrix', (['g'], {}), '(g)\n', (3129, 3132), False, 'from networkx.linalg.graphmatrix import adjacency_matrix\n'), ((4046, 4065), 'networkx.linalg.graphmatrix.adjacency_matrix', 'adjacency_matrix', (['g'], {}), '(g)\n', (4062, 4065), False, 'from networkx.linalg.graphmatrix import adjacency_matrix\n'), ((4203, 4225), 'numpy.argpartition', 'np.argpartition', (['d', '(-4)'], {}), '(d, -4)\n', (4218, 4225), True, 'import numpy as np\n'), ((4821, 4840), 'networkx.linalg.graphmatrix.adjacency_matrix', 'adjacency_matrix', (['g'], {}), '(g)\n', (4837, 4840), False, 'from networkx.linalg.graphmatrix import adjacency_matrix\n'), ((6614, 6637), 'numpy.any', 'np.any', (['(same_color == n)'], {}), '(same_color == n)\n', (6620, 6637), True, 'import numpy as np\n'), ((5641, 5655), 'numpy.sum', 'np.sum', (['adj', '(1)'], {}), '(adj, 1)\n', (5647, 5655), True, 'import numpy as np\n'), ((2422, 2436), 'numpy.sum', 'np.sum', (['adj', '(1)'], {}), '(adj, 1)\n', (2428, 2436), True, 'import numpy as np\n'), ((4159, 4173), 'numpy.sum', 'np.sum', (['adj', '(1)'], {}), '(adj, 1)\n', (4165, 4173), True, 'import numpy as np\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- ## Autor: <NAME> import numpy as np from vispy.scene.visuals import Line CV = np.arange(0, 2.05, 0.05, dtype=np.float32) * 3.14159 ZCV = np.zeros(CV.size, dtype=np.float32) C_xy = np.array([np.cos(CV), np.sin(CV), ZCV]).T C_xz = np.array([np.cos(CV), ZCV, np.sin(CV)]).T C_yz = np.array([ZCV, np.cos(CV), np.sin(CV)]).T sphere_pt = np.concatenate([C_xy, C_xz, C_yz]) class Balloon: """Balloon Class. It uses vispy to visualization.""" def __init__(self, position, velocity, boundaries = None, color = (1.0, 1.0, 1.0, 1.0)): self.pos = position self.vel = velocity self.color = color self.rad = 0.5 self.bound = None self.sizexyz = [None] * 3 if boundaries is not None: self.set_bound(boundaries) self.visual = None def set_bound(self, boundaries): """Updates the boundaries.""" self.bound = boundaries self.sizexyz = np.abs(boundaries[:,1] - boundaries[:,0]) def step(self, time_step): """Does nothing.""" pass def init_visual(self, view): """Initialize the object visual.""" self.visual = Line(pos = sphere_pt * self.rad + self.pos, color=self.color) view.add(self.visual) def update_visual(self): """Updates the object visual.""" self.visual.set_data(pos = sphere_pt * self.rad + self.pos) def shake(self): """Changes to a random color.""" self.color = np.random.rand(4) / 2 + 0.5 self.visual.set_data(color=self.color) if __name__ == '__main__': print(Ball.__doc__) exit()
[ "numpy.abs", "numpy.zeros", "numpy.sin", "numpy.arange", "vispy.scene.visuals.Line", "numpy.cos", "numpy.random.rand", "numpy.concatenate" ]
[((182, 217), 'numpy.zeros', 'np.zeros', (['CV.size'], {'dtype': 'np.float32'}), '(CV.size, dtype=np.float32)\n', (190, 217), True, 'import numpy as np\n'), ((377, 411), 'numpy.concatenate', 'np.concatenate', (['[C_xy, C_xz, C_yz]'], {}), '([C_xy, C_xz, C_yz])\n', (391, 411), True, 'import numpy as np\n'), ((123, 165), 'numpy.arange', 'np.arange', (['(0)', '(2.05)', '(0.05)'], {'dtype': 'np.float32'}), '(0, 2.05, 0.05, dtype=np.float32)\n', (132, 165), True, 'import numpy as np\n'), ((976, 1019), 'numpy.abs', 'np.abs', (['(boundaries[:, 1] - boundaries[:, 0])'], {}), '(boundaries[:, 1] - boundaries[:, 0])\n', (982, 1019), True, 'import numpy as np\n'), ((1191, 1250), 'vispy.scene.visuals.Line', 'Line', ([], {'pos': '(sphere_pt * self.rad + self.pos)', 'color': 'self.color'}), '(pos=sphere_pt * self.rad + self.pos, color=self.color)\n', (1195, 1250), False, 'from vispy.scene.visuals import Line\n'), ((235, 245), 'numpy.cos', 'np.cos', (['CV'], {}), '(CV)\n', (241, 245), True, 'import numpy as np\n'), ((247, 257), 'numpy.sin', 'np.sin', (['CV'], {}), '(CV)\n', (253, 257), True, 'import numpy as np\n'), ((284, 294), 'numpy.cos', 'np.cos', (['CV'], {}), '(CV)\n', (290, 294), True, 'import numpy as np\n'), ((301, 311), 'numpy.sin', 'np.sin', (['CV'], {}), '(CV)\n', (307, 311), True, 'import numpy as np\n'), ((338, 348), 'numpy.cos', 'np.cos', (['CV'], {}), '(CV)\n', (344, 348), True, 'import numpy as np\n'), ((350, 360), 'numpy.sin', 'np.sin', (['CV'], {}), '(CV)\n', (356, 360), True, 'import numpy as np\n'), ((1506, 1523), 'numpy.random.rand', 'np.random.rand', (['(4)'], {}), '(4)\n', (1520, 1523), True, 'import numpy as np\n')]
''' The detection code is partially derived and modified from the object_detection_tutorial.ipynb. The original author should be honoured: "Speed/accuracy trade-offs for modern convolutional object detectors." <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, CVPR 2017 ''' from flask import Flask, request, render_template, redirect import cv2 import numpy as np import tensorflow as tf from utils import label_map_util from utils import visualization_utils as vis_util app = Flask(__name__, template_folder='') from datetime import timedelta app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(seconds=1) # avoid caching, which prevent showing the detection/splash result import os import sys import random # Root directory of the project ROOT_DIR = os.path.abspath("../../") sys.path.append(ROOT_DIR) # To find local version of the library # Directory to save logs and trained model CKPT_DIR = os.path.join(ROOT_DIR, "research/object_detection/data/faster_RCNN_banana_and_pear/frozen_inference_graph.pb") LABEL_DIR = os.path.join(ROOT_DIR, "research/object_detection/data/faster_RCNN_banana_and_pear/fruit_labelmap.pbtxt") IMAGE_DIR = os.path.join(ROOT_DIR, "research/object_detection/static/images/") UPLOAD_FOLDER = os.path.join(ROOT_DIR, "research/object_detection/upload_images") ALLOWED_EXTENSIONS = set(['jpg']) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # avoid caching, which prevent showing the detection/splash result app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(seconds=1) class TOD(object): def __init__(self): self.PATH_TO_CKPT = CKPT_DIR self.PATH_TO_LABELS = LABEL_DIR self.NUM_CLASSES = 2 self.detection_graph = self._load_model() self.category_index = self._load_label_map() # load the pre-trained model via the frozen inference graph def _load_model(self): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph # load the label map so that we know what object has been detected def _load_label_map(self): label_map = label_map_util.load_labelmap(self.PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=self.NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) return category_index def detect(self, image): with self.detection_graph.as_default(): with tf.Session(graph=self.detection_graph) as sess: # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image, axis=0) image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') scores = self.detection_graph.get_tensor_by_name('detection_scores:0') classes = self.detection_graph.get_tensor_by_name('detection_classes:0') num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), self.category_index, use_normalized_coordinates=True, line_thickness=8) print("___________________detection complete___________________") # cv2.namedWindow("detection", cv2.WINDOW_NORMAL) cv2.imwrite(os.path.join(IMAGE_DIR , 'detection_result.jpg'), image) cv2.waitKey(0) ################################################################ def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS def run_detection(): user_file_names = next(os.walk(UPLOAD_FOLDER))[2] names_chosen = random.choice(user_file_names) image = cv2.imread(os.path.join(UPLOAD_FOLDER, names_chosen)) print('\n-----------------', len([image]), '---------------\n') detecotr = TOD() detecotr.detect(image) @app.route('/') def home(): if request.method == 'GET': return render_template('index.html') return render_template('index.html') @app.route('/UploadDetect', methods=['GET', 'POST']) def upload_file_detect(): if request.method == 'GET': return render_template('upload_detect.html') if request.method == 'POST': f = request.files['file'] print(request.files) if f and allowed_file(f.filename): f.save(os.path.join(app.config['UPLOAD_FOLDER'], 'uploaded_image.jpg')) return redirect('/detect') else: print('file type is not correct') return render_template('upload_detect.html') @app.route('/detect') def detect(): run_detection() return render_template('result_detect.html') ''' Main function to run Flask server ''' if __name__ == '__main__': app.run()
[ "os.walk", "os.path.join", "sys.path.append", "os.path.abspath", "flask.redirect", "utils.label_map_util.convert_label_map_to_categories", "datetime.timedelta", "flask.render_template", "tensorflow.GraphDef", "cv2.waitKey", "utils.label_map_util.load_labelmap", "tensorflow.Session", "tensorflow.gfile.GFile", "tensorflow.Graph", "numpy.squeeze", "tensorflow.import_graph_def", "utils.label_map_util.create_category_index", "flask.Flask", "random.choice", "numpy.expand_dims" ]
[((520, 555), 'flask.Flask', 'Flask', (['__name__'], {'template_folder': '""""""'}), "(__name__, template_folder='')\n", (525, 555), False, 'from flask import Flask, request, render_template, redirect\n'), ((629, 649), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (638, 649), False, 'from datetime import timedelta\n'), ((799, 824), 'os.path.abspath', 'os.path.abspath', (['"""../../"""'], {}), "('../../')\n", (814, 824), False, 'import os\n'), ((825, 850), 'sys.path.append', 'sys.path.append', (['ROOT_DIR'], {}), '(ROOT_DIR)\n', (840, 850), False, 'import sys\n'), ((946, 1065), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""research/object_detection/data/faster_RCNN_banana_and_pear/frozen_inference_graph.pb"""'], {}), "(ROOT_DIR,\n 'research/object_detection/data/faster_RCNN_banana_and_pear/frozen_inference_graph.pb'\n )\n", (958, 1065), False, 'import os\n'), ((1069, 1183), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""research/object_detection/data/faster_RCNN_banana_and_pear/fruit_labelmap.pbtxt"""'], {}), "(ROOT_DIR,\n 'research/object_detection/data/faster_RCNN_banana_and_pear/fruit_labelmap.pbtxt'\n )\n", (1081, 1183), False, 'import os\n'), ((1188, 1254), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""research/object_detection/static/images/"""'], {}), "(ROOT_DIR, 'research/object_detection/static/images/')\n", (1200, 1254), False, 'import os\n'), ((1272, 1337), 'os.path.join', 'os.path.join', (['ROOT_DIR', '"""research/object_detection/upload_images"""'], {}), "(ROOT_DIR, 'research/object_detection/upload_images')\n", (1284, 1337), False, 'import os\n'), ((1525, 1545), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (1534, 1545), False, 'from datetime import timedelta\n'), ((4749, 4779), 'random.choice', 'random.choice', (['user_file_names'], {}), '(user_file_names)\n', (4762, 4779), False, 'import random\n'), ((5081, 5110), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (5096, 5110), False, 'from flask import Flask, request, render_template, redirect\n'), ((5724, 5761), 'flask.render_template', 'render_template', (['"""result_detect.html"""'], {}), "('result_detect.html')\n", (5739, 5761), False, 'from flask import Flask, request, render_template, redirect\n'), ((1916, 1926), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1924, 1926), True, 'import tensorflow as tf\n'), ((2398, 2447), 'utils.label_map_util.load_labelmap', 'label_map_util.load_labelmap', (['self.PATH_TO_LABELS'], {}), '(self.PATH_TO_LABELS)\n', (2426, 2447), False, 'from utils import label_map_util\n'), ((2469, 2588), 'utils.label_map_util.convert_label_map_to_categories', 'label_map_util.convert_label_map_to_categories', (['label_map'], {'max_num_classes': 'self.NUM_CLASSES', 'use_display_name': '(True)'}), '(label_map, max_num_classes=\n self.NUM_CLASSES, use_display_name=True)\n', (2515, 2588), False, 'from utils import label_map_util\n'), ((2745, 2793), 'utils.label_map_util.create_category_index', 'label_map_util.create_category_index', (['categories'], {}), '(categories)\n', (2781, 2793), False, 'from utils import label_map_util\n'), ((4453, 4467), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4464, 4467), False, 'import cv2\n'), ((4803, 4844), 'os.path.join', 'os.path.join', (['UPLOAD_FOLDER', 'names_chosen'], {}), '(UPLOAD_FOLDER, names_chosen)\n', (4815, 4844), False, 'import os\n'), ((5039, 5068), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (5054, 5068), False, 'from flask import Flask, request, render_template, redirect\n'), ((5238, 5275), 'flask.render_template', 'render_template', (['"""upload_detect.html"""'], {}), "('upload_detect.html')\n", (5253, 5275), False, 'from flask import Flask, request, render_template, redirect\n'), ((1997, 2010), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (2008, 2010), True, 'import tensorflow as tf\n'), ((4388, 4435), 'os.path.join', 'os.path.join', (['IMAGE_DIR', '"""detection_result.jpg"""'], {}), "(IMAGE_DIR, 'detection_result.jpg')\n", (4400, 4435), False, 'import os\n'), ((4703, 4725), 'os.walk', 'os.walk', (['UPLOAD_FOLDER'], {}), '(UPLOAD_FOLDER)\n', (4710, 4725), False, 'import os\n'), ((5519, 5538), 'flask.redirect', 'redirect', (['"""/detect"""'], {}), "('/detect')\n", (5527, 5538), False, 'from flask import Flask, request, render_template, redirect\n'), ((5618, 5655), 'flask.render_template', 'render_template', (['"""upload_detect.html"""'], {}), "('upload_detect.html')\n", (5633, 5655), False, 'from flask import Flask, request, render_template, redirect\n'), ((2028, 2067), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['self.PATH_TO_CKPT', '"""rb"""'], {}), "(self.PATH_TO_CKPT, 'rb')\n", (2042, 2067), True, 'import tensorflow as tf\n'), ((2201, 2243), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['od_graph_def'], {'name': '""""""'}), "(od_graph_def, name='')\n", (2220, 2243), True, 'import tensorflow as tf\n'), ((2919, 2957), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.detection_graph'}), '(graph=self.detection_graph)\n', (2929, 2957), True, 'import tensorflow as tf\n'), ((3104, 3133), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (3118, 3133), True, 'import numpy as np\n'), ((5435, 5498), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", '"""uploaded_image.jpg"""'], {}), "(app.config['UPLOAD_FOLDER'], 'uploaded_image.jpg')\n", (5447, 5498), False, 'import os\n'), ((3987, 4004), 'numpy.squeeze', 'np.squeeze', (['boxes'], {}), '(boxes)\n', (3997, 4004), True, 'import numpy as np\n'), ((4084, 4102), 'numpy.squeeze', 'np.squeeze', (['scores'], {}), '(scores)\n', (4094, 4102), True, 'import numpy as np\n'), ((4026, 4045), 'numpy.squeeze', 'np.squeeze', (['classes'], {}), '(classes)\n', (4036, 4045), True, 'import numpy as np\n')]
import numpy as np import cv2 import timeit import datetime import os import time import math from line import get_points #for SERVER SIDE import json import requests #convert img to JSON object import base64 import pickle #API endpoint #api = 'https://tdispeeddetection.free.beeceptor.com/success' api = 'https://tdinightday.free.beeceptor.com/success' speed_limit = int(input('Enter The Speed Limit: ')) distance =int(input('Enter distance between 2 lines in Meters(for better results use 10 Meters): ')) global start_time,start_time1,later,later1,starttime,endtime def show_angle(speed_limit): if speed_limit !=0: show_direction = cv2.imread("PromptAngleinfo.JPG") cv2.imshow("Angle Help",show_direction) k = cv2.waitKey(1) & 0xff cv2.waitKey(50) Angle = int(input("Enter apporximate Angle with road :")) return Angle #Prompts user with demo image for choosing right angle. Angle = show_angle(speed_limit) #get Angle input # Play until the user decides to stop ## SENDING IMAGES TO SERVER FOR PROCESSING THERE>>>>>>>>>>>>>>>>>>>>> #for sending data to server def send(img): retval, buffer = cv2.imencode(".jpg", img) img = base64.b64encode(buffer).decode('utf-8') data = json.dumps({"image1": img, "id" : "2345AB"}) response = requests.post(api, data=data, timeout=5, headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}) try: data = response.json() print(data) except requests.exceptions.RequestException: print(response.text) # Initialize the video & get FPS cap = cv2.VideoCapture('night1.mp4') fps = cap.get(cv2.CAP_PROP_FPS) # Collects ROI cropped images from lanes lane_1_1 = [] lane_1_2 = [] #collect mask road_cropped = "regions.p" with open(road_cropped,'rb')as f: mask_list =pickle.load(f) print(mask_list[0]) print(mask_list[1]) #getting mask mask1 = cv2.imread('m1.jpeg') mask1 = cv2.cvtColor(mask1, cv2.COLOR_BGR2GRAY) ret1, thresh_MASK_1 = cv2.threshold(mask1, 127, 255, cv2.THRESH_BINARY_INV) mask2 = cv2.imread('m2.jpeg') mask2 = cv2.cvtColor(mask2, cv2.COLOR_BGR2GRAY) ret2, thresh_MASK_2 = cv2.threshold(mask2, 127, 255, cv2.THRESH_BINARY_INV) # Create the background subtraction object method = 1 if method == 0: bgSubtractor = cv2.bgsegm.createBackgroundSubtractorMOG() elif method == 1: bgSubtractor = cv2.createBackgroundSubtractorMOG2() else: bgSubtractor = cv2.bgsegm.createBackgroundSubtractorGMG() # Create the kernel that will be used to remove the noise in the foreground mask kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) kernel_di = np.ones((5, 1), np.uint8) # define variables cnt = 0 cnt1 = 0 flag = True flag1 = True cy = 0 cy1 = 0 #distance = 0.003 #distance = 3 #Prompt user to draw 2 lines _, img = cap.read() line1, line2 = get_points(img) #for line 1 l1_x1,l1_x2,l1_y1,l1_y2 = line1[0][0],line1[1][0],line1[0][1],line1[1][1] #for line2 l2_x1,l2_x2,l2_y1,l2_y2 = line2[0][0],line2[1][0],line2[0][1],line2[1][1] #last check point for reference of centroid tracking '''find dist between frst 2 lines ''' starttrack = l1_y1 midtrack = l2_y1 lasttrack = int((midtrack-starttrack)) if lasttrack < 100 : lasttrack = (int(midtrack-starttrack)*3)+l2_y1 else: lasttrack = (int(midtrack-starttrack)*2)+l2_y1 print("start",starttrack) print("last",lasttrack) print("mid",midtrack) ## Function to Auto Calculate the detection range '''takes input from users - speed_limit,gets FPS,distance,//pt2 and pt1 from line.py auto calibrates the last reference line on frame, in order to get min of 2 images for detection, code calibrates for ANY SPEED RANGE and any actual distance marked in Meters --- physically on ground, if distance is less say 2 Meters and you want to detect high speed of 120 KMph,code auto calculates the new reference line, provided it doesnt fall outside the frame height''' def max_images(speed_limit,fps,distance,midtrack,starttrack): #midtrack is last line Y pt and starttrack is first line Y pt. First line from TOP. time2coverdistance = (distance/(speed_limit*0.277)) max_img = (time2coverdistance*fps) if max_img <2.0: #cal distance which will ensure we get atleast 2 images of vehicle d = s*t max_dstnc = (speed_limit*0.277)*1/fps*2 delta = (max_dstnc-distance) pxl_mtr = ((midtrack-starttrack)/distance) pt3 = delta*pxl_mtr pt3_pxl = round(midtrack+pt3) print("max_dstnc",max_dstnc) print("distance",distance) print("delta",delta) print("pxl_mtr",pxl_mtr) print("pt3",pt3) print("pt3_pxl",pt3_pxl) else: pt3_pxl = midtrack+100 print("pt3",pt3_pxl) return pt3_pxl pt3_pxl = max_images(speed_limit,fps,distance,midtrack,starttrack) locationX =[] locationY=[] area_s=[] #defining time variables: WARNING : DONT CHANGE THESE AT ALL>>>>>>> start_time= datetime.datetime.now() start_time1= datetime.datetime.now() later= datetime.datetime.now() later1= datetime.datetime.now() starttime = datetime.datetime.now() endtime= datetime.datetime.now() # Play until the user decides to stop while True: flag2 = True start = timeit.default_timer() ret, frame = cap.read() if ret: score = np.average(np.linalg.norm(frame, axis=2)) / np.sqrt(3) else: continue if score > 60: # DAY TIME print('Day frame?!') time.sleep(100000) framespersecond= int(cap.get(cv2.CAP_PROP_FPS)) print(framespersecond) #frame = cv2.detailEnhance(frame, sigma_s=10, sigma_r=0.15) #frame =cv2.edgePreservingFilter(frame, flags=1, sigma_s=64, sigma_r=0.2) #suitable for high speed GPU -Nighttime. reduces FPS drastically frame_og = frame l, a, b = cv2.split(frame) clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(1, 1)) #for improving the brightness and illumination frame = clahe.apply(l) cv2.line(frame_og, (l1_x1, l1_y1), (l1_x2, l1_y2), (0, 255, 0), 1) cv2.line(frame_og, (l2_x1, l2_y1), (l2_x2, l2_y2), (0, 0, 255), 1) cv2.line(frame_og, (l1_x1, int((lasttrack))), (l1_x2, int((lasttrack))),(0, 0, 0), 1) cv2.line(frame_og,(l1_x1,pt3_pxl),(l1_x2,pt3_pxl),(200,0,127),3) if ret == True: foregroundMask = bgSubtractor.apply(frame) foregroundMask = cv2.morphologyEx(foregroundMask, cv2.MORPH_OPEN, kernel) foregroundMask = cv2.erode(foregroundMask, kernel, iterations=3) foregroundMask = cv2.morphologyEx(foregroundMask, cv2.MORPH_CLOSE, kernel,iterations=6) foregroundMask = cv2.dilate(foregroundMask, kernel_di, iterations=7) foregroundMask = cv2.medianBlur(foregroundMask,5) thresh = cv2.threshold(foregroundMask, 25, 255, cv2.THRESH_BINARY)[1] thresh1 = np.bitwise_and(thresh, thresh_MASK_1) thresh2 = np.bitwise_and(thresh, thresh_MASK_2) contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) try: hierarchy = hierarchy[0] except: hierarchy = [] for contour, hier in zip(contours, hierarchy): areas = [cv2.contourArea(c) for c in contours] max_index = np.argmax(areas) cnt = contours[max_index] (x, y, w, h) = cv2.boundingRect(cnt) area_=(w*h) area_s.append(area_) cx = int((w / 2) + x) cy = int((h / 2) + y) if w > 10 and h > 10: cv2.rectangle(frame_og, (x - 10, y - 10), (x + w, y + h), (0, 255, 0), 2) cv2.circle(frame_og, (cx, cy), 10, (0, 0, 255), -1) distA =None if cy > starttrack and w > 10 and h > 10: if flag is True and cy <midtrack: print("cy",cy) start_time = datetime.datetime.now() flag = False if flag is False and cy > midtrack and cy < pt3_pxl: later = datetime.datetime.now() seconds = (later - start_time).total_seconds() frame_crossed1 = seconds*framespersecond speed_insta = (distance/frame_crossed1)*framespersecond*3.6 Angle = math.radians(Angle) Angle = math.cos(Angle) speed = speed_insta*Angle print("SPEED",speed) print("frame_crossed1",frame_crossed1) print("Time taken",seconds) if seconds <= 0.2: print("diff 0") else: #print("seconds : " + str(seconds)) if flag is False: font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame_og, str(int(speed)), (x, y), font, 2, (255, 255, 255), 4, cv2.LINE_AA) cv2.putText(frame, str(int(speed)), (x, y), font, 2, (255, 255, 255), 4, cv2.LINE_AA) # if not os.path.exists(path): # os.makedirs(path) if int(speed) > speed_limit and cy <= lasttrack and w > 70 and h > 100: roi = frame[y-50:y + h, x:x + w] cv2.imshow("Lane_1", roi) lane_1_1.append(roi) # write_name = 'corners_found' + str(cnt1) + '.jpg' # cv2.imwrite(write_name, roi) # cv2.imwrite(os.path.join(path, 'carimage_l2_' + str(cnt1)) + '.jpg', roi) cnt += 1 # flag = True font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame, str(int(speed)), (x, y), font, 2, (255, 255, 255), 8, cv2.LINE_AA) flag = True contours1, hierarchy1= cv2.findContours(thresh2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) try: hierarchy1 = hierarchy1[0] except: hierarchy1 = [] for contour1, hier1 in zip(contours1, hierarchy1): areas1 = [cv2.contourArea(c) for c in contours1] max_index1 = np.argmax(areas1) cnt1 = contours1[max_index1] (x1, y1, w1, h1) = cv2.boundingRect(cnt1) cx1 = int((w1 / 2) + x1) cy1 = int((h1 / 2) + y1) if w1 > 10 and h1 > 10: cv2.rectangle(frame_og, (x1 - 10, y1 - 10), (x1 + w1, y1 + h1), (255, 255, 0), 2) cv2.circle(frame_og, (cx1, cy1), 5, (0, 255, 0), -1) if cy1 > starttrack and w1 > 10 and h1 > 10: if flag1 is True and cy1 < midtrack: start_time1 = datetime.datetime.now() flag1 = False if flag1 is False and cy1> midtrack and cy1 < pt3_pxl: later1 = datetime.datetime.now() seconds1 = (later1 - start_time1).total_seconds() frame_crossed2 = seconds1*framespersecond speed1 = (distance/frame_crossed2)*framespersecond*3.6 Angle = math.radians(Angle) Angle = math.cos(Angle) speed1 = speed1*Angle #COSINE CORRECTION print("SPEED1",speed1) if seconds1 <= 0.2: print("diff1 0") else: #print("seconds1 : " + str(seconds1)) if flag1 is False: font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame_og, str(int(speed1)), (x1, y1), font, 2, (255, 255, 255), 8, cv2.LINE_AA) cv2.putText(frame, str(int(speed1)), (x1, y1), font, 2, (255, 255, 255), 8, cv2.LINE_AA) # if not os.path.exists(path): # os.makedirs(path) if int(speed1) > speed_limit and cy1 <= pt3_pxl and w1 > 70 and h1 > 100: roi = frame[y1-50:y1 + h1, x1:x1 + w1] cv2.imshow("Lane_2", roi) lane_1_2.append(roi) #cv2.imwrite(os.path.join('Offenders/', 'carimage_l2_' + str(cnt1)) + '.jpg', roi) cnt1 += 1 flag1 = True font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(frame_og, str(int(speed1)), (x1, y1), font, 2, (255, 255, 255), 8, cv2.LINE_AA) flag1 = True #cv2.imshow('background subtraction', foregroundMask) #cv2.imshow('Sub',thresh) #cv2.imshow('Sub', thresh1) #cv2.imshow('Sub', frame) cv2.imshow('Robust', frame_og) stop = timeit.default_timer() time = stop-start print('One_frame = ',time) # k = cv2.waitKey(1) & 0xff # if k == ord('q'): # break # else: # break else: #NIGHT TIME print('Night frame') flag2 = True list_speed=[] framespersecond= int(cap.get(cv2.CAP_PROP_FPS)) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (41, 41), 0) (minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray) h,w,_=(frame.shape) #to find speed cx2,cy2 = maxLoc print("cx",cx2) print("cy2",cy2) if cy2 > starttrack: if flag2 is True and cy2 < midtrack: starttime= datetime.datetime.now() flag2 = False if cy2> midtrack and cy2< lasttrack: endtime = datetime.datetime.now() timedelta = (endtime - starttime).total_seconds() frame_crossed3 = timedelta*framespersecond speed1 = (distance/frame_crossed3)*framespersecond*3.6 Angle = math.radians(Angle) Angle = math.cos(Angle) speed_night = speed1*Angle list_speed.append(speed_night) #cal avg speed avg_speed = sum(list_speed)/len(list_speed) if cy2> lasttrack: print("frame_night",frame_crossed3) #COSINE CORRECTION print("SPEED_NIGHT",avg_speed) print("timedelta",timedelta) speed = (distance/timedelta) print("speed_night_without_adjustments",speed) if int(avg_speed) > speed_limit and cy2 > lasttrack: #roi = frame[y-50:y + h, x:x + w] roi = frame cv2.imshow("Lane_1", roi) lane_1_1.append(roi) send(roi) cv2.circle(frame, maxLoc, 10, (255, 0, 255), -1) cv2.line(frame, (l1_x1, l1_y1), (l1_x2, l1_y2), (0, 255, 0), 1) cv2.line(frame, (l2_x1, l2_y1), (l2_x2, l2_y2), (0, 0, 255), 1) cv2.line(frame, (l1_x1, int((lasttrack))), (l1_x2, int((lasttrack))),(0, 0, 0), 1) cv2.imshow("Robust", frame) k = cv2.waitKey(1) & 0xff if k == ord('q'): break cap.release() cv2.destroyAllWindows()
[ "cv2.GaussianBlur", "cv2.medianBlur", "numpy.argmax", "numpy.ones", "json.dumps", "cv2.bgsegm.createBackgroundSubtractorGMG", "pickle.load", "numpy.linalg.norm", "cv2.imencode", "cv2.rectangle", "requests.post", "cv2.minMaxLoc", "cv2.imshow", "cv2.erode", "cv2.line", "cv2.contourArea", "cv2.dilate", "cv2.cvtColor", "math.radians", "cv2.split", "math.cos", "cv2.destroyAllWindows", "datetime.datetime.now", "cv2.boundingRect", "cv2.circle", "cv2.bgsegm.createBackgroundSubtractorMOG", "cv2.waitKey", "cv2.morphologyEx", "time.sleep", "line.get_points", "cv2.createCLAHE", "cv2.createBackgroundSubtractorMOG2", "cv2.getStructuringElement", "cv2.threshold", "timeit.default_timer", "cv2.VideoCapture", "cv2.imread", "base64.b64encode", "numpy.bitwise_and", "cv2.findContours", "numpy.sqrt" ]
[((1650, 1680), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""night1.mp4"""'], {}), "('night1.mp4')\n", (1666, 1680), False, 'import cv2\n'), ((1964, 1985), 'cv2.imread', 'cv2.imread', (['"""m1.jpeg"""'], {}), "('m1.jpeg')\n", (1974, 1985), False, 'import cv2\n'), ((1994, 2033), 'cv2.cvtColor', 'cv2.cvtColor', (['mask1', 'cv2.COLOR_BGR2GRAY'], {}), '(mask1, cv2.COLOR_BGR2GRAY)\n', (2006, 2033), False, 'import cv2\n'), ((2056, 2109), 'cv2.threshold', 'cv2.threshold', (['mask1', '(127)', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(mask1, 127, 255, cv2.THRESH_BINARY_INV)\n', (2069, 2109), False, 'import cv2\n'), ((2118, 2139), 'cv2.imread', 'cv2.imread', (['"""m2.jpeg"""'], {}), "('m2.jpeg')\n", (2128, 2139), False, 'import cv2\n'), ((2148, 2187), 'cv2.cvtColor', 'cv2.cvtColor', (['mask2', 'cv2.COLOR_BGR2GRAY'], {}), '(mask2, cv2.COLOR_BGR2GRAY)\n', (2160, 2187), False, 'import cv2\n'), ((2210, 2263), 'cv2.threshold', 'cv2.threshold', (['mask2', '(127)', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(mask2, 127, 255, cv2.THRESH_BINARY_INV)\n', (2223, 2263), False, 'import cv2\n'), ((2633, 2685), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_ELLIPSE', '(3, 3)'], {}), '(cv2.MORPH_ELLIPSE, (3, 3))\n', (2658, 2685), False, 'import cv2\n'), ((2698, 2723), 'numpy.ones', 'np.ones', (['(5, 1)', 'np.uint8'], {}), '((5, 1), np.uint8)\n', (2705, 2723), True, 'import numpy as np\n'), ((2902, 2917), 'line.get_points', 'get_points', (['img'], {}), '(img)\n', (2912, 2917), False, 'from line import get_points\n'), ((4934, 4957), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4955, 4957), False, 'import datetime\n'), ((4971, 4994), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4992, 4994), False, 'import datetime\n'), ((5002, 5025), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5023, 5025), False, 'import datetime\n'), ((5034, 5057), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5055, 5057), False, 'import datetime\n'), ((5070, 5093), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5091, 5093), False, 'import datetime\n'), ((5103, 5126), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5124, 5126), False, 'import datetime\n'), ((15585, 15608), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (15606, 15608), False, 'import cv2\n'), ((1192, 1217), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'img'], {}), "('.jpg', img)\n", (1204, 1217), False, 'import cv2\n'), ((1280, 1323), 'json.dumps', 'json.dumps', (["{'image1': img, 'id': '2345AB'}"], {}), "({'image1': img, 'id': '2345AB'})\n", (1290, 1323), False, 'import json\n'), ((1340, 1454), 'requests.post', 'requests.post', (['api'], {'data': 'data', 'timeout': '(5)', 'headers': "{'Content-type': 'application/json', 'Accept': 'text/plain'}"}), "(api, data=data, timeout=5, headers={'Content-type':\n 'application/json', 'Accept': 'text/plain'})\n", (1353, 1454), False, 'import requests\n'), ((1878, 1892), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1889, 1892), False, 'import pickle\n'), ((2357, 2399), 'cv2.bgsegm.createBackgroundSubtractorMOG', 'cv2.bgsegm.createBackgroundSubtractorMOG', ([], {}), '()\n', (2397, 2399), False, 'import cv2\n'), ((5207, 5229), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (5227, 5229), False, 'import timeit\n'), ((678, 711), 'cv2.imread', 'cv2.imread', (['"""PromptAngleinfo.JPG"""'], {}), "('PromptAngleinfo.JPG')\n", (688, 711), False, 'import cv2\n'), ((720, 760), 'cv2.imshow', 'cv2.imshow', (['"""Angle Help"""', 'show_direction'], {}), "('Angle Help', show_direction)\n", (730, 760), False, 'import cv2\n'), ((802, 817), 'cv2.waitKey', 'cv2.waitKey', (['(50)'], {}), '(50)\n', (813, 817), False, 'import cv2\n'), ((2437, 2473), 'cv2.createBackgroundSubtractorMOG2', 'cv2.createBackgroundSubtractorMOG2', ([], {}), '()\n', (2471, 2473), False, 'import cv2\n'), ((2499, 2541), 'cv2.bgsegm.createBackgroundSubtractorGMG', 'cv2.bgsegm.createBackgroundSubtractorGMG', ([], {}), '()\n', (2539, 2541), False, 'import cv2\n'), ((5435, 5453), 'time.sleep', 'time.sleep', (['(100000)'], {}), '(100000)\n', (5445, 5453), False, 'import time\n'), ((5800, 5816), 'cv2.split', 'cv2.split', (['frame'], {}), '(frame)\n', (5809, 5816), False, 'import cv2\n'), ((5833, 5882), 'cv2.createCLAHE', 'cv2.createCLAHE', ([], {'clipLimit': '(2)', 'tileGridSize': '(1, 1)'}), '(clipLimit=2, tileGridSize=(1, 1))\n', (5848, 5882), False, 'import cv2\n'), ((5969, 6035), 'cv2.line', 'cv2.line', (['frame_og', '(l1_x1, l1_y1)', '(l1_x2, l1_y2)', '(0, 255, 0)', '(1)'], {}), '(frame_og, (l1_x1, l1_y1), (l1_x2, l1_y2), (0, 255, 0), 1)\n', (5977, 6035), False, 'import cv2\n'), ((6044, 6110), 'cv2.line', 'cv2.line', (['frame_og', '(l2_x1, l2_y1)', '(l2_x2, l2_y2)', '(0, 0, 255)', '(1)'], {}), '(frame_og, (l2_x1, l2_y1), (l2_x2, l2_y2), (0, 0, 255), 1)\n', (6052, 6110), False, 'import cv2\n'), ((6213, 6285), 'cv2.line', 'cv2.line', (['frame_og', '(l1_x1, pt3_pxl)', '(l1_x2, pt3_pxl)', '(200, 0, 127)', '(3)'], {}), '(frame_og, (l1_x1, pt3_pxl), (l1_x2, pt3_pxl), (200, 0, 127), 3)\n', (6221, 6285), False, 'import cv2\n'), ((13580, 13619), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (13592, 13619), False, 'import cv2\n'), ((13636, 13671), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(41, 41)', '(0)'], {}), '(gray, (41, 41), 0)\n', (13652, 13671), False, 'import cv2\n'), ((13716, 13735), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['gray'], {}), '(gray)\n', (13729, 13735), False, 'import cv2\n'), ((15177, 15225), 'cv2.circle', 'cv2.circle', (['frame', 'maxLoc', '(10)', '(255, 0, 255)', '(-1)'], {}), '(frame, maxLoc, 10, (255, 0, 255), -1)\n', (15187, 15225), False, 'import cv2\n'), ((15234, 15297), 'cv2.line', 'cv2.line', (['frame', '(l1_x1, l1_y1)', '(l1_x2, l1_y2)', '(0, 255, 0)', '(1)'], {}), '(frame, (l1_x1, l1_y1), (l1_x2, l1_y2), (0, 255, 0), 1)\n', (15242, 15297), False, 'import cv2\n'), ((15306, 15369), 'cv2.line', 'cv2.line', (['frame', '(l2_x1, l2_y1)', '(l2_x2, l2_y2)', '(0, 0, 255)', '(1)'], {}), '(frame, (l2_x1, l2_y1), (l2_x2, l2_y2), (0, 0, 255), 1)\n', (15314, 15369), False, 'import cv2\n'), ((15469, 15496), 'cv2.imshow', 'cv2.imshow', (['"""Robust"""', 'frame'], {}), "('Robust', frame)\n", (15479, 15496), False, 'import cv2\n'), ((15512, 15526), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (15523, 15526), False, 'import cv2\n'), ((772, 786), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (783, 786), False, 'import cv2\n'), ((1228, 1252), 'base64.b64encode', 'base64.b64encode', (['buffer'], {}), '(buffer)\n', (1244, 1252), False, 'import base64\n'), ((5330, 5340), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (5337, 5340), True, 'import numpy as np\n'), ((6387, 6443), 'cv2.morphologyEx', 'cv2.morphologyEx', (['foregroundMask', 'cv2.MORPH_OPEN', 'kernel'], {}), '(foregroundMask, cv2.MORPH_OPEN, kernel)\n', (6403, 6443), False, 'import cv2\n'), ((6473, 6520), 'cv2.erode', 'cv2.erode', (['foregroundMask', 'kernel'], {'iterations': '(3)'}), '(foregroundMask, kernel, iterations=3)\n', (6482, 6520), False, 'import cv2\n'), ((6550, 6621), 'cv2.morphologyEx', 'cv2.morphologyEx', (['foregroundMask', 'cv2.MORPH_CLOSE', 'kernel'], {'iterations': '(6)'}), '(foregroundMask, cv2.MORPH_CLOSE, kernel, iterations=6)\n', (6566, 6621), False, 'import cv2\n'), ((6650, 6701), 'cv2.dilate', 'cv2.dilate', (['foregroundMask', 'kernel_di'], {'iterations': '(7)'}), '(foregroundMask, kernel_di, iterations=7)\n', (6660, 6701), False, 'import cv2\n'), ((6731, 6764), 'cv2.medianBlur', 'cv2.medianBlur', (['foregroundMask', '(5)'], {}), '(foregroundMask, 5)\n', (6745, 6764), False, 'import cv2\n'), ((6868, 6905), 'numpy.bitwise_and', 'np.bitwise_and', (['thresh', 'thresh_MASK_1'], {}), '(thresh, thresh_MASK_1)\n', (6882, 6905), True, 'import numpy as np\n'), ((6928, 6965), 'numpy.bitwise_and', 'np.bitwise_and', (['thresh', 'thresh_MASK_2'], {}), '(thresh, thresh_MASK_2)\n', (6942, 6965), True, 'import numpy as np\n'), ((7000, 7065), 'cv2.findContours', 'cv2.findContours', (['thresh1', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (7016, 7065), False, 'import cv2\n'), ((10113, 10178), 'cv2.findContours', 'cv2.findContours', (['thresh2', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(thresh2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (10129, 10178), False, 'import cv2\n'), ((13110, 13140), 'cv2.imshow', 'cv2.imshow', (['"""Robust"""', 'frame_og'], {}), "('Robust', frame_og)\n", (13120, 13140), False, 'import cv2\n'), ((13160, 13182), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (13180, 13182), False, 'import timeit\n'), ((5297, 5326), 'numpy.linalg.norm', 'np.linalg.norm', (['frame'], {'axis': '(2)'}), '(frame, axis=2)\n', (5311, 5326), True, 'import numpy as np\n'), ((6785, 6842), 'cv2.threshold', 'cv2.threshold', (['foregroundMask', '(25)', '(255)', 'cv2.THRESH_BINARY'], {}), '(foregroundMask, 25, 255, cv2.THRESH_BINARY)\n', (6798, 6842), False, 'import cv2\n'), ((7327, 7343), 'numpy.argmax', 'np.argmax', (['areas'], {}), '(areas)\n', (7336, 7343), True, 'import numpy as np\n'), ((7418, 7439), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (7434, 7439), False, 'import cv2\n'), ((10450, 10467), 'numpy.argmax', 'np.argmax', (['areas1'], {}), '(areas1)\n', (10459, 10467), True, 'import numpy as np\n'), ((10548, 10570), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt1'], {}), '(cnt1)\n', (10564, 10570), False, 'import cv2\n'), ((13966, 13989), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (13987, 13989), False, 'import datetime\n'), ((14095, 14118), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (14116, 14118), False, 'import datetime\n'), ((14339, 14358), 'math.radians', 'math.radians', (['Angle'], {}), '(Angle)\n', (14351, 14358), False, 'import math\n'), ((14383, 14398), 'math.cos', 'math.cos', (['Angle'], {}), '(Angle)\n', (14391, 14398), False, 'import math\n'), ((7261, 7279), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (7276, 7279), False, 'import cv2\n'), ((7640, 7713), 'cv2.rectangle', 'cv2.rectangle', (['frame_og', '(x - 10, y - 10)', '(x + w, y + h)', '(0, 255, 0)', '(2)'], {}), '(frame_og, (x - 10, y - 10), (x + w, y + h), (0, 255, 0), 2)\n', (7653, 7713), False, 'import cv2\n'), ((7736, 7787), 'cv2.circle', 'cv2.circle', (['frame_og', '(cx, cy)', '(10)', '(0, 0, 255)', '(-1)'], {}), '(frame_og, (cx, cy), 10, (0, 0, 255), -1)\n', (7746, 7787), False, 'import cv2\n'), ((7985, 8008), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (8006, 8008), False, 'import datetime\n'), ((8139, 8162), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (8160, 8162), False, 'import datetime\n'), ((8399, 8418), 'math.radians', 'math.radians', (['Angle'], {}), '(Angle)\n', (8411, 8418), False, 'import math\n'), ((8447, 8462), 'math.cos', 'math.cos', (['Angle'], {}), '(Angle)\n', (8455, 8462), False, 'import math\n'), ((10382, 10400), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (10397, 10400), False, 'import cv2\n'), ((10713, 10799), 'cv2.rectangle', 'cv2.rectangle', (['frame_og', '(x1 - 10, y1 - 10)', '(x1 + w1, y1 + h1)', '(255, 255, 0)', '(2)'], {}), '(frame_og, (x1 - 10, y1 - 10), (x1 + w1, y1 + h1), (255, 255, \n 0), 2)\n', (10726, 10799), False, 'import cv2\n'), ((10815, 10867), 'cv2.circle', 'cv2.circle', (['frame_og', '(cx1, cy1)', '(5)', '(0, 255, 0)', '(-1)'], {}), '(frame_og, (cx1, cy1), 5, (0, 255, 0), -1)\n', (10825, 10867), False, 'import cv2\n'), ((11013, 11036), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11034, 11036), False, 'import datetime\n'), ((11171, 11194), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11192, 11194), False, 'import datetime\n'), ((11430, 11449), 'math.radians', 'math.radians', (['Angle'], {}), '(Angle)\n', (11442, 11449), False, 'import math\n'), ((11478, 11493), 'math.cos', 'math.cos', (['Angle'], {}), '(Angle)\n', (11486, 11493), False, 'import math\n'), ((15072, 15097), 'cv2.imshow', 'cv2.imshow', (['"""Lane_1"""', 'roi'], {}), "('Lane_1', roi)\n", (15082, 15097), False, 'import cv2\n'), ((9466, 9491), 'cv2.imshow', 'cv2.imshow', (['"""Lane_1"""', 'roi'], {}), "('Lane_1', roi)\n", (9476, 9491), False, 'import cv2\n'), ((12438, 12463), 'cv2.imshow', 'cv2.imshow', (['"""Lane_2"""', 'roi'], {}), "('Lane_2', roi)\n", (12448, 12463), False, 'import cv2\n')]
from __future__ import division import numpy as np from .chemistry import * #==============================================================================# class Species(): """An abstract class representing a molecular species, composed of some monomer types, atoms, and bonded functionality. All concrete species derive from this parent class. A species implements methods for adding atoms and bonded units to a Topology graph. Parameters ---------- id : integer Unique ID for this species monomers : array-like of MonomerType All MonomerType objects present in species natoms : integer Number of atoms in a given unit of this species initializer : function A function of the form `func(box)` that returns an initial position for placing the species """ def __init__(self, id, monomers, natoms, **kwargs): self.id = id self.natoms = natoms self.monomers = monomers self.initializer_ = kwargs.get("initializer", None) def generate_molecules(self, *args, **kwargs): """ Add a given number of molecules of the species to a system topology. """ pass def initial_position(self, box): if self.initializer_ is not None: return self.initializer_(box) else: return box.random_position() def charge(self): """ Return the total charge for a molecule of this species. """ return 0.0 def volume(self): """ Return the total volume occupied by atoms in a molecule of this species. """ return 1.0 class Point(Species): """ Species representing a single coarse-grained point-like object. """ def __init__(self, id, mon, **kwargs): super().__init__(id, [mon], 1, **kwargs) def charge(self): return self.monomers[0].charge def volume(self): return self.monomers[0].size**3 def generate(self, nmol, mid0, topology, box): mon = self.monomers[0] # Only one monomer type for a point for mid in range(1, nmol+1): # Atom ID is set when adding to the topology ai = Atom(mon, mid = mid0 + mid, sid = self.id) ai.set_position(self.initial_position(box)) topology.add_atom(ai) class Multiblock(Species): """ Species representing a linear homopolymer with multiple distinct block types of monomers. """ def __init__(self, id, block_mons, block_lens, **kwargs): if len(block_mons) != len(block_lens): raise ValueError("Number of monomers and blocks not equal.") mons = list(np.unique(block_mons)) natoms = np.sum(block_lens) super().__init__(id, mons, natoms, **kwargs) self.block_mons = block_mons self.block_lens = np.array(block_lens) self.block_ids = np.array([mon.id for mon in block_mons]) self.block_ends = np.cumsum(block_lens) self.block_starts = np.append([0], self.block_ends[:-1]) self.nblocks = len(block_mons) self.bond_scale = kwargs.get("bond_scale", 1.25) self.bond_type = kwargs.get("bond_type", 1) self.wrap = kwargs.get("wrap", True) def charge(self): charge = 0.0 for blk in range(self.nblocks): mon = self.blk2mon(blk) charge += self.block_lens[blk] * mon.charge return charge def volume(self): vol = 0.0 for blk in range(self.nblocks): mon = self.blk2mon(blk) vol += self.block_lens[blk] * mon.size**3 return vol def idx2mon(self, idx): assert 0 <= idx < self.natoms, "Monomer index greater than number of atoms in chain." for blk in range(self.nblocks): if idx < self.block_ends[blk]: return self.block_mons[blk] def blk2mon(self, blk): assert 0 <= blk < self.nblocks, "Block ID greater than number of blocks in chain." return self.block_mons[blk] def generate(self, nmol, mid0, topology, box): mon0 = self.blk2mon(0) for mid in range(1, nmol+1): a0 = Atom(mon0, mid = mid0 + mid, sid = self.id) a0.set_position(self.initial_position(box)) topology.add_atom(a0) aprev = a0 for ni in range(1, self.natoms): # Loop over and add all the connected atoms mon = self.idx2mon(ni) rbond = self.bond_scale*mon.size ai = Atom(mon, mid = mid0 + mid, sid = self.id) ai.set_image(aprev.img) # Add a random Gaussian displacement from previous delta = np.random.randn(3) delta *= rbond / np.linalg.norm(delta) ai.set_position(aprev.pos + delta) if self.wrap: box.wrap(ai.pos, ai.img) topology.add_atom_bonded_to(aprev.id, ai) aprev = ai # Rebuild the topology angle and dihedral lists topology.rebuild() class Homopolymer(Multiblock): """ Species representing a linear homopolymer containing a chain of identical beads. """ def __init__(self, id, mon, N, **kwargs): super().__init__(id, [mon], [N], **kwargs) class Diblock(Multiblock): """ Species representing a diblock copolymer containing two blocks with different monomer types. """ def __init__(self, id, amon, bmon, na, nb, **kwargs): super().__init__(id, [amon, bmon], [na, nb], **kwargs)
[ "numpy.sum", "numpy.random.randn", "numpy.cumsum", "numpy.append", "numpy.array", "numpy.linalg.norm", "numpy.unique" ]
[((2738, 2756), 'numpy.sum', 'np.sum', (['block_lens'], {}), '(block_lens)\n', (2744, 2756), True, 'import numpy as np\n'), ((2874, 2894), 'numpy.array', 'np.array', (['block_lens'], {}), '(block_lens)\n', (2882, 2894), True, 'import numpy as np\n'), ((2920, 2960), 'numpy.array', 'np.array', (['[mon.id for mon in block_mons]'], {}), '([mon.id for mon in block_mons])\n', (2928, 2960), True, 'import numpy as np\n'), ((2987, 3008), 'numpy.cumsum', 'np.cumsum', (['block_lens'], {}), '(block_lens)\n', (2996, 3008), True, 'import numpy as np\n'), ((3037, 3073), 'numpy.append', 'np.append', (['[0]', 'self.block_ends[:-1]'], {}), '([0], self.block_ends[:-1])\n', (3046, 3073), True, 'import numpy as np\n'), ((2698, 2719), 'numpy.unique', 'np.unique', (['block_mons'], {}), '(block_mons)\n', (2707, 2719), True, 'import numpy as np\n'), ((4748, 4766), 'numpy.random.randn', 'np.random.randn', (['(3)'], {}), '(3)\n', (4763, 4766), True, 'import numpy as np\n'), ((4800, 4821), 'numpy.linalg.norm', 'np.linalg.norm', (['delta'], {}), '(delta)\n', (4814, 4821), True, 'import numpy as np\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """ Compute an optimal storage control policy for a PV plant supposing a perfect knowledge of the future inputs. <NAME> — November 2013 """ from __future__ import division, print_function, unicode_literals import sys from datetime import datetime import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # Tweak how images are plotted with imshow mpl.rcParams['image.interpolation'] = 'none' # no interpolation mpl.rcParams['image.origin'] = 'lower' # origin at lower left corner mpl.rcParams['image.aspect'] = 'auto' try: from stodynprog import SysDescription, DPSolver except ImportError: sys.path.append('../..') from stodynprog import SysDescription, DPSolver # Read the PV production data: t,P_prod_data = np.loadtxt('pv_prod.csv', skiprows=1, delimiter=',').T ## Storage dynamics description dt = t[1]-t[0] # Storage rated energy and power: E_rated = 2 # [MWh] P_rated = 1 # [MW] print('Storage ratings: {:.2f} MW / {:.2f} MWh'.format(P_rated, E_rated)) # storage loss factor a = 0.0 print(' storage loss factor: {:.1%}'.format(a)) T_horiz = len(P_prod_data) def dyn_sto(k, E_sto, P_sto): '''state transition of the "deterministic storage" system State variables: * E_sto Control: * P_sto ''' # Stored energy: E_sto_n = E_sto + (P_sto - a*abs(P_sto))*dt return (E_sto_n, ) def admissible_controls(k, E_sto): '''set of admissible control U(x_k) of an Energy storage Controls is the stored power P_sto Contrainsts of the Energy Storage are: 1) Energy stock boundaries : 0 ≤ E(k + 1) ≤ E_rated 2) Power limitation : -P_rated ≤ P_sto ≤ P_rated ''' # 1) Constraints on P_sto: P_neg = np.max(( -E_sto/(1+a)/dt, -P_rated)) P_pos = np.min(( (E_rated - E_sto)/(1-a)/dt, P_rated)) U1 = (P_neg, P_pos) return (U1, ) def cost_model(k, E_sto, P_sto): '''penalty on the power injected to the grid P_grid = P_prod - P_sto ''' P_prod = P_prod_data[k] P_grid = P_prod - P_sto P_grid_over = np.where(P_grid > 0.4, P_grid-0.4, 0) P_grid_neg = np.where(P_grid < 0, P_grid, 0) penal = P_grid_over**2 + P_grid_neg**2 + 0*P_sto**2 return penal ### Create the system description: sto_sys = SysDescription((1,1,0), name='Deterministic Storage for PV', stationnary=False) sto_sys.dyn = dyn_sto sto_sys.control_box = admissible_controls sto_sys.cost = cost_model sto_sys.print_summary() ### Create the DP solver: dpsolv = DPSolver(sto_sys) # discretize the state space N_E = 50 E_grid = dpsolv.discretize_state(0, E_rated, N_E)[0] dpsolv.control_steps=(.001,) dpsolv.print_summary() J_fin = np.zeros(N_E) J, pol = dpsolv.bellman_recursion(T_horiz, J_fin) pol_sto = pol[..., 0] ### Plot the policy plt.figure('policy') plt.subplot(111, title='$P_{grid}(t,E)$ policy', xlabel='time', ylabel='$E_{sto}$') plt.imshow(P_prod_data - pol_sto.T, extent=(0, (T_horiz-1)/24, 0, 2)) #plt.plot(t/24., E[:-1], 'k-', alpha=0.5, label='$E_{sto}$') #plt.plot(t/24., P_prod_data+E_rated, label='$P_{prod}$') plt.colorbar() #### Simulation: #### N_sim = T_horiz # Time vector k_range = np.arange(N_sim) k_range_x= np.arange(N_sim+1) # State variables E = np.zeros(N_sim+1) E[0] = E_rated/2 # Control variables P_sto = np.zeros(N_sim) # Simulation loop: for k in k_range: # Control computation: P_sto_law = dpsolv.interp_on_state(pol_sto[k]) P_sto[k] = P_sto_law(E[k]) # State evolution: E[k+1], = sto_sys.dyn(k, E[k], P_sto[k]) # Compute state variables derivatives: E_full = np.ma.array(E, mask = (E<E_rated*0.9999)) E_empty = np.ma.array(E, mask = (E>E_rated*0.0001)) # Deviation from commitment: P_grid = P_prod_data - P_sto P_grid_l2 = np.sqrt(np.mean(P_grid**2)) print('RMS deviation: {:.4f}'.format(P_grid_l2)) ### Plot: fig, ax = plt.subplots(2,1, sharex=True) ax[0].set_title('Power flows of the PV-storage system') ax[0].plot(k_range, P_prod_data, 'b-', label='$P_{prod}$') ax[0].plot(k_range, P_sto, 'c-', label='$P_{sto}$') ax[0].plot(k_range, P_grid, 'r-', label='$P_{grid}$') ax[0].legend() ax[1].set_title('Stored energy') ax[1].plot(k_range_x, E, 'b-', label='$E_{sto}$') ax[1].plot(k_range_x, E_full, 'D-', color='red', label='full') ax[1].plot(k_range_x, E_empty, 'D-', color='orange', label='empty') plt.show()
[ "sys.path.append", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "matplotlib.pyplot.imshow", "numpy.zeros", "stodynprog.SysDescription", "matplotlib.pyplot.subplots", "matplotlib.pyplot.colorbar", "numpy.ma.array", "matplotlib.pyplot.figure", "numpy.max", "numpy.arange", "numpy.loadtxt", "numpy.min", "numpy.where", "numpy.mean", "stodynprog.DPSolver" ]
[((2285, 2371), 'stodynprog.SysDescription', 'SysDescription', (['(1, 1, 0)'], {'name': '"""Deterministic Storage for PV"""', 'stationnary': '(False)'}), "((1, 1, 0), name='Deterministic Storage for PV', stationnary=\n False)\n", (2299, 2371), False, 'from stodynprog import SysDescription, DPSolver\n'), ((2516, 2533), 'stodynprog.DPSolver', 'DPSolver', (['sto_sys'], {}), '(sto_sys)\n', (2524, 2533), False, 'from stodynprog import SysDescription, DPSolver\n'), ((2688, 2701), 'numpy.zeros', 'np.zeros', (['N_E'], {}), '(N_E)\n', (2696, 2701), True, 'import numpy as np\n'), ((2797, 2817), 'matplotlib.pyplot.figure', 'plt.figure', (['"""policy"""'], {}), "('policy')\n", (2807, 2817), True, 'import matplotlib.pyplot as plt\n'), ((2818, 2906), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {'title': '"""$P_{grid}(t,E)$ policy"""', 'xlabel': '"""time"""', 'ylabel': '"""$E_{sto}$"""'}), "(111, title='$P_{grid}(t,E)$ policy', xlabel='time', ylabel=\n '$E_{sto}$')\n", (2829, 2906), True, 'import matplotlib.pyplot as plt\n'), ((2902, 2975), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(P_prod_data - pol_sto.T)'], {'extent': '(0, (T_horiz - 1) / 24, 0, 2)'}), '(P_prod_data - pol_sto.T, extent=(0, (T_horiz - 1) / 24, 0, 2))\n', (2912, 2975), True, 'import matplotlib.pyplot as plt\n'), ((3092, 3106), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (3104, 3106), True, 'import matplotlib.pyplot as plt\n'), ((3173, 3189), 'numpy.arange', 'np.arange', (['N_sim'], {}), '(N_sim)\n', (3182, 3189), True, 'import numpy as np\n'), ((3201, 3221), 'numpy.arange', 'np.arange', (['(N_sim + 1)'], {}), '(N_sim + 1)\n', (3210, 3221), True, 'import numpy as np\n'), ((3242, 3261), 'numpy.zeros', 'np.zeros', (['(N_sim + 1)'], {}), '(N_sim + 1)\n', (3250, 3261), True, 'import numpy as np\n'), ((3306, 3321), 'numpy.zeros', 'np.zeros', (['N_sim'], {}), '(N_sim)\n', (3314, 3321), True, 'import numpy as np\n'), ((3587, 3628), 'numpy.ma.array', 'np.ma.array', (['E'], {'mask': '(E < E_rated * 0.9999)'}), '(E, mask=E < E_rated * 0.9999)\n', (3598, 3628), True, 'import numpy as np\n'), ((3640, 3681), 'numpy.ma.array', 'np.ma.array', (['E'], {'mask': '(E > E_rated * 0.0001)'}), '(E, mask=E > E_rated * 0.0001)\n', (3651, 3681), True, 'import numpy as np\n'), ((3852, 3883), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'sharex': '(True)'}), '(2, 1, sharex=True)\n', (3864, 3883), True, 'import matplotlib.pyplot as plt\n'), ((4340, 4350), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4348, 4350), True, 'import matplotlib.pyplot as plt\n'), ((793, 845), 'numpy.loadtxt', 'np.loadtxt', (['"""pv_prod.csv"""'], {'skiprows': '(1)', 'delimiter': '""","""'}), "('pv_prod.csv', skiprows=1, delimiter=',')\n", (803, 845), True, 'import numpy as np\n'), ((1748, 1789), 'numpy.max', 'np.max', (['(-E_sto / (1 + a) / dt, -P_rated)'], {}), '((-E_sto / (1 + a) / dt, -P_rated))\n', (1754, 1789), True, 'import numpy as np\n'), ((1797, 1848), 'numpy.min', 'np.min', (['((E_rated - E_sto) / (1 - a) / dt, P_rated)'], {}), '(((E_rated - E_sto) / (1 - a) / dt, P_rated))\n', (1803, 1848), True, 'import numpy as np\n'), ((2079, 2118), 'numpy.where', 'np.where', (['(P_grid > 0.4)', '(P_grid - 0.4)', '(0)'], {}), '(P_grid > 0.4, P_grid - 0.4, 0)\n', (2087, 2118), True, 'import numpy as np\n'), ((2134, 2165), 'numpy.where', 'np.where', (['(P_grid < 0)', 'P_grid', '(0)'], {}), '(P_grid < 0, P_grid, 0)\n', (2142, 2165), True, 'import numpy as np\n'), ((3762, 3782), 'numpy.mean', 'np.mean', (['(P_grid ** 2)'], {}), '(P_grid ** 2)\n', (3769, 3782), True, 'import numpy as np\n'), ((666, 690), 'sys.path.append', 'sys.path.append', (['"""../.."""'], {}), "('../..')\n", (681, 690), False, 'import sys\n')]
import dgl import mxnet as mx import numpy as np import logging, time from operator import attrgetter, itemgetter from mxnet import nd, gluon from mxnet.gluon import nn from dgl.utils import toindex from dgl.nn.mxnet import GraphConv from gluoncv.model_zoo import get_model from gluoncv.data.batchify import Pad def iou(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA) * max(0, yB - yA) if interArea < 1e-7 : return 0 boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1]) boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1]) if boxAArea + boxBArea - interArea < 1e-7: return 0 iou_val = interArea / float(boxAArea + boxBArea - interArea) return iou_val def object_iou_thresh(gt_object, pred_object, iou_thresh=0.5): obj_iou = iou(gt_object[1:5], pred_object[1:5]) if obj_iou >= iou_thresh: return True return False def triplet_iou_thresh(pred_triplet, gt_triplet, iou_thresh=0.5): sub_iou = iou(gt_triplet[5:9], pred_triplet[5:9]) if sub_iou >= iou_thresh: ob_iou = iou(gt_triplet[9:13], pred_triplet[9:13]) if ob_iou >= iou_thresh: return True return False @mx.metric.register @mx.metric.alias('auc') class AUCMetric(mx.metric.EvalMetric): def __init__(self, name='auc', eps=1e-12): super(AUCMetric, self).__init__(name) self.eps = eps def update(self, labels, preds): mx.metric.check_label_shapes(labels, preds) label_weight = labels[0].asnumpy() preds = preds[0].asnumpy() tmp = [] for i in range(preds.shape[0]): tmp.append((label_weight[i], preds[i][1])) tmp = sorted(tmp, key=itemgetter(1), reverse=True) label_sum = label_weight.sum() if label_sum == 0 or label_sum == label_weight.size: return label_one_num = np.count_nonzero(label_weight) label_zero_num = len(label_weight) - label_one_num total_area = label_zero_num * label_one_num height = 0 width = 0 area = 0 for a, _ in tmp: if a == 1.0: height += 1.0 else: width += 1.0 area += height self.sum_metric += area / total_area self.num_inst += 1 @mx.metric.register @mx.metric.alias('predcls') class PredCls(mx.metric.EvalMetric): '''Metric with ground truth object location and label''' def __init__(self, topk=20, iou_thresh=0.99): super(PredCls, self).__init__('predcls@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,0].argsort()[::-1]] m = min(self.topk, preds.shape[0]) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] = True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('phrcls') class PhrCls(mx.metric.EvalMetric): '''Metric with ground truth object location and predicted object label from detector''' def __init__(self, topk=20, iou_thresh=0.99): super(PhrCls, self).__init__('phrcls@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,1].argsort()[::-1]] m = min(self.topk, preds.shape[0]) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] = True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('sgdet') class SGDet(mx.metric.EvalMetric): '''Metric with predicted object information by the detector''' def __init__(self, topk=20, iou_thresh=0.5): super(SGDet, self).__init__('sgdet@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): if labels is None or preds is None: self.num_inst += 1 return preds = preds[preds[:,1].argsort()[::-1]] m = min(self.topk, len(preds)) count = 0 gt_edge_num = labels.shape[0] label_matched = [False for label in labels] for i in range(m): pred = preds[i] for j in range(gt_edge_num): if label_matched[j]: continue label = labels[j] if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 label_matched[j] =True total = labels.shape[0] self.sum_metric += count / total self.num_inst += 1 @mx.metric.register @mx.metric.alias('sgdet+') class SGDetPlus(mx.metric.EvalMetric): '''Metric proposed by `Graph R-CNN for Scene Graph Generation`''' def __init__(self, topk=20, iou_thresh=0.5): super(SGDetPlus, self).__init__('sgdet+@%d'%(topk)) self.topk = topk self.iou_thresh = iou_thresh def update(self, labels, preds): label_objects, label_triplets = labels pred_objects, pred_triplets = preds if label_objects is None or pred_objects is None: self.num_inst += 1 return count = 0 # count objects object_matched = [False for obj in label_objects] m = len(pred_objects) gt_obj_num = label_objects.shape[0] for i in range(m): pred = pred_objects[i] for j in range(gt_obj_num): if object_matched[j]: continue label = label_objects[j] if int(label[0]) == int(pred[0]) and \ object_iou_thresh(pred, label, self.iou_thresh): count += 1 object_matched[j] = True # count predicate and triplet pred_triplets = pred_triplets[pred_triplets[:,1].argsort()[::-1]] m = min(self.topk, len(pred_triplets)) gt_triplet_num = label_triplets.shape[0] triplet_matched = [False for label in label_triplets] predicate_matched = [False for label in label_triplets] for i in range(m): pred = pred_triplets[i] for j in range(gt_triplet_num): label = label_triplets[j] if not predicate_matched: if int(label[2]) == int(pred[2]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += label[3] predicate_matched[j] = True if not triplet_matched[j]: if int(label[2]) == int(pred[2]) and \ int(label[3]) == int(pred[3]) and \ int(label[4]) == int(pred[4]) and \ triplet_iou_thresh(pred, label, self.iou_thresh): count += 1 triplet_matched[j] = True # compute sum total = labels.shape[0] N = gt_obj_num + 2 * total self.sum_metric += count / N self.num_inst += 1 def extract_gt(g, img_size): '''extract prediction from ground truth graph''' if g is None or g.number_of_nodes() == 0: return None, None gt_eids = np.where(g.edata['rel_class'].asnumpy() > 0)[0] if len(gt_eids) == 0: return None, None gt_class = g.ndata['node_class'][:,0].asnumpy() gt_bbox = g.ndata['bbox'].asnumpy() gt_bbox[:, 0] /= img_size[1] gt_bbox[:, 1] /= img_size[0] gt_bbox[:, 2] /= img_size[1] gt_bbox[:, 3] /= img_size[0] gt_objects = np.vstack([gt_class, gt_bbox.transpose(1, 0)]).transpose(1, 0) gt_node_ids = g.find_edges(gt_eids) gt_node_sub = gt_node_ids[0].asnumpy() gt_node_ob = gt_node_ids[1].asnumpy() gt_rel_class = g.edata['rel_class'][gt_eids,0].asnumpy() - 1 gt_sub_class = gt_class[gt_node_sub] gt_ob_class = gt_class[gt_node_ob] gt_sub_bbox = gt_bbox[gt_node_sub] gt_ob_bbox = gt_bbox[gt_node_ob] n = len(gt_eids) gt_triplets = np.vstack([np.ones(n), np.ones(n), gt_rel_class, gt_sub_class, gt_ob_class, gt_sub_bbox.transpose(1, 0), gt_ob_bbox.transpose(1, 0)]).transpose(1, 0) return gt_objects, gt_triplets def extract_pred(g, topk=100, joint_preds=False): '''extract prediction from prediction graph for validation and visualization''' if g is None or g.number_of_nodes() == 0: return None, None pred_class = g.ndata['node_class_pred'].asnumpy() pred_class_prob = g.ndata['node_class_logit'].asnumpy() pred_bbox = g.ndata['pred_bbox'][:,0:4].asnumpy() pred_objects = np.vstack([pred_class, pred_bbox.transpose(1, 0)]).transpose(1, 0) score_pred = g.edata['score_pred'].asnumpy() score_phr = g.edata['score_phr'].asnumpy() score_pred_topk_eids = (-score_pred).argsort()[0:topk].tolist() score_phr_topk_eids = (-score_phr).argsort()[0:topk].tolist() topk_eids = sorted(list(set(score_pred_topk_eids + score_phr_topk_eids))) pred_rel_prob = g.edata['preds'][topk_eids].asnumpy() if joint_preds: pred_rel_class = pred_rel_prob[:,1:].argmax(axis=1) else: pred_rel_class = pred_rel_prob.argmax(axis=1) pred_node_ids = g.find_edges(topk_eids) pred_node_sub = pred_node_ids[0].asnumpy() pred_node_ob = pred_node_ids[1].asnumpy() pred_sub_class = pred_class[pred_node_sub] pred_sub_class_prob = pred_class_prob[pred_node_sub] pred_sub_bbox = pred_bbox[pred_node_sub] pred_ob_class = pred_class[pred_node_ob] pred_ob_class_prob = pred_class_prob[pred_node_ob] pred_ob_bbox = pred_bbox[pred_node_ob] pred_triplets = np.vstack([score_pred[topk_eids], score_phr[topk_eids], pred_rel_class, pred_sub_class, pred_ob_class, pred_sub_bbox.transpose(1, 0), pred_ob_bbox.transpose(1, 0)]).transpose(1, 0) return pred_objects, pred_triplets
[ "numpy.count_nonzero", "mxnet.metric.check_label_shapes", "mxnet.metric.alias", "numpy.ones", "operator.itemgetter" ]
[((1375, 1397), 'mxnet.metric.alias', 'mx.metric.alias', (['"""auc"""'], {}), "('auc')\n", (1390, 1397), True, 'import mxnet as mx\n'), ((2485, 2511), 'mxnet.metric.alias', 'mx.metric.alias', (['"""predcls"""'], {}), "('predcls')\n", (2500, 2511), True, 'import mxnet as mx\n'), ((3632, 3657), 'mxnet.metric.alias', 'mx.metric.alias', (['"""phrcls"""'], {}), "('phrcls')\n", (3647, 3657), True, 'import mxnet as mx\n'), ((4915, 4939), 'mxnet.metric.alias', 'mx.metric.alias', (['"""sgdet"""'], {}), "('sgdet')\n", (4930, 4939), True, 'import mxnet as mx\n'), ((6163, 6188), 'mxnet.metric.alias', 'mx.metric.alias', (['"""sgdet+"""'], {}), "('sgdet+')\n", (6178, 6188), True, 'import mxnet as mx\n'), ((1599, 1642), 'mxnet.metric.check_label_shapes', 'mx.metric.check_label_shapes', (['labels', 'preds'], {}), '(labels, preds)\n', (1627, 1642), True, 'import mxnet as mx\n'), ((2036, 2066), 'numpy.count_nonzero', 'np.count_nonzero', (['label_weight'], {}), '(label_weight)\n', (2052, 2066), True, 'import numpy as np\n'), ((1863, 1876), 'operator.itemgetter', 'itemgetter', (['(1)'], {}), '(1)\n', (1873, 1876), False, 'from operator import attrgetter, itemgetter\n'), ((9558, 9568), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (9565, 9568), True, 'import numpy as np\n'), ((9570, 9580), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (9577, 9580), True, 'import numpy as np\n')]
import numpy as np pts = np.load('point_cloud.npy') np.savetxt('point_cloud_manual_map.txt', pts)
[ "numpy.load", "numpy.savetxt" ]
[((27, 53), 'numpy.load', 'np.load', (['"""point_cloud.npy"""'], {}), "('point_cloud.npy')\n", (34, 53), True, 'import numpy as np\n'), ((54, 99), 'numpy.savetxt', 'np.savetxt', (['"""point_cloud_manual_map.txt"""', 'pts'], {}), "('point_cloud_manual_map.txt', pts)\n", (64, 99), True, 'import numpy as np\n')]
# Question 1 import pandas as pd def read_url_and_create_csv(url_to_read): data = pd.read_csv(url_to_read) return data # Question 2 import numpy as np def same_type(data_list): is_same_type = True first_item = data_list[0] for item in data_list[1:]: if type(first_item) == type(item) or np.isnan(item): pass else: is_same_type = False return is_same_type def test_create_dataframe(pd_df, col_list): result = True df_col_list = pd_df.columns.tolist() if pd_df[df_col_list[0]].count() + 1 >= 10: for df_col in df_col_list: if df_col in col_list: if same_type(pd_df[df_col].tolist()): pass else: result = False else: result = False for col in col_list: if col in df_col_list: pass else: result = False else: result = False return result
[ "pandas.read_csv", "numpy.isnan" ]
[((87, 111), 'pandas.read_csv', 'pd.read_csv', (['url_to_read'], {}), '(url_to_read)\n', (98, 111), True, 'import pandas as pd\n'), ((318, 332), 'numpy.isnan', 'np.isnan', (['item'], {}), '(item)\n', (326, 332), True, 'import numpy as np\n')]
""" Library to produce specific plots using the nerscsplot library. """ from commonLib.nerscPlot import (paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram) import getopt import matplotlib.pyplot as plt import matplotlib.patches as mpatches import sys from array import array from numpy import ndarray, arange, asarray from stats.trace import ResultTrace from orchestration.definition import ExperimentDefinition from stats import NumericStats from matplotlib.cbook import unique def get_args(default_trace_id=1, lim=False): try: opts, args = getopt.getopt(sys.argv[1:],"i:ln", ["id=", "lim", "nolim"]) except getopt.GetoptError: print('test.py [-i <trace_id>] [-l]') sys.exit(2) for opt, arg in opts: if opt in ("-i", "--id"): default_trace_id=int(arg) elif opt in ("-l", "--lim"): lim=True elif opt in ("-n", "--nolim"): lim=False return default_trace_id, lim def profile(data, name, file_name, x_axis_label, x_log_scale=False): """ Produces a png with a histogram and CDF of the numeric values in data. Args: - data: list of values to analyze. - name: string with the title to write on the figure. - file_name: string with the file system route where to place the out file. No need to include an extension, png will be appended. - x_axis_label: Label to ilsutrate the x_axis of the histogram. - x_log_scale: if True, x axis uses log scale. """ data_dic = {name:data} paintHistogramMulti(name, data_dic, bins=100, graphFileName=file_name, labelX=x_axis_label, xLogScale=x_log_scale, labelY="Number Of Jobs") def profile_compare(log_data, trace_data, name, file_name, x_axis_label, x_log_scale=False, filterCut=0): """ Produces a histogram and boxplot comparing two series of values that represent a random variable of the original workload data and the same random variable of the derived synthetic workload. Args: - log_data: list of values of a random variable of a real workload. - trace_data: list of values of a random variable of a synthetic workload. - name: string with the title to write on the figure. - file_name: string with the file system route where to place the out file. No need to include an extension, png will be appended. It will be used for th histogram file, the boxplot file will have the same name with "-boxplot" added. - x_axis_label: Label to ilsutrate the x_axis of the histogram. - x_log_scale: if True, x axis uses log scale. - filterCut: if set to 0, it has no effect. Otherwise, filgerCut will be the upper bound of values shown in the xaxis of the histogram. """ data_dic = {"original jobs":log_data, "synthetic jobs":trace_data} if x_log_scale: paintHistogramMulti(name, data_dic, bins=100, graphFileName=file_name, labelX=x_axis_label, xLogScale=x_log_scale, labelY="Number Of Jobs", xLim=filterCut) else: paintHistogramMulti(name, data_dic, bins=100, graphFileName=file_name, labelX=x_axis_label, xLogScale=x_log_scale, labelY="Number Of Jobs", filterCut=filterCut) paintBoxPlotGeneral(name, data_dic, labelY=x_axis_label, yLogScale=True, graphFileName=file_name+"-boxplot") def histogram_cdf(edges, hist, name, file_name, x_axis_label, y_axis_label, target_folder="", hists_order=None, do_cdf=False, x_log_scale=False, y_log_scale=False, cdf_y_log_scale=False, min_max=None, cdf_min_max=None): """Plots histograms using their edges and bins content and stores the resulting bitmap it in a png file. All histograms must have the same edges. It is also capable of plotting the CDF of the histograms. Args: - edges: list of numbers representing the edges of all the histograms. - hist: list of bin values or dictionary of lists. Each element in the dictionary represents a histogram. Its key is its name, its value is a list of ordered numbers, representing the number of elements in each bin (or share). - name: string with the name of the plot. Will be used for the title of the plot. - file_name: file system route pointing to the file to save the graph to. ".png" will be appended to the name. - x_axis_label: string with the label for x-axis. - y_axis_label: string with the label for y-axis. - target_folder: string with a file-system folder route where output file should be stored. - hists_order: list of stings with the names series present in histograms_value_dictionary. Series will be plotted in the order hist in this list. - do_cdf: if True, the cumulative distribution function will be plotted for each histogram. - x_log_scale: if True, x-axis will use log scale. - y_log_scale: if True, y-axis for the histograms will use log scale. - cdf_y_log_scale: if True, the y-axis for the CDF lines will use log scale. - min_max: If set to a two element tuple of the shape (None, None), (x1,None), (None, x2), (x1, x2). If first Element is not None it will be used as the minimum value in the y axis for the histograms. If second is not None, it will be used as the maximum value. - cdf_min_max: If set to a two element tuple of the shape (None, None), (x1,None), (None, x2), (x1, x2). If first Element is not None it will be used as the minimum value in the y axis for the CDFs. If second is not None, it will be used as the maximum value. """ if type(hist) is not dict: hist = {"":hist} if hists_order is not None: if set(hists_order)!=set(hist.keys()): raise ValueError("hists_order list of keys must have the same keys" " as hist dictionary") else: hists_order=sorted(hist.keys()) paintBarsHistogram(name, hists_order, edges, hist, target_folder=target_folder, file_name=file_name, labelX=x_axis_label, labelY=y_axis_label, cdf=do_cdf, x_log_scale=x_log_scale, y_log_scale=y_log_scale, cdf_y_log_scale=cdf_y_log_scale, min_max=min_max, cdf_min_max=cdf_min_max) def create_legend(ax,legend): """Creates a legend for a plot. It is placed over the top of the axis, in a wide distribution. Args: - ax: matplotlib axis on which the legend is placed. - legend: list of pairs ("series name", "color name) to be used to construct the legend. List order matches order of on-screen legend, """ handles=[] for key in legend: hatch=None if len(key)>3: hatch=key[3] handles.append(mpatches.Patch(facecolor=key[1], label=key[0], edgecolor="black", hatch=hatch)) bbox = ax.get_window_extent() correct=0 if bbox.height<100: correct=0.1 ax.legend(handles=handles, fontsize=10, bbox_to_anchor=(0.0, 1.00-correct, 1., 0.00), loc=3, ncol=len(legend), mode="expand", borderaxespad=0.0, frameon=False) def do_list_like(the_list, ref_list, force=False): """ if the_list is not a list of lists, it returns a list with n copies of the_list, where n is len(ref_list).""" if force or (the_list is not None and not type(the_list[0]) is list): return [the_list for x in range(len(ref_list))] else: return the_list def join_rows(row_list_1, row_list_2): """Returns a list of list, in which element is the concatenation of the elements in the same position of row_list1 and row_list.""" if not row_list_1: return row_list_2 if not row_list_2: return row_list_1 row_list = [] for (row1, row2) in zip(row_list_1, row_list_2): row_list.append(row1+row2) return row_list def calculate_diffs(result_list, base_index=0, group_count=3, percent=True, groups=None, speedup=False, field="median"): """ Calculate the absolute or relative arithmetic distance between groups of values. Each list in result list is sliced in ordered groups of results of size group_count. In each group difference is calculated between the element in position base_index in the group and the rest. Args: - result_list: list of lists of NumericStats objects. - base_index: position of the reference resul in each result group. - group_count: number of elements in each group. - percent: if True the distance calculated is relative, if False is absolute. - groups: list of numbers. It overrides group_count. It contains a list of the sizes of the groups in the result_list. e.g. [2, 3], means that the first group has two elements, and the second three elements. - speedup: if True, the relative distance is calculated using the non base_index element as the base of the comparison. """ diffs =[] if groups: for row in result_list: index=0 diffs_row = [] diffs.append(diffs_row) for group in groups: base_res=row[index+base_index] base_median=base_res._get(field) for j in range(group): res_median=row[index+j]._get(field) if speedup: if base_median==0: diff_value=0 else: diff_value=res_median/base_median else: diff_value=res_median-base_median if percent and base_res!=0: if base_median==0: base_median=1 diff_value=float(diff_value)/float(base_median) if j!=base_index: diffs_row.append(diff_value) index+=group else: for row in result_list: diffs_row = [] diffs.append(diffs_row) for i in range(0, len(row), group_count): base_res=row[i+base_index] base_median=base_res._get(field) for j in range(group_count): res_median=row[i+j]._get(field) diff_value=res_median-base_median if speedup: if base_median==0: diff_value=0 else: diff_value=res_median/base_median else: if percent and base_res!=0: if diff_value!=0: if base_median==0: base_median=1 diff_value=float(diff_value)/float(base_median) if j!=base_index: diffs_row.append(diff_value) return diffs def adjust_number_ticks(ax, tick_count, log_scale=False, extra=None): """ Adjusts the y-axis of ax to show only tick_count labels.""" my_t=ax.get_yticks() y_lim = (float(str(my_t[0])), float(str(my_t[-1]))) print("INTERNAL", y_lim) step = float(max(y_lim)-min(y_lim))/(tick_count-1) step=float(str(step)) upper_limit=float(str(max(y_lim)+step)) lower_limit=float(str(min(y_lim))) ticks = arange(lower_limit, upper_limit,step) if extra is not None: ticks=sorted(list(ticks)+[float(extra)]) if log_scale: ticks=_log_down(ticks) ax.set_yticks(ticks) def _log_down(num): from numpy import log10, power, floor power_l = log10(num) return power(10, sorted(list(set(floor(power_l))))) def remove_ids(list_of_rows, group_size=3, list_of_pos_to_remove=[0]): new_list_of_rows=[] for row in list_of_rows: new_row=[] new_list_of_rows.append(new_row) index=0 for (index, elem) in zip(list(range(len(row))), row): if not index%group_size in list_of_pos_to_remove: new_row.append(elem) return new_list_of_rows def replace(trace_id_rows, original, replacement): new_trace_id_rows=[] for row in trace_id_rows: new_row=[] new_trace_id_rows.append(new_row) for item in row: if item in original: index=original.index(item) new_row.append(replacement[index]) else: new_row.append(item) return new_trace_id_rows def gen_trace_ids_exps(base_id, base_exp=None, group_size=3, group_count=5, block_count=6, group_jump=18,inverse=False, base_exp_group=None,skip=0): """ Generates the list of trace_ids to load and plot. Returns a list of lists of trace_id. Args: - base_id: first trace_id in the first list of lists. - base_exp: if set, base_exp is added at the beginning. of each list. - group_size: size of the group of experiments. - group_count: number of groups per block of experiments. - block_count: number of lists in the returned list of lists. - group_jump: number trace_ids to jump from one group to the next. - inverse: if True, the first group is at the end of each row list. - base_ex_group: if set, base_ex_group is added at the begining of each group. - skip: number of trace_ids to jump between blocks, Returns: a list of block_count lists. Each list may be started by base_exp if set. Each list is composed by group_count groups of group_size size. If base_exp_group, is set, it is added to each group. """ trace_id_rows_colors = [] for block_i in range(block_count): trace_id_row = [] trace_id_rows_colors.append(trace_id_row) if base_exp is not None: trace_id_row.append(base_exp) group_index_list=list(range(group_count)) if inverse: group_index_list=reversed(group_index_list) for group_i in group_index_list: if base_exp_group is not None: trace_id_row.append(base_exp_group) for exp_i in range(group_size): trace_id=(base_id + (group_size+skip)*block_i + (group_jump)*group_i + exp_i) trace_id_row.append(trace_id) return trace_id_rows_colors def plot_multi_exp_boxplot(name, file_name, title, exp_rows, y_axis_labels, x_axis_labels, y_axis_general_label=None, grouping=None, colors=None, hatches=None, aspect_ratio=None, y_limits=None, y_log_scale=False, legend=None, percent_diff=False, base_diff=0, group_count=3, grouping_alt=None, precalc_diffs=None, y_tick_count=None, y_tick_count_alt=None, y_axis_label_alt=None): """Plots a matrix of comboboxes os series that are defined by two variables with multiple values. Series in the same row share the same value for the first variable. Series in the same column share the saame value for the second. Args: - name: Matplot lib name string. - file_name: string containing file system route pointing to a file where the plot will be stored. - exp_rows: input data to be used to produce the plot expressed as a list of lists of NumericStats objects. the results are plotted as rows of, results, each row a list item contained in the first list. All rows must contain the same number of NumericStats objects. - x_axis_label: list of strings to label each "column" of combo boxes. Must have the same dimension as the number of columns in exp_rows. Printed at the bottom of the plot. - y_axis_lables: list of strings to label each "row" of combo boxes in the plot. - grouping: list of numbers that control how the layout wihtin rows. Each number in the list indicates how many are back to back, a 0 indicates an extra space. SUM(grouping) must be equal to the second dimension of exp__rows. e.g. with a row has 10 elements, [1, 5, 0, 4] will present: one combo-box, a space, five back-to-back combo-boxes, two spaces and four combo-boxes back to back. - colors: list of text colors corresponding to the background filling of each column of combo-boxes. If list of list, each element correspond to each its same positioned combox box. - hatches: list of matplotlib hatches (e.g. '-', '/', '\') corresponding to each column of combo-boxes. If list of list, each element correspond to each its same positioned combox box. - aspect_ratio: if set to a number, it represents the width/height of the final plot. - y_limits: if set to a list of integer pairs (min, max), it will apply each list element as a limit for the series in a row of results. - y_log_scale: if True all y_scale in all comboxboxes will use logaritmic scale. - legend: if set, the plot will contain a legebd based on the list of pairs ("series name", "color name). List order matches order of on-screen legend, Color names will be mapped on matplor lib colors. - percent_diff: If True, the figure includes barcharts showing the difference between one of the values in each group and the rest. - base_diff: position of the difference reference in each group. - group_count: Size of the comparison groups. - grouping_alt: List of comparisons present per group. - precalc_diffs: list of list of floats. Tt set, the differences are not generated, and the values are used as differences. - y_tick_count: If set to a number, it sets the number of labels used in the left y_axis. - y_tick_count_alt: If set to a number, it sets the number of labels used in the right y_axis., - y_axis_label_alt: String value used as legend for the right y-axis. """ num_rows=len(exp_rows) fig, axes = plt.subplots(nrows=num_rows, ncols=1) if not (type(axes) is ndarray): axes=[axes] colors=do_list_like(colors, exp_rows) hatches=do_list_like(hatches, exp_rows) if percent_diff: if precalc_diffs is None: diffs_results = calculate_diffs(exp_rows, base_index=base_diff, group_count=group_count, groups=grouping_alt) else: diffs_results = precalc_diffs else: diffs_results = do_list_like([0], exp_rows) extra_spacing=0 if percent_diff: extra_spacing=group_count-1 label_ax=axes[len(axes)/2] for (ax,results_row,y_axis_label, color_item, hatches_item, diffs) in zip( axes, exp_rows, y_axis_labels, colors, hatches, diffs_results): median, p25, p75, min_val, max_val = _get_boxplot_data(results_row) if ax==axes[0]: ax.set_title(title) the_labels=None if ax==axes[-1]: the_labels=x_axis_labels if legend: create_legend(ax,legend) else: the_labels=["" for x in results_row] if y_axis_general_label: if ax==label_ax: y_axis_label="{0}\n{1}".format(y_axis_general_label, y_axis_label) else: y_axis_label="{0}".format(y_axis_label) ax.get_yaxis().set_label_coords(-0.06,0.5) positions, widths, alt_positions, alt_width = ( _add_precalc_boxplot(ax,median, p25, p75, min_val, max_val, grouping=grouping, colors=color_item, hatches=hatches_item, labels=the_labels, y_axis_label=y_axis_label, y_limits=y_limits, y_log_scale=y_log_scale, extra_spacing=extra_spacing)) if grouping and percent_diff: the_y_label_alt=None if ax==label_ax: the_y_label_alt=y_axis_label_alt """ OOJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO """ if grouping[0]!=group_count: color_item=color_item[1:] hatches_item=hatches_item[1:] _add_diffs(ax, diffs, alt_positions, alt_width, colors=_extract_pos(color_item, base_diff, extra_spacing+1), hatches=_extract_pos(hatches_item, base_diff, extra_spacing+1), y_tick_count=y_tick_count_alt, y_label=the_y_label_alt) if y_tick_count: adjust_number_ticks(ax, y_tick_count, y_log_scale) if aspect_ratio: plt.axes().set_aspect(aspect_ratio) if title: axes[0].set_title(title) fig.savefig(file_name, bbox_inches='tight') def flatten_list(the_list): """ Takes a lists of lists and puts all their elements in a list.""" return [item for sublist in the_list for item in sublist] def extract_type(data_list, type_list, select_type): """Returns a sublist of data_list. An element es added to the returning list if the element of the same position in type_list is "select_type". Args: - data_list: List of element - type_list: List of string types. Same size as data_list - select_list: type of the elements to be returns. """ new_data=[] type_list=flatten_list(type_list) for (the_data, the_type) in zip(data_list, type_list): if the_type==select_type: new_data.append(the_data) return new_data def plot_multi_boxplot_bars(name, file_name, title, exp_rows, type_rows, y_axis_labels, x_axis_labels, y_axis_general_label=None, colors=None, hatches=None, aspect_ratio=None, y_limits=None, y_log_scale=False, legend=None, y_tick_count=None, y_tick_count_alt=None, y_axis_label_alt=None): """ Similar to plot_multi_boxplot, but the it can paint experiments as boxplot or barchart. The main arguments: - exp_rows: list of lists of numericStats - type_rows: list of lists of strings. Each sub list is a group of results that will be plotted without spaces between. Sublists are lists of strings signaling which method to plot the result. If string is "bar", it is a barchart showing the result median, if "box", it is a boxplot of the result. """ num_rows=len(exp_rows) fig, axes = plt.subplots(nrows=num_rows, ncols=1) if not (type(axes) is ndarray): axes=[axes] colors=do_list_like(colors, exp_rows) hatches=do_list_like(hatches, exp_rows) type_rows=do_list_like(type_rows, exp_rows, force=True) label_ax=axes[len(axes)/2] for (ax,results_row, type_grouping, y_axis_label, color_item, hatches_item) in zip(axes, exp_rows, type_rows, y_axis_labels, colors, hatches): if ax==axes[0]: ax.set_title(title) if y_axis_general_label: if ax==label_ax: y_axis_label="{0}\n{1}".format(y_axis_general_label, y_axis_label) else: y_axis_label="{0}".format(y_axis_label) ax.get_yaxis().set_label_coords(-0.06,0.5) boxplot_results=extract_type(results_row, type_grouping, "box") bar_results=extract_type(results_row, type_grouping, "bar") positions_dic, widths = _cal_positions_hybrid(type_grouping) if boxplot_results: the_labels=None if ax==axes[-1]: the_labels=extract_type(x_axis_labels, type_grouping,"box") if legend: create_legend(ax,legend) else: the_labels=["" for x in boxplot_results] median, p25, p75, min_val, max_val = _get_boxplot_data( boxplot_results) _add_precalc_boxplot(ax,median, p25, p75, min_val, max_val, x_position=positions_dic["box"], x_widths=widths, colors=extract_type(color_item, type_grouping,"box"), hatches=extract_type(hatches_item, type_grouping,"box"), labels=the_labels, y_axis_label=y_axis_label, y_limits=y_limits, y_log_scale=y_log_scale) if bar_results: the_y_label_alt=None if ax==label_ax: the_y_label_alt=y_axis_label_alt if ax==axes[-1]: the_labels=extract_type(x_axis_labels, type_grouping,"bar") else: the_labels=["" for x in bar_results] _add_diffs(ax, bar_results, positions_dic["bar"], widths, colors=extract_type(color_item, type_grouping,"bar"), hatches=extract_type(hatches_item, type_grouping,"bar"), y_tick_count=y_tick_count_alt, y_label=the_y_label_alt, x_labels=the_labels) if y_tick_count: adjust_number_ticks(ax, y_tick_count, y_log_scale) if aspect_ratio: plt.axes().set_aspect(aspect_ratio) if title: axes[0].set_title(title) fig.savefig(file_name, bbox_inches='tight') def plot_multi_bars(name, file_name, title, exp_rows, type_rows, y_axis_labels, x_axis_labels, y_axis_general_label=None, colors=None, hatches=None, aspect_ratio=None, y_limits=None, y_log_scale=False, legend=None, y_tick_count=None, y_tick_count_alt=None, y_axis_label_alt=None, ncols=1, subtitle=None, ref_line=None, do_auto_label=True): """ Plots the medians of a list of lists of results. It is similar to the plot_multi_boxplot, but it admits to group the blocks in rows and columns. Important arguments. - exp_rows: list of list of results which median is plotted. Each list of the list will be plotted in an individual subfigure. - type_rows: list of lists of strings to shop the grouping. It shows how the bars are gropued (leaving or not spaces between). It must contain the work "bar" for each individual result. """ num_rows=len(exp_rows) fig, axes = plt.subplots(nrows=num_rows/ncols, ncols=ncols) print(axes) if ncols>1: axes=asarray(flatten_list(axes)) print(axes) if not (type(axes) is ndarray): axes=[axes] colors=do_list_like(colors, exp_rows) hatches=do_list_like(hatches, exp_rows) type_rows=do_list_like(type_rows, exp_rows, force=True) label_ax=axes[len(axes)/2-(ncols-1)] if aspect_ratio: plt.axes().set_aspect(aspect_ratio) if ncols>1: plt.tight_layout(pad=0) for (ax,results_row, type_grouping, y_axis_label, color_item, hatches_item) in zip(axes, exp_rows, type_rows, y_axis_labels, colors, hatches): if ax==axes[0]: ax.set_title(title) if len(axes)==1 or ax==axes[1] and ncols>1 and subtitle: ax.set_title(subtitle) if ref_line: ax.axhline(ref_line, linestyle="--") if y_axis_general_label: if ax==label_ax: y_axis_label="{0}\n{1}".format(y_axis_general_label, y_axis_label) else: y_axis_label="{0}".format(y_axis_label) #ax.get_yaxis().set_label_coords(-0.07*ncols,0.5) bar_results=results_row positions_dic, widths = _cal_positions_hybrid(type_grouping) if ax==axes[-1] or ax==axes[-ncols]: the_labels=x_axis_labels if legend and ax==axes[-1]: create_legend(ax,legend) else: the_labels=["" for x in bar_results] _add_diffs(ax, bar_results, positions_dic["bar"], widths, colors=extract_type(color_item, type_grouping,"bar"), hatches=extract_type(hatches_item, type_grouping,"bar"), y_tick_count=None, y_label=y_axis_label, x_labels=the_labels, main_axis=True, bigger_numbers=True, do_auto_label=do_auto_label, y_log_scale=y_log_scale, y_limits=y_limits) if y_limits: ax.set_ylim(y_limits[0],y_limits[1]) if y_tick_count: adjust_number_ticks(ax, y_tick_count, y_log_scale, extra=ref_line) fig.savefig(file_name, bbox_inches='tight') def _extract_pos(items, pos, size): new_items=[] for i in range(len(items)): if i%size!=pos: new_items.append(items[i]) return new_items def _get_boxplot_data(numeric_results_list): values=[[],[],[],[],[]] for result in numeric_results_list: a_value = result.get_values_boxplot() for (target, src) in zip(values, a_value): target.append(src) return values[0], values[1], values[2], values[3], values[4] def _autolabel(ax, rects, values,bigger_numbers=False, background=True, y_limits=None): extra_cad="" max_value=max(values) min_value=min(values) y_lims=ax.get_ylim() max_value=min(max_value, y_lims[1]) min_value=max(min_value, y_lims[0]) if y_limits is not None: if y_limits[0] is not None: min_value=max(min_value, y_limits[0]) if y_limits[1] is not None: max_value=min(max_value, y_limits[1]) distance = max_value-min_value mid_point=min_value+distance/2.0 print("values", min_value, max_value, distance, mid_point) va="bottom" margin=0.05 h_margin=0.0 for (rect, value) in zip(rects, values): if value<0.3 and value>-0.3: if mid_point>=0: height=distance*margin else: height=-distance*margin va="top" elif value>0: if abs(value)>distance/2: height=distance*margin else: height = value+distance*margin elif value<0: if abs(value)>distance/2: height=-distance*margin va="top" else: height=value-distance*margin horiz_position=rect.get_x() + (rect.get_width()/2)*(1+h_margin) font_size="smaller" if bigger_numbers: font_size="large" bbox=None extraText="" if y_limits is not None: if y_limits[0] is not None: height=max(height, y_limits[0]) if y_limits[1] is not None: height=min(height, y_limits[1]) if background: bbox=dict(facecolor='lightgrey', pad=0, edgecolor="lightgrey", alpha=0.5) extraText=" " myt=ax.text(horiz_position, 1.01*height, extraText+"{0:.2f}{1}".format(float(value), extra_cad), ha='center', va=va, rotation="vertical", fontsize=font_size, bbox=bbox) def precalc_boxplot(name,file_name, median, p25, p75, min_val, max_val, grouping=None, aspect_ratio=None, colors=None, hatches=None, labels=None, y_axis_label=None, title=None): """ Plots boxplots from their basic values, instead of the original list of values. If median, p25,p75,min_val, max_val are lists of the same dimension, it plots multiple ones.""" fig = plt.figure(name) ax = fig.add_subplot(111) _add_precalc_boxplot(ax,median, p25, p75, min_val, max_val, grouping=grouping, colors=colors, hatches=hatches, labels=labels, y_axis_label=y_axis_label) if aspect_ratio: plt.axes().set_aspect(aspect_ratio) if title: ax.set_title(title) fig.savefig(file_name, bbox_inches='tight') def _add_diffs(ax, diff_values, positions, width, colors=None, hatches=None, y_tick_count=None, y_label=None, x_labels=None, main_axis=False, bigger_numbers=False, do_auto_label=True, y_log_scale=False, y_limits=None): if main_axis: ax_alt=ax else: ax_alt=ax.twinx() bplot = ax_alt.bar(positions, diff_values, width=width, tick_label=x_labels, log=y_log_scale) if y_label: ax_alt.set_ylabel(y_label) if colors: for patch, color in zip(bplot, colors): if color: patch.set_facecolor(color) if hatches: for patch, hatch in zip(bplot, hatches): if hatch: patch.set_hatch(hatch) if y_tick_count: adjust_number_ticks(ax_alt, y_tick_count) if do_auto_label: _autolabel(ax_alt, bplot, diff_values,bigger_numbers=bigger_numbers, y_limits=y_limits) def _adjust_y_limits_margin(ax, values, margin=0.3): max_value=float(max(values)) min_value=float(min(values)) if max_value>0: max_value+=(max_value-min_value)*margin if min_value<0: min_value-=(max_value-min_value)*margin ax.set_ylim((min_value, max_value)) def _add_precalc_boxplot(ax, median, p25, p75, min_val, max_val, x_position=None, x_widths=None, grouping=None, colors=None, hatches=None, labels=None, y_axis_label=None, y_limits=None, y_log_scale=False, extra_spacing=0, alt_grouping=None): """Adds boxplots to a matplotlib axis.""" positions=None alt_positions=None widths=0.5 alt_width=0.25 if x_position and widths: positions=x_position widths = x_widths elif grouping: positions, widths, alt_positions, alt_width=_cal_positions_widths( grouping, extra_spacing=extra_spacing, alt_grouping=alt_grouping) fake_data=_create_fake_data(median, p25,p75, min_val, max_val) bplot = ax.boxplot(fake_data, positions=positions, widths=widths,patch_artist=True, labels=labels, whis=9999999999999) if colors: for patch, color in zip(bplot['boxes'], colors): if color: patch.set_facecolor(color) if hatches: for patch, hatch in zip(bplot['boxes'], hatches): if hatch: patch.set_hatch(hatch) if y_axis_label: ax.set_ylabel(y_axis_label) if y_limits: ax.set_ylim(y_limits) if y_log_scale: ax.set_yscale("log") return positions, widths, alt_positions, alt_width def _create_fake_data(median, p25, p75, min_val, max_val): if (type(p25) is list): fake_data=[] for (median_i, p25_i, p75_i,min_val_i, max_val_i) in zip( median, p25, p75, min_val, max_val): fake_data.append( _create_fake_data(median_i, p25_i, p75_i,min_val_i, max_val_i)) return fake_data else: return [min_val, p25,median,p75,max_val] def _cal_positions_widths(grouping,extra_spacing=0, alt_grouping=None): if grouping is None: return None, 0.5 if alt_grouping is None: alt_grouping=grouping total_bp=sum(grouping) total_blocks=total_bp+len(grouping)+1 if extra_spacing: total_blocks+=len(grouping)*extra_spacing widths=total_blocks/float(total_blocks) space_width=float(widths)/2.0 current_pos=1.0 positions = [] alt_positions=[] for (bp_group, alt_group) in zip(grouping, alt_grouping): for bp in range(bp_group): positions.append(current_pos) current_pos+=widths for i in range(min(extra_spacing, alt_group-1)): alt_positions.append(current_pos-space_width) current_pos+=space_width current_pos+=space_width return positions, widths, alt_positions, space_width def _cal_positions_hybrid(grouping): flat_grouping = flatten_list(grouping) if grouping is None: return None, 0.5 uniq_types=list(set(flat_grouping)) positions_dic = {} for ut in uniq_types: positions_dic[ut] = [] # total_bp=len(flat_grouping) # total_blocks=float(total_bp)+(float(len(grouping))-1)*0.5 # # widths=total_blocks/float(total_blocks) # space_width=float(widths)/2 # # if float(len(grouping))%2==0: # widths*=2 # space_width*=2 # current_pos=widths # else: # current_pos=0.0 widths=1.0 space_width=widths current_pos=0 for (bp_group) in grouping: for bp in bp_group: positions_dic[bp].append(current_pos) current_pos+=widths current_pos+=space_width return positions_dic, widths def extract_grouped_results(db_obj, trace_id_rows_colors, edges, result_type): """Takes a list of lists of trace_is and produces a list of lists of results corresponding to them. Args: - db_obj: DBManager object connted to a db where the results will be pulled from. - trace_id_rows_colors: list of lists of integers as trace_ids of experiments. - edges: if set to [""], it does no effect, the function extracts results of the type result_type. If set to a list of items, results will be pulled for each element as: "g"+str(edge)+_str(result_type) - result_type: string indentifying which type of result are we pulling. It correspond to the type of the NumericStats stored in db_obj. Returns: a dictionary indexed by edges. Each element is a list of lists of same dimension of trace_id_rows_colors, each element a NumericStats object corresponding to the result of that component. """ exp_rows={} for edge in edges: exp_rows[edge]=extract_results(db_obj, trace_id_rows_colors, ResultTrace.get_result_type_edge(edge, result_type)) return exp_rows exp_rows={} for edge in edges: exp_rows[edge]=[] for row in trace_id_rows_colors: these_rows={} for edge in edges: these_rows[edge]=[] exp_rows[edge].append(these_rows[edge]) for trace_id in row: exp=ExperimentDefinition() exp.load(db_obj, trace_id) for edge in edges: result=None if exp.is_it_ready_to_process(): if edge=="": key = ResultTrace.get_result_type_edge(edge, result_type) else: key=result_type key+="_stats" result = NumericStats() result.load(db_obj, trace_id, key) else: result = NumericStats() result.calculate([0, 0, 0]) these_rows[edge].append(result) return exp_rows def get_list_rows(rows, field_list): new_rows=[] for row in rows: new_row = [] new_rows.append(new_row) for (index,res) in zip(list(range(len(row))),row): field=field_list[index%len(field_list)] new_row.append(res._get(field)) return new_rows def extract_usage(db_obj, trace_id_rows, fill_none=True, factor=1.0, mean=False): """Takes a list of lists of trace_is and produces a list of lists of results corresponding to them. Args: - db_obj: DBManager object connted to a db where the results will be pulled from. """ exp_rows=[] my=ResultTrace() res_type="usage" if mean: res_type="usage_mean" for row in trace_id_rows: new_row=[] exp_rows.append(new_row) for trace_id in row: exp=ExperimentDefinition() exp.load(db_obj, trace_id) result = my._get_utilization_result() if exp.is_analysis_done(): result.load(db_obj, trace_id,res_type) else: result._set("utilization", 0) result._set("waste", 0) result._set("corrected_utilization", 0) result.apply_factor(factor) new_row.append(result) return exp_rows def extract_results(db_obj, trace_id_rows_colors, result_type, factor=None, fill_none=True, second_pass=False): """Takes a list of lists of trace_is and produces a list of lists of results corresponding to them. Args: - db_obj: DBManager object connted to a db where the results will be pulled from. - trace_id_rows_colors: list of lists of integers as trace_ids of experiments. - result_type: string indentifying which type of result are we pulling. It correspond to the type of the NumericStats stored in db_obj. Returns: a list of lists of same dimension of trace_id_rows_colors, each element a NumericStats object corresponding to the result of that component. """ exp_rows=[] for row in trace_id_rows_colors: new_row=[] exp_rows.append(new_row) for trace_id in row: exp=ExperimentDefinition() exp.load(db_obj, trace_id) if exp.is_analysis_done(second_pass=second_pass): key=result_type+"_stats" result = NumericStats() result.load(db_obj, trace_id, key) if factor: result.apply_factor(factor) else: result = NumericStats() result.calculate([0, 0, 0]) if fill_none and result._get("median") is None: result = NumericStats() result.calculate([0, 0, 0]) new_row.append(result) return exp_rows def get_dic_val(dic, val): if val in list(dic.keys()): return dic[val] return dic[""] def produce_plot_config(db_obj, trace_id_rows_colors): """ Produces the coloring and hatches matrixes for a matrix style plot. For that it conencts to a dabase, and depending on the scheduling algorithm used in the experiment, it chooses a cooresponding coloring and hatches. Args: - db_obj: DBManager object connted to a db where the results will be pulled from. - trace_id_rows_colors: list of lists of integers as trace_ids of experiments. returns: - color_rows: list of list of matplotlib colors corresponding to each experiment subplot. - hatches_rows: list of lists of the hatches to be used in each experiment subplot. - legend: legend list of the format ("series names", "color"), listing the scheduling algorithms present in the experiments. """ colors_dic = {"no":"white", "manifest":"lightgreen", "single":"lightblue", "multi":"pink", "":"white"} hatches_dic = {"no":None, "manifest": "-", "single":"\\", "multi":"/", "":None} detected_handling={} color_rows = [] hatches_rows = [] for row in trace_id_rows_colors: this_color_row=[] color_rows.append(this_color_row) this_hatches_row=[] hatches_rows.append(this_hatches_row) for trace_id in row: exp = ExperimentDefinition() exp.load(db_obj, trace_id) handling=exp.get_true_workflow_handling() detected_handling[handling]=1 this_color_row.append(get_dic_val(colors_dic, handling)) this_hatches_row.append(get_dic_val(hatches_dic, handling)) legend=[("n/a","white", "no", None), ("aware","lightgreen", "manifest","-"), ("waste","lightblue", "single", "\\"), ("wait","pink", "multi", "/")] new_legend=[] for item in legend: if item[2] in list(detected_handling.keys()): new_legend.append(item) return color_rows, hatches_rows, new_legend
[ "matplotlib.pyplot.tight_layout", "stats.trace.ResultTrace.get_result_type_edge", "getopt.getopt", "stats.trace.ResultTrace", "stats.NumericStats", "matplotlib.pyplot.axes", "numpy.floor", "matplotlib.patches.Patch", "matplotlib.pyplot.subplots", "commonLib.nerscPlot.paintHistogramMulti", "orchestration.definition.ExperimentDefinition", "matplotlib.pyplot.figure", "numpy.arange", "sys.exit", "numpy.log10", "commonLib.nerscPlot.paintBarsHistogram", "commonLib.nerscPlot.paintBoxPlotGeneral" ]
[((1609, 1752), 'commonLib.nerscPlot.paintHistogramMulti', 'paintHistogramMulti', (['name', 'data_dic'], {'bins': '(100)', 'graphFileName': 'file_name', 'labelX': 'x_axis_label', 'xLogScale': 'x_log_scale', 'labelY': '"""Number Of Jobs"""'}), "(name, data_dic, bins=100, graphFileName=file_name,\n labelX=x_axis_label, xLogScale=x_log_scale, labelY='Number Of Jobs')\n", (1628, 1752), False, 'from commonLib.nerscPlot import paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram\n'), ((3649, 3763), 'commonLib.nerscPlot.paintBoxPlotGeneral', 'paintBoxPlotGeneral', (['name', 'data_dic'], {'labelY': 'x_axis_label', 'yLogScale': '(True)', 'graphFileName': "(file_name + '-boxplot')"}), "(name, data_dic, labelY=x_axis_label, yLogScale=True,\n graphFileName=file_name + '-boxplot')\n", (3668, 3763), False, 'from commonLib.nerscPlot import paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram\n'), ((6551, 6849), 'commonLib.nerscPlot.paintBarsHistogram', 'paintBarsHistogram', (['name', 'hists_order', 'edges', 'hist'], {'target_folder': 'target_folder', 'file_name': 'file_name', 'labelX': 'x_axis_label', 'labelY': 'y_axis_label', 'cdf': 'do_cdf', 'x_log_scale': 'x_log_scale', 'y_log_scale': 'y_log_scale', 'cdf_y_log_scale': 'cdf_y_log_scale', 'min_max': 'min_max', 'cdf_min_max': 'cdf_min_max'}), '(name, hists_order, edges, hist, target_folder=\n target_folder, file_name=file_name, labelX=x_axis_label, labelY=\n y_axis_label, cdf=do_cdf, x_log_scale=x_log_scale, y_log_scale=\n y_log_scale, cdf_y_log_scale=cdf_y_log_scale, min_max=min_max,\n cdf_min_max=cdf_min_max)\n', (6569, 6849), False, 'from commonLib.nerscPlot import paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram\n'), ((12304, 12342), 'numpy.arange', 'arange', (['lower_limit', 'upper_limit', 'step'], {}), '(lower_limit, upper_limit, step)\n', (12310, 12342), False, 'from numpy import ndarray, arange, asarray\n'), ((12577, 12587), 'numpy.log10', 'log10', (['num'], {}), '(num)\n', (12582, 12587), False, 'from numpy import log10, power, floor\n'), ((19318, 19355), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'num_rows', 'ncols': '(1)'}), '(nrows=num_rows, ncols=1)\n', (19330, 19355), True, 'import matplotlib.pyplot as plt\n'), ((24530, 24567), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': 'num_rows', 'ncols': '(1)'}), '(nrows=num_rows, ncols=1)\n', (24542, 24567), True, 'import matplotlib.pyplot as plt\n'), ((28923, 28972), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(num_rows / ncols)', 'ncols': 'ncols'}), '(nrows=num_rows / ncols, ncols=ncols)\n', (28935, 28972), True, 'import matplotlib.pyplot as plt\n'), ((34462, 34478), 'matplotlib.pyplot.figure', 'plt.figure', (['name'], {}), '(name)\n', (34472, 34478), True, 'import matplotlib.pyplot as plt\n'), ((43227, 43240), 'stats.trace.ResultTrace', 'ResultTrace', ([], {}), '()\n', (43238, 43240), False, 'from stats.trace import ResultTrace\n'), ((601, 661), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""i:ln"""', "['id=', 'lim', 'nolim']"], {}), "(sys.argv[1:], 'i:ln', ['id=', 'lim', 'nolim'])\n", (614, 661), False, 'import getopt\n'), ((3065, 3228), 'commonLib.nerscPlot.paintHistogramMulti', 'paintHistogramMulti', (['name', 'data_dic'], {'bins': '(100)', 'graphFileName': 'file_name', 'labelX': 'x_axis_label', 'xLogScale': 'x_log_scale', 'labelY': '"""Number Of Jobs"""', 'xLim': 'filterCut'}), "(name, data_dic, bins=100, graphFileName=file_name,\n labelX=x_axis_label, xLogScale=x_log_scale, labelY='Number Of Jobs',\n xLim=filterCut)\n", (3084, 3228), False, 'from commonLib.nerscPlot import paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram\n'), ((3359, 3527), 'commonLib.nerscPlot.paintHistogramMulti', 'paintHistogramMulti', (['name', 'data_dic'], {'bins': '(100)', 'graphFileName': 'file_name', 'labelX': 'x_axis_label', 'xLogScale': 'x_log_scale', 'labelY': '"""Number Of Jobs"""', 'filterCut': 'filterCut'}), "(name, data_dic, bins=100, graphFileName=file_name,\n labelX=x_axis_label, xLogScale=x_log_scale, labelY='Number Of Jobs',\n filterCut=filterCut)\n", (3378, 3527), False, 'from commonLib.nerscPlot import paintHistogramMulti, paintBoxPlotGeneral, paintBarsHistogram\n'), ((29398, 29421), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'pad': '(0)'}), '(pad=0)\n', (29414, 29421), True, 'import matplotlib.pyplot as plt\n'), ((781, 792), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (789, 792), False, 'import sys\n'), ((7525, 7603), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'facecolor': 'key[1]', 'label': 'key[0]', 'edgecolor': '"""black"""', 'hatch': 'hatch'}), "(facecolor=key[1], label=key[0], edgecolor='black', hatch=hatch)\n", (7539, 7603), True, 'import matplotlib.patches as mpatches\n'), ((41411, 41462), 'stats.trace.ResultTrace.get_result_type_edge', 'ResultTrace.get_result_type_edge', (['edge', 'result_type'], {}), '(edge, result_type)\n', (41443, 41462), False, 'from stats.trace import ResultTrace\n'), ((41837, 41859), 'orchestration.definition.ExperimentDefinition', 'ExperimentDefinition', ([], {}), '()\n', (41857, 41859), False, 'from orchestration.definition import ExperimentDefinition\n'), ((43432, 43454), 'orchestration.definition.ExperimentDefinition', 'ExperimentDefinition', ([], {}), '()\n', (43452, 43454), False, 'from orchestration.definition import ExperimentDefinition\n'), ((44814, 44836), 'orchestration.definition.ExperimentDefinition', 'ExperimentDefinition', ([], {}), '()\n', (44834, 44836), False, 'from orchestration.definition import ExperimentDefinition\n'), ((46929, 46951), 'orchestration.definition.ExperimentDefinition', 'ExperimentDefinition', ([], {}), '()\n', (46949, 46951), False, 'from orchestration.definition import ExperimentDefinition\n'), ((22521, 22531), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (22529, 22531), True, 'import matplotlib.pyplot as plt\n'), ((27521, 27531), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (27529, 27531), True, 'import matplotlib.pyplot as plt\n'), ((29338, 29348), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (29346, 29348), True, 'import matplotlib.pyplot as plt\n'), ((34815, 34825), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (34823, 34825), True, 'import matplotlib.pyplot as plt\n'), ((45017, 45031), 'stats.NumericStats', 'NumericStats', ([], {}), '()\n', (45029, 45031), False, 'from stats import NumericStats\n'), ((45201, 45215), 'stats.NumericStats', 'NumericStats', ([], {}), '()\n', (45213, 45215), False, 'from stats import NumericStats\n'), ((45345, 45359), 'stats.NumericStats', 'NumericStats', ([], {}), '()\n', (45357, 45359), False, 'from stats import NumericStats\n'), ((12625, 12639), 'numpy.floor', 'floor', (['power_l'], {}), '(power_l)\n', (12630, 12639), False, 'from numpy import log10, power, floor\n'), ((42314, 42328), 'stats.NumericStats', 'NumericStats', ([], {}), '()\n', (42326, 42328), False, 'from stats import NumericStats\n'), ((42435, 42449), 'stats.NumericStats', 'NumericStats', ([], {}), '()\n', (42447, 42449), False, 'from stats import NumericStats\n'), ((42070, 42121), 'stats.trace.ResultTrace.get_result_type_edge', 'ResultTrace.get_result_type_edge', (['edge', 'result_type'], {}), '(edge, result_type)\n', (42102, 42121), False, 'from stats.trace import ResultTrace\n')]
import collections import json import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from tqdm import tqdm import constants import helpers from models.recognition.recognizer import Recognizer from visualization.visualize import plot_3x3_images_RW def analyze(checkpoint_dir_path: str, dataset_name: str = constants.GTSR, model_img_res: int = 50, plot: bool = False, n_plots: int = 10, verbose: int = 0): """ Method to analyze the performance of a model in recognition. Calculates the test accuracy, which classes are misclassified and as what and plots the error rate per class, showing only the label of those that have a worse error rate than the average. In the directory there must to be two files: 1. Weights of the model. Named: 'weights.ckpt' 2. Dictionary in a json to translate from neuron to class. Named: 'neuron_to_class_dict.json' In the dataset folder, it expects a csv file with a Path and a ClassId column. Tha path column should have the path of each image and the ClassId column the class of each image, this classes have to be the same as the folder names in the training set. :param checkpoint_dir_path: Path to the directory. :param dataset_name: Name of the dataset used. :param model_img_res: Image resolution to use. :param plot: Whether to plot results in 3x3 images or not. The label will be green when correctly classified, red otherwise. :param n_plots: Number of plots to show. :param verbose: If > 0 it will print for every image if it was correctly or not. """ with open(checkpoint_dir_path + 'neuron_to_class_dict.json', "rb") as f: neuron_to_class_dict = json.load(f) model = Recognizer(dataset_name, model_img_res, False) model.inference_model.load_weights(checkpoint_dir_path + 'weights.ckpt') images_path = constants.DATASET_PATH.format(dataset_name) + 'test/' test = pd.read_csv(constants.DATASET_PATH.format(dataset_name) + 'Test.csv') test['Path'] = test['Path'].apply(lambda x: x.split('/')[-1]) test = test.set_index('Path') classified = {} n_wrong, total = 0, 0 for i in test['ClassId'].unique(): classified[str(i)] = collections.defaultdict(int) image_paths, titles, n_ploted = [], [], 0 images_paths = os.listdir(images_path) for i, image_id in enumerate(tqdm(images_paths)): if 'png' not in image_id: continue total += 1 image_path = images_path + image_id img = tf.image.decode_image(open(image_path, 'rb').read(), channels=3) img = tf.expand_dims(helpers.transform_images(img, model.img_res), 0) real_class_id = str(test.loc[image_id]['ClassId']) img_classes_probs = model.inference_model(img) img_class_id = np.argmax(img_classes_probs) img_class_id = neuron_to_class_dict[str(img_class_id)] classified[real_class_id][img_class_id] += 1 if real_class_id != img_class_id: n_wrong += 1 if verbose > 0: img_class_prob = np.max(img_classes_probs.numpy()) if real_class_id == img_class_id: print(constants.C_OKBLUE, image_id, ". Correctly labeled as", model.labels_map_dict[str(img_class_id)].upper(), 'with probability {:.2f} %'.format(100 * img_class_prob), constants.C_ENDC) else: print(constants.C_FAIL, image_id, ". Wrongly labeled as", model.labels_map_dict[str(img_class_id)].upper(), ', id =', img_class_id, 'with probability {:.2f} %'.format(100 * img_class_prob), '. Should have been', model.labels_map_dict[real_class_id], ', id =', real_class_id, constants.C_ENDC) if plot: if i % 9 == 0 and i > 0 and n_ploted < n_plots: plot_3x3_images_RW(image_paths, titles) image_paths, titles = [], [] n_ploted += 1 image_paths.append(image_path) pred_class = ("R" if real_class_id == img_class_id else "W") + model.labels_map_dict[str(img_class_id)] titles.append(pred_class.upper()) error_rate = 100 * n_wrong / total for real_class in sorted(classified.keys(), key=helpers.natural_keys): value = classified[real_class] print('Class', real_class, "({}):".format(model.labels_map_dict[real_class])) for pred_class, times in value.items(): if pred_class != real_class: print(" - Misslabeled for class", pred_class, '->', times, 'times', "({})".format(model.labels_map_dict[pred_class])) else: print(" - Correctly labeled", times, 'times') print() print( constants.C_FAIL + "Error rate (% of missclassified) = {:.2f} % in test.".format(error_rate) + constants.C_ENDC) print(constants.C_OKBLUE + "Test accuracy of {:.2f} % in test.".format(100 - error_rate) + constants.C_ENDC) miss_class_perc = {} for real_class, predictions in classified.items(): total = 0 wrong = 0 for pred_class, times in predictions.items(): total += times if real_class != pred_class: wrong += times miss_class_perc[real_class] = 100 * wrong / total ordered_dict = {} for key in sorted(miss_class_perc.keys(), key=helpers.natural_keys): ordered_dict[key] = miss_class_perc[key] miss_class_perc = ordered_dict def plot_helper(show_labels): fig, ax = plt.subplots(1, 1) ticks = [] for real_class, class_error_rate in miss_class_perc.items(): if show_labels: ticks.append(model.labels_map_dict[str(real_class)] if class_error_rate > error_rate else '') else: ticks.append(str(real_class) if class_error_rate > error_rate else '') ax.bar(range(len(ticks)), miss_class_perc.values()) ax.plot([-1, len(ticks)], [error_rate, error_rate], 'k--') ax.set_xticks([i for i in range(len(miss_class_perc))]) if show_labels: ax.set_xticklabels(ticks, rotation='vertical') else: ax.set_xticklabels(ticks, rotation='horizontal') plt.xlabel('Classes') plt.ylabel('Percentage of miss-classifications') plt.title('Miss-classification percentages per label') plt.xlim([-1, len(ticks)]) plt.tight_layout() plt.show() plot_helper(True) plot_helper(False) return classified, error_rate
[ "matplotlib.pyplot.title", "matplotlib.pyplot.tight_layout", "tqdm.tqdm", "json.load", "constants.DATASET_PATH.format", "matplotlib.pyplot.show", "numpy.argmax", "helpers.transform_images", "collections.defaultdict", "visualization.visualize.plot_3x3_images_RW", "models.recognition.recognizer.Recognizer", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.subplots", "os.listdir" ]
[((1775, 1821), 'models.recognition.recognizer.Recognizer', 'Recognizer', (['dataset_name', 'model_img_res', '(False)'], {}), '(dataset_name, model_img_res, False)\n', (1785, 1821), False, 'from models.recognition.recognizer import Recognizer\n'), ((2362, 2385), 'os.listdir', 'os.listdir', (['images_path'], {}), '(images_path)\n', (2372, 2385), False, 'import os\n'), ((1749, 1761), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1758, 1761), False, 'import json\n'), ((1917, 1960), 'constants.DATASET_PATH.format', 'constants.DATASET_PATH.format', (['dataset_name'], {}), '(dataset_name)\n', (1946, 1960), False, 'import constants\n'), ((2267, 2295), 'collections.defaultdict', 'collections.defaultdict', (['int'], {}), '(int)\n', (2290, 2295), False, 'import collections\n'), ((2419, 2437), 'tqdm.tqdm', 'tqdm', (['images_paths'], {}), '(images_paths)\n', (2423, 2437), False, 'from tqdm import tqdm\n'), ((2853, 2881), 'numpy.argmax', 'np.argmax', (['img_classes_probs'], {}), '(img_classes_probs)\n', (2862, 2881), True, 'import numpy as np\n'), ((5690, 5708), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (5702, 5708), True, 'import matplotlib.pyplot as plt\n'), ((6433, 6481), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Percentage of miss-classifications"""'], {}), "('Percentage of miss-classifications')\n", (6443, 6481), True, 'import matplotlib.pyplot as plt\n'), ((6490, 6544), 'matplotlib.pyplot.title', 'plt.title', (['"""Miss-classification percentages per label"""'], {}), "('Miss-classification percentages per label')\n", (6499, 6544), True, 'import matplotlib.pyplot as plt\n'), ((6588, 6606), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6604, 6606), True, 'import matplotlib.pyplot as plt\n'), ((6615, 6625), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6623, 6625), True, 'import matplotlib.pyplot as plt\n'), ((1995, 2038), 'constants.DATASET_PATH.format', 'constants.DATASET_PATH.format', (['dataset_name'], {}), '(dataset_name)\n', (2024, 2038), False, 'import constants\n'), ((2666, 2710), 'helpers.transform_images', 'helpers.transform_images', (['img', 'model.img_res'], {}), '(img, model.img_res)\n', (2690, 2710), False, 'import helpers\n'), ((6402, 6423), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Classes"""'], {}), "('Classes')\n", (6412, 6423), True, 'import matplotlib.pyplot as plt\n'), ((3977, 4016), 'visualization.visualize.plot_3x3_images_RW', 'plot_3x3_images_RW', (['image_paths', 'titles'], {}), '(image_paths, titles)\n', (3995, 4016), False, 'from visualization.visualize import plot_3x3_images_RW\n')]
import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from processor import data_filling, data_processing from sklearn.ensemble import RandomForestRegressor from xgboost import XGBRegressor pd.set_option('display.max_columns', None) def produce(m): x_train, y_train, x_test = data_processing() predictor = m.fit(x_train, y_train) y_predict = predictor.predict(x_test) np.savetxt('result.txt', y_predict, fmt='%d') def test(m): x_train, y_train, x_test = data_processing() print(x_train.shape) x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2) predictor = m.fit(x_train, y_train) y_predict = predictor.predict(x_test) rmse = mean_squared_error(y_test, y_predict) ** 0.5 print(rmse) # model = SVR(kernel='rbf') # model = RandomForestRegressor(n_estimators=1000) model = XGBRegressor(n_estimators=600, max_depth=5) test(model) # produce(model)
[ "sklearn.model_selection.train_test_split", "numpy.savetxt", "processor.data_processing", "xgboost.XGBRegressor", "pandas.set_option", "sklearn.metrics.mean_squared_error" ]
[((276, 318), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', 'None'], {}), "('display.max_columns', None)\n", (289, 318), True, 'import pandas as pd\n'), ((940, 983), 'xgboost.XGBRegressor', 'XGBRegressor', ([], {'n_estimators': '(600)', 'max_depth': '(5)'}), '(n_estimators=600, max_depth=5)\n', (952, 983), False, 'from xgboost import XGBRegressor\n'), ((368, 385), 'processor.data_processing', 'data_processing', ([], {}), '()\n', (383, 385), False, 'from processor import data_filling, data_processing\n'), ((472, 517), 'numpy.savetxt', 'np.savetxt', (['"""result.txt"""', 'y_predict'], {'fmt': '"""%d"""'}), "('result.txt', y_predict, fmt='%d')\n", (482, 517), True, 'import numpy as np\n'), ((564, 581), 'processor.data_processing', 'data_processing', ([], {}), '()\n', (579, 581), False, 'from processor import data_filling, data_processing\n'), ((646, 695), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_train', 'y_train'], {'test_size': '(0.2)'}), '(x_train, y_train, test_size=0.2)\n', (662, 695), False, 'from sklearn.model_selection import train_test_split\n'), ((790, 827), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_predict'], {}), '(y_test, y_predict)\n', (808, 827), False, 'from sklearn.metrics import mean_squared_error\n')]
import time import numpy as np import torch from torch import nn from rl.learners.ppo import PPO class PPOTestTime(PPO): def learn_test_time(self, ne, bs, mbs): os, acts, rs, op, logpbs, _, dones = self.buf.get(self.pol.dist_stack) os, acts, rs, op, logpbs, dones = os[:bs], acts[:bs], rs[:bs], op[:bs], logpbs[:bs], dones[:bs] with torch.no_grad(): pre_vals = self.vf.value(torch.cat((os, op))) adv_calc_start_time = time.time() v_rets, advs = self.get_rets_advs(rs, dones, pre_vals.t()[0]) adv_calc_time = time.time() - adv_calc_start_time inds = np.arange(os.shape[0]) update_start_time = time.time() for itr in range(ne): np.random.shuffle(inds) for start in range(0, len(os), mbs): ind = inds[start:start + mbs] # Policy update preparation logpts, dist = self.pol.logp_dist(os[ind], acts[ind]) grad_sub = (logpts - logpbs[ind]).exp() p_loss0 = - (grad_sub * advs[ind]) ext_loss = - (torch.clamp(grad_sub, 1 - self.clip_eps, 1 + self.clip_eps) * advs[ind]) p_loss = torch.max(p_loss0, ext_loss) p_loss = p_loss.mean() # value update preparation vals = self.vf.value(os[ind]) v_loss = ((v_rets[ind] - vals).pow(2)).mean() # Policy update if self.u_joint_opt: p_loss += v_loss self.opt_pol.zero_grad() p_loss.backward() if self.max_grad_norm > 0: nn.utils.clip_grad_norm_(list(self.pol.parameters()) + list(self.vf.parameters()), self.max_grad_norm) self.opt_pol.step() # Value update if not self.u_joint_opt: self.opt_vf.zero_grad() v_loss.backward() if self.max_grad_norm > 0: nn.utils.clip_grad_norm_(self.vf.parameters(), self.max_grad_norm) self.opt_vf.step() update_time = time.time() - update_start_time return adv_calc_time, update_time
[ "torch.cat", "time.time", "torch.clamp", "numpy.arange", "torch.max", "torch.no_grad", "numpy.random.shuffle" ]
[((471, 482), 'time.time', 'time.time', ([], {}), '()\n', (480, 482), False, 'import time\n'), ((627, 649), 'numpy.arange', 'np.arange', (['os.shape[0]'], {}), '(os.shape[0])\n', (636, 649), True, 'import numpy as np\n'), ((678, 689), 'time.time', 'time.time', ([], {}), '()\n', (687, 689), False, 'import time\n'), ((365, 380), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (378, 380), False, 'import torch\n'), ((577, 588), 'time.time', 'time.time', ([], {}), '()\n', (586, 588), False, 'import time\n'), ((732, 755), 'numpy.random.shuffle', 'np.random.shuffle', (['inds'], {}), '(inds)\n', (749, 755), True, 'import numpy as np\n'), ((2158, 2169), 'time.time', 'time.time', ([], {}), '()\n', (2167, 2169), False, 'import time\n'), ((419, 438), 'torch.cat', 'torch.cat', (['(os, op)'], {}), '((os, op))\n', (428, 438), False, 'import torch\n'), ((1200, 1228), 'torch.max', 'torch.max', (['p_loss0', 'ext_loss'], {}), '(p_loss0, ext_loss)\n', (1209, 1228), False, 'import torch\n'), ((1102, 1161), 'torch.clamp', 'torch.clamp', (['grad_sub', '(1 - self.clip_eps)', '(1 + self.clip_eps)'], {}), '(grad_sub, 1 - self.clip_eps, 1 + self.clip_eps)\n', (1113, 1161), False, 'import torch\n')]
import numpy from ._helpers import HexahedronScheme def product(scheme1d): schemes = scheme1d if isinstance(scheme1d, list) else 3 * [scheme1d] wy, wz, wx = numpy.meshgrid( schemes[0].weights, schemes[1].weights, schemes[2].weights ) weights = numpy.vstack([wx.flatten(), wy.flatten(), wz.flatten()]).T weights = numpy.prod(weights, axis=1) # the order, yeah... y, z, x = numpy.meshgrid(schemes[0].points, schemes[1].points, schemes[2].points) points = numpy.vstack([x.flatten(), y.flatten(), z.flatten()]).T degree = min([s.degree for s in schemes]) return HexahedronScheme( "Product scheme ({})".format(scheme1d.name), weights, points, degree )
[ "numpy.meshgrid", "numpy.prod" ]
[((169, 243), 'numpy.meshgrid', 'numpy.meshgrid', (['schemes[0].weights', 'schemes[1].weights', 'schemes[2].weights'], {}), '(schemes[0].weights, schemes[1].weights, schemes[2].weights)\n', (183, 243), False, 'import numpy\n'), ((345, 372), 'numpy.prod', 'numpy.prod', (['weights'], {'axis': '(1)'}), '(weights, axis=1)\n', (355, 372), False, 'import numpy\n'), ((412, 483), 'numpy.meshgrid', 'numpy.meshgrid', (['schemes[0].points', 'schemes[1].points', 'schemes[2].points'], {}), '(schemes[0].points, schemes[1].points, schemes[2].points)\n', (426, 483), False, 'import numpy\n')]
#!/bin/python """This is a simple text editor""" # Import the libraries we are using. It is good practice to import all necessary # libraries in the first lines of a file. import os import sys import numpy as np import matplotlib.pyplot as plt import pandas as pd # Create a function to read the data file def read_data(filename,delimiter=',',starting_row=0): """This function reads data from a specified filename. The specified filename should point to a .csv file.""" # Create an array (a multi-dimensional table) out of our data file, full of text all_data = np.genfromtxt(filename, delimiter=delimiter,skip_header=5) # Select the data range we are interested in, convert it into a new array, full of numbers temperature_data = np.array(all_data[starting_row:,:], dtype=float) return temperature_data def process_data(temperature_data): """Given some input temperature data this function converts the second column from degrees F to K and appends a new column with that data. """ # Compute a new column by multiplying column number 1 to Kelvin temperature_kelvin = (temperature_data[:,1,None] - 32) * 5/9 + 273 # Append this new column to the existing temperature_data array processed_temperature_data = np.append(temperature_data, temperature_kelvin,1) return processed_temperature_data def plot_data(processed_temperature_data, plot_filename): """ Given some input temperature data this function converts the second column from degrees F to K and appends a new column with that data. """ # Create a figure of the processed data temperature_figure = plt.figure() plt.bar (processed_temperature_data[:,0], processed_temperature_data[:,2], width=50, color='blue') plt.show(block=True) temperature_figure.savefig(plot_filename) def convert_data(filename, output_filename): """ Read data from a CSV falled filename, and write this data into a Pandas dataframe, and write this dataframe into a json file called output_filename. """ all_data = pd.read_csv(filename, index_col='Date', header=4) all_data.info() all_data.to_json(output_filename) def plot(): """Maine program that reads a dataset and processes it, plots it, and write the converted data into a json file""" input_file = "110-tavg-12-12-1950-2020.csv" plot_file = "temperature-over-time.pdf" json_output_file = "data_output.json" data_directory = os.path.realpath(os.path.join(os.path.dirname(__file__),"..","data")) results_directory = os.path.realpath(os.path.join(os.path.dirname(__file__),"..","results")) input_filename = os.path.join(data_directory,input_file) plot_filename = os.path.join(results_directory,plot_file) json_filename = os.path.join(results_directory,json_output_file) temperature_data = read_data(input_filename, starting_row=5) processed_temperature_data = process_data(temperature_data) plot_data(processed_temperature_data, plot_filename) convert_data(input_filename, json_filename) if __name__ == "__main__": print(sys.argv) plot()
[ "matplotlib.pyplot.show", "pandas.read_csv", "matplotlib.pyplot.bar", "os.path.dirname", "numpy.genfromtxt", "numpy.append", "matplotlib.pyplot.figure", "numpy.array", "os.path.join" ]
[((582, 641), 'numpy.genfromtxt', 'np.genfromtxt', (['filename'], {'delimiter': 'delimiter', 'skip_header': '(5)'}), '(filename, delimiter=delimiter, skip_header=5)\n', (595, 641), True, 'import numpy as np\n'), ((760, 809), 'numpy.array', 'np.array', (['all_data[starting_row:, :]'], {'dtype': 'float'}), '(all_data[starting_row:, :], dtype=float)\n', (768, 809), True, 'import numpy as np\n'), ((1266, 1316), 'numpy.append', 'np.append', (['temperature_data', 'temperature_kelvin', '(1)'], {}), '(temperature_data, temperature_kelvin, 1)\n', (1275, 1316), True, 'import numpy as np\n'), ((1634, 1646), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1644, 1646), True, 'import matplotlib.pyplot as plt\n'), ((1651, 1754), 'matplotlib.pyplot.bar', 'plt.bar', (['processed_temperature_data[:, 0]', 'processed_temperature_data[:, 2]'], {'width': '(50)', 'color': '"""blue"""'}), "(processed_temperature_data[:, 0], processed_temperature_data[:, 2],\n width=50, color='blue')\n", (1658, 1754), True, 'import matplotlib.pyplot as plt\n'), ((1820, 1840), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(True)'}), '(block=True)\n', (1828, 1840), True, 'import matplotlib.pyplot as plt\n'), ((2120, 2169), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'index_col': '"""Date"""', 'header': '(4)'}), "(filename, index_col='Date', header=4)\n", (2131, 2169), True, 'import pandas as pd\n'), ((2710, 2750), 'os.path.join', 'os.path.join', (['data_directory', 'input_file'], {}), '(data_directory, input_file)\n', (2722, 2750), False, 'import os\n'), ((2770, 2812), 'os.path.join', 'os.path.join', (['results_directory', 'plot_file'], {}), '(results_directory, plot_file)\n', (2782, 2812), False, 'import os\n'), ((2832, 2881), 'os.path.join', 'os.path.join', (['results_directory', 'json_output_file'], {}), '(results_directory, json_output_file)\n', (2844, 2881), False, 'import os\n'), ((2551, 2576), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2566, 2576), False, 'import os\n'), ((2645, 2670), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2660, 2670), False, 'import os\n')]
import numpy as np import logbook import pandas as pd from zipline.lib.adjusted_array import AdjustedArray from zipline.pipeline.loaders.base import PipelineLoader from zipline.utils.calendars import get_calendar from zipline.errors import NoFurtherDataError from pipeline_live.data.sources import alpaca log = logbook.Logger(__name__) class USEquityPricingLoader(PipelineLoader): """ PipelineLoader for US Equity Pricing data """ def __init__(self): cal = get_calendar('NYSE') self._all_sessions = cal.all_sessions def load_adjusted_array(self, columns, dates, symbols, mask): # load_adjusted_array is called with dates on which the user's algo # will be shown data, which means we need to return the data that would # be known at the start of each date. We assume that the latest data # known on day N is the data from day (N - 1), so we shift all query # dates back by a day. start_date, end_date = _shift_dates( self._all_sessions, dates[0], dates[-1], shift=1, ) sessions = self._all_sessions sessions = sessions[(sessions >= start_date) & (sessions <= end_date)] timedelta = pd.Timestamp.utcnow() - start_date chart_range = timedelta.days + 1 log.info('chart_range={}'.format(chart_range)) prices = alpaca.get_stockprices(chart_range) dfs = [] for symbol in symbols: if symbol not in prices: df = pd.DataFrame( {c.name: c.missing_value for c in columns}, index=sessions ) else: df = prices[symbol] df = df.reindex(sessions, method='ffill') dfs.append(df) raw_arrays = {} for c in columns: colname = c.name parsed_values = [] for df in dfs: if not df.empty: value = df[colname].values else: value = np.empty(shape=(len(sessions))) value.fill(np.nan) parsed_values.append(value) raw_arrays[colname] = np.stack( parsed_values, axis=-1 ) out = {} for c in columns: c_raw = raw_arrays[c.name] out[c] = AdjustedArray( c_raw.astype(c.dtype), {}, c.missing_value ) return out def _shift_dates(dates, start_date, end_date, shift): try: start = dates.get_loc(start_date) except KeyError: if start_date < dates[0]: raise NoFurtherDataError( msg=( "Pipeline Query requested data starting on {query_start}, " "but first known date is {calendar_start}" ).format( query_start=str(start_date), calendar_start=str(dates[0]), ) ) else: raise ValueError("Query start %s not in calendar" % start_date) # Make sure that shifting doesn't push us out of the calendar. if start < shift: raise NoFurtherDataError( msg=( "Pipeline Query requested data from {shift}" " days before {query_start}, but first known date is only " "{start} days earlier." ).format(shift=shift, query_start=start_date, start=start), ) try: end = dates.get_loc(end_date) except KeyError: if end_date > dates[-1]: raise NoFurtherDataError( msg=( "Pipeline Query requesting data up to {query_end}, " "but last known date is {calendar_end}" ).format( query_end=end_date, calendar_end=dates[-1], ) ) else: raise ValueError("Query end %s not in calendar" % end_date) return dates[start - shift], dates[end - shift]
[ "numpy.stack", "pandas.DataFrame", "logbook.Logger", "pandas.Timestamp.utcnow", "zipline.utils.calendars.get_calendar", "pipeline_live.data.sources.alpaca.get_stockprices" ]
[((315, 339), 'logbook.Logger', 'logbook.Logger', (['__name__'], {}), '(__name__)\n', (329, 339), False, 'import logbook\n'), ((488, 508), 'zipline.utils.calendars.get_calendar', 'get_calendar', (['"""NYSE"""'], {}), "('NYSE')\n", (500, 508), False, 'from zipline.utils.calendars import get_calendar\n'), ((1369, 1404), 'pipeline_live.data.sources.alpaca.get_stockprices', 'alpaca.get_stockprices', (['chart_range'], {}), '(chart_range)\n', (1391, 1404), False, 'from pipeline_live.data.sources import alpaca\n'), ((1221, 1242), 'pandas.Timestamp.utcnow', 'pd.Timestamp.utcnow', ([], {}), '()\n', (1240, 1242), True, 'import pandas as pd\n'), ((2201, 2233), 'numpy.stack', 'np.stack', (['parsed_values'], {'axis': '(-1)'}), '(parsed_values, axis=-1)\n', (2209, 2233), True, 'import numpy as np\n'), ((1512, 1584), 'pandas.DataFrame', 'pd.DataFrame', (['{c.name: c.missing_value for c in columns}'], {'index': 'sessions'}), '({c.name: c.missing_value for c in columns}, index=sessions)\n', (1524, 1584), True, 'import pandas as pd\n')]
from nose.tools import * import scipy.stats import torch import numpy as np from stable_nalu.dataset import SimpleFunctionStaticDataset def test_solveable_by_linear_algebra(): dataset = SimpleFunctionStaticDataset( operation='add', seed=0 ) dataset_test = iter(dataset.fork(input_range=1).dataloader(batch_size=100)) x_batch, t_batch = next(dataset_test) x_batch_np = np.stack(x_batch) t_batch_np = np.stack(t_batch) w_merged_np = np.linalg.solve(x_batch_np, t_batch_np.ravel()) w_merged_np_int = np.round(w_merged_np, 0).astype('int8') # W is whole numbers np.testing.assert_almost_equal( w_merged_np - w_merged_np_int, np.zeros(100), decimal=4 ) # W is either 0, 1, 2 # NOTE: a different seed might not result in an overlap, thus {2} might # not be present. assert_equal( set(w_merged_np_int.tolist()), {0, 1, 2} ) # Compute a, b range parameters # For seed=0, the b subset, is a subset of the a subset, which is assumed # by the following algorithm. a_start = None a_end = None b_start = None b_end = None previuse_w_value = 0 for w_index, w_value in enumerate(w_merged_np_int.tolist()): if w_value == 1 and previuse_w_value == 0: a_start = w_index elif w_value == 0 and previuse_w_value == 1: a_end = w_index elif w_value == 2 and previuse_w_value == 1: b_start = w_index elif w_value == 1 and previuse_w_value == 2: b_end = w_index previuse_w_value = w_value # Compare a and b range parameters assert_equal(a_start, dataset.a_start) assert_equal(a_end, dataset.a_end) assert_equal(b_start, dataset.b_start) assert_equal(b_end, dataset.b_end) def test_input_range(): dataset = SimpleFunctionStaticDataset( operation='add', vector_size=10000, seed=0 ) x, t = dataset.fork(input_range=5)[0] _, p = scipy.stats.kstest( x, scipy.stats.uniform(loc=0, scale=5).cdf ) assert p > 0.5 def test_output_shape(): dataset = SimpleFunctionStaticDataset( operation='add', seed=0 ) x, t = dataset.fork(input_range=5)[0] assert_equal(x.shape, (100, )) # Note, t.shape should be a 1-long vector, not a scalar. Otherwise # the loss function gets confused about what the observation dimention # is. assert_equal(t.shape, (1, ))
[ "numpy.stack", "numpy.round", "numpy.zeros", "stable_nalu.dataset.SimpleFunctionStaticDataset" ]
[((194, 246), 'stable_nalu.dataset.SimpleFunctionStaticDataset', 'SimpleFunctionStaticDataset', ([], {'operation': '"""add"""', 'seed': '(0)'}), "(operation='add', seed=0)\n", (221, 246), False, 'from stable_nalu.dataset import SimpleFunctionStaticDataset\n'), ((400, 417), 'numpy.stack', 'np.stack', (['x_batch'], {}), '(x_batch)\n', (408, 417), True, 'import numpy as np\n'), ((435, 452), 'numpy.stack', 'np.stack', (['t_batch'], {}), '(t_batch)\n', (443, 452), True, 'import numpy as np\n'), ((1852, 1923), 'stable_nalu.dataset.SimpleFunctionStaticDataset', 'SimpleFunctionStaticDataset', ([], {'operation': '"""add"""', 'vector_size': '(10000)', 'seed': '(0)'}), "(operation='add', vector_size=10000, seed=0)\n", (1879, 1923), False, 'from stable_nalu.dataset import SimpleFunctionStaticDataset\n'), ((2151, 2203), 'stable_nalu.dataset.SimpleFunctionStaticDataset', 'SimpleFunctionStaticDataset', ([], {'operation': '"""add"""', 'seed': '(0)'}), "(operation='add', seed=0)\n", (2178, 2203), False, 'from stable_nalu.dataset import SimpleFunctionStaticDataset\n'), ((691, 704), 'numpy.zeros', 'np.zeros', (['(100)'], {}), '(100)\n', (699, 704), True, 'import numpy as np\n'), ((542, 566), 'numpy.round', 'np.round', (['w_merged_np', '(0)'], {}), '(w_merged_np, 0)\n', (550, 566), True, 'import numpy as np\n')]
import re import json import os import requests import numpy as np import copy from sklearn.metrics.pairwise import cosine_similarity import spacy from collections import defaultdict from networkx import algorithms from fourlang.stanford_wrapper import StanfordParser from fourlang.fourlang import FourLang from .parse_data import load_vec from .utils import get_distance class Similarity(object): def __init__(self, lang="en", with_embedding=True): self.lang = lang self.language_models = {"en": "en_core_web_sm", "it": "it_core_news_sm", "de": "de_core_news_sm"} self.cross_lingual_path = "/home/adaamko/data/DMR/" self.nlp = spacy.load(self.language_models[self.lang]) self.stanford_parser = StanfordParser() self.fourlang_expressions = ["has", "at", "npmod"] if with_embedding: fourlang_embeddings = self.call_elmo_service(self.fourlang_expressions) self.fourlang_expression_embeddings = {expr: emb[0] for (expr, emb) in zip(self.fourlang_expressions, fourlang_embeddings)} def clear_node(self, node): """ Clears the node from the 4lang id parts :param node: the text to clear :return: the cleared text """ return re.sub(r'_[0-9][0-9]*', '', node) def init_cross_lingual_embeddings(self, src_lang, tgt_lang): """ Initialize cross-lingual embeddings :param src_lang: the language of the premise :param tgt_lang: the language of the hypothesis :return: None """ src_path = '/home/adaamko/data/DMR/wiki.multi.' + src_lang + '.vec' tgt_path = '/home/adaamko/data/DMR/wiki.multi.' + tgt_lang + '.vec' nmax = 250000 # maximum number of word embeddings to load self.src_embeddings, self.src_id2word, self.src_word2id = load_vec(src_path, nmax) self.tgt_embeddings, self.tgt_id2word, self.tgt_word2id = load_vec(tgt_path, nmax) self.src_word2id = {v: k for k, v in self.src_id2word.items()} self.tgt_word2id = {v: k for k, v in self.tgt_id2word.items()} self.nlp_src_lang = spacy.load(self.language_models[src_lang]) self.nlp_tgt_lang = spacy.load(self.language_models[tgt_lang]) def init_dictionaries(self, src_lang, tgt_lang): """ Initialize dictionaries :param src_lang: the language of the premise :param tgt_lang: the language of the hypothesis :return: None """ path = "../dictionaries/" + src_lang + "_dictionary" dictionary_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), path) dictionary = defaultdict(list) with open(dictionary_path, "r+") as f: for line in f: line = line.strip().split("\t") if line[0] == src_lang and line[2] == tgt_lang: dictionary[line[1].lower()].append(line[3].lower()) self.nlp_src_lang = spacy.load(self.language_models[src_lang]) self.nlp_tgt_lang = spacy.load(self.language_models[tgt_lang]) self.dictionary = dictionary def call_elmo_service(self, sentences, port=1666): """ Calls the already running elmo service :param sentences: the sentences we want to get the embeddings for :param port: the port of the service :return: list of embeddings """ data = json.dumps({"sentences": sentences}) headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} r = requests.post("http://127.0.0.1:{}/{}".format(port, self.lang), data=data, headers=headers) return [np.asarray(e) for e in r.json()["embeddings"]] def get_elmo_embeddings(self, premise, hypothesis, port=1666): """ Calls the call_elmo_service with the parameters :param premise: the premise sentence :param hypothesis: the hypothesis sentence :param port: the port of the service :return: list of embeddings """ return self.call_elmo_service([premise, hypothesis], port=port) def get_embedding_dictionary(self, token_lemmas, embeddings, first_word): """ Gets the dictionary of the lemmas and the corresponding embeddings baseg on existing lemmas and embeddings :param token_lemmas: the lemmas in the sentence :param embeddings: the embedding of the sentence :param first_word: the first (not lemmatized) word of the sentence :return: the dictionary of the lemma-to-token relations """ word_dict = self.fourlang_expression_embeddings.copy() word_dict[first_word] = embeddings[0] for (words, embedding) in zip(token_lemmas, embeddings): for w in words: word_dict[w] = embedding return word_dict def get_elmo_nodes(self, premise, def_premise, hypothesis, def_hypothesis): """ Gets the dictionary of the lemmas and the corresponding embeggings for the premise and hypothesis :param premise: the premise word :param def_premise: the definition of the premise :param hypothesis: the hypothesis word :param def_hypothesis: the definition of the hypothesis :return: the embedding dictionary of the premise and hypothesis """ premise_token_lemmas, premise_token_words = self.stanford_parser.lemmatize_text(": ".join([premise, def_premise])) hypothesis_token_lemmas, hypothesis_token_words = self.stanford_parser.lemmatize_text(": ".join([hypothesis, def_hypothesis])) premise_full_def = " ".join(premise_token_words) hypothesis_full_def = " ".join(hypothesis_token_words) embeddings = self.get_elmo_embeddings(premise_full_def, hypothesis_full_def) premise_words = self.get_embedding_dictionary(premise_token_lemmas, embeddings[0], premise) hypothesis_words = self.get_embedding_dictionary(hypothesis_token_lemmas, embeddings[1], hypothesis) return premise_words, hypothesis_words def get_elmo_edges(self, graph, words): """ Create the list of edges containing the triplet of the two node embedding and the edge type :param graph: the graph of the definition :param words: the dictionary of pre-generated embeddings :return: the list of edges """ edges = [] for (source, receiver, edge) in graph.G.edges(data=True): cleared_source = self.clear_node(source) cleared_receiver = self.clear_node(receiver) if cleared_source not in words: print([k for k in words.keys()]) print([self.clear_node(k) for k in graph.G.nodes]) s = self.call_elmo_service([cleared_source])[0][0] else: s = words[cleared_source] if cleared_receiver not in words: print([k for k in words.keys()]) print([self.clear_node(k) for k in graph.G.nodes]) r = self.call_elmo_service([cleared_receiver])[0][0] else: r = words[cleared_receiver] edges.append((s, r, edge['color'])) return edges def cross_lingual_dictionary_bag(self, def_premise, def_hypothesis, premise_src=True): """ Cross-lingual bag of words approach :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :param premise_src: whether or not to keep the ordering of the premise and hypothesis :return: the best score """ if premise_src: prem = self.nlp_src_lang(def_premise) hyp = self.nlp_tgt_lang(def_hypothesis) else: hyp = self.nlp_src_lang(def_premise) prem = self.nlp_tgt_lang(def_hypothesis) filtered_prem = [] for token in prem: if not token.is_stop and not token.is_punct: filtered_prem.append(token.lemma_) filtered_hyp = [] for token in hyp: if not token.is_stop and not token.is_punct: filtered_hyp.append(token.lemma_) dic_elements = [] for word in filtered_prem: if not self.dictionary[word]: dic_elements.append(word) for el in self.dictionary[word]: dic_elements.append(el) filtered_prem = set(dic_elements) filtered_hyp = set(filtered_hyp) sim = filtered_hyp & filtered_prem if not sim or len(filtered_hyp) == 0: return 0 else: return float(len(sim)) / len(filtered_hyp) def cross_lingual_dictionary_4lang(self, graph_premise, graph_hypothesis, premise_src=True): """ Asymmetric Jaccard similarity between the lowercase nodes of the definition graphs :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :param premise_src: whether or not to keep the ordering of the premise and hypothesis :return: the score """ if premise_src: prem = set([self.clear_node(node).lower() for node in graph_premise.G.nodes]) hyp = set([self.clear_node(node).lower() for node in graph_hypothesis.G.nodes]) else: hyp = set([self.clear_node(node).lower() for node in graph_premise.G.nodes]) prem = set([self.clear_node(node).lower() for node in graph_hypothesis.G.nodes]) dic_elements = [] for word in prem: if not self.dictionary[word]: dic_elements.append(word) for el in self.dictionary[word]: dic_elements.append(el) filtered_prem = set(dic_elements) filtered_hyp = set(hyp) sim = filtered_hyp & filtered_prem if not sim or len(filtered_hyp) == 0: return 0 else: return float(len(sim)) / len(filtered_hyp) def muse_min_distance_4lang(self, graph_premise, graph_hypothesis, premise_src=True): """ Asymmetric cross-lingual Jaccard similarity between the nodes of the definition graphs :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :param premise_src: whether or not to keep the ordering of the premise and hypothesis :return: the score """ if premise_src: prem = set([self.clear_node(node).lower() for node in graph_premise.G.nodes]) hyp = set([self.clear_node(node).lower() for node in graph_hypothesis.G.nodes]) else: hyp = set([self.clear_node(node).lower() for node in graph_premise.G.nodes]) prem = set([self.clear_node(node).lower() for node in graph_hypothesis.G.nodes]) max_score = 0 for prem_word in prem: for hyp_word in hyp: try: distance = get_distance(prem_word, hyp_word, self.src_embeddings, self.tgt_embeddings, self.src_word2id, self.tgt_word2id) except KeyError: distance = 0 if distance > max_score: max_score = distance return max_score def compute_min_distance_scores(self, def_premise, def_hypothesis, premise_src=True): """ Compute the cross-lingual minimum distance between words of the definition sentences :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :param premise_src: whether or not to keep the ordering of the premise and hypothesis :return: the best achievable score """ if premise_src: prem = self.nlp_src_lang(def_premise) hyp = self.nlp_tgt_lang(def_hypothesis) else: hyp = self.nlp_src_lang(def_premise) prem = self.nlp_tgt_lang(def_hypothesis) filtered_prem = [] for token in prem: if not token.is_stop and not token.is_punct: filtered_prem.append(token.lemma_) filtered_hyp = [] for token in hyp: if not token.is_stop and not token.is_punct: filtered_hyp.append(token.lemma_) filtered_prem = set(filtered_prem) filtered_hyp = set(filtered_hyp) max_score = 0 for prem_word in filtered_prem: for hyp_word in filtered_hyp: try: distance = get_distance(prem_word, hyp_word, self.src_embeddings, self.tgt_embeddings, self.src_word2id, self.tgt_word2id) except KeyError: distance = 0 if distance > max_score: max_score = distance return max_score def asim_jac_words(self, def_premise, def_hypothesis): """ Asymmetric Jaccard similarity between the words of the definitions :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :return: the ratio of overlap per the length of the hypothesis definition """ prem = self.nlp(def_premise) hyp = self.nlp(def_hypothesis) filtered_prem = [] for token in prem: if not token.is_stop and not token.is_punct: filtered_prem.append(token.lemma_) filtered_hyp = [] for token in hyp: if not token.is_stop and not token.is_punct: filtered_hyp.append(token.lemma_) filtered_prem = set(filtered_prem) filtered_hyp = set(filtered_hyp) sim = filtered_hyp & filtered_prem if not sim or len(filtered_hyp) == 0: return 0 else: return float(len(sim)) / len(filtered_hyp) def asim_jac_edges(self, graph_premise, graph_hypothesis): """ Asymmetric Jaccard similarity between the edges of the definition graphs :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :return: the ratio of overlapping edges per the length of the hypothesis definition """ prem = set([(self.clear_node(s), self.clear_node(r), e['color']) for (s, r, e) in graph_premise.G.edges(data=True)]) hyp = set([(self.clear_node(s), self.clear_node(r), e['color']) for (s, r, e) in graph_hypothesis.G.edges(data=True)]) sim = hyp & prem if not sim or len(hyp) == 0: return 0 else: return float(len(sim)) / len(hyp) def multi_def_best_match(self, graph_premises, graph_hypothesises, similarity_function, return_graphs=False): """ Find the best matching premise and hypothesis :param graph_premises: the definition graph of the premise :param graph_hypothesises: the definition graph of the hypothesis :param similarity_function: the similarity function to use :param return_graphs: whether to return the graphs :return: the score and the best graph pair """ if len(graph_premises) > 0 and len(graph_hypothesises) > 0: best_pair = (graph_premises[0], graph_hypothesises[0]) best_match = 0 for graph_premise in graph_premises: for graph_hypothesis in graph_hypothesises: match = similarity_function(graph_premise, graph_hypothesis) if match > best_match: best_match = match best_pair = (graph_premise, graph_hypothesis) if best_match == 1.0: break if best_match == 1.0: break if return_graphs: return best_match, best_pair return best_match elif return_graphs: if len(graph_premises) > 0: return 0, (graph_premises[0], FourLang()) elif len(graph_hypothesises) > 0: return 0, (FourLang(), graph_hypothesises[0]) else: return 0, (FourLang(), FourLang()) return 0 def asim_jac_nodes(self, graph_premise, graph_hypothesis): """ Asymmetric Jaccard similarity between the nodes of the definition graphs :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :return: the ratio of overlapping nodes per the length of the hypothesis definition """ prem = set([self.clear_node(node) for node in graph_premise.G.nodes]) hyp = set([self.clear_node(node) for node in graph_hypothesis.G.nodes]) sim = hyp & prem if not sim or len(hyp) == 0: return 0 else: return float(len(sim)) / len(hyp) def asim_jac_nodes_graded(self, graph_premise, graph_hypothesis): """ Asymmetric Jaccard similarity between the nodes of the definition graphs :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :return: the ratio of overlapping nodes per the length of the hypothesis definition """ prem = [(node, self.clear_node(node)) for node in graph_premise.G.nodes] hyp = [(node, self.clear_node(node)) for node in graph_hypothesis.G.nodes] sim = 0 for hyp_node in hyp: if hyp_node[1] in [p[1] for p in prem]: try: shortest_path = algorithms.shortest_path(graph_premise.G, graph_premise.root, prem[[p[1] for p in prem].index(hyp_node[1])][0]) print("ok") hypothesis_path = algorithms.shortest_path(graph_hypothesis.G, graph_hypothesis.root, hyp_node[0]) if shortest_path in [0, 1]: sim += max(hypothesis_path, 2) elif hypothesis_path == 0: sim += 1 else: sim += hypothesis_path / (shortest_path - 1) except Exception as e: sim += 0.5 if sim == 0 or len(hyp) == 0: print(sim) return 0 else: return float(sim) / float(len(hyp)) def asim_jac_nodes_with_backup(self, graph_premise, graph_hypothesis): """ Asymmetric Jaccard similarity between the nodes of the definition graphs, if the score is not 1 it calculates the asymmetric Jaccard similarity between the edges without the hypothesis root node :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :return: the ratio of overlapping nodes per the length of the hypothesis definition """ node_score = self.asim_jac_nodes(graph_premise, graph_hypothesis) edge_score = 0 if 0.0 < node_score < 1.0: root = graph_hypothesis.d_clean(graph_hypothesis.root).split("_")[0] if root in graph_premise.get_nodes(): root_id = [node for node in graph_premise.G.nodes() if self.clear_node(node) == root][0] graph_premise_only_zero = copy.deepcopy(graph_premise) delete_list = [] for edge in graph_premise_only_zero.G.adj.items(): for output_node in edge[1].items(): inner_delete_list = [] for edge_type in output_node[1].items(): if edge_type[1]["color"]: inner_delete_list.append(edge_type[0]) for inner_del in inner_delete_list: del output_node[1]._atlas[inner_del] if len(output_node[1]) < 1: delete_list.append(output_node[0]) for to_del in delete_list: del edge[1]._atlas[to_del] try: if algorithms.has_path(graph_premise_only_zero.G, graph_premise.root, root_id): return 1.0 except Exception as e: print("Error occured:", e) graph_hypothesis_wo_root = copy.deepcopy(graph_hypothesis) graph_hypothesis_wo_root.G.remove_node(graph_hypothesis_wo_root.root) #edge_score = self.asim_jac_edges(graph_premise, graph_hypothesis_wo_root) return self.asim_jac_edges(graph_premise, graph_hypothesis_wo_root) #return max([node_score, edge_score]) return node_score def asim_jac_nodes_elmo(self, premise, hypothesis, graph_premise, graph_hypothesis, def_premise, def_hypothesis): """ Asymmetric Jaccard similarity between the node embeddings of the definition graphs :param premise: the premise word :param hypothesis: the hypothesis word :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :return: the ratio of best node matches per the length of the hypothesis definition """ premise_words, hypothesis_words = self.get_elmo_nodes(premise, def_premise, hypothesis, def_hypothesis) prem = [] for node in graph_premise.G.nodes: cleared_node = self.clear_node(node) if cleared_node not in premise_words: prem.append(self.call_elmo_service([cleared_node])[0][0]) else: prem.append(premise_words[cleared_node]) hyp = [] for node in graph_hypothesis.G.nodes: cleared_node = self.clear_node(node) if cleared_node not in hypothesis_words: hyp.append(self.call_elmo_service([cleared_node])[0][0]) else: hyp.append(hypothesis_words[cleared_node]) similarities = cosine_similarity(prem, hyp) best_sim = [max(word_sim) for word_sim in np.transpose(similarities)] return sum(best_sim) / len(best_sim) def asim_jac_edges_elmo(self, premise, hypothesis, graph_premise, graph_hypothesis, def_premise, def_hypothesis): """ Asymmetric Jaccard similarity between the edges based on the node embeddings of the definition graphs :param premise: the premise word :param hypothesis: the hypothesis word :param graph_premise: the definition graph of the premise :param graph_hypothesis: the definition graph of the hypothesis :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :return: the ratio of best edge matches per the length of the hypothesis definition """ premise_words, hypothesis_words = self.get_elmo_nodes(premise, def_premise, hypothesis, def_hypothesis) prem = self.get_elmo_edges(graph_premise, premise_words) hyp = self.get_elmo_edges(graph_hypothesis, hypothesis_words) if len(hyp) == 0 or len(prem) == 0: return 0 sim = 0 for hyp_edge in hyp: scores = [] for prem_edge in prem: if hyp_edge[2] == prem_edge[2]: scores.append((cosine_similarity([np.asarray(hyp_edge[0])], [np.asarray(prem_edge[0])])[0] + cosine_similarity([np.asarray(hyp_edge[1])], [np.asarray(prem_edge[1])])[0]) / 2) sim += max(scores + [0]) return sum(sim) / len(hyp) def asim_jac_bow_elmo(self, def_premise, def_hypothesis): """ Asymmetric Jaccard similarity between the word embeddings of the definitions :param def_premise: the definition of the premise :param def_hypothesis: the definition of the hypothesis :return: the ratio of overlap per the length of the hypothesis definition """ embeddings = self.get_elmo_embeddings(def_premise, def_hypothesis) similarities = cosine_similarity(embeddings[0], embeddings[1]) best_sim = [max(word_sim) for word_sim in np.transpose(similarities)] return sum(best_sim) / len(best_sim) def word_elmo(self, premise, hypothesis): """ The cosine similarity of the words :param premise: the premise word :param hypothesis: the hypothesis word :return: the cosine similarity score """ embeddings = self.get_elmo_embeddings(premise, hypothesis) similarity = cosine_similarity(embeddings[0], embeddings[1])[0][0] return similarity
[ "copy.deepcopy", "sklearn.metrics.pairwise.cosine_similarity", "os.path.abspath", "numpy.asarray", "numpy.transpose", "json.dumps", "collections.defaultdict", "spacy.load", "networkx.algorithms.has_path", "fourlang.stanford_wrapper.StanfordParser", "networkx.algorithms.shortest_path", "re.sub", "fourlang.fourlang.FourLang" ]
[((666, 709), 'spacy.load', 'spacy.load', (['self.language_models[self.lang]'], {}), '(self.language_models[self.lang])\n', (676, 709), False, 'import spacy\n'), ((741, 757), 'fourlang.stanford_wrapper.StanfordParser', 'StanfordParser', ([], {}), '()\n', (755, 757), False, 'from fourlang.stanford_wrapper import StanfordParser\n'), ((1308, 1340), 're.sub', 're.sub', (['"""_[0-9][0-9]*"""', '""""""', 'node'], {}), "('_[0-9][0-9]*', '', node)\n", (1314, 1340), False, 'import re\n'), ((2180, 2222), 'spacy.load', 'spacy.load', (['self.language_models[src_lang]'], {}), '(self.language_models[src_lang])\n', (2190, 2222), False, 'import spacy\n'), ((2251, 2293), 'spacy.load', 'spacy.load', (['self.language_models[tgt_lang]'], {}), '(self.language_models[tgt_lang])\n', (2261, 2293), False, 'import spacy\n'), ((2707, 2724), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2718, 2724), False, 'from collections import defaultdict\n'), ((3012, 3054), 'spacy.load', 'spacy.load', (['self.language_models[src_lang]'], {}), '(self.language_models[src_lang])\n', (3022, 3054), False, 'import spacy\n'), ((3083, 3125), 'spacy.load', 'spacy.load', (['self.language_models[tgt_lang]'], {}), '(self.language_models[tgt_lang])\n', (3093, 3125), False, 'import spacy\n'), ((3460, 3496), 'json.dumps', 'json.dumps', (["{'sentences': sentences}"], {}), "({'sentences': sentences})\n", (3470, 3496), False, 'import json\n'), ((22360, 22388), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['prem', 'hyp'], {}), '(prem, hyp)\n', (22377, 22388), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((24446, 24493), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['embeddings[0]', 'embeddings[1]'], {}), '(embeddings[0], embeddings[1])\n', (24463, 24493), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((3696, 3709), 'numpy.asarray', 'np.asarray', (['e'], {}), '(e)\n', (3706, 3709), True, 'import numpy as np\n'), ((20573, 20604), 'copy.deepcopy', 'copy.deepcopy', (['graph_hypothesis'], {}), '(graph_hypothesis)\n', (20586, 20604), False, 'import copy\n'), ((2651, 2676), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (2666, 2676), False, 'import os\n'), ((19530, 19558), 'copy.deepcopy', 'copy.deepcopy', (['graph_premise'], {}), '(graph_premise)\n', (19543, 19558), False, 'import copy\n'), ((22439, 22465), 'numpy.transpose', 'np.transpose', (['similarities'], {}), '(similarities)\n', (22451, 22465), True, 'import numpy as np\n'), ((24544, 24570), 'numpy.transpose', 'np.transpose', (['similarities'], {}), '(similarities)\n', (24556, 24570), True, 'import numpy as np\n'), ((24952, 24999), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['embeddings[0]', 'embeddings[1]'], {}), '(embeddings[0], embeddings[1])\n', (24969, 24999), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((18006, 18091), 'networkx.algorithms.shortest_path', 'algorithms.shortest_path', (['graph_hypothesis.G', 'graph_hypothesis.root', 'hyp_node[0]'], {}), '(graph_hypothesis.G, graph_hypothesis.root, hyp_node[0]\n )\n', (18030, 18091), False, 'from networkx import algorithms\n'), ((20336, 20411), 'networkx.algorithms.has_path', 'algorithms.has_path', (['graph_premise_only_zero.G', 'graph_premise.root', 'root_id'], {}), '(graph_premise_only_zero.G, graph_premise.root, root_id)\n', (20355, 20411), False, 'from networkx import algorithms\n'), ((16194, 16204), 'fourlang.fourlang.FourLang', 'FourLang', ([], {}), '()\n', (16202, 16204), False, 'from fourlang.fourlang import FourLang\n'), ((16279, 16289), 'fourlang.fourlang.FourLang', 'FourLang', ([], {}), '()\n', (16287, 16289), False, 'from fourlang.fourlang import FourLang\n'), ((16359, 16369), 'fourlang.fourlang.FourLang', 'FourLang', ([], {}), '()\n', (16367, 16369), False, 'from fourlang.fourlang import FourLang\n'), ((16371, 16381), 'fourlang.fourlang.FourLang', 'FourLang', ([], {}), '()\n', (16379, 16381), False, 'from fourlang.fourlang import FourLang\n'), ((23724, 23747), 'numpy.asarray', 'np.asarray', (['hyp_edge[0]'], {}), '(hyp_edge[0])\n', (23734, 23747), True, 'import numpy as np\n'), ((23751, 23775), 'numpy.asarray', 'np.asarray', (['prem_edge[0]'], {}), '(prem_edge[0])\n', (23761, 23775), True, 'import numpy as np\n'), ((23837, 23860), 'numpy.asarray', 'np.asarray', (['hyp_edge[1]'], {}), '(hyp_edge[1])\n', (23847, 23860), True, 'import numpy as np\n'), ((23864, 23888), 'numpy.asarray', 'np.asarray', (['prem_edge[1]'], {}), '(prem_edge[1])\n', (23874, 23888), True, 'import numpy as np\n')]
""" This module contains classes that can learn the weights. """ import numpy as np class STDP: """ Spike Timing Dependent Plasticity """ def __init__(self, eta, w_in, w_out, tau, window_size, verbose=False, tau2=None): """ :param eta: learning rate :param w_in: :param w_out: :param tau: The tau parameter for the learning window. If you want an unsymmetric window, then also set tau2. :param window_size: :param verbose: Verbose output of the weight change. :param tau2: If learning window is unsymmetric, then tau2 is the tau parameter for x-values GREATER than 0. If not given, it defaults to tau. :return: """ self.eta = eta self.w_in = w_in self.w_out = w_out self.tau = tau self.tau2 = tau2 if tau2 else tau self.window_size = window_size # T_l self.verbose = verbose def learning_window_neuron_pre(self, t1, t2_list): """ Return the sum of the learning windows of one neuron. :param t1: current time :param t2_list: spiking times of neuron """ sum_result = 0 for t2 in t2_list: sum_result += self.learning_window(t2 - t1) return sum_result def learning_window_neuron_post(self, t1, t2_list): """ Return the sum of the learning windows of one neuron. :param t1: current time :param t2_list: spiking times of neuron """ sum_result = 0 for t2 in t2_list: sum_result += self.learning_window(t1 - t2) return sum_result def learning_window(self, x): """ Constant Learning Window :param x: :return: """ if x > 0: return - np.exp(-x / self.tau2) elif x < 0: return np.exp(x / self.tau) else: return 0 def weight_change(self, spikes, weights, t): """ Calculate the weight change at time t. Changes the weights in place. :param spikes: Spiketrain :param weights: current weights :return: Changes in weights """ if weights.dtype != 'float': raise ValueError('The weight matrix has to be a float array. (Try to create it with dtype=float)') # Trim spiketrain, so that it's 'windowed' (look at variable T_l in the script) spikes = spikes[:, max(0, t+1-self.window_size):t+1] if not spikes.any(): if self.verbose: print("--------------------------") print("Calculating STDP weight change at time") print("No spikes found") return np.zeros(weights.shape) neurons, current_time = spikes.shape current_time -= 1 # because index begins with 0 connected_neurons = np.array(weights, dtype=bool) last_spikes = spikes[:, -1] last_spikes = last_spikes[:, np.newaxis] # Calculate the weight change for presynaptic spikes weight_change_presynaptic = last_spikes * connected_neurons * self.w_in # Calculate the weight change for postsynaptic spikes weight_change_postsynaptic = last_spikes.T * connected_neurons * self.w_out # Calculate the weight changes in regards of the learning window spikes_time = [] for neuron in range(neurons): spikes_time.append([]) for time, spike in enumerate(spikes[neuron, :]): if spike: spikes_time[neuron].append(time) neuron_learnwindow_pre = [self.learning_window_neuron_pre(current_time, x) for x in spikes_time] neuron_learnwindow_pre = np.array(neuron_learnwindow_pre, ndmin=2).T # Make it a column-vector neuron_learnwindow_post = [self.learning_window_neuron_post(current_time, x) for x in spikes_time] neuron_learnwindow_post = np.array(neuron_learnwindow_post, ndmin=2).T # Make it a column-vector learning_window_presynaptic = (last_spikes.T * connected_neurons) * neuron_learnwindow_pre learning_window_postsynaptic = (last_spikes * connected_neurons) * neuron_learnwindow_post.T # Total weight change weight_change = self.eta * (weight_change_presynaptic + weight_change_postsynaptic + learning_window_presynaptic + learning_window_postsynaptic) # Change the weight in place weights = weights.__iadd__(weight_change) if self.verbose: print("--------------------------") print("Calculating STDP weight change at time") print("Last spikes", last_spikes) print("Weight change in:", weight_change_presynaptic) print("Weight change out:", weight_change_postsynaptic) print("Outgoing spikes time", spikes_time) print("Neuron learnwindow pre", neuron_learnwindow_pre) print("Neuron learnwindow post", neuron_learnwindow_post) print("Presyncpit:", learning_window_presynaptic) print("Postsynapitc:", learning_window_postsynaptic) print("Summe (pres): ", neuron_learnwindow_pre, neuron_learnwindow_pre.shape) print("Summe (post): ", neuron_learnwindow_post, neuron_learnwindow_post.shape) print("presynaptic learning window", learning_window_presynaptic) print("postsynaptic learning window", learning_window_postsynaptic) print("type of weight change:", type(weight_change)) print("updated weights (function):", weights) print("") return weight_change if __name__ == "__main__": s = np.array([[0, 0, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 1]], dtype=bool) w = np.array([[0, 1, 1], [0, 0, 1], [0, 0, 0]], dtype=float) print("Spike Train", s) print("Weights", w) learning_model = STDP(eta=0.05, w_in=0.5, w_out=0.5, tau=10.0, window_size=4, verbose=True) print("Weight change: ", learning_model.weight_change(s, w, 2)) print("updated weights", w) import matplotlib.pyplot as plt x = np.linspace(-15, 15, 1000) y = np.array([learning_model.learning_window(xv) for xv in x]) plt.plot(x,y) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.zeros", "numpy.array", "numpy.exp", "numpy.linspace" ]
[((5713, 5786), 'numpy.array', 'np.array', (['[[0, 0, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 1]]'], {'dtype': 'bool'}), '([[0, 0, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 1]], dtype=bool)\n', (5721, 5786), True, 'import numpy as np\n'), ((5832, 5888), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {'dtype': 'float'}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]], dtype=float)\n', (5840, 5888), True, 'import numpy as np\n'), ((6220, 6246), 'numpy.linspace', 'np.linspace', (['(-15)', '(15)', '(1000)'], {}), '(-15, 15, 1000)\n', (6231, 6246), True, 'import numpy as np\n'), ((6318, 6332), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (6326, 6332), True, 'import matplotlib.pyplot as plt\n'), ((6336, 6346), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6344, 6346), True, 'import matplotlib.pyplot as plt\n'), ((2882, 2911), 'numpy.array', 'np.array', (['weights'], {'dtype': 'bool'}), '(weights, dtype=bool)\n', (2890, 2911), True, 'import numpy as np\n'), ((2725, 2748), 'numpy.zeros', 'np.zeros', (['weights.shape'], {}), '(weights.shape)\n', (2733, 2748), True, 'import numpy as np\n'), ((3738, 3779), 'numpy.array', 'np.array', (['neuron_learnwindow_pre'], {'ndmin': '(2)'}), '(neuron_learnwindow_pre, ndmin=2)\n', (3746, 3779), True, 'import numpy as np\n'), ((3951, 3993), 'numpy.array', 'np.array', (['neuron_learnwindow_post'], {'ndmin': '(2)'}), '(neuron_learnwindow_post, ndmin=2)\n', (3959, 3993), True, 'import numpy as np\n'), ((1811, 1833), 'numpy.exp', 'np.exp', (['(-x / self.tau2)'], {}), '(-x / self.tau2)\n', (1817, 1833), True, 'import numpy as np\n'), ((1873, 1893), 'numpy.exp', 'np.exp', (['(x / self.tau)'], {}), '(x / self.tau)\n', (1879, 1893), True, 'import numpy as np\n')]
###################################################### # 多个分支、远端近端、多个频率下某个分支从近端到远端的突触权值分布数据 ###################################################### from __future__ import division from brian2 import * import numpy as np import matplotlib.pyplot as plt import json import copy as cp import os, sys mod_path = os.path.abspath(os.path.join('..','Model')) sys.path.append(mod_path) from oo_Parameters import * from oo_equations_AMPAplast import * from oo_initScripts import set_init_nrn, set_init_syn from MakeNeuron_AMPAplast import * from MorphologyData import * start_scope() ###################################################### ## Load Morpho ###################################################### #morph = '../Model/Branco2010_Morpho.swc' #morph_data = BrancoData # morph = '../Model/Acker2008.swc' morph_data = AckerData synmodel = 'Chen' # synmodel = 'Chen' , synmodel = 'Clopath', synmodel = 'nonPlast' print('突触可塑性模型:',synmodel) expNr = 0 #实验编号,指两个任务对应的初始随机连接 loc1 = 'basal' #'tuft','apical','basal' print('树突神经元的区域:',loc1) titlestr = 'DataFBComps/'+loc1+'_'+str(expNr)+'_' data1 = open(titlestr+'compsF'+'.txt','r') data2 = open(titlestr+'compsB'+'.txt','r') compFWR = json.load(data1) compBWR = json.load(data2) data1.close() data2.close() nrFWR = len(compFWR) # nr of compartments for forward running nrBWR = len(compBWR) # nr of compartments for backward running #print('nrFWR=',nrFWR,', ','nrBWR=',nrBWR) #print('compFWR=',compFWR) #print('compBWR=',compBWR) allcomps = compFWR + compBWR allcompsArr = np.array(allcomps) if loc1 == 'tuft': distComps = distal_Acker_tuft proxComps = proximal_Acker_tuft elif loc1 == 'apical': distComps = distal_Acker_apical proxComps = proximal_Acker_apical elif loc1 == 'basal': distComps = distal_Acker_basal proxComps = proximal_Acker_basal else: print('Error!') sys.exit(1) branchNr = len(proxComps) print('区域包含的分支数:',branchNr) #homoloc = 'proximal' #'proximal','distal' homolocs = ['proximal', 'distal'] #'proximal','distal' #abranch = 0 abranchs = range(branchNr) nr_clst = 2 # nr of synapses per compartment print('每个分室的突触数:',nr_clst) #signal_rate = 10*Hz # activation rate of the pools signal_rates = np.array([100])*Hz #signal_rates = np.array([0.5,1,5,10,20,30,40,50,100])*Hz t_stim = 100*ms # length of activation 50*ms buffertime = 300*ms # rest time between two activations 150*ms init_weight = 0.5 # initial weight Theta_low = morph_data['thetalow']*mV ##################################################### # Input Neuron ##################################################### V_rest = 0.*mV V_thresh = 0.5*mV # Equations input neuron eqs_in = ''' dv/dt = (V_rest-v)/ms: volt v2 = rand()<(1.0*rate_v*dt) :1 (constant over dt) rate_v :Hz ds_trace/dt = -s_trace/taux :1 ''' ##################################################### # Create neuron ##################################################### N_input = NeuronGroup(nr_clst*(nrFWR+nrBWR), eqs_in, threshold='v+v2*2*V_thresh>V_thresh', reset='v=V_rest;s_trace+=x_reset*(taux/ms)',method='linear')# test_model = BRIANModel(morph) neuron = test_model.makeNeuron_Ca(morph_data) neuron.run_regularly('Mgblock = 1./(1.+ exp(-0.062*vu2)/3.57)',dt=defaultclock.dt) print('Neurons created...') ##################################################### # create Synapses ##################################################### if synmodel == 'Clopath': Syn_1 = Synapses(N_input,neuron, model= eq_1_plastAMPA, on_pre = eq_2_plastAMPA, method='heun' ) elif synmodel == 'Chen': Syn_1 = Synapses(N_input,neuron, model= chen_1_plastAMPA, on_pre = chen_2_plastAMPA, method='heun' ) else: Syn_1 = Synapses(N_input,neuron, model= eq_1_nonPlast, on_pre = eq_2_nonPlast, method='heun' ) for rr in range(nrFWR): Syn_1.connect(i=range(rr*nr_clst,(rr+1)*nr_clst),j=neuron[compFWR[rr]:compFWR[rr]+1]) for rr in range(nrBWR): Syn_1.connect(i=range((rr+nrFWR)*nr_clst,(rr+nrFWR+1)*nr_clst),j=neuron[compBWR[rr]:compBWR[rr]+1]) print('Synapses created...') print('------------------') print('Simulating...') for abranch in abranchs: print('第几个分支:',abranch) print('分支包含的分室数:',distComps[abranch]-proxComps[abranch]+1) for homoloc in homolocs: print('刺激位置:',homoloc) for signal_rate in signal_rates: print('刺激频率:',signal_rate) ##################################################### # Initial Values ##################################################### set_init_syn(Syn_1,init_weight) nr_syn = len(Syn_1.wampa[:]) set_init_nrn(neuron,Theta_low) N_input.v = V_rest N_input.rate_v = 0*Hz compset = list(range(proxComps[abranch],distComps[abranch]+1)) compsind = [] for acomp in compset: inputind = allcomps.index(acomp) compsind.append(inputind) if homoloc == 'proximal': homocomps = [compset[0]] heterocomps = compset[1:] else: homocomps = [compset[-1]] heterocomps = compset[:-1] homosyns = [] for acomp in homocomps: inputind = allcomps.index(acomp) homosyns = homosyns + list(range(inputind*nr_clst,(inputind+1)*nr_clst)) ##################################################### # Run ##################################################### #run(MEt0) for iii in range(40): N_input.rate_v[homosyns] = signal_rate run(t_stim) N_input.rate_v[homosyns] = 0*Hz run(buffertime) ##################################################### # Weight distribution in a branch ##################################################### if synmodel == 'Chen': wbranch = np.zeros(len(compset)) Erbranch = np.zeros(len(compset)) Efbranch = np.zeros(len(compset)) PEbranch = np.zeros(len(compset)) MEmaxbranch = np.zeros(len(compset)) MEdampbranch = np.zeros(len(compset)) wbranch_Free = np.zeros(len(compset)) Erbranch_Free = np.zeros(len(compset)) Efbranch_Free = np.zeros(len(compset)) PEbranch_Free = np.zeros(len(compset)) for jj in range(len(compset)): compind = compsind[jj] wbranch[jj] = np.mean(Syn_1.wampa[compind*nr_clst:(compind+1)*nr_clst]) Erbranch[jj] = np.mean(Syn_1.Erest[compind*nr_clst:(compind+1)*nr_clst]) Efbranch[jj] = np.mean(Syn_1.Efire[compind*nr_clst:(compind+1)*nr_clst]) PEbranch[jj] = np.mean(Syn_1.PE[compind*nr_clst:(compind+1)*nr_clst]) MEmaxbranch[jj] = np.mean(Syn_1.MEmax[compind*nr_clst:(compind+1)*nr_clst]) MEdampbranch[jj] = np.mean(Syn_1.MEdamp[compind*nr_clst:(compind+1)*nr_clst]) wbranch_Free[jj] = np.mean(Syn_1.wampa_Free[compind*nr_clst:(compind+1)*nr_clst]) Erbranch_Free[jj] = np.mean(Syn_1.Erest_Free[compind*nr_clst:(compind+1)*nr_clst]) Efbranch_Free[jj] = np.mean(Syn_1.Efire_Free[compind*nr_clst:(compind+1)*nr_clst]) PEbranch_Free[jj] = np.mean(Syn_1.PE_Free[compind*nr_clst:(compind+1)*nr_clst]) if homoloc == 'distal': wbranch = wbranch[::-1] Erbranch = Erbranch[::-1] Efbranch = Efbranch[::-1] PEbranch = PEbranch[::-1] MEmaxbranch = MEmaxbranch[::-1] MEdampbranch = MEdampbranch[::-1] wbranch_Free = wbranch_Free[::-1] Erbranch_Free = Erbranch_Free[::-1] Efbranch_Free = Efbranch_Free[::-1] PEbranch_Free = PEbranch_Free[::-1] elif synmodel == 'Clopath': wbranch = np.zeros(len(compset)) for jj in range(len(compset)): compind = compsind[jj] # wmean = np.mean(Syn_1.wampa[compind*nr_clst:(compind+1)*nr_clst]) # wbranch[jj] = wmean + 15.*(wmean-init_weight) wbranch[jj] = np.mean(Syn_1.wampa[compind*nr_clst:(compind+1)*nr_clst]) if homoloc == 'distal': wbranch = wbranch[::-1] else: wbranch = np.zeros(len(compset)) for jj in range(len(compset)): compind = compsind[jj] wbranch[jj] = np.mean(Syn_1.wampa[compind*nr_clst:(compind+1)*nr_clst]) if homoloc == 'distal': wbranch = wbranch[::-1] #------------------------------ titlestr = 'Data/'+synmodel+'_'+loc1+'_'+str(nr_clst)+'_'+str(init_weight)+'_'+str(abranch)+'_'+homoloc+'_'+str(signal_rate/Hz) data0 = open(titlestr+'_wbranch.txt','w') json.dump(wbranch.tolist(),data0) data0.close() if synmodel == 'Chen': data0 = open(titlestr+'_wbranch_Free.txt','w') json.dump(wbranch_Free.tolist(),data0) data0.close() data0 = open(titlestr+'_Erbranch.txt','w') json.dump(Erbranch.tolist(),data0) data0.close() data0 = open(titlestr+'_Efbranch.txt','w') json.dump(Efbranch.tolist(),data0) data0.close() data0 = open(titlestr+'_PEbranch.txt','w') json.dump(PEbranch.tolist(),data0) data0.close() data0 = open(titlestr+'_MEmaxbranch.txt','w') json.dump(MEmaxbranch.tolist(),data0) data0.close() data0 = open(titlestr+'_MEdampbranch.txt','w') json.dump(MEdampbranch.tolist(),data0) data0.close() data0 = open(titlestr+'_Erbranch_Free.txt','w') json.dump(Erbranch_Free.tolist(),data0) data0.close() data0 = open(titlestr+'_Efbranch_Free.txt','w') json.dump(Efbranch_Free.tolist(),data0) data0.close() data0 = open(titlestr+'_PEbranch_Free.txt','w') json.dump(PEbranch_Free.tolist(),data0) data0.close() sys.exit(1)
[ "sys.path.append", "json.load", "oo_initScripts.set_init_nrn", "numpy.mean", "numpy.array", "oo_initScripts.set_init_syn", "os.path.join", "sys.exit" ]
[((354, 379), 'sys.path.append', 'sys.path.append', (['mod_path'], {}), '(mod_path)\n', (369, 379), False, 'import os, sys\n'), ((1191, 1207), 'json.load', 'json.load', (['data1'], {}), '(data1)\n', (1200, 1207), False, 'import json\n'), ((1218, 1234), 'json.load', 'json.load', (['data2'], {}), '(data2)\n', (1227, 1234), False, 'import json\n'), ((1532, 1550), 'numpy.array', 'np.array', (['allcomps'], {}), '(allcomps)\n', (1540, 1550), True, 'import numpy as np\n'), ((10899, 10910), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (10907, 10910), False, 'import os, sys\n'), ((326, 353), 'os.path.join', 'os.path.join', (['""".."""', '"""Model"""'], {}), "('..', 'Model')\n", (338, 353), False, 'import os, sys\n'), ((2210, 2225), 'numpy.array', 'np.array', (['[100]'], {}), '([100])\n', (2218, 2225), True, 'import numpy as np\n'), ((1861, 1872), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1869, 1872), False, 'import os, sys\n'), ((4800, 4832), 'oo_initScripts.set_init_syn', 'set_init_syn', (['Syn_1', 'init_weight'], {}), '(Syn_1, init_weight)\n', (4812, 4832), False, 'from oo_initScripts import set_init_nrn, set_init_syn\n'), ((4885, 4916), 'oo_initScripts.set_init_nrn', 'set_init_nrn', (['neuron', 'Theta_low'], {}), '(neuron, Theta_low)\n', (4897, 4916), False, 'from oo_initScripts import set_init_nrn, set_init_syn\n'), ((6878, 6941), 'numpy.mean', 'np.mean', (['Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst])\n', (6885, 6941), True, 'import numpy as np\n'), ((6971, 7034), 'numpy.mean', 'np.mean', (['Syn_1.Erest[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.Erest[compind * nr_clst:(compind + 1) * nr_clst])\n', (6978, 7034), True, 'import numpy as np\n'), ((7064, 7127), 'numpy.mean', 'np.mean', (['Syn_1.Efire[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.Efire[compind * nr_clst:(compind + 1) * nr_clst])\n', (7071, 7127), True, 'import numpy as np\n'), ((7157, 7217), 'numpy.mean', 'np.mean', (['Syn_1.PE[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.PE[compind * nr_clst:(compind + 1) * nr_clst])\n', (7164, 7217), True, 'import numpy as np\n'), ((7250, 7313), 'numpy.mean', 'np.mean', (['Syn_1.MEmax[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.MEmax[compind * nr_clst:(compind + 1) * nr_clst])\n', (7257, 7313), True, 'import numpy as np\n'), ((7347, 7411), 'numpy.mean', 'np.mean', (['Syn_1.MEdamp[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.MEdamp[compind * nr_clst:(compind + 1) * nr_clst])\n', (7354, 7411), True, 'import numpy as np\n'), ((7445, 7513), 'numpy.mean', 'np.mean', (['Syn_1.wampa_Free[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.wampa_Free[compind * nr_clst:(compind + 1) * nr_clst])\n', (7452, 7513), True, 'import numpy as np\n'), ((7548, 7616), 'numpy.mean', 'np.mean', (['Syn_1.Erest_Free[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.Erest_Free[compind * nr_clst:(compind + 1) * nr_clst])\n', (7555, 7616), True, 'import numpy as np\n'), ((7651, 7719), 'numpy.mean', 'np.mean', (['Syn_1.Efire_Free[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.Efire_Free[compind * nr_clst:(compind + 1) * nr_clst])\n', (7658, 7719), True, 'import numpy as np\n'), ((7754, 7819), 'numpy.mean', 'np.mean', (['Syn_1.PE_Free[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.PE_Free[compind * nr_clst:(compind + 1) * nr_clst])\n', (7761, 7819), True, 'import numpy as np\n'), ((8731, 8794), 'numpy.mean', 'np.mean', (['Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst])\n', (8738, 8794), True, 'import numpy as np\n'), ((9064, 9127), 'numpy.mean', 'np.mean', (['Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst]'], {}), '(Syn_1.wampa[compind * nr_clst:(compind + 1) * nr_clst])\n', (9071, 9127), True, 'import numpy as np\n')]
#!/usr/bin/env python import rospy from std_msgs.msg import String, Header from tf2_msgs.msg import TFMessage from nav_msgs.msg import Odometry from sensor_msgs.msg import PointCloud2, Image, PointField from nav_msgs.msg import OccupancyGrid from geometry_msgs.msg import PoseStamped from actionlib_msgs.msg import GoalID from geometry_msgs.msg import Twist import sensor_msgs.point_cloud2 as pc2 from tf.transformations import euler_from_quaternion, quaternion_from_euler, euler_matrix import tf2_ros as tf2 import numpy as np import cv2 # Apparently ROS thinks Python is C :/ import ctypes import struct from move import MoveMe pc_callback_count = 0 pc_callback_rate = 3 #5 goal_coords = None goal_pose = None has_set_goal = False seq = 0 seen_map_msg = None curr_pose = None pub_map_seen = None pub_cancel = None pub_goal_found = None def map_callback(msg): global seen_map_msg global pub_map_seen #print(dir(msg)) # Maybe this will create a new topic? pub_map_seen = rospy.Publisher('map_seen', OccupancyGrid, queue_size=1) origin_pos = msg.info.origin.position res = msg.info.resolution map_width = msg.info.width map_height = msg.info.height print("Map Callback") print(origin_pos) print(map_height, map_width) data = np.array(msg.data) data[np.where((data < 0) | (data > 80))] = 100 data[np.where(data!=100)] = 0 msg.data = tuple(data) seen_map_msg = msg while pub_map_seen.get_num_connections() < 1: rospy.sleep(0.1) pub_map_seen.publish(msg) def callback(data): print("-------------------------\n") print(data.encoding) w = data.width h = data.height print("Width: ", w, "Height: ", h) print(len(data.data)/(w*h), data.step) print(type(data.data[0])) print(data.data[0], data.data[1], data.data[2]) rospy.sleep(1) # I.e. decode data def rgb_float_to_list(rgb_float): s = struct.pack('>f', rgb_float) i = struct.unpack('>l',s)[0] # you can get back the float value by the inverse operations pack = ctypes.c_uint32(i).value r = int ((pack & 0x00FF0000)>> 16) g = int ((pack & 0x0000FF00)>> 8) b = int (pack & 0x000000FF) return [r, g, b] def callback_pc(ros_point_cloud): global pc_callback_count global pc_callback_rate # print("Hello") pc_callback_count = pc_callback_count +1 if pc_callback_count >= pc_callback_rate: pc_callback_count = 0 pc_proc(ros_point_cloud) def get_3D_transf_matrix(transf_msg): #print("get_3D_transf_matrix_z") x_translate = transf_msg.transform.translation.x y_translate = transf_msg.transform.translation.y z_translate = transf_msg.transform.translation.z rot = transf_msg.transform.rotation euler_rot = euler_from_quaternion([rot.x, rot.y, rot.z, rot.w]) euler_mat = euler_matrix(euler_rot[0], euler_rot[1], euler_rot[2]) transf_mat = euler_mat.copy() transf_mat[0][-1] = x_translate transf_mat[1][-1] = y_translate transf_mat[2][-1] = z_translate return transf_mat def transf_sing(transf_mat, xyz_np): transf_xyz = np.matmul(transf_mat, np.append(xyz_np, 1)) transf_xyz = np.delete(transf_xyz, -1) return transf_xyz # xy - np.array # transform_msg def apply_transform(xyz_np, transf_msg): transf_mat = get_3D_transf_matrix(transf_msg) if len(xyz_np.shape) == 1: return transf_sing(transf_mat, xyz_np) pass def pc_proc(ros_point_cloud): global goal_coords global has_set_goal global seen_map_msg print("-------------------------\n") width = ros_point_cloud.width height = ros_point_cloud.height tfBuffer = tf2.Buffer() listener = tf2.TransformListener(tfBuffer) tmp = list(pc2.read_points(ros_point_cloud)) all_xyz = list(pc2.read_points(ros_point_cloud, field_names = ("x","y","z"))) xyz_np = np.array(all_xyz) #print("xyz_np.shape - ", xyz_np.shape) xyz_np = xyz_np.reshape((height,width,3)) all_rgb_float = list(pc2.read_points(ros_point_cloud, field_names = ("rgb"))) all_rgb = [rgb_float_to_list(rgb_float[0]) for rgb_float in all_rgb_float] np_rgb = np.array(all_rgb) np_rgb = np_rgb.reshape((height,width,3)) rgb_lower = [125,40,0] rgb_upper = [145,60,20] orange_indices = np.where(np.all((np_rgb > rgb_lower) & (np_rgb < rgb_upper), axis=-1)) tot_pixels = width * height tol = 0.005 # 0.5% if orange_indices[0].shape[0]/float(tot_pixels) >= tol: xyz_obj = xyz_np[orange_indices[0], orange_indices[1]] obj_coords_mean = np.nanmean(xyz_obj.reshape((-1,3)), axis=0) transform_msg = None if not np.isnan(np.sum(obj_coords_mean)): print("Target found at " + str(obj_coords_mean) + " :)") # Cancel current path - /move_base/cancel pub_cancel.publish(GoalID()) rospy.sleep(1) try: transform_msg = tfBuffer.lookup_transform("map","base_link", rospy.Time(0), rospy.Duration(0.1)) print("TRANSFORM MESSAGE: \n" + str(transform_msg)) transf_mat = get_3D_transf_matrix(transform_msg) except (tf2.LookupException, tf2.ConnectivityException, tf2.ExtrapolationException): print("transform_msg not found") else: print("Object found but coords cannot be determined") if not has_set_goal and not np.isnan(np.sum(obj_coords_mean)) and (transform_msg is not None): goal_coords_world = apply_transform(obj_coords_mean, transform_msg) pub_goal_found.publish(Twist()) has_set_goal = True move_me = MoveMe() move_me.move_to_xyrot(goal_coords_world[0], goal_coords_world[1], 0) else: print("Target not found :(") if seen_map_msg is not None and False: print("MAP:") map_height = seen_map_msg.info.height map_width = seen_map_msg.info.width map_res = seen_map_msg.info.resolution map_origin_pos_obj = seen_map_msg.info.origin.position map_origin_xy = [map_origin_pos_obj.x, map_origin_pos_obj.y] print("map_res: ", map_res, str(map_origin_pos_obj)) print("map_origin_xy:") print(map_origin_xy) map_data = np.array(seen_map_msg.data).reshape((map_height,map_width)) xy_np = np.delete(xyz_np, 2,2) xy_transf = xy_np - map_origin_xy xy_transf = np.nan_to_num(xy_transf) # Replace NANs with zero xy_transf = (xy_transf/map_res).round().astype(int) xy_transf = xy_transf.reshape((-1,2)) #print(xy_transf) print("map_data.shape: " + str(map_data.shape)) print("xy_transf.shape: " + str(xy_transf.shape)) # map_arr[index_arr[:,0], index_arr[:,1]] map_data[xy_transf[:,0], xy_transf[:,1]] = 100 map_data = map_data.reshape(-1) seen_map_msg.data = tuple(map_data) pub_map_seen.publish(seen_map_msg) def goal_cb(data): #print(dir(data)) print(dir(data.pose)) pos = data.pose.position orient = data.pose.orientation must_print = True if must_print: print("---------------------------") print("Goal data recieved") print(data) print("Position: " + str(pos)) print("Orient Quaternion: " + str(orient)) print("Orient Euler: " + str(euler_from_quaternion([orient.x, orient.y, orient.z, orient.w]))) print("---------------------------") def move_to_xzrot(x,z,rot,pub_goal): global seq curr_pose = rospy.wait_for_message("/odom", Odometry) goal_msg = PoseStamped() odom_orient = curr_pose.twist.twist.angular odom_coords = curr_pose.twist.twist.linear y = odom_coords.y tmp_orient = quaternion_from_euler(odom_orient.x, odom_orient.y, rot) goal_msg.pose.orientation.x = tmp_orient[0] goal_msg.pose.orientation.y = tmp_orient[1] goal_msg.pose.orientation.z = tmp_orient[2] goal_msg.pose.orientation.w = tmp_orient[3] goal_msg.pose.position.x = x goal_msg.pose.position.y = y goal_msg.pose.position.z = z goal_msg.header.frame_id = 'map' now = rospy.get_rostime() goal_msg.header.stamp.secs = now.secs goal_msg.header.stamp.nsecs = now.nsecs goal_msg.header.seq = seq seq = seq + 1 pub_goal.publish(goal_msg) return 0 def main(): global pub_cancel global pub_goal_found rospy.init_node('listener', anonymous=True) pub_cancel = rospy.Publisher('/move_base/cancel', GoalID, queue_size=1) pub_goal_found = rospy.Publisher('/goal_found', Twist, queue_size=1) while pub_cancel.get_num_connections() < 1: rospy.sleep(0.1) rospy.Subscriber("/map", OccupancyGrid, map_callback) rospy.Subscriber("/camera/depth/points", PointCloud2, callback_pc) rospy.spin() if __name__ == '__main__': main()
[ "rospy.Subscriber", "numpy.nan_to_num", "numpy.sum", "rospy.Time", "actionlib_msgs.msg.GoalID", "sensor_msgs.point_cloud2.read_points", "rospy.Duration", "geometry_msgs.msg.PoseStamped", "tf2_ros.TransformListener", "struct.pack", "numpy.append", "rospy.init_node", "struct.unpack", "geometry_msgs.msg.Twist", "move.MoveMe", "numpy.delete", "numpy.all", "rospy.wait_for_message", "rospy.get_rostime", "rospy.Publisher", "rospy.sleep", "tf2_ros.Buffer", "numpy.where", "numpy.array", "tf.transformations.quaternion_from_euler", "tf.transformations.euler_from_quaternion", "rospy.spin", "ctypes.c_uint32", "tf.transformations.euler_matrix" ]
[((989, 1045), 'rospy.Publisher', 'rospy.Publisher', (['"""map_seen"""', 'OccupancyGrid'], {'queue_size': '(1)'}), "('map_seen', OccupancyGrid, queue_size=1)\n", (1004, 1045), False, 'import rospy\n'), ((1258, 1276), 'numpy.array', 'np.array', (['msg.data'], {}), '(msg.data)\n', (1266, 1276), True, 'import numpy as np\n'), ((1767, 1781), 'rospy.sleep', 'rospy.sleep', (['(1)'], {}), '(1)\n', (1778, 1781), False, 'import rospy\n'), ((1841, 1869), 'struct.pack', 'struct.pack', (['""">f"""', 'rgb_float'], {}), "('>f', rgb_float)\n", (1852, 1869), False, 'import struct\n'), ((2626, 2677), 'tf.transformations.euler_from_quaternion', 'euler_from_quaternion', (['[rot.x, rot.y, rot.z, rot.w]'], {}), '([rot.x, rot.y, rot.z, rot.w])\n', (2647, 2677), False, 'from tf.transformations import euler_from_quaternion, quaternion_from_euler, euler_matrix\n'), ((2691, 2745), 'tf.transformations.euler_matrix', 'euler_matrix', (['euler_rot[0]', 'euler_rot[1]', 'euler_rot[2]'], {}), '(euler_rot[0], euler_rot[1], euler_rot[2])\n', (2703, 2745), False, 'from tf.transformations import euler_from_quaternion, quaternion_from_euler, euler_matrix\n'), ((3014, 3039), 'numpy.delete', 'np.delete', (['transf_xyz', '(-1)'], {}), '(transf_xyz, -1)\n', (3023, 3039), True, 'import numpy as np\n'), ((3469, 3481), 'tf2_ros.Buffer', 'tf2.Buffer', ([], {}), '()\n', (3479, 3481), True, 'import tf2_ros as tf2\n'), ((3494, 3525), 'tf2_ros.TransformListener', 'tf2.TransformListener', (['tfBuffer'], {}), '(tfBuffer)\n', (3515, 3525), True, 'import tf2_ros as tf2\n'), ((3664, 3681), 'numpy.array', 'np.array', (['all_xyz'], {}), '(all_xyz)\n', (3672, 3681), True, 'import numpy as np\n'), ((3933, 3950), 'numpy.array', 'np.array', (['all_rgb'], {}), '(all_rgb)\n', (3941, 3950), True, 'import numpy as np\n'), ((6938, 6979), 'rospy.wait_for_message', 'rospy.wait_for_message', (['"""/odom"""', 'Odometry'], {}), "('/odom', Odometry)\n", (6960, 6979), False, 'import rospy\n'), ((6993, 7006), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (7004, 7006), False, 'from geometry_msgs.msg import PoseStamped\n'), ((7136, 7192), 'tf.transformations.quaternion_from_euler', 'quaternion_from_euler', (['odom_orient.x', 'odom_orient.y', 'rot'], {}), '(odom_orient.x, odom_orient.y, rot)\n', (7157, 7192), False, 'from tf.transformations import euler_from_quaternion, quaternion_from_euler, euler_matrix\n'), ((7506, 7525), 'rospy.get_rostime', 'rospy.get_rostime', ([], {}), '()\n', (7523, 7525), False, 'import rospy\n'), ((7753, 7796), 'rospy.init_node', 'rospy.init_node', (['"""listener"""'], {'anonymous': '(True)'}), "('listener', anonymous=True)\n", (7768, 7796), False, 'import rospy\n'), ((7812, 7870), 'rospy.Publisher', 'rospy.Publisher', (['"""/move_base/cancel"""', 'GoalID'], {'queue_size': '(1)'}), "('/move_base/cancel', GoalID, queue_size=1)\n", (7827, 7870), False, 'import rospy\n'), ((7890, 7941), 'rospy.Publisher', 'rospy.Publisher', (['"""/goal_found"""', 'Twist'], {'queue_size': '(1)'}), "('/goal_found', Twist, queue_size=1)\n", (7905, 7941), False, 'import rospy\n'), ((8010, 8063), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/map"""', 'OccupancyGrid', 'map_callback'], {}), "('/map', OccupancyGrid, map_callback)\n", (8026, 8063), False, 'import rospy\n'), ((8067, 8133), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/camera/depth/points"""', 'PointCloud2', 'callback_pc'], {}), "('/camera/depth/points', PointCloud2, callback_pc)\n", (8083, 8133), False, 'import rospy\n'), ((8137, 8149), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (8147, 8149), False, 'import rospy\n'), ((1283, 1317), 'numpy.where', 'np.where', (['((data < 0) | (data > 80))'], {}), '((data < 0) | (data > 80))\n', (1291, 1317), True, 'import numpy as np\n'), ((1331, 1352), 'numpy.where', 'np.where', (['(data != 100)'], {}), '(data != 100)\n', (1339, 1352), True, 'import numpy as np\n'), ((1453, 1469), 'rospy.sleep', 'rospy.sleep', (['(0.1)'], {}), '(0.1)\n', (1464, 1469), False, 'import rospy\n'), ((1875, 1897), 'struct.unpack', 'struct.unpack', (['""">l"""', 's'], {}), "('>l', s)\n", (1888, 1897), False, 'import struct\n'), ((1970, 1988), 'ctypes.c_uint32', 'ctypes.c_uint32', (['i'], {}), '(i)\n', (1985, 1988), False, 'import ctypes\n'), ((2975, 2995), 'numpy.append', 'np.append', (['xyz_np', '(1)'], {}), '(xyz_np, 1)\n', (2984, 2995), True, 'import numpy as np\n'), ((3539, 3571), 'sensor_msgs.point_cloud2.read_points', 'pc2.read_points', (['ros_point_cloud'], {}), '(ros_point_cloud)\n', (3554, 3571), True, 'import sensor_msgs.point_cloud2 as pc2\n'), ((3590, 3651), 'sensor_msgs.point_cloud2.read_points', 'pc2.read_points', (['ros_point_cloud'], {'field_names': "('x', 'y', 'z')"}), "(ros_point_cloud, field_names=('x', 'y', 'z'))\n", (3605, 3651), True, 'import sensor_msgs.point_cloud2 as pc2\n'), ((3789, 3840), 'sensor_msgs.point_cloud2.read_points', 'pc2.read_points', (['ros_point_cloud'], {'field_names': '"""rgb"""'}), "(ros_point_cloud, field_names='rgb')\n", (3804, 3840), True, 'import sensor_msgs.point_cloud2 as pc2\n'), ((4072, 4132), 'numpy.all', 'np.all', (['((np_rgb > rgb_lower) & (np_rgb < rgb_upper))'], {'axis': '(-1)'}), '((np_rgb > rgb_lower) & (np_rgb < rgb_upper), axis=-1)\n', (4078, 4132), True, 'import numpy as np\n'), ((5861, 5884), 'numpy.delete', 'np.delete', (['xyz_np', '(2)', '(2)'], {}), '(xyz_np, 2, 2)\n', (5870, 5884), True, 'import numpy as np\n'), ((5937, 5961), 'numpy.nan_to_num', 'np.nan_to_num', (['xy_transf'], {}), '(xy_transf)\n', (5950, 5961), True, 'import numpy as np\n'), ((7991, 8007), 'rospy.sleep', 'rospy.sleep', (['(0.1)'], {}), '(0.1)\n', (8002, 8007), False, 'import rospy\n'), ((4578, 4592), 'rospy.sleep', 'rospy.sleep', (['(1)'], {}), '(1)\n', (4589, 4592), False, 'import rospy\n'), ((5252, 5260), 'move.MoveMe', 'MoveMe', ([], {}), '()\n', (5258, 5260), False, 'from move import MoveMe\n'), ((4411, 4434), 'numpy.sum', 'np.sum', (['obj_coords_mean'], {}), '(obj_coords_mean)\n', (4417, 4434), True, 'import numpy as np\n'), ((4564, 4572), 'actionlib_msgs.msg.GoalID', 'GoalID', ([], {}), '()\n', (4570, 4572), False, 'from actionlib_msgs.msg import GoalID\n'), ((5206, 5213), 'geometry_msgs.msg.Twist', 'Twist', ([], {}), '()\n', (5211, 5213), False, 'from geometry_msgs.msg import Twist\n'), ((5790, 5817), 'numpy.array', 'np.array', (['seen_map_msg.data'], {}), '(seen_map_msg.data)\n', (5798, 5817), True, 'import numpy as np\n'), ((4668, 4681), 'rospy.Time', 'rospy.Time', (['(0)'], {}), '(0)\n', (4678, 4681), False, 'import rospy\n'), ((4683, 4702), 'rospy.Duration', 'rospy.Duration', (['(0.1)'], {}), '(0.1)\n', (4697, 4702), False, 'import rospy\n'), ((5046, 5069), 'numpy.sum', 'np.sum', (['obj_coords_mean'], {}), '(obj_coords_mean)\n', (5052, 5069), True, 'import numpy as np\n'), ((6768, 6831), 'tf.transformations.euler_from_quaternion', 'euler_from_quaternion', (['[orient.x, orient.y, orient.z, orient.w]'], {}), '([orient.x, orient.y, orient.z, orient.w])\n', (6789, 6831), False, 'from tf.transformations import euler_from_quaternion, quaternion_from_euler, euler_matrix\n')]
#!/usr/bin/env python """ Library module that contains functions common to all our FARM-based programs for evaluation, training, application. """ import sys import os.path import datetime from sklearn.metrics import confusion_matrix import torch import statistics import numbers import logging import time from collections import defaultdict from pathlib import Path import numpy as np from orderedattrdict import AttrDict from argparse import ArgumentParser import mlflow import signal import toml import json import farm.utils import farm.infer from farm.infer import Inferencer import farm.modeling.tokenization import farm.data_handler.processor import farm.data_handler.data_silo import farm.modeling.optimization from farm.data_handler.data_silo import DataSiloForCrossVal, DataSiloForHoldout from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.language_model import LanguageModel # from farm.train import Trainer, EarlyStopping from farm_tools.train_modified import Trainer, EarlyStopping from farm_tools.farm_eval import OurEvaluator # from farm.eval import Evaluator from farm.evaluation.metrics import registered_metrics from farm_tools.utils import init_logger from farm.visual.ascii.images import BUSH_SEP from farm_tools.farm_tasks import * from farm_tools.farm_optsched import * from farm_tools.farm_utils import str2bool logger = init_logger() def install_signal_handler(mlf_logger): """ Install the SIGINT signal handler which will log the "ABORT" parameter to the FARM MLFlowLogger (not directly to mlflow so we do NOT log if logging is disabled). :param mlf_logger: FARM MLFlowLogger instance :return: """ def signal_handler(sig, frame): logger.error("Control-C / SIGINT received, aborting!!!!") mlf_logger.log_params({"ABORTED": "SIGINT"}) sys.exit(1) signal.signal(signal.SIGINT, signal_handler) DEFAULT_CONFIG_BASIC = AttrDict(dict( seed=42, n_gpu=1, use_cuda=None, use_amp=False, do_lower_case=False, text_column="text", batch_size=32, max_seq=64, deterministic="False" )) DEFAULT_CONFIG_TRAIN = AttrDict(dict( label_column="target", dev_splt=0.1, dev_stratification=False, grad_acc=1, evaluate_every=10, max_epochs=20, dropout=0.2, lrate=0.5e-5, es_patience=10, es_metric="f1_micro", es_mode="max", es_min_evals=1, es_hd=0, losses_alpha=0.5, fts="FTSingleClassification", fts_cfg=None, # multiple values of the form key=val fos="FOSDefault", fos_cfg=None, hd_dim=768, hd0_cfg=None, hd1_cfg=None, hd2_cfg=None, hd3_cfg=None, hd4_cfg=None, hd5_cfg=None, hd6_cfg=None, hd7_cfg=None, hd8_cfg=None, hd9_cfg=None, )) DEFAULT_CONFIG_APPLY = AttrDict(dict( text_column="text", label_column="prediction", prob_column="prob", batch_size=32, max_seq=None, num_processes=1, n_gpu=1, # NEEDED??? do_lower_case=False, )) DEFAULT_CONFIG_ESTIMATE = AttrDict(dict( eval_method="xval", # possible values: xval, holdout, onfile xval_folds=10, holdout_repeats=5, holdout_train=0.7, eval_stratification=False, onfile_file="NEEDED" )) DEFAULT_CONFIG_HSEARCH = AttrDict(dict( halg="grid", beamsize=3, halg_random_n=20, est_var="head0_f1_macro_mean", est_cmp="max", )) def update_config(toupdate, updatewith): for k, v in updatewith.items(): if v is not None: toupdate[k] = v return toupdate def load_config(fpath): """ Load configuration from fpath and return as AttrDict. :param fpath: configuration file path, either TOML or JSON file :return: configuration object """ if fpath.endswith(".toml"): data = toml.load(fpath) elif fpath.endswith(".json"): with open(fpath, "rt", encoding="utf-8") as infp: data = json.load(infp) else: raise Exception(f"Cannot load config file {fpath}, must be .toml or json file") return AttrDict(data) def getargs(parser, cfg): args = parser.parse_args() if args.cfg: cfg_add = load_config(args.cfg) update_config(cfg, cfg_add) update_config(cfg, vars(args)) if cfg.get("labels") is None: cfg["label_list"] = ["0", "1"] else: cfg["label_list"] = cfg.labels.split(",") logger.info(f"Effective configuration: {cfg}") return cfg def argparser_basic(parser=None, cfg=None, ignore_runname=False): """ Creates the initial parser and config data structure for most applications. We extend the parser and the config with whatever additional bits we need before actually parsing the arguments. :return: a parser and a config data structure """ if parser is None: parser = ArgumentParser() if cfg is None: cfg = AttrDict() DF = DEFAULT_CONFIG_BASIC cfg.update(DF) if not ignore_runname: parser.add_argument("--runname", type=str, required=True, help="Experiment name. Files are stored in directory {runname}-{datetime}") parser.add_argument("--infile", type=str, required=True, help="Path to input file") parser.add_argument("--cfg", type=str, help="Path to configuration file") parser.add_argument("--seed", type=int, help=f"Random seed ({DF.seed})") parser.add_argument("--n_gpu", type=int, help=f"Number of GPUs, if GPU is to be used ({DF.n_gpu}") parser.add_argument("--use_cuda", default=None, type=str2bool, help="If GPUs should be used, if not specified, determined from setup") parser.add_argument("--use_amp", type=str2bool, help=f"Use AMP ({DF.use_amp}") parser.add_argument("--do_lower_case", type=str2bool, help=f"Lower case tokens ({DF.do_lower_case})") parser.add_argument("--text_column", type=str, help=f"Name of in/out text column ({DF.text_column})") parser.add_argument("--batch_size", type=int, help=f"Batch size ({DF.batch_size})") parser.add_argument("--max_seq", type=int, help=f"Maximum sequence length (whatever the trainer used)") parser.add_argument("--deterministic", type=str2bool, default="False", help=f"Use deterministic (slower) code ({DF.deterministic})") parser.add_argument("-d", action="store_true", help="Enable debug mode") return parser, cfg def argparser_estimate(parser=None, cfg=None): parser, cfg = argparser_train(parser, cfg) DF = DEFAULT_CONFIG_ESTIMATE if parser is None: parser = ArgumentParser() if cfg is None: cfg = AttrDict() cfg.update(DF) parser.add_argument("--eval_method", type=str, help=f"Evaluation method, one of xval, holdout ({DF.eval_method})") parser.add_argument("--xval_folds", type=int, help=f"Number of folds for xval ({DF.xval_folds})") parser.add_argument("--holdout_repeats", type=int, help=f"Number of repetitions for holdout estimation ({DF.holdout_repeats})") parser.add_argument("--holdout_train", type=float, help=f"Portion used for training for holdout estimation ({DF.holdout_train})") parser.add_argument("--eval_stratification", type=str2bool, help=f"Use stratified samples for the evaluation splits? ({DF.eval_stratification})") return parser, cfg def argparser_hsearch(parser=None, cfg=None): parser, cfg = argparser_estimate(parser, cfg) DF = DEFAULT_CONFIG_HSEARCH if parser is None: parser = ArgumentParser() if cfg is None: cfg = AttrDict() cfg.update(DF) parser.add_argument("--hcfg", type=str, required=True, help="TOML configuration file for the hyperparameter search (required)") parser.add_argument("--outpref", type=str, required=True, help=f"Output prefix for the files written for the hsearch run") parser.add_argument("--halg", type=str, default=DF.halg, help=f"Search algorithm, one of grid, random, greedy, beam ({DF.halg})") parser.add_argument("--halg_rand_n", type=int, default=DF.halg_random_n, help=f"Number of random runs for halg=random ({DF.halg_random_n})") parser.add_argument("--beamsize", type=str, default=DF.beamsize, help=f"Size of beam for halg=beam ({DF.beamsize})") parser.add_argument("--est_var", type=str, default=DF.est_var, help=f"Estimation variable to use for sorting/searching ({DF.est_var})") parser.add_argument("--est_cmp", type=str, default=DF.est_cmp, help=f"Comparison to use for optimizing est_var, min or max ({DF.est_cmp})") return parser, cfg def argparser_train(parser=None, cfg=None): parser, cfg = argparser_basic(parser, cfg) DF = DEFAULT_CONFIG_TRAIN if parser is None: parser = ArgumentParser() if cfg is None: cfg = AttrDict() cfg.update(DF) parser.add_argument("--label_column", type=str, help=f"Name of label column ({DF.label_column})") parser.add_argument("--dev_splt", type=float, help=f"Development set proportion ({DF.dev_splt})") parser.add_argument("--grad_acc", type=int, help=f"Gradient accumulation steps ({DF.grad_acc})") parser.add_argument("--lm_dir", type=str, help="Load LM from that directory instead of default") parser.add_argument("--lm_name", type=str, help="Load LM from that known named model (will download and cache model!)") parser.add_argument("--evaluate_every", type=float, help=f"Evaluate every this many batches ({DF.evaluate_every})") parser.add_argument("--max_epochs", type=int, help=f"Maximum number of epochs ({DF.max_epochs})") parser.add_argument("--dropout", type=float, help=f"Dropout rate ({DF.dropout})") parser.add_argument("--lrate", type=float, help=f"Learning rate ({DF.lrate})") parser.add_argument("--es_patience", type=int, help=f"Early stopping patience ({DF.es_patience})") parser.add_argument("--es_metric", type=str, help=f"Early stopping metric ({DF.es_metric})") parser.add_argument("--es_mode", type=str, help=f"Early stopping mode ({DF.es_mode})") parser.add_argument("--es_min_evals", type=int, help=f"Early stopping minimum evaluation steps ({DF.es_min_evals})") parser.add_argument("--es_hd", type=int, help=f"Early stopping head number to use ({DF.es_hd})") parser.add_argument("--labels", type=str, default=None, help=f"Comma separated list of labels, if missing, assume '0' and '1'") parser.add_argument("--dev_stratification", type=str2bool, help=f"Use stratified dev set splits? ({DF.dev_stratification})") parser.add_argument("--fts", type=str, help=f"FarmTasks class to use ({DF.fts})") parser.add_argument("--fts_cfg", nargs='*', default=[], help=f"FarmTasks configuration settings of the form parm=value") parser.add_argument("--fos", type=str, help=f"FarmOptSched class to use ({DF.fos})") parser.add_argument("--fos_cfg", nargs='*', default=[], help=f"Farm optimizer/scheduler configuration settings of the form parm=value") parser.add_argument("--hd_dim", type=int, default=DF.hd_dim, help=f"Dimension of the LM output, i.e. the head input ({DF.hd_dim})") parser.add_argument("--hd0_cfg", nargs='*', default=[], help=f"Head 0 config parameters of the form parm=value") parser.add_argument("--hd1_cfg", nargs='*', default=[], help=f"Head 1 config parameters of the form parm=value") parser.add_argument("--hd2_cfg", nargs='*', default=[], help=f"Head 2 config parameters of the form parm=value") parser.add_argument("--hd3_cfg", nargs='*', default=[], help=f"Head 2 config parameters of the form parm=value") parser.add_argument("--hd4_cfg", nargs='*', default=[], help=f"Head 2 config parameters of the form parm=value") parser.add_argument("--losses_alpha", type=float, default=DF.losses_alpha, help=f"Alpha for loss aggregation (weight of head 0, weight for head 1 is 1-alpha)") return parser, cfg def argparser_apply(parser=None, cfg=None): parser, cfg = argparser_basic(parser, cfg, ignore_runname=True) DF = DEFAULT_CONFIG_APPLY if parser is None: parser = ArgumentParser() if cfg is None: cfg = AttrDict() cfg.update(DF) parser.add_argument("--outfile", type=str, required=True, help="Path to output TSV file") parser.add_argument("--modeldir", type=str, required=True, help="Path to directory where the model is stored") # TODO: these should come from the task name maybe? parser.add_argument("--label_column", type=str, help=f"Name of added label column ({DF.label_column})") parser.add_argument("--prob_column", type=str, help=f"Name of added probability column ({DF.prob_column})") parser.add_argument("--num_processes", default=None, help=f"Number of processes to use ({DF.num_processes})") return parser, cfg def init_farm(cfg, logger=logger): if cfg.get("use_cuda") is None: use_cuda = torch.cuda.is_available() else: use_cuda = cfg.use_cuda device, n_gpu = farm.utils.initialize_device_settings(use_cuda=use_cuda) if cfg.get("deterministic", False): farm.utils.set_all_seeds(seed=cfg.get("seed", 41), deterministic_cudnn=True) # torch.set_deterministic(True) torch.use_deterministic_algorithms(True) else: farm.utils.set_all_seeds(seed=cfg.get("seed", 41), deterministic_cudnn=False) # torch.set_deterministic(False) torch.use_deterministic_algorithms(False) device = str(device) # this should give cuda or cpu if use_cuda: n_gpu = max(n_gpu, cfg.n_gpu) cfg.n_gpu = n_gpu cfg.device = device cfg.cuda_used = use_cuda logger.info("Device={}, nGPU={}".format(device, n_gpu)) mlflow.log_params({"device": str(device)}) mlflow.log_params({"n_gpu": str(n_gpu)}) import train_modified import farm_eval train_modified.looger = logger farm_eval.logger = logger # farm.train.logger = logger # farm.eval.logger = logger farm.utils.logger = logger farm.infer.logger = logger def log_results(results, name, steps=None, logging=True, print=True, num_fold=None): assert steps is not None or num_fold is not None use_steps = steps or num_fold # Print a header header = "\n\n" header += BUSH_SEP + "\n" header += "***************************************************\n" if num_fold is not None: header += f"***** EVALUATION {name} | FOLD: {num_fold} *****\n" else: header += f"***** EVALUATION {name} *****\n" header += "***************************************************\n" header += BUSH_SEP + "\n" logger.info(header) for head_num, head in enumerate(results): taskname = head["task_name"] logger.info(f"\n _________ head {head_num} of {len(results)}: {taskname} _________") for metric_name, metric_val in head.items(): # log with ML framework (e.g. Mlflow) if logging: if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"): if isinstance(metric_val, numbers.Number): mlflow.log_metrics( metrics={ f"{name}_{metric_name}_{head['task_name']}": metric_val }, step=use_steps, ) # print via standard python logger if print: if metric_name == "report": if isinstance(metric_val, str) and len(metric_val) > 8000: metric_val = metric_val[:7500] + "\n ............................. \n" + metric_val[-500:] logger.info("{}: \n {}".format(metric_name, metric_val)) else: if not metric_name in ["preds", "labels"] and not metric_name.startswith("_"): logger.info("{} {}: {}".format(taskname, metric_name, metric_val)) def train_model(silo, save_dir, lang_model_dir, cfg=None): language_model = LanguageModel.load(lang_model_dir) # TODO: use our own task classes here to create one or more prediction heads to use ft = cfg["_fts"] # the actual farm tasks instance (not the name) prediction_heads = ft.get_heads(silo) model = AdaptiveModel( language_model=language_model, prediction_heads=prediction_heads, embeds_dropout_prob=cfg.dropout, lm_output_types=["per_sequence"] * len(prediction_heads), loss_aggregation_fn=ft.get_loss_aggregation_fn(silo), device=cfg.device) logger.info(f"Model used for training:\n{model}") logger.info(f"Number of named model parameters: {len(list(model.named_parameters()))}") logger.info(f"Number of all model parameters: {len(list(model.parameters()))}") if cfg.d: for name, param in model.named_parameters(): if param.requires_grad: logger.info(f"PARAMETER name={name}, shape={param.data.shape}") else: logger.info(f"NOGRAD: name={name}, shape={param.data.shape}") # Create an optimizer, this was the original code # model, optimizer, lr_schedule = initialize_optimizer( # model=model, # learning_rate=cfg.lrate, # device=cfg.device, # n_batches=len(silo.loaders["train"]), # n_epochs=cfg.max_epochs, # use_amp=cfg.use_amp, # optimizer_opts=None, # schedule_opts={"name": "CosineWarmupWithRestarts", "warmup_proportion": 0.4}, # grad_acc_steps=cfg.grad_acc, # ) # use our own optimizer initializer instead: logger.info("Create optimizer/scheduler") fosname = cfg["fos"] clazz = globals().get(fosname) if clazz is None: raise Exception(f"FarmOptSched class {fosname} unknown") fos = clazz( model=model, n_batches=len(silo.loaders["train"]), n_epochs=cfg.max_epochs, device=cfg.device, learning_rate=cfg.lrate, grad_acc_steps=cfg.grad_acc, cfg=cfg ) logger.info(f"Using Farm OptSched Instance: {fos} of type {type(fos)}") model, optimizer, lr_schedule = fos.get_optsched() if cfg.d: logger.info(f"Created optimizer: {optimizer}") logger.info(f"Created scheduler: {lr_schedule}") earlystopping = EarlyStopping( head=cfg.es_hd, metric=cfg.es_metric, mode=cfg.es_mode, min_evals=cfg.es_min_evals, save_dir=os.path.join(save_dir), # where to save the best model patience=cfg.es_patience # number of evaluations to wait for improvement before terminating the training ) # if evaluate_every is < 0, interpret abs(evaluate_every) as number of epochs # for this we first need to find the number of batches per epoch eval_every = cfg.evaluate_every steps4epoch = len(silo.get_data_loader("train")) if eval_every < 0: nepochs = abs(eval_every) eval_every = int(nepochs * steps4epoch) else: eval_every = int(eval_every) neval4epoch = steps4epoch/eval_every logger.info(f"Evaluating every {eval_every} steps, {steps4epoch} steps, {neval4epoch} total per epoch") trainer = Trainer( model=model, optimizer=optimizer, data_silo=silo, epochs=cfg.max_epochs, n_gpu=cfg.n_gpu, lr_schedule=lr_schedule, evaluate_every=eval_every, device=cfg.device, grad_acc_steps=cfg.grad_acc, early_stopping=earlystopping, evaluator_test=False, disable_tqdm=True, ) # train it trainer.train() return trainer.model def run_xval(silo, save_dir, lang_model_dir, cfg): # Load one silo for each fold in our cross-validation save_dir = Path(save_dir) silos = DataSiloForCrossVal.make(silo, n_splits=cfg.xval_folds, stratification=cfg.eval_stratification, sets=["train", "dev"]) for silo in silos: sz_train = len(silo.data.get("train", 0)) sz_dev = len(silo.data.get("dev", 0)) sz_test = len(silo.data.get("test", 0)) logger.info("XVAL SPLIT SET SIZE: {}+{}+{}={}".format( sz_train, sz_dev, sz_test, sz_train+sz_dev+sz_test )) # for each fold, run the whole training, earlystopping to get a model, then evaluate the model # on the test set of each fold # Remember all the results for overall metrics over all predictions of all folds and for averaging allresults = [] all_preds = None # for each head, the list of all predictions over all folds all_labels = None # for each head the list of all labels over all folds all_preferred_metrics = [] all_train_times = [] all_eval_times = [] save_dir_root = Path(save_dir) if not save_dir_root.exists(): raise Exception("Model saving path must exist: {}".format(save_dir_root)) if not save_dir_root.is_dir(): raise Exception("Model saving path must be a directory: {}".format(save_dir_root)) for num_fold, silo in enumerate(silos): save_to = save_dir_root.joinpath("fold{}".format(num_fold)) if not save_to.exists(): save_to.mkdir() mlflow.start_run(run_name=f"fold-{num_fold + 1}-of-{len(silos)}", nested=True) logger.info(f"############ Crossvalidation: Fold {num_fold + 1} of {len(silos)} ############") tmptime = time.perf_counter() model = train_model(silo, save_to, lang_model_dir, cfg=cfg) all_train_times.append(time.perf_counter()-tmptime) # do eval on test set here (and not in Trainer), # so that we can easily store the actual preds and labels for a "global" eval across all folds. evaluator_test = OurEvaluator( data_loader=silo.get_data_loader("test"), tasks=silo.processor.tasks, device=cfg.device, pass_instids=True, outdir=save_dir ) # evaluator_test = Evaluator( # data_loader=silo.get_data_loader("test"), # tasks=silo.processor.tasks, # device=cfg.device, # ) tmptime = time.perf_counter() result = evaluator_test.eval(model, return_preds_and_labels=True, foldnr=num_fold) all_eval_times.append(time.perf_counter() - tmptime) log_results(result, "Fold", num_fold=num_fold) # for now we just calculate the average over all preferred metrics for all heads to get # the value for each fold. metrics4heads = [h.metric for h in model.prediction_heads] # NOTE: the metrics we allow here are ONLY registered metrics which refer to metrics classes! # So we replace the name with the actual class instances metrics4heads = [registered_metrics[m] for m in metrics4heads] # now calculate the preferred metrics for each head metricvals4heads = [metrics4heads[i].preferred(r) for i, r in enumerate(result)] all_preferred_metrics.append(statistics.mean(metricvals4heads)) allresults.append(result) if all_preds is None: all_preds = [[] for _ in result] all_labels = [[] for _ in result] for i, r in enumerate(result): all_preds[i].extend(r.get("preds")) all_labels[i].extend(r.get("labels")) if cfg.device == "cuda": logger.info("CUDA: trying to release memory, current {}".format( torch.cuda.memory_allocated() / 1024 / 1024 )) logger.info("(before) CUDA memory allocated: {}".format( torch.cuda.memory_allocated() / 1024 / 1024)) logger.info("(before) CUDA max memory allocated: {}".format( torch.cuda.max_memory_allocated() / 1024 / 1024)) logger.info("(before) CUDA memory cached: {}".format( torch.cuda.memory_cached() / 1024 / 1024)) logger.info("(before) CUDA max memory cached: {}".format( torch.cuda.max_memory_cached() / 1024 / 1024)) model.cpu() # MAYBE NOT NECESSARY BUT NOT SURE torch.cuda.empty_cache() logger.info("(after) CUDA memory allocated: {}".format( torch.cuda.memory_allocated() / 1024 / 1024)) logger.info("(after) CUDA max memory allocated: {}".format( torch.cuda.max_memory_allocated() / 1024 / 1024)) logger.info("(after) CUDA memory cached: {}".format( torch.cuda.memory_cached() / 1024 / 1024)) logger.info("(after) CUDA max memory cached: {}".format( torch.cuda.max_memory_cached() / 1024 / 1024)) with open(str(save_to.joinpath("results.json")), "wt") as fp: json.dump(result, fp) mlflow.end_run() # Save the per-fold results to json for a separate, more detailed analysis with open(str(save_dir_root.joinpath("results-perfold.json")), "wt") as fp: json.dump(allresults, fp) # find the fold with the best average preferred metric value best_fold_idx = np.argmax(all_preferred_metrics) logger.info(f"Best fold index: {best_fold_idx}") mlflow.log_params({"XVAL_BEST_FOLD_IDX": best_fold_idx}) mlflow.log_params({"XVAL_BEST_FOLD_METRIC": all_preferred_metrics[best_fold_idx]}) # the following is a list that contains one defaultdict(list) per head. # each defaultdict(list) will have all the values for that head and metric from allresults xval_metric_lists_per_head = [defaultdict(list) for _ in allresults[0]] for resultsperhead in allresults: assert len(xval_metric_lists_per_head) == len(resultsperhead) for i, res in enumerate(resultsperhead): for name in res.keys(): if name not in ["preds", "labels"] and \ not name.startswith("_") and \ isinstance(res[name], numbers.Number): xval_metric_lists_per_head[i][name].append(res[name]) # now collapse each of the lists into its mean, and add a stdev and var metric xval_metric_per_head = [{} for _ in xval_metric_lists_per_head] for i, res in enumerate(xval_metric_lists_per_head): newres = xval_metric_per_head[i] newres["dirname"] = str(save_dir_root) # newres["report"] = allresults[0][i].get("report", None) newres["task_name"] = allresults[0][i].get("task_name", "UNKNOWN TASKNAME ???") newres["time_train_mean"] = statistics.mean(all_train_times) newres["time_eval_mean"] = statistics.mean(all_eval_times) newres["time_total"] = sum(all_train_times)+sum(all_eval_times) for name in res.keys(): values = res[name] vmean = statistics.mean(values) newres[name+"_mean"] = vmean newres[name+"_min"] = min(values) newres[name+"_max"] = max(values) if len(values) > 1: vstdev = statistics.stdev(values) vvar = statistics.variance(values) newres[name + "_stdev"] = vstdev newres[name + "_var"] = vvar log_results(xval_metric_per_head, "XVAL", steps=0) # add the confusion matrices per head for i, d in enumerate(xval_metric_per_head): # automatically determine the label list for the head tmplabels = set() tmplabels.update(all_labels[i]) tmplabels.update(all_preds[i]) tmplabels = list(tmplabels) tmplabels.sort() conf_matrix = confusion_matrix(all_labels[i], all_preds[i], labels=tmplabels) conf_matrix = conf_matrix.tolist() d["confusion_matrix"] = conf_matrix d["confusion_labels"] = tmplabels # log overall confusions matrix logger.info(f"Confusion matrix for head {i}:") l = " ".join(tmplabels) logger.info(f" {l}") for j, row in enumerate(conf_matrix): r = " ".join([str(tmp) for tmp in row]) logger.info(f"{tmplabels[j]} {r}") with open(str(save_dir_root.joinpath("results-all.json")), "wt") as fp: json.dump(xval_metric_per_head, fp) return xval_metric_per_head def run_holdout(silo, save_dir, lang_model_dir, cfg): # Load one silo for each holdout repition save_dir = Path(save_dir) silos = DataSiloForHoldout.make(silo, n_splits=cfg.holdout_repeats, stratification=cfg.eval_stratification, random_state=cfg.seed, train_split=cfg.holdout_train, sets=["train", "dev"]) for silo in silos: sz_train = len(silo.data.get("train", 0)) sz_dev = len(silo.data.get("dev", 0)) sz_test = len(silo.data.get("test", 0)) logger.info("HOLDOUT SPLIT SET SIZE: train={} dev={} test={} all={}".format( sz_train, sz_dev, sz_test, sz_train+sz_dev+sz_test )) # tmp_train = silo.data.get("train") # tmp_test = silo.data.get("test") # tmp_dev = silo.data.get("dev") # logger.info(f"!!!!DEBUG first instance from train {list(tmp_train)[0]}") # logger.info(f"!!!!DEBUG last instance from train {list(tmp_train)[-1]}") # logger.info(f"!!!!DEBUG first instance from test {list(tmp_test)[0]}") # logger.info(f"!!!!DEBUG last instance from test {list(tmp_test)[-1]}") # logger.info(f"!!!!DEBUG first instance from dev {list(tmp_dev)[0]}") # logger.info(f"!!!!DEBUG last instance from dev {list(tmp_dev)[-1]}") # for each repetition, run the whole training, earlystopping to get a model, then evaluate the model # on the test set of each fold # Remember all the results for overall metrics over all predictions of all folds and for averaging allresults = [] all_preds = None # for each head, the list of all predictions over all folds all_labels = None # for each head the list of all labels over all folds all_preferred_metrics = [] all_train_times = [] all_eval_times = [] save_dir_root = Path(save_dir) if not save_dir_root.exists(): raise Exception("Model saving path must exist: {}".format(save_dir_root)) if not save_dir_root.is_dir(): raise Exception("Model saving path must be a directory: {}".format(save_dir_root)) for num_fold, silo in enumerate(silos): save_to = save_dir_root.joinpath("fold{}".format(num_fold)) if not save_to.exists(): save_to.mkdir() mlflow.start_run(run_name=f"fold-{num_fold + 1}-of-{len(silos)}", nested=True) logger.info(f"############ Holdout estimation: Split {num_fold + 1} of {len(silos)} ############") tmptime = time.perf_counter() model = train_model(silo, save_to, lang_model_dir, cfg=cfg) all_train_times.append(time.perf_counter()-tmptime) # do eval on test set here (and not in Trainer), # so that we can easily store the actual preds and labels for a "global" eval across all folds. evaluator_test = OurEvaluator( data_loader=silo.get_data_loader("test"), tasks=silo.processor.tasks, device=cfg.device, pass_instids=True, outdir=save_dir, ) # evaluator_test = Evaluator( # data_loader=silo.get_data_loader("test"), # tasks=silo.processor.tasks, # device=cfg.device, # ) tmptime = time.perf_counter() result = evaluator_test.eval(model, return_preds_and_labels=True, foldnr=num_fold) all_eval_times.append(time.perf_counter()-tmptime) log_results(result, "Split", num_fold=num_fold) # for now we just calculate the average over all preferred metrics for all heads to get # the value for each fold. metrics4heads = [h.metric for h in model.prediction_heads] # NOTE: the metrics we allow here are ONLY registered metrics which refer to metrics classes! # So we replace the name with the actual class instances metrics4heads = [registered_metrics[m] for m in metrics4heads] # now calculate the preferred metrics for each head metricvals4heads = [metrics4heads[i].preferred(r) for i, r in enumerate(result)] all_preferred_metrics.append(statistics.mean(metricvals4heads)) allresults.append(result) if all_preds is None: all_preds = [[] for _ in result] all_labels = [[] for _ in result] for i, r in enumerate(result): all_preds[i].extend(r.get("preds")) all_labels[i].extend(r.get("labels")) if cfg.device == "cuda": logger.info("CUDA: trying to release memory, current {}".format( torch.cuda.memory_allocated() / 1024 / 1024 )) logger.info("(before) CUDA memory allocated: {}".format( torch.cuda.memory_allocated() / 1024 / 1024)) logger.info("(before) CUDA max memory allocated: {}".format( torch.cuda.max_memory_allocated() / 1024 / 1024)) logger.info("(before) CUDA memory cached: {}".format( torch.cuda.memory_cached() / 1024 / 1024)) logger.info("(before) CUDA max memory cached: {}".format( torch.cuda.max_memory_cached() / 1024 / 1024)) model.cpu() # MAYBE NOT NECESSARY BUT NOT SURE torch.cuda.empty_cache() logger.info("(after) CUDA memory allocated: {}".format( torch.cuda.memory_allocated() / 1024 / 1024)) logger.info("(after) CUDA max memory allocated: {}".format( torch.cuda.max_memory_allocated() / 1024 / 1024)) logger.info("(after) CUDA memory cached: {}".format( torch.cuda.memory_cached() / 1024 / 1024)) logger.info("(after) CUDA max memory cached: {}".format( torch.cuda.max_memory_cached() / 1024 / 1024)) with open(str(save_to.joinpath("results.json")), "wt") as fp: json.dump(result, fp) logger.info(f"Fold model and data saved to {save_to}") mlflow.end_run() # Save the per-fold results to json for a separate, more detailed analysis with open(str(save_dir_root.joinpath("results-persplit.json")), "wt") as fp: json.dump(allresults, fp) # find the fold with the best average preferred metric value best_fold_idx = np.argmax(all_preferred_metrics) logger.info(f"Best split index: {best_fold_idx}") mlflow.log_params({"HOLDOUT_BEST_SPLIT_IDX": best_fold_idx}) mlflow.log_params({"HOLDOUT_BEST_SPLIT_METRIC": all_preferred_metrics[best_fold_idx]}) # the following is a list that contains one defaultdict(list) per head. # each defaultdict(list) will have all the values for that head and metric from allresults eval_metric_lists_per_head = [defaultdict(list) for _ in allresults[0]] for resultsperhead in allresults: assert len(eval_metric_lists_per_head) == len(resultsperhead) for headnr, res in enumerate(resultsperhead): for name in res.keys(): if name not in ["preds", "labels"] and \ not name.startswith("_") and \ isinstance(res[name], numbers.Number): eval_metric_lists_per_head[headnr][name].append(res[name]) # now collapse each of the lists into its mean, and add a stdev and var metric eval_metric_per_head = [{} for _ in eval_metric_lists_per_head] for i, res in enumerate(eval_metric_lists_per_head): newres = eval_metric_per_head[i] newres["dirname"] = str(save_dir_root) # newres["report"] = allresults[i][0].get("report", None) newres["task_name"] = allresults[0][i].get("task_name", "UNKNOWN TASKNAME ???") newres["time_train_mean"] = statistics.mean(all_train_times) newres["time_eval_mean"] = statistics.mean(all_eval_times) newres["time_total"] = sum(all_train_times)+sum(all_eval_times) for name in res.keys(): values = res[name] vmean = statistics.mean(values) newres[name+"_mean"] = vmean newres[name+"_min"] = min(values) newres[name+"_max"] = max(values) if len(values) > 1: vstdev = statistics.stdev(values) vvar = statistics.variance(values) newres[name+"_stdev"] = vstdev newres[name+"_var"] = vvar log_results(eval_metric_per_head, "HOLDOUT", steps=0) # add the confusion matrices per head for i, d in enumerate(eval_metric_per_head): # automatically determine the label list for the head tmplabels = set() tmplabels.update(all_labels[i]) tmplabels.update(all_preds[i]) tmplabels = list(tmplabels) tmplabels.sort() conf_matrix = confusion_matrix(all_labels[i], all_preds[i], labels=tmplabels) conf_matrix = conf_matrix.tolist() d["confusion_matrix"] = conf_matrix d["confusion_labels"] = tmplabels # log overall confusions matrix logger.info(f"Confusion matrix for head {i}:") l = " ".join(tmplabels) logger.info(f" {l}") for j, row in enumerate(conf_matrix): r = " ".join([str(tmp) for tmp in row]) logger.info(f"{tmplabels[j]} {r}") with open(str(save_dir_root.joinpath("results-all.json")), "wt") as fp: json.dump(eval_metric_per_head, fp) logger.info(f"Estimation data and folds saved to {save_dir_root}") return eval_metric_per_head def run_estimate(cfg, logger=logger): if cfg.get("runname") is None: cfg["runname"] = "estimate" cfg.runname = cfg.runname + "_" + time.strftime('%Y%m%d_%H%M%S') savedir = cfg.runname logger.info(f"Running estimation with configuration: {cfg}") ml_logger = farm.utils.MLFlowLogger(tracking_uri=str(Path(savedir).joinpath("mlruns"))) run_name = "eval" ml_logger.init_experiment(experiment_name="{} / {}".format(cfg.runname, str(datetime.datetime.now())[:19]), run_name=run_name) init_farm(cfg, logger=logger) ml_logger.log_params(cfg) logger.info("Experiment init") lang_model_dir = "/raid/data/models/bert/deepset_bert-base-german-cased" if cfg.get("lm_name"): lang_model_dir = cfg.lm_name if cfg.get("lm_dir"): lang_model_dir = cfg.lm_dir logger.info(f"Using language model directory: {lang_model_dir}") ml_logger.log_params({"use_lm_model": lang_model_dir}) train_file = cfg.infile ml_logger.log_params({"train_file": train_file}) logger.info(f"Using input file: {train_file}") #label_column_name = cfg.label_column #text_column_name = cfg.text_column max_seq_length = cfg.max_seq dev_split = cfg.dev_splt #label_list = cfg.label_list #ml_logger.log_params({"label_list": ",".join(label_list)}) # Create tokenizer # Here we cannot just specify the model bin file, this requires a directory with all kinds of files # For now, test with the predefined name: bert-base-german-cased bert-base-german-dbmdz-cased # OK this downloads for # bert-base-german-cased: file https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt # bert-base-german-dbmdz-cased: https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt # OK directly specifying the vocab file works logger.info(f"Load tokenizer from {lang_model_dir}") tokenizer = farm.modeling.tokenization.Tokenizer.load( pretrained_model_name_or_path=lang_model_dir, do_lower_case=cfg.do_lower_case) # register_metrics('mymetrics', ClassificationMetrics(label_list=label_list)) logger.info("Create processor") ftname = cfg["fts"] clazz = globals().get(ftname) if clazz is None: raise Exception(f"FarmTasks class {ftname} unknown") ft = clazz(cfg) data_dir = os.path.dirname(train_file) if data_dir == "": data_dir = "." processor = ft.get_processor( tokenizer=tokenizer, max_seq_len=max_seq_length, train_filename=os.path.basename(train_file), test_filename=None, dev_split=dev_split, dev_stratification=cfg.dev_stratification, data_dir=data_dir, ) cfg["_fts"] = ft logger.info("Create data silo") silo = farm.data_handler.data_silo.DataSilo( processor=processor, max_processes=1, batch_size=cfg.batch_size) if cfg["eval_method"] == "xval": ret = run_xval(silo, savedir, lang_model_dir, cfg=cfg) elif cfg["eval_method"] == "holdout": ret = run_holdout(silo, savedir, lang_model_dir, cfg=cfg) else: raise Exception(f"Not supported: eval_method={cfg['eval_method']}") ml_logger.end_run() return ret def run_apply(cfg, logger=logger): # logger.setLevel(logging.CRITICAL) ## does not work if not cfg.d: logging.disable(logging.CRITICAL+1) init_farm(cfg, logger=logger) def process_output_batch(cfg, inferencer, batch, name2idx, outfp): """In-place modify batch: add label and prob columns at end""" dicts = [{"text": row[name2idx[cfg.text_column]]} for row in batch] ret = inferencer.inference_from_dicts(dicts) # TODO we assume getting the prediction from head 0 here result = ret[0] preds = result["predictions"] labels = [pred["label"] for pred in preds] probs = [pred["probability"] for pred in preds] assert len(batch) == len(labels) assert len(batch) == len(probs) for incols, label, prob in zip(batch, labels, probs): print("\t".join(incols), label, prob, sep="\t", file=outfp) logger.info("LOADING MODEL") if cfg.max_seq is None: inferencer = Inferencer.load( cfg.modeldir, batch_size=cfg.batch_size, gpu=cfg.cuda_used, return_class_probs=False, num_processes=cfg.num_processes, disable_tqdm=True, ) else: inferencer = Inferencer.load( cfg.modeldir, batch_size=cfg.batch_size, max_seq_len=cfg.max_seq, gpu=cfg.cuda_used, return_class_probs=False, num_processes=cfg.num_processes, disable_tqdm=True, ) used_max_seq_len = inferencer.processor.max_seq_len logging.info(f"Used max_seq_len is {used_max_seq_len}") mlflow.log_params({"used_max_seq_len": used_max_seq_len}) inferencer.disable_tqdm = True # TODO: do we need to disable logging? with open(cfg.infile, "rt", encoding="utf-8") as infp: # read the header line which we always assume to exist cols = infp.readline().rstrip("\n\r").split("\t") name2idx = {n: i for i, n in enumerate(cols)} with open(cfg.outfile, "wt", encoding="utf8") as outfp: # write hdr outcols = cols.copy() outcols.append(cfg.label_column) outcols.append(cfg.prob_column) print("\t".join(outcols), file=outfp) batch = [] # batchsize rows to process for line in infp: fields = line.rstrip("\n\r").split("\t") batch.append(fields) if len(batch) >= cfg.batch_size: process_output_batch(cfg, inferencer, batch, name2idx, outfp) batch = [] if len(batch) > 0: process_output_batch(cfg, inferencer, batch, name2idx, outfp) def run_train(cfg, logger=logger): if cfg.get("runname") is None: cfg["runname"] = "train" cfg.runname = cfg.runname + "_" + time.strftime('%Y%m%d_%H%M%S') savedir = cfg.runname ml_logger = farm.utils.MLFlowLogger(tracking_uri=str(Path(savedir).joinpath("mlruns"))) run_name = "train" ml_logger.init_experiment(experiment_name="{} / {}".format(cfg.runname, str(datetime.datetime.now())[:19]), run_name=run_name) init_farm(cfg, logger=logger) ml_logger.log_params(cfg) lang_model_dir = os.environ["HOME"] + "/models/bert/deepset_bert-base-german-cased" if cfg.get("lm_name"): lang_model_dir = cfg.lm_name if cfg.get("lm_dir"): lang_model_dir = cfg.lm_dir logger.info(f"Using language model directory: {lang_model_dir}") ml_logger.log_params({"use_lm_model": lang_model_dir}) train_file = cfg.infile ml_logger.log_params({"train_file": train_file}) logger.info(f"Using input file: {train_file}") # TODO: these should go into the experiment class #label_column_name = cfg.label_column #text_column_name = cfg.text_column max_seq_length = cfg.max_seq dev_split = cfg.dev_splt # TODO: Should go into the experiment class and get logged for each head, head0 to headk #label_list = cfg.label_list #ml_logger.log_params({"label_list": ",".join(label_list)}) # Create tokenizer # Here we cannot just specify the model bin file, this requires a directory with all kinds of files # For now, test with the predefined name: bert-base-german-cased bert-base-german-dbmdz-cased # OK this downloads for # bert-base-german-cased: file https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt # bert-base-german-dbmdz-cased: https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt # OK directly specifying the vocab file works logger.info(f"Load tokenizer from {lang_model_dir}") tokenizer = farm.modeling.tokenization.Tokenizer.load( pretrained_model_name_or_path=lang_model_dir, do_lower_case=cfg.do_lower_case) # TODO: we need a separate metric for each head #register_metrics('mymetrics', ClassificationMetrics(label_list=label_list)) logger.info("Create processor") ftname = cfg["fts"] clazz = globals().get(ftname) if clazz is None: raise Exception(f"FarmTasks class {ftname} unknown") ft = clazz(cfg) data_dir=os.path.dirname(train_file) if data_dir == "": data_dir = "." processor = ft.get_processor( tokenizer=tokenizer, max_seq_len=max_seq_length, train_filename=os.path.basename(train_file), test_filename=None, dev_split=dev_split, dev_stratification=cfg.dev_stratification, data_dir=data_dir, ) if hasattr(ft, "label_list"): ml_logger.log_params({"label_list": ",".join(ft.label_list)}) else: for i in range(ft.nheads): llist = getattr(ft, f"label_list{i}") ml_logger.log_params({f"label_list{i}": ",".join(llist)}) cfg["_fts"] = ft # the farm tasks object, stored with underscore-name to avoid logging! logger.info("Create data silo") silo = farm.data_handler.data_silo.DataSilo( processor=processor, batch_size=cfg.batch_size) model = train_model(silo, savedir, lang_model_dir, cfg=cfg) ml_logger.end_run() return model
[ "sklearn.metrics.confusion_matrix", "argparse.ArgumentParser", "torch.cuda.max_memory_allocated", "numpy.argmax", "time.strftime", "farm.infer.Inferencer.load", "collections.defaultdict", "pathlib.Path", "statistics.variance", "orderedattrdict.AttrDict", "mlflow.end_run", "torch.cuda.max_memory_cached", "toml.load", "farm.data_handler.data_silo.DataSiloForHoldout.make", "datetime.datetime.now", "torch.cuda.memory_allocated", "json.dump", "farm_tools.train_modified.Trainer", "statistics.stdev", "time.perf_counter", "farm.modeling.language_model.LanguageModel.load", "logging.disable", "torch.cuda.is_available", "statistics.mean", "torch.use_deterministic_algorithms", "signal.signal", "mlflow.log_metrics", "sys.exit", "farm.data_handler.data_silo.DataSiloForCrossVal.make", "json.load", "logging.info", "mlflow.log_params", "torch.cuda.empty_cache", "farm_tools.utils.init_logger", "torch.cuda.memory_cached" ]
[((1369, 1382), 'farm_tools.utils.init_logger', 'init_logger', ([], {}), '()\n', (1380, 1382), False, 'from farm_tools.utils import init_logger\n'), ((1855, 1899), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal_handler'], {}), '(signal.SIGINT, signal_handler)\n', (1868, 1899), False, 'import signal\n'), ((4047, 4061), 'orderedattrdict.AttrDict', 'AttrDict', (['data'], {}), '(data)\n', (4055, 4061), False, 'from orderedattrdict import AttrDict\n'), ((17197, 17231), 'farm.modeling.language_model.LanguageModel.load', 'LanguageModel.load', (['lang_model_dir'], {}), '(lang_model_dir)\n', (17215, 17231), False, 'from farm.modeling.language_model import LanguageModel\n'), ((20361, 20643), 'farm_tools.train_modified.Trainer', 'Trainer', ([], {'model': 'model', 'optimizer': 'optimizer', 'data_silo': 'silo', 'epochs': 'cfg.max_epochs', 'n_gpu': 'cfg.n_gpu', 'lr_schedule': 'lr_schedule', 'evaluate_every': 'eval_every', 'device': 'cfg.device', 'grad_acc_steps': 'cfg.grad_acc', 'early_stopping': 'earlystopping', 'evaluator_test': '(False)', 'disable_tqdm': '(True)'}), '(model=model, optimizer=optimizer, data_silo=silo, epochs=cfg.\n max_epochs, n_gpu=cfg.n_gpu, lr_schedule=lr_schedule, evaluate_every=\n eval_every, device=cfg.device, grad_acc_steps=cfg.grad_acc,\n early_stopping=earlystopping, evaluator_test=False, disable_tqdm=True)\n', (20368, 20643), False, 'from farm_tools.train_modified import Trainer, EarlyStopping\n'), ((20920, 20934), 'pathlib.Path', 'Path', (['save_dir'], {}), '(save_dir)\n', (20924, 20934), False, 'from pathlib import Path\n'), ((20947, 21070), 'farm.data_handler.data_silo.DataSiloForCrossVal.make', 'DataSiloForCrossVal.make', (['silo'], {'n_splits': 'cfg.xval_folds', 'stratification': 'cfg.eval_stratification', 'sets': "['train', 'dev']"}), "(silo, n_splits=cfg.xval_folds, stratification=cfg.\n eval_stratification, sets=['train', 'dev'])\n", (20971, 21070), False, 'from farm.data_handler.data_silo import DataSiloForCrossVal, DataSiloForHoldout\n'), ((21999, 22013), 'pathlib.Path', 'Path', (['save_dir'], {}), '(save_dir)\n', (22003, 22013), False, 'from pathlib import Path\n'), ((26305, 26337), 'numpy.argmax', 'np.argmax', (['all_preferred_metrics'], {}), '(all_preferred_metrics)\n', (26314, 26337), True, 'import numpy as np\n'), ((26395, 26451), 'mlflow.log_params', 'mlflow.log_params', (["{'XVAL_BEST_FOLD_IDX': best_fold_idx}"], {}), "({'XVAL_BEST_FOLD_IDX': best_fold_idx})\n", (26412, 26451), False, 'import mlflow\n'), ((26456, 26543), 'mlflow.log_params', 'mlflow.log_params', (["{'XVAL_BEST_FOLD_METRIC': all_preferred_metrics[best_fold_idx]}"], {}), "({'XVAL_BEST_FOLD_METRIC': all_preferred_metrics[\n best_fold_idx]})\n", (26473, 26543), False, 'import mlflow\n'), ((29516, 29530), 'pathlib.Path', 'Path', (['save_dir'], {}), '(save_dir)\n', (29520, 29530), False, 'from pathlib import Path\n'), ((29543, 29729), 'farm.data_handler.data_silo.DataSiloForHoldout.make', 'DataSiloForHoldout.make', (['silo'], {'n_splits': 'cfg.holdout_repeats', 'stratification': 'cfg.eval_stratification', 'random_state': 'cfg.seed', 'train_split': 'cfg.holdout_train', 'sets': "['train', 'dev']"}), "(silo, n_splits=cfg.holdout_repeats, stratification=\n cfg.eval_stratification, random_state=cfg.seed, train_split=cfg.\n holdout_train, sets=['train', 'dev'])\n", (29566, 29729), False, 'from farm.data_handler.data_silo import DataSiloForCrossVal, DataSiloForHoldout\n'), ((31373, 31387), 'pathlib.Path', 'Path', (['save_dir'], {}), '(save_dir)\n', (31377, 31387), False, 'from pathlib import Path\n'), ((35747, 35779), 'numpy.argmax', 'np.argmax', (['all_preferred_metrics'], {}), '(all_preferred_metrics)\n', (35756, 35779), True, 'import numpy as np\n'), ((35838, 35898), 'mlflow.log_params', 'mlflow.log_params', (["{'HOLDOUT_BEST_SPLIT_IDX': best_fold_idx}"], {}), "({'HOLDOUT_BEST_SPLIT_IDX': best_fold_idx})\n", (35855, 35898), False, 'import mlflow\n'), ((35903, 35994), 'mlflow.log_params', 'mlflow.log_params', (["{'HOLDOUT_BEST_SPLIT_METRIC': all_preferred_metrics[best_fold_idx]}"], {}), "({'HOLDOUT_BEST_SPLIT_METRIC': all_preferred_metrics[\n best_fold_idx]})\n", (35920, 35994), False, 'import mlflow\n'), ((43829, 43884), 'logging.info', 'logging.info', (['f"""Used max_seq_len is {used_max_seq_len}"""'], {}), "(f'Used max_seq_len is {used_max_seq_len}')\n", (43841, 43884), False, 'import logging\n'), ((43889, 43946), 'mlflow.log_params', 'mlflow.log_params', (["{'used_max_seq_len': used_max_seq_len}"], {}), "({'used_max_seq_len': used_max_seq_len})\n", (43906, 43946), False, 'import mlflow\n'), ((1839, 1850), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1847, 1850), False, 'import sys\n'), ((3794, 3810), 'toml.load', 'toml.load', (['fpath'], {}), '(fpath)\n', (3803, 3810), False, 'import toml\n'), ((4824, 4840), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (4838, 4840), False, 'from argparse import ArgumentParser\n'), ((4875, 4885), 'orderedattrdict.AttrDict', 'AttrDict', ([], {}), '()\n', (4883, 4885), False, 'from orderedattrdict import AttrDict\n'), ((6778, 6794), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (6792, 6794), False, 'from argparse import ArgumentParser\n'), ((6829, 6839), 'orderedattrdict.AttrDict', 'AttrDict', ([], {}), '()\n', (6837, 6839), False, 'from orderedattrdict import AttrDict\n'), ((7809, 7825), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (7823, 7825), False, 'from argparse import ArgumentParser\n'), ((7860, 7870), 'orderedattrdict.AttrDict', 'AttrDict', ([], {}), '()\n', (7868, 7870), False, 'from orderedattrdict import AttrDict\n'), ((9187, 9203), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (9201, 9203), False, 'from argparse import ArgumentParser\n'), ((9238, 9248), 'orderedattrdict.AttrDict', 'AttrDict', ([], {}), '()\n', (9246, 9248), False, 'from orderedattrdict import AttrDict\n'), ((13144, 13160), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (13158, 13160), False, 'from argparse import ArgumentParser\n'), ((13195, 13205), 'orderedattrdict.AttrDict', 'AttrDict', ([], {}), '()\n', (13203, 13205), False, 'from orderedattrdict import AttrDict\n'), ((14059, 14084), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (14082, 14084), False, 'import torch\n'), ((14377, 14417), 'torch.use_deterministic_algorithms', 'torch.use_deterministic_algorithms', (['(True)'], {}), '(True)\n', (14411, 14417), False, 'import torch\n'), ((14563, 14604), 'torch.use_deterministic_algorithms', 'torch.use_deterministic_algorithms', (['(False)'], {}), '(False)\n', (14597, 14604), False, 'import torch\n'), ((22638, 22657), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (22655, 22657), False, 'import time\n'), ((23383, 23402), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (23400, 23402), False, 'import time\n'), ((26009, 26025), 'mlflow.end_run', 'mlflow.end_run', ([], {}), '()\n', (26023, 26025), False, 'import mlflow\n'), ((26193, 26218), 'json.dump', 'json.dump', (['allresults', 'fp'], {}), '(allresults, fp)\n', (26202, 26218), False, 'import json\n'), ((26744, 26761), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (26755, 26761), False, 'from collections import defaultdict\n'), ((27714, 27746), 'statistics.mean', 'statistics.mean', (['all_train_times'], {}), '(all_train_times)\n', (27729, 27746), False, 'import statistics\n'), ((27782, 27813), 'statistics.mean', 'statistics.mean', (['all_eval_times'], {}), '(all_eval_times)\n', (27797, 27813), False, 'import statistics\n'), ((28749, 28812), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['all_labels[i]', 'all_preds[i]'], {'labels': 'tmplabels'}), '(all_labels[i], all_preds[i], labels=tmplabels)\n', (28765, 28812), False, 'from sklearn.metrics import confusion_matrix\n'), ((29331, 29366), 'json.dump', 'json.dump', (['xval_metric_per_head', 'fp'], {}), '(xval_metric_per_head, fp)\n', (29340, 29366), False, 'import json\n'), ((32016, 32035), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (32033, 32035), False, 'import time\n'), ((32762, 32781), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (32779, 32781), False, 'import time\n'), ((35450, 35466), 'mlflow.end_run', 'mlflow.end_run', ([], {}), '()\n', (35464, 35466), False, 'import mlflow\n'), ((35635, 35660), 'json.dump', 'json.dump', (['allresults', 'fp'], {}), '(allresults, fp)\n', (35644, 35660), False, 'import json\n'), ((36195, 36212), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (36206, 36212), False, 'from collections import defaultdict\n'), ((37175, 37207), 'statistics.mean', 'statistics.mean', (['all_train_times'], {}), '(all_train_times)\n', (37190, 37207), False, 'import statistics\n'), ((37243, 37274), 'statistics.mean', 'statistics.mean', (['all_eval_times'], {}), '(all_eval_times)\n', (37258, 37274), False, 'import statistics\n'), ((38209, 38272), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['all_labels[i]', 'all_preds[i]'], {'labels': 'tmplabels'}), '(all_labels[i], all_preds[i], labels=tmplabels)\n', (38225, 38272), False, 'from sklearn.metrics import confusion_matrix\n'), ((38791, 38826), 'json.dump', 'json.dump', (['eval_metric_per_head', 'fp'], {}), '(eval_metric_per_head, fp)\n', (38800, 38826), False, 'import json\n'), ((39079, 39109), 'time.strftime', 'time.strftime', (['"""%Y%m%d_%H%M%S"""'], {}), "('%Y%m%d_%H%M%S')\n", (39092, 39109), False, 'import time\n'), ((42352, 42389), 'logging.disable', 'logging.disable', (['(logging.CRITICAL + 1)'], {}), '(logging.CRITICAL + 1)\n', (42367, 42389), False, 'import logging\n'), ((43226, 43388), 'farm.infer.Inferencer.load', 'Inferencer.load', (['cfg.modeldir'], {'batch_size': 'cfg.batch_size', 'gpu': 'cfg.cuda_used', 'return_class_probs': '(False)', 'num_processes': 'cfg.num_processes', 'disable_tqdm': '(True)'}), '(cfg.modeldir, batch_size=cfg.batch_size, gpu=cfg.cuda_used,\n return_class_probs=False, num_processes=cfg.num_processes, disable_tqdm\n =True)\n', (43241, 43388), False, 'from farm.infer import Inferencer\n'), ((43494, 43682), 'farm.infer.Inferencer.load', 'Inferencer.load', (['cfg.modeldir'], {'batch_size': 'cfg.batch_size', 'max_seq_len': 'cfg.max_seq', 'gpu': 'cfg.cuda_used', 'return_class_probs': '(False)', 'num_processes': 'cfg.num_processes', 'disable_tqdm': '(True)'}), '(cfg.modeldir, batch_size=cfg.batch_size, max_seq_len=cfg.\n max_seq, gpu=cfg.cuda_used, return_class_probs=False, num_processes=cfg\n .num_processes, disable_tqdm=True)\n', (43509, 43682), False, 'from farm.infer import Inferencer\n'), ((45111, 45141), 'time.strftime', 'time.strftime', (['"""%Y%m%d_%H%M%S"""'], {}), "('%Y%m%d_%H%M%S')\n", (45124, 45141), False, 'import time\n'), ((24233, 24266), 'statistics.mean', 'statistics.mean', (['metricvals4heads'], {}), '(metricvals4heads)\n', (24248, 24266), False, 'import statistics\n'), ((25348, 25372), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (25370, 25372), False, 'import torch\n'), ((25979, 26000), 'json.dump', 'json.dump', (['result', 'fp'], {}), '(result, fp)\n', (25988, 26000), False, 'import json\n'), ((27969, 27992), 'statistics.mean', 'statistics.mean', (['values'], {}), '(values)\n', (27984, 27992), False, 'import statistics\n'), ((33611, 33644), 'statistics.mean', 'statistics.mean', (['metricvals4heads'], {}), '(metricvals4heads)\n', (33626, 33644), False, 'import statistics\n'), ((34726, 34750), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (34748, 34750), False, 'import torch\n'), ((35357, 35378), 'json.dump', 'json.dump', (['result', 'fp'], {}), '(result, fp)\n', (35366, 35378), False, 'import json\n'), ((37430, 37453), 'statistics.mean', 'statistics.mean', (['values'], {}), '(values)\n', (37445, 37453), False, 'import statistics\n'), ((3922, 3937), 'json.load', 'json.load', (['infp'], {}), '(infp)\n', (3931, 3937), False, 'import json\n'), ((22757, 22776), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (22774, 22776), False, 'import time\n'), ((23524, 23543), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (23541, 23543), False, 'import time\n'), ((28183, 28207), 'statistics.stdev', 'statistics.stdev', (['values'], {}), '(values)\n', (28199, 28207), False, 'import statistics\n'), ((28231, 28258), 'statistics.variance', 'statistics.variance', (['values'], {}), '(values)\n', (28250, 28258), False, 'import statistics\n'), ((32135, 32154), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (32152, 32154), False, 'import time\n'), ((32903, 32922), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (32920, 32922), False, 'import time\n'), ((37644, 37668), 'statistics.stdev', 'statistics.stdev', (['values'], {}), '(values)\n', (37660, 37668), False, 'import statistics\n'), ((37692, 37719), 'statistics.variance', 'statistics.variance', (['values'], {}), '(values)\n', (37711, 37719), False, 'import statistics\n'), ((16272, 16377), 'mlflow.log_metrics', 'mlflow.log_metrics', ([], {'metrics': '{f"{name}_{metric_name}_{head[\'task_name\']}": metric_val}', 'step': 'use_steps'}), '(metrics={f"{name}_{metric_name}_{head[\'task_name\']}":\n metric_val}, step=use_steps)\n', (16290, 16377), False, 'import mlflow\n'), ((39260, 39273), 'pathlib.Path', 'Path', (['savedir'], {}), '(savedir)\n', (39264, 39273), False, 'from pathlib import Path\n'), ((39398, 39421), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (39419, 39421), False, 'import datetime\n'), ((45226, 45239), 'pathlib.Path', 'Path', (['savedir'], {}), '(savedir)\n', (45230, 45239), False, 'from pathlib import Path\n'), ((45365, 45388), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (45386, 45388), False, 'import datetime\n'), ((24689, 24718), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (24716, 24718), False, 'import torch\n'), ((24833, 24862), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (24860, 24862), False, 'import torch\n'), ((24968, 25001), 'torch.cuda.max_memory_allocated', 'torch.cuda.max_memory_allocated', ([], {}), '()\n', (24999, 25001), False, 'import torch\n'), ((25100, 25126), 'torch.cuda.memory_cached', 'torch.cuda.memory_cached', ([], {}), '()\n', (25124, 25126), False, 'import torch\n'), ((25229, 25259), 'torch.cuda.max_memory_cached', 'torch.cuda.max_memory_cached', ([], {}), '()\n', (25257, 25259), False, 'import torch\n'), ((25457, 25486), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (25484, 25486), False, 'import torch\n'), ((25591, 25624), 'torch.cuda.max_memory_allocated', 'torch.cuda.max_memory_allocated', ([], {}), '()\n', (25622, 25624), False, 'import torch\n'), ((25722, 25748), 'torch.cuda.memory_cached', 'torch.cuda.memory_cached', ([], {}), '()\n', (25746, 25748), False, 'import torch\n'), ((25850, 25880), 'torch.cuda.max_memory_cached', 'torch.cuda.max_memory_cached', ([], {}), '()\n', (25878, 25880), False, 'import torch\n'), ((34067, 34096), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (34094, 34096), False, 'import torch\n'), ((34211, 34240), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (34238, 34240), False, 'import torch\n'), ((34346, 34379), 'torch.cuda.max_memory_allocated', 'torch.cuda.max_memory_allocated', ([], {}), '()\n', (34377, 34379), False, 'import torch\n'), ((34478, 34504), 'torch.cuda.memory_cached', 'torch.cuda.memory_cached', ([], {}), '()\n', (34502, 34504), False, 'import torch\n'), ((34607, 34637), 'torch.cuda.max_memory_cached', 'torch.cuda.max_memory_cached', ([], {}), '()\n', (34635, 34637), False, 'import torch\n'), ((34835, 34864), 'torch.cuda.memory_allocated', 'torch.cuda.memory_allocated', ([], {}), '()\n', (34862, 34864), False, 'import torch\n'), ((34969, 35002), 'torch.cuda.max_memory_allocated', 'torch.cuda.max_memory_allocated', ([], {}), '()\n', (35000, 35002), False, 'import torch\n'), ((35100, 35126), 'torch.cuda.memory_cached', 'torch.cuda.memory_cached', ([], {}), '()\n', (35124, 35126), False, 'import torch\n'), ((35228, 35258), 'torch.cuda.max_memory_cached', 'torch.cuda.max_memory_cached', ([], {}), '()\n', (35256, 35258), False, 'import torch\n')]
#!/usr/bin/python import pygame, sys, pygame.mixer, os sys.path.append('/home/pi/GitHub/T-BOTS/Python') from pygame.locals import * from time import sleep, time import bluetooth as bt from TBotTools import tbt from collections import deque import numpy as np starttime = time() # setup for plotting xdatarange = [200,320] y_origin = 270 yscale = 50 pts = deque(maxlen=xdatarange[1]-xdatarange[0]) for ii in range(xdatarange[0],xdatarange[1]): pts.appendleft((ii,np.random.rand(1))) iii = 200 aa = np.zeros((len(pts),2)) aa[:,1]=np.array(pts)[:,1] aa[:,0]=np.array(range(xdatarange[0],xdatarange[1])) bb=np.copy(aa) dirpath = os.path.dirname(os.path.realpath(__file__))+'/Images' timestart = time() speedfactor = 0.6 speedlimit = 70 turnspeedlimit = 60 ################### Setup Bluetooth ############################# oldvals = [0,0,0,0] sendcount = 0 #bd_addr = '98:D3:91:FD:46:C9' # use: 'hcitool scan' to scan for your T-Bot address #bd_addr = '98:D3:32:21:3D:77' bd_addr = '98:D3:91:FD:46:9C' bd_addr = '98:D3:51:FD:82:95'# George port = 1 #btcom = tbt.bt_connect(bd_addr,port,'PyBluez') btcom = tbt.bt_connect(bd_addr,port,'Socket') #port = 'COM5' #port = '/dev/tty.George-DevB' #baudrate = 38400 #btcom = tbt.bt_connect(bd_addr,port,'PySerial',baudrate) ################### Screen Text Class ############################# class TextPrint(object): def __init__(self): self.reset() self.font = pygame.font.Font(None, 15) def tprint(self, screen, textString): textBitmap = self.font.render(textString, True, WHITE) screen.blit(textBitmap, (self.x, self.y)) self.y += self.line_height def reset(self): self.x = 10 self.y = 10 self.line_height = 15 def indent(self): self.x += 10 def unindent(self): self.x -= 10 def abspos(self,screen, textString, pos): textBitmap = self.font.render(textString, True, WHITE) screen.blit(textBitmap, pos) ################### Instantiate BT Class ############################# # Define some colors. BLACK = pygame.Color('black') WHITE = pygame.Color('white') GRAY = pygame.Color('gray') pygame.init() # Set the width and height of the screen (width, height). screen = pygame.display.set_mode((350, 550)) logo = pygame.image.load(dirpath+'/logo.png') bg = pygame.image.load(dirpath+'/hexP2.jpg').convert() bgG = pygame.image.load(dirpath+'/hexG.jpg').convert() pygame.display.set_caption("Player 2") # Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates. clock = pygame.time.Clock() # Initialize the joysticks. pygame.joystick.init() # Get ready to print. textPrint = TextPrint() # -------- Main Program Loop ----------- while not done: # # EVENT PROCESSING STEP # # Possible joystick actions: JOYAXISMOTION, JOYBALLMOTION, JOYBUTTONDOWN, # JOYBUTTONUP, JOYHATMOTION for event in pygame.event.get(): # User did something. if event.type == pygame.QUIT: # If user clicked close. done = True # Flag that we are done so we exit this loop. btcom.connect(0) print('Connection Closed') if event.type == KEYDOWN and event.key == K_q: btcom.connect(0) pygame.display.quit() sys.exit() print('Connection Closed') pass if btcom.connected(): screen.blit(bg, [0, 0]) else: tries = 0 while btcom.connected() < 1 and tries < 10: print('Connecting ...') screen.blit(bgG, [0, 0]) pygame.display.flip() try: print('Try '+str(tries+1)+' of 10') btcom.connect(0) btcom.connect(1) tries+=1 except: print('Something went wrong') if btcom.connected() < 1: print('Exiting Program') pygame.display.quit() sys.exit() else: tries = 0 textPrint.reset() # Get count of joysticks. joystick_count = pygame.joystick.get_count() textPrint.tprint(screen, "Number of joysticks: {}".format(joystick_count)) textPrint.indent() # For each joystick: for i in [1]: # If you have multiple joysticks connected, set this index for the one you want to use. joystick = pygame.joystick.Joystick(i) joystick.init() textPrint.tprint(screen, "Joystick {}".format(i)) textPrint.indent() # Get the name from the OS for the controller/joystick. name = joystick.get_name() textPrint.tprint(screen, "Joystick name: {}".format(name)) # Usually axis run in pairs, up/down for one, and left/right for # the other. axes = joystick.get_numaxes() textPrint.tprint(screen, "") textPrint.tprint(screen, "Number of axes: {}".format(axes)) textPrint.indent() for i in range(axes): axis = joystick.get_axis(i) textPrint.tprint(screen, "Axis {} value: {:>6.3f}".format(i, axis)) axis0 = joystick.get_axis(0) axis1 = joystick.get_axis(1) axis2 = joystick.get_axis(2) axis3 = joystick.get_axis(3) textPrint.unindent() textPrint.tprint(screen, "") buttons = joystick.get_numbuttons() textPrint.tprint(screen, "Number of buttons: {}".format(buttons)) textPrint.indent() for i in range(buttons): button = joystick.get_button(i) textPrint.tprint(screen, "Button {:>2} value: {}".format(i, button)) textPrint.unindent() hats = joystick.get_numhats() textPrint.tprint(screen, "") textPrint.tprint(screen, "Number of hats: {}".format(hats)) textPrint.indent() # Hat position. All or nothing for direction, not a float like # get_axis(). Position is a tuple of int values (x, y). for i in range(hats): hat = joystick.get_hat(i) textPrint.tprint(screen, "Hat {} value: {}".format(i, str(hat))) if hat[1] == 1: speedfactor += 0.1 elif hat[1] == -1: speedfactor -= 0.1 elif hat[0] == -1: speedlimit -= 5 elif hat[0] == +1: speedlimit += 5 if speedlimit >= 100: speedlimit = 100 if speedlimit <= 0: speedlimit = 0 if speedfactor >= 5: speedfactor = 5 if speedfactor <= 0: speedfactor = 0 textPrint.unindent() textPrint.tprint(screen, "") textPrint.tprint(screen, "T-Bot Data") textPrint.indent() oldvals = btcom.get_data(oldvals) #g_angle = (oldvals[3]*20/255)-10 # Conversion from scaled output from T-Bot g_angle = oldvals[3] pts.appendleft((iii,g_angle)) iii+=1 pygame.draw.lines(screen, (139,5,139), False, ((xdatarange[0],y_origin+0.5*yscale),(xdatarange[1],y_origin+0.5*yscale)),1) pygame.draw.lines(screen, (139,5,139), False, ((xdatarange[0],y_origin),(xdatarange[0],y_origin+yscale)),1) if iii > xdatarange[1]: iii = xdatarange[0] aa[:,1]=np.array(pts)[:,1] try: bb[:,1] = (yscale/((aa[:,1]-aa[:,1].max()).min())*(aa[:,1]-aa[:,1].max()))+y_origin gdata = tuple(map(tuple, tuple(bb))) pygame.draw.lines(screen, (255,255,255), False, (gdata),1) except: b=1 textPrint.abspos(screen, "{:+.2f}".format(aa[:,1].max()),[xdatarange[0],y_origin-20]) textPrint.abspos(screen, "{:+.2f}".format(aa[:,1].min()),[xdatarange[0],y_origin+yscale+5]) textPrint.tprint(screen, "gyrodata: {}".format(str(oldvals[3]))) textPrint.tprint(screen, "kps: {}".format(str(oldvals[0]))) textPrint.tprint(screen, "kp: {}".format(str(oldvals[1]))) textPrint.tprint(screen, "trim: {}".format(str(oldvals[2]))) textPrint.tprint(screen, "Speed Factor: {}".format(str(speedfactor))) textPrint.tprint(screen, "Speed Limit: {}%".format(str(speedlimit))) textPrint.unindent() # # ############# Send data ################################# # if abs(axis0)+abs(axis1)+abs(axis2)+abs(axis3) != 0: slowfactor = 1+joystick.get_button(7) turn = 200+int(((axis0+(axis2*0.5))*speedfactor*100/slowfactor)) speed = 200-int(((axis1+(axis3*0.5))*speedfactor*100/slowfactor)) if speed > 200+speedlimit: speed = 200+speedlimit if speed < 200-speedlimit: speed = 200-speedlimit if turn > 200+turnspeedlimit: turn = 200+turnspeedlimit if turn < 200-turnspeedlimit: turn = 200-turnspeedlimit cmdwrite = 1 sendstring = str(turn)+str(speed)+'Z' sendcount = btcom.send_data(sendstring,sendcount) else: sendstring = '200200Z' sendcount = btcom.send_data(sendstring,sendcount) if joystick.get_button(0): buttonstring = '200200F' # trim +ve sendcount = btcom.send_data(buttonstring,sendcount) elif joystick.get_button(2): buttonstring = '200200E' # trim -ve sendcount = btcom.send_data(buttonstring,sendcount) elif joystick.get_button(1): buttonstring = '200200B' # kps +ve sendcount = btcom.send_data(buttonstring,sendcount) elif joystick.get_button(3): buttonstring = '200200A' # kps -ve sendcount = btcom.send_data(buttonstring,sendcount) elif joystick.get_button(9): buttonstring = '200200T' # kps -ve sendcount = btcom.send_data(buttonstring,sendcount) # Go ahead and update the screen with what we've drawn. screen.blit(logo,(230,420)) pygame.display.flip() # Limit to 20 frames per second. clock.tick(20) # Close the window and quit. # If you forget this line, the program will 'hang' # on exit if running from IDLE. pygame.quit()
[ "pygame.joystick.get_count", "pygame.event.get", "pygame.draw.lines", "pygame.font.Font", "pygame.display.quit", "collections.deque", "sys.path.append", "TBotTools.tbt.bt_connect", "numpy.copy", "pygame.display.set_mode", "pygame.display.set_caption", "pygame.joystick.Joystick", "pygame.quit", "pygame.joystick.init", "os.path.realpath", "pygame.init", "pygame.image.load", "pygame.time.Clock", "sys.exit", "pygame.Color", "time.time", "pygame.display.flip", "numpy.array", "numpy.random.rand" ]
[((55, 103), 'sys.path.append', 'sys.path.append', (['"""/home/pi/GitHub/T-BOTS/Python"""'], {}), "('/home/pi/GitHub/T-BOTS/Python')\n", (70, 103), False, 'import pygame, sys, pygame.mixer, os\n'), ((271, 277), 'time.time', 'time', ([], {}), '()\n', (275, 277), False, 'from time import sleep, time\n'), ((356, 399), 'collections.deque', 'deque', ([], {'maxlen': '(xdatarange[1] - xdatarange[0])'}), '(maxlen=xdatarange[1] - xdatarange[0])\n', (361, 399), False, 'from collections import deque\n'), ((608, 619), 'numpy.copy', 'np.copy', (['aa'], {}), '(aa)\n', (615, 619), True, 'import numpy as np\n'), ((702, 708), 'time.time', 'time', ([], {}), '()\n', (706, 708), False, 'from time import sleep, time\n'), ((1121, 1160), 'TBotTools.tbt.bt_connect', 'tbt.bt_connect', (['bd_addr', 'port', '"""Socket"""'], {}), "(bd_addr, port, 'Socket')\n", (1135, 1160), False, 'from TBotTools import tbt\n'), ((2122, 2143), 'pygame.Color', 'pygame.Color', (['"""black"""'], {}), "('black')\n", (2134, 2143), False, 'import pygame, sys, pygame.mixer, os\n'), ((2152, 2173), 'pygame.Color', 'pygame.Color', (['"""white"""'], {}), "('white')\n", (2164, 2173), False, 'import pygame, sys, pygame.mixer, os\n'), ((2181, 2201), 'pygame.Color', 'pygame.Color', (['"""gray"""'], {}), "('gray')\n", (2193, 2201), False, 'import pygame, sys, pygame.mixer, os\n'), ((2204, 2217), 'pygame.init', 'pygame.init', ([], {}), '()\n', (2215, 2217), False, 'import pygame, sys, pygame.mixer, os\n'), ((2286, 2321), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(350, 550)'], {}), '((350, 550))\n', (2309, 2321), False, 'import pygame, sys, pygame.mixer, os\n'), ((2329, 2369), 'pygame.image.load', 'pygame.image.load', (["(dirpath + '/logo.png')"], {}), "(dirpath + '/logo.png')\n", (2346, 2369), False, 'import pygame, sys, pygame.mixer, os\n'), ((2480, 2518), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Player 2"""'], {}), "('Player 2')\n", (2506, 2518), False, 'import pygame, sys, pygame.mixer, os\n'), ((2635, 2654), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (2652, 2654), False, 'import pygame, sys, pygame.mixer, os\n'), ((2684, 2706), 'pygame.joystick.init', 'pygame.joystick.init', ([], {}), '()\n', (2704, 2706), False, 'import pygame, sys, pygame.mixer, os\n'), ((10391, 10404), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (10402, 10404), False, 'import pygame, sys, pygame.mixer, os\n'), ((533, 546), 'numpy.array', 'np.array', (['pts'], {}), '(pts)\n', (541, 546), True, 'import numpy as np\n'), ((2989, 3007), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (3005, 3007), False, 'import pygame, sys, pygame.mixer, os\n'), ((4169, 4196), 'pygame.joystick.get_count', 'pygame.joystick.get_count', ([], {}), '()\n', (4194, 4196), False, 'import pygame, sys, pygame.mixer, os\n'), ((10199, 10220), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (10218, 10220), False, 'import pygame, sys, pygame.mixer, os\n'), ((652, 678), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (668, 678), False, 'import pygame, sys, pygame.mixer, os\n'), ((1444, 1470), 'pygame.font.Font', 'pygame.font.Font', (['None', '(15)'], {}), '(None, 15)\n', (1460, 1470), False, 'import pygame, sys, pygame.mixer, os\n'), ((2373, 2414), 'pygame.image.load', 'pygame.image.load', (["(dirpath + '/hexP2.jpg')"], {}), "(dirpath + '/hexP2.jpg')\n", (2390, 2414), False, 'import pygame, sys, pygame.mixer, os\n'), ((2429, 2469), 'pygame.image.load', 'pygame.image.load', (["(dirpath + '/hexG.jpg')"], {}), "(dirpath + '/hexG.jpg')\n", (2446, 2469), False, 'import pygame, sys, pygame.mixer, os\n'), ((3316, 3337), 'pygame.display.quit', 'pygame.display.quit', ([], {}), '()\n', (3335, 3337), False, 'import pygame, sys, pygame.mixer, os\n'), ((3346, 3356), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3354, 3356), False, 'import pygame, sys, pygame.mixer, os\n'), ((4451, 4478), 'pygame.joystick.Joystick', 'pygame.joystick.Joystick', (['i'], {}), '(i)\n', (4475, 4478), False, 'import pygame, sys, pygame.mixer, os\n'), ((7106, 7246), 'pygame.draw.lines', 'pygame.draw.lines', (['screen', '(139, 5, 139)', '(False)', '((xdatarange[0], y_origin + 0.5 * yscale), (xdatarange[1], y_origin + 0.5 *\n yscale))', '(1)'], {}), '(screen, (139, 5, 139), False, ((xdatarange[0], y_origin +\n 0.5 * yscale), (xdatarange[1], y_origin + 0.5 * yscale)), 1)\n', (7123, 7246), False, 'import pygame, sys, pygame.mixer, os\n'), ((7237, 7356), 'pygame.draw.lines', 'pygame.draw.lines', (['screen', '(139, 5, 139)', '(False)', '((xdatarange[0], y_origin), (xdatarange[0], y_origin + yscale))', '(1)'], {}), '(screen, (139, 5, 139), False, ((xdatarange[0], y_origin),\n (xdatarange[0], y_origin + yscale)), 1)\n', (7254, 7356), False, 'import pygame, sys, pygame.mixer, os\n'), ((467, 484), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (481, 484), True, 'import numpy as np\n'), ((3634, 3655), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (3653, 3655), False, 'import pygame, sys, pygame.mixer, os\n'), ((3982, 4003), 'pygame.display.quit', 'pygame.display.quit', ([], {}), '()\n', (4001, 4003), False, 'import pygame, sys, pygame.mixer, os\n'), ((4016, 4026), 'sys.exit', 'sys.exit', ([], {}), '()\n', (4024, 4026), False, 'import pygame, sys, pygame.mixer, os\n'), ((7425, 7438), 'numpy.array', 'np.array', (['pts'], {}), '(pts)\n', (7433, 7438), True, 'import numpy as np\n'), ((7616, 7675), 'pygame.draw.lines', 'pygame.draw.lines', (['screen', '(255, 255, 255)', '(False)', 'gdata', '(1)'], {}), '(screen, (255, 255, 255), False, gdata, 1)\n', (7633, 7675), False, 'import pygame, sys, pygame.mixer, os\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import numpy as np import argparse import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (15, 15), 0) cv2.imshow("Image", image) edged = cv2.Canny(blurred, 50, 100) cv2.imshow("Edges", edged) """ cv2.findContours the first param: edged image the second param: the type of contours ( cv2.RETR_EXTERNAL: retrieve only the outermost contours; cv2.RETR_LIST: grab all contours cv2.RETR_COMP、cv2.RETR_TREE ) the thrid param: cv2.CHAIN_APPROX_SIMPLE """ (cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) print("I count {} coins in this image".format(len(cnts))) coins = image.copy() cv2.drawContours(coins, cnts, -1, (0, 255, 0), 2) cv2.imshow("Coins", coins) cv2.waitKey(0) # Crop each individual coin from the image for (i, c) in enumerate(cnts): # boundingRect function finds the "enclosing box" that contour will fit into (x, y, w, h) = cv2.boundingRect(c) print("Coin #{}".format(i + 1)) coin = image[y:y + h, x: x + w] cv2.imshow("Coin", coin) mask = np.zeros(image.shape[:2], dtype = "uint8") ((centerX, centerY), radius) = cv2.minEnclosingCircle(c) cv2.circle(mask, (int(centerX), int(centerY)), int(radius), 255, -1) mask = mask[y:y + h, x:x + w] cv2.imshow("Masked Coin", cv2.bitwise_and(coin, coin, mask = mask)) cv2.waitKey(0)
[ "cv2.GaussianBlur", "cv2.Canny", "cv2.boundingRect", "cv2.minEnclosingCircle", "argparse.ArgumentParser", "cv2.bitwise_and", "cv2.cvtColor", "cv2.waitKey", "numpy.zeros", "cv2.imread", "cv2.drawContours", "cv2.imshow" ]
[((98, 123), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (121, 123), False, 'import argparse\n'), ((244, 269), 'cv2.imread', 'cv2.imread', (["args['image']"], {}), "(args['image'])\n", (254, 269), False, 'import cv2\n'), ((277, 316), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (289, 316), False, 'import cv2\n'), ((327, 362), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(15, 15)', '(0)'], {}), '(gray, (15, 15), 0)\n', (343, 362), False, 'import cv2\n'), ((363, 389), 'cv2.imshow', 'cv2.imshow', (['"""Image"""', 'image'], {}), "('Image', image)\n", (373, 389), False, 'import cv2\n'), ((399, 426), 'cv2.Canny', 'cv2.Canny', (['blurred', '(50)', '(100)'], {}), '(blurred, 50, 100)\n', (408, 426), False, 'import cv2\n'), ((427, 453), 'cv2.imshow', 'cv2.imshow', (['"""Edges"""', 'edged'], {}), "('Edges', edged)\n", (437, 453), False, 'import cv2\n'), ((918, 967), 'cv2.drawContours', 'cv2.drawContours', (['coins', 'cnts', '(-1)', '(0, 255, 0)', '(2)'], {}), '(coins, cnts, -1, (0, 255, 0), 2)\n', (934, 967), False, 'import cv2\n'), ((968, 994), 'cv2.imshow', 'cv2.imshow', (['"""Coins"""', 'coins'], {}), "('Coins', coins)\n", (978, 994), False, 'import cv2\n'), ((995, 1009), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1006, 1009), False, 'import cv2\n'), ((1185, 1204), 'cv2.boundingRect', 'cv2.boundingRect', (['c'], {}), '(c)\n', (1201, 1204), False, 'import cv2\n'), ((1282, 1306), 'cv2.imshow', 'cv2.imshow', (['"""Coin"""', 'coin'], {}), "('Coin', coin)\n", (1292, 1306), False, 'import cv2\n'), ((1319, 1359), 'numpy.zeros', 'np.zeros', (['image.shape[:2]'], {'dtype': '"""uint8"""'}), "(image.shape[:2], dtype='uint8')\n", (1327, 1359), True, 'import numpy as np\n'), ((1397, 1422), 'cv2.minEnclosingCircle', 'cv2.minEnclosingCircle', (['c'], {}), '(c)\n', (1419, 1422), False, 'import cv2\n'), ((1614, 1628), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1625, 1628), False, 'import cv2\n'), ((1568, 1606), 'cv2.bitwise_and', 'cv2.bitwise_and', (['coin', 'coin'], {'mask': 'mask'}), '(coin, coin, mask=mask)\n', (1583, 1606), False, 'import cv2\n')]
import numpy as _np from numpy import ndarray as _ndarray def accu_len_from_origin(tile_ind:int, tile_mu:float, div_RZ:_ndarray) -> float: div_tile_len = _np.linalg.norm(div_RZ[1:]-div_RZ[:-1], axis=-1) assert(tile_ind>=0 and tile_ind<=len(div_tile_len)-1) return _np.sum(div_tile_len[:tile_ind]) + tile_mu*div_tile_len[tile_ind] def accu_len_to_tile(accu_len:float, div_RZ:_ndarray) -> (int, float): seg_len_accu_array = seg_len_accu(div_RZ) assert(seg_len_accu_array[-1]>accu_len) for i in range(len(seg_len_accu_array)): if accu_len<seg_len_accu_array[i]: tile_ind = i if tile_ind>0: tile_len = seg_len_accu_array[i] - seg_len_accu_array[i-1] elif tile_ind==0: tile_len = seg_len_accu_array[0] break if tile_ind > 0: tile_mu = (accu_len-seg_len_accu_array[tile_ind-1]) / tile_len elif tile_ind==0: tile_mu = accu_len / tile_len else: raise RuntimeError("Unreasonable tile_ind, please check whether your accu_len is right.") return tile_ind, tile_mu def tile_mu_to_RZ(tile_ind:int, tile_mu:float, div_RZ:_ndarray) -> _ndarray: tile_init_RZ = div_RZ[tile_ind] tile_end_RZ = div_RZ[tile_ind+1] return tile_init_RZ + tile_mu*(tile_end_RZ-tile_init_RZ) def accu_len_to_RZ(accu_len:float, div_RZ:_ndarray) -> _ndarray: tile_ind, tile_mu = accu_len_to_tile(accu_len, div_RZ) return tile_mu_to_RZ(tile_ind, tile_mu, div_RZ) # Suppose we have a tile segment, init at $(x_1, y_1)$ and end at $(x_2, y_2)$, we want to ask which point in the divertor is closest to $(x_0, y_0)$. # tile segment equation # $$x = x_1 + \mu(x_2 - x_1)$$ # $$y = y_1 + \mu(y_2 - y_1)$$ # For such a point in the divertor closest to $(x_0, y_0)$, it must have the mu satisfying # $$(x_1-x_0+\mu(x_2-x_1), y_1-y_0+\mu(y_2-y_1)) \cdot (x_2-x_1, y_2-y_1)=0,$$ # turns out to be # $$\mu= \frac{-(x_1-x_0)(x_2-x_1)-(y_1-y_0)(y_2-y_1)}{(x_2-x_1)^2+(y_2-y_1)^2}$$ # Then we do the same calculation for all tiles in the divertor edge and measure the length between these points and $(x_0, y_0)$. Compare these lengths and we look for the minimum one. def nearest_tile_ind_mu(point:_ndarray, div_RZ:_ndarray) -> (int, float): point = _np.asarray(point) mu_array = - (div_RZ[:-1,0]-point[0]) * (div_RZ[1:,0]-div_RZ[:-1,0]) - (div_RZ[:-1,1]-point[1]) * (div_RZ[1:,1]-div_RZ[:-1,1]) mu_array/= (div_RZ[1:,0]-div_RZ[:-1,0])**2 + (div_RZ[1:,1]-div_RZ[:-1,1])**2 mu_array[mu_array>1] = 1 mu_array[mu_array<0] = 0 tile_nearest_point_RZ = div_RZ[:-1] + mu_array[:,None]*(div_RZ[1:]-div_RZ[:-1]) tile_distance = tile_nearest_point_RZ - point[None,:] tile_distance = _np.linalg.norm(tile_distance, axis=1) tile_ind = _np.argmin(tile_distance) return tile_ind, mu_array[tile_ind] def nearest_point_accu_len(point:_ndarray, div_RZ:_ndarray) -> float: tile_ind, tile_mu = nearest_tile_ind_mu(point, div_RZ) return accu_len_from_origin(tile_ind, tile_mu, div_RZ) def seg_len_accu(div_RZ:_ndarray) -> _ndarray: seg_len = _np.linalg.norm(div_RZ[1:,:] - div_RZ[:-1,:], axis=1) seg_len_accu_array = _np.zeros_like(seg_len) seg_len_accu_array[0] = seg_len[0] for i in range(len(seg_len)-1): seg_len_accu_array[i+1] += seg_len_accu_array[i]+seg_len[i+1] return seg_len_accu_array if __name__ == "__main__": pass
[ "numpy.zeros_like", "numpy.sum", "numpy.asarray", "numpy.argmin", "numpy.linalg.norm" ]
[((159, 209), 'numpy.linalg.norm', '_np.linalg.norm', (['(div_RZ[1:] - div_RZ[:-1])'], {'axis': '(-1)'}), '(div_RZ[1:] - div_RZ[:-1], axis=-1)\n', (174, 209), True, 'import numpy as _np\n'), ((2241, 2259), 'numpy.asarray', '_np.asarray', (['point'], {}), '(point)\n', (2252, 2259), True, 'import numpy as _np\n'), ((2692, 2730), 'numpy.linalg.norm', '_np.linalg.norm', (['tile_distance'], {'axis': '(1)'}), '(tile_distance, axis=1)\n', (2707, 2730), True, 'import numpy as _np\n'), ((2746, 2771), 'numpy.argmin', '_np.argmin', (['tile_distance'], {}), '(tile_distance)\n', (2756, 2771), True, 'import numpy as _np\n'), ((3063, 3118), 'numpy.linalg.norm', '_np.linalg.norm', (['(div_RZ[1:, :] - div_RZ[:-1, :])'], {'axis': '(1)'}), '(div_RZ[1:, :] - div_RZ[:-1, :], axis=1)\n', (3078, 3118), True, 'import numpy as _np\n'), ((3142, 3165), 'numpy.zeros_like', '_np.zeros_like', (['seg_len'], {}), '(seg_len)\n', (3156, 3165), True, 'import numpy as _np\n'), ((277, 309), 'numpy.sum', '_np.sum', (['div_tile_len[:tile_ind]'], {}), '(div_tile_len[:tile_ind])\n', (284, 309), True, 'import numpy as _np\n')]
# This program is to create visualization of the Iris dataset # Export images of plots to png files # Author:<NAME> from statistics import stdev from isort import file from nbformat import write import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd # Read in the original iris.data file and print its content iris = pd.read_csv('iris_ds.data', sep=',', header = None) print('The original file is with no column names:\n', iris) # This content has no header/column names only the raw data listed by Species # Add column names to the imported datafile by creating the list [cols] cols = ['Sepal Length', 'Sepal Width','Petal Length','Petal Width', 'Species'] # Create a new dataframe with the column names using the names argument iris2 = pd.read_csv('iris_ds.data', sep=',', names = cols) print("The dataframe now includes the column names: \n",iris2) # HISTOGRAMS for each attribute variable # COMMENTED OUT THIS SECTION: # This solution is for individually plotting a histogram for each feature #plt.hist(iris2["Sepal Length"]) #plt.xlabel("cm") #plt.ylabel("Count") #plt.title("Sepal Length") #plt.savefig("Hist_sepal_length.png") #plt.close() #plt.hist(iris2["Sepal Width"]) #plt.xlabel("cm") #plt.ylabel("Count") #plt.title("Sepal Width") #plt.savefig("Hist_sepal_width.png") #plt.close() #plt.hist(iris2["Petal Length"]) #plt.xlabel("cm") #plt.ylabel("Count") #plt.title("Petal Length") #plt.savefig("Hist_petal_length.png") #plt.close() #plt.hist(iris2["Petal Width"]) #plt.xlabel("cm") #plt.ylabel("Count") #plt.title("Petal Width") #plt.savefig("Hist_petal_width.png") #plt.close() # DEFINING a function to do the plotting for all 4 features and outputting into a subplot def histplot(x): plt.hist(iris2[x]) plt.title(x, size = 14, c="Blue") #setting the subtitles for each subplot plt.xlabel("cm", size=10) #Labelling the axis plt.ylabel("Count", size=10) plt.xticks(size = 10) #Setting the text size for the axis plt.yticks(size = 10) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.5, hspace=1.0) #adjusts spacing to make the subplots more legible # APPLYING THE FUNCTION TO PLOT INDIVIDUAL HISTOGRAMS plt.subplot(2,2,1) #set the number of (rows, columns, location) of each plot Top left histplot("Sepal Length") plt.subplot(2,2,2) #Top right histplot("Sepal Width") plt.subplot(2,2,3) #Bottom left histplot("Petal Length") plt.subplot(2,2,4) #Bottom right histplot("Petal Width") plt.savefig("Histogram_by features.png") # save output image to png file plt.close() # Close the plotting # SCATTER plots for each pair of the variables using Seaborn # DEFINING A FUNCTION TO PLOT THE DESIRED GRAPH def scatter(x, y): sns.set_context("notebook") custom_palette=["red","green","purple"] sns.set_palette(custom_palette) g=sns.relplot(data=iris2, kind="scatter", hue="Species", x=x, y=y, height=5) g.set(xlabel=x, ylabel=y) sns.move_legend(g, loc="upper center", bbox_to_anchor=(.5, .9), ncol = 3) plt.title('Iris Data Scatter Plot', color = 'blue', size = 15, y = 1.2) plt.tight_layout() # APPLYING THE FUNCTION TO PLOT INDIVIDUAL SCATTER PLOTS scatter("Sepal Length", "Sepal Width") plt.savefig('Iris_ScatterPlot1.png') plt.close() scatter("Petal Length", "Petal Width") plt.savefig('Iris_ScatterPlot2.png') plt.close() scatter("Petal Length", "Sepal Length") plt.savefig('Iris_ScatterPlot3.png') plt.close() scatter("Sepal Width", "Petal Width") plt.savefig('Iris_ScatterPlot4.png') plt.close() # MATRIX OF SCATTER/HITOGRAM PLOTS using Seaborn PairGrid solution # Provides a faster and more comprehensive summary of the individual pair plots # Helps understanding the data through clear visualization # This is to separate the attribute variables into a list features = ['Sepal Length', 'Sepal Width','Petal Length','Petal Width'] # Use of PAIRGRID setting diagonal plots to be histograms which will provide a distribution plot of each variable # Chose scatterplot to plot each individual data by the species of the flower g = sns.PairGrid(data=iris2, hue = "Species", vars = features, height=5, aspect=5/5) #hue is to group the data by different colours for the 3 species g.map_diag(sns.histplot) #diagonal plots to be histograms g.map_offdiag(sns.scatterplot) #other plots to be scatter plots g.add_legend() # add legend to understand the colours g.fig.suptitle("Iris Data PairGrid Plot") #add title to the pairplot plt.tight_layout() plt.savefig('Iris_Features_PairPlot.png') #save image to png file plt.close() # BOXPLOT presentation of individual species # # Initially the individual boxplots were generated by repeating the same commands # in 4 repetitive blocks # i replaced it with a function defined to plot the boxplots and used a for loop to iterate # through the list of features and save each plot as a figure with file name # Boxplot_feature.png # DEFINING BOXPLOT FUNCTION def boxplot(y): g = sns.catplot(data=iris2, kind="box", x="Species",y=y) plt.title("Iris Boxplot", c="Blue", size=15) plt.xticks(size=10) plt.yticks(size=10) plt.tight_layout() plt.savefig("Boxplot_"+y+".png") plt.close() # USE OF FOOR LOOP WHEN CALLING BOXPLOT() FUNCTION index = 0 for feature in features: index += 1 y = feature boxplot(y) # COMMENTED OUT THIS SECTION AS RELACED BY FUNCTION AND FOR LOOP # g=sns.catplot(data=iris2, kind="box", x="Species",y=features[0]) # plt.title("Iris Boxplot", c="Blue", size=15) # plt.xticks(size=10) # plt.yticks(size=10) # plt.tight_layout() # plt.savefig('Iris_BP_by_Species1.png') # plt.close() # g=sns.catplot(data=iris2, kind="box", x="Species",y=features[1]) # plt.title("Iris Boxplot 2", c="Blue", size=15) # plt.xticks(size=10) # plt.yticks(size=10) # plt.tight_layout() # plt.savefig('Iris_BP_by_Species2.png') # plt.close() # g=sns.catplot(data=iris2, kind="box", x="Species",y=features[2]) # plt.title("Iris Boxplot 3", c="Blue", size=15) # plt.xticks(size=10) # plt.yticks(size=10) # plt.tight_layout() # plt.savefig('Iris_BP_by_Species3.png') # plt.close() # g=sns.catplot(data=iris2, kind="box", x="Species",y=features[3]) # plt.title("Iris Boxplot 4", c="Blue", size=15) # plt.xticks(size=10) # plt.yticks(size=10) # plt.tight_layout() # plt.savefig('Iris_BP_by_Species4.png') # plt.close() # ANOTHER WAY TO PREVIOUS SOLUTION FOR BOXPLOT VISUALIZATION # By using the pd.melt() function available in Pandas which allows to # Change the format of the dataframe and differentiate between identifier variables (Iris Species) # and measured variables (Iris Features) # Creating new dataframe "iris3" to use for visualization purposes iris3 = pd.melt(iris2, id_vars=["Species"], value_vars=["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"]) # print(iris3.loc[::50]) - printed to see how the new df looked like, excluding as it is not required for this exercise # print(iris3.head()) - printed to see first 5 lines, excluding as it is not required for this exercise # BOXPLOT VISUALIZATION using "iris3" dataframe sns.set_context("notebook") #set the scale of the plot sns.set_style("whitegrid") # set gridlines to run across the graph ax = sns.boxplot(data=iris3, x="variable", y="value", hue="Species") # plotting data as boxplots in one plot # Moving legend from the plot "ax" using the bbox_to_anchor function, setting the number of species sns.move_legend(ax, "upper center", bbox_to_anchor=(.5, 1.1), ncol = 3, title=None, frameon = False) # Setting the title of the plot with offset of "y" to space it away from the graph sns.despine() plt.title("Iris - Features Side-by-Side Boxplots", y=1.1) # using the tight layout function to ensure that all data/labels are included in the plot plt.tight_layout() plt.yticks(np.arange(0, 10, step=1)) plt.savefig('Iris_SidebySide_Boxplot.png') plt.close() # HEATMAP useful when trying to establish correlation between variables. # Used Seaborn to generate heatmap, used formatting to make it more presentable sns.heatmap(iris2.corr(), annot=True, cmap="Purples", linewidths=1.5, linecolor="white", xticklabels=True, yticklabels=True) sns.set_context("notebook", font_scale=1) plt.title("Iris Attributes - Heatmap", c="Blue", size=15) plt.xticks(size=10) plt.yticks(rotation=90, size=10) # rotation of ylabel text as it was not showing on the plot with the full text length plt.savefig('Iris_Heatmap.png') plt.close()
[ "matplotlib.pyplot.title", "pandas.read_csv", "numpy.arange", "seaborn.relplot", "seaborn.move_legend", "seaborn.PairGrid", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.close", "matplotlib.pyplot.yticks", "matplotlib.pyplot.xticks", "seaborn.set_context", "seaborn.set_style", "seaborn.boxplot", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.ylabel", "pandas.melt", "seaborn.set_palette", "matplotlib.pyplot.subplot", "seaborn.catplot", "matplotlib.pyplot.hist", "seaborn.despine", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((360, 409), 'pandas.read_csv', 'pd.read_csv', (['"""iris_ds.data"""'], {'sep': '""","""', 'header': 'None'}), "('iris_ds.data', sep=',', header=None)\n", (371, 409), True, 'import pandas as pd\n'), ((784, 832), 'pandas.read_csv', 'pd.read_csv', (['"""iris_ds.data"""'], {'sep': '""","""', 'names': 'cols'}), "('iris_ds.data', sep=',', names=cols)\n", (795, 832), True, 'import pandas as pd\n'), ((2366, 2386), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (2377, 2386), True, 'import matplotlib.pyplot as plt\n'), ((2502, 2522), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (2513, 2522), True, 'import matplotlib.pyplot as plt\n'), ((2582, 2602), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (2593, 2602), True, 'import matplotlib.pyplot as plt\n'), ((2665, 2685), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (2676, 2685), True, 'import matplotlib.pyplot as plt\n'), ((2748, 2788), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Histogram_by features.png"""'], {}), "('Histogram_by features.png')\n", (2759, 2788), True, 'import matplotlib.pyplot as plt\n'), ((2824, 2835), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2833, 2835), True, 'import matplotlib.pyplot as plt\n'), ((3520, 3556), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_ScatterPlot1.png"""'], {}), "('Iris_ScatterPlot1.png')\n", (3531, 3556), True, 'import matplotlib.pyplot as plt\n'), ((3557, 3568), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3566, 3568), True, 'import matplotlib.pyplot as plt\n'), ((3609, 3645), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_ScatterPlot2.png"""'], {}), "('Iris_ScatterPlot2.png')\n", (3620, 3645), True, 'import matplotlib.pyplot as plt\n'), ((3646, 3657), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3655, 3657), True, 'import matplotlib.pyplot as plt\n'), ((3699, 3735), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_ScatterPlot3.png"""'], {}), "('Iris_ScatterPlot3.png')\n", (3710, 3735), True, 'import matplotlib.pyplot as plt\n'), ((3736, 3747), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3745, 3747), True, 'import matplotlib.pyplot as plt\n'), ((3787, 3823), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_ScatterPlot4.png"""'], {}), "('Iris_ScatterPlot4.png')\n", (3798, 3823), True, 'import matplotlib.pyplot as plt\n'), ((3824, 3835), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3833, 3835), True, 'import matplotlib.pyplot as plt\n'), ((4373, 4451), 'seaborn.PairGrid', 'sns.PairGrid', ([], {'data': 'iris2', 'hue': '"""Species"""', 'vars': 'features', 'height': '(5)', 'aspect': '(5 / 5)'}), "(data=iris2, hue='Species', vars=features, height=5, aspect=5 / 5)\n", (4385, 4451), True, 'import seaborn as sns\n'), ((4775, 4793), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4791, 4793), True, 'import matplotlib.pyplot as plt\n'), ((4794, 4835), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_Features_PairPlot.png"""'], {}), "('Iris_Features_PairPlot.png')\n", (4805, 4835), True, 'import matplotlib.pyplot as plt\n'), ((4862, 4873), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4871, 4873), True, 'import matplotlib.pyplot as plt\n'), ((6994, 7108), 'pandas.melt', 'pd.melt', (['iris2'], {'id_vars': "['Species']", 'value_vars': "['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']"}), "(iris2, id_vars=['Species'], value_vars=['Sepal Length',\n 'Sepal Width', 'Petal Length', 'Petal Width'])\n", (7001, 7108), True, 'import pandas as pd\n'), ((7381, 7408), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {}), "('notebook')\n", (7396, 7408), True, 'import seaborn as sns\n'), ((7440, 7466), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (7453, 7466), True, 'import seaborn as sns\n'), ((7520, 7583), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'iris3', 'x': '"""variable"""', 'y': '"""value"""', 'hue': '"""Species"""'}), "(data=iris3, x='variable', y='value', hue='Species')\n", (7531, 7583), True, 'import seaborn as sns\n'), ((7725, 7826), 'seaborn.move_legend', 'sns.move_legend', (['ax', '"""upper center"""'], {'bbox_to_anchor': '(0.5, 1.1)', 'ncol': '(3)', 'title': 'None', 'frameon': '(False)'}), "(ax, 'upper center', bbox_to_anchor=(0.5, 1.1), ncol=3,\n title=None, frameon=False)\n", (7740, 7826), True, 'import seaborn as sns\n'), ((7910, 7923), 'seaborn.despine', 'sns.despine', ([], {}), '()\n', (7921, 7923), True, 'import seaborn as sns\n'), ((7924, 7981), 'matplotlib.pyplot.title', 'plt.title', (['"""Iris - Features Side-by-Side Boxplots"""'], {'y': '(1.1)'}), "('Iris - Features Side-by-Side Boxplots', y=1.1)\n", (7933, 7981), True, 'import matplotlib.pyplot as plt\n'), ((8072, 8090), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8088, 8090), True, 'import matplotlib.pyplot as plt\n'), ((8128, 8170), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_SidebySide_Boxplot.png"""'], {}), "('Iris_SidebySide_Boxplot.png')\n", (8139, 8170), True, 'import matplotlib.pyplot as plt\n'), ((8171, 8182), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8180, 8182), True, 'import matplotlib.pyplot as plt\n'), ((8465, 8506), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {'font_scale': '(1)'}), "('notebook', font_scale=1)\n", (8480, 8506), True, 'import seaborn as sns\n'), ((8507, 8564), 'matplotlib.pyplot.title', 'plt.title', (['"""Iris Attributes - Heatmap"""'], {'c': '"""Blue"""', 'size': '(15)'}), "('Iris Attributes - Heatmap', c='Blue', size=15)\n", (8516, 8564), True, 'import matplotlib.pyplot as plt\n'), ((8565, 8584), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(10)'}), '(size=10)\n', (8575, 8584), True, 'import matplotlib.pyplot as plt\n'), ((8585, 8617), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'rotation': '(90)', 'size': '(10)'}), '(rotation=90, size=10)\n', (8595, 8617), True, 'import matplotlib.pyplot as plt\n'), ((8704, 8735), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Iris_Heatmap.png"""'], {}), "('Iris_Heatmap.png')\n", (8715, 8735), True, 'import matplotlib.pyplot as plt\n'), ((8736, 8747), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8745, 8747), True, 'import matplotlib.pyplot as plt\n'), ((1760, 1778), 'matplotlib.pyplot.hist', 'plt.hist', (['iris2[x]'], {}), '(iris2[x])\n', (1768, 1778), True, 'import matplotlib.pyplot as plt\n'), ((1783, 1814), 'matplotlib.pyplot.title', 'plt.title', (['x'], {'size': '(14)', 'c': '"""Blue"""'}), "(x, size=14, c='Blue')\n", (1792, 1814), True, 'import matplotlib.pyplot as plt\n'), ((1863, 1888), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""cm"""'], {'size': '(10)'}), "('cm', size=10)\n", (1873, 1888), True, 'import matplotlib.pyplot as plt\n'), ((1923, 1951), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Count"""'], {'size': '(10)'}), "('Count', size=10)\n", (1933, 1951), True, 'import matplotlib.pyplot as plt\n'), ((1956, 1975), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(10)'}), '(size=10)\n', (1966, 1975), True, 'import matplotlib.pyplot as plt\n'), ((2032, 2051), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(10)'}), '(size=10)\n', (2042, 2051), True, 'import matplotlib.pyplot as plt\n'), ((2058, 2147), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.1)', 'bottom': '(0.1)', 'right': '(0.9)', 'top': '(0.9)', 'wspace': '(0.5)', 'hspace': '(1.0)'}), '(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.5,\n hspace=1.0)\n', (2077, 2147), True, 'import matplotlib.pyplot as plt\n'), ((3023, 3050), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {}), "('notebook')\n", (3038, 3050), True, 'import seaborn as sns\n'), ((3099, 3130), 'seaborn.set_palette', 'sns.set_palette', (['custom_palette'], {}), '(custom_palette)\n', (3114, 3130), True, 'import seaborn as sns\n'), ((3137, 3211), 'seaborn.relplot', 'sns.relplot', ([], {'data': 'iris2', 'kind': '"""scatter"""', 'hue': '"""Species"""', 'x': 'x', 'y': 'y', 'height': '(5)'}), "(data=iris2, kind='scatter', hue='Species', x=x, y=y, height=5)\n", (3148, 3211), True, 'import seaborn as sns\n'), ((3246, 3319), 'seaborn.move_legend', 'sns.move_legend', (['g'], {'loc': '"""upper center"""', 'bbox_to_anchor': '(0.5, 0.9)', 'ncol': '(3)'}), "(g, loc='upper center', bbox_to_anchor=(0.5, 0.9), ncol=3)\n", (3261, 3319), True, 'import seaborn as sns\n'), ((3324, 3389), 'matplotlib.pyplot.title', 'plt.title', (['"""Iris Data Scatter Plot"""'], {'color': '"""blue"""', 'size': '(15)', 'y': '(1.2)'}), "('Iris Data Scatter Plot', color='blue', size=15, y=1.2)\n", (3333, 3389), True, 'import matplotlib.pyplot as plt\n'), ((3400, 3418), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3416, 3418), True, 'import matplotlib.pyplot as plt\n'), ((5275, 5328), 'seaborn.catplot', 'sns.catplot', ([], {'data': 'iris2', 'kind': '"""box"""', 'x': '"""Species"""', 'y': 'y'}), "(data=iris2, kind='box', x='Species', y=y)\n", (5286, 5328), True, 'import seaborn as sns\n'), ((5332, 5376), 'matplotlib.pyplot.title', 'plt.title', (['"""Iris Boxplot"""'], {'c': '"""Blue"""', 'size': '(15)'}), "('Iris Boxplot', c='Blue', size=15)\n", (5341, 5376), True, 'import matplotlib.pyplot as plt\n'), ((5381, 5400), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(10)'}), '(size=10)\n', (5391, 5400), True, 'import matplotlib.pyplot as plt\n'), ((5405, 5424), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(10)'}), '(size=10)\n', (5415, 5424), True, 'import matplotlib.pyplot as plt\n'), ((5429, 5447), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5445, 5447), True, 'import matplotlib.pyplot as plt\n'), ((5452, 5488), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Boxplot_' + y + '.png')"], {}), "('Boxplot_' + y + '.png')\n", (5463, 5488), True, 'import matplotlib.pyplot as plt\n'), ((5489, 5500), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5498, 5500), True, 'import matplotlib.pyplot as plt\n'), ((8102, 8126), 'numpy.arange', 'np.arange', (['(0)', '(10)'], {'step': '(1)'}), '(0, 10, step=1)\n', (8111, 8126), True, 'import numpy as np\n')]
from typing import Tuple import numpy as np def camera_from_world_transform(d: float = 1.0) -> np.ndarray: """Define a transformation matrix in homogeneous coordinates that transforms coordinates from world space to camera space, according to the coordinate systems in Question 1. Args: d (float, optional): Total distance of displacement between world and camera origins. Will always be greater than or equal to zero. Defaults to 1.0. Returns: T (np.ndarray): Left-hand transformation matrix, such that c = Tw for world coordinate w and camera coordinate c as column vectors. Shape = (4,4) where 4 means 3D+1 for homogeneous. """ T = np.eye(4) # YOUR CODE HERE T = np.array([ [-1/np.sqrt(2), 0, 1/np.sqrt(2), 0], [0, 1, 0, 0], [-1/np.sqrt(2), 0, -1/np.sqrt(2), d], [0, 0, 0, 1] ]) # END YOUR CODE assert T.shape == (4, 4) return T def apply_transform(T: np.ndarray, points: np.ndarray) -> Tuple[np.ndarray]: """Apply a transformation matrix to a set of points. Hint: You'll want to first convert all of the points to homogeneous coordinates. Each point in the (3,N) shape edges is a length 3 vector for x, y, and z, so appending a 1 after z to each point will make this homogeneous coordinates. You shouldn't need any loops for this function. Args: T (np.ndarray): Left-hand transformation matrix, such that c = Tw for world coordinate w and camera coordinate c as column vectors. Shape = (4,4) where 4 means 3D+1 for homogeneous. points (np.ndarray): Shape = (3,N) where 3 means 3D and N is the number of points to transform. Returns: points_transformed (np.ndarray): Transformed points. Shape = (3,N) where 3 means 3D and N is the number of points. """ N = points.shape[1] assert points.shape == (3, N) # You'll replace this! points_transformed = np.vstack([points, np.ones(N)]) # YOUR CODE HERE points_transformed = T @ points_transformed points_transformed = points_transformed[:-1, :] # END YOUR CODE assert points_transformed.shape == (3, N) return points_transformed def intersection_from_lines( a_0: np.ndarray, a_1: np.ndarray, b_0: np.ndarray, b_1: np.ndarray ) -> np.ndarray: """Find the intersection of two lines (infinite length), each defined by a pair of points. Args: a_0 (np.ndarray): First point of first line; shape `(2,)`. a_1 (np.ndarray): Second point of first line; shape `(2,)`. b_0 (np.ndarray): First point of second line; shape `(2,)`. b_1 (np.ndarray): Second point of second line; shape `(2,)`. Returns: np.ndarray: the intersection of the two lines definied by (a0, a1) and (b0, b1). """ # Validate inputs assert a_0.shape == a_1.shape == b_0.shape == b_1.shape == (2,) assert a_0.dtype == a_1.dtype == b_0.dtype == b_1.dtype == np.float # Intersection point between lines out = np.zeros(2) # YOUR CODE HERE line_one = np.cross(np.append(a_1, [[1]]), np.append(a_0, [[1]])) line_two = np.cross(np.append(b_1, [[1]]), np.append(b_0, [[1]])) out = np.cross(line_one, line_two) out = out / out[-1] out = out[:-1] # END YOUR CODE assert out.shape == (2,) assert out.dtype == np.float return out def optical_center_from_vanishing_points( v0: np.ndarray, v1: np.ndarray, v2: np.ndarray ) -> np.ndarray: """Compute the optical center of our camera intrinsics from three vanishing points corresponding to mutually orthogonal directions. Hints: - Your `intersection_from_lines()` implementation might be helpful here. - It might be worth reviewing vector projection with dot products. Args: v0 (np.ndarray): Vanishing point in image space; shape `(2,)`. v1 (np.ndarray): Vanishing point in image space; shape `(2,)`. v2 (np.ndarray): Vanishing point in image space; shape `(2,)`. Returns: np.ndarray: Optical center; shape `(2,)`. """ assert v0.shape == v1.shape == v2.shape == (2,), "Wrong shape!" optical_center = np.zeros(2) # YOUR CODE HERE line_one = np.cross(np.append(v0.T, [[1]]), np.append(v1.T, [[1]])) line_two = np.cross(np.append(v1.T, [[1]]), np.append(v2.T, [[1]])) m_line_one_perp = line_one[1] / line_one[0] m_line_two_perp = line_two[1] / line_two[0] line_one_perp_b = v2[1] - (m_line_one_perp * v2[0]) line_two_perp_b = v0[1] - (m_line_two_perp * v0[0]) line_one_perp = np.array([-m_line_one_perp, 1, -line_one_perp_b]) line_two_perp = np.array([-m_line_two_perp, 1, -line_two_perp_b]) final = np.cross(line_one_perp, line_two_perp) final_final = final / final[-1] optical_center = final_final[:-1] # END YOUR CODE assert optical_center.shape == (2,) return optical_center def focal_length_from_two_vanishing_points( v0: np.ndarray, v1: np.ndarray, optical_center: np.ndarray ) -> np.ndarray: """Compute focal length of camera, from two vanishing points and the calibrated optical center. Args: v0 (np.ndarray): Vanishing point in image space; shape `(2,)`. v1 (np.ndarray): Vanishing point in image space; shape `(2,)`. optical_center (np.ndarray): Calibrated optical center; shape `(2,)`. Returns: float: Calibrated focal length. """ assert v0.shape == v1.shape == optical_center.shape == (2,), "Wrong shape!" f = None # YOUR CODE HERE x_comp = (v0[0] - optical_center[0]) * (v1[0] - optical_center[0]) y_comp = (v0[1] - optical_center[1]) * (v1[1] - optical_center[1]) f = np.sqrt((x_comp + y_comp) / -1) # END YOUR CODE return float(f) def physical_focal_length_from_calibration( f: float, sensor_diagonal_mm: float, image_diagonal_pixels: float ) -> float: """Compute the physical focal length of our camera, in millimeters. Args: f (float): Calibrated focal length, using pixel units. sensor_diagonal_mm (float): Length across the diagonal of our camera sensor, in millimeters. image_diagonal_pixels (float): Length across the diagonal of the calibration image, in pixels. Returns: float: Calibrated focal length, in millimeters. """ f_mm = None # YOUR CODE HERE f_mm = (sensor_diagonal_mm / image_diagonal_pixels) * f # END YOUR CODE return f_mm
[ "numpy.cross", "numpy.zeros", "numpy.ones", "numpy.append", "numpy.array", "numpy.eye", "numpy.sqrt" ]
[((721, 730), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (727, 730), True, 'import numpy as np\n'), ((3143, 3154), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (3151, 3154), True, 'import numpy as np\n'), ((3327, 3355), 'numpy.cross', 'np.cross', (['line_one', 'line_two'], {}), '(line_one, line_two)\n', (3335, 3355), True, 'import numpy as np\n'), ((4296, 4307), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (4304, 4307), True, 'import numpy as np\n'), ((4759, 4808), 'numpy.array', 'np.array', (['[-m_line_one_perp, 1, -line_one_perp_b]'], {}), '([-m_line_one_perp, 1, -line_one_perp_b])\n', (4767, 4808), True, 'import numpy as np\n'), ((4829, 4878), 'numpy.array', 'np.array', (['[-m_line_two_perp, 1, -line_two_perp_b]'], {}), '([-m_line_two_perp, 1, -line_two_perp_b])\n', (4837, 4878), True, 'import numpy as np\n'), ((4896, 4934), 'numpy.cross', 'np.cross', (['line_one_perp', 'line_two_perp'], {}), '(line_one_perp, line_two_perp)\n', (4904, 4934), True, 'import numpy as np\n'), ((5887, 5918), 'numpy.sqrt', 'np.sqrt', (['((x_comp + y_comp) / -1)'], {}), '((x_comp + y_comp) / -1)\n', (5894, 5918), True, 'import numpy as np\n'), ((3201, 3222), 'numpy.append', 'np.append', (['a_1', '[[1]]'], {}), '(a_1, [[1]])\n', (3210, 3222), True, 'import numpy as np\n'), ((3224, 3245), 'numpy.append', 'np.append', (['a_0', '[[1]]'], {}), '(a_0, [[1]])\n', (3233, 3245), True, 'import numpy as np\n'), ((3271, 3292), 'numpy.append', 'np.append', (['b_1', '[[1]]'], {}), '(b_1, [[1]])\n', (3280, 3292), True, 'import numpy as np\n'), ((3294, 3315), 'numpy.append', 'np.append', (['b_0', '[[1]]'], {}), '(b_0, [[1]])\n', (3303, 3315), True, 'import numpy as np\n'), ((4354, 4376), 'numpy.append', 'np.append', (['v0.T', '[[1]]'], {}), '(v0.T, [[1]])\n', (4363, 4376), True, 'import numpy as np\n'), ((4378, 4400), 'numpy.append', 'np.append', (['v1.T', '[[1]]'], {}), '(v1.T, [[1]])\n', (4387, 4400), True, 'import numpy as np\n'), ((4426, 4448), 'numpy.append', 'np.append', (['v1.T', '[[1]]'], {}), '(v1.T, [[1]])\n', (4435, 4448), True, 'import numpy as np\n'), ((4450, 4472), 'numpy.append', 'np.append', (['v2.T', '[[1]]'], {}), '(v2.T, [[1]])\n', (4459, 4472), True, 'import numpy as np\n'), ((2067, 2077), 'numpy.ones', 'np.ones', (['N'], {}), '(N)\n', (2074, 2077), True, 'import numpy as np\n'), ((783, 793), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (790, 793), True, 'import numpy as np\n'), ((800, 810), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (807, 810), True, 'import numpy as np\n'), ((850, 860), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (857, 860), True, 'import numpy as np\n'), ((868, 878), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (875, 878), True, 'import numpy as np\n')]
import numpy as np import torch import torch.nn as nn from common.nets import LinearNet from common.modules.NoisyLinear import NoisyLinear def fanin_init(size, fanin=None): fanin = fanin or size[0] v = 1. / np.sqrt(fanin) return torch.Tensor(size).uniform_(-v, v) class Actor(nn.Module): def __init__(self, n_observation, n_action, layers, activation=torch.nn.ELU, layer_norm=False, parameters_noise=False, parameters_noise_factorised=False, last_activation=torch.nn.Tanh, init_w=3e-3): super(Actor, self).__init__() if parameters_noise: def linear_layer(x_in, x_out): return NoisyLinear(x_in, x_out, factorised=parameters_noise_factorised) else: linear_layer = nn.Linear self.feature_net = LinearNet( layers=[n_observation] + layers, activation=activation, layer_norm=layer_norm, linear_layer=linear_layer) self.policy_net = LinearNet( layers=[self.feature_net.output_shape, n_action], activation=last_activation, layer_norm=False ) self.init_weights(init_w) def init_weights(self, init_w): for layer in self.feature_net.net: if isinstance(layer, nn.Linear): layer.weight.data = fanin_init(layer.weight.data.size()) for layer in self.policy_net.net: if isinstance(layer, nn.Linear): layer.weight.data.uniform_(-init_w, init_w) def forward(self, observation): x = observation x = self.feature_net.forward(x) x = self.policy_net.forward(x) return x class Critic(nn.Module): def __init__(self, n_observation, n_action, layers, activation=torch.nn.ELU, layer_norm=False, parameters_noise=False, parameters_noise_factorised=False, init_w=3e-3): super(Critic, self).__init__() if parameters_noise: def linear_layer(x_in, x_out): return NoisyLinear(x_in, x_out, factorised=parameters_noise_factorised) else: linear_layer = nn.Linear self.feature_net = LinearNet( layers=[n_observation + n_action] + layers, activation=activation, layer_norm=layer_norm, linear_layer=linear_layer) self.value_net = nn.Linear(self.feature_net.output_shape, 1) self.init_weights(init_w) def init_weights(self, init_w): for layer in self.feature_net.net: if isinstance(layer, nn.Linear): layer.weight.data = fanin_init(layer.weight.data.size()) self.value_net.weight.data.uniform_(-init_w, init_w) def forward(self, observation, action): x = torch.cat((observation, action), dim=1) x = self.feature_net.forward(x) x = self.value_net.forward(x) return x
[ "common.modules.NoisyLinear.NoisyLinear", "torch.cat", "common.nets.LinearNet", "torch.Tensor", "torch.nn.Linear", "numpy.sqrt" ]
[((218, 232), 'numpy.sqrt', 'np.sqrt', (['fanin'], {}), '(fanin)\n', (225, 232), True, 'import numpy as np\n'), ((854, 973), 'common.nets.LinearNet', 'LinearNet', ([], {'layers': '([n_observation] + layers)', 'activation': 'activation', 'layer_norm': 'layer_norm', 'linear_layer': 'linear_layer'}), '(layers=[n_observation] + layers, activation=activation,\n layer_norm=layer_norm, linear_layer=linear_layer)\n', (863, 973), False, 'from common.nets import LinearNet\n'), ((1045, 1155), 'common.nets.LinearNet', 'LinearNet', ([], {'layers': '[self.feature_net.output_shape, n_action]', 'activation': 'last_activation', 'layer_norm': '(False)'}), '(layers=[self.feature_net.output_shape, n_action], activation=\n last_activation, layer_norm=False)\n', (1054, 1155), False, 'from common.nets import LinearNet\n'), ((2280, 2410), 'common.nets.LinearNet', 'LinearNet', ([], {'layers': '([n_observation + n_action] + layers)', 'activation': 'activation', 'layer_norm': 'layer_norm', 'linear_layer': 'linear_layer'}), '(layers=[n_observation + n_action] + layers, activation=activation,\n layer_norm=layer_norm, linear_layer=linear_layer)\n', (2289, 2410), False, 'from common.nets import LinearNet\n'), ((2481, 2524), 'torch.nn.Linear', 'nn.Linear', (['self.feature_net.output_shape', '(1)'], {}), '(self.feature_net.output_shape, 1)\n', (2490, 2524), True, 'import torch.nn as nn\n'), ((2876, 2915), 'torch.cat', 'torch.cat', (['(observation, action)'], {'dim': '(1)'}), '((observation, action), dim=1)\n', (2885, 2915), False, 'import torch\n'), ((244, 262), 'torch.Tensor', 'torch.Tensor', (['size'], {}), '(size)\n', (256, 262), False, 'import torch\n'), ((710, 774), 'common.modules.NoisyLinear.NoisyLinear', 'NoisyLinear', (['x_in', 'x_out'], {'factorised': 'parameters_noise_factorised'}), '(x_in, x_out, factorised=parameters_noise_factorised)\n', (721, 774), False, 'from common.modules.NoisyLinear import NoisyLinear\n'), ((2136, 2200), 'common.modules.NoisyLinear.NoisyLinear', 'NoisyLinear', (['x_in', 'x_out'], {'factorised': 'parameters_noise_factorised'}), '(x_in, x_out, factorised=parameters_noise_factorised)\n', (2147, 2200), False, 'from common.modules.NoisyLinear import NoisyLinear\n')]
from pyannote.audio.pipeline.speech_turn_assignment import SpeechTurnClosestAssignment import torch import itertools import torch.nn.functional as F from pyannote.pipeline.parameter import Uniform from pyannote.core.utils.distance import cdist from pyannote.core.utils.distance import dist_range from pyannote.core.utils.distance import l2_normalize from pyannote.core import Annotation from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels from pyannote.audio.features.wrapper import Wrapper, Wrappable from typing import Optional import numpy as np import warnings from pyannote.pipeline import Pipeline class ClosestAssignment(Pipeline): """Assign each sample to the closest target Parameters ---------- metric : `str`, optional Distance metric. Defaults to 'cosine' normalize : `bool`, optional L2 normalize vectors before clustering. Hyper-parameters ---------------- threshold : `float` Do not assign if distance greater than `threshold`. """ def __init__(self, metric: Optional[str] = 'cosine', normalize: Optional[bool] = False): super().__init__() self.metric = metric self.normalize = normalize min_dist, max_dist = dist_range(metric=self.metric, normalize=self.normalize) if not np.isfinite(max_dist): # this is arbitray and might lead to suboptimal results max_dist = 1e6 msg = (f'bounding distance threshold to {max_dist:g}: ' f'this might lead to suboptimal results.') warnings.warn(msg) self.threshold = Uniform(min_dist, max_dist) def __call__(self, X_target, X): """Assign each sample to its closest class (if close enough) Parameters ---------- X_target : `np.ndarray` (n_targets, n_dimensions) target embeddings X : `np.ndarray` (n_samples, n_dimensions) sample embeddings Returns ------- assignments : `np.ndarray` (n_samples, ) sample assignments """ if self.normalize: X_target = l2_normalize(X_target) X = l2_normalize(X) distance = cdist(X_target, X, metric=self.metric) idx = np.argsort(distance, axis=0) for i, k in enumerate(idx[0]): if distance[k, i] > self.threshold: # do not assign idx[0][i] = -i return idx class ClosestAssignmentAlwaysAssign(ClosestAssignment): def __call__(self, X_target, X): if self.normalize: X_target = l2_normalize(X_target) X = l2_normalize(X) distance = cdist(X_target, X, metric=self.metric) idx = np.argsort(distance, axis=0) return idx class SpeechTurnClosestAssignmentNew(SpeechTurnClosestAssignment): def __init__(self, embedding: Wrappable = None, metric: Optional[str] = "cosine"): super().__init__(embedding=embedding, metric=metric) self.closest_assignment = ClosestAssignment(metric=self.metric) def __call__( self, current_file: dict, speech_turns: Annotation, targets: Annotation ) -> Annotation: """Assign each speech turn to closest target (if close enough) Parameters ---------- current_file : `dict` File as provided by a pyannote.database protocol. speech_turns : `Annotation` Speech turns. Should only contain `int` labels. targets : `Annotation` Targets. Should only contain `str` labels. Returns ------- assigned : `Annotation` Assigned speech turns. """ assert_string_labels(targets, "targets") assert_int_labels(speech_turns, "speech_turns") embedding = self._embedding(current_file) # gather targets embedding labels = targets.labels() X_targets, targets_labels = [], [] for l, label in enumerate(labels): timeline = targets.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: continue targets_labels.append(label) X_targets.append(np.mean(x, axis=0)) # gather speech turns embedding labels = speech_turns.labels() X, assigned_labels, skipped_labels = [], [], [] for l, label in enumerate(labels): timeline = speech_turns.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: skipped_labels.append(label) continue assigned_labels.append(label) X.append(np.mean(x, axis=0)) # assign speech turns to closest class assignments = self.closest_assignment(np.vstack(X_targets), np.vstack(X)) mapping = { label: targets_labels[k] for label, k in zip(assigned_labels, assignments[0]) if not k < 0 } mapping1 = { label: targets_labels[k] for label, k in zip(assigned_labels, assignments[1]) if not k < 0 } return speech_turns.rename_labels(mapping=mapping), speech_turns.copy().rename_labels(mapping=mapping1) class SpeechTurnClosestAssignmentMultiSpeaker(SpeechTurnClosestAssignment): def __init__(self, gnet, device, embedding: Wrappable = None, metric: Optional[str] = "cosine"): super(SpeechTurnClosestAssignmentMultiSpeaker, self).__init__(embedding, metric) self.closest_assignment = ClosestAssignmentAlwaysAssign(metric=self.metric) self.g_net = gnet.to(device) self.device = device def __call__( self, current_file: dict, speech_turns: Annotation, targets: Annotation ) -> Annotation: assert_string_labels(targets, "targets") assert_int_labels(speech_turns, "speech_turns") embedding = self._embedding(current_file) # gather targets embedding labels = targets.labels() X_targets, targets_labels = [], [] for l, label in enumerate(labels): timeline = targets.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: continue targets_labels.append(label) X_targets.append(np.mean(x, axis=0)) # gather speech turns embedding labels = speech_turns.labels() X, assigned_labels, skipped_labels = [], [], [] for l, label in enumerate(labels): timeline = speech_turns.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: skipped_labels.append(label) continue assigned_labels.append(label) X.append(np.mean(x, axis=0)) # assign speech turns to closest class targets = np.vstack(X_targets) num_targets = len(targets) targets_tensor = torch.tensor(targets).to(self.device).float() if targets_tensor.size(0) > 1: # targets_tensor = F.normalize(torch.tensor(targets).to(device).float()) combinations = torch.tensor(list(itertools.combinations(list(range(num_targets)),2))) comb2_a = targets_tensor[combinations.transpose(-2, -1)[0]] comb2_b = targets_tensor[combinations.transpose(-2, -1)[1]] merged2 = self.g_net(comb2_a, comb2_b) new_targets = torch.cat([targets_tensor, merged2], 0).cpu().detach().numpy() else: new_targets = targets for comb in list(itertools.combinations(list(range(num_targets)),2)): targets_labels.append(f'{targets_labels[comb[0]]}_{targets_labels[comb[1]]}') assignments = self.closest_assignment(new_targets, np.vstack(X)) mapping = { label: targets_labels[k] for label, k in zip(assigned_labels, assignments[0]) if not k < 0 } return speech_turns.rename_labels(mapping=mapping) class SpeechTurnClosestAssignmentMerge(SpeechTurnClosestAssignment): def __init__(self, gnet, device, embedding: Wrappable = None, metric: Optional[str] = "cosine"): super(SpeechTurnClosestAssignmentMerge, self).__init__(embedding, metric) self.g_net = gnet.to(device) self.device = device self.closest_assignment = ClosestAssignmentAlwaysAssign(metric=self.metric) def __call__( self, current_file: dict, speech_turns: Annotation, targets: Annotation ) -> Annotation: assert_string_labels(targets, "targets") assert_int_labels(speech_turns, "speech_turns") embedding = self._embedding(current_file) # gather targets embedding labels = targets.labels() X_targets, targets_labels = [], [] for l, label in enumerate(labels): timeline = targets.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: continue targets_labels.append(label) X_targets.append(np.mean(x, axis=0)) # gather speech turns embedding labels = speech_turns.labels() X, assigned_labels, skipped_labels = [], [], [] for l, label in enumerate(labels): timeline = speech_turns.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: skipped_labels.append(label) continue assigned_labels.append(label) X.append(np.mean(x, axis=0)) assignments_original = self.closest_assignment(np.vstack(X_targets), np.vstack(X)) mapping_original = { label: targets_labels[k] for label, k in zip(assigned_labels, assignments_original[0]) if not k < 0 } speech_turn_original = speech_turns.copy().rename_labels(mapping=mapping_original) # assign speech turns to closest class targets = np.vstack(X_targets) num_targets = len(targets) targets_tensor = torch.tensor(targets).to(self.device).float() # targets_tensor = F.normalize(torch.tensor(targets).to(device).float()) if num_targets > 1: combinations = torch.tensor(list(itertools.combinations(list(range(num_targets)),2))) comb2_a = targets_tensor[combinations.transpose(-2, -1)[0]] comb2_b = targets_tensor[combinations.transpose(-2, -1)[1]] merged2 = self.g_net(comb2_a, comb2_b) new_targets = merged2.cpu().detach().numpy() targets_labels_merge = [] for comb in list(itertools.combinations(list(range(num_targets)),2)): targets_labels_merge.append(f'{targets_labels[comb[0]]}_{targets_labels[comb[1]]}') else: new_targets = targets targets_labels_merge = [f'{targets_labels[0]}_{targets_labels[0]}'] assignments = self.closest_assignment(new_targets, np.vstack(X)) mapping = { label: targets_labels_merge[k] for label, k in zip(assigned_labels, assignments[0]) if not k < 0 } speech_turn_merge = speech_turns.rename_labels(mapping=mapping) return speech_turn_original, speech_turn_merge
[ "pyannote.pipeline.parameter.Uniform", "pyannote.core.utils.distance.l2_normalize", "pyannote.core.utils.distance.dist_range", "pyannote.core.utils.distance.cdist", "numpy.isfinite", "torch.cat", "numpy.argsort", "pyannote.audio.pipeline.utils.assert_string_labels", "numpy.mean", "pyannote.audio.pipeline.utils.assert_int_labels", "warnings.warn", "torch.tensor", "numpy.vstack" ]
[((1279, 1335), 'pyannote.core.utils.distance.dist_range', 'dist_range', ([], {'metric': 'self.metric', 'normalize': 'self.normalize'}), '(metric=self.metric, normalize=self.normalize)\n', (1289, 1335), False, 'from pyannote.core.utils.distance import dist_range\n'), ((1695, 1722), 'pyannote.pipeline.parameter.Uniform', 'Uniform', (['min_dist', 'max_dist'], {}), '(min_dist, max_dist)\n', (1702, 1722), False, 'from pyannote.pipeline.parameter import Uniform\n'), ((2289, 2327), 'pyannote.core.utils.distance.cdist', 'cdist', (['X_target', 'X'], {'metric': 'self.metric'}), '(X_target, X, metric=self.metric)\n', (2294, 2327), False, 'from pyannote.core.utils.distance import cdist\n'), ((2342, 2370), 'numpy.argsort', 'np.argsort', (['distance'], {'axis': '(0)'}), '(distance, axis=0)\n', (2352, 2370), True, 'import numpy as np\n'), ((2761, 2799), 'pyannote.core.utils.distance.cdist', 'cdist', (['X_target', 'X'], {'metric': 'self.metric'}), '(X_target, X, metric=self.metric)\n', (2766, 2799), False, 'from pyannote.core.utils.distance import cdist\n'), ((2814, 2842), 'numpy.argsort', 'np.argsort', (['distance'], {'axis': '(0)'}), '(distance, axis=0)\n', (2824, 2842), True, 'import numpy as np\n'), ((3775, 3815), 'pyannote.audio.pipeline.utils.assert_string_labels', 'assert_string_labels', (['targets', '"""targets"""'], {}), "(targets, 'targets')\n", (3795, 3815), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((3824, 3871), 'pyannote.audio.pipeline.utils.assert_int_labels', 'assert_int_labels', (['speech_turns', '"""speech_turns"""'], {}), "(speech_turns, 'speech_turns')\n", (3841, 3871), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((6536, 6576), 'pyannote.audio.pipeline.utils.assert_string_labels', 'assert_string_labels', (['targets', '"""targets"""'], {}), "(targets, 'targets')\n", (6556, 6576), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((6585, 6632), 'pyannote.audio.pipeline.utils.assert_int_labels', 'assert_int_labels', (['speech_turns', '"""speech_turns"""'], {}), "(speech_turns, 'speech_turns')\n", (6602, 6632), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((8260, 8280), 'numpy.vstack', 'np.vstack', (['X_targets'], {}), '(X_targets)\n', (8269, 8280), True, 'import numpy as np\n'), ((9926, 9966), 'pyannote.audio.pipeline.utils.assert_string_labels', 'assert_string_labels', (['targets', '"""targets"""'], {}), "(targets, 'targets')\n", (9946, 9966), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((9975, 10022), 'pyannote.audio.pipeline.utils.assert_int_labels', 'assert_int_labels', (['speech_turns', '"""speech_turns"""'], {}), "(speech_turns, 'speech_turns')\n", (9992, 10022), False, 'from pyannote.audio.pipeline.utils import assert_int_labels, assert_string_labels\n'), ((12009, 12029), 'numpy.vstack', 'np.vstack', (['X_targets'], {}), '(X_targets)\n', (12018, 12029), True, 'import numpy as np\n'), ((1391, 1412), 'numpy.isfinite', 'np.isfinite', (['max_dist'], {}), '(max_dist)\n', (1402, 1412), True, 'import numpy as np\n'), ((1651, 1669), 'warnings.warn', 'warnings.warn', (['msg'], {}), '(msg)\n', (1664, 1669), False, 'import warnings\n'), ((2214, 2236), 'pyannote.core.utils.distance.l2_normalize', 'l2_normalize', (['X_target'], {}), '(X_target)\n', (2226, 2236), False, 'from pyannote.core.utils.distance import l2_normalize\n'), ((2253, 2268), 'pyannote.core.utils.distance.l2_normalize', 'l2_normalize', (['X'], {}), '(X)\n', (2265, 2268), False, 'from pyannote.core.utils.distance import l2_normalize\n'), ((2686, 2708), 'pyannote.core.utils.distance.l2_normalize', 'l2_normalize', (['X_target'], {}), '(X_target)\n', (2698, 2708), False, 'from pyannote.core.utils.distance import l2_normalize\n'), ((2725, 2740), 'pyannote.core.utils.distance.l2_normalize', 'l2_normalize', (['X'], {}), '(X)\n', (2737, 2740), False, 'from pyannote.core.utils.distance import l2_normalize\n'), ((5527, 5547), 'numpy.vstack', 'np.vstack', (['X_targets'], {}), '(X_targets)\n', (5536, 5547), True, 'import numpy as np\n'), ((5549, 5561), 'numpy.vstack', 'np.vstack', (['X'], {}), '(X)\n', (5558, 5561), True, 'import numpy as np\n'), ((9165, 9177), 'numpy.vstack', 'np.vstack', (['X'], {}), '(X)\n', (9174, 9177), True, 'import numpy as np\n'), ((11640, 11660), 'numpy.vstack', 'np.vstack', (['X_targets'], {}), '(X_targets)\n', (11649, 11660), True, 'import numpy as np\n'), ((11662, 11674), 'numpy.vstack', 'np.vstack', (['X'], {}), '(X)\n', (11671, 11674), True, 'import numpy as np\n'), ((13002, 13014), 'numpy.vstack', 'np.vstack', (['X'], {}), '(X)\n', (13011, 13014), True, 'import numpy as np\n'), ((4625, 4643), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (4632, 4643), True, 'import numpy as np\n'), ((5413, 5431), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (5420, 5431), True, 'import numpy as np\n'), ((7386, 7404), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (7393, 7404), True, 'import numpy as np\n'), ((8174, 8192), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (8181, 8192), True, 'import numpy as np\n'), ((10776, 10794), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (10783, 10794), True, 'import numpy as np\n'), ((11564, 11582), 'numpy.mean', 'np.mean', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (11571, 11582), True, 'import numpy as np\n'), ((8341, 8362), 'torch.tensor', 'torch.tensor', (['targets'], {}), '(targets)\n', (8353, 8362), False, 'import torch\n'), ((12090, 12111), 'torch.tensor', 'torch.tensor', (['targets'], {}), '(targets)\n', (12102, 12111), False, 'import torch\n'), ((8826, 8865), 'torch.cat', 'torch.cat', (['[targets_tensor, merged2]', '(0)'], {}), '([targets_tensor, merged2], 0)\n', (8835, 8865), False, 'import torch\n')]
import numpy as np def calculate_perplexity(log_probs): # https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf perp = 0 for p in log_probs: perp += -p return np.exp(perp / len(log_probs)) def sample(a, temperature=1.0): # helper function to sample an index from a probability array # from https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py a = np.log(a) / temperature a = np.exp(a) / np.sum(np.exp(a)) return np.argmax(np.random.multinomial(1, a, 1)) def corpus_iterator(raw_data, batch_size, num_steps): # Pulled from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/ptb/reader.py#L82 raw_data = np.array(raw_data, dtype=np.int32) data_len = len(raw_data) batch_len = data_len // batch_size data = np.zeros([batch_size, batch_len], dtype=np.int32) for i in range(batch_size): data[i] = raw_data[batch_len * i:batch_len * (i + 1)] epoch_size = (batch_len - 1) // num_steps if epoch_size == 0: raise ValueError("epoch_size == 0, decrease batch_size or num_steps") for i in range(epoch_size): x = data[:, i * num_steps:(i + 1) * num_steps] y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1] yield (x, y) import os def temp(): for folder, subs, files in os.walk('E:/JLM/train/experiments'): for filename in files: if 'cout.txt' in filename: print(folder) path = os.path.join(folder, filename) with open(path, 'r') as f: lines = f.readlines() for line in lines: if 'Validation perplexity' in line: print(line.strip('\n').split(':')[1].strip()) temp()
[ "numpy.log", "numpy.random.multinomial", "os.walk", "numpy.zeros", "numpy.array", "numpy.exp", "os.path.join" ]
[((715, 749), 'numpy.array', 'np.array', (['raw_data'], {'dtype': 'np.int32'}), '(raw_data, dtype=np.int32)\n', (723, 749), True, 'import numpy as np\n'), ((829, 878), 'numpy.zeros', 'np.zeros', (['[batch_size, batch_len]'], {'dtype': 'np.int32'}), '([batch_size, batch_len], dtype=np.int32)\n', (837, 878), True, 'import numpy as np\n'), ((1346, 1381), 'os.walk', 'os.walk', (['"""E:/JLM/train/experiments"""'], {}), "('E:/JLM/train/experiments')\n", (1353, 1381), False, 'import os\n'), ((419, 428), 'numpy.log', 'np.log', (['a'], {}), '(a)\n', (425, 428), True, 'import numpy as np\n'), ((451, 460), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (457, 460), True, 'import numpy as np\n'), ((502, 532), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', 'a', '(1)'], {}), '(1, a, 1)\n', (523, 532), True, 'import numpy as np\n'), ((470, 479), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (476, 479), True, 'import numpy as np\n'), ((1522, 1552), 'os.path.join', 'os.path.join', (['folder', 'filename'], {}), '(folder, filename)\n', (1534, 1552), False, 'import os\n')]
import numpy as np from SoftThreshold import soft_threshold def shrunken_centroids_fit(model, X_train, y_train, _lambda): """对收缩质心模型进行训练 关于该模型训练的详细原理可参考书籍 《The Elements of Statistical Learning》(ESL)2nd editor,section 18.2 Input: model: DiscrimModel实例 Xtrain: 设计矩阵, shape=(n_samples, dim) ytrain: 类标签索引值, shape=(n_samples,) _lambda: 用于Cross-Validation Output: model """ X_train = np.array(X_train) # 将数据转换为numpy类型 y_train = np.array(y_train) n_classes = len(np.unique(y_train)) # 类别的数量 n_samples, dim = X_train.shape # 获取样本的数量和每个样本的维度 ns_per_class = np.empty((n_classes, )) # 每个类中样本的数量 # 计算混合标准差 x_bar = np.mean(X_train, axis=0) # shape = (dim,) s_error = np.zeros((dim, )) # 初始化标准差 for c in range(n_classes): index = (y_train == c) ns_per_class[c] = np.sum(index) # 在类c中共有多少个样本 # 如果在类c中不存在样本,则使用均值x_bar作为该类分布的质心 if ns_per_class[c] == 0: centroid = x_bar else: centroid = np.mean(X_train[index.flatten()], axis=0) temp1 = X_train[index.flatten()] temp2 = centroid[np.newaxis, :] temp3 = np.power(temp1 - temp2, 2) s_error = s_error + np.sum(temp3, axis=0) sigma = np.power(s_error/(n_samples - n_classes), 0.5) # 混合标准差,shape=(dim,) s0 = np.median(sigma) # 中位数 mu = model.mu # shape = (n_classes,dim) m = np.empty((n_classes, )) offset = np.empty((n_classes, dim)) for c in range(n_classes): if ns_per_class[c] == 0: m[c] = 0 else: # ESL中的式18.4 m[c] = np.power((1/ns_per_class[c] - 1/n_samples), 0.5) # ESL 中的式18.4 offset[c, :] = np.true_divide(mu[c, :] - x_bar[np.newaxis, :], m[c]*(sigma + s0)) # ESL 中的式18.5 offset[c, :] = soft_threshold(offset[c, :], _lambda) # ESL 中的式18.7 mu[c, :] = x_bar + m[c]*(sigma+s0)*offset[c, :] model.mu = mu model.sigma_pooled_diag = np.power(sigma, 2) model.shrunken_centroids = offset return model
[ "numpy.sum", "numpy.true_divide", "numpy.median", "numpy.empty", "numpy.power", "numpy.zeros", "SoftThreshold.soft_threshold", "numpy.mean", "numpy.array", "numpy.unique" ]
[((432, 449), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (440, 449), True, 'import numpy as np\n'), ((494, 511), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (502, 511), True, 'import numpy as np\n'), ((649, 671), 'numpy.empty', 'np.empty', (['(n_classes,)'], {}), '((n_classes,))\n', (657, 671), True, 'import numpy as np\n'), ((715, 739), 'numpy.mean', 'np.mean', (['X_train'], {'axis': '(0)'}), '(X_train, axis=0)\n', (722, 739), True, 'import numpy as np\n'), ((780, 796), 'numpy.zeros', 'np.zeros', (['(dim,)'], {}), '((dim,))\n', (788, 796), True, 'import numpy as np\n'), ((1312, 1360), 'numpy.power', 'np.power', (['(s_error / (n_samples - n_classes))', '(0.5)'], {}), '(s_error / (n_samples - n_classes), 0.5)\n', (1320, 1360), True, 'import numpy as np\n'), ((1391, 1407), 'numpy.median', 'np.median', (['sigma'], {}), '(sigma)\n', (1400, 1407), True, 'import numpy as np\n'), ((1545, 1567), 'numpy.empty', 'np.empty', (['(n_classes,)'], {}), '((n_classes,))\n', (1553, 1567), True, 'import numpy as np\n'), ((1582, 1608), 'numpy.empty', 'np.empty', (['(n_classes, dim)'], {}), '((n_classes, dim))\n', (1590, 1608), True, 'import numpy as np\n'), ((2123, 2141), 'numpy.power', 'np.power', (['sigma', '(2)'], {}), '(sigma, 2)\n', (2131, 2141), True, 'import numpy as np\n'), ((532, 550), 'numpy.unique', 'np.unique', (['y_train'], {}), '(y_train)\n', (541, 550), True, 'import numpy as np\n'), ((909, 922), 'numpy.sum', 'np.sum', (['index'], {}), '(index)\n', (915, 922), True, 'import numpy as np\n'), ((1223, 1249), 'numpy.power', 'np.power', (['(temp1 - temp2)', '(2)'], {}), '(temp1 - temp2, 2)\n', (1231, 1249), True, 'import numpy as np\n'), ((1846, 1914), 'numpy.true_divide', 'np.true_divide', (['(mu[c, :] - x_bar[np.newaxis, :])', '(m[c] * (sigma + s0))'], {}), '(mu[c, :] - x_bar[np.newaxis, :], m[c] * (sigma + s0))\n', (1860, 1914), True, 'import numpy as np\n'), ((1958, 1995), 'SoftThreshold.soft_threshold', 'soft_threshold', (['offset[c, :]', '_lambda'], {}), '(offset[c, :], _lambda)\n', (1972, 1995), False, 'from SoftThreshold import soft_threshold\n'), ((1278, 1299), 'numpy.sum', 'np.sum', (['temp3'], {'axis': '(0)'}), '(temp3, axis=0)\n', (1284, 1299), True, 'import numpy as np\n'), ((1752, 1802), 'numpy.power', 'np.power', (['(1 / ns_per_class[c] - 1 / n_samples)', '(0.5)'], {}), '(1 / ns_per_class[c] - 1 / n_samples, 0.5)\n', (1760, 1802), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ PyAMG: Algebraic Multigrid Solvers in Python PyAMG is a library of Algebraic Multigrid (AMG) solvers with a convenient Python interface. PyAMG features implementations of: - Ruge-Stuben (RS) or Classical AMG - AMG based on Smoothed Aggregation (SA) - Adaptive Smoothed Aggregation (αSA) - Compatible Relaxation (CR) - Krylov methods such as CG, GMRES, FGMRES, BiCGStab, MINRES, etc PyAMG is primarily written in Python with supporting C++ code for performance critical operations. """ import os import sys import subprocess import setuptools from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext from setuptools.command.test import test as TestCommand version = '4.1.0' isreleased = False install_requires = ( 'numpy>=1.7.0', 'scipy>=0.12.0', 'pytest>=2', ) # set the version information # https://github.com/numpy/numpy/commits/master/setup.py # Return the git revision as a string def git_version(): def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) GIT_REVISION = out.strip().decode('ascii') out = _minimal_ext_cmd(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) GIT_BRANCH = out.strip().decode('ascii') except OSError: GIT_REVISION = 'Unknown' GIT_BRANCH = '' return GIT_REVISION def set_version_info(VERSION, ISRELEASED): if os.path.exists('.git'): GIT_REVISION = git_version() elif os.path.exists('pyamg/version.py'): try: import imp version = imp.load_source("pyamg.version", "pyamg/version.py") GIT_REVISION = version.git_revision except ImportError: raise ImportError('Unable to read version information.') else: GIT_REVISION = 'Unknown' GIT_BRANCH = '' FULLVERSION = VERSION if not ISRELEASED: FULLVERSION += '.dev0' + '+' + GIT_REVISION[:7] print(GIT_REVISION) print(FULLVERSION) return FULLVERSION, GIT_REVISION def write_version_py(VERSION, FULLVERSION, GIT_REVISION, ISRELEASED, filename='pyamg/version.py'): cnt = """ # THIS FILE IS GENERATED FROM SETUP.PY short_version = '%(version)s' version = '%(version)s' full_version = '%(full_version)s' git_revision = '%(git_revision)s' release = %(isrelease)s if not release: version = full_version """ a = open(filename, 'w') try: a.write(cnt % {'version': VERSION, 'full_version': FULLVERSION, 'git_revision': GIT_REVISION, 'isrelease': str(ISRELEASED)}) finally: a.close() fullversion, git_revision = set_version_info(version, isreleased) write_version_py(version, fullversion, git_revision, isreleased, filename='pyamg/version.py') class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest pytest.main(self.test_args) # As of Python 3.6, CCompiler has a `has_flag` method. # cf http://bugs.python.org/issue26689 def has_flag(compiler, flagname): """Return a boolean indicating whether a flag name is supported on the specified compiler. """ import tempfile with tempfile.NamedTemporaryFile('w', suffix='.cpp') as f: f.write('int main (int argc, char **argv) { return 0; }') try: compiler.compile([f.name], extra_postargs=[flagname]) except setuptools.distutils.errors.CompileError: return False return True def cpp_flag(compiler): """Return the -std=c++[11/14] compiler flag. The c++14 is prefered over c++11 (when it is available). """ if has_flag(compiler, '-std=c++14'): return '-std=c++14' elif has_flag(compiler, '-std=c++11'): return '-std=c++11' else: raise RuntimeError('Unsupported compiler -- at least C++11 support ' 'is needed!') class BuildExt(build_ext): """A custom build extension for adding compiler-specific options.""" c_opts = { 'msvc': ['/EHsc'], 'unix': [], } l_opts = { 'msvc': [], 'unix': [], } if sys.platform == 'darwin': l_opts['unix'] += ['-stdlib=libc++', '-mmacosx-version-min=10.7'] c_opts['unix'] += ['-stdlib=libc++', '-mmacosx-version-min=10.7'] def build_extensions(self): try: self.compiler.compiler_so.remove("-Wstrict-prototypes") except (AttributeError, ValueError): pass ct = self.compiler.compiler_type c_opts = self.c_opts.get(ct, []) l_opts = self.l_opts.get(ct, []) if ct == 'unix': c_opts.append(cpp_flag(self.compiler)) if has_flag(self.compiler, '-fvisibility=hidden'): c_opts.append('-fvisibility=hidden') for ext in self.extensions: ext.extra_compile_args = c_opts ext.extra_link_args = l_opts ext.define_macros = [('VERSION_INFO', '"{}"'.format(self.distribution.get_version()))] build_ext.build_extensions(self) # identify extension modules # since numpy is needed (for the path), need to bootstrap the setup # http://stackoverflow.com/questions/19919905/how-to-bootstrap-numpy-installation-in-setup-py def finalize_options(self): build_ext.finalize_options(self) __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) class get_pybind_include(object): """Helper class to determine the pybind11 include path The purpose of this class is to postpone importing pybind11 until it is actually installed, so that the ``get_include()`` method can be invoked. """ def __init__(self, user=False): self.user = user def __str__(self): import pybind11 # The issue: # https://github.com/pybind/pybind11/issues/1067 # # pybind11 will install files to # TMP/pybind11-version.egg/*.h # TMP/pybind11-version.egg/detail/*.h # # We need this to look like # TMP/pybind11/*.h # TMP/pybind11/detail/*.h # TMPDIR/pybind11-2.2.4-py3.7.egg/pybind11/__init__.py f = pybind11.__file__ # TMPDIR/pybind11-2.2.4-py3.7.egg/pybind11/ d = os.path.dirname(f) # TMPDIR/pybind11-2.2.4-py3.7.egg dd = os.path.dirname(d) # TMPDIR tmpdir = os.path.dirname(dd) # check if not a half-install if not os.path.exists(os.path.join(dd, 'pybind11.h')): return pybind11.get_include(self.user) # if it *is* a half-install # Then copy all files to # TMPDIR/pybind11 if not os.path.isdir(os.path.join(tmpdir, 'pybind11')): import shutil shutil.copytree(dd, os.path.join(tmpdir, 'pybind11')) return tmpdir amg_core_headers = ['evolution_strength.h', 'graph.h', 'krylov.h', 'linalg.h', 'relaxation.h', 'ruge_stuben.h', 'smoothed_aggregation.h'] amg_core_headers = [f.replace('.h', '') for f in amg_core_headers] ext_modules = [Extension('pyamg.amg_core.%s' % f, sources=['pyamg/amg_core/%s_bind.cpp' % f], include_dirs=[get_pybind_include(), get_pybind_include(user=True)], undef_macros=['NDEBUG'], language='c++') for f in amg_core_headers] ext_modules += [Extension('pyamg.amg_core.tests.bind_examples', sources=['pyamg/amg_core/tests/bind_examples_bind.cpp'], include_dirs=[get_pybind_include(), get_pybind_include(user=True)], language='c++')] setup( name='pyamg', version=fullversion, keywords=['algebraic multigrid AMG sparse matrix preconditioning'], author='<NAME>, <NAME>, and <NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', url='https://github.com/pyamg/pyamg', download_url='https://github.com/pyamg/pyamg/releases', license='MIT', platforms=['Windows', 'Linux', 'Solaris', 'Mac OS-X', 'Unix'], description=__doc__.split('\n')[0], long_description=__doc__, # packages=find_packages(exclude=['doc']), package_data={'pyamg': ['gallery/example_data/*.mat', 'gallery/mesh_data/*.npz']}, include_package_data=False, install_requires=install_requires, zip_safe=False, # ext_modules=ext_modules, cmdclass={'build_ext': BuildExt, 'test': PyTest}, setup_requires=['numpy', 'pybind11'], # tests_require=['pytest'], # classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: X11 Applications', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: C++', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Education', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
[ "tempfile.NamedTemporaryFile", "subprocess.Popen", "pybind11.get_include", "os.path.dirname", "os.path.exists", "setuptools.command.build_ext.build_ext.finalize_options", "pytest.main", "os.environ.get", "imp.load_source", "setuptools.command.test.test.finalize_options", "numpy.get_include", "setuptools.command.build_ext.build_ext.build_extensions", "os.path.join", "setuptools.find_packages" ]
[((1906, 1928), 'os.path.exists', 'os.path.exists', (['""".git"""'], {}), "('.git')\n", (1920, 1928), False, 'import os\n'), ((1976, 2010), 'os.path.exists', 'os.path.exists', (['"""pyamg/version.py"""'], {}), "('pyamg/version.py')\n", (1990, 2010), False, 'import os\n'), ((3476, 3510), 'setuptools.command.test.test.finalize_options', 'TestCommand.finalize_options', (['self'], {}), '(self)\n', (3504, 3510), True, 'from setuptools.command.test import test as TestCommand\n'), ((3686, 3713), 'pytest.main', 'pytest.main', (['self.test_args'], {}), '(self.test_args)\n', (3697, 3713), False, 'import pytest\n'), ((3980, 4027), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', (['"""w"""'], {'suffix': '""".cpp"""'}), "('w', suffix='.cpp')\n", (4007, 4027), False, 'import tempfile\n'), ((5824, 5856), 'setuptools.command.build_ext.build_ext.build_extensions', 'build_ext.build_extensions', (['self'], {}), '(self)\n', (5850, 5856), False, 'from setuptools.command.build_ext import build_ext\n'), ((6101, 6133), 'setuptools.command.build_ext.build_ext.finalize_options', 'build_ext.finalize_options', (['self'], {}), '(self)\n', (6127, 6133), False, 'from setuptools.command.build_ext import build_ext\n'), ((7101, 7119), 'os.path.dirname', 'os.path.dirname', (['f'], {}), '(f)\n', (7116, 7119), False, 'import os\n'), ((7176, 7194), 'os.path.dirname', 'os.path.dirname', (['d'], {}), '(d)\n', (7191, 7194), False, 'import os\n'), ((7230, 7249), 'os.path.dirname', 'os.path.dirname', (['dd'], {}), '(dd)\n', (7245, 7249), False, 'import os\n'), ((9147, 9177), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['doc']"}), "(exclude=['doc'])\n", (9160, 9177), False, 'from setuptools import setup, find_packages, Extension\n'), ((1173, 1190), 'os.environ.get', 'os.environ.get', (['k'], {}), '(k)\n', (1187, 1190), False, 'import os\n'), ((6233, 6252), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (6250, 6252), False, 'import numpy\n'), ((7371, 7402), 'pybind11.get_include', 'pybind11.get_include', (['self.user'], {}), '(self.user)\n', (7391, 7402), False, 'import pybind11\n'), ((2070, 2122), 'imp.load_source', 'imp.load_source', (['"""pyamg.version"""', '"""pyamg/version.py"""'], {}), "('pyamg.version', 'pyamg/version.py')\n", (2085, 2122), False, 'import imp\n'), ((7319, 7349), 'os.path.join', 'os.path.join', (['dd', '"""pybind11.h"""'], {}), "(dd, 'pybind11.h')\n", (7331, 7349), False, 'import os\n'), ((7528, 7560), 'os.path.join', 'os.path.join', (['tmpdir', '"""pybind11"""'], {}), "(tmpdir, 'pybind11')\n", (7540, 7560), False, 'import os\n'), ((7621, 7653), 'os.path.join', 'os.path.join', (['tmpdir', '"""pybind11"""'], {}), "(tmpdir, 'pybind11')\n", (7633, 7653), False, 'import os\n'), ((1382, 1436), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdout': 'subprocess.PIPE', 'env': 'env'}), '(cmd, stdout=subprocess.PIPE, env=env)\n', (1398, 1436), False, 'import subprocess\n')]
import os import argparse import torch import torchvision.transforms as transforms import torch.nn.functional as F import torch.utils.data as data from PIL import Image import cv2 import numpy as np from glob import glob import random import sys sys.path.append(".") from utils import default_loader_img, default_loader_wf def make_dataset(args, dir, training): # list img files end with png if training: img_paths = sorted(glob(os.path.join(dir, '{}/*.png'.format("images/train")))) wf_paths = [p.replace('images/train', 'wireframes/train') for p in img_paths] # print("The length of the training set is: {}".format(len(img_paths))) else: img_paths = sorted(glob(os.path.join(dir, '{}/*.png'.format("images/test")))) wf_paths = [p.replace('images/test', 'wireframes/test') for p in img_paths] # print("The length of the test set is: {}".format(len(img_paths))) # return img-wf pairs return img_paths, wf_paths def custom_transform(img, wf, size): if random.random() < 0.5: # random crop for both img/wf new_size = int(size*1.2) # different interpolations can be used here, haven't thoroughly tested img = transforms.Resize((new_size, new_size), Image.LANCZOS)(img) wf = transforms.Resize((new_size, new_size), Image.LANCZOS)(wf) i = random.randint(0, new_size - size) j = random.randint(0, new_size - size) img = img.crop((i, j, i + size, j + size)) wf = wf.crop((i, j, i + size, j + size)) else: w, h = img.size if h != w or h != size: img = transforms.Resize((size, size), Image.LANCZOS)(img) wf = transforms.Resize((size, size), Image.LANCZOS)(wf) # optional color jitter augmentation # img = transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0)(img) # use the same seed to control random horizontal flip for both img and wf seed = np.random.randint(123321) random.seed(seed) img = transforms.RandomHorizontalFlip(p=0.5)(img) random.seed(seed) wf = transforms.RandomHorizontalFlip(p=0.5)(wf) color_histogram = img.histogram() # used in color guided rendering color_histogram = torch.tensor(color_histogram, dtype=torch.float)/float(size*size) img = transforms.ToTensor()(img) wf = transforms.ToTensor()(wf) # conventional normalization for gan models img = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(img) wf = transforms.Normalize(mean=[0.5], std=[0.5])(wf) return img, wf, color_histogram def custom_transform_eval(img, wf, size): w, h = img.size if h != w or h != size: img = transforms.Resize((size, size), Image.LANCZOS)(img) wf = transforms.Resize((size, size), Image.LANCZOS)(wf) color_histogram = img.histogram() color_histogram = torch.tensor(color_histogram, dtype=torch.float)/float(size*size) img = transforms.ToTensor()(img) wf = transforms.ToTensor()(wf) img = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])(img) wf = transforms.Normalize(mean=[0.5], std=[0.5])(wf) return img, wf, color_histogram def get_loader(args, batch_size, shuffle=True, num_workers=16, training=True): """Returns torch.utils.data.DataLoader for wireframe dataset.""" dataset = WireframeDataset(args, training=training) num_imgs = len(dataset) if training: data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True) else: data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, drop_last=False) return data_loader, num_imgs class WireframeDataset(data.Dataset): """Wireframe Dataset compatible with torch.utils.data.DataLoader.""" def __init__(self, args, training): self.args = args self.out_size = args.img_size self.training = training self.root = args.root_path if not os.path.exists(self.root): raise Exception("[!] {} not exists.".format(self.root)) # return paths and labels samples_image, samples_wf = make_dataset(self.args, self.root, training=self.training) self.images = samples_image self.wireframes = samples_wf def __getitem__(self, index): """Returns (augumented) wireframe data.""" # retrieve the img-line pairs img_path = self.images[index] wf_path = self.wireframes[index] img = default_loader_img(img_path) wf = default_loader_wf(wf_path) if self.training: img, wf, color_histogram = custom_transform(img, wf, size=self.out_size) else: img, wf, color_histogram = custom_transform_eval(img, wf, size=self.out_size) return img, wf, color_histogram def __repr__(self): fmt_str = 'Dataset: Wireframes' + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) return fmt_str def __len__(self): return len(self.images)
[ "sys.path.append", "random.randint", "torchvision.transforms.RandomHorizontalFlip", "torch.utils.data.DataLoader", "utils.default_loader_img", "utils.default_loader_wf", "os.path.exists", "random.random", "numpy.random.randint", "random.seed", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "torch.tensor", "torchvision.transforms.ToTensor" ]
[((258, 278), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (273, 278), False, 'import sys\n'), ((2018, 2043), 'numpy.random.randint', 'np.random.randint', (['(123321)'], {}), '(123321)\n', (2035, 2043), True, 'import numpy as np\n'), ((2049, 2066), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (2060, 2066), False, 'import random\n'), ((2127, 2144), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (2138, 2144), False, 'import random\n'), ((1056, 1071), 'random.random', 'random.random', ([], {}), '()\n', (1069, 1071), False, 'import random\n'), ((1393, 1427), 'random.randint', 'random.randint', (['(0)', '(new_size - size)'], {}), '(0, new_size - size)\n', (1407, 1427), False, 'import random\n'), ((1441, 1475), 'random.randint', 'random.randint', (['(0)', '(new_size - size)'], {}), '(0, new_size - size)\n', (1455, 1475), False, 'import random\n'), ((2078, 2116), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (2109, 2116), True, 'import torchvision.transforms as transforms\n'), ((2155, 2193), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {'p': '(0.5)'}), '(p=0.5)\n', (2186, 2193), True, 'import torchvision.transforms as transforms\n'), ((2295, 2343), 'torch.tensor', 'torch.tensor', (['color_histogram'], {'dtype': 'torch.float'}), '(color_histogram, dtype=torch.float)\n', (2307, 2343), False, 'import torch\n'), ((2372, 2393), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2391, 2393), True, 'import torchvision.transforms as transforms\n'), ((2409, 2430), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2428, 2430), True, 'import torchvision.transforms as transforms\n'), ((2497, 2560), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5, 0.5, 0.5]', 'std': '[0.5, 0.5, 0.5]'}), '(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])\n', (2517, 2560), True, 'import torchvision.transforms as transforms\n'), ((2576, 2619), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5]', 'std': '[0.5]'}), '(mean=[0.5], std=[0.5])\n', (2596, 2619), True, 'import torchvision.transforms as transforms\n'), ((2954, 3002), 'torch.tensor', 'torch.tensor', (['color_histogram'], {'dtype': 'torch.float'}), '(color_histogram, dtype=torch.float)\n', (2966, 3002), False, 'import torch\n'), ((3033, 3054), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3052, 3054), True, 'import torchvision.transforms as transforms\n'), ((3070, 3091), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3089, 3091), True, 'import torchvision.transforms as transforms\n'), ((3109, 3172), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5, 0.5, 0.5]', 'std': '[0.5, 0.5, 0.5]'}), '(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])\n', (3129, 3172), True, 'import torchvision.transforms as transforms\n'), ((3188, 3231), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.5]', 'std': '[0.5]'}), '(mean=[0.5], std=[0.5])\n', (3208, 3231), True, 'import torchvision.transforms as transforms\n'), ((3560, 3687), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'dataset', 'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': 'num_workers', 'drop_last': '(True)'}), '(dataset=dataset, batch_size=batch_size, shuffle\n =True, num_workers=num_workers, drop_last=True)\n', (3587, 3687), False, 'import torch\n'), ((3921, 4050), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'dataset', 'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': 'num_workers', 'drop_last': '(False)'}), '(dataset=dataset, batch_size=batch_size, shuffle\n =False, num_workers=num_workers, drop_last=False)\n', (3948, 4050), False, 'import torch\n'), ((5125, 5153), 'utils.default_loader_img', 'default_loader_img', (['img_path'], {}), '(img_path)\n', (5143, 5153), False, 'from utils import default_loader_img, default_loader_wf\n'), ((5168, 5194), 'utils.default_loader_wf', 'default_loader_wf', (['wf_path'], {}), '(wf_path)\n', (5185, 5194), False, 'from utils import default_loader_img, default_loader_wf\n'), ((1247, 1301), 'torchvision.transforms.Resize', 'transforms.Resize', (['(new_size, new_size)', 'Image.LANCZOS'], {}), '((new_size, new_size), Image.LANCZOS)\n', (1264, 1301), True, 'import torchvision.transforms as transforms\n'), ((1321, 1375), 'torchvision.transforms.Resize', 'transforms.Resize', (['(new_size, new_size)', 'Image.LANCZOS'], {}), '((new_size, new_size), Image.LANCZOS)\n', (1338, 1375), True, 'import torchvision.transforms as transforms\n'), ((2773, 2819), 'torchvision.transforms.Resize', 'transforms.Resize', (['(size, size)', 'Image.LANCZOS'], {}), '((size, size), Image.LANCZOS)\n', (2790, 2819), True, 'import torchvision.transforms as transforms\n'), ((2839, 2885), 'torchvision.transforms.Resize', 'transforms.Resize', (['(size, size)', 'Image.LANCZOS'], {}), '((size, size), Image.LANCZOS)\n', (2856, 2885), True, 'import torchvision.transforms as transforms\n'), ((4595, 4620), 'os.path.exists', 'os.path.exists', (['self.root'], {}), '(self.root)\n', (4609, 4620), False, 'import os\n'), ((1666, 1712), 'torchvision.transforms.Resize', 'transforms.Resize', (['(size, size)', 'Image.LANCZOS'], {}), '((size, size), Image.LANCZOS)\n', (1683, 1712), True, 'import torchvision.transforms as transforms\n'), ((1736, 1782), 'torchvision.transforms.Resize', 'transforms.Resize', (['(size, size)', 'Image.LANCZOS'], {}), '((size, size), Image.LANCZOS)\n', (1753, 1782), True, 'import torchvision.transforms as transforms\n')]
import numpy as np import matplotlib.pyplot as plt Ts = np.arange(1.0,4.1,0.1) entropies20 = np.loadtxt('entropies20.txt') free20 = np.loadtxt('freeenergies20.txt') energies20 = np.loadtxt('energies20.txt') varenergies20 = np.loadtxt('varenergies20.txt') n = len(Ts) entropy = np.zeros(n) free = np.zeros(n) energy = np.zeros(n) varenergy = np.zeros(n) with open('scan50.log') as f: for i, ln in enumerate(f): _, data = ln.strip().split('|') data = [float(s) for s in data.split()] free[i] = data[4] entropy[i] = data[5] energy[i] = data[2] varenergy[i] = data[3] print(data) entropyaug = np.zeros(n) freeaug = np.zeros(n) with open('scan50augment.log') as f: for i, ln in enumerate(f): _, data = ln.strip().split('|') data = [float(s) for s in data.split()] freeaug[i] = data[4] entropyaug[i] = data[5] plt.figure() plt.plot(Ts, entropies20, 'k', label='exact L=20 2D Ising') plt.plot(Ts, entropyaug, 'mo', label='xgboost entropy augmented') plt.plot(Ts, entropy, 'ro', label='xgboost entropy') plt.xlabel('T') plt.ylabel('S') plt.legend() plt.figure() plt.plot(Ts, energies20, 'k', label='exact L=20 2D Ising') plt.plot(Ts, energy, 'ro', label='MC energy') plt.xlabel('T') plt.ylabel('E') plt.legend() plt.figure() plt.plot(Ts, varenergies20, 'k', label='exact L=20 2D Ising') plt.plot(Ts, varenergy, 'ro', label='MC energy variance') plt.xlabel('T') plt.ylabel('var E') plt.legend() plt.figure() plt.plot(Ts, free20, 'k', label='exact L=20 2D Ising') plt.plot(Ts, freeaug, 'mo', label='xgboost entropy augmented + MC energy') plt.plot(Ts, free, 'ro', label='xgboost entropy + MC energy') plt.xlabel('T') plt.ylabel('F') plt.legend() plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.arange", "numpy.loadtxt", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((57, 81), 'numpy.arange', 'np.arange', (['(1.0)', '(4.1)', '(0.1)'], {}), '(1.0, 4.1, 0.1)\n', (66, 81), True, 'import numpy as np\n'), ((96, 125), 'numpy.loadtxt', 'np.loadtxt', (['"""entropies20.txt"""'], {}), "('entropies20.txt')\n", (106, 125), True, 'import numpy as np\n'), ((135, 167), 'numpy.loadtxt', 'np.loadtxt', (['"""freeenergies20.txt"""'], {}), "('freeenergies20.txt')\n", (145, 167), True, 'import numpy as np\n'), ((181, 209), 'numpy.loadtxt', 'np.loadtxt', (['"""energies20.txt"""'], {}), "('energies20.txt')\n", (191, 209), True, 'import numpy as np\n'), ((226, 257), 'numpy.loadtxt', 'np.loadtxt', (['"""varenergies20.txt"""'], {}), "('varenergies20.txt')\n", (236, 257), True, 'import numpy as np\n'), ((282, 293), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (290, 293), True, 'import numpy as np\n'), ((301, 312), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (309, 312), True, 'import numpy as np\n'), ((322, 333), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (330, 333), True, 'import numpy as np\n'), ((346, 357), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (354, 357), True, 'import numpy as np\n'), ((656, 667), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (664, 667), True, 'import numpy as np\n'), ((678, 689), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (686, 689), True, 'import numpy as np\n'), ((910, 922), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (920, 922), True, 'import matplotlib.pyplot as plt\n'), ((923, 982), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'entropies20', '"""k"""'], {'label': '"""exact L=20 2D Ising"""'}), "(Ts, entropies20, 'k', label='exact L=20 2D Ising')\n", (931, 982), True, 'import matplotlib.pyplot as plt\n'), ((983, 1048), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'entropyaug', '"""mo"""'], {'label': '"""xgboost entropy augmented"""'}), "(Ts, entropyaug, 'mo', label='xgboost entropy augmented')\n", (991, 1048), True, 'import matplotlib.pyplot as plt\n'), ((1049, 1101), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'entropy', '"""ro"""'], {'label': '"""xgboost entropy"""'}), "(Ts, entropy, 'ro', label='xgboost entropy')\n", (1057, 1101), True, 'import matplotlib.pyplot as plt\n'), ((1102, 1117), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""T"""'], {}), "('T')\n", (1112, 1117), True, 'import matplotlib.pyplot as plt\n'), ((1118, 1133), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""S"""'], {}), "('S')\n", (1128, 1133), True, 'import matplotlib.pyplot as plt\n'), ((1134, 1146), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1144, 1146), True, 'import matplotlib.pyplot as plt\n'), ((1148, 1160), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1158, 1160), True, 'import matplotlib.pyplot as plt\n'), ((1161, 1219), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'energies20', '"""k"""'], {'label': '"""exact L=20 2D Ising"""'}), "(Ts, energies20, 'k', label='exact L=20 2D Ising')\n", (1169, 1219), True, 'import matplotlib.pyplot as plt\n'), ((1220, 1265), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'energy', '"""ro"""'], {'label': '"""MC energy"""'}), "(Ts, energy, 'ro', label='MC energy')\n", (1228, 1265), True, 'import matplotlib.pyplot as plt\n'), ((1266, 1281), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""T"""'], {}), "('T')\n", (1276, 1281), True, 'import matplotlib.pyplot as plt\n'), ((1282, 1297), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""E"""'], {}), "('E')\n", (1292, 1297), True, 'import matplotlib.pyplot as plt\n'), ((1298, 1310), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1308, 1310), True, 'import matplotlib.pyplot as plt\n'), ((1312, 1324), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1322, 1324), True, 'import matplotlib.pyplot as plt\n'), ((1325, 1386), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'varenergies20', '"""k"""'], {'label': '"""exact L=20 2D Ising"""'}), "(Ts, varenergies20, 'k', label='exact L=20 2D Ising')\n", (1333, 1386), True, 'import matplotlib.pyplot as plt\n'), ((1387, 1444), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'varenergy', '"""ro"""'], {'label': '"""MC energy variance"""'}), "(Ts, varenergy, 'ro', label='MC energy variance')\n", (1395, 1444), True, 'import matplotlib.pyplot as plt\n'), ((1445, 1460), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""T"""'], {}), "('T')\n", (1455, 1460), True, 'import matplotlib.pyplot as plt\n'), ((1461, 1480), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""var E"""'], {}), "('var E')\n", (1471, 1480), True, 'import matplotlib.pyplot as plt\n'), ((1481, 1493), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1491, 1493), True, 'import matplotlib.pyplot as plt\n'), ((1495, 1507), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1505, 1507), True, 'import matplotlib.pyplot as plt\n'), ((1508, 1562), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'free20', '"""k"""'], {'label': '"""exact L=20 2D Ising"""'}), "(Ts, free20, 'k', label='exact L=20 2D Ising')\n", (1516, 1562), True, 'import matplotlib.pyplot as plt\n'), ((1563, 1637), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'freeaug', '"""mo"""'], {'label': '"""xgboost entropy augmented + MC energy"""'}), "(Ts, freeaug, 'mo', label='xgboost entropy augmented + MC energy')\n", (1571, 1637), True, 'import matplotlib.pyplot as plt\n'), ((1638, 1699), 'matplotlib.pyplot.plot', 'plt.plot', (['Ts', 'free', '"""ro"""'], {'label': '"""xgboost entropy + MC energy"""'}), "(Ts, free, 'ro', label='xgboost entropy + MC energy')\n", (1646, 1699), True, 'import matplotlib.pyplot as plt\n'), ((1700, 1715), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""T"""'], {}), "('T')\n", (1710, 1715), True, 'import matplotlib.pyplot as plt\n'), ((1716, 1731), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""F"""'], {}), "('F')\n", (1726, 1731), True, 'import matplotlib.pyplot as plt\n'), ((1732, 1744), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1742, 1744), True, 'import matplotlib.pyplot as plt\n'), ((1747, 1757), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1755, 1757), True, 'import matplotlib.pyplot as plt\n')]
import os import json import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm def compute_iou(box_1, box_2): ''' This function takes a pair of bounding boxes and returns intersection-over- union (IoU) of two bounding boxes. ''' # Get coordinates of intersecting box tli_row = max(box_1[0], box_2[0]) tli_col = max(box_1[1], box_2[1]) bri_row = min(box_1[2], box_2[2]) bri_col = min(box_1[3], box_2[3]) # Calculate are of intersecting box heighti = max(bri_row - tli_row, 0) widthi = max(bri_col - tli_col, 0) intersection_area = heighti * widthi if intersection_area == 0: return 0 # Get area of union box_1_height = box_1[2] - box_1[0] box_1_width = box_1[3] - box_1[1] box_2_height = box_2[2] - box_2[0] box_2_width = box_2[3] - box_1[1] box_1_area = box_1_height * box_1_width box_2_area = box_2_height * box_2_width iou = float(intersection_area) / (box_1_area + box_2_area - intersection_area) assert (iou >= 0) and (iou <= 1.0) return iou def compute_counts(preds, gts, iou_thr=0.5, conf_thr=0.5): ''' This function takes a pair of dictionaries (with our JSON format; see ex.) corresponding to predicted and ground truth bounding boxes for a collection of images and returns the number of true positives, false positives, and false negatives. <preds> is a dictionary containing predicted bounding boxes and confidence scores for a collection of images. <gts> is a dictionary containing ground truth bounding boxes for a collection of images. ''' TP = 0 FP = 0 FN = 0 ''' BEGIN YOUR CODE ''' for pred_file, pred in preds.items(): gt = gts[pred_file] pred = [x for x in pred if float(x[4]) >= conf_thr] for i in range(len(gt)): if len(pred) == 0: FN += (len(gt) - i) break ious = np.zeros(len(pred)) for j in range(len(pred)): iou = compute_iou(pred[j][:4], gt[i]) ious[j] = iou # get position of max max_iou = max(ious) max_iou_ix = ious.tolist().index(max_iou) if max_iou > iou_thr: # match the gt to this pred as a TP TP += 1 # remove this pred from preds so we don't double count it pred.pop(max_iou_ix) else: # if not, this gt is a FN FN += 1 # at the end, number of extra preds is FP FP += len(pred) ''' END YOUR CODE ''' return TP, FP, FN # set a path for predictions and annotations: preds_path = '../data/hw02_preds' gts_path = '../data/hw02_annotations' # load splits: split_path = '../data/hw02_splits' file_names_train = np.load(os.path.join(split_path,'file_names_train.npy')) file_names_test = np.load(os.path.join(split_path,'file_names_test.npy')) # Set this parameter to True when you're done with algorithm development: done_tweaking = True ''' Load training data. ''' with open(os.path.join(preds_path,'preds_train.json'),'r') as f: preds_train = json.load(f) with open(os.path.join(gts_path, 'annotations_train.json'),'r') as f: gts_train = json.load(f) if done_tweaking: ''' Load test data. ''' with open(os.path.join(preds_path,'preds_test.json'),'r') as f: preds_test = json.load(f) with open(os.path.join(gts_path, 'annotations_test.json'),'r') as f: gts_test = json.load(f) # For a fixed IoU threshold, vary the confidence thresholds. # The code below gives an example on the training set for one IoU threshold. iou_threshs = [0.25, 0.5, 0.75] confidence_thrs = [] for fname in preds_train: for box in preds_train[fname]: confidence_thrs.append(float(box[4])) confidence_thrs = np.random.choice(confidence_thrs, 100) confidence_thrs = np.sort(confidence_thrs) for iou_thresh in tqdm(iou_threshs): tp_train = np.zeros(len(confidence_thrs)) fp_train = np.zeros(len(confidence_thrs)) fn_train = np.zeros(len(confidence_thrs)) for i, conf_thr in tqdm(enumerate(confidence_thrs), leave=False): tp_train[i], fp_train[i], fn_train[i] = compute_counts(preds_train, gts_train, iou_thr=iou_thresh, conf_thr=conf_thr) # Plot training set PR curves P = tp_train / (tp_train + fp_train) R = tp_train / (tp_train + fn_train) plt.plot(R,P, '-o', markersize=2) plt.legend(["IOU Thresh 0.25", "IOU Thresh 0.5", "IOU Thresh 0.75"]) plt.xlabel("Recall") plt.ylabel("Precision") plt.savefig('train_PR_curve.png') if done_tweaking: print('Code for plotting test set PR curves.') plt.figure() # For a fixed IoU threshold, vary the confidence thresholds. # The code below gives an example on the training set for one IoU threshold. iou_threshs = [0.25, 0.5, 0.75] confidence_thrs = [] for fname in preds_test: for box in preds_test[fname]: confidence_thrs.append(float(box[4])) confidence_thrs = np.random.choice(confidence_thrs, 100) confidence_thrs = np.sort(confidence_thrs) for iou_thresh in tqdm(iou_threshs): tp_test = np.zeros(len(confidence_thrs)) fp_test = np.zeros(len(confidence_thrs)) fn_test = np.zeros(len(confidence_thrs)) for i, conf_thr in tqdm(enumerate(confidence_thrs), leave=False): tp_test[i], fp_test[i], fn_test[i] = compute_counts(preds_test, gts_test, iou_thr=iou_thresh, conf_thr=conf_thr) # Plot training set PR curves P = tp_test / (tp_test + fp_test) R = tp_test / (tp_test + fn_test) plt.plot(R,P, '-o', markersize=2) plt.legend(["IOU Thresh 0.25", "IOU Thresh 0.5", "IOU Thresh 0.75"]) plt.savefig('test_PR_curve.png')
[ "tqdm.tqdm", "json.load", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "numpy.sort", "matplotlib.pyplot.figure", "numpy.random.choice", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "os.path.join", "matplotlib.pyplot.savefig" ]
[((3893, 3931), 'numpy.random.choice', 'np.random.choice', (['confidence_thrs', '(100)'], {}), '(confidence_thrs, 100)\n', (3909, 3931), True, 'import numpy as np\n'), ((3950, 3974), 'numpy.sort', 'np.sort', (['confidence_thrs'], {}), '(confidence_thrs)\n', (3957, 3974), True, 'import numpy as np\n'), ((3994, 4011), 'tqdm.tqdm', 'tqdm', (['iou_threshs'], {}), '(iou_threshs)\n', (3998, 4011), False, 'from tqdm import tqdm\n'), ((4504, 4572), 'matplotlib.pyplot.legend', 'plt.legend', (["['IOU Thresh 0.25', 'IOU Thresh 0.5', 'IOU Thresh 0.75']"], {}), "(['IOU Thresh 0.25', 'IOU Thresh 0.5', 'IOU Thresh 0.75'])\n", (4514, 4572), True, 'import matplotlib.pyplot as plt\n'), ((4573, 4593), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall"""'], {}), "('Recall')\n", (4583, 4593), True, 'import matplotlib.pyplot as plt\n'), ((4594, 4617), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Precision"""'], {}), "('Precision')\n", (4604, 4617), True, 'import matplotlib.pyplot as plt\n'), ((4618, 4651), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""train_PR_curve.png"""'], {}), "('train_PR_curve.png')\n", (4629, 4651), True, 'import matplotlib.pyplot as plt\n'), ((2866, 2914), 'os.path.join', 'os.path.join', (['split_path', '"""file_names_train.npy"""'], {}), "(split_path, 'file_names_train.npy')\n", (2878, 2914), False, 'import os\n'), ((2941, 2988), 'os.path.join', 'os.path.join', (['split_path', '"""file_names_test.npy"""'], {}), "(split_path, 'file_names_test.npy')\n", (2953, 2988), False, 'import os\n'), ((3197, 3209), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3206, 3209), False, 'import json\n'), ((3297, 3309), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3306, 3309), False, 'import json\n'), ((4469, 4503), 'matplotlib.pyplot.plot', 'plt.plot', (['R', 'P', '"""-o"""'], {'markersize': '(2)'}), "(R, P, '-o', markersize=2)\n", (4477, 4503), True, 'import matplotlib.pyplot as plt\n'), ((4726, 4738), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4736, 4738), True, 'import matplotlib.pyplot as plt\n'), ((5086, 5124), 'numpy.random.choice', 'np.random.choice', (['confidence_thrs', '(100)'], {}), '(confidence_thrs, 100)\n', (5102, 5124), True, 'import numpy as np\n'), ((5147, 5171), 'numpy.sort', 'np.sort', (['confidence_thrs'], {}), '(confidence_thrs)\n', (5154, 5171), True, 'import numpy as np\n'), ((5195, 5212), 'tqdm.tqdm', 'tqdm', (['iou_threshs'], {}), '(iou_threshs)\n', (5199, 5212), False, 'from tqdm import tqdm\n'), ((5731, 5799), 'matplotlib.pyplot.legend', 'plt.legend', (["['IOU Thresh 0.25', 'IOU Thresh 0.5', 'IOU Thresh 0.75']"], {}), "(['IOU Thresh 0.25', 'IOU Thresh 0.5', 'IOU Thresh 0.75'])\n", (5741, 5799), True, 'import matplotlib.pyplot as plt\n'), ((5804, 5836), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""test_PR_curve.png"""'], {}), "('test_PR_curve.png')\n", (5815, 5836), True, 'import matplotlib.pyplot as plt\n'), ((3124, 3168), 'os.path.join', 'os.path.join', (['preds_path', '"""preds_train.json"""'], {}), "(preds_path, 'preds_train.json')\n", (3136, 3168), False, 'import os\n'), ((3221, 3269), 'os.path.join', 'os.path.join', (['gts_path', '"""annotations_train.json"""'], {}), "(gts_path, 'annotations_train.json')\n", (3233, 3269), False, 'import os\n'), ((3456, 3468), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3465, 3468), False, 'import json\n'), ((3562, 3574), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3571, 3574), False, 'import json\n'), ((5692, 5726), 'matplotlib.pyplot.plot', 'plt.plot', (['R', 'P', '"""-o"""'], {'markersize': '(2)'}), "(R, P, '-o', markersize=2)\n", (5700, 5726), True, 'import matplotlib.pyplot as plt\n'), ((3381, 3424), 'os.path.join', 'os.path.join', (['preds_path', '"""preds_test.json"""'], {}), "(preds_path, 'preds_test.json')\n", (3393, 3424), False, 'import os\n'), ((3484, 3531), 'os.path.join', 'os.path.join', (['gts_path', '"""annotations_test.json"""'], {}), "(gts_path, 'annotations_test.json')\n", (3496, 3531), False, 'import os\n')]
# # Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from torch.nn.modules.utils import _pair from torch.nn.parameter import Parameter # Adopted from https://github.com/pytorch/pytorch/blob/master/torch/nn/intrinsic/qat/modules/conv_fused.py class _ConvBnNd(nn.modules.conv._ConvNd): _version = 2 def __init__( self, # ConvNd args in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode, # BatchNormNd args # num_features: out_channels eps=1e-05, momentum=0.1, # affine: True # track_running_stats: True # Args for this module freeze_bn=False, qconfig=None): nn.modules.conv._ConvNd.__init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, False, padding_mode) assert qconfig, 'qconfig must be provided for QAT module' self.frozen = freeze_bn if self.training else True self.bn = nn.BatchNorm2d(out_channels, eps, momentum, True, True) self.weight_quantizer = qconfig.weight self.bias_quantizer = qconfig.bias if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_bn_parameters() # this needs to be called after reset_bn_parameters, # as they modify the same state if self.training: if freeze_bn: self.freeze_bn() else: self.update_bn() else: self.freeze_bn() def reset_running_stats(self): self.bn.reset_running_stats() def reset_bn_parameters(self): self.bn.reset_running_stats() init.uniform_(self.bn.weight) init.zeros_(self.bn.bias) # note: below is actully for conv, not BN if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def batch_stats(self, x, bias=None): """Get the batch mean and variance of x and updates the BatchNorm's running mean and average. Args: x (torch.Tensor): input batch. bias (torch.Tensor): the bias that is to be applied to the batch. Returns: (mean, variance) Note: In case of `nn.Linear`, x may be of shape (N, C, L) or (N, L) where N is batch size, C is number of channels, L is the features size. The batch norm computes the stats over C in the first case or L on the second case. The batch normalization layer is (`nn.BatchNorm1d`)[https://pytorch.org/docs/stable/nn.html#batchnorm1d] In case of `nn.Conv2d`, x is of shape (N, C, H, W) where H,W are the image dimensions, and the batch norm computes the stats over C. The batch normalization layer is (`nn.BatchNorm2d`)[https://pytorch.org/docs/stable/nn.html#batchnorm2d] """ channel_size = self.bn.num_features self.bn.num_batches_tracked += 1 # Calculate current batch stats batch_mean = x.transpose(0, 1).contiguous().view(channel_size, -1).mean(1) # BatchNorm currently uses biased variance (without Bessel's correction) as was discussed at # https://github.com/pytorch/pytorch/issues/1410 # # also see the source code itself: # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Normalization.cpp#L216 batch_var = x.transpose(0, 1).contiguous().view(channel_size, -1).var( 1, unbiased=False) # Update running stats with torch.no_grad(): biased_batch_mean = batch_mean + (bias if bias is not None else 0) # However - running_var is updated using unbiased variance! # https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Normalization.cpp#L223 n = x.numel() / channel_size corrected_var = batch_var * (n / float(n - 1)) momentum = self.bn.momentum if momentum is None: # momentum is None - we compute a cumulative moving average # as noted in https://pytorch.org/docs/stable/nn.html#batchnorm2d momentum = 1. / float(self.bn.num_batches_tracked) self.bn.running_mean.mul_(1 - momentum).add_(momentum * biased_batch_mean) self.bn.running_var.mul_(1 - momentum).add_(momentum * corrected_var) return batch_mean, batch_var def reset_parameters(self): super(_ConvBnNd, self).reset_parameters() def update_bn(self): self.frozen = False self.bn.training = True return self def freeze_bn(self): if self.frozen: return with torch.no_grad(): # The same implementation as nndct_shared/optimzation/fuse_conv_bn.py # is used so that the test accruacy is same as the deployable model. gamma = self.bn.weight.detach().cpu().numpy() beta = self.bn.bias.detach().cpu().numpy() running_var = self.bn.running_var.detach().cpu().numpy() running_mean = self.bn.running_mean.detach().cpu().numpy() epsilon = self.bn.eps scale = gamma / np.sqrt(running_var + epsilon) offset = beta - running_mean * scale weight = self.weight.detach().cpu().numpy() weight = np.multiply( weight.transpose(1, 2, 3, 0), scale).transpose(3, 0, 1, 2) self.weight.copy_(torch.from_numpy(weight)) bias = self.bias.detach.cpu().numpy() if self.bias is not None else 0 bias = torch.from_numpy(bias * scale + offset) if self.bias is not None: self.bias.copy_(bias) else: self.bias = nn.Parameter(bias) self.frozen = True self.bn.training = False return def broadcast_correction(self, c: torch.Tensor): """Broadcasts a correction factor to the output for elementwise operations.""" expected_output_dim = 4 view_fillers_dim = expected_output_dim - c.dim() - 1 view_filler = (1,) * view_fillers_dim expected_view_shape = c.shape + view_filler return c.view(*expected_view_shape) def broadcast_correction_weight(self, c): """Broadcasts a correction factor to the weight.""" if c.dim() != 1: raise ValueError("Correction factor needs to have a single dimension") expected_weight_dim = 4 view_fillers_dim = expected_weight_dim - c.dim() view_filler = (1,) * view_fillers_dim expected_view_shape = c.shape + view_filler return c.view(*expected_view_shape) def extra_repr(self): return super(_ConvBnNd, self).extra_repr() def forward(self, x): gamma, beta = self.bn.weight, self.bn.bias if self.frozen: quantized_weight = self.weight_quantizer(self.weight) quantized_bias = self.bias_quantizer(self.bias) return self._conv_forward(x, quantized_weight, quantized_bias) if self.training: batch_mean, batch_var = self.batch_stats( self._conv_forward(x, self.weight), self.bias) recip_sigma_batch = torch.rsqrt(batch_var + self.bn.eps) with torch.no_grad(): sigma_running = torch.sqrt(self.bn.running_var + self.bn.eps) w_corrected = self.weight * self.broadcast_correction_weight( gamma / sigma_running) w_quantized = self.weight_quantizer(w_corrected) recip_c = self.broadcast_correction(sigma_running * recip_sigma_batch) bias_corrected = beta - gamma * batch_mean * recip_sigma_batch bias_quantized = self.broadcast_correction( self.bias_quantizer(bias_corrected)) y = self._conv_forward(x, w_quantized, None) y.mul_(recip_c).add_(bias_quantized) else: with torch.no_grad(): recip_sigma_running = torch.rsqrt(self.bn.running_var + self.bn.eps) w_corrected = self.weight * self.broadcast_correction_weight( gamma * recip_sigma_running) w_quantized = self.weight_quantizer(w_corrected) corrected_mean = self.bn.running_mean - ( self.bias if self.bias is not None else 0) bias_corrected = beta - gamma * corrected_mean * recip_sigma_running bias_quantized = self.bias_quantizer(bias_corrected) y = self._conv_forward(x, w_quantized, bias_quantized) #print('w_quantized:', w_quantized.sum()) #print('bias_quantized:', bias_quantized.sum()) #print('conv2d output:', y.sum()) return y def train(self, mode=True): """Batchnorm's training behavior is using the self.training flag. Prevent changing it if BN is frozen. This makes sure that calling `model.train()` on a model with a frozen BN will behave properly. """ self.training = mode if not self.frozen: for module in self.children(): module.train(mode) return self # ===== Serialization version history ===== # # Version 1/None # self # |--- weight : Tensor # |--- bias : Tensor # |--- gamma : Tensor # |--- beta : Tensor # |--- running_mean : Tensor # |--- running_var : Tensor # |--- num_batches_tracked : Tensor # # Version 2 # self # |--- weight : Tensor # |--- bias : Tensor # |--- bn : Module # |--- weight : Tensor (moved from v1.self.gamma) # |--- bias : Tensor (moved from v1.self.beta) # |--- running_mean : Tensor (moved from v1.self.running_mean) # |--- running_var : Tensor (moved from v1.self.running_var) # |--- num_batches_tracked : Tensor (moved from v1.self.num_batches_tracked) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): version = local_metadata.get('version', None) if version is None or version == 1: # BN related parameters and buffers were moved into the BN module for v2 v2_to_v1_names = { 'bn.weight': 'gamma', 'bn.bias': 'beta', 'bn.running_mean': 'running_mean', 'bn.running_var': 'running_var', 'bn.num_batches_tracked': 'num_batches_tracked', } for v2_name, v1_name in v2_to_v1_names.items(): if prefix + v1_name in state_dict: state_dict[prefix + v2_name] = state_dict[prefix + v1_name] state_dict.pop(prefix + v1_name) elif strict: missing_keys.append(prefix + v2_name) super(_ConvBnNd, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) @classmethod def from_float(cls, conv, bn, qconfig): """Create a qat module from a float module.""" assert qconfig, 'Input float module must have a valid qconfig' convbn = cls(conv.in_channels, conv.out_channels, conv.kernel_size, conv.stride, conv.padding, conv.dilation, conv.groups, conv.bias is not None, conv.padding_mode, bn.eps, bn.momentum, False, qconfig) convbn.weight = conv.weight convbn.bias = conv.bias convbn.bn.weight = bn.weight convbn.bn.bias = bn.bias convbn.bn.running_mean = bn.running_mean convbn.bn.running_var = bn.running_var convbn.bn.num_batches_tracked = bn.num_batches_tracked convbn.bn.eps = bn.eps return convbn class ConvBatchNorm2d(_ConvBnNd, nn.Conv2d): """A ConvBatchNorm2d module is a module fused from Conv2d and BatchNorm2d, attached with FakeQuantize modules for both output activation and weight, used in quantization aware training. We combined the interface of :class:`torch.nn.Conv2d` and :class:`torch.nn.BatchNorm2d`. Implementation details: https://arxiv.org/pdf/1806.08342.pdf section 3.2.2 Similar to :class:`torch.nn.Conv2d`, with FakeQuantize modules initialized to default. Attributes: freeze_bn: activation_quant_fn: fake quant module for output activation weight_fake_quant: fake quant module for weight """ def __init__( self, # ConvNd args in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', # BatchNorm2d args # num_features: out_channels eps=1e-05, momentum=0.1, # affine: True # track_running_stats: True # Args for this module freeze_bn=False, qconfig=None): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) _ConvBnNd.__init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, eps, momentum, freeze_bn, qconfig) def _conv_forward(self, input, w, b=None): return F.conv2d(input, w, b, self.stride, self.padding, self.dilation, self.groups) # TODO(yuwang): Move to top api for user. def update_bn(mod): if type(mod) in set([ConvBatchNorm2d]): mod.update_bn() def freeze_bn(mod): if type(mod) in set([ConvBatchNorm2d]): mod.freeze_bn()
[ "torch.nn.Parameter", "torch.nn.init._calculate_fan_in_and_fan_out", "torch.from_numpy", "math.sqrt", "torch.sqrt", "torch.nn.init.uniform_", "torch.nn.functional.conv2d", "torch.nn.init.zeros_", "torch.nn.BatchNorm2d", "torch.Tensor", "torch.rsqrt", "torch.no_grad", "numpy.sqrt", "torch.nn.modules.utils._pair", "torch.nn.modules.conv._ConvNd.__init__" ]
[((2010, 2180), 'torch.nn.modules.conv._ConvNd.__init__', 'nn.modules.conv._ConvNd.__init__', (['self', 'in_channels', 'out_channels', 'kernel_size', 'stride', 'padding', 'dilation', 'transposed', 'output_padding', 'groups', '(False)', 'padding_mode'], {}), '(self, in_channels, out_channels,\n kernel_size, stride, padding, dilation, transposed, output_padding,\n groups, False, padding_mode)\n', (2042, 2180), True, 'import torch.nn as nn\n'), ((2415, 2470), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels', 'eps', 'momentum', '(True)', '(True)'], {}), '(out_channels, eps, momentum, True, True)\n', (2429, 2470), True, 'import torch.nn as nn\n'), ((3080, 3109), 'torch.nn.init.uniform_', 'init.uniform_', (['self.bn.weight'], {}), '(self.bn.weight)\n', (3093, 3109), False, 'from torch.nn import init\n'), ((3114, 3139), 'torch.nn.init.zeros_', 'init.zeros_', (['self.bn.bias'], {}), '(self.bn.bias)\n', (3125, 3139), False, 'from torch.nn import init\n'), ((13697, 13715), 'torch.nn.modules.utils._pair', '_pair', (['kernel_size'], {}), '(kernel_size)\n', (13702, 13715), False, 'from torch.nn.modules.utils import _pair\n'), ((13729, 13742), 'torch.nn.modules.utils._pair', '_pair', (['stride'], {}), '(stride)\n', (13734, 13742), False, 'from torch.nn.modules.utils import _pair\n'), ((13757, 13771), 'torch.nn.modules.utils._pair', '_pair', (['padding'], {}), '(padding)\n', (13762, 13771), False, 'from torch.nn.modules.utils import _pair\n'), ((13787, 13802), 'torch.nn.modules.utils._pair', '_pair', (['dilation'], {}), '(dilation)\n', (13792, 13802), False, 'from torch.nn.modules.utils import _pair\n'), ((14082, 14158), 'torch.nn.functional.conv2d', 'F.conv2d', (['input', 'w', 'b', 'self.stride', 'self.padding', 'self.dilation', 'self.groups'], {}), '(input, w, b, self.stride, self.padding, self.dilation, self.groups)\n', (14090, 14158), True, 'import torch.nn.functional as F\n'), ((3234, 3281), 'torch.nn.init._calculate_fan_in_and_fan_out', 'init._calculate_fan_in_and_fan_out', (['self.weight'], {}), '(self.weight)\n', (3268, 3281), False, 'from torch.nn import init\n'), ((3324, 3363), 'torch.nn.init.uniform_', 'init.uniform_', (['self.bias', '(-bound)', 'bound'], {}), '(self.bias, -bound, bound)\n', (3337, 3363), False, 'from torch.nn import init\n'), ((4948, 4963), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4961, 4963), False, 'import torch\n'), ((5980, 5995), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5993, 5995), False, 'import torch\n'), ((6790, 6829), 'torch.from_numpy', 'torch.from_numpy', (['(bias * scale + offset)'], {}), '(bias * scale + offset)\n', (6806, 6829), False, 'import torch\n'), ((8268, 8304), 'torch.rsqrt', 'torch.rsqrt', (['(batch_var + self.bn.eps)'], {}), '(batch_var + self.bn.eps)\n', (8279, 8304), False, 'import torch\n'), ((13929, 13937), 'torch.nn.modules.utils._pair', '_pair', (['(0)'], {}), '(0)\n', (13934, 13937), False, 'from torch.nn.modules.utils import _pair\n'), ((2596, 2622), 'torch.Tensor', 'torch.Tensor', (['out_channels'], {}), '(out_channels)\n', (2608, 2622), False, 'import torch\n'), ((3300, 3317), 'math.sqrt', 'math.sqrt', (['fan_in'], {}), '(fan_in)\n', (3309, 3317), False, 'import math\n'), ((6428, 6458), 'numpy.sqrt', 'np.sqrt', (['(running_var + epsilon)'], {}), '(running_var + epsilon)\n', (6435, 6458), True, 'import numpy as np\n'), ((6674, 6698), 'torch.from_numpy', 'torch.from_numpy', (['weight'], {}), '(weight)\n', (6690, 6698), False, 'import torch\n'), ((6924, 6942), 'torch.nn.Parameter', 'nn.Parameter', (['bias'], {}), '(bias)\n', (6936, 6942), True, 'import torch.nn as nn\n'), ((8316, 8331), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8329, 8331), False, 'import torch\n'), ((8357, 8402), 'torch.sqrt', 'torch.sqrt', (['(self.bn.running_var + self.bn.eps)'], {}), '(self.bn.running_var + self.bn.eps)\n', (8367, 8402), False, 'import torch\n'), ((8919, 8934), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8932, 8934), False, 'import torch\n'), ((8966, 9012), 'torch.rsqrt', 'torch.rsqrt', (['(self.bn.running_var + self.bn.eps)'], {}), '(self.bn.running_var + self.bn.eps)\n', (8977, 9012), False, 'import torch\n')]
#!/bin/sh """ Pipeline to prepare data from new patients : 1) smoothed data 2) combat normalise ( ! make sure your combat parameters & info dict are updated) 3) inter & intra normalisation """ # Import packages import os import argparse import pandas as pd import numpy as np from meld_classifier.meld_cohort import MeldCohort, MeldSubject from meld_classifier.data_preprocessing import Preprocess, Feature from meld_classifier.paths import BASE_PATH, NORM_CONTROLS_PARAMS_FILE, COMBAT_PARAMS_FILE, NEWSUBJECTS_DATASET def create_dataset_file(subjects, output_path): df=pd.DataFrame() subjects_id = [subject for subject in subjects] df['subject_id']=subjects_id df['split']=['test' for subject in subjects] df.to_csv(output_path) if __name__ == "__main__": #parse commandline arguments parser = argparse.ArgumentParser(description='data-processing on new subject ') parser.add_argument('-ids','--list_ids', help='Subject ID.', required=True,) parser.add_argument('-d', '--output_dir', type=str, help='path to store hdf5 files', default=BASE_PATH) parser.add_argument("--withoutflair", action="store_true", default=False, help="do not use flair information") args = parser.parse_args() subject_ids = np.array(np.loadtxt(args.list_ids, dtype='str',ndmin=1)) output_dir = args.output_dir dataset_newSubject = os.path.join(BASE_PATH, NEWSUBJECTS_DATASET) # Set features and smoothed values if args.withoutflair: features = { ".on_lh.thickness.mgh": 10, ".on_lh.w-g.pct.mgh" : 10, ".on_lh.pial.K_filtered.sm20.mgh": None, '.on_lh.sulc.mgh' : 5, '.on_lh.curv.mgh' : 5, } else: features = { ".on_lh.thickness.mgh": 10, ".on_lh.w-g.pct.mgh" : 10, ".on_lh.pial.K_filtered.sm20.mgh": None, '.on_lh.sulc.mgh' : 5, '.on_lh.curv.mgh' : 5, '.on_lh.gm_FLAIR_0.25.mgh' : 10, '.on_lh.gm_FLAIR_0.5.mgh' : 10, '.on_lh.gm_FLAIR_0.75.mgh' : 10, ".on_lh.gm_FLAIR_0.mgh": 10, '.on_lh.wm_FLAIR_0.5.mgh' : 10, '.on_lh.wm_FLAIR_1.mgh' : 10, } feat = Feature() features_smooth = [feat.smooth_feat(feature, features[feature]) for feature in features] features_combat = [feat.combat_feat(feature) for feature in features_smooth] ### INITIALISE ### #create dataset create_dataset_file(subject_ids, dataset_newSubject) ### SMOOTH DATA ### #----------------------------------------------------------------------------------------------- print('PROCESS 1 : SMOOTHING') #create cohort for the new subject c_raw = MeldCohort(hdf5_file_root='{site_code}_{group}_featurematrix.hdf5', dataset=dataset_newSubject, data_dir=output_dir) #create object smoothing smoothing = Preprocess(c_raw, write_hdf5_file_root='{site_code}_{group}_featurematrix_smoothed.hdf5', data_dir=output_dir) for feature in np.sort(list(set(features))): print(feature) smoothing.smooth_data(feature, features[feature]) ### COMBAT DATA ### #----------------------------------------------------------------------------------------------- print('PROCESS 2 : COMBAT') #create cohort for the new subject c_smooth = MeldCohort(hdf5_file_root='{site_code}_{group}_featurematrix_smoothed.hdf5', dataset=dataset_newSubject) #get combat parameters combat_params_file = os.path.join(BASE_PATH, COMBAT_PARAMS_FILE) #create object combat combat =Preprocess(c_smooth, write_hdf5_file_root='{site_code}_{group}_featurematrix_combat.hdf5', data_dir=output_dir) #features names for feature in features_smooth: print(feature) combat.combat_new_subject(feature, combat_params_file) ### INTRA, INTER & ASYMETRY ### #----------------------------------------------------------------------------------------------- print('PROCESS 3 : INTRA, INTER & ASYMETRY') #create cohort to normalise c_combat = MeldCohort(hdf5_file_root='{site_code}_{group}_featurematrix_combat.hdf5', dataset=dataset_newSubject, data_dir=output_dir) # provide mean and std parameter for normalisation by controls param_norms_file = os.path.join(BASE_PATH, NORM_CONTROLS_PARAMS_FILE) # create object normalisation norm = Preprocess(c_combat, write_hdf5_file_root='{site_code}_{group}_featurematrix_combat.hdf5', data_dir=output_dir) # call functions to normalise data for feature in features_combat: print(feature) norm.intra_inter_subject(feature, params_norm = param_norms_file) norm.asymmetry_subject(feature, params_norm = param_norms_file )
[ "pandas.DataFrame", "argparse.ArgumentParser", "meld_classifier.meld_cohort.MeldCohort", "numpy.loadtxt", "meld_classifier.data_preprocessing.Preprocess", "meld_classifier.data_preprocessing.Feature", "os.path.join" ]
[((580, 594), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (592, 594), True, 'import pandas as pd\n'), ((831, 901), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""data-processing on new subject """'}), "(description='data-processing on new subject ')\n", (854, 901), False, 'import argparse\n'), ((1514, 1558), 'os.path.join', 'os.path.join', (['BASE_PATH', 'NEWSUBJECTS_DATASET'], {}), '(BASE_PATH, NEWSUBJECTS_DATASET)\n', (1526, 1558), False, 'import os\n'), ((2207, 2216), 'meld_classifier.data_preprocessing.Feature', 'Feature', ([], {}), '()\n', (2214, 2216), False, 'from meld_classifier.data_preprocessing import Preprocess, Feature\n'), ((2712, 2833), 'meld_classifier.meld_cohort.MeldCohort', 'MeldCohort', ([], {'hdf5_file_root': '"""{site_code}_{group}_featurematrix.hdf5"""', 'dataset': 'dataset_newSubject', 'data_dir': 'output_dir'}), "(hdf5_file_root='{site_code}_{group}_featurematrix.hdf5', dataset\n =dataset_newSubject, data_dir=output_dir)\n", (2722, 2833), False, 'from meld_classifier.meld_cohort import MeldCohort, MeldSubject\n'), ((2874, 2989), 'meld_classifier.data_preprocessing.Preprocess', 'Preprocess', (['c_raw'], {'write_hdf5_file_root': '"""{site_code}_{group}_featurematrix_smoothed.hdf5"""', 'data_dir': 'output_dir'}), "(c_raw, write_hdf5_file_root=\n '{site_code}_{group}_featurematrix_smoothed.hdf5', data_dir=output_dir)\n", (2884, 2989), False, 'from meld_classifier.data_preprocessing import Preprocess, Feature\n'), ((3382, 3490), 'meld_classifier.meld_cohort.MeldCohort', 'MeldCohort', ([], {'hdf5_file_root': '"""{site_code}_{group}_featurematrix_smoothed.hdf5"""', 'dataset': 'dataset_newSubject'}), "(hdf5_file_root='{site_code}_{group}_featurematrix_smoothed.hdf5',\n dataset=dataset_newSubject)\n", (3392, 3490), False, 'from meld_classifier.meld_cohort import MeldCohort, MeldSubject\n'), ((3539, 3582), 'os.path.join', 'os.path.join', (['BASE_PATH', 'COMBAT_PARAMS_FILE'], {}), '(BASE_PATH, COMBAT_PARAMS_FILE)\n', (3551, 3582), False, 'import os\n'), ((3621, 3737), 'meld_classifier.data_preprocessing.Preprocess', 'Preprocess', (['c_smooth'], {'write_hdf5_file_root': '"""{site_code}_{group}_featurematrix_combat.hdf5"""', 'data_dir': 'output_dir'}), "(c_smooth, write_hdf5_file_root=\n '{site_code}_{group}_featurematrix_combat.hdf5', data_dir=output_dir)\n", (3631, 3737), False, 'from meld_classifier.data_preprocessing import Preprocess, Feature\n'), ((4161, 4288), 'meld_classifier.meld_cohort.MeldCohort', 'MeldCohort', ([], {'hdf5_file_root': '"""{site_code}_{group}_featurematrix_combat.hdf5"""', 'dataset': 'dataset_newSubject', 'data_dir': 'output_dir'}), "(hdf5_file_root='{site_code}_{group}_featurematrix_combat.hdf5',\n dataset=dataset_newSubject, data_dir=output_dir)\n", (4171, 4288), False, 'from meld_classifier.meld_cohort import MeldCohort, MeldSubject\n'), ((4375, 4425), 'os.path.join', 'os.path.join', (['BASE_PATH', 'NORM_CONTROLS_PARAMS_FILE'], {}), '(BASE_PATH, NORM_CONTROLS_PARAMS_FILE)\n', (4387, 4425), False, 'import os\n'), ((4471, 4587), 'meld_classifier.data_preprocessing.Preprocess', 'Preprocess', (['c_combat'], {'write_hdf5_file_root': '"""{site_code}_{group}_featurematrix_combat.hdf5"""', 'data_dir': 'output_dir'}), "(c_combat, write_hdf5_file_root=\n '{site_code}_{group}_featurematrix_combat.hdf5', data_dir=output_dir)\n", (4481, 4587), False, 'from meld_classifier.data_preprocessing import Preprocess, Feature\n'), ((1405, 1452), 'numpy.loadtxt', 'np.loadtxt', (['args.list_ids'], {'dtype': '"""str"""', 'ndmin': '(1)'}), "(args.list_ids, dtype='str', ndmin=1)\n", (1415, 1452), True, 'import numpy as np\n')]
""" Main lib for project_watson Project """ import multiprocessing import time import warnings from tempfile import mkdtemp import joblib import mlflow import pandas as pd import numpy as np import sys from project_watson.data import get_data, get_snli from project_watson.params import MLFLOW_URI from project_watson.utils import simple_time_tracker from project_watson.model import * from keras.callbacks import EarlyStopping from sklearn.model_selection import train_test_split class Configuration(): """ All configuration for running an experiment """ def __init__( self, model_name, translation = True, max_length = 64, padding = True, batch_size = 128, epochs = 5, learning_rate = 1e-5, metrics = ["sparse_categorical_accuracy"], verbose = 1, train_splits = 5, accelerator = "TPU", myluckynumber = 13 ): # seed and accelerator self.SEED = myluckynumber # paths self.PATH_TRAIN = "project_watson/data/train.csv" self.PATH_TEST = "project_watson/data/test.csv" # splits self.TRAIN_SPLITS = train_splits # mapping of language self.LANGUAGE_MAP = { "English" : 0, "Chinese" : 1, "Arabic" : 2, "French" : 3, "Swahili" : 4, "Urdu" : 5, "Vietnamese": 6, "Russian" : 7, "Hindi" : 8, "Greek" : 9, "Thai" : 10, "Spanish" : 11, "German" : 12, "Turkish" : 13, "Bulgarian" : 14 } self.INVERSE_LANGUAGE_MAP = {v: k for k, v in self.LANGUAGE_MAP.items()} # model configuration self.MODEL_NAME = model_name self.TRANSLATION = translation # self.TOKENIZER = AutoTokenizer.from_pretrained(self.MODEL_NAME) # model hyperparameters self.MAX_LENGTH = max_length self.PAD_TO_MAX_LENGTH = padding self.BATCH_SIZE = batch_size self.EPOCHS = epochs self.LEARNING_RATE = learning_rate self.METRICS = metrics self.VERBOSE = verbose # initializing accelerator # self.initialize_accelerator() # def initialize_accelerator(self): # """ # Initializing accelerator # """ # # checking TPU first # if self.ACCELERATOR == "TPU": # print("Connecting to TPU") # try: # tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # print(f"Running on TPU {tpu.master()}") # except ValueError: # print("Could not connect to TPU") # tpu = None # if tpu: # try: # print("Initializing TPU") # tf.config.experimental_connect_to_cluster(tpu) # tf.tpu.experimental.initialize_tpu_system(tpu) # self.strategy = tf.distribute.experimental.TPUStrategy(tpu) # self.tpu = tpu # print("TPU initialized") # except: # e = sys.exc_info()[0] # print( "Error TPU not initialized: %s" % e ) # else: # print("Unable to initialize TPU") # self.ACCELERATOR = "GPU" # # default for CPU and GPU # if self.ACCELERATOR != "TPU": # print("Using default strategy for CPU and single GPU") # self.strategy = tf.distribute.get_strategy() # # checking GPUs # if self.ACCELERATOR == "GPU": # print(f"GPUs Available: {len(tf.config.experimental.list_physical_devices('GPU'))}") # # defining replicas # self.AUTO = tf.data.experimental.AUTOTUNE # self.REPLICAS = self.strategy.num_replicas_in_sync # print(f"REPLICAS: {self.REPLICAS}") def train(self): try: print("Initializing TPU") tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) print("TPU initialized") except: e = sys.exc_info()[0] print( "Error TPU not initialized: %s" % e ) params = dict( model_name="bert-base-multilingual-cased", max_len=50, ) self.model = build_model(**params) df = get_data() X = df.drop(columns=['label'], axis=1) y = df['label'] X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=42) tokenizer = create_tokenizer() train_input = bert_encode(X_train.premise.values, X_train.hypothesis.values, tokenizer) test_input = bert_encode(X_test.premise.values, X_test.hypothesis.values, tokenizer) self.model.fit(train_input, y_train, epochs = 5, verbose = 2, batch_size = 32, validation_split = 0.3,learning_rate = 1e-5,) def pred(self, X_pred): predictions = [np.argmax(i) for i in model.predict(X_pred)] return predictions def accuracy(self, y_pred, y_true): return sum(y_pred == y_true) / len(y_pred) if __name__ == '__main__': conf = Configuration( model_name = 'bert-base-multilingual-cased', translation = True, max_length = 64, padding = True, batch_size = 128, epochs = 3, metrics = ["sparse_categorical_accuracy"], verbose = 1, ) conf.train() # test = pd.read_csv("data/test.csv") # test_input = bert_encode(test.premise.values, test.hypothesis.values, tokenizer) # y_pred = conf.pred(test_input) # acc = conf.accuracy(y_pred, y_true)
[ "sklearn.model_selection.train_test_split", "project_watson.data.get_data", "sys.exc_info", "numpy.argmax" ]
[((4590, 4600), 'project_watson.data.get_data', 'get_data', ([], {}), '()\n', (4598, 4600), False, 'from project_watson.data import get_data, get_snli\n'), ((4716, 4770), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(X, y, test_size=0.3, random_state=42)\n', (4732, 4770), False, 'from sklearn.model_selection import train_test_split\n'), ((5184, 5196), 'numpy.argmax', 'np.argmax', (['i'], {}), '(i)\n', (5193, 5196), True, 'import numpy as np\n'), ((4352, 4366), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4364, 4366), False, 'import sys\n')]
# # Copyright (C) 2019-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # # This file is based in part on deepspeech_openvino_0.5.py by <NAME> at # https://github.com/openvinotoolkit/open_model_zoo/pull/419, commit 529805d011d9b405f142b2b40f4d202bd403a4f1 on Sep 19, 2019. # from copy import deepcopy import numpy as np from asr_utils.pipelines import BlockedSeqPipelineStage class RnnSeqPipelineStage(BlockedSeqPipelineStage): def __init__(self, profile, ie, model, device='CPU'): """ Load/compile to the target device the IE IR file with the network and initialize the pipeline stage. profile (dict), a dict with pre/post-processing parameters, see profiles.py ie (IECore), IECore object for model loading/compilation/inference model (str), filename of .xml IR file device (str), inferemnce device """ self.p = deepcopy(profile) assert self.p['num_context_frames'] % 2 == 1, "num_context_frames must be odd" padding_len = self.p['num_context_frames'] // 2 super().__init__( block_len=16, context_len=self.p['num_context_frames'] - 1, left_padding_len=padding_len, right_padding_len=padding_len, padding_shape=(self.p['num_mfcc_dct_coefs'],), cut_alignment=True) net = ie.read_network(model=model) self.exec_net = ie.load_network(network=net, device_name=device) def _reset_state(self): super()._reset_state() self._rnn_state = None def process_data(self, data, finish=False): if data is not None: assert len(data.shape) == 2 return super().process_data(data, finish=finish) def _process_blocks(self, buffer, finish=False): assert buffer.shape[0] >= self._block_len + self._context_len processed = [] for start_pos in range(self._context_len, buffer.shape[0] - self._block_len + 1, self._block_len): block = buffer[start_pos - self._context_len:start_pos + self._block_len] processed.append(self._process_block(block, finish=finish and start_pos + self._block_len >= buffer.shape[0])) assert not self._cut_alignment or processed[-1].shape[0] == self._block_len, "Networks with stride != 1 are not supported" # Here start_pos is its value on the last iteration of the loop buffer_skip_len = start_pos + self._block_len - self._context_len return processed, buffer_skip_len def _process_block(self, mfcc_features, finish=False): assert mfcc_features.shape[0] == self._block_len + self._context_len, "Wrong data length: _process_block() accepts a single block of data" # Create a view into the array with overlapping strides to simulate convolution with FC. # NB: Replacing this and the first FC layer with conv1d may improve speed a little. mfcc_features = np.lib.stride_tricks.as_strided( mfcc_features, (self._block_len, self._context_len + 1, self.p['num_mfcc_dct_coefs']), (mfcc_features.strides[0], mfcc_features.strides[0], mfcc_features.strides[1]), writeable = False, ) if self._rnn_state is None: state_h = np.zeros(self.exec_net.input_info[self.p['in_state_h']].input_data.shape) state_c = np.zeros(self.exec_net.input_info[self.p['in_state_c']].input_data.shape) else: state_h, state_c = self._rnn_state infer_res = self.exec_net.infer(inputs={ self.p['in_state_c']: state_c, self.p['in_state_h']: state_h, self.p['in_data']: [mfcc_features], }) state_c = infer_res[self.p['out_state_c']] state_h = infer_res[self.p['out_state_h']] self._rnn_state = (state_h, state_c) probs = infer_res[self.p['out_data']].squeeze(1) return probs
[ "copy.deepcopy", "numpy.lib.stride_tricks.as_strided", "numpy.zeros" ]
[((898, 915), 'copy.deepcopy', 'deepcopy', (['profile'], {}), '(profile)\n', (906, 915), False, 'from copy import deepcopy\n'), ((2896, 3121), 'numpy.lib.stride_tricks.as_strided', 'np.lib.stride_tricks.as_strided', (['mfcc_features', "(self._block_len, self._context_len + 1, self.p['num_mfcc_dct_coefs'])", '(mfcc_features.strides[0], mfcc_features.strides[0], mfcc_features.strides[1])'], {'writeable': '(False)'}), "(mfcc_features, (self._block_len, self.\n _context_len + 1, self.p['num_mfcc_dct_coefs']), (mfcc_features.strides\n [0], mfcc_features.strides[0], mfcc_features.strides[1]), writeable=False)\n", (2927, 3121), True, 'import numpy as np\n'), ((3232, 3305), 'numpy.zeros', 'np.zeros', (["self.exec_net.input_info[self.p['in_state_h']].input_data.shape"], {}), "(self.exec_net.input_info[self.p['in_state_h']].input_data.shape)\n", (3240, 3305), True, 'import numpy as np\n'), ((3328, 3401), 'numpy.zeros', 'np.zeros', (["self.exec_net.input_info[self.p['in_state_c']].input_data.shape"], {}), "(self.exec_net.input_info[self.p['in_state_c']].input_data.shape)\n", (3336, 3401), True, 'import numpy as np\n')]
from Arch1 import Arch1CNN from Arch2 import Arch2CNN import torch import numpy as np import torchvision from torchvision import models, transforms import torch.nn as nn from torch.utils.data.sampler import SubsetRandomSampler from torch.utils.data import Dataset,DataLoader from xray_dataloader_zscored import ChestXrayDataset #from itertools import izip batch_size = 16 p_val= 0.1 p_test = 0.2 transform = transforms.Compose([transforms.Resize((256,256)),transforms.ToTensor()]) transform1 = transforms.Compose([transforms.Resize((512,512)),transforms.ToTensor()]) arch1model = Arch1CNN() arch2model = Arch2CNN() arch1model.load_state_dict(torch.load('arch1_dropout.pt')) arch2model.load_state_dict(torch.load('arch2_new.pt')) arch1model.eval() arch2model.eval() use_cuda = torch.cuda.is_available() if use_cuda: computing_device = torch.device("cuda") num_workers = 1 pin_memory = True print("Testing on GPU") else: computing_device = torch.device("cpu") num_workers = 0 pin_memory = False print("Testing on CPU") test_ind = np.loadtxt("test_ind.txt").astype(np.int32) dataset = ChestXrayDataset(transform) sample_test = SubsetRandomSampler(test_ind) test_loader = DataLoader(dataset, batch_size=batch_size, sampler=sample_test, num_workers=num_workers, pin_memory= pin_memory) dataset2 = ChestXrayDataset(transform1) test_loader2 = DataLoader(dataset2,batch_size = batch_size,sampler = sample_test,num_workers = num_workers, pin_memory = pin_memory) models = [arch1model,arch2model]; confusionMatrix = np.zeros((15,15)) minibatch_number = 0 for (images1,labels),(images2,labels2) in zip(test_loader,test_loader2): print("Minibatch number",minibatch_number) minibatch_number += 1 images1, labels = images1.to(computing_device), labels.to(computing_device) arch1model.to(computing_device) logitsarch1 = arch1model(images1) predictionarch1 = (logitsarch1.cpu().detach().numpy() > 0).astype(np.int32) del logitsarch1 arch1model.cpu() arch2model.to(computing_device) images2 = images2.to(computing_device) logitsarch2 = arch2model(images2) predictionarch2 = (logitsarch2.cpu().detach().numpy() > 0).astype(np.int32) del logitsarch2 arch2model.cpu() # Taking the union to retain as much predictions as possible # Each model could have learned a feature better and thus would predict some classes better prediction = predictionarch1+predictionarch2 prediction[prediction == 2] = 1 labelsArray = (labels.cpu().detach().numpy()).astype(np.int32) for row in range(len(prediction)): indexPrediction = np.where(prediction[row] == 1)[0] + 1 indexLabels = np.where(labelsArray[row] == 1)[0] + 1 #Remove common elements commonElements = np.intersect1d(indexPrediction, indexLabels) for i in commonElements: confusionMatrix[i,i] += 1 excessPrediction = np.setdiff1d(indexPrediction,commonElements) excessLabels = np.setdiff1d(indexLabels,commonElements) #Zero pad if either of the two arrays is null if len(excessPrediction) == 0 : excessPrediction = np.zeros(1,np.int32) if len(excessLabels) == 0: excessLabels = np.zeros(1,np.int32) for i in excessPrediction: for j in excessLabels: confusionMatrix[i,j] += 1 np.savetxt('Confusion_matrix_Ensemble.txt',confusionMatrix)
[ "torch.utils.data.sampler.SubsetRandomSampler", "torch.utils.data.DataLoader", "torch.load", "numpy.savetxt", "numpy.zeros", "numpy.setdiff1d", "torchvision.transforms.ToTensor", "xray_dataloader_zscored.ChestXrayDataset", "numpy.where", "torch.cuda.is_available", "numpy.loadtxt", "torch.device", "numpy.intersect1d", "Arch2.Arch2CNN", "Arch1.Arch1CNN", "torchvision.transforms.Resize" ]
[((583, 593), 'Arch1.Arch1CNN', 'Arch1CNN', ([], {}), '()\n', (591, 593), False, 'from Arch1 import Arch1CNN\n'), ((607, 617), 'Arch2.Arch2CNN', 'Arch2CNN', ([], {}), '()\n', (615, 617), False, 'from Arch2 import Arch2CNN\n'), ((782, 807), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (805, 807), False, 'import torch\n'), ((1123, 1150), 'xray_dataloader_zscored.ChestXrayDataset', 'ChestXrayDataset', (['transform'], {}), '(transform)\n', (1139, 1150), False, 'from xray_dataloader_zscored import ChestXrayDataset\n'), ((1165, 1194), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['test_ind'], {}), '(test_ind)\n', (1184, 1194), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((1209, 1325), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'sampler': 'sample_test', 'num_workers': 'num_workers', 'pin_memory': 'pin_memory'}), '(dataset, batch_size=batch_size, sampler=sample_test, num_workers\n =num_workers, pin_memory=pin_memory)\n', (1219, 1325), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1362, 1390), 'xray_dataloader_zscored.ChestXrayDataset', 'ChestXrayDataset', (['transform1'], {}), '(transform1)\n', (1378, 1390), False, 'from xray_dataloader_zscored import ChestXrayDataset\n'), ((1406, 1522), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset2'], {'batch_size': 'batch_size', 'sampler': 'sample_test', 'num_workers': 'num_workers', 'pin_memory': 'pin_memory'}), '(dataset2, batch_size=batch_size, sampler=sample_test,\n num_workers=num_workers, pin_memory=pin_memory)\n', (1416, 1522), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1577, 1595), 'numpy.zeros', 'np.zeros', (['(15, 15)'], {}), '((15, 15))\n', (1585, 1595), True, 'import numpy as np\n'), ((3410, 3470), 'numpy.savetxt', 'np.savetxt', (['"""Confusion_matrix_Ensemble.txt"""', 'confusionMatrix'], {}), "('Confusion_matrix_Ensemble.txt', confusionMatrix)\n", (3420, 3470), True, 'import numpy as np\n'), ((645, 675), 'torch.load', 'torch.load', (['"""arch1_dropout.pt"""'], {}), "('arch1_dropout.pt')\n", (655, 675), False, 'import torch\n'), ((704, 730), 'torch.load', 'torch.load', (['"""arch2_new.pt"""'], {}), "('arch2_new.pt')\n", (714, 730), False, 'import torch\n'), ((845, 865), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (857, 865), False, 'import torch\n'), ((965, 984), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (977, 984), False, 'import torch\n'), ((430, 459), 'torchvision.transforms.Resize', 'transforms.Resize', (['(256, 256)'], {}), '((256, 256))\n', (447, 459), False, 'from torchvision import models, transforms\n'), ((459, 480), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (478, 480), False, 'from torchvision import models, transforms\n'), ((516, 545), 'torchvision.transforms.Resize', 'transforms.Resize', (['(512, 512)'], {}), '((512, 512))\n', (533, 545), False, 'from torchvision import models, transforms\n'), ((545, 566), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (564, 566), False, 'from torchvision import models, transforms\n'), ((1069, 1095), 'numpy.loadtxt', 'np.loadtxt', (['"""test_ind.txt"""'], {}), "('test_ind.txt')\n", (1079, 1095), True, 'import numpy as np\n'), ((2817, 2861), 'numpy.intersect1d', 'np.intersect1d', (['indexPrediction', 'indexLabels'], {}), '(indexPrediction, indexLabels)\n', (2831, 2861), True, 'import numpy as np\n'), ((2960, 3005), 'numpy.setdiff1d', 'np.setdiff1d', (['indexPrediction', 'commonElements'], {}), '(indexPrediction, commonElements)\n', (2972, 3005), True, 'import numpy as np\n'), ((3028, 3069), 'numpy.setdiff1d', 'np.setdiff1d', (['indexLabels', 'commonElements'], {}), '(indexLabels, commonElements)\n', (3040, 3069), True, 'import numpy as np\n'), ((3194, 3215), 'numpy.zeros', 'np.zeros', (['(1)', 'np.int32'], {}), '(1, np.int32)\n', (3202, 3215), True, 'import numpy as np\n'), ((3277, 3298), 'numpy.zeros', 'np.zeros', (['(1)', 'np.int32'], {}), '(1, np.int32)\n', (3285, 3298), True, 'import numpy as np\n'), ((2660, 2690), 'numpy.where', 'np.where', (['(prediction[row] == 1)'], {}), '(prediction[row] == 1)\n', (2668, 2690), True, 'import numpy as np\n'), ((2720, 2751), 'numpy.where', 'np.where', (['(labelsArray[row] == 1)'], {}), '(labelsArray[row] == 1)\n', (2728, 2751), True, 'import numpy as np\n')]
import numpy import collections import torch Transition = collections.namedtuple("Transition", ("observation", "q_values", "action", "reward", "done")) class Buffer(): def __init__(self, size, gamma, steps, observation_shape, actions_count): self.size = size self.gamma = gamma self.steps = steps self.observation_shape = observation_shape self.actions_count = actions_count self.ptr = 0 self.buffer = [] def _init_zeros(self): for _ in range(0, self.size): observation = numpy.zeros(self.observation_shape) q_values = numpy.zeros(self.actions_count) self.buffer.append(Transition(observation, q_values, 0, 0.0, True)) def length(self): return len(self.buffer) def add(self, observation, q_values, action, reward, done): if self.length() == 0: self._init_zeros() self.buffer[self.ptr] = Transition(observation.copy(), q_values.copy(), action, reward, done) self.ptr = (self.ptr+1)%self.size def _print(self): for i in range(self.length()): #print(self.buffer[i].observation, end = " ") print(self.buffer[i].q_values, end = " ") print(self.buffer[i].action, end = " ") print(self.buffer[i].reward, end = " ") print(self.buffer[i].done, end = " ") print("\n") def get_random_batch(self, batch_size, device): observation_shape = self.buffer[0].observation.shape state_shape = (batch_size, ) + observation_shape[0:] actions_count = len(self.buffer[0].q_values) q_values_shape = (batch_size, ) + (actions_count, ) input = torch.zeros(state_shape, dtype=torch.float32).to(device) target = torch.zeros(q_values_shape, dtype=torch.float32).to(device) for i in range(0, batch_size): n = numpy.random.randint(self.length() - self.steps - 1) gamma_ = self.gamma reward_sum = 0.0 for k in range(self.steps): if self.buffer[n + k].done: gamma_ = 0.0 reward_sum+= self.buffer[n + k].reward*(gamma_**k) if self.buffer[n + self.steps].done: gamma_ = 0.0 q_values = self.buffer[n].q_values.copy() action = self.buffer[n].action q_values[action] = reward_sum + gamma_*numpy.max(self.buffer[n + self.steps].q_values) input[i] = torch.from_numpy(self.buffer[n].observation).to(device) target[i] = torch.from_numpy(q_values).to(device) return input, target
[ "numpy.zeros", "numpy.max", "collections.namedtuple", "torch.zeros", "torch.from_numpy" ]
[((60, 157), 'collections.namedtuple', 'collections.namedtuple', (['"""Transition"""', "('observation', 'q_values', 'action', 'reward', 'done')"], {}), "('Transition', ('observation', 'q_values', 'action',\n 'reward', 'done'))\n", (82, 157), False, 'import collections\n'), ((575, 610), 'numpy.zeros', 'numpy.zeros', (['self.observation_shape'], {}), '(self.observation_shape)\n', (586, 610), False, 'import numpy\n'), ((637, 668), 'numpy.zeros', 'numpy.zeros', (['self.actions_count'], {}), '(self.actions_count)\n', (648, 668), False, 'import numpy\n'), ((1757, 1802), 'torch.zeros', 'torch.zeros', (['state_shape'], {'dtype': 'torch.float32'}), '(state_shape, dtype=torch.float32)\n', (1768, 1802), False, 'import torch\n'), ((1837, 1885), 'torch.zeros', 'torch.zeros', (['q_values_shape'], {'dtype': 'torch.float32'}), '(q_values_shape, dtype=torch.float32)\n', (1848, 1885), False, 'import torch\n'), ((2509, 2556), 'numpy.max', 'numpy.max', (['self.buffer[n + self.steps].q_values'], {}), '(self.buffer[n + self.steps].q_values)\n', (2518, 2556), False, 'import numpy\n'), ((2594, 2638), 'torch.from_numpy', 'torch.from_numpy', (['self.buffer[n].observation'], {}), '(self.buffer[n].observation)\n', (2610, 2638), False, 'import torch\n'), ((2674, 2700), 'torch.from_numpy', 'torch.from_numpy', (['q_values'], {}), '(q_values)\n', (2690, 2700), False, 'import torch\n')]
# -*- coding: utf-8 -*- """NNratio_1D.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/13zC6nTSvjEFa_-FFy6-Rpy5zH8bUUlMJ """ from __future__ import print_function from __future__ import division import keras import os from keras.models import Sequential from keras import layers from keras import backend as K from keras.layers import Activation, Dense from keras.constraints import Constraint from keras.constraints import max_norm from math import * import numpy as np #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import Axes3D import scipy.integrate as integrate import scipy.stats as st import time ##!cat /proc/cpuinfo ##!cat /proc/meminfo #!apt-get -qq install -y graphviz && pip install -q pydot #import pydot """## Connect to Google Drive for storage ### Pydrive """ # install PyDrive #!pip install -U -q PyDrive #from pydrive.auth import GoogleAuth #from pydrive.drive import GoogleDrive #from google.colab import auth #from oauth2client.client import GoogleCredentials # 1. Authenticate and create the PyDrive client. #auth.authenticate_user() #gauth = GoogleAuth() #gauth.credentials = GoogleCredentials.get_application_default() #drive = GoogleDrive(gauth) # PyDrive reference: # https://googledrive.github.io/PyDrive/docs/build/html/index.html ''' # 2. Create & upload a file uploaded = drive.CreateFile({'title': 'Sample upload.txt'}) uploaded.SetContentString('Sample upload file content') uploaded.Upload() print('Uploaded file with ID {}'.format(uploaded.get('id'))) # 3. Load a file by ID and print its contents. downloaded = drive.CreateFile({'id': uploaded.get('id')}) print('Downloaded content "{}"'.format(downloaded.GetContentString())) ''' """# Main""" #sigmoid function def sigmoid(x): return 1 / (1 + exp(-x)) #@title Glabal Parameters epochs = 100000 #@param {type:"integer"} batch_size = 1000 #@param {type:"integer"} #Geteps = 0.005 #@param {type:"number"} Geteps = 0.0015811 #@param {type:"number"} Getmu = 0.8 #@param {type:"number"} Getsigma = 0.02 #@param {type:"number"} cut = 0. #@param {type:"number"} gcut = 0. #@param {type:"number"} def SM(x): return exp(-8*x) def BSM(x): return exp(-(x-Getmu)**2/(2*Getsigma**2)) #Normalize distribution SM_norm = integrate.quad(lambda y :SM(y),cut,1) BSM_norm = integrate.quad(lambda y :BSM(y),cut,1) #SM_norm_c = integrate.quad(lambda y :SMn(y),gcut,1) #normalized distribution def SMn(x): return exp(-8*x)/SM_norm[0] def BSMn(x): return (SMn(x)+Geteps*BSM(x)/BSM_norm[0])/(1+Geteps) SM_norm_c = integrate.quad(lambda y :SM(y),gcut,1) def SMnc(x): return exp(-8*x)/SM_norm_c[0] #define probability distribution function class P_SM(st.rv_continuous): def _pdf(self,x): return SMn(x) class P_BSM(st.rv_continuous): def _pdf(self,x): return BSMn(x) class P_SMc(st.rv_continuous): def _pdf(self,x): return SMnc(x) SM_gen = P_SM(a=cut,b=1,name='sm_sample') BSM_gen = P_BSM(a=cut,b=1,name='bsm_sample') SMc_gen = P_SMc(a=gcut,b=1,name='smc_sample') NRef=200000 Nbsm=20032 NR =20000 #load data samples = np.load('Sample200k_2k_R1.npz') Ref_sample=samples['Ref_sample'] bsm_sample=samples['bsm_sample'] #Data and References #Ref_sample = SM_gen.rvs(size=NRef) #bsm_sample= BSM_gen.rvs(size=Nbsm) #sm_target = np.zeros(NRef) #bsm_target = np.ones(Nbsm) #x_train = np.append(Ref_sample,bsm_sample) #y_train = np.append(sm_target,bsm_target) rfw = NRef/NR """## Binning the Ref sample""" Nbins=1000 H1d,edge = np.histogram(Ref_sample,bins=Nbins,range=(0,1)) #H1d_bsm, edge_bsm = np.histogram(bsm_sample, bins=Nbins, range=(0,1)) def moving_average(a, n=2) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n xpos = moving_average(edge,2); #xpos_bsm = moving_average(edge_bsm,2); wlist = [] wlist_bsm = [] for xidx, xval in enumerate(xpos): wlist.append(H1d[xidx]) #for xidxb, xvalb in enumerate(xpos_bsm): # wlist_bsm.append(H1d_bsm[xidxb]) x_train = np.append(xpos,bsm_sample) #x_train = np.append(xpos,xpos_bsm) sm_target = np.zeros(Nbins) bsm_target = np.ones(Nbsm) #bsm_target = np.ones(Nbins) y_train = np.append(sm_target,bsm_target) #weightloss1 = np.append(np.asarray(wlist),np.asarray(wlist_bsm)) weightloss1 = np.append(np.asarray(wlist),bsm_target) weightloss = K.variable(value=weightloss1.reshape((Nbsm+Nbins,1))) #from pydrive.auth import GoogleAuth #from pydrive.drive import GoogleDrive #from google.colab import auth #from oauth2client.client import GoogleCredentials # 1. Authenticate and create the PyDrive client. #auth.authenticate_user() #gauth = GoogleAuth() #gauth.credentials = GoogleCredentials.get_application_default() #drive = GoogleDrive(gauth) # PyDrive reference: # https://googledrive.github.io/PyDrive/docs/build/html/index.html # 2. Create & upload a file #uploaded = drive.CreateFile({'title': 'Samples200k_2k_R2.npz'}) #uploaded.SetContentFile('Samples200k_2k_R2.npz') #uploaded.Upload() #print('Uploaded file with ID {}'.format(uploaded.get('id'))) """## Build NN and Train""" #define custom loss function def customloss(yTrue,yPred): return yTrue*K.log(1+K.exp(-yPred))+1/rfw*(1-yTrue)*K.log(1+K.exp(yPred)) def customlossML(sw): Nt = Nbsm+Nbins def lossML(yTrue,yPred): sw_rs = K.reshape(sw,(Nt,1)) ytrue_rs = K.reshape(yTrue,(Nt,1)) ypred_rs = K.reshape(yPred,(Nt,1)) return -K.sum(ytrue_rs*sw_rs*ypred_rs)+K.sum((1-ytrue_rs)*sw_rs*(K.exp(ypred_rs)-1))/rfw return lossML def customlossMLws(yTrue,yPred): return -yTrue*yPred+1/rfw*(1-yTrue)*(K.exp(yPred)-1) rmsprop = keras.optimizers.RMSprop() class WeightClip(Constraint): '''Clips the weights incident to each hidden unit to be inside a range ''' def __init__(self, c=2): self.c = c def __call__(self, p): return K.clip(p, -self.c, self.c) def get_config(self): return {'name': self.__class__.__name__, 'c': self.c} # build the model model = Sequential() model.add(Dense(4, activation='sigmoid',input_shape=(1,),kernel_regularizer=keras.regularizers.l2(0.),W_constraint = WeightClip(40),b_constraint=WeightClip(40))) #model.add(Dense(4, activation='sigmoid',input_shape=(1,),kernel_regularizer=keras.regularizers.l2(0.0),kernel_constraint=max_norm(10.),bias_constraint=max_norm(10.))) #model.add(Dense(4, activation='sigmoid',input_shape=(1,),kernel_regularizer=keras.regularizers.l2(0.0001))) #model.add(Dense(3, activation='sigmoid')) #model.add(Dense(3, activation='sigmoid')) model.add(Dense(1,W_constraint=WeightClip(40))) # compile the model model.compile(loss=customlossML(weightloss), optimizer='rmsprop') #model.save_weights("model_4_1d.h5") ''' #Visualize network #from keras.utils import plot_model #plot_model(model,to_file='model.png',show_shapes='True') from IPython.display import SVG from keras.utils.vis_utils import model_to_dot SVG(model_to_dot(model).create(prog='dot', format='svg')) ''' #load weight and continue training #import h5py #sample1 #model.load_weights("modelML_9_cut5_D400_200_L2R0_MN0_sigmoid_2000k.h5") #sample2 #model.load_weights("model_5_R2_R500k.h5") """### test statistics vs. Run""" def t_vs_run(drun,ite): t_v_array=[] i=0; while i < ite: model.fit(x_train, y_train, batch_size=len(x_train), epochs=drun, shuffle=False, verbose=0); #tary = 2*(model.predict(np.column_stack((bsm_cut,anglesBSM_c)))).flatten(); tary1 = 2*(model.predict(bsm_sample)).flatten(); tary3 = 2*np.vectorize(exp)(model.predict(Ref_sample)).flatten(); tary2 = -2*(model.evaluate(x=x_train,y=y_train,batch_size=len(x_train))).flatten(); #tary3 = -2*(model.evaluate(x=bsm_sample,y=bsm_target,batch_size=len(bsm_sample))).flatten(); t_v_array = np.append(t_v_array,np.array([np.sum(tary1),np.sum(tary2),np.sum(tary3)])); i +=1 #model.save_weights("model1d_4.h5") return t_v_array #R14 #t = time.process_time() #ta = t_vs_run(100000,5) #print(time.process_time() - t) #distribution of t #Nsmb = 2000; #rfw_tc = len(Ref_sample)/Nsmb; def customlossMLc(yTrue,yPred): return -yTrue*yPred+1/rfw_tc*(1-yTrue)*(K.exp(yPred)-1) def customlossMLc(sw,Nt): def lossML(yTrue,yPred): sw_rs = K.reshape(sw,(Nt,1)) ytrue_rs = K.reshape(yTrue,(Nt,1)) ypred_rs = K.reshape(yPred,(Nt,1)) return -K.sum(ytrue_rs*sw_rs*ypred_rs)+K.sum((1-ytrue_rs)*sw_rs*(K.exp(ypred_rs)-1))/rfw return lossML class test_statistics: ''' Compute test statistics given data sample(bsm or sm) ''' def __init__(self,NNmodel): #self.input_sample = input_sample #self.ref_sample = ref_sample self.NNmodel = NNmodel #self.lossfunc = lossfunc #self.data_sample_t = SMc_gen.rvs(size=2000) #self.wlist_d = [] #self.anglesSM_t = angle_gen.rvs(size=Nsmb) #train NN with data(input) sample and ref sample #training variables #generate sm sample def train_t(self,epoch): Nsmb = np.random.poisson(Nbsm,1) #Nsmb = np.random.poisson(NR,1) #sm ref data sample #self.data_sample_t = SMc_gen.rvs(size=Nsmb[0]) #bsm data sample #self.data_sample_t = BSM_gen.rvs(size=Nsmb[0]) self.data_sample_t = BSM_gen.rvs(size=Nbsm) #bin the data sample self.H1d_d, self.edge_d = np.histogram(self.data_sample_t, bins=Nbins, range=(0,1)) self.xpos_d = moving_average(self.edge_d,2); #bsm_target_tc = np.ones(Nsmb[0]) bsm_target_tc = np.ones(Nbins) #x_train_t = np.append(xpos,self.data_sample_t) x_train_t = np.append(xpos,self.xpos_d) self.wlist_d = [] for xidx, xval in enumerate(self.xpos_d): self.wlist_d.append(self.H1d_d[xidx]) #bsm_target_t = np.ones(Nbsm_c) y_train_t = np.append(sm_target,bsm_target_tc) weightloss_t = np.append(np.asarray(wlist),self.wlist_d) #weightloss_t = np.append(np.asarray(wlist),bsm_target_tc) #weightlossrs = K.variable(value=weightloss_t.reshape((Nsmb[0]+Nbins,1))) weightlossrs = K.variable(value=weightloss_t.reshape((2*Nbins,1))) self.NNmodel.compile(loss=customlossMLc(weightlossrs,2*Nbins),optimizer=rmsprop) #self.NNmodel.load_weights("modelML_4_1d_init.h5") self.NNmodel.load_weights("model_4_1d.h5") self.NNmodel.fit(x_train_t, y_train_t, batch_size=len(x_train_t), epochs=epoch, shuffle=False, verbose=0); #tary = 2*(self.NNmodel.predict(self.sm_sample_t)).flatten(); tary = -2*(model.evaluate(x=x_train_t,y=y_train_t,batch_size=len(x_train_t))).flatten(); return (np.sum(tary)) def train_result(self): yorig = [] for xi in xinput: yorig.append(SMn(xi)) ypred = np.vectorize(exp)(model.predict(xinput)); ypred = ypred.flatten()*np.vectorize(SMn)(xinput); #fig, ax = plt.subplots(projection='3d') fig, ax = plt.subplots() ax.plot(xinput,yorig,'*') ax.plot(xinput,ypred,'.') ax.hist(self.sm_sample_t, bins=25) plt.yscale('log', nonposy='clip') plt.title("SM: 1k, BSM: 100, Sample 1, 1M Rounds") def t_vs_run(self,drun,ite): Nsmb = np.random.poisson(Nbsm,1) x_train_t = np.append(xpos,self.sm_sample_t) bsm_target_tc = np.ones(Nsmb[0]) y_train_t = np.append(sm_target,bsm_target_tc) weightloss_t = np.append(wlist,bsm_target_tc) weightlossrs = K.variable(value=weightloss_t.reshape((Nsmb[0]+Nbins,1))) self.NNmodel.compile(loss=customlossMLc(weightlossrs,Nsmb[0]+Nbins),optimizer=rmsprop) t_v_array=[] i=0; while i < ite: self.NNmodel.fit(x_train_t, y_train_t, batch_size=len(x_train_t), epochs=drun, shuffle=False, verbose=0); #tary = 2*(self.NNmodel.predict(self.sm_sample_t)).flatten(); tary = -2*(model.evaluate(x=x_train_t,y=y_train_t,batch_size=len(x_train_t))).flatten(); t_v_array = np.append(t_v_array,np.sum(tary)); i +=1 return t_v_array def t_value(self): tary = 2*(self.NNmodel.predict(np.column_stack((sm_sample_t,anglesSM_t)))).flatten(); return (np.sum(tary)) """# Save and Continue training""" #load weight and continue training #model.load_weights("model_5_3.h5") #Save weight to HDF5 #model.save_weights("model2.h5") #print("Save model to disk") #sfilename = 't_value' #Sample200k_4k.npz #np.savez(sfilename,t_value=ta) ''' model.fit(x_train, y_train, batch_size=len(x_train), epochs=15000, sample_weight=weightloss, verbose=0) #tary = 2*(model.predict(np.column_stack((bsm_cut,anglesBSM_c)))).flatten(); tary = 2*(model.predict(bsm_sample)).flatten() #print(np.sum(tary)) ''' #model_weight=model.get_weights() #smtrain1 = test_statistics(model,customlossMLc) #ta=smtrain1.t_vs_run(10000,200) def get_tsm(Nsample): tvalue_array = [] smtrain = test_statistics(model) i=0 while i < Nsample: tvalue_array.append(smtrain.train_t(800000)) i += 1 return tvalue_array tarrayR1 = get_tsm(5) #f = open('tbsm20kbin_Ref1kbin_R1M_08.txt','w') f = open('tbsm20kbin_np_fixed_p_Ref1kbin_R1M_02.txt','w') #f.write('{}'.format(model_weight)) #f.write('{}'.format(ta)) f.write('{}'.format(tarrayR1)) f.close()
[ "keras.regularizers.l2", "numpy.load", "numpy.sum", "numpy.vectorize", "keras.backend.reshape", "keras.backend.exp", "numpy.asarray", "numpy.zeros", "numpy.ones", "keras.backend.sum", "numpy.append", "numpy.histogram", "numpy.cumsum", "numpy.random.poisson", "numpy.column_stack", "keras.backend.clip", "keras.models.Sequential", "keras.optimizers.RMSprop" ]
[((3180, 3211), 'numpy.load', 'np.load', (['"""Sample200k_2k_R1.npz"""'], {}), "('Sample200k_2k_R1.npz')\n", (3187, 3211), True, 'import numpy as np\n'), ((3588, 3638), 'numpy.histogram', 'np.histogram', (['Ref_sample'], {'bins': 'Nbins', 'range': '(0, 1)'}), '(Ref_sample, bins=Nbins, range=(0, 1))\n', (3600, 3638), True, 'import numpy as np\n'), ((4085, 4112), 'numpy.append', 'np.append', (['xpos', 'bsm_sample'], {}), '(xpos, bsm_sample)\n', (4094, 4112), True, 'import numpy as np\n'), ((4160, 4175), 'numpy.zeros', 'np.zeros', (['Nbins'], {}), '(Nbins)\n', (4168, 4175), True, 'import numpy as np\n'), ((4189, 4202), 'numpy.ones', 'np.ones', (['Nbsm'], {}), '(Nbsm)\n', (4196, 4202), True, 'import numpy as np\n'), ((4243, 4275), 'numpy.append', 'np.append', (['sm_target', 'bsm_target'], {}), '(sm_target, bsm_target)\n', (4252, 4275), True, 'import numpy as np\n'), ((5688, 5714), 'keras.optimizers.RMSprop', 'keras.optimizers.RMSprop', ([], {}), '()\n', (5712, 5714), False, 'import keras\n'), ((6079, 6091), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (6089, 6091), False, 'from keras.models import Sequential\n'), ((3747, 3772), 'numpy.cumsum', 'np.cumsum', (['a'], {'dtype': 'float'}), '(a, dtype=float)\n', (3756, 3772), True, 'import numpy as np\n'), ((4365, 4382), 'numpy.asarray', 'np.asarray', (['wlist'], {}), '(wlist)\n', (4375, 4382), True, 'import numpy as np\n'), ((5380, 5402), 'keras.backend.reshape', 'K.reshape', (['sw', '(Nt, 1)'], {}), '(sw, (Nt, 1))\n', (5389, 5402), True, 'from keras import backend as K\n'), ((5416, 5441), 'keras.backend.reshape', 'K.reshape', (['yTrue', '(Nt, 1)'], {}), '(yTrue, (Nt, 1))\n', (5425, 5441), True, 'from keras import backend as K\n'), ((5455, 5480), 'keras.backend.reshape', 'K.reshape', (['yPred', '(Nt, 1)'], {}), '(yPred, (Nt, 1))\n', (5464, 5480), True, 'from keras import backend as K\n'), ((5920, 5946), 'keras.backend.clip', 'K.clip', (['p', '(-self.c)', 'self.c'], {}), '(p, -self.c, self.c)\n', (5926, 5946), True, 'from keras import backend as K\n'), ((8381, 8403), 'keras.backend.reshape', 'K.reshape', (['sw', '(Nt, 1)'], {}), '(sw, (Nt, 1))\n', (8390, 8403), True, 'from keras import backend as K\n'), ((8417, 8442), 'keras.backend.reshape', 'K.reshape', (['yTrue', '(Nt, 1)'], {}), '(yTrue, (Nt, 1))\n', (8426, 8442), True, 'from keras import backend as K\n'), ((8456, 8481), 'keras.backend.reshape', 'K.reshape', (['yPred', '(Nt, 1)'], {}), '(yPred, (Nt, 1))\n', (8465, 8481), True, 'from keras import backend as K\n'), ((9104, 9130), 'numpy.random.poisson', 'np.random.poisson', (['Nbsm', '(1)'], {}), '(Nbsm, 1)\n', (9121, 9130), True, 'import numpy as np\n'), ((9418, 9476), 'numpy.histogram', 'np.histogram', (['self.data_sample_t'], {'bins': 'Nbins', 'range': '(0, 1)'}), '(self.data_sample_t, bins=Nbins, range=(0, 1))\n', (9430, 9476), True, 'import numpy as np\n'), ((9583, 9597), 'numpy.ones', 'np.ones', (['Nbins'], {}), '(Nbins)\n', (9590, 9597), True, 'import numpy as np\n'), ((9666, 9694), 'numpy.append', 'np.append', (['xpos', 'self.xpos_d'], {}), '(xpos, self.xpos_d)\n', (9675, 9694), True, 'import numpy as np\n'), ((9863, 9898), 'numpy.append', 'np.append', (['sm_target', 'bsm_target_tc'], {}), '(sm_target, bsm_target_tc)\n', (9872, 9898), True, 'import numpy as np\n'), ((10680, 10692), 'numpy.sum', 'np.sum', (['tary'], {}), '(tary)\n', (10686, 10692), True, 'import numpy as np\n'), ((11225, 11251), 'numpy.random.poisson', 'np.random.poisson', (['Nbsm', '(1)'], {}), '(Nbsm, 1)\n', (11242, 11251), True, 'import numpy as np\n'), ((11267, 11300), 'numpy.append', 'np.append', (['xpos', 'self.sm_sample_t'], {}), '(xpos, self.sm_sample_t)\n', (11276, 11300), True, 'import numpy as np\n'), ((11320, 11336), 'numpy.ones', 'np.ones', (['Nsmb[0]'], {}), '(Nsmb[0])\n', (11327, 11336), True, 'import numpy as np\n'), ((11353, 11388), 'numpy.append', 'np.append', (['sm_target', 'bsm_target_tc'], {}), '(sm_target, bsm_target_tc)\n', (11362, 11388), True, 'import numpy as np\n'), ((11407, 11438), 'numpy.append', 'np.append', (['wlist', 'bsm_target_tc'], {}), '(wlist, bsm_target_tc)\n', (11416, 11438), True, 'import numpy as np\n'), ((12190, 12202), 'numpy.sum', 'np.sum', (['tary'], {}), '(tary)\n', (12196, 12202), True, 'import numpy as np\n'), ((6168, 6194), 'keras.regularizers.l2', 'keras.regularizers.l2', (['(0.0)'], {}), '(0.0)\n', (6189, 6194), False, 'import keras\n'), ((9927, 9944), 'numpy.asarray', 'np.asarray', (['wlist'], {}), '(wlist)\n', (9937, 9944), True, 'import numpy as np\n'), ((10805, 10822), 'numpy.vectorize', 'np.vectorize', (['exp'], {}), '(exp)\n', (10817, 10822), True, 'import numpy as np\n'), ((5491, 5525), 'keras.backend.sum', 'K.sum', (['(ytrue_rs * sw_rs * ypred_rs)'], {}), '(ytrue_rs * sw_rs * ypred_rs)\n', (5496, 5525), True, 'from keras import backend as K\n'), ((5661, 5673), 'keras.backend.exp', 'K.exp', (['yPred'], {}), '(yPred)\n', (5666, 5673), True, 'from keras import backend as K\n'), ((8299, 8311), 'keras.backend.exp', 'K.exp', (['yPred'], {}), '(yPred)\n', (8304, 8311), True, 'from keras import backend as K\n'), ((8492, 8526), 'keras.backend.sum', 'K.sum', (['(ytrue_rs * sw_rs * ypred_rs)'], {}), '(ytrue_rs * sw_rs * ypred_rs)\n', (8497, 8526), True, 'from keras import backend as K\n'), ((10875, 10892), 'numpy.vectorize', 'np.vectorize', (['SMn'], {}), '(SMn)\n', (10887, 10892), True, 'import numpy as np\n'), ((12009, 12021), 'numpy.sum', 'np.sum', (['tary'], {}), '(tary)\n', (12015, 12021), True, 'import numpy as np\n'), ((5246, 5259), 'keras.backend.exp', 'K.exp', (['(-yPred)'], {}), '(-yPred)\n', (5251, 5259), True, 'from keras import backend as K\n'), ((5285, 5297), 'keras.backend.exp', 'K.exp', (['yPred'], {}), '(yPred)\n', (5290, 5297), True, 'from keras import backend as K\n'), ((7946, 7959), 'numpy.sum', 'np.sum', (['tary1'], {}), '(tary1)\n', (7952, 7959), True, 'import numpy as np\n'), ((7960, 7973), 'numpy.sum', 'np.sum', (['tary2'], {}), '(tary2)\n', (7966, 7973), True, 'import numpy as np\n'), ((7974, 7987), 'numpy.sum', 'np.sum', (['tary3'], {}), '(tary3)\n', (7980, 7987), True, 'import numpy as np\n'), ((7652, 7669), 'numpy.vectorize', 'np.vectorize', (['exp'], {}), '(exp)\n', (7664, 7669), True, 'import numpy as np\n'), ((12123, 12165), 'numpy.column_stack', 'np.column_stack', (['(sm_sample_t, anglesSM_t)'], {}), '((sm_sample_t, anglesSM_t))\n', (12138, 12165), True, 'import numpy as np\n'), ((5548, 5563), 'keras.backend.exp', 'K.exp', (['ypred_rs'], {}), '(ypred_rs)\n', (5553, 5563), True, 'from keras import backend as K\n'), ((8549, 8564), 'keras.backend.exp', 'K.exp', (['ypred_rs'], {}), '(ypred_rs)\n', (8554, 8564), True, 'from keras import backend as K\n')]
import pytest import numpy as np @pytest.fixture def color_values(): N = 16384 a = np.zeros((N,3), dtype=float) for i in range(3): a[:,i] = np.roll(np.linspace(0., 1., N), i) return a
[ "numpy.zeros", "numpy.linspace" ]
[((92, 121), 'numpy.zeros', 'np.zeros', (['(N, 3)'], {'dtype': 'float'}), '((N, 3), dtype=float)\n', (100, 121), True, 'import numpy as np\n'), ((169, 193), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'N'], {}), '(0.0, 1.0, N)\n', (180, 193), True, 'import numpy as np\n')]
import numpy as np from copy import deepcopy class Position(object): """ Position Simple type for 4D space-time vector manipulation. The dimension order in the vector is (t,x,y,z). Access to dimensions should be only through the __getattr__ and __setattr__ methods. For example to set the x dim value to 14.0 : position.x = 14.0 . /!\ Trying to access directly Position.data will raise a ValueError exception as if data were not a Position attribute (see it as a strong private attribute). More details on __setattr__ and __getattr__ in their respective definitions. Attributes ---------- data : numpy.array (shape=(4,)), private attribute Hold the (t,x,y,z) values. Rational of having a vector instead of separated t,x,y,z attributes is to be able to use numpy algebra. However setting or getting t,x,y,z values is done as if self.t, self.x, self.y, self.z where attributes of Position thanks to the __setattr__ and __getattr__ methods. Example : setting the x dimension value to 14.0 is done as such : position.x = 14.0 /!\ Trying to access directly Position.data will raise a ValueError exception as if data were not a Position attribute (see it as a strong private attribute). Methods ------- __add__(other), __sub__(other) -> Position: Addition or subtraction of self with other (type(other) == Position). __mult__(other) -> scalar: Dot product of self and other matrix multiplication, depending on type(other). __eq__, __ne__ -> bool: Comparison operator. Two Position are equal if and only if norm(v1 - v2) = 0.0 . (type(other) == Position). __getattr__(name) -> None: Get a dimension value. (ex: xvalue = position.x, effectively call xvalue = position.__getattr__('x'), and is equivalent to xvalue = position.data[1]). __setattr__(name, value) -> None: Set a dimension value. (ex: position.x = 14.0 will effectively call position.__setattr__('x', 14.0), and is equivalent to position.data[1] = 14.0). to_list() -> list(scalar): Returns [self.t, self.x, self.y, self.z]. """ def __init__(self, t=0.0, x=0.0, y=0.0, z=0.0): """ Parameters ---------- t : scalar, or Position, or list, or numpy.array . scalar : self.t (self.data[0]) set to t. Position : self.data is set to t.data (x,y,z ignored). list : self.data is set to numpy.array(t) (x,y,z ignored). numpy.array : self.data is set to t. raise Exception if t.shape != (4,). x,y,z : scalar self.x (self.data[1]) set to x. self.y (self.data[2]) set to y. self.z (self.data[3]) set to z. Ignored if t is not a scalar. """ if type(t) == list: self.__init__(np.array(t)) elif type(t) == Position: self.__init__(t.data) elif type(t) == np.ndarray: if not t.shape == (4,): raise Exception("Position : invalid vector shape as constructor argument") super().__setattr__('data', np.array(t)) else: super().__setattr__('data', np.array([float(t),float(x),float(y),float(z)])) def __repr__(self): return "Position (t,x,y,z)" def __str__(self): return ('(t: ' + str(self.t) + ', x: ' + str(self.x) + ', y: ' + str(self.y) + ', z: ' + str(self.z) + ')') def __add__(self, other): """Add two Position.""" return Position(self.data + other.data) def __sub__(self, other): """Subtract two Position.""" return Position(self.data - other.data) def __mul__(self, other): """Dot product of two Position, or matrix multiplication""" if type(other) == Position: return np.dot(self.data, other.data) else: return Position(self.data*other) def __eq__(self, other): """Compare two Position. (True if norm(self - other) == 0.0)""" return np.array_equal(self.data, other.data) def __ne__(self, other): """Compare two Position. (True if norm(self - other) != 0.0)""" return not np.array_equal(self.data, other.data) def __getattr__(self, name): """Get self.{name}. name can only be 't','x','y' or 'z'""" if name == 't': return self.data[0] if name == 'x': return self.data[1] if name == 'y': return self.data[2] if name == 'z': return self.data[3] raise ValueError("Position has no attribute '" + name + "'") def __setattr__(self, name, value): """Set self.{name} to value. name can only be 't','x','y' or 'z'""" if name == 't': self.data[0] = value elif name == 'x': self.data[1] = value elif name == 'y': self.data[2] = value elif name == 'z': self.data[3] = value else: raise ValueError("'Position' object has no attribute '" + name + "'") def __getstate__(self): """For serialization (pickling) purposes.""" return self.data def __setstate__(self, data): """For serialization (unpickling) purposes.""" super().__setattr__('data', data) def to_list(self): """Returns [self.t, self.x, self.y, self.z]""" return list(self.data) def copy(self): return deepcopy(self) def __copy__(self, memo): return Position(self.t, self.x, self.y, self. z) def __deepcopy__(self, memo): return Position(deepcopy(self.data,memo))
[ "numpy.array_equal", "numpy.dot", "copy.deepcopy", "numpy.array" ]
[((4230, 4267), 'numpy.array_equal', 'np.array_equal', (['self.data', 'other.data'], {}), '(self.data, other.data)\n', (4244, 4267), True, 'import numpy as np\n'), ((5660, 5674), 'copy.deepcopy', 'deepcopy', (['self'], {}), '(self)\n', (5668, 5674), False, 'from copy import deepcopy\n'), ((4023, 4052), 'numpy.dot', 'np.dot', (['self.data', 'other.data'], {}), '(self.data, other.data)\n', (4029, 4052), True, 'import numpy as np\n'), ((4390, 4427), 'numpy.array_equal', 'np.array_equal', (['self.data', 'other.data'], {}), '(self.data, other.data)\n', (4404, 4427), True, 'import numpy as np\n'), ((5824, 5849), 'copy.deepcopy', 'deepcopy', (['self.data', 'memo'], {}), '(self.data, memo)\n', (5832, 5849), False, 'from copy import deepcopy\n'), ((2987, 2998), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (2995, 2998), True, 'import numpy as np\n'), ((3275, 3286), 'numpy.array', 'np.array', (['t'], {}), '(t)\n', (3283, 3286), True, 'import numpy as np\n')]
import sys import numpy as np import cv2 REMAP_INTERPOLATION = cv2.INTER_LINEAR DEPTH_VISUALIZATION_SCALE = 2048 if len(sys.argv) != 2: print("Syntax: {0} CALIBRATION_FILE".format(sys.argv[0])) sys.exit(1) calibration = np.load(sys.argv[1], allow_pickle=False) imageSize = tuple(calibration["imageSize"]) leftMapX = calibration["leftMapX"] leftMapY = calibration["leftMapY"] leftROI = tuple(calibration["leftROI"]) rightMapX = calibration["rightMapX"] rightMapY = calibration["rightMapY"] rightROI = tuple(calibration["rightROI"]) CAMERA_WIDTH = 1280 CAMERA_HEIGHT = 720 # TODO: Use more stable identifiers left = cv2.VideoCapture(0) right = cv2.VideoCapture(2) # Increase the resolution left.set(cv2.CAP_PROP_FRAME_WIDTH, CAMERA_WIDTH) left.set(cv2.CAP_PROP_FRAME_HEIGHT, CAMERA_HEIGHT) right.set(cv2.CAP_PROP_FRAME_WIDTH, CAMERA_WIDTH) right.set(cv2.CAP_PROP_FRAME_HEIGHT, CAMERA_HEIGHT) # Use MJPEG to avoid overloading the USB 2.0 bus at this resolution left.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG")) right.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG")) # The distortion in the left and right edges prevents a good calibration, so # discard the edges CROP_WIDTH = 960 def cropHorizontal(image): return image[:, int((CAMERA_WIDTH - CROP_WIDTH) / 2): int(CROP_WIDTH + (CAMERA_WIDTH - CROP_WIDTH) / 2)] # TODO: Why these values in particular? # TODO: Try applying brightness/contrast/gamma adjustments to the images stereoMatcher = cv2.StereoBM_create() stereoMatcher.setMinDisparity(4) stereoMatcher.setNumDisparities(128) stereoMatcher.setBlockSize(21) stereoMatcher.setROI1(leftROI) stereoMatcher.setROI2(rightROI) stereoMatcher.setSpeckleRange(16) stereoMatcher.setSpeckleWindowSize(45) # Grab both frames first, then retrieve to minimize latency between cameras while(True): if not left.grab() or not right.grab(): print("No more frames") break _, leftFrame = left.retrieve() leftFrame = cropHorizontal(leftFrame) leftHeight, leftWidth = leftFrame.shape[:2] _, rightFrame = right.retrieve() rightFrame = cropHorizontal(rightFrame) rightHeight, rightWidth = rightFrame.shape[:2] if (leftWidth, leftHeight) != imageSize: print("Left camera has different size than the calibration data") break if (rightWidth, rightHeight) != imageSize: print("Right camera has different size than the calibration data") break fixedLeft = cv2.remap(leftFrame, leftMapX, leftMapY, REMAP_INTERPOLATION) fixedRight = cv2.remap(rightFrame, rightMapX, rightMapY, REMAP_INTERPOLATION) grayLeft = cv2.cvtColor(fixedLeft, cv2.COLOR_BGR2GRAY) grayRight = cv2.cvtColor(fixedRight, cv2.COLOR_BGR2GRAY) depth = stereoMatcher.compute(grayLeft, grayRight) cv2.imshow('left', fixedLeft) cv2.imshow('right', fixedRight) cv2.imshow('depth', depth / DEPTH_VISUALIZATION_SCALE) if cv2.waitKey(1) & 0xFF == ord('q'): break left.release() right.release() cv2.destroyAllWindows()
[ "cv2.StereoBM_create", "numpy.load", "cv2.VideoWriter_fourcc", "cv2.cvtColor", "cv2.waitKey", "cv2.imshow", "cv2.remap", "cv2.VideoCapture", "cv2.destroyAllWindows", "sys.exit" ]
[((244, 284), 'numpy.load', 'np.load', (['sys.argv[1]'], {'allow_pickle': '(False)'}), '(sys.argv[1], allow_pickle=False)\n', (251, 284), True, 'import numpy as np\n'), ((653, 672), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (669, 672), False, 'import cv2\n'), ((682, 701), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(2)'], {}), '(2)\n', (698, 701), False, 'import cv2\n'), ((1570, 1591), 'cv2.StereoBM_create', 'cv2.StereoBM_create', ([], {}), '()\n', (1589, 1591), False, 'import cv2\n'), ((3138, 3161), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3159, 3161), False, 'import cv2\n'), ((215, 226), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (223, 226), False, 'import sys\n'), ((1039, 1070), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (1061, 1070), False, 'import cv2\n'), ((1104, 1135), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (1126, 1135), False, 'import cv2\n'), ((2585, 2646), 'cv2.remap', 'cv2.remap', (['leftFrame', 'leftMapX', 'leftMapY', 'REMAP_INTERPOLATION'], {}), '(leftFrame, leftMapX, leftMapY, REMAP_INTERPOLATION)\n', (2594, 2646), False, 'import cv2\n'), ((2665, 2729), 'cv2.remap', 'cv2.remap', (['rightFrame', 'rightMapX', 'rightMapY', 'REMAP_INTERPOLATION'], {}), '(rightFrame, rightMapX, rightMapY, REMAP_INTERPOLATION)\n', (2674, 2729), False, 'import cv2\n'), ((2748, 2791), 'cv2.cvtColor', 'cv2.cvtColor', (['fixedLeft', 'cv2.COLOR_BGR2GRAY'], {}), '(fixedLeft, cv2.COLOR_BGR2GRAY)\n', (2760, 2791), False, 'import cv2\n'), ((2809, 2853), 'cv2.cvtColor', 'cv2.cvtColor', (['fixedRight', 'cv2.COLOR_BGR2GRAY'], {}), '(fixedRight, cv2.COLOR_BGR2GRAY)\n', (2821, 2853), False, 'import cv2\n'), ((2917, 2946), 'cv2.imshow', 'cv2.imshow', (['"""left"""', 'fixedLeft'], {}), "('left', fixedLeft)\n", (2927, 2946), False, 'import cv2\n'), ((2952, 2983), 'cv2.imshow', 'cv2.imshow', (['"""right"""', 'fixedRight'], {}), "('right', fixedRight)\n", (2962, 2983), False, 'import cv2\n'), ((2989, 3043), 'cv2.imshow', 'cv2.imshow', (['"""depth"""', '(depth / DEPTH_VISUALIZATION_SCALE)'], {}), "('depth', depth / DEPTH_VISUALIZATION_SCALE)\n", (2999, 3043), False, 'import cv2\n'), ((3052, 3066), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3063, 3066), False, 'import cv2\n')]
import re import torch import itertools import numpy as np import pandas as pd import pytorch_lightning as pl from torch.utils.data import DataLoader, Dataset from typing import Callable, Tuple, List, Iterable, Dict, Union, Optional, Iterable from collections import OrderedDict from pathlib import Path from tqdm import tqdm from src.utils import FileHandler, mask2geojson, mask2mat, label_sem_map from src.patching import TilerStitcherTorch from src.metrics import Benchmarker from src.dl.utils import tensor_to_ndarray from .post_processing.processor_builder import PostProcBuilder from .predictor import Predictor SUFFIXES = (".jpeg", ".jpg", ".tif", ".tiff", ".png") class FolderDataset(Dataset, FileHandler): def __init__( self, folder_path: Union[str, Path], pattern: Optional[str]="*", sort_by_y: Optional[bool]=False, xmax: Optional[int]=None, ymax: Optional[int]=None, auto_range: bool=False, tile_size: Optional[Tuple[int, int]]=(1000, 1000) ) -> None: """ Simple pytorch folder dataset. Assumes that folder_path contains only image files which are readable by cv2. Args: ---------- folder_path (Union[str, Path]): path to the folder containig tile/image files pattern (str, optional, default="*"): file pattern for filtering only the files that contain the pattern. sort_by_y (bool, optional, default=False): sorts a folder (containing tiles extracted by histoprep package) by the y-coord rather than the x-coord xmax (int, optional, default=None): filters all the tile-files that contain x-coord less or equal to this param in their filename. Works with tiles extracted with histoprep. See https://github.com/jopo666/HistoPrep ymax (int, optional, default=None): filters all the tile-files that contain y-coord less or equal to this param in their filename. Works with tiles extracted with histoprep. See https://github.com/jopo666/HistoPrep auto_range (bool, default=False): Automatically filter tiles that contain ONE tissue section rather than every redundant tissue section in the wsi. tile_size (Tuple[int, int], optional, default=(1000, 1000)): size of the input tiles in the folder. Optional. """ super(FolderDataset, self).__init__() self.tile_size = tile_size folder_path = Path(folder_path) assert folder_path.exists(), f"folder: {folder_path} does not exist" assert folder_path.is_dir(), f"path: {folder_path} is not a folder" assert all([f.suffix in SUFFIXES for f in folder_path.iterdir()]),( f"files formats in given folder need to be in {SUFFIXES}" ) # sort files if sort_by_y: self.fnames = sorted( folder_path.glob(pattern), key=lambda x: self._get_xy_coords(x.name)[1] ) else: self.fnames = sorted(folder_path.glob(pattern)) # filter by xy-cooridnates encoded in the filename if xmax is not None: self.fnames = [ f for f in self.fnames if self._get_xy_coords(f.name)[0] <= xmax ] if ymax is not None and not auto_range: self.fnames = [ f for f in self.fnames if self._get_xy_coords(f.name)[1] <= ymax ] if auto_range: ymin, ymax = self._get_auto_range(coord="y") # only y-axis for now self.fnames = [ f for f in self.fnames if ymin <= self._get_xy_coords(f.name)[1] <= ymax ] def _get_xy_coords(self, fname: str) -> List[int]: """ Extract xy-coords from files named with x- and y- coordinates in their file name. example filename: "sumthing_4955_x-47000_y-25000.png """ assert re.findall(r"(x-\d+_y-\d+)", fname), ( "fname not in 'sumthing_x-[coord1]_y-[coord2]'-format", "Set auto_range to False if filenames are not in this format" ) xy_str = re.findall(r"(x-\d+_y-\d+)", fname) xy = [int(c) for c in re.findall(r"\d+", xy_str[0])] return xy def _get_auto_range( self, coord: str="y", section_ix: int=0, section_length: int=6000 ) -> Tuple[int, int]: """ Automatically extract a range of tiles that contain a section of tissue in a whole slide image. This is pretty ad hoc and requires histoprep extracted tiles and that the slides contain many tissue sections. Use with care. Args: --------- coord (str, default="y"): specify the range in either x- or y direction section_ix (int, default=0): the nth tissue section in the wsi in the direction of the `coord` param. Starts from 0th index. E.g. If `coord='y'` the 0th index is the upmost tissue section. section_length (int, default=6000): Threshold to concentrate only on tissue sections that are larger than 6000 pixels Returns: -------- Tuple[int, int]: The start and end point of the tissue section in the specified direction """ ix = 1 if coord == "y" else 0 coords = sorted( set([self._get_xy_coords(f.name)[ix] for f in self.fnames]) ) try: splits = [] split = [] for i in range(len(coords)-1): if coords[i + 1] - coords[i] == self.tile_size[ix]: split.append(coords[i]) else: if i < len(coords) - 1: split.append(coords[i]) splits.append(split) split = [] ret_splits = [ split for split in splits if len(split) >= section_length//self.tile_size[ix] ] ret_split = ret_splits[section_ix] return ret_split[0], ret_split[-1] except: # if there is only one tissue section, return min and max start = min(coords, key=lambda x: x[ix])[ix] end = max(coords, key=lambda x: x[ix])[ix] return start, end def __len__(self) -> int: return len(self.fnames) def __getitem__(self, index: int) -> torch.Tensor: fn = self.fnames[index] im = FileHandler.read_img(fn.as_posix()) im = torch.from_numpy(im.transpose(2, 0, 1)) return { "im":im, "file":fn.name[:-4] } class Inferer(FileHandler): def __init__( self, model: pl.LightningModule, in_data_dir: str, gt_mask_dir: str=None, tta: bool=False, model_weights: str="last", loader_batch_size: int=8, loader_num_workers: int=8, patch_size: Tuple[int, int]=(256, 256), stride_size: int=128, model_batch_size: int=None, thresh_method: str="naive", thresh: float=0.5, apply_weights: bool=False, post_proc_method: str=None, n_images: int=None, fn_pattern: str="*", xmax: Optional[int]=None, ymax: Optional[int]=None, auto_range: Optional[bool]=False, **kwargs ) -> None: """ Class to perform inference and post-processing Args: ----------- model (pl.LightningModule): Input SegModel (lightning model) in_data_dir (str): This directory will be used as the input data directory. Assumes that the directory contains only cv2 readable image files: .png, .tif, etc gt_mask_dir (str, default=None): The directory of the test ground truth masks. Needed for benchmarking only. The GT-masks need to be in .mat files tta (bool, default=False): If True, performs test time augmentation. Inference time goes up with often marginal performance improvements. model_weights (str, default="last"): pytorch lightning saves the weights of the model for the last epoch and best epoch (based on validation data). One of ("best", "last"). loader_batch_size (int, default=8): Number of images loaded from the input folder by the workers per dataloader iteration. This is the DataLoader batch size, NOT the batch size that is used during the forward pass of the model. loader_num_workers (int, default=8): Number of threads/workers for torch dataloader patch_size (Tuple[int, int], default=(256, 256)): The size of the input patches that are fed to the segmentation model. stride_size (int, default=128): If input images are larger than the model input image size (patch_size), the images are tiled with a sliding window into small patches with overlap. This param is the stride size used in the sliding window operation. Small stride for the sliding window results in less artefacts and checkerboard effect in the resulting prediction when the patches are stitched back to the input image size. On the other hand small stride_size means more patches and larger number of patches leads to slower inference time and larger memory consumption. model_batch_size (int, default=None): The batch size that is used when the input is fed to the model (actual model batch size). Use if the input images need patching and the batch size for training batch size is too large i.e. you get (cuda out of memmory error). thresh_method (str, default="naive"): Thresholding method for the soft masks from the instance branch.One of ("naive", "argmax", "sauvola", "niblack"). thresh (float, default = 0.5): threshold probability value. Only used if method="naive" apply_weights (bool, default=True): After a prediction, apply a weight matrix that assigns bigger weight on pixels in center and less weight to pixels on prediction boundaries. helps dealing with prediction artefacts on tile/patch boundaries. NOTE: This is only applied at the auxiliary branch prediction since there tiling effect has the most impact. (Especially, in HoVer-maps) post_proc_method (str, default=None): Defines the post-processing pipeline. If this is None, then the post-processing pipeline is defined by the aux_type of the model. If the aux_type of the model is None, then the basic watershed post-processing pipeline is used. The post-processing method is always specific to the auxiliary maps that the model outputs so if the aux_type == "hover", then the HoVer-Net and CellPose pipelines can be used. One of: None, "hover","cellpose", "drfns", "dcan", "dran". n_images (int, default=None): Number of images inferred before clearing the memory. Useful if there is a large number of images in a folder. The segmentation results are saved after n_images are segmented and memory cleared for a new set of images. fn_pattern (str, default="**): A pattern in file names in the in_data_dir. For example, for pannuke dataset you can run inference for only images of specific tissue e.g. pattern = *_Adrenal_*. xmax (int, optional, default=None): Filters all the file names in the input directory that contain x-coordinate less than this param in their filename. I.e. the tiles in the folder need to contain the x- and y- coordinates (in xy- order) in the filename Example tile filename: "x-45000_y-50000.png". ymax (int, optional, default=None): Filters all the file names in the input directory that contain y-coord less than this param in their filename. I.e. the tiles in the folder need to contain the x- and y- coords (in xy- order) in the filename. Example tile filename: "x-45000_y-50000.png". auto_range (bool, optional, default=False): Automatically filter tiles from a folder to contain only ONE tissue section rather than every redundant tissue section in the wsi. The tiles in the folder need to contain the x- and y-coords (in xy- order) in the filename. Example tile filename: "x-45000_y-50000.png". """ assert isinstance(model, pl.LightningModule), ( "Input model needs to be a lightning model" ) assert stride_size <= patch_size[0], ( f"stride_size: {stride_size} > {patch_size[0]}" ) assert model_weights in ("best", "last") # set model to device and to inference mode self.model = model self.model.cuda() if torch.cuda.is_available() else self.model.cpu() self.model.eval() torch.no_grad() # Load trained weights for the model self.exp_name = self.model.experiment_name self.exp_version = self.model.experiment_version ckpt_path = self.get_model_checkpoint( experiment=self.exp_name, version=self.exp_version, which=model_weights ) checkpoint = torch.load( ckpt_path, map_location = lambda storage, loc: storage ) self.model.load_state_dict( checkpoint['state_dict'], strict=False ) self.patch_size = patch_size self.stride_size = stride_size # Set input data folder self.in_data_dir = in_data_dir # Set num images inferred before clearing mem (chunk size) # By default there is no chunking. self.n_images = len(list(Path(self.in_data_dir).iterdir())) if n_images is not None: self.n_images = n_images # set gt mask folder self.gt_mask_dir = None if gt_mask_dir: self.gt_mask_dir = sorted( Path(gt_mask_dir).glob(fn_pattern) ) # Batch sizes self.model_batch_size = model_batch_size self.loader_batch_size = loader_batch_size # Set dataset dataloader self.folderset = FolderDataset( self.in_data_dir, pattern=fn_pattern, xmax=xmax, ymax=ymax, auto_range=auto_range ) self.dataloader = DataLoader( self.folderset, batch_size=loader_batch_size, shuffle=False, pin_memory=True, num_workers=loader_num_workers ) # set apply weights flag for aux branch and prdeictor class self.apply_weights = apply_weights self.predictor = Predictor(self.model, self.patch_size) # set the post-processing pipeline. Defaults to # model.aux_type if model has an auxiliary branch self.post_proc_method = post_proc_method if self.post_proc_method is None: self.post_proc_method = "basic" if self.model.aux_branch: self.post_proc_method = self.model.aux_type # Quick checks that a valid post-proc-method is used msg = ( "post_proc_method does not match to model config. ", f"set to: {self.post_proc_method} while the model ", f"decoder_aux_branch is: {self.model.decoder_aux_branch}" ) if self.model.decoder_aux_branch: if self.model.decoder_aux_branch == "hover": allowed = ("hover", "cellpose", "basic") elif self.model.decoder_aux_branch == "dist": allowed = ("drfns", "basic") elif self.model.decoder_aux_branch == "contour": allowed = ("dcan", "dran", "basic") assert self.post_proc_method in allowed, msg # init the post-processor self.post_processor = PostProcBuilder.set_postprocessor( post_proc_method=self.post_proc_method, thresh_method=thresh_method, thresh=thresh ) # input norm flag and train data stats self.norm = self.model.normalize_input # self.stats = self.get_dataset_stats( # self.model.train_data.as_posix() # ) def _apply( self, var: Union[torch.Tensor, None], op: Callable, **kwargs ) -> Union[torch.Tensor, None]: """ Applies the given torch operation `op` to the given variable `var`. This exists to catch memory errors if you're wondering why... Basically, if some cumulative torch operation overflows the GPU memory, this catches the error, detaches the input tensor from gpu and continues executing the operation on the cpu side. If the `var` is None or an empty list/string etc. then this returns None for convenience. Args: -------- var: (torch.Tensor or None): The torch.Tensor or list of tensors that should be detached and moved to cpu before applying operations op (Callable): the torch function/callable that causes the mem error Returns: -------- torch.Tensor or None: the ouput tensor or None """ if not isinstance(var, torch.Tensor) and not var: return None try: var = op(var, **kwargs) except RuntimeError as e: if 'out of memory' in str(e): if isinstance(var, list): new_var = [] for elem in var: elem = elem.detach() if elem.is_cuda: elem = elem.cpu() new_var.append(elem) elif isinstance(var, torch.Tensor): var = var.detach() if var.is_cuda: var = var.cpu() new_var = var var = op(new_var, **kwargs) return var def _get_batch( self, patches: torch.Tensor, batch_size: int ) -> torch.Tensor: """ Divide a set of patches into batches of patches Args: --------- patches (torch.Tensor): Batch of patches in. Shape (C, num_patches, pH, pW) batch_size (int): size of the batch Yields: --------- torch.Tensor of shape (batch_size, C, H, W) """ for i in range(0, patches.shape[1], batch_size): batch = patches[:, i:i+batch_size, ...].permute(1, 0, 2, 3) yield batch def _predict_batch( self, batch: torch.Tensor ) -> Tuple[Union[torch.Tensor, None]]: """ Forward pass + classify. Handles missing branches in the model. Args: --------- batch (torch.Tensor): A batch of patches. Shape (B, C, patch_size, patch_size) Returns: --------- A tuple of tensors containing the predictions. If network does no contain aux or type branch the predictions are None """ # TODO: tta # pred = self.predictor.forward_pass(batch, norm=self.norm, mean=self.stats[0], std=self.stats[1]) pred = self.predictor.forward_pass(batch, norm=self.norm) insts = self.predictor.classify(pred["instances"], act="softmax") types = None if pred["types"] is not None: types = self.predictor.classify(pred["types"], act="softmax") aux = None if pred["aux"] is not None: aux = self.predictor.classify( pred["aux"], act=None, apply_weights=self.apply_weights ) sem = None if pred["sem"] is not None: sem = self.predictor.classify( pred["sem"], act="softmax", apply_weights=False ) return insts, types, aux, sem def _infer_large_img_batch( self, batch: torch.Tensor, names: Tuple[str], batch_loader: Iterable=None, ) -> Tuple[Iterable[Tuple[str, np.ndarray]]]: """ Run inference on large images that require tiling and back stitching. I.e. For images larger than the model input size. Args: -------- batch (torch.Tensor): A batch of patches. Shape (B, C, patch_size, patch_size) names (Tuple[str]): filenames of the different images (without the suffices) batch_loader (Iterable, default=None): tqdm loader object Returns: -------- Tuple: of Zip objects containing (name, np.ndarray) pairs """ # Tile the image into patches tilertorch = TilerStitcherTorch( batch.shape, self.patch_size, self.stride_size, padding=True ) patches = tilertorch.extract_patches_from_batched(batch) # (for tqdm logging) n_batches_inferred = 0 n_patches_total = patches.shape[2]*self.loader_batch_size batch_instances = [] batch_types = [] batch_aux = [] batch_sem = [] # model batch size batch_size = self.model.batch_size if self.model_batch_size is not None: batch_size = self.model_batch_size # Loop the B in batched patches (B, C, n_patches, patch_h, patch_w) for j in range(patches.shape[0]): pred_inst = [] pred_type = [] pred_aux = [] pred_sem = [] # Divide patches into batches that can be used as input to model for batch in self._get_batch(patches[j, ...], batch_size): insts, types, aux, sem = self._predict_batch(batch) pred_inst.append(insts) pred_type.append(types) if types is not None else None pred_aux.append(aux) if aux is not None else None pred_sem.append(sem) if sem is not None else None n_batches_inferred += batch.shape[0] if batch_loader is not None: batch_loader.set_postfix( patches=f"{n_batches_inferred}/{n_patches_total}" ) # catch runtime error if preds take too much GPU mem and # move to cpu with the _apply method. pred_inst = self._apply(var=pred_inst, op=torch.cat, dim=0) pred_type = self._apply(var=pred_type, op=torch.cat, dim=0) pred_aux = self._apply(var=pred_aux, op=torch.cat, dim=0) pred_sem = self._apply(var=pred_sem, op=torch.cat, dim=0) batch_instances.append(pred_inst) batch_types.append(pred_type) batch_aux.append(pred_aux) batch_sem.append(pred_sem) # Stitch the patches back to the orig img size insts = torch.stack(batch_instances, dim=0).permute(0, 2, 1, 3, 4) insts = self._apply(insts, tilertorch.stitch_batched_patches) insts = zip(names, tensor_to_ndarray(insts)) types = zip(names, [None]*len(names)) if all(e is not None for e in batch_types): types = torch.stack(batch_types, dim=0).permute(0, 2, 1, 3, 4) types = self._apply(types, tilertorch.stitch_batched_patches) types = zip(names, tensor_to_ndarray(types)) aux = zip(names, [None]*len(names)) if all(e is not None for e in batch_aux): aux = torch.stack(batch_aux, dim=0).permute(0, 2, 1, 3, 4) aux = self._apply(aux, tilertorch.stitch_batched_patches) aux = zip(names, tensor_to_ndarray(aux)) sem = zip(names, [None]*len(names)) if all(e is not None for e in batch_sem): sem = torch.stack(batch_sem, dim=0).permute(0, 2, 1, 3, 4) sem = self._apply(sem, tilertorch.stitch_batched_patches) sem = zip(names, tensor_to_ndarray(sem)) return insts, types, aux, sem def _infer_img_batch( self, batch: Tuple[torch.Tensor], names: Tuple[str], batch_loader: Iterable=None ) -> Tuple[Iterable[Tuple[str, np.ndarray]]]: """ Run inference on a batch of images that do not require tiling and stitching. I.e. For images of the same size as the model input size. Args: -------- batch (torch.Tensor): A batch of patches. Shape (B, C, patch_size, patch_size) names (Tuple[str]): filenames of the different images (without the suffices) batch_loader (Iterable, default=None): tqdm loader object Returns: -------- Tuple: of Zip objects containing (name, np.ndarray) pairs """ n_batches_inferred = 0 pred_insts, pred_types, pred_aux, pred_sem = self._predict_batch(batch) insts = zip(names, tensor_to_ndarray(pred_insts)) types = zip(names, [None]*len(names)) if pred_types is not None: types = zip(names, tensor_to_ndarray(pred_types)) aux = zip(names, [None]*len(names)) if pred_aux is not None: aux = zip(names, tensor_to_ndarray(pred_aux)) sem = zip(names, [None]*len(names)) if pred_sem is not None: sem = zip(names, tensor_to_ndarray(pred_sem)) n_batches_inferred += batch.shape[0] if batch_loader is not None: batch_loader.set_postfix( patches=f"{n_batches_inferred}/{len(self.folderset.fnames)}" ) return insts, types, aux, sem def _chunks(self, iterable: Iterable, size: int) -> Iterable: """ Generate adjacent chunks of an iterable This is used to chunk the folder dataset for lower mem footprint Args: --------- iterable (Iterable): Input iterable (FolderDataset) size (int): size of one chunk. Returns: --------- Iterable chunk of filenames """ it = iter(iterable) return iter(lambda: tuple(itertools.islice(it, size)), ()) def _infer(self, chunked_dataloader: Iterable) -> None: """ Run inference on input images. Args: --------- chunked_dataloader (Iterable, default=None): A chunked dataloader object """ # Start pipeline soft_instances = [] soft_types = [] aux_maps = [] soft_areas = [] with tqdm(chunked_dataloader, unit="batch") as batch_loader: for data in batch_loader: # Get data batch = data["im"] names = data["file"] batch_loader.set_description(f"Running inference for {names}") # Set patching flag (most datasets require patching), # Assumes square patches requires_patching = False if batch.shape[-1] > self.patch_size[0]: requires_patching = True # predict soft maps if requires_patching: insts, types, aux, sem = self._infer_large_img_batch( batch, names, batch_loader ) else: insts, types, aux, sem = self._infer_img_batch( batch, names, batch_loader ) soft_instances.extend(insts) soft_types.extend(types) aux_maps.extend(aux) soft_areas.extend(sem) # save intermediate results to mem if save_dir not specified self.soft_insts = OrderedDict(soft_instances) self.soft_types = OrderedDict(soft_types) self.aux_maps = OrderedDict(aux_maps) self.soft_areas = OrderedDict(soft_areas) def _post_process(self): """ Run the post processing pipeline """ assert "soft_insts" in self.__dict__.keys(), ( "No predictions found, run inference first." ) maps = self.post_processor.run_post_processing( inst_probs=self.soft_insts, type_probs=self.soft_types, sem_probs=self.soft_areas, aux_maps=self.aux_maps, ) # save to containers self.inst_maps = OrderedDict() self.type_maps = OrderedDict() self.sem_maps = OrderedDict() for res in maps: name = res[0] self.inst_maps[name] = res[1].astype("int32") tmap = None if self.model.decoder_type_branch: tmap = res[2].astype("int32") smap = None if self.model.decoder_sem_branch: smap = res[3].astype("int32") self.type_maps[name] = tmap self.sem_maps[name] = smap def run_inference( self, save_dir: Union[Path, str]=None, fformat: str=None, offsets: bool=False, classes_type: Dict[str, int]=None, classes_sem: Dict[str, int]=None, ) -> None: """ Run inference and post processing in chunks Args: --------- save_dir (Path or str, default=None): directory where the .mat/geojson files are saved fformat (str, default="geojson") file format for the masks. One of ".mat, "geojson", None offsets (bool, default=False): If True, geojson coords are shifted by the offsets that are encoded in the filenames (e.g. "x-1000_y-4000.png") classes_type (Dict[str, int], default=None): class dict for the cell types. e.g. {"inflam":1, "epithelial":2, "connec":3} This is required if masks are saved to geojson. classes_sem (Dict[str, int], default=None): class dict for the area types. e.g. {"inflam":1, "epithelial":2, "connec":3} This is required if masks are saved to geojson. """ # assertions before lengthy processing if save_dir is not None: save_dir = Path(save_dir) assert save_dir.exists(), f"{save_dir} not found" assert fformat in ("geojson", ".mat", None) if fformat == "geojson": assert classes_type is not None, ( "cell type classes needed for geojson format." ) if self.model.decoder_sem_branch: assert classes_sem is not None, ( "area classes needed for geojson format." ) n_images_real = int(np.ceil(self.n_images / self.loader_batch_size)) n_chunks = int(np.ceil(len(self.folderset.fnames) / self.n_images)) loader = self._chunks(iterable=self.dataloader, size=n_images_real) with torch.no_grad(): for _ in range(n_chunks): self._infer(next(loader)) self._post_process() # save results to files if save_dir is not None: for name, inst_map in self.inst_maps.items(): if fformat == "geojson": # parse the offset coords from the inst key x_off, y_off = ( int(c) for c in re.findall(r"\d+", name) ) if offsets else (0, 0) mask2geojson( inst_map=inst_map, type_map=self.type_maps[name], fname=f"{name}_cells", save_dir=Path(save_dir / "cells"), x_offset=x_off, y_offset=y_off, classes=classes_type ) if self.model.decoder_sem_branch: mask2geojson( inst_map=label_sem_map(self.sem_maps[name]), type_map=self.sem_maps[name], fname=f"{name}_areas", save_dir=Path(save_dir / "areas"), x_offset=x_off, y_offset=y_off, classes=classes_sem ) elif fformat == ".mat": # TODO add sem classes mask2mat( inst_map=inst_map.astype("int32"), type_map=self.type_maps[name].astype("int32"), fname=name, save_dir=save_dir ) # clear memory self.soft_insts.clear() self.soft_types.clear() self.aux_maps.clear() self.inst_maps.clear() self.type_maps.clear() torch.cuda.empty_cache() def benchmark_insts( self, pattern_list: Optional[List[str]]=None, file_prefix: Optional[str]="" ) -> pd.DataFrame: """ Run benchmarikng metrics for only instance maps and save them into a csv file. The file is written into the "results" directory of the repositoy. This requires that the `gt_mask_dir` arg is given Args: --------- pattern_list (List[str], optional, default=None): A list of string patterns used for filtering files in the input data folder file_prefix (str, optional, default=""): prefix to give to the csv filename that contains the benchmarking results Returns: ---------- pd.DataFrame: a df containing the benchmarking results """ assert self.gt_mask_dir is not None, "gt_mask_dir is None" assert self.gt_mask_dir.exists(), "Gt mask dir not found" assert "inst_maps" in self.__dict__.keys(), ( "No instance maps found, run inference first." ) gt_masks = OrderedDict( [ (f.name[:-4], self.read_mask(f, "inst_map")) for f in self.gt_mask_dir ] ) exp_dir = self.get_experiment_dir(self.exp_name, self.exp_version) bm = Benchmarker() scores = bm.benchmark_insts( inst_maps=self.inst_maps, gt_masks=gt_masks, pattern_list=pattern_list, save_dir=exp_dir, prefix=file_prefix ) return scores def benchmark_types( self, classes: Dict[str, int], pattern_list: Optional[List[str]]=None, file_prefix: Optional[str]="" ) -> pd.DataFrame: """ Run benchmarking for inst_maps & type maps and save them into a csv file. The file is written into the "results" directory of the repositoy. This requires that the `gt_mask_dir` arg is given Args: --------- classes (Dict[str, int]): The class dict e.g. {bg: 0, immune: 1, epithel: 2}. background must be the 0 class pattern_list (List[str], optional, default=None): A list of string patterns used for filtering files in the input data folder file_prefix (str, optional, default=""): prefix to give to the csv filename that contains the benchmarking results Returns: ---------- pd.DataFrame: A df containing the benchmarking results """ assert self.gt_mask_dir is not None, "gt_mask_dir is None" assert self.gt_mask_dir.exists(), "Gt mask dir not found" assert "inst_maps" in self.__dict__.keys(), ( "No instance maps found, run inference first" ) assert "type_maps" in self.__dict__.keys(), ( "No type maps found, run inference first." ) assert self.model.decoder_type_branch, ( "the network model does not contain type branch" ) gt_mask_insts = OrderedDict( [ (f.name[:-4], FileHandler.read_mask(f, "inst_map")) for f in self.gt_mask_dir ] ) gt_mask_types = OrderedDict( [ (f.name[:-4], FileHandler.read_mask(f, "type_map")) for f in self.gt_mask_dir ] ) exp_dir = self.get_experiment_dir(self.exp_name, self.exp_version) bm = Benchmarker() scores = bm.benchmark_per_type( inst_maps=self.inst_maps, type_maps=self.type_maps, gt_mask_insts=gt_mask_insts, gt_mask_types=gt_mask_types, pattern_list=pattern_list, classes=classes, save_dir=exp_dir, prefix=file_prefix ) return scores
[ "tqdm.tqdm", "numpy.ceil", "torch.utils.data.DataLoader", "torch.stack", "src.dl.utils.tensor_to_ndarray", "src.utils.label_sem_map", "torch.load", "src.patching.TilerStitcherTorch", "pathlib.Path", "re.findall", "src.metrics.Benchmarker", "torch.cuda.is_available", "itertools.islice", "torch.cuda.empty_cache", "collections.OrderedDict", "src.utils.FileHandler.read_mask", "torch.no_grad" ]
[((2724, 2741), 'pathlib.Path', 'Path', (['folder_path'], {}), '(folder_path)\n', (2728, 2741), False, 'from pathlib import Path\n'), ((4264, 4300), 're.findall', 're.findall', (['"""(x-\\\\d+_y-\\\\d+)"""', 'fname'], {}), "('(x-\\\\d+_y-\\\\d+)', fname)\n", (4274, 4300), False, 'import re\n'), ((4481, 4517), 're.findall', 're.findall', (['"""(x-\\\\d+_y-\\\\d+)"""', 'fname'], {}), "('(x-\\\\d+_y-\\\\d+)', fname)\n", (4491, 4517), False, 'import re\n'), ((14287, 14302), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (14300, 14302), False, 'import torch\n'), ((14644, 14708), 'torch.load', 'torch.load', (['ckpt_path'], {'map_location': '(lambda storage, loc: storage)'}), '(ckpt_path, map_location=lambda storage, loc: storage)\n', (14654, 14708), False, 'import torch\n'), ((15820, 15944), 'torch.utils.data.DataLoader', 'DataLoader', (['self.folderset'], {'batch_size': 'loader_batch_size', 'shuffle': '(False)', 'pin_memory': '(True)', 'num_workers': 'loader_num_workers'}), '(self.folderset, batch_size=loader_batch_size, shuffle=False,\n pin_memory=True, num_workers=loader_num_workers)\n', (15830, 15944), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((22400, 22485), 'src.patching.TilerStitcherTorch', 'TilerStitcherTorch', (['batch.shape', 'self.patch_size', 'self.stride_size'], {'padding': '(True)'}), '(batch.shape, self.patch_size, self.stride_size, padding=True\n )\n', (22418, 22485), False, 'from src.patching import TilerStitcherTorch\n'), ((29539, 29566), 'collections.OrderedDict', 'OrderedDict', (['soft_instances'], {}), '(soft_instances)\n', (29550, 29566), False, 'from collections import OrderedDict\n'), ((29593, 29616), 'collections.OrderedDict', 'OrderedDict', (['soft_types'], {}), '(soft_types)\n', (29604, 29616), False, 'from collections import OrderedDict\n'), ((29641, 29662), 'collections.OrderedDict', 'OrderedDict', (['aux_maps'], {}), '(aux_maps)\n', (29652, 29662), False, 'from collections import OrderedDict\n'), ((29689, 29712), 'collections.OrderedDict', 'OrderedDict', (['soft_areas'], {}), '(soft_areas)\n', (29700, 29712), False, 'from collections import OrderedDict\n'), ((30207, 30220), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (30218, 30220), False, 'from collections import OrderedDict\n'), ((30246, 30259), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (30257, 30259), False, 'from collections import OrderedDict\n'), ((30284, 30297), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (30295, 30297), False, 'from collections import OrderedDict\n'), ((36581, 36594), 'src.metrics.Benchmarker', 'Benchmarker', ([], {}), '()\n', (36592, 36594), False, 'from src.metrics import Benchmarker\n'), ((38855, 38868), 'src.metrics.Benchmarker', 'Benchmarker', ([], {}), '()\n', (38866, 38868), False, 'from src.metrics import Benchmarker\n'), ((14205, 14230), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (14228, 14230), False, 'import torch\n'), ((24756, 24780), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['insts'], {}), '(insts)\n', (24773, 24780), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((26674, 26703), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['pred_insts'], {}), '(pred_insts)\n', (26691, 26703), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((28348, 28386), 'tqdm.tqdm', 'tqdm', (['chunked_dataloader'], {'unit': '"""batch"""'}), "(chunked_dataloader, unit='batch')\n", (28352, 28386), False, 'from tqdm import tqdm\n'), ((32080, 32094), 'pathlib.Path', 'Path', (['save_dir'], {}), '(save_dir)\n', (32084, 32094), False, 'from pathlib import Path\n'), ((32608, 32655), 'numpy.ceil', 'np.ceil', (['(self.n_images / self.loader_batch_size)'], {}), '(self.n_images / self.loader_batch_size)\n', (32615, 32655), True, 'import numpy as np\n'), ((32823, 32838), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (32836, 32838), False, 'import torch\n'), ((4547, 4576), 're.findall', 're.findall', (['"""\\\\d+"""', 'xy_str[0]'], {}), "('\\\\d+', xy_str[0])\n", (4557, 4576), False, 'import re\n'), ((24600, 24635), 'torch.stack', 'torch.stack', (['batch_instances'], {'dim': '(0)'}), '(batch_instances, dim=0)\n', (24611, 24635), False, 'import torch\n'), ((25061, 25085), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['types'], {}), '(types)\n', (25078, 25085), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((25352, 25374), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['aux'], {}), '(aux)\n', (25369, 25374), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((25641, 25663), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['sem'], {}), '(sem)\n', (25658, 25663), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((26818, 26847), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['pred_types'], {}), '(pred_types)\n', (26835, 26847), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((26956, 26983), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['pred_aux'], {}), '(pred_aux)\n', (26973, 26983), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((27092, 27119), 'src.dl.utils.tensor_to_ndarray', 'tensor_to_ndarray', (['pred_sem'], {}), '(pred_sem)\n', (27109, 27119), False, 'from src.dl.utils import tensor_to_ndarray\n'), ((24901, 24932), 'torch.stack', 'torch.stack', (['batch_types'], {'dim': '(0)'}), '(batch_types, dim=0)\n', (24912, 24932), False, 'import torch\n'), ((25200, 25229), 'torch.stack', 'torch.stack', (['batch_aux'], {'dim': '(0)'}), '(batch_aux, dim=0)\n', (25211, 25229), False, 'import torch\n'), ((25489, 25518), 'torch.stack', 'torch.stack', (['batch_sem'], {'dim': '(0)'}), '(batch_sem, dim=0)\n', (25500, 25518), False, 'import torch\n'), ((27920, 27946), 'itertools.islice', 'itertools.islice', (['it', 'size'], {}), '(it, size)\n', (27936, 27946), False, 'import itertools\n'), ((35148, 35172), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (35170, 35172), False, 'import torch\n'), ((38475, 38511), 'src.utils.FileHandler.read_mask', 'FileHandler.read_mask', (['f', '"""inst_map"""'], {}), "(f, 'inst_map')\n", (38496, 38511), False, 'from src.utils import FileHandler, mask2geojson, mask2mat, label_sem_map\n'), ((38661, 38697), 'src.utils.FileHandler.read_mask', 'FileHandler.read_mask', (['f', '"""type_map"""'], {}), "(f, 'type_map')\n", (38682, 38697), False, 'from src.utils import FileHandler, mask2geojson, mask2mat, label_sem_map\n'), ((15145, 15167), 'pathlib.Path', 'Path', (['self.in_data_dir'], {}), '(self.in_data_dir)\n', (15149, 15167), False, 'from pathlib import Path\n'), ((15391, 15408), 'pathlib.Path', 'Path', (['gt_mask_dir'], {}), '(gt_mask_dir)\n', (15395, 15408), False, 'from pathlib import Path\n'), ((33681, 33705), 'pathlib.Path', 'Path', (["(save_dir / 'cells')"], {}), "(save_dir / 'cells')\n", (33685, 33705), False, 'from pathlib import Path\n'), ((33348, 33372), 're.findall', 're.findall', (['"""\\\\d+"""', 'name'], {}), "('\\\\d+', name)\n", (33358, 33372), False, 'import re\n'), ((34040, 34074), 'src.utils.label_sem_map', 'label_sem_map', (['self.sem_maps[name]'], {}), '(self.sem_maps[name])\n', (34053, 34074), False, 'from src.utils import FileHandler, mask2geojson, mask2mat, label_sem_map\n'), ((34248, 34272), 'pathlib.Path', 'Path', (["(save_dir / 'areas')"], {}), "(save_dir / 'areas')\n", (34252, 34272), False, 'from pathlib import Path\n')]
""" Unit tests for Fourier transform processors """ import logging import unittest from functools import partial import numpy from astropy import units as u from astropy.coordinates import SkyCoord from astropy.wcs.utils import pixel_to_skycoord from arl.data.polarisation import PolarisationFrame from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, \ predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, \ invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, \ create_image_from_visibility, predict_skycomponent_visibility, \ predict_facets_wstack, invert_facets_wstack, \ predict_facets_wprojection, invert_facets_wprojection from arl.imaging.weighting import weight_visibility from arl.skycomponent.operations import create_skycomponent, find_skycomponents, find_nearest_component, \ insert_skycomponent from arl.util.testing_support import create_named_configuration from arl.visibility.base import create_visibility from arl.visibility.operations import sum_visibility log = logging.getLogger(__name__) class TestImaging(unittest.TestCase): def _checkdirty(self, vis, name='test_invert_2d_dirty', fluxthreshold=1.0): # Make the dirty image self.params['imaginary'] = False dirty = create_empty_image_like(self.model) dirty, sumwt = invert_2d(vis=vis, im=dirty, dopsf=False, normalize=True, **self.params) export_image_to_fits(dirty, '%s/%s_dirty.fits' % (self.dir, name)) maxabs = numpy.max(numpy.abs(dirty.data)) assert maxabs < fluxthreshold, "%s, abs max %f exceeds flux threshold" % (name, maxabs) def _checkcomponents(self, dirty, fluxthreshold=5.0, positionthreshold=1.0): comps = find_skycomponents(dirty, fwhm=1.0, threshold=fluxthreshold, npixels=5) assert len(comps) == len(self.components), "Different number of components found: original %d, recovered %d" % \ (len(self.components), len(comps)) cellsize = abs(dirty.wcs.wcs.cdelt[0]) # Check for agreement between image and DFT for comp in comps: sflux = sum_visibility(self.componentvis, comp.direction)[0] assert abs(comp.flux[0, 0] - sflux[0, 0]) < fluxthreshold, \ "Fitted and DFT flux differ %s %s" % (comp.flux[0, 0], sflux[0, 0]) # Check for agreement in direction ocomp = find_nearest_component(comp.direction, self.components) radiff = abs(comp.direction.ra.deg - ocomp.direction.ra.deg) / cellsize assert radiff < positionthreshold, "Component differs in dec %.3f pixels" % radiff decdiff = abs(comp.direction.dec.deg - ocomp.direction.dec.deg) / cellsize assert decdiff < positionthreshold, "Component differs in dec %.3f pixels" % decdiff def setUp(self): import os self.dir = './test_results' os.makedirs(self.dir, exist_ok=True) self.params = {'npixel': 512, 'nchan': 1, 'reffrequency': 1e8, 'facets': 8, 'padding': 2, 'oversampling': 2, 'timeslice': 1000.0} def actualSetUp(self, time=None, frequency=None, dospectral=False, dopol=False): self.lowcore = create_named_configuration('LOWBD2-CORE') self.times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5) if time is not None: self.times = time log.info("Times are %s" % (self.times)) if dospectral: self.nchan = 3 self.frequency = numpy.array([0.9e8, 1e8, 1.1e8]) self.channel_bandwidth = numpy.array([1e7, 1e7, 1e7]) else: self.frequency = numpy.array([1e8]) self.channel_bandwidth = numpy.array([1e7]) if dopol: self.vis_pol = PolarisationFrame('linear') self.image_pol = PolarisationFrame('stokesIQUV') else: self.vis_pol = PolarisationFrame('stokesI') self.image_pol = PolarisationFrame('stokesI') if dopol: f = numpy.array([100.0, 20.0, -10.0, 1.0]) else: f = numpy.array([100.0]) if dospectral: flux = numpy.array([f, 0.8 * f, 0.6 * f]) else: flux = numpy.array([f]) self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') self.componentvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.uvw = self.componentvis.data['uvw'] self.componentvis.data['vis'] *= 0.0 # Create model self.model = create_image_from_visibility(self.componentvis, npixel=512, cellsize=0.001, nchan=len(self.frequency), polarisation_frame=self.image_pol) # Fill the visibility with exactly computed point sources. These are chosen to lie # on grid points. spacing_pixels = 512 // 8 log.info('Spacing in pixels = %s' % spacing_pixels) centers = [(x, x) for x in numpy.linspace(-3.0, +3.0, 7)] for x in numpy.linspace(-3.0, +3.0, 7): centers.append((-x, x)) centers.append((1e-7, 1e-7)) centers.append((1.1, 2.2)) # Make the list of components rpix = self.model.wcs.wcs.crpix self.components = [] for center in centers: ix, iy = center # The phase center in 0-relative coordinates is n // 2 so we centre the grid of # components on ny // 2, nx // 2. The wcs must be defined consistently. p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(self.model.wcs.wcs.cdelt[0]))), \ int(round(rpix[1] + iy * spacing_pixels * numpy.sign(self.model.wcs.wcs.cdelt[1]))) sc = pixel_to_skycoord(p[0], p[1], self.model.wcs, origin=0) log.info("Component at (%f, %f) [0-rel] %s" % (p[0], p[1], str(sc))) if ix != 0 and iy != 0: # Channel images comp = create_skycomponent(flux=flux, frequency=self.frequency, direction=sc, polarisation_frame=self.image_pol) self.components.append(comp) # Predict the visibility from the components exactly. self.componentvis.data['vis'] *= 0.0 predict_skycomponent_visibility(self.componentvis, self.components) insert_skycomponent(self.model, self.components) # Calculate the model convolved with a Gaussian. self.cmodel = smooth_image(self.model) export_image_to_fits(self.model, '%s/test_model.fits' % self.dir) export_image_to_fits(self.cmodel, '%s/test_cmodel.fits' % self.dir) def test_findcomponents(self): # Check that the components are where we expected them to be after insertion self.actualSetUp() self._checkcomponents(self.cmodel) def test_findcomponents_spectral_pol(self): # Check that the components are where we expected them to be after insertion self.actualSetUp(dospectral=True, dopol=True) self._checkcomponents(self.cmodel) def test_predict_2d(self): # Test if the 2D prediction works # # Set w=0 so that the two-dimensional transform should agree exactly with the component transform. # Good check on the grid correction in the image->vis direction # Set all w to zero self.actualSetUp() self.componentvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0) self.componentvis.data['uvw'][:, 2] = 0.0 # Predict the visibility using direct evaluation predict_skycomponent_visibility(self.componentvis, self.components) self.modelvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.modelvis.data['uvw'][:, 2] = 0.0 predict_2d(self.modelvis, self.model, **self.params) self.residualvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.residualvis.data['uvw'][:, 2] = 0.0 self.residualvis.data['vis'] = self.modelvis.data['vis'] - self.componentvis.data['vis'] self._checkdirty(self.residualvis, 'test_predict_2d', fluxthreshold=4.0) def _predict_base(self, predict, fluxthreshold=1.0): self.modelvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.modelvis.data['vis'] *= 0.0 predict(self.modelvis, self.model, **self.params) self.residualvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.residualvis.data['uvw'][:, 2] = 0.0 self.residualvis.data['vis'] = self.modelvis.data['vis'] - self.componentvis.data['vis'] self._checkdirty(self.residualvis, 'test_%s' % predict.__name__, fluxthreshold=fluxthreshold) def test_predict_facets(self): self.actualSetUp() self.params['facets'] = 2 self._predict_base(predict_facets, fluxthreshold=numpy.infty) def test_predict_timeslice(self): # This works poorly because of the poor interpolation accuracy for point sources. The corresponding # invert works well particularly if the beam sampling is high self.actualSetUp() self._predict_base(predict_timeslice, fluxthreshold=numpy.infty) def test_predict_timeslice_wprojection(self): self.actualSetUp() self.params['kernel'] = 'wprojection' self.params['wstep'] = 2.0 self._predict_base(predict_timeslice, fluxthreshold=numpy.infty) def test_predict_wstack(self): self.actualSetUp() self.params['wstack'] = 2.0 self._predict_base(predict_wstack, fluxthreshold=5.0) def test_predict_facets_wstack(self): self.actualSetUp() self.params['wstack'] = 2.0 self.params['facets'] = 2 self._predict_base(predict_facets_wstack, fluxthreshold=5.6) def test_predict_facets_wstack_spectral(self): self.actualSetUp(dospectral=True) self.params['wstack'] = 2.0 self.params['facets'] = 2 self._predict_base(predict_facets_wstack, fluxthreshold=5.8) def test_predict_facets_wstack_spectral_pol(self): self.actualSetUp(dospectral=True, dopol=True) self.params['wstack'] = 2.0 self.params['facets'] = 2 self._predict_base(predict_facets_wstack, fluxthreshold=5.8) def test_predict_wstack_wprojection(self): self.actualSetUp() self.params['wstack'] = 5 * 2.0 self.params['wstep'] = 2.0 self._predict_base(predict_wprojection_wstack, fluxthreshold=4.4) def test_predict_facets_wprojection(self): self.actualSetUp() self.params['wstep'] = 2.0 self.params['facets'] = 2 self._predict_base(predict_facets_wprojection, fluxthreshold=7.5) def test_predict_wprojection(self): self.actualSetUp() self.params['wstep'] = 2.0 self._predict_base(predict_wprojection, fluxthreshold=2.0) def test_invert_2d(self): # Test if the 2D invert works with w set to zero # Set w=0 so that the two-dimensional transform should agree exactly with the model. # Good check on the grid correction in the vis->image direction self.actualSetUp() self.componentvis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol) self.componentvis.data['uvw'][:, 2] = 0.0 self.componentvis.data['vis'] *= 0.0 # Predict the visibility using direct evaluation for comp in self.components: predict_skycomponent_visibility(self.componentvis, comp) psf2d = create_empty_image_like(self.model) psf2d, sumwt = invert_2d(self.componentvis, psf2d, dopsf = True,**self.params) export_image_to_fits(psf2d, '%s/test_invert_2d_psf.fits' % self.dir) dirty2d = create_empty_image_like(self.model) dirty2d, sumwt = invert_2d(self.componentvis, dirty2d, **self.params) export_image_to_fits(dirty2d, '%s/test_invert_2d_dirty.fits' % self.dir) self._checkcomponents(dirty2d, fluxthreshold=20.0, positionthreshold=1.0) def _invert_base(self, invert, fluxthreshold=20.0, positionthreshold=1.0, check_components=True): dirty = create_empty_image_like(self.model) dirty, sumwt = invert(self.componentvis, dirty, **self.params) assert sumwt.all() > 0.0 export_image_to_fits(dirty, '%s/test_%s_dirty.fits' % (self.dir, invert.__name__)) if check_components: self._checkcomponents(dirty, fluxthreshold, positionthreshold) def test_invert_facets(self): self.actualSetUp() self.params['facets'] = 2 self._invert_base(invert_facets, positionthreshold=6.0, check_components=False) def test_invert_facets_wprojection(self): self.actualSetUp() self.params['facets'] = 2 self.params['wstep'] = 4.0 self._invert_base(invert_facets_wprojection, positionthreshold=1.0) def test_invert_wstack(self): self.actualSetUp() self.params['wstack'] = 4.0 self._invert_base(invert_wstack, positionthreshold=1.0) def test_invert_wstack_spectral(self): self.actualSetUp(dospectral=True) self.params['wstack'] = 4.0 self._invert_base(invert_wstack, positionthreshold=1.0) def test_invert_wstack_spectral_pol(self): self.actualSetUp(dospectral=True, dopol=True) self.params['wstack'] = 4.0 self._invert_base(invert_wstack, positionthreshold=1.0) def test_invert_facets_wstack(self): self.actualSetUp() self.params['wstack'] = 4.0 self.params['facets'] = 4 self._invert_base(invert_facets_wstack, positionthreshold=1.0) def test_invert_wprojection_wstack(self): self.actualSetUp() self.params['wstack'] = 5 * 4.0 self.params['wstep'] = 4.0 self._invert_base(invert_wprojection_wstack, positionthreshold=1.0) def test_invert_wprojection(self): self.actualSetUp() self.params['wstep'] = 4.0 self._invert_base(invert_wprojection, positionthreshold=1.0) def test_invert_timeslice(self): self.actualSetUp() self._invert_base(invert_timeslice, positionthreshold=8.0, check_components=False) def test_weighting(self): self.actualSetUp() vis, density, densitygrid = weight_visibility(self.componentvis, self.model, weighting='uniform') assert vis.nvis == self.componentvis.nvis assert len(density) == vis.nvis assert numpy.std(vis.imaging_weight) > 0.0 assert densitygrid.data.shape == self.model.data.shape vis, density, densitygrid = weight_visibility(self.componentvis, self.model, weighting='natural') assert density is None assert densitygrid is None def test_create_image_from_visibility(self): self.actualSetUp() self.componentvis = create_visibility(self.lowcore, self.times, self.frequency, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol, channel_bandwidth=self.channel_bandwidth) im = create_image_from_visibility(self.componentvis, nchan=1, npixel=128) assert im.data.shape == (1, 1, 128, 128) im = create_image_from_visibility(self.componentvis, frequency=self.frequency, npixel=128) assert im.data.shape == (len(self.frequency), 1, 128, 128) im = create_image_from_visibility(self.componentvis, frequency=self.frequency, npixel=128, nchan=1) assert im.data.shape == (1, 1, 128, 128) if __name__ == '__main__': unittest.main()
[ "arl.image.operations.export_image_to_fits", "numpy.abs", "arl.visibility.base.create_visibility", "arl.skycomponent.operations.insert_skycomponent", "arl.imaging.invert_2d", "arl.data.polarisation.PolarisationFrame", "astropy.wcs.utils.pixel_to_skycoord", "unittest.main", "arl.imaging.weighting.weight_visibility", "numpy.std", "arl.skycomponent.operations.find_skycomponents", "numpy.linspace", "arl.skycomponent.operations.find_nearest_component", "arl.skycomponent.operations.create_skycomponent", "arl.imaging.predict_2d", "arl.image.operations.create_empty_image_like", "arl.util.testing_support.create_named_configuration", "arl.visibility.operations.sum_visibility", "arl.image.operations.smooth_image", "os.makedirs", "arl.imaging.create_image_from_visibility", "arl.imaging.predict_skycomponent_visibility", "numpy.array", "numpy.sign", "astropy.coordinates.SkyCoord", "logging.getLogger" ]
[((1186, 1213), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1203, 1213), False, 'import logging\n'), ((17796, 17811), 'unittest.main', 'unittest.main', ([], {}), '()\n', (17809, 17811), False, 'import unittest\n'), ((1422, 1457), 'arl.image.operations.create_empty_image_like', 'create_empty_image_like', (['self.model'], {}), '(self.model)\n', (1445, 1457), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((1481, 1553), 'arl.imaging.invert_2d', 'invert_2d', ([], {'vis': 'vis', 'im': 'dirty', 'dopsf': '(False)', 'normalize': '(True)'}), '(vis=vis, im=dirty, dopsf=False, normalize=True, **self.params)\n', (1490, 1553), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((1562, 1628), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['dirty', "('%s/%s_dirty.fits' % (self.dir, name))"], {}), "(dirty, '%s/%s_dirty.fits' % (self.dir, name))\n", (1582, 1628), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((1877, 1948), 'arl.skycomponent.operations.find_skycomponents', 'find_skycomponents', (['dirty'], {'fwhm': '(1.0)', 'threshold': 'fluxthreshold', 'npixels': '(5)'}), '(dirty, fwhm=1.0, threshold=fluxthreshold, npixels=5)\n', (1895, 1948), False, 'from arl.skycomponent.operations import create_skycomponent, find_skycomponents, find_nearest_component, insert_skycomponent\n'), ((3086, 3122), 'os.makedirs', 'os.makedirs', (['self.dir'], {'exist_ok': '(True)'}), '(self.dir, exist_ok=True)\n', (3097, 3122), False, 'import os\n'), ((3512, 3553), 'arl.util.testing_support.create_named_configuration', 'create_named_configuration', (['"""LOWBD2-CORE"""'], {}), "('LOWBD2-CORE')\n", (3538, 3553), False, 'from arl.util.testing_support import create_named_configuration\n'), ((4601, 4678), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': '(+180.0 * u.deg)', 'dec': '(-60.0 * u.deg)', 'frame': '"""icrs"""', 'equinox': '"""J2000"""'}), "(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')\n", (4609, 4678), False, 'from astropy.coordinates import SkyCoord\n'), ((4707, 4891), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (4724, 4891), False, 'from arl.visibility.base import create_visibility\n'), ((5674, 5703), 'numpy.linspace', 'numpy.linspace', (['(-3.0)', '(+3.0)', '(7)'], {}), '(-3.0, +3.0, 7)\n', (5688, 5703), False, 'import numpy\n'), ((6966, 7033), 'arl.imaging.predict_skycomponent_visibility', 'predict_skycomponent_visibility', (['self.componentvis', 'self.components'], {}), '(self.componentvis, self.components)\n', (6997, 7033), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((7042, 7090), 'arl.skycomponent.operations.insert_skycomponent', 'insert_skycomponent', (['self.model', 'self.components'], {}), '(self.model, self.components)\n', (7061, 7090), False, 'from arl.skycomponent.operations import create_skycomponent, find_skycomponents, find_nearest_component, insert_skycomponent\n'), ((7179, 7203), 'arl.image.operations.smooth_image', 'smooth_image', (['self.model'], {}), '(self.model)\n', (7191, 7203), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((7212, 7277), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['self.model', "('%s/test_model.fits' % self.dir)"], {}), "(self.model, '%s/test_model.fits' % self.dir)\n", (7232, 7277), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((7286, 7353), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['self.cmodel', "('%s/test_cmodel.fits' % self.dir)"], {}), "(self.cmodel, '%s/test_cmodel.fits' % self.dir)\n", (7306, 7353), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((8122, 8273), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0)\n', (8139, 8273), False, 'from arl.visibility.base import create_visibility\n'), ((8473, 8540), 'arl.imaging.predict_skycomponent_visibility', 'predict_skycomponent_visibility', (['self.componentvis', 'self.components'], {}), '(self.componentvis, self.components)\n', (8504, 8540), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((8574, 8758), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (8591, 8758), False, 'from arl.visibility.base import create_visibility\n'), ((8889, 8941), 'arl.imaging.predict_2d', 'predict_2d', (['self.modelvis', 'self.model'], {}), '(self.modelvis, self.model, **self.params)\n', (8899, 8941), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((8969, 9153), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (8986, 9153), False, 'from arl.visibility.base import create_visibility\n'), ((9603, 9787), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (9620, 9787), False, 'from arl.visibility.base import create_visibility\n'), ((9990, 10174), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (10007, 10174), False, 'from arl.visibility.base import create_visibility\n'), ((13055, 13239), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'channel_bandwidth': 'self.channel_bandwidth', 'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol'}), '(self.lowcore, self.times, self.frequency,\n channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre,\n weight=1.0, polarisation_frame=self.vis_pol)\n', (13072, 13239), False, 'from arl.visibility.base import create_visibility\n'), ((13599, 13634), 'arl.image.operations.create_empty_image_like', 'create_empty_image_like', (['self.model'], {}), '(self.model)\n', (13622, 13634), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((13658, 13720), 'arl.imaging.invert_2d', 'invert_2d', (['self.componentvis', 'psf2d'], {'dopsf': '(True)'}), '(self.componentvis, psf2d, dopsf=True, **self.params)\n', (13667, 13720), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((13731, 13799), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['psf2d', "('%s/test_invert_2d_psf.fits' % self.dir)"], {}), "(psf2d, '%s/test_invert_2d_psf.fits' % self.dir)\n", (13751, 13799), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((13819, 13854), 'arl.image.operations.create_empty_image_like', 'create_empty_image_like', (['self.model'], {}), '(self.model)\n', (13842, 13854), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((13880, 13932), 'arl.imaging.invert_2d', 'invert_2d', (['self.componentvis', 'dirty2d'], {}), '(self.componentvis, dirty2d, **self.params)\n', (13889, 13932), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((13950, 14022), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['dirty2d', "('%s/test_invert_2d_dirty.fits' % self.dir)"], {}), "(dirty2d, '%s/test_invert_2d_dirty.fits' % self.dir)\n", (13970, 14022), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((14237, 14272), 'arl.image.operations.create_empty_image_like', 'create_empty_image_like', (['self.model'], {}), '(self.model)\n', (14260, 14272), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((14385, 14472), 'arl.image.operations.export_image_to_fits', 'export_image_to_fits', (['dirty', "('%s/test_%s_dirty.fits' % (self.dir, invert.__name__))"], {}), "(dirty, '%s/test_%s_dirty.fits' % (self.dir, invert.\n __name__))\n", (14405, 14472), False, 'from arl.image.operations import export_image_to_fits, create_empty_image_like, smooth_image\n'), ((16393, 16462), 'arl.imaging.weighting.weight_visibility', 'weight_visibility', (['self.componentvis', 'self.model'], {'weighting': '"""uniform"""'}), "(self.componentvis, self.model, weighting='uniform')\n", (16410, 16462), False, 'from arl.imaging.weighting import weight_visibility\n'), ((16703, 16772), 'arl.imaging.weighting.weight_visibility', 'weight_visibility', (['self.componentvis', 'self.model'], {'weighting': '"""natural"""'}), "(self.componentvis, self.model, weighting='natural')\n", (16720, 16772), False, 'from arl.imaging.weighting import weight_visibility\n'), ((16948, 17133), 'arl.visibility.base.create_visibility', 'create_visibility', (['self.lowcore', 'self.times', 'self.frequency'], {'phasecentre': 'self.phasecentre', 'weight': '(1.0)', 'polarisation_frame': 'self.vis_pol', 'channel_bandwidth': 'self.channel_bandwidth'}), '(self.lowcore, self.times, self.frequency, phasecentre=\n self.phasecentre, weight=1.0, polarisation_frame=self.vis_pol,\n channel_bandwidth=self.channel_bandwidth)\n', (16965, 17133), False, 'from arl.visibility.base import create_visibility\n'), ((17276, 17344), 'arl.imaging.create_image_from_visibility', 'create_image_from_visibility', (['self.componentvis'], {'nchan': '(1)', 'npixel': '(128)'}), '(self.componentvis, nchan=1, npixel=128)\n', (17304, 17344), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((17407, 17496), 'arl.imaging.create_image_from_visibility', 'create_image_from_visibility', (['self.componentvis'], {'frequency': 'self.frequency', 'npixel': '(128)'}), '(self.componentvis, frequency=self.frequency,\n npixel=128)\n', (17435, 17496), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((17573, 17671), 'arl.imaging.create_image_from_visibility', 'create_image_from_visibility', (['self.componentvis'], {'frequency': 'self.frequency', 'npixel': '(128)', 'nchan': '(1)'}), '(self.componentvis, frequency=self.frequency,\n npixel=128, nchan=1)\n', (17601, 17671), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((1656, 1677), 'numpy.abs', 'numpy.abs', (['dirty.data'], {}), '(dirty.data)\n', (1665, 1677), False, 'import numpy\n'), ((2579, 2634), 'arl.skycomponent.operations.find_nearest_component', 'find_nearest_component', (['comp.direction', 'self.components'], {}), '(comp.direction, self.components)\n', (2601, 2634), False, 'from arl.skycomponent.operations import create_skycomponent, find_skycomponents, find_nearest_component, insert_skycomponent\n'), ((3595, 3623), 'numpy.linspace', 'numpy.linspace', (['(-3.0)', '(3.0)', '(5)'], {}), '(-3.0, 3.0, 5)\n', (3609, 3623), False, 'import numpy\n'), ((3828, 3879), 'numpy.array', 'numpy.array', (['[90000000.0, 100000000.0, 110000000.0]'], {}), '([90000000.0, 100000000.0, 110000000.0])\n', (3839, 3879), False, 'import numpy\n'), ((3898, 3947), 'numpy.array', 'numpy.array', (['[10000000.0, 10000000.0, 10000000.0]'], {}), '([10000000.0, 10000000.0, 10000000.0])\n', (3909, 3947), False, 'import numpy\n'), ((3970, 3996), 'numpy.array', 'numpy.array', (['[100000000.0]'], {}), '([100000000.0])\n', (3981, 3996), False, 'import numpy\n'), ((4026, 4051), 'numpy.array', 'numpy.array', (['[10000000.0]'], {}), '([10000000.0])\n', (4037, 4051), False, 'import numpy\n'), ((4103, 4130), 'arl.data.polarisation.PolarisationFrame', 'PolarisationFrame', (['"""linear"""'], {}), "('linear')\n", (4120, 4130), False, 'from arl.data.polarisation import PolarisationFrame\n'), ((4160, 4191), 'arl.data.polarisation.PolarisationFrame', 'PolarisationFrame', (['"""stokesIQUV"""'], {}), "('stokesIQUV')\n", (4177, 4191), False, 'from arl.data.polarisation import PolarisationFrame\n'), ((4233, 4261), 'arl.data.polarisation.PolarisationFrame', 'PolarisationFrame', (['"""stokesI"""'], {}), "('stokesI')\n", (4250, 4261), False, 'from arl.data.polarisation import PolarisationFrame\n'), ((4291, 4319), 'arl.data.polarisation.PolarisationFrame', 'PolarisationFrame', (['"""stokesI"""'], {}), "('stokesI')\n", (4308, 4319), False, 'from arl.data.polarisation import PolarisationFrame\n'), ((4355, 4393), 'numpy.array', 'numpy.array', (['[100.0, 20.0, -10.0, 1.0]'], {}), '([100.0, 20.0, -10.0, 1.0])\n', (4366, 4393), False, 'import numpy\n'), ((4424, 4444), 'numpy.array', 'numpy.array', (['[100.0]'], {}), '([100.0])\n', (4435, 4444), False, 'import numpy\n'), ((4488, 4522), 'numpy.array', 'numpy.array', (['[f, 0.8 * f, 0.6 * f]'], {}), '([f, 0.8 * f, 0.6 * f])\n', (4499, 4522), False, 'import numpy\n'), ((4556, 4572), 'numpy.array', 'numpy.array', (['[f]'], {}), '([f])\n', (4567, 4572), False, 'import numpy\n'), ((6389, 6444), 'astropy.wcs.utils.pixel_to_skycoord', 'pixel_to_skycoord', (['p[0]', 'p[1]', 'self.model.wcs'], {'origin': '(0)'}), '(p[0], p[1], self.model.wcs, origin=0)\n', (6406, 6444), False, 'from astropy.wcs.utils import pixel_to_skycoord\n'), ((13525, 13581), 'arl.imaging.predict_skycomponent_visibility', 'predict_skycomponent_visibility', (['self.componentvis', 'comp'], {}), '(self.componentvis, comp)\n', (13556, 13581), False, 'from arl.imaging import predict_2d, predict_wstack, predict_wprojection, predict_facets, predict_timeslice, predict_wprojection_wstack, invert_wprojection_wstack, invert_2d, invert_wstack, invert_wprojection, invert_facets, invert_timeslice, create_image_from_visibility, predict_skycomponent_visibility, predict_facets_wstack, invert_facets_wstack, predict_facets_wprojection, invert_facets_wprojection\n'), ((16568, 16597), 'numpy.std', 'numpy.std', (['vis.imaging_weight'], {}), '(vis.imaging_weight)\n', (16577, 16597), False, 'import numpy\n'), ((2302, 2351), 'arl.visibility.operations.sum_visibility', 'sum_visibility', (['self.componentvis', 'comp.direction'], {}), '(self.componentvis, comp.direction)\n', (2316, 2351), False, 'from arl.visibility.operations import sum_visibility\n'), ((5625, 5654), 'numpy.linspace', 'numpy.linspace', (['(-3.0)', '(+3.0)', '(7)'], {}), '(-3.0, +3.0, 7)\n', (5639, 5654), False, 'import numpy\n'), ((6648, 6757), 'arl.skycomponent.operations.create_skycomponent', 'create_skycomponent', ([], {'flux': 'flux', 'frequency': 'self.frequency', 'direction': 'sc', 'polarisation_frame': 'self.image_pol'}), '(flux=flux, frequency=self.frequency, direction=sc,\n polarisation_frame=self.image_pol)\n', (6667, 6757), False, 'from arl.skycomponent.operations import create_skycomponent, find_skycomponents, find_nearest_component, insert_skycomponent\n'), ((6227, 6266), 'numpy.sign', 'numpy.sign', (['self.model.wcs.wcs.cdelt[0]'], {}), '(self.model.wcs.wcs.cdelt[0])\n', (6237, 6266), False, 'import numpy\n'), ((6330, 6369), 'numpy.sign', 'numpy.sign', (['self.model.wcs.wcs.cdelt[1]'], {}), '(self.model.wcs.wcs.cdelt[1])\n', (6340, 6369), False, 'import numpy\n')]
from abc import ABC, abstractmethod import numpy as np from enum import Enum from learning.normalizer import Normalizer class Env(ABC): class Terminate(Enum): Null = 0 Fail = 1 Succ = 2 def __init__(self, args, enable_draw): self.enable_draw = enable_draw return @abstractmethod def update(self, timestep): pass @abstractmethod def reset(self): pass @abstractmethod def get_time(self): pass @abstractmethod def get_name(self): pass # rendering and UI interface def draw(self): pass def keyboard(self, key, x, y): pass def mouse_click(self, button, state, x, y): pass def mouse_move(self, x, y): pass def reshape(self, w, h): pass def shutdown(self): pass def is_done(self): return False def set_playback_speed(self, speed): pass def set_updates_per_sec(self, updates_per_sec): pass @abstractmethod def get_win_width(self): pass @abstractmethod def get_win_height(self): pass def get_num_update_substeps(self): return 1 # rl interface @abstractmethod def is_rl_scene(self): return False @abstractmethod def get_num_agents(self): return 0 @abstractmethod def need_new_action(self, agent_id): return False @abstractmethod def record_state(self, agent_id): pass @abstractmethod def record_goal(self, agent_id): pass @abstractmethod def set_action(self, agent_id): pass @abstractmethod def get_action_space(self, agent_id): pass @abstractmethod def get_state_size(self, agent_id): pass @abstractmethod def get_goal_size(self, agent_id): pass @abstractmethod def get_action_size(self, agent_id): pass @abstractmethod def get_num_actions(self, agent_id): pass @abstractmethod def log_val(self, agent_id, val): pass def build_state_offset(self, agent_id): state_size = self.get_state_size(agent_id) return np.zeros(state_size) def build_state_scale(self, agent_id): state_size = self.get_state_size(agent_id) return np.ones(state_size) def build_goal_offset(self, agent_id): goal_size = self.get_goal_size(agent_id) return np.zeros(goal_size) def build_goal_scale(self, agent_id): goal_size = self.get_goal_size(agent_id) return np.ones(goal_size) def build_action_offset(self, agent_id): action_size = self.get_action_size() return np.zeros(action_size) def build_action_scale(self, agent_id): action_size = self.get_action_size() return np.ones(action_size) def build_action_bound_min(self, agent_id): action_size = self.get_action_size() return -inf * np.ones(action_size) def build_action_bound_max(self, agent_id): action_size = self.get_action_size() return inf * np.ones(action_size) def build_state_norm_groups(self, agent_id): state_size = self.get_state_size(agent_id) return Normalizer.NORM_GROUP_SINGLE * np.ones(state_size, dtype=np.int32) def build_goal_norm_groups(self, agent_id): goal_size = self.get_goal_size(agent_id) return Normalizer.NORM_GROUP_SINGLE * np.ones(goal_size, dtype=np.int32) @abstractmethod def calc_reward(self, agent_id): return 0 @abstractmethod def get_reward_min(self, agent_id): return 0 @abstractmethod def get_reward_max(self, agent_id): return 1 @abstractmethod def get_reward_fail(self, agent_id): return self.get_reward_min(agent_id) @abstractmethod def get_reward_succ(self, agent_id): return self.get_reward_max(agent_id) @abstractmethod def is_episode_end(self): return False @abstractmethod def check_terminate(self, agent_id): return Terminate.Null @abstractmethod def check_valid_episode(self): return True @abstractmethod def set_sample_count(self, count): pass @abstractmethod def set_mode(self, mode): pass
[ "numpy.zeros", "numpy.ones" ]
[((2222, 2242), 'numpy.zeros', 'np.zeros', (['state_size'], {}), '(state_size)\n', (2230, 2242), True, 'import numpy as np\n'), ((2353, 2372), 'numpy.ones', 'np.ones', (['state_size'], {}), '(state_size)\n', (2360, 2372), True, 'import numpy as np\n'), ((2481, 2500), 'numpy.zeros', 'np.zeros', (['goal_size'], {}), '(goal_size)\n', (2489, 2500), True, 'import numpy as np\n'), ((2608, 2626), 'numpy.ones', 'np.ones', (['goal_size'], {}), '(goal_size)\n', (2615, 2626), True, 'import numpy as np\n'), ((2733, 2754), 'numpy.zeros', 'np.zeros', (['action_size'], {}), '(action_size)\n', (2741, 2754), True, 'import numpy as np\n'), ((2860, 2880), 'numpy.ones', 'np.ones', (['action_size'], {}), '(action_size)\n', (2867, 2880), True, 'import numpy as np\n'), ((2997, 3017), 'numpy.ones', 'np.ones', (['action_size'], {}), '(action_size)\n', (3004, 3017), True, 'import numpy as np\n'), ((3133, 3153), 'numpy.ones', 'np.ones', (['action_size'], {}), '(action_size)\n', (3140, 3153), True, 'import numpy as np\n'), ((3301, 3336), 'numpy.ones', 'np.ones', (['state_size'], {'dtype': 'np.int32'}), '(state_size, dtype=np.int32)\n', (3308, 3336), True, 'import numpy as np\n'), ((3481, 3515), 'numpy.ones', 'np.ones', (['goal_size'], {'dtype': 'np.int32'}), '(goal_size, dtype=np.int32)\n', (3488, 3515), True, 'import numpy as np\n')]
import numpy as np from pettingzoo.mappo_ssd import escalation_gw_v1 def main(): env = escalation_gw_v1.parallel_env(max_frames=20, share_reward=False, shape_reward=False, shape_beta=0.8) obs = env.reset()[0] obs = np.array([obs]) print(obs) print(env.env.obs_to_all_symmetries_agent(obs, 0)) actions = np.array([0, 1, 2, 3, 4]) print(env.env.actions_to_all_symmetries_agent(actions, 0)) if __name__ == "__main__": main()
[ "pettingzoo.mappo_ssd.escalation_gw_v1.parallel_env", "numpy.array" ]
[((94, 198), 'pettingzoo.mappo_ssd.escalation_gw_v1.parallel_env', 'escalation_gw_v1.parallel_env', ([], {'max_frames': '(20)', 'share_reward': '(False)', 'shape_reward': '(False)', 'shape_beta': '(0.8)'}), '(max_frames=20, share_reward=False,\n shape_reward=False, shape_beta=0.8)\n', (123, 198), False, 'from pettingzoo.mappo_ssd import escalation_gw_v1\n'), ((230, 245), 'numpy.array', 'np.array', (['[obs]'], {}), '([obs])\n', (238, 245), True, 'import numpy as np\n'), ((331, 356), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (339, 356), True, 'import numpy as np\n')]
import os import glob import pandas as pd import numpy as np from chainercv.transforms import resize from chainercv.utils import read_image,write_image import pydicom as dicom import argparse def img2var(self,img): # cut off mask [-1,1] or [0,1] output return(2*(np.clip(img,-1024,1024)+1024)/2048-1.0) parser = argparse.ArgumentParser(description='chainer implementation of pix2pix') parser.add_argument('--root', '-R', help='input dir containing images') parser.add_argument('--out', '-o', help='output dir') parser.add_argument('--noise', '-n', default=100, type=float, help='strength of Poisson noise') parser.add_argument('--imgtype', '-it', default="jpg", help="image file type (file extension)") args = parser.parse_args() os.makedirs(os.path.join(args.out,"trainA"), exist_ok=True) os.makedirs(os.path.join(args.out,"trainB"), exist_ok=True) for fullname in sorted(glob.glob(os.path.join(args.root,"**/*.{}".format(args.imgtype)), recursive=True)): fn = os.path.basename(fullname) fn,ext = os.path.splitext(fn) if args.imgtype == 'dcm': subdirname = os.path.basename(os.path.dirname(fullname)) ref_dicom_in = dicom.read_file(fullname, force=True) ref_dicom_in.file_meta.TransferSyntaxUID = dicom.uid.ImplicitVRLittleEndian dt=ref_dicom_in.pixel_array.dtype fileB = "trainB/{}_{}_clean.dcm".format(subdirname,fn) ref_dicom_in.save_as(os.path.join(args.out,fileB)) dat = ref_dicom_in.pixel_array # print(np.min(dat),np.max(dat)) # noise dat = (ref_dicom_in.pixel_array + np.random.poisson(args.noise,ref_dicom_in.pixel_array.shape)).astype(dt) # print(np.min(dat),np.max(dat)) ref_dicom_in.PixelData = dat.tostring() fileA = "trainA/{}_{}_noise.dcm".format(subdirname,fn) ref_dicom_in.save_as(os.path.join(args.out,fileA)) else: dat = read_image(fullname) c,h,w = dat.shape fileB = "trainB/{}_clean.jpg".format(fn) write_image(dat,os.path.join(args.out,fileB)) dat += np.random.poisson(args.noise,dat.shape) fileA = "trainA/{}_noise.jpg".format(fn) write_image(dat,os.path.join(args.out,fileA)) print("{}\t{}".format(fileA,fileB))
[ "argparse.ArgumentParser", "pydicom.read_file", "os.path.basename", "chainercv.utils.read_image", "os.path.dirname", "numpy.clip", "os.path.splitext", "numpy.random.poisson", "os.path.join" ]
[((324, 396), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""chainer implementation of pix2pix"""'}), "(description='chainer implementation of pix2pix')\n", (347, 396), False, 'import argparse\n'), ((755, 787), 'os.path.join', 'os.path.join', (['args.out', '"""trainA"""'], {}), "(args.out, 'trainA')\n", (767, 787), False, 'import os\n'), ((815, 847), 'os.path.join', 'os.path.join', (['args.out', '"""trainB"""'], {}), "(args.out, 'trainB')\n", (827, 847), False, 'import os\n'), ((980, 1006), 'os.path.basename', 'os.path.basename', (['fullname'], {}), '(fullname)\n', (996, 1006), False, 'import os\n'), ((1020, 1040), 'os.path.splitext', 'os.path.splitext', (['fn'], {}), '(fn)\n', (1036, 1040), False, 'import os\n'), ((1159, 1196), 'pydicom.read_file', 'dicom.read_file', (['fullname'], {'force': '(True)'}), '(fullname, force=True)\n', (1174, 1196), True, 'import pydicom as dicom\n'), ((1889, 1909), 'chainercv.utils.read_image', 'read_image', (['fullname'], {}), '(fullname)\n', (1899, 1909), False, 'from chainercv.utils import read_image, write_image\n'), ((2054, 2094), 'numpy.random.poisson', 'np.random.poisson', (['args.noise', 'dat.shape'], {}), '(args.noise, dat.shape)\n', (2071, 2094), True, 'import numpy as np\n'), ((1109, 1134), 'os.path.dirname', 'os.path.dirname', (['fullname'], {}), '(fullname)\n', (1124, 1134), False, 'import os\n'), ((1415, 1444), 'os.path.join', 'os.path.join', (['args.out', 'fileB'], {}), '(args.out, fileB)\n', (1427, 1444), False, 'import os\n'), ((1835, 1864), 'os.path.join', 'os.path.join', (['args.out', 'fileA'], {}), '(args.out, fileA)\n', (1847, 1864), False, 'import os\n'), ((2009, 2038), 'os.path.join', 'os.path.join', (['args.out', 'fileB'], {}), '(args.out, fileB)\n', (2021, 2038), False, 'import os\n'), ((2167, 2196), 'os.path.join', 'os.path.join', (['args.out', 'fileA'], {}), '(args.out, fileA)\n', (2179, 2196), False, 'import os\n'), ((274, 299), 'numpy.clip', 'np.clip', (['img', '(-1024)', '(1024)'], {}), '(img, -1024, 1024)\n', (281, 299), True, 'import numpy as np\n'), ((1582, 1643), 'numpy.random.poisson', 'np.random.poisson', (['args.noise', 'ref_dicom_in.pixel_array.shape'], {}), '(args.noise, ref_dicom_in.pixel_array.shape)\n', (1599, 1643), True, 'import numpy as np\n')]
import numpy as np from pycocotools.coco import COCO import json from .custom import CustomDataset #DATASET = 'DB_4LESIONS' #DATASET = 'ROP_9LESIONS' DATASET = 'DB_7LESIONS' pseudo_threds = 0.0 def xyxy2xywh(bbox): _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0] + 1, _bbox[3] - _bbox[1] + 1, ] def py_cpu_nms(dets,scores, thresh): """Pure Python NMS baseline.""" x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] #scores = dets[:, 4] #bbox打分 areas = (x2 - x1 + 1) * (y2 - y1 + 1) #打分从大到小排列,取index order = scores.argsort()[::-1] #keep为最后保留的边框 keep = [] while order.size > 0: #order[0]是当前分数最大的窗口,肯定保留 i = order[0] keep.append(i) #计算窗口i与其他所有窗口的交叠部分的面积 xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h #交/并得到iou值 ovr = inter / (areas[i] + areas[order[1:]] - inter) #inds为所有与窗口i的iou值小于threshold值的窗口的index,其他窗口此次都被窗口i吸收 inds = np.where(ovr <= thresh)[0] #order里面只保留与窗口i交叠面积小于threshold的那些窗口,由于ovr长度比order长度少1(不包含i),所以inds+1对应到保留的窗口 order = order[inds + 1] return keep WITH_NMS=True class CocoDataset(CustomDataset): CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush') if DATASET=='ROP_2TISSUES': CLASSES = ('Macula','OpticDisk') if DATASET=='ROP_9LESIONS': CLASSES = ('Laser Photocoagulation Spot','artifact','bleeding', 'Stage 1: demarcation line','Stage 2: ridge', 'Stage 3: ridge with neovascularization', 'proliferation','Retina detachment','carcinoma') if DATASET=='DB_4LESIONS': CLASSES = ('hemorrhages', 'micro-aneurysms', 'hard exudate', 'cotton wool spot') if DATASET=='DB_7LESIONS': CLASSES = ('1','2','3','4','5','6','7') def load_annotations(self, ann_file): self.coco = COCO(ann_file) self.cat_ids = self.coco.getCatIds() if 'ROP' in DATASET: self.cat2label = { cat_id+1: i + 1 for i, cat_id in enumerate(self.cat_ids) } else: self.cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids) } print(self.cat2label) self.img_ids = self.coco.getImgIds() img_infos = [] for i in self.img_ids: info = self.coco.loadImgs([i])[0] info['filename'] = info['file_name'] img_infos.append(info) return img_infos def load_Pseudo_annotations(self,Pseudo_ann_file): pseudo_ann_info = dict() json_pseudo_ann = json.load(open(Pseudo_ann_file)) for pseudo_ann in json_pseudo_ann: pseudo_ann_info[pseudo_ann['image_name']] = pseudo_ann return pseudo_ann_info def get_ann_info(self, idx): img_id = self.img_infos[idx]['id'] ann_ids = self.coco.getAnnIds(imgIds=[img_id]) ann_info = self.coco.loadAnns(ann_ids) return self._parse_ann_info(ann_info, self.with_mask) def get_Pseudo_ann_info(self, image_name): gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] gt_scores = [] pseudo_ann = self.pseudo_ann_info[image_name] for pseudo_box in pseudo_ann['box_results']: if pseudo_box['score']>pseudo_threds: x1, y1, w, h = pseudo_box['bbox'] box = [int(x1), int(y1), int(x1 + w - 1), int(y1 + h - 1)] gt_bboxes.append(box) gt_labels.append(pseudo_box['category_id']) gt_scores.append(pseudo_box['score']) if gt_bboxes: if WITH_NMS: #print(len(gt_bboxes)) temp_gt_bboxes = np.array(gt_bboxes, dtype=np.float32) #temp_gt_labels = np.array(gt_labels, dtype=np.int64) temp_gt_scores = np.array(gt_scores,dtype = np.float32) indexes = py_cpu_nms(temp_gt_bboxes,temp_gt_scores,0.15) temp_gt_bboxes = [] temp_gt_labels = [] for index in indexes: temp_gt_bboxes.append(gt_bboxes[int(index)]) temp_gt_labels.append(gt_labels[int(index)]) gt_bboxes=temp_gt_bboxes gt_labels=temp_gt_labels #print(len(gt_bboxes)) gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) pseudo_ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore) return pseudo_ann def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) for i, img_info in enumerate(self.img_infos): if self.img_ids[i] not in ids_with_ann: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, ann_info, with_mask=True): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, mask_polys, poly_lens. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] # Two formats are provided. # 1. mask: a binary map of the same size of the image. # 2. polys: each mask consists of one or several polys, each poly is a # list of float. if with_mask: gt_masks = [] gt_mask_polys = [] gt_poly_lens = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if ann['iscrowd']: gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) if 'ROP' in DATASET: gt_labels.append(self.cat2label[ann['category_id']+1]) else: gt_labels.append(self.cat2label[ann['category_id']]) if with_mask: gt_masks.append(self.coco.annToMask(ann)) mask_polys = [ p for p in ann['segmentation'] if len(p) >= 6 ] # valid polygons have >= 3 points (6 coordinates) poly_lens = [len(p) for p in mask_polys] gt_mask_polys.append(mask_polys) gt_poly_lens.extend(poly_lens) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) else: gt_bboxes = np.zeros((0, 4), dtype=np.float32) gt_labels = np.array([], dtype=np.int64) if gt_bboxes_ignore: gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) else: gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore) if with_mask: ann['masks'] = gt_masks # poly format is not used in the current implementation ann['mask_polys'] = gt_mask_polys ann['poly_lens'] = gt_poly_lens return ann
[ "numpy.minimum", "numpy.maximum", "numpy.zeros", "pycocotools.coco.COCO", "numpy.where", "numpy.array" ]
[((859, 891), 'numpy.maximum', 'np.maximum', (['x1[i]', 'x1[order[1:]]'], {}), '(x1[i], x1[order[1:]])\n', (869, 891), True, 'import numpy as np\n'), ((908, 940), 'numpy.maximum', 'np.maximum', (['y1[i]', 'y1[order[1:]]'], {}), '(y1[i], y1[order[1:]])\n', (918, 940), True, 'import numpy as np\n'), ((957, 989), 'numpy.minimum', 'np.minimum', (['x2[i]', 'x2[order[1:]]'], {}), '(x2[i], x2[order[1:]])\n', (967, 989), True, 'import numpy as np\n'), ((1006, 1038), 'numpy.minimum', 'np.minimum', (['y2[i]', 'y2[order[1:]]'], {}), '(y2[i], y2[order[1:]])\n', (1016, 1038), True, 'import numpy as np\n'), ((1056, 1086), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (1066, 1086), True, 'import numpy as np\n'), ((1101, 1131), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (1111, 1131), True, 'import numpy as np\n'), ((3256, 3270), 'pycocotools.coco.COCO', 'COCO', (['ann_file'], {}), '(ann_file)\n', (3260, 3270), False, 'from pycocotools.coco import COCO\n'), ((1319, 1342), 'numpy.where', 'np.where', (['(ovr <= thresh)'], {}), '(ovr <= thresh)\n', (1327, 1342), True, 'import numpy as np\n'), ((5795, 5832), 'numpy.array', 'np.array', (['gt_bboxes'], {'dtype': 'np.float32'}), '(gt_bboxes, dtype=np.float32)\n', (5803, 5832), True, 'import numpy as np\n'), ((5857, 5892), 'numpy.array', 'np.array', (['gt_labels'], {'dtype': 'np.int64'}), '(gt_labels, dtype=np.int64)\n', (5865, 5892), True, 'import numpy as np\n'), ((5939, 5973), 'numpy.zeros', 'np.zeros', (['(0, 4)'], {'dtype': 'np.float32'}), '((0, 4), dtype=np.float32)\n', (5947, 5973), True, 'import numpy as np\n'), ((5998, 6026), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int64'}), '([], dtype=np.int64)\n', (6006, 6026), True, 'import numpy as np\n'), ((6087, 6131), 'numpy.array', 'np.array', (['gt_bboxes_ignore'], {'dtype': 'np.float32'}), '(gt_bboxes_ignore, dtype=np.float32)\n', (6095, 6131), True, 'import numpy as np\n'), ((6177, 6211), 'numpy.zeros', 'np.zeros', (['(0, 4)'], {'dtype': 'np.float32'}), '((0, 4), dtype=np.float32)\n', (6185, 6211), True, 'import numpy as np\n'), ((8677, 8714), 'numpy.array', 'np.array', (['gt_bboxes'], {'dtype': 'np.float32'}), '(gt_bboxes, dtype=np.float32)\n', (8685, 8714), True, 'import numpy as np\n'), ((8739, 8774), 'numpy.array', 'np.array', (['gt_labels'], {'dtype': 'np.int64'}), '(gt_labels, dtype=np.int64)\n', (8747, 8774), True, 'import numpy as np\n'), ((8813, 8847), 'numpy.zeros', 'np.zeros', (['(0, 4)'], {'dtype': 'np.float32'}), '((0, 4), dtype=np.float32)\n', (8821, 8847), True, 'import numpy as np\n'), ((8872, 8900), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int64'}), '([], dtype=np.int64)\n', (8880, 8900), True, 'import numpy as np\n'), ((8962, 9006), 'numpy.array', 'np.array', (['gt_bboxes_ignore'], {'dtype': 'np.float32'}), '(gt_bboxes_ignore, dtype=np.float32)\n', (8970, 9006), True, 'import numpy as np\n'), ((9052, 9086), 'numpy.zeros', 'np.zeros', (['(0, 4)'], {'dtype': 'np.float32'}), '((0, 4), dtype=np.float32)\n', (9060, 9086), True, 'import numpy as np\n'), ((5152, 5189), 'numpy.array', 'np.array', (['gt_bboxes'], {'dtype': 'np.float32'}), '(gt_bboxes, dtype=np.float32)\n', (5160, 5189), True, 'import numpy as np\n'), ((5293, 5330), 'numpy.array', 'np.array', (['gt_scores'], {'dtype': 'np.float32'}), '(gt_scores, dtype=np.float32)\n', (5301, 5330), True, 'import numpy as np\n')]
import numpy as np import random from ConceptSet import getConceptSet from sklearn import metrics def kMedoids(D, k=6, maxItr=100): DM=np.array(D) n = DM.shape[0] if k > n: raise Exception('K>N') random.seed(123) M = np.array(list(range(n))) np.random.shuffle(M) M = np.sort(M[:k]) Mnew = np.copy(M) C = {} for t in range(maxItr): minInd = np.argmin(DM[:,M], axis=1) for i in range(k): minInd[M[i]] = i for clust_i in range(k): C[clust_i] = np.where(minInd==clust_i)[0] for clust_i in range(k): minInd = np.mean(DM[np.ix_(C[clust_i],C[clust_i])],axis=1) j = np.argmin(minInd) Mnew[clust_i] = C[clust_i][j] np.sort(Mnew) if np.array_equal(M, Mnew): break M = np.copy(Mnew) else: minInd = np.argmin(DM[:,M], axis=1) for clust_i in range(k): C[clust_i] = np.where(minInd==clust_i)[0] return M, C def getSense(filename): # L=[[0., 0.5,0.2,0.5,0.2], # [0.5, 0.0 ,0.1,0.4,0.2], # [0.2, 0.1, 0.0 , 0.3 ,0.4], # [0.5 ,0.4 ,0.3 ,0.0 ,0.2], # [0.2, 0.2, 0.4 ,0.2, 0.0 ]] ListofConcepts,DistanceMatrix,FeatureVector = getConceptSet(filename) M,C = kMedoids(DistanceMatrix) Cn = {} for k,v in C.items(): m = [] for l in v: m.append(ListofConcepts[l]) Cn.update({k:m}) GM = [0 for x in range(len(M))] for i in range(len(M)): GM[i] = FeatureVector[i] return (ListofConcepts,DistanceMatrix,FeatureVector,M,C,Cn,GM) if __name__=="__main__": sense = getSense("test.txt")
[ "numpy.copy", "ConceptSet.getConceptSet", "numpy.ix_", "numpy.argmin", "numpy.sort", "numpy.where", "random.seed", "numpy.array", "numpy.array_equal", "numpy.random.shuffle" ]
[((138, 149), 'numpy.array', 'np.array', (['D'], {}), '(D)\n', (146, 149), True, 'import numpy as np\n'), ((204, 220), 'random.seed', 'random.seed', (['(123)'], {}), '(123)\n', (215, 220), False, 'import random\n'), ((252, 272), 'numpy.random.shuffle', 'np.random.shuffle', (['M'], {}), '(M)\n', (269, 272), True, 'import numpy as np\n'), ((278, 292), 'numpy.sort', 'np.sort', (['M[:k]'], {}), '(M[:k])\n', (285, 292), True, 'import numpy as np\n'), ((301, 311), 'numpy.copy', 'np.copy', (['M'], {}), '(M)\n', (308, 311), True, 'import numpy as np\n'), ((1076, 1099), 'ConceptSet.getConceptSet', 'getConceptSet', (['filename'], {}), '(filename)\n', (1089, 1099), False, 'from ConceptSet import getConceptSet\n'), ((357, 384), 'numpy.argmin', 'np.argmin', (['DM[:, M]'], {'axis': '(1)'}), '(DM[:, M], axis=1)\n', (366, 384), True, 'import numpy as np\n'), ((646, 659), 'numpy.sort', 'np.sort', (['Mnew'], {}), '(Mnew)\n', (653, 659), True, 'import numpy as np\n'), ((665, 688), 'numpy.array_equal', 'np.array_equal', (['M', 'Mnew'], {}), '(M, Mnew)\n', (679, 688), True, 'import numpy as np\n'), ((705, 718), 'numpy.copy', 'np.copy', (['Mnew'], {}), '(Mnew)\n', (712, 718), True, 'import numpy as np\n'), ((737, 764), 'numpy.argmin', 'np.argmin', (['DM[:, M]'], {'axis': '(1)'}), '(DM[:, M], axis=1)\n', (746, 764), True, 'import numpy as np\n'), ((593, 610), 'numpy.argmin', 'np.argmin', (['minInd'], {}), '(minInd)\n', (602, 610), True, 'import numpy as np\n'), ((468, 495), 'numpy.where', 'np.where', (['(minInd == clust_i)'], {}), '(minInd == clust_i)\n', (476, 495), True, 'import numpy as np\n'), ((807, 834), 'numpy.where', 'np.where', (['(minInd == clust_i)'], {}), '(minInd == clust_i)\n', (815, 834), True, 'import numpy as np\n'), ((547, 577), 'numpy.ix_', 'np.ix_', (['C[clust_i]', 'C[clust_i]'], {}), '(C[clust_i], C[clust_i])\n', (553, 577), True, 'import numpy as np\n')]
import numpy as np from scipy.optimize import _lbfgsb def objfun(x): """simplified objective func to test lbfgsb bound violation""" x0 = [0.8750000000000278, 0.7500000000000153, 0.9499999999999722, 0.8214285714285992, 0.6363636363636085] x1 = [1.0, 0.0, 1.0, 0.0, 0.0] x2 = [1.0, 0.0, 0.9889733043149325, 0.0, 0.026353554421041155] x3 = [1.0, 0.0, 0.9889917442915558, 0.0, 0.020341986743231205] f0 = 5163.647901211178 f1 = 5149.8181642072905 f2 = 5149.379332309634 f3 = 5149.374490771297 g0 = np.array([-0.5934820547965749, 1.6251549718258351, -71.99168459202559, 5.346636965797545, 37.10732723092604]) g1 = np.array([-0.43295349282641515, 1.008607936794592, 18.223666726602975, 31.927010036981997, -19.667512518739386]) g2 = np.array([-0.4699874455100256, 0.9466285353668347, -0.016874360242016825, 48.44999161133457, 5.819631620590712]) g3 = np.array([-0.46970678696829116, 0.9612719312174818, 0.006129809488833699, 48.43557729419473, 6.005481418498221]) if np.allclose(x, x0): f = f0 g = g0 elif np.allclose(x, x1): f = f1 g = g1 elif np.allclose(x, x2): f = f2 g = g2 elif np.allclose(x, x3): f = f3 g = g3 else: raise ValueError( 'Simplified objective function not defined ' 'at requested point') return (np.copy(f), np.copy(g)) def test_setulb_floatround(): """test if setulb() violates bounds checks for violation due to floating point rounding error """ n = 5 m = 10 factr = 1e7 pgtol = 1e-5 maxls = 20 iprint = -1 nbd = np.full((n,), 2) low_bnd = np.zeros(n, np.float64) upper_bnd = np.ones(n, np.float64) x0 = np.array( [0.8750000000000278, 0.7500000000000153, 0.9499999999999722, 0.8214285714285992, 0.6363636363636085]) x = np.copy(x0) f = np.array(0.0, np.float64) g = np.zeros(n, np.float64) fortran_int = _lbfgsb.types.intvar.dtype wa = np.zeros(2*m*n + 5*n + 11*m*m + 8*m, np.float64) iwa = np.zeros(3*n, fortran_int) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros(4, fortran_int) isave = np.zeros(44, fortran_int) dsave = np.zeros(29, np.float64) task[:] = b'START' for n_iter in range(7): # 7 steps required to reproduce error f, g = objfun(x) _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, maxls) assert (x <= upper_bnd).all() and (x >= low_bnd).all(), ( "_lbfgsb.setulb() stepped to a point outside of the bounds")
[ "numpy.full", "scipy.optimize._lbfgsb.setulb", "numpy.copy", "numpy.allclose", "numpy.zeros", "numpy.ones", "numpy.array" ]
[((657, 771), 'numpy.array', 'np.array', (['[-0.5934820547965749, 1.6251549718258351, -71.99168459202559, \n 5.346636965797545, 37.10732723092604]'], {}), '([-0.5934820547965749, 1.6251549718258351, -71.99168459202559, \n 5.346636965797545, 37.10732723092604])\n', (665, 771), True, 'import numpy as np\n'), ((852, 969), 'numpy.array', 'np.array', (['[-0.43295349282641515, 1.008607936794592, 18.223666726602975, \n 31.927010036981997, -19.667512518739386]'], {}), '([-0.43295349282641515, 1.008607936794592, 18.223666726602975, \n 31.927010036981997, -19.667512518739386])\n', (860, 969), True, 'import numpy as np\n'), ((1050, 1167), 'numpy.array', 'np.array', (['[-0.4699874455100256, 0.9466285353668347, -0.016874360242016825, \n 48.44999161133457, 5.819631620590712]'], {}), '([-0.4699874455100256, 0.9466285353668347, -0.016874360242016825, \n 48.44999161133457, 5.819631620590712])\n', (1058, 1167), True, 'import numpy as np\n'), ((1248, 1365), 'numpy.array', 'np.array', (['[-0.46970678696829116, 0.9612719312174818, 0.006129809488833699, \n 48.43557729419473, 6.005481418498221]'], {}), '([-0.46970678696829116, 0.9612719312174818, 0.006129809488833699, \n 48.43557729419473, 6.005481418498221])\n', (1256, 1365), True, 'import numpy as np\n'), ((1445, 1463), 'numpy.allclose', 'np.allclose', (['x', 'x0'], {}), '(x, x0)\n', (1456, 1463), True, 'import numpy as np\n'), ((2074, 2090), 'numpy.full', 'np.full', (['(n,)', '(2)'], {}), '((n,), 2)\n', (2081, 2090), True, 'import numpy as np\n'), ((2105, 2128), 'numpy.zeros', 'np.zeros', (['n', 'np.float64'], {}), '(n, np.float64)\n', (2113, 2128), True, 'import numpy as np\n'), ((2145, 2167), 'numpy.ones', 'np.ones', (['n', 'np.float64'], {}), '(n, np.float64)\n', (2152, 2167), True, 'import numpy as np\n'), ((2178, 2293), 'numpy.array', 'np.array', (['[0.8750000000000278, 0.7500000000000153, 0.9499999999999722, \n 0.8214285714285992, 0.6363636363636085]'], {}), '([0.8750000000000278, 0.7500000000000153, 0.9499999999999722, \n 0.8214285714285992, 0.6363636363636085])\n', (2186, 2293), True, 'import numpy as np\n'), ((2342, 2353), 'numpy.copy', 'np.copy', (['x0'], {}), '(x0)\n', (2349, 2353), True, 'import numpy as np\n'), ((2363, 2388), 'numpy.array', 'np.array', (['(0.0)', 'np.float64'], {}), '(0.0, np.float64)\n', (2371, 2388), True, 'import numpy as np\n'), ((2397, 2420), 'numpy.zeros', 'np.zeros', (['n', 'np.float64'], {}), '(n, np.float64)\n', (2405, 2420), True, 'import numpy as np\n'), ((2477, 2537), 'numpy.zeros', 'np.zeros', (['(2 * m * n + 5 * n + 11 * m * m + 8 * m)', 'np.float64'], {}), '(2 * m * n + 5 * n + 11 * m * m + 8 * m, np.float64)\n', (2485, 2537), True, 'import numpy as np\n'), ((2536, 2564), 'numpy.zeros', 'np.zeros', (['(3 * n)', 'fortran_int'], {}), '(3 * n, fortran_int)\n', (2544, 2564), True, 'import numpy as np\n'), ((2574, 2592), 'numpy.zeros', 'np.zeros', (['(1)', '"""S60"""'], {}), "(1, 'S60')\n", (2582, 2592), True, 'import numpy as np\n'), ((2605, 2623), 'numpy.zeros', 'np.zeros', (['(1)', '"""S60"""'], {}), "(1, 'S60')\n", (2613, 2623), True, 'import numpy as np\n'), ((2636, 2660), 'numpy.zeros', 'np.zeros', (['(4)', 'fortran_int'], {}), '(4, fortran_int)\n', (2644, 2660), True, 'import numpy as np\n'), ((2673, 2698), 'numpy.zeros', 'np.zeros', (['(44)', 'fortran_int'], {}), '(44, fortran_int)\n', (2681, 2698), True, 'import numpy as np\n'), ((2711, 2735), 'numpy.zeros', 'np.zeros', (['(29)', 'np.float64'], {}), '(29, np.float64)\n', (2719, 2735), True, 'import numpy as np\n'), ((1504, 1522), 'numpy.allclose', 'np.allclose', (['x', 'x1'], {}), '(x, x1)\n', (1515, 1522), True, 'import numpy as np\n'), ((1811, 1821), 'numpy.copy', 'np.copy', (['f'], {}), '(f)\n', (1818, 1821), True, 'import numpy as np\n'), ((1823, 1833), 'numpy.copy', 'np.copy', (['g'], {}), '(g)\n', (1830, 1833), True, 'import numpy as np\n'), ((2862, 2989), 'scipy.optimize._lbfgsb.setulb', '_lbfgsb.setulb', (['m', 'x', 'low_bnd', 'upper_bnd', 'nbd', 'f', 'g', 'factr', 'pgtol', 'wa', 'iwa', 'task', 'iprint', 'csave', 'lsave', 'isave', 'dsave', 'maxls'], {}), '(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa,\n task, iprint, csave, lsave, isave, dsave, maxls)\n', (2876, 2989), False, 'from scipy.optimize import _lbfgsb\n'), ((1563, 1581), 'numpy.allclose', 'np.allclose', (['x', 'x2'], {}), '(x, x2)\n', (1574, 1581), True, 'import numpy as np\n'), ((1622, 1640), 'numpy.allclose', 'np.allclose', (['x', 'x3'], {}), '(x, x3)\n', (1633, 1640), True, 'import numpy as np\n')]
""" Copyright (c) College of Mechatronics and Control Engineering, Shenzhen University. All rights reserved. Description : A package wihch provides tools for generating pixel-level thermal maps that can be used as states in reinforcement learning for autonomous vehicle. Author:<NAME> """ import numpy as np from msgs.log import logger from obj_state import ego_vehicle as ego_v from obj_state import road_obj as road_o import math from situation_assessment import _assess_one_obj_safety from kp2hm_utils import heat_map ########################## ######### CONFIG ######### ########################## heat_map_size = (300, 300) ##(h, w) ########################## def get_pose(objs_info): """get pose heat map, the pose head map will include road_obj.position, road_obj.orientation and road_obj.size info. Args: objs_info: a list of road_obj. Return: A ndarray with the shape (heat_map_size[0], heat_map_size[1]), represents the pose heat map """ p_heat_map = np.zeros(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32) for obj_info in objs_info: if obj_info != None: position = obj_info.get_position() ## (x, y, z) ## orientation_e = obj_info.get_orientation(format='rpy') ## euler angle (r, p, y) ## orientation_q = obj_info.get_orientation(format='xyzw') ## quaternion (x, y, z, w) ## size = obj_info.get_size() ## obj size (height, width, depth ) else: ##sth error raise ValueError("Get a None obj_info..") ######################################### #### to do (ceate the pose heat map) #### ######################################### return p_heat_map def get_linear(objs_info, direction): """get linear velocity heat map Args: objs_info: a list of road_obj. orientation: a str indicates the direction 'x' or 'y' Return: A ndarray with the shape (heat_map_size[0], heat_map_size[1]), represents the linear vel heat map """ ## assert ## try: assert direction.lower() in ['x', 'y'] except AssertionError: logger.error('Pls ensure direction is "x" or "y", but i get '+'"%s"'%(direction)) exit(1) ## init heat map## vel_heat_map = np.zeros(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32) ## creat heat map ## for obj_info in objs_info: if obj_info != None: position = obj_info.get_position() ## (x, y, z) ## orientation_e = obj_info.get_pose(format='rpy') ## euler angle (r, p, y) ## orientation_q = obj_info.get_pose(format='xyzw') ## quaternion (x, y, z, w) ## size = obj_info.get_size() ## obj size (height, width, depth ) if direction.lower() == 'x': vel = obj_info.get_position().x ## a float means velocity in direction x ## else: vel = obj_info.get_position().y ## a float means velocity in direction y ## else: ##sth error raise ValueError("Get a None obj_info..") #################################### ## to do (ceate the vel heat map) ## #################################### return vel_heat_map def get_angular(objs_info, axis='z'): """get angular rate heat map Args: objs_info: a list of road_obj. orientation: a str indicates the direction 'x' or 'y' Return: A ndarray with the shape (heat_map_size[0], heat_map_size[1]), represents the linear vel heat map """ ## assert ## try: assert axis.lower() in ['x', 'y', 'z'] except AssertionError: logger.error('Pls ensure direction is "x", "y", "z"') exit(1) ## init heat map## ang_heat_map = np.zeros(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32) ## creat heat map ## for obj_info in objs_info: if obj_info != None: position = obj_info.get_position() ## (x, y, z) ## orientation_e = obj_info.get_pose(format='rpy') ## euler angle (r, p, y) ## orientation_q = obj_info.get_pose(format='xyzw') ## quaternion (x, y, z, w) ## size = obj_info.get_size() ## obj size (height, width, depth ) if axis.lower() == 'z': ang = obj_info.get_angular().z ## a float means angular in axis z ## elif axis.lower() == 'x': ang = obj_info.get_position().x ## a float means angular in axis x ## else: ang = obj_info.get_position().y ## a float means angular in axis y ## else: ##sth error raise ValueError("Get a None obj_info..") #################################### ## to do (ceate the ang heat map) ## #################################### return ang_heat_map def produce_heat_map(ego, others, h_type, hm_size=(224, 224), consider_range=50): """produce heat map for each safety degree Args: ego: ego vehecle in carla others: other actor in carla Return: heat map """ assert h_type in ['danger', 'attentive', 'safe'] ego_location = ego.get_location() ego_location = (ego_location.x, ego_location.y, ego_location.z) ego_size = ego.bounding_box.extent ego_size = (ego_size.x, ego_size.y, ego_size.z) ego_velocity = ego.get_velocity() ego_velocity = (ego_velocity.x, ego_velocity.y, ego_velocity.z) t = ego.get_transform() f_v = t.get_forward_vector() cos_theta = (f_v.x*0 + f_v.y*1)/math.sqrt(f_v.x**2+ f_v.y**2) a = math.acos(cos_theta) if f_v.x > 0: a = -a r_matix = np.array([[math.cos(a), -math.sin(a)], [math.sin(a), math.cos(a)]]) # points = [] # sizes = [] hms = [] for vehicle in others: location = vehicle.get_location() location = (location.x, location.y, location.z) distance = math.sqrt((ego_location[0] - location[0]) ** 2 + (ego_location[1] - location[1]) ** 2) # print(vehicle, distance) # print(distance) if distance <= consider_range: size = vehicle.bounding_box.extent size = (size.x, size.y, size.z) velocity = vehicle.get_velocity() velocity = (velocity.x, velocity.y, velocity.z) ego_v_state = ego_v.ego_vehicle() ego_v_state.set_position(position=ego_location) ego_v_state.set_linear(linear=ego_velocity) ego_v_state.set_size(size=ego_size) road_obj_state = road_o.road_obj() road_obj_state.set_position(position=location) road_obj_state.set_linear(linear=velocity) road_obj_state.set_size(size=size) safety_degree = _assess_one_obj_safety(ego_vehicle=ego_v_state, road_obj=road_obj_state) max_index = np.argmax(np.array(safety_degree)) if max_index == ['danger', 'attentive', 'safe'].index(h_type): relative_x = int(location[0] - ego_location[0])*(hm_size[1]//consider_range//2) relative_y = int(location[1] - ego_location[1])*(hm_size[0]//consider_range//2) point = np.matmul(np.array([relative_x, relative_y]), r_matix) point_x = min(hm_size[1]-1, max(-point[0] + hm_size[1]//2, 0)) point_y = min(hm_size[0]-1, max(-point[1] + hm_size[0]//2, 0)) size = vehicle.bounding_box.extent size = math.sqrt(size.x**2+size.y**2) hm = heat_map(hm_size, points=[[point_x, point_y]], sigma=size*2) hm *= safety_degree[max_index] hms.append(hm) if len(hms) > 0: hm = np.sum(np.array(hms), axis=0) return hm else: return np.zeros(hm_size)
[ "obj_state.road_obj.road_obj", "situation_assessment._assess_one_obj_safety", "math.sqrt", "numpy.zeros", "math.sin", "math.acos", "numpy.array", "math.cos", "msgs.log.logger.error", "obj_state.ego_vehicle.ego_vehicle", "kp2hm_utils.heat_map" ]
[((1026, 1096), 'numpy.zeros', 'np.zeros', ([], {'shape': '(heat_map_size[0], heat_map_size[1])', 'dtype': 'np.float32'}), '(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32)\n', (1034, 1096), True, 'import numpy as np\n'), ((2332, 2402), 'numpy.zeros', 'np.zeros', ([], {'shape': '(heat_map_size[0], heat_map_size[1])', 'dtype': 'np.float32'}), '(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32)\n', (2340, 2402), True, 'import numpy as np\n'), ((3883, 3953), 'numpy.zeros', 'np.zeros', ([], {'shape': '(heat_map_size[0], heat_map_size[1])', 'dtype': 'np.float32'}), '(shape=(heat_map_size[0], heat_map_size[1]), dtype=np.float32)\n', (3891, 3953), True, 'import numpy as np\n'), ((5710, 5730), 'math.acos', 'math.acos', (['cos_theta'], {}), '(cos_theta)\n', (5719, 5730), False, 'import math\n'), ((5672, 5706), 'math.sqrt', 'math.sqrt', (['(f_v.x ** 2 + f_v.y ** 2)'], {}), '(f_v.x ** 2 + f_v.y ** 2)\n', (5681, 5706), False, 'import math\n'), ((6040, 6130), 'math.sqrt', 'math.sqrt', (['((ego_location[0] - location[0]) ** 2 + (ego_location[1] - location[1]) ** 2)'], {}), '((ego_location[0] - location[0]) ** 2 + (ego_location[1] -\n location[1]) ** 2)\n', (6049, 6130), False, 'import math\n'), ((7885, 7902), 'numpy.zeros', 'np.zeros', (['hm_size'], {}), '(hm_size)\n', (7893, 7902), True, 'import numpy as np\n'), ((2191, 2278), 'msgs.log.logger.error', 'logger.error', (['(\'Pls ensure direction is "x" or "y", but i get \' + \'"%s"\' % direction)'], {}), '(\'Pls ensure direction is "x" or "y", but i get \' + \'"%s"\' %\n direction)\n', (2203, 2278), False, 'from msgs.log import logger\n'), ((3770, 3823), 'msgs.log.logger.error', 'logger.error', (['"""Pls ensure direction is "x", "y", "z\\""""'], {}), '(\'Pls ensure direction is "x", "y", "z"\')\n', (3782, 3823), False, 'from msgs.log import logger\n'), ((6451, 6470), 'obj_state.ego_vehicle.ego_vehicle', 'ego_v.ego_vehicle', ([], {}), '()\n', (6468, 6470), True, 'from obj_state import ego_vehicle as ego_v\n'), ((6665, 6682), 'obj_state.road_obj.road_obj', 'road_o.road_obj', ([], {}), '()\n', (6680, 6682), True, 'from obj_state import road_obj as road_o\n'), ((6873, 6945), 'situation_assessment._assess_one_obj_safety', '_assess_one_obj_safety', ([], {'ego_vehicle': 'ego_v_state', 'road_obj': 'road_obj_state'}), '(ego_vehicle=ego_v_state, road_obj=road_obj_state)\n', (6895, 6945), False, 'from situation_assessment import _assess_one_obj_safety\n'), ((7819, 7832), 'numpy.array', 'np.array', (['hms'], {}), '(hms)\n', (7827, 7832), True, 'import numpy as np\n'), ((5790, 5801), 'math.cos', 'math.cos', (['a'], {}), '(a)\n', (5798, 5801), False, 'import math\n'), ((5819, 5830), 'math.sin', 'math.sin', (['a'], {}), '(a)\n', (5827, 5830), False, 'import math\n'), ((5832, 5843), 'math.cos', 'math.cos', (['a'], {}), '(a)\n', (5840, 5843), False, 'import math\n'), ((6980, 7003), 'numpy.array', 'np.array', (['safety_degree'], {}), '(safety_degree)\n', (6988, 7003), True, 'import numpy as np\n'), ((7586, 7622), 'math.sqrt', 'math.sqrt', (['(size.x ** 2 + size.y ** 2)'], {}), '(size.x ** 2 + size.y ** 2)\n', (7595, 7622), False, 'import math\n'), ((7639, 7701), 'kp2hm_utils.heat_map', 'heat_map', (['hm_size'], {'points': '[[point_x, point_y]]', 'sigma': '(size * 2)'}), '(hm_size, points=[[point_x, point_y]], sigma=size * 2)\n', (7647, 7701), False, 'from kp2hm_utils import heat_map\n'), ((5804, 5815), 'math.sin', 'math.sin', (['a'], {}), '(a)\n', (5812, 5815), False, 'import math\n'), ((7307, 7341), 'numpy.array', 'np.array', (['[relative_x, relative_y]'], {}), '([relative_x, relative_y])\n', (7315, 7341), True, 'import numpy as np\n')]
# Copyright 2016-2019 <NAME> <<EMAIL>> # Copyright 2013 <NAME> <<EMAIL>> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import lilv import os import sys import unittest path = os.path.abspath("bindings/bindings_test_plugin.lv2/") if sys.version_info[0] == 2: import urllib.request, urllib.parse, urllib.error import urllib.parse location = urllib.parse.urljoin("file:", urllib.request.pathname2url(path) + "/") else: from urllib.parse import urljoin from urllib.request import pathname2url location = urljoin("file:", pathname2url(path) + "/") class NodeTests(unittest.TestCase): def setUp(self): self.world = lilv.World() def testNodes(self): aint = self.world.new_int(1) aint2 = self.world.new_int(1) aint3 = self.world.new_int(3) afloat = self.world.new_float(2.0) atrue = self.world.new_bool(True) afalse = self.world.new_bool(False) auri = self.world.new_uri("http://example.org") afile = self.world.new_file_uri(None, "/foo/bar") astring = self.world.new_string("hello") self.assertEqual(auri.get_turtle_token(), "<http://example.org>") self.assertTrue(aint.is_int()) self.assertTrue(afloat.is_float()) self.assertTrue(auri.is_uri()) self.assertTrue(astring.is_string()) self.assertTrue(astring.is_literal()) self.assertFalse(auri.is_blank()) self.assertTrue(int(aint) == 1) self.assertTrue(float(afloat) == 2.0) self.assertTrue(bool(atrue)) self.assertFalse(bool(afalse)) self.assertEqual(afile.get_path(), "/foo/bar") self.assertTrue(aint == aint2) self.assertTrue(aint != aint3) self.assertTrue(aint != afloat) with self.assertRaises(ValueError): int(atrue) with self.assertRaises(ValueError): float(aint) with self.assertRaises(ValueError): bool(astring) class UriTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.world.load_all() def testInvalidURI(self): with self.assertRaises(ValueError): self.plugin_uri = self.world.new_uri("invalid_uri") def testNonExistentURI(self): self.plugin_uri = self.world.new_uri("exist:does_not") self.plugin = self.world.get_all_plugins().get_by_uri(self.plugin_uri) self.assertEqual(self.plugin, None) def testPortTypes(self): self.assertIsNotNone(self.world.new_uri(lilv.LILV_URI_INPUT_PORT)) def testPortTypes2(self): self.assertIsNotNone(self.world.new_uri(lilv.LILV_URI_OUTPUT_PORT)) def testPortTypes3(self): self.assertIsNotNone(self.world.new_uri(lilv.LILV_URI_AUDIO_PORT)) def testPortTypes4(self): self.assertIsNotNone(self.world.new_uri(lilv.LILV_URI_CONTROL_PORT)) class PluginClassTests(unittest.TestCase): def setUp(self): self.world = lilv.World() def testPluginClasses(self): pclass = self.world.get_plugin_class() self.assertIsNotNone(pclass) self.assertIsNone(pclass.get_parent_uri()) self.assertIsNotNone(pclass.get_uri()) self.assertIsNotNone(pclass.get_label()) self.assertEqual(str(pclass.get_uri()), str(pclass)) for i in pclass.get_children(): self.assertIsNotNone(i) self.assertIsNotNone(i.get_uri()) self.assertIsNotNone(i.get_label()) class PluginClassesTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.world.load_all() def testPluginClasses(self): classes = self.world.get_plugin_classes() pclass = self.world.get_plugin_class() self.assertIsNotNone(classes) self.assertIsNotNone(pclass) self.assertTrue(pclass in classes) self.assertTrue(pclass.get_uri() in classes) self.assertGreater(len(classes), 1) self.assertIsNotNone(classes[0]) self.assertIsNotNone(classes[pclass.get_uri()]) with self.assertRaises(KeyError): classes["http://example.org/notaclass"].get_uri() class LoadTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.bundle_uri = self.world.new_uri(location) self.world.load_specifications() self.world.load_plugin_classes() def testLoadUnload(self): self.world.load_bundle(self.bundle_uri) plugins = self.world.get_all_plugins() plugin = plugins.get(plugins.begin()) self.world.load_resource(plugin) self.world.unload_resource(plugin) self.world.unload_bundle(self.bundle_uri) class PluginTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.world.set_option( lilv.OPTION_FILTER_LANG, self.world.new_bool(True) ) self.bundle_uri = self.world.new_uri(location) self.assertIsNotNone( self.bundle_uri, "Invalid URI: '" + location + "'" ) self.world.load_bundle(self.bundle_uri) self.plugins = self.world.get_all_plugins() self.plugin = self.plugins.get(self.plugins.begin()) self.assertTrue(self.plugin.verify()) self.assertTrue(self.plugin in self.plugins) self.assertTrue(self.plugin.get_uri() in self.plugins) self.assertEqual(self.plugins[self.plugin.get_uri()], self.plugin) with self.assertRaises(KeyError): self.plugins["http://example.org/notaplugin"].get_uri() self.assertIsNotNone( self.plugin, msg="Test plugin not found at location: '" + location + "'", ) self.assertEqual(location, str(self.plugin.get_bundle_uri())) self.plugin_uri = self.plugin.get_uri() self.assertEqual( self.plugin.get_uri(), self.plugin_uri, "URI equality broken" ) self.lv2_InputPort = self.world.new_uri(lilv.LILV_URI_INPUT_PORT) self.lv2_OutputPort = self.world.new_uri(lilv.LILV_URI_OUTPUT_PORT) self.lv2_AudioPort = self.world.new_uri(lilv.LILV_URI_AUDIO_PORT) self.lv2_ControlPort = self.world.new_uri(lilv.LILV_URI_CONTROL_PORT) def testGetters(self): self.assertEqual( self.world.get_symbol(self.plugin), "lilv_bindings_test_plugin" ) self.assertIsNotNone(self.plugin.get_bundle_uri()) self.assertGreater(len(self.plugin.get_data_uris()), 0) self.assertIsNotNone(self.plugin.get_library_uri()) self.assertTrue(self.plugin.get_name().is_string()) self.assertTrue(self.plugin.get_class().get_uri().is_uri()) self.assertEqual( len(self.plugin.get_value(self.world.ns.doap.license)), 1 ) licenses = self.plugin.get_value(self.world.ns.doap.license) features = self.plugin.get_value(self.world.ns.lv2.optionalFeature) self.assertEqual(len(licenses), 1) self.assertTrue(licenses[0] in licenses) with self.assertRaises(IndexError): self.assertIsNone(licenses[len(licenses)]) self.assertEqual( len(licenses) + len(features), len(licenses.merge(features)) ) self.assertEqual( licenses.get(licenses.begin()), self.world.new_uri("http://opensource.org/licenses/isc"), ) self.assertEqual(licenses[0], licenses.get(licenses.begin())) self.assertTrue( self.plugin.has_feature(self.world.ns.lv2.hardRTCapable) ) self.assertEqual(len(self.plugin.get_supported_features()), 1) self.assertEqual(len(self.plugin.get_optional_features()), 1) self.assertEqual(len(self.plugin.get_required_features()), 0) self.assertFalse( self.plugin.has_extension_data( self.world.new_uri("http://example.org/nope") ) ) self.assertEqual(len(self.plugin.get_extension_data()), 0) self.assertEqual(len(self.plugin.get_extension_data()), 0) self.assertFalse(self.plugin.has_latency()) self.assertIsNone(self.plugin.get_latency_port_index()) def testPorts(self): self.assertEqual(self.plugin.get_num_ports(), 4) self.assertIsNotNone(self.plugin.get_port(0)) self.assertIsNotNone(self.plugin.get_port(1)) self.assertIsNotNone(self.plugin.get_port(2)) self.assertIsNotNone(self.plugin.get_port(3)) self.assertIsNone(self.plugin.get_port_by_index(4)) self.assertIsNotNone(self.plugin.get_port("input")) self.assertIsNotNone(self.plugin.get_port("output")) self.assertIsNotNone(self.plugin.get_port("audio_input")) self.assertIsNotNone(self.plugin.get_port("audio_output")) self.assertIsNone(self.plugin.get_port_by_symbol("nonexistent")) self.assertIsNone( self.plugin.get_port_by_designation( self.world.ns.lv2.InputPort, self.world.ns.lv2.control ) ) self.assertIsNone(self.plugin.get_project()) self.assertIsNone(self.plugin.get_author_name()) self.assertIsNone(self.plugin.get_author_email()) self.assertIsNone(self.plugin.get_author_homepage()) self.assertFalse(self.plugin.is_replaced()) self.assertEqual( 0, len( self.plugin.get_related( self.world.new_uri("http://example.org/Type") ) ), ) self.assertEqual( 1, self.plugin.get_num_ports_of_class( self.lv2_InputPort, self.lv2_AudioPort ), ) port = self.plugin.get_port("input") self.assertEqual(self.world.get_symbol(port), "input") self.assertTrue(port.get_node().is_blank()) self.assertEqual(0, port.get(self.world.ns.lv2.index)) self.assertEqual(1, len(port.get_value(self.world.ns.lv2.symbol))) self.assertEqual(port.get_value(self.world.ns.lv2.symbol)[0], "input") self.assertFalse(port.has_property(self.world.ns.lv2.latency)) self.assertFalse(port.supports_event(self.world.ns.midi.MidiEvent)) self.assertEqual(0, port.get_index()) self.assertEqual("input", port.get_symbol()) self.assertEqual("Input", port.get_name()) self.assertEqual( [ str(self.world.ns.lv2.ControlPort), str(self.world.ns.lv2.InputPort), ], sorted(list(map(str, port.get_classes()))), ) self.assertTrue(port.is_a(self.world.ns.lv2.ControlPort)) self.assertFalse(port.is_a(self.world.ns.lv2.AudioPort)) self.assertEqual((0.5, 0.0, 1.0), port.get_range()) self.assertEqual(0, len(port.get_properties())) def testScalePoints(self): port = self.plugin.get_port("input") points = port.get_scale_points() point_dict = { float(points[0].get_value()): points[0].get_label(), float(points[1].get_value()): points[1].get_label(), } self.assertEqual(point_dict, {0.0: "off", 1.0: "on"}) def testPortCount(self): self.assertEqual( 1, self.plugin.get_num_ports_of_class( self.lv2_OutputPort, self.lv2_AudioPort ), ) self.assertEqual( 1, self.plugin.get_num_ports_of_class( self.lv2_OutputPort, self.lv2_ControlPort ), ) self.assertEqual( 1, self.plugin.get_num_ports_of_class( self.lv2_InputPort, self.lv2_AudioPort ), ) self.assertEqual( 1, self.plugin.get_num_ports_of_class( self.lv2_InputPort, self.lv2_ControlPort ), ) class QueryTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.world.load_all() self.bundle_uri = self.world.new_uri(location) self.world.load_bundle(self.bundle_uri) self.plugins = self.world.get_all_plugins() self.plugin = self.plugins.get(self.plugins.begin()) def testNamespaces(self): self.assertEqual(self.world.ns.lv2, "http://lv2plug.in/ns/lv2core#") self.assertEqual( self.world.ns.lv2.Plugin, "http://lv2plug.in/ns/lv2core#Plugin" ) def testQuery(self): self.assertTrue( self.world.ask( None, self.world.ns.rdf.type, self.world.ns.lv2.Plugin ) ) self.assertLess( 0, len( self.world.find_nodes( None, self.world.ns.rdf.type, self.world.ns.lv2.Plugin ) ), ) self.assertEqual( self.plugin.get_uri(), self.world.get( None, self.world.ns.rdf.type, self.world.ns.lv2.Plugin ), ) class InstanceTests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.bundle_uri = self.world.new_uri(location) self.world.load_bundle(self.bundle_uri) self.plugins = self.world.get_all_plugins() self.plugin = self.plugins[0] self.instance = lilv.Instance(self.plugin, 48000) self.assertEqual(self.plugin.get_uri(), self.instance.get_uri()) self.assertIsNone( self.instance.get_extension_data( self.world.new_uri("http://example.org/ext") ) ) self.assertIsNone( self.instance.get_extension_data("http://example.org/ext") ) def testRun(self): try: import numpy except ImportError: sys.stderr.write("warning: Missing numpy, not testing instance\n") return n_samples = 100 buf = numpy.zeros(n_samples) with self.assertRaises(Exception): self.instance.connect_port(0, "hello") self.instance.connect_port(0, None) self.instance.connect_port(0, None) self.instance.connect_port(2, buf) self.instance.connect_port(3, buf) self.instance.activate() self.instance.run(n_samples) self.instance.deactivate() class UITests(unittest.TestCase): def setUp(self): self.world = lilv.World() self.bundle_uri = self.world.new_uri(location) self.world.load_bundle(self.bundle_uri) self.plugins = self.world.get_all_plugins() self.plugin = self.plugins[0] def testUI(self): uis = self.plugin.get_uis() ui_uri = self.world.new_uri( "http://example.org/lilv-bindings-test-plugin-ui" ) self.assertEqual(1, len(uis)) self.assertEqual(str(uis[0]), str(ui_uri)) with self.assertRaises(KeyError): uis["http://example.org/notaui"].get_uri() self.assertEqual(uis[0], str(ui_uri)) self.assertEqual(uis[0].get_uri(), ui_uri) self.assertEqual(uis[0].get_bundle_uri(), self.bundle_uri) self.assertEqual( uis[0].get_binary_uri(), str(self.bundle_uri) + "TODO" ) self.assertEqual(uis[uis[0].get_uri()], uis[0]) self.assertTrue(uis[0].is_a(self.world.ns.ui.GtkUI)) self.assertTrue(uis[0] in uis) self.assertTrue(uis[0].get_uri() in uis) self.assertEqual([self.world.ns.ui.GtkUI], list(uis[0].get_classes()))
[ "os.path.abspath", "urllib.request.pathname2url", "lilv.Instance", "numpy.zeros", "lilv.World", "sys.stderr.write" ]
[((852, 905), 'os.path.abspath', 'os.path.abspath', (['"""bindings/bindings_test_plugin.lv2/"""'], {}), "('bindings/bindings_test_plugin.lv2/')\n", (867, 905), False, 'import os\n'), ((1327, 1339), 'lilv.World', 'lilv.World', ([], {}), '()\n', (1337, 1339), False, 'import lilv\n'), ((2718, 2730), 'lilv.World', 'lilv.World', ([], {}), '()\n', (2728, 2730), False, 'import lilv\n'), ((3634, 3646), 'lilv.World', 'lilv.World', ([], {}), '()\n', (3644, 3646), False, 'import lilv\n'), ((4232, 4244), 'lilv.World', 'lilv.World', ([], {}), '()\n', (4242, 4244), False, 'import lilv\n'), ((4902, 4914), 'lilv.World', 'lilv.World', ([], {}), '()\n', (4912, 4914), False, 'import lilv\n'), ((5440, 5452), 'lilv.World', 'lilv.World', ([], {}), '()\n', (5450, 5452), False, 'import lilv\n'), ((12631, 12643), 'lilv.World', 'lilv.World', ([], {}), '()\n', (12641, 12643), False, 'import lilv\n'), ((13767, 13779), 'lilv.World', 'lilv.World', ([], {}), '()\n', (13777, 13779), False, 'import lilv\n'), ((13997, 14030), 'lilv.Instance', 'lilv.Instance', (['self.plugin', '(48000)'], {}), '(self.plugin, 48000)\n', (14010, 14030), False, 'import lilv\n'), ((14597, 14619), 'numpy.zeros', 'numpy.zeros', (['n_samples'], {}), '(n_samples)\n', (14608, 14619), False, 'import numpy\n'), ((15071, 15083), 'lilv.World', 'lilv.World', ([], {}), '()\n', (15081, 15083), False, 'import lilv\n'), ((1221, 1239), 'urllib.request.pathname2url', 'pathname2url', (['path'], {}), '(path)\n', (1233, 1239), False, 'from urllib.request import pathname2url\n'), ((14472, 14538), 'sys.stderr.write', 'sys.stderr.write', (['"""warning: Missing numpy, not testing instance\n"""'], {}), "('warning: Missing numpy, not testing instance\\n')\n", (14488, 14538), False, 'import sys\n')]
# fitsviewer.py # Server side of fits viewer client in browser # Copyright 2014 by <NAME> # License: GPLv3 from __future__ import division,print_function from random import * import os import math import astropy.io.fits as pyfits import numpy as np import copy import astropy.wcs as pywcs import hashlib # astropyp modules import astropyp.utils.core as core from ...utils import tools from ..photometry import detect_sources from ..photometry import catalog from .fits_core import * def getTempPath(id,tile): try: #hash_dir=hashlib.md5(id['userId']+id['sessionId']+tile['fileId']+str(tile['frame'])).hexdigest() hash_dir=hashlib.md5(tile['fileId']+str(tile['frame'])).hexdigest() except KeyError: raise core.AstropypError("Missing parameters to generate path for temp directory") tempPath=os.path.join(core.active_users[id['userId']].stored_dirs['session'][id['sessionId']],hash_dir) return os.path.relpath(tempPath,core.ROOT_DIR) def checkTempPath(id,params): path=getTempPath(id,params) fullpath=os.path.join(core.ROOT_DIR,path) try: os.makedirs(fullpath) except OSError: if not os.path.isdir(fullpath): raise core.AstropypError("Could not access temp directory") return [path,fullpath] def getImageProperties(hdu): """ getImageProperties Get important properties of a fits hdu. Many of the properties are loaded from the header but a number of them are also derived. Parameters ---------- hdu: astropy.io.fits.IMAGEHDU -Frame of the fits file that data is extracted from Returns ------- hdu.properties: dictionary - The function will generate the properties of an hdu and save them in the attribute hdu.properties, which is also returned by the function """ try: return hdu.properties except AttributeError: try: hdu.properties={ 'width':hdu.header['NAXIS1'], 'height':hdu.header['NAXIS2'] } except KeyError: raise core.AstropypError("Tried to load image properties for non-image hdu") try: xyRanges=[map(int,coordRange.split(':')) for coordRange in hdu.header['DETSEC'][1:-1].split(',')] except KeyError: xyRanges=[[1,hdu.properties['width']],[1,hdu.properties['height']]] hdu.properties['minCoords']=[xyRanges[0][0],xyRanges[1][0]] hdu.properties['maxCoords']=[xyRanges[0][1],xyRanges[1][1]] hdu.properties['dataMin']=float(np.amin(hdu.data)) hdu.properties['dataMax']=float(np.amax(hdu.data)) try: hdu.wcs=pywcs.WCS(hdu.header) # Call a function that will fail if wcs was not loaded properly # TODO: The error given is InconsistentAxisTypesError, but # the documentation doesn't list the module that error is contained in # FOr completeness the exact error should be trapped temp=hdu.wcs.get_axis_types() hdu.properties['wcsAvailable']=True except: print("WCS not available") hdu.properties['wcsAvailable']=False return hdu.properties def getWindow(viewer): """ getWindow To save space and ensure that zooming in and out of an image is always centered on the same location, only the center coordinates (xCenter,yCenter) are stored for a fits viewer window. This function calculates the upper left and lower right coordinates of a fitsviewer window based on the canvas size and scale of the image. Parameters ---------- viewer: dictionary - Dictionary of fitsviewer properties. Required keys: xCenter, yCenter: int - x and y coordinates at the center of the image canvasWidth,canvasHeight: int - Width and height of the client canvas displaying the fits image scale: float - Scale of the image (scale=1 has 1 pixel for each element of the image array) Returns ------- viewer: dictionary - The same viewer sent to the function is returned with its upper left boundary (x0,y0) and lower right boundary (xf,yf) calculated """ viewer['x0']=int(viewer['xCenter']-viewer['canvasWidth']/viewer['scale']/2) viewer['y0']=int(viewer['yCenter']-viewer['canvasHeight']/viewer['scale']/2) viewer['xf']=int(viewer['x0']+viewer['canvasWidth']/viewer['scale']) viewer['yf']=int(viewer['y0']+viewer['canvasHeight']/viewer['scale']) return viewer def getBestFit(hdu,viewer): """ getBestFit Calculate the scale and viewer boundaries needed to fit an entire FITS image in the clients canvas viewer. Parameters ---------- hdu: pyfits image hdu - The image hdu (FITS frame that contains the image data) viewer: dictionary - Dictionary of fitsviewer properties. Required keys: xCenter, yCenter: int - x and y coordinates at the center of the image canvasWidth,canvasHeight: int - Width and height of the client canvas displaying the fits image scale: float - Scale of the image (scale=1 has 1 pixel for each element of the image array) Returns ------- viewer: dictionary - The same viewer sent to the function is returned with its upper left boundary (x0,y0) and lower right boundary (xf,yf) calculated """ xScale=viewer['canvasWidth']/hdu.properties['width'] yScale=viewer['canvasHeight']/hdu.properties['height'] scale=yScale; if xScale<yScale: scale=xScale viewer['xCenter']=hdu.properties['width']/2 viewer['yCenter']=hdu.properties['height']/2 viewer['scale']=scale viewer=getWindow(viewer) return viewer def getMosaicWindow(viewer,minCoords): """ getMosaicWindow Mosaic images should contain fields in the header that give the coordinates of the lower left-hand corner of the image. This function uses those coordinates to calculate the position of the window so that the viewer is properly centered on the image. Parameters ---------- viewer: dictionary - Dictionary of fitsviewer properties. Required keys: xCenter, yCenter: int - x and y coordinates at the center of the image canvasWidth,canvasHeight: int - Width and height of the client canvas displaying the fits image scale: float - Scale of the image (scale=1 has 1 pixel for each element of the image array) minCoords: list - x,y coordinates of the physical coordinates of the image. Returns ------- viewer: dictionary - The same viewer sent to the function is returned with its upper left boundary (x0,y0) and lower right boundary (xf,yf) calculated """ viewer['xCenter']=viewer['xCenter']-minCoords[0] viewer['xCenter']=viewer['xCenter']-minCoords[0] return viewer def loadFitsFile(id,params): """ loadFitsFile Load a fits file on the server. The function first checks to see if the file has already been loaded into memory, if it hasn't it uses astropy.io.fits (pyfits) to load the file into memory. It then sends a response to the client that contains the properties of the fits file along with the number of image frames contained in the file. Parameters ---------- id: dictionary - dictionary that contains the following keys: userId: string - Unique identifier of the current user sessionId: string -Unique identifier of the current session requestId: string -Unique identifier for the current request sent by the client params: dictionary - Must contain either 'fileId' key or 'path' and 'filename' keys used to open the fits file Returns ------- response: dictionary - The response is always a dictionary that contains an id field (in this case 'fits file') that identifies the type of response the client is receiving. - Other keys: properties: dictionary - Properties of the fits file. This includes all of the parameters sent to the function in params as well as any quantities calculated in the function """ if 'fileId' not in params: params['fileId']=getFileId(params) try: hdulist=openFits[params['fileId']] except KeyError: hdulist=pyfits.open(os.path.join(params['path'],params['filename'])) properties=params properties['imageHDUlist']=[] for n,hdu in enumerate(hdulist): if (isinstance(hdu, pyfits.hdu.image.ImageHDU) or isinstance(hdu, pyfits.hdu.compressed.CompImageHDU) or len(hdulist)==1): properties['imageHDUlist'].append(n) properties['frames']=len(properties['imageHDUlist']) hdulist.properties=properties openFits[params['fileId']]=hdulist response={ 'id':"fits file", 'properties':hdulist.properties } print('new fits file:',response) return response def loadMosaic(id,params): """ loadMosaic Loads mosaic information, open image hdu's, calculates the properties for each image hdu, and sends each image to the client as a png file. Parameters ---------- id: dictionary - dictionary that contains the following keys: userId: string - Unique identifier of the current user sessionId: string -Unique identifier of the current session requestId: string -Unique identifier for the current request sent by the client params: dictionary - Must contain either 'fileId' key or 'path' and 'filename' keys used to open the fits file Returns ------- None """ hdulist=getHDUlist(id,params) # We need to know the min and max values of the entire mosaic image so that each frame # uses the same color map if 'dataMin' not in hdulist.properties: hdulist.properties['dataMin']=float("inf") hdulist.properties['dataMax']=float("-inf") hdulist.properties['minCoords']=[float("inf"),float("inf")] hdulist.properties['maxCoords']=[float("-inf"),float("-inf")] for n in hdulist.properties['imageHDUlist']: core.progress_log("Loading properties for frame "+str(n), id); hdu=hdulist[n] getImageProperties(hdu) print("max min for frame",n,hdu.properties['minCoords'],hdu.properties['maxCoords']) if hdu.properties['dataMin']<hdulist.properties['dataMin']: hdulist.properties['dataMin']=hdu.properties['dataMin'] if hdu.properties['dataMax']>hdulist.properties['dataMax']: hdulist.properties['dataMax']=hdu.properties['dataMax'] if hdu.properties['minCoords']<hdulist.properties['minCoords']: hdulist.properties['minCoords']=hdu.properties['minCoords'] if hdu.properties['maxCoords']>hdulist.properties['maxCoords']: hdulist.properties['maxCoords']=hdu.properties['maxCoords'] hdulist.properties['width']=hdulist.properties['maxCoords'][0]-hdulist.properties['minCoords'][0] hdulist.properties['height']=hdulist.properties['maxCoords'][1]-hdulist.properties['minCoords'][1] core.respond(id, { 'id':"update fits file", 'properties':hdulist.properties }) if 'scale' not in params: params=getBestFit(hdulist,params) elif params['scale']<0: params=getBestFit(hdulist,params) else: params=getWindow(params) core.progress_log("Loading images...", id); for n in hdulist.properties['imageHDUlist']: hdu=hdulist[n] minCoords=hdu.properties['minCoords'] maxCoords=hdu.properties['maxCoords'] # only load images that are within the boundaries of the fits viewer window if (minCoords[0]<params['xf'] and maxCoords[0]>params['x0'] and minCoords[1]<params['yf'] and maxCoords[1]>params['y0'] ): params['frame']=n params['mosaic']=True print("Params:",params) core.respond(id, loadImageHDU(id,params)) else: print("Skipped frame",n) return {} def loadImageHDU(id,params): core.check4key(params,['fileId','frame','colormap','canvasWidth','canvasHeight']) hdulist=getHDUlist(id,params) try: hdu=hdulist[params['frame']] except KeyError: raise core.AstropypError("Frame not found in fits image") path,fullpath=checkTempPath(id,params) getImageProperties(hdu) if 'scale' not in params.keys() or params['scale']<0: params=getBestFit(hdu,params) elif params['scale']>1: params['scale']=math.floor(params['scale']) params.update(hdu.properties) params=getWindow(params) if 'tile_width' not in params.keys(): params['tile_width']=DEFAULT_TILE_WIDTH if 'tile_height' not in params.keys(): params['tile_height']=DEFAULT_TILE_HEIGHT if 'mosaic' not in params.keys(): params['mosaic']=False params['columns']=math.ceil(hdu.properties['width']/params['tile_width']*params['scale']) params['rows']=math.ceil(hdu.properties['height']/params['tile_height']*params['scale']) core.respond(id, { 'id':"image properties", 'properties':params }) if 'clear_dir' in params: for root,dirs,files in os.walk(fullpath): for file in files: os.remove(os.path.join(root,file)) for dir in dirs: os.remove(root) params.pop('clear_dir') x0=params['x0'] y0=params['y0'] xf=params['xf'] yf=params['yf'] if params['mosaic']: x0=x0-hdu.properties['minCoords'][0] y0=y0-hdu.properties['minCoords'][1] xf=xf-hdu.properties['minCoords'][0] yf=yf-hdu.properties['minCoords'][1] minCol=int(max(0,math.floor(x0*params['scale']/params['tile_width']))) maxCol=int(min(params['columns'],math.ceil(xf*params['scale']/params['tile_width']))) minRow=int(max(0,math.floor(y0*params['scale']/params['tile_height']))) maxRow=int(min(params['rows'],math.ceil(yf*params['scale']/params['tile_height']))) for row in range(minRow,maxRow): for col in range(minCol,maxCol): params['x']=int(col*params['tile_width']/params['scale']) params['y']=int(row*params['tile_height']/params['scale']) if params['x']<hdu.properties['width'] and params['y']<hdu.properties['height']: params['filetype']='png' core.respond(id, loadTile(id,params)) return {} def loadTile(id,params): import astro_pypelines core.check4key(params,['frame','x','y','tile_width','tile_height','scale','colormap','filetype']) hdulist=getHDUlist(id,params) try: hdu=hdulist[params['frame']] except KeyError: raise core.AstropypError("Frame not found in fits image") if not hasattr(hdu,'properties'): getImageProperties(hdu) tileData=[] tile=copy.deepcopy(params) tile.update({ 'id':"tilepng", 'tileId':getTileId(params) }) path,fullpath=checkTempPath(id,params) pngName=os.path.join(path,tile['tileId']+".png") filename=os.path.join(core.ROOT_DIR,pngName) tile['pngName']=pngName #if ( # params['x']<0 or params['y']<0 or # params['x']>hdu.properties['width'] or params['y']>hdu.properties['height'] #): # raise core.AstropypError("Tile at ("+str(params['x'])+","+str(params['y'])+") is not located in the image") xmin=max(params['x'],0) ymin=max(params['y'], 0) if params['scale']>1: params['scale']=math.floor(params['scale']) tile['tile_width']=min(int((hdu.properties['width']-xmin-1)*params['scale']),params['tile_width']) tile['tile_height']=min(int((hdu.properties['height']-ymin-1)*params['scale']),params['tile_height']) if tile['tile_width']<=0 or tile['tile_height']<=0: return {} xmax=int(xmin+tile['tile_width']/params['scale']) ymax=int(ymin+tile['tile_height']/params['scale']) tile['x']=xmin tile['y']=ymin tile['minCoords']=hdu.properties['minCoords'] tile['maxCoords']=hdu.properties['maxCoords'] if not os.path.isfile(filename): if params['scale']==1: tileDataArray=hdu.data[ymin:ymax,xmin:xmax] tileData=tileDataArray.tolist() elif params['scale']>1: tileDataArray=hdu.data[ymin:ymax,xmin:xmax] tileDataArray=np.kron(tileDataArray,np.ones((params['scale'],params['scale']))) tileData=tileDataArray.tolist() elif params['scale']<1 and params['scale']>0: xIdx=np.linspace(xmin,xmax,tile['tile_width']) yIdx=np.linspace(ymin,ymax,tile['tile_height']) xIdx=np.array(xIdx,np.int) yIdx=np.reshape(np.array(yIdx,np.int),(yIdx.size,1)) tileDataArray=hdu.data[yIdx,xIdx] tileData=tileDataArray.tolist() else: raise core.AstropypError("Invalid scale sent to server") if len(tileData)>0: if params['filetype']=='png': #tile['colormap']['colorFunc']="GRAY" import astro_pypelines.pypelines.fitsviewer.png if not astro_pypelines.pypelines.fitsviewer.png.buildImageTileC(filename,tile['colormap']['dataMin'],tile['colormap']['dataMax'], tile['colormap']['scale'],tile['colormap']['colorFunc'],tileData): raise core.AstropypError("Unable to load tile") elif params['filetype']=='pixels': tile['y']=int(tile['y']+tile['tile_height']/params['scale']) tile['data']=[map(int,row) for row in tileData] tile['id']='image data' tile['dataType']=params['dataType'] return tile else: raise core.AstropypError("Unrecognized filetype") else: raise core.AstropypError("Empty dataset sent to server") tile['y']=int(tile['y']+tile['tile_height']/params['scale']) if params['mosaic']: tile['x']=int(tile['x']+tile['minCoords'][0]) tile['y']=int(tile['y']+tile['minCoords'][1]) return tile def loadHeader(id,params): core.check4key(params,['frame','fileId']) hdulist=getHDUlist(id,params) try: header=hdulist[params['frame']].header except KeyError: raise core.AstropypError("Frame not found in fits file") headerList=[] for key in header.keys(): headerList.append([key,str(header[key]),header.comments[key]]) response={ 'id':"fitsHeader", 'fileId':params['fileId'], 'frame':params['frame'], 'header':headerList } return response def loadDatapoint(id,params): core.check4key(params,['frame','fileId','x','y']) hdulist=getHDUlist(id,params) hdu=hdulist[params['frame']] ra="pywcs must be installed" dec="on server to activate wcs" if hdu.properties['wcsAvailable']: wcsArray=hdu.wcs.all_pix2world(np.array([[params['x'],params['y']]],np.float_),1) ra=str(wcsArray[0][0]) dec=str(wcsArray[0][1]) try: response={ 'id':"dataPoint", 'dataPoint':str(hdu.data[params['y']][params['x']]), 'ra':ra, 'dec':dec } except KeyError as error: response={} return response def load2dGaussFit(id,params): core.check4key(params,['fileId','frame','x','y','tile_width','tile_height']) hdulist=getHDUlist(id,params) try: hdu=hdulist[params['frame']] except KeyError: raise core.AstropypError("Frame not found in fits image") xmin=params['x'] ymin=params['y'] xmax=min(int(hdu.properties['width']),xmin+params['tile_width']) ymax=min(int(hdu.properties['height']),ymin+params['tile_height']) data=hdu.data[ymin:ymax,xmin:xmax] # Center the tile on the pixel with the highest value yIndex,xIndex=np.unravel_index(data.argmax(),data.shape) xmin=xmin+xIndex-(params['tile_width']>>1) ymin=ymin+yIndex-(params['tile_height']>>1) xmax=min(int(hdu.properties['width']),xmin+params['tile_width']) ymax=min(int(hdu.properties['height']),ymin+params['tile_height']) data=hdu.data[ymin:ymax,xmin:xmax] response=params try: response.update(tools.getGaussFit2d(id,{'data':data})['moments']) except RuntimeError: raise core.AstropypError("Fit does not converge") response['x']=int(xmin) response['y']=int(ymin) response['x_mean']=float(response['x_mean']+xmin) response['y_mean']=float(response['y_mean']+ymin) response['ra']="pywcs must be installed" response['dec']="on server to activate wcs" if hdu.properties['wcsAvailable']: wcsArray=hdu.wcs.all_pix2world(np.array([[response['x_mean'],response['y_mean']]],np.float_),1) response['ra']=str(wcsArray[0][0]) response['dec']=str(wcsArray[0][1]) return response def wcsAlign(id,params): core.check4key(params,['reference','openFiles']) ref_hdulist=getHDUlist(id,params['reference']) try: hdu=ref_hdulist[params['reference']['frame']] except KeyError: raise core.AstropypError("Frame not found in reference fits image") if hdu.properties['wcsAvailable']: wcsArray=hdu.wcs.all_pix2world(np.array([[params['reference']['xCenter'],params['reference']['yCenter']]],np.float_),1) ra=wcsArray[0][0] dec=wcsArray[0][1] else: raise core.AstropypError('Reference image has no wcs information available') files=[] for i,file in enumerate(params['openFiles']): hdulist=getHDUlist(id,file) try: hdu=hdulist[file['frame']] except KeyError: raise core.AstropypError("Frame not found in fits image") if hdu.properties['wcsAvailable']: wcsArray=hdu.wcs.wcs_world2pix(np.array([[ra,dec]],np.float_),1) xCenter=wcsArray[0][0] yCenter=wcsArray[0][1] files.append({ 'fileId':file['fileId'], 'frame':file['frame'], 'xCenter':xCenter, 'yCenter':yCenter, 'scale':params['reference']['scale'] # assumes all images have the same scale TODO: calculate scale }) response={ 'id':'wcsAlignment', 'files':files } return response def buildDetectParams(all_params,hdu=None): mandatory_params=[ 'apertureType', 'maxima_sigma', 'fit_method' ] detect_params={} for param in mandatory_params: detect_params[param]=all_params[param] if all_params['apertureType']=='width': detect_params['maxima_size']=all_params['maxima_size'] elif all_params['apertureType']=='radius': detect_params['maxima_size']=all_params['maxima_radius'] elif all_params['apertureType']=='footprint': detect_params['maxima_footprint']=all_params['maxima_footprint'] else: raise core.AstropypError('Invalid apertureType:'+detect_params['apertureType']) if not all_params['auto_aperture']: detect_params['aperture_radii']=all_params['aperture_radii'] print('radii:',all_params['aperture_radii']) for n,radius in enumerate(all_params['aperture_radii']): radius=all_params['aperture_radii'][n] print('radius:',radius) if radius[1]=='px': all_params['aperture_radii'][n]=radius[0] else: print('app radius:',radius[1]) raise core.AstropypError("Only aperture_radii='px' is supported at this time") if not all_params['auto_thresh']: detect_params['threshold']=all_params['threshold'] if all_params['saturation_method']=='fitsHeader': detect_params['saturate']=hdu.header[all_params['saturate_key']] elif all_params['saturation_method']=='userSpecify': detect_params['saturate']=all_params['saturation'] elif all_params['saturation_method']!='none': raise core.AstropypError('Invalid saturation method') if not all_params['auto_binStruct']: print('binStruct:',all_params['binStruct']) detect_params['binStruct']=all_params['binStruct'] if not all_params['auto_margin']: detect_params['margin']=all_params['margin'] return detect_params def findStars(id,params): core.check4key(params,['fitsInfo','detectParams','catInfo']) core.check4key(params['catInfo'],['path','filename']) hdulist=getHDUlist(id,params['fitsInfo']) try: hdu=hdulist[params['fitsInfo']['frame']] except KeyError: raise core.AstropypError("Frame not found in fits image") data=hdu.data detect_params=buildDetectParams(params['detectParams'],hdu) detect_params['id']=id sources,badPoints=detect_sources.findStars(data,**detect_params) print('first source:', sources[0]) print('dtypes:', sources.dtype.names) srcCat=catalog.Catalog( catPath=params['catInfo']['path'], catName=params['catInfo']['filename'], fitsPath=hdulist.properties['path'], fitsName=hdulist.properties['filename'], fitsFrame=params['fitsInfo']['frame'], fields=list(sources.dtype.names), objects=sources, wcs=hdu.wcs ) if params['detectParams']['use_filter']: filter_min=params['detectParams']['filter_min'] filter_max=params['detectParams']['filter_max'] if params['detectParams']['filter_var']=='beta' or params['detectParams']['filter_var']=='fwhm': invalid_mask=np.where((srcCat[params['detectParams']['filter_var']<filter_min]) | (srcCat[params['detectParams']['filter_var']>filter_max])) srcCat['quality'][invalid_mask]=0 catalogId=catalog.getCatalogId(params['catInfo']) user=core.active_users[id['userId']] if not hasattr(user,'openCatalogs'): user.openCatalogs={} user.openCatalogs[catalogId]=srcCat #saveResponse=catalog.saveCatalog(id,{ # 'path':srcCat.catPath, # 'filename':srcCat.catName, # 'fileType':'astro' #}) saveResponse={} sourceFields=['id','objType','x','y','quality'] if 'sourceFields' in params: souceFields=params['souceFields'] objects=np.array(srcCat.objects,copy=True) objects=objects[sourceFields] response={ 'catResponse':{ 'id':'catalog', 'path':srcCat.catPath, 'catalogId':catalogId, 'filename':srcCat.catName, 'name':srcCat.catName, 'fields':sourceFields, 'objects':objects.tolist(), 'coordType':'image', 'fileType':'astro' }, 'saveResponse':saveResponse } core.progress_log('Sending catalog... this may take a minute or two', id) return response
[ "os.remove", "numpy.amin", "os.walk", "numpy.ones", "os.path.isfile", "astropyp.utils.core.progress_log", "os.path.join", "numpy.linspace", "copy.deepcopy", "math.ceil", "astropyp.utils.core.AstropypError", "astropyp.utils.core.check4key", "os.makedirs", "os.path.isdir", "astropyp.utils.core.respond", "math.floor", "numpy.amax", "astropy.wcs.WCS", "astro_pypelines.pypelines.fitsviewer.png.buildImageTileC", "numpy.where", "numpy.array", "os.path.relpath" ]
[((828, 928), 'os.path.join', 'os.path.join', (["core.active_users[id['userId']].stored_dirs['session'][id['sessionId']]", 'hash_dir'], {}), "(core.active_users[id['userId']].stored_dirs['session'][id[\n 'sessionId']], hash_dir)\n", (840, 928), False, 'import os\n'), ((934, 974), 'os.path.relpath', 'os.path.relpath', (['tempPath', 'core.ROOT_DIR'], {}), '(tempPath, core.ROOT_DIR)\n', (949, 974), False, 'import os\n'), ((1050, 1083), 'os.path.join', 'os.path.join', (['core.ROOT_DIR', 'path'], {}), '(core.ROOT_DIR, path)\n', (1062, 1083), False, 'import os\n'), ((11964, 12006), 'astropyp.utils.core.progress_log', 'core.progress_log', (['"""Loading images..."""', 'id'], {}), "('Loading images...', id)\n", (11981, 12006), True, 'import astropyp.utils.core as core\n'), ((12660, 12750), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['fileId', 'frame', 'colormap', 'canvasWidth', 'canvasHeight']"], {}), "(params, ['fileId', 'frame', 'colormap', 'canvasWidth',\n 'canvasHeight'])\n", (12674, 12750), True, 'import astropyp.utils.core as core\n'), ((13493, 13568), 'math.ceil', 'math.ceil', (["(hdu.properties['width'] / params['tile_width'] * params['scale'])"], {}), "(hdu.properties['width'] / params['tile_width'] * params['scale'])\n", (13502, 13568), False, 'import math\n'), ((13584, 13661), 'math.ceil', 'math.ceil', (["(hdu.properties['height'] / params['tile_height'] * params['scale'])"], {}), "(hdu.properties['height'] / params['tile_height'] * params['scale'])\n", (13593, 13661), False, 'import math\n'), ((13662, 13728), 'astropyp.utils.core.respond', 'core.respond', (['id', "{'id': 'image properties', 'properties': params}"], {}), "(id, {'id': 'image properties', 'properties': params})\n", (13674, 13728), True, 'import astropyp.utils.core as core\n'), ((15097, 15206), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['frame', 'x', 'y', 'tile_width', 'tile_height', 'scale', 'colormap',\n 'filetype']"], {}), "(params, ['frame', 'x', 'y', 'tile_width', 'tile_height',\n 'scale', 'colormap', 'filetype'])\n", (15111, 15206), True, 'import astropyp.utils.core as core\n'), ((15457, 15478), 'copy.deepcopy', 'copy.deepcopy', (['params'], {}), '(params)\n', (15470, 15478), False, 'import copy\n'), ((15618, 15661), 'os.path.join', 'os.path.join', (['path', "(tile['tileId'] + '.png')"], {}), "(path, tile['tileId'] + '.png')\n", (15630, 15661), False, 'import os\n'), ((15672, 15708), 'os.path.join', 'os.path.join', (['core.ROOT_DIR', 'pngName'], {}), '(core.ROOT_DIR, pngName)\n', (15684, 15708), False, 'import os\n'), ((18729, 18772), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['frame', 'fileId']"], {}), "(params, ['frame', 'fileId'])\n", (18743, 18772), True, 'import astropyp.utils.core as core\n'), ((19273, 19326), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['frame', 'fileId', 'x', 'y']"], {}), "(params, ['frame', 'fileId', 'x', 'y'])\n", (19287, 19326), True, 'import astropyp.utils.core as core\n'), ((19933, 20019), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['fileId', 'frame', 'x', 'y', 'tile_width', 'tile_height']"], {}), "(params, ['fileId', 'frame', 'x', 'y', 'tile_width',\n 'tile_height'])\n", (19947, 20019), True, 'import astropyp.utils.core as core\n'), ((21515, 21565), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['reference', 'openFiles']"], {}), "(params, ['reference', 'openFiles'])\n", (21529, 21565), True, 'import astropyp.utils.core as core\n'), ((24959, 25022), 'astropyp.utils.core.check4key', 'core.check4key', (['params', "['fitsInfo', 'detectParams', 'catInfo']"], {}), "(params, ['fitsInfo', 'detectParams', 'catInfo'])\n", (24973, 25022), True, 'import astropyp.utils.core as core\n'), ((25024, 25079), 'astropyp.utils.core.check4key', 'core.check4key', (["params['catInfo']", "['path', 'filename']"], {}), "(params['catInfo'], ['path', 'filename'])\n", (25038, 25079), True, 'import astropyp.utils.core as core\n'), ((26882, 26917), 'numpy.array', 'np.array', (['srcCat.objects'], {'copy': '(True)'}), '(srcCat.objects, copy=True)\n', (26890, 26917), True, 'import numpy as np\n'), ((27358, 27431), 'astropyp.utils.core.progress_log', 'core.progress_log', (['"""Sending catalog... this may take a minute or two"""', 'id'], {}), "('Sending catalog... this may take a minute or two', id)\n", (27375, 27431), True, 'import astropyp.utils.core as core\n'), ((1100, 1121), 'os.makedirs', 'os.makedirs', (['fullpath'], {}), '(fullpath)\n', (1111, 1121), False, 'import os\n'), ((11664, 11742), 'astropyp.utils.core.respond', 'core.respond', (['id', "{'id': 'update fits file', 'properties': hdulist.properties}"], {}), "(id, {'id': 'update fits file', 'properties': hdulist.properties})\n", (11676, 11742), True, 'import astropyp.utils.core as core\n'), ((13811, 13828), 'os.walk', 'os.walk', (['fullpath'], {}), '(fullpath)\n', (13818, 13828), False, 'import os\n'), ((16107, 16134), 'math.floor', 'math.floor', (["params['scale']"], {}), "(params['scale'])\n", (16117, 16134), False, 'import math\n'), ((16676, 16700), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (16690, 16700), False, 'import os\n'), ((22019, 22089), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Reference image has no wcs information available"""'], {}), "('Reference image has no wcs information available')\n", (22037, 22089), True, 'import astropyp.utils.core as core\n'), ((738, 814), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Missing parameters to generate path for temp directory"""'], {}), "('Missing parameters to generate path for temp directory')\n", (756, 814), True, 'import astropyp.utils.core as core\n'), ((12857, 12908), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits image"""'], {}), "('Frame not found in fits image')\n", (12875, 12908), True, 'import astropyp.utils.core as core\n'), ((13128, 13155), 'math.floor', 'math.floor', (["params['scale']"], {}), "(params['scale'])\n", (13138, 13155), False, 'import math\n'), ((14311, 14366), 'math.floor', 'math.floor', (["(x0 * params['scale'] / params['tile_width'])"], {}), "(x0 * params['scale'] / params['tile_width'])\n", (14321, 14366), False, 'import math\n'), ((14402, 14456), 'math.ceil', 'math.ceil', (["(xf * params['scale'] / params['tile_width'])"], {}), "(xf * params['scale'] / params['tile_width'])\n", (14411, 14456), False, 'import math\n'), ((14476, 14532), 'math.floor', 'math.floor', (["(y0 * params['scale'] / params['tile_height'])"], {}), "(y0 * params['scale'] / params['tile_height'])\n", (14486, 14532), False, 'import math\n'), ((14565, 14620), 'math.ceil', 'math.ceil', (["(yf * params['scale'] / params['tile_height'])"], {}), "(yf * params['scale'] / params['tile_height'])\n", (14574, 14620), False, 'import math\n'), ((15310, 15361), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits image"""'], {}), "('Frame not found in fits image')\n", (15328, 15361), True, 'import astropyp.utils.core as core\n'), ((18432, 18482), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Empty dataset sent to server"""'], {}), "('Empty dataset sent to server')\n", (18450, 18482), True, 'import astropyp.utils.core as core\n'), ((18896, 18946), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits file"""'], {}), "('Frame not found in fits file')\n", (18914, 18946), True, 'import astropyp.utils.core as core\n'), ((19537, 19586), 'numpy.array', 'np.array', (["[[params['x'], params['y']]]", 'np.float_'], {}), "([[params['x'], params['y']]], np.float_)\n", (19545, 19586), True, 'import numpy as np\n'), ((20125, 20176), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits image"""'], {}), "('Frame not found in fits image')\n", (20143, 20176), True, 'import astropyp.utils.core as core\n'), ((20934, 20977), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Fit does not converge"""'], {}), "('Fit does not converge')\n", (20952, 20977), True, 'import astropyp.utils.core as core\n'), ((21313, 21376), 'numpy.array', 'np.array', (["[[response['x_mean'], response['y_mean']]]", 'np.float_'], {}), "([[response['x_mean'], response['y_mean']]], np.float_)\n", (21321, 21376), True, 'import numpy as np\n'), ((21713, 21774), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in reference fits image"""'], {}), "('Frame not found in reference fits image')\n", (21731, 21774), True, 'import astropyp.utils.core as core\n'), ((21853, 21944), 'numpy.array', 'np.array', (["[[params['reference']['xCenter'], params['reference']['yCenter']]]", 'np.float_'], {}), "([[params['reference']['xCenter'], params['reference']['yCenter']]],\n np.float_)\n", (21861, 21944), True, 'import numpy as np\n'), ((25217, 25268), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits image"""'], {}), "('Frame not found in fits image')\n", (25235, 25268), True, 'import astropyp.utils.core as core\n'), ((26182, 26314), 'numpy.where', 'np.where', (["(srcCat[params['detectParams']['filter_var'] < filter_min] | srcCat[params[\n 'detectParams']['filter_var'] > filter_max])"], {}), "(srcCat[params['detectParams']['filter_var'] < filter_min] | srcCat\n [params['detectParams']['filter_var'] > filter_max])\n", (26190, 26314), True, 'import numpy as np\n'), ((1157, 1180), 'os.path.isdir', 'os.path.isdir', (['fullpath'], {}), '(fullpath)\n', (1170, 1180), False, 'import os\n'), ((1200, 1253), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Could not access temp directory"""'], {}), "('Could not access temp directory')\n", (1218, 1253), True, 'import astropyp.utils.core as core\n'), ((2569, 2586), 'numpy.amin', 'np.amin', (['hdu.data'], {}), '(hdu.data)\n', (2576, 2586), True, 'import numpy as np\n'), ((2628, 2645), 'numpy.amax', 'np.amax', (['hdu.data'], {}), '(hdu.data)\n', (2635, 2645), True, 'import numpy as np\n'), ((2680, 2701), 'astropy.wcs.WCS', 'pywcs.WCS', (['hdu.header'], {}), '(hdu.header)\n', (2689, 2701), True, 'import astropy.wcs as pywcs\n'), ((8683, 8731), 'os.path.join', 'os.path.join', (["params['path']", "params['filename']"], {}), "(params['path'], params['filename'])\n", (8695, 8731), False, 'import os\n'), ((13957, 13972), 'os.remove', 'os.remove', (['root'], {}), '(root)\n', (13966, 13972), False, 'import os\n'), ((22284, 22335), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Frame not found in fits image"""'], {}), "('Frame not found in fits image')\n", (22302, 22335), True, 'import astropyp.utils.core as core\n'), ((22422, 22454), 'numpy.array', 'np.array', (['[[ra, dec]]', 'np.float_'], {}), '([[ra, dec]], np.float_)\n', (22430, 22454), True, 'import numpy as np\n'), ((23548, 23623), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (["('Invalid apertureType:' + detect_params['apertureType'])"], {}), "('Invalid apertureType:' + detect_params['apertureType'])\n", (23566, 23623), True, 'import astropyp.utils.core as core\n'), ((24118, 24190), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Only aperture_radii=\'px\' is supported at this time"""'], {}), '("Only aperture_radii=\'px\' is supported at this time")\n', (24136, 24190), True, 'import astropyp.utils.core as core\n'), ((24597, 24644), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Invalid saturation method"""'], {}), "('Invalid saturation method')\n", (24615, 24644), True, 'import astropyp.utils.core as core\n'), ((2094, 2164), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Tried to load image properties for non-image hdu"""'], {}), "('Tried to load image properties for non-image hdu')\n", (2112, 2164), True, 'import astropyp.utils.core as core\n'), ((13887, 13911), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (13899, 13911), False, 'import os\n'), ((16969, 17012), 'numpy.ones', 'np.ones', (["(params['scale'], params['scale'])"], {}), "((params['scale'], params['scale']))\n", (16976, 17012), True, 'import numpy as np\n'), ((17128, 17171), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', "tile['tile_width']"], {}), "(xmin, xmax, tile['tile_width'])\n", (17139, 17171), True, 'import numpy as np\n'), ((17187, 17231), 'numpy.linspace', 'np.linspace', (['ymin', 'ymax', "tile['tile_height']"], {}), "(ymin, ymax, tile['tile_height'])\n", (17198, 17231), True, 'import numpy as np\n'), ((17247, 17269), 'numpy.array', 'np.array', (['xIdx', 'np.int'], {}), '(xIdx, np.int)\n', (17255, 17269), True, 'import numpy as np\n'), ((17456, 17506), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Invalid scale sent to server"""'], {}), "('Invalid scale sent to server')\n", (17474, 17506), True, 'import astropyp.utils.core as core\n'), ((17718, 17920), 'astro_pypelines.pypelines.fitsviewer.png.buildImageTileC', 'astro_pypelines.pypelines.fitsviewer.png.buildImageTileC', (['filename', "tile['colormap']['dataMin']", "tile['colormap']['dataMax']", "tile['colormap']['scale']", "tile['colormap']['colorFunc']", 'tileData'], {}), "(filename, tile[\n 'colormap']['dataMin'], tile['colormap']['dataMax'], tile['colormap'][\n 'scale'], tile['colormap']['colorFunc'], tileData)\n", (17774, 17920), False, 'import astro_pypelines\n'), ((17966, 18007), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Unable to load tile"""'], {}), "('Unable to load tile')\n", (17984, 18007), True, 'import astropyp.utils.core as core\n'), ((18356, 18399), 'astropyp.utils.core.AstropypError', 'core.AstropypError', (['"""Unrecognized filetype"""'], {}), "('Unrecognized filetype')\n", (18374, 18399), True, 'import astropyp.utils.core as core\n'), ((17297, 17319), 'numpy.array', 'np.array', (['yIdx', 'np.int'], {}), '(yIdx, np.int)\n', (17305, 17319), True, 'import numpy as np\n')]
import numpy as np from scipy.constants import gravitational_constant as G from scipy.integrate import odeint import matplotlib.pyplot as plt M = 5.975e24 # [kg] R = 6.378e6 # [m] v0 = np.sqrt(2*G*M/R) # [m/s] T = 10000.0 # [s] steps = 1000 t = np.linspace(0.0, T, steps) def rhs(y, t): x, v = y[:2], y[2:] a = -G*M/np.linalg.norm(x)**3*x res = np.zeros(4); res[:2] = v; res[2:] = a return res psi = np.linspace(0, 2*np.pi, 1000) plt.plot(R*np.cos(psi), R*np.sin(psi), color="blue", label="earth") throws = 10 label_set = False for theta in np.linspace(0, np.pi/2, throws): y0 = np.array([0.0, R, v0*np.cos(theta), v0*np.sin(theta)]) ys = odeint(rhs, y0, t) x1, x2 = ys[:, 0], ys[:, 1] if label_set: plt.plot(x1, x2, color="red") else: plt.plot(x1, x2, color="red", label="trajectories") y0 = np.array([0.0, R, v0*np.cos(theta), v0*np.sin(theta)]) ys = odeint(rhs, y0, -t) x1, x2 = ys[:, 0], ys[:, 1] if label_set: plt.plot(x1, x2, color="green") else: plt.plot(x1, x2, color="green", label="trajectories back in time") label_set = True plt.xlabel("x") plt.ylabel("y") plt.title("trajectories of bodies with escape velocity") plt.legend() plt.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "scipy.integrate.odeint", "matplotlib.pyplot.legend", "numpy.zeros", "numpy.sin", "numpy.linalg.norm", "numpy.linspace", "numpy.cos", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "numpy.sqrt" ]
[((186, 208), 'numpy.sqrt', 'np.sqrt', (['(2 * G * M / R)'], {}), '(2 * G * M / R)\n', (193, 208), True, 'import numpy as np\n'), ((247, 273), 'numpy.linspace', 'np.linspace', (['(0.0)', 'T', 'steps'], {}), '(0.0, T, steps)\n', (258, 273), True, 'import numpy as np\n'), ((420, 451), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(1000)'], {}), '(0, 2 * np.pi, 1000)\n', (431, 451), True, 'import numpy as np\n'), ((564, 597), 'numpy.linspace', 'np.linspace', (['(0)', '(np.pi / 2)', 'throws'], {}), '(0, np.pi / 2, throws)\n', (575, 597), True, 'import numpy as np\n'), ((1141, 1156), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (1151, 1156), True, 'import matplotlib.pyplot as plt\n'), ((1157, 1172), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (1167, 1172), True, 'import matplotlib.pyplot as plt\n'), ((1173, 1229), 'matplotlib.pyplot.title', 'plt.title', (['"""trajectories of bodies with escape velocity"""'], {}), "('trajectories of bodies with escape velocity')\n", (1182, 1229), True, 'import matplotlib.pyplot as plt\n'), ((1230, 1242), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1240, 1242), True, 'import matplotlib.pyplot as plt\n'), ((1243, 1253), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1251, 1253), True, 'import matplotlib.pyplot as plt\n'), ((360, 371), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (368, 371), True, 'import numpy as np\n'), ((670, 688), 'scipy.integrate.odeint', 'odeint', (['rhs', 'y0', 't'], {}), '(rhs, y0, t)\n', (676, 688), False, 'from scipy.integrate import odeint\n'), ((920, 939), 'scipy.integrate.odeint', 'odeint', (['rhs', 'y0', '(-t)'], {}), '(rhs, y0, -t)\n', (926, 939), False, 'from scipy.integrate import odeint\n'), ((461, 472), 'numpy.cos', 'np.cos', (['psi'], {}), '(psi)\n', (467, 472), True, 'import numpy as np\n'), ((476, 487), 'numpy.sin', 'np.sin', (['psi'], {}), '(psi)\n', (482, 487), True, 'import numpy as np\n'), ((747, 776), 'matplotlib.pyplot.plot', 'plt.plot', (['x1', 'x2'], {'color': '"""red"""'}), "(x1, x2, color='red')\n", (755, 776), True, 'import matplotlib.pyplot as plt\n'), ((795, 846), 'matplotlib.pyplot.plot', 'plt.plot', (['x1', 'x2'], {'color': '"""red"""', 'label': '"""trajectories"""'}), "(x1, x2, color='red', label='trajectories')\n", (803, 846), True, 'import matplotlib.pyplot as plt\n'), ((998, 1029), 'matplotlib.pyplot.plot', 'plt.plot', (['x1', 'x2'], {'color': '"""green"""'}), "(x1, x2, color='green')\n", (1006, 1029), True, 'import matplotlib.pyplot as plt\n'), ((1048, 1114), 'matplotlib.pyplot.plot', 'plt.plot', (['x1', 'x2'], {'color': '"""green"""', 'label': '"""trajectories back in time"""'}), "(x1, x2, color='green', label='trajectories back in time')\n", (1056, 1114), True, 'import matplotlib.pyplot as plt\n'), ((327, 344), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (341, 344), True, 'import numpy as np\n'), ((627, 640), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (633, 640), True, 'import numpy as np\n'), ((645, 658), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (651, 658), True, 'import numpy as np\n'), ((877, 890), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (883, 890), True, 'import numpy as np\n'), ((895, 908), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (901, 908), True, 'import numpy as np\n')]